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Editorial

Advances in Quantum Computing

Brian La Cour

Applied Research Laboratories, The University of Texas at Austin, Austin, TX 78758, USA;
blacour@arlut.utexas.edu

Advances in quantum computing have continued to accelerate over the course of this
Special Issue’s publication. In the past two years, we have observed major breakthroughs
in hardware and algorithm development, as well as new, deep theoretical insights. In
November 2022, IBM announced their record-breaking 433-qubit quantum computer,
Osprey, with plans for developing a 100,000-qubit machine in the next ten years. In June
2023, the University of Science and Technology of China (USTC) first made available to
global users their 176-qubit Zuchongzhi quantum computer, a successor to the Zuchongzhi 2.1,
which they claim has a record quantum computational advantage of 1.0 × 108 in sampling
random circuits [1]. Shortly thereafter, in October 2023, USTC announced a breakthrough
Gaussian boson sampling photonic experiment using their new Jiuzhang 3.0 that boasts
a quantum computational advantage of 1.5 × 1016 [2]. Meanwhile, in September 2023,
PsiQuantum announced plans to build a one-million-qubit commercial photonic fusion-
based quantum computer within the next six years.

This Special Issue has endeavored to capture some of the technical advances in this
rapidly changing field. In Mingyoung Jeng et al.’s study, we find a novel method of
producing depth-optimized circuits for performing multidimensional convolutions us-
ing a quantum computer (contribution 1). Brian García Sarmina and colleagues provide
greater insight into the quantum approximate optimization algorithm by demonstrating
that entanglement-based models possess an enhanced capacity to preserve information
and maintain correlations over non-entangled models (contribution 2). Naya Nagy et al.
propose a unique quantum honey pot scheme for detecting intruders using covert quantum
sentinels to subtly detect when quantum information has been measured (contribution 3).
Chen-Fu Chiang and Paul Alsing reconcile discrepancies between continuous-time quan-
tum walk and adiabatic quantum computing optimization, with the latter option containing
more structure than the former, using a modified catalyst Hamiltonian (contribution 4).
Saad Darwish and co-workers describe a novel hybrid algorithm using semantic extraction
and the quantum genetic algorithm to perform plagiarism detection, with simulations
showing up to 20% improvement compared to classical genetic algorithms (contribution 5).
Wenyang Qian et al. studied the use of the quantum approximate optimization algorithm
(QAOA) to solve the traveling salesman problem, finding that well-balanced mixers usually
outperform other QAOA mixer ansatzes (contribution 6).

From computing to communication, Kailu Zhang and colleagues propose an asym-
metric measurement-device-independent quantum key distribution (MDI-QKD) protocol,
the secure key rate of which is enhanced through advantage distillation (contribution 7).
Sebastian Raubitzek and Kevin Mallinger investigate the applicability of quantum machine
learning for classification and show that the variational quantum circuit and quantum
kernel estimation methods perform better than basic machine learning algorithms (contribu-
tion 8). Jie Gao and co-workers consider enhanced quantum image encryption techniques,
using a quantum DNA codec to enhance security and robustness (contribution 9). Manuel
John et al. examine quantum kernel methods applied to quantum machine learning and
develop several enhancements to provide significant performance improvements for sev-
eral real-world classification tasks (contribution 10). Mark Goldsmith et al. study the use
of quantum random walks to predict links within protein–protein interaction networks
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and demonstrate these walks’ ability to outperform classical random walks (contribution
11). Gabriele Cenedese and colleagues propose a method to efficiently generate random
quantum circuits that result in high degrees of entanglement and use this as a benchmark
for real-world quantum computers (contribution 12). Corey Trahan and colleagues demon-
strate the application of hybrid quantum variational solvers to discrete solutions of partial
differential equations, showing that they scale polylogarithmically based on the system
size (contribution 13).

For business applications, Emanuele Dri et al. develop both new and generalized
variants of current credit risk analysis quantum algorithms and test them using both
simulated and real-world quantum computers (contribution 14). Similarly, Hanjing Xu and
co-workers formulate an investment portfolio problem as a quadratic unconstrained binary
optimization problem and solve a real-world example using D-Wave quantum annealers,
resulting in optimized portfolios with more than an 80% return over classically derived ones
(contribution 15). In contrast, Krzysztof Domino et al. use the D-Wave quantum annealer
to solve real-world Polish railway network problems, finding that neither the 2000Q nor
Advantage machines performed well in terms of solving these problems (contribution 16).

Congcong Feng and co-workers propose a new polar-based similarity metric for
the K-nearest neighbor (KNN) algorithm and show that its use significantly improves
performance, albeit only for the quantum version of KNN (contribution 17). Francisco
Pereira and Stefano Mancini provide a general procedure for producing entanglement-
assisted quantum-error-correction codes, providing better error protection compared to
traditional stabilizer-based codes (contribution 18). Wenlin Zhao and co-workers propose
a binary quantum neural network classification model based on an optimized Grover
algorithm and partial diffusion, showing better performance over existing quantum neural
network classification models (contribution 19). Thibault Fredon et al. perform spatial
searches using a 2D grid with a coulomb potential and apply a discrete-time quantum
random walk to demonstrate a quadratic scaling of the localization solution time that is
robust against noise (contribution 20).

Sergey Tarasov and colleagues consider a Bose–Einstein condensate for studying quan-
tum statistical phenomena and, in particular, how it might be used to perform Gaussian
boson sampling (contribution 21). Andreas Burger and co-workers use a seven-qubit IBM
quantum computer to perform digital quantum simulations of harmonically coupled spins
and demonstrate the emergence of correlations (contribution 22). Abdirahman Alasow and
colleagues study the use of Grover’s search algorithm to solve the maximum satisfiability
problem and devise a novel quantum counter block within the standard oracle, demon-
strating a significant reduction in the required number of ancilla qubits (contribution 23).
Finally, Lihui Lv et al. use a variational quantum algorithm to solve the learning-with-errors
problem and show a speed increase compared to classical solvers (contribution 24).

This Special Issue has shown the diversity of problems that can be solved using
quantum computers, both existing noisy, intermediate-scale devices and future, fault-
tolerant devices. With the recent rapid advances in quantum computing hardware, it
should soon become apparent whether the promise of quantum computing anticipated in
these works reflects the actual performance of future quantum computing technologies.

Conflicts of Interest: The author declares no conflict of interest.
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Generalized Quantum Convolution for Multidimensional Data
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manu.chaudhary@ku.edu (M.C.); ishraq@ku.edu (I.I.); momin.rahman@ku.edu (M.M.R.); esam@ku.edu (E.E.-A.)
* Correspondence: mingyoungjeng@ku.edu

Abstract: The convolution operation plays a vital role in a wide range of critical algorithms across
various domains, such as digital image processing, convolutional neural networks, and quantum
machine learning. In existing implementations, particularly in quantum neural networks, convolution
operations are usually approximated by the application of filters with data strides that are equal to the
filter window sizes. One challenge with these implementations is preserving the spatial and temporal
localities of the input features, specifically for data with higher dimensions. In addition, the deep
circuits required to perform quantum convolution with a unity stride, especially for multidimensional
data, increase the risk of violating decoherence constraints. In this work, we propose depth-optimized
circuits for performing generalized multidimensional quantum convolution operations with unity
stride targeting applications that process data with high dimensions, such as hyperspectral imagery
and remote sensing. We experimentally evaluate and demonstrate the applicability of the proposed
techniques by using real-world, high-resolution, multidimensional image data on a state-of-the-art
quantum simulator from IBM Quantum.

Keywords: convolution; quantum algorithms; quantum image processing; quantum computing

1. Introduction

Convolution is a common operation that is leveraged in a wide variety of practical
applications, such as signal processing [1], image processing [2], and most recently, convo-
lutional neural networks [3]. However, leveraging the widespread utility of convolution
operations in quantum algorithms is limited by the lack of a systematic, generalized im-
plementation of quantum convolution. Specifically, contemporary quantum circuits for
performing quantum convolution with a given filter are designed on a case-by-case ba-
sis [4–8]. In other words, implementing a novel convolution filter on a quantum computer
is arduous and time consuming, requiring substantial human effort. Such a workflow
is impractical for applications, such as quantum convolutional neural networks, which
require a generalized, parameterized quantum circuit to iteratively test thousands of unique
filters per training cycle.

In this work, we propose a generalizable algorithm for quantum convolution compat-
ible with amplitude-encoded multidimensional data that is able to implement arbitrary
multidimensional filters. Furthermore, our proposed technique implements unity stride,
which is essential for capturing the totality of local features in input data. We experimen-
tally verify our technique by applying multiple filters on high-resolution, multidimensional
images and report the fidelity of the quantum results against the classically computed
expectations. The quantum circuits are implemented on a state-of-the-art quantum simu-
lator from IBM Quantum [9] in both noise-free (as a statevector) and noisy environments.
Compared to classical CPU- and GPU-based implementations of convolution, we achieve
an exponential improvement in time complexity with respect to data size. Additionally,

Entropy 2023, 25, 1503. https://doi.org/10.3390/e25111503 https://www.mdpi.com/journal/entropy5
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when compared to existing quantum implementations, we achieve improved circuit depth
complexity when factoring in the data encoding.

The work is structured as follows. In Section 2, we cover important background
information and review the related work. In Section 3, we introduce the proposed quantum
convolution circuits and provide analyses of the corresponding circuit depth. In Section 4,
we present the experimental setup and results, while in Section 5, we provide discussions
of the results and comparisons to related work. Finally, in Section 6, we present our
conclusions and potential avenues for future explorations and extensions.

2. Background

In this section, we discuss related work pertinent to quantum convolution. Quantum
operations that are relevant to convolution, such as quantum data encoding, and quantum
shift operation, are also presented.

2.1. Related Work

Classically, the convolution operation is implemented either directly or by leveraging
fast Fourier transform (FFT). On CPUs, the direct implementation has a time complexity
of O(N2) [10], where N is the data size, while FFT-based implementation has a time
complexity of O(N log N) [10]. On GPUs, the FFT-based implementation has a similar
O(N log N) complexity [11]. It is also common to take advantage of the parallelism offered
by GPUs to implement convolution using general matrix multiplications (GEMMs) with
O(NF N) FLOPS [12,13], where NF is the filter size.

Techniques for performing quantum convolution have previously been reported [4–8].
However, these techniques only use fixed sizes of filter windows for specific filters,
e.g., edge detection [4–8]. We will denote such methods as fixed-filter quantum convo-
lution. Reportedly, these methods possess a quadratic circuit depth complexity of O(n2)
in terms of the number of qubits n = �log2 N�, where N is the size of the input data [4–8].
Because the shortest execution time of classical convolution is in the order of O(N) or
O(2n) [12,13] with respect to data size N, authors of the quantum counterparts often claim
a quantum advantage [4]. However, the reported depth complexity of fixed-filter quantum
convolution does not include the unavoidable overhead of data encoding. Furthermore,
there does not exist, to the best of our knowledge, a method for performing generalized,
multidimensional quantum convolution.

In reported related work [4–8], data encoding is performed with either the flexible repre-
sentation of quantum images (FRQI) [14] or novel enhanced quantum representation (NEQR) [15]
methods. In these encoding techniques, positional information is stored in the basis quan-
tum states of n qubits, while color information is stored via angle encoding and basis
encoding for FRQI and NEQR, respectively. FRQI and NEQR require a total of n + 1
and n + q qubits, respectively, where q is the number of qubits used to represent color
values, e.g., q = 8 for standard grayscale pixel representation. The reported circuit depth
complexities of FRQI and NEQR are O(4n) and O(qn2n), respectively. When factoring in
the depth complexities of either data-encoding technique, it is evident that the referenced
fixed-filter quantum convolution techniques should be expected to perform worse than
classical implementations.

In [16], the authors propose a method of edge detection based on amplitude encoding
and the quantum wavelet transform (QWT), which they denote as quantum Hadamard
edge detection (QHED). Although the work utilizes grayscale two-dimensional images,
the QHED technique is highly customized for those data and does not easily scale or
generalize to data of higher dimensions, such as colored and/or multispectral images.
For example, the quantum discriminator operation in their technique is applied over all
qubits in the circuit, without distinguishing between qubits representing each dimension,
i.e., image rows or columns. Such a procedure not only forgoes parallelism and increases
circuit depth but inhibits the algorithm’s ability to be generalized beyond capturing one-
dimensional features.
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In our proposed work, we achieve an exponential improvement in time complexity
compared to classical implementations of convolution with respect to data size. Addi-
tionally, when compared to existing quantum convolution implementations, we achieve
improved circuit depth complexity when factoring in the data encoding. The contribution
of our work is analyzed, experimentally verified, and discussed in detail in Section 5.

2.2. Classical to Quantum (C2Q)

Our method of quantum convolution leverages amplitude encoding, which encodes N
data values directly in the complex probability amplitudes ci ∈ C of the positional basis
state |i〉 for an n-qubit state |ψ〉, where n = �log2 N� and 0 ≤ i < n, see (1):

|ψ〉 =
2n−1

∑
i=0

ci|i〉 : ci ∈ C. (1)

We use the classical-to-quantum (C2Q) [17] data-encoding technique to encode the
amplitude encoded state |ψ0〉 from the ground state |0〉⊗n, see Figure 1 and (2). The C2Q
operation UC2Q has a circuit depth complexity of O(2n), a quadratic and linear improve-
ment over FRQI and NEQR, respectively:

UC2Q|0〉⊗n = |ψ0〉
UC2Q =

[
|ψ0〉 |×〉 · · · |×〉

]
, where

|×〉 = “don’t care”

(2)

Figure 1. Quantum circuit for classical-to-quantum (C2Q) arbitrary state synthesis [17].

2.3. Quantum Shift Operation

A fundamental operation for quantum convolution is the quantum shift operation,
denoted in this work as Uk

shift, which shifts the basis states of the state vector by k positions
when applied to an m-qubit state |ψ〉, see (3). The quantum shift operation is critical for
performing the cyclic rotations needed to prepare strided windows when performing
convolution. It is also common for the operation to be described as a quantum incrementer
when k > 0, see Figure 2a, and a quantum decrementer when k < 0 [16,18], see Figure 2b:

Uk
shift|ψ〉 =

2m−1

∑
i=0

ci|j〉, where j = (i − k) mod 2m (3)

7
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(a) Quantum incrementer by k (b) Quantum decrementer by k
Figure 2. Quantum shift operation using quantum incrementers/decrementers.

3. Materials and Methods

In general, a convolution operation can be performed using a sequence of shift and
multiply-and-accumulate operations. In our proposed methods, we implement the general-
ized convolution operations as follows:

1. Shift: Auxiliary filter qubits and controlled quantum decrementers are used to create
shifted (unity-strided) replicas of input data.

2. Multiply-and-accumulate: Arbitrary state synthesis and classical-to-quantum (C2Q)
encoding are applied to create generic multidimensional filters.

3. Data rearrangement: Quantum permutation operations are applied to restructure the
fragmented data into one contiguous output datum.

In Section 3.1, we present our quantum convolution technique in detail for one-
dimensional data. In the following sections, we illustrate optimizations to improve circuit
depth and generalize our method for multidimensional data. For evaluating our proposed
methods, we used real-world, high-resolution, black-and-white (B/W) and RGB images,
ranging in a resolution from (8 × 8) pixels to (512 × 512) pixels and (8 × 8 × 3) pixels to
(512 × 512 × 3) pixels, respectively. We also performed experiments on 1-D real-world
audio data and 3-D real-world hyperspectral data to demonstrate our method’s applicability
to data and filters of any dimensionality. Further details about our experimental setup and
dataset can be found in Section 4.

3.1. Quantum Convolution for One-Dimensional Data

The proposed structure of quantum convolution for one-dimensional (1-D) data is
shown in Figure 3. The following sections show the details of the five steps of the convolu-
tion operation procedure to transform the initial encoded data |ψ0〉 to the final state |ψ5〉,
see Figure 3.

Figure 3. The 1-D quantum convolution circuit.
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3.1.1. Shift Operation

To perform convolution with unity stride with a filter of size Nf terms, Nf replicas
of the input data must be made, strided for 0 ≤ k < Nf . To store these replicas, we add
n f = �log2 Nf � auxiliary qubits, which we denote as “filter qubits”, to the most significant
positions of the initial quantum state |ψ0〉, see (4) and Figure 3:

|ψ1〉 = |0〉⊗n f ⊗ |ψ0〉 =

⎡⎢⎢⎢⎣
|ψ0〉

0
...
0

⎤⎥⎥⎥⎦
�2n
⏐⏐⏐⏐⏐⏐⏐�

2n+n f (4)

Placing the filter qubits in superposition using Hadamard (H) gates creates 2n f identi-
cal replicas of the initial data |ψ0〉, as shown in (5):

|ψ2〉 =
(

H⊗n f ⊗ I⊗n)|ψ1〉 =
1√
2n f

⎡⎢⎣|ψ0〉
...

|ψ0〉

⎤⎥⎦�2n

...
�2n


⏐⏐⏐⏐⏐�2n+n f (5)

Finally, multiplexed quantum shift operations can be used to generate the strided
replicas, see (6):

|ψ3〉 = Umux|ψ2〉 =
1√
2n f

⎡⎢⎢⎣
U0

shift|ψ0〉
...

U−(2
n f −1)

shift |ψ0〉

⎤⎥⎥⎦

�2n

...
⏐⏐�2n


⏐⏐⏐⏐⏐⏐⏐�
2n+n f , where

Umux =

⎡⎢⎢⎣
U0

shift
. . .

U−(2
n f −1)

shift

⎤⎥⎥⎦
(6)

3.1.2. Multiply-and-Accumulate Operation

For the traditional convolution operation, applying a filter F ∈ R
Nf to an array of

data W ∈ R
Nf produces a scalar output x ∈ R, which can be expressed as x = FTW.

In the quantum domain, we can represent an array of data as the partial state |φ〉 and the
normalized filter as |F〉. Accordingly, the output state can be expressed as shown in (7):

|ψout〉 =
2n−1

∑
i=0

〈F|φi〉 · |i〉, where

|φi〉 =
2

n f −1

∑
j=0

〈
k′
∣∣ψ3
〉
·
∣∣k′〉, and k′ = (2n f · i) + j

(7)

To calculate |ψ4〉 from |ψ3〉, it is necessary to embed 〈F| into a unitary operation UF
as shown in (8). Since 〈F| is a normalized row vector, we can define UF as a matrix such
that its first row is 〈F| and the remaining rows are arbitrarily determined to preserve the
unitariness of UF such that U†

FUF = UFU†
F = I⊗n f . From (2), we can realize UF using an

inverse C2Q operation, see (8):
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|ψ4〉 =
(

I⊗n ⊗ UF
)
|ψ3〉 =

⎡⎢⎣ UF|φ0〉
...

UF|φ2n−1〉

⎤⎥⎦�2n f

...
�2n f


⏐⏐⏐⏐⏐�2n+n f , where

UF =

⎡⎢⎢⎢⎣
〈F|
〈×|

...
〈×|

⎤⎥⎥⎥⎦

⏐⏐⏐⏐⏐⏐⏐�

2n f = U†
C2Q

(8)

3.1.3. Data Rearrangement

As of |ψ4〉, the desired values of |ψout〉 are fragmented among undesired/extraneous
values, which we denote using the symbol “×”. We apply SWAP permutations to rearrange
and coalesce our desired values to be contiguous in the final statevector |ψ5〉, see (9) and
Figure 3:

|ψ5〉 = U1−D
SWAP|ψ4〉

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈F|φ0〉
...

〈F|φ2n−1〉
×
...
×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


⏐⏐⏐⏐⏐�2n


⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐�
2n+n f

=

⎡⎢⎢⎢⎣
|ψout〉
×
...
×

⎤⎥⎥⎥⎦
�2n
⏐⏐⏐⏐⏐⏐⏐�

2n+n f , where

U1−D
SWAP =

0

∏
j=n f −1

(
I⊗(n f −1−j) ⊗ SWAP(j, j + n)⊗ I⊗j

)

(9)

3.1.4. Circuit Depth Analysis of 1-D Quantum Convolution

When considering the circuit depth complexity of the proposed 1-D quantum convo-
lution technique, it is evident from Figure 3 that the operations described by (5) and (9) are
performed using parallel Hadamard and SWAP operations, respectively, and thus are of
constant depth complexity, i.e., O(1). In contrast, the Umux and UF operations incur the
largest circuit depth, as they are both serial operations that scale with the data size and/or
filter size, see Figure 3.

For the implementation of Umux in Figure 3, there are a total of 2n f controlled quantum

shift operations, where the i-th shift operation is a quantum decrementer U−i
shift =

(
U−1

shift

)i
.

Since all the U−1
shift operations are performed in series, the circuit depth of Umux depends on

the total number of unity quantum decrementers, NU−1
shift

, see (10):

NU−1
shift

(n f ) =
2

n f −1

∑
i=0

i =
2n f (2n f − 1)

2
=

4n f

2
− 2n f −1 (10)

As shown in Figure 2b, each quantum decrementer U−1
shift acting on m qubits can

be realized using m multi-controlled CNOT (MCX) gates, where the i-th MCX gate is
controlled by i qubits and 0 ≤ i < m. Accordingly, for each quantum decrementer U−1

shift
that is controlled by c qubits, its i-th MCX gate is controlled by a total of i + c qubits.

10
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Therefore, the depth of the quantum decrementer circuits can be expressed in terms of the
MCX gate count as shown in (11):

DU−1
shift

(m, c) =
m+c−1

∑
i=c

DMCX(i)
(11)

The depth of an MCX gate with a total of m qubits can be expressed with a linear function
in terms of fundamental single-qubit rotation gates and CNOT gates [19] as shown in (12),
where α represents the first-order coefficient and β represents the constant bias term. Thus,
the depth complexity of U−1

shift can be expressed as shown in (13):

DMCX(m) = αm + β : α, β ∈ R (12)

DU−1
shift

(m, c) =
m−1

∑
i=0

α(i + c) + β

=
α

2
m2 +

(
α

(
c − 1

2

)
+ β

)
m

= O
(

m2
)

(13)

To derive the circuit depth complexity of Umux, we leverage the definitions of NU−1
shift

(n f )

and DU−1
shift

(m, c) as shown in (14), where m = n and c = n f :

DUmux(n, n f ) = NU−1
shift

(n f ) · DU−1
shift

(n, n f )

=

(
4n f

2
− 2n f −1

)
·
(

α

2
n2 +

(
α

(
n f −

1
2

)
+ β

)
n
)

=
(

4n f −1 − 2n f −2
)
·
(

αn2 + 2αn f n − (α − 2β)n
)

= O
(

4n f n2 + 4n f n f n
)

(14)

As discussed in Section 3.1.2, we implement the filter operation UF by leveraging the
C2Q arbitrary synthesis operation [17]. Although C2Q incurs a circuit depth of exponential
complexity in terms of fundamental quantum gates, as shown in (15), UF is only applied
to n f qubits, a small subset of the total number of qubits, which somewhat mitigates the
circuit depth. Furthermore, in most practical scenarios, the dimensions of the filter are
typically much smaller than the dimensions of the input data, i.e., n f � n. As a result, UF
should not incur overly large circuit depth relative to other circuit components, e.g., Umux.
Altogether, the overall circuit depth complexity of the 1-D quantum convolution operation
can be expressed according to (16):

DUF (n f ) = O(2n f ) (15)

D1-D conv(n, n f ) = O
(

4n f n2 + 4n f n f n + 2n f
)

, where n  n f (16)

3.2. Depth-Optimized 1-D Quantum Convolution

In Figure 4, we present an optimized implementation of Umux that greatly reduces the
circuit depth.

In Section 3.1, we implemented Umux with 2n f controlled quantum decrementers U−k
shift,

where 0 ≤ k < 2n f . We can represent each k in binary notation, as shown in (17), to express
U−k

shift as a sequence of controlled shift operations by powers of 2. As shown in (18), we can

11
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denote such operations with the notation U
−bj2j

shift (n), where 0 ≤ j < n f , and (n) reflects that
the shift operation is applied to an n-qubit state.

k =
(

bn f −1bn f −2 · · · bj · · · b1b0

)
2
=

n f −1

∑
j=0

bj2j : bj ∈ {0, 1} (17)

U−k
shift(n) = U

−∑
n f −1

j=0 bj2j

shift (n) =
n f −1

∏
j=0

U
−bj2j

shift (n) (18)

Figure 4. Depth-optimized 1-D quantum convolution circuit.

The binary decomposition of the uniformly controlled U−k
shift operations is conducive

to several circuit depth optimizations. As shown in (19), the value of bj is dependent only

on the state of the j-th filter qubit qn+j. In other words, each U−2j

shift(n) can only be controlled
by one qubit qn+j, independently from the other control qubits. Accordingly, it is possible

to coalesce the multiplexed U−2j

shift(n) operations across the k control indices. The resultant

implementation of Umux, therefore, becomes a sequence of 2n f single-controlled U−2j

shift(n)
operations, where 0 ≤ j < n f , which comparatively has a smaller circuit depth by a factor of

2n f . Furthermore, each U−2j

shift(n) operation can be implemented using a single U−1
shift(n − j)

operation in lieu of sequential U−1
shift(n) operations, see (20) and Figure 4, further reducing

the depth by a factor of 2j per operation:

bj =

{
1,

∣∣qn+j
〉
= |1〉

0, otherwise
, ∀k ∈ [0, 2n f ] (19)

U−2j

shift(n) ≡ ∏
2j

U−1
shift(n) = U−1

shift(n − j)⊗ I⊗j (20)

Circuit Depth Analysis of Optimized 1-D Quantum Convolution

With the aforementioned optimizations, the depth of the updated Umux operation can
be expressed in terms of DU−1

shift
(m, c) as described by (21), where m = n − j and c = 1 for

all 0 ≤ j < n f . In comparison with the depth complexity of the unoptimized Umux, see (14),
the dominant term remains quadratic, i.e., n2, in terms of the data qubits n. However,
its coefficient is improved exponentially, from 4n f to n f , see (14) and (21). Note that a
cubic term n3

f in terms of the number of filter qubits is introduced in the optimized Umux

implementation, see (21). However, when considering the total depth for the optimized
1-D quantum convolution circuit Dopt

1-D conv, the n3
f term becomes negligible because of UF,
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whose complexity O(2n f ) is exponential in terms of the number of filter qubits, see (15), (21),
and (22):

Dopt
Umux

(n, n f ) =

n f −1

∑
j=0

DU−1
shift

(n − j, 1) =
n f −1

∑
j=0

[α

2
(n − j)2 +

(α

2
+ β
)
(n − j)

]
=

α

2
n f n2 − α

2
n2

f n + (α + β)n f n +
α

6
n3

f −
α + β

2
n2

f +
2α + 3β

6
n f

= O
(

n f n2 − n2
f n + n3

f

)
, where n  n f

(21)

Dopt
1-D conv(n, n f ) = O

(
n f n2 − n2

f n + n3
f + 2n f

)
= O

(
n f n2 − n2

f n + 2n f
)

, where n  n f

(22)

3.3. Generalized Quantum Convolution for Multidimensional Data and Filters

In this section, we present the quantum circuit of our proposed quantum convolution
technique generalized for multidimensional data and filters. Although quantum statevec-
tors are one-dimensional, it is possible to map multidimensional data to a 1-D vector in
either row- or column-major order. In this work, we represent multidimensional input
data and convolutional filters in a quantum circuit in column-major order. In other words,
for d-dimensional data of size (N0 × · · · × Ni · · · × Nd−1) data values, the positional in-
formation of the i-th dimension is encoded in the ∑i−1

j=0 nj to (∑i
j=0 nj)− 1 qubits, where

ni = �log2 Ni�. Using this representation, the optimized 1-D quantum convolution circuit
shown in Figure 4 can be generalized for d dimensions by “stacking” d 1-D circuits as shown
in Figure 5.

Figure 5. Multidimensional quantum convolution circuit with distributed/stacked 1-D filters.

The “stacked” quantum circuit in Figure 5 is based on the assumption that the overall
(lumped) d-dimensional filter operator UF is separable and decomposable into d one-
dimensional filters UFi for 0 ≤ i < d. However, it would be more practically useful to
generalize our multidimensional quantum convolution technique independently from the
separability/decomposability of UF. For this purpose, the identity in (23), which could be
easily derived from either Figure 3 or Figure 4 for 1-D convolution, can be leveraged and
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generalized for multidimensional convolution circuits, see (24). The identity in (24) allows
us to reverse the order of multiply-and-accumulate and data rearrangement steps and,
therefore, generate one generic lumped UF that acts on the contiguous n f = ∑d−1

i=0 (n fi
) filter

qubits, where n fi
is the number of qubits representing the filter dimension i for 0 ≤ i < d,

see Figure 6. UF can be derived based on the given arbitrary multidimensional filter F
using the method discussed in Section 3.1.2 when F is represented as a normalized 1-D
vector |F〉 in a column major ordering:

U1−D
SWAP ·

(
I⊗n ⊗ UF

)
=
(
UF ⊗ I⊗n) · U1−D

SWAP (23)

Ud−D
SWAP ·

(
I⊗n f ⊗

(
0⊗

i=d−1

[
I⊗(ni−n fi

) ⊗ UFi

]))
=

((
0⊗

i=d−1

[
UFi

])
⊗ I⊗n

)
· Ud−D

SWAP

=
(
UF ⊗ I⊗n) · Ud−D

SWAP, where

UF =
0⊗

i=d−1

[
UFi

]
≡ UFd−1 ⊗ UFd−2 ⊗ · · · ⊗ UF1 ⊗ UF0 ,

Ud−D
SWAP =

0

∏
i=d−1

0

∏
j=n fi

−1

(
I⊗
(

n f −1−j−q fi

)
⊗ SWAP

(
j + qi, j + n + q fi

)
⊗ I⊗(j+qi)

)
,

q fi
=

i−1

∑
k=0

n fk
, qi =

i−1

∑
k=0

nk, n f =
d−1

∑
k=0

n fk
, and n =

d−1

∑
k=0

nk

(24)

Figure 6. Generalized multidimensional quantum convolution circuit.

Circuit Depth Analysis of Generalized Multidimensional Quantum Convolution

As a result of the “stacked" structure, the data of all d dimensions could be concur-
rently processed in parallel. Consequently, the circuit depth of the multidimensional
quantum circuit becomes dependent on the largest data dimension Nmax = 2nmax , where
nmax = maxd−1

i=0 (ni), in lieu of the total data size N. The circuit component of the opti-
mized 1-D circuit with the greatest depth contribution Umux is performed in parallel on
each dimension in the generic d-D circuit. Specifically, Umux scales with the number of
qubits used to represent the largest data dimension nmax = �log2 Nmax�. Note that the
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parallelization across dimensions applies to the Hadamard and SWAP operations from
(5) and (9), see Figure 6, and therefore these operations are of constant depth complexity,
i.e., O(1). The depth complexity of the multidimensional UF operation is determined by
the total number of elements in the filter NF, and therefore the C2Q-based implementation
of UF does not benefit from multidimensional stacking. Accordingly, the circuit depth of
the generalized multidimensional quantum convolution operation could be derived from
(22) and expressed in (25), where n fmax = maxd−1

i=0 (n fi
) is the number of qubits representing

the maximum filter dimension Nfmax = 2n fmax . It is worth mentioning that the generic
multidimensional formula in (25) reduces to the 1-D formula in (22) when n = nmax and
n f = n fmax :

Dopt
d-D conv(n, n f ) = O

(
n fmax n2

max − n2
fmax

nmax + 2n f
)

, where

nmax =
d−1

max
i=0

(ni), n fmax =
d−1

max
i=0

(n fi
), and nmax  n fmax

(25)

4. Experimental Setup and Results

We experimentally demonstrate our proposed technique for generalized, multidi-
mensional quantum convolution with unity stride on real-world, high-resolution, multi-
dimensional image data, see Figure 7. By leveraging the Qiskit SDK (v0.39.4) from IBM
Quantum [9], we simulate our quantum circuits in the following formats: (1) classically
(to present the ideal/theoretical expectation), (2) noise-free (using statevector simulation),
and (3) noisy (using 1,000,000 “shots” or circuit samples). Moreover, we present a quantita-
tive comparison of the obtained results using fidelity [20] as a similarity metric between
compared results ρ and σ, see (26). Experiments were performed on a 16-core AMD EPYC
7302P CPU with frequencies up to 3.3 GHz, 128 MB of L3 cache, and access to 256 GB of
DDR4 RAM. In our analysis, we evaluated the correctness of the proposed techniques by
comparing classical results with noise-free results. We also evaluated the scalability of the
proposed techniques for higher-resolution images by comparing the classical results with
both the noise-free and noisy results. Finally, we plotted the circuit depth of our techniques
with respect to the data size and filter size as shown in Figure 8.

(a) Black-and-white (B/W) image. (b) Color (RGB) Image

Figure 7. Real-world, high-resolution, multidimensional images used in experimental trials.
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(a) Depth with respect to data size. (b) Depth with respect to filter size.

Figure 8. Circuit depth of quantum convolution with respect to data and filter qubits.

Fidelity(ρ, σ) = tr
√√

ρ · σ · √ρ (26)

In our experiments, we evaluated our techniques using well-known (3× 3) and (5× 5)
filters, i.e., Averaging Favg, Sobel edge-detection FSx/FSy, Gaussian blur Fblur, and Laplacian
of Gaussian blur (Laplacian) FL, see (27)–(30). We applied zero padding to maintain the
size of the filter dimensions at a power of two for quantum implementation. In addition,
we used wrapping to resolve the boundary conditions, and we restricted the magnitude of
the output between [0, 255] to mitigate quantization errors in the classical domain:

F3×3
avg =

1
9

⎡⎣1 1 1
1 1 1
1 1 1

⎤⎦, F5×5
avg =

1
25

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎦ (27)

F3×3
blur =

1
16

⎡⎣1 2 1
2 4 2
1 2 1

⎤⎦, F5×5
blur =

1
273

⎡⎢⎢⎢⎢⎣
1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

⎤⎥⎥⎥⎥⎦ (28)

FSx =
1
4

⎡⎣1 0 −1
2 0 −2
1 0 −1

⎤⎦, FSy =
1
4

⎡⎣ 1 2 1
0 0 0
−1 −2 −1

⎤⎦ (29)

F3×3
L =

1
6

⎡⎣1 1 1
1 −8 1
1 1 1

⎤⎦, F5×5
L =

1
20

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 1 1
1 1 −24 1 1
1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎦ (30)
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We applied 2-D convolution filters to black-and-white (B/W) and RGB images, see
Figure 7, ranging in resolution from (8 × 8) pixels to (512 × 512) pixels and (8 × 8 × 3)
pixels to (512 × 512 × 3) pixels, respectively. The number of filter qubits can be obtained by
the size of filter dimensions, i.e., n f = �log2 3�+ �log2 3� = 4 qubits for (3 × 3) filters and
n f = �log2 5�+ �log2 5� = 6 qubits for (5 × 5) filters. Therefore, our simulated quantum
circuits ranged in size (n + n f ) from 10 qubits to 26 qubits. Figures 9 and 10 present
the reconstructed output images for classical, noise-free, and noisy experiments using
(128 × 128) and (128 × 128 × 3)-pixel input images, respectively.

To demonstrate our method’s applicability to data and filters of any dimensionality,
we also performed experiments applying the 1-D and 3-D averaging filter to 1-D real-
world audio data and 3-D real-world hyperspectral data, respectively. The audio files
were sourced from the publicly available sound quality assessment material published
by the European Broadcasting Union and modified to be single channel with data sizes
ranging from 28 values to 220 values when sampled at 44.1 kHz [21]. Figures 11 and 12
present the reconstructed output images and fidelity, respectively, from applying (3) and
(5) averaging filters. The hyperspectral images were sourced from the Kennedy Space
Center (KSC) dataset [22] and resized to range from (8 × 8 × 8) pixels to (128 × 128 × 128)
pixels. Figures 13 and 14 present the reconstructed output images and fidelity, respectively,
from applying (3 × 3 × 3) and (5 × 5 × 5) averaging filters.

Comparison of the noise-free quantum results against the ideal classical results demon-
strates a 100% fidelity across all trials. Thus, in a noise-free (statevector) environment, our
proposed quantum convolution technique correctly performs an identical operation to
classical convolution given the same input parameters and boundary conditions.

When considering the behavior of noisy (sampled) environments, Figures 12, 14 and 15
plot the fidelity of the noisy quantum results against the ideal classical results. We observe
a monotonic decrease in fidelity as the data size (image resolution) increases, consistent
with previously reported behavior [23]. Such behavior derives from how the number of
shots required to properly characterize a quantum state increases with the corresponding
number of qubits in order to reduce the effects of statistical noise. Notably, the fidelity varies
dramatically depending on the filter category and size, where the largest discrepancy occurs
between the (5 × 5) Averaging and (5 × 5) Laplacian filters for a data size of 65, 536 values.
Specifically, for a B/W image of (256 × 256) pixels, the Averaging filter had a fidelity
of 94.84%, while the Laplacian filter had a fidelity of 8.82%—a difference of 86.02%, see
Figure 15a. In general, we observed that the average and blur filters perform better than
the edge detection methods (Sobel/Laplacian). Since the output data are reconstructed
from only a portion of the final state |ψ5〉, it is likely that sparse filters, represented in
Figures 9 and 10 as being mostly black, are significantly less likely to be recorded during
sampled measurement, resulting in reduced fidelity. For practical applications, dimension
reduction techniques, such as pooling, can be used to mitigate information loss [23].
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Filter
(3 × 3) filter
Classical/
Noise-Free

(3 × 3) filter
Noisy

(106 shots)

(5 × 5) filter
Classical/
Noise-Free

(5 × 5) filter
Noisy

(106 shots)

Average

Gaussian

Sobel-X

Sobel-Y

Laplacian

Figure 9. The 2-D convolution filters applied to a (128 × 128) B/W image.
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Filter
(3 × 3) filter
Classical/
Noise-Free

(3 × 3) filter
Noisy

(106 shots)

(5 × 5) filter
Classical/
Noise-Free

(5 × 5) filter
Noisy

(106 shots)

Average

Gaussian

Sobel-X

Sobel-Y

Laplacian

Figure 10. The 2-D convolution filters applied to a (128 × 128 × 3) RGB image.
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Data Size
(No. of Sample

Points)

(3) Averaging
Classical/
Noise-Free

(3) Averaging
Noisy

(106 shots)

(5) Averaging
Classical/
Noise-Free

(5) Averaging
Noisy

(106 shots)

256

4096

65,536

1,048,576

Figure 11. The 1-D convolution (averaging) filters applied to 1-D audio samples.

Figure 12. Fidelity of 1-D convolution (averaging) filters with unity stride on 1-D audio data (sampled
with 1,000,000 shots).
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Data Size
(Nrows × Ncols ×

Nbands)

(3 × 3 × 3)
Averaging
Classical/
Noise-Free

(3 × 3 × 3)
Averaging

Noisy
(106 shots)

(5 × 5 × 5)
Averaging
Classical/
Noise-Free

(5 × 5 × 5)
Averaging

Noisy
(106 shots)

(8 × 8 × 8)

(16 × 16 × 16)

(32 × 32 × 32)

(64 × 64 × 64)

(128 × 128 × 128)

Figure 13. The 3-D convolution (averaging) filters applied to 3-D hyperspectral images (bands 0, 1, and 2).

Figure 14. Fidelity of 3-D convolution (averaging) filters with unity stride on 3-D hyperspectral data
(sampled with 1,000,000 shots).
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(a) Black-and-white (B/W) images (b) Color (RGB) images

Figure 15. Fidelity of 2-D convolution with unity stride (sampled with 1,000,000 shots).

5. Discussion

In the following section, we compare our proposed method of quantum convolution to
the related work discussed in Section 2.1 in terms of filter generalization and circuit depth.

5.1. Arbitrary Multidimensional Filtering

Our generalizable and parameterized technique of quantum convolution with unity
stride offers distinct workflow advantages over existing fixed-filter quantum convolution
techniques in variational applications, such as quantum machine learning. Our technique
does not require extensive development for each new filter design. For instance, current
quantum convolutional filters are primarily two dimensional, only focusing on image
processing. However, the development of even similar filters targeting audio and video
processing, for example, would require extensive development and redesign. Our method
offers a systematic and straightforward approach for generating practical quantum circuits
given fundamental input variables.

5.2. Circuit Depth

Figure 8a,b show the circuit depth for our proposed technique of generalized quantum
convolution with respect to the total number of data qubits n = ∑d−1

i=0 (ni) and the total
number of filter qubits n f = ∑d−1

i=0 (n fi
), respectively. The results were gathered using the

QuantumCircuit.depth() method built into Qiskit for a QuantumCircuit transpiled to
fundamental single-qubit and CNOT quantum gates. Figure 8a illustrates quadratic circuit
depth complexity with respect to the data qubits n for a fixed filter size NF = 2n f , aligning
with our theoretical expectation in (25). Note that n = ∑d−1

i=0 ni and nmax = maxd−1
i=0 (ni) for

d-dimensional data. Similarly, Figure 8b (plotted on a log-scale) illustrates exponential
circuit depth complexity with respect to n f for a fixed data size N = 2n, which also aligns
with our theoretical expectation in (25).

The time complexity comparison of our proposed quantum convolution technique
against related work is shown in Table 1. Compared to classical direct implementations
on CPUs, our proposed technique for generalized quantum convolution demonstrates an
exponential improvement with respect to data size N = 2n, i.e., O(n2) vs. O(N2), see (25)
and Table 1c. As discussed in Section 2.1, the fastest classical GEMM implementation of
convolution on GPUs (excluding data I/O overhead) [12,13] has a complexity of O(NF N),
see Table 1c. Even when including quantum data encoding, which is equivalent to data
I/O overhead, our method remains to demonstrate a linear improvement with respect to
data size N by a factor of the filter size NF, see (31), over classical GEMM GPUs:
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Dproposed(n) = DC2Q(n) +Dopt
d-D conv(n)

= O
(

2n + n2
max

)
= O(2n) = O(N), for fixed n f

(31)

Compared to fixed-filter quantum convolution techniques [4–8], our proposed arbitrary
filter quantum convolution technique (for unity stride) demonstrates improved circuit
depth complexity with respect to data size when factoring in the circuit depth contribution
from data encoding. For a fixed filter, i.e., n f is constant, the depth of the proposed method
scales quadratically with the largest data dimension nmax, see (25) and (31). As described
in Section 2.1, fixed-filter quantum convolution techniques similarly show quadratic depth
scaling with respect to the number of qubits n, see Table 1b. For data encoding, the fixed-
filter techniques use either the FRQI [14] or NEQR [15] algorithms, which have circuit depth
complexities of O(4n) or O(qn2n), respectively. In contrast, our proposed technique uses
C2Q data encoding [17], which has a depth complexity of O(2n)—a quadratic and linear
improvement over FRQI and NEQR, respectively, see Table 1a.

Table 1. Comparison of depth/time complexity of proposed generalized quantum convolution
technique against related work.

a Depth complexity of quantum data encoding (I/O) techniques

FRQI [14] NEQR [15] C2Q [17]

OI/O(4n) OI/O(qn2n) OI/O(2n)

b Depth complexity of quantum convolution algorithms for a fixed filter

Proposed Related Work [4–8]

Oalg(n2
max) Oalg(n2)

c Complexity of proposed technique compared to classical convolution

Proposed Direct (CPU) [10] FFT (CPU/GPU) [10,11] GEMM (GPU) [12,13]

Oalg

(
n fmax n2

max − n2
fmax

nmax

+2n f

)

Oalg + I/O

(
n fmax n2

max − n2
fmax

nmax

+2n + 2n f

) Oalg
(

N2) ≡
Oalg(4n)

Oalg(N log N) ≡
Oalg(n2n)

Oalg(NF N) ≡
Oalg

(
2(n+n f )

)

6. Conclusions

In this work, we proposed and evaluated a method for generalizing the convolution
operation with arbitrary filtering and unity stride for multidimensional data in the quan-
tum domain. We presented the corresponding circuits and their performance analyses
along with experimental results that were collected using the IBM Qiskit development
environment. In our experimental work, we validated the correctness of our method by
comparing classical results to noise-free quantum results. We also demonstrated the practi-
cality of our method for various convolution filters by evaluating the noisy quantum results.
Furthermore, we presented experimentally verified analyses that highlight our technique’s
advantages in terms of time complexity and/or circuit depth complexity compared to exist-
ing classical and quantum methods, respectively. Future work will focus on adapting our
proposed technique for arbitrary strides. In addition, we will investigate multidimensional
quantum machine learning as a potential application of our proposed technique.
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Abstract: In this paper, we employ PCA and t-SNE analyses to gain deeper insights into the behavior
of entangled and non-entangled mixing operators within the Quantum Approximate Optimization
Algorithm (QAOA) at various depths. We utilize a dataset containing optimized parameters gener-
ated for max-cut problems with cyclic and complete configurations. This dataset encompasses the
resulting RZ, RX, and RY parameters for QAOA models at different depths (1L, 2L, and 3L) with or
without an entanglement stage within the mixing operator. Our findings reveal distinct behaviors
when processing the different parameters with PCA and t-SNE. Specifically, most of the entangled
QAOA models demonstrate an enhanced capacity to preserve information in the mapping, along
with a greater level of correlated information detectable by PCA and t-SNE. Analyzing the overall
mapping results, a clear differentiation emerges between entangled and non-entangled models.
This distinction is quantified numerically through explained variance in PCA and Kullback–Leibler
divergence (post-optimization) in t-SNE. These disparities are also visually evident in the mapping
data produced by both methods, with certain entangled QAOA models displaying clustering effects
in both visualization techniques.

Keywords: QAOA; mixing operator; entangled operator; non-entangled operator

1. Introduction

The analysis of how Variational Quantum Algorithms (VQAs) work has been exten-
sively studied in recent years [1–5]. In particular, the Quantum Approximate Optimization
Algorithm (QAOA) has garnered much attention in the research community [6,7]. One
of the most exciting aspects of analyzing these algorithms is understanding how they
explore the problem space, what relationships exist between the rotation gates used in the
circuit [6,8], and how these gates impact the overall performance of the algorithm [2,5,9].
Previous studies have attempted to shed light on these aspects [10,11] and also study the
relationship between the Hamiltonian structure of a certain problem and the landscape
(search space) generated [12,13]. However, as quantum hardware becomes more com-
plex and quantum circuits become deeper, the need for a better understanding of these
algorithms becomes even more critical [14,15].

In general, the analysis of QAOAs can be influenced by factors such as circuit depth
and optimization strategies, which may impact the accuracy of problem results. Studies
in this area often focus on the problem landscape representation, which is a critical aspect
to consider when studying QAOAs from a problem resolution perspective [2,4,16,17].
However, it is important to note that there are other crucial aspects to consider when
studying QAOAs, such as the extraction of information about the underlying models and
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their potential limitations or strengths, prior to their application to specific problems; e.g.,
max-sat, max-cut, Ising model, etcetera [18–21].

In this paper, our primary objective is to contribute to the existing body of knowledge
by conducting an in-depth analysis of entangled and non-entangled mixing operators
within the context of QAOAs. We leverage Principal Component Analysis (PCA) and t-
distributed Stochastic Neighbor Embedding (t-SNE) techniques to scrutinize the parameters
generated within the RZ, RX, and RY gates across various QAOA models at different
depths (1L, 2L, and 3L).

Our overarching goal is to discern unique patterns of behavior that can offer valuable
insights into how QAOA gate parameters behave under different scenarios; specifically,
whether there are discernible differences in parameter distribution when an entanglement
stage is present or absent in the mixing operator. Furthermore, we aim to present a clear and
insightful visualization of these behaviors, both numerically and graphically, to enhance
our understanding of the underlying dynamics of the mixing operator.

Some notable examples of visualization studies in VQAs are the works by Moussa et al.
(2022) [22] and Rudolph et al. (2021) [13]. In Moussa et al. (2022), t-SNE was utilized as a
preprocessing step to reveal clustering tendencies in QUBO problems and assist in deter-
mining the parameters for the QAOA. They also explored the use of supervised techniques
when clusters did not adequately represent the corresponding points, leading to a more
effective prediction of QAOA parameters. Rudolph et al. (2021) conducted an analysis of
various visualization techniques, including PCA, applied to different VQAs. Their focus
was on generating a mapping of the optimization landscape for specific problems, as well
as studying aspects of parameter concentration in QAOAs, and other phenomena.

In contrast, our study focuses specifically on the representation, visualization, and
information extraction from the resulting QAOA parameters, which are the RZ, RX, and
RY gate values, acquired from the max-cut problem dataset. We evaluate the effectiveness
of PCA and t-SNE strategies in providing comprehensive insights into the models. This
evaluation encompasses both graphical representations and internal metrics derived from
both methods.

2. Motivation and Methodology

The motivation for this work is rooted in the concepts discussed by D. Koch et al.
(2020) [6], particularly in Lesson 10 referred to the QAOA. In their work, the authors raise
the notion that the conventional mixing operator, which includes RX and RY gates with
individual gate rotations, may prove inadequate in exploring all the feasible states within
the associated Hilbert space of the system. This limitation becomes particularly prominent
in scenarios involving high-dimensional spaces, where individual rotations often lead to
separable states, thereby impacting the overall effectiveness of the QAOA algorithm.

In response to the challenge of limited state reachability, discussed by D. Koch et al.
(2020) [6], the proposed solution involves the incorporation of an entanglement stage within
the mixing operator. This modification enables access to entangled states, which constitute
the majority of possible states in composite quantum systems of two or more qubits. The
specific structure or properties of the entanglement stage were not detailed in their work.
While there have been various studies exploring the structure of entanglement stages in
quantum circuits, this remains a topic with many unanswered questions and areas for
further research [23–25].

2.1. Motivation for Studying Entangled and Non-Entangled Mixing Operator

Considering the previous ideas, several questions that motivate this work arise: Is there
an observable difference in the distribution of parameter values generated by the mixing
operator when we introduce an entanglement stage? Can visualization techniques like
PCA or t-SNE reveal visual and/or numerical disparities in the distribution of parameter
values between mixing operators with and without an entanglement stage?
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In our quest to address these questions, we conducted a comprehensive review of the
state of the art. Our objective was to explore whether any existing research had analyzed
the distribution of parameter values across a set of solutions for a specific problem, with a
particular emphasis on the visualization aspect. However, our findings indicated a gap in
the literature. Most research in this domain tends to analyze each individual experiment
separately and often employs techniques such as heatmaps to examine the landscape of the
solution space.

While we encountered some works that touched upon related aspects, such as Moussa
et al. (2022) [22] and Rudolph et al. (2021) [13], these studies primarily focused on different
facets of VQAs and optimization. Their specific emphases did not align with the questions
that we were trying to solve in our research. Consequently, our study represents a unique
contribution to the field, shedding light on the distribution of parameter values in the
context of entangled and non-entangled mixing operators within the QAOA.

In the following sections, we explain the results obtained to answer these questions,
where indeed the results show differences in the mapping data (both numerically and
visually) using PCA and t-SNE as our visualization techniques when we encounter an
entanglement stage in the mixing operator.

2.2. Methodology of QAOA Dataset Usage

In this paper, we utilized a dataset containing the optimized parameters acquired for
the phase (RZ gates) and mixing operators (RX and RY gates). These parameters were
obtained by applying the Quantum Approximate Optimization Algorithm (QAOA) in
conjunction with the Stochastic Hill Climbing with Random Restarts (SHC-RR) optimiza-
tion method to a series of max-cut problems. SHC-RR does not exhibit a specific tendency
in its exploration of the search space, making it a more unbiased strategy suitable for
data generation.

The dataset of optimized max-cut problems was created for an upcoming study, which
also involves an analysis of QAOAs. In this work, we do not delve into the methodology of
solving the max-cut problems using QAOAs or assess the quality of the optimized solutions
provided in the dataset. Our sole focus is on utilizing the generated parameters associated
with the optimized solutions for a set of max-cut problems. For comprehensive results,
including the optimized parameters, please refer to reference [26].

Additionally, it is important to note that our analysis in this study does not consider
the expected energy value or evaluated cost obtained from the solution of a particular
experiment in a max-cut problem.

The dataset comprises the parameters obtained with QAOAs using SHC-RR to solve
max-cut problems with cyclic and complete configurations, involving different numbers
of nodes: 4 nodes (4n), 10 nodes (10n), and 15 nodes (15n). Each problem was simulated
100 times, where different QAOA depths were tested, including 1L, 2L, and 3L. Addition-
ally, each QAOA model was evaluated both with and without an entanglement stage (for
every depth) in the mixing operators.

The dataset generated for a particular model and problem contains 100 simulations,
each representing different solution scenarios due to the inherent variability of SHC-RR
in parameter distributions. Therefore, we do not consider the quality of the solution, as
each simulation could yield a better or worse-optimized result. The primary focus of this
research is to extract the properties of the parameters without factoring in the quality of
the solution. This approach is valid because the only difference between the compared
models is the presence or absence of the entanglement stage in the mixing operator. In this
comparison, the depth (1L, 2L, or 3L), problem type (configuration and number of nodes),
and optimization method (SHC-RR) are held constant across all compared models.

PCA and t-SNE are employed in two distinct ways to analyze the QAOA models. In
individual analysis, each method is applied to a specific QAOA model depth either with or
without an entanglement stage in the mixing operator, for a particular max-cut problem
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dataset. This yields numeric and graphical results for each method, allowing us to compare
the individual outcomes.

In paired analysis, we directly compare the entangled and non-entangled QAOA mod-
els (with the same depth) using a single PCA or t-SNE model. In other words, one PCA or
t-SNE model is applied to the values from both datasets of QAOA parameters, representing
the entangled and non-entangled versions of the QAOA model at a specific depth.

These two approaches applied to the QAOA datasets provide us with a comprehensive
understanding of how the entangled and non-entangled mixing operators behave under
different conditions.

3. Problems to Analyze

To provide a comprehensive foundation for understanding the differences between
entangled and non-entangled mixing operators in the context of the Hamiltonian and
circuit structure, this section has been developed.

We commence by offering a general overview of the max-cut problem, which serves
as the basis for the dataset’s content. Subsequently, we explore the fundamental structure
of the phase operator, which plays a crucial role in comprehending the two distinct types
of max-cut problems found in the dataset. Finally, we arrive at the crux of our investi-
gation: the representation of both entangled and non-entangled mixing operators. This
representation is of paramount importance, as it sets the stage for subsequent visualization
and numerical analyses. It also plays a pivotal role in differentiating the entangled and
non-entangled QAOA models, alongside the depth factor.

3.1. Max-Cut Problem

A maximum cut (max-cut) problem is a combinatorial optimization problem that is
often used in the field of both quantum and classical computer science, and operations
research. In this problem, one is given an undirected graph where each edge is associated
with a weight, and the goal is to partition the vertices of the graph into two sets, called A
and B, in such a way that the sum of the weights of the edges that cross between these two
sets is maximized.

In Figure 1, we illustrate the process of solving a max-cut problem using a simple
example. The graph in question consists of four nodes labeled from 1 to 4. To find the
optimal solution, we divide the graph into two distinct groups: Group A, comprising
nodes 1 and 3, and Group B, comprising nodes 2 and 4. It is important to note that, in
this example and in the parameters dataset, the weighted connections between nodes are
considered to be unitary, each with a value of 1. Given this assumption, the solution comes
from determining the number of connections that cross between the two groups, which
transition from the green-colored nodes (Group A) to the red-colored nodes (Group B). In
this particular example, we observe four such connections.

Figure 1. Max-cut example.
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When applying QAOA to address max-cut problems, the solution entails a set of
values assigned to the gates of the phase and mixing operators, effectively determining the
state with the highest probability of representing the optimal solution. Referring back to
our previous example, this solution could manifest as either |0101〉 or |1010〉 state, each
with an associated probability. In this representation, qubits in state 0 correspond to one
group, while those in state 1 correspond to the other group. The aim is to maximize the
probability of obtaining the correct solution state, ideally approaching a probability close
to 100%, contingent on the quality of the QAOA model, which encompasses factors such as
gate parameter precision and the number of parameters employed.

3.2. Hamiltonian and Circuit Description

Transitioning to the discussion of the Hamiltonian and circuit description, we begin
by elucidating the distinctions between the non-entangled and entangled mixing operators,
as depicted in the figure below.

Within the dataset, each of the QAOA models’ depth has a different number of
parameters, namely, the 1L model has one set of RZ, RZ, and RY parameter values, the
2L model has two sets of RZ, RX, and RY parameter values, and the 3L model has three
sets of RZ, RX, and RY parameter values. Each QAOA model is evaluated both with and
without the inclusion of an entanglement stage in the mixing operator (see Figure 2).

Figure 2. Non-entangled and entangled mixing operators.

In Figure 3, we provide a visual representation of the various levels of QAOA quantum
circuit depths. Each of the 1L, 2L, and 3L depths corresponds to the number of pairs of
phase and mixing operator applications in the QAOA model dataset, 1L being a pair of
operators, 2L two pairs of operators, and 3L three pairs of operators. Detailed explanations
of these operators will be presented in the following sections.

Figure 3. Levels of depth, with one pair of phase and mixing operator 1L, two pairs 2L, and three
pairs 3L.
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As a side note, each of the 10 and 15-node problem datasets contain experiments using
1L, 2L, and 3L depths. However, for the four-node problem datasets, we have only depths
of 1L and 2L due to their relatively simpler nature.

The Hamiltonian configurations for dataset problems can be viewed in the following
phase operators for the cyclic and complete configuration.

U(Hcyc, γ) = e−iγHcyc = ∏
〈j,k〉

e−iγZjZk (1)

In the max-cut problem with the cyclic configuration, the representation of the phase
operator can be expressed using Equation (1), where 〈j, k〉 denotes the notation for neigh-
boring nodes. For instance, in the case of the four-node problem, this equation can be
interpreted as connections between nodes 1 to 2, nodes 2 to 3, nodes 3 to 4, and nodes 4 to
1, where the final connection completes the cycle.

U(Hcom, γ) = e−iγHcom = ∏
{j,k|j �=k}

e−iγZjZk (2)

For the complete configuration, the representation for the phase operator follows
Equation (2). In this case, there is a connection between every pair of nodes in the graph,
excluding self-connections {j, k | j �= k}. Also, connections between nodes are not repeated,
meaning that a connection from node j to node k is considered the same as a connection
from node k to node j. This is due to the absence of directionality in the max-cut problem.

U(HB, β1, β2) = eiβ1β2 HB = ∏
j

eiβ1Xj eiβ2Yj , (3)

The mixing operator without entanglement for both max-cut configurations is repre-
sented by Equation (3). This equation includes RX and RY rotations in the mixing operator
with the associated parameters for each gate.

The entangled mixing operator includes an additional term compared to the non-
entangled case. This term is generated by applying CNOT gates between each qubit (node)
in the system, similar to the complete configuration. The equation representing the CNOT
action is as follows:

ei π
4 (I−Z)⊗(I−X) =

(
I 0
0 X

)
=

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠, (4)

to represent the entangled mixing operator in our notation, we use the expression eiIjXk

to indicate that qubit j is controlling qubit k as the target. By adding the term eiIjXk to the
previous mixing operator without entanglement, we obtain the following expression:

U(HB, β1, β2) = eiβ1β2 HB

= ∏
j

eiβ1Xj ∏
{j,k|j �=k}

eiIjXk ∏
j

eiβ2Yj , (5)

which represents the mixing operator with an entanglement stage between the RX and RY
rotations. The entanglement stage generates interactions between each pair of qubits in the
system, ensuring that there are no repeated interactions and no self-interactions.

The quantum circuit representation of the two types of tested mixing operators can be
seen in Figures 4 and 5. Figure 4 corresponds to the non-entangled mixing operator, while
Figure 5 corresponds to the entangled mixing operator.
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|ψ1〉

|ψ2〉

|ψ3〉

RX RY

RX RY

RX RY

Figure 4. Individual rotations in mixing operators.

|ψ1〉

|ψ2〉

|ψ3〉

RX RY

RX RY

RX RY

Figure 5. Entangled rotations in mixing operators.

Both methods (PCA and t-SNE) are applied to each model, where the models are 1L
considering one phase operator with one associated parameter γ and one mixing operator
with two associated parameters β1 and β2; a 2L model that has two phase operators with
γ1 and γ2 and two mixing operators (connected between each phase operator, one per
operator) with β1−1, β1−2, and β2−1 and β2−2; and a 3L model that was tested for some
problems (not all) with γ1, γ2, and γ3 with the corresponding six parameters for the three
mixing operators (two for each operator, as in the previous cases).

4. PCA and t-SNE Description

In this section, we explain how the PCA and t-SNE approach is used to analyze the
properties of the QAOA dataset.

4.1. PCA

Principal component analysis is a method (with statistical or geometric interpretation)
that aims to reduce the dimensionality of a dataset, retaining as much of the original
information as possible [27,28].

PCA operates by employing specific structures known as principal components, which
are designed to capture the maximum variance in the directions they are projected. Utilizing
these principal components, we have the ability to transform the original data into a
new coordinate system. Typically, the first two principal components are used for this
transformation, enabling the data to be visualized in a more interpretable and meaningful
manner [27,28].

In our study, our PCA process commenced with the calculation of the covariance
between a pair of the resulting parameter values of RZ, RX, and RY gates obtained from a
particular experiment within the dataset. It is important to note that there could be multiple
sets of values depending on the model under consideration.

cov(i, j) =
1

n − 1

n

∑
k=1

xk,i xk,j (6)

We use Equation (6) to calculate the covariance between parameters of the RZ and
RX, RZ and RY, and RX and RY gates, where n takes a value of 100, which is the number
of experiments performed for each QAOA model in a particular max-cut problem.

Σ = ∑
i

∑
j

cov(i, j) (7)

Then, we calculate the eigenvalues and eigenvectors of the resulting covariance matrix
(Equation (7)) for the parameters of a certain model in the dataset.

Let i = 1, 2, . . . , n, where n < N is the number of principal components and N is the
dimension of the original data. Let θ = [θ1, θ2, . . . , θN ] be the original data vector, PT

i be
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the transpose of the eigenvector matrix (obtained using Σ), and φ = [φ1, φ2, . . . , φn] be the
resulting transformed vector in the principal component space. The projection using PCA
can be described as follows:

φi = PT
i θi, (8)

where Equation (8) represents the projection (via the dot product between PT
i and θi) onto

a principal component i represented by φi. This process is then repeated to obtain all the
principal components, where each new component is orthogonal to the previous ones.

Var(φ1) ≥ Var(φ2) ≥ · · · ≥ Var(φi) > 0 (9)

The variance of the principal components follows the relationship described by
Equation (9). This equation indicates that the variance of the principal components gener-
ally decreases as the index increases. Consequently, higher index values correspond to a
reduced amount of variance information contained in the data.

4.2. t-SNE

The t-distributed stochastic neighbor embedding method is similar to PCA in the
sense that it is used as an algorithm for data visualization and dimensionality reduction.
The main difference (besides the methodology) with t-SNE is its capability to represent non-
linear relationships in the data and its ability to preserve the high-dimensional structure of
the original data into a lower-dimensional space [29,30].

The t-SNE algorithm creates pairwise similarities using a Gaussian kernel by measur-
ing the distance between the points in the original dataset. Then, the algorithm generates
probability distributions over pairs of points, where the probability of being similar is
related to the pairwise similarity. The resulting selected objects get mapped to a simi-
lar probability distribution in a lower-dimensional space. The algorithm minimizes the
difference between the two selected distributions with the objective of finding a lower-
dimensional representation that preserves the original data structure [29,30].

Similar to the PCA method, our approach involves utilizing the parameters of the
RZ, RX, and RY gates for algorithm development. In this instance, we compute pairwise
similarities by measuring the distance between each pair of parameter gate values within
the dataset.

pij =
pj|i + pi|j

2n
(10)

In the equations, pj|i and pi|j represent the conditional probabilities of a point j given
point i and vice versa, with n denoting the total number of points in the dataset. Notably,
for t-SNE, pii and pjj are both zero, and pij is equivalent to pji. Equation (10) is responsible
for computing pairwise similarities within the original space. For instance, it calculates the
similarity between a specific parameter of an RZ gate and the parameter of an RX gate.
This calculation is repeated for each pair of parameter gate values in the dataset, specific to
a given QAOA model. Then,

qij =

(
1 +
∥∥yi − yj

∥∥2
)−1

∑k �=l

(
1 + ‖yk − yl‖2

)−1 , (11)

is applied to create the map candidates y = y1, y2, . . . , yn in the lower dimensional space.
These candidates are initially set randomly, commonly using a Gaussian distribution with
a small variance centered at the origin. In order to find the best mapping relations, t-SNE
minimizes the Kullback–Leibler divergence, given by:

KL(P||Q) = ∑
ij

pijlog

(
pij

qij

)
(12)
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5. Experiments and Results

The PCA method attempts to find correlations between data by analyzing the variance
between points in the dataset and then reducing the original attributes into a new basis
with fewer dimensions. For the experiments performed in this study, we also obtained
the explained variance to identify how much variance or information is presented in each
component. To compare the entangled and non-entangled models, we performed a PCA
model individually and for each pair of models (with compatible dimensions) that differed
only in the entanglement stage of the mixing operator.

In t-SNE, we follow a similar procedure; however, t-SNE provides us with information
about the relationships between the data using a different method. Specifically, t-SNE gen-
erates dimensionality reduction by modeling the data as a pairwise probability distribution,
where each distribution represents the likelihood of each data point being related to other
data points. During the process of representing the data in a lower-dimensional space,
the algorithm reduces the Kullback–Leibler divergence, which is based on the relative
Shannon entropy. The new represented data hold as much information as possible from the
original data points. In our experiments, we also obtained the Kullback–Leibler divergence
(KL-Divergence) after optimization, which represents the amount of information loss in the
final embedding. A low divergence value is generally considered as better, as it indicates
that the low-dimensional embedding is a good representation of the high-dimensional
data, while a high divergence value indicates a significant loss of information in the final
embedding. In simpler terms, a lower KL-Divergence value signifies better information
preservation. This means that there are more detectable correlations between the data when
utilizing t-SNE.

5.1. PCA Applied to QAOA Dataset

In our application of PCA to each dataset, we initially performed an individual PCA
analysis using the first three PCA components and recorded the corresponding explained
variance. Subsequently, we compared the individual PCA projections by pairing models
that had the same number of parameter gate values (same dimensions). This comparison
involved using the first three PCA components of both models and examining how the
combined PCA projection differed from the original individual maps. This allowed us to
assess the variations between the projections.

It is important to note that the PCA individual and paired approaches were applied to
all three different levels of depth to establish a fair basis for comparison between models.
For the 1L depth level, which corresponds to the 3p model (three parameters), PCA is not
necessary for dimensionality reduction since the number of parameters is equal to the
number of PCA components that we are seeking. However, employing PCA in this case
allows us to identify correlations between the parameters, indicating the relative importance
of certain gates within the QAOA. For the 2L and 3L depth levels, corresponding to the
6p (six parameters) and 9p (nine parameters) models, respectively, the first three PCA
components provide information about parameter correlations within the QAOA as well
as dimensionality reduction.

Table 1 presents the explained variances for the individual PCA projections for the 4n
cyclic configuration max-cut problem. In the case of the first 1L model, which comprises
three parameters, we observed that the second row (3p entangled model) exhibited a
decrease in correlation in the first PCA component compared to the non-entangled model.
This decrease in correlation suggests a reduced significance of this component in terms of
representation importance.

However, the second and third values increased in the 3p entangled model, indicating
an increased contribution to the variance for the remaining PCA components.

For the 6p parameter models, the entangled model demonstrated higher explained
variance values when comparing the first three components. Consequently, the total
amount of variance contained in the components increased.
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Table 1. Individual PCA projections explained variance (4n cyclic) for the first 3 PCA components.

Parameters PCA 1 PCA 2 PCA 3

3 p 0.44317179 0.29359184 0.26323637

3 p ent 0.4189022 0.30327991 0.2778179

6 p 0.23918661 0.20909359 0.16835319

6 p ent 0.2949565 0.22615379 0.1985824

In Figure 6, we present individual PCA graphs for the 4n cyclic max-cut problem. The
first two graphs of the red model (non-entangled 3p) exhibit particular line patterns for
PCA 1 vs. PCA 2 and PCA 1 vs. PCA 3.

Figure 6. PCA individual graphs for 4n cyclic configuration max-cut problem solved using QAOA,
first 3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter 1L
entangled, green 6p parameter 2L non-entangled, and purple 6p parameter 2L entangled model.

For the blue (entangled 3p) model, a similar line behavior is observed in the first graph
(PCA 1 vs. PCA 2) with one more line compared to the non-entangled model. For the last
two graphs, PCA 1 vs. PCA 3 and PCA 2 vs. PCA 3, a separation pattern with two groups
is visible.

In the 6p parameter (2L depth) models, the green model (non-entangled) does not
exhibit any recognizable pattern or cluster in the graphs. For the purple (entangled) model,
PCA 1 vs. PCA 2 has three distinct cluster lines, but no recognizable patterns are observed
in the rest of the planes.

In the case of using a pair PCA model in the 4n cyclic max-cut problem for the 3p and
6p, the results for the PCA components are shown in Table 2. The PCA explained values for
the 3p pair model follow an intermediate trend between the entangled and non-entangled
models of the separate PCA model.

Table 2. Pair PCA projections explained variance for the first 3 PCA components for the 4n cyclic
max-cut problem.

Parameters PCA 1 PCA 2 PCA 3

3 p 0.42701248 0.29829486 0.27469266

6 p 0.22597391 0.19226576 0.18187536
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For the 6p pair model, the variance of the PCA components seems to be closer to the
6p non-entangled model from the separate PCA models. Additionally, the sum of the first
three components for the 6p accounts for only 60% of the information variance, which
indicates that, for that type of model, it is harder to find a specific trend due to the low
original information maintained in the new map.

In Figure 7, we present the pair PCA model for the 3p and 6p models. In the 3p models
(red non-entangled and blue entangled), we observe that the behavior from the individual
graphs is preserved. However, when we have both entangled and non-entangled models,
we can see how the data of the models are projected in different areas while still following
the same patterns as in the previous graphs.

Figure 7. PCA pair graphs for 4n cyclic configuration max-cut problem solved using QAOA, first
3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter 1L
entangled, green 6p parameter 2L non-entangled, and purple 6p parameter 2L entangled model.

In the 6p models, the previous patterns do not hold, and the distribution of projected
points seems to be random in the majority of the graphs. Only the PCA 1 vs. PCA 3 graph
shows some pattern with small centered line clusters for the entangled model (purple),
while the non-entangled model (green) is more scattered compared to the purple data.

5.2. t-SNE Applied to QAOA Dataset

t-SNE was used as an additional method to identify patterns in the QAOA dataset.
We aim to have multiple tools to extract information about the entanglement stage and
investigate how these stages affect the overall relationships between the data.

We used different perplexity values for t-SNE analysis, which is an important pa-
rameter that determines the number of nearest neighbors used in the lower dimensional
representation. We tested three different values of perplexity—3, 30 (the default value in
the Sklearn package), and 99 (an extra value of 199 only for pair models)—with the goal of
identifying different data behaviors at different perplexity levels. We used PCA for initial-
ization embedding (inside t-SNE) as it provides a more globally stable solution compared
to random initialization, which allows for a more precise comparison between models.

Also, as in the case of PCA, we created individual and paired t-SNE graphs for each
dataset problem and for each model using 3p parameters, 6p parameters, and 9p parameters
(for the 10n and 15n problems).

For the first problem dataset, at a perplexity of 3, the non-entangled models had higher
(worse) KL-D values after the mapping compared to the entangled models as shown in
Table 3. At a perplexity of 30, the 3p non-entangled model had a better (lower) KL-D value
compared to the entangled model, and for the 6p models, the entangled model still had a
better KL-D value compared to the non-entangled one.
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Table 3. Individual KL-Divergence for 4n cyclic max-cut problem with different numbers of perplexity,
considering the 3p non-entangled, 3p entangled, 6p non-entangled, and 6p entangled models.

KL-Divergence

Parameters KL-D KL-D KL-D

3 p 0.12658161 0.18968964 0.00003131

3 p ent 0.08551478 0.20780504 0.00004092

6 p 0.55863631 0.4951154 0.00003326

6 p ent 0.35603735 0.39002356 0.00004086

Finally, at 99 perplexity, all models showed good KL-D values, indicating a better
mapping for all the perplexity values tested, where the non-entangled and entangled
models had a slight difference and the non-entangled models performed slightly better at
this perplexity; however, this can be considered as negligible.

The individual t-SNE graphs for the 4n cyclic max-cut problem are shown in Figure 8.
For the 3p non-entangled model (red), the most significant pattern can be observed at the
99 perplexity level, which has a linear pattern similar to the one obtained in the PCA graph
for that particular model and problem dataset. For the 3p entangled model (blue), the
30 perplexity level shows a two-cluster pattern, and the 99 perplexity level shows a circular
pattern with no data points in the center of the plane.

Figure 8. t-SNE individual graphs for 4n cyclic configuration max-cut problem solved using QAOA,
with different perplexity values 3, 30, and 99. Red corresponds to the 3p parameter 1L non-entangled,
blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, and purple 6p parameter 2L
entangled model.

For the 6p non-entangled model (green), the 30 perplexity level has a similar distribu-
tion to the one obtained in the PCA individual graph for the same model, with a random
distribution pattern. And, for the 6p entangled model (purple), the most significant pattern
can be observed at the 99 perplexity level, which has an external circle with a middle
line pattern.

The KL-D values for the pair models in the 4n cyclic max-cut problem are presented in
Table 4. Interestingly, all the best KL-D values were obtained by the 3p models. Consistent
with the individual t-SNE analysis, the best KL-D values were obtained with the highest
perplexity value.
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In the pair t-SNE models graphs (Figure 9) for the 4n cyclic max-cut problem dataset,
we start by focusing on the 3p models non-entangled and entangled (red and blue, respec-
tively) at 199 perplexity. The line patterns of the red model are maintained, but the blue
model shows a completely different distribution, where it has a similar pattern to the red
model. The entangled model data contain the red points at the center, but, at the extremes,
the red model seems to contain the blue data.

For the 6p models non-entangled and entangled (green and purple, respectively),
interesting results are seen at the 99 and 199 perplexity values. The purple model tends
to be grouped in certain areas of the plane at 99 perplexity, while the green model has a
random distribution in the plane with no particular pattern. For 199 perplexity, the patterns
seen in the individual graphs are maintained, with an elliptical behavior, and, in particular,
the purple model shows a line pattern at the center.

Table 4. Pair KL-Divergence for 4n cyclic max-cut problem with different numbers of perplexity,
considering the 3p parameters (non-entangled and entangled) and 6p parameters (non-entangled
and entangled) models.

KL-Divergence

Parameter 3 per 30 per

3 p 0.11827804 0.24608216

6 p 0.58829921 0.73377264

99 per 199 per

3 p 0.17905515 0.00003183

6 p 0.33970055 0.00004709

Figure 9. t-SNE pair graphs for 4n cyclic configuration max-cut problem solved using QAOA, with
different perplexity values 3, 30, 99, and 199. Red corresponds to the 3p parameter 1L non-entangled,
blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, and purple 6p parameter 2L
entangled model.

38



Entropy 2023, 25, 1499

5.3. Results Analysis

In this subsection, we provide a comprehensive overview of our findings. We observed
distinct parameter distribution patterns between entangled and non-entangled models
across all datasets, whether in individual or paired analysis. Furthermore, numerical
disparities were evident, as seen in the explained variance for PCA and KL-Divergence in
t-SNE, highlighting the differences between the two mixing operator variants.

In the results obtained from the PCA method, the 3p models (corresponding to the 1L
depth) for both cyclic and complete max-cut problems exhibit the best values for explained
variance in the first three components. This is due to the fact that these models have the
same number of parameters (dimensions) as the number of PCA components, resulting
in no dimensionality reduction and no loss of information. This characteristic sets these
models apart, and it is interesting to observe that there are differences between the compo-
nents, indicating correlations between certain gate parameters within the QAOA. However,
further studies are needed to determine the specific interactions between gates that are
more significant, which are perceived as greater variances for certain PCA components.

From a graphical perspective, the 3p models tend to exhibit linear pattern behaviors,
where the type of problem where the parameter values come from contributes to a certain
consistency in the observed patterns.

In the 6p models (corresponding to 2L depth) analyzed using PCA, we observe more
interesting behaviors due to the increased complexity of these models. The dimension-
ality reduction provided by the first three PCA components allows for a more effective
application of the PCA strategy overall.

Examining the results of explained variances in the individual PCA graphs for the
cyclic configuration problem datasets of 4n, 10n, and 15n (Tables 1, A3 and A7), we find that
the entangled models consistently yield to better (higher) values in the PCA components.
This behavior is interesting as it indicates a discernible difference between the entangled
and non-entangled models. It suggests that the presence of the entanglement stage in
the mixing operator leads to a greater amount of information (variance) contained in the
QAOA parameters, which can be detected and maintained by the PCA method.

From a graphical standpoint, focusing on the PCA 1 vs. PCA 2 plane, which contains
the most relevant or informative data, as seen in Figures 6, A3 and A9, there are noticeable
differences between the non-entangled (green) and entangled (purple) models. In the case
of the non-entangled models, the distribution of mapped data appears to be random, which
can be attributed to the individual rotations (gates) of the model. On the other hand, the
entangled models exhibit clustering behaviors, leading to distinct visual differences in the
graphs. Despite the PCA method being unaware of the fact that the processed data originate
from an entangled circuit, it is capable of detecting and representing the differences in
data distribution.

Also, in the case of the 6p models for complete configuration problems, the 4n, 10n,
and 15n problem datasets (Tables A1, A5 and A9), we observe a similar behavior as seen in
the cyclic problem datasets. The entangled models consistently exhibit higher values in
the PCA components compared to the non-entangled models, which could be seen in the
individual variance for each PCA component (most cases) and the total amount of variance
contained by the PCA model (all cases).

Examining the graphical representations (Figures A1, A6 and A12), most of the en-
tangled models exhibit clustering behaviors, while the non-entangled models do not
show a clear pattern or distribution. These observations further highlight the distin-
guishing characteristics between entangled and non-entangled models in terms of their
PCA representations.

For the 9p models (3L depth), both in the cyclic and complete configurations, we
once again observe higher PCA values for the entangled models regardless of the type
of problem. However, it is important to note that the total amount of variance in the 9p
models is relatively low. Consequently, when examining the graphical representations
(Figures A4, A7, A10 and A13), we should not draw definitive conclusions. The observed
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behaviors or patterns in the graphs tend to vary from one problem to another. Therefore,
further analysis and investigation are needed to fully understand the implications of the
PCA results for 9p (or more complex) models.

In the pair PCA models, we observed a decreasing trend in variances as the number of
parameters increased, namely for the 3p, 6p, and 9p models. It is important to note that the
3p models should not be compared in the same manner as the 6p and 9p models due to the
number of PCA components generated.

The purpose of the paired graphs (Figures 7, A2, A5, A8, A11 and A14) was to
determine if the individual behaviors could be captured within a pair PCA. This would
suggest that differences between parameters in QAOA models could be detected within
the same PCA. In most cases, the individual behaviors were indeed maintained in the pair
graphs, supporting the notion that distinct parameter characteristics could be identified
using the pair PCA approach.

For the t-SNE analysis, the results presented in Tables 3, A11, A13, A15, A17 and A19
show a clear tendency of generating better (lower) KL-Divergence values for the entangled
models, with the difference being more pronounced depending on the perplexity value.

In the individual t-SNE analysis, the best results were generally generated by the 3p
models. This can be attributed to the fact that these models have only three parameters
(only one set of RZ, RX, and RY gate parameters), and the t-SNE projection to the plane
does not lose a significant amount of information in the process. The best KL values were
reported at 99 perplexity, where all the models generated good values that were closer
to zero.

For the paired t-SNE models presented in Tables 4, A12, A14, A16, A18 and A20, the
best KL values were also reported for the 3p models. In this case, the quality of the reported
values decreased as the number of parameters increased for the majority of perplexity
values tested.

The worst KL values were obtained at 30 perplexity. At 199 perplexity, we obtained the
best KL values, similar to the individual case at 99 perplexity. Most paired models generated
good KL-Divergence values, indicating a better representation in the low-dimensional space
when using the t-SNE method.

In the graphical results for the individual t-SNE models presented in Figures 8, A15,
A17, A18, A20, A21, A23, A24, A26 and A27, we selected the graphs generated at 99 per-
plexity as the best representation due to the value of the KL-Divergence value.

In the 3p models, we observed similar behaviors as those observed in the PCA graphs.
The non-entangled 3p model (red) consistently exhibited a three-line cluster pattern across
different problems and depths of the QAOA model. On the other hand, the entangled 3p
model (blue) showed varying patterns depending on the problem type and QAOA depth,
often generating line clustering patterns, although they were not as well-defined as those
of the non-entangled model.

For the 6p models, we observed similar patterns between the entangled (purple) and
non-entangled (green) models. At 99 perplexity, most of the graphs displayed an elliptical
pattern, with the entangled models sometimes exhibiting more pronounced grouping
behavior in certain areas of the plane. The same behavior observed in the 6p models
was also reported in the more complex 9p models, where, at the highest perplexity, both
non-entangled (orange) and entangled (brown) models generated elliptical patterns, with
the non-entangled models exhibiting a more evenly distributed pattern around the ellipse.

In the paired t-SNE graphical results presented in Figures 9, A16, A19, A22, A25 and A28,
we observed distinct patterns and behaviors. In the 3p models, at certain perplexity values,
particularly higher perplexity values like 99 or 199, clear differences were observed between
the non-entangled (red) and entangled (blue) models. This indicates that the paired t-SNE
is capable of differentiating between different types of data within the model.

In some cases, the distributions observed in the individual graphs were maintained in
the paired t-SNE plot, while, in other cases, similarities with the PCA graphs were observed.
For the 6p models, significant differences were observed between the non-entangled (green)
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and entangled (purple) models. The non-entangled model tended to exhibit a more random
distribution in the t-SNE plane across different perplexity values, while the entangled
model showed a tendency to be more concentrated in certain areas. At 199 perplexity,
both models recreated the elliptical behavior observed in the individual graphs, where the
entangled model exhibited differences compared to the individual graphs.

Specifically, the entangled model showed more clusters around a certain distribution,
while the non-entangled model continued to exhibit a more evenly distributed pattern.

For the 9p models, similar behaviors were observed as in the 6p models. The non-
entangled model (orange) tended to be more evenly distributed in the t-SNE plane across
different perplexity values, and a clear elliptical pattern was generated at 199 perplexity.
On the other hand, the entangled model (brown) displayed a tendency to be more grouped
in certain areas of the plane at different perplexity values. At 199 perplexity, the entangled
models followed the elliptical pattern but appeared more compressed in certain areas of
the distribution.

6. Conclusions

PCA and t-SNE show graphical and numerical differences between the parameter
distributions of the QAOA models: the entangled models achieved greater correlations
while the non-entangled models showed lower levels of correlations between parameters
in the different QAOA models datasets.

The PCA method reveals differences in the amount of variance contained in the PCA
components depending on the type of model dataset processed. The entangled models
consistently exhibit higher variance values, either in each PCA component or in the total
amount of variance.

However, the PCA method is not suitable for achieving good mapping in a low-
dimensional space for the datasets investigated in this work. We observed a significant
reduction in the amount of information captured by the PCA components as the number of
parameters increased. The most complex model tested (9p parameters, 3L layers of depth)
usually contained less than 50% of the original variance in the first three PCA components.

In some cases, the paired PCA graphs were able to retain the patterns observed in the
individual PCA graphs, which is important for visually distinguishing between entangled
and non-entangled models.

In general, t-SNE, whether applied to individual or paired models, outperformed the
PCA method. This can be observed from the KL-Divergence values obtained at different
perplexities, indicating a better representation in the low-dimensional space.

In the individual t-SNE models, we also noticed variations in the KL values between
non-entangled and entangled models. Broadly speaking, the entangled models displayed
superior (lower) KL values, which we attribute to the presence of the entanglement stage in
the mixing operator. This stage enhances the capacity to preserve correlation information
arising from the relationships between parameter gate values, something that the t-SNE
models can effectively capture.

Lastly, in the paired t-SNE models, clear differences were observed between non-
entangled and entangled models at various perplexity values. For 3p models, more linear
pattern distributions were observed, while for 6p and 9p models, non-entangled models
exhibited more random and elliptical distributions, whereas entangled models displayed
a tendency to cluster while following a certain pattern depending on the dataset. These
findings highlight the ability of t-SNE to visually distinguish the differences in data rela-
tionships between non-entangled and entangled models.

7. Future Work

For future research, it is important to conduct additional investigation into the inter-
pretation of the observed distributions. At present, it is premature to conclude whether
these specific patterns occur universally in all models with an entanglement stage, regard-
less of the problem. It is also unclear whether different patterns may emerge in other
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types of problems, indicating the presence or absence of an entanglement stage in QAOAs.
Further exploration and analysis are necessary to gain a comprehensive understanding of
these phenomena.

Additionally, it would be valuable to explore alternative optimization methods for
QAOA dataset generation in order to compare the obtained results. This analysis would
help to identify which behaviors persist across different optimization methods and which
ones are influenced by the specific method employed to solve the presented problems.
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Abbreviations

The following abbreviations are used in this manuscript:

QAOA Quantum Approximate Optimization Algorithm
VQA Variational Quantum Algorithm
NISQ Noisy Intermediate-Scale Quantum
PCA Principal Component Analysis
t-SNE t-distributed Stochastic Neighbor Embedding
KL-Divergence Kullback–Leibler Divergence
SHC-RR Stochastic Hill Climbing with Random Restarts

Appendix A. PCA Variances and Graphs

In this appendix, we present the complementary results for the experiments developed
in order to have a bigger set of results to generate better insights and conclusions about
the PCA analysis (and the variances obtained) applied in the max-cut problems solved
using QAOAs.

The PCA explained variance for the 4n complete max-cut problem is presented in
Table A1. For the 3p models, the entangled model exhibits more variance in PCA 1 and
PCA 2. However, an interesting aspect to note is that the variance in PCA 3 for the
entangled model is almost zero, which is a completely different phenomenon compared
to the previous explained variances of the 4n cyclic problem. The variance for the 6p
models is closer to the one observed in the previous problem. In both entangled models,
the variances in PCA 1 increase compared to the same number of parameter models
without entanglement.
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Table A1. Individual PCA projections explained variance (4n complete) for the first 3 PCA components.

Parameters PCA 1 PCA 2 PCA 3

3 parameters 0.50298884 0.311534 0.18547716

3 parameters ent 0.57473804 0.42450533 0.00075663

6 parameters 0.2283193 0.21189936 0.18558982

6 parameters ent 0.23935453 0.22027888 0.18451389

Upon analyzing Figure A1, we observe that, for the 3p models, the behavior of the
non-entangled model (red) is similar to the previous problem, where the major change is
presented in the PCA 1 vs. PCA 2 graph, which has the same type of linear distribution
but with a different orientation. In the entangled model (blue), there is a two-line cluster
pattern that differs from the previous result. It is interesting to note that these two clusters
are presented in the PCA 1 vs. PCA 2 and PCA 2 vs. PCA 3 graphs, only changing
the perspective. In the case of the 6p models, the green model (non-entangled) has a
similar distribution as before, with a random dispersion of points in the different plane
perspectives, with no distinguishable clusters or patterns. However, for the entangled
model (purple), the three-cluster behavior from the cyclic problem can be observed in the
PCA 1 vs. PCA 2 graph again. This phenomenon could represent an increase in correlations
between the data when the entanglement stage is implemented.

Figure A1. PCA individual graphs for 4n complete configuration max-cut problem solved using
QAOA, first 3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter
1L entangled, green 6p parameter 2L non-entangled, and purple 6p parameter 2L entangled model.

The explained variance for pair PCA models for 3p and 6p (corresponding to 1L and
2L of depth, respectively) presented in Table A2 corresponds to the 4n complete max-cut
problem. The variances obtained are similar to those in the cyclic problem, with the only
noticeable difference being the variance in the PCA 3 component for the 3p pair PCA, which
is considerably lower than in the previous problem. For the 6p pair PCA, the values are
pretty close to one another, differing at most by 0.3 in the first three PCA components.
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Table A2. Pair PCA projections explained variance for the first 3 PCA components for the 4n complete
max-cut problem.

Parameters PCA 1 PCA 2 PCA 3

3 parameters 0.4655341 0.34885069 0.18561521

6 parameters 0.21851466 0.18343424 0.17652118

The pair PCA graphs for the 4n max-cut complete configuration problem are shown
in Figure A2. For the 3p models (red and blue), the PCA 1 vs. PCA 2 graph shows patterns
similar to those observed in the individual PCA graphs. In the PCA 2 vs. PCA 3 graph,
the pattern appears to be preserved for the non-entangled model, while the entangled
model shows a distribution of points that is closer together. It is worth noting that the
blue points in the PCA 1 vs. PCA 3 graph are contained in a particular line pattern that
shows a clear difference between the projection of the non-entangled and entangled models.
Moving on to the 6p models (green and purple), the first PCA 1 vs. PCA 2 graph shows
a scatter distribution of points for the non-entangled model (green), while the entangled
model (purple) has two lightly clustered areas that are barely distinguishable. However,
in the PCA 1 vs. PCA 3 graph, there is a clear pattern of three elliptic clusters for the
entangled model. Adding the PCA 2 and PCA 3 graph with two clusters presented in the
entangled model, these clusters can be interpreted as the pair PCA model being capable of
detecting particular correlations between the non-entangled and entangled data due to the
distribution of values from the different models. Overall, the pair PCA graphs suggest that
the entanglement stage is capable of revealing additional information about the correlations
between the different models.

Figure A2. PCA pair graphs for 4n complete configuration max-cut problem solved using QAOA,
first 3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter 1L
entangled, green 6p parameter 2L non-entangled, and purple 6p parameter 2L entangled model.

The explained variances for the 10n cyclic max-cut problem are presented in Table A3.
For this problem, we compiled results for three different levels of depth: 1L (3p parameters),
2L (6p parameters), and 3L (9p parameters). The first two models (1L and 2L) have similar
results compared with the previous cyclic problem for 4n. However, it is important to
mention that the entangled models with 6p and 9p parameters increase the amount of
variance in the PCA 1 component compared with the non-entangled models. Additionally,
the PCA 2 and PCA 3 components have more variance in general compared with the
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non-entangled models (including the 3p model). This increase in variance around the
components is due to the entanglement stage, which increases the amount of covariances
between the elements.

Table A3. Individual PCA projections explained variance (10n cyclic) for the first 3 PCA components.

Parameters PCA 1 PCA 2 PCA 3

3 parameters 0.4824018 0.32759113 0.19000707

3 parameters ent 0.42582802 0.29568193 0.27849004

6 parameters 0.22421832 0.19958267 0.19614923

6 parameters ent 0.27777425 0.20329209 0.18833349

9 parameters 0.1681149 0.14530348 0.13463924

9 parameters ent 0.17743445 0.1615457 0.14796169

The graphs for the 3p and 6p parameter models in the 10n cyclic max-cut problem
are presented in Figure A3. For the first 3p non-entangled model (red), the distribution
is similar to that of the first cyclic problem, while the entangled model (blue) has a quite
different data projection with no recognizable pattern. In the 6p parameter models, the
behavior has some similarities with the previous cyclic problem. The non-entangled model
(green) has a random distribution of points with no distinguishable cluster or pattern, but
in the entangled model (purple) in the PCA 1 vs. PCA 2 graph, there is one major cluster
in the center with two smaller ones at the sides, which is similar to the distribution in the
previous problem, where the rest of the PCA 1 vs. PCA 3 and PCA 2 vs. PCA 3 graphs (in
the purple model) also seem to be conglomerating the points at the center of each graph.

Figure A3. PCA individual graphs for 10n cyclic configuration max-cut problem solved using QAOA,
first 3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter 1L
entangled, green 6p parameter 2L non-entangled, and purple 6p parameter 2L entangled model.

In the last 3L depth model with 9p parameters (Figure A4, the distribution for the non-
entangled model (orange) is very similar to the 6p non-entangled model, with a random
distribution of points and no distinguishable clusters. For the entangled model, only the
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PCA 1 vs. PCA 2 graph seems to have a pattern, with two light clusters divided by a
central line.

Figure A4. PCA individual graphs for 10n cyclic configuration max-cut problem solved using
QAOA, first 3 components. Orange 9p parameter 3L non-entangled and purple 9p parameter 3L
entangled model.

The pair PCA explained variances for the 10n cyclic max-cut problem are presented
in Table A3. The variances for the 3p and 6p models were very similar to the previous
results, with a considerable decrease in the amount of variance represented in each PCA
component as the number of parameters increased. This trend persists with the 9p pair
PCA model values.

Table A4. Pair PCA projections explained variance for the first 3 PCA components for the 10n cyclic
max-cut problem.

Parameters PCA 1 PCA 2 PCA 3

3 parameters 0.45436643 0.31238244 0.23325113

6 parameters 0.21821814 0.1962479 0.17828477

9 parameters 0.14672728 0.13850982 0.12026834

The pair PCA graphs are presented in Figure A5. The 3p and 6p models have similar
behaviors to the previous cyclic problem. The 3p model preserves almost the same distri-
bution of points in the projection as the individual graphs, while, for the 6p models, the
green (non-entangled) model has a random distribution of points similar to the individual
graph. However, the purple (6p entangled) model exhibits a clear cluster pattern behavior
for the PCA 1 vs. PCA 2 and PCA 1 vs. PCA 3 graphs. In the more complex models with
9p, there is no clear behavior of the projection distribution, and due to the low variance for
each PCA component presented in the graph, we cannot establish a precise interpretation
of the results because the PCA mapping has lost a large amount of original information.
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Figure A5. PCA pair graphs for 10n cyclic configuration max-cut problem solved using QAOA,
first 3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter 1L
entangled, green 6p parameter 2L non-entangled, purple 6p parameter 2L entangled model, orange
9p parameter 3L non-entangled, and brown 9p parameter 3L entangled model.

The explained variances for the first three PCA components in the individual models
for the 10n complete problem are presented in Table A5. Comparing the table with the
individual variances for the cyclic problem, we observe some interesting results. Starting
with the 3p model, the entangled version shows an increase in the amount of variance
associated with PCA 1 and PCA 2 compared to the non-entangled model, which is the
opposite of what was observed in the cyclic problem. For the 6p and 9p models, the
entangled versions show a decrease in the amount of variance contained in PCA 1 and
PCA 2 components with respect to the non-entangled models, while PCA 3 has a greater
value in general. Analyzing these results with the cyclic problem, we can observe how the
problem’s structure modifies how the entanglement stage in the mixing operator can affect
the variance distribution along the PCA components. However, the difference between the
components in the entangled models seems to be lower compared to the non-entangled
ones. Another important observation is that, in the 6p and 9p models, the total amount of
variance captured by the first three PCA components is slightly higher in the entangled
models compared to the non-entangled ones.

Table A5. Individual PCA projections explained variance (10n complete) for the first 3 PCA components.

Parameters PCA 1 PCA 2 PCA 3

3 parameters 0.49767238 0.33234628 0.16998134

3 parameters ent 0.588512290 0.411087639 0.0004000709

6 parameters 0.24720666 0.19582826 0.16085243

6 parameters ent 0.23681691 0.19549636 0.17376718

9 parameters 0.17181209 0.14208608 0.12933972

9 parameters ent 0.15950657 0.14702026 0.14211113

The individual graphs presented in Figure A6 exhibit a behavior similar to that of the
4n complete max-cut problem. The 3p non-entangled (red) and entangled (blue) models
have almost the same type of distribution for the PCA 1 vs. PCA 2, albeit with different
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orientations. In the case of the 6p non-entangled model (green), it has a similar random
distribution as in the previous problems (not only the complete problems). Meanwhile, the
6p entangled model (purple) has a major cluster on the left and two small clusters on the right
in the PCA 1 vs. PCA 2 graph, and, the PCA 2 vs. PCA 3 graph has a two-cluster distribution.

Figure A6. PCA individual graphs for 10n complete configuration max-cut problem solved using
QAOA, first 3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter
1L entangled, green 6p parameter 2L non-entangled, and purple 6p parameter 2L entangled model.

Completing the individual graphs in the 10n complete max-cut problems, we have
the 9p parameter models (3L depth) in Figure A7. In this case, there is no clear behavior
in the non-entangled and entangled models. This is not surprising because the amount of
variance that each perspective has is very low, and it cannot give a correct representation of
the original information.

Figure A7. PCA individual graphs for 10n complete configuration max-cut problem solved using
QAOA, first 3 components. Orange 9p parameter 3L non-entangled and brown 9p parameter 3L
entangled model.
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The explained variances for the 10n complete max-cut problem are presented in
Table A5. The values of variance are very similar to the ones obtained in the cyclic problem,
showing a decreasing trend in importance (due to the decrease in variance) with an increase
in the number of parameters. In the case of the 9p models, the amount of variance in the
first three components is less than 40%.

Table A6. Pair PCA projections explained variance for the first 3 PCA components for the 10n
complete max-cut problem.

Parameters PCA 1 PCA 2 PCA 3

3 parameters 0.46514143 0.34410486 0.19075371

6 parameters 0.20148807 0.19106115 0.17569887

9 parameters 0.1569094 0.137659 0.12379254

The pair PCA model for the 10n complete max-cut problem is presented in Figure A8.
In the case of the 3p models, the distribution is very similar to the individual graphs, with
changes observed in the PCA 1 vs. PCA 3 and PCA 2 vs. PCA 3 distributions for the
entangled model (blue). For the 6p parameter models, the distribution shows no clear
pattern or clusters, with only two light clusters and some outliers in the PCA 1 vs. PCA 2
plot. However, due to the low variance of the PCA components, these results cannot be
considered conclusive. Finally, for the 9p models, the distribution appears to be random,
with no clear patterns observed. Again, due to the low variance, these results are to
be expected.

Figure A8. PCA pair graphs for 10n complete configuration max-cut problem solved using QAOA,
first 3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter 1L
entangled, green 6p parameter 2L non-entangled, purple 6p parameter 2L entangled model, orange
9p parameter 3L non-entangled, and brown 9p parameter 3L entangled model.

The results shown in Table A7 exhibit similar behavior to those observed in the 10n
cyclic problem. For the 3p models, the non-entangled model demonstrates greater values
for PCA 1 and PCA 2, whereas the entangled model produces a more evenly distributed
variance in PCA 2 and PCA 3. For the 6p models, the entangled model displays higher
variance values for PCA 1 and PCA 2, as well as for the first three components, which is
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consistent with the earlier findings. In the case of the 9p models, the entangled model has
higher values for all PCA components, although the difference is not substantial. Overall,
these results suggest that the entangled models generally perform better in terms of the
amount of variance information that the model is able to detect and project in the new
PCA space.

Table A7. Individual PCA projections explained variance (15n cyclic) for the first 3 PCA components.

Parameters PCA 1 PCA 2 PCA 3

3 parameters 0.4647624 0.32860527 0.20663233

3 parameters ent 0.38826281 0.34828084 0.26345635

6 parameters 0.22713273 0.19519285 0.18337327

6 parameters ent 0.27183177 0.23569836 0.19037519

9 parameters 0.1592166 0.1491276 0.14043665

9 parameters ent 0.17716564 0.15707367 0.13968417

For the individual PCA graphs of the 15n cyclic max-cut problem, refer to Figure A9.
In the 3p models, both non-entangled (red) and entangled (blue), we observe a behavior
similar to previous experiments. Particularly, interesting patterns can be observed in the
PCA 1 vs. PCA 2 and PCA 2 vs. PCA 3 planes. Shifting our focus to the 6p models, the
non-entangled model (green) exhibits patterns consistent with previous observations, with
no clear discernible behavior or pattern across different PCA planes. However, for the
entangled model (purple), the presence of the three-line clustering behavior, previously
observed in the PCA 1 vs. PCA 2 plane for the 4n and 10n cyclic problems, reappears.

Figure A9. PCA individual graphs for 15n cyclic configuration max-cut problem solved using QAOA,
first 3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter 1L
entangled, green 6p parameter 2L non-entangled, and purple 6p parameter 2L entangled model.

In the 9p parameters models (Figure A10), no clear patterns can be distinguished
in both the non-entangled (yellow) and entangled (brown) models. This lack of clear
patterns is not surprising considering the low variance associated with the first three
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PCA components. As previously mentioned, when the variance is low, it becomes more
challenging to achieve a meaningful mapping in the low-dimensional space using PCA.

Figure A10. PCA individual graphs for 15n cyclic configuration max-cut problem solved using
QAOA, first 3 components. Orange 9p parameter 3L non-entangled and brown 9p parameter 3L
entangled model.

Now, regarding the pair PCA models in the 15n cyclic problem, we observe similar
behavior as in the previous cyclic problem. The 3p models present the best PCA values,
which is not surprising since this model has the same dimension as the PCA components.
The 6p models accumulate approximately 60% of the variance in the original data for the
first three PCA components, making them the second-best performing models. Finally, the
9p models have lower PCA values, with less than 40% of the variance of the data in the
first three components.

Table A8. Pair PCA projections explained variance for the first 3 PCA components for the 15n cyclic
max-cut problem.

Parameters PCA 1 PCA 2 PCA 3

3 parameters 0.41927731 0.34498266 0.23574004

6 parameters 0.23265555 0.18633541 0.18280923

9 parameters 0.15291139 0.14312175 0.12984339

The results presented in Figure A11 exhibit similar patterns to those observed in
previous problems for the 3p and 6p models. In particular, for the 6p models, both the
entangled (purple) and non-entangled (green) models continue to exhibit their respective
distribution behaviors. The non-entangled model displays a scattered distribution in the
PCA 1 vs. PCA 2 plane, while the entangled model demonstrates clustering behavior in the
PCA 1 vs. PCA 3 plane. However, for the 9p models, neither the entangled (brown) nor the
non-entangled (yellow) models exhibit clear patterns. The only noticeable difference is that
the data points in the entangled model tend to be closer together, although this distinction
is difficult to discern.
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Figure A11. PCA pair graphs for 15n cyclic configuration max-cut problem solved using QAOA,
first 3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter 1L
entangled, green 6p parameter 2L non-entangled, purple 6p parameter 2L entangled model, orange
9p parameter 3L non-entangled, and brown 9p parameter 3L entangled model.

The final problem examined using PCA is the 15n complete configuration max-cut
problem. The individual PCA variances are presented in Table A9. In the 3p models (both
entangled and non-entangled), the behavior aligns with the previous findings. However,
in the 6p models, the distribution of explained variance differs from the 10n complete
configuration problem. Here, the entangled model demonstrates a noticeable increase in
variance due to the presence of the entanglement stage, resembling the behavior observed
in the cyclic problems. Similarly, in the 9p models, the entangled QAOA exhibits a higher
total amount of variance in the first 3 PCA components, mirroring the results observed in
the 6p models. Additionally, consistent with the 10n problem, the total amount of variance
is higher in the entangled models for both the 6p and 9p cases.

Table A9. Individual PCA projections explained variance (15n complete) for the first 3 PCA components.

Parameters PCA 1 PCA 2 PCA 3

3 parameters 0.41775729 0.35261959 0.22962311

3 parameters ent 0.38723863 0.36655932 0.24620205

6 parameters 0.22555648 0.19689321 0.18005628

6 parameters ent 0.28402724 0.21446195 0.18652736

9 parameters 0.16446156 0.15145779 0.14506611

9 parameters ent 0.18999579 0.16075822 0.13010846

The individual graphs using PCA for the 15n complete max-cut problem are presented
in Figure A12. In the 3p models, both the entangled (blue) and non-entangled (red) models
exhibit patterns similar to those observed in the previous 4n and 10n problems. However,
there are some differences in the entangled model, particularly in the PCA 1 vs. PCA 2
and PCA 1 vs. PCA 3 planes, where more line patterns are observed compared to the
one or two line patterns seen in the previous problems. Moving on to the 6p models, the
non-entangled model (green) continues the trend observed in previous problems, showing
no clear tendency or discernible behavior in the data distribution. In contrast, the entangled
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model (purple) exhibits no clear distribution in the PCA 1 vs. PCA 2 plane, which is
different from the patterns observed in the 4n and 10n problems. The PCA 1 vs. PCA 3
plane shows some noisy cluster distribution, but it is not well-defined.

Figure A12. PCA individual graphs for 15n complete configuration max-cut problem solved using
QAOA, first 3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter
1L entangled, green 6p parameter 2L non-entangled, and purple 6p parameter 2L entangled model.

In the 9p models depicted in Figure A13, no clear or distinguishable patterns can be
observed in both the non-entangled (yellow) and entangled (brown) models. This behavior
is consistent with the patterns observed in the 10n complete max-cut problem.

Figure A13. PCA individual graphs for 15n complete configuration max-cut problem solved using
QAOA, first 3 components. Orange 9p parameter 3L non-entangled and brown 9p parameter 3L
entangled model.

The explained variance for the 15n complete max-cut problem is presented in Table A10.
The distribution of PCA variance per model follows a similar trend to that observed in the
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previous problems. The 3p models exhibit the highest variance values, which is expected
as the number of parameters matches the number of PCA components. As the number of
parameters increases, the quality of the components decreases, resulting in lower variance
values. Notably, the 6p models show a slight increase in the total amount of variance
compared to the 10n problem, bringing them closer to the values obtained in the cyclic
problems. The variance values for the 9p models are similar to those observed in the 10n
problems, both for cyclic and complete configurations, representing the lowest values
among the tested models.

Table A10. Pair PCA projections explained variance for the first 3 PCA components for the 15n
complete max-cut problem.

Parameters PCA 1 PCA 2 PCA 3

3 parameters 0.36035505 0.35400924 0.28563571

6 parameters 0.24550126 0.19657842 0.16664964

9 parameters 0.1512382 0.13967618 0.12791876

The pair PCA graphs for the 15n complete max-cut problem are presented in Figure A14.
In the 3p models, both non-entangled (red) and entangled (blue), the essence of the individ-
ual graphs is preserved, similar to the previous pair graphs. However, the 6p models do not
exhibit a clear behavior or pattern in any of the planes. This behavior is consistent with the
15n cyclic problem but differs from the distribution observed in the 4n and 10n complete
problems, where some clustering patterns were observed. Lastly, in the 9p models, the
non-entangled model (yellow) displays a random distribution pattern across all planes,
while the entangled model (brown) shows a slightly more concentrated patterns in certain
areas, as seen in the PCA 1 vs. PCA 2 and PCA 1 vs. PCA 3 planes.

Figure A14. PCA pair graphs for 15n complete configuration max-cut problem solved using QAOA,
first 3 components. Red corresponds to the 3p parameter 1L non-entangled, blue 3p parameter 1L
entangled, green 6p parameter 2L non-entangled, purple 6p parameter 2L entangled model, orange
9p parameter 3L non-entangled, and brown 9p parameter 3L entangled model.
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Appendix B. t-SNE Graphs and KL Divergence Values

In this appendix, we present the complementary results for the experiments developed
using t-SNE analysis (and KL-D values obtained) applied in the max-cut problems solved
using the QAOA.

The results for KL-D for individual t-SNE in the 4n complete max-cut problem are
presented in Table A11. In general, the values for 3 and 30 perplexity have values that
are closer compared to the cyclic 4n problem, with the entangled models having a better
perplexity value (lower) compared to the non-entangled models. The best KL-D values
were obtained with the 99 perplexity, which is interpreted as the best model that represents
the original properties of the data.

Table A11. Individual KL-Divergence for 4n complete max-cut problem with different numbers
of perplexity, considering the 3p non-entangled, 3p entangled, 6p non-entangled, and 6p entan-
gled models.

Parameters KL-D (3 per) KL-D (30 per) KL-D (99 per)

3 parameters 0.15324634 0.17391348 0.00002262

3 parameters ent 0.14360289 0.05689293 0.00003242

6 parameters 0.55960602 0.52287281 0.00004825

6 parameters ent 0.37428555 0.38009176 0.00002795

The individual graphs for the 4n complete max-cut problem (Figure A15) show that
the 3p non-entangled (red) model has a distribution similar to the previous problem, and,
specifically for the 99 perplexity, the three-line pattern is similar to the one obtained before.
The pattern in this perplexity value is also similar to some perspectives obtained in the PCA
graphs. The 3p entangled (blue) model has very different patterns than the ones obtained
in the cyclic problem. The most interesting results are the similarities of the two-line
clusterization obtained at the 30 and 99 perplexity, which replicate some patterns from PCA
graphs obtained in the same problem. Moving to the 6p models, the non-entangled (green)
model has a random distribution behavior observed in the cyclic problem and the PCA
graphs at the 30 perplexity. At the 99 perplexity, the elliptical pattern of the cyclic problem
is observed again, but with a wider edge compared to the cyclic t-SNE graph. Last, for the
6p entangled (purple) model, the 99 perplexity shows a particular pattern with two small
elongated clusters at the extremes of the graph and two small clusters at the center of the
plane with some outlier points trying to connect both small clusters.

The KL-D results for the pair t-SNE models in the 4n complete max-cut problem
are presented in Table A12. The results from 3 to 99 perplexity are quite similar to those
obtained in the cyclic problem, where the 3p model shows better KL-D results, leading to a
better representation of the data in the final plane. However, in the case of the 199 perplexity,
the 6p parameter models exhibit better KL-D values, which is a different result compared
to the cyclic problem.

Table A12. Pair KL-Divergence for 4n complete max-cut problem with different numbers of perplexity,
considering the 3p parameters (non-entangled and entangled) and 6p parameters (non-entangled
and entangled) models.

KL-Divergence

Parameters 3 per 30 per 99 per 199 per

3 parameters 0.17788552 0.22446597 0.11483472 0.00005328

6 parameters 0.58645886 0.77581 0.36295095 0.00005059
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Figure A15. t-SNE individual graphs for 4n complete configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, and 99. Red corresponds to the 3p parameter 1L
non-entangled, blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, and purple
6p parameter 2L entangled model.

In the pair graphs for the 4n complete configuration (Figure A16), we can observe
interesting behavior patterns starting with the 3p models. The entangled model (blue)
shows a similar pattern in all perplexity values, which can be observed more clearly from
the 30 to 199 perplexity range. The blue model distributes itself over particular areas on the
t-SNE mapped plane, but with a smooth distribution of mapped points. For the 6p models,
the most interesting distribution is observed at a 199 perplexity value. Here, the mapped
data distribution is very similar to the one obtained in the cyclic problem. However, in this
case, there are only a few points that cross the middle of the elliptic pattern.

Figure A16. t-SNE pair graphs for 4n pair complete configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, 99, and 199. Red corresponds to the 3p parameter 1L
non-entangled, blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, and purple
6p parameter 2L entangled model.
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Table A13. Individual KL-Divergence for 10n cyclic max-cut problem with different perplexity values,
considering the 3p non-entangled, 3p entangled, 6p non-entangled, 6p entangled, 9p non-entangled,
and 9p entangled models.

Parameters KL-D (3 per) KL-D (30 per) KL-D (99 per)

3 parameters 0.11449474 0.18797217 0.00002232

3 parameters ent 0.08714075 0.17103997 0.00004818

6 parameters 0.61964202 0.53861362 0.00004456

6 parameters ent 0.33782312 0.40035829 0.0000446

9 parameters 0.6599322 0.60457009 0.00003925

9 parameters ent 0.690759 0.54887885 0.00004668

When analyzing the 10n max-cut problem with cyclic configuration using t-SNE, we
observed that the 3p entangled model performed the best in terms of KL-D value for the
3 perplexity. However, as the number of parameters increased, the quality of the projected
model decreased, but, on average, entangled models produced better results than non-
entangled ones. For the 30 perplexity, the 3p entangled model remained the best, and all
the entangled models had better KL-D results. At the 99 perplexity, the 3p non-entangled
model had the best KL-D value, but every model at this perplexity level showed a good
KL-D value, which enabled a good representation of the data in the t-SNE plane.

The graphs for the 10n cyclic max-cut problem are presented in Figure A17. The
patterns observed in the 3p models, both entangled (blue) and non-entangled (red), are
pretty similar to the ones observed in the 4n problem. For the 6p non-entangled model
(green), the distribution of data is similar to the one obtained in the 4n problem. How-
ever, for the entangled model (purple) at 99 perplexity, the elliptic behavior is no longer
distinguishable. In this case, the green and purple models at 99 perplexity have a similar
distribution of points.

Figure A17. t-SNE individual graphs for 10n cyclic configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, and 99. Red corresponds to the 3p parameter 1L
non-entangled, blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, and purple
6p parameter 2L entangled model.
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In Figure A18, at 99 perplexity, the 9p non-entangled model (orange) exhibits a similar
elliptic pattern as the 6p non-entangled model, while the entangled model (brown) displays
a more defined elliptic pattern.

Figure A18. t-SNE individual graphs for 10n cyclic configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, and 99. Orange corresponds to the 9p parameter 3L
non-entangled and brown 9p parameter 3L entangled.

Table A14 presents the pair KL-D divergences for different depth QAOA models. For
the first three perplexity values (3, 30, and 99), the best KL-D values were obtained by
the 3p models. At 30 perplexity, it is interesting to see a value greater than 1 obtained
by the 9p models, which is the highest (lower quality) value obtained so far. Finally, at
199 perplexity, the best KL-D values for each t-SNE model were obtained, with the best
KL-D value corresponding to the 9p models.

Table A14. Pair KL-Divergence for 10n cyclic max-cut problem with different perplexity values,
considering the 3p parameters (non-entangled and entangled), 6p parameters (non-entangled and
entangled), and 9p parameters (non-entangled and entangled) models.

KL-Divergence

Parameters 3 per 30 per 99 per 199 per

3 parameters 0.12718032 0.22481607 0.1436608 0.00006457

6 parameters 0.61863911 0.73845208 0.37629709 0.0000484

9 parameters 0.80385178 1.04350173 0.423794 0.00004115

The pair t-SNE model graphs for the 10n cyclic max-cut problem can be seen in
Figure A19. At the 3 perplexity, the non-entangled models (red, green, and orange) seem to
be distributed in specific patterns in the plane, while the entangled models (blue, purple,
and brown) match in certain areas of the t-SNE plane. Moving on to the 30 perplexity, the 3p
models (red non-entangled and blue entangled) distribute in very particular patterns that
cannot be interpreted as a specific structure. In the 6p models, the green (non-entangled)
model seems to have a smooth random distribution, while the purple (entangled) model is
concentrated in certain areas of the plane. The 9p model follows a similar behavior as the
6p graph, where the orange (non-entangled) model is almost randomly distributed, and
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the brown (entangled) model is more concentrated. For the 99 perplexity, the 3p graph
has a similar pattern to the one observed in the 4n cyclic problem, where the red and
blue models have fewer matches compared to the previous perplexity values. In the 6p
graph, the behavior is similar to the one observed at the 30 perplexity, where the green
(non-entangled) model is scattered in the t-SNE plane and the purple (entangled) model
is more concentrated in certain areas. For the 9p graph, there is a difference between the
orange (non-entangled) and brown (entangled) models, where the orange model maintains
the scattered distribution and the brown model has three areas where most of the points are
plotted. Finally, at the 199 perplexity, the 3p graph has a distribution that forms a rotated
square with no additional specific behavior. The 6p graph has a completely different
distribution from the ones observed in previous graphs, even in different problems. The
scale of the graph is very small, generating the presence of outliers and a particular cluster
containing both entangled (purple) and non-entangled (green) models. In the 9p graph,
both orange (non-entangled) and brown (entangled) models have an elliptic pattern, where
the orange model is more scattered compared to the brown model, which preserves the
elliptic pattern better.

The KL-Divergence values presented in Table A15 show similar results to those ob-
served in the 10n cyclic problem, where most of the entangled models present a better
KL-Divergence value after optimization, resulting in a better mapping of points in the
t-SNE plane.

Figure A19. t-SNE pair graphs for 10n cyclic configuration max-cut problem solved using QAOA,
with different perplexity values 3, 30, 99, and 199. Red corresponds to the 3p parameter 1L non-
entangled, blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, purple 6p pa-
rameter 2L entangled, orange 9p parameter 3L non-entangled, and brown 9p parameter 3L entan-
gled model.

Figure A20 displays the individual t-SNE graphs for the 10n complete configuration
max-cut problem. For the 3p models, the red (non-entangled) and blue (entangled) models
at 3 perplexity do not exhibit a clear pattern, consistent with previous results. At 30 per-
plexity, the entangled model generates a line with an empty space in the middle, and the
non-entangled model continues without a clear pattern. At 99 perplexity, the non-entangled
(red) model presents a pattern similar to the one seen in the 4n problem with a complete
configuration, as well as a similar pattern to the one obtained in the individual PCA graphs
(PCA 1 vs. PCA 2) for the 4n and 10n problems with a similar configuration. The entangled
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model (blue) at 99 perplexity presents a two-line pattern, similar to the one obtained in the
previous 4n problem and the individual PCA graphs (PCA 1 vs. PCA 2) for the 4n and 10n
complete configuration problems. For the 6p models, at 3 and 30 perplexity, there is no clear
pattern, consistent with previous results. However, at 99 perplexity, the non-entangled
(green) model appears to be distributed in an elliptical pattern at the sides of the t-SNE
plane, and the entangled (purple) model creates four clusters distributed at the sides of the
plane. This last result shares some similarities with the 4n complete configuration problem.

Table A15. Individual KL-Divergence for 10n complete max-cut problem with different perplexity
values, considering the 3p non-entangled, 3p entangled, 6p non-entangled, 6p entangled, 9p non-
entangled, and 9p entangled models.

Parameters KL-D (3 per) KL-D (30 per) KL-D (99 per)

3 parameters 0.1108679 0.15153457 0.00001909

3 parameters ent 0.13275136 0.05032415 0.00004749

6 parameters 0.48524341 0.51412958 0.00005262

6 parameters ent 0.41168147 0.42243937 0.00003066

9 parameters 0.73269081 0.6897254 0.00004309

9 parameters ent 0.87109852 0.63736594 0.00004298

Figure A20. t-SNE individual graphs for 10n complete configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, and 99. Red corresponds to the 3p parameter 1L
non-entangled, blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, and purple
6p parameter 2L entangled model.

The individual t-SNE graphs for the 10n complete configuration max-cut problem are
shown in Figure A7. At both 3 and 30 perplexity, there is no clear pattern observed, with
the distribution appearing random with no apparent clusters. At 99 perplexity, there is
also no distinguishable pattern observed, which is different from the elliptical behavior
observed in the 10n cyclic problem but consistent with the individual PCA graphs obtained
for the same problem.
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Figure A21. t-SNE individual graphs for 10n complete configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, and 99. Orange corresponds to the 9p parameter 3L
non-entangled and brown 9p parameter 3L entangled.

The KL-Divergence values for the pair-wise t-SNE models are presented in Table A16.
The values are similar to those observed in the cyclic problem with 10n, where the worst
KL-D values were obtained at 30 perplexity, particularly in the 9p parameter models, and
the best KL-D values were obtained at 199 perplexity. The overall best performance was
seen in the 9p models.

Table A16. Pair KL-Divergence for 10n complete max-cut problem with different perplexity values,
considering the 3p parameters (non-entangled and entangled), 6p parameters (non-entangled and
entangled), and 9p parameters (non-entangled and entangled) models.

KL-Divergence

Parameters 3 per 30 per 99 per 199 per

3 parameters 0.15265435 0.19996087 0.11178039 0.00005902

6 parameters 0.56295419 0.78792441 0.38925377 0.00004848

9 parameters 0.90329468 1.03177929 0.43718094 0.00004415

The pair graphs obtained for the 10n complete configuration problem can be seen in
Figure A8. For the 3p non-entangled (red) and entangled (blue) models, similar patterns
are observed as in the individual t-SNE graphs, where the entangled model preserves
a two-line clusterization and the non-entangled model generates different types of lines
that can be observed from 99 to 199 perplexity. It is also important to mention that the
distribution for the 3p models is very similar to the ones observed in the 4n complete
configuration problem in PCA 1 vs. PCA 2 and the paired t-SNE graphs. For the 6p models,
the most interesting behavior is presented at 199 perplexity, where the non-entangled
(green) model has an elliptical pattern with some points at the center, and the entangled
(purple) model has two definite areas where the points are plotted, which are two parts of
the elliptical pattern. This pattern has many similarities with the 4n nodes problem at the
same perplexity. For the 9p models, in general, the non-entangled model (orange) seems to
be randomly distributed at different perplexities, while the entangled (brown) model tends
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to be more concentrated in certain areas of the t-SNE plane. At 199 perplexity, both models
tend to generate an elliptical behavior, where the non-entangled model is better distributed
around the ellipse, and the entangled model is more scattered; this pattern is similar to the
one observed in the 9p models for the 10n cyclic problem.

Figure A22. t-SNE pair graphs for 10n complete configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, 99, and 199. Red corresponds to the 3p parameter
1L non-entangled, blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, purple
6p parameter 2L entangled, orange 9p parameter 3L non-entangled, and brown 9p parameter 3L
entangled model.

The KL-Divergence values presented in Table A17 correspond to the 15n cyclic problem.
At a perplexity of 3, the entangled approaches consistently produced better KL values across
all models, with the best KL value obtained in the 3p entangled model. At a perplexity of
30, the trend of entangled models performing better in terms of KL values continues for
the more complex models with 6p and 9p (2L and 3L depths, respectively). At a perplexity
of 99, all models exhibit good KL values, which are closer to zero. When comparing these
results with those reported in the 10n cyclic problem, we observe a consistent trend where
entangled models generally yield better KL-Divergence values for different perplexities.
Additionally, the best KL values for mapping are obtained at a perplexity of 99.

Table A17. Individual KL-Divergence for 15n cyclic max-cut problem with different perplexity values,
considering the 3p non-entangled, 3p entangled, 6p non-entangled, 6p entangled, 9p non-entangled,
and 9p entangled models.

Parameters KL-D (3 per) KL-D (30 per) KL-D (99 per)

3 parameters 0.12295903 0.19203556 0.0000241

3 parameters ent 0.10832428 0.24514797 0.0000398

6 parameters 0.63913888 0.5105567 0.00004167

6 parameters ent 0.3930757 0.45114037 0.00003364

9 parameters 0.71460283 0.66517001 0.00004309

9 parameters ent 0.64783859 0.55502474 0.00004505
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In the t-SNE individual graphs for the 15n cyclic max-cut problem (Figure A23), we
observe similar behaviors as in the previous 4n and 10n cyclic problems. For the 3p models,
both the non-entangled (red) and entangled (blue) models exhibit different patterns at
different perplexities, and at a perplexity of 99, the non-entangled model generates the
line pattern observed in previous t-SNE and PCA graphs. In the case of the 6p models,
both the non-entangled (green) and entangled (purple) models show distributions that are
consistent with previous problems. The non-entangled model generates an elliptic pattern
with some points in the middle, while the entangled model exhibits a similar external
pattern but with a more pronounced line in the middle.

The patterns observed in the 9p models at 3 and 30 perplexity (Figure A24) closely
resemble those observed in the 10n cyclic and complete configuration problems. At 99 per-
plexity, the distribution of the non-entangled model (orange) is consistent with the previous
problems, while the distribution of the entangled model (brown) follows a similar trend
but with additional noise. The general pattern can still be perceived, but it is not as clear as
in the previous cyclic problem.

For the paired t-SNE models of the 15n cyclic max-cut problem presented in Table A18,
the observed values are similar to those of the 10n cyclic problem. At 3 perplexity, the best
KL value corresponds to the paired 3p model, and as the number of parameters increases,
the quality of KL-Divergence values decreases. At 30 perplexity, the best value is again
obtained by the 3p models, but overall, this perplexity level yields the worst KL values. The
trend of the KL quality decreasing with an increasing number of parameters persists. At 99
perplexity, the values for the 6p and 9p models are improved compared to the previous
perplexities, but the 3p models remain the best performers. Finally, at 199 perplexity, the
overall best KL values are reported, with all models exhibiting good KL-Divergence values,
indicating a well-mapped low-dimensional space where the 6p models yield the best KL
value in this case.

Figure A23. t-SNE individual graphs for 15n cyclic configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, and 99. Red corresponds to the 3p parameter 1L
non-entangled, blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, and purple
6p parameter 2L entangled model.
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Figure A24. t-SNE individual graphs for 15n cyclic configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, and 99. Orange corresponds to the 9p parameter 3L
non-entangled and brown 9p parameter 3L entangled.

The graphical representation of the paired t-SNE models is presented in Figure A25.
Starting with the 3p models, both non-entangled (red) and entangled (blue) present similar
behaviors as in the 10n cyclic case. From 3 to 99 perplexity values, the patterns of both
models appear relatively similar, with each model tending to group more in certain areas.
At 199 perplexity, the difference between models becomes more pronounced, where the non-
entangled model exhibits a pattern with three lines, while the entangled model simulates
a containment pattern of the non-entangled model. For the 6p models, the observed
behaviors are also similar to those reported in the 10n cyclic problem. The non-entangled
model (green) appears more scattered in the plane from 3 to 99 perplexity, while the
entangled model (purple) tends to be more concentrated in certain areas. At 199 perplexity,
the non-entangled and entangled models share a closer distribution, but the entangled
model stands out due to the presence of three soft clusters. Finally, for the 9p models, the
distributions are similar to the 6p models from 3 to 99 perplexity, where the non-entangled
model (orange) shows a random distribution across most of the t-SNE plane, while the
entangled model (brown) exhibits a higher concentration in certain areas. At 199 perplexity,
both models generate an elliptical pattern, with the entangled model being more grouped
in certain parts of the elliptical pattern.

Table A18. Pair KL-Divergence for 15n cyclic max-cut problem with different perplexity values,
considering the 3p parameters (non-entangled and entangled), 6p parameters (non-entangled and
entangled), and 9p parameters (non-entangled and entangled) models.

KL-Divergence

Parameters 3 per 30 per 99 per 199 per

3 parameters 0.13307488 0.26993424 0.17919816 0.00004499

6 parameters 0.64315343 0.82122898 0.34502453 0.00004286

9 parameters 0.8600843 1.03565741 0.42468697 0.00004554
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Figure A25. t-SNE pair graphs for 15n cyclic configuration max-cut problem solved using QAOA,
with different perplexity values 3, 30, 99, and 199. Red corresponds to the 3p parameter 1L non-
entangled, blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, purple 6p pa-
rameter 2L entangled, orange 9p parameter 3L non-entangled, and brown 9p parameter 3L entan-
gled model.

The last individual t-SNE KL-Divergence values correspond to the 15n complete max-
cut problem, and they are presented in Table A19. At 3 perplexity, the entangled models
for 6p and 9p present better KL values. However, for the 3p models, the non-entangled
model has the best KL value overall, which differs from the values observed in the 10n
complete problem where only the 6p entangled model was better than the non-entangled
model. At 30 perplexity, all the entangled models show better values compared to their
corresponding non-entangled models. This behavior is similar to what was observed in the
10n complete problem at the same perplexity. Finally, at 99 perplexity, all the models exhibit
good KL-Divergence values, with the best value obtained by the 3p entangled model.
Overall, the KL values for this problem demonstrate better results for the entangled models.
They also share more similarities with the values observed in the 15n cyclic problem and,
at certain perplexities, with the 10n complete problem.

Table A19. Individual KL-Divergence for 15n complete max-cut problem with different perplexity
values, considering the 3p non-entangled, 3p entangled, 6p non-entangled, 6p entangled, 9p non-
entangled, and 9p entangled models.

Parameters KL-D (3 per) KL-D (30 per) KL-D (99 per)

3 parameters 0.09598967 0.21283571 0.00005414

3 parameters ent 0.21084341 0.16879296 0.00003727

6 parameters 0.62666488 0.56735194 0.00003864

6 parameters ent 0.34622833 0.42480648 0.00004639

9 parameters 0.82630664 0.66207534 0.00004564

9 parameters ent 0.66798007 0.57983494 0.00004709

65



Entropy 2023, 25, 1499

The graphs for the 15n complete max-cut problem can be viewed in Figure A26. For
the 3p models, non-entangled (red) and entangled (blue), at 3 perplexity, we observe similar
patterns to those observed in previous problems. At 30 perplexity, the distribution is
different from what was observed in the 10n complete problem, resembling the pattern
observed in the 15n cyclic problem. At 99 perplexity, the non-entangled model exhibits
a similar three-line pattern as in previous problems, but the entangled model shows a
distribution with two separate areas from the middle, forming line patterns. For the 6p
models, non-entangled (green) and entangled (purple), the behavior at 3 and 30 perplexity is
similar to what was reported in the 10n complete and 15n cyclic problems. At 99 perplexity,
the non-entangled model displays an elliptic pattern with some random points around it,
while the entangled model generates a deformed elliptic pattern, resembling a butterfly-
like distribution.

Figure A26. t-SNE individual graphs for 15n complete configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, and 99. Red corresponds to the 3p parameter 1L
non-entangled, blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, and purple
6p parameter 2L entangled model.

Finally, for the 9p models, the graphical results are presented in Figure A27. At 3 and
30 perplexity, the patterns observed for the non-entangled (orange) and entangled (brown)
models are similar to the ones observed in the 10n complete and 15n cyclic problems.
At 99 perplexity, both the non-entangled and entangled models exhibit a tendency to
concentrate more toward the sides of the t-SNE plane, creating a somewhat elliptical
pattern that is not very distinct.

The KL-Divergence values for the paired t-SNE models in the 15n complete max-cut
problem are presented in Table A20. The values at 3, 30, and 99 perplexity exhibit similar
behaviors to the 15n cyclic problem, where the best KL value was generated by the 3p
models and the worst values were obtained at 30 perplexity for the 9p models specifically.
Furthermore, at 199 perplexity, the best KL values were reported, with all the models
generating good values and the best among them being the 9p models.
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Figure A27. t-SNE individual graphs for 15n complete configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, and 99. Orange corresponds to the 9p parameter 3L
non-entangled and brown 9p parameter 3L entangled.

Table A20. Pair KL-Divergence for 15n complete max-cut problem with different perplexity values,
considering the 3p parameters (non-entangled and entangled), 6p parameters (non-entangled and
entangled), and 9p parameters (non-entangled and entangled) models.

KL-Divergence

Parameters 3 per 30 per 99 per 199 per

3 parameters 0.15160248 0.26059961 0.165535 0.00004839

6 parameters 0.6180442 0.75135112 0.34869462 0.0000503

9 parameters 0.943533 1.02061999 0.43895942 0.00003921

The paired t-SNE models for the 15n complete max-cut problem are presented in
Figure A28. In the 3p models, non-entangled (red) and entangled (blue), the behavior
observed at different perplexities is very similar between them, with no clear distribution
even at 199 perplexity. This result differs from the patterns observed in the 10n complete
problem and the 15n cyclic problem. Moving on to the 6p models, the patterns observed in
the non-entangled (green) and entangled (purple) models are consistent with the previous
graphs. The non-entangled model tends to be randomly scattered across the plane, while
the entangled model shows more grouping behavior at 3, 30, and 99 perplexities. Only
at 199 perplexity do the models distribute themselves at the sides of the plane, with the
entangled model being more concentrated in certain areas of the distribution. Finally, for
the 9p models, at 3, 30, and 99 perplexities, the non-entangled (orange) and entangled
(brown) models exhibit similar distributions to the 6p models. The non-entangled model is
more scattered, while the entangled model generates small group patterns in certain areas
of the plane. At 199 perplexity, both models exhibit some sort of elliptical pattern previously
observed in other problems, with the non-entangled model showing a more pronounced
elliptic shape and the entangled model following the pattern but with less smoothness.
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Figure A28. t-SNE pair graphs for 15n complete configuration max-cut problem solved using
QAOA, with different perplexity values 3, 30, 99, and 199. Red corresponds to the 3p parameter
1L non-entangled, blue 3p parameter 1L entangled, green 6p parameter 2L non-entangled, purple
6p parameter 2L entangled, orange 9p parameter 3L non-entangled, and brown 9p parameter 3L
entangled model.
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Abstract: Quantum computation offers unique properties that cannot be paralleled by conventional
computers. In particular, reading qubits may change their state and thus signal the presence of an
intruder. This paper develops a proof-of-concept for a quantum honeypot that allows the detection
of intruders on reading. The idea is to place quantum sentinels within all resources offered within the
honeypot. Additional to classical honeypots, honeypots with quantum sentinels can trace the reading
activity of the intruder within any resource. Sentinels can be set to be either visible and accessible to
the intruder or hidden and unknown to intruders. Catching the intruder using quantum sentinels has
a low theoretical probability per sentinel, but the probability can be increased arbitrarily higher by
adding more sentinels. The main contributions of this paper are that the monitoring of the intruder
can be carried out at the level of the information unit, such as the bit, and quantum monitoring
activity is fully hidden from the intruder. Practical experiments, as performed in this research, show
that the error rate of quantum computers has to be considerably reduced before implementations of
this concept are feasible.

Keywords: honeypot; post-quantum security; quantum security; quantum networks

1. Introduction

Honeypots are software-based security devices that operate within the general effort
of protecting computing systems: servers, databases, networks, or, more generally, organi-
zations. A honeypot is [1] intentionally constructed to be attacked, explored, and compro-
mised. It is frequently used for detecting and dispersing unauthorized activities. Further-
more, its primary functionality is to investigate the conduct of attackers and to experience
and pinpoint specific unknown attacks. The definition may vary between authors, a close to
unifying definition places the value of a honeypot in its characteristics of being open to be
inspected, attacked, and ultimately compromised [2]. The concept of honeypots moves the
defence strategy from a passive paradigm to a proactive paradigm. Rather than building
a strong defence for the sensitive system and waiting for an attacker to try out various
attacks, the honeypot approach walks a totally different path by creating an alternate/fake
environment that is offered to attackers. Attackers unknowingly try to exploit the fake
environment and are mislead to fake resources. Thus, honeypots are dedicated to attracting
hackers by presenting services and open ports that are potentially vulnerable. The purpose
is to monitor and analyze the activities of hackers and intruders in a way in which they do
not know that they are being observed. Further, current attack methods and trends can be
classified and studied in order to find the appropriate protection.

Quantum computation already has a mature theoretical background [3] with a fast
emerging practical technology. In terms of theoretical results, quantum computational
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results have been achieved by algorithms with asymptotic speed-ups over classical coun-
terparts: Grover’s search algorithm [4], Shor’s factorization algorithm [5], and others.
Nevertheless, arguably the most successful branch of quantum computation is quantum
cryptography, with the promise of unconditionally secure communication protocols [6].
Quantum security protocols have been designed for key distribution [7], delayed secure de-
cisions, and zero knowledge protocols. Note that, in all these security primitives, the quan-
tum protocols plays a passive role in the protection of a system. Our paper, by contrast, is
the first to propose an active quantum protocol of the type of a honeypot. It will be shown
that, by employing quantum networks and quantum communication systems, the honeypot
can be enhanced with additional monitoring capabilities, while fully hiding its presence.

The idea in this paper is to use quantum computation techniques to better hide the fact
that the services offered to the attackers are fake, as well as to monitor the intruder without
being detected. This is achieved through quantum sentinels. Quantum sentinels is a new
concept proposed for the first time in this paper. We define two types of sentinels: positional
sentinels with recognizable positions and hidden sentinels, which are not detectable from
the outside. In the first case, the intruder is able to directly read and otherwise act on the
positional sentinel. The position of the sentinel, within the array of qubits, may be secret or
public, yet by direct reading, its existence is still visible to the outside world. In the second
case, the hidden sentinel cannot be seen or read from outside and is thus accessible only
to the honeypot system. The hidden sentinel relies on the quantum Fourier transform to
connect to the luring datum qubit. The quantum sentinels flag the presence of an intruder
when the intruder reads some information. The information may be part of a file, an address,
the content of memory or a hard disk sector.

In terms of technological readiness for the commercial implementation of a quantum
honeypot scheme, consider that a mere decade ago, quantum computers were technologi-
cally questionable [8], whereas the situation now shows that quantum supremacy has been
affirmed to be achieved by several academic and commercial sources [9,10].

A honeypot may present itself as an entire system, such as a node in the internet, that
looks as if it contains useful information and data, but, in reality, is meant only to lure
unlawful activities. The interface to the outside world is there, but in the background there
is no useful application. Any honeypot consists of two essential elements: decoy and captor.
The decoy lures the attacker by offering information system resources, whether physical or
virtual. The captor is the part of the system that actually inspects and records the activity of
the intruder. It acts in detecting the intruder, responding to the requests, and profiling the
attacker. Our proposed quantum sentinels are in the category of the Captor. Additionally
to the classical captor, these sentinels can be fully hidden.

There are three categories of honeypots depending on the information system re-
sources that are provided to the attacker: low-interaction honeypot, medium-interaction
honeypot, and high-interaction honeypot [11]. As the names suggest, the three levels
allow for increasing penetration capability. High-interaction honeypots define an entire
operating system for tampering. Quantum sentinels can be added to all elements of a
functional operating system, making them suitable for high-interaction honeypots. Thus,
with quantum sentinels, the entire activity of the attacker can be monitored to a more
detailed level. In fact any reading of information can be monitored both in terms of the
actual reading action as well as the time of the action.

This paper builds on the idea that any activity within the honeypot is categorized as
malicious [11]. With quantum sentinels added to honeypots, the extent of malicious activity
can be detailed to the next level, where hackers may be caught on any particular bit they
access for reading. Additionally, the honeypot exhibits a better hiding effect. Note that the
purpose of the design in this paper is the recognition of the intruder’s behavior and that it
does not deal directly with allowing the intruder to compromise the system.

The rest of the paper is organized as follows. Section 2 describes the quantum prop-
erties used in the honeypot algorithms as well as the quantum network setting. Section 3
presents the honeypot quantum algorithms that capture the activity of the intruder on the
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simple reading of any storage medium. The difference between positional sentinels and
hidden sentinels is also described here. Section 4 shows the behavior of the algorithms as
implemented on a real quantum computer, IBMQX, as a proof of concept of how quantum
sentinels work. Section 5 concludes the paper.

2. Quantum Properties

Discussions about quantum computation revolve not only around quantum supre-
macy [12], but also around quantum network communication. Quantum network commu-
nication algorithms are studied for various problems. García-Cobo [13] defines a quantum
algorithm for key distribution within a large quantum network. The network experiments
have been done with simulations over a known geographical territory in Castilla using
quantum repeaters to propagate quantum signals.

In our setting, we suppose to have a network with quantum connections and the
devices connected to the network are also able to do quantum computations on qubits, at
least in part of the memory.

The quantum honeypot connects to the outside worlds through quantum connection.
Users, such as fake users and hackers, communicate with the honeypot via quantum
channels. Quantum channels allow the bidirectional transmission of messages. In order
to put no limitation on the amount of communication, we consider these messages to be
arbitrarily large. Note that this assumption is common in quantum algorithms, such as
quantum key distribution [7,14], where the analysis of the algorithm allows the size of the
message transmitted from one partner to the other to be arbitrarily long.

2.1. Measurement and State Collapse

A qubit in Dirac’s notation [3] is a superposition of the base vectors |0〉 and |1〉.

q = α|0〉+ β|1〉,

where the coefficients α, β and the amplitudes are complex numbers and the vector is of
a unitary norm, i.e.,

√
|α|2 + |β|2 = 1. There are two specific balanced super-positions,

namely |+〉 = 1√
2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). They will play a role in the algo-

rithms below.
When qubits are measured, they are measured on some basis. The simplest measure-

ment base is the computational base, with the base vectors |0〉 and |1〉 = 1√
2
(|0〉 − |1〉). This

base is not unique. Another common measurement base is the Hadamard base, with base
vectors |+〉 = H|0〉 = 1√

2
(|0〉+ |1〉) and |−〉 = H|1〉. Both these bases are ortho-normal

bases. In any case, when an arbitrary qubit is measured, the state of the qubit collapses
to one of the base vectors. Thus, an arbitrary qubit q = α|0〉+ β|1〉 can be measured in
multiple measurement bases. When q is measured in the computational basis, it collapses
either to |0〉 with probability α2, or to |1〉 with probability β2. Again, when q is measured in
the Hadamard basis, it collapses either to |+〉 or to |−〉. The probabilities of collapse can be
seen from rewriting the qubit as q = α|0〉+ β|1〉 = α+β√

2
1√
2
(|0〉+ |1〉) + α−β√

2
1√
2
(|0〉 − |1〉).

q is measured as |+〉 with probability (α+β)2

2 and as |−〉 with probability (α−β)2

2 .

2.2. Qubits and Quantum Gates

Quantum gates can apply on one or more qubits. The condition on quantum gates is
that they be reversible. Therefore, all quantum gates have the same number of inputs and
outputs. Here is a list of the gates used in our algorithms.

A The Hadamard gate rotates the states |0〉 and |1〉 into |+〉 and |−〉, respectively.
It contributes towards a universal gate set on a quantum computer as the single
quantum gate needed in addition to a universal gate set for classical computation.
The Hadamard gate is useful for creating balanced superpositions. The reverse is also
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true, namely that a Hadamard gate applied to a balanced superposition brings the
qubit to the respective base state. The Hadamard gate is its own inverse.

B The NOT gate is also known as the Pauli-X gate and, in this form, is also applied
on a single qubit. The |0〉 state flips to |1〉 and vice versa. As shown below, it is
represented by the Pauli matrix:

X =

[
1 0
0 1

]
C The Controlled Phase Shift gate is a two qubit gate, built from a simple phase

shift gate.
The simple phase shift gate (Rz) operates on a single qubit. It rotates the qubit around
the z axis of the Bloch sphere [3]. Thus, the gate changes the phase and the angle of the
|0〉 and |1〉, but not the respective percentages of the two within the superposition.

The controlled phase shift gate, CRz, has an additional control qubit . This gate is a
two qubit gate. The control modifier determines whether the shift is applied or not
on the original data-qubit. If the control is |1〉, the gate is active, and it is inactive for
a control equal to |0〉.

In the following algorithms, the phase shift gate always has the rotation angle of
either π

2 , or its opposite −π
2 . Consider a few applications of the transformation, as they

appear in this study. The rotation of ±π
2 on the computational base vectors has no effect,

R± π
2

z |0〉 = |0〉 and R± π
2

z |1〉 = |1〉. On the Hadamard base vectors, the π
2 rotation changes

the phase, R
π
2
z |+〉 = 1√

2
(|0〉+ i|1〉 and R

π
2
z |−〉 = 1√

2
(|0〉 − i|1〉. A double application of R

π
2
z

moves from one Hadamard base vector to the other, R
π
2
z R

π
2
z |+〉 = |−〉 and R

π
2
z R

π
2
z |−〉 = |+〉.

In the case of a rotation with −π
2 , the sign before the imaginary term i is reversed.

3. Quantum Sentinels

Sentinels in computer science are entities, such as variables, that block the access
of a program to a certain area or that flag a state of error/emergency within a program.
In the case of a quantum sentinel, as described here, we use the latter situation. Quantum
sentinels are quantum entities, primarily qubits, that flag a state of emergency. Within a
honeypot, a quantum sentinel marks the presence of an intruder.

The physical principle on which quantum sentinels function is the collapse of super-
position at measurement. A collapse of superposition can then potentially be detected by a
legitimate checking system.

We define two types of quantum sentinels:

1. Positional sentinels, which are visible to the intruder, though their quantum state
is unknown.

2. Hidden sentinels, which are hidden from the user. In this case, both the quantum
state and the operation of the sentinel remain unknown to the intruder.

Quantum sentinels capture the action of reading. As such, they can be placed in
any part of a computer system where the reading of information is possible. This can be
viewed as practical devices that carry information: hard disks, random access memory,
network card information, video card memory, external memory-carrying devices, etc.
Alternatively, quantum sentinels can be viewed as logically positioned in places holding
key information: operating system settings, boot sectors of hard disks, meta data storage
files, log and important history files, configuration files, environment variable settings,
keyword and password locations, sensitive information locations, or crucial data paths.
The two types of quantum sentinels presented here have different behaviors and, therefore,
can be employed with somehow different purposes. The positional sentinel marks an
important information carrier, such as a sensitive parameter setting for an application
or an operating system. In this case, the sentinel may be visible, and the intruder may
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know of the presence of sentinels, while being unable to avoid reading them. The hidden
sentinel has a more insidious capability of remaining unnoticed for the entire activity of the
intruder. In this case, a longer observation of the intruder is possible; it is possible to trace
the intruder in terms of actions, using their target and timeline to get the entire action plan
of the intrusion. Hidden sentinels are more costly, as they involve a small circuit for each
quantum sentinel, they should be employed more sparingly according to needs, whereas
positional sentinels are less involved.

The idea of quantum sentinels comes from the fact that an unknown quantum state,
when read, collapses along the measurement basis. Thus, using two measurement bases,
a qubit read by an intruder in the wrong basis changes its original state and this state
change can be detected by the honeypot server, with a certain probability. This property
has been used in public key distribution [7]. Thus, consider the two measurement bases:

1. The Computational Basis, with the base vectors |0〉 and |1〉
2. The Hadamard Basis, with the base vectors |+〉 and |−〉

Suppose that the only allowed states of a qubit are the four base vectors above: |0〉,
|1〉, H|0〉, and |H|1〉.

The sentinel capacity comes from the qubit’s unknown state to the intruder. The inter-
play between computational and Hadamard bases makes the qubit’s state vulnerable to
changes when accessed by an unknowing intruder.

3.1. Positional Sentinels

Positional sentinels refer to sentinels that are controlled by the server and that the
client can see.

A positional quantum sentinel is a qubit in one of the four states: |0〉, |1〉, |+〉, or |−〉.
When read, a sentinel qubit may keep its exact state or may change the state to align with
the reading basis, computational or Hadamard.

Depending on the value of the qubit, reading the qubit may or may not collapse the
qubit to another value and thus change, or not change, its state. A qubit of state |0〉 or |1〉
does not change when measured in the computational basis, but when measured in the
Hadamard basis, it collapses to |+〉 or |−〉. The exact reverse happens for a qubit in state
|+〉 or |−〉; when measured in the Hadamard basis, the quantum state remains unchanged,
and when measured in the computational basis, the qubit collapses to |0〉 or |1〉. Thus,
a sentinel has to be measured in the correct basis in order to remain unchanged. Consider
that a valid user is knowledgeable about the inherent basis of the sentinel qubit.

This means that an intruder, not knowing the basis of the sentinel, risks changing its
state by inadvertent reading. Table 1 synthesizes all the possibilities of a sentinel value
versus the reading options of the legitimate user and the intruder. The conclusion is that
a sentinel catches an intruder with a probability of 1

4 . To improve the probability overall,
a simple addition of sentinels in desired positions increases the probability to any desired
value. One positional sentinel remains undetected with probability 1 − 1

4 = 3
4 . Thus,

the detection rate for m positional sentinels is

pm
positional = 1 − (

3
4
)m.

To exemplify this growth, eight sentinel qubits catch an intruder with probability
1 − ( 75

100 )
8 = 89.9% and the probability grows exponentially with the number of sentinels.

The server can check the state of a sentinel by reading it in the correct basis. The draw-
back of positional sentinels is that they are exposed to the intruder. The secrecy of the
position of the sentinels may be part of the honeypot concept, but the sentinel itself is part
of the information read by the intruder. Thus, as the value of the sentinel depends on the
reading basis, its value may affect the meaning of the information read by the intruder and,
thus, reveal the presence of the sentinel itself. Nevertheless, this is not all the capability of
quantum sentinels, as sentinels themselves can remain fully hidden from the intruder.
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Table 1. Positional sentinels and their behavior at reading.

Sentinel Value Correct Reading Basis
User Server

Probability to Catch
Reading Type Outcome Measurement

|0〉 Computational

honest,
Computational |0〉 |0〉 Not applicable

intruder,
Computational |0〉 |0〉

25%
intruder, Hadamard |+〉 or |−〉 |0〉 or |1〉

|1〉 Computational

honest,
Computational |1〉 |1〉 Not applicable

intruder,
Computational |1〉 |1〉

25%
intruder, Hadamard |−〉 or |+〉 |1〉 or |0〉

|+〉 Hadamard

honest, Hadamard |+〉 |+〉 Not applicable

intruder, Hadamard |+〉 |+〉
25%intruder,

Computation |0〉 or |1〉 |+〉 or |−〉

|−〉 Hadamard

honest, Hadamard |−〉 |−〉 Not applicable

intruder, Hadamard |−〉 |−〉
25%intruder,

Computation |1〉 or |0〉 |−〉 or |+〉

3.2. Hidden Sentinels

Hidden sentinels are sentinels controlled by the server that the intruder cannot see.
They are physically not addressable by the user or intruder. A hidden quantum sentinel
is a qubit that is never exposed to the user, but is connected through entanglement to
a datum-qubit that is available to the intruder to read. The main idea is that, when an
intruder reads the available datum-qubit in a wrong basis, the sentinel’s state changes to a
value consistent with the measurement of the datum-qubit and this change is detectable by
the honeypot server.

The circuit involved for every hidden sentinel is simple, using two gates: a Hadamard
gate and a phase shift gate. It is a portion of the quantum Fourier transform.

The Quantum Fourier Transform [15] allows the phase of a qubit to be changed, that
is, the qubit is rotated around the Oz axis. The value of the rotation is given by a series
of control qubits in such a way that the impact of each successive control qubit is half
the angle rotation effect of the previous one. In our case, we are interested in only one
control qubit, see Figure 1. The top qubit is the datum-qubit, which acts as the control
qubit to the gates. This is also the qubit that the intruder acts on. The phase shift gate,
in purple, acts on the second qubit. The second qubit is the sentinel. If the datum-qubit
is one, then it has an effect on the sentinel qubit, as it injects a rotation of the phase with
π
2 . The sentinel undergoes two such gates in reverse. The first gate prepares the sentinel
before the honeypot is offered to attack. The second gate is used for checking the state of
the sentinel. Note that each time a sentinel is checked, the sentinel is destroyed. This means
that, to re-activate a hidden sentinel, the sentinel has to undergo preparation again.

The behavior of the hidden sentinel is also based on the intruder not knowing the
correct reading basis of the data qubit. If lucky, the intruder will not be caught. If unlucky,
the intruder will be caught with a chance of 1

4 . As the intruder may or may not be lucky
with equal probability, the overall theoretical probability to catch an intruder with a hidden
sentinel is 1

8 . This is half of the probability of a positional sentinel. Thus, there is a drawback
of using hidden sentinels, in that the probability is lower.

The following formulas describe the situations in detail. The ensemble of two qubits is
always written with the datum first and the sentinel second, |D〉|S〉 = q1q0. The preparation

of the sentinel, as shown in Figure 1, can be described by the transformation R
π
2
z (I2 ⊗ H).
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The server’s checking of the sentinel is similar, namely (I2 ⊗ H)R− π
2

z . Additionally, if the
intruder is unlucky, the data qubit may undergo a Hadamard transformation, as imposed
by the intruder; this is the transformation H ⊗ I2.

Figure 1. The hidden sentinel is the second qubit in the figure. It is acted on by the datum sentinel
via the control of phase shift gates. The middle of the figure shows the area and time when the
datum-qubit is exposed to the user.

Consider the data qubit to be |0〉. In this case, the initial state of the system is
|D〉|S〉 = |0〉|0〉. If the intruder is lucky and uses the computational basis himself, the fol-
lowing transformation happens to the system.

result-lucky = (I2 ⊗ H)R− π
2

z (I2 ⊗ I2) R
π
2
z (I2 ⊗ H) |0〉|0〉

= (I2 ⊗ H)R− π
2

z (I2 ⊗ I2) R
π
2
z |0〉|+〉

= (I2 ⊗ H)R− π
2

z |0〉|+〉
= (I2 ⊗ H) |0〉|+〉 = |0〉|0〉 (1)

The operation in red represents the action of the intruder, which, in this case, is the identity
transformation that is no action at all. This is because this measurement is aligned with the
state of the qubit and does not change the state of the system. The sentinel is found in its
original value |0〉. The server checker concludes that no intrusion happened.

Now consider that the intruder makes the mistake and reads in the Hadamard basis.

result-unlucky = (I2 ⊗ H)R− π
2

z (H ⊗ I2) R
π
2
z (I2 ⊗ H) |0〉|0〉

= (I2 ⊗ H)R− π
2

z (H ⊗ I2) |0〉|+〉
= (I2 ⊗ H)R− π

2
z |+〉|+〉

= (I2 ⊗ H)R− π
2

z (
1√
2
|0〉|+〉+ 1√

2
|1〉|+〉)

= (I2 ⊗ H) (
1√
2
|+〉|0〉+ 1

2
|1〉(|0〉+ i|1〉)) (2)

In this case, when the sentinel is measured by the checker in the computational basis,
the theoretical probability to measure |0〉 is 3

4 and the probability to measure a |1〉 is 1
4 .

If the checker sees a 1, this value indicates the presence of the intruder.
Overall, the probability of the intruder being caught by the checker, in this case, is

p = 1
2 ∗ 1

4 = 1
8 . Though the calculations vary from case to case, the overall result is shown to

be the same. When the data qubit is |1〉, the formulas are very similar with some difference
in the signs.

Consider the data qubit to be |+〉. In this case, the initial state of the system is
|D〉|S〉 = |+〉|0〉. If the intruder is lucky and uses the Hadamard basis of measurement,
then the measurement is aligned with the actual qubit value and its state is undisturbed.
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This means that no change is applied to the data qubit, and the measurement is formally
described by I2 ⊗ I2. The system is transformed as follows.

result-lucky = (I2 ⊗ H)R− π
2

z (I2 ⊗ I2) R
π
2
z (I2 ⊗ H) |+〉|0〉

= (I2 ⊗ H)R− π
2

z (I2 ⊗ I2) R
π
2
z |+〉|+〉

= (I2 ⊗ H)R− π
2

z (I2 ⊗ I2) R
π
2
z

( 1√
2
|0〉|+〉+ 1√

2
|1〉|+〉

)
= (I2 ⊗ H)R− π

2
z (I2 ⊗ I2)

1√
2

(
|0〉|+〉+ |1〉 |0〉+ i|1〉√

2

)
= (I2 ⊗ H)R− π

2
z

1√
2

(
|0〉|+〉+ |1〉 |0〉+ i|1〉√

2

)
= (I2 ⊗ H)

1√
2

(
|0〉|+〉+ |1〉|+〉

)
= |+〉|0〉 (3)

The sentinel preserves its original value |0〉 and no intruder can be detected.
Nevertheless, when the intruder mistakenly measures in the computational basis,

the sentinel is changed. Note that, in this case, the intruder actually affects the |D〉 qubit
and its state is collapsed along the computational basis, which is equivalent to applying a
Hadamard gate in the middle.

result-unlucky = (I2 ⊗ H)R− π
2

z (H ⊗ I2) R
π
2
z (I2 ⊗ H) |+〉|0〉

= (I2 ⊗ H)R− π
2

z (H ⊗ I2) R
π
2
z |+〉|+〉

= (I2 ⊗ H)R− π
2

z (H ⊗ I2) R
π
2
z

( 1√
2
|0〉|+〉+ 1√

2
|1〉|+〉

)
= (I2 ⊗ H)R− π

2
z (H ⊗ I2)

1√
2

(
|0〉|+〉+ |1〉 |0〉+ i|1〉√

2

)
= (I2 ⊗ H)R− π

2
z

1√
2

(
|+〉|+〉+ |−〉 |0〉+ i|1〉√

2

)
= (I2 ⊗ H)

1
2

(
|0〉|+〉+ |1〉 |0〉+ i|1〉√

2
+ |0〉 |0〉+ i|1〉√

2
+ |1〉|+〉

)
=

1
2

(
|0〉|0〉+ |1〉 |0〉 − i|1〉√

2
+ |0〉 |0〉 − i|1〉√

2
+ |1〉|0〉

)
(4)

From the formula, it can be seen that the probability to get 1 when the checker measures
is, again, 1

4 .
Considering that the intruder is lucky or unlucky with equal probability, the checker

catches the intruder with a probability of 1
8 . A similar result can be obtained for a data

qubit of |−〉.
The overall conclusion is that a hidden sentinel can catch the intruder with a probability

of 1
8 . This probability is lower than in the case of positional sentinels, but, again, can be

increased arbitrarily higher by adding more sentinels in the area of interest. To evaluate
the detection rate of m hidden sentinels, note one hidden sentinel remains undetected with
probability 1 − 1

8 = 7
8 . m hidden sentinels remain undetected with probability ( 7

8 )
m. Thus,

the detection rate for m hidden sentinels can be computed using the formula

pm
hidden = 1 − (

7
8
)m.

To get a perception of how the detection rate changes exponentially with the value m, consider
that for only m = 8 sentinels, the detection rate is already p8

hidden = 1 − ( 7
8 )

8 = 66%.
There is an additional justification on using controlled phase shift gates for setting

up hidden sentinels. Note that the data qubit has to explicitly act on the hidden sentinel,
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whenever touched by a user or intruder. This must be carried out by an explicit two-qubit
gate. A simple Bell state type entanglement of the data and the sentinel cannot work
here. The reason is that entanglement cannot be used as an information carrier. Otherwise,
information could be transmitted instantaneously, rather than, at most, the speed of light,
which is the tenet of today’s physics.

It is now the time to check the experiments and how they fit the theoretical calculations.

4. Quantum Implementation and Experiments

Consider that the quantum server opens a honeypot that includes quantum sentinels.
Thus, the regular services offered by the honeypot are peppered with quantum sentinels,
within non-volatile, volatile memory locations or any other bit/qubit arrays. We have
defined two types of sentinels, positional and hidden, and they have different characteristics
in terms of visibility to the user and efficiency in catching the intruder.

All experiments are implemented using IBM Quantum Experience [16] with a real
quantum processor, and both types of sentinels were implemented. The results for each
quantum circuit are collected from 1024 runs. The results show a general alignment to the
theoretical expectations, except that they are unreliable to a certain degree and sometimes
give spurious results.

Experiments were performed for both legal users and intruders. A legal user knows
the state of the sentinels and acts accordingly. The intruder takes the best guess, which, in
the case of quantum sentinels, is simple random guessing.

4.1. Experiments with Positional Sentinels

In the case of positional sentinels, each qubit can play the role of a sentinel. The
availability of qubits gives the size of the experiment, namely, to four sentinels. In each
experiment, we have two players, the server and the client. The server prepares the
honeypot sentinels and the client exploits them. In all figures, the red rectangle pertains to
the server and the green rectangle pertains to the client. Measurement is also part of the
server activity.

The first type of experiment is that the server generates all possible types of positional
sentinels. Recall that there are four types of sentinels according to the four base vectors
of the computational and Hadamard measurement bases, |0〉, |1〉, |+〉, and |−〉, in some
arbitrary order. Thus, the server side is fixed. It remains for us to define the behavior of
the client. We show two directions. The first direction defines a circuit with a legal user,
and the second direction contains two experiments where the user is an intruder.

4.1.1. Positional Sentinels with a Legal User

A legal user knows the setting of the sentinels and reads them correctly, see Figure 2.
Note that the sentinels have been prepared as q0 = |−〉, q1 = |0〉, q2 = |+〉, and q3 = |1〉.
The legal users measures correctly, namely q0, q2 in the Hadamard Basis, and q1, q3 in the
computational basis.

Figure 2. The legal user measures the sentinels in the correct bases.
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The results obtained after running the circuit (see Figure 3) show that, indeed, the legal
user is correctly classified as such, 93.5% times. Nevertheless, the false negatives are not
negligible at 6.5%.

Figure 3. The measurement probability of Figure 2, which has four sentinels, and the user is legal.

4.1.2. Positional Sentinels with an Intruder as User

The intruder does not know the settings of the sentinels and, therefore, has no other
options than to randomly choose the reading bases. The next two experiments show the
intruder with two different choices. The randomization options of the client actions were
carried out on a randomization tool.

For the first “intruder” experiment, the server has prepared the four sentinels as
q0 = |0〉, q1 = |+〉, q2 = |1〉, and q3 = |−〉 (see Figure 4). It can be seen in the same
figure that the client happened to read the sentinels in the following bases: computational,
Hadamard, Hadamard, and Hadamard. Thus, the only sentinel that is wrongly read is
qubit q2. Here, the server prepared the qubit in the computational basis, but the client used
the Hadamard basis for reading instead. We expect the intruder client to be caught with a
probability of 1

2 .

Figure 4. Experiment with four positional sentinels. The intruder’s behavior is random, as the state
of the sentinels is not known to the user. In this particular case, the intruder makes a mistake on q2

and, therefore, the detection probability is theoretically 1
2 .

The measurement that the server expects from a legal user is 1100. Theoretically, when
the server measures 1000, this signals the presence of the intruder. Figure 5 shows the
actual measured probabilities. It can be seen that the intruder catching measurement for
1000 is 44.727%, which is significantly different from 50%. The problem is that the quantum
computer produces spurious results as well. This is the case for all the values different
from 1100 and 1000. Because the server expects exactly 1100 from the legal user, it means
that all spurious results contribute to catching the user. Thus, the measured percentage of
positively signaling the user becomes 100 − 50.879% = 49.121%, which is very close indeed
to the theoretical expectation.
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Figure 5. The measurement probability of Figure 4, which contains four positional sentinels, and the
intruder misses one.

For the second “intruder” experiment (see Figure 6), the intruder makes three mistakes,
on q0, q1, and q3, respectively. The probabilities of the server to measure the expected 1100
is theoretically 1

2
3
= 12.5%. All other binary measurements reveal the presence of the

intruder, which, again, would theoretically be 100% − 12.5% = 87.5%.

Figure 6. Four positional sentinels are set to all possible values. The experiment shows the option
where the intruder is lucky on only one qubit, namely q2.

The practical measurement results, as shown in Figure 7, detect the intruder with
1 − 11.426% = 88.574% probability. Again, we see a slight deviation from the theoretical
expectation, but within workable limits.

Figure 7. The measurement probability of Figure 6 with four positional sentinels and the in-
truder missing three of the sentinels. The result in red refers to the probability of the intruder to
escape detection.

The conclusion may be that the implementation of positional sentinels seems to be
close to feasibility in practical cases. Some false positives and some false negatives have to
be contended with.

4.2. Hidden Sentinels

In the case of hidden sentinels, the data qubit is considered to be in one of the four
basic states, |0〉, |1〉, |+〉, or |−〉. Note that the data qubit does not have an arbitrary value,
but has to follow one of these choices. Nevertheless, the user can read it freely, oblivious to
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the presence or absence of the sentinel, as the sentinel itself is another qubit. The intervention
of an intruder can be tested by applying the quantum Fourier transform twice: directly and
in reverse. The datum qubit serves as the control to the phase shift rotation gates, CRz with
rotation π

2 and −π
2 and the sentinel qubit is the qubit that the gates act on. The circuit that

implements this transform is shown in Figure 8. The datum, q0, is set to an initial state and
then at the end reset to |0〉. This state is not fixed as described above. The middle of the
circuit shows the action of the user, encircled in a golden rectangle. This action will also be
variable, depending on the intruder’s choice. The meaning that this circuit offers is that,
if the sentinel, q1, is measured to the value 0, then the conclusion is that the user is legal
and if the value is 1 then the sentinel signals an intruder. As hidden sentinel experiments
need two qubits for each experiment, the circuit represents one such sentinel setting.

Figure 8 shows the circuit for a legal user or a lucky intruder, whereas Figure 9 shows
the circuit with an unlucky intruder. When run, the circuit with a legal user shows an
approximate 10% of false positives, whereas the circuit with the illegal user has a similar
deviation from the theoretical expectation. The question remains: how does the error of the
quantum computer scale in the case of several sentinels?

Figure 8. Legal user reading a datum qubit with a hidden sentinel. The same circuit applies to a
lucky intruder. The user does not disturb the state of the datum qubit.

Figure 9. Unlucky intruder reading a quantum qubit with a hidden sentinel. In the case of an unlucky
intruder, an extra Hadamard gate on the datum qubit disturbs the hidden sentinel.

4.2.1. Errors on Hidden Sentinels

The problem with available quantum computers today is that their error rate is still
prohibitively high. In a real honeypot with quantum sentinels, the number of sentinels
should be peppered over all resources, bringing them, in number terms, to a fraction of
the entire address space. Nevertheless, the erroneous quantum measurements make this
scenario unrealistic, as the following example will show.

Consider a sample circuit with two hidden sentinels (see Figure 10), such that the
intruder has been unlucky on both data qubits, that is, the intruder has been consistently
unlucky. Qubits q0 and q1 form the first hidden sentinel circuit, such that q0 is the datum
qubit and q1 is the sentinel. It can be seen that the datum qubit, q0, is set to H|0〉. The setting
of the datum qubit is not important for the success of the circuit. The important characteris-
tic is that the user did not read the the datum in the correct, namely the Hadamard, basis.
This can be seen by the presence of an extra Hadamard gate on q0 in the very middle of the
Figure 10. This has the same meaning as in Figure 9. In Figure 10, there is the additional
pair q2 and q3, with q2 being the datum and q3 the sentinel. A slight difference is that the
datum has another initial setting, namely q2 = |1〉. As before, the initial value of q2 = |1〉
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does not affect the capability of catching the intruder. As the intruder can be seen to erro-
neously read both q1 and q3, the chance to signal the presence of the intruder is increased.
Theoretically, the signalling chance of the intruder in this case is p = 1 −

( 3
4
)2≈ 0.44. The

measurements on the real computer Belem deviate from the expected theoretical result,
as shown in Figure 11. On the positive side, the practical test shows that the intruder is
caught with probability ppr = 49.42. Nevertheless, the problem is the unreliability; this
number should not deviate that much from the theoretical expectation. In the cases where
the server does not catch the intruder, namely, outcomes 0000, 0001, 0100, 0101, the mea-
sured values deviate by 11.82%. In the cases where the server catches the intruder, which
are all the others, the difference is even worse, namely 21.98%. The worrying situation
shows at the very base state 0000, where the theoretical percentage should be 6.13%, but is
actually 20.2%. It seems that the state of a qubit easily and spontaneously reverts back to
the base state |0〉.

Figure 10. The circuit with two active hidden sentinels shows an intruder that has wrongly measured
two datum qubits, q0 and q2, that act on two hidden sentinels, q1 and q3.

Figure 11. The left panel shows the practical results obtained on running a circuit with two hidden
sentinels. The panel on the right shows the theoretical expectation.

It remains to be seen that these ideas can be implemented once error free quantum
computers are available.

4.2.2. Sentinel Complexity Comparison

Positional sentinels versus hidden sentinels exhibit differences in terms of behavior,
scope, implementation complexity, and cost.

The main difference is that positional sentinels are part of the data that are exposed to
the intruder, whereas hidden sentinels are simply acted on by exposed data, but are not
accessible to the user at all. As such, positional sentinels incur a simple cost of one qubit,
while hidden sentinels need two qubits. Setting up a positional sentinel means simply
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setting the value of the qubit to a meaningful value. This means zero, one or two gates,
depending on the value to be set. For hidden sentinels, additionally to setting the value
of the datum, which is identical to the positional sentinel, the circuit requires two more
Hadamard gates as well as two controlled phase shift gates. As controlled phase shift gates
are two qubit gates, they are more complex and more prone to error. Thus, the hidden
sentinels are more costly, both in terms of number of qubits as well as circuitry. The
setting up of a hidden sentinel may also be considered more time consuming, though direct
time evaluations of this action are hard to carry out for our limited experimental capacity.
The below table offers a brief comparison. The table considers N sentinels.

Type of Number of qubits Number of Number of
Sentinel for N sentinels single qubit gates two qubit gates

Positional N from 0 0
sentinel to 2N

Hidden 2N from 2N 2N
sentinel to 4N

The resource comparison between positional and hidden sentinels
is done for N sentinels.

Thus, hidden sentinels are more costly, but also more insidious.
The practicality of the methods presented here depends on the availability of quantum

technology. The size of quantum computers today includes some tens of qubits. IBM
quantum computers were based on 53 qubits in 2019. Some very rapid growth is expected
in the near future. Quantum annealers have been reported as having 5000 qubits. Quantum
networks, which allow quantum communication to happen, have stepped into the size of
700 optical fibers built in 2021 [17]. As this field is now growing on several fronts, the values
given here may already be obsolete by the time the ink dries. The necessity of quantum
honeypots may have to wait for a few more break-throughs in quantum technology.

5. Conclusions

This paper shows that a quantum network setting can contribute to the power of a
honeypot system. This is because qubits can be checked for reading by adding sentinels to
them. Sentinels can be added to as many qubits as wished for by the honeypot administrator.
Quantum sentinels check whether a qubit, field, memory or disk location has been accessed
for reading (only). There is no need for actual writing to detect the presence of illegal
activity. Detecting the reading activity relies on quantum properties, such as the collapse of
superposition and controlled quantum gates. Therefore, there is no possibility of mimicking
the same capability by classical computational means.

Two types of quantum sentinels have been defined: positional-visible sentinels and
hidden-invisible sentinels. The meaning captured in their name is that the are visible or
invisible to the user of the honeypot system. In the case of hidden quantum sentinels,
the illegal user is entirely unaware of the presence of the sentinel. The probability of
catching an intruder on any sentinel is low and varies with the sentinel type. In the case of
positional sentinels, the probability is 1

4 , and, in the case of hidden sentinels, the probability
is 1

8 . Though hidden sentinels have the advantage of remaining hidden from the intruder,
their drawback is a more complex quantum circuit with an extra qubit and a lower detection
rate. Nevertheless, in both cases, the probability of catching an intruder can be increased to
any arbitrary value by adding more sentinels.

Thus, quantum sentinels add the following properties to honeypots:

1. The monitoring of malicious activity can be detailed to the level of bit, that is the
information unit.

2. The presence of the monitoring system can be fully hidden via hidden quantum sentinels.

Finally, today’s quantum computers do not offer the accuracy necessary to practically
implement such quantum honeypots, as our experiments show. The errors of both signaling
a legal user or ignoring an intruder deviate from the theoretical expectations by 10 to 20%.
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These values have been measured for two sentinels only. At this point, a larger experiment
with more accurate error rates is not necessary, as even this value condemns the system
as not being feasible as of yet. How soon this problem will be remedied remains an
open question.
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Abstract: We investigate the irreconcilability issue that arises when translating the search algorithm
from the Continuous Time Quantum Walk (CTQW) framework to the Adiabatic Quantum Computing
(AQC) framework. For the AQC formulation to evolve along the same path as the CTQW, it requires
a constant energy gap in the Hamiltonian throughout the AQC schedule. To resolve the constant gap
issue, we modify the CTQW-inspired AQC catalyst Hamiltonian from an XZ operator to a Z oracle
operator. Through simulation, we demonstrate that the total running time for the proposed approach
for AQC with the modified catalyst Hamiltonian remains optimal as CTQW. Inspired by this solution,
we further investigate adaptive scheduling for the catalyst Hamiltonian and its coefficient function in
the adiabatic path of Grover-inspired AQC to improve the adiabatic local search.

Keywords: quantum walk; adiabatic quantum computing; adiabatic path scheduling; catalyst
Hamiltonian

1. Introduction

Quantum technologies have advanced dramatically in the past decade, both theoreti-
cally and experimentally. From the view of theoretical computational complexity, Shor’s
factoring algorithm [1] and Grover’s search algorithm [2] are well-known for their improve-
ments over the best possible classical algorithms designed for the same purpose. From a
perspective of universal computational models, Quantum Walks (QWs) have become a
prominent model of quantum computation due to their direct relationship to the physics
of the quantum system [3,4]. It has been shown that the QW computational framework
is universal for quantum computation [5,6], and many algorithms now are presented
directly in the quantum walk formulation rather than through a circuit model or other ab-
stracted method [3,7]. Besides being search algorithms, CTQWs have been applied in fields
such as quantum transport [8–11], state transfer [12,13], link prediction in complex net-
works [14] and the creation of Bell pairs in a random network [15]. Some other well known
universal models include the quantum circuit model [16–18], topological quantum compu-
tation [19], adiabatic quantum computation (AQC) [20], resonant transition-based quantum
computation [21] and measurement-based quantum computation [22–25]. Investigating re-
lationships among the frameworks helps to identify violations when mapping frameworks
and potential solutions. By studying the mapping, one can extend the techniques from one
framework to another for some potential improvement in terms of speed [26].

In this work, we investigate the irreconcilability issue that arises when translating
the search algorithm from the Continuous Time Quantum Walk (CTQW) framework to
the Adiabatic Quantum Computing (AQC) framework as first pointed out by Wong and
Meyer [27]. This irreconcilability issue can be described as follows. One first notes that
the CTQW is the unique continuous time quantum walk formulation of Grover’s discrete
search algorithm. While the CTQW search evolves the initial unbiased (equal amplitude)
state to the unknown (marked) state on the order of time T ∼ O(

√
N) (where N is the size

of the search space), it does not follow the same evolution path (on the Bloch sphere) as
that of Grover’s algorithm. The uniqueness of the CTQW formulation stems from the fact
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that the unknown marked state only acquires a (time-dependent) phase from the oracle
operation. Most importantly the marked states do not undergo evolution, and thus the
CTQW effectively employs a dichotomous “Yes/No” oracle, for which the discrete Grover’s
algorithm has been proven to be optimal.

The AQC formulation of the search algorithm with a non-uniform adiabatic evolution
schedule [28] also finds the marked state in time T∼O(

√
N) while following the same

path as Grover’s algorithm. Thus, if one investigates what adiabatic Hamiltonian gives
rise to the same evolution path as the CTQW formulation, one finds [27] that the AQC
formulation introduces an extra “catalyst” Hamiltonian which introduces a structure
beyond the standard “Yes/No” oracle employed in the CTQW or discrete (Grover’s) search
algorithm. A scaled version of the AQC Hamiltonian leads to a constant energy gap that
implies that the marked state can be found in time T∼O(1). This discrepancy between the
formulations of the two versions of a continuous time search algorithm was termed the
“irreconcilability (difference) issue” between CTQW and AQC by Wong and Meyer [27].

In this work, we address the CTQW/AQC search algorithm irreconcilability issue by
modifying the constant energy gap Hamiltonian of the AQC formulation. Our contribution
is twofold. We first adapt the result from the mapping of CTQW to AQC by selecting
the regular oracle Z operator as the catalyst Hamiltonian and explore an alternative for
the coefficient function for the catalyst Hamiltonian in order to attempt to avoid the
irreconcilability issue. Through the simulation, the modified model provides optimal
results in terms of the time required for the search.

The second improvement is on the Grover-Search-inspired adiabatic local search, we
add an additional sluggish parameter δ which delineates the width of the adiabatic run
time schedule over which the catalyst Hamiltonian effectively acts (i.e., the “slowdown”
region in the vicinity of the system’s smallest energy gap Δ). The sluggish parameter tracks
the increase of running time t = t(s) with respect to schedule parameter 0 ≤ s ≤ 1 where
δ = |d2t/ds2|. The catalyst is employed when δ ≥ δ0 to facilitate the process; we have
found that the threshold value of δ0 = 64 provides good results. When simulated, this
modification reduces the running time of the original adiabatic local search by certain
constant factors.

The outline of this work is as follows. The background information regarding CTQW
and AQC is given in Section 2 where the translation of CTQW to AQC is described in
Section 3. The irreconcilability issue that occurs during the translation is explained in
Section 3.1 and our proposed solution is provided in Section 3.2. The mapping of Grover
search to AQC as an adiabatic local search is summarized in Section 4. We propose and
describe the catalyst Hamiltonian mechanism in Section 4.1.2 and determine the sluggish
interval where it is employed. We further explore three coefficient functions of the catalyst
Hamiltonian in Section 4.1.3. The simulation results for the proposed modifications are
discussed in Section 5. Finally, our conclusions are given in Section 6.

2. Background

2.1. Continuous Time Quantum Walk

Given a graph G = (V, E), where V is the set of vertices and E is the set of edges, the
CTQW on G is defined as follows. Let A be the adjacency matrix of G, the |V| × |V| matrix
is defined component-wise as

Aij =

{
1 if (i, j) ∈ E,
0 otherwise

(1)

where i, j ∈ V. A CTQW starts with a uniform superposition state |ψ0〉 in the space, spanned
by nodes in V, and evolves according to the Schrödinger equation with Hamiltonian A.
After time t, the output state is thus

|ψt〉 = e−iAt|ψ0〉. (2)
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The probability that the walker is in the state |τ〉 at time t is given by |〈τ|e−iAt|ψ0〉|2. To find
the marked node |ω〉 starting from an initial state |ψ0〉 via a CTQW, one has to maximize
the success probability

|〈ω|e−iAt|ψ0〉|2 (3)

while minimizing the time t. For instance, initially at time t = 0, the success probability is

|〈ω|e−iA0|ψ0〉|2 = O(
1
|V| ). (4)

The success probability is extremely small when the search space |V| = N is large and |ψ0〉
is a uniform superposition state.

When applied to spatial search, the purpose of a CTQW is to find a marker basis state
|ω〉 [29,30]. For this purpose, the CTQW starts with the initial state |ψ0〉 = ∑N

i=1
1√
N
|i〉, and

evolves according to the Hamiltonian [31]

H = −γA − |ω〉〈ω| (5)

where γ is the coupling factor between connected nodes. The value of γ has to be deter-
mined based on the graph structure such that the quadratic speedup of CTQW can be
preserved. Interested readers can refer to [29,31] for more details.

2.2. Adiabatic Quantum Computing

In the AQC model, H0 is the initial Hamiltonian, Hf is the final Hamiltonian. The
evolution path for the time-dependent Hamiltonian is

H(s) = (1 − s)H0 + sHf (6)

where 0 ≤ s ≤ 1 is a schedule function of time t. For convenience, we denote s as s(t)
and use them interchangeably. The variable s increases slowly enough that the initial
ground state evolves and remains as the instantaneous ground state of the system. More
specifically,

H(s(t))
∣∣λk,t

〉
= λk,t

∣∣λk,t
〉

(7)

where λk,t is the corresponding eigenvalue the eigenstate
∣∣λk,t

〉
at time t and k labels for

the kth excited eigenstate. The minimal eigenvalue gap is defined as

gmin = min
0≤t≤Ta

(λ1,t − λ0,t) (8)

where Ta is the total evolution time of the AQC. Let |ψ(Ta)〉 be the state of the system at
time Ta evolving under the Hamiltonian H(s(t)) from the ground state |λ0,0〉 at time t = 0.
The Adiabatic theorem [32,33] states that the final state |ψ(Ta)〉 is ε-close to the real ground
state |λ0,Ta〉 as

|〈λ0,Ta |ψ(Ta)〉|2 ≤ 1 − ε2, (9)

provided that

|〈λ1,t| dH
dt |λ0,t〉|

g2
min

≤ ε. (10)

There are several variations of AQC to improve the performance. The variations are
based on modifying the initial Hamiltonian and the final Hamiltonian [34,35] or adding a
catalyst Hamiltonian He [34], which is turned on/off at the beginning/end of the adiabatic
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evolution. In this work, we are interested in the catalyst approach. A conventional catalyst
Hamiltonian-assisted AQC path is expressed as

H(s) = (1 − s)H0 + s(1 − s)He + sHf . (11)

3. Continuous Time Quantum Walk to Adiabatic Search Mapping

One can construct a time-dependent AQC Hamiltonian H(s) as shown in [27] where
the adiabatic search follows the CTQW search on a complete graph with N vertices. Let us
define the following variables. The coupling factor γ is set to 1/N and |ψ0〉 is the uniform
superposition of all states in the search space. State |r〉 is the uniform superposition of
non-solution states, state |ω〉 is the solution state. Treating the state evolving in the CTQW
system as the time-dependent ground state of H(s), one constructs H(s) in the {|ω〉, |r〉}
basis as [27]

H(s) = 4

√
s(1 − s)

4ε2N
[(1 − s)H0 +

√
s(1 − s)He + sHf ] (12)

where s(t) = sin2( t√
N
) with

H0 =
∣∣∣ψ⊥

0

〉〈
ψ⊥

0

∣∣∣− |ψ0〉〈ψ0|, Hf = |γ〉〈γ| − |ω〉〈ω|,

He = 2i

√
N − 1

N
(|r〉〈ω| − |ω〉〈r|), (13)

or explicitily in the {|w〉, |r〉} basis as

H0 =

(
N−2

N −2
√

N−1
N

−2
√

N−1
N − N−2

N

)
, (14)

He =

⎛⎝ 0 −2i
√

N−1
N

2i
√

N−1
N 0

⎞⎠, Hf =

(−1 0
0 1

)
.

3.1. The Irreconcilability Issue: Constant Gap Catalyst Hamiltonian and Small Norm

The main concerns that are raised from Equation (12) are twofold. The first issue is the

factor 4
√

s(1−s)
4ε2 N of H(s). The adiabatic theorem [36] states that the system achieves a fidelity

of 1 − ε to the target state, provided that

|〈 dH
dt 〉0,1|
g2

min
≤ ε, where gmin = min

0≤t≤T
E1(t)− E0(t). (15)

Here, 〈 dH
dt 〉0,1 are the matrix elements of dH/dt between the two corresponding eigenstates.

E0(t) and E1(t) are the ground energy and the first excited energy of the system at time t.
Given the H(s) in Equation (12), one might conclude that a factor of O( 4

√
1/N) significantly

reduces the time required to achieve 1 − ε precision. This might be misleading as the gmin
of H(s) also carries the same factor. The second issue is that the catalyst He provides power
greater than a typical Yes/No oracle as it maps non-solution states to a solution state and a
solution state to non-solution states. Provided that we initially start with a superposition

state with an amplitude of
√

N−1
N for a non-solution, it takes a time of O(1) for this catalyst

to drive the initial (unbiased, equal amplitude) state to the solution state. In the following,
we will relax this constraint by using a normal oracle. For the rest of the paper, let us simply
treat ε � 1 as a small negligible constant.
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3.2. Modified CTQW-Inspired Adiabatic Search

In Equation (12), the following parameters were computed during the mapping [27]:

• the scaling factor 4
√

s(1−s)
4ε2 N of Hamiltonian H0,

• He = 2i
√

N−1
N (|r〉〈ω| − |ω〉〈r|), catalyst Hamiltonian

• the coefficient function of He as
√

s(1 − s).

In [37], the cost of the adiabatic algorithm was defined to be the dimensionless quantity
(using h̄ = 1)

cost = t f max
s

||H(s)||, (16)

where t f is the running time. To prevent the cost from being manipulated to be arbitrarily
small by changing the time units or distorting the scaling of the algorithm by multiply-
ing the Hamiltonians by some size-dependent factor as shown in the irreconcilability
concern [27], the norm of H(s) should be fixed to some constant, such as 1.

To address the irreconcilability issue, the scaling factor is dropped and the catalyst

Hamiltonian He is modified. Since He = 2
√

N−1
N iXZ in the {|ω〉, |r〉} basis provides more

power than a standard oracle, for our modification we remove the imaginary number i and
the X operator. The operator Z alone behaves as a conventional “Yes /No” oracle in the

{|ω〉, |r〉} basis. Let M = 2
√

N−1
N and choose the modified adiabatic path Hm(s) as

Hm(s) =(1 − s)H0 + fz(s)MZ + sHf , (17)

where fz(s) is our chosen s-dependent coefficient for catalyst Z. In addition to fz(s) =√
s(1 − s) that was used in [27], functions that reach their maximum when s = 1/2 are

good candidates for fz(s), such as fz(s) = sin(sπ)
2 . The use of the factor 1/2 on the sine

function is to offset the magnitude M to bound the norm of He as described in Equation (16).

4. Grover Search to Adiabatic Local Search Mapping

In this section we consider the mapping of Grover’s algorithm to an adiabatic search.
Given the initial driving Hamiltonian H0 and the final Hamiltonian Hf as

H0 = I − |ψ0〉〈ψ0|, Hf = I − |ω〉〈ω|, (18)

where

H0 =

(
N−1

N −
√

N−1
N

−
√

N−1
N

1
N

)
, Hf =

(
0 0
0 1

)
, (19)

in the {|ω〉, |r〉} basis. The adiabatic path [27,28] in the {|ω〉, |r〉} basis is given by

H(s) = (1 − s)H0 + sHf (20)

=

(
(1 − s)N−1

N −(1 − s)
√

N−1
N

−(1 − s)
√

N−1
N 1 − (1 − s)N−1

N

)
. (21)

Instead of employing a linear evolution of s(t), Equation (20) adapts the evolution ds/dt to
the local adiabaticity condition [28] such that

|ds
dt

| = εg2(t) (22)
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where g(t) is the energy gap of the system at time t. The running time t is then a function
of schedule s such that

t(s) =
N

2ε
√

N − 1

{
arctan

(√
N − 1(2s − 1)

)
(23)

+ arctan
(√

N − 1
)}

. (24)

The relationship between the schedule s and the running time t is shown in Figure 2 in [28].
It is a tailored schedule that goes fast in the outer regions and slows down near the gap. It
is clear that the system evolves quickly when the gap is large (s away from 1/2) and slowly
when the gap is small (s � 1/2) [28]. In this example, the sluggish period s ∈ [0.4, 0.6]. For
completeness, we provide the formal proof of the close form of the squared gap function
g2(t) (second order in s) with respect to the schedule s in Appendix A.

4.1. Adaptive Scheduling

For a fixed schedule of an adiabatic path, the schedule s moves fast when the eigen-
energy gap is large, and slowly when the gap is small. We desire to employ the catalyst
Hamiltonians He to amplify the eigen-energy gap during the “slow down” period such
that the total time to pass through the sluggish period is reduced (s ∈ [0.4, 0.6] in Figure 2
in [28].

4.1.1. Schedule-Dependent Gap Function

In this section, we consider employing gap-dependent scheduling functions. Let Hf be
an arbitrary 2 by 2 Hermitian Hamiltonian. Let the time-dependent Hamiltonian H(s) be

H(s) = (1 − s)Ho + fx(s)σx + fz(s)σz + sHf . (25)

Operators σx and σz are chosen as catalyst Hamiltonians. Let Ho =

[
a c
c b

]
, Hf =

[
p r
r q

]
where a, b, c, p, q, r are some given constants. The matrix form of the time-dependent
Hamiltonian is given by

H(s) =
[
(1 − s)a + sp + fz(s) (1 − s)c + sr + fx(s)
(1 − s)c + sr + fx(s) (1 − s)b + sq − fz(s)

]
(26)

and the schedule-dependent gap can be analytically computed to yield

g2(s) = ((1 − s)(a − b) + s(p − q) + 2 fz(s))2

+ 4((1 − s)c + sr + fx(s))2, (27)

(see Appendix B for a derivation). By using Equation (22), the total running time Tstp
strt from

s = sstrt to s = sstp is thus

T
sstp
sstrt =

∫ sstp

sstrt

ds
εg2(s)

(28)

where 0 ≤ sstrt ≤ sstp ≤ 1. In brief, the time spent during a certain period of a schedule can
be obtained by use of a gap function. The gap function can be expressed via the entries of
H0, He, Hf , schedule s and the coefficient functions of the catalyst Hamiltonians.

4.1.2. Determining the Sluggish Interval for the Catalyst Hamiltonian

By using the condition f ′(s) = dt/ds = 1
εg2(s) (see Appendix A), the region where the

gap quickly significantly decreases or increases is during the sluggish period of s. That
is the portion of the schedule s where a catalyst should be employed. The region where
|d f 2(s)/ds2)| ≥ δ0 is the sluggish period. The threshold value δ0 = 64 was chosen because
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if we choose a threshold proportional to N, as N increases exponentially, the quantity
d2t/ds2 might never reach the N-dependent threshold within the adiabatic evolution
schedule 0 ≤ s ≤ 1. By using this threshold, the starting point sslug

strt and the stopping point
sslug

stp used to mark the sluggish period can be identified. Using the example in [28], we can
re-plot and get t as a function of s as t = f (s) and f ′(s) = dt/ds in Figures 1 and 2 with
N = 64.

Figure 1. Time t as a function of schedule s for adiabatic local search with N = 64.

Figure 2. dt/ds for adiabatic local search with N = 64.

4.1.3. Catalyst Coefficient Functions

As discussed in Section 3.2, we are interested in the He = Z case in Equation (17) and
its coefficient function fz(s). Three coefficient functions of the catalyst Hamiltonian Z are
proposed as the following

f sine
z (s) = sin(((s − sslug

strt ) ∗ π)/(sslug
stp − sslug

strt )), (29)

f ss
z (s) = (s − sslug

strt )(s
slug
stp − s),

f grid
z (s) = a ∗ f sine

z (s) + b ∗ ( f sine
z (s))2

where 0 ≤ a, b ≤ 1 under the constraint that a2 + b2 = 1. In the grid search a increased
from 0 to 1 by 0.1 in each iteration. From the 10 pairs of (a, b), we find the values of a, b that
give the shortest sluggish time interval.

5. Experiment and Result

For our simulations we used (Wolfram) Mathematica (version 12.3 run on a Linux
Ubuntu 20.04 LTS laptop). The code is available upon request. The running time is based
on Equation (28). The size N (number of nodes) ranges from 25, 26, . . . to 225. We observe
the corresponding running time and sluggish time for each of the proposed models. The
result of the original adiabatic local search serves as the baseline for comparison, which
used N = 64 [28]. In this work, we generalize the setting for any arbitrary size N.

Given an arbitrary complete graph of size N with coupling factor 1/N, one can
compute the entries in the reduced Hamiltonian for H0 and Hf in the {|ω〉, |r〉} basis.
The values of variables a, b, c, p, q and r as discussed in Section 4.1.1 can be obtained from
Equation (14) for the CTQW case and from Equation (19) for the adiabatic local search.
It is worth noticing that the ground state energy is −1 in the CTQW case, but is 0 in the
adiabatic local search case. Based on the adiabatic path Equation (25) and the gap function

91



Entropy 2023, 25, 1287

in Equation (27) with given schedule s, coefficient function fz(s) for σz, we perform the
simulation with the running time computed from Equation (28).

5.1. Modified CTQW-Inspired Adiabatic Search Simulation

This experiment aimed to demonstrate that the modified adiabatic paths addressing
the irreconcilable issues remain optimal. The three proposed modifications we explored
are as follows:

• Horg(s) takes Equation (12) and drops the scaling factor as explained in Section 3.2.
The adiabatic path is Horg(s) = (1 − s)H0 +

√
s(1 − s)He + sHf

• Hm1(s) replaces the computed catalyst Hamiltonian He with an ordinary Z oracle
operator and keeps the magnitude M. This was used to address the constant gap He
irreconcilability issue. We have
Hm1(s) = (1 − s)H0 +

√
s(1 − s)MZ + sHf

• Hm2(s) uses sin(sπ)
2 as the coefficient function for the catalyst Hamiltonian Z. The

adiabatic path is Hm2(s) = (1 − s)H0 +
sin(sπ)

2 MZ + sHf

For the above three models, simulations were run on a Hamiltonian of size N ∈
[25, 26, . . . , 225]. In the following figures, the abscissa is log2 N while the ordinate is the
required total running time T. The time is computed based on Equation (28). As the di-
mension of the Hamiltonian increases, the difference in running times for the three models
considered are magnified.

The simulation results are shown in Figure 3. It is clear to see that Horg is a constant
time scheme as it does not scale as the size N increases. This indicates that the original
catalyst Hamiltonian He = MXZ in Horg(s) is indeed a constant gap Hamiltonian. This
also shows the irreconcilability issue as suggested in [27]. From the simulations we can
conclude that both Hm1(s), Hm2(s) perform optimally with respect to running time, namely
T∼O(

√
N), similar to that of the original adiabatic local search but with a minor constant

factor which can be ignored in the Big O notation. As the simulation suggests, both
modified CTQW-inspired approaches outperform the original adiabatic local search. When
the N ≤ 221, the Hm2(s) outperforms Hm1(s). When problem size N is larger then 221,
Hm1(s) is a better choice over Hm2(s).

Figure 3. Case when N ∈ [25, 225] and the running times of Horg(s) (orange), Hm1(s) (red) and Hm2(s)
(green) with the original adiabatic local search (blue) serving as the baseline.

5.2. Adaptive Adiabatic Local Search Simulation with Various Coefficient Functions

In the previous Section 5.1, the proposed modifications are optimal, in the sense
that T∼O(

√
N) up to a minor constant factor. For further improvement, the adaptive

scheduling scheme is applied. The adiabatic path to be explored is therefore

Hadapt(s) = (1 − s)H0 + f (s)Z + sHf (30)

where f (s) ∈ [ f sine
z , f ss

z , f grid
z ], as seen in Equation (29). The catalyst Hamiltonian Z operator

is only employed during the sluggish period and hence f (s) = 0 when s /∈ [sslug
strt , sslug

stp ]. The
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H0 and Hf are based on Equation (19). As the catalyst is only employed within the sluggish
period, to compare the performance of each proposed modification, one only needs to
compute the running time within this period.

In Figure 4, f ss
z provides the minimal reduced sluggish time while f sine

z and f grid
z

provide significant improvements. The difference in the runtimes becomes significant for
N ≥ 215.

Figure 4. Case when N ∈ [25, 225] and time spent in during the sluggish period for adiabatic
paths with ( f ss

z , f sine
z , f grid

z ) coefficient functions where the original adiabatic local search serves as
the baseline.

In Figure 5, both f sine
z and f grid

z have a more than 75% reduced sluggish time in
comparison to the original adiabatic local search when N reaches 225. f sine

z gradually
outperforms the original adiabatic local search after N = 210 and remains almost as good as
f grid
z until N = 223. When N = 225, the sluggish time of f sine

z is only twice that of f grid
z . In

general, the grid search is a costly procedure as we have to run 10 pairs of (a, b) for slightly
different H(s) for each value of N = 2n. If the time reduction of the sluggish period is not
greater than 90% of the original, it might be a better choice to use f sine

z . For the near term it
might be more beneficial to use the f sine

z model, instead of the grid search model f grid
z .

Figure 5. Case when N ∈ [25, 225] and time spent during the sluggish period for adiabatic paths with
( f sine

z , f grid
z ) coefficient functions where the original adiabatic local search serves as the baseline.

6. Conclusions

In this work, we investigated different Hamiltonians for resolving the irreconcilability
issue [27] when mapping the CTQW search algorithm to AQC. We modified the time-

dependent Hamiltonian by (1) removing the original scaling CTQW factor 4
√

s(1−s)
4ε2 N and

(2) replacing i X Z → Z in the original catalyst He Hamiltonian obtained from mapping
CTQW to AQC. These modifications were made in order to resolve the irreconcilability
issue. We further optimized the schedule s of the CTQW-inspired adiabatic path by an
adaptive scheduling procedure.

The modified CTQW-inspired adiabatic search simulation experiment demonstrates
that indeed the He without any modification leads to a constant time in the total running
time, regardless of the search space size N. This result echoes the irreconcilability issue
stated in [27]. On the other hand, the modified CTQW-inspired adiabatic path with catalyst
Hamiltonian coefficient sin(sπ)

2 behaves similarly to the behavior of the optimal adiabatic
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local search. Furthermore, the modifications are optimal and outperform the original
adiabatic local search.

Lastly, in the adaptive adiabatic local search simulation with various coefficient func-
tions experiment, we further investigated how to reduce the time wasted in the sluggish
period of an adiabatic local search path. As our numerical experiments show, the function
f sine
z (s) and f grid

z (s) provide significant improvement and both outperform the original
adiabatic local search. Even though the grid search f grid

z (s) approach could have further
reduced the length of the sluggish (“slow down”) interval, the benefit was offset by the
additional cost incurred from its implementation over that of the other two methods.
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Appendix A. Time Integration of Adiabatic Local Search

Given a spectral gap polynomial of the second order, that is

g2(s) = A(s2 + bs + c) (A1)

where s is the adiabatic schedule and (this is the same as g2(t) as for each t there is only
one corresponding s) ds

dt = εg2(s), by integration on t one obtains

T =
∫

dt =
∫ 1

0

ds
εg2(s)

=
1

εA

∫ 1

0

ds
(s2 + bs + c)

. (A2)

(I) Case b2 − 4c > 0: Let r± = −b±
√

b2−4c
2 .

∫ 1

0

ds
(s2 + bs + c)

=
1

r+ − r−

∫ 1

0
(

1
s − r+

− 1
s − r−

)ds (A3)

since
∫ 1

s−a ds = ln |s − a|. Thus, we have

T =
1

εA(r+ − r−)
ln
∣∣∣ s − r+
s − r−

∣∣∣1
0
, (A4)

t =
1

εA(r+ − r−)
(ln
∣∣∣ s − r+
s − r−

∣∣∣− ln
∣∣∣ r+
r−

∣∣∣). (A5)
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(II) Case b2 − 4c = 0: ∫ 1

0

ds
(s2 + bs + c)

=
∫ 1

0

1
(s + b/2)2 ds (A6)

since
∫
(s − a)−2ds = −(s − a)−1, hence

T =
−1
εA

1
(s + (b/2))

∣∣∣1
0

(A7)

t =
1

εA

( s
(b/2)(s + (b/2))

)
(A8)

(III) Case b2 − 4c < 0:∫ 1

0

ds
(s2 + bs + c)

=
∫ 1

0

1

(s + b/2)2 + 4c−b2

4

ds (A9)

=
∫ 1+(b/2)

b/2

1

x2 + (
√

4c−b2

4 )2
dx (A10)

since
∫ 1

a2+x2 dx = 1
a arctan x

a . With a =
√

4c−b2

4 , we obtain

T =
1

εA
(

1
a
)(arctan

x
a
)
∣∣∣1+(b/2)

b/2
(A11)

t =
1

εA
(

1
a
)(arctan

s + (b/2)
a

− arctan
(b/2)

a
) (A12)

Appendix B. Energy Gap

Given an arbitrary 2 by 2 non-negative-entry Hermitian matrix H as

H =

[
α γ
γ β

]
, (A13)

via computing the determinant and eigenvalues, the energy gap ΔE is

ΔE = |λ+ − λ−| =
√
(α − β)2 + 4γ2. (A14)

Simply from the view of energy gap, as long as |γ| increases and the gap, |α − β|, between
the diagonal entries increases, the energy gap would increase. The increase of |γ| can be
adapted by σx while |α − β| can be increased by σz. They should be good candidates for
the catalyst perturbation in the AQC path. Similarly, if the Hamiltonian has an imaginary
part in the off-diagonal entries,

H =

[
α γ − di

γ + di β

]
(A15)

ΔE = |λ+ − λ−| =
√
(α − β)2 + 4(γ2 + d2). (A16)
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The Hamiltonian H (with no imaginery entries) can be expressed in terms of Pauli matri-
ces as

H =
α + β

2
I+

ΔE
2

((
2γ

ΔE
)σx + ((

α − β

2
)(

2
ΔE

)σz)) (A17)

=
α + β

2
I+

ΔE
2

A (A18)

such that, by use of the power of Pauli matrices,

e−iHt = cos
(

ΔEt
2

)
I− i sin

(
ΔEt

2

)
A. (A19)
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Abstract: The majority of the recent research on text similarity has been focused on machine learning
strategies to combat the problem in the educational environment. When the originality of an idea is
copied, it increases the difficulty of using a plagiarism detection system in practice, and the system
fails. In cases like active-to-passive conversion, phrase structure changes, synonym substitution, and
sentence reordering, the present approaches may not be adequate for plagiarism detection. In this
article, semantic extraction and the quantum genetic algorithm (QGA) are integrated in a unified
framework to identify idea plagiarism with the aim of enhancing the performance of existing methods
in terms of detection accuracy and computational time. Semantic similarity measures, which use the
WordNet database to extract semantic information, are used to capture a document’s idea. In addition,
the QGA is adapted to identify the interconnected, cohesive sentences that effectively convey the
source document’s main idea. QGAs are formulated using the quantum computing paradigm based
on qubits and the superposition of states. By using the qubit chromosome as a representation rather
than the more traditional binary, numeric, or symbolic representations, the QGA is able to express a
linear superposition of solutions with the aim of increasing gene diversity. Due to its fast convergence
and strong global search capacity, the QGA is well suited for a parallel structure. The proposed model
has been assessed using a PAN 13-14 dataset, and the result indicates the model’s ability to achieve
significant detection improvement over some of the compared models. The recommended PD model
achieves an approximately 20%, 15%, and 10% increase for TPR, PPV, and F-Score compared to GA
and hierarchical GA (HGA)-based PD methods, respectively. Furthermore, the accuracy rate rises by
approximately 10–15% for each increase in the number of samples in the dataset.

Keywords: plagiarism detection; semantic analysis; optimization; quantum evolutionary algorithms

1. Introduction

Over the last few decades, forensic linguistics has developed and used a type of
language analysis that has helped put in place reliable ways to find plagiarism. Forensic
linguistics research, which looks at how language affects the law, has shown that it is
possible to figure out how likely it is that two or more texts were written independently.
So, this analysis can be used as both a way to find out more and as proof, not just in legal
situations but also in ethical ones [1–5]. Today, more and more cases of plagiarism are being
reported. This could be because of one or more of the following: easy access to information;
intense pressure to publish in academia for career advancement; lack of confidence and
writing skills; or writing manuscripts quickly or under stress to meet a deadline. Also,
because authors do not know what plagiarism is, they do not know that it is wrong to
copy and paste word-for-word, even if they give a reference to the original text. Plagiarism
detection (PD) methods look for text that is similar or the same between two or more
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documents [6]. As most plagiarists reuse the text from other source papers to disguise
plagiarism by changing terms with synonyms or paraphrasing, and maybe by rearranging
the sentences, detecting plagiarism can be a very difficult process. On the other hand, it has
inspired the creation of automated detection methods. Publishing houses have recently
shown an eagerness to combat plagiarism [7].

Current PD approaches might have some shortcomings that reduce their effective-
ness in detecting plagiarized texts. Here are the issues [8]: (1) Most algorithms can only
identify word-for-word plagiarism, while others can detect random alterations. Online
PDs fail or lose efficiency at greater degrees of complexity [9]. (2) Plagiarists have it easier
with automatic translators, summarizers, and other tools. (3) Idea plagiarism detection
tools are ineffective [10]. (4) Most PD methods may not detect structural alterations [11].
(5) Passage-level detections may lack linguistic, semantic, and soft computing tools. Syn-
tactic, semantic, structural, and linguistic features must be evaluated to reveal hidden
obfuscations. (6) Finally, there are not enough benchmark data to evaluate plagiarism
techniques [12]. Plagiarism can take place in two ways: (1) Literal plagiarism, in which the
plagiarist uses all or part of another person’s work in their own. (2) Semantic plagiarism
(intelligent) is when someone steals the content of another person’s work but uses different
words to describe it.

Plagiarism can be as simple as copying and pasting or as complicated as changing the
words around. See [8] for more information. Textual documents can be divided into two
basic types based on how similar their languages are or how different they are. These are
monolingual and cross-lingual (CL) [13,14]. There are not many ways to find CL plagiarism
because it is hard to find closeness between two text segments in different languages [14].
Unlike its multilingual counterpart, monolingual plagiarism detection focuses on pairs of
languages that are mutually exclusive, such as English and English. This kind of detection
approach constitutes the vast majority [14]. Detection may be further subdivided into the
intrinsic type and the extrinsic type based on whether or not external references are used.
Intrinsic detection is a document analysis technique that identifies potentially harmful files
based only on linguistic features such as authorial style, paragraph structure, and section
formulations [8]. In extrinsic detection, the suspect document is compared to a database or
collection of source documents.

Optimization is an interesting area of research. In general, there are two types of
optimization solution methods: deterministic and stochastic methods. Every method has
its own pros and cons [15]. In deterministic methods, the initial values of the parameters
and the conditions completely determine the model’s output. Some randomness is built into
stochastic methods [16]. Although various random approaches have been developed, such
as swarm intelligence, genetic algorithms are becoming more popular for solving complex,
large-scale optimization issues [17]. The quantum genetic algorithm (QGA) is an innovative
evolutionary algorithm that combines quantum computing with conventional genetic
algorithm technology. The approach can solve the same types of problems as the traditional
genetic algorithm, but it does it far more quickly because of quantum parallelization and
the entanglement of the quantum state, which speeds up the evolutionary process. A global
search for a solution may be performed with quick convergence and a small population size
by combining the probabilistic mechanism of quantum computing with the evolutionary
algorithm. These methods have proven effective in a broad range of combinatorial and
functional optimization problems [18–20].

1.1. Problem Statement

Even if that is true, putting plagiarism in a legal context is hard because you have
to find strong proof that a suspicious text has been copied. When the text is copied and
pasted word-for-word, it is usually enough to compare the suspect text to the possible
source text to find the overlap. Most cases, though, are much more complicated. New
ways to find plagiarism lead to new ways to avoid being caught, which in turn require new
ways to find plagiarism. Plagiarism is when someone passes off someone else’s work as
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their own without giving credit. Plagiarism covers a wide range of things, from copying
someone else’s words to copying someone else’s ideas. Recently, there have been many PD
approaches based on semantic similarity and sentence-based concept extraction that may
facilitate the discovery of paraphrases. To detect instances of plagiarism, several algorithms
delve into the document’s semantic concept by analyzing factors like the author’s writing
style, the structure of the paragraphs, the arrangement of the sections, etc. Obfuscated
plagiarism cannot be prevented using these techniques, however.

1.2. Contribution and Methodology

In this paper, a modified PD algorithm is utilized to detect plagiarism using the
semantic concept and the QGA. Adopting the QGA inside the PD model can facilitate the
optimization of a similarity search. Furthermore, the QGA is employed to find sentences
that briefly show the concept of the source document. On the other hand, semantic-level
concepts are captured by applying semantic similarity metrics, which depend on the
WordNet database for extracting semantic information. How successfully individuals are
mapped to fitness metrics is what gives the QGA its usefulness in our context. Since all
quantum individuals are reduced to a single solution during the measurement of the fitness
function, the benefits disappear if the mapping is one-to-one. More individual-to-fitness
mappings mean a higher potential diversity benefit for the QGA.

The remainder of this paper consists of the following sections: Some background on
quantum genetic algorithms is briefly discussed in Section 2. The third section provides a
literature review of relevant publications for the PD framework. The suggested approach is
presented in Section 4. The assessment of the suggested technique, including results and
discussion, is presented in Section 5. The study is concluded, and possible future directions
are discussed in Section 6.

2. Preliminaries

In this section, we will go through the fundamental concepts of quantum genetic algo-
rithms that will be used in the proposed framework. Primarily, evolutionary algorithms
(EAs) are stochastic searches and optimization techniques inspired by the concepts of natu-
ral biological evolution. EAs have many advantages over more conventional optimization
techniques, including their scalability, versatility, and independence from domain-specific
heuristics. However, it is challenging to incorporate the characteristics of population di-
versity and selection pressure concurrently into EAs like the genetic algorithm (GA). In
the face of rising selection pressure, the search narrows in on the best individuals in the
population, but the resulting exploitation reduces genetic variety. The reason for this is that
deterministic values are used in the definition of representations of EAs [20,21].

QGAs are a hybrid of conventional GAs and quantum algorithms. The superposition
of quantum mechanical states, or “qubits”, is the primary foundation for these. Here,
instead of being represented as a binary string, for example, chromosomes are vectors of
qubits (quantum registers). This means that a chromosome may stand in for a superposition
of all possible states. The QGA is distinguished by its simultaneous capacity for quick
convergence and global search. Quantum computing concepts and principles like qubits
and a linear superposition of states form the basis of the QGA [22,23]. One way to express
the status of a qubit is as follows:

|Ψ〉 = α|0〉+ β|1〉 (1)

|α|2 + |β|2 = 1 (2)

The probabilities of the qubit being in the ‘0’ and ‘1’ states are specified by the expressions
|α|2 and |β|2, respectively, where α and β are complex numbers describing the probability
amplitudes of the two states. Information on the states of a system may be stored in a system
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of m-qubits. However, a quantum state collapses to a classical one upon observation [24].
For m-qubits, the representation is:[

α1
β1

∣∣∣∣α2
β2

∣∣∣∣(....
....

)∣∣∣∣αm
βm

]
, |αi|2 + |βi|2 = 1, i = 1, 2, ...., m (3)

Consider a three-qubits system with three pairs of amplitudes:[(
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The current system status may be represented by:
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3
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This allows for eight possible states of information storage inside the three-qubit machine.
Evolutionary computing with a qubit representation offers a more diverse feature than
conventional approaches since it may express the superposition of states. While in classical
representation at least eight chromosomes are needed to represent a state, just one qubit
chromosome is needed to represent eight states. Convergence may also be attained using
the qubit format. The qubit chromosome converges to a single state and loses its distinctive
feature of diversity when either |αi|2 or |βi|2 approaches 1 or 0. Therefore, it is possible
for the qubit representation to have both exploratory and exploitation properties [24]. The
structure of the QGA is described in Algorithm 1 [21,24].

Algorithm 1: QGA Procedure

Begin
t = 0 Initialize Q(t)
Make P(t) by observing Q(t) states
Evaluate P(t)
Save the best solution among P(t)
While (not termination-condition) do
Begin

t = t + 1
Make P(t) by observing Q(t − 1) states
Evaluate P(t)
Update Q(t) using quantum gates U(t)
Store the best solution among P(t)

End
End

The QGA maintains a population of qubit chromosomes, Q(t) =
{

qt
1, qt

2, qt
3, . . . ., qt

n
}

at generation t, where n is the population size, m denotes the total number of qubits
and indicates the string length of the qubit chromosome, and qt

j is the definition of a
qubit chromosome:

qt
j =

[[
αt

1
βt

1

∣∣∣∣αt
2

βt
2

∣∣∣∣(....
....

)∣∣∣∣αt
m

βt
m

]]
, j = 1, 2, . . . .., n (6)
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〉
= ∑2m

k=1
1√
2m

|Sk〉 (7)

U(θ) =

[
cos θ −sin θ
sin θ cos θ

]
(8)
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where Sk is the k-th state represented by the binary string (x1x2 . . . . . . xn), xi, i = 1, 2, . . . .m,
is either 0 or 1, and θ is the rotation angle. The effectiveness (fitness) of each solution is
ranked. Then, among the available binary options, the P(t) is chosen as the best possible
starting point and saved. Q(t) uses the binary solutions and the best-stored solution to
construct an updated solution, which is then processed via the relevant quantum gates
U(t). To solve real-world issues, we may tailor the design of quantum gates to meet
specific needs.

3. The State of the Art

Plagiarism often falls into one of three categories: (1) If the original texts are available,
the study centers on comparing the suspect text(s) to the potential originals to uncover
linguistic evidence to infer that the suspect text is truly a derivative or original; (2) if the
source texts are unknown but plagiarism is suspected, the analysis focuses on determining
whether the material in question is plagiarized or not based on its inherent stylistic evidence;
or (3) if two or more texts are suspected of joint rather than individual composition, the
linguistic study will center on determining whether any probable overlap between the texts
is coincidental or the consequence of collaboration. Therefore, linguistic studies seek to
determine whether instances of textual overlap across various papers are suggestive of
plagiarism and if such overlap constitutes fraudulent behavior [1–5].

To aid in the building of the suggested model, this section discusses a few related PD
models and plagiarism prevention efforts from the cited literature. Figure 1 shows the
taxonomy of the existing PD models. In Ref. [25], the authors developed an approach based
on Semantic Role Labeling (SRL) to determine semantic similarity between texts. All of
WordNet’s ideas were combined into one node called the “topic signature node,” which
instantly captures suspicious elements from documents. This method identifies copy–paste
and semantic plagiarism, synonym substitution, phrase restructuring, and passive-to-active
voice changes. Hence, since not all arguments impact the PD process, the fuzzy inference
system should be used to increase the similarity score that argument weighting improves.

Figure 1. Taxonomy of existing PD models.
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In Ref. [7], the authors studied sentence ranking for PD and SRL. Vectorizing the mate-
rial generates suspicious and original sentence pairings. Pre-processing, candidate retrieval,
sentence rating, SRL, and similarity detection are the five stages of the approach. The pro-
posed technique leverages SRL to determine the semantic functions of each sentence word
based on its verb. This depends on the word’s semantic meaning. The algorithm recognizes
copy–paste, close copy, synonym substitution, phrase reordering, and active/passive voice
conversion faster and more accurately. It is unknown what degree of syntax is required
to provide a thorough study of semantic roles and how the state of the art constrains SRL
tagging and parsing performance.

In Ref. [26], the semantic and syntactic relationships between words are integrated.
This strategy improves PD because it avoids picking source text sentences with high
similarity to suspect text sentences with dissimilar meanings. It can identify copied text,
paraphrases, sentence translations, and word structure changes. This approach cannot
discriminate between active and passive sentences, however. In Ref. [27], the authors
suggested a fuzzy semantic-based similarity approach for detecting obfuscated plagiarism.
After feature extraction, the text characteristics are entered into a fuzzy inference system,
which models semantic similarity as a membership function. Once the rules have been
evaluated, the results are averaged to obtain a single score that indicates how similar two
texts are. The technology detected literal and disguised plagiarism. The system cannot
generalize and is not resilient to topological changes. Such modifications need rule-based
adjustments and an expert to develop inference rules.

Another approach was suggested in [28] which treated document-level-text PD as
a binary classification issue. The original source of a document was identified and that
information was used to determine whether or not the document in question contained
plagiarized content. The main parts are feature extraction, feature selection, and classifica-
tion using machine learning. After pre-processing and filtering, part-of-speech (POS) tags
and chunks removed extraneous data. The method investigated the influence of plagiarism
categories and complexity on attributes and behavioral variances. The lack of a large
database of manual plagiarism instances is a concern; thus, creating one is necessary for
testing detection techniques.

The work in [8] presented another effort to identify plagiarism. The described study
explores GA syntax–semantics concept extractions to detect idea plagiarism. Pre-processing,
GA source sentence extraction, document level, and passage level are the four major
components. Natural language processing (NLP) approaches are utilized for word-level
extraction within documents. Sentence-based comparisons employing integrated semantic
similarity metrics are employed in the passage-level identification step. Using passage
boundary conditions, the passage level is detected. In the offered technique, the concept
of plagiarism enforced via summarizations is emphasized. The results demonstrated
substantial performance in catching plagiarized texts. Plagiarism may also occur via
elaboration and paraphrase, etc., which the system cannot detect.

In order to find instances of plagiarism, the study in [29] constructed a cutting-edge
system that relies on semantic properties. For each possible suspect and source phrase
combination, the system generates a relation matrix that uses semantic characteristics to
calculate the level of similarity. This study presents two weighted inverse distance and
gloss Dice algorithms that illustrate different text qualities (e.g., synonyms) and develops a
novel similarity metric for plagiarism detection, which overcomes the limits of the current
features. In addition, this study examines the efficacy of individual characteristics in
identifying copied works, combining the most effective ones by giving varying weights to
their individual contributions to further improve the system’s performance. The inverse
weighted distance functions have a drawback in that the function must have a maximum
or minimum at the data points (or on a boundary of the study region).

The study given in [30] outlines a three-stage process that, together, provides a hybrid
model for intelligent plagiarism detection: initially, we cluster the data; then, we create
vectors inside each cluster according to semantic roles, normalize the data, and compute
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a similarity index; and lastly, we use an encoder–decoder to provide a summary. For the
purpose of choosing the words to be used in the production of vectors, K-means clustering,
which is calculated using the synonym set, has been proposed as a method. Only if the
last stage’s estimated value is greater than a threshold value is the following semantic
argument evaluated. A brief description is generated for plagiarized documents if their
similarity score is high enough. The experimental results demonstrated the effectiveness
of the strategy in identifying not only literal but also connotative and concealing forms
of concept copying. However, long sequences take a long time to process because of the
slowness of the neural network’s processing and the difficulty of training it if activation
functions are used. Finally, it has problems like gradient vanishing and explosions.

In Ref. [31], the authors introduced an efficient method for determining the structural
and semantic similarity between two publications by only analyzing a subset of the material
of each document instead of the whole thing. To improve plagiarism detection regardless
of word order changes, a collection of remarkable keywords and different combinations
are used to compute similarity. The importance of a word varies depending on where
in the article it appears. As a final step, a weighted similarity is determined using an
AHP (Analytical Hierarchy Process) model. It was shown that the suggested method
outperformed its competitors in terms of runtime and accuracy for detecting semantic
academic plagiarism. One potential drawback of the AHP is the high number of pairwise
comparisons it requires. This is due to the fact that comparing each criterion and then each
option with regard to a given criterion is required.

In Ref. [32], the authors offered an approach to detecting two common forms of para-
phrased text: those that involve the use of synonyms and those that use the reordering
of words in plagiarized sentence pairs. They introduced a three-stage technique that
makes use of context matching and pertained word embedding to detect instances of
synonymous replacement and word reordering. Their experiments revealed that the
Smith–Waterman method for plagiarism detection combined with ConceptNet batch-
pertained word embedding yields the highest scores. Methods to determine paraphrase
styles for plagiarism detection may be used from this study to supplement similarity reports
from existing plagiarism detection systems. Even though it is the most sensitive technique
for detecting sequence similarity, the Smith–Waterman approach does not come without its
price. Time is a major restriction, as conducting a Smith–Waterman search requires a lot of
processing power and time.

Two methods for identifying external plagiarism are provided in [33]. Both methods
use a bag-of-words strategy-based two-stage filtering procedure, first at the document
level and then at the sentence level, to reduce the search area; only the outputs of both
filters are then evaluated for plagiarism. One uses the WordNet ontology and the term
frequency–inverse document frequency (TF-IDF) weighting technique to create two struc-
tural and semantic matrices; the other uses a pre-trained network technique of words
embedding fast text and TF-IDF weighting to create the same outcome. After forming
the aforementioned matrices, the structural similarity of the weighted composition and
the Dice similarity are used to determine the degree of similarity between the pairs of
matrices representing each phrase. The similarity between the suspect text and the mini-
mum criterion is used to classify documents as plagiarism or non-plagiarism. Using the
PAN-PC-11 database, the authors conducted experiments to determine whether or not a
word embedding network, as opposed to the WordNet ontology, would be more successful
in detecting instances of extrinsic plagiarism. However, TF-IDF weighting does have certain
restrictions. It may be time-consuming for large vocabularies since it calculates document
similarity directly in the word-count space. It assumes that evidence for similarity may be
found in the counts of various terms. One potential problem with the adaptable layout
described above is that WordNet’s’ meaning and scope might quickly diverge from one
another. We cannot be sure that we will be encoding the same relationships or that we will
be covering the same conceptual ground [34,35].
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In Ref. [36], the authors created a new database that contains all the characteristics
that indicate various linguistic similarities. As a solution to textual plagiarism issues, the
developed database is offered for use in intelligent learning. The produced database is then
used to propose a deep-learning-based plagiarism detection system. During development,
many deep learning techniques, including convolutional and recurrent neural network
topologies, were taken into account. To assess the efficacy of the presented intelligent
system, comparison research was conducted using the PAN 2013 and PAN 2014 benchmark
datasets. In comparison to state-of-the-art ranking systems, the test findings demonstrated
that the suggested system based on long short-term memory (LSTM) ranked first. However,
LSTMs are easy to overfit and are sensitive to different random weight initializations.

Using the fuzzy MCDM (multi-criteria decision-making) technique, the research in [37]
compared and contrasted many academic plagiarism detection strategies and offered
guidelines for creating effective plagiarism detection tools. They described a framework for
ranking evaluations and analyzed the cutting-edge methods for detecting plagiarism that
may be able to overcome the limitations of the state-of-the-art software currently available.
In this way, the research might be seen as a “blueprint” for developing improved plagiarism
detection systems. An innovative and cutting-edge technique known as compressive
sensing-based Rabin Karp is offered for use in the system presented in [38]. This technique
calculates both syntactic and semantic similarities between documents using a sampling
module to shrink the dataset and a cost function to identify document repetition. Yet,
simply applying the hash function based on the generated table may result in cases where
the hash codes for the pattern and text are the same, yet the pattern’s characters do not
match those in the text. For current surveys that include the most up-to-date research in
the plagiarism detection area, please refer to [39,40].

A novel plagiarism detection approach is presented in [41] to extract the most useful
sentence similarity features and build a hyperplane equation of the chosen features to
accurately identify similarity scenarios. The first phase, which contains three steps, is used
to pre-process the papers. The second phase is dependent on two different strategies: the
first strategy relies on the standard paragraph-level comparison, while the second strategy
relies on the calculated hyperplane equation utilizing Support Vector Machine (SVM) and
Chi-square methods. The best plagiarized segment is taken out in the third step. On the
whole test corpus of the PAN 2013 and PAN 2014 datasets, the recommended approach
attained the best values of 89.12% and 92.91% of the Plagdet scores and 89.34% and 92.95%
of the F-measure scores, respectively.

The present plagiarism detection solutions now on the market compare plagiarism
only when the input document includes text, despite the fact that there are a number
of tools available that address the issue of plagiarism using various methodologies and
features. However, when the input document is an image, the techniques currently in use
do not check for plagiarism. The authors in [42] suggested a tool that searches both the text
and text hidden in images using an exhaustive searching approach. The project’s suggested
tool compares the input document’s content to that of websites and returns findings on
how similar they are. The source and suspect papers are in two different languages, making
it difficult to identify cross-lingual plagiarism (CLP). In this context, a number of solutions
to the issue of CPD in text documents were proposed. To obtain comparability metrics,
the authors in [43] employed the one-gram and tri-gram of the pre-processed text. The
models are constructed using five ML classifiers: KNN, Naive Bayes, SVM, Decision Tree,
and Random Forest. The trial demonstrates that KNN, RF, and other models offer superior
outcomes versus other models.

Commercial plagiarism detection tools are accessible online for purchase or subscrip-
tion. EVE2, Plag Aware, Write Check, Turnitin, and Ithenticate are some of the most well
known [44]. Turnitin is an online similarity detection service that compares submitted
papers to various databases using a proprietary algorithm to check for possibly plagia-
rized material. In addition to scanning its own databases, it has licensing arrangements
with significant academic private databases. Turnitin does not deal with the causes of
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academic integrity problems, and so it does not fix them. Instead, it might give students
the impression that they are being held accountable for cheating from the very first day
of class or that their work is being used against them and others without their permis-
sion. iThenticate is a plagiarism prevention tool that assesses written material (such as
journal article manuscripts, proposals, research reports, theses, and dissertations, among
other things) against millions of published works that are accessible online and via paid
databases. The following are some benefits of iThenticate: The finest tool for detecting
plagiarism in academic writing is iThenticate, which employs cutting-edge algorithms to
evaluate submitted text against a huge library of scholarly publications.

Despite decades of study, PD might be strengthened to better prevent intellectual
property theft. Still, PD should account for things like running time and computational com-
plexity. The available PD approaches are not all suitable to be employed in all applications.
To address these issues and outperform competing methods, a model combining semantic
idea extraction and the QGA for optimizing similarity search has been proposed. The QGA
is structurally similar to classical genetic algorithms, with the exception that quantum
gates and quantum superposition are used to construct the initial and updated populations,
with consideration given to the adaptation of such operators to meet GA-based PD issues.
One clear benefit of a QGA is that its population tends to be more diverse than that of
a non-QGA. To put it another way, a quantum population may be exponentially greater
than its “size” in the classical world. Only one possible solution may be represented by
each individual in a classical population. Each “individual” in a quantum population is
a superposition of many different possible solutions. In this sense, the population of a
quantum system is far greater than that of a classical system.

4. The Proposed QGA-Based Plagiarism Detection Model

This section presents the suggested model for QGA-based idea (semantic) extraction
for plagiarism detection. PD exploits document notions at several structural levels for
document-level (DL) and passage-level (PL) detection. QGA-based sentence scoring is
examined for sentence-level extraction. The DLD stage captures nouns and verbs using
natural language processing (NLP) methods. In the PLD phase, phrase-based assessments
utilizing a joint similarity measure with WorldNet detect plagiarized sentence pairings.
We decided to use a quantum-inspired evolutionary algorithm to solve the PD problem
because of the many benefits of quantum-inspired metaheuristics. (1) With quantum gates
and quantum parallelism, it is possible to compute all possible values of a given variable
simultaneously, which not only enhances the quality of the result but also drastically
shortens the search time. (2) The use of quantum superposition and quantum gates to
represent individuals in a population results in (a) more diversity, (b) enhanced search capacity,
(c) faster and more accurate convergence, and (d) efficient escape from local optima. Due to the
limited number of individuals, the method may quickly and efficiently probe the search space
for a global solution, even if it only contains a single element. (3) There is a balance between
diversification/intensification and exploration/exploitation [18,21,22]. Figure 2 shows the
suggested framework, and each module is discussed in the following subsections.

4.1. Pre-Processing and Document Representation

The database, which includes both source and suspect documents, is pre-processed in
the first module. The steps included in this section are as follows.

4.1.1. Sentence Segmentation and Tokenization

First, suspicious (Xsusp) and source (X src) documents are sentence-segmented. Text
segmentation is a pre-processing procedure that divides text into meaningful components
like sentences or words. The document is split into sentences. Then, source and suspect
phrases are tokenized. Punctuation and capitalization are eliminated [7,8,27].
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Figure 2. The proposed plagiarism detection framework using the QGA.

4.1.2. Part-of-Speech Tagging and Lemmatization

After the pre-processing step, tokenized words are employed for the part-of-speech
(POS) tagging of suspect and source tokenized phrases. Each word is labelled as a noun,
verb, adjective, preposition, etc. Noun, verb, adjective, and adverb tags are the only seman-
tic tags that are kept. Conjunctions, prepositions, articles, pronouns, and determinants were
taken out of the sentence, along with anything else that did not add meaning. By conserving
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memory and speeding up processing, removing such words improves accuracy and time.
Lemmatization reduces words to their dictionary base forms and allows for comparisons.
The Stanford Log-Linear Speech Tagger and WordNet Lemmatizer were employed for POS
tagging [8,45]. The pre-processed suspicious sentence in Xsusp is Ssusp, while the source
sentence in Xsrc is Ssrc. Each pre-processed source and suspect tokenized sentence includes
lemmatized and POS-tagged words available for feature extraction [7,8,27,45].

4.1.3. Feature Extraction

The pre-processed source and suspect documents are a collection of tokenized sen-
tences, and the Vector Space Model (VSM) with term-frequency-inverse sentence frequency
(t f − is f ) weighting reflects the vocabulary of the lemmatized and POS-tagged words
contained in these documents [8]. (t f − is f ) is a metric developed for use in informa-
tion retrieval (IR) that attempts to quantify a word’s significance within the context of a
phrase [28,45–48]. The w(t, S) weight is calculated using:

t f (t, S) = f (t, S) (9)

is f (t, X) = log
|X|

|{S ∈ X; t ∈ S}| (10)

w(t, S) = t f (t, S) ∗ is f (t, X) (11)

The number of times a term t appears in any generic sentence S is denoted by term frequency
t f (t, S). The term-inverse sentence frequency (is f ) is used to highlight the fact that the
computation is performed over individual sentences as opposed to whole documents,
where X is the collection of all sentences found in the provided documents. Sentence
vectors for the source and suspect sentences are denoted by

→
ssrc and

→
ssusp, respectively.

4.2. The Quantum Genetic Algorithm for Extracting Sentence Concepts

Concept extraction using the QGA is feasible when the documents have been pre-
processed and expressed in t f − is f weight form. The documents’ syntactic concepts
are derived from their respective structural levels. Paragraphs, phrases, sentences, and
keywords are all ways in which these ideas may be found across a document [49]. The
suggested approach starts by using sentence scoring methods with the QGA to extract
sentence-based ideas from the original documents. In order to simplify the content of a
lengthy text into a few carefully chosen sentences, the QGA is used.

4.2.1. Population Initialization

Pre-processed source sentences, each of which will be given a fixed score, are the
QGA’s input. Static scores, together with relevance and theme scores, may be calculated.
Sentence weights are assigned to each Ssrc in Xsrc by extracting features from Xsrc based on
w(t, S). Both the relevance score and the thematic score may achieve this [47,48].

• Relevance Score

The relevance score expresses Ssrc using i f − is f weights, which is the source sentence’s
pre-processed word count:

Rel(Ssrc) =
∑

|Ssrc |
i=1 w(ti, Ssrc)

|Ssrc|
; Rel(Ssrc)[0, 1] (12)

where w(t, Ssrc) denotes the sum of the t f − is f weights of each word t in Ssrc and |Ssrc| is
the source sentence length.

• Thematic Score
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The themeatic score is calculated by retrieving and sorting the words from the pre-
processed Xsrc. The top L words are then saved in the Xsrc keyword set kw(Xsrc):

Thm(Ssrc) =
|kw(Ssrc)|

L
;

Kw(Ssrc) = {t|t ∈ Ssrc ∧ t ∈ kw(Xsrc)}; Thm(Ssrc) ∈ [0, 1] (13)

where |kw(Ssrc)| is the number of words between kw(Xsrc) and Ssrc in Xsrc and kw(Xsrc)
has L words. After calculating the relevance and thematic scores, Stat(Ssrc) is calculated.

Stat(Ssrc) = Rel(Ssrc) + Thm(Ssrc); Stat(Ssrc) ∈ [0, 2] (14)

The Ssrc with the associated Stat(Ssrc) will be employed for building the QGA population.
A population with N chromosomes is randomly chosen. A chromosome is conceptually
equivalent to a quantum register made up of a string of m-qubits. A quantum chromosome’s
structure can be seen in Figure 3. All qubit amplitudes may be conveniently set to the
value 1/ 2

√
2 [22] to generate the starting population. This implies that each of the possible

quantum superposition states is equally represented in a chromosome. To begin, we create
N quantum registers and give them the labels Reg10 through Reg1N−1, where N is the total
number of individuals in the population. Then, each of these registers is layered on top
of one another to create a superposition of all potential individuals. This means that each
register is capable of storing all potential individuals. The next step is to apply the fitness
function to each of the N quantum registers, and then store the results in a second set of
N quantum registers, which are designated by the labels Reg20 through Reg2N−1. The
application of the fitness function will result in an entanglement being produced between
the first set of registers and the second set of registers.

 

Figure 3. Quantum chromosome structure.

4.2.2. Fitness Function Computation

The quality of each quantum chromosome in the population is quantified at this stage
in order to facilitate reproduction. A superposition of all the individuals who may have
been there is included in each of the initial registers. Because of this, the data stored in
each of the second registers is a superposition of all of the feasible fitnesses. Even if every
individual was examined, which led to the generation of every fitness, there was still
only one instance of the fitness function that needed to be applied to each register. The
parallelism of quantum mechanics may be shown here [22–24]. The optimal solution would
be to evaluate the highest fitness in register Reg2i, which would then cause register Reg1i
to collapse into a superposition of perfect individuals. The outcome of a measurement
is completely unpredictable, and the probabilities are based on the amplitudes of the
probabilities. Therefore, the likelihood of achieving a maximum level of fitness (Fit(C)) is
precisely the same as the probability of accidentally producing an ideal individual. In our
case, the fitness function (Fit(C)) is calculated as follows:

Fit(C) = ∑|C|
i=1 Tot(Ssrc) (15)

in which, a dynamic cohesiveness factor is generated for each phrase in C and supplemented
using Stat(Ssrc). The cohesiveness factor determines sentence relatedness [50]. Cosine
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similarity measures lexical cohesiveness [51]. Cosine similarity between the source sentence
vectors is calculated first.

Cos
( →

Ssrci,
→

SSrcj

)
=

→
Ssrci·

→
SSrcj∣∣∣∣∣∣∣∣ →

Ssrci

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ →
SSrcj

∣∣∣∣∣∣∣∣ ; ∀i, j
→

Ssrci,
→

SSrcj ∈ C (16)

Cos
( →

Ssrci,
→

SSrcj

)
denotes the cosine similarity between an Ssrc vector pair

( →
Ssrci,

→
SSrcj

)
such that each sentence is a chromosomal C element. Cosine similarities are calculated and
stored in a symmetric matrix with diagonal entry 1. The Ssrci sentence cohesion factor is
then calculated.

Coh(Ssrci) =
∑

|C|
j=1,j �=i cos

(
Ssrci, Ssrcj

)
max{(Ssrci, Ssrcj)}

, ∀ij = {1, 2, ...,|C|}, i �= j (17)

To avoid self-similarity, i �= j is used; otherwise, the denominator is 1. After computing the
sentence cohesiveness factor, the total score for each source sentence Tot(Ssrc) is determined.

Tot(Ssrc) = Stat(Ssrc) + Coh(Ssrc) (18)

Using quantum selection and crossover, the fitness value C is used to build the next generation.

4.2.3. Quantum Selection and Crossover

Our initial population will be represented by a set of N paired registers, with half of the
registers carrying fitness values and the other half having the superposition of individuals
based on those fitness values. Normal procedures are followed upon crossover. The
information included in the register Reg1i is combined with the information found in the
register Reg1j. Since both registers already contain a superposition of individuals, we obtain
two additional superpositions as a result. In particular, if Reg1i contains all individuals
with fitness values Fit(Ci) and Reg1j contains all individuals with fitness values Fit

(
Cj
)
,

then the superposition of all individuals that may be generated by crossing at the given
location is achieved. The N registers (Reg10 through Reg1N−1) will then be subjected to the
fitness function. The second set of registers is used to store the results and is entangled
with the first set of registers in the same way that the initial population was. The next step
is to take a measurement. This reduces the number of individuals from Reg10 through
Reg1N−1 to only those with the measured fitness, and it also collapses the superimposed
fitness values to a single value. The generation ends when a selection is performed based
on the calculated fitness values. Any desired mutations may be included [49,52,53].

Obtaining a result is the last action when the termination condition is met. The final
product will be N pairs of registers, where each pair’s first register has a set of superimposed
individuals with the same fitness value, and is entangled with the second register of the
pair, which has the measured fitness value. A measurement of the first register will be able
to identify one of the individuals as having the specified fitness level. This provides the
effect that was sought, which is a single individual of the fitness level that was specified.
It is necessary to conduct an observation on each qubit if we are to successfully utilize
the superposed states of qubits (measuring chromosomes). Because of this, we are able to
obtain a traditional chromosome, as illustrated in Figure 4. The purpose of this is to make
it possible to evaluate each quantum chromosome. A final set of best C is generated, where
the highest Fit(C) is picked, representing the best source sentence set Ssrc_sel [8].
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Figure 4. Measured chromosome.

The interference operation allows for the modification of specific amplitudes in order
to optimize performance. It mostly entails shifting the state of each qubit in the direction
of the optimal solution’s value. This is important for narrowing down the search for
the best option. The amplitudes (αi, βi) and the value of the corresponding bit in the
reference solution determine the angle of the rotation that may be carried out using a
unit transformation. Early convergence may be prevented by appropriately setting the
rotation angle δθ. The direction of the change is determined by the values of αi, βi, and
the qubit inserted at location i in the individual (chromosome) being altered, all of which
are typically estimated experimentally. The population Q(t) is revised when the qubits
making up individuals are rotated using quantum gates. Equation [22] explains the rotation
method that is employed:[

αt+1
i

β+1
i

]
=

[
cos(δ θi) −sin(δ θi)
sin(δ θi) cos(δ θi)

][
αt

i
βt

i

]
(19)

where δθi is the rotation angle of each quantum chromosome’s qubit quantum gate i, as
illustrated in Figure 5 [53]. As stated in [22], it is frequently taken via a lookup table to
guarantee convergence; see Table 1.

Figure 5. Qubit transformations with Hadamard gate.
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Table 1. Lookup table for quantum gate rotation [22].

xi bi f(x) > f(b) δθi
S(ai , bi)

ai.bi > 0 ai.bi < 0 ai = 0 bi = 0

0 0 0 0.001π - + ± ±
0 0 1 0.001π - + ± ±
0 1 0 0.08π - + ± ±
0 1 1 0.001π - + ± ±
1 0 0 0.08π + - ± ±
1 0 1 0.001π + - ± ±
1 1 0 0.001π + - ± ±
1 1 1 0.001π + - ± ±

The i-th bits of x and b (the optimal solution) are denoted by xi and bi, respectively.
The rotation angle θi has a sign that may be written as S(ai , bi), and f is the fitness function.
Using the lookup table, we can see that this method increases the amplitudes of poor
qubits according to angle δθ1 = 0.08π, while decreasing the amplitudes of good qubits
according to angle δθ2 = 0.001π. Quantum bit amplitudes are adjusted in accordance
with the signs of the amplitudes, the optimal solution, and the solution extracted with
the respective container. Because reducing amplitudes only helps to correct stochastic
mistakes, preventing genetic drift and guaranteeing genetic diversity, it stands to reason
that δθ1 > δθ2 [22].

4.3. The Document-Level Plagiarism Detection Phase

After selecting the important sentence-level ideas, the word-level concepts are re-
trieved. As most document ideas are transmitted using nouns and verbs, Ssrc_sel picks
out nouns and verbs [8]. Ssusp collects nouns and verbs from each Xsusp. The number of
common source and suspect word ideas is utilized to detect document-level plagiarism in
the DLD phase. If the count value is more than the threshold ε, the document is deemed to
be plagiarized. After DLD, suspicious source document pairings that are determined as
plagiarized proceed to the PLD phase.

4.4. The Passage-Level Plagiarism Detection Phase

Semantic concept extractions are used for passage-level comparisons to calculate se-
mantic similarity. Plagiarized suspicious source pre-processed document pairings are given
to PLD. In this step, suspicious sentences are compared to Ssrc_sel. The source sentences
result from QGA’s sentence-level idea extraction. Since sentences are pre-processed, unnec-
essary words are deleted and each word is tagged (POS tag). For sentence comparisons,
WordNet extracts semantic-based word synsets. Synsets are groups of semantically similar
data elements [28]. POS information is compared to determine if a suspicious source
sentence pair

(
Ssusp, Ssrc_sel

)
is plagiarized. That implies only comparing nouns and verbs,

etc. Comparing word classes seems meaningless.
For each suspicious source word pair

(
wq, wk

)
, WordNet is used to derive the synset

lists Wq_syn of wq and Wk_syn of wk of each word. Only synsets in the same POS class as the
word are retrieved for these lists. Common words between suspicious source sentence pairs(

Ssusp, Ssrc_sel
)

are calculated and kept in the list Count. Suspicious word wq is checked for
in Ssrc_sel . The synonyms of wq’s are taken from WordNet if it is not in Ssrc_sel . Syns

(
wq
)

represents a suspicious word’s synonym list. Common words between Syns
(
wq
)

and
Ssrc_sel are calculated and added to Count, which includes the number of frequent terms or
synonyms between suspicious and source sentence pairs. Using threshold τ, a suspicious
source sentence combination is found to be plagiarized or not. If WorldNet’s similarity
score is higher than the set value, the phrases are plagiarized [54]. Algorithm 2 outlines the
main steps of the suggested technique.
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Algorithm 2: QGA for Plagiarism Detection

Input: Dataset Xsrc; Suspicious Document Xsusp; QGA Parameters, WordNet

1- while n < size of documents do
2- S ← Sentence Segmentation (Xsrc)
3- y ←0
4- While y < S ! = NULL do
5- T ← Tokenization (S)
6- z←0
7- while z < size of T do
8- M ← POS Tagging (T)
9- N ← Lemmatization (M)
10- z++
11- end
12- tf-isf (N)
13- y++
14- end
15- n++
16- end
17- t ← 0
18- while termination condition not satisfied do
19- t ← t+1
20- Call Algorithm 1 // QGA Procedure
21- Return Best_Pop ←New_Pop // Store the best solution among P(t)
22- end
23- sim1← sum of words in Xsusp // the number of common word-level concepts in Xsusp

that collects nouns and verbs

24- sim2← sum of words in Xsrc // the number of common word-level concepts in Xsrc
25- If sim1 − sim2 > ε

26- Doc. Status = =Plagiarized
27- end
28- For each suspicious-source word pair (wq,wk) //To compute the semantic similarity
29- - WordNet is used to derive the synset lists Wq_syn ofwq and Wk_synof wk

30- of each word.
31- - Only synsets in the same POS class as the word are retrieved for these lists
32- end
33- Count ←The common words between the compared suspicious-source sentence

pair
(
Ssusp, Ssrc_sel

)
// Ssrc_sel is the best set of selected source sentences

extracted from QGA’ procedure

34- If count > τ

35- Doc. Status = = Plagiarized
36- end
37- Else
38- Doc. Status = = not plagiarized
39- end
40- Output = Doc. Status

5. Experimental Results

The effectiveness and reliability of the suggested model were evaluated using MAT-
LAB implementation and QuTiP package Release 4.7.1 [55] for building quantum genetic
algorithm modules. The prototype verification method was developed in a modular form
and tested on a DellTM InspironTM N5110 Laptop, Dell computer Corporation, Texas,
which included the following specifications: 64-bit Windows 7 Home Premium, 4.00 GB
RAM, Intel(R) Core(TM) i5-2410M CPU, 2.30 GHz. Benchmark datasets [56] provided the
source for these data. Table 2 displays the proportion of plagiarized to original papers in
each group of suspects. The Summary Obfuscation (SO) training and test datasets provided
by the PAN13-14 text alignment task were utilized to evaluate the plagiarism detection
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(PD) model in Figure 6. Different performance metrics, as shown in Table 3, were employed
to assess the performance of the suggested model [57]. All test data examples may be
predicted by a binary classifier as positive or negative. Table 4 displays the current QGA
setup settings.

Table 2. Data statistics of PAN 13-14.

PAN 13-14 Dataset

Files

Training Data Testing Data-1 Testing Data-2

Source Suspicious Source Suspicious Source Suspicious

Non-plagiarized (NP) 947 - 97 - 949 -
Plagiarized (P) 238 - 24 - 236 -

Total 1185 237 121 102 1185 237

 

Figure 6. Size of training and testing datasets.

Table 3. Performance metrics [50].

Define Metric

Accuracy ACC = TP+TN
TP+TN+FN+FP = TP+TN

P+N
Sensitivity or Recall or Hit Rate or True Positive Rate TPR = TP

TP+FN = TP
P

Precision or Positive Predictive Value PPV = TP
TP+FP

F-Score F-Score = 2∗PPV∗TPR
PPV+TPR = 2TP

2TP+FP+FN

Table 4. QGA parameters settings.

Parameter Value

Population Size (N) 50
Max. No. of Generations (Max_Gen) 10
Selection Highest Fitness
Probability of Crossover 0.7
Probability of Mutation 0.3
Termination Condition Max_Gen

5.1. Experiment 1: A Comparative Study of the Different Types of GA

To validate the benefits of implementing the proposed model (semantic concept ex-
tractions with the QGA) for PD, this experiment compares the suggested model with
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related PD models that include syntax–semantic concept extractions with the GA [8] and
syntax–semantic concept extractions with the hierarchical GA (HGA) [58]. The experiment
was reported for datasets PAN13-14 in terms of TPR, PPV, and F-Score for all the used
datasets. It is observable that the results of the QGA-based PD model are better than
those that depend on both the HGA and the traditional GA. Table 5 reveals the superiority
of the suggested model for document detection in terms of TPR, PPV, and F-Score. The
recommended PD model achieves an approximately 20%, 15%, and 10% increase for TPR,
PPV, and F-Score compared to the GA and HGA, respectively. These results might be
explained by the fact that the proposed methodology uses semantic idea extraction to iden-
tify instances of plagiarism. Additionally, using the QGA aids in efficiently removing the
non-plagiarized documents. It also lowers the number of PLD-phase sentence comparisons.

Table 5. Comparison between semantic concept extractions with the QGA, HGA, and GA methods (P:
plagiarized, NP: non-plagiarized) for the PAN13-14 dataset. (Average of testing data-1 and testing data-2)

PD Methods
TPR Value PPV Value F-Score

P NP P NP P NP

Semantic concept extractions
with the QGA (proposed model) 1 0.99 0.99 0.98 0.99 0.98

Semantic concept extractions
with the HGA [58] 0.98 0.97 0.98 0.95 0.98 0.96

Semantic concept extractions
with the GA [8] 0.97 0.95 0.96 0.93 0.97 0.94

5.2. Experiment 2: QGA-Based PD Model Validation

The purpose of these tests was to verify the QGA’s usefulness in the features selection
module by measuring its effect on accuracy. In this investigation, the adaptive feature
selection technique is used to focus in on the most relevant details for enhancing the PD
model. It compares the GA-based PD and the proposed QGA-based PD model for different
datasets and provides a confusion matrix for all used datasets. The definitions regarding
the confusion matrix are summarized in Table 6 [8]. Tables 7 and 8 reveal that the QGA for
PD achieves better results with the confusion matrix compared to the GA procedure. The
QGA produces an approximate increase (of about 5%, on average) in plagiarism detection
compared to the GA. The way the QGA works is that it facilitates the capturing of the
non-plagiarized documents efficiently. Moreover, the QGA decreases sentence comparison
numbers in the PLD. Utilizing the space’s desirable features is a discriminatory way to
highlight individual differences. The feature selection issue is often multi-modal since
there are often numerous optimal solutions. That is why, in this case, a typical evolu-
tionary process might lead to convergence, freeing up time for further exploration of the
space issue.

Table 6. Confusion matrix.

Predicted Class

Condition Positive (P) Condition Negative (N)

Actual Class

Condition Positive (P)
The number of real positive cases

in the data

True Positive (TP)
Correct positive prediction

False Positive (FP)
Incorrect positive prediction,

Type I error.
Condition Negative (N)

The number of real negative cases
in the data

False Negative (FN)
Incorrect negative prediction,

Type II error

True Negative (TN)
Correct negative prediction.
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Table 7. GA-based PD confusion matrix (average).

Predicted Class

Positive (P) Negative (N)

Actual Class
Positive (P) 93% 7%

Negative (N) 7% 93%

Table 8. QGA-based PD confusion matrix (average).

Predicted Class

Positive (P) Negative (N)

Actual Class
Positive (P) 98% 2%

Negative (N) 2% 98%

5.3. Experiment 3: A Self-Assessment with Different Values of ε and τ

The objective of the third set of experiments is to test the TPR, PPV, and F-Score
of the model with different values of ε and τ for the PAN 13-14 dataset. As shown in
Tables 9 and 10, the proposed model achieves better results as compared with the GA
version in terms of TPR, PPV, and F-Score, which shows a general trend for documents as
θ and β increase, TPR decreases, and PPV increases. At ε = 8 and τ = 30, the best F-score
is obtained for the documents. That means that changing ε and τ will affect the value of
the TPR, PPV, and F-Score. The superiority of the θ comes from the fact that it helps to
minimize false detection. By adjusting the ε parameter, we may reduce the number of
document-level comparisons performed during the passing stage and hence the number of
plagiarized documents. How much of a sentence from a questionable source is plagiarized
is determined by the threshold τ.

Table 9. Model performance with different ε values.

ε Values
TPR Value PPV Value F-Score

QGA GA QGA GA QGA GA

1 1 0.98 0.23 0.20 0.39 0.38
2 1 0. 98 0.25 0.23 0.41 0.39
3 1 0.98 0.26 0.26 0.44 0.41
4 1 0.98 0.34 0.32 0.53 0.52
5 1 0.97 0.44 0.43 0.62 0.61
6 0.98 0.97 0.73 0.72 0.84 0.81
7 0.98 0.97 0.85 0.84 0.94 0.93
8 0.97 0.97 0.98 0.96 0.97 0.96
9 0.97 0.96 1 0.98 0.95 0.95

10 0.93 0.92 1 1 0.94 0.94

Table 10. Model performance with different τ values.

τ Values
TPR Value PPV Value F-Score

QGA GA QGA GA QGA GA

10 1 0.97 0.46 0.43 0.64 0.62
15 1 0.97 0.47 0.45 0.66 0.63
20 1 0.97 0.60 0.51 0.74 0.69
25 0.99 0.95 0.62 0.62 0.76 0.75
30 0.95 0.89 0.80 0.82 0.84 0.82
35 0.86 0.65 0.83 0.84 0.77 0.74
40 0.71 0.60 0.85 0.86 0.73 0.71
45 0.58 0.46 0.96 0.96 0.65 0.62
50 0.36 0.27 0.99 0.98 0.44 0.41
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5.4. Experiment 4: Performance Accuracy with Different Training Samples

The objective of the fourth set of experiments is to test the accuracy of the model with
different values of document datasets. As the model has more enrolled samples, the chance
of a correct hit increases. The accuracy of the proposed model achieves better results with
an increasing number of training documents. For all values of the documents’ number,
accuracy increases by approximately 10% on average. This means that if the model is
trained with more samples, it will be better at finding plagiarized documents. As shown in
Table 11, as expected, the identification rate increases as the number of samples grows. The
accuracy rate rises by approximately 10–15% for each increase in the number of samples in
the dataset. The accuracy may reach 98% when all samples are used to train the proposed
model, owing to the role played by the QGA in determining which characteristics to use.
In order to achieve this improvement, the time needed to train the model increases. When
compared to the time invested in testing, however, this delay is small. The optimum feature
selection module is the most time-consuming part of the training procedure.

Table 11. Accuracy of the model with different numbers of samples.

No of Samples 5 10 15 30 50 100 500 750 1000 1535

Accuracy (%) 15 35 40 50 55 60 70 75 80 98

5.5. Experiment 5: A Comparative Study with Recent Related Work

The fifth set of experiments was also conducted to evaluate the proposed system
compared with the recent models. Models from [41,59–63] were selected to compare the
proposed model to other well-known methods for text similarity detection. In the study
described in [59], plagiarism is only evaluated after two levels of filtering have been applied
using the bag-of-words approach, one at the document level and the other at the sentence
level. In Ref. [60], a three-stage method based on the Smith–Waterman algorithm for
plagiarism detection employs context matching and pre-trained word embeddings to detect
instances of synonym substitution and word reordering. By combining linguistic features
such as path similarity and depth estimation measures to compute the resemblance between
the pair of words and assigning different weights to each feature, the work presented in [61]
uses semantic knowledge to detect the plagiarized part of the text.

In Ref. [62], text embedding vectors are used to compare document similarity for pla-
giarism detection; these vectors include both semantic and syntactic information about the
text, and they provide effective text alignment between the suspect and original documents.
Sentences with the greatest resemblance are regarded as candidates or seeds of plagiarism
cases by comparing their appearances in the source and suspect documents. Syntactic
similarities between source and suspect phrases may be revealed using part-of-speech tag
n-grams, as shown in [63]. Word2Vec, a word embedding method, is employed to quantify
the semantic relatedness between words, while the longest common subsequence approach
is used to quantify the semantic similarity between the source and suspect sentences.
Table 12 shows the performance results of the proposed system compared to other related
systems in terms of precision and F-measure.

The performance results for the PAN 13-14 corpus demonstrate that the proposed
system outperforms the state-of-the-art systems on all documents. It can be seen that the
majority of the previous systems acquired varying ranks in the various datasets. This
variation is due to the structure of the dataset and the kinds of plagiarism that were
included in it. However, the suggested method maintained its position as the best across
all of the datasets. The suggested approach thus achieves effectiveness and reliability in
detecting the various types of textual plagiarism based on these results. They also indicate
the ability of the QGA to find the hyperplane equation of the selected features to detect the
different types of text similarities. Utilizing the GQA helps to identify the interconnected,
cohesive sentences that effectively convey the source document’s main idea with more
accuracy. See [64] for a more comparative study of different PD methods. Regarding the
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running time, we find that there are no major variations between any of the approaches
and that the average variance between them is just 4 s. The total time largely depends on
the size of the corpus (1535 documents in our case). The suggested approach requires more
time, but the results are more precise.

Table 12. Comparison results of the proposed text similarity system and other relevant systems in
the PAN 13-14 dataset. (Average for testing data-1 and testing data-2.)

PD Methods Precision (%) F-Measure (%) Run Time (Sec)

Arabi, H., Akbari, M [59] 90.08 86.65 56
Alvi, F. et al. [60] 92.52 86.84 55
Ahuja, L. et al. [61] 85.60 88.65 49
Gharavi, E. et al. [62] 89.75 90.15 53
Yalcin, K. et al. [63] 92.76 90.l8 54
El-Rashidy M. et al. [41] 92.61 89.43 51
Proposed System 97.91 94.68 58

5.6. Experiment 6: Run Time and Complexity Analysis

The last set of experiments is meant to prove that the suggested QGA-based PD model
converges quickly compared to the traditional GA-based model for PAN 13–14 datasets
with different population sizes. The results shown in Table 13 confirm this fact with an
average 1% reduction. As discussed earlier, the total running time largely depends on the
size of the corpus.

Table 13. Running time (average) with different population sizes for both the QGA and the traditional
GA-based PD model for PAN 13-14.

Population Size 5 10 15 30 50 100

QGA-based PD Model 49 51 52 53 55 58

GA-based PD model 54 56 57 59 60 65

It is usually true that quantum algorithms may reduce the complexity of their classical
counterparts. We can roughly estimate the complexity decrease by comparing the global
complexity of the QGA to that of the GA. The global complexity for the QGA is O(N),
where N is the total population size (Evaluation + Interference). The global complexity
of an ordinary GA is often in the order of O

(
N2) (Evaluation + Selection + Crossover +

Mutation). Indeed, one can foresee what would occur if we were to study a very large
population of chromosomes; the QGA instead of the GA would be extremely beneficial.
Our experimental results show that the QGA can be a very promising tool for exploring
large search spaces while preserving the relation efficiency/performance. See [22] for
more details.

6. Conclusions

From the standpoint of a forensic linguist, it is critical to determine with absolute
certainty whether a text is an original or the consequence of plagiarism. Expert evidence
from a forensic linguist is often required in court cases, but this field is not only concerned
with law; forensic linguists also study public-facing topics. Therefore, incorrect judgments
must be avoided at all costs to avoid miscarriages of justice, whether in the classroom or the
courtroom. In this paper, a new approach based on the semantic similarity concept and the
QGA for PD is proposed. The proposed model includes four main steps: the pre-processing
and document representation module, sentence-level concept extraction using the QGA,
the document-level detection phase, and the passage-level detection phase.

The semantic similarity concept, which depends on intelligent techniques, is employed
for extracting the concepts from documents in an effective way to enhance the model’s
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performance. The QGA is employed to find relatedness between sentences that show
the concept of the source document briefly, enhancing the model’s processing time. The
solution based on PDS has the advantage of detecting plagiarized ideas in documents
presented via summarization.

The proposed model was evaluated by using samples of benchmarked datasets. Based
on the obtained results, the proposed model for the detection of plagiarism shows an
excellent performance in terms of accuracy. It has been compared with the HGA and the
GA-based PD model, and it has come up with better results against them. The QGA has
been proven to provide better results in terms of accuracy without adding any complications
to the model. The solution’s shortcomings, such as WordNet’s inability to measure all
possible semantic relationships between words, reduce its efficiency. Despite the method’s
general effectiveness, there are other methods to implement the idea, such as paraphrasing
and expanding upon concepts. A possible future study includes making use of a different
database to determine how closely related terms are semantically. Furthermore, future
work will focus on comparing different QGA strategies to study the effect of choosing
rotation gate angles. Another perspective of this work is to study parallel QGAs because
QGAs are highly parallelizable.
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Abstract: The traveling salesman problem (TSP) is one of the most often-used NP-hard problems
in computer science to study the effectiveness of computing models and hardware platforms. In
this regard, it is also heavily used as a vehicle to study the feasibility of the quantum computing
paradigm for this class of problems. In this paper, we tackle the TSP using the quantum approximate
optimization algorithm (QAOA) approach by formulating it as an optimization problem. By adopting
an improved qubit encoding strategy and a layer-wise learning optimization protocol, we present
numerical results obtained from the gate-based digital quantum simulator, specifically targeting TSP
instances with 3, 4, and 5 cities. We focus on the evaluations of three distinctive QAOA mixer designs,
considering their performances in terms of numerical accuracy and optimization cost. Notably, we
find that a well-balanced QAOA mixer design exhibits more promising potential for gate-based
simulators and realistic quantum devices in the long run, an observation further supported by our
noise model simulations. Furthermore, we investigate the sensitivity of the simulations to the TSP
graph. Overall, our simulation results show that the digital quantum simulation of problem-inspired
ansatz is a successful candidate for finding optimal TSP solutions.

Keywords: quantum computing; quantum simulation; quantum approximate optimization algorithm;
traveling salesman problem; noisy simulation

1. Introduction

For over a century, the traveling salesman problem (TSP) [1] has inspired hundreds
of works and dozens of algorithms, of both exact and heuristic approaches. Today, the
TSP has become so quintessential in modern computing that it is commonly considered
the prototypical NP-hard combinatorial optimization problem, possessing far-reaching
impact on countless applications in science, industry, and society. Consequently, the TSP is
frequently taken as an ideal candidate for new computational models and non-standard
algorithmic approaches, including approximate approaches like simulated annealing [2]
and self-organizing maps [3], which have been widely employed to tackle the TSP.

Recent advancements in quantum technologies have paved the way for various quan-
tum computing approaches to tackle the traveling salesman problem (TSP). These ap-
proaches include the quantum Held–Karp algorithm [4], quantum annealing (QA) [5–9],
and the more general variational quantum algorithm [10,11] (VQA). VQA approaches have
found extensive applications in diverse fields such as chemistry [11], physics [12], and
finance [13], among others. Although complete demonstrations of quantum advantage
over classical algorithms are currently limited due to the noisy intermediate-scale quantum
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(NISQ) era [14], exploring these quantum algorithms remains crucial, as experimentation
on prototype quantum hardware continues to rapidly approach what can be classically
simulated by even the world’s largest supercomputers. Notably, the quantum approxi-
mate optimization algorithm (QAOA) [10,15], a subclass of the general VQA, has been
successfully applied to a number of optimization problems [16], including the max-cut
problem [17,18], vehicle routing [19], DNA sequencing [20], protein folding [21], as well as
the TSP [22]. In comparison to the popular hardware-efficient VQA, the QAOA takes ad-
vantage of the domain knowledge of the specific problem at hand to produce a variational
ansatz with fewer parameters and a shallower depth. Furthermore, an extension of the
original QAOA called the quantum alternating operator ansatz [23,24] offers a generalized
approach that specializes in solving problems with hard constraints.

In the NISQ era, the QAOA approach can be particularly advantageous for addressing
the challenges of the traveling salesman problem (TSP), owing to the QAOA’s hybrid
feature, hardware-friendly structure, and controlled optimization. Being a hybrid approach,
the QAOA exhibits robust tolerance to systematic errors by leveraging classical computer
optimizers. Its layered ansatz structure inspired by the problem Hamiltonian allows for
high flexibility in the circuit depth and qubit coherence time, incorporating the capabilities
offered by the quantum backends. Compared with the QA [25,26], the QAOA also enables
fine control of optimization through its finite layers, which is particularly beneficial in the
current NISQ era. However, the numerical simulation of the QAOA on the TSP, especially
in the multiple-layer region, is not well understood, since the non-adiabatic mechanism of
the QAOA differs significantly from that of the QA [27]. Therefore, it becomes imperative to
explore various implementations of the QAOA to determine the optimal path for simulation.
Conducting investigations into these problems on digital quantum computers or simulators
is essential, as they have the potential to unveil new quantum simulation strategies for
traditional optimization tasks. We distinguish the present work from the previous studies
by constructing our QAOA using different ansatzes and comparing their performances in
both numerical accuracy and resource cost, which addresses a crucial aspect that is often
neglected in conventional studies.

In this work, we study the effectiveness of three distinct designs of the QAOA in
solving the TSP by adopting a layer-wise learning optimization protocol [28] on digital
quantum simulators via Qiskit [29]. We organize this paper as follows: In Section 2, we
introduce the TSP and its mathematical formulation as a binary constraint optimization
problem. In Section 3, we outline the QAOA methods, with particular focus on the initial-
ization, mixer ansatz, and measurement protocol employed in this work. In Section 4, we
present and compare the numerical results of the QAOA simulation on TSP instances with
3, 4, and 5 cities, utilizing different ansatz designs. We discuss the impact of the device
noise and TSP variations on the simulation results. In Section 5, we summarize the results
and discuss plans for the future.

2. Traveling Salesman Problem

In this section, we first define the TSP as an optimization problem and then improve
its formulation by taking advantage of the symmetry in the solution.

2.1. TSP Formulation as an Optimization Problem

The traveling salesman problem asks for the shortest path that visits each city exactly
once and returns to the starting city. In the symmetric case where the distance between any
two cities is the same regardless of the traveling direction, the TSP can be reformulated
as an undirected graph problem where its vertices represent cities and the edge weights
represent traveling distances. Mathematically, given an undirected graph G with vertices
V and edges E, i.e., G = (V, E), we aim to find a Hamiltonian cycle that goes through all
|V| nodes exactly once with the smallest total weights of the connecting edges on the path.

In this graph formulation of the TSP, any valid cycle, be it minimum or not, can
be represented by a visiting order or a permutation of integers, such as {0, 1, ..., n − 1},
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where the integers are the city indices starting at 0 for a total of n cities. Alternatively,
the visiting order on a TSP graph can be conveniently described by a sequence of binary
decision variables xi,t, indicating whether city-i is visited at time t [30]. If xi,t = 1, then
city-i is visited at t; otherwise, the city is not visited by the traveling salesman. Naively,
to fully describe the solution to an n-city TSP, a total of n2 binary variables is needed in
this representation.

Alternatively, this “one-hot” representation of binary decision variables can be written
collectively in either a matrix or flattened array format for numerical implementation. For
instance, a valid Hamiltonian cycle of permutation x = (0, 1, 2, 3) is translated into binary
decision variables x as:

x = (0, 1, 2, 3) ≡

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ≡ 1000010000100001, (1)

where the matrix row index represents each city index, and the column index represents
each time instance. City-i is visited at time t if and only if xi,t = 1. In this work, all
three notations (permutation, matrix, and bit string array) are used interchangeably. Any
Hamiltonian cycle in the TSP has a unique sequence of binary decision variables or “bit
string”. However, the reverse is not true, since a large portion of the possible bit strings
may not correspond to any meaningful permutation. Specifically, we classify any bit string
x into three categories or states:

x =

⎧⎪⎨⎪⎩
true, x is a permutation and gives the shortest path,
false, x is a permutation but does not give the shortest path,
invalid, x is not a permutation,

(2)

where the true and false bit strings are also called valid bit strings. Any bit string can be
translated to a Hamiltonian cycle if and only if it is a permutation. Clearly, invalid solutions
are disallowed traveling orders to the TSP.

With binary decision variables x, a true solution to an n-city TSP can be found by
finding an x that minimizes the following cost function [30]:

Cdist(x) = ∑
0≤i,j<n

ωij

n−1

∑
t=0

xi,txj,t+1, (3)

where ωij is the distance (or edge weight in the undirected graph) between city-i and
city-j (in the symmetric TSP, ωij = ωji and ωii = 0). Here, Cdist(x) also gives the shortest
TSP distance when x is a true solution. Since the cost function itself does not forbid
invalid solutions in general, additional constraint conditions must be satisfied for a valid
Hamiltonian cycle, such as:

n−1

∑
i=0

xi,t = 1 for t = 0, 1, . . . , n − 1 (4)

n−1

∑
t=0

xi,t = 1 for i = 0, 1, . . . , n − 1, (5)

where Equation (4) forbids multiple cities visited by the traveler at the same time, and
Equation (5) forbids revisiting the same city. Alternatively, in the matrix format, these
constraints are easily implemented by requiring that any row or column sum to exactly
one. These two hard constraints are the necessary conditions for any valid solution, though
not necessarily a true solution to a TSP. To formulate the TSP as a minimum-optimization
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problem, these constraint conditions are conveniently incorporated as the penalty terms,
such that the combined cost function, C(x) becomes:

C(x) =Cdist(x) + λCpenalty(x) (6)

= ∑
0≤i,j<n

ωij

n−1

∑
t=0

xi,txj,t+1 + λ

{ n−1

∑
t=0

(
1 −

n−1

∑
i=0

xi,t

)2
+

n−1

∑
i=0

(
1 −

n−1

∑
t=0

xi,t

)2
}

, (7)

where λ is the weight factor of the penalty term, serving as the Lagrange multiplier, which
should be positive and sufficiently large. It is easy to see that bit string x gives the minimum
of C(x) if and only if x is a true solution to the given TSP. Finding a Hamiltonian cycle
to the TSP is now equivalent to finding an x∗ that minimizes C(x) in Equation (6), i.e.,
x∗ = arg min C(x).

2.2. Improved TSP by Eliminating Rotational Symmetry

Symmetry plays a vital role in many graph optimization problems, and exploiting
them can help reduce the problem’s complexity. In the previously introduced TSP opti-
mization, one uses n2 decision variables for n cities. However, solutions obtained after
the optimization display “rotational” symmetry; they are physically identical up to some
rotation. For example, a visiting order of permutation (0, 1, 2) is equivalent to (1, 2, 0) and
(2, 0, 1) for a three-city TSP. They form a natural equivalence class for the solution sets.
To reduce the size of the search space (and the number of qubits to encode), a simple but
significant improvement can be made by fixing the starting city [30].

Without loss of generality, we fix city-0 as our starting point. The traveling salesman
will return to city-0 after visiting all other cities exactly once. Then, the improved cost
functions C′

dist(x) and C′(x) become:

C′
dist(x) = ∑

1≤i,j<n
ωij

n−2

∑
t=1

xi,txj,t+1 +
n−1

∑
i=1

ω0i(xi,1 + xi,n−1), (8)

C′(x) =C′
dist(x) + λC′

penalty(x) (9)

= ∑
1≤i,j<n

ωij

n−2

∑
t=1

xi,txj,t+1 +
n−1

∑
i=1

ω0i(xi,1 + xi,n−1)

+λ

{ n−1

∑
t=1

(
1 −

n−1

∑
i=1

xi,t

)2
+

n−1

∑
i=1

(
1 −

n−1

∑
t=1

xi,t

)2
}

.

(10)

In this new cost function, decision variables xi,t only take value i = {1, 2, . . . n} and
t = {1, 2, . . . n}, and thus we only need effectively (n − 1)2 decision variables for an n-city
TSP after fixing the initial city. The reduction in the length of the bit string is especially
advantageous because it is ultimately equivalent to reducing the number of qubits for
encoding the problem on a quantum circuit. Additionally, it is important to point out that
this TSP optimization formulation works for a generally symmetric TSP, not relying on a
flat surface, which can be generalized to many real-world applications where non-planar
relations are ubiquitous, such as social networks, stock markets, materials science, and so
forth. Asymmetric TSP (ωij �= ωji) can also be formulated similarly in principle but is not
considered within the scope of this work.

There are many other ways to formulate n-city TSP as an optimization problem [31,32],
usually requiring more than n2 variables. Recent work [33–35] explores unique features
of the TSP as an optimization problem and leads to even fewer qubits and computational
resources. Within the n2-variable formulation, an alternative approach to formulating the
TSP expresses the cost function in terms of the adjacency matrix:

Cadj(x) = ∑
0≤i,j<n

ωijx
adj
ij , (11)
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where xadj is the adjacency/connectivity representation of a permutation. The adjacency
matrix representation can be particularly useful in symmetric TSP because time degrees
of freedom are automatically factored out. Penalty terms for the cost function can be
conveniently included by means of the symmetry about the main diagonal. However,
unlike our adopted construction, it is not straightforward to reduce the number of decision
variables in Equation (11), and therefore we leave it for a future study. In the subsequent
section, we introduce the quantum approximate optimization algorithm based on the
improved TSP optimization formulation according to Equation (10).

3. Quantum Approximate Optimization Algorithm (QAOA)

The quantum approximate optimization algorithm (QAOA) [10,23] is a general quan-
tum heuristic approach for solving optimization problems. In this section, we introduce
the QAOA workflow in detail and its application to the TSP formulation introduced in
Section 2.2.

3.1. QAOA Workflow

The QAOA is deeply connected with the adiabatic quantum computation (AQC) [36],
which is based on the adiabatic theorem. In AQC, the whole simulation process can be
viewed as a time-dependent Hamiltonian evolution represented by H(t), where:

H(t) = (1 − t
T
)HM +

t
T

HP. (12)

Here, HM represents a known ansatz, and HP is the target Hamiltonian that one aims
at to find a ground state. According to the adiabatic theorem, by gradually introducing
perturbation, an initial eigenstate of H(t = 0) = HM will evolve into the ground state
of H(t = T) = HP. However, in practice, simulating this process can be extremely
time-consuming, and accurately estimating a suitable duration poses its own challenges.
The fundamental idea behind the QAOA is to approximate this adiabatic process by
parameterizing the infinitely-long time evolution into finite time steps, addressing practical
considerations. In both the original QAOA [10] and the extended QAOA [23], the hybrid
quantum approach consists of three essential parts:

1. State initialization with initial state |s〉.
2. Parameterized unitary ansatz Up(�β,�γ), a variational ansatz of p layers for the TSP,

based on two alternating Hamiltonians, HP and HM, using respective parameters �β
and�γ.

3. Measurement and optimization of the cost expectation 〈�β,�γ|C(x)|�β,�γ〉 for the final
state |�β,�γ〉, where an optimizer on a classical computer is used for the minimization.

Putting the three parts together, we construct the complete QAOA circuit, where the
final state after the evolution is:

|�β,�γ〉 = Up(�β,�γ) |s〉 =
( p

∏
i=1

UM(βi)UP(γi)
)
|s〉 (13)

= UM(βp)UP(γp) . . . UM(β1)UP(γ1) |s〉 , (14)

where p is referred to as the depth (or layer number) of the QAOA. Specifically, the two
alternating unitary ansatzes in each layer are:

UP(γi) = e−iγi HP , UM(βi) = e−iβi HM , (15)

where HP is the problem Hamiltonian derived from the cost function, and HM is the
mixer Hamiltonian that explores the feasible subspace. In this work, we refer to the
QAOA ansatz with p layers as p-QAOA. Note that �γ and �β are parameter vectors of
length p to be optimized, and there is only one single parameter γi (βi) for the associated
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unitary ansatz UP (UM) per layer. This means there are only two parameters per layer for
the QAOA, independent of the number of qubits (i.e., problem size), which makes the
approach highly scalable. These parameters or angles can also be regarded as mimicking
the Trotterization time steps in the QAOA to approximate the adiabatic evolution in
Equation (12); nonetheless, the behavior in the finite layer limit can be drastically different.

In the last few years, many variants of the QAOA approach have emerged [37]. One
such variant is the multi-angle QAOA (ma-QAOA) [38], which uses a unique angle for
each element of the Hamiltonian. This approach could potentially reduce circuit depth
required for solving the TSP. Another variant, the digitized-counterdiabatic QAOA (DC-
QAOA) [39,40] introduces an additional problem-dependent counterdiabatic driving term
in each layer to enhance the convergence rate of the optimization process. Additionally,
the adaptive-QAOA (ADAPT-QAOA) [41], inspired by the adaptive VQE, systematically
selects the mixer ansatz based on the optimization, potentially improving the simulation
outcome. Since these more advanced QAOAs generally require more than two parameters
per layer and additional simulation time, we opted not to incorporate them in this initial
work; however, we have plans to include these variants in a subsequent study, allowing for
a more comprehensive analysis of the QAOA to the TSP.

3.2. From Binary Decision Variables to Qubits

To carry out the optimization on quantum computers, an efficient qubit encoding
scheme is necessary to map the binary decision variable in the TSP formulation to quantum
computers. Here, we use the standard boolean binary variable mapping strategy [42]. For
an n-city TSP, we simply map:

xi,t �→ (I(i,t) − Z(i,t))/2, (16)

where Z(i,t) is the Pauli-Z matrix (see Appendix A) at qubit location (i, t) on a two-
dimensional lattice. To identify the qubit on the lattice with its realistic index in a quan-
tum device, one may use the ideal mapping (ignoring the device connectivity) that takes
(i, t) → ni + t for the original TSP formulation in Equation (6). For the improved TSP
formulation according to Equation (10), since both sets of the i = 0 and t = 0 qubits are
never used, we economically map:

(i, t) �→ (n − 1)(i − 1) + (t − 1), (17)

such that only a total of (n − 1)2 qubits is needed, from index 0 to (n − 1)2 − 1, for n cities.
Reducing qubit number is crucial in the practical quantum simulation, and therefore we
adopt the mapping strategy in Equation (17) for the improved TSP formulation throughout
this work.

3.3. State Initialization

The initial states are one of the key components in the QAOA approach. In the original
QAOA [10], the initial states are always set to be |+〉⊗N , where N is the total number of
qubits. For an n-city TSP, with the original n2 = N case for simplicity, it means the initial
state becomes:

|sn
H〉 = H⊗n2 |0〉 = |+〉⊗n2

=
1√
2n2

2n2−1

∑
x=0

|x〉 . (18)

In this way, the initial quantum state |sn
H〉 is a superposition of all possible basis

states for the problem. While this strategy is easy to implement on a quantum device
using Hadamard gates H, the magnitude of each basis state in the initial state shrinks
exponentially as the number of cities increases because the dimension of the search space
grows as O(2N).
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Recently, additional initialization strategies of a restricted quantum search space
following their corresponding mixing ansatzes have been considered in the QAOA. In
particular, the so-called WN states [43] can be especially useful as they represent one-hot
encoding on the quantum circuit suitable for binary decision variables. For example, a W3
state on three qubits is written as:

W3 =
1√
3

(
|100〉+ |010〉+ |001〉

)
, (19)

where each bit string always sums to one. With the property of the W state, we can
construct an improved initial state to satisfy the temporal or spatial constraints of the TSP
automatically, i.e., Equation (4) or Equation (5):

|sn
W〉 =

(
Wn |0〉

)⊗n
=
( 1√

n

n−1

∑
i=0

|2i〉
)⊗n

, (20)

where the temporal constraint is satisfied by putting together multiple W states in parallel
(technically, there are many ways to build the Wn |0〉 state; we followed the method in
Ref. [44]).

With a sufficiently powerful ansatz, one may also consider a permutation initial state,
ignoring all superpositions:

|sn
P〉 = |(0, 1, . . . , n − 1)〉 , (21)

where its construction is simplest, using a few Pauli-X gates. We also considered an equal
superposition of all permutation states, representing the minimal Hilbert space containing
all the valid solutions; however, we found it to be the most challenging to initialize on
the circuit.

These choices of initial states provide dramatically different initial search spaces, with
dimensions ranging from O(2n2

), O(nn), to O(1), respectively, along with their set relation
{|sP〉} ⊂ {|sW〉} ⊂ {|sH〉}. Notably, both the |sH〉 and |sW〉 are a superposition of solution
states, but |sP〉 is not. The selection of initial states plays a vital role in the QAOA, as it
can reduce the number of potential candidates in the quantum evolution, albeit at the
expense of an increased number of quantum gates. Lastly, these initial states will be used
together with their respective mixer Hamiltonians of the QAOA, which are introduced in
the next section.

3.4. Variational Ansatzes

Variational ansatzes are essential for optimizing the quantum state to represent the true
solution. The variational ansatz Up introduced in Equation (13) consists of the following
two parts.

3.4.1. Problem Hamiltonian

The problem Hamiltonian is the qubitized cost function encoding the specific TSP
instance to be solved in the QAOA approach. Specifically, these problem Hamiltonians are
obtained by mapping the cost functions (Equations (6) and (10)) onto the quantum circuit
according to the encoding strategy, Equation (16):

Cdist(x), C′
dist(x) → Hdist, (22)

Cpenality(x), C′
penality(x) → Hpenality, (23)
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where the obtained operators are a sum of the Pauli-Z and Pauli-ZZ operators, known as
the Ising Hamiltonian [45]. Combining them, we obtain HP, the problem Hamiltonian of
the TSP instance:

HP = Hdist + λHpenality = ∑
i

ciZi + ∑
ij

cijZiZj. (24)

As a consequence of qubit encoding, a ground state of HP is guaranteed to be a true so-
lution state that minimizes the respective TSP cost function. The Ising representation of the
Hamiltonian is easily translated into a quantum circuit using a sequence of quantum gates.

3.4.2. Mixer Hamiltonian

The mixer Hamiltonian defines how the state space is to be explored and impacts
how the quantum state evolves significantly with each iteration. Based on the Trotter
product formula, the mixer Hamiltonian must not commute with the problem Hamiltonian,
[HM, HP] �= 0, to simulate a Trottered optimization like the QAOA. Many mixer Hamiltoni-
ans have been proposed [24,46,47] for different problems solved via QAOA. For different
mixers, appropriate initial states as the eigenstates of the mixer Hamiltonian must be used
in accordance with the adiabatic theorem. In evaluating the numerical performance of
QAOA for TSP, we consider three types of mixers: X mixer, XY mixer, and row-swap mixer
(RS mixer), with details explained below.

(a) The X mixer is the original mixer proposed in the QAOA that works together with a
number of problems such as the max-cut problem [10]. It takes sH for its state initialization.
In the n-city TSP, the X mixer is:

HMX =
n−1

∑
i=0

n−1

∑
t=0

Xi,t. (25)

The X mixer strategy proves most useful for quantum annealing applications, especially
on practical D-Wave systems [8]. It is easy to implement on most quantum backends, only
requiring O(n2) single-qubit X gates per layer in the QAOA.

(b) The XY mixer is another natural candidate for the mixing Hamiltonian, preserving
the Hamming distance among the acted qubits [48], which is especially suited to the one-hot
encoding realized by the initial states sW. Here, we construct the XY mixer for the n-city
TSP as:

HMXY =
n−1

∑
i=0

n−1

∑
t=0

XY(i,t),(i,t+1), (26)

where the XY gate is implemented via the Pauli-XX and Pauli-YY gates on the circuit. The
block-wise construction allows for the conservation of probability for each city in the TSP,
reinforcing the satisfaction of the temporal constraint, as in Equation (4). A generic XY gate
across any two points (i, t) and (j, s) on the 2D lattice is:

XY(i,t),(j,s) = Xi,tXj,s + Yi,tYj,s, (27)

where X (Y) is the Pauli-X (Pauli-Y) matrix. Here, one should understand Equation (26)
as a cyclic iteration of the XY gate. For example, Xn−1,n ≡ Xn−1,0 in the n-city case;
other variants, such as non-cyclic and fully-connected XY gates, can also be used. The XY

gate is often interchangeably referred to as the swap gate, as they both redistribute the
amplitudes between two qubits while preserving the total amplitude of the quantum state.
Alternatively, one could use the SWAP gate [49] instead of the XY gate to implement the XY
mixer via:

SWAPu=(i,t),v=(i,t+1) =
1
2

(
XuXv + YuYv + ZuZv + Iu Iv

)
, (28)
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where a similar performance is produced. Therefore, we choose to use the simpler XY gate
to implement the XY mixer throughout this work. Compared with the X mixer, the XY
mixer is more expensive to implement by having O(n2) XY gates per layer.

(c) The row-swap (RS) mixer has recently been proposed in the QAOA as a means of
embedding hard constraints directly into the mixer Hamiltonian [23,24]. Although the RS
mixer also uses the XY gate, it simultaneously swaps all non-overlapping rows of qubits
(corresponding to different cities) as a whole. The RS mixer can be represented as:

HMRS =
n−2

∑
i=0

n−1

∑
j=i+1

n−1

∏
t=0

XY(i,t),(j,t), (29)

where the first two sums represent all possible swapping between city-i and city-j, and the
last product denotes the simultaneous swap of all corresponding entries in the associated
cities. In this way, the RS mixer is capable of exploring the entire space of valid solutions
when initialized on any single valid state, i.e., sP. However, it should be noted that
the RS mixer incurs a significant computational cost during the simulation due to the
involvement of many tensor products of the Pauli-XX or Pauli-YY matrices. One can mitigate
this expense by relying on a set of creation and annihilation operators constructed from
four-qubit gates [24]. Nevertheless, the HMRS ansatz remains computationally expensive,
requiring O[(n − 1)(n − 2)/2] four-qubit gates per layer with each four-qubit gate itself
being expensive to construct.

3.5. Measurement and Optimization Protocol

Based on the unitary ansatz and its appropriate initial state, the cost expectation of the
QAOA is evaluated by measurements performed on quantum devices and subsequently
optimized using gradient-free optimizers such as COBYLA [50–52] and SPSA [53,54]. The
optimization process continues until convergence or until the maximum iteration threshold
is reached. The resulting solution to the TSP is then determined by identifying the most
dominant quantum state (or binary decision variable encoded in a bit string). To account
for statistical fluctuations in measurements, we run each quantum simulation multiple
times (typically 5–10) with different random seeds and report the result with the lowest
converged expectation value. Considering that the expectation values are TSP-specific, we
use the standard evaluation metric called the approximation ratio (AR) to evaluate the
performance by normalizing against the ideal cost in different TSPs. The AR is calculated as:

AR =
simulation cost

ideal cost
=

〈�β,�γ|C(x)|�β,�γ〉
Cideal

≥ 1, (30)

where a lower AR corresponds to a lower expectation cost, indicating a closer approxima-
tion to the exact solution. Classical optimizers play a vital role in the optimization, and their
advantages can be further utilized in the QAOA. The expectation values of individual bit
strings are cached and retrieved on the classical optimizer to enable fast computation of the
final cost expectation during each iteration. The option to use constraint bounds of [0, 2π)
for the ansatz parameters in the case of COBYLA can also accelerate the convergence, which
is the main reason we primarily focused on simulations using the COBYLA optimizer in our
study, although a comprehensive analysis with other available optimizers can be explored
in future research.

To optimize the QAOA, we employed the layer-wise learning (LL) protocol intro-
duced in Ref. [28]. In comparison to complete depth learning (CDL), LL proved to be
advantageous in reducing the optimization cost, particularly as the number of qubits and
circuit depth increased. It also helps mitigate the likelihood of barren plateaus (BP) [28]. In
short, the LL is a two-part optimization protocol, as illustrated in Figure 1.

(A) Progressive pre-training: In the first part (Figure 1a), we construct the QAOA ansatz
by gradually adding layers. Initially, we train and optimize over the leading few
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layers (typically two layers). Then, for a p-layer QAOA simulation, we freeze the
parameters in the first (p − 1)-th layers, obtained from previous simulations, and
exclusively optimize the parameters in the p-th layer. Optimal parameters of the
current layer that yield the lowest cost expectation are selected. Note the initial values
for the parameters of the p-th layer are zero. If no lower cost is found at the p-th layer
compared with previous costs, we use zeros for the parameters of that layer. In this
way, the cost is always non-increasing over the entire simulation. This progressive
optimization protocol proves to be efficient and leads to an increasingly optimized
solution as the number of layers increases. It also reduces the computational cost in
parameter searching for very thick layers. We denote this protocol with the letter A
and an integer to indicate the depth being optimized.

(B) Randomized retraining: In the second part (Figure 1b), we take the pre-trained
QAOA ansatz from part (A) and randomly select a larger portion of the parameters
to be trained at a time. Typically, we free 50% of the parameters in each iteration of
retraining. Although it is more computationally expensive, this retraining is still less
costly than the CDL, which allows us to train the QAOA ansatz as a whole. This
mitigates the risk of becoming trapped in local minima, which could occur when
using the protocol of part (A) exclusively. We use the protocol of part (B) with a
number to indicate which iteration of retraining is being conducted.

(a) Progressive pre-training

(b) Randomized retraining

Figure 1. Two-part layer-wise learning protocol of the QAOA. Horizontal lines represent the qubits;
rectangular boxes are the unitary operators. Fixed parameters are in black; free parameters are in red.

It should be mentioned that there are other variations to the LL, such as sequen-
tial block-wise learning used in Ref. [55], where one block/layer is optimized at a time
while fixing all other blocks. Layer-wise learning may also be prone to systematic layer
saturations [56] that require special treatments, which we leave for future study. Here,
our goal is not to prove the superiority of the LL over classical algorithms or any other
quantum variational protocols. Instead, we take the LL as a common optimization method
to compare the practical performance of various QAOA mixer ansatzes in solving the TSP,
which is the highlight of this work. For the numerical results presented in this work, we
always use the LL optimization protocol, as its computational cost and solution accuracy
consistently outweigh those of the CDL. In Figure 2, we show an example of layer-wise
learning applied to the QAOA with the X mixer, showing the optimization in both one
protocol step and the full LL procedure; similar performances are also found for other
mixers. It is important to point out that the mean square error of the ARs calculated from
different batches is negligible, especially toward the end of the optimizations. By contrast,
the uncertainty of the ARs calculated from different TSP graphs is significant. The same
observation is found for other measurable quantities as well. Therefore, throughout this
paper, we exclusively refer to the uncertainty due to various TSP instances.
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Figure 2. Example of the layer-wise learning protocol applied to the QAOA X mixer simulation. The
left panel (a) shows the simulation for a selected LL protocol step A2 of a specific TSP instance, TSP-3.
The right panel (b) shows the overall LL optimization for 6 different TSP instances. Here, a TSP
instance is a random TSP graph with 3 nodes and a maximum edge weight of 20.

4. Numerical Results

With both the TSP optimization and QAOA method introduced, we perform numerical
quantum simulation on the IBM Quantum QASM simulator using aer.QasmSimulator.
The problem and mixer Hamiltonian operators are constructed using the qiskit.opflow

library. For the circuit implementations of the three mixers, we use Pauli-Z and Pauli-ZZ
gates for the X mixer and the XY mixer, and we use the PauliEvolutionGate library for
the XY mixer. We focus on quantum simulations using the layer-wise learning protocol for
3-, 4-, and 5-city TSPs on a sufficiently powerful local Ubuntu machine (Ubuntu 22.04.2 LTS
machine using one CPU core with 32.0 GB memory and Intel i9 processor of 3.50 GHz),
and we compare their performances in terms of numerical accuracy and resource costs. To
obtain converged results, we always use a sufficient number of TSP instances, varying from
7 to 10 graphs, depending on the number of cities, mixer, and simulated noise, each with
5–10 repeated runs of quantum simulation.

4.1. Simulation Accuracy

We follow the LL optimization protocol introduced in Section 3.5 and use (n − 1)2

qubits based on the improved TSP formulation (Equation (10)) for each quantum simulation
with n cities. In Figure 3, we present the QAOA simulation results when solving various
instances of 4-city and 5-city TSPs using the X, XY, and XY mixers. We temporarily leave
out the 3-city TSPs in the figure, since all the mixers performed reasonably close to the ideal
case. The XY mixer is able to reach an AR of 1.00 given any TSP graph, while the X mixer
reaches a value of 1.28 by comparison. The RS mixer is not discussed because any valid
solution would be a true solution in the 3-city case for the RS.

The performance is evaluated with three criteria: (a) approximation ratio (AR),
(b) percentage of the true solution, and (c) rank of the true solution. The two-part LL
optimization is indicated by letters A and B, followed by the specific depth and iteration
numbers, respectively. We use a sufficient number of layers in the QAOA simulation
(4 layers for 3-city cases and 6 for 4-/5-city cases) to ensure convergence. The uncertainty
bars depicted in Figure 3 represent the standard deviations of the respective results calcu-
lated for various TSP graph instances. A comprehensive comparison of all the results can
be found in Table 1, which includes the results for the 3-city TSP simulations as well.

(a) Approximation ratio (AR): Expectation cost, or equivalently AR, is the primary
observable that is measured during the quantum simulation. It directly influences the
classical optimizer’s ability to find the optimal parameters. Figure 3a,b demonstrate that
both pre-training and retraining parts of the LL are necessary to optimize the AR for various
TSP instances. Among the three types of QAOA mixers, the RS mixer achieves the lowest
AR, reaching values as low as 1.01 ± 0.01 (in the 4-city case) and 1.18 ± 0.14 (in the 5-city

132



Entropy 2023, 25, 1238

case). On the other hand, the X mixer performs the poorest, particularly as the problem size
increases, partially due to the limitations of the ansatz’s expressibility. It is worth noting
that even the heuristic VQE ansatz outperforms the X mixer in the 4-city case, with a lower
AR around 2.19 ± 0.37, compared to 2.33 ± 0.83 (see Table 1). Considering the temporal
constraints during construction, the XY mixer exhibits intermediate performance, with AR
values of around 1.44 ± 0.23 and 1.89 ± 0.66 for 4- and 5-city TSPs, respectively.

Lastly, we can also see that all the mixers are only able to reach sub-optimal solu-
tions in the 5-city TSP case. It would be interesting to fully investigate the expressibility
of the QAOA ansatzes in obtaining the optimal solution and distinguish that from the
optimization itself. We will leave this for an extensive study in the future that involves
more TSP cities.

(b) True percentage: The percentage of the true solution is also known as the overlap

between the quantum state and the expected true solution. While the true percentage
is determined only after the simulation, it is desirable to have it as large as possible
for the accurate extraction of the optimal solution. In Figure 3c,d, we present the true
percentages for the three mixers as the TSP problem size increases. Undeniably, RS is the
dominating mixer, reaching around 96.3 ± 3.8% and 41.1 ± 29.5%. However, the large
uncertainty suggests a highly unstable pattern in the obtained solution; see Appendix B
for an explanation. On the other hand, the X mixer gives the lowest percentages, reflecting
a poor performance in accurately identifying the true solution. Lastly, the XY mixer is
again holding a middle ground, with true percentages of approximately at 36.6 ± 5.7% and
7.4 ± 0.6%, respectively.

(c) Rank: The rank of the true solution specifies how many other states possess a
higher probability than the state corresponding to the true solution, which is a crucial
indicator of the simulation’s accuracy. Achieving a rank of 1 for the true solution signifies
consistent identification of the correct solution, as it means the quantum state with the
highest probability is always the true solution’s state (so we want to have a rank as low as
possible). The results are presented in Figure 3e,f. In the case of the X mixer, it exhibits a
significantly high rank, indicating a low likelihood of picking the correct solution among the
top quantum states. On the other hand, the ranks of the XY and RS mixers are comparable,
both reaching around rank-1 for 4-city TSPs and around rank-2 for 5-city TSPs. Notably, for
the 5-city case, we observe lower ranks of the XY mixer in the early stages compared to
the final stages, showcasing the effectiveness of the XY mixer in even shallower QAOA for
certain TSP instances.

Based on the observations in AR, true percentage, and rank, several conclusions can
be made. First, we can see that X mixers consistently under-perform in all three criteria,
compared to the other two mixers. This behavior is expected because the Hadamard
initialization produces a uniform superposition of all possible states, i.e., 216 states in the
5-city case, without any constraints on the solution. As a result, it becomes challenging
for the classical optimizer to filter out the invalid and false solutions based solely on the
problem Hamiltonian. In particular, when the problem size increases, the X mixer alone is
not suitable for the QAOA simulation of the TSP. Secondly, we observe that the RS mixer
stands out as the dominating mixer in terms of AR and true percentage, which makes
it a reliable candidate for QAOA. In terms of rank, the performances of the XY and RS
mixers are quite similar. The strategies employed by the two mixers are very different:
the RS mixer relies heavily on the expressibility of the mixer itself, while the XY mixer
combines the initialization and the mixing Hamiltonian to achieve its results. By utilizing
a single-bit string as the initial state, RS may potentially overlook the benefits of having
superposition states in a quantum simulation. In a sense, the XY mixer takes a more
balanced approach, whereas the RS mixer takes a more assertive approach; this distinction
between the two mixers can have implications for the resource cost, which is discussed in
the following section.
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Figure 3. Performance comparison of the 3 QAOA mixers for samples of the 4-city TSP (left column)
and 5-city TSP (right column). In both cases, we compare the AR in panels (a,b), the percentage of
the true solution in panels (c,d), and the rank of the true solution in panels (e,f). The uncertainty bars
are standard deviations obtained from simulations of different TSPs. Notably, we leave out the ranks
for the X mixers due to their significantly higher values, which further complicates the presentation.

Table 1. Comprehensive comparison of the numerical accuracy for the QAOA mixers and heuristic
ansatzes used to solve the TSP. The standard deviations of the quantities obtained from variation in
TSP graphs are provided in the parentheses. Problem-specific VQE to the TSP such as in Ref. [57]
may produce a significantly better result. Notably, the RS mixer is excluded for the 3-city TSP because
any starting bit string is a true solution for the RS, which makes it trivial to simulate.

After Pre-Training After Retraining

# City Mixers AR True % Rank AR True % Rank

3
VQE 1.02 (0.02) 87.6 (28.6) 1.1 (0.3) 1.01 (0.02) 90.9 (20.2) 1.1 (0.4)

X 1.34 (0.14) 38.5 (24.8) 2.3 (2.2) 1.28 (0.10) 44.2 (28.2) 1.9 (1.4)
XY 1.00 (0) 100.0 (0) 1.0 (0) 1.00 (0) 100.0 (0) 1.0 (0)

4

VQE 2.23 (0.29) 12.8 (13.3) 35.6 (44.1) 2.19 (0.37) 11.8 (13.9) 39.1 (42.2)
X 2.65 (0.97) 3.9 (3.6) 67.7 (140.8) 2.33 (0.83) 5.5 (3.2) 4.7 (5.3)

XY 1.52 (0.25) 33.2 (9.6) 1.3 (0.5) 1.44 (0.23) 36.6 (5.7) 1.1 (0.4)
RS 1.05 (0.03) 79.0 (9.8) 1.0 (0) 1.01 (0.01) 96.3 (3.8) 1.0 (0)

5
X 4.05 (2.10) 0.7 (0.8) 1814.1 (4348.8) 2.85 (0.90) 0.9 (1.0) 94.3 (105.0)

XY 2.01 (0.79) 6.5 (1.3) 3.6 (2.7) 1.89 (0.66) 7.4 (0.6) 1.9 (1.1)
RS 1.22 (0.17) 27.6 (25.8) 3.1 (2.4) 1.18 (0.14) 41.1 (29.5) 2.3 (2.2)
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4.2. Resource Evaluations

Besides numerical accuracy, resource cost estimation is another crucial factor to con-
sider in quantum simulation, as any computational resource is always finite. On the
quantum computer and simulator, many factors will contribute to the performance of the
simulation, including attributes of the transpiled quantum circuits, such as the number of
qubits, the number of single-qubit (double-qubit) gates, and the quantum circuit depth.
In a practical calculation, properties of the quantum device, such as qubit connectivity,
coherent error, and incoherent noise, will also come into play. For this section, we focus on
the quantum circuits of the three QAOA mixers and compare their resource costs on ideal
devices; practical calculation is discussed in the subsequent section using noisy simulation.

In Table 2, we compare the properties of the quantum circuits of the three mixers after
transpilation for both finite and generic TSP cases. As expected, the complexity of the circuit,
measured in terms of quantum gates and circuit depth, generally increases with the number
of cities, resulting in a longer simulation time. Notably, the RS mixer incurs a significantly
higher resource cost compared to the X and XY mixers, as reflected in the simulation
time in practice. As discussed earlier, this increased cost is primarily attributed to the
utilization of four-qubit gates in the RS mixer, leading to a quadratic scaling, i.e., O(n4), of
single-qubit and double-qubit gates. The abundance of double-qubit gates is anticipated
to pose serious challenges in executing the simulation on a real quantum device or when
employing a noise model [58]. Interestingly, despite requiring fewer resources, the X mixer
actually takes a longer time to run in practice compared to the XY mixer, particularly as the
number of qubits increases. This observation is likely due to the computational burden of
the optimizer when evaluating the expected cost for a dense superposition of bit strings.
On the other hand, the XY mixer requires relatively low computational resources, scaling
linearly with the circuit depth and quadratically with the number of quantum gates, which
is a more economical choice for running QAOA simulations. Considering both optimization
accuracy and computational cost, the XY mixer emerges as a more balanced choice for the
QAOA. Nonetheless, a resource cost of O(n2) gates and qubits for the XY mixer is still
quite expensive as n increases. Notably, building the XY mixer at the pulse level [59] has the
potential to further enhance its numerical performance. Lastly, it should be acknowledged
that the resource costs of all mixers would be even higher when simulating on current
NISQ or future fault-tolerant quantum computers. In the interest of addressing this aspect,
we present noise-model simulations in the subsequent section.

Table 2. Quantum resource estimation per QAOA layer of various mixers considered in the
3-, 4-, and 5-city TSPs. The circuit depth, the count of single-qubit gates, and the count of the
double-qubit gates are evaluated after transpilation (light transpilation, no approximation with
qiskit.compiler.transpile) to the standard basis gate sets {CX, I, RZ, SX, X} used by the IBM
Quantum. Exact numbers for the circuit depths and quantum gates are obtained whenever available;
otherwise, asymptotic scalings are provided. Estimating the circuit depth exactly is difficult for the RS
mixer. In comparison, it appears to increase linearly with a large slope of 1181 for small city numbers.

# City # Qubits Mixers Circuit Depth Single-Qubit Gates Double-Qubit Gates

3 4 X 5 20 0
XY 26 64 16

4 9
X 5 45 0

XY 37 144 36
RS 668 477 432

5 16
X 5 80 0

XY 48 256 64
RS 1553 1808 1728

n (n − 1)2
X 5 5n2 0

XY 26 + 11(n − 3) O(n2) 4n2

RS O(n)1 O(n2(n − 1)2) O(n2(n − 1)2)
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4.3. Robustness Against Noise

Estimating the performance of the QAOA simulation in the presence of noise is crucial
to implementations on NISQ and fault-tolerant devices in the future. In this section, we
employ the NoiseModel class from Qiskit to study the sensitivity of the simulation on
different noise levels. In particular, we focus on noisy QAOA simulations with XY and RS
mixers for the same set of 4-city TSP problems. In Figure 4, we compare the performance
of various noise simulations in terms of AR, true percentage, and rank. We consider
noise models with different degrees of single-qubit errors: 0.005%, 0.01%, 0.05%, and 0.1%.
Besides single-qubit errors, we set the double-qubit errors to be 10 times their respective
single-qubit errors, which is a reasonable approximation for realistic two-qubit gates such
as the CX gate. For the current study, we have omitted other potential errors for simplicity,
such as the qubit connectivity and thermal relaxation time, which can also be implemented
with the noise model.

(a) XY mixer (b) RS mixer

(c) XY mixer (d) RS mixer

(e) XY mixer (f) RS mixer

Figure 4. Noisy QAOA simulation results of the XY and RS mixers compared with the noise-free
simulation of the 4-city TSP graph. In the legend, we show the single-qubit error used for each
noisy simulation. The uncertainty bars/bands are standard deviations obtained from simulations of
different TSPs. The same scale is used for XY and RS, except for the plot of their ranks.
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From the results presented in Figure 4, it is evident that the gate errors in the noise
model directly impact the quality of the simulation. As expected, QAOA simulations
with larger errors perform poorly compared to smaller ones. Interestingly, there seems
to be a noise threshold in the simulation results: noisy simulations with error less than
or equal to 0.01% exhibit qualitatively different behavior compared to those with higher
errors, as shown in Figure 4a–c. Additional details of the noisy simulation are provided
in Table 3, where we can clearly see that the LL protocol fails to optimize the QAOA
simulation at 0.1% and 0.05% noise levels. Comparing the two ansatzes, the XY mixer
outperforms the RS mixer in all indicators for all noisy simulations. Surprisingly, the XY
mixer achieves performance similar to the ideal simulation with errors less than or equal
to 0.01%, indicating its potential resilience against simulation noise. Our result suggests
that the XY mixer is a more suitable choice among the three mixers when considering noise
effects in the QAOA simulation.

Table 3. Details of noisy simulation for the 4-city TSP case. Noise percentage refers to single-qubit
errors used in the noise model simulation. The standard deviation of the quantities obtained from
variation in TSP graphs is provided in parentheses.

XY Mixer RS Mixer

Noise % Protocol AR True % Rank AR True % Rank

0.1
A2 3.44 (0.67) 2.09 (0.03) 2.43 (0.73) 5.20 (1.02) 0.4 (0.1) 4.4 (4.3)
A6 3.44 (0.67) 2.09 (0.03) 2.43 (0.73) 5.20 (1.02) 0.4 (0.1) 4.3 (4.4)
B6 3.44 (0.67) 2.09 (0.03) 2.43 (0.73) 5.19 (1.00) 0.4 (0.1) 4.1 (4.5)

0.05
A2 2.90 (0.56) 3.7 (0.1) 1.6 (0.7) 4.73 (0.92) 0.6 (0.1) 19.7 (5.1)
A6 2.90 (0.56) 3.7 (0.1) 1.6 (0.7) 4.73 (0.92) 0.6 (0.1) 19.7 (5.1)
B6 2.90 (0.56) 3.7 (0.1) 1.6 (0.7) 4.73 (0.92) 0.6 (0.1) 19.7 (5.1)

0.01
A2 1.78 (0.25) 20.8 (2.9) 1.0 (0) 2.70 (0.53) 0.6 (0) 26.7 (1.8)
A6 1.76 (0.27) 22.7 (2.7) 1.0 (0) 2.70 (0.53) 0.6 (0) 26.7 (1.8)
B6 1.74 (0.27) 23.9 (2.0) 1.0 (0) 2.70 (0.53) 0.6 (0) 26.7 (1.8)

0.005
A2 1.74 (0.29) 21.3 (3.1) 1.0 (0) 2.04 (0.29) 7.7 (13.5) 20.1 (11.8)
A6 1.62 (0.27) 27.8 (4.0) 1.1 (0.4) 2.04 (0.29) 12.9 (16.3) 16.4 (13.1)
B6 1.61 (0.28) 28.8 (2.5) 1.1 (0.4) 2.04 (0.29) 12.9 (16.3) 16.4 (13.1)

4.4. Problem Dependence

It is important to investigate the problem dependence of the QAOA simulation of the
TSP in preparation for the full-fledged quantum simulation. Here, we study several TSP
problem dependencies, such as the topology of the TSP graphs and the penalty weight. The
topology of the TSP graph could potentially have a significant impact on the performance
of the quantum simulation algorithm. One characteristic we consider is the “skewness”
of the TSP graphs, which represents the level of asymmetry. To measure the skewness,
we analyze the distribution of the edge weights ωij in the graph using Fisher–Pearson’s
moment coefficient [60,61]. Specifically, we calculate the skewness parameter g by:

g =
m3

m3/2
2

, mk = ∑
0≤i<j<n

(ωij − ω)k

|ω| , (31)

where ω is the mean of the edge weights, and |ω| is total number of edges in the graph.
Here, m3 is the third moment of the edges, and m2 is the variance, the square of the standard
deviation. Intuitively, the skewness can also be computed as the average value of the cubed
z-scores. For instance, a skewness value of 0 indicates a symmetric/normal distribution of
the edge, and skewness values of greater than 1 or less than −1 typically indicate highly-
skewed distributions. Negative (positive) skewness indicates a left-skewed/right-leaning
(right-skewed/left-leaning) distribution.
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In Figure 5, we present the quantum simulation using X, XY, and RS mixers on various
4-city TSP graphs with varying skewnesses. Here, we focus on the approximation ratio in
the final step of layer-wise learning to assess the dependence on the TSP graph’s skewness.
Taking every bit string solution into account, AR represents the overall effectiveness of
the simulation, which is suitable to analyze the skewness. We observe that the simulation
tends to perform less effectively with right-skewed edge distributions, possibly due to the
presence of more low-weight edges in positively-skewed graphs. Further investigations
that include sampling uncertainties are necessary to fully study the consequences of varying
graph topology for TSPs with more cities.

Additionally, the penalty weight λ in the TSP cost equation (Equation (10)) is essential
to examine, for it directly controls the gaps between valid and invalid solutions. By a
similar analysis for the skewness, we find that the simulation performs optimally when λ
is in the range of [1.0EG,max, 4.5EG,max], where EG,max represents the maximum TSP edge
weight. This analysis further supports the choice of the penalty weight used in this study.
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Figure 5. Results of the approximation ratio (AR) of the three QAOA mixers for the 4-city TSP
(panel a) and the 5-city TSP (panel b) of distinct graph skewnesses.

5. Summary and Discussions

In this paper, we solved the symmetric TSP (traveling salesman problem) as an opti-
mization problem by using three distinct ansatzes to the QAOA (quantum approximate
optimization algorithm) approach. By adopting a layered learning optimization protocol,
we performed numerical quantum simulations on gate-based quantum simulators for
various 3-, 4-, and 5-city TSPs. In particular, we presented and compared the performance
of the three types of mixer ansatzes for the QAOA: the X mixer, the XY mixer, and the RS
mixer. For the few-city TSPs studied in this work, we demonstrated that a well-balanced
quantum simulation, such as using the XY mixer, is potentially more suitable in terms of
both numerical accuracy and computational cost. These findings are further validated
through the noise model simulations. Additionally, we highlighted other factors that
may play a role in the quantum simulation, such as the TSP graph skewness and cost
function penalty.

Our research is a significant step towards finding a successful strategy for the TSP op-
timization problem using the gate-based QAOA approach, which is particularly interesting
for the current NISQ paradigm. The QAOA simulation complements traditional quantum
annealing methods in the infinite time region, where efficient qubit reduction techniques,
improved optimization protocols, and resource-efficient mixer ansatzes investigated in this
work are expected to be valuable for realistic quantum device simulations. Moving forward,
we plan to extend our investigations to larger-city TSPs, employing deeper QAOA circuits
on noisy quantum backends. By utilizing an adaptive shot-frugal optimizer [62] and imple-
menting digitized-counterdiabatic quantum approximate optimization methods [39,40],
we aim to further enhance the accuracy and efficiency of our TSP simulations.
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Abbreviations

The following abbreviations are used in this manuscript:

TSP Traveling Salesman Problem
QA Quantum Annealing
QAOA Quantum Approximate Optimization Algorithm
VQA Variational Quantum Algorithm
NISQ Noisy Intermediate-Scale Quantum
AQC Adiabatic Quantum Computation
VQE Variational Quantum Eigensolver
DC-QAOA Digitized-Counterdiabatic QAOA
RS mixer Row-Swap Mixer
LL Layer-wise Learning
BP Barren Plateaus
CDL Complete Depth Learning
AR Approximation Ratio

Appendix A. Pauli Gates

The Pauli gates are defined as:

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (A1)

with their subscripts indicating the gate’s qubit location when included.

Appendix B. Comparison of the Three Mixers on a Single TSP Instance

We compare the performance of the X, XY, and RS mixers using the “total percentage”
plot on the same TSP graph in Figure A1. As explained in the main text, the total percentage
of solutions to the TSP consists of true, false, and invalid solutions obtained after the
simulation. The respective rank of the true solution is also presented at the top of each step
in the layer-wise learning procedure. We see that the ranks are extraordinarily high for the
X mixer. For the RS mixer, it can be situational whether we obtain the true solution as the
most dominant one; therefore, we show the results obtained from two different simulations
with the RS mixers in panels (c) and (d), which explain the high standard deviations shown
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in Figure 3d,f. The XY result, by contrast, is less sensitive to the simulation. More examples
of the total percentage plots for the three mixers can be found in Ref. [63].
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Figure A1. Performance comparison among the three mixers on a single TSP graph. The respective
rank of the true solution in each optimization step is included at the top of the percentage.
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Abstract: Measurement-device-independent quantum key distribution (MDI-QKD) completely closes
the security loopholes caused by the imperfection of devices at the detection terminal. Commonly, a
symmetric MDI-QKD model is widely used in simulations and experiments. This scenario is far from
a real quantum network, where the losses of channels connecting each user are quite different. To
adapt such a feature, an asymmetric MDI-QKD model is proposed. How to improve the performance
of asymmetric MDI-QKD also becomes an important research direction. In this work, an advantage
distillation (AD) method is applied to further improve the performance of asymmetric MDI-QKD
without changing the original system structure. Simulation results show that the AD method can
improve the secret key rate and transmission distance, especially in the highly asymmetric cases.
Therefore, this scheme will greatly promote the development of future MDI-QKD networks.

Keywords: quantum key distribution; asymmetric MDI-QKD; advantage distillation technology

1. Introduction

Quantum key distribution (QKD) can unconditionally ensure the theoretical security
of information transmission between two or more distant users with quantum mechanics.
In the process of development from theory to practice, there are many challenges to realiz-
ing remote and secure quantum key distribution in the practical applications. With various
theoretical ideas and experimental schemes being put forward, many challenges have been
overcome. The BB84 protocol [1] proposed by Bennett realizes two-point communication
and the Ekert91 and BBM92 protocols have been proposed successively [2,3]. Although
QKD has been proven to have unconditional security in theory, imperfect devices can lead
to some security loopholes that hinder the development of QKD protocols in practical
applications. In practical applications, we often use weak coherent sources (WCSs) with
multi-photon components, and Eve can eavesdrop with photon-number splitting (PNS)
attacks [4]. Fortunately, the decoy-state method proposed [5,6] can solve PNS attacks and
obtain rapid development both theoretically and experimentally [7–9]. Considering the
imperfection of the detector, Lo firstly proposed the MDI-QKD protocol [10] which thor-
oughly solves the security loopholes mainly at the detection terminal. With the advantages
of the MDI-QKD protocol, the MDI-QKD protocol attracts extensive attention and has been
greatly studied in theory and experiments [11–18].

In previous work, the MDI-QKD was mainly studied in symmetric scenarios for
simplicity. With the development of theory and technology, researchers have paid more
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attention to the asymmetric MDI-QKD protocol in recent years. To achieve good interfer-
ence at the detection terminal, Lo proposed an asymmetric seven-intensity MDI-QKD [19],
which can improve the performance of MDI-QKD in practical asymmetric structures based
on the four-intensity MDI-QKD [11]. Consequently, asymmetric MDI-QKD is more suitable
for the common QKD networks. However, due to its asymmetric nature, its performance is
inferior to that of the original symmetric scheme. Improving the performance of asymmetric
MDI-QKDs has become an urgent problem that needs to be addressed.

Inspired by the advantage distillation (AD) method [20–23], we study the principle of
the method and find that the AD method can be successfully applied to the asymmetric
seven-intensity MDI-QKD protocol. Compared with the original protocol, the performance
of the asymmetric protocol has been significantly improved, which provides another
theoretical verification that the post-processing AD method can improve the performance
of the QKD protocol. This method can divide the original key string into blocks of only a few
bits to achieve a high key correlation and greatly improve the protocol’s performance. The
paper is organized as follows: In Section 2, we review the asymmetric seven-intensity MDI-
QKD protocol and introduce the protocol with AD. The results of numerical simulations
are shown in Section 3. Finally, summaries are given in Section 4.

2. Methods

2.1. Asymmetric MDI-QKD

Here, we mainly describe the process of the asymmetric seven-intensity MDI-QKD
protocol, which develops from the four-intensity symmetric protocol, as follows:

(1). State preparation. Alice (Bob) randomly prepares the signal state only in Z basis
with sA (sB), and prepares the decoy states only in X basis with intensities of wA,vA
(wB,vB), satisfying the formula wA < vA (wB < vB). When preparing the vacuum state
of intensity o, Alice (Bob) does not choose any base. The prepared states will be sent
to Charlie to perform measurement;

(2). Measurement. Charlie performs the Bell state measurement (BSM) after receiving the
quantum states sent from Alice and Bob;

(3). Announcement. After Alice and Bob repeat the above steps and enough counting
events are recorded, Charlie publicly announces the BSM results. Subsequently, they
announce the selected bases and intensities;

(4). Parameter estimation. After finishing the quantum transmission phase, Alice and
Bob can estimate the lower bound of single-photon yield YZ,L

11 and the upper bound
of single-photon error rate (QBER) eX,U

11 using the decoy-state technology;
(5). Post-processing. Alice and Bob perform key reconciliation and privacy amplification

on the raw key data to obtain the final secret key.

The decoupled bases are used in the asymmetric seven-intensity MDI-QKD protocol,
thus the protocol can perform decoy states in the X basis only to estimate YX,L

11 and can use
YZ,L

11 = YX,L
11 to obtain the single-photon yield in Z basis [11]. Then, the secret key rate can

be calculated by the following formula [10,11,19]:

R = PsA PsB

{
(sAe−sA)(sBe−sB)YZ,L

11 [1 − h(eX,U
11 )]− feQZ

sAsB
h(EZ

sAsB
)
}

, (1)

where PsA and PsB each correspond to the probability that Alice or Bob emits the signal states
of sA or sB, respectively. QZ

sAsB
and EZ

sAsB
are the gain and QBER in the Z basis, YX,L

11 (eX,U
11 )

is the lower (upper) bound of single-photon yield (QBER), which can be estimated from the
decoy-state technology, h(x) is the binary entropy function, and fe is the error correction
efficiency.

Based on the asymmetric seven-intensity MDI-QKD protocol above, the performance
can be further improved by optimization techniques such as joint estimations and col-
lective constraints [11]. Referring to the joint estimations method, the common part H
is extracted from the following two parameters YX,L

11 , eX,U
11 to optimize the key rate. eZ,U

11
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is used in the following subsection. YX,L
11 is a piecewise function where P1

vA
P2

wA
P1

wB
P2

vB
<

P1
wA

P2
vA

P1
vB

P2
wB

[19,24]. These parameters YX,L
11 , eX,U

11 and eZ,U
11 can be estimated accurately by

the decoy-state technology in the original MDI-QKD protocol [10,11]. The following formu-
las can estimate these parameters which lead to a much higher rate in distilling the secure
final key:

YX,L
11 = YX,e

11 =
P1

vA
P2

vB
QwAwB + P1

wA
P2

wB
P0

vA
QowB + P1

wA
P2

wB
P0

vB
QvAo

P1
wA

P1
vA
(P1

wB
P2

vB
− P2

wB
P1

vB
)

−
P1

wA
P2

wB
QvAvB + P1

wA
P2

wB
P0

vA
P0

vB
Qoo

P1
wA

P1
vA
(P1

wB
P2

vB
− P2

wB
P1

vB
)

−
P1

vA
P2

vB
H

P1
wA

P1
vA
(P1

wB
P2

vB
− P2

wB
P1

vB
)

,

(2)

YX,L
11 = YX, f

11 =
P1

vB
P2

vA
QwAwB + P1

wB
P2

wA
P0

vA
QowB + P1

wB
P2

wA
P0

vB
QvAo

P1
wB

P1
vB
(P1

wA
P2

vA
− P2

wA
P1

vA
)

−
P1

wB
P2

wA
QvAvB + P1

wB
P2

wA
P0

vA
P0

vB
Qoo

P1
wB

P1
vB
(P1

wA
P2

vA
− P2

wA
P1

vA
)

−
P1

vB
P2

vA
H

P1
wB

P1
vB
(P1

wA
P2

vA
− P2

wA
P1

vA
)

,

(3)

eX,U
11 =

TwAwB(1 + γ
√

1/(NxwAwB TwAwB))−H/2

P1
wA

P1
wB

YX,L
11

, (4)

eZ,U
11 =

TsAsB + P0
sA

P0
sB

Too − [P0
sA

TosB + P0
sB

TsAo]

P1
sA

P1
sB

YZ,L
11

, (5)

H = P0
wA

QowB + P0
wB

QwAo − P0
wA

P0
wB

Qoo, (6)

where Pn
lA
(Pm

lB
) denotes the photon-number distribution of the source at Alice’s (Bob’s) side,

QlAlB and TlAlB are the gain and the total quantum bit errors [25], and H is the combination
of the gain of the decoy state and the vacuum state. γ is the standard error, and its
value is set to 5.3 here. The expression for YX,L

11 is equal to YX,e
11 when P1

vA
P2

wA
P1

wB
P2

vB
<

P1
wA

P2
vA

P1
vB

P2
wB

, otherwise the expression equals YX, f
11 [19,24]. Considering the effect of

statistical fluctuations on multiple observations, the method of collective constraints can
provide tighter constraint conditions between different sources(sA, wA, vA, sB, wB, vB, o)
than independent bounds. Thus, these parameters YX,L

11 , eZ,U
11 ,H can be further optimized

to achieve a higher key rate by the joint constraints method [8].
By the above formulas, we can calculate the final secret key rate of the asymmetric

seven-intensity MDI-QKD protocol.

2.2. Asymmetric MDI-QKD with AD

Many previous works have demonstrated that the AD method can further improve
the performance of QKD [20–23]. In this section, we improve the secure key rate and
transmission distance of the asymmetric seven-intensity MDI-QKD protocol with the AD
method. An additional AD method is performed between parameter estimation and post-
processing step, and highly correlated bit pairs are discriminated from weakly correlated
information. The security of AD method will be analyzed in an entanglement-based
scheme. Alice prepares the quantum state 1√

2
(|00〉+|11〉) and sends the second particle

to Bob through the quantum channel. Since Eve controls the quantum channel by certain
value λi(i = 0, 1, 2, 3), the quantum state shared between Alice and Bob after transmission
can be expressed by the following formula:

σAB = λ0|φ0〉〈φ0|+ λ1|φ1〉〈φ1|+ λ2|φ2〉〈φ2|+ λ3|φ3〉〈φ3|, (7)

145



Entropy 2023, 25, 1174

|φ0〉 =
1√
2
(|00〉+|11〉),

|φ1〉 =
1√
2
(|00〉−|11〉),

|φ2〉 =
1√
2
(|01〉+|10〉),

|φ3〉 =
1√
2
(|01〉−|10〉),

(8)

and λ0 + λ1 + λ2 + λ3 = 1. For the quantum state σAB, the bit error rate of Alice and
Bob’s measurements on different bases can be expressed as λ1 + λ3 = ex

1 (four-state or
six-state protocol), λ2 + λ3 = ez

1 (four-state or six-state protocol), and λ1 + λ2 = ey
1 (six-state

protocol). Eve can steal information and reduce the key rate by choosing the certain value
λi and the secret key rate can be given by [20]:

R ≥ minλ0,λ1,λ2,λ3 [H(X|E)− H(X|Y)]

= minλ0,λ1,λ2,λ3 [1 − (λ0 + λ1)h(
λ0

λ0 + λ1
)− (λ2 + λ3)h(

λ2

λ2 + λ3
)− h(λ0 + λ1)].

(9)

In the AD method, Alice and Bob divide their own raw bits into blocks (x1, . . . , xb) and
(y1, . . . , yb) of size b. Then, choosing a random binary value c, Alice sends (x1 ⊕ c, . . . , x1 ⊕ c)
to Bob. Bob compares this bitstring with their bitstring (y1, . . . , yb) and accepts the security
of information only if the results are either all zeros or all ones in the block. In the two cases
accepted, Alice (Bob) saves the first bit x1 (y1) of the initial string as the raw key. Thus, AD
can discern highly correlated bitstring from weakly correlated information as the final raw
key. Obviously, the successful probability of the AD method on a certain block of size b can
be calculated by:

Psucc = (λ0 + λ1)
b + (λ2 + λ3)

b. (10)

After performing the AD step, the practical QBER value λ2 + λ3 in the Z basis can be
replaced by (λ2+λ3)

Psucc
, and the practical QBER in the X basis also can be recalculated. The

quantum state shared between Alice and Bob can be replaced by:

σAB = λ0|φ0〉〈φ0|+ λ1|φ1〉〈φ1|+ λ2|φ2〉〈φ2|+ λ3|φ3〉〈φ3|, (11)

λ0 =
(λ0 + λ1)

b + (λ0 − λ1)
b

2Psucc
,

λ1 =
(λ0 + λ1)

b − (λ0 − λ1)
b

2Psucc
,

λ2 =
(λ2 + λ3)

b + (λ2 − λ3)
b

2Psucc
,

λ3 =
(λ2 + λ3)

b − (λ2 − λ3)
b

2Psucc
.

(12)

The QKD protocol enhanced by the AD method can achieve the secret key at rate [20]:

R ≥ maxb
1
b

Psuccminλ0,λ1,λ2,λ3
[1 − (λ0 + λ1)h(

λ0

λ0 + λ1
)− (λ2 + λ3)h(

λ2

λ2 + λ3
)

−h(λ0 + λ1)].
(13)

Based on the previous analysis, the AD method can be combined with the QKD
protocol. It has been widely used in other protocols in previous works. Similarly, the
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AD method can be applied to further optimize the properties of quantum channels in the
asymmetric MDI-QKD. When the AD method is combined with the asymmetric seven-
intensity MDI-QKD protocol, the secret key rate can be estimated by the following formula:

R ≥ PsA PsB

1
b

qsuccQZ
sAsB

{(P11YZ,L
11

QZ
sAsB

)b[1 − (λ0 + λ1)h(
λ0

λ0 + λ1
)− (λ2 + λ3)h(

λ2

λ2 + λ3
)]

− feh(EZ
sAsB

)},

(14)

P11 = sAe−sA sBe−sB , (15)

qsucc = (EZ
sAsB

)b + (1 − EZ
sAsB

)b, (16)

EZ
sAsB

=
(EZ

sAsB
)b

(EZ
sAsB

)b + (1 − (EZ
sAsB

))b , (17)

where P11 is the probability of both Alice and Bob’s signal states emitting single-photon
events, qsucc is the successful probability of the AD method, EZ

sAsB
is the error rate value

after the AD method, and ex
11 and ez

11 are the single-photon error rate in the X and Z bases,
respectively. Note that YX,L

11 , ex
11, and ez

11 can be estimated with the decoy-state method.

3. Results

In this work, we explore the combination of a QKD and a post-processing method.
We adopt the asymmetric seven-intensity MDI-QKD protocol and the AD method, which
can improve the performance of asymmetric MDI-QKD protocol greatly. In this section,
numerical simulations of the asymmetric seven-intensity MDI-QKD protocol with AD
method are given and the simulation parameters are shown in Table 1. After analyzing the
simulation results, we obtained the following significant research results.

Table 1. The basic system parameters used in our numerical simulations. ηD and Y0 are the efficiency
and dark count rate of detectors at Charlie’s side; ed: the misalignment error of the QKD system; fe:
the error correction efficiency; N: the number of pulse pairs Alice and Bob send.

ed ηD Y0 fe N

0.5% 65% 8 × 10−7 1.16 1011

We analyze the secret key rate of the asymmetric MDI-QKD protocol with and without
the AD method, and the corresponding comparison results are shown in Figure 1 under
different conditions Lasy = 0 dB, 12 dB, 24 dB. The figure shows that the key rate with and
without AD are consistent within a short distance. However, for example, the red line with
Lasy = 12 dB, the AD method has a clear advantage at a transmission loss of about 33 dB,
and a final transmission loss reaching 39 dB as well as the secret key rate showing a clear
improvement. For a more obvious exploration of the reason, we present Figure 2 with
respect to b. We can observe that, in the above example, the value of b at about 33 dB has
changed from 1 to 2, indicating that the AD method begins to work. With the increase of
transmission loss, the AD method requires a larger b value to obtain a tight correlation from
weak correlation. Furthermore, the results of the above case are similar to the other two
cases (Lasy = 0 dB, Lasy = 24 dB). Therefore, the AD method can improve the key generation
rate of asymmetric MDI-QKD over a long distance.
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Figure 1. Comparison of the secret key generation rate versus the transmission loss. The value Lasy is
the loss difference of Alice to Charlie and Bob to Charlie. The different colors represent loss difference,
which is Lasy = 0 dB, Lasy = 12 dB, and Lasy = 24 dB, respectively. The solid line represents the secret
key without the AD method, and the dotted line represents the secret key with the AD method.

Figure 2. Results of the optimal b versus the transmission loss. The black, red, and blue represent
the values Lasy = 0 dB, Lasy = 12 dB, and Lasy = 24 dB, respectively. When value b is not equal to 1,
the AD method can further improve the secret key rate and transmission distance of the asymmetric
MDI-QKD protocol.
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Additionally, we also further investigate the specific effects of the AD method on an
asymmetric MDI-QKD under various values Lasy, and the results are shown in Figure 3. We
describe the meaning of Figure 3 and give a detailed definition of the improved percentage.
Generally, when the degree of asymmetry is large, the deterioration of the key rate becomes
more obvious. However, after the AD method is used, it can be clearly seen in Figure 3 that
the improvement effect of the AD method becomes more obvious with the increase of the
degree of asymmetry. For example, the improved percentage can reach about 35% when
the value Lasy = 35 dB, which means that AD method can better solve some transmission
performance bottlenecks of the entire network.

By the above analysis, the AD method indeed can increase the propagation distance
when the number of pulse pairs N = 1011. In order to further analyze the finite size effects,
we give the simulation results in Figure 4 under different values of N when the value
Lasy = 12 dB. As can be seen from Figure 4, the AD method improves the performance of
the asymmetric MDI-QKD protocol under various finite-size effects. Even though there is a
large statistical fluctuation when the number of pulse pairs N = 1010, the AD method can
still tolerate transmission losses of more than 5 dB, which means that AD method can also
be more adaptable with finite-size cases.

Figure 3. Results of the value Lasy versus the improved percentage. The improved transmission loss
is the difference of the maximum transmission loss of the asymmetric MDI-QKD with and without
the AD method, and we define the improved percentage as the difference divided by the latter. With
the increasing degree of asymmetry, the improved percentage also becomes better.

149



Entropy 2023, 25, 1174

Figure 4. Comparison of the secret key generation rate versus the transmission loss when the value
Lasy = 12 dB. The different colors represent the values N = 1010, N = 1011, and N = 1012, respectively.
The solid line represents the secret key without the AD method, and the dotted line represents the
secret key with the AD method.

4. Conclusions

The AD method, a classical algorithm based on information theory, can be combined
with QKD without changing the existing system structure. Specifically, the AD method
can be combined with an asymmetric seven-intensity MDI-QKD to improve the robustness
effectively, so as to distinguish and extract highly correlated bit pairs from the weakly
correlated information as the final secret key. The AD method has a better performance for
the asymmetric MDI-QKD protocol. The greater the degree of asymmetry, the better the
improvement of the AD method. The AD method can also improve the performance of the
asymmetric MDI-QKD protocol under various finite-size effects, and can be more adaptable
with finite-size cases. Our work may play a role in measurement-device-independent
networks.
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Abstract: In this article, we investigate the applicability of quantum machine learning for classification
tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum
circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of
these classifiers when using a hyperparameter search on six widely known and publicly available
benchmark datasets and analyze how their performance varies with the number of samples on two
artificially generated test classification datasets. As quantum machine learning is based on unitary
transformations, this paper explores data structures and application fields that could be particularly
suitable for quantum advantages. Hereby, this paper introduces a novel dataset based on concepts
from quantum mechanics using the exponential map of a Lie algebra. This dataset will be made
publicly available and contributes a novel contribution to the empirical evaluation of quantum
supremacy. We further compared the performance of VQC and QKE on six widely applicable datasets
to contextualize our results. Our results demonstrate that the VQC and QKE perform better than basic
machine learning algorithms, such as advanced linear regression models (Ridge and Lasso). They do
not match the accuracy and runtime performance of sophisticated modern boosting classifiers such
as XGBoost, LightGBM, or CatBoost. Therefore, we conclude that while quantum machine learning
algorithms have the potential to surpass classical machine learning methods in the future, especially
when physical quantum infrastructure becomes widely available, they currently lag behind classical
approaches. Our investigations also show that classical machine learning approaches have superior
performance classifying datasets based on group structures, compared to quantum approaches
that particularly use unitary processes. Furthermore, our findings highlight the significant impact
of different quantum simulators, feature maps, and quantum circuits on the performance of the
employed quantum estimators. This observation emphasizes the need for researchers to provide
detailed explanations of their hyperparameter choices for quantum machine learning algorithms, as
this aspect is currently overlooked in many studies within the field. To facilitate further research in
this area and ensure the transparency of our study, we have made the complete code available in a
linked GitHub repository.

Keywords: quantum machine learning; variational quantum circuit; quantum kernel estimator;
Qiskit; Ridge; Lasso; XGBoost; LightGBM; CatBoost; classification; quantum computing; boost
classifiers; neural networks

1. Introduction

Quantum computing has recently gained significant attention due to its potential to
solve complex computational problems exponentially faster than classical computers [1].
Quantum machine learning (QML) is an emerging field that combines the power of quan-
tum computing with traditional machine learning techniques to solve real-world problems
more efficiently [2,3]. Various QML algorithms have been proposed, such as quantum
kernel estimator [4] and variational quantum circuit [5,6], which have shown promising
results in diverse applications, including pattern recognition and classification tasks [7–9].

In this study, we aim to compare QKE (quantum kernel estimator) and VQC
(variational quantum circuit) with powerful classical machine learning methods such
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as XGBoost [10], Ridge [11], Lasso [12], LightGBM [13], CatBoost [14], and MLP (multilayer
perceptron) [15] on six benchmark datasets partially available in the Scikit-learn library [16]
as well as artificially generated datasets. To ensure a fair comparison on the benchmark
datasets, we perform a randomized search to optimize hyperparameters for each algorithm,
thereby providing a comprehensive statistical comparison of their performance. Further-
more, we provide the full program code in a GitHub repository [17] to make our results
reproducible and boost research that can potentially build on our approach.

Since quantum machines are not readily accessible, we can only compare these al-
gorithms’ performance on simulated quantum circuits. Although this approach does not
reveal the full potential of quantum machine learning, it does highlight how the discussed
quantum machine learning methods handle different levels of complexity inherent in the
datasets. For this reason, we also developed a method to generate artificial datasets based
on quantum mechanical concepts to provide a prototype for a particularly well-suited
dataset for quantum machine learning. This will estimate the possible improvements
that quantum machine learning algorithms can offer over classical methods in terms
of accuracy and efficiency, considering the computational resources needed to simulate
quantum circuits.

In this study, we address and partially answer the following research questions:

1. How do QKE and VQC algorithms compare to classical machine learning methods
such as XGBoost, Ridge, Lasso, LightGBM, CatBoost, and MLP regarding accuracy
and efficiency on simulated quantum circuits?

2. To what extent can a randomized search to find a suitable set of hyperparame-
ters make the performance of quantum machine learning algorithms comparable to
classical approaches?

3. What are the limitations and challenges associated with the current state of quantum
machine learning, and how can future research address these challenges to unlock the
full potential of quantum computing in machine learning applications?

4. Do quantum machine learning algorithms outperform regular machine learning
algorithms on datasets constrained by the rules of quantum mechanics? Thus, do they
provide a quantum advantage for datasets that exhibit strong symmetry properties in
terms of adhering to Lie algebras?

The research presented in this article is partially inspired by the work of Zeguendry
et al. [18], which offers an excellent review and introduction to quantum machine learning.
However, their article does not delve into the tuning of hyperparameters for the quantum
machine learning models employed, nor does it provide ideas on creating best-suited
data for quantum machine learning classification tasks. We aim to expand the toolbox of
quantum machine learning, first by discussing the space of Hyperparameters and second
by providing a prototype for generating “quantum data”. Furthermore, this analysis will
help determine the current state of quantum machine learning performance and whether
researchers should employ these algorithms in their studies.

We provide the entire program code of our experiments and all the results in a GitHub
repository, ensuring the integrity of our findings, fostering research in this field, and
offering a comprehensive code for researchers to test quantum machine learning on their
classification problems. Thereby, a key contribution of our research is not only the provision
of a single implementation of a quantum machine learning algorithm, but also the execution
of a randomized search for potential hyperparameters of both classical and quantum
machine learning models and a novel approach for generating artificial classification
problems based on concepts inherent to quantum mechanics, i.e., Lie groups and algebras.

This article is structured as follows: Section 2 discusses relevant and related work.
In Section 3, we describe, reference, and, to some degree, derive all employed techniques.
We will not discuss the mathematical details of all employed algorithms here, but rather
refer the interested reader to the referenced sources. Section 4 describes our performed
experiments in detail, followed by the obtained results in Section 5, which also features a
discussion of our findings. Finally, we conclude our findings in Section 6.
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2. Related Work

Considerable research was conducted in recent years to advance quantum machine
learning environments and their application field. This starts in the data encoding process,
in which Schuld and Killoran [3] investigated quantum machine learning in feature Hilbert
spaces theoretically. They proposed a framework for constructing quantum embeddings
of classical data to enable quantum algorithms that learn and classify data in quantum
feature spaces.

Further research was conducted on introducing novel architectural frameworks. For
this, Mitarai et al. [19] presented a method called quantum circuit learning (QCL), which
uses parameterized quantum circuits to approximate classical functions. QCL can be
applied to supervised and unsupervised learning tasks, as well as reinforcement learning.

Havlíček et al. [4] introduced a quantum-enhanced feature space approach using
quantum circuits. This work demonstrated that quantum computers can effectively process
classical data with quantum kernel methods, offering the potential for exponential speedup
in certain applications.

Furthermore, Farhi and Neven [20] explored the use of quantum neural networks for
classification tasks on near-term quantum processors. They showed that quantum neural
networks can achieve good classification performance with shallow circuits, making them
suitable for noisy intermediate-scale quantum (NISQ) devices.

Other research focused on the advancement of applying quantum fundamentals on
classical machine learning applications. Hereby, Rebentrost et al. [21] introduced the
concept of a quantum support vector machine for big data classification. They showed
that the quantum version of the algorithm can offer exponential speedup compared to its
classical counterpart, specifically in the kernel evaluation stage.

To advance the application field of quantum machine learning, Liu and Rebentrost [22]
proposed a quantum machine learning approach for quantum anomaly detection. They
demonstrated that their method can efficiently solve classification problems, even when
the data have a high degree of entanglement.

In this regard, it is worth mentioning the work of Broughton et al. [23] introduced
TensorFlow Quantum, an open-source library for the rapid prototyping of hybrid quantum-
classical models for classical or quantum data. They demonstrated various applications of
TensorFlow Quantum, including supervised learning for quantum classification, quantum
control, simulating noisy quantum circuits, and quantum approximate optimization. More-
over, they showcased how TensorFlow Quantum can be applied to advanced quantum
learning tasks such as meta-learning, layer-wise learning, Hamiltonian learning, sam-
pling thermal states, variational quantum eigensolvers, classification of quantum phase
transitions, generative adversarial networks, and reinforcement learning.

In the review paper by Zeguendry et al. [18], the authors present a comprehensive
overview of quantum machine learning from the perspective of conventional machine learn-
ing techniques. The paper starts by exploring the background of quantum computing, its
architecture, and an introduction to quantum algorithms. It then delves into several funda-
mental algorithms for QML, which form the basis of more complex QML algorithms and
can potentially offer performance improvements over classical machine learning algorithms.
In the study, the authors implement three machine learning algorithms: quanvolutional neural
networks, quantum support vector machines, and variational quantum circuit. They compare
the performance of these quantum algorithms with their classical counterparts on various
datasets. Specifically, they implement quanvolutional neural networks on a quantum com-
puter to recognize handwritten digits and compare its performance to convolutional neural
networks, stating the performance improvements by quantum machine learning.

Despite these advancements, it is important to note that some of the discussed papers
may not have used randomized search CV from Scikit-learn to optimize the classical
machine learning algorithms, thereby overstating the significance of quantum supremacy.
Nevertheless, the above-mentioned works present a comprehensive overview of the state
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of the art in quantum machine learning for classification, highlighting the potential benefits
of using quantum algorithms in various forms and applications.

3. Methodology

This section presents our methodology for comparing the performance of classical and
quantum machine learning techniques for classification tasks. Our approach is designed to
provide a blueprint for future experiments in this area of research. We employ the Scikit-
learn library, focusing on the inbuilt functions to select a good set of hyperparameters,
i.e., RandomizedSearchCV to compare classical and quantum machine learning models.
We also utilize the Qiskit library to incorporate quantum machine learning techniques into
our experiments, [24]. The selected datasets for our study include both real-world and
synthetic data, enabling a comprehensive evaluation of the classifiers’ performance.

3.1. Supervised Machine Learning

Supervised machine learning is a subfield of artificial intelligence that focuses on
developing algorithms and models to learn patterns and make decisions or predictions
based on data [25,26]. The main goal of supervised learning is to predict labels or outputs
of new, unseen data given a set of known input–output pairs (training data). This section
briefly introduces several classical machine learning techniques used for classification tasks,
specifically in the context of supervised learning. These techniques serve as a baseline
to evaluate the applicability of quantum machine learning approaches, which are the
focus of this paper. Furthermore, we will then introduce the employed quantum machine
learning algorithms.

One of the essential aspects of supervised machine learning is the ability to pre-
dict/classify data. The models are trained using a labeled dataset, and then the performance
of the models is evaluated based on their accuracy in predicting the labels of previously un-
seen test samples [27]. This evaluation is crucial to estimate the model’s ability to generalize
the learned information when making predictions on new, real-world data.

Various techniques, such as cross-validation and train-test splits, are often used to
obtain reliable performance estimates of the models [28]. By comparing the performance of
different models, researchers and practitioners can determine which model or algorithm is
better suited for a specific problem domain.

3.2. Classical Supervised Machine Learning Techniques

The following list describes the employed algorithms that serve as a baseline for the
afterwards described and later tested quantum machine learning algorithms.

• Lasso and Ridge Regression/Classification: Lasso (least absolute shrinkage and selec-
tion operator) and Ridge Regression are linear regression techniques that incorporate
regularization to prevent overfitting and improve model generalization [11,12]. Lasso
uses L1 regularization, which tends to produce sparse solutions, while Ridge Regres-
sion uses L2 regularization, which prevents coefficients from becoming too large.
Both of these regression algorithms can also be used for classification tasks.

• Multilayer Perceptron: MLP is a type of feedforward artificial neural network with
multiple layers of neurons, including input, hidden, and output layers [15]. MLPs are
capable of modeling complex non-linear relationships and can be trained
using backpropagation.

• Support Vector Machines (SVM): SVMs are supervised learning models used for
classification and regression tasks [29]. They work by finding the optimal hyperplane
that separates the data into different classes, maximizing the margin between the classes.

• Gradient Boosting Machines: Gradient boosting machines are an ensemble learning
method that builds a series of weak learners, typically decision trees, to form a strong
learner [30]. The weak learners are combined by iteratively adding them to the model
while minimizing a loss function. Notable gradient boosting machines for classification
tasks include XGBoost [10], CatBoost [14], and LightGBM [13]. These three algorithms
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have introduced various improvements and optimizations to the original gradient
boosting framework, such as efficient tree learning algorithms, handling categorical
features, and reducing memory usage.

3.3. Quantum Machine Learning

Quantum machine learning is an emerging interdisciplinary field that leverages the
principles of quantum mechanics and quantum computing to improve or develop novel
algorithms for machine learning tasks [2]. This section introduces two key quantum
machine learning techniques, Variational Quantum Circuit and Quantum Kernel Estimator,
and discusses their connections to classical machine learning techniques. Additionally,
we briefly introduce Qiskit Machine Learning, a Python package developed by IBM for
implementing quantum machine learning algorithms. Furthermore, we want to mention
the work done by [18] for a review of quantum machine learning algorithms and a more
detailed discussion of the employed algorithms.

3.3.1. Variational Quantum Circuit (VQC)

VQC is a hybrid quantum-classical algorithm that can be viewed as a quantum analog
of classical neural networks, specifically the multilayer perceptron [5,6]. VQC employs a
parametrized quantum circuit, which is trained using classical optimization techniques to
find the optimal parameters for classification tasks. The learned quantum circuit can then
be used to classify new data points.

Figure 1 illustrates the schematic depiction of the variational quantum circuit, which
involves preprocessing the data, encoding it onto qubits using a feature map, processing
it through a variational quantum circuit (Ansatz), measuring the final qubit states, and
optimizing the circuit parameters θ, Thus, the main building blocks of the VQC are as follows:

1. Preprocessing: The data are prepared and preprocessed before being encoded
onto qubits.

2. Feature map encoding (yellow in the figure): The preprocessed data are encoded onto
qubits using a feature map.

3. Variational quantum circuit (Ansatz) (steel-blue in the figure): The encoded data
undergo processing through the variational quantum circuit, also known as the
Ansatz, which consists of a series of quantum gates and operations.

4. Measurement (orange in the figure): The final state of the qubits is measured, provid-
ing probabilities for the different quantum states.

5. Parameter optimization (Optimizer): The variational quantum circuit is optimized by
adjusting the parameters θ, such as the rotations of specific quantum gates, to improve
the outcome/classification.

Figure 1. Schematic depiction of the variational quantum circuit. The VQC consists of several steps.
We colored the steps that are similar to classical neural networks in light blue and the other steps in
yellow, steel-blue, and orange.
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3.3.2. Quantum Kernel Estimator

QKE is a technique that leverages the quantum computation of kernel functions to en-
hance the performance of classical kernel methods, such as support vector machines [4,31].
By computing the kernel matrix using quantum circuits, QKE can capture complex data
relationships that may be challenging for classical kernel methods to exploit.

The main building blocks for the employed QKE, which are depicted in Figure 2 are
as follows:

1. Data preprocessing: The input data are preprocessed, which may include tasks such
as data cleaning, feature scaling, or feature extraction. This step ensures that the data
are in an appropriate format for the following quantum feature maps.

2. Feature map encoding (yellow in the figure): The preprocessed data are encoded onto
qubits using a feature map.

3. Kernel computation (steel-blue in the figure): Instead of directly computing the
kernel matrix from the original data, a kernel function is precomputed using the
quantum computing capabilities, meaning that the inner product of two quantum
states is estimated on a quantum simulator/circuit. This kernel function captures the
similarity between pairs of data points in a high-dimensional feature space.

4. SVM training: The precomputed kernel function is then used as input to the SVM
algorithm for model training. The SVM aims to find an optimal hyperplane that
separates the data points into different classes with the maximum margin.

Here, we need to mention that in the documentation of Qiskit machine learning, the
developers provided a full QKE implementation without the need to use, e.g., Scikit-learn’s
SVM-implementation. However, as of the writing of this article, this estimator is no longer
available in Qiskit machine learning. Thus, one needs to use a support vector machine
implementation from other sources after precomputing the kernel on a quantum simulator.

Figure 2. Schematic depiction of the quantum kernel estimator. The QKE consists of several steps.
We colored the steps that are similar to classical support vector machines in light blue and the other
steps in yellow and steel-blue. The employed QKE algorithm consists of a support vector machine
algorithm with precomputed kernel, i.e., a classical machine learning method that leverages the
power of quantum computing to efficiently compute the kernel matrix.

3.3.3. Qiskit Machine Learning

Qiskit Machine Learning is an open-source Python package developed by IBM for im-
plementing quantum machine learning algorithms [24]. This package enables researchers
and practitioners to develop and test quantum machine learning algorithms, including
VQC and QKE, using IBM’s quantum computing platform. It provides tools for building
and simulating quantum circuits, as well as interfaces to classical optimization and ma-
chine learning libraries. Thus, we used this environment and the corresponding quantum
simulators described in Appendix A for our experiments.

3.4. Accuracy Score for Classification

The accuracy score is a standard metric used to evaluate the performance of classifica-
tion algorithms. We employed the accuracy score to evaluate all presented experiments.
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It is defined as the ratio of correct predictions to the total number of predictions. The
formula for the accuracy score is defined as follows:

Accuracy =
Number of correct predictions

Total number of predictions
(1)

In Scikit-learn, the accuracy score can be computed using the accuracy_score function
from the ‘sklearn.metrics‘ module [16]. For more information on the accuracy score and its
interpretation, refer to the Scikit-learn documentation [16].

3.5. Datasets

In this study, we used six classification datasets from various sources. Two datasets
are part of the Scikit-learn library, while the remaining four are obtained/fetched from
OpenML. The datasets are described below:

1. Iris Dataset: A widely known dataset consisting of 150 samples of iris flowers, each
with four features (sepal length, sepal width, petal length, and petal width) and one
of three species labels (Iris Setosa, Iris Versicolor, or Iris Virginica). This dataset is
included in the Scikit-learn library [16].

2. Wine Dataset: A popular dataset for wine classification, which consists of 178 samples
of wine, each with 13 features (such as alcohol content, color intensity, and hue) and
one of three class labels (class 1, class 2, or class 3). This dataset is also available in the
Scikit-learn library [16].

3. Indian Liver Patient Dataset (LPD): This dataset contains 583 records, with 416 liver
patient records and 167 non-liver patient records [32]. The dataset includes ten
variables: age, gender, total bilirubin, direct bilirubin, total proteins, albumin, A/G
ratio, SGPT, SGOT, and Alkphos. The primary task is to classify patients into liver or
non-liver patient groups.

4. Breast Cancer Coimbra Dataset: This dataset consists of 10 quantitative predictors
and a binary dependent variable, indicating the presence or absence of breast cancer
[33,34]. The predictors are anthropometric data and parameters obtainable from
routine blood analysis. Accurate prediction models based on these predictors can
potentially serve as a biomarker for breast cancer.

5. Teaching Assistant Evaluation Dataset: This dataset includes 151 instances of
teaching-assistant (TA) assignments from the Statistics Department at the University
of Wisconsin-Madison, with evaluations of their teaching performance over three
regular semesters and two summer semesters [35,36]. The class variable is divided
into three roughly equal-sized categories (“low”, “medium”, and “high”). There
are six attributes, including whether the TA is a native English speaker, the course
instructor, the course, the semester type (summer or regular), and the class size.

6. Impedance Spectrum of Breast Tissue Dataset: This dataset contains impedance
measurements of freshly excised breast tissue at the following frequencies: 15.625,
31.25, 62.5, 125, 250, 500, and 1000 KHz [37,38]. The primary task is to predict
the classification of either the original six classes or four classes by merging the
fibro-adenoma, mastopathy, and glandular classes whose discrimination is not crucial.

These datasets were selected for their diverse domains and varied classification tasks,
providing a robust testing ground for the quantum classifiers we employed in our exper-
iments. Furthermore, we used artificially generated datasets to control the number of
samples. Here, Scikit-learn provides a valuable function called make_classification to
generate synthetic classification datasets. This function creates a random n-class classifi-
cation problem, initially creating clusters of points normally distributed about vertices of
an n-informative-dimensional hypercube, and assigns an equal number of clusters to each
class [16]. It introduces interdependence between features and adds further noise to the
data. The generated data are highly customizable, with options for specifying the number
of samples, features, informative features, redundant features, repeated features, classes,
clusters per class, and more. For more details on the make_classification function and its
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parameters, refer to the Scikit-learn documentation available on scikit-learn.org (accessed
on 25 June 2023).

3.5.1. Data Obtained from Lie-Algebras

We construct another artificial dataset final dataset for our final evaluation; however,
this time, we do this by using tools from the theory of Lie groups. The reason for employing
these concepts is that we want to produce data that resembles the complexity inherent to
the Qubit-Vectorspace of quantum machine learning and that, furthermore, is generated
by applying transformations on vectors that are similar to the manipulations present in
quantum machine learning algorithms, e.g., for the VQC, rotations of/around the Bloch-
sphere. Thus, overall, we aim to provide random data for a classification task to show
a case where the authors assume quantum machine learning algorithms can, because
of their inherent structure, outperform classical machine learning algorithms, and thus,
provide a prototype on the type of data specifically tailored to address the inherent structure
of quantum machine learning. The theoretical foundations of this section are obtained
from [39], and thus, the interested reader is referred to this book for a profound introduction
to Lie groups. To further explain the employed ideas, we start by introducing the concept
of a Lie group G and the corresponding Lie-algebra g.

A Lie group is a mathematical structure that captures the essence of continuous sym-
metry. Named after the Norwegian mathematician Sophus Lie, Lie groups are ubiquitous
in many areas of mathematics and physics, including the study of differential equations,
geometry, and quantum mechanics.

A Lie group is a set G that has the structure of both a smooth manifold and a group in
such a way that the group operations (multiplication and inversion) are smooth. That is, a
Lie group is a group that is also a differentiable manifold, such that the group operations
are compatible with the smooth structure.

Thus, a Lie group is a set G equipped with a group structure (i.e., a binary operation
G × G → G, (g, h) �→ gh that is associative, an identity element e ∈ G, and an inversion
operation G → G, g �→ g−1) and a smooth manifold structure such that the following
conditions are satisfied:

1. The multiplication map μ : G × G → G defined by μ(g, h) = gh is smooth.
2. The inversion map ι : G → G defined by ι(g) = g−1 is smooth.

Lie algebra is associated with each Lie group, a vector space equipped with a binary
operation called the Lie bracket. The Lie algebra captures the local structure of the Lie
group near the identity element, meaning that the Lie algebra of a Lie group G is the
tangent space at the identity, denoted TeG, equipped with the Lie bracket operation. The
Lie bracket is defined in terms of the group operation and the differential.

There is a map from the Lie algebra to the Lie group called the exponential map,
denoted exp : TeG → G. The exponential map provides a way to generate new group
elements from elements of the Lie algebra. In particular, given an element X of the Lie
algebra, exp(X) is a group element close to the identity if X is ‘small’. We will exploit this
concept to generate random data associated with a specific group:

We start with a set of generators Ta contained within the Lie-algebra g of a Lie group
G, where a = 1, 2, . . . dg, i.e., the dimension of the Lie-algebra. We can then create elements
g ∈ G by employing:

g = ei ∑a θaTa , where θa ∈ [0, 2π] . (2)

We used the condition for our θa-values without loss of generality due to the periodicity
of the exponential function. To generate our random data, we randomly choose our θa and
create an element of our group. We then apply this element to a corresponding base vector
of our vector space.

Specifically, in our example, we use the Lie-group SU(2). The special unitary group of
degree 2, denoted as SU(2), is a Lie group of 2 × 2 unitary matrices with determinant 1.
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SU(2) =
{

U ∈ C
2×2 : UU† = I, det(U) = 1

}
(3)

The corresponding Lie algebra, su(2), consists of 2 × 2 Hermitian traceless matrices,
i.e., the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(4)

The commutation relations of the Pauli matrices form the structure of the su(2)
Lie algebra:

[σi, σj] = 2iεijkσk (5)

where [·, ·] denotes the commutator and εijk is the Levi-Civita symbol.
To generate a classification dataset from this algebra, we use the following procedure:

1. Find a set of random parameters θ ∈ (0; π], φ ∈ (0; 2π], λ ∈ (0; 2π];
2. We then create an element U of SU(2) using these these randomly set parameters:

U = ei(θσ1+φσ2+λσ3);
3. Next, we take one of the basevectors from C2, denoted as v̂ to create a new complex

vector �v using the previously obtained matrix U such that: �v = U · v̂;
4. This vector is then separated into four features Fj such that:

F1 = Re[v1] (6)

F2 = Im[v1] (7)

F3 = Re[v2] (8)

F4 = Im[v2], (9)

where v1 and v2 denotes the individual components of the vector �v, and Re[. . . ] and
Im[. . . ] denote their respective real and imaginary parts;

5. Finally, we assign a class label C to this collection of features such that:

C =

{
0 if θ < π

2

1 if θ > π
2

, (10)

and collect the features and the class label into one sample [F1, F2, F3, F4, C]. We repeat
this process NS times, starting with 1, where NS is the number of samples that we
want for our dataset.

Note that this approach can be extended to arbitrary Lie groups, given that one can
construct or obtain a Lie group’s generators.

4. Experimental Design

In this section, we describe our experimental design, which aims to provide a fair
and comprehensive comparison of the performance of classical machine learning (ML)
and quantum machine learning techniques, as discussed in Sections 3.2 and 3.3. Our
experiments involve two main components: Firstly, assessing the algorithms’ performance
on artificially generated datasets with varying parametrizations, and secondly, evaluating
the algorithms’ performance on benchmark datasets using randomized search to optimize
hyperparameters, ensuring a fair comparison. By carefully selecting our experimental
setup, we avoid the issue of “cherry-picking” only a favorable subset of results, a common
problem in machine learning, leading to heavily biased conclusions.
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4.1. Artificially Generated Scikit Datasets

To generate the synthetic classification dataset, we utilized Scikit-learn’s
make_classification function. We employed two features and two classes while vary-
ing the number of samples to obtain a performance curve illustrating how the chosen
algorithms’ performance changes depending on the sample size.

We partitioned each dataset such that 20% of the original data were reserved as
a test set to evaluate the trained algorithm, producing the accuracy score used for our
assessment. Furthermore, each dataset was normalized such that all features are within the
unit interval [0, 1].

As a baseline, we employed the seven classical machine learning algorithms described
in Section 3.2, namely Lasso, Ridge, MLP, SVM, XGBoost, LightGBM, and CatBoost. We
used two different parameterizations for the classical machine learning algorithms for
our comparisons. Firstly, we applied the out-of-the-box implementation without any
hyperparameter optimization. Secondly, we used an optimized version of each algorithm
found through Scikit-learn’s RandomizedSearchCV by testing 20 different models.

We then examined 20 distinct parameter configurations, each for the VQC and QKE
classifiers, randomly selected from a predefined parameter distribution. Appendix A
discusses the parameter grids for all utilized algorithms and all experiments.

4.2. Artificially Generated SU(2) Datasets

For our synthetic SU(2) classification dataset, we used the concepts previously dis-
cussed in Section 3.5.1. We employed two complex features, i.e., resulting in four continuous
real features, and two classes while varying the number of samples to obtain a performance
curve illustrating how the chosen algorithms’ performance changes depending on the
sample size.

We partitioned each dataset such that 20% of the original data were reserved as a test
set to evaluate the trained algorithm, producing the accuracy score used for our assess-
ment. Furthermore, each dataset was normalized such that all features are within the unit
interval [0, 1].

As a baseline, we employed the seven classical machine learning algorithms de-
scribed in Section 3.2, namely Lasso, Ridge, MLP, SVM, XGBoost, LightGBM, and CatBoost.
We used two different parameterizations for the classical machine learning algorithms
for our comparisons. Firstly, we applied the out-of-the-box implementation without any
hyperparameter optimization. Secondly, we used an optimized version of each algorithm
found through Scikit-learn’s RandomizedSearchCV by testing 20 different models.

We then examined 20 distinct parameter configurations, each for the VQC and QKE
classifiers, randomly selected from a predefined parameter distribution. Appendix A
discusses the parameter grids for all utilized algorithms and all experiments.

4.3. Benchmark Datasets and Hyperparameter Optimization

Our last experiment was to test the two employed quantum machine learning al-
gorithms against the classical machine learning algorithms on six benchmark datasets
(Section 3.5). For this reason, we employed Scikit-learn’s RandomizedSearchCV to test
20 randomly parameterized models for each algorithm to report the best of these tests.
Again, we used a train-test-split to keep 20% of the original data to test the trained algo-
rithm. Furthermore, each dataset was normalized such that all features are within the unit
interval [0, 1].

5. Results

In this section, we present the results of our experiments, comparing the performance
of classical machine learning and quantum machine learning techniques on both artificially
generated datasets and benchmark datasets (Section 3.5). By analyzing the results, we
aim to draw meaningful insights into the strengths and weaknesses of each approach and
provide a blueprint for future studies in the area. Everything was calculated on a Lenovo
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ThinkCentre machine using an Intel(R) Core(TM) i7-4770 CPU 3.40GHz and 16GB RAM
and Linux 20.04. We used python 3.6 and the included packages are the following:

• numpy version: 1.18.5

• sklearn version: 0.23.1

• catboost version: 0.26.1

• xgboost version: 1.2.1

• lightgbm version: 3.2.1

• qiskit version: {‘qiskit-terra’: ‘0.19.2’, ‘qiskit-aer’: ‘0.10.3’,

‘qiskit-ignis’: ‘0.7.0’, ‘qiskit-ibmq-provider’: ‘0.18.3’, ‘qiskit-aqua’:

None, ‘qiskit’: ‘0.34.2’, ‘qiskit-nature’: ‘0.3.1’, ‘qiskit-finance’:

None, ‘qiskit-optimization’: None, ‘qiskit-machine-learning’: ‘0.3.1’}

• qiskit_machine_learning version: 0.3.1

5.1. Performance on Artificially Generated Scikit Datasets

In this section, we compare the performance of quantum machine learning algorithms
and classical machine learning algorithms on artificially generated classification datasets.
The comprehensive experimental setup can be found in Section 4.1.

Regarding accuracy and runtime, our findings are presented in Tables 1 and 2 and
Figures 3–5. The measured runtime includes hyperparameter tuning via randomized search
and five-fold cross-validating, training, and testing the model.

While QML algorithms perform reasonably well, we observe that they are not a match
for properly trained and/or sophisticated state-of-the-art classifiers. Even out-of-the-box
implementations of state-of-the-art ML algorithms outperform QML algorithms on these
artificially generated classification datasets.

The accuracy of the algorithms varies depending on the dataset size, with larger
datasets posing more challenges. CatBoost performed best in our experiments, both out-
of-the-box and when optimized in terms of high accuracy over all experiments. The
quantum kernel estimator is the fifth-best algorithm overall in terms of accuracy, though it
outperforms CatBoost regarding the runtime for CatBoost’s optimized version. XGBoost
and support vector classification (SVC) follow closely, with competitive performances in
terms of accuracy. However, variational quantum circuit struggles to achieve high accuracy
compared to sophisticated boosting classifiers or support vector machines. Furthermore,
we observe the best performance in terms of runtime for the two linear models, Lasso and
Ridge. We need to point out that Lasso and Ridge both feature increased runtimes for the
datasets of size 50; this is most likely due to the optimizer needing an increased number of
iterations due to the small number of samples and their relatively scattered distribution of
data points.

Other algorithms, such as multilayer perceptron, Ridge regression, Lasso regression,
and LightGBM, exhibit varying performances depending on dataset size and optimization.
Despite some reasonable results from QKE, we conclude that classical ML algorithms,
particularly sophisticated boosting classifiers, should be chosen to tackle similar problems
due to their ease of implementation, better runtime, and overall superior performance.

In summary, while QML algorithms have shown some promise, they cannot yet
compete with state-of-the-art classical ML algorithms on artificially generated classification
datasets in terms of accuracy and runtime.
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Table 1. This table presents the scores/accuracies of our experiments conducted on artificially
generated classification datasets of varying sizes, e.g., 50 and 100. Given these different dataset sizes,
this table is sorted in decreasing order of the average accuracy over all different sample sizes of each
algorithm. The parametrization for the QKE is as follows: QKE, feature map, quantum simulator,
C-Value for the SVM algorithm. The parametrization for the VQC is as follows: VQC, feature map,
Ansatz, optimizer, quantum simulator. For the classical machine learning algorithms, OutOfTheBox
means that we did not tune the hyperparameters of the employed algorithm and RandomSearch refers
to hyperparameter optimization via a randomized search.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

OutOfTheBox, CatBoost, results 1.0 1.0 0.98 0.97 0.925 0.93 0.9425 0.963929

RandomSearch, CatBoost, results 1.0 1.0 0.96 0.96 0.935 0.936667 0.9425 0.962024

RandomSearch, SVM, results 1.0 1.0 0.94 0.96 0.945 0.93 0.9375 0.958929

RandomSearch, XGBoost, results 1.0 0.95 0.98 0.96 0.93 0.933333 0.9425 0.956548

QKE, PauliFeatureMap, statevector-simulator, 1000.0 1.0 1.0 0.96 0.93 0.93 0.93 0.925 0.953571

OutOfTheBox, XGBoost, results 1.0 0.95 0.94 0.96 0.91 0.936667 0.95 0.949524

OutOfTheBox, SVM, results 1.0 1.0 0.92 0.92 0.94 0.933333 0.93 0.949048

QKE, ZZFeatureMap, statevector-simulator, 177.82794100389228 1.0 1.0 0.94 0.93 0.915 0.926667 0.9225 0.947738

QKE, ZFeatureMap, statevector-simulator, 5.623413251903491 1.0 1.0 0.92 0.91 0.925 0.93 0.9375 0.946071

RandomSearch, MLP, results 1.0 1.0 0.94 0.88 0.905 0.933333 0.94 0.942619

OutOfTheBox, MLP, results 1.0 1.0 0.94 0.89 0.905 0.916667 0.9275 0.939881

OutOfTheBox, Ridge, results 1.0 1.0 0.94 0.88 0.9 0.896667 0.9025 0.93131

QKE, ZFeatureMap, qasm-simulator, 5.623413251903491 1.0 1.0 0.94 0.82 0.91 0.92 0.9025 0.9275

QKE, ZZFeatureMap, statevector-simulator, 31.622776601683793 1.0 0.95 0.92 0.88 0.88 0.926667 0.9175 0.924881

QKE, PauliFeatureMap, statevector-simulator, 5.623413251903491 1.0 0.95 0.92 0.85 0.895 0.93 0.92 0.923571

QKE, ZFeatureMap, statevector-simulator, 0.1778279410038923 1.0 0.95 0.9 0.88 0.9 0.92 0.9125 0.923214

QKE, ZFeatureMap, aer-simulator, 0.1778279410038923 1.0 0.95 0.9 0.87 0.905 0.92 0.9125 0.9225

RandomSearch, Ridge, results 1.0 1.0 0.9 0.88 0.88 0.893333 0.9025 0.922262

QKE, ZZFeatureMap, qasm-simulator, 5.623413251903491 1.0 0.95 0.92 0.86 0.89 0.91 0.9175 0.921071

QKE, PauliFeatureMap, qasm-simulator, 5.623413251903491 1.0 0.95 0.92 0.86 0.89 0.91 0.9175 0.921071

VQC, ZFeatureMap, EfficientSU2, COBYLA, statevector-simulator 1.0 0.95 0.9 0.9 0.92 0.893333 0.88 0.920476

RandomSearch, Lasso, results 1.0 1.0 0.94 0.82 0.895 0.893333 0.89 0.919762

VQC, ZFeatureMap, EfficientSU2, COBYLA, qasm-simulator 1.0 0.95 0.9 0.88 0.92 0.91 0.845 0.915

QKE, PauliFeatureMap, aer-simulator, 1.0 0.9 0.95 0.92 0.89 0.89 0.93 0.91 0.912857

VQC, ZFeatureMap, EfficientSU2, SPSA, qasm-simulator 1.0 0.95 0.9 0.86 0.925 0.91 0.845 0.912857

VQC, ZFeatureMap, EfficientSU2, COBYLA, aer-simulator 1.0 0.95 0.92 0.88 0.9 0.906667 0.8275 0.912024

VQC, ZFeatureMap, EfficientSU2, SPSA, statevector-simulator 1.0 0.95 0.92 0.87 0.89 0.89 0.835 0.907857

VQC, ZFeatureMap, RealAmplitudes, COBYLA, aer-simulator 1.0 0.95 0.9 0.86 0.905 0.85 0.865 0.904286

RandomSearch, LightGBM, results 0.4 1.0 0.98 0.95 0.93 0.933333 0.9475 0.877262

OutOfTheBox, LightGBM, results 0.4 1.0 0.96 0.94 0.925 0.936667 0.9375 0.87131

VQC, PauliFeatureMap, EfficientSU2, SPSA, qasm-simulator 0.9 0.75 0.9 0.84 0.89 0.86 0.8675 0.858214

VQC, ZFeatureMap, EfficientSU2, NFT, statevector-simulator 1.0 0.95 0.86 0.72 0.9 0.776667 0.77 0.85381

QKE, PauliFeatureMap, aer-simulator, 31.622776601683793 1.0 0.85 0.96 0.7 0.875 0.826667 0.735 0.849524

QKE, ZFeatureMap, aer-simulator, 31.622776601683793 1.0 1.0 0.88 0.62 0.835 0.736667 0.7475 0.83131

QKE, PauliFeatureMap, aer-simulator, 1000.0 1.0 0.85 0.96 0.58 0.87 0.826667 0.665 0.821667

VQC, PauliFeatureMap, EfficientSU2, SPSA, aer-simulator 0.8 0.75 0.9 0.73 0.845 0.86 0.8525 0.819643

VQC, PauliFeatureMap, EfficientSU2, NFT, statevector-simulator 0.8 0.65 0.9 0.8 0.84 0.783333 0.8475 0.802976

QKE, ZFeatureMap, qasm-simulator, 177.82794100389228 0.9 1.0 0.88 0.57 0.875 0.73 0.6375 0.798929
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Table 1. Cont.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

VQC, ZZFeatureMap, EfficientSU2, COBYLA, aer-simulator 0.7 0.7 0.9 0.71 0.82 0.826667 0.835 0.784524

VQC, ZZFeatureMap, RealAmplitudes, COBYLA, qasm-simulator 0.8 0.7 0.9 0.62 0.775 0.816667 0.785 0.770952

VQC, ZZFeatureMap, RealAmplitudes, NFT, qasm-simulator 0.7 0.7 0.9 0.86 0.775 0.786667 0.535 0.750952

VQC, PauliFeatureMap, RealAmplitudes, NFT, qasm-simulator 0.6 0.7 0.9 0.49 0.8 0.763333 0.78 0.719048

VQC, ZZFeatureMap, RealAmplitudes, COBYLA, aer-simulator 0.5 0.65 0.84 0.73 0.83 0.83 0.575 0.707857

QKE, PauliFeatureMap, aer-simulator, 0.03162277660168379 0.4 0.35 0.9 0.65 0.86 0.923333 0.8275 0.701548

QKE, PauliFeatureMap, aer-simulator, 0.005623413251903491 0.4 0.35 0.9 0.49 0.75 0.766667 0.8275 0.640595

QKE, PauliFeatureMap, qasm-simulator, 0.005623413251903491 0.4 0.35 0.9 0.49 0.75 0.766667 0.8275 0.640595

QKE, ZFeatureMap, statevector-simulator, 0.005623413251903491 0.4 0.35 0.84 0.49 0.63 0.85 0.83 0.627143

VQC, ZFeatureMap, TwoLocal, SPSA, statevector-simulator 0.7 0.65 0.52 0.51 0.52 0.493333 0.58 0.567619

QKE, PauliFeatureMap, qasm-simulator, 0.001 0.4 0.35 0.9 0.49 0.48 0.753333 0.4975 0.552976

OutOfTheBox, Lasso, results 0.4 0.35 0.5 0.49 0.48 0.506667 0.4975 0.460595

VQC, ZZFeatureMap, TwoLocal, COBYLA, qasm-simulator 0.2 0.35 0.28 0.35 0.225 0.216667 0.3975 0.288452

VQC, PauliFeatureMap, TwoLocal, SPSA, qasm-simulator 0.2 0.35 0.26 0.38 0.185 0.223333 0.4 0.285476

VQC, PauliFeatureMap, TwoLocal, COBYLA, statevector-simulator 0.2 0.35 0.28 0.36 0.19 0.223333 0.39 0.284762

VQC, PauliFeatureMap, TwoLocal, SPSA, statevector-simulator 0.2 0.35 0.28 0.36 0.19 0.223333 0.39 0.284762

Table 2. This table presents the runtimes of our experiments conducted on artificially generated
classification datasets of varying sizes, e.g., 50 and 100. Given these different dataset sizes, this table
is sorted in increasing order of the average runtime over all different sample sizes of each algorithm.
The measured runtime includes hyperparameter tuning via randomized search and five-fold cross-
validating, training, and testing the model. The parametrization for the QKE is as follows: QKE,
feature map, quantum simulator, C-Value for the SVM algorithm. The parametrization for the VQC
is as follows: VQC, feature map, Ansatz, optimizer, quantum simulator. For the classical machine
learning algorithms, OutOfTheBox means that we did not tune the hyperparameters of the employed
algorithm and RandomSearch refers to hyperparameter optimization via a randomized search.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

OutOfTheBox, Lasso, results 0.001473 0.001162 0.001158 0.001123 0.001141 0.001153 0.001159 0.001196

OutOfTheBox, Ridge, results 0.002933 0.001553 0.001433 0.001894 0.002628 0.002575 0.002436 0.002207

OutOfTheBox, SVM, results 0.001021 0.000648 0.001039 0.002457 0.005501 0.017243 0.0295 0.008201

OutOfTheBox, XGBoost, results 0.016881 0.017187 0.022922 0.038751 0.05111 0.151807 0.120973 0.059947

OutOfTheBox, LightGBM, results 0.009655 0.024887 0.104107 0.124862 0.1898 0.489043 0.218343 0.165814

RandomSearch, Lasso, results 1.045328 0.113413 0.102258 0.105736 0.104031 0.120507 0.116006 0.243897

RandomSearch, Ridge, results 1.120708 0.122188 0.114706 0.175996 0.226949 0.255845 0.25067 0.323866

RandomSearch, SVM, results 1.06376 0.135593 0.163875 0.159699 0.203163 0.354172 0.442741 0.360429

OutOfTheBox, MLP, results 0.082953 0.091169 0.121317 0.232771 0.451674 0.947373 1.376965 0.472032

OutOfTheBox, CatBoost, results 0.389826 0.411965 0.654325 0.783825 0.867595 1.085298 1.1931 0.769419

RandomSearch, LightGBM, results 1.711872 0.376494 0.58387 0.704715 0.728305 0.897428 1.000039 0.857532

RandomSearch, XGBoost, results 1.572541 0.399174 0.441059 0.577969 0.99776 1.467667 1.352474 0.972663

VQC, ZFeatureMap, TwoLocal, SPSA,
statevector-simulator 0.502447 0.82391 1.319602 2.9078 6.75953 11.81601 18.064725 6.027718

VQC, PauliFeatureMap, TwoLocal,
COBYLA, statevector-simulator 0.536454 0.886945 1.757877 3.486975 8.137821 14.688881 22.79476 7.469959

VQC, PauliFeatureMap, TwoLocal, SPSA,
statevector-simulator 1.981785 0.715829 1.621059 3.488372 8.517624 15.170185 22.300972 7.685118

VQC, PauliFeatureMap, TwoLocal, SPSA,
qasm-simulator 0.750719 1.154406 2.53449 5.000262 11.265137 19.493945 29.031463 9.89006

VQC, ZZFeatureMap, TwoLocal,
COBYLA, qasm-simulator 0.734865 1.097202 2.514703 4.990832 11.895971 19.283406 29.318269 9.976464

RandomSearch, MLP, results 3.899634 3.298337 5.003618 9.651274 14.729924 20.652249 31.202069 12.633872

QKE, ZFeatureMap,
statevector-simulator, 0.1778279410038923 1.343983 0.802286 2.170829 5.965899 18.504546 36.659922 59.889941 17.905344
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Table 2. Cont.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

QKE, ZFeatureMap, statevector-simulator,
0.005623413251903491 0.411296 0.697461 2.154164 6.122564 19.670819 37.297334 62.1901 18.363391

QKE, PauliFeatureMap,
statevector-simulator, 1000.0 0.470933 0.956269 2.721257 7.2817 21.356298 40.130716 67.422908 20.048583

QKE, PauliFeatureMap,
statevector-simulator, 5.623413251903491 0.501446 0.922237 2.775664 7.454642 21.780637 40.426036 66.758927 20.088513

QKE, ZFeatureMap,
statevector-simulator, 5.623413251903491 0.378018 0.757363 2.141677 4.962464 19.901565 41.913003 71.453831 20.215417

QKE, ZZFeatureMap,
statevector-simulator, 31.622776601683793 0.214386 0.567282 1.650304 5.302437 20.77629 42.614517 72.871078 20.570899

QKE, ZZFeatureMap,
statevector-simulator, 177.82794100389228 0.461093 0.943574 2.780804 7.580857 22.906811 41.955521 68.045553 20.667745

RandomSearch, CatBoost, results 8.627878 10.873142 26.728395 35.20857 36.902272 56.253265 37.994929 30.369779

VQC, ZFeatureMap, RealAmplitudes,
COBYLA, aer-simulator 47.438183 63.446748 192.148143 404.233954 1060.291657 1619.397205 2290.222381 811.025467

VQC, ZZFeatureMap, RealAmplitudes,
COBYLA, qasm-simulator 43.113636 83.175558 166.040938 421.278374 1064.238564 1702.893006 2719.340939 885.725859

VQC, ZZFeatureMap, RealAmplitudes,
COBYLA, aer-simulator 45.909504 83.201411 152.20265 509.1956 1158.902532 1654.065907 2603.942577 886.774312

VQC, ZFeatureMap, EfficientSU2,
COBYLA, statevector-simulator 48.546243 81.030425 190.958188 402.121722 1044.855825 1807.676357 2751.241623 903.775769

VQC, ZFeatureMap, EfficientSU2,
COBYLA, aer-simulator 57.728111 100.590997 240.174666 507.58709 1253.080578 2139.855218 3196.07247 1070.727019

VQC, ZFeatureMap, EfficientSU2,
COBYLA, qasm-simulator 59.058898 100.862056 242.285405 507.171731 1262.650143 2151.503499 3191.745568 1073.611043

VQC, ZZFeatureMap, EfficientSU2,
COBYLA, aer-simulator 59.651649 105.629842 254.918442 601.245125 1335.017904 2260.354294 3366.65501 1140.496038

QKE, ZFeatureMap, qasm-simulator,
177.82794100389228 4.589478 13.184805 82.633779 332.71327 1337.102907 3020.689579 5368.201509 1451.30219

QKE, ZZFeatureMap, qasm-simulator,
5.623413251903491 4.352785 15.921249 97.165028 390.472092 1573.103197 3549.629798 6282.670251 1701.902057

QKE, PauliFeatureMap, aer-simulator,
0.03162277660168379 3.549125 15.094144 98.970568 393.496921 1581.662241 3554.962927 6317.355669 1709.298799

QKE, PauliFeatureMap, aer-simulator,
0.005623413251903491 3.373257 15.311538 99.2351 390.52131 1574.108371 3555.3048 6339.026443 1710.982974

QKE, PauliFeatureMap, qasm-simulator,
0.005623413251903491 3.812115 19.479307 101.289711 404.432384 1636.24686 3642.937393 6307.605039 1730.828973

QKE, PauliFeatureMap, aer-simulator,
31.622776601683793 3.848578 17.062982 101.387533 408.69903 1635.863136 3674.976257 6555.811507 1771.092718

VQC, ZFeatureMap, EfficientSU2, NFT,
statevector-simulator 98.831974 167.48274 394.378037 836.913451 2197.652135 3719.047116 5621.134708 1862.205737

VQC, PauliFeatureMap, EfficientSU2,
NFT, statevector-simulator 103.914165 177.047181 423.423603 1014.963511 2338.078356 3953.861723 5905.433094 1988.10309

VQC, ZZFeatureMap, RealAmplitudes,
NFT, qasm-simulator 105.987181 183.918751 427.016702 1036.605473 2366.463152 4052.521035 6042.538015 2030.721473

VQC, PauliFeatureMap, RealAmplitudes,
NFT, qasm-simulator 103.625823 180.306618 425.488049 1041.160999 2371.366715 4044.856475 6048.573929 2030.768373

VQC, ZFeatureMap, EfficientSU2, SPSA,
statevector-simulator 119.513477 200.101417 474.113288 1008.932874 2601.731917 4505.306268 6781.089745 2241.541284

VQC, ZFeatureMap, EfficientSU2, SPSA,
qasm-simulator 145.295744 256.711762 609.791229 1272.675059 3150.527537 5366.116602 8009.649075 2687.25243

VQC, PauliFeatureMap, EfficientSU2,
SPSA, aer-simulator 144.280811 259.102175 625.193096 1502.476923 3356.340799 5689.827615 8454.144295 2861.623673

VQC, PauliFeatureMap, EfficientSU2,
SPSA, qasm-simulator 152.666649 269.680847 642.400747 1505.762521 3388.662998 5709.505826 8438.957709 2872.519614

QKE, ZFeatureMap, aer-simulator,
31.622776601683793 5.993241 25.852654 166.703792 669.201309 2934.169598 6729.31411 12,037.430687 3224.095056

QKE, PauliFeatureMap, qasm-simulator,
5.623413251903491 8.384715 32.795287 206.595473 890.414904 3753.488868 8537.768589 15,232.745542 4094.599054

QKE, PauliFeatureMap, qasm-simulator,
0.001 7.792093 32.566225 207.832614 896.042249 3778.324351 8610.335147 15,348.810142 4125.957546

QKE, ZFeatureMap, aer-simulator,
0.1778279410038923 10.511296 43.335078 276.810734 1111.545614 4799.032996 10,979.135601 19,768.073574 5284.063556

QKE, ZFeatureMap, qasm-simulator,
5.623413251903491 11.573929 43.186982 277.291314 1113.664313 4842.587094 10,978.908476 19,798.821156 5295.147609

QKE, PauliFeatureMap, aer-simulator,
1000.0 12.596938 51.788837 332.281104 1434.208601 5986.631006 13,592.866065 24,280.544075 6527.273804

QKE, PauliFeatureMap, aer-simulator, 1.0 12.261604 51.508959 332.561822 1423.111135 5984.902587 13,603.956887 24,362.83202 6538.733573
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5.2. Performance on Artificially Generated SU2 Datasets

In this section, we compare the performance of quantum machine learning algorithms
and classical machine learning algorithms on artificially generated classification datasets
based on Lie group structures. The detailed experimental setup can be found in Section 4.2.

Regarding accuracy and runtime, our findings are presented in Tables 3 and 4 and
Figures 6–8. While QML algorithms perform reasonably well, we observe that they are not
a match for properly trained and/or sophisticated state-of-the-art classifiers. Even out-of-
the-box implementations of state-of-the-art ML algorithms outperform QML algorithms on
artificially generated classification datasets that are particularly suited for QML.

The accuracy of the algorithms varies depending on the dataset size, with larger
datasets providing increased accuracy for most algorithms. CatBoost performed best
in our experiments, both out-of-the-box and when optimized in terms of high accuracy
over all experiments. The quantum kernel estimator is the fifth-best algorithm overall
in terms of accuracy. However, we observe that, on average, CatBoost with improved
hyperparameters performs best over all experiments, but is outperformed by the best QKE
implementation for 100 and 500 data points. Thus, we conclude that quantum kernel
estimators can capture the complexity of this SU(2)-generated dataset, but overall, one is
better off with an out-of-the-box CatBoost implementation. This means that we do not
observe a quantum advantage for this type of data, but rather that the employed quantum
kernel estimator behaves similarly to classical machine learning algorithms, i.e., it exhibits
reasonable performance but does not perform best for all datasets, even the ones created by
exploiting quantum symmetry properties.

Other algorithms, such as multilayer perceptron, Ridge regression, Lasso regression,
and LightGBM, exhibit varying performances depending on dataset size and optimization.
Despite some reasonable results from QKE, we conclude that classical ML algorithms,
particularly sophisticated boosting classifiers, should be chosen to tackle similar problems
due to their ease of implementation, better runtime, and overall superior performance.
Furthermore, we again observe the best performance in terms of runtime for the two linear
models, Lasso and Ridge. Moreover, again, we observe that Lasso and Ridge both feature
increased runtimes for the datasets of size 50.

In summary, while QML algorithms have shown some promise, they cannot yet
compete with state-of-the-art classical ML algorithms even on these SU(2)-datasets, where
the authors intended to provide evidence for the quantum advantage for datasets generated
from symmetry properties inherent to quantum mechanics.

Table 3. This table presents the scores/accuracies of our experiments conducted on classification
datasets generated via SU(2) generators of varying sizes, e.g., 50 and 100. Given these different dataset
sizes, this table is sorted in decreasing order of the average accuracy over all different sample sizes of
each algorithm. The parametrization for the QKE is as follows: QKE, feature map, quantum simulator,
C-Value for the SVM algorithm. The parametrization for the VQC is as follows: VQC, feature map,
Ansatz, optimizer, quantum simulator. For the classical machine learning algorithms, OutOfTheBox
means that we did not tune the hyperparameters of the employed algorithm and RandomSearch refers
to hyperparameter optimization via a randomized search.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

RandomSearch, CatBoost, results 0.9 0.55 0.78 0.78 0.88 0.906667 0.915 0.815952

OutOfTheBox, CatBoost, results 0.6 0.7 0.76 0.85 0.895 0.906667 0.9375 0.807024

RandomSearch, XGBoost, results 0.6 0.65 0.74 0.84 0.87 0.86 0.9425 0.786071

OutOfTheBox, XGBoost, results 0.4 0.75 0.76 0.86 0.89 0.926667 0.9 0.78381

QKE, ZFeatureMap, statevector-simulator, 1000.0 0.7 0.8 0.74 0.79 0.8 0.806667 0.8475 0.783452

RandomSearch, LightGBM, results 0.3 0.6 0.74 0.87 0.89 0.903333 0.9175 0.745833

OutOfTheBox, LightGBM, results 0.3 0.6 0.74 0.9 0.85 0.923333 0.885 0.742619

QKE, ZZFeatureMap, statevector-simulator, 177.82794100389228 0.8 0.55 0.54 0.71 0.795 0.826667 0.85 0.724524
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Table 3. Cont.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

QKE, PauliFeatureMap, aer-simulator, 5.623413251903491 0.7 0.65 0.44 0.73 0.725 0.683333 0.72 0.664048

QKE, ZZFeatureMap, qasm-simulator, 31.622776601683793 0.7 0.7 0.7 0.59 0.615 0.62 0.665 0.655714

QKE, ZZFeatureMap, statevector-simulator, 0.1778279410038923 0.8 0.5 0.62 0.55 0.645 0.693333 0.7375 0.649405

QKE, ZZFeatureMap, aer-simulator, 0.1778279410038923 0.4 0.6 0.7 0.67 0.625 0.713333 0.7075 0.630833

QKE, PauliFeatureMap, aer-simulator, 0.1778279410038923 0.5 0.65 0.64 0.63 0.615 0.68 0.7 0.630714

QKE, PauliFeatureMap, statevector-simulator, 0.1778279410038923 0.4 0.65 0.6 0.55 0.75 0.666667 0.73 0.620952

OutOfTheBox, MLP, results 0.8 0.55 0.52 0.63 0.555 0.56 0.62 0.605

VQC, ZZFeatureMap, EfficientSU2, SPSA, aer-simulator 0.7 0.5 0.6 0.6 0.605 0.576667 0.645 0.60381

VQC, ZZFeatureMap, EfficientSU2, COBYLA, qasm-simulator 0.6 0.6 0.62 0.54 0.6 0.606667 0.66 0.60381

OutOfTheBox, SVM, results 0.4 0.65 0.44 0.59 0.68 0.676667 0.695 0.590238

RandomSearch, SVM, results 0.2 0.7 0.8 0.65 0.78 0.503333 0.4725 0.586548

VQC, ZZFeatureMap, EfficientSU2, NFT, statevector-simulator 0.5 0.6 0.54 0.56 0.7 0.58 0.61 0.584286

VQC, ZZFeatureMap, RealAmplitudes, COBYLA, statevector-simulator 0.6 0.65 0.6 0.53 0.575 0.543333 0.5775 0.582262

VQC, PauliFeatureMap, EfficientSU2, COBYLA, aer-simulator 0.4 0.75 0.52 0.55 0.56 0.606667 0.6225 0.572738

VQC, PauliFeatureMap, RealAmplitudes, NFT, statevector-simulator 0.3 0.65 0.52 0.69 0.63 0.586667 0.62 0.570952

OutOfTheBox, Ridge, results 0.7 0.55 0.62 0.48 0.575 0.533333 0.525 0.569048

VQC, ZFeatureMap, RealAmplitudes, COBYLA, qasm-simulator 0.7 0.5 0.52 0.57 0.59 0.573333 0.5275 0.56869

VQC, ZZFeatureMap, EfficientSU2, NFT, aer-simulator 0.4 0.7 0.56 0.58 0.575 0.543333 0.6175 0.567976

QKE, ZZFeatureMap, aer-simulator, 31.622776601683793 0.4 0.55 0.6 0.62 0.625 0.596667 0.555 0.56381

QKE, PauliFeatureMap, aer-simulator, 31.622776601683793 0.6 0.45 0.6 0.56 0.57 0.62 0.5425 0.563214

VQC, ZZFeatureMap, RealAmplitudes, COBYLA, aer-simulator 0.6 0.65 0.48 0.55 0.535 0.573333 0.545 0.561905

QKE, ZFeatureMap, qasm-simulator, 177.82794100389228 0.6 0.7 0.5 0.52 0.5 0.556667 0.53 0.558095

VQC, ZFeatureMap, EfficientSU2, COBYLA, aer-simulator 0.7 0.6 0.5 0.48 0.525 0.48 0.615 0.557143

VQC, ZZFeatureMap, RealAmplitudes, NFT, qasm-simulator 0.6 0.4 0.58 0.47 0.66 0.573333 0.61 0.55619

VQC, ZFeatureMap, EfficientSU2, COBYLA, qasm-simulator 0.7 0.5 0.56 0.55 0.51 0.566667 0.505 0.555952

QKE, PauliFeatureMap, qasm-simulator, 0.1778279410038923 0.5 0.35 0.36 0.63 0.655 0.693333 0.7025 0.555833

QKE, ZZFeatureMap, qasm-simulator, 0.001 0.7 0.45 0.66 0.57 0.54 0.466667 0.4725 0.55131

VQC, ZFeatureMap, RealAmplitudes, SPSA, aer-simulator 0.7 0.5 0.5 0.59 0.495 0.516667 0.555 0.550952

VQC, ZFeatureMap, EfficientSU2, SPSA, statevector-simulator 0.3 0.8 0.44 0.59 0.55 0.563333 0.595 0.548333

VQC, PauliFeatureMap, RealAmplitudes, NFT, qasm-simulator 0.4 0.55 0.6 0.54 0.59 0.553333 0.58 0.544762

VQC, ZFeatureMap, RealAmplitudes, COBYLA, aer-simulator 0.8 0.45 0.48 0.48 0.52 0.513333 0.545 0.54119

VQC, ZFeatureMap, EfficientSU2, COBYLA, statevector-simulator 0.5 0.55 0.56 0.56 0.54 0.516667 0.56 0.540952

QKE, ZFeatureMap, aer-simulator, 1000.0 0.6 0.55 0.6 0.52 0.505 0.486667 0.52 0.540238

VQC, PauliFeatureMap, EfficientSU2, SPSA, qasm-simulator 0.4 0.45 0.56 0.64 0.575 0.533333 0.6075 0.537976

VQC, ZFeatureMap, RealAmplitudes, NFT, aer-simulator 0.5 0.4 0.62 0.52 0.58 0.533333 0.5875 0.534405

VQC, PauliFeatureMap, EfficientSU2, SPSA, aer-simulator 0.4 0.45 0.54 0.54 0.64 0.56 0.6 0.532857

QKE, ZFeatureMap, statevector-simulator, 0.1778279410038923 0.5 0.45 0.54 0.54 0.585 0.556667 0.555 0.532381

QKE, ZFeatureMap, aer-simulator, 1.0 0.4 0.5 0.4 0.63 0.56 0.603333 0.575 0.524048

QKE, ZFeatureMap, qasm-simulator, 1000.0 0.6 0.5 0.44 0.59 0.525 0.443333 0.5 0.514048

QKE, PauliFeatureMap, statevector-simulator, 0.03162277660168379 0.5 0.45 0.58 0.56 0.46 0.476667 0.5675 0.513452

RandomSearch, MLP, results 0.3 0.25 0.5 0.6 0.635 0.64 0.6675 0.513214

QKE, ZFeatureMap, aer-simulator, 177.82794100389228 0.4 0.65 0.54 0.46 0.495 0.48 0.565 0.512857

QKE, ZFeatureMap, qasm-simulator, 0.005623413251903491 0.5 0.65 0.48 0.47 0.515 0.48 0.485 0.511429

RandomSearch, Ridge, results 0.4 0.55 0.52 0.46 0.56 0.52 0.5675 0.511071

OutOfTheBox, Lasso, results 0.5 0.7 0.4 0.51 0.495 0.46 0.495 0.508571

RandomSearch, Lasso, results 0.6 0.45 0.44 0.45 0.515 0.533333 0.54 0.504048
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Table 4. This table presents the scores/accuracies of our experiments conducted on classification
datasets generated via SU(2) generators of varying sizes, e.g., 50 and 100. Given these different dataset
sizes, this table is sorted in increasing order of the average runtime over all different sample sizes of
each algorithm. The measured runtime includes hyperparameter tuning via randomized search and
five-fold cross-validating, training, and testing the model. The parametrization for the QKE is as follows:
QKE, feature map, quantum simulator, C-Value for the SVM algorithm. The parametrization for the
VQC is as follows: VQC, feature map, Ansatz, optimizer, quantum simulator. For the classical machine
learning algorithms, OutOfTheBox means that we did not tune the hyperparameters of the employed
algorithm and RandomSearch refers to hyperparameter optimization via a randomized search.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

OutOfTheBox, Lasso, results 0.004103 0.000646 0.000661 0.001249 0.000804 0.000694 0.000691 0.001264

OutOfTheBox, Ridge, results 0.003733 0.002898 0.002786 0.029688 0.001899 0.001929 0.00178 0.006388

OutOfTheBox, SVM, results 0.00111 0.000919 0.002298 0.006078 0.012139 0.025935 0.04667 0.013593

RandomSearch, Lasso, results 1.055654 0.123047 0.103457 0.104252 0.117591 0.124301 0.115839 0.249163

RandomSearch, Ridge, results 1.084348 0.122741 0.138248 0.145562 0.156783 0.129915 0.14262 0.274317

OutOfTheBox, XGBoost, results 0.026616 0.040969 0.207265 1.348421 0.190274 0.123878 0.205496 0.306131

RandomSearch, SVM, results 1.133957 0.167929 0.131167 0.147877 0.233314 0.444834 0.438209 0.385327

OutOfTheBox, CatBoost, results 1.072432 0.439886 0.68483 0.813699 0.936663 1.13145 1.252242 0.904457

RandomSearch, XGBoost, results 1.555324 0.398761 0.517864 0.817118 1.79372 2.056436 2.289563 1.346969

OutOfTheBox, LightGBM, results 0.134499 0.935128 0.319397 1.125076 5.646488 4.908206 4.312101 2.482985

OutOfTheBox, MLP, results 0.447343 0.385258 0.303056 1.874662 2.165486 5.582801 6.986128 2.534962

RandomSearch, LightGBM, results 3.76752 0.726469 0.892496 1.349411 5.942432 5.569574 3.741842 3.141392

QKE, ZFeatureMap,
statevector-simulator, 1000.0 0.588803 1.105112 3.115228 9.692818 24.488245 46.863381 75.605305 23.065556

QKE, ZZFeatureMap,
statevector-simulator,
177.82794100389228

1.023377 2.014738 6.133744 14.08855 36.209869 63.510698 97.575217 31.508028

QKE, PauliFeatureMap,
statevector-simulator,
0.1778279410038923

1.110054 2.154783 6.591036 14.487802 36.089562 62.912848 97.64273 31.569831

RandomSearch, MLP, results 16.90452 15.129156 5.671446 42.576796 38.564641 70.807035 64.602048 36.322235

QKE, ZFeatureMap,
statevector-simulator,
0.1778279410038923

1.235019 1.984607 5.547594 15.333808 41.977686 79.052726 127.710628 38.977438

QKE, PauliFeatureMap,
statevector-simulator,
0.03162277660168379

1.453579 2.804056 9.085313 19.440721 47.633347 81.740004 128.186636 41.477665

QKE, ZZFeatureMap,
statevector-simulator,
0.1778279410038923

2.194236 4.856549 10.043207 20.391739 57.658834 97.515617 151.070676 49.104408

RandomSearch, CatBoost, results 18.350174 35.654742 40.725868 70.65956 68.788446 68.958949 43.685619 49.546194

VQC, ZFeatureMap,
RealAmplitudes, COBYLA,

qasm-simulator
55.500573 100.423827 241.59017 577.400258 1286.962867 2164.282246 3315.185871 1105.906545

VQC, ZFeatureMap,
RealAmplitudes, COBYLA,

aer-simulator
61.174412 116.296597 274.944359 672.215972 1509.987298 2624.710516 4058.819283 1331.164062

VQC, ZZFeatureMap,
RealAmplitudes, COBYLA,

statevector-simulator
68.600875 123.207802 380.446356 770.716185 1635.89919 2621.242822 3805.021206 1343.590634

VQC, PauliFeatureMap,
EfficientSU2, COBYLA,

aer-simulator
89.832315 163.70887 480.279572 975.291255 2084.174564 3407.844934 5050.433405 1750.223559

VQC, ZZFeatureMap, EfficientSU2,
COBYLA, qasm-simulator 88.21128 163.988243 480.35886 973.614566 2068.950356 3425.564759 5057.849761 1751.219689

VQC, ZFeatureMap, EfficientSU2,
COBYLA, qasm-simulator 85.847133 156.496491 381.392026 888.461174 2300.527629 3878.06995 6136.175247 1975.281379

VQC, ZFeatureMap, EfficientSU2,
COBYLA, statevector-simulator 103.51928 191.066923 456.017277 1079.39181 2305.444005 3940.212229 5958.277453 2004.846997
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Table 4. Cont.

Algorithm/Parametrization Size 50 Size 100 Size 250 Size 500 Size 1000 Size 1500 Size 2000 Average

VQC, ZFeatureMap,
RealAmplitudes, NFT,

aer-simulator
111.03018 203.235006 491.978903 1181.668828 2620.544781 4428.84701 6770.538213 2258.263274

VQC, ZFeatureMap, EfficientSU2,
COBYLA, aer-simulator 113.765615 205.589837 516.289881 1202.288662 2663.121947 4533.378097 6730.84663 2280.754381

VQC, ZZFeatureMap,
RealAmplitudes, COBYLA,

aer-simulator
111.686165 209.034186 638.294179 1296.48554 2869.708946 4781.981067 7074.925479 2426.016509

VQC, PauliFeatureMap,
RealAmplitudes, NFT,

qasm-simulator
163.24924 303.991817 936.898012 1915.698994 4145.466983 6900.43208 10,273.374065 3519.873027

VQC, ZFeatureMap, EfficientSU2,
SPSA, statevector-simulator 190.048137 341.454534 823.875859 1930.637818 4188.237967 6999.258807 10,586.6448 3580.02256

VQC, PauliFeatureMap,
RealAmplitudes, NFT,
statevector-simulator

190.485358 349.906865 1108.180672 2248.345232 4814.143806 7883.610885 11,821.059517 4059.390334

VQC, ZFeatureMap,
RealAmplitudes, SPSA,

aer-simulator
195.45132 357.101921 856.679886 2110.857992 4766.449826 8178.593323 12,549.799371 4144.99052

VQC, ZZFeatureMap,
RealAmplitudes, NFT,

qasm-simulator
224.602174 405.497928 1270.741552 2674.141109 5725.217252 9676.191547 14,306.04881 4897.491482

VQC, ZZFeatureMap, EfficientSU2,
NFT, statevector-simulator 243.54281 457.172266 1372.528644 2784.422174 5896.297166 9666.126191 14,179.331314 4942.774366

QKE, ZFeatureMap, aer-simulator,
1.0 9.847104 40.399745 258.379268 1171.612393 4847.638381 10,994.736629 19,569.132042 5270.249366

VQC, ZZFeatureMap, EfficientSU2,
NFT, aer-simulator 259.240503 473.126474 1408.601057 2903.563737 6301.786963 10,332.959201 15,345.314436 5289.227482

VQC, PauliFeatureMap,
EfficientSU2, SPSA, aer-simulator 316.140029 574.301472 1727.700192 3530.722918 6706.076042 9861.491595 14,726.388476 5348.974389

QKE, ZFeatureMap, aer-simulator,
1000.0 10.898171 46.773357 297.390107 1339.784466 5587.107904 11,607.623344 19,440.97092 5475.79261

VQC, ZZFeatureMap, EfficientSU2,
SPSA, aer-simulator 243.897139 463.586231 1368.88324 2789.133991 6570.676821 11,456.705765 17,726.796588 5802.811396

VQC, PauliFeatureMap,
EfficientSU2, SPSA, qasm-simulator 348.216144 639.131772 1898.469802 3945.807249 8437.848893 13,815.446673 20,511.034176 7085.136387

QKE, ZFeatureMap,
qasm-simulator, 1000.0 11.579451 47.675482 344.543775 1568.903939 6191.830912 14,908.467701 27,002.766078 7153.681048

QKE, ZFeatureMap, aer-simulator,
177.82794100389228 14.163619 56.856619 359.793343 1620.482626 6647.990849 15,084.137764 26,961.326713 7249.250219

QKE, ZFeatureMap,
qasm-simulator,

177.82794100389228
16.35717 77.129608 482.478877 2237.68152 9219.954344 18,899.046552 26,623.312487 8222.28008

QKE, ZFeatureMap,
qasm-simulator,

0.005623413251903491
16.184459 68.030962 439.889123 2003.14586 8339.157072 18,939.866418 33,875.189822 9097.351959

QKE, PauliFeatureMap,
aer-simulator, 31.622776601683793 16.822446 70.391611 549.285996 2267.794391 9148.306499 20,490.131389 36,687.638808 9890.05302

QKE, ZZFeatureMap, aer-simulator,
31.622776601683793 17.382234 70.921393 552.720236 2290.305118 9223.01824 20,681.450668 36,991.554065 9975.335993

QKE, ZZFeatureMap, aer-simulator,
0.1778279410038923 19.618006 80.653612 632.012298 2628.407038 9714.431489 20,666.725844 36,766.378776 10,072.603866

QKE, PauliFeatureMap,
aer-simulator, 5.623413251903491 20.03461 81.805468 657.437384 2646.600018 10,751.043722 24,303.410594 42,050.186601 11,501.502628

QKE, ZZFeatureMap,
qasm-simulator, 0.001 22.474871 94.5939 748.53639 3061.492908 11,095.037557 24,179.108494 42,833.544061 11,719.255454

QKE, PauliFeatureMap,
aer-simulator, 0.1778279410038923 15.70449 64.293166 539.372432 2052.767245 10,360.381735 28,219.134103 53,610.138579 13,551.684536

QKE, PauliFeatureMap,
qasm-simulator,

0.1778279410038923
28.777769 121.675706 961.248534 3951.052992 16,159.343561 35,692.431334 48,691.262451 15,086.541764

QKE, ZZFeatureMap,
qasm-simulator,

31.622776601683793
28.201021 110.795119 877.141222 3647.413017 16,257.207805 38,819.796065 69,300.661749 18,434.459428

172



Entropy 2023, 25, 992

0
2

5
0

5
0

0
7

5
0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

#
 o

f 
S
a
m

p
le

s
 i
n
 t

h
e
 D

a
ta

 S
e
t

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Accuracy

0
2

5
0

5
0

0
7

5
0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

#
 o

f 
S
a
m

p
le

s
 i
n
 t

h
e
 D

a
ta

 S
e
t

0

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

5
0

0
0

0

6
0

0
0

0

7
0

0
0

0

Time (s)

To
p
 1

0
 A

lg
o
ri

th
m

s

R
a
n
d
o
m

S
e
a
rc

h
, 
C

a
tB

o
o
s
t,

 r
e
s
u
lt

s

O
u
tO

fT
h
e
B

o
x
, 
C

a
tB

o
o
s
t,

 r
e
s
u
lt

s

R
a
n
d
o
m

S
e
a
rc

h
, 
X

G
B

o
o
s
t,

 r
e
s
u
lt

s

O
u
tO

fT
h
e
B

o
x
, 
X

G
B

o
o
s
t,

 r
e
s
u
lt

s

Q
K

E
, 
Z

F
e
a
tu

re
M

a
p
, 
s
ta

te
v
e
c
to

r-
s
im

u
la

to
r,

 1
0
0
0
.0

R
a
n
d
o
m
S
e
a
rc
h
, 
L
ig

h
tG

B
M

, 
re

s
u
lt

s

Q
K

E
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
s
ta

te
v
e
c
to

r-
s
im

u
la

to
r,

 1
7

7
.8

2
7

9
4

1
0

0
3

8
9

2
2

8

Q
K

E
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
a
e
r-

s
im

u
la

to
r,

 5
.6

2
3

4
1

3
2

5
1

9
0

3
4

9
1

Q
K

E
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
q
a
s
m

-s
im

u
la

to
r,

 3
1
.6

2
2

7
7

6
6

0
1

6
8

3
7

9
3

Q
K

E
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
s
ta

te
v
e
c
to

r-
s
im

u
la

to
r,

 0
.1
7
7
8
2
7
9
4
1
0
0
3
8
9
2
3

F
ig

u
re

6
.

T
he

se
fi

gu
re

s
d

ep
ic

tt
he

re
su

lt
s

fr
om

ou
r

ex
pe

ri
m

en
ts

,c
om

pa
ri

ng
th

e
fi

ve
be

st
Q

M
L

an
d

cl
as

si
ca

lM
L

al
go

ri
th

m
s

in
te

rm
s

of
ac

cu
ra

cy
on

d
at

as
et

s
us

in
g

th
e

ex
po

ne
nt

ia
lm

ap
to

cr
ea

te
SU

(2
)-

tr
an

sf
or

m
at

io
ns

on
co

m
pl

ex
ve

ct
or

s.
T

he
u

p
p

e
r

p
a
rt

ill
us

tr
at

es
th

e
ac

cu
ra

cy
of

th
e

al
go

ri
th

m
s

on
d

if
fe

re
nt

sa
m

pl
e

si
ze

s,
w

hi
le

th
e

lo
w

e
r

p
a
rt

d
em

on
st

ra
te

s
ho

w
th

e
ru

nt
im

es
ch

an
ge

w
it

h
th

e
in

cr
ea

si
ng

si
ze

of
th

e
te

st
d

at
as

et
.T

he
ri

g
h

t
p

a
rt

co
nt

ai
ns

th
e

le
ge

nd
,i

nd
ic

at
in

g
w

hi
ch

al
go

ri
th

m
s

w
er

e
us

ed
,a

nd
,m

or
e

sp
ec

ifi
ca

lly
,t

he
d

iff
er

en
tp

ar
am

et
ri

za
ti

on
s

of
th

e
em

pl
oy

ed
qu

an
tu

m
m

ac
hi

ne
le

ar
ni

ng
al

go
ri

th
m

s.
Fu

rt
he

rm
or

e,
th

e
le

ge
nd

is
so

rt
ed

in
d

ec
re

as
in

g
or

d
er

of
th

e
av

er
ag

e
ac

cu
ra

cy
of

th
e

em
p

lo
ye

d
al

go
ri

th
m

s.
T

he
p

ar
am

et
ri

za
ti

on
fo

r
th

e
Q

K
E

is
as

fo
llo

w
s:

Q
K

E
,f

ea
tu

re
m

ap
,

qu
an

tu
m

si
m

ul
at

or
,C

-V
al

ue
fo

r
th

e
SV

M
al

go
ri

th
m

.

173



Entropy 2023, 25, 992

0
2

5
0

5
0

0
7

5
0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

#
 o

f 
S
a
m

p
le

s
 i
n
 t

h
e
 D

a
ta

 S
e
t

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Accuracy

0
2

5
0

5
0

0
7

5
0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

#
 o

f 
S
a
m

p
le

s
 i
n
 t

h
e
 D

a
ta

 S
e
t

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

Time (s)

Q
u
a
n
tu

m
 M

a
c
h
in

e
 L

e
a
rn

in
g
 A

lg
o
ri

th
m

s

R
a
n
d
o
m

S
e
a
rc

h
, 
C

a
tB

o
o
s
t,

 r
e
s
u
lt

s

O
u
tO

fT
h
e
B

o
x
, 
C

a
tB

o
o
s
t,

 r
e
s
u
lt

s

R
a
n
d
o
m

S
e
a
rc

h
, 
X

G
B

o
o
s
t,

 r
e
s
u
lt

s

O
u
tO

fT
h
e
B

o
x
, 
X

G
B

o
o
s
t,

 r
e
s
u
lt

s

R
a
n
d
o
m

S
e
a
rc

h
, 
L
ig

h
tG

B
M

, 
re

s
u
lt

s

O
u
tO

fT
h
e
B

o
x
, 
L
ig

h
tG

B
M

, 
re

s
u
lt

s

O
u
tO

fT
h
e
B

o
x
, 
M

L
P
, 
re

s
u
lt

s

O
u
tO

fT
h
e
B

o
x
, 
S
V

M
, 
re

s
u
lt

s

R
a
n
d
o
m

S
e
a
rc

h
, 
S
V

M
, 
re

s
u
lt

s

O
u
tO

fT
h
e
B

o
x
, 
R

id
g
e
, 
re

s
u
lt

s

R
a
n
d
o
m

S
e
a
rc

h
, 
M

L
P
, 
re

s
u
lt

s

R
a
n
d
o
m

S
e
a
rc

h
, 
R

id
g
e
, 
re

s
u
lt

s

O
u
tO

fT
h
e
B

o
x
, 
L
a
s
s
o
, 
re

s
u
lt

s

R
a
n
d
o
m

S
e
a
rc

h
, 
L
a
s
s
o
, 
re

s
u
lt

s

F
ig

u
re

7
.

T
he

se
fi

gu
re

s
d

ep
ic

tt
he

re
su

lt
s

fr
om

ou
r

ex
p

er
im

en
ts

,c
om

p
ar

in
g

d
if

fe
re

nt
ly

p
ar

am
et

er
iz

ed
cl

as
si

ca
lm

ac
hi

ne
le

ar
ni

ng
al

go
ri

th
m

s
on

th
e

SU
(2

)-
ge

ne
ra

te
d

da
ta

se
ts

.T
he

u
p

p
e
r

p
a
rt

ill
us

tr
at

es
th

e
be

ha
vi

or
of

th
e

ac
cu

ra
ci

es
,w

hi
le

th
e

lo
w

e
r

p
a
rt

de
m

on
st

ra
te

s
ho

w
th

e
ru

n
ti

m
es

ch
an

ge
w

it
h

th
e

in
cr

ea
si

ng
si

ze
of

th
e

te
st

d
at

as
et

.T
he

ri
g

h
t

p
a
rt

co
nt

ai
ns

th
e

le
ge

nd
,i

nd
ic

at
in

g
w

hi
ch

al
go

ri
th

m
s

w
er

e
us

ed
,a

nd
m

or
e

sp
ec

ifi
ca

lly
,t

he
d

iff
er

en
tp

ar
am

et
ri

za
ti

on
s

of
th

e
em

pl
oy

ed
m

ac
hi

ne
le

ar
ni

ng
al

go
ri

th
m

s.
Fu

rt
he

rm
or

e,
th

e
le

ge
nd

is
so

rt
ed

in
de

cr
ea

si
ng

or
de

r
of

th
e

av
er

ag
e

ac
cu

ra
cy

of
th

e
em

pl
oy

ed
al

go
ri

th
m

s.

174



Entropy 2023, 25, 992

0
2

5
0

5
0

0
7

5
0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

#
 o

f 
S
a
m

p
le

s
 i
n
 t

h
e
 D

a
ta

 S
e
t

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Accuracy

0
2

5
0

5
0

0
7

5
0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

#
 o

f 
S
a
m

p
le

s
 i
n
 t

h
e
 D

a
ta

 S
e
t

0

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

5
0

0
0

0

6
0

0
0

0

7
0

0
0

0

Time (s)

Q
u
a
n
tu

m
 M

a
c
h
in

e
 L

e
a
rn

in
g
 A

lg
o
ri

th
m

s

Q
K

E
, 
Z

F
e
a
tu

re
M

a
p
, 
s
ta

te
v
e
c
to

r-
s
im

u
la
t
o
r
, 
1

0
0

0
.0

Q
K

E
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
s
ta

te
v
e
c
to

r-
s
im

u
la
t
o
r
, 

1
7

7
.8

2
7

9
4

1
0

0
3

8
9

2
2

8

Q
K

E
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
a
e
r-
s
im

u
la
t
o
r
, 

5
.6

2
3

4
1

3
2

5
1

9
0

3
4

9
1

Q
K

E
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
q
a
s
m
-s
im

u
la
t
o
r
, 

3
1

.6
2

2
7

7
6

6
0

1
6

8
3

7
9

3

Q
K

E
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
s
ta

te
v
e
c
to

r-
s
im

u
la
t
o
r
, 

0
.1

7
7

8
2

7
9

4
1

0
0

3
8

9
2

3

Q
K

E
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
a
e
r-
s
im

u
la
t
o
r
, 

0
.1

7
7

8
2

7
9

4
1

0
0

3
8

9
2

3

Q
K

E
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
a
e
r-
s
im

u
la
t
o
r
, 

0
.1

7
7

8
2

7
9

4
1

0
0

3
8

9
2

3

Q
K

E
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
s
ta

te
v
e
c
to

r-
s
im

u
la
t
o
r
, 

0
.1

7
7

8
2

7
9

4
1

0
0

3
8

9
2

3

V
Q

C
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
E
ff

ic
ie

n
tS

U
2
, 
S
P
S

A
, 
a
e
r-
s
im

u
la
to
r

V
Q
C

, 
Z

Z
F
e
a
tu

re
M

a
p
, 
E
ff

ic
ie

n
tS

U
2
, 
C

O
B
Y
L
A

, 
q
a
s
m

-s
im

u
la

to
r

V
Q

C
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
E
ff

ic
ie

n
tS

U
2
, 
N

F
T
, 
s
ta

te
v
e
c
to

r-
s
im

u
la

to
r

V
Q

C
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
R

e
a
lA

m
p
li
tu

d
e
s
, 
C

O
B
Y
L
A

, 
s
ta

te
v
e
c
to

r-
s
im

u
la

to
r

V
Q

C
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
E
ff

ic
ie

n
tS

U
2
, 
C

O
B
Y
L
A

, 
a
e
r-

s
im

u
la

to
r

V
Q

C
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
R

e
a
lA

m
p
li
tu

d
e
s
, 
N

F
T
, 
s
ta

te
v
e
c
to

r-
s
im

u
la

to
r

V
Q

C
, 
Z

F
e
a
tu

re
M

a
p
, 
R

e
a
lA

m
p
li
tu

d
e
s
, 
C

O
B
Y
L
A

, 
q
a
s
m

-s
im

u
la

to
r

V
Q

C
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
E
ff

ic
ie

n
tS

U
2
, 
N

F
T
, 
a
e
r-

s
im

u
la

to
r

Q
K

E
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
a
e
r-

s
im

u
la

to
r,

 3
1

.6
2

2
7

7
6

6
0

1
6

8
3

7
9

3

Q
K

E
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
a
e
r-
s
im

u
la
t
o
r
, 

3
1

.6
2

2
7

7
6

6
0

1
6

8
3

7
9

3

V
Q

C
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
R

e
a
lA

m
p
li
tu

d
e
s
, 
C

O
B
Y
L
A

, 
a
e
r-
s
im

u
la
to
r

Q
K
E
, 
Z

F
e
a
tu

re
M

a
p
, 
q
a
s
m
-s
im

u
la
t
o
r
, 

1
7

7
.8

2
7

9
4

1
0

0
3

8
9

2
2

8

V
Q

C
, 
Z

F
e
a
tu

re
M

a
p
, 
E
ff

ic
ie

n
tS

U
2
, 
C

O
B
Y
L
A

, 
a
e
r-
s
im

u
la
to
r

V
Q
C

, 
Z

Z
F
e
a
tu

re
M

a
p
, 
R

e
a
lA

m
p
li
tu

d
e
s
, 
N

F
T
, 
q
a
s
m
-s
im

u
la
to
r

V
Q
C

, 
Z

F
e
a
tu

re
M

a
p
, 
E
ff

ic
ie

n
tS

U
2
, 
C

O
B
Y
L
A

, 
q
a
s
m

-s
im

u
la

to
r

Q
K

E
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
q
a
s
m

-s
im

u
la

to
r,

 0
.1

7
7

8
2

7
9

4
1

0
0

3
8

9
2

3

Q
K

E
, 
Z

Z
F
e
a
tu

re
M

a
p
, 
q
a
s
m
-s
im

u
la
t
o
r
, 
0

.0
0

1

V
Q

C
, 
Z

F
e
a
tu

re
M

a
p
, 
R

e
a
lA

m
p
li
tu

d
e
s
, 
S
P
S

A
, 
a
e
r-
s
im

u
la
to
r

V
Q
C

, 
Z

F
e
a
tu

re
M

a
p
, 
E
ff

ic
ie

n
tS

U
2
, 
S
P
S

A
, 
s
ta

te
v
e
c
to

r-
s
im

u
la

to
r

V
Q

C
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
R

e
a
lA

m
p
li
tu

d
e
s
, 
N

F
T
, 
q
a
s
m

-s
im

u
la

to
r

V
Q

C
, 
Z

F
e
a
tu

re
M

a
p
, 
R

e
a
lA

m
p
li
tu

d
e
s
, 
C

O
B
Y
L
A

, 
a
e
r-

s
im

u
la

to
r

V
Q

C
, 
Z

F
e
a
tu

re
M

a
p
, 
E
ff

ic
ie

n
tS

U
2
, 
C

O
B
Y
L
A

, 
s
ta

te
v
e
c
to

r-
s
im

u
la

to
r

Q
K

E
, 
Z

F
e
a
tu

re
M

a
p
, 
a
e
r-

s
im

u
la

to
r,

 1
0

0
0

.0

V
Q

C
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
E
ff

ic
ie

n
tS

U
2
, 
S
P
S

A
, 
q
a
s
m

-s
im

u
la

to
r

V
Q

C
, 
Z

F
e
a
tu

re
M

a
p
, 
R

e
a
lA

m
p
li
tu

d
e
s
, 
N

F
T
, 
a
e
r-

s
im

u
la

to
r

V
Q

C
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
E
ff

ic
ie

n
tS

U
2
, 
S
P
S

A
, 
a
e
r-

s
im

u
la

to
r

Q
K

E
, 
Z

F
e
a
tu

re
M

a
p
, 
s
ta

te
v
e
c
to

r-
s
im

u
la

to
r,

 0
.1

7
7

8
2

7
9

4
1

0
0

3
8

9
2

3

Q
K

E
, 
Z

F
e
a
tu

re
M

a
p
, 
a
e
r-
s
im

u
la
t
o
r
, 
1
.0

Q
K

E
, 
Z

F
e
a
tu

re
M

a
p
, 
q
a
s
m
-s
im

u
la
t
o
r
, 
1

0
0

0
.0

Q
K

E
, 
P
a
u
li
F
e
a
tu

re
M

a
p
, 
s
ta

te
v
e
c
to

r-
s
im

u
la
t
o
r
, 

0
.0

3
1

6
2

2
7

7
6

6
0

1
6

8
3

7
9

Q
K

E
, 
Z

F
e
a
tu

re
M

a
p
, 
a
e
r-
s
im

u
la
t
o
r
, 

1
7

7
.8

2
7

9
4

1
0

0
3

8
9

2
2

8

Q
K

E
, 
Z

F
e
a
tu

re
M

a
p
, 
q
a
s
m
-s
im

u
la
t
o
r
, 

0
.0

0
5

6
2

3
4

1
3

2
5

1
9

0
3

4
9

1

F
ig

u
re

8
.

T
he

se
fig

ur
es

d
ep

ic
tt

he
re

su
lt

s
fr

om
ou

r
ex

pe
ri

m
en

ts
fo

r
th

e
ar

ti
fic

ia
lly

ge
ne

ra
te

d
d

at
as

et
s,

co
m

pa
ri

ng
d

iff
er

en
tl

y
pa

ra
m

et
er

iz
ed

Q
M

L
al

go
ri

th
m

s
on

th
e

SU
(2

)-
ge

ne
ra

te
d

d
at

as
et

s.
T

he
u

p
p

e
r

p
a
rt

ill
u

st
ra

te
s

th
e

be
ha

vi
or

of
th

e
ac

cu
ra

ci
es

,
w

hi
le

th
e

lo
w

e
r

p
a
rt

d
em

on
st

ra
te

s
ho

w
th

e
ru

nt
im

es
ch

an
ge

w
it

h
th

e
in

cr
ea

si
ng

si
ze

of
th

e
te

st
d

at
as

et
s.

T
he

ri
g

h
t

p
a
rt

co
nt

ai
ns

th
e

le
ge

nd
,i

nd
ic

at
in

g
w

hi
ch

al
go

ri
th

m
s

w
er

e
u

se
d

an
d

,m
or

e
sp

ec
ifi

ca
lly

,t
he

d
if

fe
re

nt
p

ar
am

et
ri

za
ti

on
s

of
th

e
em

p
lo

ye
d

qu
an

tu
m

m
ac

hi
ne

le
ar

ni
ng

al
go

ri
th

m
s.

Fu
rt

he
rm

or
e,

th
e

le
ge

nd
is

so
rt

ed
in

d
ec

re
as

in
g

or
d

er
of

th
e

av
er

ag
e

ac
cu

ra
cy

of
th

e
em

p
lo

ye
d

al
go

ri
th

m
s.

T
he

p
ar

am
et

ri
za

ti
on

fo
r

th
e

Q
K

E
is

as
fo

llo
w

s:
Q

K
E

,f
ea

tu
re

m
ap

,q
u

an
tu

m
si

m
u

la
to

r,
C

-V
al

u
e

fo
r

th
e

SV
M

al
go

ri
th

m
.

T
he

pa
ra

m
et

ri
za

ti
on

fo
r

th
e

V
Q

C
is

as
fo

llo
w

s:
V

Q
C

,f
ea

tu
re

m
ap

,A
ns

at
z,

op
ti

m
iz

er
,q

ua
nt

um
si

m
ul

at
or

.

175



Entropy 2023, 25, 992

5.3. Results on Benchmark Datasets

In this section, we discuss the performance of quantum machine learning and classical
machine learning algorithms on six benchmark datasets described in Section 3.5. We include
results for the quantum classifiers detailed in Section 3.3 and the classical machine learning
classifiers discussed in Section 3.2. The scores/accuracies were obtained using randomized
search cross-validation from Scikit-learn with 20 models and five-fold cross-validation.

Our results, shown in Table 5, display the best five-fold cross-validation scores (upper
table) and the scores of the best model evaluated on an unseen test subset of the original data
(lower table), which makes up 20% of the original data. We observe varying performances
of the algorithms on these benchmark datasets.

Table 5. These tables present the scores/accuracies of our experiments conducted on publicly
available classification datasets. The upper table displays the best five-fold cross-validation scores,
obtained using randomized search cross-validation from Scikit-learn, which were employed to
identify the optimal model. The lower table shows the scores of the best model evaluated on an
unseen test subset of the original data. We include results for the six datasets described in Section 3.5,
the quantum classifiers detailed in Section 3.3, and the classical machine learning classifiers discussed
in Section 3.2.

Classifier\Dataset Iris Wine ILPD BC-Coimbra TAE Breast-Tissue

VQC 0.817 0.817 0.706 0.599 0.417 0.339

QKE 0.908 0.853 0.706 0.620 0.483 0.382

Ridge 0.914 0.875 0.080 0.053 0.053 <0.001

Lasso 0.914 0.870 0.085 0.004 0.004 <0.001

MLP 0.975 0.937 0.712 0.687 0.425 0.406

SVM 0.958 0.759 0.706 0.630 0.450 0.382

XGBoost 0.958 0.986 0.695 0.656 0.533 0.441

LightGBM 0.967 0.986 0.699 0.666 0.475 0.393

CatBoost 0.950 0.979 0.702 0.688 0.525 0.440

Classifier\Dataset Iris Wine ILPD BC-Coimbra TAE Breast-Tissue

VQC 0.767 0.639 0.744 0.541 0.388 0.334

QKE 1.0 0.833 0.744 0.792 0.613 0.409

Ridge 0.947 0.878 0.115 0.234 <0.001 <0.001

Lasso 0.945 0.882 0.115 0.296 <0.001 <0.001

MLP 1.0 1.0 0.769 0.875 0.387 0.455

SVM 1.0 0.972 0.743 0.875 0.355 0.455

XGBoost 1.0 1.0 0.735 0.917 0.533 0.441

LightGBM 1.0 1.0 0.752 0.917 0.419 0.455

CatBoost 1.0 1.0 0.744 0.917 0.645 0.545

Notably, both the variational quantum circuit and the quantum kernel estimator classi-
fier show competitive performance on several datasets but do not consistently outperform
classical ML algorithms. In particular, QKE achieves a perfect score on the Iris dataset, but
its performance varies across the other datasets.

Classical ML algorithms, such as multilayer perceptron, support vector machines,
XGBoost, LightGBM, and CatBoost, exhibit strong performance across all datasets, with
some algorithms achieving perfect scores on multiple datasets. CatBoost consistently
performs well, ranking as the top-performing algorithm on three of the six datasets. Ridge
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and Lasso regression show high accuracy on Iris and Wine datasets but perform poorly on
the others.

When comparing the runtimes of the experiments, as presented in Table 6, it becomes
evident that QML algorithms take substantially longer to execute than their classical
counterparts. For instance, the VQC and QKE classifiers take hours to days to complete
on various datasets, whereas classical ML algorithms such as Ridge, Lasso, MLP, SVM,
XGBoost, LightGBM, and CatBoost typically take seconds to minutes.

This significant difference in runtimes could be attributed to the inherent complexity
and resource requirements of QML algorithms, which generally demand specialized quan-
tum hardware and simulators. On the other hand, classical ML algorithms are optimized
for execution on conventional hardware, making them more efficient and faster to run.

In conclusion, while QML algorithms such as VQC and QKE demonstrate potential
in achieving competitive performance on certain datasets, their relatively longer runtimes
and less consistent performance across the benchmark datasets may limit their practi-
cal applicability compared to classical ML algorithms. Classical ML algorithms, such as
CatBoost, XGBoost, and LightGBM, continue to offer superior and more consistent perfor-
mance with faster execution times, solidifying their place as reliable and powerful tools for
classification tasks.

Table 6. This table presents the combined runtimes of our experiments conducted on well-known
and publicly available classification datasets. The runtimes include both the five-fold randomized
search cross-validation process from Scikit-learn, which was employed to identify the optimal model,
and the evaluation of the best model on an unseen test subset of the original data. We include results
for the six datasets described in Section 3.5, the quantum classifiers detailed in Section 3.3, and the
classical machine learning classifiers discussed in Section 3.2.

Classifier\
Dataset

Iris Wine ILPD BC-Coimbra TAE Breast-Tissue

VQC 3:32:16.547605 1 day, 13:56:59.455185 2 days, 23:03:26.398856 9:55:17.907443 2:46:25.921553 9:01:58.623806

QKE 2:03:57.921154 21:41:38.738255 7 days, 6:30:41.179676 5:02:26.430001 1:28:54.069725 3:37:05.655104

Ridge 0:00:00.175009 0:00:00.496771 0:00:00.399229 0:00:00.240857 0:00:00.209600 0:00:00.296966

Lasso 0:00:00.173051 0:00:00.181444 0:00:00.237455 0:00:00.192257 0:00:00.229508 0:00:00.225531

MLP 0:00:16.876288 0:00:10.477420 0:00:26.748907 0:00:10.951229 0:00:08.475263 0:00:13.729790

SVM 0:00:00.143353 0:00:00.165431 0:00:00.484485 0:00:00.180694 0:00:00.228508 0:00:00.226784

XGBoost 0:00:03.809085 0:00:04.030425 0:00:04.752627 0:00:02.744122 0:00:05.820371 0:00:06.864497

LightGBM 0:00:02.971164 0:00:03.180770 0:00:03.062553 0:00:01.462174 0:00:03.056615 0:00:04.540870

CatBoost 0:00:06.465975 0:00:18.511612 0:00:11.352944 0:00:07.460460 0:00:06.964821 0:00:26.639070

5.4. Comparison and Discussion

In this study, we have compared the performance of quantum machine learning and
classical machine learning algorithms on six benchmark datasets and two types of artifi-
cially generated classification datasets. We included results for quantum classifiers, such as
variational quantum circuit and quantum kernel estimator, and classical machine learning
classifiers, such as CatBoost, XGBoost, and LightGBM. Our experiments showed that while
QML algorithms demonstrate potential in achieving competitive performance on certain
datasets, they do not consistently outperform classical ML algorithms. Additionally, their
longer runtimes for the whole process, i.e., hyperparameter tuning via randomized search
and five-fold cross-validation, the corresponding training and testing, and less consistent
performance across the benchmark datasets, may limit their practical applicability com-
pared to classical ML algorithms, which continue to offer superior and more consistent
performance with faster execution times. Furthermore, we constructed artificial datasets
with the structure and rulings of quantum Mechanics in mind, i.e., we used symmetry prop-
erties and unitary transformations to generate a classification dataset from SU(2)-matrices
in order to demonstrate an advantage of quantum machine learning algorithms to tackle
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problems with an inherent structure relatable to that of quantum circuits and quantum
mechanics overall. However, also for these datasets, the employed quantum machine
learning algorithms performed reasonably but did not outperform sophisticated boost
classifiers. Thus, we cannot conclude a quantum advantage for these datasets.

It is essential to highlight that the QML algorithms’ performance in our experiments
was based on simulated quantum infrastructures. This is a significant limitation to consider,
as the specific constraints and characteristics of the simulated hardware may influence the
performance of these algorithms. Furthermore, given the rapid advancement of quantum
technologies and hardware, this constraint might be obsolete in the near future.

The impact of quantum simulators, feature maps, and quantum circuits on the per-
formance of quantum estimators stems from the fact that these components play crucial
roles in shaping the behavior and capabilities of quantum machine learning algorithms.
Quantum simulators, which emulate quantum systems on classical computers, introduce
various levels of approximation and noise, leading to deviations from ideal quantum be-
havior. Different simulators may employ distinct algorithms and techniques, resulting in
variations in performance.

Feature maps, responsible for encoding classical data into quantum states, determine
how effectively the quantum system can capture and process information. The choice of
feature map can greatly influence the ability of quantum algorithms to extract meaningful
features and represent the data in a quantum-mechanical space.

Similarly, quantum circuits, composed of quantum gates and operations, define the
computational steps performed on the encoded data. Different circuit designs and configu-
rations can affect the expressiveness and depth of the quantum computation, potentially
impacting the accuracy and efficiency of the quantum estimators.

Considering the diverse options for quantum simulators, feature maps, and quantum
circuits, it becomes essential for researchers to provide detailed explanations of their hyper-
parameter choices. This entails clarifying the rationale behind selecting a specific simulator,
feature map, or circuit design, as well as the associated parameters and their values. By
providing such explanations, researchers can enhance the reproducibility and compara-
bility of results, enabling the scientific community to better understand the strengths and
limitations of different quantum machine learning algorithms.

Unfortunately, the current state of the field often overlooks the thorough discussion
of hyperparameter choices in many studies. This omission restricts the transparency and
interpretability of research outcomes and hinders the advancement of quantum machine
learning. To address this issue, researchers should embrace a culture of providing com-
prehensive documentation regarding hyperparameter selection, sharing insights into the
decision-making process, and discussing the potential implications of different choices.

By encouraging researchers to provide detailed explanations of hyperparameter
choices and corresponding code, we can foster a more robust and transparent research
environment in quantum machine learning. This approach enables the replication and
comparison of results, promotes knowledge sharing, and ultimately contributes to the
development of reliable and effective quantum machine learning algorithms. Additionally,
our program code serves as introductory material, providing easy-to-use implementations
and a foundation for comparing quantum machine learning and classical machine learning
(CML) algorithms.

One possible direction for future research is exploring quantum ensemble classifiers
and, consequently, quantum boosting classifiers, as suggested by Schuld et al. [40]. This
approach might help in improving the capabilities of QML algorithms and make them
more competitive with state-of-the-art classical ML algorithms in terms of high accuracies.

Finally, the relatively lower performance of the employed quantum machine learning
algorithms compared to, for example, the employed boosting classifiers might be attributed
to quantum machine learning, being constrained by specific rules of quantum mechanics.

In the authors’ opinion, quantum machine learning might be constrained by the uni-
tary transformations inherent in, for example, the variational quantum circuits. These
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transformations are part of the unitary group U(n). Thus, all transformations are con-
strained by symmetry properties. Classical machine learning models are not constrained
by these limitations, meaning that, for instance, different activation functions in neural
networks do not preserve certain distance metrics or probabilities when processing data.
However, expanding the set of transformations of quantum machine learning and getting
rid of possible constraints might improve the capabilities of quantum machine learning
models such that these algorithms might be better capable of capturing the information of
more complex data. However, this needs to be discussed in the context of quantum com-
puters such that one determines what all possible transformations on a quantum computer
are. This means that future research needs to consider the applicability of advanced mathe-
matical frameworks for quantum machine learning regarding the formal requirements of
quantum computers.

Furthermore, another constraint of quantum machine learning is that it, and quantum
mechanics in general, relies on Hermitian matrices, e.g., to provide real-valued eigenvalues
of observables. However, breaking this constraint might be another way to broaden the
capabilities of quantum machine learning to better capture complexity, e.g., by using non-
Hermitian kernels in a quantum kernel estimator. Here, we want to mention the book by
Moiseyev [41], which introduces non-Hermitian quantum mechanics. Furthermore, quan-
tum computers, in general, might provide a testing ground for non-Hermitian quantum
mechanics in comparison to Hermitian quantum mechanics. However, at this point, this is
rather speculative, but given that natural data are nearly always corrupted by noise and
symmetries are never truly perfect in nature, breaking constraints and symmetries might
be ideas to expand the capabilities of QML.

6. Conclusions

In this research, we have explored the applicability of quantum machine learning
for classification tasks by examining the performance of variational quantum circuit and
quantum kernel estimator algorithms. Our comparison of these quantum classifiers with
classical machine learning algorithms, such as XGBoost, Ridge, Lasso, LightGBM, CatBoost,
and MLP, on six benchmark datasets and artificially generated classification datasets demon-
strated that QML algorithms can achieve competitive performance on certain datasets.
However, they do not consistently outperform their classical ML counterparts, partic-
ularly with regard to runtime performance and accuracy. Quite the contrary, classical
machine learning algorithms still demonstrate superior performance, especially in terms
of increased accuracy, in most of our experiments. Furthermore, we cannot conclude
a quantum advantage even for artificial data built by data manipulations inherent to
quantum mechanics.

As our study’s performance comparison relied on simulated quantum circuits, it is
important to consider the limitations and characteristics of simulated hardware, which may
affect the true potential of quantum machine learning. Given the rapid advancement of
quantum technologies and hardware, these constraints may become less relevant in the future.

Quantum simulators, feature maps, and quantum circuits significantly influence quan-
tum estimator performance; hence, a detailed discussion of the chosen hyperparameters is
essential. The absence of such a discussion in current research limits the interpretation and
replication of experiments. Thus, we aim to encourage transparency in decision-making
processes to promote a robust research environment, aiding in knowledge sharing and the
creation of reliable quantum machine learning algorithms.

Despite the current limitations, this study has shed light on the potential and chal-
lenges of quantum machine learning compared to classical approaches. Thus, by providing
our complete code in a GitHub repository, we hope to foster transparency, encourage
further research in this field, and offer a foundation for other researchers to build upon
as they explore the world of quantum machine learning. Furthermore, the developed
SU(2)-data creation might serve as a quantum data prototype for future experiments, and
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both quantum and regular machine learning algorithms can be tested for their accuracy on
datasets like these.

Future research should also consider exploring quantum ensemble classifiers and
quantum boosting classifiers, as well as addressing the limitations imposed by the specific
rules of quantum mechanics. By breaking constraints and symmetries and expanding the
set of transformations in quantum machine learning, researchers may be able to unlock its
full potential.
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Appendix A. Parametrization

This Appendix lists the parameter grids for all employed algorithms per the imple-
mentations from Scikit-learn and Qiskit [16,24]. Thus, for further explanations on the
parameters and how they influence the discussed algorithm, the reader is referred to the
respective sources, which we linked in Sections 3.2 and 3.3.

Appendix A.1. Ridge
param_grid = {

’alpha’: [0.001, 0.01, 0.1, 1, 10, 100],

’fit_intercept’: [True, False],

’normalize’: [True, False],

’copy_X’: [True, False],

’max_iter’: [100, 500, 1000],

’tol’: [1e-4, 1e-3, 1e-2],

’solver’: [’auto’, ’svd’, ’cholesky’, ’lsqr’, ’sparse_cg’, ’sag’, ’saga’],

’random_state’: [42]

}

Appendix A.2. Lasso

param_grid = {

’alpha’: [0.001, 0.01, 0.1, 1, 10, 100],

’fit_intercept’: [True, False],

’normalize’: [True, False],

’precompute’: [True, False],

’copy_X’: [True, False],

’max_iter’: [100, 500, 1000],

’tol’: [1e-4, 1e-3, 1e-2],

’warm_start’: [True, False],

’positive’: [True, False],

’random_state’: [42],

’selection’: [’cyclic’, ’random’]

}
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Appendix A.3. SVM

param_grid = {

’C’: [0.1, 1, 10, 100],

’kernel’: [’linear’, ’poly’, ’rbf’, ’sigmoid’],

’degree’: [2, 3, 4],

’gamma’: [’scale’, ’auto’],

’coef0’: [0.0, 1.0, 2.0],

’shrinking’: [True, False],

’probability’: [False],

’tol’: [1e-4, 1e-3, 1e-2],

’cache_size’: [200],

’class_weight’: [None, ’balanced’],

’verbose’: [False],

’max_iter’: [200, 300, 400],

’decision_function_shape’: [’ovr’, ’ovo’],

’break_ties’: [False],

’random_state’: [42]

}

Appendix A.4. MLP

param_grid = {

’hidden_layer_sizes’: [(50,), (100,), (150,)],

’activation’: [’relu’, ’tanh’],

’solver’: [’adam’, ’sgd’],

’alpha’: [0.0001, 0.001, 0.01],

’learning_rate’: [’constant’, ’invscaling’, ’adaptive’],

’max_iter’: [200, 300, 400]

}

Appendix A.5. XGBoost

param_grid = {

’max_depth’: [3, 5, 7, 10],

’learning_rate’: [0.01, 0.05, 0.1, 0.2],

’n_estimators’: [50, 100, 150, 200],

’subsample’: [0.5, 0.8, 1],

’colsample_bytree’: [0.5, 0.8, 1]

}

Appendix A.6. LightGBM

param_grid = {

’max_depth’: [3, 5, 7, 10],

’learning_rate’: [0.01, 0.05, 0.1, 0.2],

’n_estimators’: [50, 100, 150, 200],

’subsample’: [0.5, 0.8, 1],

’colsample_bytree’: [0.5, 0.8, 1]

}

Appendix A.7. CatBoost
param_grid = {

’iterations’: [50, 100, 150, 200],

’learning_rate’: [0.01, 0.05, 0.1, 0.2],

’depth’: [3, 5, 7, 10],

’l2_leaf_reg’: [1, 3, 5, 7, 9],

}
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Appendix A.8. QKE
For this Algorithm, we precomputed the kernel matrix using Qiskit and then per-

formed the support vector classification via the vanilla SVM algorithm from Scikit-learn.

param_grid = {

’feature_map’: [PauliFeatureMap, ZFeatureMap, ZZFeatureMap],

’quantum_instance’: [

QuantumInstance(Aer.get_backend(’aer_simulator’), shots=1024),

QuantumInstance(Aer.get_backend(’qasm_simulator’), shots=1024),

QuantumInstance(Aer.get_backend(’statevector_simulator’), shots=1024)

],

’C’ : np.logspace(-3, 3, 9),

}

Appendix A.9. VQC
param_grid = {

’feature_map’: [PauliFeatureMap, ZFeatureMap, ZZFeatureMap],

’ansatz’: [EfficientSU2, TwoLocal, RealAmplitudes],

’optimizer’: [

COBYLA(maxiter=max_iter),

SPSA(maxiter=max_iter),

NFT(maxiter=max_iter),

],

’quantum_instance’: [

QuantumInstance(Aer.get_backend(’aer_simulator’), shots=1024),

QuantumInstance(Aer.get_backend(’qasm_simulator’), shots=1024),

QuantumInstance(Aer.get_backend(’statevector_simulator’), shots=1024)

],

}
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Abstract: In order to increase the security and robustness of quantum images, this study combined
the quantum DNA codec with quantum Hilbert scrambling to offer an enhanced quantum image
encryption technique. Initially, to accomplish pixel-level diffusion and create enough key space for
the picture, a quantum DNA codec was created to encode and decode the pixel color information
of the quantum image using its special biological properties. Second, we used quantum Hilbert
scrambling to muddle the image position data in order to double the encryption effect. In order to
enhance the encryption effect, the altered picture was then employed as a key matrix in a quantum
XOR operation with the original image. The inverse transformation of the encryption procedure
may be used to decrypt the picture since all the quantum operations employed in this research are
reversible. The two-dimensional optical image encryption technique presented in this study may
significantly strengthen the anti-attack of quantum picture, according to experimental simulation
and result analysis. The correlation chart demonstrates that the average information entropy of the
RGB three channels is more than 7.999, the average NPCR and UACI are respectively 99.61% and
33.42%, and the peak value of the ciphertext picture histogram is uniform. It offers more security and
robustness than earlier algorithms and can withstand statistical analysis and differential assaults.

Keywords: quantum information; DNA coding; quantum image encryption; quantum image scrambling

1. Introduction

With the development of internet and communication technology, image has become
the most widely used information transmission medium. Compared with text informa-
tion, images contain more information. As a result, researchers suggest quantum image
processing by extending the digital picture to the quantum computing framework [1,2].

Quantum image processing (QIP) is committed to using quantum computing technol-
ogy to capture, restoration, and other classical image operations. its exponential storage
capacity and parallelism give this technology a strong advantage in implementing opera-
tions requiring high real-time operations such as image retrieval and processing.

The special behavior of quantum particles is regarded as the rules of quantum physics
and the tool of mathematical logic. In 1992, Lucien Hardy proposed Hardy’s paradox
while proving Bell’s theorem [3], and continued to prove the nonlocality of two particles in
1993 [4]. Moreover, Shor [5] and Grover [6] created quantum algorithms using the same
quantum computer property for integer factoring and database searching, respectively.
These algorithms perform better than their traditional versions in terms of running time.
References [5,6], which laid the foundation for diverse applications of quantum computing
in the information sciences, served as an inspiration for a great number of researchers [7–16].

Quantum image encryption can be “unconditionally secure” based on the Heisen-
berg uncertainty principle because of quantum features such as quantum entanglement,
coherence, parallelism, and superposition. Quantum picture encryption employs the “No-
Cloning Theorem”, derived from the Heisenberg uncertainty principle, to encrypt image
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data, whereas conventional encryption typically restricts the timeliness of decryption oper-
ations. That is, because the basis of replication is measurement, and because measurement
often modifies the quantum state, it is impossible to accomplish the process of accurate
duplication of any unknown quantum state in quantum mechanics.

To establish image protection in the sphere of digital pictures [17], the genuine and
meaningful images are often transformed into meaningless forms. Today’s latest research
hot topic is the quantum picture encryption technique created by fusing together quan-
tum computing and digital imaging [18–20]. There are several quantum image repre-
sentation techniques now being used [21], including FRQI [22], NEQR [23], MCQI [24],
NASS [25,26], QUALPI [27], and others. Image information encryption has caught the
attention of academics working in the area of quantum information processing. Recently,
several quantum image encryption methods have been created, including a quantum image
encryption scheme based on quantum image decomposition [28], an iterative extended
Arnold transform-based quantum image encryption method, and a quantum image cyclic
shift operation-based quantum image encryption strategy [29].

DNA coding has attracted wide attention because of its advantages such as large
storage capacity and strong parallel processing ability. Compared with the traditional
cryptography based on mathematical problems, DNA cryptography combines the two
fields of mathematics and biology, which greatly enhances the security and robustness of
DNA cryptography. In 1994, Adleman carried out the world’s first DNA computing ex-
periment [30] and published related results in the journal Science. This result revealed that
DNA molecules have computing power in addition to their stable genetic properties, and
have since opened up a new information age [31–33]. At present, DNA coding is also grad-
ually emerging in the field of encryption [34–37]. Scholars have proposed a classical image
encryption algorithm that combines DNA coding technology with quantum walking [38].

In this research, a DNA coding technique and picture Hilbert scrambling were com-
bined to develop a quantum image encryption scheme. The encryption technique uses
Hilbert quantum image scrambling and quantum picture DNA coding and decoding. By
closely integrating the two technologies, the goal of enhancing picture security may be
achieved by more effectively reducing the high connection between neighboring pixels. We
also developed the quantum DNA codec’s implementation circuit.

The rest of this article is structured as follows: Section 2 introduces the background.
Section 3 shows the quantum circuit model. In Section 4, the flow of encryption and
decryption algorithm is shown in detail. Section 5 introduces the theoretical analysis and
experimental simulation. Finally, Section 6 draws a conclusion.

2. Related Work

2.1. Quantum Color Image Representation

NCQI is a quantum color digital image representation method proposed in 2017 [39].
We briefly reviewed the NCQI quantum representation model so as to introduce the
quantum image encryption algorithm proposed in this paper.

The NCQI model of a 2n × 2n image |ψ〉 can be mathematically expressed as follows:

|ψ〉 = 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

|c(y,x)〉 ⊗ |yx〉, (1)

where
∣∣∣c(y,x)

〉
represents the color value of the pixel, which can be encoded by binary

sequence Rq−1 · · · R0Gq−1 · · · G0Bq−1 · · · B0.
Every pixel contained in a color channel, which has a range of [0, 2q − 1], is represented

by three components: the horizontal position X, the vertical position Y, and the color
information c(y,x). The R, G, and B range [0, 2q − 1] of each channel is utilized to store
picture data in an NCQI state of a color image using the 2n + 3q qubits.

Figure 1 is an example of a 4-by-4-color picture with the three channels, R, G, and
B, with the range size

[
0, 28 − 1

]
, n = 1, and q = 8. The equation in Figure 1 states that
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the whole NCQI is kept in a state of normalized quantum superposition, with each base
standing in for a single pixel.

Figure 1. A color image and its quantum representation of NCQI.

2.2. DNA Coding Method and Operation

Adenine (A), thymine (T), cytosine (C), and guanine (G) are the four nucleotides
that make up the molecular structure of deoxyribonucleic acid (DNA), which is based
on the biological model (G). The DNA pairing rule states that A and T pair and C and G
pair. Similarly, in the binary complementary calculation, 1 and 0 are complementary, and
eight coding schemes which accord with the rules of a biological model were obtained by
encoding each nucleic acid base with 2-bit binary number respectively, as shown in Table 1.
Each RGB three-channel pixel in a color image is represented as a 24-bit binary sequence as
part of the encryption procedure, where each color channel’s 8-bit binary sequence may be
represented by four bases. For instance, scheme 1 will produce CACT if an image pixel’s
R-channel gray value is 71, which is represented by the binary sequence 01000111.

Table 1. DNA coding rules.

1 2 3 4 5 6 7 8

00 A A C C G G T T
01 C G A T A T C G
10 G C T A T A G C
11 T T G G C C A A

2.3. Quantum Hilbert Scrambling

With the development of quantum image processing, many image scrambling methods
have emerged [40,41]. In this work, quantum Hilbert image scrambling [42] was used.

An original image of size 2n × 2n can be regarded as a matrix. We call this matrix the
starting matrix (or original matrix) Sn and used 1 to 22n to encode all pixels,

Sn =

⎛⎜⎜⎜⎝
1 2 3 · · · 2n

2n + 1 2n + 2 2n + 3 · · · 2n+1

...
...

...
...

...
22n−1 + 1 22n−1 + 2 22n−1 + 3 · · · 22n.

⎞⎟⎟⎟⎠ (2)

The arrangement of Sn is Hn. For example, H0 = (1), H1 =

(
1 2
4 3

)
, H2 =⎛⎜⎜⎝

1 2 15 16
4 3 14 13
5 8 9 12
6 7 10 11

⎞⎟⎟⎠, where Hn(i, j) represents the pixel at position (i, j) of the starting

matrix Sn. Hilbert curves (see Figure 2) and scrambled images (see Figure 3) can be
obtained along the Hn.
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Figure 2. Hilbert curve.

Figure 3. Results of performing a single Hilbert image scrambling.

This paper adopted the improved Hilbert scrambling recursive generation algorithm
in [42]. If A is a matrix, then AT represents its transposition, Aud its upper and lower
direction reversed, Ald its left and right inversion, and App its centre rotation matrix. For a
quantum computer to implement Hilbert image scrambling,

Hn+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Hn (Hn + 4nEn)
T

(Hn + 3 × 4nEn)
pp (Hn + 2 × 4nEn)

T

)
, n is even(

Hn (Hn + 3 × 4nEn)
pp

(Hn + 4nEn)
T (Hn + 2 × 4nEn)

T

)
, n is odd

, (3)

where n is a positive integer and the initial matrix is H1 =

(
1 2
4 3

)
, En =

⎛⎜⎜⎜⎝
1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎞⎟⎟⎟⎠.

According to reference [42], initialization, and even and odd basic circuits, are also
integrated circuits, and the process is described in Figure 4. The three parts that make up
the three basic circuits are called three circuit modules.
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Figure 4. Flow chart of recursive generation algorithm.

2.4. Quantum XOR

According to reference [43], it needs to be divided into 22n sub-operations Yy,x in order
to implement the XOR operation on each pixel value of the quantum image. Use Y to
represent a matrix of the same size as the image in the sub-operation:

Y =

⎛⎜⎝ y0,1 · · · y0,2n−1
...

. . .
...

y2n−1,0 · · · y2n−1,2n−1

⎞⎟⎠, (4)

where yy,x = m0
yxm1

yxm2
yxm3

yx, · · · , m23
yx , mi

yx ∈ 0, 1, and the quantum gate operation se-
quence F are generated according to yi,j:

F =

⎛⎜⎝ b0,1 · · · b0,2n−1
...

. . .
...

b2n−1,0 · · · b2n−1,2n−1

⎞⎟⎠, (5)

where Fyx = V0
yxV1

yx . . . V23
yx , Vi

yx =

{
X, mi

yx = 1
I, mi

yx = 0
represents the realization of the X-gate

transformation or I-gate transformation of Ci
yx, respectively:

GX =

(
0 1
1 0

)
, GI =

(
1 0
0 1.

)
(6)

When F is applied to the entire image, there are:

F|I〉 =
2n−1

∏
x=0

2n−1

∏
y=0

Fyx|I〉

=
1
2n

2n−1

∑
x=0

2n−1

∑
y=0

⊗23
i=0

∣∣∣Ci
yx ⊗ mi

yx

〉
|yx〉

=
1
2n

2n−1

∑
x=0

2n−1

∑
y=0

| f (y, x)〉|yx〉,

(7)

where | f (Y, X)〉 represents the new pixel value after pixel scrambling, and |CYX〉 is the
pixel sequence.

3. Quantum Circuit Design

The design of the DNA codec simulator’s quantum circuit, which is a crucial compo-
nent of our quantum picture encryption technique, is presented in this section.
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3.1. Quantum DNA Codec Simulator

Based on the classical DNA coding technology and the quantum image representation
of NCQI, a DNA codec simulation circuit for quantum images was designed.

In our proposed encryption algorithm, quantum DNA coding and decoding tech-
nology were used to encrypt pixel color information. NCQI representation can directly
transform the color value information of a color image with three-channel color values in
the range of [0, 2q − 1] of 2n × 2n into a binary sequence of 3q bits, so we took every two
lines as a combination to reflect the concept of bases in biology.

We encapsulated the whole quantum DNA codec into a black box. We only needed to
input the binary sequence of the image into the black box and enter the sequence number
of the coding and decoding scheme to complete the DNA codec operation of the quantum
image. Di,j was used to represent the quantum DNA codec, where i is the coding scheme
sequence number and j is the decoding scheme sequence number. As shown in Figure 5,
six lines were added to reflect the sequence number of the codec scheme, and |ψ0〉 and
|ψ1〉 were input lines as binary sequences. Three quantum lines b0,b1,b2 can represent the
numerical value of the decoding scheme sequence number. When designing quantum
circuits, we used two auxiliary circuits. While reducing a lot of time complexity, we only
added a little space complexity. Therefore, it can effectively reduce the circuit complexity
and improve the operation efficiency. If we decode it with option 6, the circuit module
of the scheme will be run directly through the three quantum lines b0,b1,b2. As a result,
only the sequence number of the decoding scheme can be input to run the circuit to realize
automatic decoding, and there is no need to select the circuit. Figure 6 shows the quantum
circuits of seven decoding schemes encoded in Rule 1.

Figure 5. QuantumDNA codec analog circuit.

Figure 6. Seven kinds of quantum DNA codec simulators encoded by Rule 1.

In this paper, we designed the quantum circuits of seven kinds of decoders with
scheme one as the coding scheme, and showed the process of transforming the same binary
sequence from scheme one to the other seven schemes. As shown in Table 1, the sequence
was first quantum DNA encoded according to scheme 1. If the second scheme is used for
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decoding, it is necessary to reverse the two lines when the high qubits are different from the
low qubits, that is, to realize the interchange between C and G. If the third scheme is used
for decoding, it is necessary to reverse all the low qubits, that is, to realize the interchange
between A and C and between T and G. If we use scheme 4 to decode, we need to reverse
the high qubit and the low qubit at the same time and, if the high qubit is different from
the low qubit, we need to flip the low qubit. If we use scheme 5 to decode, contrary to
scheme 4, we need to flip high qubits when high qubits are different from low qubits, and
if high qubits and low qubits flip low qubits at the same time. If decoding is carried out in
scheme 6, each set of high qubits needs to be flipped. If we use scheme 7 to decode, when
the high qubit and the low qubit are all flipped, the interchange between An and T will be
realized. If we use scheme 8 to decode, it is necessary to reverse all the high and low qubits,
that is, to realize the interchange between A and T and between C and G.

3.2. Hilbert Image Scrambling Quantum Circuit

The Hilbert scrambling operation of quantum image was divided into three steps:
quantum image partition and Hilbert image scrambling parity operation, in which the
parity operation is carried out alternately. The composition of these three basic circuits is
described below. In this section, k is an integer and 0 ≤ k ≤ n − 1.

3.2.1. Initialization Module

The initialization quantum module is beneficial to the segmentation of the quantum
image and the formation of Hn, and the partition module PARTITION (K) plays a major role.
The PARTITION (k) module can divide the input image of size 2n × 2n into 2n−k−1 × 2n−k−1

blocks of size 2k+1 × 2k+1; the initialization module quantum circuit is shown in Figure 7a:

Figure 7. Initializing the quantum circuit. (a) implement the block function (b) implement the
scrambling function when k is odd (c) realize the scrambling function when k is even

3.2.2. Odd(k) Module

The main function of the Odd(k) module is to encrypt the pixel position information,
where k is odd and 1 ≤ k ≤ n − 1. The main role is the odd module O(k) in the Odd(k)
module. Figure 7b shows the complete quantum circuit of the O(k) module.

3.2.3. Even (k) Module

As with the function of the Odd(k) module, the function of the Even (k) module is
to transform the pixel position, where k is even and 2 ≤ k ≤ n − 1. Figure 7c shows the
complete Even (k) quantum circuit.

4. Encryption and Decryption of Quantum Images

Quantum image diffusion and scrambling are the two key components of this paper’s
encryption phase. At the diffusion step, the picture is made confusing by using DNA
coding and various decoding techniques, and the original image is quantum XOR coded.
The approach employs iterative Hilbert scrambling during the scrambling stage to encrypt
the image’s pixel location data.
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4.1. Encryption Process

Using quantum Hilbert scrambling and DNA coding technology, we designed the
following quantum image encryption method. The original input quantum image size is
2n × 2n and the image representation is NCQI. The encryption flow chart is shown below.
Figure 8 shows the encryption process of Rule 1.

Figure 8. Algorithm flow chart applied to rule one.

Step 1: The pixel matrix of the original image is divided into three RGB channels, and
the NCQI representation model is loaded as a quantum image.

|ψ1〉 =
1
2n

2n−1

∑
y=0

2n−1

∑
x=0

|c(y, x)〉 ⊗ |yx〉. (8)

Step 2: The quantum color image is encoded and decoded through the quantum image
DNA codec.

In the NCQI representation, the RGB color information will be input into the circuit
in binary form, so this paper used rule 1 in Table 1 to encode the binary sequence, and
then decodes the sequence according to rule 6, that is, the quantum image is input to the
quantum DNA codec, the D1,6 operation is performed, and the output is |ψ2〉.

|ψ2〉 = D1,6|ψ1〉. (9)

Step 3: Perform Hilbert quantum image scrambling with |ψ2〉 iteration.
|ψ2〉has 2n × 2n = 22n pixels, and if the original image pixel order is “1, 2, 3, 4, . . . , 22n”,

the partition module PARTITION (0) will separate the picture into 2 × 2 sub-images, that is,(
a a + 1

a + 2 a + 3

)
. The last two pixels of each sub-image are switched by the C-NOT gate,

which will separate the picture into 2 × 2 sub-images.
The partition module PARTITION (1) divides the image into sub-images of 4 × 4 and

so on, and operates in sequence O(1), E(2), O(3), E(4), . . . , O(n − 1)/E(n − 1) until it is
executed to PARTITION (n − 2).

Finally, the scrambled sub-image is restored to the original image size 2n × 2n and
named |ψ3〉.

|ψ3〉 = Q2n |ψ2〉, (10)

where Q2n represents performing Hilbert quantum image scrambling on an image of size
2n × 2n.

Step 4: Between the original picture and the scrambled image, use quantum XOR coding.
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Generate matrix YYX from the pixel color value of image |ψ1〉 and convert each element
into an octet binary,

YYX =

⎛⎜⎝ y0,0 · · · y0,2n−1
...

. . .
...

y2n−1,0 · · · y2n−1,2n−1

⎞⎟⎠, (11)

where yyx = m0
yxm1

yxm2
yx . . . m23

yx, mi
yx ∈ 0, 1. According to matrix YYX, the quantum XOR

operation matrix F is generated, which is the same as yyx,byx = V0
yxV1

yxV2
yx . . . V23

yx , where
V0

yx ∼ V7
yx controls the R channel in the quantum circuit, V8

yx ∼ V15
yx controls the G channel,

and V16
yx ∼ V23

yx controls the B channel, Vi
yx =

{
X, mi

yx = 1
I, mi

yx = 0
obtain image |ψ4〉.

Step 5: Decode the image with different rules through the quantum image DNA codec
simulator.

|ψ4〉 is encoded and decoded by quantum DNA codec, perform the D1,7 operation to
get |ψ5〉, and the encryption is completed.

|ψ5〉 = D1,7|ψ4〉. (12)

4.2. Decryption Process

The reversibility of quantum circuits serves as the foundation for the quantum image
decryption technique developed in this research. As a whole, the procedure is as follows:

Step 1: On the encrypted picture, peform the inverse quantum DNA coding and
decoding procedure.

The quantum circuit module of the DNA encoder and the quantum DNA codec D7,1
are both used to decrypt the encrypted picture to produce the result |ψ4〉.

Step 2: Inverse quantum XOR coding.

|ψ3〉 = X−1
5 |ψ4〉. (13)

Step 3: The quantum image is iterated to perform Hilbert inverse scrambling.
Because the biggest difference between the quantum circuit and the classical circuit is that

the quantum circuit is reversible, and there is no information loss in this process, the Hilbert
image scrambling quantum circuit in this paper is reversible. We can input the scrambled
image |ψ3〉 and obtain the reconstructed image |ψ2〉 using quantum Hilbert inverse scrambling.

|ψ2〉 = Q−1
2n |ψ3〉. (14)

Step 4: Pass |ψ2〉 through quantum DNA codec D6,1 to obtain the original image |ψ1〉.

|ψ1〉 = D6,1|ψ2〉. (15)

5. Safety Analysis

We performed simulation experiments in MATLAB and Python using classical com-
puters since there are no quantum computers available. We did not take into account the
impact of decoherence and inaccuracy in the quantum version while processing numerical
data. In order to examine the encrypted data in this part, three color pictures of pineapples,
roses, and plants with pixel sizes of 512 × 512 were utilized as the original image. The
following summarizes the encryption and decryption simulation findings. Figure 9 shows
the comparison of the results before and after the application of this algorithm.
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Figure 9. Effect of encryption and decryption.

5.1. Histogram Analysis

One of the key indications needed to assess the security of encryption techniques is
the histogram, which may considerably reflect the intensity distribution of picture pixels.
The encrypted histograms of the three photos are shown in Figures 10–12.

In contrast to the non-uniform peak distribution of the plaintext histogram, which is
seen in the image, the peak value of the histogram encrypted by this approach becomes
uniform. As a result, the attacker is unable to obtain the picture data by studying the
ciphertext image’s histogram.

Figure 10. RGB three-channel histogram of pineapple before and after encryption.
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Figure 11. RGB three-channel histogram of rose before and after encryption.

Figure 12. RGB three-channel histogram of plants before and after encryption.

5.2. Correlation Analysis of Adjacent Pixels

A crucial metric for determining the efficacy of the encryption technique is the correla-
tion between neighboring pixels. As there is a significant connection between neighboring
pixels in the original picture, a good encryption technique should minimize this correla-
tion to zero. In this study, we utilized this coefficient to compare the correlation between
neighboring pixels both before and after the method was applied

r =
cov(x, y)√
D(x)D(y)

, (16)

where A and B represent the values of adjacent pixels, cov(A, B) is the covariance of A
and B, and

√
D(A) and

√
D(B) are the variances of A and B. In this section, the pixel

correlation between the original image and the ciphertext image was analyzed horizontally,
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vertically, and diagonally. The results are shown in Figures 13 and 14, and the specific data
are reflected in Tables 2 and 3, where C-Image represents the ciphertext image.

The suggested encryption technique clearly creates a sizable correlation gap between
the ciphertext picture and the original image based on the data shown in the chart, demon-
strating the algorithm’s effectiveness.

Figure 13. (a) Pineapple correlation analysis; (b) Rose correlation analysis; (c) Plants correlation analysis.

Table 2. Correlation analysis value of original image.

Image Channel Horizontal Vertical Diagonal

R 0.9849 0.9813 0.9833
Pineapple G 0.9753 0.9763 0.9588

B 0.9597 0.9550 0.9251
R 0.9835 0.9844 0.9753

Rose G 0.9651 0.9643 0.9466
B 0.9461 0.9446 0.9115
R 0.9539 0.9583 0.9256

Plants G 0.9556 0.9563 0.9238
B 0.9478 0.9540 0.9148

Table 3. Three-channel correlation analysis of ciphertext images.

Image Channel Horizontal Vertical Diagonal

R 0.0002 0.0045 0.0051
C-Pineapple G 0.0026 0.0012 0.0044

B 0.0037 0.0046 0.0029
R 0.0028 0.0049 0.0049

C-Rose G 0.0055 0.0023 0.0086
B 0.0034 0.0053 0.0014
R 0.0010 0.0081 0.0004

C-Plants G 0.0052 0.0043 0.0025
B 0.0057 0.0042 0.0033
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Ciphertext image-

Ciphertext image-

Ciphertext image-

Figure 14. (a) Correlation analysis after pineapple encryption; (b) Correlation analysis after Rose
encryption; (c) Correlation analysis after plants encryption.

5.3. Key Sensitivity Analysis

Two words that are often used to characterize the quantity of pixels and the av-
erage intensity of change between the original picture and the ciphertext image are
NPCR and UACI. In accordance with the associated ideal value, the key sensitivity of the
NPCR = 99.6094%, UACI = 33.4635% algorithm should be as high as possible; the more
closely the numerical value resembles the ideal value, the stronger the security of the
encryption technique should be. The data for this method’s NPCR and UACI are shown
in Table 4. Table 5 compares our work numerically to the NPCR and UACI algorithms
that have been proposed in different papers. This indicates very clearly how much more
efficiently the technique used in this research can guarantee picture confidentiality.

Table 4. Three-channel average NPCR and UACI data.

Image RGB Average NPCR RGB Average UACI

C-Pineapple 99.6138% 33.4944%
C-Rose 99.6204% 33.5147%
C-Plants 99.6097% 33.5643%

Table 5. Comparison of information entropy of different algorithms.

Algorithm Average NPCR Average UACI

Proposed 99.61% 33.42%
Ref. [44] 99.61% 31.60%
Ref. [45] 99.57% 33.38%

5.4. Information Entropy

We often use information entropy to evaluate the unpredictability of the distribution
of ciphertext pictures. The ciphertext image’s pixels may be distributed evenly via a decent
picture encryption method, making the image more resistant to outside attacks. The perfect
information entropy is eight. The image encryption effect is better and the value is more
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closely aligned with the ideal value as the pixel distribution becomes more uniform. The
information entropy of our recommended approach is shown in Table 6. The following
table provides ample proof of the algorithm’s strong security and robustness by showing
that the average information entropy of RGB’s three channels may reach 7.999.

Table 6. Information entropy data.

Ciphertext Image R G B

Pineapple 7.99925 7.99901 7.99921
Rose 7.99910 7.99930 7.99889
Plants 7.99922 7.99895 7.99912

5.5. Key Space

The modified picture serves as the key matrix in the encryption procedure described
in this research. The color picture is 512 × 512 in size, making its key space 2512×512×24

pixels, which is sufficient to stave against brute force assaults.

5.6. Scheme Reversibility Verification

Indicators used often to assess picture quality in the field of image processing include
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).

5.6.1. Peak Signal-to-Noise Ratio

To evaluate the image’s decryption quality, we employed PSNR. The floating-point
value that PSNR returns will range from 30 to 50 if the two input photos are comparable;
the higher the number, the greater the similarity. The PSNR values of plaintext pictures
and encrypted images with a size of 512 to 512 are larger than 30 dB, according to simu-
lation findings, and the average value is 43.4590. Table 7 displays the specific data. This
demonstrates the algorithm’s strong ability to aid in rebuilding.

5.6.2. Structural Similarity

The SSIM value ranges from 0 to 1. The value of SSIM increases with the degree
of similarity between the two photos. The picture acquired using the image decryption
approach suggested in this work was compared with the original image. Table 7 displays
the specific data. The average value of SSIM determined by the simulation results is
0.980358, which shows that the technology has an excellent decryption and recovery effect.

Table 7. Image similarity analysis.

Name PSNR SSIM

Pineapple 43.7358 0.982998
Rose 42.9974 0.979976
Plants 43.6438 0.978102
Average 43.4590 0.980358

6. Conclusions

Quantum image processing is committed to the use of quantum computing technology
to capture, restoration, and other classical image operations. Because of its exponential
storage capacity and parallelism, this technology has a strong advantage in realizing real-
time operations such as image retrieval and processing. In this paper, the circuit of a
quantum DNA codec was designed, and the image information was encrypted by using the
biological characteristics of DNA and the physical properties of quantum mechanics. At
the end of this article, the combination of DNA technology and quantum image encryption
was studied and verified. According to the simulation, average NPCR = 99.6094%, average
NPCR = 33.4244%, the average information entropy of RGB three channels is more than
7.999, and the average value of SSIM determined by the simulation results is 0.980358.
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These results unmistakably demonstrate the viability and effectiveness of the quantum
picture encryption system presented in this research, which is based on DNA codec and
Hilbert scrambling.

In this encryption scheme, a quantum DNA codec was designed to enable the biologi-
cal field to participate in the quantum image encryption process. It is hoped that it can play
a greater role in the later research. In the follow-up work, we hope to combine quantum
random walk with DNA technology to realize the integration of physics and biology again.
This will be the focus of our next paper.
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Abstract: The discovery of quantum algorithms offering provable advantages over the best known
classical alternatives, together with the parallel ongoing revolution brought about by classical artificial
intelligence, motivates a search for applications of quantum information processing methods to
machine learning. Among several proposals in this domain, quantum kernel methods have emerged
as particularly promising candidates. However, while some rigorous speedups on certain highly
specific problems have been formally proven, only empirical proof-of-principle results have been
reported so far for real-world datasets. Moreover, no systematic procedure is known, in general, to fine
tune and optimize the performances of kernel-based quantum classification algorithms. At the same
time, certain limitations such as kernel concentration effects—hindering the trainability of quantum
classifiers—have also been recently pointed out. In this work, we propose several general-purpose
optimization methods and best practices designed to enhance the practical usefulness of fidelity-
based quantum classification algorithms. Specifically, we first describe a data pre-processing strategy
that, by preserving the relevant relationships between data points when processed through quantum
feature maps, substantially alleviates the effect of kernel concentration on structured datasets. We also
introduce a classical post-processing method that, based on standard fidelity measures estimated on a
quantum processor, yields non-linear decision boundaries in the feature Hilbert space, thus achieving
the quantum counterpart of the radial basis functions technique that is widely employed in classical
kernel methods. Finally, we apply the so-called quantum metric learning protocol to engineer and
adjust trainable quantum embeddings, demonstrating substantial performance improvements on
several paradigmatic real-world classification tasks.

Keywords: quantum machine learning; quantum classification algorithms; quantum kernel methods

1. Introduction

Machine learning (ML) algorithms are ubiquitous in today’s world. These techniques
leverage the natural ability of computers to sieve through vast amounts of data with the aim
of revealing the underlying patterns and to accomplish a wide range of tasks, such as image
classification, automated generation of text and images or, more generally, decision making.

Quantum computers implement a novel information processing paradigm and may
provide an alternative platform for executing machine learning algorithms, an approach
known as Quantum Machine Learning (QML) [1,2]. The potential for using quantum
computation in machine learning is essentially two-fold. On the one hand, one could, for
example, leverage results from quantum optimization or quantum linear algebra [3–6] to
increase the training efficiency of classical ML models [7,8]. On the other hand, native
quantum models, such as quantum neural networks [9–17], could be engineered to directly
carry out specific learning tasks on classical or quantum data and to analyze correlations
that are hard to describe or capture classically [1].
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Quantum kernel methods applying quantum feature maps naturally emerge from
the second line of research. Here, classical input feature vectors are mapped to high-
dimensional Hilbert spaces realized with feature-dependent preparation of quantum
states [18–20]. Once such a quantum embedding is realized, a decision rule to carry
out the desired classification task can be obtained directly from the fidelity between the
encoded feature vectors [20] or by passing the resulting quantum kernel to a classical
support vector machine [18,19]. Soon after the introduction of quantum kernel methods,
it was shown that quantum kernel methods, equipped with the right quantum feature
maps, can solve certain specifically designed problems more efficiently than any known
classical counterpart [21], thus motivating a large body of research aimed at finding similar
advantages in more generic and applied contexts [22–24], including for the following: data
analysis for high-energy physics [25–27], quantum phase classification [28], fraud detec-
tion [29] and virtual screening for drug discovery [30]. While some promising examples
were identified [27,30], only proof-of-principle results have been achieved so far, mostly
based on empirical considerations. Moreover, only selected applications may be viable
in the near future due to the presence of hardware noise, although several known error
suppression and mitigation strategies [31–35] could be employed, and have, in fact, already
been tested in the context of QML [12,36].

At the same time, it has recently become clear that the high expressivity of param-
eterized quantum circuits, together with other properties, such as entangling power or
the structure of certain cost functions, can have unintended consequences. In fact, this
not only hinders the trainability of variational quantum models—leading to the so-called
barren plateau phenomenon [37–39]—but also has a negative impact on the capabilities of
quantum kernel methods [23,40]. Some of the latest theoretical advancements in the litera-
ture have addressed precisely this class of problems: for example, both Kübler et al. [40]
and Huang et al. [23] proposed projection-based approaches as well as ways to incorpo-
rate inductive biases, i.e., constraints on the range of representable functions. In parallel,
Shaydulin et al. [41] proposed a strategy to tune the bandwidth of quantum kernels, which
was shown to have effects on generalization performances [42]. However, the exponential
concentration of the kernel values, due to high expressivity, entanglement, global mea-
surements, and noise, prevents, in general, the application of fidelity and projection-based
quantum kernels to higher numbers of qubits [43].

In this work, we discuss best practices to reduce the impact of known limitations of
quantum kernel methods and we explore different general-purpose strategies to systemati-
cally enhance the performances of quantum classification algorithms, based on quantum
feature maps, with a specific focus on paradigmatic real-world datasets. First, we propose
a strategy to alleviate the problem of the exponential concentration in the presence of struc-
tured datasets. Our approach is related to the one described in Reference [41], but, instead
of global rescaling of the input features, implied by tuning the kernel bandwidth, we em-
ploy a separate scaling factor for each feature. In practice, we identify a domain of rotations
and normalize the input features so as to ensure that the arguments of each parameterized
quantum gate in a feature map do not exceed a predefined range (e.g., [−π, π]). As a
second step, we describe a classical post-processing procedure that, starting from the usual
fidelity measurements between encoded quantum feature vectors, effectively engineers
a continuous nearest-neighbor classification rule, and, therefore, enables non-linear de-
cision boundaries in the Hilbert space. This extends the basic notion of quantum kernel
and fidelity-based classifiers which, in the standard formulation, only make use of linear
separating hyperplanes. Finally, we explore the concept of trainable quantum feature maps,
originally introduced for some specific examples by Lloyd et al. [20] and Glick et al. [44].
In this case, we follow the intuition that a generic quantum feature map may not per-
form well across multiple datasets originating from a wide range of application domains,
but should rather be, at least to a certain degree, tailored to the problem. We benchmark
this procedure, known as quantum metric learning or quantum kernel alignment, on a
collection of paradigmatic datasets of practical relevance.
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The remainder of the paper is structured as follows. In Section 2, we introduce some
basic concepts related to quantum classification and quantum kernel methods (Section 2.1).
We describe the specific quantum algorithms employed in our work (Sections 2.2 and 2.3)
and we provide information about the datasets considered in our numerical experiments
(Section 2.4). We present our results in Section 3, while a discussion of their implications
and some concluding remarks are contained in Section 4.

2. Materials and Methods

2.1. Quantum Classification Algorithms and Quantum Embeddings

Classification algorithms from the family of kernel methods rely on a function, called
a kernel, that quantifies the similarity between data vectors xi. For binary classification,
the kernel function embeds the data vector into a high-dimensional feature space, where
the two classes (ideally) become linearly separable. The success of classical kernel methods
stems from the so-called kernel trick, which allows one to evaluate the kernel function
without explicitly mapping the data to the high-dimensional feature space. The widely
used radial basis function (RBF) kernel,

K(xi, xj) = exp
(
−γ‖xi − xj‖2

)
, (1)

is an example for which the effective feature space would be infinitely dimensional [45].
However, the kernel itself can be evaluated efficiently.

Quantum computers provide an alternative platform to implement kernel methods,
since they provide an efficient way to access high-dimensional Hilbert spaces into which
classical data can be embedded [20]. A feature vector x can be mapped into the space
of n-qubit quantum states by using the entries of x as arguments of a parameterized
quantum circuit U(x) [18,19]. We denote the quantum state prepared by applying such a
parameterized unitary to the zero state as

|x〉 = U(x)|0〉 . (2)

The unitary U(x) is often referred to as the quantum feature map or quantum embedding.
The potential of using such a method originates from the fact that, in general, quantum
embeddings cannot be efficiently simulated with classical computers [18,21]. This is a
necessary, albeit not sufficient, condition for achieving quantum advantage with quantum
kernel methods.

In Figure 1, we present the two feature maps that we apply in our study. The first
one, denoted as RXRZ embedding, encodes the input features in a layer of single-qubit RX
rotations, followed by a layer of RZ rotations (see Figure 1a). Here, with RK, K ∈ {X, Y, Z}
we denote the standard Pauli rotation gates. The basic building block shown in Figure 1a
can be repeated a number L of times, hence producing a L-layer version of the feature
map. If we choose the parameters in the circuit proportional to the entries xi of the data
vector x (i.e., θi,{0,1}∼xi) the required number of qubits corresponds to the dimension of the
classical data vector. The concrete relation between the parameters and the input features
is specified in Section 3.

The second feature map, denoted as ZZ embedding, and inspired by similar popular
proposals in the literature [18,30,46], is illustrated in Figure 1b. Compared to the RXRZ
embedding it additionally contains entangling operators between the qubits in order to
capture correlations in the input features. As in the RXRZ case, the ZZ feature map can also
be repeated for L layers. We choose the parameters of the two qubit RZZ gates proportional
to the product of feature values (i.e., φi,j∼xixj). The parameters of the subsequent layer of
RX rotations are proportional to a single feature value, identical to the RXRZ embedding.
The concrete relation between the parameters and the input features is specified in Section 3.
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...
...

|+〉 RX(θ0,0) RZ(θ0,1)

|+〉 RX(θ1,0) RZ(θ1,1)

|+〉 RX(θn−1,0) RZ(θn−1,1)

(a) RXRZ feature map.

. . .

. . .

. . .

...
...

...

|+〉
Rzz(φ0,1)

Rx(θ0)

|+〉
Rzz(φ1,2)

Rx(θ1)

|+〉 Rx(θ2)

|+〉
Rzz(φn−2,n−1)

Rx(θn−2)

|+〉 Rx(θn−1)

(b) ZZ feature map.

Figure 1. (a) One layer of the RXRZ feature map, which produces a classically simulatable out-
put but serves as a reference for the ZZ embedding in (b). We optionally apply L layers of the
depicted gates.

In the space of n-qubit quantum states a natural choice for the kernel function is the
overlap between two embedded feature vectors xi and xj,

K(xi, xj) =
∣∣〈xi
∣∣xj
〉∣∣2 . (3)

This quantity, also called fidelity, can be evaluated on a quantum computer by means of, for
example, the so-called SWAP test [47], or the inversion test [18].

2.2. Quantum Fidelity and RBF Fidelity Classifiers

For binary classification between two classes A and B, an intuitive method to determine
the class label of a new data point x is the fidelity classifier [20]. Given access to reference
data points belonging to the two classes (i.e., a training set), we calculate the average fidelity
of |x〉 with the embedded data points from classes A and B, denoted as {|a〉} and {|b〉},
respectively. More concretely, the decision function of the fidelity classifier can be written as

f (x) =
1

MA
∑

a∈A
|〈x|a〉|2 − 1

MB
∑
b∈B

|〈x|b〉|2 , (4)

where MA is the number of reference points belonging to class A and MB is the number
of reference points in class B. If the decision function evaluates to a value f (x) > 0
the data point x is assigned to class A, and vice versa if f (x) < 0. For this classifier,
the corresponding hyperplane separating the two classes is linear in the Hilbert space [20].
In Figure 2a, we visualize the hyperplane obtained with the fidelity classifier for the binary
classification between two classes of pure quantum states randomly chosen on the single-
qubit Bloch sphere (both the states and the corresponding classes are selected/assigned
randomly in this example).

To go beyond linear decision boundaries in the Hilbert space, we propose a classifier
based on the following kernel

K(xi, xj) = e−γ(1−|〈xi|xj〉|2) , (5)

inspired by the classical RBF kernel presented in Equation (1). Here γ is a tunable hyperpa-
rameter. The classifier obtained with the decision function

f (x) =
1

MA
∑

a∈A
e−γ(1−|〈x|a〉|2) − 1

MB
∑
b∈B

e−γ(1−|〈x|b〉|2) , (6)

is denoted as RBF fidelity classifier in the following. Evaluating the decision function requires
the same amount of quantum resources as for the fidelity classifier, since the exponentiation
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is a simple post-processing of the fidelity values. We apply the same decision rule as for
the fidelity classifier. Using the RBF fidelity for classification only considers data points
within a neighborhood of |x〉, where the range of this neighborhood is determined by γ,
and the fidelity is used as a distance metric. Since this approach is more flexible than the
fidelity classifier, we expect that the RBF fidelity classifier will offer better classification
performance. In Figure 2b, we visualize the non-linear hyperplane obtained with the RBF
fidelity classifier for the same binary classification as for the fidelity classifier above.

(a) Fidelity classifier. (b) RBF Fidelity classifier. (c) Fidelity classifier with
trainable feature map.

Figure 2. Illustration of a prototypical classification with (a) the fidelity classifier, (b) the RBF fidelity
classifier (with γ = 50), and (c) the fidelity classifier with trainable feature map. (a,b) visualize the
respective decision functions based on two classes of 25 randomly sampled points on the Bloch
sphere. (c) shows the ideal outcome of quantum metric learning. The samples of the two embedded
classes are mapped to opposing poles of the Bloch sphere. The black line corresponds to the decision
boundary, where the decision function evaluates to zero.

2.3. Quantum Metric Learning

It has been shown in References [20,44] that adding trainable parts to the quantum
feature map can lead to an improvement in the classification performance of quantum
kernel and fidelity-based models. Instead of manipulating the separating hyperplane (as in
the case of the RBF classifier presented in Section 2.2 above), these approaches manipulate
the feature map by tailoring it to the considered classification task. Following the approach
presented in Reference [20], called quantum metric learning, we can introduce trainable
parameters αi,j and βi to the gates in the ZZ embedding,

φ̃i,j = φi,j + αi,j θ̃i = θi + βi . (7)

Optimizing these parameters changes the form of the embedding of the data points in the
Hilbert space, and, therefore, effectively modifies the relations between them.

The cost function used for the optimization of the parameters is the empirical risk
computed for the decision function fα,β(x),

I[ fα,β] = − 1
M

M

∑
m=1

L
(

fα,β(xm), ym
)

, (8)

where L( fα,β(x), y) is the loss function, x are the data samples, y the corresponding labels,
the subscript (α, β) denotes the dependence on the trainable parameters and M is the total
number of available data samples in the reference data set. Using the fidelity classifier
and L( f (x), y) = f (x) · y as the loss function, the parameters are then optimized such that
data points belonging to the same class are mapped to close regions in the Hilbert space,
and data points belonging to different classes are mapped to distant regions in the Hilbert
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space [20]. In Figure 2c, we illustrate the desired effect of optimizing the feature map.
Ideally, optimizing the embedding parameters maps the two classes to opposing poles of
the Bloch sphere. This allows for accurate classification using the linear hyperplane of the
fidelity classifier.

2.4. Datasets

We evaluated the performance of the quantum classifiers introduced above on six
different datasets, representing paradigmatic classification tasks from a broad range of
application domains. The datasets and their characteristics are listed in Table 1.

Table 1. Datasets used in this study and their properties after cleaning the data (removing duplicates,
defective samples, etc.).

Dataset # Features # Positives # Negatives Source Description

MNIST 28 × 28 500 500 [48] Grayscale images of hand-written digits (0’s vs. 9’s)
fMNIST 28 × 28 500 500 [49] Grayscale images of clothing (T-shirts vs. dresses)

musk 166 207 269 [50,51] Molecules occurring in different conformations (musk vs.
non-musk)

sonar 60 97 111 [51,52] Sonar signals (bounced off a metal cylinder vs. a roughly
cylindrical rock)

cancer 30 212 357 [53] Characteristics of breast cancer tumors (benign vs. malignant)
plasticc 67 500 500 [54] Photometric LSST Astronomical Time-series Classification Chal-

lenge dataset. Pre-processed by [22] (type II vs. Ia supernovae)

3. Results

3.1. Pre-Processing

Before evaluating the performance of the classifiers on the different datasets introduced
above, we first present a study on different pre-processing strategies for the data. After
an initial cleaning of the datasets (i.e., removing duplicates, defective samples, etc.) we
performed the following pre-processing steps. First, we standardized the data in each
feature xi, by subtracting its mean μi and dividing by its standard deviation σi

xi �→
xi − μi

σi
. (9)

Both the mean and standard deviation were calculated over the training data set, and the
respective transformation was then also applied to the test data set. The standardized
features were then projected to an n-dimensional feature vector using principal component
analysis (PCA) [55]. In the literature, these two steps often represent the full pre-processing
pipeline. However, consistent with the observations made in Reference [41], we demon-
strated that subsequent scaling or normalization of the features has a beneficial effect on
the performance of the resulting classifier. We compared the following three cases: The first
option directly uses the principal components as input to the feature maps. The second
option applies a global scaling factor λ to each principal component xi �→ λxi, as in Refer-
ence [41]. The optimal scaling factor is determined via cross-validation. As a third option,
we propose normalizing each feature to a fixed interval [a, b] with min–max normalization

xi �→ a +
(xi − xi,min)(b − a)

xi,max − xi,min
, (10)

where xi,min and xi,max are the minimal and maximal values of feature xi over the training
set, respectively. The motivation for the latter was to map all features to a suitable domain of
rotations. This ensures that all arguments given as inputs to a parameterized feature map lie
within the range [−π, π] (or alternatives thereof), such that the mapping becomes injective.
In practice, we achieve mapping to the domain of rotations by normalizing each feature
xi to the interval [0, 1], and by selecting the parameters in the feature maps accordingly.
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For the RXRZ feature map, presented in Figure 1a, we chose parameters θi,0 = πxi and
θi,1 = 2πxi, as this guaranteed that the arguments to the RX and RZ rotations were in [0, 2π].
For the ZZ feature map, introduced in Figure 1b, we chose the parameters φij = 2πxixj
and θi = πxi, which guaranteed that the arguments of the two-qubit rotations were in
[0, 2π], and the arguments of the single-qubit rotations were in [0, π]. The same expressions
for the θ and φ parameters, including the π or 2π factors, were also used for the other
pre-processing strategies.

To compare the different pre-processing pipelines, we conducted the following exper-
iment, inspired by a similar study performed in Reference [43]. As a starting point, we
calculated the kernel matrix Kij = K(xi, xj) =

∣∣〈xi
∣∣xj
〉∣∣2 of 800 data samples in the fMNIST

dataset for increasing numbers of features n (and, hence, also increasing number of qubits),
and for increasing numbers of layers L in the feature map. We then evaluated the average
and the variance across the entries in the resulting kernel matrix. The corresponding results
are displayed in Figure 3A1–A4. The average and variance are shown for the kernels
produced by applying the pre-processing with a final normalization step (solid lines) and
without a final normalization step (dotted lines), using the RXRZ embedding (panels A1
and A3), or the ZZ embedding (panels A2 and A4). In all cases, the average and the variance
decayed exponentially if no normalization was applied. This agreed with the results in
Reference [43], where the authors demonstrated that increasing the expressivity of a feature
map, and employing global fidelity measurements on uniformly sampled inputs, led to
exponential concentration of the resulting kernel entries. However, the exponential concen-
tration, as well as the exponential decay of the average kernel entries, are less pronounced
when normalization to the domain of rotations is applied. For the ZZ feature map, we even
observed a modest increase in the variance when increasing the number of features.

In Figure 3B1–B4 we illustrate an intuitive explanation of the effect of the pre-processing.
The panels show the distribution of the first three principal components subjected to the
different pre-processing strategies. As a visual guideline, the interval [−π, π] is highlighted
with the red dashed lines. The distributions of the non-normalized principal components
mostly lay outside the highlighted interval (panel B1). Periodic mapping (such as that
enforced by Pauli rotation gates) of these distributions into the highlighted interval led
to distributions resembling a uniform distribution (panel B2). The original structure of
the dataset was, thus, lost and the embedded data points hardly represented the original
dataset faithfully. In fact, under these conditions the distribution of the input features
tended to quickly become close to uniform over one period of the encoding Pauli rotations,
such that some of the concentration hypotheses made in Reference [43], particularly for
the case of global fidelity kernels, were essentially met. Applying a scaling factor λ = 0.1
to all principal components (the approach used in Reference [41]) led, instead, to the
distributions displayed in panel B3. We observed that the most important regions of the
distribution now lay within the highlighted interval, such that most of the structure would
be preserved, even under periodicity. However, only our proposed min–max inspired
option, namely the normalization to the domain of rotations, fully restricted each principal
component individually to the interval [−π, π] (panel B4). Compared to the distribution in
B1, a periodic mapping to the highlighted interval preserved the distribution from B4, as all
values were already in the correct domain. In summary, careful pre-processing represents a
fast, direct and problem-agnostic method to mitigate kernel concentration effects leveraging
the intrinsic data distribution, whenever that is present.

In the next section we describe the effects of the pre-processing on the performance of
the resulting classifier.
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Figure 3. Illustration of the exponential concentration of the kernel values (panels (A1–A4)),
and the effect of the pre-processing on the distributions of the input features (panels (B1–B4)). In
panels (A1–A4), we used L = 2, 4, 8, 16 layers of the RXRZ or ZZ feature maps to embed 800 data
samples in the fMNIST dataset. Panels (B1–B4) show the distribution of the first three principal
components (PCs) of the considered data samples in the fMNIST data set, subject to different pre-
processing strategies. The interval [−π, π] is highlighted with red dotted lines. (B1) “Raw” principal
components. (B2) “Raw” principal components, periodically mapped to the highlighted interval.
(B3) Principal components scaled with λ = 0.1. (B4) Principal components normalized to the
highlighted interval.

3.2. Classification

To evaluate the performance of the classifiers under study, we considered different
standard metrics, namely the balanced accuracy, the receiver operator characteristic area
under curve (ROC AUC) and the F1 score. The detailed definitions of these scoring
methods are given in Appendix A. All the scores presented in the following were evaluated
by averaging over 100 train–test splits (80–20%) of a specific dataset. In addition, if the
scaling factor or RBF γ hyperparameters were to be determined, we performed five-fold
cross validation on the train set of a split. The scaling factor was chosen from the interval[
10−3, 1

]
and the γ parameter from

[
10−5, 103].

The ROC–AUC score and the balanced accuracy of all studied classifiers applied to
the datasets in Table 1 are shown in Figure 4. All classifiers were built via the embedding of
the pre-processed input features with the ZZ feature map. The blue, orange and green lines
show the performances of the fidelity classifier resulting from the pre-processing of the data
without normalization, scaling with an optimized scaling factor, or with normalization,
respectively. For all datasets, applying no normalization to the principal components,
resulted in classifiers that had, essentially, the same performance as a random classifier
(value of 0.5 for both performance metrics). Applying a joint scaling factor to all principal
components, led to considerable improvement in the performances of the classifiers for
most datasets. However, in almost all cases, our proposed normalization to the domain of
rotations (which effectively corresponds to applying an individual scaling factor to each
feature), led to substantial improvements over the other two pre-processing strategies. For
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the rest of the investigation, we, therefore, applied the normalization to the domain of
rotations as the last step of the pre-processing pipeline.

As a next step, we look at the performance of the proposed RBF fidelity classifier (red
lines in Figure 4). The effects of the simple post-processing of the fidelities, required to
build the RBF classifier, were noticeable for all datasets. In fact, the RBF fidelity classifier
performed better than the standard fidelity classifier (green lines) in almost all cases,
with significant improvements for the fMNIST, cancer, and sonar datasets. Note that the
cross-validation to find the best hyperparameter for the RBF fidelity classifier did not
lead to an increase in the required quantum resources. The fidelity kernel only had to be
evaluated once, and the cross-validation could then be performed classically.

Figure 4. ROC–AUC and balanced accuracy for different datasets and increasing number of features.
The blue, orange and green lines show the performance of the fidelity classifier resulting from the
pre-processing of the input data without normalization, scaling with an optimized scaling factor,
or with normalization, respectively. The red lines show the performance of the RBF fidelity classifier
(using the same pre-processing steps as for the green line). The purple lines show the performance of
the fidelity classifier with a trainable feature map (using the same pre-processing steps as for the green
line). For all classifiers, the ZZ feature map (or its trainable version), was used for the embedding of
the data points. The black lines show the performance of the classical support vector classifier. In the
bottom row, the black dashed lines show the balanced accuracy achieved by a random classifier.

Finally, the performance of the fidelity classifier with a trainable feature map, is
depicted in Figure 4 with the purple lines. The approach led to noticeable improvements
over the standard fidelity classifier for the MNIST, fMNIST, musk and cancer datasets.
The effect was less pronounced for the remaining datasets. Nonetheless, the results still
showcase the potential of tailoring the feature map to the considered classification task.
However, compared to the RBF fidelity classifier, the trainable fidelity classifier performed
worse in most of the cases.

For completeness, we also provide, in Figure 4, the results obtained for all datasets with
a classical Support Vector Classifier (CSVC) featuring either a linear or an RBF kernel (where
all hyperparameters were chosen by five-fold cross-validation). While the performances
of the CSVC still represented an upper bound, a quantum classifier with our proposed
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improvements often achieved comparable classification scores. Overall, these findings
suggest that our techniques could become part of a toolbox aimed at maximising empirical
performances of quantum classification algorithms, and, hence, provide opportunities for
quantum advantage, when scaling up the size of practical applications.

4. Discussion and Conclusions

The results presented in this study demonstrate the importance of proper data pre-
processing in quantum machine learning, specifically in the context of quantum kernel
methods for classification. Our experiments, conducted on a variety of structured real-
world datasets, showed that the absence of a suitable normalization procedure could lead
to essentially random quantum embeddings, characterized by a loss of the relationships
between the data, exponential concentration in the kernel values and, most notably, poor
classification performance. We illustrated the effect of different feature normalization
strategies using various scaling methods, and demonstrated that our proposed normaliza-
tion approach consistently led to improved performance across all tested datasets and all
numbers of principal components. It is also worth mentioning that, while an optimized
global scaling factor controlling the kernel bandwidth [41] can, in general, only be found
through cross-validation, requiring several kernel evaluations for multiple train–test splits,
the normalization approach is defined solely by the input data, and can, therefore, be
applied without any substantial computational overhead.

We also investigated the effect of non-linear post-processing of the fidelity quantum
kernel entries through exponentiation, yielding an original and effective RBF-like quan-
tum kernel, and of quantum metric learning across a broad range of application domains.
In both cases, for a representative collection of datasets, significant improvements, in terms
of classification performances with respect to standard quantum methods, were observed.
As a result, we conclude that these approaches constitute an effective and relatively inex-
pensive toolbox that could be applied in many realistic scenarios to systematically improve
the performances of quantum classification algorithms.
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Appendix A. Performance Metrics

Most scoring methods can be derived from a so-called confusion matrix. For binary
classification, such a confusion matrix summarizes the classification performance with
four values:

• true positives (TP)—number of positive samples classified as positive
• false positives (FP)—number of negative samples classified as positive
• true negatives (TN)—number of negative samples classified as negative
• false negatives (FN)—number of positive samples classified as negative

For clarity, we also introduce the total number of positive samples P and the total
number of negative samples N.
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The most intuitive method to evaluate performance is to look at how many samples
out of the entire test set were correctly classified. Accuracy is then defined as

a =
TP + TN

TP + FP + TN + FN
=

TP + TN
P + N

. (A1)

This score is well suited for those cases in which the dataset is balanced (same number of
positives and negatives) and if both classes are of equal importance. However, it can become
a misleading figure of merit on imbalanced datasets. As an alternative, balanced definition
of accuracy takes into account an average over each class. For binary classification, we
define the accuracy on the positive samples as the true positive rate TPR = TP/P and the
accuracy on the negative samples as the true negative rate TNR = TN/N. The balanced
accuracy can then be defined as

abalanced =
TPR + TNR

2
. (A2)

The Receiver Operator Characteristic Area Under Curve (ROC–AUC) is a metric that,
in addition to classification of performances, also conveys information about the robustness
of the model. In a nutshell, the ROC follows the true positive rate and the false positive
rate while continuously moving the decision boundary of the classifier from an extreme
condition where all data are classified as negative to the opposite scenario, where all data
are considered positive. The area under the ROC curve is then a measure of the overall
quality of the classifier. A completely random classifier on a balanced dataset achieves an
ROC–AUC of 0.5.

The F1 score is the harmonic mean of the precision (how many out of all positively
classified samples are positive) and the true positive rate (how many out of the positive
samples were classified as positive). Ideally, our classifier would achieve a high score
on both the precision and the TPR—In fact, an ideal model only classifies positive data
points as positives and at the same time finds all the positives. Typically there is a trade-off
between the two requirements, which is summarized by the F1 score

F1 =
2TP

(TP + FP) + (TP + FN)
(A3)

As this is a robust scoring method, we used it to evaluate the cross-validation on all datasets.
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Abstract: Protein–protein interaction (PPI) networks consist of the physical and/or functional interac-
tions between the proteins of an organism, and they form the basis for the field of network medicine.
Since the biophysical and high-throughput methods used to form PPI networks are expensive, time-
consuming, and often contain inaccuracies, the resulting networks are usually incomplete. In order
to infer missing interactions in these networks, we propose a novel class of link prediction methods
based on continuous-time classical and quantum walks. In the case of quantum walks, we examine
the usage of both the network adjacency and Laplacian matrices for specifying the walk dynamics.
We define a score function based on the corresponding transition probabilities and perform tests
on six real-world PPI datasets. Our results show that continuous-time classical random walks and
quantum walks using the network adjacency matrix can successfully predict missing protein–protein
interactions, with performance rivalling the state-of-the-art.

Keywords: link prediction; protein–protein interaction networks; random walks; quantum walks

1. Introduction

The link prediction problem has long been an active area of research, with applications
ranging from friendship recommendation in social networks [1–3] to finding missing
interactions between proteins [4,5]. In this paper, we were interested in the latter. For
general surveys in link prediction, we refer to [6–8].

One particularly successful class of link prediction methods is those based on random
walks [5,9,10]. Random walk algorithms have been explored more generally throughout
the field of network science, and many different applications exist. These include the
ranking of web pages using PageRank [11,12], collaborative filtering [13], and computer
vision [14]. Many random walk link prediction algorithms have also been studied [5,15].
These methods typically rely on discrete-time random walks.

In contrast, in this paper, we propose a class of link prediction methods based on
continuous-time random walks. Moreover, the continuous-time setting allowed us to
propose a new link prediction method using quantum walks, which closely resembles the
classical method described here.

Continuous-time quantum walks, initially proposed in [16], are the quantum ana-
logues of continuous-time classical random walks, which describe the propagation of a
particle over a discrete set of positions. Together with their discrete-time counterpart [17],
they have received much attention for their applications in quantum information pro-
cessing [18,19], quantum computation [20], and quantum transport [21]. However, only
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a few recent methods have attempted to use quantum walks for link prediction, using
their discrete-time [22] and continuous-time [23] variations. While the methods described
here are quantum-inspired, since they were implemented classically, we can foresee that
these will be even more efficient if run on quantum devices. Continuous-time quantum
walks have already been implemented on various physical platforms [24], including optical
setups [25–29] and superconducting devices [30,31], and they can also be simulated on
gate-based quantum computers [32,33].

In order to evaluate our proposed methods, we conducted experiments on several net-
works and found that both the classical and quantum walks outlined here are particularly
good at finding missing links in protein–protein interaction (PPI) networks. Protein–protein
interactions play a critical role in all cellular processes, ranging from cellular division to
apoptosis. Elucidating and analysing PPIs is thus essential to understand the underlying
mechanisms in biology and, eventually, to unveil the molecular roots of human disease [34].
Indeed, this has been a major focus of research in recent years, providing a wealth of exper-
imental data about protein associations [35,36]. Current PPI networks, called interactomes,
have been constructed using a number of techniques, but despite the enormous advance-
ment, the current coverage of PPIs is still rather poor (for example, it is estimated that only
around 10% of interactions in humans are currently known [37]). Additionally, despite
considerable improvements in high-throughput (HTP) techniques, they are still prone to
spurious errors and systematic biases, yielding a significant number of false positives and
false negatives. This limitation impedes our ability to assess the true quality and coverage
of the interactome.

Recently, a number of algorithms have been developed to predict protein–protein
interactions. In a recent study by Kovács et al. [4] (see also [38,39]), a novel PPI-specific
link predictor was proposed. Their link predictor was biologically motivated by the so-
called L3 principle, and it was shown to be superior to other general link predictors when
applied to PPI data. The exceptional success of the L3 framework is rooted in its abil-
ity to capture the structural and evolutionary principles that drive PPIs. The results of
Kovács and collaborators proved that, contrary to the current network paradigm, inter-
acting proteins are not necessarily similar and similar proteins do not necessarily interact,
questioning the traditional validation strategy based on the biological similarity of the
predicted protein pairs.

However, the L3 link prediction method, considered the most-successful to date for
PPIs, as well as most other existing link prediction methods are not without limitations.
The most-common approaches cannot find interactions for self-interacting proteins or links
between proteins that have long shortest paths between them. Given the low coverage of the
current PPI databases, this can be a significant drawback. It is, therefore, highly desirable to
complement the existing frameworks with methods relying on the exploration of the whole
network, and consequently be able to predict edges whose corresponding nodes may be far
away in the network. Thus, we propose novel quantum- and classical-random-walk-based
link prediction methods that can potentially traverse the entire network and simultaneously
predict self-edges.

2. Materials and Methods

Consider a network modelled by an undirected and unweighted graph G = (V, E),
where V is the set of nodes of size n and E is the set of edges. We allowed for the existence
of self-edges, so that for any node i, the edge (i, i) may or may not be present in E. The
adjacency matrix of G is the n × n matrix defined by

A = (Aij) =

{
1, if (i, j) ∈ E,
0, if (i, j) �∈ E.

The graph Laplacian is defined as L = D − A, where D is the degree matrix defined by
D = diag

(
∑j A1j, . . . , ∑j Anj

)
.
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The link prediction problem is to infer missing links in a network G, using only the
information provided by the structure of G. Thus, a link prediction algorithm typically
gives a ranking of all the non-edges (pairs of nodes that are not directly connected in G)
based on some proposed scoring scheme.

We now present a rather general scoring scheme for ranking the non-edges of a graph
based on state transition probabilities resulting from quantum and classical random walks;
the precise details of the walks we employed are described in the next subsections. For
now, it suffices to consider the notion of a probability transition matrix that evolves over
time, denoted by P(t); for a graph G, the probability of the walker being at node v at time t,
given that it began at node u, is thus Puv(t). For a fixed time t, we define the score S(i, j; t)
between two non-adjacent nodes i and j at time t to be

S(i, j; t) =

⎧⎪⎨⎪⎩
Pij(t)

(
ki + kj

)
i �= j (1)

1
2 ∑

u∈N(i)
Piu(t) i = j, (2)

where N(v) denotes the set of nodes adjacent to v (possibly including v itself) and kv = ∑j Avj
is the degree of node v. Equations (1) and (2) handle the cases of distinct nodes and self-
edges, respectively. The scoring scheme in Equation (1) is based on the intuition that
two nodes i and j should likely be connected if the walk is more likely to move from i
to j than to other nodes. We also scale these probabilities by the node degrees so that
high-degree nodes have a higher preference, similar to the preferential attachment link
prediction method [40,41]. Further, Equation (2) claims that the properties of the walker
in the neighbourhood of the node determines the likelihood of a self-edge. While the
score in Equation (1) is superficially similar to the one proposed in [5], the fact that we use
continuous-time walks leads to several key differences: the continuous-time nature of our
method allows for a wider range of time parameters t to use; in the continuous-time setting,
there is symmetry in the transition probabilities, i.e., Pij(t) = Pji(t) for all nodes i, j; finally,
there is a close relationship in the implementation of classical and quantum walks in the
continuous-time setting.

Regardless of which type of walk is used, we must choose a value t, representing the
time duration of the walk. We start the walk at time t0 = 0 and let it run for a time t, at
which point we extract the scores for the target edges from the probability distributions.
In the case of a continuous-time classical random walk, the expected time it takes for a
random walker to leave a node i is 1/ki. This motivates the idea that the amount of time
we let the walk run should be related to the degree distribution of the network. In our
experiments, we tested a few small multiples of the value 1/〈k〉, where 〈k〉 is the average
node degree in the graph, and report the value yielding the best results (see the results in
Section 3).

2.1. Continuous-Time Random Walks

A continuous-time (classical) random walk (CRW) is a Markov process with state
space V characterised by an initial distribution p(0) over the set of nodes and a rate matrix
Q that has null row sum ∑k Qjk = 0 for all j. Here, we considered edge-based random
walks [42] (as opposed to node-based), which are characterised by setting Q = −L, where
L is the Laplacian of the underlying graph. In this case, the evolution of the probability
vector p(t) is governed by the equation:

p(t) = p(0)P(t), (3)

where P(t) = e−tL is the probability transition matrix, which has the elements Pij(t) =

〈j|e−itL|i〉, where i and j are standard basis vectors.
Intuitively, the random walker operates as follows. Every edge of the graph is associ-

ated with an independent Poisson process with unit intensity. When the walker is at some
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node, it will remain there until one of the Poisson processes at an incident edge jumps, at
which point, the walker follows that edge to the corresponding neighbour, and the process
repeats. Note that this implies that, on average, a random walker will spend less time
waiting at a higher-degree node than at a lower-degree node. Furthermore, this method
will assign non-zero probabilities to all pairs of nodes in a connected component, due to
the continuous-time nature of the walk.

2.2. Continuous-Time Quantum Walks

In contrast to a classical random walk, a quantum walk on a network evolves according
to the laws of quantum physics. A major implication of this is that the trajectories of the
walker across the network can interfere constructively or destructively. This interference
causes the evolution of the quantum walker to sometimes be significantly different from
the classical one [17,43].

A continuous-time quantum walk (QW) [16] on a graph G is defined by considering
the Hilbert space H spanned by the orthonormal vectors {|i〉}n

i=1, corresponding to the
n nodes of the graph and the unitary transformation U(t). This transformation implies
that the state vector in H at a time t after starting from initial time t0 = 0 is given by
the evolution:

|ψ(t)〉 = U(t)|ψ(0)〉, (4)

where U(t) = e−itH is the unitary evolution operator and H is the Hamiltonian. In general,
the Hamiltonian H can be almost any Hermitian matrix related to G as long as it describes
the structure of the network [19], but the most-common choices are the graph adjacency
matrix A or the Laplacian L [44]. We also note that, in the classical random walk, the
rate matrix Q is required to have a null row sum so that it is probability-conserving, and
thus, the Laplacian L is a valid choice. However, for quantum walks, no such restriction
exists, and a wider range of walks can be considered by modifying the Hamiltonian, as
long as it remains Hermitian [45]. For example, the graph adjacency matrix can be used
as a Hamiltonian, but not as a classical rate matrix since its rows do not sum to zero.
In this paper, we used both the adjacency and Laplacian matrices as the Hamiltonians
separately and, therefore, can compare different realisations of quantum walks for the link
prediction task.

In order to obtain a probability transition matrix analogous to the one in Equation (3),
we must take the square of the modulus of the entries of U(t). The entries of the probability
transition matrix are given by

Pij(t) = |〈j|e−itH |i〉|2. (5)

These transition probabilities can then be used to compute scores for non-edges as described
in Equations (1) and (2) above. Note that, contrary to the classical case, where randomness
comes from stochastic transitions between states, in the quantum walk, the state transitions
are deterministically governed by the Schrödinger equation, and the randomness results
from the measurement and collapse of the wave function.

Our motivation for the usage of continuous- rather than discrete-time walks is three-
fold: there is a close resemblance between the classical and quantum versions via the matrix
exponential, which allows both methods to be easily compared; having a real, rather than
an integer-valued hyperparameter t allows for a wider range of results to be explored
and also permits non-zero scores to be assigned to all pairs of non-neighbouring nodes
within a connected component. We emphasise that the usage of continuous-time quantum
walks for link prediction is a new direction of research, with very few studies conducted
so far. The method proposed in [23], in particular, appears to be competitive with some
state-of-the-art link prediction methods in certain real networks. While some aspects of
their algorithm are similar to the quantum version of our algorithm, the implementation
details and calculation of the link prediction scores are very different. Moreover, their
algorithm requires entanglement with an additional ancilla. While this would be feasible
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in a hypothetical implementation on a quantum computer, the typical sizes of relevant real
networks are far beyond the capabilities of current and near-term quantum hardware. Sim-
ulations on classical computers are required, but the presence of the extra ancilla increases
the complexity of the simulations.

2.3. Datasets and Metrics

We tested our link prediction methods on six different PPI networks. Four networks
were Homo sapiens (human) PPI networks: we used the physical, multi-validated interac-
tions from v4.4.219 of BioGRID [46], the high-quality binary and co-complex interactions
from the HINT database [47], the interactions proven by 2 or more pieces of experimental
evidence from APID [48,49] (downloaded on 1 March 2023), and the experimentally val-
idated interactions from the Integrated Interactions Database (IID) [50], Version 2021-05.
Furthermore, we also tested our methods on the interactions of the organism Saccharomyces
cerevisiae (yeast) from BioGRID and HINT just described.

Some statistics of these networks are listed below in Table 1, and their degree distribu-
tions are shown in Figure 1. We observed from these statistics that the networks have high
clustering and that they are very sparse. Furthermore, the networks are approximately
scale-free [51], which is typical of biological networks. One distinguishing feature of PPI
networks compared to most other complex networks is that they contain self-edges, which
represent the ability of a protein to interact with itself.
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Figure 1. Complementary cumulative degree distributions. For each degree value k (x-axis), the pro-
portion of nodes with degree greater than or equal to k (y-axis) is shown, each on a logarithmic scale.

Since the ground truth of the considered PPI networks is of course unknown, we
proceeded to test the algorithms using cross-validation. For each dataset, we randomly
removed P% of the edges in the original network, for P ∈ {10, 20, 30, 40, 50}, and reserved
these edges as positive test cases. All of the non-edges (including self-edges that are not
present in the network) were used as negative testing data. These positive and negative
edges were used to evaluate the methods, and the remaining (100 − P)% existing edges
were used for running the models in question. In other words, after removing the P% of the
edges, the non-edges were ranked by sorting them in descending order according to their
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scores, and the edges with higher scores were deemed most likely to exist. This ranking
was then compared to the evaluation set to see how well the positive test cases were ranked.
This process was repeated 10 times for each P, and the results of the accuracy metrics were
averaged (see the results in Section 3).

Table 1. Some properties of the networks that were tested. |V| : number of nodes, |E| : number
of edges, 〈k〉 : average degree, ρ : network density, C : average clustering, A : assortativity, SIPs:
number of self-interacting proteins (self-edges).

Network |V | |E| 〈k〉 ρ C A SIPs

Yeast-BioGRID 4186 20,053 9.581 0.002 0.306 −0.080 826
Yeast-HINT 6025 92,201 30.606 0.005 0.304 −0.129 1837
Human-BioGRID 11,134 79,536 14.287 0.001 0.200 −0.063 1254
Human-HINT 17,818 256,972 28.844 0.002 0.129 −0.059 5223
Human-APID 18,173 265,216 29.188 0.002 0.086 −0.082 2488
Human-IID 18,925 560,628 59.247 0.003 0.126 −0.085 4684

In order to compare the rankings of the edges of the methods under consideration, we
used the areas under the precision–recall and receiver operator characteristic curves, two
metrics that are typically used in link prediction and other binary classification problems.
Hence, we define

true positive rate = recall =
TP

TP + FN
,

precision =
TP

TP + FP
,

false positive rate =
FP

FP + TN
,

where TP = true positive, FP = false positive, FN = false negative, and TN = true negative.
In order to calculate each of these from the rankings, a threshold that serves as a cut-off
rule has to be selected (the predictions above the thresholds are classified as positive and
below it as negative). Our two metrics were calculated by varying this threshold trough
the rankings. Firstly, we considered the area under the precision–recall curve (AuPR).
Precision–recall curves plot the recall on the x-axis against precision on the y-axis. In order
to reduce this curve to a single number, the area under the curve is used, and this also
circumvents the problem of choosing an arbitrary score threshold at which to distinguish
predicted positives from negatives. Note that the AuPR focuses only on performance
relative to the positive class, an important consideration when the ratio of positive cases
to negatives cases is small, as is the case in most networks and especially in PPI networks
(these networks are extremely sparse; see Table 1). As a secondary metric, we considered
the area under the receiver operating characteristic curve (AuROC) [52], which plots the
false positive rate versus the recall. It can be interpreted as the probability that the classifier
will rank a positive case, chosen uniformly at random from the positive set, higher than
a negative one, chosen uniformly at random from the negative set [53]. Thus, a random
classifier has an AuROC equal to half and a perfect classifier has an AuROC equal to one.
We emphasise that the AuPR is widely accepted as the preferred metric for link prediction,
due to the large class imbalance mentioned above [54,55].

3. Results

In order to test our methods, we selected five other popular link prediction methods
to compare against: L3 relies on a weighted counting of paths of length three and was
designed specifically to predict links in PPI networks [4]; preferential attachment (PA) defines
a score between two disconnected nodes by multiplying their degrees [40,41]; common
neighbours (CN) is a straightforward heuristic that assigns a score to the node pair (u, v)
defined by the number of neighbours that u and v have in common; Adamic-Adar (AA) is
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an adaptation of the common neighbours idea, but adds more weight to less-connected
neighbours [1]; the structural perturbation method (SPM) uses perturbations of the adjacency
matrix of a graph in order to estimate its predictability [56]. While the SPM has shown
great success as a general link prediction method [6,57], it is yet to be tested extensively on
PPI networks. For the SPM, we used pH = 0.1 and averaged the results over 10 runs, as
was performed in the original paper [56].

The following tables show the average AuPR and AuROC values for the six different
networks described in Section 2.3. Each value was averaged over 10 runs (10 randomly
selected edge removals), and the highest value for each network is shown in bold. We
compared three variations of our proposed methods, labelled as “QW-A”, “QW-L”, and
“CRW”, referring to quantum walks using the network adjacency matrix as the Hamiltonian,
quantum walks using the network Laplacian matrix as the Hamiltonian, and classical
random walks, respectively.

For completeness, in Figures 2–7, we also include plots showing the relationship of
the area under the precision–recall curve and area under the ROC curve as a function of
the edge removal fraction.
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Figure 2. Average areas under the precision–recall curve (left) and average areas under the receiver
operating characteristic curve (right) as a function of the fraction of true links that were removed
from the APID Homo sapiens PPI network [48,49]. Plotted values are the averages over 10 runs. Our
walks used a hyperparameter of t = 3/〈k〉.
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Figure 3. Average areas under the precision–recall curve (left) and average areas under the receiver
operating characteristic curve (right) as a function of the fraction of true links that were removed
from the BioGRID Homo sapiens PPI network [46]. Plotted values are the averages over 10 runs. Our
walks used a hyperparameter of t = 2/〈k〉.
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Figure 4. Average areas under the precision–recall curve (left) and average areas under the receiver
operating characteristic curve (right) as a function of the fraction of true links that were removed
from the HINT Homo sapiens PPI network [47]. Plotted values are the averages over 10 runs. Our
walks used a hyperparameter of t = 3/〈k〉.
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Figure 5. Average areas under the precision–recall curve (left) and average areas under the receiver
operating characteristic curve (right) as a function of the fraction of true links that were removed
from the IID Homo sapiens PPI network [50]. Plotted values are the averages over 10 runs. Our walks
used a hyperparameter of t = 4/〈k〉.
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Figure 6. Average areas under the precision–recall curve (left) and average areas under the receiver
operating characteristic curve (right) as a function of the fraction of true links that were removed
from the BioGRID Saccharomyces cerevisiae PPI network [46]. Plotted values are the averages over
10 runs. Our walks used a hyperparameter of t = 2/〈k〉.
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Figure 7. Average areas under the precision–recall curve (left) and average area under the receiver
operating characteristic curve (right) as a function of the fraction of true links that were removed
from the HINT Saccharomyces cerevisiae PPI network [47]. Plotted values are the averages over 10 runs.
Our walks used a hyperparameter of t = 2/〈k〉.

In terms of area under the precision–recall curve (AuPR), the quantum walk with
the adjacency Hamiltonian (QW-A) showed the best results overall. When 10% of the
edges were removed, the QW-A had a higher average AuPR than all other benchmarked
methods. This also held when 50% of the edges were removed, except in three cases. For
the secondary metric, AuROC, the three best methods appeared to be QW, CRW, and L3;
while L3 had the highest AuROC in half of the networks at the 10% removal level by a
small margin, CRW had the highest AuROC at the 50% level in all but one network.

4. Discussion

The experimental results in the previous section showed that our methods performed
well on a variety of PPI networks. In particular, we saw that our quantum walk with
the adjacency Hamiltonian method yielded the best overall performance of all algorithms
tested with respect to the area under the precision–recall curve. Furthermore, the adjacency
Hamiltonian always beat the Laplacian as the better choice when comparing the results
of quantum walks. One possible explanation for this is that the inclusion of node degrees
on the diagonal of the Hamiltonian for the Laplacian matrix caused walkers to remain at
nodes for longer periods of time, thus preventing them from adequately exploring the rest
of the network. In order to explore this further, in Figure 8, we show the distribution of
the return probabilities Pii(t) over all nodes i for the various networks studied. Indeed,
we see that the QW-L had a large spike close to 1.0 for all of the networks, indicating that
the majority of nodes were never departed from when using the Laplacian Hamiltonian.
In order to verify that this claim holds for other values of t, in Figure 9, we compare the
return probabilities, averaged over all nodes, for various values of t. We see that the QW-L
always had the largest average return probability, while the QW-A had an average return
probability that was less than the QW-L, but larger than the CRW.

Comparing the QW-A to the CRW, Tables 2 and 3 above show that the former had a
higher area under the precision–recall curve for all networks, except the Yeast-BioGRID
network. One interesting property of this network is that it has the highest proportion
of self-edges (826 self-interacting proteins out of 4186 proteins; see Table 1) of all the
networks considered. In order to test the hypothesis that the CRW performs better when
the proportion of self-edges is high, we repeated our experiments on the Yeast-BioGRID
network, but this time did not use any self-edges for scoring. We found that the change in
AuPR was negligible and that the CRW still had a slightly higher AuPR than the QW-A.
Therefore, we do not believe that the high proportion of self-edges plays a significant role
in explaining the better performance of the CRW for this network.
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Figure 8. Comparison of return probabilities for the quantum and classical random walk methods
on the 6 networks studied. For each network, we show kernel density estimations of the return
probabilities Pii(t), for every node i. The values of t used are those for which the AuPRs and AuROCs
were presented above.

Figure 9. Comparison of return probabilities for the different quantum and classical random walk
methods on the 6 networks studied. For each network, we show the the average value of Pii(t),
averaged over all nodes, for values of t in the range (0, 2).

Another possible explanation for the higher AuPR of the CRW on the Yeast-BioGRID
network may be due to its relatively high clustering compared to the other networks. In
order to test this hypothesis, we used a theoretical model to generate scale-free networks
with tunable average clusterings [58]. Using this model, we generated scale-free networks
with a variety of average clusterings while holding the average degree constant, up to
minor random fluctuations. We then used these networks to run the QW-A and CRW using
the same cross-validation method described above, with half the edges being removed
for testing, in order to compare their performance. In Figure 10, we see that, in all four
cases, there was indeed a trend confirming that the QW-A has a better performance when
clustering is low, while CRW performs better when clustering is higher. While these theo-
retically generated networks may not be accurate models of true PPI networks, the effect of
clustering on classical and quantum walks remains an interesting topic for future research.
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Table 2. Area under the precision–recall curve for 10% edge removals, averaged over 10 runs. The
highest AuPR for each network is shown in bold.

AuPR: 10% Removal

Network QW-A QW-L CRW L3 PA CN AA SPM

Human-APID 0.058 0.013 0.018 0.025 0.003 0.013 0.014 0.053
Human-BioGRID 0.106 0.052 0.070 0.052 0.007 0.042 0.048 0.079
Human-HINT 0.081 0.026 0.023 0.037 0.008 0.019 0.023 0.078
Human-IID 0.096 0.015 0.014 0.030 0.013 0.022 0.025 0.093
Yeast-BioGRID 0.156 0.102 0.158 0.082 0.007 0.059 0.073 0.114
Yeast-HINT 0.115 0.057 0.077 0.068 0.032 0.049 0.055 0.101

Table 3. Area under the precision–recall curve for 50% edge removals, averaged over 10 runs. The
highest AuPR for each network is shown in bold.

AuPR: 50% Removal

Network QW-A QW-L CRW L3 PA CN AA SPM

Human-APID 0.093 0.031 0.037 0.089 0.015 0.034 0.041 0.097
Human-BioGRID 0.168 0.091 0.129 0.152 0.032 0.089 0.111 0.135
Human-HINT 0.141 0.055 0.072 0.125 0.033 0.055 0.072 0.136
Human-IID 0.145 0.046 0.059 0.114 0.056 0.078 0.090 0.167
Yeast-BioGRID 0.217 0.162 0.242 0.207 0.030 0.108 0.149 0.173
Yeast-HINT 0.235 0.116 0.226 0.206 0.116 0.120 0.154 0.217

Figure 10. AuPRs for scale-free networks with tunable clusterings. Four different settings are shown,
corresponding to different (approximate) average degrees. In each setting, the average clustering was
varied to produce different networks. In the resulting networks, half of the edges were reserved for
testing, and the remaining network was used to run the QW-A and CRW link prediction methods on.
Each point corresponds to the AuPR of a generated network; solid lines show linear fits. Each plot
title shows the average degree 〈k〉, averaged over all networks.
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Finally, we mention a few points about the computational complexity of our algorithm
and its implementation. The bottleneck of our algorithm, in either the classical or quantum
case, is the computation of the matrix exponential appearing in Equations (3) and (5),
which is a very well-studied problem with a long history [59]. Our experiments were
performed using the “matrix_exp” function in PyTorch [60], which is an implementation
of the Taylor polynomial approximation algorithm described in [61]. The problem was
thus reduced to a constant number of matrix multiplications, another well-studied problem
that can be solved more quickly than the naive O(n3) method, for example with Strassen’s
algorithm or its variations [62]. It is also worth noting that, in this implementation of
matrix exponentiation, and many others, the norm of the matrix being exponentiated has
an impact on running time, so that using a small t, as tends to be the case in our algorithm,
may help in this regard.

In order to compare the running times of the link prediction methods studied here,
each method was implemented in python 3.10 and vectorised where possible. The methods
were then run on the six networks described in Section 2.3, without removing any edges.
The experiments were carried out on a setup consisting of 16 cores and 112 GB of RAM.
The results of the running times are shown in Table 4. In general, L3, PA, CN, and AA
had the fastest running times, but had low AuPR when compared to the QW-A and SPM
(Figures 2–7, left). Of the general link prediction methods, the SPM typically had the highest
AuPR, but it is computationally demanding due to the need to calculate the eigenvectors
and eigenvalues of the perturbed adjacency matrix many times. The QW-A is indeed the
most-promising of the methods considered, since its runtime was several times faster than
the SPM, while outperforming the SPM in every case, except two, in which case, the QW-A
had the higher AuROC (Figures 2 and 5 and Tables 5 and 6).

Table 4. Average runtimes (in minutes) with standard deviations (over 10 runs) on each of the human
PPI networks studied. The choice of hyperparameter t for the quantum and classical walks was the
same as was reported in the Results Section.

Human Yeast

Model APID BioGRID IID HINT BioGRID HINT

QW-A 4.15 ± 0.05 1.05 ± 0.01 5.39 ± 0.14 4.52 ± 0.03 0.13 ± 0.00 0.39 ± 0.00
QW-L 4.69 ± 0.03 1.2 ± 0.01 6.03 ± 0.14 5.02 ± 0.03 0.14 ± 0.00 0.44 ± 0.00
CRW 3.23 ± 0.05 0.82 ± 0.02 4.43 ± 0.05 3.52 ± 0.08 0.05 ± 0.00 0.17 ± 0.00

L3 0.54 ± 0.05 0.1 ± 0.01 1.15 ± 0.04 0.55 ± 0.03 0.01 ± 0.00 0.1 ± 0.00
PA 0.23 ± 0.03 0.04 ± 0.01 0.33 ± 0.03 0.18 ± 0.03 0.01 ± 0.00 0.03 ± 0.00
CN 0.23 ± 0.04 0.04 ± 0.01 0.39 ± 0.04 0.21 ± 0.03 0.01 ± 0.00 0.03 ± 0.00
AA 0.27 ± 0.05 0.05 ± 0.01 0.41 ± 0.03 0.24 ± 0.03 0.01 ± 0.00 0.04 ± 0.00

SPM 27.28 ± 1.27 6.38 ± 0.03 29.68 ± 0.50 24.67 ± 0.11 0.84 ± 0.01 2.67 ± 0.01

Table 5. Area under the receiver operating characteristic curve for 10% edge removals, averaged over
10 runs. The highest AuROC for each network is shown in bold.

AuROC: 10% Removal

Network QW-A QW-L CRW L3 PA CN AA SPM

Human-APID 0.930 0.917 0.933 0.936 0.888 0.812 0.814 0.897
Human-BioGRID 0.932 0.928 0.935 0.936 0.888 0.877 0.879 0.901
Human-HINT 0.943 0.931 0.945 0.947 0.904 0.846 0.851 0.913
Human-IID 0.945 0.923 0.942 0.944 0.911 0.896 0.901 0.924
Yeast-BioGRID 0.914 0.911 0.918 0.917 0.838 0.873 0.878 0.876
Yeast-HINT 0.939 0.926 0.946 0.939 0.909 0.893 0.906 0.919
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Table 6. Area under the receiver operating characteristic curve for 50% edge removals, averaged over
10 runs. The highest AuROC for each network is shown in bold.

AuROC: 50% Removal

Network QW-A QW-L CRW L3 PA CN AA SPM

Human-APID 0.910 0.900 0.918 0.908 0.883 0.717 0.717 0.870
Human-BioGRID 0.906 0.903 0.910 0.899 0.877 0.779 0.780 0.860
Human-HINT 0.924 0.915 0.931 0.925 0.898 0.760 0.762 0.879
Human-IID 0.930 0.915 0.934 0.936 0.909 0.838 0.841 0.898
Yeast-BioGRID 0.874 0.871 0.877 0.859 0.821 0.775 0.777 0.784
Yeast-HINT 0.922 0.910 0.931 0.926 0.904 0.833 0.845 0.890

5. Conclusions

Although experimental methods have greatly improved in the past ten years, most
interactomes remain far from being complete. It is, therefore, important to discover new
computational methods for inferring interactions from incomplete datasets. We described a
class of algorithms based on continuous-time walks that rank among the best link prediction
methods tested on PPI networks.

Furthermore, the continuous-time quantum walks described here are among the first
successful quantum-inspired link prediction methods. Although we found that using
the reciprocal of the average degree provided a good time length for which to run the
walks, many further options can still be explored: using cross-validation to choose a
more optimal value or using times that depend on the walker’s location are immediate
candidates. Another open direction of research involves the choice of the Hamiltonian.
Our experimental results demonstrated a strong sensitivity on the Hamiltonian used for
controlling the quantum walks. While the adjacency matrix yielded better results than
the Laplacian on the networks we tested, it would be beneficial to understand why this
is the case. This also indicates the potential for improvement if better Hamiltonians can
be found for the purpose of link prediction. Further investigations in this direction may
yield better methods and insights into both networks being studied and the quantum walks
being employed.
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Abstract: The generation of a large amount of entanglement is a necessary condition for a quantum
computer to achieve quantum advantage. In this paper, we propose a method to efficiently generate
pseudo-random quantum states, for which the degree of multipartite entanglement is nearly maximal.
We argue that the method is optimal, and use it to benchmark actual superconducting (IBM’s ibm_lagos)
and ion trap (IonQ’s Harmony) quantum processors. Despite the fact that ibm_lagos has lower single-qubit
and two-qubit error rates, the overall performance of Harmony is better thanks to its low error rate in
state preparation and measurement and to the all-to-all connectivity of qubits. Our result highlights the
relevance of the qubits network architecture to generate highly entangled states.

Keywords: quantum computing; NISQ devices; random quantum circuits

1. Introduction

Quantum computers working with approximately 50–100 qubits could perform certain
tasks beyond the capabilities of current classical supercomputers [1,2], and quantum ad-
vantage for particular problems has recently been claimed [3–5], although later simulations
on classical supercomputers [6,7] have almost closed the quantum advantage gap. As a
general remark, quantum advantage can only be achieved if the precision of the quantum
gates is sufficiently high and the executed quantum algorithm generates a sufficiently large
amount of entanglement that can overcome classical tensor network methods [8]. Therefore,
for quantum algorithms, multipartite (many-qubit) entanglement is the key resource to
achieve exponential acceleration over classical computation. Unfortunately, existing noisy
intermediate-scale quantum (NISQ) devices suffer from various noise sources such as noisy
gates, coherent errors, and interactions with an uncontrolled environment. Noise limits the
size of quantum circuits that can be reliably executed, so achieving quantum advantage in
complex and practically relevant problems is still a formidable challenge. It is therefore
important to benchmark the progress of currently available quantum computers [9–11].

Quantifying entanglement is a demanding task [12,13]. In particular, the characteriza-
tion of multipartite entanglement is not a simple matter, since, as the number of subsystems
increases, we should consider all possible non-local correlations among parties in order to
obtain a complete description of entanglement. Moreover, tomographic state reconstruction
requires a number of measures that grows exponentially with the number of qubits [14].
Finally, there is no unique way to characterize multipartite entanglement [13].

On the other hand, bipartite entanglement can be probed by means of entanglement
entropies. In particular, we can consider the second order Rényi entropy of the reduced density
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matrix for any of the subsystems. If it is larger than the entropy of the entire system, we can
conclude that bipartite entanglement exists between the two subsystems. If the overall state
is pure, the second-order Rényi entropy is directly a measure of bipartite entanglement. In
that case, in order to quantify the amount of multipartite entanglement, one can look at
the distribution of the Rényi entropy of a subsystem over all possible bipartitions of the
total system. For example, Facchi et al. proposed [15] a method based on the probability
density of bipartite entanglement between two parts of the total system; one expects that
multipartite entanglement will be large when bipartite entanglement is large and does
not depend on the bipartition, namely when its probability density is a narrow function
centered at a large value.

Computing entanglement entropies requires the knowledge of the density matrix of the
system. Unfortunately, probing the density matrix is also a challenging problem, especially
as the dimension of the system increases. For this reason, it is necessary to indirectly
estimate the entropy, for instance, using the method proposed by Brydges et al. [16] via
randomized measurements.

For random pure quantum states, the entanglement content is almost maximal and
the purity (and so the second-order Rényi entropy) probability distribution is well known.
Unlike simpler states such as W and GHZ, for which the entanglement content is essentially
independent of the dimension of the system, for random states, the average multipartite
entanglement is an extensive quantity. Moreover, random states are relevant in the study
of the complexity of quantum circuits [17] and black holes [18] and for benchmarking
quantum hardware [9,19].

The purpose of this paper was to investigate strategies to efficiently generate highly
entangled states and then find a way to quantify the actual amount of entanglement
achieved in state-of-the-art quantum hardware. In particular, we propose a method (here-
after referred to as direct method) to efficiently generate pseudo-random quantum states
for n qubits, approximating true random states to the desired accuracy by means of layers
where a random permutation of the qubits is followed by two-qubit random state genera-
tion. We provide numerical evidence that this method converges to true n-qubit random
states by increasing the number of layers as fast as the circuit implementing two-qubit
random unitary gates using the KAK parametrization of SU(4) (KAK method) [20], but with
reduced cost in terms of the number of CNOT gates. We also argue that the proposed
method is optimal for pseudo-random quantum state generation. Finally, we implement the
method to benchmark actual quantum processors. In particular, two different realizations
of quantum hardware are compared: IBM’s superconducting-based devices and IonQ’s
trapped ion-based devices. We show that, despite the fact that superconducting devices
have smaller error rates than IonQ for one- and two-qubit gates, the overall performance
is better in trapped ion devices. This is mainly due to the complete connectivity of these
machines, which allows avoiding noisy SWAP gates to implement qubit permutations. Our
results highlight the importance of quantum hardware architecture in the implementation
of quantum algorithms.

This paper is organized as follows. In Section 2, we discuss and compare methods
for the generation of pseudo-random states. In Section 3, we apply the direct method
in real quantum hardware and compare the results for IBMQ and IonQ devices with the
second-order Rényi entropy estimated via the method of Ref. [16]. Finally, our conclusions
are drawn in Section 4.

2. Generation of Pseudo-Random Quantum States

In this section, we briefly discuss methods of generating pseudo-random states, start-
ing with the exact strategy and ending with our proposal, which will be numerically
verified by comparison with the standard KAK method.

Let |ψ〉 be a pure state that belongs to the Hilbert space H = HA ⊗ HB, where HA
and HB are spanned, respectively, by {|iA〉}1≤iA≤NA and {|iB〉}1≤iB≤NB . A and B are two
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bipartitions of the entire system. Assuming that, without loss of generality, NA ≤ NB,
the state admits a Schmidt decomposition [1]:

|ψ〉 =
NA

∑
i=1

√
xi|ai〉 ⊗ |bi〉, (1)

where {|ai〉} and {|bi〉} are suitable orthonormal sets for HA and HB, respectively, which
depend on the particular state |ψ〉, and the scalars xi, known as the Schmidt coefficients for
|ψ〉, are real, non-negative, and unique up to reordering. These coefficients can be used to
quantify the bipartite entanglement via the second-order Rényi entropy

S(2)(ρA) = − log2[R(ψ)], (2)

with the reduced purity R(ψ) of the state given by

R(ψ) = Tr(ρ2
A) =

NA

∑
i=1

x2
i , (3)

where ρA is the reduced density matrix (with respect to HB) of the overall state ρ:

ρA = TrB(ρ) = TrB(|ψ〉〈ψ|). (4)

Hereafter, we shall focus on the purity, which is trivially related to the second-order
Rényi entropy.

In the case of a random state, the cumulants of the purities’ probability distributions
can be exactly calculated [21,22], more details on which can be found in Appendix A. In
particular, the first cumulants are given by

μNA NB ≡ 〈R〉 = NA + NB
1 + NANB

, (5)

σ2
NA NB

≡ 〈(R − 〈R〉)〉2 =
2(N2

A − 1)(N2
B − 1)

(1 + NANB)2(2 + NANB)(3 + NANB)
, (6)

and they will be used later to verify the quality of random state generation.
In order to generate a true n-qubit random state, the ideal (and only) rigorous way

would be to apply a random unitary operator, with respect to the Haar measure of the
unitary group SU(N = 2n) (neglecting the global phase of no physical significance).
Unfortunately, the implementation of such an operator acting on the n-qubit Hilbert space
requires a number of elementary quantum gates that is exponential in the number of
qubits [1].

On the other hand, it has been proven that the sequences of random single qubit gates
followed by a two-qubit local interaction (which can be an SU(4) random unitary operator,
or more simply a single CNOT gate) generate pseudo-random unitary operators which
approximate, to the desired accuracy, the entanglement properties of true n-qubit random
states [23–27]. However, the random SU(4) strategy depicted in Figure 1, used for example
in [9], performs better than a single CNOT in terms of convergence rate [28], with the cost
of using three CNOTs instead of just one, as we will see below.

Hence, the problem now turns to find an efficient way (in sense that will be clarified
later) to generate random SU(4) operators.

To this end, one possible strategy would be to use Hurwitz’s parametrization of the
unitary group, SU(N), for the specific case of N = 4 [25,29]. However, this approach has
the disadvantage of requiring a large number of CNOTs—16 for the particular case of
SU(4)—which are usually the main source of errors in NISQ devices [30].
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|0〉

π

SU(4)

π
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· · ·
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· · ·
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|0〉 · · ·
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SU(4) SU(4)
· · ·

SU(4)
|0〉 · · ·

1 2 m

Figure 1. The pseudo-random state generator circuit consists of m layers of random permutations
of the qubit labels, followed by random two-qubit gates. When the circuit width n is odd, one
of the qubits is idle in each layer. In this figure, a circuit with n = 6 qubits width is shown for
illustration purposes.

2.1. Cartan’s KAK Decomposition of the Unitary Group

An alternative approach consists of using the Cartan’s KAK decomposition of a semi-
simple Lie group G (in this case SU(2n)) which parametrizes the group in terms of the
subgroups’ elements [31]. The case of SU(4) of interest here is described in Appendix B,
and is the optimal construction [20] to implement a generic two-qubit gate, using at most
3 CNOT and 15 single-qubit gates.

2.2. Direct Generation of Two-Qubit Random Quantum States

Is the Cartan decomposition the most efficient way to generate a two-qubit random
state? Let us think in terms of free parameters. The Cartan’s KAK decomposition is the
optimal (in terms of the number of CNOT and single-qubit rotations) way to construct
random SU(4) operators via quantum circuits. It requires 15 single-qubit rotations and
so 15 independent real parameters (as one expects, since dim(SU(4)) = 15). On the other
hand, a normalized random two-qubit state |ψ〉 depends, up to a global phase, on six
independent real parameters. This suggests that, in some ways, it could be possible to
build any two-qubit state (starting from some fiducial state) with at most six independent
rotations and one CNOT (needed to entangle the system).

This expectation is confirmed [21] by the quantum circuit depicted in Figure 2, pro-
ducing |ψ〉 from an initial state |00〉. How can this circuit be achieved? Starting from a state
|ψ〉, and transforming it by the inverse of the circuit of Figure 2, one can end up with |00〉,
specifying how the angles θ are obtained. Any two-qubit state can in fact be written, using
the Schmidt decomposition as a sum of two product terms:

|ψ〉 = √
x1|a〉|b〉+

√
x2|a〉⊥|b〉⊥, (7)

where |a〉 and |b〉 are single-qubit states (of the first and second qubit, respectively), and |a〉⊥
and |b〉⊥ are single-qubit states orthogonal to |a〉 and |b〉, respectively (i.e., {|a〉, |a〉⊥} and
{|b〉, |b〉⊥} are the Schmidt bases of the Hilbert spaces of the two qubits). The idea is,
starting from this decomposition, to obtain the state |00〉 using unitary operations, and then,
taking the inverse transformation, one can obtain the desired result. The angle θ4 is chosen
such that the Rz rotation of angle −θ4 eliminates a relative phase between the coefficients
of the expansion of |a〉 into |0〉 and |1〉 (note that, because the circuit is considered in the
reverse direction, the angles of rotations have opposite signs). A subsequent Ry rotation
with angle −θ3 results in the transformation |a〉 → |0〉 (up to a global phase). Similarly,
rotations of angles −θ6 and −θ5 rotate |b〉 into |0〉. After applying rotations of angles −θ3,
−θ4, −θ5, and −θ6, the state has become, up to a global phase, of the form:

|ψ〉 = cos θ1|00〉+ eiθ2 sin θ1|11〉. (8)
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Finally, the Rz rotation of −θ2 eliminates the relative phase between |00〉 and |11〉. The CNOT
brings the second qubit to |0〉, and the last rotation of angle θ1 on the first qubit yields the
final state |00〉.

In order to obtain a random state, it is necessary to know how to randomly sample
the various angles θi, that is, it is necessary to know their probability distributions with
respect to some measure of the state space, associated with the parametrization provided
by Figure 2. Formally, a quantum state |ψ〉 can be considered as an element of the complex
projective space CPN−1, with N = 2n being the Hilbert space dimension for n qubits [32].
The natural Riemannian metric on CPN−1 is the Fubini–Study metric induced by the
unitarily invariant Haar measure on U(N). This is the only metric invariant under unitary
transformations. Thus, the unnormalized joint probability distribution is simply obtained
by calculating the determinant of the metric tensor with the parametrization [33]. The idea
is to use these more efficient “operators” D to construct the n-qubit pseudo-random states,
although formally they do not map the entire Bloch sphere if the initial state is not |00〉.
Consider, for example, a dimensionally simpler case: from the north pole of a sphere, it is
possible to reach any other point by making only two rotations. Thus, carefully choosing
the distribution of the rotation angles, it is possible to uniformly map every point of the
sphere, but this is no longer valid if the starting point is changed, where the worst case
scenario is a point on the equator.

|0〉
D

|0〉 Ry(θ1) • Rz(θ2) Ry(θ3) Rz(θ4)

|0〉 |0〉 Ry(θ5) Rz(θ6)

=

Figure 2. A circuit for two-qubit random state generation. Rotations Rk are obtained by exponentiat-
ing the corresponding Pauli matrices σk.

In general, one expects that the error committed in sampling the Bloch space is small
and everything converges to a random state anyway (see below). In Figure 3, the circuit
used to generate the random state (in a similar way to Figure 1) with this method is shown,
which will be referred to from now on as the direct method.

|0〉

π

D

π

D
· · ·

π

D|0〉 · · ·
|0〉

D D
· · ·

D|0〉 · · ·
|0〉

D D
· · ·

D|0〉 · · ·

1 2 m

Figure 3. The pseudo-random state generator circuit consists of m layers of random permutations
of the qubit labels, followed by random D gates. In this figure, a circuit with n = 6 qubit’s width is
shown for illustrative purposes.

2.3. Comparison of KAK and Direct Method

In general, for an n-qubit state, there are ( n
na
) ways to construct a bipartition in na and

nb = n − na qubits (NA = 2na , NB = 2nb ). Clearly, na can be any natural number from 1 to
n. For the sake of clarity, let us consider, for example, a four-qubit state, wherein the qubits
are labeled {0, 1, 2, 3}. The na = 2 bipartition can be obtained in (4

2) = 6 different ways by
tracing out the pair of qubits {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3} or {2, 3}. In the case of a
random state, these partitions are equivalent, i.e., the value of purity is independent of the
choice of the subset of qubits traced out.

Given a quantum state generated as shown in Figure 1 (KAK method) and Figure 3 (di-
rect method), and taking an ensemble of Ne states, we numerically estimate the mean value
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(μ2na 2n−na )e and the variance (σ2
2na 2n−na )e of the purities of the generated pseudo-random

quantum state. Simulations are performed using the Python library Qiskit, particularly
the system density matrix, which is computed using the built-in state–vector simulator.
In order to evaluate how well the states are generated, the idea is to calculate the relative
error of the mean value Δμ and the variance Δσ2 , which are averaged over each possible
bipartition of the number of qubits:

Δμ =
1

n − 1

n−1

∑
na=1

|(μ2na 2n−na )e − μ2na 2n−na |
μ2na 2n−na

, (9)

Δσ2 =
1

n − 1

n−1

∑
na=1

|(σ2
2na 2n−na )e − σ2

2na 2n−na |
σ2

2na 2n−na

. (10)

The sum on na is up to n − 1, since na = n means tracing out the whole system, i.e., calcu-
lating the purity of the whole state, which, being pure, has a unit mean and zero variance.
In the previous formulas, the quantities μ2na 2n−na and σ2

2na 2n−na are the expected values for a
true random state, as shown in Equations (5) and (6), respectively.

The averaged relative error for the mean and variance is plotted as a function of
the number of steps (i.e., of layers) of the generating circuit and the size of the statistical
ensemble, for the cases of n = 4, 6, and 8 qubits. Numerical data from Figure 4 suggest that
the direct and the KAK methods are basically equivalent in terms of speed of convergence
to the expectation values of random states. Notice that the number of steps required for
convergence grows as ∼ n, since at least n(n − 1)/2 two-qubit gates are required in order
to entangle all qubit pairs, and for each step, n/2 two-qubit gates are applied.

In Figure 5, the mean value and the variance of the purities are shown as a function of
the number of qubits in a partition na for systems with different size n. The moments are
estimated considering an ensemble of Ne = 100 pseudo-random states generated using the
direct method with 20 steps.

Figure 4. Cont.
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Figure 4. Average mean value relative error (left) and average variance relative error (right) for
purities as a function of the number of steps (i.e., layers in the quantum circuit) and the ensemble size
for 4-qubit (top), 6-qubit (middle), and 8-qubit (bottom) pseudo-random quantum state. The solid
lines represent the direct method while the dashed lines represent the KAK method.

The convergence to the true random state expected values improve as the dimension
of the system increases. Indeed, for higher dimensions, the entanglement content is highly
typical, i.e., it is possible to show that the entanglement distribution for a random state
becomes strongly peaked in the limit of a large number of qubits. This concentration of the
measure explains the better convergence for higher-dimensional cases [34].

Figure 5. Purity mean value (top) and variance (bottom) of a pseudo-random quantum state plotted
as a function of partition size. The various colors represent systems of different dimensions (number
of qubits). The black dots are the expected values for a true random state. Here is shown the direct
method with 20 steps and Ne = 100.
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3. Results on Actual Quantum Hardware

The circuits we implemented on real quantum hardware (IBM’s ibm_lagos and IonQ’s
Harmony, a visualization of which is given in Figure 6) are slightly different from that
shown in Figure 3. First of all, given the available resources, only circuits with four and
six qubits were considered. In order to limit circuit depth, the random permutation gates
are avoided, and instead, since all the qubits must be entangled with each other, the D (or
SU(4)) gates are applied to qubit pairs labeled as {(0,1), (2,3), (0,2), (1,3)} (for the four-qubit
case) and {(0,1), (2,3), (4,5), (1,2), (3,4), (0,5), (0,3), (1,4), (5,2)} (for the six-qubit case). The
purities of a random state are estimated using measurements along randomly rotated axes,
following the method proposed by Brydges et al. [16].

Figure 6. Architectures of the quantum processors used in this work. The circles represent the qubits
while the lines represent the physical connection between them. On the left, we have the architecture
of IonQ’s Harmony, which clearly shows the complete connectivity of ion-based devices. On the right,
we have ibm_lagos. Here, the color scheme (blue for min, violet for max) refers to the single-qubit
(color of the circles) and two-qubit (color of the lines) error rates. These are purely indicative since
the rates change upon every calibration of the device.

The ensemble of random states is Ne = 10 wide, and for each state, Nm = 20 random
measurement axes are taken in order to estimate the purities. Each of these 200 circuits
is followed by a measurement in the standard computational basis, and each circuit is
repeated Ns = 1000 times (number of shots, limited by the available budget for IonQ) in
order to estimate the outcome probabilities of each element of the computational basis for
each circuit.

Note that IBM’s quantum computers are nominally calibrated once over a 24-h period,
and the system properties update once this calibration sequence is complete. Calibration
plays a critical role in quantum circuit execution, since the properties of the systems are
utilized for noise-aware circuit mapping and optimization (transpilation). Due to the daily
calibration, it is difficult to compare the results obtained in different days on the same
hardware. For this reason, all comparative results with the same quantum computer herein
were taken with the same calibration data (i.e., the same day).

3.1. Comparison between Hardware Platforms

From the extensive tests performed in the literature [30] (see Table 1), we know that
IBM’s ibm_lagos has a better performance than IonQ’s Harmony as far as mean fidelities
for one- and two-qubit gates are considered. On the other hand, IonQ’s Harmony is
preferable when state preparation and measurement (SPAM) fidelities are considered.
More importantly, IonQ’s Harmony has the advantage of an all-to-all connectivity. This
latter point is very relevant, because IBM’s quantum processors need SWAP gates to
implement D (or SU(4)) gates between qubits that aren’t connected. Moreover, a SWAP
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gate is not a native gate on the IBMQ devices, and must be decomposed into three CNOT
gates. Being the product of three CNOT gates, SWAP gates are expensive operations to
perform on a noisy quantum device.

Table 1. Table of quantum processing units (QPUs) evaluated in [30] using the quantum volume (QV)
protocol. Values of QV, as well as single-qubit (1Q) gate, two-qubit (2Q) gate and state preparation
and measurement (SPAM) fidelities are all vendor-provided metrics. The mean gate and SPAM
fidelities are computed in [30] across all operations of the same type available on the device during
the whole QV circuit execution duration. The number of edges for each backend was simply counted
as the number of connections between qubits.

QPU Fidelity

Vendor Backend QV # Qubit Topology # Edges 2Q Gate 1Q Gate SPAM

IBM Q ibm_lagos 32 7 Falcon r5.11H 6 0.9924 0.9998 0.9862
IonQ Harmony 8 * 11 All-to-All 55 0.96541 0.9972 0.99709

* The QV value for IonQ’s Harmony is the one measured in [30], since IonQ does not
provide it.

The results obtained using the direct method are shown in Figure 7, both for IBMQ and
IonQ. As can be seen from the figure, particularly in the IonQ case, the purity of the whole
state is greater than the bipartitions’ reduced purities, with the exception of the na = 1
case for the IBMQ. This is equivalent to saying that the entropies of the parts are greater
than the entropy of the whole state, which is a signature of bipartite entanglement in the
system. Despite the fact that superconductor devices have lower error rates than IonQ for
single-qubit and two-qubit gates, the overall purity is higher in trapped ion devices. This is
mainly due to the complete connectivity of these machines, which allows avoiding noisy
SWAP gates, in addition to the better SPAM fidelities of the ion-based device.

Figure 7. Comparison between the purities of a 4- and 6-qubit pseudo-random quantum states,
generated in the two different realizations of a quantum computer investigated, with the direct
method. In green, the superconductor IBM’s ibm_lagos is shown, while IonQ’s Harmony is shown in
blue. Red curves give the results for ideal random states. Data were obtained on 10 September 2022,
for ibm_lagos and on 24 July 2022, for Harmony.

3.2. Entanglement Evolution

To investigate the survival of entanglement in an operating quantum computer, we
iterate the above circuit for the generation of pseudo-random quantum states for a number
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of steps. In Figure 8, we consider ibm_lagos and n = 4 qubits, and show the purities as a
function of the number of steps, for subgroups of na qubits. We can see that the purity
of the overall system (ideally pure) is clearly higher than the purities of subsystems with
na = 2 and na = 3 qubits up to 4 steps. For longer evolution times, the purity of the
overall system drops below those of subsystems, and there is evidence, at least for na = 1, 2,
of convergence to the purity for a maximally mixed state, equal to 1/2na . These values are
smaller than those for pseudo-random states reported in Equation (5). Overall, the above
remarks point to a vanishing entanglement content in the quantum hardware after 4–5 steps.

Figure 8. Evolution of the entanglement content of a pseudo-random quantum state generated by
the circuit described in Figure 3 as a function of the number of layers (steps). The panels on the right
show the individual curves, with the horizontal solid lines highlighting the purity expectation values
for a true random state. The horizontal dashed lines refer to the purity of a maximally mixed state.
Data taken from ibm_lagos on 29 January 2023.

4. Conclusions

We investigated the generation of random states for which the entanglement content
is almost maximal on a quantum computer. We proposed a method in which the obtained
pseudo-random states converge to true random states by concatenating layers in which
random permutations of the qubit labels are followed by the generation of random states
for pairs of qubits. We argue that our method is optimal, and that the number of CNOT
gates is greatly reduced with respect to circuits implementing two-qubit random unitary
gates. The effectiveness of our method has been tested in the current implementations of
quantum hardware, both for superconducting and ion trap quantum processors. In the
latest implementation, we highlighted the advantages of the all-to-all connectivity of qubits.

With regard to the attainment of the maximal entanglement of quantum states, it
would be interesting to study the class of maximally multipartite n-qubit states proposed
by Facchi et al. [35]. More generally, multipartite entanglement optimization is a difficult
task, which could at the same time be an ideal testbed for investigating the complexity
of quantum correlations in many-body systems and for developing variational hybrid
quantum-classical algorithms [36–38].
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Appendix A. Random State Purities Moments

Recalling that |ψ〉 is a pure state that belongs to the Hilbert space H = HA ⊗ HB,
where HA and HB are spanned, respectively, by {|iA〉}1≤iA≤NA and {|iB〉}1≤iB≤NB , A and B
are two bipartitions of the entire system. The state, assuming NA ≤ NB, admits a Schmidt
decomposition [1]:

|ψ〉 =
NA

∑
i=1

√
xi|ai〉 ⊗ |bi〉, (A1)

where {|ai〉} and {|bi〉} are suitable basis sets for HA and HB.
For a pure random state, the Schmidt coefficients xi are distributed according to the

density [22]:

P(x1, . . . , xNA) = N ∏
1≤i<j≤NA

(xi − xj)
2 ∏

1≤k≤NA

xNB−NA
k δ

(
1 −

NA

∑
i=1

xi

)
, (A2)

for xi ∈ [0, 1] and some normalization factor N . From this distribution, it is possible to
calculate the n-th moment of the purities, defined as [21]:

〈Rn〉 = N
∫ 1

0
dx1 . . . dxNA (x2

1 + x2
2 + · · ·+ x2

NA
)nP(x1, . . . , xNA) =

=
(NANB − 1)!

(NANB + 2n − 1)! ∑
n1+n2+···+nNA=n

n!
n1!n2! . . . nNA !

× (A3)

× ∏
ni �=0

[
(NB + 2ni − i)!(NA + 2ni − i)!

(NB − i)!(NA − i)!(2ni)!

i−1

∏
j=1

(
1 −

2nj

2ni + j − i

)]
.

Out of this last formula, it is easy to calculate the cumulants shown in Equations (5) and (6).

Appendix B. Cartan’s KAK Decomposition of the Unitary Group

The Cartan’s KAK decomposition can be used for constructing an optimal quantum
circuit for achieving a general two-qubit quantum gate, up to a global phase, which requires
at most 3 CNOT and 15 elementary one-qubit gates from the family {Ry, Rz}, i.e., single-
qubit rotations obtained by exponentiating the corresponding Pauli matrices. It can be
proven that this construction is optimal in the sense that there is no smaller circuit using
the same family of gates, which achieves this operation [20].
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Following the general prescription [39,40], one can decompose every SU(4) element
as depicted in Figure A1, where Aj ∈ SU(2) are single-qubit unitaries decomposable into
elementary one-qubit gates according to the well-known Euler decomposition. Note that,
in order to randomly extract one of these operators, the angles of the single-qubit rotations
must be extracted uniformly with respect to the Haar measure of the unitary group.

Figure A1. A quantum circuit implementing a two-qubit unitary gate using the KAK parametrization
of SU(4).
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Abstract: Finite-element methods are industry standards for finding numerical solutions to partial
differential equations. However, the application scale remains pivotal to the practical use of these
methods, even for modern-day supercomputers. Large, multi-scale applications, for example, can be
limited by their requirement of prohibitively large linear system solutions. It is therefore worthwhile
to investigate whether near-term quantum algorithms have the potential for offering any kind of
advantage over classical linear solvers. In this study, we investigate the recently proposed variational
quantum linear solver (VQLS) for discrete solutions to partial differential equations. This method was
found to scale polylogarithmically with the linear system size, and the method can be implemented
using shallow quantum circuits on noisy intermediate-scale quantum (NISQ) computers. Herein, we
utilize the hybrid VQLS to solve both the steady Poisson equation and the time-dependent heat and
wave equations.

Keywords: quantum computing; quantum variational algorithm; finite-element methods; Poisson
equation; heat equation; quantum algorithms

1. Introduction

Quantum computing has reached a new era where theory is transitioning into practice
as quantum computers and simulators become more widespread and available to the
scientific community. This transition has encouraged algorithmic exploration, with an intent
toward showing “quantum supremacy” or “quantum advantage”. Quantum advantage
refers to the demonstrated and measured success in processing a real-world problem faster
on a quantum computer than on a classic computer. Quantum supremacy [1], on the other
hand, refers to the demonstrated and measured ability to process any problem faster on a
quantum computer, regardless of its real-world applicability [2].

In 2019, Arute et al. [3] claimed to have achieved quantum supremacy using a pro-
grammable superconducting processor by “performing a series of operations in 200 s that
would take a supercomputer about 10,000 years to complete”. In December 2020, a group
based out of the University of Science and Technology of China (USTC) led by Jian-Wei Pan
claimed quantum supremacy by implementing Gaussian boson sampling on 76 photons
with their photonic quantum computer [4]. The paper states that to generate the number of
samples the quantum computer generates in 20 s, a classical supercomputer would require
600 million years of computation. Although these supremacy claims have been the source
of much recent debate, mostly with respect to whether or not their classical comparisons
are the most efficient, it is clear that we are on the threshold of a new age of computation,
heralded by today’s noisy intermediate-scale quantum (NISQ) hardware.

Today’s NISQ computers are limited in scalability because they are (1) subject to
noise and thus not fault-tolerant, and (2) they are qubit-limited (usually meaning less than
100 qubits). Regarding the latter, however, the number of qubits on modern day quantum
computers is rapidly growing, with IBM projecting a remarkable 1121 qubit system in
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2023. Although this exponential qubit growth is vital in the near term, “shot” noise arising
form the Heisenberg uncertainty principle and zero-point thermal fluctuations cause a
phenomenon called decoherence, which may ultimately prevent scalability to larger qubit
applications. Quantum systems achieve their notable advantage over classical ones via
entanglement, a process by which a pure state quantum system develops a probability
distribution over multiple classical outcomes. Entanglement gives quantum computers
the ability to process and store exponentially more information than a classical computer.
Noise, however, introduces errors that cause decoherence in the entanglement and can
significantly degrade the performance of NISQ computers [5–8]. In fact, much of today’s
quantum computing efforts are in noise mitigation [9–14]. In January 2022, for example, a
group of scientists from the University of Chicago and Purdue University collaborated on
a new promising noise control technique: Instead of directly trying to measure the noise,
they constructed a unique “fingerprint” of the noise on a quantum computer as it was
seen by a program run on the computer [15]. This approach shows promise for mitigating
the noise problem, as well as suggesting ways that users could actually turn noise into
an advantage.

Despite these drawbacks, NISQ computers remain promising in application areas
such as quantum chemistry, cybersecurity, drug development, financial modeling, traffic
optimization, weather forecasting, climate change prediction, artificial intelligence and
machine learning. Over the last few years, quantum hardware has become available to
the average researcher, mostly through two types of cloud computing. The first type is
cloud services providing access to a single company’s collection of quantum devices. The
Qiskit cloud service offered by IBM Quantum [16] is the premier example of this. On the
other hand, there are multi-platform services such as Amazon Braket [17] that work as
intermediaries to give users options to access quantum devices owned by multiple vendors.
In most cases, cloud computing interfaces for quantum devices are implemented in Python
to provide starting points for accessing working quantum devices. Introductory resources
for algorithmic understanding and design are also widely available to the public. For
example, the IBM Qiskit textbook [18] provides a college-level introduction to quantum
information with integrated programming exercises, the Codebook by Xanadu [19] provides
an introductory course built around the Pennylane package, allowing for differentiable
programming of quantum computers, and QBraid is an online platform for developing
quantum software with introductory quantum tutorials [20].

As near-term supremacy does not mean utility, many today utilize these current cloud
resources for the investigation of quantum advantages for practical problems. NISQ com-
puters must be restricted to “shallow” circuits for noise control. These circuits have a
minimal number of qubits that are more easily controlled. One way of keeping quantum
circuits shallow, for example, is by combining quantum and classical algorithms so that
only the computationally intensive portion of the problem is implemented on the quantum
computer, thereby offering some degree of quantum speed-up or advantage while maintain-
ing shallow circuits amenable to NISQ computers. This type of hybrid set-up is somewhat
analogous, for example, to classical GPU acceleration. Recently, hybrid methods such as
these have been utilized for near-term acceleration of machine learning and optimization
problems [21–29]. A number of quantum algorithms for machine learning are based on
the idea of amplitude encoding, which associates the amplitudes of a quantum state with
the inputs and outputs of computations [24,30,31]. Since a state of m qubits is described
by 2m complex amplitudes, this information encoding can allow for an exponentially
compact representation. Intuitively, this corresponds to associating a discrete probability
distribution over binary random variables with a classical vector. The goal of algorithms
based on amplitude encoding is to formulate quantum algorithms whose resources grow
polynomially in the number of qubits m, which amounts to a logarithmic time complexity
in the number of amplitudes and therefore the dimension of the input.

Many quantum machine learning algorithms are based on variations in the quantum
algorithm for linear systems of equations [32] (colloquially called HHL after the paper’s
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authors) which, under specific conditions, perform a matrix inversion using an amount of
physical resources growing only logarithmically in the dimensions of the matrix. One of
these conditions is that a Hamiltonian which, entry-wise, corresponds to the matrix can
be simulated efficiently, which is known to be possible if the matrix is sparse [33] or low
in rank [23]. Quantum matrix inversion can be applied to machine learning methods in
which the training reduces to solving a linear system of equations, such as in least squares
linear regression [30,31], the least squares version of support vector machines [24], and
Gaussian processes [34].

For suitably conditioned linear systems, the HHL algorithm scales logarithmically in
n, suggesting the possibility of exponential speed-up over classical systems [32], which
holds promise for quantum computers beyond the NISQ era. In today’s NISQ machines,
however, shot noise has dramatically limited the size of the linear systems directly solvable
by the HHL algorithm. To date, 2 × 2 systems have been solved by superconducting
qubits [35,36], nuclear magnetic resonance [37], and photonic devices [38,39]. The largest
system solved on a gate-based computer was an 8 × 8 problem using NMR [40].

Given today’s NISQ limitations of the HHL algorithm, an alternative method for
linear system solution has been proposed to gain a quantum advantage: variational hybrid
quantum-classical algorithms (VHQCAs). VHQCAs are capable of providing an advan-
tage to Shor’s algorithm for factoring [41] and have gained momentum in the fields of
chemistry [42–45], simulation [46–50], data compression [51], state diagonalization [52–54],
compiling [55,56], quantum foundations [57], fidelity estimation [58], and meteorology [59].
The general VHQCA algorithm reduces the quantum circuit depth by using a classical
optimizer and only evaluating the cost/objective function on the quantum computer.

In this study, we continue to investigate quantum advantages in classical problems by
utilizing a VHQCA recently introduced by Bravo-Prieto et al. [60,61] called the variational
quantum linear solver (VQLS) to obtain finite-element solutions to the Poisson, heat, and
wave equations. The quantum/classical hybrid VQLS is a method for solving linear
systems on near-term quantum computers which variationally prepares a quantum state
|x〉 such that A |x〉 ∝ |b〉. Bravo-Prieto et al. were able to derive a meaningful termination
condition for VQLS that allows one to guarantee a desired solution precision with efficient
quantum circuits to estimate the variational cost function C while providing evidence for
the classical hardness of its estimation. Using Rigetti’s quantum computer, the VQLS was
used for solutions up to a problem size of 1024 × 1024 (10 qubits), which is the largest
implementation of a linear system on quantum hardware to date. The time complexity of
the VQLS was heuristically found to scale efficiently with the linear solution precision ε,
the matrix condition number κ, and the linear system size N.

2. The Variational Quantum Linear Solver

The quantum/classical hybrid VQLS [60,61] algorithm attempts to find a solution to
the linear system such that A |x〉 ∝ |b〉 by minimizing a scalar cost function based on the
scaled projection of A |x〉 onto |b〉. The solution vector |x〉 is approximated with a wave
function created through a quantum circuit ansatz. To prepare a linear system for VQLS
solution, the matrix A must be expressed as a linear combination of universal quantum
gates. Additionally, the right-hand side (RHS) of the linear system must be transformed
into a normalized quantum state |b〉, which can be generated by unitary operations U
applied to the ground state of some number of qubits. We now discuss these elements of
the VQLS in detail.

2.1. The Variational Ansatz

In the VQLS algorithm, |x〉 is prepared by acting on the |0〉 state with a trainable gate
sequence V(α). The ansatz V(α) can be expressed in terms of L gates from a gate alphabet
A = Gk(α) as

V(α) = GkL(αL) · · · Gki
(αi) · · · Gk1(α1) (1)
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Here, �k = (kL, · · · , k1) identifies the types of gates and their placement in the circuit
(i.e., on which qubit they act), while α represents the continuous parameters over which
optimization occurs. All results presented herein are based on a “fixed ansatz”, where
�k is fixed over time and V is only optimized over α. Though it was not investigated in
this study, variable ansatz optimization was shown to improve convergence in some cases
in [52,62].

Training of the ansatz is performed layer by layer, just as in neural networks. The
number of layers is decided by the user. Although the solution function space widens as
the layers are increased, over-determined parameter optimization may become difficult
and inefficient. The properties of a good ansatz are as follows: (1) the circuit is shallow,
minimizing decoherence, (2) it has minimal optimization parameters, and (3) the ansatz
should span the space where the solution lives. Of all the layer structures we tested, the
ansatz given in [60] (shown in Figure 1) was the most optimal one. This ansatz begins with
an initial y rotation (Ry) of each qubit before moving on to the layered portion of the circuit.

Figure 1. A four-qubit example of the fixed ansatz used for this study.

Each layer starts with alternating controlled-z (CZ) gates followed by Ry rotations
on the controlled qubits. The CZ gates have the crucial function of entangling the qubits,
which allows for an exponentially larger space representation than a purely classical cost
evaluation. The Ry gates allow one to “search” the state space by varying the rotational
parameters.

In this study, a range of layers were tested for each application of the VQLS. Some
general guidelines for choosing the number of layers were found: (1) a greater number
of layers was needed, as the problem’s dimensionality was increased (resulting in larger
linear systems), and (2) a greater number of layers was required, as the number of terms in
the Pauli decomposition of the stiffness matrix grew. These two factors greatly limited the
size of the finite-element problems we could test at this time to a maximum of 10 nodes
(8 internal nodes or 3 qubits).

2.2. Matrix Pauli Decomposition

In order to solve the linear system using the VQLS, the matrix must be represented as
a linear combination of Hermitian unitary operators A = ∑i ci Ui, representing a system
Hamiltonian where Ui represents the unitaries and ci represents complex coefficients.
Additional assumptions are that the matrix condition number κ < inf and ‖A‖ ≤ 1 and
that the Ai unitaries can be implemented with efficient quantum circuits. Typically, this
decomposition consists of a linear combination of Kronecker products of the Identity and
Pauli matrices, as these gates are widely used and recognized. These matrices and gates
are defined as follows:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(2)

For all application matrices herein, a recently proposed algorithm given in [63], which
takes a square real symmetric matrix of an arbitrary size and decomposes it into a tensor
product of Pauli spin matrices, was used. The routine was given by the authors in Python
and is publicly available. The mathematical procedure for generating this decomposition
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for a general-sized stiffness matrix, often encountered in discrete finite-element methods, is
given in Appendix A.

2.3. Right-Hand Side Preparation

The VQLS requires that the linear system RHS be transformed into a normalized
quantum state |b〉 generated by some series of unitary operations U applied to the ground
state of the qubits:

|b〉 = U |0〉 (3)

Again, we assume that U can be efficiently implemented with a quantum circuit. For
example, if the boundary conditions are homogeneous, and a reduced linear system is used
which includes only the internal domain grid points, then the constant RHS wave function
can be created by a quantum circuit which applies a Hadamard gate to each qubit:

|b〉 = (H0H1H1 · · · Hm−1) |0〉 (4)

where m is the total number of qubits used to represent the reduced system. In general,
however, the RHS vector of the linear systems will not be constant, and a vector-specific
circuit must be generated. For the applications herein, we utilized the “isometry” package
in Qiskit to produce the corresponding quantum state from a specific RHS vector. It is
worth noting that more general, non-constant RHSs may lead to deeper, more complex
circuitry that may affect the VQLS’s efficiency, since this circuit is evaluated in a controlled
manner during each cost calculation.

3. Computational Details

The VQLS in this study was implemented in Python using IBM’s Qiskit [16]. Qiskit
is an open source software development kit for working with OpenQASM and the IBM
Q quantum processors. For prototypical applications, such as those needed for the early
stages of this work, Qiskit offers a quantum computer simulator which allows the user
to build and test quantum circuits on a local machine without the need for a quantum
computer. The Qiskit package, along with its statevector simulator, can be imported into
a Python script in the usual way. For all problems in this study, the Qiskit Aer simulator
backend was used.

4. Training Algorithm

Scientific Python (SciPy) offers a variety of options for both constrained and uncon-
strained optimization of scalar objective/cost functions. The purpose of these optimizers is
to update the parameters of the VQLS ansantz. Generally speaking, multi-variant objection
function optimizers fall into two categories: gradient- and non-gradient-based optimization.
Gradient-based methods, such as the Newton conjugate gradient method, use the objective
function gradients (i.e., Jacobians or Hessians) to move in a descending direction toward a
minima. Non-gradient methods, on the other hand, work by iteratively approximating the
actual constrained optimization problem with linear programming problems. During an
iteration, an approximating linear programming problem is solved to obtain a candidate
for the optimal solution. The candidate solution is evaluated using the original objective
and constraint functions, yielding a new data point in the optimization space. This in-
formation is used to improve the approximating linear programming problem used for
the next iteration of the algorithm. When the solution cannot be improved anymore, the
step size is reduced, refining the search. When the step size becomes sufficiently small,
the algorithm finishes.

Previous studies have compared gradient- and non-gradient based optimization for
a range of VQLS applications using quantum simulators, quantum simulators with shot
noise, and fully quantum applications. In particular, in [64], it was shown that once shot
noise is included in either the statevector simulator or real quantum application, gradient-
based optimizers do not offer much of an advantage over non-gradient optimizers. A
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popular choice for VQLS applications, for example, is the non-gradient based constrained
optimization by linear approximation (COBYLA) method. Due to these previous findings
and the complexity of including the objective function gradients, the COBYLA method was
used for all applications herein, and gradient-based methods were not investigated.

5. Applications

5.1. Application 1: The Poisson Equation

For the first application, the QVA was used to solve the Dirichlet problem for the 1D
Poisson equation, given in strong form by

−�u(x) = f (x), u(x) ∈ Ω, (5)

where u(0) = uL and u(1) = uR. The equivalent weak representation of this equation
is obtained by taking Equation (5) and multiplying it by an arbitrary test function in the
appropriate function space, followed by integrating by parts [65] to give∫ uR

uL

dφ

dx
du
dx

dx =
∫ uR

uL

φ f (x) dx ∀φ ∈ H1
0(Ω) (6)

Here, φ(x) is the arbitrary test function in the appropriate Hilbert space, and the
boundary term from integrating by parts vanishes since the test space H1

0 has 0 trace.
To discretize this equation, the standard Galerkin approximation with linear Lagrange
polynomials is used on a uniform 1D grid of N points, where the ith nodal location is given
by xi = ih. Here, h = 1/(N − 1) and 0 ≤ i ≤ (N − 1). Additionally, we define n = N − 2
as the internal node count. This discretization results in the linear system

K�u = �f (7)

where for linear, Lagrangian basis function support, K is the typical tridiagonal “stiff-
ness” matrix, �u is the solution vector, and �f is the right-hand side. When applying non-
homogeneous Dirichlet boundary conditions, it is essential to manipulate this linear system
to force the specified solution values on the domain endpoints, giving the following RHS:

�f =

⎛⎜⎜⎜⎜⎜⎜⎝

∫ 1
0 φ1 f (x) dx +

∫ 1
0

∂φ1
∂x

∂φ0
∂x uL dx∫ 1

0 φ2 f (x) dx∫ 1
0 φ3 f (x) dx

...∫ 1
0 φn f (x) dx +

∫ 1
0

∂φn
∂x

∂φn+1
∂x uRdx

⎞⎟⎟⎟⎟⎟⎟⎠ (8)

For Dirichlet boundary conditions, a reduced system can be solved without the end-
points, since these are known. The reduced matrices were used for all applications herein to
increase the grid resolution, since the qubit count was extremely limited. While obtaining
the quantum wavefunction for the RHS of the homogeneous Poisson equation is relatively
straightforward, heterogeneous boundaries or time-dependent solutions require more
complex ways of calculating the RHS wavefunction on the fly. As mentioned, this was
accomplished using Qiskit’s Isometry package. An example for creating a wavefunction
from an arbitrary vector U is as follows:

qc = QuantumCircuit ( 4 )
U = [ 0 . 1 , 2 , 2 , 2 , 2 , 2 , 2 , 0 . 1 ]
U /= np . l i n a l g . norm (U)
qc . isometry (U, [ 0 , 1 , 2 ] , [ ] )
qc = t r a n s p i l e ( qc , b a s i s _ g a t e s = [ ’ u3 ’ , ’ cx ’ ] , o p t i m i z a t i o n _ l e v e l =3)

This circuit is shown in Figure 2.
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Figure 2. A quantum circuit representing �f T = [ 0.1, 2, 2, 2, 2, 2, 2, 0.1 ] found using Qiskit’s Isometry
command.

5.1.1. Poisson Case 1: Parabolic Solution with Homogeneous Boundary Conditions

For the first Poisson test, a manufactured quadratic solution for Equation (5) was used
to simplify the RHS preparation. The solution was given by

u(x) = a + b(x − x0)
2 (9)

where a = g − b(−x0)
2, u(0) = u(1) = g and x0 = 1/2. The RHS of Equation (5) then

simplifies to a constant −2b. For homogeneous boundary conditions, where g = 0, the
reduced RHS of Equation (7) can be written as

�f = h[−2b − 2b − 2b − 2b − 2b − 2b]T (10)

where h is the uniform grid spacing and T is the transpose.
This linear system was solved using the fixed-ansatz VQLS as described with the

Pauli decomposition given in Appendix A and the right-hand side preparation detailed in
Section 2.3. For the quantum simulator results without shot noise, errors arose only from
discretization of spatial derivatives and the VQLS optimization. The number of qubits m in
the VQLS determines the grid resolution such that the total number of nodes is N = 2m + 2.
Our attempts at optimization for anything greater than three qubits (eight nodes) took too
long to simulate on a serial machine. This low qubit count leads to very coarse grids and
noticeable discretization errors. To properly converge the discrete problem, finer grids
were needed. All ansatz parameters were initialized randomly between −π <= θk <= π,
default optimizer tolerances of 10−4 were used, and the initial change to the variables in
the COBYLA optimizer was set to rhobeg = π.

For the two-qubit homogeneous Poisson application, there were four internal and six
total finite element nodes. The convergence results for the VQLS for a range of ansatz layers
can be seen in Figure 3. These results were averaged over 20 runs, with solid lines indicating
the average and variances shown with vertical bars. The two-qubit linear system’s stiffness
was a 4 × 4 matrix. This figure shows that 2 layers were sufficient to successfully capture
the solution to the default tolerance within 100 optimization steps. Note that the total
number of optimization parameters Nθ varied as Nθ = m + 2(m − 1)(nlayers − 1), so for a
two-qubit and two-layer network, there were four parameters to span the solution space.
This figure shows that as the number of layers or parameters increased, the optimization
converged slower, though still relatively fast when compared with the three-qubit problem.
This was expected, however, since the solution test space dimensionality was increasing,
and the variational algorithm had to span this space. For all layer cases, full solution
convergence was achieved within the COBYLA tolerance using the statevector simulator in
less than 100 iterations. Figure 4 plots the wall clock time in seconds versus the number of
layers averaged over the 20 runs for the 2 qubit problem. From this figure, it is seen that
the time it took to converge the solution was linearly proportional to the number of layers
used in the variational ansatz.
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Figure 3. Two-qubit VQLS cost function results for the reduced Poisson problem with homogeneous
Dirichlet boundary conditions. The results were averaged over 20 trial runs. Variances are shown by
respective bars.

Figure 4. Wall clock time in seconds versus the number of layers for the two-qubit VQLS reduced
Poisson problem with homogeneous Dirichlet boundary conditions.

Figure 5 displays the cost function of the 3 qubit statevector solution averaged over
10 runs. For this case, there were 8 internal nodes and 10 total, and the linear system
stiffness was an 8 × 8 matrix. While the two-qubit results converged relatively fast for a
small number of layers, this was not the case for the three-qubit application. Additionally, it
took 4 or more layers for the cost function to converge within 1000 iterations. An interesting
note from this figure is that the even-numbered layers performed notably better than the
odd layers, with six layers converging in the least amount of time and most accurately.
This can be seen more clearly in Figures 6 and 7, which display solution results and the
grid root mean square errors averaged over all runs for each layer, respectively. Lastly,
Figure 8 displays the time in seconds averaged over all 10 runs for each layer. Since the
three-layer run never fully converged within the COBLYA default tolerance, it took the
longest. All layers greater than three once again showed a linear increase in time as the
layers were incremented.
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Figure 5. Three-qubit VQLS cost function results for the reduced Poisson problem with homogeneous
Dirichlet boundary conditions. The results were averaged over 10 trial runs. Variances are shown by
respective bars.

Figure 6 displays the VQLS versus the classical discrete solution for the three-qubit,
eight-internal node problem. In this figure, we see the VQLS solution growing in accuracy
as the number of ansatz layers is increased, as expected. In the right column, the VQLS
solutions are plotted along with the analytic system solution. Note that the VQLS solution
here is being compared to the discrete finite-element solution, and thus both include
discretization errors which are not shown.

Figure 6. Three-qubit (eight-node) VQLS results (filled circles with dashed lines) for reduced Poisson
problem with homogeneous Dirichlet boundary conditions. The classical discrete solution is shown
with a solid black line.

For the VQLS results in Figures 3–8, a Qiskit statevector simulator was used so that
the full wave function was known, eliminating measurement and sample errors from the
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convergence figures. For a quantum calculation, however, measurements are necessary, and
sampling errors can affect the classical optimizer convergence. Measurements occurred in
the Hadamard tests of the cost calculations. Figure 9 shows the COBYLA cost convergence
as the number of shots was increased. It was found that to achieve accurate and smooth
convergence, at least 100,000 shots were needed for the 2 qubit VQLS system.

Figure 7. The root mean squared solution error versus the number of layers for the three-qubit VQLS
reduced Poisson problem with homogeneous Dirichlet boundary conditions. Here, the errors were
averaged over all 10 runs for each layer.

Figure 8. Wall clock time in seconds versus the number of layers for the three-qubit VQLS re-
duced Poisson problem with homogeneous Dirichlet boundary conditions. The three-layer run does
not converge.
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Figure 9. The COBYLA cost convergence for a range of shots in the two-qubit VQLS reduced Poisson
problem with homogeneous Dirichlet boundary conditions.

5.1.2. Poisson Case 2: Cubic Solution with Non-Homogeneous B.C.

Next, we consider a non-symmetric cubic Poisson solution with non-homogeneous
boundaries, which will further complicate the RHS vector as it modifies f to be

fi = ah2(6ih − 2) + ui i = 1, n (11)

In this case, ui = uL for i = 1, and ui = uR for i = n. Note that normally, the RHS
addition to the 1D case would be uD/h, but both sides are multiplied by h in the discrete
matrix solution.

The following cubic manufactured solution is used:

u(x) = a(−x3 + x2 + x + 1) (12)

where a = 1 so that uL = 1 and uR = 2. The two-qubit Qiskit wavefunction simulator
was used to calculate the discretized, finite-element VQLS results for 2–6 ansatz layers to
investigate the layer count sensitivities to accuracy and convergence. For each layer count,
five runs were executed, and the mean and standard deviation of the runs were calculated.
Once again, all ansatz parameters were initialized randomly between −π <= θk <= π,
default tolerances of 10−4 were used, and the initial change to the variables in the COBYLA
optimizer was set to rhobeg = π. Using these parameters, it was found that only two ansatz
layers were needed to fully capture the solution, as can be seen in Figure 10. The best cost
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convergence was also seen for two layers, shown in Figure 11. The cost curve variances did
not show any obvious trend with the layer count.

Figure 10. Two-qubit, two-layer solution (filled circles) along with the analytic solution (solid line) of
Case 2: the cubic Poisson problem.

Figure 11. VQLS mean cost versus iteration or optimization count over a range of layers for the cubic
Poisson problem. Variances are shown as curve error bars.
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5.2. Application 2: The Heat Equation

The Poisson test cases were time-independent and required only one linear solve
for the solution. In this section, however, the VQLS results are presented for the 1D
time-dependent heat equation

∂t − ∂xxu = 0 x ∈ (0, 1)

u(xL, t) = uL

u(xR, t) = uR

u(x, 0) = u0

(13)

where xL and xR are the 1D domain endpoints. The weak form of this equation is∫ xR

xL

∂tu φ dx +
∫ xR

xL

uxφx dx = 0 ∀φ ∈ H1
0(0, 1) (14)

Discretizing in time with uniform time steps Δt and using the backward Euler approx-
imation for the time derivative gives∫ xR

xL

uk+1 φ dx −
∫ xR

xL

uk φ dx + Δt
∫ xR

xL

uk+1
x φx dx = 0 (15)

where k is the discrete time step index such that k = 1, nt and nt is the total number
of time steps. This equation is made to hold for all test functions, giving the following
finite-element (FE) backward Euler matrix equation:

(M + ΔtK)�u k+1 = M�u k (16)

For linear basis functions on a uniform grid of a spacing h, the matrix operators are

M =

⎡⎢⎢⎢⎣
2h
3

1h
6 0 0 ....

1h
6

2h
3

1h
6 0 ...

0 1h
6

2h
3

1h
6 0...

...
. . . . . . . . .

⎤⎥⎥⎥⎦ (17)

K =

⎡⎢⎢⎢⎣
2
h − 1

h 0 0 . ...
− 1

h
2
h − 1

h 0 ...
0 − 1

h
2
h − 1

h 0 ...
...

. . . . . . . . .

⎤⎥⎥⎥⎦ (18)

This equation gives a linear system A�x =�b at each time step such that

A =

⎡⎢⎢⎢⎣
2h
3 + 2Δt

h
1h
6 + −1Δt

h 0 0 ....
1h
6 + −1Δt

h
2h
3 + 2Δt

h
1h
6 + −1Δt

h 0 ...
0 1h

6 + −1
h

2h
3 + 2Δt

h
1h
6 + −1Δt

h 0...
...

. . . . . . . . .

⎤⎥⎥⎥⎦ (19)

and�b = M�u k.
For verification of the FE-VQLS algorithm, a nonlinear solution was fabricated of

the form

u(x, t) =
1√
4πt

exp(− (x − 0.5)2

4t
) (20)

on the domain [0 ≤ x ≤ 1]× [1 ≤ t ≤ 3]. A uniform grid was created with n = 2m internal
spatial grid points, N = n + 2 total spatial grid points, and nt = 11 time points. Figure 12
shows the two-qubit results (dashed lines and open circles) plotted against the analytic
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solution (solid line). For these results, three layers were used, and rhobeg in the COBYLA
method was set to π/100.

Figure 12. Analytic solution (solid line) versus two-qubit VQLS-based finite element results (dashed
line with open circles) for the time-dependent heat equation at each time step.

The results in this figure show excellent agreement between the FE-VQLS and the
analytic solution. It should be noted, however, that in order to obtain these results, the
FE-VQLS solution had to be scaled appropriately at each time step, since the quantum
results were only proportional to the solution. This could be accomplished by using the
boundary conditions if they were non-homogeneous, and the system was not solved in a
reduced way. However, since the reduced systems were used herein, the non-homogeneous
boundaries were not included, and the ratio of the analytic and FE-VQLS solution of the
first internal point was used for the scaling.

At each time step, the previous VQLS ansatz parameters were used to initialize the
minimization procedure and speed up convergence. Ideally, the number of COBYLA
iterations should decrease in time. This was seen for the two-qubit solution, as shown
in Figure 13.
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Figure 13. The COBYLA iteration count over time for the two-qubit solution of the heat equation.

5.3. Application 3: The Wave Equation

For the last application, we present the VQLS results for a 1D wave equation of
the form

∂ttu − ∂xxu = 0 x ∈ (0, 1)

u(xL, t) = uL

u(xR, t) = uR

u(x, 0) = u0

(21)

where xL and xR are the endpoints of the 1D domain. The weak form of this equation is∫ xR

xL

∂ttu φ dx +
∫ xR

xL

uxφxdx = 0 ∀φ ∈ H1
0(0, 1) (22)

Discretizing in time with uniform time steps Δt and using a second-order difference
approximation for the time derivative gives∫ xR

xL

uk+1 φ dx − 2
∫ xR

xL

uk φ dx +
∫ xR

xL

uk−1 φ dx + Δt2
∫ xR

xL

uk+1
x φx dx = 0 (23)

Note here that we have treated the diffusion term implicitly. When applied to all test
functions, this yields the matrix equation

(M + Δt2K)�u k+1 = M(2�u k + �u k−1) (24)

where A = M + Δt2K and�b = M(2�u k + �u k−1).
To test the VQLS, a non-separable solution of

u(x, t) = sin(x + t) (25)

was used on the domain [0 ≤ t ≤ 1]× [0 ≤ x ≤ 1]. A total of m = 2 qubits (n = 4 internal
points) were used for the matrix-reduced internal solve with three ansatz layers. The time
step was set to Δt = 0.1s. As can be seen in Figure 14, the VQLS results agreed well with the
analytic solution, and it is noted that a majority of the differences came from discretization
and not from the VQLS procedure. The time-dependent COBLYA iteration count, which
essentially represents the time evolution regularity of the ansatz parameters, can be seen in
Figure 15. This figure shows a large initial iteration count associated with random sampling
and a decrease in iteration count for each linear solve as the solution converged over time.
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Figure 14. Analytic solution (solid line) versus two-qubit VQLS-based finite element results (dashed
line with open circles) for the time-dependent wave equation at each time step.

Figure 15. The COBYLA iteration count over time for the two-qubit solution of the wave equation.

6. Discussion

In this study, the variational quantum linear solver recently proposed by Bravo-Prieto
et al. [60,61] was used to solve the linear systems obtained from finite-element discretization
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of the time-independent Poisson and time-dependent heat and wave equations. Although
the results presented focused on these equations, the tools of this effort can generally be
used to solve any discretization of a partial differential equation that leads to a matrix
solution. The key findings of this effort are that (1) the Qiskit Isometry command can be
used to generate wavefunctions for arbitrary vectors, a vital component for solving time-
dependent right-hand sides, (2) the quantum/classical hybrid variational solver can be
used as a potential “accelerator” for discrete finite-element problems, (3) the large number
of sampling shots and N2 matrix gate Hadamard test evaluation requirements greatly
affects qubit scalability and thus the finite element grid resolution, and (4) the minimization
iteration count decreases over time as the solution converges, reflecting an ansatz parameter
regularity. The latter point is particularly useful for initial value problems, where a set of
initial ansatz parameters need only be found once and used thereafter.

Regarding scalability of the VQLS, although it was previously found in [61] that this
method was scalable for up to 1024 × 1024 (10 qubit)-sized systems, that was certainly not
the case for the practical linear systems herein, where the matrix and RHS required deeper
circuits. Since each term in the stiffness Pauli decomposition requires a Hadamard test
against the other terms, this size of the linear combination (circuit depth) directly affects
the efficiency of the VQLS algorithm. For the 2 qubit, 6 node systems, the scalability more
closely resembled that presented in Bravo-Prieto’s analysis, but the 4 qubit, 18 node systems
required 16 Pauli terms in the linear combination, and the VQLS results converged too
slowly to be practical.

Future work will include further investigation of (1) new ansatz and optimization
options, (2) more efficient methods for creating arbitrary RHS vectors specifically for use in
finite-element methods, and (3) the quantum hardware scalability and effect of quantum
noise for applications of the FE-VQLS.
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Appendix A. Preparation of the Stiffness Matrix

A crucial bottleneck of methods that simulate linear algebra computations with the
amplitudes of quantum states is state preparation, which often requires one to initialize
a quantum system in a state whose amplitudes reflect the features of the entire dataset.
Although efficient methods for state preparation are known for specific cases [66,67], this
step easily hides the complexity of the task [68,69].

In order to solve the linear system either directly or variationally on a quantum
computer, the stiffness matrix K must be represented as a linear combination of Hermitian
unitary operators, K = ∑i ci Ui, representing a system Hamiltonian where Ui represents the
unitaries and ci represents the complex coefficients. Additionally, we assume that the matrix
condition number κ < inf and ‖A‖ ≤ 1 and that the Ai unitaries can be implemented with
efficient quantum circuits. Typically, this decomposition consists of a linear combination of
Kronecker products of the Identity and Pauli matrices, as these gates are widely used and
recognized. These matrices and gates are defined as follows:
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I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(A1)

To find this linear combination, the tridiagonal matrix can be expressed recursively. Ignor-
ing the diagonal component I2m , suppose that we have an expression for the off-diagonal
elements in the m qubit case

Am =
2m−2

∑
i=0

(|i〉 〈i + 1|+ |i + 1〉 〈i|) (A2)

which gives an expression such as

|0〉 〈1|+ |1〉 〈2|+ ... + |2m − 2〉 〈2m − 1|+ h.c. (A3)

Now, we write

I2 ⊗ Am =
(
|0〉 〈0|+ |1〉 〈1|

)
⊗ Am (A4)

=
2m−2

∑
i=0

(
|i〉 〈i + 1|+ |i + 1〉 〈i|

)
+

2m+1−2

∑
i=2m

(
|i〉 〈i + 1|+ |i + 1〉 〈i|

)
= Am+1 −

(
|2m − 1〉 〈2m|+ |2m〉 〈2m − 1|

)
and thus

Am+1 = I2 ⊗ Am +
(
|2m − 1〉 〈2m|+ |2m〉 〈2m − 1|

)
(A5)

In the second line of Equation (A4), tensoring |1〉 〈1| with the second sum puts a “1”
bit ahead of every bit string, which shifts every index in the summand by 2m. Then, by
comparison with Equation (A2), this line is simply Am+1 but missing a term connecting the
two tri-diagonal block submatrices of I2 ⊗ Am.

As an m = 3 example, it is first easy to find the off-diagonal solution for m = 2,
given by

A2 = I ⊗ X +
1
2
(X ⊗ X + Y ⊗ Y) (A6)

=

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠+

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠

=

⎛⎜⎜⎝
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎞⎟⎟⎠
Using this result, Equation (A5) can be written as

A3 =

(
A2 0
0 A2

)
+ (|011〉 〈100|+ |100〉 〈011|) (A7)

Appendix A.1. Implementing the Recursion Using GHZ States

All that is needed now is an operator representing
(
|2m − 1〉 〈2m|+ |2m〉 〈2m − 1|

)
.

This turns out to be closely related to writing an m + 1 qubit GHZ state in terms of
Pauli operators. The GHZ state |ψ〉 = |0〉⊗(m+1) + |1〉⊗(m+1) operator |ψ〉 〈ψ| has two
off-diagonal elements: one in the top left and one in the top right of the corresponding
matrix. These elements can be permuting toward the center of the matrix with the operator
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Bm+1 = |0〉 〈2m+1 − 1|+ |2m+1 − 1〉 〈0| (A8)

= (|0〉 〈1|)⊗(m+1) + (|1〉 〈0|)⊗(m+1)

Thus, we have

(X ⊗ I2m)Bm+1(X ⊗ I2m) = (X ⊗ I2m)
(
(|0〉 〈1|)⊗(m+1) + (|1〉 〈0|)⊗(m+1))(X ⊗ I2m) (A9)

= (|10...0〉 〈01...1|+ |01...1〉 〈10...0|)
= |2m〉 〈2m − 1|+ |2m − 1〉 〈2m|

Now, using the results of (GUHNE 2007), the center shift operator can be written as

Bm = (|0〉 〈1|)⊗m + (|1〉 〈0|)⊗m (A10)

=
1

2m−1

�m/2 
∑
t=0

(−1)t ∑
π

Sπ(X
⊗(m=2t) ⊗ Y⊗2t) (A11)

Here, the Sπ operator permutes m subsystems according to a permutation
π : {1, · · · , n} → {1, · · · , m}, and the sum runs over all unique permutations π on size m
sets. Using this formula along with Equation (A5) gives an analytic Pauli decomposition of
the stiffness matrix.

Appendix A.2. Preparation of the m = 3 Stiffness Matrix

For the m = 3 qubit stiffness matrix (with 2m = 8 finite element nodes), Equation (A10)
becomes

B3 =
1
4
(XXX − XYY − YXY − YYX) (A12)

and therefore

(X ⊗ I4)B3(X ⊗ I4) =
1
4
(XXX − XYY + YXY + YYX) (A13)

Substituting this into Equation (A5) and adding the diagonal factor 2III gives our final
three-qubit, eight-node stiffness matrix Pauli decomposition as follows:

2I8 − A3 = 2I8 −
[
I2 ⊗ A2 + (X ⊗ I4)B3(X ⊗ I4)

]
(A14)

= 2III −
[
IIX +

1
2
(IXX + IYY) +

1
4
(XXX − XYY + YXY + YYX)

]
Appendix A.3. Preparation of a General m Qubit Stiffness Matrix

Generalization of the above procedure for an m qubit stiffness matrix gives the follow-
ing recursive procedure with A1 := x:

Am = I2 ⊗ Am−1+ (A15)

(X ⊗ I2m−1)
1

2m−1

�m/2 
∑
t=0

(−1)t ∑
π

Sπ(X
⊗(m=2t) ⊗ Y⊗2t) + (X ⊗ I2m−1)

The final finite-element stiffness matrix is then

Km = 2I2m − Am (A16)
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Abstract: Credit risk analysis (CRA) quantum algorithms aim at providing a quadratic speedup over
classical analogous methods. Despite this, experts in the business domain have identified significant
limitations in the existing approaches. Thus, we proposed a new variant of the CRA quantum
algorithm to address these limitations. In particular, we improved the risk model for each asset in a
portfolio by enabling it to consider multiple systemic risk factors, resulting in a more realistic and
complex model for each asset’s default probability. Additionally, we increased the flexibility of the
loss-given-default input by removing the constraint of using only integer values, enabling the use of
real data from the financial sector to establish fair benchmarking protocols. Furthermore, all proposed
enhancements were tested both through classical simulation of quantum hardware and, for this new
version of our work, also using QPUs from IBM Quantum Experience in order to provide a baseline
for future research. Our proposed variant of the CRA quantum algorithm addresses the significant
limitations of the current approach and highlights an increased cost in terms of circuit depth and
width. In addition, it provides a path to a substantially more realistic software solution. Indeed,
as quantum technology progresses, the proposed improvements will enable meaningful scales and
useful results for the financial sector.

Keywords: quantum computing; algorithms; scalability; credit risk analysis; quantum finance

1. Introduction

This paper is intended as an extension of previous work [1]. In particular, this extended
version includes new data, analysis, and theoretical developments not present in the
original paper and that derive from recently acquired access to 7- and 27-qubit QPUs. The
authors believe that these additions provide significant new insights and perspectives
regarding the enhanced algorithm and its practical implementation.

Quantum Finance and Credit Risk Analysis

The field of quantum finance aims to use quantum computing to solve a variety of
computational problems in finance more effectively than classical methods [2,3]. In recent
years, researchers have focused on achieving a quantum advantage in credit risk analysis
(CRA) [1,4]. CRA is a crucial risk management tool that assesses the risk of loss from a
debtor’s insolvency [5]. Classically, Monte Carlo methods are commonly used in the field
to estimate economic capital, which is the amount of capital needed to ensure a company
remains solvent based on its risk profile. Essentially, these estimation techniques depend on
obtaining numerical results through repetitive random sampling [6]. A practical example
of their utilization is the computation of the value at risk (VaR), a statistic that quantifies
how much a set of investments might lose (with a given probability) over a defined time-
frame [7]. This metric is broadly used for the assessment of EC, but in most cases, no
closed-form solution currently exists for computing it [8].
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However, Monte Carlo simulations are computationally expensive due to the rare-
event simulation problems inherent in credit risk evaluation [9]. Additionally, Monte Carlo
simulations can only generate pseudo-random variables, and the quality of the simulation
can be compromised by the appearance of patterns [10].

To overcome these limitations, researchers have explored new methods, such as those
based on quantum computing, which can naturally generate true random samples due to
the probabilistic nature of qubits [11]. Moreover, quantum amplitude estimation (QAE) has
shown promise in estimating the value at risk and offers a quadratic speedup over classical
Monte Carlo methods [4,12].

However, the existing quantum algorithm for CRA [4] is based on the Basel II frame-
work, built on an ASFR (asymptotic single-factor risk) model [13], which assumes a bor-
rower will default if the value of its assets falls below the value of its liabilities [13]. A
visual representation is provided in Figure 1. While this model is useful, it is not optimal,
especially for complex credit risk portfolios. In fact, though it helps to reserve an EC
amount that suits every default scenario, it is intended to be a standard tool for CRA and
therefore it is deliberately conservative [14]. Large financial institutions use custom models
that consider several risk factors instead of just one since this refinement allows them to
reserve a more precise amount to cover potential losses [15]. To address this aspect, we
proposed modifications to the existing quantum algorithm to handle increased complexity
in the assets’ default model, while preserving the advantages of quantum computing in
terms of needed (quantum) samples.

Figure 1. Asset-based default model.

Additionally, we presented a solution to encode non-integer values for the loss-given-
default input parameter to use real-world data and provide a fair comparison with tradi-
tional benchmarks.

We are now able to provide experimental results for the enhanced version of the
original quantum algorithm, not only through classical simulation of quantum hardware
but also from cloud access to IBM QPUs with 7 and 27 superconducting qubits.

In the following sections, we first introduce the use of quantum amplitude estima-
tion for CRA. We then present the proposed modifications to the existing algorithm to
address outstanding issues, including the Basel II model’s limitations and the encoding of
non-integer values. Lastly, we present the new results of simulation experiments and of
executions on real quantum devices obtained by running the experiments on IBM devices
from the Researchers program [16] and from the pay-as-you-go service [17].
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2. Methods

As described in [1], credit risk can be evaluated through three primary measures: the
probability of default (PD), the loss given default (LGD), and the economic capital (Ecap).
The PD represents the likelihood that the debtor will become insolvent, while the LGD
is the estimated loss following the insolvency of the counterparty. The expected loss is
another commonly used risk measure, which depends on both the PD and LGD, as an
increase in either quantity results in a higher expected loss. Multiplying the PD and LGD
values gives the expected loss for each exposure. This measure is additive, so the expected
loss for a portfolio of n assets is the sum of each exposure’s expected loss.

E[L] =
n

∑
k=1

PDk · LGDk (1)

Ecap is the third measure used to assess credit risk. It is defined as the amount of equity
that a financial institution will maintain to manage the risk of credit losses in its portfolio.
The economic capital, which is the VaR (quantile of losses at a certain confidence level α)
minus the total expected loss, is determined based on the distribution of losses.

Ecap = VaRα −E[L] (2)

The expected loss is already taken into account in financial reports for financial insti-
tutions, so it is subtracted from the VaR and thus not factored into the EC. Therefore, the
economic capital is used to measure unexpected or extreme values of losses rather than
average losses.

2.1. SOTA Quantum Credit Risk Analysis

The quantum amplitude estimation (QAE) algorithm [18] provides a quadratic speedup
compared to classical Monte Carlo methods [12]. QAE has been utilized to determine VaR
in prior research [4]. A variant of QAE called iterative QAE (IQAE) has recently been
proposed as well [19]. This variant reduces the number of required qubits and gates while
maintaining the quadratic speedup (up to a logarithmic factor) over classical methods.

In order to exploit the speedup guaranteed by the QAE algorithm, the problem under
consideration has to be mapped to a Hermitian operator A acting on n + 1 qubits. This A
operator is constructed in the following way:

A|0〉n+1 =
√

1 − a|ψ0〉n|0〉+
√

a|ψ1〉n|1〉 (3)

where a ∈ [0, 1] represents the probability of measuring the last qubit in the quantum
state |1〉. The last qubit is in fact the one identifying the property of interest. The QAE
algorithm permits us to effectively estimate the value of a. The reader can refer to [4,12,18]
for additional information on QAE.

In prior research [4], QAE has been utilized to determine the cumulative distribution
function (CDF) of the total loss L and construct a Hermitian operator A such that a =
P[L ≤ x] for a given x ≥ 0. Then, a bisection search is applied in order to locate the smallest
xα ≥ 0 such that P[L ≤ xα] ≥ α, implying that xα = VaRα. Thus, the aim when calculating
VaRα is to identify the minimum threshold for which the estimated probability is greater
than or equal to α.

To map the CDF of the total loss to a Hermitian operator A, three operators are usually
required:

• U , which loads the domain-dependent uncertainty model.
• S , which computes the total loss over nS qubits.
• C, which flips a target qubit if the total loss is equal to or lower than a certain thresh-

old x.

Operator C is used to execute the bisection search needed to compute the VaR.
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For what concerns the default model, the framework implemented in [4] is similar
to the Basel II internal-ratings-based (IRB) method known as the Gaussian conditional
independence model [20,21]. In compliance with this model, all losses can be represented by
Lk = LGDk · Xk, where Xk ∈ {0, 1} is a related Bernoulli random variable. The probability
for asset k to default is the probability that Xk = 1. According to the Basel II approach,
assuming a latent random variable Z (also referred to as a systemic risk factor) with a
realization z, the Bernoulli random variables Xk | Z = z are considered independent.
However, their default probabilities PDk depend on z while Z adheres to a standard
normal distribution. The default probability PDk(z) is given by

PDk(z) = F

(
F−1(p0

k
)
−√

ρkz√
1 − ρk

)
(4)

where p0
k represents the default probability for z = 0, F represents the CDF of the standard

normal distribution, and ρk ∈ [0, 1) determines the sensitivity of Xk to Z [4].

2.2. Multiple Risk Factors

In the original single-factor model presented in [4], the default probabilities of the
counterparts are encoded in a qubit register on which one Y-rotation RY(θ

k
p0
) per qubit is

applied with angle θk
p0

= 2 arcsin
(√

p0
k

)
. These rotations comprise the loading operator U

introduced in [4].
The original implementation also makes use of a register with nZ qubits. This register

encodes a truncated and discretized version of Z using the method proposed in [22]. In
this way, we include systemic risk in the quantum uncertainty model, using the realization
of Z to prepare the qubits representing the counterparties through controlled rotations
with angles θk

p(z) = 2 arcsin
(√

PDk(z)
)

.
As stated in Section 1, the single-factor model, as implemented in the Basel II frame-

work, is intentionally designed to be conservative [14]. However, it has been recognized
that this model has limitations, prompting large financial institutions to seek alternatives to
measure risk more accurately. The most common approach extends the single-factor model
and employs multiple systemic risk factors. This extension aims to directly attribute default
correlations and probabilities to the risk factors, thereby capturing a more realistic depiction
of credit risk. The extended model provides a significant advantage by utilizing real-time
information about the credit cycle, which enhances the accuracy of the underlying credit
risk assessments. As a result, this approach represents a fundamental departure from the
uncorrelated defaults inherent in the base model, and it can capture the linkages between
economic and financial market factors. In light of these considerations, it is evident that the
extended model constitutes a valuable tool for improving risk management practices in
the financial sector, particularly for assessing the credit risk of large and complex financial
institutions. Furthermore, this approach can reduce uncertainties about the parameters
needed for portfolio models’ value-at-risk calculations [15], which is particularly critical
for risk-sensitive regulatory capital requirements. Thus, this extended model is widely
adopted as a tool for more accurate risk measurement in the financial sector.

In the proposed implementation of the model described above, each risk factor Zi still
adheres to a standard normal distribution and presents a weight αi computed by financial
institutions, taking into account possible correlation effects among the different factors
considered [23]. Therefore, the default probability depends on a random variable Y , which
is a linear combination of the R risk factors considered.

Y =
R

∑
i=1

αiZi (5)
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From a practical standpoint, this model comprises multiple latent random variables
whose realizations, when appropriately combined, determine the probability of default for
each asset.

PDk(z) = F

(
F−1(p0

k
)
−√

ρk ∑R
i=1 αizi√

1 − ρk

)
(6)

However, with increased complexity comes the need for alternative approaches to
implement a quantum multi-factor version of the canonical uncertainty model. To address
this challenge, we proposed two alternatives, each with unique advantages and limitations.

The first alternative for encoding systemic risk factors in quantum financial applications
involves the use of multiple quantum registers. In this approach, each systemic risk factor,
denoted as Zi, is assigned its own register, with the values in these registers corresponding
to multiple normal standard distributions. The realization of these distributions controls
one linear rotation for each asset in the portfolio, with each rotation being weighted by
the corresponding αi using the slope of the rotation. This produces a set of rotations that
are used to encode the default probability of each asset in the portfolio, as in the original
algorithm. The circuit corresponding to this process is illustrated in Figure 2.

Figure 2. An instance of the multi-factor version of the quantum circuit that encodes the canonical
uncertainty model, using multiple rotations. The example involves K = 2 assets and nz = 2, which
means that two qubits are used to encode each normal standard distribution. The example also takes
into account two risk factors (R = 2).

While this alternative only requires a limited number of extra qubits to represent the
various risk factors, it does entail a significant increase in the number of gates required to
implement the encoding process. Specifically, each additional risk factor considered will
necessitate K new controlled linear rotations. This increased number of gates is because
each risk factor requires a separate register and rotation, which in turn requires additional
controlled operations in the circuit.

The second alternative for implementing a quantum multi-factor version of the canonical
uncertainty model involves a single quantum register encoding a random variable N that
follows a multivariate normal distribution. A sum register is employed to add up the
values taken by the normal distributions, corresponding to the marginal distributions of
the multivariate distribution, with each marginal distribution representing a risk factor.
The resulting value is used to perform a single linear rotation for each asset, to encode its
default probability in the target qubit. The circuit corresponding to this second process is
illustrated in Figure 3.
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Figure 3. An instance of the multi-factor version of the quantum circuit that encodes the canonical
uncertainty model. It has identical parameters to the circuit illustrated in Figure 2 but uses only one
rotation per asset.

However, since a single rotation is performed per asset, accounting for all the risk
factors, the multivariate normal distribution, in this case, is non-standard. This is because
it is not possible to encode the weights in the slope of the rotations. Instead, the covariance
matrix of the distribution is used to encode the α weights. This approach has a significant
drawback, as it requires the same α vector for all the assets.

Despite this limitation, this approach reduces the circuit depth compared to the
previous one, as only one rotation is required for encoding the asset’s default probability.
However, the method incurs overhead in terms of the required qubits due to the presence
of an extra sum register. Nevertheless, this overhead becomes negligible in a scenario with
portfolios composed of thousands of assets.

For a more detailed evaluation of the qubits and gates required by the various ap-
proaches, we refer the reader to Section 4.1.

Both multi-factor approaches provide an advantage over the Basel II single-factor
model by using actual information about the point in time of the credit cycle. Uncertainties
about the parameters needed for value-at-risk calculations in portfolio models can thus be
reduced.

2.3. Arbitrary LGD

One limitation of current implementations of quantum credit risk algorithms is the
constraint on LGD parameters, which can only assume integer values due to the use of
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a weighted sum register in the operator S that computes the total loss. The function S
operates as follows:

S : |x1, . . . , xK〉K|0〉nS �→ |x1, . . . , xK〉K|LGD1x1 + · · ·+ LGDKxK〉nS
(7)

Here, xk ∈ {0, 1} denotes the possible realizations of Xk, while the loss given default
of each asset is implemented using the weights of the WeightedAdder register provided by
Qiskit [24,25], which are limited to integer values. We also require
nS = �log2(LGD1 + · · ·+ LGDK) +1 qubits to represent all possible values of the sum of
losses given default in the second register.

This constraint is particularly limiting considering the small number of currently
available qubits. For instance, using three assets with LGD values in the order of 105,
around 20 qubits would be needed just for the sum register. To allow for more realistic
input data, we proposed an alternative version of the algorithm that eliminates the S
operator. In particular, we modified the C operator using a circuit that implements a
piecewise linear function f̂ : 0, . . . , 2n − 1 → [0, 1] on qubit amplitudes [4,26,27]. The
modified C operator is defined as:

F|x〉|0〉 =
√

1 − f̂ (x)|x〉|0〉+
√

f̂ (x)|x〉|1〉 (8)

where |x〉 is an n-qubit state. This new approach allows the operator to directly read
defaulted qubits from the X-register and associate them with the corresponding total loss.
The objective qubit is flipped only if the total loss is less than or equal to the given level
x set by the current bisection search step. Essentially, the operator reads the X-register as
a binary number, and then the specific total loss associated with that binary number is
compared with x to determine if the objective qubit should be flipped.

In the next section, we apply this improved algorithm to an illustrative example using
both classical simulations of quantum hardware and real quantum computers.

3. Results

In this section, we present the results of experiments conducted on toy models that
illustrate the proposed improvements.

The chosen numeric values for the LGD parameters demonstrate the increased flexi-
bility allowed by our approach compared to the previous one. Each latent random variable
Zk was modeled using two qubits. No qubits were needed for the sum register as it is not
required for the proposed algorithm.

3.1. Noiseless Simulation

The noiseless experiment utilized the multiple-rotations scheme with K = 2 assets and
two systemic risk factors (R = 2). Table 1 provides the values of the parameters used in the
experiments. To simulate the experiment, the circuit for A was supplied to the iterative
amplitude estimation sub-routine implemented in Qiskit [24]. We performed the bisection
search using the result to find VaRα, with α = 0.95. For the iterative quantum amplitude
estimation, we set a target precision of ε = 0.002 and a 99% target confidence interval.
This resulted in an average of approximately 50,000 quantum samples used by the IQAE
algorithm to achieve the desired precision and confidence. The entire experiment required 9
qubits that were first simulated (without noise simulation) on classical computers using the
simulation back-ends provided by Qiskit [24]. The resulting loss distribution is displayed
in Figure 4. Additionally, Figure 5 shows the corresponding CDF and the target level for
the value at risk.
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Table 1. Problem parameters for the two-asset example (noiseless simulation).

Asset Number Loss Given Default Default Prob. Sensitivity Risk Factor Weights
k LGDk p0

k ρk (α1, α2)k

1 1000.5 0.15 0.1 0.35, 0.2
2 2000.5 0.25 0.05 0.1, 0.25

Figure 4. Noiseless simulation: probability distribution function of total loss. The green dashed line
shows the expected loss while the orange dashed line shows the value at risk.

Figure 5. Noiseless simulation: CDF of total loss L in green and target level of 95 percent in orange.

3.2. Real Hardware and Noisy Simulations

The experiments described in this section aimed to approach as closely as possible the
practical implementation of the algorithm on actual quantum hardware. The results can
provide a reference point for future research works that may want to evaluate technological
improvements. For this reason, the data used were specifically generated by domain
experts who took into account what realistic and reliable values for input measurements
could be. All the relevant data are available in a public repository [28].

For these experiments, we tested various configurations of the multiple-rotations
model on several quantum processors. For each configuration, the experiment was executed
both on the actual machine and classically via simulation of the machine’s noise model. This
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was done to understand the effect of the QPU’s quantum volume and of its topology on the
output, as well as to validate the noise models through simulation. As expected, the circuit
sizes (especially in terms of depth) make the effects of decoherence on the results evident
for all configurations, which hinders the proper extrapolation of the target measurement.
Nevertheless, these findings allow for a baseline for future works focused on providing
solutions in this regard, by reducing the circuit depth or exploiting more stable qubits.

The configurations considered involved 2 to 4 assets and 1 to 3 systemic risk factors.
The required number of qubits varied from a minimum of 7 to a maximum of 13. The
quantum processors used were as follows:

• Ibm_perth and ibm_lagos, each with 7 qubits and a quantum volume of 32.
• Ibm_canberra and ibm_algiers, each with 27 qubits and quantum volumes of 32 and

128, respectively.

The topology for these architectures is shown in Appendix A.
The aggregate results of the simulated experiments are displayed in Figure 6, while

those related to real hardware executions are shown in Figure 7. As mentioned earlier, the
depth of the circuit does not allow for the extrapolation of the correct expected value from
the computation. For this reason, we deemed it essential to study the effect of noise on the
circuit and observe its behavior. To investigate this aspect, we plotted the ratio between the
estimated expected loss and the maximum possible loss (which coincides with the sum of
the LGDs of the various counterparties) on the x-axis. It should be noted that we used the
expected loss as the output metric, estimated directly using the objective qubit.

The complete and non-aggregate results, as well as the code used to generate them,
are available in a public repository [28].

Figure 6. Ratio frequency distribution for the experiments conducted on classical machines, simulat-
ing the effects of noise thanks to noise models from the quantum experiments.
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Figure 7. Ratio frequency distribution for the experiments conducted on quantum hardware.

4. Discussion

Noise is one of the major challenges facing quantum computing, as it can cause errors
in qubits. The sources of noise can vary, from environmental factors such as temperature
and electromagnetic radiation to decoherence and imperfections in the hardware itself. As
a result, researchers have been actively investigating ways to characterize and mitigate the
impact of noise on qubits [29–32].

What we observed, both by simulating quantum machines with their respective noise
and by directly performing experiments on QPUs, was that the estimation of the expected
total loss tended to converge towards half of the maximum possible loss (see Figures 6–8)
regardless of the actual expected result. This configuration would correspond to a scenario
in which the default probability of counterparties is exactly 50%. This is related to the loss
of information due to the execution exceeding the qubits’ coherence time.

Figure 8. Detailed representation of results on real hardware by architecture.
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A potentially interesting aspect that emerges from the analysis concerns ibm_algiers:
this machine with a higher quantum volume (128) shows a greater variance around the
central value, a potential indication of how the continuous improvement of this particular
dimension suggests a future successful application of this and other algorithms on quantum
machines.

4.1. Scalability and Complexity

While the proposed multiple-rotations variant of the quantum model presents an
advantage over the original implementation [4] in terms of qubits required for small values
of K and R, this advantage disappears when the algorithm scales to a realistic setting with
thousands of assets and tens of factors. At this scaling, the overhead derived from the
presence of the sum register becomes negligible, as the number of qubits it requires scales
logarithmically as O(log2(∑

K
i=1 LGDi)). However, using the Qiskit LinearAmplitudeFunc-

tion register [26] requires one additional qubit for each asset taken into account, thereby
doubling the increase in terms of qubits that each additional asset entails. From a practical
perspective, this translates into an increase in the width of the circuit with respect to the
number of assets K that approaches O(2K) instead of O(K), which was the rate for the
implementation in [4]. Moreover, for both proposed variants, the number of required qubits
increases linearly with the number of factors, proportional to nZ.

Regarding algorithm complexity, the iterative QAE introduced in [19] and used as a
subroutine for our algorithm has a number of queries bounded by

1.4
ε

ln
(

2
γ

log2

( π

4ε

))
, (9)

where 1 − γ ∈ (0, 1) is the required confidence level and ε > 0 is the target estimation error.
Thus, if we set as an example 1 − γ = 99.9% and ε = 0.05%, we need around 28 thousand
applications of the Grover operator.

The main advantage of IQAE is that it does not increase the number of required qubits,
as it does not require performing quantum phase estimation and still provides convergence
proofs (which are instead missing for many of the other variants of the original QAE
algorithm, such as the one in [33]).

For what concerns the uncertainty model, extrapolating from [4], the standard im-
plementation of U would require first K uncontrolled Y-rotations followed by nZK ∗ R
controlled Y-rotations. As in the original analysis, we ignore the preparation of UZ as it can
be performed efficiently and does not depend on K. It is important to underline the possibil-
ity of implementing U more efficiently by duplicating the Z-qubits w times. Multiple copies
of Z allow us to parallelize the preparation of the qubits representing the counterparties,
achieving a depth of (nZK ∗ R)/w controlled Y-rotations. For further information and
analysis, we refer the reader to [12] and particularly to [4], which contains an exhaustive
analysis dedicated to the number of gates required for the original implementation.

For our implementations, we highlight the increase in terms of gates needed due to
the use of the LinearAmplitudeFunction class. This circuit uses controlled linear rotations and
comparator registers to implement the piecewise linear function on qubit amplitudes [26].
The number of such registers (and thus of the required gates) increases as O(2K). Thus, we
observe a significant increase in terms of circuit depth in order to allow arbitrary values for
the LGD parameters. However, alternative methods are already being proposed that can
decrease the circuit depth needed for encoding the uncertainty model. In particular, in [34],
the authors propose an alternative loading method based on quantum generative adver-
sarial networks with encouraging results in terms of saved quantum resources. Moreover,
in [35], a novel promising approximate quantum compiling approach is presented. This
method would significantly lower the number of physical operations needed to implement
complex quantum operators, such as the LinearAmplitudeFunction.
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5. Conclusions

In this paper, we offered solutions to address the limitations of the quantum credit risk
analysis algorithm, making it a more effective tool for future advancements in quantum
computing technology. We illustrated our proposal and presented the results of several
tests (both on quantum and classical hardware) that show the capabilities of our approach
and the remaining challenges in terms of scalability and execution on actual QPUs.

The analysis highlights the need for further improvements in qubit coherence since our
proposed measures require significantly more gates and qubits at scale than the previous
implementation.

Thanks to the improvements proposed, our architecture can take non-integer values
for the LGD vector, increasing input flexibility and allowing the use of real-world data.
Additionally, our new uncertainty model with multiple risk factors corresponds to the
framework most commonly used by big entities in the financial sector [36,37]. These
enhancements allow for the creation of new benchmarks for the quantum model. These
benchmarks should aim to enable a fair comparison with the classical algorithms currently
used by financial institutions and, most importantly, will be able to use the same data for
accurate comparison.

In conclusion, it is important to mention that while the proposed quantum credit
risk model has the potential to improve the classical CRA process, its integration into
production environments will require further research and development. In particular, the
integration with existing data pipelines and possibly the design of an end-to-end digital
twin will be necessary to evaluate the performance of the quantum model. Additionally,
new regulations and legal requirements may be needed for the adoption of quantum algo-
rithms in sensitive financial applications. These considerations highlight the importance of
continued collaboration between researchers, financial institutions, and regulatory bodies
to ensure the responsible and effective deployment of quantum technologies in the financial
industry.
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Appendix A. Quantum Processor Topologies

Appendix A.1. ibm_lagos and ibm_perth
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Figure A1. Topology for the Perth and Lagos IBM architectures.

Appendix A.2. ibm_algiers and ibm_canberra
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Figure A2. Topology for the Algiers and Canberra IBM architectures.
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Abstract: Recent advances in quantum hardware offer new approaches to solve various optimization
problems that can be computationally expensive when classical algorithms are employed. We
propose a hybrid quantum-classical algorithm to solve a dynamic asset allocation problem where
a target return and a target risk metric (expected shortfall) are specified. We propose an iterative
algorithm that treats the target return as a constraint in a Markowitz portfolio optimization model,
and dynamically adjusts the target return to satisfy the targeted expected shortfall. The Markowitz
optimization is formulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem. The
use of the expected shortfall risk metric enables the modeling of extreme market events. We compare
the results from D-Wave’s 2000Q and Advantage quantum annealers using real-world financial data.
Both quantum annealers are able to generate portfolios with more than 80% of the return of the
classical optimal solutions, while satisfying the expected shortfall. We observe that experiments on
assets with higher correlations tend to perform better, which may help to design practical quantum
applications in the near term.

Keywords: portfolio optimization problem; Quadratic Unconstrained Binary Optimization (QUBO);
quantum annealing; hybrid algorithm

1. Introduction

We describe a hybrid quantum-classical algorithm to solve a dynamic asset allocation
problem where the targeted return and expected-shortfall (ES)-based risk appetite are
specified. Since both the return as well as the shortfall are functions of the chosen asset
allocation, we treat the return as a constraint in a modified Markowitz framework, and
optimize the allocation strategy to meet the requirements of the expected shortfall using an
iterative procedure that solves the Markowitz Optimization problem at each iteration. The
latter optimization problem is solved by a Quadratic Unconstrained Binary Optimization
(QUBO) formulation on a quantum annealer, while the iterative procedure to compute the
shortfall is performed by a classical algorithm.

Quantum annealing offers a highly parallelized approach for solving optimization
problems by using quantum tunneling from a manifold of high-energy solutions to the
ground state. A common approach to embed the optimization problem into an Ising
quantum annealer is to convert it to a QUBO problem [1–4]. Several examples have been
explored so far in the literature, including the maximum clique [5], scheduling [6] and
graph coloring problems [7], among others [8].

The portfolio optimization problem, introduced by Harry Markowitz [9] in 1952,
investigates how investors could use the power of diversification to optimize portfolios by
minimizing risk, and serves as a foundation for later models, such as the Black–Litterman
model [10]. The original Markowitz Optimization problem used volatility as the measure
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of the risk. However, it is now known that volatility changes with time [11]; hence, treating
it as a constant is risky and sub-optimal. Furthermore, it often fails to characterize the
market during extreme events or “shocks”, for example, the 2008 mortgage crisis which led
to an abrupt collapse of the market with the insolvency of Lehman Brothers. As a result,
modern finance practitioners prefer to use a time-varying risk metric such as stochastic
volatility, Value-at-Risk (VaR) or the expected shortfall. The latter is defined as the average
loss that can be expected when the loss has already exceeded a specific threshold [12].
The advantages of expected shortfall over other risk measurements such as volatility or
Value-at-Risk are discussed in [11].

It is NP-Hard to solve general quadratic optimization problems [13]. For convex
quadratic optimization problems such as the portfolio optimization problem, however,
there exist polynomial time algorithms that takes O(n7/2L) time [14], where n is the number
of variables and L bounds the number of digits for each integer. Hence it is prohibitive
to solve large-scale portfolio optimization problems exactly using classical methods due
to the high time complexity. Hence as more versatile and scalable quantum computing
devices-currently quantum annealers-enter the market, we explore solving the portfolio
optimization problem on two such machines available today using QUBO formulations.

In Grant et al. [15], the authors have benchmarked the performance of a D-Wave
2000Q quantum annealer on solving the Markowitz Optimization Problem with a relatively
small size of 20 logical variables and random data. Our study has the following novel
contributions:

• We demonstrate how optimization problems with non-polynomial constraints such as
the Expected Shortfall could be solved with a hybrid quantum-classical, iterative ap-
proach that requires no additional qubits. An alternative approach would encode such
constraints directly into a QUBO by converting them first to a multilinear polynomial
through Fourier analysis [16], and then to a quadratic polynomial using methods de-
scribed in [17–19]. However, in this approach, in the worst-case the number of binary
variables will grow exponentially due to non-trivial higher-order terms generated
from the Fourier expansion, which severely limits the problem sizes that we can solve
on the current generation of quantum hardware.

• To the best of our knowledge, quantum computing has not been employed prior to
this study for solving Expected-Shortfall based dynamic asset-allocation problems [12].
Previous approaches (e.g., [15]) have employed the classical Mean-variance framework.
However, static variance is no longer used in modern finance as it is well known
that volatility fluctuates with time and hence it needs to be modeled in a statistical
framework that captures non-stationarity. Moreover, industrial practitioners prefer
tail-risk measures such as Value at Risk and Expected Shortfall (the latter is considered
cutting edge in risk management) since true risk is associated with the fluctuations in
the negative return, and is not symmetric with respect to positive and negative returns
(i.e., no one minds a surprise positive return).

• Thirdly, this is one of the first papers that uses quantum computing for portfolio
optimization using real financial data (using ETF and currency data) on a real quantum
computer (i.e., not simulation) in an accurate industry setting. Previous approaches
have used random data (e.g., [15]).

We further explored our algorithm’s performance on two generations of quantum
annealers offered by D-Wave, with up to 115 logical variables. We provide experimental
results on both the Advantage (Pegasus topology) and 2000Q (Chimera topology) D-Wave
quantum annealers. The results are generally close to the optimal portfolios obtained by
classical optimization methods, in terms of final returns and Sharpe ratios (return/standard
deviation of the return in a time period).

The paper is structured as follows. Section 2 defines the expected shortfall based
dynamic asset allocation problem and lays out a hybrid algorithm for solving it. Section 3
provides the technical background on D-Wave’s quantum annealer and maps the Mean-
Variance Markowiz problem on it. Section 4 discusses the experimental results on both
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D-Wave 2000Q and Advantage systems. Section 5 states our conclusions and lists future
research directions.

2. The Problem of Dynamic Asset Allocation

The problem of dynamic asset allocation is to allocate/invest an amount of money into
N assets, while satisfying an expected return and keeping the risk below a given threshold.
To make the problem more specific, we need to describe the input data and variables.

• The historical return matrix R is obtained from Yahoo Finance [20–25] for the assets
mentioned in Section 4.2 with N rows and Ttotal columns, where N is the number of
assets and Ttotal is the number of days data are collected. We divide the return matrix
R into periods of T days and index the data for each time period, for example, Rt
represents the return data from t-th time period.

• The vector of asset means μt is computed from Rt.
• The co-variance matrix Ct calculated from the matrix Rt as

Ct,i,j =
(eT

i Rt − μT
t,i1) · (eT

j Rt − μT
t,i1)

T − 1
, (1)

where ej is the column vector of all zeros except with a one at the j-th position.

Asset allocation is especially interesting to financial practitioners during a time period
with unpredictable market turbulence with goal of minimizing risk while achieving a target
return. The risk is upper bounded by a consumer-driven risk appetite. A data sheet of the
assets’ daily returns (profit one can earn if buying an asset the previous day and selling
the next) for the previous three months is available. The risk threshold can be set using
observed market metrics from a volatile time period, for example, the 2008 market crash.
The algorithm uses the assets’ historical return data to estimate the trends of the assets’
performance and their correlations. Options for risk measurements include:

• Volatility: the standard deviation of the portfolio return.
• Value-at-Risk at level α: the smallest number y such that the probability that a portfolio

does not lose more than y% of total budget is at least 1 − α.
• Expected Shortfall at level α: the expected return from the worst α% cases. It is defined

as follows:

ESα(wt, Rt) = mean(lowest α% from wT
t Rt). (2)

We focus on the expected shortfall as our risk measurement for the rest of the paper
as it is the modern approach preferred by practitioners (as mentioned earlier in Section 1).
The problem can be expressed as follows where the weight vector w indicates what fraction
of the budget is invested in each asset:

(P1) Minimize the expected shortfall ESα(wt, Rt) under the constraints that the
expected return is satisfied, the variance of the portfolio is small, and all assets
are invested.

It is possible to write the expected shortfall based portfolio optimization as a linear
program [26], but it requires adding N + 1 variables and 2N constraints where N is the
number of assets. Since the expected shortfall cannot be expressed by a quadratic formu-
lation natively, we opt to use it as a convergence criterion instead of including it in the
optimization problem directly. To justify this approach, assuming that the assets’ historical
returns follow a Gaussian distribution, we can approximate the expected shortfall of a
given portfolio P by:

ESα(P) = μ + σ
φ(Φ−1(α))

1 − α
, (3)

where μ is the expected return, σ is the volatility of the portfolio, and φ(x) and Φ(x) are the
Gaussian probability distribution and cumulative distribution functions, respectively [27].
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The expected shortfall has positive correlation with the volatility and in turn, the variance
of the portfolio ([11,28]).

Hence we propose a bilevel optimization approach descried in Figure 1 to solve
Problem (P1).

Figure 1. A flowchart for the proposed algorithm for computing optimal portfolio with a threshold
on the expected shortfall.

Given a balance sheet of the assets’ returns in the history, we create multiple time
periods each with T days. After picking target return pt for one of the time periods t, we
choose a reference asset that is representative of the portfolio, and set a target expected
shortfall for that asset computed from its volatility in the year 2008, its volatility in the
time period t, and its shortfall in 2008. (The precise expression is included in Algorithm 1).
Then we use the Markowitz Optimization problem [9] to allocate assets within the portfolio
in order to minimize volatility with the constraint that the target return is met. Next we
compute the expected shortfall from the current allocation of assets. If the target expected
shortfall is not met by the current allocation, then we adjust the target return value and
iteratively solve the Markowitz Optimization problem. We terminate when the target
expected shortfall is met, or the target return cannot be met as the maximum return of all
assets is smaller than the target return.

Now we describe the Markowitz portfolio optimization procedure. Its QUBO formu-
lation will be provided in the next section. The Markowitz Optimization problem can be
expressed by the quadratic optimization problem

min
w

wT
t Ctwt

s.t. μT
t wt = pt,

∑
i

wt,i = 1, wt,i ≥ 0 ∀i.
(4)

where pt is the target portfolio return during t-th time period. The constraint μT
t wt = pt

ensures that the target return is met, ∑ wt,i = 1 indicates we want to invest all of the
resources, and wt,i ≥ 0 means short selling is not allowed. With all the constraints satisfied,
we minimize wT

t Ctwt, that is, the variance of the portfolio at t − th time period. However,
with our bilevel optimization, we treat the constraints as soft constraints, that is, small
violations of their values are permitted. The optimizer can return portfolios with small
variance even when the expected return falls short of the target; if the sum of weight is not
equal to 1, we can scale the weights of the assets to sum to 1.
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Algorithm 1: Expected Shortfall based Dynamic Asset Allocation during t.
Input: μt, Rt, σre f ,σre ft , ESre f , α
Output: wt
Let pt = mean(μt) ; � Initialize the target return

Let ESTt =
σre f

σre f _t
ESre f ; � Initialize the target expected shortfall

Let Ct = cov(Rt) ; � Compute the co-variance matrix from the returns

while True do

if p > max (μt) then

Return 0 ; � Return constraint cannot be satisfied

Solve Equation (4) for wt;
Let ESt = ESα(wt, Rt)

if
|ESt |
|ESTt | > 1 + ε then

Let pt = pt(1 − δ) ; � Decrease target return for lower risks

else if
|ESt |
|ESTt | < 1 − ε then

Let pt = pt(1 + δ) ; � Increase target return as there is room for

more risks

else

Return wt;
end

Algorithm 1 provides the pseduo-code for the algorithm for expected shortfall based
asset allocation. Here σre f is the volatility of a reference asset’s returns during the market
crash in 2008; the reference asset is chosen from among the assets to be representative of the
market trend, for example, SPDR S&P 500 ETF Trust (SPY). The variable σre ft is the volatility
of the reference asset’s returns during the time window t ; ESre f is reference asset’s expected
shortfall during the market crash; ESTt is the target expected shortfall at time window t; α
is the risk level parameter; ESt is the expected shortfall for the computed portfolio during
the optimization process at time window t; ε is the error tolerance parameter; and δ is the
momentum parameter that is adjusted dynamically. Figure 2 shows the ratio between the
variance and expected shortfall in different iterations of Algorithm 1 from ETFs consisting
of 6 assets whose returns were obtained from December 2019 to May 2020. The monotonic
one-to-one tracking justifies why optimization problems with expected shortfall constraint
can be solved iteratively using the Markowitz Mean-Variance framework.
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Figure 2. The y-axis tracks the ratio between the variance and expected shortfall with α = 5 in later
iterations against their respective values in the first iteration of Algorithm 1 running on 6 ETF assets.
The expected shortfall decreases at a different rate from the variance but each iteration in the algorithm
is guaranteed to make progress towards the target expected shortfall, which ensures convergence.
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3. A Hybrid Quantum Classical Algorithm

3.1. Algorithm Overview

We will use a hybrid quantum classical algorithm to solve the quadratic optimization
problem given in Equation (4) with a quantum annealer backend.

Quantum annealing (QA) [29–31] is the quantum analog of the classical annealing
where the disorder is introduced quantum mechanically instead of thermally via applying
the Pauli matrix x on every qubit as in Equation (5).

HI = −
N

∑
i=1

σx
i , (5)

This Hamiltonian does not commute with the problem Hamiltonian in Equation (6)

HP = −∑
i

hiσ
z
i − ∑

i<j
Jijσ

z
i σz

j , (6)

where σz
i is the Pauli matrix z acting on qubit i, hi is the magnetic field on qubit i and Jij

defines the coupling strength between qubits i and j [32]. The spin configurations of the
ground states of Equation (6) also minimize the Ising model problem:

min
s

E(s) = −∑
i

hisi − ∑
i,j

Jijsisj, si ∈ {−1, 1}, (7)

where si is the spin, h is the external longitudinal magnetic field strength vector and the
matrix J represents the coupler interactions. Moreover, the general two-dimensional Ising
problem within a magnetic field is NP-hard [33]. And in the case of spin-glass three-
dimensional Ising model with lattice size of N = lmn, the complexity is O(2mn) [34], which
is NP-Hard as well.

During the QA process, combining both Hamiltonians in Equations (5) and (6), at time
t the system evolves under the following Hamiltonian:

H(t) = A(
t
T
)HI + B(

t
T
)HP. (8)

Here T is the total annealing time and the system is initialized to the ground state of HI ,
which is a superposition of all qubits in the z basis. Functions A( t

T ) and B( t
T ) describe the

change of influences from disorder and problem Hamiltonians on the system. HI dominates
HP initially and slowly (adiabatically) changes to the opposite while the influence of HI
vanishes at the end of the annealing process, thus removing disorder from the system. The
system will then settle into one of the low energy states.

Due to unavoidable experimental compromises [35], QA serves as an intermediate step
towards universal adiabatic quantum computation (AQC) [36,37] as the system evolves
under a time-dependent Hamiltonian

H = [1 − s(t)]HI + s(t)HP, (9)

where s(t) changes from 0 to 1. When conditions on internal energy gap and time scales are
met [38], the system will remain in its ground state at all times, which is different from QA.

A Quadratic Unconstrained Binary Optimization (QUBO) problem of the form

min
x

Q(x) = ∑
i

hixi + ∑
i,j

Jijxixj, xi ∈ {0, 1} (10)

aims to minimize a mathematical function with linear and quadratic terms; here any
combination of xi ∈ {0, 1}, ∀i is feasible. It can be converted to the Ising model shown in
Equation (7) by a one-to-one mapping of the variables: xi =

1+si
2 . We will use the QUBO
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formulation for the rest of the paper but note that quantum annealers from D-Wave require
the QUBO problems to be transformed into Ising models before execution.

Consider a standard binary optimization problem with a linear or quadratic objective
function f (x) and linear constraints Ax = b, where A ∈ Rm×n, and b ∈ Rm×1.

min
x

f (x)

s.t. Ax = b,

where x ∈ {0, 1}n×1.

(11)

We can rewrite it as a QUBO

Q(s) = f (x) + λ(Ax − b)T(Ax − b) (12)

to be minimized by quantum annealers with a large enough λ ∈ R+ to guarantee that the
constraint is satisfied in the optimal solutions.

We will now discuss how to convert the Markowitz Optimization problem with
continuous variables in Equation (4) to a QUBO problem.

First we write Equation (4) as an unconstrained optimization optimization problem
with penalty coefficients λ1 and λ2 (the subscripts t are dropped for better readability):

Q =

(
n

∑
i

n

∑
j

Ci,jwiwj

)
+ λ1

(
n

∑
i

μiwi − p

)2

+ λ2

(
n

∑
i

wi − 1

)2

, (13)

where λ1 and λ2 scale the constraint penalties. Minimizing Equation (13) is equivalent to

min Q =

(
n

∑
i

n

∑
j

Ci,jwiwj

)
+ λ1

⎡⎣( n

∑
i

μiwi

)2

− 2p
n

∑
i

μiwi

⎤⎦
+ λ2

⎡⎣( n

∑
i

wi

)2

− 2
n

∑
i

wi

⎤⎦, (14)

after expanding the squared terms and eliminating the constants. When the constraints are
satisfied exactly, we have

λ1

⎡⎣( n

∑
i

μiwi

)2

− 2p
n

∑
i

μiwi

⎤⎦ = −λ1 p2, (15)

and

λ2

⎡⎣( n

∑
i

wi

)2

− 2
n

∑
i

wi

⎤⎦ = −λ2. (16)

We use k binary variables xi,1 . . . xi,k ∈ {0, 1} to approximate each continuous variable
wi in Equation (4) with a finite geometric series

wi =
k

∑
a=1

2−axi,a. (17)

The larger k is, the more precision wi has. However, larger k also widens the differences
between the coupler strengths—J terms in Equation (10). Although the coupler strengths
for D-Wave annealers can be set at any double-precision floating point number between
−1 and 1, precision errors may pose a challenge due to integrated control errors (ICE) [39].
In our experiments, we set k = 5 which empirically gives us the best approximations
to the optimal solutions for Equation (4). For larger k we risk the errors dominating the
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coupler coefficients, rendering those additional qubits unreliable. We set λ1 to p−2 and
λ2 to 1 to bound the penalty terms in Equation (14) to −2. Additionally, we scale the
objective by a factor of λ3 to around 1 such that penalty terms in the optimal solutions to
Equation (14) remain relatively small while not overwhelming the objective. If penalties
dominate the objective, it may introduce numerous local minima to the energy landscape
and the optimizer will suffer from barren plateaus. Alternatively, if the objective dominates
penalties, constraints will be violated significantly. The soft constraints enable us to obtain
better portfolios as presented in Section 4.4.

Substituting Equation (17) in to Equation (14), we have the final binary
optimization formalism

f (x) =

⎡⎣( n

∑
i

k

∑
a

μi2−axi,a

)2

− 2p
n

∑
i

k

∑
a

μi2−axi,a

⎤⎦
+ p−2

⎡⎣( n

∑
i

k

∑
a

2−axi,a

)2

− 2
n

∑
i

k

∑
a

2−axi,a

⎤⎦
+ λ3

n

∑
i

n

∑
j

k

∑
a

k

∑
b

Ci,j2−a−bxi,axj,b, (18)

which is quantum-annealable as it only has linear and quadratic interactions.

3.2. Previous Work

Rosenberg et al. [40] solve the multi-period portfolio optimization problem using
D-Wave’s quantum annealer:

max
w

T

∑
t=1

(μT
t wt −

γ

2
wT

t Σtwt − ΔwT
t ΛtΔwt

+ ΔwT
t Λ

′
tΔwt)

s.t.
N

∑
n=1

wnt = K, ∀t, wnt ≤ K′, ∀t, ∀n.

(19)

Here T is the number of time steps, and N is the number of assets. At each time step t, μt
represents the forecast returns, wt are holdings for each asset, Σt is the forecast covariance
matrix, Λt and Λ

′
t are coefficients for transaction costs related to temporary and permanent

market impacts, respectively, which penalize changes in the holdings if the corresponding
terms are positive. Additionally, γ is the risk aversion factor.

Equation (19) seeks to maximize returns considering constraints on asset size. Specifi-
cally, the sum of asset holdings is constrained by K and the maximum allowed holdings of
each asset is K′. For small problems ranging from 12 to 584 variables, D-Wave’s 512 and
1152-qubit systems are able to find optimal solutions with high probability.

Venturelli and Kondratyev [41] focus on the following QUBO problem where the task
is to select M assets from a pool of N assets:

min
q

N

∑
i=1

aiqi +
N

∑
i=1

N

∑
j=i+1

bijqiqj + P

(
M −

N

∑
i=1

qi

)
. (20)

The variable qi is 1 if asset i is selected and 0 otherwise. The coefficient ai indicates the
attractiveness of the i-th asset and bij is the pairwise diversification penalties (positive)
or rewards (negative). The penalty coefficient P scales the constraint on the number of
selected assets to make sure it is satisfied in the optimal solution. The authors have explored
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the benefits of reverse annealing on D-Wave systems, and report one to three orders of
magnitude speed-up in time-to-solution with reverse annealing.

The problem considered by Phillipson and Bhatia [42] is similar to the Markowitz
Optimization problem but with binary variables indicating asset selections instead of real
weights. The authors report comparable results from D-Wave’s hybrid solver to other state
of the art classical algorithms and solvers including simulated annealing [43,44], genetic
algorithm [45,46], linear optimization problems [47] and local search [48].

Grant et al. [15] benchmark the Markowitz Optimization problem on a D-Wave 2000Q
processor with real weight variables and price data generated uniformly at random, and
explore how embeddings, spin reversal and reverse annealing affect the success probability.
Hegade et al. [49] solve the same problem with added counterdiabatic terms on circuit-
based quantum computers and see improvements on success probabilities using digitized-
adiabatic quantum computing (DAdQC) and Quantum Approximation Optimization
Algorithm (QAOA) [49].

We extend the general QUBO formulation in [15] to solve the asset allocation problem,
with the expected shortfall as the risk metric, using the Markowitz Optimzaiton problem
as a subroutine at each iterative step of the algorithm. We use our algorithms on real-
world ETF and currency data. Additionally, we present the results on the newly-available
Advantage processor and experiment on problems with up to 115 logical variables, up from
20 in [15].

4. Experimental Setup and Results

4.1. D-Wave Quantum Annealer

We start by discussing the latest quantum annealing technologies offered by D-Wave
as the solvability of the problem is dependent on the architecture. D-Wave quantum
annealers are specifically designed to solve Ising problems natively. Currently two types of
quantum annealers are offered by D-Wave: 2000Q processor with Chimera topology and
the Advantage processor with Pegasus topology. The latter was made publicly available in
2020 and it has more qubits (5760 vs. 2048) and better connectivity than the former. The
qubits in the Chimera topology have 5 couplers per qubit while in the Pegasus topology
they have 15 couplers per qubit [50]. It is not always possible to formulate an optimization
problem to match the Chimera or Pegasus topologies exactly. Therefore minor embeddings
are necessary to map the problems to D-Wave processors. Such embeddings usually require
the users to map multiple physical qubits to one logical variable with constraints such that
every qubit on the ‘chain’ behaves the same, which significantly reduces the total size of
the problems that can be solved on the quantum annealers.

Furthermore, it is advisable to have uniform chain lengths (number of qubits rep-
resenting a single variable) for more predictable chain dynamics during the anneal [51].
Algorithms in [52] detail such procedures for fully-connected graphs which is the underly-
ing logical graph for the portfolio optimization problem. A full-yield 2000Q processor can
map up to 64 logical variables and an Advantage processor can map around 180 logical
variables. A comparison between the embedding of the two topologies is shown in Figure 3.
In our experiments, we use the find_clique_embedding function from dwave-system to map
fully-connected graphs to either the Chimera or the Pegasus topology.

4.2. Test Input and Annealer Parameters

We pick the top-six ETFs by trading volumes, EEM, QQQ, SPY, SLV, SQQQ and XLF,
and six major currencies’ USD exchange rates, AUD, EUR, GBP, CNY, INR and JPY, for
most of the tests below. The reference assets for ETF and currency tests are SPY and EUR,
respectively. For the tests in Section 4.5 we use 12 and 23 assets respectively and pick the
top ETFs by trading volumes again. We choose the parameter α in the definition of expected
shortfall to be 5%.
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Figure 3. Cont.
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(d) (e)

(f)

Figure 3. A comparison between minor embeddings on Chimera (2000Q) and Pegasus (Advantage)
lattices of D-Wave processors for cliques (fully connected graphs) of different sizes. The vertices with
the same color or label represent the same logical variable in Equation (7) and the chain length is
defined as the number of qubits used to represent one logical variable. Each Chimera cell is a 4 by
4 complete bipartite graph (K4,4) with 4 additional edges connecting neighboring cells. Each Pegasus
cell has 24 qubits which include three K4,4 graphs as in the Chimera cell and the cells are connected
with each other using K2,4 edges. To minor embed cliques of 8 vertices (K = 8), the chain length on
the Chimera lattice is 3 while on the Pegasus lattice it is 2. With K = 16, the chain lengths are 5 and
2–3, respectively, and with K = 24, they are 7 and 3–4, respectively. This shows that Pegasus processor
scales better for larger clique problems, which may lead to better performance. (a) Embedding K8,8

on Chimera topology; (b) Embedding K16,16 on Chimera topology; (c) Embedding K24,24 on Chimera
topology; (d) Embedding K8,8 on Pegasus topology; (e) Embedding K16,16 on Pegasus topology;
(f) Embedding K24,24 on Pegasus topology.
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We can control a range of annealer parameters that may impact the solution quality
in various degrees. Specifically, we set the number of spin reversal transforms [53] to 100
and readout thermalization to 100 μs as suggested in [54,55]. The spin reversal transform
flips the signs of 100 variables and coefficients of the Ising model, which leaves the ground
state invariant. The goal is to average out the system errors thus improving the quality of
the solutions [53]. 100 μs readout thermalization allows the system enough time to cool
back to the base temperature after each anneal. We set the annealing time at 1 μs as longer
annealing time sees no statistically significant improvements to the solutions similarly
reported in [15]. Results from 2000Q and Advantage processors are both included in the
following sections. Additionally, we report the results from D-Wave’s post processing
utility on 2000Q processors, which decomposes the underlying graph induced by the
QUBO into several low tree-width subgraphs [56], and then solves them exactly using
belief propagation on junction trees [57].

We sample all QUBOs 30,000 times with both D-Wave backends and report the samples
with the lowest objective value from Equation (17) each time. Figure 4 shows an example
distribution of the samples.
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Figure 4. The distribution of the samples for 4 different QUBOs with both D-Wave backends. Each
QUBO is sampled 30,000 times and the objective values of the samples is scaled to be between (−1, 1).
We divide the objective value range into 50 equally-spaced bins and count the number of samples in
each bin. All four samples exhibit the Poisson distribution, and thus we only report the samples with
the lowest objective value for the experiments in this section since they can be reproduced reliably.

4.3. Embedding Comparison on D-Wave Annealers

As discussed in Section 4.1, D-Wave quantum annealers require the problems to be
minor embedded to the Chimera or Pegasus topology. For small problems this means
there may be multiple valid embeddings and in this section we will measure how different
embeddings can make an impact on the solution quality.

We compute four different embeddings that use different sets of physical qubits from
both 2000Q and Advantage processors. Otherwise, the embedding graphs are the same,
and hence they use the same number of qubits and chain lengths. We sample the same
QUBO—first iteration of Algorithm 1 on the ETFs from December 19 to May 20—10 times
with 10,000 samples each. We then pick the best solutions in terms of QUBO objective
value from all 10 sample sets for each embedding and obtain their average and minimum
values. Tables 1 and 2 report the results as ratios against the best objective values computed
by simulated annealing for better readability. Since the objective values are negative, we
compute ratios of the magnitudes instead.
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Table 1. Embedding comparison on the 2000Q processor with 30 logical variables or 270 physical
qubits after minor embedding. The objective value is calculated from Equation (18) and is normalized
against the simulated annealer solving the same QUBO. All energies computed are negative, and
their respective magnitudes are used for the comparison. The second embedding out of these four is
able to find the solution with the better average and best objective value.

Embedding Average Objective Best Objective

1 95.66% 98.78%

2 96.83% 99.66%

3 96.53% 98.37%

4 96.21% 98.49%

Table 2. Embedding comparison on the Advantage processor with 30 logical variables or 134 physical
qubits after minor embedding. Different embeddings on the Advantage processor show no statisti-
cally significant differences.

Embedding Average Objective Best Objective

1 99.25% 99.89%

2 99.52% 99.94%

3 99.22% 99.95%

4 99.48% 99.89%

We can see from Tables 1 and 2 that the impact that different embeddings make is
statistically insignificant. However, it is clear that the Advantage processors have higher
ratios than the 2000Q processors, which we will address next.

4.4. Annealing Results Comparison

We benchmark our algorithm on both simulated and quantum annealers using, as the
baseline algorithm, a classical optimization solver, namely, cvxpy [58]. We create five ETF
test datasets and four currency test datasets from 100 days of return data with different
starting dates from 2010 to 2020.

The results are normalized against the optimal classical solution. The quantum al-
gorithm fails to converge for the first two currency tests on the 2000Q processor, and the
corresponding bars are missing in Figures 5 and 6.

In Figures 5 and 6, we used k = 5 binary variables to represent each asset weight.
The simulated annealing results follow the optimal solutions closely in most tests. We
note that in tests 2 and 5 from the ETF tests and tests 1, 2 and 3 from Currency tests,
simulated annealing, and in some cases, quantum annealing produce portfolios of higher
returns than those of the exact classical quadratic optimization problem solver. This is
due to how Markowitz Optimization problems are formulated as QUBOs with discretized
variables in Equation (18), which changes the optimization problem slightly, and also the
optimal asset allocations. In test 4 from Currency tests, quantum annealers are able to find
a portfolio with higher returns than simulated annealing as it returns a portfolio with a
slightly increased risk that is still acceptable, but higher returns. This is not optimal in
terms of QUBO objective values as the constraint penalty is now higher, yet the solution is
still feasible. We also observe that the currency tests generally perform better than ETF tests
on both quantum annealer backends. Figure 7 shows how quantum annealers perform
with respect to the average of absolute correlation coefficients over all pairs of assets in
each test. Higher correlation coefficients seem to lead to higher returns.
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Figure 5. The comparison of the final returns between all four backends. A higher ratio means
the backend can return portfolios with higher returns. Each test uses 100 days of return data with
different starting dates from 2010 to 2020. The results from 2000Q with post processing yields identical
results from simulated annealing. Both 2000Q and Advantage processors are able to compute returns
that are consistently more than 80% of the optimal, except the two currency test cases where the
algorithm fails to converge on the 2000Q.
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Figure 6. The comparison of the final Sharpe ratios between all four backends. Recall that the
Sharpe ratio is the ratio of the return to the standard deviation of an asset for a set time period.
Given a portfolio defined by the weight vector w, the Sharpe ratio of this portfolio is calculated as

μT w√
wTCw

. A higher ratio means the backend can return portfolios with higher Sharpe ratios. The results
confirm that the portfolio variances returned by the quantum processors are close to the optimal
results obtained from classical optimization methods, and it is effective to solve standard constrained
optimization problems as a QUBO.

Although we acknowledge there may be other factors contributing to our observations
that currency tests do better than ETF tests on for quantum annealers, Figure 7 implies
that more correlated assets tend to perform better. Detailed analysis on which attributes
of the assets have an impact on the quantum annealing performance and how much the
impacts are requires more research in the future. Ref. [59] used machine learning models
such as decision tree and regression to predict the accuracy of D-Wave’s quantum annealer
on maximum clique problems.

4.5. State-of-the-Art on D-Wave Annealers

The embeddings of the six asset tests on both 2000Q and Advantage processors leave
plenty of unused qubits. D-Wave’s clique embedding algorithm [52] suggests that we can
embed fully connected graphs with 64 and 180 vertices to full-yield 2000Q and Advan-
tage processors, respectively. Due to the defective qubits and connectors in the currently
available Advantage processor, experimentally, we can embed only up to 119 qubits. This
means we can solve portfolio optimization problems with 12 and 23 assets natively on
2000Q and Advantage processors, respectively.
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Figure 7. Final returns obtained from both quantum annealers against the average of the absolute
correlation coefficients. The x-axis are the correlation coefficients of all N assets with each other
computed using its daily returns from the chosen time periods and the y-axis is the ratio of the final
returns against the classical optimal after Algorithm 1 converges using quantum annealers similar
to Figure 5. The currency assets (stars) used in the tests all have higher correlation coefficients than
those of the ETF assets, and generally yield better results.

On the 12 asset test shown in Figure 8, the 2000Q processor struggles to find the
ground state as its embedding chain length reaches 16, while the Advantage processor
provides results close to the simulated annealing and post-processed results. However,
neither quantum annealer converges. Table 3 records the QUBO objective values of the last
five iterations for the Advantage processor in this test. Although the objective values hardly
differ, the solution quality is seemly more sensitive to changes in the QUBO objective value
for larger problems. A 0.1% change in the objective value leads to 30% difference in the
portfolio variance. One potential reason is that larger problems have more assets that are
less correlated, and as shown in Figure 7, smaller correlation coefficients generally equate
to worse performance on quantum annealers. In this case, either the quantum annealers
need to be more accurate to find the ground state, or our QUBO setup needs to be modified
to account for higher asset counts.

Table 3. Objective values of last five iterations from simulated annealing and Advantage from the
12 asset test. This corroborates observations in Figure 8 that the Advantage processor is able to reach
states with very good approximation ratios.

Last k Iteration SA Objective Advantage Objective Difference

5 −1.026 −1.016 1.039%

4 −0.951 −0.950 0.092%

3 −0.879 −0.878 0.111%

2 −0.811 −0.809 0.170%

1 −0.746 −0.746 0.076%

For even larger problems of 23 assets, with the embedding chain lengths going up to
17, the Advantage processor fails to find the ground state by a large margin, as shown in
Figure 9. Even though we can physically map a problem of this size, the results reflect the
limitations of current-generation quantum annealers.
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Figure 8. The objective comparison of the 12 asset test between all four backends. The solutions
from 2000Q deviate from the ground states by a large margin, while the Advantage processor is
able to keep up closely. Post-processing is able to improve the 2000Q results to once again match
simulated annealing.
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Figure 9. The objective comparison of the 23 asset test between simulated annealing and the Advan-
tage processor. Due to the high chain lengths of the embedding, the Advantage processor fails to
either reach the ground state or get close to it in all iterations, rendering the processor incapable of
solving problems of such sizes.

5. Discussion

As newer quantum devices are released every year, it is important to design and bench-
mark algorithms across generations. As companies and researchers race to build the first
quantum computer that can demonstrate quantum advantage on practical problems, differ-
ent classes of quantum devices have emerged: general purpose quantum computers from
IBM, Google, Honeywell, and others; the specialized quantum Ising machine from D-Wave;
and quantum-inspired digital annealer from Fujitsu. These devices have different types
of constraints due to different noise profiles, qubit connectivity, and/or implementable
Hamiltonians, and none are perhaps at the scale and reliability needed to solve real-world
problems at the edge of classical capability. Therefore, hybrid algorithms are needed to
incorporate these quantum computers on practical problems with reasonable size.

In this paper, we have shown that it is not only possible to introduce such hybrid
algorithm schemes that compute the optimal portfolios based on expected shortfall, but also
highlighted where it is possible to reach working accuracy. We used a quantum annealer
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to solve an asset allocation problem based on expected shortfall, employing a QUBO
formulation of the Markowitz Optimization problem and interlacing it with a layer of
classical decision-making. Here, we iteratively adjusted our problem Hamiltonian based on
its feedback until the portfolio was within the desired risk threshold. The fact that both D-
Wave 2000Q and Advantage quantum annealers performed reasonably well on the six-asset
tests with portfolios’ Sharpe ratios to above 80% of SA values is promising. Additionally
encouraging is that the newer and more scalable Advantage processor achieved much
better QUBO objective values on problems with 12 assets. Finally, we observed that both
quantum annealers tended to obtain portfolios with higher returns on more correlated
assets (Figure 7), which we believe should attract future research as it may help guide the
application of quantum annealing on real-world applications in the near term.

Although the quantum annealers fell short on tests with more assets, we can remain
optimistic about new hardware with more qubits, better connectivity, and lower noise in
the near future. We also acknowledge the need to design algorithms that can scale with
these new hardware, as we saw that the portfolio quality became increasingly sensitive
to the QUBO objective values as we introduced more assets—results with 99.9% objective
values of the optimal led to 30% more variance. Additionally, advances in gate-model
quantum computers and combinatorial optimization algorithms [60,61] will provide other
avenues for solving these problems. For example, it could be instructive to explore and
compare to novel approaches, such as counterdiabatic techniques recently proposed for
similar problems, but for gate-based systems [49].

Future research includes identifying subsets of problems that can be solved better
on quantum devices, as we have discussed in Section 4. It is also important to find an
efficient way to implement inequality constraints, as adding slack variables may not be the
best choice in the QUBO. We also note that on specific test cases, the QUBO reformulation
enables both simulated annealer and quantum annealers to find better portfolios than a
classical convex optimizer cvxpy, by treating the constraints as soft. Other optimization
problems might also benefit from QUBOs with soft constraints.
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Abstract: We are in the noisy intermediate-scale quantum (NISQ) devices’ era, in which quantum
hardware has become available for application in real-world problems. However, demonstrations
of the usefulness of such NISQ devices are still rare. In this work, we consider a practical railway
dispatching problem: delay and conflict management on single-track railway lines. We examine
the train dispatching consequences of the arrival of an already delayed train to a given network
segment. This problem is computationally hard and needs to be solved almost in real time. We
introduce a quadratic unconstrained binary optimization (QUBO) model of this problem, which is
compatible with the emerging quantum annealing technology. The model’s instances can be executed
on present-day quantum annealers. As a proof-of-concept, we solve selected real-life problems from
the Polish railway network using D-Wave quantum annealers. As a reference, we also provide
solutions calculated with classical methods, including the conventional solution of a linear integer
version of the model as well as the solution of the QUBO model using a tensor network-based
algorithm. Our preliminary results illustrate the degree of difficulty of real-life railway instances for
the current quantum annealing technology. Moreover, our analysis shows that the new generation of
quantum annealers (the advantage system) does not perform well on those instances, either.

Keywords: railway dispatching problem; quadratic unconstrained binary optimization (QUBO);
quantum annealing

1. Introduction

Concentrated efforts all around the globe [1–5] are pursuing the development of viable
quantum technologies. However, the technological challenges are immense, and it may still
take some time before the first fault-tolerant quantum computers may become available
for practical applications [6]. Thus, it is of instrumental importance to not only build
a quantum literate workforce [7] but also ensure investments are made in realistic and
societally beneficial avenues for development [8].

Despite the fact that the first demonstrations of quantum advantage have been pub-
lished [9], currently available hardware is still prone to noise. Thus, it has been argued that
we are in the era of noisy-intermediate scale quantum (NISQ) technologies [10]. For in-
stance, the D-Wave quantum annealer promises to deliver scalability beyond current
classical hardware limitations. However, exploiting NISQ technologies often requires a
different mathematical modeling framework. The D-Wave quantum annealer accepts an
Ising spin-glass instance, possibly in the form of a quadratic unconstrained binary opti-
mization (QUBO) problem equivalent to it, as its input and outputs solutions encoded in
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spin configurations. High-quality solutions are expected to be computed by these devices
in a reasonable time, even for problems of the size which already bear practical relevance
(currently, up to 5000 variables on a sparse graph [11]). More importantly, an NISQ com-
puter may not (yet) be able to outperform classical computers; however, seeking and
demonstrating amendable applications provides the instrumental guiding principle for the
development of purpose-specific devices with genuine quantum advantage.

To date, at least in public domain research, most of the studied “quantum” problems
are not directly relevant to a particular industrial application but rather concern the solution
of “classical” generic, computationally hard problems, such as, e.g., the traveling salesman
problem or the graph coloring problem [12]; see, e.g., Ref. [13] for a comprehensive review.
The present work belongs to a more practically motivated line of research: it is dedicated to
making quantum computing more broadly accessible by demonstrating its applicability
to a relevant problem from a field not directly related to physics: conflict management
in railway operation. Railway operations involve a broad range of scheduling activities,
ranging from provisional timetable planning over rolling stock circulation planning, crew
scheduling and rostering, etc. to operational train dispatching in case of disturbances, such
as, e.g., severe weather, unplanned events, and technological breakdown. Many of these
tasks require solving computationally expensive and overall challenging combinatorial
problems. Various consequences of improper planing, e.g., incorrect dispatching decisions
can be severe in terms of resources (e.g., time costs, passengers’ satisfaction, financial loss).

In the domain of transportation research, the applicability of quantum annealing
has only been demonstrated for very few problems. For instance, Stollenwerk et al. [14]
recently addressed a class of simplified air traffic management problems of strategic conflict
resolution. Their preliminary results show that some challenging problems can be solved
efficiently with the D-Wave 2000Q machine, see Figure 1. As for the railway industry, to the
best of our knowledge, a preliminary version of the present work [15] was the first to apply
a quantum computing approach to a problem in railway optimization. As the citations to
our e-print illustrate [16,17], this research direction is attracting increasing interest.

The main purpose of the present paper is to elucidate how railway management
problems can be solved with the currently available hardware. Naturally, we do not expect
the current generation of the D-Wave annealer to outperform the best available classical
algorithms. Rather, the present work is of pedagogical and instructive value as it provides
an entry point for transportation research into quantum computing and demonstrates the
applicability of an NISQ computer. To this end, we solve the delay and conflict management
on an existing Polish railway whose real-time solution is of paramount importance for the
local community.

Realizing that especially in the NISQ era, there is still a significant language barrier
between foundational quantum physics and real-life applications, the present paper strives
to be as introductory and self-contained as possible. In particular, Section 2 provides a brief
review of railway conflict management as well as quantum annealing. Our model of the
“real” problem is then outlined in Section 3 before we discuss our findings in Section 4.
The discussion is concluded with a few remarks on future research directions in Section 5.
In the Supplemental Materials, we give a fully detailed description of our model. We
include there also the description of a possible linear integer programming formulation
that we use for comparison. The Supplemental Materials contains a number of additional
particular instances and their solutions.
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Figure 1. D-Wave processor specification. Left: An example of the Chimera topology, here composed
of 4 × 4 (C4) grid consisting of clusters (units cells) of 8 qubits each. The total number of variables
(vertices) for this graph is N = 4 · 4 · 8 = 128. A graph’s edges indicate possible interactions between
qubits. The maximum number of qubits is Nmax = 2048 for the Chimera C16 topology, whereas the
total number of connections between them is limited to 6000 � N2

max. Right: A typical annealing
schedule controlling the evolution of a quantum processor, where T denotes the time to complete one
annealing cycle (the annealing time). It ranges from microseconds (∼2 μs) to milliseconds (∼2000 μs).
The parameters g and Δ are used in Equation (6).

2. Railway Dispatching Problem on Single-Track Lines

Railway dispatching problem management is a complex area of transportation re-
search. Here, we focus on the delay management on single-track railways. This problem
concerns the operative modifications of train paths upon disturbances in railway traffic. In-
correct decisions may cause the dispatching situation to deteriorate further by propagating
the delay, resulting in unforeseeable consequences. Henceforth, we discuss this problem’s
details and survey the relevant part of the literature. Although we focus on single-track
railway lines, some considerations may also be applicable to multi-track railways [18].

2.1. Problem Description

Consider a part of a railway network in which the traffic is affected by a disturbance.
As a result, some trains cannot run according to the original timetable. Hence, a new,
feasible timetable should be created promptly, minimizing unwanted consequences of
the delay. To be more specific, we are given a part of a railway network (referred to as
the network), such as, e.g., those depicted in Figure 2a,b. The network is divided into block
sections or blocks (This term originated in the railway signaling terminology. In general, it
refers to a section of the railway line between two signal boxes.): sections which can be
occupied by at most one train at a time. The block sections are labeled with numbers in the
figures. We focus on single-track railway lines. These include passing sidings (referred to as
sidings): parallel tracks, typically at stations; the blocks are labeled with upper indices in
parentheses in the figures. Via the sidings, trains heading in opposite directions can meet
and pass, while trains heading in the same direction can meet and overtake.

All trains run according to a timetable. Examples of timetables are illustrated in
Figure 2c,d in the form of train diagrams, and they will be explained later in Section 4.1.
The set of given time–location points of a given train are termed as the train path, which
represents a train in a train diagram as points connected with straight lines. We assume
that the initial timetable is conflict free and that it meets all feasibility criteria. The criteria
may vary [19,20] depending on the railway network in question. The possible variants
include technical requirements such as speed limits, dwell times, and other signaling-
imposed requirements, as well as rolling stock circulation criteria and passenger demands
for trains to meet. The railway delay management problem can be viewed from various
perspectives, including that of a passenger, the infrastructure manager, or a transport
operation company [19–21]. Here, we look at this problem from the perspective of the
infrastructure manager, who is to make the ultimate decision about the modifications and
is in the position to prioritize the requirements.
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(a) (b)

(c) (d)
Figure 2. The railway line segments and their initial (undisturbed) timetables addressed in our
calculations. The train diagrams in subfigures (c,d) represent train paths by connecting characteristic
points of the location of trains at certain times by straight lines. Subfigures (a,b) represent the network
topologies. The lines are the railway tracks. Their numbers represent blocks (as used, e.g., in the
vertical axes of the train diagrams) and their upper indices in parentheses refer to the sidings (i.e.,
parallel tracks of stations). The rectangles represent the passenger platforms, circles represent the
block boundaries (white: between a station and a line block, blue filled: between two line blocks).
(a) Nidzica–Olsztynek section of railway line No. 216. (b) Goleszów–Wisła Uzdrowisko section of
railway line No. 191. (c) Train diagram for the timetable of the line in (a). (d) Train diagram for the
timetable of the line in (b).

In what follows, we assume that—for whatever reason—a delay occurs. Hence, some
trains’ locations differ from the scheduled ones. A conflict is an inadmissible situation in
which at least two trains are supposed to occupy the same block section. For instance,
if an already delayed train would continue its trip according to the original plan shifted in
time with the delay while the other trains would run according to the original timetable,
multiple trains could meet in the same block, as illustrated in Figure 3a.

The objective of conflict management is thus to redesign the timetable to avoid conflicts
(such as in Figure 3b in our example), and minimize delays. The overall delay of a train
is the sum of two types of delays. A primary delay is caused by an initial disturbance
directly, e.g., a particular train is delayed because of an engine breakdown. Such a delay
cannot be avoided. Moreover, it has additional consequences as it propagates through
the network. To separate the primary (unavoidable) part of the overall delay from the rest,
which depends on dispatching decisions, the following consideration is commonly made.
Obviously, given an actual location of trains, there is a minimal amount of time needed for
each train to reach further destinations, e.g., due to speed limits, even when the train would
not interact with any other train. The so-calculated delay is considered as the primary delay.

The delay of a train beyond the primary delay is termed as the secondary delay. These
are induced by conflicts, i.e., interactions of trains, that have to be resolved by appropriate
dispatching decisions. The objective of the optimization of these decisions is the minimiza-
tion of a suitable function of secondary delays, e.g., their maximum or a weighted sum.
Note that there are many other practically relevant options for the objective function [22],
e.g., the total passenger delay or the cost of operations, and some of these are also in line
with our approach.
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(a) (b)
Figure 3. A possible solution of the conflict on line No. 216. (a) The conflicted diagram. All the three
trains would meet in block 4 as it can be seen from the intersecting train paths. (b) The solution; FCFS,
FLFS, and AMCC give the same outcome with a maximum seconday delay of 4 min.

The mathematical treatment of railway delay and conflict management leads to NP-
hard problems (In computational complexity theory, NP-hardness, non-deterministic
polynomial-time hardness, is the defining property of a class of problems that are in-
formally “at least as hard as the hardest problems in NP, that is the class of problems that
can be solved in polynomial time on a non-deterministic Turing machine [23]”). Certain
simple variants are NP-complete [24]. It is broadly accepted that these problems are equiv-
alent to job-shop models with blocking constraints [25], given the release and due dates of
the jobs and depending on the requirements of the model and additional constraints such
as recirculation or no-wait. The correspondence between the metaphors is the following.
Trains are the jobs and block sections are the machines. Concerning the objective functions,
the (weighted) total tardiness or make-span is typically addressed, which is the (weighted)
sum of secondary delays or the minimum of the largest secondary delay in the railway
context. So, with the standard notation of scheduling theory [26], our problem falls into
the class (Jm|ri, di, block| ∑j wjTj). Here, Jm stands for a job shop with multiple machines, ri
stands for the given release times, and di stands for the deadlines for each job, and block
stands for the presence of blocking constraints (i.e., a job blocks a machine while it is
processed). The objective, the third part of the triplet, is a total weighted tardiness.

2.2. Existing Algorithms

The following summary of railway dispatching and conflict management is focused on
the works that are closely related to the problem addressed by us. A more comprehensive
review of the huge literature on optimization methods applicable to railway management
problems can be found in many related publications, notably in Refs. [20,22,27–31].

On a single-track line, the possible actions that can be taken to reschedule trains are
the following: allocating new arrival and departure times, changing tracks and platforms,
and reordering the trains by adjusting the meet-and-pass plans [20,22,32]. An important
issue in modeling single-track lines is the handling of sidings (stations). A recent work of
Lange and Werner [33] addressing the problem describes three approaches. In the parallel
machine approach, it is assumed that each track within the siding corresponds to a separate
machine in the job shop, thereby losing the possibility of flexible routing, i.e., changing
track orders at a station afterward. In the machine unit approach, parallel tracks are treated as
additional units of the same machine. Finally, in the buffer approach, the sidings at the same
location are handled as buffers without internal structure and therefore not warranting
the feasibility of track occupation planning at a station. We adopt the buffer approach in
our model.

As to the nature of the decision variables, two major classes of models can be identified:

300



Entropy 2023, 25, 191

• Order and precedence variables prescribe the order in which a machine processes jobs,
i.e., the order of trains passing a given block section in the railway dispatching problem
on single-track lines.

• Discrete time units, in which the decision variables belong to discretized time instants;
the binary variables describe whether the event happens at a given time.

These two approaches lead to different model structures, which are hard to com-
pare. The discrete time units approach appears to be more suitable for a possible QUBO
formulation, but it leads to many decision variables and thus worse scaling. On the other
hand, the order and precedence variables approach can lead to a representation of the problem
with alternative graphs [34,35], which is an intuitive picture. The solution of this problem
representation leads to mixed-integer programs that can be solved, e.g., with iterative
methods (such as branch-and-bound), but they are not ideal for a reformulation to QUBO.
Time-indexed variables, on the other hand, can result in pure binary problems that are
suitable for a transformation to QUBOs [36], so we follow the latter approach.

Returning to Ref. [33], the authors considered the problem adopting the parallel machine
approach and the machine unit approach with order and precedence variables, addressing the
problem Jm|ri, di, block, rcrc| ∑j Tj in the standard notation of scheduling theory. In the case
of the instances addressed in this reference, with 15 or more stations and 11 or more trains,
the computational time of the presented classical algorithms is reported to be always higher
than 10 min using CPLEX 12.6.1, IBM Armonk, New York, USA, which can be considered as
a long time in a dispatching situation. These illustrate the limitations of the state-of-the-art
classical algorithms.

In the present work, we will adopt slightly different constraints and objectives, namely,
Jm|ri, di, block| ∑j wjTj. As to decision variables, we opt for discrete time units and time-
indexed variables. (For the sake of completeness, in the Supplemental Materials, we
demonstrate that the problem can also be encoded with precedence variables and handled
by a linear solver.)

In Ref. [37], Zhou and Zhong considered the problem of timetabling on a single-track
line. The starting times of trains and their stops are given, and a feasible schedule is to be
designed to minimize the total running time of (typically passenger) trains. Although their
problem, notably its objective function and the input, is different, the constraints are similar
to those of our problem. The authors also deal with conflicts, dwell times, and minimum
headway times for entering a segment of the railway line. They handle the problem
with reference to resource-constrained project scheduling. Their decision variables are the
discretized entry and leave times of the trains at the track segments, binary precedence
variables describing the order of the trains passing a track segment, and time-indexed
binary variables describing the occupancy of a segment by a given train at a given time.
They introduce a branch-and-bound procedure with an efficiently calculable conflict-based
bound in the bounding step to supplement the commonly used Lagrangian approach. They
demonstrate its applicability to scheduling of up to 30 passenger trains for a 24-h periodic
planning horizon on a line with 18 stations in China.

Harrod [38] proposed a discrete-time railway dispatching model, with a focus on con-
flict management. In this work, the train traffic flow is modeled as a directed hypergraph,
with hyperarcs representing train moves with various speeds. This may be confined to
an integer programming model with time-, train-, and hypergraph-related variables and
a complex objective function covering multiple aspects. The model is demonstrated on
an imaginary single-track line with long passing sidings at even-numbered block sections
of up to 19 blocks in length. An intensive flow of trains at moderate speeds is examined.
The model instances are solved with CPLEX in the order of 1000 s of computation time. As a
practical application, a segment of a busy North American mainline is used, on which the
model produced practically useful results. Bigger examples were also experimented with,
leading to the conclusion that the approach is promising but that it needs more specialized
technology than a standard mixed-integer programming (MIP) solver to be efficient.
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Meng and Zhou [39] describe a simultaneous train rerouting and rescheduling model
based on network cumulative flow variables. Their model also employs discrete-time-
indexed variables. They implement a Lagrangian relaxation solution algorithm and make
detailed experiments showing that their approach performs promisingly on a general
n-track railway network. In the introduction of their article, they tabulate numerous
timetabling and dispatching algorithms.

This brief survey of the extensive literature confirms that the problem of railway
dispatching and conflict management is indeed a good candidate for demonstrating new
computational technology capable of solving hard problems. Only very few models have
been put into practice. The size and complexity of realistic dispatching problems make it
challenging for the models to solve them with current computational technology.

2.3. Quantum Annealing and Related Methods

Let us now turn our attention to the main tools used in the present study: quantum
annealing techniques. These have their roots in adiabatic quantum computing, which is a
new computational paradigm [40] that, under additional assumptions, is equivalent [41]
to the gate model of quantum computation [42] (provided that the specific interactions
between quantum bits can be realized experimentally [43]). Thus, this emerging technology
promises to tackle complicated (NP-hard in fact [44]) discrete optimization problems by
encoding them in the ground state of a physical system: the Ising spin glass model [45].
Such a system is then allowed to reach its ground state “naturally” via an adiabatic-like
process [46]. An ideal adiabatic quantum computer would in this way provide the exact
optimum, whereas a real quantum annealer is a physical device that has noise and other
inaccuracies. Hence, currently existing quantum annealers are paradigmatic examples of
the NISQ era [10]. Their output is only a sample of candidates that is likely to contain the
optimum. Quantum annealing can be therefore regarded as a heuristic approach, which
will become increasingly accurate and efficient as the technology improves.

2.3.1. Ising-Based Solvers

The Ising model, introduced originally for the microscopic explanation of magnetism,
has been in the center of the research interests of physicists ever since. It deals with a set of
variables si ∈ {+1, −1} (originally corresponding to the direction of microscopic magnetic
momenta associated with spins). The configuration of N such variables is thus described
by a vector s ∈ {+1, −1}N . The model then assigns an energy to a particular configuration:

E(s) = ∑
(i,j)∈E

Ji,jsisj + ∑
i∈V

hisi, (1)

where (V, E) is a graph whose vertices V represent the spins, the edges E define which
spins interact, Ji,j is the strength of this interaction, and hi is an external magnetic field at
spin i. Although the early studies of the model dealt with configurations in which the spins
were arranged in a one-dimensional chain so that the coupling J was non-zero for nearest
neighbors only, the model has been generalized in many ways, including the most general
setting of an arbitrary (V, E) graph, i.e., incorporating the possibility of non-zero couplings
for any i, j pair. Such a system is referred to as a spin glass in physics. For comprehensive
reviews of generalizations of the Ising model, we refer to the literature [47,48].

From an operations research point of view, the physical model is interesting, since it
describes a computational resource for optimization. The idea originates from the fact that
in physics, the minimum energy configuration determines many properties of a material.

In mathematical programming, it is often more convenient to deal with 0–1 variables.
By introducing new decision variables x ∈ {0, 1} so that

xi =
si + 1

2
, (2)
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and the matrix

Qi,i = 2

(
hi −

n

∑
j=1

Ji,j

)
, Qi,j = 4Ji,j, (3)

the Ising objective in Equation (1) can be rewritten in the form of a QUBO:

min xTQx, s.t. x ∈ {0, 1}N . (4)

Note that the transformation in Equations (2) and (3) is actually invertible (c.f. for instance,
Ref. [49]). Hence, minimizing the Ising objective in Equation (1) is equivalent to solving a
QUBO. In what follows, we will use the QUBO form only; it can be in fact submitted as it is
to the solvers and commercial quantum devices directly. Moreover, the matrix Q can always
be chosen to be symmetric, as Q = (Q′ + Q′T)/2 defines the same objective. Quantum
annealers accept problems both in QUBO and Ising form and provide a non-deterministic
output possibly containing the solution, as it will be discussed later.

A QUBO or Ising model can be also solved with other promising techniques. With the
rapid development of quantum annealing technology, probabilistic classical accelerators
have been under massive development. In recent years, a significant progress took place in
the field of programmable gate array optimization solvers (digital annealers [50]), optical
Ising simulators [51], coherent Ising machines [52], stochastic cellular automata [53], and,
in general, those based on memristor electronics [54].

It is therefore vital to develop modeling strategies for quadratic binary optimization
and to create novel techniques for analyzing the obtained results. This should progress
similarly to how the powerful solvers for linear programs first started appearing: modeling
strategies for linear programs as well as sensitivity analysis had been developed ahead of
the creation of the hardware.

2.3.2. Quantum Annealing

An essential step in finding the minimum of an optimization problem (encoded in
Equation (1)) efficiently is to map it to its quantum version. The mapping assigns a two-
dimensional complex vector space to each spin, and a complete spin configuration becomes
an element of the direct (tensor) products of these spaces. An orthonormal basis (ONB)
is assigned to the −1 and +1 values of the variables; thus, the product of these vectors
will be an ONB (called the “computational basis”) in the whole C2N

. The vectors with
unit Euclidean norms are referred to as “states” of the system; they encode the physical
configurations. The fact that the state can be an arbitrary vector and not only an element
of the computational basis means that the quantum annealer can simultaneously process
multiple configurations, i.e., inherent parallelism.

As to the objective function, the spin variables are replaced by their quantum coun-
terpart: Hermitian matrices acting on the given spin’s C2 tensor subspace. The product of
spins is meant to be the direct (tensor) product of the respective operators. Thus, the ob-
jective function Equation (1) turns into a Hermitian operator, which is referred to as the
problem’s Hamiltonian:

Hp := E(σ̂z) = ∑
〈i,j〉∈E

Jijσ̂
z
i σ̂z

j + ∑
i∈V

hiσ̂
z
i , (5)

whose lowest-energy eigenstate is commonly called the “ground state”. Above, σz
i denotes

the Pauli z-matrix associated with the ith qubit. In the present case, it is an element of
the computational basis, so it represents also the optimal configuration of the classical
problem. Note that the energy of a physical system is related (via eigenvalues) to a
Hermitian operator, which is called its Hamiltonian. Although it seems to be a significant
complication to deal with C2N

instead of having 2N binary vectors, it has important benefits,
the most remarkable of which is that they model realistic physical systems.
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The main idea behind quantum annealing is based on the celebrated adiabatic theo-
rem [55]. Assume that a quantum system can be prepared in the ground state of an initial
(“simple”) Hamiltonian H0. Then, it will slowly evolve to the ground state of the final
(“complex”) Hamiltonian Hp in Equation (5) that can be harnessed to encode the solution
of an optimization problem [45]. In particular, the dynamics of quantum annealers such as
D-Wave 2000Q are governed by the following time-dependent Hamiltonian [46,56]:

H(t)/(2πh̄) = −g(t)H0 − Δ(t)Hp′ , t ∈ [0, T]. (6)

Here, the original problem’s Hamiltonian in Equation (5) must be converted into a bigger
one Hp′ whose graph is compliant with what the existing hardware can realize: the
“Chimera graph” in case of DWave 2000Q; see Figure 1. The original problem’s graph will
be the minor of this graph. This procedure, called “minor embedding”, is standard in
quantum annealing procedures (see also Section SIIIC of the the Supplemental Materials
for a simple graphical representation of this Chimera embedding).

Many relevant optimization problems are defined on dense graphs. Fortunately,
even complete graphs can be embedded into a Chimera graph [57]. There is, however,
substantial overhead, which effectively limits the size of the computational graph that can
be treated with current quantum annealers [58,59]. This is considered as an engineering
issue that will likely be overcome in the near future [11,60]. After the Chimera embedding,
the Hamiltonian describing the system reads as follows:

Hp′ = ∑
〈i,j〉∈E

J′ijσ̂
z
i σ̂z

j + ∑
i∈V

h′
iσ̂

z
i , H0 = ∑

i
σ̂x

i , (7)

where σx
i is the x Pauli matrix associated with the ith qubit. The annealing time T varies

from microseconds (∼2 μs) to milliseconds (∼2000 μs) depending on the specific pro-
grammable schedule [46]. As shown in Figure 1, during the evolution, g(t) varies from
g(0)  0 (i.e., all spins point in the x-direction) to g(T) ≈ 0, whereas Δ(t) is changed from
Δ(0) ≈ 0 to Δ(T)  0 (i.e., H(T) ∼ Hp′ ). The Pauli operators σ̂z

i , σ̂x
i describe the spin’s

degrees of freedom in the z- and x-direction, respectively. Note that the Hamiltonian Hp
is classical in the sense that all its terms commute (which is the result of their multipli-
cation, being independent of the order). Thus, as mentioned previously, its eigenstates
translate directly to classical variables, qi = ±1, which are introduced to encode discrete
optimization problems.

The annealing time, T in Equation (6), is an important parameter of the quantum
annealing process: it must be chosen so that the system reaches its ground state while the
adiabaticity is at least approximately maintained. The adiabatic theorem gives us guidance
in this respect. In the spectrum of the Hamiltonian in Equation (6), there is a difference
between the energy of the ground state(s) and the energy of the state(s) just above it in
energy scale. This difference is known as the (spectral) “gap”, and its minimum value in
the course of the evolution determines the required computation time if certain additional
conditions hold. Roughly speaking, the bigger the gap, the faster the quantum system
reaches its ground state (the dependence is actually quadratic; see Ref. [61] for a detailed
discussion). Thus, if the run time is not optimal, there is a finite probability of reading out
an excited state instead of the true ground state.

The annealing time should be provided in advance to actually use a quantum annealer.
As mentioned before, the time which would ensure that the ground state is likely to be in the
resulting sample depends on the spectral gap, which is unknown. Its exact determination
would be as hard as finding the actual optimum. Hence, in practice, a reasonable annealing
time is determined from an educated guess, and the evolution is repeated reasonably many
times, resulting in a sample of possible solutions (over different annealing times as well
as other relevant parameters). The one with the lowest energy is considered to be the
desired solution, albeit there is a finite probability that it is not the ground state. A quantum
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annealer is thus a probabilistic and heuristic solver. Concerning the benchmarking of
quantum annealers, consult also [62].

As a side note, it should be stressed that it is not always possible to maintain the
adiabatic evolution. As an example, consider the second–order phase transition phe-
nomenon [63–65], in which even a short-lasting lack of adiabaticity will result in the
creation of topological defects preventing the system from remaining in its instantaneous
ground state. This effect, on the other hand, is a clear manifestation of the quantum Kibble–
Żurek mechanism Refs. [66–72] and can be used to detect departures from adiabaticity.
Meanwhile, a system which would evolve adiabatically in the absence of interection with
its enviroment will keep evolving similarly to the ideal evolution also in certain noisy
circumstances [73].

2.3.3. Classical Algorithms for Solving Ising Problems

An additional benefit from formulating problems in terms of Ising-type models is that
the existing methods developed in statistical and solid-state physics for finding ground
states of physical systems can also be used to solve a QUBO on classical hardware. Notably,
variational methods based on finitely correlated states (such as matrix product states for 1D
systems or projected entangled pair states suitable for 2D graphs) have had a very extensive
development in the past few decades. A quantum information theoretic insight into density
matrix renormalization group methods (DMRG [74])—being the most powerful numerical
techniques in solid-state physics at that time—helped with proving the correctness of
DMRG. These methods also led to a more general view of the problem [75], resulting in
many algorithms that have potential applications in various problems, in particular solving
QUBOs by finding the ground state of a quantum spin glass. We have used the algorithms
presented in Ref. [76] to solve the models derived in the present manuscript.

Neither the quantum devices nor the mentioned classical algorithms do always pro-
vide the energy minimum and the corresponding ground state (as it is not trivial to reach
it [77]) but possibly another eigenstate of the problem with an eigenvalue (i.e., a value
of the objective function) close to the minimum. The corresponding states are referred
to as “excited states”. There are problems related to the simulations of quantum systems
with NISQ quantum hardware, where only the ground state is relevant [78]. Nevertheless,
excited states can also encode valuable information. This is especially apparent, for in-
stance, in the context of neural networks where sampling is more important than finding
the ground state [79]. In many optimization problems, good but not optimal solutions
also bear practical relevance. Another important point in interpreting the results of such
a solver is the degeneracy of the solution: it can provide multiple equivalent optima at
a time.

In analyzing these optima, it is helpful that for up to 50 variables, one can calculate
the exact ground states and the excited states closest to them using a brute-force search
on the spin configurations with GPU-based high-performance computers. In the present
work, we also use such algorithms, in particular those introduced in Ref. [80] for bench-
marking and evaluating our results for smaller examples. This way, we can compare the
exact spectrum with the results obtained from the D-Wave quantum hardware and the
variational algorithms.

3. Our Model

Here, we describe our model in brief. The Supplemental Materials provides a more
detailed description. First, in Section 3.1, we encode constraints representing the railway
operation scenario in the form of inequalities. To avoid continuous variables which would
be incompatible with a QUBO solver, we use discretized time variables. The arising integer
model is suitable to be turned into a purely 0-1 model adopting the discrete time unit
approach, as described in Section 3.2. Then, in Section 3.3, the constrained 0-1 model is
turned into the desired QUBO model using penalties. Finally, the QUBO model is converted
to the Ising model as in Equation (1). This is completed automatically by the quantum
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annealer’s software package (using the binary variable transformation via Equation (2) and
QUBO matrix transformation in Equation (3); the QUBO and Ising models are equivalent
and any of these formulations can be submitted to solvers such as D-Wave directly). While
the quantum annealer is an Ising-system inside, the solutions it returns are mapped back
to the 0-1 variables of the submitted QUBO model (c.f. Equation (2)). Given such a 0-1
solution vector, it defines the actual delay of each train at each station, as described in
Section 3.2. Applying these delays to the given initial timetable (with conflicts), a solution
in the form of the conflict free timetable is obtained: conflicts are resolved. The presented
train diagrams are constructed in this way.

3.1. Integer Formulation of the Constaints

Let us return to our single-track network: blocks and trains. Observe that it is only the
leave times of trains from station blocks that the dispatchers decide upon, as the trains
cannot meet and pass or meet and overtake on a single-track line otherwise. Let us denote
the station blocks by s ∈ S and the set of trains by j ∈ J . We will formulate the problem
entirely in terms of the secondary delays: ds(j, s) stands for the secondary delay of train j
at the station block s. The detailed description in the Supplemental Materials makes it clear
that these values, along with the original timetable and the technical data (i.e., the network
topology and time required for each train to pass a block) fully determine a modified
timetable. In what follows, this description will be referred to as the delay representation.

In order move toward a 0-1 model, we discretize the secondary delays requiring that

ds(j, s) ∈ N, 0 ≤ ds(j, s) ≤ dmax(j), (8)

where a reasonable upper bound dmax(j) can be obtained from some fast heuristics, and the
time is measured in integer minutes from now on, which is a suitable scale for railway
problems. When formulating constraints, it is better to work with the actual (discretized)
delay d(j, s) = ds(j, s) + dU(j, s) of train j at station block s, where dU(j, s) stands for the
primary (unavioidable) delay. At this stage, we have defined a set of potential decision
variables with finite ranges that already facilitate the formulation of a linear model for the
problem, as shown in the Supplemental Materials.

As to the constraints, we consider the following ones, which cover the requirements of
the particular railway operator. In the Supplemental Materials, we describe them in more
detail while here, we give a brief summary:

The minimum passing time condition ensures that no block sections are passed by
any train faster than allowed:

d(j, ρj(s)) ≥ d(j, s)− α(j, s, ρj(s)). (9)

where ρj(s) stands for the station block section succeeding s in train j-s sequence, while
α(j, s, ρj(s)) is the largest reserve the train can achieve by passing the blocks following s up
to and together with the next station block ρj(s) possibly faster than originally planned.
The α values can be calculated in advance.

The single-block occupation ensures that at most one train can be present in a block
section at a time.

d(j′, s) ≥ d(j, s) + Δ(j, s, j′, s)

+ τ(1)(j, s, ρj(s)).
(10)

where Δ is the difference of the leave times of two trains from the given blocks, whereas τ(1)
is the minimum time for train j to give way to another train going in the same direction in
the route s → ρj(s). This condition is to be tested in this form for the pair of trains (j, j′) if j
leaves s before j′, i.e., d(j′, s) ≥ d(j, s) + Δ(j, s, j′, s); otherwise, it has to be applied so that
the order of the trains is reversed.
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The deadlock condition ensures that no pairs of trains heading in the opposite direc-
tion will be waiting for each other to pass the same blocks:

d(j′, ρj(s)) ≥ d(j, s) + Δ(j, s, j′, ρj(s)) + τ(2)(j, s, ρj(s)), (11)

where τ(2)(j, s, ρj(s)) is the minimum time required for train j to get from station block s
to ρj(s). Similarly to the previous condition, Equation (11) is to be applied for the pairs of
trains (j, j′) so that j′ is supposed to leave the block ρj(s) after the train j leaves s; otherwise,
the order of the trains is reversed.

The rolling stock circulation condition ensures the minimal technological time R(j, j′)
for a given train set arriving as train j at its terminating station sj,end before operating again
as train j′:

d(j′, 1) > d(j, sj,end−1)− R(j, j′). (12)

Certainly, this condition has to hold for pairs of trains (j, j′) which are operated with the
same train set according to the rolling stock circulation plan.

There is an additional constraint: the capacity condition that could be also addressed;
this would implement the buffer approach in our model. This is described in the Sup-
plemental Materials, but we omit it here, as we will not include it in the calculation. It
would increase additional complexity that would make our model intractable with current
quantum hardware, so we opted for the verification of the solutions against this condition,
thereby implementing the buffer approach. Having described the constraints, now, we
formulate the model as a 0-1 program and define the objective function.

3.2. 0-1 Formulation

To turn our model into a 0-1 problem, we introduce our final decision variables

xs,j,d =

{
1, d(j, s) = d
0, otherwise

, (13)

which take the value of 1 if the train j leaves station block s at delay d and zero otherwise.
In this way, we have 0-1 variables with indices from a finite set. Observe that for constant
dmax, the number of variables is proportional to the number of trains and the number of
stations minus one (as we do not consider departing from the last station in our model).

As for the objective function, we opt for a weighted sum of delays:

f (x) = ∑
j∈J

∑
s∈S∗

j

∑
d∈Aj,s

f (d, j, s) · xj,s,d, (14)

where f (d, j, s) are the weights. Here, S∗
j = Sj \ {sj,end}, where Sj stands for a sequence of

station blocks the train runs through, sj,end stands for the last station of j, and Aj,s is the
respective range of delays. It is easy to see that the weights f (d, j, s) can be chosen so that
they depend on the secondary delays only; consult the Supplemental Materials for details.

As for the constraints, let us first assume that each train leaves each station block once
and only once (recall that we do not allow for recirculation):

∀j∀s∈Sj ∑
d∈Aj,s

xs,j,d = 1. (15)

The other constraints can be dealt with as follows.
The minimum passing time condition defined in Equation (9) becomes

∀j∀s∈S∗∗
j ∑

d∈Aj,s

⎛⎜⎝ ∑
d′∈D(d)∩Aj,ρj(s)

xj,s,dxj,ρj(s),d′

⎞⎟⎠ = 0, (16)
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where D(d) = {0, 1, . . . , d − α(j, s, ρj(s))− 1}, and S∗∗
j = Sj \ {sj,end, sj,end−1}.

The single-block occupation condition from Equation (10) follows that

∀(j,j′)∈J 0(J 1)∀s∈S∗
j,j′ ∑

d∈Aj,s

⎛⎝ ∑
d′∈B(d)∩Aj′ ,s

xj,s,dxj′ ,s,d′

⎞⎠ = 0, (17)

where B(d) = {d + Δ(j, s, j′, s), d + Δ(j, s, j′, s) + 1, . . . , d + Δ(j, s, j′, s) + τ(1)(j, s, ρj(s))− 1}
is a set of delays that violates the block occupation condition.

The deadlock condition is to be addressed for two trains heading in the opposite
direction; from Equation (11), it follows that

∀j∈J 0(J 1),j′∈J 1(J 0)∀s∈S∗
j,j′ ∑

d∈Aj,s

⎛⎜⎝ ∑
d′∈C(d)∩Aj′ ,ρj(s)

xj,s,dxj′ ,ρj(s),d′

⎞⎟⎠ = 0 (18)

where C(d) = {d(j, s) + Δ(j, s, j′, ρj(s)), d(j, s) + Δ(j, s, j′, ρj(s)) + 1, . . . , d(j, s)+
Δ(j, s, j′, ρj(s)) + τ(2)(j, s, ρj(s)) − 1}, and J 0, J 1 are explained in
Equation (S1) of the Supplemental Materials. In Equations (17) and (18), each train is compared
with a limited number of trains; this limit is imposed indirectly by fixed dmax. Hence, as a
rough estimate of the number of terms in these two equations (for fixed dmax), one can claim
that it is proportional to the number of trains times the number of stations minus one.

The rolling stock circulation condition is defined in Equation (12) and can be rewrit-
ten as

∀j,j′∈terminal pairs ∑
d∈Aj,s(j,end−1)

∑
d′∈E(d)∩Aj′ ,1

xj,s(j,end−1) ,d · xj′ ,s(j,′1) ,d
′ = 0, (19)

where E(d) = {0, 1, . . . , d − R(j, j′)}; this condition applies only for one station and a few
selected trains.

The objective function in Equation (14) together with the constraints in Equations (15)–(19)
comprise a quadratic constrained 0-1 formulation of our model. As an estimate of the
number of variables and quadratic terms from Equations (13)–(18), one can conclude that
(for fixed dmax), these are proportional to n.o. trains · (n.o. stations − 1).

3.3. QUBO Formulation: Penalties

Having formulated our problem as a constrained 0-1 program, we need to make
it unconstrained to achieve a QUBO form—see Equation (4). This is usually completed
with penalty methods [81]. It has been shown in [49] that all binary linear and quadratic
programs translate to QUBO along some simple rules. (An alternative, symmetry-based
approach [82] to constrained optimization has also been proposed in which the adiabatic
quantum computer device is supposed to use a tailored H0 term in its dynamics of the
model in Equation (7). As such a modification of the actual device is not available to us, we
remain using penalty methods.)

The problems one faces with a quadratic 0-1 program require certain specific consider-
ations when adopting the penalty method. Let us outline this approach with a focus on
our problem. As we have a linear objective function Equation (14), it can be written as a
quadratic function because the decision variables are binary:

min
x

f (x) = min
x

cTx = min
x

xT diag(c)x. (20)

(A general QUBO can contain linear terms as well; however, the solver implementations
accept a single matrix of quadratic coefficients [83], so transforming linear terms into
quadratic ones is more a technical than a fundamental step.)

The constraints set out in Equations (16)–(19) have to be met for a feasible solution:
they are hard constraints. To obtain an unconstrained problem, we define a penalty function
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in the following way. We add the magnitude of the constrains’ violation, multiplied by
some well-chosen coefficient, to the objective function.

In particular, from Equations (16)–(19), we shall have quadratic constraints in the
form of

∑
(i,j)∈Vp

xixj = 0, (21)

excluding pairs of variables that are simultaneously 1. We can deal with such a constraint
by adding to our objective the following terms:

Ppair(x) = ppair ∑
(i,j)∈Vp

(xixj + xjxi), (22)

where ppair is a positive constant. Additionally, from Equation (15), we have additional
hard constraints in the form of:

∀Vs ∑
i∈Vs

xi = 1. (23)

These constraints yield a linear expression that can be transformed into the following
quadratic penalty function:

P′
sum(x) = ∑

Vs

psum

(
∑

i∈Vs

xi − 1

)2

. (24)

Next, we replace the xis with x2
i s in the linear terms and omit the constant terms, as they

provide only an offset to the solution, yielding:

Psum(x) = ∑
Vs

psum

⎛⎝ ∑
i,j∈V×2,i �=j

xixj − ∑
i∈Vs

x2
i

⎞⎠. (25)

So, our effective QUBO representation is

min
x

f ′(x) = min
x

(
f (x) + Ppair(x) + Psum(x)

)
, (26)

which can be written in the form of Equation (4). We shall have many constraints similar in
form to Equations (21) and (23), so we have one summed for each constraint in the objective.
(It would also be possible to assign a separate coefficient to each of the constraints.)

Recall that in the theory of penalty methods [81] for continuous optimization, it is
known that the solution of the unconstrained objective will tend to a feasible optimal
solution of the original problem as the multipliers of the penalties (psum and ppair in our
case) tend to infinity, provided that the objective function and the penalties obey certain
continuity conditions. As in our case, both the objective and the penalties are quadratic,
and this convergence would be warranted for the continuous relaxation of the problem.
Even though we have a 0-1 problem, if we had an infinitely precise solution of the QUBO,
increasing the parameters would result in convergence to an optimal feasible solution.

However, somewhat similarly to the continuous case (in which the Hessian of the un-
constrained problem diverges as the parameters grow, making the unconstrained problem
numerically ill-conditioned), the properties of the actual computing approach or device
make it more cumbersome to make a good choice of multipliers.

The parameters psum and ppair have to be chosen so that the terms representing the
constraints in this energy do not dominate the original objective function. If the penalties
are too high, the objective is just a too small perturbation, which will be lost in the noise of
the physical quantum computer or in the numerical errors of an algorithm modeling it. If,
however, the penalty coefficients are too low, we obtain infeasible solutions. In the ideal
case, there is a “feasibility gap” in the spectrum of solutions.
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The multipliers can be assigned in an ad hoc manner by experimenting with the
solution; however, a systematic, possibly problem-dependent approach to their appropriate
assignment (as in the case of classical penalty methods; see [81]) would be highly desirable
in order to make the QUBO more reliable and prevalent. The goal is to construct the QUBO
representation in such a way that the energy landscape of the original problem is preserved.
In particular, QUBO solutions that map to the feasible solutions of the original problem
are expected to have lower energy than the infeasible ones. There are certain systematic
methods for this: for instance, in case of linear constraints only, it is always possible to find
the optimal penalty terms to separate between feasible and infeasible configurations [84].
In the present case study, we will determine penalties in an ad hoc manner based on
numerical experience with the objective values and constraint violations.

Having a QUBO representation of the problem at hand (as well as an analogical Ising
representation), let us turn our attention to the actual instances of our model and the results
obtained for them.

4. Results

In this section, we discuss certain possible situations in train dispatching on the railway
lines managed by the Polish state-owned infrastructure manager PKP Polskie Linie Kolejowe
S.A. (PKP PLK in what follows). In particular, we consider two single-track railway lines:

• Railway line No. 216 (Nidzica–Olsztynek section);
• Railway line No. 191 (Goleszów–Wisła Uzdrowisko section).

Railway line No. 216 is of national importance. It is a single-track section of the
passenger corridor Warsaw–Olsztyn, which has recently been modernized. There are both
Inter-City (IC) and regional trains operating on the Nidzica–Olsztynek section of line No.
216. In this paper, we consider an official train schedule (as of April, 2020). The purpose
of the analysis in this section is to demonstrate the application of our methodology to a
real-life railway section.

Railway line No. 191 is of local importance. The main train service on the No. 191
railway line is Katowice–Wisła Głebce, which is operated by a local government-owned
company called “Koleje Ślaskie” (in English, Silesian Railways; abbreviated KS). There are a
few Inter-City trains of higher priority there as well. Since 2020, the traffic at this section has
been suspended due to comprehensive renovation works (a temporary rail replacement
bus service is in operation). Our problem instances are based on the planned parameters
of the line after its commissioning based on public procurement documents [85]. On the
basis of these parameters, a cyclic timetable has been created. The aim of analyzing this
case is to show the broader application possibilities of the methodology.

4.1. The Studied Network Segment

In Figure 2a, we present a segment of railway line No. 216 (Nidzica–Olsztynek
section), and in Figure 2c, the analyzed part of the real timetable is depicted in the form of
a train diagram.

In Figure 2a, three stations are presented. Block 1 represents Nidzica station, which
has two platform edges numbered according to the rules of PKP PLK. Block 3 represents
Waplewo station, with another two platform edges. Olsztynek station, with three platform
edges, is represented by block 5. The model involves two line blocks with the labels 2
and 4. It is assumed that it takes the same amount of time to pass through a given station
block regardless of which track the train uses. To leave the station, it is required that the
subsequent block is free.

As to the trains, Figure 2c represents their planned paths. Three trains are modeled:
the two Inter-City trains in red and the regional train in black. The scheduled meet-and-pass
situations take place in Waplewo and Olsztynek (which might change in case of a delay).
IC5320 leaves station block 5 (Olsztynek) at 13:54, has a scheduled stopover at station block
3 (Waplewo) from 14:02 to 14:10 to meet and pass IC3521, and finally arrives at station block
1 (Nidzica) at 14:25. As to the opposite direction, IC3521 leaves station block 1 at 13:53,
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stops at station block 3 from 14:08 to 14:10, and arrives at station block 5 (Olsztynek) at
14:18. These two trains depart at the same time from station block 3 in opposite directions.
The third train considered is R90602. It is scheduled to leave block 5 at 14:20 and stops at
station block 3 (Waplewo) from 14:29 to 14:30, so it is scheduled to start occupying this
track 19 min after both ICs left. It is behind IC5320 during the whole section and does not
meet the IC train at all, so the original schedule is feasible and conflict free.

Now, let us add a 15-min delay to the departure time of IC5320 from station block 5
and 5-min delay to that of IC3521 from station block 1. The passing times were originally
scheduled according to the maximum permissible speeds. The minimum waiting times
at all the considered stations are 1 min regardless of the train type. This introduces the
following situation: the two Inter-City trains and the regional train have a conflict at line
block 4. This schedule will be referred to as the “conflicted diagram”—see Figure 3a.
The resolution of this conflict requires making a decision at station blocks 3 and 5.

Let us now turn our attention to the other example. The line segment (a part of railway
line No. 191) is presented in Figure 2b, while the considered train paths of the real timetable
are shown in Figure 2d. There are four stations and another three stops for the passengers
modeled. Block 1 represents Goleszów station, which has four platform edges. Block
2 represents a line block between Goleszów station and Ustroń station (which has two
platform edges and is represented by block 3). Subsequently, we have three line blocks
numbered 4, 5, and 6, with two stops for passengers: Ustroń Zdrój and Ustroń Poniwiec
(with one platform edge each). Next, we have station block 7—Ustroń Polana, which has
two platform edges. Between this station and Wisła Uzdrowisko station (numbered 10 with
three platform edges), there are two more line blocks (8 and 9) with one stop for passengers
(Wisła Jawornik). We assume that it takes exactly the same time to pass through a block
regardless of the track used.

There are six trains, two Inter-City trains in red and four regional (KS) trains in black,
as presented in Figure 2d. The regional trains serve all the stops and stations, while the
Inter-City service stops only at stations. We consider Wisła Uzdrowisko (station block 10)
to be a terminus for the Inter-City trains (however, it does not apply to the regional trains,
which go farther). In this situation, there are no meet-and-pass situations at intermediate
stations (Ustroń and Ustroń Polana) in the original timetable. Both Inter-City trains are
served by the same train set, and the minimum service time is R(j, j′) = 20 min at the
terminus for ICs (block 10); see Condition SI.4 of the Supplemental Materials.

We analyze the following dispatching cases, which have been selected to demonstrate
the algorithm behavior in various situations:

1. A moderate delay of the Inter-City train setting off from station block 1; see Figure S1a
of the Supplemental Materials.

2. A moderate delay of all trains setting off from station block 1; see Figure S1b.
3. A significant delay of some trains setting off from station block 1; see Figure S1c.
4. A large delay of the Inter-City train setting off from station block 1; see Figure S1d.

The conflicted timetables of cases 1–4 are presented in Figure S1 of the Supplemental
Materials.

4.2. Simple Heuristics

In the railway practice, conflicts are often resolved using simple heuristics: the First
Come First Served (FCFS) and the First Leave First Served principles. A more complex one
is AMCC (avoid maximum current Cmax) [34]. All of these heuristics are used to determine
the order of trains when passing the blocks. In FCFS and FLFS, the way is given to the
train that first arrives—or first leaves—the analyzed block section. In practice, the decisions
based on both these heuristics are taken starting from the most urgent conflict. Next,
since passing and overtaking is possible only at stations, so-called implied selections [35] are
determined. The procedure is repeated as long as all the conflicts are solved.

The AMCC is a more complex approach whose objective is to minimize the maximum
secondary delay of the trains; this objective will be referred to as the “AMCC objective” in

311



Entropy 2023, 25, 191

what follows. This is an intuitive procedure yet more sophisticated than FCFS and FLFS.
To facilitate the comparison, stations are assigned an infinite capacity. Of course, solutions
requiring a capacity higher than that of the given station must be rejected.

In the example presented in Figure 2a, for the conflicted timetable in Figure 3a, each of
the heuristics returns the same solution; this is presented in Figure 3b. When comparing the
FCFS with the FLFS, observe that in the conflicted timetable, three trains (IC5320, IC3521,
R90602) are scheduled to occupy the block 4 simultaneously, which is forbidden.

To avoid the conflict, IC3521 is allowed to enter this block with a 3-min delay at 14:17
(as soon as IC5320 leaves the block), thus leaving the block at 14:25 instead of 14:22, which
results in 3 min of secondary delay. Consequently, R9062 is allowed to enter the block
not earlier than 14:25, which is an additional 4-min delay as compared with the conflicted
timetable. Thus, the maximum secondary delay is 4 min, and the sum of the delays on
entering the last block is 7 min. The maximum secondary delay is 4 min; it is the lowest
possible one, so the solution is optimal with respect to the AMCC objective. Note that in
case of such a simple situation, the use of the heuristics is very close to the enumeration and
evaluation of all the possible solutions, and picking the best of these. This small example is
included in order to have an instance that can be fully followed manually.

The other example—the disruptions of this presented in Figure 2b—is more complex,
yet it is still solvable by a state-of-the-art quantum annealer. We do not discuss this example
in detail; we only present the maximum secondary delay values in Table 1 for the discussed
heuristics. Recall that we need an upper bound on the secondary delays to formulate our
model; we opt for dmax = 10 on the basis of these data. The respective train diagrams are
presented in Figures S2–S4 of the Supplemental Materials.

The values of the AMCC objective function are presented in Table 1; AMCC appears to
find the optimum in these cases, thus providing a good enough reference for comparisons,
albeit with an objective function different from that of ours. Our choice of the objective will
be more flexible, thus leaving room for further non-trivial optimization.

Table 1. The maximum secondary delays, in minutes, resulting from simple heuristics. Observe that
for each case, there are solutions far below dmax = 10.

Heuristics Case 1 Case 2 Case 3 Case 4

FLFS 6 13 4 2

FCFS 5 5 5 2

AMCC 5 5 4 2

4.3. Quantum and Calculated QUBO Solutions

Our QUBO approach uses the objective function set out in Equation (26). This contains
the feasibility conditions (hard constraints) and the objective function f (x) of Equation (27).
For the feasibility part, we need to determine τ(1)(j, s), the minimum time for train j to give
way to another train going in the same direction, and τ(2)(j, s), the minimum time for train
j to give way for the another train going in the opposite direction (see SI.2 and SI.3 of the
Supplemental Materials).

As noted before, the QUBO objective function introduces flexibility in choosing the
dispatching policy by setting the values of the penalty weights for the delays of the trains.
In this way, almost any train prioritization is possible. To demonstrate this flexibility, we
make the penalty values proportional to the secondary delays of the trains that enter the
last station block. This is equivalent to the secondary delay on leaving the penultimate
station block. Each train is assigned a weight wj, yielding the form of Equation (S38) of the
Supplemental Materials.

f (x) = ∑ wj ·
d(j, s∗)− dU(j, s∗)

dmax(j)
· xj,s∗ ,d, (27)
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where the sum is taken over j ∈ J and d ∈ Aj,s∗ with s∗ = s(j, end−1). Note that this objective
coincides with that of the linear integer programming approach; see Equation (S28) of
Supplemental Materials, which will be used for comparisons.

The following train prioritization is adopted. In the case of railway line No. 216,
the Inter-City trains are assumed to have a higher value of the delay penalty weight w = 1.5,
while the regional train is weighted w = 1.0. We assign the higher priority to the Inter-
City train in accordance with the train prioritization rules in Poland (and in many other
countries). In the other case (line No. 191), the priorities of trains heading toward block
10 (Wisła Uzdrowisko) are lower, weighted 0.9 for all the other trains in this direction.
However, train priorities for the trains heading in the opposite direction (toward block
1—Goleszów—and beyond the analyzed section) have higher values: 1.0 for the regional
trains and 1.5 for the Inter-Cities. Such a policy is motivated by the reluctance of letting the
delays propagate across the Polish railway network—that regional trains proceed toward
the main railway junction in the region’s major city (Katowice) and that the Inter-City
train service is scheduled toward the state’s capital city (Warsaw). Observe that wj is the
highest possible penalty for the delay of a train j; see Equation (27). In both these cases,
the maximum of wj is 1.5. Hence, the penalties for a infeasible solution should be higher
(as discussed in Section 3.3. We set ppair = psum = 1.75 > 1.5.

As mentioned before, the maximum secondary delay parameter dmax (which is as-
sumed to be the same for all trains and all analyzed station blocks for sake of simplic-
ity) cannot be smaller than the delay value returned by the AMCC heuristics. How-
ever, since the AMCC may not be optimal in terms of our objective function, we need to
leave a margin for some larger values of the maximum secondary delay. On the other
hand, since the system size grows with dmax, it must be limited enough to make the
problem applicable to state-of-the-art quantum devices and classical algorithms moti-
vated by them. Specifically, since we do not analyze the delays at the last station of
the analyzed segment of the line, the required number of qubits will be approximately
(number of station blocks − 1) · (number of trains) · (dmax + 1).

In the case of railway line No. 216, we set dmax = 7, which is considerably larger
than the AMCC solution. There are 48 logical quantum bits needed to handle this problem
instance, making it suitable for both quantum annealing at the current state of the art,
and the GPU-based implementation of the brute-force search for the low-energy spectrum
(ground state and subsequent excited state) [80], which is possible with up to 50 quantum
bits. The benefit of this possibility is that it provides an exact picture of the spectrum, which
can be used as a reference when evaluating the heuristic results of approximate methods
(tensor networks) or quantum annealing. This may guide the understanding of the results
of the bigger instances, in which the brute-force exact search is not available.

There are many possible distinct solutions in the case of line No. 191, making the
analysis more interesting from the dispatching point of view. We set dmax = 10: for a
justification, see Table 1, and observe that dmax is considerably larger than the AMCC
output. The dmax = 10 yields 198 logical quantum bits, which we were able to embed into
a present-day quantum annealer, the D-Wave device DW-2000Q5, in most cases.

Recall that current quantum annealing devices are imperfect and often output excited
states. The clue of our approach is that the excited states (e.g., returned by the quantum an-
nealer) still represent the optimal dispatching solutions, provided that their corresponding
energies are relatively small. The reason for this is that what really needs to be determined
is the order of trains leaving from each station block (i.e., this is the decision to be made).
What is crucial here is to determine all the meet-and-pass and the meet-and-overtake
situations (in analogy with the determination of all the precedence variables in the linear
integer programming approach). The exact time of leaving block sections is of secondary
importance. Therefore, we consider those excited states that describe the same order of
trains as the ground state to be equivalent to the actual ground state encoding the global
optimum. As discussed in Section 3.3, our QUBO formulation problem ensures that those
equivalent solutions are present in the low-energy spectrum.
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4.3.1. Exact Calculation of the Low-Energy Spectrum

To demonstrate the aforementioned idea, we first present the results of the brute-
force numerical calculations performed on a GPU architecture [80]. With this approach,
the spectra of the smallest instances have been calculated exactly, providing some guidance
for the understanding of the model behavior and parameter dependence, especially with
respect to the low-energy part of the spectrum. Note that the brute-force search is actually
an enumeration of all the possible configurations computed using a GPU. The method
is suitable for small (i.e., up to 50 quantum bits) but otherwise arbitrary systems. No
embedding is needed. To study (hard) penalties resulting from non-feasible solutions, apart
from ppair = psum = 1.75 in Equation (26), we use other higher penalties that are not equal
to each other, ppair = 2.7 and psum = 2.2.

Let us assume that the solution in Figure 3b is the optimal one. Here, the train IC3521
(w = 1.5) waits 3 min at block 3, while regional train R90602 (w = 1.0) waits 4 min
at block 5, causing 4 min of secondary delay upon leaving block 3. This adds 1.214 to
the objective. Concerning the feasibility terms in Equation (26), for a feasible solution
P′

sum = 0, while the linear constraint gives the negative offset to the energy. According to
Equation (25), as we have three trains for which we analyze two stations, this negative
offset is Psum = −3 · 2 · ppair. Based on the feasibility terms set out Equation (26), this yields
−10.5 for psum = 1.75 and −13.2 for psum = 2.2. This results in a ground-state energy of
f ′(x) = −9.286 and f ′(x) = −11.986, respectively. Finally, in the ground-state solution
shown in Figure 3b, the IC3521 train can leave the station block 1 with a secondary delay
of 0, 1, 2, or 3, not affecting any delays of the trains leaving block 3. All these situations
correspond to the ground state energy. Hence, our approach produces a 4-fold degeneracy
of the ground state.

Low-energy spectra of the solutions and their degeneracy are presented in Figure 4a,b.
All the solutions that are equivalent to the ground state from the dispatching point of view
are marked in green. Infeasible excited state solutions (in which some of the feasibility
conditions set out in Equation (26) are violated) are marked in red. In this example, we do
not have feasible solutions that are not optimal, i.e., in which the order of trains at a station
is different from the one in the ground-state solution.

In the case of line No. 191, a more detailed analysis of the low-energy spectra of the
solutions was possible due to the generality of the brute-force simulation. The results are
presented in Figure 4. We shall find later on that the D-Wave solutions were in the “green”
tail of feasible solutions, but the high degeneracy of higher-energy states may impose some
risk of the quantum annealing ending up in the more frequently appearing excited states
(see Figure 5).
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(a) (b)
Figure 4. Spectra of the low-energy solutions for two penalty strategies of the brute-force (exact) solu-
tion. The black line separates the phase in which only feasible solutions appear. Observe the mixing
phase, in which both feasible and unfeasible solutions occur. Here, ppair and psum are penalties of

the unconstrained problem expressed in the “logical” variables. The term psum =
(
∑i∈Vs

xi − 1
)2, cf.

Equation (24), ensures that each train leaves a station only once, whereas ppair = ∑(i,j)∈Vp
(xixj + xjxi),

cf. Equation (25), imposes the following: minimal passing time constrain, single block occupation
constrain, deadlock constrain, and rolling stock circulation constrain. (a) ppair = 2.7, psum = 2.2.
(b) ppair = psum = 1.75.
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Figure 5. Distribution of the energies corresponding to the states (solutions), which are sampled by
the D-Wave 2000Q quantum annealer of 48 logical quantum bits instance of line No. 216. In particular,
1000 samples were taken for each annealing time, and the strength of embedding was set to css = 2.0.
This device is still very noisy and prone to errors, so the sample contains excited states. (a) QUBO
param.: ppair = 2.7, psum = 2.2. (b) ppair = psum = 1.75.

4.3.2. Classical Algorithms for the Linear (Integer Programming) IP Model and QUBO

We expect classical algorithms for QUBOs to achieve the ground state of Equation (26)
or at least low excited states equivalent to the ground state with respect to the dispatching
problem. It is important to mention that hereafter, we embed the original QUBO into the
Chimera graph (see Section 2.3.1). This makes the algorithm ready for processing on a real
quantum annealer.

As to a simple example of the embedding, we refer to the problem with four quantum
bits that has been discussed in Section SIIIC of the Supplemental Materials. In that case,
the mapping was trivial. In a case of six quantum bits, for instance (by setting dmax = 2), we
will have additional terms in Equations (S41)–(S43) of the Supplemental Materials. Hence,
the larger problems cannot be directly mapped onto the Chimera graph, so the embedding
procedure is required, as illustrated in Figure 6. This illustrates the basic idea of how the
embedding is performed in even larger models.

As to the model parameters, recall that for the particular QUBO, we have opted for
ppair = psum = 1.75 or ppair = 2.2 psum = 2.7 for line No. 216 and ppair = psum = 1.75 for
line No. 191. Let us present the solutions of the two state-of-the-art numerical methods,
which we shall later compare with the experimental results obtained by running the D-Wave
2000Q quantum annealers.

The first solver is developed ‘in-house’ and is based on tensor network techniques [76].
The solver is designed to efficiently sample high-quality solutions of certain spin-glass
systems with the aim of solving hard optimization problems, and it has proven to be
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applicable in our case. The idea behind this solver is to represent the probability of finding
a given configuration by a quantum annealing processor as a PEPS tensor network. This
allows an efficient bound-and-branch strategy to be applied in order to find M � 2N

candidates for the low-energy states, where N is the number of physical quantum bits
on the Chimera graph. In principle, such a heuristic method should work well for rather
simple QUBO problems, i.e., those in which the Q matrix in Equation (4) has some identical
or zero terms; this corresponds to the so-called weak entanglement regime. It can be
shown that this is the case in our problem (see also the simple example of the Q matrix in
Equation (S44) of Supplemental Materials), which makes the algorithm applicable in the
present context. Furthermore, heuristic parameters such as the Boltzmann temperature
(β) can be provided, allowing one to zoom in on the low-energy spectrum depending
on the problem in question. We set β = 4, which is quite a typical setting, as discussed
in [76]. Although even better solutions may potentially be achieved by further tuning this
parameter, we demonstrated that this default setting is satisfactory from the dispatching
point of view. The second classical solver is CPLEX [86] (version 12.9.0.0). In our work, we
have used the DOcplex Mathematical Programming package (DOcplex.MP) for Python.
In what follows, “CPLEX” refers to the QUBO solver of this package.

Figure 6. Embedding of a simple, six-qubit problem. (Left) graph of the original problem. (Right)
problem embedded into a unit cell of Chimera. Here, different colors correspond to different logical
variables. Apparently, the original problem does not map directly onto Chimera as it contains cycles
of length 3. Therefore, two chains have to be introduced. Couplings corresponding to inner-chain
penalties are marked with the same color as the variable to which they correspond.

In order to have a fair comparison with a traditional approach, we have also for-
mulated our model as a linear integer program; this is described in Section SII of the
Supplemental Materials in detail. We have implemented the linear integer model with the
PuLP package [87] and solved with its default solver (CBC MILP Solver Version: 2.9.0).
All instances were solved to the optimal solution in 0.03 s on an average computer. This
was in line with our expectations, as our problems are small. Our goal is, however, not to
outperform either CPLEX or the standard linear solver but to demonstrate the applicability
of quantum hardware; at the present state of the art, we need the well-established solvers
to produce results for comparisons and reference.

Concerning the results of the other railway line (No. 191), the values of the objective
function in Equation (27) are given in Table 2. We also include the values of our objective
function for the FLFS, FCFS, and AMCC optimal solutions.

The agreement with the linear integer programming approach provides the argument
that the CPLEX results correspond to the ground state of the QUBO. We are interested in
the results being equivalent to those of CPLEX and the linear solver from the dispatching
point of view. These results are marked in blue in Table 2. The tensor network approach
yields equivalent solutions to those of CPLEX. However, the tensor network sometimes
returns excited states of the QUBO, as can be observed in case 3. The reason for this is
that the tensor network method is based on approximations. This demonstrates that even
some low-energy excited states encode a satisfactory solution. Interestingly, the results
of the AMCC are also equivalent to those CPLEX in cases 2, 3, and 4 but different from
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those in case 1. The reason is that the AMCC needs to have a specific objective function,
whereas in our approach, we can choose this function more flexibly. Specifically, in case 1,
the meet-and-pass situation of trains IC1 and Ks2 at station 10 yields the lowest maximum
secondary delay, so it is optimal from the AMCC point of view. (Note that two trains have
secondary delays: Ks2 and Ks3 in this case.) As discussed earlier, in this approach, Ks2 is
prioritized, as it is the train leaving the modeled network segment, and one of the goals is
to limit delays propagating further from this segment. The train diagrams based on the
CPLEX solutions are depicted in Figure S5 of the Supplemental Materials.

In case 3, observe that the objective function in Table 2 from the tensor network
solution differs from the minimum (yet the solution is still equivalent to the optimal one).
To explain this, observe that there are numerous possibilities of additional train delays that
do not affect the dispatching situation. An example of such a situation is a train having
its stopover extended at the station with no meet and pass or meet and overtake. Such a
situation increases the value of the objective but does not affect the optimal dispatching
solution. The number of combinations here is high, and this is why such extended stopovers
may be returned by the approximate algorithm. This is in contrast to the exact FCFS, FLFS,
and AMCC heuristics, which do not allow for such unnecessary delays; the exact heuristics
always return f (x) that is the minimum for the particular dispatching solution. In case 3,
the FCFS with f (x) = 0.95 does not give the optimal solution from the dispatching point of
view, as opposed to the tensor network with f (x) = 1.65.

Table 2. The values of the objective function f (x) for the solutions obtained by the classical calculation
of the QUBO, linear integer programming approach, and all the heuristics. The blue color denotes
equivalence from the dispatching point of view with the ground state of the QUBO or the output of
the linear integer programming. The equivalence concerns the same order of trains at each station.

Method Case 1 Case 2 Case 3 Case 4

QUBO approach
CPLEX 0.54 1.40 0.73 0.20

tensor network 0.54 1.40 1.65 0.29

linear integer programming 0.54 1.40 0.73 0.20

Simple heuristics
AMCC 0.77 1.30 0.73 0.20

FLFS 0.54 1.71 0.73 0.20

FCFS 0.77 1.30 0.95 0.20

4.3.3. Quantum Annealing on the D-Wave Machine

As described in Section 2.3.2, physical quantum annealers are probabilistic. In particu-
lar, as the required time to drive the system into its ground state is unknown, the output
is a sample of the low-energy spectrum from repeated annealing processes, hence it can
be regarded as a heuristic. The solution is thus assumed to be the element of this sample
with the lowest energy (in practice, these elements are not from the ground states but from
low excited states). The likelihood of obtaining solutions with a lower energy (or the actual
ground state) increases with the number of repetitions.

As already mentioned, qubits on the D-Wave’s chip are arranged into a Chimera
graph topology. Furthermore, some nodes and edges may be missing on the physical
device, making the topology different even from an ideal Chimera graph. This requires
minor embeddeding of the problem, mapping logical qubits onto physical ones. To this end,
multiple physical qubits are chained together to represent a single logical variable, which
increases their connectivity at the cost of the number of available qubits. Such embedding is
performed by introducing an additional penalty term that favors states in which the quantum
bits in each chain are aligned in the same direction. The multiplicative factor governing
this process is called the chain strength, and it should dominate all the coefficients present
in the original problem. (Note that we encounter yet another penalty term at this point.)
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In this work, we set this factor to the maximum absolute value of the coefficients of the
original problem multipled by a parameter that we call the chain strength scale (css). In our
experiment, css ranged from 2.0 to 9.0. Another parameter is the annealing time (ranging
from 5 to 2000 μs). This is the actual duration of the physical annealing process.

The data flow after performing the calculation on the quantum hardware is the fol-
lowing. The raw solution returned by the hardware consists of the configurations of
the physical spins or QUBO variables depending on the format of the submitted problem,
the corresponding energies, multiplicities, and other technical parameters. Therefore, the so-
lution has to be transformed to logical variables by reverting the embedding. The physical
variables representing the same logical one have equal values ideally; however, in reality,
a chain break can occur: some of them may have different values. These are resolved by
“majority voting”. The transformation between Ising and QUBO variables and the con-
version of the logical variables are all implemented in the software package supplied by
D-Wave (even though the raw data are also available), so having submitted the QUBO, one
obtains 0–1 solution vectors along with energies and multiplicities. From these, the conflict
free timetable can be decoded, as already shown in Section 3.

In Figure 7c,d, we present the energies of the best outcomes of the D-Wave machine
for line No. 216 and various annealing times. The green dots denote the feasible solutions
(and equivalent to the optimal solution), while the red dots denote solutions that are not
feasible. In general, the quality of a solution slightly improves with the annealing time;
however, in large examples, the best results are achieved for a time between 1000 and
2000 μs. This coincides with the observation in [58], in which quantum annealing on the
D-Wave machine was performed on various problems too, and it was demonstrated that for
a moderate problem size, the performance (in terms of the probability of success) improves
with an annealing time of up to 1000 μs. Hence, we have limited ourselves to the annealing
times of the order of magnitude of 1000 μs in analyzing larger examples.

(a) (b)

(c) (d)
Figure 7. Train diagrams of the best D-Wave solutions, the lowest energies of the quantum annealing
on the D-Wave machine (green: feasible, red: not feasible), and the optimal tensor network solution.
The raw computational time on the D-Wave (n.o. runs × annealing time) was in the range 5 × 10−3–
2 s. (a) The optimal solution from (c). (b) The optimal solution from (d). (c) ppair = 2.7, psum = 2.2.
(d) ppair = psum = 1.75.

Rather counterintuitively, setting lower penalty coefficients of psum = ppair = 1.75 for
the hard constraints resulted in samples containing more feasible solutions. For this reason,
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we had kept this penalty setting for the analysis of the larger case. The embedding strength
was set to css = 2 in this case, i.e., the lowest possible value. This has proven to be a good
choice, as demonstrated in Figure 8. The best D-Wave solutions are presented in the form
of train diagrams in Figure 7a,b.

The quality of the solutions in relation to the css strength in the various parameter
settings is presented in Figure 8. We observed that in our cases, the quality of the solution
degraded with an increase in css. This is unusual, as increasing the css strength typically
yields more solutions without broken chains that do not need to be post-processed to obtain
a feasible solution of the original problem. This may be caused by the fact that the large
coupling of the embedding may cause the constraints to appear as a small perturbation in
the physical QUBO. These perturbations, as discussed earlier, may be hidden in the noise
of the D-Wave 2000Q annealer.

(a) (b)
Figure 8. Line No. 216, with the minimal energy from the D-Wave quantum annealer, using 1000 runs.
Green dots indicates the feasible solutions, while the red dots denote the unfeasible ones. In general,
the energy rises as the css strength rises. We do not observe that the different settings of ppair and
psum improve the feasibility; see (a) The minimal energies vs. css for ppair = 2.2, psum = 2.7. (b) The
minimal energies vs. css for ppair = 1.75, psum = 1.75.

Hence, we set css = 2.0 (the lowest possible value) for the further investigations. Some
examples of the penalty and objective function values are presented in Table 3. Again, it
appears that the higher the values of psum and ppair, the higher the values of f (x). This may
be caused by the objective function being lost in the noise of the D-Wave 2000Q annealer.

For railway line No. 191, finding a feasible solution is more difficult. Hence, we
increased the number of samples to 250, 000. The results of the lowest energies and
penalties are presented in Figure 9. We had to skip case 3 because the higher number
of feasibility constraints prevented finding any embedding on a real Chimera. Interestingly,
recall that we found the embedding for the ideal Chimera while simulating the solution
(see Section 4.3.2). Hence, the failure in the case of the real graph is possibly due to the
lack of certain required connections or nodes from the real Chimera. Finding the feasible
solution in such a case (while having non-zero hard constraints penalties) is a problem for
further research. One would expect that increasing the ppair and psum parameters could
be helpful. However, it may aggravate the objective function to an ever greater extent.
In Figure 9b, the values of the objective function f (x) are much higher than the optimal
ones presented in Table 2.
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(a) (b)
Figure 9. Line No. 191, with the minimal energy from the D-Wave annealer at 250 k runs, css = 2.0,
and ppair = 1.75, psum = 1.75. The output does not dependent on the annealing time (in the
investigated range) and is still far from the ground state. The raw computational time on the D-
Wave (n.o. runs × annealing time) was in the range 200–350 s. (a) Best D-Wave solutions (these are
the lowest excited states we have recorded). Red dots indicate that the solutions are not feasible.
(b) Comparison of the objective and hard penalty for the D-Wave outcome and the optimal solution
calculated with CPLEX.

Table 3. Line No. 216, with the objective functions and penalties for violating the hard constraints:
see Equation (S39) of Supplemental Materials. Output from the D-Wave quantum annealer for the
annealing time of 2000 μs. If f ′(x) > 0, the solution is not feasible. The psum = ppair = 1.75 policy
gives lower objectives.

css psum, ppair Hard Constraints’ Penalty f ′(x) f (x)

2 1.75, 1.75 0.0 1.36

2 2.2, 2.7 0.0 1.57

4 1.75, 1.75 0.0 1.93

4 2.2, 2.7 2.2 2.07

6 1.75, 1.75 5.25 0.43

6 2.2, 2.7 6.6 0.86

Although the solutions are not feasible, we can still select the two in which only
one hard constraint is violated ( f ′(x) = 1.75); these are case 1 with an annealing time of
1400 μs and case 2 with an annealing time of 1200 μs. The train diagrams of these solutions
are presented in Figure 10. Note that both these diagrams can easily be modified by the
dispatcher to obtain a feasible solution. The case in Figure 10a can be amended by adding
the lacking 1-min stay of Ks3 in station 7. This solution would not be optimal, and thus, it
would be different from the optimal one obtainable with CPLEX, the tensor network solver,
or FLFS. It would also differ from the non-optimal yet feasible ones returned by FCFS and
AMCC. Similarly, the case in Figure 10b can be upgraded by shortening the stays of Ks3
and IC2 and letting them meet and pass at station 10. The so-obtained solution would
be optimal.

At this point, a comment on the degeneracy of the ground state is in order. Clearly,
in the instances related to the railway line 191, we are facing degenerate ground states.
The reason for this is that in our model in Equation (27), the delay is penalized in the
objective at the end of the trains’ routes. Hence, there are many possibilities for trains to
wait on various stations to meet the dispatching conditions. These choices lead to the same
ground-state energy. What quantum annealing provides is a sample of the low-energy
spectrum, possibly involving some of these ground states. In our case, however, the just
mentioned intuitive interpretation of the solution enables us to find a practically useful and
close-to-optimal solution.
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(a) (b)
Figure 10. The best solutions obtained from the D-Wave quantum annealer for line No. 191. For case 1
(a), the annealing time is t = 1400. The solution is unfeasible since the stay of Ks3 at station 7 is below
1 min. If the solution is corrected (i.e., the stay is introduced), it loses its optimailty and reflects a
dispatching situation different from those obtained from FCFS, FLFS, AMCC, CPLEX, or the tensor
network. For case 2 (b), t = 1200 is used. The solution is unfeasible as Ks3 does not stop at station 7;
hence, Ks3 and IC2 are supposed to meet and pass between stations 7 and 10. It can, however, be
amended to an optimal solution: shortening the stay of Ks3 at station 3 and shortening the stay of IC2
at station 7 (and 3 if necessary) result in a meet-and-pass situation at station 10, and this is optimal.
(a) Case 1. (b) Case 2.

The real D-Wave quantum annealing is tied to some parameters of both the particular
QUBO and the machine itself. In our experiments, we varied only the annealing time,
number of performed reads and the chain strength scale (css), leaving all other parameters
at their default values. We achieved the best results for a coupling constant css = 2.0 for the
small example in Figure 8a; the same observation was made for the large example. This
was not expected, as the coupling between quantum bits representing a single classical bit
was rather weak. Here, we probably took advantage of the possible variations within the
realization of a logical bit. This observation demonstrates that the embedding selection
may be meaningful in searching for the convergence toward proper solutions lying in the
low-energy part of the spectrum. For the small cases, we observed a feasible solution for
a relatively small number of samples (equal to 1 k). For the larger case, we increased the
number of samples to 250 k and still we did not reach any feasible solution. The conclusion
is that the impact of the noise amplifies strongly with the size of the problem. The conver-
gence of the best obtained solution toward the optimal one with the given sample size is
complex, and an in-depth statistical analysis that samples the annealer’s real distribution
is required.

As demonstrated in Figure 9b, in some cases, only a single hard constraint was violated.
This may suggest that we are near the region of feasible solutions. However, the objective
function values are still far from the optimal ones achieved by means of simulations (see
Table 2). To elucidate the interplay between penalties, we refer to Figure 10, in which the
solutions are not feasible but can be easily corrected by the dispatcher to obtain feasible
ones. In Figure 10b the corrected solution would be optimal, while in Figure 10a, it would
not be different from all the other achieved solutions. Hence, the current quantum annealer
would rather sample the excited part of the QUBO spectrum, which can lead to unusual
solutions. Such solutions, however, can be still be used by the dispatcher for some particular
reason not encoded directly in the model. Such reasons include unexpected dispatching
problems, rolling stock emergency, and non-standard requirements.

Let us also mention the characteristics of our QUBO problems as they are important
features from the point of view of quantum methods. Table 4 summarizes the problem
sizes and the densities of edges in the case of each problem instance.
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Table 4. Graph densities for various problems. Since case 3 is supposed to be the most complicated
one of cases 1–4, it has the largest graph density , #—number of.

Features
Line 216 Line 191

Case 1 Case 2 Case 3 Case 4 Enlarged

problem size
(# logical bits) 48 198 198 198 198 594

# edges 395 1851 2038 2180 1831 5552

density
(vs. full graph) 0.35 0.095 0.104 0.111 0.094 0.032

embedding into Chimera Chimera Chimera Ideal
Chimera Chimera Pegasus

approximate
# physical bits 373 <2048 <2048 ≈ 2048 <2048 <5760

4.4. Initial Studies on the D-Wave Advantage Machine

During the preparation of the present paper, a new quantum device, the D-Wave’s
Advantage_system1.1 system (with an underlying topology code-named Pegasus [11]),
became commercially available. Hence, we performed preliminary experiments with this
new architecture to address a slightly larger example. To that end, we expanded our initial
Goleszów–Wisła Uzdrowisko (line No. 191) problem instance to be 3 times bigger in size.
Furthermore, we investigated nine trains in each direction.

The conflicts were introduced by assuming delays of 20, 25, or 30 min of certain trains
entering block Section 1. The control parameters’ values psum = ppair = 1.75 and css = 2
were not changed. As a result, the problem was mapped onto a QUBO with 594 variables
and 5552 connections. The physical topology of the new system is different from that of
its predecessor, so a different embedding was needed. This did not have any fundamental
implications in our case; hence, we do not discuss its details here. Employing a strategy
similar to the one used for our other calculations, we used the solution found by CPLEX as
a reference for comparisons.

After performing 25 k runs, we reached a minimal energy of +75.28 with an annealing
time of 1400 μs (the raw computational time on the D-Wave machine was 35 s). Unfortu-
nately, this is not a feasible solution. The CPLEX calculations, on the other hand, resulted
in an energy of −92.43 with an objective function value f (x) = 2.07 (see Figure 11). This is
the same solution as the solution of the linear solver obtained using COIN-OR in 0.02 s.
This solution is substantially better, and as it coincides with the linear solver’s output,
it corresponds to the ground state. Our preliminary experiments indicate the need for a
more detailed investigation of the new device’s behavior (and that of the current model)
to determine whether obtaining solutions with the desired (better) quality is possible. A
part of this problem will likely be eliminated simply by the technological development
of the new annealer. For an intuitive justification, we refer to [78] and Figure 1 therein,
in which an improvement in the performance between subsequent iterations within one
generation of Chimera-based quantum annealers was observed. As discussed in Section 3.2,
the number of logical bits (variables) and number of edges (quadratic terms) scales roughly
as number of trains · (number of stations − 1) for constant dmax. Using this approximation,
and referring to ref Table 4, for twice as many trains as in Figure 11 (roughly whole day of
operation), we would have approximately 1200 logical bits and 11,000 edges. If we further
enlarge the problem to the whole branch line (n.o. 157, 190, and 191) with eight stations,
there would be approximately 2800 logical bits and 26000 edges.
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Figure 11. The CPLEX QUBO solution, coinciding with the linear model’s solution of the 18-train
problem.

5. Discussion and Conclusions

The NISQ era [10] is here. Early generations of quantum computing hardware have
become available that may serve as a stepping stone for the development of practically
useful technologies that exhibit genuine quantum advantage. However, until such “real”
quantum computers are available, it is imperative to demonstrate how and which real-
world applications are amendable to be solved on quantum computing hardware. To this
end, we have introduced a new approach to the single-track line dispatching problem that
can be implemented on a real quantum annealing device (D-Wave 2000Q). Namely, we have
addressed two particular real-life railway dispatching problems in Poland; many similar
examples exist in other networks, too. Specifically, we have introduced a QUBO model
of the problem that can be solved with quantum annealing, and we have benchmarked it
against classical algorithms.

The first dispatching problem we considered (the Nidzica–Olsztynek section of line
No. 216) was particularly small, and it was defined using only 48 logical quantum bits
(which we were able to embed into 373 physical quantum bits of a real quantum processor).
The final state reached by the quantum annealer for this problem was optimal for many
parameter settings. This highlights that small-sized dispatching problems are already
within reach of near-term quantum annealers. In addition, the limited size of the problem
made it possible to analyze the QUBO with a greedy brute-force search algorithm, which
revealed details of the behavior of the spectrum that cannot be exactly calculated for
bigger instances.

Our second set of dispatching problems (the Goleszów–Wisła Uzdrowisko section of
line No. 191) was larger and needed 198 logical quantum bits. Here, the number of physical
quantum bits depends on the number of constraints in each of the analyzed cases. We were
able to embed all four dispatching cases of the No. 191 railway line into an ideal Chimera
graph (2048 physical quantum bits) using a state-of-the-art embedding algorithm. We
succeeded in solving these instances with classical solvers for QUBOs. Meanwhile, on the
physical device (whose graph is not perfect and lacks several quantum bits and couplings),
we were able to embed only three out of the four cases (case 3, with the highest number of
conflicts, could not be embedded). We expect that such obstacles will become less restrictive
as new embedding algorithms are being developed for both the current Chimera topology
and the newest D-Wave Pegasus; see [88,89]. Therefore, it is not unreasonable to expect
that the range of problems that can be embedded so that they can be solved on physical
hardware will substantially increase in the near future. Unfortunately, the D-Wave 2000Q
solutions of our second problem appeared to be far from optimal. This is attributable to the
noise that is still present in the current quantum machine.
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We have successfully solved our model using several algorithms for QUBOs running
on classical computers, notably the novel tensor network method. This introduces addi-
tional possibilities, namely, that of QUBO modeling and the use of quantum-motivated
classical algorithms. Although these possibilities obviously do not promise a breakthrough
in scalability, they are essential for the validation and assessment of the results of real
quantum annealing. In addition, they can yield practically useful results.In fact, hybrid
quantum-classical computing is a promising avenue of research, which has recently seen
significant development [90,91].

We are aware that the examples of the single-track railway dispatching problem
discussed in the paper can be regarded as trivial from the point of view of professional
dispatchers. This is also reflected by the efficiency of the conventional linear solver they
may use. Our intention, however, was to provide a proof-of-concept demonstration of the
applicability of quantum annealing in this field. This goal has been achieved: we have
described a suitable model and succeeded in solving certain instances.

Due to the small size of the current quantum annealing processors, our implementation
is limited: quantum annealing is an emerging technology. Owing to the significant efforts
put into the development of quantum annealers, the addressable problem sizes are about
to increase, and the quality of the samples will also improve. With the development of
the technology, it is not far-fetched to realize that at some point, soon quantum annealers
will be able to compete with or even outperform classical solvers. In particular, hybrid
quantum-classical algorithms applied to the here presented type of model may even reach
the size and complexity of the limitations of the state-of-the-art classical algorithms.
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Abstract: The K-nearest neighbor (KNN) algorithm is one of the most extensively used classification
algorithms, while its high time complexity limits its performance in the era of big data. The quantum
K-nearest neighbor (QKNN) algorithm can handle the above problem with satisfactory efficiency;
however, its accuracy is sacrificed when directly applying the traditional similarity measure based
on Euclidean distance. Inspired by the Polar coordinate system and the quantum property, this
work proposes a new similarity measure to replace the Euclidean distance, which is defined as Polar
distance. Polar distance considers both angular and module length information, introducing a weight
parameter adjusted to the specific application data. To validate the efficiency of Polar distance, we
conducted various experiments using several typical datasets. For the conventional KNN algorithm,
the accuracy performance is comparable when using Polar distance for similarity measurement, while
for the QKNN algorithm, it significantly outperforms the Euclidean distance in terms of classification
accuracy. Furthermore, the Polar distance shows scalability and robustness superior to the Euclidean
distance, providing an opportunity for the large-scale application of QKNN in practice.

Keywords: quantum computation; quantum machine learning; K-nearest neighbor algorithm;
quantum K-nearest neighbor algorithm

1. Introduction

Machine learning has made remarkable achievements in various artificial intelligence
applications, such as object detection [1–4], image classification [5–8], and natural language
processing [9–11]. However, in the era of big data, we are facing the problem of rapid
growth in the amount and type of data. We urgently need to find more high-efficiency
computing methods. The quantum system with natural parallelism looks like a good choice.
With the in-depth study of quantum technology, many quantum algorithms showing
quantum superiority have been proposed [12–15]. Researchers found that quantum and
machine learning algorithms can be combined to improve the performance of the algorithm.
The concept of quantum machine learning was born [16,17]. Many quantum machine
learning algorithms [18–22] are significantly better than their classical counterparts. In this
context, a KNN algorithm with a simple idea but high time complexity has attracted
the interest of researchers. It requires little to no prior knowledge when classifying [23].
Similarity calculation and K-nearest neighbors search are two important parts of KNN.
In recent years, many quantum methods for these two processes have been proposed.
In 2001, Harry Buhrman et al. proposed the swap test quantum circuit for calculating the
cosine distance of two vectors [24]. In 2013, Lloyd et al. proposed a quantum Euclidean
distance estimator based on the swap test circuit [25]. Based on this, Wiebe et al. proposed
a quantum nearest neighbor algorithm [26] in 2014 and used Dürr and Høyer’s algorithm
for finding the minimum value in a database [27] to find the nearest neighbor. For non-
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numerical data, a quantum K-nearest neighbor algorithm based on Hamming distance is
proposed [28,29].

The similarity measure, which affects the accuracy of the algorithm classification, lies
at the heart of the K-nearest neighbor algorithm [30]. A similarity measure is used to
measure how similar two things are [31]. To date, many similarity measures have been pro-
posed, such as Euclidean distance, cosine distance, Hamming distance, and so on. However,
there is no one similarity distance measure that can best solve all problems [31]. Choos-
ing an appropriate similarity measure will significantly improve the K-nearest neighbor
algorithm’s classification accuracy. The Euclidean distance is the most frequently applied
similarity measure. However, the result of the quantum Euclidean distance estimator has
poor stability, and there is a significant difference with the actual result [32]. Therefore, we
need to find a new similarity measure to replace the use of Euclidean distance in QKNN.

In machine learning, a sample is usually regarded as a vector with both magnitude and
direction. Inspired by this, in addition to using Cartesian coordinates, we can also use Polar
coordinates to represent a sample. So, we propose a new similarity measure that we call
Polar distance, which considers both angular and module length information. The cosine
theorem shows that the Euclidean distance is a combination of angular and module length
information. The Polar distance introduces an adjustable parameter to adjust the ratio
of angular and module length information according to the specific application. Then,
we propose a quantum circuit to calculate the Polar distance. The frame diagram of the
quantum part of the QKNN algorithm is shown in Figure 1. We optimize Figure 1b in this
work. The following is a list of our major contributions:

(1) We propose a new similarity measure, called Polar distance, which integrates both an-
gular and module length information and combines the two proportionally according
to practical applications. Its classification accuracy in KNN is comparable to that of
Euclidean distance;

(2) We design a quantum circuit to calculate the Polar distance. Compared with the
quantum Euclidean distance estimator, it can directly obtain the desired results and
has less difference with the classical results;

(3) We carry out KNN and QKNN(quantum simulation) experiments on different datasets.
The KNN’s experimental results show that Polar distance is comparable to Euclidean
distance in classification accuracy. The QKNN’s experimental results show that Polar
distance is better than Euclidean distance in classification accuracy.

Figure 1. Frame diagram of quantum part of QKNN algorithm: (a) initialize any quantum state circuit,
where α is the calculated parameter based on the quantum state vector representation; (b) quantum cir-
cuit for calculating Polar distance, where |ψx〉 represents the test sample and |ψv〉(|ψv〉 = |vi〉|i〉|dri 〉)
represents the entangled superposition state of the module length similarity and the training set;
(c) amplitude estimation circuit diagram.
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2. Materials and Methods

2.1. KNN

K-nearest neighbor algorithm is a supervised machine learning algorithm [23]. Its
general idea is: if most of the K-nearest samples to a sample belong to a given category in
the feature space, then the sample belongs to that category as well. The whole process of
KNN is shown in Algorithm 1. Its main steps are as follows: first, calculate the similarity
between the test sample and all training samples; then find the k training samples that
are most like the test sample; finally, according to the category of k training samples,
the category of the test sample is determined according to the principle that the minority
obeys the majority. For example, as shown in Figure 2, the question mark represents the
unknown test sample, and the red circle and blue cross denote two categories of training
samples. At k = 1, the category of the question mark is consistent with the red circle category.
When k = 5, the category of the question mark is consistent with the blue cross category.
Obviously, the classification results will be affected by k value. Furthermore, similarity
measure is another factor influencing the results of classification.

Algorithm 1 KNN

Input: A test sample and some training samples
Output: The test sample’s category

1: for number of training samples do do
2: calculate the similarity between the test sample and a training sample
3: end for
4: find the k training samples that are most like the test sample
5: determine test sample’s category

Figure 2. Schematic of the KNN algorithm.

2.2. QKNN

The quantum K-nearest neighbor algorithm is consistent with the overall idea of the
classical K-nearest neighbor algorithm. Quantum K-nearest neighbor algorithm quantizes
the part of K-nearest neighbor algorithm with high time complexity. It uses the natu-
ral parallelism of quantum computing to reduce the time complexity of the algorithm.
As shown in Figure 1, the quantum part of the quantum K-nearest neighbor proposed in
this paper consists of four parts: Initialize, Compute Similarity, Amplitude Estimation,
and Search K-Nearest Neighbors. Finally, the test sample category is determined by the
classical method. We describe these five parts in detail later.
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2.2.1. Initialize

In order to process classical data using the quantum system, we need to encode
classical data into quantum state. At present, there are many methods to encode classical
data into quantum states [33–35]. The coding methods can be divided into two categories:
using the amplitude of the quantum state to encode information and directly using the
quantum state to encode information. Amplitude coding is one of the common coding
methods in quantum machine learning algorithms [36]. In this paper, we also use amplitude
coding. Its main idea is to use the amplitude of quantum states to represent classical data.
In order to represent the classical vector by amplitude, we must first normalize the vector
so that the vector module length is 1. After that, we should ensure that the dimension of
the vector is 2n, and n is the number of qubits required to encode the vector. When the
vector does not meet this condition, it is completed by supplementing 0. Take vector�a as
an example.

�a = (a0, a1, . . . , a2n−1) (1)

Its quantum representation is as follows:

|ψa〉 =
2n−1

∑
i=0

ai√
|a0|2 + |a1|2 + . . . + |a2n−1|2

|i〉 (2)

Then, we need to initialize the register of n qubits as |ψa〉. The initial state is |0 . . . 0〉, we start
from the high position, and the quantum circuit is shown in Figure 1a. The Ry represents
single-qubit rotation about the Y-axis, the solid point represents 1 control, and the hollow
point represents 0 control.

2.2.2. Compute Similarity

Inspired by Polar coordinates, we propose a parametric similarity measure that com-
bines cosine similarity and module length similarity, which we call Polar distance.

d = dc · (1 − ω) + dr · ω (3)

Among them, dc and dr represent cosine similarity and module length similarity, respec-
tively, ω represents an adjustable parameter, and the value range of the three is [0, 1]. As d
increases, the similarity between the two samples is stronger, otherwise this similarity
becomes weaker. We can adjust the value of ω to improve the classification accuracy
according to the actual application. The formula for calculating the cosine similarity is as
follows (θ represents the angle between two vectors):

dc = 0.5 · (1 + cos2θ) (4)

The formula for calculating the module length similarity is as follows:

dr = 1 − |rx − rv| (5)

where rx refers to the module length of the test sample and rv represents the module length
of the training sample. The closer the dr value is to 1, the greater the similarity between
the two samples, and the closer the dr value is to 0, the smaller the similarity between the
two samples.

As shown in Figure 1b, the similarity calculation is divided into two steps: first,
the swap test circuit is applied to calculate the cosine similarity [24], and then the weighted
summation circuit proposed by us is used to realize the weighted summation of the cosine
similarity and the module length similarity.
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Next, we take the calculation of the similarity between two samples x and v as an
example to introduce the calculation process in detail. The initial state of the quantum
system is:

|s0〉 = |0〉|x〉|v〉(
√

1 − dr|0〉+
√

dr|1〉)(
√

1 − ω|0〉+
√

ω|1〉)|0〉 (6)

First of all, after a Hadamard gate is utilized, the state of the quantum system becomes:

|s1〉 = |+〉|x〉|v〉(
√

1 − dr|0〉+
√

dr|1〉)(
√

1 − ω|0〉+
√

ω|1〉)|0〉 (7)

Then, after the usage of CSWAP gate, the state of the quantum system transforms into:

|s2〉 =
1√
2
(|0〉|x〉|v〉+ |1〉|v〉|x〉)(

√
1 − dr|0〉+

√
dr|1〉)(

√
1 − ω|0〉+

√
ω|1〉)|0〉 (8)

At the third stage, another Hadamard gate is applied. The state of the quantum system is
given as:

|s3〉 =
1
2
(|0〉|x〉|v〉+ |1〉|x〉|v〉+ |0〉|v〉|x〉 − |1〉|v〉|x〉)

(
√

1 − dr|0〉+
√

dr|1〉)(
√

1 − ω|0〉+
√

ω|1〉)|0〉
(9)

At the fourth stage, the extended general Toffoli gate is applied, and the state of the
quantum system reads:

|s4〉 =
1
2
|0〉|x〉|v〉(

√
1 − dr|0〉+

√
dr|1〉)(

√
1 − ω|0〉|1〉+

√
ω|1〉|0〉)

+
1
2
|1〉|x〉|v〉(

√
1 − dr|0〉+

√
dr|1〉)(

√
1 − ω|0〉|0〉+

√
ω|1〉|0〉)

+
1
2
|0〉|v〉|x〉(

√
1 − dr|0〉+

√
dr|1〉)(

√
1 − ω|0〉|1〉+

√
ω|1〉|0〉)

+
1
2
|1〉|v〉|x〉(

√
1 − dr|0〉+

√
dr|1〉)(

√
1 − ω|0〉|0〉+

√
ω|1〉|0〉)

(10)

At the fifth stage, the Toffoli gate is applied, and the state of the quantum system becomes:

|s5〉 =
1
2
|0〉|x〉|v〉

√
1 − dr|0〉

√
1 − ω|0〉|1〉+ 1

2
|0〉|x〉|v〉

√
1 − dr|0〉

√
ω|1〉|0〉

+
1
2
|0〉|x〉|v〉

√
dr|1〉

√
1 − ω|0〉|1〉+ 1

2
|0〉|x〉|v〉

√
dr|1〉

√
ω|1〉|1〉

+
1
2
|1〉|x〉|v〉

√
1 − dr|0〉

√
1 − ω|0〉|0〉+ 1

2
|1〉|x〉|v〉

√
1 − dr|0〉

√
ω|1〉|0〉

+
1
2
|1〉|x〉|v〉

√
dr|1〉

√
1 − ω|0〉|0〉+ 1

2
|1〉|x〉|v〉

√
dr|1〉

√
ω|1〉|1〉

+
1
2
|0〉|v〉|x〉

√
1 − dr|0〉

√
1 − ω|0〉|1〉+ 1

2
|0〉|v〉|x〉

√
1 − dr|0〉

√
ω|1〉|0〉

+
1
2
|0〉|v〉|x〉

√
dr|1〉

√
1 − ω|0〉|1〉+ 1

2
|0〉|v〉|x〉

√
dr|1〉

√
ω|1〉|1〉

− 1
2
|1〉|v〉|x〉

√
1 − dr|0〉

√
1 − ω|0〉|0〉 − 1

2
|1〉|v〉|x〉

√
1 − dr|0〉

√
ω|1〉|0〉

− 1
2
|1〉|v〉|x〉

√
dr|1〉

√
1 − ω|0〉|0〉 − 1

2
|1〉|v〉|x〉

√
dr|1〉

√
ω|1〉|1〉

(11)

Finally, the last qubit is measured. The probability of getting state |1〉, which measures the
last qubit with the basis state |1〉, is given by:

p(|1〉) =
(1

2
+

1
2
|〈x|v〉|2

)
(1 − ω) + drω (12)
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2.2.3. Amplitude Estimation

There are two methods to obtain the results of similarity calculation of quantum
circuits. The first method is to obtain statistical results through multiple measurements.
The disadvantage of this method is that it cannot determine the accuracy of the results.
The other method is to use an amplitude estimation algorithm [37]. Amplitude estimation
can control the accuracy of the results by adjusting the number of qubits. In addition, the use
of amplitude estimation is more convenient for subsequent quantum steps. So, we use
amplitude estimation. In this article, we only introduce the usage of amplitude estimation.
For more details, please refer to [37]. The function of amplitude estimation is to calculate
the value of a in Equation (13). The circuit of amplitude estimation is shown in Figure 1c.
The first step is to initialize the two registers with status |0〉A|0〉. The second step is to
apply QFT to the first register. The third step is to apply a controlled Qj(Q = −AS0 A−1SX).
The fourth step is to apply QFT−1 to the first register. The fifth step is to measure the first
register and denote the outcome |y〉. Finally, calculate the amplitude a = sin(π y

2t ). We
can control the precision of the result by adjusting the number of qubits t. The higher the
value of t, the higher the precision of the result. On the contrary, the lower the precision.
The functions of unitary operators A, S0 and SX are as follows:

A|0〉 = a|ψ〉+
√

1 − a2|ψ⊥〉 (13)

S0 = I − 2|0〉〈0| (14)

SX = I − 2|ψ〉〈ψ| (15)

In order to apply the quantum algorithm for finding the K-nearest neighbors, we need to
make the amplitude estimation step reversible. Wiebe et al. call this form of amplitude
estimation coherent amplitude estimation [26]. This results in a state that is, up to local
isometries, approximately

1√
M

M

∑
j=0

|j〉||x − vj|〉 (16)

2.2.4. Search K-Nearest Neighbors

Searching K-nearest neighbors is a part of a KNN with high time complexity. The ap-
pearance of the Grover algorithm opens up a new idea for the unordered search prob-
lem [12]. Dürr proposed a quantum algorithm [38] for finding k-minimum values in 2004.
Miyamoto proposed a quantum algorithm to find K-minimum values with another idea in
2019 [39]. Both their algorithms are capable of finding k-minimum values in M data with a
time complexity of O(

√
kM). Miyamoto’s algorithm is simpler and easier to implement.

Here, we will present their method. He introduced a parameter t, which is used to find out
k values that are less than t. The quantum algorithm for finding k-Minima is summarized
as follows:

(1) Apply algorithm [27] for finding minimum and record the last k indexes of finding
minimum algorithm process;

(2) Use binary search to find the minimum algorithm record of the threshold index t that
meets the condition that the number less than t is close to k. The quantum counting
algorithm is used to determine whether the condition is satisfied;

(3) Apply Grover algorithm to search k values that are less than t.

According to [29], the time complexity of the first step is O(
√

M). The second step
combines the quantum counting algorithm with the classical binary search. Its time com-
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plexity is O(
√

Mlogk). Finally, the time complexity of searching K indexes is O(
√

kM).
To sum up, the overall time complexity of the algorithm is given as:

(
√

M) + O(
√

Mlogk) + O(
√

kM) = O(
√

kM) (17)

2.2.5. Determine Category

Finally, we determine the category of the test sample according to the k most similar
training samples. Suppose the number of each category in the k most similar training
samples is ki. The category of test samples is consistent with the index of max(ki). However,
in practical application, max(ki) = ka = kb(a �= b) may take place, which makes it
impossible to determine the type of the test sample. In this paper, once the onset of above
issue, we make k = k + 1 until we can determine the category of the test sample.

3. Results

In this section, we first demonstrate theoretically that the Polar distance can be used
as a measure of sample similarity. We then compare the performance of Polar distance and
Euclidean distance in KNN on the Iris, Wine, Liver, and Overflow Vulnerability datasets.
Finally, we compared the performance of Polar distance and Euclidean distance in QKNN
on the same dataset. The accuracy of all experiments is the average of 30 10-fold cross-
validations.

3.1. A New Similarity Distance Measure

Similarity measure is a metric for comparing the similarity of two samples. When
comparing two samples, distance is usually used to determine their similarity. In this paper,
we proposed a new similarity distance measure called Polar distance that considers both
the information of angle and module length by combining them into a weighted value.
In general, distance should meet the following three properties: non-negativity, symmetry,
and trigonometric inequality. Derived by cosine similarity, the angle can be used as an
index to measure the similarity. Here, we prove that module length can be used as an
indicator for similarity measurement from the three properties of distance above. In this
work, we define the module length distance of two samples A and B as:

|rA − rB| (18)

The first is non-negativity and symmetry. Obviously,

|rA − rB| ≥ 0 (19)

|rA − rB| = |rB − rA| (20)

Finally, it is proved that it satisfies the trigonometric inequality. Considering any three
samples, such as A, B, and C, it is necessary to prove

|rA − rB|+ |rA − rC| ≥ |rB − rA + rA − rC| = |rB − rC| (21)

Obviously, it satisfies the trigonometric inequality. Module length distance can be used as
an indicator to measure similarity. In order to combine the angle and module length as
indicators to measure similarity, we define the new similarity measurement method as the
following form:

d = 0.5 · (1 + cos2θ) · (1 − ω) + (1 − |rA − rB|) · ω (22)

where module length rA and rB are scaled so that their value range is [0, 1]. The ω
values in this paper were determined using cross-validation. Specifically, the value of
k under Euclidean distance is first determined using cross-validation. The value of k is
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then held constant, and we determine the parameter ω for the Polar distance using the
cross-validation method.

3.2. Polar Distance and Euclidean Distance in KNN

To verify that the Polar distance can replace the Euclidean distance in KNN, we
first tested the classification accuracy of two similarity distance measures in KNN under
different datasets. Iris and Wine are datasets with three classes. Overflow Vulnerability
and Liver are datasets with two classes. There is not much difference in the classification
accuracy of the two similarity distance measures, as shown in Figures 3–6. Table 1’s KNN
column shows that the difference between the two similarity distance measures is still
small in the best shape of the classification accuracy. Therefore, we consider that the two
similarity distance measures are approximately equivalent in KNN.

Figure 3. Classification accuracy corresponding to Polar distance and Euclidean distance in KNN
and QKNN on the Iris dataset.

Figure 4. Classification accuracy corresponding to Polar distance and Euclidean distance in KNN
and QKNN on the Wine dataset.
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Figure 5. Classification accuracy corresponding to Polar distance and Euclidean distance in KNN
and QKNN on the Overflow Vulnerability dataset.

Figure 6. Classification accuracy corresponding to Polar distance and Euclidean distance in KNN
and QKNN on the Liver dataset.

Table 1. Classification accuracy corresponding to Polar distance and Euclidean distance in KNN and
QKNN on four datasets.

Datasets
KNN QKNN

Polar Distance Euclidean Distance Polar Distance Euclidean Distance

Iris 96.27% 96.33% 95.82% 86.02%
Wine 96.44% 97.17% 95.86% 94.21%
Overflow 89.65% 88.54% 89.19% 87.06%
Liver 65.90% 64.48% 63.42% 47.33%

3.3. Polar Distance and Euclidean Distance in QKNN

To validate that the Polar distance can replace the Euclidean distance in QKNN, we
make similar experiments as above. As shown in Figures 3–6, we can easily see that the gap
between the Polar distance and quantum Polar distance is significantly smaller than the
gap between the Euclidean distance and quantum Euclidean distance. From the results in
the QKNN column of Table 1, the Polar distance we proposed is better than the Euclidean
distance in classification accuracy. For the dataset of Iris, the accuracy of Polar distance
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is 95.82%, achieving a 9.8% accuracy gain against Euclidean distance. For the dataset of
Wine, the accuracy of Polar distance is 95.86%, achieving a 1.65% accuracy gain against
Euclidean distance. For the dataset of Liver, the accuracy of Polar distance is 89.19%,
achieving a 2.13% accuracy gain against Euclidean distance. For the dataset of Overflow
Vulnerability, the accuracy of Polar distance is 63.42%, achieving a 16.09% accuracy gain
against Euclidean distance. It is well known that there are deviations between quantum
results and theoretical values. Although our QKNN experiments are performed by a
quantum simulator, this deviation still exists due to Monte Carlo sampling. So why is the
deviation from the quantum Euclidean distance greater? This starts with the calculation of
the quantum Euclidean distance [32]. The formula for calculating the quantum Euclidean
distance is as follows:

d =
√

2 ∗ (r2
1 + r2

2) ∗ (2 ∗ p(|0〉)− 1) (23)

Assume that the error of the quantum measurement result is δ. Obviously the error of the
quantum Polar distance is δ. The errors in the quantum Euclidean data are as follows:

| � d|
d

=
2δp√

2p − 1 ∗ (
√

2p − 1 +
√

2 ∗ (1 ± δ)p − 1)
(24)

The error of the quantum Euclidean distance is |�d|
d = 2p√

2p−1∗(
√

2p−1+
√

2∗(1±δ)p−1)
(the

value of the equation is 1 to +∞ since p ∈ [0.5, 1]) times that of the quantum Polar distance.
The classical part of the quantum Euclidean distance estimator amplifies the error in
the quantum part, so the results differ significantly from the true results. This leads to
less satisfactory results for the quantum K-nearest neighbor (QKNN) algorithm based on
Euclidean distance.

4. Discussion

In this paper, we proposed a new similarity distance measure to replace the Euclidean
distance for use in QKNN. We call it Polar distance. From the experimental results, the Polar
distance can achieve the following results in terms of classification accuracy:

(1) The Polar and Euclidean distances are comparable in KNN;
(2) The Polar distances are comparable in KNN and QKNN;
(3) The Polar distances perform significantly better than the Euclidean distances in QKNN.

However, the disadvantage of the Polar distance is also obvious, namely the intro-
duction of a new parameter ω. This not only increases the computational complexity but
also makes Polar distance only applicable in supervised machine learning algorithms. We
can try to find the right value of ω quickly by using gradient descent. Experiments have
shown that the value of ω is not the same under different datasets. We can also delve into
the relationship between the value of ω and the distribution of samples in the dataset to
address the above problems. This is worthy of further study.

Author Contributions: Conceptualization, Z.S. and C.F.; methodology, C.F.; software, X.Z.; vali-
dation, C.F., B.Z. and X.D.; formal analysis, B.Z.; investigation, X.D.; resources, Z.S.; data curation,
X.Z.; writing—original draft preparation, C.F.; writing—review and editing, B.Z.; visualization, X.Z.;
supervision, Z.S.; project administration, Z.S.; funding acquisition, B.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: Major Science and Technology Projects in Henan Province, China: 221100210600.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support thefindings of this study are available from the
corresponding author upon reasonable request.

337



Entropy 2023, 25, 127

Acknowledgments: We appreciate the support of the Nature Science Foundation of China (62006210,
62001284). In addition, we acknowledge the use of Origin Quantum services for this work. The views
expressed are those of the authors and do not reflect the official policy or position of Origin Quantum
or any other quantum team.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

KNN K-nearest neighbor
QKNN Quantum K-nearest neighbor

References

1. Lin, T.-Y.; Dlloar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

2. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]

3. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

4. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241.

5. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 6, 1097–1105. [CrossRef]

6. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

7. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large scale image recognition. In Proceedings of the
International Conference on Learning Representations, San Diego, NV, USA, 7–9 May 2015.

8. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

9. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based natural language processing. IEEE Comput.
Intell. Mag. 2018, 13, 55–75. [CrossRef]

10. Sak, H.; Senior, A.W.; Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic
moduleling. In Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association,
Singapore, 14–18 September 2014.

11. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Lukasz, K.; Polosukhin, I. Attention is all you need. In
Proceedings of the 30th Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December
2017; pp. 6000–6010.

12. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM
symposium on Theory of Computing, STOC ’96, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [CrossRef]

13. Shor, P. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Rev. 1999,
41, 303–332. [CrossRef]

14. Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 2009, 103 150502.
[CrossRef]

15. Jordan, S. The Quantum Algorithm Zoo. Available online: http://math.nist.gov/quantum/zoo/ (accessed on 1 May 2022).
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Abstract: Entanglement-assisted quantum-error-correcting (EAQEC) codes are quantum codes which
use entanglement as a resource. These codes can provide better error correction than the (entangle-
ment unassisted) codes derived from the traditional stabilizer formalism. In this paper, we provide a
general method to construct EAQEC codes from cyclic codes. Afterwards, the method is applied to
Reed–Solomon codes, BCH codes, and general cyclic codes. We use the Euclidean and Hermitian
construction of EAQEC codes. Three families have been created: two families of EAQEC codes are
maximal distance separable (MDS), and one is almost MDS or almost near MDS. The comparison of
the codes in this paper is mostly based on the quantum Singleton bound.

Keywords: quantum codes; Reed–Solomon codes; BCH codes; maximal distance separable; maximal
entanglement

1. Introduction

Practical implementations of most quantum communication schemes and quantum
computers will only be possible if such systems incorporate quantum-error-correcting codes.
Quantum error correcting codes restore quantum states from corrupted by unwanted noisy
action. One of the most known and used methods to create quantum codes from classical
block codes is the CSS method [1]. Unfortunately, it requires (Euclidean or Hermitian)
duality containing to one of the classical codes used. One way to overcome this constraint
is via entanglement shared beforehand by the communicating parties. It is possible to show
that such entanglement-assisted construction also improves the error-correction capability
of quantum codes. These codes are called entanglement-assisted quantum error-correcting
(EAQEC) codes. The first proposals of EAQEC codes were presented by Bowen [2] and
Fattal et al. [3]. Then, Brun et al. [4] have developed an entanglement-assisted stabilizer
formalism for these codes, which was recently generalized by Galindo et al. [5].

This formalism has created a method to construct EAQEC codes from classical block
codes, which has lead to the construction of several families of EAQEC codes [6–13].
The majority of them utilize constacyclic codes [7,9,10,14] or negacyclic codes [8,9] as the
classical counterpart. However, only a few of them have used cyclic codes and described
the parameters of the quantum code constructed via the defining set of cyclic code. This
can lead to a straightforward relation between the parameters of the classical and quantum
codes and a method to create MDS EAQEC code. Li et al. used BCH codes to construct
EAQEC codes via decomposing the defining set of the BCH code used [15]. Lu and Li
constructed EAQEC codes from primitive quaternary BCH codes [16]. Recently, Lu et al. [9],
using not cyclic but constacyclic MDS codes as the classical counterpart, proposed four
families of MDS EAQEC codes.

Deriving EAQEC codes with different parameters provides a tool for reliable commu-
nication through quantum channels. In the quantum communication framework, sender
and receiver are physically separated, which makes impossible the use joint unitary trans-
formations. However, one can use other resources in order to maximize the code rate within
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the constraint of high minimum distance, such as pre-shared entanglement. Although
in a specified communication scenario one may aim at deriving a high rate code with a
low error probability for the block code, due to the broad approach followed in this paper
(where we do not design codes for a particular type of quantum channel), we shall use the
minimum distance as performance measure for EAQEC codes.

The main goal of this paper is to describe any cyclic code, such as Reed–Solomon
and BCH codes, under the same framework via defining set description, and to show,
using two classical codes from one of these families, how to construct EAQEC codes from
them. We use Euclidean and Hermitian methods to construct EAQEC codes. As it will
be shown, EAQEC codes from Reed–Solomon codes are MDS codes, and the ones from
BCH codes are new in two senses. The first one is that there is no work in the literature
with the same parameters. The second one is that we usie two BCH codes to derive the
EAQEC code, which gives more freedom in the choice of parameters. Two more families
of EAQEC codes are devised using the Hermitian construction. One of these families can
generate codes which are almost MDS or almost near MDS; i.e., the Singleton defect for
these codes is equal to one or two units. The last family created is maximally entangled
and has a length proportional to a high power of the cardinality of the field. This family,
when extending the block length, could approach the EA quantum hashing bound similarly
to what happens to turbo codes in reference [17]. In fact, it was shown by Lai et al. [18]
that maximal-entanglement EAQEC turbo codes get close to the EA quantum hashing
bound. (By the EA quantum hashing bound is intended the quantum communication
rate given by 1 − 1

2 [p(log2 3 − log2 p) − (1 − p) log2(1 − p)] for a depolarizing channel
characterized by depolarizing parameter p [17].) Lastly, we would like to highlight that
the description given in this paper gives a more direct relation between cyclic codes and
the entanglement-assisted quantum codes constructed from them. Such a relation can be
extended to constacyclic and negacyclic codes with a few adjustments.

The paper is organized as follows. In Section 2, we review Reed–Solomon and BCH
codes and describe their parameters via a defining set. Additionally, we show construction
methods of EAQEC codes from classical codes. Using these methods for cyclic classical
codes, new EAQEC codes are constructed in Section 3. In Section 4, a comparison of these
codes is presented via the quantum Singleton bound. In particular, we show families of
MDS and almost MDS EAQEC codes. We also create a family of EAQEC codes which could
approach the EA quantum hashing bound [17–19]. Lastly, the conclusion is presented in
Section 5.

Notation

Throughout this paper, p denotes a prime number and q �= 2 is a power of p. Let
Fq be the finite field with q elements. A linear code C with parameters [n, k, d]q is a k-
dimensional subspace of Fn

q with minimum distance d. For cyclic codes, Z(C) denotes the
defining set, and g(x) is the generator polynomial. Lastly, an [[n, k, d; c]]q quantum code
is a qk-dimensional subspace of Cqn

with minimum distance d that utilizes c pre-shared
entangled pairs.

2. Preliminaries

In this section, we review some ideas related to linear complementary dual (LCD)
codes, cyclic codes, and entanglement-assisted quantum codes. Before giving a description
of LCD codes, we need to define the Euclidean and Hermitian dual of a linear code.

Definition 1. Let C be a linear code over Fq with length n. The (Euclidean) dual of C is defined as

C⊥ = { x ∈ F
n
q | x · c = 0 for all c ∈ C}. (1)
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If the finite field has cardinality equal to q2, an even power of a prime, then we can define the
Hermitian dual of C. This dual code is defined by

C⊥h = { x ∈ F
n
q2 | x · cq = 0 for all c ∈ C }, (2)

where cq = (cq
1, . . . , cq

n) for c ∈ Fn
q2 .

These types of dual codes can be used to derive quantum codes from the stabilizer
formalism [1]. The requirement in this formalism is to the classical code to be self-dual;
i.e., C ⊆ C⊥ or C ⊆ C⊥H . However, there is a different relationship between a code and
its (Euclidean or Hermitian) dual that can be interesting for constructing an EAQEC. This
relation is complementary duality and is defined in the following.

Definition 2. The hull of a linear code C is given by hull(C) = C⊥ ∩ C. The code is called linear
complementary dual (LCD) code if the hull is trivial; i.e, hull(C) = {0}. Similarly, it is defined by
hullH(C) = C⊥h ∩ C and the idea of a Hermitian LCD code.

Now, we can define cyclic codes and some properties that can be used to extract the
parameters of the quantum code constructed from them.

2.1. Cyclic Codes

A linear code C with parameters [n, k, d]q is called cyclic if for any codeword (c0, c1, . . . ,
cn−1) ∈ C implies (cn−1, c0, c1, . . . , cn−2) ∈ C. By defining a map from Fn

q to Fq[x]/(xn − 1),
which takes c = (c0, c1, . . . , cn−1) ∈ Fn

q to c(x) = c0 + c1x + · · ·+ cn−1xn−1 ∈ Fq[x]/(xn −
1), we can see that a linear code C is cyclic if and only if it corresponds to an ideal of the
ring Fq[x]/(xn − 1). Since any ideal in Fq[x]/(xn − 1) is principal, any cyclic code C is
generated by a polynomial g(x)|(xn − 1), which is called a generator polynomial. This
polynomial is monic, and has the smallest degree among all the generators of C.

A characterization of the parameters of a cyclic code can be given from the generator
polynomial and its defining set. For the description of this set, consider the following: Let

m = ordn(q), α be a generator of the multiplicative group F∗
qm , and assume β = α

qm−1
n ; i.e.,

β is a primitive n-th root of unity. Then, the defining set of C, which is denoted by Z(C), is
defined as Z(C) = {i ∈ Zn : c(βi) = 0 for all c(x) ∈ C}.

BCH and Reed–Solomon codes are particular cases of cyclic codes, where the generator
polynomial has some additional properties. See Definitions 3 and 5.

Definition 3. Let b ≥ 0, δ ≥ 1, and α ∈ Fqm , where m = ordn(q). A cyclic code C of length n
over Fq is a BCH code with designed distance δ if

g(x) = lcm{mb(x), mb+1(x), . . . , mb+δ−2(x)}

where mi(x) is the minimal polynomial of αi over Fq. If n = qm − 1, then the BCH code is called
primitive, and if b = 1, it is called narrow-sense.

Before relating the parameters of an BCH code with the defining set, we need to
introduce the idea of the cyclotomic coset. It comes from the observation that the minimal
polynomial mi(x) of αi can be the minimal polynomial of other powers of α. The reason for
this is that α belongs to an extension of Fq while the polynomial mi(x) ∈ Fq[x]. The set of
all zeros of mi(x) in the field Fqm is given by the cyclotomic coset of i. Thus, the defining
set of a BCH code C is the union of the cyclotomic cosets of b, b + 1, . . . , b + δ − 2. The
following definition describes this set.
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Definition 4. The q-ary cyclotomic coset mod n containing an element i is defined by

Ci = {i, iq, iq2, iq3, . . . , iqmi−1}, (3)

where mi is the smallest positive integer such that iqmi ≡ i mod n.

For the parameters of a BCH code, it is shown that the dimension is equal to n − |Z(C)|
and the minimal distance of C is at least δ [20]. Thus, we can see that important properties
of an BCH codes can be obtained from the defining set. The same characterization happens
with Euclidean or Hermitian dual cyclic code. Propositions 1 and 2 focus on this.

Proposition 1 ([20], Proposition 4.3.8). Let C be a linear code of length n and defining set Z(C).
Then, the defining set of C⊥ is given by

Z(C⊥) = Zn \ {−i|i ∈ Z(C)}

For BCH codes, the generator polynomial is given by the lcm of the minimal polynomials over Fq of
the elements αj such that j ∈ Z(C⊥).

Proposition 2. Let C be a cyclic code over Fq2 with defining set Z(C). Then,

Z(C⊥h) = Zn \ {−i|i ∈ qZ(C)}.

Proof. Let c ∈ Fn
q2 be a codeword of C. By expressing cq as a polynomial, we have that

c(q)(x) = cq
0 + cq

1x + · · ·+ cq
n−1xn−1. Thus, i ∈ Zn belongs to Z(Cq) if and only if

c(q)(αi) = 0 ⇐⇒ cq
0 + cq

1αi + · · ·+ cq
n−1αi(n−1) = 0

⇐⇒ (cq
0 + cq

1αi + · · ·+ cq
n−1αi(n−1))q = 0

⇐⇒ c0 + c1αiq + · · ·+ cn−1αiq(n−1) = 0

⇐⇒ iq ∈ Z(C).

This shows that Z(Cq) = qZ(C). Since C⊥h = (Cq)⊥, we have from Proposition 1 that
Z(C⊥h) = Zn \ {−i|i ∈ qZ(C)}.

The other class of cyclic codes used in this paper, Reed–Solomon codes, can be viewed
as a subclass of BCH codes. Thus, a similar characterization in terms of defining set
can be given; see Definition 5 and Corollary 1. One property of such codes that makes
them important is that they are maximal distance separable (MDS) codes; i.e., fixing the
length and the dimension, they have the maximal minimal distance possible. As shown in
Section 3, using such codes to construct EAQEC codes will result in MDS quantum codes.

Definition 5. Let b ≥ 0, n = q − 1, and 1 ≤ k ≤ n. A cyclic code RSk(n, b) of length n over Fq
is a Reed–Solomon code with minimal distance n − k + 1 if

g(x) = (x − αb)(x − αb+1) · · · (x − αb+n−k−1),

where α is a primitive element of Fq.

A particular application of Proposition 1 to Reed–Solomon codes is described in Corollary 1,
where the parameters and defining set of an Euclidean dual of a Reed–Solomon are derived.

Corollary 1. Let RSk(n, b) be a Reed–Solomon code. Then, its Euclidean dual can be described as

RSk(n, b)⊥ = RSn−k(n, n − b + 1)
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In particular, the defining set of RSk(n, b)⊥ is given by Z(RSk(n, b)⊥) = {n − b + 1, n − b +
2, . . . , n − b + k}.

As will be shown in the next subsection, the amount of entanglement in a EAQEC
code is computed from the dimension of the intersection between the two codes. Thus, the
last proposition of this subsection addresses the subject.

Proposition 3 ([21], Exercise 239, Chapter 4). Let C1 and C2 be cyclic codes with defining sets
Z(C1) and Z(C2), respectively. Then, the defining set of C1 ∩ C2 is given by Z(C1) ∪ Z(C2). In
particular, dim(C1 ∩ C2) = n − |Z(C1) ∪ Z(C2)|.

2.2. Entanglement-Assisted Quantum Codes

Definition 6. A quantum code Q is called an [[n, k, d; c]]q entanglement-assisted quantum error-
correcting (EAQEC) code if it encodes k logical qudits into n physical qudits using c copies of
maximally entangled states and can correct �(d − 1)/2 quantum errors. A EAQEC code is said to
have maximal entanglement when c = n − k.

Formulating a stabilizer paradigm for EAQEC codes gives a way to use classical codes
to construct this quantum codes [22]. In particular, we have the next two procedures by
Galindo et al. [5].

Proposition 4 ([5], Theorem 4). Let C1 and C2 be two linear codes over Fq with parameters
[n, k1, d1]q and [n, k2, d2]q; and parity check matrices H1 and H2, respectively. Then, there is
a EAQEC code with parameters [[n, k1 + k2 − n + c, d; c]]q, where d = min{dH(C1 \ (C1 ∩
C⊥

2 )), dH(C2 \ (C⊥
1 ∩ C2))}, with dH as the minimum Hamming weight of the vectors in the

set, and
c = rank(H1HT

2 ) = dim C⊥
1 − dim(C⊥

1 ∩ C2) (4)

is the number of required maximally entangled states.

Proposition 5 ([5], Proposition 3 and Corollary 1). Let C be a linear codes over Fq2 with
parameters [n, k, d]q, H be a parity check matrix for C, and H∗ be the q-th power of the trans-
pose matrix of H. Then, there is a EAQEC code with parameters [[n, 2k − n + c, d′; c]]q, where
d′ = dH(C \ (C ∩ C⊥h)), with dH as the minimum Hamming weight of the vectors in the set, and

c = rank(HH∗) = dim C⊥h − dim(C⊥h ∩ C) (5)

is the number of required maximally entangled states.

A measurement of goodness for a EAQEC code is the quantum Singleton bound (QSB).
Let [[n, k, d; c]]q be a EAQEC code. Then, the QSB is given by

d ≤
⌊n − k + c

2

⌋
+ 1. (6)

The difference between the QSB and d is called a quantum Singleton defect. When the
quantum Singleton defect is equal to zero (resp. one), the code is called the maximum
distance separable quantum code (resp. almost maximum distance separable quantum
code), and it is denoted the MDS quantum code (resp. almost MDS quantum code).

3. New Entanglement-Assisted Quantum-Error-Correcting Cyclic Codes

In this section is shown the construction of EAQEC codes from the cyclic codes. We
are going to make use of Euclidean and Hermitian constructions, which will give codes
with different parameters when compared over the same field.
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3.1. Euclidean Construction

A straightforward application of cyclic codes to the Proposition 4 via defining set
description can produce some interesting results. See Theorem 1 and Corollary 2.

Theorem 1. Let C1 and C2 be two cyclic codes with parameters [n, k1, d1]q and [n, k2, d2]q, respec-
tively. Then, there is an EAQEC code with parameters [[n, k1 − |Z(C⊥

1 ) ∩ Z(C2)|, min{d1, d2};
n − k2 − |Z(C⊥

1 ) ∩ Z(C2)|]]q.

Proof. From Proposition 3, we have that dim(C⊥
1 ∩ C2) = n − |Z(C⊥

1 ) ∪ Z(C2)| = n −
|Z(C2)| − |Z(C⊥

1 )|+ |Z(C⊥
1 ) ∩ Z(C2)| = k2 − k1 + |Z(C⊥

1 ) ∩ Z(C2)|. Thus, the amount of
entanglement used in an EAQEC code constructed from these two cyclic codes can be
computed from Proposition 4, which is c = n − k2 − |Z(C⊥

1 ) ∩ Z(C2)|. By substituting
this value of c in the parameters of the EAQEC code in Proposition 4, we obtain an
[[n, k1 − |Z(C⊥

1 ) ∩ Z(C2)|, min{d1, d2}; n − k2 − |Z(C⊥
1 ) ∩ Z(C2)|]]q EAQEC code.

Corollary 2. Let C be a LCD cyclic code with parameters [n, k, d]q. Then, there is a maximal
entanglement EAQEC code with parameters [[n, k, d; n − k]]q. In particular, if C is MDS, so is the
EAQEC code derived from it.

Proof. Let C1 = C2 = C in Theorem 1. Since C is LCD, |Z(C⊥
1 ) ∩ Z(C2)| = 0. From

Theorem 1, we have that there is an EAQEC code with parameters [[n, k, d; n − k]]q.

Theorem 2. Let C1 = RSk1(n, b1) and C2 = RSk2(n, b2) be two Reed–Solomon codes over Fq
with 0 ≤ b1 ≤ k1, b2 ≥ 0, and b1 + b2 ≤ k2 + 1. Then, we have two possible cases:

1. For k1 − b1 ≥ b2, there is an EAQEC code with parameters

[[n, b1 + b2 − 1, n − min{k1, k2}+ 1; n + b1 + b2 − k1 − k2 − 1]]q;

2. For k1 − b1 < b2, there is an EAQEC code with parameters

[[n, k1, n − min{k1, k2}+ 1; n − k2]]q.

Proof. From Corollary 1, we have that Z(C⊥
1 ) = {n − b1 + 1, n − b1 + 2, . . . , n − b1 + k1}.

First of all, notice that the restriction b1 + b2 ≤ k2 + 1 implies that the first element in
the defining set of Z(C⊥

1 ) comes after the last element in Z(C2). Since 0 ≤ b1 ≤ k1, we
have that n − b1 + k1 ≥ n, which implies that the defining set for C⊥

1 equals to Z(C⊥
1 ) =

{n − b1 + 1, n − b + 2, . . . , n − 1, 0, 1, . . . , k1 − b1}. Thus, Z(C⊥
1 ) intersects Z(C2) if and only

if k1 − b1 ≥ b2. In the case that it does, the intersection is equals to Z(C⊥
1 ) ∩ Z(C2) =

k1 − (b1 + b2) + 1. The missing claims are obtained using these results in Theorem 1.

Corollary 3. Let C = RSk(n, b) be a Reed–Solomon code over Fq with 0 < b ≤ (k + 1)/2
and 0 < k < n ≤ q. Then, there is an MDS EAQEC code with parameters [[n, 2b − 1, n − k +
1; n + 2b − 2k − 1]]q. In particular, for b = (k + 1)/2, there is a maximal entanglement MDS
EAQEC code.

Proof. Let C1 = C2 = RSk(n, b) in Theorem 2. Assuming 0 ≤ b < (k + 1)/2, we have
that the classical codes fall in the first case of Theorem 2; and for b = (k + 1)/2, we are in
the second case of Theorem 2. Thus, substituting the values of k1, k2 and b1, b2 by k and b,
respectively; the result follows.

In a similar way, we can use BCH codes to construct EAQEC codes. The advantage
in using BCH codes is that the length of the code is not bounded by the cardinality of the
finite field used. However, creating classical or quantum codes from BCH codes which are
MDS is a difficult task. Our proposal to have BCH codes as the classical counterpart in
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this paper is to show how to use two BCH codes to construct EAQEC codes. In addition,
it is also constructed maximal entanglement EAQEC codes. In order to do this, we show
suitable properties concerning some cyclotomic cosets for n = q2 − 1.

Lemma 1. Let n = q2 − 1 with q > 2. Then, the q-ary coset C0 has one element, and Ci = {i, iq}
for any 1 ≤ i ≤ q − 1.

Proof. The first claim is trivial. For the second one, notice iq2 ≡ i mod (q2 − 1). Thus, the
only elements in Ci are i and iq, for 1 ≤ i ≤ q − 1.

From Lemma 1, we can construct EAQEC codes with length n = q2 − 1. See Theorem 3.

Theorem 3. Let n = q2 − 1 with q > 2. Assume a, b are integers such that 0 ≤ a ≤ q − 1 and
1 ≤ b ≤ q. Then, there is an EAQEC code with parameters

• [[n, 2(q − b)− 1, b + 1; 2(q − a − 1)]]q, if a ≥ q − b and b < q;
• [[n, 2a + 1, b + 1; 2b − � b

q  ]]q, if a < q − b.

Proof. First of all, assume that C⊥
1 has a defining set given by Z(C⊥

1 ) = ∪a
i=0Ci, and the

defining set of C2 is equal to Z(C2) = ∪b
i=1Cq−i. From Lemma 1, we have that |Z(C⊥

1 )| =
2a + 1 and |Z(C2)| = 2b − � b

q  . Thus, the dimensions of C1 and C2 are equal to k1 =

|Z(C⊥
1 )| = 2a+ 1 and k2 = n − |Z(C2)| = n − 2b+ � b

q  , respectively. To compute |Z(C⊥
1 )∩

Z(C2)|, we have to consider two cases. If a ≥ q − b, then we have that Z(C⊥
1 ) ∩ Z(C2) =

∪a
i=q−bCi, which has cardinality given by |Z(C⊥

1 ) ∩ Z(C2)| = 2(a − (q − b) + 1) − � b
q  ,

because |C0| = 1. On the other hand, if a < q − b, then |Z(C⊥
1 ) ∩ Z(C2)| = 0. Lastly, since

a, b ≤ q, Z(C⊥
1 ) = ∪a

i=0Ci, and n = q2 − 1 with q > 2, we can see that d1 > d2 = b+ 1. Now,
using these results in Theorem 1, we have that there is a EAQEC code with parameters
[[n, 2(q − b)− 1+ � b

q  , b + 1; 2(q − a − 1)]]q, if a ≥ q − b, or a EAQEC code with parameters

[[n, 2a + 1, b + 1; 2b − � b
q  ]]q.

3.2. Hermitian Construction

In the same way as before, it possible to use cyclic codes to construct EAQEC codes
from the Hermitian construction method of Proposition 5. See the following theorem.

Theorem 4. Let C be a cyclic code with parameters [n, k, d]q2 . Then there is an EAQEC code with
parameters [[n, k − |Z(C⊥h) ∩ Z(C)|, d; n − k − |Z(C⊥h) ∩ Z(C)|]]q.

Proof. First of all, from Proposition 3 we have dim(C⊥ ∩ C) = n − |Z(C⊥) ∪ Z(C)| =
n − |Z(C)| − |Z(C⊥h)|+ |Z(C⊥h) ∩ Z(C)| = k − k + |Z(C⊥h) ∩ Z(C)| = |Z(C⊥h) ∩ Z(C)|.
Thus, c = dim(C⊥h) − dim(C⊥ ∩ C) = n − k − |Z(C⊥h) ∩ Z(C)|. Using a [n, k, d]q2 to
construct a EAQEC codes via Proposition 5, we derive a code with parameters [[n, k −
|Z(C⊥h) ∩ Z(C)|, d; n − k − |Z(C⊥h) ∩ Z(C)|]]q.

Corollary 4. Let C be an LCD cyclic code with parameters [n, k, d]q2 . Then there is a maximal
entanglement EAQEC code with parameters [[n, k, d; n − k]]q.

Proof. From the proof of Theorem 4, we have that dim(C⊥h ∩ C) = |Z(C⊥h)∩ Z(C)|. Since
C is LCD, |Z(C⊥h) ∩ Z(C)| = 0, and the result follows from Theorem 4.

Differently from the construction of EAQEC code via Euclidean dual cyclic code, the
construction via Hermitian dual can be more delicate, even for Reed–Solomon codes. Even
so, we are going to show that is possible to construct EAQEC codes from a particular case
of Reed–Solomon codes and some cyclic codes.
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Theorem 5. Let q be a prime power and assume C = RSk(n, 1) is a Reed–Solomon code over Fq2

with k = qt + r < q2, where t ≥ 1 and 0 ≤ r ≤ q − 1, and n = q2. Then we have the following:

• If t ≥ q − r − 1, then there exists an MDS EAQEC code with parameters

[[q2, (t + 1)2 − 2(q − r) + 1, q(q − t)− r + 1; (q − t − 1)2 + 1]]q.

• If t < q − r − 1, then there exists an MDS EAQEC code with parameters

[[q2, t2 − 1, q(q − t)− r + 1; (q − t)2 − 2r − 1)]]q.

Proof. Since C = RSk(n, 0), we have that Z(C) = {0, 1, 2, . . . , n − k − 1}. From the proof
of Theorem 2, we also have that Z(C⊥h) = qZ(C⊥) = {q, 2q, . . . , kq}. From n = q2 and
k = qt + r, we can rewrite these two defining sets as Z(C) = {qi + j|0 ≤ i ≤ q − t −
2, 0 ≤ j ≤ q − 1} ∪ {(q − t − 1)q + j|0 ≤ j ≤ q − r − 2} and Z(C⊥h) = {qi + j|0 ≤ i ≤
q − 1, 0 ≤ j ≤ t − 1} ∪ {qi + t|0 ≤ i ≤ r}. Using this description, we can compute
|Z(C) ∩ Z(C⊥h)|. To do so, we have to consider two cases separately, t ≥ q − r − 1 and
t < q − r − 1. For the first case, the intersection is given by the following set Z(C) ∩
Z(C⊥h) = {qi + j|0 ≤ i ≤ q − t − 2, 0 ≤ j ≤ t} ∪ {(q − t − 1)q + j|0 ≤ j ≤ q − r − 2}.
Thus, |Z(C) ∩ Z(C⊥h)| = (q − t − 1)(t + 1) + q − r − 1. Similarly for the case t < q − r − 1,
we have Z(C) ∩ Z(C⊥h) = {qi + j|0 ≤ i ≤ q − t − 1, 0 ≤ j ≤ t − 1} ∪ {qi + t|0 ≤ i ≤ r},
which implies |Z(C) ∩ Z(C⊥h)| = (q − t)t + r + 1. Using these results and the fact that C
has parameters [q2, k, q2 − k + 1]q2 , in Theorem 4, we have that there exists a EAQEC code
with parameters

• [[q2, (t + 1)2 − 2(q − r) + 1, q(q − t)− r + 1; (q − t − 1)2 + 1]]q, for t ≥ q − r − 1; and
• [[q2, t2 − 1, q(q − t)− r + 1; (q − t)2 − 2r − 1)]]q, for t < q − r − 1.

Theorem 6. Let n = q4 − 1 and q ≥ 3, a prime power. There exists an EAQEC code with
parameters [[n, n − 4(a − 1)− 3, d ≥ a + 1; 1]]q, where 2 ≤ a ≤ q2 − 1.

Proof. Let Ca be a cyclic code with defining set Z(Ca) = C0 ∪ Cq2+1 ∪ (∪a
i=2Cq2+a), for

2 ≤ a ≤ q2 − 1. From Ref. [23], we have that Cq2+1 = {q2 + 1} and Cq2+a = {q2 + a, 1 +

aq2}. It is trivial to show that C0 = {0}. From −qZ(Ca) ∩ Z(Ca) = C0 [23], we can see
that Z(C⊥h

a ) ∩ Z(Ca) = Z(Ca) \ C0. Hence, |Z(C⊥h
a ) ∩ Z(Ca)| = 2(a − 1) + 1. From the

assumption of the defining set, the dimension and minimal distance of the classical code are
k = n − 2(a − 1)− 2 and d ≥ a + 1, respectively. Thus, using these quantities in Theorem 4,
we have that there exists an EAQEC code with parameters [[n, n − 4(a − 1)− 3, d ≥ a +
1; 1]]q.

Two important comments can be made about Theorem 6. Comparing the bound
given for the minimal distance and the Singleton bound for EAQEC codes, we see that the
difference between these two values is equal to a − 1. Thus, for lower values of a (such as
a = 2 or a = 3), the EAQEC codes have a minimal distance, close to the optimum; e.g., if
a = 2 (or a = 3), the family of EAQEC codes is almost MDS (or almost MDS). The second
point is that the codes in Theorem 6 can be seen as a generalization of the result by Qian
and Zhang [24].

In the following, we use LCD cyclic code to construct maximal entanglement EAQEC
codes. The families obtained have an interesting range of possible parameters.

Theorem 7. Let q be a prime power, m ≥ 2, 2 ≤ δ ≤ q2� m
2 � + 1, and κ = q2m − 2 − 2(δ − 1 −⌊

δ−1
q2

⌋
)m. Then,
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1. For m odd and 1 ≤ u ≤ q − 1, there is a maximal entanglement EAQEC code with parameters
[[q2m − 1, k, d ≥ δ + 1 + � δ−1

q  ; q2m − 1 − k]]q, where

k =

⎧⎪⎪⎨⎪⎪⎩
κ, if 2 ≤ δ ≤ qm − 1;
κ + u2m, if uqm ≤ δ ≤ (u + 1)(qm − 1);
κ + (u2 + 2v + 1)m, if δ = (u + 1)(qm − 1) + v + 1 for 0 ≤ v ≤ u − 1;
κ + q2m, if δ = qm+1 or qm+1 + 1.

(7)

2. For m even, there is an maximal entanglement EAQEC code with parameters

[[q2m − 1, κ, d ≥ δ + 1 + � δ − 1
q

 ; 2(δ − 1 − � δ − 1
q2  )m + 1]]q. (8)

Proof. From Li [25], we have that there are LCD cyclic codes with parameters [q2m − 1, k, δ+
1+ � δ−1

q  ]q2 , where k is the same as in Equations (7) and (8) for odd and even m, respectively.
Thus, by applying this LCD code to Corollary 4, we obtain the mentioned codes.

4. Code Examples

In Table 1, we present some MDS EAQEC codes obtained from Corollary 3 and
Theorem 5. The codes in the first column are obtained from the Euclidean construction and
the ones in the second column from the Hermitian construction. As can be seen, the latter
one has a higher length within the same field. Thus, it can be used in applications where
the underline quantum system has limited dimensions. On the other hand, the codes in the
first column can have parameters that the ones from the Hermitian construction cannot.
Thus, these two classes of EAQEC codes are suitable for specific applications.

The codes obtained from Corollary 3 and Theorem 5 are maximal entanglement
EAQEC codes. We could use the dependency between the cardinality of the finite field
and code parameters to derive new codes. In particular, this is not the case for the codes
in Ref. [26], where the cardinality of the finite field must be two. Additionally, one cannot
find in Ref. [9] codes similar to the ones on the left column of Table 1, since the codes in
Ref. [9] request a number c of entangled pairs that can be only equal to one or two. For our
codes with c = 1 or 4, which can be used in a comparison with the codes in Ref. [9], we see
that the codes [[4, 3, 2; 1]]4 and [[13, 9, 5; 4]]13 have parameters slightly worse than the codes
[[5, 4, 2; 1]]7 and [[10, 9, 5; 4]]3, respectively. Lastly, if we do not take into consideration the
cardinality of the field, we continue to see improvements in the code parameters. As an
example, the code [[16, 3, 9; 3]]4 has a higher rate (ratio between code dimension and code
length) than the similar minimum distance code [[31, 10, 10; 21]]4 given in Ref. [27].

Table 1. Some new MDS EAQEC codes from Reed–Solomon codes. The codes with a star � are
maximal entanglement MDS EAQEC codes.

New EAQEC codes—Corollary 3 New EAQEC codes—Theorem 5
[[n, 2b − 1, n − k + 1; n + 2b − 2k − 1]]q [[q2, t2 − 1, q(q − t)− r + 1; (q − t)2 − 2r − 1)]]q
0 < b ≤ (k + 1)/2 and 0 < k < n ≤ q qt + r < q2, where 1 ≤ t < q − r − 1 and 0 ≤ r ≤ q − 1

Examples

�[[3, 1, 3; 2]]3 [[16, 3, 9; 3]]4
�[[4, 3, 2; 1]]4 [[64, 35, 17; 3]]8
�[[7, 3, 5; 4]]7 [[64, 15, 31; 11]]8
�[[8, 5, 4; 3]]8 [[256, 196, 33; 3]]16

�[[11, 9, 3; 2]]11 [[256, 120, 78; 18]]16

�[[13, 9, 5; 4]]13 [[1024, 784, 129; 15]]32

[[16, 13, 3; 2]]16 [[1024, 624, 220; 38]]32
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One family of EAQEC codes derived from BCH codes has been constructed; see
Theorem 3. Some examples of these EAQEC codes are shown in Table 2. As can be seen in
Table 1 in Ref. [28] (and the reference there in), the EAQEC codes derived from Theorem 3
have new parameters when compared with EAQEC codes known in the literature. Thus,
though not having good parameters as the ones in our Table 1 in terms of quantum Singleton
defect, these codes are new. One advantage of our codes with respect to the ones known
in the literature is that, since they are constructed from two BCH codes, we have more
freedom in the choice of parameters. The family of codes presented in Table 2 could be
used in environments with low amounts of resources, since we have more freedom in the
code parameters. As an example, the codes in Table 2 are longer than the codes in Table 1
for the same cardinality of the finite field, making the codes in Table 2 more favorable to
environments where increasing the size of individual systems is less costly than composing
such systems. Looking at the examples of Table 2, we see that there is no counterpart for
the codes with parameters [[63, 7, 5; 8]]8 and [[255, 19, 7; 12]]16 in Ref. [26]. However, we did
not obtain an improvement in rate when comparing the remaining codes in Table 2 with
the codes shown in Ref. [29].

Table 2. Some new EAQEC codes from BCH codes.

New EAQEC codes—Theorem 3
[[q2 − 1, 2a + 1, b + 1; 2b − � b

q  ]]q
1 ≤ b ≤ q and 0 ≤ a < q − b

Examples

[[15, 5, 2; 2]]4
[[48, 9, 3; 4]]7
[[63, 7, 5; 8]]8

[[255, 19, 7; 12]]16

The remaining EAQEC codes constructed in this paper are the ones derived from cyclic
codes that are neither Reed–Solomon nor BCH codes. Two families of such codes were
created, both of them using Hermitian construction. Some examples of parameters that can
be obtained from these codes are presented in Table 3. Codes in the first column are almost
MDS or almost MDS—i.e., the Singleton defect, which is when the difference between the
quantum Singleton bound (QSB) presented in Equation (6) and the minimal distance of
the code is equal to one or two units. Lastly, we display in the second column of Table 3
some codes from Theorem 7. All codes in Theorem 7 are maximal entanglement. Thus, this
family, when extending the block length, could approach the EA quantum hashing bound
similarly to what happens to turbo codes in Ref. [17]. Having length proportional to a high
power of the cardinality of the field, it is expected to achieve low error probability using
these codes.

To compare the codes shown in Tables 2 and 3, we are going to use the concepts of ratio,
given by k/n, and net ratio, given by (k − c)/n, where k, c, and n are the code dimension,
the number of maximally entangled states, and code length, respectively. For the code
[[80, 50, 10; 30]]3, we see significant improvements in rate and net rate when comparing with
the codes [[73, 36, 10; 37]]4 and [[89, 44, 10; 45]]4 shown in Ref. [27]. A similar conclusion is
obtained for the comparison between our [[255, 237, 7; 18]]4 and the code [[217, 186, 6; 31]]4
shown in Ref. [27]. Lastly, we also have codes with no counterpart in Ref. [27], such as
[[80, 73, 3; 1]]3 and [[255, 248, 3; 1]]4, due to large discrepancy in code parameters.
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Table 3. Some EAQEC codes from cyclic codes via Hermitian construction.

New EAQEC codes—Theorem 6 New EAQEC codes—Theorem 7

Examples

[[80, 73, 3; 1]]3 [[80, 42, 14; 38]]3
[[80, 69, 4; 1]]3 [[80, 50, 10; 30]]3
[[255, 248, 3; 1]]4 [[255, 193, 20; 62]]4
[[255, 244, 4; 1]]4 [[255, 237, 7; 18]]4

5. Conclusions

This paper has been devoted to the use of cyclic codes in the construction of EAQEC
codes. General construction methods of EAQEC codes from cyclic codes via defining sets
have been presented, using both Euclidean and Hermitian duals of the classical codes. As
an application of these methods, five families of EAQEC codes were created. Two of them
were derived from Reed–Solomon codes, which resulted in MDS codes. An additional
family of almost MDS or near almost MDS EAQEC codes was derived from general cyclic
codes. One of the remaining family used BCH codes as the classical counterpart. The
construction of this family of EAQEC code used two BCH codes, which provided more
freedom in the parameters of the quantum code. Lastly, we conjecture that the family of
constructed EAQEC codes can achieve the hashing bound when extending their length. This
is supported by the fact that the codes derived have maximal entanglement. Investigations
(mainly numerical) along this line are left for future work.
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Abstract: We focus on the problem that the Grover algorithm is not suitable for the completely
unknown proportion of target solutions. Considering whether the existing quantum classifier used by
the current quantum neural network (QNN) to complete the classification task can solve the problem
of the classical classifier, this paper proposes a binary quantum neural network classifical model
based on an optimized Grover algorithm based on partial diffusion. Trial and error is adopted to
extend the partial diffusion quantum search algorithm with the known proportion of target solutions
to the unknown state, and to apply the characteristics of the supervised learning of the quantum
neural network to binary classify the classified data. Experiments show that the proposed method
can effectively retrieve quantum states with similar features. The test accuracy of BQM retrieval
under the depolarization noise at the 20th period can reach 97% when the depolarization rate is
0.1. It improves the retrieval accuracy by about 4% and 10% compared with MSE and BCE in the
same environment.

Keywords: binary classification; Grover algorithm; QNN

1. Introduction

The Internet has many different kinds of data and information that are intersected
and stored on social networks, prompting many different research fields to start to pay
attention to social networks. Users on social networks obtain the resources that they need
by visiting web pages [1–4]. The key to studying social networks is to analyze how these
social networks are used. The data analyzed can be used to improve the social network
itself, making it more convenient for users to browse the data required. They can also be
used to analyze users’ preferences to deliver advertisements at designated points. They can
also be used to analyze user behavior and to predict the transactions that users participate
in [5,6]. One of the main ways to analyze these results is to perform extensive data analysis
on the weblogs of these sites [7,8]. Every time a user requests a page or some of the
resources on that page, such as video, sound, etc., a new record is added to the weblog of
the site [9]. This information contains information about the user’s favourite pages (i.e., the
most frequently visited pages), the sequence of visits to ordinary pages, and even hints at
the user’s characteristics. This information analysis method can be called web page using
data mining (WUM) based on weblog information [10–12]. To use WUM, a sequence of
interactions between a single user and a web page needs to be extracted. The resulting file
should contain at least the following fields: the user’s IP address, timestamp, requested
resource, code for the result of the operation, the previous web address before entering the
web page, and the browser used [13,14]. Using and analyzing this sequence, the pattern of
the user’s access to the web page can be obtained.

The value of big data is essentially reflected as follows: it provides new thinking and
means for a human to understand complex systems. In theory, a virtual digital image of
the natural world can be constructed by digitizing the real world on a sufficiently small
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scale of time and space that carries the running rules of the real world. On the premise of
sufficient computing power and efficient data analysis methods, an in-depth analysis of
this virtual digital image will make it possible to understand and to discover the existing
complex system’s operation behavior, state, and law. Big data provides a new way of
thinking and a new means for exploring objective laws and for transforming nature and
society for human beings. Due to the high and increasing demand for big data mining and
analysis work, the era is forced to gradually use more efficient quantum scientific research
technology [15] to meet the gap of technology improvement means, and then to improve
the efficiency of information extraction work and to promote the progress of more scientific
research. In view of the above requirements and improved thinking, this paper makes
use of the special advantages of quantum algorithms compared with traditional iterative
algorithms [16], as a new field of quantum neural network, and studies the neural network
autonomous learning scheme [17] for network log information extraction, which highlights
the high-value prospects of the quantum field in big data mining and analysis.

This search hassle can be carried out in O(N) with the use of Grover’s quantum
search algorithm. Grover’s quantum search algorithm [18] makes use of the amplitude
amplification approach in quantum computing to attain quadratic acceleration in unsorted
search problems. Grover’s quantum search algorithm has been efficiently applied on
classical computer systems with the usage of a quantum laptop language (QCL). For an
unordered database search, the Grover algorithm achieves quadratic acceleration compared
with the classical algorithm. Then, analysis, induction, and variant research are carried
out [19,20]. Except for the lower bound, Grover’s methodology can be used for the case
where the λ fraction of the target term is unknown. The fixed point strategy and the trial
and error method are the two quantum search strategies that can be implemented.

The Binary QNN Model in this paper is a kind of model based on the Grover algorithm
and the QNN supervised learning algorithm. First of all, this is based on the traditional
Grover algorithm being analyzed and improved, using Younes’ algorithm to improve the
search algorithm efficiency, inserting this into the iterative learning process of the quantum
neural network [21,22], and using quantum processes to promote the efficiency of the
algorithm and neural network to realize multiple network synchronization searching and
learning [23,24] for each iteration algorithm to improve the efficiency of solutions [25]. The
quantum neural network learning scheme in this paper can be applied to quickly find the
user’s IP address in massive weblogs, and then accurately and efficiently identifying and
classifying relevant and valuable information such as the IP addresses of network logs. The
results can be sorted according to the number of search categories to identify and analyze
user behavior accurately. It can not only quickly discover the person’s record of specific
interests, but also can divide the session of a single user, which ensures the accuracy of
person document identification and improves the effectiveness of user activity queries.

This article is structured as follows. Section 2 introduces the trial-and-error method
(Younes’ algorithm) used in this paper, and the basic principles of the QNN supervised
learning division task. Section 3 describes our binary QNN model. Section 4 describes
the evolution process of the original dataset, and provides entropy analysis to show the
advantages of this model. Section 5 summarizes and discusses the role of the proposed
model in the development of user behavior pattern prediction.

2. Basic Conception

2.1. Supervised Learning Classification of QNN

Quantum Neural Network (QNN) is a new research field formed by the intersection
of quantum physics, mathematics, computer science, information science, cognitive science,
complexity science, and other disciplines. As the natural evolution of the traditional
neural computing system, it makes full use of the great power of quantum computing to
improve upon the information processing capacity of neural computing. By introducing
the idea of the superposition of quantum states into the traditional feedforward neural
network, QNN can train the quantum interval and quantify the uncertainty of the input
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data of training samples. Different data will map to different magnitudes. A multi-layer
excitation function is used to increase the fuzziness of the network, and to improve the
accuracy and certainty of network pattern recognition [26]. Therefore, the research on
the quantum neural network provides beneficial support for the combination of quantum
computing and neural computing. The potential of quantum neural networks is that they
take advantage of both quantum computing based on coherent superposition and neural
computing based on parallel processing. For example, running a deep neural network
(DNN) model on a device with limited computing power can be challenging because of the
large computational power and memory requirements on the device. However, to solve
this problem, a quantum neural network (QNN) has greater potential, which can save
computing costs while ensuring the accuracy of DNN training.

QNN comprises quantum state preparation subcircuits and optimization tasks per-
formed by classical controllers [27]. The fact that variable-component subcircuits utilized in
QNN produce probability distributions that cannot be efficiently simulated is part of the ev-
idence supporting the claim [28,29]. QNN’s main application, similar to DNN’s, is to tackle
categorization tasks [30]. Practical challenges, such as recognizing handwritten digits and
the features of many living creatures, can be categorized as categorization scenes [31,32].

A dataset is given

T = {(xi, yi)}N−1
i=0 ∈ (RN×M, {0, 1}N) (1)

According to N examples and M elements in the examples, a QNN is led to research
fθ(·) to predict the label of a facts set T

min
θ

N−1

∑
i=0

Iyi �= fθ(xi)
(2)

where θ is the trainable parameter, and Iz is an indicator function whose value is 1 when
the condition z is met; otherwise, it is zero. The quantum classifier realizes the data
tag prediction function according to specific rules through the filtered data, and its basic
principle is shown in Figure 1. We use quantum classifiers in the research section to specify
a QNN for completing the classification task defined in Formula (2). Considering the binary
task, it is necessary not only to find a decision rule in Formula (2), but also to output the
index j satisfying the pre-determined black box function. Given a trained classifier fθ(·),
both classical algorithms and previous quantum classifiers require at least O(T) query
complexity to find j.

The dataset T is constructed from a given qubit with adjustable interactions, where
the qubit composition is represented by xi and yi. We learn the interaction from a given
training set of each input–output relationship based on the classical backpropagation rule
fθ(·), and taking xi as the input to its rule, where the input–output relation is the data
pair (xi, yi) that constitutes the dataset T. This learning process of qubits is viewed as the
desired output algorithm behavior, that is, the quantum network “learns” an algorithm.

A notable theoretical result concerning quantum classifiers is the tradeoff between the
computational cost and the training performance shown [33].
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Figure 1. Basic principles of the quantum classifier. xi randomly generated by the RN×M matrix,
and yi, which can only be 0 or 1, forms N data pairs and then generates the dataset T. According
to the classic backpropagation rule fθ(·), xi is taken as the input to this rule. The qubit obtains the
input–output relationship from the data pair (xi, yi) in the constructed dataset T, and learns the
interaction in the training set of the relationship. In other words, the purpose of the quantum neural
network is to use xi as an input to learn fθ(·) rules.

2.2. Younes’ Algorithm

The methodology presented by Younes, Rowe J., and Miller J. [34] in Younes’ algorithm
is used to carry out the quantum search by exploiting the local diffusion operator to
overcome the souffle problem in the Grover algorithm. It demonstrates that regardless
of whether the number of matches is known, the entire range of 1 ≤ M ≤ N can be
consistently handled. It lays the theoretical foundation of the binary QNN model.

In the |0〉 and |1〉 states, part of the diffusion operator Qi system subspace of the
entanglement in additional qubit workspace performs about the inverse operation of the
mean, and the inverse operation of the phase shift is −1. H is the Hadamard Gates denoted

by H = 1√
2

[
1 1
1 −1

]
. The diagonal representation of Qi applied to the n + 1 qubit

system is:

Qi = (H⊗n ⊗ I1)(2|0〉〈0| − In+1)(H⊗n ⊗ I1) (3)

asthe |0〉 length is 2n+1, I1 is the unit of a 2 × 2 matrix.
Generally, quantum structures of the well-known size n + 1 can be expressed as:

|ψ〉 =
N−1

∑
p=0

αp(|p〉 ⊗ |0〉) +
N−1

∑
p=0

βp(|p〉 ⊗ |1〉) (4)

Applying Qi to |ψ〉 bits, we obtain

N−1

∑
p=0

(
2
N

N−1

∑
p=0

αp − αp)(|p〉 ⊗ |0〉)−
N−1

∑
p=0

βp(|p〉 ⊗ |1〉) (5)
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where
1
N ∑N−1

p=0 αj means the mean amplitude of subspace ∑N−1
p=0 αp(|p〉 ⊗ |0〉). That is, the

operator Qi only performs the inversion of the means in the subspace and only changes the
sign of the amplitude.

The H gate is utilized to the first n qubits to produce 2n values to characterize the list.
Then, we iteratively observe the Oracle feature Uf to map the goal in the list to 0 or 1, and
we retail the outcomes such as Uf |x, 0〉 → |x, f (x)〉; the partial diffusion operator Qi is
applied, and this step is repeated q times. Finally, the first n qubits are measured.

The variety of iterations q has to be an integer to locate a healthy shut to the change
in measurements.

Setting q =
⌊

π
2θ

⌋
,as |q − q̄| ≤ 1

2 , 0 < θ ≤ π
2 . As cos(θ) = 1 − M

N , we can find

θ ≥
√

2NM − M2

N
(6)

q =
⌊ π

2θ

⌋
≤ O(

√
N
M

) (7)

It is proven that the algorithm can be handled in the range of 1 ≤ M ≤ N using the O(
√

N
M )

fixed operator.

3. The Binary QNN Model

We simulate the creation of a binary analysis algorithm that uses quantum states
to process information, as shown in Figure 2. The algorithm proposed in this paper is
uniformly represented as a BQM field in the following content. As shown in Figure 2, BQM
uses a specified variable component subcircuit Uc, and an H gate to replace the Oracle Uf .
The variable component subcircuit Uc, based on the training data, can conditionally flip
a flag qubit. The tagged qubit is then used as part of the H gate to guide a Grover search
algorithm to identify the index of the specified example; i.e., the state of the tagged qubit,
such as “0” or “1”, determines the probability of success in identifying the target index.
BQM optimizes the trainable parameters of the variable component subcircuit Uc. When
the corresponding training instance is positive, the success probability of sampling a target
index is maximized. Otherwise, BQM minimizes the probability of the success of sampling
target indicators. The design of our algorithm has some advantages in terms of query
complexity by inheriting attributes from the Grover search algorithm and performing binary
classification tasks on these attributes while allowing the setting of search constraints [35].
Under the above observation, a quantum classifier must have certain advantages [36–38].

3.1. Pretreatment Stage of a Dichotomous Task

In the pretreatment stage, a dichotomous task uses the dataset T defined in Equation (1)
as the extended dataset T̂.

To apply the Grover search algorithm to obtain index i = K − 1, for K ∈ [N], the Kth

pair data training rules Tk are as follows.

TK= [(x(0)k , y(0)k ), (x(1)k , y(1)k ), . . . , (x(K−1)
k , y(K−1)

k )] (8)

The pair of data in Tk is like the Kth pair of T̂; this means that (x(K−1)
k , y(K−1)

k ) = (xk, yk).

The first K − 1 pair of Tk = {(x(i)k , y(i)k )}K−2
i=0 uniformly samples from a subset of T̂, when

every label {y(i)k }K−2
i=0 is the opposite of yk.

yk ∈ {0, 1}, T̂(0) and T̂(1) are constructed, which contain only those examples of T̂
with the labels ’0’ and ’1’, respectively. When yk = 0, the pair samples before K from T̂(1); it
is same as for the situation where yk = 1, in which the pair samples before K from T̂(0).
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Various quantum classifiers encode Tk into quantum states in different ways [39]. For
the sake of notation, we indicate that |Φk〉 that analogously connects with the Kth example is

|Φk〉 = Udata|0〉 =
K−1

∑
i=0

1√
K
|g(xi)〉|i〉 (9)

as g(·) is a coding operation.

Figure 2. The paradigm of BQM. (A) The first K-1 loop uses U, defined in Equation (12), which
consists of unitary operators (namely Udata, Uc, H, and Qi). (B) The last cycle uses the unitary
operation UE defined in Equation (13). The qubit interacts with Uc and Qi to form the feature register
and data register.

3.2. The Training Process of the Learning Plan

Compared with the traditional Grover algorithm, combining the variational learning
method and the Grover search algorithm produces quantum advantages [40–44]. The
adopted variable component subcircuit Uc is designed to find a hyperplane to keep the last
pair in the Tk away from the pair of samples before K.

For the variational quantum circuits Uc(θ) in BQM, a NISQ device scheme consists of
a trainable single-qubit gate and two-qubit gates such as CNOT or CZ, which implement
generation and discrimination tasks using variational hybrid quantum-classical algorithms.
Uc is denoted as Uc = ∏C

c=1 U(θc), where each layer U(θc) contains O(poly(N)) parameter-
ized single-qubit gates and at most, O(poly(N)) fixed two-qubit gates with the same layout.

In the optimal situation, given a initial state|Φk〉 defined in Equation (9), Uc is applied
to obtain the following goals:

1. If the pair of samples before K as Tk analogously connects with the label yk = 0, the
expected state is

(Uc ⊗ I)(Udata|0〉)yk=0 =
K−1

∑
i=0

1√
K
|0〉|i〉 (10)
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2. If the pair of samples before K as Tk analogously connects with the label yk = 1, the
expected state is

(Uc ⊗ I)(Udata|0〉)yk=1 =
K−1

∑
i=0

1√
K
|1〉|i〉 (11)

The label yk = 0 (or yk = 1) as the quantum state of the RF characteristics register
the first qubits |0〉 (or |1〉). As shown in Figure 2A, state (Uc ⊗ II)Udata|0〉 was prepared.
Our binary QNN model iteratively applied the H door to register by the characteristics of
the first qubit and index on the index register control, using the Udata register and the Uc
calculation characteristics, and to finish the first cycle, it applied the diffusion operator Qi
to the index register. All quantum processes, such as U, are part of a period.

U = Qi ◦ U†
data ◦ (Uc ⊗ I)† ◦ H ◦ (Uc ⊗ I) ◦ Udata (12)

Define Qi = I ⊗ ( 2
K ∑i |i〉〈i| − II). Except on a loop, the binary QNN model is repeat-

edly in the initial state |0〉 to U, and the application of the unitary operation is replaced with

UE = Qi ◦ H ◦ (Uc ⊗ I) ◦ Udata (13)

The brown shade in Figure 2B shows this. According to the traditional Grover search
algorithm [45], before making quantum measurements, the binary QNN model polls U
and UE for a total of O(

√
K) times.

3.3. The Evolution of the Quantum State

We analyze how quantum states evolve under yk = 0 and yk = 1:

• After interaction with unitary Uc ⊗ I, using the Equation (10) input state Φk(yk = 0),
this state can be converted to 1√

K ∑i=0 |0〉|i〉. For all computing in i ∈ [K − 1], this

means that the quantum operation Qi ◦ U†
data ◦ (Uc ⊗ II)

† does not change state.

1√
K
(H⊗n ⊗ I)(2|0〉〈0| − In+1)(H⊗n ⊗ I)

K−1

∑
i=0

|0〉|i〉 =
K−1

∑
i=0

1√
K
|0〉|i〉 (14)

When we measure the indicator register of the output state, the sampling i ∈ [K − 1]
for calculating the base i is distributed.

• After interaction with unitary Uc ⊗ I using the Equation (11) input state Φk(yk = 1),
this state can be converted to 1√

K ∑i=0 |1〉|i〉.
Mathematically, the result state is generated after interaction with H

H ◦ (Uc ⊗ I)(Udata|0〉)yk=1 =
1√
K
|0〉∑K−2

i=0 |i〉 − 1√
K
|1〉|i∗〉 (15)

where |i∗〉 for calculating the base |K − 1〉. The calculation operation U†
data ◦ (Uc ⊗ I)†

and the diffusion operation Qi are used to increase |i∗〉 probability.
After the first cycle, the generated state is generated

U(Udata|0〉)yk=1 =
(K − 4)
K
√

K
|0〉∑K−2

i=0 |i〉+ 3K − 4
K
√

K
|0〉|i∗〉 (16)

where Equation (12) defines U. According to Grover’s algorithm, the chance of

sampling i∗ will increase to (3K−4)2

K3 .

3.4. The Loss Function

With the observation above leading to Theorem 1, the proof is given above:
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Theorem 1. For BQM, under the optimal setting, if the label of the last item of Tk is yk = 1, the
probability of the sampling resulting in i∗ = K − 1 is asymptotically 1.

Proof of Theorem 1. We discussed the case where the last entry in Tk has labels yk = 1 and
yk = 0.

In the instance of yk = 0, assuming that the label of the final item in Tk is yk = 0, it is
possible to determine from Equation (14) that after the first cycle, the generation state of
BQM is

Uc|Φk(yk = 0)〉 = U|0〉 =
K−1

∑
i=0

1√
K
|0〉|i〉 (17)

The chance of picking any index when U (apply to |0〉) is the same, according to the
formula above. After U is applied to |0〉 via induction, with the migration with time n, the
state changes as

N

∏
i=0

Ui|0〉 =
K−1

∑
i=0

1√
K
|0〉|i〉 (18)

where the given N is any positive integer, and the probability of sampling |i∗〉 is 1
K . In the

last loop, the quantum operation UE defined in Equation (13) is applied to state
N
∏
i=0

Ui|0〉
and the resulting state is

UE

N

∏
i=0

Ui|0〉 = Qi ◦ H ◦ (Uc ⊗ I) ◦ Udata

K−1

∑
i=0

1√
K
|0〉|i〉

=
K−1

∑
i=0

1√
K
|0〉Λ

(19)

where the first equality uses Equation (18); the second equation uses Equation (15) and
exploits the application of the diffusion operator Qi = (H⊗n ⊗ I1)(2|0〉〈0| − In+1)(H⊗n ⊗
I1), then Λ = 1√

K−1 ∑K−2
i=0 |i〉+ |i∗〉.

In the instance of yk = 1, assuming that the label of the last item in Tk is yk = 1, it is
possible to determine from Equation (16) that after the first cycle, the generation state of
BQM is

Uc|Φk(yk = 1)〉 = |0〉 ⊗ (
(K − 4)
K
√

K
∑K−2

i=0 |i〉+ 3K − 4
K
√

K
|i∗〉) (20)

The chance of picking any index when U (apply to |0〉) is the same, according to the
formula above. After U is applied to |0〉 by induction, with the migration with time n, the
state changes as follows:

n

∏
i=0

Ui|0〉 = |0〉 ⊗ 1√
K

[
h̄ ∑K−2

i=0 |i〉+λ̄|i∗〉
]

(21)

where given that n is any positive integer, h̄ = cos(2nα)− 1√
K−1

sin(2nα), sin α = 1√
K

,

λ̄ =
√

K − 1 sin(2nα) + cos(2nα). In the last loop, the quantum operation UE defined in
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Equation (13) is applied to state
N
∏
i=0

Ui|0〉, and the resulting state is

UE

N

∏
i=0

Ui|0〉 = Qi ◦ H ◦ (Uc ⊗ I) ◦ Udata|0〉 ⊗
1√
K

h̄ ∑K−2
i=0 |i〉+λ̄|i∗〉)

= Qi

[
h̄|0〉 ∑K−2

i=0 |i〉+λ̄|1〉|i∗〉
]

√
K

=

[
(K − 2)h̄|0〉 ∑K−2

i=0 |i〉+ 2
√

K − 1λ̄|1〉|i∗〉
]

√
K3

(22)

where the first equality uses Equation (21) and the second equation uses Equation (16) to
design the feature register. It uses H to flip the phase of |i〉 whose first qubit of the feature
register is |1〉, and the last equation comes from the application of the diffusion operator Qi.

According to Equation (22), in the ideal situation, the probability of sampling i∗ is near
to 1 when n ∼ O(

√
K), and then (K − 1) sin(2nα) +

√
K − 1 cos(2nα) is close to 1.

The result of Equation (19) shows that when yk = 0, the probability of sampling
i∗ never increases. Thus, we can follow that the sampling probability of the result i∗

asymptotically approaches one if and only if the label of the last term of Tk is yk = 1.

According to Theorem 1 of the BQM’s special property, the output distribution is
different for different labels of the input Tk while performing the binary classification task.
According to the analysis of Theorem 1 mentioned above, the calculation basis i = K − 1
will be present in the output state of the BQM; that is, UEUO(

√
K)|0〉, which corresponds to

yk = 1, and its probability is close to 1. The matching output state for yk = 0 will, however,
include the same computational foundation i ∈ [K − 1].

According to the mechanism of the Grover search algorithm, the loss function of BQM
is deduced as

min
θ

L(θ) = s(
1
2
− yk)Tr((|1〉〈1|)⊗ H ⊗ (|i∗〉〈i∗|)Δθ) (23)

where s(·) is the sign function, Δθ = UEU(θ)O(
√

K)|0〉〈0|(UEU(θ)O(
√

K))
†
, and U(θ) is

defined in Equation (12).
The success probability of sampling i∗ and obtaining the first feature qubit as ’1’(’0’)

is maximized (minimized) when yk = 1 (yk = 0), when faced with the challenge of
minimizing the loss function L(θ).

3.5. Gradient-Based Parameter Optimization

The optimization method in this paper uses a multiple-layer parameterized quantum
circuit (MPQC), according to the principle that the arrangement of quantum gates in each
layer is the same [46], and the operation formed by the layer c is expressed as U(θc),
produced by quantum states produced by MPQC

|ω〉 =
C

∏
c=1

U(θc)|0〉⊗N (24)

where C is the total number of layers. BQM uses MPQC to construct Uc

Uc(θ) =
C

∏
c=1

U(θc) (25)

The circuit layout of U(θc) at layer l is shown in Figure 3. When the number of layers is C,
the total number of trainable parameters of BQM is 2MC.
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Figure 3. The realization of the lth layer U(θc). It is assumed that the lth layer U(θc) interacts with M
qubits. Three trainable parameterized gates RZ, RY , and RZ are first applied to each qubit, followed
by the M − 1 CNOT gates.

The update rules of BQM at the jth iteration are as follows

θ(j+1) = θ(j) − ζ
L(θ(j), Tj)

∂θ
(26)

where ζ is the learning rate. Given the explicit form of L(θ) in the defined Equation (23),
the gradient of L(θ(j), Tj) can be rewritten as

∂L(θ(j), Tj)

∂θ
= s(

1
2
− yj)

∂Tr(∏ Δθ(j) )

∂θ
(27)

where yj is the label of the last item in Tj, s(·) is the symbol function, and ∏ is the measure-
ment operator.

BQM employs a gradient-based method, according to the parameter displacement rule,

to obtain the gradient
∂Tr(∏ Δ

θ(j) )

∂θ , to optimize θ. The parameter shift rule [47] iteratively
calculates each gradient entry under its guiding principle.

For e ∈ [2NC], only the eth parameter is rotated by ±π
2 , i.e.,

θ
(j)
± = [θ

(j)
0 , . . . , θ

(j)
e−1, θ

(j)
e ± π

2
, θ

(j)
e+1, . . . , θ

(j)
2NC−1] (28)

Combining Equations (26)–(28), the update rule of BQM at the eth iteration of the e item is

θ
(j+1)
e = θ

j
e − ζs(

1
2
− yj)

∂Tr(∏ Δ
θ
(j)
±
)

2
(29)

where Δ
θ
(j)
±

= UEU(θ+
(j))

O(
√

K)|0〉〈0|(UEU(θ−(j))
O(

√
K)
)

†
.

3.6. Circuit Implementation of Label Prediction

After the training of BQM is completed, the trained Uc can use the corresponding
circuit (as shown in Figure 4) to predict the label of an instance with O(1) query complexity.

Denoting the new input as (x, y), we encode a into quantum states using the same

encoding method used during training; i.e., |
∼
χ〉 = |g(x)〉, then we apply the trained Uc

to |
∼
χ〉.

When the size of the dataset loaded by the binary QNN model is K, a well-trained

binary QNN model can obtain the index with O(
√

K
MT2 ) query complexity.
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Figure 4. Circuit implementation of BQM prediction. Use g(·) as in the training process. The
encoding method prepares the state |g(x)〉 and applies the trained variable component subcircuit Uc

to |
∼
χ〉.

3.7. Synthetic Construction of Datasets

Given the training example xi = (α(j), β(j)) ∈ R2, the embedded function f (α(j), β(j))
used to encode xi into a quantum state is represented as

f (α(j), β(j)) = (R(γ(α(j), β(j)))⊗ R(γ(α(j), β(j))))|0〉⊗2 (30)

where γ(α(j), β(j)) = (α(j), β(j))2 is a specified mapping function. The above formula means
that g (xi) can be converted into a series of quantum operations, the implementation of
which is shown in Figure 5a. To encode multiple training examples into quantum states
simultaneously, we should treat f (xi) as a controlled version, the implementation of which
is shown in Figure 5b.

3.8. The Details of BQM

The implementation of GBLS is shown in Figure 5c. In it, the data encoding the unitary
Udata consists of a controlled set of f (xi) quantum operations. The implementation of
encoding unity Udata depends on the size of the batch B. For the quantum kernel classifier
with BCE loss and MSE loss (B = M), it can be seen from Formula (30) that the unitary
encoding is

Udata = R(γ(α(j), β(j)))⊗ R(γ(α(j), β(j))) (31)

For a quantum kernel classifier with MSE loss (B = M/4), the implementation of encoding
unitary Udata is the same as that of BQM, as shown in Figure 5.
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Figure 5. Implementation of BQM in numerical simulation. (a) The circuit implementation of the
encoded unitary Udata corresponding to the feature map f (xi) is illustrated. (b) The realization of
quantum operation f (xi). (c) The implementation of BQM, given input Tk = {xi, xj, xm, xn}.

4. Results

We will analyze the security of the proposed BQM, intuitively express the evolution
and generation process of the dataset by using the dot plot, and evaluate the algorithm’s
performance through entropy analysis and testing [48–50].

4.1. Dataset Evolution

This algorithm’s dataset generation process is shown in Figure 6. It uses the top K − 1
pair and the Kth pair in the original dataset for label classification and uniform sampling. It
divides all data pairs into sub-datasets labeled as 1 (or 0) according to the y value of 0 (or 1).

The yellow cube in the figure represents the data point in the data pair whose value of
y is 1, the blue cube represents the data point in the data pair whose value of y is 0, and the
point whose circle in red represents the Kth data point. The specific rules are as follows:

1. Represents the original dataset when yk = 1 as the ‘A’ cube or when yk = 0 as the ‘B’
cube in the Kth pair of data (xk, yk);

2. Represents the uniform sampling from the sub-dataset labeled 1 in Figure 6a to
generate a new dataset in Figure 6b;

3. Represents the uniform sampling from the sub-dataset labeled 0 in Figure 6a to
generate a new dataset in Figure 6c.

4.2. Stability and Convergence Analysis

Define a utility-bound R as a utility measure to evaluate the distance between the
optimization result and the stationary point in the optimized environment.

R = E[||∇θ L(θ(j))||]2 ≤ ε(j) (32)

For the BQM quantum classifier with a depolarization noise setting, the utility bound
of output θ(j) ∈ Rl after j iterations is

ε(j) = O(poly(
l

j(1 − P)d ,
l

BK(1 − P)d ,
l

(1 − P)d )) (33)

where P is the depolarization rate, l is the total number of trainable parameters, K is the
number of measurements to estimate the quantum expected value, d is the circuit depth of
the variable component sub-circuit, and B is the number of batches.
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We use the decay rate of log(ε(j)) to define the asymptotic convergence rate of this
optimization algorithm [51,52]. According to Equation (33), the attenuation rate of log(ε(j))
is slower than that of −j, which proves that this algorithm has a sublinear convergence rate.

When B = M, we input each sample Tj in turn to variable component subcircuits to
obtain ∇L(θ, Tj). Once the set {∇L(θ, Tj)}M

j=1 is collected, the gradient ∇L(θ, T) can be

estimated by 1
M ∑M

j=1 ∇L(θ, Tj). Assuming that the number of measurements required to
estimate the derivative of the JTH parameter θj is K, the total number of measurements
obtained is MK for 1

M ∑M
j=1 ∇L(θ, Tj). Therefore, the estimate of ∇L(θ, Tj) with l parameters

requires MKl measurements.
For the above definition of utility bound R, the results show that a large number of

lot B can guarantee a better realization of utility bound R by increasing the total number
of measurements.

Figure 6. Dataset evolution. The yellow cube in the figure represents the data point in the data pair
whose y = 1, the blue cube represents the data point in the data pair whose y = 0, and the point circle
in red represents the Kth data point. (a) The traditional dataset when defined as T, which is defined in
Equation (1). (b) When Kth = 1 (that is, the red grid labeled A), according to the generation formula,
Kth is combined with the first K − 1 labels with y = 0, and the resulting dataset. (c) When Kth = 0
(that is, the red grid labeled B), according to the generation formula, Kth is combined with the first
K − 1 labels with y = 1, and the resulting dataset.

4.3. Performance Analysis under Depolarization Noise

We employ depolarization channels to mimic the system noise, since the number of
measurements and the quantum system’s noise are both constrained. We next examine
how well BQM performs in the presence of depolarization noise [53].

If a quantum state is ω, we define the depolarizing channel �P acting on this quantum
state as

�P(ω) = (1 − P)ω + P
Il
l

(34)

where P is the depolarization rate, and l is the total number of trainable parameters.
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We compare the performance of BQM and two other quantum kernel classifiers when
quantum system noise and measurement delays are considered. Among them, BQM stands
for a binary classification quantum neural network model based on the optimized Grover
algorithm proposed in this paper. The two classifiers compared with BQM are defined as
“BCE” and “MSE”, respectively. “BCE” stands for the quantum kernel classifier with binary
cross-entropy loss, and “MSE” means the quantum kernel classifier with the mean square
error loss (B = N). We simulated the statistics for each of the three classifiers by repeating
the values 10 times. Figure 7 illustrates the simulation findings. After 20 periods, BQM,
BCE, and MSE quantum classifiers achieve the same performances. It can be observed
that the quantum classifiers with MSE loss have lower convergence speeds and larger
variances than the BQM and BCE classifiers. This phenomenon reflects that using BQM
for classification tasks with different batches is meaningful. In Table 1, we compare the
average training and testing accuracies of the BQM, BCE, and MSE quantum classifiers
in the last stage. Considering the measurement error and quantum gate noise, BQM still
achieves a stable performance because of its minimal variance.

(a) Train Accuracy P = 0.1. (b) Test Accuracy P = 0.1.

(c) Train Accuracy P = 0.3. (d) Test Accuracy P = 0.3.

Figure 7. The performance of different quantum classifiers at the different depolarization rates
(P = 0.1, 0.3). Depolarizing noise models extracted from quantum hardware are applied to the
trainable unitary Uc(θ) of these three classifiers. The labels ‘BQM’, ‘BCE’, and ‘MSE’ refer to the
proposed Grover-based quantum classifier, the quantum kernel classifier with BCE loss, and the
quantum kernel classifier with mean square error loss. (a,b) shows the variation of the train and test
accuracies of BQM and the quantum kernel classifier with BCE loss with a P value of 0.1. (c,d) show
the variation of the train and test accuracies of BQM and the quantum kernel classifier with BCE loss
when the P value is 0.3. Vertical bars reflect the variance of the train and test accuracy at each iteration.

The binary QNN model based on Grover, quantum kernel classifier BCE loss, and
quantum kernel classifier mean square error loss is reflected by the labels ‘BQM’, ‘BCE’,
and ‘MSE’. The train and test accuracies of the BQM quantum classifier are shown in the
left and right figures. The vertical bar represents the train and test accuracy variation at
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each iteration, where all hyperparameter settings are the same as those used in the above
numerical simulation.

According to the numerical simulation results of the three quantum classifiers in
Figure 7, BQM can obtain a good utility boundary R through some tests. When they
achieve basically comparable performances, BQM reduces the number of measurements
required by K = 4 times compared to quantum classifiers with BCE losses and MSE losses
(B = N). This result shows that when N is larger, there is a large separation of computational
efficiency between BQM and the previous B = N quantum classifier.

The above data demonstrate that, when BQM is compared to the other two quantum
classifiers, the number of measurements required by BQM is decreased by four times,
demonstrating BQM’s efficacy.

Table 1. The average training and testing accuracies of BQM, BCE, and MSE quantum classifiers in
the last stage. The value ‘a ± b’ means that the average precision is a and its variance is b. The labels
‘BQM’, ‘BCE’, and ‘MSE’ refer to the proposed Grover-based quantum classifier, the quantum kernel
classifier with BCE loss, and the quantum kernel classifier with mean square error loss.

Algorithm’s
Name

P = 0.1 (Train) P = 0.1 (Test) P = 0.3 (Train) P = 0.3 (Test)

BCE 0.883 ± 0.034 0.871 ± 0.071 0.924 ± 0.042 0.799 ± 0.061
MSE 0.941 ± 0.017 0.938 ± 0.008 0.929 ± 0.034 0.917 ± 0.011
BQM 0.977 ± 0.011 0.971 ± 0.007 0.951 ± 0.027 0.949 ± 0.010

4.4. Complex Comparsion Analysis

After receiving the encoded data in the variable component subcircuit of the quantum
classifier, the measurement operator defines a query as one measurement. The iterative
process of this algorithm is shown in Figure 8. According to the quantum classifier’s
training mechanism, calculating the total number of measurements for variable component
subcircuits is comparable to the query complexity of obtaining the gradient in a time frame.

Figure 8. The iterated process of BQM algorithm. After receiving the encoded data in the vari-
able component subcircuit of the quantum classifier, the measurement operator defines a query as
one measurement.

The next step is to derive the number of measurements required for a quantum kernel
classifier with BCE loss in one period. For the dataset T, the BCE loss is generated

LBCE = − 1
N

N−1

∑
i=0

yi log(P(yi)) + (1 − yi) log(1 − P(yi)) (35)

where yi is the label of the ith example, and P(yi) is the prediction probability of the label
yi; the output of its quantum circuit is

P(yi) = Tr((|1〉〈1|)⊗ H ⊗∇ (36)
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where ∇θ = |i∗〉〈i∗|)Uc(θ)|0〉〈0|Uc(θ)†, Uc(θ) is defined in Equation (25), and (|1〉〈1|)⊗
H ⊗ (|i∗〉〈i∗|) = Π is the measurement operator. According to the parameter displacement
rule, the derivative of BCE loss is satisfied

∂LBCE

∂θe
=

1
N

N−1

∑
i=0

ρ
Tr(Π∇θ+)− Tr(Π∇θ−)

2
(37)

where θ± is defined in Equation (28), ρ = 1−yi
1−P(yi)

− yi
P(yi)

. To obtain the gradient of BCE loss
according to the above equation, we need to give each training example to the quantum
kernel classifier to estimate P(yi), and then calculate the coefficient ρ.

BQM uses the superposition property of the loss function L defined in Equation (17)
to obtain the gradient ∂L

∂θe
. According to Equation (23), the gradient of BQM satisfies

∂L(θ, Tk)

∂θe
=

s
2

(
1 − yk(Tr

(
Π∇

θ
(k)
+

)
− Tr

(
Π∇

θ
(k)
−

)
)

)
(38)

where yk refers to the label of the last pair in the training example Tk. The gradient of Tk may
be calculated using 2K measurements, where the first K measurement aims to approach

Tr
(

Π∇
θ
(k)
−

)
and the last K measurement aims to approximate Tr

(
Π∇

θ
(k)
+

)
, according to

the equation above.
Complex comparison analysis determines the effect of the dataset size on the binary

QNN model in this paper. The standard Grover search algorithm’s search complexity is
O(

√
Kl) for information data entries of size K and the total number of trainable parameters

l. The optimal algorithm classification complexity value is O(
√

Kl
MT2 ), as can be shown in

the following Table 2. The reduced query complexity of BQM implies a potential quantum
advantage in completing the classification task.

Table 2. Query complexity in several algorithms. The notations T, K, M, and l refer to the batch size
range, the wide variety of measurements used to estimate quantum expectation value, the complete
variety of education examples, and the total number of trainable parameters.

Algorithm’s Name Query Complexity

Grover O(
√

Kl)
Younes’ algorithm O(

√
Kl
M )

BCE O(KMl)
MSE O(KMl)
BQM O(

√
Kl

MT2 )

5. Conclusions

As an essential source of information for value-added social media websites, user
behavior patterns are the key to fast and accurate identification through session division to
realize extensive data analysis. In this paper, based on the trial-and-error method of the
Grover search algorithm, combined with the binary classification task of QNN supervised
learning, the advantages of the Grover quantum algorithm are brought into play in the
quantum classifier of the quantum neural network. The data are preprocessed by analyzing
the network search data to realize the construction of the BQM algorithm. They lay the
foundation for the development of user behavior pattern prediction. The experimental data
show that the application effect of this algorithm has a more apparent accurate recognition
rate than the other two classifiers, and it still has a prominent effect in the depolarized
noise environment. It can play a supervisory role in the security detection of future users’
network search behaviors.
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Abstract: We present various results on the scheme introduced in a previous work, which is a
quantum spatial-search algorithm on a two-dimensional (2D) square spatial grid, realized with a 2D
Dirac discrete-time quantum walk (DQW) coupled to a Coulomb electric field centered on the the
node to be found. In such a walk, the electric term acts as the oracle of the algorithm, and the free walk
(i.e., without electric term) acts as the “diffusion” part, as it is called in Grover’s algorithm. The results
are the following. First, we run long time simulations of this electric Dirac DQW , and observe that
there is a second localization peak around the node marked by the oracle, reached in a time O(

√
N),

where N is the number of nodes of the 2D grid, with a localization probability scaling as O(1/ ln N).
This matches the state-of-the-art 2D-DQW search algorithms before amplitude amplification We then
study the effect of adding noise on the Coulomb potential, and observe that the walk, especially the
second localization peak, is highly robust to spatial noise, more modestly robust to spatiotemporal
noise, and that the first localization peak is even highly robust to spatiotemporal noise.

Keywords: quantum algorithms; quantum walks; quantum spatial search; noise

1. Introduction

Discrete-time quantum walks (DQWs) correspond to the one-particle sector of quantum
cellular automata [1,2]. They can simulate numerous physical systems, ranging from particles
in arbitrary Yang–Mills gauge fields [3] and massless Dirac fermions near black holes [4],
to charged quantum fluids [5], see also Refs. [6–16] for other physics-oriented applications.

Moreover, DQWs can be seen as quantum analogs of classical random walks (CRWs) [17],
and can be used to build spatial-search algorithms that outperform [18] those built with
CRWs. Continuous-time quantum walks can also be used for such a purpose [19]. In three
spatial dimensions, DQW-based algorithms [18,19] find the location of a marked node with
a constant localization probability (We call “localization probability” the probability to be
at the marked node, or nodes if there are several of them.) after O(

√
N) time steps, with N,

the number of nodes of the three-dimensional grid, and this is exactly the bound reached
by Grover’s algorithm [20–25]. However, no two-dimensional (2D) QW proposed so far
reaches Grover’s lower bound.

The state-of-the-art result using a 2D DQW was obtained by Tulsi in Ref. [26]: Tulsi’s
algorithm finds a marked node with a localization probability scaling as O(1/ ln N) in
O(

√
N) time steps, where N is the total number of nodes. To reach a probability inde-

pendent of N, several amplitude amplification time steps have to be performed after
the quantum-walk part. These extra time steps are Grover’s algorithm time steps, see
Ref. [27]. Taking the amplitude amplification into account, Tulsi’s algorithm reaches an
O(1) localization probability after O(

√
N ln N) time steps.

Other schemes of 2D DQW for spatial search have followed, such as the one by
Roget et al. in Ref. [28], where the 2D DQW simulates a massless Dirac fermion on a grid

Entropy 2022, 24, 1778. https://doi.org/10.3390/e24121778 https://www.mdpi.com/journal/entropy370
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with defects. This scheme is inspired by physics, and it reaches Tulsi’s bound using a coin
of dimension 2 instead of 4. Recently, Zylberman and Debbasch introduced in Ref. [29]
a new DQW scheme for 2D quantum spatial search. This scheme implements quantum
search by simulating the dynamics of a massless Dirac fermion in a Coulomb electric field
centered on the nodes to be found. We call this DQW “electric Dirac DQW” (We call “Dirac
DQW” a DQW that has as a continuum limit the Dirac equation. Throughout this paper,
the terminology “electric Dirac DQW” will always refer to a Dirac DQW coupled to a
Coulomb electric potential, unless otherwise stated. In the literature, other types of electric
potentials have been considered. The reason why we do not specify the term “Coulomb” in
the present denomination “electric Dirac DQW” is because the idea we want to convey is
that the marked node is encoded in the shape of the electric potential, but the precise form
of the electric potential, e.g., here, the fact that it is a Coulomb potential, may not be that
relevant.). In this walk, the oracle is a position-dependent phase .

This oracle is diagonal in the position basis and can be efficiently implemented on
n qubits up to an error ε using O( 1

ε ) primitive quantum gates [30]. This total number of
quantum gates is independant of n and makes possible the implementation of the oracle
on current Noisy Intermediate Scale Quantum (NISQ) devices and on future universal
quantum computers.

Note also that the algorithm proposed in Ref. [29] actually constitues a paradigm
change in the construction of search algorithms, because it is based on the physically
motivated idea that the position of the marked node can be encoded in the shape of an
artificial force field, which acts on the quantum walker.

One of the main results of Zylberman and Debbasch’s paper [29] is a localization
probability, which displays a maximum in ON→∞(1) time steps, the localization probability
scaling as O(1/N) (a detailed analysis is presented in Section 3). Since it focuses on this
result, Ref. [29] does not offer an analysis of the walk at times much larger than O(1).
Moreover, practical implementation not only on current NISQ devices, but also on future,
circuit-based quantum computers, can only be envisaged if the algorithm is robust to noise
(see, for example, Refs. [5,31–37]); this question is also not addressed in Ref. [29].

The aim of this article is to explore both aspects: long-time dynamics and robustness
to noise. The main results are the following. First, the electric Dirac DQW exhibits a
second localization peak at a time scaling as O(

√
N) with localization probability scaling

as O(1/ ln N). This makes this walk state-of-the-art for 2D DQW spatial search before
amplitude amplification. Moreover, this second localization peak is highly robust to spatial
noise. Finally, the peak is also robust to spatiotemporal noise, but not as much as it is to
time-independent spatial noise.

The article is organized as follows. In Section 2, we offer a review of the electric
Dirac DQW presented in Ref. [29]. In Section 3, we study in detail the first two maxima
of the localization probability. We show that the first maximum, already analyzed in
Ref. [29], is actually present up to N = 9 × 106 > 106 � 220 (have in mind that 20 is
the current average number of working qubits on most IBM-Q platforms according to
https://quantum-computing.ibm.com/services/resources accessed on 29 November 2022).
We also present evidence for the scaling laws characterizing both the first peak and the
second, long-time peak, which reaches Tulsi’s state-of-the-art bound. In Section 4, we
analyze the ressources one needs to implement the quantum spatial search in terms of
qubits and primitive quantum operations. In Section 5, we show that the walk, and in
particular the second peak, have a good robustness to spatial oracle noise. We also show
that the first peak is robust even to spatiotemporal noise. In Section 6, we propose an
analysis of the walker’s probability distributions. These probability distributions show
that the spatial noise does not affect the shape of the peaks significantly. The peaks remain
extremely high relative to the background, which shows not only good but high robustness
of the peaks to spatial oracle noise. The probability distributions also show that the second
peak is sharper than the first one.
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2. Basics

2.1. Definition of the 2D Electric Dirac DQW

We consider a 2D square spatial grid with nodes indexed by two integers (p, q) ∈ [[0, M]]2,
where M ∈ N is the number of nodes along one dimension and N = M2 is the total number
of nodes. The time is also discrete and indexed by a label j ∈ N. The walker is defined
by its quantum state |Ψj〉 in the Hilbert space HC ⊗ HP, where HC, called coin space, is
the two-dimensional Hilbert space, which corresponds to the internal, coin degree of
freedom, and HP, called position space, corresponds to the spatial degrees of freedom. The

wavefunction of the state will be denoted as Ψj,p,q ≡
(

ψL
j,p,q ψR

j,p,q

)(
, where ( denotes

the transposition. The discrete-time evolution of the walker is defined by the following
one-step evolution equation,

Ψj+1,p,q = (UΨj)p,q . (1)

The one-step evolution operator, also called walk operator, U , is defined by

U := e−ieφ R(θ−) S2 R(θ+) S1 , (2)

where S1,2 are standard shift operators,

(S1Ψ)L
p,q := ψL

p+1,q (3a)

(S1Ψ)R
p,q := ψR

p−1,q (3b)

(S2Ψ)L
p,q := ψL

p,q+1 (3c)

(S2Ψ)R
p,q := ψR

p,q−1 , (3d)

R(θ) is a coin-space rotation, also called coin operator, defined by

R(θ) :=
[

cos θ i sin θ
i sin θ cos θ

]
, (4)

and
θ± := ±π

4
− μ

2
, (5)

with μ, some real parameter. A schematic representation of a quantum circuit for U is
proposed in Figure 1. More details about the circuit are given in Section 4. A schematized
picture of the walk operator is proposed in Figure 2.

=
log2 M

log2 M

|coin〉

U

R(θ+) R(θ−)

e−ieφ|p〉 S1

|q〉 S2

Figure 1. Quantum circuit of a single step operator U .
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(a) Shift operator along p-axis S1 (b) Coin operator R(θ+)

(c) Shift Operator along q-axis S2 (d) Coin and oracle operator e−ieφR(θ−)

Figure 2. Schematic representation of the quantum walk scheme for one step, starting from position
(p, q). (a) First, the S1 shift operator is applied, shifting the ψL component at position (p, q) to position
(p + 1, q) and the ψR component at position (p, q) to position (p − 1, q). (b) Second, the rotation
R(θ+) is applied at positions (p ± 1, q), mixing the two components ψL and ψR (see Equation (4) with
angle θ+). (c) Third, the S2 shift operator is applied, shifting the ψL components at positions (p ± 1, q)
to positions (p ± 1, q + 1) and the ψR components at position (p ± 1, q) to position (p ± 1, q − 1).
(d) Finally, the rotation R(θ−) and the oracle e−ieφ is applied. The two components ψL and ψR are
first mixed by the rotation defined Equation (4) with angle θ− and then multiplied by the position-
dependent phase factor defined by the potential φ. In this scheme, these operations are illustrated by
considering the components ψL

p,q and ψR
p,q at a node (p, q). At the end of one step, the components

ψL
p,q and ψR

p,q are spread at the nodes (p + 1, q + 1), (p + 1, q − 1), (p − 1, q + 1), and (p − 1, q − 1) in
a unitary manner.

The operator e−ieφ is diagonal in position space, i.e., it acts on Ψj as

(e−ieφΨj)p,q = e−ieφp,q Ψj,p,q , (6)

with φ : (p, q) �→ φp,q ∈ R some sequence of the lattice position, and e, a parameter that
we can call the charge of the walker, see why further down. The sequence φ can be called
the lattice electric potential for at least two reasons: (i) in the continuum limit (see below,
Section 2.2), this sequence indeed becomes, mathematically, an electric potential coupled
to the walker, who then obeys the Dirac equation, and (ii) beyond the continuum limit, it
has been shown that similar 2D DQWs exhibit an exact lattice U(1) gauge invariance [38]
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which, in the continuum limit, becomes the standard U(1) gauge invariance of the Dirac
equation coupled to an electromagnetic potential.

2.2. Continuum Limit

We introduce a spacetime-lattice spacing ε, and coordinates tj := εj, xp := εp,
and yq := εq [39,40]. We assume that Ψj,p,q coincides with the value taken at point tj,
xp, and yq by a function Ψ of the continuous coordinates t, x, and y. We are interested in the
dynamics followed by Ψ when ε → 0. Let us introduce the following continuum quantities,

m :=
μ

ε
(7a)

V(xp, yq) :=
φp,q

ε
, (7b)

which are, respectively, the mass and electric potential, see why just below.
Expand now Equation (1) in ε around ε = 0. The walk operator, Equation (2), has been

chosen so that (i) the zeroth-order terms give us Ψ(t, x, y) = Ψ(t, x, y), i.e., the terms cancel
each other, and (ii) the first-order terms deliver the well-known Dirac equation coupled to
an electric potential V. This equation (in natural units where c = 1 and h̄ = 1) reads:

i∂tΨ = HΨ , (8)

where the Dirac Hamiltonian is

H := αk(−i∂k) + mα0 + eV , (9)

where summation over k = 1, 2 is implicitly assumed. The alpha matrices are

α0 := σx (10a)

α1 := σz (10b)

α2 := −σy, (10c)

where the σs are the Pauli matrices. Thus, this DQW, Equation (1), simulates the (1+2)D
Dirac equation coupled to an electric potential, explaining why the “Dirac DQW” is called
an electric DQW.

2.3. Coulomb Potential

As shown in Equation (8), the sequence φ = εV represents in the continuum limit the
electric potential to which the walker is coupled. We choose V to be a Coulomb potential
created by a point particle of charge Q at location (Ωx, Ωy) on the 2D plane:

eV(x, y) :=
eQ√

(x − Ωx)2 + (y − Ωy)2
. (11)

For the sake of simplicity, e will be set to −1. As discussed in Ref. [29], one can take,
without loss of generality (i) (Ωx, Ωy) = (M

2 − 1
2 , M

2 − 1
2 ), which is called the center, and (ii)

ε = 1. The charge Q is set to 0.9, and m = μ = 0. Notice that the center is not located on a
node of the 2D lattice; it is at equal distance of the four nodes, namely, (M

2 , M
2 ), (M

2 − 1, M
2 ),

(M
2 , M

2 − 1), and (M
2 − 1, M

2 − 1). With this choice of potential, the walk can be referred to
as a “Coulomb walk”.

2.4. Definition of the Spatial-Search Problem

The spatial-search problem is defined as follows. Consider at time j = 0 a fully
delocalized walker on the grid, i.e., ∀(p, q, a) ∈ [[0, M]]2 × {L, R}, ψa

0,p,q := 1
M

√
2
. The
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problem addressed by the Coulomb walk with this initial condition is: can the walker
localize on the nodes where φp,q is at its extremum, that is, the four nodes around the center
(Ωx, Ωy) = (M

2 − 1
2 , M

2 − 1
2 )?

The first observable will be the probability of being on these nodes as a function of
time and of the number of grid nodes:

Pj(N) := ∑
(p′ ,q′)∈{± 1

2 }2

∥∥∥Ψj,Ωx+p′ ,Ωy+q′(N)
∥∥∥2

, (12)

which we call localization probability. It has been shown in Ref. [29] that the localization
probability admits a first maximum at time j1(N) = 82, independent of N. We now define
long times as times tj with j much larger than 82. The long-time behavior is studied below
in Section 3.

We consider the probability distribution over space as second observable,

dj,p,q(N) :=
∥∥Ψj,p,q(N)

∥∥2 , (13)

which is studied in Section 6.
The fully delocalized initial condition is common in spatial-search problems because

of Grover’s algorithm [20]. Moreover, this initial condition can easily be implemented
on a quantum circuit as a tower of Hadamard gates. Other initial superpositions for the
coin part were considered in Ref. [29]. Now, the fully delocalized initial condition forces
us to pay attention to boundary conditions. In our work, we choose periodic boundary
conditions. From a computer science point of view, one can expect from a database to have
a list of adresses, which are on a graph whose ends are connected, corresponding exactly to
periodic boundary conditions.

3. Noiseless Case: Long Times

In Ref. [29], it is shown that for a ‘small’ grid (up to N = 2.5 × 105), the first maximum
occurs at j1(N) = 82 = ON→∞(1) with a localization probability Pj1(N)(N) scaling as
O(1/N). According to Figure 3, the result j1(N) = O(1) actually holds up to N = 9 ×
106 � 107. The left panel of Figure 4 shows that Pj1(N)(N) = O(1/N) is valid up to
N = 900 × 900 � 106. Now, Pj(N) with fixed N presents several other maxima as j varies,
and Figure 4 shows in particular that there is a prominent second maximum. This second
maximum occurs at a time j2(N) which, according to Figure 3 and to the right panel of
Figure 4 scales as O(

√
N). The right panel of Figure 4 also shows the localization probability

Pj2(N)(N) = O(1/ ln N) . This result matches the state-of-the-art result in 2D DQW search
algorithms before amplitude amplification [26].

0 500 1000 1500 2000 2500 3000√
N

0

500

1000

1500

2000

2500

St
ep

j

Time of the first and second maximum probability

j1
j2
y = 0.951

√
N − 169

Figure 3. Times j1 (blue) and j2 (orange) at which the localization probability Pj(N) reaches a
maximum, plotted as a function of

√
N for m = 0, e = −1, and Q = 0.9.
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Figure 4. Rescaled localization probability Pj(N) for m = 0, e = −1, and Q = 0.9. Left panel:
Pj(N)× N as a function of j, for several values of N. Right panel: Pj(N)× ln N as a function of j,
for different values of N.

4. Ressource Analysis

Since the evolution operator of the Coulomb walk is built out of two 1D shift operators,
one for each spatial directions, the Coulomb walk only requires a 2-dimensional coin space.
On the contrary, Tulsi’s walk (see Ref. [26]) uses a 2D shift operator, which requires a
4-dimensional Hilbert space for the coin, so encoding this walk requires one more qubit
than encoding the walk studied in the present article. Also note that Tulsi’s algorithm also
uses an ancilla qubit to allow a part of the probability amplitude to remain on the same
site after one evolution step (ltechnically, Tulsi’s walk uses a controlled shift operator and
a controlled coin operator with respect to the ancilla). Thus, in total, Tulsi’s algorithm
needs two more qubits than the Coulomb walk to perform a quantum spatial search on a
database of the same size. Roget et al. ’s walk, presented in Ref. [28], is a DQW—as is the
Coulomb walk. It also uses two 1D shift operators and dispenses with the ancilla qubit.
The difference with the Coulomb walk lies in the choice of oracle. The Coulomb walk uses
an artificial electric field as oracle, while Roget et al.’s walk views the node to be found
as a defect and therefore replaces on the defect the rotation R(θ) of Equation (4) by the
identity operator.

A scheme implementing efficiently (up to a given precision ε) position-dependent
diagonal unitaries similar to the electric potential oracle in Equation (6) can be found
in J. Welsh et al. (Ref. [30]). The total number n of one-qubit and two-qubit quantum
operations used in this scheme scales as O( 1

ε ) and is actually independent of n. However,
the implementation of the shift operators S1,2 (see Equation (3)) requires a number of
primitive quantum operations, which does depend on n and scales as O(n2) because
implementing shift operators requires performing Quantum Fourier Transforms (QFTs) [41].
Note that each coin operation R(θ−) and R(θ+) in Equation (2) can be implemented as
only one single quantum gate on the coin qubit.

376



Entropy 2022, 24, 1778

5. Oracle Noise

Today, one of the main goals in quantum computing is having fault-tolerant algorithms,
which can be implemented on NISQ devices [42–44].

In the scheme developed by Welch et al. in Ref. [30], the final quantum circuit of the
oracle is composed of CNOT and RZ. The rotation angles are only implementable up to a
finite accuracy due to hardware limitations. This generates fluctuations in the potential
φ and we model these fluctuations by a white noise. More precisely, we replace φp,q by
φB

j,p,q = φp,q + Bj,p,q, where B is a white noise in all its variables. To make things as simple
as possible, given a point (j, p, q), Bj,p,q is chosen randomly with uniform distribution
in a certain interval (−Bmax, Bmax) independent of (j, p, q). Noise that depends on time
only does not modify the probability distribution. All noises considered in this article
will therefore be space-dependent. We will first focus on time-independent, but space-
dependent noise, and then switch to both time- and space-dependent noise.

Note that decoherence noise on the free-walk part and on Grover search has already
been studied in Refs. [45–51].

The amplitude of the noise is best characterized by the noise-to-signal ratio:

r :=
Bmax

maxp,q | φp,q | . (14)

5.1. Spatial Oracle Noise

In this subsection, all observables are averaged over 50 realizations of the noise.
Figure 5 presents results obtained for N = 2002 and N = 5002. When the noise-to-signal
ratio r is not too high, say r � 0.5, both peaks still exist and the second one occurs slightly
later, with approximately the same time delay with respect to the noiseless situation. The
amplitude of the peaks is also affected by the noise. In particular, for large enough N (see
the right panel in Figure 5), the amplitude of the first peak decreases while the amplitude of
the second peak actually increases. Thus, weak noise favors, and even enhances the second
peak, at least for large enough values of N. Increasing the noise-to-signal ratio r erases the
first peak and, to a certain extent, also the second one. Note however that, for large enough
N, the probability Pr

j (N) still exhibits a (rather flat) maximum in lieu of the second peak.
So, in any case, noise favors the second peak. So, all in all, the algorithm studied in this
article shows good to great robustness to spatial noise. It is also instructive to investigate
this robustness through the probability distribution over space dr

j,p,q(N) and this is done in
Section 6 below.
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Figure 5. Localization probability Pr
j (N) with spatial noise as a function of j, for different noise-to-

signal ratios r, for m = 0, e = −1, Q = 0.9, and
√

N = 200 (top) and
√

N = 500 (bottom).

5.2. Spatiotemporal Oracle Noise

In this subsection, all observables are averaged over 10 realizations of the noise.
Numerical results are presented in Figure 6. One first observes a global decreases in
the localization probability, which gets globally lower with increasing r. However, it
also appears that the first peak is less impacted by the noise than the rest of the curve,
and especially the second peak. This can be understood in the following way. Since the
noise we are considering is white in both space and time, the central limit theorem applies.
The walk will therefore exhibit diffusive behavior in the ‘long’-time limit (see, for example,
Ref. [49]).

However, the shorter the time, the less important the perturbation induced by the
noise on the walk’s behavior. The striking robustness of the first peak, which always
occur at j = 82, indicates that j = 82 is a ‘short’ time, at least for noise-to-signal ratios
exceeding 0.5.
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Figure 6. Localization probability Pr
j (2002) as a function of j for different spatiotemporal noise-to-

signal ratios r, with m = 0, e = −1, and Q = 0.9.

6. Probability Distribution in Space

We now investigate the probability distribution Dj = {dj,p,q, {p, q} ∈ [[0; M]]2} of the
walk at the localization times j1 and j2 corresponding to the first and second peak. The
height ratio η between the peak and the background is defined as

ηj(N) :=
dj, M

2 −1, M
2 −1(N)

dj,1,1(N)
, (15)

378



Entropy 2022, 24, 1778

where dj, M
2 −1, M

2 −1(N) is the probability to be on one of the four nodes of interest (where
the potential is maximum), and where dj,1,1(N) is the probability to be where the potential
is the weakest.

6.1. Noiseless Case

The noiseless case is presented in Figure 7. The probability distributions are sharply
peaked on the nodes of interest for both j = j1 (top plots) and j = j2 (bottom plots). For
a small grid size (i.e.,

√
N = 200), the height ratio is better for the first peak than for the

second peak (the precise values are given in the figure caption). For a larger grid size (i.e.,√
N = 500 and

√
N = 1000), the height ratio of the first peak is important, but that of the

second peak is substantially larger (see the figure caption).

6.2. Spatial Oracle Noise

Let us now investigate the probability density Dr
j = {dr

j,p,q, {p, q} ∈ [[0, M]]} in the
presence of noise with noise-to-signal ratio r. Figure 8 displays Dr

j (top plots) and Dr
j − Dj

(bottom plots) at j = j1 (left plots) and j = j2 (right plots). On the top plots of Figure 8,
where D1/3

j for r = 1/3 is plotted, one observes that the overall shapes of the peaks, and in
particular their widths, are not affected by the noise. The height ratios (given in the caption
of Figure 8) are still very large, even in the presence of a substantial amount of noise
(r = 1/3). This shows not only good, but high robustness of the walk to spatial noise. Looking
at the bottom plots of Figure 8 one observes that noise makes the first peak lower (two
bottom left plots), but makes the second peak (two bottom right plots) higher for a small
grid size (M = 200) or balanced between the four nodes of interest for a larger grid size
(M = 500). These observations are of course consistent with the curves of Figure 5.
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Figure 7. Probability distribution Dj in the noiseless case for
√

N = 200, 500, 1000, j = j1 (top plots),
and j = j2 (bottom plots) and m = 0, e = −1, Q = 0.9. Height ratios for j1: ηj1 (2002) = 160,
ηj1 (5002) = 163, and ηj1 (10002) = 163. Height ratios for j2: ηj2 (2002) = 127, ηj2 (5002) = 242,
and ηj2 (10002) = 1933.
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Figure 8. Top plots: Probability distribution dr=1/3
j,p,q (N) for

√
N = 200 and 500, at j1 (left plots) and j2

(right plots), averaged over 50 realizations of the spatial noise, with m = 0, e = −1, Q = 0.9. Height
ratios for j1: ηr=1/3

j1
(2002) = 87 and ηr=1/3

j1
(5002) = 115. Height ratios for j2: ηr=1/3

j2
(2002) = 142 and

ηr=1/3
j2

(5002) = 218. Bottom plots: Difference dr=1/3
j,p,q (N) − dj,p,q(N) between the noisy and the

noiseless cases. for m = 0, e = −1, Q = 0.9.

7. Conclusions and Discussion

In this paper, we have shown that the 2D electric Dirac DQW presented in Ref. [29]
has at least two different localization peaks: (i) one at short times (ON→∞(1) with N the
number of nodes on the 2D grid), for which the localization probability scales as O(1/N),
and (ii) another at a time scaling as O(

√
N) with localization probability in O(1/ ln N),

which matches the state-of-the-art result in spatial search with 2D DQWs before amplitude
amplification [26,28]. This dynamic was studied numerically up to N = 9 × 106 � 220.

This quantum spatial search also presents a memory advantage by formally requiring
two qubits less than Tulsi’s algorithm. In terms of quantum operations, the oracle can
be efficiently implemented on a quantum circuit up to an error ε using O( 1

ε ) primitive
quantum gates, allowing its implementation on current NISQ devices and future fault-
tolerant universal quantum computers.

We have also explored the effect of oracle noise by adding a white noise to the electric
potential. This white noise can be viewed, for example, as a model of the fluctuations
induced by the finite accuracy implementation of the quantum rotations involved in the
Oracle quantum circuit [30]. Our results demonstrate that the algorithm is highly robust to
oracle noise. The second peak is not only highly robust to, but actually slightly amplified
by, spatial noise. The second peak is admittedly less robust to spatiotemporal noise but the
first peak turns out highly robust to this type of noise. This study is thus very encouraging
for the future implementation of quantum spatial search with electric potential on universal
quantum computers and NISQ devices.

Adapting to the present walk, the ancilla technique used in Tulsi’s walk may make
the second peak appear sooner and might eventually help the walk reach Grover’s lower
bound. Furthermore, studying the evolution of the localization probability under other
kinds of noises is assuredly very promising to extend the robustness properties of the
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quantum spatial search with electric potential. Finally, extending all results to higher
dimensions and to walks using other fields such as oracle will certainly prove interesting.
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Abstract: We propose a multi-qubit Bose–Einstein-condensate (BEC) trap as a platform for studies of
quantum statistical phenomena in many-body interacting systems. In particular, it could facilitate
testing atomic boson sampling of the excited-state occupations and its quantum advantage over
classical computing in a full, controllable and clear way. Contrary to a linear interferometer enabling
Gaussian boson sampling of non-interacting non-equilibrium photons, the BEC trap platform pertains
to an interacting equilibrium many-body system of atoms. We discuss a basic model and the main
features of such a multi-qubit BEC trap.

Keywords: Bose–Einstein condensation; Gaussian boson sampling; quantum advantage; NP-hard
problem

1. Introduction to Quantum Statistical Physics of Atomic Boson Sampling in a
BEC Trap

1.1. The Essence of the Problem

Recently, a stationary stochastic process of many-body fluctuations of the excited-atom
occupations in a trapped Bose–Einstein-condensed gas has been suggested for quantum
simulation of the �P-hard problem of boson sampling [1]. Such an atomic boson sampling,
based on the Bose–Einstein-condensate (BEC) platform, is an alternative to a well-known
photonic boson sampling based on the linear interferometer platform [2–25]. It has the
potential to demonstrate quantum advantage [26–30] of the many-body interacting systems
over classical computers. For a full and clear demonstration of a �P-hardness of computing
atom-excitation sampling, a condensate should be nonuniformly spread over an entire
BEC trap and provide, via an interparticle interaction, multimode Bogoliubov coupling
between a large number of excited atom states. Moreover, all of the above parameters of the
many-body system should be controllable in a wide range to ensure sufficient variability
of the observed joint occupation statistics of the excited states or coarse-grained groups
of excited states. So, there is an open problem of designing BEC traps most suitable for
experimental studies of various phenomena associated with atomic boson sampling.

The present paper is devoted to this problem: We discuss a basic model of a potential
design of the multi-qubit BEC trap that could provide the required conditions and be
particularly suitable for atomic-boson-sampling experiments. It is inspired by an analogy
with multi-qubit or multi-qudit systems [31,32] and could look like a system of a finite
number, Q, of single-qubit or -qudit cells shown in Figure 1 in a two-dimensional (2D) case.

Remarkably, a direct measurement of fluctuations in a total occupation of the noncon-
densate in cold dilute gases has already been achieved [33,34]. Splitting the noncondensate
into some parts associated with the groups of excited states and measuring atom-number
fluctuations in the occupations of those parts is the next important step in the many-body
statistical physics toward testing quantum advantage. It is beyond the bulk of previous
studies of the BEC phenomena, which is devoted to the mean properties of the condensate
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and quasiparticles, and it is also beyond the previous studies of fluctuations in the total oc-
cupation of the condensate (see, e.g., [34–42]). The atom-number fluctuations are especially
important for the applications related to quantum information science and matter-wave
interferometers [43], including Ramsey [44,45] and Mach–Zehnder [46] on-chip interfer-
ometers. In the literature, there are also other interesting discussions of the atom-number
fluctuations associated with a subvolume of a BEC trap [47,48], BEC collapse [49], and
squeezed states [44].

Figure 1. Two-dimensional (2D) model of a BEC trap made up of Q single-qubit (or single-qudit) cells
of size L × L′ each contributing with two (or more) lower energy levels to the lower-energy miniband
of the multi-qubit (or multi-qudit) trap. This miniband is separated from the higher energy levels
by an energy gap ΔE much larger than the lower-energy splitting δE. For presentation purposes, an
inhomogeneous underlying (background) potential, designed for controlling the condensate profile
and Bogoliubov couplings, as well as the high potential walls at the outer borders of the trap are
not shown.

1.2. What Is the Atomic Boson Sampling?

In statistical theory, sampling is a selection of events (subsets) from within a sample
space of all possible outcomes (or results or sample points) to mimic the characteristics
of the probability distribution in a probability space (a probabilistic model). Atomic
boson sampling means sampling from the excited-state occupations of identical Bose
atoms subject to interparticle scattering (interaction) in a trapped Bose–Einstein condensed
gas within a statistical ensemble of a given experimental setup. The atoms forming the
condensate are not counted. One can consider the integer occupations nk = 0, 1, 2, . . . and
their joint probability distribution ρ({nk}) for the individual orthonormal excited states
{φk(r)| k = 1, 2, . . .}, orthogonal to the condensate wave function, or for groups of such
excited states. The simultaneous measurement of their occupations has to be completed
by multiple detectors via projecting atoms onto preselected subsets (groups) of the excited
states. The latter subsets determine the sampling probability distribution in question.

Condensed-matter statistical physics of a mesoscopic system of N atoms confined
in a trap is highly nontrivial due to an interaction between massive atoms taking place
on a background of the Bose–Einstein condensate formed by the same interacting atoms
via spontaneous symmetry breaking at a critical temperature Tc. Quantum many-body
fluctuations in this system remain �P-hard for computing [1] even in equilibrium and even
within the grand-canonical-ensemble [50] and Bogoliubov–Popov approximations [51–53].
For simplicity’s sake, we adopt these approximations in the present paper and assume that
the temperature is well below the critical region of the BEC phase transition, T � Tc.

The computational �P-hardness of atomic boson sampling is a real property of the
interacting BEC gas, not just a feature of the Bogoliubov–Popov approximation. It follows
from the exact non-perturbative theory of critical fluctuations in BEC, which is based on the
non-polynomial diagram technique [54–56] and also leads to the representation of the joint
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probability distribution of the occupations of the bare excited atomic states in terms of the
hafnian of a matrix associated with a correlation matrix which is similar to the one given by
the stated approximation. In other words, the �P-hardness is a robust property of atomic
boson sampling in the sense that it manifests itself (survives) even in the Bogoliubov–Popov,
i.e., the first order with respect to the interaction parameter, mean-field approximation.

Each act of atomic boson sampling occurs by means of a measurement of the occu-
pations of excited states or groups of them. One can employ, say, a simultaneous optical
multi-detector imaging. Then, the system of interacting atoms returns back to its equilib-
rium state and becomes ready for the next act of sampling/measurement. In a sense, the
system of atoms resets itself. This is true both if the atoms were reloaded into the trap
after being released from the trap in the case of a trap-destruction measurement or if the
atoms were not removed from the trap. Thus, the atomic boson sampler is not a quantum
simulator of some input signal or some artificial, controlled process. The system of atoms
in the BEC trap equipped with the atom-number detectors is just a quantum generator of
random strings of atom-excitation occupations based on the natural process of persistent
equilibrium fluctuations.

Surprisingly, atomic boson sampling has the potential to demonstrate a quantum
advantage that is similar to the one of Gaussian boson sampling of non-interacting photons
in a linear interferometer.

1.3. Comparison with Photonic Boson Sampling in a Linear Interferometer

Physics of photonic boson sampling in a linear interferometer, widely studied in the
past decade [2–25], looks significantly simpler since photons are non-interacting, massless
and enter the interferometer in a given quantum (e.g., Fock or squeezed) state from the
external sophisticated on-demand light sources. Importantly, atomic boson sampling from
an equilibrium BEC trap does not require external sources of atoms in a prescribed quantum
state because the interacting atoms generate squeezing by themselves. Thus, in order to
demonstrate the quantum advantage in a linear interferometer, one has to prepare the
system of photons in a prescribed nonequilibrium state, whereas a usual thermal state
of atoms in the BEC trap is enough in the case of atomic boson sampling. The reason
for switching from the original proposal [3] to the Gaussian boson sampling protocol
was an absence of the on-demand single-photon sources and availability of the reliable
on-demand sources of input photons in the Gaussian/squeezed states based on the process
of a parametric down-conversion [4,5,23].

The computational �P-hardness of the joint excited-state occupation fluctuations in
the BEC trap exists by itself and does not require an adjustment or fine tuning of any input,
processing, interaction or coupling parameters. On the contrary, Gaussian boson sampling
in a linear interferometer, like other usually discussed nonequilibrium quantum processors
and simulators, requires a lossless propagation through a system of beam couplers, splitters,
and phase shifters as well as external sources of photons in squeezed states. Moreover, the
main limiting factor for a demonstration of quantum advantage in photonic sampling is an
exponential growth of photon losses on the input–output propagation with an increasing
number of optical channels and coupling elements. Such a limiting factor is absent in the
case of atomic boson sampling.

1.4. Why Atomic Boson Sampling Is �P-Hard for Computing?—A Brief Theory

Despite a number of outstanding differences stated above, both atomic and photonic
boson samplings belong to the same �P-hard complexity class. The fact is that in both
cases, the sampling (i.e., joint boson-occupation) probability distribution is determined by
a hafnian (or, sometimes, a permanent) of matrices built from an appropriate covariance
matrix G of the boson creation and annihilation operators. The above fact follows from
the analytical calculation of the characteristic function (that is, Fourier transform) of the
joint occupation probability distribution by means of the Wigner transform technique
and application of the Hafnian Master Theorem that gives an explicit Taylor expansion
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of this characteristic function via the aforementioned hafnian [1,57]. It is well known that
for a general n × n matrix, computing the hafnian or permanent is �P-hard [58–60], that
is, requires an exponentially large number of operations ∼n32n/2 or ∼n22n, respectively,
for the best general-purpose algorithms [60–63]. Contrary to a determinant that can be
computed in polynomial time ∼n3 via Gaussian elimination, the hafnian and permanent
matrix functions are intimately related to the analysis of the �P-hard problems [26,64].

Yet, the computational �P-hardness (which is the basis of quantum advantage) of
atomic boson sampling pertains only if the matrices under the hafnian and the covariance
matrix G from which they are built are variable/controllable in a wide range by varying
the trapping potential, interparticle interaction (via Feshbach resonance [65]), temperature,
number of trapped atoms and other parameters of the BEC trap [66]. In other words, those
matrices should not be restricted to a narrow subset of matrices for which the hafnian
could be computed in polynomial time by some efficient approximation or algorithm,
such as a fully polynomial random approximation scheme (FPRAS) [59], a recurrence
method [67], etc.

In order to understand how to satisfy this requirement in the design of the BEC trap,
we need to know how the covariance matrix G depends on the trap parameters. Fortunately,
we have an analytical formula for the G via the matrix R of the Bogoliubov transformation,

G = RDR† +
1
2
(

RR† − �
)
; G ≡

〈
:
(

â†

â

)(
â†

â

)T

:

〉
, D =

[
D1 0
0 D1

]
, D1 =

⊕
j

1

eEj/T − 1
. (1)

Here, the boldface operator vectors â† = (â†
1, â†

2, . . .)T and â = (â1, â2, . . .)T are the column-
vectors of the creation and annihilation operators for bare excited atom states, respectively.
The superscripts T and † denote transpose and conjugate transpose, respectively. The
angles stand for the statistical average. The colons denote the normal ordering of operators,
meaning that all creation operators stand to the left from the annihilation ones. The 2 × 2
block-diagonal matrix D include the Bose–Einstein thermal occupation numbers for the
quasiparticles of eigenenergies {Ej}. The matrix R performs the Bogoliubov transformation(

â†

â

)
= R

(
b̂†

b̂

)
, R =

[
U∗ 0
0 U

][
cosh r∗ (eiθ sinh r)∗

eiθ sinh r cosh r

]
, (2)

from the representation of the excited-particle field operator in terms of the quasiparti-
cle creation and annihilation operators b̂† = (b̂†

1, b̂†
2, . . .)T and b̂ = (b̂1, b̂2, . . .)T to the

representation in terms of the bare-particle creation and annihilation operators, that is,

ψ̂ex(r) = ∑
k �=0

φk(r)âk = ∑
j

(
uj(r)b̂j + v∗

j (r)b̂
†
j
)
. (3)

Within the mean-field Bogoliubov–Popov approximation [51–53], adopted in the
present paper, a Bose–Einstein-condensed gas is described via the Hamiltonian given by a
quadratic form of the bare-particle creation and annihilation operators

Ĥ = ∑
k,k′

(
â†

k âk′ +
1
2

) ∫
φ∗

k

(
− h̄2Δ

2m
+ U(r)− μ + 2g

(
N0|φ0(r)|2 + nex(r)

))
φk′d

3r

+
gN0

2 ∑
k,k′

â†
k â†

k′

∫
φ∗

k φ2
0φ∗

k′ d3r +
gN0

2 ∑
k,k′

âk âk′

∫
φk(φ

∗
0 )

2φk′ d3r .
(4)

Here, Δ is the three-dimensional Laplace operator, m is a particle mass, U(r) is an external
potential, g = 4πh̄2a/m is an interaction constant, a is a s-scattering length, μ is a chemical
potential, N0 is the mean number of particles in the condensate, nex(r) is the mean density
of the excited particle fraction (the noncondensate), and φ0(r) is a condensate wave function
normalized to unity,

∫
V |φ2

0 |d3r = 1. The superscript * means complex conjugation. The
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Hamilton operator (4) can be equivalently rewritten in the matrix form via the (2 × 2)-block
Hamiltonian matrix H as follows

Ĥ =

(
â†

â

)T

H
(

â†

â

)
, H =

[
K̃ K
K∗ K̃∗

]
. (5)

The Bogoliubov transformation (2) diagonalizes the blocks K responsible for the co-rotating
contributions â†

k âk′ or âk â†
k′ to the Hamiltonian and nullifies the blocks K̃ responsible for the

counter-rotating contributions â†
k â†

k′ or âk âk′ to the Hamiltonian,

RT HR =

[
0 E
E 0

]
, E = diag{Ej| j = 1, 2, . . .}. (6)

The point is that the quasiparticles are the eigenstates of the Bogoliubov Hamiltonian with
the eigenenergies {Ej| j = 1, 2, . . .}.

The multimode squeezing matrix [1,68–73] r = (rk,k′), which is a positive semi-definite
Hermitian matrix, as well as the unitary matrices U and eiθ , are calculated in [1]. Any
additional unitary transformation V to another complete orthonormal set of excited states
{φ′

k(r)| k = 1, 2, . . .} in the single-particle Hilbert space,

φk = ∑
k′ �=0

Vk′ ,kφ′
k′ , (7)

results in the Bogoliubov transformation R′ which differs from the R in Equation (2) just by
replacement of the unitary U with the composite unitary transformation U′ = VU.

Clearly, the Bogoliubov transformation (2) is a superposition of the squeezing and
unitary transformations. In essence, their matrices r and U determine the complexity and
variability of the covariance matrix G, since the classical thermal occupations of quasi-
particles entering the matrix D are easy to compute. As a result, the ultimate reason for
the �P-hardness (quantum advantage) of atomic boson sampling is an interplay between
the squeezing (found in [74]) due to the interparticle interactions and interference due to
the unitary mixing of bare-particle excited states. If either the squeezing or interference
vanishes, then the joint occupation probabilities can be computed classically in polyno-
mial time.

1.5. The Content of the Paper

Based on the main aspects of a truly hard for computing and innovative problem
of atomic boson sampling in a BEC trap explained in the Introduction (Section 1), we
formulate, in Section 2, general requirements for the BEC trap design facilitating testing
the quantum advantage of atomic boson sampling in a full, controllable and clear way.
A basic model of a multi-qubit BEC trap is devised in Section 3. In Sections 4 and 5,
we present the analytical and numerical results for the single-particle energy spectrum
and eigenstates in the one- and two-dimensional multi-qubit traps, respectively. The
corresponding solutions to the Gross–Pitaevskii equation for the condensate wave function
are presented in Section 6. In Section 7, they are employed in the analysis of the Bogoliubov
transformation and couplings for estimates of the multimode squeezing parameters. We
discuss also the multimode dimensionality, squeezing and interference, which determine
an asymptotic parameter for computational �P-hardness of atomic boson sampling and
require analysis of the Bogoliubov–De Gennes equations for the quasiparticle spectrum
and eigenfunctions. The experimental aspects of atomic boson sampling are discussed in
Section 8. Section 9 contains concluding remarks.

2. General Requirements for the BEC Trap Design Facilitating Atomic
Boson Sampling

Although any general-case BEC trap can be employed for studying manifestations of
its potential quantum advantage over classical computing of boson sampling [1], in order
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to test this advantage in a controllable and unambiguous way, one should better use a
specially designed trapping potential (see an example in Figure 1).

The challenge of the BEC trap design is twofold. On the one hand, it is desirable to
have a trap with a finite (or even mesoscopic) number, M, of lower split-off excited states
or groups of states, which are predominantly populated and strongly coupled to each
other by means of Bogoliubov coupling. The atomic boson sampling could refer to the
so-called marginal statistics—the quantum statistics of the occupations of these excited
states irrespective to the occupations of all other states. It is especially informative if all of
the higher excited states are separated from such a split-off miniband or sub-miniband of
the selected M lower excited states or some groups of them by an energy gap ΔE wider
than the temperature T and are not significantly coupled to the lower energy states. Then,
these higher states are relatively poor populated, do not contribute to �P-hard complexity
and can be skipped or accounted for as a kind of perturbation.

On the other hand, it is required to provide a way to simultaneously measure, that
is to sample, the occupations of those M excited particle states or groups of them, say,
by means of multi-detector optical imaging based on the light transmission through or
scattering from the atomic cloud. Each detector should measure an appropriate occupation
by projecting upon a prescribed state or group of states. Moreover, this subset of states or
groups of states should be variable and controllable by means of tuning the detectors.

The geometry of a 2D multi-qubit BEC trap, such as the one shown in Figure 1, looks
especially convenient for such boson sampling experiments since it allows one to implement
multi-detector imaging by means of the laser light passing through the trap perpendicular
to its plane. A controllable reconfiguration of the system of detectors aimed at varying
the states or groups of states prescribed for occupation sampling also looks easier in the
2D geometry.

Suppose we design a multi-qubit BEC trap with a confining potential U(r) supporting
a finite number Q of single-qubit cells, which form a 1D, 2D or 3D lattice and have two
split-off lower energy levels each. Those two levels appear when a twofold-degenerate
ground level is split by a certain perturbation. Then, such a lattice of single-qubit cells
should be placed on top of a slightly varying in space background potential with high walls
at the trap borders, and the inter-cell potential walls should be adjusted to be relatively
high but narrow enough to allow for a quantum tunneling of atoms between cells. All
this is necessary for establishment of the common to all cells nonuniform condensate
and significant interaction between atoms from different single-qubit cells. The last two
conditions are required for the existence of significant Bogoliubov coupling between a large
number of excited states without which the multimode squeezing as well as interference via
dressed quasiparticles are not well pronounced in the Bogoliubov transformation matrix R
in Equation (2) and, hence, the computational �P-hardness disappears.

In fact, building a confining potential in the form of a single-qubit cell and duplicating
it into a lattice is a relatively straightforward enterprise since such potentials are reminiscent
of a double-well potential and an optical lattice potential, in which the BEC as well as the
Bogoliubov excitations had been studied a lot [35,43,44,75–81]. The size of the multi-qubit
trap depends on its dimensionality. In the 2D case of Figure 1, an overall dimension of the
BEC trap is about

√
Q μm, since each single-qubit cell has a scale of a de Broglie wavelength

∼1 μm.
The starting point of our analysis is the limiting case of infinitely high inter-cell barriers

and identical single-qubit cells, each with two single-particle eigenfunctions corresponding
to the first and second energy levels, e1 and e2. These eigenfunctions form a natural basis for
constructing the single-particle excited states of the actual trap. There are 2Q combinations
of these single-qubit states which are the eigenfunctions of the whole multi-qubit trap. Their
Q + 1 different energy levels {εq = (Q − q)e1 + qe2; q = 0, 1, . . . , Q} constitute a lower
energy miniband. Degeneracies of levels are given by binomial coefficients gq = (Q

q ). Their

sum coincides with the number of the single-qubit-state combinations: ∑Q
q=0 (

Q
q ) = 2Q.
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Those limiting-case eigenfunctions of the multi-qubit trap emerge adiabatically from
the wavefunctions of an empty flat box trap when the inter-cell potential barriers are
gradually introduced. This process can be easily understood within a 1D model of a flat
background potential and almost equally spaced delta-function potential barriers. Its
analysis shows that the limiting-case eigenfunctions of the finite lattice of independent
qubit cells correspond to some superpositions of the 2Q lower-energy eigenfunctions of
the whole trap with finite barriers. Hence, the 2Q lower-energy eigenfunctions ψn ≡ ψs,p
of order n = p + sQ, p = 1, . . . , Q, s = 0, 1, of the actual trap with finite barriers can be
considered as a system of the “generating” eigenfunctions constituting two bands (s = 0, 1)
and enumerated by the intra-band index p = 1, . . . , Q and the band index s = 0, 1, . . ..

Although one could consider all 2Q energy levels associated with Q qubits, it is more
convenient to operate with a smaller number of the single-particle energy levels M + 1
which constitute some miniband. In Sections 4 and 5, we show that it is possible to choose
the trap parameters in such a way that M + 1 = 2Q levels will form a lower miniband
separated from the higher energy levels by an energy gap ΔE wider than the temperature T.
Below, we mainly discuss the multi-qubit trap properties associated with such a miniband.

Analysis of the case when each cell has a larger number, d > 2, of the lower split-off
energy levels is very similar. Then, a finite lattice of such cells forms a multi-qudit trap.

In any case, the eigenfunctions ψs,p and energy levels of the actual trap with a finite
trapping potential can be easily controlled and varied in a wide range by means of control-
ling the background and barrier potentials as well as the dimensions of the single-qubit cells.
For instance, the relative occupations of cells, i.e., the relative wavefunction amplitudes in
different cells, within an eigenfunction of a given order can be individually controlled by
tuning the cell background potentials. The intra-cell qubit properties, including the energy
splittings δEj, j = 1, . . . , Q, can be addressed by adjusting the intra-cell barriers.

The ground-state properties also can be controlled in this way. Implementing also
control of the interparticle interactions via the Feshbach resonance [65], one can adjust
the condensate wave function as needed. Below, we consider a favorable for the atomic
boson sampling regime of a common condensate which is macroscopically occupied and
inhomogeneously spread over the entire trap at a low temperature T � Tc and a relatively
large number of trapped atoms N  Q. At certain conditions, a particular number M
(for example, M = 2Q − 1) of lower-miniband excited states can be considered as being
decoupled from the continuum of excited states of the total infinite-size Hilbert space and
constituting a finite-size Hilbert subspace. The situation could become especially clean and
favorable for atomic boson sampling experiments if, in addition, the Bogoliubov couplings
are adjusted to be spread over the whole lower miniband but not above the energy gap.

Apparently, the multi-qubit trap is capable of providing a whole series of other BEC
regimes [78], starting from a strongly correlated regime and a regime of anomalous fluc-
tuations in the critical region at T ≈ Tc to the regimes of fragmented condensates of
the individual single-qubit cells and a quasi-condensate. However, their discussion goes
beyond the scope of the present paper.

3. A Basic Model of a Multi-Qubit BEC Trap

The first step in designing the multi-qubit trap is to find its single-particle energy
spectrum {εn|n = 0, 1, . . .} and eigenstates {ψn}, given by the linear Schrödinger equation(

− h̄2

2m
Δ + U(r)

)
ψn(r) = εnψn(r), (8)

and adjust the trap parameters in order to fulfill the requirements on the split-off lower-
energy miniband formulated above. The energies may be counted from the energy ε0 of
a nondegenerate ground state n = 0. An integer n orders all eigenstates in increasing
energies ε0 < ε1 ≤ ε2 ≤ . . . . Solutions to the single-particle Schrödinger Equation (8)
provide a valuable starting point for the design of the multi-qubit trap—the zero-order

389



Entropy 2022, 24, 1771

approximation for the energies and wave functions of the excited states (n = 1, 2, . . . ) as
well as the wave function of the ground state (n = 0).

The second step is to find how the repulsive interparticle interaction modifies the
ground state, that is, to find the condensate wave function φ0(r) which obeys the Gross–
Pitaevskii equation (the nonlinear Schrödinger equation) [35,52,53](

− h̄2Δ
2m

+ U(r) + gN0|φ0(r)|2 + 2gnex(r)− μ

)
φ0 = 0, g =

4πh̄2a
m

. (9)

The goal is to verify the presence of a non-fragmented condensate, which is common
for the entire trap and spreading over all single-qubit cells. A non-uniformity of the
condensate should be controllable by adjusting the trap parameters. Accurate knowledge
of the condensate wave function is necessary for calculating the Bogoliubov couplings

Δkk′ = g N0

∫
φ∗

k (r) |φ0(r)|2 φk′(r) d3r, Δ̃kk′ = g N0

∫
φ∗

k (r) φ0(r)
2 φ∗

k′(r) d3r (10)

between the preselected bare-particle excited states {φk| k = 1, 2, . . .} and making sure that
they are well pronounced for a large enough number of these states as per requirements
stated in Section 2. If most of atoms are in the condensate, N0 ≈ N, then a characteristic
length of a condensate inhomogeneity is equal to a so-called healing length

ξ =
h̄√

2mgN/V
=

1√
8πaN/V

. (11)

The Gross–Pitaevskii equation, as a mean field approximation, is valid if an average distance
d between atoms is small compared to the healing length,

d � ξ. (12)

The next step involves solving the Bogoliubov–De Gennes equations for the quasipar-
ticle spectrum and eigenfunctions as well as calculation of the Bogoliubov transformation
matrix, squeezing and other parameters describing the joint probability distribution of the
excited atom occupations and atomic boson sampling. We just briefly comment on this step
in Sections 7 and 8, since the analysis of quasiparticles goes beyond the scope of this article.

In the present paper, we limit ourselves to the first two steps and calculation of Bogoli-
ubov couplings responsible for interparticle interactions in the Bogoliubov Hamiltonian.

For the sake of clarity and simplicity, we consider only a simple basic model of the
multi-qubit BEC trap illustrated in Figure 2: namely, a one-dimensional (1D) or two-
dimensional (2D) array of a finite number Q of the single-qubit cells. In the case of a 1D
chain of the single-qubit cells, each q-th single-qubit cell includes two flat background
potentials U2q−1, U2q and a delta-function potential βqδ(x − xq) located near its center,
while the cells are separated by the delta-function potential walls {αqδ(x − Xq) ≥ 0| q =
1, 2, . . . , Q − 1} and ordered along the x axis so that 0 = X0 ≤ x1 ≤ X1 ≤ x2 ≤ X2 ≤ . . . ≤
xQ ≤ XQ = QL. The corresponding 1D trapping potential is modeled as follows

U(x) =
Q

∑
q=1

{U2q−1[θ(x − Xq−1)− θ(x − xq)] + U2q[θ(x − xq)− θ(x − Xq)]

+ βqδ(x − xq) + αqδ(x − Xq)} if x ∈ (0, QL);

U(x) = ∞ if x ≤ 0 or x ≥ QL.

(13)

The amplitudes of the background potentials {Uj| j = 1, . . . , 2Q} and all delta-function
potentials {αq}, {βq} as well as their locations {xq}, {Xq} could be different for different
single-qubit cells and constitute a set of controllable parameters of the multi-qubit BEC
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trap; δ(x) is the Dirac delta function, and θ(x) is the unit step function: θ(x) = 0 if x < 0,
θ(x) = 1 if x ≥ 0.

Figure 2. (4 × 4)-qubit BEC trap of a dimension 4L × 4L′ as per the 2D model (14) of trapping
potential U(x, y) consisting of the inter- and intra-cell walls atop a central pedestal. The infinite outer
walls of the entire box trap are not shown.

In the case of a 2D square Q1 × Q1 array of Q = (Q1)
2 single-qubit cells, we adopt a

model potential U(x, y) = U(x) + U′(y) given by a sum of two 1D potentials along the
axes x and y, each of which being similar to the 1D potential in Equation (13):

U(x) =
Q1

∑
q=1

{U2q−1[θ(x − Xq−1)− θ(x − xq)] + U2q[θ(x − xq)− θ(x − Xq)]

+ βqδ(x − xq) + αqδ(x − Xq)} if x ∈ (0, Q1L);

U′(y) =
Q1

∑
q=1

{U′
2q−1[θ(y − Yq−1)− θ(y − yq)] + U′

2q[θ(y − yq)− θ(y − Yq)]

+ β′
qδ(y − yq) + α′

qδ(y − Yq)} if y ∈ (0, Q1L′).

(14)

Again, we set the potential to be infinitely high beyond the outer borders of the entire
multi-qubit trap: U(x) = ∞ if x ≤ 0 or x ≥ Q1L, U′(y) = ∞ if y ≤ 0 or y ≥ Q1L′. The am-
plitudes of the background potentials {Uj| j = 1, . . . , 2Q}, {U′

j | j = 1, . . . , 2Q} and all delta-
function potentials {αq}, {βq}, {α′

q}, {β′
q} as well as their locations {xq}, {Xq}, {yq}, {Yq}

constitute a set of controllable parameters of the 2D multi-qubit BEC trap.
Modeling the confining potential by piecewise flat and delta-function potentials is

a well-justified textbook approach pertinent to the analysis of the effects of tunneling,
reflection and trapping of particles by potential barriers and walls on the wave functions
and energy spectrum in quantum mechanics (see, e.g., [82–85] and references therein). It
is consistent with the well-known facts that (a) the Rayleigh–Ritz characterization of the
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eigen energies involves only weighted averages of the potential and (b) the multiple-scale
perturbation theory yields the correct leading-order asymptotics within the piecewise-flat-
potentials approximation [86]. The main quantities in question for the analysis in the present
paper are the condensate wave function and Bogoliubov couplings, which determine the
ultimate result for the covariance matrix and statistics of atomic boson sampling. Their
representativeness and robustness with respect to the adopted modeling by the piecewise
flat and delta-function potentials are predetermined by the nature of the Bogoliubov
couplings (10) as the overlapping integrals which do not depend significantly on a jump in
the value of the first or second derivative of the wave function originated from the presence
of the delta- or step-function, respectively, in the external potential. Furthermore, the
actual potential in the Gross–Pitaevskii and Bogoliubov–de Gennes Equations (9) and (34)
is always curved by the interparticle–interaction contribution gN0φ2

0(r) proportional to the
continuous condensate occupation |φ2

0(r)|. Obviously, in an experimental setting, a non-flat
background potential will lead to qualitatively the same results.

4. One-Dimensional Multi-Qubit Trap: Single-Particle Eigen Functions and Energies

Consider a 1D trap with the model potential (13). The basic model adopted above
allows one to solve the 1D Schrödinger Equation (8),(

− h̄2

2m
d2

d2x
+ U(x)

)
ψn(x) = εnψn(x), (15)

analytically and easily find the single-particle energy spectrum and wave eigenfunctions.
In this section, we demonstrate the single-particle properties of the 1D multi-qubit traps in
a series of generic examples.

4.1. Asymmetric 1D Single-Qubit Trap: Explicit Solution for a Double-Well Trap

The solution to Equation (15) for the eigen functions and energies of an asymmetric
1D single-qubit trap described by the model (13) of a double-well trap with the intra-
cell delta-function potential of a magnitude β located at a position x1 = ηL, η ∈ (0, 1),
is elementary:

ψn(x) = A sin(knx) if 0 ≤ x ≤ ηL, ψn(x) =
A sin(ηknL)

sin[(1 − η)knL]
sin[kn(L − x)] if ηL ≤ x ≤ L, (16)

sin(ηknL) sin[(1 − η)knL] = − h̄2kn

2mβ
sin(knL), εn =

h̄2k2
n

2m
. (17)

Here, A is an appropriate normalization constant. The dependence of the first six eigen
wave numbers kn on the asymmetry parameter η ∈ (0, 1) is illustrated in Figure 3. Note a
very narrow energy splitting ε2 − ε1 � ε2 between the two lower excited states n = 1, 2
and a very wide energy gap ε3 − ε2 ≈ 3ε2 separating them from the next two excited
states n = 3, 4 in the case of the central, symmetric location of the intra-cell delta-function
potential, η = 1/2. With an increasing asymmetry, the energy ladder experiences a
significant restructuring. For example, if the asymmetry is η ≈ 1/3 or 2/3, then already,
the three lower (the lowest first, ε1, and two very close second and third, ε2 ≈ ε3) energy
levels are separated from the higher energy levels by an energy gap ε4 − ε3 ≈ 1.3ε3.
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Figure 3. The first six eigen wave numbers kn for the 1D asymmetric single-qubit trap of length
L as the functions of the position ηL of the intra-cell delta-function potential of the dimensionless
amplitude βmL/h̄2 = 2.5.

4.2. Symmetric 1D Two-Qubit Trap: Even versus Odd Eigenfunctions and Their Eigenenergies

Consider the symmetric two-qubit trap (13) with the central locations of the intra-cell
delta-function potentials of equal magnitude β1 = β2 ≡ β at x1 = L/2, x2 = 3L/2 and
the inter-cell delta-function potential of the magnitude α1 ≡ α at X1 = L in the absence
of the background potential, U1 = U2 = 0. The odd wave functions, which have the odd
spatial symmetry relative to the center of the trap, equal zero at the trap center and are not
affected by the inter-cell potential wall. Obviously, solutions for them are reduced to the
single-qubit trap solution (16) in each of two single-qubit cells. For example, the odd wave
function in the left single-qubit cell is

ψn(x) = A sin(knx) if 0 ≤ x ≤ L/2, ψn(x) = A sin[kn(L − x)] if L/2 ≤ x ≤ L. (18)

Hence, the dimensionless energy spectrum, ε̄n = (2mL2/h̄2)εn, of the odd eigenfunctions
is given by Equation (17), that is

knL cos(knL/2) + β̄ sin(knL/2) = 0, ε̄n = (knL)2; ᾱ =
αmL

h̄2 , β̄ =
βmL

h̄2 . (19)

A dimensionless parameter β̄ describes the effect of the intra-cell delta-function potential.
The solution to Equation (15) for the even eigenfunctions is more involved:

ψn(x) = A1 sin(knx) if 0 ≤ x ≤ L/2,

ψn(x) = A2 sin[kn(L − x) + ϕ] if L/2 ≤ x ≤ L,

ψn(x) = A2 sin[kn(x − L) + ϕ] if L ≤ x ≤ 3L/2,

ψn(x) = A1 sin[kn(2L − x)] if 3L/2 ≤ x ≤ 2L.

(20)

It includes two normalization constants A1, A2, the phase shift ϕ (such that tan ϕ = knL/ᾱ)
and depends on the inter-cell delta-function potential via the dimensionless parameter
ᾱ = αmL/h̄2. The energy spectrum ε̄n = (knL)2 of the even eigenfunctions is determined
by the eigen wave number kn that can be found from the explicit transcendental equation:

knL
[
knL cos(knL) + β̄ sin(knL)

]
+ 2ᾱ sin

( knL
2

)[
knL cos

( knL
2

)
+ β̄ sin

( knL
2

)]
= 0. (21)
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Figure 4 shows clearly the full structure of energy spectrum of a two-qubit trap. Firstly,
one can see the unperturbed energy level spread for an empty rectangular well when the
inter-cell and intra-cell potentials are zero. This behavior can be modulated in two ways, by
increasing either of the two potentials. There is almost a complete symmetry between how
these two potentials effect the energy level structure, with the only difference coming in
the even-numbered energy levels. While every fourth level is totally unperturbed by both
potentials, the other even energy levels only see the intra-cell potentials, as these functions
are zero at the center of the well. This leads to an asymmetry in the structure, which affects
the orange-colored energy levels in the figure.

Figure 4. The first eight single-particle energy levels of the 1D symmetric two-qubit trap in the
absence of a background potential as they depend on the inter-cell and intra-cell delta-function
potential barriers as per Equations (19) and (21). On the far left, the unperturbed energy levels can
be observed and compared to the energy levels on the far right, which show clearly the miniband
behavior, with a larger gap between the strongly grouped first four and second four energy levels.

In addition to this asymmetry, the overall structure of the two-qubit-trap energy
spectrum is largely determined by the formation of minibands. If either of the two potentials
are individually raised to be large, four sub-minibands are formed, while the raising of
both potentials leads to the formation of two minibands, with a large energy gap between
the first four and second four energy levels. This can be quantitatively measured by taking
the ratio of the energy separation between the first and second miniband with the energy
width of the first miniband (see Figure 5). This will demonstrate how easy it will be to set
the temperature such that the lower miniband is fully populated while the higher has little
to no occupation.This figure of merit must be balanced against the necessity that atoms are
still able to easily move between cells, requiring that the potential barriers not be too high.

5 10 15 20 25
=

2

4

6

8

10
Gap - to- bandwidth ratio

Figure 5. The ratio of the energy gap between the first and second minibands over the width of the
first miniband for the symmetric two- (solid) and four- (dashed) qubit traps (Figures 4 and 6) as a
function of the equal dimensionless amplitudes of the inter- and intra-cell delta-function potentials,
ᾱ = β̄.
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Figure 6. The first sixteen single-particle energy levels of the 1D four-qubit chain of identical
symmetric single-qubit cells in the absence of a background potential (Uj = 0 ∀j) as they depend on
the inter-cell and intra-cell delta-function potentials as per Equations (19), (21) and (24).

4.3. Four-Qubit Chain of Identical Symmetric Single-Qubit Cells: Hierarchy of
Even/Odd Solutions

The analysis presented in Section 4.2 can be easily generalized to the case of the
four-qubit trap (13) with similarly symmetric parameters αq = α, βq = β, xq = (q − 1/2)L,
Xq = qL, U2q−1 = U2q = 0 ∀q = 1, 2, 3, 4 and total length 4L. Again, the solutions for the
wave functions with the odd spatial symmetry relative to the center of the trap and their
energy spectrum are reduced to the solutions for the half trap, that is, for the two-qubit trap
and, hence, are given (say, for the left half of the four-qubit trap) by Equations (18)–(21).
The only novel element of the analysis is the solution for the even eigenfunctions. It has the
following form in the left half of the four-qubit trap

ψn(x) = A1 sin(knx) if 0 ≤ x ≤ L/2,

ψn(x) = A2 sin[kn(L − x) + ϕ2] if L/2 ≤ x ≤ L,

ψn(x) = A3 sin[kn(x − L) + ϕ3] if L ≤ x ≤ 3L/2,

ψn(x) = A4 sin[kn(2L − x) + ϕ4] if 3L/2 ≤ x ≤ 2L,

(22)

with the same form of equations being found reflected across the center of the trap at
x = 2L. Now, it includes four normalization constants A1, A2, A3, A4, three phase shifts
ϕ2, ϕ3, ϕ4 and the eigen wave number kn. The latter four quantities can be found from the
following four equations expressing a discontinuity of the wave-function derivative across
each delta-function potential barrier:

knL[cot(ϕ4) + cot(ϕ4)] = 2ᾱ,

knL[cot(ϕ3 + knL/2) + cot(ϕ4 + knL/2)] = −2β̄,

knL[cot(ϕ2) + cot(ϕ3)] = 2ᾱ,

knL[cot(knL/2) + cot(knL/2 + ϕ2)] = −2β̄.

(23)

Excluding the phase shifts, we arrive to the explicit transcendental equation,

(knL/2)3[β̄ sin(2knL) + knL cos(2knL)]

+ (knL/2)2(2ᾱ + β̄) sin(knL)[β̄ sin(knL) + knL cos(knL)]

+ ᾱ2 sin2(knL/2)[β̄ sin(knL/2) + knL sin(knL/2)]2

+ knLᾱβ̄ sin2(knL/2)[β̄ sin(knL) + knL cos(knL)] = 0, (24)
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for the eigen wave number kn which determines the dimensionless energy spectrum
ε̄n = (knL)2 of the even eigenfunctions.

The entire energy spectrum is illustrated in Figure 6 by dependence of the first sixteen
lower energy levels on the inter-cell and intra-cell delta-function potentials. As expected, it
is similar to the analogous dependence for the two-qubit trap shown in Figure 4. Again,
on the far left, the unperturbed energy levels can be observed and compared to the energy
levels on the far right, which show clearly the expected miniband behavior, with a larger
gap between the strongly grouped first eight and second eight energy levels.

Let us look again at the ratio of the energy gap between the first and second minibands
and the energy width of the first miniband in Figure 5. Although this ratio is smaller for
similar delta-function potentials of the two-qubit trap, the doubling of the available energy
levels is a strong advantage. The degradation is not significant, as to once again achieve
a ratio of about 3.5, we only need to go from a dimensionless delta-function potential
magnitude of 10 to about 12.

Apparently, the even/odd hierarchy of solutions revealed above is suggestive for an
extension to any 1D chain of Q = 2p, p = 1, 2, 3, . . ., identical symmetric single-qubit cells.

4.4. Multi-Qubit Chain of Q Identical Single-Qubit Cells: Asymptotics of Zeroes and Miniband of
2Q Energy Levels

Consider a 1D chain of Q identical symmetric single-qubit cells, each with a zero
flat potential and of length L, separated by delta-function potential walls of the same
amplitude αq = α. The system is placed inside an infinitely high box potential well of
length QL. Assume that each single-qubit cell contains a delta-function potential of the
equal amplitude, βq = β, placed at the center of the cell and perturbing its energy levels.

As was explained in Section 2, the eigenfunctions of the multi-qubit trap {ψs,p(x)| p =
1, . . . , Q; s = 0, 1, . . . } can be considered as arising adiabatically with increasing delta-
function potentials α and β from the sinusoidal wave eigenfunctions of a box trap with a
zero flat potential and of length QL,

ψ
(0)
n (x) =

√
2

QL
sin
(nπx

QL

)
, ε

(0)
n =

(h̄πn)2

2m(QL)2 , n = p + sQ; p = 1, . . . , Q; s = 0, 1, . . . . (25)

The index n is equal to the number of half-wavelength variations between the borders of the
entire box trap and orders the wave functions in accord with the linearly growing numbers
of zeroes, n − 1, and quadratically growing energies, ε

(0)
n . The index s = 0, 1, . . . enumerates

the bands. Each band consists of Q eigenfunctions enumerated by the intra-band index
p = 1, . . . , Q.

We find a general asymptotic rule: When αq → ∞, all Q eigenfunctions ψs,p within a
given s-band have exactly the same (equal to the band order s) number of zeroes inside
each single-qubit cell. The only exception constitutes such single-qubit cells and such
eigenfunctions ψs,p for which there is just one zero of the corresponding sinusoidal eigen-

function ψ
(0)
p+sQ located exactly at the center of a single-qubit cell. This is an exceptional,

degenerate case of a node frustration when neither of the two delta-function walls of the
single-qubit cell are able to shift the location of this zero toward (underneath) its (wall’s)
location with increasing delta-potential αq → ∞. The amplitude of this eigenfunction tends
to zero everywhere inside such an exceptional single-qubit cell.

The remarkable asymptotic behavior stated above is a consequence of the fact that the
eigenfunctions ψs,p(x) tend to zero at the positions of the inter-cell delta-potential walls
with increasing magnitude of the delta-function potential: ψs,p(x = jL) → 0 at αq → ∞
for j = 1, . . . , Q − 1. This occurs via two mechanisms. A delta-potential wall either
(i) gradually digs a deep dip forcing the eigenfunctions to approach zero at the wall location,
or (ii) gradually shifts the closest-to-the-wall zero of the sinusoidal wave eigenfunction
ψ
(0)
p+sQ to (underneath) the wall location. Accordingly, the eigenfunctions do not or do

change their sign across the delta-potential wall. It is illustrated in Figure 7(left), where both
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mechanisms of asymptotics formation are clearly represented. In particular, the inter-cell
delta-potential walls at the dimensionless positions x/L = 2 and x/L = 6 implement
the first mechanism on the eigenfunctions ψs,p=1 (blue) and ψs,p=2 (yellow), the second
mechanism on the eigenfunction ψs,p=3 (green), and do not affect the eigenfunction ψs,p=4

(red) whose sinusoidal counterpart ψ
(0)
4+sQ is already equal to zero at the wall locations.

Another situation when the above two mechanisms clearly manifest themselves is discussed
in the next Section 4.5 in regard to Figure 11.
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Figure 7. The first three bands, s = 0 (1st row), s = 1 (2nd row), and s = 2 (3rd row), of the
eigenfunctions ψs,p(x) (p = 1 in blue, p = 2 in yellow, p = 3 in green, p = 4 in red) for the 1D chain of
Q = 4 single-qubit cells. The inter-cell walls are the delta-function potentials of the same magnitude,
αq = 9h̄2/mL, located at the equally spaced dimensionless positions x/L = 1, 2, 3. There are no
intra-cell potentials. The left column of graphs: Identical single-qubit cells with zero background
potentials, Uj = 0. The right column of graphs: The single-qubit cells with different background
flat potentials, UjmL2/h̄2 = 0, 0, 10, 10, 20, 20, 0, 0. In both cases, the two mechanisms of the general
asymptotic rule (stated in Section 4.4) for a transition from the sinusoidal wave eigenfunctions (25) of
a uniform box trap to the eigenfunctions of a multi-qubit trap are clearly observable.

The sinusoidal wave functions ψ
(0)
n of the higher band orders s ≥ 2, i.e., n > 2Q,

have three or more zeroes at least within one, say j-th, single-qubit cell, that is, within the
interval x ∈ [qL, (q + 1)L]. So, at αq → ∞ ∀q, they turn into the eigenfunctions ψs,p, s ≥ 2,
which has the s (two or more) zeroes inside each single-qubit cell and cannot be associated
with the 2Q eigenfunctions of the multi-qubit lowest miniband that have no more than one
zero inside a single-qubit cell. Hence, only the first two bands of the eigenfunctions, ψ0,p

397



Entropy 2022, 24, 1771

and ψ1,p, are relevant to the wave function superpositions that asymptotically yield the 2Q

eigenfunctions of the multi-qubit trap (i.e., combinations of the single-qubit states with the
energies within the miniband).

Thus, we focus below on the analysis of the miniband of the first 2Q energy levels
corresponding to the first two bands, s = 0, 1, of the eigenfunctions ψs,p. In principle, we
can build a new system of Q qubits assigning an arbitrary pair of eigenfunctions ψ0,p and
ψ1,p′ to be the lower and upper energy states of any new qubit. The most natural system
of Q qubits will be formed by the pairs of eigenfunctions {ψ0,p, ψ1,p|p = 1, . . . , Q} with
equal indices p′ = p. Then, we again can consider their 2Q multi-qubit combinations of
the eigenfunctions of the miniband of the lowest 2Q energy levels in the multi-qubit trap
with arbitrary finite (not necessary infinite) inter-cell potential walls. These qubits are not
identical anymore, even if their lengths Lq, q = 1, . . . , Q are the same.

4.5. Multi-Qubit Chain of Significantly Different Single-Qubit Cells: Control of
Occupations, Energies

If the single-qubit cells in the multi-qubit chain are not identical, then the excited-
state wave functions become less symmetric. However, by controlling the background
flat potentials {Uj| j = 1, . . . , 2Q} in Equation (13), one can make the ground state more
uniform. A typical example of spatial profiles of the ground-state wave function and
three lower-energy excited-state eigenfunctions is shown in Figure 8. In this figure and
throughout the present paper as in Equation (19), a bar above a symbol of the potential or
other energy quantity denotes its dimensionless value in terms of the energy unit h̄2/(2mL2)
where L is the length of a typical single-qubit cell, that is,

Ūj = (2mL2/h̄2)Uj, ε̄n = (2mL2/h̄2)εn . (26)
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=0.5

0.5

s-0,p b

Figure 8. (a) An example of a four-qubit trap potential: Three inter-cell and four intra-cell delta-
function potential barriers are separating eight flat potential segments in the form of a central pedestal.
(b) The ground-state (blue) and first three excited-state eigenfunctions for the four-qubit trap (a).

Relatively large variations in the lengths, Lq, and background flat potentials, U2q−1, U2q,
of different single-qubit cells allow one to control and vary the trap eigenfunctions ψs,p and
energy levels in a wide range. Adjusting separately the flat potentials Uj in different single-
qubit cells allows one to control individually the relative amplitudes of eigenfunctions in
different cells, that is, in particular, the relative occupations of different single-qubit cells as
is illustrated in the right column of Figure 7.

The general structure and asymptotic behavior of the trap eigenfunctions described
above for the chain of identical single-qubit cells is robust (remains qualitatively the same)
with respect to small variations of the trap parameters. However, large variations change
the picture. In particular, the single-qubit cells of significantly different lengths could
acquire different numbers of eigenfunction zeroes per a single-qubit cell even within the
same band of eigenfunctions as is illustrated in Figure 9a.

At last, tuning the intra-cell delta-function potentials βq, q = 1, . . . , Q, provides one
more tool for controlling and varying the profile and energy spectrum of the multi-qubit
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trap eigenfunctions ψs,p(x). As is illustrated in Figure 9b, it affects the eigenfunctions in
the first, s = 0, band stronger than the eigenfunctions in the second, s = 1, band. Thus, it is
an efficient tool for controlling the intra-qubit properties, in particular, the qubit energy
splittings δEq, q = 1, . . . , Q.
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Figure 9. The eigenfunctions ψs,p(x) (p = 1 in blue, p = 2 in yellow, p = 3 in green, p = 4 in red)
for the chain of Q = 4 single-qubit cells with a zero background potential, Uj = 0, j = 1, . . . , 8. The
inter-cell walls are the delta-function potentials of the same magnitude, αqmL/h̄2 = 9, q = 1, 2, 3, 4.
(a) The eigenfunctions ψs=1,p(x) of the second band in the case of single-qubit cells of different lengths
Lq/L = 0.6, 1.2, 0.8, 1.4. Two mechanisms of the general asymptotic rule (stated in Section 4.4) for a
transition from the sinusoidal wave eigenfunctions (25) of a uniform box trap to the eigenfunctions of
a multi-qubit trap are clearly visible. Contrary to the case of identical single-qubit cells in Figure 7(left),
now the numbers of zeroes per a single-qubit cell in the eigenfunctions of the second band s = 1
are not all equal to unity but could be also zero, two or even three and different in the different
cells. (b) The eigenfunctions ψs,p(x) of the first (s = 0) and second (s = 1) bands in the case of
different delta-function potentials βqmL/h̄2 = 1, 2, 3, 0 at the center of single-qubit cells of equal
length L. A comparison with the case of identical single-qubit cells in Figure 7(left) shows that now,
the eigenfunctions of the band s = 0 are notably modified while the eigenfunctions of the band s = 1
stay almost intact.

One other possibility when constructing these multi-qubit traps is to place the inter-cell
and intra-cell delta potentials in such a way as to break the symmetry between each qubit
cell. This can act as yet another knob by which to control the diversity of the system along
with the heights of the delta potentials and the modulation of the background potential.
Delta-function potentials can be moved individually or following some group pattern. The
position of the potential can be represented by a number from 0 to 1, essentially what
percentage of the cell is traveled starting from the center of the cell before dropping down
the delta-function potential. Suppose the intra-cell barriers are shifted leftwards on the
left side of the four-qubit trap and an equal distance rightward on the right side. The
effect of this shifting on the energy levels of a four-qubit trap can be seen in Figure 10. It is
not symmetric and can be understood by observing where the delta-function potentials
are modulating the unperturbed wave functions for each energy level. For example, take
the ninth energy level seen in cyan in Figure 10. This energy level is maximized around
0.18 and minimized around 0.36. When the positions of the delta-function potentials are
overlaid on the unperturbed ninth eigenfunction, it becomes clear why this is the case. At
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the maximum effect, the delta-function potentials are positioned near the maxima of the
unperturbed function, while at the minimum effect, the delta potentials are placed instead
near the zeros of the unperturbed function, as seen in Figure 11. The latter figure illustrates
also the two mechanisms of a wave-function pertubation stated in Section 4.4. In the former
case, the first mechanism, namely, digging a dip in a function profile underneath the delta-
function potential, takes place. In the latter case, the second mechanism, namely, dragging
the nearest node underneath the delta-function potential, takes place. The respective effects
on the energy of the eigenfunctions are very different as is shown in Figure 11. Note that
the digging effect of the central inter-cell delta-function potential is the same in both cases.
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Figure 10. Left: The single-particle energy levels for a four-qubit trap with intra-cell potential barriers
of strength β̄ = 4 and inter-cell barriers of strength ᾱ = 5 for various symmetrically shifted positions
of the intra-cell potentials. Right: The specific trapping potential for the position marked by the red
line. Note the symmetry about the center of the trap.
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Figure 11. The unperturbed and perturbed ninth-energy-level eigenfunction, ψ
(0)
s=2,p=1 (in blue) and

ψs=2,p=1 (in purple), in the case of the intra-cell delta-function potentials at position 0.18 (left) and
0.36 (right) marked by red vertical lines. Note how on the right, the intra-cell delta-function potentials
act on the eigenfunction near zeros, reducing their effect on the eigenenergy, while on the left, the
intra-cell delta-function potentials act on the eigenfunction near two peaks, having a very large
impact on the eigenenergy ε̄n=9 shown in Figure 10.

5. Two-Dimensional Multi-Qubit Trap: Single-Particle Eigen Functions and Energies

Here, we describe a simple 2D model of the multi-qubit trap formed by a potential,
U(x, y) = Ux(x) + Uy(y), which is the sum of the two 1D potentials considered above. In
this case, the solution to the 2D single-particle Schrödinger Equation (8) is reduced, via a
factorization, to the solutions to the 1D Schrödinger equation described above.

As a generic example, let us consider the 2D symmetric four-qubit trap, in which both
the potential in the x and y plane are exactly the same. Both will share the same inter-cell
and intra-cell delta-function potential strengths. As the energy levels are known for the 1D
case (see, for example, Figure 6), constructing the energy levels for the 2D case is a simple
task, requiring only for the individual energies to be added in every possible combination.
A visualization of the energy levels created by combining the first nine energy levels in each
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dimension is shown in Figure 12 for the symmetric 2D (4 × 4)-qubit trap. This fully covers
the first miniband of each dimension plus the first energy level in the second miniband.

Figure 12. The first 80 energy level combinations comprising the eigenenergies {ε̄n} for the symmetric
2D (4 × 4)-qubit trap in the absence of a background potential (Uj = 0 ∀j). Compare this plot against
its 1D 4-qubit counterpart in Figure 6 and note how there are energy crossings near the origin of the
graph, and that there is a slight asymmetry in the inter-cell and intra-cell directions.

This structure is interesting. Firstly, let us understand why there is a noticeable
asymmetry between the effects of the inter-cell and intra-cell potentials. We see that for the
two different axes, the first set of energy levels that are bunched together contains either
nine levels for intra-cell potentials or 16 levels for inter-cell potentials. This comes from the
fact that for the 1D case of a large intra-cell potential with little inter-cell potential, there
is a splitting of the energy levels in the first miniband into two parts, one containing the
first three with the other containing the remaining five. These two sub-minibands have
a significant enough energy gap between them so that when the 2D plot is created, we
see the formation of three sub-minibands, one containing combinations consisting of only
energy levels in the first half of the sub-miniband, one containing the crossover terms, and
the final piece containing the combinations consisting of only energy levels in the second
half of the sub-miniband. Because there are nine possible combinations for the first half,
we see nine energy levels in the first band of the plot. However, for the case of the large
inter-cell potential, we instead see a 4–4 split of the energy levels in the miniband rather
than the 3–5 split in the intra-cell case. Thus, 16 possible combinations of the energy levels
in the first half of the miniband.

To understand why there is a difference in splitting of the energy levels depending
on if the inter-cell or intra-cell potentials dominate the trap, we need only to look at the
fourth energy level and how it is affected by each of the two different types of traps. The
easiest to understand is the inter-cell potential dominant traps. In this case, the fourth
eigenfunction is almost totally unperturbed by the delta-function potentials, as its natural
nodes are already placed at the locations of the inter-cell potential barriers, while the lower
three energy levels are pulled up toward the fourth. Likewise, the fifth, sixth, and seventh
energy levels are bought up to the totally unperturbed eighth, leading to the 4–4 split
structure we observe. However, in the case of the intra-cell potentials dominating the trap,
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the natural nodes of the fourth energy level wavefunction are placed directly between
two of the intra-cell potential walls. This, as described in Section 4.4, leads to a situation
where new nodes must be created to accommodate the large potentials. These new nodes
drastically increase the average derivative, bringing the energy level much further above
the third energy level below it, whose eigenfunction is able to shift its nodes to fall under
the existing large potentials without much effect to its energy level. This effect is illustrated
in Figure 13.
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Figure 13. The eigenfunctions {ψn} for the third (blue), fourth (yellow), and fifth (green) energy
levels in the 1D multi-qubit trap of Q = 4 identical single-qubit cells for the inter-cell (left) and
intra-cell (right) dominant delta-function potentials αq = α and βq = β ∀q. The dominant delta-
function potential has a magnitude of 31h̄2/(mL) while the non-dominant potential has a magnitude
of 1 h̄2/(mL). Note how in the inter-cell-potential dominant case, the fourth eigenfunction is most
similar to the third, while in the intra-cell-potential dominant case, the fourth eigenfunction is most
similar to the fifth.

The last notable aspect of Figure 12 is the crossing of energy levels that can be seen
near this origin. This behavior arises from the fact that while initially, the energy levels
are approximately evenly spread, once the potentials start ramping up, there are some
significant gaps created in the miniband structure. Thus, for low potentials, the energy
level created by combining the first and fifth energy levels may be lower than that created
by the fourth energy level combined with itself. However, once the fifth energy level is
drastically raised by the introduction of the potentials, the combination of the first and
fifth levels will increase its total energy above that of the double fourth, at least for the
inter-cell dominant case where the fourth energy level is mostly unperturbed. This sort of
behavior is only seen near the origin where the energy levels change drastically with the
introduction of the delta-function potentials, as once the overall structure begins to form,
there is not a significant enough change to create more crossings.

One can also plot the occupation probability distribution for a specific single-particle
state in a 2D multi-qubit trap. The spatial profile of the occupation distribution for the
single-particle ground state is illustrated in Figure 14. This figure also demonstrates an
important property of the multi-qubit trap: namely, that the parameters for the background
potential and inter-/intra-cell walls can be tuned to achieve a desirable, in particular,
relatively uniform distribution of occupation probability over the entire trap.
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Figure 14. Occupation probability distribution in the single-particle ground state, |ψ0(x, y)|2, for the 2D
(4 × 4)-qubit trap with delta-function potentials αq = 4h̄2/(mL), βq = 2h̄2/(mL) ∀q and a central flat
pedestal potential U = 8h̄2/(mL2) ranging from 0.5 < x < 3.5 and 0.5 < y < 3.5 as seen in Figure 2.

6. Controlling the Condensate in the Multi-Qubit Trap: The Gross–Pitaevskii Equation

In real interacting gases, the result for the macroscopic condensate wave function given
by the Gross–Pitaevskii Equation (9) significantly deviates from the single-particle ground
state of the linear Schrödinger Equation (8). A difference between the Schrödinger and
Gross–Pitaevskii equations originates due to a collective effect of interparticle interactions
described by the nonlinear self-interaction term gN0|φ0|2φ0 in Equation (9). The main
features of the condensate are correctly described already in an approximation neglecting
the interaction with the noncondensed fraction (the term 2gnexφ0 in Equation (9)) and
assuming N0 ≈ N. For simplicity’s sake, we adopt the above approximation and limit
discussion to 1D and 2D models of the multi-qubit BEC trap.

A 1D model implies a situation when atoms are tightly confined in the transverse to
the x axis directions, for example, in a cylinder of length L, (y, z)-cross-section area l2

⊥ with
a small transverse size l⊥ � L, and volume V = Ll2

⊥. Then, in view of the normalization
condition

∫
V |φ2

0 |d3r = 1 and averaging φ2
0(x, y, z) over the small y, z cross-section, the

3D condensate wave function φ0(r) can be efficiently replaced by a 1D function φ0(x)/l⊥
that corresponds to a rescaled interaction parameter g1 = g/l2

⊥. Note that the mean-field
condition (12) for validity of the 1D model of the Gross–Pitaevskii Equation (9) remains the
same as in the usual 3D case,

8πa �
(V

N

)1/3
,

ξ

d
=

1√
8πa(N/V)1/3

, g =
4πh̄2a

m
(3D mean − field regime), (27)

only if the average distance between atoms is d = (Ll2
⊥/N)1/3, i.e., the volume density

of atoms in the trap is large enough: N/(Ll2
⊥) > 1/l3

⊥. Otherwise, the average distance
between atoms becomes equal to d = L/N and the mean-field validity condition (12)
imposes a requirement on the scattering length

8πa � Nl2
⊥/L,

ξ

d
=

√
Nl2

⊥
8πaL

, g1 =
g
l2
⊥

if Nl⊥ < L (1D mean − field regime), (28)

which is getting more stringent with a decreasing number of atoms. It is worth noting
that when aN  L, the system locally retains the original 3D character despite its 1D
geometrical appearance, L  l⊥. Only in the opposite case, when aN � L, the system
approaches the ground state in the transverse directions and enters the so-called 1D mean-
field regime (see [35] and references therein). In the low-density limit 8πa  Nl2

⊥/L, which
corresponds to the strong-coupling 1D limit g1 ≡ g/l2

⊥ → ∞ and is opposite to (28), the
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mean-field approach fails and the system becomes the so-called Tonks–Girardeau gas of
impenetrable bosons.

Similarly, a 2D model implies a situation when atoms are tightly confined just in
one, axial direction, say, along the z-axis within a small linear dimension lz, while the
cross-section area of the trap of volume V = LL′lz is relatively large, LL′  l2

z . In this
case, the 3D condensate wave function φ0(r) can be efficiently replaced by a 2D function
φ0(x, y)/

√
lz that corresponds to a rescaled interaction parameter g2 = g/lz. The mean-field

condition (12) for validity of the 2D model of the Gross–Pitaevskii Equation (9) retains the
usual 3D form (27) only if the average distance between atoms is d = (LL′lz/N)1/3, i.e., the
volume density of atoms in the trap is large enough: N/(LL′lz)  1/l3

z . Otherwise, that is
when Nl2

z < LL′, the average distance between atoms becomes equal to d =
√

LL′/N and
the mean-field validity condition (12) is reduced to the requirement on the scattering length

8πa � lz,
ξ

d
=

√
lz

8πa
, g2 =

g
lz

if Nl2
z < LL′ (2D mean − field regime), (29)

which is independent on the number of trapped atoms. Again, at extremely low densities,
when | ln (Nl2

z /LL′)| > lz/a, the mean-field approach fails, the interaction constant g2 =
g/lz should be replaced by the density-dependent parameter g̃2 = 4πh̄2/[m| ln (Nl2

z /LL′)|],
and the system enters the regime analogous to the Tonks–Girardeau 1D regime [35].

6.1. Single-Qubit Trap: 1D Analytical and 2D Numerical Solutions to the
Gross–Piraevskii Equation

The solution to the 1D nonlinear Schrödinger, that is Gross–Piraevskii, Equation (9) in
the stated simple model can be found similar to the solution to the 1D linear Schrödinger
Equation (15), described above, if one employs the elliptic Jacobi function sn(x|p) instead
of the exponential function exp(x). For simplicity’s sake, we adopt the Bogoliubov approx-
imation at very low temperature T → 0 assuming that practically all atoms are condensed,
N0 ≈ N, and the effect of the noncondensed atoms on the condensate is negligible.

Then, the condensate wave function in a box trap with zero potential, U(x) = 0, and
Dirichlet (zero) boundary conditions is given by the elliptic Jacobi function,

φ0(x) =

√
pK(p)

K(p)− E(p)
sn
(

2K(p) x
L

∣∣p)√
L

,
L
ξ
=
√

8K(p)
(
K(p)− E(p)

)
. (30)

It varies from the half-period sine to an almost constant function (quickly decreasing to
zero just in the narrow boundary regions) with the interaction g increasing from zero to
the larger values. The characteristic scale of the condensate is determined by the healing
length (11). The solution includes complete elliptic integrals of the first and second kinds:

K(p) =
∫ π/2

0
(1 − p sin2 θ)−1/2dθ, E(p) =

∫ π/2

0
(1 − p sin2 θ)1/2dθ, (31)

According to Equation (30), the range of the parameter p is from 0 to 1. The chemical
potential is determined by the normalization condition

∫
|φ0(x)|2dx = 1 as follows

μ = 4(1 + p)K2(p)h̄2/(2mL2). (32)

The analytical solution in Equation (30) fully describes the effect of the interparticle
interaction on the condensate profile in each single-qubit cell if the inter-cell potential
walls are infinitely high, the background potentials are the same in both halves of each cell
and the intra-cell delta-function potentials are absent. It is illustrated in Figure 15 for the
single-qubit cell. When the healing length is much longer than the cell’s length, ξ  L, that
is, the interaction is very weak and the gas is almost ideal, the parameter p is very close
to zero. As a result, the condensate profile in each cell is very close to the ground-state
solution to the single-particle Schrödinger Equation (15), that is, a half of the sine function,
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φ0(x) =
√

2/L sin (πx/L), and μ ≈ π2h̄2/(2mL2). In the opposite case of a very short
healing length, ξ � L, the parameter p approaches 1 and the strong interparticle interaction
makes the condensate profile more flat and spread over the entire cell, except for narrow
boundary layers of thickness ξ near the walls. Obviously, a similar situation takes place in
each half of the single-qubit cells if the intra-cell potential walls are also infinitely high.

0.2 0.4 0.6 0.8 1.0

x

L

0.2

0.4

0.6

0.8
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Figure 15. The interparticle interaction makes the condensate more uniform and spread over the entire
single-qubit trap as is revealed by the analytical solution (30) to the Gross–Pitaevskii Equation (9)
in the case of infinitely high inter-cell potential walls and zero background and intra-cell potentials:
L
ξ = 0 (an ideal gas—solid green curve, p = 0), L

ξ = 5 (a moderate interaction—dot-dashed blue

curve, p ≈ 0.86), L
ξ = 20 (a strong interaction—dashed red curve, p ≈ 0.999996).

The effect of the repulsive interparticle interaction on the condensate profile in the
single-qubit box cell in 2D is shown in Figure 16. In the case of an ideal gas, the atoms con-
dense into the ground state ψ0(x, y) = 2

L sin πx
L × sin πy

L of the single-particle Schrödinger
Equation (15), as shown in Figure 16a. In the case of an interacting gas, the condensate pro-
file φ0(x, y) is given by the numerical solution to the 2D Gross–Pitaevskii Equation (9), as
shown in Figure 16b. Comparison of the two plots clearly shows that the particle repulsion
flattens the peak of the ground-state wave function and forces the condensate to spread
over the entire single-qubit cell. Just the boundary layers of a healing-length thickness
remain unoccupied by the condensate.

Figure 16. Two-dimensional (2D) single-qubit BEC trap with zero background and intra-cell po-
tentials. The interparticle interaction makes the condensate more uniform and spread over the
entire single-qubit cell as is revealed by comparing (a) the ground-state wave function ψ0(x, y) =
2
L sin πx

L × sin πy
L given by the single-particle Schrödinger Equation (15) in the absence of interaction

against (b) the condensate wave function φ0(x, y) in the presence of interaction, L
ξ = 5, computed via

an exact numerical solution to the Gross–Pitaevskii Equation (9). The plot (c) is an approximation of
the latter condensate wave function φ0(x, y) via a factorization (33) of the exact analytical solutions
for the 1D box trap, Equation (30), along the x and y axes. All three plots present the dimensionless
condensate wave function of the unity norm.
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These effects can be approximately described analytically by a product of the exact
analytical solution (30) to the Gross–Pitaevskii equation in the 1D box trap along the x-axis
and the similar solution along the y-axis,

φ0(x, y) ≈ pK(p)
[K(p)− E(p)]L

sn
(

2K(p)
x
L

∣∣∣p)sn
(

2K(p)
y
L

∣∣∣p). (33)

Such a 1D-factorization approximation is shown in Figure 16c. It takes into account the
interparticle interaction only partially via its separate manifestations along the x and y
dimensions. Comparing Figure 16b and Figure 16c, we conclude that the above approx-
imation slightly underestimates the effect of 2D nonlinear diffusion of the condensate
due to the self-interaction gN0|φ0(x, y)|2φ0(x, y), which is opposite to the phenomenon of
self-focusing of an intensive laser light beam in a nonlinear medium. Nevertheless, the
1D-factorization approximation represents the effect of the interparticle interaction on the
condensate profile in a box trap in a qualitatively correct fashion.

6.2. Condensate Wave Function vs. Single-Particle Ground State in a Multi-Qubit Trap

For a nontrivial multi-qubit BEC trap, due to the presence of the trapping potential
U(x) �= 0, as shown in Equation (13), the Gross–Pitaevskii Equation (9), that is, the nonlinear
Schrödinger equation, needs to be solved numerically, for instance, by the method of an
imaginary-time evolution (see, e.g., [87]). It is illustrated in Figures 17 and 18 for the case
of a four-qubit 1D and 2D trap, respectively.
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Figure 17. The ground-state wave function according to the single-particle Schrödinger Equation (15)
(blue dotted curve) and the corresponding condensate wave function φ0 according to the Gross–
Pitaevskii Equation (9) in the presence of the moderate, L

ξ = 2, (red dashed curve) and strong,
L
ξ = 10, (green solid curve) interaction in the case of (a) symmetric (U(x) = 0) and (b) asymmetric

(U(x) = (4h̄2/(mL2))[θ(x − 0.5L)− θ(x − 2.5L)]) 1D four-qubit trap; αj = 1.5β j = 16h̄2/(mL) ∀j.

As a result of the interparticle repulsion, the condensate tends to spread more uni-
formly over all single-qubit cells. This tendency works against condensate fragmenta-
tion [78] and in favor of the formation of a common condensate occupying the entire BEC
trap. Moreover, with increasing interaction, the regions of low condensate occupation near
the inter- and intra-cell potential walls begin shrinking as well. Both of the above effects
significantly increase the number of Bogoliubov-coupled excited states and magnitude of
their Bogoliubov couplings in Equation (10) that favors manifestation of the �P-hardness of
the atomic boson sampling as is explained in Section 2.

It is worth noting that such a considerable expansion of the condensate shown in
Figures 17 and 18 is provided by means of the interparticle interaction alone, without
employment of the background potential, which also allows one to control the condensate
profile in a similar direction via restructuring the ground-state wave function as is shown
in Figures 8 and 14.

Moreover, if the background potential makes the trap asymmetrical, the increasing
repulsive interaction tends to restore the trap’s symmetry by converting an asymmetrical
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single-particle ground state into a more symmetrical condensate wave function. Such
evolution of the condensate in the asymmetrical trap is illustrated in Figure 17b and should
be compared against the condensate evolution in the symmetrical trap shown in Figure 17a.
Clearly, a strong interparticle interaction makes the condensate profiles in both traps almost
indistinguishable, while the profiles of the ground state in these traps in the absence of
interaction are very different.

Figure 18. Two-dimensional (2D) (2 × 2)-qubit BEC trap: (a) The ground-state wave function ψ0

according to the single-particle Schrödinger Equation (15) in the absence of interaction as well as
the condensate wave function φ0 according to the Gross–Pitaevskii Equation (9) in the presence of
(b) moderate, L

ξ = 5, and (c) strong, L
ξ = 20, interaction; αj = 8h̄2/(mL), α′

j = 6h̄2/(mL), β1 = β′
1 =

4h̄2/(mL), β2 = β′
2 = 2h̄2/(mL), Uj = U′

j = 0 ∀j (see Equation (14)).

7. Controlling Multimode Squeezing of Bogoliubov Transform via
Bogoliubov Couplings

In equilibrium, the statistics of the many-body system of atoms in the BEC trap is
determined by the independent fluctuations of quasiparticles which form the eigenstates
of the Bogoliubov Hamiltonian with the eigenenergies {Ej} and have the Bose–Einstein

occupation number statistics with an average occupation number n̄j =
(
e(Ej−μ)/T − 1

)−1.
The two-component quasiparticle wave function {uj, vj} determine the excited-particle
field operator (3) and obeys the Bogoliubov–de Gennes equations:

L̂uj + gN0 φ2
0(r) vj = +Ejuj,

L̂vj + gN0(φ
∗
0 )

2(r)uj = −Ejvj,
(34)

where

L̂ ≡ − h̄2Δ
2m

+U(r) + 2g
(

N0|φ0(r)|2 + nex(r)
)
− μ; nex = ∑

j

[
|vj(r)|2 +

|uj(r)|2 + |vj(r)|2
exp(Ej/T)− 1

]
.

In essence, the Bogoliubov–de Gennes equations express the fact of diagonalization of the
Hamiltonian (4) by the Bogoliubov transformation to quasiparticle creation/annihilation op-
erators, as stated in the matrix form in Equation (6), in the form of differential equations for
the coefficients {uj, vj} in the expansion of the field operator (3) via the quasiparticle opera-
tors. The wave functions are normalized to unity:

∫
V |φ0|2d3r = 1,

∫
V
(
|uj|2 − |vj|2

)
d3r = 1;

j = 1, 2, . . .. For simplicity’s sake, hereinafter, we assume that all wave functions φ0, uj, vj
are real valued. Below, we again neglect by temperature-dependent, Popov’s corrections,
that is, skip the contribution due to the noncondensate density nex and assume N0 ≈ N.

The matrix R of the Bogoliubov transformation (2) can be found from the equation(
â†

â

)
= R

(
b̂†

b̂

)
=

[
A B∗

B A∗

](
b̂†

b̂

)
(35)
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that relates creation and annihilation operators â†, â describing bare particles to the opera-
tors b̂†, b̂ describing quasiparticles as per Equation (3). Since the Bogoliubov transforma-
tion (2) leaves the canonical Bose commutation relations invariant, it obeys the symplectic
property

RΩRT = Ω, Ω =

[
0 �

−� 0

]
. (36)

Another, equivalent to (35), representation of the Bogoliubov transformation (2) can be
written in terms of the wave functions, rather than the operators, determining the particle
field operator in Equation (3):(

φ
0

)
= R

(
u

−v∗

)
≡
[

A B∗

B A∗

](
u

−v∗

)
, (37)

RT
(

0
φ

)
≡
[

AT BT

B† A†

](
0
φ

)
=

(
v∗

u

)
. (38)

The column-vectors φ = (φ1, φ2, . . .)T and u = (u1, u2, . . .)T , v = (v1, v2, . . .)T are com-
posed of the excited states {φk} and quasiparticle wave functions {uj}, {vj}, respectively.

Projecting Equation (38) onto a set of the orthonormal excited states {φk| k = 1, 2, . . .}
which are also orthogonal to the condensate wave function φ0, we obtain the explicit
formulae for the entries of the Bogoliubov block matrices A = (Akj) and B = (Bkj),

Akj =
∫

u∗
j (r)φk(r)d3r, Bkj =

∫
v∗

j (r) φ∗
k (r) d3r, (39)

as overlapping integrals between those bare-particle wave functions and the quasiparticle
wave functions given by the solution to the Bogoliubov–De Gennes equations (34).

The Bogoliubov matrix R can be expressed explicitly also via the Bogoliubov couplings
in Equation (10) by means of a pure algebraic diagonalization of the Bogoliubov Hamil-
tonian in the sense of the matrix Equation (6). Indeed, in any basis {φk |k = 1, 2, . . .} of
excited states, orthogonal to the condensate wave function and constituting the excitation
field operator ψ̂ex = ∑k �=0 φk âk as in Equation (3), the blocks of the Hamiltonian matrix in
Equation (5) are explicitly given by the Bogoliubov couplings in Equation (10) as follows

K =
(

εkk′ − μδk,k′ + 2Δkk′
)

, K̃ =
1
2

(
Δ̃kk′
)

, H =

[
K̃ K
K∗ K̃∗

]
. (40)

Here, εkk′ = 〈φk|ε̂|φk′ 〉 is the matrix of the single-particle energy operator ε̂ = −h̄2Δ/(2m) +
U(r) which constitutes the single-particle Schrödinger Equation (8). In particular, the
basis {φk |k = 1, 2, . . .} can be constructed out of the excited-state eigenfunctions {ψn |n =
1, 2, . . .} of the Schrödinger Equation (8) by means of the standard Gram–Schmidt or-
thonormalization starting from making these functions orthogonal to the condensate wave
function φ0. Then, by means of the symplectic property (36), Equation (6) determining the
Bogoliubov transformation can be rewritten as the following equation

ΩHR = R
[

E 0
0 −E

]
, E = diag{Ej| j = 1, 2, . . .}. (41)

It states that the j-th column of the Bogoliubov matrix, Rj = {A1j, A2j, . . . , B1j, B2j, . . .}T , is
the eigenvector of the matrix ΩH corresponding to the quasiparticle eigenenergy Ej, that is

ΩH Rj = EjRj , ΩH =

[
K∗ K̃∗

−K̃ −K

]
. (42)

(There is also the nonphysical eigenvector counterpart R
(−)
j = {B∗

1j, B∗
2j, . . . , A∗

1j, A∗
2j, . . .}T

corresponding to the negative eigenenergy −Ej < 0.)
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After calculating the Bogoliubov transformation matrix R as per Equation (6), one
can find the multimode squeezing parameters [1,68–73] from Equation (2). Quantum
statistics of the many-body fluctuations in a BEC trap and, in particular, the computational
complexity of the atomic boson sampling are determined by two fundamental sets of
eigenvectors and eigenvalues associated with the diagonalization of (a) the squeezing
matrix and (b) the Bogoliubov Hamiltonian, as is explained in Sections 1 and 2. Both of
those sets of eigenvectors and eigenvalues are determined by the Bogoliubov couplings
(10) via the Bogoliubov transformation matrix R. Thus, the key problem is to calculate the
Bogoliubov couplings and understand how many of them can be essentially nonzero and
controllable in a wide range within the multi-qubit BEC trap suggested and described in
this paper.

Knowing the condensate wave function from the solution to the Gross–Pitaevskii
equation outlined in Section 6 and choosing the bare-particle excited states, for example,
as the purely harmonic, sine functions or the solutions to the single-particle Schrödinger
Equation (8) (see Sections 4 and 5), made orthogonal to the condensate and each other
via the standard Gram–Schmidt orthonormalization, it is straightforward to calculate the
integrals constituting the Bogoliubov couplings (10) and analyze their set for the multi-
qubit BEC trap. The related numerical results are illustrated for the cases of symmetrical
and asymmetrical 1D four-qubit traps in the plots shown in Figures 19 and 20, respectively.

First, comparing Figure 20 against Figure 19 makes it clear that the trap asymmetry
greatly enlarges the number of Bogoliubov-coupled bare-particle excited states. Indeed,
in the asymmetrical trap, the essentially nonzero couplings spread much further from the
main diagonal of the Bogoliubov-coupling matrix Δk,k′ than in the symmetrical trap where
only narrow lanes of entries around the main diagonal and anti diagonal are essentially
nonzero. In addition, the degeneracy of zero coupling between the bare-particle excited
states of exactly odd and even spatial parity in the symmetrical trap (Figure 19), that results
in exactly zero values of all entries in each diagonal of an odd number parallel to the main
diagonal, is essentially broken in the asymmetrical trap (Figure 20). It is restored only in
the limit of a very strong interparticle interaction.

Figure 19. Matrix of Bogoliubov couplings (10) between the first sixteen excited states in the case
of the symmetric 1D four-qubit trap shown in Figure 17a; αj = 1.5β j = 16h̄2/(mL), Uj = 0 ∀j.
The excited states are obtained via the Gram–Schmidt orthogonalization from the condensate wave
function φ0 and (upper row) the sine functions sin(kπx/(4L)), k = 1, . . . , 16, or (lower row) the first
sixteen eigenfunctions of the single-particle Schrödinger Equation (15) in the presence of (the first
column) vanishing, L

ξ → 0, (the second column) moderate, L
ξ = 2, and (the third column) strong,

L
ξ = 10, interaction.
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Figure 20. Matrix of Bogoliubov couplings (10) between the first sixteen excited states in the case
of the asymmetric 1D four-qubit trap shown in Figure 17b; αj = 1.5β j = 16h̄2/(mL) ∀j, U(x) =

(4h̄2/(mL2))[θ(x − 0.5L) − θ(x − 2.5L)]. The excited states are obtained via the Gram–Schmidt
orthogonalization from the condensate wave function φ0 and (upper row) the sine functions
sin(kπx/(4L)), k = 1, . . . , 16, or (lower row) the first sixteen eigenfunctions of the single-particle
Schrödinger Equation (15) in the presence of (the first column) vanishing, L

ξ → 0, (the second column)

moderate, L
ξ = 2, and (the third column) strong, L

ξ = 10 interaction.

Second, the maximum spread of essentially nonzero couplings occurs at a moderate
interparticle interaction L

ξ ∼ 1 corresponding to the healing length ξ being on order of the

single-qubit cell length L. Much stronger interaction, L
ξ  1, tends to localize nonzero

couplings just onto the main and anti diagonals. Both these effects are seen in each row of
plots in Figures 19 and 20 where the interaction strength is increasing from left to right.

Third, changing the bare-particle excited states, chosen for the simultaneous atom-
number detecting within the atomic boson sampling, from the set generated by the
Gram–Schmidt orthonormalization out of the sine functions (the upper rows in
Figures 19 and 20) to the set generated out of the solutions to the single-particle Schrödinger
equation (the lower rows in Figures 19 and 20) greatly affects the structure of the Bogoliubov-
coupling matrix both in the symmetrical and asymmetrical traps.

All of the above observations confirm that the inference the multi-qubit BEC trap
provides is an excellent opportunity for controlling the Bogoliubov couplings and, hence,
the multi-mode squeezing and interference of bare-atom excited modes in a very wide
range. Obviously, the more chaotic, messy, dense and wide the distribution of the essentially
nonzero elements over the Bogoliubov-coupling matrix (10), the more favorable the set of
trap’s parameters and bare-atom excited states chosen for detection of atom numbers for
testing manifestations of the computational �P-hardness of atomic boson sampling. Among
patterns shown in Figures 19 and 20, the one in the center of the lower row in Figure 20 is
the most representative picture of such a complexity.

The asymptotic parameter of this complexity is determined by the Bogoliubov trans-
formation via a multimode dimensionality of the subspace of the excited-states involved
in the squeezing-matrix eigenvectors with essentially nonzero squeezing parameters (see
Equation (2)) and the Hamiltonian-matrix eigenvectors with low enough eigenenergies
corresponding to quasiparticles with essentially nonzero populations (see Equation (42)).
In general, this asymptotic parameter increases as the number of groups of excited states
chosen for occupation sampling via multi-detector imaging is growing. However, for a
given experimental setup with a BEC trap of a finite size, there is a maximum number M of
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modes/channels started from which a further increase of the number of sampled/detected
occupations would not essentially increase the complexity of boson sampling.

8. Toward Experiments on Atomic Boson Sampling in a BEC Trap

Suppose one has an appropriate BEC trap. (A possible model/example of such a trap
is discussed in the previous sections.) Then, as is explained in Sections 1.1 and 1.2, the
excited atoms, by themselves, naturally fluctuate and stay in the squeezed states inside the
trap even at thermal equilibrium due to interactions with each other. This allows one to
eliminate any nonequilibrium processes or dynamics, such as a precise time-dependent
control of system parameters and gates or any other type of processing usually associated
with quantum computers or simulators, as well as the sophisticated external sources of
squeezed or single bosons (required for photonic sampling) from the atomic sampling
experiments. It remains just to split the noncondensate into fractions based on the groups
of excited states and to measure the distribution of atom numbers over the chosen groups
of excited states by means of appropriate detectors.

For instance, one can divide the volume of the trap into a system of spatial cells.
Another possibility is to separate atoms in accord with their velocities, that is, to deal
with the cells in the momentum space. Anyway, the measurement of atom numbers could
be completed by means of a multi-detector imaging. In a BEC destruction scheme, one
switches off the confining trap and allows the cloud of trapped atoms to expand freely. In
this case, following a standard time-of-flight measuring technique, it is required to take
a few successive images of the expanding cloud and properly interpret them in terms of
kinetic equations for expansion. In this way, different spatial or momentum subsets of
atoms could be separated from each other, and sampling of their occupation numbers could
be obtained.

The imaging technique implies an illumination of the atomic cloud with a laser pulse
and measuring its transmitted or scattered components by multiple detectors. The transmit-
ted signal carries information on the absorption, dispersion and polarization transformation
of light caused by an atomic cloud [33,75,88–90]. The signal due to scattering and fluo-
rescence [91] could be controlled and structured by employing special external cavities
and laser sources that support light modes which mimic the excited states preselected for
sampling. The optical imaging for atomic boson sampling has much in common with the
experiments on the local atom-number fluctuations in BEC traps [47,48,88,90–94].

The spatial or momentum cells/modes represent groups of excited states selected
for detection/sampling. Of course, the excited states can be described/composed via an
arbitrary basis in the single-particle Hilbert space. Accordingly, the analytical formulae for
their joint occupation probability distribution ρ({nk}) and characteristic function, derived
in [1], have a universal form, i.e., are valid for any choice of such a basis. A transition from
one basis to another one just adds an extra unitary transformation (7) to the Bogoliubov
matrix R in Equation (2). Moreover, the universality of the general result for the character-
istic function obtained in [1] extends to the so-called marginal or coarse-grained statistics
of occupations of any groups of excited states, that is, to the occupation statistics evaluated
irrespective to the occupations of all other excited states. The corresponding “incomplete”
experiments on atomic boson sampling are the ones to be devised and implemented in
reality. Obviously, the condensed atoms, which constitute the macroscopic condensate
wave function φ0(r) orthogonal to the excited states φk(r), should not be countered during
the sampling procedure.

A computational complexity of atomic boson sampling depends on the number M
of groups of excited atomic states which are resolved by the multi-detector imaging and
are subject to interference due to mixing through the quasiparticles and to squeezing due
to interparticle interaction. This number M plays a part of the number of channels in
the optical interferometer. A mean occupation of the groups of excited states scales as
(N − N0)/M. Obviously, by increasing the total number N of atoms loaded in the trap and,
therefore, the number N − N0 of atoms in the noncondensate, one can make larger and,
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hence, easier for detection the number of atoms in each of M groups of preselected excited
states. Note, however, that the asymptotic parameter responsible for the �P-hardness of
atomic boson sampling is not proportional to any of the numbers N, N − N0 or M.

Modern technology allows one to measure the number of atoms in a specified volume
or subset of atoms with nearly single atom resolution [91,93–95]. Yet, achieving the single
atom accuracy is not absolutely necessary. In particular, the �P-hardness of boson sampling
exists even in the case of the threshold detecting scheme in which an outcome of the
measurement is just zero or non-zero occupation in each preselected group of excited
states [16,24,25].

Finally, an experimental setup should provide the means to reconfigure detectors for
projecting upon a vastly varying set of groups of excited states, i.e., to accumulate statistics
of joint occupations for numerous different subsets of groups of excited states. Only in
this way can the quantum advantage be demonstrated at the most challenging level of the
average case.

9. Concluding Remarks

We introduce the multi-qubit BEC trap for studying manifestations of the quantum
many-body statistical phenomena which are �P-hard for computing. In particular, we
describe the basic properties of the multi-qubit trap, including the single-particle excited
states and their energy spectrum via the single-particle Schrödinger Equation (8), the
condensate wave function versus the single-particle ground state via the Gross–Pitaevskii
Equation (9), and the Bogoliubov couplings (10) between excited states responsible for
the formation of quasiparticles and multimode squeezing via the Bogoliubov–de Gennes
equations (34). It is completed within the 1D and 2D models, as shown in Equations (13)
and (14).

We show that the multi-qubit BEC trap offers a convenient and thoroughgoing control
of the many-body system parameters essential for the interplay between excited states’
interference and squeezing. This interplay can be revealed via an apropriate decomposition
of the Bogoliubov-transformation matrix in Equation (2) and is responsible for the compu-
tational �P-hardness which is the basis for a potential quantum advantage of atomic boson
sampling over classical computing [1].

It would be very interesting to study experimentally various phenomena associated
with the atomic boson sampling. The BEC trap is a boson-sampling platform alternative
to a photonic interferometer. Both systems provide the output multivariate statistics
which shows computational �P-hardness associated with the hafnian of complex-valued
matrices. The proposed multi-qubit trap design discussed in the present paper allows
one to vary those matrices and, hence, the output statistics over a wide range. Thus, the
latter, major requirement for testing quantum advantage is fulfilled by the multi-qubit
BEC trap. The remarkable fact is that classical computing of the hafnian of even relatively
low-dimensional matrices corresponding to the number of sampled modes/channels of
the order of M = 8 × 8 = 64 is already inaccessible to modern supercomputers. Especially
promising are boson-sampling experiments with the multi-qubit BEC trap containing a
finite number M of lower-miniband split-off excited states or groups of them (see Figure 1).

The case of a few single-qubit cells with a relatively small number of sampled oc-
cupations M = 2, 3, 4, . . . promises the discovery of new quantum effects similar and
beyond a particle analog of the simple Hong-Ou-Mandel interference effect. It can be
accomplished by means of the current magneto-optical trapping and detection technology.
The value of such experiments for the comprehension of the fundamental aspects of the
many-body quantum systems responsible for their computational �P-hardness is difficult
to overestimate.

The conclusive experiments with an asymptotically large numbers of single-qubit cells,
Q � 1, and sampled excited states or groups of them, M  1, addressing the computa-
tional �P-hardness of quantum many-body processes are very challenging. Yet, they seem
to be within reach and could hit convincing manifestations of quantum advantage.
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Abstract: Digital quantum computers have the potential to simulate complex quantum systems.
The spin-boson model is one of such systems, used in disparate physical domains. Importantly, in
a number of setups, the spin-boson model is open, i.e., the system is in contact with an external
environment which can, for instance, cause the decay of the spin state. Here, we study how to
simulate such open quantum dynamics in a digital quantum computer, for which we use an IBM
hardware. We consider in particular how accurate different implementations of the evolution result
as a function of the level of noise in the hardware and of the parameters of the open dynamics. For
the regimes studied, we show that the key aspect is to simulate the unitary portion of the dynamics,
while the dissipative part can lead to a more noise-resistant simulation. We consider both a single spin
coupled to a harmonic oscillator, and also two spins coupled to the oscillator. In the latter case, we
show that it is possible to simulate the emergence of correlations between the spins via the oscillator.

Keywords: quantum computing; NISQ; open system

1. Introduction

A natural application of quantum computers is the simulation of quantum sys-
tems [1,2]. Furthermore, most hardware realizations of quantum computers implement
the qubit. A prevalent qubit-based quantum system is the spin system. Existing quantum
computers are based on unitary quantum circuits. Consequently, there has been a plethora
of research on closed quantum systems [3–6]. Amongst the spin models, an important class
is the spin-boson problem, where one or more spins are coupled to several bosonic degrees
of freedom. These models possess rich many-body physics and they can model realistic
coupling between electron transfer and protein motion or a solvent [7–11].

In recent years, NISQ computers [12,13] have offered a new perspective on the imple-
mentations on digital devices, leading to an explosion of activities. Not all computing tasks
are amenable to quantum processing. Classical optimization can often perform better than
quantum algorithms. The challenges of device-induced noise have led to the popularity of
hybrid quantum-classical variational algorithms (VQA) that split the workload between a
quantum and a classical processor. These techniques are ideally suited for the evaluation of
different quantities such as eigenstates [14], general quantum approximate optimization al-
gorithms [15], off-diagonal elements of matrices [16] and more [13]. Importantly, new error
mitigation approaches have also been proposed [17–19]. VQA has been applied to boson-
spin systems or its equivalents [20–22]. Regarding open systems, different VQA approaches
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have been tested. They include approaches based on imaginary time evolution [23,24],
stochastic Schrödinger Equation [25], variational quantum eigensolvers to reach steady
states [26,27], and the quantum-assisted simulator without a classical-quantum feedback
loop [28]. Mapping bosonic problems to quantum circuits has been laid out in [29–31],
while a recent implementation of spin-boson models can be found in [6].

Simulating open quantum systems entirely on digital quantum computers has primar-
ily focused on two-level systems. The amplitude damping channel has been implemented
with a unitary dilation of the Kraus operators [32], using uniformly controlled gates [33,34],
and with the amplitude damping circuit [2,35]. Larger systems have been realized using a
linear combination of unitary matrices [36,37] and modified stochastic Schrödinger equa-
tion methods [38]. In [25], the authors proposed a hybrid classical-quantum variational
approach to simulate generic Markovian open quantum systems.

Our aim is to simulate the open dynamics of a spin-boson model coupled to a dissipa-
tive channel on a digital quantum computer. We do this by mapping the bosonic modes
to qubits, Trotterizing the unitary evolution, and modeling the dissipative portion via
repeated collisions with a reset auxiliary qubit [35,39,40]. In doing so, we focus on using
different noise levels in the quantum computer, from the value in current hardware, to 1%
of it. With this in mind, we study how different implementations of the simulation perform
in presence of different noise levels.

The paper is organized as follows. In Section 2.1, we introduce the open spin-boson
model and lay out the circuit implementation. In Section 2.2, we describe the circuit
implementation of the unitary and dissipative evolutions. We then detail our use of
quantum hardware and noise-related limitations of the devices in Section 2.3. Our results
are presented in Section 3. We quantify the error stemming from approximations in the
model, and for different magnitudes of noise in the device. We study the optimal time-
step-sizes and dissipative rates in terms of fidelity. Finally, we increase the system size
to two spins and investigate whether it is possible to observe rising correlations amongst
the spins.

2. Method

2.1. Model

We consider NS non-interacting spins coupled to a single harmonic oscillator, as well
as to a bath, as can be seen in Figure 1. The closed system is governed by the quantum Rabi
Hamiltonian [41–43], which describes the ultra-strong coupling regime, where the usual
rotating wave approximation breaks down and the counter-rotating term can no longer be
neglected [44–46].

ĤSB = h̄ωâ† â +
NS

∑
i=1

1
2
(hσ̂z

k + εσ̂x
k ) + λσ̂x

k (â† + â), (1)

Experimentally, the ultra-strong coupling regime has been investigated in circuit QED [47–52],
trapped ions [53], photonic systems [54], and semiconductors [55,56].

In Equation (1), â† and â, respectively, create and destroy one excitation in the harmonic
oscillator while σ̂x

k = σ̂+
k + σ̂−

k and σ̂z
k are Pauli operators acting on the spin(s). h is the local

magnetic field in the z direction while ε is a field in the x direction. λ is the magnitude
of the coupling between the spins and the harmonic oscillator, with frequency ω. In the
following, we will work in units such that h = h̄ = 1.
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Figure 1. Depiction of the model described by Equations (1) and (2) for a number of spins NS = 2.
The two spin sites are coupled to one harmonic oscillator of frequency ω via coupling parameter λ.
Each of the spins dissipates independently into the environment at a rate of γ.

The dissipative part of the dynamics is here described by a Markovian master equation
in Gorini–Kossakovski–Sudarshan–Lindblad form [57,58]

dρ̂

dt
= − i

h̄
[ĤSB, ρ̂] + γ ∑

k
(2L̂k ρ̂L̂†

k − {L̂†
k L̂k, ρ̂}) (2)

with the amplitude damping channel L̂k = |↓〉k 〈↑| acting on the k−th spin and γ being
the decay rate. |↓〉 represents the vacuum state, whereas |↑〉 represents the excited state of
the spin.

Equation (2) describes a setup where loss from imperfections in the cavity is negligible
compared to the spins emissions. In these systems, undesired decay transitions can include
the emission of frequencies which are suppressed in the cavity and are thus effectively
lost [59–61].

2.2. Circuit Implementation

In this section, we describe how we implement the evolution governed by Equations (1)
and (2) in a quantum circuit.

2.2.1. Encoding of the Hamiltonian

We map the spin and bosonic operators in ĤSB to Pauli operators, and Trotterize the
unitary e−iĤSBt. The spin part is trivially mapped to qubits. For the bosonic subspace
and operators, we use a d-level-to-qubit mapping with Gray Code as the integer-to-bit
encoding, as described in [31,62]. We give more details on the mapping to QB qubits in
Appendix A.

2.2.2. Trotterization of Unitary

To implement the unitary evolution operator U = e−iĤSBt, we consider the first-order
U1 and second-order U2 Suzuki–Trotter product formulas [63,64]

U1 = (e−ih1Δt e−ih2Δt . . . e−ihN Δt)
t

Δt (3)

U2 = (e−ih1
Δt
2 . . . e−ihN

Δt
2 e−ihN

Δt
2 . . . e−ih1

Δt
2 )

t
Δt (4)

where hk are N different, non-commuting, terms of the Hamiltonian after encoding and
Δt = t/N. The individual exponentials of Pauli strings e−ihkΔt are then implemented via
the CNOT-staircase [2,3], which is taken care of by Qiskit [65]. See Equations (A2) and (A3)
in Appendix A for more details on hk.
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2.2.3. Collisional Model

We model the local master equation, namely Equation (2), via repeated collisions [39,66].
Figure 2 gives a depiction of a single collision. We consider the spin qubit s, and aux-
iliary qubit a and where a controlled-RY(θ) (rotation around y axis) is followed by a
controlled-NOT and a reset of the auxiliary qubit, see Appendices C and D for more details.
To reproduce Equation (2) we use θ = arcsin

(√
1 − e−γt

)
[2].

s :

D
a : |↓〉

=
•

RY (θ) • |↓〉
Figure 2. Circuit implementation of the dissipative part of the circuit, D, which represent a single col-
lision to model Equation (2). s is the qubit representing the spin while a represents the auxiliary qubit.

2.2.4. Integration of Dissipative and Unitary Part

To integrate the step of Figure 2 in the main circuit, we employ a first-order Suzuki–
Trotter decomposition which alternates between the unitary and the dissipative parts.
In Figure 3a, we depict three steps of the evolution of a single spin coupled to a harmonic
oscillator mapped to two qubits, while in Figure 3b, we show our implementation of three-
step evolution of the case with two spins and one harmonic oscillator. For considerations of
connectivity, the auxiliary qubits needed for the dissipative channel are placed at the edges
of the circuit, next to the spins. After all time-steps are finished, the qubits representing the
spin(s) sk and the bosons bk are measured, while the state of the auxiliary qubit is ignored.

b0 :

U U Ub1 :

s1 : X
D D D

a1 : |↓〉 |↓〉 (a)

a1 :
D

|↓〉
D

|↓〉
D

s1 : X

U U U
b0 :

b1 :

s2 :
D D D

a2 : |↓〉 |↓〉 (b)

Figure 3. Circuit structure, alternating between a unitary evolution and collisions with auxiliary
qubits and resets. (a) For a single spin and a (b) two spin system. Here, the spins are represented by
sk, the harmonic oscillator modes (4 levels) are encoded in the bk qubits and the auxiliary qubits are
represented by ak. X-Gate represents the initial state preparation, |↓〉 represents resets, the final gates
represent measurements, while D is described in Figure 2.

2.3. Quantum Hardware Simulation

To perform our quantum circuit simulations and run it on actual quantum hard-
ware, we use IBM’s Qiskit software [65]. The Quantum Computer we use is the 7-qubit

420



Entropy 2022, 24, 1766

ibmq_jakarta device with a native gate set {CNOT, ID, RZ, SX, X}. Each circuit is run with
213 = 8192 shots (repetitions).

We quantify the error at each point in time as the infidelity I [67]

I(ρ̂, ρ̂′) = 1 −
(

Tr
[√√

ρ̂ρ̂′√ρ̂

])2
(5)

where we obtain the density matrix ρ̂′ of the circuit via quantum state tomography. We also
consider a time-averaged version of the infidelity Ī , which is obtained by averaging the
infidelity over time, except for the time t = 0, which consists of just the state preparation.
The exact density matrix ρ̂ for the benchmark is obtained from the exact evolution of the
master Equation (Equation (2)), for which we use QuTiP [68]. To mitigate the measure-
ment error on noisy hardware, we classically post-process the results with Qiskit’s error
mitigation, which approximates the inverse of the noise matrix of the readout [69].

Reduced-Noise Models

While it is important to study how current quantum processors can evaluate the
model we study, we also aim to explore what could be the performance of future, less
noisy, hardware. To model these scenarios, we use the same error channels that IBM uses
to describe their current devices.

The noise models include error sources in the gates, as thermal relaxation (relaxation
and dephasing) and depolarizing errors, and also readout errors [70].

For our reduced-noise models we scale down the average gate infidelity IGate, the gate
times tGate, and the false-readout probabilities, probability of measuring 1 when the state is
0 P(1|0) or vice versa P(0|1), by the same noise-factor ξ, or more precisely

IGate → ξ · IGate (6)

tGate → ξ · tGate (7)

P(1|0), P(0|1) → ξ · P(1|0), ξ · P(0|1) (8)

where ξ ranges from 0 to 1.
Indeed, realistically some of these parameters will not see equal improvement in the

coming years, but a more detailed analysis of differentiated improvements of different
aspects is beyond the scope of this work. Details on the error channels can be found in
Appendix B.

3. Results

Inaccuracies in the implementation of the model on a quantum computer can stem
from different causes of completely different nature. We will first consider errors that rise
from the Trotterization of the evolution in Section 3.1. We will then consider errors due to
the noisy nature of the quantum computer in Section 3.2. In Section 3.3, we will then study
the case of two spins coupled to the harmonic oscillator.

In the following, for the Hamiltonian, we choose the parameters ε = 0.5, ω = 4, λ = 2
for one spin and ε = 0.5, ω = 6, λ = 2 for two spins. For the open dissipative rate, we
choose γ = 1. With these parameters, an accurate evolution of the system up to a time
t = 2 can be obtained considering simply four levels for the harmonic oscillator, which can
then be encoded with two qubits. For the initial state, we consider a pure product state
between spins and bosons, with one spin in the excited state and zero excitations in the
harmonic oscillator. This choice of initial conditions allows observing oscillatory, non-trivial
dynamics from early times, while not requiring too many levels for the harmonic oscillator.

3.1. Error from the Circuit Implementation

As explained earlier, to implement the open dynamics, we Trotterize the unitary
and dissipative parts of the master equation. However, for the implementation of the
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unitary evolution, we need to rely on another layer of Trotterization. In Figure 4, we
consider a unitary evolution with Hamiltonian ĤSB from Equation (1) for a time-step Δt
and the possible implementation error, but considering no noise from the machine (blue
lines). Implementing the various non-commuting terms of ĤSB in Qiskit [65] requires
48 single-qubit- and 19 CX-Gates or 79 single-qubit- and 28 CX-Gates, when using first or
second-order Trotter, respectively, (Table A1).

0.1 0.2 0.3 0.4 0.5

Δt

0.0

0.2

0.4

0.6

Ī

Figure 4. Time-averaged infidelity for the evolution from t = 0 to t = 2. Noiseless simulations of
the Hamiltonian γ = 0 (blue line, dots) and the open system γ = 1 (orange line, triangle). The solid
and dashed lines are used, respectively, for first-order and second-order Trotter implementations.
The common parameters are ε = 0.5, ω = 4, λ = 2. The number of time-steps for Δt = t/
N = 0.1, 0.2, 0.3, 0.4, 0.5 are N = 20, 10, 7, 5, 4, respectively, not counting t = 0, which just consists of
the initial state preparation.

In Figure 4, we evaluate the infidelity for both unitary and dissipative evolutions,
i.e., following Equation (2) for γ = 0 (blue lines with circles) or γ = 1 (orange lines
with triangles), versus Δt. We observe that the second-order Trotterization, dashed lines,
has significantly smaller infidelity than a first-order implementation, continuous lines.
Interestingly, beyond Δt ≈ 0.3, the infidelity in just the Hamiltonian simulation is larger
than the infidelity when including the dissipation. Furthermore, independently of whether
one considers first-order or second-order Trotterization, the dissipative dynamics has either
smaller infidelity or it is very close to the unitary case. This implies that the unitary step
implementing the Hamiltonian is the main contribution to the infidelity compared to the
implementation of the dissipation.

3.2. Error in the Presence of Noise

We now turn to more realistic, and thus noisy, devices. In Figure 4, for noiseless
simulations, we observed that the infidelity increases monotonously with the time-step
size Δt, and that a second-order Trotterization is always preferred. In the presence of noise,
however, an increased number of gates can lead to stronger noise effects, and thus instead
of improving the quality of the simulations, it may result in worse fidelity. In Figure 5a,
we thus consider the evolution of the full model, unitary and dissipative part, up to a time
t = 2 for different magnitudes of noise ξ = 0.01, 0.1, 1 (from lighter to darker colors), for
either a first-order Trotter step (continuous lines) or a second-order Trotter step (dashed
lines). In particular, we depict the infidelity versus the length of the time-step Δt. We
observe that for intermediate values of noise ξ = 0.1, 1 there is an optimal time interval
Δt that corresponds to the lowest infidelity, and that first-order Trotterization can perform
better at smaller Δt.
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0.1 0.2 0.3 0.4 0.5

Δt

0.2

0.4

Ī

10−2 10−1 100

ξ

0.1

0.2

0.3

0.4

Ī,
I(
t f
)

(a)

(b)

Figure 5. (a) Infidelity averaged over time as a function of time-step size Δt for an evolution from
t = 0 to a final time t f = 2. Different noise levels ξ = 0.01, 0.1, 1 are represented by lighter to
darker colors. (b) Time-averaged (blue circles) and final (orange triangles) infidelity as a function
of noise levels. Here, the final time is taken as t f = 2 and we choose Δt = 0.2. In both panels,
results from first-order Trotter implementations are represented by continuous lines, while those
from second-order are represented by dashed lines. Parameters ε = 0.5, ω = 4, λ = 2, γ = 1.

We now consider the open-system dynamics case. The impact of noise on fidelity is
depicted in Figure 5b. Here, we show both the average infidelity over the time interval from
t = 0 to t = 2 (blue line with circles), and the infidelity at the final time (orange line with
triangles). We consider exclusively a second-order Trotter decomposition and a time-step
Δt = 0.2. Figure 5b indicates a monotonous growth of infidelity with the noise-factor ξ,
for the parameters explored.

In Figure 6, we show the infidelity versus time for first-order (solid lines) and second-
order (dashed line) Trotterizations, while Δt = 0.2. We observe that, only for small values
of ξ, one would prefer a second-order Trotterization to improve on the fidelity of the
states. We note, not shown here, that for ξ = 0.01, the dynamics is almost identical to the
noiseless case.

To better understand the role of dissipation, we aim to verify its effect on the accuracy
of the simulation. To focus specifically on the role of γ, we consider only a second-order
Trotter evolution, a fixed value of Δt = 0.2 and ξ = 0.01, where the simulation of the
quantum computer shows generally better performance compared to levels of higher mag-
nitudes of noise ξ = 0.1, 1. In Figure 7a, we plot the time-averaged infidelity at different
values of γ, with (an orange line with circles) and without noise (blue line with triangles).
In noiseless simulations, the infidelity increases with γ, while in noisy simulations the
infidelity initially reduces to a minimum at γ = 1. Our understanding is that the dissi-
pation in the exact calculations acts in a similar way as the intrinsic noise on the device,
by drawing the system to its ground state and reducing coherence. It can thus be easier
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for a lossy quantum hardware to simulate a lossy system compared to a closed system
(γ = 0). However, a system with larger γ also implies further difficulties in the simulations
stemming, for example, from Trotterization. It thus occurs that the intrinsic dissipative
dynamics can, in some regimes, be better represented on a noisy device.

0.0 0.4 0.8 1.2 1.6 2.0

t

0.0

0.2

0.4

0.6
I

Figure 6. Infidelity as a function of time in open-system simulation in presence of noise. Using first-
order Trotter (solid) and second-order Trotter (dashed) at Δt = 0.2. At noise-factor ξ = 0.01, 0.1, 1
(from lighter to darker colors). Other parameters are ε = 0.5, ω = 4, λ = 2, γ = 1.

0.0 0.5 1.0 1.5 2.0 2.5

γ

0.02

0.04

0.06

0.08

Ī

0.0 0.4 0.8 1.2 1.6 2.0

t

0.00

0.05

0.10

I

(a)

(b)

Figure 7. (a) Infidelity averaged over time versus dissipative rate γ with noise ξ = 0.01 (orange
line with circles) and without noise (blue line with triangles). (b) Infidelity as a function of time
γ = 0, 0.5, 1, 1.5, 2, 2.5 (from lighter to darker colors). Second-order Trotter at Δt = 0.2 and the
other parameters are ε = 0.5, ω = 4, λ = 2.
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In Figure 7b, we plot the infidelity versus time for different values of the dissipative
rate γ. We observe that, for γ ≤ 1, the infidelity tends to increase with time, while for larger
values of γ ≥ 1.5, the infidelity can decrease after a maximum at an earlier time t ≈ 0.4.

Figure 8 shows the average occupation in the harmonic oscillator, panel (a), and the
expectation values of σ̂z of the spin, panel (b), versus time. In both panels, the dotted
line corresponds to the exact values, whilst the solid and dashed lines to ξ = 0.01, 0.1, 1,
respectively, from lighter to darker shades, and solid lines are used for first-order Trotteri-
zations, while dashed lines are used for second-order. For each noise level ξ, we used the
Trotterization order which corresponds to the lower fidelity.

The oscillatory evolution of the occupation of the harmonic oscillator is captured, only
partially, with the smaller non-zero noise parameter considered ξ = 0.01, panel (a), while the
occupation of the harmonic oscillator at ξ = 1 quickly stagnates around a value of 1. Instead,
the simpler evolution of σ̂z is also captured fairly well for the different values of ξ, as the
simulated dissipation of the spin is closer to the relaxation of the spin-qubit under noise.

0.0 0.4 0.8 1.2 1.6 2.0

t

0.00

0.25

0.50

0.75

1.00

〈n̂
〉

0.0 0.4 0.8 1.2 1.6 2.0

t

0.0

0.5

1.0

〈Ŝ
z
〉

(a)

(b)

Figure 8. (a) Average bosonic occupation 〈n̂〉 and (b) 〈σ̂z〉 as a function of time. Different noise levels
ξ = 0.01, 0.1, 1 are presented, respectively, by lighter to darker colors. As a reference, exact simulations
are depicted by dotted lines. Results obtained using first-order Trotterization are with solid lines, while
second-order with dashed lines. Other parameters are ε = 0.5, ω = 4, λ = 2 and γ = 1.

3.3. Two-Spin System

We here extend the system to two spins to see whether it is possible to the study
correlation developing between them through a mediated interaction via the harmonic
oscillator, as the two spins do not directly interact with each other. We use the parameters
ε = 0.5, ω = 6, λ = 2 and γ = 1. We prepare the initial state in a product state of one
spin in the excited state, one in the ground state, and the harmonic oscillator as completely
empty. This allows us to observe non-trivial dynamics while still requiring just a few
occupied levels of the harmonic oscillator.
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As for the single-spin simulations, we first evaluate infidelity in the presence of noise.
Simulating two spins requires roughly twice the number of gates as simulating one spin. A
single Δt evolution with a first-order Trotter requires 113 single-qubits and 36 CX-Gates,
while the second-order Trotter requires 177 single-qubits and 70 CX gates, as can be seen in
Figure A1 and Table A1 in Appendix A. Furthermore, in the case of two spins, we find the
optimal Trotter time-step Δt to be the same as for the single spin case (not shown).

To study the emerging correlations between the spins mediated by interaction with
the photons, we consider the spin–spin correlators

CZZ = 〈σ̂z
1 σ̂z

2〉 − 〈σ̂z
1〉〈σ̂z

2〉
CXX = 〈σ̂x

1 σ̂x
2 〉 − 〈σ̂x

1 〉〈σ̂x
2 〉. (9)

These connected correlation functions (also called second-order Ursell functions or cumu-
lants) correspond to the covariance in statistics and vanish if and only if σ̂

(·)
1 and σ̂

(·)
2 are

statistically independent [71–73].
In Figure 9, we show CZZ and CXX for, again, ξ = 0.01, 0.1, 1 from lighter to darker

lines. The solid lines correspond to first-order Trotter and dashed lines to second-order Trotter
and these Trotterization orders have been chosen as they result, for the respective amount
of noise, in the lowest infidelity. In both panels, the dotted lines correspond to the exact
values. The exact case simulations show a build-up in anti-correlation in z direction at t = 0.4,
before reducing to 0 which can already be observed for ξ = 0.1. A correlation in x direction
builds up monotonously over time and one would need ξ = 0.01 for a clearer signal.

0.0 0.4 0.8 1.2 1.6 2.0

t

−0.2

−0.1

0.0

C
Z
Z

0.0 0.4 0.8 1.2 1.6 2.0

t

0.0

0.1

0.2

C
X
X

(a)

(b)

Figure 9. Correlations for the case of two spins: (a) spin-z connected correlation CZZ (b) spin-x
connected correlation CXX as a function of time. Different noise levels ξ = 0.01, 0.1, 1 are presented,
respectively, by lighter and darker colors. As a reference, exact simulations are depicted by the dotted
lines. Results obtained using first-order Trotterization are represented by solid lines, while those
using second-order Trotterization are represented by dashed lines. Other parameters are ε = 0.5,
ω = 6, λ = 2 and γ = 1.
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In principle, correlations could be observed for a higher number of spins. In practice,
the larger number of qubits needed, and their connectivity, would result in an increased
number of gates which would limit the fidelity in NISQ devices. We also note that, going
from one to two spins, we had to increase ω to keep the higher levels of the harmonic
oscillator sparsely populated. If one does not want to increase the number of levels studied
for the harmonic oscillator, a similar adjustment, such as decreasing the coupling between
the harmonic oscillator and the spins, would be necessary when increasing the number
of spins.

4. Conclusions

In this paper, we have studied the feasibility of simulating open spin-boson dynamics
on a quantum computer. We used a second-quantization mapping of the bosonic degrees
of freedom and Trotterization of the unitary to implement the Hamiltonian. To implement
the dissipative dynamics, we used collisions and resets with auxiliary qubits.

We found that, in our parameter regime, the Hamiltonian simulation is the limiting
factor to the fidelity. We surveyed optimal Trotterization formulas and time-step sizes
depending on the level of noise in the system. We selected the open dissipative rate with
the highest fidelity in noisy circuits, and we found that current noise levels in the machine
we considered would make such simulations particularly challenging.

Anticipating future improved devices, we ran our simulations on 10% and 1% of
current noise levels, and we were able to show that it would be possible to attain much
higher fidelities. Furthermore, certain observables could be well represented with larger
amounts of noise. Importantly, the simulation of an open system can be more accurate than
unitary evolution as the open system dynamics could be closer to how a noisy computer is
already affecting a state.

Future developments in noise reduction in the hardware, in post-processing error
mitigation, as well as in reducing the number of gates for unitary evolutions can lead to a
significant increase in simulation power.

In our system, we have limited the dissipation to the spins. An interesting avenue for
future work could be the inclusion of loss in the bosonic degrees of freedom of the cavity,
for which additional auxiliary qubits, gates, and connectivity requirements could prove
challenging.
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Appendix A. Encoding of Bosonic Operators Onto Qubits

We will quickly review the d-level-to-qubit mapping we used to encode the bosonic
operators as strings of Pauli matrices. The method and different binary encodings are
discussed in [31]. The steps can be summarized as:
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1. Truncate the infinite-dimensional harmonic oscillator at some level dHO

2. Rewrite each bosonic operator Â as a sum of level transitions

Â =
dHO−1

∑
l,l′=0

al,l′ |l〉 〈l′| , Â = {â, â†, â† â}

3. Assign each level an integer

|l〉 integer−−−→ |i〉 , i ∈ N

4. Write each integer in binary

|i〉 integer−to−bit−−−−−−−−→
QB⊗

m=1

|bm〉 , bm ∈ {0, 1}

5. Map each bit pair |bm〉 〈b′m| to Pauli matrices using

|0〉 〈0| = 1
2
(1+ σ̂z)

|1〉 〈1| = 1
2
(1− σ̂z)

|0〉 〈1| = 1
2
(σ̂x + iσ̂y) = σ̂+

|1〉 〈0| = 1
2
(σ̂x − iσ̂y) = σ̂−

The result is that each level transition is written as a string of Pauli operators and each
bosonic operator Â as a sum of NP Pauli strings

Â =
NP

∑
k=1

ck

QB⊗
j=1

σ̂kj, σ̂kj ∈ {1, σ̂x, σ̂y, σ̂z} (A1)

where QB = �√dHO� is the number of qubits which encode the bosonic levels (�·� is the
ceiling function).

Appendix A.1. Gate Requirements

When writing the integers in binary in step 4, different integer-to-bit encodings result
in different Pauli strings and ultimately in a different representation of the Hamiltonian.
While the representations of the Hamiltonian are theoretically equivalent, they come with
different gate counts and thus result in different performances on noise devices.

As integer-to-bit encodings, we considered standard binary and gray code, since both
of these are compact, i.e., they require the minimum amount of qubits. Table A1 shows the
gates required to evolve one time-step of the Trotterized unitary e−iĤSBΔt and dissipation
on the ibmq_jakarta device. This includes additional CX-Gates to implement any necessary
SWAP-Gates due to limited qubit connectivity (Figure A1). For our Hamiltonian ĤSB, gray
code yielded less gates than standard binary in all cases, which is why we used gray code
throughout the main text.
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Figure A1. Qubit connectivity of the used ibmq_jakarta device.

Table A1. Gate counts, both for CX-Gate and single-qubit gates, to evolve one time-step of master
Equation (2) on the Jakarta device.

Standard Binary Gray Code

NS dHO Trotter order Single CX Single CX

1 4 First 53 21 94 43

1 4 Second 94 34 75 28

1 8 First 156 66 122 60

1 8 Second 282 124 191 107

2 4 First 106 37 122 36

2 4 Second 191 65 168 74

2 8 First 270 139 200 156

2 8 Second 496 272 409 255

Appendix A.2. Mapped Hamiltonian

After the mapping of the harmonic oscillator to qubits, the Hamiltonian (Equation (1))
is written as a sum of Pauli strings hk. The unitary e∑k hk is then Trotterized (Equation (3)).
The mapped Hamiltonian ĤSB = ∑k hk we implemented for the main text reads explicitly

ĤSB =−
√

2σx
0σx

1σz
2 +

√
2σx

0σx
1

+ (1 −
√

3)σx
0σx

2σz
1 + (1 +

√
3)σx

0σx
2 (A2)

+
1
4

σx
0 − 1

2
σz

0 − 2σz
1σz

2 − 4σz
1

for the single spin case, and

ĤSB =−
√

2σx
0σx

1σz
2 +

√
2σx

0σx
1

+ (1 −
√

3)σx
0σx

2σz
1 + (1 +

√
3)σx

0σx
2

+
1
4

σx
0 −

√
2σx

1σx
3σz

2 +
√

2σx
1σx

3 (A3)

+ (1 −
√

3)σx
2σx

3σz
1 + (1 +

√
3)σx

2σx
3

+
1
4

σx
3 − 1

2
σz

0 − 3σz
1σz

2 − 6σz
1

− 1
2

σz
3
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for two spins case. Each term constitutes one of the hk in Equations (3) and (4).

Appendix B. Noise Model

Qiskit supplies noise models based on device properties measured during calibration.
In order to simulate an improved future device, we engineer our noise from an identical
model, but from lower noise levels.

The noise model contains three error sources [70]: (i) thermal relaxation (relaxation
and dephasing); (ii) depolarizing (Pauli) error; and (iii) readout (measurement) error. At
every gate, first the thermal relaxation and then the depolarizing error is applied. The
strength of the depolarizing error is calculated backwards, to reach a target ’gate error’
when combined with the thermal relaxation. Details can be found at [74].

Appendix B.1. Error Sources

Appendix B.1.1. Thermal Relaxation Error

Thermal relaxation is defined by the qubit-specific parameters T1 time, T2 time, qubit
frequency fQubit and qubit temperature TQubit. The thermal error channel is then given time
to act according to a gate-dependent gate time. For two-qubit-gates, the error is simply the
tensor product between two single-qubit channels.

T1 is qubit-specific time until relaxation, i.e., to decay from the excited state to the
ground state. T2 qubit-specific coherence time, or time until dephasing. The qubit fre-
quency fQubit is the difference in energy between the ground and excited states. The qubit
temperature TQubit is assumed to be 0 in Qiskit’s and our noise models.

The qubit frequency and temperature enter only via the excited state population. If
fQubit → ∞ or TQubit = 0, the excited state population is 0. Since TQubit = 0 in our models,
both the frequency and temperature can effectively be ignored as parameters.

For T2 < T1, thermal relaxation is most straightforwardly described by (assuming the
device to be at 0 temperature)

KT0 =
√

PI1, (A4)

KT1 =
√

PZσ̂z, KT2 =
√

Preset |↓〉 〈↓| (A5)

ET(ρ̂) =
2

∑
i=10

KTk ρ̂K†
Tk

(A6)

It is composed of the probabilities of a phase-flip PZ, a reset to the ground state Preset, or for
nothing to happen P1. The probabilities PZ, Preset are calculated from T1, T2 and the gate
time tGate.

Preset =1 −PT1 = 1 − e−tGate · 1
T1 (A7)

PZ =(1 −Preset)

(
1 − PT2

PT1

)
/2 (A8)

=(1 −Preset)

(
1 − e−tGate ·( 1

T2
− 1

T1
)
)

/2 (A9)

P1 =1 −PZ −Preset. (A10)

If 2T1 ≥ T2 > T1 thermal relaxation has to be described by its Choi matrix

ρ̂ → ET(ρ̂) = tr1[C(ρ̂T ⊗ I)] (A11)

CET =

⎛⎜⎜⎝
1 0 0 PT2

0 0 0 0
0 0 Preset 0

PT2 0 0 1 −Preset

⎞⎟⎟⎠ (A12)
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which can also be used if T2 < T1 to compute the process fidelity in Equation (A21).
At the time of writing, all qubits on the Jakarta hardware satisfied T2 < T1. This is not

necessarily the case for all devices provided by IBM or in general.

Appendix B.1.2. Depolarizing Error

The depolarizing noise (or Pauli) channel is composed of either a bit-flip (σ̂x), a phase-
flip (σ̂z) or both at the same time (σ̂y), all with equal probability [70].

ρ̂ → ED(ρ̂) =
3

∑
i=1

KPk ρ̂K†
Pk

(A13)

KP0 =
√

1 −PD1, KP1 =

√
PD
3

σ̂x (A14)

KP2 =

√
PD
3

σ̂y, KP3 =

√
PD
3

σ̂z (A15)

Gate Infidelity

The probability of a depolarizing error is calculated from the target gate infidelity
IGate, and the infidelity due to thermal relaxation IT .

ID = IGate − IT (A16)

The target gate infidelity is given as a parameter, while IT has to be calculated as

FT = 1 − IT (A17)

= Favg(ET , U) (A18)

=
∫

dψ〈ψ|U†ET(|ψ〉〈ψ|)U|ψ〉 (A19)

=
dIpro(ET , U) + 1

d + 1
(A20)

where Ipro(ET , U) is the process fidelity of the input quantum channel ET with a target
unitary U, and d is the dimension of the channel.

Ipro(ET , F ) = F(CET /d, ρF ) (A21)

where F is the state fidelity as defined in the main text

F (ρ1, ρ2) =

(
Tr
[√√

ρ1ρ2
√

ρ1

])2
(A22)

CET /d is the normalized Choi matrix for the channel ET , and d is the input dimension of
ET .

Importantly, for our reduced-noise models, the infidelity from thermal relaxation IT is
linear in the gate time tGate. Thus, when we rescale IGate → ξ · IGate, tGate → ξ · tGate, we
indirectly scale ID → ξ · ID, IT → ξ · IT . This way, the relative contribution of the error
channels ID/IT to the infidelity remains unchanged.
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Depolarizing Error Probability

If we write the depolarizing error in terms of the identity and the complete depolariz-
ing channel D, we can rewrite the gate fidelity

ED = (1 −PD) · 1+ PD · D (A23)

Fgate = 1 − IGate (A24)

= F (ED · ET) (A25)

= (1 −PD)FT + PD · FD (A26)

= FT −PD · (d · FT − 1)/d (A27)

where d = 2qubits is the dimensionality of the gate. From this, the solution to the depolariz-
ing error probability is

PD = d(FT −Fgate)/(d · FT − 1) (A28)

= d(IGate − IT)/(d · FT − 1) (A29)

More details can be found at [74].

Appendix B.1.3. Measurement Error

A measurement error is equivalent to a bit-flip σ̂x followed by a noiseless readout [70].
The probability of the readout error PR is given by the probability P(n|m) of recording a
noisy measurement outcome as n, given that the true measurement outcome is m.

KR0 =
√

1 −PR1, KR1 =
√

PRσ̂x (A30)

PR = ∑
n �=m

P(n|m) (A31)

where n, m run over all qubits, in the case of two qubits n, m ∈ {00, 01, 10, 11}. See [74] for
further details.

Appendix B.1.4. Error Sources in the Reference Device

Given the three error sources, one can ask which error source causes the dominant
contribution to the noise in our results. As we use measurement error mitigation and it is
independent of the circuit depth, we will ignore the measurement error. Instead, we focus
on the ratio of thermal and depolarizing errors in contributing to the infidelity, IT/ID. To
give a rough estimation, we assume all gates g ∈ {CNOT, RZ, SX, X} and all qubits q are
used equally often, and average over both.

IT/ID =
1

Nq

Nq=7

∑
q=1

(
1

Ng

Ng=4

∑
g

( IT(q, g)
ID(q, g)

))
(A32)

We calculate IT(q, g) and ID(q, g) using Equations (A17) and (A16), respectively, and obtain
the current calibration data from IBM. At the time of writing, the result for the Jakarta
device is IT/ID = 15.4. We conclude that thermal relaxation is the main source of infidelity
in our simulations, by one order of magnitude compared to depolarization.

Appendix B.1.5. Calibration Data

We base our reduced-noise models on the same hardware that we run our full-noise
circuits on, the 7 qubit IBMQ Jakarta device.

At the time of writing, the calibration data are:
Processor: Falcon r5.11H, V1.1.0
Avg. CX-Gate error: 1.109e−2

Avg. readout error: 3.349e−2
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Avg. T1: 139.01 us
Avg. T2: 44.82 us
Avg. gate time: 454.095 ns
Avg. qubit frequency: 5.08 GHz
Avg. qubit anharmonicity −0.329 GHz
For more details, see [75].

Appendix C. Gate Definition

Some of the gates used are defined here. A controlled operation CO is defined as

CO(θ) = I ⊗ | ↓〉〈↓ |+ O(θ)⊗ | ↑〉〈↑ |, (A33)

where the operation O is a X gate in case of the CX-Gate, or a rotation around the y-axis RY
or z axis RZ. RY and RZ are, respectively, defined as

RY(θ) = exp
(
−i

θ

2
Y
)
=

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
, (A34)

RZ(λ) = exp
(
−i

λ

2
Z
)
=

(
e−i λ

2 0
0 ei λ

2

)
. (A35)

Furthermore, the
√

X gate is given by

√
X =

1
2

(
1 + i 1 − i
1 − i 1 + i

)
. (A36)

Appendix D. Transpiled Circuits

The amplitude damping circuit as in Figure 2 uses gates which are not available on
the quantum computer we were using. Instead, the IBM Jakarta device uses the gate set
{CNOT, ID, RZ, SX, X}. The amplitude damping circuit, in terms of these gates and as it
was implemented on the hardware, is in Figure A2.

s : RZ
√
X • √

X

a :
√
X RZ

√
X RZ RZ

s : RZ
√
X • RZ

√
X RZ

a : RZ X |↓〉

Figure A2. The dissipation circuit represented in Figure 2 in terms of the gates available on the IBM
Jakarta device. Both lines for qubits s, a continue from the first row to the second.
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Abstract: In this paper, we proposed a novel quantum algorithm for the maximum satisfiability
problem. Satisfiability (SAT) is to find the set of assignment values of input variables for the given
Boolean function that evaluates this function as TRUE or prove that such satisfying values do
not exist. For a POS SAT problem, we proposed a novel quantum algorithm for the maximum
satisfiability (MAX-SAT), which returns the maximum number of OR terms that are satisfied for the
SAT-unsatisfiable function, providing us with information on how far the given Boolean function is
from the SAT satisfaction. We used Grover’s algorithm with a new block called quantum counter in
the oracle circuit. The proposed circuit can be adapted for various forms of satisfiability expressions
and several satisfiability-like problems. Using the quantum counter and mirrors for SAT terms
reduces the need for ancilla qubits and realizes a large Toffoli gate that is then not needed. Our circuit
reduces the number of ancilla qubits for the terms T of the Boolean function from T of ancilla qubits
to ≈ log2 T + 1. We analyzed and compared the quantum cost of the traditional oracle design with
our design which gives a low quantum cost.

Keywords: satisfiability; maximum satisfiability; quantum counter; Grover search algorithm; quan-
tum circuit

1. Introduction

1.1. Satisfiability

The satisfiability (SAT) problem for a given Boolean function is the problem of deter-
mining if there exists a set of assignment values of input variables for the given Boolean
function that evaluates this function to TRUE. Boolean or propositional-logic expressions
are formed using operators AND, OR, EXOR, and NOT from input variables. Satisfiability
expression (circuit) is often expressed as a product-of-sum (POS) form. POS is a logical
ANDs of OR terms, where each OR term is an inclusive sum of literals. For instance, the
POS SAT function f (a, b, c) = (a + b + c)

(
a + b + c

)
(b + c) is satisfiable because when

c = 1 and either a or b is equal to 1, then f (a, b, c) evaluates to 1. Another example,
f (a, b) = (a + b)

(
a + b

)
(a + b)

(
a + b

)
is not satisfiable because no binary assignment of

values for variables a and b, f (a, b) would evaluate to 1.
Satisfiability problems have a wide range of applications, such as model checking in

electronic design automation (EDA) [1], automatic test pattern generation (ATPG) [2], soft-
ware and hardware verification [3], and circuit design [4]. Satisfiability problems also have
many applications in Artificial Intelligence [5], robotics, and electronic design. Based on
Cook’s theorem [6], satisfiability is an NP-complete problem. Solving a satisfiability prob-
lem involving many variables and terms using traditional algorithms is computationally
expensive.

1.2. Maximum Satisfiability

Maximum satisfiability (MAX-SAT) is an optimization version of the SAT problem. MAX-
SAT finds the maximum number of constraints of a given Boolean function that are satisfied.
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Suppose a Boolean function in the POS form contains thousands of sum (OR) terms (also
called clauses). The MAX-SAT problem is to examine the maximum number of terms that are
satisfied. For example, f (a, b, c, . . . , N) = (a + b + c)

(
a + b + c

)
(b + c) . . . (. . . , . . .) = 1.

The function f is true for a binary assignment of values to variables a, b, c, . . . , N for which
all terms are true. This is the SAT satisfiability. In contrast, the goal of MAX-SAT is not
only to find the decision satisfied/unsatisfied (yes/no) but also to provide the maximum
number of terms (clauses) that are satisfied with the actual satisfying assignment values for
the variables in case the formula is not SAT satisfiable. The MAX-SAT is considered to be an
NP-hard problem [7].

There are several extensions and modifications to the MAX-SAT problem formulated
as above. For instance, sometimes not all constraints of a problem can be satisfied, but
some of them must be satisfied. In such a case, MAX-SAT constraints can be divided into
two sets of clauses:

• Hard clauses: The constraints that must be satisfied.
• Soft clauses: The constraints that may or may not be satisfied, but we want to satisfy

as many as possible.

There are three main variants of MAX-SATs [8,9]:

1. Weighted MAX-SAT: Each clause has an associated weight cost, and the objective is to
maximize the sum of the weights of the satisfied clauses.

2. Partial MAX-SAT: Finds the assignment values for the variables that must be satisfied
for all hard clauses and must be maximized on the soft clauses.

3. Weighted partial MAX-SAT is a combination of the partial and weighted MAX-SAT.

The applications of these different variants will be discussed in the next section.

2. Related Work

2.1. Maximum Satisfiability Applications

There are many optimization problems and real-world applications that can be en-
coded to MAX-SAT. Some of the successful applications used for MAX-SAT are data analysis
and machine learning, planning and scheduling, verification and security, bioinformatics,
and combinatorial optimization [8]. We will briefly discuss some of these applications.

2.1.1. Data Analysis and Machine Learning

MAX-SAT has been used in many problems in Data Analysis, Artificial Intelligence
(AI) and Machine Learning [10]. Correlation clustering is a well-studied problem in data
analysis and AI in which data are divided into subgroups in a meaningful way. Discovering
an optimal way of making such a division is a computational challenge. There are many
approaches to find the optimal clustering, including a greedy local-search and approxima-
tion algorithms, which cannot find optimal clusterings. Solving exact formulations of the
correlation clustering as MAX-SAT based approach leads to cost-optimal correlation cluster-
ing [11]. Bayesian Network Structure Learning (BNSL) is a computationally hard problem
of finding a directed acyclic graph structure that optimally describes a given data structure.
These problems use learning that can be based on probabilistic or exact inference methods.
Using MAX-SAT as exact inference has been shown to yield a competitive approach to
learning optimal bounded tree-width Bayesian network structures (BTW-BNSL) [12]. There
are many other AI applications and data analysis approaches formulated as MAX-SAT,
including causal structure discovery [13], and deriving interpretable classification rules [14].

2.1.2. Planning and Scheduling

MAX-SAT can be applied in linear temporal logic (LTL) specifications for robotic
motion planning and control of autonomous systems. Suppose that we want to design a
controller for a robotic museum guide; the robot has to give a tour of the exhibitions in a
specific order, which constitutes the hard specification. Preferably, it also avoids certain
locations, such as the staff’s office, the library, or the passage when it is occupied. These
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preferences are encoded in the soft specifications [15]. This is an example of a partial MAX-
SAT formulation. There are other planning problems that can be encoded as MAX-SAT for
cost-optimal planning [16,17].

Scheduling problems are well-known problems that appear in various contexts, includ-
ing health care, airlines, transportation services, and various financial and money transfer
problems in organizations. These scheduling problems can be encoded as a weighted
partial MAX-SAT problem [18].

2.1.3. Verification and Security

Functional verification tasks dominate the effort of contemporary VLSI and SoC design
cycles. A major step of functional verification is design debugging, which determines the
root cause of failed verification tasks such as simulation or equivalence checking. The
MAX-SAT formulation is used as a pre-processing step to construct a highly optimized
debugging framework [19–21]. One of the techniques for debugging both hardware and
software is fault localization, where the goal is to pinpoint the localization of bugs. Fault
localization is performed using the MAX-SAT approach to reduce and improve automation
for error localization, which can speed up the debugging process [22,23].

MAX-SAT has many applications in security. Starting with solving the user authoriza-
tion query problem [24], reconstructing AES key schedule images [25], detecting hardware
Trojans [26], and malware detection [27].

2.1.4. Bioinformatics

MAX-SAT has many applications in the bioinformatics field, such as cancer therapy,
finding the optimal set of drugs to fix or rectify the fault areas of the gene regulatory
network [28], modeling biological networks and checking their consistency [29], finding the
maximum similarity between RNA sequences [30] and finding the minimum-cardinality
set of haplotypes that explains a given set of genotypes [31].

2.1.5. Combinatorial Optimization Problems

Combinatorial optimization problems are widely studied in fundamental academic
research and in solving real-life problems. Many of these problems are NP-hard, where an
exhaustive search is not tractable. For instance, MAX-SAT has been used to encode and
solve such problems as the Max-Clique problem [32–34], given a group of vertices. The
maximal clique is the largest subset of vertices in which each point is directly connected to
every other vertex in the subset.

Other applications within this domain that have been encoded into MAX-SAT consist
of determining the Treewidth of a graph [35] and finding solutions for the maximum
quartet consistency problem [36].

2.2. Classical Algorithm for Maximum Satisfiability Problem

There are many classical algorithms for solving MAX-SAT problems: exact algo-
rithms, stochastic local search algorithms [37–39], evolutionary algorithms [40,41], and
hybrids of local search and evolutionary algorithms [42,43]. Exact algorithms are often
used for small or medium size problems that can be easily verified as satisfied or un-
satisfied. The exact algorithms are based on the Davis–Putnam–Logemann–Loveland
algorithm (DPLL) [44], an example being the Branch-and-Bound algorithm [45,46] which
represents the search space of all possible value assignments to variables as a search tree.
Branch-and-Bound explores the branch of the tree and creates new formulas with partial
assignments in the internal nodes until the solution is found. The solution is stored in
the leaf nodes, which are bound to prevent unnecessary branches. Large size problems
use stochastic local search algorithms and evolutionary algorithms which can potentially
provide a high-quality solution [42,47].
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2.3. Quantum Algorithms for Maximum Satisfiability Problem

MAX-SAT is an NP-hard problem and is one of the most widely studied optimization
problems in classical algorithms. These NP-hard problems can be potentially solved
by quantum algorithms which would offer significant improvements over the classical
algorithms, assuming the existence of quantum computers with sufficiently many qubits.

There is some active research to solve the SAT and MAX-SAT problems using the
currently available quantum computers, especially the D-wave quantum annealer (QA)
systems [48]. The SAT and MAX-SAT are encoded into Quadratic Unconstrained Binary
Optimization (QUBO) compatible with the quantum annealer architecture. QUBO is a
mathematical class of problems expressed in binary variables as linear or pairwise quadratic
terms, which may include constraints.

Practical MAX-SAT problems contain hundreds of variables and terms/clauses which
cannot be handled by the currently available quantum computers. Thus, due to the limited
number of qubits available, some algorithms suggested reducing the number of qubits.
For instance, the quantum cooperative search algorithm for 3-SAT [49] proposed Grover’s
search algorithm combined with a classical algorithm that decreases the total number of
variables by replacing some qubits with classical bits. However, still, the number of needed
ancilla qubits is equal to the number of terms when applied to POS 3-SAT problems.

We propose a new quantum circuit using Grover’s search algorithm, which can be
applied to both SAT and MAX-SAT problems with a reduced quantum cost. The main
idea is to avoid large Toffoli gates that have high quantum costs and lead to decoherence.
Our novel quantum oracle circuit design requires fewer logical qubits to implement the
maximum satisfiability problem. This is based on replacing large AND gate collecting
results from clauses by a quantum counter that counts the number of satisfied clauses
inside the SAT oracle upgraded MAX-SAT oracle. Because modern quantum computers
and simulators have a limited total number of qubits, our quantum algorithm allows us to
solve larger MAX-SAT problems. However, because of a limited number of qubits, it is not
competing with modern software MAX-SAT solvers.

3. Definitions and Preliminaries

In this section, we will define some basic concepts related to quantum gates and
quantum cost. A few useful gates are shown in Figure 1.

Figure 1. Gate symbol: NOT, CNOT, 3-qubit Toffoli gates.

Definition 1: Reversible gate is n*n quantum gate that has n input variables and n output variables.
A quantum gate is reversible if it maps an n-input binary vector into a unique n-output binary
vector. In addition, it is a one-to-one mapping or a permutation of vectors. For example, the NOT
gate is reversible because if the output is 0, then you know the input must be 1, and vice versa.

Definition 2: Controlled-NOT (CNOT) is a 2-qubit gate, where the first qubit is called control
and the second qubit is called target. CNOT applies the NOT gate on the target qubit when the
control qubit is one. The value of the control qubit is not affected. Thus A = a, B = a ⊕ b. The
CNOT gate is also called the Feynman gate. Using Definition 1, the reader can check that this
function is reversible.
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Definition 3: n-control Toffoli gate consists of n-control qubits and one target qubit. The target
qubit is inverted if all control qubits are 1. Otherwise, the target qubit is unchanged: C = ab ⊕ c.
The values of all control qubits are not changed, thus A = a, B = b, etc. This is the universal
reversible gate; it realizes AND with c = 0 and NAND with c = 1.

Definition 4: Ancilla qubits are extra qubits to allow extra working space during the computation.
They are necessary to convert arbitrary Boolean functions to reversible Boolean functions.

For instance, the Boolean function X = a·b is not reversible, but function X = a·b ⊕ c
is a reversible gate with c = 0.

Although the iterative quantum counter can be built from NOT, CNOT, and multi-
qubit Toffoli gates, our design uses Peres gates because the design with Peres gates leads in
many cases to substantial circuit cost reduction. Peres gates are built from truly quantum
gates CV and CV+ and other Controlled-Nth Root of NOT gates, which requires explaining
these gates first.

3.1. Nth Root of Not Gate

Mathematically, a quantum gate with n qubit input can be represented as a 2n × 2n unitary
matrix. N-th root of NOT gate can be constructed from matrix representation as follows:

n√NOT =
1
2

∣∣∣∣∣1 + e
iπ
n 1 − e

iπ
n

1 − e
iπ
n 1 + e

iπ
n

∣∣∣∣∣.
Below given are notations and properties that will be used in the paper to design

larger Peres gates:
V gate =

√
NOT gate

V† gate is inverse of V gate. Where V† is called V dagger or conjugate of V.
W =

√
V = 4

√
NOT

G =
√

W = 8
√

NOT
VV = NOT
VV† = I
WW = V
GG = W

3.2. Controlled-Nth Root of NOT Gate

The controlled-Nth root of NOT gate is a 2-qubit gate, where the first qubit is the
control, and the second qubit is the target. When the control is one (|1>) then the target
qubit calculates the N-th root of NOT gate applied to its input value. Otherwise, with
control |0> the target qubit is not changed. The matrix representation of controlled-Nth
root of NOT gate is:

Controlled− n√NOT =

∣∣∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0

0 0 1+e
iπ
n

2
1−e

iπ
n

2

0 0 1−e
iπ
n

2
1+e

iπ
n

2

∣∣∣∣∣∣∣∣∣∣
The inverse of N-th root of NOT gate and controlled-Nth root of NOT gate are

constructed from a matrix where the plus and minus signs are reversed.
Figure 2 shows examples of various controlled-Nth root of NOT gates that we will

use in our design of large Peres gates used in counters.
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Figure 2. Some symbols for quantum gates of Controlled-nth root of NOT gate and their inverse (†)
dagger or conjugate.

3.3. Quantum Cost

Quantum cost of a quantum circuit is the number of elementary quantum gates used
to build the circuit. The elementary quantum gates are primitive gates which are 1 × 1 and
2 × 2 reversible gates. The cost of the primitive gates is equal to 1; therefore, the quantum
cost is just the number of primitive gates. For illustration, these are three elementary
quantum gates that are used to calculate the quantum cost: NOT, controlled-nth root of
NOT, and CNOT gates where cost of each gate is equal to 1. (There are some more accurate
characterizations of costs of primitive quantum gates [50] but for this paper we use the
approximate costs defined as above.)

Toffoli gate could be built using controlled-nth root of NOT gate [51]. A 3-bit Toffoli
gate from Figure 3 has two control qubits and one target qubit and is built from controlled
V/V† gates and CNOT gates. The quantum cost of the 3-bit Toffoli gate is 5. The generalized
formula for quantum cost of m-control Toffoli gate [52] is equal to 2m+1 − 3.

Figure 3. 3-bit Toffoli gate represented as controlled-V/ V† and CNOT gates.

3.4. Peres Gate

The Peres gate [53] can be characterized as a sequence of n-Toffoli followed by Feyn-
man (CNOT) gates. For instance, a 3-bit Peres gate consists of a 3-bit Toffoli and a CNOT
gates (Figure 4I). When the 3-bit Toffoli and CNOT gates are implemented separately, the
cost would be six (Figure 4II). However, the 3-bit Peres gate costs four because the adjacent
CNOT gates cancel each other. Thus, the Peres gates are used for quantum cost reduction
of quantum circuits and for blocks of the iterative counter in this paper specifically.

Figure 4. (I) 3-bit Peres gate (II) decomposed Toffoli gate with CNOT. (III) 3-bit Peres gate and its
representation using controlled-V/ V† and CNOT gates.

The Figure 4III:

• If x1 is 1 and x2 is equal to 0 or vice versa, then the transformation applied to x3 and
one of the V-gate will become active and the other one will be inactive which behaves
as the identity. Also, CNOT will become active which produces 1 that will activate
V†-gate, thus VV† = I.

• If both x1 and x2 are equal to 1, then the transformation applied to x3 and two of the
V-gate will become active. Also, CNOT will become inactive which produces 0 that
will inactivate V†-gate, thus VV = NOT.

• If both x1 and x2 are equal to 0, then no transformation is applied on the gates.
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• In general, n-controlled Peres gate consists of n − 1 Toffoli and one CNOT gate. Each
n-qubit Peres gate can be built recursively using the n − 1 Peres gate block and a few
additional controlled gates. The reader can appreciate this recursive way of building
counter blocks of any size by analyzing Figure 5 in which a 4-controlled gate at the
right uses the 3-controlled Peres gate in four upper qubits.

Figure 5. A Peres gate realized on five qubits.

As shown in Figure 5, the 5-qubit Peres gate uses the 4-qubit Peres gate as its sub-circuit.
Figures 4 and 5 illustrate that the general formula for the quantum cost of m-controlled
Peres gate [54] is equal to m2. For a larger design, the Peres gate can be designed as
recursive blocks as shown in Figure 6.

Figure 6. Generalized Peres gate realized on n qubits.

3.5. Quantum Oracle

An oracle is a black box operation that takes an input and gives an output that is a
yes/no decision. A quantum oracle is a reversible circuit that is used in quantum algorithms
for the estimation of the value of the Boolean function realized in it. Quantum oracle also
has to replicate all input variables on the respective output qubits. If the oracle uses ancilla
qubits initialized to |0>, it has to return also a |0> for every ancilla qubit. The classical
oracle function is defined as a Boolean function f (x) that takes a proposed solution x of the
search problem. If x is the solution, then f (x) = 1; If x is not a solution, then f (x) = 0. The
quantum oracle is a unitary operator O such that:

|x〉 |q〉 O→ |x〉 |q ⊕ f (x)〉

where x is the value in search space, q is a single qubit, the oracle qubit, and ⊕ is the XOR
operator (also called the addition modulo 2). A simplified formula of the quantum oracle
can be written as:

|x〉 O→(−1) f (x)|x〉
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4. Proposed Quantum Algorithm for Maximum Satisfiability

In traditional Grover’s algorithm, oracles are composed of Toffoli and NOT gates; one
needs to keep the results of all OR terms for the final AND gate being the decision output
of the oracle. The answer to each OR term is stored in a separate ancilla qubit; thus, we
need the number of ancilla qubits equal to the number of terms in the function. In Boolean
functions involving thousands of terms, this would mean Grover’s oracle needs thousands
of ancilla qubits. If there are T terms in a function, we would need T ancilla qubits. For
large T, the number of required ancilla qubits becomes unrealistically large, even for future
large quantum computers with thousands of logical qubits. Therefore, we present here
a novel quantum oracle circuit design that requires �log2 T�+ 1 ancilla qubits when T is
not a power of 2 or �log2 T�+ 2 ancilla qubits when T is a power of 2 in order to keep
the circuit from growing too large. Our design also improves the overall runtime. For
example, in traditional oracles if there are 1,000,000 terms, then we need the same number
as 1,000,000 ancilla qubits, but for our design, we need only 21 ancilla qubits. To eliminate
the need for ancilla qubits, we make use of the concept of an iterative quantum counter
built from blocks, with each block built from controlled Peres gates. We connect one block
of the iterative quantum counter after each Toffoli gate representing the OR term of the
function POS formula. The satisfiability value of this term controls the block of the counter
by activating this block or not. It then increments the count by 1 or 0, depending on the
truth value of the OR term. Thus, our quantum counter counts the number of satisfied OR
terms in the Boolean function implemented as a POS.

We assign a counter block for each OR term, where the result of the term is used as
one of the control qubits of the counter. When the term evaluates to 0, nothing is registered
in the counter. When it evaluates to 1, the counter outputs the binary number value + 1
to the previously accumulated count value. The use of a quantum counter allows us
to send the result from the Toffoli gate representing one OR term to the counter circuit,
hence eliminating the need for an ancilla qubit. We can set the function qubit back to 1
by mirroring the Toffoli gate used to compute the result and set the input qubits back to
the original by applying NOT gates when appropriate. Our design drastically reduces the
number of qubits needed for a function at the cost of replicating Toffoli gates in the POS
expression and the costs of the iterative counter.

4.1. Grover’s Search Algorithm

Grover’s Algorithm [55] searches an unordered array of N elements to find a particular
element with a given property. Grover’s algorithm is often used as a subroutine in other
quantum algorithms [56–58]. In classical computations, in the worst case, this search takes
N queries (tests, evaluations of the classical oracle). In the average case, the particu-
lar element will be found in N/2 queries. Grover’s algorithm can find the element in√

N queries. Thus, Grover’s algorithm can be used to solve the decision maximum sat-
isfiability k-SAT for every value of k. Grover’s algorithm is a quantum search algorithm,
which speeds up a classical search algorithm of complexity O(N) to O

(√
N
)

in the space of
N objects, hence Grover gives a quadratic speed up. To solve the optimization problem of
finding MAX-SAT with maximum value of k Grover’s Algorithm has to be repeated.

The MAX-SAT contains n variables from the given Boolean function which is used
to represent the search space of N = 2n elements. To apply the MAX-SAT in Grover’s
algorithm, these N elements are applied in a superposition state which is the input to the
oracle. If the oracle recognizes an element as the solution, then the phase of the desired
state is inverted. This is called the Phase inversion of the marked element. The marked
element is a true minterm of function f from the oracle. The true minterm is a product of all
variables of function f that evaluates to f = 1. Grover’s search algorithm uses another trick
called inversion about the mean (average), which is also known as diffusion operation or
amplitude amplification. Inversion about the mean amplifies the amplitude of the marked
states and shrinks the amplitudes of other items. The amplitude amplification increases
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the probability of marked states, so that measuring the final states will return the target
solution with a high probability near 1.

As shown in Figure 7a, the n qubits in the superposition state result from applying a
vector of Hadamard gates to initial state

∣∣0〉n . Next applied is repeated operator G which

is called the Grover Loop. After the iteration of the Grover Loop operator O
(√

N
)

times
the output is measured for all input qubits. Oracle can use an arbitrary number of ancilla
qubits, but all these qubits must be returned to value |0> inside the oracle. The number of

required iterations for Grover operator is: R ≤
⌈

π
4

√
N
M

⌉
where N is number of all search

space elements and M is number of solutions. The Grover Loop G is a quantum subroutine
which can be broken into four steps as shown in Figure 7b:

Figure 7. (a) Schematic circuit for Grover’s algorithm [55]. (b) Grover operator G.

1. Phase inversion: apply the oracle. If the oracle recognizes the solution, then the phase
of the desired state is inverted

2. Apply the Hadamard transform H⊕n (H = 1√
2

[
1 1
1 −1

]
)

3. Zero state phase shift: Perform the condition phase shift, in which all states receive a
phase shift of −1 except for the zero state |0〉.

4. Apply the Hadamard transform H⊕n

4.2. Quantum Counter

As described in Section 3.3, the quantum counter block should be constructed
from multiple-controlled Peres gates, where the first qubit of the Peres gate is applied
a constant 1 with other variables combined, and the Peres gate is then turned into a
quantum counter. (This qubit will be next taken from the OR term of the satisfiability
formula to activate the counter block realized from Peres gates). For simplicity of
explanation, we assume that the counter block is built from Toffoli and CNOT gates, as
shown in Figure 8.

Here z is the least significant qubit and x the most significant. The outputs of
CNOT and two of the Toffoli gates are 1 ⊕ z, 1 ⊕ z ⊕ y, and 1·z·y ⊕ x , respectively. When
xyz = 000, the first Toffoli gate outputs 1·z·y ⊕ x = 1·0·0 ⊕ 0 = 0 ⊕ 0 = 0 and the second
1·z ⊕ y = 1·0· ⊕ 0 = 0 ⊕ 0 = 0. The outputs of the qubits y and x are both zeros. The output
of the qubit z is 1 ⊕ z = 1 ⊕ 0 = 1. Hence the circuit incremented 000 by 1 to 001. Quantum
counter circuit indeed outputs the value input+1.

If we connect the first control input of the quantum counter block to a circuit, then the
output of the connected circuit (a term of the POS) will either activate or deactivate the
counter. When the output of the connected circuit is equal to 1, the output of the counter
block is incremented by 1. When the output of the circuit is equal to 0, the output of the
counter block is unchanged.
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Figure 8. (a) Three-qubit quantum counter. (b) Analysis of 3-qbit quantum counter block from (a).

4.3. Traditional Oracle for Satisfiability Boolean Function

To build an OR term using a Toffoli gate, we use De Morgan’s Law to convert the term
into a product of the same variables a + b + c = a + b + c = a·b·c. With the XOR operation,
1 ⊕ a = a. Hence a + b + c = a·b·c = 1 ⊕ abc. The corresponding quantum circuit using a
Toffoli gate is shown in Figure 9.

Figure 9. Convert sum term to product term using De Morgan’s law.

Suppose we have a Boolean function f (a, b, c) = (a + b + c)(a + b + c)(b + c) from
Karnaugh map in Table 1. As one can see in Table 1, there are four which means the solution
of the Boolean variables in binaries are (abc = 010, 011, 111, 101), which are satisfied for
the Boolean function. Every true minterm in the Karnaugh map from Table 1 is a marked
element and potential solution to the Grover Algorithm. However, in one run of Grover’s
search algorithm, only one solution is found.

Table 1. Karnaugh map of POS for the Boolean function f (a, b, c) = (a + b + c)(a + b + c)(b + c).

ab\c 0 1

00 0 0

01 1 1

11 0 1

10 0 1
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We build a quantum oracle for the Grover’s Loop using Toffoli gates, in which the XOR
gate is controlled by the product of variables. We need to first convert the Sum expressions
into Products using De Morgan’s Law.

a + b + c = a + b + c = abc = abc

a + b + c = a + b + c = abc = abc

b + c = b + c = bc.

After building each term with the corresponding product expression, each with an assigned
ancilla qubit for the output, we need to put the terms together as the product of the OR
terms for the entire function f (a, b, c) = (a + b + c)(a + b + c)(b + c). Since xyz ⊕ 0 = xyz,
we use another Toffoli gate controlled by the product of the OR terms XORed with 0.
The schematic of the entire circuit for f (a, b, c) = (a + b + c)(a + b + c)(b + c) is shown
in Figure 10:

Figure 10. Traditional oracle for Multiple input Toffoli gate used as global AND gate
f = (a + b + c)(a + b + c)(b + c).

To set the input qubits and ancilla qubits back to their original states, we mirror all the
circuits up to the f (a, b, c) on the right-hand side of the function gate.

Let is define n number for variables and t number for terms then the number of qubits
q needed for the oracle is: q = n + t + 1.Where 1 is for the OR terms XORed with 0. Notice
that we need three ancilla qubits, which is equal to the number of terms. For a function
involving thousands of terms, we would need an equal number of ancilla qubits.

4.4. Proposed Construction of a Quantum Oracle for MAX-SAT

Our proposed circuit does not require keeping the OR terms for the later calculation
of the function. All we need to know is whether each term is satisfied or not, and we
pass the result to the counter block assigned to it. Thereafter, we put the ancilla qubit
back to the original state 1 by mirroring. Depending on neighboring expressions, there are
opportunities to cancel double NOT gates, yet saving the number of gates needed.

The target output of each Toffoli gate realizing an OR term is used to activate the
counter block corresponding to it. In Figure 11, notice that there are two NOT gates adjacent
to each other, canceling each other out. Hence, we can remove those gates from our circuit.

Figure 11. Improved version of the part the oracle f = (a + b + c)(a + b + c)(b + c).
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There are eight NOT and six Toffoli gates in this design in Figure 12 as opposed to
12 NOT and 7 Toffoli gates in the traditional design in Figure 10. The reason we need ancilla
qubits in the traditional design is that we need the outputs from the Toffoli gates recorded
in the ancilla qubits for counting the number of satisfied terms. By sending the satisfaction
result for each term to the quantum counter, we are able to reset the output line back to 1.

Figure 12. Improved and optimized version of the part the oracle f = (a + b + c)(a + b + c)(b + c).

The count for the number of satisfied terms is output on the xy qubits. In this case,
we have three satisfied terms and want to have three as the output expressed as 11 which
are expressed as xy ⊕ out0 = xy⊕0 on a Toffoli gate. If the Boolean function f is satisfied,
then the outcome out0 should be 1. The entire oracle with the function and the iterative
counter is shown in Figure 13. We applied this oracle in the Grover search algorithms for

R = 2 iterations from this formula: R ≤
⌈

π
4

√
N
M

⌉
where M = 4 is the number of solutions

in our problem from Table 1, and N = 8 is the number of all search space elements (cells of
the Karnaugh map from Table 1). In general, the value of M is calculated using Quantum
Counting algorithm [55], but an unsolved problem, the value of M, is taken as 1 to run the
Grover iterations R.

Figure 13. Improved complete oracle using quantum counter.

In Figure 14, we run the circuit on the ‘qasm_simulator’ from QISKIT for 1024 shots
(independent runs to obtain high precision probability) for which the circuit produces the
correct answers. We measured a0, a1, a2 and out0 in Figure 14 where a0, a1, a2 correspond
to the Boolean variables, a, b, c, respectively in Figure 13. As can be seen in Figure 15, it
illustrates the QISKIT [59] output graphics for the simulated circuit. The measured values
with high probability are 1010, 1101, 1110, and 1111, where the most significant qubit is out0
which is 1, and the least three significant qubits 010, 101, 110, 111 are all satisfied values for
the Boolean function. These solutions correspond to the true minterms from Table 1. For
the unsatisfied, the measured values with low probability are 0000, 0001, 0011, and 0100,
where the most significant qubit is out0 which is 0, and the least three significant qubits
000, 001, 011, 100 are all unsatisfied values for the Boolean function.
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Figure 14. MAX-SAT applied Grover’s search algorithm. f (a, b, c) = (a + b + c)(a + b + c)(b + c).

Figure 15. Measurement of the Boolean variables and the outcome of function
f (a, b, c) = (a + b + c)(a + b + c)(b + c).

As can be seen in Figure 15, the four values 000, 001, 011, and 100 have some value
with less probability because of noise created by the simulator. However, we verified the
solutions by applying the number of iterations R, and the output from the simulation with
high probability 010, 101, 110, and 111 matches the theoretical values, which can be verified
manually. We also applied different shots to test, and the results were closely similar, with
a high probability for all satisfying values.

4.5. Verifying an Unsatisfiable Function

Suppose a function with four OR terms f (a, b) = (a + b)(a + b)(a + b)(a + b) which
no assignment of values a and b evaluates the function to 1. We need to first convert the
OR terms into Products using De Morgan’s Law and then build the oracle for the given
Boolean function.

a + b = a + b = a.b

a + b = a + b = a.b = a.b
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a + b = a + b = a.b = a.b

a + b = a + b = a.b = a.b

The four qubits (1, z, y, x) in block (A) realize the counter, which can count from 0 to
7. We need the last qubit with out0 ancilla bit to produce 1 when all terms are satisfied for
Grover’s algorithm. Since this function has four terms, to check satisfiability which is the
last qubit should be 1, we need to add two NOT gates in the block (B) which makes the last
qubit to produce 1 if the Boolean function is satisfied. The function f (a, b) from Figure 16 is
not satisfiable, so comparing to a value of 4 in the last gate would not generate any correct
solution. Grover’s algorithm will give a few random values that can be verified on the
satisfiability formula outside Grover’s Algorithm using function f (a, b). Therefore, we
remove the two NOT gates in block (B) to get the maximum satisfied terms of the function.

Figure 16. Oracle with counter f (a, b) = (a + b)(a + b)(a + b)(a + b).

In a more general case in Figure 17, we repeat the Grover Algorithm with tuning
values of thresholds until equal to counter value xyz. The comparator G = H compares
the output from the counter with the threshold value given as constant values n1, n1, and
n3. For instance, f (a, b) = (a + b)(a + b)(a + b)(a + b) has 4 terms, we tune the threshold
value from 4, 3, 2, and 1 until the condition is met. The value of the counter where the
condition is met is the MAX-SAT value. If the condition is met, the ancilla qubit out0 will
be flipped. It changes the quantum phase of the solution so that the elements that satisfy
all constraints are marked. This method of the threshold with comparator is useful to check
when the exact number of terms (constraints) are known, which can be checked whether
the threshold is equal to the counter value. For instance, if there are 10 constraints in a
given function, but it should satisfy a minimum seven constraints, then set the threshold to
seven and check if the counter equals to seven. There are applications based on the method
of the threshold with a comparator, such as finding the minimum set of support [60].

Figure 17. Oracle with counter circuit and threshold with comparator.
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Every binary vector |a, b〉 of a solution can be verified by running outside of the Grover
Algorithm, as can be seen in Figure 18 in which the maximum number of satisfied terms is
3 out of 4. We applied one Grover’s Loop iteration for this oracle to get the MAX-SAT. In
Figure 19, we run the circuit on the ‘qasm_simulator’ from QISKIT for 1024 shots.

Figure 18. MAX-SAT verification.

In Figure 19, we measured the Boolean variables, counter, and output. In Figure 20, the
most significant qubit out0 always is 0, which means the Boolean function is not satisfied
because there are no such binary values for the least two significant qubits 00, 01, 10, and
11, which would satisfy the Boolean function. However, the novelty of our design is that
the counter qubits give the maximum numbers of satisfied terms in the Boolean function.
The counter qubits are the second, third, and fourth qubits from the most significant qubit,
which in this case is 011.
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Figure 19. f (a, b) = (a + b)(a + b)
(

a + b
)(

a + b
)

applied Grover’s algorithm.

Figure 20. Measurement of f = ((a, b, c) a + b)(a + b)
(

a + b
)(

a + b
)

.

5. Calculation of Quantum Cost

5.1. Calculation of Quantum Counter Size

In the Table 2 shows the required number of qubits for the quantum counter which
each term is not required for one ancilla qubit, but many terms require a few ancilla qubits.

In general, if there are T terms in given Boolean function then the total number of
qubits that need for quantum counter is:

• �log2 T�+ 1 ancilla qubits when T is not a power of 2
• log2 T + 2 ancilla qubits when T is power of 2

As shown in Figure 21, for instance, if there are 100,000 terms, then the number of
required ancilla qubits in traditional oracle is 100,000, but in our design, the quantum
counter requires only �log2 T� + 1 = 18 ancilla qubits. Using the quantum counter,
each term is not required for one ancilla qubit, but many terms are required for a few
ancilla qubits.
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Table 2. Quantum counter size; total qubits for counter.

Number of Terms (Clauses) Total Qubits for Quantum Counter

2 �log2 T�+ 2 = 3

3 �log2 T�+ 1 = 3

4 �log2 T�+ 2 = 4

5 . . . 7 �log2 T�+ 1 = 4

8 �log2 T�+ 2 = 5

9 . . . 15 �log2 T�+ 1 = 5

16 �log2 T�+ 2 = 6

17 . . . 31 �log2 T�+ 1 = 6

32 �log2 T�+ 1 = 7

33 . . . 63 �log2 T�+ 1 = 7

64 �log2 T�+ 2 = 8

65 . . . 127 �log2 T�+ 1 = 8

128 �log2 T�+ 2 = 9

129 . . . 255 �log2 T�+ 1 = 9

256 �log2 T�+ 2 = 10

257 . . . 511 �log2 T�+ 1 = 10

. . . . . .

. . . . . .

T
{

�log2 T�+ 1, i f T is not power of 2
�log2 T�+ 2, i f T is power of 2

Figure 21. Comparison of required numbers of ancilla qubits for our oracle and the traditional oracle.

5.2. Quantum Cost Calculation for Quantum Counter

Each term in the Boolean function is represented as n-bit Toffoli gate, and the satisfia-
bility result is passed down to the counter. We need as many counter blocks as there are
terms in the given POS Boolean function. The counter can be built from Toffoli gates or
Peres gates. It is important to have low cost quantum circuits for this high demand for n-bit
Toffoli gate. Since the Peres gate is a low-cost quantum circuit, we replaced the Toffoli gates
with Peres gates for cost reduction [52]. The formula of quantum cost for m-controlled bits
of Peres gate is m2 and for Toffoli gate is 2m+1 − 3.
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In Figure 22 a three-qubit counter (3-control qubits) consists of three Toffoli gates which
are 3-control, 2-control, and 1-control (CNOT) gates. for each of these Toffoli gates, the
quantum cost is calculated separately: (23+1 − 3) + (22+1 − 3) + (21+1 − 3) = 28 − 9 = 19.
Four-qubit counter consists of four Toffoli gates, and the quantum cost is also calculated
separately: (24+1 − 3) + (23+1 − 3) + (22+1 − 3) + (21+1 − 3) = 60 − 12 = 48.

Figure 22. Quantum cost for 3-bit counter.

Thus, we can drive a general formula for the quantum cost of m-bit quantum counter
using the Toffoli gate:

2m+2 − 4 − 3m.

The total quantum cost of the quantum counter for each term T is:

Peres cos t = T ∗ m2. (1)

Toffoli cost = T ∗
(

2m+2 − 4 − 3m
)

. (2)

Based on these two Formulas (1) and (2), the Toffoli gate has a higher quantum cost
than Peres gate. Thus, we used in our design the Peres gates. As we mentioned before,
our final counter uses Peres gates, so we built our oracle using the Peres gate, and it is
mapping to the nth root of NOT gates which leads to low quantum cost. The recursive
design method from Peres gate was used.

6. Variants of SAT Oracles Using Quantum Counter

Following our preliminary work [61], in this section, we discuss some other applications
of the quantum counter in variants of satisfiability, such as the product of SOPs SAT.

6.1. Oracle for SOPs

MAX-SAT can be solved for a Product of any function. In particular, this can be a
Product of SOPs. The SOP functions can be implemented with a counter by summing
the digits of the counter at the end, using De Morgan’s rule. Each product term is simply
a Toffoli gate, and the counter can be checked in a similar way to a regular sum term.
Figure 23 presents an example circuit for the function ab + bc + ac.

Figure 23. Part of the product of SOP oracle that realizes SOP function f = ab + bc + ac.
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6.2. Oracle for Product of SOPs (POSOP SAT)

POSOP functions consist of products of SOP functions. We were not able to find any
references to this form of SAT. However, we can take advantage of the fact that every
term must be true in a product for the product to be true, and thus we can check against
a counter value of the number of terms in order to construct the oracle for POSOP. For
example, Figure 24 presents the circuit for function (ab + ac)(abc + bc).

Figure 24. Realization of the Oracle for f = (ab + ac)(abc + bc), with POSOP SAT.

POSOP circuits are much larger than traditional SOP circuits since an additional
counter is required for each SOP term. As such, it may be more advantageous to convert
POSOP to a more standard form, such as SOP or POS to be implemented in reversible logic.
This depends on a particular problem instance.

6.3. Oracle for Exclusive-or-Sum-of-Products (ESOP)

An Exclusive-or-Sum-of-Products (ESOP) form is an exclusive sum (using the ‘⊕’)
operator of product terms. There is not much published on ESOP SAT except for [62],
although this is an interesting subject. Grover’s Oracle can be trivially applied to ESOP SAT,
a problem that has also not been discussed yet. The advantage of ESOP SAT over OR SAT
presented in the previous section is that ESOP SAT can be realized without the need for a
large AND gate or a counter. Since every product in the EXOR sum can be implemented as
a Toffoli gate, SAT with ESOP can be formulated with just the input qubits and one output
qubit. For example, given a function such as ab ⊕ bc ⊕ ac, we can implement Grover’s
Oracle, as shown in Figure 25.

Figure 25. Realization of Oracle f = ab ⊕ bc ⊕ ac for ESOP SAT realized in Grover’s Algorithm.

7. OR Satisfiability Problems for Electronic Design Automation

In this section, we will show that many EDA (Electronic Design Automation) problems
can be reduced to SAT and MAX-SAT. In the most general case, the Satisfiability Decision
Function problem is formulated as an arbitrary binary-valued-input, binary-output, and
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single-output function. For instance, a product of sums of literals, (the literals are variables
negated or not), EXOR of products of literals, and product of sums of products of liter-
als. These functions are created by transforming some natural language or mathematical
decision problems, such as, for instance, cryptographic puzzles. The question is to find
out for which values of variables the formula for SAT or MAX-SAT is satisfied. In some
problems, one has to find all solutions; in some other problems we look for just one solution
or only some solutions. For all these variants, we have some freedom to modify Grover’s
Algorithm, and/or call it several times with modified oracles [60].

Below we will systematically formulate several satisfiability types of problems, starting
from the simplest ones. We concentrate on problems that have applications in EDA. Each
of these basic problems below can have in addition several variants related to specific ap-
plications. Given is a product of terms, each term being a Boolean sum of literals, and each
literal being a Boolean variable or its negation. We are interested in the following problems.

Problem 1 (Satisfiability): Answer Yes if there exists a product of literals that satisfies all terms
or No if such a product does not exist. Give the solution as a set of literals.

Problem 2 (Optimization of the Generalized Petrick function): Find a product with the
minimum number of literals that satisfies all terms or prove that such a product does not exist.

Problem 3 (Optimization of the Generalized Petrick function-nonnegated literal vari-

ant): Find such a product of literals that satisfies all terms and in which a minimum number of
literals is not negated or prove that no such product exists. (The not negated literals will also be
called positive literals). In particular, the Petrick Function is positive unate, which it means has
only positive literals.

Problem 4 (MAX-SAT): Find such set of literals that satisfies the maximum number of terms.

Problem 5 (Tautology Checking): Verify whether a function is a Sum of Product Form is a
Boolean tautology. Function F is a tautology (all input combinations are 1) when its negation F is
not satisfiable (all combinations are 0).

In some variants of these problems, depending on a particular application, we can
look for all solutions, all optimal solutions, some optimal solutions, or for a single optimal
solution. The central role of the Problem 1 is well-established in computer science. All NP-
complete combinational decision problems are equivalent to the Satisfiability Problem [63].
Many reductions of practically important problems to other above problems were shown,
including problems from VLSI Design Automation, especially in logic design and state
machine design. SAT and MAX-SAT also have many applications in logistics, scheduling,
AI, and robotics. Ashenhurt/Curtis Decomposition of Boolean functions can be done in
an algorithm that repeatedly applies Satisfiability [64]. Generalized Ashenhurst/Curtis
Decomposition was also realized by building a complex oracle for Grover’s Algorithm
based on the mathematics of Partition Calculus [65]. These SAT-like problem formulations
are also of fundamental importance in many algorithms for Boolean minimization, factor-
ization, and multi-level design. The set covering problem is reduced to the minimization
of Petrick Function. The reductions of many practically important NP-hard combinatorial
optimization problems can also be found in the literature. For instance, the minimization
of the Sum of Products Boolean functions can be reduced to the Covering Problem [66] and
Covering Problem can be further reduced to the Petrick Function Optimization Problem
(PFOP) [67]. Many other problems, like test minimization, can also be reduced to the
Covering Problem [66,68]. The problems of Partial Satisfiability and its applications are
discussed by K. Lieberherr [69]. Many other reductions to the formulated above problems
are discussed in [63,70]. Paper [71] discusses the reduction of three-level NAND circuits,
TANT, to the covering-closure problem solved similarly to SAT. A similar problem of
the synthesis of networks from negative gates uses the same reduction [72]. A design

456



Entropy 2022, 24, 1615

automation system [73] was created, in which many problems were first reduced to the few
selected “generic” combinatorial optimization problems. These problems include some of
the problems listed above.

The problem of minimization of Finite State Machines includes: (1) the Maximum
Clique Problem and (2) the problem of finding the minimum closed and a complete
subgraph of a graph (Closure/Covering Problem) [71]. The first of these problems, (1),
can be reduced to the Petrick Function Optimization Problem (PFOP). The problem of
optimum output phase optimization of PLA [74] can be reduced to PFOP. The second
problem, (2), can be reduced to the Generalized Petrick Function Optimization Problem
(GPFOP), introduced above and illustrated below. Many other problems, like AND/OR
graph searching [75], were reduced to the Closure/Covering Problem.

A number of problems (including Boolean minimization [76], layout compaction, and
minimization of the number of registers in hardware compilation can be reduced to the
Minimal Graph Coloring Problem. Regular layout problems can be reduced to SAT [77].
The Minimal Graph Coloring can be reduced to the Problem of Finding the Maximum
Independent Sets, and next the Covering Problem (Maghout algorithm). The Problem of
Finding the Maximum Independent Sets can be reduced to PFOP. The PFOP is a particular
case of the GPFOP. The role and importance of Tautology and conversion methods from
SOP to POS and vice versa in logic design are well known. These problems can also be
solved using SAT.

Concluding on OR SAT. In theory, every NP problem can be polynomially reduced to
SAT and also to OR 3-SAT. But this is not practical. Many problems can be reduced to graph
coloring or maximum clique problems that can be in turn reduced to satisfiability problems.

As we see now, many problems can be solved with quadratic speedup using future
quantum computers. A hybrid classical/quantum computer based on Grover tuned
to solve variants of SAT problems of various types would be a tremendous asset to all
these problems [60].

8. Conclusions

We have designed a novel quantum oracle circuit that requires a logarithmically
reduced number of qubits for solving SAT and MAX-SAT problems. The oracle circuit
uses the iterative quantum counter circuit, which replaces the ancilla qubits of a global
large AND gate for traditional oracle design. Our design showed a significant reduction
overall in the number of qubits in Grover’s search algorithm for MAX-SAT. Also, our
design calculates the quantum measurable number of the maximum satisfiable OR terms
for unsatisfiable Boolean functions. We also compared using Peres and Toffoli gates in
terms of quantum cost, where the Peres gates built from truly quantum primitives provide
lower quantum costs. Finally, we tested and showed two examples on the IBM QISKIT
simulator [23] that provided the expected results. We presented other Variants of SAT
oracles that can be designed for the oracle circuit using the quantum counter. Also, we
discussed many other potential problems in the area of EDA that can be reduced to SAT
and MAX-SAT such that the oracle can be constructed the quantum counter idea.

Suppose one wants to calculate the number of satisfied true minterms for a SAT or
MAX-SAT problems. This corresponds to the number of ones in certain Boolean functions.
This type of problem is solved using the Quantum Counting Algorithm [14], which in turn
is based on Quantum Phase Estimation. Also, many other quantum algorithms use oracles
with large AND gate at the output. We plan to work on finding solutions to these problems.
The obvious improvement and generalization will be that the yes/no solutions will be
extended to solutions for non-solvable problems where the answer will be given to tell how
far we are from the solution by creating the “MAX versions” of the problems instead of the
current “YES/NO” versions.
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Abstract: The variational quantum algorithm (VQA) is a hybrid classical–quantum algorithm. It can
actually run in an intermediate-scale quantum device where the number of available qubits is too
limited to perform quantum error correction, so it is one of the most promising quantum algorithms
in the noisy intermediate-scale quantum era. In this paper, two ideas for solving the learning with
errors problem (LWE) using VQA are proposed. First, after reducing the LWE problem into the
bounded distance decoding problem, the quantum approximation optimization algorithm (QAOA)
is introduced to improve classical methods. Second, after the LWE problem is reduced into the
unique shortest vector problem, the variational quantum eigensolver (VQE) is used to solve it, and
the number of qubits required is calculated in detail. Small-scale experiments are carried out for the
two LWE variational quantum algorithms, and the experiments show that VQA improves the quality
of the classical solutions.

Keywords: quantum; LWE; QAOA; VQE; KYBER

1. Introduction

Lattice theory is a classic subject in mathematical research, and it has critical applica-
tions in many fields such as the optimization problem and information coding. In 1996,
Ajtai [1] proved that the worst-case hardness of the shortest vector problem (SVP) can
be reduced to the hardness of SVP in a class of random lattices, thus providing provable
security of lattice-based cryptosystems. Since then, various lattice-based cryptosystems are
proposed, such as Ajtai-Dwork [2] and the Number Theory Research Unit [3].

In 2005, Regev proposed an encryption algorithm based on LWE [4]. Compared with
previous lattice-based cryptosystems, the ciphertext size and key size of LWE-based cryp-
tosystems are greatly reduced. Therefore, LWE began to be applied to many cryptographic
primitives, such as Key-Dependent Message [5], Fully Homomorphic Encryption [6] and so
forth. In July 2022, The National Institute of Standards and Technology completed the third
round of the Post-Quantum Cryptography standardization process, and four candidate
algorithms have been announced. Among them, the public-key encryption algorithm
CRYSTALS-KYBER [7] and the digital signature algorithm CRYSTALS-Dilithium [8] are
constructed based on the module-LWE problem. Therefore, analyzing LWE algorithms is
important to the security of post-quantum cryptography.

The analysis methods of LWE can be classified into combinatorial methods, algebraic
methods, lattice methods and the exhaustive search. The combinatorial method mainly
refers to an extended application of the Gaussian elimination [9], but it requires a large
number of samples. The algebraic method refers to the Arora-Ge algorithm [10], and the
complexity is also exponential in the number of LWE dimensions. There are three main
lattice methods: the dual method is used to attack decision-LWE instances by solving
the short integer solution problem on the dual lattice [1]; the decoding method is used to
directly solve the bounded distance decoding problem (BDD) on the original lattice [11,12];
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the primary method is used to further reduce the BDD problem to the Unique-SVP prob-
lem [13–15]. The exhaustive search is not suitable for practical applications because of its
high time complexity.

At the same time, VQA, such as QAOA [16], VQE [17], and FQE [18], has become the
most suitable technology to achieve quantum advantage using noisy intermediate-scale
quantum (NISQ) devices. Some works have studied how to solve hard lattice problems
by VQA. Paper [19] analyzed the energy gaps between the first three excited states of the
Hamiltonian when solving SVP with low dimension by quantum adiabatic computation.
The conclusion in [19] inspired the use of QAOA to find the ground state. Ref. [20]
calculated the number of qubits for special lattices and concluded that 1.5nlogn + n +
log(det(L)) qubits sufficed to obtain the shortest vector of n-dimensional lattice L. Ref. [21]
proposed to solve SVP by VQE and also pointed out that their algorithm was not limited to
special lattices.

The work in this paper consists of two aspects. Firstly, we use QAOA to optimize
the Nearest Plane algorithm and solve LWE. Secondly, inspired by Ref. [21], we propose a
hybrid algorithm using VQE to attack LWE and calculate the number of qubits required
to attack specific LWE cryptosystems. For the two LWE algorithm ideas, we conduct
small-scale experimental simulations. The experiments show that QAOA improves the
quality of classical solutions, and the quality of solutions obtained by VQE is at least equal
to that of classical solutions when the memory is big enough.

2. Preliminary

2.1. Lattice Theory

Let b1, b2, . . . , bn ∈ Rm be a set of linearly independent vectors, and the lattice gener-
ated by b1, b2, . . . , bn is

Λ = L(b1, b2, . . . , bn) = {α1b1 + α2b2 + . . . + αnbn|α1, α2, . . . , αn ∈ Z}.

In cryptography applications, the lattice dimension is n. Given a matrix A ∈ Zm∗n
q , the

q-ary lattice refers to

Λq(A
T) = {x ∈ Z

m|∃y ∈ Z
n, s.t.x ≡ yATmodq}.

For a lattice L and its basis matrix B = [b1, b2, . . . , bn], the volume of the lattice is
vol(L) =

√
det(BTB) and the fundamental domain is P1/2(B) = {∑n

i=1 αibi|αi ∈ [− 1
2 , 1

2 ]}.
The distance between L and vector v ∈ Rm is dist(v,L) = min{‖v − y‖|y ∈ L}. The i-th
successive minima λi(L) is the minimum radius of the ball centered at the origin, which
contains i linearly independent vectors in the lattice. Let L be an n-dimensional lattice;

then, the Gaussian heuristic states that λ1(L) ≈
√

n
2πe vol(L)1/n.

Definition 1. (Shortest vector problem, SVP) For a lattice L, the SVP problem asks to find a
nonzero lattice vector v that minimizes the Euclidean nonzero norm ‖v‖.

Definition 2. (Closest vector problem, CVP) For a lattice L, given a target vector t ∈ Rm that is
not in L, the CVP problem asks to find a lattice vector v that minimizes the Euclidean norm ‖v − t‖.

Definition 3. (Unique shortest vector problem, Unique-SVP) For a lattice L satisfying
λ2(L) > γλ1(L), where γ  1, the uSVP problem asks to find the shortest nonzero lattice vector.

Definition 4. (Bounded distance decoding, BDD) For a target vector t ∈ Rm that is not in the
given lattice L, which satisfies dist(t,L) < γλ1(L), where γ < 1/2, the BDD problem asks to
find a nonzero lattice vector v that minimizes the Euclidean norm ‖v − t‖.

Algorithms for hard problems on lattices usually perform lattice basis reduction as a
preprocessing module, because a sufficiently good basis improves the algorithms’ success
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probability. The LLL (Lenstra–Lenstra–Lovász) algorithm [22] and the BKZ (block–Korkin–
Zolotarev) algorithm [23] are two famous basis reduction algorithms.

Before introducing the LLL reduction algorithm, we first explain the Gram–Schmidt or-
thogonalization. With a lattice basis B = [b1, b2, . . . , bn], one can calculate its Gram–Schmidt
orthogonalization B∗ = [b∗

1, b∗
2, . . . , b∗

n] by the recursion b∗
1 = b1,b∗

i = bi − ∑i−1
j=1 μi,jb

∗
j

for i = 2, 3, . . . , n, where the Gram–Schmidt coefficients μi,j = 〈bi, b∗
j 〉/〈b∗

j , b∗
j 〉. The LLL

algorithm was proposed in 1982, and the formal description of LLL reduction is detailed as
shown in Algorithm 1.

Algorithm 1 LLL algorithm.

Input: lattice basis B = [b1, b2, . . . , bn] ∈ Rm×n, a reduction parameter δ.
Output: a δ-LLL reduced basis

1: Calculate the Gram–Schmidt orthogonalization B∗ = [b∗
1, b∗

2, . . . , b∗
n].

2: for i = 2, 3,. . . , n do
3: for j = i − 1, i − 2,. . . , 1 do
4: bi = bi − ci,jbj, where ci,j = �〈bi, b∗

j 〉/〈b∗
j , b∗

j 〉 ;
5: end for
6: end for
7: if ∃i, s.t.δ‖b∗

i−1‖2 > ‖μi,i−1b∗
i−1 + b∗

i ‖2 then
8: Swap bi−1 and bi;
9: Go to Step 1.

10: end if
11: return B.

The BKZ algorithm is derived from the KZ (Korkine–Zolotarev) reduction. BKZ uses
the block reduction to improve the LLL algorithm and outputs an (δ, β)-BKZ reduced basis.
To be specific, the BKZ algorithm runs the enumeration algorithm on the sub-lattice with
block size β and obtains its shortest vector. After inserting the shortest vector into the
original basis, LLL reduction with parameter δ is applied on the entire basis to remove
the linear dependency. BKZ performs the above steps iteratively until the basis is no
longer updated.

2.2. The LWE Problem

Definition 5. (Learning with errors distribution) Let n, q > 0 be integers, and α ∈ {0, 1}. Let
s ∈ Zn

q be a secret vector. The LWE distribution χs,α refers to (a, 〈a, s〉+ e) ∈ Zn
q × Zq, where

a ∈ Zn
q is uniformly selected randomly and e is a discrete Gaussian error with standard deviation αq.

Definition 6. (Learning with errors problem) Let n, m, q > 0 be integers, α > 0. Given m samples
(ai, 〈ai, s〉+ ei), i = 1, 2, . . . , m, the search-LWE problem asks to recover the secret vector s ∈ Zn

q ,
and the decision-LWE problem asks to determine whether the samples are sampled according to χs,α
or the uniform distribution.

Now, we review some lattice-based methods for analyzing the LWE problem. In
general, the decision-LWE can be solved by the short integer solution strategy, and the
search-LWE can be attacked by the BDD strategy or the inhomogeneous short integer
solution strategy. Now, we mainly describe the decoding method and the primal method
in the BDD strategy.

The LWE problem can be written in a matrix form c = As + emodq. Given q ∈ Z,
c ∈ Zm

q , A = [a1, . . . , am]T ∈ Zm×n
q , the problem recovers s. The basic idea of the decoding

method is to regard c as the target vector and then use the Nearest Plane algorithm to find
the closest vector in Λq(A). Assuming the basis of Λq(A) is B, before applying the Babai’s
Nearest Plane algorithm, B should be preprocessed to a Gram–Schmidt basis B∗. The
strategy outputs s if and only if e lies in s + P1/2(B

∗), which is determined by the quality
of the basis. Lindner and Peikert improved Babai’s algorithm by admitting a time/success
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trade-off. To be specific, in each iteration, the Lindner–Peikert Nearest Plane algorithm
chooses several close hyperplanes instead of only the closest hyperplane. The idea stretches
P1/2(B

∗) to a cube-like shape and amplifies the success probability.
The primal method is to solve LWE by reducing BDD to the Unique-SVP problem using

an embedding technique. The embedding method is to construct a (m + 1)-dimensional

lattice B′ =
[

B c

0 t

]
. Obviously, the short vector [−e, t] ∈ Zm+1

q is in B′. Therefore, solving

the Unique-SVP instance recovers the error vector and the secret vector in passing.

2.3. Variational Quantum Algorithm

VQA is a quantum–classical hybrid algorithm that is considered to be implemented
on NISQ devices. Therefore, VQA is expected to demonstrate quantum advantages over
classical computers when solving some specific problems. The workflow of VQA is shown
in Algorithm 2.

Algorithm 2 VQA algorithm.

Input: An optimization problem.
Output: Parameters in the parameterized quantum circuit.

1: Construct the objective function.
2: Construct the parameterized quantum circuit.
3: Prepare the quantum state and measure the expectation value.
4: Use a classical optimizer to determine new parameters.
5: Iterate the procedure in step 3 and 4 until the convergence of the value.
6: return the final parameters.

There are four important modules in VQA [24,25]: the objective function refers to
the cost function that needs to be minimized; the parameterized quantum circuit refers
to a set of unitary operators that manipulate parameters in the optimization process; the
measurement scheme calculates the expectation value; the classical optimizer outputs the
parameters that minimize the objective function.

First, VQA encodes the problem into an objective function O. Let the probability of
measuring qubit q in state |0〉 be pq; then, the objective function of VQA can be expressed
as minθO(θ, {p(θ)}).

Because it is inconvenient to obtain the function value directly by the measurement
probability, the expectation value of a Hamiltonian is introduced, and constructing the objec-
tive function is equivalent to constructing its corresponding Hamiltonian. The Hamiltonian
is a quantum operator that encodes the information of a physical system. Its expectation
value corresponds to the energy of a quantum state. The ground state of the Hamiltonian is
often used as the minimization target of a VQA problem. In practice, the expectation value
of Hamiltonian H

〈H〉U(θ) = 〈0|U†(θ)HU(θ)|0〉
is used to describe the measurement results of the quantum state produced by U(θ).
Therefore, the objective function is

minθO(θ, 〈H〉U(θ)).

If the objective function is defined more compactly, it can be described as minθ〈H〉U(θ).
The objective functions or cost functions constructed in this paper are all in the com-
pact form.

Second, parameterized quantum circuits are a set of unitary operations that depend
on parameters. The parameterized quantum circuit acting on quantum state |ψ0〉 can be
expressed as

|ψ(θ)〉 = U(θ)|ψ0〉,
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where θ are variational parameters.
Most ansatz U can be classified as problem-inspired or hardware-efficient. The con-

struction of problem-inspired ansatz requires the information of specific problems. For
example, the united coupled cluster ansatz in quantum chemistry is constructed by a
parameterized cluster operator T(θ) and acts on the ground state |ψHF〉 in the way of

|ψ(θ)〉 = eT(θ)−T
†
(θ)|ψHF〉. Ansatz in the QAOA algorithm is also problem-inspired, and

its construction is shown in Section 3. Hardware-efficient ansatz is usually expressed as
∏D

k=1 Uk(θk)Wk, where θ = (θ1, . . . , θD), Uk(θk) = e−iθkVk is a unitary operator derived
from Hamiltonian Vk, and Wk is an unparametrized unitary operator.

Third, in order to obtain the information of quantum state, we need to measure it
in the computational basis and calculate the expectation value of the objective function.
The expectation value of the operator σz can be obtained by 〈σz〉 = 〈ψ|σz|ψ〉 = |α|2 −
|β|2, where |α|2 and |β|2 are the probabilities to measure |ψ〉 in state |0〉 and |1〉. The
measurement defined by σx and σy is first transformed into the basis of σz by σx =
R†

y(π/2)σzRy(π/2), σy = R†
x(π/2)σzRx(π/2) and then measured on a σz basis. Any Pauli

string is measured in the same way, except that it is measured on each qubit separately.
QAOA and VQE are two quantum variational algorithms, so they can be used to solve

optimization problems. Since a quantum circuit is equivalent to a tensor product, it can be
represented on a classical computer, and the expectation value of the cost function can be
calculated, but the memory it consumes grows exponentially with the size of the problem.
For a quantum computer, repeating the preparation of ansatz state and the quantum
measurements, the expectation can be obtained. The quantum resources it consumes
increase polynomially with the scale of the problem, thus showing its superiority over
classical algorithms.

3. The Decoding Method for Solving LWE

This section applies the decoding method to solve LWE. When solving BDD, we use
QAOA to improve Babai’s Nearest Plane algorithm.

First, construct a q-ary lattice Λq(A) = {v ∈ Zm
q |∃x ∈ Zn, s.t.v ≡ Axmodq}, whose

lattice basis is equivalent to B = [A|qIm]T ∈ Z(m+n)×m. Second, perform elementary row
transformations on B and obtain a basis matrix [b′

1, . . . , b′
m]

T ∈ Zm×m. Third, solve CVP
with the target vector c, and finally output the closest vector w. The last step is to use the
Gaussian elimination to recover s = A−1w.

Now, introduce the application of QAOA when improving Babai’s Nearest Plane
algorithm. Babai’s Nearest Plane algorithm consists of two steps: first, perform the LLL
reduction on the input lattice basis, and then find the linear combination in the reduced
basis so that it forms the closest lattice vector to the given target vector. The formal
description is detailed as Algorithm 3.

In the loop, uj = �〈b, b∗
j 〉/〈b∗

j , b∗
j 〉 only takes one value by the “round to the nearest

integer” function. Through experiments, it is found that when the value range is expanded
to {uj + x|x = 0, 1, −1}, a better solution is often obtained. In a classical algorithm, the pro-
cess requires an exponential increase in computation with respect to the lattice dimension
n. In quantum computing, due to quantum properties, the computing complexity can be
greatly reduced. Therefore, we now introduce the method of encoding the random floating
in uj in two qubits and solving the optimization problem by QAOA.
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Algorithm 3 Babai’s Nearest Plane algorithm.

Input: lattice basis B′ = [b′
1, b′

2, . . . , b′
m] ∈ Rm×m, target vector t ∈ Zm

Output: vector x ∈ L(B′), which satisfies ‖x − t‖ ≤ 2m/2dist(t, L(B′))
1: Perform the LLL reduction on B′ with parameter δ = 3/4.
2: Use the Gram–Schmidt orthogonalization on the reduced basis and obtain

B∗ = [b∗
1, b∗

2, . . . , b∗
m].

3: b = t.
4: for j = m, m − 1,. . . , 1 do
5: b = b − ujb

′
j, where uj = �〈b, b∗

j 〉/〈b∗
j , b∗

j 〉 ;
6: end for
7: return t − b

First, apply Babai’s Nearest Plane algorithm to calculate the classical optimal solution,
that is, the shortest distance vector bop = (b1

op, b2
op, . . . , bm

op). Then, the result is improved
by QAOA. Let the LLL-reduced basis in Babai’s algorithm be D = [d1, d2, . . . , dm], and
construct the optimization function

F(x1, x2, . . . , xm) = ‖
m

∑
i=1

xidi − bop‖2,

where xi ∈ {−1, 0, 1}, i = 1, 2, . . . , m. It is easy to verify that F(x1, x2, . . . , xm) is a non-

negative function. Let x̂i =
σz

2i−1+σz
2i

2 , which is a quantum operator encoded in the Pauli-Z
basis. The eigenvalues of operator x̂i are −1, 0, 1, which exactly encodes the value of the
variable xi. Therefore, the corresponding problem Hamiltonian is

HC =
m

∑
j=1

|
m

∑
i=1

di,j x̂i − bj
op I|2.

Obviously, for an m-dimensional lattice, the number of qubits required to optimize Babai’s
algorithm is 2m.

To solve the problem, it is necessary to introduce a mixing Hamiltonian HM = ∑2m
i=1 σx

i ,
where σx

i is the Pauli-X operator acting on the ith bit. The quantum circuit of QAOA is
defined by the problem Hamiltonian HC, the mixing Hamiltonian HM and parameters
(γ, β). For D-layer QAOA circuits, there are usually 2D variational parameters. The process
of using QAOA to solve the optimization problem is shown in Figure 1, and the algorithm
description is shown in Algorithm 4.

Figure 1. A schematic description of the VQE.
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Algorithm 4 QAOA solving optimization.

Input: the problem Hamiltonian HC, the mixing Hamiltonian HM.
Output: the ground state |ΨC〉 of HC.

1: Prepare the quantum register into |Ψ0〉 = |+〉⊗m.
2: Choose the initial parameters γ, β. Perform HC and HM alternately and obtain

|Ψ(γ, β)〉.
3: Measure the quantum registers and calculate the cost function.
4: Repeat Step 2 and Step 3 several times and calculate the expectation value of the cost

function.
5: Pass the expectation value and parameters (γ, β) to a classical optimizer. Update the

parameters (γ, β).
6: Repeat Steps 2–5 until the result meets a fixed threshold and the parameters are updated

to (γ∗, β∗).
7: return |ΨC〉 = |Ψ(γ∗, β∗)〉

Now, we explain the steps in Algorithm 4. Step 1 performs H⊗m on |0〉⊗m, and we
obtain |+〉⊗m, which is an eigenvector of the Pauli-X operator.

Step 2 applies operators e−iγk HC and e−iβk HM , k = 1, 2, . . . , D, alternately. So, we
generate a variational wave function

|φ(γ, β)〉 = e−iγD HC e−iβD HM . . . e−iγ1 HC e−iβ1 HM |+〉⊗m. (1)

The wave function has 2D parameters {γ1, . . . , γD, β1, . . . , βD}.
The expectation value means

〈Ψ(γ, β)|HC|Ψ(γ, β〉, (2)

which can be obtained by repeatedly preparing |Ψ(γ, β)〉 on the quantum processor and
measuring it on a computational basis. Then, the classical computer performs classical
optimization algorithms to find the optimal parameter. For example, the optimizers use
the gradient descent algorithm to minimize the cost function in an iterative manner. The
method calculates the first-order derivative of the function to compute the gradient. Then,
it moves in the negative direction of the gradient. The termination condition of the gradient
descent method is that the slope of the gradient is below a very small threshold. In the
actual experiment, the algorithm is terminated by setting the empirical number of iterations.

In fact, classical optimization problems are often mapped to a simple Hamiltonian,
which is diagonal in the computational basis. However, it does not mean that the prob-
lem is easy to solve or does not require a quantum solver. First, for example, Max-
Cut is a classical NP-hard problem, and the design of MaxCut problem Hamiltonian is
H = ∑ij

1
2 (I − σz

i σz
j ) [16]. In computational complexity theory, P is a set of relatively

easy problems, and NP indicates hard problems. If MaxCut can be solved by classical
computers easily, then P = NP, which completely overturns the theoretical basis of a range
of fields. Second, processing classical optimization by QAOA usually requires a mixing
Hamiltonian consisting of σx or σy, so quantum computers still work when solving classical
optimization problems.

4. The Primal Method for Solving LWE

In this section, we propose a quantum primal method for solving LWE, where the
Unique-SVP problem is solved by VQE. Although the quantum advantage of solving
classical optimization by VQE is not as obvious as it is in quantum chemistry, understanding
the evolution of the algorithm process is still crucial for improving algorithms running on
classical hardware. We detail the number of qubits required and estimate the quantum
resources when attacking the KYBER cryptosystem. With the development of quantum
computers, resource estimation can also be used as a direction for comparison with pure
classical algorithms.
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4.1. LWE Algorithm

Algotithm 5 shows the procedure of the LWE algorithm.

Algorithm 5 The LWE algorithm.

Input: LWE samples (A, c = As + e) ∈ Zm×n
q ×Zm

q
Output: secret vector s ∈ Zn

q
1: Construct a q-ary lattice Λq(A) = {v ∈ Zm

q |∃x ∈ Zn, s.t.v ≡ Axmodq}, whose lattice
basis is equivalent to B = [A|qIm]T ∈ Z(m+n)×m.

2: Perform elementary row transformations on B and obtain the lattice basis

B1 =

[
In A

′
n×(m−n)

0 qIm−n

]
∈ Zm×m.

3: Using Kannan’s embedding technique, reduce BDD to Unique-SVP and obtain

B2 =

[
B1 0
c M

]
∈ Z(m+1)×(m+1).

4: Process B2 with VQE and derive a short vector e.
5: return s = A−1(c − e)

Step 3 expands the q-ary basis by one dimension and embeds the target vector c and
the embedding factor M into matrix B2. When M = ‖e‖, there exists (e, −M) ∈ L(B2) [26].
In this case, proposing the first m bits of the vector recovers e. In the experiment, we
generally take M = 1.

Unique-SVP can be seen as a special case of SVP, and step 4 in Algorithm 5 solves SVP
by VQE. The detailed description is shown in Algorithm 6.

Algorithm 6 VQE solving SVP.

Input: the lattice basis B = [b1, . . . , bm]T ∈ Z(m+1)×(m+1).
Output: short vector x.

1: Perform BKZ-reduction on B.
2: The SVP problem is encoded to the ground state of the Hamiltonian operator H.
3: Construct parameterized quantum circuits.
4: Repeat preparing an ansatz state |Ψ(θ)〉 from the parameterized quantum circuit and

measuring it in Pauli-Z basis. Calculate the expectation value C(θ).
5: Pass C(θ) and parameters to a classical optimizer. Update the parameter θ and go to

step 4 until the expectation value converges.

The VQE procedure is visualized in Figure 2. Now, we explain the steps in Algorithm 6
in detail. In step 1, the larger the lattice size, the more quantum resources it occupies. In
order to reduce the required qubits, a new basis matrix is first obtained by performing the
BKZ reduction.

Figure 2. A schematic description of the VQE.

468



Entropy 2022, 24, 1428

Step 2 constructs the problem Hamiltonian. For Lattice B, SVP is to find a nonzero
vector x satisfying minx∈L(B)‖x‖. Let the row vector of coefficients be z and z �= 0; then,
we have x = zB. Let G = BBT ; then, we have ‖x‖2 = zBBTzT = zGzT . According to
Algorithm 5, the dimension of the lattice is m′ = m+ 1. So, the SVP problem is equivalent to

minx∈L(B)‖x‖2 = min
z∈Zm′ (

m′

∑
i=1

z2
i Gii + 2 ∑

0≤i<j≤m′
zizjGij). (3)

Before mapping the SVP problem into a Hamiltonian, we first introduce the method
of reducing numbers in the integer interval [−d, d] to a Boolean variable polynomial. Let
t = �logd , introducing t + 1 Boolean variables β0, β1, β2, . . . , βt; the number in the interval
can be expressed as ∑t−1

i=0 2iβi + (2d + 1 − 2t)βt − d. Therefore, for the coefficient vector z,
if each entry satisfies |zi| ≤ di, i = 1, 2, . . . , m′, it can be expressed by Boolean variables
βi0, . . . , βiti . Substituting the Boolean variable polynomials into (3), we have

minβ10,...,β1t1 ,...,βm′0,...,βm′ tm′
(h + ∑

ij
hijβ

2
ij + ∑

ij �=kl
lij,kl βijβkl),

where h, hij, lij,kl are calculated constants. Because βij are Boolean variables, the above
equation is equivalent to

minβ10,...,β1t1 ,...,βm′0,...,βm′ tm′
(h + ∑

ij
hijβij + ∑

ij �=kl
lij,kl βijβkl). (4)

In the above formula, it is required to find the parameter vector

β = (β10, . . . , β1t1 , . . . , βm′0, . . . , βm′tm′ ) (5)

to minimize the function
∑
ij

hijβij + ∑
ij �=kl

lij,kl βijβkl .

Encoding the cost function into a Hamiltonian requires a mapping βij → (1 − γij)/2,
where γij ∈ {−1, 1}. Then, substitute γij → σz

ij and 1 → Iij to obtain the problem
Hamiltonian

H = ∑
ij

hij
Iij − σz

ij

2
+ ∑

ij �=kl
lij,kl

Ii,j − σz
ij

2
⊗ Ikl − σz

kl
2

,

where ij, kl ∈ {10, . . . , 1t1, m′0, . . . , m′tm′ } and σz
i is the Pauli-Z operator acting on the ith

bit. The Hamiltonian acts on a Hilbert space spanned by QNum qubits, and it can also be
written as a sum over many local interactions.

To find the ground state of H, step 3 generates a hardware-efficient trial wavefunction,
which is more suitable for available quantum devices [27]. Let |Ψ(θ)〉 = (U(θ)UENT)

D|Ψ0〉
and the reference state is set to |00..0〉. U(θ) are a group of single-qubit rotations deter-
mined by rotation angles θ. UENT are entangling drift operations generating sufficient
entanglement. D defines the level of the quantum circuit. Obviously, with the increase of
D, the convergence speed increases, but the fidelity decreases.

Step 4 calculates C(θ) = 〈Ψ(θ)|H|Ψ(θ)〉. Each iteration requires measuring N times
and the cost obtained for the i-th time is Ci. Then, the expectation value is

C(θ) = 〈Ψ(θ)|H|Ψ(θ)〉 = 1
N

N

∑
i=1

Ci. (6)

If the Hilbert space is too large, because the interaction is local, the Hamiltonian can
be split into a summation over many terms. The expectation calculations for one term
are relatively simple, and we can speed up the computation by parallelizing the quantum
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expectation-value estimation algorithm [28]. After calculating the expectation of each item
on the quantum processor, multiply it by the weight and sum on the classical processor to
obtain the final expectation value.

However, the shortest vector is 0 in this algorithm, so the restriction x �= 0 needs to
be added. The idea is to increase C when appearing as 0. We assume that among the N
measurements, there are N0 results that are not 0, C = 1

N0
∑N

i=1 Ci. Obviously, the larger the
N0, the smaller the C.

Step 5 uses the classical optimization algorithm to update θ until the expectation value
converges and the process is similar to QAOA.

We give a toy example to illustrate the process on the quantum processor. For a
more convenient description, the LWE dimension is further limited, and the example also
supports simple experiments on the IBM quantum system. Let q = 3.n = 1, m = 2. The
samples are s + e1 = 1mod3, 2s + e2 = 2mod3. The LLL-reduced matrix after Kannan’s
embedding is ⎡⎣ 0 0 1

−1 1 0
1 2 0

⎤⎦.

To simplify the model, suppose zi, i = 1, 2, 3, are already Boolean variables. Then, the
SVP problem can be reduced into finding the minimum value of C = z1 + 2z2 + 5z3 + 2z2z3.
The problem Hamilton is

H = 4.5I1 ⊗ I2 ⊗ I3 − 0.5Z1 ⊗ I2 ⊗ I3 − 1.5I1 ⊗ Z2 ⊗ I3 − 3I1 ⊗ I2 ⊗ Z3 + 0.5I1 ⊗ Z2 ⊗ Z3. (7)

Now, construct a hardware-efficient Ansatz consisting of several parameterized single-
qubit rotation operations and controlled-NOT gates. Using the parameterized circuit shown
in Figure 3, any 3-qubit quantum state |Ψ(θ)〉 can be prepared, and different quantum
states can be output by adjusting the six parameters.

Figure 3. Quantum circuit for 3 qubits.

After preparing the ansatz state and measuring it repeatedly, we calculate the expecta-
tion value. Then, we perform the optimization process on the classical processor. Iterate
the above process, and finally, the parameters corresponding to the optimal result are
(0, π, 0, 0, 0, π) and [z1, z2, z3] = [1, 0, 0]. So, [e1, e2] = [0, 0], s = 1.

4.2. Algorithm Analysis

First, we analyze the range of di in the restriction condition |zi| < di, i = 1, 2, . . . , m′.

Let B̃ = (B−1)T = [b̃1, . . . , b̃m′ ]T ; then, there exists 〈bi, b̃i〉 = {1 i = j

0 i �= j
. Let the shortest

vector v = ∑m′
i=1 tibi; then, |〈v, b̃i〉| = |ti| ≤ ‖v‖‖b̃i‖. Due to the Gaussian heuristic,

‖v‖ =
√

m′
2πe vol(L)1/m′

, we have |ti| ≤
√

m′
2πe vol(L)1/m′ ‖b̃i‖.

For an m′-dimensional matrix B, its orthogonality defect δ(B) = ∏m′
i=1 ‖bi‖
|det(B)| . Obviously,

for B, there exists δ(B) ≥ 1 and δ(B) = 1 if and only if B is an orthogonal matrix. Therefore,
the total number of qubits can be expressed as

QNum =
m′

∑
i=1

(�logdi + 1) ≤ m′ + log(d1d2 . . . dm′), (8)
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where log(d1d2 . . . dm′) ≤ 0.5m′log( m′
2πe )+ log(vol(L)∏m′

i=1 ‖b̃i‖) = 0.5m′log( m′
2πe )+ log(δ(B̃)).

For a KZ-reduced matrix B, its orthogonality defect satisfies [29]

δ(B) ≤ (
1
8

m′ +
6
5
)m′/2(

m′

∏
i=1

√
i + 3
2

) ≤ (
1
8

m′ +
6
5
)m′/2(m′ + 3)m′/2(

1
2
)m′

.

So,

log(δ(B̃)) ≤ m′

2
log(

1
8

m′ +
6
5
) +

m′

2
log(m′ + 3)− m′ ≤ m′log(m′ + 3)− m′.

Substituting into Equation (8), we have

QNum ≤ m′ + (
m′

2
log(m′)− m′

2
log(2πe) + m′log(m′ + 3)− m′)

=
m′

2
log(m′)− m′

2
log(2πe) + m′log(m′ + 3)

(9)

Therefore, the maximum number of qubits is O(m′logm′). Now, we review the value of
di, i = 1, 2, . . . , m′ when using VQE for enumeration. In practice, each zi is represented by
QNum/m′ qubits and the range of di is [2(QNum/m′)−1, 2(QNum/m′) − 1], where di ∈ Z.

In Kannan’s embedding, the lattice dimension is m + 1, where m is the sample number.
In most cases, an LWE-based scheme produces only m = poly(n) LWE samples (and
the polynomial bound can be as small as m = Θ(n)). In the LWE-based cryptosystem
proposed in paper [12], m =

√
nlg(q)/lg(δ) and δ here means the root-Hermite factor. The

theoretical worst-case reduction for LWE requires αq ≥ 2
√

n [4], so we set αq = 2
√

n. Now,
we analyze the average number of qubits required, and its LWE parameters are shown in
Table 1.

Table 1. LWE parameters.

meirent

n 10 20 30 40

q 2053 2053 2053 2053

αq 6.3246 8.9444 10.954 12.649

m 34 65 91 127

δ 1.069 1.0365 1.0280 1.0191

There are 4 groups of parameters in the table. For each group, 10 experiments are
performed, and the average value of the cost function C is obtained. Finally, we calculate
the average number of qubits required, and the result is illustrated in Figure 4. The four
curves with different colors represent that the preprocessing method for the lattice basis is
LLL, BKZ-20, BKZ-40 and BKZ-80, respectively. By the regression analysis, taking BKZ-20
as an example, we have

QNum = 92.54nlogn − 612.27n + 1343.8logn − 1234.37.

For example, for a 40-dimensional LWE problem, the maximum number of qubits re-
quired is 1126, which is a scale that is considered achievable in the near future. With the
further development of quantum computers, LWE with larger dimensions can also be
solved successively.
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Figure 4. Average number of qubits required for different LWE dimensions.

4.3. Attacks on Existing Cryptosystems

In this section, we calculate the number of qubits required for a VQE attack on the
KYBER cryptosystem. KYBER is a key encapsulation mechanism based on the module-LWE
problem, which means it is based on Ring R = Z[X]/(X256 + 1). KYBER has three modes
to satisfy 128/192/256-bit security, respectively. The parameters are listed in Table 2.

Table 2. KYBER parameters.

n k q

KYBER512 256 2 3329
KYBER768 256 3 3329

KYBER1024 256 4 3329

In the table, n, k, q represents the maximum degree of polynomial, the number of poly-
nomials in each vector and the modulus. The most famous attack on the MLWE problem
does not utilize the special structure of a lattice, so we still analyze it as an LWE problem.
Paper [7] mentioned that the number of samples is between 0 and (k + 1)n. To analyze
the worst case, let m = (k + 1)n. Therefore, in the primal attack, the lattice dimension
d = m+ 1 = (k+ 1)n+ 1. Using the conclusion in Section 4.2, for the above three parameter
settings, the required maximum qubits are 13,768, 19,538, and 25,482, respectively.

Although the quantum computers made at this stage are all NISQ devices, after IBM
launched the 127-QubitEagle processor in 2021, it plans to launch the 1121-QubitCondor
processor in 2023. At the same time, the IBM team also fully considered the future million-
qubit system when designing the world’s largest dilution refrigerator “Goldeneye”, which
is an important part of the IBM’s roadmap for scaling quantum technology.

5. Algorithm Implementation and Experimental Results

5.1. Using QAOA Algorithm to Improve the Decoding Method

In this section, we discuss the quantum advantage of the algorithm introduced in
Section 3. Since it is difficult to estimate the computing complexity of QAOA, the QAOA
process is regarded as a black box; that is, it is assumed that QAOA returns the solution to
the optimization problem in a limited time. Now, without considering the actual complexity
of QAOA, we only analyze the results of the algorithm through small-scale experiments.

The LWE instance is (A, c = As + e) ∈ Zm×n
q ×Zm

q . Thus, after reducing to the BDD
problem, the target vector is c. Algorithm 3 outputs a classical closest vector w, and the
error vector can be obtained by e = c − w. Then, Algorithm 4 updates vectors w and e by
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QAOA. The result quality r = ‖e‖, which means the norm of the error vector. It is obvious
that the smaller the r, the higher the quality.

Taking the dimension of the secret vector as n = 3 and n = 5, the experiment generates
50 groups of random LWE samples, respectively. Each group forms an LWE instance. For
each instance, after obtaining the closest vector by Babai’s algorithm and calculating the
result quality r, we use QAOA for optimization to obtain a new approximate closest
vector and calculate the quality. Figure 5 shows the comparison of r between classical
solutions and solutions after quantum optimization when n = 3, and Figure 6 illustrates
the comparison when n = 5.

Figure 5. Quantum advantage demonstration of 50 random lattice samples when n = 3.

Figure 6. Quantum advantage demonstration of 50 random lattice samples when n = 5.

In Figures 5 and 6, the horizontal axis represents 50 groups of random samples, and
the vertical axis represents the result quality r. The red columns represent the results of
the classical Babai’s algorithm, and the blue columns represent the results after quantum
optimization. According to the definition r = ‖e‖, a smaller r indicates a closer vector
and higher quality. As evident in the figures, quantum results have higher quality than
classical results in many cases, while in other cases, the results are the same. Therefore,
the conclusion that can be drawn from the experiment is that quantum results obtained by
QAOA are no worse than their classical counterparts.
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5.2. Using VQE Algorithm to Realize the Primal Method

In this section, we present the experiments of solving LWE by the primal method.
When quantum simulation is performed in a classical computer, the underlying quantum
simulation uses QuSET [30], and the front-end interface to implement the algorithm uses
C++. In the experiment, better results can be obtained by using the Conditional Vale at Risk
(CVaR) method [31]. Specifically, assuming C1, C2, . . . Cn are sorted in non-decreasing order
and in each loop, C = 1

�pN� ∑
�pN�
i=1 Ci, where 0 < p < 1. Paper [21] proposes that p = 0.175

gives better results.
On the simulation platform, due to memory constraints, the maximum lattice dimen-

sion does not exceed 30, which means the LWE dimension n is much smaller than 30. If
the input lattice matrix already contains the shortest vector, since the initial parameters of
VQE are random and the algorithm still outputs the shortest vector after several iterations,
it verifies the correctness of the algorithm. Therefore, when the VQE input is the reduced
basis or the shortest vector can be obtained by simple vector addition or subtraction of the
input matrix, the solution obtained by VQE is the same as that of the classical algorithm.

When the input is an arbitrary basis, the actual experimental results of the VQE are
of poorer quality. The reason is that the simulation platform occupies classical memory,
and the qubits for representing entries of the coefficient vector are limited. So, the correct
coefficient vector cannot be accurately obtained. As the number of available qubits increases
in the future, its coefficient representation will become more and more accurate, and the
solution quality of the VQE algorithm will be better.

6. Discussion and Conclusions

VQA uses a classical optimizer to train parameterized quantum circuits, and it is
one of the most promising quantum algorithms to achieve quantum supremacy. When
researchers envision applications for quantum computers, it is almost impossible to bypass
VQA algorithms. In this paper, we first present two LWE attacking tools, using QAOA
to improve Babai’s algorithm when solving BDD and utilizing VQE to solve Unique-SVP.
The two algorithms combine classical optimization techniques and variational quantum
techniques, providing ideas for solving LWE when the quantum resources are limited.
Second, we estimate the number of qubits required for both algorithms. Third, for the two
algorithms, experimental simulations are carried out, respectively. The experimental results
show that for the first algorithm, QAOA improves the result quality of classical algorithms,
and for the second algorithm, when the memory is large enough, the quality of quantum
solutions is at least comparable to that of the classical solutions. How to further reduce the
number of qubits by using the structure of the modular lattice is the direction that needs to
be studied in the future.
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