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Editorial

Concluding Remarks for the Special Issue on RNA Viruses
and Antibody Response
Yiu-Wing KAM

Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China;
yiuwing.kam@dukekunshan.edu.cn

Infectious diseases represent one of the major public health concerns on the global level.
The emergence and re-emergence of different RNA viruses (influenza, SARS-CoV-1, MERS,
CHIKV, Zika and SARS-CoV-2) remain a major concern for public health control world-
wide [1,2]. In every disease outbreak, valuable knowledge about virus–host interactions
can be learnt to better manage and control the spread of RNA virus diseases. Conse-
quently, preventive measures such as the early detection of cases, clinical management,
and the development of vaccines can be employed to reduce the socioeconomic impact
of RNA-virus-mediated outbreaks. In the context of vaccine responses and immunity, the
responses of neutralizing antibodies serve as predictors of protection from infection [3,4].
Understanding antibody kinetics provides important information to improve the accuracy
of early detection system development. This Special Issue collects 14 original studies and
2 reviews that contribute to the overall knowledge on antibody responses triggered by
RNA virus infections.

Ten original research papers are published in this Special Issue related to SARS-CoV-2,
each looking at different aspects. Five studies discuss the relationship between antibody
kinetic profiles and protection. These studies provide important information about whether
all infected individuals will have the same course of humoral response maturation or
evolve with a unique binding and neutralizing capacity which is individual specific. We
might be able to use a mathematical model to predict the protection time post-infection
according to antibody binding kinetics.

Currently, the detection of viral RNA by qRT-PCR remains the gold standard for the
acute phase of infection. Can we use antibody detection as a diagnostic alternative? To
address this, two studies in this Special Issue provide additional insights into improving
the sensitivity and specificity of a diagnostic system for SARS-CoV-2 infections using
either conserved full-length (N protein) or fragmented (RBD) antigens as the early serology
detection system. However, more validation from new SARS-CoV-2/RNA-virus-infected
cohorts will be important to ascertain the robustness of the identified “immune signature”
for pathogen-specific identification. With the availability of better diagnostic alternatives,
clinicians can then provide a well-informed disease intervention program for patients.

More importantly, this Special Issue contains four studies and two reviews looking at
the treatment strategies for managing COVID-19 patients, particularly in preventing severe
clinical outcomes post-infection. We might learn lessons from other infectious diseases
(HIV and RSV) or validate different antiviral treatment options in order to improve our
understanding of virus infection mechanisms and disease severity development.

RNA viruses apart from SARS-CoV-2 (influenza and CHIKV) remain a major concern
for public health control globally and this Special Issue contains three studies that provide
additional antibody knowledge in order to expand the development of better prophylactic
and therapeutic strategies.

We would like to thank all authors for publishing their high-quality research and
reviews in this Special Issue. It has been a great pleasure working with all the talented
researchers around the world. This Special Issue will serve as a platform to further improve
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the current knowledge of antibody responses against RNA virus infections. Hopefully,
this platform will continue to facilitate the design and development of prophylactic and
therapeutic strategies in preparation for future disease outbreaks.
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Article

Validation of N Protein Antibodies to Diagnose Previous
SARS-CoV-2 Infection in a Large Cohort of Healthcare Workers:
Use of Roche Elecsys® Immunoassay in the S Protein
Vaccination Era
Juan Francisco Delgado 1,* , Mònica Vidal 1, Germà Julià 1, Gema Navarro 2, Rosa María Serrano 3,
Eva van den Eynde 4, Marta Navarro 4, Joan Calvet 5, Jordi Gratacós 5, Mateu Espasa 6 and Pilar Peña 3

1 Immunology Laboratory, Clinic Laboratories Service, Parc Taulí Hospital Universitari, Institut d’Investigació i
Innovació Parc Taulí (I3PT-CERCA), Departament de Medicina, Universitat Autònoma de Barcelona,
8207 Sabadell, Spain
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Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 8207 Sabadell, Spain

3 Occupational Health Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc
Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 8207 Sabadell, Spain

4 Infection Disease Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc
Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 8207 Sabadell, Spain

5 Rheumatology Service, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc
Taulí (I3PT-CERCA), Departament de Medicina, Universitat Autònoma de Barcelona, 8207 Sabadell, Spain

6 Microbiology Section, Laboratory Service, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació
Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 8207 Sabadell, Spain

* Correspondence: jdelgado@tauli.cat

Abstract: The aim of this study was to validate the detection of anti-nucleocapsid protein (N protein)
antibodies for the diagnosis of SARS-CoV-2 infection in light of the fact that most COVID-19 vaccines
use the spike (S) protein as the antigen. Here, 3550 healthcare workers (HCWs) were enrolled from
May 2020 (when no S protein vaccines were available). We defined SARS-CoV-2 infection if HCWs
were found to be positive by RT-PCR or found to be positive in at least two different serological
immunoassays. Serum samples from Biobanc I3PT-CERCA were analyzed by Roche Elecsys® (N
protein) and Vircell IgG (N and S proteins) immunoassays. Discordant samples were reanalyzed with
other commercial immunoassays. Roche Elecsys® showed the positivity of 539 (15.2%) HCWs, 664
(18.7%) were found to be positive by Vircell IgG immunoassays, and 164 samples (4.6%) showed
discrepant results. According to our SARS-CoV-2 infection criteria, 563 HCWs had SARS-CoV-2
infection. The Roche Elecsys® immunoassay has a sensitivity, specificity, accuracy, and concordance
with the presence of infection of 94.7%, 99.8%, 99.3%, and 0.96, respectively. Similar results were
observed in a validation cohort of vaccinated HCWs. We conclude that the Roche Elecsys® SARS-
CoV-2 N protein immunoassay demonstrated good performance in diagnosing previous SARS-CoV-2
infection in a large cohort of HCWs.

Keywords: SARS-CoV-2; antibody response; infection; vaccination; nucleocapsid protein; spike protein

1. Introduction

COVID-19 is an acute respiratory syndrome caused by the new coronavirus SARS-CoV-
2, first described in Wuhan (Hubei province, China) following an outbreak of pneumonia
of unknown origin. It is highly transmissible and has spread throughout the world. The
WHO declared its spread a pandemic causing COVID-19 [1].

Clinical manifestations of SARS-CoV-2 infection range from asymptomatic or mild non-
specific symptoms to severe pneumonia with organ function damage. Common symptoms
are fever, cough, fatigue, dyspnea, myalgia, sputum production, and headache [2,3]. These
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symptoms are non-specific and cannot be used for an accurate diagnosis; therefore, labora-
tory testing plays an important role in diagnosing SARS-CoV-2 patients. These tests can
also identify those who are asymptomatic.

Laboratory diagnosis of COVID-19 has mainly been based on molecular tests such
as real-time reverse-transcription PCR (RT-PCR) [4–6]. Antibody-based techniques are
complementary tools for SARS-CoV-2 infection detection. The presence of antibodies is an
indirect marker of infection [4,6–10]. The development of an antibody response to COVID-
19 occurs between 5 and 14 days after exposure to the virus. As such, serological tests in
the market are of little use in the context of acute COVID-19. Sensitivities are less than
50% in the first week of infection [11]. However, the detection of SARS-CoV-2 antibodies
is an excellent way to determined past infection with a sensitivity higher than 90% after
7 days [9,12–14]. Serological assays play an essential role in population seroprevalence
evaluation and can help to account for asymptomatic cases, symptomatic cases that did not
get tested, or patients suspected to have COVID-19 with a negative SARS-CoV-2 RT-PCR.

SARS-CoV-2 has at least four structural proteins: spike (S), envelope (E), membrane
(M), and nucleocapsid (N) proteins. Both viral S and N proteins are major structural
proteins and highly immunogenic. Therefore, most patients develop antibodies against
them. [15]. In addition, the SARS-CoV-2 genome encodes 16 nonstructural proteins [16].
Antibodies against peptides derived from non-structural and accessory proteins are also
detectable [17]. Commercial serologic methods target specific antibodies on several SARS-
CoV-2 epitopes including the N protein, the S protein, and the receptor-binding domain of
the S protein. The tests provide accurate diagnosis if performed on specimens collected 10
to 14 days after symptom onset, but performance varies among methods [9,13]. Different
studies relate antibody titers after SARS-CoV-2 infection with age, sex, and severity [18–21].
More than 350 vaccines are currently being investigated for a potential role in mitigating
the COVID-19 pandemic (https://www.who.int/publications/m/item/draft-landscape-
of-COVID-19-candidate-vaccines, accessed on 27 February 2023). The approved vaccines
target the S protein because this is the one that binds to the ACE2 (angiotensin-converting
enzyme 2) receptor; thus, developing a humoral immune response against it could generate
the formation of neutralizing antibodies to prevent infection.

Several studies have analyzed the antibody response induced by the S protein [22]. In a
healthy population, people develop an antibody response from mRNA vaccines (BNT162b2
and mRNA-1273). These antibodies act against the S protein of the original strain [23,24].
mRNA vaccines and other vaccines can induce this response against the S protein [25].
Global vaccination rates range from 40–90% depending on the country [26]. This makes
the serological diagnosis of SARS-CoV-2 infection difficult because it is impossible to
distinguish antibodies against the S protein by infection vs. those produced by vaccination.
It is relevant to study antibodies against other virus proteins for serological diagnosis; the
most widely used immunoassay assesses the N protein. [23,24,27].

We present here a study analyzing the performance of anti-SARS-CoV-2 IgM/IgA/IgG
Elecsys® (Roche Diagnostics International Ltd., Rotkreuz, Switzerland) on CobasTM e801
(Roche Diagnostics International Ltd., Rotkreuz, Switzerland) to detect N protein antibodies
for diagnosing SARS-CoV-2 infection in 3550 healthcare workers (HCWs) during the first
COVID-19 wave. We then compared its performance with the Vircell IgG immunoassay
(Vircell, Granada, Spain), which detects peptides from N and S proteins and the RT-PCR.

2. Materials and Methods

This observational retrospective study was approved by the Drug Research Ethics
Committee of Parc Taulí University Hospital (code 2020581).

2.1. Study Population

Here, 3550 HCWs were enrolled from 6 to 29 May 2020 when S protein vaccines were
not available. The demographic and clinical characteristics of this study cohort are shown
in Table 1, and tests performed in this cohort are shown in Figure 1. Inclusion criteria
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were HCWs from Parc Taulí University Hospital and HCWs who worked at the center
during the pandemic. Clinical characteristics were obtained from a survey at the time of
enrollment. The HCWs had to record their symptoms from the start of the pandemic in our
area (at the end of February 2020) until the time of study participation. The HCWs’ serum
samples were provided by BioBanc I3PT-CERCA and were processed after standard oper-
ating procedures with the approval of the Ethics and Scientific Committees for serological
commercial immunoassays.

Table 1. Clinical data of healthcare workers from the study cohort (n = 3550).

HCW SARS-CoV-2 HCW without
SARS-CoV-2 p Value

Infection (n = 563) Infection (n = 2987)

Clinical Age in years (median ± IQR) 39.0 (29.0–50.0) 42.0 (33.0–52.0) <0.001
Female/Male ratio 3.8 3.5 0.534

characteristics Days after onset symptoms
(median ± IQR) 55.0 (44.0–54.0) 57.0 (41.0–70.7) 0.041

Body mass index
(median ± IQR) 23.5 (21.5–26.6) 23.9 (21.5–26.7) 0.573

Overweight (%) 27.4 28.7 0.520
Obese (%) 9.4 10.0 0.665

Smoker (%) 11.5 25.1 <0.001
Hospitalization (%) 4.4 0.1 <0.001

Symptoms (%) Vomits 75.3 11.4 <0.001
Difficulty breathing 72.4 11.1 <0.001

Abdominal pain 71.1 8.4 <0.001
Sore throat 58.4 6.0 <0.001

Nasal congestion 54.7 8.6 <0.001
Diarrhea 54.7 7.6 <0.001

Dry cough 41.9 6.6 <0.001
Fever 41.0 10.4 <0.001

Loss of taste 35.6 12.0 <0.001
Loss of smell 34.0 11.9 <0.001

Chill 33.4 8.4 <0.001
Headache 23.6 3.1 <0.001
Myalgia 25.2 5.4 <0.001

Comorbidities 16.3 19.0 0.130
Fatigue 12.5 2.6 <0.001

Arterial hypertension 6.4 7.5 0.342
Asymptomatic 30.4 84.5 <0.001

IQR = interquartile range.

A validation cohort was designed using a new cross-sectional study of serologies in
HCWs vaccinated with mRNA vaccines (BNT162b2 and mRNA-1273) and HCWs who had
had a RT-PCR test. HCWs were classified as infected in the study cohort were excluded.
Thus, the validation cohort was made up of 297 infected and 1593 non-infected HCWs
according to RT-PCR results. The female/male ratio, age, body mass index and smoking
variables were recorded using an online survey at the time of enrollment. These clinical
data are shown in Supplementary Table S1.
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  Hospitalization (%) 4.4 0.1 <0.001 

Symptoms 

(%) 
Vomits 75.3 11.4 <0.001 

 Difficulty breathing 72.4 11.1 <0.001 
 Abdominal pain 71.1 8.4 <0.001 
 Sore throat 58.4 6.0 <0.001 

Figure 1. Definition of cohorts and tests performed.

2.2. SARS-CoV-2 Infection Criteria

We confirmed SARS-CoV-2 infection if HCWs were found to be positive by the RT-
PCR or were found to be positive in at least two different serological immunoassays. The
equivocal results of the immunoassays were interpreted as negative results when assessing
the criteria. Serology is a widely known tool for the diagnosis of previous infectious
diseases including COVID-19 [13]; however, the use of these infection criteria may have
induced a bias when studying the performance of serological immunoassays in the study
population, since a large number of HCWs were classified as infected and non-infected
using serological tests exclusively, and this variable is part of the infection criteria. We
limited the effect of this bias in two ways: by using the existence of two serological tests
and not just one to classify a HCW as infected and performing 2 additional serological tests
in case of discrepant results.

2.3. RT-PCR

The microbiological diagnosis of SARS-CoV-2 infection was carried out by nucleic
acid amplification techniques. All patients had a nasopharyngeal swab and were tested for
SARS-CoV-2 infection through a retrotranscriptase PCR (RT-PCR): swabs were processed
by the RT-PCR for SARS-CoV-2 with Allplex 2019-nCoV Assay (RP10244Y, Seegene, Seoul,
Republic of Korea) or the Simplexa SARS-CoV2 Assay kit (MOL4150, DiaSorin, Gerenzano,
Italy) per the manufacturer’s instructions for qualitative results.

2.4. Commercial Immunoassays to Detect Antibodies against SARS-CoV-2

All serum samples were thawed to perform the Elecsys® Anti-SARS-CoV-2 IgM/IgA/IgG
assay on CobasTM e801 (09203079190, Roche Diagnostics International Ltd., Rotkreuz,
Switzerland) according to manufacturer instructions. Samples were positive if the index
was ≥1. The ELISA COVID-19 IgG immunoassay (G1032, Vircell, Granada, Spain) used
Triturus® ELISA Instrument (Grifols, Barcelona, Spain) according to the Vircell-adapted
protocol for this analyzer; samples were positive if the index was ≥11.2. Antigens and
immunoassay characteristics are shown in Supplementary Table S2.

Discordant samples between the two immunoassays were reanalyzed with other
commercial immunoassays according to manufacturer instructions or by adapting its
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protocols to Triturus® ELISA Instrument: ELISA Anti-SARS-CoV-2 (IgG) (EI 2606-9601 G,
Euroimmun, Lubeck, Germany); LIAISON® SARS-CoV-2 S1/S2 IgG (311450, DiaSorin,
Gerenzano, Italy). Antigens and immunoassay characteristics are shown in Supplementary
Table S2.

2.5. Validation Specificity of Immunoassays

In addition, 100 serum samples from healthy donors were collected from Banc de Sang
i Teixits in a pre-pandemic period (October 2019) to establish a specificity of > 98% for the
Roche Elecsys® and Vircell IgG immunoassays. The healthy donors were aged between 18
and 69 years, including 54 males and 46 women.

2.6. Statistical Analysis

For descriptive purposes, the cohort was characterized with absolute and relative
frequencies for categorical variables; medians were used for numerical measurements.
Sensitivity, specificity, positive, negative predictive values, and area under the receiver
operating characteristic (ROC) curve were calculated for Roche Elecsys® and Vircell IgG
immunoassays. Level of agreement with SARS-CoV-2 infection was calculated with Cohen’s
kappa coefficient. The Kolmogorov–Smirnov test was used to evaluate the suitability of
data for normal distribution. We used univariate analysis to test the link between variables
with the Chi square test or Fisher’s exact test if indicated for categorical variables. A Mann–
Whitney U-test was used for continuous quantitative variables. Significant associations
were assumed when p was <0.05. Analysis used the statistical software IBM SPSS Statistics
v28.0, (Chicago, IL, USA).

3. Results
3.1. Immunoassays’ Specificity

Specificity was analyzed with serum samples from 100 healthy donors. None of the
processed samples gave a positive result on the Roche Elecsys® immunoassay within the
index cutoff established by the manufacturer (1.0). However, five samples were positive for
IgG for the Vircell IgG immunoassay within the manufacturer’s recommended index cutoff
(6.0). The index cutoff for Vircell IgG was 11.2 for a specificity of 98%.

3.2. Immunoassays’ Performance

Samples from 3550 HCWs were tested by Roche Elecsys® and Vircell IgG immunoas-
says: 539 (15.2%) and 664 (18.7%) were found to be positive by each immunoassay, re-
spectively. There were 164 samples (4.6%) with discrepant results between immunoassays
(Figure 2). To determine the presence of SARS-CoV-2 antibodies, discrepant samples were
tested with Euroimmun IgG and DiaSorin IgG immunoassays. Concordance between
immunoassays for 164 discrepant samples are shown in Table 2. Among the 164 discrepant
samples, 23 were found to be positive by Roche Elecsys®, and 14 were also found to be
positive by both Euroimmun IgG and Diasorin IgG. There were 141 samples found to be
positive by Vircell IgG; four of them were found to be positive by Euroimmun IgG, and
seven of them were found to be positive by Diasorin IgG. Therefore, in this group, Roche
Elecsys® showed a positive concordance with immunoassays, except for Vircell IgG, and
with SARS-CoV-2 infection. Vircell IgG showed discordance with the Roche Elecsys® and
DiaSorin IgG immunoassays and infection. Therefore, the Roche Elecsys® immunoassay
showed better performance on discrepant samples.
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Figure 2. Antibody response against SARS-CoV-2 nucleocapsid protein in the study cohort of health
care workers; Roche Elecsys® on the left and Vircell IgG on the right. Subjects were grouped
according to their infection status. Boxplots represent the quantification of the distribution of anti-
nucleocapsid protein antibodies; upper and lower bounds of the boxes indicate 75th and 25th
percentiles, respectively. The dotted horizontal line indicates the cut-off point of each immunoassay.

Table 2. Commercial immunoassay concordance in discrepant samples from the study cohort
(n = 164).

Manufacturer Roche Concordance Kappa
[95% CI]

Vircell IgG Concordance
Kappa [95% CI]

Infection Concordance
Kappa [95% CI]

Roche Elecsys® - −0.32 [−0.45–(−0.18)] 0.73 [0.58–0.87]
Vircell IgG −0.32 [−0.45–(−0.18)] - −0.27 [−0.38–(−0.15)]

Diasorin IgG 0.58 [0.39–0.76] −0.18 [−0.28–(−0.08)] 0.81 [0.68–0.94]
Euroimmun IgG 0.61 [0.39–0.82] 0.12 [0.04–0.20] 0.73 [0.56–0.89]

CI = confidence interval.

3.3. RT-PCR Performance

A total of 425 HCWs were tested for SARS-CoV-2 by RT-PCR; 203 (47.8%) gave positive
results between the start of the pandemic (February 2020) and the time of enrollment in the
study (May 2020). In the group of HCWs with positive RT-PCR results, the Roche Elecsys®

and Vircel IgG immunoassay detected antibodies in almost 90% (Table 3). However,
concordance between the RT-PCR and serology dropped significantly among HCWs with
negative RT-PCR results—antibodies against SARS-CoV-2 were detected in 30% of the
HCWs (Table 3). The detection of antibodies using the Roche Elecsys® immunoassay
showed a better correlation with SARS-CoV-2 infection than Vircell IgG did among the
group of HCWs with RT-PCR results (Table 3).
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Table 3. Roche Elecsys® and Vircell IgG performance among HCWs in the RT-PCR group from the
study cohort (n = 425).

Immunoassay RT-PCR Positive HCWs
Group (n = 203)

RT-PCR Negative HCWs
Group (n = 222)

RT-PCR Kappa [CI]
(n = 425)

SARS-CoV-2 Infection
Kappa [CI] (n = 425)

Roche Elecsys®-Positive 182 (89.7%) 67 (30.2%)
0.59 [0.51–0.66] 0.89 [0.85–0.94]

Roche Elecsys®-Negative 21 (10.3%) 155 (69.8%)
Vircell IgG-Positive 180 (88.7%) 71 (32.0%) 0.56 [0.48–0.64] 0.84 [0.79–0.89]Vircell IgG-Negative 23 (11.3%) 151 (68.0%)

SARS-CoV-2 Infection 203 (100.0%) 67 (30.2%) 0.68 [0.62–0.75] -

CI = confidence interval.

3.4. N protein Antibody Immunoassay Performed to Diagnose SARS-CoV-2 Infection

According to our SARS-CoV-2 infection criteria, 563 among the 3550 HCWs in this
study had SARS-CoV-2 infection. Among the infected HCWs, the immunoassay detecting
N protein antibodies, Roche Elecsys® immunoassay, was positive in 534 samples (94.8%)
and Vircell IgG was positive in 523 (92.9%) samples (Table 4). The sensitivity, specificity,
negative predicted value, positive predicted value and accuracy of both immunoassays are
shown in Table 4. The N protein antibodies detected by Roche Elecsys® showed excellent
correlation and accuracy with SARS-CoV-2 infection—these metrics were higher than those
found using the Vircell IgG immunoassay (Table 4).

Table 4. Immunoassay performed to diagnose previous SARS-CoV-2 infection in the study cohort
(n = 3550).

Manufacturer Sensitivity Specificity Positive
Predicted Value

Negative
Predicted Value

Accuracy
(95% CI)

Infection Concordance
(Kappa, 95% CI)

Roche Elecsys® 94.8 99.8 99.1 99.0 99.3 (99.8–99.9) 0.96 (0.95–0.97)
Vircell IgG 92.9 95.3 77.8 98.6 96.9 (96.1–97.6) 0.82 (0.80–0.85)

CI = confidence interval.

3.5. Antibodies against SARS-CoV-2 and RT-PCR Association with Clinical Symptoms

As expected, HCWs with SARS-CoV-2 and hospitalized infected groups had symptoms
more frequently associated with infection except for arterial hypertension (Table 1). The
infected HCW group had younger workers and fewer smokers than the non-infected HCW
group dod (Table 1). Given the strong correlation between antibody detection and infection,
the association between antibodies and the presence of symptoms has similar statistical
significance (Supplementary Table S3). Of the HCWs with RT-PCR results, the infected
HCWs with positive and negative RT-PCR results were compared. Both groups showed
similar behavior except HCWs who were overweight or had a dry cough or comorbidities.
Differences were observed in the percentage of asymptomatic patients between both groups
and the frequency of positive antibodies found by Roche Elecsys® and Vircell IgG. There
were more positive antibodies in HCWs with negative RT-PCR results (Supplementary
Table S4). Finally, the performance of the immunoassays for the detection of antibodies
against SARS-CoV-2 in symptomatic HCWs were compared with that in asymptomatic
HCWs: no significant differences were found between Roche Elecsys® and Vircell IgG at a
quantitative level (p = 0.243; p = 0.629, respectively) or a qualitative level (p = 0.206; p = 0.687,
respectively). One difference between symptomatic and asymptomatic HCWs was seen
between smokers (18.1%) in the groups of asymptomatic vs. symptomatic subjects (8.7%),
p = 0.001.

3.6. Roche Elecsys® Immunoassay Performance in the Validation Cohort

Finally, we analyzed the performance of the Roche Elecsys® immunoassay in the
validation cohort—a cohort of vaccinated HCWs with a positive result found by the RT-
PCR who did not belong to the study cohort. Sensitivity, specificity, negative predicted
value, positive predicted value, and accuracy are shown in Table 5. The results obtained by
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the immunoassay in the validation cohort were very similar to those obtained in the study
cohort. In this cohort, infected HCWs were younger than non-infected HCWs, at ages of
43.0 (IQR 34.0–52.0) versus 45.0 (37.0–54.0), respectively (p = 0.007). Smoking was more
frequent in the non-infected HCWs p < 0.001 (Supplementary Table S1). There were no
significant differences in sex and body mass index between the infected and non-infected
HCWs (Supplementary Table S1).

Table 5. Roche Elecsys® immunoassay performed to diagnose SARS-CoV-2 infection in the validation
cohort (n = 1890).

Manufacturer Sensitivity Specificity Positive
Predicted Value

Negative
Predicted Value

Accuracy
(95% CI)

Infection Concordance
(Kappa, 95% CI)

Roche Elecsys 95.3 99.7 98.6 99.1 96.9 (95.3–98.5) 0.96 (0.95–0.98)

CI = confidence interval.

4. Discussion

This study analyzed the performance of the Roche Elecsys® immunoassay directed
against the SARS-CoV-2 N protein in a large cohort of HCWs (n = 3550). A positive RT-PCR
and/or two positive serological tests were the infection criteria. All samples were collected
in May 2020 before the approval of S protein vaccines.

The Roche Elecsys® test measures antibodies against the N protein. The results were
positive for 539 HCWs. The Vircell IgG test measures antibodies against S protein and N
protein peptides and was positive for 664 HCWs. The overall seroprevalence in our cohort
was 15.2% (539) for Roche Elecsys® and 18.7% (664) for Vircell IgG in May 2020. Initially,
the higher antibody positivity found by Vircell IgG assay could have been due to how it
analyzes S and N proteins. The Roche Elecsys® only analyzes N proteins as reported in
a meta-analysis [28]. As such, we decided to evaluate the 164 discrepant samples with
DiaSorin IgG and Euroimmun IgG immunoassays. Concordance between the Vircell IgG
test and the new tests confirmed that the differences were discordant, ranging between
−0.18–0.12 (Cohen’s kappa coefficient). In Roche’s test, however, the concordance was
moderate, ranging between 0.58–0.61 (Cohen’s kappa coefficient) (Table 2). A possible
explanation is the immunoglobulin isotype that each immunoassay detects. Roche Elecsys®

measures IgG, IgM, and IgA while Vircel IgG only measures IgG. However, DiaSorin IgG
and Euroimmun IgG only detect the IgG isotype and show better performance than Vircell
IgG. Thus, the apparent increased sensitivity of the Vircell IgG immunoassay is translated
into a loss of specificity and lower positive predictive value (Table 4). In this group of
discrepant samples, DiaSorin IgG, Roche Elecsys®, and Euroimmun IgG showed good
correlation with SARS-CoV-2 infection (Table 2). However, the Euroimmun and DiaSorin
immunoassays use the S protein as an antigen; therefore, they would not be useful for
the diagnosis of infection, while the Roche Elecsys® would have this utility given the
worldwide COVID-19 vaccination.

May 2020 was a period of the first wave of the pandemic and there was limited access
to RT-PCR; thus, not all HCWs with symptoms underwent RT-PCRs during acute infection
with SARS-CoV-2. The lack of availability of reagents for the diagnosis of acute infection
by RT-PCR causes it to have a low yield with a Cohen’s kappa coefficient of 0.68 (Table 3).
The main cause was the time between the test’s performance and the onset of symptoms.
In many cases, this was over two weeks, thus giving negative RT-PCR results; however,
67 of the 202 HCWs found to be negative by RT-PCR were classified as infected due to the
positivity of two serological tests. Thus, we evaluated the relevance of serological tests for
the diagnosis of past infection.

Among the group of RT-PCR-positive HCWs, around 90% had seroconverted; the
infection criterion we used assumes that a positive RT-PCR indicates infection without
accounting for the false positive rate found by this technique. The sensitivity of both
serologic immunoassays could be slightly underestimated (Table 4) [29]. Among the HCWs,
Roche Elecsys® obtained the best Cohen’s kappa coefficient (Table 3). Of the RT-PCR-
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negative HCWs, around 30% had positive antibodies: This could be explained by the lack
of reagents—some PCRs were performed outside the period of acute infection, when its
sensitivity decreased [30].

The Roche Elecsys® immunoassay was better in terms of sensitivity, specificity, accu-
racy, and concordance with infection with values of 94.7, 99.8, 99.3, and 0.96, respectively,
in the study cohort. The Vircell IgG assay was found to have the same values, 93.0, 95.3,
96.9, and 0.83, respectively. If we used the cutoff point recommended by Vircell for analysis,
then specificity would have dropped further and the assay would have had worse results.
This is in contrast to the data from Alharbi et al. [31]. The improved performance of the
Roche Elecsys® immunoassay agrees with the results of different comparative studies
using a small sample size. This research confirms the results obtained by other studies
using a large cohort of patients [12,32–34]. Additionally, the Roche Elecsys® immunoassay
was analyzed in a validation cohort consisting of vaccinated HCWs who were classified
as infected HCWs using RT-PCR test results. In this cohort, the immunoassay showed
a sensitivity, specificity, accuracy, and concordance with infection of 95.3, 99.7, 96.9, and
0.96, respectively. The performance of Roche Elecsys® in both study and validation cohorts
showed similar results; therefore, the possible bias that the analysis of the performance of
the serological test could have as it is also part of the classification criteria was minimized
by the correction factors included to reduce this effect.

As expected, symptoms related to SARS-CoV-2 infection were more frequently present
in infected HCWs than non-infected HCWs. There are three risk factors associated with
severe infection that HCWs in our group did not have: arterial hypertension, obesity, and
age (Table 1). This is probably because the population chosen for the study was young
with little associated comorbidities compared to the general population. The presence of
arterial hypertension was not associated with infection since it is a risk factor for those
suffering from more serious diseases than SARS-CoV-2. The mechanism is that treatments
with angiotensin-converting enzyme inhibitors induce the upregulation of ACE2, which
is the receptor that the virus uses to enter inside cells [35–37]. Obesity was another risk
factor evaluated in the survey that was not associated with infection [38,39]. The last risk
factor not associated was age—this association was the opposite of what was expected.
Infection was more frequent in younger HCWs [40,41]. Another fact is that the smoking
rate in non-infected HCWs was higher than that in infected ones. It was reported that
infected patients who smoke have a lower antibody response, which is a risk factor for
severe SARS-CoV-2 infection; the frequency in hospitalized patients was lower than in
the normal population [24,42,43]. In our cohort of HCWs, we saw a paradox of smokers
being in the non-infected HCWs group. This fact could be explained due to the bias of
the population studied. The clinical variables recorded in the validation cohort showed
similar associations between them compared to the study cohort, where infected HCWs
were younger and showed a lower smoking rate than non-infected HCWs.

We compared infected HCWs under our infection criteria based on their RT-PCR
positivity. We determined if HCWs could be classified as infected exclusively by per-
forming two positive serological tests, which presented a difference with respect to those
who had been diagnosed with a positive RT-PCR. In comparison, we observed that most
clinical parameters were similar in both groups. Differences were found in terms of the
higher frequency of overweight, comorbid, and asymptomatic HCWs between the group
diagnosed by serology and the HCW group diagnosed with positive RT-PCRs. There was
a higher frequency of dry cough (Table 5). The presence of asymptomatic infection for
HCWs diagnosed by serology is explained by the fact that RT-PCR were more likely to
be performed during the period of acute infection when symptoms were present than on
asymptomatic HCWs, RT-PCR results of whom indicated if there was close contact with a
positive case.

Lastly, we analyzed whether asymptomatic HCWs had a different antibody response to
infection than HCWs with symptoms; there were no significant differences found between
Roche Elecsys® and Vircell IgG (p = 0.243 and p = 0.629, respectively). There were no
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differences in sex, age, and weight. We found a higher frequency of HCWs who were
smokers in the asymptomatic group vs. the symptomatic group (p = 0.001).

5. Conclusions

The Roche Elecsys® SARS-CoV-2 N protein immunoassay was used in a large cohort
of HCWs and demonstrated good performance in the diagnosis of previous infection SARS-
CoV-2. It is a useful tool to diagnose previous infection in a population vaccinated against
SARS-CoV-2 via the S protein.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15040930/s1, Figure S1: Correlation between Roche Elecsys®and
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(n = 1890); Table S2: Commercial immunoassays charasteristics; Table S3: Healthcare workers clinical
data according Roche Elecsys®and Vircell IgG status (n = 3550); Table S4: Infected healthcare workers
(HCWs) clinical data with RT-PCR results (n = 269).
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Abstract: Neutralizing antibody titers are an important measurement of the effectiveness of vacci-
nation against SARS-CoV-2. Our laboratory has set out to further verify the functionality of these
antibodies by measuring the neutralization capacity of patient samples against infectious SARS-
CoV-2. Samples from patients from Western New York who had been vaccinated with the original
Moderna and Pfizer vaccines (two doses) were tested for neutralization of both Delta (B.1.617.2)
and Omicron (BA.5). Strong correlations between antibody levels and neutralization of the delta
variant were attained; however, antibodies from the first two doses of the vaccines did not have
good neutralization coverage of the subvariant omicron BA.5. Further studies are ongoing with local
patient samples to determine correlation following updated booster administration.

Keywords: SARS-CoV-2; COVID-19; antibody response; RNA viruses

1. Introduction

With over 102 million cases of and over 1 million deaths from COVID-19 worldwide
since its identification in December 2019 (COVID Data Tracker, CDC), SARS-CoV-2 has
become an increasingly persistent and strenuous challenge for healthcare professionals and
the public alike. While COVID-19 is often characterized by upper respiratory symptoms
including generalized malaise, fevers, nasal congestion, and cough, disease presentation is
heterogeneous and can range from asymptomatic infection to multiorgan failure and death.
Gastrointestinal symptoms include diarrhea, abdominal pain, nausea and vomiting, and
anorexia [1], while acute myocardial injury, infarctions and other acute cardiac compromise
can be presented by the patients [2]. Another complication of SARS-CoV-2 infection is
a syndrome termed ‘Long COVID’, which is characterized by the persistence of diverse
symptoms due to unidentifiable causes 12 weeks post-SARS-CoV-2 infection, and these
have also proven to be a significant healthcare and economic burden [3].

As a beta-coronavirus, SARS-CoV-2 is closely related to SARS-CoV, as demonstrated
through their structural proteins (envelope [E], membrane [M], and spike [S]), receptor
(angiotensin-converting enzyme 2 [ACE2]), and receptor binding domains (RBD) on the S1
subunit of the spike protein [4]. Despite these similarities, the RBD in SARS-CoV-2 tends
to be in the ‘lying-down’ conformation rather than the ‘standing-up’ conformation of the
RBD in SARS-CoV, which may facilitate immune surveillance evasion by SARS-CoV-2, as
demonstrated by the decreased development of neutralizing antibodies in patients with
SARS-CoV-2 compared to SARS-CoV.

The patient-specific factors that have been demonstrated to increase risk for severe
illness include increased age, obesity, tobacco use, and pre-existing comorbid conditions,
such as hypertension, cardiovascular disease, and diabetes mellitus, though many of these
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are interrelated [5]. In addition to patient-specific factors associated with severe COVID-
19 illness, disease manifestation is also dependent upon the molecular mechanisms of
infection, such as the localization of the receptor, ACE2 and TMPRSS2, a serine protease
which cleaves the spike protein into S1 and S2; co-expression in the gut, brain, kidney and
cardiovascular system leads to viral entry and disease exacerbation [1].

The first vaccines were approved for emergency use in December 2019 by the U.S.
Food and Drug Administration (FDA). These were mRNA-based vaccines, mRNA-1273
(Moderna) and BNT162b2 (Pfizer/BioNTech), which were also approved for use in Europe
by the European Medicines Agency (EMA). Apart from these, non-replicating viral vector
vaccines have also been in use; AZD 1222 (Oxford/AstraZeneca) has been in use in the
UK, EU, and some Asian countries, and the AD26.COV2-S (Johnson & Johnson) has been
approved for use in the US [6].

It has been widely demonstrated that low titers or neutralization potency of anti-RBD
IgG antibodies are correlated with worsened morbidity and mortality outcomes [7]. This
has been applied through the investigational use of convalescent plasma therapy in patients
with impaired humoral immunity or in non-hospitalized patients who are at high risk for
progression to severe disease under the Emergency Use Authorization (EUA) by the U.S.
Food and Drug Administration (FDA). As the efficacy of this therapy is likely dependent
on the infusion containing sufficient antibody levels, the EUA is for ‘high-titer plasma’,
which is defined according to a qualifying result that is specific for each of the bioassays
and serologic binding assays accepted by the U.S. Food and Drug Administration (FDA).
These bioassays are viral or pseudoviral neutralization assays and the serologic binding
assays are either enzyme-linked immunosorbent assays (ELISA) or chemiluminescence
assays (CLIA).

While previous studies have demonstrated a correlation between anti-RBD IgG levels
and neutralizing antibody titers, these were often conducted using ELISA and microneu-
tralization assays. To our knowledge, there are no prior studies that use CLIA and plaque
reduction neutralization (PRNT) assays, both of which have been shown to be more sen-
sitive than their respective counterparts, to elucidate this relationship. Herein, we show
the correlation between CLIA and PRNT assay results for patients who received the pri-
mary doses of the mRNA-1273 (Moderna) and BNT162b2 (Pfizer/BioNTech) vaccines.
All samples were tested for the neutralization capability of both Delta (B.1.617.2) and
Omicron (BA.5).

2. Materials and Methods

Chemiluminescence Immunoassays—The detection of antibodies to the RBD on S1
was performed on serum at the KSL Diagnostics Laboratories using KSL chemilumines-
cence immunoassays (CLIA). In this technique, electromagnetic radiation caused by a
chemical reaction produces light. The analytic reaction produces visible or near-visible
radiation generated when an electron transitions from an excited state to ground state. The
luminophore markers used in KSL CLIA assays are acridinium esters. The CLIA assay
provides qualitative detection of human IgA, IgG, or IgM antibodies to SARS-CoV-2. The
test was authorized by NY State and EUA on 25 November 2020, under Project ID No.
84341. The samples were incubated with a magnetic bead coated with the S1 subdomain
from SARS-CoV-2. Once the unbound materials were washed away by magnetic separa-
tion, the acridinium ester marker is added for incubation. After a wash step, SARS-CoV-2
antibodies are detected with a substrate that produces a luminescence reaction with the
acridinium ester. The luminescence intensity of acridinium ester is proportionate to the
amount of antibody against novel coronavirus and yields a test result expressed by cut-off
index (COI). If the sample value is less than 0.8 COI, no SARS-CoV-2 antibody is detected.
If the value is within 0.8–1.0 COI, the SARS-CoV-2 antibody is indeterminate. If the value
is greater than 1.0 COI, then SARS-CoV-2 antibody is detected.

Virus Stock Generation—Inhibition of infection by the test sera was studied by in-
fecting the sera with the viral variants, SARS-CoV-2 Delta (B.1.617.2) and Omicron (BA.5).

16



Viruses 2023, 15, 793

Virus was obtained from BEI Resources were propagated in Calu-3 (ATCC, VA) for 3 days
(Delta) or 7 days (Omicron). Infection was confirmed by the observance of cytopathic effect
(CPE), such as the rounding and dislodgement of cells. Harvested virus was then titered
using a PRNT assay so that a viral load of 6 × 103 PFU/mL (30 PFU/well) could be added
to the test samples.

Plaque Reduction Neutralization Assays—The PRNT50 protocol used was adapted
from Bewley et al [8]. Briefly, serum samples were diluted in a 96-well plate, before SARS-
CoV-2 virus was added to the diluted serum at BSL-3 and neutralization was allowed to
occur. The neutralized or control virus was then transferred onto Vero-E6 cells (ATCC,
VA), allowed to adsorb, overlaid with 1% agar in DMEM and incubated at 37 ◦C and 5%
CO2. The incubation time for viral propagation and infection was increased from 3 days
to 4 days when using the Omicron variant as compared to the Delta strain, since plaques
formed by the omicron variant were smaller and took longer to develop. Plates were then
fixed with 4% paraformaldehyde, and agar plugs were removed so that plaques could be
counted and scored (Figure 1). PRNT50 values were then calculated using Prism GraphPad
(Version 9.5.0) according to the instructions outlined in Bewley et al. (Figure 2). Samples
were tested in two biological and two technical replicates.
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Sample characteristics—In this study, 110 participants (males or females) between the
ages of 18 and 85 with no known prior SARS-CoV-2 infection as confirmed by RT-PCR were
included. The presence of SARS-CoV-2 nucleocapsid antibodies was considered an exclu-
sion criterion. Participant inclusion and exclusion criteria are listed in Table 1. Participants
had received the first 2 doses of the mRNA-1273 (Moderna) (55 patients) and BNT162b2
(Pfizer/BioNTech) (55 patients) vaccine as per the provider’s protocols. Fifteen days post
vaccination, sera were tested for IgG levels using KSL Chemiluminescence Immunoassays
(CLIA), and samples were grouped according to the amount of IgG measured (Table 2).
Following that, a total of 17 samples from all the groups were tested for viral neutralization
using live virus in BSL-3.

Table 1. Inclusion/Exclusion Criteria of participants enrolled in study.

Inclusion Criteria

1. Age and Sex: Male or female participants between the ages of 18 and 85 at the time
of enrollment

2. Participants with no known exposure to COVID-19 infection

3. Had FDA approved vaccines administered as per the vaccine company
recommended protocols

4. Participants who are willing and able to comply with all scheduled visits and
laboratory tests.

Exclusion Criteria

1. Age below 18 years of age

2. History of COVID-19 infections

3. History of antibodies to SARS-CoV2 nucleocapsid antibodies

4. People with non-adherence to vaccine administration protocols

Table 2. Sample groups according to IgG COI.

Group COI * Value Range

1 <0.5

2 0.5–<1.0

3 1.0–2.99

4 3.0–5.99

5 6.0–9.99

6 10.0–14.99

7 15.0–19.99

8 20.0–24.99

9 25.0–29.99

10 30.0–39.99

11 40.0+
*—Cut-off Index.

Statistical analysis—Pearson’s correlation test was used to assess the correlation be-
tween calculated PRNT50 titers and IgG COIs or age. p-values ≤ 0.05 were considered
statistically significant. The neutralization induced by either vaccine was compared using a
boxplot displaying median and 95% CI. Data analysis and visualization was conducted in
Prism GraphPad (Version 9.5.0).

18



Viruses 2023, 15, 793

3. Results
3.1. IgG COI Values Correlate with PRNT50 Titers

It was observed that the calculated PRNT50 values correlated with the measured
IgG COI (Figure 3), with the delta variant showing a stronger statistically significant
correlation (r2 = 0.6908, p-value < 0.0001) compared to the omicron variant (r2 = 0.165,
p-value = 0.0756 n.s.). At COIs < 20.0, no neutralization was observed, with the number
of plaques counted being the same as the virus only control (VOC) of both viral strains
tested. As summarized in Table 3, when tested with delta variant, robust neutralization
was observed at COIs >20.0, as high titers were obtained, while suboptimal neutralization
and low titers were obtained for COI between 10.0 and 20.0. In contrast, when tested with
the omicron BA.5 variant, suboptimal neutralization indicated by low titers was observed
at COIs >10.0.
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Table 3. Average PRNT50 values obtained for different COI groups when challenged with the delta
or omicron variant.

Group Number COI Value Range PRNT50 Average
(Delta)

PRNT50 Average
(Omicron) Conclusion

1–5 0–9.99 Same as VOC Same as VOC No neutralization of both strains

6–7 10–19.99 123.14 144.84 Similar neutralization of
both strains

8–10 20–39.99 322.92 187.81 Delta neutralized more effectively
than Omicron

11 >40 235.06 176.58 Delta neutralized more effectively
than Omicron

3.2. Age Does Not Correlate with PRNT50 Titers

Analysis showed that the age of the patient during vaccination did not have any effect
on the PRNT50 titers obtained (Delta r2 = 0.015, p-value = 0.6332 n.s.; Omicron r2 = 0.041,
p-value = 0.4348 n.s.) (Figure 4). This was in tandem with the result that the measured IgG
COIs also did not correlate with age (r2 = 0.0343, p-value = 0.4620 n.s.).
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3.3. Comparison of Neutralization following Primary Doses of Either the Moderna or
Pfizer/BioNTech Vaccines

The average median PRNT50 titer obtained following vaccination with the primary
doses of the Pfizer vaccine was 242.2 when challenged with the Delta strain, and 146.1
when challenged with the Omicron strain. In comparison, following primary doses of the
Moderna vaccine, the average median titer when challenged with the Delta strain was
78.31, while it was 118.2 when challenged with the omicron strain (Figure 5). This indicates
that neutralization capacity by antibodies produced following vaccination with the Pfizer
mRNA vaccine was more effective when compared to the neutralization by antibodies
produced by the Moderna vaccine—a result that held true when challenged with both the
delta and omicron strain.
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4. Discussion

Humoral immunity is characterized by the production of antibodies by B cells as a
response to antigens. Although both IgM and IgA appear within the first week of symptom
onset, IgG is the most abundant antibody type and provides longer-lasting immunity. IgG is
seen in circulation from about 7 days onwards [9]. This response of immunity is also typical
for SARS-CoV-2. IgG titers remain stable for at least 4 to 6 months following diagnosis
among PCR-confirmed individuals, whereas IgA and IgM titers rapidly decay. Antibodies
targeting the spike glycoprotein of the SARS-CoV-2, especially the receptor binding domain
(RBD) within the S1 subunit, show the highest neutralizing capacity. The presence of
neutralizing antibodies is considered a functional correlate of immunity and provides at
least partial resistance to subsequent. Although some serological assays showed a high
correlation between IgG and neutralizing antibodies [10], others have poor correlation [11].
Therefore, comparison with virus-neutralization experiments is important as part of the
validation of new serological assays.

Several laboratory-developed and commercially available assays utilizing various
technology platforms are available to detect anti-SARS-CoV-2 spike antibodies. While
these platforms provide a high-throughput means of detecting antibodies against SARS-
CoV-2, they are unable to measure the immunological function of SARS-CoV-2-specific
antibodies. In contrast, the plaque-reduction neutralization test (PRNT) quantifies levels
of neutralizing antibodies capable of blocking the interaction that mediates virus entry
into susceptible host cells and subsequent virus replication [12]. For SARS CoV-2, this
interaction involves binding of the RBD of the spike glycoprotein with the ACE2 on host
cells. This makes the conventional PRNT the reference standard for the evaluation of
virus-neutralizing antibodies. Prior to this study, to our knowledge, no other study has
compared the effect of neutralizing antibodies on the omicron or delta strain using the
plaque reduction neutralization test, although a few have studied the effects of the USA-
WA1/2020 isolate [13].

In our lab, testing the neutralizing capabilities of vaccine-induced IgG antibodies
showed that at very low IgG levels, no neutralization is achieved. Further, there is a
positive correlation between the measured IgG using CLIA and PRNT50 values obtained.
As expected, neutralization of virus by vaccine-induced antibodies is more robust when
challenged with the delta strain when compared to the omicron BA.5 strain. This is
similar to what is reported in the literature [14]. Since the samples obtained are from
individuals vaccinated with only the first doses of the vaccine, but not the boosters, the
antibodies produced are not effective against the omicron variant. Studies have shown that
neutralizing antibodies (nAbs) are progressively less effective against each new variant
of concern (VOC) or variant of interest (VOI). This is especially true for omicron BA.5
subvariant, used in this study, which escapes nAbs due to extensive mutations and antigenic
remodeling of its spike trimer, and predominance of the closed state of the spike protein [7].
Compared to the original strain, the omicron BA.1 variant has 35 mutations, 15 of them in
the RBD which is the region that binds to the host cell receptors and is a target of nAbs. Of
the 15 mutations, nine fall in the region specific for binding to the ACE2 receptor on host
cells, thereby allowing stronger binding and nAb escape [15]. The subsequent variants that
emerged, BA.2, BA.2.12.1, BA.4 and BA.5, each have more numerous and unique mutations,
which make the circulating omicron variants more transmissible and less susceptible to
vaccine induced immunity. In fact, it has been determined that efficiency of the Moderna
vaccine following the first booster (third dose) is only high against the omicron BA.1
variant, and the second booster (fourth dose) is required to achieve a high vaccine efficiency
against BA.2, BA.2.12.1, and BA.4, while vaccine efficiency against BA.5 is low even after
the fourth dose [16]. The same was also observed when testing vaccine efficiency of the
Pfizer/BioNTech vaccine [17]. Further, even though the fourth dose conferred high vaccine
efficiency against the BA.5 variant, the effect waned within six months in both studies.

However, it has been reported that some classes of neutralizing antibodies which
exert their function by binding to the less immunologically challenged and therefore
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more conserved stem-helix region of the S2 domain show neutralization at very high
concentrations (IC50 > 1 ug/mL) in vitro while in in vivo studies, they show the same
effect at lower concentrations [18,19]. Further, it is important to note that in the in vitro
studies conducted in our lab, it was observed that infectivity of omicron was to a lesser
degree when compared to the delta strain. This was concluded due to the longer infection
cycles required to obtain plaques when infecting with omicron. Further, titering of viral
particles showed lower numbers of plaques for dilutions of omicron when compared to
the same dilution series of the delta variant. This might attribute to the less severe disease
manifestation during omicron infections [20]. However, further studies are required to
assess this observation.

It was also observed that the age of the patient did not correlate with either the IgG
COIs measured, or the PRNT50 titers obtained. However, it has been previously shown
that following vaccination, age plays a significant role in neutralization of SARS-CoV-
2 by vaccine-induced antibodies, wherein an increase in age correlates with decreased
immunity [21]. The results obtained in our study can be attributed to a small sample size
and a limited number of participants of different ages in each IgG COI group. It must also
be noted that certain individuals who received the primary doses of the vaccine did not
produce any measurable IgG, and this may be attributed to an impaired immune system of
the patient.

In our study, we observed that vaccination with the primary doses of the BNT162b2
(Pfizer/BioNTech) vaccine induced antibodies that produced higher PRNT50 titers and
thereby caused more effective neutralization when compared to the effect of the mRNA-
1273 (Moderna) vaccine, which led to lower PRNT50 titers overall, specifically against the
delta strain; the effects on omicron were substantially low and similar. It was previously
shown that the Moderna vaccine induced a higher amount of functional antibodies; the
difference observed in our study is relatively small, and can be attributed to a small sample
size [22].

While assays such as ELISA measure the amount of antibodies present, the PRNT
provides an insight into the neutralizing functionality of the circulating antibodies. This
makes it the gold standard for assessing the neutralizing capability of antibodies. However,
even though the PRNT is often used as the reference standard for the evaluation of virus-
neutralizing antibodies, this assay is time-consuming, laborious, and requires biosafety
containment level 3 (BSL-3) facilities to work with the high-risk group-3 pathogen. As such,
this is not practical for large-scale community testing, due to low turnaround time and high
manual input. In this study, due to the high labor demand and low efficiency of testing
method, a small sample size was studied, which is a limitation of the study, and which
may attribute to the differences observed between existing literature and our observations.
However, using the tested samples as a reference, high throughput testing techniques can
be designed and validated. One such technique is a microneutralization assay (currently
being validated in-house) which uses labeled antibodies to count plaques in a 96-well or
384-well format [8]. This provides an added advantage over other immunofluorescence
techniques such as ELISA because it counts the foci of infected cells instead of just the
absorbance. Future studies will be aimed at assessing the neutralizing capabilities following
vaccinations with the booster shots, and also characterize the types of IgG and their effect
on neutralization. Trends in variant mutation of SARS-CoV-2 and their nAb escape make it
important to develop efficient and high-throughput testing capability to analyze large data
sets and validate community-based conclusions.

5. Conclusions

The amount of IgG produced following vaccination with the primary doses of the
mRNA-1273 (Moderna) and BNT162b2 (Pfizer/BioNTech) vaccines correlates positively
with the PRNT50 titers obtained when challenged with the SARS-CoV-2 Delta (B.1.617.2)
variant, although this was not observed when challenged with the Omicron (BA.5) variant,
meaning that immunity offered by antibodies produced by the first vaccine doses is effective
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at neutralizing the delta variant only. No significant correlation was observed with age
and no significant difference was observed between the two vaccines administered. The
conclusions of this work corroborate the importance of fine-tuning the vaccines to the
current strains that dominate in the population and potentially tailoring to individual
regions as well.
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Abstract: The aim of the study was to determine the level of antibodies against hemagglutinin of
influenza viruses in the serum of subjects belonging to seven different age groups in the 2019/2020
epidemic season. The level of anti-hemagglutinin antibodies was tested using the hemagglutination
inhibition (HAI) test. The tests included 700 sera from all over Poland. Their results confirmed the pres-
ence of antibodies against the following influenza virus antigens: A/Brisbane/02/2018 (H1N1)pdm09
(48% of samples), A/Kansas/14/2017/ (H3N2) (74% of samples), B/Colorado/06/ 2017 Victoria line
(26% of samples), and B/Phuket/3073/2013 Yamagata line (63% of samples). The level of antibodies
against hemagglutinin varied between the age groups. The highest average (geometric mean) antibody
titer (68.0) and the highest response rate (62%) were found for the strain A/Kansas/14/2017/ (H3N2).
During the epidemic season in Poland, only 4.4% of the population was vaccinated.

Keywords: influenza; vaccine; antibody; virus

1. Introduction

Seasonal flu is a respiratory illness caused by a highly contagious virus [1]. It can
spread from person to person in several ways: droplets together with respiratory secretions
(coughing, blowing the nose, talking), direct contact, and airborne or indirect contact
(contaminated surface) [2,3]. There are three types of human pathogenic influenza virus: A,
B, and C, but only A and B are considered clinically relevant. Influenza A viruses consist of
numerous subtypes that are divided based on the variety and combinations of glycoproteins
found on the viral surface: hemagglutinin (HA), which allows the virion to anchor to the
cell surface, and neuraminidase (NA), which allows the virus to be released from host
cells [4]. As of now, there are 18 types of hemagglutinin and 11 types of neuraminidase.
Types linked with humans are: H1, H2, H3, H5, H6, H7, H9, and H10 [5,6]. Influenza B
viruses also contain those glycoproteins on their surface, but they are not divided into
subtypes. It was not until the late 1980s that two lines of influenza B virus were isolated:
Victoria and Yamagata [7,8]. Hemagglutinin and neuraminidase are antigens, which means
they are recognized by the immune system and can trigger an immune response [9].

Due to the segmental nature of the genetic material, the influenza virus is highly
mutagenic. Two types of genetic changes can be distinguished: antigenic shift and antigenic
drift. Antigenic drift occurs as a result of a point mutation in genes, leading to an altered
sequence of amino acids that changes the antigenic site. This is caused by seasonal influenza
epidemics [10]. An epidemic is said to occur when the number of cases of a given disease
within a specific area and at a specific time is clearly higher than in previous years. In the
northern hemisphere, in a temperate climate, influenza epidemics usually occur in winter
months [11]. In contrast, antigenic shift takes place when several viruses infect the same
host cell and then exchange segments of genes encoding hemagglutinin and neuraminidase
with each other. This gives rise to a new virus with new gene constellations, which may
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cause a pandemic [12]. Pandemics occur when a previously uncirculated influenza virus
emerges, causing numerous illnesses due to the lack of immunity in the population and
spreading over large areas [1].

Due to its structure, influenza A virus is most susceptible to antigenic variability and
is the most common cause of pandemics [13], while influenza B virus causes seasonal
epidemics. Influenza C infection is common, but is usually asymptomatic or causes a mild
respiratory disease [1].

Due to seasonal influenza epidemics and the risk of a new pandemic, the virological
and epidemiological monitoring of influenza virus is of fundamental importance. Currently,
there are 149 National Influenza Centers (NICs) in 123 countries as part of the Global
Influenza Surveillance and Response System (GISRS) [14].

Any change to the flu virus lowers the chance of a successful immune response.
Therefore, it is important to immunize the body every season with a vaccine that contains
virus strains selected based on virological data collected in a given hemisphere by the
National Influenza Centers [15]. The composition of the flu vaccine must be updated
regularly due to the variability of the virus, so it is important to take it every season.
There are several methods of influenza virus diagnosis, e.g., virus isolation in chicken
embryos; cell culture; antigen detection by IF, ELISA, RT-PCR, rRT-PCR; bedside tests;
and serological methods; e.g., HAI [16]. The hemagglutination inhibition (HAI) assay is
widely used to evaluate the antibody responses induced by the vaccine as well as for the
antigenic characterization of influenza viruses. This is a conventional method used in
various aspects of global influenza surveillance, diagnosis, antigen characterization, and
vaccine evaluation [17].

Hemagglutination is a process whereby the surface glycoprotein—hemagglutinin—binds
to the sialic acid sites on the surface of red blood cells (RBCs), thus creating a stable
suspension of RBCs in solution. Anti-HA antibodies bind to hemagglutinin, blocking the
possibility of hemagglutinin binding to RBCs, and as a result, hemagglutination is inhibited.
By testing successive dilutions of a patient’s serum, antibody levels can be measured [18].
Due to its simplicity, the HAI test has long been used to detect virus-neutralizing antibodies
in serum. It is assumed that a titer ≥ 40 reduces the risk of influenza by 50% and is referred
to as a seroprotective titer [19]. The titer of hemagglutination-inhibiting antibodies is
currently the main immunological marker correlated with protection against influenza [20].

We are focusing on antihemagglutinin antibodies, because they are produced during
the viral infection or three to six weeks after the vaccination and are responsible for blocking
virus ability to adsorb to host cells. The viral hemagglutinin protein plays crucial role in
the process of infecting its host. Hemagglutinin is responsible for membrane fusion, entry
of virion to cell, and binding to host receptors. Approximately 80% of all viral envelope
proteins are hemagglutinins.

This study was conducted to determine the average levels of antibodies and protective
titers against influenza viruses in the Polish population. The results of the study provide
an insight into the course of the season in terms of serology, which is also important for
influenza surveillance in Poland because not every patient potentially exposed to influenza
viruses had a PCR test. Without a swab sample from such patients, we are unable to
determine whether they actually had contact with the influenza virus or just flu-like viruses
with similar symptoms.

Determining the level of antibodies and determining whether the patient had a protec-
tive titer gives information about contact with the virus. Values below the protective titer
indicate the lack of contact with the influenza virus, or if the person has been vaccinated,
whether he is able to respond to the vaccine or not. When there are no antibodies after
vaccination, the person is “non-respondent”. The level of antibodies after the vaccination is
decreasing during the epidemic season. It is possible to vaccinate a second time to achieve
full protection for the duration of the season.
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2. Materials and Methods

Sera were obtained from patients belonging to 7 age groups (0–4, 5–9, 10–14, 15–25,
26–44, 45–64, and 65 years or older) as those age groups are used in Poland in influenza
surveillance and in reporting influenza cases to epidemiological departments. Samples
were collected at voivodeship sanitary and epidemiological stations (VSES) in Poland,
between 1 October 2019, and 31 March 2020. Anonymized samples were then sent to the
Influenza Research Department, National Influenza Center. Until the test was performed,
the samples were stored at −30 ◦C.

In each age group, 100 serum samples were tested—700 samples in total. Samples
were selected from each VSES to maintain representability for each region and checked for
hemolysis in the sample. If noticed, sample was discarded. The hemagglutination inhibition
(HAI) test was used to determine the antibody level. All viruses are corresponding to those
used in flu vaccine for the 2019/2020 season.

Influenza viruses used in research:

• Subtype A/H1N1/: A/Brisbane/02/2018
• Subtype A/H3N2/: A/Kansas/14/2017
• Influenza type B, Victoria lineage: B/Colorado/06/2017
• Influenza type B, Yamagata lineage: B/Phuket/3073/2013

All viruses were obtained from World Influenza Centre at Francis Crick Institute,
London, and then propagated in chicken embryos in NIC in Poland. Then titer of each
virus was determined. Labelled vials containing viruses were stored at −80 ◦C upon using
in research.

Necessary viruses with high titer were selected to be used in this test. After thawing
the viruses, their titer was checked once again on the day of performing the test. Then,
a solution of titer 1:8 from each of the virus was prepared. For example, for virus titer
1:64, suspension of the virus was diluted 8 times. For 1:16—two times. After each dilution,
the titer was checked, as it is important to use 1:8 titer only. After preparing all necessary
solutions, they were stored at 4 ◦C upon adding them on the plates.

PBS and 0.1% calcium salt are prepared in–house. In this study, V-bottom, clear,
microtitration plates were used.

Preparation of Receptor Destroying Enzyme (RDE) (Sigma-Aldrich, Jerusalem, Israel
IL). Lyophilisate of RDE is resuspended in 5 mL of sterile water, and mixed firmly, then
filled up to 100 mL with 0.1% of calcium salt of pH = 7.4. Then, 150 µL of prepared solution
is pipetted into a sterile tube and stored at −30 ◦C until required.

The study used chicken red blood cells. Blood cells delivered to the laboratory were
suspended in Alsever’s solution. Alsever‘s solution is prepared in-house. In order to
obtain packed cells, 5 mL of cells were collected from Alsever’s solution into a 50-mL
centrifuge tube, topped up to 50 mL with PBS, then centrifuged for 10 min at 1200 RPM.
After centrifugation, the supernatant was decanted, topped up again to 50 mL with PBS,
and then washing and centrifugation at 1200 RPM for 5 min were repeated three times. In
the next step, the centrifuged blood cells were transferred to a new 15-mL centrifuge tube
and filled with PBS to 12 mL, then centrifuged for 10 min at 1200 RPM. The packed blood
cells obtained in this way were used in further studies. In order to obtain the appropriate
blood cell concentration for the HAI test, the following proportion was used: 1 mL PBS:5 µL
packed cells.

Each of the sera was treated with RDE for 16 h at 37 ◦C prior to the hemagglutination
inhibition test. For this purpose, 50 µL of serum from the patient was added to 150 µL of
RDE, followed by incubation under appropriate conditions. After this step, to inactivate
the enzyme, the mixture was incubated at 56 ◦C for 30 min.

In order to eliminate non-specific hemagglutination inhibitors, a mixture of blood cells
and PBS was prepared in a ratio of 1 volume of packed blood cells to 20 volumes of serum
after incubation with RDE. The serum-cell mixture was incubated for one hour at 4 ◦C.
After incubation, the suspension was centrifuged at 1200 RPM for 10 min—the supernatant
contained serum ready for further processing.

28



Viruses 2023, 15, 760

To row A, 50 µL of the patient’s prepared serum was pipetted, and then a serial
dilution was made in PBS. Then, the prepared solution of the virus, which has a titer of
1:8, was added to each well on the plate. After virus addition, the plate was incubated
for 15 min at room temperature. After incubation, 50 µL of blood cell solution was added.
Readings were taken after 30 min of incubation at room temperature.

The plate was lifted and tilted to allow RBCs to run down to the side of the well. Readings
were performed according to pattern showed in the Figure in the Supplementary Materials.

The analysis of the results for each of the virus subtypes was carried out in 7 age
groups. Numbers and percentages of patients with adequate antibodies and patients
achieving a protective level (antibody titer ≥ 40) were determined. The average antibody
level in the study group was calculated as a geometric mean of non-zero values (GMT)
with 95% confidence intervals [CI]. The following statistical tests were employed in the
analysis: chi-square test (for comparisons between age groups and epidemiological seasons
in terms of antibody occurrence frequency and reaching protective level); Mann–Whitney
test (comparison of antibody titer distributions between two epidemiological seasons);
Kruskal–Wallis test (comparisons of antibody titer distributions between 7 age groups
and 3 epidemiological seasons—post-hoc tests with Bonferroni correction for multiple
comparisons were used to identify differing seasons). A significance level of 0.05 was
assumed in all of the analyses.

Calculations were performed using the SPSS 12-PL statistical software.

3. Results

The serum of people belonging to all the age groups showed the presence of antibodies
against all the four viruses analyzed. In total, 48% of the subjects had antibodies against
the H1 subtype, H3—74%, B/Colorado—26%, and B/Phuket—63%. Figures 1 and 2 show
the percentage of patients in individual age groups that had antibodies against a particular
influenza virus.
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Figure 2. The presence of antibodies in the serum of patients aged 15–25, 26–44, 45–64, and 65+ years
of age in the 2019/2020 epidemic season.

Using the chi-square test for analysis, statistically significant differences in the preva-
lence of antibodies (between seven age groups) were found for the following influenza
virus types and subtypes:

• For subtype H1: p = 0.001, the proportion of subjects with antibodies ranged from 33%
in the group of 0–4 years to 60% in the group of 10–14 years.

• For the Victoria line (B/Colorado): p < 0.001, the proportion of subjects with antibodies
from 7% in the group of 15–25 years to 47% in the group of 65 years or more.

• For the Yamagata line (B/Phuket): p < 0.001, from 27% of subjects with antibodies in
the 45–64 group to 85% in the 0–4 age group.

The analysis showed no statistically significant differences for the H3 subtype, the
percentage of subjects with antibodies ranged from 68% in the 10–14 age group to 82% in
the 5–9 group.

Statistically significant differences in the percentage of subjects with antibodies be-
tween ages up to 14 and over 14 were observed only for antibodies against B/Colorado
and B/Phuket (analysis using the chi-square test):

• For B/Colorado p = 0.015, 22% of subjects over 14 years of age and 30% of children up
to 14 years of age had antibodies.

• For B/Phuket p = 0.007, 59% of subjects over 14 years of age and 69% of children up to
14 years of age had antibodies.

• For the H1 subtype: 46% of subjects over 14 years of age and 50% of children up to
14 years of age had antibodies.

• For the H3 subtype: 74% of subjects over 14 years of age and 75% of children up to
14 years of age had antibodies.

Figure 3 shows geometric mean antibody titers (GMT) in the sera of patients who
had antibodies. A statistical analysis using the Kruskal–Wallis test showed a statistically
significant difference between the seven age groups for all the antibody types:

• For the H1 subtype: 335 people had antibodies, average level 54.4, statistical signifi-
cance of differences—p = 0.002, the lowest level of antibodies in the group
of 26–44 years—GMT = 40.0 [CI = 33.9–46.1] the highest in the group of
10–14 years—GMT = 88.8 [CI = 81.1–96.4].
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• For the H3 subtype: 521 people had antibodies, average level 68.0, [CI = 65.9–70.1].
p = 0.004, the lowest level in the age groups 26–44 and 45–64 years of age—GMT = 55.5,
[CI = CI: 49.9–61.2 and 49.8–61.2, respectively], the highest in the 5–9 age group—GMT = 89.3
[CI: 83.9–94.7].

• For the Victoria (B/Colorado) line: 180 people had antibodies, average level 25.3,
[CI: 21.8–28.7], p < 0.001, the lowest level in the group of 26–44 years—GMT = 14.5
[CI: 4.5–24.5] and the highest in children up to 4 years of age—GMT = 41.3 [CI = 33.4–49.3].

• For the Yamagata line (B/Phuket): 443 people had antibodies, average level 40.9
[CI = 38.8–43.1], p < 0.001, the lowest level in the group of 46–64 years old—GMT = 23.3
[CI = 15.1–31.5], the highest in children up to 4 years of age—GMT = 51.9 [CI = 47.5–56.4].
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Figure 3. Geometric mean titers of anti-haemagglutinin antibodies (GMT) in the epidemic season
2019/2020 in age groups in Poland.

Figure 4 shows the response rates (percentages with protective anti-HA titers ≥ 40)
for the four tested influenza viruses in seven different age groups. In each of the groups,
subjects with a protective titer of anti-HA antibodies ≥ 40 were found. Statistical analysis
(using the chi-square test) showed a statistically significant difference in the protection
factors between the seven age groups for three subtypes. In the case of H3, the difference
was on the border of statistical significance.

• For subtype H1: 239 people had antibodies with a titer ≥ 40, the protective factor was
34%; statistical significance of differences between age groups—p < 0.001 (rates from
20% in the 0–4 age group to 51% in the 10–14 age group).

• For subtype H3: 431 people had antibodies with a titer ≥ 40, protective factor was
62%; statistical significance of differences between age groups—p = 0.082 (rates from
55% in the 45–64 and ≥65 age groups to 72% in the 5–9 age group).

• For the Victoria line (B/Colorado): 79 people had antibodies with a titer ≥ 40, protective
factor was 11%; statistical significance of differences between age groups—p = 0.001
(rates from 2% in the 15–25 group to 24% in the 0–4 age group).
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• For the Yamagata line (B/Phuket): 297 people had antibodies with titers ≥ 40, protection
factor was 42%; statistical significance of differences between age groups—p = 0.001
(rates from 7% in the group of 45–64 and ≥65 years to 68% in the group of 0–4 years).
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Figure 4. Percentage of cases with a protective titer of anti-haemagglutinin antibodies (%) in the
2019/2020 epidemic season in different age groups.

For influenza B virus of the Yamagata lineage, which remained unchanged in the
vaccine composition in the epidemic season from 2017/2018 to 2019/2020, an analysis of
differences in antibody levels between the three seasons was performed. The frequency of
reaching the protective level (using the chi-square test) and the distribution of antibody
titers were compared.

There were statistically significant differences between the three compared seasons
in the percentage of subjects with antibodies at the level ≥ 40 (p < 0.001), with the highest
value recorded in the 2018/19 season (67%) and the lowest in 2017/18 (34%) (Table 1).

Statistically significant differences occurred in six out of seven analyzed age groups
(p < 0.001 in all cases), with the exception of the 26–44 group where the percentages amount-
ing to 40%, 47%, and 51% did not show statistically significant differences.

The lowest percentages mostly concerned the 2017/18 season; lower values were
recorded in the 2019/2020 season only in the two oldest age groups. The highest per-
centages usually concerned the 2018/2019 season; higher values were observed in the
2019/2020 season only for two age groups. The exceptions are as follows: the 0–4 age
group and the 26–44 age group; in the latter case, however, the differences between the
seasons were not statistically significant (Table 1).
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Table 1. Comparison of three epidemic seasons for B/Phuket/3073/2013—Yamagata Lineage.

Age Group
[Years]

Protection Rate The Significance of the
Differences (p-Value)2017/2018 2018/2019 2019/2020

0–4 41% 55% 68% <0.001

5–9 31% 60% 50% <0.001

10–14 27% 93% 42% <0.001

15–25 27% 68% 37% <0.001

26–44 40% 47% 51% Not Significant (NS)

45–64 25% 71% 7% <0.001

>65 48% 75% 42% <0.001

Total 34% 67% 42% <0.001

Age Group
[Years]

Antibodies Level (GMT)
with 95% Confidence Intervals The Significance of the

Differences (p-Value)
2017/2018 2018/2019 2019/2020

0–4 54.4 [50.6–58.1] 64.9 [61.0–68.8] 69.4 [65.5–73.2] 0.011

5–9 63.2 [58.1–68.3] 52.8 [49.8–55.8] 49.9 [46.1–53.8] NS

10–14 54.6 [49.2–60.1] 133.7 [130.2–137.2] 51.2 [46.9–55.6] <0.001

15–25 47.6 [43.2–51.9] 62.2 [58.9–65.6] 62.7 [57.3–68.1] 0.015

26–44 57.2 [52.9–61.5] 58.3 [54.4–62.2] 89.2 [84.1–94.3] <0.001

45–64 49.2 [44.2–54.1] 57.5 [54.5–60.5] 65.6 [49.6–81.6] NS

>65 76.1 [71.6–80.7] 67.6 [64.1–71.1] 71.3 [65.2–77.4] NS

Total 58.3 [56.5–60.1] 70.9 [69.4–72.3] 65.0 [63.0–67.0] <0.001
Note: NS: Not Significant.

Mean antibody values (GMT) by season and age group as well as the statistical
significance of differences between the three seasons are shown in Table 1. Statistically
significant differences in terms of the level of antibodies against B/Phuket were observed in
four age categories (0–4 10–14, 15–25, and 26–44 years old) and for all groups together. The
analysis used the Kruskal–Wallis test supplemented with post-hoc tests to identify differing
pairs: In the 0–4 age group, the seasons 2017/2018 and 2019/2020 differ statistically
significantly, in which the average level of antibodies was 54.4 and 69.4, respectively
(p = 0.008 after adjusting for multiple comparisons using the Bonferroni method).

• In the 10–14 age group, the level of antibodies in the 2018/19 season (average 133.7)
significantly differed from the values in the other seasons (54.6 and 51.2), in both
cases p < 0.001 (even after adjusting for multiple comparison by means of Bonferroni
method).

• In the 15–25 age group, the level of antibodies in the 2017/2018 season (47.6) was
significantly different from that observed in 2018/19 (62.2, p = 0.020, after taking into
account the correction) and 2019/2020 (62.7, p = 0.047, after correction),

• In the 26–44 age group, the level of antibodies in the 2019/2020 season (89.2) was
significantly different from that observed in 2017/18 (57.2) and 2018/19 (58.3)—in
both cases p < 0.001, after the correction.

Taking an overall look at all the age groups, the level of antibodies in the 2017/2018
season (58.3) differed both from the one observed in the 2018/19 season (70.9, p < 0.001
after adjustment) and in the 2019/2020 season (65.0, p = 0.011, after correction).

An analysis of differences in the level of antibodies against influenza B virus of the
Victoria line, which remained unchanged in the composition of the vaccine in the epidemic
seasons from 2018/2019 to 2019/2020, was also carried out.
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Statistically significant differences were recorded between the compared seasons in
terms of the percentage of subjects with anti-B/Colorado antibodies ≥ 40 (chi-square
test, p < 0.001)—the protection factor was 22% in the 2018/19 season compared to 11% in
2019/20 (Table 2). This effect consisted of significantly higher percentages in the 10–14,
15–25, and 26–44 age groups in the 2018/2019 season. In the oldest and youngest age
groups, the differences were statistically insignificant (Table 2).

Table 2. Comparison of two past epidemic seasons for B/Colorado/06/2017—Victoria Lineage.

Age Group
[Years]

Protection Rate The Significance of the
Differences (p-Value)2018/2019 2019/2020

0–4 23% 24% NS

5–9 11% 6% NS

10–14 47% 23% <0.001

15–25 10% 2% 0.019

26–44 37% 3% <0.001

45–64 10% 8% NS

>65 13% 13% NS

Total 22% 11% <0.001

Age Group
[Years]

Antibodies Level (GMT)
with 95% Confidence Intervals The Significance of the

Differences (p-Value)
2018/2019 2019/2020

0–4 48.1
[43.3–52.8]

77.7
[68.8–86.7] 0.008

5–9 41.7
[36.0–47.3]

40.0
[32.0–48.0] NS

10–14 50.6
[47.0–54.1]

40.0
[35.9–44.1] 0.004

15–25 43.9
[37.4–50.3]

80.0
[43.1–116.9] NS

26–44 64.6
[59.7–69.4]

40.0
[28.7–51.3] NS

45–64 52.8
[45.6–60.0]

51.9
[42.0–61.8] NS

>65 59.8
[51.4–68.2]

68.2
[56.0–80.4] NS

Total 52.9
[50.7–55.0]

55.8
[51.7–60.0] NS

Note: NS: Not Significant.

There were no statistically significant differences between the season 2018/2019 and
2019/2020 in the average level of antibodies against B/Colorado (Mann–Whitney test)—the
average titer was 52.9 vs. 55.8, respectively (Table 2). Such differences occurred only in
two age categories in children: the 0–4 age group, in which a significantly higher level of
antibodies was recorded in the 2019/2020 season (77.7 vs. 48.1; p = 0.008), and the 10–14 age
group with a significantly higher level in the 2018/2019 season (50.6 vs 40.0; p = 0.004).

4. Discussion

Antibodies against all four tested viruses were found in patients of all age groups.
All the viruses analyzed were included in the influenza vaccine for the 2019/2020 season.
However, due to the low vaccination rate in the population (only 4.4% of Poles received the
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flu vaccine in the 2019/2020 season) [21]. In comparison, the vaccination rate calculated
from administered doses in the past seasons were characterized by an even lower rate:
2018/2019: 3.9%, 2017/2018: 3.6%. It should be assumed that the presence of antibodies in
the serum is the result of contracting the disease.

A protective antibody titer is considered to be ≥40. High titers of antibodies may
indicate a past infection. Immunoglobulin levels also increase after influenza vaccination.
In the 2019/2020 epidemic season, the highest percentages of patients with a protective
antibody titer were observed for virus A/Kansas/14/2017 (subtype A/H3N2/), and the
lowest for B/Colorado/06/2017, although this strain has been in the vaccine since the
season 2018/2019.

In the case of the influenza A virus, the A/H3N2/ subtype featured the highest
percentage of subjects with a protective level of antibodies, despite the fact that this season
the most molecularly confirmed strain was the A/H1N1/pdm09 subtype.

The main role of the influenza vaccine is to increase immunity against influenza virus
infection. Vaccination is an effective method of preventing the disease and its complications
and related mortality. The effectiveness of the influenza vaccine varies depending on the
patient age, the effectiveness of the immune system response, as well as on the match
between the circulating strains and the vaccine strains in a given year [6]. However,
cross-immunity, i.e., alleviation of disease symptoms, can be observed even though the
vaccine received was for a different variant of the virus [22], which does not occur in
young children [23]. On the other hand, vaccination is more effective in children than
in the elderly. Therefore, vaccinating children may be an important way to prevent the
disease and post-disease complications in elderly people [24], whose immune response
is weakened [20].

As research conducted in Poland in the period from December 2018 to April 2020
among the examined patients shows, influenza was found mainly in unvaccinated sub-
jects [25]. Therefore, taking the flu vaccine every season is recommended not only for
people belonging to the high-risk group. Seasonal influenza vaccination is also necessary
because immunity declines over time after vaccination [26]. In addition, a new disease
caused by the SARS-CoV-2 virus appeared in the 2019/2020 epidemic season. This virus
has a similar route of transmission and causes a disease with similar symptoms [27,28].
That is why a correct diagnosis is important to ensure that patients are adequately treated.
However, we did not notice any impact of wearing masks or other restrictions on antibody
levels. It can be explained by the fact that restrictions in Poland were incorporated in April
of 2020. Testing patients’ sera is highly connected with the vaccination policy, as it informs
us about immunity against influenza viruses in the population. Based on those findings,
we can recommend actions to ministry of health of Poland.

Low protection rates confirm the low vaccination rate in Poland. The vaccination rate
should be higher for the elderly and people at high risk; the vaccination rate recommended
by the WHO should reach 75%. To achieve that, influenza vaccines should be mandatory
for children up to 14 years of age, the elderly above 65 years of age, and all individuals in
risk groups.
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Abstract: Background: While passive immunotherapy has been considered beneficial for patients
with severe respiratory viral infections, the treatment of COVID-19 cases with convalescent plasma
produced mixed results. Thus, there is a lack of certainty and consensus regarding its effectiveness.
This meta-analysis aims to assess the role of convalescent plasma treatment on the clinical outcomes
of COVID-19 patients enrolled in randomized controlled trials (RCTs). Methods: A systematic search
was conducted in the PubMed database (end-of-search: 29 December 2022) for RCTs on convalescent
plasma therapy compared to supportive care\standard of care. Pooled relative risk (RR) and 95%
confidence intervals were calculated with random-effects models. Subgroup and meta-regression
analyses were also performed, in order to address heterogeneity and examine any potential as-
sociation between the factors that varied, and the outcomes reported. The present meta-analysis
was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines. Results: A total of 34 studies were included in the meta-analysis. Per overall
analysis, convalescent plasma treatment was not associated with lower 28-day mortality [RR = 0.98,
95% CI (0.91, 1.06)] or improved 28-day secondary outcomes, such as hospital discharge [RR = 1.00,
95% CI (0.97, 1.03)], ICU-related or score-related outcomes, with effect estimates of RR = 1.00, 95% CI
(0.98, 1.05) and RR = 1.06, 95% CI (0.95, 1.17), respectively. However, COVID-19 outpatients treated
with convalescent plasma had a 26% less risk of requiring hospital care, when compared to those
treated with the standard of care [RR = 0.74, 95% CI (0.56, 0.99)]. Regarding subgroup analyses,
COVID-19 patients treated with convalescent plasma had an 8% lower risk of ICU-related disease
progression when compared to those treated with the standard of care (with or without placebo or
standard plasma infusions) [RR = 0.92, 95% CI (0.85, 0.99)] based on reported outcomes from RCTs
carried out in Europe. Finally, convalescent plasma treatment was not associated with improved
survival or clinical outcomes in the 14-day subgroup analyses. Conclusions: Outpatients with
COVID-19 treated with convalescent plasma had a statistically significantly lower risk of requiring
hospital care when compared to those treated with placebo or the standard of care. However, conva-
lescent plasma treatment was not statistically associated with prolonged survival or improved clinical
outcomes when compared to placebo or the standard of care, per overall analysis in hospitalized
populations. This hints at potential benefits, when used early, to prevent progression to severe disease.
Finally, convalescent plasma was significantly associated with better ICU-related outcomes in trials
carried out in Europe. Well-designed prospective studies could clarify its potential benefit for specific
subpopulations in the post-pandemic era.

Keywords: COVID-19; convalescent plasma; meta-analysis; randomized controlled trials; mortality;
intensive care unit
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1. Introduction

At the end of 2019, a surge of pneumonia cases in Wuhan, a city in the Hubei Province
of China, led to the identification of a novel coronavirus as the cause. Its rapid spread re-
sulted in an epidemic throughout China, followed by an increasing number of cases around
the world. On 11 March 2020, the World Health Organization declared the novel coron-
avirus outbreak a pandemic. The disease associated with it was designated as COVID-19,
which stands for coronavirus disease 2019, and the virus that caused it was designated as
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1].

As of the end of 2022, COVID-19 disease management involves mostly supportive
care, symptomatic treatment and prevention by vaccination. There have been only a few
drugs or treatments proven to be effective specifically against the virus and the illness it
causes, such as nirmatrelvir\ritonavir for high-risk patients.

Convalescent plasma, having been used to treat viral outbreaks of novel infectious
diseases affecting the respiratory system in the past [2,3], was an early candidate [4,5]. The
idea behind it is to transfuse blood plasma from a person who has recovered from a specific
illness to someone who currently has the same illness in order to provide passive immunity
and boost their fight against the pathogen, since such plasma contains antibodies to it [6,7].

With the potential for convalescent plasma to be beneficial, there was an urgency for
clinical trials. The FDA provided emergency use authorization for its use and the WHO
reinforced clinical trials to continue enrolment. Later updates included revisions on the
matter, such as the focus and authorization being shifted to immunosuppressed patients or
outpatients (FDA) or severe and high-risk patients in general (WHO) [8]. Moreover, the
most up-to-date emergency authorization letter by the FDA states that convalescent plasma
units used should be “high-titer”, based on studies showing the superiority of high-titer
convalescent plasma in terms of preventing severe COVID-19-related outcomes [9].

Because studies and reviews yielded conflicting results, there has been a persistent
lack of certainty and consensus regarding its efficacy [10,11]. Therefore, we conducted
a meta-analysis, focusing strictly on RCTs, to assess the effect of convalescent plasma
treatment on the clinical outcomes of patients with COVID-19.

2. Materials and Methods
2.1. Search Strategy and Eligibility of Studies

The present meta-analysis was performed following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [12]. The study protocol was
discussed and agreed upon in advance by all authors.

A systematic search was conducted in the PubMed database, using the following algorithm:
(COVID-19 OR SARS-CoV-2 OR “novel coronavirus”) AND (convalescent OR conva-

lescence) AND (plasma OR serum).
Eligible articles included randomized clinical trials on convalescent plasma treatment

vs. supportive care or standard of care controls, with or without placebo. Case-control,
cohort and cross-sectional studies, case series and case reports, reviews, in vitro and animal
studies were not included in this meta-analysis. The selection of studies was conducted
initially by two co-authors (CF and ANS) by independent work and any disagreements were
resolved following consultation with a senior author (INS or TNS) and team consensus.

2.2. Data Abstraction and Effect Estimates

The data abstraction encompassed: general information (first author’s name, publi-
cation year, PubMed and CT database ID), study characteristics (time period, follow-up
period, geographic region, multicenter status, control type, participant numbers, percentage
of males, age), intervention characteristics (time to intervention from symptom onset and
total CP dose) and outcomes (mortality and clinical outcomes with reported effect estimates
or fourfolds with plain data, adjustment details).

If one of the above was not found in the main article, the Supplementary Material
was thoroughly screened. There was no shortage of required data for the purposes of the
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meta-analysis. Data were independently extracted, analyzed and recorded in separate data
extraction sheets by two authors (CF and KS). The finalized data form was reached after
consultation with a senior author (TNS) and team consensus.

Extracted effect estimates included relative risks alongside their 95% Cis (per outcome)
or any other form that could be mathematically transformed or translated to relative risk.
Mortality was extracted as a primary outcome for our work and hospitalization, and hospi-
tal discharge, ICU-related outcomes and score-related outcomes were secondary outcomes.

As far as score-related outcomes are concerned, all of them were based on or using
variations of the 9-point WHO score for COVID-19. This is defined as: 0: no clinical
or virological evidence of infection; 1: ambulatory, no activity limitation; 2: ambulatory,
activity limitation; 3: hospitalized, no oxygen therapy; 4: hospitalized, oxygen mask or nasal
prongs; 5: hospitalized, noninvasive mechanical ventilation (NIMV) or high-flow nasal
cannula (HFNC); 6: hospitalized, intubation and invasive mechanical ventilation (IMV);
7: hospitalized, IMV + additional support such as pressors or extracardiac membranous
oxygenation (ECMO); 8: death.

Finally, a titer subgroup analysis was carried out, between studies that fulfilled the
latest EUA/FDA cut-offs for high-titer plasma units versus the rest. This is defined as a
neutralizing antibody titer of ≥250 in the Broad Institute’s neutralizing antibody assay or
an S/C cutoff of ≥12 in the Ortho VITROS IgG assay.

In case the aforementioned information was not available, crude effect estimates and
95% CIs were calculated by means of fourfolds from plain data extracted from the articles.

2.3. Statistical Analyses

Statistical analyses included pooling of studies as well as post hoc meta-regression.
Random-effects models were appropriately used to calculate the pooled effect estimates
(relative risks). The convalescent plasma treatment arms were compared to the control
arms. Between-study heterogeneity was assessed by Q-test and I2 estimations. Subgroup
analyses were performed based on adjustment, multicenter status, blinding status and the
geographic region of each study.

The post hoc meta-regression analysis was performed for subgroups with a total of 10
or more data entries for the variables to be analyzed. The aim was to assess whether gender,
age, time from symptom onset to intervention or total convalescent plasma dose modified
the association between convalescent plasma transfusion and each reported outcome.

All statistical analyses were performed using STATA/SE version 13 (Stata Corp,
College Station, TX, USA).

2.4. Assessment of Study Quality and Risk of Bias

All records included randomized clinical trials, either blinded or open label. Risk
was assessed with the implementation of the RoB:2 algorithm by Cochrane to our analysis
tools [11]. Specifically, two authors (KS and ANS) carried out the assessment procedure in-
dependently, and upon inspection of the results by a third author (CF), consensus was met.

Publication bias was evaluated in the analyses that included 10 or more study arms [13].
For this purpose, Egger’s statistical test (statistical significance p < 0.1) [14,15] was imple-
mented as well as the funnel plot inspection. The evaluation of publication bias was
performed using STATA/SE version 13 (Stata Corp, College Station, TX, USA).

3. Results
3.1. Description of Eligible Studies

A total of 2374 records were identified from PubMed using the search algorithm
(Section 2.1) and were assessed for eligibility. The flowchart (Figure 1) portrays the succes-
sive steps in the selection of eligible studies.

40



Viruses 2023, 15, 765

Viruses 2023, 15, x FOR PEER REVIEW 4 of 22 
 

 

 

3. Results 

3.1. Description of Eligible Studies 

A total of 2374 records were identified from PubMed using the search algorithm (Sec-

tion 2.1) and were assessed for eligibility. The flowchart (Figure 1) portrays the successive 

steps in the selection of eligible studies. 

 

Figure 1. Study selection flowchart. 

For the 28-day main cohort, 34 randomized controlled trials were included [16–49]. 

For the 14-day secondary cohort, 10 articles on randomized controlled trials provided the 

necessary data. All studies had convalescent plasma therapy arms vs. standard of care or 

supportive care arms, with some including standard plasma, non-convalescent plasma or 

fresh-frozen plasma to the control arms. 

From the 28-day cohort studies, all of them reported mortality figures, except one 

(Alemany, 2022) [17]. Regarding secondary clinical outcomes, hospital discharge was re-

ported on nine records, ICU-related outcomes were reported on twenty-one records, hos-

pitalization was a reported outcome in six studies and score-related outcomes (WHO 

score for COVID-19) in six studies. 

Tables 1 and 2 present the characteristics of the included studies regarding study 

design, patient and disease characteristics and interventions. 

 

Table 1. General characteristics of the included studies. 

Figure 1. Study selection flowchart.

For the 28-day main cohort, 34 randomized controlled trials were included [16–49].
For the 14-day secondary cohort, 10 articles on randomized controlled trials provided the
necessary data. All studies had convalescent plasma therapy arms vs. standard of care or
supportive care arms, with some including standard plasma, non-convalescent plasma or
fresh-frozen plasma to the control arms.

From the 28-day cohort studies, all of them reported mortality figures, except one
(Alemany, 2022) [17]. Regarding secondary clinical outcomes, hospital discharge was
reported on nine records, ICU-related outcomes were reported on twenty-one records,
hospitalization was a reported outcome in six studies and score-related outcomes (WHO
score for COVID-19) in six studies.

Tables 1 and 2 present the characteristics of the included studies regarding study
design, patient and disease characteristics and interventions.

Table 1. General characteristics of the included studies.

Author and Year Setting Geographic Region Multicenter Blinded Control
Abani (2021) Hospitalized More than one area Yes No SoC

Agarwal (2020) Hospitalized India Yes No SoC
Alemany (2022) Outpatients Europe Yes Yes Placebo

AlQahtani (2021) Hospitalized Middle East No No SoC
Avendaño-Solá (2021) Hospitalized Europe Yes No SoC

Bajpai (2020) Hospitalized India No No SoC
Bajpai (2022) Hospitalized India Yes No SoC

Baldeón (2022) Hospitalized Latin America Yes Yes Placebo
Bar (2021) Hospitalized USA No No SoC

Bégin (2021) Hospitalized More than one area Yes No SoC
Bennett-Guerrero (2021) Hospitalized USA No Yes Placebo

Dekinger (2022) Hospitalized Europe Yes No SoC
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Table 1. Cont.

Author and Year Setting Geographic Region Multicenter Blinded Control
Devos (2022) Hospitalized Europe Yes No SoC

Estcourt (2021) Hospitalized More than one area Yes No SoC
Gharbharan (2021) Hospitalized Europe Yes No SoC
Gharbharan (2022) Outpatients Europe Yes Yes Placebo

Holm (2021) Hospitalized Europe No No SoC
Kirenga (2021) Mixed Africa No No SoC
Korley (2021) Outpatients USA Yes Yes SoC

Li (2020) Hospitalized East Asia Yes No SoC
Libster (2021) Outpatients Latin America Yes Yes Placebo

Manzini (2022) Hospitalized Europe No Yes SoC
Menichetti (2021) Hospitalized Europe Yes No SoC
O’Donnell (2021) Hospitalized More than one area Yes Yes Placebo
Ortigoza (2022) Hospitalized USA Yes Yes Placebo

Ray (2022) Hospitalized India No No SoC
Rojas (2022) Hospitalized Latin America Yes Yes SoC
Santis (2022) Hospitalized Latin America Yes No SoC
Sekine (2022) Hospitalized Latin America No Yes SoC

Self (2022) Hospitalized USA Yes Yes Placebo
Simonovich (2021) Hospitalized Latin America No Yes Placebo

Sullivan (2022) Outpatients USA Yes Yes Placebo
Thorlacius-Ussing (2022) Hospitalized Europe Yes No Placebo

van de Berg (2022) Hospitalized Africa No Yes Placebo

SoC: standard of care; placebo control includes SoC.

Table 2. Intervention characteristics of the included studies.

Author and Year CP (n) Control (n) Male % Age
(µ ± σ)

Time from Symptom
Onset to Intervention
(µ ± σ)

CP Dose (mL)

Abani (2021) 5795 5763 64% 63.50 ± 14.70 9.00 ± 4.45 550
Agarwal (2020) 235 229 76% 51.13 ± 19.53 8.35 ± 3.73 400
Alemany (2022) 188 188 54% 56.70 ± 7.44 4.40 ± 1.40 275
AlQahtani (2021) 20 20 80% 51.65 ± 19.45 10.00 400
Avendaño-Solá (2021) 179 171 65% 63.00 ± 15.30 5.65 ± 2.23 275
Bajpai (2020) 14 15 73% 48.20 ± 9.80 3.00 500
Bajpai (2022) 200 200 67% 55.52 ± 1.17 - 500
Baldeón (2022) 63 95 68% 74.34 ± 18.39 10.60 ± 4.90 -
Bar (2021) 40 39 46% - 7.71 ± 4.53 -
Bégin (2021) 625 313 59% 67.50 ± 15.60 7.90 ± 3.70 500
Bennett-Guerrero (2021) 59 15 60% 65.70 ± 23.50 11.12 ± 9.12 480
Denkinger (2022) 68 66 68% 68.50 ± 11.30 7.00 ± 4.50 575
Devos (2022) 320 163 69% 62.00 ± 14.00 7.00 ± 4.46 450
Estcourt (2021) 1078 909 68% 60.77 ± 18.38 - 550
Gharbharan (2021) 43 43 72% 64.40 ± 13.45 10.35 ± 6.72 300
Gharbharan (2022) 207 209 78% 60.00 ± 7.44 5.00 ± 1.49 400
Holm (2021) 17 14 61% 69.95 ± 40.64 7.00 ± 3.23 675
Kirenga (2021) 69 67 71% 50.18 ± 17.61 6.30 ± 3.00 -
Korley (2021) 257 254 46% 51.90 ± 16.35 3.65 ± 2.24 250
Li (2020) 52 51 58% 70.00 ± 12.03 29.65 ± 14.29 -
Libster (2021) 80 80 38% 77.20 ± 8.60 1.65 ± 0.58 250
Manzini (2022) 60 60 72% 65.48 ± 11.96 8.35 ± 5.23 600
Menichetti (2021) 232 241 64% 64.00 ± 14.87 7.21 ± 2.98 400
O’Donnell (2021) 150 73 66% 60.30 ± 17.91 10 ± 4.49 -
Ortigoza (2022) 468 473 59% 62.65 ± 15.59 6.65 ± 3.71 250
Ray (2022) 40 40 71% - 4.20 ± 2.21 400
Rojas (2022) 46 45 70% 51.76 ± 18.68 10.65 ± 2.96 500
Santis (2022) 36 71 72% 56.00 ± 16.16 9.00 ± 1.50 1800
Sekine (2022) 80 80 41% 58.74 ± 14.96 10.00 ± 3.00 300
Self (2022) 487 473 57% 59.65 ± 15.59 7.65 ± 3.72 300
Simonovich (2021) 228 105 67% 62.00 ± 14.89 7.65 ± 3.72 500
Sullivan (2022) 592 589 57% 43.35 ± 23.12 5.65 ± 2.23 250
Thorlacius-Ussing (2022) 98 46 72% 65.00 ± 14.98 10.65 ± 3.76 600
van de Berg (2022) 52 51 41% 77.20 ± 8.60 8.65 ± 3.76 250

Missing values were not reported either in the article or in the supplementary material. CP dose is the total
convalescent plasma transfused.
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3.2. Meta-Analysis
3.2.1. 28-Day Results

In total, 34 studies were included in the overall meta-analysis for the 28-day cohort [13–46].
The effect outcome for 28-day mortality was not statistically significant [RR = 1.00, 95% C.I.
(0.95, 1.06)] (Figure 2). There were no statistically significant results in the adjustment,
multicenter status, blinding status and geographic region subgroup analyses (Table 3).
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Figure 2. Forest plot describing the association between convalescent plasma treatment and 28-day
mortality. Apart from the overall analysis, the subanalysis on adjustment type is presented.

A meta-analysis for the secondary clinical outcomes showed no statistically significant
association between convalescent plasma therapy and hospital discharge [RR = 0.99, 95% C.I.
(0.96, 1.03)] or score-related outcomes [RR = 1.06, 95% C.I. (0.97, 1.16)] (Tables 4 and 5). The
ICU-related outcomes analysis yielded no statistically significant overall result [RR = 0.98,
95% C.I. (0.93, 1.02)] as well (Table 6).
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Table 3. Results of the meta-analyses examining the association between convalescent plasma therapy
and mortality (28-day); subgroup analyses by adjustment, multicenter status, blinding status and
geographic region are presented.

n RR Heterogeneity I2, p
Overall analysis 33 0.98 (0.91, 1.06) 0.0%, 0.709

Subgroups by adjustment
Multivariate 13 0.99 (0.91, 1.07) 8.5%, 0.361
Univariate 20 1.05 (0.95, 1.06) 0.0%, 0.803

Subgroups by multicenter status
Multicenter 22 1.00 (0.95, 1.06) 0.0%, 0.703

Single-center 11 0.95 (0.74, 1.24) 0.0, 0.451
Subgroups by blinding status

Blinded 15 0.97 (0.82, 1.15) 0.0%, 0.524
Open label 18 1.01 (0.95, 1.07) 0.0%, 0.667

Subgroups by geographic region
Africa 2 0.96 (0.56, 1.67) 0.0%, 0.509

East Asia 1 0.80 (0.36, 1.76) Not calculable
Europe 9 0.89 (0.67, 1.19) 0.0%, 0.778
India 4 1.06 (0.82, 1.38) 0.0%, 0.493

Latin America 6 1.10 (0.77, 1.57) 0.0%, 0.623
Middle East 1 0.50 (0.05, 5.04) Not calculable

USA 6 0.85 (0.55, 1.31) 47.1%, 0.092
More than one area 4 1.02 (0.93, 1.12) 26.8%, 0.251

Highlighted rows denote statistically significant associations.

Table 4. Results of the meta-analyses examining the association between convalescent plasma therapy
and hospital discharge (28-day); subgroup analyses by adjustment, multicenter status, blinding status
and geographic region are presented.

n RR Heterogeneity I2, p
Overall analysis 9 0.99 (0.96, 1.03) 0.0%, 0.955

Subgroups by adjustment
Multivariate 2 0.98 (0.94, 1.03) 0.0%, 0.455
Univariate 7 1.01 (0.96, 1.05) 0.0%, 0.949

Subgroups by multicenter status
Multicenter 7 1.00 (0.96, 1.03) 0.0%, 0.859

Single-center 2 0.95 (0.74, 1.24) 0.0, 0.451
Subgroups by blinding status

Blinded 15 0.97 (0.82, 1.15) 0.0%, 0.524
Open label 18 0.98 (0.87, 1.11) 0.0%, 1.000

Subgroups by geographic region
Africa 1 0.98 (0.72, 1.34) Not calculable
Europe 1 1.06 (0.87, 1.30) Not calculable
India 1 1.03 (0.88, 1.21) Not calculable

Latin America 2 1.00 (0.92, 1.09) 0.0%, 0.652
USA 2 0.99 (0.94, 1.06) 0.0%, 0.529

More than one area 2 1.00 (0.92 1.08) 21.5%, 0.259
Highlighted rows denote statistically significant associations.
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Table 5. Results of the meta-analyses examining the association between convalescent plasma therapy
and score-related outcomes (28-day); subgroup analyses by adjustment, multicenter status, blinding
status and geographic region are presented.

n RR Heterogeneity I2, p
Overall analysis 7 1.06 (0.97, 1.16) 17.2%, 0.299

Subgroups by adjustment
Multivariate 2 1.25 (0.87, 1.78) 61.0%, 0.110
Univariate 5 1.01 (0.94, 1.09) 0.0%, 0.601

Subgroups by multicenter status
Multicenter 4 1.15 (1.02, 1.29) 0.0%, 0.451

Single-center 3 0.99 (0.91, 1.07) 0.0%, 0.854
Subgroups by blinding status

Blinded 4 1.12 (0.98, 1.27) 0.0%, 0.394
Open label 3 1.03 (0.92, 1.17) 21.5%, 0.280

Subgroups by geographic region
Africa 2 0.98 (0.90, 1.07) 0.0%, 0.749

East Asia 1 1.20 (0.82, 1.75) Not calculable
Europe 1 1.16 (0.91, 1.47) Not calculable

Latin America 1 1.60 (1.03, 2.49) Not calculable
USA 1 1.33 (0.37, 4.77) Not calculable

More than one area 1 1.09 (0.93, 1.27) Not calculable
Highlighted rows denote statistically significant associations.

Table 6. Results of the meta-analyses examining the association between convalescent plasma therapy
and ICU-related outcomes (28-day); subgroup analyses by adjustment, multicenter status, blinding
status and geographic region are presented.

n RR Heterogeneity I2, p
Overall analysis 20 0.98 (0.93, 1.02) 0.0%, 0.542

Subgroups by adjustment
Multivariate 3 1.00 (0.86, 1.15) 70.7%, 0.033
Univariate 17 0.98 (0.93, 1.02) 0.0%, 0.542

Subgroups by multicenter status
Multicenter 14 0.98 (0.93, 1.04) 8.0%, 0.365

Single-center 6 0.84 (0.57, 1.24) 0.0%, 0.703
Subgroups by blinding status

Blinded 10 0.96 (0.71, 1.31) 8.0%, 0.807
Open label 10 0.99 (0.92, 1.06) 27.4%, 0.192

Subgroups by geographic region
Africa 1 0.33 (0.04, 2.88) Not calculable
Europe 7 0.92 (0.85, 0.99) 0.0%, 0.897
India 1 0.88 (0.63, 1.23) Not calculable

Latin America 3 0.77 (0.46, 1.29) 0.0%, 0.529
Middle East 1 0.67 (0.22, 2.03) Not calculable

USA 3 0.84 (0.43, 1.64) 0.0%, 0.460
More than one area 4 1.05 (0.96, 1.15) 32.8%, 0.215

Subgroups by ICU-related outcome
ICU admission 4 0.97 (0.74, 1.26) 0.0%, 0.501

IMV or ECMO or death 1 1.10 (0.98, 1.24) Not calculable
Intubation or death 1 1.16 (0.94, 1.43) Not calculable

IMV 1 0.33 (0.04, 2.88) Not calculable
Invasive ventilatory support 1 0.88 (0.42, 1.83) Not calculable

MV 1 0.50 (0.09, 2.74) Not calculable
MV or ICU admission 1 0.75 (0.17, 3.31) Not calculable

MV or death 1 1.10 (0.62, 1.97) Not calculable
MV or ECMO 1 0.49 (0.15, 1.58) Not calculable

NIV or high flow O2 or IMV or ECMO or death 1 0.91 (0.84, 0.99) Not calculable
PaO2/FiO2 of <150 mm Hg or death 1 0.91 (0.67, 1.23) Not calculable

Ventilation treatment 6 0.98 (0.90, 1.06) 0.0%, 0.784
Highlighted rows denote statistically significant associations.

Furthermore, a subgroup analysis was conducted according to the levels of anti-SARS-
CoV-2 antibodies in the CP. Studies were grouped as “high-titer” or “non-high-titer” as per
the latest EUA/FDA guideline cut-offs. The subgroup analysis for the titer level did not reveal
any statistically significant associations (Supplementary Figures S5, S10, S14, S20 and S25).
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However, when analyzing by geographic region, studies carried out in Europe [RR = 0.92,
95% C.I. (0.85, 0.99)] showed a statistically significant association between convalescent
plasma therapy and ICU-related outcomes (Table 6 and Figure 3).
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Figure 3. Forest plot describing the association between convalescent plasma treatment and 28-day
ICU-related outcomes. Apart from the overall analysis, the subanalysis per geographic region
is presented.

The subanalysis on hospitalization outcomes [RR = 0.74, 95% C.I. (0.56, 0.99)] was
also statistically significant, showing that outpatients treated with convalescent plasma
had a 26% less risk of needing hospital care than those treated with the standard of care
(Table 7, Figure 4).
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Table 7. Subanalysis on hospitalization (28-day).

n RR Heterogeneity I2, p
Overall analysis 6 0.74 (0.56, 0.99) 49.8%, 0.076

Subgroups by adjustment
Multivariate 0 - -
Univariate 6 0.74 (0.56, 0.99) 49.8%, 0.076

Subgroups by multicenter status
Multicenter 5 0.72 (0.52, 1.00) 59.6%, 0.042

Single-center 1 0.91 (0.38, 2.17) Not calculable
Subgroups by blinding status

Blinded 5 0.72 (0.52, 1.00) 59.6%, 0.042
Open label 1 0.91 (0.38, 2.17) Not calculable

Subgroups by geographic region
Africa 1 0.91 (0.38, 2.17) Not calculable
Europe 2 0.87 (0.51, 1.48) 51.2%, 0.152

Latin America 1 0.52 (0.29, 0.94) Not calculable
USA 2 0.67 (0.35, 1.27) 75.1%, 0.045

Table 7 Results of the meta-analyses examining the association between convalescent plasma therapy and
hospitalization outcomes (28-day); subgroup analyses by adjustment, multicenter status, blinding status and
geographic region are presented. Highlighted rows denote statistically significant associations.
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3.2.2. 14-Day Results

In total, 10 studies were included in the overall meta-analysis for the 14-day cohort.
The effect outcome for 14-day mortality was not statistically significant [RR = 0.98, 95% C.I.
(0.91, 1.06)] (Figure 5 and Table 8). There were no statistically significant results in the
adjustment, multicenter status, blinding status or geographic region subgroups (Table 8).
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Figure 5. Forest plot describing the association between convalescent plasma treatment and 14-day
mortality. Apart from the overall analysis, the subanalysis on adjustment type is presented.

Table 8. Results of the meta-analyses examining the association between convalescent plasma therapy
and overall mortality (14-day); subgroup analyses by adjustment, multicenter status, blinding status
and geographic region are presented.

n RR Heterogeneity I2, p

Overall analysis 8 0.95 (0.71, 1.29) 15.2%, 0.311
Subgroups by adjustment

Multivariate 3 0.88 (0.51, 1.54) 41.1%, 0.183
Univariate 5 0.96 (0.60, 1.51) 6.0%, 0.313

Subgroups by multicenter status
Multicenter 5 0.98 (0.75, 1.30) 1.4%, 0.398

Single-center 3 0.89 (0.28, 2.83) 51.9%, 0.125
Subgroups by blinding status

Blinded 4 1.03 (0.68, 1.57) 43.1%, 0.153
Open label 4 0.70 (0.38, 1.28) 0.0%, 0.666

Subgroups by geographic region
Europe 3 0.71 (0.31, 1.31) 0.0%, 0.467

Latin America 2 0.96 (0.23, 4.04) 75.1%, 0.045
USA 3 1.06 (0.78, 1.44) 0.0%, 0.500

Highlighted rows denote statistically significant associations.
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A meta-analysis for the secondary clinical outcomes showed no statistically signifi-
cant association between convalescent plasma therapy and hospital discharge [RR = 0.96,
95% C.I. (0.89, 1.03)] (Table 9). A subgroup analysis for the titer level was not statistically
significant as well (Supplementary Figures S30 and S35).

Table 9. Results of the meta-analyses examining the association between convalescent plasma therapy
and hospital discharge (14-day); subgroup analyses by adjustment, multicenter status, blinding status
and geographic region are presented.

n RR Heterogeneity I2, p

Overall analysis 4 0.96 (0.89, 1.03) 0.0%, 0.995
Subgroups by adjustment

Multivariate - - -
Univariate 4 0.96 (0.89, 1.03) 0.0%, 0.995

Subgroups by multicenter status
Multicenter 2 0.96 (0.88, 1.04) 0.0%, 0.795

Single-center 2 0.96 (0.81, 1.14) 0.0%, 0.964
Subgroups by blinding status

Blinded 3 0.96 (0.88, 1.04) 0.0%, 0.999
Open label 1 0.93 (0.75, 1.16) Not calculable

Subgroups by geographic region
Europe 1 0.93 (0.75, 1.16) Not calculable

Latin America 2 0.96 (0.81, 1.14) 0.0%, 0.964
USA 1 0.96 (0.87, 1.05) Not calculable

Highlighted rows denote statistically significant associations.

3.3. Meta-Regression Analysis

The post hoc meta-regression aimed to assess whether gender, age, time from symptom
onset to intervention or total cp dose modified the association between convalescent plasma
treatment and each reported outcome. This analysis yielded no statistically significant
associations (Tables 10 and 11). It was carried out only for the 28-day analysis cohort and
specifically only for the overall mortality, hospital discharge and ICU-related outcomes, as
other categories had less than 10 study arms.

Table 10. Meta-regression on mortality (28-day). Results of meta-regression analysis examin-
ing the role of potential modifiers in the association between convalescent plasma treatment and
28-day mortality.

Variables Increment n Exponentiated Coefficient p

Male% 10% increase 33 1.06 (0.93, 1.21) 0.368

Mean age 10 y increase 31 0.92 (0.76, 1.12) 0.405

Time from symptom onset to intervention 1 day more 31 1.00 (0.97, 1.04) 0.945

Total CP dose 100 mL more 27 1.01 (0.96, 1.07) 0.691

Table 11. Results of meta-regression analysis examining the role of potential modifiers in the associa-
tion between convalescent plasma treatment and 28-day ICU-related outcomes.

Variables Increment n Exponentiated Coefficient p

Male% 10% increase 20 1.02 (0.85, 1.23) 0.789

Mean age 10 y increase 19 1.07 (0.86, 1.35) 0.514

Time from symptom onset to intervention 1 day more 19 1.03 (0.99, 1.06) 0.157

Total CP dose 100 mL more 18 1.05 (1.00, 1.11) 0.064
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3.4. Quality Assessment and Risk of Bias

All included studies were randomized control trials, blinded or open label. For the
evaluation of quality and risk of bias of each one, the RoB:2 tool by Cochrane was used [13].
Table 12 presents the risk of bias assessment for the included studies.

Table 12. Risk of bias assessment based on the RoB:2 algorithm.

Randomization
Process

Deviations from
Intended
Interventions

Missing
Outcome Data

Measurement
of the Outcome

Selection of the
Reported Result Overall

Abani (2021) Low risk Some concerns Low risk Low risk Low risk Some concerns
Agarwal (2020) Low risk Low risk Low risk Low risk Low risk Low risk
Alemany (2022) Low risk Low risk Low risk Low risk Low risk Low risk
AlQahtani (2021) Low risk Low risk Low risk Low risk Low risk Low risk
Avendaño-Solá (2021) Low risk Low risk Low risk Low risk Low risk Low risk
Bajpai (2020) Some concerns Low risk Low risk Low risk Low risk Some concerns
Bajpai (2022) Low risk Low risk Low risk Low risk Low risk Low risk
Baldeón (2022) Low risk Low risk Low risk Low risk Low risk Low risk
Bar (2021) Some concerns Low risk Low risk Low risk Low risk Some concerns
Bégin (2021) Low risk Low risk Low risk Low risk Low risk Low risk
Bennett-Guerrero (2021) Low risk Low risk Low risk Low risk Low risk Low risk
Denkinger (2022) Some concerns Low risk Low risk Low risk Low risk Some concerns
Devos (2022) Low risk Low risk Low risk Low risk Low risk Low risk
Estcourt (2021) Low risk Low risk Low risk Low risk Low risk Low risk
Gharbharan (2021) Low risk Some concerns Low risk Low risk Low risk Some concerns
Gharbharan (2022) Low risk Low risk Low risk Low risk Low risk Low risk
Holm (2021) Some concerns Some concerns Low risk Low risk Low risk Some concerns
Kirenga (2021) Low risk Low risk Low risk Low risk Low risk Low risk
Korley (2021) Low risk Low risk Low risk Low risk Low risk Low risk
Li (2020) Some concerns Low risk Low risk Low risk Low risk Some concerns
Libster (2021) Low risk Low risk Low risk Low risk Low risk Low risk
Manzini (2022) Some concerns Low risk Low risk Low risk Low risk Some concerns
Menichetti (2021) Low risk Low risk Low risk Low risk Low risk Low risk
O’Donnell (2021) Low risk Low risk Low risk Low risk Some concerns Some concerns
Ortigoza (2022) Low risk Low risk Low risk Low risk Low risk Low risk
Ray (2022) High risk Some concerns Low risk Low risk Low risk High risk
Rojas (2022) Low risk Low risk Low risk Low risk Low risk Low risk
Santis (2022) Low risk Some concerns Some concerns Low risk Low risk Some concerns
Sekine (2022) Low risk Low risk Low risk Low risk Low risk Low risk
Self (2022) Low risk Low risk Low risk Low risk Low risk Low risk
Simonovich (2021) Low risk Low risk Low risk Low risk Low risk Low risk
Sullivan (2021) Low risk Low risk Low risk Low risk Low risk Low risk
Thorlacius-Ussing (2022) Low risk Low risk Low risk Low risk Low risk Low risk
van de Berg (2022) Low risk Low risk Low risk Low risk Low risk Low risk

In total, 23/34 studies (67.7%) were assessed as having a low risk of bias, 10/34 studies
(29.4%) raised some concerns and only one was deemed to have a high risk of bias [40].
More specifically:

• Six studies (17.7%) raised some concerns on their randomization process, mostly due
to lack of information on allocation concealment;

• Five studies (14.7%) raised some concerns on whether there were deviations from the
intended interventions;

• Only one study raised concerns on potential selection of the reported result;
• One study had a high risk of bias due to vital randomization process concerns.

3.5. Publication Bias

A publication bias assessment was performed on outcomes reported in 10 or more
studies with the use of Egger’s test [14,15]. These were the 28-day mortality and 28-day
ICU-related outcomes.

For the 28-day mortality analysis, for a total of 33 studies, the p-value for the bias
coefficient generated by Egger’s regression test for small-study effects was p = 0.247
(Supplemental Figure S35). For the 28-day ICU-related outcomes, for a total of 20 studies,
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the aforementioned p-value was p = 0.337 (Supplemental Figure S36). In both cases, this
means that there were no small-study effects, and thus no publication bias.

4. Discussion

The present meta-analysis, comprising data from 34 individual randomized controlled
trials, found no statistically significant association between convalescent plasma treatment
and 28-day or 14-day mortality, hospital discharge, hospitalization, ICU-related or score-
related outcomes. When analyzing by subgroups, though, the European cohort for the
ICU-related outcomes yielded a statistically significant result [RR = 0.92, 95% CI (0.85, 0.99)],
showing that convalescent plasma treatment was beneficial in protecting patients from
ICU-related disease progression. Specifically, patients treated with convalescent plasma
had an 8% less risk of presenting an ICU-related outcome (such as the need for ventilation
treatment, intubation, ECMO), when compared to those treated with the standard of care
or supportive care (with or without placebo/standard plasma infusion). While this result
is interesting and significant, it can largely be attributed to the contribution of the weight
of the Avendaño-Solá (2021) study [17]. Moreover, convalescent plasma was found to be
beneficial in protecting outpatients from hospitalization. After analyzing hospitalization
outcomes, a statistically significant result [RR = 0.74, 95% C.I. (0.56, 0.99)] was yielded,
meaning that outpatients treated with convalescent plasma had a 26% lower risk of needing
to be hospitalized than those treated with the standard of care.

Carrying out a subgroup analysis for titer levels (high-titer vs. non-high titer) was
challenging, as each study used different antibody measurements and cut-off levels for
high-titer labeling. Moreover, achieving in-study heterogeneity among the titers of the
plasma units administered was also significant. These led to a statistically nonsignificant
and mostly inconclusive result. There was a scarcity of outcome data regarding secondary
clinical outcomes, such as hospital discharge (9/34 studies), hospitalization (6/34 studies)
and score-related outcomes (6/34 studies). The plasma titer between studies varied and
so did COVID-19 disease severity at randomization and study size. Serostatus at the
time of treatment was not possible to assess and analyze, as only a percentage of studies
provided robust and uniform data for it. Furthermore, records were extracted solely from
the PubMed database.

In addition, the RECOVERY trial (Abani, 2021) has raised some concerns during our
risk of bias assessment and is worth mentioning, as its weight skewed the results. This is
due to the fact that it failed to completely adhere to its design, as 9% of the patients did not
receive the allocated intervention (plasma infusion). While this raises questions about the
robustness of the results, the aforementioned population percentage was excluded from
the comparison analysis between the convalescent plasma group and the control group.

Despite the aforementioned notable limitations, the present work possesses a plethora
of important strengths. Overall heterogeneity was low and not significant both in the
28-day (I2 = 0.0%, p = 0.709) and 14-day (I2 = 15.2%, p = 0.311) cohorts. In the statistically
significant ICU-related European subgroup, heterogeneity was also low and not significant
(I2 = 0.0%, p = 0.897). Overall heterogeneity was 49.8% for the hospitalization outcomes
subanalysis, but it was marginally not statistically significant (p = 0.076). While region, sex,
age, time from symptom onset to intervention and total convalescent plasma dose can be
considerable sources of heterogeneity, subgroup analyses and meta-regression showed no
statistically significant association between them and treatment effectiveness. The extensive
abstraction and analysis of separate and discrete clinical outcomes and thorough risk of bias
assessment are also parts of this study’s strengths. Contrary to other meta-analyses [50–52],
our work focuses strictly on randomized controlled trials, thus lying in the highest part of
the hierarchy of evidence pyramid.

Moreover, screening was extensive and detailed, pairing information from each trial ar-
ticle and its official registry page. This led to avoiding errors such as misclassifying [50–52]
the article record by Rasheed et al. [53] as an RCT, when it was a control-matched co-
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hort study. Furthermore, thorough auditing led to excluding two trials, which were
retracted/edited as far as their patient allocation method was concerned.

When comparing our work to others, the results for overall mortality (a commonly
reported primary outcome) are similar. Axfors et al. conducted a systematic review and
meta-analysis on 33 published and unpublished trial papers and showed a non-statistically
significant association as well [54]. Other published meta-analyses were comprised of
considerably fewer studies, such as the study by Piscova et al. [50] with five trials and
m, the analysis by Snow et al. [51] with seventeen trials and the study by Janiaud et al.
including ten trials [55]. The meta-analysis by Kloypan et al. [52] showed a statistically
significant association between convalescent plasma therapy and overall mortality but
it was subject to notable limitations. The primary outcome of all-cause mortality at any
given time point included nonrandomized trials and observational studies, whereas the
Rasheed trial was misclassified. Another difference lies in our secondary outcomes analysis,
where the aforementioned systematic reviews and meta-analyses failed to yield statistically
significant results. This can be attributed to the big pool of studies (and thus variety and
data available), outcome assessment and categorization and extensive subgroup analyses.

Finally, subgroup analyses on immunocompromised patients were not feasible due to
the scarcity of available data from randomized studies in the field. A recently published
randomized controlled trial by Dekinger et al. [49] evaluated the role of convalescent
plasma in a subgroup of 56 patients with hematological or solid cancer and severe COVID-
19. The administration of convalescent plasma significantly improved survival and reduced
the time to clinical improvement. Patients with cancer under active treatment present
attenuated humoral responses to COVID-19 vaccination, and thus they are at high risk for
severe SARS-CoV-2 infection [56–59]. Other trials on vulnerable populations for severe
COVID-19-related outcomes showed signs of benefits with [35] or without statistically
significant results [30,33]. A recent systematic review and meta-analysis including trials,
cohort studies, case series and case reports found that convalescent plasma therapy was
associated with a mortality benefit in patients who were immunocompromised and were
diagnosed with COVID-19 [60,61].

5. Conclusions

Convalescent plasma treatment was not associated with a statistically significant re-
duced risk of overall 28-day or 14-mortality or any other clinical outcome. It was associated,
though, with a statistically significant beneficial effect on 28-day ICU-related outcomes
in the European study cohort and 28-day hospitalization. The aforementioned evidence
hints against the use of convalescent plasma for the treatment of COVID-19 in the general
population, but it highlights potential clinical benefits when studying subpopulations (e.g.,
European ICU cohorts, outpatients). As such, further study on specific subpopulations and
outcomes could establish consensus on determining the clinical benefits of convalescent
plasma therapy.
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Abstract: Objectives: The objective of this prospective study was to investigate the role of adaptive
immunity in response to SARS-CoV-2 vaccines. Design and Methods: A cohort of 677 vaccinated
individuals participated in a comprehensive survey of their vaccination status and associated side
effects, and donated blood to evaluate their adaptive immune responses by neutralizing antibody
(NAb) and T cell responses. The cohort then completed a follow-up survey to investigate the
occurrence of breakthrough infections. Results: NAb levels were the highest in participants vaccinated
with Moderna, followed by Pfizer and Johnson & Johnson. NAb levels decreased with time after
vaccination with Pfizer and Johnson & Johnson. T cell responses showed no significant difference
among the different vaccines and remained stable up to 10 months after the study period for all
vaccine types. In multivariate analyses, NAb responses (<95 U/mL) predicted breakthrough infection,
whereas previous infection, the type of vaccine, and T cell responses did not. T cell responses to
viral epitopes (<0.120 IU/mL) showed a significant association with the self-reported severity of
COVID-19 disease. Conclusion: This study provides evidence that NAb responses to SARS-CoV-2
vaccination correlate with protection against infection, whereas the T cell memory responses may
contribute to protection against severe disease but not against infection.

Keywords: COVID-19; SARS-CoV-2; vaccine; T cell response; neutralizing antibody; breakthrough infection
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1. Introduction

The COVID-19 pandemic has affected every facet of life across the globe for more than
two years. As vaccines become more readily available and vaccination rates improve, both
public and scientific communities are eager to learn more about the effectiveness of the
various vaccines as objectively measured through humoral and cellular immune responses.

Long-term immunological memory to SARS-CoV-2 vaccines is crucial for the develop-
ment of population-level immunity. Previous reports on the rapid waning of SARS-CoV-2
antibody levels and the loss of neutralizing capacity against the Delta, Omicron, and other
Variants of Concern (VoC) [1,2], as well as the occurrence of minimally to moderately
affected vaccine efficacy, have led to questions regarding the efficacy of humoral immu-
nity post natural infection and vaccination [3]. In contrast, functional T cell responses in
both frequency and intensity remained robust after one year post natural infection, and
at least six months post vaccination [4,5]. SARS-CoV-specific T cells were still detectable
17 years after infection [6]. T cell-mediated immunity is thought to play a critical role in
the immune response to SARS-CoV-2 infection, in preventing severe disease after natural
infection. However, it is difficult to decipher the level of humoral and cellular immune
responses required to protect against infection or severe disease [7]. Despite the reports
of largely preserved vaccine-induced T cell response against VoCs [1,2] and minimally to
moderately affected vaccine efficacy against VoCs in protecting individuals from severe
disease, hospitalization, and death [8–10], the impact of T cell responses against various
SARS-CoV-2 outcomes, such as breakthrough infection and severe disease, in vaccinated
populations is currently unknown [7].

While many studies have investigated the durability of immune responses to SARS-
CoV-2 vaccines, to our knowledge, studies that include large, diverse populations with
various vaccines administered for evaluations of both humoral and cellular immune cor-
relates of protection have not been conducted. The objective of this prospective study
was to investigate whether neutralizing antibody (NAb) and T cell responses induced by
different, widely used SARS-CoV-2 vaccines are durable and protective in a large, diverse
cohort, as well as to illustrate the utility of NAb and T cell responses in protecting against
SARS-CoV-2 infection and severe disease.

2. Methods
2.1. Study Design

This study was organized by the American Association for Clinical Chemistry (AACC)
and included an online survey available between 9 September and 20 October 2021, as well
as an onsite blood sample collection from 27 to 30 September 2021, during the AACC annual
scientific meeting. AACC members were informed via email and/or social media about
the study enrollment. The survey was designed to gather information from laboratory
professionals about COVID-19 vaccination and its side effects, and these findings were
recently published [11]. A follow-up survey (Supplementary Table S1) was sent to partici-
pants four months after the blood collection that took place from 9 to 23 February 2022, in
order to gather information on breakthrough infection [12]. The study was approved by
the University of Maryland Institutional Review Board and informed consent was obtained
for participants.
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2.2. Inclusion and Exclusion Criteria

AACC members and conference attendees were invited to participate [11]. The only
exclusion criteria were age (<18 years) and pregnancy. Due to the heterogeneity and
relatively small sample size, participants who received other or unknown vaccine types
and those that had both a previous infection and a booster were not included in the analysis.
There were 677 subjects included in the analysis dataset (Figure 1).
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Figure 1. Consort chart for the subjects who had blood collected in September 2021. Breakthrough
infections are defined as a follow-up positive COVID test reported in February 2022. Breakthrough
infections and their severities are separated into those who had a previous COVID infection, and
those who were infection-naïve at the time of blood draw.

2.3. Specimen Collection and Storage

Venous blood was collected into a serum separator tube (BD 368774), fully clot-
ted, and then centrifuged (1500× g for 15 min at room temperature) within two hours
of collection. Serum samples were aliquoted, stored at 4 ◦C at the sample collection
site, and then transported to the Centers for Disease Control and Prevention (CDC)
within four hours for aliquoting on TECAN (Mannedorf, Switzerland). The samples were
stored in 350 µL aliquots at −80 ◦C until analysis (Eppendorf CryoStorage Vials, 0.5 mL,
Mfr. No. 0030079400). Whole blood was collected into a lithium–heparin tube and stored
at 4 ◦C for up to eight hours prior to overnight shipment to the testing clinical laboratory
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(Quest Diagnostics, Secaucus, NJ, USA) for the T cell immunity analysis, according to the
manufacturer’s guidelines [13,14]. The testing was performed at time points consistent
with the samples’ collection time points across the three-day sample collection period.

2.4. Laboratory Analysis
2.4.1. Anti-SARS-CoV-2 Nucleocapsid (Anti-N) Antibody Assay

The Platelia SARS-CoV-2 Total Ab Enzyme-Linked Immunosorbent Assay (ELISA)
assay (Bio-Rad Laboratories, Hercules, CA, USA) is a one-step antigen (Ag)-capture format
ELISA, used for the qualitative detection of total anti-N antibodies (IgM/IgG/IgA) in
human serum or plasma specimens. This assay received the FDA’s Emergency Use Autho-
rization (EUA) [15]. The assay was performed according to the manufacturer’s instructions
at a clinical laboratory at the University of Maryland.

2.4.2. SARS-CoV-2 NAb Assay

Semi-quantitative detection of SARS-CoV-2 total NAb was performed using the Gen-
Script cPass SARS-CoV-2 Neutralization Antibody Detection Kit (GenScript, Piscataway,
NJ, USA), which is a functional ELISA kit that received the FDA’s EUA [16]. The assay was
performed according to the manufacturer’s instructions at Quest Diagnostics (Chantilly,
VA, USA). The cutoff value for the cPass SARS-CoV-2 NAb Detection Kit is 47 Units/mL
(30% signal inhibition). The test was calibrated for the semi-quantitative detection of
anti-SARS-CoV-2 NAb by using the SARS-CoV-2 NAb Calibrator (GenScript, Piscataway,
NJ, USA).

2.4.3. QuantiFERON SARS-CoV-2 Assay

The QuantiFERON 2 plate ELISA kit (Qiagen, Hilden, Germany) was used on a Dynex
Agility (Dynex Technologies Inc., Chantilly, VA, USA) at Quest Diagnostics (Chantilly,
VA, USA). Since this assay was allowed for research use only at the time of analysis, the
laboratory performed an internal validation (Supplemental documents). The Limit of de-
tection (LOD) and Limit of quantitation were established as 0.038 IU/mL and 0.061 IU/mL
interferon-gamma (INF-γ), respectively. The LOD was applied as the cutoff value for a
positive response.

The sample tubes were incubated at 36–38 ◦C for 16–24 h and centrifuged for 15 min at
2000–3000× g. The steps included the transfer of samples to the QuantiFERON SARS-CoV-2
Starter Set Blood Collection Tubes (QFN SARS-CoV-2 BCTs, consisting of SARS-CoV-2 Ag1
and SARS-CoV-2 Ag2 tubes), the QuantiFERON SARS-CoV-2 Extended Set BCTs (QFN
SARS-CoV-2 Extended Set BCT, consisting of SARS-CoV-2 Ag3 tubes), and the QuantiF-
ERON Control Set BCTs (Qiagen, Hilden, Germany), according to the manufacturer’s
guidelines [13] and as described previously [17]. Following ELISA, background INF-γ
levels were subtracted to obtain quantitative results (INF-γ in IU/mL) for analysis. Further
details are supplied in the Supplemental Materials.

2.5. Data Analysis

Basic demographic information was compared using descriptive statistics. Previous
positive COVID-19 cases were defined based on self-reported positive PCR/Ag tests
and/or a positive Platelia SARS-CoV-2 Total Ab ELISA assay (Anti-N antibody assay).
Comparisons were made using the Kruskal–Wallis rank sum ANOVA (for continuous data)
or Chi-squared tests (for categorical data). With 677 subjects, there was 80% power to
compare differences of at least a 0.15 effect size (small–moderate) between vaccine types,
boosters, and previous infections.

Linear models were fit, expressing the change in log biomarker values over months
since the last dose. Estimates of the change in log biomarker values from the reference
(two to four months since last dose) and their significance are reported. Univariate models
include only time, since the vaccine dose and multivariate models also include sex, age,
and the number of self-reported preexisting conditions as covariates, along with the other
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multivariate models below. Excluding those boosted or with previous infections, there
were 533 remaining subjects, which provides 80% power to detect changes in biomarker
values over time that explain at least 3.5% of the variability (small effect size).

Breakthrough infection and its severity was self-reported in the follow-up survey.
Comparisons of biomarker levels were made between subjects with different breakthrough
infection severities using a one-way ANOVA. The mean biomarker levels for each severity
group are reported with univariate and multivariate p-value testing for differences; mul-
tivariate models include age, sex, time from vaccination to blood being drawn, previous
infection status before blood being drawn, and time after blood being drawn to break-
through infection. The threshold for statistical significance was α = 0.05. Logistic regression
was fit to predict the appearance of breakthrough infections and, separately, the severity
of symptoms from vaccine type or biomarker assays. The prediction thresholds for the
biomarker assays were either based on the LOD of the assay or were data-driven. For the
data-driven approach, the thresholds were chosen by fitting a receiver operating charac-
teristic (ROC) curve to the assay, to determine the optimal discriminator between those
who had breakthrough infections in the follow-up period and between different symptom
severity groups. We report the adjusted odds ratios between the two groups, in terms
of the chance of each outcome and its significance, for both univariate and multivariate
models; multivariate models include age, sex, time from vaccine to blood being drawn,
previous infection status before blood being drawn, and time after blood being drawn
to breakthrough infection. The 449 subjects who provided survey responses regarding
breakthrough infections yielded 80% power to detect changes of at least 1.8 times the odds
ratio (small effect size). To compare symptom severity, there were 87 positive cases, which
provides 80% power to detect differences in severity of symptoms of at least six times the
odds (large effect size).

3. Results
3.1. Participant Demographics and Characterization

Of the 698 people who participated in the on-site study, 677 were fully vaccinated
and had completed the survey questionnaire at the time of sample collection. Among the
677 individuals, 564 indicated no previous infection (Pfizer, n = 314; Moderna, n = 181;
Johnson & Johnson (J&J), n = 38; and booster, n = 31) and 113 reported a previous infection
(Table 1). The 31 subjects that had received a booster at the time of sample collection
collectively received 28 Pfizer–BioNTech (25 homologous and 3 heterologous), 2 Mod-
erna (homologous), and 1 J&J (heterologous) booster doses. The previous infection group
included 46 subjects that were positive for anti-N antibodies, and 52 subjects that were
negative for anti-N antibodies; anti-N testing was not performed on the remaining 15 par-
ticipants (Supplementary Table S2). The group with self-reported previous infection or
positive anti-N response was not separated by vaccine type. There was no observable
significant difference based on sex, age, race, or ethnicity among the five different groups
(Table 1).
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3.2. Follow-Up Survey

Sixty-six percent (449/677) of the fully vaccinated individuals (two-doses of a primary-
series COVID-19 vaccine, or one dose of a single-dose, primary-series COVID-19 vaccine
approved or authorized for use in the United States) participated in the follow-up February
2022 survey, of which, 66.1% (373/564) of participants in the infection-naïve group and
67.3% (76/113) of participants with previous infections completed the follow-up survey
(Figure 1). In the follow-up survey, participants were asked if they tested positive after
the blood draw; 18.0% (67/373) in the naïve group and 26.3% (20/76) in the previously
infected group reported having breakthrough infections (positive Ag or PCR test). There
was no significant difference in the rate of breakthrough infections between those who
were infection-naïve vaccinated or previously infected and those who were vaccinated at
the blood draw (p = 0.129). Among the breakthrough infections, 28.4%, 58.2%, and 13.4%
(19, 39, and 9 out of 67) in the infection-naïve vaccinated group and 35.0%, 60.0% and 5.0%
(7, 12, and 1 out of 20) in the previously infected and vaccinated group reported having
infections with symptoms that caused no, mild/moderate, and severe limitations, respec-
tively (Figure 1). The severity of the symptoms was based on definitions from the CDC
(Vaccine Adverse Event Reporting System (VAERS), VAERS | Vaccine Safety | CDC) [18].
There was no significant difference in the severity of breakthrough infections between
those who were infection-naïve and vaccinated or those who were previously infected and
vaccinated at the blood draw (p = 0.552).

3.3. Post-Vaccination NAb and T Cell Responses at the Time of Sample Collection

NAb and T cell response were evaluated in the infection-naïve participants. Due to
the small number of participants who had received a vaccine booster at that time (Table 1),
they were not included in the analyses. In participants who were infection-naïve at the
time of blood draw, 531 (99.6%) and 527 (98.7%) samples were measured for NAb and
T cell responses, respectively. There was a poor correlation (r = 0.19–0.22) between T cell
and NAb responses. Two to four months since the last dose of vaccination (PLDV) was
used as a reference time window, due to the small number of individuals in the zero to
two month window. At two to four months PLDV, levels of the measured assays were not
significantly different in between individuals who received Pfizer and Moderna (p = 0.557,
0.342, 0.255, 0.199, 0.159 for the five different measures). However, those who received
the J&J vaccine had significantly lower NAb levels (p < 0.001) (Supplementary Table S4).
Compared to two to four months PLDV, log NAb levels were significantly decreased over
time in participants after receiving Pfizer, and were moderately decreased after receiving
J&J, but not after Moderna (Figure 2 and Supplementary Table S3). In contrast, the T cell
responses to Ag1, Ag2, Ag3, and the sum of Ag 1–3 were not significantly different up to
10 months PLDV between Pfizer, Moderna, and J&J vaccines, except for sum of Ag 1–3
and Ag3, which were significantly higher at zero to two months PLDV compared to two to
four months PLDV for Pfizer and/or J&J (p < 0.05). There was no significant difference for
either the sum of Ag 1–3 or Ag3 after two to four months PLDV during the study period
(Figure 2 and Supplementary Table S3). Similar results were also observed in multivariate
models adjusted for sex, age, and the number of self-reported pre-existing conditions
(Supplementary Table S3). In the models used to assess NAb responses, age is associated
with a significant decrease in response (p < 0.001), while age is not a significant predictor of
the T cell responses to Ag 1–3 (p = 0.255) (Supplementary Figure S1).
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Figure 2. Distributions for T cell and NAb responses in participants receiving different SARS-CoV-2
vaccines. Each box shows the IQR with the median as the interior bar; the outer bars stretch out to the
minimum and maximum, with the exception that points outside the fence are shown as individual
circles. P: Pfizer; M: Moderna; J: Johnson & Johnson; I: previous infection or positive anti-N; T1:
0–2 months; T2: 2–4 months; T3: 4–6 months; T4: 6–8 months; T5: 8–10.5 months. Numbers indicated
the time period indicators (e.g., T1–T5) are the number of participants for that group.

3.4. NAb and T Cell Responses and Breakthrough Infection

Among the participants (n = 449) who answered the follow up survey questions,
19.4% (87/449) reported breakthrough infections with positive Ag or PCR tests. All of
these individuals were vaccinated, but most (430/449) had only completed the primary
vaccination series without booster shots at the time of blood draw.

T cell and Nab responses were evaluated between participants with or without break-
through infection via univariate and multivariate analysis. No significant differences
were detected between the two groups for these two assays (Table 2). Furthermore, no
significant differences in these assays were observed comparing participants with break-
through infections having different severity of symptoms (no, mild/moderate, severe)
(Table 2, Supplementary Figure S2).
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Logistic regression was fit to predict the breakthrough infections and severity of
symptoms. In the univariate model, those with NAb < 95 U/mL had 78% (p = 0.020) higher
odds of having breakthrough infections at the time of the follow-up survey. Participants
with T cell responses to Ag2 > 0.120 IU/mL had 13% (p = 0.045) lower odds of having severe
limitations if they contracted a COVID-19 breakthrough infection at the time of the follow-
up survey (Table 3). There was no significant difference in the prediction of breakthrough
infections based on T cell responses. Likewise, there were no significant differences in the
prediction of breakthrough infection severity based on NAb, T cell responses to Ag1, Ag3
or sum Ag1–3. The above findings were also confirmed using the multivariate models
(Table 3). Furthermore, in the multivariate model, participants with T cell responses to
Ag2 > 0.120 IU/mL had 31% higher odds of having mild-moderate limitations (p = 0.022).

Table 3. Risk of breakthrough infections using thresholds chosen based on ROC analysis.

Univariate

COVID-19 n NAb (>95 U/mL) sum Ag
(>0.385 IU/mL)

Ag1
(>0.435 IU/mL)

Ag2
(>0.120 IU/mL)

Ag3
(>0.055 IU/mL)

No breakthrough 362 1.78 0.88 1.15 0.89 1.22

No limitations 26 1.07 0.95 0.84 0.93 0.90

Mild-moderate
limitations 51 1.03 1.15 1.04 1.23 1.22

Severe limitations 10 0.91 0.92 1.14 0.87 0.91

Hospitalizations 0 - - - - -

Multivariate

COVID-19 n NAb (>95 U/mL) sum
Ag (>0.385 IU/mL)

Ag1
(>0.435 IU/mL)

Ag2
(>0.120 IU/mL)

Ag3
(>0.055 IU/mL)

No breakthrough 362 1.95 0.91 1.21 0.92 1.27

No limitations 26 1.04 0.91 0.85 0.90 0.88

Mild-moderate
limitations 51 1.08 1.23 1.03 1.31 1.28

Severe limitations 10 0.90 0.89 1.14 0.85 0.89

Hospitalizations 0 - - - - -

Multivariate models also adjust for age, sex, time since last vaccine of blood draw, previous infection status at
blood draw, and time between blood draw and infection. Values are (adjusted) odds ratios for the event in the
second column. Significant changes from the reference time are in bold with p < 0.05.

In both the univariate and multivariate models, no statistically significant differences
were observed between the odds of breakthrough infection or infection severity when the
LOD of each assay was used as the threshold for the prediction model (Supplementary Table
S5). No statistically significant differences were observed between the odds of breakthrough
infection or infection severity when comparing different vaccines (Supplementary Table S5).
The risk of breakthrough infections, based on the status of self-reported previous infections
and/or positive anti-N results, was also analyzed. In univariate models, participants
with negative anti-N results had 57% (p = 0.031) lower odds of having a breakthrough
infection. However, self-reported previous infection alone or combined with anti-N were
not significant predictors of breakthrough and the multivariate models did not confirm the
significant finding about anti-N.

4. Discussion

The AACC 2021 Annual Scientific Meeting & Clinical Lab Expo in September provided
a useful opportunity to examine post-vaccine SARS-CoV-2 immune responses in a large
cohort of volunteers that were diverse in areas such as their age, gender, race, ethnicity,
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vaccine types administered, and geography [11]. In this prospective study, we demonstrated
that T cell responses to SARS-CoV-2 were uniformly durable up to 10 months during the
study period, whereas the durability of NAb responses varied according to vaccine type.
NAb responses to SARS-CoV-2 vaccination correlated with protection, and T cell memory
responses may contribute to the protection against severe disease, but not against infection.

Most of the previous studies and vaccine design/development strategies focused on
maximizing the SARS-CoV-2 vaccine-induced humoral responses, particularly NAb [19].
The evidence for a protective role of NAb in SARS-CoV-2 infection includes preclinical
animal models, passive immunization, first with convalescent patient sera and then with
therapeutic monoclonal antibody preparations [20,21], and, finally, population studies on
patients who have recovered from infection, or vaccination studies [19,22]. The lack of
standardization of NAb assays, however, makes the comparison of these studies difficult
and there is no consensus on the protective neutralization level against COVID-19 [19]. In
addition, the decline in NAb levels raises concerns about the long-term effectiveness of
SARS-CoV-2 vaccination.

T cell-mediated immunity may be just as important in the long-lasting immune re-
sponse to SARS-CoV-2 infection and vaccination as humoral responses. Virus-specific
T cells were shown to be correlates of protective immunity against respiratory viruses such
as the cause of the 2009 pandemic, H1N1 influenza [23]. T cell-mediated immunity also
plays a role in the immune response to SARS-CoV-2 infection in preventing severe disease
after natural infection [7]. In patients with humoral immune deficiency due to either genetic
disease or undergoing B cell-depleting therapies, the value of T cell-mediated immunity
is also clearly demonstrated [24,25]. T cell responses in resolving primary SARS-CoV-2
infection are also shown in experimental animal (mouse and macaque) infection mod-
els [20]. However, the contribution of T cells is difficult to analyze for both practical and
conceptual reasons. First, there is no single way to measure T cell responses [7]. Second, on
the practical side, most T cell assays require live cells, which often necessitates the isolation
and storage of cells. Peripheral blood mononuclear cell isolation and cryopreservation
introduces additional complexity and variability to the results. Because of these challenges,
most large studies have omitted T cell testing, or it has been undertaken on only a small
subset of samples. We utilized a recently available whole-blood interferon (IFN)-γ release
assay for SARS-CoV-2, and evaluated a large cohort of participants.

Our results confirmed previous findings [8,23,26–28] that the level of NAb gradually
declines after vaccination (especially after Pfizer), whereas T cell responses were sustained
up to 10–12 months post-vaccination for the three vaccine types. We also confirmed that
NAb responses correlated with protection against infection but not disease severity. We also
demonstrated that the T cell immunity responses did not predict breakthrough infection,
but T cell responses to Ag2 indicated significant protection against self-reported severe
COVID-19 disease. Protection against severe disease can only be detected using stimulants
in QFN SARS-CoV-2 Ag2, but not Ag1 and 3. The Ag1 tube contains CD4+ T cell epitopes
derived from the S1 subunit of the Spike protein, whereas the Ag2 tube contains both
CD4+ and CD8+ T cell epitopes from the S1 and S2 subunits of the Spike protein. The Ag3
tube consists of CD4+ and CD8+ T cell epitopes from S1 and S2, plus immunodominant
CD8+ T cell epitopes derived from whole genome. Although the exact composition of
antigenic peptides is not available from the manufacturer, the main difference between Ag1
and 2 is the inclusion of CD8 epitopes, suggesting that detecting CD8 responses is the critical
distinction. Developing a NAb response requires coordinated T and B cell responses. Helper
CD4+ T cell responses are required for most NAb responses, therefore, NAb responses
may partially indicate proper CD4 responses (“CD4 T helper” responses), but the cytotoxic
CD8+ responses must be directly tested. Our results suggest that measuring these CD8
responses provides additional predictive information regarding disease severity. This
finding is supported by experimental studies in macaques [29].

Translating these population-level risks to individual patients will remain challenging,
however, as the outcome of SARS-CoV-2 infection depends on numerous individual host
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and pathogen variables. Viral variants are clearly critical, as was demonstrated by the
emergence of Delta, Omicron, and other forms of SARS-CoV-2 that are different from the
original strain. Although the T cell assay in the present study utilized the specific Ags
derived from the full genome of the ancestral SARS-CoV-2 virus, but not of the VoCs,
unlike serological response (and assays), the T cell responses are inherently resistant to viral
mutations [3]. Accordingly, while mutations that escape antibody binding have commonly
been documented for respiratory viruses such as influenza, and now for SARS-CoV-2,
complete immune escape at the level of T cell responses has not been reported, to our
knowledge, for any human acute respiratory infection. An additional feature of T cell
biology is that whereas circulating preformed antibodies can directly and immediately bind
to the virus for neutralization, T cell activation requires the processing of endogenously
synthesized viral proteins, presented by the HLA molecules. This suggests that T cells
may not prevent infection but may play a pivotal role in reducing viral load and lowering
pathogenicity by eliminating the infected cells. Previous studies have shown that the
majority of T cell responses are preserved against VoCs, suggesting that memory T cells
may play a critical role against infection in light of the considerable escape of Omicron
from NAb. It is congruent with our findings that T cell responses were associated with,
and could predict the risk of, severe breakthrough infection, but not the prevention of the
breakthrough infection. Studying whether SARS-CoV-2-specific T cell responses are more
relevant to protection against or the prevention of severe diseases will provide important
insights for creating better correlative studies investigating vaccine effectiveness, as well as
will help define future vaccine strategies [7].

Our study has several limitations. First, the study only involved a single time point
of sample collection, and the time of blood collection was not coordinated with the time
of vaccination. However, the large sample size gave enough statistical power to perform
longitudinal and multivariate analyses. Second, studying disease severity in contrast
to infection rate requires a larger sample size [7] due to the low proportion of severe
diseases. None of the study participants who reported a breakthrough infection required
hospitalization. Third, the SARS-CoV-2 variant information of the breakthrough infection
was not determined. However, since the breakthrough infections in our participants
occurred during the time period of 9–23 February 2022, we speculate that the majority of
those infections were caused by the Delta and Omicron variants [30]. Fourth, the assays
used in this study targeted the original SARS-CoV-2 but not VoCs. Targeted assays may
produce more specific results, garnering better associations with the clinical outcomes. In
this study, the assays used tested stimulation-based responses rather than in vivo responses.
Fifth, the definitions of breakthrough infection and limitations were self-reported in the
follow-up survey, which could be subjective. Sixth, NAb responses were measured using
a surrogate neutralization assay, and only measured the NAb binding to RBD; therefore,
the breadth of responses was not measured. Finally, the anti-N serological responses
may decline as well after natural infection, potentially decreasing the overlap between
self-reported results and serological testing.

Despite its limitations, our study proposes laboratory correlates for breakthrough
infection and self-reported disease severity after SARS-CoV-2 vaccination. We showed that
NAb responses can serve as predictors of breakthrough infection, whereas the T cell assay
may aid in the prediction of breakthrough disease severity after SARS-CoV-2 vaccination.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15030709/s1, Table S1: Participants who reported previous
infection and/or anti-N positive; Table S2: Change in log-Biomarker over time for each vaccine
type for individuals who are infection naïve and not boosted; Table S3: Change in log-Biomarker
at 2–4 months after complete vaccination between vaccine types for individuals who are infection
naïve and not boosted; Table S4: Risk of breakthrough infections by vaccine type or with positive
(measured above LOD) test reported; Table S5: Risk of breakthrough infections based on the status
of self-reported previous infection (A) and/or positive anti-N results (B); Figure S1: Marginal effect
of age on NAb responses and sum of T cell responses to Antigen 1-3; Figure S2: T Cell responses or
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levels of NAb levels in those with breakthrough infections versus months after blood draw when
breakthrough infected.
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Abstract: In patients with multiple myeloma (MM), SARS-CoV-2 infection has been associated with
a severe clinical course and high mortality rates due to the concomitant disease- and treatment-
related immunosuppression. Specific antiviral treatment involves viral replication control with
monoclonal antibodies and antivirals, including molnupiravir and the ritonavir-boosted nirmatrelvir.
This prospective study investigated the effect of these two agents on SARS-CoV-2 infection severity
and mortality in patients with MM. Patients received either ritonavir-nirmatrelvir or molnupiravir.
Baseline demographic and clinical characteristics, as well as levels of neutralizing antibodies (NAbs),
were compared. A total of 139 patients was treated with ritonavir-nirmatrelvir while the remaining
30 patients were treated with molnupiravir. In total, 149 patients (88.2%) had a mild infection,
15 (8.9%) had a moderate infection, and five (3%) had severe COVID-19. No differences in the
severity of COVID-19-related outcomes were observed between the two antivirals. Patients with
severe disease had lower neutralizing antibody levels before the COVID-19 infection compared to
patients with mild disease (p = 0.04). Regarding treatment, it was observed that patients receiving
belantamab mafodotin had a higher risk of severe COVID-19 (p < 0.001) in the univariate analysis. In
conclusion, ritonavir-nirmatrelvir and molnupiravirmay prevent severe disease in MM patients with
SARS-CoV-2 infection. This prospective study indicated the comparable effects of the two treatment
options, providing an insight for further research in preventing severe COVID-19 in patients with
hematologic malignancies.

Keywords: multiple myeloma; molnupiravir; ritonavir-nirmatrelvir; SARS-CoV-2; belantamab mafodotin

1. Introduction

Severe SARS-CoV-2 infection (Coronavirus disease 2019, COVID-19) is characterized
by an initial viral phase, often followed by a severe inflammatory phase. In patients with
MM, SARS-CoV-2 infection has been associated with a severe clinical course and high mor-
tality rates, due to the concomitant disease- and treatment-related immunosuppression [1].
Furthermore, MM patients respond poorly to vaccination despite adequate immunization,
especially those on treatment with anti-CD38 or anti-BCMA therapies [2–5]. Thus, MM
patients are at a higher risk for breakthrough infection compared with noncancer patients
or patients with solid tumor, and supportive measures along with prophylactic use of
monoclonal antibodies against SARS-CoV-2 are needed [6–8]. At the time of SARS-CoV-2
infection, the use of antiviral therapy may improve patient outcomes [9]. Specific antiviral
treatment involves viral replication control with monoclonal antibodies and antivirals,
including molnupiravir and the ritonavir-boosted nirmatrelvir [10]. Both molnupiravir
and ritonavir/nirmatrelvir have shown to reduce the risk for severe COVID-19, including
hospitalization and/or death, compared with placebo in unvaccinated individuals [11,12].
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More recent data including vaccinated patients with mild COVID-19 support the early ad-
ministration of antivirals for preventing severe outcomes [13]. Although available evidence
supports the use of antivirals in patients with SARS-CoV-2 infection to prevent severe
disease, relevant data on MM patients are scarce. This prospective study investigated
the effect of these two agents on SARS-CoV-2 infection severity and mortality in patients
with MM.

2. Materials and Methods

Consecutive patients with MM and SARS-CoV-2 infection were prospectively enrolled
in the study from February 2022 to October 2022. During this period, the Omicron SARS-
CoV-2 variant, including BA.2, BA.4, BA.5, and BQ.1, was dominant in the country. All
patients had microbiologically confirmed SARS-CoV-2 with polymerase chain reaction
(PCR). The patients received either ritonavir-nirmatrelvir or molnupiravir according to
the national guidelines and the availability of each drug. Treatment with antivirals was
initiated within the first five days from COVID-19 symptoms onset in all patients with no
need of supplemental oxygen. All patients were at high risk for severe COVID-19 due to
the underlying MM. There were no special characteristics determining which drug was
given to each patient. Baseline demographic and clinical characteristics, as well as levels
of neutralizing antibodies (NAbs), were collected and compared. The effect of different
treatments on SARS-CoV-2 infection severity and mortality was examined. The study was
approved by the institutional review board.

Neutralizing antibodies (NAbs) against SARS-CoV-2 were determined using an FDA
approved methodology (enzyme-linked immunosorbent assay, cPass SARS-CoV-2 NAbs
Detection Kit; GenScript, Piscataway, NJ, USA). Anti-SARS-CoV-2 neutralizing antibodies
are of particular importance because they inhibit the binding of the receptor-binding
domain (RBD) of the surface spike (S) protein to the human angiotensin-converting enzyme
2 (ACE2) receptor [14].

Statistical analysis: Frequencies and percentages were used to describe categorical
data, while means and standard deviations were used to describe scale measurements. The
Fisher’s exact test was applied to examine the differences in the outcome based on the
drug [15]. After applying the Shapiro–Wilk criterion for normality assessment, analysis
of variance was applied to examine differences in NAbs count, followed by multiple
comparisons under the Tukey’s HSD criterion. A binary logistic-regression model was
applied to define ORs of the variables examined, instead of a multinomial logistic-regression
model, as the treatment with belantamab was not recorded in patients with a moderate
outcome. The significance level was set at 0.05 in all cases and the analysis was carried out
with the SPSS v 26.0 software.

3. Results

A total of 169 patients infected with SARS-CoV-2 were included. Of those, 74 were
female, the average age was 64.4 years, and the mean body mass index (BMI) was
26.91 kg/m2. Table 1 shows the baseline characteristics of included patients before SARS-
CoV-2 infection. The performance status (PS) is described as the status of symptoms and
functions with respect to ambulatory status and need for care. The majority of the patients
(78.7%) were in PS 0, which indicates normal activity, and the other 21.3% were in PS 1,
which indicates some symptoms but that the patient is still ambulatory. Regarding the
medical history, 14 patients (8.3%) were diagnosed with diabetes mellitus (DM), 71 (42%)
had hypertension, six (3.6%) had coronary artery disease (CAD), and 16 (9.5%) had chronic
obstructive pulmonary disease (COPD).

All patients, except for one, were vaccinated, mostly with the BNT162b2Pfizer/BioNTech
vaccine (96.4%). A total of 153 patients had already received three doses, 7 had received
four doses, and 8 had received two vaccine shots before SARS-CoV-2 diagnosis. The median
time of the last vaccine dose to COVID-19 diagnosis was 6 months (range 1–11 months).
No other pharmacological intervention was adopted as prophylaxis against SARS-CoV-2.
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NAbs levels were not significantly different according to MM stage or line of treatment.
Only patients under anti-BCMA therapy had significantly lower NAbs titers compared to
the others (p < 0.05).

Table 1. Patients’ characteristics before SARS-CoV-2 infection.

Mean SD

Nabs before SARS-CoV-2 infection (%) 65.77 29.19

N
(N = 169) %

Performance Status (PS)
0 133 78.7%

1 36 21.3%

Age

30–50 years 19 11.2%

50–70 years 96 56.8%

>70 years 54 32%

Diagnosis
Multiple Myeloma (MM) 160 94.7%

Smoldering Multiple
Myeloma (SMM) 9 5.3%

Line of therapy in MM (N = 160)

1st 100 62.5%

2nd 36 22.5%

3rd 14 8.8%

4th 7 4.4%

5th 3 1.8%

Regarding treatment for symptomatic MM, several drug combinations were adminis-
tered to patients depending on their medical condition and history of the disease. These
included regimens based on proteasome inhibitors, immunomodulatory drugs, anti-CD38
monoclonal antibodies, anti-BCMA treatments (belantamab mafodotin), and other treat-
ments including selinexor and cyclophosphamide (Table 2). For most of the patients
(n = 100) this was their 1st line of treatment, for 36 it was their 2nd, for 14 their 3rd, for 7
their 4th, and for 3 patients their 5th line of treatment. A total of 138 patients (81.7%) was
receiving dexamethasone as part of their treatment for MM.

Table 2. Patients’ treatment combinations concerning multiple myeloma: Proteasome inhibitor (PI),
immunomodulatory drug (IMiD), SINE (selective inhibitor of nuclear transport).

Regimen N

PI-based regimen 23 (14.4%)

IMiD-based regimen 43 (26.9%)

PI- and IMiD-based regimen 35 (21.9%)

Anti-CD38-based regimen 38 (23.7%)

Anti-BCMA-based regimen 17 (10.6%)

SINE compound based regimen 3 (1.9%)

Other 1 (0.6%)

As far as the administration of SARS-CoV-2 antivirals is concerned, 139 patients
(82.2%) were treated with ritonavir-nirmatrelvir, while the remaining 30 patients (17.8%)
were treated with molnupiravir. The duration of antiviral treatment was equal to five days
in all but three cases. These three patients were hospitalized before the completion of the
antiviral regimen and treatment was interrupted. Antivirals were well tolerated and no
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major adverse events were noted. Diarrhea grade 1 was reported in 10 patients (6%). All 10
patients were receiving ritonavir-nirmatrelvir. Regarding COVID-19 outcomes as defined
by the WHO, 149 (88.2%) patients had mild infection with several signs and symptoms,
such as fever, cough, and headache, but not shortness of breath or dyspnea. Fifteen
(8.9%) patients experienced moderate infection with evidence of lower respiratory disease
during clinical assessment or imaging. Five (3%) patients developed severe COVID-19 and
required oxygen support, with complications such as respiratory failure, acute respiratory
distress syndrome, sepsis and septic shock, thromboembolism, and/or multi-organ failure.

Table 3 shows that severe cases were treated differently, as expected, compared to
mild or moderate cases. An exception was observed regarding the use of corticosteroids for
COVID-19, since it appears that they were given almost equally to patients with moderate
and severe outcomes.

Table 3. Patients’ responses to the treatment for SARS-CoV-2 infection (hospitalized or non-
hospitalized patients).

Outcome

Mild (N = 149) Moderate
(N = 15) Severe (N = 5)

N % N % N %

Hospitalization 0 0% 1 6.7% 5 100%

Intubation 0 0% 0 0% 2 40%

Tocilizumab 0 0% 0 0% 5 100%

Corticosteroids 1 0.7% 13 86.7% 5 100%

Table 4 shows that no differences in the severity of COVID-19 outcomes were observed
between the two antivirals (p = 0.236). COVID-19 infection was resolved in all patients,
except for three fatal cases. No differences were observed in the baseline characteristics
among patients who received molnupiravir and ritonavir-nirmatrelvir.

Table 4. Antiviral drug type and outcome of the SARS-CoV-2 infection (M: molnupiravir, R-N:
ritonavir-nirmatrelvir).

Outcome

Mild Moderate Severe

N % N % N %

Antiviral Drug
M (N = 30) 27 90% 1 3% 2 7%

R-N (N = 139) 122 88% 14 10% 3 2%

Table 5 shows the distribution of gender and myeloma stage according to the outcome
of COVID-19 infection. Gender and myeloma stage according to the revised international
staging system for myeloma (R-ISS) did not seem to differentiate patient outcomes.

As shown in Table 6, no significant differences were observed in the infection outcomes
according to BMI, age, or past medical history defined as the presence of DM, COPD, CAD,
or hypertension.

An initial approach to differences in patient outcomes showed that regarding PS, a
statistically significant difference of mild versus severe cases (p = 0.041) was observed, while
the difference between mild and moderate cases was borderline non-significant (p = 0.052).
A difference between severe and mild cases was observed concerning NAbs response levels
before SARS-CoV-2 infection (Table 7). As shown in Figure 1, patients with severe disease
appeared to have lower NAbs levels before SARS-CoV-2 infection (median time from last
NAbs measurement to infection date: 16 days; range: 8–24 days) compared to patients
with mild disease (median: 18 days; range 4–27 days, p = 0.04). The mean and standard
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deviations for NAbs levels were 67.49% ± 28.85%, 59% ± 24.69% and 35.4% ± 37.57% for
the groups of mild, moderate, and severe outcomes, respectively. Only four patients (2.4%)
had lower than 10% neutralizing antibody levels before COVID-19 diagnosis, and two of
them experienced a severe infection.

Table 5. Distribution of gender and MM stage according to the outcome of COVID-19 infection.

Outcome

Mild Moderate Severe

N % N % N %

Gender

MALES
(N = 95) 82 86.3% 10 10.5% 3 3.2%

FEMALES
(N = 74) 67 90.5% 5 6.8% 2 2.7%

Stage

RISS I
(N = 52) 45 86.5% 6 11.6% 1 1.9%

RISS II (N = 62) 56 90.3% 4 6.5% 2 3.2%

RISS III
(N = 55) 48 87.3% 5 9.1% 2 3.6%

Table 6. Differences in COVID-19 outcomes according to medical history, BMI, and age.

Outcome

Mild Moderate Severe

N % N % N % p

Diabetes
Mellitus 10 6.7% 3 20% 1 20% 0.099

Copd 15 10.1% 1 6.7% 0 0% 0.697

Cad 6 4% 0 0% 0 0% 1.000

Hypertension 63 42.3% 7 46.7% 1 20% 0.593

Mean SD Mean SD Mean SD

Bmi 26.80 4.46 28.27 6.76 25.88 3.36 0.456

Age 64.34 10.60 65.00 9.30 65.00 12.29 0.966
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Table 7. Differences in COVID-19 outcomes depending on performance status, response to treatment
for MM, and NAbs before SARS-CoV-2 infection (SD: stable disease, PR: partial response, VGPR:
very good partial response, CR: complete response, sCR: stringent complete response).

Outcome

Mild Moderate Severe

N % N % N % p

Performance Status
0 122 81.9% 9 60% 2 40%

0.017
1 2 18.1% 6 40% 3 60%

RESPONSE

SD 15 10.5% 5 33.3% 2 40%

0.126
PR 33 23.1% 1 6.7% 0 0%

VGPR 52 36.4% 4 26.7% 2 40%

CR 32 22.4% 3 20% 1 20%

sCR 11 7.7% 2 13.3% 0 0%

Mean SD Mean SD Mean SD

NAbs before COVID (%) 67.49 28.85 59 24.69 35.4 37.57 0.040

Regarding treatments, despite the various drug types included in the study and their
combinations, it was observed that treatment with belantamab mafodotin was associ-
ated with adverse COVID-19 outcomes. A total of 47% of patients receiving belantamab
mafodotin were male, with a median age of 66.2 years, and a median Nab measurement
before the infection of 29.8%. As far as their response to treatment for MM was concerned,
five patients had a partial response to therapy (29.4%), five patients had a very good partial
response (29.4%), and seven patients had a complete response (41.2%). Seven of these
patients received molnupiravir (41.2%) and ten received ritonavir-nirmatrelvir (58.8%). As
shown in Figure 2, there was a significantly higher risk for severe SARS-CoV-2 infection in
patients that received belantamab mafodotin (p < 0.001) according to the Fisher’s exact test.
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4. Discussion

The SARS-CoV-2 pandemic is a major cause of morbidity and mortality worldwide.
Patients with MM are at high risk for severe infection, breakthrough infection, and they
present suboptimal humoral responses to COVID-19 vaccination [16–20]. Unfortunately,
in some patients with cancer, the infection cannot be completely controlled with antiviral
drugs and supportive care, and they ultimately develop severe disease and need hospi-
talization [8]. The majority of immunocompromised patients may not be fully protected
from severe infection after vaccination and the early use of oral antiviral drugs in cases
of infection seems to be effective in preventing severe COVID-19 [3,5,21,22]. The use of
specific antiviral treatment with molnupiravir and ritonavir-boosted nirmatrelvir aims to
reduce the risk of severe infection and hospitalization in patients with MM who undergo
mild SARS-CoV-2 infection and do not require supplemental oxygen [12,23,24]. Molnupi-
ravir is the prodrug of the ribonucleoside analogue β-D-N4-hydroxycytidine inhibiting
the SARS-CoV-2 replication and reducing viral load [23,25–27]. In phase I/II/III studies,
it has shown both safety and efficacy, reducing the risk of hospitalization and mortality
by approximately 50% in non-hospitalized adults with mild-to-moderate SARS-CoV-2
disease who are at risk for poor COVID-19-related outcomes [22]. Ritonavir-nirmatrelvir is
an oral protease inhibitor that has also reduced the risk for hospitalization and death by
approximately 90% in clinical trials [11]. Both molnupiravir and ritonavir-nirmatrelvir are
administrated within the first five days of symptoms [12].

Our analysis included patients with MM who were receiving antimyeloma therapy
and were infected with SARS-CoV-2. Patients with MM have a high risk of severe infection
because of their immunosuppression and their defective response to vaccination [28]. Thus,
the patients were eligible to receive either ritonavir-nirmatrelvir or molnupiravir according
to the national guidelines. We compared the demographic characteristics of the patients,
such as their age, health problems, vaccination status, levels of neutralizing antibodies,
antimyeloma therapies, response to therapy, and the severity of their SARS-CoV-2 infection
as well as their mortality. No significant differences were revealed between the two antiviral
treatment groups in terms of both baseline characteristics and infection outcomes.

No statistically significant difference was observed in the infection outcome regarding
the demographic characteristics of the patients including BMI, age, and past medical
history defined as the presence of DM, COPD, CAD, or hypertension. Regarding PS, a
statistically significant difference of mild cases versus severe cases was observed, while
the difference between mild and moderate cases was borderline non-significant. The PS of
each patient could be affected by age, BMI, comorbidities, antimyeloma therapy, tolerance
to this therapy, and severity of the underlying MM [29]. A longer follow up of our data
would enable the characterization of long-term outcomes related to COVID-19, such as the
persistence of symptoms related to long COVID.

A difference between severe and mild cases was observed concerning NAbs response
levels before SARS-CoV-2 infection. Patients with severe disease had lower neutralizing
antibody levels before SARS-CoV-2 infection compared to patients with mild disease.
Regarding the role of active treatment, it was observed that treatment with belantamab
mafodotin was associated with severe COVID-19 outcomes. Belantamab mafodotin is a
humanized IgG1 k monoclonal antibody against the B-cell maturation antigen (BCMA)
conjugated with a cytotoxic agent, maleimidocaproyl monomethyl auristatin F (mcMMAF).
The antibody–drug conjugate binds to BCMA on myeloma cell surfaces causing cell-cycle
arrest and inducing antibody-dependent cellular cytotoxicity [30,31].

Previous studies have consistently shown that patients with MM who receive anti-
BCMA therapies, including conjugated monoclonal antibodies and bispecific antibodies,
have inferior humoral responses following initial and booster vaccination compared with
other treatment regimens [30–32]. Pertinent data have also shown that treatments with
anti-CD38 monoclonal antibodies or anti-BCMA bispecific T-cell engagers have been associ-
ated with inferior CD4+ T-cell responses against SARS-CoV-2as well [5,33]. These patients
may be more susceptible to SARS-CoV-2 infection and severe COVID-19. However, it
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should be noted that only a few patients were receiving anti-BCMA drugs in our study;
therefore, the significant results of the univariate analysis should be interpreted with cau-
tion. Furthermore, anti-BCMA agents are currently administered in the relapsed/refractory
disease setting. The degree of immune dysfunction probably increases with multiple lines
of treatment due to exposure to different drug classes and myeloma burden. A larger
study sample would be required to perform a robust multivariate analysis and control for
potential confounders.

Lasagna et al. collected data from patients with solid tumors on active treatment and
examined the effectiveness of oral antivirals in preventing severe SARS-CoV-2 infection
and mortality. The majority of treated patients showed a reduction in the duration of
symptoms and only one patient required hospitalization. This study confirmed the efficacy
of oral antivirals in patients with solid tumors who receive antineoplastic therapy and
underlined the need for the early management of patients with cancer who are infected
with SARS-CoV-2, in order to avoid both hospitalization and death [6].

Real-world data are important to evaluate both the effectiveness and safety of COVID-
19 antivirals in patients with cancer [8]. These data suggest that outpatient therapies
for mild SARS-CoV-2 infection may reduce the duration of symptoms, and the risk of
hospitalization and morbidity. It seems that the main benefit of the early use of antivirals
lies in the prevention of severe infection that requires hospitalization. Our data suggest that
the effect of antivirals may be limited when a patient develops severe infection. However,
a main limitation of this study pertains to the absence of a placebo or a non-treatment
group of patients with myeloma and COVID-19. Therefore, we were not able to precisely
determine the benefit of antivirals administration compared to supportive care alone.
Furthermore, our study was not randomized in order to minimize any potential bias in
the comparisons between the two antivirals. The outcomes may vary depending on the
availability of other supportive care, which could be a major factor in determining patients’
disease course. The dominant SARS-CoV-2 variants in the community may also differentiate
patient outcomes. During the study period, the Omicron strain prevailed, which has been
associated with less severe disease compared to previous strains. A longitudinal analysis
during different SARS-CoV-2 waves, including control groups, would be necessary to reach
firm conclusions about the precise benefit of antivirals. Although the study sample size
was small, our study provides useful real-world data that may be used as a basis for the
design of larger randomized studies in the field.

In conclusion, ritonavir-nirmatrelvir and molnupiravir may be beneficial in preventing
severe disease from SARS-CoV-2 infection in MM patients who are under anti-myeloma
treatment. This prospective study indicated the comparable effects of the two treatment
options, providing an important background for further research.
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Abstract: Infectious diseases such as SARS-CoV-2 pose a considerable threat to public health. Con-
structing a reliable mathematical model helps us quantitatively explain the kinetic characteristics of
antibody-virus interactions. A novel and robust model is developed to integrate antibody dynamics
with virus dynamics based on a comprehensive understanding of immunology principles. This
model explicitly formulizes the pernicious effect of the antibody, together with a positive feedback
stimulation of the virus–antibody complex on the antibody regeneration. Besides providing quan-
titative insights into antibody and virus dynamics, it demonstrates good adaptivity in recapturing
the virus-antibody interaction. It is proposed that the environmental antigenic substances help
maintain the memory cell level and the corresponding neutralizing antibodies secreted by those
memory cells. A broader application is also visualized in predicting the antibody protection time
caused by a natural infection. Suitable binding antibodies and the presence of massive environ-
mental antigenic substances would prolong the protection time against breakthrough infection. The
model also displays excellent fitness and provides good explanations for antibody selection, antibody
interference, and self-reinfection. It helps elucidate how our immune system efficiently develops
neutralizing antibodies with good binding kinetics. It provides a reasonable explanation for the lower
SARS-CoV-2 mortality in the population that was vaccinated with other vaccines. It is inferred that
the best strategy for prolonging the vaccine protection time is not repeated inoculation but a directed
induction of fast-binding antibodies. Eventually, this model will inform the future construction of an
optimal mathematical model and help us fight against those infectious diseases.

Keywords: SARS-CoV-2; antibody dynamics; vaccine; protection time; mathematical modeling

1. Introduction

The COVID-19 epidemic has caused more than 630 million infections and over 6.5 mil-
lion deaths worldwide by the end of 2022, and it can hardly disappear in a short time
based on observation [1–3]. Until now, vaccination has been the only approach to fighting
SARS-CoV-2 infections. As the global promotion of the SARS-CoV-2 vaccine continues,
we are gaining a better understanding of the antibodies triggered by vaccines and natural
infections. It is gradually becoming apparent that antibodies against SARS-CoV-2, whether
acquired from natural infection or triggered by vaccination, decay over time, with a con-
comitant decrease in protective efficiency. Unlike antibodies from vaccinations such as
smallpox [4], antibodies against SARS-CoV-2 do not provide durable protection [5].

A significant portion of the population is reluctant to be vaccinated, according to a
public poll survey [6,7]. The first concern comes from the side effects of vaccination, such as
blood clots [8,9]. The second concern is this deficiency of the long-lasting protection effect
brought by vaccination since many clinical reports indicate that the vaccine’s protection
effect is declining over time [10–13]. Based on the clinical data, a significant decrease in
the immune effect of the vaccine against reinfection has been noticed. The SARS-CoV-2
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vaccine still shows an overall positive effect on protection currently. However, more people
are concerned about how long the protection can be provided by the antibodies triggered
by their immune response [5,14]. There is an urgent need to evaluate the protection time of
neutralizing antibodies quantitatively.

Constructing a reliable mathematical model helps us quantitatively explain the virus
dynamics in the host body, which could provide a reasonable prediction toward those
sensitive concerns faced by the public. Researchers have conducted many studies on virus
infections using computational approaches [15,16].

Specifically, depending on whether the immune response is integrated into the models,
traditional cellular models can be divided into two categories. The first set contains models
that do not include the immune response [17–21], that is, traditional viral kinetic models,
whose following equation can be classically expressed as:

dT
dt

= sT − dT − βTV (1)

dI
dt

= βTV − δI (2)

dV
dt

= pI − cV (3)

where T denotes the target cells or the number of susceptible cells; I denotes the number of
cells where the infection has occurred; and V denotes the number of viruses. This simplified
model is wildly used to study the virus dynamics upon infection. While admitting its
advantages in recapturing the viral dynamics in virus infection, concerns about this model
are proposed. The limitation of this model originates from the absence of a connection
to the body’s immune response. The main driving force behind eliminating the virus is
activating the adaptive immune response by lymphocyte B and T cells, not the depletion
of the susceptible cells. Therefore, the estimation based on those depletion mechanisms is
skeptical, as it would return a much smaller initial susceptible cell number. The number of
susceptible cells should be higher than the number estimated by several orders. Mandating
the estimation would inevitably lead to underestimating T0, where T0 represents the
number of initial susceptible cells. The T0 term is similar to the initial number of susceptible
people when the SIR (susceptible, infection, recovery) model is used to predict the epidemic
trend [22,23]. The estimated T0 values vary greatly due to the differences in the fitting data,
which significantly reduces their reliability.

The second set consists of models that consider the immune response, where the clas-
sical expression of the model considering antibody binding is displayed as follows [24–30]:

dT
dt

= χD − βTV (4)

dI1

dt
= βTV − kI1 (5)

dF
dt

= ωV − αF (6)

dD
dt

= δI2 − χD (7)

dI2

dt
= kI1 − δI2 (8)

dA
dt

= f V − hA (9)

dV
dt

=
p

1 + ε1F
I2 − cV − γ TV − κAV (10)
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where T denotes the overall number of susceptible cells; A denotes the number of antibodies;
V denotes the amount of virus; D denotes the number of dead cells; F denotes the amount
of interferon in nonspecific immunity; I1 denotes the number of cells infected in class 1
(cells infected without viral multiplication); and I2 denotes the number of cells infected in
class 2 (cells infected with viral multiplication). This model effectively combines antibody
dynamics with viral changes. It performs well in recapturing and explaining the dynamic
interaction between the virus and the host immune system. However, the kinetic properties
of antibodies have not been explicitly integrated into this model. Different antigen-binding
antibodies will exhibit different kinetics, and this diversity in binding behavior is an
essential factor influencing the host-pathogen interaction. The difference in the antibody
binding capacity would lead to a significant variation in the virus dynamics. However, this
classical model does not explicitly formulize the antibody term.

Although mathematical modeling of antibody kinetics has been significantly advanced
and developed in recent years, there is still great potential to be further improved. Therefore,
a new mathematical model of antibody dynamics is proposed by us. This model displays
good fitness in explaining some puzzling phenomena, especially in the case of SARS-CoV-2
infection, with improvements to previous models in several aspects.

First: New immunology responses are formulized and integrated into this model
based on biochemistry principles. We explicitly formulize the virtual effect of antibodies on
eliminating pathogenic microorganisms while noticing the stimulation effect of pathogenic
antigens on antibodies [31]. This positive feedback stimulation is explicitly represented in
a mathematical function as well.

Second: The dynamic model developed hypothesizes that environmental factors
maintain memory cell levels. The natural attenuation of antibody levels can be recaptured
in this model. Furthermore, their discontinuous decay trend can also be captured with the
introduction of environmental antigens. Antigen-like substances in the environment can
maintain a specific concentration of B cells or T cells at a certain level. This can explain why
some vaccines can provide lifelong protection.

Third: The antigen–antibody binding process is represented as reversible in our model.
Instead of using the equilibrium constant, the binding dynamic is described in both the
binding and reverse dissociation reactions.

Based on the basic principles of immunology, we established the theoretical hypoth-
esis of antibody kinetics. The results and methods sections illustrate specific principles
and rationales in detail. In the end, this antibody kinetic model proposes some possible
mechanisms underlying some real-world scenarios:

I. How are memory cells maintained?
II. How does our immune system screen for antibodies with a strong binding affinity?
III. Why do people who get influenza and other vaccines have a lower mortality rate

from SARS-CoV-2?
IV. How can we effectively calculate the duration of protection of a specific antibody?
V. Why are some recovered patients retested as positive cases without infections from

other people?
VI. Why do vaccinations show considerable differences in protection efficiency?
VII. How can we improve the protective efficiency and duration of vaccines?

2. Materials and Methods
2.1. Mathematical Representation of the Antibody Production Process

A simple mathematical representation of the immune response is described in the
diagram in Figure 1 below.
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Figure 1. A simple diagram of host-virus interaction.

Here, x denotes the number of antibody–antigen (virus) complexes, y denotes the total
number of antibodies, and z denotes the number of viruses. Six processes are displayed
in our model. The first reaction represents the virus’s proliferation or replication with a
reaction constant k1. The second reaction represents the binding reaction between virus and
antibody, with a forward reaction constant k2 and reverse constant k−2. The third reaction
represents removing the antibody–virus complex with a reaction constant k3 with the help
of natural killer (NK) cells [32]. The fourth reaction represents the induction of a new
antibody by the antibody–virus complex with a kinetic constant k4. In immunology, those
virus–antibody complexes are on the surface of B-cells since the antibodies are initially
produced by B-cells and will attach to the plasma membrane of B-cells. Those complexes
would further bind to the helper cells because the antibody has another structure binding
region toward those receptors. Those helper cells will present the antigen part, a virus
in this case, to the T-cells. The physical placement should be such that B-cells bind to
those helper cells and further present themselves close to T-cells. The T-cells will handle
those antigen substances; if those substances are not self-originated, they will secrete signal
molecules to promote the proliferation or division of B-cells that attach to them. Therefore,
B-cells finally proliferate, along with the antibodies their B-cells generate. The fifth reaction
represents the degradation of the virus with a constant k5. The sixth reaction represents the
degradation of antibodies with a rate constant k6.

The differential equations based on those reactions are derived as below:
We established the following equations to represent the proliferation process of antibodies:

dx
dt

= k2yz − k−2x − k3x, (11)

dy
dt

= k−2x − k2yz + k4x − k6y, (12)

dz
dt

= k−2x − k2yz − k5z + k1z. (13)

2.2. Mathematical Modeling including Environmental Antigens

The equations introduced in Section 2.1 describe antibody dynamics in the presence of
the associated virus. In reality, other environmental antigens can induce antibody coupling
and production. To further account for this possibility, we add a new set of equations as
shown in Figure 2 below:

85



Viruses 2023, 15, 586

Viruses 2023, 15, x FOR PEER REVIEW 5 of 24 
 

 

2.2. Mathematical Modeling including Environmental Antigens 

The equations introduced in Section 2.1 describe antibody dynamics in the presence 

of the associated virus. In reality, other environmental antigens can induce antibody cou-

pling and production. To further account for this possibility, we add a new set of equa-

tions as shown in Figure 2 below: 

 

Figure 2. The role of environmental antigens in immune response. 

where p denotes antigen-like substances in the environment that are supposed to be con-

stant; q denotes antibodies bound to antigen-like substances in the environment. Reaction 

7 represents the binding reaction between antibodies and environmental antigenic sub-

stances with a forward constant 𝑘7 and a reverse constant 𝑘−7. Reaction 8 represents the 

removal of the antibody–antigen complex q with a reaction rate 𝑘3. Reaction 9 represents 

the induction of a new antibody by q. Therefore, a new set of equations is derived as fol-

lows: 

𝑑𝑥

𝑑𝑡
 =  𝑘2𝑦𝑧 − 𝑘−2𝑥 −  𝑘3𝑥, (14) 

𝑑𝑦

𝑑𝑡
 =  𝑘−2𝑥 − 𝑘2𝑦𝑧 + 𝑘4𝑥 − 𝑘6𝑦 −  𝑘7𝑝𝑦 + 𝑘−7𝑞 + 𝑘4𝑞, (15) 

𝑑𝑧

𝑑𝑡
 =  𝑘−2𝑥 − 𝑘2𝑦𝑧 − 𝑘5𝑧 +  𝑘1𝑧, (16) 

𝑑𝑝

𝑑𝑡
 =  0, (17) 

𝑑𝑞

𝑑𝑡
 =  𝑘7𝑝𝑦 − 𝑘−7𝑞 − 𝑘3𝑞. (18) 

The antibody level will eventually drop to zero based on the first model described in 

Equations (11)–(13). Since the decaying coefficient 𝑘6 is more significant than zero, the 

antibody will finally fade away quickly. However, as we all know, some antibodies can 

persist in the human body for a long time and provide lifelong protection. It forms the 

basis for a vaccine. Therefore, “environmental antigen-like substances” are introduced 

into the second model. They could be food-resourced, air-resourced, or even self-re-

sourced. The presentation of those substances to T-cells would give weak signals to pro-

liferate the memory B-cells or T-cells. The detailed physical background is introduced in 

Section 3.1. 

2.3. A Simplified Model Simulating the Proliferation of Antibodies with Different Binding 

Kinetic Characteristics by the Immune System 

𝑑𝑥𝑖

𝑑𝑡
 =  𝐾𝑖on𝑦𝑖𝑧 − 𝐾𝑖𝑜𝑓𝑓𝑥𝑖  −  𝑘3𝑥𝑖 , (19) 

Figure 2. The role of environmental antigens in immune response.

Where p denotes antigen-like substances in the environment that are supposed to
be constant; q denotes antibodies bound to antigen-like substances in the environment.
Reaction 7 represents the binding reaction between antibodies and environmental antigenic
substances with a forward constant k7 and a reverse constant k−7. Reaction 8 represents the
removal of the antibody–antigen complex q with a reaction rate k3. Reaction 9 represents the
induction of a new antibody by q. Therefore, a new set of equations is derived as follows:

dx
dt

= k2yz − k−2x − k3x, (14)

dy
dt

= k−2x − k2yz + k4x − k6y − k7 py + k−7q + k4q, (15)

dz
dt

= k−2x − k2yz − k5z + k1z, (16)

dp
dt

= 0, (17)

dq
dt

= k7 py − k−7q − k3q. (18)

The antibody level will eventually drop to zero based on the first model described
in Equations (11)–(13). Since the decaying coefficient k6 is more significant than zero, the
antibody will finally fade away quickly. However, as we all know, some antibodies can
persist in the human body for a long time and provide lifelong protection. It forms the
basis for a vaccine. Therefore, “environmental antigen-like substances” are introduced into
the second model. They could be food-resourced, air-resourced, or even self-resourced.
The presentation of those substances to T-cells would give weak signals to proliferate the
memory B-cells or T-cells. The detailed physical background is introduced in Section 3.1.

2.3. A Simplified Model Simulating the Proliferation of Antibodies with Different Binding Kinetic
Characteristics by the Immune System

dxi
dt

= Kionyiz − Kioffxi − k3xi, (19)

dyi
dt

= Kio f f xi − Kionyiz + k4xi − k6(yi − wi), (20)

dz
dt

= ∑n
i = 1(Kioffxi − Kionyiz)− k5z + k1z. (21)

Here, xi denotes the amount of the i-th antibody that binds to the viral antigen, yi
denotes the total number of the i-th antibody, wi is a constant that indicates the threshold
for maintaining the i-th antibody by the antigen-like substances in the environment. Kion
denotes the binding constant of the free antibody i and the viral antigen. Kioff denotes the
reaction coefficient for the dissociation reaction of the antibody i viral complex. After we
finish the second model, we want to show how our immune system selects good-binding
antibodies. Therefore, we introduce the third model. The third model is a combination of
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the first model and second model. The difference between the third and second models
is that they do not explicitly integrate environmental factors. Since each kind of antibody
will have a corresponding environmental counterpart, it would be too complicated if
we explicitly integrated all of them. Therefore, we use a simplified term wi to represent
the minimal antibody level threshold maintained by its corresponding environmental-
antigenic substances. Each antibody has different binding kinetics toward the virus. The
modeling result demonstrates the dynamic process by which our immune system selects
those fast-binding antibodies over slower ones.

The above three models are numerically solved by MATLAB using the ode15s func-
tion [33].

3. Results
3.1. Physical Mechanism behind This Approach and the Underlying Relationships among the
Three Models

Our antibody model is based on the following four rationales.
The first is the stimulus of the antibody–antigen complex on the regeneration of its

corresponding antibody. The T-cells will induce the proliferation of the B-cells through the
antigen-presenting process. Eventually, the corresponding antibody can be reproduced
following the magnification of antibody-generating B-cells [34]. Although this regulation is
critical in initializing the adaptive immune response, it was not explicitly represented in
previous studies [24–30]. The k4x term in Equation (12) expresses this positive feedback
regulation. Integrating feedback regulation into the classical representation of biological
reactions allows us to simulate reactions more comprehensively. Specifically, when we
refer to the concentration alternation of antibody and virus, the change of antibody in
Equation (12) should be k−2x − k2yz − k6y, if we use chemical reactions to describe it.
However, in this way, we ignore the virus–antibody complex’s stimulation of the regen-
eration of antibodies. In immunology, those virus–antibody complexes will proliferate
the corresponding antibody with the help of T-cells after an antigen presentation [35].
Therefore, we use an external k4x term to model this positive feedback effect.

The second is the kinetic relationship between antibodies and antigens. This antigen–
antibody binding is represented in the second process in the first diagram. The model is
endowed with more dynamic characteristics with the introduction of a reversible reaction.

The third is the pernicious effect of antibodies on antigens, which is expressed as the
−k3x term in Equation (11). It has been recognized that the antibody–antigen complex can
be efficiently removed with the help of functional immune cells such as NK (natural killer)
cells [32].

The fourth is the introduction of environmental antigenic substances. We hypothesize
that the environmental antigen contributes to the maintenance of memory cells. The
declination of induced neutralizing antibodies is ubiquitous in almost all virus infections,
such as Zika [36], Dengue [29], and SARS-CoV-2 [37]. However, this declination is always
discontinuous after their concentration drops to a stable level. This is contributed by
the existence of memory cells [38]. Immunologists regarded the long-lasting B-cells or
T-cells as “memory cells.” Experiments gradually demonstrated that although the so-called
“memory cells” are some specific forms of immune cells [39,40], they have similar half-
lives as normal CD8+ cells [41]. Therefore, maintaining antibody levels in “memory cells”
should be explained as a state of equilibrium between decay and regeneration. We suppose
this final equilibrium state derives from environmental antigen-like substances. Due to
the presence of cross-interaction [42], the neutralizing antibody, no matter how specific
it is, could have weak binding with other macromolecules in the solution. Those weak
binding partners are defined as “environmental antigen-like substances” in our model;
they could be food-resourced, air-resourced, or self-resourced. The presentation of those
substances to T cells would give weak proliferation signals to neighboring cells. Therefore,
a lower bound for specific neutralizing antibodies is present due to the positive feedback
regulation of environmental antigenic substances. This hypothesis could explain why some
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antibodies persist in the body at detectable levels for a long time. We propose that the
presence of environmental antigenic substances allows us to produce lifelong immunity to
some pathogens.

The antibody level will eventually drop to zero based on the first model described
in Equations (11)–(13). This implies that the antibody would finally fade in a short time.
However, some antibodies can persist in the human body for a long time and provide
lifelong protection, which is why we use vaccines. Following the last rationale, a second
model is constructed to integrate environmental antigenic substances. The protein sequence
of environmental antigen-like substances is ordinarily close to our own body and less
antigenic, leading to a weak T-cell proliferation signal. An equilibrium state can be reached
when the decay of memory cells is equal to their new synthesis. A good fit between the two
scenarios further improves the reliability of this model. The first is that those environmental
antigen-like molecules would help maintain the antibody at a certain level. This scenario
can be easily recaptured in our second model. Our model can also explain the second
scenario: environmental antigen-like substances cannot naturally elevate the antibody
level to the final equilibrium concentration. Environmental antigenic substances can only
help maintain the antibody level instead of triggering the increment. An exception is the
allergy reaction, which happens under extreme conditions with the massive presence of
environmental antigenic substances, especially when they have a strong binding affinity.
Our second model can also recapture this phenomenon by increasing p and k7 values.

Although the absolute equilibrium of specific antibodies is challenging to simulate
mathematically, the presence of environmental antigen-like substances dramatically atten-
uates the antibody decay rate. The simulation results are shown in Figure 3. The decay
rate of antibodies is closely related to the concentration of the antigen-like substance in
the environment. The high concentration of the environmental antigenic substance would
lead to a slow decay speed. The antibody decay rate is significantly slower (shown in
the solid yellow curve) when there are massive environmental antigen-like substances,
as shown in Figure 3A. The antibody level attenuation is also significantly influenced
by the binding kinetics between environmental antigen and its corresponding antibody.
The antibody decay rate is significantly slower (shown in the dashed yellow line) when
k3 sets a considerable value in Figure 3B. It represents a better binding kinetics between
environmental antigen-like substance and its corresponding antibody.

It is common sense that environmental antigenic substances alone can hardly trigger
antibody proliferation without pathogenic antigens. Numerical simulations also indicate
that antigen-like substances in the environment hardly stimulate antibody proliferation.
One scenario in which environmental antigen-like substances do not trigger antibody
growth is recaptured in Figure 4A. The insufficient capacity of environmental antigens to
induce antibody magnification derives from their poor binding affinity toward antibodies.
In most cases, the presence of antigen-like substances in the environment will not directly
stimulate antibody proliferation but will significantly attenuate the decay rate after antibody
proliferation, as shown in Figure 4A. The situation can be altered when the antigen-like
substances are sufficient or their binding affinities toward some antibodies are powerful.
Antigen-like substances in the environment can also stimulate antibody levels, as shown in
Figure 4B. This might help elucidate the underlying mechanism of allergy. A significant
difference between environmental antigen-like substances and pathogenic antigens is that
the former are deficient in self-replication. However, their concentrations are maintained at
a relatively stable level due to constant replenishment from the environment.
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Figure 3. Antibody and virus dynamics modeling using different p(0) value. p(0) represents the
concentration of environmental antigens. The virus-antibody dynamics are modeled under different
environmental antigen concentrations (A) and different environmental antigen attributes (B). As
shown in (A), the antibody decay rate is significantly slower (shown in solid yellow curve) when there
is a large amount of environmental antigen-like substances. The parameter set we used is: x(0) = 0,
y(0) = 100, z(0) = 10, p(0) = 1000 or p(0) = 1,000,000, k1 = 0.1, k2 = 1 × 10−5, k−2 = 1 × 10−14, k3 = 1,
k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−8, k−7 = 1 × 10−14. As shown in (B), the antibody decay rate is
significantly slower (shown in solid yellow curve) when k8 sets a large value which corresponds to
a better binding kinetics between environmental antigen-like stuff and its corresponding antibody.
The parameter set we used is: x(0) = 0, y(0) = 100, z(0) = 10, p(0) = 1,000,000, k1 = 0.1, k2 = 1 × 10−5,
k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−8 or k7 = 1.8 × 10−8, k−7 = 1 × 10−14.
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Figure 4. Antibody dynamics modeling with different k7 values. (A) One scenario where environ-
mental antigen-like substances do not trigger antibody growth. As shown in (A), the antibody does
not engage proliferation due to the presence of environment antigen-like molecules. The parameter
set we used is: x(0) = 0, y(0) = 100, z(0) = 0, p(0) = 1,000,000, k1 = 0.1, k2 = 1 × 10−5, k−2= 1 × 10−14,
k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−8, k−7 = 1 × 10−14. (B) One scenario where environ-
mental antigen-like substances do trigger antibody proliferation. As shown in (B), the antibody does
engage proliferation due to the presence of environment antigen-like molecules. The parameter set
we used is: x(0) = 0, y(0) = 100, z(0) = 0, p(0) = 1,000,000, k1 = 0.1, k2 = 1 × 10−5, k−2 = 1 × 10−14,
k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−7, k−7 = 1 × 10−14. The antibodies might significantly
increase when the environmental antigenic substances bind strongly with them. This always induces
allergic reactions.
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3.2. Characteristics of Immune Response after Infected with Different Virus Strains

For the same type of virus, highly virulent strains have high replication activity [43].
Infection with highly virulent variants will lead to a prominent peak viral load and can
exhibit strong transmissibility per time unit. However, its infection cycle is typically short.
These infection dynamics are defined as acute infections in clinical performance [44]. The
cytokine storm induced by a quickly elevated antibody level is responsible for the acute
response [45]. Weak virulent strains have the opposite behaviors, which could lead to
chronic infection in clinical settings. It does not typically induce a quick immune response,
resulting in a more extended infection cycle. All those situations can be recaptured using
our model, which is displayed in Figure 5.
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Figure 5. Different immune behaviors toward variants with different replication activities. The
parameter set we used is: x(0) = 0, y(0) = 100, z(0) = 10, p(0) = 1000, k1 = 0.06 or 0.1, k2 = 1 × 10−5,
k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−8, k−7 = 1 × 10−14. As shown in this
figure, the antibody response is milder when the host is infected by a less toxic strain (smaller k1

value 0.06). The peak viral load is also less compared to its high toxic counterpart (bigger k1 value
0.1). This indicates that even for the same virus infection, the immune response would vary greatly
due to the differences in viral replication capacity of different variants.

It can be noticed from Figure 5 that, under the exact initial viral invasion dosage, the
infection caused by a less virulent strain has a more extended latency phase. Its peak viral
load is significantly lower than a more virulent strain. The maximal level of the yellow
line is significantly lower than that of the dashed blue line, indicating that the antibody
production induced by the weak virus infection is significantly lower than that induced by
a virulent strain. It is also reflected in Figure 5 that the infection cycle caused by the weak
virus is remarkably longer than its strong counterpart.

3.3. How the Immune System Screens for Highly Binding Antibodies

Our immune system can automatically detect suitable binding antibodies and se-
lectively proliferate them. Simulating the antibody screening process by mathematical
modeling remains challenging for computational biology researchers. This study provides
a preliminary attempt to elucidate this process. Our model suggests a strong correlation
between the proliferation potential of a specific antibody and its binding kinetics. An-
tibodies with fast binding rates would obtain rapid proliferation, while those with low
binding rates proliferate slower. Thus, the antibodies with fast binding rates can grow
faster and dominate in the final antibodies’ composition, although various antibodies are
triggered to proliferate during infection. Generally, antibodies with fast binding capacity
have a more robust binding affinity. However, this relationship is not absolute. Binding
affinity is the ratio of forward binding to reverse dissociation [46]. Infected individuals
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would have antibodies with good binding kinetics after infection [47,48]. Those antibodies
display individual differences in binding affinity, with some antibodies having relatively
stronger binding affinity [49]. We propose that the dominant factor affecting the efficiency
of antibodies is not their absolute binding affinity Kd but the binding reaction constant k2.
Both k2 and k2 have physical meaning in Equation (12): k2 stands for the forward reaction
constant, while k2 represents the reaction constant of the reverse one. The dissociation
constant Kd = k2/k−2 can be used to evaluate the concentration of each component in
an equilibrium state. Kd can also be transformed into the binding energy between those
two macromolecules and thus is an important indicator that describes the binding affinity
between two molecules [50].

As shown in Figure 6, the antibody with the fastest binding rate (solid blue line in this
figure) demonstrates a maximal proliferation magnitude. This selection will eventually lead
to a high proportion of fast-binding antibodies in the final antibody composition. Although
these five antibodies have the same binding affinity of Kd = 1 × 10−9, their proliferations
vary because of the differences in their binding speeds, and the antibody with the faster
binding rate will gradually dominate. This example illustrates that the driving force in
antibody reproduction is its binding speed, not its binding affinity. A different k2 value and
k−2 value is applied to keep the dissociation constant Kd as a fixed number. It is subversive
to claim that the immune system would like to select those fast-binding antibodies rather
than tightly binding antibodies. Experimental researchers always seek an antibody with
an excellent binding affinity [47–49]. However, our model indicates that a solid-binding
antibody might not perform well in preventing reinfection. Its kinetic behavior is more
critical than its static binding affinity.
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Figure 6. Dynamics of different antibodies with different kinetic attributes. The parameter sets we
used are: x(0) = 0, y(0) = 1, z(0) = 1, w = 1, k1 = 0.1, k2 = 1 × 10−5, k−2 = 1 × 10−14, k3 = 1, k4 = 2,
k5 = 0.02, k6 = 0.02, for antibody 1; k2 = 9 × 10−6, k−2 = 9 × 10−15 for antibody 2; k2 = 8 × 10−6,
k−2 = 8 × 10−15 for antibody 3; k2 = 7 × 10−6, k−2 = 7 × 10−15 for antibody 4; k2 = 6 × 10−6,
k−2 = 6 × 10−15 for antibody 5. It is demonstrated in this figure that the faster-binding antibodies
engage amplification at a greater magnitude. In this way, the immune system selects those specific
neutralizing antibodies.
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3.4. High Concentrations of Weakly Binding Antibodies Can Provide Effective Protection

It has been statistically discovered that vaccination with other vaccines, such as the
influenza vaccine, can also provide some degree of protection against SARS-CoV-2 [51–54].
The third model is utilized to explain this phenomenon. Those parameters used in Figure 7
are defined in Section 2.3.
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Figure 7. High concentrations of weakly binding antibodies can provide effective protection. A plot
of the inhibitory capacity of a specific concentration of weakly binding antibodies against infection
is presented. Two types of antibodies are presented in this figure: antibody 1 has a strong binding
capacity (K1on = 1 × 10−5) while antibody 2 has a relatively weak binding capacity (K2on = 5 × 10−6).
Two scenarios are simulated: both antibodies have low initial concentrations in case 1; weakly
binding antibody has a high initial level in case 2. The parameter sets we used are: x1(0) = x2(0) = 0,
y1(0) = y2(0) = 1, z(0) = 1, w1 = w2 = 1, K1on = 1 × 10−5, K1off = 1 × 10−14, K2on = 5 × 10−6,
K2off = 1 × 10−14, k3 = 1, k4 = 2, k5 = k6 = 0.02, k1 = 0.1 for case 1; y2(0) = 100 for case 2. It can be seen
that the peak viral load and antibody level are significantly lower in case 2, which corresponds to a
milder immune response. It indicates that the elevated weakly binding antibodies could also provide
protection against severe infection.

Figure 7 illustrates that the presence of weakly binding antibodies can produce an
inhibitory capacity against the virus. The concentration of the weakly binding antibody
increases from one in case 2 to a thousand in case 1. The maximal value of the dashed
yellow line is smaller than that of the solid blue line, indicating a more substantial inhibition
effect on virus reproduction. It can be noticed that the maximal level of the solid-binding
antibody also decreases with the enhanced initial level of the weakly binding antibody.
A particular concentration of weakly binding antibodies can simultaneously inhibit the
proliferation of strongly binding, efficient antibodies in the host.

This example suggests that vaccinated people will always have better protection
against reinfection than non-vaccinated people, regardless of the mutation of the virus.
However, when we aim to stimulate the production of high levels of firmly bound an-
tibodies through vaccination, the presence of weakly bound antibodies might interfere
with this process. The vaccination effect on each individual might vary due to the weak
antibody inference. Some individuals can induce sufficient fast-binding antibodies, while
others cannot, due to differences in their initial antibody library. The simulation results
indicate antibody interferences might be greatly enhanced in people vaccinated against
other viruses. This explains why some vaccines may occasionally lead to a higher overall
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mortality rate [14,55]. Keeping a relatively high antibody level for a specific pathogen, such
as SARS-CoV-2, will shelter more people from infection. However, it might also have the
side effect of decreasing the efficiency of other vaccines. The long-term effect of repeated
booster vaccinations on SARS-CoV-2 needs a comprehensive study.

3.5. Calculation of the Protection Time Brought by Natural Infection

The prediction of protection time remains to be elucidated using a computational
approach. The calculation of protection time is presented in this section with the application
of a numerical approach. Figure 8 illustrates how we calculate the protection time upon
natural infection. Details about how we calculate the protection time are described below:
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Figure 8. An illustration of protection time calculation. The parameter set we used is: x(0) = 0,
y(0) = 100, z(0) = 10, p(0) = 10,000, k1 = 0.1, k2 = 1 × 10−7, k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02,
k6 = 0.02, k7 = 1 × 10−8, k−7 = 1 × 10−14. Incubation time is calculated as the time interval between
virus entrance and the production of antibodies. The viruses would engage a proliferation earlier
than the antibodies. The patient is still asymptomatic even though the virus has reached a high level.
Symptoms such as fever would appear when the antibody–virus complexes reach beyond a specific
threshold. The second infection is marked with a green arrow. It can be seen in this figure that a
second infection could occur when the IgG level drops below a certain level. It does not necessarily
require a zero IgG level when a breakthrough infection happens.

First, we model the dynamic behaviors of all components (virus, virus–antibody
complex, antibody). An initial number is assigned to each component before the first
infection. For instance, z(0) = 1 stands for one invading virus. The virus number would
vanish to zero soon after the antibody booms. The virus number dropped to zero after the
166th simulation time point, as illustrated in Figure 8.

After the antibody completely removes the virus, the second invasion is performed.
The initial virus number would be manipulated to a non-zero integer at each following
time unit, starting from 166 to 800. The early invasion would not lead to virus proliferation
because the antibody level at that time was still high. However, the protection effect
will gradually fade as the antibody level decreases. The earliest invasion that could lead
to a virus proliferation is at the 326th time point in Figure 8. It is a time point when a
breakthrough infection can happen. The time between the first infection and this time point
is the protection duration brought by the first infection. Therefore, the protection time
can be roughly estimated from 166th to 326th. We can also notice that the maximal viral
load in the second infection is significantly lower than in the first infection. This indicates
that the reinfection or breakthrough infection typically has a milder symptom than the

93



Viruses 2023, 15, 586

first, although it will occur with a higher chance as time goes on. The protective effect will
decrease as time increases, as shown in Figure 9 in the next section.
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Figure 9. Protection time calculation when the antibody has a specific binding kinetic constant k2. It can
be inferred from this figure that a fast-binding neutralizing antibody would provide a longer protection
time when we compared (A) with (C). The protection time against severe infection can also be prolonged,
given the faster binding kinetics when comparing (B) to (D). (A) Protection time calculation when the
antibody has a weak binding kinetic constant k2 = 1 × 10−6. The parameter set we used is: x(0) = 0,
y(0) = 100, z(0) = 10, q(0) = 1 × 106, k1 = 0.1, k2 = 1 × 10−6, k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02,
k6 = 0.02, k7 = 1 × 10−9, k−7 = 1 × 10−14. (B) Maximal virus load at different infection points when
the antibody has a binding kinetic constant k1 = 1 × 10−6. The parameter set used is the same as (A).
(C) Protection time calculation when the antibody has a strong binding kinetic constant k2 = 1 × 10−5.
The parameter set we used is: x(0) = 0, y(0) = 100, z(0) = 10, q(0) = 1 × 106, k1 = 0.1, k2 = 1 × 10−5,
k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−9, k−7 = 1 × 10−14. (D) Maximal virus
load at different infection points when the antibody has a binding kinetic constant k2 = 1 × 10−5. The
parameter set used is the same as (C).

3.6. Factors Affecting the Duration of Antibody Protection: Concentration of the Environmental
Antigen-like Substance, Viral Replication Capacity, and Antibody Binding Kinetics

Based on Equation (16), the virus will magnify itself when the k−2x − k2yz − k5z + k1z,
term is larger than zero. The analytic solution on the reinfection possibility is difficult to
derive, although the antibody level and the virus replication capacity directly influence
this term. A high concentration of environmental antigenic substances p and an excellent
binding kinetic k7 can help maintain the antibody at a relatively high level, thus providing
an extended protection time. Meanwhile, the antibody kinetic features could also greatly
influence the protection time, which is shown in Figure 9. A lifelong protective effect can
happen when a virus has a weak replication capacity (small k1 value), a high concentration
of environmental antigen-like substances (large p-value), and a fast-binding antibody with
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an enormous k2 value. Typical examples of this category are the smallpox virus [4], tetanus
bacillus [56], and so on. In contrast, other viruses, such as influenza and SARS-CoV-2,
may not be able to trigger a super-long protection time [5]. Meanwhile, for influenza and
SARS-CoV-2 infections, there is a considerable variation in the protective time after natural
infection or vaccination [57,58]. This variation is mainly attributed to the difference in their
corresponding antibody kinetics.

As claimed in the previous section, the binding kinetic constant k2 is much more
important than the binding affinity Kd. Figure 9 illustrates how k2 influences the protection
time in different infection cases.

The second infection time is marked in Figure 9A, which starts around the 275th time
unit. The protection time can be roughly estimated to be between 125th and 275th time unit.
The protection time is significantly extended (100th to 1080th time unit) in Figure 9C when
a better binding antibody is introduced. A virus loading threshold for the severe case is
arbitrarily set as 6.4 × 105 marked by the red arrow in Figure 9B. The protection time against
severe infection can be derived based on Figure 9B,D, which is the time interval between
those two green lines. Figure 9D demonstrates that the severe infection would happen after
the 975th time unit with the same severe threshold. The protection time can be roughly
estimated to range from 125th to 975th time unit. This protection phase is much longer
compared to Figure 9B. This example demonstrates that an excellent binding antibody will
protect people longer than the weak one. It indicates that the protection time brought by
infection or vaccination could significantly vary for different individuals. The primary
reason lies in the differences in the binding kinetics of antibodies–virus interaction. Another
important discovery in this modeling is that people who generate suitable antibodies with
fast binding kinetics rarely display significant symptoms in the first infection, which can
be reflected in the smaller virus peak loading amount in the first infection in Figure 9C
compared to Figure 9A. It is suggested that those fast-binding antibodies typically exist
in patients without intense infection symptoms. Repeated vaccination might be limited
in reshaping the composition of the final antibody reservoir, i.e., it does not significantly
alter the binding activity of the antibodies. Therefore, targeted improvement of antibody
binding activity against certain viruses is the key to extending vaccine protection in the
long term. The heterogeneity of the individual antibody library might cause significant
differences in the binding activity of antibodies to the same viral infection or vaccination,
leading to a significant variation in protection duration. Therefore, we may need to change
the vaccination strategy. Vaccination should induce the production of antibodies with
high binding activity instead of a random incitation. The targeted induction of specific
antibodies using gene editing provides a potential solution [59–61].

3.7. Parameter Estimation in Real Scenario

According to the data from clinical experiments, we can further fit the specific param-
eters to obtain the dynamic characteristics of antibodies within certain populations. The
core content of this model is to accurately simulate the trend of mutual change between
antibodies and viruses, so it is not required to add units to the mathematical model. By
adjusting different parameters, especially the mean, and variance of the parameters, we can
get the characteristics of the antibody dynamics behavior of a population. By comparing the
available statistical data, we can estimate the distribution of antibody dynamics parameters
of the whole population. Although these parameters have no direct physical meaning,
they can more accurately reflect the decline of immunity in different individuals and the
possibility of reinfection at different times.

We treat the concentration of the environmental antigenic substance as a constant
value. The primary alternation is the difference in the binding capacity of the antibody in
different individuals, which is defined as k2 in our model. The binding kinetic between
the environmental antigenic substance and the antibody, defined as k7 in our model,
varies among different people. The antibody kinetic performance characteristics of the
population obtained using the above parameter combination are shown in Figure 10A.
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It was demonstrated that IgG antibody levels to the SARS-CoV-2 nucleocapsid waned
within months, according to six months of data from a longitudinal seroprevalence study
of 3217 UK healthcare workers [62]. The simulation result has a good match with this
clinical report. The main factor determining the peak antibody concentration is k2, while
the driving force determining the antibody waning speed comes from k7. The change in the
overall antibody level of the population over time is shown in Figure 10A, and the change
in the overall protective efficacy is shown in Figure 10B. According to this model, we can
judge that in the absence of virus mutation, the overall protective efficacy of an initial 100%
efficacy of the COVID-19 vaccine in a human population (10,000 human simulations) would
drop to 97.21% after 100 days, 65.44% after 150 days, 39.28% after 200 days, and 28% after
240 days. The simulation results in Figure 8B are consistent with the clinical data on vaccine
effectiveness. Based on a cohort study among US veterans, for the period 1 February 2021 to
1 October 2021, vaccine effectiveness against infection (VE-I) declined over time (p < 0.01 for
time dependence), even after adjusting for age, sex, and comorbidity. VE-I declined for all
vaccine types, with the most significant declines for Janssen, followed by Pfizer-BioNTech
and Moderna. Specifically, in March, VE-I was 86.4% for Janssen, 89.2% for Moderna, and
86.9% for Pfizer-BioNTech. By September, VE-I had declined to 13.1% for Janssen, 58.0% for
Moderna, and 43.3% for Pfizer-BioNTech [63]. According to a retrospective cohort study on
the effectiveness of the mRNA BNT162b2 vaccine, effectiveness against infections declined
from 88% (95% CI 86–89) during the first month after complete vaccination to 47% after five
months. Among sequenced infections, vaccine effectiveness against infections of the delta
variant was high during the first month after complete vaccination (93%) but declined to
53% after four months [64]. Similar trends were observed in the cohort study conducted in
Qatar [65].

3.8. Recovered Patients with Retest Positive for SARS-CoV-2

In SARS-CoV-2 infections, we noticed some rare occurrences of reinfections by patients
themselves [66]. This recurrent positivity is not caused by the invasion of environmental
viruses but by the re-proliferation of internal viruses [67]. The self-reinfection may lead
to a second epidemic outbreak, making it more challenging to prevent and control the
epidemic. The scenario of self-reinfection is a frequent phenomenon in virus infection.
Many people suffer from recurrent respiratory infections [68]. It is also typical when HBV
or HCV infection occurs [69]. Our model suggests a possible mechanism underlying this
phenomenon. The patient will experience reinfection under certain parameter sets, as
shown in Figure 11.

This example above shows that it is difficult to completely eliminate a specific pathogen
in the presence of fast-binding antibodies. However, the peak viral load during the infection
is small, as shown in the solid red line in Figure 11A. This will lead to a relatively mild
symptom. The peak viral load in Figure 11A is significantly lower than the typical infection
cases illustrated in Figures 8 and 9.

The low virus load does not have an intense stimulation on antibody production.
Therefore, it is impossible to eliminate the virus from the body due to insufficient antibody
quantity. The virus will regain the opportunity to proliferate when the antibody level
decreases later. The patient may display a positive nucleic acid test result again. Multiple
virus resurgences are marked in the dashed green cycle after the first infection, as displayed
in Figure 11A. However, the infections in those cases are generally less symptomatic and
even asymptomatic. A more extreme case is a long-term chronic infection, such as the
appearance of a long-positive patient [70]. Like self-reinfection, an equilibrium state can be
reached if the antibody–antigen interaction is moderate in those long-positive patients. In
this case, pathogens would not be eliminated but maintained at a relatively stable level,
forming a chronic infection. The low concentration of pathogenic antigens only provides a
limited driving force for promoting antibody reproduction. The antibody and the virus
will remain relatively low for a long time, as reflected in Figure 11B.
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Figure 10. (A) the dynamic behavior of antibodies in the overall population through time. (The blue
zone around mean curve stands for 95% confidence interval). It can be seen that the IgG level would
significantly decline after reaching a peak level. However, its degradation does not follow a simple
mathematical formula. Its descent rate would gradually decline and be maintained at a relatively
stable level after 200 days. (B) The protection performance of antibodies in the overall population
through time. It can be seen in this figure that the protection efficiency of induced neutralizing
antibodies would be maintained at a relatively high level in the first 100 days. Its protection efficiency
would engage a rapid decline after the first three months.
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This example above shows that it is difficult to completely eliminate a specific path-

ogen in the presence of fast-binding antibodies. However, the peak viral load during the 

infection is small, as shown in the solid red line in Figure 11A. This will lead to a relatively 

mild symptom. The peak viral load in Figure 11A is significantly lower than the typical 

infection cases illustrated in Figures 8 and 9. 

Figure 11. (A) Self-reinfection scenario. The parameter sets we used are: x(0) = 0, y(0) = 1000, z(0) = 1,
w = 1000, k1 = 0.1, k2 = 1 × 10−5, k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02. Reinfections
are represented as repeated waves in this figure. It indicates that the viruses could re-proliferate when
the antibodies cannot completely eliminate them. The viruses start to proliferate when the antibodies
drop to a certain level, leading to self-reinfection in this case. (B) Scenario of chronic infection.
The parameter sets we used are: x(0) = 0, y(0) = 1000, z(0) = 1, w = 1000, k1 = 0.1, k2 = 3 × 10−5,
k−2 = 1 × 10−5, k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02. In this case, pathogens would not be eliminated
but maintained at a relatively stable level, forming a chronic infection. The low concentration of
pathogenic antigens only provides a limited driving force for promoting antibody reproduction.

Pathogenic antigens and environmental antigenic substances all contribute to chronic
inflammation. For chronic infections caused by pathogenic microorganisms, a short-term
boost in antibody levels can be used to accomplish a complete clearance of pathogenic
microorganisms [71]. Chronic infections could permanently disappear or significantly im-
prove after they become acute infections in the clinic. The chronic symptom will disappear
or become invisible after the healing from the acute infection [72]. Conversely, chronic
inflammation caused by environmental factors can be removed by shielding environmental
antigens for a certain period [73]. The blockade of antibody–antigen interaction will de-
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crease the corresponding antibody level, thereby attenuating or eliminating the immune
response. An allergic reaction can be significantly alleviated in the upcoming contact after
this treatment.

4. Discussion

The application of mathematical modeling displays good epidemic forecast capacity
at the population level [22,23,74,75]. Mathematical models are also helpful in quantitatively
elucidating the immune process’s dynamics on an individual level. We are motivated
to develop a new mathematical model that can explicitly model the antibody dynamics
based on those pioneering modeling attempts [17–21,24–30]. A computational antibody
dynamic model is finally proposed, which can help us explain some phenomena mentioned
in the introduction.

I. How are memory cells maintained?

The environmental antigen-like substances maintain memory cells in our model. It
was demonstrated that, in the absence of a pathogen, the environmental antigen could
not directly stimulate antibody proliferation in most cases except in allergic reactions. The
concentration of memory cells is closely correlated to the property and concentration of its
corresponding environmental antigenic substances. Some memory cells against a specific
pathogen can be maintained at a high level for decades. The persistent stimulation by the
environmental antigenic substances, rather than the eternal lifespan, leads to the long-term
existence of those immune memory cells. The existence of super-binding antibodies and
high concentrations of environmental antigens can also trigger allergic reactions.

II. How does our immune system screen for antibodies with solid binding affinity?

Based on the model, antibodies with faster binding kinetics would increase prolifera-
tion. The binding constant is not linearly correlated to the binding affinity. The immune
system tends to select antibodies with fast binding kinetics rather than solid binding
affinity. The underlying mechanism comes from the positive feedback regulation of the
virus–antibody complex. A good binding antibody would lead to a faster generation of
the virus–antibody complex. This complex would further promote the proliferation of its
corresponding antibody.

III. Why do people vaccinated by the influenza vaccine or other vaccines have a lower
mortality rate from SARS-CoV-2 infection?

An interesting phenomenon during the COVID-19 pandemic is that the mortality
rate is significantly lower in people who have received the influenza vaccine and other
vaccines than in their unvaccinated counterparts [51–54]. The non-specific binding antibody
level can be elevated after non-specific vaccination. Although weakly binding antibodies
inhibit the proliferation of firmly binding antibodies in vivo, they can significantly inhibit
virus proliferation and reduce peak viral load. This would lead to a lower mortality
rate and milder symptoms. The potential concerns are also discussed in Section 3.4. A
particular concentration of weakly binding antibodies can inhibit the proliferation of
strongly binding antibodies, as revealed in Figure 7. The rationality of repeated booster
vaccination needs a comprehensive evaluation because it might weaken the immune
response to other pathogens.

IV. How could we effectively calculate the protection duration of a specific antibody?

Concerns are remarkably booming when people realize the protection of the SARS-
CoV-2 vaccine has declined over time. Given the experimental data on viruses and antibod-
ies, the kinetic parameters of this model can be inferred. The protection time of the vaccine
or natural infection can be further deduced. Personalized prediction is also feasible with the
availability of individual antibody behavior. The protection times of different individuals
can be immensely varied, ranging from extraordinarily durable to very transient. Three
factors that influence the protection time are discussed in Section 3.6. The virus’s attributes,
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such as the replication speed, influence the antibody production time. A faster-replicating
virus, for instance, an RNA virus, inclines to have a shorter antibody protection time
after natural infection. Virus immunogenicity against T-cells influences the duration of
antibody protection. Viruses with strong T-cell immunogenicity provide a strong stimulus
for antibody proliferation, exhibiting extended and even lifelong protection. The antibody
binding kinetics also contribute to the difference in its protection performance, as illustrated
in Section 3.6.

V. Why are there cases of self-reinfection?

Self-reinfection prevails in less virulent strains such as the Omicron variant. Our model
provides a plausible mechanism underlying this unusual phenomenon. The individual
might exhibit self-reinfection with the presence of a good binding antibody; repeated
infection can also be displayed when a less virulent strain invades the patient. This can
help explain why Omicron infections are inclined to be asymptomatic and self-reinfect.

An extreme case of self-reinfection is a chronic status in which the individual displays
positive nucleic acid results for a long time. The chronic infection of SARS-CoV-2, together
with other chronic infections, can also be explained by this model. It was demonstrated that
a sub-equilibrium state could be maintained under specific parameter combinations with a
relatively low antibody level, thus exhibiting long-term chronic inflammation. The long-
term chronic infection is maintained by the constantly active (even weakly) antigens, which
can come (i) from the non-coding human genome, where there are, for example, proteins of
ancient viruses such as HER-V that produce antibodies a long time after their passage in the
host genome, providing cross-protection against other infectious agents [76–79]; (ii) from
the V(D)J mechanism of the innate immunity which can also give birth to antibodies with a
large spectrum of actively participating to non-specific defenses against pathogens [80–83];
and (iii) from other vaccines (it is for example known that BCG reprograms the innate
immunity [84]).

VI. Why do vaccinations show considerable differences in protection?

According to our antibody kinetic model, the antibody interference effect is the most
important contributing factor to the differences in vaccine protection time, apart from viral
mutations. Large amounts of interfering antibodies can inhibit the production of high
concentrations of fast-binding antibodies after vaccination, causing a decrease in protection
efficiency and protection period. The antibody reservoir’s heterogeneity in the human
population also influences the generation of those fast-binding antibodies. The presence of
good templates could promote the production of fast-binding mature antibodies after a few
rounds of somatic hypermutation. Those fast-binding antibodies could provide extended
protection. Environmental antigenic substances also influence the protection duration by
influencing the antibodies’ decay rate. Clinical reports [85] have demonstrated that age and
gender are statistically associated with differences in antibody response after vaccination.
The IgG antibodies triggered by the SARS-CoV-2 BNT162b2 vaccine significantly varied
among ages. Young people tend to generate more neutralizing antibodies compared to
their elder counterparts. This mainly reflects a variation in k4 values in our model. A faster
antibody generation capacity, equal to a larger k4 value, would confer a stronger immunity
to younger people. However, it does not guarantee that the protection duration in young
people would be longer than that in older people for each individual. As discussed in
Section 3.6, the antibody attributes, together with environmental antigenic substances,
strongly impact the protection time. Suitable antibodies with fast binding constant k2 and
high concentrations of environmental antigenic substances would prolong the protection
time. The clinical report also indicates that females have stronger immunity than males.
However, this trend is as insignificant as the influences of age. In this study, the forecast is
performed to predict the population’s behavior, which does not consider the influences of
age and gender. A more accurate and specific forecast can be performed in a future study
when we integrate age and gender differences into the model. In this case, a different k4
value would be assigned to each subgroup.
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VII. How can we improve the protective efficiency and duration of vaccines?

Persistent exposure to massive antigenic substances can boost the neutralizing an-
tibody level in a short period. However, the repeated booster can hardly magnify the
proportion of solid-binding antibodies in the final antibody composition. The targeted
induction of antibodies with excellent binding kinetics could provide prolonged protection
against reinfection. Researchers are paving the way in this direction through gene-editing
techniques [59–61]. Another concern with the constant booster shots is that the antibody
interference might diminish the effectiveness of other vaccines, including the expected
vaccines against massively mutated strains of SARS-CoV-2. Therefore, instead of pursuing
a short-term antibody surge, we suggest that researchers aim to induce antibodies with
fast-binding activity.

Besides providing a quantitative explanation of virus–host dynamics during the infec-
tion cycle, this model has several practical applications. One application is to predict the
evolutionary direction of SARS-CoV-2 mathematically. The relationship between virulence
and transmissibility can be simulated. A delicate equilibrium point that optimizes the trans-
missibility can be numerically obtained. Based on this model, we predict that the virulence
of SARS-CoV-2 might further decrease, accompanied by an enhancement of transmissibil-
ity [86]. The second application is to optimize the vaccine inoculum dose mathematically.
The antigen level, which can be represented as the initial inoculum dose, significantly
influences the vaccine’s efficiency. A low dose might not be able to induce sufficient IgG
to provide durable protection. In contrast, a high dose is more inclined to trigger a high
level of IgG. However, it also has a more substantial adverse effect, representing a high
antibody–virus complex level in this model. The high dose also increases its production
cost. Therefore, a mathematical optimization can be performed to evaluate the optimal
inoculum dose before clinical trials. Thirdly, this study could theoretically pave the way for
future vaccine development. The protection duration of antibodies generated by natural in-
fection is explicitly modeled in this study. The modeling of vaccines is different because the
vaccine, independent of its type, does not replicate but is injected with an extremely high
initial viral concentration. Different vaccines would have a different protection duration
against breakthrough infection. vaccination efficiency is very complicated and generally
weaker than the protection brought by a natural infection. The inactivation process for the
inactivated vaccine would truncate its original structure, especially the epitope spots of
spikes and nucleocapsid proteins. Its efficiency might be less than the mRNA vaccine. The
vaccine based on the viral vector also generated deficient antigens compared to the real
virus. After all, two major factors influence the protection duration of different vaccines: the
peak level of neutralizing antibodies and viral mutations. A large dose of inoculum would
trigger more neutralizing antibodies, leading to more extended protection and stronger
adverse effects caused by the immune response. All vaccines would display weakened
or even zero protection against variants with tremendous mutations due to a reduced k2
value in this model. mRNA vaccine is better than the traditional vaccine because it can
gradually generate realistic antigens. The traditional concept for vaccine development, with
the application of an inactivated virus, viral vector, or mRNA, strictly forbids the use of a
live virus. Our model demonstrated that the attenuated virus with proliferation constraints
(smaller k1 value in our model) could induce the immune response and antibody level
in a milder way (shown in Figure 5). Those attenuated live viruses form a solid basis for
asymptomatic infections [87]. There are at least two remarkable advantages of attenuated
live viruses in future vaccine development. Firstly, since our model demonstrates that
the peak antibody level is independent of the initial virus concentration, a minimal dose
of live viruses could elevate specific IgG to a high level. It is also more infectious than
traditional vaccines. This means a large number of populations can be covered with a few
vaccination attempts. Secondly, despite the unlikely inactivation process, the attenuated
virus is structurally identical to the original virus. Therefore, the specificity of neutralizing
antibodies triggered by those attenuated viruses is the same as that of those induced by
natural infections. As demonstrated by our model, an excellent binding capacity could
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induce a more durable protection time. The safety of those attenuated live viruses can also
be guaranteed based on the principle of RNA replication: truncated mRNA cannot produce
fixed offspring (full genome size).

Nevertheless, we also have to admit that our model has many hypotheses and uncer-
tainties. Furthermore, it still lacks an in vivo experiment data fitting process, while many
of the predictions and theories in the article remain to be confirmed experimentally and
statistically in the future.
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Abstract: The SARS-CoV-2 pandemic commenced in 2019 and is still ongoing. Neither infection nor
vaccination give long-lasting immunity and, here, in an attempt to understand why this might be, we
have compared the neutralizing antibody responses to SARS-CoV-2 with those specific for human
immunodeficiency virus type 1 (HIV-1) and respiratory syncytial virus (RSV). Currently, most of
the antibodies specific for the SARS-CoV-2 S protein map to three broad antigenic sites, all at the
distal end of the S trimer (receptor-binding site (RBD), sub-RBD and N-terminal domain), whereas
the structurally similar HIV-1 and the RSV F envelope proteins have six antigenic sites. Thus, there
may be several antigenic sites on the S trimer that have not yet been identified. The epitope mapping,
quantitation and longevity of the SARS-CoV-2 S-protein-specific antibodies produced in response to
infection and those elicited by vaccination are now being reported for specific groups of individuals,
but much remains to be determined about these aspects of the host–virus interaction. Finally, there is
a concern that the SARS-CoV-2 field may be reprising the HIV-1 experience, which, for many years,
used a virus for neutralization studies that did not reflect the neutralizability of wild-type HIV-1.
For example, the widely used VSV-SARS-CoV-2-S protein pseudotype has 10-fold more S trimers
per virion and a different configuration of the trimers compared with the SARS-CoV-2 wild-type
virus. Clarity in these areas would help in advancing understanding and aid countermeasures of the
SARS-CoV-2 pandemic.

Keywords: human infection; repeated infection; SARS-CoV-2; HIV-1; RSV; neutralizing antibody;
neutralization assay; epitope specificity; analysis of serum antibody specificity; monoclonal antibody

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly arrived
human pathogen, and there is much to be learned about it and how it interacts with its
new host. This respiratory pathogen emerged in 2019 and most likely originated from
a bat via an unknown non-human animal source. The virus causes serious mortality in
people rendered susceptible by age, comorbidities, immunodeficiency or combinations
of these problems, but it is less severe in healthy individuals. Vaccines expressing the
main SARS-CoV-2 surface (S) envelope protein were rapidly devised and deployed in
wealthy countries, and this included the first global use of an mRNA vaccine. These vac-
cines successfully reduced SARS-CoV-2-associated mortality, but, as with natural disease,
antibody-associated immunity to subsequent infection was short-lived; the longevity of T
cell-based immunity and its potential role(s) in the protection from subsequent infection are
not fully understood yet. While vaccination importantly provides amelioration of disease
symptoms, successive immunizations (up to five, to date) did not improve the longevity of
protection, and even the combination of post-infection immunity and vaccination gave a
similarly short-lived immunity to infection [1–4]. Thus, the human population as a whole is
still at risk from an infection that ranges from the subclinical to a variable morbidity that has
serious personal and economic impacts by requiring time away from the workplace. The

106



Viruses 2023, 15, 504

impacts also include a debilitating condition known as ‘long COVID’, the causes of which
remain unclear, although it has been linked with the reactivation of latent viruses such
as Epstein–Barr virus [5]. An additional concern is that the cycle of repeat infections can
transmit the virus to those in the high-risk group, particularly if the infection is inapparent
or if people no longer feel it necessary to self-isolate. Added to these problems is the
continuing evolution of new virus strains which afford some degree of escape from existing
immune defenses, rendering an inadequate antibody response even more ineffective.

All the concerns about a short-lived, poor or inadequate immunity following infection
or vaccination emphasize the need to understand the nature of the protective immune
response against SARS-CoV-2 to better arm ourselves in the future against this and other
viruses. This article considers the SARS-CoV-2-specific immunity that results from infection
or vaccination. This appears to be largely antibody-based: sterilizing immunity cannot be
mediated through T-cells. Space constraints mean that we focus on the direct neutralization
of the SARS-CoV-2 by antibody. This should not be taken to mean that we place no value
on other mechanisms in which neutralizing and non-neutralizing antibodies act against
viruses via complement or other components of the immune system or that Fc receptors
play a role in preventing or ameliorating disease; doubtless others will expand on these
areas in due course.

The cause of the short-lived nature of the immunity is not known, although in
the case of infection, it seems likely that SARS-CoV-2-virus-mediated immunosuppres-
sion/immunomodulation is involved. The scenario of initial protection followed by its
decline suggests that cells responsible for producing antibody are not renewed, lose the
ability to respond properly and be amplified or are ablated. SARS-CoV-2 has a large genome
and expresses many proteins, and there is no shortage of candidate immunosuppressors.
However, the mRNA vaccine expresses only the S protein, which would have to possess
both immunostimulatory and immunosuppressive elements.

2. The Nature of Neutralizing Antibodies

While much is said about the importance of virus-neutralizing antibodies, an often-
unstated key point is that they are not all equal in their ability to cause a loss of virus
infectivity. A plethora of neutralizing antibodies that recognize different epitopes, and
hence have different specificities, can potentially be elicited by any infectious agent or
vaccine, and, in addition, the antibody response can vary according to the genetics of the
host and their past infection experience. However, for reasons not understood, only a small
fraction of the potential range of antibodies with these specificities may be expressed. The
neutralization titer of (usually) a serum or plasma sample is not an absolute but represents
the sum of the activity of all the neutralizing antibodies present in a particular sample. For
example, this could consist of antibodies that are specific to many different regions of the
target protein and hence will cause neutralization by interfering with the several different
mechanisms that make up the infectious process—not only by blocking attachment to the
main virus receptor binding domain (RBD), as is often assumed. Alternatively, the same
neutralization titer could be achieved by a population that comprises one or only a few
different antibody specificities [6–8]. Without analysis of the antibody specificities, it is
not possible to distinguish between these two examples. With a simple assessment of
a neutralization titer, they appear identical, but biologically, they are very different. In
addition, antibodies to a particular neutralization region of the target protein can vary in
the amount of each antibody specificity that is produced and in the efficiency with which
each mediates neutralization. Thus, there is a huge permutation capable of qualitative and
quantitative variability in the antibody population between individuals, and understanding
the detail of this variability is key to understanding the factors that underpin an effective
and long-lasting immunity.
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3. The SARS-CoV-2 Surface (S) Protein

The SARS-CoV-2 S cell-attachment protein is anchored by a trans-membrane region
at its C-terminus and undergoes proteolytic cleavage and structural rearrangements to
form a metastable structure that is able to catalyze the fusion-entry process [9]. This is
common to all enveloped viruses [10,11]. In the SARS-CoV-2 S protein, cleavage at the
S1–S2 junction gives rise to an outer S1 subunit and an inner subunit (S2) that has a new N
terminus. S1 and S2 are not covalently bound to each other. The binding of the S1 RBD
to its receptor, the angiotensin-converting enzyme-2 (ACE2), in the cell membrane ACE2
triggers a second proteolytic cleavage of S2 at S2′ which exposes a new N terminus at the
end of the 41-residue fusion peptide. Electron microscopy of SARS-CoV-2 virions shows
that S1 exists in either a closed conformation (‘RBD down’) in which the RBDs are buried
and unavailable for binding or an open conformation (‘1 or more RBDs up’) and appears
to oscillate between the two positions [12,13]. The open conformation is required for the
binding to ACE2 that leads to the fusion of the viral and cell membranes.

The number of fusion protein trimers on the surface of enveloped virus particles
is very variable. SARS-CoV-2 (24+/−9 trimers of the S protein per virion) and HIV-1
(11–18 trimers of gp120-41 per virion) have a low number, whereas influenza virus A
has an order of magnitude more (300–400 HA trimers per virion), all with similar-sized
particles; respiratory syncytial virus (RSV) trimers are densely packed [14–17]. Curiously,
influenza virus and SARS-CoV-2 trimers are not uniformly distributed and are not arranged
in any discernible pattern [15,16]. Further, and perhaps uniquely, the SARS-CoV-2 trimers
are hinged and can be tilted in any direction up to 50 degrees, rather than lying at right
angles to the virion surface, as usually depicted. In addition, the number of S trimers
present on a SARS-CoV-2 virion differs markedly from that of a VSV virion pseudotyped
with a SARS-CoV-2 S protein which is commonly used to measure SARS-CoV-2-specific
neutralizing antibodies, as VSV has 400 trimers per virion [18]. SARS-CoV-2 S protein-
pseudotyped retroviruses, also used to measure SARS-CoV-2 neutralization, might more
faithfully reproduce the SARS-CoV-2 S trimer distribution [12] and therefore be a more
appropriate test system for evaluating SARS-CoV-2 neutralization.

A clear consequence of a small number of surface protein trimers per virion is fewer
targets for neutralizing antibodies, as with HIV-1 [14]. How the distribution and/or num-
ber of trimers affect a SARS-CoV-2 neutralization event is not certain. It is not known for
SARS-CoV-2 how many S trimers need to engage an antibody molecule to cause neutral-
ization, and this is likely to vary with the function of the antigenic site in the infection
process. If blocking the receptor binding domain (RBD) is the mechanism of neutralization,
it seems unlikely that the binding of a single IgG molecule to one S trimer of the virion
would be sufficient to cause neutralization, as this leaves up to 23 +/- 9 other trimers
free to engage cell receptors. Indeed, rabies virus, closely related to VSV, could bind
130 molecules of a neutralizing monoclonal IgG (ca. 400 surface trimers per virion) without
losing any infectivity [19]. The neutralization of a virion by a single antibody molecule
would require interaction between all, or a sufficient number of, trimers and the triggering
of some sort of cooperative event that renders the virion non-infectious—a situation for
which there is, as of yet, no direct evidence. Additionally, it is not known whether a single
SARS-CoV-2 S trimer can bind one, two or three molecules of IgG. The Mr of an S protein
trimer ectodomain is approx. 540, and that of an IgG is approx. 160, so it might be possible
to bind more than one IgG per trimer, depending on the position of the epitope and any
spatial interference mediated by the mobility of the bound IgG. An S trimer construct is
reported to simultaneously bind three Fabs of the monoclonal antibody (MAb) 4A8, but
a Fab is approximately 30% of the mass of the whole antibody molecule and hence offers
much less steric interference [20]. Unless trimers become clustered, they are spaced too far
apart to be crosslinked by IgG, and the three repeated epitopes of a single trimer are too
close together to allow for intramolecular crosslinking by an IgG molecule. However, the
sparsity of S trimers on the virion surface and the flexibility of the S ectodomain allow for
the maximum access of antibodies directed to any region of the S trimer. The sparsity of S
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trimers could also impinge on the efficiency of the fusion-entry process of SARS-CoV-2,
as, for example, influenza virus requires the cooperation of three or more trimers for its
fusion-entry process [21].

4. SARS-CoV-2-Specific Human Monoclonal Antibodies

Several groups have isolated SARS-CoV-2 S protein-specific monoclonal antibodies,
e.g., [22,23]. Zost et al. isolated 389 SARS-CoV-2 S protein-specific monoclonal antibodies
from two people who had been infected with the virus [22]. These were identified by a
reaction with a stabilized prefusion form of the S protein ectodomain (1208 residues, with
6 residues substituted), an RBD construct (223 residues), or an S protein N-terminal domain
construct (350 residues). Most MAbs, including those reacting with the N-terminal con-
struct, were not neutralizing, but 67/70 neutralizing MAbs reacted with the RBD construct.
In a further report, most of the 40 neutralizing MAbs tested blocked the interaction of the S
trimer with the ACE-2 primary receptor [24]. Such data have led to the assumption that
these MAbs neutralize by blocking the attachment of the virus to the host cell. However,
blocking the interaction of individual proteins is a very different scenario from blocking a
virion, which carries many copies of the target molecule and is many orders of magnitude
larger, from attaching to the cell surface, and critical experiments clarifying the details of
the neutralization process need to be conducted. One RBD-binding MAb (CR3022) has an
entirely different mode of action and prematurely activates the post-fusion state of the S
protein [25], although its epitope is distinct from the ACE-2 binding site [20]; a different
MAb affects SARS-CoV-1 and MERS in the same way [26].

It would be strange if all SARS-CoV-2 MAbs were directed to the RBD region, as the S
proteins of other enveloped viruses have several neutralization sites that are located on
disparate regions of the protein. Other enveloped viruses, such as HIV-1 and influenza
virus, with surface proteins that effect both attachment and fusion, stimulate antibodies
which block the fusion-entry process [27,28]. For example, HIV-1 has six definably different
antigenic sites with which neutralizing antibodies interact [29]. The apparent absence
of SARS-CoV-2-specific neutralizing antibodies targetting regions other than the RBD
is difficult to understand, as the selecting proteins, especially the prefusion form of the
SARS-CoV-2 S ectodomain, contain the majority of the S protein trimer. However, there
are several possible explanations: (a) it may be that the engineering required to stabilize
the selecting protein for its use as an antigen alters its antigenicity. The conformational
changes that result from cleavages that give rise to S1 and S2, and then S2′, are likely to be
accompanied by the formation of new epitopes or an increased exposure of existing epitopes
and, provided they are available for a sufficient time to activate B cells, to generate their
cognate antibodies. However, antibodies to the fusion peptide of SARS-CoV-1 and SARS-
CoV-2 exist in people who have recovered from infection and may be neutralizing [30,31],
although assays confirming that fusion is inhibited were not reported. (b) Infection may
bias the antibody response to the RBD region as seen with HIV-1 [32]. (c) MAbs were
obtained from blood that was withdrawn at 50 days after infection, as this gave a better
antibody response than blood taken at 35 days: thus, the time at which the blood sample
was taken may be relevant [22]. This has been seen elsewhere; for example, the antibody
response in Ebola virus infections may take up to one year to fully develop. (d) There may
indeed be no other antigenic regions: however, this seems unlikely, as other viruses, such
as HIV-1, as noted above, have multiple antigenic sites involved in other aspects of the
entry process.

A final, but crucial, factor when extrapolating to antibody protection in vivo is the
nature of the neutralization assay. As already mentioned, there is a concern regarding
the relevance of assays based on pseudoviruses, such as VSV, which carry an order of
magnitude more S trimers per virion than those that are present on the genuine SARS-CoV-2
virus [19]. In addition, it would be more relevant to use a competitive in vitro assay that
mimics the in vivo situation in allowing for the simultaneous interaction of the virus,
antibody, and host cells, rather than the conventional test in which preincubated virus-
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antibody complexes are added to susceptible cells. This is underlined by the high affinity
of the S protein trimer for its receptor (in the µM range, whereas that of influenza virus is
1000-fold lower), suggesting that SARS-CoV-2 can escape neutralization by rapidly binding
to and entering into a host cell [15]. It would be interesting to compare neutralization titers
by the two methods suggested.

5. Mapping S-Specific MAbs That Neutralize SARS-CoV-2

Several studies describe the identification of SARS-CoV-2-specific highly neutralizing
MAbs (e.g., [20,22,24]). Individual laboratories have made efforts to map their MAbs, but
the key residues needed for epitope binding have been determined only for a few, usually
through structural studies [20]. Binding assays usually use very large structures such
as trimers of the S ectodomain, the RBD, and the N-terminal domain, which comprise
many different epitopes. There is an urgent need in the global SARS-CoV-2 community
for a comprehensive, interlaboratory mapping collaboration. In essence, the following
conclusions emerge:

1. Highly neutralizing MAbs (N50 < 150 µg/mL) representing the RBD region and
the N-terminal domain region have been found, but the frequency of occurrence and the
number of such antibodies in body fluids during/after infection are not known, nor do we
know if their production is stimulated by vaccination.

2. Most, but not all, MAbs (e.g., 47D11: reviewed by [20]) identified so far are in-
hibitory in the S trimer-ACE2 protein-binding assay, although, as noted above, this does
not necessarily imply that these antibodies neutralize by preventing the attachment of
the SARS-CoV-2 virus particle to the cell. Testing with authentic SARS-CoV-2 virus, not
pseudovirions, is required to determine the mechanism(s) of neutralization.

3. There is clear evidence that MAbs that inhibit in the S trimer-ACE2 binding assay,
and therefore impact the RBD, are diverse and interact with a number of different epitopes.

4. MAb P2B-2F6 competes in the S trimer-ACE2 binding assay and is shown by
electron microscopy to bind to the RBD region in both its open (up) and closed positions,
whereas ACE-2 binds to the RBD only in its open position. MAb P2B-2F6 has a higher
affinity for the RBD than the ACE-2 receptor.

5. Many MAbs bind the N-terminal construct, but few are neutralizing; an exception
is the highly neutralizing 4A8 MAb.

6. There is one report of post-infection antibodies that are specific for a peptide in the
fusion region (mentioned above) [31].

7. Most studies show that the same selecting S protein constructs that identify neutral-
izing MAbs also reveal many non-neutralizing MAbs. While some of the latter could be
antiviral in vivo through antibody-dependent cell cytotoxicity or other mechanisms, there
is a concern that the ubiquitous non-neutralizing MAbs could block the binding and action
of neutralizing antibodies and permit infection.

6. Comparison with Other Virus Systems

Here, we compare the SARS-CoV-2-specific antibody response with those found in
other human virus systems—notably, human immunodeficiency virus type 1 (HIV-1) and
respiratory syncytial virus (RSV). The HIV-1 field has been concerned with neutralizing
antibodies for many years, and it now arguably represents the best studied and understood
system of all. At first glance, it may seem strange to compare SARS-CoV-2 with HIV-1, as
they cause such different infections and diseases, but both are enveloped viruses, and their
major surface proteins, like those of all enveloped viruses, have a very similar structure.
These are type 1 transmembrane homotrimer proteins with an external N-terminus and a C-
terminus inside the virion, and they are cleaved to give an outer domain bound covalently
or non-covalently, depending on the virus, to the inner domain. They all undergo profound
structural rearrangements on contact with their primary cell receptor as part of the fusion-
entry process.
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7. What Can the SARS-CoV-2 Field Learn from HIV-1?

Like SARS-CoV-2, the HIV-1 and RSV fields are noted for the diversity of virus
variants that differ in the sequence of their main surface protein, and they are classified
into a number of clades, with multiple strains in each. It is an immense problem to devise
a vaccine that can stimulate an immune response broad enough to protect against all
variations of the virus. Particularly for HIV-1, this needs to be a sterilizing immunity, since,
once infection is initiated, the HIV-1 genome is integrated into the DNA of the cell and
cannot be removed. T-cell immunity is of little value, as it acts only on infected cells, so
reliance has to be placed on the neutralizing antibody response. The HIV-1 field has trialled
an unprecedented variety of neutralization immunogens and experimental hosts, mostly
with modest results. Antibodies are made, but, as with SARS-CoV-2, these mostly exert an
ineffective neutralizing response that comprises narrowly specific antibodies that can be
directed against highly mutable epitopes; these antibodies may not prevent infection and
are relatively short-lived.

Another issue for HIV-1 was the assay system which, for convenience, used virus
strains that had been adapted to grow in the laboratory—this adaptation requires the
virus to mutate but, at the same time, renders it far easier to neutralize than a wild-type
virus [33]. Thus, the laboratory-adapted strains are a poor indicator of protection in vivo.
It is not clear if the SARS-CoV-2 system has the same problem, but it is suggested that
adaptation to Vero-hACE2-TMPRSS2 cells may modify the S protein so that antibodies no
longer neutralize as efficiently [23]. Second, there is concern over pseudotype assays that,
for the convenience of scale and automation, are used as surrogates for the neutralization
of SARS-CoV-2, as the distributions of S trimers on VSV and authentic SARS-CoV-2 are
very different, as mentioned above [14,15]. The S protein-VSV pseudotype was variously
shown to give neutralization that was statistically close to the neutralization of an infectious
SARS-CoV-2 laboratory-adapted virus of that time [34] or was 21-fold more sensitive [22].

Eventually, the HIV-1 studies led to the discovery of broadly neutralizing mono-
clonal antibodies, which, as their name indicates, neutralize a plethora of different wild-
type strains (31–99% of known strains) in vitro to a high titer (i.e., requiring from 3.7 to
0.002 µg/mL) [29]. Crucially, they also protect in vivo. The authors cite the macaque model,
in which animals are given a natural mucosal challenge and develop an HIV-like illness,
to show that 100% sterilizing protection could be achieved using a mixture of broadly
neutralizing monoclonal antibodies and that this is related to the neutralization titer. Fur-
thermore, they calculate that, for the HIV-1 infection of humans, a combination of four
broadly neutralizing monoclonal antibodies at a serum concentration of 30 µg/mL could
provide sterilizing immunity.

In summary, (a) experience with HIV-1 warns the SARS-CoV-2 field to question the
validity of the pseudotyped virus used routinely in SARS-CoV-2 neutralization tests and
to ask if the tests faithfully represent wild-type circulating virus; (b) like the SARS-CoV-2
vaccines, HIV-1 vaccines, in general, stimulate sub-optimal neutralizing antibody responses
and fail to elicit the broadly neutralizing antibodies that are really needed for effective pro-
tection from infection; and (c) it needs to be determined if the human antibody repertoire is
capable of responding to SARS-CoV-2 to produce the sort of broadly neutralizing antibodies
that are so effective against HIV-1, and, if it is, a vaccine that can elicit them needs to be
devised. Such antibodies have recently been found using a bioinformatic approach and
include one that neutralizes the S2′ cleavage site [35].

8. What Can the SARS-CoV-2 Field Learn from the Respiratory Syncytial Virus?

Since its first description in 1956, RSV has been studied extensively to try to lessen the
burden of the respiratory disease that it generates in seasonal epidemics, especially in the
very young and the elderly. Several features of RSV infection and disease are similar to
those found in SARS-CoV-2 infections, and the approaches to tackling these for RSV may
provide useful insights into studies of SARS-CoV-2 with a view to developing therapeutic
interventions. As with SARS-CoV-2, the robust antibody and cellular immune response
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to RSV infection that is detected following infection is short-lived. This, coupled with the
appearance of genetic variants, means that repeat infections occur throughout life [36].
While the underlying processes leading to the short-lived immunity following natural
infection are not entirely understood, it is known that RSV directly interferes with several
aspects of the innate immune system, including the inflammatory and type 1 interferon
responses as well as the intracellular processes involved in antigen presentation. These
effects have consequences for the adaptive immune response which receives signals from
the innate immune system, and the result is a reduction in or loss of B cell memory and T
cell function, as reviewed in [37].

RSV has two envelope proteins: an attachment protein (G) and a fusion protein (F)
that is present as a trimer in the prefusion state on the surface of infected cells and the virus
particle; virus particles expressing only F are infectious, indicating that F is able to attach to
host cells [38]. Initial studies of the neutralizing antibodies generated following infection
with RSV were directed against the fusion (F) protein. However, neutralizing antibodies
directed against both the pre-and post-fusion forms of the F protein are also present in
human serum, and these interact with epitopes that are retained after the conformational
change from pre- to post-fusion states [39,40]. No vaccine is currently available for RSV,
though several are in clinical trials and have shown promising early results [41,42]. The only
currently used treatment for RSV infection is a series of monthly injections of palivizumab,
which is approved for prophylactic treatment in high-risk infants. Palivizumab is an F
protein-specific, humanized mouse monoclonal antibody that prevents virus entry into
cells. In recent years, modified versions of palivizumab have been generated to extend
its half-life in the body following administration in order to reduce the need for monthly
injections [43]. While palivizumab provides protection in approximately 50% of previously
uninfected infants, it is not used for the treatment of infections in adults, where it is less
effective. In recent years, it has become clear that it is necessary to better understand
the immune response to infection to try to generate new approaches for prophylaxis and
treatment [44].

Recent approaches have focused on investigation of the nature of the antibodies pro-
duced following natural infection. A study of 364 RSV F protein-specific monoclonal
antibodies derived from memory B cells taken from three adult volunteers showed that
these recognized a total of six different antigenic sites, including one not previously de-
scribed [45]. The neutralizing anti-F protein antibodies with the greatest activity recognized
the pre-fusion form of the F protein, and several showed 100-fold higher neutralizing
activity than palivizumab, emphasizing the value of such studies for identifying potential
prophylactic and therapeutic candidates. A similar study of 23 monoclonal antibodies
isolated from human memory B cells confirmed this observation [46].

In a separate study, Andreano et al. investigated the repertoire of antibodies produced
by single-cell sorted memory B cells from four adult volunteers. The data show that,
while three subjects had generated antibodies specific for the pre-fusion form of the F
protein, the majority of neutralizing antibodies were directed against the F protein bound
to both the pre- and post-fusion forms. However, 78 of the 82 antibodies with dual-binding
capacity were bound significantly more strongly to the pre-fusion form, which is found
most predominantly on virus particles [47]. The data from these studies emphasize that
the neutralization of virus infectivity in vivo is a potentially complex combination of a
spectrum of different antibodies with different neutralizing activities. In the case of anti-
RSV F protein antibodies, these are all targeted to epitopes closely located to each other on
the F protein, so the relative concentrations of each, as well as their inherent affinity for
their target epitope, will determine the competitive outcome of the interaction. In addition,
these studies showed that many of the monoclonal antibodies have neutralizing activity
against different genetic subtypes of RSV and, indeed, to the more distantly related human
metapneumovirus, suggesting that they may exert broad range protection. The data also
suggested that the genetic lineages of neutralizing antibodies seen in young children may
differ from the lineages seen in adults. Such a bias in the immune response would be an
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important consideration for the design of vaccines for different target populations. It will
be important to establish whether a similar situation exists with SARS-CoV-2 infections.

9. How to Better Understand the SARS-CoV-2 Neutralizing Antibody Response

To improve approaches for developing a strong, potentially long-lasting protective anti-
body response against SARS-CoV2, we need a measure of the individual antibody specificities
that make up the neutralizing response produced to infection and vaccination—qualitatively
in terms of their epitope specificity and quantitatively to determine their SARS-CoV-2-
specific individual neutralizing titers, the breadth of neutralization, and the longevity of
synthesis [48]. Crudely put, we need to know if the serum or plasma sample contains one
or a few antibodies of high-titer specificities, antibodies of many different low-titer speci-
ficities, or a combination of both. In this way, we can analyze the response to a SARS-CoV-2
infection and determine the efficacy of a vaccine. This is needed to allow us to understand
why the SARS-CoV-2 neutralizing antibody response is short-lived and ineffective in pre-
venting infection. Only with this information can the SARS-CoV-2 neutralizing antibody
response be properly evaluated, and through this, we will gain a better understanding of
the deficiencies of the SARS-CoV-2 infection- and vaccine-induced neutralizing antibody
responses and of why people can be infected repeatedly.

One way to analyze the SARS-CoV-2 neutralizing antibody response would be to
assemble as extensive a library of SARS-CoV-2 S protein-specific monoclonal antibodies
as possible, with emphasis on their specific neutralizing ability (µg required for 50%
neutralization) and their capacity to neutralize a broad range of SARS-CoV-2 virus strains.
Progress has already been made, but there is a worrying lack of MAbs that do not block
the RBD. The main focus would then be to interrogate human blood/nasal wash antibody
samples to see if these have the ability to block the binding of individual monoclonal
antibodies to the authentic S protein. The blocking of binding would indicate the presence
of a cognate MAb in the human sample or of one that has an overlapping footprint.

Alternatively, an epitope library for SARS-CoV-2 based on the sequence/structure of
the S protein could be constructed. A linear peptide library is easily made, but peptides
locked in a relevant conformation would likely be more useful. This could be approached
using AI systems such as AlphaFold, which, in recent times, have revolutionized the
determination of the 3D structures of proteins [49]. Each peptide would be synthesized
with an anchor sequence to attach it to a substrate, and a library of such peptides would
interrogate the antibody sample using an automated system. Basic quantitation could be
provided by applying serial dilutions of the sample.

Electron- and cryo-electron microscopy are other methods that have been used success-
fully to map HIV-1 [50] and SARS-CoV-2 [20] surface protein-specific antibodies present
in polyclonal sera after infection or vaccination. The traditional method of selecting neu-
tralizing antibody escape mutants and determining which amino acid substitutions had
occurred is available to those with biosecure facilities.

Other, but related, questions include why SARS-CoV-2 vaccines do not stimulate
long-lived broadly neutralizing antibodies, and we need to know if such antibodies can be
found in the human antibody repertoire. As for therapy, we need to know if such antibodies
are to be found in other (possibly unconventional) animal systems and hence become a
source for humanized monoclonal antibody reagents. Thinking outside the box led to the
immunization of cows, which proved to be a surprising source of HIV-1-specific broadly
neutralizing antibodies [51]. These have an ultralong CDRH3, which is a key feature of
HIV-1-specific broadly neutralizing antibodies [29].

We have the space to quote only a limited number of papers; we apologize to the
authors whose excellent work has been omitted.
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Abstract: Early COVID-19 treatments can prevent progression to severe disease. However, real-life
data are still limited, and studies are warranted to monitor the efficacy and tolerability of these drugs.
We retrospectively enrolled outpatients receiving early treatment for COVID-19 in 11 infectious
diseases units in the Tuscany region of Italy between 1 January and 31 March 2022, when Omicron
sublineages BA.1 and BA.2 were circulating. Eligible COVID-19 patients were treated with sotrovimab
(SOT), remdesivir (RMD), nirmatrelvir/ritonavir (NRM/r), or molnupiravir (MOL). We gathered
demographic and clinical features, 28-day outcomes (hospitalization or death), and drugs tolerability.
A total of 781 patients (median age 69.9, 66% boosted for SARS-CoV-2) met the inclusion criteria,
of whom 314 were treated with SOT (40.2%), 205 with MOL (26.3%), 142 with RMD (18.2%), and
120 with NRM/r (15.4%). Overall, 28-day hospitalization and death occurred in 18/781 (2.3%) and
3/781 (0.3%), respectively. Multivariable Cox regression showed that patients receiving SOT had a
reduced risk of meeting the composite outcome (28-day hospitalization and/or death) in comparison
to the RMD cohort, while no significant differences were evidenced for the MOL and NRM/r groups
in comparison to the RMD group. Other predictors of negative outcomes included cancer, chronic
kidney disease, and a time between symptoms onset and treatment administration > 3 days. All
treatments showed good safety and tolerability, with only eight patients (1%) whose treatment was
interrupted due to intolerance. In the first Italian multicenter study presenting real-life data on
COVID-19 early treatments, all regimens demonstrated good safety and efficacy. SOT showed a
reduced risk of progression versus RMD. No significant differences of outcome were observed in
preventing 28-day hospitalization and death among patients treated with RMD, MOL, and NRM/r.

Keywords: SARS-CoV-2; COVID-19; sotrovimab; nirmatrelvir/ritonavir; molnupiravir; remdesivir
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1. Introduction

Therapeutic options for the early phase of coronavirus disease 2019 (COVID-19) have
been sought since the start of the pandemic. In the last year, several compounds have
been licensed for the treatment of patients with recent symptoms onset [1]. These include
monoclonal antibodies (mAbs); the oral antivirals nirmatrelvir/ritonavir (NRM/r; an
inhibitor of the main protease, also called 3-chymotrypsin-like protease, of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2)) and molnupiravir (MOL; an inhibitor
of the RNA-dependent RNA polymerase of SARS-CoV-2); and the intravenous antiviral
remdesivir (RMD, another inhibitor of the RNA-dependent RNA polymerase of SARS-
CoV-2) [2]. Based on the results of clinical trials, most international guidelines issued
recommendations which prioritize the use of NRM/r (relative risk [RR] reduction 88% for
hospitalization or death) or RMD (RR reduction 87%) over MOL (RR reduction 30%) for
the treatment of COVID-19 patients who do not require hospitalization or supplemental
oxygen [1,3]. The mAbs group has included several molecules, often used in combination
to achieve viral neutralization. The clinical trials testing mAbs use in outpatients have been
carried out in patients carrying the Alpha variant [4–6], and over time some of these drugs
became inefficacious as SARS-CoV-2 mutated, generating new variants [7]. Sotrovimab
(SOT), a recombinant human monoclonal antibody against SARS-CoV-2, which obtained
US Food and Drug Administration Emergency Use Authorization for the treatment of
high-risk outpatients with mild-to-moderate COVID-19 in May 2021, has been shown to
have lower neutralizing activity against Omicron BA.1 than against the ancestral strain
and other variants of concern, even less neutralizing activity against Omicron BA.2, and
lost inhibitory capability against BA.4 and BA.5 [8,9]. Monoclonal antibodies that have
maintained activity against BA.4/5 include bebtelovimab [1,7,10], currently not approved
in Europe, and the combination of tigaxevimab and cilgavimab [7,11], approved for both
pre-/post-exposure prophylaxis and early treatment of immunocompromised patients
at increased risk of severe COVID. However, the clinical trials for most of these drugs
were carried out in the pre-Omicron era, and among non-vaccinated subjects [4,12]. The
introduction of anti-SARS-CoV-2 vaccines caused a drastic reduction in COVID-19 severity
and mortality [13–15], and it also changed the susceptibility of the target population to the
virus. As such, continued surveillance of the efficacy and effectiveness of the compounds
used to treat patients at high risk of severe disease is needed. To date, few studies on
the efficacy and tolerability of these drugs under real-world conditions, characterized by
new variants of concern (VOCs) and large vaccination coverage, have been published. For
instance, a recent observational study from Israel showed that NRM/r was able to reduce
hospitalization rates and deaths in treated versus untreated subjects [16,17]. Early treatment
with either MOL or NRM/r was confirmed to reduce the risks of mortality and in-hospital
disease progression in comparison with untreated controls in a large cohort of patients
(mostly unvaccinated) in Hong Kong, during the wave of SARS-CoV-2 Omicron subvariant
BA.2.2, as NRM/r was additionally associated with a reduced risk of hospitalization.
Other observational studies have confirmed the promising results of NRM/r [18–20], while
data on the performance of MOL appears to be less clear-cut, as one study has shown
that untreated patients had similar outcomes to those receiving MOL [19,21]. However,
available studies suffer from limitations arising from their retrospective, observational
nature. Since the start of January 2022, different regimens for early treatment of COVID-19
have been available in Italy (SOT, RMD, and MOL), while NRM/r was made available
at the start of February 2022. As such, these drugs have been employed in the “Omicron
era” of COVID-19 and used on subjects deemed at risk of severe disease by the Italian
National Drug Agency (AIFA), with at-risk conditions including chronic diseases such as
hypertension with organ damage, chronic kidney disease, chronic heart disease, cancers,
chronic lung disease, and immunosuppression, as well as an age over 65 years [22].

We present data on the safety and efficacy of the four outpatient regimens available
in Italy (SOT, RMD, NRM/r, and MOL), obtained from a multicenter study conducted in
11 infectious diseases units operating in the Tuscany region of Italy.
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2. Materials and Methods
2.1. Patient Population

We retrospectively retrieved data on patients treated at the outpatient services of
11 infectious diseases units in Tuscany, Italy, between 1 January 2022 and 31 March 2022.
Patients were considered eligible if: (i) they had received SOT, RMD, NRM/r, or MOL;
(ii) they were treated in an outpatient setting; (iii) they had at least one risk factor according
to AIFA criteria; and (iv) they were classified as having mild or moderate COVID-19
infection according to WHO criteria. Symptoms that allowed for treatment were defined
by AIFA criteria and included fever, malaise, smell or taste disturbances, chills, dyspnea,
sore throat, headache, myalgia, and GI symptoms. On the other hand, patients were
excluded if they were: (i) hospitalized for reasons other than COVID-19 at the time of
treatment, (ii) without a risk factor for severe COVID-19 according to AIFA criteria, and/or
(iii) asymptomatic or suffering from a severe or critical disease. Children from a pediatric
infectious diseases center were included, in light of a recent position paper by the Italian
Society of Pediatrics recommending early treatment options for children at risk of COVID-
19 progression [23].

2.2. Data Collection

Collected data included demographic information (sex at birth, age), data on risk
factors for COVID-19 progression according to the AIFA criteria: age > 65 years, hyper-
tension with organ damage, chronic heart disease, chronic kidney disease (CKD), chronic
lung disease, chronic liver disease, immunosuppression (either congenital or iatrogenic),
oncological patients including those with blood and solid cancers undergoing active treat-
ment, and obesity, defined by a body mass index [the weight in kilograms divided by the
square of the height in meters] ≥30. Among these conditions, no weights were attributed
by AIFA to regulate the prescription of anti-SARS-CoV-2 early treatments. We also collected
information on vaccination status (defined as one-dose, full-cycle, or boosted regardless
of the type of vaccine used, as information on vaccine type was not readily available),
date of symptoms onset, date of treatment administration, latency between symptoms
onset and treatment administration (defined as the number of days between the first day
of symptoms and the day of treatment start). Information regarding the referral channel
to outpatient services was also collected (hospital-based specialist, family doctor, doctor
part of the special units set up for COVID-19 at-home management, direct referral from
emergency department doctor).

Outcome measures included treatment completion, side effects (patient-reported
intolerance to drug altering the course of treatment, allergic reaction), and hospitalization
or death due to COVID-19 progression. A composite outcome consisting of death and/or
hospitalization was also created.

Information on the outcome at 28 days was captured through a standardized question-
naire. Information on outcome measures was entered into the database at this time. Data
were collected using REDCap 8.11.6. (Project REDCap, USA).

2.3. Data Analysis

We analyzed data for patients who had received treatment, using available informa-
tion on the occurrence of hospitalization and death. Data were analyzed with STATA 17.0
(STATACorp, College Station, TX, USA). Continuous variables were reported as medians
and interquartile ranges; categorical variables were reported as absolute counts and pro-
portions. A chi-square test was used to test for differences in categorical variables. The
Kruskal–Wallis test was used to test for differences in continuous variables among the
treatment groups. A survival analysis between different treatment groups was carried out
using Kaplan–Meier curves and the log-rank test. The average time at risk for an event
was computed as the time to the first event or day 28, whichever was earlier. Multivariable
Cox regression was performed to identify independent predictors of composite outcome
(28-day hospitalization and/or death related to COVID-19), calculated as hazard ratios (HR,
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95%CI). Moreover, given the non-randomized assignment to the four treatment groups,
a propensity score (PS) analysis using inverse probability of treatment weighting (IPTW)
was performed to assess the average treatment effect (ATE) of SOT, MOL, and NRM/r in
comparison to RMD. Inverse probability of treatment weighting uses weights based on the
propensity score to create a synthetic sample in which the distribution of measured baseline
covariates is independent of treatment assignment [24]. The following covariates were
included to generate the PS: sex; age; chronic comorbidities, such as obesity, chronic kidney
disease, chronic heart disease, chronic obstructive pulmonary disease, cancer, cognitive
impairment, diabetes, and immunosuppression; smoking habit; vaccination status, catego-
rized as ‘not vaccinated’ (none or incomplete primary schedule) or ‘vaccinated’ (complete
primary schedule +/− booster dose); and latency between symptoms onset to antiviral
administration, categorized as ≤3 or >3 days. We arbitrarily decided to enter RMD as a
reference variable, since it was the group with the highest number of events (hospitaliza-
tion and/or death). Standardized differences were used to compare balance in baseline
covariates between the four groups before and after weighing by the inverse probability
of treatment.

2.4. Ethics

The study was performed in accordance with the ethical principles of the Declara-
tion of Helsinki and with the International Conference for Harmonization Good Clinical
Practice guidelines.

3. Results

In the study period, 921 patients received early treatment for mild-to-moderate COVID-
19 within the 11 ID units involved. Of these, 140 (15.2%) did not meet the inclusion criteria
and were excluded (Supplementary Table S1). Of the 781 included patients (50% female,
median age 66.9 years, IQR 52.3–77.9), 314 (40.2%) received SOT, 142 (18.2%) received RMD,
205 (26.3%) received MOL, and 120 (15.4%) received NRM/r. In brief, patients receiving
SOT (47% female) had the lowest median age (64.7 years, IQR 50.2–77.7) and included
the highest percentage of non-vaccinated (20%, 64/314) and immunocompromised people
(51%, 159/314). Patients in the MOL group (42% female, median age 68.9, IQR 57.3–79.9)
were the oldest, and had the highest frequency of obese people (30%, 61/205). The RMD
group (59% female, median age 67.4 years, IQR 52–78.9) had the highest percentage of
smokers (31%, 44/142). The NRM/r group (57.5% female, median age 66.8 years, IQR
50.3–75.6) included the highest percentage of people fully vaccinated ± a booster dose
(97%, 116/120). The baseline characteristics of the study population, divided into the four
treatment groups, are fully reported in Table 1.

Table 1. Baseline characteristics of the study population, divided into the four treatment groups.

TOTAL
(n = 781)

RMD
(n = 142)

SOT
(n = 314)

MOL
(n = 205)

NRM/r
(n = 120) p-Value

Sex (n, %)
– Male 394 (50.4) 59 (41.6) 166 (52.9) 118 (57.6) 51 (42.5)

– Female 387 (49.6) 83 (58.5) 148 (47.1) 87 (42.4) 69 (57.5) 0.005

Age (median, IQR) 66.9 (52.4–77.9) 67.4 (52–78.9) 64.7 (50.2–77.8) 68.9 (57.3–79.9) 66.9 (50.3–75.6) 0.014

Vaccination (n, %)
– None 108 (13.8) 17 (12) 64 (20.4) 24 (11.7) 3 (2.5)

– One dose 14 (1.8) 2 (1.4) 8 (2.6) 3 (1.5) 1 (0.8)
– Full schedule 144 (18.4) 24 (16.9) 67 (21.3) 46 (22.4) 7 (5.8)

– Booster 515 (65.9) 98 (79.7) 175 (55.7) 132 (64.4) 109 (90.8) <0.001

Time from symptoms onset to
treatment (median days, IQR) 3 (2–4) 4 (2–5) 4 (3–5) 3 (2–4) 3 (2–3) <0.001
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Table 1. Cont.

TOTAL
(n = 781)

RMD
(n = 142)

SOT
(n = 314)

MOL
(n = 205)

NRM/r
(n = 120) p-Value

Obese (n, %) 178 (22.8) 26 (18.3) 62 (19.6) 61 (29.8) 29 (24.2) 0.027
Pregnant (n, %) 2 (0.3) 2 (1.4) 0 0 0 –

CKD (n, %) 75 (9.6) 8 (5.6) 47 (15) 16 (7.8) 4(3.3) <0.001
CHD (n, %) 404 (51.7) 79 (55.6) 155 (49.4) 113 (55.1) 57 (47.5) 0.360

Cancer (n, %) 189 (24.2) 42 (29.6) 85 (27.1) 27 (13.2) 35 (29.2) <0.001
COPD (n, %) 188 (24.1) 33 (23.2) 67 (21.3) 61 (29.8) 27 (22.5) 0.161

Cognitive impairment (n, %) 73 (9.4) 12 (8.5) 36 (11.5) 9 (4.4) 16 (13.3) 0.018
Stroke (n, %) 24 (3.1) 4 (2.8) 13 (4.1) 4 (2) 3 (2.5) 0.580

Diabetes (n, %) 141 (18.1) 29 (20.4) 53 (16.9) 33 (16.1) 26 (21.7) 0.501
Immunocompromised (n, %) 282 (36.1) 51 (35.9) 159 (50.6) 26 (12.7) 46 (38.3) <0.001

Current or former smoker (n, %) 144 (18.4) 44 (31) 43 (13.7) 40 (19.5) 17 (14.2) <0.001

Legend: RMD: remdesivir; SOT: sotrovimab; MOL: molnupiravir; NRM/r: nirmatrelvir/ritonavir; IQR: interquar-
tile range; CKD: chronic kidney disease; CHD: chronic heart disease; COPD: chronic obstructive pulmonary disease.

Most patients were referred to the prescribing centers either by their general practi-
tioners (n = 327, 42.5%) or by territorial medical units for the care of COVID-19 (n = 258,
33.5%); the remainder of patients were referred either by other specialists (n = 111, 14.4%)
or by the emergency department (n = 45, 5.8%). In 29 cases (3.8%), the patients had direct
contact with the ID specialist. No information was available for 11 patients. We found
that latency between symptoms onset and treatment was significantly higher for patients
treated with parenteral drugs, i.e., SOT (median 4 days, IQR 3–5) and RMD (median 4 days,
IQR 2–5) compared to oral antivirals MOL (median 3 days, IQR 2–4) and NRM/r (median
3 days, IQR 2–3) (p = 0.001).

Outcome Data

Deaths occurred in one patient in the SOT group (0.3%) and in two patients in the
RMD group (1.4%). No deaths occurred in the MOL and NRM/r groups. Eighteen patients
were hospitalized due to COVID-19 progression: five (1.6%) in the SOT group, seven (4.9%)
in the RMD group, four (1.9%) in the MOL group, and three (2.5%) in the NRM/r group.

Patients receiving treatment > 3 days from symptoms onset had a higher risk of
meeting the composite endpoint of death or hospitalization (12/317, 3.8%) in comparison
with those who started the treatment ≤ 3 days from symptoms onset (4/464, 1.3%, p = 0.023).

Kaplan–Meier survival curves for the composite outcome of each treatment group are
reported in Figure 1.

The average time at risk for an event was 27.35 days for RMD (standard error [SE] 0.27),
27.74 days for SOT (SE 0.13), 27.67 days for MOL (SE 0.19), and 27.44 days for NRM/r (SE
0.32). Head-to-head comparison of survival curves between each treatment group showed
significant differences only for RMD vs. SOT (difference in the cumulative percentage of
patients with COVID-19–related hospitalization or death through day 28 was 3.3%, 95%CI
−0.5–7.2%; p-value = 0.039). No statistical differences between other study groups were
observed in the survival analysis.

Multivariable analysis performed by Cox regression showed that patients receiving
SOT had a lower risk of meeting the composite outcome compared to patients in the
RMD group (HR 0.14, 95%CI 0.03–0.56, p = 0.005), while no significant differences were
evidenced between the RMD group and the MOL (HR 0.43, 95%CI 0.09–1.96, 0.273) and
NRM/r groups (HR 0.51, 95%CI 0.11–2.28, 0.374). Predictors of hospitalization and/or
death included a latency >3 days between symptoms onset and treatment administration
(HR 1.41, 95%CI 1.07–1.85, p = 0.013), chronic kidney disease (HR 5.01, 95%CI 1.30–19.3,
p = 0.019), and cancer (HR 3.11, 95%CI 1.07–9.09, p = 0.038), while a history of chronic
heart disease resulted in a protective factor (HR 0.24, 95%CI 0.07–0.80, p = 0.020). Complete
results of the Cox regression analysis are shown in Figure 2.
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Figure 2. Multivariable Cox regression analysis. Predictors of composite outcome (28-day hospital-
ization and/or death related to COVD-19).
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On IPTW-adjusted PS analysis, a trend in favor of SOT versus RMD was observed
(ATE −0.04, 95%CI −0.07–0.002, p = 0.063), while no significant differences emerged when
comparing the RMD group with the MOL (−0.01, 95%CI −0.07–0.04, p = 0.659) and NRM/r
(0.00, 95%CI −0.07–0.07, p = 0.983) groups. Analysis of standardized differences showed
good balance in baseline covariates between the four groups before and after weighting by
IPTW (Supplementary Table S2).

Drug intolerance was reported by 29 patients (4%), including eight cases leading to
drug discontinuation. Intolerance was reported by 5% in the MOL (10/205) and NRM/r
(6/120) groups, 4% in the RMD group (5/142), and 3% in the SOT group (8/314). Discon-
tinuation occurred only in the MOL (n = 5, 2.5%) and RMD groups (n = 3, 2.1%).

4. Discussion

Outpatient treatments for COVID-19 patients play a crucial role in the prevention of
disease progression to severe forms in patients at high risk of poor outcomes [1]. However,
continued evaluation of the safety and efficacy of these treatments is warranted, as new
SARS-CoV-2 VOCs will emerge, and population susceptibility will change due to previous
exposure and vaccine administration [13,14].

This study represents, to our knowledge, the largest multicenter report of real-life data
from Italy, where the prescription of antivirals and monoclonal antibodies has been subject
to strict regulation since their introduction in March 2021 [25]. Regulatory trials for all
available compounds either were carried out before SARS-CoV-2 vaccine rollout or excluded
vaccinated subjects [4,5,26]. Moreover, most trials did not focus on high-risk subjects, except
for one trial on the use of SOT [27]. Our study population is largely representative of patients
that are currently at greater risk for COVID-19, i.e., elderly patients older than 65 years old,
with multiple comorbidities predisposing to severe COVID-19, albeit mostly vaccinated
against COVID-19 [1,21,28,29].

All drugs showed low rates of hospitalization and/or death due to COVID-19 progres-
sion, in line with results from previous studies [16,19,30]. Multivariable analysis suggested
a possible advantage in the use of SOT in comparison with RMD, while no significant
differences were observed among the three antiviral agents (RMD, MOL, and NRM/r).

This study was conducted in the so-called “Omicron era”: in Tuscany, the Omicron
lineage B.1.1.529 was responsible for around 90% of new infections at the beginning of
2022, and reached 100% at the end of the study period in March 2022, when BA.1 and
BA.2 were at 52% and 47%, respectively [31,32]. The Omicron variant has been associated
with a reduced risk of hospitalization and death in the general population compared to
the Delta variant, although significant variation has been observed by age [33]. Moreover,
immunocompromised patients infected with the Omicron variant remain at high risk of
severe outcomes, as observed in a prospective cohort of 114 solid organ transplant recipi-
ents, patients on anti-CD20 therapy, and allogenic hematopoietic stem-cell transplantation
recipients, one of whom died and 23 (20%) of whom required hospital admission for a
median of 11 days [34].

Chronic kidney disease and cancer were confirmed to be predictors of severe outcomes
in patients with COVID-19, regardless of the use of early treatment against SARS-CoV-2.
Conversely, chronic heart disease was a predictor of positive outcomes. Both severe CKD
and cancer emerged as higher-risk comorbidities compared with other conditions, such as
old age, chronic heart diseases, metabolic disorders, or isolated hypertension, in a multi-
center cohort study carried out in Shanghai, China, during the 2022 Omicron wave [35].
Moreover, CKD patients have reduced treatment options, since the use of NRM/r and
RMD is contraindicated in patients with severe renal function impairment, i.e., a glomerular
filtration rate less than 30 mL/min, limiting the choice to MOL and/or mAbs.

It should be highlighted that SOT is not effective against Omicron BA.4 and BA.5, the
currently dominant subvariants [7,10]. However, we decided to include SOT patients in the
analysis, considering that real-life data on this compound could still be informative for the
future use of other antibodies. On the other hand, no report of SARS-CoV-2 resistance to
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RMD and/or oral antivirals (MOL and NRM/r) has emerged to date, and susceptibilities
of BA.4 and BA.5 VoCs to the three compounds were similar to those of the ancestral
SARS-CoV-2 strain [36].

All patients were prescribed the drugs within a relatively short period of time from
symptoms onset, within a median 3 days for oral antivirals and 4 days for RMD and
SOT, according to AIFA criteria [22]. It is worth noting that a time from symptoms onset
to treatment administration longer than 3 days was a predictor of a negative outcome
in our population. This finding, along with the absence of significant difference in the
outcomes, supports the use of oral compounds in situations where logistics issues may
delay administration of parenteral drugs [25].

Moreover, the four treatments appear to be acceptably safe in terms of adverse events,
which ranged from 3 to 5% of patients, similar to those found in regulatory clinical trials
and other real-life studies [16,19,30].

The main limitation of this study is its retrospective design and the non-randomized
assignment to the four treatment groups. Different distributions of patients’ features
and comorbidities across groups are related to the different drug characteristics and/or
may reflect specific attitudes of prescribers. For example, the higher frequency of chronic
kidney disease in the SOT group can be explained by drug pharmacokinetics (i.e., no
potential for nephrotoxicity, unlike both RMD and NRM/r). The excess of unvaccinated
and immunocompromised people in the SOT group is likely to reflect a greater confidence
in this compound for the frailest patients. Furthermore, NRM/r was not available until
mid-February in Italy.

Furthermore, we did not collect and analyze data about COVID-19 symptoms, and we
did not investigate the potential correlation between clinical manifestation and COVID-
19 severity. Likewise, we could not retrieve data on the full immunization schedules of
all participants: the immunization campaign in Italy has used different combinations of
vaccines since its start in 2020 [37], and we cannot exclude the possibility that such variables
might influence COVID-19 outcomes and drug tolerability. However, an exhaustive analysis
of the role of these variables in COVID-19 patients was beyond the scope of our study.
Another limitation is that we did not collect data on the time to viral clearance, nor on the
presence of rebound infection, which has recently been reported after the administration of
NRM/r and MOL [18,38].

5. Conclusions

In conclusion, this study represents one of the first efforts at real-life data collection
on COVID-19 outpatient treatment options. We observed a low incidence of adverse
events and negative outcomes with all currently used treatments, and we confirmed the
paramount importance of the administration timing of early therapies against COVID-19.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15020438/s1, Table S1: Characteristics of the excluded patients in
our cohort. Table S2: Analysis of standardized differences showed good balance in baseline covariates
between the four groups before and after weighting by inverse probability of treatment weighting.
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Abstract: The influenza-specific antibody repertoire is continuously reshaped by infection and
vaccination. The host immune response to contemporary viruses can be redirected to preferentially
boost antibodies specific for viruses encountered early in life, a phenomenon called original antigenic
sin (OAS) that is suggested to be responsible for diminished vaccine effectiveness after repeated
seasonal vaccination. Using a new computational tool called Neutralization Landscapes, we tracked
the progression of hemagglutination inhibition antibodies within ferret antisera elicited by repeated
influenza A/H3 infections and deciphered the influence of prior exposures on the de novo antibody
response to evolved viruses. The results indicate that a broadly neutralizing antibody signature can
nevertheless be induced by repeated exposures despite OAS induction. Our study offers a new way
to visualize how immune history shapes individual antibodies within a repertoire, which may help
to inform future universal influenza vaccine design.

Keywords: mapping antibody repertoires; original antigenic sin; immune imprinting; repeated
influenza exposures; broadly neutralizing antibody; influenza A H3N2 virus

1. Introduction

Rapidly evolving pathogens such as influenza frequently change their antigenicity in
order to escape the host immune system, and the emergence of antigenically drifted strains
necessitates the annual update of seasonal influenza vaccine components. Despite efforts to
forecast which strain(s) will be most prevalent, a suboptimal or mismatched vaccine strain
may occasionally be selected for vaccine production, resulting in reduced protection [1–4].
In the US, influenza vaccine effectiveness in the past decades has fluctuated significantly
from 10% in the 2004–2005 season [1] to 60% in the 2010–2011 season (https://www.cdc.
gov/flu/vaccines-work/effectiveness-studies.htm) (accessed on 11 April 2021) [5]. While
vaccine mismatch directly accounts for this low efficacy, pre-existing host immunity also
influences vaccine performance [3,6–12].

An individual’s exposure history, acquired through recurrent infections and/or vacci-
nations, shapes their unique antibody repertoire and influences their response to newly
emerging influenza viruses [6,10–19]. For example, residual antibodies from prior expo-
sures may grant subsequent protection against viruses with similar antigenicity [15–17,20].
However, immune imprinting from viruses encountered early in life can also lead to in-
sufficient de novo antibody response to evolved viruses—a phenomenon called original
antigenic sin (OAS) [21]. While the exact mechanisms remain unknown, OAS has been
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associated with low antibody responses in individuals with repeated seasonal vaccination
and has been hypothesized to negatively affect vaccine effectiveness in frequent vacci-
nees [1,9,20,22–28]. These reports provide a glimpse of the complex interplay between
prior and current immunity, highlighting the influence of immune imprinting that must
be addressed in the field of vaccinology. Elucidating the impact of OAS on de novo an-
tibody responses will provide insights for future influenza vaccine development with
improved performance.

In this work, we used a newly developed computational tool—Neutralization Land-
scapes [29]—to track the progression of the hemagglutination inhibition (HAI) responses
in ferrets after repeated influenza A/H3 infections, and characterized the HAI antibody
patterns induced. By mapping the HAI responses at the single-antibody scale, we demon-
strated that repeated influenza A/H3 exposures, despite OAS induction, can expand the
breadth of de novo HAI antibody response.

2. Materials and Methods
2.1. Viruses

The panel of H3N2 viruses used for the study included A/Philippines/2/1982 (Philip-
pines 1982), A/Wisconsin/67/2005 (Wisconsin 2005), A/Uruguay/716/2007 (Uruguay 2007),
A/Perth/16/2009 (Perth 2009), A/Victoria/361/2011 (Victoria 2011), A/Texas/50/2012
(Texas 2012), A/Switzerland/9715293/2013 (Switzerland 2013) and A/Hong Kong/4801/2014
(Hong Kong 2014), each of which has served as the prototype for the H3N2 seasonal
influenza vaccine component in past decades. All H3N2 viruses were propagated in
9–10-day-old embryonated eggs, and aliquots were stored at −80 ◦C until use.

2.2. Ferret Antisera

Seronegative male ferrets (Triple F Farm) at 15–16 weeks old were infected intranasally
at two-week intervals with each of the four H3N2 viruses (V1 = A/Uruguay/716/2007 or
Uruguay 2007, V2 = A/Texas/50/2012 or Texas 2012, V3 = A/Switzerland/9715293/2013
or Switzerland 2013, and V4 = A/Hong Kong/4801/2014 or Hong Kong 2014) [6]. After
ferrets were anesthetized, approximately 105 focus-forming units of virus in a total of 1 mL
was delivered into both nostrils per ferret at 0.5 mL per nostril [6]. Ferrets were bled via
venipuncture of the cranial vena cava under anesthesia at 14 days after each infection. Sera
from four ferrets in each infection scheme were collected for HAI titer determination. All
procedures were carried out in accordance with a protocol approved by the Institutional
Animal Care and Use Committee of the Center for Biologics Evaluation and Research, US
Food and Drug Administration.

2.3. HAI Assay

Following pre-treatment with a receptor-destroying enzyme (Denka-Seiken), individ-
ual ferret sera were 2-fold serially diluted and were 1:1 (v/v) incubated with testing virus
solution containing 4 hemagglutinin (HA) units per 25 µL at room temperature for 30 min
before the addition of 50 µL of 0.75% guinea pig erythrocytes in the presence of 20 nM
oseltamivir, as previously described [6,14]. Wells containing PBS only or virus only served
as the negative and positive controls in each HAI assay performed. The endpoint HAI
titer was defined as the reciprocal of the highest serum dilution that yielded a complete
HA inhibition, and a titer 5 was assigned if no inhibition was observed at the starting 1:10
serum dilution. HAI geometric mean titers (GMTs) were calculated, along with the 95%
confidence intervals.

3. Neutralization Landscapes and Decomposition of Ferret Antisera

Neutralization Landscapes uses monoclonal antibody data to quantify viruses cross-
reactivity and enumerate the space of potential antibody inhibition profiles [29]. A land-
scape is a low-dimensional map where antibodies and viruses are represented as points
and antibody-virus distance translates into experimentally measurable neutralization. The
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positions of eight H3N2 viruses were determined using neutralizing titers from six human
monoclonal antibodies targeting the head of influenza HA [29]. Four antibodies (CH65 [30],
5J8 [31], C05 [32], and F045-092 [33]) target the receptor binding site, another antibody
(F005-126) cross-links between two monomers within a hemagglutinin trimer [34], and
the last binds to hemagglutinin’s lateral patch [35]. Previous serum-based efforts using
antigenic cartography suggest that these antibodies do not need to bind to the same epi-
tope [36], and that the landscape can include H1N1- and H3N2-specific antibodies [29].
Moreover, we posit that this landscape will become more accurate as more antibodies
targeting different epitopes are added. These assertions can be directly tested by assessing
the landscape’s ability to predict unmeasured interactions.

The 50% inhibitory concentrations (IC50s) were determined between each antibody
and virus pair, and their positions on the neutralization landscapes were fixed using two-
dimensional (2D) scaling on the log10(IC50) values, where an antibody–virus distance of
d unit translates into IC50 = 2d·10−10 Molar [29]. To accommodate the HAI titers used in
this study, a few cosmetic changes were made in computation. First, the spacing between
gridlines was decreased by a factor of log10( 1

2 ) = 3.3 so that 1 grid unit represents a two-fold
decrease in neutralization. Second, HAI titers were converted into absolute Molar units
by scanning across different conversion factors and minimizing the absolute mean error
between log2(measured HAI titers) and log2(inferred HAI titers from decomposition). The
optimal conversion factor translated an antibody–virus map distance of d units into an HAI
titer = 6000/2d. This global conversion factor had been applied to all antisera analyzed in
this work.

We decomposed each antiserum by determining which set of antibody coordinates
and stoichiometries best matched the measured HAI titers against the eight viruses in
the panel. Decomposition proceeded by considering n = 1, 2, 3 . . . antibodies until the
error of the decomposition decreased below a set threshold [29]. To prevent overfitting,
decomposition with an additional antibody was only accepted if it decreased the mean
fold-error between measured and inferred titers by ≥20% [29]. The relative fractions of
each antibody in the mixture were allowed to vary, although each antibody must comprise
≥10% of the mixture and the sum of all fractions must sum to 100%.

In any neutralization landscape, the abundance of each antibody in a mixture was
depicted by the size of the gray circle surrounding it. For any virus lying within a gray
circle, the antibody at the center of that circle was predicted to have an HAI titer ≥ 80
against it. If an antibody comprised a fraction f of a mixture, then its ability to inhibit
a virus decreased by f -fold. For example, a monoclonal antibody was surrounded by a
circle of radius dmAb = 6.2 grid units (6000/2dmAb = 80), while an antibody that comprised a
fraction f of the serum would be surrounded by a circle of radius rmAb − log2

(
1
f

)
. When

multiple antibodies were present in a serum, their collective inhibition or neutralization
against a virus was, thus, computed using a competitive binding model,

IC50,Competitive = (∑j fj/IC50
(j))−1,

where fj represented the fractional composition of the jth antibody and IC50
(j) denoted the

concentration at which this monoclonal antibody would neutralize the virus by 50% [29].
In this way, any combination of points (which determined IC50

(j) through antibody–virus
map distance) at any stoichiometry (fj) was translated into the mixture’s collective HAI
titer against the virus panel.

4. Results
4.1. Validation of Neutralization Landscapes

Neutralization Landscapes uses fixed virus coordinates to depict the location and
magnitude of constituent neutralizing antibodies within an antiserum elicited by natural
infection or vaccination [29]. A key assumption of Neutralization Landscapes is that the
neutralization profiles of all dominant antibodies within a serum can be represented as
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individual points on the map, where the Euclidean distance d between each antibody
coordinate and virus coordinate translates into an HAI titer of 6000/2d. This forms a
basis set of individual antibody behaviors from which we can determine the minimal
combination of antibodies that can replicate a serum’s measurements. This process was
previously validated by decomposing mixtures of 2–3 antibodies [29]; here, we extend this
work to analyze ferret sera for the first time.

The resulting decompositions predict the functional behavior of the dominant antibod-
ies within serum while neglecting the weaker or less frequent antibodies that do not affect
a serum’s HAI profile. Since sera may contain multiple functionally similar antibodies, we
call the resulting HAI profiles “antibody signatures” as they may represent one or multiple
antibodies within the response.

On the neutralization landscapes, the gray regions surrounding each antibody sig-
nature indicate an HAI titer ≥ 80 against any virus lying within (we refer to this virus as
strongly inhibited by the mixture), and stronger antibody signatures could overwhelm the
inhibition of weaker antibodies placed further out on the map.

To decompose each antiserum, we first determined which combination of coordinates
and stoichiometries best matched the experimental HAI titers against the eight H3N2
viruses whose coordinates had been previously fixed using a different antibody–virus
panel [37]. The results were validated in two ways. First, Figure 1A showed the de-
composition of a ferret antiserum elicited by sequential influenza A/H3 infections in a
neutralization landscape in which the HAI titers predicted were on average ≤2-fold off
from the experimental measurements (Figure 1A). The same analysis was extended to
include all 288 HAI measurements involved in this study, with each point representing
a pair of predicted titers and corresponding experimental values in Figure 1B. It yielded
a coefficient of R2 = 0.6 (Figure 1B), with only 2% (6/288) of map predicted titers being
≥10-fold off from the experimental measurements.
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Second, while we decomposed ferret antiserum using the HAI titers against all eight 
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measurements to predict the HAI titers against the remaining four viruses in the panel 
(Figure 2B; titers against red viruses were used for direct decomposition and titers against 
gray viruses were inferred from the map). Despite the difficulties of triangulating the 

Figure 1. Characterizing the accuracy of Neutralization Landscapes. (A) The decomposition of ferret
antiserum elicited by sequential H3N2 infections in a neutralization landscape (left) and the resulting
predicted/measured HAI titers (right). Larger antibody–virus distance on the landscape corresponds
to weaker antibody inhibition, with Euclidean distance d representing an HAI titer of 6000/2d. The
resulting antibody signatures represent the predicted inhibition profiles of the dominant antibodies
within the serum. (B) Cumulative analysis for all ferret antisera analyzed in this work. The inset
shows the distribution of fold-errors for these predictions.

Second, while we decomposed ferret antiserum using the HAI titers against all eight
viruses (Figure 2A), we also performed another decomposition by using the half set of
measurements to predict the HAI titers against the remaining four viruses in the panel
(Figure 2B; titers against red viruses were used for direct decomposition and titers against
gray viruses were inferred from the map). Despite the difficulties of triangulating the
coordinates and stoichiometries of multiple antibodies using a half set of the measurements,
the predicted HAI titers were on average 6.0-fold off from the experimental measure-
ments, only slightly larger than the 2.4-fold error when the full suite of titers was used for
decomposition (Figure 2C).
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Taken together, these validations demonstrated that the neutralization landscapes
accurately characterize the HAI profiles of ferret antisera.

4.2. Progression of HAI Responses Following Sequential Infections

We first conducted a sequential infection experiment to demonstrate how the antibody
repertoire in ferrets was shaped by recurring exposure. Figure 3A–D is the traditional
way to present the neutralizing activities of HAI antibodies developed in ferrets after
infection with first virus A/Uruguay/716/2007 (Uruguay 2007, denoted as V1 throughout
this work), then the second virus A/Texas/50/2012 (Texas 2012, V2) (V1→V2), third
A/Switzerland/9715293/2013 (Switzerland 2013, V3) (V1→V2→V3), and fourth A/Hong
Kong/4801/2014 (Hong Kong 2014, V4) (V1→V2→V3→V4). Uruguay 2007 (V1) infection
elicited V1-specific ferret HAI titers with limited cross-reactivity towards viruses that
emerged before 2005 or after 2007. Following each sequential infection with V2, V3, and V4,
the resulting ferret antisera gradually extended the HAI cross-reactivity from V1-specific
to inhibit (with geometric mean titers (GMTs) ≥ 80) all A/H3 viruses in the panel except
A/Philippines/2/1982 (Philippines 1982), which had disappeared from circulation more
than three decades earlier (Figure 3B–D). Sequential infections also induced typical OAS,
where ferret antisera always had lower HAI titers toward later exposed V2, V3 or V4 than
first encountered V1 (Supplementary Figure S1A–C). In contrast, infection by V2, V3 or V4
alone (without a priming V1 infection) elicited higher homologous HAI GMTs (Figure 4
and Supplementary Figure S1D–F).

We then used Neutralization Landscapes to track the progression of HAI antibodies
developed throughout these four infections (Figure 3E–H). Infection by V1 showed one anti-
body signature that strongly inhibited V1 and three nearby viruses—A/Wisconsin/67/2005
(Wisconsin 2005), A/Victoria/361/2011 (Victoria 2011), and Texas 2012 (note that Hong Kong
2014 also had a measured titer ≈ 80 (Figure 3A), although this is not seen on the landscape
(Figure 3E)). In each subsequent infection (V1→V2, V1→V2→V3, and V1→V2→V3→V4),
we detected two distinct antibody signatures; one “specific” antibody (i.e., that strongly
inhibited all infection strains) and another “non-specific” antibody signature (that inhibited
little-to-no infection strains).
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strains strongly inhibited. These antibody signatures represent the dominant inhibition
profiles within each serum: weaker antibody signatures (including those elicited by earlier
infections) may either be masked by these dominant profiles or the profiles of functionally
similar antibodies may be combined within one antibody signature. In a sense, these
landscapes provide an “Occam’s razor” description of each serum using the minimum
possible number of HAI profiles. Note that these landscapes do not perfectly reproduce all
titers, but they are highly consistent on average (Figure 1).

Despite OAS induction, ferret antisera after the V1→V2→V3→V4 infections had all
GMTs within four-fold of one another across the entire virus panel (except for the older
Philippines 1982 strain), indicating extended cross-reactivity (Figure 1B–D). The individual
maps of Ferrets #1–4 in this cohort also showed similar antibody patterns, i.e., that the
end antisera after the V1→V2→V3→V4 infections cross-reacted with most viruses in the
panel except Philippines 1982 (individual ferret traces shown in Supplementary Figures
S2–S4). These progressional maps collectively suggest that a broadly neutralizing antibody
signature (defined as an antibody with HAI titer ≥ 80 against multiple infection strains)
can be guided into place by sequential exposures despite OAS induction.

4.3. Influence of Prior Influenza Exposures on De Novo Antibody Response

We next compared the HAI response of ferrets infected with V4 alone with the responses
elicited after one (V3→V4), two (V2→V3→V4), or three prior infections (V1→V2→V3→V4),
to assess how exposure history affected the de novo HAI antibody response to the latest
infection by V4. Unlike infection by V4 alone, which elicited higher HAI titers toward itself
than to most viruses in the panel (Figure 5A), ferret antisera induced after additional prior
exposures had HAI GMTs toward V4 not higher than those toward the earlier infection
strains (Figure 5B–D), a typical OAS response that was also seen for every sequence of
infections in Figure 3B–D.
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panel except Philippines 1982 (individual ferret traces shown in Supplementary Figures 
S2–S4). These progressional maps collectively suggest that a broadly neutralizing anti-
body signature (defined as an antibody with HAI titer ≥ 80 against multiple infection 
strains) can be guided into place by sequential exposures despite OAS induction. 

4.3. Influence of Prior Influenza Exposures on De Novo Antibody Response 
We next compared the HAI response of ferrets infected with V4 alone with the re-

sponses elicited after one (V3→V4), two (V2→V3→V4), or three prior infections 
(V1→V2→V3→V4), to assess how exposure history affected the de novo HAI antibody re-
sponse to the latest infection by V4. Unlike infection by V4 alone, which elicited higher 
HAI titers toward itself than to most viruses in the panel (Figure 5A), ferret antisera in-
duced after additional prior exposures had HAI GMTs toward V4 not higher than those 
toward the earlier infection strains (Figure 5B–D), a typical OAS response that was also 
seen for every sequence of infections in Figure 3B–D. 

 
Figure 5. Mapping how exposure history shapes the ferret antibody response. Naïve ferrets were 
infected with (A) V4 = Hong Kong 2014 , or with prior exposure to (B) V3 = Switzerland 2013 
, (C) V2 = Texas 2012 , and (D) V1 = Uruguay 2007 . All antisera were analyzed via HAI after 
the final infection with Hong Kong 2014. Individual HAI titers are shown from four ferrets (points) 
and geometric means (bar graphs) with 95% confidential intervals (error bars). * indicates p < 0.05 
vs. Hong Kong 2014 by Mann–Whitney test after data were log transformed. (E–H) Each set of meas-
urements was decomposed to determine the antibody signatures (the HAI profiles of the dominant 
antibodies within these sera). Each antibody signature (gray) is predicted to have an HAI titer ≥ 80 
against any virus within the gray circle, with the size of this circle proportional to the fractional 
composition of the antibody signature within the serum. An antibody–virus distance d denotes an 
HAI titer of 6000/2d. 

. All antisera were analyzed via HAI
after the final infection with Hong Kong 2014. Individual HAI titers are shown from four ferrets
(points) and geometric means (bar graphs) with 95% confidential intervals (error bars). * indicates
p < 0.05 vs. Hong Kong 2014 by Mann–Whitney test after data were log transformed. (E–H) Each
set of measurements was decomposed to determine the antibody signatures (the HAI profiles of
the dominant antibodies within these sera). Each antibody signature (gray) is predicted to have an
HAI titer ≥ 80 against any virus within the gray circle, with the size of this circle proportional to the
fractional composition of the antibody signature within the serum. An antibody–virus distance d
denotes an HAI titer of 6000/2d.
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We then used Neutralization Landscapes to discern how prior exposures impacted
subsequent antibody development at the single-antibody scale (average response shown in
Figure 5E–H and individual responses shown in Figure S2). Upon infection by V4 alone,
one specific antibody signature emerged that strongly inhibited V4 (Figure 5E). In fact, a
dominant antibody signature specific for the infecting strain was observed in all individual
ferrets after single infection (regardless of virus), although an additional minor antibody
signature may also be seen in some ferrets (Figure S3).

Ferrets infected by two or more strains consistently showed a polyclonal response,
with a specific antibody signature targeting the infection strains and a non-specific antibody
signature targeting other viruses in the panel (Figure 3F–H and Figure 5F–H). While
multiple infections often resulted in a single predicted antibody signature that strongly
inhibits all infection strains (Figure 5F,H), one triple infection resulted in a broad response
mediated by two distinct antibody signatures (Figure 5G: Switzerland 2013 and Hong Kong
2014 were strongly inhibited by the top antibody signature, while Texas 2012 was strongly
inhibited by the bottom signature). Multiple infections always resulted in OAS, since
any antibody signature that strongly inhibited a prior infection strain exhibited weaker
inhibition against V4 (i.e., V4 lies further from the center of the gray antibody circles than
the earlier infection strains, Figure 5F–H). Nevertheless, following the V1→V2→V3→V4
infections, ferrets developed antibodies that inhibited not only all four infection strains but
also the other H3 viruses in the panel, except Philippines 1982.

Taken together, these results suggest that prior exposures affect the antibody response,
but that a broadly neutralizing antibody signature can be induced by repeated exposures,
even in the presence of OAS.

5. Discussion

It is estimated that most humans are infected with influenza by the age of 3 and
continue to be reinfected by antigenically drifted strains every 5–10 years [38,39]. Given
the variability in infection histories and the stochastic processes involved in each specific
infection, it is exceedingly difficult to determine the composition of pre-existing immunity
and how it affects an individual’s antibody repertoire. Traditionally, antigenic cartography
recomputes the antigenic positions of viruses based on the inhibition capacity of sera used in
each study [3,6,14,40,41]. This does not take into account the relationships between viruses
inferred from previous studies and complicates efforts to map the antibody repertoire
within individual sera. In contrast, the newly developed Neutralization Landscapes uses
fixed virus coordinates (determined by a panel of well-defined monoclonal antibodies) to
characterize the polyclonal antibodies of the sera [29].

This framework utilizes serological assays to peer into the antibody response to
assess the number and inhibition profiles of the antibodies within. Such questions cannot
be directly addressed from serum measurements, yet they are crucial to resolve when
polyclonal serum is dominated by a single antibody signature (that can be highly susceptible
to virus escape mutants) versus multiple antibodies working together. Moreover, this
framework can assess the breadth and potency of the antibodies elicited by each virus
exposure, providing a vantage to study how preexisting immunity shapes the subsequent
antibody response.

These landscapes emphasize that knowing the cross-reactivity relationships between
viruses (i.e., the coordinates of each strain on the landscape) and a ferret’s infection history
is insufficient to fully predict the antibody response. Landscapes breaks this degeneracy
by using HAI titers to search through the space of antibody phenotypes and describes the
antibody signatures within sera.

In this study, we combined Neutralization Landscapes with a ferret reinfection model
to dissect the collective HAI antibody responses after repeated infections, and deciphered
the influence of prior exposures on de novo antibodies. Using four recent H3N2 vaccine
strains—Uruguay 2007 (V1) from the 2008 to 2010 seasons, Texas 2012 (V2) from 2013 to
2015, Switzerland 2013 (V3) from 2015 to 2016, and Hong Kong 2014 (V4) from 2016 to
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2018—we tracked ferret HAI antibody footprints after each step of the sequential infections
V1→V2→V3→V4 and mapped de novo HAI responses under four scenarios of prior
exposures (V4 alone, V3→V4, V2→V3→V4, and V1→V2→V3→V4). After two or more
infections, we found that the ferret antibody repertoire often contained at least one “specific”
antibody signature that strongly inhibited all infection strains, and at least one “non-
specific” antibody signature that weakly interacted with other H3 viruses in the panel.
Along each step of the exposures V1→V2→V3→V4, both the specific and non-specific
signatures tended to move closer to the infection strains. Eventually, a single cross-reactive
antibody signature emerged that potently inhibited all four infection strains and the rest
of the virus panel except Philippines 1982 (Figure 3H). These results are consistent with
the hypothesis that with each additional infection, antibodies are refocused on conserved
epitopes or structural regions across different infection strains [42–44].

In a classical immune response to the same antigen, the reaction from the primary
exposure is greatly magnified in subsequent encounters. OAS occurs upon exposure to
antigenically related viruses, where the response is skewed more heavily towards the earlier
infection strains than to the latest strain. While this OAS phenomenon has been suggested to
decrease vaccine effectiveness [9,18,27,45–47], seasonal vaccination can persistently extend
the number of strains that the human antibody repertoire potently inhibits even when
antibodies against earlier viruses are back-boosted [40]. In this study, we observed OAS
with each subsequent infection, regardless of the total number of exposures (Figure 3B–D
and Figure 5B–D). Despite the ubiquity of OAS, the cross-reactivity of ferret antisera
increased with each additional infection. Previously, we also demonstrated that repeated
A/H3 infections enhanced antibody avidity toward both early and later exposed viruses,
resulting in extended antibody cross-reactivity, despite the induction of OAS costs de novo
antibodies specific for contemporary viruses [6]. A recent study has also reported that
ferrets sequentially immunized with antigenically different recombinant H3 HAs develop
broadly neutralizing antibody responses and are more resistant to antigenically distinct
viruses [48]. In humans, seasonal vaccination can also persistently extend cross-reactive
antibody landscapes, especially with antigenically advanced vaccine strains, although
antibodies against early exposed viruses are back-boosted by seasonal vaccination as
well [40]. It is reported that both OAS and non-OAS antibodies originate from clonally
related B cells and target the same general regions of HA, although OAS antibodies bind
with low affinities [49]. Understanding the mechanisms that drive clonal selection of
non-OAS antibodies with broad cross-reactivity is crucial for next generation universal
influenza vaccine development.

In this study we also noticed that the inhibition profiles of ferret antibodies following
V1→V2 or V3→V4 infection were different, despite both schemes showing OAS. Antibodies
derived from V1→V2 infection strongly inhibited both V1 and V2 (Figure 3B,F), whereas
antibodies generated after V3→V4 infection produced a strong HAI response only against
V3 and a weak inhibition against V4 (Figure 5B,F). Since the first infection by V1 or V3
resulted in high homologous neutralizing titers (HAI ≥ 320) in all eight ferrets, we hy-
pothesize that the different outcomes for the subsequent infection are due to the antigenic
distance between the first and second infecting strains. In the neutralization landscapes, V1
(Uruguay 2007) and V2 (Texas 2012) are antigenically similar (within 0.6 antigenic units)
and, hence, resemble primary and secondary infections by nearly identical viruses, while
V3 (Switzerland 2013) and V4 (Hong Kong 2014) are separated by 4.6 antigenic units and
are analogous to infection by two distinct strains [29]. Further experiments are warranted
to verify whether similar antibody responses correlate with virus antigenic distances.

Of note, the Neutralization Landscapes in this study used fixed virus coordinates
that were pre-determined by human monoclonal antibodies, which may fundamentally
differ from those built on ferret antisera [29,37]. For example, Uruguay 2007 (V1) and
Texas 2012 (V2) are considered antigenically distinct by ferret antisera raised from a single
infection (Figures 3A and 4B), whereas these two strains are considered antigenically similar
and lie close together on the neutralization landscapes (Supplementary Figure S5) [3].
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These antigenic differences between human and ferret antibody-based characterizations
may arise because of differences between the HAI and neutralization assays, or because
humans have complex immune histories that imprint an antibody repertoire, whereas
reference ferret antisera are raised in naïve ferrets exposed to a single virus strain [3].
Moreover, some inconsistencies between the landscape titers and the measurements are
expected so to avoid overfitting the intrinsic noise of the HAI assay or the heterogeneous
responses between individual ferrets. Nevertheless, the full suite of HAI titers presented
on the neutralization landscapes shows an average two-fold error to the experimental
measurements (Figures 1B and 2C), demonstrating that the antigenic relationships among
the majority of the viruses in the panel are the same across humans and ferrets.

In summary, by tracking the changes in the inhibition profile of ferret antisera induced
by repeated influenza A/H3 infections, we demonstrated that a broadly neutralizing
antibody could be guided along the map after a series of infections. We further show that
prior immune history can heavily influence the ferret antibody repertoire. In ferrets exposed
to two or more viruses, a broadly neutralizing antibody signature that potently inhibited
all infection strains was, nevertheless, produced at the expense of de novo HAI antibodies
(Figure 3H). While our current work was focused on HA head-specific antibodies, it does
not consider antibodies directed towards the HA stem and neuraminidase that have also
been shown to exhibit OAS and may influence the dynamics of this system [50,51]. Hence,
complementing this framework with binding or neutralization landscapes would help to
resolve the head- versus stem-directed antibody response. Ongoing work will refine these
antibody trajectories across multiple infections and multiple regions of an influenza virus,
which will help to develop strategies that further expand the broadly neutralizing antibody
pool via vaccination to protect against emerging influenza strains.
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Abstract: COVID-19 cases caused by new variants of highly mutable SARS-CoV-2 continue to be
identified worldwide. Effective control of the spread of new variants can be achieved through
targeting of conserved viral epitopes. In this regard, the SARS-CoV-2 nucleocapsid (N) protein, which
is much more conserved than the evolutionarily influenced spike protein (S), is a suitable antigen.
The recombinant N protein can be considered not only as a screening antigen but also as a basis
for the development of next-generation COVID-19 vaccines, but little is known about induction of
antibodies against the N protein via different SARS-CoV-2 variants. In addition, it is important to
understand how antibodies produced against the antigen of one variant can react with the N proteins
of other variants. Here, we used recombinant N proteins from five SARS-CoV-2 strains to investigate
their immunogenicity and antigenicity in a mouse model and to obtain and characterize a panel
of hybridoma-derived monoclonal anti-N antibodies. We also analyzed the variable epitopes of
the N protein that are potentially involved in differential recognition of antiviral antibodies. These
results will further deepen our knowledge of the cross-reactivity of the humoral immune response
in COVID-19.

Keywords: SARS-CoV-2; nucleocapsid phosphoprotein; monoclonal antibody; immunogenicity;
recombinant protein; cross-reactivity; epitopes

1. Introduction

During almost three years of the global pandemic caused by SARS-CoV-2, the virus
genome has evolved significantly, generating multiple lineages and variants that have
spread readily around the world [1–3]. Moreover, such variability in the viral antigenic
properties has resulted in a significant decrease in COVID-19-vaccine effectiveness against
genetically evolved SARS-CoV-2 variants and caused widespread vaccine breakthrough
infections [4,5]. This is mainly because the vast majority of COVID-19 vaccines elicit Spike-
specific antibodies, but the Spike viral protein is highly variable and easily mutates to
escape population immunity [6,7]. In contrast to the Spike protein, the viral nucleocapsid
(N) protein is highly conserved among all SARS-CoV-2 variants and has 90% similarity to
the SARS-CoV-1 N protein [8]. High levels of N-specific IgG antibodies are induced upon
COVID-19, since N is the most abundantly expressed SARS-CoV-2 protein [9]. Furthermore,
the N protein is one of the major targets for virus-specific T-cell responses [10], which
makes this antigen a promising target for COVID-19 vaccine development [11]. Indeed, it
was shown that a Spike-based vaccine supplemented with the N protein conferred acute
protection in both the lung and the brain after a challenge, while a Spike-based vaccine
alone provided acute protection only in the lung [12].

N is a flexible and multivalent RNA-binding protein that contains three dynamic
disordered regions: the N-terminal domain (NTD), the linker and the C-terminal domain
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(CTD). These regions undergo liquid–liquid phase separation when mixed with RNA [9].
A central β-hairpin of the N molecule contains a serine/arginine-rich region (residues
176–209) that serves as a regulatory element [13]. A recent study found that the N protein
can be readily identified on the surfaces of SARS-CoV-2-infected and surrounding cells,
where it is bound via electrostatic high-affinity binding to heparan sulfate and heparin [14].
This surface localization of the N protein makes it accessible to anti-N antibodies, which
activate Fc-receptor-expressing innate immune cells. Furthermore, N is able to bind, with
high affinity, to 11 human chemokines, including CXCL12β: a leukocyte chemotaxis factor,
inhibited by N, from SARS-CoV-2, SARS-CoV-1 and MERS-CoV [14].

The N protein is an important antigen for development of COVID-19 diagnostics.
First of all, this antigen can be directly detected in biological fluids for the purpose of
diagnosis in the early stages of infection. The specificity and relatively high sensitivity
of this direct analysis has been shown in fluorescence immunochromatographic (FIC)
assays [15] and ELISA tests [16,17]. Moreover, strong positive correlation was observed
between elevated plasma N-antigens and odds of pulmonary damage severity, resulting
in worsened clinical outcomes [17,18]; therefore, N-level measurement upon hospital
admission may improve risk stratification through identification of patients with implicit
odd of severe diseases [18]. An N-antigen-based assay may be performed in a simple
self-test format, although its sensitivity and diagnostic accuracy would be lower compared
to those of an RT-PCR assay [19]. On the other hand, the N protein may be used as a basis
for ELISAs that detect antiviral antibodies and are similar in specificity and sensitivity
to those based on S-protein fragments. Full-length and truncated forms are suitable for
development of test systems; the latter showed greater sensitivity in analysis of mouse,
rabbit and human sera and seems to be a better serological marker for evaluating SARS-
CoV-2 immunogenicity [20]. It was shown that antibodies against S and N proteins in
COVID-19 convalescents were both detectable for up to 200 days after a positive SARS-
CoV-2 RT-PCR test [21], but demonstrated markedly different trends in signal intensity:
anti-N antibodies were characterized with lower persistence [22].

Despite the highly conservative nature of the N protein, it still undergoes slow evolu-
tionary changes, which can potentially affect its tertiary structure [23]. As a consequence,
the sensitivity and specificity of N-based COVID-19 diagnostic tools may be compromised.
Previously, we observed cross-reactivity of anti-N antibodies, raised to the ancestral SARS-
CoV-2 virus, through demonstration of a strong positive correlation in the magnitudes of
anti-N (B.1) antibodies and antibodies specific to various variants of concern (VOCs) [24].
However, little is known about the immunogenicity and antigenicity of the N proteins of
these VOCs or whether slight antigenic differences can affect the performances of N-based
diagnostic tools. Here, we assessed the immunogenicities of the recombinant N proteins
of five SARS-CoV-2 strains belonging to different lineages, as well as cross-reactivity of
induced anti-N antibodies. In addition, we generated and characterized several monoclonal
antibodies (mAbs) raised to the N protein of the B.1 virus, with different epitope specifici-
ties. Our results revealed the varied recognition repertoire of antiviral antibodies generated
in response to immunization with the N proteins of different VOCs and cross-reactivity of
anti-N (B.1) mAbs.

2. Materials and Methods
2.1. Cells, Viruses and Proteins

African green monkey kidney Vero E6 cells were obtained from the American Type
Culture Collection (ATCC) and maintained in DMEM supplemented with 10% fetal bovine
serum (FBS) and 1× antibiotic–antimycotic (AA) (all from Capricorn Scientific, Ebsdor-
fergrund, Germany). Three SARS-CoV-2 viruses were obtained from the Smorodintsev
Research Institute of Influenza (Saint Petersburg, Russia): HCoV-19/Russia/StPetersburg-
3524/2020 (B.1 Lineage, Wuhan), hCoV-19/Russia/SPE-RII-32759S/2021 (B.1.617.2 Lineage,
Delta) and hCoV-19/Russia/SPE-RII-6243V1/2021 (B.1.1.529 Lineage, Omicron). These
viruses were grown on Vero E6 cells using DMEM supplemented with 2% FBS, 10 mM
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of HEPES and 1× AA (all from Capricorn Scientific, Ebsdorfergrund, Germany) at 37 ◦C
and 5% CO2. After full cytopathic effect was reached, the virus-containing media was
harvested, clarified via low-speed centrifugation and stored at −70 ◦C in aliquots. All
experiments with live SARS-CoV-2 were performed in a biosafety-level-3 laboratory.

Recombinant N proteins were expressed in Escherichia coli cells as previously de-
scribed [24], using full-length sequences of the following SARS-CoV-2 strains:

• hCoV-19/Russia/StPetersburg-3524/2020 (B.1 Lineage, Wuhan);
• hCoV-19/Russia/SPE-RII-27029S/2021 (B.1.351 Lineage, Beta);
• hCoV-19/Japan/TY7-503/2021 (P.1 Lineage, Gamma);
• hCoV-19/Russia/SPE-RII-32759S/2021 (B.1.617.2 Lineage, Delta);
• hCoV-19/Russia/SPE-RII-6243V1/2021 (B.1.1.529 Lineage, Omicron).

2.2. Mice

All experiments were performed in compliance with relevant laws and institutional
guidelines and approved by the local Ethical Committee of Institute of Experimental
Medicine (protocol No.1/22, dated 18 February 2022). Female CBA and BALB/c mice that
weighed 18 to 20 g were purchased from the Stolbovaya breeding nursery (Moscow region,
Russia). The CBA mice were immunized intraperitoneally three times with 20 µg of the
recombinant N protein in an AlumVax adjuvant (1:1 v/v) (OZ Biosciences, San Diego, CA,
USA) at 14-day intervals. Blood samples were collected 14 days after the final immunization,
and sera were stored at −20 ◦C.

2.3. Assessment of Virus-Specific Antibodies in Mouse Serum Samples

Serum IgG antibodies specific to N proteins were measured with an ELISA. Briefly,
high-binding 96-well plates (Thermo Fisher Scientific, Waltham, MA, USA) were coated
with purified recombinant N proteins, 100 ng per well, in a carbonate–bicarbonate buffer
(pH 7.4) overnight at 4 ◦C. Then, the plates were blocked with 1% BSA in PBS (pH 7.4)
for 40 min at 37 ◦C and washed 3 times with PBS-T (PBS with 0.1% Tween 20). Serum
samples were diluted 5-fold in PBS-T (1:500 to 1:121,500) and added to wells, followed
by incubation for 1 h at 37 ◦C. Each sample was tested in duplicate. After washing, an
HRP-conjugated goat antimouse IgG secondary antibody (Bio-Rad, Hercules, CA, USA)
was added to each well and incubated at 37 ◦C for 1 h. Then, the plates were finally washed
and developed with 1-Step TMB Substrate Solution (HEMA, Moscow, Russia) for 15 min.
After the reaction with 1 M of H2SO4 was stopped, the resulting absorbance was measured
at a wavelength of 450 nm (OD450) using an xMark Microplate Spectrophotometer (Bio-Rad,
Hercules, CA, USA). The area under the OD450 curve (AUC) values were calculated as a
trapezoidal square for each serum sample and expressed in arbitrary units.

2.4. Monoclonal Antibodies

Production of mAbs was obtained through methods of hybridoma technology [25].
BALB/c mice were immunized with 10 µg of the N protein (B.1), emulsified with a com-
plete Freund’s adjuvant, in plantar aponeurosis of the hind limbs. After 4 weeks, the
animals were immunized subcutaneously with 10 µg of the N protein (B.1) mixed with an
incomplete adjuvant. On the 30th day after the second immunization, the animals were
boosted intravenously with 5 µg of the N protein (B.1) in saline. The lymphocytes of the
inguinal and abdominal lymph nodes were isolated 4 days later and mixed with Sp 2/0
myeloma cells at a ratio of 2:1. Cell fusion was performed in prewarmed 50% 1500 kDa
polyethylene glycol (PEG) for 1.5 min, followed by dropwise addition of an equal volume
of RPMI-1640 medium. After hybridization, cells were pelleted and cocultured with peri-
toneal macrophages (at a 10:1 ratio) in 96-well culture plates. To select hybridomas, we
used a RPMI-1640 medium that contained 10% FBS, 10−4 M of hypoxanthine, 4 × 10−7 M
of aminopterin and 1.6 × 10−5 M of thymidine. Primary screening of clones was performed
via ELISAs of culture media from hybridomas that used the recombinant N protein (B.1) as
a coating antigen. Then, the ability of the mAbs to recognize the N proteins of different
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SARS-CoV-2 strains was evaluated using the same ELISAs. Hybridomas that produced
specific antibodies against N proteins were then subcloned, and individual clones were
expanded in 175 cm2 flasks for intraperitoneal injection into animals (2 million cells per
mouse). Isotype determination was performed using an ISO-2 kit (Sigma, St. Louis, MO,
USA) according to the instructions of the manufacturer. Antibodies were purified from
the ascitic fluid of mice, which was collected 12–18 days after intraperitoneal injection of
hybridoma cells through protein-A-affinity chromatography with the MabSelect sorbent
(GE HealthCare, Chicago, IL, USA), using the manufacturer’s protocol.

2.5. SDS-PAGE and Western blot

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) was used
to check the structure and purity of obtained anti-N mAbs, while the ability of anti-N
mAbs to detect linear epitopes of N proteins of five SARS-CoV-2 strains was assessed via
western blotting. Purified mAbs and recombinant N proteins were resolved in reduced
conditions on a 10% polyacrylamide gel at 120 V for 1 h before being stained with colloidal
Coomassie G-250 solution (Bio-Rad, Hercules, USA) for 1 h at room temperature or semi-
dry transferred to 0.45 µm nitrocellulose membranes for 2 h at 100 V. Blots were blocked
overnight at 4 ◦C with 5% skimmed milk in PBS-T and then treated with anti-N mAbs
diluted 1:1000 in block buffer for 1 h at 37 ◦C. Then, goat anti-mouse HRP-conjugated
secondary antibody (Bio-Rad, Hercules, CA, USA) diluted 1:3000 in blocking solution was
added to the triple-washed blots for 1 h at 37 ◦C. After three washes with PBS-T, the blots
were developed with 0.05% solution of diaminobenzidine (Sigma, St. Louis, MO, USA) in
PBS containing 1% hydrogen peroxide. Finally, the membranes were washed with water
and the images were captured using Gel Doc EZ Gel Documentation System (Bio-Rad,
Hercules, CA, USA).

2.6. Cell ELISA and Immunocytochemistry

A cell-based ELISA was used to check the specificities of purified mAbs to native
viral antigens. A 14C2 monoclonal antibody (Abcam, Cambridge, UK) that binds the M2e
protein of the influenza virus was used as a negative control. For the assay, 96-well plates
were seeded with 4 × 104 Vero E6 cells per well the day before virus inoculation. Cell
monolayers were rinsed twice with PBS prior to inoculation with 50 µL of SARS-CoV-
2 diluted in DMEM supplemented with 2% FBS, AA and 10 mM of HEPES to reach a
multiplicity of infection (MOI) of 0.01. After adsorption at 37 ◦C for 1 h, the cells were
overlaid with 100 µL of the same culture medium and incubated at 37 ◦C for 1 or 3 days
for B.1 or P.1/B.1.1.529 viruses, respectively. After incubation, the culture medium was
carefully removed and the cells were fixed with 2% formalin in PBS at 4 ◦C overnight. Then,
the fixative solution was removed and the plates were washed with PBS-T and blocked
with 3% skim milk in PBS-T for 1 h at 37 ◦C. Then, 50 µL of 3-fold dilutions of mAbs in
PBS-T (from 15 to 0.02 µg/mL) were added to the wells, and the plates were incubated for
1 h at 37 ◦C. After being washed with PBS-T, the plates were treated with a 1:3000 solution
of goat antimouse immunoglobulins conjugated with horseradish peroxidase (Bio-Rad,
Hercules, CA, USA) for 1 h at 37 ◦C. Finally, the plates were thoroughly washed and stained
with 1-Step TMB Substrate Solution (HEMA, Moscow, Russia). The resulting OD was
measured using a BioRad Model 680 microplate reader (Bio-Rad, Hercules, CA, USA) at a
wavelength of 450 nm.

Immunocytochemical analysis was performed in a similar way. Vero E6 cells were
seeded on 6-well tissue-culture plates at a dose of 1 × 106 cells per well. After 2 days of
incubation with B.1, P.1 or B.1.1.529 viruses, these cells were fixed and sequentially treated
with 5 µg/mL of mAbs and goat antimouse HRP-conjugated immunoglobulins. Then the
plates were stained with 3-amino-9-ethylcarbazole (Sigma, St. Louis, MO, USA) in the
presence of 1% H2O2, according to the manufacturer’s protocol.
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2.7. Statistical Analysis

Data were analyzed using the statistical tool of GraphPad Prism 6.0 Software. Com-
pliance with normal distribution was checked with the Shapiro–Wilk test. The Wilcoxon
matched-pairs test was used to compare serum IgG antibody responses to different N anti-
gens. One-way ANOVA with the Tukey post hoc test was used to examine the significance
of differences between several study groups. The significance level was set at p < 0.05.

3. Results
3.1. Assessment of Immunogenicity of N Proteins

To investigate the immunogenicity and antigenicity of the N proteins of the ancestral
SARS-CoV-2 strain and different VOCs, we immunized mice with recombinant N proteins
of five SARS-CoV-2 strains [24] and measured the magnitudes of N-specific IgG responses,
and the ability of these antibodies to cross-react with other N antigens, using an in-house
ELISA protocol. Testing serum samples with homologous N antigens revealed significant
differences in the levels of induced anti-N antibodies in different immunization groups; the
highest IgG levels were noted in mice immunized with the ancestral B.1 (Wuhan) antigen
compared to VOCs B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta) and B.1.1.529 (Omicron)
(Figure 1). The strongest differences in immunogenic properties were noted between the
N protein of the ancestral B.1 (Wuhan) virus and the N proteins of the P.1, B.1.617.2 and
B.1.1.529 VOCs (Figure 1b, p < 0.0001). Since all of the N proteins were expressed and
administered to mice in an identical manner, the variable levels of the anti-N antibodies
were most likely due to the differences in protein sequences and the content of the linear
and/or spatial B-cell epitopes located in the N proteins.
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Figure 1. Assessment of homologous anti-N antibody levels in serum samples of mice immunized
with B.1 (blue), B.1.351(brown), P.1 (green), B.1.617.2 (magenta) and B.1.1.529 (red). Hereafter, the
color designations of the N proteins of different SARS-CoV-2 VOCs are the same. The OD450 values
are shown in (a), and the area under the OD450 curve (AUC) values are shown in (b). These data
were compared using ANOVA with the Tukey post hoc test. * p < 0.05, ** p < 0.01, **** p < 0.0001.

To further characterize the antigenic properties of the N proteins of the five SARS-
CoV-2 variants, we compared the magnitudes of IgG responses, in mice immunized with
each N protein, against all five recombinant N antigens: B.1 (Wuhan), B.1.351 (Beta), P.1
(Gamma), B.1.617.2 (Delta) and B.1.1.529 (Omicron). We used the area under the OD450
curve (AUC) values as a measure of intensity of antibody binding to the N antigen, then
normalized the AUC values of each heterologous antigen to the AUC data for homologous
antigens. This artificial parameter allowed assessment of cross-reactivity of mouse immune
sera against various N antigens, regardless of the magnitude of the response. Interestingly,
the antibody that was raised to the N (B.1) protein bound to the heterologous N antigens
to a lesser extent, suggesting accumulation of escape mutations in this protein with virus
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evolution (Figure 2A). Similarly, the antibodies induced via the N (B.1.351) protein were
less likely to be recognized by the N proteins of SARS-CoV-2 variants that circulated at
later times (Figure 2B). In general, the intensity of antibody binding from the heterologous
N antigens was reduced compared to that of the homologous protein (Figure 2), although
several exceptions were noted: the N (B.1) protein bound to the IgG raised to the N (B.1.351)
protein better than did the homologous antigen (Figure 2B); the N (B.1.617.2) antigen
recognized a higher proportion of antibodies raised to the N (P.1) protein (Figure 2C); and
the N (B.1.351) antigen revealed higher levels of IgG raised to the N (B.1.1.529) protein
(Figure 2E). These data indicate that different N proteins can generate different subsets of
N-specific antibodies; this should be taken into account as a limitation in development of
N-based vaccines and serology assays. In particular, our data from the N (P.1), N (B.1.617.2)
and N (B.1.1.529) immunization groups suggest that N-specific antibodies raised to infection
with evolutionarily diverse SARS-CoV-2 will be poorly recognized by the N antigen from
the ancestral B.1 strain, which is currently present in the majority of N-based serological
tests (Figure 2C,D,E).

3.2. B- and T-cell N-Protein Epitopes, including Substitutions

To understand which differences in the amino acid sequences of N proteins can be
associated with diverse recognition of N-specific antibodies raised to various N antigens,
we aligned the N-protein sequences of five SARS-CoV-2 strains, mapped their unique sub-
stitutions on the N proteins on the structural scheme (Figure 3) and listed all substitutions in
Table S1. Furthermore, using the Immune Epitope Database (IEDB) resources, we identified
linear B-cell (Table S2) and T-cell (Table S3) epitopes that contained these mutations.

The epitope coverage of SARS-CoV-2 proteins is well-studied: 15,905 viral epitopes
have been deposited in IEDB, including 1159 N-protein epitopes, which have been described
in 96 studies. In total, 791 of these N-protein epitopes have been identified as B-cell-
mediated immune-response targets. The majority of B-cell epitopes of the N protein
identified to date have been deposited at the IEDB based on the studies of Hotop et al. [26],
Mishra et al. [27], Heffron et al. [28], Gregory et al. [29] and Schwarz et al. [30]. A total of
174 N-protein epitopes were confirmed in T-cell assays and are class I epitopes described
as having protective potential in humans by Tarke et al. [31] and Heide et al. [32] and in
transgenic mice by Zhuang et al. [33].

Noteworthily, there was no linear accumulation of mutations in the N protein over
time, since each VOC has its own set of mutations compared to the ancestral B.1 (Wuhan)
variant (Table S1), suggesting that all studied SARS-CoV-2 lineages evolved independently.
Nevertheless, a number of mutations seem to correlate with the immunogenicity of the
recombinant N protein (Figure 1). Thus, the highest numbers of mutations were found
in the antigens of the B.1.1.529 and B.1.617.2 variants (Figure 3), which affected a high
proportion of the linear B-cell epitopes established for the B.1 N protein (Table S1). A closer
analysis of the cross-reactivity of the N-specific antibodies induced via each recombinant N
protein (Figure 2) and the amino acid differences between the particular N immunogens
and each N protein used as an antigen, carried out in ELISA (Table S1), suggested that the
residues at positions 13, 80, 203 and 204 had the greatest influence on N-protein antigenicity.
Interestingly, the deletion of the three amino acid residues at positions 31–33 did not result
in significant impairment of the antigenic properties of the N protein; sera from mice
immunized with the P.1 (Beta) and B.1.617.2 (Delta) N proteins recognized the B.1.1.529
(Omicron) N antigen at the same level as the homologous antigens, and vice versa (Figure 2).
Notably, the substitutions at positions 13, 203 and 204 were noted for several VOCs, and
given that they can significantly change the antigenicity and/or immunogenicity of the N
protein, it can be assumed that they are major escape mutations that drive the evolution
of SARS-CoV-2.
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Figure 2. N-based ELISAs of serum samples of mice immunized with B.1 (A, blue), B.1.351 (B, brown),
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Figure 3. Scheme of N-protein domains and variable amino acid residues characterizing five different
variants of the SARS-CoV-2 virus used in this work. The locations of the functional domains of the N
protein are given according to [9]. The substitutions present in the N-protein sequences of the B.1.351
(brown), P.1 (green), B.1.617.2 (magenta) and B.1.1.529 (red) strains are indicated with arrows.

3.3. Generation and Characterization of Anti-N Monoclonal Antibodies

To further characterize the antigenic properties of the N proteins of different VOCs, we
generated four mAbs (NCL2, NCL5, NCL7 and NCL10) through immunization of BALB/c
mice with the N protein (B.1), using standard hybridoma technology. Purified anti-N anti-
bodies were isotyped as follows: NCL2 and NCL10 were of the IgG1 isotype, while NCL5
and NCL7 were of the IgG2a isotype. We characterized these mAbs using the SDS-PAGE
(Figure 4a) and Western blot (Figure 4b) analyses. The electrophoretic mobility of the mAbs
corresponded to the expected molecular weights (~160 kDa and ~55 + 25 kDa in nonreducing
and reducing conditions, respectively). The SDS-PAGE analysis of the purified mAbs demon-
strated the absence of significant amounts of contaminating components (Figure 4a). For study
of the specificity of the newly generated mAbs, those mAbs were used in the WB analysis
to detect recombinant N proteins; there, an additional recombinant N protein of seasonal
coronavirus OC43 was used, along with five SARS-CoV-2 antigens (Figure 4b). Interestingly,
NCL2, NCL5 and NCL7 recognized all of the SARS-CoV-2 N antigens but not the OC43 N
protein, whereas the NCL10 antibody did not recognize the N protein of the B.1.1.529 strain
but was able to bind to the N protein of seasonal coronavirus OC43 (Figure 4b). These data
suggest that the NCL10 antibody recognized B-cell epitopes with mutations specific to the
Omicron variant only, most probably the region with the deletion of residues 31–33 (Figure 3).
In addition, mutation P13L could be responsible for the altered recognition of the NCL10
antibody. However, the N-terminal region of the N protein differs significantly between the
OC43 and SARS-CoV-2 viruses; therefore, it remains to be elucidated exactly which epitope is
targeted by the NCL10 mAb.
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Detection of native N antigens, which are present in virus-infected cells, using the cell
ELISA approach recapitulated the results of the Western blot analysis: while NCL2/5/7
mAbs universally recognized the B.1, P.1 and B.1.1.529 virus-infected cells, the NCL10
antibody was unable to bind to the B.1.1.529 SARS-CoV-2-infected cells (Figure 5a). More-
over, the OD450 values, which were determined based on the concentration of the resulting
virus–antibody complexes, were different between NCL10 and the three remaining mAbs
when identical antibody concentration was used, suggesting that the NCL10 antibody binds
with lower intensity to N antigens, probably due to the lower affinity of this binding. An
immunocytochemical analysis further demonstrated that NCL10 mAb does not recognize
the N protein of the B.1.1.529 VOC (Figure 5b). Future studies with generations of escape
mutants after passaging SARS-CoV-2 variants in the presence of generated mAbs will allow
the precise epitope mapping thereof.
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absorbance intensity (OD450) on the concentration (µg/mL) of anti-N mAbs or 14C2 mAbs (NC,
anti-influenza M2e antibodies). Vero E6 cells were infected with the B.1, B.1.617.2 or B.1.1.529 SARS-
CoV-2 variant, followed by cell ELISA with indicated mAbs. (b) Immunocytochemical analysis of
SARS-CoV-2 N protein in infected Vero E6 cells after 48 h of incubation. The different patterns of
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4. Discussion

The impact of N-protein mutations on the reliability of data obtained with approved
test systems has not yet been sufficiently studied [31]. In addition, development of N-
based COVID-19 vaccines also requires studies of immunogenicity and the possibility of
generations of anti-N antibodies with a putative autoimmune effect [32]. Previously, we
established an in-house ELISA protocol based on the recombinant N proteins of different
SARS-CoV-2 VOCs to evaluate the cross-reactivity of N-specific antibodies in COVID-19
convalescents [24]. A strong positive correlation in the magnitude of anti-N (B.1) antibodies
and those of antibodies specific to four other VOCs in COVID-19-recovered patients was
found, suggesting that N-binding antibodies are highly cross-reactive and the most im-
munogenic epitopes within this protein are not under selective pressure. Here, we assessed
the antigenicities and immunogenicities of N proteins of different VOCs in a mouse model
through comparison of the magnitudes and the cross-reactivities of the anti-N antibodies
generated in response to immunization with the recombinant N proteins. The strongest im-
pact on the magnitude of homologous antibody responses was revealed for the N proteins
of the P.1, B.1.617.2 and B.1.1.529 strains (Figures 1 and 2). The amino acid sequences of
these antigens are known to contain a large number of mutations compared to that of the
ancestral B.1 strain (Figure 3), and the linear epitopes that carry them have been identified
as targets for antiviral antibodies through multiple B-cell assays (Table S2). Thus, we
hypothesize that differences in the specificities of anti-N antibodies produced in response
to immunization with similar antigens may be due to evolutionarily determined variability
in immunogenic epitopes, leading to emergence of escape mutations. T-cell epitopes of
N proteins that contain variable regions may also serve as triggers of T-cell-mediated
immune response, according to the results of the activation and binding analyses (Table S3).
Most of these epitopes were shown to bind to recombinant human MHC molecules of the
HLA-A*01:01, HLA-A*02:01 and HLA-B*07:02 alleles. Although we did not assess T-cell
responses in the mouse model, the presence of mutations within the established T-cell epi-
topes of various HLA alleles may indicate variability of N-protein-induced, T-cell-mediated
immune response in humans infected with different SARS-CoV-2 strains.

During the first two years of the pandemic (2019–2020), the main detectable mutations
in the SARS-CoV-2 genome were D614G (81.5%) in the S protein and a combination of
R203K/G204R (37%) in the N protein [33]. Later, the adaptive nature of the R203K/G204R
mutations in the N proteins of the P.1 and B.1.1.529 variants was shown in silico, and
large-scale phylogenetic analysis indicated that the R203K/G204R was associated with
the elevated transmissibility and infectivity of the B.1.1.7 SARS-CoV-2 variant. A positive
correlation has been found between COVID-19 severity and frequency of 203K/204R [34].
In addition, the R203K/G204R combination appeared to increase nucleocapsid phosphory-
lation resistance via inhibition of the GSK-3 kinase, resulting in increased virus replication.
Similar occasional alanine substitutions also occurred at positions 203 and 204 and led to the
same outcomes, indicating an evolutionary trend towards ablation of the ancestral RG motif
to increase SARS-CoV-2 infectivity [35]. The virus-like particles that bore the RG203/204KR
mutations in the N protein stimulated an augmented humoral immune response and en-
hanced neutralization in immunized mouse sera [36]. COVID-19 induced with viruses
with R203K and G204R resulted in inferior clinical outcomes [37]. The 203/204 mutations
occurred in the phosphorylated “RS-motif” [38], which is localized within the serine-rich
region of 181–213: a target for phosphorylation that allows recruitment of the host RNA
helicase DDX1, thus facilitating template readthrough and synthesis of longer subgenomic
mRNA [38].

The results of a docking analysis indicated that the site for binding of targeted antiviral
agents is localized in the region of 66–134 in the RNA-binding domain of the N protein [39].
Therefore, mutations in this region, such as P80R in the P.1 SARS-CoV-2 N protein, may
influence the sensitivity of the virus to these drugs.

P13L/S substitution unique to the N proteins of the B.1.1529 and B.1.351 strains is
located in the CD8 immunodominant region that is targeted by cells that exhibit central
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and effector memory phenotypes [40]. Furthermore, peptides that contain this substitution
have been identified as positive in an HLA-binding analysis of MHC class II epitopes [41]
and as targets for antiviral antibodies in COVID-19 convalescents [42]. R203M mutation
is localized into peptides for which specific binding of anti-SARS-COV-2 antibodies was
detectable [26]. Peptides that contained residue at 205 elicited interferon-γ production in
convalescent donors [43], while peptides with residues at 215 and 377 showed specific Ab
binding and IFN releasing as a result of T-cell stimulation [27,41,44]. Epitopes that included
amino acid residues at 31–33, which are absent in the B.1.1.529 variant, exhibited low-
intensity binding of Abs but stimulated IFNγ release in COVID-19 convalescents [26,44].
Peptides that included residue of the N protein at 63 provided strong IFNγ release, as
was demonstrated with cell sorting and ELISPOT assays in COVID-19 convalescents and
peptide-vaccinated people [45]. P80R mutation is localized in peptides that provide binding,
T-cell activation and IFNγ release after in vivo administration or restimulation [44,46,47].

Thus, mutations P13L, ERS31-33 del, D63G, R203K/M, G204R and D377Y, unique
to the P.1, B.1.617.2 and B.1.1.529 strains, can be considered variations that appeared in
the viral genome as a result of attempts to evade host immune response. Published data
on peptides that contain variations that uniquely distinguish the N proteins of different
SARS-CoV-2 strains from each other, as well as our results on the varying specificities
of anti-N antibodies produced in response to immunization with N proteins of different
VOCs, allowed us to consider these substitutions as escape mutations that arose in the viral
genome as a result of immune pressure.

It should be noted that our study was limited to assessment of N-based humoral
immune responses but not T-cell immunity. As the mouse major histocompatibility complex
(MHC) is known to be remarkably different from the human leukocyte antigen (HLA)
system [48], our animal model is not applicable for assessment of T-cell-mediated immune
responses triggered via N-protein immunization. To study T-cell-involving reactions with
maximal approximation to the human organism, use of HLA transgenic humanized mouse
models is required [49,50].

To additionally test N-protein antigenicity and obtain a useful tool for detection of
viral antigens, we also generated, in this work, a number of mAbs against the N protein of
the B.1 strain and examined their specificities towards different VOCs. Previously, several
mAbs against the N proteins of different VOCs have been obtained and described. Hodge
et al. compared the properties of flexible and rigid anti-N antibodies and showed the utility
of the latter for the highly sensitive ELISA detection of the N protein NTD [51]. In another
study, a panel of 41 mAbs against the N protein of the B.1 strain was obtained in order
to develop latex-based lateral flow immunoassays (LFIAs). These test systems allowed
detection of as low as 8 pg of a purified protein or 625 TCID50/mL of a virus, and they
cross-reacted with the P.1 and B.1.617.2 variants [52]. The use of N-specific detection by
highly sensitive nanobodies C2 and E2, which are specific to B.1, P.1 and B.1.617.2, was
demonstrated by Isaacs et al. [53]. Molecular modeling of the interaction of anti-N mAbs
specific to 501Y.V1-V3, obtained by Yamaoka et al. [54], revealed binding with exterior
protein surface epitopes, and immunochromatographic test systems, combined with silver
amplification technology, were developed. Lee et al. produced mAbs against conserved
N-protein peptides and developed a laboratory-confirmed sandwich ELISA as a rapid
biosensor, allowing detection of as low as 4 × 103 TCID50/reaction for SARS-CoV-2 or
1 ng/mL of the recombinant N protein [55]. An original immunochromatographic test-strip
method based on the 14 anti-N mAbs was proposed as a tool for detection of the B.1 and
B.1.617.2 variants [56].

Our obtained mAbs, named NCL2, NCL5 and NCL7, appear to be suitable for detec-
tion of N proteins in all five SARS-CoV-2 variants, whereas the NCL10 mAb was unable
to recognize the N protein of the B.1.1.529 strain (Figures 4b and 5). Notably, the latter
mAb was also able to recognize the recombinant N protein of seasonal coronavirus OC43;
although this property does not allow use of NCL10 for diagnostic purposes, it indicates
the presence of similar epitopes in the molecules of the two evolutionarily diverse viruses,
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and this mAb may be applicable for studying the structures and evolution of SARS-CoV-2
proteins. Our further studies will be devoted to development of test systems based on the
obtained mAbs and defining the affinity of their interaction with viral antigens.

Overall, our results demonstrate the slow-evolving nature of the SARS-CoV-2 N
protein, which affects the specificity profile of anti-N antibodies and should be considered
as a limitation in development of N-based vaccines and test systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15010230/s1, Table S1: Amino acid substitutions between the N
protein used for immunization and the N proteins of different SARS-CoV-2 strains used as antigens
in ELISA; Table S2: B-cell epitopes of SARS-CoV-2 N protein of B.1 (Wuhan) strain deposited in the
Immune Epitope Database which contain variable amino acid residues; Table S3: List of variable
T-cell epitopes of N protein of SARS-CoV-2 with confirmed binding to HLA molecules.
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Abstract: An outbreak of coronavirus disease 2019 (COVID-19) occurred in a nursing home in
Niigata, Japan, November 2020, with an attack rate of 32.0% (63/197). The present study was aimed
at assessing the pre-vaccination seroprevalence almost half a year after the COVID-19 outbreak
in residents and staff in the facility, along with an assessment of the performance of the enzyme-
linked immunosorbent assay (ELISA) and the chemiluminescent immunoassay (CLIA), regarding test
seropositivity and seronegativity in detecting immunoglobulin G (IgG) anti-severe acute respiratory
syndrome 2 (SARS-CoV-2) antibodies (anti-nucleocapsid (N) and spike (S) proteins). A total of
101 people (30 reverse transcription PCR (RT-PCR)-positive and 71 RT-PCR-negative at the time
of the outbreak in November 2020) were tested for anti-IgG antibody titers in April 2021, and
the seroprevalence was approximately 40.0–60.0% for residents and 10.0–20.0% for staff, which
was almost consistent with the RT-PCR test results that were implemented during the outbreak.
The seropositivity for anti-S antibodies showed 90.0% and was almost identical to the RT-PCR
positives even after approximately six months of infections, suggesting that the anti-S antibody
titer test is reliable for a close assessment of the infection history. Meanwhile, seropositivity for
anti-N antibodies was relatively low, at 66.7%. There was one staff member and one resident that
were RT-PCR-negative but seropositive for both anti-S and anti-N antibody, indicating overlooked
infections despite periodical RT-PCR testing at the time of the outbreak. Our study indicated the
impact of transmission of SARS-CoV-2 in a vulnerable elderly nursing home in the pre-vaccination
period and the value of a serological study to supplement RT-PCR results retrospectively.

Keywords: SARS-CoV-2; nursing home; epidemiology; seroprevalence; pre-vaccination

1. Introduction

Since the first report of the novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) in Wuhan, China, at the end of 2019, the coronavirus disease 2019 (COVID-19)
pandemic has become a threat to public health on a global scale [1]. In Japan, the COVID-19
pandemic started on 16 January 2020, with the first confirmed case being a returnee from
Wuhan, China, and the number of infections increasing exponentially from January to
April 2020 and gradually spreading to prefectures in Japan, including the Niigata Prefecture.
In this context, multiple transmission clusters associated with the “three Cs”—closed spaces
with poor ventilation, crowded places with many people nearby, and close-contact settings
where many people gather in close quarters—have been identified in nurseries, nursing
homes, hospitals, care facilities, schools, and other locations to date [2–5].

Since most infected individuals remain mild or asymptomatic, it is widely accepted
that the volume of unreported cases of COVID-19 is substantial. Several previous studies
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have described how the proportion of asymptomatic infections reached more than 20.0%
in the elderly population in 2020 [6,7]. Indeed, despite many mild cases, some may
progress to severe diseases, resulting in an estimated infection fatality ratio of as high as
approximately 6.4% in people over 70 years old in 2020 [8–11]. In this context, nursing
home residents are a highly vulnerable population to the spread of SARS-CoV-2 and have
accounted for a significant proportion of the virus-induced disease burden during the
ongoing pandemic worldwide [12]. Furthermore, because of Japan’s super-aged society,
community super spreading occurred from the resident community of older adults, and
the transmission was sustained among people in that age group [5]. Although detection of
SARS-CoV-2 viral ribonucleic acid (RNA) by real-time reverse transcription PCR (RT-PCR)
is generally considered the gold standard for diagnosis of COVID-19, the high proportion
of asymptomatic individuals in COVID-19, as noted above, may also underestimate the
incidence and prevalence of the disease [13]. Therefore, the surveillance of anti-SARS-CoV-2
immunoglobulin G (IgG) serum antibody titer is one of the useful methods for precise
determination of the number of affected individuals in the target population of a community,
in addition to detection of the viral genome by RT-PCR [13]. Given this high proportion
of unreported infections and the poor prognosis for elderly patients, it is important to
conduct serological surveys to gain a complete picture of the COVID-19 disease dynamics
and burden in target groups.

In this present study, we aimed to assess seroprevalence almost half a year after the
COVID-19 outbreak that occurred in November 2020 in a nursing home in Niigata, Japan,
by measuring IgG anti-SARS-CoV-2 antibodies to anti-nucleocapsid (N) and anti-spike (S)
proteins among pre-vaccination residents and staff utilizing the enzyme-linked immunosor-
bent assay (ELISA) and the chemiluminescent immunoassay (CLIA). Seroprevalence num-
bers will not only provide a measure of the cumulative incidence of SARS-CoV-2 infections
but also provide additional insight into the usefulness of comparing anti-N and anti-S
antibodies following infection with the virus.

2. Materials and Methods
2.1. Study Design and Participants

An outbreak of COVID-19 occurred in an elderly nursing home with 97 residents
and 81 staff in Niigata, Japan, in November 2020. We conducted a cross-sectional sero-
epidemiological study in April 2021 to measure anti-SARS-CoV-2 IgG antibodies (i.e.,
anti-N and anti-S proteins) for the remaining elderly residents and staff approximately six
months after the outbreak. After written informed consent was obtained, blood (serum)
was collected from the forearm vein using a winged needle (21G) and EDTA-2Na/F-treated
vacuum blood collection tubes (5 mL), and serum samples were centrifuged before mea-
surement and stored in a freezer at −20 ◦C until testing. Epidemiological data such as
age (years), sex (i.e., male or female), and occupation of staff (i.e., doctor, nurse, caregiver,
or clerk) were collected. Additional individual characteristics, such as comorbidities and
anthropometric measurements, were not collected. All individuals were sampled before
the COVID-19 messenger RNA (mRNA) vaccination.

2.2. Measurement of Quantitative Antibody Levels in Serum

The anti-N and anti-S SARS-CoV-2 antibodies were measured by the ELISA method from
DENKA (Tokyo, Japan) and the commercial CLIA method from Abbott (Chicago, IL, USA).
Specifically, the two immunoassays included are as follows: (i) The ABBOTT SARS-CoV-2
IgG assay (Abbott, Chicago, IL, USA), which is a CMIA for the qualitative detection of IgG
antibodies that target the anti-N and anti-S antibodies [14–16]. The positive cut-off index
was ≥1.4 (S/N ratio) for anti-N antibodies and ≥50.0 AU/mL for anti-S antibodies for
the Abbott. These tests were performed using the high-throughput ARCHITECT i2000SR.
(ii) The DENKA SARS-CoV-2 IgG assay (DENKA, Tokyo, Japan), which is an ELISA method,
is similarly used for the detection of IgG antibodies against N and S antigens using a proto-
type indirect enzyme immunoassay (DK20-COV4E) [17]. Each well of a 96-well microplate
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was coated with recombinant SARS-CoV-2 S and N proteins. Serum specimens diluted at a
1:200 ratio with dilution buffer were added to each well. After one hours of incubation at
room temperature, the wells were washed three times with washing buffer. Horseradish
peroxidase-conjugated goat anti-human IgG antibodies were added to each well, and the
plate was incubated at room temperature for 1 h. After five washes, the substrate was
added to each well, and the plate was incubated at room temperature. Reactions were
stopped by the addition of reaction stopper. Finally, optical density (OD) 450 and OD
630 were measured with a Sunrise™ plate reader (Tecan, Männedorf, Switzerland). Anti-
body titers were calculated in units of binding antibody unit (BAU)/mL with calibrators
assigned to the first World Health Organization (WHO) international standard for anti-
SARS-CoV-2 immunoglobulin (National Institute for Biological Standards and Control
(NIBSC) code 20/136) [18,19]. The positive cut-off index was ≥30.0 index BAU/mL for
anti-N antibodies and ≥50.0 BAU/mL for anti-S antibodies for the DENKA. All tests
were performed and interpreted according to the manufacturer’s instructions for each
immunoassay, respectively, in a biosafety level 2 (BSL-2) capacity laboratory.

2.3. Statistical Analysis

Data were described as the median [interquartile range (IQR)] for continuous variables
and frequency (%) for categorical variables. Test seropositivity and seronegativity of the
DENKA and Abbott methods for anti-N and anti-S antibodies sampled in April 2021 were
calculated based on the results of the RT-PCR that was implemented at the time of the
outbreak in November 2020 [20]. A Cohen’s kappa statistic (κ) was estimated for each
of the anti-N and anti-S antibodies to assess the level of interrater concordance between
the two assays of the DENKA and Abbott methods beyond chance. The κ coefficient
value was classified as slight (0.00 to 0.20), fair (0.21 to 0.40), moderate (0.41 to 0.60),
substantial (0.61 to 0.80), and almost perfect (0.81 to 1.00) according to Landis and Koch
criteria [21]. Spearman’s rank-order correlation coefficient (ρ) was used to investigate
the linear associations between anti-N IgG antibodies and anti-S IgG antibodies for each
method of DENKA and Abbott. Statistical significance was set at p < 0.05, using a two-tailed
test. All analyses were performed using EZR version 1.27 [22].

2.4. Ethical Consideration

This study was approved by the Niigata University Ethical Committee (approval
number 2020–0429) and followed the Declaration of Helsinki (as revised in 2013). Partic-
ipation in the study was voluntary, and a written informed consent was obtained from
each participant.

3. Results

In November 2020, a COVID-19 outbreak occurred in an elderly nursing home in
Niigata, Japan, with a total of 178 persons, 97 residents, and 81 staff. None of the elderly
or staff received COVID-19 vaccines at the time of the outbreak because the COVID-19
mRNA vaccination program in Japan started in February 2021. Active epidemiological
investigations initiated on 16 November 2020, when this nursing home informed the
Niigata City Public Health and Sanitation Center, Niigata, Japan, that several residents
were symptomatic with rapid antigen diagnostic tests positive for SARS-CoV-2. RT-PCR
testing for the residents and staff was carried out by the local Public Health and Sanitation
Center at the time of the outbreak to identify cases. As a result, a total of 63 cases (attack
rate of 32.0%, 63/197), i.e., 56 residents (attack rate of 57.7%, 56/97), and 7 staff (attack
rate of 8.6%, 7/81), were identified by RT-PCR. The first round of RT-PCR was performed
for all residents and staff on the same and the following days, i.e., Novemebr 16 and 17,
when this facility reported the outbreak to the authority. Then RT-PCR was repeated for all
residents and staff almost weekly up to December 16, 2020, until no more positive RT-PCR
results were identified. All of the residents and staff who were positive with RT-PCR were
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hospitalized due to the Japanese government’s policy for quarantine purposes during 2020.
There were no direct deaths from COVID-19 among residents or staff.

To understand the temporal dynamics of the outbreak, epidemic curves were con-
structed for 58 of the 63 (92.1%) initial cases (Figure 1A), for whom the date of illness onset
was known. The outbreak started on 10 November 2020, when one resident (the index case)
developed a fever and two additional residents developed symptoms on the following
day. One staff member became symptomatic three days after the onset of the index elderly
resident. The epidemic peaked on 14 and 15 November 2020, and ended in two weeks,
suggesting the infection may have spread from a single source of exposure in a short time
period. This facility is a two-story building, and the initial cases were on the second floor.
The attack rate of the elderly on the second floor was higher (85.4%; 41/48) than on the
first floor (46.8%; 15/32), suggesting COVID-19 spread quickly in the closed settings and
nearly all residents on the second floor were infected. Notably, all five asymptomatic
RT-PCR positives were elderly residents and, but no were staff included. As a source of
infection, there is a possibility that an asymptomatic staff member that was not detected by
RT-PCR may have introduced the virus to this facility. Given that the initial elderly cases
were staying in the facility long before the onset of there outbreak, there is no chance of
them introducing infections, except for through daily contact with the staff. Although the
local Public Health and Sanitation Center obtained demographic information for RT-PCR
positive cases, such as age, staying floor for residents, or occupation for staff, no such
information was available for RT-PCR negatives.
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Figure 1. Epidemic histogram of SARS-CoV-2 outbreak in nursing care home in Niigata, Japan,
November 2020. (A) Epidemic histogram of reverse transcription PCR (RT-PCR) positives at the
time of the outbreak (n = 58). (B) Epidemic histogram of RT-PCR positives who participated in this
study (n = 29). Daily counts of confirmed cases by RT-PCR tests are described as a function of the
day of illness onset. Note that five persons whose date of illness onset by active epidemiological
investigations was unknown were excluded in (A). Yellow and green bars correspond to staff and
residents, respectively.

In the present study, we conducted a cross-sectional sero-epidemiological study in
April 2021 for 103 persons (i.e., 41 residents and 62 staff) in a nursing home in Niigata, Japan,
approximately six months after the outbreak occurred in November 2020 (Table 1). It should
be noted that only 57.8% (103/178) of the initial population and 47.6% (30/63) of RT-PCR
positives participated in this study owing to reasons such as declining to participate, leaving
or retirement of staff, or deaths of elderly residents that were not related to COVID-19
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during the five months after the outbreak. Of these study populations, 9.7% (6/62) of the
staff and 58.5% (24/41) of the residents were RT-PCR positive.

Table 1. Epidemiological characteristics of the study population (n = 103).

Characteristic Staff (n = 62, 60.1%) Resident (n = 41, 39.9%)

RT-PCR Test Result Positive
(n = 6, 9.7%)

Negative
(n = 56, 90.3%)

Positive
(n = 24, 58.5%)

Negative
(n = 17, 41.5%)

Age (years), median (IQR) 34.0 (30.0–44.0) 50.0 (38.8–56.0) 90.0 (86.0–93.0) 93.0 (86.0–97.0)
Sex, n (%)

Male 2 (33.3) 8 (14.3) 0 (0.0) 4 (23.5)
Female 4 (66.7) 48 (85.7) 24 (100.0) 13 (76.5)

Occupation, n (%)
Doctor 0 (0.0) 4 (7.1) NA NA
Nurse 0 (0.0) 14 (25.0) NA NA

Caregiver 6 (100.0) 31 (55.4) NA NA
Clerk 0 (0.0) 7 (12.5) NA NA

Abbreviations: RT-PCR, reverse transcription PCR; SD, standard deviation; IQR, interquartile range; NA, not
available. Notes: Data are displayed as median (interquartile range [IQR]) or n (%).

The median age was 49.0 years (IQR: 35.3–55.8) for staff and 90.3 years (IQR: 86.0–94.0)
for residents, and most participants were females (≥66.7%) (Table 1). Majority of staff mem-
bers were caregivers (60.0%, 37/62), followed by nurses (25.0%, 14/62), clerks (11.0%, 11/62),
and doctors (4.0%, 4/62). Among staff, most cases were negative for RT-PCR results (90.3%,
56/63), whereas among residents, the positive and negative groups were each approxi-
mately half of the cases (58.5% for positive and 41.5% for negative), which was compatible
with the initial investigation conducted by the local Public Health and Sanitation Center
that COVID-19 infection rates were higher in elderly residents than in staff members. Note
that among the staff, only the caregivers were RT-PCR positive, and no other occupations
(doctor, nurse, and clerk) were positive. The epidemic curve of the 29 RT-PCR positives
who participated in this study (Figure 1B) is almost like the original outbreak of RT-PCR
positives (Figure 1A).

For a total of 101 patients, excluding the two who were unable to have serum samples
collected, IgG antibody titers were measured (Figure 2). For the staff, the positivity rate of
anti-N antibody titers was 9.7% (6/62) for DENKA and 9.7% (6/62) for Abbott (Figure 2A),
while those of anti-S antibody were 9.7% (6/62) for DENKA and 12.9% (8/62) for Abbott
(Figure 2B). For the residents, the positivity of anti-N antibodies was 48.7% (19/39) for
DENKA and 41.0% (16/39) for Abbott (Figure 2C), while those of anti-S antibodies were
56.4% (22/39) for DENKA and 56.4% (22/39) for Abbott (Figure 2D). Overall, these results
showed a higher prevalence of positive antibody titers in residents than in staff for both
anti-S and anti-N antibodies, consistent with a higher number of infections in residents
based on RT-PCR testing during the outbreak.

To quantify the diagnostic performance of the IgG antibody titer assay conducted in
this study, the seropositivity and seronegativity of the DENKA and Abbott methods were
calculated based on RT-PCR results (Table 2, Figure S1). For DENKA, the seropositivity
and seronegativity of anti-N antibodies were 66.7% (20/30) and 93.0% (66/71), respectively,
while the seropositivity and seronegativity of anti-S antibodies were 90.0% (27/30) and
97.2% (69/71), respectively. For Abbott, the seropositivity and seronegativity for anti-N
antibodies were 66.7% (20/30) and 97.2% (69/71) respectively, while the seropositivity and
seronegativity for anti-S antibody titers were 90.0% (27/30) and 95.8% (68/71), respectively.
These results show that the seropositivity and seronegativity were almost identical between
the DENKA and Abbott methods for anti-N and anti-S antibodies, respectively; however,
the seropositivity of anti-N antibodies was relatively lower than that of anti-S antibodies
at approximately six months after the outbreak. When divided by residents or staff, the
seropositivity and seronegativity for anti-N and anti-S antibodies showed similar tendencies
between DENKA and Abbott and were in agreement with the overall results (Figure S1).
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Notably, there were two RT-PCR-negative but positive anti-S and anti-N antibody titers in
one staff member and one resident without any symptoms, suggesting that a small number
of asymptomatic infections were missed. Specifically, the staff was a caregiver in this
nursing home. This staff’s anti-S and anti-N antibodies were 331.6 AU/mL and 3.55 Index
(S/N ratio) for Abbott, and 56.4 BAU/mL and 30.0 BAU/mL for DENKA, respectively,
indicating that this staff was seropositive. Meanwhile, the resident showed anti-S and
anti-N antibodies that were positive (568.4 AU/mL) and 2.23 index (S/N ratio) for Abbott,
and positive 150.9 BAU/mL and 79.6 BAU/mL for DENKA, respectively. Comparing
the match between the DENKA and Abbott methods, Cohen’s kappa statistic showed a
level of 0.75 (95% confidence interval [CI], 0.59 to 0.90) and 0.87 (95% CI, 0.76 to 0.98) for
anti-N and anti-S antibodies, respectively, demonstrating substantial high concordance.
In addition, when also divided by residents or staff, the statistics for anti-N and anti-S
antibodies showed similar estimates between the two assays (Table S1). When assessing
the association between IgG titers for anti-S and anti-N antibodies, a significant linear
correlation was observed for both methods: 0.64 (p < 0.01) for DENKA and 0.66 (p < 0.01)
for Abbott. This indicates that patients with higher anti-S IgG showed higher rates of anti-N
antibody positivity, but in turn, patients with lower anti-S IgG tended to show negative
anti-N antibodies (Figure S2).
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Figure 2. IgG antibody responses of SARS-CoV-2 in nursing care home in Niigata, Japan, April
2021 (n = 101). (A) Responses of severe acute respiratory syndrome 2 (SARS-CoV-2) in staff’s
anti-nucleocapsid (N) IgG antibodies by DENKA (Tokyo, Japan) and Abbott (Chicago, IL, USA).
(B) Responses of SARS-CoV-2 in staff’s anti-spike (S) IgG antibodies by DENKA and Ab-
bott. (C) Responses of SARS-CoV-2 in resident’s anti-N IgG antibodies by DENKA and Abbott.
(D) Responses of SARS-CoV-2 in resident’s anti-S IgG antibodies by DENKA and Abbott. The per-
centage of positive cases (%) is described and the red dotted line indicates the threshold for positivity
(i.e., positive cutoff index).
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Table 2. Test seropositivity and seronegativity of the DENKA and Abbott methods for anti-N and
anti-S IgG antibodies among patients with COVID-19 at the nursing home in Niigata, Japan in
April 2021 (n = 101).

DENKA (Tokyo, Japan) Anti-N IgG Antibody Anti-S IgG Antibody

Seropositivity (%) 66.7 (20/30) 90.0 (27/30)
Seronegativity (%) 93.0 (66/71) 97.2 (69/71)

Abbott (Chicago, IL, USA) Anti-N IgG Antibody Anti-S IgG Antibody

Seropositivity (%) 66.7 (20/30) 90.0 (27/30)
Seronegativity (%) 97.2 (69/71) 95.8 (68/71)

Abbreviations: N, nucleocapsid; S, spike; IgG, immunoglobulin G. Notes: Seropositivity and seronegativity of the
DENKA and Abbott methods were calculated using the results of the antibody titer as reference.

4. Discussion

In the present study, we measured anti-SARS-CoV-2 IgG antibodies targeting anti-N
and anti-S proteins by two laboratory-based immunoassay testing methods (i.e., DENKA
and Abbott) using serum specimens collected from unvaccinated residents and staff of a
nursing home in Niigata, Japan. Two main findings were obtained: first, virus transmission
spreads within an enclosed environment, and the sero-prevalence in April 2021 among the
residents and staff was approximately 40.0–60.0% and 10.0–20.0%, respectively, which was
in close agreement with the initial RT-PCR test positive results (57.7% RT-PCR positive for
residents and 8.6% for staff) at the time of the outbreak in November 2020, indicating that
the infection rates were almost seven times higher among residents. Secondly, seroposi-
tivity for anti-S antibodies showed high concordance with RT-PCR positive results even
after approximately six months of infections (90.0% for both DENKA and Abbott). The
seronegativity for anti-S antibodies also showed high concordance with RT-PCR negatives
(97.2% for DENKA and 95.8% for Abbott). Meanwhile, seropositivity for anti-N antibodies
remained low at 66.7% for both DENKA and Abbott. It should also be noted that there
were two RT-PCR-negative results that had positive anti-S and anti-N antibody titers (one
staff and one resident).

In this nursing home, the initial RT-PCR-based infection of elderly residents (57.7%)
was almost seven times higher than that of staff (8.6%), indicating a higher risk of infection
among the elderly residents, and serological results supported the similar findings. In
this study, there were no direct deaths from COVID-19. One impressive paper from
January–May 2020 in Japan by Iritani et al. reported that the number and size of clusters
in elderly care homes were independently associated with higher mortality rates in all
47 prefectures in Japan, underlining the importance of infection control in such facilities
to avoid pressure on local healthcare [23]. Indeed, a report from Nagasaki City, Nagasaki,
Japan, showed that although the number of age-specific occurrences per population was
not as high for residents of elderly care facilities, deaths were overwhelmingly higher in
these facilities (incidence rate of 48.1 per 100,000 person-year) and approximately twice as
high as for community-dwelling older adults [24]. In addition, consistent with our present
results, a large cohort study of approximately 1500 residents and more than 3000 staff in
201 long-term care facilities in the United Kingdom (UK) between June 2020 and May 2021,
measuring anti-N antibodies, found that seropositivity in the last 11 months was 34.6% for
residents and 26.1% for staff, suggesting a higher rate of infection among residents [25]. It
is imperative to protect care home residents who are vulnerable to COVID-19 infections
from potential sources of SARS-CoV-2 through rapid screening and response measures to
minimize the scale of outbreaks once the infection is introduced [26].

Interestingly, only caregivers were infected among the staff (doctor, nurse, caregiver,
and clerk) in this nursing home. Indeed, one notable paper on healthcare workers in
United States of America (USA) hospitals and nursing homes in July–August 2020 showed
that seroprevalence also varied by occupation [27]. More specifically, for example, nurses
(4.2%) and receptionists/medical assistants (4.1%) were more likely to be seropositive than
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physicians (2.2%) for hospitals, while in nursing homes, nursing assistants (19.9%) and
social workers/case managers/counselors (21.7%) were more likely to be seropositive than
occupational/physical/speech therapists (9.8%). Although their studies were not able
to explicitly assess the reasons for these differences (i.e., heterogenicity) in seropositivity
between occupations, it was observed that occupations with more direct contact with older
people tended to be the most frequently infected. Taken together, these findings suggested
that strict infection control measures should be implemented, as well as education for the
group of healthcare workers who have frequent contact with the elderly, because healthcare
workers can initiate and spread the infections quickly among vulnerable groups.

The present study showed that the results of the SARS-CoV-2 IgG antibody test against
anti-S antibodies from DENKA and Abbott generally matched and were almost in agree-
ment with the RT-PCR-positive results, even approximately six months after natural infec-
tion. Meanwhile, the seropositivity of the anti-N antibody was relatively lower than that of
the anti-S antibody. Recent literature suggests that IgG antibodies to the N protein decrease
over time, while responses to the S protein are more stable over a longer period [28–31].
Besides, antibodies against the S protein is reportedly more specific than antibodies against
the N protein due to lower cross-reactivity with other seasonal coronaviruses [32]. An
impressive study investigated seropositivity patterns at different intervals (i.e., 2, 6, and
13 months) after an outbreak in the Lithuanian private sector in April 2020, when approxi-
mately one third of employees (94 out of 300) tested positive via RT-PCR [20]. This study
showed that six months after the outbreak, 95.0% of 59 previously infected individuals
had virus-specific anti-S antibodies, irrespective of the severity of infection, suggesting that
specific antibodies persisted for longer than 6 months in the majority of cases, consistent
with our results.

In this present study, there were two individuals, a member of staff and a resident,
who were RT-PCR negative but had positive anti-S and anti-N antibody titers. There is a
possibility that this asymptomatic seropositive staff can be the source of infection, but other
staff could be the source since 19 staff members declined to participate in this study, left the
facility, or retired from it. Indeed, one extensive systematic review, including 34 studies
in 2020, demonstrated a large unexplained false-negative of RT-PCR and suggested this
was due to missed cases of asymptomatic infections (tau-squared = 1.39) [33,34]. Therefore,
in addition to repeated RT-PCR testing, it is useful to conduct surveys with additional
serological testing in cohorts of individuals to supplement RT-PCR results and capture
asymptomatic cases missed by PCR, as in this study [34]. Those additional studies may give
important information to clarify what the infection source was and what kind of infection
controls should be taken to prevent future spread.

The findings in this report are subject to at least seven technical limitations. First,
there is limited epidemiological information on the presumed cause of infection in the
index case (i.e., the first resident who became ill on 10 November 2020) does not allow a
detailed description of the transmission chains. Besides, there is incomplete epidemiologic
information about potential visitors to associate with the case and limited information
about interactions outside the nursing home that may have contributed to the initial virus
entry. Altogether, this present study enrolled a small number of persons (i.e., 103) and was
limited to describing their epidemiological characteristics and was unable to more objec-
tively explore in depth the potential drivers associated with the exposure and transmission
dynamics in this nursing home. Second, we were unable to perform viral genome analysis
(e.g., whole genome sequencing), which, when combined with the lack of detailed epidemi-
ologic information, makes it impossible to fully characterize the transmission patterns in
this nursing home [35,36]. Three, it was not possible to collect epidemiological information
on symptoms for each case, so the associations between RT-PCR testing results and symp-
tomatic/asymptomatic symptoms could not be scrutinized. Importantly, previous research
has suggested that infection during the pre-symptomatic period or from asymptomatic
individuals may have been potential drivers in infection transmission within the facility,
suggesting that they are likely to have contributed to transmission [37–40]. In particular,
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a study in a similar contextual setting to ours from Belgium suggests that approximately
14.0% and 50.0% of pre-vaccination seropositive staff and residents, respectively, did not
report previous COVID-19 symptoms [41]. Fifth, the IgG antibody titer assay in this present
study did not assess specific neutralizing antibody levels against SARS-CoV-2 owing to tech-
nical challenges, which may have underestimated exposure in the study population [42,43].
Future research will focus on more detailed quantifications of specific neutralizing antibody
titer assays to explicitly conclude seroprevalence. Sixth, the present study only collected
specific epidemiological data on the subjects (i.e., age, sex, and occupation for staff), which
made it difficult to explicitly scrutinize the association between serum antibody titers and
other crucial factors (e.g., comorbidities and anthropometric measurements). Though not
available for this study, these factors could help disentangle the directionality of exact
transmission and may be helpful for future studies. Finally, seroprevalence was estimated
at a single time point approximately six months after natural infection, and no serology
data were obtained soon after the outbreak, which limits generalizability. Ultimately, there
remains room to examine the shift of antibody titers at multiple time points in the future.

Notwithstanding these limitations, the present study consistently demonstrated that
the point pre-vaccination seroprevalence among the residents was higher compared to staff
members in this outbreak in a nursing home in Niigata, Japan. Besides, the diagnostic
performance in pre-vaccination residents and staff of a nursing home showed a relatively
high match with RT-PCR results after approximately six months, partially highlighting that
the anti-S IgG antibody tests may be useful as a diagnostic tool to scrutinize the possibility
of COVID-19 infection. This present study highlights the value of serological analysis to
understand the extent of SARS-CoV-2 circulation in this high-risk setting (e.g., long-term
nursing homes), which also demonstrates the importance of repeatedly performing RT-PCR
screening as an epidemic control measure for infectious diseases. Further studies are needed
at the same institution to determine whether the post-vaccination anti-SARS-CoV-2 IgG
antibodies, including neutralizing antibodies, are protective against the re-infection and, if
so, the duration of protection among residents and staff.
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Abstract: Background: Investigating antibody titers in individuals who have been both naturally
infected with SARS-CoV-2 and vaccinated can provide insight into antibody dynamics and correlates
of protection over time. Methods: Human coronavirus (HCoV) IgG antibodies were measured
longitudinally in a prospective cohort of qPCR-confirmed, COVID-19 recovered individuals (k = 57)
in British Columbia pre- and post-vaccination. SARS-CoV-2 and endemic HCoV antibodies were mea-
sured in serum collected between Nov. 2020 and Sept. 2021 (n = 341). Primary analysis used a linear
mixed-effects model to understand the effect of single dose vaccination on antibody concentrations
adjusting for biological sex, age, time from infection and vaccination. Secondary analysis investigated
the cumulative incidence of high SARS-CoV-2 anti-spike IgG seroreactivity equal to or greater than
5.5 log10 AU/mL up to 105 days post-vaccination. No re-infections were detected in vaccinated par-
ticipants, post-vaccination by qPCR performed on self-collected nasopharyngeal specimens. Results:
Bivariate analysis (complete data for 42 participants, 270 samples over 472 days) found SARS-CoV-2
spike and RBD antibodies increased 14–56 days post-vaccination (p < 0.001) and vaccination prevented
waning (regression coefficient, B = 1.66 [95%CI: 1.45–3.46]); while decline of nucleocapsid antibodies
over time was observed (regression coefficient, B = −0.24 [95%CI: −1.2-(−0.12)]). A positive asso-
ciation was found between COVID-19 vaccination and endemic human β-coronavirus IgG titer
14–56 days post vaccination (OC43, p = 0.02 & HKU1, p = 0.02). On average, SARS-CoV-2 anti-spike
IgG concentration increased in participants who received one vaccine dose by 2.06 log10 AU/mL
(95%CI: 1.45–3.46) adjusting for age, biological sex, and time since infection. Cumulative incidence of
high SARS-CoV-2 spike antibodies (>5.5 log10 AU/mL) was 83% greater in vaccinated compared
to unvaccinated individuals. Conclusions: Our study confirms that vaccination post-SARS-CoV-2
infection provides multiple benefits, such as increasing anti-spike IgG titers and preventing decay up
to 85 days post-vaccination.

Keywords: SARS-CoV-2; COVID-19; cohort study; antibody waning; seroreactivity;
electrochemiluminescence assay; fixed-effect models
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel beta (β)-
coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in
significant morbidity, mortality, economic impact, and disruption of health care and societal
systems. Prior to the emergence of COVID-19, four seasonal human coronaviruses (HCoV)
were identified that typically cause self-limited respiratory infections with mild symptoms,
i.e., the ‘common cold’ in otherwise healthy people [1]. Like SARS-CoV-2, HCoV-OC43,
and HCoV-HKU1 are β-coronaviruses, while HCoV-229E and HCoV-NL63 are classified as
alpha (α)-coronaviruses [2]. Coronavirus genera are separated by unique serological and
genomic characteristics; viral species from the same genus share cross-neutralizing (non-
specific) antibodies which arise from homology in viral genes and structural proteins [3].

In the province of British Columbia (BC), Canada, the first confirmed case of COVID-19
was reported on January 25, 2020; strict and swift public health measures were largely
effective at controlling spread during the first wave, which peaked locally between the
third week of March and late April in 2020 [4]. During the first epidemiological wave of
the pandemic, little was known about antibody responses to SARS-CoV-2 infection and
studies were needed to understand if and how quickly infected individuals develop a
detectable, protective, and durable antibody-mediated immune response. Understanding
the durability or waning of antibodies over time helps elucidate the risk of re-infection
and inform vaccination schedules. Studies have shown that most SARS-CoV-2 infected
individuals seroconvert within 14–28 days; the spike (S) and the nucleocapsid (N) proteins
elicit the strongest humoral response [5,6]. Predictably, SARS-CoV-2 antibody concen-
trations wane over time; the rate of decline varies widely depending on various factors
(e.g., age, biological sex, and disease severity) [7–9]. Neutralizing antibodies acquired
naturally or from vaccination protect against infection and re-infection [10]. Several studies
have shown a strong correlation between anti-S, anti-receptor binding domain (RBD) and
neutralizing antibody titers, as such measuring anti-S and anti-RBD can be used as a proxy
for antibody-mediated protection [8,11,12].

Despite the success of SARS-CoV-2 vaccines, many individuals are still hesitant to
be immunized against COVID-19; supply shortages combined with social and economic
inequity hamper global vaccination efforts [13–15]. The study of antibody dynamics fol-
lowing natural infection and the impact of vaccination on those who have been previously
infected is needed, as novel SARS-CoV-2 variants with increasing capacity to escape pre-
existing immunity continue to evolve and spread [16–18]. Observational studies agree that
vaccination benefits those who have been previously infected, but the number of doses
required for optimal protection remains unclear [19–21].

We describe a prospective cohort that was established to monitor antibody responses
over three months in people that recovered from SARS-CoV-2 infection. Many participants
were offered a single dose COVID-19 vaccine during the study; therefore, we expanded the
aims to consider the dynamics of antibodies against both SARS-CoV-2, as well as endemic
HCoVs, in recovered individuals pre- and post- vaccination against SARS-CoV-2, and
investigated their relationship with age, biological sex, and time from qPCR diagnosis.

2. Materials and Methods
2.1. Study Design

A prospective observational cohort termed CARE (Characterizing the Antibody Re-
sponse to Emerging COVID-19) was established from individuals who recovered from
SARS-CoV-2 infection, for the purposes of investigating antibody responses against several
SARS-CoV-2 epitopes (full spike (S), receptor binding domain (RBD) and nucleocapsid
(N)), as well as against the S protein of endemic HCoVs (OC43, HKU1, NL63, 229E), at
least 2 weeks post natural SARS-CoV-2 infection, with or without subsequent SARS-CoV-2
vaccination. Information on age, biological sex and date of real time PCR (qPCR) diagnosis
was collected through medical records, while information on the duration of COVID-19
symptoms, hospitalization, and vaccination was collected using an online self-reporting
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survey. The date of SARS-CoV-2 qPCR diagnosis was used to estimate ‘days post-infection’.
Survey data and participant informed consent were collected and managed using REDCap
electronic data capture tools hosted at BC Children’s Hospital (Vancouver, BC). REDCap
(Research Electronic Data Capture) is a secure, web-based application designed to sup-
port data capture for research studies [22]. Participants were enrolled in the cohort from
19 November 2020, to 7 September 2021. During this time the most prevalent SARS-CoV-2
variant in British Columbia transitioned between the Alpha, Beta, Gamma and Delta geno-
types. The Beta variant was detected in late 2020 and January 2021, increase prevalence of
the Alpha variant shortly followed and it remained dominant until June 2020. The Gamma
variant was first detected in late February 2021, it’s incidence surpassed Alpha in July 2021.
Public health surveillance first recorded the Delta variant in March, and it was responsible
for most sequenced cases over the summer from July to September 2021 [23]. Vaccinated
CARE Study participants received any of the three SARS-CoV-2 glycoprotein-based vac-
cines approved by Health Canada during the study period: COMIRNATY (BioNTech
(Mainz, Germany), Pfizer (New York, NY, USA)), Spikevax (Moderna, Cambridge, MA,
USA) and Vaxzevria (Oxford, UK, Astra Zeneca) vaccine. All data analysis was performed
in R version 4.0.4 using the packages: ‘DataExplorer’, ‘survival’, ‘survminer’, ‘dplyr’,
‘ggfortify’, ‘tableone’, ‘naniar’, ‘RColorBrewer’, ‘lme4′, ‘mgcv’, ‘gam.check’ and ‘readr’ [24].

2.2. Recruitment Criteria

Adults 18 years of age and older from the greater Vancouver metropolitan area were
recruited if they had a confirmed real time PCR (qPCR)-positive SARS-CoV-2 infection and
if they were no longer required to self-isolate per the BC provincial public health guidelines
(i.e., tested positive for SARS-CoV-2 at least 14 days prior). Initial diagnostic qPCR testing
was done in accordance with standard laboratory practices in British Columbia during the
time of the study. Either nasopharyngeal swab or saline gargles were acceptable sample
types. Diagnostic laboratories in the Lower Mainland area, where participants were tested,
used a variety of both commercial (GeneXpert Cepheid, Sunnyvale, CA, USA; Cobas®

Roche Diagnostics, Indiannapolis, IN, USA; Panther Fusion Hologic, Marlborough, MA,
USA) and laboratory developed assay (E gene and RdRP gene) [25]. Only positive qPCR
results were allowed as recruitment criterion (i.e., potential participants with indeterminate
or invalid test results were excluded). The study protocol was approved by the University
of British Columbia (UBC) Clinical Research Ethics Board (H20-01089).

2.3. Sample Collection and Processing

Participants were required to donate 10 mL blood samples collected by venipuncture
(for serological testing) and concurrent self-collected saline gargle samples (for SARS-CoV-2
qPCR testing by a laboratory-developed assay targeting the E gene and RdRP genes) [25],
every two weeks for 3 months post-recruitment (up to 7 collections total). Blood was drawn
in gold-top serum separator tube with polymer gel (BD, cat# 367989); after at least 30 min
of clotting at room temperature, the blood sample was then centrifuged at 1400 g by staff at
the collection site and sent to the British Columbia Centre for Disease Control Public Health
Laboratory (BCCDC PHL). At the BCCDC PHL the samples were divided into serum
aliquots that were frozen at −80◦C within four hours of receipt. Blood collections occurred
at four sites in the Greater Vancouver Area, British Columbia Canada: BC Children’s
Hospital, St. Paul’s Hospital, Abbotsford Regional Hospital and Surrey Memorial Hospital.
Saline gargle samples were self-collected by the participants at home, in accordance with
well-validated instructions [26], on the day of blood collection and transported to the
BCCDC PHL by the blood collection site. Self-collected saline gargle samples were tested
for SARS-CoV-2 by qPCR.

SARS-CoV-2 whole genome sequencing was done on all available participants’ SARS-
CoV-2 positive diagnostic clinical specimens; detailed methods have been described else-
where [27]. Samples were sequenced on an Illumina NextSeq instrument (San Diego,
CA, USA) using a tiled 1200bp amplicon scheme and analyzed using a modified ARC-
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TIC Nextflow pipeline (https://github.com/BCCDC-PHL/ncov2019-artic-nf, accessed on
15 September 2022). Called variants were kept if the variant allele frequency was above
0.25 with ≥10X coverage. Sequences passing QC (85% genome completeness, 10X depth of
coverage and no quality flags) were included in the phylogenetic analysis. A phylogenetic
tree was constructed using Fasttree [28] and visualized in Nextstrain [29] and lineage
assignment was performed using the Phylogenetic Assignment of Named Global Outbreak
Lineages tool (Pango/Usher Version 1.15.1) [30]. All molecular, genomic, and serological
testing for participant specimens (described below) was conducted centrally at the BCCDC
PHL, a College of American Pathologists accredited laboratory.

2.4. Measurements of Humoral Immunity

Serum samples were initially tested using a combination of three Health Canada
approved chemiluminescent immunoassays: (1) total antibodies to SARS-CoV-2 RBD
(Siemens SARS-CoV-2 Total Assay [COV2T], Munich, Germany), (2) total antibodies to
SARS-CoV-2 S (Ortho VITROSTM Anti-SARS-CoV-2 Total, Raritan, NJ, USA) and IgG anti-
N antibodies (Abbott ARCHITECTTM SARS-CoV-2 IgG, Abbott Park, IL, USA), as per
manufacturer guidelines, with results interpreted as reactive or non-reactive using the
manufacturer-recommended signal to cut-off ratios [31,32]. All available samples were
then tested using the V-PLEX COVID-19 Coronavirus Panel 2 (IgG) (Mesoscale Diagnostics
LLC (MSD): #K15369U, Rockville, MD, USA), the diagnostic accuracy of the MSD assay
was previously validated through comparison with alternative Health Canada approved
tests at the BCCDC PHL [33]. The MSD assay provides quantitative measures of IgG
antibodies against RBD, S and N SARS-CoV-2 epitopes, as well as IgG antibodies against
the glycoprotein (S) of the four seasonal endemic HCoVs. Serological specimens were
processed as previously reported [33]. Quantitative antibody levels expressed as log10
antibody units (AU)/mL were recorded and evaluated for all tested samples. MSD results
were interpreted as reactive or non-reactive using the MSD recommended signal thresholds
for serum: SARS-CoV-2 anti-S IgG = 1960; anti-N IgG = 5000; anti-RBD IgG = 538. Cutoffs
(derived at the BCCDC PHL) for seasonal HCoVs seropositive status are as follows: HCoV-
229E anti-S IgG = 1700; HCoV-HKU1 anti-S IgG = 900; HCoV-NL63 anti-S IgG = 270;
HCoV-OC43 anti-S IgG = 2000 [34]. Samples were stratified by collection time to <6 months
and ≥6 months post infection and percent positivity was compared using a Chi-square test
(χ2 test).

2.5. Power Analysis for Investigating Association between IgG Concentration and Vaccination

A power calculation was conducted to determine the minimum number of paired
participant samples needed to estimate at least a 70% association between COVID-19
vaccination and HCoV anti-IgG antibody concentration. Antibody concentrations were
assumed to be normally distributed with a standard deviation of one. A significance level
of 5% and two-sided alternative were used [35].

2.6. Analytic Data Selection

To analyze antibody dynamics, an analytic dataset was selected from the CARE
COVID-19 cohort. At least k = 18 paired participant samples are required to estimate a
70% or greater association between COVID-19 vaccination and anti-HCoV IgG antibody
concentration. Exclusion criteria were applied to select an analytic dataset from k = 57
participants with n = 341 observations. One participant had no follow up samples and was
omitted from the analytic dataset (k = 1, n = 1). Six participants were excluded because
they were vaccinated before collection of their baseline sample (k = 6, n = 37). Eight
participants were removed from the analytic dataset because of missing data in their survey
results (k = 8, n = 33). After applying the exclusion criteria, the analytic dataset contained
k = 42 participants with n = 270 observations (Supplementary Figure S1). There were
k = 41 participants with >1 pre-vaccine sample (n = 210 pre-vaccine observations) used for
analysis of antibody waning pre-vaccination.
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2.7. Bivariate Data Analysis
2.7.1. Antibody Waning

Waning of SARS-CoV-2 antibodies prior to vaccination was investigated in indepen-
dent participant specimens measured at baseline using linear regression. HCoV anti-IgG
antibody signals at baseline were compared to signals 14–56 days post-vaccination using
a paired Wilcoxon signed-rank test in a sample of n = 21 participants who received a
COVID-19 vaccine during the study. Waning of SARS-COV-2 specific IgG was measured
prior to vaccination between participants using linear regression. Participant’s baseline
samples (defined as the first specimen taken after enrolling in the study) were plotted for
anti-S and anti-N IgG over time.

2.7.2. Descriptive Statistics

Bivariate analysis was conducted between the exposure (a single dose of a Health
Canada approved COVID-19 vaccine) and outcome (SARS-CoV-2 anti-S or anti-N IgG) of
interest at baseline. Baseline represents the time of a participant’s first blood draw after
enrollment. The bivariate relationship between vaccine status and covariates was examined
by t-test or Chi-square test (χ2 test) depending on variable type. HCoV anti-IgG antibody
signals were transformed to the logarithmic base ten scale for conformation to normality
and ease of interpretation.

2.8. Primary Analysis

Primary analysis used a multivariable linear mixed-effects model to regress SARS-CoV-2
anti-IgG concentration on vaccine status adjusting for dependency within participant sam-
ples and covariates defined as potential confounders by the common cause criterion [36,37].
Separate models were fit for anti-S and anti-N IgG signals. Unconditional mean models
were used to find the intraclass correlation coefficient (ICC) before covariates were added
to build fixed effect models [38]. Effect modification terms were assessed by the Akaike
information criterion and included in the fixed effect models to understand if time from
infection influences SARS-CoV-2 antibody concentrations [39].

2.9. Secondary Analysis

Secondary analysis employed a Kaplan–Meier curve to estimate the cumulative inci-
dence of seroreactivity stratified by vaccine status. The survival function was transformed
to cumulative incidence by 1-S(τ) [40]. Seroreactivity was defined from the distribution
of SARS-CoV-2 anti-S IgG concentration at first blood draw (baseline); the 95th percentile
was chosen as the threshold (5.5 log10 AU/mL). Participants were censored if they were
not seroreactive before loss to follow-up (right censoring). A log-rank test was used to test
the hypothesis that the cumulative incidence of seroreactivity between unvaccinated and
vaccinated persons, who have been previously naturally infected with SARS-CoV-2, does
not differ [41].

3. Results
3.1. CARE COVID-19 Cohort

Fifty-seven individuals recovered from COVID-19 infection were recruited into the
CARE COVID-19 Cohort. Recruited subjects (17 male, 40 female; 18 to 76 years old) repre-
sented a range of COVID-19 disease severity. Most subjects had a mild case of COVID-19,
defined as not requiring hospitalization; 6 reported being asymptomatic and 12 reported
experiencing fever. Only four of the recruited subjects (7%) reported being hospitalized for
COVID-19; one required intensive care. The observed case severity distribution was consis-
tent with the general distribution of COVID-19 disease severity in BC (~5% of diagnosed
cases hospitalized as of April 2022) [42].

Participants were required to have recovered from COVID-19 (i.e., 14 days post-qPCR
diagnosis) before providing their first blood and saline gargle sample. Collection dates
ranged from 18–490 days (median 152 days) since a positive qPCR test (used as proxy for
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time since infection), with the baseline collection date ranging from 18–339 days (median
114 days). Participants submitted between 1 and 7 samples, with approximately 2 weeks
(median 14 days; range 7–83 days) between each collection, with an average of 6 samples
collected per participant and a total of 341 samples collected. No reinfections or persistent
virus shedding were detected in self-collected saline gargle samples using qPCR (data
not shown).

Virus whole genome sequencing was performed on all available primary diagnostic
specimens obtained from recruited participants [27] to determine the SARS-CoV-2 variant
responsible for infection. Forty-one sequences were obtained (28 from the analytic dataset)
(Supplementary Tables S2 and S3). SARS-CoV-2 variants were classified by pangolin lineage
(Supplementary Tables S2 and S3) and visualized as a phylogenetic tree (Supplementary
Figure S2). Viral genomes detected in the study sample are representative of variants
circulating at the time of respective participants’ diagnoses [29]. Whole genome sequencing
data was missing for ~33% of participants in the analytic dataset and, therefore, was
not included as a covariate in the analysis. Multiple studies corroborate no significant
difference in neutralising antibodies between the alpha variant and the ancestral isolate
post mRNA vaccination with BNT162b2 or mRNA-1273. Noteworthy reduction of post-
vaccination neutralising sera was observed for the beta variant in persons vaccinated with
mRNA-1273 [43].

3.2. Comparison of Anti-SARS-CoV IgG Antibody Responses across Four Commercial Assays

All available samples (n = 340; 1 missing) were initially tested using a combination of
three commercial serology assays supplied by Siemens (COV2T), Abbott (ARCHITECT™),
or Ortho (VITROS™) clinical diagnostics. Of the n = 340 samples tested, n = 338 were
classified as reactive using at least one assay (Supplementary Table S1). All available
samples (n = 339) were subsequently tested using a highly sensitive and multiplex elec-
trochemiluminescent assay offered by Meso Scale Diagnostics (MSD). Percent positivity
differed across the platforms and by antigenic target. Overall detection of anti-S was more
sensitive than anti-N SARS-CoV-2 IgG. Comparing anti-S results, the Ortho assay had the
highest positivity rate (100%) followed by Siemens (95%) and MSD (89%) (Supplementary
Table S1). For anti-N results MSD (58%) outperformed Abbott (47%) with a 11% increase
in positivity (χ2 test, p = 0.01). When samples were stratified by collection time to less
than or greater than 6 months post-infection, the anti-N positivity rate decreased for both
the Abbott (72% to 13%) and MSD, (76% to 33%) (p < 0.001). A 7% decline in positivity
was observed for anti-S (p = 0.06) and 2% for anti-RBD (p = 0.53) when tested by MSD
(Supplementary Table S1). Only antibody measurements from the MSD assay were used in
the multivariable analysis as the anti-S IgG results compared well with Ortho and anti-N
IgG results were superior to Abbott. Waning of anti-S and anti-N IgG concentrations over
time were measured between participants using the first baseline observation for each of the
k = 42 participants in the analytic dataset. Using linear regression analysis, overall waning
was observed in both anti-N and anti-S and the slope did not differ significantly across
the two measures (p = 0.46; Figure 1). On average SARS-CoV-2 antibodies wane at a rate
of −0.0029 log10 AU/mL per day (p < 0.001) or ~4228 AU/mL per month. These results
confirm waning of anti-SARS-CoV-2 antibodies over time in people who have recovered
from natural SARS-CoV-2 infection before vaccination. Estimates of anti-SARS-CoV-2 IgG
waning are calculated post-vaccination using a mixed-effects linear regression model and
reported as the ‘primary analysis’.
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Figure 1. Longitudinal decay of SARS-CoV-2 anti-N and anti-S IgG concentration over time in natural
SARS-CoV-2 infected CARE participants prior to vaccination (k = 42, n = 42 samples). Participant
samples were restricted to the first collection date (baseline) and plotted independently. Linear
regression was used to estimate the decrease in anti-S and anti-N titer over time since qPCR test result.

3.3. Serological Response to SARS-CoV-2 Vaccination

Bivariate analysis was conducted on the analytic dataset to compare participant
antibody responses pre- and post-vaccination for COVID-19. Participant’s serology results
and survey responses are summarized and stratified at baseline by the exposure of interest,
one dose of a COVID-19 vaccine (Table 1). No difference in the distribution of covariates
between participants who received and did not receive a COVID-19 vaccine over the study
period was observed for all variables except the number of participant visits. Though follow-
up time did not significantly differ between the two groups, on average unvaccinated
participants were observed 0.95 (approximately one) fewer times than those who received a
COVID-19 vaccine (p = 0.014) (Table 1). Importantly, age, biological sex, days from positive
qPCR test (diagnosis), symptom duration and endemic anti-coronavirus IgG signals did
not differ by exposure at baseline; therefore, we expect limited confounding from these
covariates when estimating the association between COVID-19 vaccination and anti-SARS-
CoV-2 IgG signals. Covariates, which met the definition of a confounder by the common
cause criteria, were adjusted for in the primary analysis using a linear mixed effects model.

In k = 21 paired participants, SARS-CoV-2 anti-S and anti-RBD IgG antibody concen-
trations increased post vaccination by 1.63 (p ≤ 0.001) and 1.82 (p ≤ 0.001) log10 AU/mL
(Figure 2A,B). Anti-N antibody concentration continued to decrease post vaccination by
−0.3 (p = 0.03) log10 AU/mL (Figure 2C), consistent with waning observed prior to vac-
cination. Most participants (>99%) were found to be seropositive for anti-S antibodies
against the endemic HCoVs. Post vaccination, anti-S antibody concentrations for endemic
human β-coronaviruses HCoV-HKU1 and HCoV-OC43 increased (p = 0.02 and p = 0.02)
(Figure 3B,D). No increase in antibody concentration was observed for the endemic human
α-coronaviruses HCoV-229E and HCoV-NL63 (p = 0.15 and p = 0.25) (Figure 3A,C).
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Table 1. Descriptive statistics of study participants at the beginning of the study (baseline) in the
analytic dataset with complete data (k = 42) $.

Vaccinated During Study

Variable Name Level Total (n) No Yes p-Value *

- 42 21 21 –

Biological Sex (n [%])
Male 13 5 (23.8) 8 (38.1) 0.504
Female 29 16 (76.2) 13 (61.9) 0.504

Age (mean [SD]) 42 41.48 (11.66) 46.33 (11.91) 0.189

Days Since Positive qPCR Test (mean [SD]) - 42 127.62 (88.45) 165.33 (115.90) 0.243

Pre-Vaccine Sample (n [%])
True 42 21 (100) 21 (100) –

Duration of COVID-19 Symptoms
(n [%])

≤2 Weeks 26 13 (61.9) 13 (61.9) 1.00
>2 Weeks 16 8 (38.1) 8 (38.1) –

SARS-CoV-2 anti-Spike-IgG
Log10 AU/mL - - 4.00 (0.82) 3.88 (0.50) 0.583

SARS-CoV-2 anti-RBD-IgG
Log10 AU/mL - - 3.63 (0.81) 3.61 (0.49) 0.891

SARS-CoV-2 anti-Nucleocapsid-IgG
Log10 AU/mL - - 4.09 (0.82) 4.02 (0.72) 0.755

229E-CoV anti-Spike-IgG
Log10 AU/mL - - 4.33 (0.42) 4.32 (0.53) 0.971

HKU1-CoV anti-Spike-IgG
Log10 AU/mL - - 4.14 (0.47) 4.19 (0.52) 0.779

NL63-CoV-2 anti-Spike-IgG
Log10 AU/mL - - 3.60 (0.46) 3.62 (0.41) 0.891

OC43-CoV-2 anti-Spike-IgG
Log10 AU/mL - - 4.75 (0.53) 4.68 (0.54) 0.642

Follow Up Time (median [SD]) - - 85 (25.87) 84 (9.20) 0.435

Number of Follow Up Visits Per-Participant
(mean [SD]) - - 5.95 (1.60) 6.90 (0.3) 0.014

$ Participants are stratified by vaccine status (primary exposure) throughout the study period, k = 21 participants
were vaccinated while under observation. Bivariate associations at baseline were examined by testing for
a difference in the distribution of covariates between participants who did or did not receive one dose of a
COVID-19 vaccine over the study period. * p-values are reported for parametric tests used for continuous (t-test)
and categorical variables (χ2 test).
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Figure 2. SARS-CoV-2 anti-IgG pre- and post-vaccination. Antibody signals in k = 21 paired par-
ticipants, who re-ceived a COVID-19 vaccine during the study, at baseline and 14 to 56 days post-
vaccination, presented by individ-ual SARS-CoV-2 antigen (k = 21): (A) anti-S, (B) anti-RBD, (C) anti-
N. Differences in antibody signals were examined with a paired Wilcoxon signed rank test.
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Figure 3. Endemic human coronavirus anti-S IgG antibody signals pre- and post-vaccination. HCoV
antibody signals in n = 21 paired participants, who received a COVID-19 vaccine during the study,
measured at baseline (be-fore vaccination) and 14 to 56 days post-vaccination, presented by HCoV
species: (A) HCoV-229E anti-Spike (S), (B) HCoV-HKU1 anti-S, (C) HCoV-NL63 anti-S, (D) HCoV-
OC43 anti-S. Difference in antibody signal was examined with a paired Wilcoxon signed rank test.

3.4. Primary Analysis

Linear mixed-effects regression models were used to estimate intraclass correlation
within participant samples and the relationship between COVID-19 vaccination and SARS-
CoV-2 anti-S or anti-N IgG antibody concentration. An unconditional mean model was fit
to partition within participant variation from between participant variation (Table 2). The
minority of variation in SARS-CoV-2 anti-S IgG concentration was attributable to differences
between participants (ICC = 0.43) (Table 2). On average, anti-S IgG concentration increased
over time in participants who received one dose of a COVID-19 vaccine during the study
by 2.06 log10 AU/mL (95%CI: 1.45–3.46) adjusting for age, biological sex, days from
positive qPCR test (time) and effect modification between COVID-19 vaccination and
time (Table 2). In the adjusted model, the ICC increased to 0.89 indicating that between
participant differences (e.g., COVID-19 vaccination) explains most of the variation in
SASRS-CoV-2 anti-S IgG antibody concentration. COVID-19 vaccination has a positive
association with SARS-CoV-2 anti-S IgG antibody concentration, which increases over time.
Variation in anti-N IgG concentration was due to differences between participants in the
unconditional mean model (ICC = 0.88). The average, anti-N IgG concentration decreased
in vaccinated participants over time.

(−0.243 log10 AU/mL, 95%CI: −1.2–[0.12]) adjusting for age, biological sex, days
from positive qPCR test (time) and effect modification between COVID-19 vaccination and
time (Table 2). Variation in anti-N IgG concentration after fitting the adjusted model was
explained by within participant variance (ICC = 30). Overall, these results indicate that
waning of SARS-CoV-2 anti-N IgG is unaffected by COVID-19 vaccination. Anti- S IgG
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titers increase post vaccination; therefore, vaccination of recovered individuals benefits the
durability of their humoral immune response.

Table 2. Summary of linear mixed effects models fit to examine the relationship between anti-S IgG
log10 AU/mL (light grey) or anti-N IgG log10 AU/mL (dark grey) and COVID-19 vaccination status
adjusting for: biological sex, age, and time from qPCR diagnosis.

Unconditional Mean Model (S) Intraclass Correlation Coefficient

Participant ID (n = 42) 0.434

Residual 0.566
Random Intercept Model Variable Fixed Effect Estimate 95%CI
Anti-Spike IgG Intercept 4.84 3.27–6.39

Vaccine-Yes 0.40 −0.41–1.20
Biological Sex-Male 0.93 0.068–1.79
Age (Years) −0.029 −0.063–0.0057
Time from +ve qPCR Test * −0.20 −0.47–0.054
Vaccine: Time * 1.86 1.39–2.21

Random Effects Intraclass Correlation Coefficient
0.893

Unconditional Mean Model (N)

Participant ID (n = 42) 0.875

Residual 0.125
Random Intercept Model Variable Fixed Effect Estimate 95%CI
Anti-Nucleocapsid IgG Intercept 3.14 2.48–3.79

Vaccine-Yes −0.080 −0.42–0.26
Biological Sex-Male 0.27 −0.095–0.63
Age (Years) 0.016 0.0017–0.03
Time from +ve qPCR Test * −0.40 −0.53–(−0.27)
Vaccine: Time * −0.077 -0.25–0.11

Random Effects Intraclass Correlation Coefficient
0.30

* An effect modification term was incorporated to explore how the effect of vaccination on antibody concentration
differs by time since diagnosis with a qPCR test. Unconditional means models were fit to partition the variance by
participant without inclusion of other exposure variables. Fixed effect models were built by applying the common
cause criterion to select covariates which are a cause of the exposure, outcome, or both.

3.5. Secondary Analysis

Secondary analysis used the Kaplan–Meier method to estimate the cumulative inci-
dence of seroreactivity above a defined threshold in vaccinated and unvaccinated partici-
pants over time. Seroreactive status was classified by the threshold of ≥5.5 log10 AU/mL
SARS-CoV-2 anti-S IgG, as described in Methods. Participants with antibody measurements
equal to or greater than the threshold were considered reactive. Over the 105 days follow
up from baseline (first antibody measurement available for participants post-infection),
88% (95%CI: 42–98%) of vaccinated participants (n = 16) were seroreactive compared to
5% (95%CI: 0–14%) of unvaccinated participants (n = 1) (p = 0.03) (Figure 4). A single
dose of COVID-19 vaccine increases the probability of a SARS-CoV-2 anti-S IgG antibody
concentration ≥5.5 log10 AU/mL by 83%.
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Figure 4. Cumulative incidence of seroreactivity (≥5.5 SARS-CoV-2 anti-S IgG Log10 AU/mL)
days from participant’s first blood draw at baseline, stratified by vaccination status over the study
period. Vaccinated participants achieved antibody titers not possible from natural infection alone
(unvaccinated participants). Within 105 days of follow up, 88% (95%CI: 42–98%) of vaccinated
participants were seropositive, an increase of 83% in comparison to the unvaccinated group (p = 0.03).
In previously naturally infected individuals, COVID-19 vaccination increases SARS-CoV-2 anti-S IgG
concentration over time to levels which are not attained by natural infection alone. No re-infections
were detected by qPCR in the vaccinated or unvaccinated group during the study period, specimens
were self-collected.

4. Discussion
4.1. Summary of Results

A prospective cohort study was carried out in Greater Vancouver, British Columbia
to observe anti-SARS-CoV-2 and anti-endemic HCoV antibody dynamics in participants
who were infected with SARS-CoV-2, a subset received the first dose of a Health Canada
approved SARS-CoV-2 vaccine during the follow up. Several commercial serology assays
were used to detect anti-coronavirus antibodies; detection of anti-SARS-CoV-2 antibodies
was confirmed in all available samples, although both anti-S and anti-N antibodies decline
over time post-infection. Bivariate analysis found that vaccination significantly increased
the titer of SARS-CoV-2 anti-S IgG antibodies 14–56 days post vaccination. A positive asso-
ciation was found between SARS-CoV-2 vaccination and endemic human β-coronavirus
(HCoV-OC43 and HCoV-HKU1) anti-S IgG antibodies. It cannot be ruled out that infection
with an endemic HCoV is an alternative/competing cause of the observed increase; how-
ever, the incidence of influenza-like (syndromic) respiratory infections was low during the
study period [44]. Vaccination was not observed to boost SARS-CoV-2 anti-N IgG titers,
which waned overtime in both vaccinated and unvaccinated individuals. The rate of anti-N
waning was approximately double that of anti-S. Secondary analysis used a Kaplan–Meier
model to estimate the cumulative incidence of anti-S antibody titers equal to or above
5.5 log10 AU/mL (‘seroreactivity threshold’) in those vaccinated and unvaccinated. In
the vaccinated group, 88% (95%CI: 42–98%) of participants had SARS-CoV-2 anti-S IgG
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titers greater than or equal to this threshold, while this level was achieved in only one
unvaccinated participant measured twenty-seven days post infection. Asymptomatic and
subclinical SARS-CoV-2 infections have been observed to prime the adaptive immune
response and may explain observed increases in unvaccinated participants. In people with
asymptomatic re-infections, anti-S IgG titers wane more slowly over time and anti-N may
increase [45].

In unvaccinated participants, a few more substantial increases in anti-S titers were
observed despite overall antibody waning. No reinfections were confirmed using qPCR in
self-collected saline gargle samples throughout the study; however, one participant had a
large (>8-fold) average increase in mean (anti-S, RBD and N) antibody levels seven months
following initial SARS-CoV-2 diagnosis, which may be explained by a second exposure
to SARS-CoV-2. A second participant had 6-fold increase of anti-S and anti-RBD levels,
but not anti-N IgG levels, suggesting they may also have been re-exposed. Other detected
increases in antibody levels were of much smaller magnitude and might be secondary to
rising titers early in convalescence or be explained by technical variations rather than a
biological mechanism.

4.2. Comparison with Literature

Previous studies have measured changes in SARS-CoV-2 antibody titers over time.
Repeated exposure to SARS-CoV-2 antigens increases IgG titer, while antibodies generated
from a single exposure wane overtime [46,47]. Following infection, SARS-CoV-2 specific
antibody waning has been observed to decrease from the 8th to 9th week post symptoms
onset, with detectable levels observed up to the end of the 12th week [48]. In those with
multiple SARS-CoV-2 exposures or a hybrid immune response from infection and vac-
cination, decrease of antibody titers stops shortly after the secondary antigen exposure
when stimulation of the memory B cell response produces additional antibodies [49]. A
strong correlation between total lymphocyte count and SARS-CoV-2 anti-S IgG provides ev-
idence that an ongoing/active immune response provides better protection than a dormant
one [48]. Waning of SARS-CoV-2 antibodies differs by the SARS-CoV-2 epitope they target,
anti-N IgG antibodies wane faster than anti-S. The difference in reactivity between anti-N
to anti-S IgG was observed at the population level, anti-N seroprevalence underestimated
the number of confirmed infections by 9–31% [50]. Vaccination post SARS-CoV-2 infection
prevents waning of anti-S but has no effect on anti-N IgG [51]. Hybrid immunity also
benefits the breadth of the antibody mediated response, increasing the probability that
existing antibodies are effective against the novel variants. Persons who were infected
prior to receiving one of two doses of a COVID-19 vaccine had more somatic mutations
and antibody production from the IGHV2-5; IGHJ4-1 germline which was not active in
the vaccinated but uninfected [52,53]. Additionally, hybrid immunity produces greater
total and neutralizing anti-S titers than natural infection or vaccination alone [49]. Our
study both supports and builds upon prior findings, as we show that SARS-CoV-2 IgG
antibodies wane in SARS-CoV-2 infected people over time, with the rate of decline being
greater for anti-N IgG than anti-S; vaccination post-infection boosts anti-S IgG titers and
participants with hybrid immunity possess anti-S antibody levels which are not common
in those infected but unvaccinated. We propose 5.5 log10 AU/mL anti-S IgG as a putative
correlate of protection in persons convalescent for SARS-CoV-2 infection who have received
a single dose of a Health Canada approved vaccine. Our calculated rates of antibody
decline may be used to help estimate infection timing in seroprevalence studies.

4.3. Clinical and Epidemiological Interpretation

Our findings have important implications for clinical practice and public health guide-
lines as the pandemic progresses into its third year, novel viral variants continue to emerge,
and vaccine doses are more widely distributed globally. Humoral immunity from natural
infection wanes and vaccination with at least one dose of COVID-19 vaccine increases
SARS-CoV-2 anti-S IgG titers immediately and over time. Therefore, we recommend that
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naturally infected individuals receive COVID-19 vaccination to increase protection from
re-infection and severe disease and the duration of their humoral immune response against
SARS-CoV-2. We demonstrate that a single dose of SARS-CoV-2 vaccine is effective in
boosting anti-S antibody titers to high levels, which has implications in distribution of
vaccine supplies in those countries with scarce access and low vaccination levels in the
setting of high numbers of natural infection.

4.4. Strengths and Limitations

The strength of the described study stems from the prospective design, use of mul-
tiple serological tests, including the quantitative MSD option, and thorough analysis. A
prospective cohort design offers several benefits, which allowed us to observe SARS-CoV-2
antibody dynamics over time with minimal bias. Recruiting participants post-infection but
prior to vaccination delineated the sequence of temporal events, limiting the probability
that any changes in antibody titers observed post-vaccination were due to causes other than
the vaccine. Selection bias was minimized as the participants exposure (vaccination status)
and outcome (IgG titer) were not known when they were recruited into the study. At the
beginning of the study, the measured covariates were exchangeable between participants
who were unvaccinated or vaccinated during follow-up. Balance of the covariates allowed
for estimation of the relationship between vaccination and anti-SARS-CoV-2 IgG antibody
titer with minimal bias from confounding. Utilizing multiple serological tests increased
the rigor of our observations, limited instrument bias and allows for our findings to be
generalized between different types of serological testing methods. Statistical power was
optimized by analysis with a mixed effects linear regression model, which accommodated
multiple repeated measures per participant.

Limitations of the work include differential loss to follow up in the vaccinated and
unvaccinated groups, a small sample size, and incomplete/missing survey responses and
incomplete whole genome sequencing data. Unvaccinated participants were observed to
have approximately one fewer visit than those who received a COVID-19 vaccine. Vaccines
were not an originally planned intervention in the study and were made available in
British Columbia on a stage roll-out basis about half-way through the study period. The
difference in visit numbers between the vaccinated and unvaccinated groups may be related
to surveillance bias- those who receive a medical intervention are more open to clinical
follow up than those who do not. Obtaining a larger sample size initially planned for the
study was difficult due to low enrollment uptake, likely related to the social and economic
stress of the pandemic on the public and geographic limitations on recruitment related to
the availability of sample collection sites.

Despite the small sample size, we detected a significant increase in human β-coronavirus
(HCoV-HKU1 and HCoV-OC43) anti-S titers following SARS-CoV-2 vaccination, while
no difference was observed for the α-coronaviruses (HCoV-NL63 and HCoV-229E). Anti-
genic cross-reactivity between human β-coronaviruses may allow for ‘back-boosting’ a
phenomenon which has been well described for Influenza A viruses [54]. Antibodies are
‘back-boosted’ when a secondary exposure to a novel viral strain generates new antibodies
and increases the titer of antibodies against a previously encountered strain. As a result,
SARS-CoV-2 vaccinations may provide non-specific protection in children who have a
high incidence of endemic coronavirus infections. The study design may have underes-
timated any association between existing endemic coronavirus IgG titers and COVID-19
vaccination as the sample was restricted to persons previously infected with SARS-CoV-2.
COVID-19 has been shown to affect endemic coronavirus antibody levels and as such, the
effect of vaccination should be observed in a cohort of SARS-CoV-2 naive persons prior to
vaccination [55–57]. The overall effect of SARS-CoV-2 vaccination and/or infection on the
circulating antibodies against endemic HCoVs in the population may have implications for
their seasonal epidemiology.
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5. Conclusions

In summary, we report that single dose vaccination in a British Columbia-based cohort
after natural infection significantly increases SARS-CoV-2 anti-S IgG titer by 1.63 log10 units
and that vaccination increases the durability of high anti-S titers over time. Vaccination
post-natural infection had no significant association with SARS-CoV-2 anti-N IgG titer; a
significant trend towards higher anti-S IgG against the endemic human β-coronaviruses
(HCoV-HKU1 and HCoV-OC43) was observed. Our results provide support that vaccina-
tion is beneficial for achieving higher and more persistent SARS-CoV-2 anti-S IgG titers. We
also report an estimated rate of decay of anti-N antibodies, which may be useful for mea-
suring ongoing population seroprevalence estimates. Future studies should examine the
impact of infection following vaccination on antibody dynamics, as vaccine breakthrough
infections with omicron or other variants of concern continue to occur.
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Abstract: In the context of the COVID-19 pandemic, conducting antibody testing and vaccination is
critical. In particular, the continued evolution of SARS-CoV-2 raises concerns about the effectiveness
of vaccines currently in use and the activity of neutralizing antibodies. Here, we used the Escherichia
coli expression system to obtain nine different SARS-CoV-2 RBD protein variants, including six single-
point mutants, one double-point mutant, and two three-point mutants. Western blotting results show
that nine mutants of the RBD protein had strong antigenic activity in vitro. The immunogenicity
of all RBD proteins was detected in mice to screen for protein mutants with high immunogenicity.
The results show that the mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y,
especially the former two, had better immunogenicity than the wild type. This suggests that site E484
has a significant impact on the function of the RBD protein. Our results demonstrate that recombinant
RBD protein expressed in E. coli can be an effective tool for the development of antibody detection
methods and vaccines.

Keywords: COVID-19; SARS-CoV-2; RBD; immunogenicity; mutant

1. Introduction

The beta-coronavirus SARS-CoV-2 has become the seventh discrete coronavirus species
that is capable of causing human disease [1]. SARS-CoV-2 is easily transmitted and highly
pathogenic [2,3]. There are now outbreaks in more than 216 countries, areas, and territories
around the world. As of 27 July 2022, the total number of confirmed cases has exceeded
570 million, with more than 6.3 million deaths, and these numbers are increasing every day.
Vaccination is a highly effective strategy to prevent and stop the spread of SARS-CoV-2
in light of its high pathogenicity and transmissible nature. Well-protected vaccines can
significantly reduce the incidence and transmission of the virus and are of great significance
to the prevention and treatment of COVID-19. Many different SARS-CoV-2 vaccines are
being developed around the world. According to the technology, the current vaccines
are divided into three main categories: novel coronavirus-inactivated vaccines, subunit
recombinant protein vaccines, and nucleic acid vaccines [4,5].

Studies have shown that SARS-CoV-2 spike (S) protein can serve as a suitable antigen
with strong immunogenicity that can effectively stimulate the host immune system to
induce the production of neutralizing antibodies [5–7]. The receptor-binding domain (RBD)
in the SARS-CoV-2 S protein mediates viral cell fusion to induce host infection through
site-directed binding to the receptor protein angiotensin-converting enzyme 2 (ACE2) [8,9].
Therefore, the S protein has become a priority target for the design of recombinant subunit
vaccines [5,10,11]. SARS-CoV-2 was first detected in 2019 [12]. As the virus has spread
globally, new variants of the virus have emerged in the past two years, some of which
have significantly increased their infectivity, transmissibility, and immune escape potential
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compared to wild viruses [13–15]. In multiple variants of SARS-CoV-2 that have been
reported so far, the S protein has been mutated, especially at some sites in the RBD,
resulting in an increase in the binding affinity between the S protein and the receptor
protein ACE2 [16,17]. For example, the RBD mutation N501Y appears in lineages B.1.1.7
(Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.1.529 (Omicron) [15,17]. The L452R mutation
appears in lineages B.1.617.2 (Delta), B.1.429 (Epsilon), and B.1.617.1 (Kappa) [18]. The
K417N mutation appears in lineage B.1.351 (Beta), while the K417T mutation appears in
lineages P.1 (Gamma) and B.1.1.529 (Omicron) [15,17]. The E484K mutation is present in
lineages B.1.351 (Beta), P.1 (Gamma), P.2 (Zeta), B.1.525 (Eta), and B.1.526 (Iota), the E484Q
mutation is present in lineage B.1.617.1 (Kappa), and the E484A mutation is present in
lineage B.1.1.529 (Omicron) [15,19]. Therefore, it can be inferred that K417, L452, E484,
and N501 in the RBD are key sites affecting the function of the S protein and are prone to
mutation. In particular, three different mutations have appeared in the E484 site.

Previous studies have shown that different SARS-CoV-2 mutants have different mu-
tations in the RBD of the S protein, causing changes in viral pathogenicity and infectiv-
ity [17,20]. This means that some vaccines currently in use may be less protective against
some of the currently existing variants, which could lead to the widespread transmission
of the mutated virus in the population, making it more difficult to control future COVID-19
outbreaks. Therefore, there is an urgent need to develop vaccines that confer strong broad-
spectrum protection against existing or emerging mutated viruses. In this study, different
mutant RBD proteins were expressed in an Escherichia coli expression system, and their
antigenicity and immunogenicity were compared and evaluated in mice in order to screen
candidates for vaccine design and drug targets and to facilitate virus antibody detection
kit development.

2. Materials and Methods
2.1. Bacterial Strains, Construction, and Growth Conditions

E. coli XL1-Blue was used as a host to express the RBD protein. The bacterial strains in
our experiment were cultured in LB medium at 37 ◦C. Ampicillin was added as needed. The
fragment of the SARS-CoV-2 S protein gene (GenBank: NC_045512.2) (991–1749 bp) corre-
sponding to amino acids 331−583 of the SARS-CoV-2 S protein (GenBank: YP_009724390.1)
was synthesized. The expression vector pQE30 was digested with BamHI and HindIII
restriction enzymes. The ClonExpress® Ultra One Step Cloning Kit (Vazyme, Nanjing,
China) was used to ligate the target fragment into the vector. Primers used for cloning and
mutant construction are shown in Table 1.

Table 1. List of primers used in this study.

Primers Name Sequence (5′-3′)

RBD-F TCGCATCACCATCACCATCACAATATTACAAACTTGTGCCCTTTTG
RBD-R GAGTCCAAGCTCAGCTAATTTTACTCAAGTGTCTGTGGATCACGG

K417T-F CAAACTGGAACCATTGCTGATTATAATTATAAATTACC
K417T-R CAGCAATGGTTCCAGTTTGCCCTGGAGCGATTTGTC
K417N-F CAAACTGGAAACATTGCTGATTATAATTATAAATTACC
K417N-R CAGCAATGTTTCCAGTTTGCCCTGGAGCGATTTGTC
L452R-F ATAATTACCGCTATAGATTGTTTAGGAAGTCTAATC
L452R-R CAATCTATAGCGGTAATTATAATTACCACCAACCTTAG
E484K-F AATGGTGTTAAGGGTTTTAATTGTTACTTTCCTTTAC
E484K-R TTAAAACCCTTAACACCATTACAAGGTGTGCTACCG
E484Q-F AATGGTGTTCAGGGTTTTAATTGTTACTTTCCTTTAC
E484Q-R TTAAAACCCTGAACACCATTACAAGGTGTGCTACCG
N501Y-F CCAACCCACTTACGGTGTTGGTTACCAACCATACAGAG
N501Y-R CAACACCGTAAGTGGGTTGGAAACCATATGATTGT
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2.2. Protein Expression and Purification

The recombinant strains were streaked on LB plates (containing 200 µg/mL ampicillin).
Single colonies were inoculated in LB medium containing 100 µg/mL ampicillin and
cultured overnight at 37 ◦C. Cultures were transferred to 1 L LB medium. When the OD600
value of the bacterial solution reached 0.5, IPTG was added at a final concentration of
0.5 mM and bacteria were cultured at 37 ◦C for 8–12 h. The cultured cells were harvested
and resuspended in 15 mL lysis buffer (10 mM imidazole, 300 mM NaCl, 50 mM NaH2PO4,
pH 8.0). Then, 0.5 mL lysozyme (50 mg/mL) was added and the lysate was placed on ice
for 20 min. Ultrasonic disruption was performed with the following parameters: total time
16 min, working time 6 s, intermittent time 3 s, and power 300 W. After centrifugation for
20 min at 12,000 rpm and 4 ◦C, the supernatant was discarded, and the precipitate (inclusion
body) was retained. Next, 20 mL of precipitation lysis buffer (8 M urea, 100 mM NaH2PO4,
100 mM Tris-HCl, pH 8.0) was added to the inclusion body. After sufficient oscillation,
ultrasonication was carried out. The supernatant (containing protein after inclusion body
dissolution) was collected by centrifugation for 20 min at 12,000 rpm and 4 ◦C, and the
precipitate was discarded. The RBD protein was purified under denaturing conditions
with HisSep Ni-NTA Agarose Resin. The inactive RBD protein was added to refolding
buffer (100 mM Tris, 400 mM L-arginine, 2 mM EDTA, 5 mM GSH, 0.5 mM GSSG, 10%
(v/v) glycerol, pH 8.0) and incubated for 12 h at 4 ◦C. Finally, the refolded RBD protein was
concentrated and desalted by a 10 kDa ultrafiltration tube.

2.3. SDS-PAGE and Immunoblotting

The recombinant RBD protein was mixed with protein loading buffer, boiled for 5 min,
and centrifuged for 10 min at 12,000 rpm. Next, proteins were separated by 12% SDS-PAGE
(5 µL of supernatant per lane). For Coomassie Bright Blue staining, CBB Fast Staining
Solution (Tiangen biotech, Beijing, China) was used. For Western blot (WB) analysis, the
proteins were transferred from the gel to a nitrocellulose membrane by semi-dry membrane
transfer (the membrane transfer parameters: 25 V, 1 A, and 25 min). The membranes
were incubated in blocking buffer (5% BSA in TBST buffer (Tris 9.68 g/L, NaCl 32 g/L,
0.02% Tween-20)) at room temperature for 2 h. After washing the membrane with TBST
buffer three times, the membrane was incubated with mouse monoclonal anti-His tag
(1:5000, Clone: 9C11, Yeasen Biotechnology, Shanghai, China) or human monoclonal anti-
RBD (1:1000, Clone: 7H6, KMD Bioscience, Tianjin, China) overnight at 4 ◦C. Following
incubation, the membranes were washed and incubated with horseradish peroxidase
(HRP)-conjugated goat anti-mouse (1:10,000) or HRP-conjugated goat anti-human for 1 h at
room temperature. After washing, the membrane was immersed in a chromogenic solution
and protein bands were imaged with a UVI gel imager (UVItec, Cambridge, UK).

2.4. Mouse Immunization

Ten RBD proteins were prepared and mixed with Freund’s adjuvants at a ratio of
1:1. In this experiment, three mice were immunized in each experimental group. Female
BALB/c mice aged 6–8 weeks were subcutaneously immunized with 500 µL of RBD protein
solution (30 µg of protein/mouse) or PBS and boosted on days 7 and 14. Blood was sampled
on days 0 (prevaccination), 13, and 25. After coagulation at room temperature for 1 h, sera
were collected by centrifugation (5000 rpm, 30 min, 4 ◦C) and stored at −80 ◦C until use.

2.5. Enzyme-Linked Immunosorbent Assay (ELISA)

ELISA was used to analyze antibody responses in serum. Microplate wells were coated
with RBD protein (100 ng/well) in PBS coating buffer and incubated overnight at 4 ◦C.
Plates were washed three times using PBST containing 0.1% Tween 20 and blotted dry. The
plates were sealed at room temperature with 5% BSA for 2 h. Continuously diluted serum
with PBS buffer was added to the microplate (100 µL/well), which was incubated for 1 h at
37 ◦C. Then, the plate was washed. HRP-conjugated goat anti-mouse (100 µL/well, 1:2000
in PBS) was added to each well, followed by incubation for 1 h at room temperature. Next,
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the plate was washed six times and incubated with 100 µL 3,3′,5,5′-tetramethylbenzidine
(TMB) solution for 15 min. To stop the reaction, 50 µL of stop solution (1 M H2SO4) was
added to each well, and Infinite M200 fluorescent multifunctional enzyme marker (Tecan,
Männedorf, Switzerland) was used to read the absorbance at 450 nm.

2.6. Statistical Analysis

Data are expressed as mean ± standard deviation. Significant differences were deter-
mined by a one-way analysis of variance followed by the Tukey’s multiple comparison test.
Data were analyzed and graphs were drawn using Origin software (version 8.0, OriginLab,
Northampton, MA, USA) and GraphPad Prism software (version 5.0, GraphPad Software,
San Diego, CA, USA). Each experiment was independently replicated three times and
statistical significance was defined as p < 0.05.

3. Results
3.1. The Nine RBD Protein Mutants Were Obtained by Prokaryotic Expression and
Affinity Chromatography

The expression of the recombinant SARS-CoV-2 RBD protein was induced in E. coli
XL1-Blue cells and detected by SDS-PAGE. Although the recombinant RBD protein could
be expressed in E. coli cells, the protein existed in the form of an inclusion body (Figure 1A).
Therefore, denaturation and refolding were required. A large number of induced bacterial
cells were collected, and the inclusion body protein was obtained after cell rupture. Af-
ter dissolution with 8 M urea, a Ni-NTA agarose flow column was used for purification
(Figure 1B). When the purified denatured RBD protein was refolded, a recombinant RBD
protein with biological activity was obtained, and the molecular weight of ≈30 kDa was
consistent with the expected theoretical value. In this study, nine RBD protein mutants were
constructed by reverse PCR [21], including six single-point mutants, K417T, K417N, L452R,
E484K, E484Q, and N501Y; a two-locus mutation, L452R-E484Q; and two three-site mutants,
K417T-E484K-N501Y and K417N-E484K-N501Y. In this experiment, affinity chromatog-
raphy and ultrafiltration were used to remove the endotoxin in the recombinant protein.
After repeated operations, the endotoxin content in all mutant protein solutions was less
than 2.0 eu/mL. The SDS-PAGE results after denaturation, refolding, and concentration of
the nine RBD protein mutants and wild-type are shown (Figure 1C,D).
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Enterobacter; Lane 2: total protein of uninduced recombinant strain; Lane 3: total protein of the
recombinant strain after induction; Lane 4: supernatant protein after ultrasonic enucleation; Lane 5:
precipitated protein after ultrasonic enucleation. (B) Lane 1: 8M urea dissolved total inclusion body
protein; Lane 2: unbound protein collection solution; Lane 3: recombinant RBD protein collection
solution. (C,D) SDS-PAGE analysis of denatured, renatured, and concentrated recombinant RBD
protein and mutant protein. (C) Lane 1: mutant K417T; Lane 2: mutant K417N, Lane 3: mutant
L452R; Lane 4: mutant E484K; Lane 5: mutant E484Q; Lane 6: mutant N501Y. (D) Lane 1: wild-type
RBD protein; Lane 2: mutant L452R-E484Q; Lane 3: mutant K417T-E484K-N501Y; Lane 4: mutant
K417N-E484K-N501Y.
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3.2. The RBD Protein Mutants Possessed Antigenicity In Vitro

In order to ensure that the purified wild-type RBD protein and mutant proteins have a
biological function, their specific antigenicity was analyzed using WB. Mouse monoclonal
anti-His tag (Figure 2A) and human monoclonal anti-RBD (Figure 2B) were used as primary
antibodies. The results show that a distinct single band is detected at approximately
30 kDa, which indicates that the wild RBD protein and nine purified mutant proteins had
strong antigenicity and could be used as antigens for subsequent immune experiments.
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Figure 2. Western blotting analysis of RBD protein mutants. (A) His-tag mouse monoclonal antibody.
(B) RBD human monoclonal antibody. The bands from left to right were wild RBD, K417T, K417N,
L452R, E484K, E484Q, N501Y, L452R-E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y.

3.3. The Mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y Displayed
Excellent Immunogenicity in Mice

To evaluate the in vivo immunogenicity of the mutated RBD proteins, mice were immu-
nized with both wild-type RBD and the nine RBD protein mutants, and blood samples were
taken on days 0, 13, and 25. The total antibody titer against the SARS-CoV-2 RBD protein
was evaluated by ELISA using HRP-conjugated goat anti-mouse as the secondary antibody.
Before prevaccination, no anti-RBD was detected in the serum of all mice (Figure 3A). On day
13, anti-RBD was detected in mice immunized with both wild-type RBD and the nine RBD
protein mutants (Figure 3B). On day 25, total antibody levels were significantly increased in
all mice immunized with RBD and RBD mutant proteins (Figure 3C). After receiving three
doses, the total resistance was greatly enhanced compared with the resistance levels after
receiving only two doses. Interestingly, different RBD proteins yielded significantly different
antibody titers after immunization (Figure 3D). On day 25, the antibody titers induced by
mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y were 4.7-, 4.8-, 6.8-,
and 5.0-fold higher than those induced by wild-type RBD, respectively. These results indi-
cate that the mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y have
excellent immunogenicity. In addition, the titers of mutants K417N, L452R, and L452R-E484Q
were about 2-fold higher than that of wild-type RBD. However, surprisingly, the titers of
mutants K417T and N501Y were approximately equal to that of wild-type RBD, suggesting
that the single mutations at K417T and N501Y may not cause significant changes in the
immunogenicity of RBD.

3.4. The Site E484 Has a Significant Impact on the Function of the RBD Protein

To further evaluate the extensive antigenicity of mutants E484K, E484Q, K417T-E484K-
N501Y, and K417N-E484K-N501Y, we coated microplate wells with E484K, E484Q, K417T-
E484K-N501Y, and K417N-E484K-N501Y proteins, respectively, and after blocking, antibody
titers in mouse serum collected on day 25 were determined. When RBD mutant proteins
of E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y were coated separately
as antigens, higher antibody titers were detected in the sera of mice immunized with
E484Q (Figure 4B). These results indicate that the mutant E484Q can induce high levels
of antibodies, and the antibodies induced by the mutant have high antigenic binding
ability to a wide spectrum of mutant RBD proteins. After coating with E484K protein, a
high antibody titer was detected in the sera of all immunized mice (Figure 4A), indicating
that E484K as an antigen has a high binding ability to antibodies induced by wild-type
and other mutant RBD proteins. Although antibody titers against RBD were detected
in the serum of all immunized mice after coating with K417T-E484K-N501Y (Figure 4C)
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and K417N-E484K-N501Y (Figure 4D) proteins alone, there was no significant difference
between the antibody titer produced after the mice were immunized with other mutant
proteins, except for the mutants E484K and E484Q. This means that the mutant proteins
K417T-E484K-N501Y and K417N-E484K-N501Y may not be suitable as antigens in antibody
detection. In conclusion, the above results indicate that the mutant proteins E484K, E484Q,
K417T-E484K-N501Y, and K417N-E484K-N501Y all have good immunogenicity and can
induce antibody production more strongly than wild-type RBD protein in mice.
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Figure 3. Anti-SARS-CoV-2 RBD antibody levels in mice by ELISA. It was coated with 100 ng of wild
RBD protein, and after blocking with 2 times gradient diluted serum. (A–C) represent the antibody
levels of RBD on days 0, 13, and 25, respectively. (D) The RBD antibody titers were expressed as the
minimum concentration (maximum dilution) required for binding antigen. Statistical significance
was defined as p < 0.05, and * p < 0.05, ** p < 0.01.
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Figure 4. Extensive analysis of the antigenicity of RBD mutant protein. It was coated with 100
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(A) E484K protein. (B) E484Q protein. (C) K417T-E484K-N501Y protein. (D) K417N-E484K-N501Y
protein. Statistical significance was defined as p < 0.05, and * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

The cumulative multiple mutations of SARS-CoV-2 have formed highly infectious
Delta and Omicron variants [22,23], which will trigger another outbreak of the COVID-19
epidemic around the world, exacerbating the global pandemic and threatening public
health. The SARS-CoV-2 Omicron variant is of particular concern because of its increased
transmissivity and the high number of mutations in the spike protein, which have the
potential to evade neutralizing antibodies induced by the currently used COVID-19 vac-
cines [24,25]. In addition, it has been shown that the mechanical stability of SARS-CoV-2
RBD protein was 250 pN, while that of SARS-CoV RBD protein was 200 pN, which may
play an important role in increasing transmissivity of the COVID-19 pandemic [26].

The spike protein of SARS-CoV-2 consists of two major functional domains containing
a total of 1273 amino acids. Located at the N-terminus of the S protein is the S1 functional
region containing the NTD and RBD domains. The remaining part is the S2 functional
region containing two trimeric structures mediating membrane fusion [4]. Therefore, the
NTD and RBD domains in the S1 functional region are candidates for the development of
vaccines or superior antigens [27,28]. Several SARS-CoV-2 mutants are currently in focus,
such as the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Kappa (B.1.617.1),
and Omicron (B.1.1.529) variants. The binding affinity of their corresponding mutant RBD
protein to ACE2 also changes. For example, the Alpha (B.1.1.7), Beta (B.1.351, Gamma
(P.1), Kappa (B.1.617.1), and Omicron (B.1.1.529) RBD proteins showed a higher affinity for
ACE2 than wild-type RBD. Alpha (B.1.1.7) and Kappa (B.1.617.1) RBD proteins had a much
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higher affinity for ACE2 than wild-type RBD, while the Delta (B.1.617.2) RBD protein had a
lower affinity for ACE2 than wild-type RBD [17,22]. In addition, it is interesting that K417T-
E484K-N501Y, K417N-E484K-N501Y, and K417T-E484A-N501Y mutant RBD proteins had a
lower affinity for ACE2 than the N501Y mutant RBD [16,29]. E484 and N501 are key sites
to improve the binding affinity between RBD and ACE2 [17,22]. However, Koelher et al.
investigated some RBD mutations, which described the effect of receptor binding energetics
and neutralization of the SARS-CoV-2 variants by atomic force microscopy and molecular
dynamics. They found that N501Y and E484Q mutations were particularly important for
greater stability of the RBD-ACE2 complex, but the N501Y mutations were unlikely to
significantly affect antibody neutralization [30].

Several RBD mutants selected in this study were present in the above SARS-CoV-2
variants. The recombinant RBD protein was expressed by E. coli, and after purification
by affinity chromatography, BALB/c mice were immunized and antibodies against RBD
were detected in serum (Figure 3B,C). The results show that RBD protein expressed by a
prokaryotic expression system had good immunogenicity although it could not be modified
by folding and glycosylation. The mutants E484K, E484Q, K417T-E484K-N501Y, and K417T-
E484K-N501Y all showed higher antibody titers than wild-type RBD (Figure 3D), indicating
that these sites can significantly enhance the immunogenicity of RBD protein to induce
the production of high levels of neutralizing antibodies. However, the mutant N501Y
showed a lower antibody titer than the wild type (Figure 3D). Although many studies have
shown that the mutant N501Y can significantly increase the binding affinity between RBD
and ACE2 [17,22,29,31], its immunogenicity to RBD in our study was not enhanced but
decreased. Therefore, we assume that the binding affinity between RBD and ACE2 may
not be directly related to the immunogenicity of the RBD protein.

To verify the above hypothesis, we used four RBD mutants, E484K, E484Q, K417T-
E484K-N501Y, and K417T-E484K-N501Y, as antigens and detected the antibodies against
RBD in the serum of all immunized mice. The results show that single mutants E484K and
E484Q, when used as antigens, could not only detect high antibody titers in the sera of
all immunized mice but also detect higher antibody titers in the sera of mice immunized
with mutants E484K and E484Q as compared with mice immunized with wild-type and
other mutant RBD proteins (Figure 4). It has been shown that intratype antigenic variation
due to mutation(s) is widely considered the main hurdle to appropriate FMD vaccine
development, such that two substitutions of distantly located aa at B-C (T48I) and G-H
(A143V) loops, in combination, distorted the VP1 G-H loop, which leads to the variation
of the antigen [32]. The study of Huang et al. showed that single mutations L452R and
F490S reduce the antigenicity to neutralizing antibodies [33]. The mutant E484Q can
also significantly enhance the binding affinity between RBD and ACE2 [17,30], but the
results of our study indicate that the mutant E484Q can also significantly enhance the
immunogenicity of RBD protein. In addition, surprisingly, although the mutant E484K
could not significantly enhance the binding affinity between RBD and ACE2, the results of
this study show that the mutant E484K could also enhance the immunogenicity of RBD
protein. The above results verify our conjecture that the binding affinity between RBD
mutants and ACE2 does not determine the immunogenicity of the mutant as an antigen.

5. Conclusions

In a pandemic where a virus frequently mutates, the broad-spectrum effectiveness of
neutralizing antibodies and vaccines is crucial, so these studies are now the focus of many
researchers. In the present study, different RBD mutants were selected as immunogens to
investigate the differences in the levels of antibodies induced by them, and two significant
mutants, E484K and E484Q, were found. Therefore, it can be inferred that the E484 amino
acid residue on RBD not only significantly affects the binding affinity with the receptor
ACE2, but also has a significant impact on the immunogenicity of the RBD protein, and it
may even affect the transmissibility and pathogenicity of the mutant virus.
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Abstract: The Togaviridae family comprises a large and diverse group of viruses responsible for
recurrent outbreaks in humans. Within this family, the Chikungunya virus (CHIKV) is an important
Alphavirus in terms of morbidity, mortality, and economic impact on humans in different regions of
the world. The objective of this study was to perform an IgG epitope recognition of the CHIKV’s
structural proteins E2 and E3 using linear synthetic peptides recognized by serum from patients in
the convalescence phase of infection. The serum samples used were collected in the state of Sergipe,
Brazil in 2016. Based on the results obtained using immunoinformatic predictions, synthetic B-cell
peptides corresponding to the epitopes of structural proteins E2 and E3 of the CHIKV were analyzed
by the indirect peptide ELISA technique. Protein E2 was the main target of the immune response,
and three conserved peptides, corresponding to peptides P3 and P4 located at Domain A and P5 at
the end of Domain B, were identified. The peptides P4 and P5 were the most reactive and specific
among the 11 epitopes analyzed and showed potential for use in serological diagnostic trials and
development and/or improvement of the Chikungunya virus diagnosis and vaccine design.

Keywords: Chikungunya virus; immunoinformatics; B-cell epitopes; peptides; ELISA

1. Introduction

The Chikungunya virus (CHIKV) (family: Togaviridae; genera: Alphavirus) [1–3] is
a viral species widely distributed in the world. CHIKV outbreaks impact, in terms of
morbidity and socioeconomic problems, areas with circulation [2,4–6]. Currently, three
genotypes have been identified based on the genealogical relationships within the CHIKV:
(i) East-Central-South Africa (ECSA), (ii) West African (WA), and the (iii) Asian genotype.
Within the ECSA genotype, there is a lineage that is considered very important due to its
biological characteristics: the Indian Ocean Lineage (IOL). CHIKV outbreaks are aggravated
by a simultaneous co-circulation with other arboviruses, including the Dengue, Zika, and
Mayaro viruses, which share symptoms in acute symptomatic individuals, which is a
limitation for the clinical diagnosis and treatment [6–10].

The development of methods for synthetic immunogen synthesis has become increas-
ingly applied and explored in combination with the development and improvement of
bioinformatics algorithms for predicting immunogenic targets and identifying potential
immune molecules of interest [11–16]. Epitopes can be linear or conformational, being
linear arranged in a protein (the sequence of amino acids of the primary structure), while
the conformational are discontinuous in the amino acids sequence and are linked to the
secondary, tertiary, and quaternary structures of the proteins. Specific antibodies secreted
by B lymphocytes can recognize and bind to both the linear and conformational epitopes of
the antigens [11–13,17,18]. The mapping epitopes technique has numerous and important
applications, including the development of new vaccines and the improvement of existing
vaccines. This process is fast, efficient, and key to understanding the immune system for
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any type of protein [11,12,14,15,18,19]. Antigenic recognition is based on determining the
recognized CHIKV immunogenic proteins by specific antibodies generated in the conva-
lescent phase of infection. During the CHIKV outbreak in Singapore, occurring in 2008, it
was observed that response antibodies against most of these protein determinants were
elevated in 2 to 3 months but progressively decreased, as occurs in other infections. The
only response against E2 glycoprotein was still detectable at 21 months post-infection. This
long-standing response against the N-term region of glycoprotein E2 (the amino acids’ posi-
tions between 1 and 18) makes it an important candidate for specific serological diagnostic
tools [12,13,19].

There have been no studies on the specific targets of the anti-CHIKV antibody-
mediated immune response of infected patients in Brazil. At the moment, there is no
approved vaccine, and no effective antiviral agents have been made available so far. Treat-
ment for the virus infection is often limited to symptomatic treatment due to problems
in drug specificity and effectiveness [20–24]. However, recent epidemiological data re-
veal increasing evidence of the importance of antibody-mediated protection against the
CHIKV, where it is important to highlight the possibility of using anti-CHIKV antibodies in
therapeutic or prophylactic treatment [12,13,19,20,25].

Within this context, the epitopes’ validation promotes a greater understanding of the
interaction of peptides and the activation of the immune response. Together, these obser-
vations strongly imply the importance of the interactions between the specific antibodies
and the peptides corresponding to the amino acid level. To improve key information in the
development of vaccines and diagnostic tests for the CHIKV, considering specific amino
acid residues important in the recognition of anti-CHIKV antibodies [11–13,19,20], we aim
to: (i) map the epitopes of the CHIKV structural glycoproteins (E2 and E3) to identify
specific IgG class antibody binding sites of the CHIKV’ previously infected patients and
identify the reactive epitopes of anti-CHIKV IgG antibodies induced by primary infection
in humans infected with the CHIKV ECSA genotype; (ii) identify antigenic signatures that
may be used in the development of serological diagnostic trials and/or vaccine develop-
ment. While this topic has already been addressed by researchers in other regions, in this
study, we aim to bring a novel perspective on the still underexplored topics of CHIKV
infection in South America [3,6,12,13,16,19,26].

2. Material and Methods
2.1. Ethics Committee

The serum samples for the present study were collected in Sergipe [27] following a
protocol approved by the Research Ethics Committee of the Institute of Biomedical Sciences
of the University of São Paulo (protocol CEPSH-ICB nº 1406/17). All consenting adults
signed a written informed form, and for children, the signature was made by the parents or
guardians with the written informed consent on their behalf. These samples were collected
during a period of intense circulation of the Chikungunya virus in the northeast region of
Brazil [27–29].

2.2. Phylogenetic Reconstruction

To choose representative sequences of all CHIKV genotypes and lineages, we per-
formed an analysis of the phylogenetic reconstruction using 63 sequences previously
analyzed by our group [28,30] and available in Genbank (http://www.ncbi.nlm.nih.gov)
(accessed on 1 October 2020), referring to the complete genomes representing all genotypes.
The phylogeny was performed with the maximum likelihood analysis using IQ-TREE
software (James Barbetti, Camberra, Australia) (http://www.iqtree.org/) (accessed on
1 October 2020) using the standard criteria [31]. All sequences of this study are presented in
the tree in the format: genotype/access number/country of isolation/year of isolation [31].
To predict the antigenicity and linear and conformational epitopes, we selected the Chikun-
gunya virus’ complete genome sequences representing the four CHIKV genotypes (Asian,
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ECSA, IOL, and WA), which were used in the computational modeling as described in the
next section (GenBank accession numbers: KP164572, KY055011, HM045817, and KJ796852).

2.3. Computational Modeling

Structural protein modeling of the CHIKV was performed using the homology strategy
based on crystallographic structures available at the Protein Data Bank (PDB: 3N43) and the
Chikungunya virus’ complete genome sequences (GenBank accession numbers: KP164572,
KY055011, HM045817, and KJ796852). These genome sequences were translated into amino
acid sequences, and the corresponding regions of structural proteins E3 and E2 were
separated and modeled individually and validated. This step was performed using I-
TASSER v5.1 software, using the default settings and the gnu parallel option. Furthermore,
the species that had their structures identified in crystals were aligned to our models, and
the RMSD calculations were made [32]. The models were validated using the MolProbity
website for flips and stereochemical corrections, and on the ProSA website, Ramachandram
plots were generated to validate the models [33,34]. Using the obtained structures in the
modeling, the antigenicity and conformational and linear epitopes were predicted. The
antigenicity score was obtained by the Kolaskar and Tongaonkar antigenicity scale, a semi-
empirical method that makes use of the physicochemical properties of amino acid residues
and their frequencies of occurrence in experimentally known segmental epitopes were
developed to predict antigenic determinants on the proteins [35].

The conformational and linear epitopes’ predictions were performed based on the
alignment of the sequences of different CHIKV isolates (access numbers: KP164572 (Asian),
KJ796852 (ECSA-IOL), KY055011 (ECSA), and HM045817 (WA)) and using the IEDB’s
program package by National Institute of Allergy and Infectious Diseases(Bethesda, MD,
USA) (https://www.iedb.org/) (accessed on 1 October 2020) [11]. Conformational epitopes
were obtained after the analysis of the structures modeled in the Discotope 2.0 prediction
algorithm (Haste Andersen P, Bethesda, MD, USA) (http://tools.iedb.org/discotope) (ac-
cessed on 1 October 2020), which integrates the combination of two scores linearly; one
based on the hydrophobicity/hydrophilicity scale and a score of the epitopes’ propensity,
which is based on the calculation of the surface accessibility and residue contact area [11,17].
The linear epitopes were obtained after analysis of the structures modeled in the ElliPro
prediction algorithm (Ponomarenko, Bethesda, MD, USA)(http://tools.iedb.org/ellipro/)
(accessed on 1 October 2020) [11,17], which is based on the residue protrusion index. The
Pymol (The PyMOL Molecular Graphics System, Version 1.8 (Warren Lyford DeLano, New
York, NY, USA) developed by Schrödinger, LLC.) (https://pymol.org/2/) (accessed on
1 October 2020) and Jalview Version 2.11.2.4 (Andrew Waterhouse, Dundee, Scotland)
(www.jalview.org) (accessed on 1 October 2020) software were used for editing and indi-
cating the conformational and linear epitopes in the modeled proteins and the aligned
sequences, respectively, for each of the CHIKV structural proteins. Using the results ob-
tained in the combined linear and conformational epitopes’ predictions with the previously
obtained information in the literature [12,19] and focusing on epitopes conserved by all
genotypes, a panel of 11 linear peptides (P1–P9 corresponding to the E2 protein and P10–
P11 corresponding to the E3 protein) were selected for synthesis (Proteimax, São Paulo,
Brazil) and epitope validation was obtained by Peptide-based indirect ELISA.

2.4. Enzyme Immunoassay Qualitative and Quantitative for IgG Anti-CHIKV Antibodies

To identify and quantify positive samples, we used the protocol for the IgG antibody
developed by EuroImmun (Euroimmun, Lübeck, Germany). In the first step of the qualita-
tive assay, the samples, calibrator 2, and the positive and negative controls were diluted
1:101 using the sample buffer and added to the microplate wells covered with CHIKV
antigens. In the first step of the quantitative assay, the samples, calibrators 1, 2, and 3, and
the positive and negative controls were diluted 1:101 and added to the microplate wells
covered with the same CHIKV antigens. The samples were added to the plate, which was
incubated for 1 h at 37 ◦C. In the second step, the plate was washed 3 times with 300 µL of a
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wash solution in each well and, after washing, 100 µL of enzymatic conjugate (anti-human
IgG marked with peroxidase) was added to each well, and the plate was incubated at
room temperature (18 to 25 ◦C) for 30 min. In the third step, the plate was washed 3 times
with 300 µL of a wash solution and, after washing, 100 µL of a substrate/chromogenic
solution was added to each microplate well following incubation at room temperature
(18 to 25 ◦C) for 15 min. In the fourth step, 100 µL of stop solution was added to each well
of the microplate, and the optical density (O.D.) was measured in an Epoch Microplate
Spectrophotometer (BioTek, Winooski, VT, USA). The results were interpreted following
the manufacturer’s instructions.

2.5. Peptides Screening Using Peptide-Based Indirect ELISA

To identify the target epitopes of CHIKV-specific IgG antibodies, 18 sera samples from
positive-IgG CHIKV patients, collected in the state of Sergipe in 2016, were characterized
with a quantitative immunoenzyme assay developed by EuroImmun. The sera samples
were analyzed by the Euroimunne test with a mean titration of 181 UR/mL and standard
deviation of 0.1 UR/mL and subsequently used in the standardization assay. All samples
used in this study were tested negative for the presence of CHIKV antibodies IgM by
the EuroImmun CHIKV IgM qualitative test. For indirect ELISA standardization using
synthetic peptides as antigens, we briefly performed the following: in the first step of the
experiment, a pool of 18 Chikungunya positive IgG samples identified by the EuroImmun
test was used, and a commercial negative IgG serum with an unspecific reaction for
the Chikungunya virus and identified by the EuroImmun test was used as a negative
control (Catalog number: S7023; Sigma Aldrich, St Luis, MO, USA). The peptides P1 to
P9 corresponding to the E2 protein and the peptides P10 and P11 corresponding to the
E3 protein were diluted in a filtered PBS buffer (1 M pH 7.4) at a final concentration of
200 µg/mL; then, serial dilutions of factor 100× to a concentration of 0.2 fg/mL were
performed to obtain a dilution curve of the antigen concentration. The peptide dilutions
were used to coat the polystyrene Nunc 96 microplate wells ELISA plate, 50 µL of solution
per well were added, and the plates were incubated at room temperature until the wells
dried. For background reference, peptide-free wells were used solely with the blocking
solution. The blocking step was done with 5% albumin, 1% powdered milk solution, and
0.05% Tween20, diluted in PBS 1× (pH 7.4), followed by the addition of 50 µL per well
and overnight incubation at 4 ◦C or 37 ◦C for two hours. After the blocking solution was
removed, 50 µL of the diluted serum (1:100) was added to the PBS 1× solution (pH 7.4) and
incubated for 1 h at 37 ◦C. Then, the wells were emptied, and the plate was washed 3 times
with 200 µL per well of a wash solution. After the washing step, 50 µL of an enzymatic
conjugate (Ig anti-human marked with peroxidase 1:12,000) was added to the plate wells
and incubated for 1 h at 37 ◦C. The plate was washed 4 times with 200 µL of a wash
solution after incubation, and 100 µL of a substrate/chromogenic solution was added to
each microplate well, followed by incubation at room temperature (18 to 25 ◦C) for 15 min.
In the last step, 100 µL of a stop solution was added to each well of the microplate, and
then the photometric measurement at 450 nm and 620 nm was performed, and the results
of optical density were analyzed. All trials were performed in sample technical triplicate
and using individual patients’ sera.

2.6. Validation of the Peptides Using Peptide-Based Indirect ELISA

Based on the previous screening results, the 5 peptides (P1–P5) that demonstrated the
potential to respond differentially were selected for individual patient sera analysis, includ-
ing 10 Chikungunya virus-positive IgG sera and, as the negative control, 8 Chikungunya
virus-negative IgG sera samples previously characterized by the EuroImmun test. The P1
to P5 peptides corresponding to the E2 protein were diluted in a filtered PBS buffer (1M
pH 7.4) at a final concentration of 20 µg/mL followed by the addition of 50 µL of a solution
per well to coat the polystyrene Nunc 96 microplate wells; the plates were incubated at
room temperature until the wells dried. For background reference, peptide-free wells were
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used solely with the blocking solution. The blocking step was done with 5% albumin, 1%
powdered milk solution, and 0.05% Tween20, diluted in PBS 1× (pH 7.4), followed by the
addition of 50 µL per well and overnight incubation at 4 ◦C or 37 ◦C for two hours. After
the blocking solution was removed, 50 µL of the diluted serum (1:100) was added to the
PBS 1× solution (pH 7.4) and incubated for 1 h, at 37 ◦C. Then the wells were emptied, and
the plate was washed 3 times with 200 µL per well of a wash solution. After the washing
step, 50 µL of enzymatic conjugate (Ig anti-human marked with peroxidase 1:12,000) was
added to the plate wells and incubated for 1 h at 37 ◦C. The plate was washed 4 times with
200 µL of a wash solution after incubation, and 100 µL of a substrate/chromogenic solution
was added to each microplate well, followed by incubation at room temperature (18 to
25 ◦C) for 15 min. In the last step, 100 µL of a stop solution was added to each well of the
microplate, and then the photometric measurement at 450 nm and 620 nm was performed,
and the results of the optical density were analyzed. All trials were performed in sample
technical triplicate and using individual patients’ sera.

2.7. Data Analysis

All experiments were performed in sample triplicate. All data were presented as
means and standard deviations. The differences in responses between the analyzed group
and the control group were analyzed using appropriate statistical tests. The Graphpad
software was used for the analysis of classifier performance, and a Receiver Operating
Characteristic curve (ROC curve) was performed for each one of the best peptides (P1–P5)
with a 95% confidence interval; the sensitivity corresponds to the rate of true positives
and the specificity to the rate of true negatives. Most of the graphs presented here were
performed using R scripts and are available upon request.

3. Results

To select representative amino acid sequences from all genotypes and lineages spread
worldwide causing the human CHIKV disease, we relied on phylogenetic reconstruction
and tree topology, where four representative sequences were chosen for each of the Asian,
ECSA, and WA genotypes and the IOL lineage (GenBank accession numbers: KP164572,
KY055011, and HM045817 KJ796852) (Figure 1). Based on the obtained structures in the
modeling step, the conformational and linear epitopes were predicted (Figures 2 and 3,
Supplementary Figures S1–S3).

Based on the prediction results, the E2 protein (Figure 2, Supplementary Figures S1 and S2)
presented the highest immunogenic potential compared with the E3 protein (Figure 3,
Supplementary Figure S3) and demonstrated both conformational and linear epitopes in
the conserved regions among the genotypes and/or lineages with both predictions demon-
strating the E2 protein as the main target of the immune response (Figure 2, Supplementary
Figures S1 and S2). In the epitopes’ prediction for the E3 protein (Figure 3, Supplementary
Figure S3), only one potential epitope was identified at positions 57 to 61 in the C-terminal
region in both the linear and conformational predictions. Using the results obtained in the
combined linear and conformational predictions with the literature information previously
obtained [12,19] and focusing on the epitopes preserved among all the genotypes and/or
lineages, a panel of 11 linear peptides was selected for epitope validation. For validating
the epitopes and checking the serological reactivity, a group of CHIKV-positive IgG patient
samples was tested and selected (Table 1) for peptide validation. The 11 selected peptides
were synthesized and visually located in the E2 and E3 proteins crystallography structure
(Figures 4 and 5) and then tested in the peptide-based indirect immunoenzyme assay.
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Table 1. Summary of E2 protein synthetic peptides’ P1–P5 reactivity analyzed by IgG positive CHIKV
individual serum samples and the Area Under the Curve (AUC) analysis.

Peptides Control
Samples

D.O Mean
Control
Samples

D.O Mean
Control
Samples
Standard
Deviation

Threshold
(Control

Samples Mean
+ 2SD)

CHIKV IgG
Positive
Samples

D.O mean
CHIKV IgG

Positivie
Samples

D.O Mean
CHIKV IgG

Positive Samples
Standard
Deviation

Area under
the Curve

(AUC)

AUC
p-Value

Peptide1 8 0.147 0.057 0.259 10 0.186 0.079 0.6932 0.1604

Peptide2 8 0.141 0.055 0.251 10 0.182 0.065 0.675 0.2135

Peptide3 8 0.085 0.083 0.229 10 0.244 0.095 0.8625 0.0032

Peptide4 8 0.074 0.054 0.176 10 0.219 0.073 0.9875 0.0005

Peptide5 8 0.084 0.032 0.146 10 0.152 0.040 0.9 0.0045
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Figure 4. Synthetic peptides are highlighted on the E2 Protein structure and multiple sequence align-
ment. On top (A), predicted epitopes are highlighted on the structure of the protein E2. (B), Multiple
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In green, epitopes are conserved among all genotypes. In blue, epitopes are common to more than
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predicted as epitopes. Underlined amino acids in peptides’ sequences corresponding to regions not
resolved in the crystallography structure.
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The peptides P1 to P9 were synthesized with a size of 18 amino acids corresponding
to protein E2 (Figure 4, Table 2), and the peptides P10 and P11 were synthesized with a
size of 12 amino acids corresponding to the E3 protein (Figure 4, Table 2). The peptides P3,
P4, P5, P8, and P9 are conserved among all the genotypes (Figure 4). The peptides P1, P6,
and P10 correspond to the genotypes and/or lineage WA, ECSA, and IOL sequences (semi-
conserved), while the P2 and P11 peptides are variants of these peptides, corresponding
to the Asian genotype sequence exclusively, and P7 corresponding to the IOL genotype
sequence exclusively (Figure 4, Table 2).

Table 2. Synthetic linear oligopeptides corresponding to the immunogenic regions of the E3 and E2
structural proteins of the Chikungunya virus.

Protein Position Sequence Peptide

E3
2788–2799 ASLTCSPRRQRR P11
2788–2799 ASLTCSPHRQRR P10

E2

2800–2818 STKDNFVYKATRPYLAHC P1
2800–2818 SIKDHFNVYKATRPYLAHC P2
2812–2828 TRPYLAHCPDCGEGHSC P3
2848–2865 IQVSLQIGIKTDDSHDWT P4
3026–3043 HAAVTNHKKWQYNSPLVP P5
3042–3059 VPRNAELGDRKGKIHIPF P6
3042–3059 VPRNAEFGDRQGKVHIPF P7
3060–3077 PLANVTCRVPKARNPTVT P8
3190–3208 CARRRCITPYELTPGATV P9

To identify the target epitopes of CHIKV-specific IgG antibodies, a pool of 18 positive
patient sera (IgG + CHIKV) and a non-specific human IgG serum as the control were
used to screen for the epitopes that best react to previously characterized antibodies. The
results indicated that the maximum peak achieved at a 1 ng concentration per well was
obtained as the best reactivity and also the best difference between CHIKV IgG positive
and the human IgG non-specific serum (Figure 6). Later, this concentration was used as a
standard in the following assays with individual samples. In the peptide standardization
assay, the P4 and P5 peptides were found to be the most reactive, respectively, and were
selected to be evaluated with the individual samples from the CHIKV IgG positive and
CHIKV IgG negative patients (Figure 7, Table 1). The previous epitopes, as described by
Kam et al. [13,26], and corresponding to peptides P1–P3, were also included for the analysis
with the individual samples. In this analysis, 10 positive IgG CHIKV sera samples with
a mean titration of 160 UR/mL and a standard deviation of 46.87 UR/mL, characterized
by the EuroImmun assay, were used. As controls, eight negative IgG CHIKV sera samples
were used (Figure 6).

The following cut-off value was established as the comparison threshold, the average
of the triplicate two standard deviations (the mean plus two SDs). The peptides P1 and P2
did not obtain a reactivity above the established cut-off value and demonstrated no potential
for discrimination among the groups evaluated (Figure 7, Table 1). The peptides P3, P4,
and P5 reacted above the established cut-off value and showed a discriminant potential
among the groups evaluated (Figure 7, Table 1). Peptides P3 and P4 showed a stronger
reactivity in the recognition among the peptides that reacted above the cut-off value. With
the results obtained in this analysis, the peptides P1 to P5 were also analyzed for sensitivity
and specificity through the analysis of the ROC (Receiver Operating Characteristic curve)
(a 95% confidence interval) to verify the potential for the correct discrimination among
the analyzed sample groups (Figure 8, Table 1). The P1 and P2 peptides demonstrated a
low potential for classification among the analyzed groups and generated an AUC (Area
under the curve) of below 0.7. The P3, P4, and P5 peptides, in addition to being reactive,
demonstrated potential as discriminator classifiers, with AUC values of 0.86, 0.99, and 0.9,
respectively (Figure 8, Table 1).
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Figure 6. Standardization results of the indirect immunoenzyme peptide assay. A—The peptides
P1–P9 correspond to the E2 protein. The peptides P10 and P11 correspond to the E3 protein. On
the Y-axis, the optical density (O.D.) measurements for the positive IgG CHIKV patient sera pool
(blue line) and, as the control, a non-specific IgG human serum (red line). On the X-axis the antigen
dilutions. All assays were performed in sample triplicates.
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score is shown for the individual peptides.

4. Discussion

In general, the surface proteins of the viruses are targets for neutralizing antibodies.
The E3 and E2 CHIKV proteins have the function of binding to cell receptors, and the E1
protein is the protein responsible for membrane fusion in the endosomal vesicle protected
by the E2 glycoprotein and is structurally less accessible to B lymphocyte antibodies, conse-
quently with limited and low immunogenic potential. Our study focused on predicting
the B-cell epitopes of the CHIKV structural proteins, E2 and E3, verifying the reactivity of
synthetic linear peptides corresponding to the epitopes mapped by utilizing the CHIKV
IgG-positive serum samples collected in the state of Sergipe, Brazil, in 2016. Screening
studies using different patient cohorts, different geographic regions, and different genetic
backgrounds help to identify and define usable signatures for the development of sero-
logical assays and vaccines [12,13,19]. So far, there are no studies on the target of the
immune response of the Chikungunya virus previously infecting patients in Brazil and
South America.

E2EP3, corresponding to peptide P1, was described by Kam et al., 2012 [12,13,19] as a
marker epitope of the early convalescent phase of the CHIKV infection studying a cohort
of patients on the Asian continent. In this study, Kam et al., 2012 [12,13,19] suggest that
an ELISA based on the epitope E2EP3 may be useful to study CHIKV infections and to
determine the magnitude of outbreaks. An analysis of this epitope with the sampled patient
cohort showed no strong reactivity and potential as a marker for the CHIKV infection.
These results may be explained by not using an ELISA protocol employing detection
amplifiers as performed in the study by Kam et al., 2012 [12,13,19]. Another reason might
be the sample collection period is not nearly the early stage of convalescence, considering
the response pattern varies over time, and the sampled groups under analysis have different
genetic backgrounds [12,19]. The P2 peptide with two amino acid changes lost recognition
by the serum from patients infected with the ECSA genotype (Figure 6). This difference in
reactivity requires further investigation and preferably by comparing well-characterized
convalescent-phase sera from patients infected with the different genotypes.

Other significant immunodominant epitopes found by Kam et al., 2012 [12,13,19] are
located among the amino acids 3025–3058 (corresponding to peptides P5, P6, and P7) in the
E2 protein between Domain B and C in a linker region. This region is associated with early
protection from the convalescent to the recovery phase, being considered an epitope with
potential vaccine application. In this study, Kam et al., 2012 [12,13,19] also concluded that
a single substitution in the amino acid K252Q in glycoprotein E2 has an important effect
in decreasing the antibody binding capacity. The P6 and P7 peptides are variants of the
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same peptide; P7 has a lysine at position 252, previously identified as an escape mutation
and was poorly recognized by the pool of the sera in the standardization test compared
to the P6 peptide according to Kam et al. from their 2012 [12,13,19] findings (Figure 5).
Both P6 and P7 peptides are adjacent to the P5 peptide (Figure 4). The P5 peptide was the
most reactive and was selected to be evaluated with the individual samples (Figures 6–8,
Table 1).

The peptides P7, P8, and P9 were weakly recognized by the specific CHIKV positive-
IgG antibodies, similar to the findings described by Kam et al., 2012 [12,13,19] (Figure 6).
These peptides correspond to the linker regions between Domains B and C (peptides P7
and P8), and after Domain C (peptide P9), they are accessible; however, they demonstrated
a low potential for antigenic recognition (Figure 6; Supplementary Figures S1 and S2).
The peptides P10 and P11, corresponding to the C-terminal region of the E3 protein, were
weakly recognized by the specific CHIKV IgG antibodies and demonstrated a low antigenic
recognition potential (Figure 6; Supplementary Figure S3).

The peptides P3, P4, and P5 are conserved among all the genotypes and are located in
Domain A of the E2 protein (Figure 4, Table 2) and proved to be the most reactive peptides
(Figure 6), showing the potential for antigenic recognition, being the major targets of the
antibodies in the group of the patients sampled (Figures 6–8, Table 1). The P3 peptide
is adjacent to the epitopes described by Kam et al. in 2012 [12,13,19] (the P1 peptide),
overlapping three amino acids and confirming the N-terminal region of the E2 protein as
one of the major immunogenic targets of specific CHIKV IgG antibodies (Figures 2 and 6–8;
Supplementary Figures S1 and S2). The P4 and P5 peptides are also located in immunogenic
regions, as previously described, withP4 in Domain A and P5 at the end of Domain B, in a
region of arc accessible to the antibodies between Domains B and C (Figures 2, 3, 5 and 6;
Supplementary Figures S1 and S2). Additional peptides in Domain B would also be of
interest to test. The peptides P1, P2, P3, and P4, corresponding to Domain A and peptide P5
at the end of Domain B, demonstrate this region as the main antigenic and immunogenic
target of the E2 structural protein and are expected to be present in different antigen and
vaccine designs [3,13,26].

Additionally, the peptides P4 and P5 are reactive and have the potential as markers for
serological tests, demonstrated by the performance analysis of the classifiers observed in the
ROC curve graphs (Figure 8; Table 1). The performance of these peptides requires further
confirmation by analyzing a larger number of samples and, preferably, collected in different
regions. This peptide panel is useful for identifying the target regions of the immune
response in Chikungunya virus-infected patients. Finally, the most reactive peptides, P1,
P3, P4, P5, and P6, were located in the Chikungunya virus’ glycoprotein envelope structural
organization, resolved by x-ray crystallography (PDB:3N43), identifying the main antigenic
and immunogenic epitopes analyzed in this study (Figure 9). A methodology with a higher
detection capacity is also interesting and desirable, considering that the indirect peptide-
based ELISA technique used in this study has limitations and is useful in exploratory
studies. The potential biological activity of these peptides may also be analyzed in plate
reduction neutralization assays to identify epitopes presenting a neutralizing potential, as
well as for immunization with peptide-content vaccines [12,16,19]. Epitopes-based vaccines
present an alternative capable of inducing a protective immune response with no adverse
effects in vivo. Epitope mapping and validation studies are important for the discovery
of B-cell epitopes that can be targeted by neutralizing antibodies and also for identifying
T-cell epitopes that can be targeted by protective cytotoxic T-cells (CD8+ T-cells) and, finally,
epitopes recognized by CD4 + auxiliary T-cells for the optimization of anti-CHIKV-specific
antibody generation. The potential advantages of this strategy include safety, the ability to
design and manufacture epitopes to increase vaccination efficiency, and the opportunity to
design vaccines with a higher population coverage. Peptide vaccines containing sequences
covering all genotypes have the potential to generate protection against CHIKV infections
globally and, also, to cross-protect against the closely related Alphavirus [12,13,16,19].
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Figure 9. Antigenic and immunogenic B-cell epitopes are highlighted on the Chikungunya virus’
glycoprotein envelope structural organization. (A) The Chikungunya virus’ glycoprotein envelope
complex structure’s surface (PDB:3N43); protein E1 is in light blue; protein E2, Domains I, II, and III
are in pale yellow, yellow-orange, and light yellow, respectively; and protein E3 is in orange. Epitopes
corresponding to peptides P1, P3, P4, P5, and P6 in protein E2 are highlighted in green tones. (B) The
upper view from (A).

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/v14081839/s1. Supplementary Figure S1. Conformational epitopes prediction
for Chikungunya virus E2 Protein. Multiple alignment of E2 protein sequences corresponding to
the four genotypes with highlighted epitopes conformational prediction. On green epitopes are
conserved among all genotypes. Blue epitopes are common to more than one genotype. On red single
epitopes of each genotype; *- Amino acid changes in the regions predicted as epitopes. *, ** CHIKV
epitopes already identified and described. Supplementary Figure S2. Linear epitopes prediction for
Chikungunya virus E2 Protein. Multiple alignment of E2 protein sequences corresponding to the
four genotypes with highlighted epitopes linear prediction. On green epitopes are conserved among
all genotypes. Blue epitopes are common to more than one genotype. On red single epitopes of each
genotype; *- Amino acid changes in the regions predicted as epitopes. *, ** CHIKV epitopes already
identified and described. Supplementary Figure S3. Conformational and Linear epitopes prediction
for Chikungunya virus E3 Protein. Multiple alignment of E3 protein sequences corresponding to
the four genotypes with highlighted conformational (A) and linear (B) epitopes predictions. Blue
epitopes are common to more than one genotype. On red single epitopes of each genotype; *—Amino
acid changes in the regions predicted as epitopes.
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Abstract: The aim was to measure neutralizing antibody levels against the SARS-CoV-2 Omicron
(BA.1) variant in serum samples obtained from vaccinated PLWH and healthcare workers (HCW)
and compare them with those against the Wuhan-D614G (W-D614G) strain, before and after the
third dose of a mRNA vaccine. We included 106 PLWH and 28 HCWs, for a total of 134 participants.
Before the third dose, the proportion of participants with undetectable nAbsT against BA.1 was 88%
in the PLWH low CD4 nadir group, 80% in the high nadir group and 100% in the HCW. Before the
third dose, the proportion of participants with detectable nAbsT against BA.1 was 12% in the PLWH
low nadir group, 20% in the high nadir group and 0% in HCW, respectively. After 2 weeks from the
third dose, 89% of the PLWH in the low nadir group, 100% in the high nadir group and 96% of HCW
elicited detectable nAbsT against BA.1. After the third dose, the mean log2 nAbsT against BA.1 in the
HCW and PLWH with a high nadir group was lower than that seen against W-D614G (6.1 log2 (±1.8)
vs. 7.9 (±1.1) and 6.4 (±1.3) vs. 8.6 (±0.8)), respectively. We found no evidence of a different level
of nAbsT neutralization by BA.1 vs. W-D614G between PLWH with a high CD4 nadir and HCW
(0.40 (−1.64, 2.43); p = 0.703). Interestingly, in PLWH with a low CD4 nadir, the mean log2 difference
between nAbsT against BA.1 and W-D614G was smaller in those with current CD4 counts 201–500
vs. those with CD4 counts < 200 cells/mm3 (−0.80 (−1.52, −0.08); p = 0.029), suggesting that in this
target population with a low CD4 nadir, current CD4 count might play a role in diversifying the level
of SARS-CoV-2 neutralization.

Keywords: SARS-CoV-2; HIV/AIDS; SARS-CoV-2 vaccine; Omicron variant; neutralization titers;
third dose vaccine

1. Introduction

Persons living with HIV (PLWH) might have an increased risk of adverse outcomes
following COVID-19 infection [1]. The high contagiousness and spread of the Omicron
(BA.1 and BA.2) variant of SARS-CoV-2 and its ability to evade immunity elicited by
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vaccination or infection are of increasing concern. We previously showed that, in PLWH,
after three doses of the COVID-19 mRNA vaccine, the humoral response elicited was strong
and higher than that achieved with the second dose (>2 log2 difference), and neutralizing
antibodies (nAbs) against the Whuan-D614G strain SARS-CoV-2 increased in most of the
participants regardless of their CD4 count at the time of first dose vaccination [2]. In this
work, we aimed to evaluate the potential susceptibility of the Omicron BA.1 variant to the
mRNA vaccine and to compare neutralization titers in PLWH with those observed in a
control sample of health care workers.

2. Materials and Methods

In a subset of vaccinated PLWH participating in the HIV-VAC study (details described
elsewhere) [3], we measured levels of neutralization to BA.1 and Wuhan-D614G (W-D614G)
in stored serum samples collected before and after the third dose. An external control group
of HIV-negative health care workers (HCWs) vaccinated with the third booster dose (BD)
was also included for comparison. The study was approved by the Scientific Committee of
the Italian Drug Agency (AIFA) and by the Ethical Committee of the Lazzaro Spallanzani
Institute, as the National Review Board for COVID-19 pandemic in Italy (approval number
323/2021). PLWH were firstly stratified according to their CD4 count nadir (<350 (low
nadir group) vs. >350 cells/mm3 (high nadir group)). In addition, the group with low
nadir CD4 count (<350/mm3) was further stratified according to the CD4 count at the time
of the booster vaccine dose (>200/mm3, 201–500/mm3 and >500 cells/mm3), which had
increased as a result of treatment with ART. All participants received either an additional
3rd dose (full dose at least 28 days after the 2nd, PLWH, low nadir group) or a booster
dose of vaccine (booster at least 5 months after the 2nd, high nadir and HCW groups).
Neutralizing antibody titers (nAbsT) were measured by micro-neutralization assay based
on live SARS-CoV-2 virus (described elsewhere [4]) for W-D614G (Ref-SKU: 008V–04005,
from EVAg portal), and BA.1 (GISAID accession ID EPI_ISL_7716384), before and after
the 3rd dose (after 15 days in PLWH and 30 days in HCW). The highest serum dilution
inhibiting at least 90% of the cytopathic effect on Vero E6 cells was defined as neutralizing,
and nAbs were categorized as undetectable if titers were <1:10. Proportions with detectable
responses were compared using the McNemar’s test for paired data and chi-square and
Fisher exact test for unpaired data. Mean levels of nAbsT to BA.1 vs. W-D614G (in the
log2 scale) were compared within groups using a paired t-test and across groups using a
truncated linear regression model (to account for censored response data) after controlling
for gender, age and time elapsed since the end of the primary vaccination cycle.

3. Results

We included 106 PLWH, of whom there were 81 in the low CD4 nadir group (27 (33%)
with a CD4 count < 200/mm3, 29 (36%) with a CD4 count 201–500/mm3 and 25 (31%)
with a CD4 count > 500/mm3), and 25 in the high nadir group and 28 HCWs, for a total of
134 participants (characteristics shown in Supplementary Table S1).

At the time of receiving the third dose, the proportion of participants with detectable
nAbsT against Whuan-D614G and BA.1 was 59 % and 12 % in the PLWH low nadir group
(p < 0.0001) after a median of 156 days (IQR 152–159, min 4.4 months) after completion of
the primary cycle (after the two-dose vaccine cycle), 80% and 20% in the high nadir group
(after a median of 182 (177–186) days, min 4.9 months) (p = 0.0001) and 64% and 0% in the
HCW (after a median of 283 (278–28) days, min 8.9 months), respectively.

After 2 weeks from receiving the third dose, 89% of PLWH in the low nadir group,
100% in the high nadir group and 96% of HCW elicited detectable nAbsT against BA.1
(p = 0.123). At the same time, the proportion of the participants with detectable nABsT
against Whuan-D614G was 94%, 100% and 100%, respectively (p = 0.182).

After the third dose, the mean log2 nAbsT against BA.1 in the HCW and PLWH
with a high nadir was lower than that seen against W-D614G (6.1 log2 (±1.8) vs. 7.9
(±1.1) and 6.4 (±1.3) vs. 8.6 (±0.8), respectively) (p = < 0.0001, Figure 1A). However, from
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fitting a truncated linear regression, we found no evidence of a different level of nAbsT
neutralization by BA.1 vs. W-D614G between PLWH with a high CD4 nadir and HCW
(0.40 (−1.64, 2.43); p = 0.70, Supplementary Table S2, panel A).
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As well, the mean log2 nAbsT against BA.1 (vs. D614G) in PLWH with a high nadir
and those with low nadir was 6.4 log2 (±1.3) vs. 8.6 (±0.8) and 6.3 (±2.1) vs. 8.4 (±2.4),
respectively, (Figure 1B). From fitting a truncated linear regression, we found no evidence
of a different level of nAbsT neutralization by BA.1 vs. W-D614G between PLWH with
high and low CD4 nadir (0.23 (−0.44, 0.91); p = 0.497, Supplementary Table S2, panel B).

In contrast, even after controlling for potential confounding bias and censored re-
sponses by regression adjustment, among PLWH with a low CD4 nadir, the mean log2
difference between nAbsT against BA.1 and WD614G was smaller in those with a current
CD4 count 201–500 vs. those with a CD4 count < 200 cells/mm3 (−0.80 (−1.52, −0.08);
p = 0.03) (Figure 1B, Supplementary Table S2, panel C).

4. Discussion

Our data show that neutralizing activity against BA.1 strongly increased after a third
dose of a mRNA vaccine in all participants but was poorer than that seen against the
original W-D614G strain, regardless of HIV status. This is likely due to the fact that
the original mRNA vaccines were developed against the original strain, so they are less
protective against current circulating variants [4]. There are limitations to this analysis.
First, we only evaluated the short-term response (2 weeks on average) to the third dose
and, therefore, we are unable to provide estimates of the durability and waning of nAbsT.
Second, our analysis was not powered to establish whether the nAbsT recovering after
a third dose was also associated with a reduced incidence of infection or severe disease.
Third, nAbs activity against the past (e.g., Delta) and most recent variants (e.g., BA.1.1,
BA.2) was not measured, although it has been recently demonstrated that the immune
escape exhibited by all Omicron sublineages (BA.1.1 and BA.2) seems largely overcome
by the booster dose compared with the two-dose cycle, suggesting a certain degree of
cross-reactive immunity [5]. Last but not least, our results are only valid under the usual
strong assumptions of a correctly specified model (liner regression predictor), the inclusion
of all key potential confounding factors (age, gender and time since completion of primary
cycle) and no unmeasured confounding factors being present. In particular, the fact that
vaccination kinetics in the low CD4 count group vs. HCW was largely different, as per
AIFA recommendations (although down to a maximum of one month in our sample)
might have introduced residual confounding bias. Moreover, reasons for not seeing a clear
dose-response relationship with CD4 count level (as there was no evidence of a difference
between participants with a CD4 count < 200 and those with a CD4 count > 500 and the
HCW) are unclear.

5. Conclusions

In conclusion, our results show that after at least 5 months from a primary two-
dose vaccination cycle and shortly after the third dose, both with one additional and
a booster, neutralizing activity against BA.1 strongly increased in all participants but
was poorer than that seen against the original W-D614G strain, regardless of HIV status.
Although, we found a signal for an association between CD4 count level and the extent
of neutralization, and this should be further evaluated in future studies. These results are
useful to appropriately define future boosting vaccination strategies in PLWH, accounting
for the currently circulating SARS-CoV-2 variant.
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