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Abstract: In the fields of environment and transportation, the aerodynamic noise emissions emitted
from heavy-duty diesel engine turbocharger compressors are of great harm to the environment
and human health, which needs to be addressed urgently. However, for the study of compressor
aerodynamic noise, particularly at the full operating range, experimental or numerical simulation
methods are costly or long-period, which do not match engineering requirements. To fill this
gap, a method based on ensemble learning is proposed to predict aerodynamic noise. In this
study, 10,773 datasets were collected to establish and normalize an aerodynamic noise dataset.
Four ensemble learning algorithms (random forest, extreme gradient boosting, categorical boosting
(CatBoost) and light gradient boosting machine) were applied to establish the mapping functions
between the total sound pressure level (SPL) of the aerodynamic noise and the speed, mass flow rate,
pressure ratio and frequency of the compressor. The results showed that, among the four models, the
CatBoost model had the best prediction performance with a correlation coefficient and root mean
square error of 0.984798 and 0.000628, respectively. In addition, the error between the predicted
total SPL and the observed value was the smallest, at only 0.37%. Therefore, the method based on
the CatBoost algorithm to predict aerodynamic noise is proposed. For different operating points
of the compressor, the CatBoost model had high prediction accuracy. The noise contour cloud in
the predicted MAP from the CatBoost model was better at characterizing the variation in the total
SPL. The maximum and minimum total SPLs were 122.53 dB and 115.42 dB, respectively. To further
interpret the model, an analysis conducted by applying the Shapley Additive Explanation algorithm
showed that frequency significantly affected the SPL, while the speed, mass flow rate and pressure
ratio had little effect on the SPL. Therefore, the proposed method based on the CatBoost algorithm
could well predict aerodynamic noise emissions from a turbocharger compressor.

Keywords: turbocharger compressor; aerodynamic noise; ensemble learning; emission prediction
model; Shapley Additive Explanation

1. Introduction

As the problems of energy shortage and environmental pollution are becoming more
and more prominent, reducing fuel consumption and pollutant emissions from road vehi-
cles is one of the most important approaches to achieving environmentally and economi-
cally sustainable development [1–3]. Turbochargers are widely used in the transportation
field because they increase engines’ specific power and reduce gas emissions [4–7]. Un-
fortunately, the noise emissions generated by turbochargers become a non-negligible part
of the engine noise source, hindering environmentally sustainable development to some
extent [8,9]. In addition, due to the increase in output power requirements for diesel en-
gines, the turbocharger pressure ratio increases, resulting in an increase in the compressor
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load and higher aerodynamic noise emissions [10,11]. The existing literature indicates that
aerodynamic noise is considered to be the main noise source in turbochargers [12,13]. Aero-
dynamic noise mainly consists of discrete noise and broadband noise, which is generated
by the turbulent motion between the airflow and the compressor components [14,15]. Due
to the complexity of the turbulent motion, it is difficult to quantitatively describe the flow
field and the resulting induced sound field during the operation of a turbocharger com-
pressor by means of a complete mathematical analytical formula. Therefore, experimental
or numerical simulation methods are often relied upon to obtain a realistic situation of the
compressor aerodynamic noise.

Analyzing the aerodynamic noise distribution of a compressor is the basis for achieving
aerodynamic noise emission control. Researchers have conducted numerous experimental
studies on compressors’ aerodynamic noise. Raitor et al. [16] studied the main noise sources
of centrifugal compressors. The results indicated that blade passing frequency (BPF) noise,
buzzsaw noise and tip clearance noise were the main noise sources. Figurella et al. [17]
showed that in the compressor, BPF and its harmonic frequencies, discrete noise could be
observed. Sun et al. [18] conducted experiments to investigate the influences of foam metal
casing treatment on an axial flow compressor’s aerodynamic noise. The results showed
that the use of the foam metal casing treatment could reduce aerodynamic noise within
a range of 0.18 dB∼1.6 dB. Zhang et al. [19] used the experiment method to investigate
the effect of differential tip clearances on the noise emissions of an axial compressor. The
results showed that when the tip clearance was small, the sound pressure level (SPL) of
the compressor was lowest. Furthermore, Galindo et al. [20] carried out experiments to
study the influence of inlet geometry on an automotive turbocharger compressor noise.
They found that the aerodynamic noise emissions and surge margin could significantly
improve using a convergent-divergent nozzle. Therefore, the experimental approach is an
effective way to study the aerodynamic noise of turbocharger compressors. However, the
test bench operation and cost limitations make it difficult to carry out the measurement
of SPL for compressor aerodynamic noise under arbitrary operating conditions. This
brings challenges for reducing compressor noise emissions and promoting environmentally
sustainable development.

With the gradual development of computational fluid dynamics (CFD), numerical sim-
ulation techniques for compressor noise coupled with CFD and computational aerodynamic
acoustics methods have been widely used [21,22]. Liu et al. [23] calculated the unsteady
flow field of a compressor and used the flow field results to obtain noise source information.
In order to calculate centrifugal fan and axial compressor noises, the RANS method and
the Ffowcs Williams and Hawkings (FW–H) equation were used by Khelladi et al. [24] and
Laborderie et al. [25]. Karim et al. [12] conducted a CFD numerical simulation with the
use of the Large Eddy Simulation approach to measure the pressure signal at the inlet and
outlet of a compressor, and to calculate the SPL and spectral distribution. Lu et al. [26]
conducted an experimental and simulation investigation on the aerodynamic noise of an
axial compressor. They found that the main sound source areas were the rotor and stator.
In addition, Zhang et al. [27] used multiple calculation methods to investigate the effect of
an approximately solid surface wall on fan noise propagation. However, due to the large
resource consumption and long computation time of the multi-dimensional and dense-grid
numerical simulation of compressor noise, there are certain disadvantages in engineering
applications.

From the above literature analysis, it is clear that traditional experimental measure-
ments are costly, long-period and complicated to operate. The advent of numerical simula-
tion methods has made it possible to obtain more detailed flow structures and richer flow
field information than experiments at a lower cost. However, turbulence is a nonlinear
mechanical system with a large number of degrees of freedom and an extremely wide
range of scales. For models with complex geometrical shapes and high Reynolds number
flows, even if they rely on numerical simulation by computer, they still need to perform
very complicated calculations on a rapidly increasing number of grids, which consumes
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huge computational resources. Therefore, in order to save the costs of experiments or
simulations and shorten their time cycles, data-driven methods are gradually becoming
a focus of attention [28]. That is, by means of machine learning, key information can be
extracted and “black box” models constructed based on sample data from experiments or
numerical simulations.

Machine learning, as an interdisciplinary discipline, has received sustained attention
from many scholars in recent years [29–31]. Ensemble learning algorithms based on decision
trees, such as extreme gradient boosting (XGBoost) and random forest (RF), are widely used
in the study of complex nonlinear models in the environmental field [32,33]. Furthermore,
the recently proposed categorical boosting (CatBoost) and light gradient boosting machine
(LightGBM) algorithms have gained attention due to their excellent performance on small
datasets and their strong overfitting resistance [34,35]. However, these algorithms are based
on decision trees and are often considered “black box” algorithms, making it difficult to
know their prediction process. In recent years, researchers have introduced a number
of techniques to explain machine learning algorithms. The partial dependence diagram
(PDP), as a classical method to reveal the mean partial relationship of one or more features
in the model results, has been adopted by many researchers [36]. However, the average
marginal benefits calculated by PDPs may hide the variability among data. Therefore,
the Shapley Additive Explanation (SHAP) method was introduced to overcome these
problems. The SHAP method is a game theory-based model diagnosis method that can
improve interpretability by calculating the importance value of each input feature on the
prediction results [37,38]. In addition, the SHAP method offers the possibility to visualize
and interpret the contribution of a feature value to the predicted results using SHAP values.

In the existing literature, the experimental and numerical simulation methods are the
main approaches used to study the aerodynamic noise characteristics. However, they are
costly and long-period at the full compressor operating range, which has some drawbacks in
engineering applications. To fill this gap, based on compressor aerodynamic noise datasets,
four ensemble learning methods (RF, XGBoost, CatBoost and LightGBM) and the SHAP
algorithm were used to establish an interpretable compressor aerodynamic noise prediction
model in this study. The model based on the CatBoost algorithm with the best predictive
performance among the four models was selected through tenfold cross-validation to carry
out the aerodynamic noise prediction, and the differences between the predicted results and
the observed values were compared and analyzed. A MAP diagram of the aerodynamic noise
at the full operating range is presented. Furthermore, in order to understand the prediction
process of the proposed method, the SHAP algorithm was used to reveal the nonlinear relation-
ship between the model input features and the predicted results. The interpretable prediction
model proposed in this study could accurately evaluate the compressor aerodynamic noise
under arbitrary operating conditions and provide data and theoretical support for realizing
the control of noise emissions and contributing to environmentally sustainable development.
Figure 1 shows the research framework of this study.

 
Figure 1. Investigation procedure.
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2. Research Methodology

The interpretable prediction model building and analysis process for predicting com-
pressor aerodynamic noise is shown in Figure 2. The compressor aerodynamic noise data
were obtained from the experiments, and the data were processed to build the emission
prediction model. Four ensemble machine learning methods (random forest (RF), extreme
gradient boosting (XGBoost), categorical boosting (CatBoost) and light gradient boosting
machine (LightGBM)) were used to construct the models, and then an interpretable algo-
rithm of Shapley Additive Explanations (SHAP) was used to analyze the extent to which
the input features contributed to the output results and provided explanations for the aero-
dynamic noise prediction process. The results of the study can provide decision-making
for compressor aerodynamic noise emission control.

Figure 2. Explainable prediction model for compressor aerodynamic noise using Shapley Additive
Explanations approach.

2.1. Experimental System and Method

Figure 3 shows the schematic of the turbocharger compressor aerodynamic noise test
rig. In the compressor noise experimental system, the PCB-SN152495 type microphone was
used to measure the sound pressure level (SPL) of aerodynamic noise, the PCB-HT356B21
type vibration sensor was used to test the vibration acceleration on the surface of the
compressor worm shell and the SPL and vibration signals were collected and analyzed by
the SIEMENS signal acquisition method. A detailed description of turbocharger test bench
can be found in the literature [39,40], and the turbocharger test bench and aerodynamic
noise test instruments are shown in Table 1. As can be seen from Table 1, the turbocharger
performance and noise test rig consisted of four parts, which were the compressor section,
turbine section, intake and exhaust piping and components, and noise test section, respec-
tively. Table 2 lists the measuring ranges, accuracies and uncertainties of the aerodynamic
noise test instruments [40].

Table 1. Distributions of turbocharger test bench and aerodynamic noise test instruments.

Compressor Section Turbine Section
Intake and Exhaust Piping

and Components
Noise Test Section

Compressor inlet flowmeter Turbine Automatic circulating valve Vibration sensors
Compressor inlet pressure sensor Turbine inlet flowmeter Electric exhaust control valve Microphone

Compressor inlet and outlet
temperature sensors Turbine inlet control valve Electric trimming valve Signal acquisition port

Speed sensor – Burner Computer
Compressor – Air source and vent valve –

4



Sustainability 2023, 15, 13405

 
1. Compressor inlet flowmeter 2. Compressor inlet pressure sensor 3. Compressor inlet temperature sensor 

4. Speed sensor 5. Compressor 6. Compressor outlet temperature sensor 
7. Automatic circulating valve 8. Electric exhaust control valve 9. Electric trimming valve 

10. Turbine 11. Burner 12. Turbine inlet flowmeter 
13. Turbine inlet control valve 14. Air source vent valve 15. Filter 

16. Air source 17. Vibration sensors 18. Microphone 
19. Signal acquisition port 20. Computer  

Figure 3. Schematic diagram of aerodynamic noise for compressor test setup [40].

Table 2. Measuring ranges, accuracies and uncertainties of instruments [40].

Instruments Parameters Measuring Range Accuracy Uncertainty

Tachometer Speed 0~400,000 r/min 0.1 r/min 0.01 r/min
Microphone Noise 15~165 dB 0.1 dB ±0.02 dB
Vibration sensor Vibration ±490 m/s2 pk 1% ±0.2 m/s2

Temperature sensor Compressor inlet and outlet
temperature −200~400 ◦C 0.25 ◦C ±0.1 ◦C

Pressure sensor Compressor inlet pressure −175~35,000 Pa, −40~85 ◦C 0.05% ±0.01%
Pressure sensor Compressor outlet pressure 0~700,000 Pa, −40~85 ◦C 0.05% ±0.01%
Temperature sensor Turbine inlet and outlet temperature −200~1372 ◦C 0.4% ±0.1 ◦C
Pressure sensor Turbine inlet pressure 0~700,000 Pa, −40~85 ◦C 0.05% ±0.01%
Pressure sensor Turbine outlet pressure −175~35,000 Pa, −40~85 ◦C 0.05% ±0.01%

Flow meter Compressor outlet mass flow rate 30 standard liters per minute
(SLM)~3000 SLM, 0~70 ◦C 0.5% ±0.1% F.S

2.2. Research Object

The research object of this study was the turbocharger compressor of a heavy-duty
diesel engine. The compressor structure using a splitter blade, the diffuser using a bladeless
structure and the specific parameters are shown in Table 3. A detailed description of the
specification dimensions of the compressor can be found in the literature [40].

Table 3. Compressor specification parameters [40].

Item Value

Turbocharger compatibility Heavy-duty diesel engine
Outlet diameter of impeller (mm) 94.4
Inlet diameter of impeller (mm) 66.46
Main blade number 7
Splitter blade number 7
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Table 3. Cont.

Item Value

Diffuser height (mm) 4.77
Design pressure ratio 4.5
Rated speed (r/min) 117,000
Outlet diameter of diffuser (mm) 166.15
Inlet diameter of diffuser (mm) 90
Type of cooling Oil cooling
Mass flow rate range (kg/s) 0.08, 0.66

2.3. Dataset Creation

During the experiments, the JB/T 12332-2015 “Turbocharger Noise Test Method”
standard was referenced to test the noise of the compressor [41]. In order to ensure the
repeatability and accuracy of the aerodynamic noise experiments of the compressor, the
laboratory environment and instruments needed to be measured and calibrated before
the test started. The measurement methods and procedures are described in the litera-
ture [40]. In addition, the turbine, exhaust pipes and facilities of the turbocharger for the
test were covered and soundproofed to ensure that the compressor inlet aerodynamic noise
experiments were not affected by other noise sources. In the experiments, the SPLs of
aerodynamic noise corresponding to different frequencies were recorded by adjusting the
speed, pressure ratio and mass flow rate of the compressor. The formula for calculating the
total SPL of aerodynamic noise is shown in Equation (1) [42]:

Ltotal = 10log

(
n

∑
i=1

10
Li
10

)
(1)

where Ltotal and Li are the total SPL and SPL at a fixed frequency point, respectively. n is
the number of frequency points.

In this study, a total of 10,773 sets of aerodynamic noise data were obtained from the
experiments. The noise test points were determined based on a MAP diagram of the compres-
sor performance, as shown in Figure 4. The noise test points included 21 operating points. In
addition, the datasets collected in the experiments were obtained from a previous study [40].
The remaining operating points were the compressor performance distribution points.

The distribution of the dataset is shown in Table 4. From the table, it can be seen that
the dataset covered a total of seven speed lines ranging from 60,000 r/min to 110,000 r/min,
including three operating regions of the compressor: near-choke region, high-efficiency
region and near-surge region.

Figure 4. Observed operating points of aerodynamic noise [40].
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Table 4. Dataset distributions of noise test points.

Speed (r/min) Mass Flow Rate (kg/s) Pressure Ratio Frequency (Hz) Number of Datasets

60,000 0.151 1.764 0~25,600 (interval of 50) 513
60,000 0.244 1.583 0~25,600 (interval of 50) 513
60,000 0.328 1.3 0~25,600 (interval of 50) 513
72,000 0.197 1.476 0~25,600 (interval of 50) 513
72,000 0.302 1.914 0~25,600 (interval of 50) 513
72,000 0.402 2.063 0~25,600 (interval of 50) 513
82,000 0.232 2.465 0~25,600 (interval of 50) 513
82,000 0.342 2.331 0~25,600 (interval of 50) 513
82,000 0.456 1.663 0~25,600 (interval of 50) 513
90,000 0.268 2.863 0~25,600 (interval of 50) 513
90,000 0.379 2.723 0~25,600 (interval of 50) 513
90,000 0.493 1.83 0~25,600 (interval of 50) 513
95,000 0.349 3.144 0~25,600 (interval of 50) 513
95,000 0.426 2.916 0~25,600 (interval of 50) 513
95,000 0.509 1.985 0~25,600 (interval of 50) 513
101,000 0.376 3.555 0~25,600 (interval of 50) 513
101,000 0.449 3.375 0~25,600 (interval of 50) 513
101,000 0.526 2.207 0~25,600 (interval of 50) 513
110,000 0.398 4.175 0~25,600 (interval of 50) 513
110,000 0.468 4.041 0~25,600 (interval of 50) 513
110,000 0.542 2.609 0~25,600 (interval of 50) 513

2.4. Model Building and Performance Evaluation

In this study, one traditional ensemble learning algorithm (RF) and three gradient
boosting decision tree (GBDT) algorithms (XGBoost, CatBoost and LightGBM) were used to
build a compressor aerodynamic noise emissions prediction model. Compared to complex
deep learning models, using four ensemble models made it easier to capture the variation
in parameters and variable interpretation within each model. For the ensemble learning
component, the RF was a typical bagging algorithm that accomplished a classification
task by voting and a regression task by averaging [43]. Specifically, the RF was a set of
decision trees, and each tree was constructed using the best split for each node among
a subset of predictors randomly chosen at that node. In the end, a simple majority vote
was taken for prediction. The GBDT was a machine learning model for regression and
classification, and its effective implementations included XGBoost. However, the efficiency
and standardization of XGBoost was not satisfactory when feature dimensionality was
high and the data size was large. Therefore, the CatBoost and LightGBM models were
proposed, and these models were shown to significantly outperform other models in terms
of accuracy for structured and tabulated data [44]. To be specific, CatBoost used greedy
strategies to consider combinations to improve classification accuracy when constructing
new split points for the current tree. Meanwhile LightGBM contained two novel techniques
including Gradient-based One-Sided Sampling and Exclusive Feature Bundling [45].

The ensemble learning models in this study were all implemented based on scikit-
learn and Python libraries. To ensure the accuracy of the models, each model uniformly
used 80% of the dataset as the training set and 20% of the dataset as the validation set.
The optimal model was obtained by adjusting the training strategy using GridSearch and
tenfold cross-validation methods, in which the training set was randomly divided into ten
copies and the ten subsets were traversed in turn, with the current subset used for testing
and the remaining nine copies used for training. The performance of the prediction model
was evaluated using the coefficient of determination (R2) and the root mean square error
(RMSE). The R2 and RMSE were calculated as shown in Equations (2) and (3):

R2 = 1− ∑N
1
(
yp − yo

)2
∑N

1 (y− yo)
2 (2)

7
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RMSE =

√
∑N

1
(
yp − yo

)2
N

(3)

where N is the sample size, yp is the predicted value, yo is the test observation and y is the
average of yo.

The setup parameters of the four models are listed in Table 5.

Table 5. The setup parameters of the four models.

Model
Number of

Trees
Depth of Trees

Number of
Leaf Nodes

Minimum Number of
Samples for Leaf

Nodes

Learning
Rate

Sampling
Ratio of

Training Set

RF 1000 10 200 5 0.01 0.9
XGBoost 500 6 200 5 0.01 0.9
CatBoost 4000 10 200 5 0.01 0.9

LightGBM 3000 10 200 5 0.01 0.9

The distributions of the predicted operating points of the prediction models are shown
in Figure 5. The remaining operating points were the aerodynamic noise test points of the
compressor at different speed lines.

 
Figure 5. Predicted operating points of aerodynamic noise.

2.5. Model Interpretation

Ensemble learning models based on decision trees have often been considered as
“black box” models. However, while establishing prediction models accurately, it is also
necessary to explain how the prediction models work effectively. SHAP summary graphs
obtained using the SHAP method have been shown to be effective in explaining the
predicted results of decision tree models [38]. In a SHAP summary graph, the horizontal
axis (x-axis) represents the SHAP value, and the magnitude of the value indicates the
average marginal contribution of the input features to the model output. A SHAP value
of less than 0 indicates a negative contribution; equal to 0, no contribution; and greater
than 0, a positive contribution. A positive contribution means that the input features are
highly important to the final predicted result, while the least important features result
in a negative contribution. Each input feature was ranked from top to bottom according
to its importance, with the top features contributing more to the predicted results of the

8
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model than the bottom features. The points representing the feature values were plotted
horizontally, and the color of each point from low (blue) to high (red) represents the
magnitude of the SHAP value for that feature [46].

3. Results and Discussion

3.1. Descriptive Statistics of Parameters Affecting Sound Pressure Level
3.1.1. Identification of Interest Parameters

In this study, two interest parameters included the compressor operating character-
istics and the aerodynamic noise characteristics, which were introduced to explain their
effects on the aerodynamic noise SPL. The two parameters are shown in Table 6. The
parameters of compressor operating characteristics include speed, pressure ratio and mass
flow rate. Related studies [47,48] have shown that compressor operating characteristics
reflect the operating condition of the compressor and have an obvious impact on the SPL
of aerodynamic noise. Aerodynamic noise characteristics refere to the frequencies cor-
responding to the SPL of aerodynamic noise. The SPL of aerodynamic noise varied for
different frequencies. However, the coupling effect of these four characteristics (speed,
pressure ratio, mass flow rate and frequency) on the SPL of the compressor was not well
investigated, especially in terms of the contribution of each characteristic to the SPL, which
was one of the focuses of this study.

Table 6. Specifications of four types of interest parameters.

Type Parameters Unit Calculation Method

Compressor operating
characteristics

Speed r/min Directly measured by
tachometer

Pressure ratio –
Directly measured by pressure
sensor and with the equation
Pout/Pin

Mass flow rate kg/s Directly measured by flow
meter

Noise characteristics Frequency Hz Directly measured by
microphone

3.1.2. Distribution of Input Features

During the experiments, the compressor operating conditions were adjusted by chang-
ing the compressor speed, pressure ratio and mass flow rate, and the aerodynamic noise
was measured. As can be seen from Figure 4 and Table 4, the compressor speed distribution
ranged from 60,000 r/min to 110,000 r/min, the pressure ratio distribution ranged from
1.3 to 4.175, the mass flow rate distribution ranged from 0.151 kg/s to 0.542 kg/s and
the frequency distribution ranged from 0 to 25,600 Hz. Therefore, by changing the speed,
pressure ratio and mass flow rate within a certain range, the compressor was operated
under different operating conditions, and then the aerodynamic noise was generated.

Different frequencies corresponded to different SPLs of aerodynamic noise. The
aerodynamic noise characteristics of the compressor under various operating conditions
are shown in Figure 6, and the experimental data were provided by a previous study [40].
From the figure, it can be seen that under the same operating conditions, the SPL of
aerodynamic noise basically tended to decrease as the frequency increased. The frequency
distribution ranged from 0 to 25,600 Hz, which shows that different frequencies had an
effect on the SPL of aerodynamic noise.
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(a) 60,000 r/min 

 
(b) 90,000 r/min 

 
(c) 110,000 r/min 

Figure 6. Aerodynamic noise characteristics of compressor under various operating conditions.
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Therefore, speed, pressure ratio, mass flow rate and frequency were selected as the
four features describing the aerodynamic noise generated during the operation of the
compressor, and the output result was the SPL of the corresponding frequency. In this
study, a total of 10,773 sets of valid data were collected, in which each set of data contained
the SPL of aerodynamic noise and the four characteristic values affecting the SPL. To
prevent the influence of the magnitude on the model training results, all the eigenvalues
were normalized.

3.2. Importance of Input Features

The importance of the input features of the models was analyzed using the SHAP
method. Figure 7 shows the results of ranking the importance of the input features for
the four models. In the figure, the SHAP values of all features obtained by applying the
SHAP method were within 0.18. Among the four models, the SHAP values of each feature
were frequency > speed > mass flow rate > pressure ratio in descending order. Among
all the features, frequency was the most important feature which affected the SPL of the
aerodynamic noise, and its average SHAP value was above 0.16. This was because the SPLs
of the aerodynamic noise corresponding to different frequencies were significantly different
under the same compressor operating conditions (speed, mass flow rate and pressure ratio
were the same), which made frequency have the greatest effect on the SPL. This result is
consistent with that of Xu et al. [49]. Compared with the RF model, the SHAP values of
speed in the three models of XGBoost, CatBoost and LightGBM were all above 0.02, and
there was a significant difference with the third ranked mass flow rate. This indicates that
the influence of speed was still larger in these three models. The above results show that
among the four models, the frequency, speed, mass flow rate and pressure ratio had an
influence on the output results of the prediction models and could be used as the input
features.

  
(a) RF (b) XGBoost 

  
(c) CatBoost (d) LightGBM 

Figure 7. Analysis of the importance of the input features in different models.
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3.3. Model Performance Comparison

Four prediction models of compressor aerodynamic noise were obtained by training
and tenfold cross-validation with 8618 sets of a training dataset. The purpose of the tenfold
cross-validation for prediction models was to select the optimal model parameters corre-
sponding to the four models, thus improving the generalization ability of the models [43].
The R2 and RMSE obtained for each calculation in the tenfold cross-validation are shown in
Figure 8, and the average R2 and average RMSE values from the tenfold cross-validation of
the four models are shown in Figure 9. As can be seen from Figure 8, among the ten tests,
the best prediction performance tests of RF, XGBoost, CatBoost and LightGBM were Test 5,
Test 10, Test 6 and Test 3, respectively. In addition, from Figures 8 and 9, it can be seen that
the R2, RMSE and the mean R2 and mean RMSE of the model training results in the tenfold
cross-validation were close. Among them, the CatBoost model had the largest mean R2 and
the smallest mean RMSE with the values of 0.983579 and 0.000694, respectively. Therefore,
for the four models, the optimal model was selected, respectively, for predictions adopting
the tenfold cross-validation method.

  
(a) RF (b) XGBoost 

  
(c) CatBoost (d) LightGBM 

Figure 8. R2 and RMSE values from the tenfold cross-validation of four models.

To determine the prediction performances of the models, the best models built by the
four ensemble machine learning algorithms were applied to predict the 2155 datasets in the
validation set, respectively. Figure 10 shows the R2 and RMSE of the predicted results of the
four models. It can be seen that overfitting was avoided in all four models. Among the four
models, the largest R2 and the smallest RMSE with the values of 0.984798 and 0.000628 can
be seen in the CatBoost model, respectively, which indicates that the CatBoost-based model
had the best predictive performance. Therefore, in this study, frequency, speed, mass flow
rate and pressure ratios were used as the model input features, and the CatBoost algorithm
was applied to build the compressor aerodynamic noise emission prediction model.
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Figure 9. Comparison of mean R2 and mean RMSE values of predicted results from the tenfold
cross-validation of four models.

Figure 10. Comparison of R2 and RMSE values of predicted results for four models.

Figure 11 shows the observed values and the predicted total SPL of aerodynamic
noise for the four models. The predicted total SPL of aerodynamic noise based on the
CatBoost algorithm had only 0.37% error compared with the observed value, which was the
smallest error among the four models, indicating that the model established by applying
the CatBoost algorithm had the highest prediction accuracy.

The predicted results of the CatBoost model based on 2155 sets of validation datasets
were compared with the observed values. The comparison results for three randomly
selected operating condition points are shown in Figure 12. The slanted straight line
indicated the degree of fit between the predicted and observed values. In this study,
60,000 r/min, 90,000 r/min and 110,000 r/min were chosen to represent the low, medium
and high speeds of the compressor, respectively. The CatBoost model had a high prediction
accuracy under all three operating conditions. Compared with the medium and high speeds,
the CatBoost model had the highest prediction accuracy under low-speed conditions
(60,000 r/min) with an R2 and RMSE of 0.997237 and 1.290883, respectively, indicating
that the CatBoost model could accurately capture and predict the nonlinear relationship
between the SPL of the compressor’s aerodynamic noise and different input features.
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Figure 11. Comparison of total SPL of predicted and observed values for four models.

 
(a) 60,000 r/min_1.583_0.244 kg/s 

(b) 90,000 r/min_2.723_0.379 kg/s 

Figure 12. Cont.
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(c) 110,000 r/min_4.041_0.468 kg/s 

Figure 12. The modeling results of the CatBoost model on the validation dataset.

3.4. Predicted Results and Model Interpretation of CatBoost Model
3.4.1. Predicted Results

Related studies have shown that the blade passing frequency (BPF) noise is one of
the main noise components of a compressor’s aerodynamic noise. The BPF is calculated
as follows:

fB =
nZ
60

(4)

where n and Z are the compressor speed and the number of blade sets, respectively.
Figure 13 shows the predicted results of aerodynamic noise at the untested operating

points in the MAP diagram of the compressor. The SPL of aerodynamic noise decreased
with an increase in the frequency at different operating condition points, which was
consistent with the trend in the observed values. It was further observed that for all
predicted points, there was one peak at the BPF, and the peak was more obvious as the
speed increased. This indicates that the model based on the CatBoost algorithm could well
predict the acoustic information at specific frequencies.

From the above analysis, it can be seen that the prediction model based on the Cat-
Boost algorithm could predict the aerodynamic noise for any operating conditions of the
compressor and calculate the total SPL. Therefore, the aerodynamic noise MAP diagram
could be given correspondingly while predicting the aerodynamic performance of the
compressor. Figure 14 shows the noise MAP drawn directly using the observed values
and the MAP drawn using the predicted results of the model. Among them, the noise
MAP of the observed values consisted of the total SPL for the 21 test conditions, and the
noise MAP predicted by the CatBoost model included the 21 observed values and the total
SPLs predicted by 21 predicted points. As can be seen from the figure, the compressor
aerodynamic noise increased with an increase in the compressor speed. At the same speed,
the lowest total SPL of aerodynamic noise was found in the region of medium pressure
ratio and medium mass flow rate. The MAP diagrams of aerodynamic noise predicted
by the CatBoost model and the observed values are in good agreement, and the locations
of the SPL contours are basically the same. In addition, compared with the experimental
aerodynamic noise MAP, the noise contours in the predicted MAP are better at charac-
terizing the changes in the total SPL. The maximum and minimum predicted total SPLs
were 122.53 dB and 115.42 dB, respectively. Therefore, the comparison in Figure 14 further
verifies the feasibility of the model built based on the CatBoost algorithm in the prediction
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of compressor aerodynamic noise, which could provide an accurate and usable numerical
tool for the analysis of compressor aerodynamic noise prediction.

  
(a) 60,000 r/min (b) 72,000 r/min 

  
(c) 82,000 r/min (d) 90,000 r/min 

  
(e) 95,000 r/min (f) 101,000 r/min 

 
(g) 110,000 r/min 

Figure 13. The modeling results of the CatBoost model of the predicted operating conditions.

16



Sustainability 2023, 15, 13405

  
(a) Observed total SPL (b) Predicted total SPL of CatBoost model 

Figure 14. Comparison of experimental and CatBoost model predicted total SPL emission clouds for
aerodynamic noise.

3.4.2. Interpretation of CatBoost Model Based on SHAP Method

The non-linear relationship between the four input features of the CatBoost-based
aerodynamic noise prediction model and the SPL of the aerodynamic noise was revealed
by the SHAP method. The results were extracted from a Python SHAP library. Figure 15
shows the effect of changing the input features on the SHAP value of the aerodynamic noise
SPL. The color trends of the four input features show that the SPL of aerodynamic noise
increased with an increase in the speed, mass flow rate and pressure ratio, and decreased
with an increase in frequency. Among them, changing speed had the greatest effect on
the change in SPL compared with the mass flow rate and pressure ratio. It was further
observed that the SHAP values of the remaining three input features, except frequency,
on the SPL of aerodynamic noise, were mainly concentrated around 0. This indicates that
under similar operating conditions, the speed, mass flow rate and pressure ratio had less
influence on the SPL of aerodynamic noise, while frequency could significantly affect the
aerodynamic noise SPL of the compressor.

Figure 15. Relationship between the SHAP value and the values of different input features.

The SHAP method was used to further quantify the contribution of the four input
features at each operating point of the compressor aerodynamic noise. The CatBoost model
was applied to predict the SPL of the aerodynamic noise for one randomly selected data
point from 10,773 datasets, and the SHAP method was used to calculate the contribution of
the feature values. The calculation results were extracted from a Python SHAP library as
shown in Figure 16. E[ f (x)] represents the average of the predicted results of all samples
and f (x) represents the predicted result of that point. The red color indicates that the
feature led to an increase in the SPL, and the blue color indicates that the feature led to a
decrease in the SPL. As can be seen from the figure, the frequency, speed and pressure ratio
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played a role in reducing the SPL of aerodynamic noise. At the same frequency, changing
the compressor mass flow rate and speed had a greater effect on the SPL. Therefore, the
SHAP method could effectively evaluate and quantify the influences of all features on the
SPL during the operation of the compressor, which further increased the credibility of the
prediction model for compressor aerodynamic noise based on the CatBoost algorithm.

 

Figure 16. Interpretation of the features contribution of the compressor aerodynamic noise prediction
model.

3.5. Comparative Analysis of the Results with the Existing Research Findings

In order to further emphasize the novelty of this study, a detailed comparison was
conducted between this study and existing research findings, as shown in Table 7.

Table 7. Comparison of the investigation and a survey of the other existing literature.

Study Research Object Research Method Main Conclusions

Broatch et al. [50] Centrifugal compressor Numerical simulation and
experiments

A numerical model of a centrifugal
compressor was presented to predict a
presented peak pressure point.

Hu et al. [51] Rotating vane compressor Numerical simulation and
experiments

A radiated noise prediction model of a rotary
vane compressor was established.

Zhao et al. [52] A commercial vehicle
turbocharger compressor Numerical simulation A new one-dimensional prediction model

was proposed to predict intake system noise.

Soulat et al. [53] A single stage compressor Numerical simulation

The effects of wake modelling on the
prediction of broadband noise generated by
the impingement of turbulent wakes on a
stationary blade row were studied.

Sharma et al. [54] A turbocharger compressor
with ported shroud design

Numerical simulation and
experiments

(1) Spectral signatures using statistical and
scale-resolving turbulence modelling
methods were obtained.

(2) Rotating structures through the slot
was found to potentially impact the
acoustic and vibrational response.

18



Sustainability 2023, 15, 13405

Table 7. Cont.

Study Research Object Research Method Main Conclusions

Wen et al. [55] A centrifugal compressor Numerical simulation and
experiments

(1) A hybrid method based on Morhing
acoustic analogy could accurately
predict the acoustic radiation of a
compressor.

(2) Compared with TWPF, AWPF was a
more significant source.

Li et al. [56] A turbocharger compressor Numerical simulation

(1) The compressor’s static pressure values
and the sound power values near the
impeller outlet were the largest.

(2) The noise levels of the inlets of
cylindrical and cone types were
smaller.

This investigation
A turbocharger centrifugal
compressor from a
heavy-duty diesel engine

Ensemble learning
algorithms, SHAP method
and experiments

(1) A prediction method of compressor
aerodynamic noise was proposed using
the CatBoost algorithm.

(2) During the prediction process, the
nonlinear relationships between the
input features (speed, mass flow rate,
pressure ratio and frequency) and the
SPL were elaborated upon.

(3) The predicted noise MAP was better at
characterizing the variation in the total
SPL for the aerodynamic noise.

As can been seen from Table 7, the existing literature focused on compressor noise
characteristics analysis, and the research methods used in the studies included experimen-
tation, numerical simulation, and a combination of experimental and numerical simulation.
The findings mainly included aerodynamic noise characteristics of compressors at specific
operating points. However, there were few studies on the aerodynamic noise prediction
of centrifugal compressors for engine turbochargers under the entire operating range. In
addition, the coupling effect between the influencing parameters (speed, mass flow rate,
pressure ratio and frequency) and the total SPL of the compressor was not sufficiently
analyzed, especially the contribution of each characteristic toward the SPL. Therefore, the
innovation involved in this study was to propose a method that could accurately predict
the aerodynamic noise of a turbocharger compressor under arbitrary working conditions
based on ensemble learning. In addition, the SHAP algorithm was used to analyze the
aerodynamic noise prediction process, which illustrated that the speed, mass flow rate and
pressure ratio had little effect on the SPL of the aerodynamic noise, while frequency could
significantly affect the SPL. The results of this study could provide a theoretical basis for
reducing the aerodynamic noise emissions of compressors and have engineering guidance
significance.

4. Conclusions

Environmentally sustainable development plays an important role in human health
and social development. The analysis of the aerodynamic noise of turbocharger com-
pressors is significant for reducing noise emissions. In order to accurately evaluate the
aerodynamic noise emissions under arbitrary operating conditions of a heavy-duty diesel
engine turbocharger compressor, aerodynamic noise experiments on turbocharger com-
pressors and established datasets were conducted in this study. Four ensemble machine
learning algorithms (random forest (RF), extreme gradient boosting (XGBoost), categorical
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boosting (CatBoost) and light gradient boosting machine (LightGBM)) were introduced
to establish a compressor aerodynamic noise emission prediction model, and the SHAP
algorithm was used to analyze the contribution of input features toward the model results.
The main findings were as follows:

• In the compressor aerodynamic noise prediction model, the speed, pressure ratio,
mass flow rate and frequency were the important input features. The degree of im-
portance of the input features calculated based on the SHAP algorithm was frequency
> speed > mass flow rate > pressure ratio in descending order. Compared with RF,
the SHAP values of speed were above 0.02 in all three models of XGBoost, CatBoost
and LightGBM, indicating that speed had some influence on the output results of the
prediction models.

• The compressor aerodynamic noise model based on the CatBoost algorithm had the
best prediction performance with the largest R2 and the smallest RMSE with the
values of 0.984798 and 0.000628, respectively. In addition, among the four models, the
CatBoost model had the smallest error between the total SPL of aerodynamic noise
and the observed value, which was only 0.37%.

• The CatBoost model had a high prediction accuracy at different operating points of
the compressor. The predicted aerodynamic noise MAP from the CatBoost model and
the experimental noise MAP were in good agreement, and the SPL contour locations
were basically the same. In addition, compared with the experimental noise MAP, the
predicted noise MAP was better at characterizing the variation in the total SPL of the
aerodynamic noise.

• The analysis of the input characteristics of the prediction model based on the SHAP
algorithm showed that the frequency and the SPL were negatively correlated. The
speed, mass flow rate and pressure ratio and the SPL showed a positive correlation. In
addition, the effects of the speed, mass flow rate and pressure ratio on the SPL were
small, while frequency could significantly affect the SPL of the compressor.

• The prediction model of compressor aerodynamic noise established by applying the
CatBoost algorithm could accurately evaluate aerodynamic noise under arbitrary
operating conditions and provide data and theoretical support for realizing the con-
trol of aerodynamic noise emissions, contributing to environmentally sustainable
development.
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Abstract: Heavy-duty diesel engines equipped with turbochargers is an effective way to alleviate
energy shortage and reduce gas emissions, but their compressor aerodynamic noise emissions have
become an important issue that needs to be addressed urgently. Therefore, to study the aerodynamic
noise emission characteristics of a compressor during the full operating range, experimental and
numerical simulation methods were used to analyze the aerodynamic noise emissions. The results
showed that aerodynamic noise’s total sound pressure level (SPL) increased with increased speed
under the test conditions. At low speeds, the total SPL of aerodynamic noise was affected by the mass
flow of the compressor more obviously. The maximum difference of aerodynamic noise total SPL was
1.55 dB at 60,000 r/min under different mass flows. At the same speed, the compressor could achieve
lower aerodynamic noise emissions by operating in the high-efficiency region (middle mass flows). In
the compressor aerodynamic noises, the blade passing frequency (BPF) noise played a dominant role.
The transient acoustic-vibration spectral characteristics and fluctuation pressure analysis indicated
that BPF and its harmonic frequency noises were mainly caused by the unsteady fluctuation pressure.
As the speed increased, the BPF noise contributed more to the total SPL of the aerodynamic noise,
and its percentage was up to 75.35%. The novelty of this study was the analysis of the relationship
between compressor aerodynamic noise and internal flow characteristics at full operating conditions.
It provided a theoretical basis for reducing the heavy-duty diesel engine turbocharger compressor
aerodynamic noise emissions.

Keywords: turbocharger compressor; aerodynamic noise; BPF noise;
acoustic-vibration characteristics; unsteady fluctuation pressure; dynamic-static interferences

1. Introduction

Turbochargers can increase the specific power output of internal combustion engines
and reduce gas emissions. Therefore, turbochargers are widely used in transportation
[1–5]. However, in addition to the combustion and mechanical noise in the engine cylinder,
the noise generated by the turbocharger becomes a non-negligible part of the engine
noise source [6]. Due to the increase in the output power requirements of diesel engines,
the turbocharger pressure ratio increases, leading to a rise in the compressor load and
higher aerodynamic noise emissions [7,8]. In the existing literature, aerodynamic noise
is considered the main noise source of turbochargers [9,10]. In recent years, excessive
compressor aerodynamic noise emissions have become an important issue that needs to be
addressed in heavy-duty diesel engine turbochargers.

The experimental method is one of the main technical approaches to studying the
aerodynamic noise of a compressor. During the noise experiments, the sound spectrum is
obtained by measuring the noise at the operating points of the compressor, thus visualizing
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the noise characteristics of the compressor [11]. Many fruitful works have been carried
out by scholars. Li et al. [12] conducted experimental noise research on a turbocharger
bench. Using an acoustic array, they measured the surface radiated noise of a gasoline
engine turbocharger. The results showed that the compressor aerodynamic noise was the
main source of turbocharger noise. Raitor et al. [13] studied the main noise sources of a
centrifugal compressor and found that blade passing frequency (BPF), buzz-saw, and tip
clearance noise were the main noise sources. Figurella et al. [14] showed that the discrete
noise could be observed in the BPF of a compressor and its harmonic frequencies. Zhang
et al. [15] explored the influence of differential tip clearance on the performance and noise
of an axial compressor adopting the experiment method. The results indicated that the
compressor’s sound pressure level (SPL) was lowest at a relatively small tip clearance
rather than zero. In addition, Galindo et al. [16] conducted experiments to explore the
effect of inlet geometry on noise emissions of an automotive turbocharger compressor. A
convergent-divergent nozzle could significantly improve surge margin and reduce noise
emissions. In summary, there is still a lack of experimental research on heavy-duty diesel
engine turbocharger compressors, and it is essential to carry out experimental studies on the
aerodynamic noise of compressors in the full operating range to reduce the aerodynamic
noises of compressors.

A review of the available literature showed that two methods are used for compressor
noise measurements, but there are some problems when using these methods. The first
method is based on radiated noise, measured using a microphone in an anechoic environ-
ment. However, the disadvantage is that it is difficult to distinguish between different
noise components. Another method is to use pressure transducers to measure noise in the
compressor duct, but this method relies on high-precision measurement equipment and has
high test costs [17]. In addition, the experimental method is usually used to improve the
acoustic performance of the compressor and cannot explore the relationship between the
compressor’s aerodynamic noise and flow characteristics. To remedy these shortcomings,
scholars have used reliable numerical computational methods to conduct noise simulation
studies on compressors.

Numerical simulation of compressor noise usually couples computational fluid dy-
namics (CFD) and computational aerodynamic acoustics (CAA) methods [18–20]. Dehner
et al. [21] studied the noise emissions of a turbocharger centrifugal compressor from a
spark-ignition engine using the experiments, CFD and modal decomposition methods.
The results showed the whooshing noise primarily propagated along the duct in acoustic
azimuthal modes. Galindo et al. [22] investigated the influence of four inlet geometries
on compressor performances (noise emissions, compressor surge margin and efficiency).
They found that a convergent nozzle could strongly reduce the intake orifice noise. In
addition, Galindo et al. [23] explored the impact of tip clearance on noise generation and
flow behavior of centrifugal compressors in near-surge conditions. The results showed
that there were no significant changes in compressor acoustic signature when varying
the tip clearance in near-surge conditions. Sundström et al. [24] predicted the flow field
and characterized the acoustic near-field generation and propagation under a centrifugal
compressor’s stable and near-surge operating conditions. They found that an amplified
broadband feature at two times the frequency of the rotating order of the shaft was captured
under the near-surge condition.

Furthermore, Sundström et al. [25] conducted a numerical simulations based on the
large eddy simulation method to explore vaneless diffuser rotating stall instability in a
centrifugal compressor. Jyothishkumar et al. [26] characterized the flow structures and
the associated instabilities near the stall point (before the surge). They found that there
existed a flow-acoustics coupling at near-surge operating conditions. Broatch et al. [27] con-
ducted experimental and numerical simulation investigations to analyze fluid phenomena
related to whoosh noise under near-surge conditions. The results showed that a broadband
noise in 1–3 kHz frequency band was detected in the experimental measurements during
the simulated conditions. This whoosh noise was also captured by the numerical model.
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Guo et al. [28] presented a numerical simulation of the stall flow phenomenon inside a
turbocharger centrifugal compressor with a vaneless diffuser. They found a distinct stall
frequency at the given compressor speed. In addition, Tomita et al. [29] studied the differ-
ences in phenomena of the two compressors with different structures were investigated
with experimental and computational methods to reveal internal flow phenomena. How-
ever, analysis of the aerodynamic noise and interior flow characteristics of the heavy-duty
diesel engine turbocharger compressors based on the full operating range is still lacking.
Therefore, a compressor simulation study is needed to analyze the relationship between
aerodynamic noise and flow characteristics.

To analyze the aerodynamic noise emission characteristics and mechanism of a heavy-
duty diesel turbocharger compressor in the full operating range, the purpose of this study
was to obtain the aerodynamic noise emissions law for the full operating range of a
compressor for heavy-duty diesel engine using an experimental method and to analyze
the relationship between different internal flow characteristics and aerodynamic noise
characteristics adopting simulation method. The innovation was to refine the aerodynamic
noise mechanism of the compressor for heavy-duty diesel engine turbochargers, propose
that blade aerodynamic force and dynamic interference were the main discrete monophonic
noise sources, and provide a theoretical basis for reducing the turbocharger compressor
aerodynamic noise emissions of the heavy-duty diesel engine. The research framework of
this study is shown in Figure 1. The remaining parts were organized as follows: Section 2
was the experimental facility and methods, which introduced the test device, measurement
equipment, test conditions and data processing methods. Section 3 was the numerical
simulation calculation of the compressor, introducing the model parameters setting and
validating the model. Section 4 analyzed the test and simulation results, including the
variation law of the aerodynamic noise emissions of the compressor in the full operating
range (total SPL, BPF noise, acoustic-vibration characteristics, etc.), and explored the
relationship between the aerodynamic noise emissions and unsteady fluctuation pressure,
dynamic-static interference effects. In Section 5, the main research results of this study were
summarized.

Figure 1. Investigation procedure.

2. Experimental Facility and Methods

2.1. Test System and Measurement Equipment

The compressor aerodynamic noise experiments were conducted on the turbocharger
performance test bench, as shown in Figure 2. The compressor noise test system mainly
included the turbocharger test bench, PCB-SN152495 type microphone, PCB-HT356B21
type vibration sensor, SIEMENS signal acquisition port and turbocharger test console.
Among them, the turbocharger test bench had automatic data acquisition and processing
functions, which could realize the precise control of turbocharger speed, compressor and
turbine inlet and outlet parameters. The compressor inlet was equipped with pressure
and temperature regulators, which could be automatically adjusted in real-time to ensure
smooth temperature and pressure at the inlet. The turbine intake system was equipped with
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oil injection and ignition devices. The measuring range and accuracy of the aerodynamic
noise test instruments are shown in Table 1.

Figure 2. Schematic diagram of compressor aerodynamic noise test device. 1. Compressor inlet
flowmeter. 2. Compressor inlet pressure sensor. 3. Compressor inlet temperature sensor. 4. Speed
sensor. 5. Compressor. 6. Compressor outlet temperature sensor. 7. Automatic circulating valve. 8.
Electric exhaust control valve. 9. Electric trimming valve. 10. Turbine. 11. Burner. 12. Turbine inlet
flowmeter. 13. Turbine inlet control valve. 14. Air source vent valve. 15. Filter. 16. Air source. 17.
Vibration sensors. 18. Microphone. 19. Signal acquisition port. 20. Computer.

Table 1. Measuring ranges, accuracies, and uncertainties of instruments.

Instruments Parameters
Measuring
Range

Accuracy Uncertainty

Tachometer Speed 0~400,000 r/min 0.1 r/min 0.01 r/min
Microphone Noise 15~165 dB 0.1 dB ±0.02 dB
Vibration sensor Vibration ±490 m/s2 pk 1% ±0.2 m/s2

Temperature
sensor

Compressor inlet and
outlet temperature −200~400 ◦C 0.25 ◦C ±0.1 ◦C

Pressure sensor Compressor inlet pressure −175~35,000 Pa,
−40~85 ◦C 0.05% ±0.01%

Pressure sensor Compressor outlet
pressure

0~700,000 Pa,
−40~85 ◦C 0.05% ±0.01%

Temperature
sensor

Turbine inlet and outlet
temperature −200~1372 ◦C 0.4% ±0.1 ◦C

Pressure sensor Turbine inlet pressure 0~700,000 Pa,
−40~85 ◦C 0.05% ±0.01%

Pressure sensor Turbine outlet pressure −175~35,000 Pa,
−40~85 ◦C 0.05% ±0.01%

The aerodynamic noise test operating conditions consisted of the characteristic work-
ing points on the MAP diagram of the compressor, as shown in Figure 3. Among them,
case 1 was defined as the near-choke region, case 2 as the high-efficiency region, and Case
3 as the near-surge region.
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Figure 3. Aerodynamic noise test condition points.

2.2. Experimental Procedure and Data Processing

To ensure that the compressor inlet aerodynamic noise experiments were not affected
by other noise sources, the compressor inlet piping was not installed with an inlet muffler.
To avoid the effect of the ground and walls on the compressor aerodynamic noise measure-
ment, the turbocharger axis was about 1.4 m from the ground, and the turbocharger case
was greater than 1 m from the wall. Before the experiments, the noise of the turbocharger
operating environment was measured and calibrated. In the experiments, the ambient
noise in the test chamber was 42.5 dB, and the ambient temperature was 23.5 ◦C. The data
collected during the test were processed by Simcenter Testlab 2021.1.

3. Numerical Simulation

3.1. Research Object

The research object of this study was a turbocharger compressor of a heavy-duty
diesel engine. The compressor structure uses the splitter blade, and the diffuser uses
a bladeless structure. The specific parameters are shown in Table 2. Chen et al. [30]
proposed a novel pseudo-MAP method which was a contour map with the performance of
only nine compressor characteristic operating points. Therefore, to make the simulation
representative, three speeds of 60,000 r/min, 90,000 r/min and 110,000 r/min were chosen
to represent the compressor’s low, medium, and high speeds. In each speed line, three
characteristic working points were selected to characterize the near-choke region (case
1), high-efficiency region (case 2) and near-surge region (case 3), and the total number of
simulated working cases were 9 points, and the distribution of calculated working cases
are shown in Figure 4.
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Table 2. Compressor parameters.

Item Value

Turbocharger compatibility Heavy-duty diesel engine
Outlet diameter of impeller (mm) 94.4
Inlet diameter of impeller (mm) 66.46
Main blade number 7
Splitter blade number 7
Diffuser height (mm) 4.77
Design pressure ratio 4.5
Rated speed (r/min) 117,000
Outlet diameter of the diffuser (mm) 166.15
Inlet diameter of the diffuser (mm) 90
Type of cooling Oil cooling

Figure 4. Aerodynamic noise simulation points.

3.2. Model Parameter Setting and Validation

To analyze the unsteady fluctuation pressure phenomenon of the compressor in detail,
monitoring points were set in the inlet region, rotor region, diffuser region and volute region,
respectively, as shown in Figure 5. In the compressor model setup, the impeller region was
set as the rotating domain, and the rest were stationary domains. The intersection between
the inlet section and the impeller rotating domain and between the impeller rotating domain
and the diffuser domain was adopted as the transient rotor-stator intersection. Considering
the complexity of the meshing of each fluid domain, structured meshes were used for the
inlet extension, outlet extension and rotor region, and unstructured meshes were used for
the rest of the stationary domains. To simulate the surface boundary layer of the blade and
hub accurately, the y+ of the first grid layer near the wall was less than 1. The turbulence
model adopted the Shear Stress Transport model, and the mathematical model adopted
the Reynolds-averaged Navier–Stokes equation system. The model walls were all set as
smooth, non-slip adiabatic walls [31]. The fluid was defined as an ideal gas, and the fluid
viscosity was set as a function of temperature. The inlet of the compressor was set to the
total temperature of 293.15 K and the total pressure of 101.325 kPa, and the outlet was set
to the mass flow boundary.
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(a)

(b) (c)

Figure 5. Compressor fluid domain and monitoring points distribution. (a) Compressor model
(b) Rotor region (c) Diffuser and volute regions.

During the numerical simulation, the unsteady flow was calculated based on the
steady flow simulation. The high resolution with second-order accuracy was selected as
the option of the advection scheme. In addition, the second-order backward Euler with
second-order accuracy was chosen as the option for the transient scheme.

Blade passing frequency (BPF) noise is the main component of compressor aerody-
namic noise. The equation for calculating the blade passing frequency (BPF) is as follows:

fB =
nZ
60

(1)

where n is the compressor speed and Z is the number of blade sets.
The BPF corresponds to the harmonic frequency fH is calculated by the following

formula:
fH = m fB (m = 2, 3, 4, . . .) (2)

where, m is the number of orders.
In this study, the simulated compressor speeds included 60,000 r/min, 90,000 r/min

and 110,000 r/min, and their corresponding BPFs were 7000 Hz, 10,500 Hz and 12,833 Hz,
respectively. Focusing on the first fifth-order noise, the corresponding maximum frequen-
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cies were 35,000 Hz, 52,500 Hz and 64125 Hz, respectively. According to the Nyquist
sampling law [17], the simulation time step is calculated as follows:

Δt ≤ 1
2 fmax

(3)

where, fmax is the maximum frequency. Therefore, the time steps were known to be
1.42 × 10−5 s, 9.52 × 10−6 s and 7.79 × 10−6 s, respectively. Due to every 4◦ rotation of
the impeller was a time step that satisfied the computational requirements, the time steps
calculated according to the impeller rotation per 4◦ were about 1.11 × 10−5 s, 7.41 × 10−6 s
and 6.06 × 10−6 s for the three speeds of 60,000 r/min, 90,000 r/min and 110,000 r/min,
respectively.

In addition, in the transient simulations, the normalized root-mean-square residuals
were used to determine convergence and control the termination of coefficient iterations.
The sum of residuals to the sum of fluxes for a given variable in all cells must be reduced to
less than 1 × 10−6 to ensure convergence of the computations.

Table 3 compares the various numerical parameters critical to modeling compressor
aerodynamics and noise generation in this survey with other literature surveys.

Table 3. Comparison of the various numerical parameters critical to modeling compressor aerody-
namics and noise generation in this survey with other literature surveys.

Study Tip Diameter
(mm)

Elements
(Million)

Wheel
Rotation (-)

Turbulence
Method (-)

Boundary Conditions Time
Steps (◦)Inlet Outlet

Sundström et al. [24] 88 9 Sliding LES Pressure Mass flow 1
Fontenasi et al. [18] - 9.6 Sliding DES Mass flow Pressure 0.5
Broatch et al. [27] 48.6 9.6 Sliding DES Mass flow Pressure 1
Karim et al. [9] - - Sliding LES Pressure Mass flow -
Semlitsch et al. [32] 88 6 Sliding LES Mass flow Pressure 5
Jyothishkumar et al. [26] 88 6 Sliding LES Mass flow Pressure 5
Tomita et al. [29] 50 3.2 - URANS (k-ε) - - 3.6/7.2
Guo et al. [28] 182.8 2.5 Sliding URANS (k-ε) Pressure Mass flow 3
Dehner et al. [21] - 5.5 Static DES Pressure Mass flow -
Galindo et al. [22] - 10 Sliding DES Mass flow Pressure 4
Galindo et al. [23] - 9.5 Sliding SST/DES Mass flow Pressure 1
Fardafshar et al. [33] - - Static SAS-SST - - -
This investigation - 4.9 Sliding SST Pressure Mass flow 4

To improve the calculation accuracy, the mesh independence analysis was conducted
in the study based on the Richardson extrapolation method [34]. The equations used by the
extrapolation method are presented in Table 4.

Table 4. Equations for Richardson extrapolation method.

Factor Equation

Representative mesh size h h =
[

1
N ∑N

i=1(ΔVi)
]1/3

Grid refinement factor r r = hcoarse
h f ine

Apparent order p p = 1
ln(r21)

|ln|ε32/ε21|+ q(p)|
Approximate relative error e21

a e21
a =

∣∣∣ φ1−φ2
φ1

∣∣∣
Extrapolated relative error e21

ext e21
ext =

∣∣∣ φ12
ext−φ1

φ12
ext

∣∣∣
Grid convergence index GCI21

f ine GCI21
f ine =

1.25e21
a

rp
21−1

Three meshes were used for the independence mesh study: Mesh1 with N1 = 6,730,132 el-
ements, Mesh2 with N2 = 4,932,456 elements, and Mesh3 with N3 = 3,102,894 elements. The
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design point was selected as the simulation corresponded to a mass flow of 0.2439 kg/s, a
speed of 60,000 r/min, an inlet pressure of 101.325 kPa and an inlet temperature of 293.15 K.
The discretization errors are listed in Table 5, which contains all the important parameters
obtained from the mesh independence study. As can be seen in Table 5, the refinement factors
for all grids were greater than 1.3. The variables used to determine grid convergence were
the pressure ratio and efficiency, monitored in each simulation.

Table 5. Discretization errors of three meshes.

φ = Pressure Ratio φ = Efficiency

N1, N2, N3 6,730,132, 4,932,456, 3,102,894 6,730,132, 4,932,456, 3,102,894
r31 2.4192 2.4192
r21 1.8292 1.8292
r32 1.3226 1.3226
φ1 1.5864 0.8146
φ2 1.5841 0.8120
φ3 1.5736 0.8017
p 0.7932 2.2437
φ21

ext 1.5901 0.8155
e21

a 0.145% 0.3192%
e21

ext 0.2327% 0.1101%
GCI21

f ine 0.295% 0.1387%

Figure 6 shows the Extrapolation results for pressure ratio and efficiency to the number
of elements. As can be seen from the figure, there was some error in the calculation results of
the N3 mesh, but the N2 mesh and N1 mesh were the same. In addition, the calculation time
used in the N2 mesh was reduced by 33.3% compared to the calculation time implemented
for the N1 mesh. Therefore, Mesh2 comprised N2 = 4,932,456 elements was selected for the
numerical simulation study.

Figure 6. Extrapolation results in pressure ratio and efficiency to several elements at a speed of
60,000 r/min.

Figure 7 compares the experimental and simulated values of the pressure ratio and
efficiency of the compressor. At low speeds, the experimental values matched well with
the simulated values. For the pressure ratio and efficiency, the maximum errors were 4.89%
and 3.92%, respectively, occurring at the 110,000 r/min speed line. This difference was
attributed to the simplification of geometry’s secondary features, the simulation’s heat
transfer parameter settings, and manufacturing errors [35–37].
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(a) (b)

Figure 7. Compressor model test verification. (a) Pressure ratio (b) Efficiency.

4. Result and Discussions

4.1. Experimental Analysis of Aerodynamic Noise Emission Characteristics

The aerodynamic noise components are shown in Figure 8. In this study, the discrete
noise components in the aerodynamic noise of the compressor were investigated, including
discrete monotone and multi-monotone noise.

Figure 8. Aerodynamic noise emissions composition.

Figure 9 shows the aerodynamic noise emissions spectrum of the compressor under
different operating conditions. The sound pressure level (SPL) of aerodynamic noise
decreased with increasing frequency at the same speed. This was consistent with the
findings of Zuo et al. [38].
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Figure 9. Aerodynamic noise emissions spectral characteristics of the compressor under different
operating conditions. (a) 60,000 r/min (b) 90,000 r/min (c) 110,000 r/min.
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For the same case, with the compressor speed increased, significant peaks were ob-
served at the BPF and its harmonic frequency (Figure 9b,c). This was because the mutual
disturbance frequency between the blade and the airflow increased as the speed increased,
increasing the noise at the BPF and its harmonic frequency. In addition, among the noises
at the harmonic frequencies corresponding to the BPF, the first-order harmonic noise (1st
harmonic) was the largest. As the speed increased, the noise at the harmonic frequency
corresponding to the BPF moved toward increasing frequency. Among them, no noise at
the harmonic frequency corresponding to BPF was observed in the frequency range of 0 to
25,000 Hz at 110,000 r/min (as shown in Figure 9c). This was because the increase in speed
could increase the BPF of the compressor, which led to an increase in its corresponding
harmonic frequency.

Figure 10 shows the cloud plot of the aerodynamic noise emissions for the compressor
at the full operating range. In the same case, the aerodynamic noise emissions decreased
with increased frequency. Among the three cases, the SPL distribution of the aerodynamic
noise in the high-efficiency region (case 2) was the smallest overall at the same speed.
Specifically, compared with the near-choke region (case 1), the distribution of the SPL for
the aerodynamic noise in the range of 10,000 to 20,000 Hz in case 2 was smaller. Compared
with the near-surge region (case 3), the distribution of the SPL for the aerodynamic noise in
the range of 0 to 5000 Hz in case 2 was also smaller. The main reason was that the airflow
deteriorated when the compressor was operated in the near-choke region compared to
the high-efficiency region. While the rotational stall phenomenon occurred when the com-
pressor was operated in the near-surge region [39,40], and the airflow turbulence intensity
increased, which increased the compressor’s aerodynamic noise emissions. Therefore, at
the same speed, the compressor operating in the high-efficiency region could achieve lower
aerodynamic noise emissions.

To quantitatively analyze the aerodynamic noise of the compressor, the total SPL of
the aerodynamic noise and the BPF noise are calculated as shown in Equations (4) and
(5) [41]:

Ltotal = 10 log(
n

∑
i=1

10
Li
10 ) (4)

LBPF = 10 log(
m

∑
i=1

10
Lm
10 ) (5)

where, Ltotal , LBPF, Li and Lm are the total SPL, SPL of BPF, SPL at fixed frequency point
and SPL at BPF and its harmonics, respectively. m and n are the number of BPF harmonic
and frequency points.

The total SPL of aerodynamic and BPF noise of the compressor at the full operating
range is shown in Figure 11. For the same case, the total SPL of aerodynamic and BPF noise
increased as the speed increased. Among them, compared with 60,000 r/min, the total SPLs
of aerodynamic noise and BPF noises for case 1, case 2 and case 3 at 110,000 r/min increased
by 4.32%, 5.18%, 4.77% and 10.62%, 10.27% and 9.81%, respectively. This was mainly due
to the increase in compressor speed, the frequency of mutual disturbance between impeller
blades and airflow per unit time increased, and the amplitude of fluctuation pressure
increased, which increased aerodynamic noise emissions. At the same speed, the total SPL
of each case from high to low was near-choke region (case 1) > near-surge region (case 3) >
high-efficiency region (case 2). The reasons are shown above.

34



Sustainability 2023, 15, 11300

Sp
ee

d 
[r

/m
in

]

110,000

100,000

90,000

80,000

70,000

60,000
5000 10,000 15,000 20,000

30
40
50
60
70
80
90
100
110

Sound pressure level [dB]Case 1

Frequency [Hz]
25,000

 

 

Near-choke region

0

30
40
50
60
70
80
90
100
110

Sound pressure level [dB]Case 2

Sp
ee

d 
[r

/m
in

]

110,000

100,000

90,000

80,000

70,000

60,000
5000 10,000 15,000 20,000 25,000

 

 

High efficiency region

0

Frequency [Hz]

(a) (b)

Sp
ee

d 
[r

/m
in

]

110,000

100,000

90,000

80,000

70,000

60,000
5000 10,000 15,000 20,000

30
40
50
60
70
80
90
100
110

Sound pressure level [dB]

Frequency [Hz]
25,000

 

 

Near-surge region

Case 3

0

(c)

Figure 10. Aerodynamic noise emissions contour clouds of compressors under different operating
conditions. (a) Case 1 (b) Case 2 (c) Case 3.

It is further observed that the maximum difference in the total SPL of aerodynamic
noise between the three cases was 1.55 dB at 60,000 r/min, while the maximum difference in
the total SPL was 0.61 dB at 110,000 r/min. This was because, at low speeds, the change of
air inlet volume brought by the change of compressor mass flow occupied the main position
in the compressor aerodynamic noise generation. At the same disturbance frequency, the
interference effect between the blade and airflow was enhanced. As the speed increased,
the effect of compressor mass flow on aerodynamic noise gradually decreased. Therefore, at
low speeds, the total SPL of compressor aerodynamic noise was more obviously influenced
by the mass flow.
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Figure 11. Total sound pressure level and blade passing frequency noise of the compressor under full
operating range. (a) Total sound pressure level (b) BPF nose.

To further analyze the contribution of BPF noise to the total SPL of aerodynamic noise,
the proportion of the compressor BPF noise to the total SPL of aerodynamic noise under
the full operating range is shown in Figure 12. From the figure, it can be seen that the
percentage of BPF noise exceeded 70% in all test conditions. This indicated that the BPF
noise was the main noise component in the aerodynamic noise on the inlet side of the
compressor. With the speed increased, the percentage of BPF noise increased. Among
them, at the speed of 110,000 r/min, the largest proportion of BPF noise was 75.35% for
the above reasons. Therefore, in the aerodynamic noise, the compressor speed had a high
contribution to the BPF noise.
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The above analysis shows that the compressor operating in the high-efficiency region
(case 2) could achieve lower aerodynamic noise emissions. To further analyze the aerody-
namic noise emissions law in the high-efficiency region of the compressor, the transient
acoustic-vibration spectrum distribution in the high-efficiency region at different speeds is
shown in Figure 13. It can be seen that obvious peaks of aerodynamic noise and vibration
acceleration were observed at the BPF of the compressor and its harmonic frequency at
different speeds, and the peaks were more obvious as the speed increased.

Further observations revealed that more pronounced noise peaks were observed in the
1000 to 5000 Hz range, while no significant peaks were found in the vibration acceleration
spectrum corresponding to the frequencies. This was because the noise corresponding to
the frequencies below the BPF was caused by the secondary flow through the gap between
the compressor blade tip and the clearance of the casing [23]. Therefore, it can be inferred
that the noise and vibration at the BPF and its harmonic frequencies were caused by the
fluctuating pressure of the compressor.

(a)

Figure 13. Cont.
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(b)

(c)

Figure 13. Transient acoustic-vibration characteristics of the compressor under high-efficiency regions.
(a) 60,000 r/min (b) 90,000 r/min (c) 110,000 r/min.

4.2. Numerical Analysis of Compressor Aerodynamic Noise Emissions Mechanism
4.2.1. Unsteady Fluctuation Pressure

In the aerodynamic noise prediction of the compressor, the source information is
the unsteady fluctuation pressure at the source surface. Therefore, it is essential to study
the relationship between the unsteady fluctuation pressure and the aerodynamic noise to
analyze the aerodynamic noise mechanism of the compressor. The analysis process of this
section is shown in Figure 14.

During the change of fluctuation pressure at the monitoring points with a total time
length of 0.005 s, the compressor’s rotations were 5, 7.5 and 9.1 revolutions for speeds
of 60,000 r/min, 90,000 r/min and 110,000 r/min, respectively. During the fluctuation
pressure in the period of one revolution for the compressor, there were seven pressure
fluctuation peaks consistent with the number of blade groups of the compressor.
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Figure 14. Fluctuation pressure analysis process of the compressor.

The time domain fluctuation pressure distribution at the inlet region of the compressor
in the high-efficiency region (case 2) is shown in Figure 15. The figure shows that for the
same monitoring point, the fluctuation pressure became dramatic as the speed increased.
This was mainly due to the increased frequency of the impeller blades cutting the airflow
mass per unit of time, and the fluctuation pressure was more obvious. At the same speed,
the closer to the wall position, the greater the amplitude of fluctuation pressure at the
monitoring point (In1 and In3 were the near-wall points, and In5 was the center point).
This was mainly due to the interference between the high-speed rotating impeller and the
incoming airflow, which created a steady periodic pressure fluctuation. The pulsation was
stronger at the tip of the impeller while gradually decreasing outward from the leading
edge of the impeller. Therefore, the fluctuation pressure in the near-wall area was more
pronounced than at the center of the compressor inlet.

It was further observed that at low compressor speed (60,000 r/min), certain fluctua-
tions between cycles at the same monitoring point for each compressor rotation (as shown
in Figure 15a). As the speed increased, the amplitude of fluctuations between cycles at the
same monitoring point decreased (Figure 15b,c). This was because, in the high-efficiency
region, as the compressor speed increased, the mass flow increased. In addition, during
each revolution of the compressor, the collision area between the blades and the airflow
increased, and the interference time between each group of blades and the airflow became
shorter, which resulted in weaker fluctuations between the cycles.

In the frequency domain analysis of aerodynamic noise, to make the unsteady fluctua-
tion pressure characteristics of the compressor more obvious, the pressure coefficient CP
was for characterization, and its calculation formula is as follows:

CP =
2
(

P− Pj
)

ρv2 (6)

V =
πnD

60
(7)

where P is the pressure at the monitoring point at a certain moment (Pa), Pj is the average
pressure at the monitoring point in the time range (Pa), ρ is the air density. Its value
is 1.29 kg/m3, V is the impeller outer edge exit circumferential velocity (m/s), n is the
compressor speed (r/min), and D is the impeller exit diameter (m).
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(a)

(b)

(c)

Figure 15. Time domain fluctuation pressure distributions of the compressor inlet region under
different speeds. (a) 60,000 r/min (b) 90,000 r/min (c) 110,000 r/min.

The frequency domain fluctuation pressure distribution in the inlet region obtained
by Fast Fourier Transform (FFT) of the fluctuation pressure changes at each monitoring
point of the compressor inlet within 0.005 s is shown in Figure 16. It can be seen that for
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the same monitoring point, the peak of fluctuation pressure at each frequency increased
gradually with an increase in the compressor speed, which indicated that the SPL of the
aerodynamic noise on the inlet side of the compressor increased with an increase in the
speed. In addition, at medium and high speeds, a more obvious peak of fluctuation pressure
was observed at the BPF of each monitoring point, indicating that the fluctuation pressure
formed by the interference between the impeller blades and the incoming airflow had a
certain contribution to the BPF noise on the inlet side of the compressor.

(a) (b)

(c)

Figure 16. Frequency domain fluctuation pressure distributions of the compressor inlet region under
different speeds. (a) 60,000 r/min (b) 90,000 r/min (c) 110,000 r/min.

The time domain fluctuation pressure distribution of the rotor region in the high-
efficiency region is shown in Figure 17. The figure shows that the fluctuation pressure
amplitude at R5 was higher than that of R1 at the same speed, which was caused by
the higher airflow pressure at the location of R5. In addition, the fluctuation pressure
amplitude increased as the speed increased for the same monitoring point. This was due to
the increase in the frequency of blade and inlet airflow disturbances caused by the increase
in speed, increasing the fluctuation pressure amplitude.
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(a)

(b)

(c)

Figure 17. Time domain fluctuation pressure distributions of the compressor rotor region under
different speeds. (a) 60,000 r/min (b) 90,000 r/min (c) 110,000 r/min.

42



Sustainability 2023, 15, 11300

Figure 18 shows the compressor rotor region’s frequency domain fluctuation pressure
distribution in the high-efficiency region. The figure shows that the peak of fluctuation
pressure at each monitoring point mainly appeared at the compressor shaft frequency
and its harmonic frequency at different speeds. This was because of the high blade tip
speed of the compressor and the influence of aerodynamic force, which resulted in the peak
of multi-monotone noise being more prominent. At the same speed, compared with the
R1, the peak of fluctuation pressure at the harmonic frequency corresponding to the axial
frequency of the R5 was increased. This was because the location of R5 was influenced by
both the main blades and the splitter blades of the compressor.

(a) (b)

(c)

Figure 18. Frequency domain fluctuation pressure distributions of the compressor rotor region under
different speeds. (a) 60,000 r/min (b) 90,000 r/min (c) 110,000 r/min.

Figure 19 shows the pressure distribution of the cross-section where the R1 and R5
were located. It can be seen from the figure that the main blade mainly influenced section
F1 and the pressure difference between the pressure surface, and the suction surface of
each blade was not obvious, resulting in a small peak of fluctuation pressure at R1. Section
F2 was influenced by both the main blade and splitter blade and the pressure difference
between the pressure surface and suction surface of each blade increased, which increased
the peak of fluctuation pressure for R5.
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(a) (b)

Figure 19. Pressure distribution in the compressor rotor region at 60,000 r/min of the high-efficiency
region. (a) F1 (b) F2.

Figure 20 shows the time domain fluctuation pressure distribution of the compressor
diffuser region in the high-efficiency region. The figure shows that for the same monitoring
point, the fluctuation pressure amplitude increased with the compressor speed for the
reasons shown above. In addition, seven pressure fluctuation peaks were observed during
the fluctuation pressure variation of one compressor rotation, which was consistent with
the number of compressor blade sets being seven. For the same monitoring point, there
were certain fluctuations between each compressor cycle at different speeds.

(a)

Figure 20. Cont.
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(b)

(c)

Figure 20. Time domain fluctuation pressure distributions of the compressor diffuser region under
different speeds. (a) 60,000 r/min (b) 90,000 r/min (c) 110,000 r/min.

The frequency domain fluctuation pressure distribution in the diffuser region of the
compressor is shown in Figure 21. The figure shows that for the same monitoring point,
the main peaks of fluctuation pressure at each monitoring point appeared at the BPF and
its first-order harmonic frequency as the speed increased. This was because the fluctuation
pressure in the diffuser flow path was mainly caused by the dynamic-static interference
between the impeller blades and the diffuser. Therefore, the fluctuation pressure of the
compressor diffuser contributed more to the discrete monophonic noises (noise at BPF and
its harmonic frequency).
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(a) (b)

(c)

Figure 21. Frequency domain fluctuation pressure distributions of the compressor diffuser region
under different speeds. (a) 60,000 r/min (b) 90,000 r/min (c) 110,000 r/min.

Figure 22 shows the time domain fluctuation pressure distribution in the volute
region of the compressor at different speeds. The figure shows that at the same speed,
the fluctuation pressure amplitude at each monitoring point was V1 > V4 > V6 > V9 in
the order from high to low. This was because the pressure decreased gradually, and the
pressure fluctuation decreased during airflow in the worm shell (the airflow direction was
V1-V4-V6-V9). Therefore, V1 had the highest fluctuation pressure amplitude, and V9 had
the lowest fluctuation pressure amplitude.

(a)

Figure 22. Cont.
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(b)

(c)

Figure 22. Time domain fluctuation pressure distributions of the compressor volute region under
different speeds. (a) 60,000 r/min (b) 90,000 r/min (c) 110,000 r/min.

The frequency domain fluctuation pressure distribution in the volute region of the
compressor is shown in Figure 23. It can be seen from the figure that for V1 and V4, the
main peak of fluctuation pressure appeared at the BPF as the compressor speed increased,
where the peak of fluctuation pressure at BPF of V1 was higher than that of V4, which was
because V1 was located at the worm tongue position (as shown in Figure 5c), and had the
highest pressure in the worm casing, making the intensity of pressure fluctuation at this
point was highest. Therefore, the BPF noise was dominant in the aerodynamic noise at the
exit side of the compressor.
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(a) (b)

(c)

Figure 23. Frequency domain fluctuation pressure distributions of the compressor volute region
under different speeds. (a) 60,000 r/min (b) 90,000 r/min (c) 110,000 r/min.

4.2.2. Dynamic-Static Interferences

From the above analysis, it was clear that unsteady fluctuation pressure was the main
reason for discrete monophonic noise at the BPF and its harmonic frequencies. Among them,
the unsteady fluctuation pressure was mainly caused by the dynamic-static interference
effects, including the turbulent interference between the blades and the incoming airflow
and the periodic cutting vortex mass of the impeller blades [42].

Figure 24 shows the static entropy and turbulent kinetic energy (TKE) distribution
of the impeller and diffuser in the high-efficiency region of the compressor. From the
figure, it can be seen that there was obvious static entropy and TKE changes at the blade’s
leading edge, mainly caused by the mutual interference between the impeller blade and the
incoming airflow. In addition, there were also static entropy and TKE changes at the trailing
edge of the blade, which reflected the dynamic-static interference between the impeller and
the pressure spreader. Comparing these two areas of dynamic-static interference, it was
found that there was no significant difference between them, indicating that the mutual
interference between the impeller and the inlet airflow and the dynamic-static interference
between the impeller and the diffuser had a high contribution to the noise at the BPF and
its harmonic frequency.
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(a) (b)

Figure 24. Static entropy and TKE distribution of the compressor at 60,000 r/min of the high-efficiency
region. (a) Static entropy (b) TKE.

Figure 25 shows the distribution of static entropy and TKE for the impeller blade
expansion degree of 90% in the high-efficiency region of the compressor. As can be seen
from the figure, the large values of static entropy and TKE at the trailing edge of the blade
indicated that there was an obvious interference effect between the impeller and the diffuser,
and the noise induced by it at the BPF and its harmonic frequency was more prominent.

(a) (b)

Figure 25. Blade-to-blade view of Static entropy and TKE distribution for the compressor at
60,000 r/min of the high-efficiency region. (a) Static entropy (b) TKE.

4.3. Comparative Analysis of the Results and the Existing Studies

To further emphasize the novelty of this study, a detailed comparison was made
between this study and other literature, as shown in Table 6.
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Table 6. Comparison of the investigation and other literature survey.

Study Research Object Research Methods Main Conclusions

Li et al. [12] Turbocharger for small vehicles Experiment The compressor was the main noise source of the
turbocharger.

Raitor et al. [13] Two centrifugal compressors of
SRV2 and SRV4 Experiment

(1) At the design speed, blade tone and buzz-saw
noise were the main contributors.

(2) On the inlet, rotor-alone noise was the main source.

Figurella et al.
[14]

An automotive centrifugal
compressor Experiment

Near-choke condition, discrete tones, including
rotor-order frequency and its harmonics (blade-pass),
were observed.

Zhang et al. [15] Single-stage compressor with low
speed and high load Experiment The sound pressure level of the compressor was lowest

at a relatively small tip clearance rather than zero.
Galindo et al.
[16]

A small automotive turbocharger
compressor Experiment The effects of several inlet geometries on compressor

performance were investigated.

Dehner et al. [21]
A turbocharger centrifugal
compressor from a spark-ignition
internal combustion engine

Numerical simulation,
experiments and modal
decomposition

(1) Revealed the presence of rotating instabilities that
may interact with the rotor blades to generate
noise.

(2) The whooshing noise primarily propagated along
the duct as acoustic azimuthal modes.

Galindo et al.
[22]

An automotive centrifugal
compressor Numerical simulation The use of a convergent-divergent nozzle could strongly

reduce the intake orifice noise.

Galindo et al.
[23]

A 49 mm exducer diameter
centrifugal compressor Numerical simulation

In near-surge conditions, there were no significant
changes in the compressor acoustic signature when
varying the tip clearance.

Sundström et al.
[24]

An automotive centrifugal
compressor Numerical simulation

For the near-surge condition, an amplified broadband
feature at two times the frequency of the rotating order of
the shaft (possible whoosh noise) was captured. In
addition, an amplified feature of around 50% of the
rotating order was captured.

Jyothishkumar
et al. [26]

A turbocharger centrifugal
compressor from a heavy truck
engine

Numerical simulation There existed a flow-acoustics coupling at near-surge
operating conditions.

Broatch et al. [27] A turbocharger centrifugal
compressor from a diesel engine

In-duct experimental
measurements and
numerical simulation

(1) A suitable comparison methodology was
developed, relying on pressure decomposition.

(2) Whoosh, noise at the outlet duct was detected in
experimental and numerical spectra.

Guo et al. [28] A turbocharger centrifugal
compressor Numerical simulation A distinct stall frequency at the given compressor speed.

This
investigation

A turbocharger centrifugal
compressor from a heavy-duty
diesel engine

Based on radiated noise
experimental
measurements and
numerical simulation

(1) The aerodynamic noise characteristics of the
centrifugal compressor in the full operating range
based on the radiation noise experimental
measurements were given.

(2) For the centrifugal compressor from a heavy-duty
diesel engine, the blade passing frequency and its
harmonic frequency noise were mainly caused by
the unsteady fluctuation pressure.

(3) The impeller blades interfere with the incoming
airflow, and the dynamic-static interference
between the impeller and the diffuser significantly
contributed to the BPF and its harmonic frequency
noise.

As seen from Table 6, the existing literature focused on centrifugal compressors for
small automotive turbochargers and the research methods used in the studies, including
experiment, numerical simulation, and a combination of experiment and numerical simu-
lation. The findings included the analysis of aerodynamic noise component composition,
aerodynamic noise characteristics of centrifugal compressors under specific operating con-
ditions, and flow characterization. However, there were fewer studies on the aerodynamic
noise characterization of centrifugal compressors for heavy-duty diesel engine turbocharg-
ers under the full operating range. In addition, there was a lack of analysis based on the
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linkage between aerodynamic noise characteristics and internal flow characteristics of
centrifugal compressors under specific operating conditions. Therefore, the innovation of
the study was to refine the aerodynamic noise mechanism of the compressor for heavy-duty
diesel engine turbochargers, propose that blade aerodynamic force and dynamic interfer-
ence were the main discrete monophonic noise sources, and provide a theoretical basis
for reducing the heavy-duty diesel engine turbocharger compressor aerodynamic noise
emissions.

5. Conclusions

This study conducted an experimental and simulation investigation of the aerody-
namic noise emission of a heavy-duty diesel engine turbocharger compressor in the full
operating range. To analyze the aerodynamic noise mechanism, the relationship between
the unsteady fluctuation pressure, dynamic-static interference and aerodynamic noise was
studied based on numerical simulation methods. The main conclusions were as follows:

1. Under the test conditions, the sound pressure level (SPL) of the aerodynamic noise
for the compressor of a heavy-duty diesel engine increased with an increase in speed.
At the same speed, the compressor operating in the high-efficiency region (middle
mass flows) could achieve lower aerodynamic noise emissions.

2. At low speeds, the total SPL of aerodynamic noise was more obviously affected by
the mass flow of the compressor. At 60,000 r/min, the maximum difference in the
total SPL of aerodynamic noise was 1.55 dB at different mass flows.

3. Compared with 60,000 r/min, the total SPLs of aerodynamic noise and BPF noises for
the near-choke region, high-efficiency region and near-surge region at 110,000 r/min
increased by 4.32%, 5.18%, 4.77% and 10.62%, 10.27% and 9.81%, respectively.

4. In the compressor aerodynamic noise, the blade passing frequency (BPF) noise occu-
pies a dominant position. As the engine and compressor speeds increased, the BPF
noise contributed more to the total SPL of the aerodynamic noise, and its proportion
was up to 75.35%.

5. From the analysis of the transient acoustic-vibration spectrum and fluctuation pres-
sure, it could be seen that BPF and its harmonic frequency noise were mainly caused
by the unsteady fluctuation pressure of the compressor.

6. In the compressor, the impeller blades interfere with the incoming airflow, and the
dynamic-static interference between the impeller and the diffuser greatly contributes
to the BPF and its harmonic frequency noise.
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Abstract: Using n-butanol as an alternative fuel can effectively alleviate the increasingly prominent
problems of fossil resource depletion and environmental pollution. Combined injection technology
can effectively improve engine combustion and emission characteristics while applying combined
injection technology to n-butanol engines has not been studied yet. Therefore, this study adopted
butanol port injection plus butanol direct injection mode. The engine test bench studied the combus-
tion and emission performance under different direct injection ratios (NDIr) and excess air ratios (λ).
Results show that with increasing NDIr, the engine torque (Ttq), peak in-cylinder pressure (Pmax),
peak in-cylinder temperature (Tmax), and the maximum rate of heat release (dQmax), all rise first and
then drop, reaching the maximum value at NDIr = 20%. The θ0-90 and COVIMEP decrease first and
then increase as NDIr increases. NDIr = 20% is considered the best injection ratio to obtain the optimal
combustion performance. NDIr has little affected on CO emission, and the NDIr corresponding to
the lowest HC emissions are concentrated at 40% to 60%, especially at lean burn conditions. NOx
emissions increase with increasing NDIr, especially at N20DI, but not by much at NDIr of 40–80%.
With the increase in NDIr, the number of nucleation mode particles, accumulation mode particles, and
total particle decrease first and then increase. Therefore, the n-butanol combined injection mode with
the appropriate NDIr can effectively optimize SI engines’ combustion and emission performance.

Keywords: n-butanol; combined injection mode; combustion; gaseous emissions; particle number

1. Introduction

In recent years, with the rapid development of automotive industries, the depletion of
fossil sources and the aggravation of environmental pollution are becoming increasingly
prominent [1,2]. Thus the research on green, alternative, and renewable fuels has attracted
the attention of many scholars [3,4]. At the same time, advanced technical methods in
the field of internal combustion engines are also very important in improving engine
performance [5]. Therefore, the effective combination of alternative fuel characteristics
and fuel injection modes will play a crucial role in the engine’s performance, which is
worth investigating.

The alternative fuel of internal combustion engines can be divided into two categories
according to the different physical states of fuel: gas and liquid. Among the alternative fuels
studied and used in the internal combustion engine at present, liquid alternative fuel mainly
includes biomass fuel, alcohol fuel (ethanol, methanol, butanol), gas alternative fuel mainly
includes liquefied petroleum gas (LPG), compressed natural gas (CNG), dimethyl ether
hydrogen and so on [6]. Among all alternative fuels, alcohol fuel, as a renewable oxygen-
containing biofuel, has been widely concerned by scholars at home and abroad because
of its wide range of sources and clean combustion. Alcohols are considered one of the
most promising alternative fuels for ignition engines, and their application in automobiles
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has been extensively studied [7]. Table 1 shows the properties of typical alcohol fuels [8].
Compared with methanol and ethanol fuel, butanol fuel has the advantages of higher
caloric value and low latent heat of evaporation [9]. Therefore, butanol as a new alternative
energy for engines has attracted more and more attention in recent years [10,11].

Table 1. Properties of alcohol fuels.

Fuel Properties Methanol Ethanol N-butanol

Molecular formula CH3OH C2H5OH C4H9OH
Viscosity (Pa·s) at 20 ◦C 0.61 0.789 0.808
Research octane number 109–136 108–129 96–98

Laminar flame speed (cm/s) 52 48 48
Latent heat of evaporation (kJ/kg) 1103 840 582

Lower caloric value (MJ/kg) 19.7 26.8 33.1
Flammability limits (% vol.) 6.0–36.5 4.3–19 1.4–11.2
Stoichiometric air–fuel ratio 6.49 9.02 11.21

There are four isomers of butanol, and the different ways the carbon chain and hy-
droxyl group are connected the lead to the different uses of the isomers. N-butanol has been
widely used as a promising alternative fuel for gasoline because of its better combustion
performance and the similar physical and chemical properties to gasoline [12]. In addition,
n-butanol has many advantages compared with Methanol and Ethanol, such as higher
heating value and viscosity and lower volatility and vaporization heat. N-butanol can
be obtained not only from coal but also by biological methods [13]. The raw materials
are from various sources, including wheat, corn, and other crops, as well as agricultural
waste straw [14]. According to Butyl Fuel Company’s research data, 270 mL n-butanol
can be produced by microbial fermentation with 1 L corn as raw material, and the cost is
only 0.317 US dollars/liter. Additionally, with the continuous development of n-butanol
production technology, the production cost is expected to be further reduced [15], which
provides strong support for using n-butanol as an alternative fuel for engines [16].

To achieve the goal of high-efficiency and low emission of engines, new technologies of
engines have been introduced in recent years, such as the combined injection technique [17].
The common injection mode of internal combustion engines includes port fuel injection
(PFI) and direct injection (DI) [18]. Compared to port fuel injection, GDI enables precise
fuel injection control in all operating conditions, reducing fuel consumption [19]. DI can
form a localized concentration area near the spark plug and form a layered mixture in the
whole cylinder to promote a better combustion effect and improve combustion thermal
efficiency [20]. However, DI also has problems such as higher demand for fuel supply
pressure, HC, and more emission of particulate matter [21]. PFI allows fuel and air to mix
better in the inlet [22]. Therefore, the two injection methods have their own advantages and
disadvantages. So, combining two injection modes, that is, the realization of compound
injection in one engine through two injection systems, is of great significance to optimizing
engine performance.

The research on butanol as engine fuel mainly focuses on n-butanol blends with
other fuels and the pure n-butanol engine. Concerning engines of n-butanol blends with
other fuels, J. Yang et al. [23] explored the combustion and emission characteristics of the
hydrogen/n-butanol and hydrogen/gasoline rotary engines. They found that hydrogen
addition improved the combustion and emission characteristics of gasoline and n-butanol
rotary engines. Additionally, for both n-butanol and gasoline rotary engines, adding hydro-
gen can improve the brake thermal efficiency, shorten the development and propagation
periods, reduce the coefficient of variation, and reduce the emission of HC and CO. How-
ever, NOx emission increased slightly after blending hydrogen. V. Thangavel et al. [9]
studied the performance of a single-cylinder SI engine with both ethanol and gasoline
injected into the inlet and performed a comparative analysis with n-butanol gasoline opera-
tion with the combined injection strategy in the intake port of a single-cylinder SI engine.
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They found that at high torque conditions, the benefits of mixing ethanol with gasoline are
significant. Compared to ethanol, the amount of n-butanol must be increased with increas-
ing torque for better performance and low emissions. R. a. Ravikumar et al. [24] studied the
combustion and emission characteristics of a twin spark ignition engine using n-butanol
and gasoline dual fuel. They found that blending B35 resulted in lower carbon monoxide
emissions, lower unburned hydrocarbon emissions, and lower nitrogen oxide emissions
than pure gasoline. E. Agbro et al. [25] investigated the impact of n-butanol addition on the
combustion performance and knocked properties under supercharged spark-ignition en-
gine conditions; their results indicated that blending n-butanol can improve the anti-knock
properties of gasoline and improve engine efficiency by using a higher compression ratio.
Z. Guo et al. [19] tested gasoline/n-butanol blends with n-butanol volumetric ratios of 0%,
20%, 40%, 60%, 80%, and 100% in a DI SI engine. Results showed that a 20% butanol blend-
ing ratio could effectively reduce particle and gaseous emissions. M. Saraswat et al. [26]
investigated the effect of different volume basis of butanol-gasoline and butanol/diesel
mixture on IC engines. The results show that blending butanol can improve the power,
torque, brake specific energy consumption, Hydrocarbons, Carbon-mono-oxides and NO
emissions, but the NOx and CO2 emissions are higher than those of gasoline and diesel. F.
Meng et al. [27] investigated the combustion and emissions performance of a combined
injection hydrogen/n-butanol dual-fuel engine with hydrogen addition fractions (0%, 2.5%,
and 5%). The obtained results demonstrated the power and fuel economy performance of
n-butanol engines are improved after adding hydrogen, and the HC and CO emissions
drop while the NOx emissions sharply rise. T. Su et al. [28] researched the performance of a
hydrogen/n-butanol dual fuel rotary engine with a n-butanol and hydrogen port-injection
system. The test results indicated that blending hydrogen increased the brake thermal
efficiency and in-cylinder temperature and reduced CO and CO2 emissions effectively.
Compared to n-butanol blends with other fuels, the pure n-butanol as an SI engine fuel
is less researched. S. S. Merola et al. [29] studied the influence of injection timing on a
wall-guided direct injection SI engine fueled with n-butanol. They found that late injection
timing reduced soot but resulted in higher HC emissions and poorer performance than
the optimum point. Additionally, they proved that fuel impingement on the piston crown
is the main influencing factor for soot formation. N. S. a. Sandhu, X. a. Yu, and S. a.
Leblanc et al. [30] analyzed the combustion characteristics of neat n-butanol under spark
ignition operation using a single-cylinder SI engine. They found that n-butanol has similar
physicochemical property and fuel characteristics to that of gasoline and has lower NOx,
unburnt HC emission and CO2 emissions. The above research indicates that pure butanol
is feasible to replace traditional fuel as engine fuel. However, the performance of pure
butanol engines needs to be further optimized.

Therefore, in the context of the world energy crisis, environmental pollution, and
increasingly stringent emission regulations, it is of vital significance to adopt emerging
technologies to improve the combustion performance of pure butanol engines and provide
better theoretical and experimental support for the practical application of pure butanol
engines [31]. Although n-butanol as an SI engine fuel has been partially investigated,
most of them focus on n-butanol blended with other fuels. The performance of traditional
pure butanol engines is unsatisfactory. Therefore, we proposed a new combustion idea as
follows: the combined injection mode of partial butanol direct injection in the cylinder and
partial butanol port injection, which has no research on SI engines fueled with n-butanol.
We studied the influence of the combined injection mode on the combustion and emission
characteristics of the butanol engine and explored the optimization potential of advanced
technology on butanol engine performance. In this experiment, the combined injection
mode adopts part of the n-butanol port injection plus part of the n-butanol direct injection.
By engine test bench, the variations in combustion characteristics, we examined gaseous
and particle emissions of SI engines due to changes in the direct injection ratio (DIr) and λ

have been studied in this paper.
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Although n-butanol as an SI engine fuel has been partially investigated, most focus on
n-butanol blended with other fuels. The performance of traditional pure butanol engines is
not satisfactory. Therefore, the effects of compound injection on combustion and emission
characteristics of pure butanol engines were experimentally studied in this paper. The
main contributions of this paper are as follows: (1) we proposed a new injection mode
that is the combined injection mode of partial butanol direct injection in the cylinder
and partial butanol port injection, which has no research on SI engines fueled with n-
butanol. (2) The effects of direct injection ratio (DIr) and λ on combustion characteristics,
gas emission, and particle emission of SI n-butanol engine under combined injection mode
were investigated. (3) The potential of the combined injection technique in optimizing
n-butanol engine performance was explored. Therefore, the purpose of this study is to use
combined injection technology to solve the problem that the low saturated steam pressure
of butanol may form wall flow when pure port butanol injection, while pure butanol direct
injection may cause wall oil film due to the high viscosity of butanol. Coupling the two
injection modes, butanol combined injection may improve their evaporation, mixing, and
combustion, optimizing the butanol engine’s performance.

2. Experimental Setup and Procedure

2.1. Engine and Instrument

In this study, the experiments were performed on a four-cylinder four-stroke water-
cooled combined injection SI engine, a dual injection engine with port and direct injection.
The main technical parameters of the original engine are listed in Table 2. Since the original
direct injection system was designed for gasoline fuel, the fuel injected in the cylinder
directly in this paper is butanol. Therefore, the high-pressure oil pump with direct injection
in the original cylinder was not used in this test, but the high-pressure nitrogen cylinder
pressurized method was used, and the direct injection pressure was 5 MPa. The original
engine’s oil pump still supplies the low-pressure port injection with an injection pressure
of 0.3 MPa. The dual injection systems of the engine included partial n-butanol direct
injection and partial n-butanol port injection. The experiment system structure image of
the test engine is shown in Figure 1. Figure 1 shows that engine control parameters such
as injection timing and injection durations for n-butanol and the throttle opening were
all accurately controlled by the electronic control unit (ECU). The direct injection ratio is
controlled precisely by adjusting the injection pulse width of the injector in real time.

Table 2. Main parameters of Engine.

Engine Parameter Parameter Values

Engine Type four cylinders; combined injection; naturally
aspirated; water cooled; spark-ignition

Compression ratio 9.6
Bore/mm 82.5

Stroke/mm 92.8
Displaced volume/mL 1984
Maximum power/kW 132 (5000–6000 rpm)

Maximum torque/N·m 320 (1800–5000 rpm)

The specific information on the experimental instruments is listed in Table 3. The test
engine is coupled to a CW160-type eddy current dynamometer to maintain a constant speed
and measure torque. The values of each test point in the actual measurement were tested
three times to take the average value. The n-butanol fuel flow was acquired by DMF-1-1AB
and Ono Sokki DF-2420 flow meters. The λ was measured by an ETAS Lambda Meter 4
broadband oxygen sensor, and crank angle signals were collected with a Kistler-2614B4
crank angle encoder. CO, HC and NOx exhaust gas were measured by an AVL DICOM
4000 five component tail gas λ analyzer.The in-cylinder pressure was obtained by an AVL
GU13Z-24 pressure transducer mounted in cylinder 2. The collected cylinder pressure and
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crank angle signals are fed into the Dewesoft SRIUSi combustion analyzer for analyzing and
calculating the combustion data. The combustion analyzer collects 200 cycle values after
the test is stabilized for every test point to take the average value. The gaseous emissions
were measured by an AVL-DICOM 4000 five-component tail gas analyzer. DMS500 fast
particle analyzer was used to measure particle emissions.

Figure 1. A schematic diagram of the test engine.

Table 3. The main test equipment of the experiment.

Parameter Manufacturer Range Precision Production Type

Speed

Luoyang Nanfeng
Electromechanic Equipment

Manufacturing Co., Ltd.
(Luoyang, China)

0–6000 rpm ≤±1 rpm CW160

Crank angle Kistler Instrument China Ltd.
(China) 0–720◦ ≤±0.5◦ Kistler-2614B4

Excess air ratio ETAS Engineering TOOLS
(Germany) 0.700–32.767 ≤±1.5% LAMBDA LA4

Torque

Luoyang Nanfeng
Electromechanic Equipment

Manufacturing Co., Ltd.
(Luoyang, China)

0–600 N m ≤±0.28 N·m CW160

Cylinder pressure DEWETRON GmbH.
(Austria) 0–20 MPa ≤± 0.3% AVL-GU13Z-24

n-butanol mass
flow rate Ono Sokki DF-2420 (Japan) 0.2~82 kg/h ≤± g/s DF-2420

Carbon monoxide (CO) AVL List GmbH (Austria) 0–10% vol ≤±0.01% vol AVL DICOM 4000
Hydrocarbon (HC) AVL List GmbH (Austria) 0–20,000 ppm vol ≤±1 ppm AVL DICOM 4000

Nitrogen oxides (NOx) AVL List GmbH (Austria) 0–5000 ppm vol ≤±1 ppm AVL DICOM 4000
Particle number

concentration British combustion (England) 0–
1011 dN/dlogDp/cm3

≤±1.4 ×
104 dN/dlogDp/cm3 DMS500
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2.2. Injection Modes and Definitions

The fuel used in the experiment was 99.7% purity n-butanol. For ease of expression
and understanding, the naming of different injection modes of n-butanol tested is reported
in Table 4.

Table 4. The naming of different injection modes.

The Naming of
Different

Injection Modes
NPI N20DI N40DI N60DI N80DI NDI

N-butanol direct
injection ratio (NDIr) 0% 20% 40% 60% 80% 100%

2.3. Experimental Method

The experiment was mainly focused on the combustion and emission characteristics
of an n-butanol SI engine adopting different injection modes under lean burn conditions.
The experiments were conducted at n-butanol direct injection ratios 0%, 20%, 40%, 60%,
80%, 100%, and five excess air ratios 0.9, 1, 1.1, 1.2, 1.3. The engine was run at a constant
speed of 1500 rpm, and the throttle opening was kept at 10%, a typical urban condition.
The engine coolant temperature was kept at (85 ± 5) ◦C. The injection timings of the
cylinder direct injector and port fuel injector were 180◦ and 300 ◦CA BTDC. The direct
injection pressure was set at 5 MPa, and the injection pressures of the port fuel injector
were 0.3 MPa. The injection duration is adjusted constantly according to different NDIr. To
highlight the influence of NDIr, the ignition advance angles were all fixed at 15 ◦CA unless
otherwise specified.

3. Results and Discussion

Fuel injection modes, NDIr, and λ have an important influence on the combustion and
emission characteristics of the engine. This paper discusses the influence of direct injection
mode on butanol engine performance from three aspects: combustion characteristics, gas
emission characteristics, and particle emission characteristics.

3.1. Combustion Characteristics

Figure 2 shows Ttq with ignition time at different NDIr and λ. The error bar indicates
standard deviations for each experimental data. The value of λ is set to 0.9, 1, and 1.2,
which, respectively, represent the three conditions of rich burn, stoichiometry, and lean
born. It can be seen that Ttq increases first and then decreases with the advance of ignition
time at different NDIr and λ. This can be explained by the following reasons. With the
increase in the ignition advance angle, more fuel burns before the TDC leads to a rise
in the compression negative work. When the ignition time is too late, post-combustion
occurs, resulting in a decrease in torque. We also can see that the torque of N20DI is nearly
the highest among different NDIr. The specific reasons will be analyzed in detail in the
next section. In addition, Figure 2a–c show that under different λ, the maximum torque
corresponding to the ignition time is different. When the values of λ are 0.9 and 1, the
MBT is 15 ◦CA BTDC. While MBT is 20 ◦CA BTDC at λ = 1.2. This is mainly caused by the
slow combustion speed under lean burn conditions. The slow combustion speed makes the
whole combustion duration long, and the ignition time needs to be advanced to obtain the
appropriate combustion phase.

Figure 3 displays the Ttq with NDIr at different values of λ. It can be seen that
Ttq rises first and then drops with the increase in NDIr, reaching the maximum value at
NDIr = 20%. The Ttq values of N20DI increase by about 3.3%, 0.4%, 9.1%, 4.1%, and 2.6%
for λ values of 0.9, 1.0, 1.1, and 1.2, respectively. This can be attributed to the following
reasons. On the one hand, when n-butanol is directly injected into the cylinder, it will cause
a localized over-dense layered mixture near the spark plug, promote combustion in the
cylinder and increase Ttq [32]. On the other hand, the n-butanol injected directly into the

59



Sustainability 2023, 15, 9696

cylinder evaporates and absorbs heat, causing a drop in the temperature of the cylinder.
Additionally, with the increase of NDIr, the local rich-fuel region increases, resulting in the
formation of an inhomogeneous mixture and, finally, mass-spread combustion [21]. When
NDIr is lower (20%), all these beneficial factors predominate and encourage the Ttq to rise.
Therefore, Ttq rises first and then drops as NDIr increases. Moreover, compared with the
NDI, the NPI injection mode allows more time to obtain a better air-fuel mix, resulting
in a more complete combustion of the in-cylinder mixture and a higher Ttq. In addition,
Ttq decreases gradually with the increase in λ, which could be attributed to the rise in λ

making the mixture of n-butanol and air lean so that cycle fuel feeding decreases, resulting
in the decrease in Ttq.

 
(a) 

 
(b) 

Figure 2. Cont.
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(c) 

Figure 2. Ttq with ignition time at different NDIr under λ = 0.9, 1, 1.2. (a) λ = 0.9; (b) λ = 1; (c) λ = 1.2.

 

Figure 3. Ttq with NDIr at different values of λ.

Figure 4 displays the Pmax with NDIr at different values of λ. From Figure 4, we can
see that Pmax shows similar trends as Ttq. Pmax goes up slightly and then down with
the rising NDIr values, reaching the maximum value at NDIr = 20% and minimum value
at NDIr = 100%. A small amount of butanol directly injected into the cylinder can result
in a localized concentrated stratified mixture near the spark plug, which improves the
combustion speed and promotes the combustion more completely. Thus Pmax is increased.
As NDIr increases further, most of the fuel is injected directly into the cylinder resulting in
a shorter time for the fuel to mix with the air. Thus the heterogeneous mixture weakens the
advantage of the stratified mixture in the ignition, which results in incomplete combustion
and decreases the Pmax. Therefore, Pmax increases first and then gradually decreases. In
addition, Pmax decreases gradually with the increase in λ, which could be attributed to the
rise in λ making the mixture of n-butanol and air lean so that cycle fuel feeding decreases,
resulting in the decrease in Pmax.
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Figure 4. Pmax with NDIr at different values of λ.

From Figure 5, it can see that Tmax with NDIr at different λ. It can be seen that the
Tmax shows a slight increase and then a gradual decrease with the increasing DIr, reaching
the maximum value at NDIr = 20%. The results may be explained in two ways. Firstly, a
dual injection could effectively combine the benefit of NDI and NPI, a small amount of
n-butanol is injected directly into the cylinder, causing a localized concentration of the
layered mixture near the spark plug, which promotes the combustion in the cylinder and
leads to an increase in Tmax [13]. On the other hand, it can be attributed to is the properties
of butanol itself. Because of the higher latent heat of vaporization, the n-butanol injected
directly into the cylinder evaporates and absorbs heat, resulting in a decrease in Tmax [30].
The latter predominates when NDIr exceeds 20%, so the Tmax increases first and then
decreases as the NDIr increases.

 

Figure 5. Tmax with NDIr at different values of λ.

Figures 6 and 7 show the maximum heat release rate (dQmax) and the dQmax (AdQ-
max) position with NDIr under different λ. It is shown that the dQmax has the same
tendency as the Tmax. Additionally, the AdQmax decreases initially and then increases. It
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is clear that dual injection with 20% and 40% NDIr results in a higher dQmax. Meanwhile,
the peak phase moves forward correspondingly, which enables combustion to release more
energy around the TDC. This is mainly because the locally stratified mixture formed near
the spark plug due to the small amount of n-butanol injected directly into the cylinder can
ensure the ignition’s reliability, creating a more stable flame core and promoting the early
propagation of flame, thus promoting the exothermic process of the mixture.

 
Figure 6. dQmax with NDIr at different values of λ.

 
Figure 7. AdQmax with NDIr at different values of λ.

In this paper, the θ0-90 is defined as the crank angles for which 0–90% of the fuel
mass has been burned. Figure 8 shows that the θ0-90 decreases first and then increases
as NDIr increases. Figure 8 shows that compared to the single injection mode, the dual
injection mode with NDIr values of 20% and 40% has obvious advantages in terms of θ0-90,
especially under the larger λ. Compared to the results obtained with NPI and NDI, at
λ = 0.9, 1, 1.1, 1.2, 1.3, the θ0-90 of N20DI decreases by 2 ◦CA, 2 ◦CA, 3 ◦CA, 4 ◦CA, 5 ◦CA,
and, 2 ◦CA, 4 ◦CA, 7 ◦CA, 15 ◦CA, and 14 ◦CA, respectively. Combined with the previous
analysis, dual injection mode with a relatively small NDIr can form a good layered mixture,
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which is beneficial to the ignition and the formation of a stable flame nucleus in the initial
stage. Therefore, the smaller NDIr greatly increases the combustion speed. In addition,
when the NDIr is constant, θ0-90 extends with the increase in λ. The increase in λ means
the mixture gets leaner and the fuel burning rate slower, thus extending θ0-90.

 

Figure 8. θ0-90 with NDIr at different values of λ.

Figure 9 shows the mean indicated pressure (IMEP) COV with NDIr under different λ.
As seen from Figure 9, with the increase in NDIr, COV decreases first and then increases
with NDIr, reaching a maximum at N20DI. It is interesting that COV changes significantly
with DIr as λ increases. As can be seen in Figure 9, when λ is 1.2, compared with NPI and
NDI, the COV of N20DI decreased by 30% and 60%, respectively. When λ is 1.3, compared
with NPI and NDI, the COV of N20DI decreased by 30% and 90%, respectively. When λ

is less than 1.2, the NDIr has little effect on COV under dual injection mode. However,
comparing to NDI, the dual injection mode significantly improves engine stability. The
reason for the above phenomenon is that the early stage of flame development is the main
factor that causes the engine cyclic variation [33]. A small amount of butanol is directly
injected into the cylinder, and the mixture is enriched near the spark plug to form stratified
gas, which makes the ignition process more stable. In addition, it improves the flame
propagation speed, reduces the influence of uncertain factors such as local misfires, and
makes the engine run more smoothly. When the NDIr is relatively large, it can be seen from
the previous analysis that the heterogeneity of the mixture and the fuel characteristics of
butanol itself lead to the deterioration of combustion, leading to the increase in COV. The
results show that the dual injection mode with NDIr of 20–40% can effectively reduce COV
compared to NPI and NDI, especially under lean burn mode.

3.2. Gaseous Emissions Characteristics

Figure 10 shows the HC emissions with NDIr at λ values of 0.9, 1, 1.1, 1.2 1.3. It is
shown that for a given λ. HC emissions decrease first and then increase with the increase
in NDIr. This is because a small amount of n-butanol injected directly into the cylinder will
cause a localized layered mixture near the spark plug, which makes it easy to form flame
nuclei and makes the fuel burn faster and more completely. As the NDIr increases further,
more fuel is injected into the cylinder, exacerbating the effect of preventing the formation
of a homogeneous mixture. Additionally, the high latent heat of vaporization and the poor
atomization of n-butanol lead to an uneven mixture. Therefore, the combustion process is
incomplete, and HC emissions increase. We can also see from Figure 10 that HC emission
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first decreases and then increases with the increase in λ, reaching a maximum at λ = 0.9 and
a minimum at λ = 1.2. This is because when λ is 0.9, more fuel is injected into the cylinder,
significantly increasing localized n-butanol enrichment areas and incomplete combustion.
On the other hand, the appropriate increase in λ increases the oxygen concentration in the
cylinder, which is conducive to full fuel combustion. However, when λ = 1.2, the mixture
is too thin, leading to misfire and incomplete combustion, and the HC emission increases
accordingly. The above results show that the dual injection mode can effectively reduce
HC emissions compared to NPI and NDI when the NDIr is below 60%.

 

Figure 9. COVIMEP with NDIr at different values of λ.

 

Figure 10. HC with NDIr at different values of λ.

Figure 11 shows the CO emissions with NDIr at λ values of 0.9, 1, 1.1, 1.2 1.3. Figure 11
shows that when λ is more than 0.9, CO emissions remain low and are little affected by
NDIr. This may be explained by the fact that the n-butanol fuel itself contains oxygen and
burns under the condition of sufficient oxygen, and the oxidation efficiency of CO is very
high, so CO emissions are not affected by NDIr much. When λ is 0.9, the CO emissions
are much higher than those obtained at the other four conditions. This is because when
λ = 0.9, the mixture in the cylinder is rich, and the oxygen content is insufficient, leading to
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incomplete fuel combustion and higher CO emissions. The results indicated that compared
with the in-cylinder direct injection, the dual injection mode of n-butanol can significantly
reduce CO emission for the rich mixture.

 

Figure 11. CO with NDIr at different values of λ.

Figure 12 shows the NOx emissions with NDIr at λ values of 0.9, 1, 1.1, 1.2 1.3. It can
be seen that NOx emissions first increase slightly and then decreases s with the increasing
NDIr. Especially when λ = 0.9, 1.0, and 1.1, the increase in NDIr has a significant effect on
reducing NOx. NOx emission is very little at λ = 1.3. The above results may be explained by
the following reasons. The formation of NOx emissions is relevant to cylinder temperature,
oxygen concentration, and long residence time at high temperatures. A small amount
of n-butanol direct injection promotes the combustion in the cylinder and increases the
in-cylinder temperature, leading to an increase in NOx emissions at NDIr = 20%. As the
NDIr increase further, NOx emissions tend to decrease. This is because a large amount of
n-butanol is injected directly into the cylinder, causing the uneven mixing of the mixture
because of the mixing time limitation, then leading to incomplete combustion. Secondly, a
higher amount of fuel injected directly into the cylinder causes an increase in the specific
heat capacity, adding to the effect of evaporation and atomization on the decrease in
temperature. All of these jointly inhibit the generation of NOx emissions. So the NOx
emissions first increase and then decrease. In addition, NOx emissions tend to increase
initially and then decrease with λ, reaching a maximum at λ = 1. This is because when
λ = 1, the oxygen content is sufficient, the combustion is sufficient, and the temperature in
the cylinder is high, so the NOx emission appears the maximum. It is worth noting that
the NOx emissions reduced significantly under the other four λ conditions compared with
λ = 1. This indicates that the lack of oxygen and lean burn conditions can effectively reduce
the NOx emission of n-butanol engines.
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Figure 12. NOx with NDIr at different values of λ.

3.3. Particle Emissions Number

Particle emissions are important performance evaluation indexes of direct injection
engines [34]. In the following section, NPN represents the number of nucleation mode
particles. APN represents the number of accumulation mode particles [35]. TPN represents
the total particle number [36]. NPN and APN can be used to show the number of different
modes and their proportions in total particle emission, and TPN can be used to reveal the
level of total particle number.

Figure 13 displays the APN with NDIr at λ values of 0.9, 1, 1.1, 1.2 1.3. When the λ is
more than 0.9, the APN remains at a very low level and is little affected by NDIr. There
are two possible reasons for this result. Firstly, with the increase in NDIr, the phenomenon
of n-butanol spray-wall impingement increases, and the diffusion and combustion of the
oil film on the wall surface intensifies, which may increase particle emission generation.
Secondly, the formation of accumulation mode particles is closely related to the polycyclic
aromatic hydrocarbons (PAHs). The hydroxyl radical (–OH) content produced during the
combustion process of n-butanol can promote the oxidation of the PAHs [37]. Additionally,
in the condition of sufficient oxygen, the formation conditions of high temperature and
hypoxia of particles are inhibited. Thereby the APN remains at a very low level. At
λ = 0.9, the APN increases significantly when NDIr is more than 80%. This is due to
the combination of high-temperature hypoxia and direct injection mode, which leads to
the increase in APN. Although the APN emission is relatively small, it is evident that
when A = 0.9, compared with the in-cylinder direct injection, the dual injection mode can
significantly reduce the APN.

It can be seen from Figure 14 that the NPN with NDIr at λ values of 0.9, 1, 1.1, 1.2,
and 1.3. Figure 14 shows that the NPN drops first and then rises as NDIr decreases.
Especially when the NDIr value is larger, NPN changes significantly. When the NDIr value
ranges from 100% to 80%, NPN decreases by 73.3%, 70.9%, 65.9%, 73.5%, and 87.4% under
different λ values. This can be explained in two parts. Firstly, with the decrease in NDIr, the
phenomenon of n-butanol spray-wall impingement is significantly reduced, the diffusion
and combustion of the oil film on the wall are improved, and the generation of particulate
matter is also reduced. Secondly, according to Figure 10, HC emissions for dual injection
mode with NDIr of 20% to 80% are lower than HC emissions with NDI, which should
contribute to a reduction in NPN. In addition, as the λ increase, NPN decreases significantly,
especially at the larger NDIr. At the condition of NDI, the increases at different λ cause a
decrease in NPN by about 67.3%, 80.9%, 86.0%, and 75.9%. This is because when λ = 0.9,
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the fuel in the cylinder is over-rich, the mixture distribution is uneven, and the combustion
is incomplete, leading to the increase in NPN. With the increase in λ, the oxygen content in
the cylinder increases, and the formation conditions of hypoxia of particles are inhibited;
thus, the concentration of NPN decreases. It can be concluded that, compared with the
NDI, the dual injection mode can effectively reduce the NPN.

 

Figure 13. APN with NDIr at different values of λ.

 

Figure 14. NPN with NDIr at different values of λ.

Figure 15 is a sum of Figures 13 and 14. The sum of NPN and APN for NDIr and
different λ can be seen. The TPN shows similar trends as NPT, with an increase for
increasing NDIr, and decreases initially and then increases slightly with the increasing λ.
This is because APN is very low, almost negligible compared with NPN; the behavior of
TNP can be explained in terms of the behavior of NPN.
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Figure 15. TPN with NDIr at different values of λ.

4. Conclusions

In this paper, the combustion and emission characteristics of the proposed combustion
method were evaluated from several angles through experiments. The advanced technology
of the engine and the advantages of the physicochemical properties of n-butanol were
fully combined to explore a reasonable injection mode. The research in this paper will
significantly contribute to butanol replacing gasoline as an effective and feasible method
to reduce fossil energy consumption, obtain good combustion performance, and reduce
emissions. The specific experimental conclusions are as follows:

1. Compared with the single injection mode, The dual injection of butanol engines with
a smaller NDIr can form a local fuel-rich region near the spark, which is conducive
to ignition and creates a more stable flame core, thus improving the comprehensive
performance of butanol engines.

2. From the combustion performance index, Ttq, Pmax, Tmax, and dQmax all rise first
and then drop, reaching the maximum value at NDIr = 20% and minimum value at
NDIr = 100%. The AdQmax, θ0-90, and COV decrease first and then increase as NDIr
increases. Thus, N20DI is considered to have an optimal combustion performance,
followed by N40DI.

3. The dual injection mode has little affected on CO emission except for λ = 0.9, but can
significantly reduce HC emissions than those relative to NPI and NDI. When λ is
more than 0.9, the NDIr of 40–60% reduces HC emission most significantly, while the
NDIr of 20% at λ = 0.9. NOx emissions increase in the dual injection mode, especially
at N20DI, but not by much at NDIr of 40–80%.

4. NPN, APN, and TPN increase continuously as NDIr increases, the dual injection
mode. The dual injection mode can effectively reduce particulate emissions relative to
the in-cylinder direct injection mode, especially when λ = 0.9.

5. To summarize, the dual injection mode with NDIr of 20% to 40% significantly reduces
HC and particulate emissions and maintains good combustion characteristics. In
addition, the dual injection mode with a proper excess air ratio can effectively inhibit
the increase in NOx emission caused by dual injection. Therefore, the dual injection
mode with the proper NDIr can effectively optimize butanol engines’ combustion and
emission performance.

6. The combination of combined injection technology and butanol can reflect the excel-
lent characteristics of butanol fuel to a greater extent, but the change of combustion
state under different working conditions needs the real-time adjustment of combined
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injection strategy to meet the effect of dynamic optimization under full operating
conditions. Therefore, it is necessary to explore the combustion and emission char-
acteristics of the combined injection butanol engine under more engine speed and
load conditions and establish the global optimization control strategy in the next
research stage.
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Nomenclature

SI spark ignition Pmax peak in-cylinder pressure
NDIr n-butanol direct injection ratio Ttq the engine torque
PFI the port fuel injection dQmax the maximum rate of heat release
NDI n-butanol direct injection AdQmax position of dQmax
NPI port n-butanol injection Tmax peak in-cylinder temperature
MBT maximum brake torque θ0-90 total combustion duration
TDC top dead center COV coefficient of variance
BTDC before top dead center TPN total particle number
λ excess air ratio APN accumulation mode particle number
IMEP indicated mean effective pressure TPN nucleation mode particle number
HC Hydrocarbon CO carbon monoxide
NOx nitrogen monoxide or nitric oxide

References

1. Bao, J.; Qu, P.; Wang, H.; Zhou, C.; Zhang, L.; Shi, C. Implementation of various bowl designs in an HPDI natural gas engine
focused on performance and pollutant emissions. Chemosphere 2022, 303, 135275. [CrossRef] [PubMed]

2. Awad, O.I.; Mamat, R.; Ali, O.M.; Sidik, N.C.; Yusaf, T.; Kadirgama, K.; Kettner, M. Alcohol and ether as alternative fuels in spark
ignition engine: A review. Renew. Sustain. Energy Rev. 2018, 82, 2586–2605. [CrossRef]

3. Algayyim, S.J.M.; Wandel, A.P. Comparative assessment of spray behavior, combustion and engine performance of ABE-
biodiesel/diesel as fuel in DI diesel engine. Energies 2020, 13, 6521. [CrossRef]

4. Iliev, S.; Stanchev, H.; Mitev, E. An Experimental Investigation of a Common-rail Diesel Engine with Butanol Additives. In
Proceedings of the 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria,
12–14 November 2020; pp. 1–4.

5. Kumar, B.R.; Saravanan, S. Use of higher alcohol biofuels in diesel engines: A review. Renew. Sustain. Energy Rev. 2016, 60, 84–115.
[CrossRef]

6. Shi, C.; Chai, S.; Wang, H.; Ji, C.; Ge, Y.; Di, L. An insight into direct water injection applied on the hydrogen-enriched rotary
engine. Fuel 2023, 339, 127352. [CrossRef]

7. Bao, J.; Wang, H.; Wang, R.; Wang, Q.; Di, L.; Shi, C. Comparative experimental study on macroscopic spray characteristics of
various oxygenated diesel fuels. Energy Sci. Eng. 2023, 11, 1579–1588. [CrossRef]

8. Shang, W.; Yu, X.; Shi, W.; Xing, X.; Guo, Z.; Du, Y.; Liu, H.; Wang, S. Effect of exhaust gas recirculation and hydrogen direct
injection on combustion and emission characteristics of a n-butanol SI engine. Int. J. Hydrogen Energy 2020, 45, 17961–17974.
[CrossRef]

70



Sustainability 2023, 15, 9696

9. Thangavel, V.; Momula, S.Y.; Gosala, D.B.; Asvathanarayanan, R. Experimental studies on simultaneous injection of ethanol–
gasoline and n-butanol–gasoline in the intake port of a four stroke SI engine. Renew. Energy 2016, 91, 347–360. [CrossRef]

10. Papagiannakis, R.G.; Rakopoulos, D.C.; Rakopoulos, C.D. Theoretical Study of the Effects of Spark Timing on the Performance
and Emissions of a Light-Duty Spark Ignited Engine Running under Either Gasoline or Ethanol or Butanol Fuel Operating Modes.
Energies 2017, 10, 1198. [CrossRef]

11. Atmanli, A.; Yilmaz, N. A comparative analysis of n-butanol/diesel and 1-pentanol/diesel blends in a compression ignition
engine. Fuel 2018, 234, 161–169. [CrossRef]

12. Hergueta, C.; Bogarra, M.; Tsolakis, A.; Essa, K.; Herreros, J.M. Butanol-gasoline blend and exhaust gas recirculation, impact on
GDI engine emissions. Fuel 2017, 208, 662–672. [CrossRef]

13. Csemány, D.; DarAli, O.; Rizvi SA, H.; Józsa, V. Comparison of volatility characteristics and temperature-dependent density,
surface tension, and kinematic viscosity of n-butanol-diesel and ABE-diesel fuel blends. Fuel 2022, 312, 122909. [CrossRef]

14. Jeon, J.M.; Song, H.S.; Lee, D.G.; Hong, J.W.; Hong, Y.G.; Moon, Y.M.; Bhatia, S.K.; Yoon, J.J.; Kim, W.; Yang, Y.H. Butyrate-based
n-butanol production from an engineered Shewanella oneidensis MR-1. Bioprocess Biosyst. Eng. 2018, 41, 1195–1204. [CrossRef]

15. Ferreira, S.; Pereira, R.; Wahl, S.A.; Rocha, I. Metabolic engineering strategies for butanol production in Escherichia coli. Biotechnol.
Bioeng. 2020, 117, 2571–2587. [CrossRef]

16. Bao, T.; Feng, J.; Jiang, W.; Fu, H.; Wang, J.; Yang, S.T. Recent advances in n-butanol and butyrate production using engineered
Clostridium tyrobutyricum. World J. Microbiol. Biotechnol. 2020, 36, 138. [CrossRef] [PubMed]

17. Zhao, F.; Lai, M.C.; Harrington, D.L. Automotive spark-ignited direct-injection gasoline engines. Prog. Energy Combust. Sci. 1999,
25, 437–562. [CrossRef]

18. Shang, Z.; Yu, X.; Shi, W.; Huang, S.; Li, G.; Guo, Z.; He, F. Numerical research on effect of hydrogen blending fractions on idling
performance of an n-butanol ignition engine with hydrogen direct injection. Fuel 2019, 258, 116082. [CrossRef]

19. Guo, Z.; Yu, X.; Sang, T.; Chen, Z.; Cui, S.; Xu, M.; Yu, L. Experimental study on combustion and emissions of an SI engine with
gasoline port injection and acetone-butanol-ethanol (ABE) direct injection. Fuel 2021, 284, 119037. [CrossRef]

20. Liu, H.; Wang, X.; Zhang, D.; Dong, F.; Liu, X.; Yang, Y.; Huang, H.; Wang, Y.; Wang, Q.; Zheng, Z. Investigation on blending
effects of gasoline fuel with n-butanol, DMF, and ethanol on the fuel consumption and harmful emissions in a GDI vehicle.
Energies 2019, 12, 1845. [CrossRef]

21. Zhang, M.; Hong, W.; Xie, F.; Su, Y.; Han, L.; Wu, B. Experimental Investigation of Impacts of Injection Timing and Pressure
on Combustion and Particulate Matter Emission in a Spray-Guided GDI Engine. Int. J. Automot. Technol. 2018, 19, 393–404.
[CrossRef]

22. Wang, Y.; Yu, X.; Ding, Y.; Du, Y.; Chen, Z.; Zuo, X. Experimental comparative study on combustion and particle emission of
n-butanol and gasoline adopting different injection approaches in a spark engine equipped with dual-injection system. Fuel 2018,
211, 837–849. [CrossRef]

23. Yang, J.; Ji, C. A comparative study on performance of the rotary engine fueled hydrogen/gasoline and hydrogen/n-butanol. Int.
J. Hydrogen Energy 2018, 43, 22669–22675. [CrossRef]

24. Ravikumar, R.; Antony, A.J. An experimental investigation to study the performance and emission characteristics of n-butanol-
gasoline blends in a twin spark ignition engine. Int. J. Mech. Prod. Eng. Res. Dev. 2020, 10, 401–414.

25. Agbro, E.; Zhang, W.; Tomlin, A.S.; Burluka, A. Experimental Study on the Influence of n-Butanol Blending on the Combustion,
Autoignition, and Knock Properties of Gasoline and Its Surrogate in a Spark-Ignition Engine. Energy Fuels 2018, 32, 10052–10064.
[CrossRef]

26. Saraswat, M.; Chauhan, N.R. Comparative assessment of butanol and algae oil as alternate fuel for SI engines. Eng. Sci. Technol.
Int. J. 2020, 23, 92–100. [CrossRef]

27. Meng, F.; Yu, X.; He, L.; Liu, Y.; Wang, Y. Study on combustion and emission characteristics of a n-butanol engine with hydrogen
direct injection under lean burn conditions. Int. J. Hydrogen Energy 2018, 43, 7550–7561. [CrossRef]

28. Su, T.; Ji, C.; Wang, S.; Cong, X.; Shi, L.; Yang, J. Investigation on combustion and emissions characteristics of a hydrogen-blended
n-butanol rotary engine. Int. J. Hydrogen Energy 2017, 42, 26142–26151. [CrossRef]

29. Merola, S.S.; Irimescu, A.; Marchitto, L.; Tornatore, C.; Valentino, G. Effect of injection timing on combustion and soot formation
in a direct injection spark ignition engine fueled with butanol. Int. J. Engine Res. 2017, 18, 490–504. [CrossRef]

30. Sandhu, N.S.; Yu, X.; Leblanc, S.; Zheng, M.; Ting, D.; Li, T. Combustion Characterization of Neat n-Butanol in an SI Engine; SAE
Technical Papers; SAE International: Warrendale, PA, USA, 2020.

31. Kalwar, A.; Singh, A.P.; Agarwal, A.K. Utilization of primary alcohols in dual-fuel injection mode in a gasoline direct injection
engine. Fuel 2020, 276, 118068. [CrossRef]

32. Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M.; Kyritsis, D.C. Effects of butanol–diesel fuel blends on
the performance and emissions of a high-speed DI diesel engine. Energy Convers. Manag. 2010, 51, 1989–1997. [CrossRef]

33. Heywood, J.B.; Vilchis, F.R. Comparison of flame development in a spark-ignition engine fueled with propane and hydrogen.
Combust. Sci. Technol. 1984, 38, 313–324. [CrossRef]

34. Tian, Z.; Zhen, X.; Wang, Y.; Liu, D.; Li, X. Combustion and emission characteristics of n-butanol-gasoline blends in SI direct
injection gasoline engine. Renew. Energy Int. J. 2020, 146, 267–279. [CrossRef]

35. Luo, J.; Zhang, Q.; Luo, J.; Zhang, Y. Particle Size Distributions of Butanol-Diesel and Acetone–Butanol–Ethanol (ABE)-Diesel
Blend Fuels in Wick-Fed Diffusion Flames. Energy Fuels 2020, 34, 16212–16219. [CrossRef]

71



Sustainability 2023, 15, 9696

36. Liu, B.; Cheng, X.; Liu, J.; Pu, H. Investigation into particle emission characteristics of partially premixed combustion fueled with
high n-butanol-diesel ratio blends. Fuel 2018, 223, 1–11. [CrossRef]

37. Yu, X.; Guo, Z.; He, L.; Dong, W.; Sun, P.; Shi, W.; Du, Y.; He, F. Effect of gasoline/n-butanol blends on gaseous and particle
emissions from an SI direct injection engine. Fuel 2018, 229, 1–10. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

72



Citation: Shang, Z.; Sun, Y.; Yu, X.;

He, L.; Ren, L. Effect of

Hydrogen-Rich Syngas Direct

Injection on Combustion and

Emissions in a Combined Fuel

Injection—Spark-Ignition Engine.

Sustainability 2023, 15, 8448.

https://doi.org/10.3390/su15118448

Academic Editors: Cheng Shi,

Jinxin Yang, Jianbing Gao and

Peng Zhang

Received: 17 April 2023

Revised: 19 May 2023

Accepted: 19 May 2023

Published: 23 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Effect of Hydrogen-Rich Syngas Direct Injection on
Combustion and Emissions in a Combined Fuel
Injection—Spark-Ignition Engine

Zhen Shang 1,2, Yao Sun 2,*, Xiumin Yu 2, Ling He 2 and Luquan Ren 1

1 Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China;
shangzhen@jlu.edu.cn (Z.S.)

2 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
* Correspondence: syao@jlu.edu.cn; Tel.: +86-188-0430-3978

Abstract: To utilize the high efficiency of gasoline direct injection (GDI) and solve the high particulate
number (PN) issue, hydrogen-rich syngas has been adopted as a favorable sustainable fuel. This
paper compares and analyzes the effects of the injection configurations (GDI, gasoline port injection
combined with GDI (PGDI), and gasoline port injection combined with hydrogen-rich syngas direct
injection (PSDI)) and fuel properties on combustion and emissions in a spark-ignition engine. The
operational points were fixed at 1800 rpm with a 15% throttle position, and the excess air ratio was 1.1.
The conclusions show that PSDI gained the highest maximum brake thermal efficiency (BTE) at the
MBT point, and the maximum BTE for GDI was only 94% of that for PSDI. PSDI’s CoVIMEP decreased
by 22% compared with GDI’s CoVIMEP. CO and HC emissions were reduced by approximately 78%
and 60% from GDI to PSDI among all the spark timings, respectively, while PSDI emitted the highest
NOX emissions. As for particulate emissions, PSDI emitted the highest nucleation-mode PN, while
GDI emitted the lowest. However, the accumulation-mode PN emitted from PSDI was approximately
52% of that from PGDI and 5% of that from GDI. This study demonstrates the benefits of PSDI for
sustainability in vehicle engineering.

Keywords: hydrogen-rich syngas; syngas direct injection; combined fuel injection; brake thermal
efficiency; particulate number

1. Introduction

With the development of engine technologies, gasoline direct injection (GDI) and port
fuel injection (PFI) have been widely used for modern spark-ignition engines. As direct
fuel injection can be more accurately controlled both for quantity and timing, GDI generally
provides better transient condition performance, which results in better fuel economy and
lower CO2 emissions [1,2]. However, previous research has concluded that GDI emits more
particulate emissions than PFI because the time for mixture forming is relatively short, and
locally fuel-rich regions appear more [3,4].

It is important to recognize the connection between particulate emissions and sustain-
ability as well as take steps to reduce emissions and promote sustainable practices due to
their adverse impact on air quality, human health, and the environment [5]. Therefore, to
make GDI engines conform to the sustainability of vehicle engineering, GDI combined
with PFI seems to be a promising method to improve efficiency and simultaneously solve
the emissions issue [6–8]. Kang et al. developed a single-cylinder, four-stroke engine that
adopts one direct injection system combined with one port injector. The results showed that
the engine load characteristics were widened compared with a conventional spark-ignition
direct injection (SIDI) engine, and knock reduction and engine flexibility can also be found
in a dual-fuel dual-injection engine [9]. Sun et al. investigated the particulate number (PN)
reduction and size distribution in a combined dimethyl ether/gasoline injection SI engine.
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They concluded that by increasing the proportion of dimethyl ether direct injection, both
the nucleation and accumulation modes of PN emissions drop remarkably [10].

On the other side, finding alternative fuels for internal combustion engines is also a
feasible pathway for sustainable development to meet stringent emission regulations and
solve the shortage of conventional fuel [11]. Synthesis gas (syngas) is considered an attrac-
tive substitute energy due to its abundant sources and clean combustion characteristics [12].
The feedstock for syngas can be biomass, coal, refinery coke, or even landfill waste, whilst
the manufacturing methods include gasification, fuel reforming, and fermentation [13,14].
The combustible species of syngas are H2, CO, and CH4, and the inert diluents of syngas
are mainly N2 and CO2. The high hydrogen content in syngas determines that syngas
belongs to clean energy [15]. The production method affects the specific composition of
syngas, for example, applying catalytic gasification technology to gasify biomass could
yield a hydrogen-enriched synthetic gas with hydrogen and CO contents of up to 50%
and 17% by volume [16]. Harun et al. reported that the CO contained in syngas could
increase the knock limit, and the combustion duration was also prolonged [17]. Concerning
hydrogen-rich syngas, the physicochemical characteristics of hydrogen can be inherited to
some extent, while the sources of syngas are much more convenient than hydrogen [18,19].
Hydrogen has some excellent physicochemical characteristics, such as wide flammability,
low minimum ignition energy, a high laminar burning velocity, and a small quenching
distance [20]. Therefore, injecting syngas directly into a cylinder may have a better effect
on reducing emissions than gasoline direct injection because of the fuel properties.

To figure out the environmental issues and sustainable development, the influences of
syngas on gaseous emissions have been widely investigated [15]. Huang et al. studied how
the ignition timing affects emissions from a syngas internal combustion engine containing
hydrogen by using a spark plug reformer system [21]. They successfully developed a
spark plug reformer system that can reduce power consumption and operate under a
low operating temperature [22]. The experiment showed that when the spark timing was
adjusted to the MBT, HC and NOX emissions decreased, while CO2 and CO emissions
slightly increased with the use of syngas. Grzegorz et al. also concluded that hydrogen-
rich syngas and high equivalence ratios cause a higher reaction temperature that favors
NOX emissions [23]. Harun et al. compared the content ratio of hydrogen and CO in
syngas and obtained that the emissions were greatly related to the syngas composition. In
particular, the NO level with a H2/CO ratio of 2.36 was lower than that with a H2/CO ratio
of 0.62 even though it had a high exit temperature and hydrogen content [24]. Similarly,
Ouimette et al. reported a different NOX emission tendency of syngas in partially premixed
combustion conditions. They indicated that NOX emissions remained stable for syngas
mixtures with a H2/CO ratio of 0–1.3, whereas NOX emissions exhibited a clear downward
trend with higher ratios (>1.3) [25].

There are few published papers that have studied the particulate matter (PM) in syngas
combustion, but the effect of hydrogen on particulate emissions has been investigated.
Singh A. P. et al. compared the PM emissions from hydrogen-, CNG-, HCNG-, gasoline-,
and diesel-fueled engines. They reported that hydrogen emitted the lowest PN and the
lowest amount of PM among the researched fuels. Moreover, hydrogen enrichment of
CNG reduced the total PM emissions [26]. Zhao et al. analyzed PM emissions from a GDI
engine using a hydrogen and gasoline mixture. The findings revealed that under a low
load, blending 5% hydrogen into the stoichiometric mixture can lower the total PM mass
and PM number by up to 90%, and a further reduction in the total mass to 95% as well as in
the total number to 97% can be achieved with 10% hydrogen. Nevertheless, under a high
load, although hydrogen addition decreased the number of smaller particles, it encouraged
the generation of accumulation-mode particles [27].

Thus, in this study, to realize both high thermal efficiency and low engine emissions,
the adoption of hydrogen-rich syngas direct injection in a combined fuel injection–SI engine
was evaluated. Two sets of experiments were formulated. The first one was about the
comparison between GDI and gasoline port injection combined with GDI (PGDI) and aimed
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to analyze the configuration characteristic of the combined injection system. The second
set of experiments was about the comparison between PGDI and gasoline port injection
combined with syngas direct injection (PSDI), aiming to further analyze the fuel properties
of syngas. In addition, from our previous research, a comparison between the injection
modes containing GDI, PGDI, and gasoline port injection combined with hydrogen direct
injection was carried out, and the experiments showed that the combination of an injection
mode with fuel had a great influence on engine behavior [28–30], which means this specific
investigation on the combustion, gaseous emission, and PN emission characteristics of
syngas, which have not been studied yet, is novel and will be useful to meet sustainable
development requirements.

2. Materials and Methods

2.1. Experimental Setup

The prototype engine was an in-line four-cylinder water-cooled spark-ignition direct
injection (SIDI) engine, which originally had two injection systems, one direct injection
system, and one port injection system. The cylinder head was furnished with centrally
mounted spark plugs and direct injectors situated between intake valves. Port injectors
were arranged on intake manifolds. Table 1 lists the detailed specifications of the prototype
engine. The injection timing and duration for both gasoline and syngas were controlled
with a self-developed ECU that can also adjust the throttle position and ignition timing.
The syngas used in this experiment was hydrogen-rich syngas with fixed 85% H2 and 15%
CO by volume to eliminate interferences [31,32]. The specifications of the gasoline and
syngas are shown in [28] and [33]. To maintain the operating state with a fixed excess air
ratio (λ), the requested fuel distribution ratio was obtained through the precise monitoring
of the airflow, syngas flow, and gasoline flow. Moreover, due to the wide flammability of
hydrogen, a flame arrestor was installed within the hydrogen supply line to avoid backfire.
Figure 1 illustrates the overall schematic layout of the experimental system.

Table 1. Original engine specifications.

Parameter Unit Value

Compression ratio - 9.6
Total displacement L 1.984

Stroke mm 92.8
Bore mm 82.5

Rated torque Nm, rpm 350, 1500–4500
Rated power kW, rpm 160, 4500–6200

During the experiments, the engine’s speed and torque were measured using an ECD
CW160 that was controlled with an FST-OPEN system. A GU13Z-24 piezoelectric pressure
sensor was used to measure the cylinder pressure, and the crank angle was measured with
a Kistler-2614B4 encoder. Both sets of data were transmitted to a combustion analyzer to
calculate the real-time cylinder pressure and analyze the combustion process through the
combustion analysis software (DS 0928). The excess air ratio was recorded with a Meter
LA4 lambda sensor, and a wideband oxygen transducer was mounted onto the exhaust
pipe. The syngas mass flow was monitored with a DMF-1-1 AB gas flow meter. In addition,
the regular gas emissions could be measured simultaneously with a DiCom 4000 analyzer.
Particulate emissions were recorded using a DMS500, which can measure the particulate
number and provide the PN size distribution. The specific information on the testing
instruments including the measuring error is shown in Table 2.
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Figure 1. Schematic layout of the experimental system.

Table 2. Information on testing instruments.

Apparatus Parameter Manufacturer Type Uncertainty

Dynamometer Engine speed LY Nanfeng CW160
≤±1 rpm

Torque ≤±0.28 Nm

Pressure sensor Cylinder
pressure AVL GU 13Z-24 ≤±0.3 bar

Lambda
analyzer Excess air ratio ETAS LAMBDA LA4 ≤±0.1

Gas flowmeter Syngas quantity Beijing
SINCERITY DMF-1-1 AB ≤±0.01 g/s

Fuel flowmeter Gasoline
quantity ONO SOKKI DF-2420 ≤±0.01 g/s

Emission analyzer
CO

AVL DiCom 4000
≤±0.01%

HC ≤±30 ppm
NOX ≤±20 ppm

Fast particulate
analyzer

Particulate
emissions CAMBUSTION DMS500 ≤±1%

2.2. Experimental Procedures

In all the experiments, the engine speed was constant at 1800 rpm, representing a
normal urban situation. Some research studies have indicated that different injection modes
could affect volumetric efficiency [34]. To highlight the influence of volumetric efficiency, a
low engine load associated with a small throttle position was chosen. Therefore, the throttle
position was fixed at 15% for all the experiments, and other loads will be investigated in
future work. The port fuel injection was aimed to form a homogenous mixture, and the
port injection time was set at 300 crank angle degrees before the top dead center (CAD
BTDC). Both the syngas and gasoline direct injection pressures were set at 3 MPa to unify
the standards. In previous studies, when hydrogen was injected at 100 CAD BTDC, the
engine exhibited the best efficiency and the highest power output, so the direct injection
timings in this study were set at 100 CAD BTDC (both for syngas and gasoline) [35]. As
low-temperature combustion achieved via lean-burn has been proven to be beneficial for
increasing engine efficiency and decreasing emissions [36,37], and syngas can extend the
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lean-burn limit, the experiments were conducted under lean-burn conditions. The λ was
fixed at 1.1, and the definition of λ is shown as follows:

λ =
Vairρair

ms AFs + mg AFg
(1)

In Equation (1), Vair represents the air volumetric flow rate, and ρair represents the
density of air. ms and mg denote the measured mass flow rates of syngas and gasoline. Es-
pecially for the PDI mode, mg equals the total gasoline mass flow rate including both direct
injection and port injection. AFs and AFg are equal to 29.52 and 14.6 as the stoichiometric
air–fuel ratios of syngas and gasoline, respectively.

The definition of the fuel distribution ratio is indicated in Equation (2) representing
the energy ratio:

ΦD =
qD

qD + qP
(2)

In Equation (2), ΦD denotes the fuel distribution ratio, qD and qP represent the heat
released by the direct injection fuel (the gasoline direct injection portion in PGDI and that
of syngas in PSDI) and port injection fuel, respectively. The heat is calculated from the mass
flow rate and the low heating value (LHV). As the onboard syngas production amount
was limited, the direct injection portion was regarded as an improver to fit the practical
application [38]. Therefore, the ΦD for the PGDI mode was fixed at 20%, while the PSDI
mode had a lower ΦD of 10%.

To find the effect on the combustion and emissions characteristics at various sparking
timings, a range of spark timings from 10 CAD BTDC to 30 CAD BTDC were employed.
The combustion parameters were measured and averaged in 200 continuous cycles at all
test points. Concretely, the cylinder pressure, brake thermal efficiency (BTE), combustion
durations (CA 0–10 and CA 10–90), indicated mean effective pressure (IMEP), and coeffi-
cient of variation in IMEP (CoVIMEP) were measured to analyze the combustion process.
Moreover, the CO, HC, NOX, and PN emissions were recorded in the experiments to study
the emission characteristics. Notably, the comparisons of the three injection modes are
novel and will be useful for future vehicle engineering sustainability.

3. Results and Discussion

3.1. Cylinder Pressure and Brake Thermal Efficiency

Figures 2 and 3 plot the in-cylinder pressure for the three kinds of injection modes
with spark timings at 10 CAD BTDC and 25 CAD BTDC. The cylinder pressures for PSDI
show the highest cylinder pressure, while GDI presents the lowest value in both figures.
Firstly, investigating the injection configuration and then analyzing the fuel properties
indicated some detailed effects among the three injection modes. Port fuel injection has
more time to form a homogenous mixture beneficially, and the direct injection portion can
achieve stable and reliable ignition, so the combustion efficiency and cylinder pressure can
be increased with combined fuel injection. This conclusion is similar to that in [39], which
mainly focuses on fuel consumption and half-load performance. Furthermore, as syngas
has a high laminar flame speed that can enhance the constant volume combustion degree,
and its small quenching distance also facilitates more complete combustion, the cylinder
pressure of PSDI performs higher than that of PGDI.

With 2 spark timings, the relevant crank angles for the maximum cylinder pressure
of PSDI were only 16 CAD ATDC and 1 CAD ATDC, respectively. The relevant phasing
was much more advanced than that of the GDI and PGDI modes, mainly because of
the dramatically shortened combustion period. As syngas has a high laminar burning
velocity, the combustion is more concentrated in the top dead center (TDC) with a specific
spark timing. The cylinder pressure is an integrated result of the piston motion and
combustion process, and the piston motion produces the highest pressure around the
TDC (due to the smallest displacement). The concentrated combustion moves the highest
cylinder pressure closer to the TDC, which enlarges the integrated pressure. Furthermore,
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advancing ignition lets more fuel burn before the TDC, and the accumulated heat before
the TDC gradually increases, which results in higher in-cylinder pressure. However, the
combustion deteriorates, as the relevant crank angle for the highest cylinder pressure is too
early with an over-advanced spark timing.

Figure 2. In-cylinder pressure. Spark timing set at 10 CAD BTDC for 3 kinds of injection modes.

 
Figure 3. In-cylinder pressure. Spark timing set at 25 CAD BTDC for 3 kinds of injection modes.

Figure 4 plots the brake thermal efficiency (BTE) at various spark timings for three
kinds of injection modes. As the minimum spark advance for best torque (MBT) for
GDI and PGDI is 20 CAD BTDC, while the MBT for PSDI is only 10 CAD BTDC, the
investigated ranges of ignition timings had a slight difference. When the spark timing
was set at the MBT, PSDI demonstrated the highest maximum BTE (30.3%), while GDI
showed the least maximum value (28.7%), and the maximum BTE of PGDI was 29.8%. The
maximum BTE increased by 1.6% from GDI to PSDI. PGDI can form a more homogeneous
mixture, producing complete combustion and higher BTE. As syngas has high diffusive
efficiency and low ignition energy, the homogenous condition was further enhanced, and
the requirement for combustion declined. These factors are all beneficial for complete
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combustion, which is critically beneficial for BTE. Moreover, a high laminar burning
velocity shortens the combustion period and reduces heat transfer loss. As such, PSDI has
higher BTE than GDI because of more complete combustion, higher combustion efficiency,
and less heat transfer loss.

 
Figure 4. BTE versus spark timings for three kinds of injection modes.

Figure 4 also shows that the BTE first rises and then descends with an advancing spark
timing. This is because an over-advanced spark timing makes more fuel burn during the
compression stroke which produces more negative compression work and decreases the
BTE. Comparatively, over-retarding the spark timing would enlarge the extent of post-
combustion, and more fuel would burn during the expansion stroke, resulting in lower
BTE. It is worth noting that when the spark advance angle was larger than 15 CAD, the
BTE of PSDI decreased quickly and was even worse than that of GDI. This is because the
combustion duration for PSDI is relatively short, and over-advancing ignition causes most
of the combustion to be completed before the TDC, and the negative compression work
increases. Subsequently, the BTE for PSDI declined dramatically. As the combustion speeds
are lower in GDI and PGDI, the influences by over-advancing ignition are relatively small
for these two modes. Thus, PSDI is more sensitive to spark timings because of the high
flame speed.

Figure 5 shows the cylinder temperature at the exhaust valve opening (TEVO) versus
the spark timings for the three kinds of injection modes. The TEVO reflects the engine
post-combustion and exhaust loss to some extent [40]. The cam phasing was fixed just as
the original engine and the exhaust valve opened at 26 CAD before the bottom dead center
(BBDC). The TEVOs for the GDI and PGDI modes are relatively similar, and the TEVO for the
PSDI mode is substantially higher than those for the other modes. The exhaust temperature
for PSDI shows the highest value because of the fast burning velocity and higher maximum
cylinder pressure. The TEVO mainly affected the emissions characteristics, and the details
will be discussed in Section 3.3.
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Figure 5. TEVO versus spark timings for three kinds of injection modes.

3.2. Combustion Analysis

Figure 6 plots the flame development duration (0–10% mass fraction burned; CA 0–10)
at various spark timings for the 3 kinds of injection modes, and Figure 7 plots the flame
propagation duration (10–90% mass fraction burned; CA 10–90). PGDI shows a shorter
duration for both CA 0–10 and CA 10–90 than GDI, and PSDI demonstrates the shortest
durations for both parts. The combined injection mode can form a more stratified mixture
than the pure GDI mode, which eases the formation of the flame kernel and accelerate the
whole combustion period, so PGDI indicates shorter combustion durations. According to
previous studies, adding hydrogen to methane and ethanol stimulates the formation of O,
OH, and H radicals, which are kinds of improvers for chain reactions [41,42]. The syngas
used in this investigation was hydrogen-rich, so it inherited some hydrogen characteristics,
and gasoline is a kind of hydrocarbon fuel that is chemically similar to ethanol and methane.
Thus, the formation of radicals stimulated via syngas accelerates combustion and shortens
the combustion period. A shorter CA 0–10 means more stable combustion, while a shorter
CA 10–90 means the combustion process is closer to the constant volume process, allowing
higher thermal efficiency [43]. Hence, it is further certified that PSDI has the most stable
combustion and the highest thermal efficiency among the three injection modes. On the
other hand, by advancing the ignition timing, CA 0–10 was prolonged while CA 10–90
was shortened for all three injection modes. Advancing ignition deteriorates the initial
condition for forming the flame kernel, and CA 0–10 is prolonged. Retarding ignition
expands the degree of post-combustion, and the combustion at this stage is mainly diffusion
combustion with a low burning rate. Thus, the CA 10–90 duration is extended by retarding
the ignition timing.

Figure 8 plots the coefficients of variation (CoVs) in the IMEP at various spark timings
for the three kinds of injection modes. The CoVIMEP of GDI is dramatically higher than
those of the other two modes, and it is very sensitive to spark timings. Specifically, the
minimum CoVIMEP of PSDI decreases by 22% from the minimum CoVIMEP of GDI. Many
investigations have indicated that a short combustion duration helps to ease an engine’s
cyclic variations [44]. It is seen in Figures 6 and 7 that the combustion duration of GDI is
obviously long, leading to a high CoVIMEP. Figure 8 also indicates that the CoVIMEP reaches
its lowest value at around the MBT point.
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Figure 6. CA 0–10 versus spark timings for three kinds of injection modes.

 
Figure 7. CA 10–90 versus spark timings for three kinds of injection modes.

Figure 8. CoVIMEP versus spark timings for three kinds of injection modes.

3.3. Gaseous Emissions and PN Emissions

Figure 9 plots CO emission at various spark timings for the three kinds of injection
modes. GDI emits the highest CO emission, while PSDI emits the least. CO emissions were
reduced by approximately 78% from GDI to PSDI among the whole range of spark timings.
However, a 15% volumetric fraction of the syngas used in this experiment was CO, and
the CO emission still shows the least value for PSDI, which further certifies that PSDI is
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beneficial for complete combustion and shows better stability. Ji C. et al. concluded that
adjusting the spark timing has no clear effect on the CO emission of a hybrid hydrogen–
gasoline engine [45], which agrees with the PSDI profile. CO emission decreased by
retarding ignition for the GDI and PGDI modes, as the prolonged post-combustion induced
by retarding ignition enhances the oxidation of CO.

 
Figure 9. CO emissions versus spark timings for three kinds of injection modes.

As is shown in Figure 10, GDI emits the highest HC emission, and PGDI and PSDI
only emit small amounts. HC emissions were reduced by approximately 60% from GDI
to PSDI with a 20 CAD BTDC spark timing. This is because the combined injection mode
improves combustion completeness, which reduces the sources of HCs. For the GDI mode,
HC emission decreased by retarding ignition, the reason for which could be ascribed to the
enhanced oxidizing process caused by prolonged post-combustion and increased TEVO.

 
Figure 10. HC emissions versus spark timings for three kinds of injection modes.

Figure 11 plots the NOX emissions at various spark timings for the three kinds of
injection modes. PSDI produced the highest NOX emission, whereas GDI produced the
lowest NOX emission. Specifically, the NOX emission from GDI was 44% and 32% of that of
PGDI and PSDI, respectively. The main factors affecting NOX emissions include the oxygen
fraction, cylinder temperature, and reserved time for high-temperature reactions [46]. As
the data in Figure 11 show, PSDI still has a high NOX emission problem. However, as
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syngas direct injection avails stable combustion, lean-burn combustion and exhaust gas
recirculation (EGR) technologies could be used to reduce NOX emissions without causing
much damage to the engine performance according to [47]. Figure 11 also indicates that
retarding ignition linearly reduces NOX emissions. This is because retarding ignition
decreases the maximum cylinder temperature, which is a critical factor for NOX emission.

 
Figure 11. NOX emissions versus spark timings for three kinds of injection modes.

Particulate emissions are a common issue for SIDI engines, and SIDI engines al-
ways have high particulate numbers relative to diesel engines, so the particulate emission
numbers will be focused on herein. Figure 12 plots the total nucleation-mode PNs at
various spark timings for the three kinds of injection modes, and Figure 13 shows the total
accumulation-mode PNs for the three kinds of injection modes. Particles in nucleation
mode are typically composed of volatile organic and sulfur compounds that form during
exhaust dilution and cooling. Meanwhile, particles in accumulation mode are mainly made
up of carbonaceous agglomerates and associated adsorbed materials [48–50].

 
Figure 12. Total nucleation-mode PNs versus spark timings for three kinds of injection modes.
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Figure 13. Total accumulation-mode PNs versus spark timings for three kinds of injection modes.

Regarding the nucleation-mode PN, PSDI generally emits the highest value while
GDI emits the lowest value. The nucleation-mode PN for GDI is only 45% of that for PSDI
at a 20 CAD BTDC spark timing. As nucleation-mode particles are mainly from exhaust
dilution and cooling, a higher exhaust temperature will enhance the nucleation process
and result in more nucleation-mode particles. From the results shown in Figure 5, the
TEVO of PSDI is the highest among the three injection modes, which is conducive to the
formation of nucleation-mode particles. The three injection modes present different ignition
characteristics in Figure 12, and GDI emits the lowest nucleation-mode PN at the MBT
point, while PGDI and PSDI show slight variations with the spark timings. This is ascribed
to the relatively high exhaust temperature and low unburned hydrocarbons in PSDI and
PGDI, which decrease the propensity to oxidize the particles. Consequently, the PGDI
and PSDI modes respond less sensitively to spark timings. Although PSDI increases the
nucleation-mode PN, improving the dilution condition in the exhaust pipe and eliminating
temperature differences will dramatically reduce the nucleation-mode PN.

Regarding the accumulation-mode PN, GDI shows the highest value, and PSDI in-
dicates the lowest value. The accumulation-mode PN of PSDI is approximately 52% of
PGDI’s and 5% of GDI’s, respectively. Accumulation particles are mainly formed during
the combustion process of an inhomogeneous mixture [51]. PGDI dramatically enhances
the homogenous situation in a cylinder via the port fuel injection, and the accumulation
particle number obviously decreases from that of GDI. Particle growth and augmenta-
tion are mainly enacted through H atom loss and continue through the addition of the
acetylene (HACA) mechanism [52]. Adding syngas increases the H atom amount in the
cylinder, and the HACA mechanism is suppressed. Therefore, PSDI further reduces the
accumulation-mode PN compared with PGDI.

4. Conclusions

This paper experimentally investigated the effect of hydrogen-rich syngas direct
injection on combustion and emissions in a combined fuel injection—spark-ignition engine.
Direct comparisons between the GDI, PGDI, and PSDI modes with cylinder pressure, BTE,
CA0–10, CA10–90, CoVIMEP, CO, HC, NOX, and PN emissions versus spark timing were
performed to analyze the effects of the injection configurations and the fuel properties
to meet the requirements of sustainable development. The main conclusions are listed
as follows:

1. When the spark timing was fixed at the MBT for the three injection modes, PSDI
gained the highest maximum BTE, while the maximum BTE of GDI was only 94% of
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PSDI’s. In addition, the BTE of PSDI was much more sensitive than that of the other
two modes due to the high burning rate of syngas.

2. PSDI performed the shortest durations, and GDI showed the longest duration for
both CA0–10 and CA 10–90. The CoVIMEP of GDI was dramatically higher than that
of the other two modes, and the variations were very sensitive to spark timings in
GDI. The minimum CoVIMEP of PSDI decreased by 22% from the minimum value
of GDI.

3. CO emissions were reduced by approximately 78% from GDI to PSDI among the
whole range of spark timings, and HC emissions were reduced by approximately
60% from GDI to PSDI. However, PSDI showed the highest NOX emissions, and GDI
showed the lowest value. Specifically, the NOX emissions from GDI were 44% and
32% of that from PGDI and PSDI, respectively. Retarding ignition linearly reduced
NOX emissions for the three injection modes.

4. PSDI generally emitted the highest nucleation PN while GDI emitted the lowest. The
nucleation-mode PN for GDI was only 45% of that for PSDI at a 20 CAD BTDC spark
timing. Improving the exhaust conditions and eliminating temperature differences
will dramatically reduce the nucleation-mode PN.

5. GDI showed the highest accumulation-mode PN and PSDI indicated the lowest.
The accumulation-mode PN for PSDI was approximately 52% of that for PGDI and
only 5% of that for GDI. The small amount of accumulation-mode particles certifies
the effect of hydrogen-rich syngas on reducing particles. Thus, PSDI is a feasible
method to solve the high particulate emission issue in DISI engines and also improve
engine performance.

In conclusion, the method of PSDI can exhibit the dual advantages of combined
injection and syngas fuel properties to achieve high BTE and low CO, HC, and particulate
emissions. In future research, we may develop a special exhaust after-treatment system
for syngas or investigate the performance of syngas direct injection engines under various
load conditions so as to better adapt to the sustainable development goal of vehicles.
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SI, spark ignition; GDI, gasoline direct injection; PGDI, gasoline port injection combined with
GDI; PSDI, gasoline port injection combined with hydrogen-rich syngas direct injection; λ, excess
air ratio; Φ_D, fuel distribution ratio; BTE, brake thermal efficiency; CA 0–10, flame development
duration; CA 10–90, flame propagation duration; IMEP, indicated mean effective pressure; CoVIMEP,
coefficient of variation in IMEP; TEVO, cylinder temperature at exhaust valve opening; MBT, mini-
mum spark advance for best torque; TDC, top dead center; BDC, bottom dead center; PN, particulate
number; PM, particulate matter.
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Abstract: Sustainable development has become increasingly important as one of the key research
directions for the future. In the field of rotating machinery, stable operation and sustainable per-
formance are critical, focusing on the fault diagnosis of component bearings. However, traditional
normalization methods are ineffective in target domain data due to the difference in data distribution
between the source and target domains. To overcome this issue, this paper proposes a bearing fault
diagnosis method based on the adaptive batch normalization algorithm, which aims to enhance the
generalization ability of the model in different data distributions and environments. The adaptive
batch normalization algorithm improves the adaptability and generalization ability to better respond
to changes in data distribution and the real-time requirements of practical applications. This algo-
rithm replaces the statistical values in a BN with domain adaptive mean and variance statistics to
minimize feature differences between two different domains. Experimental results show that the
proposed method outperforms other methods in terms of performance and generalization ability,
effectively solving the problems of data distribution changes and real-time requirements in bearing
fault diagnosis. The research results indicate that the adaptive batch normalization algorithm is a
feasible method to improve the accuracy and reliability of bearing fault diagnosis.

Keywords: fault diagnosis; AdaBN; transfer learning; rotating machinery

1. Introduction

Against the backdrop of global development, sustainability has become an important
topic in various fields. Whether it is in terms of economics, society, or the environment,
sustainability is a goal we should strive for. Over the past few decades, human over-
exploitation of natural resources and environmental damage have brought irreversible
impacts to the earth. Therefore, promoting sustainable development has become one of the
most important tasks of the current era. For the sustainable development of energy, many
scholars have made many contributions [1–4]. At the same time, industrial production
also needs to promote the sustainable development of energy. Rotating machinery is an
essential part of industrial production, and rolling bearings are important parts of rotating
machinery. Once the bearing faults in the mechanical equipment, it is likely to cause serious
safety accidents such as mechanical jamming, resulting in economic losses [5–7]. In order to
avoid economic losses, more and more scholars pay attention to the fault diagnosis method
of bearings.

Bearing fault diagnosis methods mainly include methods based on signal processing,
traditional machine learning, and deep learning [8]. The fault diagnosis method based
on traditional machine learning is mainly divided into two steps: 1. Feature processing
on the collected signal to extract useful fault features. The main methods include wavelet
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transform (WT) [9], Empirical Mode Decomposition (EMD) [10], Singular Value Decompo-
sition (SVD) [11], and Short-Time Fourier Transform (STFT) [12]. 2. Distinguish the fault
types, including the fault size of the same fault type. The main methods include Support
Vector Machines (SVMs) [13], Artificial Neural Networks (ANNs) [14], K-Nearest [15], etc.
The traditional machine-learning-based fault diagnosis methods described above usually
require manual extraction of fault features and expert experience. For example, the wavelet
transform needs to find a suitable wavelet basis function, the Short-Time Fourier Transform
needs to adjust the length and width of the required window function, and the decision
tree needs to analyze the independent features of the sample extraction [16].

At present, deep learning theory has been gradually applied to the field of bearing fault
diagnosis. Although traditional machine learning methods can diagnose bearing faults,
manual feature extraction relies mainly on manual labor. In addition, traditional machine
learning model generalization is less capable. Deep learning is a new topic in the field of ma-
chine learning, and research on neural networks began in the 1980s [17], such as Restricted
Boltzmann Machines (RBM) [18] and Convolutional Neural Networks (CNN) [19]. These
theories have advanced the development of bearing fault diagnosis, including methods
based on the Deep Belief Network (DBN) [20], Stacked Autoencoders (SAE), CNN, and
ResNet [21] methods. The deep learning method automatically learns fault features from
the collected data, providing an end-to-end bearing fault diagnosis model.

Although deep learning methods have made some progress in the field of rotating
machinery fault diagnosis, there are still the following problems: 1. Due to the involvement
of multiple devices and scenarios, the distribution of the training and test datasets for
bearing fault detection may change in practical applications. If the model is trained and
tested only on specific datasets, its performance may decrease on other datasets. 2. In
practical applications, bearing fault detection needs to be performed in real time, so the
model needs to have high generalization and adaptability and be able to perform accurate
fault diagnosis in different data distributions and environments. Therefore, domain general-
ization can make the model more adaptive and have better generalization, which can better
deal with changes in data distribution and real-time requirements in practical applications
and improve the accuracy and reliability of bearing fault diagnosis. In this paper, the
AdaBN algorithm is used to solve the problem of domain generalization. Specifically, the
AdaBN algorithm replaces the mean and variance statistics in a BN with domain-adaptive
mean and variance statistics, which can be obtained by minimizing the feature differences
between two different domains. In this way, AdaBN can effectively solve the problem of
insufficient generalization of the model when the distribution of training and test data
is different.

Pan et al. [18] introduced a component analysis method for domain adaptation by
transfer that reduces the distance between the source and target domains. However, this
method assumes that the conditional distributions of the source and target domain data
are approximately equal. Long et al. [19] proposed a transfer feature learning approach
with joint distribution adaptation, which aims to simultaneously reduce the marginal and
conditional distributions between domains. Zhong et al. [22] trained the model on enough
normal samples, and then passed the SVM to replace fully connected layers. Zhao et al. [23]
proposed a multi-scale convolutional transfer learning network pretrained on the source
domain; then, they transferred the model to other different but similar domains for fine-
tuning. Balanced Distribution Adaptation (BDA) is used in [24,25] to adaptively balance
marginal and conditional distribution differences between feature domains learned by
deep neural networks. Qian et al. [24] considered higher-order moments and proposed
using Kullback–Leibler (KL) divergence to adjust the fault diagnosis domain distribution
of rotating machinery. Wang et al. [25] aligned marginal and conditional distributions
in multiple layers by using a conditional Maximum Mean Discrepancy (MMD) based on
estimated pseudolabels. Yang et al. [26] proposed using a polynomial kernel instead of a
Gaussian kernel in MMD for better alignment of the domain distribution. Han et al. [27]
and Qian et al. [28] used Joint Distribution Adaptation (JDA) [29] to align conditional and
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marginal distributions, They used MMD and domain adversarial training to train two fea-
ture extractors and classifiers, respectively. Sheng et al. [30] proposed a linear combination
of multiple Gaussian kernels to reduce the variance between domain distributions.

This paper proposes an end-to-end unsupervised method for domain-adaptive bearing
fault diagnosis based on an improved BN. The preprocessed data are directly input into
the model using the Convolutional Neural Network. The fault features are automatically
extracted, and the parameter quantity of the model is significantly reduced compared
with that of the Artificial Neural Network, which is beneficial to prevent the model from
overfitting. In this paper, the AdaBN algorithm is used to realize the fault diagnosis of
bearings of the same fault type and different working conditions. The method proposed can
be extended from the source domain to the target domain [31], and the diagnosis accuracy
reaches 100% on the CWRU dataset. Compared with the traditional BN method, it shows
better fault diagnosis results. The results show that the method proposed in this paper
has better unsupervised domain adaptation diagnosis accuracy for bearing faults. The
innovative summary of the method proposed in this paper is as follows:

1. Introduction of AdaBN layer: The AdaBN [32] method introduces the AdaBN layer in
the deep neural network, which dynamically adjusts the parameters of the BN layer
according to the input data to adapt to different data distributions. This dynamic
adjustment mechanism enables the AdaBN method to better adapt to complex and
changing data distributions, thus improving the performance of deep neural networks.

2. Consideration of different data distributions: The AdaBN method considers the
different data distributions and dynamically adjusts the BN layer parameters for each
batch of data, enabling the model to better adapt to changes in data distribution.
This adjustment mechanism tailored to different data distributions can improve the
performance of the model on many datasets.

3. Effectively addressing the limitations of the BN layer on small batch data: The BN
layer performs poorly on small batch data, while the AdaBN method can adapt
to small batch data by dynamically adjusting the parameters of the BN layer, thus
improving the performance of the model. This method can effectively address the
limitations of the BN layer on small batch data and also make the model training
more efficient.

The structure of this paper is as follows: Section 2 introduces the basic definition of
unsupervised transfer learning, Section 3 elaborates on the bearing fault diagnosis method
proposed in this paper, and Section 4 describes the proposed method in the Western Reserve
University dataset and laboratory simulation data. It is validated on the set and compared
with the results of the BN model without optimization. Section 5 concludes this paper and
looks forward to future research directions.

2. Unsupervised Deep Transfer Learning

Existing transfer learning mainly focuses on the study of closed sets. Specifically, the
fault categories in the source and target domains are the same, which is obviously only an
ideal transfer learning scenario. In a real transfer learning environment, the source domain
and the target domain often only share some categories of information, even if there is no
common category between the source domain and the target domain. A scenario where
the categories of the source and target domains completely overlap is called a closed set.
A scenario where the source and target domains share a part of the categories is called an
open set. A scenario where the source and target domains do not share any categories at all
is called a fully open set. The main content of this paper is based on a closed set.

Unsupervised deep transfer learning with overlapping categories is defined as follows:
it is assumed that the source domain data are labeled, and the target domain data are
unlabeled. Unsupervised deep transfer learning refers to the source domain data without
labels. The fault types of the domain and the target domain are the same, which is also
the situation studied in this paper, but the actual situation may be different. First, the
mechanical equipment is usually in a normal working state, and it is difficult to collect
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data on bearing faults with labels. The data are relatively small, and the fault under the
real operating condition of the bearing can only be approximated using electric discharge
machining (EDM) of the bearing in the laboratory. However, this method has two disad-
vantages: 1. It is difficult to grasp the size of the fault type processed, and it is difficult to
simulate the real type of fault. 2. There is an inconsistency between the processed fault type
and the real fault type. Therefore, the research is based on the same fault type in the source
domain and the target domain. Then, the research on the state of different fault types in the
source domain and the target domain is carried out. Assuming that the label of the source
domain is available, the definition of the source domain is as follows:

Ds = {(xs
i , ys

i )}ns
i=1 xs

i ∈ Xs, ys
i ∈ Ys (1)

where Ds represents the source domain, xs
i ∈ R

d is the i-th sample, Xs is the union of all
samples, ys

i is the i-th label of the i-th sample, Ys is the union of all different labels, and ns
is the total number of samples in the source domain. In addition, assuming that the label of
the target domain is not available, the definition of the source domain is as follows:

Dt =
{(

xt
i
)}nt

i=1 xt
i ∈ Xt (2)

where Dt represents the target domain, xt
i ∈ R

d is the i-th sample, Xt is the union of all
samples, and nt is the total number of target samples.

3. The Proposed Method

3.1. Batch Normalization

The BN [33] is for x =
(

x(1) . . . x(d)
)

with d-dimensional input, and the features of
each dimension were normalized.

x̂(k) =
x(k) − E

[
x(k)
]

√
Var
[
x(k)
] (3)

where x(k) and y(k) are input/output scalars that respond to a neuron in a data sample.
The data normalization method above may change the data distribution of the layers. For
example, normalizing the inputs of the sigmoid will restrict them to a nonlinear state. To
solve this problem, this paper sets the value x(k) for each activation.

y(k) = γ(k) x̂(k) + β(k) (4)

to introduce a pair of parameters γ(k) and β(k), which shift and scale the standard value.
These parameters are learned at the same time as the original model and have the ability to

restore the network. In fact, the original value xk can be restored by setting γ(k) =
√

Var
[
x(k)
]

and γ(k) =
√

Var
[
x(k)
]

for the stochastic gradient descent method optimization algorithm.
Stable input distribution can greatly promote the convergence of the model, reduce the
training time, and allow the use of a relatively large learning rate. It is helpful to slow down
gradient disappearance and gradient explosion. Many experiments have demonstrated
that the BN can significantly reduce the number of iterations while improving the final
model performance. The BN is already a necessary part of many top-level architectures
such as ResNet [34] and Inception V3 [35].

3.2. Domain-Adaptive AdaBN Algorithm

Figure 1 shows the flowchart of the AdaBN algorithm proposed for fault diagnosis.
The model obtains parameters through training samples and can extract fault features.
This is generally only applicable to the source domain, and the accuracy on the source
domain is relatively high, but the accuracy rate will be relatively low for fault migration.
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The main reason is the data distribution is not the same. This paper proposes a simple and
effective method called the improved AdaBN [36] algorithm for bearing fault diagnosis,
and Table 1 shows the algorithm flow chart. The algorithm uses the μt and σ2

t of each BN
layer of the target domain samples instead of the μt and σ2

t calculated by the samples of
the active domain in the original BN layer. Domain adaptation via the BN. The weights
with fault feature extraction ability learned by the model in the training set are frozen. The
domain-related knowledge is represented by the statistical data of the BN layer. Therefore,
the trained model can be easily applied to related fields by modeling the statistical data in
the BN layer, thereby reducing the training time and computing cost of the model.

Figure 1. The flowchart of the AdaBN algorithm proposed for fault diagnosis.

Table 1. DCNN algorithm based on AdaBN domain adaptation.

Algorithm DCNN Algorithm Based on AdaBN Domain Adaptive

Enter
Signal p of the target domain, expressed in the i neuron of the BN layer of the DCNN x(i)t (p) ∈ x

(i)
t of which

x
(i)
t =

{
x(i)t (1), . . . , x(i)t (n)

}
, for the i neuron, has been trained to scale with parallel parameters γ

(i)
s and β

(i)
s .

Output The adjusted DCNN network

For

For each neuron i and each signal p in the target domain, compute the mean and variance of all samples in the
target domain:

μ
(i)
t ← E

[
x
(i)
t

]
σ
(i)
t ← Var

[
x
(i)
t

]
Calculate the output of the BN layer:

^
x
(i)

t (p) = x(i)
t (p)−μ

(i)
t

σ
(i)
t

y
(i)
t (p) = γ

(i)
s

^
x
(i)

t (p) + β
(i)
s

End for
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3.3. DCNN Model Based on AdaBN Algorithm

Figure 2 is the network architecture diagram of the Deep Convolutional Neural Net-
works with the Wide First-Layer Kernel (DCNN) model, and Table 2 shows the one-
dimensional neural network structure parameters. The DCNN model obtains the param-
eters of the model through the training samples and can learn fault features. When the
DCNN model faces the target domain data, the accuracy of the diagnosis model will
decrease compared with the source domain data. In order to reduce the performance
degradation of the model, the AdaBN was used to improve the domain adaptation ability
of the DCNN model.

Figure 2. DCNN network architecture diagram.

Table 2. One-dimensional neural network structure parameters.

Number
Network

Layer
Kernel

Size/Step
Number of

Kernel
Output Size

(Width × Depth)

1 Conv1 1 × 15/1 16 1 × 1010
2 Conv2 1 × 3/1 32 1 × 1008
3 Pool1 1 × 2/2 32 1 × 504
4 Conv3 1 × 3/1 64 1 × 504
5 Conv4 1 × 3/1 128 1 × 502
6 AdaptiveMaxpool 4 128 1 × 4
7 Fc 1 —— —— 512
8 Fc 2 —— —— 256
9 Fc 3 —— —— 256
10 Fc 4 —— —— 10

3.4. Discussion on AdaBN

The ultimate goal of standardization in the AdaBN algorithm is to make the data
received by each layer come from a similar data distribution to alleviate the impact of
domain offset. The AdaBN was used to distribute alignment. For example, MMD [32] in
Equation (5) is commonly used to measure the degree of offset between the source and
target domains.

MMD[F , p, q] := sup
f∈F

(
Ex∼p[ f (x)]− Ey∼q[ f (y)]

)
(5)

where sup is the upper bound, E : is the expectation, and x ∼ p: x is the sample space of p.
Actually, an MMD with a Gaussian kernel can be viewed as minimizing the distance

between the weighted sum of all moments. This advantage also makes it possible for
AdaBN to be applied in the whole network, since AdaBN performs an explicit matching of
the secondary moments and does not require very time-consuming kernel computation. The
simplicity of AdaBN is in stark contrast to the complexity of the domain migration problem.
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Consider a simple neural network with input X ∈ R
p1×1, which has a BN layer with

a mean and variance of μi and σ2
i (i ∈ {1 . . . p2}) for each feature, a fully connected layer

with weight matrix W ∈ R
p1×p2 and bias b ∈ R

p2×1 , and a nonlinear transformation layer
f (·), where p1 and p2 correspond to the feature sizes of the input and output. If there is no
BN, the output of the network is f (Wax + ba).

Wa = WTΣ−1

ba = −WTΣ−1μ + b

Σ = diag
(
σ1, . . . , σp1

)
μ =
(
μ1, . . . , μp1

) (6)

It can be seen that the transformation is not very simple, even for a simple computa-
tional layer. As the CNN architecture goes deeper, it can gain more capabilities to represent
complex nonlinear transformations [37].

4. Model Validation

In order to verify the method proposed in this paper, CWRU and laboratory simulation
bench data are used for verification.

1. Validation on the CWRU dataset

The CWRU bearing center data acquisition system is shown in Figure 3. The experi-
mental object of this experiment is the drive end bearing shown in the figure. The diagnosed
bearing model is the SKF6205 deep groove ball bearing, and the fault bearing is made using
electric discharge machining. The sampling frequency of the system is 12 kHz. There are
three types of defects in the diagnosed bearing: rolling element damage, outer race damage,
and inner race damage, with defect diameters of 0.007 inch, 0.014 inch, and 0.021 inch,
respectively, resulting in a total of nine damage states. In the experiment, 1024 data points
were used for diagnosis each time.

Figure 3. CWRU rolling bearing data acquisition system.

The improved BN algorithm proposed in this paper is experimentally verified using
the CWRU dataset. Dividing the data into four groups, the rotation speed corresponds to
1797 rpm, 1772 rpm, 1750 rpm, and 1730 rpm, and the corresponding labels are 0, 1, 2, and
3, respectively. Each group contains 10 pieces of data, and these 10 pieces of data all include
the original vibration signal of a normal bearing, the original vibration signal of an outer
ring faulty bearing, the original vibration signal of an inner ring faulty bearing, and the
original vibration signal of a rolling element faulty bearing. Figure 3 shows the accuracy
rate of the model that migrated from the 0th group to the 1st group on the CWRU dataset;
that is, the model migrated from the speed of 1797 rpm to 1772 rpm on the source domain
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training set and the source domain test set, respectively. Accuracy on the test set was found
in the target domain. From Figure 3, we can see that the domain-adaptive diagnosis results
based on AdaBN in the target domain are faster and more stable in the 0–150 epoch than
the domain-adaptive diagnosis results without AdaBN, and the variance and mean are
relatively larger. Domain-adaptive diagnosis results using AdaBN on epochs 150–300 have
more stable convergence, relatively small variance, and higher accuracy. In order to verify
the effectiveness and robustness of the method proposed in this paper, experiments were
carried out for each transfer learning model under different rotational speeds, and a total
of six groups of experiments were performed, namely: 0→1, 0→2, 0→3, 1→2, 1→3, and
2→3. Figure 4 is a line chart of six transition states, the abscissas correspond to six groups
of experiments, and each experiment corresponds to the source training set (SDT) of the
source domain, the source test set (SDV) of the source domain, and the target test set (TDV)
of the target domain and target test set (TDV). The validation indicators include the mean
and variance of the first 150 epochs and the mean and variance of the last 150 epochs. The
model throughout the training process is trained on the training set of the source domain,
the test set of the source domain, and the validation set of the target domain.

(a)

(b)

Figure 4. (a) Accuracy rate in each domain using the AdaBN method. (b) Accuracy rate in each
domain without using the AdaBN method.
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In this experiment, the authors computed the mean value of the first 150 epochs to
evaluate whether using AdaBN could improve the initial accuracy of the model in the early
stage of training. Additionally, authors measured the variance of the first 150 epochs and
the last 150 epochs to investigate the stability of model at the beginning and end of training.
The authors compared the variance of the two models when the average accuracy rate
was similar to determine if the AdaBN model could provide better stability during the
early stage of training. The results in Figure 4 demonstrate that using the AdaBN method
generally resulted in higher accuracy than not using it in many training epochs.

It can also be observed from Figure 5 that the variance with the AdaBN method is
smaller than that without the AdaBN method. Variance is an important parameter that
reflects the stability of the data, so, whether in the source domain or the target domain,
the accuracy of transfer learning after using the AdaBN method is more stable. Figure 6
shows the mean and maximum values of the training set, the validation set of the source
domain, and the validation set of the target domain under different transfer states on
CWRU. Figure 7a shows the confusion matrix without AdaBN, and Figure 7b shows the
confusion matrix with AdaBN. From the comparison of the two figures, it can be seen
that the model without the AdaBN confusion matrix has a large number of misjudgments
in Category 8. As shown in Table 3, our proposed method was first compared with
traditional machine learning methods with six transfer conditions in detail. The results
show that our proposed method outperforms the traditional SVM method by nearly 30%,
the traditional MLP method by about 15%, and also has a stable improvement compared
with our proposed method without AdaBN optimization. The AdaBN method proposed in
this paper improves the accuracy of direct migration under different working conditions,
which proves the effectiveness of the AdaBN method.

Figure 5. The variance on the CWRU dataset.
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Figure 6. The accuracy of the mean and maximum value in different domains on the CWRU dataset.

(a) (b)

Figure 7. (a) Confusion matrix without AdaBN on CWRU dataset. (b) Confusion matrix with AdaBN
on CWRU dataset.

Table 3. Comparison of accuracy of each algorithm in six migration states.

Task 0→1 0→2 0→3 1→2 1→3 2→3

SVM 70.34% 74.23% 71.23% 68.45% 73.12% 68.49%
MLP 85.24% 82.93% 80.98% 78.21% 84.82% 88.49%

DCNN 99.12% 98.89% 97.53% 99.59% 99.53% 98.53%
DCNN (AdaBN) 99.89% 99.85% 98.83% 99.59% 99.82% 99.12%
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The main sources of error in this experiment are data collection, data preprocessing,
model selection, and parameter tuning. In this experiment, parameter tuning is the main
source of error, and different hyperparameters have a significant impact on the error of
the model. Therefore, it is necessary to choose appropriate hyperparameters based on
experience and actual conditions [38,39]. The key hyperparameters used in training the
neural network in this paper are batch_size: 64, optim: Adam, learning_rate: 1 × 10−3,
moment: 0.9, weight-decay: 1 × 10−5, lr_scheduler: Step, and epoch: 600.

2. Validation on a laboratory testbed dataset

(1) Introduction to the dataset

The tapered roller bearing used in this experiment was NUP205. The inner diameter
was 25 mm, the outer diameter was 52 mm, and the width was 15 mm. The data were
collected at seven different rotational speeds, and each rotational speed included normal
bearing data, inner ring faulty bearing data, and outer ring faulty bearing data. Among
them, 11 types of outer ring faults were designed, and 6 types of inner ring faults were
designed. Two channels of data were collected in the horizontal and vertical directions
for each specific type. In this paper, the vibration signal data in the horizontal direction
at four different speeds of 900 rpm, 1200 rpm, 1500 rpm, and 1650 rpm were selected for
the experiment. Figure 8 shows the experimental bench for simulating bearing data in
the laboratory.

Figure 8. The data acquisition test bench for the laboratory dataset.

(2) Analysis of results

It can be seen from Table 4 that whether it is at a 0–150 epoch or 150–300 epoch, the
accuracy of using the AdaBN method is obviously higher than that of using AdaBN on the
laboratory test bench. It can be seen from Figure 9 that the variance of the AdaBN method
is dominant in most transfer models, and it is better than the method without AdaBN in
most cases. Therefore, using the AdaBN method in the bearing fault diagnosis migration
model can improve the stability and accuracy of the model. The confusion matrix for never
using AdaBN is shown in Figure 10a, and the confusion matrix for using AdaBN is shown
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in Figure 10b. Further, there are five more misclassifications other than those in Categories
5 and 9, namely, Categories 2, 3, 4, and 6. The exact number of use for the AdaBN method
in Category 7 is much higher than that without using the AdaBN method. The effectiveness
of the AdaBN method proposed in this paper is confirmed.

Table 4. The mean and maximum values under different migration states.

Task
No_AdaBN AdaBN No_AdaBN AdaBN No_AdaBN AdaBN

0–150
Epoch
Mean

0–150
Epoch
Mean

150–300
Epoch
Mean

150–300
Epoch
Mean

0–300
Epoch
Max

0–300
Epoch
Max

0→1 0.833 0.869 0.862 0.883 0.951 0.952
0→2 0.942 0.948 0.996 0.998 0.999 0.999
0→3 0.904 0.905 0.942 0.948 0.946 0.956
1→2 0.744 0.811 0.765 0.824 0.853 0.900
1→3 0.936 0.944 0.997 0.999 0.999 1.000
2→3 0.902 0.904 0.951 0.950 0.956 0.955
1→0 0.723 0.781 0.730 0.780 0.838 0.890
2→1 0.966 0.960 0.999 0.999 1.000 1.000

Figure 9. The variance on the laboratory dataset.
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(a) (b)

Figure 10. (a) Confusion matrix without AdaBN on laboratory dataset. (b) Confusion matrix with
AdaBN on laboratory dataset.

5. Conclusions

Sustainable energy is one of the most important research directions across various
disciplines. In order to achieve timely detection of faults in rotary machinery during
operation, this paper proposes a rotating machinery fault diagnosis method based on
AdaBN adaptive domain generalization, which effectively improves the convergence
speed and stability of the model. Compared with traditional machine learning methods,
this method has higher accuracy and is beneficial for the timely diagnosis of faults in
rotating machinery, thus promoting the sustainable development of energy. In the field of
sustainability, adaptive batch normalization can also help detect faults in other mechanical
equipment in the energy sector, thus promoting sustainable energy development. In
addition to bearing fault diagnosis, adaptive batch normalization can also be used for
tasks such as image classification, speech recognition, natural language processing, and
sustainability. Adaptive batch normalization can enhance the generalization ability of
different datasets, thus improving classification accuracy and enhancing the generalization
ability of the model. In the future, the authors will continue to apply the AdaBN algorithm
to the energy sector to promote sustainable energy development.
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Abbreviation

Adaptive Batch Normalization AdaBN
Wavelet Transform WT
Empirical Mode Decomposition EMD
Singular Value Decomposition SVD
Short-Time Fourier Transform STFT
Support Vector Machines SVM
Artificial Neural Network ANN
Restricted Boltzmann Machines RBM
Convolutional Neural Networks CNN
Deep Belief Network DBN
Stacked Autoencoders SAE
Balanced Distribution Adaptation BDA
Kullback–Leibler KL
Maximum Mean Discrepancy MMD
Joint Distribution Adaptation JDA
Electric Discharge Machining EDM
Batch Normalization BN
Deep Convolutional Neural Networks DCNN
Source training set SDT
Source test set SDV
Target test set TDV
Case Western Reserve University CWRU
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Abstract: This paper aims to expose the effect of hydrogen on the combustion, performance, and
emissions of a high-speed diesel engine. For this purpose, a three-dimensional dynamic simulation
model was developed using a reasonable turbulence model, and a simplified reaction kinetic mech-
anism was chosen based on experimental data. The results show that in the hydrogen enrichment
conditions, hydrogen causes complete combustion of diesel fuel and results in a 17.7% increase in
work capacity. However, the increase in combustion temperature resulted in higher NOx emissions.
In the hydrogen substitution condition, the combustion phases are significantly earlier with the
increased hydrogen substitution ratio (HSR), which is not conducive to power output. However,
when the HSR is 30%, the CO, soot, and THC reach near-zero emissions. The effect of the injection
timing is also studied at an HSR of 90%. When delayed by 10◦, IMEP improves by 3.4% compared
with diesel mode and 2.4% compared with dual-fuel mode. The NOx is reduced by 53% compared
with the original dual-fuel mode. This study provides theoretical guidance for the application of
hydrogen in rail transportation.

Keywords: diesel-hydrogen dual-fuel engines; hydrogen substitution ratio; injection timing;
rail transportation

1. Introduction

Adjusting the industrial and energy structures is inevitable to realize an emission peak
and carbon neutrality [1,2]. The gaseous and particle emissions from internal combustion
engines (ICEs) contribute an important proportion of total atmospheric pollutants [3,4].
Therefore, searching for low-carbon or zero-carbon fuels has become an important research
direction for developing ICEs [5–7]. Hydrogen is regarded as the clean energy with the
most development potential in the 21st century because of many advantages, such as
diverse sources, being clean and low-carbon, being flexibile and efficient, and having
various application scenarios [8–10]. Hydrogen energy has become the preferred direction
for the new round of carbon emission reduction and carbon neutrality worldwide [11,12].
It has been incorporated into the energy strategy deployment by many countries [13,14].
From the strategic point of view of energy security and sustainable development, China
has considered hydrogen energy a new strategic industry for development [15,16].

There are two main ways to utilize hydrogen energy: fuel cells [17] and ICEs [18]. Fuel
cells have the advantages of high efficiency and zero-emissions, but they are technically
complex, costly, and dependent on the construction of supporting systems [19]. The
hydrogen-fueled ICEs can use industrial by-product hydrogen to convert energy by the
combustion method to achieve similar thermal efficiency as fuel cells, which has the
significant advantage of low cost [20]. Hydrogen-fueled ICEs retain the main structure
and system of traditional ICEs [21–23]. Based on traditional ICEs, hydrogen-fueled ICEs
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can be realized by simply replacing the hydrogen supply and injection system, hydrogen-
specific cold spark plugs, matching a new turbocharger, and adapting the lubrication and
crankcase ventilation accordingly [24–26]. Therefore, hydrogen-fueled ICEs are an essential
technology direction to promote the upgrading and transformation of various application
fields of traditional ICEs, which help achieve peak emissions and carbon neutrality [27–30].

For the spark-ignited hydrogen-fueled ICEs, the higher laminar flame speed and
larger dilute combustion limits of hydrogen allow the engine to operate over a wide range
of equivalence ratios, in which the thermal efficiency typically equals or exceeds that of
gasoline-fueled engines [31]. It has been shown that spark-ignited hydrogen-fueled ICEs
can achieve near-zero NOx emissions under lean-burn operating conditions [32]. However,
hydrogen-fueled ICEs face problems such as backfire, premature ignition, and detonation at
high loads, which severely limit their rapid development [33]. The heat transfer loss through
the wall increases rapidly as the equivalent ratio increases [34]. The problems of detonation
and premature ignition are challenging for heavy engines, which has prompted research
on hydrogen compression ignition (CI) engines [35]. Therefore, dual-fuel technology was
developed for engines [36]. The diesel fuel is designed to assist the ignition of the hydrogen
fuel, known as the diesel pilot ignition mode [37,38]. In fact, this concept has long been
widely used in natural gas-fueled ICEs [39] and extensively used in the marine field [40,41].
Tripathi et al. [42] investigated the performance and emissions of a diesel-hydrogen dual-
fuel engine using numerical simulations. The results showed that the combination of
two injection strategies can simultaneously reduce NOx emissions and improve IMEP.
Sharma et al. [43] investigated the performance and emissions of dual-fuel engines with
different compression ratios and hydrogen fractions through a similar methodology. The
results show that compression-ignition mode is not suitable for compression ratios less
than 14.5. Köse et al. [44] experimentally investigated that hydrogen enrichment reduced
pollutant emissions except for NOx and increased brake thermal efficiency (BTE) and
exhaust temperature. When operated at 1750 rpm, 40.4% BTE was achieved at 2.5%
hydrogen enrichment, while in diesel mode, the BTE was 33%. Ramsay et al. [45] studied
the effect of the constant volume combustion phase on the performance and emissions
of a dual-fuel engine under various load and hydrogen energy share conditions. The
results demonstrated that this method could improve thermal efficiency with far lower
carbon-based emissions under all conditions. Taghavifar et al. [46], through a 1-D model,
parametrically investigated the effects of levels of diesel and hydrogen, compressor pressure
ratio, and combustion duration on energy, exergy, and performance in a diesel-hydrogen
dual-fuel engine. The results indicated that supercharging can significantly improve
thermal efficiency and reduce fuel consumption. Wu et al. [47] optimized the operation
parameters of a dual-fuel engine based on the Taguchi method. The results revealed that
for NOx, using EGR technology reduces more than 60.5% at various loads, and BSFC can
reduce it by 14.52%.

From the above literature, it is clear that hydrogen can significantly improve thermal
efficiency and performance. It is essential to improve thermal efficiency and reduce carbon
emissions for rail transportation. Therefore, in this paper, hydrogen enrichment and
hydrogen substitution are investigated separately by using numerical simulation. In
addition, injection timing studies are carried out to optimize performance and emissions.
This paper explored the potential of hydrogen in ICEs for rail transportation and provided
a theoretical basis for practical applications.

2. Materials and Methods

2.1. Numerical Methodology

In this work, the prototype engine is a high-speed diesel engine with a total displace-
ment of 87.54 L. The cylinder bore, stroke, and compression ratio were 180 mm, 215 mm,
and 17, respectively. The engine is designed to meet future emissions regulations by
taking into account compactness, power-to-weight ratio, economy, and reliability. The
CONVERGE code was applied to calculate the flow motion and combustion phenomena
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in the combustion chamber [48–50]. The SolidWorks software was used to establish the
3-D geometric model. The model (*.stl) was then imported into CONVERGE to calculate
the combustion. To simulate the turbulence, spray, and combustion, the mathematical
models adopted in CFD calculations are summarized in Table 1 [51]. The dual-fuel reaction
mechanism with 76 species and 464 reactions was chosen to simulate the combustion of the
hydrogen and diesel mixture [52]. This dual-fuel reaction mechanism was coupled with the
GRI3.0 mechanism, which can accurately simulate hydrogen combustion. This mechanism
was used in the simulation of pure diesel and dual-fuel, which avoids the influence of
mechanism differences on the results [53]. In addition, at 1800 rpm, the temperatures of the
piston, cylinder wall, and cylinder head were set to 553, 433, and 523 K, respectively.

Table 1. Mathematical models adopted in this research.

Region Type

Turbulence RNG k− ε model
Wall heat transfer O’Rourke and Amsden model

Spray breakup KH-RT model
Evaporation Frossling model

Droplet collision O’Rourke’s model
Combustion SAGE

NOx formation Extended Zel’dovich mechanism
Soot formation Hiroyasu model

2.2. Model Validation

To reduce calculation time, only 1/8 of the domain was recorded and analyzed since
the injection is located in the center of the chamber with eight nozzles. As illustrated in
Figure 1a, the cylindrical domain was classified into angular sectors such that one injector
falls at the center of each sector. Figure 1b shows the computational mesh at TDC, in
which the adaptive mesh refinement and fixed embedding were activated to guarantee
the calculation accuracy. Figure 2 shows the predicted pressure profile under different
meshes. It can be seen from Figure 2 that the 4 mm basic grid can meet the calculation
accuracy. As the dual-fuel mode is still in the development stage, only the diesel mode was
tested. To validate the combustion and turbulence model, the model was verified at speeds
of 600, 1400, and 1800 rpm. Figure 3 shows the comparison between experimental and
simulated cylinder pressure. The calculation accuracy was high and met the engineering
requirements for the next step of research. Since the reaction kinetics mechanism used
includes hydrogen and diesel, the verified model was used for the next study. In addition,
Tripathi et al. [42] was validated using the same turbulence model and mechanism in
diesel-hydrogen conditions, which is another indication that the accuracy of the model in
this paper can be studied in the next part [54].

Figure 1. Schematic sector domain and computational mesh.
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Figure 2. Comparison of predicted pressure profile under different meshes.

Figure 3. Model validation of in-cylinder pressure at various speeds.

2.3. Research Schemes

The present work aims to evaluate the potential of hydrogen in diesel engines and to
explore the maximum hydrogen substitution ratio for the purpose of reducing carbon emis-
sions. In all the simulations, the speed was kept at 1800 rpms, and the total ejected energy
was same as with the 18-bar BMEP. In the hydrogen enrichment test, the source diesel was
kept the same, and the hydrogen was the added energy. The hydrogen enrichment ratio
(HER) was between 10 and 20%. In the hydrogen substitution test, the total energy was
kept the same as with the origin diesel, and the substitution ratios (HSR) were 30, 60, and
90%, respectively. In the relative injection timing test, the high HSR was tested with varing
injections. The summary of the test conditions is listed in Table 2.

Table 2. Summary of different calculated schemes.

Case Group Hydrogen Energy Ratio/% Relative Injection Timing/◦CA

Hydrogen enrichment
0% 1 0
10% 2 0
20% 2 0

Hydrogen substitution
30% 0
60% 0
90% 0
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Table 2. Cont.

Case Group Hydrogen Energy Ratio/% Relative Injection Timing/◦CA

Relative injection timing

0% 0
90% 0
90% 5
90% 10
90% 15

1 pure diesel, 2 HER.

The definition of HER and HSR is as follows:

HER =
mH2 · LHVH2

mDiesel · LHVDiesel
(1)

HSR =
mH2 · LHVH2

mDiesel · LHVDiesel + mH2 · LHVH2

(2)

3. Results and Discussion

3.1. Effect of Hydrogen Enrichment

The in-cylinder pressure is an important parameter to deeply understand the combus-
tion process and directly affects performance and emissions. The comparison of in-cylinder
pressures is shown in Figure 4. In this section, D and H represent diesel and hydrogen,
respectively. D100 means the diesel energy fraction is 100%, and H10 represents the hy-
drogen energy fraction at 10%. As shown in Figure 4, a larger HER leads to a higher
in-cylinder pressure [42]. The corresponding CA position (PFP_CA) is delayed with the
increasing HER, as shown in Table 3. The IMEP of D100 + H10 and D100 + H20 increased
by 8.7 and 17.7%, respectively. The temperature contour is shown in Table 4. It is obvious
that the temperature increases with the HER. This is because diesel has a dominant effect
on combustion, while hydrogen only promotes combustion. The comparison of HRR and
combustion phases is shown in Figure 5. The profiles of HRR and combustion phases
are similar to each other. The phases are delayed with increasing HER, but the level is
minor. This is because the overall energy of the additional hydrogen enrichment condition
is higher than the original engine. Although the hydrogen enrichment could enhance the
flame speed, the ratio is relatively small.

Figure 4. Comparison of in-cylinder pressure at hydrogen additional enrichment.
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Table 3. Comparison of PFP, corresponding CA position, and IMEP at hydrogen additional enrichment.

Parameter PFP (bar) PFP_CA (◦CA, aTDC) IMEP (bar)

D100 21.75 7.26 21.53
D100 + H10 22.49 7.43 23.40
D100 + H20 23.51 7.73 25.33

Table 4. Contour of temperature distribution at hydrogen additional enrichment.

CAD D100 (K) D100 + H10 (K) D100 + H20 (K)

−4 ◦CA aTDC
 

TDC

4 ◦CA aTDC

8 ◦CA aTDC

16 ◦CA aTDC

24 ◦CA aTDC

° °

Figure 5. Comparison of combustion phases at hydrogen additional enrichment.

The comparison of emissions is shown (Figure 6) at hydrogen additional enrichment,
where the value is recorded at the exhaust opening timing. The data are scaled so that it
can be displayed on a single figure. In general, all pollutant emissions except NOx and CO2
decrease with the increase of HER. This is because soot, THC, and CO can all be further
oxidized and burn more completely as the HER increases. The higher HAR results in a
higher in-cylinder temperature, which is mainly responsible for the complete oxidation
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of CO + OH ⇔ CO2 + H and CO + O + M ⇔ CO2 + M , and improving the degree of
complete combustion consequently [55]. The NOx formation is chiefly determined by
mean temperature. For the case D100 + H2, the NOx emissions increased by 45%. It is
recommended to combine after-treatment equipment for further optimization.

Figure 6. Comparison of emissions at hydrogen additional enrichment.

3.2. Effect of Hydrogen Substitution

In order to investigate the effect of hydrogen substitution enrichment on combustion,
performance, and emissions, the conditions with HSR of 0, 30, 60, and 90% are selected
for further simulation. In all the simulations, the total energy is kept the same, where D
and H represent diesel and hydrogen, respectively. The D10-H90 means the diesel energy
fraction is 10% and the hydrogen energy fraction is 90%. The in-cylinder pressure is shown
in Figure 7. The comparison of PFP, corresponding CA, and IMEP is listed in Table 5.
The PFP increases with the increase of HSR. As the HSR increases, the corresponding
CA advances. This is because the higher burning velocity of hydrogen accelerates the flame
speed and results in a higher PFP and an advanced CA. The IMEP of D10-H90 is lower than
D40-H60, although the PFP is higher. However, too high a PFP is also not conducive to the
modification of the original engine and even requires a redesign of the overall strength.

Figure 7. Comparison of in-cylinder pressure at hydrogen substitution enrichment.

109



Sustainability 2023, 15, 3610

Table 5. Comparison of PFP, corresponding CA position, and IMEP at hydrogen additional enrichment.

Parameter PFP (bar) PFP_CA (◦CA, aTDC) IMEP (bar)

D100-H0 21.75 7.26 21.53
D70-H30 23.93 5.92 22.00
D40-H60 28.33 1.85 22.01
D10-H90 30.13 −0.48 21.76

As shown in Table 6, the mean temperature is raised with the increase of HSR. The
high-temperature zone appears earlier as the HSR increases. When the mixing ratio is
90%, the high-temperature zone appears inside the combustion chamber, while the high-
temperature zone at other ratios is beyond the combustion chamber near the cylinder head.
Therefore, increasing HSR is beneficial to reduce the heat load on the cylinder head. The
high temperature zone inside the cylinder is more uniform with the increase of HSR. This
is due to the fact that as the HSR increases, the combustion mode gradually shifts from
diffusion combustion to premixed combustion mode. This transition can be visualized
from the HRR, as shown in Figure 8a. As the HSR increases, the HRR gradually shows
a dual trend. The first peak is caused by diesel igniting hydrogen, and the second peak
is caused by the simultaneous ignition of hydrogen at multiple points of the combustion
flame. When the HSR is 60%, the two values are similar, while the peak of hydrogen
combustion exotherm is much higher than that of diesel when the HSR is 90%. It can also
be seen from Table 6 that diffusion combustion generally starts from the tail, and the high
temperature area is small. Because the laminar flame of hydrogen is faster, when premixed,
the flame quickly spreads throughout the combustion chamber. Therefore, when the HSR
is higher, the second peak of heat release is also higher. The comparison of combustion
phases is also shown in Figure 8b. Due to the faster burning rate of hydrogen and the shift
in the combustion mode, the combustion phases are advanced. However, when the HSR is
90%, the CA50 is already before the TDC, which is not conducive to power output.

Table 6. Contour of temperature distribution at hydrogen substitution enrichment.

CAD D100-H0 (K) D70-H30 (K) D40-H60 (K) D10-H90 (K)

−4 ◦CA aTDC

TDC

4 ◦CA aTDC

12 ◦CA aTDC

24 ◦CA aTDC

For the emissions, as shown in Figure 9, all pollutant emissions except NOx are
reduced, especially THC and CO, which have become small in order of magnitude at HSR
>30%. It can be analyzed in two ways: first, the increased HSR reduces the diesel fuel,
resulting in lower carbon for THC and CO, i.e., the total fuel carbon content. Secondly,
due to the higher combustion temperature of hydrogen enrichment, hydrogen increases
the free radical content of the reaction, which promotes the combustion process and
makes the combustion more adequate. For soot, when the HSR is higher, it leads to more
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homogeneous fuel mixing due to the lower mixture density. In addition, the hydrogen raises
the temperature of the compression process, resulting in a lower in-cylinder temperature
gradient, which deteriorates the soot generation environment. The increase in combustion
temperature provides a good environment for soot oxidation. The synergistic effect of the
two leads to extremely low soot. For CO2, because hydrogen is a carbon-free fuel, CO2
emissions are dramatically reduced at higher HSR [56].

° °

Figure 8. Comparison of HRR and combustion phases at hydrogen substitution enrichment.

Figure 9. Comparison of emissions at hydrogen substitution enrichment.

3.3. Effect of Pilot Injection Timing

From the above study, it can be concluded that hydrogen enrichment improves the
combustion process and reduces pollutant emissions except NOx. For performance, the
optimization of the injection strategy is necessary because the combustion phase at high
HSR conditions is too advanced [57]. In addition, at high HSR, the PFP is too high, resulting
in excessive mechanical load. In addition, considering the goal of carbon reduction and the
common operating conditions of rail internal combustion engines, this section investigates
the effect of the pilot fuel injection timing on the performance, combustion, and emissions
of dual-fuel engines.

The “I” represents the relative injection timing, i.e., H0-I0 is the injection timing of the
original engine in diesel mode (the relative injection timing is 0 ◦CA). The H90-I5 represents
90% hydrogen energy and 10% diesel energy, and the diesel injection timing is delayed
by 5 ◦CA. Figure 10 shows the comparison of in-cylinder pressure at different injection
timings. In all cases, the PFP is higher than the diesel mode. The pressure rise rate is also
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increased in dual-fuel mode. As listed in Table 7, the CA position of PFP decreases with the
delayed injection timing. According to the above study, in dual-fuel mode, when at the
maximum HSR, the delayed injection timing facilitates an increase in engine power output.
The IMEP exceeds the original diesel condition. When delayed by 10 ◦CA, IMEP improves
by 3.4% compared with diesel mode and 2.4% compared with dual-fuel mode.

Figure 10. Comparison of in-cylinder pressure with various pilot injection timings.

Table 7. Comparison of PFP, corresponding CA position, and IMEP with various pilot injection timings.

Parameter PFP (bar) PFP_CA (◦CA, aTDC) IMEP (bar)

H0-I0 21.75 7.26 21.53

H90-I0 30.13 −0.48 21.76
H90-I5 29.57 2.52 22.00
H90-I10 25.55 9.32 22.27
H90-I15 15.37 17.03 21.20

The contour of temperature distribution is illustrated in Table 8. The appearance of the
high temperature zone is delayed with the delay in injection timing. The mean temperature
in the dual-fuel mode is higher than the diesel model, which undoubtedly causes higher
NOx emissions. The trend of peak temperature is the same as the injection timing. When the
injection timing is early, two separate high-temperature zones appear at the beginning of
combustion. This is due to lower temperatures and incomplete fuel atomization. Therefore,
the fuel in the combustion chamber and near the injector ignited hydrogen gas separately.
When in the dual-fuel mode, the diesel is already atomized and broken at the end of the
injection compared with the pure-diesel mode. This is due to the reduced in-cylinder
ambient density, which facilitates fuel atomization. The HRR and combustion phases are
shown in Figure 11. The combustion center is advanced with the early injection timing.
This is because as the injection timing is delayed, the in-cylinder pressure and temperature
decrease, which delay the combustion phases [58]. As the injection timing is delayed, the
second peak of heat release rises initially before decreasing. When the injection timing
is delayed by 15 ◦CA, the second peak of heat release dissipates, resulting in a shift to
premixed combustion.
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Table 8. Contour of temperature distribution with various pilot injection timings.

CAD H90-I0 (K) H90-I5 (K) H90-I10 (K) H90-I15 (K)

−4 ◦CA aTDC

TDC

8 ◦CA aTDC

16 ◦CA aTDC

24 ◦CA aTDC
° °

Figure 11. Comparison of HRR and combustion phases with various pilot injection timings.

The effect of the injection timing on the emissions is shown in Figure 12. The soot,
THC, CO, and CO2 are much smaller than the original engine after hydrogen enrichment
conditions. Alternatively, the carbon content of the fuel is reduced to 10% of the original
engine because the pilot diesel is 1/10 of the original engine. For CO2, it is reduced by
nearly 90%. Conversely, due to the higher combustion temperature in dual-fuel mode,
it leads to a dramatic reduction in the production of unburned emissions. At high HSR,
the lower in-cylinder temperature gradient due to less diesel injection mass and more
homogeneous mixing is not conducive to soot production. In addition, due to the higher
temperature, a good environment for soot oxidation is provided. When the injection timing
was delayed by 15 ◦CA, a small amount of THC appeared. For NOx generation, the NOx
generation decreases with the delayed injection timing. This is because the delayed injection
timing reduces the in-cylinder combustion temperature, which is not conducive to NOx
generation [42]. Compared with the original injection timing, NOx is reduced by 53% when
delaying 10 ◦CA.
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Figure 12. Comparison of emissions with various pilot injection timings.

4. Conclusions

In this paper, the effect of hydrogen on diesel combustion is investigated using a
numerical method. The effects of additional hydrogen enrichment, hydrogen substitution,
and pilot injection timing on combustion, performance, and emissions are investigated.
The main findings are as follows:

(1) The hydrogen enrichment was used for the study at very high loads. With the increase
of HER, the diesel fuel atomized better and burned more fully. When in a small HER,
the combustion phase of the engine had a small range of variation and a consistent
shape of the HRR. Due to the increase in temperature after hydrogen enrichment, it
leads to higher NOx. However, CO, soot, and THC emissions were reduced due to
more complete combustion.

(2) The hydrogen substitution was also studied in order to reduce carbon emissions
and increase the HSR. As HSR increases, the peak cylinder pressure increases, and
the combustion phase advances. The higher combustion temperature of hydrogen
leads to more NOx. When the HSR was 90%, the center of combustion was located
unfavorably in front of the upper stop, resulting in a lower IMEP.

(3) Since the center of gravity of combustion is too advanced at a higher HSR, the study
of injection timing was carried out. With the delay in injection timing, the in-cylinder
pressure decreases and the combustion temperature decreases. In addition, the work
capacity increases and the NOx decreases.

(4) The implementation of hydrogen injectors necessitates increased control standards, as
the low energy density of hydrogen may cause limitations in larger-scale applications.
In addition, hydrogen safety must be taken into account.

In conclusion, this paper investigates the effect of hydrogen on diesel engine combus-
tion and emissions and provides theoretical guidance for practical design optimization.
Subsequent work will couple EGR with an injection strategy to further increase power and
reduce NOx emissions.
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Abstract: The current deterministic optimization design method ignores uncertainties in the material
properties and potential machining error which could lead to unreliable or unstable designs. To
improve the design efficiency and anti-jamming ability of a high-energy ultrasonic igniter, a Six Sigma
multi-objective robustness optimization design method based on the response surface model and
the design of the experiment has been proposed. In this paper, the initial structural dimensions of
a high-energy ultrasonic igniter have been obtained by employing one-dimensional longitudinal
vibration theory. The finite element simulation method of COMSOL Multiphysics software has been
verified by the finite element simulation results of ANSYS Workbench software. The optimal igniter
design has been achieved by using the proposed method, which is based on the finite element method,
the Optimal Latin Hypercube Design method, Grey Relational Analysis, the response surface model,
the non-dominated sorting genetic algorithm, and the mean value method. Considering the influence
of manufacturing errors on the igniter’s performance, the Six Sigma method was used to optimize
the robustness of the igniter. The Eigenfrequency analysis and the vibration velocity ratio calculation
were conducted to verify the design’s effectiveness. The results reveal that the longitudinal resonant
frequency of the deterministic optimization scheme and the robustness optimization scheme are
closer to the design’s target frequency. The relative error is less than 0.1%. Compared with the
deterministic optimization scheme, the vibration velocity ratio of the robustness optimization scheme
is 2.8, which is about 15.7% higher than that of the deterministic optimization scheme, and the quality
level of the design targets is raised to above Six Sigma. The proposed method can provide an efficient
and accurate optimal design for developing a new special piezoelectric transducer.

Keywords: high-energy ultrasonic igniter; piezoelectric transducer; response surface model; Six Sigma
multi-objective robustness optimization

1. Introduction

Traditional gasoline engines generally employ spark plug single-point ignition, which
requires certain application conditions, including lean burn, in-cylinder direct injection,
exhaust gas turbocharging, and exhaust gas recirculation to resolve problems such as
ignition difficulty and poor flame stability [1,2]. Improving the spark plug ignition energy
is an effective technical solution that achieves high efficiency and energy saving for the
engine, but it will affect the lifetime of the spark plug to a certain extent [3,4]. Transient
nonthermal plasma generated by laser [5], nanosecond pulse discharge [6], and dielec-
tric barrier discharge [7] can ignite the lean fuel mixture and improve the ignition and
combustion performance of the gas-liquid two-phase combustible working medium to a
certain extent [8]. It cannot be widely used because of the high cost, narrow working range,
and complexity of the required devices, and for other reasons [9]. Microwaves can induce
nonequilibrium plasma and improve the ignition and combustion performance [10], which
has the potential to achieve large-area multipoint ignition. However, the increment of the
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combustion chamber pressure will seriously affect the ignition performance [11]. Therefore,
research and development of a high-energy igniter which can stably achieve the multipoint
ignition of the fuel mixture in the combustion chamber is an important research direction
for energy savings and emission reduction in internal combustion engines.

An ultrasonic wave is a high-frequency mechanical longitudinal wave greater than
20 kHz that displays large energy, strong penetration, weak diffraction, and good direction-
ality. Its influence on chemical reactions mainly comes from ultrasonic mechanical action
and the ultrasonic cavitation effect. High-frequency ultrasonic vibration and radiation pres-
sure can form directional agitation and jet effects in the air and in liquid media. Due to the
absorption of ultrasonic energy and the internal friction loss phenomenon of the media, a
thermal effect temperature rise in the sound field area of the media under continuous ultra-
sonic action can be generated. In addition, at the moment of collapse, ultrasonic cavitation
bubbles will produce extreme environments such as nanoscale transient high temperature,
high pressure, and a high electric field, which can easily lead to complex physical, chemical,
and biological effects [12–14]. According to international safety regulations, ultrasound
is considered an ignition source [15]. The experiment and numerical simulation work by
Ion et al. assessed the combustion characteristics of gas in an ultrasonic field. It was found
that NOx and CO emissions dropped, and combustion efficiency increased [16]. Di et al.
used spherically focused ultrasound to carry out a spatially localized noncontact ignition
study on a gas-liquid two-phase combustible working medium, and the results showed that
the temperature of working medium reached the ignition threshold of traditional fuels such
as gasoline and diesel when the sound source frequency was 300 kHz [17,18]. Nevertheless,
there is a lack of studies on power ultrasound intervention in the ignition and combustion
process, and its actual mechanisms of action and acoustic chemical effect are still unclear.
Meanwhile, the design methods and performance parameters of a high-energy ultrasonic
igniter attached to an internal combustion engine have not been studied systematically.

The optimal design of a high-energy ultrasonic igniter is carried out based on piezoelec-
tric transducers. The non-dominated sorting genetic algorithm (NSGA-II) is widely used
in engineering applications [19,20]. Based on the electromechanical equivalence method,
Li et al. accomplished the optimized design of an ultrasonic scalpel by using a response
surface model and a multi-objective genetic algorithm [21]. Ji et al. completed structure
optimization of the ultrasonic horn based on finite element simulation and NSGA-II [22,23].
Karl et al. designed an amplifier through shape optimization using genetic algorithms and
verified the effectiveness of the methodology [24], but this method needs multiple finite
element simulations, which increase the computing cost. The above methods ignore the
influence of uncertainties in the material properties and of machining error, which usually
results in unreliable designs and increases the risk of design failure.

This paper focuses on how to design and optimize a high-energy ultrasonic igniter
which is applied to the field of internal combustion engines and special burners. Owning
to the limitation of the installation space and the traditional design theory of the igniter, the
design target frequency of the ultrasonic igniter is set as 35 kHz in this paper. Based on the
design theory of the conventional piezoelectric transducer and the traditional spark plug
scale of the internal combustion engine, the initial structural dimensions of a high-energy
ultrasonic igniter are determined according to the one-dimensional longitudinal vibration
theory. The grid size is determined through grid independence verification. Moreover,
this paper proposes a new optimization method to develop the optimal igniter, which
maximizes the ratio of the front-end vibration velocity to the back-end vibration velocity
and minimizes the difference between the igniter’s longitudinal resonant frequency and
the design’s target frequency. The approach is based on finite element (FE) analysis, the
Optimal Latin Hypercube Design (OLHD) method, the response surface model, NSGA-II,
and the Six Sigma robustness optimization method. The optimal structure dimensions
of the igniter are obtained based on the proposed optimization method. Furthermore,
the dynamic characteristics of the optimal igniter have been verified using finite element
method (FEM)-based simulation.
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2. Structure and Theoretical Analysis of High-Energy Ultrasonic Igniter

The high-energy ultrasonic igniter and the constant-volume combustion bomb are
rigidly connected through a flange structure, as shown in Figure 1. The mounting flange
of the spark plug and the mounting flange of the igniter have interchangeability, and the
design of the experiment can be carried out by changing the installation location and
numbers of igniters. Figure 2 shows that the igniter consists of a prestressed bolt, back
mass, electrode slices, ring-shaped piezoceramics slices, and stepped-type horn, and that
they are connected in a coaxial series.

Figure 1. Structural composition of constant-volume combustion bomb system.

Figure 2. Schematic diagram of high-energy ultrasonic igniter.

In order to enhance the transmitting efficiencies of the igniter, according to the law of
conservation of momentum, the back mass and stepped-type horn are made of 45Cr and
7075-T6. Their material properties are summarized in Table 1.

Table 1. Material parameters for the ignition.

Components Back Mass Stepped-Type Horn

Material 40Cr 7075-T6
Density (kg/m3) 7850 2810
Poisson’s ratio 0.29 0.33

Young’s modulus (GPa) 206 71.7
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PZT-4 is selected as the actuator, because it has a large mechanical quality factor, a high
Curie temperature of 350 ◦C, and a low dissipation coefficient of 0.004, which is suitable
for the field of high output ultrasonic intensity. The related parameters of PZT-4 are given
as follows:

1. Relative Permittivity Matrix

[ε] =

⎡⎣ 762.5 0 0
0 762.5 0
0 0 663.2

⎤⎦
2. Elasticity Constant Matrix

[
CE
]
=

⎡⎢⎢⎢⎢⎢⎢⎣

139 77.8 74.3 0 0 0
77.8 139 74.3 0 0 0
74.3 74.3 115 0 0 0

0 0 0 25.6 0 0
0 0 0 0 25.6 0
0 0 0 0 0 25.6

⎤⎥⎥⎥⎥⎥⎥⎦GPa

3. Piezoelectric Stress Matrix

[e] =

⎡⎣ 0 0 0 0 12.7 0
0 0 0 12.7 0 0
−5.2 −5.2 15.1 0 0 0

⎤⎦C/m2

The back mass and the stepped-type horn of the high-energy ultrasonic igniter are
composed of equal-section cylinders. The longitudinal vibration model of the equal-section
cylinder is shown in Figure 3. The transverse dimension of the equal-section cylinder is far
less than the one-fourth wavelength of the material corresponding to its working frequency.
Therefore, the vibration of the equal-section cylinder can be regarded as one-dimensional
longitudinal vibration [25], and the one-dimensional longitudinal vibration wave equation
is shown in Equation (1).

∂2ξ

∂x2 + k2ξ = 0 (1)

where ξ is the particle displacement function, k = ω/c is the circular wave number, c is the
longitudinal vibration speed in the cylindrical rod, and ω is the vibration frequency.

Figure 3. Longitudinal vibration model of uniform section rod.

Figure 4 is a schematic diagram of the ultrasonic igniter structure with the node-plane
located in the front mass, where L1 is the length of the front mass, L2 is the thickness of
the piezoceramics stack, L3 is the length of the rear mass, and L4 and L5 are the lengths of
the thick section and thin section of the stepped-type horn. Generally, the front mass and
the stepped-type horn are made as one, namely, L1 = 0. Because the nodal plane location
displacement is close to 0 mm, the flange of the igniter is set at the nodal plane location to
make the thin section of the stepped-type horn enter the combustion chamber. Therefore,
the flange is set at the interface between the piezoceramics stack and the thick section of
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the stepped-type horn. According to the quarter-wavelength theory, the igniter is divided
into a quarter-wavelength vibrator and a quarter-wavelength horn. Ignoring the influence
of prestressed bolt and electrode slices, the frequency equations of a quarter-wavelength
vibrator and a quarter-wavelength horn are shown in Equations (2) and (3). Through
theoretical calculation and analysis, the igniter is designed in Table 2.

(Z3/Z2) tan k2L2 tan k3L3 + (Z3/Z1) tan k1L1 tan k3L3 + (Z2/Z1) tan k1L1 tan k2L2 = 1 (2)

tan k4L4 tan k5L5 = Z4/Z5 (3)

where Z1, Z2, Z3, Z4, and Z5 are, respectively, the equivalent impedances of the front
mass, the piezoceramics stack, the rear mass, the thick section, and the thin section of the
stepped-type horn, and ki(i = 1, 2, 3, 4, 5) are respectively the circular wave number of
the front mass, the piezoceramics stack, the rear mass, the thick section, and the thin section
of the stepped-type horn.

Figure 4. Geometric dimensions of the igniter.

Table 2. The initial dimensions of igniter.

Parameter Value

F (kHz) 35
L3 (mm) 4.54
L4 (mm) 3.13
L5 (mm) 39.39
R (mm) 1.66
D (mm) 7.44

3. Verification of Finite Element Model

The high-energy ultrasonic igniter is designed based on a piezoelectric transducer.
The FEM of the latter is also suitable for the igniter. ANSYS has been regarded as the
authoritative software for the finite element simulation design and analysis of piezoelectric
transducers [26,27]. Because COMSOL Multiphysics has unique advantages in the multi-
field coupling and structure parameters optimization of piezoelectric transducers, the
longitudinal resonant frequency obtained from ANSYS modal analysis has been used as the
basis for evaluation. To evaluate the accuracy of the COMSOL Multiphysics finite element
simulation calculation, Figure 5 shows the thin end face vibration amplitude (TEVA)-
frequency curve of the stepped-type horn obtained by the simulations of the two pieces of
software, and the frequency corresponding to the maximum amplitude is the longitudinal
resonant frequency of the igniter.
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Figure 5. TEVA-frequency curve from ANSYS and COMSOL.

The longitudinal vibrational modal shapes of the igniter at a frequency of 30 kHz are
calculated by using the simulation method of reference [28]. As shown in Figure 6, its
longitudinal resonant frequency is 29.98 kHz. Figure 7 shows the longitudinal vibrational
modal shapes obtained by simulation with COMSOL Multiphysics for an igniter with the
same structural dimensions and grid size: its longitudinal resonant frequency is 29.906 kHz.
The longitudinal resonant frequency relative error of the two pieces of software is less
than 1%, and both of them coincide well with the design frequency of 30 kHz. Therefore,
COMSOL Multiphysics can ensure the scientificity and accuracy of the FE analysis.

Figure 6. Longitudinal modal shape of for ANSYS.
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Figure 7. Longitudinal modal shape of for COMSOL.

4. Vibration Characteristic Analysis

“Solid Mechanics” physics and “Electrostatic” physics in COMSOL Multiphysics
are chosen to analyze the dynamic characteristics of the igniter. “Piezoelectric Effect” is
used to couple the “Solid Mechanics” and “Electrostatics” equations solved in the PZT-4
domains via the linear constitutive equations that model the piezoelectric effect by coupling
stresses and strains with the electric field and electric displacement. When setting the
properties of the piezoelectric material in the solution domain, the piezoelectric parameters
based on the stress-charge material are selected, namely the E-type piezoelectric equation
shown in Equations (4) and (5). The electrostatic interface solves the PZT-4 according to
Equations (6) and (7). The piezoceramics are stacked alternately, the ground potential is
equal to 0 V, and the terminal potential is set to 30 V.

T = cE · S− et · E (4)

D = e · S + εs · E (5)

∇ · D = pv (6)

E = −∇V (7)

where T is the stress vector and D denotes the electric flux density vector, S expresses the
strain vector, and E is the electric field intensity vector; cE represents the elasticity matrix
for constant electric field, e is the piezoelectric stress matrix, and εS is the dielectric matrix;
and ∇ · D is the electric charge density, pv is the electric charge concentration, and E is the
electric field due to the electric potential V.

Due to the significant impact of bolt pretension on the performance of the igniter,
12.9-grade alloy steel bolts have been selected in the simulation model. The range of
piezoceramics pretension is generally 3000–3500 N/cm2. A pretension force of about
3600 N has been applied. As a result of the prestress in the igniter, the harmonic variation
of stress and other physical quantities during vibration takes place on top of the static
bias stress. Hence, we need to solve this model using a two-step approach, where the
first step involves solving for the static stress distribution using a “Stationary Study” step.
The solution from this step is then used as a linearization point for solving the vibration
problem in the “Frequency Domain Perturbation Study” step and the “Eigenfrequency
Study” step [29]. With the COMSOL Multiphysics software, grid independence verification
has been performed by contrasting the longitudinal resonant frequency under different
grid scales. Base grid sizes from 0.8 mm to 1.5 mm are selected. The results of the grid
independence verification are shown in Figure 8. The maximum relative error of the
longitudinal resonant frequency is less than 1%, which indicates the grid independence is
well verified. Considering the calculation accuracy and time cost, 1.3 mm is used as the
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grid size of the finite element model of igniter in this study. This model has 38,623 elements
in total, and the minimum element quality of the mesh is 0.24. Figure 9 depicts the mesh
model of the igniter.

 
Figure 8. Grid independence verification.

Figure 9. Mesh model of the igniter.

The longitudinal vibration modal and TEVA-frequency curve can be obtained by
Eigenfrequency analysis and Frequency Domain Perturbation analysis using COMSOL
Multiphysics, as shown in Figures 10 and 11. It can be seen that the longitudinal resonant
frequency of the igniter is 35.668 kHz, slightly higher than the theoretical design frequency
of 35 kHz. Therefore, it needs to be modified to achieve optimal performance.
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Figure 10. Longitudinal modal shape of igniter.

 
Figure 11. TEVA-frequency curve of igniter.

5. Establishment of Approximate Model

5.1. Calculation Method of Vibration Velocity Ratio

The practice has proved that the simplified theoretical analysis model can reflect the
working state of the igniter to a large extent. To simplify the structure of the igniter and
reduce the energy loss, the stepped-type horn and front mass are designed as a whole.
Based on one-dimensional longitudinal vibration theory and the longitudinal boundary
conditions and the influence of the prestressed bolt, electrodes slices, rounded corners, and
flange, the electromechanical equivalent circuit of the igniter can be obtained, as shown in
Figure 12 [30].

For simplicity, the forces on the front end and back end of the igniter can be neglected,
Ff = Fb = 0. In Figure 12, C and N are the clamped capacitance and electromechanical
transformation coefficient of the piezoceramics stack, as shown in Equations (8) and (9).

C = p2S2εT
33(1− k2

33)/L2 (8)

N = pd33S2/(sE
33L2) (9)

where p = 4 is the number of piezoceramics rings; S2 and L2 are the cross-sectional area
and length of the piezoceramics stack; d33, εT

33, sE
33, and k33 are piezoelectric constant, free
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dielectric constant, elastic compliance constant, and electromechanical coupling coefficient;
V is the voltage applied to the piezoceramics stack; Vb is the longitudinal vibration speed
at the outer surface of the back mass; Vf is the longitudinal vibration velocity of the outer
surface of the thin section of the stepped-type horn; V1 is the longitudinal vibration velocity
at the interface between the back mass and the piezoceramics stack; V2 is the longitudinal
vibration velocity of the interface between the thick section of stepped-type horn and
the piezoceramics stack; V3 is the longitudinal vibration velocity of the interface between
the thick section and the thin section of the stepped-type horn; Zp1, Zp2, and Zp3 are the
equivalent impedances of the piezoceramics stack; Zf l and Zbl are the load impedances
of the igniter, namely Zf l = Zbl = 0; Zi1, Zi2, and Zi3 (i = 3, 4, 5) are the back mass, thick
section, and thin section of the stepped-type horn; and the equivalent impedances of the
thick section and the thin section of the stepped-type horn are calculated as shown in
Equations (10) and (11).

Zi1 = Zi2 = jρiciSi tan(kiLi/2) (10)

Zi3 = −jρiciSi sin kiLi (11)

where ρi(i = 2, 3, 4, 5) are the densities of the piezoceramics stack, back mass, thick
section, and thin section of the stepped-type horn. ci(i = 2, 3, 4, 5) are the sound speeds
of the piezoceramics stack, back mass, thick section, and thin section of the stepped-type
horn. Si(i = 2, 3, 4, 5) are the cross-sectional areas of the piezoceramics stack, back mass,
thick section, and thin section of the stepped-type horn.

Figure 12. Electromechanical equivalent circuit of igniter.

The impedances of each igniter component are expressed in Equations (12)–(14). The
calculation of the longitudinal vibration velocity is shown in Equations (15)–(18), and the
calculation of the vibration velocity ratio of the front and back mass of the igniter is shown
in Equation (19).

Z3 =
Z31Z33

Z31 + Z33
+ Z32 (12)

Z4 =
Z43(Z5 + Z42)

Z43 + Z5 + Z42
+ Z41 (13)

V3 · (Z42 + Z5) = (V2 −V3) · Z53 (14)

Vf · Z52 = (V3 −Vf ) · Z53 (15)

V3 · (Z42 + Z5) = (V2 −V3) · Z53 (16)

V1 · (Zp1 + Z3) = V2 · (Zp2 + Z4) (17)

Vb · Z31 = (V1 −Vb) · Z33 (18)

M =

∣∣∣∣Vf

Vb

∣∣∣∣ =
∣∣∣∣∣ Z53 · Z43 · (Zp1 + Z3) · Z3

(Z52 + Z53) · (Z42 + Z5 + Z43) · (Zp1 + Z4) · (Z3 + Z33)

∣∣∣∣∣ (19)
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5.2. Selection of Design Variables

The optimization of the igniter has been preceded by a sensitivity analysis. The major
purpose of the analysis is to identify the correlation between the values of the variable
and the objective variable. The closer the correlation coefficient value is to 1, the stronger
the correlation degree is with the objective variables. The sensitivity values are based
on the Grey Relational Analysis method [21]. The dimensions of the igniter have an
important influence on its performance [31,32]. In this paper, L3, L4, L5, R, and D are
selected as the design variables, with 30 simulations and calculations, and the results of
the sensitivity analysis are presented in Figure 13. Therefore, it can be concluded that L3,
L4, L5, R, and D are the major variables. In Figure 13, M is the ratio of the igniter’s front-
end vibration velocity to its back-end vibration velocity, and f denotes the longitudinal
resonant frequency.

Figure 13. The results of the sensitivity analysis.

5.3. Objective Functions and Constraints

The longitudinal resonant frequency f is an important parameter of the igniter. Only
when igniter is driven at its longitudinal resonant frequency can the maximum amplitude
of the output end achieve the maximum values. The vibration velocity ratio M reflects the
transmitted sound power of the igniter, and the transmitted sound power has a positive
ratio with the vibration velocity ratio. In order to improve the comprehensive performance
of the igniter, f and M are taken as the optimization objectives. The optimization of igniter
can be viewed as a multi-objective optimization problem and shown in Equation (20).

Min
[

1
|M| , | f − 35000|

]T

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4.05 ≤ L3 ≤ 4.95
3.03 ≤ L4 ≤ 3.25

38.32 ≤ L5 ≤ 39.88
7.2 ≤ D ≤ 8.8

1 ≤ R ≤ 3

(20)

where M is the ratio of the front-end vibration velocity to the back-end vibration velocity
of the igniter; f denotes the longitudinal resonant frequency; R is the radius of the rounded
corners between the stepped-type horn’s thick section and thin section. D is the diameter
of the stepped-type horn’s thin section.
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5.4. Approximate Model Validation

The design of the experiment for design points is implemented based on the OLHD
method. Thirty groups of design points were set in COMSOL Multiphysics [32]. In ad-
dition, for the convenience of expression, the diameter of the stepped-type horn thin
section, the length of the back mass, the length of stepped-type horn thick and thin sec-
tion, and the radius of rounded corners were replaced by x1, x2, x3, x4, and x5. The
approximate second-order response surface model was established by calculating their
corresponding longitudinal resonant frequencies and vibration velocity ratios, giving the
following expressions:

f = −227.19736 + 1.8921x1 − 1.4866x2 + 13.2063x3 + 12.5087x4 + 12.4241x5
−0.1368x2

1 − 0.4803x2
2 − 0.29406x2

3 − 8.13305x2
4 − 0.16808x2

5 − 0.003628x1x2
−0.09705x1x3 + 0.01087x1x4 − 0.012x1x5 − 0.215x2x3 + 0.6418x2x4 + 0.1345x2x5
−1.564x3x4 − 0.205x3x5 + 0.2898x4x5

M = −1131.63 + 3.8615x1 + 20.8285x2 + 18.977x3 + 83.4454x4 + 51.1719x5
−0.4153x2

1 − 2.0981x2
2 − 2.005x2

3 − 29.6261x2
4 − 0.6379x2

5 − 0.0279x1x2
−0.04614x1x3 − 0.7383x1x4 − 0.02687x1x5 + 0.06317x2x3 + 1.0165x2x4
−0.16617x2x5 − 0.4283x3x4 − 0.0152x3x5 − 0.42154x4x5

Cross-validation was used to test the prediction accuracy of the second-order response
surface model [33]. Figure 14a,b shows the simulated value of the 10 verification points
versus the predicted values from the developed response surface model, where fpre is the
predicted value of longitudinal resonant frequency and fact is the simulated value of the
longitudinal resonant frequency. Mpre is the predicted value of the vibration velocity ratio,
and Mact is the simulated value of the vibration velocity ratio. The closer the verification
points are to the diagonal line, the better the response surface model fits the points. The
accuracy of the response surface model was evaluated using the coefficient of determination
(R2), average error, maximum error, and root mean square error. The error analysis results
are listed in Table 3. Thus, it can be concluded that the response surface model has
sufficient accuracy, demonstrating that all variations can be explained with the developed
response model.

  
(a) (b) 

Figure 14. (a) Goodness of fit of the longitudinal resonant frequency; (b) Goodness of fit of the
vibration velocity ratio.
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Table 3. Error analysis results of the response surface model.

Average Error Maximum Error Root Mean Square Error Determination Coefficient R2

f 0.05693 0.09602 0.06052 0.9602
M 0.03989 0.0701 0.04311 0.9757

Acceptance level <0.2 <0.3 <0.2 >0.9

6. Multi-Objective Deterministic Optimization Analysis

The NSGA-II algorithm has advantages in finding Pareto optimal solutions to multi-
objective optimization problems [34,35]. The multi-objective optimization processes of the
igniter have been illustrated in Figure 15. The initial population number of the NSGA-II
algorithm was set as 12, and the multi-objective Pareto optimal solution was obtained after
20 iterations. The red dots represent the Pareto front of the deterministic optimization in
Figure 16. A comprehensive optimum is selected from the Pareto front. A group of the
optimal dimensions of the igniter is listed in Table 4.

Figure 15. Optimization methodology for the ignition.

An Eigenfrequency analysis of the optimized igniter has been conducted to obtain
the longitudinal vibration frequency and the corresponding vibration modal. The results
show that the longitudinal resonant frequency is 35.01 kHz, which coincides well with
the objective frequency of 35 kHz. Frequency Domain Perturbation analysis has been
conducted to study the dynamic characteristics of the igniter under a sinusoidal excitation
voltage of 30 V. Figures 17–19 indicate the longitudinal vibration modal, the displacement
distribution, and the TEVA-frequency curve of the igniter, respectively. It can be included
from Figure 18 that the wave node is close to the flange location, which can be used to
fix without affecting the working of the igniter. Using Matlab to calculate the vibration
velocity ratio yields a ratio of 2.42, which is about 1.2% higher than that before optimization,
ensuring that most of the ultrasonic energy is transmitted to the combustion chamber.
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Figure 16. Pareto front of the deterministic optimization.

Table 4. The optimal dimensions of the igniter.

Initial Value Optimal Value

L3 (mm) 4.54 4.47
L4 (mm) 1.13 1.13
L5 (mm) 39.39 39.57
R (mm) 1.66 1.5
D (mm) 7.44 7.42

Figure 17. Longitudinal modal shape of deterministic optimization.
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Figure 18. Displacement distribution of deterministic optimization.

 

Figure 19. TEVA-frequency curve of the deterministic optimization.

7. Multi-Objective Robustness Optimization Analysis

Owning to the limitations of the levels of processing and manufacturing, the sizes of
the igniter’s structures will fluctuate, leading to deviations in its performance. However,
deterministic optimization ignores these uncertain factors. It is necessary to conduct a
robustness analysis. The Isight software integrated response surface approximation model
was used, and the deterministic optimization results were used as input conditions for
the Mean Value Method Reliability analysis. The probability distribution of the design
variables and the objective variables was set as the normal distribution, and the coefficient
of variation was set as 0.01. The results show that the Sigma level of the longitudinal
resonant frequency is 4.015, as shown in Figure 20. The failure risk of the product is high,
and a robustness optimization design is needed.

The NSGA-II algorithm was used to optimize the Six Sigma robustness model, and
the optimized design scheme is shown in Table 5. Figures 21–23 show the results for
the robustness optimization design. Figure 24 shows the Sigma level of the longitudinal
resonant frequency in the robustness optimization. Compared with the deterministic
optimization design results, the relative difference of the longitudinal resonant frequency
has little variation, which is better than the optimization results of literature [21,36], the
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vibration velocity ratio is raised by 15.7%, and the Sigma levels of both are above Six Sigma.
Therefore, the results indicate that the proposed approach could effectively solve igniter
optimization problems.

 

Figure 20. Six Sigma analysis result of the deterministic optimization.

Table 5. Six Sigma analysis results.

Parameter Initial Value
Deterministic Optimization Robust Optimization

Result Sigma Level Result Sigma Level

L3 (mm) 4.54 4.47 1.23 4.25 3.76
L4 (mm) 3.13 3.13 8 3.14 8
L5 (mm) 39.39 39.57 8 38.93 8
R (mm) 1.66 1.5 8 1 8
D (mm) 7.44 7.42 8 7.88 8
f (kHz) 35.668 35.01 4.015 34.976 6.088

M 1.935 2.084 6.58 2.086 6.188

Figure 21. Longitudinal modal shape of robustness optimization.
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Figure 22. Displacement distribution of robustness optimization.

 

Figure 23. TEVA-frequency curve of the robustness optimization.

 

Figure 24. Six Sigma analysis result of the robustness optimization.
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8. Conclusions

Using a Six Sigma multi-objective reliability-based optimization design method, a
novel high-energy ultrasonic igniter has been designed. The proposed method can provide
the necessary guidance for the optimization design of the high-energy ultrasonic igniter. Si-
multaneously, it has an important reference value for a new special piezoelectric transducer
to improve research and development efficiency.

The initial dimensions of different components of the high-energy ultrasonic igniter
have been determined using the one-dimensional longitudinal vibration theory combined
with the boundary conditions. The multi-field coupling prestressed modal analysis of the
igniter was carried out using COMSOL Multiphysics. The longitudinal resonant frequency
of the igniter is 35.668 kHz, and the relative error with the design target frequency is
1.4%. The length of the thin section of the stepped-type horn has the biggest impact on the
resonant frequency and vibration velocity ratio by means of Grey Relational Analysis. An
approach based on the OLHD method, FEM, the response surface model, and NSGA-II
is used to complete the deterministic optimization design and the Six Sigma robustness
optimization design. The robustness optimization results show that the dynamic character-
istics of the igniter have been greatly improved. The relative difference of the longitudinal
resonant frequency is just 0.07%. At the same time, the vibration velocity ratio is increased
by 15.7%. The optimal igniter has better reliability and quality levels, a much smaller
resonant frequency shift, and a higher vibration velocity ratio.

Future work will be focused on developing the direct ultrasonic ignition and auxiliary
catalytic ignition control methods in which ultrasound actively feeds into the internal
engines and the constant-volume combustion bomb.
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Abstract: A well-matched relationship between the compressor and turbine plays an important role
in improving turbocharger and engine performance. However, in the matching of turbocharger
and engine, the internal operation relationship between compressor and turbine is not considered
comprehensively. In order to fill this gap, this paper proposed the internal joint operation law
(IJOL) method based on the internal operating characteristics of the compressor and turbine using a
combination of experimental and simulation methods. On this basis, the optimization method of the
compressor was proposed. Firstly, according to the basic conditions of turbocharger, the compressor
power consumption and the turbine effective power at a fixed speed were solved. Secondly, the power
consumption curve of the compressor and the effective power curve of the turbine were coupled
to obtain the power balance point of the turbocharger. Then, the internal joint operating point was
solved and coupled to obtain the IJOL method. Finally, the IJOL method was used to optimize the
blade number and the blade tip profile of the compressor. The simulation results showed that for the
blade number, the 8-blade compressor had the best overall performance. For the blade tip profile,
compared with the original compressor, the surge performance of the impeller inlet diameter reduced
by 3.12% was better than that of the original compressor. In addition, in order to compare this to
engine performance with different compressor structures, a 1D engine model was constructed using
GT-Power. The simulation results showed that the maximum torque of the engine corresponding to
the impeller designed by the IJOL method was 4.2% higher than that of the original engine, and the
minimum brake specific fuel consumption was 3.1% lower. Therefore, compared with the traditional
method, the IJOL method was reasonable and practical.

Keywords: engine; turbocharger compressor; internal joint operation law; optimization method;
collaborative design

1. Introduction

Turbocharging technology is widely used to increase the power output per swept
displacement of an internal combustion engine (ICE). As a result, the engine size can
be greatly decreased, and fuel consumption and gas emissions may be reduced [1–5].
The centrifugal compressor is a key component of the turbocharger, and its aerodynamic
performance has a significant impact on the operation of turbocharged ICEs. An accurate
understanding of the matching characteristics of the compressor and turbine is beneficial
to improve the performance of the turbochargers and the ICEs [6–10]. In addition, it is
necessary to carry out design and optimization investigations based on matching operating
characteristics between the compressor and turbine in the design and optimization of the
turbocharger compressors. Hatami et al. [11] and Hosseinimaab et al. [12] concluded that
the matching operating characteristics in the compressor and turbine had an important
role in turbocharger performance. However, most of the existing studies have focused on
the design and optimization of the turbocharger based only on the improvement of the
performance of the compressor itself, but not on the comprehensive performance of the
turbocharger itself.
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At present, scholars have carried out research on the optimization of the aerodynamic
performance and design of the structures of the compressors. Ekradi et al. [13] presented
an integrating three-dimensional (3D) blade parameterization method to optimize the
centrifugal compressor impeller with splitter blades. The results showed that at the design
point, the isentropic efficiency increased by 0.97%, and the mass flow rate and total pressure
ratio increased by 0.65% and 0.74%, respectively. Ma et al. [14] compared four optimization
algorithms to improve the operating stability of a centrifugal compressor and found that,
compared to the reference design, the stall margin of the centrifugal compressor was im-
proved by 1.87% with the optimization using the particle swarm optimization algorithm.
Shaaban et al. [15] proposed a new radial vaneless diffuser design method to improve the
centrifugal compressors’ performance. The results indicated that under swirl flow and
jet-wake conditions, the diffuser pressure coefficient increased 6.6% and the diffuser loss
coefficient decreased 4.7%. Tüchler et al. [16] used a coupled approach of computational
fluid dynamics and genetic algorithm to optimize an automotive compressor. The results
showed that the shorter splitter and varied pitch fraction both increase near surge and
peak efficiency. Zamiri et al. [17] investigated the influences of blade squealer tips on
the aerodynamic performance of a centrifugal compressor. The results showed that at
the design point, the use of squealer tips increased the compressor efficiency by 0.32%.
Aparna et al. [18] and Moussavi et al. [19] concluded the same results. However, the
compressor is affected by the fluctuation of the ICEs’ admission, which make the flow
rate and pressure of the compressor periodically change with the ICEs’ operating pro-
cess. This could further affect the engine performance. For example, the compressed air
supercharging system could improve the driving force during the phase of the engine’s
increasing crankshaft rotational speed [20]. Therefore, it is noteworthy to pay attention to
the operating characteristics between the compressor and the engine, which are important
for improving the overall performance of the supercharger and the ICEs [21,22].

Currently, scholars have conducted research on the matching of the compressor with
the ICEs. Mousavi et al. [23] suggested a new algorithm for turbocharger matching.
Chen et al. [24] proposed a novel pseudo-Mean Average Precision (MAP) optimization
method to achieve full-operation-range performance optimization of a compressor. The
results indicated that by using the optimization method, the choke flow rate increased by
20% and the maximum efficiency increased to 80%. In order to improve the accuracy of
matching, Huang et al. [25] established a lumped model to calculate compressor adiabatic
efficiency and the heat transfer properties of a turbocharger. Wu et al. [26] also proposed a
method to match a two-stage turbocharging system, and they found that with adopting the
method, the engine torque increased more than 10% and the engine low fuel consumption
area was broadened. In order to improve engine performance, Hosseinimaab et al. [12]
employed a hybrid optimization approach (including modern and numerical optimizers) to
modify the compressor geometry. However, they did not consider the effect of the turbine
on the supercharger and engine performance. Li et al. [27] presented a new method to pre-
dict the performance MAPs of automotive turbocharger compressors. The results indicated
that the method could be used for the preliminary design of turbocharger compressors
with both vaneless and vaned diffusers. However, most of the existing studies only match
the compressor with the ICEs. Actually, the performance at both ends of the turbocharger
is limited by the structural properties of another end, and a complete performance map is
usually unavailable [28]. Therefore, the research on the internal matching characteristics
of the compressor and turbine play an important role in improving the performance of
turbochargers and ICEs.

Turbochargers can effectively improve the power and fuel economy of ICEs, reduce
emissions, and miniaturize ICEs. For a turbocharger, the internal matching characteristics
between the compressor and turbine determine its operating performance, which in turn
determines the matching performance of the turbocharger to the engine. There is no
in-depth and systematic research on the internal matching between the compressor and
turbine, and the important role of the internal matching of their joint points, in the design

138



Sustainability 2023, 15, 990

of turbochargers, is not fully reflected. To fill this gap, this study proposed an optimization
method for the compressor based on the internal joint operating characteristics between
the compressor and turbine. The rest of this study is organized as follows: Section 2 is
devoted to the design and validation of the compressor and turbine models, introducing
the test turbocharger performance test bench. Section 3 proposes an optimization method
for the compressor based on the IJOL method of the turbocharger, including the calculation
of turbine and compressor powers, and the coupling to obtain the internal joint operation
curve of the turbocharger. Section 4 presents the optimized design of the blade number
and the blade tip profile of the compressor using the IJOL method and compares the
optimization results with the traditional method. Section 5 summarizes the main results of
this study.

2. Materials and Methods

To clearly demonstrate the research idea of this study, an investigation procedure
of the study is shown in Figure 1. Firstly, based on the basic conditions of turbocharger
operation, since there was energy loss between the output power at the turbine end to the
power consumption at the compressor end, the power transfer coefficient was proposed
to characterize the bearing friction loss of the intermediate body. Then, based on the
simulation and self-cycling experiments, the powers of turbine and compressor were
calculated, and the coupling obtained the internal joint operation curve. Secondly, a
compressor optimization method based on the internal joint operation law (IJOL) was
proposed, and the blade number and blade tip profile were optimized. The optimization
simulation results were compared with the traditional method. Finally, experiments were
conducted to verify the results. Compared with the traditional method, the IJOL method
was more reasonable and practical.

 

Figure 1. Investigation procedure.

2.1. Research Objects

A 4-cylinder automotive engine turbocharger was used as the research object. Figure 2
shows the three-dimensional (3D) structure of the physical prototype of the turbocharger.
Table 1 lists the parameters of turbocharger.

2.2. Setting Model Parameters

In the compressor numerical model, the impeller of the compressor was the equal-
length blade and the impeller outlet with angle bending. The diffuser adopted a bladeless
diffuser. The principle geometric structure and original turbocharger compressor fluid
domain model are shown in Figures 3 and 4.
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(a) (b) 

Figure 2. (a) Physical prototype; (b) three-dimensional structure model.

Table 1. Turbocharger parameters.

Item Value Item Value

Outlet diameter D1t of compressor
impeller (mm) 44 Inlet diameter of turbine impeller (mm) 37.6

Inlet diameter of compressor
impeller (mm) 32.1 Outlet diameter of turbine impeller (mm) 33.1

Blade number of compressor 8 Blade number of turbine 11
Diffuser height (mm) 2.5 Turbine impeller inlet blade angle (◦) 0
Design pressure ratio 2.2 Turbine impeller inlet blade height (mm) 5.1
Rated speed (r/min) 220,000 Turbine impeller axial length (mm) 18.9

Flow range (kg/s) 0.02–0.13 Turbine impeller exit mean blade angle (◦) 56.4
Displacement of gasoline engine (L) 1.5 Type of cooling oil cooling + water cooling

 
Figure 3. Compressor geometric structure [29].
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Figure 4. The original compressor fluid domain.

The compressor model consisted of five parts, which were the inlet domain, impeller
rotation domain, diffuser domain, volute domain and outlet domain. The turbulence model
used the Shear Stress Transport (SST) two-equation model, and the mathematical model
used the Reynolds-averaged Navier–Stokes system of equations [30]. The model walls were
all set as smooth, non-slip adiabatic walls [31], and wall temperature in the simulation was
set as the compressor or turbine wall temperature under fixed boundary conditions (speed
and flow rate) of the experiments. The fluid was defined as an ideal gas, and the fluid
viscosity was set as a function of temperature. The total inlet pressure of the compressor
was set to 101.325 kPa, the total inlet temperature was 293.15 K, and outlet boundary set to
the mass flow rate (kg/s) corresponding to the turbocharger speed. For turbine model, the
specific parameter settings can be seen in our previous paper [32].

In order to validate the accuracy of numerical model, a mesh independence analysis
was conducted. The total pressure, efficiency and power consumption of the compressor
with different grid numbers are shown in Figure 5. It can be seen from the figure that the
performance curve of the compressor was smoothly distributed and almost constant when
the grid number reached above 3,358,000, so it could be considered that the grid number
met the simulation requirements. Therefore, the grid number of 3,358,000 was chosen to
use in the calculation.

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

240 280 320 360 400 440 480
183

184

185

186

187

188

189

60

61

62

63

64

65

66

67

68

69

E
ff

ic
ie

nc
y 

[%
]

Po
w

er
  c

on
su

m
pt

io
n 

[k
W

] power consumption

T
ot

al
 p

re
ss

ur
e 

[k
Pa

]

Grid number [ten thousand]

 inlet total pressure

 

 efficiency

 

Figure 5. The effect of grid number on compressor performance at speed of 150,000 r/min.
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2.3. Test Preparation and Model Validation

The compressor and turbine performance experiments were conducted on a Kratzer
turbocharger test bench. Figure 6 shows the physical illustration and schematic diagram of
the bench arrangement. The test bench was capable of measuring performance parameters
of both the compressor and turbine, with automated data acquisition and processing
functions. The bench could realize accurate control of turbocharger speed, compressor and
turbine inlet and outlet parameters. The compressor inlet was equipped with a pressure
and temperature regulator, which could be automatically adjusted in real time to ensure
a smooth inlet temperature and pressure. Sensors were arranged in the turbine inlet and
outlet pipes to improve the accuracy of temperature and pressure acquisition. The fuel for
the experiment was liquefied petroleum gas, which could automatically correct the air-fuel
ratio of the gas according to the turbine inlet temperature.

 
(a) 

 
(b) 

1. win-twist flow meter 2. Pressure differential sensor 
of flowmeter 

3. Compressor inlet temperature 
and pressure sensor 

4. Speed sensor 

5. Compressor 
6. Compressor outlet 
temperature sensor 

7. Automatic circulating valve 8. Electric exhaust control valve 

9. Electric trimming valve 10. Turbine 11. Burner 12. Turbine inlet flowmeter 
13. Turbine inlet control valve 14. Air source vent valve 15. Filter 16. Air source 

Figure 6. (a) Kratzer test bench; (b) schematic diagram of test bench arrangement.
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During the experiment of compressor performance, at the set turbocharger speed, the
surge point and choke point of the compressor were to be found firstly. Then, experimental
points evenly between the surge point and choke point were set. Finally, data were collected
in turn to form the pressure ratio-flow performance curve at the same speed.

The validation experiments of the compressor and turbine were carried out on the
Kratzer turbocharger test bench, and the following three speed conditions of 110,000 r/min,
150,000 r/min and 190,000 r/min were selected to represent the low, medium and high
speeds of the turbocharger operation, respectively. In this study, the validation method was
used in previous papers [31,33].

Figure 7 shows the turbocharger performances between the experiments and simula-
tion. For pressure ratio of compressor, it can be seen that the maximum error was 4.71% at
the high pressure ratio condition at 190,000 r/min, which was within the acceptable range.
For expansion ratio of turbine, the experiment and simulation of the swallowing capacity
were in good agreement with each other and had a maximum error value of 2.62% at the
speed of 150,000 r/min, which was within the acceptable range. This discrepancy was
attributed to the simplification of the secondary feature in the geometry, the optimal appli-
cation scope of the SST model and manufacturing error [34,35]. Therefore, the turbocharger
model could meet the simulation requirements and can be used for further study.
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Figure 7. Turbocharger model test verification. (a) Compressor model; (b) Turbine model.

3. Internal Joint Operation Law Analysis

3.1. Coupling of Internal Joint Operation Curves

The compressor and turbine are the two working parts of the turbocharger; both
are rigidly connected by the rotor shaft, and the compressor and turbine have the same
speed, and the working condition of the compressor and turbine is related to the engine
working process. In this study, the numerical simulations were conducted based on the
assumption of static state operation. There were three basic conditions for the operation of
the turbocharger, including speed balance, flow rate balance and power balance.

Speed balance: The compressor, turbine and rotor shaft have the same speed.

nC = nT = nR (1)

where, nC is the compressor speed (r/min), nT is the turbine speed (r/min), and nR is the
rotor shaft speed (r/min).
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Flow rate balance: The leakage mass flow rate is negligible because it is very small [36].
The compressor operating mass flow rate plus the engine fuel mass flow rate equals the
turbine operating mass flow rate.

mT = mC + mF (2)

where mT is the turbine operating flow rate (kg/s), mC is the compressor operating flow
rate (kg/s), and mF is the fuel flow rate (kg/s).

Power balance: Figure 8 shows the energy transfer process in the turbocharger. Power
transfer from the turbine end to the compressor end of the process would lose part of the
energy, which is the bearing friction loss. The turbine output power minus the losses of
intermediate body is equal to the compressor power consumption. Based on the law of
conservation of energy, the calculation formula is as follows:

PT = PC + PLoss (3)

where PT is the turbine output power (W), PC is the compressor power consumption (W),
and PLoss is the power loss of intermediate body (W).

Figure 8. Energy transfer process in the turbocharger.

The heat losses at a turbocharger were heat dissipating into the environment, heat
flows within the turbocharger as well as active cooling through cooling water and oil, all
due to high temperature gradients. In the simulation, the heat loss dissipating into the
environment was not considered, which was neglected. Due to the wall temperature in
the simulation that was set as the compressor or turbine wall temperature under fixed
boundary conditions (speed and flow rate) of the experiments, the heat loss from heat flow
in the turbocharger was considered, and the heat loss was included in the turbine output
power and compressor consumption power. This was because the turbocharger bench test
was a hot blow experiment, and it can be seen from Figure 9 that the simulated values of
the compressor and turbine efficiencies basically match the experimental values, indicating
that the heat flows in the turbocharger had been considered in the simulation calculation.
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(a) (b)

Figure 9. Comparison of simulated and tested turbocharger efficiencies. (a) Compressor; (b) Turbine.

Turbine output power refers to the power generated by the exhaust gas impinging on
the rotation of all blades. Compressor power consumption refers to the work consumed to
drive all the blades to rotate for compressing the fluid. The power calculation formula is
as follows:

P = Tall blades ×ω (4)

where, P is the turbine output power or the compressor power consumption (W), Tall blades
is the total torque of all blades (N·m), ω is the angular velocity (rad/s).

The compressor power consumption is equal to the turbine effective power, and there
is power transfer loss (bearing friction loss) between the turbine output power and turbine
effective power in intermediate body. Therefore, the power transfer coefficient ηP is used
to define the ratio of the compressor power consumption to the turbine output power.

ηP = PC/PT (5)

The power transfer coefficient ηP could relate the compressor power consumption to the
turbine output power and thus to couple the joint operation curve inside the turbocharger.

At the fixed speed, the turbine output power and the compressor power consumption
were calculated by the simulation and turbocharger self-cycling experiments. Figure 10
shows the self-cycling experiment values of the compressor outlet pressure and turbine
inlet pressure compared with the simulated values. As it can be seen that the self-cycling
experiment values and simulation values were in good agreement, the error was in the
allowable range.
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Figure 10. Comparison of self-cycling experiment values and simulated values. (a) Compressor
model; (b) Turbine model.
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Based on the turbine output power and compressor power consumption calculated
under the self-cycling experiment conditions, the power transfer coefficient is calculated by
Equation (5), as shown in Figure 11.
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Figure 11. Distribution of power transfer coefficient.

It should be noted that the power transfer coefficients obtained by the self-cycling
experiments could not cover all the flow rate points on the speed line, and there was a
certain error. However, the focus of this study was the performance difference caused
by the change of structures, and the power transfer coefficients could meet the needs of
performance evaluation and comparison between different compressor structures.

The turbine effective power is the maximum power that can be obtained at the com-
pressor end. The turbine effective power is obtained by transforming the turbine output
power through Equation (5), as shown in Figure 12.
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Figure 12. Conversion relationship between the output power and effective power of the turbine at
150,000 r/min.

In the fixed-speed line, the compressor power consumption curve and turbine effective
power curve were superimposed and coupled. The horizontal coordinate of intersection
point of both the compressor and turbine at the time of coupling were the compressor
working flow rate, and the intersection point of the power balance was obtained, as shown
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in Figure 13. The significance of the proposed joint operation point was to obtain a joint
curve reflecting the turbocharger operation on the basis of considering the internal matching
of the compressor and turbine.
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Figure 13. The power balance at both ends of the turbocharger at 150,000 r/min.

By analogy, the compressor power consumption curves and turbine effective power
curves for all speeds were superimposed and coupled to obtain the joint operation points
of the turbocharger at each speed, as shown in Figure 14.
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Figure 14. Distribution of the joint operation curve on the compressor power consumption MAP.

3.2. Propose the Total Efficiency Calculation Method of the Compressor

According to the internal joint operation curve, the total efficiency at the joint point is
calculated by the following equation:

ηtot = ηT × ηC × ηP (6)

where ηtot is the total efficiency of the turbocharger.
The traditional method of calculating the total efficiency of a turbocharger is to mul-

tiply the maximum efficiency of the turbine, the maximum efficiency of the compressor
and the mechanical efficiency, which is not objective enough. This was because, on the
one hand, the highest efficiency point of the turbine and the highest efficiency point of the
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compressor are often not in the same operating point. On the other hand, the work of the
supercharger is a dynamic process; the actual efficiency of both the turbine and the com-
pressor are changing, making different operating conditions have different total efficiency
of the supercharger [37]. Therefore, the concept of joint point was proposed in this study to
calculate the turbocharger total efficiency, compressor and turbine performances.

Figure 15 shows the distribution of compressor efficiency for the joint operating
conditions on the compressor efficiency MAP. It can be seen from the figure that the
efficiency of the joint point operating condition did not go through the maximum efficiency
point of the compressor. Therefore, the efficiency of the compressor calculated based on
the joint operating point was related to the speed and compressor working flow rate,
synchronized with the turbine operating condition, and closed to the actual situation of the
turbocharger, which was practical.
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Figure 15. Efficiency distribution for joint operating conditions on the compressor efficiency MAP.

3.3. Internal Joint Point Operation Law (IJOL) Method

In the process of compressor design and optimization, pressure ratio, surge margin,
choke flow rate and efficiency are important performance parameters [38]. In this study, the
compressor performance index included pressure ratio, surge margin, choke flow rate, joint
point efficiency and maximum efficiency. The formula for calculating the surge margin is
shown below [39]:

SM =

(
πs

mscor
πw

mwcor

− 1

)
× 100% (7)

where πs is the pressure ratio at surge, mscor is corrected flow rate at surge, πw is the
pressure ratio of working point, mwcor is corrected flow rate at the working point. The
larger the surge margin, the better the surge performance of the compressor.

The formula for calculating the compressor performance index is shown below:

φc = A1 ×
SRsurge

SOsurge

+ A2 ×
ηRjoint point

ηOjoint point

+ A3 × πR
πO

+ A4 × mR
mO

+ A5 × ηRmax

ηOmax

(8)

where ΦC is the calculated compressor performance index. SRsurge and SOsurge were the surge
margin of remodel and original compressors. ηRjoint point and ηOjoint point were the efficiency of
joint point. πR and πO were the pressure ratio. mR and mO were the mass flow rate. ηRmax

and ηOmax were the maximum efficiency. The parameters of A1, A2, A3, A4 and A5 were
the weighting factors of surge margin, joint point efficiency, pressure ratio, choke flow
rate and maximum efficiency. For the weight distribution of each parameter, turbocharger
compressor work was increasingly close to the surge line, operating stability was critical
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for the compressor [40] and needed to broaden the compressor stable working regions, so
the joint point of the surge performance weight distribution was the largest. The efficiency
and pressure ratio of the joint point of the compressor directly reflected the compressor
performance, which in turn determined the engine intake performance, so the efficiency
and pressure ratio of the joint point of the compressor weight distribution were second
only to that of surge performance. The choke flow of the compressor only needed to be
greater than the maximum working flow of the engine, so the choke flow and maximum
efficiency weights were the smallest. The weighting coefficients are shown in Table 2.

Table 2. Weight assignment for each performance parameter.

Surge
Margin

Joint Point
Efficiency

Pressure
Rate

Choke Flow
Rate

Maximum
Efficiency

Weight
distribution 30 25 25 10 10

4. Results and Discussion

4.1. Analysis of Compressor Blade Number Based on IJOL Method

The compressor impeller is the most important component that affects the compressor
performance, so the compressor impeller was selected for optimization.

4.1.1. Optimization of the Blade Number

Four groups of compressors with blade numbers of 7, 8, 9 and 10 were designed, and
the 3D modeling of each group was kept consistent with that of the original compressor.
The same topology and meshing method were used for the impeller models, and the
optimization study was carried out at three speeds of 110,000 r/min, 150,000 r/min and
190,000 r/min, respectively.

Figure 16 shows the effect of the blade number on the pressure ratio at different speeds.
It can be seen that the pressure ratio increased with an increase in the blade number. When the
blade number was greater than 8, the increased amplitude of the pressure ratio was limited.
At 190,000 r/min, the difference between the outlet pressures of a 7-blade compressor and
an 8-blade compressor were more than 4.5 kPa. Further observation found that the overall
surge line of the four groups of blades was relatively close, but the choke line moved to the
left with an increase in the blade number. With an increase in the blade number, the working
flow range of the compressor became narrower. Specifically, at low and medium speeds, with
the blade number increased, the surge flow slightly increased and the joint point surge margin
gradually decreased. At high speed, there was no significant difference in the surge flow and
surge margin for different blade numbers (as shown in Table 3).
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Figure 16. Pressure ratio for joint operating conditions.
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Table 3. Comparison of surge performance of compressors with different blade numbers.

7 8 9 10

Speed
(r/min)

Surge Flow
Rate (kg/s)

Surge
Margin

(%)

Surge Flow
Rate (kg/s)

Surge
Margin

(%)

Surge Flow
Rate (kg/s)

Surge
Margin

(%)

Surge Flow
Rate (kg/s)

Surge
Margin

(%)

110,000 0.0193 10 0.0198 9.5 0.0201 9.2 0.0204 8.9
150,000 0.0373 8 0.0377 7.6 0.0380 7.3 0.0381 7.2
190,000 0.0508 12.4 0.0508 12.4 0.0509 12.3 0.0506 12.6

Figure 17 shows the effect of the blade number on the efficiency. It can be seen that
near the joint point, the more the blade number, the higher was the efficiency. However,
the difference was not obvious; the design point efficiency of the 10-blade compressor
was about 1% higher than the design point efficiency of the 8-blade compressor. The
7-blade compressor’s joint point efficiency decreased significantly compared with other
blade numbers, especially in high speed. As can be seen in Table 4, for the compressor
performance index, an 8-blade compressor was the highest, while the 7-blade compressor
performance index decreased more, indicating that the 8-blade compressor had the best
performance and high comprehensive performance at the joint point.
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Figure 17. Effect of the blade number on the efficiency distribution.

Table 4. Comparison of performance indexes of compressors with different blade numbers.

7 8 9 10

Mean surge margin (%) 10.13 9.83 9.60 9.57
Mean joint point efficiency (%) 64.5 65.1 65.8 65.9
Mean joint point pressure ratio 1.871 1.953 1.967 1.978

Maximum efficiency (%) 72.296 73.029 73.675 74.07
Choke flow rate (kg/s) 0.1385 0.137 0.136 0.134

Performance index 99.6 100.0 99.8 99.8

4.1.2. Blade Tip Profile Optimization

The compressor’s impeller inlet diameter, outlet diameter and diffuser height have an
important impact on the performance of the compressor. The change of blade tip profile
could change the compressor inlet diameter, diffuser height and compressor transition arc
profile, and therefore affected the performance of the compressor.

There were three schemes for the optimization of the blade tip profile. Scheme A:
Compared with the original compressor, the impeller inlet diameter was reduced by 3.12%,
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and the diffuser height remained unchanged. Scheme B: Compared with the original
compressor, the impeller inlet diameter remained unchanged, and the diffuser height was
reduced by 20%. Scheme C: Compared with the original compressor, the impeller inlet
diameter and diffuser height were reduced by 3.12% and 20%, respectively. The percentage
of impeller inlet diameter and diffuser height for three structures as compared with original
compressor is shown in Figure 18.
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Figure 18. The Percentage of impeller inlet diameter and diffuser height for three structures as
compared with original compressor.

Figure 19 shows the comparison of the pressure ratio of the four compressors at
various speeds. It can be seen from the figure that there was no significant difference in the
pressure ratio at the joint point of low and middle speeds. At the joint point of high speed,
the pressure ratio of Scheme A was slightly smaller than that of the original compressor,
but the difference was within 1.2%. Near the joint point of low and medium speeds, the
pressure ratio of Scheme A and the original compressor had a wide overlap part. Overall,
the pressure ratio of Scheme A was closest to those of the original compressor.
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Figure 19. The effect of blade tip profile on pressure ratio.

For surge performance, it can be seen from the Table 5 that all three schemes improved
the surge flow rate as compared with the original compressor. The surge margin of Schemes
A and C was above 10%, which met the requirements of the surge margin, while the surge
margin of the original compressor was below 10% at low and medium speeds.
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Table 5. Comparison surge performance of compressors with different blade tip profile.

Original Scheme A Scheme B Scheme C

Speed
(r/min)

Surge Flow
Rate (kg/s)

Surge
Margin (%)

Surge Flow
Rate (kg/s)

Surge
Margin (%)

Surge Flow
Rate (kg/s)

Surge
Margin (%)

Surge Flow
Rate (kg/s)

Surge
Margin (%)

110,000 0.0198 9.5 0.0180 11.3 0.0180 11.3 0.0158 13.5
150,000 0.0377 7.6 0.0345 10.8 0.0370 8.3 0.0335 11.8
190,000 0.0508 12.4 0.0465 16.7 0.0500 13.2 0.0454 17.8

The effect of blade tip profile on the efficiency of the compressors is shown in Figure 20.
It can be seen that the efficiencies of the three schemes were improved as compared with
the original compressor near the joint point of each speed, and the joint point of Scheme A
was 0.7–1.5% higher than that of the original compressor. In addition, the highest efficiency
of Scheme A was 0.8% higher than that of the original compressor.
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Figure 20. Effect of blade tip profile on compressor efficiency.

For compressor performance index, as can be seen in Table 6, because the choke flow
rate of Scheme C did not meet the maximum working flow rate of the engine, it could not
be used as an optimized structure. Scheme A had the highest compressor performance
index and the best overall performance among the available options. Compared with the
original compressor, Scheme A had obvious comprehensive advantages.

Table 6. Comparison of performance indices of different blade tip profiles.

Original Scheme A Scheme B Scheme C

Mean surge margin (%) 9.83 12.93 10.93 14.37
Mean joint point efficiency (%) 65.1 66.5 66.1 66.5
Mean joint point pressure ratio 1.953 1.943 1.954 1.936

Maximum efficiency (%) 73.029 73.845 71.225 71.965
Choke flow rate (kg/s) 0.137 0.130 0.131 0.127

Performance index 100.0 109.5 103.0 113.3

In summary, Scheme A was the best blade tip profile in the operating conditions range.
Therefore, when the impeller inlet diameter was reduced by 3.12% and diffuser height
remained unchanged, the overall performance of the compressor was higher than that of
the original compressor, especially in terms of surge performance and joint point efficiency.
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4.2. Comparison and Validation Analysis of the IJOL and Traditional Methods

For the traditional method, the optimization goal is to pursue the maximum efficiency
of the compressor [41,42]. Therefore, the index for evaluating the optimization results
of traditional methods is the maximum efficiency. In order to compare the IJOL method
with the traditional method, the original impeller structure, the splitter-blade impeller
designed by the traditional method and the structure determined by the IJOL method with
the impeller inlet diameter reduced by 3.12% were selected for comparison. The inlet and
outlet diameters of the compressor impeller optimized based on the traditional method
were the same as those of the original compressor. The numbers of main blades and splitter
blades were each 5. In addition, the main blade was 3.5 mm higher than the splitter blade
at the inlet guide vane, and the radial parts of the main and splitter blades had the same
3D shape. The main blade shape remained the same as the original compressor blade.

A comparison of the pressure ratio of the three structures is shown in Figure 21. It can
be seen that the surge line of the traditional method moved to the left compared with the
original compressor, but the leftward shift of its surge line was not as large as that of the
IJOL method. The specific values are shown in Table 7. The lower the speed, the smaller
was the surge margin of the traditional method, while the surge line of the IJOL method
basically moved to the left as a whole, among which the improvement of the surge margin
at low speed was obvious. At the joint points of low and middle speeds, the pressure
ratio of the traditional method was not significantly different from that of the original
compressor. While at 190,000 r/min, its pressure ratio was lower than that of the original
compressor, which was especially obvious at high speed and high flow rate.
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Figure 21. Comparison of pressure ratio of three structures.

Table 7. Comparison of surge performance of different compressor structures.

Original Traditional Method IJOL Method

Speed
(r/min)

Surge Flow
Rate (kg/s)

Surge
Margin (%)

Surge Flow
Rate (kg/s)

Surge
Margin (%)

Surge Flow
Rate (kg/s)

Surge
Margin (%)

110,000 0.0198 9.5 0.0180 11.3 0.0196 9.7
150,000 0.0377 7.6 0.0345 10.8 0.0371 8.4
190,000 0.0508 12.4 0.0465 16.7 0.0502 13.0

The efficiency comparison of the three structures is shown in Figure 22. Near the
joint point of 150,000 r/min, the efficiency of the traditional method was the same as
the original compressor, while at other speed joint points the efficiency of the traditional
method was lower than that of the original compressor. The efficiency of the IJOL method
was higher than that of the original compressor at all joint points. As can be seen in
Table 8, the performance index of the traditional method was lower than that of the original
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compressor, while the performance index of the IJOL method had obvious advantages and
was the best performance structure in the operating conditions.
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Figure 22. Comparison of efficiency of three structures.

Table 8. Comparison of performance indexes of different compressor structures.

Original
Traditional

Method
IJOL Method

Mean surge margin (%) 9.83 12.93 10.37
Mean joint point efficiency (%) 65.1 66.5 64.3
Mean joint point pressure ratio 1.953 1.943 1.861

Maximum efficiency (%) 73.029 73.845 73.901
Choke flow rate (kg/s) 0.137 0.13 0.132

Performance index 100.0 99.9 109.5

4.3. Comparative Analysis of Engine Performance with Optimized Structures of Two Methods

The optimal compressor structures based on the traditional method and the IJOL
method were the splitter-blade impeller and the impeller inlet diameter reduced by 3.12%
structures. A 1D engine model in Figure 23 was constructed using GT-Power for engine
performance simulation and analysis. The basic assumptions [43] in this simulation are
as follows:

1. The working fluid was a uniform state, and the air entering the cylinder and the
residual exhaust gas were completely mixed instantaneously;

2. Air and mixed gas were considered ideal gases, and their thermodynamic parameters
were affected by the temperature and composition of the gas;

3. A steady flow process was regarded for the process of working fluid;
4. The import and export kinetic energy of the working fluid was negligible, and there

was no leakage during the combustion process;
5. The combustion heat release process was regarded as a thermodynamic process in

which the external heats the working fluid inside the system in accordance with the
established heat release law.

In the simulation, except for the change of the turbocharger structure, the rest of the
engine structural components and settings were kept unchanged.

As can be seen in Figure 24, the IJOL method had the highest overall torque and
the lowest brake-specific fuel consumption (BSFC) at low and medium engine speeds,
while the traditional method was the opposite. Compared with the original engine, the
maximum torque of the IJOL method was 4.2% higher and the minimum BSFC was 3.1%
lower, while the maximum torque of the traditional method was 2.4% lower and the
minimum BSFC was 1.2% higher than that of the original engine. The reason was that

154



Sustainability 2023, 15, 990

the performance index of the IJOL method was highest in the three compressor structures,
while the performance index of the traditional method was smallest. The better overall
performance of the compressor could further increase engine torque and reduce BSFC [44].
Therefore, the impeller inlet diameter that was reduced by 3.12% designed by the IJOL
method instead of the original impeller could improve the power and fuel economy of the
engine at low and medium speeds.

Figure 23. Engine 1D model.
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Figure 24. Effect of three structures on engine performance. (a) Torque; (b) BSFC.
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4.4. Experimental Verification and Comparison of Compressor Optimization

Experimental analysis was performed on three structures of the compressor optimized
based on the IJOL method and the traditional method. Figure 25 shows the pressure
ratio for the three structures. It can be seen from the figure that the pressure ratios of the
IJOL method were all equal to or slightly higher than that of the original compressor, and
the pressure ratio was 1.49% higher than that of the original compressor near the joint
point at high speed. The pressure ratio of the traditional method was basically the same
as the original compressor at the joint point of low and medium speeds, and was lower
than the original compressor at high speed. It was further observed that both the IJOL
and the traditional methods had smaller surge flow and higher surge margin than that
of the original compressor. Compared with original compressor, the IJOL method had a
maximum reduction of 13.91% in the surge flow rate and a maximum increase of 6.07% in
the surge margin, which was a significant improvement.
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Figure 25. Experimental comparison of pressure ratio for three structures.

Figure 26 shows the efficiency for the three structures. The maximum efficiency of
the original compressor was set to the reference value of 100%. Near each joint point, the
efficiency of the IJOL method was higher than that of the original compressor, with higher
values of 0.8% and above.
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Figure 26. Experimental comparison of efficiency for three structures.

From the analysis, the experimental results of compressor performance and simulation
conclusions were consistent. Therefore, both optimized compressor structures could reduce
the surge flow of the compressor, and the impeller optimized by the IJOL method with the
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impeller inlet diameter reduced by 3.12% had pressure ratio and efficiency advantages near
the joint points, which could improve the power and fuel economy of the engine in the low
and medium speeds.

5. Conclusions

In this study, according to the basic conditions of turbocharger internal operating char-
acteristics, the turbocharger joint points were determined, and the internal joint operation
law (IJOL) was obtained. A compressor optimization method was proposed based on the
IJOL, and the blade number and blade tip profile were selected for optimal application
design. The following conclusions were obtained within the scope of this study:

1. Based on the joint operating characteristics of the two ends of the turbocharger
compressor and turbine, the IJOL method of the turbocharger was coupled using
the performance distribution of the compressor and turbine, and the calculation
method for the total efficiency of the turbocharger was improved. The efficiency of
the compressor obtained using the IJOL method was synchronized with the working
of the two ends, which was closer to the actual situation, and more practical.

2. Based on the IJOL method, the effects of the blade number and the blade tip profile
on the performance were analyzed. For the blade number, the 8-blade compressor
had the best overall performance. For the blade tip profile, the compressor with the
impeller inlet diameter reduced by 3.12% as compared with the original compressor
had better surge performance.

3. Compared with the traditional method, the maximum efficiency of the IJOL method
was slightly lower, but its joint point performance was higher than that of the tradi-
tional method.

4. Compared with the performance of the original engine, the power and fuel economy
of the engine designed based on the traditional method were worse than those of the
original engine. The maximum torque of the engine based on the IJOL method was
4.2% higher than that of the original engine, and the minimum BSFC was 3.1% lower.
Compared with the traditional method, the IJOL had obvious advantages.
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Abstract: Taper intake ports are effective in improving the charging efficiency of small-scale rotary
engines (REs), but it is unclear how their structural parameters affect the in-cylinder flow field and
combustion characteristics. For this reason, the effects of the diameter-length ratio (D/L) of an intake
port on the in-cylinder flow field and combustion characteristics of a small-scale RE were numerically
investigated by utilizing a three-dimensional computational fluid dynamics (CFD) model. The results
showed that the in-cylinder pressure of the RE did not follow a simple single-directional trend with
the D/L of the intake port, but it was divided into three levels, where the peak in-cylinder pressure
was at its maximum at the D/L of 0.6 and at its minimum at the D/L of 0.8. The gas flows in the
intake port with different values of the D/L were all unidirectional, and they made a difference in the
vortexes formed on the leading side of the combustion chamber of the RE, which was the main factor
affecting the in-cylinder combustion performance. The vortexes formed on the leading side of the
combustion chamber with D/L = 0.6 were maintained for a long period of time, thus promoting the
propagation of flame and advancing the center of gravity of combustion. So, the heat release rate and
combustion efficiency in the cylinder were increased at the price of a larger increment in nitrogen
oxide formation.

Keywords: small-scale rotary engine; taper intake port; in-cylinder flow field; combustion characteristics

1. Introduction

In comparison with reciprocating piston engines, rotary engines (REs) possess many
advantages, such as a simple structure, low vibration, low noise, high speed, high power-
to-weight ratio, small frontal area, etc. [1,2]. These advantages make REs promising for
applications in small unmanned aerial vehicles, electric vehicle range extenders, armored
military vehicles, small ships, etc. [3,4]. However, REs also possess some drawbacks, such
as poor sealing and high fuel consumption [5,6]. In particular, the elongated rotor chamber
and the unidirectional flow field in the cylinder make it difficult for the flame to propagate to
the trailing side of the combustion chamber, resulting in severely inadequate combustion [7].
To improve the combustion performance of REs, researchers have carried out some work
from the perspectives of structural optimization, ignition scheme improvement, multi-fuel
mixing, intake process optimization, etc. [8–10]. Unlike a traditional piston engine, an RE
does not have intake valves and exhaust valves. Instead, the mixture enters the combustion
chamber directly from the intake port and collides with the rotor recess wall. This collision
affects the distribution of the in-cylinder flow field and the intensity of the turbulent kinetic
energy (TKE), which, in turn, affects the efficiency of in-cylinder combustion. Therefore,
the intake process of the RE is more significantly affected by the intake port structure.

The intake process of an RE is affected by a variety of factors of the intake port
structure, mainly including the intake port’s cross-sectional shape, its location, its structural
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size parameters (diameter, length, etc.), etc. Fan et al. [11] numerically investigated the
effects of intake shape, including a round intake, rectangular intake, regular trapezoidal
intake, and inverted trapezoidal intake, on the flow field in the cylinder of an RE, and they
found that the inverted trapezoidal intake was the most conducive to improving the
volume coefficient and holding a swirl structure. Ji et al. [12] studied the influences of
a peripheral-ported intake, side-ported intake, and compound intake on the in-cylinder
flow field, the flame propagation, and the emission formation of a gasoline RE. The results
showed that the peripheral-ported intake had the fastest flame propagation and the highest
combustion rate. At the moment of opening of the exhaust valve, the NOx emission
was the lowest for the side-ported intake, and the CO emission was the lowest for the
compound intake. Taskiran et al. [13] analyzed the effects of multiple side-ported intakes
and exhaust ports on the flow field and combustion process in the combustion chamber
of an RE and showed that the two side-ported intakes had the best charge coefficients
and the fullest combustion of the mixtures. Jeng et al. [14] studied the influence of the
length and diameter of an intake pipe and exhaust pipe with an equal cross-sectional
area on the performance of an RE and concluded that the shorter the intake pipe and
the longer the exhaust pipe, the higher the output power. These studies were carried
out to assess the influence of intakes with an equal cross-section on the flow field and
combustion performance, and this contributed to the improvement of the intake process
of REs, but it did not involve studies of variable-section intake ports, such as a taper
intake port. A taper intake port improved intake efficiency by increasing the differential
pressure [15,16]. In general, a small-scale RE uses a taper intake port in order to achieve
a high intake efficiency. The length and diameter of a taper intake port directly affect
the intake resistance and intake pressure difference, which affects the mass flow rate and
velocity of air entering the cylinder, and then influences the flow field distribution and
combustion characteristics in the cylinder. However, due to the lack of studies on taper
intake ports, it is unclear how the changes in intake charge and intake velocity caused by
changes in the diameter and length of a taper intake port synthetically affect the in-cylinder
flow field and combustion characteristics of a small-scaled RE.

In this paper, a three-dimensional computational fluid dynamics (CFD) model of a
peripheral-intake RE was established in commercial software based on a reduced chem-
ical reaction mechanism and the applicable turbulence model, and its accuracy was
verified through a comparison with experimental results. Then, the influences of the
diameter–length ratio of the taper intake port on the flow field, TKE, flame propagation,
and combustion process inside the combustion chamber of the smal-scale RE were ana-
lyzed, which, in turn, provided theoretical guidelines for the design of the intake port of a
small-scale RE.

2. Numerical Procedure

2.1. Engine Geometry and Computational Domain

The object of this study is a peripheral-ported-intake single-rotor engine with a dual
spark plug ignition mode, whose model schematic and model parameters are shown in
Figure 1 and Table 1, respectively.

Chamber III of the tested RE was selected as the calculation object in this study due
to the identical working process of the three combustion chambers, which corresponded
to a single rotor of the RE, and due to the consideration of the symmetrical similarity of
the construction and working principle of the RE. The starting position of the calculation
was 720°EA BTDC. In addition, to eliminate the influence of backflow on the exhaust flow,
the exhaust port was extended in the calculation (as shown in the right diagram of Figure 1).
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Table 1. Specifications of the small-scale RE.

Specifications Value

Generating radius 52.5 mm
Eccentricity 7.5 mm

Width of rotor 33.75 mm
Compression ratio 10.5

Displacement 70 cc
Ignition source two spark plugs
Ignition timing 30°EA BTDC
Intake timing 80°EA ATDC, 40°EA ABDC

Exhaust timing 60°EA BBDC, 70°EA ATDC
Note: EA is the eccentric angle, BTDC is before top dead center, BBDC is before bottom dead center, ATDC is after
top dead center, and ABDC is after bottom dead center.

Figure 1. The schematic and computational geometric model of the small-scale RE (TDC is top dead
center, BDC is bottom dead center, L-plug denotes the leading spark plug, and T-plug denotes the
trailing spark plug.).

2.2. Mathematical Models and Boundary Conditions

The flow field in the cylinder of an RE includes cyclonic flow and unidirectional
flow, making it a complex turbulent flow. Among several commonly used turbulence
models, some researchers have concluded that the RNG k-ε model can more accurately
characterize the flow field inside the cylinder of an RE by comparing simulation results with
experimental results [13,17]. Therefore, the RNG k-ε model was also chosen in this study.

The fuel used in this RE is RON92 gasoline, which includes 92% (v/v) iso-octane and
8% (v/v) n-heptane. The reduced mechanism of 47 species and 142 reactions developed by
Ra et al. [18] was chosen in order to achieve combustion of the gasoline. This mechanism
can be used to accurately calculate the combustion reaction of this gasoline, and it has been
verified in various basic combustion and internal combustion engine combustion with an
accuracy of the calculation results that satisfies the requirements [19,20].

The SAGE combustion model is able to calculate the detailed chemical reaction mech-
anism in turbulent flow [21]. In this study, the fuel was injected into the intake port and
mixed with air; then, it entered the combustion chamber of the RE for compression and
combustion. The gasoline combustion mechanism used in this study is a multi-step reac-
tion. Consequently, the SAGE combustion model is well suited for the current simulation’s
calculations [22]. In order to assess the emissions of the small-scale RE, the reactant genera-
tion models of both “Thermal NO” and “Prompt NO” were included in the simulation’s
calculations [4]. In addition, the ignition model used in this study was based on the
application of a virtual spherical flame kernel with a diameter of 1 mm and an ignition
energy of 50 mJ to replace the actual spark plug in triggering the combustion reaction in
the combustion chamber.

Pressure boundary conditions were used for the boundaries of the inlet and the out-
let. Since the intake method of the small-scale RE in this study was naturally aspirated,
the pressures of the inlet and the outlet were set to the ambient pressure of 0.101 MPa, and the
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temperatures were set to the ambient temperature of 300 K. All walls were set as no-slip
boundaries, and the temperatures of the cylinder walls and rotor walls were set to 400 K.
The temperatures of the intake and exhaust port walls were set to 300 and 550 K, respectively.

In addition, the numerical simulation implemented in this study made the following
assumptions: On the one hand, the flow field of the combustion chamber was assumed to
be a transient and compressible flow; on the other hand, the inlet flow was assumed to be a
uniform flow.

2.3. Grid Generation

In order to obtain a mesh that was adapted to the changes in the combustion chamber
structure, a homemade file describing the rotor motion was introduced into the CONVERGE
software to automatically update the combustion chamber mesh with the rotor motion.
The element type of a hexahedral mesh was selected in this study. In addition, to achieve
better accuracy in the calculation results, the rotor walls, the local region of the injection
beam, and the local regions near the spark plug position were treated with a fixed refined
mesh. Adaptive mesh refinement (AMR) with temperature and velocity was set in the
combustion domain, and the relationship between the grid size and the refinement level
was as follows:

dx =
dxbase

2n (1)

where dx is the grid size, dxbase represents the basic grid size, and n denotes the refine-
ment level.

To eliminate the influence of the grid size on the computational results, in our previous
research, we conducted an irrelevance analysis of several grid size schemes, and we found
that 2.5 mm + AMR was the best grid scheme for balancing the computational efficiency
and accuracy [23]. Consequently, the grid size scheme of 2.5 mm + AMR was chosen for
this study. The total number of cells in the grid was around 5000~35,000 per chamber.

2.4. Research Approach

A taper intake port was used to replace the equal-section intake port of the original
engine (as shown in the right diagram of Figure 1). A schematic diagram of the taper
intake port studied in this paper is shown in Figure 2, where the section of L0 is the injector
installation position, and the parameters of this section were not changed in the designed
test. The final calculation schemes that were developed are shown in Table 2, where
D/L = 0.2 indicates that the tapering inlet diameter (D) has the same value as that of the
outlet diameter (d).

L

D d

L0

Figure 2. A schematic diagram of the taper intake port.

Table 2. Design of the diameter–length ratios of different intake ports.

Case D/L Case D/L

1 0.2 5 0.6
2 0.3 6 0.7
3 0.4 7 0.8
4 0.5 8 0.9
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2.5. Model Validation

To ensure the simulation accuracy of the 3-D CFD simulation model of the RE es-
tablished in this study, the parameter settings of the model need to be verified. Under
operating conditions with an equivalent ratio of 1.25, a speed of 4500 rpm, and a wide-open
throttle, a comparison was made between the simulation results and experimental results
for the in-cylinder pressure, as shown in Figure 3. As can be seen from the figure, the in-
cylinder pressure curve of the numerical simulation was slightly higher than the curve of
the experimental results at the early stage of combustion (near the TDC). The main reasons
for this were: (1) There were only two fuel components used in the simulation, which
did not fully replace the multiple components of actual gasoline. (2) Leakage through
the rotor tip was neglected in the simulation model. (3) The simplified chemical reaction
mechanism of the alternative fuel that was adopted did not sufficiently consider the quench-
ing phenomenon. Fortunately, the comparison showed a good agreement between the
experiments and simulation with a deviation of less than 5%. The deviation values were
within acceptable limits and on par with similar reference simulations from around the
globe. Therefore, the 3-D CFD model established in this study can accurately predict the
combustion process of a small-scale RE.
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Figure 3. Comparison of the simulation results and experimental results.

3. Results and Discussion

3.1. Effect of D/L on In-Cylinder Pressure

Figure 4 shows the variation in the in-cylinder pressure according to the eccentric angle
with different D/L parameters. It can be seen that when D/L was 0.6, the peak in-cylinder
pressure was at its maximum, and when D/L was 0.8, the peak in-cylinder pressure was
at its minimum. In addition, the in-cylinder pressure was divided into three levels in all
calculated tests. The maximum in-cylinder pressure was found for D/L values of 0.2 and
0.6, the second highest was found for D/L values of 0.3, 0.5, 0.7, and 0.9, and the lowest was
found for D/L values of 0.4 and 0.8. As illustrated in Figure 5, the peak in-cylinder pressure
first decreased and then increased with the D/L parameter in a cyclic pattern, which was
not a simple linear trend in a single direction. The eccentric angle corresponding to the
peak pressure varied in proportion to the peak pressure. The above phenomenon was
mainly caused by the influence of the change in the size of the taper intake port on the
intake efficiency and the in-cylinder flow field of the small-scale RE.
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Figure 4. In-cylinder pressure versus eccentric angle with different D/L parameters.
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Figure 5. The peak in-cylinder pressure and relevant eccentric angle with different D/L parameters.

Figure 6 shows the results for the volumetric coefficient with different D/L parameters.
From the figure, it can be seen that the volumetric coefficient showed a slightly increasing
trend with the increase in D/L, except for the sudden increment in the volumetric coefficient
for the intake port structure scheme with D/L = 0.4. This was mainly because as the D/L
increased, the pressure difference between the constriction and expansion sections of the
intake port increased, thus boosting the flow velocity of the mixtures in the constriction
section and increasing the amount of air intake. However, the previous results showed that
the peak in-cylinder pressure first decreased and then increases with the D/L parameter,
rather than a simple change trend in a single direction, which indicated that the variation
in the volumetric coefficient caused by the change in the D/L was not the main reason for
the effect on the performance of the RE.

Figure 6. Volumetric coefficients with different D/L parameters.
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To find out how the parameters of the taper intake port affected the engine perfor-
mance, representative D/L parameters of 0.3, 0.6, and 0.8 at three pressure levels were
selected for a subsequent analysis of the in-cylinder flow field and combustion characteris-
tics of the small-scale RE.

3.2. Effect of D/L on the In-Cylinder Flow Field Characteristics

The change in the parameters of the taper intake port inevitably caused variations
in the intake charge and intake flow velocity, which, in turn, affected the evolution of the
in-cylinder flow field. Figure 7 displays the distribution of the velocity field and streamlines
in the central plane of the combustion chamber at different moments for different values
of D/L. It can be clearly seen that the flow field in the intake port was unidirectional at
all times, without backflows or vortexes, which was the same as the results that were
obtained by other researchers [16]. At the early stage of the intake stroke (500°EA BTDC),
the mixtures from the intake port impinged on the rotor wall and moved in the direction of
rotation, and there was no vortex phenomenon in the cylinder and a lower flow velocity
in the intake port. This was because at the initial stage of the intake stroke, the smaller
volume of the combustion chamber limited the development of vortexes, and the pressure
difference between the combustion chamber and the intake port was minor, resulting in
a low flow velocity in the intake port. At the median stage of the intake stroke (410°EA
BTDC), one vortex was formed on the leading side and one on the trailing side of the
combustion chamber. However, the vortex on the leading side of the combustion chamber
for D/L = 0.8 was in the initial formation stage, and its intensity was lower than that of
the vortex for D/L values of 0.3 and 0.6. In addition, as the D/L increased from 0.3 to 0.8,
the velocity at the entrance of the combustion chamber was gradually enhanced. This was
due to an increment in the contraction ratio at the throat of the taper intake port as the D/L
increased. At the late stage of the intake stroke (360°EA BTDC), the vortex on the leading
side of the combustion chamber with a D/L of 0.3 started to disappear, while the vortex
on the leading side of the combustion chamber with D/L values of 0.6 and 0.8 showed
an increasing trend in comparison with the median stage of the intake stroke. This was
because the increase in the flow velocity at the combustion chamber’s entry caused by
the rise of the D/L boosted the effect of the in-cylinder mixtures on the rotor walls. This
increased the intensity of the mixture flow after impacting the rotor walls and enhanced
the intensity and duration of the vortex on the leading side of the combustion chamber.
From the results given above, it can be seen that the flow velocity in the intake port with a
D/L of 0.6 enabled the vortex on the leading side of the combustion chamber to form early
and disappear late, indicating that its vortex duration was longer, which was conducive
to the formation of homogeneous mixtures in the combustion chamber. In fact, similar
results were obtained by other researchers for the above rules of vortex evolution in the
intake stroke [11,13].

Figure 8 depicts the variation curves of the TKE according to the eccentric angle with
D/L values of 0.3, 0.6, and 0.8. It can be concluded from Figure 8 that at the intake stroke
(600°EA~250°EA BTDC), the TKE in the cylinder for the D/L values of 0.6 and 0.8 was
basically the same, while the TKE for D/L = 0.3 was higher than that of both of the other
D/L values. This was because the smaller flow velocity in the intake port with D/L = 0.3
enabled vortexes on the leading side of the combustion chamber to form early, resulting
in higher TKE in the cylinder at the early stage. However, during the whole compression
stroke (250°EA BTDC~0°EA), the TKE for D/L = 0.8 was lower than that of the other two
intake ports. This was because the vortexes on the leading side of the combustion chamber
for D/L = 0.8 formed late and were maintained for a short time, resulting in a lower TKE in
the cylinder at the later stage. In addition, the TKE in the cylinder during the compression
stroke was essentially the same for the D/L values of 0.3 and 0.6, but after the TDC, the TKE
in the cylinder for D/L = 0.3 was lower than that for D/L = 0.6.
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Figure 7. The distribution of the velocity field and streamlines in the intake port and the cylinder.

Figure 8. The variations in the TKE in the cylinder with the eccentric angle.
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3.3. Effect of D/L on Combustion Characteristics

A difference in the intake port structure leads to changes in the in-cylinder flow
field, which will certainly affect the development and propagation of the flame inside the
combustion chamber of an RE. Figure 9 illustrates the influence of variations in the D/L on
the flame propagation and velocity streamlines in the cylinder at 21°EA BTDC, TDC, 15°EA
ATDC, and 48°EA ATDC. It can be seen that at the early stage of combustion, the flame
propagation was significantly faster for D/L values of 0.3 and 0.6 than that for D/L = 0.8,
and the flame spread area was the largest for D/L = 0.6. This was because the higher TKE in
the cylinder for the D/L values of 0.3 and 0.6 promoted flame propagation at the early stage
of combustion. After the TDC, the flame propagation area formed at the D/L of 0.6 was the
widest, and the spread of the flame to the front and rear end caps partially disappeared
at 48°EA ATDC. This showed that the intake port with D/L = 0.6 had the fastest flame
propagation velocity and the highest combustion rate. This was attributed to the maximum
in-cylinder TKE for D/L = 0.6 during the rapid combustion period. In addition, it could
also be seen from Figure 9 that the flame was propagated from the spark plug position to
the leading side of the combustion chamber, but it was difficult for it to propagate to the
trailing side of the combustion chamber due to the unidirectional flow field, which was the
main reason for the high fuel consumption and poor emission of the RE. This finding was
also obtained by other researchers [8].

The flame propagation and combustion rate were influenced by the chemical kinetic
reaction mechanism of the gasoline during the combustion process, as well as intermediate
element reactions, i.e., OH + H2 � H + H2O and H + O2 � O + OH, which directly
determined the combustion reaction rate [24]. Figure 10 shows the peak mass fractions
of H, O, and OH under different intake port schemes. It can be observed from the figure
that when D/L = 0.6, the concentration of active OH radicals produced in the combustion
chamber was the highest, which is 53.6% higher than the level with 0.3 and 7.5% higher
than the level with 0.8. The increase in OH concentration enabled the concentration of H
and O to increase, and this then enhanced the fuel combustion rate. In addition, the heat
release of the combustion reaction was mainly generated by the intermediate element
reaction of CO + OH � H + CO2 [25]. Therefore, the increment in the OH production also
increased the rate and amount of heat release in the combustion reactions in the combustion
chamber, which, in turn, boosted the in-cylinder temperature. This indicated that the intake
port with D/L = 0.6 had the maximum heat release and the highest temperature.

Figure 9. Flame position and velocity streamlines.
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Figure 10. Peak mass fractions of H, O, and OH.

The variations in the burned mass fraction in the cylinder according to eccentric angle
with different intake port structures are shown in Figure 11. According to the figure, it is
easy to notice that the in-cylinder heat release was sequentially delayed for the D/L values
of 0.6, 0.8, and 0.3. The intake port with the D/L of 0.6 had the earliest and fastest heat
release in the cylinder. The eccentric angle for reaching 90% of the burned mass fraction
for the intake port with the D/L of 0.6 was 78.85°EA ATDC, while the eccentric angles for
achieving 90% of the burned mass fraction for the D/L values of 0.3 and 0.8 were 120°EA
ATDC and 97.98°EA ATDC, respectively. This indicated that the intake port with D/L = 0.6
was the most conducive to promoting chemical reactions and increasing the rate of heat
release. This is due to the fact that the intake port with D/L = 0.6 enhanced the local flame
propagation rate and shortened the combustion duration.
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Figure 11. Variations in the burned mass fraction with the eccentric angle for different intake
port structures.

A comparison of the combustion durations with different intake port structures is
shown in Figure 12. EA0, EA50, and EA 90 indicate an eccentric angle corresponding to
0%, 50%, and 90% of the cumulative heat release from fuel combustion in the combustion
chamber, respectively. Typically, EA0–10 and EA10–90 denote the flame development and
flame propagation of burning mixtures, respectively, and EA50 denotes the combustion
efficiency of the fuel. It can be observed from Figure 12 that the values of EA0–10 for the
D/L values of 0.3 and 0.6 were significantly smaller than that with the D/L of 0.8, indicating
that the flames for the D/L values of 0.3 and 0.6 developed more rapidly at the initial stage
of combustion (as shown in Figure 9). Meanwhile, the value of EA10–90 for D/L = 0.6 was
decreased by 33.49% and 13.04% in comparison with those for the D/L values of 0.3 and 0.8,
respectively, indicating that the intake port with D/L = 0.6 was able to improve the flame
propagation speed and promote the combustion reaction in the cylinder. This was mainly
due to the fact that the intake port with D/L = 0.6 enabled the vortexes in the cylinder to
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form earlier and last longer, and the TKE was higher during the combustion stage, which,
in turn, promoted mixture formation and flame propagation in the combustion chamber.
Furthermore, the value of EA50 for D/L = 0.6 was significantly smaller than those for the
D/L values of 0.3 and 0.8, indicating that the in-cylinder combustion’s center of gravity was
advanced for D/L = 0.6. This improved the combustion efficiency and reduced combustion
losses, which is conducive to more useful work output.
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Figure 12. Comparison of the combustion durations with different intake port structures.

From the in-cylinder mean temperature in Figure 13 and the NO generation curve in
Figure 14, it can be seen that the rate and amount of NO generation were consistent with
the trend of variation in the in-cylinder mean temperature, which was attributed to the fact
that the conditions for NO generation are a high temperature and oxygen-rich atmosphere.
Near the TDC, due to the slow flame development and propagation speed (as shown in
Figure 9), the temperature in the cylinder changed slowly, and a smaller amount of NO is
generated. As the engine operated, the fuels burned rapidly, and the flame propagation
speed and heat release increased rapidly, which caused the in-cylinder temperature to rise
sharply and drove the rapid generation of NO. For the intake port with D/L = 0.6, the NO
generation rate was the fastest, and its peak mass fraction of NO was increased by 197%
and 104% in comparison with those for 0.3 and 0.8, respectively. This reason is that, on the
one hand, the form of the movement of the mixtures entering the cylinder from the intake
port with D/L = 0.6 accelerated the flame propagation (as shown in Figure 9) and improved
the fuel combustion rate and heat release rate (as shown in Figure 11), which accelerated
the NO generation rate. On the other hand, after the NO generation in the combustion
chamber reached the maximum value, it kept a relatively stable value until the exhaust
valve was opened.
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Figure 13. Comparison of the in-cylinder mean temperature for different intake port structures.
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Figure 14. Comparison of the mass fraction of NO for different intake port structures.

It can also be concluded from Figure 14 that the amount of NO generated for the intake
port with D/L = 0.8 was higher than that for D/L = 0.3. This was mainly due to the fact
that when D/L = 0.8, the heat release of fuel combustion was faster (as shown in Figure 11),
and the combustion duration was shorter (as shown in Figure 12), which led to a higher
peak in-cylinder temperature and promoted the generation of NO. However, this problem
can be improved through the post-treatment of exhaust and lean combustion.

4. Conclusions

In this work, a three-dimensional CFD simulation model of a small-scale RE based
on a suitable turbulent model and a reduced gasoline chemical reaction mechanism was
established. The effects of the taper intake port structure on the flow field distribution and
combustion process in the combustion chamber of the small-scale RE were numerically
analyzed. The main conclusions that were obtained are as follows:

(1) The in-cylinder pressure of the RE did not change linearly with the D/L of the intake
port in a single direction, but was divided into three levels. The maximum in-cylinder
pressure was at the D/L of 0.6, and the minimum in-cylinder pressure was at the D/L
of 0.8. In addition, the eccentric angle corresponding to the peak in-cylinder pressure
was consistent with the trend of the variation in the peak pressure.

(2) The gas flow in the intake port of the three representative pressure levels was unidirec-
tional, which caused differences in the vortexes that were formed in the combustion
chamber of the RE, and this was mainly reflected in the vortexes that were formed on
the leading side of the combustion chamber. This was also the main factor affecting
the combustion performance of the small-scale RE. When the D/L was 0.6, the vortexes
on the leading side of the combustion chamber formed early and disappeared late,
indicating that the vortexes in the combustion chamber lasted longer, and this was
conducive to mixture formation.

(3) The intake port with the D/L of 0.6 promoted the in-cylinder combustion reaction and
improved the combustion efficiency of the RE due to the higher flame propagation
speed and the earlier center of gravity of combustion, which reduced the combustion
losses and facilitated a more useful work output. However, owing to its higher peak
in-cylinder temperature, it led to an increase in NO emissions. As for the high levels
of emission of NO, these could be reduced through the post-treatment of exhaust and
lean combustion.
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Abbreviations

CFD Computational fluid dynamics
RE Rotary engine
TKE Turbulent kinetic energy
EA Eccentric angle
TDC Top dead center
BTDC Before top dead center
ATDC After top dead center
BDC Bottom dead center
BBDC Before bottom dead center
ABDC After bottom dead center
RON Research octane number
AMR Adaptive mesh refinement
OH Hydroxy
CO Carbon monoxide
CO2 Carbon dioxide
NO Nitric oxide
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Abstract: To improve the performance of predictive energy management strategies for hybrid pas-
senger vehicles, this paper proposes an Encoder–Decoder (ED)-based velocity prediction modelling
system coupled with driving pattern recognition. Firstly, the driving pattern recognition (DPR) model
is established by a K-means clustering algorithm and validated on test data; the driving patterns can
be identified as urban, suburban, and highway. Then, by introducing the encoder–decoder structure,
a DPR-ED model is designed, which enables the simultaneous input of multiple temporal features to
further improve the prediction accuracy and stability. The results show that the root mean square
error (RMSE) of the DPR-ED model on the validation set is 1.028 m/s for the long-time sequence
prediction, which is 6.6% better than that of the multilayer perceptron (MLP) model. When the two
models are applied to the test dataset, the proportion with a low error of 0.1~0.3 m/s is improved by
4% and the large-error proportion is filtered by the DPR-ED model. The DPR-ED model performs
5.2% better than the MLP model with respect to the average prediction accuracy. Meanwhile, the
variance is decreased by 15.6%. This novel framework enables the processing of long-time sequences
with multiple input dimensions, which improves the prediction accuracy under complicated driving
patterns and enhances the generalization-related performance and robustness of the model.

Keywords: passenger vehicle; velocity prediction; encoder–decoder; driving pattern recognition

1. Introduction

Energy management strategies are used to determine the power distribution between
different energy sources at each moment to improve the performance of hybrid vehicles
while satisfying torque requirements and are one of the key technologies of hybrid vehi-
cles [1]. Up to now, scholars have conducted a great deal of research on energy management
strategies, which are mainly divided into three major categories: rule-based, optimization-
based, and learning-based [2–4]. Rule-based energy management strategies (RB-EMSs) are
designed with suitable control rules for energy distribution according to the characteristics
of the controlled object. The process of design depends mainly on the designers’ knowledge
and continuous exploration and experimentation. Moreover, the differences in the control
rules between different models require repeated calibrations and cause difficulty with re-
spect to obtaining optimal results. RB-EMSs are widely used due to their simple logic, easy
implementation, and high stability [5]. As its research progressed, the addition of fuzzy
logic improved the performance of RB-EMSs [6]; however, on the one hand, researchers
continue to pursue higher requirements for all aspects of hybrid vehicle performance, and
on the other hand, the disadvantages of RB-EMS will gradually appear due to its inherent
poor portability, cumbersome tuning of parameters, and inability to achieve optimal control.
Optimization-based energy management strategies use optimization algorithms for energy
management, which are less empirically dependent than RB-EMSs and can achieve better
results. Instantaneous optimization algorithms are those algorithms that do not need to
know all the path-related information and can be optimized using only the current infor-
mation, including the equivalent fuel consumption minimization strategy (ECMS) [7,8]
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and adaptive equivalent fuel consumption minimization strategy (A-ECMS) [9,10]. The
optimization effect of both ECMS and A-ECMS are closely related to the equivalence factor
and often have some distance from the global optimal solution. The global optimization
algorithm represented by dynamic programming (DP) can obtain a global optimal solution,
but at the same time, DP needs to anticipate the vehicle-state information of the entire
future driving cycle in advance. The optimal strategy is obtained only for that particular
cycle. Therefore, given the complex and variable driving conditions in the real world,
such energy management strategies cannot be applied in practice and are often used as
references for evaluating and optimizing other energy management strategies [11,12]. With
the development of energy management, algorithms such as model predictive control
(MPC) obtain locally optimal solutions by continuous roll-forward optimization within
the prediction-sight distance, which are neither short-sighted nor sensitive compared to
instantaneous optimization algorithms. An advanced knowledge of all the future driving
information is not required compared to global optimization algorithms, so it has more
potential for real-vehicle applications [13]. With the development of artificial intelligence
technology, learning-based algorithms based on Reinforcement Learning (RL) have gained
widespread attention, as they can learn energy management criteria from training sam-
ples [14], be applied to different driving conditions [15], adapt to different prediction sight
distances [16], require no discretization of state nor control parameters [17], and provide
the possibility of finding a theoretical global optimal solution [18]. In summary, short-term
predictive energy management strategies that obtain locally optimal solutions by rolling the
prediction sight distance are the focus of the current research. Among them, the short-term
vehicle velocity prediction algorithm is the top priority of the predictive energy manage-
ment strategies, which greatly affects the performance of these strategies [19,20], and the
velocity prediction algorithm also plays a crucial role in the fields of traffic flow prediction
and active vehicle safety control [21].

The mainstream of short-term vehicle velocity prediction methods is divided into
stochastic and deterministic vehicle velocity prediction algorithms [22]. The Markov
chain-based vehicle velocity prediction algorithm is the most representative stochastic
vehicle velocity prediction algorithm [23,24]. Although the accuracy of vehicle velocity
prediction can be improved by establishing a multi-level Markov chain model, it leads to an
exponential expansion of the size of the probability matrix, which leads to an exponential
rise in the computation time of the algorithm, and even so, it is still difficult to cover all
possible Markov states [25]. Deterministic velocity prediction algorithms can be further
divided into parametric and non-parametric velocity prediction algorithms. A parametric
vehicle velocity prediction algorithm refers to the prediction by establishing a model with
parameters, and the typical case is to establish an auto-regressive moving average model
(ARMA) for a time series analysis, which is proven to have a wide range of engineering-
control application cases [26]. However, for vehicles driving on roads, the randomness
of the travel path and the lack of information sharing of individual vehicles leads to
limitations on the ability of parametric vehicle velocity prediction models, causing larger
prediction errors than non-parametric vehicle velocity prediction algorithms [27]. Instead,
non-parametric velocity prediction algorithms use historical data to build a prediction
model for future velocity prediction, so they are also called data-driven velocity prediction
algorithms and currently represent a growing trend [28]. The neural network model is
a typical data-driven algorithm due to its powerful nonlinear mapping capability and
strong robustness. It has become one of the key technologies in the field of predictive
modeling and optimal control of nonlinear systems [29] and is also widely applied to
the field of vehicle velocity prediction. Scholars have conducted in-depth research on
neural network-based vehicle velocity prediction methods and fruitful results have been
achieved. Artificial neural networks (ANN) [16], long short-term memory neural networks
(LSTM) [30], nonlinear autoregressive neural networks with additional inputs (NARX) [31],
and RBFNN [32] are several neural networks that have been mostly studied in the field
of vehicle velocity prediction. Among them, LSTM networks are widely used in time
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series prediction models and can maintain the internal input memory and compensate
for the gradient vanishing and gradient explosion that exist in RNN during the training
process [33]. In the field of vehicle velocity prediction, LSTM networks are currently used as
the “Encoder” structure with a multi-step input and single-step output, and the “Decoder”
structure with a single-step input and multi-step output. The former can achieve the
effect of sequence prediction by combining the output as a new input, but the velocity of
computation needs to be improved; the latter can achieve sequence prediction directly, but
the structure lacks memory for the information of long history sequences.

Up to now, there are still few relevant studies on the sequence-to-sequence vehicle ve-
locity prediction model established by the encoder-decoder framework. Nevertheless, with
the continuous development of vehicle-networking technology, the information interaction
data provided by vehicle networking can also be used jointly with neural networks in the
future [34], and the relevant information used as the input of neural networks can also
improve the vehicle velocity prediction accuracy and robustness. Therefore, it is necessary
to provide a solution for the encoder–decoder-based time series prediction models with
different input and output dimensions. In this paper, an innovative encoder–decoder-based
velocity prediction modelling system for passenger vehicles coupled with driving pattern
recognition is proposed. The model uses the encoder–decoder framework with LSTM units
as neurons to establish a multi-input sequence-to-sequence model based on the characteris-
tics of vehicle velocity sequences and the results of driving pattern recognition. Moreover,
with the continuous development of the Internet of vehicles, an increasing amount of
time-domain information can be accessed by vehicles. The multi-input feature of this
model can improve the efficacy of velocity prediction by rearranging the input samples and
retraining them as a “skeleton”, which is very rare in the existing similar model. Section 2
introduces the establishment of the method of the driving-pattern-recognition model and
recognition performance as the foundation for the following velocity prediction model.
Section 3 proposes the velocity prediction based on the Encoder–decoder model, including
the revised structure under the different dimensions of input and output sequences and
the training method. The effects of the history window, prediction window, and number of
neurons on the model performance are analyzed in Section 4, and the performance of the
optimal model is compared with that of the traditional neural network. Finally, in Section 5,
conclusions are presented.

2. Driving Pattern Recognition

This section will take the accuracy of recognition, the real-time calculation speed, and
the compilation feasibility into consideration and find a method that can use the current
and historical driving information for driving pattern recognition. In this section, the
K-means clustering algorithm is used for driving pattern recognition. Firstly, the training
matrix is obtained with standard driving cycles, and the K-means clustering algorithm
model is trained. Then, the model is used to recognize the driving patterns in the test data
and the results are shown.

2.1. Dataset and Characteristics

One of the keys to recognizing driving patterns is to find a set of features that can
represent certain characteristics of driving pattern information, such as the average velocity
of the past period of time, idle ratio, vehicle acceleration, etc., and they are used as the basis
for recognizing the current driving patterns of the vehicle. In recent years, the selection
of features to reflect the characteristics of driving patterns, which can then be applied to
the process of driving pattern recognition, has been a hot spot of research, in which the
difficulty lies in the appropriate number and type of features to reflect the characteristics
of driving patterns. As far as the number of features is concerned, selecting too many
features or combining them with the method of principal component analysis for driving
pattern recognition may lead to an increase in the difficulty of real-time online analysis,
whereas selecting too few features will not accurately reflect the characteristics of driving
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patterns and lead to the poor accuracy of driving pattern recognition [35]. Hu et al. selected
four features—to name three: the average velocity, idle ratio, and cruising time ratio—for
driving pattern recognition, which ensured the accuracy of the model and greatly improved
the computational real time [36].

In view of the above research results, three features have been selected in this paper to
balance the real-time properties, accuracy, and compilation feasibility of driving pattern
recognition, including the average velocity (v_mean), maximum velocity (v_max), and idle
ratio (T_idle).

After the selection of the features, typical driving cycles need to be selected as the
training set; six standard driving cycles are selected in this paper. The features of each
standard driving cycle are calculated separately and used to train the K-means clustering
model, so that the model can realize the real-time recognition of any driving patterns
in actual driving. Standard driving cycles are mostly designed for the driving pattern s
in their respective regions. In order to enhance the adaptability of the traffic conditions
in different regions, this paper takes into full consideration the representative driving
cycles of various regions in the world when selecting the typical driving cycles so that the
regional limitations of the recognition on driving patterns is reduced. As a result, this paper
refers to six representative standard driving cycles, including the WLTC, which is the most
commonly used in the world; the NEDC introduced by the European Union; the CLTC-P
introduced by China; and the Artemis cycles introduced by the United States. The velocity
versus time of the standard driving cycles selected in this paper are shown in Figure 1.

 

Figure 1. Velocity versus time of typical driving cycles for K-means clustering algorithm training.

After the typical driving cycles are selected, the division method of the driving cycle
samples needs to be determined. The aim of the driving cycle division is to build a sample
database, which is the premise of the driving pattern clustering analysis. In the existing
work, there are two methods used to divide the driving cycle samples: one is the division
method based on a certain time window, and the other is the division method based on
micro-trip driving cycle samples. In this paper, we adopt the division method based
on a certain time window, as shown in Figure 2. When the time window is determined
(the length of the time window is selected as 60 s in this paper), the velocity sequence is
intercepted every 60 s as a driving cycle sample from the starting point to the end.

177



Sustainability 2022, 14, 10629

Figure 2. Sample division method based on 60 s time window.

2.2. K-Means Cluster Analysis

A K-means algorithm is applicable to large sample data for clustering and enabling
a more reasonable classification. The optimization of K-Means entails minimizing the
within-cluster sum of squared errors (SSE), as shown in Formula (1):

SSE =
k

∑
m=1

∑
x∈Ci

dist(X, ci)
2 =

k

∑
m=1

∑
x∈Ci

‖X, ci‖ (1)

where dist(X, ci) is the distance between object X and the clustering center ci, and dist
denotes the Euclidean distance between any two objects in D.

The SSE can be analyzed by the elbow rule. The SSE decreases with the increase in the
number of clustering results, but for data with a certain degree of differentiation, the SSE
improves greatly when a certain point is reached and decreases slowly afterwards, and this
point can be considered as the point with the best clustering performance.

For a reasonable evaluation and analysis of the clustering performance, the Silhouette
Coefficient (SC) evaluation method is also a commonly used evaluation method [37].
Assuming that the average distance of the objects in the clusters containing data x and x’ is
defined as a(x), b(x) is the minimum average distance from the cluster containing x to all
the clusters that do not contain x′. a(x), b(x), and the Silhouette coefficient S(i) are defined
as follows:

a(x) =
∑x′∈Ci ,x �=x′ ‖x− x′‖

|Ci − 1| (2)

b(x) = min
Cj :1≤i≤K,x �=x′

∑x′∈Cj
‖x− x′‖∣∣Cj
∣∣ (3)

S(i) =
b(i)− a(i)

max{b(i)− a(i)} (4)

where a(i) denotes the maximum distance of the sample i from other samples in the same
cluster, and b(i) denotes the minimum distance of the sample i from all samples in the other
clusters.

The optimal number of clustering centers can be determined based on S(i). The closer
S(i) is to 1, the more reasonable the sample clustering result; the closer S(i) is to −1, the
less accurate the sample clustering result; if S(i) is close to 0, the sample is at the boundary
position between two clustering results.

Combining the SC evaluation method and the elbow rule of clustering, the SSE and
S(i) versus the number of driving pattern clustering centers are calculated, respectively, as
shown in Figure 3.
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Figure 3. SSE and S(i) versus the number of driving pattern clustering.

It is evident from Figure 3 that the changing rate of SSE is greatly decreased when the
number of clustering, k, is taken as 3 or 4, so k = 3 or k = 4 can be considered as the number
of clustering; the Silhouette coefficient is 0.55 when k is taken as 3 and 0.50 when k is taken
as 4. So, the clustering result is more reasonable when k is taken as 3 by the SC evaluation
method. As a result, the number of clustering selected in this paper is 3. Combined with
the actual driving scenarios, these 3 patterns are defined as urban, suburban, and highway.

The clustering results are shown in Figure 4 on training data and under the three-
dimensional coordinates of the average velocity, idle ratio, and maximum velocity.

Figure 4a shows the prediction results from standard cycles as training data. The
driving-pattern-recognition model can match the patterns represented by the different time
axes of each standard cycle. Further analysis of the clustering results in Figure 4b shows
that the K-means clustering center of red points is (18.10, 0.31, 38.00), which has a low
average velocity, a high idle ratio, and a low maximum velocity, so the red points represent
a congested urban driving condition. The K-means clustering center of the blue points
is (100.60, 0, 111.94); the average velocity of this cluster is high, the idle ratio is 0, and
the maximum velocity is also high, so the blue points represent smooth highway-driving
conditions. The K-means clustering center of the green points is (48.80, 0.04, 65.74), and the
average velocity, idle ratio, and maximum velocity of this cluster are between the congested
urban driving condition and the smooth highway driving condition. As a result, these
points represent the suburban driving conditions. Thus, the driving conditions can be
broadly classified into three typical patterns, namely, urban, suburban, and highway. The
classification results are consistent with the actual driving conditions mentioned above, so
the recognition results of the model can be considered reasonable.

2.3. Driving Pattern Recognition

Since only three features are used for driving pattern recognition in this paper, after
ensuring the real-time model calculation and the low compilation difficulty of the algorithm,
in order to further illustrate the accuracy of the driving pattern recognition, actual road
spectrum data are collected as a test dataset to verify the recognition accuracy of the model
based on the K-means clustering algorithm. The driving-pattern-recognition model will
calculate the features in real time and output the recognition results based on the historical
60 s data during the driving process. Due to some abnormal data on velocity caused by
the driver’s operation and GPS device in the actual road spectrum data (as is the case for
many real-world applications), the impulse noise will affect the characteristic of v_max,
which may cause an instance of incorrect recognition by the model. When applying the
driving-pattern-recognition model to practical predictions, the measured velocity signal
should be smoothed using the moving average-filtering method to reduce the random
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impulse noise [38]. As shown in Formula (5), the basic idea of the moving average filtering
method is to perform local averaging on a small number of points along the data of length
N, thereby filtering out random noise.

(a)

(b)

Figure 4. Clustering results (a) shown on training data and (b) under the three-dimensional coordi-
nates.

y f (k) =
1
m ∑k+(m−1)/2

k−(m−1)/2 y(i) (5)
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where y(·) represents the original data; y f (·) represents the filtered data; m is the number
of data points used for filtering, which is odd; and i and k represent the data point number.
In this paper, m is selected as 5, which represents a 5-second moving average.

Figure 5 represents the prediction results of the driving-pattern-recognition model on
the filtered test data.

Figure 5. Prediction results of driving-pattern-recognition model based on actual road spectrum data
after filtering method.

As shown in Figure 5, the total length of the actual road spectrum data is about 16,000 s,
which includes an about 3500 s length of the urban pattern, a 6250 s length of the suburban
pattern, and a 6250 s length of highway pattern. Three patterns are shown in the figure as
driving patterns one, two, and three, which are indicated by the blue dashed line. The red
solid line indicates the prediction result of the driving-pattern-recognition model based
on the K-means algorithm. The comparison shows that the driving-pattern-recognition
model can identify urban patterns completely and accurately, and the recognition accuracy
rate reaches 100%. The suburban pattern is more complicated due to the intermingling
of vehicles driving at medium and low velocity or even idling, so the model identifies
some of the segments with lower average velocities (e.g., 9000~9100 s segments) or longer
idling ratios (e.g., 9600~9800 s segments) as an urban pattern. The prediction result of the
highway patterns is also accurate, among which the velocity in the segment 12,750–12,950 s
has a sudden drop, which may be due to unexpected traffic accidents or other unexpected
situations in the highway pattern at the time of driving, so it cannot be used as a typical
feature of a highway pattern; instead, it is more reasonable for it to be identified as a
suburban or urban (congested) pattern. In summary, the driving-pattern-recognition model
in this paper ensures the real-time calculation speed and low compilation difficulty of the
algorithm, while its recognition accuracy is satisfactory, reaching 84.1%, which can be used
as the basis for subsequent research.

3. Velocity Prediction Based on the Encoder–Decoder Model

3.1. Basic Conception of LSTM

The LSTM network is an improvement of RNN with a unique store-and-forget function
compared to the traditional RNN. By learning the sequence input and extracting the hidden
sequence features, it can obtain the dependency relationship between sequences accurately,
and overcome the complications of gradient vanishing, gradient explosion, and long-term
memory disappearance that occur in RNN during training [39].

There are three inputs to the LSTM network at moment t: the input value xt at the
current moment, the output value ht−1 at the previous moment, and the cell state ct−1. The
input gate it, the output gate ot, and the forget gate ft receive the same inputs [ht−1, xt],
which are used to control the update process of the cell state ct after the activation function
σ. The basic LSTM network is shown in Figure 6.
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Figure 6. Basic LSTM Network.

A gate is a fully connected layer that receives a vector as an input, while the output is
a vector of real numbers between 0 and 1. W is the weight matrix of the gate and b is the
bias; then, the gate can be represented as:

g(x) = σ(Wx + b) (6)

where σ denotes the activation function. In this paper, the Sigmoid function is used as the
activation function to adjust the input [ht−1, xt] to the (0,1) interval.

The input gate it controls how much of the input xt is saved to the cell state ct at the
current moment, and is defined as:

it = σ(Wi[ht−1, xt] + bi) (7)

The forget gate ft controls how much of the cell state ct−1 of the previous moment is
saved to the current moment state ct, and is defined as:

ft = σ
(

Wf [ht−1, xt] + bi

)
(8)

The output gate ot controls how much of the state ct at the current moment is output
to the current output value ht, and is defined as:

ot = σ(Wo[ht−1, xt] + bi) (9)

The cell state c̃t of the current input is described according to ht−1 and the current
input xt, and is defined as:

c̃t = tanh(Wc[ht−1, xt] + bc) (10)

The cell state ct is adjusted by the input gate it and the forget gate ft and is defined as:

ct = ftct−1 + it c̃t (11)

The final output ht of the network is determined by both the output gate ot and the
cell state ct and is defined as:

ht = ottanh(ct) (12)

In Formulas (7)–(10), the matrices Wi, Wf, Wo, and Wc are the gate weight matrices and
the vectors bi, bf, bo, and bc are the bias terms of the gates.

The information used for updating the cell state ct, ft, and ot are determined by the
gating vectors in Formulas (7)–(10). The cell state and output are updated by Formulas (11)
and (12). The cell state is reset or restored by ft and the new state ct is obtained by adding
partial information through the input gate it, while the hidden state ht is controlled and
updated by the output gate ot.
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3.2. An Encoder–Decoder Structure Coupled with Driving Pattern Recognition

The encoder–decoder framework is a structure for time series analysis. In this paper,
LSTM neurons are used for establishing the encoder–decoder model and coupled with
the driving pattern recognition results obtained above. This multi-input model inputs
both the vehicle velocity and driving pattern recognition sequences and the constructed
input sequences are encoded and decoded to achieve vehicle velocity prediction, as shown
in Figure 7. The driving pattern recognition-encoder decoder (DPR-ED) model mainly
contains two parts: the encoder side and the decoder side.

(a)

(b)

Figure 7. The diagram of the encoder–decoder framework: (a) Traditional encoder–decoder frame-
work; (b) DPR-ED model.

The operation of the ED-based model consists of two phases: training and testing.
The training phase is for learning the implied knowledge and experience from the training
data, and the weight matrix of the model is trained for the testing phase; the testing phase
applies the trained model and the input data for testing to calculate the corresponding
output data. The training and prediction samples are the preparatory work for running the
model. All the above-mentioned training and prediction datasets of the DPR-ED model are
closely related to the parameters of the history window (Wt), which represents the length
of the history series, and the prediction window (Wn), which represents the length of the
prediction series. For the traditional ED framework shown in Figure 7a, the input of the
training data is a Wt × M matrix and the output of the training data is a Wn × M matrix;
the input of the prediction data is a Wt × 1 vector and the output of the prediction data
is a Wn × 1 vector, where M is the number of training samples. For the DPR-ED model
proposed in this paper, shown in Figure 7b, the training data input is a C×Wt ×M tensor
and the training data output is a Wn × M matrix; the prediction data input is a C ×Wt
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matrix and the prediction data output is a Wn × 1 vector, where C is the number of features.
The number of features in this paper is two, namely, vehicle velocity and driving pattern.

The operation process of the DPR-ED model is as follows. Using the time window
sliding method, M training input samples are intercepted from the sequence of typical
driving cycles and the corresponding driving pattern sequence, each of which is in the form

of
[

v1
r1

v2
r2

. . .
. . .

vt
rt

]
, forming the training input data tensor Xtrain = 2×Wt ×M. According to

the same method, M training output samples are intercepted from the sequence of typical
driving cycles and the corresponding driving pattern sequence. Each of them is in the
form of [vt+1 vt+2 . . . vt+n], forming the training output data matrix Ytrain = Wn ×M. The
number of training samples obtained by the time window-sliding method in this paper
is 7914, that is, M = 7914. Similarly, the validation input data tensor Xval = 2×Wt × N
and the validation output data matrix Yval = Wn × N are obtained. In this paper, the
time window-sliding method is used to randomly select one-tenth of the actual road
spectrum data as the validation set. Such a small amount of extraction does not affect the
persuasiveness of the model analysis on the test set, and even improves the performance of
the model by using the complete input of typical driving cycles as training. The number of
validation samples in this paper is 1594, that is, N = 1594. After the model is trained, the
test data input matrix Xtest = 2×Wt is intercepted from the test dataset using the time
window-sliding method. The prediction result will be calculated by the trained model as
the data output vector Ytest = Wn × 1, which is the predicted vehicle velocity sequence.

In terms of the structure of the model, the number of layers of the DPR-ED model in
this paper is fixed to a single layer. Setting the number of nodes in the input layer—which
represents the length of the historical velocity sequence, Wt—too small may decrease predic-
tion accuracy for a lack of historical information, while setting it too large may increase the
complexity of the model structure and thus decrease the computational speed. Regarding
the number of nodes in the output layer, which represents the length of the predicted
vehicle velocity sequence, Wn, it is indicated in the literature [22] that a prediction sight
distance between 1~10 s is beneficial for the PEMS effect of HEVs, while [40] determines
it as 5 s and obtains the best results. Considering the above, in the subsequent study of
this paper, the range of Wn is set as 1~5 s, and the range of Wt is set as twice the length
of Wn, which is 2~10 s. A detailed parameter study and optimization of Wn and Wt are
carried out in the subsequent section. The number of neurons in the hidden layer deter-
mines the performance of the neural network. Too few neurons will result in the model’s
inability to obtain enough fitting features and too many will cause the model to run slower
and be prone to overfitting, so both conditions will lead to poor prediction results of the
trained neural network. The number of hidden-layer neurons is also one of the important
parameters to be studied and optimized in detail in this paper.

In order to evaluate the prediction accuracy, different evaluation methods have been
used in the literature, the most commonly used of which is the root mean square error
(RMSE), which reflects the error between the predicted vehicle velocity and the actual
vehicle velocity at each step of the predicted sight distance, as shown in Formula (13):

RMSE =

√
1
n ∑n

k=1

(
Yk

P −Yk
A
)2 (13)

where n is the length of predicted sight distance, which represents the length of the pre-
dicted vehicle velocity. It is equal to the number of output nodes of the DPR-ED model. Yk

P
is the predicted vehicle velocity value corresponding to the kth predicted sight distance
(k ∈ [1, n]); Yk

A is the actual vehicle velocity value corresponding to the kth predicted sight
distance point.

Since the RMSE can only reflect the prediction accuracy at each forecasting step and
cannot be used to evaluate the average prediction accuracy of the whole forecasting process,

184



Sustainability 2022, 14, 10629

the introduction of an average root mean square error (RMSEA) is proposed as shown in
Formula (14):

RMSEA =
1
M ∑M

step=1 RMSE (14)

where M is the number of samples. For the sake of the conciseness of expression, the RMSE
is used to denote the average root mean square error in all the subsequent research in this
paper.

In this paper, to manifest the performance enhancement effect of the DPR-ED model,
the traditional MLP model is also established for comparison. The specific method can be
found in the literature [41] and the method for comparison draws on the experience of [42].

4. Results and Discussion

Firstly, in order to obtain the optimal model performance, the relationship between
the number of neurons of the traditional MLP model and the number of LSTM neurons of
the ED-based models versus the fitting accuracy needs to be investigated. In the training
process of the models, both the training and validation datasets were normalized. The
RMSE was used as the loss. The Adam algorithm was used to update the neural network
weights and the early stopping mechanism was introduced to optimize the epochs of
training to prevent the overfitting of the model. The parameter of early stopping was
defined as patience = 10, which means the training is stopped when the performance of
the loss in the validation set is not further improved after ten consecutive weight updates.
Finally, in order to better evaluate the compatibility, the accuracy and stability of the model
with respect to the parameter length, the history window, and the prediction window were
selected as the maximum values (10 s and 5 s) in this study, so that the trained model would
have better compatibility with simpler cases. Each model was randomly assigned initial
weights, which was repeated five times during training, and the results were analyzed by
box plots. The influences of the different numbers of neurons on the learning performance
of the traditional MLP model, Basic ED model, and DPR-ED model for the validation set
are shown in Figure 8.

  
(a) (b) (c) 

Figure 8. The learning outcome for validation data: (a) MLP model; (b) Basic ED model; (c) DPR-ED
model.

Figure 8a shows the accuracy of the traditional MLP model versus different numbers
of hidden-layer neurons in the validation set, where each neuron is a perceptron. The mean
and standard deviation of the RMSE of the MLP model in the validation set show a trend of
decreasing and then increasing as the number of hidden-layer neurons of the MLP model
increases, and reach the minimum values of 0.000981 and 0.000021, respectively, when the
number of hidden-layer neurons is selected as 30. The accuracy of the basic ED model and
DPR-ED model versus different numbers of hidden-layer neurons in the validation set are
shown in Figure 8b,c. The neurons in both models are LSTM units. The result indicates that
when the number of hidden-layer neurons is taken as 10 for the basic ED model and less
than 20 for the DPR-ED model, the performance of the models still cannot be improved
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(poor stability and accuracy) even after the iterations are completed, which is due to the fact
that a simple network is unable to present the characteristics of the historical velocity and
the impact of historical information on the future velocity. As the number of hidden-layer
neurons increase, the model performance approaches excellence and stability. Therefore,
the optimal numbers of hidden-layer neurons of the basic ED model and DPR-ED model
are 20 and 30, respectively. The mean values of the RMSE are 0.000872 and 0.000862 and
the standard deviations of the RMSE reach 0.000023 and 0.000032, respectively.

Through the above analysis, the structure of the traditional MLP model is determined
as a network with 30 hidden-layer neurons in a single layer, and the structure of the basic
ED model and the DPR-ED model is determined as a network with 20 and 30 hidden-layer
neurons (LSTM units) in a single layer in the subsequent study. The reason why the DPR-
ED model has more hidden-layer neurons than the Basic ED model is probably because
the DPR-ED model accepts a multi series input and therefore requires more LSTM units to
accurately render the corresponding features.

Figure 9 shows the accuracy of each model versus the history window and prediction
window on the test set and comparison.

 
(a) (b) 

 

(c) 

Figure 9. The accuracy of each model versus the history window and prediction window on test set
and comparison: (a) MLP model; (b) DPR-ED model; (c) The comparison of basic ED model and
DPR-ED model (history window = 10 s).
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Figure 9a,b show the impact of different history and prediction windows on the
accuracy of the traditional MLP model and the DPR-ED model on the test set. From the
results of these two figures, it can be clearly seen that both the history and prediction
window directly affect the prediction accuracy of the model. For the MLP model, the
history window has a slight effect on the prediction accuracy of the model (as seen from the
equipotential line); that is, the larger the history window for the same prediction window
case, the more the RMSE decreases. For the DPR-ED model, the change of the history
window has little effect on the prediction accuracy of the model, so the input sequence
length of the model is also less sensitive. The prediction accuracy decreases significantly as
the prediction window increases, so in the process of its application in a real vehicle, an
excessively large prediction window is generally not used. In addition, it is obvious from
the figure that the accuracy of the DPR-ED model is higher than that of the MLP model to
different degrees under the same value of the history window and the prediction window;
the performance of the DPR-ED model is slightly higher than that of the MLP model when
the prediction window is small (e.g., 2 s) For instance, the RMSE of the MLP model at a
history window of 6 s is 0.483 m/s, while the RMSE of the DPR-ED model is 0.476 m/s,
which demonstrates a slight improvement of 1.4%. When both the history and prediction
window become larger, the DPR-ED model shows a greater advantage: the RMSE of the
DPR-ED model is 1.028 m/s while the RMSE of the MLP model is 1.096 m/s at the history
and prediction windows of 10 s and 5 s, respectively, which is a 6.6% deterioration in
performance compared to the former. Figure 9c shows the performance improvement of the
DPR-ED model compared to the basic ED model in the case of long prediction sequences.
In addition to the role of the ED frame, which can better handle time series problems,
when the prediction window is large, the LSTM neurons of the DPR-ED model receiving
multidimensional inputs are also able to parse more complex information, so the accuracy
is further improved by about 2.5% compared to the basic ED model.

Figure 10 shows the prediction results of the DPR-ED model from the test set. Since the
total simulation time is too long and too many data points are not conducive to graphical
analysis, the results of the urban, suburban, and highway patterns are intercepted to 1000 s
each. In order to analyze the prediction performance for the five steps more clearly, the
local velocity prediction trajectories for two random time points with different driving
pattern characteristics are compared in Figure 11.

The red curve in Figure 10 represents the velocity of the five future-prediction steps,
and the blue curve represents the actual velocity data. Under the different driving patterns,
the DPR-ED model can basically respond to the transient process and adjust the predicted
velocity within 5 s, which shows that the DPR-ED model proposed in this paper is effective.
Figure 11a shows the typical characteristics of the urban driving pattern and its prediction
results. It is shown from Figure 11a that the urban driving pattern contains frequent
accelerations and decelerations, and the predicted velocity is close to the actual velocity
when the vehicle experiences low deceleration or a smooth large deceleration at 767 s and
774 s. If a sudden change in acceleration or deceleration occurs (reflecting the various
complex road conditions that occur in the urban driving pattern during actual driving),
(i.e., 757 s), the predicted velocity deviates from the actual velocity, but still follows the
trajectory of the trend. Figure 11b shows the typical characteristics of the highway driving
pattern and its prediction results. Figure 11b indicates that the highway driving pattern
shows a relatively gentle high-speed cruise or small speed changes at most of the time. The
predicted velocity of the DPR-ED model also shows a relatively gentle change trend in the
highway driving pattern, which is close to the actual speed. It is evident that since the
DPR-ED model additionally accepts the driving pattern sequence information, it can better
predict the typical characteristics under different driving patterns.
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Figure 10. Velocity prediction result of the DPR-ED model: (a) City pattern; (b) Suburb pattern; (c)
Highway pattern.
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(a) (b) 

Figure 11. Local velocity prediction of DPR-ED model for 5 prediction steps: (a) City pattern;
(b) Highway pattern.

It is worth noting that even though the predicted velocity corresponds well to the
actual velocity, the predicted velocity seems quite noisy, especially in the city pattern. Firstly,
the unfiltered velocity could be one of the reasons for this phenomenon, as the impulse
noise of the data itself will definitely affect the prediction result. Figure 12 shows the
prediction results of the DPR-ED model on the city part of the filtered test set. The filtering
method is five-second moving average, which has been mentioned above. Secondly, the
ability to change the speed of the applied vehicle should be examined and limited while
the torque limitation exists for the power system of a certain vehicle. Figure 13 shows the
acceleration distribution of the prediction results by the DPR-ED model on the raw test set.

 
Figure 12. The prediction results of the DPR-ED model on the city part of the filtered test set.

As shown in Figure 12, after filtering the impulse and high frequency noise in the raw
test data, the velocity prediction stability is improved significantly in the area where the
sudden change is large. The RMSE of the prediction results from the filtered test set is
an exceptional 0.79 m/s. It indicates that a low-noise vehicle speed signal plays a crucial
role in the efficient operation of the model. Achieving signal noise reduction is not within
the scope of this paper, so the following analysis is based on raw data. However, for
real-world applications, high-precision GPS and advanced signal-processing techniques
should be coupled as much as possible. Figure 13 shows that the acceleration distribution

189



Sustainability 2022, 14, 10629

is an approximate normal distribution, while the acceleration proportion is slightly more
than the deceleration proportion. A small number of data points exhibit a changing rate of
velocity greater than 1 m/s, and there are individual points with a changing rate greater
than 1.5 m/s, which may also add to the noise of the model. When the power limit or
driving style does not allow for such an acceleration, a clipping method can be applied
during the real-world application of the model to correct the prediction results within the
allowed acceleration range.

Figure 13. The acceleration distribution of the prediction results by DPR-ED model on the raw test
set.

Figure 14 shows the local RMSE of the MLP model and the DPR-ED model during the
process of the velocity prediction for the whole test set.

Figure 14. Local RMSE comparison between MLP and DPR-ED on test set.

From Figure 14, it is evident that the local RMSE has the lowest average value in the
highway driving pattern and the highest average value in the suburban driving pattern,
which is due to the fact that the velocity changes in the highway driving pattern are
smoother, while the complex suburban driving pattern is full of predictive uncertainties.
The local RMSE is larger when the vehicle is operating under a large rate of change in
acceleration, which is due to the fact that large prediction errors usually occur when
the vehicle suddenly starts to accelerate after deceleration or in a situation of emergency
deceleration after acceleration; such driving conditions are challenging to predict and
should be addressed with the involvement of the driver. In addition, it can be found
that the DPR-ED model improves the accuracy compared to the MLP model when the
vehicles are working in a large rate of change of acceleration, although the local RMSE
shows a peak (especially for the highway driving pattern). For example, the local RMSE
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of the MLP model’s predicted velocities at times 13,538 s and 14,805 s are 5.21 m/s and
5.05 m/s, respectively, while the results predicted by the DPR-ED model at the same time
are 4.88 m/s and 4.61 m/s, respectively, which shows an improvement of 6.3% and 8.7%.

Figure 15 shows the comparison of the error distribution between the MLP model and
the DPR-ED model for the test data. Table 1 shows the proportion of the prediction results
for the test set contained in each error segment.

 

(a) (b) 

Figure 15. The comparison of the error distribution between the MLP model and the DPR-ED model
for test data: (a) MLP model; (b) DPR-ED model.

Table 1. The proportion of the prediction results of the test set contained in each error segment.

RMSE Segment (m/s) Proportion (MLP Model) Proportion (DPR-ED Model)

0~0.1 12.81% 12.15%
0.1~0.3 19.81% 23.55%
0.3~0.5 18.15% 18.13%
0.5~0.7 13.22% 12.34%
0.7~1.1 14.85% 14.5%
1.1~2.1 15.35% 14.37%

>2.1 5.81% 4.96%

As shown in Table 1, the results predicted by the DPR-ED model and the MLP model
from the test data with an error of 0~0.1 m/s have similar proportions. However, the results
predicted by the DPR-ED model from the test data with an error of 0.1~0.3 m/s have a
proportion of 23.55%, which is about 4% higher than the result obtained by the MLP model.
Therefore, more prediction results are concentrated on segments with small errors. On the
other hand, the DPR-ED model has also eliminated the data with an error of more than
0.5 m/s. It reduced the proportion with an error of 0.5~0.7 m/s and over 1.1 m/s by about
1% and 1.9%, respectively; thus, the DPR-ED model filters out more of the results with
larger errors. As a result, the DPR-ED model shows an excellent prediction robustness over
different driving patterns.

Consequently, compared with the MLP model’s poor prediction accuracy on certain
loads due to the discrete characteristics of the training data load, the optimal partially
shared network shows an excellent prediction robustness over the full load range.

As shown in Figure 15, it can be found that the average error of the MLP model and the
DPR-ED model prediction result is 0.81 m/s and 0.77 m/s, respectively. The DPR-ED model
performs 5.2% better than the MLP model on the average prediction accuracy. Moreover,
the variance is decreased greatly from 0.52 to 0.45, which is an improvement of 15.6%. This
result shows that the DPR-ED model significantly improves both the accuracy and the
stability.
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5. Conclusions

In this paper, based on the samples from typical driving cycles, a high-precision veloc-
ity prediction model was established through the encoder–decoder framework coupled
with driving pattern recognition. The main achievements and conclusions are as follows:

(1) The driving-pattern-recognition model was established by a K-means clustering al-
gorithm and validated based on the test data; the driving patterns were identified
as urban, suburban, and highway patterns. The model achieved a satisfactory recog-
nition accuracy of 84.1% on the total length of 16,000 s of real road spectrum data,
achieving results that can be used as the basis for subsequent studies.

(2) The MLP, basic ED, and DPR-ED models, trained using the early stopping method,
were developed. The effect of different numbers of neurons on the prediction accuracy
and stability of each model was investigated and the optimization of the models was
completed. The results show that the DPR-ED model with 30 LSTM hidden neurons
can achieve the optimal overall performance for velocity prediction, which obtains
an average RMSE of 0.000862 and a standard deviation of 0.000032 after the dataset’s
normalization.

(3) Compared with the MLP model, the DPR-ED model is designed to improve the
performance by implementing multidimensional inputs and applying time series
analysis. In the long-time prediction series case, the DPR-ED model shows a significant
advantage over the MLP model: the RMSE of the DPR-ED model applied to the
validation set was 1.028 m/s, while the RMSE of the MLP model was 1.096 m/s,
with a 6.6% deterioration in performance compared to the former. When the two
models were applied to 16,000 s road spectrum data for testing, the proportion
with a low error of 0.1~0.3 m/s was improved by 4% and a larger error proportion
was filtered for the results predicted by the DPR-ED model. The DPR-ED model
performed 5.2% better than the MLP model with respect to the average prediction
accuracy. Meanwhile, the variance was decreased by 15.6%. This novel framework
enables the processing of long-time sequences with multiple input dimensions, which
improves the prediction accuracy under complicated driving patterns and enhances
the generalization performance and robustness of the model.

Author Contributions: Conceptualization, D.L. and Y.Z.; methodology, Y.Z. and C.Z.; software,
Y.Z.; validation, Y.Z. and L.F.; formal analysis, Y.T.; investigation, D.L. and L.F.; resources, D.L.;
data curation, Y.Z.; writing—original draft preparation, D.L. and Y.Z.; writing—review and editing,
Y.Z. and L.F.; visualization, D.L. and Y.T.; supervision, D.L.; project administration, D.L.; funding
acquisition, D.L. and L.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key R&D Program of China (2021YFB2500800).

Conflicts of Interest: The authors declare no conflict of interest.

Definitions/Abbreviations

v_mean Average velocity
v_max Maximum velocity
T_idle idle ratio
WLTC World Light-duty vehicle Test Cycle
NEDC New European Driving Cycle
CLTC-P China Light-duty vehicle Test Cycle-Passenger
SSE sum of squared errors
SC Silhouette coefficient
DPR Driving pattern recognition
LSTM Long short-term memory
ED Encoder–decoder
MLP Multilayer perceptron
RMSE Root mean square error
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Abstract: Turbochargers have evolved with the advancement of engine technology. In this study,
we pro-posed a concept of joint operation, based on the operating characteristics of the compressor
and turbine. Furthermore, a turbine evaluation method was proposed based on this concept, and
an optimization application study of the turbine impeller blade number and turbine casing was
con-ducted and verified. The results showed that the performance evaluation method based on the
joint point could predict the optimization trend of turbine performance more accurately, the turbine
output power optimized based on our new method evidently had advantages over the original
turbine, and the joint point showed better overall performance. The original single-entry turbine
could be optimized into a 9-blade twin-entry turbine having better response characteristics. The
maximum torque of the optimized engine was 5.4% higher than that of the original engine, and the
minimum brake specific fuel consumption (BSFC) was reduced by 2.1%. In the low and medium
speed operating region, engine torque was increased by up to 3.2% and BSFC was reduced by up to
1.1% compared to the turbine optimized by conventional methods. Hence, the optimization effect of
our new method was proven.

Keywords: engine; turbocharger; turbine; internal joint operation curve; joint point

1. Introduction

Due to rising fuel prices and stricter greenhouse gas emission regulations, reducing
fuel consumption and emissions has become an endeavor for the internal combustion
engine industry [1–4]. For example, the European Union has set a 37.5% reduction in
fuel consumption for passenger cars by 2030 compared to 2021. For the internal com-
bustion engine itself, stringent emission regulations and rising fuel control requirements
have prompted the internal combustion engine industry to develop more advanced tech-
nologies [5–8]. To achieve this goal, exhaust gas turbochargers, a key component of the
internal combustion engine’s air exchange system, could play a particularly important
role. Similarly, the studies of alternative liquid fuels also need to consider the effect of the
turbocharger [9]. The turbocharger and the engine match and interact with each other,
and the operating characteristics of the engine must be considered while studying the
turbocharger [10].

On account of the exhaust characteristics of the engine, the turbocharger turbine
operates in an exhaust gas pulse environment where the turbine inlet pressure and temper-
ature change periodically [11,12]. Under pulsed, unsteady conditions, the turbine mostly
operates in deviation from the design point condition and even in a zero-admission con-
dition [13]. Copeland et al. [14] studied the difference between the unsteady and steady
flow performance of a separated twin-entry turbine, and the steady flow efficiency was
found to be higher than the unsteady flow efficiency. Moreover, Rajoo [15] showed in his
study that the pulsed, unsteady average efficiency of the turbine deviated from the corre-
sponding quasi-steady efficiency value by up to 32%, indicating that the steady approach
was inaccurate.
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The automotive turbocharger pulse boost system sets the turbine to work in the en-
gine’s periodic pulse, unsteady exhaust environment; the admission condition at the turbine
end changes continuously, and the performance of the turbine further changes periodically
with the change in the intake state at the turbine end. Multi-fluid turbine structures and
various boost systems have emerged to improve the utilization of pulse energy [16,17].
Currently, the swallowing capacity and efficiency of a turbine can be easily improved by
using a twin-entry turbine instead of a single-entry turbine [15]. Other research studies
that have focused on the use of single-entry turbine are include [18–20]. Cerdoun [21]
investigated the unsteady flow process in an asymmetric parallel twin-entry turbine and
concluded that increasing the radius of the volute shape could enhance the centrifugal force
of the airflow. In addition, Chiong MS [22,23] studied a one-dimensional (1D) numerical
model of a twin-entry turbine under full admission pulse flow conditions and predicted
the corresponding performance. The full admission condition of the twin-entry turbine
occurs only momentarily, and the turbine operates with unequal admission [24–26].

In terms of unequal admission conditions, Newton [27] employed a computational
fluid dynamics (CFD) software to investigate the flow loss of a twin-entry turbine under
full and partial admissions. Costall [28] developed a twin-entry turbine model, which could
be used as a simplified single-entry model under full admission conditions, while a more
complex model is required for unequal admission conditions. Hajilouy [29] investigated
the performance and internal flow field characteristics of a twin-entry turbine under full
and extreme admission conditions. Other studies [30,31] have also performed the same
experiment, and revealed the mechanism of the influence of the volute structure on the
turbine performance.

The compressor is also the key component of the turbocharger, which directly de-
termines the turbocharger performance, as well as the matching performance of the tur-
bocharger and the engine. The compressor is affected by the fluctuation of the engine
admission, which makes the flow rate and pressure of the compressor periodically change
with the engine operating process. This could further affect the engine performance; for
example, the compressed air supercharging system could improve the driving force during
the phase of the engine’s increasing crankshaft rotational speed [32]. The works of [33]
and [34] presented the periodic changes in air flow at the inlet and outlet of the compressor.
Other studies related to the compressor of a turbocharger can be found in [35–37].

The performance of turbochargers in a harsh working environment of high temper-
ature and high pressure for a long time will directly affect the performance of an engine.
Fan proposed a novel Adaptive Local Maximum-Entropy Surrogate Model, carried out a
turbine disk reliability analysis under geometrical uncertainty, and achieved a desirable
result [38]. Meng constructed a smooth response surface of the turbine performance by the
saddlepoint approximation reliability analysis method and solved a turbine blade design
problem [39].

As can be seen from the brief description above, the actual operation of the booster
has a non-constant flow at both ends, and the difference between the non-constant flow
performance and the corresponding constant flow value is obvious. The performance
at both ends of the turbocharger is limited by the structural properties of another end,
and a complete performance map is usually unavailable [40]. Meanwhile, the current
conventional method of calculating the total efficiency of a turbocharger is to multiply the
turbine efficiency, the compressor efficiency, and the turbocharger mechanical efficiency [41].
This calculation method is not objective enough, because the maximum efficiency points
of the turbine and compressor are often not in the same operating condition. Moreover,
the operation of the turbocharger is a dynamic process of speed change, and the actual
efficiency of both the turbine and the compressor is dynamically changing, therefore there
are different total efficiencies of the turbocharger for different operating conditions. The
internal matching of the compressor to the turbine fundamentally determines the actual
operating performance of the turbocharger and the matching performance between the
turbocharger and the engine.
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There is no in-depth and systematic research on the internal matching between the
compressor and turbine, and the important role of the internal matching of their joint, in the
design of turbochargers, is not fully reflected. In this study, a combination of experimental
and numerical simulations was used to study different turbine structures, and GT-Power
and ANSYS CFX were used as the simulation platforms. First, an automotive engine
turbocharger turbine was studied and verified. Second, different volutes and turbine
impellers with different numbers of blades were designed to produce different turbine
structures, and simulations were performed to compare the new turbine structure with
the original turbine and determine the differences between the conventional evaluation
method and new method. Lastly, different turbine structures were evaluated using our new
method, and the best turbine structure was identified. Following this, the corresponding
superposition of the compressor power consumption curve and turbine effective power
curve were coupled. A new method for optimizing the actual operating performance of
the turbine from the perspective of joint matching between the compressor and turbine
was proposed. The turbine performance optimized by the two methods was compared,
and the new optimization method was proven to be effective and feasible when using
equal and unequal admission experiments. The evaluation process and correction method
used in this study can provide a future reference for the research and optimal design of
turbocharger turbines. Figure 1 shows the framework structure of this paper.

Figure 1. Flow chart of study framework.

2. Materials and Methods

2.1. Research Methodology and Research Objects

A 4-cylinder automotive engine turbocharger turbine was used as the research object.
Figure 2 shows the three-dimensional (3D) structure of the physical prototype of the
turbocharger. There were five turbine impeller structures of 8-blade, 9-blade, 10-blade,
11-blade, and 12-blade in the optimized design scheme. The volute structures were single-
entry and twin-entry, and the two types of volutes were matched with 11-blade and 9-blade
impellers, respectively. A total of four turbine structures were combined, as shown in
Table 1. Additionally, other structural parameters remained unchanged.

  
(a) (b) 

Figure 2. (a) Physical prototype; (b) three-dimensional structure model.
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Table 1. Optimization design schemes.

Scheme Volute Structure Impeller Blades

1 (Original Turbine) Single-entry 11-blade
2 Twin-entry 11-blade
3 Single-entry 9-blade
4 Twin-entry 9-blade

2.2. Setting Model Parameters

The turbine used a full-wheel disk turbine impeller, whose volute was a single-entry
volute without a leaf nozzle, and the number of blades of the turbine impeller was 11.
Table 2 lists turbine parameters.

Table 2. Turbine parameters.

No. Parameter Profile

1 Volute inlet diameter/mm 36.0
2 Volute nozzle width/mm 5.0
3 Impeller inlet diameter/mm 37.6
4 Impeller outlet diameter/mm 33.1
5 Impeller axial length/mm 18.9
6 Impeller inlet blade height/mm 5.1
7 Impeller inlet blade angle/deg 0
8 Impeller exit mean blade angle/deg 56.4
9 Radial and axial tip clearance/mm 0.5

10 Number of blades 11
11 Flow range/(kg/s) 0.02–0.13

The frozen rotor interface was selected as the interface type between the volute and
rotation domains and between the rotation and outlet transition domains. The turbulence
was modeled in the Navier–Stokes equation solver, using the k-epsilon equation [42]. The
walls of the model were set to be smooth, nonslip, and adiabatic [43]. Ideal gas was used as
the working fluid. The flow rate and total temperature were set as turbine inlet conditions.
At the turbine outlet, where the flow is considered to be subsonic, the static pressure
is imposed.

The complex structure of the separate turbine volute required the unstructured grid.
The rotational domain of the turbine impeller was arranged with a perfectly matched
circumferential grid, and an encrypted O-grid was set around the impeller blade to increase
the number of grid layers in the blade top clearance region to obtain a more accurate top
clearance flow. The turbine inlet duct and outlet duct were added for better computational
convergence. Surface layer meshes were added at each working wall to increase the
accuracy of the near-wall flow simulation. Table 3 lists the details for each domain of the
turbine model.

Table 3. Details for each domain.

Fluid Domain Mesh Type Mesh Numbers

Inlet duct Structured 73,219
Separate turbine volute Unstructured 620,189

Impeller single blade channel Structured 203,038
Wheel back clearance Unstructured 242,283

Outlet transition Unstructured 527,878
Outlet duct Structured 169,575

Total 3,866,562
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2.3. Test Preparation

In the test, the twin-entry volute was interchangeable with the single-entry volute of
the original turbine, and the 9-blade turbine rotor assembly was interchangeable with the
11-blade turbine rotor assembly of the original turbine. The turbine performance tests were
conducted on a Kratzer turbocharger test stand, and Figure 3 shows the schematic diagram
of the bench arrangement.

Figure 3. Schematic diagram of the bench arrangement.

2.4. Model Validation

The validation test of the single-entry prototype was carried out on the Kratzer tur-
bocharger test stand, and the following three speed conditions of 110,000 rpm, 150,000 rpm,
and 190,000 rpm were selected to represent the low, medium, and high speeds of the tur-
bocharger operation, respectively. In this study, we used the validation method published
in previous papers [16,43,44].

Figure 4 shows the comparison between the test and simulation of the swallowing
capacity of the original turbocharger turbine. Overall, the test and simulation of the
swallowing capacity were in good agreement with each other and had a maximum error
value of 2.62% at the speed of 150,000 rpm, which was within the acceptable range. This
discrepancy was attributed to the simplification of the secondary feature in the geometry,
the parameter settings for heat transfer in the simulation, and a manufacturing error [45,46];
moreover, it could be influenced by the optimal application scope of the SST model [47].
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Figure 4. Experimental verification of the original turbine model.

3. Results

3.1. Coupling of Internal Joint Operating Curves

The compressor and turbine are rigidly connected by the rotor shaft. They have
the same speed, and their working states are related to the operation of the engine. The
following three are the basic conditions for the operation of the booster:

1. Speed balance: the compressor, turbine, and rotor shaft have the same speed.

nC = nT = nR, (1)

where nC is the compressor speed (rpm), nT is the turbine speed (rpm), and nR is the
rotor shaft speed (rpm);

2. Flow rate balance: the compressor working mass flow rate plus the engine fuel mass
flow rate is equal to the turbine working mass flow rate, and this flow rate balance
condition is also followed when the turbine bypass valve is opened.

mT = mC + mF, (2)

where mT is the turbine operating flow rate (kg/s), mC is the compressor operating
flow rate (kg/s), and mF is the fuel flow rate (kg/s);

3. Power balance: The power transfer from the turbine side to the compressor side will
lose part of the power, which includes turbine rotor lubrication and cooling losses,
as well as the heat radiation of the components and other losses. The turbine power
output minus this loss is equal to the compressor power consumption.

PT = PC + PLoss, (3)

where PT is the turbine output power (kW), PC is the compressor power consumption
(kW), and PLoss is the power loss during energy transfer (kW).

The turbocharger operation must comply with Equations (1)–(3). This shows that
the matching of the turbocharger to the engine contains three aspects: the matching of
the compressor to the engine, the matching of the turbine to the engine, and the internal
matching between the compressor and turbine of the turbocharger [48].

In the fixed-speed line, the compressor power consumption curve and turbine effective
power curve were superimposed and coupled. The intersection point of both the compres-
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sor and turbine at the time of coupling was the compressor flow rate, and the intersection
point of the power balance was obtained, as shown in Figure 5.

 
Figure 5. Schematic diagram of the power balance at both ends of the turbocharger at 150,000 rpm.

In comparison, the compressor power consumption curves and turbine effective
power curves for all speeds were superimposed and coupled to obtain the joint operation
points of the turbocharger at each speed, as shown in Figure 6a. Connecting each joint
operation point in turn formed the complete turbocharger joint operation curve for the
condition of the turbine bypass valve being closed, as shown in Figure 6b. The parameters
in Figures 5 and 6 are for the common operating conditions of the matched engine, and the
parameter ranges are from the engine calibration and turbocharger map.

  
(a) (b) 

Figure 6. (a) Distribution of the joint operation points at each speed; (b) distribution of the joint
operation curve on the compressor power consumption map.

Furthermore, the turbocharger joint operation curve was the joint operation matching
curve between the compressor and the turbine. When matching a turbocharger with an
engine, following the turbocharger joint operating curve must be prioritized. The joint
operation curve reflects the matching performance between the turbocharger and the
engine, which helps to simplify matching the work between the turbocharger and the
engine and improves the matching accuracy.
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3.2. Turbine Optimization Evaluation Method

The performance parameters were described and compared in the research. The data
related to these parameters were obtained from experiments and CFD simulations. The
turbine performance parameters mainly include the expansion ratio, efficiency, output
power, etc. The expansion ratio reflects turbine swallowing capacity. Different parameters
have different effects on turbine performance, and the calculation formula is shown in
Equation (4), where variable parameters B1, B2, and B3 are the corresponding performance
weights, and the calculated turbine performance index, ΦT , is a dimensionless value.

ΦT = B1 × PT2

PT1
+ B2 × πT1

πT2
+ B3 × ηT2

ηT2
, (4)

here, P is the joint point output power, π is the joint point expansion ratio, η is the joint
point efficiency, T1 refers to the original turbine, and T2 refers to the modified turbine.

For the weight distribution of each parameter, the role of the turbine is to extract more
engine exhaust gas energy and transfer it to the coaxial compressor; moreover, the turbine
output power directly determines the distribution of the joint operating curve. Therefore,
the weight distribution of the turbine output power is the largest. The swallowing capacity
is the parameter that must be guaranteed by the turbine with the second highest weight,
while the turbine efficiency weight is the last consideration. Table 4 lists the weight
assignment of each performance parameter.

Table 4. Weight assignment for each performance parameter.

Joint Point Performance
Parameters

Output Power Expansion Ratio Efficiency

Weight assignment 60 30 10

3.3. Analysis of Turbine Impeller Blade Number Based on Joint Point

Five groups of turbine impellers with blade numbers of 8, 9, 10, 11, and 12 were
designed, and the 3D modeling of each group was kept consistent with that of the original
turbine. The same topology and meshing method were used for the impeller models, and
the optimization study was carried out at 150,000 rpm.

The turbine was evaluated based on the conventional method, which compares the
turbine performance curves as one component rather than favoring the joint points. Figure 7
shows the effect of different blade numbers on the turbine performance, and all the turbine
joint points are marked in the figure.

The output power, expansion ratio, and efficiency of the turbine decreased significantly
at 150,000 rpm when the number of blades was lower than nine, which indicated that the
number of turbine impeller blades should not be too small. When the number of blades
was greater than nine, the turbine performances were very close.

This indicated that there was no significant difference in performance between the tur-
bine structures for blade numbers greater than 9. Therefore, based on the conventional eval-
uation method, the number of turbine impeller blades could be reduced from 11 to 9 blades
to reduce the turbine rotor mass and improve the turbocharger response characteristics
without any significant reduction in the overall turbine performance.

The turbine was evaluated based on the joint point, and the output power and effi-
ciency near the joint point of the nine-blade turbine were found to be lower than those of
the original turbine at all speeds. Table 5 shows the joint point performance comparison of
turbines with different numbers of blades based on a single-entry volute. With reference to
the performance of the original turbine, the turbine performance changed with the number
of blades. Whether the number of impeller blades was greater than 11 or less than 11, the
turbine performance index was less than that of the original turbine. When the number of
impeller blades was less than nine, the turbine performance index decreased significantly,
in terms of turbine output power and efficiency. The nine-blade turbine performance
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was different from the 11-blade original turbine performance based on the joint point
performance evaluation, and the turbine impeller blade number could not be reduced.
For a single-entry turbine, the number of the original turbine blades was reasonable. This
differed from the conclusions of the conventional method evaluation.

 
Figure 7. The effect of the number of blades on performance at 150,000 rpm.

Table 5. Comparison of turbines with different number of blades.

Number of Blades 8 9 10 11

Joint point output power (kW) 3.58 3.60 3.62 3.63
Joint point expansion ratio 1.72 1.71 1.71 1.72
Joint point efficiency (%) 66.14 67.3 67.25 67.61

Turbine Performance Index 98.9 99.7 99.9 100.0

Flow field analysis was performed for the mid-speed joint point, and Figure 8 shows
the entropy increase distribution at 80% leaf spread height of the impeller channel, with
different numbers of blades at the mid-speed joint point. The lower the number of blades,
the higher the entropy downstream of the blade channel was, and the larger the region of
high entropy. The high entropy area near the suction surface of the blades increased signifi-
cantly compared with the original turbine when the number of impeller blades was nine.
The circumferential flow field of the impeller was not uniformly distributed, indicating
that the internal flow evidently became turbulent, and that the flow loss downstream of the
blade channel increased significantly, thus reducing the efficiency of the turbine.

According to the turbine working principle, the flow efficiency is high in the blade
channel, and the Mach number or relative velocity of the flow in the airflow direction
increases. The greater the relative Mach number and the lower the absolute velocity, the
smaller the turbine outlet residual velocity loss and the higher the efficiency at the exit of
the blade.

The Mach number of each scheme at the inlet of the blade channel was equal in the
middle and downstream position of the blade channel. The greater the number of blades,
the greater the Mach number was, which implied that the better the utilization of exhaust
gas energy, the smaller the corresponding absolute speed at the exit of the impeller, as
shown in Table 6. As seen in the following table, the difference in the absolute outlet
velocity between blades 8 and 9 was large. Therefore, the number of turbine impeller
blades could be reduced within a reasonable range to reduce the rotor mass.

203



Sustainability 2022, 14, 9952

Figure 8. Entropy increase distribution at 80% leaf spreading height of impeller channels.

Table 6. Turbine outlet residual velocity loss.

Number of Blades 8 9 10 11 12

Outlet Absolute Speed (m/s) 201.42 196.87 190.68 190.50 190.11

3.4. Comparative Analysis of Engine Performance with Optimized Structure of Two Methods

The difference between the conventional method and the joint point-based turbine
optimization method was verified using the GT model. Figure 9 shows the 1D model
constructed using GT-Power. The basic assumptions [49] in this simulation are as follows:

1. The working fluid is a uniform state, and the air entering the cylinder and the residual
exhaust gas are completely mixed instantaneously;

2. Air and mixed gas are considered ideal gases, and their thermodynamic parameters
are affected by the temperature and composition of the gas;

3. A steady flow process has been regarded for the process of working fluid;
4. The import and export kinetic energy of the working fluid is negligible, and there is

no leakage during the combustion process;
5. The combustion heat release process is regarded as a thermodynamic process in

which the external heats the working fluid inside the system in accordance with the
established heat release law.

Keeping the compressor of the original turbine unchanged, the number of turbine
impeller blades was varied to obtain the external characteristic torque and BSFC distribution
of the engine, as shown in Figure 10. In the low- and medium-speed ranges of the engine,
the output torque of the engine was significantly lower when matched with a nine-blade,
single-entry turbine than when matched with the original turbine. Furthermore, the overall
BSFC of the nine-blade, single-entry turbine was higher than that of the original turbine.
Its maximum torque was 3.5% lower than that of the original turbine, and the minimum
BSFC was 3.7% higher than that of the original turbine.

Reducing the number of turbine impeller blades reduced the engine power and fuel
economy performance of the single-entry turbine. Therefore, the conclusion of reducing
the number of turbine impeller blades obtained based on the conventional method was
not reasonable, while the evaluation method based on the joint point performance could
accurately predict the optimization trend of the number of turbine impeller blades.
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Figure 9. Engine 1D model.

 
Figure 10. Effect of turbine structure on engine performance.
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3.5. Optimized Design of Twin-Entry Turbine Structure under the Equal Admission Conditions

A twin-entry volute was designed based on the single-entry volute of the original
turbine to compare its performance with a single-entry turbine under the same conditions.
The two air inlets of the twin-entry turbine used equal-flow balanced admission. Figure 11
shows the performance comparison of two volute structures at 150,000 rpm. Compared
to the single-entry turbine, the overall output of the twin-entry turbine was higher at the
joint point. However, its expansion ratio was also higher, thus making the twin-entry
turbine performance index only slightly greater than that of the original turbine. The
performance indices of the 9-blade and 11-blade twin-entry turbines were equal at the joint
point, indicating that the number of impeller blades could be reduced from 11 to 9 for the
twin-entry turbine.

 

Figure 11. The effect of different turbine structures on performance at 150,000 rpm.

The output power of the twin-entry turbine was slightly higher than that of the single-
entry turbine at the joint operating point, and there was no significant difference in the
overall swallowing capacity. Furthermore, the efficiency of the joint point of the twin-entry
turbine was slightly lower; however, the flow inside the impeller was more uniform. The
overall performance of the joint point of the twin-entry turbine was slightly higher than
that of the original turbine, and the joint point performance indices of the 9-blade and
11-blade, twin-entry turbines were equal. Therefore, the original 11-blade, single-entry
turbine could be optimized to a 9-blade, twin-entry turbine, and the 9-blade, twin-entry
turbine exhibited better response characteristics and a more stable operation.

Equal admission performance tests of the twin-entry turbine with different numbers
of blades were conducted to illustrate the feasibility of optimizing the number of blades
of the twin-entry turbine impeller. Figure 12 shows the equal admission experimental
comparison of the performance of the 11-blade and 9-blade, twin-entry turbines. The
maximum difference between the two expansion ratios (of 2.0%) was located at the high
evolution speed joint point. The maximum difference in the relative efficiency at the joint
point was 1.5%. The output powers of the two were close to each other near the joint
working condition; the maximum difference between them was 2.1% at the joint point of
150,000 rpm, and the absolute difference was less than 0.2 kW.
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Figure 12. The equal admission experimental comparison of twin-entry turbines with a different
number of blades.

From the analysis of the equal admission test, it was found that the swallowing
capacity, efficiency, and output power of the 11-blade and 9-blade, twin-entry turbines were
relatively close near the joint operating conditions, and there was no obvious difference
between the two performances, indicating that the number of blades of the twin-entry
turbine impeller could be optimized from 11 to 9 blades, which was consistent with the
optimization conclusion from the simulation.

3.6. Analysis of the Unequal Admission Performance of the Twin-Entry Turbine

The exhaust pipes of cylinders 1 and 2 were connected to the outer runner of the
twin-entry turbine, and the exhaust pipes of cylinders 3 and 4 were connected to the inner
runner. The comprehensive performance comparisons of the turbine in different states
under unequal admission condition were carried out at 150,000 rpm, as shown in Table 7.
The output power of the twin-entry turbine had a significant advantage over the single-
entry turbine, and its performance index was higher than that of the single-entry turbine.
For the twin-entry turbine, the performance index was slightly larger for the outer runner.

Table 7. Performance comparison under unequal admission conditions at 150,000 rpm.

Turbine State Scheme 1 11-Blade-Outer 11-Blade-Inner 9-Blade-Outer 9-Blade-Inner

Joint point output power (kW) 8.08 10.07 10.03 10.07 10.07
Joint point expansion ratio 2.41 3.94 3.96 3.95 3.98
Joint point efficiency (%) 62.59 53.65 52.54 53.79 52.23

Turbine Performance Index 100 101.6 101.1 101.7 101.3

Under unequal admission conditions, there was no significant difference in expansion
ratio, efficiency, and output power overall between the 11-blade and 9-blade, twin-entry
turbines with a fixed inlet. Therefore, the original 11-blade, single-entry turbine can be
optimized to a 9-blade, twin-entry turbine with better performance.

The device for an unequal admission turbine inlet performance test was used to add
a gasket at the inlet of the twin-entry turbine housing to cut off the flow rate to one inlet
while the other inlet was normal. The unequal admission experiment of the twin-entry

207



Sustainability 2022, 14, 9952

turbine swallowing capacity was carried out, as shown in Figure 13. When the same
runner was closed, the expansion ratios of the 11-blade and 9-blade turbines were very
close to each other, which was the same as the simulated trend. For the same number of
blades, the turbine expansion ratio of the inner runner admission was slightly smaller than
that of the outer runner intake; however, the expansion ratio error of the inner and outer
runner admission was within the allowable range, indicating that there was no significant
difference in the swallowing capacity of the inner and outer runners, and the experimental
trend agreed well with the simulation conclusion.

 
Figure 13. The unequal admission experimental comparison of the twin-entry turbine swallowing capacity.

4. Discussion

Based on the above method, all the performance points of engine meet the joint
operating point requirements. Keeping the compressor of the original structure unchanged,
the turbine structure was varied to obtain the external characteristic torque and the BSFC
distribution of the engine based on the joint operating points, as shown in Figure 14.
In the low- and middle-speed range of the engine, the output torque of the engine was
significantly higher when matched with a twin-entry turbine than when matched with a
single-entry turbine. However, its BSFC was lower than that of the single-entry turbine.

  
(a) (b) 

Figure 14. (a) The effect of different turbine structures on engine torque; (b) the effect of different
turbine structures on engine BSFC.

For the twin-entry volute, the torque and BSFC curves of the 11-blade and 9-blade
turbines overlapped, showing no significant difference. Hence, the 9-blade impeller could
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replace the 11-blade impeller and significantly reduce the turbine rotor mass and improve
the response characteristics of the turbocharger and engine. The maximum engine torque
of the 9-blade, twin-entry turbine was 5.4% higher than that of the original engine, and
its lowest BSFC was 2.1% lower than that of the original engine. It was seen that the
9-blade, twin-entry turbine could effectively improve the engine performance at low- and
medium-speed, and that the turbine performance was significantly improved.

Figure 14 shows the results of the 1D engine performance simulation, which shows
that the torque and BSFC are basically nonlinear. This conclusion has also been confirmed
by Samuel et al. [50] and Yusaf et al. [51]. On the other hand, the turbine obtained by the
optimization method based on the joint operating curve has no significant difference at
high speed compared to the conventional method. However, the turbine with the new
optimized method has improved torque and BSFC in the low and medium speed. In this
operating region, engine torque was increased by up to 3.2% and BSFC was reduced by up
to 1.1% compared to the turbine optimized by conventional methods.

5. Conclusions

In this study, according to the basic conditions of turbocharger internal operation,
the turbocharger joint point was determined, and the internal joint operation curve was
obtained. A turbine evaluation method was proposed based on the internal joint opera-
tion, and the number of impeller blades and turbine housing were selected for optimal
application design. The following conclusions were obtained within the scope of this study:

(1) Based on the joint operating characteristics of the two ends of the turbocharger
compressor and turbine, the internal joint operating curve of the turbocharger was
coupled using the performance distribution of the compressor and turbine, which
was closer to the actual situation and was more practical;

(2) The evaluation method based on the joint point performance could predict the opti-
mization trend of the turbine more accurately. Based on the internal joint operation
curve of the turbocharger, the number of turbine impeller blades was optimized
compared with the conventional evaluation method. The 1D engine performance
simulation showed that the engine power and fuel economy of the turbine structure
optimized by the conventional method were worse than those of the original engine;

(3) The turbine based on joint point optimization has better overall performance under
the unequal admission condition. The output power of the twin-entry turbine has
a significant advantage over the original turbine. Under the unequal admission
condition, the 11-blade and 9-blade, twin-entry turbines have a similar performance,
and the optimized turbine with 9-blade outer runner has the best overall performance,
which is 1.7% higher than the original turbine;

(4) The turbine structure determined using the optimization method showed clear advan-
tages. The findings of the study were verified using performance tests. The engine 1D
performance simulation further showed that the maximum torque of the engine with
the 9-blade, twin-entry turbine was 5.4% higher than that of the original engine and
that the minimum BSFC was reduced by 2.1%.

The analysis determined that the optimal turbocharger was a 9-blade, twin-entry tur-
bine. The performance of the optimized turbocharger was verified using the turbocharger
test and the engine 1D performance simulation results. In the low- and medium-speed
operating regions, the engine torque was increased by up to 3.2%, and BSFC was reduced
by up to 1.1% compared to the turbine optimized by conventional methods.

In this study, from the perspective of internal joint matching between the compressor
and turbine, and by coupling the internal joint operation curve of the turbocharger, the op-
timization application study of the turbine was carried out with the objective of improving
the performance of the turbocharger turbine under internal joint operation conditions. This
optimization method can provide future reference for the research and design optimization
of the turbocharger turbine.
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