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Abstract: The quadratic polynomial differential systems in a plane are the easiest nonlinear differ-
ential systems. They have been studied intensively due to their nonlinearity and the large number
of applications. These systems can be classified into ten classes. Here, we provide all topologically
different phase portraits in the Poincaré disc of two of these classes.

Keywords: quadratic vector fields; quadratic systems; phase portraits

MSC: 34C05; 34A34; 34C14

1. Introduction and Statement of the Main Results

A quadratic polynomial differential system (or simply, a quadratic system) is a differential
system of the following form:

ẋ = P(x, y), ẏ = Q(x, y), (1)

where P and Q are real polynomials in variables x and y and the maximum degree of the
polynomials P and Q is two.

At the beginning of the 20th century, the study of quadratic systems began. In [1],
Coppel noted how Büchel [2], in 1904, published the first work on quadratic systems. Two
short surveys on quadratic systems were published, i.e., by Coppel [1] in 1966 and by
Chicone and Tian [3] in 1982.

In recent decades, quadratic systems were intensively studied and many good results
were obtained, see references [4–6]. In the second reference, one can find many applications
for quadratic systems. Although quadratic systems have been studied in more than one
thousand papers, we do not have a complete understanding of these systems.

In [7], the authors prove that any quadratic system is affine-equivalent, scaling the
time variable, if necessary, to a quadratic system of the form

ẋ = P(x, y), ẏ = Q(x, y) = d + ax + by + `x2 + mxy + ny2,

where ẋ = P(x, y) is one of the following ten:

(I) ẋ = 1 + xy, (VI) ẋ = 1 + x2,
(II) ẋ = xy, (VII) ẋ = x2,
(III) ẋ = y + x2, (VIII) ẋ = x,
(IV) ẋ = y, (IX) ẋ = 1,
(V) ẋ = −1 + x2, (X) ẋ = 0.

Roughly speaking, the Poincaré disc is the disc centered at the origin of R2 and the
radius, where the interior of this disc is identified with the whole plane R2 and its boundary
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circle S1 is identified with the infinity of the plane, R2. This is due to the fact that in the
plane, we can go to infinity in as many directions as points on the circle S1. For more
details on the Poincaré compactification, see Section 2.2; for the definition of topologically
equivalent phase portraits in the Poincaré disc, see Section 2.3.

We note that quadratic system X has straight lines with constant x = coordinates
formed by orbits, and the conic Q(x, y) = 0 is filled with equilibrium points, so the
phase portraits are trivial. On the other hand, quadratic systems IX does not contain any
equilibrium points, thus making this quadratic system a subclass of the so-called chordal
quadratic system. The phase portraits of these systems in the Poincaré disc have been
completely studied in [7]. Thus, the aim of this paper is to classify the different topological
phase portraits in the Poincaré disc of the classes of quadratic systems VII and VIII, i.e.,
of systems

ẋ = x2, ẏ = d + ax + by + `x2 + mxy + ny2, (2)

and
ẋ = x, ẏ = d + ax + by + `x2 + mxy + ny2, (3)

respectively.
Our main result is as follows:

Theorem 1. The following two statements hold:

(a) The family of quadratic systems VII has 27 topologically different phase portraits in the
Poincaré disc.

(b) The family of quadratic systems VIII has 25 topologically different phase portraits in the
Poincaré disc.

Statements (a) and (b) of Theorem 1 are proved in Sections 3 and 4, respectively.
The paper is organized as follows. In Section 2, we present the basic results of

equilibrium points and the Poincaré compactification. In Sections 3 and 4, we first study
the local phase portraits of the finite equilibrium points, and then explore the local phase
portraits of the infinite equilibrium points. Finally, we analyze the phase portraits of
quadratic systems (2) and (3) in the Poincaré disc, respectively.

2. Preliminary Definitions

The study of the phase portraits of quadratic systems always begins with the study of
the finite and infinite equilibria of the local phase portraits, followed by the study of their
separatrix connections and limit cycles.

In this section, we introduce the basic notations and definitions that we use for the
analysis of the finite and infinite equilibrium points of the local phase portraits.

2.1. Equilibrium Points

A point q ∈ R2 is said to be an equilibrium point of a polynomial differential system (1)
if P(q) = Q(q) = 0. If the real parts of these eigenvalues (of the linear part of system (1))
are non-zero, the equilibrium point, q, is considered a hyperbolic equilibrium point and its
possible phase portraits are well known; for instance, see Theorem 2.15 of [8]. If only one
of the eigenvalues of the linear part of system (1) at equilibrium point q is zero, then q is
considered a semi-hyperbolic equilibrium point, whose possible local phase portraits are also
well known; see, among others, Theorem 2.19 of [8]. When both eigenvalues of the linear
part of system (1) at equilibrium point q are zero, but the linear part is not identically null,
then q is a nilpotent equilibrium point, and again, its local phase portraits are known; see,
for instance, Theorem 3.5 of [8]. Finally, if the linear part of system (1) at equilibrium point
q is entirely zero, then q is degenerate or q is linearly zero. The local phase portraits of such
equilibrium points can be studied using the change of variables called blow-ups; see, for
instance, [9].
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2.2. Poincaré Compactification

Let X = (P, Q) be the vector field defined by the polynomial differential system (1).
Roughly speaking, the Poincaré compactification consists of creating a vector field p(X) in
a 2-dimensional sphere, S2, such that its phase portraits (in the open northern and southern
hemispheres) is a copy of the phase portrait of the vector field X, and the equator of the
sphere plays the role of the infinity of the phase portrait of X; for details, see [10], or
Section 5 of [8]. In this way, we can study the orbits of the vector field X, which go to or
come from infinity.

Let S2 = {x = (x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1} be the Poincaré sphere. We denote

by TxS2 the tangent plane to S2 at a point x ∈ S2. We consider the vector field X defined on
the plane T(0,0,1)S2. Then the central projection f : T(0,0,1)S2 → S2 defines two copies of X
in S2, one in the northern hemisphere and the other in the southern hemisphere. Obviously
the equator S1 = {y ∈ S2 : y3 = 0} represents the infinity of R2. The projection of the closed
northern hemisphere of S2 on x3 = 0 under (x1, x2, x3) 7−→ (x1, x2) is called the Poincaré
disc, and it is denoted by D2. As S2 is a differentiable manifold, we define six local charts,
Ui = {x ∈ S2 : xi > 0}, and Vi = {x ∈ S2 : xi < 0} for i = 1, 2, 3; with the corresponding
diffeomorphisms, Fi : Ui → R2 and Gi : Vi → R2 for i = 1, 2, 3 which are the inverses of the
central projections from the tangent planes at points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0),
(0, 0, 1) and (0, 0,−1), respectively.

We denote by (u, v) the value of Fi(x) or Gi(x) for any i = 1, 2, 3, so a few simple
calculations (for p(X)) lead to the following formulae in the corresponding local charts (see
Section 5 of [8]):

vd
(

Q
(

1
v

,
u
v

)
− uP

(
1
v

,
u
v

)
,−vP

(
1
v

,
u
v

))
in U1,

vd
(

P
(

u
v

,
1
v

)
− uQ

(
u
v

,
1
v

)
,−vQ

(
u
v

,
1
v

))
in U2,

(P(u, v), Q(u, v)) in U3,

where d is the degree of the polynomial differential system (1). The formulae for Vi are
similar to the formulae for Ui with a multiplicative factor of (−1)d−1. In the coordinates for
i = 1, 2, points (u, v) of the infinity S1 satisfy v = 0.

2.3. Phase Portraits on the Poincaré Disc

The separatrix of p(X) denotes all the orbits of the circle at infinity, the equilibrium
points, the limit cycles, and the orbits that lie in the boundary of hyperbolic sectors, i.e., the
two separatrices of a hyperbolic sector.

Neumann, [11], showed that the set of all separatrices S(p(X)) of the vector field,
p(X), was closed.

When there is an orientation preserving or reversing homeomorphism, which maps
the trajectories of p(X) into the trajectories of p(Y), we can say that the two differential
systems defined by p(X) and p(Y) in the Poincaré disc are topologically equivalent.

The canonical regions of p(X) are the openly connected components of D2 \ S(p(X)).
The set formed by the union of S(p(X)) plus one orbit chosen from each canonical region
is called a separatrix configuration of p(X). When there is an orientation preserving or
reversing homeomorphism, which maps the trajectories of S(p(X)) into the trajectories
of S(p(Y)), we can say that the two separatrix configurations, S(p(X)) and S(p(Y)), are
topologically equivalent.

The next result is mainly due to work by Markus [12], Neumann [11], and Peixoto [13].

Theorem 2. Phase portraits in the Poincaré disc of two compactified polynomial differential systems
(p(X ) and p(Y)) with (finitely) many separatrices are topologically equivalent if and only if their
separatrix configurations S(p(X )) and S(p(Y)) are topologically equivalent.
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3. Proof of Statement (a) of Theorem 1
3.1. Finite Equilibrium Points

We will determine the local phase portrait at the finite equilibrium points of the
quadratic system (2).

Assume that n 6= 0. If b2 − 4dn > 0, then the finite equilibrium points of system (2)
are as follows:

p± =

(
0,
−b±

√
b2 − 4dn

2n

)
,

The eigenvalues of the Jacobian matrix of system (2) at p± are 0 and ±
√

b2 − 4dn. Thus,
from Theorem 2.19 of [8], we have that p+ and p− are semi-hyperbolic saddle-nodes.

If b2 − 4dn < 0, there are no finite equilibrium points.
If b2 − 4dn = 0, then d = b2/(4n) and p+ = p− = p = (0,−b/(2n)). The Jacobian

matrix of the differential system at p is



0 0

a− bm
2n

0


.

If a− bm/(2n) 6= 0, then this equilibrium point is nilpotent, and from Theorem 3.5 of [8],
this equilibrium point is a saddle-node.

If a = bm/(2n), the linear part of the differential system at the equilibrium point p is
identically zero, and the differential system becomes a homogeneous quadratic differential
system. Using the results by Date in [14], who classified the phase portraits of all the
homogeneous quadratic systems, we can see that the phase portraits of system (3) when
(m− 1)2 − 4`n > 0 are given in Figure 1, according to the sign of n, If (m− 1)2 − 4`n = 0,
then the phase portraits of system (3) are given in Figure 2, determined by the sign of
n. Finally, if (m− 1)2 − 4`n < 0, the phase portraits of system (3) are given in Figure 3,
determined by the sign of n.

4 LAURENT CAIRÓ AND JAUME LLIBRE

The eigenvalues of the Jacobian matrix of system (2) at p± are 0 and ±
√
b2 − 4dn.

So from Theorem 2.19 of [7] we have that p+ and p− are semi-hyperbolic saddle-
nodes.

If b2 − 4dn < 0 there are no finite singular points.

If b2−4dn = 0 then d = b2/(4n) and p+ = p− = p = (0,−b/(2n)). The Jacobian
matrix of the differential system at p is

(
0 0

a− bm

2n
0

)
.

If a− bm/(2n) 6= 0 then this singular point is nilpotent, and from Theorem 3.5 of
[7], this singular point is a saddle-node.

If a = bm/(2n) the linear part of the differential system at the equilibrium point
p is identically zero, and the differential system becomes a homogeneous quadratic
differential system. Using the results of Date in [6] who classify the phase portraits
of all the homogeneous quadratic systems we obtain that the phase portraits of
system (3) when (m− 1)2 − 4ℓn > 0 are given in Figure 1 according the sign of n,
If (m− 1)2 − 4ℓn = 0 then the phase portraits of system (3) are given in Figure 3
according with the sign of n. Finally if (m − 1)2 − 4ℓn < 0 the phase portraits of
system (3) are given in Figure 2 according with the sign of n.

< 0> 0n n

Figure 1. (m− 1)2 − 4ℓn > 0.

< 0> 0n n

Figure 2. (m− 1)2 − 4ℓn = 0.

Figure 1. (m− 1)2 − 4`n > 0.

4 LAURENT CAIRÓ AND JAUME LLIBRE

The eigenvalues of the Jacobian matrix of system (2) at p± are 0 and ±
√
b2 − 4dn.

So from Theorem 2.19 of [7] we have that p+ and p− are semi-hyperbolic saddle-
nodes.

If b2 − 4dn < 0 there are no finite singular points.

If b2−4dn = 0 then d = b2/(4n) and p+ = p− = p = (0,−b/(2n)). The Jacobian
matrix of the differential system at p is

(
0 0

a− bm

2n
0

)
.

If a− bm/(2n) 6= 0 then this singular point is nilpotent, and from Theorem 3.5 of
[7], this singular point is a saddle-node.

If a = bm/(2n) the linear part of the differential system at the equilibrium point
p is identically zero, and the differential system becomes a homogeneous quadratic
differential system. Using the results of Date in [6] who classify the phase portraits
of all the homogeneous quadratic systems we obtain that the phase portraits of
system (3) when (m− 1)2 − 4ℓn > 0 are given in Figure 1 according the sign of n,
If (m− 1)2 − 4ℓn = 0 then the phase portraits of system (3) are given in Figure 3
according with the sign of n. Finally if (m − 1)2 − 4ℓn < 0 the phase portraits of
system (3) are given in Figure 2 according with the sign of n.

< 0> 0n n

Figure 1. (m− 1)2 − 4ℓn > 0.

< 0> 0n n

Figure 2. (m− 1)2 − 4ℓn = 0.
Figure 2. (m− 1)2 − 4`n = 0.
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< 0> 0n n

Figure 3. (m− 1)2 − 4ℓn < 0.

We assume now n = 0. In this case if b 6= 0 there exists a unique singular point
namely q = (0,−d/b), and the eigenvalues of the Jacobian matrix at q are 0 and b.
If b 6= 0 then q is a semi-hyperbolic saddle-node by Theorem 2.19 of [7]. If b = 0
and d 6= 0 the differential system has no finite equilibria. If b = d = 0 then the
system has a straight line filled with equilibria and we do not consider this kind of
differential systems because this case can be reduced to a linear differential system
doing a rescaling in the independent variable.

In summary we have proved the following proposition.

Proposition 2. Assume that n 6= 0.

(a) If b2 − 4dn > 0 the differential system (2) has two finite equilibria p± that
are semi-hyperbolic saddle-nodes.

(b) If b2 − 4dn < 0 the differential system (2) has no finite equilibria.
(c) b2 − 4dn = 0.

(c.1) If a−bm/(2n) 6= 0 the differential system (2) has one finite equilibrium
point p that is a nilpotent saddle-node.

(c.2) a− bm/(2n) = 0.
(c.2.1) If (m− 1)2 − 4ℓn > 0 the phase portrait of the differential system (2)

is topologically equivalent to the ones of Figure 1 according with the
sign of n.

(c.2.2) If (m− 1)2 − 4ℓn = 0 the phase portrait of the differential system (2)
is topologically equivalent to the ones of Figure 2 according with the
sign of n.

(c.2.3) If (m− 1)2 − 4ℓn < 0 the phase portrait of the differential system (2)
is topologically equivalent to the ones of Figure 3 according with the
sign of n.

Assume that n = 0.

(d) If b 6= 0 the differential system (2) has one finite equilibria q which is a
semi-hyperbolic saddle-node.

(e) If b = 0 then differential system (2) has no finite equilibria if d 6= 0, and
one straight line of filled with equilibria if d = 0.

We assume now n = 0. In this case if b 6= 0 there exists a unique singular point
namely q = (0,−d/b), and the eigenvalues of the Jacobian matrix at q are 0 and b.

Figure 3. (m− 1)2 − 4`n < 0.

We assume that n = 0. In this case, if b 6= 0, there exists a unique equilibrium point,
namely q = (0,−d/b), and the eigenvalues of the Jacobian matrix at q are 0 and b. If
b 6= 0, then q is a semi-hyperbolic saddle-node (by Theorem 2.19 of [8]). If b = 0 and
d 6= 0, the differential system has no finite equilibria. If b = d = 0, then the system has
a straight line filled with equilibria; we do not consider this kind of differential system
because this case can be reduced to a linear differential system, involving the rescaling of
the independent variable.

In summary, we proved the following proposition.

Proposition 1. Assume that n 6= 0.

(a) If b2− 4dn > 0, the differential system (2) has two finite equilibria p± that are semi-hyperbolic
saddle-nodes.

(b) If b2 − 4dn < 0, the differential system (2) has no finite equilibria.
(c) b2 − 4dn = 0.

(c.1) If a− bm/(2n) 6= 0, the differential system (2) has one finite equilibrium point p that is
a nilpotent saddle-node.

(c.2) a− bm/(2n) = 0.

(c.2.1) If (m− 1)2 − 4`n > 0, the phase portrait of the differential system (2) is topolog-
ically equivalent to the ones in Figure 1, determined by the sign of n.

(c.2.2) If (m− 1)2 − 4`n = 0, the phase portrait of the differential system (2) is topolog-
ically equivalent to the ones in Figure 2 determined by the sign of n.

(c.2.3) If (m− 1)2 − 4`n < 0, the phase portrait of the differential system (2) is topolog-
ically equivalent to the ones in Figure 3, determined by the sign of n.

Assume that n = 0.

(d) If b 6= 0, the differential system (2) has one finite equilibria q, which is a semi-hyperbolic
saddle-node.

(e) If b = 0, then the differential system (2) has no finite equilibria if d 6= 0, and one straight line
is filled with equilibria if d = 0.

3.2. The Infinite Equilibrium Points in Chart U1

System (2) in the local U1 chart can be expressed as follows:

u̇ = `− u + mu + nu2 + av + buv + dv2, v̇ = −v. (4)

Assume n 6= 0 the infinite equilibrium points are

P± =

(
0,

1−m±
√
(1−m)2 − 4`n
2n

)
.

The eigenvalues of the Jacobian matrix at P± are S± =
(
−1,±

√
(1−m)2 − 4`n

)
. If they

are real, then (1− m)2 − 4`n > 0 and P+ are hyperbolic saddles and P− is a hyperbolic

5
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stable node. If (1−m)2 − 4`n = 0, then P+ = P− = P = (0, (1−m)/(2n)). In this case,
the Jacobian matrix can be expressed as follows:


 0 a +

b(1−m)

2n
0 −1


,

and the eigenvalues are −1 and 0, which means that the unique equilibrium point in chart
U1 is semi-hyperbolic, and from Theorem 2.19 of [8], is a semi-hyperbolic saddle-node.

Assume that n = 0. Then, the unique infinite equilibrium point in the local U1 chart
is P = (−`/(m− 1), 0), and the eigenvalues of the Jacobian matrix of system (4) at P are
−1 and m− 1. If m 6= 1, from Theorem 2.15 of [8], P is a hyperbolic saddle if m > 1 and a
hyperbolic node if m < 1. If m = 1, there are no equilibrium points in U1.

3.3. The Infinite Equilibrium Point at the Origin of Chart U2

Studying the infinite equilibrium points in the local U1 chart, we also studied the
infinite equilibrium points in the local V1 chart. Thus, we must see whether the origins of
the local U2 and V2 charts are infinite equilibrium points or not.

System (2) in the local U2 chart can be expressed as follows:

u̇ = −u(n + (m− 1)u + bv + `u2 + auv + dv2) = P(u, v),

v̇ = −v(n + mu + bv + `u2 + auv + dv2) = Q(u, v),
(5)

so the origin of U2 is an infinite equilibrium point. The eigenvalues of the Jacobian matrix
of system (5) at the origin are −n with a multiplicity of two. Therefore, the origin is a
hyperbolic stable node if n > 0, and an unstable node if n < 0.

If n = 0, then the Jacobian matrix of the system at the origin of the local U2 chart is
the zero matrix, and we need to make blow-ups in order to study its local phase portrait.
Before conducting a vertical blow-up, we need to be sure that u = 0 is not a characteristic
direction. If u = 0 is a characteristic direction, then u would be a factor of the polynomial
Π = vP2(u, v)− uQ2(u, v), where P2(u, v) and Q2(u, v) represent the terms of degree two
in P(u, v) and Q(u, v). In our case, Π = u2v. Thus, u = 0 is a characteristic direction and,
consequently, before conducting a vertical blow-up, we must perform a twist so u = 0 no
longer acts as a characteristic direction. This is conducted through the change of variables
(u, v) → (u1, v1), where u1 = u + v, v1 = v. By conducting this change of variables, the
differential system (5) can be expressed as follows:

u̇1 = (1−m)u2
1 − (b + 2−m)u1v1 + v2

1 − `u3
1 − (a− 2`)u2

1v1 + (a− d− `)u1v2
1

v̇1 = −mu1v1 + (m− b)v2
1 − `u2

1v1 + (2`− a)u1v2
1 + (a− d− `)v3

1, (6)

Since u1 = 0 is not a characteristic direction, we can conduct a vertical blow-up. This
vertical blow-up is given by the change of variables (u1, v1) → (u2, v2), where u2 = u1,
v2 = v1/u1. Then, system (6) becomes

u̇2 = u2
2
(
m− 1 + `u2 + (b−m + 2)v2 + (a− 2`)u2v2 − v2 − (a− d− `)u2v2

2
)
,

v̇2 = −u2v2(−1 + v2)
2.

Now, conducting the rescaling of the time with factor u2, we obtain the system

u̇2 = u2
(
m− 1 + `u2 + (b−m + 2)v2 + (a− 2`)u2v2 − v2 − (a− d− `)u2v2

2
)
,

v̇2 = −v2(−1 + v2)
2.

The equilibrium points of the previous system on u2 = 0 are (0, 0) and (0, 1) (this is
double). The eigenvalues of the Jacobian matrix at (0, 0) are −1 and 1−m. Thus, the point
(0, 0) is a hyperbolic stable node if m > 1, a hyperbolic saddle if m < 1, and for m = 1,

6
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a semi-hyperbolic saddle-node, according to Theorem 2.19 in [8]. The eigenvalues of the
Jacobian matrix at (0, 1) are 0 and −b. Thus, the local phase portrait of the origin of the
local U2 chart is shown in Figure 4A when n = 0, b > 0, and m > 1.

U2

V2

U2

V

U

C DBA

V2

V1

U1

Figure 4. The sequences of blow-ups for obtaining the local phase portrait at the origin of the local
U2 chart when n = 0, b > 0, and m > 1.

Starting from Figure 4A, we obtain the local phase portrait at the axis u2 = 0 of system
(10); see Figure 4B. Going back through the vertical blow, taking into account the value
of u̇1|u1=0 = v2

1, we obtain the local phase portrait at the origin of system (5) in Figure 4C.
Finally, undoing the twist, we obtain the local phase portrait at the origin of the local U2
chart, which is shown in Figures 4D and 5A.

Working in a similar way to the preceding case, conducting the convenient blow-ups
and using Theorems 2.15 and 2.19 of [8], we obtain all the local phase portraits at the origin
of the local U2 chart in Figure 5. All the local phase portraits are the following

n = 0, b > 0 and m > 1 in Figure 5A;
n = 0, b < 0 and m > 1 in Figure 5B;
n = 0, b > 0 and m < 1 in Figure 5C;
n = 0, b < 0 and m < 1 in Figure 5D;
n = 0, b > 0, m = 1 and l 6= 0 in Figure 5E;
n = 0, b > 0, m = 1 and l = 0, then v = 0 is a straight line of the equilibrium points;
n = 0, b < 0, m = 1 and l 6= 0 in Figure 5F;
n = 0, b < 0, m = 1 and l = 0, then v = 0 is a straight line of the equilibrium points;
n = 0, b = 0, d > 0 and m > 1 in Figure 5G;
n = 0, b = 0, d < 0 and m > 1 in Figure 5H;
n = 0, b = 0, d > 0 and m < 1 in Figure 5I;
n = 0, b = 0, d < 0 and m < 1 in Figure 5J;
n = 0, b = 0, d > 0 and m = 1 in Figure 5K;
n = 0, b = 0, d < 0 and m = 1 in Figure 5L;
n = 0, b = 0 and d = 0, then u = 0 is a straight line of the equilibrium points.

3.4. The Global Phase Portraits

The preceding results of the finite and infinite equilibrium points allow us to obtain
the global phase portraits quite easily, taking into account that the straight line x = 0
is invariant.

First, we consider the case satisfying the following conditions: n > 0, b2 − 4dn > 0,
and (1− m)2 > 4`n. We can see that if n > 0, then there is a stable hyperbolic node at
the origin of chart U2. Since b2 − 4dn > 0, there exist two real finite equilibrium points,
p+ and p−, which are semi-hyperbolic saddle-nodes. Finitely, (1−m)2 > 4`n implies the
existence of two infinite equilibrium points in chart U1 (P+ is a hyperbolic saddle and P−
a hyperbolic node). The local phase portraits at all these equilibrium points are shown
in Figure 6. The tools for studying the phase portraits were employed for all possible
configurations that appear in Figure 7.

7
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n > 0, b2 − 4dn > 0 and (1 − m)2 > 4`n in Figures 7(1–4), but the phase portrait in
Figure 7(2) appears by continuity between the phase portraits in Figure 7(1–3);
n > 0, b2 − 4dn > 0 and (1−m)2 < 4`n from Figure 7(5);
n > 0, b2 − 4dn > 0 and (1−m)2 = 4`n in Figure 7(6–8);
n > 0, b2 − 4dn < 0, and (1−m)2 > 4`n in Figure 7(9);
n > 0, b2 − 4dn < 0, and (1−m)2 < 4`n in Figure 7(10);
n > 0, b2 − 4dn < 0, (1−m)2 = 4`n in Figure 7(11);
n > 0, b2 − 4dn = 0, and (1−m)2 > 4`n from Figure 7(12,13);
n > 0, b2 − 4dn = 0, and (1−m)2 < 4`n in Figure 7(14,15);
n > 0, b2 − 4dn = 0, (1−m)2 = 4`n in Figure 7(16–20).

U

KJ

D

L

B

V

U

A

V

C

V

U U
U

V

E

VV

U

F G

U

V

I

U

V

H

U

V
V

V

U

U

VV

U

Figure 5. The distinct topological local phase portraits at the origin of the local U2 chart.

P

P

-

+

-
Q

Q +

Figure 6. The local phase portraits at the finite and infinite equilibrium points for n > 0, b2 − 4dn > 0
and (1−m)2 > 4`n.

Phase portraits with n < 0 are symmetric with respect to the origins of the coordinates
of the preceding eight cases.
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S = 10, r = 3 S = 19, r = 6S = 4, r = 1

S = 21, r = 6 S = 21, r = 6

S = 17, r = 6S = 11, r = 4

S = 14, r = 3

S = 17, r = 6 S = 16, r = 5

(1) (3)

(9) (10) (11) (12)

S = 21, r = 6

(4)

(5) (6)

S = 13, r = 4

S = 13, r = 4

(7) (8)

(19)

(16)

S = 6, r = 2

(14)

S = 18, r = 5

(13)

S = 8, r = 3

(15)

S = 12, r = 3

(18)

S = 13, r = 4

(20)

S = 14, r = 5

(17)

S = 20, r = 5

(2)

S = 9, r = 4 S = 10, r = 3

(21) (23)

S = 14, r = 5 S = 12, r = 3

(22)

S = 5, r = 2

(24)

(27)(((26)(((25)

S = 9, r = 2 S = 5, r = 2

Figure 7. All the distinct topological phase portraits of quadratic system VII. Here, s (respectively, r) de-
notes the number of separatrices of a phase portrait in the Poincaré disc (respectively, canonical regions).
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Now, we study the phase portraits when n = 0.

n = 0, b > 0 and m > 1 in Figure 7(21);
n = 0, b > 0 and m < 1 in Figure 7(22);
n = 0, b > 0 and m = 1 in Figure 7(23);

The cases with b < 0 are symmetric with respect to the origins of the coordinates of
the preceding three cases.

n = 0, b = 0, d > 0, and m > 1 in Figure 7(24); The cases with d < 0 are symmetric with
respect to the origins of coordinates of all the preceding cases.
n = 0, b = 0, d > 0 and m < 1 in Figure 7(25); The cases with d < 0 are symmetric with
respect to the origins of coordinates of all the preceding cases.
n = 0, b = 0, d > 0 and m = 1 in Figure 7(26);
n = 0, b = 0, d < 0 and m = 1 in Figure 7(27).

Of course, from Table 1, the phase portraits with different numbers of separatrices
and canonical regions are topologically distinct. Now, we shall see that the phase por-
traits with the same number of separatrices and canonical regions in Table 1 are also
topologically different.

Table 1. Here, p.p. denotes the phase portrait in the Poincaré disc, s denotes the number of sepa-
ratrices of the phase portrait, and r denotes the number of canonical regions of the phase portrait.

s 4 5 6 8 9 9 10 11 12
r 1 2 2 3 4 2 3 4 3

p.p. 10 26, 27 14 15 23 25 11, 24 5 18, 22
s 13 14 14 16 17 18 19 20 21
r 4 3 5 5 6 5 6 5 6

p.p. 16, 19, 20 9 17, 21 8 6, 7 13 12 2 1, 3, 4

Phase portraits 26 and 27 of Figure 7 are topologically different because phase portrait
27 has two elliptic sectors and phase portrait 26 has no elliptic sectors.

Phase portraits 11 and 24 of Figure 7 are topologically different because phase portrait
24 has two elliptic sectors and phase portrait 11 has no elliptic sectors.

Phase portraits 18 and 22 of Figure 7 are topologically different because phase portrait
18 has orbits starting at the origin of the local U2 chart and ending at the origin of the local
U1 chart, and these kinds of orbits do not exist in phase portrait 22.

Phase portraits 16, 19, and 20 of Figure 7 are topologically different. First, phase
portrait 16 has orbits starting at the origin of the local U2 chart and ending at the origin
of the local U1 chart, and these kinds of orbits do not exist in phase portraits 19 and 20.
Phase portrait 19 has a separatrix starting at the origin of the local U2 chart and ending at
an infinite equilibrium point in the local V1 chart; this kind of separatrix does not exist in
phase portrait 20.

Phase portraits 17 and 21 of Figure 7 are topologically different because phase portrait
21 has two elliptic sectors and phase portrait 17 has no elliptic sectors.

Phase portraits 1, 3, and 4 of Figure 7 are topologically different because the unstable
separatrix of the lower equilibrium point on the straight line x = 0 contained in x > 0 has
different ending infinite equilibrium points in the three phase portraits.

4. Proof of Statement (b) Theorem 1
4.1. Finite Equilibrium Points

We are going to analyze the equilibrium points of the quadratic system (3).
Assume that n 6= 0. The finite equilibrium points of system (3) are

p± =

(
0,
−b±

√
b2 − 4dn

2n

)
.

10
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If b2 − 4dn > 0, the eigenvalues of the Jacobian matrix of system (3) at p± are 1 and
±
√

b2 − 4dn. Thus, from Theorem 2.15 of [8], p+ is a hyperbolic unstable node and p− is a
hyperbolic saddle. If b2 − 4dn = 0, then p+ = p− = p = (0,−b/(2n)). The eigenvalues of
the Jacobian matrix of system (3) at p are 1, 0; therefore, by Theorem 2.19 of [8], p is a semi-
hyperbolic saddle-node. Of course, if b2 − 4dn < 0, there are no finite equilibrium points.

We assume that n = 0. In this case, if b 6= 0, there exists a unique equilibrium point,
namely p = (0,−d/b), and the eigenvalues of the Jacobian matrix at p are 1 and b. If b > 0,
then p is a hyperbolic unstable node. If b < 0, then p is a hyperbolic saddle. If b = 0, there
are no finite equilibrium points.

4.2. The Infinite Equilibrium Points in Chart U1

System (3) in the local U1 chart can be expressed as follows:

u̇ = `+ mu + av + nu2 + (b− 1)uv + dv2, v̇ = −v2, (7)

Assuming n 6= 0, the infinite equilibrium points are

P± =

(
0,
−m±

√
m2 − 4`n

2n

)
,

if m2 − 4`n > 0. If m2 − 4`n = 0, then P+ = P− = P = (0,−m/(2n)). The eigenvalues of
the Jacobian matrix at P± are 0 and ±

√
m2 − 4`n). By Theorem 2.19 of [8], we obtain that

P± are semi-hyperbolic saddle-nodes. The Jacobian matrix at P is


 0

2an− bm + m
2n

0 0


.

If 2an + (1− b)m 6= 0, then P is a nilpotent equilibrium point, and by Theorem 3.5 of [8], is
a saddle-node. If 2an + (1− b)m = 0, then P is degenerate. If we translate the equilibrium
point P to the origin, it becomes a homogeneous quadratic system; the phase portraits have
been classified by Date in [14]. It follows that if b2 − 4dn ≥ 0, we obtain that the local phase
portrait at P on the Poincaré sphere is formed by two hyperbolic sectors separated by two
parabolic ones, and infinity separates the two hyperbolic sectors, which have one separatrix
at infinity. If b2 − 4dn < 0, then the local phase portrait at P is a node, unstable if n < 0,
and stable if n > 0.

Assume that n = 0. Then the unique infinite equilibrium point in the local U1 chart is
P = (−l/m, 0), and the eigenvalues of the Jacobian matrix of system (7) at P are 0 and m. If
m 6= 0, from Theorem 2.19 of [8], P is a semi-hyperbolic saddle-node. If m = 0, there are no
infinite equilibrium points in the local U1 chart.

4.3. The Infinite Equilibrium Point at the Origin of Chart U2

Studying the infinite equilibrium points in the local U1 chart, we have also studied the
infinite equilibrium points in the local V1 chart. Thus, we must see whether the origins of
the local U2 and V2 charts are infinite equilibrium points or not.

System (3) in the local U2 chart can be expressed as follows:

u̇ = −u(n + mu + (b− 1)v + `u2 + auv + dv2) = P(u, v),

v̇ = −v(n + mu + bv + `u2 + auv + dv2) = Q(u, v),
(8)

so the origin of U2 is an infinite equilibrium point. The eigenvalues of the Jacobian matrix
of the system at the origin are −n with a multiplicity of two. Therefore, the origin is a
hyperbolic node, stable if n > 0, and unstable if n < 0.

If n = 0, then the Jacobian matrix of the system at the origin is the zero matrix,
and we need to make blow-ups in order to study the local phase portrait at the origin

11
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of U2. Before conducting a vertical blow-up, we need to be sure that u = 0 is not a
characteristic direction. If u = 0 is a characteristic direction then u is a factor of the
polynomial Π = vP2(u, v)− uQ2(u, v), where P2(u, v) and Q2(u, v) are the terms of the
lowest degrees of P(u, v) and Q(u, v); in our case, Π = uv2. Thus, u = 0 is characteristic
direction; consequently, before conducting a vertical blow-up, we must conduct a twist
so that u = 0 no longer acts as a characteristic direction. We accomplish this through the
change of variables (u, v)→ (u1, v1), where u1 = u + v, v1 = v. By making this change of
variables, the differential system (8) can be expressed as follows:

u̇1 = −mu2
1 − v2

1 + (1− b + m)u1v1 + (a− d− `)u1v2
1 − `u3

1 + (2`− a)u2
1v1

v̇1 = −v1
(
mu1 + (b−m)v1 + `u2

1 + (a− 2`)u1v1 + (d− a + `)v2
1
)
, (9)

The characteristic directions of this system are given by the polynomial Π = (u1− v1)v2
1, so

u1 = 0 is not a characteristic direction, and we can conduct a vertical blow-up. This vertical
blow-up is given by the change of variables (u1, v1)→ (u2, v2), where u2 = u1, v2 = v1/u1.
Then, system (9) becomes

u̇2 = u2
2
(
−m− `u2 + (1− b + m)v2 + (2`− a)u2v2 − v2

2 + (a− d− `)u2v2
2
)
,

v̇2 = u2(−1 + v2)v2
2.

(10)

Now, conducting the rescaling of the time with factor u2, we obtain the system

u̇2 = u2
(
−m− `u2 + (1− b + m)v2 + (2`− a)u2v2 − v2

2 + (a− d− `)u2v2
2
)
,

v̇2 = (−1 + v2)v2
2.

(11)

The equilibrium points of system (11) on u2 = 0 are (0, 0), which is double, and
(0, 1). The eigenvalues of the Jacobian matrix at (0, 0) are 0 and −m. Thus, (0, 0) is a
semi-hyperbolic equilibrium point; by applying Theorem 2.19 of [8] to it, it is a saddle-node.
The eigenvalues of the Jacobian matrix at (0, 1) are 1 and −b. Thus, this equilibrium point
is hyperbolic, a saddle if b > 0, and an unstable node if b < 0; see Figure 8A, when n = 0,
m < 0, and b < 0.

U3

V3

U2

V2

V

V1

UU1

C DBA

Figure 8. The sequences of blow-ups for obtaining the local phase portrait at the origin of the local
U2 chart when n = 0, b < 0, and m < 0.

From Figure 8A, we can see that the local phase portrait at the axis u2 = 0 of system
(10) is given in Figure 8B. Now, going back through the vertical blow-up and taking into
account the value of u̇1|u1=0 = −v2

1, we obtain the local phase portrait at the origin of
system (8) in Figure 8C. Finally, ending the twist, we obtain the local phase portrait at the
origin of the local U2 chart, which is shown in Figures 8D and 9A.

12



Axioms 2023, 12, 756

U

U

G

J

U

V

F

U

U

V

CB D

U

I

R

U

E

V

A

U

U

V

H

K L

M N O

Q

U

P

VVV V

VVV V

VVV V

VV

U

U

U

U

U

U
U

U

Figure 9. The distinct topological local phase portraits at the origin of the local U2 chart.

Working in a similar fashion to n = 0, b < 0, and m < 0, i.e., performing the convenient
blow-ups and using Theorems 2.15 and 2.19 of [8], we obtain all the local phase portraits at
the origin of the local U2 chart in Figure 9 for the following cases:

n = 0, m < 0 and b > 0 in Figure 9B;
n = 0, m < 0, b = 0, and d < 0 in Figure 9C;
n = 0, m < 0, b = 0 and d > 0, in Figure 9D;
n = 0, m > 0 and b < 0 in Figure 9E;
n = 0, m > 0 and b > 0 in Figure 9F;
n = 0, m > 0, b = 0 and d < 0 in Figure 9G;
n = 0, m > 0, b = 0 and d > 0 in Figure 9H;
n = 0, m = 0, ` < 0 and b < 0 in Figure 9I;
n = 0, m = 0, ` < 0 and 0 < b ≤ `+ 2 in Figure 9J;
n = 0, m = 0, ` < 0 and b > `+ 2 in Figure 9K;
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n = 0, m = 0, ` < 0, b = 0 and d < 0 in Figure 9L;
n = 0, m = 0, ` < 0, b = 0 and d > 0 in Figure 9M;
n = 0, m = 0, ` > 0, b < 0 and in Figure 9N;
n = 0, m = 0, ` > 0 and 0 < b ≤ `+ 2 in Figure 9O;
n = 0, m = 0, ` > 0 and b > `+ 2 in Figure 9P;
n = 0, m = 0, ` > 0, b = 0 and d < 0 in Figure 9Q;
n = 0, m = 0, ` > 0, b = 0 and d > 0 in Figure 9R.

4.4. The Global Phase Portraits

The preceding results for the finite and infinite equilibrium points allowed us to obtain
the global phase portraits quite easily, taking into account that the straight line x = 0
is invariant.

First, we consider the case satisfying the following conditions: n > 0, b2− 4dn > 0, and
m2 > 4`n. We have seen that n > 0 denotes a stable hyperbolic node at the origin of chart
U2, b2 − 4dn > 0 indicates the existence of two real finite equilibrium points (p+, which is
a hyperbolic unstable node, and p−, which is a hyperbolic saddle), and m2 > 4`n implies
two infinite equilibrium points in chart U1 (P+ and P−, which are nilpotent saddle-nodes).
The local phase portraits at all these equilibrium points are shown in Figure 10.

P-

P+

Q

+

-

Q

Figure 10. The local phase portraits at the finite and infinite equilibrium points for n > 0, b2− 4dn > 0,
and m2 > 4`n.

With the help of Mathematica, we proved that in order for the conditions n > 0,
b2 − 4dn > 0, and m2 > 4`n to hold, the parameters of the differential system (3) must
satisfy one of the following conditions:

(i) b < 0, d ≤ 0, ` < 0 and n > 0;
(ii) b < 0, d ≤ 0, ` ≥ 0, n > 0 and m < −2

√
`n;

(iii) b < 0, d ≤ 0, ` ≥ 0, n > 0 and m > −2
√
`n;

(iv) b < 0, d > 0, ` < 0 and 0 < n < b2/(4d);
(v) b < 0, d > 0, ` ≥ 0, 0 < n < b2/(4d) and m < −2

√
`n;

(vi) b < 0, d > 0, ` ≥ 0, 0 < n < b2/(4d) and m > −2
√
`n;

(vii) b = 0, d < 0, ` < 0 and n > 0;
(viii) b = 0, d < 0, ` ≥ 0, n > 0 and m < −2

√
`n;

(ix) b = 0, d < 0, ` ≥ 0, n > 0) and m > −2
√
`n;

(x) b > 0, d ≤ 0, ` < 0 and n > 0;
(xi) b > 0, d ≤ 0, ` ≥ 0, n > 0 and m < −2

√
`n;

(xii) b > 0, d ≤ 0, ` ≥ 0, n > 0 and m > −2
√
`n;

(xiii) b > 0, d > 0, ` < 0 and 0 < n < b2/(4d);
(xiv) b > 0, d > 0, ` ≥ 0, 0 < n < b2/(4d) and m < −2

√
`n;

(xv) b > 0, d > 0, ` ≥ 0, 0 < n < b2/(4d) and m > −2
√
`n.

We proved that in cases (i), (ii), (iv), and (vii), and from (ix) to (xv), we could obtain
phase portrait (1) of Figure 11; in cases (iii), (vi), and (viii) we obtain phase portrait (2) of
Figure 11; finally, in case (v), we obtain the phase portrait that is symmetric to phase portrait
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(2), with respect to the straight line x = 0. For instance, phase portrait (1) of Figure 11
is obtained when the parameters of system (3) are d = a = 0, b = −1, ` = −1, m = −3,
and n = 1; phase portrait (2) of Figure 11 is obtained when the parameters are d = a = 0,
b = −1, ` = 1, m = 3, and n = 1. Phase portrait (3) of Figure 11 exists by continuity, from
phase portrait (1) to phase portrait (2).

We recall that the separatrices of a polynomial’s differential system in the Poincaré
disc are all orbits at infinity, the finite equilibria, and the two orbits at the boundary of a
hyperbolic sector. Also, the limit cycles are separatrices but quadratic system VIII has no
limit cycles. In a phase portrait of the Poincaré disc, if we remove all separatrices, the open
components that remain are called the canonical regions of the phase portrait. For more
details on the separatrices and canonical regions, see [11,12].

The tools used for studying the phase portraits of system (3) for n > 0, b2 − 4dn > 0
and m2 > 4`n are used in the following cases, leading to the following results:

n > 0, b2 − 4dn > 0, and m2 < 4`n in Figure 11(4);
n > 0, b2 − 4dn > 0, m2 = 4`n, and 2an + (1− b)m > 0 in Figure 11(5);
n > 0, b2 − 4dn > 0, m2 = 4`n, and 2an + (1− b)m < 0, in this case, the phase portrait is
symmetric with respect to the straight line x = 0 of the phase portrait of the previous case;
n > 0, b2 − 4dn > 0, m2 = 4`n, and 2an + (1− b)m = 0 in Figure 11(6);
n > 0, b2 − 4dn < 0, and m2 > 4`n in Figure 11(7);
n > 0, b2 − 4dn < 0, and m2 < 4`n in Figure 11(8);
n > 0, b2 − 4dn < 0, m2 = 4`n, and 2an + (1− b)m > 0 in Figure 11(9);
n > 0, b2 − 4dn < 0, m2 = 4`n, and 2an + (1− b)m < 0; this case is a symmetric phase
portrait with respect to the straight line x = 0 of the previous phase phase portrait;
n > 0, b2 − 4dn < 0, m2 = 4`n, and 2an + (1− b)m = 0 in Figure 11(10,11);
n > 0, b2 − 4dn = 0, and m2 > 4`n from Figure 11(12–14);
n > 0, b2 − 4dn = 0, and m2 < 4`n in Figure 11(15);
n > 0 b2 − 4dn = 0, m2 = 4`n, and 2an + (1− b)m > 0 in Figure 11(16,17);
n > 0, b2 − 4dn = 0, m2 = 4`n, and 2an + (1− b)m = 0 in Figure 11(18); The cases with
n < 0 are symmetric with respect to the straight line y = 0 in all preceding cases;
n = 0, m > 0, b > 0 in Figure 11(19);
n = 0, m > 0, b < 0 in Figure 11(20);
n = 0, m > 0, b = 0, and d > 0 in Figure 11(21);
n = 0, m > 0, b = 0, and d < 0; this case has a symmetric phase portrait with respect to
y = 0 in the previous case; Phase portraits of cases n = 0 and m < 0 are symmetric with
respect to the straight line
x = 0 of the phase portraits of cases n = 0 and m > 0;
n = 0, m = 0, b > 2 + l, and ` > 0 in Figure 11(22);
n = 0, m = 0, b > 2 + l, and ` < 0; this case has a symmetric phase portrait with respect to
the y = 0 axis;
n = 0, m = 0, 0 < b ≤ 2 + `, and ` 6= 0 in Figure 11(23);
n = 0, m = 0, b < 0, and ` > 0 in Figure 11(24);
n = 0, m = 0, b < 0, and ` < 0; the phase portrait of this case is symmetric with respect to
the straight line y = 0 in the previous phase portrait;
n = 0, m = 0, b = 0, ` > 0, and d < 0 in Figure 11(25);
n = 0, m = 0, b = 0, ` < 0, and d > 0; the phase portrait of this case is symmetric with
respect to the straight line y = 0 in the previous phase portrait;
n = 0, m = 0, b = 0, ` > 0, and d > 0; this case has the same phase portrait as Figure 11(8);
n = 0, m = 0, b = 0, ` < 0, and d < 0; this case has the symmetric phase portrait with
respect to the straight line y = 0 in the phase portrait of Figure 11(8).
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(23)

S = 13, r = 4

S = 11, r = 4

S = 14, r = 5

(20)
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Figure 11. All distinct topological phase portraits of quadratic system VIII. Here, s (respectively, r) de-
notes the number of separatrices of a phase portrait in the Poincaré disc (respectively, canonical regions).
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Of course, from Table 2, the phase portraits with different numbers of separatrices and
canonical regions are topologically distinct. Now, we shall see that the phase portraits with
the same numbers of separatrices and canonical regions in Table 2 are topologically different.

Table 2. Here, p.p. denotes the phase portrait in the Poincaré disc, s denotes the number of sepa-
ratrices of the phase portrait, and r denotes the number of canonical regions of the phase portrait.

s 4 5 6 7 8 8 9 9 10 11
r 1 2 1 2 1 3 2 4 3 4

p.p. 8 25 23 22 11 15 9 24 4, 10 21
s 12 13 14 14 15 16 17 18 19 20
r 3 4 3 5 4 5 4 5 4 5

p.p. 17, 18 16, 19 7 20 5 6 14 12, 13 3 1, 2

Phase portraits 4 and 10 of Figure 11 are topologically different because phase portrait
4 has two finite equilibrium points and phase portrait 10 has no finite equilibrium points.

Phase portraits 17 and 18 (respectively, 16 and 19) of Figure 11 are topologically
different because phase portrait 17 (respectively, 16) has two orbits going toward the origin
of chart U2, and such orbits do not exist in phase portrait 18 (respectively, 19).

Phase portrait 14 of Figure 11 has three pairs of infinite equilibrium points, while phase
portraits 16 and 19 only have two pairs of infinite equilibrium points, so phase portrait 14
is different from phase portraits 16 and 19.

We note that phase portrait 13 in Figure 11 has three pairs of infinite equilibrium
points, while phase portrait 20 only has two pairs, so these two phase portraits are topolog-
ically distinct.
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Abstract: The current paper considers discrete stochastic inertial neural networks (SINNs) with
reaction diffusions. Firstly, we give the difference form of SINNs with reaction diffusions. Secondly,
stochastic synchronization and passivity-based control frames of discrete time and space SINNs
are newly formulated. Thirdly, by designing a boundary controller and constructing a Lyapunov-
Krasovskii functional, we address decision theorems for stochastic synchronization and passivity-
based control for the aforementioned discrete SINNs. Finally, to illustrate our main results, a
numerical illustration is provided.

Keywords: coupled networks; passivity-based control; stochastic synchronization; discrete spatial
diffusion

MSC: 34D06, 68T07

1. Introduction

Neural networks (NNs) can be considered as complicated nonlinear models coupled
with numerous internal nodes, and they are capable of offering an effective approach to
solving many difficult tasks in the fields of engineering. Due to their huge potential in
real-world applications, they have become a significant research topic over the last few
decades and have garnered increasing interest in many areas of technology (please refer to
refs. [1–7]). On the other hand, it is necessary to address practical problems by studying the
dynamic properties of non-linear neural networks not only in the over-damped case but
also under weakly damped conditions [8]. Hence, inertial neural networks (INNs), which
can act as second-order differential systems, have been extensively studied. Additionally,
numerous publications have addressed synchronization problems, including finite-time
synchronization [9], nonfragile H∞ synchronization [10], event-triggered impulsive syn-
chronization [11], fuzzy synchronization [12], Mittag-Leffler synchronization [13], and
others.

Passivity, as a specific form of dissipativity, constitutes a fundamental characteristic of
physical problems. A system is considered passive when dissipative elements are present
in the modeled system, and the accumulated energies remain lower than the external
input over a certain time span. Consequently, passivity ensures internal stability of the
systems. Due to its widespread applicability in mechanical and electrical systems, the
concept of passivity has garnered increasing attention, leading to extensive studies on
the passivity of nonlinear systems. In the literature [14], Zhou et al. discussed passivity-
based boundary control for stochastic delay reaction-diffusion systems with boundary
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input-output. Padmaja and Balasubramaniam [15] analyzed passivity-based stability in
fractional-order delayed gene regulatory networks. By leveraging Lyapunov-Krasovskii
functionals, novel linear matrix inequality conditions were developed to guarantee certain
levels of passivity performance in the networks. For further details on this topic, please
consult the references [16–18].

Widely, NNs were implemented through IC in engineering applications; spatial diffu-
sions invariably occur when electronic motion takes place in an inhomogeneous electro-
magnetic domain. Therefore, it is important to consider NNs that incorporate the impact
of spatial diffusions. In recent years, greater attention has been devoted to NNs with
spatial diffusions; please refer to papers [19–24]. Stochastic neural networks have received
substantial attention in our everyday reality. Typically, actions of random networks are
heavily time- and space-dependent. As a result, reaction diffusion must be taken into
account. Relevant research topics are discussed in references [14,19,20,22,25,26], etc. While
there have been reports on space-time discrete models [27–29] to date, the problems of
synchronization and passivity-based control for discrete-time SINNs involving diffusions
have not been explored.

It is well known that discrete systems,(DSs) can be utilized to simulate a wide range
of phenomena, including biological dynamics and artificial NNs, among others. In many
scenarios, it has been demonstrated that DSs outperform continuous systems. As a re-
sult, the theory of DSs holds significant importance; please refer to references [30–38].
Reports [35–38] have explored various types of discrete INNs. However, they have not
focused on the effects of other variables, such as spatial variables. Addressing this gap,
the present paper investigates the issues of stochastic synchronization and passivity-based
control for time and space discrete SINNs by designing a novel boundary controller.

Our main contributions include the following:

(1) Establishment of a discrete space and time SINNs model, which complements the
continuous cases in literature [22–24] and the discrete-time cases in literature [35–38].

(2) Unlike prior works in the literature [22–24], a controller is formulated at the boundary
to achieve synchronization and passivity-based control of discrete space and time
SINNs.

In what follows, Section 2 establishes the discrete space and time SINNs based on
prior works in the literature [27,29]. Section 3 discusses synchronization and passivity-
based control of the discrete SINNs. In Section 4, in order to illustrate our main results, a
numerical illustration is provided. Finally, the conclusions and perspectives are described
in Section 5.

2. Problem Formulation
2.1. SINNs in Discrete Form

Now, our primary focus is dedicated to the time and space discrete SINNs, as noted
below

∆2z[ι]i,k+1 = (e−D◦h + e−Ih − 2I)∆z[ι]i,k +
(I − e−D◦h)(I − e−Ih)

D◦

[
M∆2

h̄z[ι−1]
i,k − Cz[ι]i,k

+A f (z[ι]i,k) + α
N

∑
j=1

bijΓ
(z[ι]j,k+1 − e−Ihz[ι]j,k

I − e−Ih

)
+ Ξg(z[ι]i,k)wi,k + Λγ

[ι]
i,k + J

]
, (1)
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where (ι, k) ∈ (0, `)Z × Z0 and ` ∈ Z+ (here, Z is the set of integral numbers,
Z0 := {0, 1, 2, . . .} and Z+ := Z0 \ {0}), zi = (zi1, . . . , zin)

T ∈ Rn is the state of node
i; i = 1, 2, . . . , N; ∆2z[·]i,k+1 = z[·]i,k+2 − 2z[·]i,k+1 + z[·]i,k, ∆z[·]i,k = z[·]i,k+1 − z[·]i,k for k ∈ Z0;

∆2
h̄z[·]i,· :=

z[·+2]
i,· − 2z[·+1]

i,· + z[·]i,·
h̄2 ,

h̄ and h of less than 1 denote the space and time steps’ length in order; C = diag{c1, c2, . . . , cn}
and D = diag{d1, d2, . . . , dn} are constant positive definite matrices, D◦ = D− I, I denotes
n-order identity matrix; M ∈ Rn×n with |M| 6= 0, A, Ξ and Λ are the connection weight
n-order matrices; α > 0 is the coupling strength, Γ ∈ Rn×n is the inner coupling matrix, and
B = (bij)N×N is the outer coupling configuration matrix satisfying bij > 0 (i 6= j) and bii =

−∑N
j=1,j 6=i bij; f (·) and g(·) are n dimensional activation functions; γi = (γi1, . . . , γin)

T ∈
Rn is the external input of the node i, J ∈ Rn is the external input; w1,k, . . . , wn,k, which are
scalar mutually independent random variables on complete probability space (Ω,F , P),
are ℱk := σ{(w1,q, . . . , wN,q) : q = 0, 1, . . . , k}-adaptive, independent of ℱk−1 and satisfy

Ewj,k = 0, Ew2
j,k = 1, E(wi,kwj,k) = 0 (i 6= j), E(wj,kwj,k′) = 0 (k 6= k′)

for k, k′ ∈ Z0, i, j = 1, 2, . . . , N. Hereby, E represents the expectation operator with respect
to probability space (Ω,F , P). The INNs Equation (1) possesses the following controlled
boundary conditions

∆h̄z[ι]i,k

∣∣∣
ι=0

= 0, ∆h̄z[ι]i,k

∣∣∣
ι=`−1

= ρi,k, (2)

where ∆h̄z[·]i,k := 1
h̄ (z

[·+1]
i,k − z[·]i,k) and ρi,k denotes the control input, k ∈ Z0, i = 1, 2, . . . , N.

Further, the initial condition of the INNs Equation (1) is given by

z〈ι〉i,0 = ϕ
〈ι〉
i,0 , ∆z〈ι〉i,0 = ϕ̃

〈ι〉
i,0 , ∀ι ∈ [0, `]Z, (3)

where ϕ
〈·〉
i,0 and ϕ̃

〈·〉
i,0 are ℱ0-adaptive and ℱ1-adaptive, respectively, i = 1, 2, . . . , N.

Let z[ι]i,k = zi(ιh̄, kh) for (ι, k) ∈ [0, `]Z × Z0. So discrete space and time INNs
Equation (1) provides a full discretization scheme for the following stochastic INNs with re-
action diffusions

∂2zi(x, t)
∂t2 = −D

∂zi(x, t)
∂t

+ M
∂2zi(x, t)

∂x2 − Czi(x, t) + A f (zi(x, t))

+α
N

∑
j=1

bijΓ
(

∂zj(x, t)
∂t

+ zj(x, t)
)
+ Ξg(zi(x, t))

dBi(t)
dt

+ Λγi(x, t) + J, (4)

where (x, t) ∈ (0, L)× [0,+∞) with L = `h̄, Bi is a one-dimensional Brownian motion on
some complete probability space, i = 1, 2, . . . , N.

Recently, continuous-time INNs Equation (4) with reaction diffusions has been studied
by a few authors (see refs. [21–24]) and the corresponding discrete networks have been
discussed in reports [27,29]. The different approach of INNs Equation (1) is similar to those
in refs. [27,29].
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Hereon, INNs Equation (1) can be regarded as slaver networks and the isolated node
w ∈ Rn satisfies the master networks below





∆2w[ι]
k+1 = (e−D◦h + e−Ih − 2I)∆w[ι]

k +
(I − e−D◦h)(I − e−Ih)

D◦

×
[

M∆2
h̄w[ι−1]

k − Cw[ι]
k + A f (w[ι]

k ) + Ξg(w[ι]
k )wi,k + J

]
,

∆h̄w[ι]
k

∣∣∣∣
ι=0

= ∆h̄w[ι]
k

∣∣∣∣
ι=`

= 0, ∀(ι, k) ∈ (0, `)Z × Z0.

(5)

The initial condition of INNs Equation (5) is described as

w〈ι〉0 = φ
〈ι〉
0 , ∆w〈ι〉0 = φ̃

〈ι〉
0 , ∀ι ∈ [0, `]Z, (6)

where φ
〈·〉
0 and φ̃

〈·〉
0 are ℱ0-adaptive and ℱ1-adaptive, respectively.

Let ui = zi−w, then the error networks of INNs Equations (1) and (5) are described by





∆2u[ι]
i,k+1 = (e−D◦h + e−Ih − 2I)∆u[ι]

i,k +
(I − e−D◦h)(I − e−Ih)

D◦

[
M∆2

h̄u[ι−1]
i,k − Cu[ι]

i,k

+A f̃ (u[ι]
i,k) + α

N

∑
j=1

bijΓ
(u[ι]

j,k+1 − e−Ihu[ι]
j,k

I − e−Ih

)
+ Ξg̃(u[ι]

i,k)wi,k + Λγ
[ι]
i,k

]
,

∆h̄u[ι]
i,k

∣∣∣
ι=0

= 0, ∆h̄u[ι]
i,k

∣∣∣
ι=`−1

= ρi,k, ∀(ι, k) ∈ (0, `)Z × Z0,

(7)

where f̃ (ui) := f (zi)− f (w) and g̃(ui) := g(zi)− g(w), i = 1, 2, . . . , N. With the help
of Equations (3) and (6), the initial condition for INNs in Equation (7) can be derived, as
depicted by

u〈ι〉i,0 = ϕ
〈ι〉
i,0 − φ

〈ι〉
0 , ∆u〈ι〉i,0 = ϕ̃

〈ι〉
i,0 − φ̃

〈ι〉
0 , ∀ι ∈ [0, `]Z, i = 1, 2, . . . , N. (8)

To study INNs Equation (1) effectively, let

u[ι]
i,k+1 = e−Ihu[ι]

i,k + ε(I − e−Ih)v[ι]
i,k, ∀(ι, k) ∈ (0, `)Z × Z, (9)

where ε > 0 is a controlling parameter, which can be adjusted freely, i = 1, 2, . . . , N. Then,
the first equation in INNs Equation (7) is changed into

v[ι]
i,k+1 = e−D◦hv[ι]

i,k +
I − e−D◦h

D◦

[
Mε∆2

h̄u[ι−1]
i,k + Cεu

[ι]
i,k

+Aε f̃ (u[ι]
i,k) + α

N

∑
j=1

bijΓv[ι]
j,k + Ξε g̃(u[ι]

i,k)wi,k + Λεγ
[ι]
i,k

]
, (10)

∀(ι, k) ∈ (0, `)Z×Z, Cε = ε−1(D−C− I), Mε = ε−1M, Aε = ε−1 A, Ξε = ε−1Ξ, Λε = ε−1Λ,
i = 1, 2, . . . , N.
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The vector forms of INNs Equations (9) and (10) are written as





e[ι]u,k+1 = (e−Ih)⊗e[ι]u,k + ε(I − e−Ih)⊗e[ι]v,k,

e[ι]v,k+1 = (e−D◦h)⊗e[ι]v,k +

[
(I − e−D◦h)Mε

D◦

]

⊗
∆2

h̄e[ι−1]
u,k

+

[
(I − e−D◦h)Cε

D◦

]

⊗
e[ι]u,k +

[
(I − e−D◦h)Aε

D◦

]

⊗
F(e[ι]u,k)

+α

[
(I − e−D◦h)Γ

D◦

]

⊗B
e[ι]v,k +

[
(I − e−D◦h)Λε

D◦

]

⊗
γ
[ι]
k

+

[
(I − e−D◦h)Ξε

D◦

]

⊗wk

G(e[ι]u,k),

∆h̄e[ι]u,k

∣∣∣
ι=0

= 0, ∆h̄e[ι]u,k

∣∣∣
ι=`−1

= ρk,

(11)

where
eu = (u1, . . . , uN)

T , ev = (v1, . . . , vN)
T ,

F(eu) := ( f̃ (u1), . . . , f̃ (uN))
T , G(eu) := (g̃(u1), . . . , g̃(uN))

T ,

w = diag(w1, . . . , wN)
T , γ = (γ1, . . . , γN)

T , ρ = (ρ1, . . . , ρN)
T ,

IN denotes the N-order identity matrix. Hereby, (A)⊗ := IN ⊗ A and (A)⊗B := B⊗ A.
In accordance with Equations (8) and (9), the initial condition of INNs Equation (11) is
expressed by

e〈ι〉u,0 = ψ
〈ι〉
0 , e〈ι〉v,0 = ε−1[(I − e−Ih)−1]

⊗ψ̃
〈ι〉
0 + ε−1 IN ⊗ ψ

〈ι〉
0 , (12)

where ι ∈ [0, `]Z, i = 1, 2, . . . , N, ψ
〈·〉
0 = (ϕ

〈·〉
1,0 − φ

〈·〉
0 , . . . , ϕ

〈·〉
N,0 − φ

〈·〉
0 )T and

ψ̃
〈·〉
0 = (ϕ̃

〈·〉
1,0 − φ̃

〈·〉
0 , . . . , ϕ̃

〈·〉
N,0 − φ̃

〈·〉
0 )T . Throughout this article, supposing that

`−1

∑
ι=1

E
∥∥∥ϕ
〈ι〉
i,0

∥∥∥
2
< ∞,

`−1

∑
ι=1

E
∥∥∥φ
〈ι〉
0

∥∥∥
2
< ∞,

`−1

∑
ι=1

E
∥∥∥ϕ̃
〈ι〉
i,0

∥∥∥
2
< ∞,

`−1

∑
ι=1

E
∥∥∥φ̃
〈ι〉
0

∥∥∥
2
< ∞

for i = 1, 2, . . . , N. Based on Equation (12), we have

`−1

∑
ι=1

E
∥∥∥e〈ι〉u,0

∥∥∥
2
< ∞,

`−1

∑
ι=1

E
∥∥∥e〈ι〉v,0

∥∥∥
2
< ∞. (13)

The current discussion will establish a boundary controller to synchronize and passivity-
based control the master INNs Equations (5) and slave INNs (1), which will be demon-
strated in Section 3.

Hereon, we need the following assumption for activation functions.

(F) L f and Lg are n-order matrices ensuring

[ f (x)− f (y)]T [ f (x)− f (y)] ≤ (x− y)T L f (x− y),

[g(x)− g(y)]T [g(x)− g(y)] ≤ (x− y)T Lg(x− y), ∀x, y ∈ Rn.

2.2. Some Important Inequalities

Lemma 1 ([39]). Let X, Y ∈ Rm. Then XTY + YTX ≤ αXTX + 1
α YTY for any α > 0.
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Lemma 2 ([40]). If X : [0, `]Z → Rm, P ∈ Rm×m, one has

`−1

∑
ι=1

XT
ι P∆2Xι−1 = XT

ι P∆Xι−1

∣∣∣∣
`

1
−

`−1

∑
ι=1

∆XT
ι P∆Xι.

Lemma 3 ([41,42]). If X : [0, `]Z → Rm, P ∈ Rm×m, P ≥ 0, and X0 = 0, one has

ν`

`

∑
ι=0

XT
ι PXι ≤

`−1

∑
ι=0

∆XT
ι P∆Xι ≤ µ`

`

∑
ι=0

XT
ι PXι,

where µ` = 4 cos2 π
2`+1 and ν` = 4 sin2 π

2(2`+1) .

Lemma 4 ([41,43]). If X : [1, `]Z → Rm, P ∈ Rm×m, P ≥ 0, one has

κ`

`

∑
ι=1

XT
ι PXι ≤

`−1

∑
ι=1

∆XT
ι P∆Xι + (X1 + X`)

T P(X1 + X`),

`−1

∑
ι=1

∆XT
ι P∆Xι +

[
X1 + (−1)`X`

]T P
[
X1 + (−1)`X`

]
≤ (4− κ`)

`

∑
ι=1

XT
ι PXι.

Using Lemma 3, we get

`−2

∑
ι=0

∆2
h̄e[ι]Tu,k P∆2

h̄e[ι]u,k ≤
µ`−1

h̄2

`−1

∑
ι=0

∆h̄e[ι]Tu,k P∆h̄e[ι]u,k, ∀k ∈ Z0, (14)

where P is defined as in Lemma 3.

3. Stochastic Synchronization and Passivity-Based Control

The slave INNs Equation (1) is said to be stochastically synchronized with the master
INNs Equation (5) if the error vector networks Equation (11) achieves globally asymptoti-
cally stability in mean square, i.e.,

lim
k→∞

`−1

∑
ι=1

E
∥∥∥e[ι]u,k

∥∥∥
2
= 0 = lim

k→∞

`−1

∑
ι=1

E
∥∥∥e[ι]v,k

∥∥∥
2
.

3.1. Stochastic Synchronization

Define

ρk = −
`−1

∑
ι=1

Θ⊗e[ι]u,k, ∀k ∈ Z0, (15)

where Θ ∈ Rn×n. Set D := I−e−D◦h

D◦ .

Theorem 1. Assuming that (F) is valid, and ε > 0 is given in advance, D and Mε are nonsingular.
The slaver INNs Equation (1) stochastically synchronizes with the master INNs Equation (5); in
other words, model Equation (11) is globally mean-squared asymptotically stable if it has positive
constants λ f , λg and n-order matrices P > 0, Q > 0, H > 0, K > 0 such that

24
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O :=




O11 O12 O13 O14 O15 O16

∗ O22 O23 O24 O25 O26

∗ ∗ O33 O34 O35 O36

∗ ∗ ∗ O44 O45 O46

∗ ∗ ∗ ∗ O55 O56

∗ ∗ ∗ ∗ ∗ O66




< 0,

where

O11 = −1
h̄

sym(CεK)⊗ +
[
e−IhPe−Ih − P

]
⊗
+
[
CεDQDCε

]
⊗
+ λ f (L f )⊗ + λg(Lg)⊗,

O12 = ε
[
e−IhP(I − e−Ih)

]
⊗
+
[
e−D◦hQDCε

]T

⊗
+ α
[
CεDQDΓ

]
⊗B

, O13 = −1
h̄
(CεK)⊗,

O15 =
[
CεDQDAε

]
⊗

, O25 =
[
e−D◦hQDAε

]
⊗
+ α
[

AT
ε DQDΓ

]T

⊗B
,

O22 = −Q⊗ + ε2
[
(I − e−Ih)P(I − e−Ih)

]
⊗
+ αsym

[
e−D◦hQDΓ

]
⊗B

+2
[
e−D◦hQe−D◦h

]
⊗
+ 2α2

[
ΓTDQDΓ

]
⊗BT B

,

O33 = −H⊗, O44 = −sym
[
CεDQDMε

]
⊗
+

4µ`−1

h̄2

[
MT

ε DQDMε

]
⊗
+

h̄2`

κ`
H⊗,

O55 = −λ f I⊗ + 2
[

AT
ε DQDAε

]
⊗

, O66 = −λg I⊗ +
[
ΞT

ε DQDΞε

]
⊗

,

O14 = O16 = O23 = O24 = O26 = O34 = O35 = O36 = O45 = O46 = O56 = 0. Here
sym(A) = A + AT . The controller gain

Θ =

[
DQDMε

]−1

K.

Proof. Let us define a Lyapunov-Krasovskii function, which is described by

Vk = V1,k + V2,k,

where

V1,k =
`−1

∑
ι=1

e[ι]Tu,k (IN ⊗ P)e[ι]u,k, V2,k =
`−1

∑
ι=1

e[ι]Tv,k (IN ⊗Q)e[ι]v,k, ∀k ∈ Z0.

In the line with the first segment of the error networks Equation (11), we can derive

E[∆V1,k] = E
`−1

∑
ι=1

e[ι]Tu,k+1(IN ⊗ P)e[ι]u,k+1 −V1,k

= E
`−1

∑
ι=1

e[ι]Tu,k

[
e−IhPe−Ih − P

]
⊗

e[ι]u,k + εE
`−1

∑
ι=1

sym
{

e[ι]Tu,k

[
e−IhP(I − e−Ih)

]
⊗

e[ι]v,k

}

+ε2E
`−1

∑
ι=1

e[ι]Tv,k

[
(I − e−Ih)P(I − e−Ih)

]
⊗

e[ι]v,k, ∀k ∈ Z0. (16)

25
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According to the second equation of networks Equation (11), we get

E[V2,k+1] = E
`−1

∑
ι=1

e[ι]Tv,k+1(IN ⊗Q)e[ι]v,k+1

= E
`−1

∑
ι=1

e[ι]Tv,k

[
e−D◦hQe−D◦h

]
⊗

e[ι]v,k

︸ ︷︷ ︸
U1,k

+E
`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
e−D◦hQDMε

]
⊗

∆2
h̄e[ι−1]

u,k

}

︸ ︷︷ ︸
U2,k

+E
`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
e−D◦hQDCε

]
⊗

e[ι]u,k

}

︸ ︷︷ ︸
U3,k

+E
`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
e−D◦hQDAε

]
⊗

F(e[ι]u,k)

}

︸ ︷︷ ︸
U4,k

+ αE
`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
e−D◦hQDΓ

]
⊗B

e[ι]v,k

}

︸ ︷︷ ︸
U5,k

+E
`−1

∑
ι=1

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDMε

]
⊗

∆2
h̄e[ι−1]

u,k

︸ ︷︷ ︸
U6,k

+E
`−1

∑
ι=1

sym
{

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDCε

]
⊗

e[ι]u,k

}

︸ ︷︷ ︸
U7,k

+E
`−1

∑
ι=1

sym
{

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDAε

]
⊗

F(e[ι]u,k)

}

︸ ︷︷ ︸
U8,k

+ αE
`−1

∑
ι=1

sym
{

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDΓ
]
⊗B

e[ι]v,k

}

︸ ︷︷ ︸
U9,k

+E
`−1

∑
ι=1

e[ι]Tu,k

[
CεDQDCε

]
⊗

e[ι]u,k

︸ ︷︷ ︸
U10,k

+E
`−1

∑
ι=1

sym
{

e[ι]Tu,k

[
CεDQDAε

]
⊗

F(e[ι]u,k)

}

︸ ︷︷ ︸
U11,k

+ αE
`−1

∑
ι=1

sym
{

e[ι]Tu,k

[
CεDQDΓ

]
⊗B

e[ι]v,k

}

︸ ︷︷ ︸
U12,k

+E
`−1

∑
ι=1

FT(e[ι]u,k)
[

AT
ε DQDAε

]
⊗

F(e[ι]u,k)

︸ ︷︷ ︸
U13,k
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+ αE
`−1

∑
ι=1

sym
{

FT(e[ι]u,k)
[

AT
ε DQDΓ

]
⊗B

e[ι]v,k

}

︸ ︷︷ ︸
U14,k

+ α2E
`−1

∑
ι=1

e[ι]Tv,k

[
ΓTDQDΓ

]
⊗BT B

e[ι]v,k

︸ ︷︷ ︸
U15,k

+E
`−1

∑
ι=1

GT(e[ι]u,k)
[
ΞT

ε DQDΞε

]
⊗w2

k

G(e[ι]u,k)

︸ ︷︷ ︸
U16,k

, (17)

where k ∈ Z0.
According to Lemmas 1–3 and boundary conditions in Equation (11), we calculate

U2,k ≤ E
`−1

∑
ι=1

e[ι]Tv,k

[
e−D◦hQe−D◦h

]
⊗

e[ι]v,k +E
`−1

∑
ι=1

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDMε

]
⊗

∆2
h̄e[ι−1]

u,k

≤ E
`−1

∑
ι=1

e[ι]Tv,k

[
e−D◦hQe−D◦h

]
⊗

e[ι]v,k +
µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k, (18)

U6,k = E
`−2

∑
ι=0

∆2
h̄eT

z (xl , tk)
[

MT
ε DQDMε

]
⊗

∆2
h̄e[ι]u,k

≤ µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k, (19)

U7,k =
1
h̄
Esym

{
e[ι]Tu,k

[
CεDQDMε

]
⊗

∆h̄e[ι−1]
u,k

}∣∣∣∣
`

1
−E

`−1

∑
ι=1

sym
{

∆h̄e[ι]Tu,k

[
CεDQDMε

]
⊗

∆h̄e[ι]u,k

}

=
1
h̄
Esym

{
e[`]Tu,k

[
CεDQDMε

]
⊗

ρk

}
−E

`−1

∑
ι=1

∆h̄e[ι]Tu,k sym
[
CεDQDMε

]
⊗

∆h̄e[ι]u,k, (20)

U8,k ≤ E
`−1

∑
ι=1

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDMε

]
⊗

∆2
h̄e[ι−1]

u,k +E
`−1

∑
ι=1

FT(e[ι]u,k)
[

AT
ε DQDAε

]
⊗

F(e[ι]u,k)

≤ µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k +E
`−1

∑
ι=1

FT(e[ι]u,k)
[

AT
ε DQDAε

]
⊗

F(e[ι]u,k), (21)

U9,k ≤ α2E
`−1

∑
ι=1

e[ι]Tv,k

[
ΓTDQDΓ

]
⊗BT B

e[ι]v,k +E
`−1

∑
ι=1

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDMε

]
⊗

∆2
h̄e[ι−1]

u,k

≤ α2E
`−1

∑
ι=1

e[ι]Tv,k

[
ΓTDQDΓ

]
⊗BT B

e[ι]v,k +
µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k, (22)

U16,k = E
`−1

∑
ι=1

GT(e[ι]u,k)
[
ΞT

ε DQDΞε

]
⊗

G(e[ι]u,k), ∀k ∈ Z0. (23)
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With the help of (F), we have

`−1

∑
ι=1

FT(e[ι]u,k)F(e
[ι]
u,k) ≤

`−1

∑
ι=1

e[ι]Tu,k (L f )⊗e[ι]u,k,
`−1

∑
ι=1

GT(e[ι]u,k)G(e[ι]u,k) ≤
`−1

∑
ι=1

e[ι]Tu,k (Lg)⊗e[ι]u,k, (24)

and by using ê[·]u,· := e[`]u,· − e[·]u,· and Lemma 4, it gets

`

∑
ι=1

ê[ι]Tu,k H⊗ê[ι]u,k ≤
h̄2

κ`

`−1

∑
ι=1

∆h̄ê[ι]Tu,k H⊗∆h̄ê[ι]u,k +
1
κ`

[
e[`]u,k − e[1]u,k

]T
H⊗
[
e[`]u,k − e[1]u,k

]

=
h̄2

κ`

`−1

∑
ι=1

∆h̄ê[ι]Tu,k H⊗∆h̄ê[ι]u,k +
h̄2

κ`

[ `−1

∑
ι=1

∆h̄ê[ι]u,k

]T

H⊗

[ `−1

∑
ι=1

∆h̄ê[ι]u,k

]

≤ h̄2`

κ`

`−1

∑
ι=1

∆h̄ê[ι]Tu,k H⊗∆h̄ê[ι]u,k, ∀k ∈ Z0. (25)

Considering Equation (20), we have

$k :=
1
h̄

sym
{

e[`]Tu,k

[
CεDQDMε

]
⊗

ρk

}

≤ −1
h̄

`−1

∑
ι=1

sym
{

e[`]Tu,k

[
CεDQDMεΘ

]
⊗

e[ι]u,k

}

= −1
h̄

`−1

∑
ι=1

sym
{

ê[ι]Tu,k

[
CεDQDMεΘ

]
⊗

e[ι]u,k

}

−1
h̄

`−1

∑
ι=1

sym
{

e[ι]Tu,k

[
CεDQDMεΘ

]
⊗

e[ι]u,k

}
, (26)

for all k ∈ Z0.
Taking into account Equations (16)–(26), we obtain

E[∆Vk] = E[∆V1,k] +E[∆V2,k] ≤ E
`−1

∑
ι=1

ξ
[ι]T
k Oξ

[ι]
k , ∀k ∈ Z0, (27)

where ξ
[ι]
k :=

(
e[ι]u,k, e[ι]v,k, ê[ι]u,k, ∆h̄e[ι]u,k, F(e[ι]u,k), G(e[ι]u,k)

)T
for k ∈ Z0, ι = 1, 2, . . . , `.

Based on Equation (27), we get

E[∆Vk] ≤ λmax(O)
`−1

∑
ι=1

[
E
∥∥∥e[ι]u,k

∥∥∥
2
+E

∥∥∥e[ι]v,k

∥∥∥
2
]

, ∀k ∈ Z0. (28)

With the help of Equation (13), we get

EV0 ≤ max
{

λmax(P⊗), λmax(Q⊗)
}
E

`−1

∑
ι=1

[∥∥∥e〈ι〉u,0

∥∥∥
2
+
∥∥∥e〈ι〉v,0

∥∥∥
2]

< ∞. (29)

Noting that λmax(O) < 0 owing to the assumption O < 0 in Theorem 1, we can use
Equations (28) and (29) to arrive at

λmax(O)
k′−1

∑
k=1

`−1

∑
ι=1

[
E
∥∥∥e[ι]u,k

∥∥∥
2
+E

∥∥∥e[ι]v,k

∥∥∥
2
]
≥ EVk′ −EV0 ≥ −EV0,

28
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which is equal to

k′−1

∑
k=1

`−1

∑
ι=1

[
E
∥∥∥e[ι]u,k

∥∥∥
2
+E

∥∥∥e[ι]v,k

∥∥∥
2
]
≤ − EV0

λmax(O)
< ∞

k′→∞
===⇒

∞

∑
k=1

`−1

∑
ι=1

[
E
∥∥∥e[ι]u,k

∥∥∥
2
+E

∥∥∥e[ι]v,k

∥∥∥
2
]
< ∞. (30)

Then,

lim
k→∞

`−1

∑
ι=1

E
∥∥∥e[ι]u,k

∥∥∥
2
= 0 = lim

k→∞

`−1

∑
ι=1

E
∥∥∥e[ι]v,k

∥∥∥
2
,

which implies that model Equation (11) achieves global mean-squared asymptotic stability.
This completes the proof.

From Lemma 4, the following inequality is valid:

µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k ≤
4− κ`

h̄2
µ`−1

h̄2 E
`−1

∑
ι=1

ê[ι]Tu,k

[
MT

ε DQDMε

]
⊗

ê[ι]u,k,

where k ∈ Z0. Further,

E[∆Vk] ≤ E
`−1

∑
ι=1

ξ
[ι]T
k Õξ

[ι]
k , ∀k ∈ Z0, (31)

here Õ = (Õij)1≤i,j≤6 is defined as O defined in Theorem 1, except that

Õ33 = −H⊗ +
4(1− β)(4− κ`)µ`−1

h̄4

[
MT

ε DQDMε

]
⊗

,

Õ44 = −sym
[
CεDQDMε

]
⊗
+

4µ`−1β

h̄2

[
MT

ε DQDMε

]
⊗
+

h̄2`

κ`
H⊗.

So, we have the following:

Corollary 1. Assuming that (F) is valid, we pre-give values of ε > 0 and β ∈ [0, 1]. Additionally,
we assume that D and Mε are nonsingular, and we define Θ as indicated in Theorem 1. Under
these conditions, the slave INNs Equation (1) stochastically synchronize with the master INNs
Equation (5), meaning that the model Equation (11) achieves global mean-squared asymptotic
stability. This holds true if the model has positive constants λ f , λg, and positive definite n-order
matrices P, Q, H, and K such that the Õ matrix defined in Equation (31) is negative definite.

Remark 1. Reports [22,24] addressed the issues of synchronization for inertial neural networks
with reaction-diffusion terms. However, the networks in reports [22,24] were involved in the
Dirichlet boundary condition and the controller is embedded in the model of the networks. In this
article, the controller does not exist in the model of the networks, but it is designed in the boundary.

3.2. Passivity-Based Control

The error vector networks described by Equation (11) with respect to a supply rate
can be represented as

v(Y , γ) :=
`−1

∑
ι=1
Y [ι]T
· γ

[ι]
· for some Y ∈ RNn. (32)
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This system is stochastically passive if there exists a nonnegative mapping θ that satisfies

E
s2−1

∑
k=s1

`−1

∑
ι=1
Y [ι]T

k γ
[ι]
k ≥ θ(s2)− θ(s1), ∀s1 < s2, s1, s2 ∈ Z0.

Theorem 2. Let Hypothesis (F) be satisfied, ε > 0 be given, and D, Mε be nonsingular. Addition-
ally, let the controller gain Θ be as provided in Theorem 1. The error networks Equation (11) are
stochastically passive if there exist positive constants λ f , λg and n-order positive definite matrices
P, Q, H, K, <1, <2, <3 such that

O :=




O11 O12 O13 O14 O15 O16 O17

∗ O22 O23 O24 O25 O26 O27

∗ ∗ O33 O34 O35 O36 O37

∗ ∗ ∗ O44 O45 O46 O47

∗ ∗ ∗ ∗ O55 O56 O57

∗ ∗ ∗ ∗ ∗ O66 O67

∗ ∗ ∗ ∗ ∗ ∗ O77




< 0,

where

O44 = O44 +
µ`−1

h̄2

[
MT

ε DQDMε

]
⊗

, O17 = −(<1)⊗ +
[
CεDQDΛε

]
⊗

,

O27 = −(<2)⊗ +
[
e−D◦hQDΛε

]
⊗
+ α
[
ΓTDQDΛε

]
⊗BT

, O57 =
[

AT
ε DQDΛε

]
⊗

,

O77 = −2(<3)⊗ + 2
[
ΛT

ε DQDΛε

]
⊗

, O37 = O47 = O67 = 0,

and the other unmentioned block matrices Oij in O are equal to Oij in O for i, j = 1, 2, . . . , 6.

Proof. Define the Lyapunov-Krasovskii function V for the error vector networks Equa-
tion (11), following the approach described in Section 3.1. Additionally, introduce an output
vector Y ∈ RNn to the error vector networks Equation (11) using the expression

Y = (IN ⊗<1)eu + (IN ⊗<2)ev + (IN ⊗<3)γ.

Similar to the argument in Equation (17), we get

E[V2,k+1] =
16

∑
i=1
Ui,k +E

`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
e−D◦hQDΛε

]
⊗

γ
[ι]
k

}

︸ ︷︷ ︸
U17,k

+E
`−1

∑
ι=1

sym
{

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDΛε

]
⊗

γ
[ι]
k

}

︸ ︷︷ ︸
U18,k

+E
`−1

∑
ι=1

sym
{

e[ι]Tu,k

[
CεDQDΛε

]
⊗

γ
[ι]
k

}

︸ ︷︷ ︸
U19,k
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+E
`−1

∑
ι=1

sym
{

FT(e[ι]u,k)
[

AT
ε DQDΛε

]
⊗

γ
[ι]
k

}

︸ ︷︷ ︸
U20,k

+ αE
`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
ΓTDQDΛε

]
⊗BT

γ
[ι]
k

}

︸ ︷︷ ︸
U21,k

+E
`−1

∑
ι=1

γ
[ι]T
k

[
ΛT

ε DQDΛε

]
⊗

γ
[ι]
k

︸ ︷︷ ︸
U22,k

, ∀k ∈ Z0. (33)

Meanwhile, similar to the estimates in inequalities Equations (18)–(23), we obtain from
Equation (33) the following:

U18,k ≤ E
`−1

∑
ι=1

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDMε

]
⊗

∆2
h̄e[ι−1]

u,k +E
`−1

∑
ι=1

γ
[ι]T
k

[
ΛT

ε DQDΛε

]
⊗

γ
[ι]
k

≤ µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k +E
`−1

∑
ι=1

γ
[ι]T
k

[
ΛT

ε DQDΛε

]
⊗

γ
[ι]
k , (34)

∀k ∈ Z0.
By employing Equations (16)–(26) and (33) and (34), we can compute

E[∆Vk]− 2E
`−1

∑
ι=1
Y [ι]T

k γ
[ι]
k ≤ E

`−1

∑
ι=1

η
[ι]T
k Oη

[ι]
k , ∀k ∈ Z0, (35)

where η
[ι]
k :=

[
e[ι]u,k, e[ι]v,k, ê[ι]u,k, ∆h̄e[ι]u,k, F(e[ι]u,k), G(e[ι]u,k), γ

[ι]
k

]T
for k ∈ Z0, ι = 1, 2, . . . , `.

In accordance with Equation (35), we get

2E
`−1

∑
ι=1
Y [ι]T

k γ
[ι]
k ≥ E[∆Vk],

which is equal to

2E
s2−1

∑
k=s1

`−1

∑
ι=1
Y [ι]T

k γ
[ι]
k ≥ EVs2 −EVs1 , ∀s1 < s2, s1, s2 ∈ Z0.

Accordingly, INNs Equation (11) is stochastic passive. This completes the proof.

So, we have the following:

Corollary 2. Assuming that (F) is satisfied, ε > 0 and β ∈ [0, 1] are pre-given, D and Mε are
nonsingular, and the controller gain Θ is provided in Theorem 1, the error network Equation (11) is
stochastically passive if there exist positive constants λ f , λg, and n-order positive definite matrices
P, Q, H, K, <1, <2, and <3 such that Õ < 0. Here, Õ = (Õij)1 ≤ i, j ≤ 7 is defined as O in
Theorem 2 except for the following modifications:

Õ33 = −H⊗ +
5(1− β)(4− κ`)µ`−1

h̄4

[
MT

ε DQDMε

]
⊗

,

Õ44 = −sym
[
CεDQDMε

]
⊗
+

5µ`−1β

h̄2

[
MT

ε DQDMε

]
⊗
+

h̄2`

κ`
H⊗.
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According to Theorems 1 and 2, a realizable algorithm for stochastic synchronization
or passivity of INNs Equations (1) and (5) is designed as Algorithm 1, and its O-chart is
described in Figure 1.

Algorithm 1 Stochastic synchronization or passivity of INNs Equations (1) and (5)

(1) Initialize the values of the coefficient matrices in INNs Equations (1) and (5)
(2) Compute LMIs in Theorems 1 or 2. When they are unviable, modify the values of

coefficient matrices in INNs Equation (1); otherwise, switch to next step.
(3) Receive the values of matrices P, Q, K, etc. Calculate the controller gain

Θ =

[
DQDMε

]−1

K.

(4) Write iterative program based on INNs Equations (1) and (5) and plot the response
trajectories.

Initialize the values of 
the coefficient 

matrices in INNs (1)

Compute LMIs in 
Theorem 1 or 2

unviable

viable

Calculate the 
controller gain Θ

Write iterative 
program based on 

INNs (1) and (5)

Figure 1. O-chart of Algorithm 1.

Remark 2. Papers [44,45] investigated the passivity of inertial neural networks without reaction-
diffusion terms. This paper considers the effects of the reaction diffusions, which complements the
works in the literature [44,45].

4. Numerical Example

In view of INNs Equation (1), we take α = 0.1, J = (10, 12)T ,

D = 50
[

2 0
0 1

]
, C = 45

[
2 0
0 1

]
, M = 0.1

[
1 1
0 2

]
, A = 0.1

[
2 −1
0 2

]
,

B = 0.1
[ −2 2

1 −1

]
, Γ = 0.01

[
2 0
0 3

]
, Ξ = 0.01

[
2 0
0 1

]
.
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Taking ε = 0.1, h = 0.01, h̄ = 0.2, ` = 25, f (x) = ( f1(x), f2(x))T = 0.1(sin x1, |x2|)T =

(g1(x), g2(x))T = g(x) for any x = (x1, x2)
T ∈ R2. From Theorem 1, we can determine that

λ f = 32693, λg = 32686,

P =

[
1.2059 −0.0142
−0.0142 1.6238

]
× 105, Q =

[
2.5836 −0.0082
−0.0082 1.5422

]
× 104,

H =

[
6.9393 3.4242
3.4242 5.5926

]
, K =

[
0.0197 0.0049
0.0049 0.0042

]
.

In addition,

Θ =

[
0.0164 0.0026
0.0026 0.0022

]
.

By Theorem 1, INNs Equations (1) and (5) realize stochastic synchronization, see Figures 2–5.

Figure 2. Stochastic synchronization to INNs Equations (1) and (5).

Figure 3. Stochastic synchronization to INNs Equations (1) and (5).
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Figure 4. Stochastic synchronization to INNs Equations (1) and (5).

Figure 5. Stochastic synchronization to INNs Equations (1) and (5).

Furthermore, taking Λ = 0.1
[

1 0
0 3

]
, γ

[ι]
1,k = (10 + sin(ι + k), 8 + cos(ι + k))T ,

γ
[ι]
2,k = (10 + sin(2ι + k), 8 + cos(2ι + k))T , ∀k ∈ Z0, ι = 1, 2, . . . , `. The output vector
Y ∈ R4 for the network is defined as in Equation (32) with the following matrices:

<1 =

[
183.9618 −0.2256
−0.2256 173.1908

]
, <2 =

[
376.9862 0.1127

0.1127 167.3857

]
, <3 =

[
1617.7 −0.1
−0.1 1721

]
.

By Theorem 2, we have λ f = 1825.8, λg = 1825.7,

P =

[
8041.2 71.1

71.1 8871.3

]
, Q =

[
1374.2 8.6

8.6 635.3

]
,

H =

[
0.4183 0.1974
0.1974 0.2709

]
, K =

[
0.0011 0.0005
0.0005 0.0011

]
.

Now, the controller gain of the boundary controller is given by

Θ =

[
0.0147 −0.0058
0.0059 0.0142

]
.
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According to Theorem 2, INNs Equations (1) and (5) achieve stochastic passivity, as in
Figures 6–11.

Figure 6. Trajectory of state variable w1 to INNs Equation (5).

Figure 7. Trajectory of state variable w2 to INNs Equation (5).

Figure 8. Trajectory of state variable z11 to INNs Equation (1).

35



Axioms 2023, 12, 820

Figure 9. Trajectory of state variable z12 to INNs Equation (1).

Figure 10. Trajectory of state variable z21 to INNs Equation (1).

Figure 11. Trajectory of state variable z22 to INNs Equation (1).
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Remark 3. In the previous work in article [38], the authors discussed passivity of non-autonomous
discrete-time inertial neural networks, overlooking discrete spatial diffusions. By contrast, the
present literature addresses it, as can be seen in Figures 6–11.

5. Conclusions and Future Works

For the first time, this discussion focuses on investigating discrete SINNs with the
influence of spatial diffusions.

Firstly, we present the time and space difference model of SINNs with reaction diffu-
sions using the time and space difference approaches, respectively.

Secondly, with the aid of a controller designed at the boundary, we address the issues
of both stochastic synchronization and passivity-based control, employing the Lyapunov-
Krasovskii function method.

As anticipated, we provide decision theorems for the aforementioned research topics
concerning discrete SINNs. It is important to note that the method employed in this article
predominantly considers homogeneous networks described by INNs Equations (1) and (5),
making the study of heterogeneous networks challenging (see ref. [46]).

Moving forward, several aspects merit consideration in future work:

• Fractional dynamics has become a research hotspot in recent years, which could be
discussed in the SINNs of this article.

• This paper only considers 1-dimensional space variables, which could be extended to
higher dimensions.

• Exploration of alternative control techniques, such as impulsive controls and adaptive
controls, holds promise for further investigation.
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Abstract: China bears a heavy burden due to tuberculosis (TB) with hundreds of thousands of people
falling ill with the disease every year. Therefore, it is necessary to understand the effectiveness of
current control measures in China. In this paper, we first present a TB model that incorporates both
vaccination and treatment. Additionally, the model considers TB transmission characteristics such
as relapse and variable latency. We then define the basic reproduction numberR0 of the proposed
model and indicate that the disease-free equilibrium state is globally asymptotically stable ifR0 < 1,
and the endemic equilibrium state is globally asymptotically stable ifR0 > 1. We then apply the Grey
Wolf Optimizer algorithm to obtain the parameters and initial values of the model by combining TB
data collected in China from 2007 to 2020. Through the partial rank correlation coefficient method,
we identify the parameters that are most sensitive toR0. Based on the analysis results of the model,
we propose some suggestions for TB control measures in the conclusion section.

Keywords: tuberculosis; age structure; global stability; sensitivity analysis

MSC: 35B35; 35B40

1. Introduction

Tuberculosis (TB) is a formidable infectious disease that kills millions of people every
year. China has the third-highest TB burden worldwide, and in 2021, there were an esti-
mated 780,000 new TB cases and 32,000 TB-related deaths. In 2014 and 2015, all member
states of the World Health Organization (WHO) committed to ending the TB epidemic and
adopted the WHO End TB Strategy. However, the reduction in the TB incidence rate (new
cases per 100,000 population per year) from 2015 to 2021 only reached halfway towards the
first milestone of the End TB Strategy, with a decrease of only 10%. The WHO believes that
the main reason for this was the COVID-19 pandemic. The WHO’s report on TB in 2022
pointed out that the COVID-19 pandemic has had a damaging impact on the prevention
and control of TB. The WHO estimates that approximately 10.6 million people worldwide
fell ill with TB in 2021, representing an increase of 4.5% from 10.1 million in 2020. Therefore,
gaining a more comprehensive understanding of effective ways to control the TB epidemic
is crucial for achieving the End TB Strategy [1].

The theoretical analysis and simulation of TB models that are in accordance with the
transmission mechanism of TB provide a means to identify how to control the TB epidemic
[2–9]. Therefore, we need to understand the transmission mechanism of TB and the main
control measures that are currently in place. TB is caused by a bacillus called Mycobacterium
tuberculosis (MTB). People can transmit the bacillus through the air. It is estimated that
approximately one-fourth of the global population is infected with MTB, but only 5–10% of
them will develop TB disease and potentially spread MTB to others. As a result, individuals
infected with MTB can be categorized into two groups: those with a latent TB infection
(who cannot spread MTB to others) and those with TB disease [10]. Some people who
have a latent TB infection will clear the infection and recover. Recovered patients may
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develop TB disease due to endogenous reactivation (or relapse) [11]. Currently, the main
ways to reduce the global burden of TB are vaccination against TB and treatment for TB
disease [12–14]. The Bacille Calmette–Guérin (BCG) vaccine is the only licensed vaccine
for preventing TB disease, and more than 100 million newborn babies receive it annually.
Martinez et al. [13] found that BCG vaccination at birth is effective for preventing TB
in young children but is ineffective in adolescents and adults, and the effectiveness of
BCG vaccination against TB was shown to be 59% among tuberculin-skin-test-negative
infants vaccinated at birth. Setiabudiawan et al. [14] suggested that the efficacy of BCG in
preventing TB disease decreases over time. These findings suggest that the vaccine is not
always effective against TB. Both latent TB infection and TB disease are treatable [15,16].
Kerantzas et al. [15] pointed out that “directly observed treatment, short-course”, or DOTS,
has been shown in some regions to be able to cure as many as 98% of drug-susceptible
cases. Preventive treatment for TB can reduce the risk of latent TB infection progressing to
TB disease. The WHO recommends TB preventive treatment for people infected with MTB
who have a weak immune system. Without treatment, the death rate from TB disease is
about 50%, but with currently recommended treatments, the success rate is at least 85%.
Isoniazid and rifampicin are the two most effective first-line drugs. Resistance to both drugs
is defined as multidrug-resistant TB (MDR-TB). Both MDR-TB and rifampicin-resistant TB
(RR-TB) require treatment with second-line drugs. Treatment success rates for MDR/RR-TB
are typically in the range of 50–75% [1]. The reasons why MDR/RR-TB continues to emerge
and spread are the mismanagement of TB treatment and person-to-person transmission. It
is necessary to test for drug resistance to ensure that the most effective treatment regimen
can be selected as early as possible [17]. The factors mentioned above that impact the
spread of TB will form the basis of our modeling.

Many TB models have been developed to better understand the control and trans-
mission of TB. Li et al. [18] proposed a TB model that considers vaccination, treatment,
relapse, and the variable latent period. Through a theoretical analysis and computer simu-
lations, they suggested that education, treatment, and enhanced efficacy could reduce the
TB incidence rate in the United States. Since the latent period of TB ranges from weeks to
several years, many authors [19–21] have suggested the use of an age-structured equation
to characterize the latent compartment in TB models. This approach can effectively capture
the heterogeneity of the latent period. The incidence rate is a crucial indicator of the speed
at which an infectious disease spreads. Mathematically, the commonly used incidence rates
are bilinear and standard [22–24], but other nonlinear incidence rates have been proposed
to describe the transmission of infectious diseases [25–28]. Sigdel et al. [26] proposed the
nonlinear incidence rate f (I)S, where f (I) represents the positive, increasing, and concave
down nonlinear forces of infection. Many studies have demonstrated that models with
a nonlinear force of infection exhibit complicated dynamics [25–28].

Through an analysis of the above two paragraphs, in this paper, we investigate the
impacts of vaccine failure and treatment on the dynamics of a TB model that includes an
age-structured latent period, endogenous relapse, and a nonlinear force of infection. The
vaccine failure here includes the fact that it may not provide protection after vaccination,
and even if protection is provided, it may not be long-lasting. The treatment here includes
TB preventive treatment and TB disease treatment. Our goal is to use a theoretical analysis
and numerical simulation to identify measures for controlling the spread of TB and to
provide guidance to public health authorities on how to effectively allocate limited resources
to mitigate the spread of TB. The rest of the paper is organized in the following manner:
In the next section, we propose a TB model and discuss the fundamental properties of its
solution. In Sections 3 and 4, we study, respectively, the existence and global stability of
steady states. In Section 5, we present numerical simulations and a sensitivity analysis
to identify the significant parameters related to the basic reproductive number. A brief
conclusion is provided in the last section.

41



Axioms 2023, 12, 805

2. The TB Model and Its Fundamental Properties
2.1. The TB Model

At time t, the population is divided into five distinct subclasses: the susceptible
subclass (S(t)), the vaccinated subclass (V(t)), the latent subclass (e(t, a)), the infectious
subclass (I(t)), and the recovered subclass (R(t)). In e(t, a), a represents the latent age of
the exposed individuals. e(t, a) represents the density of the latent class at time t with latent
age a. Then, the total number of latent individuals at time t is

∫ +∞
0 e(t, a)da. Figure 1 below

illustrates the inter-relationships among these subclasses.

Figure 1. Flowchart of the transmission of TB.

Based on the flowchart shown in Figure 1, we construct the following model for TB
transmission:





dS(t)
dt

= p1Λ− f (I)S− µS + ωV,

dV(t)
dt

= (1− p1)Λ− ρ f (I)V − (µ + ω)V,

∂e(t, a)
∂t

+
∂e(t, a)

∂a
= −(µ + δ(a) + σ(a))e(t, a),

dI(t)
dt

=
∫ +∞

0
δ(a)e(t, a)da + αR− (µI + γ)I,

dR(t)
dt

= γη I +
∫ +∞

0
σ(a)e(t, a)da− (µ + α)R,

e(t, 0) = f (I)(S + ρV),

e(0, a) = e0(a), S(0) = s0, V(0) = v0, I(0) = i0, R(0) = r0,

(1)

where e0(a) ∈ L1
+(0,+∞) and s0, v0, i0, r0 ∈ R+. We list the parameters used in model (1)

in Table 1.
In order to facilitate the theoretical analysis of the model, certain assumptions and

notations are presented:
(1) µ, α, η, γ, ρ, µI , ω, Λ > 0;
(2) δ(a), σ(a) ∈ L∞

+(0,+∞). Their essential upper bounds are δ̄ > 0 and σ̄ > 0,
respectively;

(3) f (I) is a twice differentiable function that satisfies (i) f (0) = 0, f (I) > 0 for I > 0;
(ii) f ′(I) > 0, f ′′(I) ≤ 0 for I ≥ 0.
For a ≥ 0, we let

k(a) = e−
∫ a

0 (µ+δ(s)+σ(s))ds, K1 =
∫ +∞

0
δ(a)k(a)da, K2 =

∫ +∞

0
σ(a)k(a)da,
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X = R2
+ × L1

+(0,+∞)×R2
+, and its norm is

‖ (x1, x2, x3, x4, x5) ‖X = ∑
i=1,2,4,5

| xi | +
∫ +∞

0
| x3(s) | ds.

Table 1. The parameters’ meanings in the model (1).

Notations Definitions

Λ the rate of recruitment of susceptible individuals
µ the constant natural death rate of individuals in every compartment

1− p1 the coverage rate of the BCG vaccine
ω the rate of vaccine-induced protection wanes
ρ the reduction coefficient of the contagion rate

δ(a) the rate distribution of latent individuals entering the infectious subclass
σ(a) the rate distribution of latent individuals entering the recovered subclass

γ the rate of treatment
µI the death rate of the infectious individuals
η the proportion of effective treatment
α the relapse rate

2.2. Well-Posedness

By applying a similar analysis to that presented in Section 2.2 of [2], we can show that
the system (1) has a unique non-negative solution, which leads to the proposition below.

Proposition 1. For x0 ∈ X , the system (1) has a unique continuous semi-flow Ψ(t, x0) : R+ ×
X → X , and Ψ(0, x0) = x0. Moreover, the set Υ that follows is positively invariant under
system (1):

Υ = {x = (S(t), V(t), e(t, a), I(t), R(t)) ∈ X : ‖ x ‖X ≤
Λ
µ
},

where x0 is the initial value of the semi-flow Ψ(t, x0), and Υ represents a set such that if the initial
value is x0 ∈ Υ, then Ψ(t, x0) ∈ Υ for t ≥ 0.

Proposition 2. (1) For system (1), the semi-flow Ψ(t, ·) is point dissipative, and Υ can attract all
points in the set X ;

(2) If C ⊂ X is bounded, then Ψ(t, C) is also bounded;
(3) For x0 ∈ X with ‖ x0 ‖X ≤ r, S(t), V(t), ‖ e(t, ·) ‖L1

+
, I(t), R(t),≤ max{r, Λ

µ }.

Proof. ‖ Ψ(t, x0) ‖Y = S(t) + V(t) + I(t) + R(t) +
∫ +∞

0 e(t, a)da, the time derivative of
‖ Ψ(t, x0) ‖X satisfies the following differential inequality:

d
dt
‖ Ψ(t, x0) ‖X ≤ Λ− µ ‖ Φ(t, x0) ‖X .

It follows from the comparison principle that

‖ Ψ(t, x0) ‖X ≤
Λ
µ
− e−µt(

Λ
µ
− ‖ x0 ‖X ), (2)

namely,

‖ Ψ(t, x0) ‖X ≤ max{Λ
µ

, ‖ x0 ‖X }. (3)

From inequality (2), we can conclude that both the first and second conclusions of
Proposition 2 hold, while inequality (3) implies that its third conclusion holds.

43



Axioms 2023, 12, 805

2.3. Asymptotic Smoothness

By integrating the third equation of system (1) along the characteristic line t− a =
const., we can derive

e(t, a) =





e0(a− t)
k(a)

k(a− t)
, 0 ≤ t < a,

e(t− a, 0)k(a), 0 ≤ a ≤ t.
(4)

The following lemmas [29] are utilized to demonstrate the asymptotic smoothness of
the semi-flow {Ψ(t, ·)}t≥0.

Lemma 1. For any bounded closed set B ⊂ X that satisfies Ψ(t, B) ⊂ B, when the following two
conditions hold, the semi-flow Ψ(t, x) = K1(t, x) + K2(t, x) : R+ ×X → X is asymptotically
smooth.

(1) lim
t→+∞

diamK2(t, B) = 0;

(2) for some tB ≥ 0, K1(t, B) has compact closure for each t ≥ tB .

For the space L1
+(0,+∞), boundedness alone is insufficient to guarantee precom-

pactness. Therefore, we need to employ the following lemma in order to deduce its
precompactness.

Lemma 2. If a bounded set A ⊂ L1
+(0,+∞) satisfies the following four conditions, then A is the

compact closure.

(1) sup
g∈A

∫ +∞
0 | g(s) | ds < +∞;

(2) lim
θ→+∞

∫ +∞
θ | g(s) | ds = 0 uniformly in g ∈ A ;

(3) lim
θ→0+

∫ +∞
0 | g(s + θ)− g(s) | ds = 0 uniformly in g ∈ A ;

(4) lim
θ→0+

∫ θ
0 | g(s) | ds = 0 uniformly in g ∈ A .

According to the two lemmas mentioned above, we can deduce the following theorem:

Theorem 1. The continuous semi-flow {Ψ(t, ·)}t≥0 generated by model (1) is asymptotically smooth.

Proof. Define the following two semi-flows:

K1(t, x) = (S(t), V(t), ẽ(t, ·), I(t), R(t)), K2(t, x) = (0, 0, φe(t, ·), 0, 0),

where

φe(t, a) =





e0(a− t)
k(a)

k(a− t)
, 0 ≤ t < a,

0, 0 ≤ a ≤ t,
ẽ(t, a) =

{
0, 0 ≤ t < a,
e(t− a, 0)k(a), 0 ≤ a ≤ t,

for x = (S(0), V(0), e0(a), I(0), R(0)) ∈ X , we can state Ψ(t, x) = K1(t, x) + K2(t, x).
Let B ⊂ X be bounded; that is, a positive number c ≥ Λ

µ exists, such that ‖ x ‖X ≤ c
for each x ∈ B. Then, we have

‖ K2(t, x) ‖X =
∫ +∞

t
e0(θ − t)

k(θ)
k(θ − t)

dθ

=
∫ +∞

0
e0(u)

k(u + t)
k(u)

du

=
∫ +∞

0
e0(u)e−

∫ u+t
u (µ+δ(l)+σ(l))dldu

≤ e−µt ‖ x ‖X ≤ ce−µt.
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Thus, lim
t→+∞

diam K2(t, B) = 0. Next, we show that K1(t, B) has compact closure for

each t ≥ 0.
It follows from Proposition 2 that S(t), V(t), I(t), andR(t) remain in the compact set

[0, c] for each t ≥ 0. In the following part, we try to prove that ẽ(t, a) remains in a precom-
pact subset of L1

+(0,+∞) which is not dependent on x. It follows from

0 ≤ ẽ(t, a) =
{

0, 0 ≤ t < a,
e(t− a, 0)k(a), 0 ≤ a ≤ t,

and system (1) that
0 ≤ ẽ(t, a) ≤ f ′(0)(1 + ρ)c2e−µa.

Therefore, conditions (1), (2), and (4) of Lemma 2 hold. Our next task is to demonstrate

lim
θ→0+

∫ +∞

0
| ẽ(t, a + θ)− ẽ(t, a) | da = 0.

∫ +∞

0
| ẽ(t, a + θ)− ẽ(t, a) | da

=
∫ t−θ

0
| ẽ(t, a + θ)− ẽ(t, a) | da +

∫ t

t−θ
| ẽ(t, a) | da

=
∫ t−θ

0
| e(t− a− θ, 0)k(a + θ)− e(t− a, 0)k(a) | da +

∫ t

t−θ
| e(t− a, 0)k(a) | da

≤
∫ t−θ

0
| e(t− a− θ, 0) || k(a + θ)− k(a) | + | e(t− a− θ, 0)− e(t− a, 0) || k(a) | da

+ f ′(0)(1 + ρ)c2θ,

where
∫ t−θ

0
| e(t− a− θ, 0) || k(a + θ)− k(a) | da

≤ f ′(0)(1 + ρ)c2(
∫ t−θ

0
k(a)da−

∫ t−θ

0
k(a + θ)da)

= f ′(0)(1 + ρ)c2(
∫ t−θ

0
k(a)da−

∫ t

θ
k(s)ds)

= f ′(0)(1 + ρ)c2(
∫ θ

0
k(a)da−

∫ t

t−θ
k(s)ds)

≤ f ′(0)(1 + ρ)c2θ.

It should be noted that

| dS(t)
dt
|≤ p1Λ + f ′(0)c2 + (µ + ω)c,

| dV(t)
dt

|≤ (1− p1)Λ + (ω + µ)c + ρ f ′(0)c2,

| dI(t)
dt
|≤ (δ̄ + µI + α + γ)c,

then
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| e(t− a− θ, 0)− e(t− a, 0) |
≤| S(t− a− θ) f (I(t− a− θ))− S(t− a) f (I(t− a)) |

+ ρ | V(t− a− θ) f (I(t− a− θ))−V(t− a) f (I(t− a)) |
= (| S(t− a− θ) || f (I(t− a− θ))− f (I(t− a)) | + | f (I(t− a)) || S(t− a− θ)− S(t− a) |)

+ ρ(| V(t− a− θ) || f (I(t− a− θ))− f (I(t− a)) |
+ | f (I(t− a)) || V(t− a− θ)−V(t− a) |)
≤ f ′(0)Ξθ,

where

Ξ =(1 + ρ)c(δ̄ + µI + α + γ)c + c(p1Λ + f ′(0)c2 + (µ + ω)c)

+ ρ f ′(0)c((1− p1)Λ + (ω + µ)c + ρ f ′(0)c2).

Then,

∫ t−θ

0
| e(t− a− θ, 0)− e(t− a, 0) || k(a) | da ≤ f ′(0)Ξθ

∫ t−θ

0
e−µsds ≤ f ′(0)Ξ

µ
θ.

Hence,

∫ +∞

0
| ẽ(t, a + θ)− ẽ(t, a) | da ≤ (2 f ′(0)(1 + ρ)c2 +

f ′(0)Ξ
µ

)θ,

which means that condition (3) of Lemma 2 holds. Then, we can conclude that ẽ(t, a)
satisfies all conditions of Lemma 2. As a result, we know that K1(t, B) has compact
closure for all t ≥ 0. It follows from Lemma 1 that the continuous semi-flow {Ψ(t, ·)}t≥0 is
asymptotically smooth.

By utilizing Proposition 2.2, Theorem 1, and Theorem 2.6 from [30], we can derive the
following theorem.

Theorem 2. A global attractor B exists in X for the continuous semi-flow {Ψ(t, ·)}t≥0, which
can attract any bounded set in X .

3. Existence of Equilibrium States

The dynamic system characterized by (1) has a disease-free equilibrium state E0 =

(S0, V0, 0L1(0,+∞), 0, 0), where V0 = (1−p1)Λ
µ+ω , S0 = p1Λ

µ + ωV0

µ . Define the mathematical
expression for the basic reproduction number by

R0 =
γηα + f ′(0)(S0 + ρV0)(K1(µ + α) +K2α)

(µI + γ)(µ + α)
. (5)

R0 measures the expected number of secondary infectious individuals that a pri-
mary infectious individual may infect during the entire infection period in a completely
susceptible population. Ref. [22] provides a detailed derivation of R0.
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The endemic equilibrium state (S∗, V∗, e∗(a), I∗, R∗) of system (1) satisfies the follow-
ing equations: 




p1Λ− S∗ f (I∗)− µS∗ + ωV∗ = 0,

(1− p1)Λ− ρV∗ f (I∗)− (µ + ω)V∗ = 0,

de∗(a)
da

= −(µ + δ(a) + σ(a))e∗(a),

e∗(0) = (S∗ + ρV∗) f (I∗),

e∗(0)K1 − µI I∗ − γI∗ + αR∗ = 0,

γη I∗ + e∗(0)K2 − (µ + α)R∗ = 0.

(6)

By performing a simple calculation, we can determine that I∗ is the root of the follow-
ing equation:

g(x) = 1, where g(x) =
γηα + f (x)

x (S (x) + ρV (x))(K1(µ + α) +K2α)

(µI + γ)(µ + α)
, x > 0.

In this equation, V (x) = (1−p1)Λ
ρ f (x)+µ+ω

, S (x) = p1Λ+ωV(x)
f (x)+µ

. Clearly, we have lim
x→0+

g(x) =

R0. From the properties of f (x), we know that lim
x→+∞

f (x) = const. or lim
x→+∞

f (x) = +∞.

If lim
x→+∞

f (x) = const., we have lim
x→+∞

g(x) = γηα
(µI+γ)(µ+α)

. If lim
x→+∞

f (x) = +∞, It is not

difficult to find that lim
x→+∞

g(x) = γηα
(µI+γ)(µ+α)

. Thus, lim
x→+∞

g(x) = γηα
(µI+γ)(µ+α)

< 1. Now,

we demonstrate that g′(x) is negative. We have

g′(x) =
(K1(µ + α) +K2α)

(µI + γ)(µ + α)
(

f ′(x)x− f (x)
x2 (S (x) + ρV (x)) +

f (x)
x

d(S (x) + ρV (x))
dx

),

where

d(S (x) + ρV (x))
dx

= − f ′(x)Λ(
ρ(1− p1)(ρ(µ + f (x)) + ω)

(µ + ω + ρ f (x))2(µ + f (x))
+

p1(µ + ω + ρ f (x)) + ω(1− p1)

(µ + f (x))2(µ + ω + ρ f (x))
).

Based on the properties of f (x), we can infer that g′(x) is negative when x is greater
than 0. Hence, g(x) = 1 has only a positive and real root if R0 > 1; namely, if R0 > 1,
system (1) has only a endemic equilibrium state: E∗ = (S∗, V∗, e∗(a), I∗, R∗). For system (1),
we arrive at the following result.

Theorem 3. The disease-free equilibrium state E0 is always feasible in system (1), while the endemic
equilibrium state E∗ is also feasible if R0 > 1.

4. Uniform Persistence and Global Stability
4.1. Uniform Persistence

In this section of the paper, we analyze the uniform persistence of the system (1). Let
us define

Γ = {(x1, x2, x3, x4, x5) ∈ X |∃ t1, t2 ∈ R+ :
∫ +∞

0
δ(a+ t1)x3(a)da+

∫ +∞

0
σ(a+ t2)x3(a)da

+x4 + x5 > 0},
and ∂Γ = X \ Γ. We know that X = Γ ∪ ∂Γ.

Theorem 4. For the semi-flow Ψ(t, ·), both Γ and ∂Γ are positively invariant sets. Moreover, in
set ∂Γ, the equilibrium state E0 is globally asymptotically stable.
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Proof. Let Ψ(0, x0) ∈ Γ. If I(0) > 0 or R(0) > 0, based on system (1), it is easy to verify that
I(t) > I(0)e−(γ+µI)t > 0 or R(t) > R(0)e−(α+µ)t > 0. Then, Γ is a positively invariant set
of the semi-flow Ψ(t, ·). If I(0) = 0 and R(0) = 0, without a loss of generality, we assume
that ∃ t1 ∈ R+, such that

∫ +∞
0 δ(a + t1)e(0, a)da > 0. Then, ∀t ∈ [0, t1], s = t1 − t ≥ 0,

such that
∫ +∞

0 δ(a + s)e(t, a)da ≥
∫ +∞

t δ(a + s)e(t, a)da
=
∫ +∞

0 δ(a + t + s)e(t, a + t)da
=
∫ +∞

0 δ(a + t1)e(0, a) k(a+t)
k(a) da

≥ e−(µ+δ̄+σ̄)t ∫ +∞
0 δ(a + t1)e(0, a)da > 0.

(7)

If ∃ t2 ∈ (0, t1], such that I(t2) > 0, then I(t) > 0 for ∀t > t2. Otherwise, according
to (7), we have

dI(t1)

dt
≥
∫ +∞

0
δ(a)e(t1, a)da > 0.

Then, I(t) > 0 for ∀t > t1. This means that Ψ(t, Γ) ⊂ Γ for all t ≥ 0. That is to say, Γ is
a positively invariant set of the semi-flow Ψ(t, ·).

Let Ψ(0, x0) ∈ ∂Γ. We construct the following model





∂e(t, a)
∂t

+
∂e(t, a)

∂a
= −(µ + δ(a) + σ(a))e(t, a),

dI(t)
dt

=
∫ +∞

0
δ(a)e(t, a)da + αR− (γ + µI)I(t),

dR(t)
dt

=
∫ +∞

0
σ(a)e(t, a)da + γη I(t)− (µ + α)R(t),

e(t, 0) = S f (I) + ρV f (I),

e(0, a) = e0(a), I(0) = 0, R(0) = 0.

(8)

Since S(t), V(t) ≤ C, where C = max{‖ x0 ‖X ,
Λ
µ
}, it is easy to verify that

I(t) ≤ Î(t), R(t) ≤ T̂(t), ‖ e(t, s) ‖L1
+
≤‖ ê(t, s) ‖L1

+
, (9)

where 



∂ê(t, a)
∂t

+
∂ê(t, a)

∂a
= −(µ + δ(a) + δ(a))ê(t, a),

dÎ(t)
dt

=
∫ +∞

0
δ(a)ê(t, a)da + αR̂− (γ + µI) Î(t),

dR̂(t)
dt

=
∫ +∞

0
σ(a)ê(t, a)da + γη Î(t)− (µ + α)R̂(t),

ê(t, 0) = C f ( Î)(1 + ρ),

ê(0, a) = e0(a), Î(0) = 0, R̂(0) = 0.

(10)

Similar to the formulation (4), we derive

ê(t, a) =





e0(a− t)
k(a)

k(a− t)
, 0 ≤ t < a,

ê(t− a, 0)k(a), 0 ≤ a ≤ t.
(11)

By substituting Equation (11) into the second and third equations of (10), we can obtain
the following equations
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dÎ(t)
dt

=
∫ t

0
δ(a)ê(t− a, 0)k(a)da + G1(t) + αR̂− (γ + µI) Î(t),

dR̂(t)
dt

= γη Î(t) +
∫ t

0
σ(a)ê(t− a, 0)k(a)da + G2(t)− (µ + α)R̂(t),

Î(0) = 0, R̂(0) = 0.

(12)

where

G1(t) =
∫ +∞

t
δ(a)e0(a− t)

k(a)
k(a− t)

da, G2(t) =
∫ +∞

t
σ(a)e0(a− t)

k(a)
k(a− t)

da

since

G1(t) ≤
∫ +∞

t
δ(a)e0(a− t)da =

∫ +∞

0
δ(a + t)e0(a)da,

G2(t) ≤
∫ +∞

t
σ(a)e0(a− t)da =

∫ +∞

0
σ(a + t)e0(a)da.

Based on Ψ(0, x0) ∈ ∂Γ, we know G1(t), G2(t) ≡ 0 for t ≥ 0. Then, the system (12) can
be rewritten in the following equations:





dÎ(t)
dt

=
∫ t

0
δ(a)k(a)C(1 + ρ) f ( Î(t− a))da + αR̂− (γ + µI) Î(t),

dR̂(t)
dt

= γη Î(t) +
∫ t

0
σ(a)k(a)C(1 + ρ) f ( Î(t− a))da− (µ + α)R̂(t),

Î(0) = 0, R̂(0) = 0.

It is easy to conclude that system (12) has a unique solution: Î(t) ≡ 0, R̂(t) ≡ 0 for
t ≥ 0. Depending on (10) and (11), we know that ê(t, s) = 0 for 0 ≤ s ≤ t. Thus,

‖ δ(a + u)ê(t, a) ‖L1
+
=
∫ +∞

t
δ(a + u)e0(a− t)

k(a)
k(a− t)

da ≤‖ δ(t + u + s)e0(s) ‖L1
+
= 0,

‖ σ(a + u)ê(t, a) ‖L1
+
=
∫ +∞

t
σ(a + u)e0(a− t)

k(a)
k(a− t)

da ≤‖ σ(t + u + s)e0(s) ‖L1
+
= 0.

According to (9), we can conclude that

I(t) = 0, R(t) = 0, ‖ δ(a + t1)e(t, a) ‖L1
+
= 0, ‖ σ(a + t2)e(t, a) ‖L1

+
= 0, f or all t, t1, t2 ≥ 0.

Thus, ∂Γ is a positively invariant set of the semi-flow Ψ(t, ·).
In the set ∂Γ, system (1) reduces to the following system:





dS(t)
dt

= p1Λ− µS(t) + ωV,

dV(t)
dt

= (1− p1)Λ− (µ + ω)V(t).
(13)

We can easily find that lim
t→+∞

V(t) = (1−p1)Λ
µ+ω and lim

t→+∞
(S(t) + V(t)) = Λ

µ . Hence,

lim
t→+∞

S(t) = Λ
µ −

(1−p1)Λ
µ+ω . In other words, in the set ∂Γ, the equilibrium state E0 is globally

asymptotically stable.

Theorem 5. The semi-flow {Ψ(t, ·)}t≥0 is uniformly persistent with respect to (Γ, ∂Γ) when
R0 > 1. Apart from this, there is a global attractor B0 ⊂ Γ for {Ψ(t, ·)}t≥0.
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Proof. Theorem 4 proves the global stability of E0 for the set ∂Γ. According to Theorem 4.2
in [31], we only need to verify

ωs(E0) ∩ Γ = ∅,

where ωs(E0) = {x ∈ X | lim
t→+∞

Ψ(t, x) = E0}. Assume that there is a x0 = (s0, v0, e0(a), i0, r0)

∈ Γ ∩ωs(E0). Then the sequence {xn} ⊂ Γ exists, such that

‖ Ψ(t, xn)− E0 ‖X <
1
n

, t ≥ 0.

Let us define Ψ(t, xn) = (Sn(t), Vn(t), en(t, ·), In(t), Rn(t)). Then,

S0 −
1
n
< Sn(t) < S0 +

1
n

, V0 −
1
n
< Vn(t) < V0 +

1
n

, 0 ≤ In(t) <
1
n

and Ψ(t, xn) ⊂ Γ, for all t ≥ 0.
Similar to the analysis that Γ is a positively invariant set in Theorem 4, we know that

t0 ≥ 0 exists, such that I(t) > 0 or R(t) > 0 for all t ≥ t0. We may as well let t0 = 0 and
In(0) > 0. If n is sufficiently large, we can assume that S0 > 1

n , V0 > 1
n and

M(n) =
γηα + f ′( 1

n )((S
0 − 1

n ) + ρ(V0 − 1
n ))(K1(µ + α) +K2α)

(µI + γ)(µ + α)
> 1, (14)

whenR0 > 1. From the properties of f (x), we know that f ( Î) ≥ f ′( 1
n ) Î if Î ≤ 1

n . Next, we
build the following system:





∂ê(t, a)
∂t

+
∂ê(t, a)

∂a
= −(µ + δ(a) + σ(a))ê(t, a),

dÎ(t)
dt

=
∫ +∞

0
δ(a)ê(t, a)da + αR̂− (γ + µI) Î(t),

dR̂(t)
dt

=
∫ +∞

0
σ(a)ê(t, a)da + γη Î(t)− (µ + α)R̂(t),

ê(t, 0) = (S0 −
1
n
) + ρ(V0 −

1
n
)) f ′(

1
n
) Î,

ê(0, a) = en(0, a), Î(0) = In(0), R̂(0) = Rn(0).

(15)

Similar to the analysis presented in Section 2.2, we can conclude that a unique non-
negative solution exists for system (15). It follows from the comparison principle that

In(t) ≥ Î(t), Rn(t) ≥ R̂(t), en(t, s) ≥ ê(t, s), for t ≥ 0. (16)

Similar to the formulation (4), we can obtain

ê(t, a) =





e0(a− t)
k(a)

k(a− t)
, 0 ≤ t < a,

ê(t− a, 0)k(a), 0 ≤ a ≤ t.
(17)

We substitute (17) into the second and third equations of (15) and obtain the following
inequations:





dÎ(t)
dt
≥
∫ t

0
δ(a)k(a)((S0 −

1
n
) + ρ(V0 −

1
n
)) f ′(

1
n
) Î(t− a)da− (µI + γ) Î(t) + αR̂(t),

dR̂(t)
dt
≥ γη Î(t) +

∫ t

0
σ(a)k(a)((S0 −

1
n
) + ρ(V0 −

1
n
)) f ′(

1
n
) Î(t− a)da− (µ + α)R̂(t),

Î(0) = In(0), R̂(0) = Rn(0).

(18)
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If Î(t) and R̂(t) are bounded, we take the Laplace transform of both sides of (18) and
obtain the following inequations:

{
− Î(0) + λL[ Î](λ) ≥ L[u1](λ)L[ Î](λ)− (γ + µI)L[ Î](λ) + αL[R̂](λ),
− R̂(0) + λL[R̂](λ) ≥ γηL[ Î](λ) + L[u2](λ)L[ Î](λ)− (µ + α)L[R̂](λ),

(19)

where

L[ Î](λ) =
∫ +∞

0
e−λt Î(t)dt, L[R̂](λ) =

∫ +∞

0
e−λtR̂(t)dt,

L[u1](λ) =
∫ ∞

0
δ(a)k(a) f ′(

1
n
)((S0 −

1
n
) + ρ(V0 −

1
n
))e−λada,

L[u2](λ) =
∫ ∞

0
σ(a)k(a) f ′(

1
n
)((S0 −

1
n
) + ρ(V0 −

1
n
))e−λada.

From inequations (19), we can derive

(λ + µ + α)(λ + µI + γ)

α
[1− αγη + αL[u2](λ) + L[u1](λ)(λ + µ + α)

(λ + µ + α)(λ + µI + γ)
]L[ Î](λ)

≥ R̂(0) +
λ + µ + α

α
Î(0) > 0.

(20)

By applying the Dominated Convergence Theorem, we know thatL[ui](λ)→ L[ui](0),
(i = 1, 2) as λ→ 0, since

(λ + µ + α)(λ + µI + γ)

α
[1− αγη + αL[u2](λ) + L[u1](λ)(λ + µ + α)

(λ + µ + α)(λ + µI + γ)
] |λ=0

=
(µ + α)(µI + γ)

α
(1−M(n)) < 0,

which means that a positive number ε exists, such that

(λ + µ + α)(λ + µI + γ)

α
[1− αγη + αL[u2](λ) + L[u1](λ)(λ + µ + α)

(λ + µ + α)(λ + µI + γ)
] < 0,

for each λ ∈ [0, ε). It follows from (20) that L[ Î](λ) < 0 for each λ ∈ (0, ε). But, there is
a contradiction with the non-negative of Î(t)(t ≥ 0). That is to say, Î(t) and R̂(t) cannot both
be bounded. It can be inferred from the inequalities In(t) ≥ Î(t) and Rn(t) ≥ R̂(t) that both
In(t) and Rn(t) cannot be bounded. This contradicts Proposition 2. Thus, ωs(E0) ∩ Γ = ∅
holds. By using Theorem 4.2 [31], it is easy to show that the semi-flow {Ψ(t, ·)}t≥0 of
system (1) is uniformly persistent. By using Theorem 3.7 [30], we know that there is a global
attractor B0 ⊂ Γ for {Ψ(t, ·)}t≥0.

4.2. Global Stability

Theorem 6. The disease-free equilibrium state E0 is locally asymptotically stable (unstable) for
R0 < 1 (for R0 > 1).

Proof. At E0, the linearized system of system (1) can be expressed as the following equations:
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ds(t)
dt

= − f ′(0)S0i(t)− µs(t) + ωv(t),

dv(t)
dt

= −ωv(t)− f ′(0)ρV0i(t)− µv(t),

∂e(t, a)
∂t

+
∂e(t, a)

∂a
= −(µ + δ(a) + σ(a))e(t, a),

di(t)
dt

=
∫ +∞

0
δ(a)e(t, a)da− (µI + γ)i(t) + αr(t),

dr(t)
dt

= γηi(t) +
∫ +∞

0
σ(a)e(t, a)da− (µ + α)r(t),

e(t, 0) = f ′(0)S0i(t) + f ′(0)ρV0i(t),

(21)

where s(t) = S(t)− S0, v = V(t)−V0, e(t, a) = e(t, a), i(t) = I(t), andr(t) = R(t).

Let

k1(λ) =
∫ +∞

0
α(a)e−

∫ a
0 (λ+µ+σ(s)+δ(s))dsda, k2(λ) =

∫ +∞

0
δ(a)e−

∫ a
0 (λ+µ+σ(s)+δ(s))dsda.

In system (21), we set s(t) = S0eλt, v(t) = V0eλt, e(t, a) = e0(a)eλt, i(t) = I0eλt, and
r(t) = R0eλt and derive the following equations:





λS0 = − f ′(0)S0 I0 − µS0 + ωV0,

λV0 = −ωV0 − f ′(0)ρV0 I0 − µV0,

ė0(a) = −(λ + µ + δ(a) + σ(a))e0(a),

(λ + µI + γ)I0 =
∫ +∞

0
δ(a)e0(a)da + αR0,

(λ + µ + α)R0 = γη I0 +
∫ +∞

0
σ(a)e0(a)da,

e0(0) = f ′(0)S0 I0 + f ′(0)ρV0 I0.

(22)

By solving the system (22), we have

S0 =
ωV0 − f ′(0)S0 I0

λ + µ
, V0 =

−ρ f ′(0)V0 I0

λ + µ + ω
, R0 =

γη I0 + e0(0)k2(λ)

λ + µ + α
,

e0(0) =
λ + µI + γ− αγη

λ+µ+α

k1(λ) +
αk2(λ)
λ+µ+α

I0.

By combining the above expressions with the last equation of system (22), we obtain
the following equation:

f ′(0)(S0 + ρV0)I0 =
(λ + µI + γ)− αγη

λ+µ+α

k1(λ) +
αk2(λ)
λ+µ+α

I0.

This indicates that the characteristic equation of system (21) can be expressed in the
following form at the equilibrium state E0:

F(λ) =
f ′(0)(ρV0 + S0)[(λ + µ + α)k1(λ) + αk2(λ)] + αγη

(λ + µ + α)(λ + µI + γ)
.
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It is easy to find F′(λ) < 0, F(0) = R0 and lim
λ→+∞

F(λ) = 0. Hence, when R0 > 1,

a positive real root exists for the equation F(λ) = 1, indicating that the equilibrium state E0
is unstable. For R0 < 1, if λ0 = a0 + ib0 is a root of F(λ) = 1 with a0 ≥ 0. However,

| F(a0 + ib0) |≤ R0 < 1.

As a consequence, for R0 < 1, all eigenvalues of F(λ) = 1 have negative real parts,
indicating that E0 is locally asymptotically stable.

Theorem 7. For system (1), ifR0 < 1, the disease-free equilibrium state E0 is globally asymptoti-
cally stable.

Proof. Let us define h(x) = x− ln x− 1. It is easy to conclude that h(x) achieves a global
minimum at x = 1 and h(1) = 0. Thus, h(x) > 0 for all x > 0 and x 6= 1. By following the
same reasoning as Lemma 4.2 [32], we can verify that any solution to system (1) on B is
satisfied, such that S(t), V(t) > 0 for any t ∈ R. Next, we define the Lyapunov function
W = W1 + W2 + W3 + W4 + W5 on B. It follows from the compactness of B that W is
bounded on B, where

W1 = (K1 +
α

µ + α
K2)S0h(

S
S0

), W2 = (K1 +
α

µ + α
K2)V0h(

V
V0

), W4 = I, W5 =
α

µ + α
R,

W3 =
∫ +∞

0
H(a)e(t, a)da, H(a) =

∫ +∞

a
(δ(u) +

α

µ + α
σ(u))e−

∫ u
a (µ+δ(s)+σ(s))dsdu.

Now, we calculate the derivatives of W1, W2, W3, W4, and W5 along the solutions of

(1). Since µ = p1Λ
1
S0

+ ω
V0

S0
, we have

Ẇ1 = (K1 +
α

µ + α
K2)(−p1Λ

(S− S0)
2

SS0
− f (I)(S− S0) + ωV0(

V
V0
− S

S0
− S0V

SV0
+ 1)),

Since (1− p1)Λ = (µ + ω)V0, we have

Ẇ2 = (K1 +
α

µ + α
K2)(−(µ + ω)

(V −V0)
2

V
− ρ f (I)(V −V0)),

Further, we have

Ẇ3 = −
∫ +∞

0 H(a)((µ + δ(a) + σ(a))e(t, a) +
∂e
∂a

)da

= H(0)e(t, 0)−
∫ +∞

0 (δ(a) +
α

µ + α
σ(a))e(t, a)da

= (K1 +
α

µ + α
K2)(S + ρV) f (I)−

∫ +∞
0 (δ(a) +

α

µ + α
σ(a))e(t, a)da,

Ẇ4 =
∫ +∞

0 δ(a)e(t, a)da− (γ + µI)I + αR,

Ẇ5 =
α

µ + α
(
∫ +∞

0 σ(a)e(t, a)da + γη I − (µ + α)R).

Thus, we can obtain

dW
dt

= (K1 +
α

µ + α
K2)(S0 + ρV0) f (I)− (µI + γ)I +

α

µ + α
γη I

+(K1 +
α

µ + α
K2)ωV0(−

S
S0
− S0V

SV0
− V0

V
+ 3)

−(K1 +
α

µ + α
K2)(p1Λ

(S− S0)
2

SS0
+ µ

(V −V0)
2

V
).
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Notice that − S
S0
− S0V

SV0
− V0

V
+ 3 ≤ 0, f (I) ≤ f ′(0)I. Thus, we have

dW
dt
≤ (γ + µI)I(R0 − 1)− (K1 +

α

µ + α
K2)(p1Λ

(S− S0)
2

SS0
+ µ

(V −V0)
2

V
).

As a consequence, ifR0 < 1, then
dW
dt
≤ 0 holds. Let T be the largest invariant subset

of {dW
dt
|(1) = 0}. The equality holds only if S(t) = S0, I = 0, V = V0. In T, S(t) = S0, I = 0,

and V = V0 for all t ∈ R. Then, we have e(t, a) = 0. By combining this with system (1), it
follows that R(t) = 0 for all t ∈ R. Hence, T = {E0}. It follows from the LaSalle invariance
principle [33] and Theorem 6 that E0 is globally asymptotically stable.

WhenR0 > 1, the system (1) has a global attractor B0 ⊂ Γ. Let x ∈ B0. Then, a total
trajectory {Ψ(t, x)}t∈R exists in B0. By following the same reasoning as that presented in
Section 3.2 in [32], the system (1) reduces to the following total trajectory system:





dS(t)
dt

= p1Λ− S f (I)− µS + ωV,

dV(t)
dt

= (1− p1)Λ− ρV f (I)− (µ + ω)V,

e(t, a) = k(a)(S(t− a) f (I(t− a)) + ρV(t− a) f (I(t− a))),

dI(t)
dt

=
∫ +∞

0
δ(a)e(t, a)da + αR− (γ + µI)I(t),

dR(t)
dt

= γη I(t) +
∫ +∞

0
σ(a)e(t, a)da− (µ + α)R(t),

(S(0), V(0), e(0, a), I(0), R(0)) ∈ B0.

(23)

To prove that E∗ is globally stable, it is mandatory to prove that S(t), V(t), e(t, a), I(t),
R(t) > 0.

Lemma 3. All solutions to systems (1) or (23) on B0 satisfy the following inequalities:

ε ≤ S(t), V(t), I(t), R(t) ≤ M, f (ε)(1 + ρ)εk(a) ≤ e(t, a) ≤ f (M)(1 + ρ)Mk(a),

f or all t ∈ R, a ∈ R+, where ε and M are positive constants.

Proof. Let Ψ(t, x) = (S(t), V(t), e(t, a), I(t), R(t)) ⊂ B0.
Now, we are going to prove that S(t) > 0 for all t ∈ R. We assume that S(t0) = 0 for

some t0 ∈ R. Clearly,
dS(t0)

dt
≥ p1Λ > 0. We can know from here that S(t0 − η0) < 0 for

some η0 > 0. This is a contradiction to B0 ⊂ Γ. Hence, S(t) > 0 for all t ∈ R. Similarly, we
can also derive V(t) > 0 for any t ∈ R.

Next, we are going to prove that I(t) > 0, R(t) > 0 for any t ∈ R. We assume
that I(t0) = 0 and R(t0) = 0 for some t0 ∈ R. From (23), it is easy to derive that I(t) =
0, R(t) = 0 when t ≤ t0. Furthermore, we have

∫ +∞
0 e(t, a)da = 0 for all t ≤ t0. This

is a contradiction to Ψ(t, x) ⊂ B0. Further, we assume that I(t0) = 0, R(t0) > 0 for

some t0 ∈ R. It follows from (23) that
dI(t0)

dt
≥ αR(t0) > 0. From here, we know that

I(t0 − η1) < 0 for some η1 > 0. This is a contradiction to B0 ⊂ Γ. Similarly, the assumption
that I(t0) > 0, R(t0) = 0 for some t0 ∈ R is not true. Hence, I(t) > 0, R(t) > 0 for any
t ∈ R. Furthermore, it follows from (23) that e(t, a) > 0 for any (t, a) ∈ (R, R+). Then, it
follows from the compactness of B0 that the conclusions of Lemma 3 hold.
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Theorem 8. For systems (1) or (23) in Γ, ifR0 > 1, the equilibrium state E∗ is globally asymptot-
ically stable.

Proof. Let us define the Lyapunov function G(t) = G1 + G2 + G3 + G4 + G5 on B0. It
follows from Lemma 3 that G(t) is bounded, where

G1 = (K1 +
α

µ + α
K2)S∗h(

S
S∗

), G2 = (K1 +
α

µ + α
K2)V∗h(

V
V∗

),

G3 =
∫ +∞

0
H(a)e∗(a)h(

e(t, a)
e∗(a)

)da, G4 = I∗h(
I
I∗
), G5 =

α

µ + α
R∗h(

R
R∗

),

and

h(x) = x− lnx− 1, H(a) =
∫ +∞

a
(δ(u) +

α

µ + α
σ(u))e−

∫ u
a (µ+δ(s)+σ(s))dsdu.

Along with any solution to B0, we take the derivative versus time of G. Since p1Λ =
µS∗ + f (I∗)S∗ −ωV∗, we have

Ġ1 = (K1 +
α

µ + α
K2)(1−

S∗

S
)[µ(S∗ − S) + ω(V −V∗) + ( f (I∗)S∗ − f (I)S)]

= (K1 +
α

µ + α
K2)[µS∗(−h(

S
S∗

)− h(
S∗

S
)) + ωV∗(h(

V
V∗

)− h(
S∗V
SV∗

) + h(
S∗

S
))

+S∗ f (I∗)(h(
f (I)
f (I∗)

)− h(
S∗

S
)− h(

S f (I)
S∗ f (I∗)

))].

Since (1− p1)Λ = µV∗ + ρ f (I∗)V∗ + ωV∗, we have

Ġ2 = (K1 +
α

µ+αK2)(1−
V∗

V
)[−(µ + ω)(V −V∗)− ρ( f (I)V − f (I∗)V∗)]

= (K1 +
α

µ + α
K2)[(µ + ω)V∗(−h(

V
V∗

)− h(
V∗

V
))

+ρV∗ f (I∗)(h(
f (I)
f (I∗)

)− h(
V∗

V
)− h(

V f (I)
V∗ f (I∗)

))].

Further, we have

Ġ3 =
∫ +∞

0 H(a)(1− e∗(a)
e(t, a)

) ∂e
∂t da = −

∫ +∞
0 H(a)e∗(a)

∂

∂a
h(

e(t, a)
e∗(a)

)da

= H(0)e∗(0)h(
e(t, 0)
e∗(0)

)−
∫ +∞

0 (δ(a) + α
µ+α σ(a))e∗(a)h(

e(t, a)
e∗(a)

)da

= H(0) f (I∗)S∗(h(
f (I)S

f (I∗)S∗
)− h(

e∗(0) f (I)S
e(t, 0) f (I∗)S∗

))

−
∫ +∞

0 (δ(a) + α
µ+α σ(a))e∗(a)h(

e(t, a)
e∗(a)

)da

+H(0)ρ f (I∗)V∗(h(
f (I)V

f (I∗)V∗
)− h(

e∗(0) f (I)V
e(t, 0) f (I∗)V∗

)).

Since γ + µI =
1
I∗
(
∫ +∞

0 δ(a)e∗(a)da + αR∗), we have

Ġ4 =
∫ +∞

0 δ(a)e∗(a)(
e(t, a)
e∗(a)

− I
I∗
− e(t, a)I∗

e∗(a)I
+ 1)da + αR∗(

R
R∗
− I

I∗
− I∗R

IR∗
+ 1)

=
∫ +∞

0 δ(a)e∗(a)(h(
e(t, a)
e∗(a)

)− h(
I
I∗
)− h(

e(t, a)I∗

e∗(a)I
))da + αR∗(h(

R
R∗

)− h(
I
I∗
)− h(

I∗R
R∗ I

)).
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Since µ + α =
1

R∗
(
∫ +∞

0 σ(a)e∗(a)da + γη I∗), we have

Ġ5 =
α

µ + α

∫ +∞
0 σ(a)e∗(a)(

e(t, a)
e∗(a)

− R
R∗
− e(t, a)R∗

e∗(a)R
+ 1)da

+
α

µ + α
γη I∗(

I
I∗
− R

R∗
− R∗ I

RI∗
+ 1)

=
α

µ + α

∫ +∞
0 σ(a)e∗(a)(h(

e(t, a)
e∗(a)

)− h(
R
R∗

)− h(
e(t, a)R∗

e∗(a)R
))da

+
α

µ + α
γη I∗(h(

I
I∗
)− h(

R
R∗

)− h(
IR∗

I∗R
)).

Thus, we can obtain

Ġ = −(K1 +
α

µ + α
K2)p1Λh(

S∗

S
)− (K1 +

α

µ + α
K2)µS∗h(

S
S∗

)

−(K1 +
α

µ + α
K2)ωV∗h(

S∗V
SV∗

)

−(K1 +
α

µ + α
K2)µV∗h(

V
V∗

)− (K1 +
α

µ + α
K2)((µ + ω)V∗ + ρ f (I∗)V∗)h(

V∗

V
)

−H(0)S∗ f (I∗)h(
e∗(0)S f (I)

e(t, 0)S∗ f (I∗)
)− H(0)ρV∗ f (I∗)h(

e∗(0)V f (I)
e(t, 0)V∗ f (I∗)

)

−
∫ +∞

0 δ(a)e∗(a)h(
e(t, a)I∗

e∗(a)I
)da− αR∗h(

I∗R
R∗ I

)− α

µ + α

∫ +∞
0 σ(a)e∗(a)h(

e(t, a)R∗

e∗(a)R
)da

− α

µ + α
γη I∗h(

IR∗

I∗R
) + (K1 +

α

µ + α
K2)e∗(0)(h(

f (I)
f (I∗)

)− h(
I
I∗
)).

From Proposition A.1 in [26], we know that h(
f (I)
f (I∗)

)− h(
I
I∗
) ≤ 0. Then,

dG
dt
≤ 0

holds. It follows from the analysis of Theorem 5.6 [27] that B0 = {E∗}. Therefore, the
global asymptotic stability of E∗ is derived.

5. Parameter Estimation and Sensitivity Analysis
5.1. Parameter Estimation

In this section, we estimate the parameters of system (1) using annual tuberculosis
patient data from China collected between 2007 and 2020. After being infected with TB,
some individuals may exhibit symptoms of the disease within a few weeks due to their
lack of immunity to the bacillus. As time passes, their immune system gradually fights off
the bacillus, reducing the likelihood of displaying symptoms and increasing the chances of
recovery [34,35]. In the numerical simulation, we use years as the unit with a few weeks
being negligible in terms of the time length. Consequently, we establish two monotonic
functions to represent δ(a) and σ(a), respectively.

δ(a) = δ1e−δ2a, σ(a) = σ1(1− e−σ2a).

We also assume that e0(a) = e(0)µe−µa. Since f (I) in (1) is monotonically increasing
and concave down, we choose the following function to represent f (I):

f (I) = I(β− β1 I
m1 + I

), where β > β1.

Next, we set the values or intervals of all parameters and initial values:
(1) Based on the National Bureau of the Statistics of China (NBSC) data [36], the

average newborn population in China was 16,289,670 persons per year during this period
with an average life expectancy was 76.34 years old. Thus, we take Λ = 16,289,670 and
µ = 1/76.34. The World Health Organization estimates that approximately one-quarter
of the world’s population has been infected with TB and about 85 % of people who
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develop TB disease can be successfully treated with a 6-month drug regimen. Thus, we
take S(0) = 0.75 * 1,314,480,000 persons,

∫ +∞
0 e(0, a)da = 0.25 * 1,314,480,000 persons,

η = 0.85. Trollfors et al. [12] suggested that the BCG vaccine exhibits a significant effect
on latent tuberculosis infection (LTBI) with an efficacy rate of 59%. Thus, we take ρ =
0.41. Guo et al. [2] suggested that the death rate due to TB is 0.0056 per year. Thus,
µI = µ + 0.0056 per year. The initial infectious population is I(0) = 5011912 persons, and
the initial recovered population is R(0) = 7493719 persons. Xue et al. [37] suggested that
1− p1 = 0.99 in China.

(2) In [2], The authors adopted the bilinear incidence rate βSI and estimated the
coefficient value to be β = 1.15× 10−10. Thus, we take the range of β as [1× 10−11, 1×
10−10]. In order to ensure the non-negativity of f (I), we take the range of β1 as [1 ×
10−12, 1× 10−11]. Assuming m1 is on the same order of magnitude as I(0), we take the
range of m1 as [1,000,000, 2,000,000].

(3) As found by Martinez et al. [13], BCG vaccination at birth only provides significant
protection against TB for children under 5 years of age and has little effect on adolescents
and adults. In [38], Huang et al. found that the BCG is effective against LTBI for adults of
at least 18 years of age (adulthood) when given at birth. We assume that ω ∈ [1/20, 1/5].

(4) There is no evidence to show the range of the parameters δ1, δ2, σ1, and σ2. We
assume that the range of these parameters is [1× 10−6, 1].

(5) TB treatment generally needs to take 4 to 9 months [10]. But, multidrug-resistant
TB treatment takes much longer. Thus, we take the range of γ as [0.2, 2]. In [37], the authors
suggested that the range of the relapse rate α is [0.005, 0.025].

(6) Based on the newborn population per year and the protection period of the vaccine,
we assume that the range is V(0) = [1× 108, 2× 108].

The data on annual tuberculosis patients (Table 2) were obtained from the Chinese
Center for Disease Control and Prevention [39].

Table 2. The data of TB cases in China (persons).

Year 2007 2008 2009 2010 2011 2012 2013

Cases 1,163,959 1,169,540 1,076,938 991,350 953,275 951,508 904,434

Year 2014 2015 2016 2017 2018 2019 2020

Cases 889,381 864,015 836,236 835,193 823,342 775,764 670,538

Next, we simulate the following parameters and the initial conditions of system (1)

Θ̂ = (δ1, δ2, σ1, σ2, ω, β, β1, m1, α, γ, V(0)).

We represent the number of new tuberculosis patients in the tth year as P(t, Θ̂), which
can be expressed as follows:

P(t, Θ̂) = X(t)− X(t− 1),

where X(t) denotes the cumulative number of patients with TB disease by the tth year. We
can derive the expression for X(t) as:

dX(t)
dt

=
∫ +∞

0
δ(a)e(t, a)da + αR(t).

Next, we utilize P(t, Θ̂) to simulate China’s annual tuberculosis patient data. We use
MATLAB 2018b software to estimate Θ̂. Using the Grey Wolf Optimizer (GWO) algorithm,
we can estimate the unknown parameters and initial values for model (1), as shown in
Table 3. The results of the simulation are presented in Figure 2.
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Figure 2. The comparison between the simulation results of the GWO algorithm and the actual data.

Table 3. Unknown parameters and initial values estimated by the GWO algorithm.

Parameters Value Source Parameters Value Source

δ1 0.01518682 Fitting β1 2.8311140× 10−12 Fitting
δ2 0.047465098 Fitting m1 1,805,707 Fitting
σ1 0.086799875 Fitting α 0.010890517 Fitting
σ2 0.000960051 Fitting γ 0.200034765 Fitting
ω 0.090614519 Fitting V(0) 129,832,691 Fitting
β 4.887090× 10−11

5.2. Sensitivity Analysis

The output of the model (1) is determined by its initial values and parameters. The
GWO algorithm is used to estimate some parameters and initial values, which may introduce
uncertainty into their selection. Therefore, we need to conduct an uncertainty analysis (UA)
in order to determine the reliability of parameter estimates. To ensure the reliability of the
estimates through the GWO, we employ the Markov Chain Monte Carlo (MCMC) method
with the Delayed Rejection and Adaptive Metropolis (DRAM) algorithm [40]. We estimate the
convergence of the Markov chain by using Geweke’s Z-scores [41]. The expectations, standard
deviations, and confidence intervals of the parameters and initial values are listed in Table 4.

Table 4. The parameters and initial values of the model (1).

Parameters Mean Std 95% CI Gewekes Z-Score

δ1 0.015224 0.0017461 [0.01521682, 0.015232125] 0.99492
δ2 0.047357 0.0054654 [0.047333118, 0.047381024] 0.9904
σ1 0.08693 0.010083 [0.0868855, 0.086973908] 0.98351
σ2 0.00095903 0.00011069 [0.000958544, 0.000959514] 0.99975
ω 0.090725 0.010535 [0.090678698, 0.09077104] 0.99583
β 4.8889× 10−11 5.6062× 10−12 [4.88647× 10−11, 4.891385× 10−11] 0.99636
β1 2.824× 10−12 3.2717× 10−13 [2.82254× 10−12, 2.825412× 10−12] 0.98896
m1 1,801,600 209,190 [1,800,674, 1,802,508] 0.99182
α 0.010882 0.0012476 [0.010876, 0.010887] 0.98807
γ 0.19972 0.023108 [0.1996197, 0.199822] 0.9752

V(0) 13, 038, 000 1.5× 107 [130,309,596, 130,441,079] 0.99426
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In this paper, a sensitivity analysis (SA) is used to identify the parameter that has the
greatest impact on R0. We use the partial rank correlation coefficient (PRCC) to analyze
the sensitivity, which is based on Latin hypercube sampling (LHS). For the parameters
presented in Table 4, we let m1, V(0) take the expected value, and we assume that other
parameters follow normal distributions with the expectations and standard deviations
shown in Table 4. Because the parameters are sampled normally, we can observe that the
distribution ofR0 is also normal in Figure 3. Figure 3 shows that the average ofR0 < 1. It
follows from Theorem 7 that the model 1 is globally asymptotically stable to the disease-free
equilibrium state, which suggests that TB transmission will eventually disappear. However,
this does not mean that China will achieve the End TB Strategy of the WHO (reducing the
incidence of TB by 90 % by 2035 compared to 2015) [1,2]. Thus, China should find the most
effective measures to achieve the goal of the WHO. Figure 4 shows the values of PRCC for
R0. It follows from the values of PRCC that δ(a), β, α, and γ have significant influences
onR0.
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6. Discussion and Conclusions

The rate δ(a) at which latent individuals enter the infectious class has a significant
influence onR0. But, we think it is difficult to implement control measures on the param-
eter in China’s public health at present. The parameter α represents the relapse rate. If
the relapse rate α is reduced, we can see a significant reduction inR0, which will lead to
a significant reduction in the number of new cases. Therefore, gaining a better understand-
ing of the causes and risk factors associated with TB relapse is crucial for controlling the
spread of TB in China. The TB transmission coefficient β has a significant impact onR0. To
decrease β, effort is needed to prevent susceptible populations from becoming TB latent
populations. This includes paying attention to personal protection, accepting TB treatment
and prevention education, avoiding unhealthy living habits, and more. The treatment
rate γ exerts a significant influence onR0. To increase γ, efforts are needed to expand the
coverage of TB treatment and improve treatment success rates for patients with TB disease.
Therefore, implementing these measures could effectively reduce the TB incidence rate
in China. However, we also found that the waning rate ω of vaccine-induced protection
has no significant effect on R0. We suggest that this does not necessarily mean that the
BCG vaccine has no effect on preventing and controlling TB. The possible reason for this
is that we assumed a fixed efficacy rate for the vaccine in the simulation. If the vaccine’s
effectiveness were improved, it would be possible to significantly reduce the number of
new TB cases. Therefore, the development of novel vaccines is also a focal point for the
goal of TB control.

In this paper, we present an age-structured mathematical model for TB infection based
on the characteristics of TB transmission in order to gain a better understanding of the
spread of TB in China. The aim of our research was to propose control strategies to mitigate
the risk of TB spread. We defined the basic reproduction number R0 and demonstrated
that it is the key determinant of the global dynamics in our proposed model. Based on
annual data on TB in China collected from 2007 to 2020, we estimated the model parameters
and calculated the PRCC between these parameters and the basic reproduction number
R0. From the PRCC values, we can see that δ(a), β, α, and γ have the most important
influences on R0. In light of the actual controllability, we proposed some measures to
control the spread of TB in China. There are still some deficiencies in our study. Firstly,
we did not take into account the time lag caused by treatment in our modeling, which
may pose great difficulties for the dynamic analysis of the model. Secondly, we did not
consider drug resistance, as the treatment success rate for patients with drug resistance is
significantly lower. Thirdly, the distributions of δ(a) and σ(a) are based on our hypothesis
and will be studied further when relevant data become publicly available.
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Abstract: We show the existence of complex dynamics for a seasonally perturbed version of the
Goodwin growth cycle model, both in its original formulation and for a modified formulation,
encompassing nonlinear expressions of the real wage bargaining function and of the investment
function. The need to deal with a modified formulation of the Goodwin model is connected with
the economically sensible position of orbits, which have to lie in the unit square, in contrast to
what occurs in the model’s original formulation. In proving the existence of chaos, we follow the
seminal idea by Goodwin of studying forced models in economics. Namely, the original and the
modified formulations of Goodwin model are described by Hamiltonian systems, characterized by
the presence of a nonisochronous center, and the seasonal variation of the parameter, representing
the ratio between capital and output, which is common to both frameworks, is empirically grounded.
Hence, exploiting the periodic dependence on time of that model parameter we enter the framework
of Linked Twist Maps. The topological results valid in this context allow us to prove that the Poincaré
map, associated with the considered systems, is chaotic, focusing on sets that lie in the unit square,
and also when dealing with the original version of the Goodwin model. Accordingly, the trademark
features of chaos follow, such as sensitive dependence on initial conditions and positive topological
entropy.

Keywords: Goodwin growth cycle model; nonisochronous center; parameter seasonal perturbation;
linked twist maps; chaotic dynamics

MSC: 34C28; 91B55

1. Introduction

In the last years of his research activity, Goodwin in [1] studied, by means of numerical
experiments, what can be obtained by the superimposition of exogenous cycles to cycles
endogenously generated by a model, focusing, in particular, on the one by Rössler [2],
and concluding that, “At this point it becomes appropriate to consider the relevance, if any, that
these forced models have to economics. The answer is not difficult to find: the economy consists of
a very large number of separate and distinct parts, with the result that these parts are subject to
continual exogenous forces. To begin with there are the individual national economies increasingly
acted on by the movements of the world economy. Then within the economy there are various
markets with dynamics particular to them. There is the annual solar cycle with its influence on
various markets, for example the agricultural, the touristic, the fuel, and any number of others” ([1],
pp. 121–123).

Taking inspiration from such considerations, we investigate the effect produced on the
dynamics of both the original version and a modified formulation of his celebrated growth
cycle model (see [3,4]) (The interested reader can find in [5] a survey on the vast literature
about the Goodwin model, concerning possible extensions or modifications of the original
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setting, in [3,4]), by the exogenous periodic variation in one of the model parameters, the
seasonal oscillation of which is empirically grounded.

We recall that the Goodwin model represents, in Goodwin’s own words, a “starkly
schematized”, yet incisive, manner, the relationships between capitalists and workers.
The need to deal with a modified formulation of the growth cycle model comes from
the fact that the original formulation, proposed in [3,4], is not coherent. Indeed, despite the
linearity of the real wage bargaining function and of the investment function, the original
Goodwin model consists of two nonlinear differential equations of the Lotka–Volterra
type, the variables of which are wage share in national income and proportion of labor
force employed, which, by definition, cannot exceed unit. On the other hand, orbits of the
Goodwin model can lie everywhere in the first quadrant, possibly outside the unit square
(Goodwin was aware of this fact and, indeed, in ([3], p. 57), he wrote “Both u [wage share
in national income] and v [employment proportion] must be positive and v must, by definition,
be less than unity; u normally will be also but may, exceptionally, be greater than unity (wages and
consumption greater than total product by virtue of losses and disinvestment)”). Some contribu-
tions, such as those by Desai et al. [6] and Harvie et al. [7], were devoted to fixing such an
issue in an economically sensible manner. Nonetheless, as shown by Madotto et al. in [8],
those works do not solve the problem with the orbit position, since the assumptions made
in those two papers are not sufficient to guarantee that orbits lie inside the unit square.
Hence, keeping the settings in [6,7] as a starting point, but taking into consideration the
results obtained in [8], we deal here with a different reformulation of the Goodwin growth
cycle model, which, in its outcomes, is consistent with the meanings of the variables and,
in particular, with their admissible ranges. In more detail, in our revisitation of the model,
in regard to the real wage bargaining function, we opt for the nonlinear formulation of
the Phillips curve proposed by Phillips in [9], and considered, for example, in [6]. For the
investment function, we deal with a similar nonlinear formulation, used in the simulative
analysis performed in [8], and satisfying the conditions found in that work, so as to ensure
that orbits lie in the feasible region. We stress that a nonlinear investment function is also
grounded from an economic viewpoint, since, according to [10], followed by [11], it is
suitable to encompass the description of a more flexible savings behavior with respect
to its linear counterpart. Moreover, the nonlinear version of the Phillips curve [9] was
initially considered by Goodwin, too, who then linearized that expression in its well-known
model so as to obtain an approximation for it, “in the interest of lucidity and ease of analysis”
([3], p. 55) (see also [6], p. 2666). Still, the economic interpretation requires the real wage
bargaining function to be increasing in the proportion of labor force employed, while the
investment function has to be decreasing in wage share in the national income.

Since the modified formulation of the Goodwin model that we are going to analyze
fulfills the conditions in [8], we know that, like the original framework in [3,4], it is still
a Hamiltonian system, characterized by the presence of a global, nonisochronous center.
Hence, in order to analytically show the dynamic consequences produced on its periodic
orbits by the exogenous periodic variation in one of the model parameters, we use the
Linked Twist Maps (LTMs, hereinafter) method, recently employed, for instance, in [12] to
show the existence of complex dynamics in two evolutionary game theoretical contexts.
In particular, we assume that the chosen parameter alternates in a periodic fashion between
two different values, e.g., due to a seasonal effect, and this allows us to prove the existence
of chaotic dynamics. In order to make our choice empirically grounded, we focus on
the parameter that describes the ratio between capital and output, since, keeping the
capital level constant, production is no doubt influenced by phenomena that are periodic
in nature. We can, for instance, take into consideration the oscillatory behavior during
the solar year of the energy price in electricity markets in consequence of the varying
demand over the months, as investigated, for example, in [13,14], or the different supply
in the agricultural commodity markets in various seasons. We stress, however, that the
same assumption about a periodic variation between two different values made on any
other model parameter would produce analogous results in terms of generated dynamics,
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since all parameters influence the center position (We remark that this is a sufficient, albeit
not necessary, condition in order to apply the LTMs method whenever we deal with a
nonisochronous center, as long as the switching times between the regimes described by
the two different parameter values are large enough. As shown, for example, in [12,15],
the LTMs technique can be used even when, in consequence of the periodic perturbation of
one of the model parameters, the center position does not vary, but the shape of the orbits
is modified in a suitable manner).

In order to explain the LTMs technique we need to recall, on the one hand, the original
setting of linked twist maps, as studied, for instance, in [16–18], with the corresponding
assumptions of smoothness, preservation of Lebesgue measure and monotonicity of the
angular speed with respect to the radial coordinate, and, on the other hand, the Stretching
Along the Paths (henceforth, SAP) method, developed in the planar case in [19,20] and
extended to higher dimensional frameworks in [21]. The SAP method is a topological
technique that allows the existence of fixed points, periodic points and chaotic dynamics
for continuous maps that expand the arcs along one direction and that are defined on
sets homeomorphic to the unit cube in Euclidean spaces. The context of LTMs represents
a geometrical framework in which it is possible to employ the SAP method in view of
proving, as done, for example, in [22,23], the presence of the trademark features of chaos,
such as sensitive dependence on initial conditions and positive topological entropy. In more
detail, by a Linked Twist Map we mean the composition of two twist maps, each acting on
an annulus, with the two annuli linked together, i.e., crossing in the two-dimensional case
along two (or more) planar sets homeomorphic to the unit square, that we call generalized
rectangles. Since our approach is purely topological, different from that in [16–18], we just
need a twist condition on the boundary of the two linked annuli, similar to what is required
in the Poincaré-Birkhoff fixed point theorem.

As explained above, in the present paper, we are going to apply the LTMs method to
the original and to the modified formulations of the Goodwin model, that, according to
the findings in [8], are Hamiltonian systems with nonisochronous centers, the position of
the center varying when the value of one of the model parameters changes. In particular,
in both frameworks we act on the ratio between capital and output, since it is sensible
to assume that it alternates, due to a seasonal effect, in a periodic fashion between two
different levels, one of which may be seen as a perturbation of the other. In this manner,
starting either from the original or the modified formulation of the Goodwin model, we
obtain two conservative systems, the unperturbed and the perturbed ones, and for each
system we can consider an annulus made of energy level lines. Under suitable conditions,
the orbits the two annuli are linked together, crossing in two disjoint generalized rectangles.
In our settings, the LTMs technique consists of finding two such linked annuli, having
intersections containing chaotic sets. Their existence is established by applying the SAP
method to the Poincaré map obtained as composition of the Poincaré maps associated with
the unperturbed system and the perturbed one. This leads us to work with discrete-time
dynamical systems. Like what has happened in other contexts in which the LTMs method
was used (see e.g., [12,23]), our results about the existence of complex dynamics are robust
with respect to small changes, in L1 norm, in the coefficients of the considered settings.

We stress that the nonisochronicity of the center plays a crucial role in applying the
SAP method, because it implies that the Poincaré maps produce a twist effect on the linked
annuli, since the orbits composing them are run with a different speed. In this manner,
the generalized rectangles, where the annuli meet, are increasingly deformed with the
passing of time. Hence, if the regimes governed by the unperturbed system and by the
perturbed one are sufficiently long-lasting, the Poincaré maps transform the generalized
rectangles into spiral-like sets, that intersect the same generalized rectangles many times,
so that the stretching property required by the SAP method, in order to guarantee the
existence of chaotic sets inside the generalized rectangles, is fulfilled.

Regarding the nonisochronicity of the center in the settings that we analyze in this
manuscript, for the original formulation proposed in [3,4], we rely on the classical results
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in [24,25] about the monotonicity of the period of orbits for the Lotka–Volterra predator–
prey model with respect to the energy level, since the Goodwin growth cycle model is a
special case of that more general framework. For the modified formulation of the Goodwin
model that we take into account we instead make reference to the findings obtained
in [8] about the period of small and large cycles for a wide class of Hamiltonian systems
encompassing the one here considered. More precisely, although an exhaustive analysis
of the period of the orbits does not seem to be easy to perform, as discussed in [8], due to
the presence of singularities in the model, Madotto et al. proved, on the one hand, that the
approximation of the period length of small cycles by means of the period of the linearized
system is valid near the equilibrium point and, on the other hand, that the period length
of large cycles, approaching the boundary of the feasible set, i.e., the unit square in our
context, is arbitrarily high. In view of illustrating, by means of a concrete example, our
main result about the existence of complex dynamics for the modified formulation of the
Goodwin model, we numerically checked that the periods of the orbits coinciding with
the inner and the outer boundaries of the linked annuli, considered in our example, did
not coincide, finding, in particular, that the period of the orbits increased with the energy
level, in analogy with the classical results in [24,25] for the original formulation of the
Goodwin model. This is in agreement with the simulative experiments performed in [8] for
the same setting that we investigate. Indeed, using a different notation, the framework that
we study has been essentially proposed in (Section 5.3 in [8]) to illustrate the difficulties
which arise when trying to prove that the period map connected with the general class of
Hamiltonian systems analyzed in that paper is increasing, even if the detailed numerical
simulations performed in [8] suggest that the period monotonicity holds true for the system
that we consider.

Hence, our contribution is strongly based, on the one hand, on the results contained
in [8] about the period of cycles of a suitable class of Hamiltonian systems. On the other
hand, our work belongs to the research strand which, starting from [22,23], shows how to
use the LTMs method to prove the existence of complex dynamics in various continuous-
time settings (see e.g., [26–28]). In more detail, the paper that is closest to ours is [23], where
the LTMs method was applied to investigate the dynamical effects produced by a periodic
harvesting in the predator–prey model. Namely, the original formulation of the Goodwin
growth cycle model is a special case of the Lotka–Volterra predator–prey model. However,
our analysis does not coincide with that performed in [23], since, led by the economic
argument about the ratio between capital and output explained above, we perturb in a
periodic fashion a different parameter with respect to [23], and this produces a dissimilar
effect on the center position. Moreover, orbits were run counterclockwise in [23], while
they are run clockwise in the present framework, and this aspect also affects the proof of
our result about LTMs, in which we need to count the laps completed by suitable paths
around the centers.

In addition to the fact that the LTMs method has not been applied to the Goodwin model
yet, two further reasons led us to deal with its original formulation in our investigation.

The first one is to provide robustness to the results that we obtain for the model
modified formulation, which, indeed, in their general conclusions do not depend on the
particular expression of the equations involved, as long as we enter the class of Hamiltonian
systems considered in [8]. Only the kind of geometrical configuration for orbits in the
phase plane, and, thus, the way to use the LTMs method, could vary according to the
formulation of the model equations and on the basis of how they depend on the parameter
that is periodically perturbed. We remark that different nonlinear expressions for the
real wage bargaining function, and for the investment function, could be sensible, as well.
Nonetheless, we chose two formulations that, in addition to having already been considered
in the existing literature, satisfy the conditions found in [8], ensuring that the center is
nonisochronous and that orbits lie in the feasible region, i.e., the unit square, since the state
variables, being wage share in national income and proportion of labor force employed,
can neither be negative, nor exceed unity.
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The second reason for considering the Goodwin original formulation of the growth
cycle model lies in the possibility of showing how to use the LTMs method to prove the
existence of chaotic sets lying inside the unit square, despite the previously mentioned
issue with the orbit position in the original Goodwin setting. Namely, the chaotic sets
are contained in the detected pair of linked annuli, that jointly constitute an invariant
set under the action of the Poincaré map obtained as composition of the Poincaré maps
associated with the unperturbed system and the perturbed one, since each annulus, being
made of periodic orbits, is invariant under the action of the Poincaré map describing the
corresponding regime. Choosing linked together annuli contained in the unit square solves
the problem. As our illustrative examples show, this can be done even when dealing
with parameter configurations analogous to those considered in [6,7]. We stress that the
issue with the orbit position did not occur in [23], since the variables in the original Lotka–
Volterra model, describing the size of prey and predator populations, are not confined to
lying in the unit square.

The remainder of the paper is organized as follows. In Section 2, we recall the original
formulation of the Goodwin growth cycle model and we explain how to apply the LTMs
method in such a context, highlighting the differences with [23]. In Section 3, we introduce
the modified formulation of the Goodwin model, for which we check the existence of chaotic
dynamics by means of the LTMs technique. In Section 4, we recall the definitions and the
results connected with the LTMs method used in the preceding sections. In Section 5, we
conclude. Appendix A contains the mathematical proof of our results, as well as some
related comments.

2. The LTMs Method for the Goodwin Model Original Formulation

Following Goodwin’s seminal idea in [1], of studying forced models in economics,
we apply the Linked Twist Maps (henceforth, LTMs) method, the main features of which
are described in Section 4, to his celebrated growth cycle model, in order to show the
effects produced on its dynamics by the exogenous periodic variation in one of the model
parameters, the seasonal oscillation of which is empirically grounded.

We start by briefly recalling the model’s original formulation proposed in [3,4].
Denoting by u(t) ∈ [0, 1] the wage share in national income and by v(t) ∈ [0, 1] the

employment proportion, the Goodwin model reads as




u′ = u(−(α + χ) + ρv)

v′ = v
(
−(α + β) + 1−u

σ

) (1)

where all parameters are positive and, in particular, α is the exogenous labor productivity
growth rate, β is the exogenous labor force growth rate, σ is the capital–output ratio, while
χ and ρ characterize the real wage growth rate, which is of the form −χ + ρv., We stress
that, rather than χ, the symbol γ is generally used in the Goodwin model. However, we
preferred to save γ to denote paths (see e.g., Definition 2) in agreement with the existing
literature on the SAP method. The first equation in (1) derives from Goodwin’s linearized
version of the Phillips curve [9] in real wages (see the first equation in (9) for its nonlinear
formulation). We refer the interested reader to [6] for the derivation of the second equation,
based on the assumptions that capitalists reinvest all profits and workers consume all
wages, and to [6,7] for further details on the model.

Although state variables, due to their meanings, can neither be negative nor exceed
unity, the latter condition is not guaranteed by (1). Namely, those equations describe a
conservative system with closed orbits lying everywhere in the first quadrant of R2 and
surrounding the center

P =

(
1− σ(α + β) ,

α + χ

ρ

)
.
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We stress that P lies in the unit square when

σ <
1

α + β
, α + χ < ρ . (2)

The origin O = (0, 0) is an equilibrium, being a saddle. As it is immediate to check,
System (1) is a special case of the Lotka–Volterra predator–prey model (see e.g., [29])

{
x′ = x(a− by)

y′ = y(−c + dx)
(3)

where u(t) corresponds to y(t) and v(t) corresponds to x(t), even if x(t) and y(t) are not
confined to lie in [0, 1], since they are non-negative variables describing the size of the prey
and of the predator populations, respectively. In particular, as in [23], we focused only
on x(t) > 0 and y(t) > 0, being therein interested in dynamic outcomes characterized
by the coexistence between prey and predator. In what follows we confine our analysis
to positive values of u(t) and v(t). Specifically, System (3) describes the twofold, at one
time beneficial and detrimental, nature of the interactions between predators and preys.
Similarly, the Goodwin model schematically represents the involved relationship between
capitalists and workers, with the wage share in national income being the predator variable
and the employment proportion being the prey.

Both (1) and (3) describe Hamiltonian systems. In the former case, orbit equations are
given by

E(u, v) =
u
σ
−
(

1
σ
− α− β

)
log(u) + ρv− (α + χ) log(v) = `,

for some ` ≥ `0, where `0 is the minimum energy level attained by E(u, v) on the open unit
square (0, 1)2, i.e., `0 = E(P). Notice that, under (2), the minimum level attained by E(u, v)
on (0, 1)2 coincides with the minimum level attained on (0,+∞)2, since we assume that
P ∈ (0, 1)2. Moreover, the period of the orbits of System (1) increases with the energy level,
due to the possibility of relying on the classical results in [24,25] on the monotonicity of
the period of the orbits for the Lotka–Volterra predator–prey model in (3). On the other
hand, contrary to what happens with System (3), orbits for System (1) are run clockwise,
as the analysis of the phase portrait shows. This is due to the fact that, as observed above,
comparing Systems (1) and (3), u(t) corresponds to y(t) and v(t) corresponds to x(t).

While Goodwin investigated, by means of numerical experiments in [1], the dynamic
outcomes that can be obtained by superimposing exogenous cycles to cycles endogenously
generated by a model, we analytically show the effect produced on the periodic orbits of
System (1) by the exogenous periodic variation in one of the model parameters. In view of
making our choice empirically grounded, we focus on σ, i.e., the capital–output ratio, since,
keeping the capital level constant, production is certainly influenced by phenomena that
are periodic in nature. We can, for example, consider the oscillatory behavior during the
solar year of the energy price in electricity markets in consequence of the varying demand
over the months, or the different supply in the agricultural commodity markets in the
various seasons. To fix ideas, we concentrate on the second phenomenon, since it is clear
that north of the equator, for instance, in Europe and in the United States, supply in the
agricultural commodity markets is larger from April to October than during the remaining
part of the year. Hence, for the capital–output ratio σ we can assume a periodic alternation
between a higher value, that we call σ(I), referring to fall and winter, and a lower value,
which may be seen as a perturbation of the former, that we call σ(I I), referring to spring
and summer (In regard to seasonal variations in demand and energy price in electricity
markets, according to [14], which refers to [13], “Cycles and seasonality have for a long time
been observed in electricity markets. There are hourly, daily, weekly, and seasonal fluctuations in
prices and demand”. See also [30] for a seasonal electricity demand and pricing analysis). We
stress, however, that a similar assumption about a periodic variation made on any other
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model parameter would produce analogous results in terms of generated dynamics, since
all parameters affect, in some way, the center position.

Supposing then that the capital–output ratio alternates between σ(I), for t ∈ [0, T(I)),
and σ(I I), for t ∈ [T(I), T(I) + T(I I)), with σ(I) > σ(I I), and that the same alternation
between the two regimes recurs with T-periodicity, where T = T(I) + T(I I), we can assume
that we are dealing with a system with periodic coefficients of the form





u′ = u(−(α(t) + χ(t)) + ρ(t)v)

v′ = v
(
−(α(t) + β(t)) + 1−u

σ(t)

) (4)

where

k(t) ≡ k, for k ∈ {α, β, χ, ρ}, and σ(t) =

{
σ(I) for t ∈ [0, T(I))

σ(I I) for t ∈ [T(I), T)
(5)

with
0 < σ(I I) < σ(I) <

1
α + β

, α + χ < ρ (6)

as a consequence of (2). The function σ(t) is supposed to be extended to the whole real line
by T-periodicity.

When the capital–output ratio takes value σ(i), and, thus, we are in the regime
having dynamics governed by the system that we call (i), the center coincides with
P(i) =

(
1− σ(i)(α + β), α+χ

ρ

)
, for i ∈ {I, I I}. Notice that, passing from P(I) to P(I I), the

ordinate of the center does not change, while its abscissa rises. In regard to orbits, they are
closed for both Systems (I) and (I I), surrounding P(I) and P(I I), respectively, and they are
run clockwise. In the former case, orbits have equation

E(I)(u, v) =
u

σ(I)
−
(

1
σ(I)
− α− β

)
log(u) + ρv− (α + χ) log(v) = `, (7)

for some ` ≥ `
(I)
0 , while, in the latter case, orbits have equation

E(I I)(u, v) =
u

σ(I I)
−
(

1
σ(I I)

− α− β

)
log(u) + ρv− (α + χ) log(v) = h, (8)

for some h ≥ h(I I)
0 , where `(I)

0 and h(I I)
0 are the minimum energy levels attained by E(I)(u, v)

and E(I I)(u, v) on (0, 1)2, respectively, i.e., `(I)
0 = E(I)(P(I)) and h(I I)

0 = E(I I)(P(I I)).

The sets Γ(I)(`) = {(u, v) ∈ (0,+∞)2 : E(I)(u, v) = `}, for ` > `
(I)
0 , are simple

closed curves surrounding P(I), while Γ(I I)(h) = {(u, v) ∈ (0,+∞)2 : E(I I)(u, v) = h}, for
h > h(I I)

0 , are simple closed curves surrounding P(I I). We call an annulus around P(I) System

(I) any set C(I)(`1, `2) = {(u, v) ∈ (0,+∞)2 : `1 ≤ E(I)(u, v) ≤ `2} with `
(I)
0 < `1 < `2,

having an inner boundary coinciding with Γ(I)(`1), and an outer boundary coinciding
with Γ(I)(`2). Similarly, we call an annulus around P(I I) System (I I) any set C(I I)(h1, h2) =

{(u, v) ∈ (0,+∞)2 : h1 ≤ E(I I)(u, v) ≤ h2} with h(I I)
0 < h1 < h2, having an inner boundary

coinciding with Γ(I I)(h1) and an outer boundary coinciding with Γ(I I)(h2). In particular,
we are interested in annuli for Systems (I) and (I I) contained in (0, 1)2, due to the meaning
of variables u and v. This configuration is achieved by choosing annuli whose outer (and
consequently, inner) boundary set lies sufficiently close to the corresponding center, i.e., for
low enough values of the energy levels `2 > `

(I)
0 and h2 > h(I I)

0 (see, e.g., Figure 1).
In view of providing conditions of the energy levels that ensure that two annuli are

linked together, thus, crossing in two disjoint generalized rectangles (see Section 4 for the
corresponding definition), let us consider the straight line r joining P(I) and P(I I), having
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equation v = (α + χ)/ρ, the ordering inherited from the horizontal axis, so that, given the
points R = (uR, v∗) and S = (uS, v∗) belonging to r, and hence with v∗ = (α + χ)/ρ, it
holds that R C S (resp. R E S) if and only if uR < uS (resp. uR ≤ uS). We are now in a
position to introduce the following:

Definition 1. Given the annulus C(I)(`1, `2) around P(I) and the annulus C(I I)(h1, h2) around
P(I I), we say that they are linked together if

P(I)
2,− C P(I)

1,− E P(I I)
2,− C P(I I)

1,− E P(I)
1,+ C P(I)

2,+ E P(I I)
1,+ C P(I I)

2,+

where, for j ∈ {1, 2}, P(I)
j,− and P(I)

j,+ denote the intersection points between Γ(I)(`j) and the straight

line r, with P(I)
j,− C P(I) C P(I)

j,+, and, similarly, P(I I)
j,− and P(I I)

j,+ denote the intersection points

between Γ(I I)(hj) and r, with P(I I)
j,− C P(I I) C P(I I)

j,+ .

(A) (B)

Figure 1. In (A) we draw in green some energy level lines associated with System (I), surrounding
P(I), and in gray some energy level lines associated with System (I I), surrounding P(I I), together
with the corresponding phase portrait. In (B), we illustrate Definition 1, showing how to obtain two
linked together annuli by suitably choosing two level lines for each system. In particular, we call
C(I)(`1, `2), C(I I)(h1, h2) the two linked annuli, and A (colored in dark green), B (colored in light
green) the two disjoint generalized rectangles obtained as the intersection between the two annuli.

We stress that, for `j > `
(I)
0 and hj > h(I I)

0 , j ∈ {1, 2}, the boundary sets Γ(I)(`j) and
Γ(I I)(hj) intersect the straight line r in exactly two points, because {(u, v) ∈ (0,+∞)2 :
E(I)(u, v) ≤ `} and {(u, v) ∈ (0,+∞)2 : E(I I)(u, v) ≤ h}, coinciding with the lower contour
sets of the convex functions E(I) in (7) and E(I I) in (8), are star-shaped for all ` > `

(I)
0 and

for every h > h(I I)
0 , respectively. We refer the reader to Figure 1B for a graphical illustration

of Definition 1.
We recall that a geometrical configuration analogous to that depicted in Figure 1B,

except for the need for orbits to lie in the unit square, was found in [28] (cf. Figure 2
therein), where the LTMs method was applied to a periodically forced asymmetric second
order ODE. However, in that case, the abscissa of the center decreased passing from the
unperturbed regime to the perturbed one and the centers of the systems corresponding to
the two regimes were located on the horizontal axis. Although both dissimilarities would
not require the introduction of relevant differences in the statement and proof of the main
result in [28] (cf. Theorem 1.2 therein), in adapting them to our framework, we provide
a slightly more general (In (Theorem 1.2 in [28]) the special case of Proposition 1 with
m(I) = m ≥ 2 and m(I I) = 1 considered) version of (Theorem 1.2 in [28]) in Proposition 1,
together with a complete proof (contained in the Appendix A) for the reader’s convenience.

To achieve such an aim, in addition to exploiting the tools recalled in Section 4 and,
in particular, the stretching relation in (16), we need to introduce the Poincaré map Ψ
of System (4), which associates with any initial condition (u0, v0) belonging to (0,+∞)2
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the position at time T of the solution ς( · , (u0, v0)) = (u( · , (u0, v0)), v( · , (u0, v0))) to (4)
starting at time t = 0 from (u0, v0). In symbols, Ψ : (0,+∞)2 → (0,+∞)2, (u0, v0) 7→
ς(T, (u0, v0)). The paper’s solutions are meant to be considered in the Carathéodory sense,
being absolutely continuous and satisfying the corresponding system for almost every
t ∈ R. We recall that a classical method to show the existence of periodic solutions for
systems of first order ODEs with periodic coefficients is based on the search of the periodic
points for the associated Poincaré map, under the assumption of uniqueness of the solutions
for the Cauchy problems (cf. [31]). Notice that Ψ is a homeomorphism on (0,+∞)2 and that
it may be decomposed as Ψ = Ψ(I I) ◦Ψ(I), where Ψ(I) is the Poincaré map associated with
System (I) for t ∈ [0, T(I)] and Ψ(I I) is the Poincaré map associated with System (I I) for
t ∈ [0, T(I I)]. Moreover, since every annulus C(I)(`1, `2) around P(I) is invariant under the
action of the map Ψ(I), being composed of the invariant orbits Γ(I)(`), for ` ∈ [`1, `2], and,
similarly, since every annulus C(I I)(h1, h2) around P(I I) is invariant under the action of the
map Ψ(I I), it holds that every pair of linked together annuli is invariant under the action
of the composite map Ψ. In Proposition 1 we denote τ(I)(`), for all ` > `

(I)
0 , the period of

Γ(I)(`), i.e., the time needed by the solution ς(I)( · , (u0, v0)) to System (I), starting from any
(u0, v0) ∈ Γ(I)(`), to complete one turn around P(I) moving along Γ(I)(`), and by τ(I I)(h),
for all h > h(I I)

0 , the period of Γ(I I)(h), i.e., the time needed by the solution ς(I I)( · , (u0, v0))

to System (I I), starting from any (u0, v0) ∈ Γ(I I)(h), to complete one turn around P(I I)

moving along Γ(I I)(h). Orbits surrounding either P(I) or P(I I) are run clockwise and τ(I)( · )
and τ(I I)( · ) are monotonically increasing with the energy levels, since both features are
fulfilled for System (1), as remarked above. Hence, for any annulus C(I)(`1, `2) around P(I)

it holds that τ(I)(`1) < τ(I)(`2), as well as for each annulus C(I I)(h1, h2) around P(I I) it
holds that τ(I I)(h1) < τ(I I)(h2).

Our result in regard to System (4) reads as follows:

Proposition 1. For any choice of the positive parameters α, β, χ, ρ, σ(I), σ(I I) satisfying (6),
given the annulus C(I)(`1, `2) around P(I), for some `(I)

0 < `1 < `2, and the annulus C(I I)(h1, h2)

around P(I I), for some h(I I)
0 < h1 < h2, assume that they are linked together, calling A and B

the connected components of C(I)(`1, `2) ∩ C(I I)(h1, h2). Then, for every m(I) ≥ 1 and m(I I) ≥ 1
with m = m(I)m(I I) ≥ 2 there exist two positive constants t(I) = t(I)(m(I), τ(I)(`1), τ(I)(`2))
and t(I I) = t(I I)(m(I I), τ(I I)(h1), τ(I I)(h2)) such that if T(i) > t(i), for i ∈ {I, I I}, the Poincaré
map Ψ = Ψ(I I) ◦Ψ(I) of System (4) induces chaotic dynamics on m symbols in A and in B, and
all the properties listed in Theorem 1 are fulfilled for Ψ.

According to Proposition 1, whenever we have two linked together annuli related
to Systems (I) and (I I), if the switching times between the regimes described by those
two systems are large enough, then the Poincaré map Ψ = Ψ(I I) ◦ Ψ(I) induces chaotic
dynamics on m ≥ 2 symbols in the sets in which the two annuli intersect. As is clear
from the proof of Proposition 1 (see the Appendix A), chaotic behavior is generated by
the twist effect produced on the linked annuli by the different speeds with which their
inner and outer boundary sets are run. Namely, after a long enough time, this twist effect
suffices to make the image through Ψ(I) and Ψ(I I) of the paths joining the inner and the
outer boundary sets of the annuli spiral inside them and cross many times the intersection
sets A and B between the linked annuli. In this manner, Ψ satisfies the stretching relation
described in Theorem 1 and, thus, all properties listed therein hold true for the composite
Poincaré map.

We further notice that, under the assumptions in (6), which ensure that the centers
of Systems (I) and (I I) belong to the open unit square, when applying Proposition 1
to linked annuli, having inner and outer boundary sets lying sufficiently close to the
centers, i.e., for low enough values of the energy levels `2 > `1 > `

(I)
0 and h2 > h1 >

h(I I)
0 , the chaotic invariant sets contained in A and in B lie in the open unit square, too.

The same is true not only for the chaotic sets, but for a whole pair of linked annuli when the
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outer boundary sets Γ(I)(`2) and Γ(I I)(h2) are contained in (0, 1)2. Figure 1A shows this
happening, where the parameter values are α = 0.03, β = 0.01, χ = 0.63, ρ = 0.7, σ = 3.
We stress that such parameter configuration is analogous to that considered in ([7], p. 77).
The parameters in Figure 1A are similar to the those in ([6], p. 2668), where the authors
set α = 0.001, β = 0.001, χ = 0.95, ρ = 1, σ = 3. In the works mentioned, the symbol
γ was used instead of χ. α = 0.02, β = 0.01, χ = 0.6, ρ = 0.7, σ(I) = 3, σ(I I) = 2.5, so
that P(I) = (0.910, 0.886) and P(I I) = (0.925, 0.886). In particular, as shown in Figure 1B,
we obtain two linked together annuli C(I)(`1, `2) and C(I I)(h1, h2), contained in (0, 1)2

and crossing in the two disjoint generalized rectangles denoted by A and B, e.g., for
`1 = 1.0274, `2 = 1.0276, h1 = 1.0943, h2 = 1.0946.

Indeed, despite the previously recalled issue (see (2) and the lines above it) with the
orbit position for the original formulation of the Goodwin model in (1), every annulus
around P(i) for System (i), with i ∈ {I, I I}, being made of periodic orbits, is invariant
under the action of the Poincaré map Ψ(i). Consequently, each pair of linked annuli jointly
constitutes an invariant set under the action of the composite Poincaré map Ψ = Ψ(I I) ◦Ψ(I),
so that, even for System (1), the LTMs method allows the detection of complex dynamics
that are consistent from an economic viewpoint.

Nonetheless, in Section 3 we introduce and analyze a modified formulation of the
Goodwin growth cycle model (cf. (9)), whose orbits are all contained in the unit square,
since the necessary and sufficient conditions found in [8] are fulfilled.

Before turning to that new framework, we stress that, like (Theorem 1.2 in [28]),
Proposition 1 is also robust with respect to small changes, in L1 norm, in the coefficients of
System (4). Namely, from the proof of Proposition 1 it follows that, if T(I) and T(I I) satisfy
the conditions described in its statement, then, recalling System (4) and the definition of
its coefficients in (5), there exists a positive constant ε, such that the same conclusions of
Proposition 1 hold true for the system





u′ = u(−(ᾰ(t) + χ̆(t)) + ρ̆(t)v)

v′ = v
(
−(ᾰ(t) + β̆(t)) + 1−u

σ̆(t)

)

with ᾰ, β̆, χ̆, ρ̆, σ̆ : R→ R being T-periodic functions with T = T(I) + T(I I), as long as

∫ T

0

∣∣ k̆(t)− k
∣∣ dt < ε, for k ∈ {α, β, χ, ρ},

and ∫ T

0

∣∣ σ̆(t)− σ(t)
∣∣ dt =

∫ T(I)

0

∣∣ σ̆(t)− σ(I)∣∣ dt +
∫ T

T(I)

∣∣ σ̆(t)− σ(I I)∣∣ dt < ε.

Due to the similar arguments that are needed in its proof, Proposition 2, i.e., the main
result that we present in Section 3 about the Goodwin model modified formulation, is also
robust with respect to small changes in the coefficients of System (13), in L1 norm.

We conclude the present section by recalling that, in [23], the LTMs method was
applied to the Lotka–Volterra System (3) under the assumption of a periodic harvesting, that
perturbed the center position, causing an alternation for it between two points. However,
since in [23] it was supposed that not only prey, but also predators decrease in number
during the harvesting season, then both coordinates of the center change in that framework.
Furthermore, orbits of System (3) are run counter-clockwise, rather than clockwise, like
happens with the orbits of System (1), and, thus, the definition of the rotation number used
in [23] does not coincide with that employed in the proof of Proposition 1 (cf. (A3) and (A4)).
Those two differences between [23] and the above described context pushed us to provide
a specific, complete presentation in the here analyzed setting of the LTMs method, and
in its application to (1) in Proposition 1. Indeed, as recently shown in [12], the way in
which the LTMs method can be used depends on the meaning attached to the variables
and parameters of the considered model. Moreover, the detailed presentation of the LTMs
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method provided above is useful in view of Section 3, too, where it suffices for us to focus
on the main steps, highlighting the dissimilarities with what we have already explained.

3. The Goodwin Model Modified Formulation

Rather than dealing with the linear expressions for the real wage bargaining function
and for the investment function seen in Section 2, we now consider a modified formulation
of such a setting, motivated by the issue with the orbit position in the original Goodwin
model [3].

In regard to the real wage bargaining function, the most natural choice is given by the
Phillips nonlinear specification in [9], even for real, rather than money, wages (cf. the first
equation in System (9)). This was indeed what Goodwin initially assumed, before lineariz-
ing the Phillips curve so as to obtain the first equation in (1) as an approximation (see [3],
p. 55). We recall that the nonlinear formulation of the Phillips curve in [9] was considered by,
for example, by Desai et al., in [6], in their attempt to guarantee that the orbits of the growth
cycle model lay inside the unit square. On the other hand, as shown by Madotto et al.
in [8], the attempt by Desai et al. in [6] was not successful in fixing the problem with the
orbit position because of their choice of the investment function (cf. Equation (10) in [6],
page 2667), that describes a framework in which capitalists, depending on profitability, do
not necessarily invest all profits. We stress that in [8] it is proven that even the modified
version of the Goodwin model proposed by Harvie et al. in [7], does not ensure that orbits
lie inside the unit square. In order to avoid similar issues, for the investment function
we considered a nonlinear formulation (see the second equation in System (9)) satisfying
the conditions found in [8], and that are recalled below, so as to guarantee that orbits
lay in the feasible region. In more detail, for the investment function we dealt with the
formulation used in the simulative analysis performed in (Section 5.3 in [8]). We underline
that a nonlinear investment function is grounded also from an economic viewpoint, since,
according to [10], followed by [11], it is suitable to describe more flexible savings behavior.
Still, the economic interpretation requires the real wage bargaining function to increase in
proportion to the labor force employed, while the investment function has decrease in the
wage share in national income.

Since the modified formulation of the Goodwin model in (9), that we analyze sat-
isfies the conditions in [8], we know that, like the original framework in [3,4], it is still
a Hamiltonian system characterized by the presence of a global, nonisochronous center.
Hence, in order to analytically show what the dynamic consequences produced on its
periodic orbits by an exogenous periodic variation in one of the model parameters are, we
to use the LTMs method. In particular, in view of making our parameter choice empirically
grounded, due to the same argument explained in Section 2, we focus on the parameter
that describes the ratio between capital and output, assuming that it alternates in a periodic
fashion between two different values, due, for example, to a seasonal effect. This allows
us to prove the existence of chaotic dynamics for System (13), i.e., the analog of System (4)
obtained from (9). Nonetheless, as explained in Section 2, assuming a periodic variation
on any other model parameter would lead to analogous conclusions about the system’s
dynamic behavior, since the center position is influenced by all parameters.

In symbols, u(t) ∈ [0, 1] still denotes the wage share in national income and v(t) ∈ [0, 1]
the employment proportion, our modified formulation of the Goodwin model reads as





u′ = u
(
−(χ + α) + ρ

(1−v)δ

)

v′ = v
(
−(α + β) + 1

σ

(
c− η

(1−u)µ

)) (9)

where all parameters are positive and, in addition to α, β and σ, that still describe the
exogenous labor productivity growth rate, the exogenous labor force growth rate and
the capital–output ratio, respectively, we have χ, ρ and δ characterizing the real wage
growth rate, which, in agreement with [9], is now in the form −χ + ρ

(1−v)δ , while c, η and µ,
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together with σ, characterize the output growth rate, now formulated as 1
σ

(
c− η

(1−u)µ

)
. In

particular, as in the model’s original version in [3,4], it is assumed that capitalists reinvest
all profits and workers consume all wages.

In addition to the origin O = (0, 0), which is still a saddle, the other equilibrium for
System (9) is given by

P̂ =

(
1−

(
η

c− σ(α + β)

) 1
µ

, 1−
(

ρ

χ + α

) 1
δ

)
,

that belongs to the open unit square (0, 1)2 when

σ <
c− η

α + β
, ρ < χ + α , δ ≥ 1, µ ≥ 1. (10)

In order to ensure that P̂ is a global center for System (9), whose orbits lie in the square
(0, 1)2, which is again the feasible region, due to the meaning of u and v, and in view of
applying someof the results obtained in [8] on the period of orbits, we need to check the
conditions described on p. 778 therein for the general system

{
u′ = u f (u)ψ(v)

v′ = −v g(v) ϕ(u)
(11)

are fulfilled with the considered formulations of the real wage bargaining function and of
the investment function, under the parameter assumptions in (10). When adapted to our
framework, the conditions in [8] require that f , g : (0, 1)→ (0,+∞) are continuous func-
tions and that ϕ, ψ : (0, 1)→ R are C1 maps with positive derivative on (0, 1), satisfying
limu→0+ ϕ(u) ∈ (−∞, 0), limv→0+ ψ(v) ∈ (−∞, 0), limu→1− ϕ(u) > 0, limv→1− ψ(v) > 0.
All this is true in our context, since, setting f (u) = 1, ψ(v) = −(χ + α) + ρ

(1−v)δ , g(v) = 1,

ϕ(u) = (α + β) − 1
σ

(
c− η

(1−u)µ

)
, holds that f , g are continuous maps taking positive

values only and ϕ, ψ are C1 increasing maps in (0, 1), satisfying

limu→0+ ϕ(u) = α + β− 1
σ (c− η) ∈ (−∞, 0),

limv→0+ ψ(v) = −(χ + α) + ρ ∈ (−∞, 0),

limu→1− ϕ(u) = +∞, limv→1− ψ(v) = +∞

under (10). Moreover, setting

A(u) =
∫

ϕ(u)
u f (u)

du =
∫ 1

u

(
(α + β)− 1

σ

(
c− η

(1− u)µ

))
du

and

B(v) =
∫

ψ(v)
vg(v)

dv =
∫ 1

v

(
−(χ + α) +

ρ

(1− v)δ

)
dv, (12)

it holds that

lim
u→0+

A(u) = lim
u→1−

A(u) = lim
v→0+

B(v) = lim
v→1−

B(v) = +∞ ,

as required in [8], too. Hence, System (9) admits Ê(u, v) = A(u) + B(v) as first integral,
having P̂ as minimum point and, according to Theorem 3.1 in [8], its solutions are periodic
and describe closed orbits, contained in the unit square, around P̂, that is a global center.
In symbols, the orbit equations are then given by Ê(u, v) = ` for some ` ≥ ̂̀0, where
̂̀0 = Ê(P̂). Although an exhaustive analysis of the period of the orbits of System (9) seems
not to be easy to perform, as discussed in [8], due to the presence of singularities in the
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model at u = v = 1, Madotto et al. prove useful results about the period of small and large
orbits for System (11).

On the one hand, they show that the approximation of the period length of small
cycles by means of the period of the linearized system is valid near the equilibrium point
(cf. Corollary 5.2 in [8]) and, on the other hand, they prove that the period length of large
cycles, approaching the boundary of the feasible set, is arbitrarily high, in the case when f
and g are, for instance, C1 functions on the open interval (0, 1), that are continuous in 0, too
(cf. Theorem 5.3 in [8]), as happens in our framework. As previously mentioned, in view
of its applying to System (9), or more precisely to (13) below, the method of the LTMs in
some concrete scenarios (cf. Example 1) is used. Firstly, we perturb the center position by
supposing that σ alternates in a periodic fashion between two different levels, due to a
seasonal effect, so as to obtain two conservative systems, for which we can find two linked
together annuli and suitably choose an annulus made of energy level lines for each system.
Then, we numerically check that the periods of the orbits coinciding with the inner and
the outer boundaries of the considered linked annuli do not coincide. Actually, all the
numerical simulations that we performed suggest the increasing monotonicity of the period
of the orbits for System (9) with respect to the energy level, in analogy with the classical
results in [24,25] for the original formulation of the Goodwin model, and in agreement
with the numerical simulations reported in [8], even if, to the best of our knowledge,
a rigorous proof of the period monotonicity for System (9) is not available in the literature.
In fact, using a different, more abstract, notation, such a system was, essentially, proposed
in (Section 5.3 in [8]) to illustrate the difficulties which arise when trying to prove that
the period map connected with the general framework analyzed in that paper, described
by (11), was increasing. The detailed numerical investigations performed in [8] suggest
that the desired result holds true for the setting we dealt with, even if the period map had
a different behavior in the four regions, called quadrants in [8], in which the feasible set
(0, 1)2 is split by the horizontal and vertical lines passing through the center P̂. In more
detail, Figures 3–7 in (Section 5.3 in [8]) show that the period is very long and increases
with the energy level in the third quadrant, where both u and v assume low values, while it
decreases in the first quadrant, and is not monotone in the second and fourth quadrants.

Let us assume that the capital–output ratio alternates in a T-periodic fashion between
the same two positive values considered in Section 2, i.e., σ(I) > σ(I I), for the time intervals
t ∈ [0, T(I)) and t ∈ [T(I), T(I) + T(I I)), respectively (Indeed, the values of σ(i) and T(i),
for i ∈ {I, I I}, are determined by the economic features of the capital–output ratio, rather
than by the model formulation. Nonetheless, considering different values for σ(i) and T(i)

with respect to Section 2 would not affect the way in which the LTMs can be applied and
the conclusions that can be drawn, as long as 0 < σ(I I) < σ(I) and T(I), T(I I) are large
enough) with T = T(I) + T(I I), where σ(I I) may be seen as a perturbation of σ(I). We can
then suppose that we are dealing with the following system with periodic coefficients





u′ = u
(
−(χ(t) + α(t)) + ρ(t)

(1−v)δ(t)

)

v′ = v
(
−(α(t) + β(t)) + 1

σ(t)

(
c(t)− η(t)

(1−u)µ(t)

)) (13)

in which κ(t) coincides with κ, for κ ∈ {α, β, χ, c, δ, η, µ, ρ}, σ(t) is as in (5), assuming that
it is extended to the whole real line by T-periodicity, and

0 < σ(I I) < σ(I) <
c− η

α + β
, ρ < χ + α, δ ≥ 1, µ ≥ 1 (14)

as a consequence of (10).
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Calling (Mi), where M stands for “Modified (version of the Goodwin model)”, the sys-
tem that we obtain when the capital–output ratio takes value σ(i), for i ∈ {I, I I}, it is
conservative, with the center coinciding with

P̂(i) =

(
1−

(
η

c− σ(i)(α + β)

) 1
µ

, 1−
(

ρ

χ + α

) 1
δ

)
. (15)

Similar to what happened in Section 2, passing from P̂(I) to P̂(I I), the abscissa of
the center rises, while its ordinate does not change. The orbits of Systems (MI) and
(MII) are closed, surrounding the corresponding center, and a straightforward analysis
of the phase portrait shows that they run clockwise (cf. Figure 2A). Setting A(i)(u) =∫ 1

u

(
(α + β)− 1

σ(i)

(
c− η

(1−u)µ

))
du, for i ∈ {I, I I}, and, recalling the definition of B(v)

in (12), the orbits of Systems (MI) and (MII) have, respectively, equation Ê(I)(u, v) =

A(I)(u) + B(v) = ` for some ` ≥ ̂̀(I)
0 = Ê(I)(P̂(I)) and Ê(I I)(u, v) = A(I I)(u) + B(v) = h

for some h ≥ ĥ(I I)
0 = Ê(I I)(P̂(I I)). The sets Γ̂(I)(`) and Γ̂(I I)(h) can then be defined like in

Section 2 for ` > ̂̀(I)
0 and h > ĥ(I I)

0 , just replacing E(i) with Ê(i) for i ∈ {I, I I}, and they
are still simple closed curves surrounding P̂(I) and P̂(I I), respectively. We can proceed
analogously to Section 2 in defining the annuli Ĉ(I)(`1, `2) around P̂(I), with ̂̀(I)

0 < `1 < `2,

for System (MI) and Ĉ(I I)(h1, h2) around P̂(I I), with ĥ(I I)
0 < h1 < h2, for System (MII),

too. Notice, however, that, differing from Section 2, we do not need to consider energy
levels close to ̂̀(I)

0 and ĥ(I I)
0 to have annuli for Systems (MI) and (MII) contained in

(0, 1)2, thanks to the above recalled results obtained in [8] (cf. in particular Theorem 3.1
therein). Due to the similar effect produced by a variation in σ on the center position for
Systems (1) and (9), the definition of linked together annuli in the new context is analogous
to that introduced in Definition 1 as well, being based on the same ordering relation C,

this time on the straight line r̂ joining P̂(I) and P̂(I I), which has equation v = 1−
(

ρ
χ+α

) 1
δ .

See Figure 2B for a graphical illustration of two linked annuli Ĉ(I)(`1, `2) and Ĉ(I I)(h1, h2)
for System (13). We stress that in the present framework their boundary sets Γ̂(I)(`j) and
Γ̂(I I)(hj), with j ∈ {1, 2}, also intersect the straight line r̂ in exactly two points because
the functions Ê(I) and Ê(I I) are convex. Namely, their second derivative is non-negative
under (14) because (1 − z)ν > (1 − z(ν + 1)), ∀z ∈ [0, 1], ∀ν > 0, where, in our case,
z ∈ {u, v} and ν ∈ {µ + 1, δ + 1}, respectively.

(A) (B)

Figure 2. In (A) we draw in brown some energy level lines associated with System (MI), around P̂(I),
and in magenta some energy level lines associated with System (MII), around P̂(I I), also showing the
corresponding phase portrait. In (B), we illustrate two linked together annuli, that we call Ĉ(I)(`1, `2)

and Ĉ(I I)(h1, h2), obtained by suitably choosing two level lines for each system, as well as the two
disjoint generalized rectangles D (colored in dark orange) and E (colored in light orange) where the
annuli meet.
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In view of stating our result about System (13) (cf. Proposition 2 below), for which
we do not provide a proof, due to its similarity with the verification of Proposition 1,
we introduce the Poincaré map Ψ̂ associated with System (13), that can be decomposed
as Ψ̂ = Ψ̂(I I) ◦ Ψ̂(I), where Ψ̂(I) is the Poincaré map associated with System (MI) for
t ∈ [0, T(I)] and Ψ̂(I I) is the Poincaré map associated with System (MII) for t ∈ [0, T(I I)].
Notice that every pair of linked together annuli for System (13), being made of energy
level lines of Systems (Mi), i ∈ {I, I I}, are invariant under the action of Ψ̂. We denote
by τ̂(I)(`), for all ` > ̂̀(I)

0 , the period of Γ̂(I)(`), and by τ̂(I I)(h), for all h > ĥ(I I)
0 , the

period of Γ̂(I I)(h), recalling that the period of an orbit is the time needed by the solution
to the considered system, starting from a certain point of the orbit, to complete one turn
around the corresponding center, moving around the orbit itself. As discussed above,
the increasing monotonicity of τ̂(I)( · ) and τ̂(I I)( · ) with the energy levels is suggested by
the many simulative experiments that we performed and by the accurate numerical analysis
in (Section 5.3 in [8]), but, to the best of our knowledge, a rigorous proof is not available in
the literature. In the absence of a result showing that the period of orbits of Systems (MI)
and (MII) always increases with energy levels, in Proposition 2 we assume that, given
two linked together annuli for System (13), the period of the orbits composing their inner
boundary is smaller than the period of the orbits composing their outer boundary. The main
difference between Propositions 1 and 2 lies, indeed, in the necessity to exclude in the
latter the fact that the period remains unchanged between the inner and outer boundaries
of the linked annuli, since a variation in the periods is required for the Poincaré map to
produce a twist effect on the annuli, which in turn allows the LTMs method to be applied.
We recall that for System (4) such a variation was granted by the results in [24,25] on the
monotonicity of the period of orbits for the Lotka–Volterra predator–prey model.

Proposition 2. For any choice of the positive parameters α, β, χ, c, δ, η, µ, ρ, σ̂(I), σ̂(I I) satisfy-
ing (14), given the annulus Ĉ(I)(`1, `2) around P̂(I), for some ̂̀(I)

0 < `1 < `2, and the annulus

Ĉ(I I)(h1, h2) around P̂(I I), for some ĥ(I I)
0 < h1 < h2, assume that they are linked together,

calling D and E the connected components of Ĉ(I)(`1, `2) ∩ Ĉ(I I)(h1, h2). Then, if τ̂(I)(`1) <
τ̂(I)(`2), τ̂(I I)(h1) < τ̂(I I)(h2), it holds that for every m̂(I) ≥ 1 and m̂(I I) ≥ 1 with m̂ =
m̂(I)m̂(I I) ≥ 2 there exist two positive constants t̂(I) = t̂(I)(m̂(I), τ̂(I)(`1), τ̂(I)(`2)) and t̂(I I) =
t̂(I I)(m̂(I I), τ̂(I I)(h1), τ̂(I I)(h2)) such that if T(i) > t̂(i), for i ∈ {I, I I}, the Poincaré map
Ψ̂ = Ψ̂(I I) ◦ Ψ̂(I) of System (13) induces chaotic dynamics on m̂ symbols in D and in E , and
all the properties listed in Theorem 1 are fulfilled for Ψ̂.

We remark that the same conclusions in Proposition 2 would also hold true if the
period of the inner boundary were larger (rather than smaller) with respect to the period
of the outer boundary for at least one of the linked together annuli (Notice that, in those
cases, the position of the boundary periods should be exchanged on the denominator of
the fractions defining t̂(I) and/or t̂(I I), which, respectively, coincide with those for t(I)

and t(I I) in the proof of Proposition 1 (see Appendix A), when replacing τ(i) with τ̂(i), for
i ∈ {I, I I}.) In Proposition 2 we chose to focus on the framework in which the period of
the inner boundary is smaller than the period of the outer boundary for both the linked
together annuli, because this is the scenario observed in the numerical experiments in
(Section 5.3 in [8]), as well as in all the simulations that we performed. We find the same
framework in Example 1, that concludes the present investigation of the modified version
of the Goodwin model by illustrating a numerical context, in which Proposition 2 can be
applied to show the existence of chaotic dynamics.

Notice that the parameter configuration considered in Example 1, and in its illus-
tration in Figure 2, coincides with that used to draw Figure 1 in Section 2, as well as
Figures A1 and A2 in Appendix A, except for the parameters c, δ, η and µ, which were not
present in the model’s original formulation in (1), and parameters χ and ρ, whose values
have now been interchanged, in order to satisfy the second condition in (14), i.e., ρ < α + χ,
guarantees that the ordinate of the centers for System (13) lies in the interval (0, 1). Such
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an hypothesis is incompatible with the last condition in (6), which played the same role
in regard to the ordinate of the centers for System (4). Hence, some differences in the
parameter values for the original and the modified versions of the Goodwin model need to
be introduced, but we avoid adding unnecessary ones. In regard to the new parameters
δ and µ, we deal with the same values, i.e., δ = 1 and µ = 1.2, used in the numerical
simulations performed in (Section 5.3 in [8]) where, as already mentioned, the authors
illustrate the issues which arise when trying to prove that the period map connected with
System (9) is increasing, even if numerical evidence of such a conjecture for the above
values of δ and µ. is found. We stress that the case δ = 1 was also considered in [6] (cf.
p. 2668 therein), although in that framework the parameter µ was not present.

Example 1. We take α = 0.02, β = 0.01, χ = 0.7, ρ = 0.6, σ(I) = 3, σ(I I) = 2.5, c =
0.45, η = 0.3, δ = 1, µ = 1.2 and recall (15), System (MI) has a center in P̂(I) = (0.141, 0.167)
while System (MII) has a center in P̂(I I) = (0.170, 0.167).

As shown in Figure 2B, two linked together annuli Ĉ(I)(e1, e2) and Ĉ(I I)(h1, h2) can be
obtained for e1 = 0.8657, e2 = 0.8696, h1 = 0.9865, h2 = 0.9892, intersecting in the two
disjoint generalized rectangles denoted by D and E . Software-assisted computations show that
τ̂(I)(e1) ≈ 111 < τ̂(I)(e2) ≈ 114 and τ̂(I I)(h1) ≈ 89 < τ̂(I I)(h2) ≈ 90. Hence, Proposition 2
guarantees the existence of chaotic dynamics for the Poincaré map Ψ̂ = Ψ̂(I I) ◦ Ψ̂(I) associated with
System (13) provided that the switching times T̂(I) and T̂(I I) are large enough.

4. Recalling the Linked Twist Maps Method

In the present section we briefly recall the planar results of the Linked Twist Maps
(LTMs) method that we used in Sections 2 and 3, referring the interested reader to [22,23]
for further details and to [32] for a three-dimensional version.

Although in the literature different assumptions, connected, for example, with measure
theory and differential calculus, have been made on linked twist maps (see, e.g., [16–18]),
we rely only on topological hypotheses. Indeed, given two annuli crossing along two (or
more) planar sets homeomorphic to the unit square, by means of a linked twist map we
mean the composition of two twist maps, each acting on one of the two annuli, which
are homeomorphisms and that, similar to what is required in the Poincaré-Birkhoff fixed
point theorem, produce a twist effect on the boundary sets of the two annuli, leaving them
invariant. In the applications of LTMs illustrated in the present paper, we analyze Hamilto-
nian systems with a nonisochronous center, the position of which varies when modifying a
parameter for which it is sensible to assume, due to a seasonal effect, a periodic alternation
between two different values, one of which may be seen as a perturbation of the other.
Thanks to this alternation, we obtain two conservative systems with a nonisochronous
center and for each of them we can consider an annulus composed of energy level lines.
Under certain conditions on the orbits, the two annuli cross in two generalized rectangles.
The LTMs method consists in proving the presence of chaotic dynamics for the Poincaré
map obtained as a composition of the Poincaré maps associated with the unperturbed sys-
tem and with the perturbed one, which are homeomorphisms, by checking that they satisfy
suitable stretching relations (cf. conditions (CF) and (CG) in Theorem 1, as well as (16)). We
stress that the nonisochronicity of the centers is crucial in the above described procedure,
because it implies that the orbits composing the linked annuli run with a different speed, so
that the Poincaré maps produce a twist effect on the linked annuli, despite the invariance
of closed orbits under the action of the Poincaré maps.

The stretching relation in (16) is the kernel of the Stretching Along the Paths (hence-
forth, SAP) method, i.e., the topological technique developed in the planar case in [19,20]
and extended to the N-dimensional framework in [21], that allows the existence of fixed
points, periodic points and chaotic dynamics for continuous maps that expand the arcs
along one direction and that are defined on sets homeomorphic to the unit square. We start
by introducing its main aspects, in order to be able to state Theorem 1, so that we can then
more precisely describe what we mean by chaos.
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We call path in R2 any continuous function γ : [0, 1] → R2 and we set γ := γ([0, 1]).
By a generalized rectangle we mean a subsetR of R2 homeomorphic to the unit square [0, 1]2,
through a homeomorphism H : R2 ⊇ [0, 1]2 → R ⊆ R2. We also introduce the left and the
right sides ofR, defined respectively asR−l := H({0} × [0, 1]) andR−r := H({1} × [0, 1]).
We call the pair

R̃ := (R,R−)
an oriented rectangle of R2, whereR− := R−l ∪R−r .

The stretching along the paths relation for maps between oriented rectangles can then be
defined as follows:

Definition 2. Given Ñ := (N ,N−) and Õ := (O,O−) oriented rectangles of R2, let F : N →
R2 be a function and H ⊆ N be a compact set. We say that (H, F) stretches Ñ to Õ along the
paths, and write

(H, F) : Ñ m−→Õ, (16)

if

- F is continuous onH ;
- for every path γ : [0, 1]→ N with γ(0) ∈ N−l and γ(1) ∈ N−r or with γ(0) ∈ N−r and

γ(1) ∈ N−l there exists [t′, t′′] ⊆ [0, 1] such that γ([t′, t′′]) ⊆ H, F ◦ γ([t′, t′′]) ⊆ O, with
F(γ(t′)) ∈ O−l and F(γ(t′′)) ∈ O−r or with F(γ(t′)) ∈ O−r and F(γ(t′′)) ∈ O−l .

We stress that to check the stretching relation in (16) we may need to consider paths
γ : [0, 1] → N with γ(0) ∈ N−r and γ(1) ∈ N−l ; for example, when dealing with the
composition of two functions (like in (17) where Φ := G ◦ F), since the image through the
first map of paths joining the opposite sides of a certain oriented rectangle M̃ from left to
right can connect the sides of N− from right to left through a path that is the starting point
of the second function. Nonetheless in the proof of Proposition 1, contained in Appendix A,
it suffices for us to focus on paths joining the left and the right sides of the generalized
rectangles where the functions start from, since we are not directly dealing with composite
mappings. Namely, thanks to Theorem 1 (cf. in particular (CF) and (CG) therein), in order
to check the existence of chaotic dynamics for the Poincaré map obtained as a composition
of the Poincaré maps associated with the unperturbed Hamiltonian system and with the
perturbed one, we can deal with the two Poincaré maps separately.

Theorem 1. Let F : R2 ⊇ DF → R2 and G : R2 ⊇ DG → R2 be continuous maps defined on the
sets DF and DG, respectively. Let also Ñ := (N ,N−) and Õ := (O,O−) be oriented rectangles
of R2. Suppose that the following conditions are satisfied:

(CF) there are m̂ ≥ 1 pairwise disjoint compact sets H0 , . . . ,Hm̂−1 ⊆ N ∩ DF such that
(Hi, F) : Ñ m−→Õ, for i = 0, . . . , m̂− 1 ;

(CG)there are m̆ ≥ 1 pairwise disjoint compact sets K0 , . . . ,Km̆−1 ⊆ O ∩ DG such that
(Kj, G) : Õ m−→Ñ , for j = 0, . . . , m̆− 1 ;

(Cm)m := m̂ · m̆ ≥ 2 ;
(CΦ)the composite map Φ := G ◦ F is injective on

H∗ :=
⋃

i = 0, . . . , m̂− 1
j = 0, . . . , m̆− 1

H′i,j , with H′i,j := Hi ∩ F−1(Kj) .

Then, setting

X∞ :=
∞⋂

n=−∞
Φ−n(H∗),

there exists a nonempty compact set
X ⊆ X∞ ⊆ H∗
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in which the following properties are fulfilled:

(i) X is invariant for Φ (that is, Φ(X) = X);
(ii) Φ �X is semi-conjugate to the two-sided Bernoulli shift on m symbols, i.e., there exists a

continuous map π from X onto Σm := {0, . . . , m− 1}Z, endowed with the distance

d(s′, s′′) := ∑
i∈Z

|s′i − s′′i |
m|i|+1

,

for s′ = (s′i)i∈Z and s′′ = (s′′i )i∈Z ∈ Σm , such that the diagram

X X

Σm Σm

-Φ

?
π

?
π

-
σ

commutes, i.e., π ◦ Φ = σ ◦ π, where σ : Σm → Σm is the Bernoulli shift defined by
σ((si)i) := (si+1)i, ∀i ∈ Z ;

(iii) the set P of the periodic points of Φ �X∞ is dense in X and the preimage π−1(s) ⊆ X of every
k-periodic sequence s = (si)i∈Z ∈ Σm contains at least one k-periodic point.

Furthermore, from conclusion (ii) it follows that:

(iv)
htop(Φ) ≥ htop(Φ �X) ≥ htop(σ) = log(m),

where htop is the topological entropy;
(v) there exists a compact invariant set Λ ⊆ X, such that Φ|Λ is semi-conjugate to the two-sided

Bernoulli shift on m symbols, topologically transitive and displaying sensitive dependence on
initial conditions.

Proof. The crucial step consists in showing that

(H′i,j, Φ) : Ñ m−→Ñ , i = 0, . . . , m̂− 1, j = 0, . . . , m̆− 1. (17)

See Theorem 3.1 in [33] for a verification of this property in more general spaces for the
case m̂ = m ≥ 2, m̆ = 1. The condition in (17) is then easy to check (cf. Theorem 3.2 in [33]
for a result analogous to ours, which follows as a corollary from Theorem 3.1 therein).

Recalling Definition 2.3 in [33], as a consequence of (17) it holds that Φ induces chaotic
dynamics on m symbols in the set N . Conclusions (i)–(v) then follow by Theorem 2.2 and by
Footnote 4 in [34], where however, the case m = 2 is considered.

In the proof of Theorem 1, we mentioned the concept of a map inducing chaotic
dynamics on m ≥ 2 symbols on a set according to Definition 2.3 in [33]. For brevity’s sake,
we do not go into detail, but stress that such a notion of chaos for the case m = 2 bears
a deep resemblance to the concept of chaos in the coin-tossing sense, discussed in [35];
however, being stronger than it. Namely, in addition to the requirement in [35] that every
two-sided sequence of two symbols is realized through the iterates of the map, jumping
between two disjoint compact subsets, Definition 2.3 in [33] also requires periodic sequences
of symbols to be reproduced by periodic orbits of the map. We refer the interested reader
to [34] for a comparison with other notions of chaos widely considered in the literature.

Notice that, in light of Definition 2.3 in [33], we can rephrase the statement of Theorem 1
above by saying that, when conditions (CF), (CG), (Cm) and (CΦ) therein are satisfied,
the composite map Φ = G ◦ F induces chaotic dynamics on m ≥ 2 symbols in N , knowing
that from this fact all the properties listed in Theorem 1 hold true for G ◦ F, in regard to
the existence of periodic points, too. We indeed used such reformulation of Theorem 1 in
Sections 2 and 3 (see, for instance, the statement of Propositions 1 and 2) when dealing with
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the composition of the Poincaré maps associated with unperturbed and with perturbed
Hamiltonian systems.

5. Concluding Remarks

In the present work, following the seminal idea by Goodwin, in [1], that studying
forced models in economics, obtained superimposing exogenous cycles to cycles endoge-
nously generated by a model, we showed the existence of complex dynamics in both the
original version of his celebrated growth cycle model (see [3,4]), and in a modified formula-
tion of it, encompassing nonlinear expressions of the real wage bargaining function and of
the investment function, already considered in the literature. In particular, in regard to the
real wage bargaining function we dealt with the formulation proposed by Phillips in [9],
while for the investment function we used an expression employed in [8]. The need to
consider a modified formulation of the Goodwin model was motivated by the observation
that its original version does not guarantee that orbits lie in the unit square, as they should,
since the state variables are wage share in national income and proportion of labor force
employed, which can neither be negative, nor exceed unity. We, however, underline that
a nonlinear investment function is also grounded from an economic viewpoint, since it
encompasses a description of more flexible savings behavior (cf. [10,11]). Goodwin initially
considered the nonlinear version of the Phillips curve in [9], then linearized it so as to
obtain an approximation “in the interest of lucidity and ease of analysis” ([3], p. 55).

Exploiting, in both the original and the modified settings, the periodic dependence
on time of one of the model parameters and the Hamiltonian structure, characterized
by the presence of a global nonisochronous center, we proved the presence of chaos for
the Poincaré map associated with the considered systems by means of the Linked Twist
Maps (LTMs) method, used, for example, in [22,23]. This led us to work with discrete-time
dynamical systems. We stress that the obtained results, in their general conclusions, do
not depend on the particular expression of the equations involved, as long as the class of
Hamiltonian systems, considered in [8], is entered, for which it is therein proven that the
center is nonisochronous and that orbits lie in the unit square. Concerning the necessary
economic assumptions, we recall that the real wage bargaining function has to increase in
proportion to the labor force employed, while the investment function has to decrease in
wage share in national income.

Despite the issue with the orbit position in the original Goodwin model, even for that
formulation we were able to prove the existence of chaotic sets lying in the unit square,
thanks to the features of the LTMs method. Namely, the chaotic sets are located inside the
generalized rectangular regions obtained as an intersection of the detected pair of linked
annuli, that jointly constitute an invariant set under the action of the composite Poincaré
map. Indeed each annulus, being made of periodic orbits, is invariant under the action of
the Poincaré map describing the corresponding regime. Choosing linked together annuli
contained in the unit square solves the problem. As our illustrative examples showed,
this can be done even when dealing with parameter configurations analogous to those
considered in [6,7].

The seminal idea by Goodwin in [1] of studying forced models in economics has been
recently applied to a three-dimensional setting in [36], where the authors investigated
the implications of describing exports as a function of the capital stock in the framework
introduced in [37], which extended the original Goodwin model in [3] to an open economy
setting that included the balance-of-payments constraint (BoPC) on growth. In more detail,
in agreement with Goodwin’s insight, in [38], that Schumpeterian innovations requiring
investment occur periodically, the authors in [36] added a nonlinear forcing term in the
capital accumulation function and, referring to their Figure 5 on p. 266, say that “In this way,
we obtain a scenario in which a non-linear system with a “natural” oscillation frequency interacts
with an external “force” resulting in a chaotic attractor, as shown in Figure 5. The interplay between
two or more independent frequencies characterizing the dynamics of the system is a well-known
route to more complex behaviour”. It would then be interesting to check whether the LTMs

81



Axioms 2023, 12, 344

method, or, more generally, the SAP (Stretching Along the Paths) technique, on which the
LTMs method is based, could be employed in that setting, too, in order to rigorously prove
the existence of complex dynamics.

In regard to three-dimensional applications of the LTMs technique, we recall [32]
where, dealing with linked together cylindrical sets, the focus was on a 3D non-Hamiltonian
system describing a predator–prey model with a Beddington–DeAngelis functional re-
sponse in a periodically varying environment. Related to this, we also mention the 3D
continuous-time non-Hamiltonian framework representing the Lotka–Volterra model with
two predators and one prey in a periodic environment, considered in [39], for which the
presence of chaos was shown by means of the SAP technique, without relying on LTMs
geometry. Despite such dissimilarity in the employed method, the common starting point
in the proofs of chaos for the frameworks analyzed in [32,39] is given by a study of the
properties of the classical planar Lotka–Volterra system. Since, as we have seen, the Good-
win growth cycle model in [3,4] is a special case of the predator–prey setting, in view of
proving the existence of chaotic phenomena for its 3D extension, proposed in [36], we could
try to apply similar arguments to those used in [32,39]. We will investigate this possibility
in a future work.
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Appendix A. Proof of Proposition 1

Proof of Proposition 1. Given the linked together annuli C(I)(`1, `2) and C(I I)(h1, h2), we
call C(I)

t (`1, `2) (resp. C(I)
b (`1, `2)) the subset of C(I)(`1, `2) which lies above (resp. below)

(Namely, t stands for “top” and b stands for “bottom”) the horizontal line r, joining P(I) and
P(I I); analogously, C(I I)

t (h1, h2) (resp. C(I I)
b (h1, h2)) is the subset of C(I I)(h1, h2) which lies

above (resp. below) r. In this manner it holds that C(I)(`1, `2) = C(I)
t (`1, `2) ∪ C(I)

b (`1, `2)

and C(I I)(h1, h2) = C(I I)
t (h1, h2) ∪ C(I I)

b (h1, h2). Moreover, we introduce the generalized

rectangles A := C(I)
t (`1, `2) ∩ C(I I)

t (h1, h2) and B := C(I)
b (`1, `2) ∩ C(I I)

b (h1, h2). Let us fix
m(I) ≥ 1 and m(I I) ≥ 1 such that m = m(I)m(I I) ≥ 2. We are going to show that, if we
orientate A and B e.g., by setting A− = A−l ∪ A−r and B− = B−l ∪ B−r , with A−l :=
A ∩ Γ(I)(`1), A−r := A ∩ Γ(I)(`2), B−l := B ∩ Γ(I I)(h2), B−r := B ∩ Γ(I I)(h1), then there
exist m(I) ≥ 1 pairwise disjoint compact subsetsH0, . . . , Hm(I)−1 of A such that

(Hi, Ψ(I)) : Ã m−→ B̃, i = 0, . . . , m(I) − 1 (A1)

(cf. Figure A1A for a graphical illustration with m(I) = 1), as well as m(I I) ≥ 1 pairwise
disjoint compact subsets K0, . . . , Km(I I)−1 of B such that

(Kj, Ψ(I I)) : B̃ m−→Ã, j = 0, . . . , m(I I) − 1 (A2)

(see Figure A1B for an illustration with m(I I) = 2). If this is the case, (CF) and (CG) in
Theorem 1 are fulfilled for the oriented rectangles Ã := (A,A−) and B̃ := (B,B−), with
F = Ψ(I) and G = Ψ(I I). Since m = m(I)m(I I) ≥ 2, and (Cm) in Theorem 1 holds true, too,
the Poincaré map Ψ = Ψ(I I) ◦Ψ(I) of System (4) induces chaotic dynamics on m symbols
in A. Recalling that the Poincaré map Ψ is a homeomorphism on (0,+∞)2, and, thus,
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injective and continuous, in particular. on the setH∗ :=
⋃

i = 0, . . . , m(I) − 1
j = 0, . . . , m(I I) − 1

Hi ∩
(

Ψ(I)
)−1

(Kj) ,

also condition (CΦ) in Theorem 1 is satisfied for Φ = Ψ and it is then possible to apply
Theorem 1 to conclude that all the properties listed therein are fulfilled for Ψ.

(A) (B)

Figure A1. In (A), given the linked together annuli C(I)(`1, `2) and C(I I)(h1, h2), we draw in orange

the straight line r joining the centers P(I), P(I I) and separating the top sets C(I)
t (`1, `2), C(I I)

t (h1, h2),

colored, respectively, in green and gray, from the bottom sets C(I)
b (`1, `2), C(I I)

b (h1, h2), colored

respectively in light green and light gray. For A := C(I)
t (`1, `2) ∩ C(I I)

t (h1, h2) and B := C(I)
b (`1, `2) ∩

C(I I)
b (h1, h2), suitably oriented by the choice of their left and right sides, we illustrate in (A) the

condition (A1) with m(I) = 1 and in (B) the condition (A2) with m(I I) = 2.

In view of checking (A1), we introduce a system of polar coordinates (ρ(I), θ(I)) cen-
tered at P(I), so that the solution ς(I)(t, (u0, v0)) = (u(t, (u0, v0)), v(t, (u0, v0))) to System (I) with
initial point in (u0, v0) ∈ (0,+∞)2 can be expressed as ς(I)(t, (u0, v0)) = ‖ς(I)(t, (u0, v0))−
P(I)‖ (cos(θ(I)(t, (u0, v0))), sin(θ(I)(t, (u0, v0)))). Moreover, we define the rotation number, de-
scribing the normalized angular displacement during the time interval [0, t] ⊆ [0, T(I)] of
the solution ς(I)(t, (u0, v0)) as

rot(I)(t , (u0, v0)) :=
θ(I)(0, (u0, v0))− θ(I)(t, (u0, v0))

2π
(A3)

in order to count positive the turns around P(I) in the clockwise sense, since orbits for Sys-
tem (I) are run clockwise. Recalling the definition of τ(I)(`), for ` > `

(I)
0 , as a consequence

of the star-shape with respect to P(I) of the lower contour sets {(u, v) ∈ (0,+∞)2 : E(I) ≤ `},
with E(I) as in (7), we find that the following properties hold true for every (u0, v0) ∈
Γ(I)(`), t ∈ [0, T(I)] and n ≥ 1. Hence, we have rot(I)(t, (u0, v0)) ∈ (n, n + 1) ⇐⇒ t ∈
(n τ(I)(`), (n + 1) τ(I)(`)).

rot(I)(t, (u0, v0)) < n ⇐⇒ t < n τ(I)(`)

rot(I)(t, (u0, v0)) = n ⇐⇒ t = n τ(I)(`)

rot(I)(t, (u0, v0)) > n ⇐⇒ t > n τ(I)(`)

To check (A1), let γ : [0, 1] → A be a generic path with γ(0) ∈ A−l , γ(1) ∈ A−r .
For every λ ∈ [0, 1], we consider Ψ(I)(γ(λ)), i.e., the position at time T(I) of the solution
ς(I)(t , γ(λ)) to System (I) starting at t = 0 from γ(λ) ∈ A, together with the corre-
sponding angular coordinate θ(I)(T(I), γ(λ)). We stress that, due to the continuity of γ
and by the continuous dependence of the solutions from the initial data, the function
λ 7→ θ(I)(T(I), γ(λ)) is continuous, too. Moreover, recalling that τ(I)(`1) < τ(I)(`2) and
A−l ⊂ Γ(I)(`1), A−r ⊂ Γ(I)(`2), we show that if T(I) > t(I) :=

(
m(I) + 7

2

)
τ(I)(`1)τ(I)(`2)

(τ(I)(`2)−τ(I)(`1))
then

θ(I)(T(I), γ(1))− θ(I)(T(I), γ(0)) >
(

2m(I) + 1
)

π.
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If this is true, there exists n∗ ∈ N such that [−2(n∗+ i)π−π,−2(n∗+ i)π] is contained
in the interval {θ(I)(T(I), γ(λ)) : λ ∈ [0, 1]} for i ∈ {0, . . . , m(I) − 1}. Thus, by means of
the Bolzano theorem, there are m(I)pairwise disjoint maximal intervals [λ′i, λ′′i ] of [0, 1]
such that for i ∈ {0, . . . , m(I) − 1} it holds that {θ(I)(T(I), γ(λ)) : λ ∈ [λ′i, λ′′i ]} ⊆ [−2(n∗ +
i)π − π,−2(n∗ + i)π], with θ(I)(T(I), γ(λ′i)) = −2(n∗ + i)π − π and θ(I)(T(I), γ(λ′′i )) =
−2(n∗ + i)π. In order to have the stretching relation (A1) satisfied, we then set Hi :=
{(u0, v0) ∈ A : θ(I)(T(I), (u0, v0)) ∈ [−2(n∗+ i)π−π,−2(n∗+ i)π]} for i ∈ {0, . . . , m(I)−
1}. Indeed, for i ∈ {0, . . . , m(I) − 1},Hi is a compact set containing {γ(λ)) : λ ∈ [λ′i, λ′′i ]}.
Moreover, for i ∈ {0, . . . , m(I) − 1} and λ ∈ [λ′i, λ′′i ], it holds that γ(λ) ∈ Hi, Ψ(I)(γ(λ)) ∈
C(I)

b (`1, `2) and E(I I)(Ψ(I I)(γ(λ′i))) ≥ h2, E(I I)(Ψ(I I)(γ(λ′′i ))) ≤ h1. Hence, there exists
an interval [λ∗i , λ∗∗i ] ⊆ [λ′i, λ′′i ] such that Ψ(I)(γ(λ)) ∈ B for every λ ∈ [λ∗i , λ∗∗i ], and
E(I I)(Ψ(I)(γ(λ∗i ))) = h2, E(I I)(Ψ(I)(γ(λ∗∗i ))) = h1. Since B−l = B ∩ Γ(I I)(h2), B−r = B ∩
Γ(I I)(h1), this means that Ψ(I)(γ(λ∗i )) ∈ B−l and Ψ(I)(γ(λ∗∗i )) ∈ B−r , concluding the
verification of (A1).

We then have to check that, for any path, γ : [0, 1] → A with γ(0) ∈ A−l = A ∩
Γ(I)(`1) and γ(1) ∈ A−r = A ∩ Γ(I)(`2), it holds that T(I) > t(I) then θ(I)(T(I), γ(1)) −
θ(I)(T(I), γ(0)) >

(
2m(I) + 1

)
π. Since rot(I)(t, γ(0)) ≥ bt/τ(I)(`1)c and rot(I)(t, γ(1)) ≤

dt/τ(I)(`2)e for every t > 0, it follows that rot(I)(t, γ(0))− rot(I)(t, γ(1)) ≥ bt/τ(I)(`1)c −
dt/τ(I)(`2)e > t τ(I)(`2)−τ(I)(`1)

τ(I)(`1) τ(I)(`2)
− 2 for every t > 0. Hence, for T(I) > t(I) it holds that

rot(I)(T(I), γ(0))− rot(I)(T(I), γ(1))> T(I) τ(I)(`2)−τ(I)(`1)

τ(I)(`1) τ(I)(`2)
− 2

> m(I) + 7
2 − 2 = m(I) + 3

2 > m(I) + 1.

As a consequence, recalling the definition of rot(I) given in (A3), we have θ(I)(T(I), γ(1))−
θ(I)(T(I), γ(0)) > 2(m(I) + 1)π + θ(I)(0, γ(1))− θ(I)(0, γ(0)). Since γ([0, 1]) ⊂ A := C(I)

t (`1, `2)∩
C(I I)

t (h1, h2), it holds that both θ(I)(0, γ(0)) and θ(I)(0, γ(1)) belong to [0, π], and are, thus,
θ(I)(0, γ(1)) − θ(I)(0, γ(0)) > −π. It follows that θ(I)(T(I), γ(1)) − θ(I)(T(I), γ(0)) >
(2m(I) + 1)π, as needed.

Let us now turn to the proof of the stretching relation in (A2). Due to its similarity
with the verification of (A1), we sketch just the main steps. In this case we consider
the image through Ψ(I I) of any path ω : [0, 1] → B joining B−l with B−r and check
that it completely crosses A, from A−l to A−r , at least m(I I) times when T(I I) > t(I I) :=(

m(I I) + 7
2

)
τ(I I)(h1)τ

(I I)(h2)

(τ(I I)(h2)−τ(I I)(h1))
, recalling that also orbits for System (I I) are run clockwise

and that τ(I I)(h1) < τ(I I)(h2) (see Figure A1B for the case m(I I) = 2). Introducing a system
of polar coordinates (ρ(I I), θ(I I)) centered at P(I I), we can define the rotation number as

rot(I I)(t , (u0, v0)) :=
θ(I I)(0, (u0, v0))− θ(I I)(t, (u0, v0))

2π
(A4)

describing the normalized angular displacement during the time interval [0, t] ⊆ [0, T(I I)]
of the solution ς(I I)(t , (u0, v0)) to System (I I) with initial point in (u0, v0) ∈ (0,+∞)2. As
happened with the proof of (A1), the key step in the verification of (A2) consists in showing
that if T(I I) > t(I I) then θ(I I)(T(I I), ω(1)) − θ(I I)(T(I I), ω(0)) >

(
2m(I I) + 1

)
π. Indeed,

using the Bolzano Theorem, we can conclude that there are m(I I) ≥ 1 pairwise disjoint
compact subsets K0, . . . , Km(I I)−1 of B which satisfy (A2).

Once the validity of (A1) and (A2) is verified, it follows that Ψ = Ψ(I I) ◦ Ψ(I) in-
duces chaotic dynamics in m symbols in A by Theorem 1, together with all the properties
listed therein.
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This concludes the first half of our proof, that is complete when we show that Ψ
induces chaotic dynamics on m = m(I)m(I I) ≥ 2 symbols in B, as well. With this aim
in mind, we can, for example, orientate A by setting A−− = A−−l ∪A−−r , with A−−l :=
A∩ Γ(I I)(h1), A−−r := A∩ Γ(I I)(h2), and B by setting B−− = B−−l ∪ B−−r , with B−−l :=
B ∩ Γ(I)(`1), B−−r := B ∩ Γ(I)(`2), and we verify that the image through Ψ(I) of any path
joining in B the sides B−−l and B−−r crosses A, from A−−l to A−−r , at least m(I) times
when T(I) > t(I), and then check that the image through Ψ(I I) of any path in A joining
A−−l with A−−r crosses B, from B−−l to B−−r , at least m(I I) times when T(I I) > t(I I).
Namely, this amounts to show that there exist m(I) ≥ 1 pairwise disjoint compact subsets
H′0, . . . , H′

m(I)−1
of B such that

(H′i , Ψ(I)) : ˜̃B m−→ ˜̃A, i = 0, . . . , m(I) − 1, (A5)

as well as m(I I) ≥ 1 pairwise disjoint compact subsets K′0, . . . , K′
m(I I)−1

of A such that

(K′j, Ψ(I I)) : ˜̃A m−→ ˜̃B, j = 0, . . . , m(I I) − 1, (A6)

where we set ˜̃B := (B,B−−) and ˜̃A := (A,A−−) (see Figure A2). In such a case, (CF)

and (CG) in Theorem 1 are fulfilled for the newly introduced oriented rectangles ˜̃B :=

(B,B−−), ˜̃A := (A,A−−) and with F = Ψ(I), G = Ψ(I I). Since m = m(I)m(I I) ≥ 2, it is
then possible to apply Theorem 1 to conclude that the Poincaré map Ψ = Ψ(I I) ◦Ψ(I) of
System (4) induces chaotic dynamics on m symbols in B, as well. Moreover, Ψ has all the
features listed in Theorem 1, because (CΦ) therein holds true, as Φ = Ψ is injective and

continuous, in particular on the setH′∗ :=
⋃

i = 0, . . . , m(I) − 1
j = 0, . . . , m(I I) − 1

H′ i ∩
(

Ψ(I)
)−1

(K′ j) .

Due to their resemblance to (A1) and (A2), we leave the details in the verification
of (A5) and (A6), that allow completion of the proof, to the reader.

(A) (B)

Figure A2. For the sets A and B, introduced in Figure A1, we now orientate them in a different
manner by suitably choosing the left and the right sides, we illustrate in (A) the stretching relation (A5)
with m(I) = 1 and in (B) the condition (A6) with m(I I) = 2.

Focusing on the first half of the proof of Proposition 1, in which we show that Ψ
induces chaotic dynamics in A, in Figure A1A we provide a qualitative representation
of what happens when the stretching relation in (A1) is fulfilled with m(I) = 1, and, in
Figure A1B, we illustrate the condition (A2) with m(I I) = 2. For (A1) to be satisfied with
m(I) = 1 we need to verify that the image through Ψ(I) of any path γ (in cyan) joining in A
its left and right sides crosses B once from left to right when T(I) is sufficiently large. This
is true in Figure A1A since, calling H0 the compact subset of A in pale blue and setting
γ := γ([0, 1]), it holds that γ ∩ H0 (in blue) is transformed by Ψ(I) into a path (in blue)
connecting B−l and B−r in B. To check (A2) with m(I I) = 2 we need to verify that the image
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through Ψ(I I) of any path ω (in blue) joining in B its left and right sides crosses A twice
from left to right when T(I I) is large enough. This is true in Figure A1B, due to the existence
of the pairwise disjoint compact subsets K0 ,K1 of B (in yellow) with the property that
Ψ(I I)(ω ∩Ki) (in dark blue) connects A−l and A−r in A, for i ∈ {1, 2}.

Similarly, in regard to the second half of the proof of Proposition 1, in which we show
that Ψ induces chaotic dynamics in B, we illustrate, in Figure A2A, condition (A5) with
m(I) = 1 and, in Figure A2B, condition (A6) with m(I I) = 2. Notice that A and B now
need to be oriented in a different manner with respect to Figure A1 to have the stretching
relations in (A5) and (A6) satisfied. Indeed, in Figure A2A we draw (in lilac) the compact
subset H′0 of B with the property that the restriction to it (represented in orange) of any
path γ (in light orange) joining B−−l and B−−r in B is transformed by Ψ(I) into a path (in
orange) connecting A−−l and A−−r in A. In (B) we draw (in beige) the two disjoint compact
subsets K′0, K′1 of A such that the restriction to them (represented in dark orange) of any
path ω (in orange) joining A−−l and A−−r in A is transformed by Ψ(I I) into paths (in dark
orange) connecting B−−l and B−−r in B.
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Abstract: Ideally, switching between subsystems and controllers occurs synchronously. In other
words, whenever a subsystem requires switching, its corresponding sub-controller will be promptly
activated. However, in reality, due to network delays, system detection, etc., the activation of
candidate controllers frequently lags, which causes issues with asynchronous switching between
controllers and subsystems. This asynchronous switching problem may affect system performance
and even make the system unstable because the state between the subsystem and the controller
may be inconsistent, resulting in the controller not being able to control the subsystem correctly. To
keep the system stable while using asynchronous switching, this work suggests an asynchronous
control technique for a class of discrete linear switching systems with time delay based on the mode-
dependent average dwell time (MDADT). First, we construct a state feedback controller and establish
a closed-loop system. In the asynchronous and synchronous intervals of subsystems and controllers,
different Lyapunov functions are selected, and sufficient conditions for exponential stability and the
H∞ performance of the closed-loop system under asynchronous switching are obtained. In addition,
using the MDADT switching strategy, the relevant parameters of each subsystem are designed and
the corresponding state–feedback controller gain matrix can be obtained. Finally, a switching system
with three subsystems is shown. The approach is confirmed by simulating it using the average dwell
time (ADT) switching strategy and the MDADT switching strategy separately.

Keywords: asynchronous control; average dwell time; exponential stability; mode dependent;
time delay

MSC: 93B36; 93C05; 93C65; 93D23

1. Introduction

A discrete system refers to all systems that are not continuous in time and space. They
are ubiquitous in practical problems. It is expected that when computers assist people in
simulating, controlling, and analyzing systems, they usually need to discretize time. In
addition, there are some discrete mathematical models in the fields of biology, industry, and
economics. For example, research on image encryption [1], human infectious diseases [2],
and changes in the market economy [3] all require the application of discrete systems. A
discrete switching system is an important type of discrete system. It realizes different
functions and behaviors through state switching, and it can also realize complex logic
operations, control, and decision-making functions.

The benefits of switching systems in terms of model composition have garnered
increased attention. Switched systems are not only widely studied in theory but also
have extensive applications in many engineering fields, such as electronic equipment [4],
aerospace technology [5], traffic management [6], environmental governance [7], and others.
The switched system is often a dynamical system made up of switching signals and a finite
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number of continuous or discrete dynamic subsystems. A piecewise constant function that
depends on state or time is the switching signal, which is also known as the switching rule,
switching strategy, or switching law. The stability of the switching system is somewhat
impacted by the choice of switching signal. When an inappropriate switching signal is
selected, the trajectories of the switched system that may make all subsystems stable are
divergent; similarly, when a suitable switching signal is selected, it is possible to stabilize a
switched system with unstable subsystems.

Research on switching signals is mainly reflected in the design of its dwell time.
At present, typical research on switching signals mainly includes arbitrary switching
signals [8], dwell time switching signals (DT) [9], average dwell time switching signals
(ADT) [10], mode-dependent average dwell time switching signals (MDADT) [11], and
persistent dwell time switching signals (PDT) [12]. DT restricts the switching time of two
consecutive subsystems to be no less than a constant τ. ADT requires a constant τa for the
average running time of the subsystem in the limited switching interval. MDADT makes
each subsystem have its own ADT, which reduces the conservativeness of research, so it
has a broader range of applications compared with the former two. The PDT switching
mechanism consists of fast switching and slow switching alternately: the τ part can repre-
sent slow switching and T part can represent fast switching. However, DT and ADT cannot
represent fast switching because they have strict constraints on the number of switches in a
given period. As this implies, PDT is more general than DT and ADT. The complexity of
PDT is much higher than that of DT and ADT, so there are few related studies.

There have been abundant research achievements in switched systems on system
stability analysis [13], tracking control problems [14], time delay problems [15], robust
control [16], gain analysis [17], etc. In recent years, scholars have also paid more attention
to asynchronous switching control [18–23]. Asynchronous switching refers to a situation
where the subsystem does not match the controller; that is, the switching signals of the
subsystem and the controller are inconsistent. Since the identification of subsystems and
the matching of corresponding controllers takes a certain amount of time, asynchronous
situations cannot be avoided. In [24], based on the asynchronous switching of subsystems
and filters, the design of the filter for discrete switched T-S fuzzy systems was discussed.
The challenge of designing a controller for time delay nonlinear switching systems with
asynchronous switching was investigated in [25]. During this operation of the system, the
system cannot always operate in an ideal state, and signal interference and fault phenomena
are inevitable. If the cause and location of the fault cannot be found in time, certain
losses will be caused. Therefore, introducing fault diagnosis and detection mechanisms
is an essential means to ensure system security. Considering the filter and subsystem
asynchrony, fault detection on switched systems is carried out in [26]. The time trigger
control is frequently used in sampling control to sample periodically; however, because
it samples in the form of cycles, wasting system resources, the proposed event trigger
mechanism aims to overcome this problem by monitoring changes in system performance
in real time by designing event triggers. Ref. [27] studies the multi-asynchronous switching
issue in switching systems with event triggering. In contrast to the prior asynchrony, the
system’s stability and controller design are investigated, along with the many asynchronous
challenges of subsystems, event triggers, and controllers. Due to the reasons of the system
itself or the technical limitations of the measurement means, it is impossible to measure
all of the system’s status information. By constructing an observer and using the input or
output information of the original system to construct a new system, studying the new
system allows one to discover the pertinent characteristics of the previous system. In [28],
the issue of observer design for nonlinear switching systems with asynchronous situations
is covered. There are few studies on asynchronous control of discrete switched systems,
and most of them are based on the ADT switching strategy. Thus, combining the MDADT
approach with asynchronous switching is essential.

The asynchronous control problem of discrete time delay switched systems is investi-
gated in this work using MDADT. The majority of research on switched systems up to now
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has centered on synchronous switching. The switched system finds it challenging to sustain
synchronous switching in practical circumstances. Since each subsystem and sub-controller
in the system operates at a different speed and responds to commands differently, the
associated controller may still be working on the current task when the subsystem has
begun to execute the next task. This affects the stability of the system by causing confusion
over the order in which different subsystems and sub-controllers should be executed. The
main problem with current asynchronous switching is how to ensure the stability of the
whole system when the subsystem does not match the corresponding sub-controller. In
this paper, we present a parameter associated with exponential decay that tackles this
problem by restricting the proportion of matching and mismatching durations between
the controller and its corresponding subsystem. The majority of earlier investigations
used the ADT technique, which meant that the dwell time and other parameters for each
subsystem were constant. However, these parameters are not optimal due to the differences
in each subsystem. Relatively speaking, MDADT technology is more flexible. It allows each
subsystem to choose the most-suitable parameters according to its own needs to determine
its dwell time, and it can set the switching delay of each sub-controller so that they do not
have to be all the same. The main motivation is to use this feature of MDADT to improve
system performance, and this approach to system performance verification differs from
earlier ones. The following are its primary contributions:

1. An innovative asynchronous control method is provided for discrete time delay
switched systems.

2. Using the MDADT switching strategy, the switched system’s exponential stability
and the necessary conditions for H∞ performance are discovered, and the gain matrix of
the controller is also computed.

The sections of this essay are organized as follows. The problem and definitions that
apply to it are presented in Section 2. In Section 3, adequate requirements for exponential
stability of discrete time delay switched systems and H∞ performance are laid out, and
controllers are also built. To test the efficacy of the asynchronous control method, Section 4
presents a discrete time delay switching system with two subsystems. Simulations are run
under the ADT switching signal and the MDADT switching signal. Section 5 presents the
results of the simulations of the example and the definition proof.

Notations: Rn represents n-dimensional Euclidean vector space, L2[0, ∞] is square
integrable function space, ‖ · ‖ stands for Euclidean norm, X > 0 and XT are positive
definite matrices and transpose matrices, λmin{· · · } and λmax{· · · } represent the minimum
and maximum eigenvalues of the matrix, respectively, col{· · · } represents a column vector,
and ∗ represents the symmetric block in the block matrix.

2. Problem Statement

This section presents the discussed system and the design of the controller.

2.1. System Description

Consider the following discrete time delay linear switched system:

x(ς + 1) = Aσ(ς)x(ς) + Bσ(ς)u(ς) + A1σ(ς)x(ς− d) + B1σ(ς)v(ς), ς ≥ 0

z(ς) = Cσ(ς)x(ς) + Dσ(ς)u(ς), ς ≥ 0

x(ς) = ϕ(ς), ς ∈ {−d, · · · , 0}
(1)

where x ∈ Rnx , u ∈ Rnu , and z ∈ Rnz are the state vector, control input, and controlled
output of the system, respectively; v ∈ Rnv represents the disturbance input and belongs
to L2[0, ∞); ϕ(ς) represents the initial vector-valued function; and d represents a constant
delay time. The symbol σ(ς) : N → M = {1, 2, · · · , m}, m ∈ N+ stands for the switching
signal; {(ς0, σ(ς0)), (ς1, σ(ς1)), · · · , (ςl , σ(ςl)), · · · , l = 0, 1, 2, 3, · · · } represents the sys-
tem’s switching time sequence; ς0 indicates the initial switching time; and ςl indicates the
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l-th switching time. If the l-th subsystem is turned on, ς ∈ [ςl , ςl+1) results. Aσ(ς), Bσ(ς),
A1σ(ς), B1σ(ς), Cσ(ς), and Dσ(ς) are constant matrices.

Definition 1 ([29]). For any switching signal σ(ς), let Nσ,j(ς0, ς) and Tj(ς0, ς) denote the switch-
ing times and running times of the j-th subsystem activated on [ς0, ς), respectively. If ∃N0j > 0,
τaj > 0, such that

Nσ,j(ς0, ς) ≤ N0j(ς0, ς) +
Tj(ς0, ς)

τaj
, ∀ς ≥ ς0 ≥ 0,

then τaj and N0j are known as MDADT and the chatter bound, respectively.

Definition 2 ([30]). The switched system is exponentially stable if there exist constants c > 0 and
0 < ζ < 1 such that the solution of the system satisfies:

‖x(ς)‖2 < cζ(ς−ς0)‖x(ς0)‖2, ∀ς > ς0.

Definition 3 ([30]). Given δ > 0 and c > 0, if the switching system is exponentially stable and
under zero initial conditions, for all nonzero v, the following inequality holds:

∞

∑
s=k0

e−cszT(s)z(s) ≤ δ2
∞

∑
s=k0

vT(s)v(s).

Then the switched system is exponentially stable with an exponential H∞ index δ.

Lemma 1 ([31]). For symmetric matrices X and W > 0 of any appropriate dimension and for any
constant ξ, the following inequalities hold:

−XW−1X ≤ ξ2W − 2ξX.

2.2. Controller

Establish a state–feedback controller in System (1):

u(ς) = Kσ′(ς)x(ς),

where σ′(ς) and Kσ′(ς) represent the switching signal and control gain matrix of the con-
troller, respectively. Let ∆l be the switching delay time of the controller relative to the
subsystem, and satisfy ∆l < ςl+1 − ςl . Then {(ς0 + ∆0, σ′(ς0)), (ς1 + ∆1, σ′(ς1)), · · · , (ςl +
∆l , σ′(ςl)), · · · , l = 0, 1, 2, 3, · · · } is the controller’s switching sequence.

2.3. Build a Closed-Loop System

Substituting the dynamic output feedback controller into the switching System (1), the
following closed-loop switched system can be obtained:

x(ς + 1) = (Aσ(ς) + Bσ(ς)Kσ′(ς))x(ς) + A1σ(ς)x(ς− d) + B1σ(ς)v(ς), ς ≥ 0

z(ς) = (Cσ(ς) + Dσ(ς)Kσ′(ς))x(ς), ς ≥ 0

x(ς) = ϕ(ς), ∀ς ∈ {−d, · · · , 0}
(2)

If σ(ςl) = i, the i-th subsystem is activated at the moment of system switching ςl ;
likewise, if σ(ςl−1) = j, the j-th subsystem is enabled at the time of system switching ςl−1.
T−(ς0, ς) and T+(ς0, ς) are utilized to indicate the matching and mismatching intervals
between the subsystem and the controller while the system is running in [ς0, ς).T−(ς− ς0),
and T+(ς− ς0) represent the interval lengths of T−(ς0, ς) and T+(ς0, ς).

In [ςl , ςl + ∆l), the l-th subsystem has already started running, but due to factors such
as controller model recognition, the controller at this time is from the (l − 1)-th subsystem,
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which results in a mismatch between the subsystem and the controller. In [ςl + ∆l , ςl+1),
the l-th controller is activated and the subsystem matches the controller. Thus, System (2)
is expressed as follows:





x(ς + 1) = Āijx(ς) + A1ix(ς− d) + B1iv(ς),
z(ς) = C̄ijx(ς), ς ∈ [ςl , ςl + ∆l),
x(ς) = ϕ(ς),

(3a)





x(ς + 1) = Āix(ς) + A1ix(ς− d) + B1iv(ς),
z(ς) = C̄ix(ς), ς ∈ [ςl + ∆l , ςl+1),
x(ς) = ϕ(ς),

(3b)

where Āij = Ai + BiKj, C̄ij = Ci + DiKj, Āi = Ai + BiKi, C̄i = Ci + DiKi.
When v = 0, considering the stability of the system, System (3) becomes:

x(ς + 1) =

{
Āijx(ς) + A1ix(ς− d), ς ∈ [ςl , ςl + ∆l),
Āix(ς) + A1ix(ς− d), ς ∈ [ςl + ∆l , ςl+1),

(4)

where Āij = Ai + BiKj,Āi = Ai + BiKi.

3. Main Results

For the above switched System (2), this section mainly discusses two issues:
(1) Solve the sufficient conditions for the time delay closed-loop switched System

(2) to be exponentially stable and have the H∞ performance index under asynchronous
switching;

(2) Solve for the H∞ controller gains based on the stability condition.
The following theorem gives sufficient conditions to ensure the exponential stability

of System (4) by using multiple Lyapunov functions and the MDADT technique.

Theorem 1. For System (4), given the parameters αi > 0, βi > 0, 0 < ε∗i < βi, and µi > 1, if
there exist matrices Pi > 0, Qi > 0, and Ri > 0 satisfying




−eαi Pi + Qi 0 (Āij − I)T Ri ĀT
ij Pi

∗ −edαi Qi AT
1iRi AT

1iPi
∗ ∗ −d−1Ri 0
∗ ∗ ∗ −Pi


 < 0, (5)




−e−βi Pi + Qi 0 (Āi − I)T Ri ĀT
i Pi

∗ −e−dβi Qi AT
1iRi AT

1iPi
∗ ∗ −d−1Ri 0
∗ ∗ ∗ −Pi


 < 0, (6)

Pi ≤ µiPj, Qi ≤ µiQj, Ri ≤ µiRj, (7)

in f
ς>ς0

T−
σ(ς f )

(ς f+1 − ς f )

T+
σ(ς f )

(ς f+1 − ς f )
≥ αi + ε∗i

βi − ε∗i
, (8)

where f ∈ ψ(i) = σ(k f ) = i, i ∈ M, then System (4) is exponentially stable, and any MDADT
switching signal satisfies

τai >
ln(µiθi)

ε∗i
. (9)

Proof. When ς ∈ [ςl , ςl + ∆l), the subsystem does not match the controller at this time.
Consider the following Lyapunov function:
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Vα(xς, ς) = xT(ς)Pix(ς) +
ς−1

∑
s=ς−d

eαi(ς−1−s)xT(s)Qix(s) +
0

∑
r=1−d

ς−1

∑
s=ς+r−1

eαi(ς−1−s)hT(s)Rih(s), (10)

where h(s) = x(s + 1)− x(s).
Denote ∆Vα(xς, ς) = Vα(xς+1, ς + 1) − eαi Vα(xς, ς) and ξ(ς) = col(x(ς), x(ς − d)).

Then

∆Vα(xς, ς) = Vα(xς+1, ς + 1)− eαi Vα(xς, ς)

≤ xT(ς + 1)Pix(ς + 1)− eαi xT(ς)Pix(ς) + xT(ς)Qix(ς)

− edαi xT(ς− d)Qix(ς− d) + dhT(ς)Rih(ς)

(11)

It follows from (4) that

xT(ς + 1)Pix(ς + 1) = ξT(ς)
[
Āij A1i

]T Pi
[
Āij A1i

]
ξ(ς), (12)

and

dgT(ς)Rig(ς) = d(x(ς + 1)− x(ς))T Ri(x(ς + 1)− x(ς))

= dξT(ς)
[
Āij − I A1i

]T Ri
[
Āij − I A1i

]
ξ(ς).

(13)

From (11)–(13), we can obtain

∆Vα(xς, ς) = Vα(xς, ς)− eαi Vα(xς, ς)≤ ξT(ς)Ωijξ(ς), (14)

where

Ωij =
[
Āij A1i

]T Pi
[
Āij A1i

]
+ diag(−eαi Pi + Qi,−edαi Qi)

+ d
[
Āij − I A1i

]T Ri
[
Āij − I A1i

]
.

(15)

According to Schur’s complement, Equations (5) and (15) are equivalent; we can obtain

∆Vα(xς, ς) = Vα(xς+1, ς + 1)− eαi Vα(xς, ς) ≤ 0. (16)

This implies
Vασ(ςl)

(xς) ≤ eασ(ςl )
(ς−ςl)Vασ(ςl)

(xςl ). (17)

When ς ∈ [ςl + ∆l , ςl+1), the subsystem is matched with the controller at this time.
Consider the following Lyapunov function:

Vβ(xς, ς) = xT(ς)Pix(ς) +
ς−1

∑
s=ς−d

eβi(s−ς+1)xT(s)Qix(s) +
0

∑
r=1−d

ς−1

∑
s=ς+r−1

eβi(s−ς+1)hT(s)Rih(s), (18)

Denote ∆Vβ(xς, ς) = Vβ(xς+1, ς + 1)− e−βi Vβ(xς, ς). Similarly, we have

∆Vβ(xς, ς) = Vβ(xς, ς)− e−βi Vβ(xς, ς)≤ ξT(ς)Ωiξ(ς), (19)

where

Ωi =
[
Āi A1i

]T Pi
[
Āi A1i

]
+ diag(−e−βi Pi + Qi,−e−dβi Qi)

+ d
[
Āi − I A1i

]T Ri
[
Āi − I A1i

]
.

(20)
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According to Schur’s complement, Equations (6) and (20) are equivalent; we can obtain

∆Vβ(xς, ς) = Vβ(xς+1, ς + 1)− e−βi Vβ(xς, ς) ≤ 0. (21)

Thus,
Vβσ(ςl)

(xς) ≤ e−βσ(ςl )
(ς−ςl−∆l)Vβσ(ςl)

(xςl + ∆l). (22)

In the whole interval [0, ς], the Lyapunov function consists of (10) and (18):

Vσ(ς)(ς) =

{
Vασ(ς), ς ∈ [ςl , ςl + ∆l),
Vβσ(ς), ς ∈ [ςl + ∆l , ςl+1).

(23)

From (7), (10) and (18), we have

Vβ(xς, ς) ≤ µiVα(xς, ς), Vα(xς, ς) ≤ θiVβ(xς, ς), (θi = µie(αi+βi)d). (24)

When ς ∈ [ςl , ςl+1), from (17), (22) and (24), we have

Vσ(ςl)
(xς) ≤ e−βσ(ςl )

T−(ςl+1−ςl)Vβσ(ςl)
(xςl+∆l )

≤ µσ(ςl)
e−βσ(ςl )

T−(ςl+1−ςl)Vασ(ςl)
(x−ςl+∆l

)

≤ µσ(ςl)
e−βσ(ςl )

T−(ςl+1−ςl)eασ(ςl )
T+(ςl+1−ςl)Vασ(ςl)

(xςl )

≤ µσ(ςl)
θσ(ςl)

e−βσ(ςl )
T−(ςl+1−ςl)eασ(ςl )

T+(ςl+1−ςl)Vβσ(ςl)
(x−ςl

)

≤ µσ(ςl)
θσ(ςl)

e−βσ(ςl )
T−(ςl+1−ςl)eασ(ςl )

T+(ςl+1−ςl)

× µσ(ςl−1)
θσ(ςl−1)

e−βσ(ςl−1)
T−(ςl−ςl−1)eασ(ςl−1)

T+(ςl−ςl−1) ×Vβσ(ςl−1)
(x−ςl−1

)

≤ · · · ≤ µσ(ςl)
θσ(ςl)

µσ(ςl−1)
θσ(ςl−1)

· · · µσ(ς1)
θσ(ς1)

× e−βσ(ςl )
T−(ςl+1−ςl)eασ(ςl )

T+(ςl+1−ςl)

× e−βσ(ςl−1)
T−(ςl−ςl−1)eασ(ςl−1)

T+(ςl−ςl−1) × · · · × e−βσ(ς0)
T−(ς1−ς0)eασ(ς0)

T+(ς1−ς0)Vσ(ς0)

= ∏
i∈M

(µiθi)
Nσ,i × e

∑
i∈M, f∈ψ(i)

αiT+(ς f+1−ς f )−βiT−(ς f+1−ς f )

×Vσ(ς0)
(xς0).

(25)

It follows from (8) that

αiT+(ςl+1 − ςl)− βiT−(ςl+1 − ςl) ≤ −ε∗i (ςl+1 − ςl). (26)

From (25) and (26), we can obtain

Vσ(ςl)
(xς)

≤ ∏
i∈M

(µiθi)
Nσ,i × e

∑
i∈M, f∈ψ(i)

αiT+(ς f+1−ς f )−βiT−(ς f+1−ς f )

×Vσ(ς0)
(xς0)

≤ ∏
i∈M

(µiθi)
Nσ,i × e

∑
i∈M, f∈ψ(i)

−ε∗i (ς f+1−ς f )

Vσ(ς0)
(xς0)

≤ e
∑

i∈M
N0,i ln(µiθi)

e
∑

i∈M, f∈ψ(i)
(

ln(µiθi)
τai

−ε∗i )(ς f+1−ς f )

Vσ(ς0)
(xς0).

(27)

Meanwhile, considering the Lyapunov function, there are positive numbers ã and
b̃ satisfying

ã‖x(ς)‖2 ≤ V(xς) ≤ b̃‖x(ς)‖2, (28)
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where

ã = min
i∈M
{λmin(Pi)},

b̃ = max
i∈M
{λmax(Pi)}+ d max

i∈M
{edαi λmax(Qi)}+

d(d + 1)
2

max
i∈M
{edαi λmax(Ri)}.

By Definition 2, c =
√

b̃
ã e

1
2 max

i∈M
{N0,i ln(µiθi)} is a constant, and 0 < ζ = e

1
2 max

i∈M
{ ln(µiθi)

τai
−ε∗i } <

1; we have
‖x(ς)‖≤ cζ(ς−ς0)‖x(ς0)‖. (29)

Therefore, System (4) is exponentially stable .

The following theorem provides sufficient conditions for resolving the controller gain
of System (4) based on Theorem 1.

Theorem 2. For System (4), given the parameters αi > 0, βi > 0, 0 < ε∗i < βi, and µi > 1, if
there exist matrices Xi > 0, Qi > 0, Ri > 0, and Yi > 0 satisfying




Θ1 0 Θ2 Θ3 Xj
∗ Θ4 Xi AT

1i Xi AT
1i 0

∗ ∗ −d−1R′i 0 0
∗ ∗ ∗ −Xi 0
∗ ∗ ∗ ∗ −Q′i



< 0, (30)




Θ1
1 0 Θ1

2 Θ1
3 Xi

∗ Θ1
4 Xi AT

1i Xi AT
1i 0

∗ ∗ −d−1R′i 0 0
∗ ∗ ∗ −Xi 0
∗ ∗ ∗ ∗ −Q′i



< 0, (31)

[−µiXj Xj
∗ −Xi

]
≤ 0,

[
−µiQ′j Q′j
∗ −Q′i

]
≤ 0,

[
−µiR′j R′j
∗ −R′i

]
≤ 0, (32)

where

Θ1 = eαi (Xi − 2Xj), Θ2 = Xj AT
i + YT

j BT
i − Xj, Θ3 = Xj AT

i + YT
j BT

i , Θ4 = edαi (Q′i − 2Xi),

Θ1
1 = −e−βi Xi, Θ1

2 = Xi AT
i + YT

i BT
i − Xi, Θ1

3 = Xi AT
i + YT

i BT
i , Θ1

4 = e−dβi (Q′i − 2Xi).

Therefore, the corresponding state–feedback controller gain matrix Ki = YiX−1
i can be obtained.

Proof. Suppose the controller gain Ki = YiPi; let Xi = P−1
i , R−1

i = R′i and Q−1
i = Q′i.

Multiply both sides of (5) by diag{Xj, Xi, R′i, Xi} at the same time, and multiply both sides
of (6) by diag{Xi, Xi, R′i, Xi} at the same time. Through Lemma 1, we can obtain

− XjPiXj ≤ Xi − 2Xj,−XiQiXi ≤ Q′i − 2Xi. (33)

By Schur’s complement and (33), Conditions (30) and (31) are obtained. In addition,
Condition (32) is obtained by multiplying both sides of the inequality (7) by Xi, Q′i, and
R′i, respectively.

According to Theorem 1, we establish the exponential stability of System (4) in the
absence of perturbations and subsequently demonstrate that System (3) with perturbations
satisfies the sufficient conditions for H∞ performance.

Theorem 3. For System (3), given the parameters αi > 0, βi > 0, 0 < ε∗i < βi, µi > 1, and
γ > 0, if there exist matrices Pi > 0, Qi > 0, and Ri > 0 satisfying
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−eαi Pi + Qi 0 0 (Āij − I)T Ri ĀT
ij Pi C̄T

ij
∗ −edαi Qi 0 AT

1iRi AT
1iPi 0

∗ ∗ −γI BT
1iRi BT

1iPi 0
∗ ∗ ∗ −d−1Ri 0 0
∗ ∗ ∗ ∗ −Pi 0
∗ ∗ ∗ ∗ ∗ −I



< 0, (34)




−e−βi Pi + Qi 0 0 (Āi − I)T Ri ĀT
i Pi C̄T

i
∗ −e−dβi Qi 0 AT

1iRi AT
1iPi 0

∗ ∗ −γI BT
1iRi BT

1iPi 0
∗ ∗ ∗ −d−1Ri 0 0
∗ ∗ ∗ ∗ −Pi 0
∗ ∗ ∗ ∗ ∗ −I



< 0, (35)

Pi ≤ µiPj, Qi ≤ µiQj, Ri ≤ µiRj, (36)

in f
ς>ς0

T−
σ(ς f )

(ς f+1 − ς f )

T+
σ(ς f )

(ς f+1 − ς f )
≥ αi + ε∗i

βi − ε∗i
, (37)

where f ∈ ψ(i) = σ(k f ) = i, i ∈ M, then the switched System (3) is exponentially stable and has
H∞ performance index γ̄ =

√
γ. Meanwhile, any MDADT switching signal satisfies

τai >
ln(µiθi)

ε∗i
. (38)

Proof. Consider System (3): denote F(ς) = zT(ς)z(ς)− γvT(ς)v(ς).
When ς ∈ [ςl , ςl + ∆l), the subsystem does not match the controller at this time; we

can obtain
Vασ(ςl)

(xς) ≤ eασ(ςl )Vασ(ςl)
(xς−1)− F(ς− 1). (39)

By iterating through the formula, we have

Vασ(ςl)
(xς)

≤ eασ(ςl )Vασ(ςl)
(xς−1)− F(ς− 1)

≤ eασ(ςl )(eασ(ςl )Vασ(ςl)
(xς−2)− F(ς− 2))− F(ς− 1)

· ··

≤ eασ(ςl )
(ς−ςl)Vασ(ςl)

(xςl )−
ςl+∆l−1

∑
s=ςl

eασ(ςl )
(ςl+∆l−s−1)F(s).

(40)

When ς ∈ [ςl + ∆l , ςl+1), the subsystem is matched with the controller at this time; we
can obtain

Vβσ(ςl)
(xς) ≤ e−βi Vβσ(ςl)

(xς−1)− F(ς− 1). (41)

Similarly, we can obtain

Vβσ(ςl)
(xς)

≤ e−βσ(ςl )Vβσ(ςl)
(xς−1)− F(ς− 1)

≤ e−βσ(ςl )(e−βσ(ςl )Vσ(ςl)
(xς−2)− F(ς− 2))− F(ς− 1)

· ··

≤ e−βσ(ςl )
(ς−ςl−∆l)Vβσ(ςl)

(xςl+∆l )−
ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s).

(42)
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From (24), combined with equations (40) and (42), when ς ∈ [ςl , ςl+1), it can be
known that

Vσ(ςl)
(xς)

≤ e−βσ(ςl )
(ς−ςl−∆l)Vβσ(ςl)

(xςl+∆l )−
ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

≤ µσ(ςl)
e−βσ(ςl )

(ς−ςl−∆l)Vασ(ςl)
(x−ςl+∆l

)−
ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

≤ µσ(ςl)
e−βσ(ςl )

(ς−ςl−∆l)(eασ(ςl )
∆l Vασ(ςl)

(xςl )−
ςl+∆l−1

∑
s=ςl

eασ(ςl )
(ςl+∆l−s−1)F(s))

−
ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

≤ µσ(ςl)
e−βσ(ςl )

(ς−ςl−∆l)(eασ(ςl )
∆l θσ(ςl)

Vβσ(ςl)
(x−ςl

)−
ςl+∆l−1

∑
s=ςl

eασ(ςl )
(ςl+∆l−s−1)F(s))

−
ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

≤ µσ(ςl)
e−βσ(ςl )

(ς−ςl−∆l)(eασ(ςl )
∆l θσ(ςl)

(µσ(ςl−1)
× e−βσ(ςl−1)

(ςl−ςl−1−∆l−1)(eασ(ςl−1)
∆l−1 θσ(ςl−1)

×Vβσ(ςl−1)
(x−ςl−1

)−
ςl−1+∆l−1−1

∑
s=ςl−1

eασ(ςl−1)
(ςl−1+∆l−1−s−1)F(s))−

ςl−1

∑
s=ςl−1+∆l−1

e−βσ(ςl−1)
(ς−s−1)F(s))

−
ςl+∆l−1

∑
s=ςl

eασ(ςl )
(ςl+∆l−s−1)F(s))−

ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

≤ · · · ≤ e−βσ(ςl )
(ς−ςl−∆l) × (eασ(ςl )

∆l µσ(ςl)
θσ(ςl)

× · · · × µσ(ς1)
θσ(ς1)

× (e−βσ(ς0)
(ς1−ς0−∆0)

× (eασ(ς0)
∆0 Vσ(ς0)

(xς0)−
ς0+∆0−1

∑
s=ς0

eασ(ς0)
(ς0+∆0−s−1)F(s))−

ς1−1

∑
s=ς0+∆0

e−βσ(ς0)
(ς1−s−1)F(s))

− · · · −
ςl+∆l−1

∑
s=ςl

eασ(ςl )
(ςl+∆l−s−1)F(s))−

ς−1

∑
s=ςl+∆l

e−βσ(ςl )
(ς−s−1)F(s)

(43)

Under zero initial conditions, i.e., x(ς0) = 0, from (37) and (43), we have

ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)

zT(s)z(s) ≤ γ
ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)

vT(s)v(s). (44)

Multiply both sides of (44) by e
∑

i∈M, f∈ψ(i)
Nσ,i(s,ς f+1)ln(µiθi)

; we have

ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)+Nσ,i(s,ς f+1)ln(µiθi)

zT(s)z(s)

≤ γ
ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)+Nσ,i(s,ς f+1)ln(µiθi)

vT(s)v(s).

(45)
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Multiply both sides of inequality (45) by e
∑

i∈M, f∈ψ(i)
−Nσ,i(ς f ,ς f+1)ln(µiθi)

; we have

ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)−Nσ,i(ς f ,s)ln(µiθi)

zT(s)z(s)

≤ γ
ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)−Nσ,i(ς f ,s)ln(µiθi)

vT(s)v(s).

(46)

Note Nσ,i(ς f , s) <
s−ς f

τai
. From (38), we have

Nσ,i(ς f , s)ln(µiθi) ≤ ε∗i (s− ς f ). (47)

It follows from (46) and (47) that

ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−ς f−1)

zT(s)z(s) ≤ γ
ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (ς f+1−s−1)

vT(s)v(s). (48)

Thus,

ς−1

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (s−ς f )

zT(s)z(s) ≤ γ
ς−1

∑
s=ς0

vT(s)v(s). (49)

This implies

∞

∑
s=ς0

e
∑

i∈M, f∈ψ(i)
−ε∗i (s−ς f )

zT(s)z(s) ≤ γ
∞

∑
s=ς0

vT(s)v(s). (50)

According to Definition 3, System (3) is exponentially stable and has H∞ performance
index γ̄ =

√
γ.

The following theorem provides sufficient conditions for resolving the controller gain
of System (3) based on Theorem 3.

Theorem 4. For System (3), given the parameters αi > 0, βi > 0, 0 < ε∗i < βi, µi > 1, and
γ > 0, if there exist matrices Xi > 0, Qi > 0, Ri > 0, and Yi > 0 satisfying




Σ1 0 0 Σ2 Σ3 Σ4 Xj
∗ Σ5 0 Xi AT

1i Xi AT
1i 0 0

∗ ∗ −γI BT
1i BT

1i 0 0
∗ ∗ ∗ −d−1R′i 0 0 0
∗ ∗ ∗ ∗ −Xi 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −Q′i




< 0, (51)




Σ1
1 0 0 Σ1

2 Σ1
3 Σ1

4 Xi
∗ Σ1

5 0 Xi AT
1i Xi AT

1i 0 0
∗ ∗ −γI BT

1i BT
1i 0 0

∗ ∗ ∗ −d−1R′i 0 0 0
∗ ∗ ∗ ∗ −Xi 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −Q′i




< 0, (52)

[−µiXj Xj
∗ −Xi

]
≤ 0,

[
−µiQ′j Q′j
∗ −Q′i

]
≤ 0,

[
−µiR′j R′j
∗ −R′i

]
≤ 0, (53)
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where

Σ1 = eαi (Xi − 2Xj), Σ2 = Xj AT
i + YT

j BT
i − Xj, Σ3 = Xj AT

i + YT
j BT

i , Σ4 = XjCT
i + YT

j DT
i ,

Σ5 = edαi (Q′i − 2Xi), Σ1
1 = e−βi Xi, Σ1

2 = Xi AT
i + YT

i BT
i − Xi, Σ1

3 = Xi AT
i + YT

i BT
i ,

Σ1
4 = XiCT

i + YT
i DT

i , Σ1
5 = e−dβi (Q′i − 2Xi).

Therefore, the corresponding state–feedback controller gain matrix Ki = YiX−1
i can be obtained.

Proof. Multiply both sides of (34) by diag{Xj, Xi, I, R′i, Xi, I} at the same time, and mul-
tiply both sides of (35) by diag{Xi, Xi, I, R′i, Xi, I} at the same time. Similarly, by Schur’s
complement, conditions (51)–(53) can be obtained.

4. Numerical Example

Consider the discrete time delay switching System (1) with three subsystems, whose
parameters are set as follows:

A1 =

[−0.1 0
0 0.2

]
, B1 =

[−0.4 0
−1.8 −0.6

]
, A11 =

[−0.6 0
0.5 0.7

]
, B11 =

[−0.07 0
0 −0.2

]
,

C1 =

[−0.6 0.8
1.7 0.5

]
, D1 =

[−1.9 1
0.8 1.2

]
, A2 =

[
0.01 0

0 −0.08

]
, B2 =

[−1.1 −0.07
1.6 0.5

]
,

A12 =

[
0.1 0
0 −0.2

]
, B12 =

[−0.3 0
0 −0.4

]
, C2 =

[
0.3 −1.4
−0.8 −1

]
, D2 =

[
1 0.1
−0.3 −1.5

]
,

A3 =

[−0.1 0
0 0.1

]
, B3 =

[−0.8 0.6
1.6 0.5

]
, A13 =

[
0.1 −0.1
0 −0.8

]
, B13 =

[−0.008 0
0 −0.1

]
,

C3 =

[−0.3 −1.6
−1.5 1.1

]
, D3 =

[−0.4 0.7
0.2 −1.2

]
, v(ς) =

[
2−ςsin(2ς) 2−ςcos(2ς)

]T .

We compare this switched system under the MDADT switching strategy and the ADT
switching strategy. A set of appropriate data is chosen by contrasting the impact of each
parameter on the system, as illustrated in Table 1. The MDADT switching strategy makes
each subsystem have its own ADT; that is, the parameters of each subsystem are different.
Choose α1 = 1.7, β1 = 2.5, µ1 = 1.1, and ε∗1 = 1.7; then obtain τa1 > 9.99 s by solving (9);
similarly, choose α2 = 1.2, β2 = 2.1, µ2 = 2.2, and ε∗2 = 1.4 and obtain τa2 > 10.26 s; choose
α3 = 1.8, β3 = 2, µ3 = 2.3, and ε∗3 = 1.3 and obtain τa3 > 12.97 s. By solving (51)–(53), we
can get the gain matrix of the controller:

K1 =

[
0.4062 0.7363
−1.0538 −1.1525

]
, K2 =

[−0.2024 −0.2399
−0.6497 0.1711

]
, K3 =

[
0.4055 −0.1867
−0.7019 −0.0834

]
,

The running time of each subsystem is the same when using the ADT switching
strategy, so choose α = 1.8, β = 2.5, µ = 1.03, and ε∗ = 1.7, and obtain τa > 10.15 s. By
solving (51)–(53), we can get the gain matrix of the controller:

K1 =

[
0.3793 1.0235
−1.0086 −1.2475

]
, K2 =

[−0.1863 −0.2506
−0.7474 0.2720

]
, K3 =

[
0.5937 −0.3481
−0.8036 0.0012

]
,

To eliminate the impact of other variables, the MDADT switching strategy is chosen
with the values α1 = α2 = α3 = 1.8, β1 = β2 = β3 = 2.5, µ1 = µ2 = µ3 = 1.03,
ε∗1 = ε∗2 = ε∗3 = 1.7; however, two sets of distinct average dwell times τa1 = 11 s, τa2 = 12 s,
τa3 = 14 s and τa1 = 11 s, τa2 = 13 s, τa3 = 15 s are selected. Because the parameters of
these two groups are the same as those under the ADT switching strategy (but the dwell
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time of each subsystem is different), the controller gain matrices of these two groups are
the same as those under the ADT switching strategy.

Table 1. The parameters and calculation results of the system under the ADT switching signal and
the MDADT switching signal.

Switching
Schemes ADT MDADT MDADT MDADT

Parameters
α = 1.8, β = 2.5,

µ = 1.03, ε∗ = 1.7,
d = 4

α1 = α2 = 1.8,
α3 = 1.8, β1 = 2.5,

β2 = β3 = 2.5,
µ1 = µ2 = 1.03,

µ3 = 1.03, ε∗1 = 1.7,
ε∗2 = ε∗3 = 1.7,

d = 4

α1 = α2 = 1.8,
α3 = 1.8, β1 = 2.5,

β2 = β3 = 2.5,
µ1 = µ2 = 1.03,

µ3 = 1.03, ε∗1 = 1.7,
ε∗2 = ε∗3 = 1.7,

d = 4

α1 = 1.7, α2 = 1.2,
α3 = 1.8, β1 = 2.5,
β2 = 2.1, β3 = 2,

µ1 = 1.1, µ2 = 2.2,
µ3 = 2.3, ε∗1 = 1.7,
ε∗2 = 1.4, ε∗3 = 1.3,

d = 4

Dwell time τa = 11 τa1 = 11, τa2 = 12,
τa3 = 14

τa1 = 11, τa2 = 13,
τa3 = 15

τa1 = 11, τa2 = 12,
τa3 = 13

H∞ index 1.14 1.14 1.14 0.78

Figures 1–4 describe the switching signals of the subsystem and controller. When
v = 0, let x(0) = [0.3,−2.3]T . The motion trajectories of the system under the switching
strategy of ADT and MDADT are illustrated in Figures 5–8, respectively. According to the
graph, under the ADT switching strategy, the system gradually tends to be stable at 30 s,
but it is still accompanied by fluctuations until it stabilizes at 60 s. The highest amplitude
of the system is about 7.5, and the fluctuation is large before the system is stable. However,
under the MDADT switching strategy, we can see that the system has stabilized around
30 s. Figure 6 has obvious fluctuations around 60 s and 96 s, Figure 7 also has obvious
fluctuations around 62 s, and Figure 8 almost stabilizes after 30 s. Prior to achieving stability,
it is noticeable that the vibration amplitude in Figure 5 is considerably greater than that in
Figures 6–8 and exhibits a clear and dramatic variation. On the other hand, the paths of the
systems depicted in Figures 6–8 exhibit comparatively smaller fluctuations within a specific
range. Hence, we can observe that if the residence time of each subsystem is changed, the
motion path of the system will be changed accordingly. In line with the MDADT switching
strategy, we have the flexibility to select distinct parameters for each subsystem in order to
modify its residence time, thereby facilitating rapid stabilization of the system.
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Figure 1. ADT switching signal.
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Figure 2. MDADT switching signal with τa1 = 11, τa2 = 12, and τa3 = 14.
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Figure 3. MDADT switching signal with τa1 = 11, τa2 = 13, and τa3 = 15.
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Figure 4. MDADT switching signal with τa1 = 11, τa2 = 12, and τa3 = 13.
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Figure 5. State response of System (4) under ADT switching signal.
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Figure 6. State response of System (4) under MDADT switching signal with τa1 = 11, τa2 = 12,
τa3 = 14.
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Figure 7. State response of System (4) under MDADT switching signal with τa1 = 11, τa2 = 13, and
τa3 = 15.
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Figure 8. State response of System (4) under MDADT switching signal with τa1 = 11, τa2 = 12, and
τa3 = 13.

Let x(0) = [0, 0]T when there is a disturbance. Figures 9–12 depict the switching
system’s movement trajectory under asynchronous switching based on the ADT switching
strategy and the MDADT switching strategy. The figure shows that when using the ADT
switching strategy, the system in Figure 9 experienced obvious drastic changes before it
was stable, and it began to stabilize at about 30 s, but it was still accompanied by obvious
fluctuations, and it was not completely stable until 57 s, with the largest amplitude being
0.038. In contrast, under the MDADT switching strategy, the system in Figure 10 tends to be
stable at about 30 s, but there are still obvious fluctuations around 59 s and 97 s. The system
in Figure 11 is generally stable around 33 s and has minimal fluctuations. The system in
Figure 12 is nearly stable around 25 s, has significantly reduced fluctuation compared to
Figure 9, and has a maximum amplitude of 0.021.
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Therefore, under the MDADT switching strategy, we can set the dwell time for each
subsystem so that the system can reach a stable state faster. However, the ADT switching
strategy limits the dwell time for each subsystem, resulting in equal dwell times for each
subsystem, which has certain limitations. Clearly, compared to the ADT switching strategy,
the MDADT switching strategy can better maintain the robust performance of the system.
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Figure 9. State response of System (3) under ADT switching signal.
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Figure 10. State response of system (3) under MDADT switching signal with τa1 = 11, τa2 = 12, and
τa3 = 14.
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Figure 11. State response of System (3) under MDADT switching signal with τa1 = 11, τa2 = 13, and
τa3 = 15.
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Figure 12. State response of System (3) under MDADT switching signal with τa1 = 11, τa2 = 12, and
τa3 = 13.

5. Conclusions

This study examines the asynchronous control problem for discrete time delay switched
linear systems based on MDADT. In order to address the independent switching delay
of the sub-controller in relation to the subsystem, a classification analysis is conducted,
and distinct Lyapunov functions are chosen for the matching and mismatching intervals
between the subsystem and the controller. According to the MDADT technique, the stabil-
ity of the asynchronous switching system can be achieved by modifying the proportion
between the matching period and the mismatching period. Ultimately, the simulation of a
discrete time delay switching system with three subsystems under the ADT technique and
the MDADT technique is given. The analysis of the data confirms the effectiveness of the
designed asynchronous control method.
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Differential Equation with p-Laplacian
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Abstract: The fractional order p-Laplacian differential equation model is a powerful tool for
describing turbulent problems in porous viscoelastic media. The study of such models helps to reveal
the dynamic behavior of turbulence. Therefore, this article is mainly concerned with the periodic
boundary value problem (BVP) for a class of nonlinear Hadamard fractional differential equation
with p-Laplacian operator. By virtue of an important fixed point theorem on a complete metric space
with two distances, we study the solvability and approximation of this BVP. Based on nonlinear
analysis methods, we further discuss the generalized Ulam-Hyers (GUH) stability of this problem.
Eventually, we supply two example and simulations to verify the correctness and availability of our
main results. Compared to many previous studies, our approach enables the solution of the system
to exist in metric space rather than normed space. In summary, we obtain some sufficient conditions
for the existence, uniqueness, and stability of solutions in the metric space.

Keywords: Hadamard fractional calculus; p-Laplacian operator; boundary value conditions;
dynamical behavior; complete metric space

MSC: 34A08; 34A37; 34D20

1. Introduction

The p-Laplacian differential equation is one of the famous and important second-
order nonlinear ordinary differential equations (ODEs). This equation first appeared in
Leibenson’s study [1] of turbulence in porous media in 1983. The underlying form of
p-Laplacian differential equation is written as

Φp(u′(t))′ = f (t, u(t)), t ∈ (0, 1),

where Φp : x → |x|p−2x(p > 1) is called the p-Laplacian operator. Its inverse is Φ−1
p = Φq

with 1
p + 1

q = 1. Due to its description of fundamental mechanical problems in turbulence,
p-Laplacian differential equations have been extensively and deeply studied. In recent
years, some scholars have begun to focus on the nonlinear fractional differential system with
p-Laplacian. For example, the authors in [2] investigated the multiple positive solutions of
a nonlinear high order Riemann-Liouville fractional p-Laplacian equation with integral
boundary value conditions. In [3], the author explored the existence and GUH-stability of a
nonlinear Caputo-Fabrizio fractional coupled Laplacian equations. In [4], based on the Guo-
Krasnosel’skii fixed point theorem, the authors probed into the multiple positive solutions
of a system of mixed Hadamard fractional BVP with (p1,p2)-Laplacian. In fact, some
articles have been disposed of the BVP of p-Laplacian system involving Riemann-Liouville
or Caputo fractional derivatives (see [5–13]).

Hadamard [14] raised a novel fractional integral and derivative in 1892, which was
later named Hadamard-type fractional calculus. There are some obvious differences be-
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tween Hadamard fractional calculus and Riemann-Liouville fractional calculus. For exam-
ple, kH(t, s) = (log t

s )
γ−1 is the integral kernel corresponding to γ-order Hadamard frac-

tional derivative, while kR(t, s) = (t− s)γ−1 is the integral kernel corresponding to γ-order
Riemann-Liouville fractional derivative. Furthermore, for any λ > 0, kH(λt, λs) = kH(t, s)
is different from kR(λt, λs) = λγ−1kR(t, s) 6= kR(t, s). The study on Hadamard fractional
differential equations has attracted the attention of many scholars. There have been a series
of fruitful achievements (see [15–21]). In 1940s, Ulam and Hyers [22,23] put forward a new
stability that describes the stationarity of the exact and approximate solutions of system.
Subsequently, extensive and in-depth research was conducted on the Ulam-Hyers stability
of various systems. Especially, many excellent research results have emerged regarding the
Ulam-Hyers stability of fractional order differential systems (see some of them [3,21,24–32]).
Moreover, it is rare to combine the Hadamard fractional derivative with Laplacian operator.
Therefore, it is novel and interesting to probe these problems.

Illuminated by the above arguments, this manuscript deals with the periodic BVP of a
nonlinear Hadamard fractional differential equation with p-Laplacian operator as follows:

{
HDα

1+
[
Φp( HD

β
1+u(t))

]
= f (t, u(t)), t ∈ (1, e],

u(1) = u(e), HD
β
1+u(1) = HD

β
1+u(e),

(1)

where 0 < α ≤ 1, 1 < β ≤ 2, p > 1, HD∗1+ is the ∗-order Hadamard fractional derivative,
Φp = |x|p−2x, and its inverse Φ−1

p = Φq with 1
p + 1

q = 1, f ∈ C([1, e]×R,R). In addi-
tion, our study has also been inspired by the latest achievements in fractional differential
equations, such as numerical algorithms and simulations [33–38], as well as the application
of some nonsingular fractional derivative models [34,37–43].

The paper aims to discuss the approximation and GUH-stability of BVP (1). The novelty
of this paper is mainly reflected as follows: (a) Since there is no paper dealing with the
approximation problem of nonlinear Hadamard fractional differential systems with Laplace
operator, we first consider the system (1) to fill this gap. (b) By applying a fixed point theorem
on complete metric space with two kinds of distance, we obtain some sufficient conditions
to ensure that system (1) has a unique solution. In addition, we build the generalized Ulam-
Hyers stability of system (1) based on nonlinear analysis methods and inequality techniques.
(c) Many previous papers (see [2–13,17–19,24,25]) usually used some fixed-point theorems on
Banach spaces to study the existence of solutions of fractional differential equations. However,
we handle the existence of solutions to fractional order differential equations by defining two
different distances on a complete distance space. This allows for the discussion of the existence
of solutions in a broader space, and there are relatively few restrictions on the existence of
solutions. Therefore, our research methods and results are novel and interesting.

The rest sections of this paper are organized as follows. In Section 2, we recollect the
definition of Hadamard fractional integrals and derivatives and some necessary lemmas. In
Section 3, we discuss the existence, uniqueness, and approximation of solutions to BVP (1)
by constructing two different distances and applying an important fixed point theorem on
metric space. Furthermore, we use nonlinear analysis methods and inequality techniques
to establish the GUH-stability of BVP (1) in Section 4. Section 5 provides the numerical
solutions and simulations for two examples by means of ODE113 toolbox in MATLAB.
Finally, we have made a brief summary in Section 6.

2. Preliminaries

This portion mainly introduces some important concepts and lemmas.

Definition 1 ([44]). For a > 0, the left-sided Hadamard fractional integral of order γ > 0 for a
function ξ : [a, ∞)→ R is defined by

HJ
γ

a+ξ(t) =
1

Γ(γ)

∫ t

a

(
log

t
s

)γ−1
ξ(s)

ds
s

,
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provided the integral exists, where Γ(γ) =
∫ ∞

0 tγ−1e−tdt and log(·) = loge(·).

Definition 2 ([44]). Let a, γ > 0 and ξ ∈ Cm[a, ∞), the γ-order left-sided Hadamard fractional
derivative is defined by

HDα
a+ξ(t) =

1
Γ(m− γ)

(
t

d
dt

)m ∫ t

a

(
log

t
s

)m−γ−1
ξ(s)

ds
s

,

where m− 1 < α ≤ m, m = [γ] + 1, and [·] is the Gaussian truncating integer function.

Lemma 1 ([44]). Let a, b, γ > 0 and ξ ∈ Cm(a, b) ∩ L1(a, b), then

HJ
γ

a+(
HD

γ
a+ξ(t)) = ξ(t) +

m

∑
i=1

ci

(
log

t
a

)γ−i
,

where c1, c2, . . . , cm are some real constants, and m = [γ] + 1.

Lemma 2. Let p > 1. The p-Laplacian operator Φp(z) = |z|p−2z has the followings:

(i) If z ≥ 0, then Φp(z) = zp−1, and Φp(z) is increasing with respect to z;
(ii) For all z, w ∈ R, Φp(zw) = Φp(z)Φp(w);
(iii) If 1

p + 1
q = 1, then Φq[Φp(z)] = Φp[Φq(z)] = z, for all z ∈ R;

(iv) For all z, w ≥ 0, z ≤ w⇔ Φq(z) ≤ Φq(w);
(v) 0 ≤ z ≤ Φ−1

q (w)⇔ 0 ≤ Φq(z) ≤ w;

(vi) |Φq(z)−Φq(w)| ≤
{

(q− 1)Mq−2|z− w|, q ≥ 2, 0 ≤ z, w ≤ M,
(q− 1)Mq−2|z− w|, 1 < q < 2, z, w ≥ M ≥ 0.

Now we introduce the following important fixed point theorem on a complete metric
space involving two different distances, which will be used to prove the existence and
uniqueness of solution to BVP (1).

Lemma 3 ([45]). Let ρ and $ be two different metrics on a nonempty set X, and define an operator
T : X→ X. Assume that

(a1) For all x, y ∈ X, there has a constant ι > 0 such that $(Tx, Ty) ≤ ιρ(x, y);
(a2) (X, $) is a complete metric space;
(a3) T : (X, $)→ (X, $) is continuous;
(a4) For all x, y ∈ X, there has a constant 0 < κ < 1 such that ρ(Tx, Ty) ≤ κρ(x, y).

Then there has a unique x∗ ∈ X such that Tx∗ = x∗, and limk→∞ Tkx0 = x∗ for any x0 ∈ X.

It is worth noting that the application techniques and related generalization of Lemma 3
can also be found in [46–49] and the references therein.

3. Solvability and Approximation

In this portion, we will prove the existence of a unique solution for system (1) based
on Lemma 3. To this end, we need the following important lemma.

Lemma 4. Assume that 0 < α ≤ 1, 1 < β ≤ 2 and p > 1 are some constants, f ∈ C([1, e]×
R,R). Then BVP (1) is equivalent to the following integral equation

u(t) = −Au(e)(log t)β−1 + Au(t), (2)

where Au(t) = HJ
β

1+
[
Φq

(HJα
1+ f (t, u(t))

)]
.
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Proof. If u(t) ∈ C((1, e],R) is a solution of system (1), then it follows from Lemma 1 that

Φp(
HD

β
1+u(t)) = c(log t)α−1 + HJα

1+ f (t, u(t)), (3)

which implies that

HD
β
1+u(t) = Φq[c(log t)α−1 + HJα

1+ f (t, u(t))]. (4)

According to the existence of HD
β
1+u(1) and (4), we know that c = 0 and HD

β
1+u(1) =

0. By Lemma 1 and (4), we have

u(t) = d1(log t)β−1 + d2(log t)β−2 + HJ
β

1+
[
Φq

(HJα
1+ f (t, u(t))

)]
. (5)

Similarly, we drive from u(1) = u(e) and (5) that d2 = 0 and

d1 = −HJ
β

1+
[
Φq

(HJα
1+ f (t, u(t))

)]∣∣∣∣
t=e

= −Au(e). (6)

In view of (5) and (6), we have

u(t) = −Au(e)(log t)β−1 + Au(t). (7)

Thus, u(t) ∈ C((1, e],R) is a solution of system (2). Vice versa, if u(t) ∈ C((1, e],R) is
a solution of (2), then it is also a solution of (1) because the above derivation is completely
reversible. The proof is completed.

Let X = C([1, e],R), two different distances ρ, $ : X→ X are respectively defined by

ρ(u(t), v(t)) = sup
t∈[1,e]

|u(t)− v(t)|, $(u(t), v(t)) =
∫ e

1
|u(t)− v(t)|dt, (8)

for all u(t), v(t) ∈ X. It is easy to prove that (X, ρ) and (X, $) are all complete metric
spaces. In addition, we need the following underlying assumptions in the whole paper.

(H1) 0 < α ≤ 1, 1 < β ≤ 2 and 1 < p ≤ 2 are some constants, f ∈ C([1, e]×R,R).
(H2) There has a constant M > 0 such that

0 ≤ f (t, u) ≤ M, ∀ t ∈ [1, e], u ∈ R.

(H3) There has a function 0 ≤ l(t) ∈ C[1, e] such that, for all t ∈ [1, e] and u, v ∈ R,

| f (t, u)− f (t, v)| ≤ l(t)|u− v|.

(H4) κ = 2(q−1)
Γ(α+β+1)

(
M

Γ(α+1)

)q−2
‖l‖e < 1, where ‖l‖e = max

1≤t≤e
{l(t)}.

Theorem 1. If (H1)–(H4) are fulfilled, then BVP (1) has a unique solution u∗(t) ∈ X.

Proof. In what follows, we will apply Lemma 3 to prove Theorem 1. Two different distances
ρ, $ : X→ X are defined as (8), then (X, ρ) and (X, $) are all complete metric spaces, which
indicates that the condition (a2) holds. According to Lemma 4, for all u(t) ∈ X, an operator
T : X→ X is defined by

T(u(t)) = −Au(e)(log t)β−1 + Au(t), (9)

where Au(t) = HJ
β

1+
[
Φq

(HJα
1+ f (t, u(t))

)]
.
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From the continuity of Φq and Hadamard fractional integral, we know that T : (X, $)
→ (X, $) is continuous, which means that the condition (a3) holds. By (H2), we have

0 ≤ HJα
1+ f (t, u(t), u(t− τ(t))) ≤ M

Γ(α + 1)
(log t)α ≤ M

Γ(α + 1)
, t ∈ [1, e]. (10)

For all u, v ∈ X, t ∈ [1, e], we derive from (vi) in Lemma 2, (H3) and (10) that

|Au(t)− Av(t)| =
∣∣HJ

β
1+
[
Φq

(HJα
1+ f (t, u(t))

)
−Φq

(HJα
1+ f (t, v(t))

)]∣∣

≤HJ
β

1+
∣∣Φq

(HJα
1+ f (t, u(t))

)
−Φq

(HJα
1+ f (t, v(t))

)∣∣

≤(q− 1)
(

M
Γ(α + 1)

)q−2
HJ

β
1+
∣∣HJα

1+ f (t, u(t))− HJα
1+ f (t, v(t))

∣∣

≤(q− 1)
(

M
Γ(α + 1)

)q−2
HJ

β
1+
[HJα

1+ | f (t, u(t))− f (t, v(t))|
]

≤(q− 1)
(

M
Γ(α + 1)

)q−2
HJ

α+β
1+ [l(t)|u(t)− v(t)|]

≤(q− 1)
(

M
Γ(α + 1)

)q−2 1
Γ(α + β + 1)

‖l‖e · ρ(u, v). (11)

It follows from (9) and (11) that

|T(u(t))−T(v(t))| = | − (Au(e)− Av(e))(log t)β−1 + (Au(t)− Av(t))|
≤|Au(e)− Av(e)|(log t)β−1 + |(Au(t)− Av(t))|

≤ 2(q− 1)
Γ(α + β + 1)

(
M

Γ(α + 1)

)q−2

‖l‖e · ρ(u, v) = κρ(u, v). (12)

In light of (12), we have

ρ(T(u), T(v)) ≤ κρ(u, v), ∀ u, v ∈ X, t ∈ [1, e]. (13)

According to (H4) and (13), we know that (a4) in Lemma 3 holds.
Similar to (11), noticing that

(
log t

s
)α+β−1 and 1

s are monotonically decreasing with
respect to s in [1, e], we have

|Au(t)− Av(t)| ≤ (q− 1)
(

M
Γ(α + 1)

)q−2
HJ

α+β
1+ [l(t)|u(t)− v(t)|]

=(q− 1)
(

M
Γ(α + 1)

)q−2 1
Γ(α + β)

‖l‖e

∫ t

1

(
log

t
s

)α+β−1
|u(s)− v(s)|ds

s

≤(q− 1)
(

M
Γ(α + 1)

)q−2 1
Γ(α + β)

‖l‖e · (log t)α+β−1
∫ t

1
|u(s)− v(s)|ds

≤ q− 1
Γ(α + β)

(
M

Γ(α + 1)

)q−2

‖l‖e · (log e)α+β−1
∫ e

1
|u(s)− v(s)|ds

=
q− 1

Γ(α + β)

(
M

Γ(α + 1)

)q−2

‖l‖e · $(u, v). (14)

Similar to (12), we derive from (14) that

|T(u(t))−T(v(t))| ≤ 2(q− 1)
Γ(α + β)

(
M

Γ(α + 1)

)q−2

‖l‖e · $(u, v). (15)
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From (15), we get

$(T(u), T(v)) =
∫ e

1
|T(u(t))−T(v(t))|dt

≤2(q− 1)e
Γ(α + β)

(
M

Γ(α + 1)

)q−2

‖l‖e · $(u, v). (16)

Equation (16) indicates that (a1) in Lemma 3 also holds. Thus, it follows from Lemma 3
that T exists a unique fixed point u∗(t) ∈ X, which is the unique solution of (1). The proof
is completed.

Next, we shall discuss the approximation of solution for system (1). In fact, from Lemma 3,
we conclude that the unique solution u∗(t) ∈ X of (1) satisfies u∗(t) = limn→∞ Tnu0 for
any u0 ∈ X. Denote un(t) = Tnu0, then {un(t)} is a approximation sequence of solution
to system (1). Based on (9), un(t) can be represented as

un(t) = −Aun−1(e)(log t)β−1 + Aun−1(t), (17)

where Aun−1(t) =
HJ

β
1+
[
Φq

(HJα
1+ f (t, un−1(t))

)]
.

Similar to (12), we derive from (17) that

|un+1(t)− un(t)| ≤ κ|un(t)− un−1(t)|,

which implies that

ρ(un+1, un) ≤ κρ(un, un−1). (18)

By virtue of (H4) and (18), we know that {un(t)} converges exponentially on (X, ρ).

4. Generalized Ulam-Hyers Stability

This section centres on the GUH-stability of BVP (1). We first provide the concept of
GUH-stability for BVP (1).

For all δ > 0, consider the following fractional differential inequality
{

HDα
1+
[
Φp( HD

β
1+u(t))

]
− f (t, u(t)) ≤ δ, t ∈ (1, e],

u(1) = u(e), HD
β
1+u(1) = HD

β
1+u(e).

(19)

Definition 3. BVP (1) is said to be generalized Ulam-Hyers (GUH) stable on the metric space
(X, ρ), provided that, for all δ > 0 and any solution u ∈ X of (19), there have an ω ∈ C(R,R+)
with ω(0) = 0 and a unique solution u∗ ∈ X of (1) such that

ρ(u, u∗) ≤ ω(δ).

Remark 1. u(t) ∈ X solves the inequality (19) iff there has a continuous function ϕ(t) such that




|ϕ(t)| ≤ δ, t ∈ (1, e],
HDα

1+
[
Φp( HD

β
1+u(t))

]
= f (t, u(t)) + ϕ(t), t ∈ (1, e],

u(1) = u(e), HD
β
1+u(1) = HD

β
1+u(e).

(20)

Theorem 2. If (H1)–(H4) are satisfied, then BVP (1) is GUH-stable.

Proof. On the basis of Lemma 4 and Remark 1, the solution u(t) of inequality (19) is
written by

u(t) = −Aϕ
u (e)(log t)β−1 + Aϕ

u (t), (21)
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where Aϕ
u (t) = HJ

β
1+
[
Φq

(HJα
1+ [ f (t, u(t)) + ϕ(t)]

)]
. In the light of Theorem 1 and

Lemma 4, the unique solution u∗(t) of BVP (1) is read as

u∗(t) = −Au∗(e)(log t)β−1 + Au∗(t), (22)

where Au∗(t) = HJ
β

1+
[
Φq

(HJα
1+ f (t, u∗(t))

)]
.

Similar to (11), we obtain

|Aϕ
u (t)− Au∗(t)| =

∣∣HJ
β

1+
[
Φq

(HJα
1+ [ f (t, u(t)) + ϕ(t)]

)
−Φq

(HJα
1+ f (t, u∗(t))

)]∣∣

≤HJ
β

1+
∣∣Φq

(HJα
1+ [ f (t, u(t)) + ϕ(t)]

)
−Φq

(HJα
1+ f (t, u∗(t))

)∣∣

≤(q− 1)
(

M + δ

Γ(α + 1)

)q−2
HJ

β
1+
∣∣HJα

1+ [ f (t, u(t)) + ϕ(t)]− HJα
1+ f (t, u∗(t))

∣∣

≤(q− 1)
(

M + δ

Γ(α + 1)

)q−2
HJ

β
1+
[HJα

1+ [| f (t, u(t))− f (t, u∗(t))|+ |ϕ(t)|]
]

≤(q− 1)
(

M + δ

Γ(α + 1)

)q−2
HJ

α+β
1+ [l(t)|u(t)− u∗(t)|+ |ϕ(t)|]

≤(q− 1)
(

M + δ

Γ(α + 1)

)q−2 1
Γ(α + β + 1)

[‖l‖e · ρ(u, u∗) + δ]. (23)

By the same manner of (12), we derive from (21)–(23) that

|u(t)− u∗(t)| = | − (Aϕ
u (e)− Au∗(e))(log t)β−1 + (Aϕ

u (t)− Au∗(t))|
≤|Aϕ

u (e)− Au∗(e)|(log t)β−1 + |(Aϕ
u (t)− Au∗(t))|

≤ 2(q− 1)
Γ(α + β + 1)

(
M + δ

Γ(α + 1)

)q−2

[‖l‖e · ρ(u, u∗) + δ]

=κ(δ)ρ(u, u∗) + λ(δ), (24)

where κ(δ) = 2(q−1)
Γ(α+β+1)

(
M+δ

Γ(α+1)

)q−2
‖l‖e, λ(δ) = 2(q−1)δ

Γ(α+β+1)

(
M+δ

Γ(α+1)

)q−2
.

For any sufficiently small δ > 0, the condition (H4) ensures that 0 < κ(δ) < 1. Thus,
we know from (24) that

ρ(u, u∗) ≤ λ(δ)

1− κ(δ)
= ω(δ). (25)

Obviously, κ(0) = κ < 1, λ(0) = 0 and ω(δ) = λ(δ)
1−κ(δ)

> 0 with ω(0) = 0. By virtue
of Definition 3, (25) shows that BVP (1) is GUH-stable. The proof is completed.

5. Two Examples and Simulations

This section provides two examples and simulations to inspect the correctness and
validity of our main results. Consider the following nonlinear Hadamard fractional differ-
ential equation with p-Laplacian operator

{
HDα

1+
[
Φp( HD

β
1+u(t))

]
= f (t, u(t)), t ∈ (1, e],

u(1) = u(e), HD
β
1+u(1) = HD

β
1+u(e),

(26)

Example 1. In (26), we take p = 5
4 , α = 0.2, β = 1.4, f (t, u) = 2+sin(3t)

20 [ 3π
4 + arctan(u)], then

a simple computation gives that q = 5 > 2, and

π

80
≤ f (t, u) ≤ 3π

16
, | f (t, u)− f (t, v)| ≤ 2 + sin(3t)

20
|u− v|.
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In consequent, the conditions (H1)–(H3) are fulfilled. In addition, M = 3π
16 , l(t) = 2+sin(3t)

20 ,
‖l‖e =

3
20 , and

κ =
2(q− 1)

Γ(α + β + 1)

(
M

Γ(α + 1)

)q−2
‖l‖e ≈ 0.1716 < 1.

Thus, (H4) holds. From Theorem 1 and Theorem 2, we claim that Example 1 has a unique solution,
which is GUH-stable.

Remark 2. In Example 1, p, α, β are all rational number. α = 0.2 is close to 0, and β = 1.4 is close
to 1.5. To further verify the correctness of our results and the sensitivity of numerical simulation to
parameters, we choose p, α, β as irrational number satisfying α close to 1 and β close to 2 in the
following example.

Example 2. In (26), Choose p =
√

15
2 , α =

√
0.9, β =

√
3.9, and f (t, u) be same as Example 1.

Then q = 2.0678 > 2, and the conditions (H1)–(H3) also hold. M, l(t) and ‖l‖e are same as
Example 1. In addition,

κ =
2(q− 1)

Γ(α + β + 1)

(
M

Γ(α + 1)

)q−2
‖l‖e ≈ 0.0567 < 1.

Thus, (H4) is also true. From Theorem 1 and Theorem 2, we claim that Example 2 also has a unique
GUH-stable solution.

To perform the numerical simulation on Examples 1 and 2, we need to give a concise
algorithm below. Let v(t) = HD

β
1+u(t), then the Equation (2) can be rewritten as





u(t) = − 1
Γ(β)

∫ e
1

(
log e

s
)β−1v(s) ds

s · (log t)β−1

+ 1
Γ(β)

∫ t
1

(
log t

s
)β−1v(s) ds

s ,

v(t) =
[

1
Γ(α)

∫ t
1

(
log t

s
)α−1 f (s, u(s)) ds

s

]q−1
.

(27)

Taking the derivative at both sides of (27), we get




du(t)
dt = − β−1

Γ(β)

∫ e
1

(
log e

s
)β−1v(s) ds

s ·
(log t)β−2

t

+ β−1
tΓ(β)

∫ t
1

(
log t

s
)β−2v(s) ds

s ,
dv(t)

dt = (q− 1)
[

1
Γ(α)

∫ t
1

(
log t

s
)α−1 f (s, u(s)) ds

s

]q−2

× α−1
tΓ(α)

∫ t
1

(
log t

s
)α−2 f (s, u(s)) ds

s .

(28)

For (28), we can apply the appropriate ODE toolbox in MATLAB to perform numerical
solutions and simulations.

Based on the above algorithm, we employ the ODE113 toolbox in MATLAB R2019b
on two examples to give their numerical solutions and simulations. Example 1 is shown
as Tables 1 and 2, Figures 1 and 2. Example 2 is shown as Tables 3 and 4, Figures 3 and 4.
Figure 2 and Tables 1 and 2 show that Example 1 is GUH-stable. Figure 4 and Tables 3 and
4 show that Example 2 is GUH-stable.
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Table 1. The numerical solution u(t) to Example 1 which needs to multiply by 1010.

u

t
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.7183

δ = 0 0.0079 0.0314 0.0497 0.0645 0.0786 0.0963 0.1210 0.1448 0.1501
δ = 0.001 0.0080 0.0318 0.0501 0.0650 0.0790 0.0971 0.1218 0.1447 0.1498

Table 2. The numerical solution v(t) to Example 1 which needs to multiply by −1010.

u

t
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.7183

δ = 0 0.1653 0.2690 0.3344 0.4302 0.7319 1.7307 4.0310 7.5843 9.7746
δ = 0.001 0.1671 0.2720 0.3355 0.4327 0.7319 1.7749 3.9019 7.2621 9.3765

Table 3. The numerical solution u(t) to Example 2.

u

t
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.7183

δ = 0 0.0018 0.0121 0.0252 0.0384 0.0507 0.0614 0.0699 0.0749 0.0757
δ = 0.001 0.0019 0.0122 0.0254 0.0387 0.0511 0.0619 0.0704 0.0754 0.0763

Table 4. The numerical solution v(t) to Example 2 which needs to multiply by −1.

u

t
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.7183

δ = 0 0.0818 0.1947 0.2757 0.3530 0.4481 0.5721 0.7189 0.8741 0.9639
δ = 0.001 0.0824 0.1960 0.2779 0.3556 0.4516 0.5767 0.7244 0.8828 0.9723
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Figure 1. Simulation of solutions to Example 1.
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Figure 2. Evolution of the GUH-stability of Example 1.
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Figure 3. Simulation of solutions to Example 2.
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Figure 4. Evolution of the GUH-stability of Example 2.
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6. Summaries

It is well known that the p-Laplacian differential equation arises from the turbulence
problem in porous medium. In viscoelastic mechanics, some studies have shown that
fractional order differential equation models are more accurate than integer order differen-
tial equation models. Therefore, the fractional p-Laplacian differential model has greater
advantages in the study of viscoelastic porous medium turbulence. In this article, we study
BVP (1) of a nonlinear p-Laplacian Hadamard fractional differential equation. Unlike many
published papers, we have established the existence, uniqueness, stability, and sequence
approximation of solutions for fractional order differential equations on a wide range of
complete metric spaces rather than Banach spaces. We have obtained some concise and
easily verifiable sufficient criteria. Examples 1 and 2 and simulations demonstrate that
our main results are correct and available. Meanwhile, Figures 1 and 2 also indicate that
the solution of BVP (1) is sensitive and dependent on parameters p, α and β. Our results
provide theoretical support for revealing the mechanical problems of viscoelastic porous
medium turbulence. The mathematical theories and methods used in the article have
certain generality in solving similar problems. In addition, based on our recent research
findings [50–53], we plan to study some ecosystems involving fractional derivatives or
reaction diffusion effects in the future.
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Abstract: This paper considers the dual hybrid effects of discrete-time stochastic genetic regulatory
networks and discrete-space stochastic genetic regulatory networks in difference formats of expo-
nential Euler difference and second-order central finite difference. The existence of a unique-weight
pseudo-θ-almost periodic sequence solution for discrete-time and discrete-space stochastic genetic
regulatory networks on the basis of discrete constant variation formulation is discussed, as well
as the theory of semi-flow and metric dynamical systems. Furthermore, a finite-time guaranteed
cost controller is constructed to reach global exponential stability of these discrete networks via
establishing a framework of drive, response, and error networks. The results indicate that spatial
diffusions of non-negative dense coefficients have no influence on the global existence of the unique
weighted pseudo-θ-almost periodic sequence solution of the networks. The present study is a basic
work in the consideration of discrete spatial diffusion in stochastic genetic regulatory networks and
serves as a foundation for further study.

Keywords: discrete spatial diffusion; discrete time; stochastic; weighted pseudo-θ-almost periodicity;
finite-time guaranteed cost controller; finite difference method

MSC: 35B15

1. Introduction

Genetic regulatory networks (GRNs) have been widely recognized due to their possi-
ble usages [1]. GRNs are actually a complex dynamical system that describes the regulatory
mechanisms of DNA, mRNA, and protein interactions in biological systems at the molecu-
lar level [2,3]. The analysis of genetic regulatory networks is not only an important way to
understand and grasp the operation mechanisms of the activity of cellular life [4], but also
has promising applications in the fields of disease genetic prediction and drug target screen-
ing [5–8]. For this reason, it is necessary and valuable to propose suitable mathematical
models to represent expression mechanisms and signal transduction pathways. Currently,
GRNs are generally modeled by Boolean models, Bayesian models, and differential equa-
tion models. Two of the most widely used models are Boolean models and differential
equation models [9–11]. In particular, differential equations describe the concentration
changes in proteins and mRNA [12,13]. This model has received more attention because of
its higher accuracy and its ability to accurately describe the nonlinear dynamic behaviour
of biological systems.

In general, the majority of models utilised to characterize GRNs in the currently
available literature suppose that the concentrations of mRNAs and proteins are spatially
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homogeneous at all times. However, this assumption has some limitations, for example
the diffusion phenomenon should be considered for the case of non-uniform distributions
of gene product concentrations [14]. Therefore, the issue of kinetic analysis of GRNs with
reaction–diffusion effects is worth investigating. Moreover, time delay is often inevitable
due to the finite processing time of interactions among agents and may influence system
performance. As of recently, a great deal of results on GRNs with time delays can be
found in the literature, see, e.g., Han et al. [14], who established an asymptotic stability
criterion for reaction–diffusion delayed GRNs under Dirichlet and Neumann boundary
conditions, respectively, insightfully recognizing that diffusion–reaction information can
reduce the conservation of the system. Robust state estimation of delayed genetic regu-
latory networks with reaction–diffusion terms and uncertainty terms under the Dirichlet
boundary condition is considered by Zou et al. in [15]. Xie et al. [16] discuss the stabil-
ity of genetic regulatory networks, centralised spatial diffusion, and discrete and infinite
distribution delays.

During the processes of both computational simulation and analysis, engineers often
use discrete-time continuous models to evaluate their structural behaviour. The signals
received and operated in digital networks are dependent on discrete-time rather than
continuous-time. Therefore, discrete-time GRNs have been studied by many authors. For
example, Xue et al. [17] investigate the problems of state boundary description and reach-
able set estimation for discrete-time delayed genetic regulatory networks with bounded
perturbations. Liu et al. [18] study the problem of exponential stability analysis of dis-
crete genetic regulatory networks with time-varying discrete-time delays and unbounded
distributed time delays. Yue et al. [19] investigate the dynamics of discrete-time genetic
models and obtain conditions for the existence and stability of fixed points. It is shown
that the discrete-time genetic network undergoes fold bifurcation, flip bifurcation, and
Neimark–Sacker bifurcation, illuminating the richer dynamical properties of the discrete-
time genetic model than the original continuous-time model. It is worth noting that most of
the results on GRNs only concern discrete-time GRNs [17–22], while the results on spatial
discrete GRNs have not received sufficient attention in existing studies, probably owing
to the partial ineffectiveness of traditional methods in space–time continuous networks,
such as the Lyapunov–Krasovskii general functions in discrete-space and -time networks,
and the difficulty of computing the difference. To date, there are several reports referring
to space–time discrete models [23–25]; nevertheless, the models of stochastic space–time
discrete GRNs have not been deeply addressed.

It is well known that stochastic uncertainty is inevitable in various dynamical systems,
with reference to its ability to alter the mechanical properties of genetic regulatory networks
in practical applications. Therefore, the dynamic behaviour of delayed stochastic genetic
regulatory networks has been extensively studied, see the literature [26–29]. For example,
Xu et al. [26] investigate the input state stability problem of stochastic gene regulation
networks with multiple time delays, and give sufficient conditions for the mean square
exponential input state stability of the system using the Lyapunov generalization, Ito’s
formula, and Dynkin’s formula. Wang [29] investigates the dual effects of discrete space
and discrete time in stochastic genetic regulatory networks by means of exponential Eu-
lerian differences and central finite differences. In addition, finite-time guaranteed cost
control is a very effective method in the engineering field due to its many advantages in
practical applications, see references [30–37]. The advantages of finite-time guaranteed
cost controllers are listed below: (1) Stability. A finite-time guaranteed cost controller is a
feedback controller that adjusts the system to remain stable when it is subject to external
disturbances or internal changes. (2) Reliability. It can adjust the control strategy adaptively
depending on the state of the system, so as to increase the reliability of the system. In
summary, the finite-time cost-preserving controller is an advanced control method for
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genetic regulatory networks with many advantages that can assist the system to be more
stable, reliable, and robust, and optimise the performance index of the system.

On the other hand, the global exponential stability and almost periodic nature of GRNs
are significant and necessary dynamical behaviours that have been extensively researched
by many authors in the last two decades, see the literature [18,38–42]. Particularly in
stochastic models, the notion of θ-almost periodicity was first introduced in the paper [43]
on the basis of semi-flow and metric dynamical system theories, and the existence of θ-
almost periodicity for several continuous-time stochastic models was investigated [44,45].
First, pseudo-almost periodicity was introduced in the early 1990s by Zhang [46] as a natu-
ral extension of classical probability periodicity. Since then, pseudo-approximate periodic
solutions of differential equations have attracted a lot of attention. In the literature [47],
Diagana extended pseudo-almost periodicity to weighted pseudo-almost periodicity and
reported a number of excellent contributions on weighted pseudo-almost periodicity, see
references [48–50]. However, the study of the θ-almost periodicity of stochastic discrete-
time GRNs, not to mention weighted pseudo-θ-almost periodicity, influenced by spatial
diffusion, has not been addressed in depth so far.

Based on the above motivation, the main purpose of this paper is to establish discrete-
time stochastic genetic regulatory networks (SGRNs) for discrete-space diffusion using
exponential Euler difference and central finite difference methods. On this ground, a
discrete constant variation formula for discrete SGRNs is derived. On the basis of the
discrete constant variation formula, the weighted pseudo-θ-almost periodicity of discrete
SGRNs with discrete spatial diffusion is investigated by combining the theory of semi-fluid
dynamical systems and metric dynamical systems. In the end, a finite-time guaranteed
cost controller for this type of SGRN is designed by the construction of a drive, response,
and error network framework. The main studies and innovations of this paper are briefly
summarised in turn as follows.

(1) Discrete-time and discrete-space SGRNs are newly introduced, which extends the
studied models in reports [18,40].

(2) The weighted pseudo-θ-almost periodicity of this class of SGRNs is considered for
the first time, which complements the works on the almost periodicity of GRNs in
references [12,38].

(3) Finite-time cost-preserving controllers are designed for this class of SGRNs.

Plan of this paper: In Section 2, a formula for discrete-time and discrete-space SGRNs
is given and the concept of weighted pseudo-θ-almost periodicity is presented. Section 3
discusses the global existence of unique weighted pseudo-θ-almost periodic sequence
solutions for discrete-time and discrete-space SGRNs on the basis of the theory of semifluid
and metric dynamical systems, the discrete constant variation formula, and the fixed-point
theorem. Furthermore, in Section 4, finite-time cost-preserving controllers are designed
by constructing a framework of drive, response, and error networks for discrete-time and
discrete-space SGRNs. Section 5 gives numerical examples of discrete-time and discrete-
space SGRNs achieving weight pseudo-θ-almost periodicity, finite-time guaranteed cost
control, and global exponential stability. The conclusions and main points of the paper are
given in Section 6.

Symbols: Rn denotes the space of n-dimensional real vectors; Z is the field of integral
numbers; N0 = {0, 1, 2, . . .}; N = N0 \ {0}; Nb

a = {a, a+ 1, . . . , b} for any a, b ∈ Z; IJ = I ∩ J,
∀I, J ⊆ R. Let ξ1 = (1, 0, . . . , 0)T , ξ2 = (0, 1, . . . , 0)T , . . . ξm = (0, 0, . . . , 1)T .

Define Np ∈ N for p ∈ Nm
1 , fν :=

{
ν = (ν1, . . . , νm)T : (νp, p) ∈ (NNp−1

1 ,Nm
1 )
}

,

∂fν := f̄ν\fν, f̄ν =
{

ν = (ν1, . . . , νm)T : (νp, p) ∈ (NNp
0 ,Nm

1 )
}

.

For any function f : f̄ν × Z to Rn, we denote as f := f 〈ν〉k = ( f 〈ν〉1,k , . . . , f 〈ν〉n,k )
T , where

(ν, k) ∈ f̄ν ×Z. Sometimes, f = ( f1, . . . , fn)T is used for simplicity.
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2. Problem Formulation

In this section, firstly, discrete-time and discrete-space SGRNs are presented, which
can be considered as discrete formats of continuous-time SGRNs with reaction diffusion.
Secondly, the constant variation formula of the discrete network is obtained by dividing the
discrete network into two discrete sub-networks based on the theory of difference equations.
In the next step, important inequalities are given, such as the Minkowski inequality in
Lemma 2. Finally, the definition of weighted pseudo-θ-almost periodicity is presented.

2.1. Space–Time Discrete Stochastic GRNs

This article considers the following space–time discrete stochastic genetic regulatory
networks (GRNs) in the Euler form of





m〈ν〉i,k+1 = e−ai,khm〈ν〉i,k +
1− e−ai,kh

ai,k

[ n

∑
q=1

Θiq∆̃2
h̄q

m〈ν〉i,k

+
m

∑
j=1

bij,k f j(p
〈ν〉
j,k−σj,k

) +
m

∑
j=1

γij,kgj(p
〈ν〉
j,k−µj,k

)w1j,k + Ii,k

]
,

p〈ν〉i,k+1 = e−ci,khp〈ν〉i,k +
1− e−ci,kh

ci,k

[ n

∑
q=1

Πiq∆̃2
h̄q

p〈ν〉i,k + di,km〈ν〉i,k +
m

∑
j=1

vij,kηj(m
〈ν〉
j,k−νj,k

)w2j,k

]
(1)

for (ν, k) ∈ fν × Z and i = 1, 2, . . . , m; mi and pi denote the concentrations of the ith
mRNA and ith protein, respectively;

ãi = ai − 2
n

∑
q=1

Θiq

h̄2 , c̃i = ci − 2
n

∑
q=1

Πiq

h̄2 ,

ãi > 0 and c̃i > 0 are the decay rates of the ith mRNA and ith protein, respectively; Θiq
and Πiq represent the transmission diffusion matrixes, where ∆̃2

h̄q
means the discrete-space

operator denoted by

∆̃2
h̄q

m〈·〉i,· :=
m
〈ν+ξq〉
i,· + m

〈ν−ξq〉
i,·

h̄2 , ∆̃2
h̄q

p〈·〉i,· :=
p
〈ν+ξq〉
i,· + p

〈ν−ξq〉
i,·

h̄2 , q ∈ Nn
1 ;

h̄ and h denote the length of the space and time steps in order; γij and vij stand for noise
intensities; di > 0 is the translation rate; Ii = ∑j∈Ii

wij, wij ≥ 0 is bounded and Ii is the set
of all the j which is a repressor of gene i; bij = wij if transcription factor j is an activator
of gene i, bij = 0 if there is no link from node j to i, and bij = −wij if transcription factor j
is a repressor of gene i; f j, gj, and ηj are Hill functions; w1j,k := 1

h [w1j(kh + h)−w1j(kh)],
w2j,k := 1

h [w2j(kh + h) − w2j(kh)], and i, j = 1, 2, . . . , m; w11, . . . , w1m, w21, . . . , w2m are
scalar mutually independent two-sided standard Brown motions on complete probability
space (Ω,F ,ℱ·, P) with filtration

ℱk = σ
{
(w11,q, . . . , w1m,q, w21,q, . . . , w2m,q) : q ∈ (−∞, k)Z

}
, ∀k ∈ Z.

The Dirichlet boundary conditions of GRNs Equation (1) are described as

m〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = p〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ Z. (2)

Herein, fν can be regarded as a discrete form of the rectangle area f in Rm, which is
described by

f =
{

x = (x1, x2, . . . , xm)
T ∈ Rm : 0 < xp < Lp := h̄Np, p ∈ Nm

1

}
.
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Let m〈ν〉i,k = Mi(νh̄, kh) and p〈ν〉i,k = Pi(νh̄, kh) for (ν, k) ∈ fν×Z. Then, GRNs Equation (1)
is a full discretization scheme of the following stochastic GRNs with reaction diffusions





∂

∂t
Mi(x, t) =

n

∑
q=1

∂

∂xq

[
Θiq

∂Mi(x, t)
∂xq

]
− ãi(t)Mi(x, t)

+
m

∑
j=1

bij(t) f j(Pj(x, t− σj(t))) + Ii(t) +
m

∑
j=1

γij(x, t)gj(Pj(x, t− µj(t)))
d
dt

W1j(t),

∂

∂t
Pi(x, t) =

n

∑
q=1

∂

∂xq

[
Πiq

∂Pi(x, t)
∂xq

]
− c̃i(t)Pi(x, t)

+di(x, t)Mi(x, t) +
m

∑
j=1

vij(x, t)ηj(Mj(x, t− νj(t)))
d
dt

W2j(t),

Mi(x, t)
∣∣∣∣
x∈∂f

= 0 = Pi(x, t)
∣∣∣∣
x∈∂f

,

(3)

where x = (x1, . . . , xn)T ∈ f ⊆ Rn refers to a space variable.
The discrete techniques in SGRNs Equation (1) are therefore Eulerian difference (ED)

for Brownian motion, exponential Eulerian difference (EED) for time variables, and central
finite difference (CFD) for spatial variables, respectively. For more information on ED, EED,
and CFD, please see the literature [51–55].

Remark 1. By using Euler differences, reports [18,40] considered discrete-time GRNs without
spatial diffusions. In this article, SGRNs Equation (1) extends the models in reports [18,40].

Lemma 1. GRNs Equation (1) can be expressed as




m〈ν〉i,k =
k−1

∏
s=k0

e−ai,shm〈ν〉i,k0
+

k−1

∑
v=k0

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v

×
[

n

∑
q=1

Θiq∆̃2
h̄q

m〈ν〉i,v +
m

∑
j=1

bij,v f j(p
〈ν〉
j,v−σj,v

) +
m

∑
j=1

γij,vgj(p
〈ν〉
j,v−µj,v

)w1j,v + Ii,v

]
,

p〈ν〉i,k =
k−1

∏
s=k0

e−ci,shp〈ν〉i,k0
+

k−1

∑
v=k0

k−1

∏
s=v+1

e−ci,sh(1− e−ci,vh)

ci,v

×
[

n

∑
q=1

Πiq∆̃2
h̄q

p〈ν〉i,v + di,vm〈ν〉i,v +
m

∑
j=1

vij,vηj(m
〈ν〉
j,v−νj,v

)w2j,v

]
,

(4)

where (ν, k) ∈ fν × [k0, ∞)Z with some initial point k0 ∈ Z, i = 1, 2, . . . , m. Moreover, it
holds that

m〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = p〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ [k0, ∞)Z, i = 1, 2, . . . , m.

Lemma 2 ([56] (Minkowski inequality)). If X, Y ∈ L2(Ω,R), then

(
E|X + Y|2

) 1
2 ≤

(
E|X|2

) 1
2
+
(

E|Y|2
) 1

2 .

Lemma 3 ([56] (Hölder inequality)). Let ak, bk : Z→ R. Then,

∣∣∣∑
k

akbk

∣∣∣
2
≤∑

k
|ak|∑

k
|ak||bk|2.

Lemma 4. E|w1j,k|2 = E|w2j,k|2 = 1
h for j = 1, 2, . . . , n.

123



Axioms 2023, 12, 682

Proof. By the definition of w1j,k and Ito formula, it is derived that

E|w1j,k|2 =
1
h2 E

( ∫ kh+h

kh
dW1j(s)

)2

=
1
h2 E

∫ kh+h

kh
ds =

1
h

, ∀j = 1, 2, . . . , n.

This completes the proof.

2.2. Weighted Pseudo-Almost Periodicity

In the following, assume that (X, ‖ · ‖X) is a norm linear space, and Lp(Ω,Rn) denotes
the set of all pth integrable Rn-valued random variables with the norm

‖u‖p = max
1≤i≤n

[E|ui|p]1/p, ∀u = (u1, . . . , un)
T ∈ Lp(Ω,Rn), p > 0,

in which E denotes the expectation operator with respect to probability space (Ω,F , P).

Definition 1. Let X ∈ X and ε > 0 be arbitrary. If ν = νε and τ ∈ [a, a + νε]Z for any a ∈ Z,
ensuring that

‖Xk+τ − Xk‖X < ε, ∀k ∈ Z,

then {Xk} is an almost periodic sequence. Herein, τ is called an ε-almost period of X. AP(Z,X)
denotes the set of the whole almost periodic sequences.

Let U be the set of all weight sequences α : Z→ (0,+∞) satisfying

αk+s
αk
≤ ᾱ, ∀k ∈ Z, s ∈ [0, σ0]Z;

µk(α) :=
k

∑
s=−k

αs → +∞,
1

µk(α)

−k

∑
s=−k−σ0

αs → 0, as k→ +∞,

where σ0 = max1≤j≤m supk∈Z{σj,k, µj,k, νj,k}.
Define B(Z,X) as the set of all bounded sequences from Z to X and

PAPµ
0 (Z,X, α) :=

{
X ∈ B(Z,X) : lim

k→+∞

1
µk(α)

k

∑
s=−k

αs‖Xs‖X = 0

}
.

When X = L2(Ω,Rn) or Rn, we use PAPµ
0 (Z,Rn, α) to denote PAPµ

0 (Z,X, α).

Definition 2. Sequence X ∈ B(Z,X) is said to be a weighted pseudo-almost periodic sequence
or an α-pseudo-almost periodic sequence in the case X = Y + Z, where Y ∈ AP(Z,X),
Z ∈ PAPµ

0 (Z,X, α), and α ∈ U. The space of all α-pseudo-almost periodic sequences is rep-
resented by PAPµ(Z,X, α).

Supposing that (Ω,F , P, θ) is a metric dynamical system, see the pioneering work
in [57]. It holds that θk : Ω→ Ω is F -measurable, P(θ−1

k (A)) = P(A) for any A ∈ F , and
θs+k = θs ◦ θk, ∀s, k ∈ Z.

Definition 3. The translation to a sequential process Xk is defined as

LτXk(ω) := Xk+τ(θ−τω), ∀ω ∈ Ω, s, k, τ ∈ Z.
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Definition 4. If Xk ∈ X, ∀k ∈ Z, then X is said to be θ-almost periodic in the case that for
each ε > 0 we can find at least one positive integer ν = ν(ε) and it has a constant τ = τ(ε) ∈
(a, a + ν)Z for arbitrary a ∈ Z, ensuring that

‖LτXk − Xk‖X ≤ ε, ∀k ∈ Z.

Herein, τ is called an ε-θ-almost period of X. The space of all θ-almost periodic sequences is
represented by APθ(Z,X). If LτX = X with τ ∈ Z, then X is said to be θ-periodic.

When X = Lp(Ω,Rn) with p > 0, then X is said to be θ-almost periodic in p-mean. If p = 2,
the elements in PAPθ(Z, Lp(Ω,Rn)) are called a mean square θ-almost periodic sequence. Hereby,
we use a simplified symbol PAPθ(Z,Rn) to denote PAPθ(Z, L2(Ω,Rn)).

Definition 5. Sequence X : Z → X is said to be a weighted pseudo-θ-almost periodic se-
quence or α-pseudo-θ-almost periodic sequence in the case X = Y + Z, where Y ∈ APθ(Z,X),
Z ∈ PAPµ

0 (Z,X, α), and α ∈ U. The space of all α-pseudo-θ-almost periodic sequences is repre-
sented by PAPθ,µ(Z,X, α). If Y is θ-periodic, then X is said to be a weighted pseudo-θ-periodic
sequence or an α-pseudo-θ-periodic sequence.

When X = Lp(Ω,Rn) with p > 0, then X is said to be a weighted pseudo-θ-almost
periodic sequence or an α-pseudo-θ-almost periodic sequence in p-mean. If p = 2, the ele-
ments in PAPθ,µ(Z, Lp(Ω,Rn), α) are called a weighted pseudo mean square θ-almost periodic
sequence or an α-pseudo mean square θ-almost periodic sequence. Hereby, a simplified symbol
PAPθ,µ(Z,Rn, α) := PAPθ,µ(Z, L2(Ω,Rn), α).

3. Mean Square α-Pseudo-θ-Almost Periodic Sequence

This section focuses on weighted pseudo-θ-almost periodic sequence solutions in the
mean square sense of SGRNs Equation (1) based on stochastic calculus theory, the constant
variation formula, and the Banach contraction mapping principle.

For any u = (m, p)T ∈ PAPθ,µ(fν × Z,R2m, α) with m = (m1, · · · , mm)T and p =

(p1, · · · , pm)T , define Γ : PAPθ,µ(fν ×Z,R2m, α)→ R2m by

Γu =
(
(Φu1), · · · , (Φu)m, (Ψu)1, · · · , (Ψu)m

)T
,

where




(Φu)〈ν〉i,k =
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v

[
n

∑
q=1

Θiq∆̃2
h̄q

m〈ν〉i,v

+
m

∑
j=1

bij,v f j(p
〈ν〉
j,v−σj,v

) +
m

∑
j=1

γij,vgj(p
〈ν〉
j,v−µj,v

)w1j,v + Ii,v

]
,

(Ψu)〈ν〉i,k =
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ci,sh(1− e−ci,vh)

ci,v

[
n

∑
q=1

Πiq∆̃2
h̄q

p〈ν〉i,v

+
m

∑
j=1

vij,vηj(m
〈ν〉
j,v−νj,v

)w2j,v + di,vm〈ν〉i,v

]
, ∀(ν, k) ∈ fν ×Z;

(5)

(Φu)〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = (Ψu)〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ Z, i = 1, 2, . . . , m.

For ∀u = (m, p) ∈ PAPθ,µ(fν ×Z,R2m, α), define the norm as follows:

‖u‖∞ = sup
(ν,k)∈fν×Z

max
1≤i≤m

{∥∥∥m〈ν〉i,k

∥∥∥
2
,
∥∥∥p〈ν〉i,k

∥∥∥
2

}
,
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in which
∥∥∥m〈ν〉i,k

∥∥∥
2
=

[
E
(

m〈ν〉i,k

)2
] 1

2
and

∥∥∥p〈ν〉i,k

∥∥∥
2
=

[
E
(

p〈ν〉i,k

)2
] 1

2
for all (ν, k) ∈ fν × Z,

i = 1, 2, . . . , m.
Define

ai := inf
k∈Z

ai,k, ci := inf
k∈Z

ci,k, d̄i := sup
k∈Z
|di,k|,

Īi := sup
k∈Z
|Ii,k|, b̄ij := sup

k∈Z
|bij,k|, γ̄ij := sup

k∈Z
|γij,k|, v̄ij := sup

k∈Z
|vij,k|,

where i, j = 1, 2, . . . , m.
In the later discussion of this paper, the following assumptions are necessary:

(g1) ai and ci are R-valued almost periodic sequences; σj, µj, and νj are Z0-valued almost
periodic sequences; bij, γij, vij, Ii, and di are R-valued α-pseudo-almost periodic se-
quences.

(g2) f j(0) = gj(0) = ηj(0) = 0 and there exist positive numbers L f
j , Lg

j and Lη
j such that

| f j(u)− f j(v)| ≤ L f
j |u− v|, |gj(u)− gj(v)| ≤ Lg

j |u− v|, |ηj(u)− ηj(v)| ≤ Lη
j |u− v|

for any u, v ∈ R, j = 1, 2, . . . , m.
(g3) min1≤i≤m{ai, ci} > 0.

3.1. α-Pseudo-θ-Almost Periodicity of Operator Γ

Define a coordinate function wpj,k(ω) := wpj(kh, ω) := ωpj,k and θ = (θk)k∈Z, which
is the dynamical system on (Ω,F , P), as

θkω(s) =
(

w11,k+s −w11,k, . . . , w1m,k+s −w1m,k, w21,k+s −w21,k, . . . , w2m,k+s −w2m,k

)T
,

where ω = (ω11, . . . , ω1m, ω21, . . . , ω2m)
T ∈ Ω, k, s ∈ Z, p = 1, 2, j = 1, 2, . . . , m.

For any k, τ ∈ Z and ω ∈ Ω, it holds that

wpj,k+τ(θ−τω) = wpj,k(ω)−wpj,−τ(ω), p = 1, 2, j = 1, 2, . . . , m. (6)

Lemma 5. Let σ : Z → [0, σ0]Z with σ0 > 0 and ∆σ < 1. If x ∈ PAPµ
0 (Z,X, α), then

xk−σk
∈ PAPµ

0 (Z,X, α), ∀k ∈ Z.

Proof. By the definition of PAPµ
0 (Z,X, α), we obtain

1
µk(α)

k
∑

s=−k
αs‖xs−σs‖X ≤ ᾱ

µk(α)

k−σk
∑

q=−k−σ−k

αq
∥∥xq
∥∥
X

≤ ᾱ
µk(α)

k
∑

q=−k
αq
∥∥xq
∥∥
X + ᾱ

µk(α)

−k
∑

q=−k−σ0

αq
∥∥xq
∥∥
X → 0,

as k→ ∞. This completes the proof.

Corollary 1. If x ∈ PAPµ
0 (Z,X, α), then xk−1 ∈ PAPµ

0 (Z,X, α) for each k ∈ Z.

Lemma 6. Let σ : Z→ [0, σ0]Z be an almost periodic sequence, which satisfies the conditions in
Lemma 5. If x ∈ PAPθ,µ(Z,X, α), then xk−σk

∈ PAPθ,µ(Z,X, α), ∀k ∈ Z.

Proof. Owing to x ∈ PAPθ,µ(Z,X, α), then x = x̂ + x̆, where x̂ ∈ APθ(Z,R) and
x̆ ∈ PAPµ

0 (Z,R, α). From Lemma 5, x̆k−σk
∈ PAPµ

0 (Z,X, α), ∀k ∈ Z. It suffices to prove
x̂k−σk

∈ APθ(Z,X), ∀k ∈ Z.
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Let τ ∈ Z be an ε-θ-almost period of σ and x̂, ε ∈ (0, 1). Noting that σ : Z→ Z, so

|σk+τ − σk| = 0 < ε, ∀k ∈ Z,

which derives

∥∥Lτ x̂k−σk
− x̂k−σk

∥∥
X ≤

∥∥∥x̂k+τ−σk+τ
− x̂k−σk+τ

∥∥∥
X
+
∥∥∥x̂k−σk+τ

− x̂k−σk

∥∥∥
X
< ε, ∀k ∈ Z.

Then, x̂k−σk
∈ APθ(Z,X), ∀k ∈ Z. This completes the proof.

Lemma 7. If b ∈ PAPµ(Z,R, α), x ∈ PAPθ,µ(Z,X, α) is bounded, f (0) = 0, and f : R → R
meets the Lipschitz condition with Lipschitz constant L f > 0, then b f (x) ∈ PAPθ,µ(Z,X, α).

Proof. Under the assumptions in Lemma 7, there exist b̂ ∈ AP(Z,R), b̆ ∈ PAPµ
0 (Z,R, α),

x̂ ∈ APθ(Z,X), and x̆ ∈ PAPµ
0 (Z,X, α) such that

b = b̂ + b̆, x = x̂ + x̆.

For any τ ∈ Z,
∥∥∥Lτ b̂k f (x̂k)− b̂k f (x̂k)

∥∥∥
X

=
∥∥∥b̂k+τ f (Lτ x̂k)− b̂k f (x̂k)

∥∥∥
X

≤
∣∣∣b̂k+τ − b̂k

∣∣∣L f ‖x̂k+τ(θ−τω)‖X + |b̂k|L f ‖Lτ x̂k − x̂k‖X, ∀k ∈ Z,

which implies b̂ f (x̂) ∈ APθ(Z,X). Meanwhile,
∥∥∥b f (x)− b̂ f (x̂)

∥∥∥
X
≤ |b̆|L f ‖x‖2 + |b̂|L f ‖x̆‖X,

which induces b f (x)− b̂ f (x̂) ∈ PAPµ
0 (Z,X, α). This completes the proof.

Lemma 8. If a ∈ AP(Z,R) with a = infk∈Z ak > 0, x ∈ PAPθ,µ(Z,R, α) is bounded and xk is
ℱk-adaptive for each k ∈ Z, then

k−1

∑
v=−∞

k−1

∏
s=v+1

e−ashxv ∈ PAPθ,µ(Z,R, α),
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ashxvwpj,v ∈ PAPθ,µ(Z,R, α), ∀k ∈ Z,

where p = 1, 2, j = 1, 2, . . . , m.

Proof. Similar to Lemma 7, there exist x̂ ∈ APθ(Z,R) and x̆ ∈ PAPµ
0 (Z,R, α) such that

x = x̂ + x̆.
Let ā = supk∈Z ak, τ ∈ Z be an ε-θ-almost period of a and x̂,

Îpj,k :=
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ashx̂vwpj,v, Ĭpj,k :=
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ashx̆vwpj,v, ∀k ∈ Z,

where p = 1, 2, j = 1, 2, . . . , m. By using Equation (6) and the Minkowski and Hölder
inequalities in Lemmas 2 and 3, we have

∥∥Lτ Îpj,k − Îpj,k
∥∥

2 =

{
E
[

k−1
∑

v=−∞

k−1
∏

s=v+1
e−ash

(
eash(e−as+τ h − e−ash)x̂v+τ + (x̂v+τ − x̂v)

)
wpj,v

]2} 1
2

≤
{ k−1

∑
v=−∞

e−a(k−v−1)h
k−1

∑
v=−∞

e−a(k−v−1)hE
[(

e(ā−a)hεh|x̂v+τ |+ |x̂v+τ − x̂v|
)

wpj,v

]2} 1
2

≤ 1
1−e−ah

(
e(ā−a)hh sup

k∈Z
‖x̂k‖2 + 1

)
h−

1
2 ε, ∀k ∈ Z,

which implies Îpj ∈ APθ(Z,R), p = 1, 2, j = 1, 2, . . . , m.
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On the other hand, similar to the before derivation, we attain

∥∥∥Ĭpj,k

∥∥∥
2

=

{
E
[

k−1
∑

v=−∞

k−1
∏

s=v+1
e−ashx̆vwpj,v

]2} 1
2

≤
[ k−1

∑
v=−∞

e−a(k−v−1)h
k−1

∑
v=−∞

e−a(k−v−1)hE
(
x̆2

vw2
pj,v
)] 1

2

≤
[

1
1−e−ah

k−1
∑

v=−∞

1
h e−a(k−v−1)h‖x̆v‖2

2

] 1
2

, ∀k ∈ Z,

which implies

lim
k→+∞

1
µk(α)

k
∑

s=−k
αs
∥∥Ĭpj,s

∥∥
2 ≤ lim

k→+∞
1

µk(α)

[
k
∑

s=−k
αs

k
∑

s=−k
αs
∥∥Ĭpj,s

∥∥2
2

] 1
2

≤ lim
k→+∞

[
1

µk(α)(1−e−ah)

k
∑

s=−k
αs

s−1
∑

v=−∞

1
h e−a(s−v−1)h‖x̆v‖2

2

] 1
2

≤
[

supk∈Z ‖x̆k‖2
1−e−ah

∞
∑

q=0
e−aqh 1

h lim
k→+∞

1
µk(α)

k
∑

s=−k
αs‖x̆s−q−1‖2

] 1
2

(q = s− v− 1)

= 0, p = 1, 2, j = 1, 2, . . . , m.

In the above computations, Corollary 1 and the principle of uniform convergence
are employed. Thus, ∑k−1

v=−∞ ∏k−1
s=v+1 e−ashxvw··,v ∈ PAPθ,µ(Z,R, α), ∀k ∈ Z. Furthermore,

∑k−1
v=−∞ ∏k−1

s=v+1 e−ashxv ∈ PAPθ,µ(Z,R, α) can be similarly addressed, and ∀k ∈ Z. This
completes the proof.

Together with Lemmas 5–8, we derive the following:

Theorem 1. Supposing that (g1)–(g3) hold. Then, Γ maps PAPθ,µ(fν × Z,R2m, α) to
PAPθ,µ(fν ×Z,R2m, α).

3.2. Weighted Pseudo-Almost Periodic Sequence Solution to GRNs Equation (1)

Define

PAPθ,µ
b (fν ×Z,R2m, α) =

{
u ∈ PAPθ,µ(fν ×Z,R2m, α) : ‖u− ϕ‖∞ ≤

ςϕ0

1− ς

}
,

where

ϕ = (ϕ1, ϕ2, · · · , ϕm, 0, · · · , 0)T , ϕ
〈ν〉
i,k =

k−1

∑
v=−∞

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v
Ii,v

for all (ν, k) ∈ fν ×Z, i = 1, 2, . . . , m. From the definition of ϕ, we derive

‖ϕ‖∞ = max
1≤i≤m

sup
(ν,k)∈fν×Z

∥∥∥ϕ
〈ν〉
i,k

∥∥∥
2
= max

1≤i≤m
sup

(ν,k)∈fν×Z

k−1

∑
v=−∞

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v
Ii,v ≤ max

1≤i≤m

Īi
ai

= ϕ0,

which induces

‖u‖∞ ≤ ‖u− ϕ‖∞ + ‖ϕ‖∞ ≤
ςϕ0

1− ς
+ ϕ0 =

ϕ0

1− ς
, ∀u ∈ PAPθ,µ

b (fν ×Z,R2m, α).

Theorem 2. Let (g1)–(g3) be valid. GRNs Equation (1) possesses a unique weighted pseudo- or
α-pseudo-almost periodic sequence solution if the following condition holds.
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(g4) ς = max{ς1, ς2} < 1, where

ς1 = max
1≤i≤m

1
ai

[
n

∑
q=1

2|Θiq|
h̄2 +

m

∑
j=1

b̄ijL
f
j +

m

∑
j=1

γ̄ijL
g
j h−

1
2

]
,

ς2 = max
1≤i≤m

1
ci

[
n

∑
q=1

2|Πiq|
h̄2 +

m

∑
j=1

v̄ijL
η
j h−

1
2 + d̄i

]
.

Proof. Let us prove that the operator Γ is self-mapping from PAPθ,µ
b (fν × Z,R2m, α) to

PAPθ,µ
b (fν × Z,R2m, α). Supposing that u = (m, p)T = (m1, · · · , mm, p1, · · · , pm)T ∈

PAPθ,µ
b (fν × Z,R2m, α). In view of Equation (5) and by utilizing the Minkowski and

Hölder inequalities in Lemmas 2 and 3, we have
∥∥∥(Φu)〈ν〉i,k − ϕ

〈ν〉
i,k

∥∥∥
2
=

{
E

(
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v

[
n

∑
q=1

Θiq∆̃2
h̄q

m〈ν〉i,v

+
m
∑

j=1
bij,v f j(p

〈ν〉
j,v−σj,v

) +
m
∑

j=1
γij,vgj(p

〈ν〉
j,v−µj,v

)w1j,v

])2} 1
2

≤ 1−e−ai h

ai

{
E

(
k−1

∑
v=−∞

e−ai(k−v−1)h

[
n

∑
q=1
|Θiq||∆̃2

h̄q
m〈ν〉i,v |

+
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

|+
m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

||w1j,v|
])2} 1

2

≤ 1−e−ai h

ai

{
k−1
∑

v=−∞
e−ai(k−v−1)h

k−1

∑
v=−∞

e−ai(k−v−1)h

× E

[
n

∑
q=1
|Θiq||∆̃2

h̄q
m〈ν〉i,v |+

m

∑
j=1

b̄ijL
f
j |p
〈ν〉
j,v−σj,v

|+
m

∑
j=1

γ̄ijL
g
j |p
〈ν〉
j,v−µj,v

||w1j,v|
]2} 1

2

≤ 1−e−ai h

ai

{
1

1−e−ai h

k−1

∑
v=−∞

e−ai(k−v−1)h

{(
E

[
n

∑
q=1
|Θiq||∆̃2

h̄q
m〈ν〉i,v |

+
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

|+
m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

||w1j,v|
]2) 1

2
}2} 1

2

≤ 1−e−ai h

ai

{
1

1−e−ai h

k−1

∑
v=−∞

e−ai(k−v−1)h

{(
E

(
n

∑
q=1
|Θiq||∆̃2

h̄q
m〈ν〉i,v |

)2) 1
2

+

(
E

(
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

|
)2) 1

2

+

(
E

m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

||w1j,v|
)2) 1

2
}2} 1

2

≤ 1−e−ai h

ai

{
1

1−e−ai h

k−1

∑
v=−∞

e−ai(k−v−1)h

{
n

∑
q=1
|Θiq|

2
h̄
‖u‖∞

+
m
∑

j=1
b̄ijL

f
j ‖u‖∞ +

m
∑

j=1
γ̄ijL

g
j

1√
h
‖u‖∞

}2} 1
2

≤ 1−e−ai h

ai

{
1

1−e−ai h

1
1− e−aih

{
n

∑
q=1
|Θiq|

2
h̄
‖u‖∞

+
m
∑

j=1
b̄ijL

f
j ‖u‖∞ +

m
∑

j=1
γ̄ijL

g
j

1√
h
‖u‖∞

}2} 1
2

≤ 1
ai

( n

∑
q=1
|Θiq|

2
h̄
+

m

∑
j=1

b̄ijL
f
j +

m

∑
j=1

γ̄ijL
g
j

1√
h

)
‖u‖∞

≤ ςϕ0
1−ς , i = 1, 2, . . . , m,

(7)

as well as
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∥∥∥(Ψu)〈ν〉i,k − 0
∥∥∥

2
=

{
E

(
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ci,sh(1− e−ci,vh)

ci,v

[
n

∑
q=1

Πiq∆̃2
h̄q

p〈ν〉i,v

+di,vm〈ν〉i,v +
m
∑

j=1
vij,vηj(m

〈ν〉
j,v−νj,v

)w2j,v

])2} 1
2

≤ 1−e−cih

ci

{
E

(
k−1

∑
v=−∞

e−ci(k−v−1)h

[
n

∑
q=1
|Πiq||∆̃2

h̄q
p〈ν〉i,v |

+d̄i|m〈ν〉i,v |+
m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

||w2j,v|
])2} 1

2

≤ 1−e−cih

ci

{
k−1
∑

v=−∞
e−ci(k−v−1)h

k−1

∑
v=−∞

e−ci(k−v−1)h

×E

[
n

∑
q=1
|Πiq||∆̃2

h̄q
p〈ν〉i,v |+ d̄i|m〈ν〉i,v |+

m

∑
j=1

v̄ijL
η
j |m

〈ν〉
j,v−νj,v

||w2j,v|
]2} 1

2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

{(
E

[
n

∑
q=1
|Πiq||∆̃2

h̄q
p〈ν〉i,v |

+d̄i|m〈ν〉i,v |+
m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

||w2j,v|
]2) 1

2
}2} 1

2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

{(
E

(
n

∑
q=1
|Πiq||∆̃2

h̄q
p〈ν〉i,v |

)2) 1
2

+

(
E

(
d̄i|m〈ν〉j,v |

)2) 1
2

+

(
E

m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

||w2j,v|
)2) 1

2
}2} 1

2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

×
{

n

∑
q=1
|Πiq|

2
h̄
‖u‖∞ + d̄i‖u‖∞ +

m

∑
j=1

v̄ijL
η
j

1√
h
‖u‖∞

}2} 1
2

≤ 1−e−cih

ci

{
1

1−e−cih
1

1− e−cih

×
{

n

∑
q=1
|Πiq|

2
h̄
‖u‖∞ + d̄i‖u‖∞ +

m

∑
j=1

v̄ijL
η
j

1√
h
‖u‖∞

}2} 1
2

≤ 1
ci

( n

∑
q=1
|Πiq|

2
h̄
+ d̄i +

m

∑
j=1

v̄ijL
η
j

1√
h

)
‖u‖∞

≤ ςϕ0
1−ς , i = 1, 2, . . . , m.

(8)

In the calculations of the stochastic terms of Equations (7) and (8), Lemma 4 has been
employed.

Together with Equations (7) and (8), ‖Γu− ϕ‖∞ ≤
ςϕ0

1− ς
and Γu is well defined in

space
(

PAPθ,µ
b (fν ×Z,R2m, α), ‖ · ‖∞

)
for any u ∈ PAPθ,µ

b (fν ×Z,R2m, α).

In the end, the property of contraction to the operator Γ in space PAPθ,µ
b (fν ×

Z,R2m, α)will be demonstrated. Let u = (m1, · · · , mm, p1, · · · , pm)T and ũ = (m̃1, · · · , m̃m,
p̃1, · · · , p̃m)T belong to space PAPθ,µ

b (fν ×Z,R2m, α), it follows that
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∥∥∥(Φu)〈ν〉i,k − (Φũ)〈ν〉i,k

∥∥∥
2
=

{
E

(
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v

[
n

∑
q=1

Θiq∆̃2
h̄q
(m〈ν〉i,v − m̃〈ν〉i,v )

+
m
∑

j=1
bij,v

(
f j(p

〈ν〉
j,v−σj,v

)− f j(p̃
〈ν〉
j,v−σj,v

)
)

+
m
∑

j=1
γij,v

(
gj(p

〈ν〉
j,v−µj,v

)− gj(p̃
〈ν〉
j,v−µj,v

)
)

w1j,v

])2} 1
2

≤ 1−e−aih

ai

{
E

(
k−1

∑
v=−∞

e−ai(k−v−1)h

[
n

∑
q=1
|Θiq||∆̃2

h̄q
(m〈ν〉i,v − m̃〈ν〉i,v )|

+
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

− p̃〈ν〉j,v−σj,v
|+

m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

− p̃〈ν〉j,v−µj,v
||w1j,v|

])2} 1
2

≤ 1−e−aih

ai

{
k−1
∑

v=−∞
e−ai(k−v−1)h

k−1
∑

v=−∞
e−ai(k−v−1)hE

[
n
∑

q=1
|Θiq||∆̃2

h̄q
(m〈ν〉i,v − m̃〈ν〉i,v )|

+
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

− p̃〈ν〉j,v−σj,v
|+

m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

− p̃〈ν〉j,v−µj,v
||w1j,v|

]2} 1
2

≤ 1−e−aih

ai

{
1

1−e−aih

k−1

∑
v=−∞

e−ai(k−v−1)h

{(
E

[
n

∑
q=1
|Θiq||∆̃2

h̄q
(m〈ν〉i,v − m̃〈ν〉i,v )|

+
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

− p̃〈ν〉j,v−σj,v
|+

m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

− p̃〈ν〉j,v−µj,v
||w1j,v|

]2) 1
2
}2} 1

2

≤ 1−e−aih

ai

{
1

1−e−aih

k−1

∑
v=−∞

e−ai(k−v−1)h

{(
E

(
n

∑
q=1
|Θiq||∆̃2

h̄q
(m〈ν〉i,v − m̃〈ν〉i,v )|

)2) 1
2

+

(
E

(
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

− p̃〈ν〉j,v−σj,v
|
)2) 1

2

+

(
E

m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

− p̃〈ν〉j,v−µj,v
||w1j,v|

)2) 1
2
}2} 1

2

≤ 1−e−aih

ai

{
1

1−e−aih

k−1

∑
v=−∞

e−ai(k−v−1)h

{
n

∑
q=1
|Θiq|

2
h̄
‖u− ũ‖∞

+
m
∑

j=1
b̄ijL

f
j ‖u− ũ‖∞ +

m
∑

j=1
γ̄ijL

g
j

1√
h
‖u− ũ‖∞

}2} 1
2

≤ 1−e−aih

ai

{
1

(1−e−aih)2

{
n
∑

q=1
|Θiq| 2h̄‖u− ũ‖∞

+
m
∑

j=1
b̄ijL

f
j ‖u− ũ‖∞ +

m
∑

j=1
γ̄ijL

g
j

1√
h
‖u− ũ‖∞

}2} 1
2

≤ 1
ai

( n

∑
q=1
|Θiq|

2
h̄
+

m

∑
j=1

b̄ijL
f
j +

m

∑
j=1

γ̄ijL
g
j

1√
h

)
‖u− ũ‖∞

≤ ς‖u− ũ‖∞, i = 1, 2, . . . , m,

(9)

as well as
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∥∥∥(Ψu)〈ν〉i,k − (Ψũ)〈ν〉i,k

∥∥∥
2
=

{
E

(
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ci,sh(1− e−ci,vh)

ci,v

[
n

∑
q=1

Πiq∆̃2
h̄q
(p〈ν〉i,v − p̃〈ν〉i,v )

+di,v(m
〈ν〉
i,v − m̃〈ν〉i,v ) +

m
∑

j=1
vij,vηj(m

〈ν〉
j,v−νj,v

− m̃〈ν〉j,v−νj,v
)w2j,v

])2} 1
2

≤ 1−e−cih

ci

{
E

(
k−1

∑
v=−∞

e−ci(k−v−1)h

[
n

∑
q=1
|Πiq||∆̃2

h̄q
(p〈ν〉i,v − p̃〈ν〉i,v )|

+d̄i|m〈ν〉i,v − m̃〈ν〉i,v |+
m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

− m̃〈ν〉j,v−νj,v
||w2j,v|

])2} 1
2

≤ 1−e−cih

ci

{
k−1
∑

v=−∞
e−ci(k−v−1)h

k−1

∑
v=−∞

e−ci(k−v−1)hE

[
n

∑
q=1
|Πiq||∆̃2

h̄q
(p〈ν〉i,v − p̃〈ν〉i,v )|

+d̄i|m〈ν〉i,v − m̃〈ν〉i,v |+
m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

− m̃〈ν〉j,v−νj,v
||w2j,v|

]2} 1
2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

{(
E

[
n

∑
q=1
|Πiq||∆̃2

h̄q
(p〈ν〉i,v − p̃〈ν〉i,v )|

+d̄i|m〈ν〉i,v − m̃〈ν〉i,v |+
m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

− m̃〈ν〉j,v−νj,v
||w2j,v|

]2) 1
2
}2} 1

2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

{(
E

(
n

∑
q=1
|Πiq||∆̃2

h̄q
(p〈ν〉i,v − p̃〈ν〉i,v )|

)2) 1
2

+

(
E

(
d̄i|m〈ν〉j,v − m̃〈ν〉j,v |

)2) 1
2

+

(
E

m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

− m̃〈ν〉j,v−νj,v
||w2j,v|

)2) 1
2
}2} 1

2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

{
n

∑
q=1
|Πiq|

2
h̄
‖u− ũ‖∞

+d̄i‖u− ũ‖∞ +
m
∑

j=1
v̄ijL

η
j

1√
h
‖u− ũ‖∞

}2} 1
2

≤ 1−e−cih

ci

{
1

(1−e−cih)2

{
n
∑

q=1
|Πiq| 2h̄‖u− ũ‖∞

+d̄i‖u− ũ‖∞ +
m
∑

j=1
v̄ijL

η
j

1√
h
‖u− ũ‖∞

}2} 1
2

≤ 1
ci

( n

∑
q=1
|Πiq|

2
h̄
+ d̄i +

m

∑
j=1

v̄ijL
η
j

1√
h

)
‖u− ũ‖∞

≤ ς‖u− ũ‖∞, i = 1, 2, . . . , m.

(10)

The inequalities in Equations (9) and (10) exhibit ‖Γu− Γũ‖∞ ≤ ς‖u− ũ‖∞, ∀u, ũ ∈
PAPθ,µ

b (fν × Z,R2m, α). In line with assumption (g1), the operator Γ is a contraction

mapping. Consequently, Γ possess a unique fixed point û = (m̂, p̂)T ∈ PAPθ,µ
b (fν ×

Z,R2m, α), i.e., Γû = û. Hence, û is a unique weighted pseudo-almost periodic sequence to
GRNs Equation (1). This completes the proof.

Remark 2. Articles [12,38] studied the existence of a unique (weighted pseudo) almost periodic
solution of continuous-time GRNs without spatial diffusions. However, this paper not only regards
the spatial diffusions, but also studies the corollary responding to multi-variable discrete GRNs. So
Theorem 2 complements the works of [12,38].
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4. Finite-Time Guaranteed Cost Controls in Exponential Form

In this section, finite-time guaranteed cost controllers for SGRNs Equation (1) are
designed based on the drive network, response network, and error network. The global
exponential stability of SGRNs Equation (1) in the mean square sense is also discussed.

4.1. The Frame of Controlling GRNs

Let û = (m̂, p̂)T ∈ PAPθ,µ
b (fν × Z,R2m, α) be the unique weighted pseudo-almost

periodic sequence to GRNs Equation (1), where m̂ = (m̂1, . . . , m̂m)T and p̂ = (p̂1, . . . , p̂m)T .
That is,





m̂〈ν〉i,k+1 = e−ai,khm̂〈ν〉i,k +
1− e−ai,kh

ai,k

[ n

∑
q=1

Θiq∆̃2
h̄q

m̂〈ν〉i,k

+
m

∑
j=1

bij,k f j(p̂
〈ν〉
j,k−σj,k

) +
m

∑
j=1

γij,kgj(p̂
〈ν〉
j,k−µj,k

)w1j,k + Ii,k

]
,

p̂〈ν〉i,k+1 = e−ci,khp̂〈ν〉i,k +
1− e−ci,kh

ci,k

[ n

∑
q=1

Πiq∆̃2
h̄q

p̂〈ν〉i,k

+
m

∑
j=1

vij,kηj(m̂
〈ν〉
j,k−νj,k

)w2j,k + di,km̂〈ν〉i,k

]
, ∀(ν, k) ∈ fν ×Z0,

(11)

where i = 1, 2, . . . , m. The initial and boundary values of GRNs Equation (11) can be
described as

m̂〈·〉i,s = ϕ̂
〈·〉
i,s , p̂〈·〉i,s = φ̂

〈·〉
i,s , ∀s ∈ [−σ0, 0]Z; m̂〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = p̂〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ Z0,

where i = 1, 2, . . . , m.
A controlling network is constructed as below:





m〈ν〉i,k+1 = e−ai,khm〈ν〉i,k +
1− e−ai,kh

ai,k

[ n

∑
q=1

Θiq∆̃2
h̄q

m〈ν〉i,k

+
m

∑
j=1

bij,k f j(p
〈ν〉
j,k−σj,k

) +
m

∑
j=1

γij,kgj(p
〈ν〉
j,k−µj,k

)w1j,k + Ii,k

]
+ ρ
〈ν〉
i,k ,

p〈ν〉i,k+1 = e−ci,khp〈ν〉i,k +
1− e−ci,kh

ci,k

[ n

∑
q=1

Πiq∆̃2
h̄q

p〈ν〉i,k

+
m

∑
j=1

vij,kηj(m
〈ν〉
j,k−νj,k

)w2j,k + di,km〈ν〉i,k

]
+ $
〈ν〉
i,k , (ν, k) ∈ fν ×Z0,

(12)

where i = 1, 2, . . . , m. The initial and boundary values of GRNs Equation (12) are given by

m〈·〉i,s = ϕ
〈·〉
i,s , p〈·〉i,s = φ

〈·〉
i,s , ∀s ∈ [−σ0, 0]Z; m〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = p〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ Z0,

where i = 1, 2, . . . , m.
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Let ei = mi − m̂i and wi = pi − p̂i, i = 1, 2, . . . , m. Together with GRNs Equations (12)
and (11), it yields





e〈ν〉i,k+1 = e−ai,khe〈ν〉i,k +
1− e−ai,kh

ai,k

[ n

∑
q=1

Θiq∆̃2
h̄q

e〈ν〉i,k

+
m

∑
j=1

bij,k f̃ j(w
〈ν〉
j,k−σj,k

) +
m

∑
j=1

γij,k g̃j(w
〈ν〉
j,k−µj,k

)w1j,k] + ρ
〈ν〉
i,k ,

w〈ν〉i,k+1 = e−ci,khw〈ν〉i,k +
1− e−ci,kh

ci,k

[ n

∑
q=1

Πiq∆̃2
h̄q

w〈ν〉i,k

+
m

∑
j=1

vij,kη̃j(e
〈ν〉
j,k−νj,k

)w2j,k + di,ke〈ν〉i,k

]
+ $
〈ν〉
i,k ,

(13)

where

f̃ j(wj) = f j(pj)− f j(p̂j), g̃j(wj) = gj(pj)− gj(p̂j), η̃j(ej) = gj(mj)− gj(m̂j),

in which (ν, k) ∈ fν ×Z0, i, j = 1, 2, . . . , m.
The state feedback controller is designed:

ρ
〈·〉
i,k = κie

〈·〉
i,k , $

〈·〉
i,k = κiw

〈·〉
i,k , ∀k ∈ Z0, (14)

where κi and κi denote the controller gains to be determined later, i = 1, 2, . . . , m.
Substituting controller Equation (14) into the error network Equation (13) leads to





e〈ν〉i,k+1 = (e−ai,kh + κi)e
〈ν〉
i,k +

1− e−ai,kh

ai,k

[ n

∑
q=1

Θiq∆̃2
h̄q

e〈ν〉i,k

+
m

∑
j=1

bij,k f̃ j(w
〈ν〉
j,k−σj,k

) +
m

∑
j=1

γij,k g̃j(w
〈ν〉
j,k−µj,k

)w1j,k

]
,

w〈ν〉i,k+1 = (e−ci,kh +κi)w
〈ν〉
i,k +

1− e−ci,kh

ci,k

[ n

∑
q=1

Πiq∆̃2
h̄q

w〈ν〉i,k

+
m

∑
j=1

vij,kη̃j(e
〈ν〉
j,k−νj,k

)w2j,k + di,ke〈ν〉i,k

]
, (ν, k) ∈ fν ×Z0,

(15)

where i = 1, 2, . . . , m.
Similar to the derivation of Formula (4), we achieve





e〈ν〉i,k =
k−1

∏
s=0

(e−ai,sh + κi)e
〈ν〉
i,0 +

k−1

∑
v=0

k−1

∏
s=v+1

(e−ai,sh + κi)(1− e−ai,vh)

ai,v

×
[

n

∑
q=1

Θiq∆̃2
h̄q

e〈ν〉i,v +
m

∑
j=1

bij,v f̃ j(w
〈ν〉
j,v−σj,v

) +
m

∑
j=1

γij,v g̃j(w
〈ν〉
j,v−µj,v

)w1j,v

]
,

w〈ν〉i,k =
k−1

∏
s=0

(e−ci,sh +κi)w
〈ν〉
i,0 +

k−1

∑
v=0

k−1

∏
s=v+1

(e−ci,sh +κi)(1− e−ci,vh)

ci,v

×
[

n

∑
q=1

Πiq∆̃2
h̄q

w〈ν〉i,v + di,ve〈ν〉i,v +
m

∑
j=1

vij,vη̃j(e
〈ν〉
j,v−νj,v

)w2j,v

]
, (ν, k) ∈ fν ×Z0,

(16)

where i = 1, 2, . . . , m. Moreover, it holds that

e〈·〉i,s = ϕ
〈·〉
i,s − ϕ̂

〈·〉
i,s , w〈·〉i,s = φ

〈·〉
i,s − φ̂

〈·〉
i,s , ∀s ∈ [−σ0, 0]Z; e〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = w〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ Z0,

where i = 1, 2, . . . , m.
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Definition 6. State feedback controller Equation (14) finite-time stabilises GRNs Equation (12)
with a finite-time exponential convergent form in case the error networks Equation (15) achieves
finite-time exponential stability, i.e., for any ε ∈ (0, 1) there exists δ > 0, µ > 0 and integer K > 0,
ensuring that

ϕ0 := max
1≤i≤m

max
(ν,s)∈fν×[−σ0,0]Z

{∥∥∥e〈ν〉i,s

∥∥∥
2
,
∥∥∥w〈ν〉i,s

∥∥∥
2

}
< δ

implies that
max

1≤i≤m
max
ν∈fν

{∥∥∥e〈ν〉i,k

∥∥∥
2
,
∥∥∥w〈ν〉i,k

∥∥∥
2

}
≤ εe−µkh, ∀k ∈ [0, K]Z. (17)

Herein, K is called the settling time.

Define a performance index JK
c associated with the error networks Equation (15) by

JK
c = E

K

∑
k=0

max
ν∈fν

U〈ν〉Tk FU〈ν〉k ,

where
U = col(e, ρ, w, $), F = diag(P1, Q1, P2, Q2),

e = col(e1, . . . , em), w = col(w1, . . . , wm),

ρ = col(ρ1, . . . , ρm), $ = col($1, . . . , $m),

Pı = PT
ı > 0, Qı = QT

ı > 0, ı = 1, 2.

Definition 7. State feedback controller Equation (14) is said to be a finite-time guaranteed cost
controller to GRNs Equation (12) in case it finite-time stabilises GRNs Equation (12) with an
exponential convergent form and meets

JK
c ≤ λ,

where λ > 0 is a constant.

4.2. Design of Finite-Time Guaranteed Cost Controllers

From the first equation of the error networks Equation (16), we obtain

∥∥∥e〈ν〉i,k

∥∥∥
2
=
[
E|e〈ν〉i,k |2

] 1
2 ≤ (e−aih + κi)

k‖e〈ν〉i,0 ‖2 +
k−1
∑

v=0
(e−aih + κi)

k−v−1 (1−e−ai h)
ai

×
[

n

∑
q=1
|Θiq|‖∆̃2

h̄q
e〈ν〉i,v ‖2 +

m

∑
j=1

b̄ijL
f
j ‖w

〈ν〉
j,v−σj,v

‖2 +
m

∑
j=1

γ̄ijL
g
j ‖w

〈ν〉
j,v−µj,v

‖2h−
1
2

]
,

(18)

where ν ∈ fν, i = 1, 2, . . . , m. Similarly,

∥∥∥w〈ν〉i,k

∥∥∥
2
=
[
E|w〈ν〉i,k |2

] 1
2 ≤ (e−cih +κi)

k‖w〈ν〉i,0 ‖2 +
k−1
∑

v=0
(e−cih +κi)

k−v−1 (1−e−cih)
ci

×
[

n

∑
q=1
|Πiq|‖∆̃2

h̄q
w〈ν〉i,v ‖2 + d̄i‖e〈ν〉i,v ‖2 +

m

∑
j=1

v̄ijL
η
j ‖e
〈ν〉
j,v−νj,v

‖2h−
1
2

]
,

(19)

where ν ∈ fν, i = 1, 2, . . . , m.
Equations (18) and (19) are equal to
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maxν∈fν

∥∥∥e〈ν〉i,k

∥∥∥
2
≤ (e−aih + κi)

k maxν∈fν
‖e〈ν〉i,0 ‖2 +

k−1
∑

v=0
(e−aih + κi)

k−v−1 (1−e−ai h)
ai

×
[

n

∑
q=1
|Θiq|max

ν∈fν

‖∆̃2
h̄q

e〈ν〉i,v ‖2 +
m

∑
j=1

b̄ijL
f
j max

ν∈fν

‖w〈ν〉j,v−σj,v
‖2

+
m
∑

j=1
γ̄ijL

g
j maxν∈fν

‖w〈ν〉j,v−µj,v
‖2h−

1
2

]
,

(20)

and

maxν∈fν

∥∥∥w〈ν〉i,k

∥∥∥
2
≤ (e−cih +κi)

k maxν∈fν
‖w〈ν〉i,0 ‖2 +

k−1
∑

v=0
(e−cih +κi)

k−v−1 (1−e−cih)
ci

×
[

n

∑
q=1
|Πiq|max

ν∈fν

‖∆̃2
h̄q

w〈ν〉i,v ‖2 + d̄i max
ν∈fν

‖e〈ν〉i,v ‖2

+
m
∑

j=1
v̄ijL

η
j maxν∈fν

‖e〈ν〉j,v−νj,v
‖2h−

1
2

]
, i = 1, 2, . . . , m.

(21)

Theorem 3. If (g2) and the following assumptions are fulfilled,

(g5) The control gains κi = e−âih − e−aih and κi = e−ĉih − e−cih, where âi and ĉi are positive
constants, i = 1, 2, . . . , m.

(g6) It holds that 1 − e−αh < max{υ1, υ2} <
1− e−αh

1− e−ᾱh , where α = min1≤i≤m{âi, ĉi} and

ᾱ = max1≤i≤m{âi, ĉi},

υ1 = max
1≤i≤m

(1− e−aih)

ai

[
n

∑
q=1

2|Θiq|
h̄2 +

m

∑
j=1

b̄ijL
f
j +

m

∑
j=1

γ̄ijL
g
j h−

1
2

]
,

υ2 = max
1≤i≤m

(1− e−cih)

ci

[
n

∑
q=1

2|Πiq|
h̄2 + d̄i +

m

∑
j=1

v̄ijL
η
j h−

1
2

]
.

then state feedback controller Equation (14) is a finite-time guaranteed cost controller for GRNs
Equation (12) with the settling time K satisfying

K < − 1
ᾱh

ln

(
1− 1− e−αh

max{υ1, υ2}

)
.

Proof. In accordance with (g6), for any ε > 0, we can select δ > 0 and 0 < µ < α to be
small enough, causing

δ

ε
+ max

1≤i≤m

1− e−(âi − µ)Kh

1− e−(âi − µ)h
(1− e−aih)eµ(σ0+1)h

ai

[
n

∑
q=1

2|Θiq|
h̄2 +

m

∑
j=1

b̄ijL
f
j +

m

∑
j=1

γ̄ijL
g
j h−

1
2

]
< 1,

δ

ε
+ max

1≤i≤m

1− e−(ĉi1 − µ)Kh

1− e−(ĉi1 − µ)h
(1− e−cih)eµ(σ0+1)h

ci

[
n

∑
q=1

2|Πiq|
h̄2 + d̄i +

m

∑
j=1

v̄ijL
η
j h−

1
2

]
< 1.

A method of reduction to absurdity will be adapted here, supposing that Equation (17)
holds. If not, then one of the following two cases must be valid.

(a) There exist k0 ∈ (0, T]Z and i0 ∈ {1, 2, . . . , m} such that

max
1≤i≤m

max
ν∈fν

{∥∥∥e〈ν〉i,k

∥∥∥
2
,
∥∥∥w〈ν〉i,k

∥∥∥
2

}
≤ εe−µkh, ∀k ∈ [0, k0)Z; max

ν∈fν

∥∥∥e〈ν〉i0,k0

∥∥∥
2
> εe−µk0h.
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(b) There exist k1 ∈ (0, T]Z and i1 ∈ {1, 2, . . . , m} ensuring

max
1≤i≤m

max
ν∈fν

{∥∥∥e〈ν〉i,k

∥∥∥
2
,
∥∥∥w〈ν〉i,k

∥∥∥
2

}
≤ εe−µkh, ∀k ∈ [0, k1)Z; max

ν∈fν

∥∥∥w〈ν〉i1,k1

∥∥∥
2
> εe−µk1h.

If (a) holds, from Equation (20) and (g5) we obtain

maxν∈fν

∥∥∥e〈ν〉i0,k0

∥∥∥
2
≤ (e−ai0

h + κi0 )
k0 δ +

k0−1
∑

v=0
(e−ai0

h + κi0 )
k0−v−1 (1−e

−ai0
h
)

ai0

×
[

n

∑
q=1

2|Θi0q|
h̄2 +

m

∑
j=1

b̄i0 jL
f
j +

m

∑
j=1

γ̄i0 jL
g
j h−

1
2

]
eµσ0hεe−µvh

≤ e−âi0 k0hδ +
k0−1
∑

v=0
e−âi0 h(k0 − v− 1) (1−e

−ai0
h
)

ai0

×
[

n

∑
q=1

2|Θi0q|
h̄2 +

m

∑
j=1

b̄i0 jL
f
j +

m

∑
j=1

γ̄i0 jL
g
j h−

1
2

]
eµσ0hεe−µvh

= e−âi0 k0hδ +
k0−1
∑

v=0
e−(âi0 − µ)h(k0 − v− 1) (1−e

−ai0
h
)

ai0
eµ(σ0+1)h

×
[

n

∑
q=1

2|Θi0q|
h̄2 +

m

∑
j=1

b̄i0 jL
f
j +

m

∑
j=1

γ̄i0 jL
g
j h−

1
2

]
εe−µk0h

≤
(

δ
ε e−(âi0 − µ)k0h + 1−e−(âi0 − µ)k0h

1−e−(âi0 − µ)h
(1−e

−ai0
h
)eµ(σ0+1)h

ai0

×
[

n

∑
q=1

2|Θi0q|
h̄2 +

m

∑
j=1

b̄i0 jL
f
j +

m

∑
j=1

γ̄i0 jL
g
j h−

1
2

])
εe−µk0h

≤
{

δ
ε + 1−e−(âi0 − µ)Kh

1−e−(âi0 − µ)h
(1−e

−ai0
h
)eµ(σ0+1)h

ai0

×
[

n

∑
q=1

2|Θi0q|
h̄2 +

m

∑
j=1

b̄i0 jL
f
j +

m

∑
j=1

γ̄i0 jL
g
j h−

1
2

]}
εe−µk0h

≤ εe−µk0h,

which contradicts fact (a).
On the other hand, if (b) holds, from Equation (21), we can likewise compute

maxν∈fν

∥∥∥w〈ν〉i1 ,k1

∥∥∥
2
≤ (e−ci1

h +κi1 )
k1 δ +

k1−1
∑

v=0
(e−ci1

h +κi1 )
k1−v−1 (1−e

−ci1
h
)

ci1

×
[

n

∑
q=1

2|Πi1q|
h̄2 + d̄i1 +

m

∑
j=1

v̄i1 j L
η
j h−

1
2

]
eµσ0hεe−µvh

≤ e−ĉi1 k1hδ +
k1−1
∑

v=0
e−ĉi1 h(k1 − v− 1) (1−e

−ci1
h
)

ci1

×
[

n

∑
q=1

2|Πi1q|
h̄2 + d̄i1 +

m

∑
j=1

v̄i1 j L
η
j h−

1
2

]
eµσ0hεe−µvh

= e−ĉi1 k1hδ +
k1−1
∑

v=0
e−(ĉi1 − µ)h(k1 − v− 1) (1−e

−ci1
h
)

ci1
eµ(σ0+1)h

×
[

n

∑
q=1

2|Πi1q|
h̄2 + d̄i1 +

m

∑
j=1

v̄i1 j L
η
j h−

1
2

]
εe−µk1h

≤
(

δ
ε e−(ĉi1 − µ)k1h + 1−e−(ĉi1 − µ)k1h

1−e−(ĉi1 − µ)h
(1−e

−ci1
h
)eµ(σ0+1)h

ci1

×
[

n

∑
q=1

2|Πi1q|
h̄2 + d̄i1 +

m

∑
j=1

v̄i1 j L
η
j h−

1
2

])
εe−µk1h

≤
{

δ
ε + 1−e−(ĉi1 − µ)Kh

1−e−(ĉi1 − µ)h
(1−e

−ci1
h
)eµ(σ0+1)h

ci1

×
[

n

∑
q=1

2|Πi1q|
h̄2 + d̄i1 +

m

∑
j=1

v̄i1 j L
η
j h−

1
2

]}
εe−µk1h

≤ εe−µk1h,
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which contradicts fact (b). As a consequence, state feedback controller Equation (14) with
the control gains in (g5) stabilises GRNs Equation (12) in finite time.

In light of Definition 7, the finite-time guaranteed cost control will be displayed as
follows. It holds that

UTU =
(

e ρ w $
)



e
ρ

w
$




=
m
∑

i=1

(
e2

i + ρ2
i + w2

i + $2
i
)

=
m
∑

i=1

[
(1 + κ2

i )e
2
i + (1 +κ2

i )w
2
i
]

≤
m
∑

i=1

(
2 + κ2

i +κ2
i
)

max{e2
i , w2

i },

which induces

JK
c = E

K

∑
k=0

max
ν∈fν

U〈ν〉Tk U〈ν〉k ≤ ϑ
K

∑
k=0

max
1≤i≤m

max
ν∈fν

{∥∥∥e〈ν〉i,k

∥∥∥
2
,
∥∥∥w〈ν〉i,k

∥∥∥
2

}
≤ ϑ

K

∑
k=0

εe−µkh ≤ λ,

where ϑ =
m

∑
i=1

(
2 + κ2

i +κ2
i

)
and λ =

ϑ

1− e−µh . Therefore, state feedback controller

Equation (14) is a finite-time guaranteed cost controller for GRNs Equation (12). This
completes the proof.

If κi = 0 = κi in feedback controller Equation (14), then ρ
〈ν〉
i,k and $

〈ν〉
i,k are vanished

from GRNs Equation (12), ∀(ν, k) ∈ fν ×N0 and i = 1, 2, . . . , m. Based upon the proof of
Theorem 3, we can easily obtain

Corollary 2. Let assumptions (g2)–(g4) hold. Then, GRNs Equation (1) is finite-time exponen-
tially stable in a mean-square sense. Further, if (g1) holds, then GRNs Equation (1) admits a unique
weighted pseudo almost periodic sequence solution, which is finite-time exponentially stable in a
mean-square sense.

5. Example

This section gives an experimental example to verify the feasibility of the main results
for discrete-space and -time stochastic GRNs, which have been addressed in the previous
sections of this article.

Considering the following discrete-time stochastic GRNs with discrete spatial diffusions




(
m〈ν〉1,k+1

m〈ν〉2,k+1

)
=

(
e−9h 0

0 e−10h

)(
m〈ν〉1,k

m〈ν〉2,k

)
+

(
1−e−9h

9 0
0 1−e−10h

10

)[(
0.2 0
0 0.2

)
∆̃2

h̄

(
m〈ν〉1,k

m〈ν〉2,k

)

+

(
1.2 cos(kπ + π

4 ) + e−|k| 0.5
0.3 1.8 sin(kπ + π

4 ) + e−|k|

)(
f1(p

〈ν〉
1,k−2)

f2(p
〈ν〉
2,k−1)

)

+

(
0.2 0.1
0 0.15

)(
g1(p

〈ν〉
1,k−1)w11,k

g2(p
〈ν〉
2,k−1)w12,k

)
+

(
1 + 0.2 cos(kπ + π

4 )

0.5 + 0.5 sin(kπ + π
4 )

)]
,

(
p〈ν〉1,k+1

p〈ν〉2,k+1

)
=

(
e−12h 0

0 e−15h

)(
p〈ν〉1,k

p〈ν〉2,k

)
+

(
1−e−12h

12 0
0 1−e−15h

15

)[(
0.1 0
0 0.1

)
∆̃2

h̄

(
p〈ν〉1,k

p〈ν〉2,k

)

+0.1

(
|m〈ν〉1,k |
|m〈ν〉2,k |

)
+

(
cos(kπ + π

3 ) + e−|k| 0.1
0 sin(kπ + π

5 ) + e−|k|

)(
η1(m

〈ν〉
1,k−1)w21,k

η2(m
〈ν〉
2,k−2)w22,k

)]
,

(22)
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where (ν, k) ∈ (0, 10)×Z0,

m〈ν〉i,k

∣∣∣
ν=0

= m〈ν〉i,k

∣∣∣
ν=10

= 0, p〈ν〉i,k

∣∣∣
ν=0

= p〈ν〉i,k

∣∣∣
ν=10

= 0, ∀k ∈ Z0, i = 1, 2.

Taking h = 0.1 and h̄ = 0.5. Corresponding to GRNs Equation (1),

a1,k = 9, a2,k = 10, c1,k = 12, c2,k = 15, Θ11 = Θ22 = 0.2, Π11 = Π22 = 0.1,

Θ12 = Θ21 = Π12 = Π21 = 0, b11,k = 1.2 cos(kπ +
π

4
) + e−|k|, b12,k = 0.5, b21,k = 0.3,

b22,k = 1.8 sin(kπ +
π

4
) + e−|k|, σ1,k = 2, σ2,k = 1, γ11,k = 0.2, γ12,k = 0.1, γ21,k = 0,

γ22,k = 0.15, I1,k = 1 + 0.2 cos(kπ +
π

4
), I2,k = 0.5 + 0.5 sin(kπ +

π

4
), d1,k = d2,k = 0.1,

v11,k = cos(kπ +
π

3
) + e−|k|, v12,k = 0.1, v21,k = 0, v22,k = sin(kπ +

π

5
) + e−|k|,

f1(p
〈ν〉
1,k−2) =

( p〈ν〉1,k−2
15

)2

1 +
( p〈ν〉1,k−2

15

)2
, f2(p

〈ν〉
2,k−1) =

( p〈ν〉2,k−1
15

)2

1 +
( p〈ν〉2,k−1

15

)2
, gi(p

〈ν〉
i,k−1) =

( p〈ν〉i,k−1
20

)2

1 +
( p〈ν〉i,k−1

20

)2
,

η1(m
〈ν〉
1,k−1) =

(m〈ν〉1,k−1
10

)2

1 +
(m〈ν〉1,k−1

10

)2
, η2(m

〈ν〉
2,k−2) =

(m〈ν〉2,k−2
10

)2

1 +
(m〈ν〉2,k−2

10

)2
, i = 1, 2, ∀(ν, k) ∈ (0, 10)×Z0.

Obviously, L f
1 = L f

2 = 1
15 , Lg

1 = Lg
2 = 0.05, Lη

1 = Lη
2 = 0.1. It follows from the direct

calculation that max{ς1, ς2} < 1. Therefore, assumptions (g1)–(g4) in Theorem 2 are valid,
i.e., GRNs Equation (22) possesses a unique weighted pseudo- or α-pseudo-almost periodic
sequence solution, see Figures 1 and 2. Let â1 = 1.25, â2 = 12, ĉ1 = 14, and ĉ2 = 7. Then,
the state feedback controllers corresponding to Equation (14) are listed as follows:

ρ
〈·〉
1,k = 0.4983e〈·〉1,k, ρ

〈·〉
2,k = −0.0667e〈·〉2,k, $

〈·〉
1,k = −0.0546w〈·〉1,k, $

〈·〉
2,k = 0.2735w〈·〉2,k, (23)

where k ∈ Z0. Moreover, assumptions (g2) and (g5)–(g6) in Theorem 3 hold. Then, the
state feedback controller Equation (23) is a finite-time guaranteed cost controller for GRNs
Equation (22) with the settling time K satisfying K < 4.0294, see Figures 3–6. Finally,
the trajectories of the finite-time exponential stability of GRNs Equation (22) in three-
dimensional and two-dimensional spaces are shown in Figures 7–10.

Figure 1. Weighted pseudo-almost periodic sequence solution of m〈3〉1,k and m〈3〉2,k .

139



Axioms 2023, 12, 682

Figure 2. Weighted pseudo-almost periodic sequence solution of p〈3〉1,k and p〈3〉2,k .

In Figures 1 and 2, the pictures show the weighted pseudo-almost periodicity of m
and p in GRNs Equation (22). From these pictures, we can observe that the solution of
GRNs Equation (22) is not weighted pseudo-almost periodic at the beginning of the time,
but it becomes almost periodic as the time increases.

Figure 3. Finite-time guaranteed cost controller for m〈ν〉1,k and m〈ν〉2,k with the settling time K satisfying
K < 4.0294.

Figure 4. Finite-time guaranteed cost controller for p〈ν〉1,k and p〈ν〉2,k with the settling time K satisfying
K < 4.0294.

Figure 5. Finite-time guaranteed cost controller for m〈6〉1,k and m〈6〉2,k with the settling time K satisfying
K < 4.0294.

Figure 6. Finite-time guaranteed cost controller for p〈6〉1,k and p〈6〉2,k with the settling time K satisfying
K < 4.0294.
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In Figures 3 and 4, the pictures show the trajectories of m and p in GRNs Equation (22)
with feedback controls in the closed loop. By observing these pictures, we can observe
that the solutions of GRNs Equation (22) with different initial values realise finite-time
exponential stability in three-dimensional space. Figures 5 and 6 give the trajectories of m
and p of GRNs Equation (22) with feedback controls in the closed loop when ν = 6.

Figure 7. Finite-time exponential stability of m〈ν〉1,k and m〈ν〉2,k .

Figure 8. Finite-time exponential stability of p〈ν〉1,k and p〈ν〉2,k .

Figure 9. Finite-time exponential stability of m〈8〉1,k and m〈8〉2,k .

Figure 10. Finite-time exponential stability of p〈8〉1,k and p〈8〉2,k .

Figures 7 and 8 show the solutions of GRNs Equation (22) without feedback control,
realising finite-time exponential stability in three-dimensional space. Figures 9 and 10
draw the solutions of GRNs Equation (22) without feedback control, realising finite-time
exponential stability when ν = 8.

6. Conclusions and Perspectives

Utilizing EED and CFT techniques, discrete stochastic genetic regulatory networks
with discrete spatial diffusion are presented, which can be considered as fully discrete
configurations of stochastic genetic regulatory networks with reaction diffusion. Based on
the constant variable formulation in discrete form, the existence uniqueness, the finite-time
guaranteed cost control, and the exponential stability of the weighted pseudo-θ-almost
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periodic sequence of such discrete stochastic genetic regulatory networks in the mean-
square sense are discussed. In addition, Lemmas 2 and 3, among others, have been crucial
to the discussion in this paper over the course of the study. Notably, the work in this paper
will initiate the development of qualitative problems in discrete-time and discrete-space
models, laying the theoretical and practical foundations for future work in this area.
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Abstract: The paper is concerned with equilibrium problems for two elastic plates connected by
a crossing elastic bridge. It is assumed that an inequality-type condition is imposed, providing a
mutual non-penetration between the plates and the bridge. The existence of solutions is proved, and
passages to limits are justified as the rigidity parameter of the bridge tends to infinity and to zero.
Limit models are analyzed. The inverse problem is investigated when both the displacement field
and the elasticity tensor of the plate are unknown. In this case, additional information concerning a
displacement of a given point of the plate is assumed be given. A solution existence of the inverse
problem is proved.

Keywords: elastic plate; crossing bridge; rigidity parameter; inverse problem; solution existence

MSC: 35B30; 35J88

1. Introduction

Bridged structures are very popular for solving connecting problems. Such structures
may be different in type, and their quality depends on the purposes addressed. In this
paper, we analyze the structure consisting of two Kirchhoff–Love elastic plates and a
junction (bridge) that is in contact with the plates. To describe the behavior of the bridge,
we use the Euler–Bernoulli beam model. The junction has the displacement coinciding with
the displacement of the plates at two fixed points. Moreover, an inequality-type restriction
is assumed to be imposed for the solution to provide a mutual non-penetration between
the plates and the bridge. This approach implies that the problem is formulated as a free
boundary one.

During the last years, boundary-value problems in elasticity with inequality-type
boundary conditions have been under active study. We can refer the reader to the books [1,2]
containing results for crack models with the non-penetration boundary conditions for
a wide class of elasticity problems. There are many papers related to thin inclusions
incorporated into elastic bodies. In the case of delamination of the surrounding elastic
body from the inclusion, one more difficulty appears since we obtain an interfacial crack.
We pay attention to the paper [3] where an equilibrium problem for two elastic plates is
analyzed in the case of thin incorporated inclusion and Neumann type boundary conditions
for the plate. Different properties of solutions in equilibrium problems for elastic bodies
with thin rigid, semi-rigid, and elastic inclusions and cracks are analyzed in [4–13] and
many other papers. In [14–16], one can find models for the analysis of non-homogeneous
elastic bodies. Note that a derivation of models for elastic bodies with thin inclusions
usually takes into account changing physical and geometrical parameters [17–19]. Contact
problems for elastic plates with thin elastic structures were analyzed in [20,21]. We can also
mention a number of applied studies related to thin inclusions of different nature in elastic
bodies [22–29]. An application of the finite element method for planar mechanical elastic
systems can be found in [30]. As for inverse problems in elasticity, the literature in this field
is very vast. We will only mention the articles [31,32] and the links in them.
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The structure of the paper is as follows. Section 2 addresses variational and differential
formulations of the equilibrium problem. Passages to limits, as a rigidity parameter of
the bridge tends to infinity and to zero, are investigated in Sections 3 and 4. We provide a
justification of the limit procedure and analyze the limit models. Section 5 is concerned
with the analysis of the inverse problem.

2. Setting the Problem

Let Ω1, Ω2 ⊂ R2 be bounded domains with Lipschitz boundaries Γ1, Γ2, respec-
tively, such that Ω̄1 ∩ Ω̄2 = ∅. Assume that Γi is divided into two smooth parts Γi

N
and Γi

D, meas Γi
D > 0, i = 1, 2. We set b = (−2, 2) × {0}, b1 = (−2,−1) × {0},

b2 = (1, 2)× {0}, b0 = (−1, 1)× {0}. Moreover, we assume that bi ⊂ Ωi, and b crosses
Γi

N , b0 ∩Ωi = ∅, i = 1, 2, see Figure 1. Denote by ν = (0, 1), n = (n1, n2) unit normal
vectors to b, Γi, respectively, and set Ω = Ω1 ∪Ω2, Ωb = Ω \ b̄.

2

Ω

Γ 

 

x

x11 2
1 1--

 2 2
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n
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2

0
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2
NN

Γ 1D
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Figure 1. Elastic plates Ω1, Ω2 with crossing bridge b.

The set Ω corresponds to two elastic plates, and b fits to a thin elastic crossing bridge
between two plates. We describe b in the frame of the Euler–Bernoulli beam model. In what
follows, the crossing bridge b will be characterized by a rigidity parameter α > 0. At the
first step, this parameter is fixed being equal to 1, and in the sequel we analyze passages to
the limit as α goes to infinity and to zero.

Let w be a scalar-valued function. We use the notations wn = ∂w
∂n , wν = ∂w

∂ν . If
M = {Mij}, i, j = 1, 2, then ∇∇M = Mij,ij. We also put ∇∇w = {w,ij}, i, j = 1, 2.
Summation convention over repeated indices is used; all functions with two lower in-
dices are assumed to be symmetric in those indices.

In the domains Ω1, Ω2, elasticity tensors A = {aijkl}, B = {bijkl}, i, j, k, l = 1, 2, are
considered with the usual properties of symmetry and positive definiteness,

aijkl ∈ L∞(Ω1), (1)

Aξ · ξ ≥ c0|ξ|2 ∀ξ = {ξij}, ξ ji = ξij, c0 = const > 0 .

Similar properties are fulfilled for the tensor B on Ω2.
We introduce notations for a bending moment Mn and a transverse force Tn = Tn(M)

on the boundaries of the plates,

Mn = −Mijnjni; Tn = −Mij,jni −Mij,kτkτjni , (τ1, τ2) = (−n2, n1). (2)
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In this case, for smooth functions w, M = {Mij}, i, j = 1, 2, the following Green’s
formula holds, see [2], Section 1.2.3,

−
∫

Ωi

M · ∇∇w = −
∫

Ωi

w∇∇M +
∫

Γi

Mnwn −
∫

Γi

Tnw, i = 1, 2.

Since the domain Ωb with the cut b1 ∪ b2 is a union of the domains Ω1 \ b1 and Ω2 \ b2,
the above Green’s formula allows us to write Green’s formula for Ωb,

−
∫

Ωb

M · ∇∇w = −
∫

Ωb

w∇∇M−
∫

b1∪b2

[Mν]wν +
∫

b1∪b2

[Tν]w (3)

+
∫

Γ1∪Γ2

Mnwn −
∫

Γ1∪Γ2

Tnw,

where [h] = h+ − h− is a jump of a function h on bi; h± are the traces of h on the crack faces
b±i , i = 1, 2. The signs ± fit to positive and negative directions of ν; the values Mν, Tν with
the normal vector ν are defined on b similar to (2).

In view of the above notations, an equilibrium problem for the plates Ω1, Ω2 and the
crossing bridge b is formulated as follows. Given external forces f ∈ L2(Ω), g ∈ L2(b)
acting on the plates and the crossing bridge, respectively, we have to find a displacement of
the plates w,; a moment tensor M = {Mij}, i, j = 1, 2, defined in Ω, Ωb, respectively; and a
crossing bridge displacement v defined on b such that

∇∇M + f = 0 in Ωb, (4)

M + E∇∇w = 0 in Ωb, (5)

v,1111 = g on b0; v,1111 = −[Tν] + g on b1 ∪ b2 , (6)

w = wn = 0 on Γ1
D ∪ Γ2

D; Mn = Tn = 0 on Γ1
N ∪ Γ2

N , (7)

w(±2, 0) = 0; v = v,11 = 0 as x1 = −2, 2, (8)

v− w ≥ 0, [Tν] ≤ 0, (v− w)[Tν] = 0 on b1 ∪ b2, (9)

[w] = [wν] = 0, [Mν] = 0 on b1 ∪ b2, (10)

[v(±1)] = [v,1(±1)] = 0, [v,11(±1)] = [v,111(±1)] = 0. (11)

Here, [h(a)] = h(a + 0) − h(a − 0); w,1 = ∂w
∂x1

, (x1, x2) ∈ Ω. The tensor E is equal
to A, B in Ω1, Ω2, respectively. Functions defined on b we identify with functions of the
variable x1.

Relations (4) and (5) are the equilibrium equations for the Kirchhoff–Love elastic plates
Ω1, Ω2 and the constitutive law; (6) is the Euler–Bernoulli equilibrium equations for the
crossing bridge parts bi, see [1,2]. The right-hand side −[Tν] in (6) describes forces acting
on b1 ∪ b2 from the elastic plates. The first inequality in (9) provides a non-penetration
between the plates and the bridge. Relation (11) provides glue conditions at the points
where the bridge b crosses the external boundaries of the elastic plates. Note that, by (9),
the contact set between the plates and the bridge is unknown.

We can provide a variational formulation of the problem (4)–(11). Introduce the space

W = H2,0(b)× H2,0
D (Ω)

with the norm
‖(v, w)‖2

W = ‖v‖2
H2,0(b) + ‖w‖2

H2,0
D (Ω)

,

where H2,0(b), H2,0
D (Ω) are the usual Sobolev spaces,

H2,0
D (Ω) = {w ∈ H2(Ω) | w = wn = 0 on Γ1

D ∪ Γ2
D; w(±2, 0) = 0},

H2,0(b) = {v ∈ H2(b) | v(±2) = 0},
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and consider the energy functional Π : W → R,

Π(v, w) =
1
2

C(w, w)−
∫

Ω

f w +
1
2

∫

b

v2
,11 −

∫

b

gv.

Here,
C(w, w̄) =

∫

Ω1

aijklw,klw̄,ij +
∫

Ω2

bijklw,klw̄,ij.

Denote by S the set of admissible displacements,

S = {(v, w) ∈W | v− w ≥ 0 on b1 ∪ b2}

and consider the problem:

Find (v, w) ∈ S such that Π(v, w) = inf
S

Π.

This minimization problem has a unique solution since the functional Π is weakly
lower semicontinuous and coercive. The coercivity of the functional Π follows from the
Dirichlet boundary conditions on the sets Γi

D for the function w and conditions v(±2) = 0.
The set S is weakly closed. The solution of the problem satisfies the following variational
inequality

(v, w) ∈ S, (12)

C(w, w̄− w)−
∫

Ω

f (w̄− w) (13)

+
∫

b

v,11(v̄,11 − v,11)−
∫

b

g(v̄− v) ≥ 0 ∀ (v̄, w̄) ∈ S.

Theorem 1. Problem formulations (4)–(13) are equivalent for smooth solutions.

Proof. Assume that (12) and (13) hold. We can substitute in (13) test functions of the form
(v̄, w̄) = (v, w)± (0, ϕ), ϕ ∈ C∞

0 (Ωb). This provides the equilibrium Equation (4) fulfilled
in the distributional sense. Next, test functions of the form (v̄, w̄) = (v, w + ϕ) can be
substituted in (13), where ϕ ∈ C∞

0 (Ω), ϕ ≤ 0 on b1 ∪ b2; ϕ(±2, 0) = 0. Taking into account
the equilibrium Equation (4) and Green Formula (3), we obtain

−
∫

b1∪b2

[Mν]ϕν +
∫

b1∪b2

[Tν]ϕ ≥ 0.

From here, it follows

[Mν] = 0, [Tν] ≤ 0 on b1 ∪ b2. (14)

Now, test functions of the form (v̄, w̄) = (v + ψ, w + ϕ) are substituted in (13),
(ψ, ϕ) ∈ S, supp ψ ⊂ (b1 ∪ b2). This gives

C(w, ϕ)−
∫

Ω

f ϕ +
∫

b

v,11ψ,11 −
∫

b

gψ ≥ 0.

Consequently, by using the Green Formula (3), in view of (4), (14), we derive
∫

b1∪b2

[Tν]ϕ +
∫

b

v,1111ψ−
∫

b

gψ ≥ 0.
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Choosing the above inequality ψ = ϕ on b1 ∪ b2,, the following equation

v,1111 = −[Tν] + g on b1 ∪ b2 (15)

is derived. To proceed, take test functions of the form (v̄, w̄) = (v± ψ, w) in (3), supp ψ ⊂
b0. The following relation is obtained:

∫

b0

v,11ψ,11 −
∫

b0

gψ = 0.

Thus,
v,1111 = g on b0. (16)

Now, we are aiming to derive the last relation of (9). Assume that the inequality
v(x0)− w(x0) > 0 holds at a point x0 ∈ b1 ∪ b2. In this case, we can take (v̄, w̄) = (v, w)±
ε(ψ, ϕ) as a test function in (13), where the support of ψ belongs to a small neighborhood
of x0; the support of ϕ belongs to a small neighborhood of the point (x0, 0), and ε is small.
This implies

C(w, ϕ)−
∫

Ω

f ϕ +
∫

b

v,11ψ,11 −
∫

b

gψ = 0.

By (3), (4), and (14), we obtain the relation
∫

b1∪b2

[Tν]ϕ +
∫

b

v,1111ψ−
∫

b

gψ = 0.

In particular, this provides

[Tν] = 0 in a neighborhood of the point x0.

This means that
(v− w)[Tν] = 0 on b1 ∪ b2.

The next step of our reasoning is to derive boundary conditions for v at the points ±1,±2
and the last condition of (7). To this end, we take test function in (13) of the form (v̄, w̄) =
(v, w)± (ψ, ϕ), (ψ, ϕ) ∈W, ϕ = ψ on b1 ∪ b2. It provides the equality

C(w, ϕ)−
∫

Ω

f ϕ +
∫

b0

v,11ψ,11 +
∫

b1∪b2

v,11ψ,11 −
∫

b

gψ = 0.

Applying the Green Formula (3), this relation implies

−
∫

Ωb

∇∇M · ϕ−
∫

Ωb

f ϕ +
∫

b0

v,1111ψ +
∫

b1∪b2

v,1111ψ (17)

−
∫

b1∪b2

[Mν]ϕν +
∫

b1∪b2

[Tν]ϕ +
∫

Γ1∪Γ2

Mn ϕn −
∫

Γ1∪Γ2

Tn ϕ

−
∫

b0

gψ−
∫

b1∪b2

gψ− v,111ψ|x1=1
x1=−1 + v,11ψ,1|x1=1

x1=−1

−v,111ψ|x1=−1 + v,11ψ,1|x1=−1
x1=−2 − v,111ψ|x1=1 + v,11ψ,1|x1=2

x1=1 = 0.

From here, it follows that

Mn = Tn = 0 on Γ1
N ∪ Γ2

N . (18)
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Taking into account (4), (14)–(16), from (17) we obtain

−v,11ψ,1(−2) + v,11ψ,1(2)− [v,11(1)]ψ,1(1) (19)

+[v,111(1)]ψ(1)− [v,11(−1)]ψ,1(−1) + [v,111(−1)]ψ(−1) = 0.

Consequently,

v,11(±2) = 0, [v,11(±1)] = [v,111(±1)] = 0.

Hence, we derived all relations (4)–(11) from (12) and (13).
Let us prove the converse. Assume that (4)–(11) are fulfilled. Then, we have for all

(v̄, w̄) ∈ S,

−
∫

Ωb

(∇∇M + f )(w̄− w) +
∫

b0

(v,1111 − g)(v̄− v) (20)

+
∫

b1∪b2

(v,1111 + [Tν]− g)(v̄− v) = 0.

Integrating by parts in the second and the third integrals of (20) and using the For-
mula (3), it follows that

−
∫

Ωb

M∇∇(w̄− w)−
∫

Ωb

f (w̄− w) +
∫

b0

v,11(v̄,11 − v,11)−
∫

b

g(v̄− v) (21)

+
∫

b1∪b2

v,11(v̄,11 − v,11) +
∫

b1∪b2

[Mν](w̄ν − wν)−
∫

b1∪b2

[Tν](w̄− w)

−
∫

Γ1∪Γ2

Mn(w̄n − wn) +
∫

Γ1∪Γ2

Tn(w̄− w) +
∫

b1∪b2

[Tν](v̄− v)

+v,111(v̄− v)|x1=1
x1=−1 − v,11(v̄,1 − v,1)|x1=1

x1=−1 + v,111(v̄− v)|x1=−1
x1=−2

−v,11(v̄,1 − v,1)|x1=−1
x1=−2 + v,111(v̄− v)|x1=2

x1=1 − v,11(v̄,1 − v,1)|x1=2
x1=1 = 0.

We can change the integration over Ωb by integration over Ω in the first two in-
tegrals of (21) and use boundary conditions for w, w̄, Mn, Tn. To derive the variational
inequality (12) and (13) from (21), it suffices to check that

−
∫

b1∪b2

[Tν](w̄− w) +
∫

b1∪b2

[Tν](v̄− v) (22)

+v,111(v̄− v)|x1=1
x1=−1 − v,11(v̄,1 − v,1)|x1=1

x1=−1 + v,111(v̄− v)|x1=−1

−v,11(v̄,1 − v,1)|x1=−1 + v,111(v̄− v)|x1=1 − v,11(v̄,1 − v,1)|x1=1 ≤ 0.

However, the inequality (22) easily follows from (6)–(11). Hence, we proved
that (4)–(11) imply (12) and (13). Theorem 1 is proved .

3. Convergence of Rigidity Parameter α to Infinity

In this section, we introduce a positive bridge rigidity parameter α into the model (12)
and (13) and analyze a passage to the limit as α→ ∞. Our aim is to justify this passage to
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the limit and investigate the limit model. Instead of (12) and (13), for any α > 0, consider
the following problem

(vα, wα) ∈ S, (23)

C(wα, w̄− wα)−
∫

Ω

f (w̄− wα) (24)

+α
∫

b

vα
,11(v̄,11 − vα

,11)−
∫

b

g(v̄− vα) ≥ 0 ∀(v̄, w̄) ∈ S.

The solution (vα, wα) of this problem is supplied with the index α. Note that we can
write an equivalent differential formulation of the problem (23) and (24) similar to (4)–(11).
In this case, instead of (6) we have the following equations for the crossing bridge

αvα
,1111 = g on b0; αvα

,1111 = −[Tν] + g on b1 ∪ b2.

In what follows, we justify a passage to the limit as α → ∞ in (23) and (24). At the
first step, a priori estimates of the solutions are derived.

From (23) and (24), the following relation is obtained:

C(wα, wα)−
∫

Ω

f wα + α
∫

b

(vα
,11)

2 −
∫

b

gvα = 0. (25)

From (25), we derive the estimate being uniform in α ≥ α0 > 0,

‖(vα, wα)‖W ≤ c, (26)

moreover, the relation (25) implies
∫

b

(vα
,11)

2 ≤ c
α

. (27)

By estimates (26) and (27), we can assume that as α→ ∞

(vα, wα)→ (v, w) weakly in W, (28)

v(x1) = a0 + a1x1, x1 ∈ (−2, 2); a0, a1 ∈ R. (29)

On the other hand, since v ∈ H2,0(b), consequently, v = 0 on b.
Then introduce the set of admissible displacements for the limit problem,

S∞ = {w ∈ H2,0
D (Ω) | w ≤ 0 on b1 ∪ b2}.

We take any element w̃ ∈ S∞. Then, (0, w̃) ∈ S. Substitute this function in (24). By (28)
and (29), it is possible to pass to the limit in (23) and (24) as α→ ∞. The limit relations are
of the form

w ∈ S∞, (30)

C(w, w̃− w)−
∫

Ω

f (w̃− w) ≥ 0 ∀w̃ ∈ S∞. (31)

Thus, we have shown the following result.

Theorem 2. As α → ∞, the solutions of the problem (23) and (24) converge in the sense (28)
and (29) to the solution of (30) and (31).
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To conclude this section, we provide a differential formulation of the problem (30)
and (31): find functions w, M = {Mij}, i, j = 1, 2, defined in Ω, Ωb, respectively, such that

∇∇M + f = 0 in Ωb, (32)

M + E∇∇w = 0 in Ωb, (33)

w = wn = 0 on Γ1
D ∪ Γ2

D; Mn = Tn = 0 on Γ1
N ∪ Γ2

N , (34)

w ≤ 0, [Tν] ≤ 0, w[Tν] = 0 on b1 ∪ b2, (35)

[w] = [wν] = 0, [Mν] = 0 on b1 ∪ b2; w(±2, 0) = 0. (36)

The following statement takes place providing a connection between problems (30)–(36).

Theorem 3. Problem formulations (30)–(36) are equivalent provided that the solutions are smooth.

Proof. Let (32)–(36) be fulfilled. Then, we have
∫

Ωb

(∇∇M + f )(w̄− w) = 0, w̄ ∈ S∞.

From this relation, by (3), it follows that
∫

Ω

M∇∇(w̄− w) +
∫

b1∪b2

[Tν](w̄− w) +
∫

Ω

f (w̄− w) = 0. (37)

In so doing, we changed the integration domain Ωb by Ω since [Mν] = 0, [w] = [wν] =
0 on b1 ∪ b2. Thus, to obtain (30) and (31) from (37) it suffices to check that

∫

b1∪b2

[Tν](w̄− w) ≥ 0. (38)

However, the inequality (38) easily follows from (35).
Conversely, assume that (30) and (31) hold. We take a test function of the form

w̃ = w + ϕ, ϕ ∈ C∞
0 (Ωb) and substitute it in (31). This implies the equilibrium Equa-

tion (32). The other arguments are reminiscent of those used in the proof of Theorem 1,
and we omit them. Theorem 3 is proved.

4. Convergence of Rigidity Parameter of b0 to Zero

In this section, we assume that g = 0 on b0. A convergence to zero of the rigidity
parameter α will be analyzed when assuming that a change of this parameter happens at b0.
In this case, the rigidity parameter at b1, b2 is fixed and is equal to 1.

We first provide a formulation of the equilibrium problem such as (4)–(11) for this
case: find functions wα, M = {Mij}, i, j = 1, 2, defined in Ω, Ωb, respectively, and functions
vα defined on b such that

∇∇M + f = 0 in Ωb, (39)

M + E∇∇wα = 0 in Ωb, (40)

αvα
,1111 = 0 on b0; vα

,1111 = −[Tν] + g on b1 ∪ b2, (41)

wα = wα
n = 0 on Γ1

D ∪ Γ2
D; Mn = Tn = 0 on Γ1

N ∪ Γ2
N , (42)

vα = vα
,11 = 0 as x1 = −2, 2; w(±2, 0) = 0, (43)

[wα] = [wα
ν ] = 0, [Mν] = 0 on b1 ∪ b2, (44)

vα − wα ≥ 0, [Tν] ≤ 0, (vα − wα)[Tν] = 0 on b1 ∪ b2, (45)

[vα(±1)] = [vα
,1(±1)] = 0, vα

,11(±1± 0) = αvα
,11(±1∓ 0), (46)

vα
,111(±1± 0) = αvα

,111(±1∓ 0). (47)
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In relations (46) and (47), we should simultaneously take upper or lower signs.
The problem (39)–(47) can be formulated in a variational form. Indeed, consider the

energy functional πα : W → R,

πα(v, w) =
1
2

C(w, w)−
∫

Ω

f w +
α

2

∫

b0

v2
,11 +

1
2

∫

b1∪b2

v2
,11 −

∫

b1∪b2

gv.

Then, the problem

find (vα, wα) ∈ S such that πα(vα, wα) = inf
S

πα

has a solution satisfying the variational inequality

(vα, wα) ∈ S, C(wα, w̄− wα)−
∫

Ω

f (w̄− wα) (48)

+α
∫

b0

vα
,11(v̄,11 − vα

,11) +
∫

b1∪b2

vα
,11(v̄,11 − vα

,11) (49)

−
∫

b1∪b2

g(v̄− vα) ≥ 0 ∀(v̄, w̄) ∈ S.

In what follows, we aim to justify a passage to the limit in (48) and (49) as α → 0.
From (48) and (49), the following relation is obtained:

C(wα, wα)−
∫

Ω

f wα + α
∫

b0

(vα
,11)

2 +
∫

b1∪b2

(vα
,11)

2 −
∫

b1∪b2

gvα = 0. (50)

This relation provides the following estimate being uniform in α

‖vα‖2
H2(b1∪b2)

+ ‖wα‖2
H2,0

D (Ω)
≤ c, (51)

moreover, the relation (50) implies

α
∫

b0

(vα
,11)

2 ≤ c. (52)

By estimates (51) and (52), we can assume that, as α→ 0,

vα → v weakly in H2(b1 ∪ b2), wα → w weakly in H2,0
D (Ω). (53)

From (51) it follows that uniformly in α,

vα(±1± 0), vα
,1(±1± 0) are bounded. (54)

Here, and in (55) below, we should take upper or below signs simultaneously. Taking
into account the conditions

[vα] = [vα
,1] = 0 as x1 = ±1

we obtain for small α that
√

αvα(±1∓ 0),
√

αvα
,1(±1∓ 0) are bounded. (55)

Consequently, relations (52), (55) imply for small α that
√

αvα are bounded in H2(b0).
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Thus, we can assume that as α→ 0,
√

αvα → ṽ weakly in H2(b0). (56)

Now, introduce the set of admissible displacements for the limit problem

S0 = {(v, w) ∈ H2(b1 ∪ b2)× H2,0
D (Ω) | v− w ≥ 0 on b1 ∪ b2;

v(±2) = 0}.

Take (v̄, w̄) ∈ S0 and extend the function v̄ to b0 assuming that the extension belongs
to the space H2,0(b). In this case (v̄, w̄) ∈ S, and we can substitute (v̄, w̄) in (48) and (49)
as a test function. Passing to the limit as α → 0, by (53), (56), the following variational
inequality is obtained:

(v, w) ∈ S0, (57)

C(w, w̄− w)−
∫

Ω

f (w̄− w) +
∫

b1∪b2

v,11(v̄,11 − v,11) (58)

−
∫

b1∪b2

g(v̄− v) ≥ 0 ∀(v̄, w̄) ∈ S0.

Thus, the following statement is proved.

Theorem 4. As α→ 0, the solutions of the problem (48) and (49) converge in the sense (53) to the
solution of (57) and (58).

To conclude the section, we provide a differential formulation of the problem (57)
and (58): find a displacement of the elastic plates w, a moment tensor M = {Mij}, i, j = 1, 2,
defined in Ω, Ωb, respectively, and a function v defined on b1 ∪ b2 such that

∇∇M + f = 0 in Ωb, (59)

M + E∇∇w = 0 in Ωb, (60)

v,1111 = −[Tν] + g on b1 ∪ b2 , (61)

w = wn = 0 on Γ1
D ∪ Γ2

D; Mn = Tn = 0 on Γ1
N ∪ Γ2

N , (62)

w(±2, 0) = 0; v = v,11 = 0 as x1 = −2, 2, (63)

v− w ≥ 0, [Tν] ≤ 0, (v− w)[Tν] = 0 on b1 ∪ b2, (64)

[w] = [wν] = 0, [Mν] = 0 on b1 ∪ b2, (65)

v,11(±1) = v,111(±1) = 0. (66)

The following statement is valid.

Theorem 5. Problem formulations (57)–(59) and (66) are equivalent provided that the solutions
are smooth.

We omit the proof of this theorem since it is reminiscent of that of Theorem 1. The
only step we have to take is to provide a proof that from (57) and (58) the boundary
conditions (66) follow. Indeed, take in (57) and (58) test functions of the form (v̄, w̄) =
(v, w)± (ṽ, w̃), (ṽ, w̃) ∈ S0, ṽ = w̃ on b1 ∪ b2. This gives

C(w, w̃)−
∫

Ω

f w̃ +
∫

b1∪b2

v,11ṽ,11 −
∫

b1∪b2

gṽ = 0. (67)
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Since
C(w, w̄) = −

∫

Ω

Mij(w)w̄,ij,

we can integrate by parts in the third term of (67) and use Green’s Formula (3). This implies

−
∫

Ωb

∇∇M · w̃−
∫

Ωb

f w̃ +
∫

b1∪b2

v,1111ṽ (68)

−
∫

b1∪b2

[Mν]w̃ν +
∫

b1∪b2

[Tν]w̃ +
∫

Γ1∪Γ2

Mnw̃n −
∫

Γ1∪Γ2

Tnw̃

−
∫

b1∪b2

gṽ− v,111ṽ|x1=−1 + v,11ṽ,1|x1=−1 − v,111ṽ|x1=1 + v,11ṽ,1|x1=1 = 0.

Since the equilibrium equations (59), (61) hold, and since [Mν] = 0 on b1 ∪ b2,
the relation (68) implies boundary conditions (66) and the second group of boundary
conditions (62).

Theorem 5 is proved.
To conclude this section, we note that the problems (59) and (66) describe an equilib-

rium state for two plates occupying the domains Ω1, Ω2. In fact, we have two independent
problems (for each plate) since there is no connection between the plates.

5. Analysis of Inverse Problem

In this section, we analyze an inverse problem related to the equilibrium problem (12)
and (13). Elasticity tensors A, B are assumed to be constant. The inverse problem consists
in finding displacement fields of the plates and the bridge together with an elasticity tensor
A when assuming that additional data are provided by measurement. More precisely, it is
assumed that for a given continuous function ξ, a value ξ(w(x0)) is known, where w(x0)
is the displacement of the plate at a given point x0 ∈ Ω2, x0 6= (2, 0). In particular, we
can assume that ξ(w(x0)) = w(x0). Note that from a practical standpoint, it is no problem
to provide measurements for finding a displacement w(x0) of the point x0,; consequently,
ξ(w(x0)). We first introduce the 6D space with the Euclidean metric,

Rsym = {A = {aijkl} | aijkl = ajikl = aklij, i, j, k, l = 1, 2; aijkl ∈ R}.

Let G ⊂ Rsym be a bounded domain with a smooth boundary whose elements satisfy
the inequality (1). Then, for any A ∈ Ḡ and the fixed tensor B it is possible to find a
solution of the variational inequality

(vA, wA) ∈ S, (69)

CA(wA, w̄− wA)−
∫

Ω

f (w̄− wA) (70)

+
∫

b

vA
,11(v̄,11 − vA

,11)−
∫

b

g(v̄− vA) ≥ 0 ∀ (v̄, w̄) ∈ S,

where CA = C with the given tensor A.
Now, we assume that the elasticity tensor A is unknown in the problems (69) and (70).

On the other hand, the plate displacement of the point x0 is known. Namely, w(x0) is
known from a measurement. Then, the precise formulation of the inverse problem is as
follows. Let d ∈ R be given. We have to find (vA, wA), A ∈ Ḡ such that

(vA, wA) ∈ S, (71)
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CA(wA, w̄− wA)−
∫

Ω

f (w̄− wA) (72)

+
∫

b

vA
,11(v̄,11 − vA

,11)−
∫

b

g(v̄− vA) ≥ 0 ∀ (v̄, w̄) ∈ S,

ξ(wA(x0)) = d. (73)

Below, we prove the existence of a solution of the inverse problem (71)–(73).

Theorem 6. d1, d2 ∈ R, d1 ≤ d2, exist such that for any fixed d ∈ [d1, d2], the inverse prob-
lem (71)–(73) has a solution.

Proof. We introduce a function L defined on the closed set Ḡ,

L : Ḡ → R, L(A) = ξ(wA(x0)), (74)

where (vA, wA) is the solution of the direct problem (69) and (70) with the given elastic-
ity tensor A. In what follows, we prove that this function is continuous on the set Ḡ.
Indeed, let Ap ∈ Ḡ,

Ap → A, A ∈ Ḡ, p→ ∞, (75)

where we use the convergence in the Euclidean norm | · |. For any p, we can find the unique
solution of the problem

(vp, wp) ∈ S, (76)

Cp(wp, w̄− wp)−
∫

Ω

f (w̄− wp) (77)

+
∫

b

vp
,11(v̄,11 − vp

,11)−
∫

b

g(v̄− vp) ≥ 0 ∀ (v̄, w̄) ∈ S,

where Cp fits the elasticity tensor Ap. The variational inequality (76) and (77) implies

Cp(wp, wp)−
∫

Ω

f wp +
∫

b

(vp
,11)

2 −
∫

b

gvp = 0. (78)

From (78), by the uniformity of this estimate in p, it follows that

‖(vp, wp)‖W ≤ c. (79)

Choosing a subsequence, if necessary, we can assume that as p→ ∞,

(vp, wp)→ (v, w) weakly in W. (80)

By (75), (80), a passage to the limit in (76) and (77), as p→ ∞, is possible, and the limit
relation reads as follows:

(v, w) ∈ S,

CA(w, w̄− w)−
∫

Ω

f (w̄− w)

+
∫

b

v,11(v̄,11 − v,11)−
∫

b

g(v̄− v) ≥ 0 ∀ (v̄, w̄) ∈ S.
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Consequently, we have (v, w) = (vA, wA),

(vA, wA) ∈ S,

CA(wA, w̄− wA)−
∫

Ω

f (w̄− wA)

+
∫

b

vA
,11(v̄,11 − vA

,11)−
∫

b

g(v̄− vA) ≥ 0 ∀ (v̄, w̄) ∈ S.

Moreover, by (80), we can assume that wp(x0)→ wA(x0) as p→ ∞; consequently,

ξ(wp(x0))→ ξ(wA(x0)).

We proved, therefore, that the function L is continuous on the compact set Ḡ. By the
Weierstrass extreme value theorem, this means that we can find

d1 = min
A∈Ḡ

L(A), d2 = max
A∈Ḡ

L(A).

Taking into account the intermediate value theorem for continuous functions, we
conclude that for any d ∈ [d1, d2] A ∈ Ḡ exists such that

L(A) = d.

This implies that the inverse problems (71) and (73) have a solution. Theorem 6 is
proved.

Note that similar arguments can be used for proving a solution existence to an inverse
boundary problem with a different additional information compared to (73). In particular,
instead of (73), we can consider

ξ(vA(y0)) = d,

where y0 ∈ (1, 2) is a given point, and vA is the displacement of the bridge.

6. Conclusions

The paper presents a rigorous mathematical analysis of the elastic structure consisting
of two Kirchhoff–Love plates and the crossing 1D bridge. An inequality-type restriction
is imposed on the solution, which provides a mutual non-penetration between the plates
and the bridge. This restriction implies that the boundary-value problem as a whole refers
to the problem with unknown set of a contact. The solution existence of the problem is
established, and asymptotic analysis is fulfilled with respect to the rigidity parameter of
the bridge as this parameter tends to infinity and to zero. Therefore, in the frame of the
high-level mathematical model, we provide a correctness of the boundary-value problem
and analyze the limit mathematical models. Moreover, the existence of a solution to the
inverse problem is proved, which allows us to find both the displacement field and the
elasticity tensor of one plate provided that a displacement of the other plate at a given point
is known.
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Abstract: In this paper, we consider the existence of extremal solutions for the nonlinear fourth-order
differential equation. By use of a new comparison result, some sufficient conditions for the existence
of extremal solutions are established by combining the monotone iterative technique and the methods
of lower and upper solutions. Finally, an example is given to illustrate the validity of our main results.

Keywords: boundary value problem; comparison result; monotone iterative technique; lower and
upper solutions

1. Introduction

In this paper, we shall establish the existence of extremal solutions for the nonlinear
fourth-order differential equation

{
u(4)(t) = f (t, u(t), u′(t)),
u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

(1)

where f ∈ C([0, 1]×R×R,R).
Recently, differential equations of fourth-order have received more and more attention

due to their various applications in science and engineering such as physics, control of
dynamical systems etc. For example, The cantilever beam equation of problem (1) is a
simplified mechanical model. This cantilever beam equation models the deformations of
an elastic beam in equilibrium state, whose one end-point is fixed and the other is free [1,2].
Owing to its significance in physics, a number of works are devoted to the existence of
solutions of fourth-order differential equations with different boundary conditions [3–14].
The methods used in these works are the Krasnosel’skii’s fixed point theorem [3,4], crit-
ical point theorem [5], the contraction mapping principle [6–8], the topological degree
theory [9,10] the fixed point index [10–12], the Ekeland variational principle [13], and bi-
furcation theory [14].

The existence of positive solutions for the simply fourth-order boundary value problem

{
u(4)(t) = f (t, u(t)), t ∈ (0, 1),
u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

(2)

which f does not contain any derivative terms has been discussed by several authors,
see [2,15–17]. In References [15–17], (2) appears as a special case of the (p, n − p) focal
boundary value problems for p = 2 and n = 4. In all these works the Krasnoselskii’s fixed
point theorem are applied.

For the cantilever beam equation with a nonlinear boundary condition of third-order
derivative {

u(4)(t) = f (t, u(t)), t ∈ (0, 1),
u(0) = u′(0) = u′′(1), u′′′(1) = g(u(1)),

(3)
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the existence of solutions was considered by Ma [18] and Ma et al. [19] respectively based
on variational methods and the contraction principle. The boundary condition in (3) may
be interpreted in a material sense as the beam having a clamped end at x = 0 and a shear
force resting on the bearing g at x = 1.

For the nonlinear fourth-order boundary value problem

{
u(4)(t) = f (t, u(t), u′(t)), t ∈ (0, 1),
u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

the existence of positive solutions has also been discussed by making use of the monotoni-
cally iterative technique and applying the successively approximate method, see [20].

Alves et al. [21] considered the cantilever beam equation

{
u(4)(t) = f (t, u(t), u′(t)), t ∈ (0, 1),
u(0) = u′(0) = u′′(1), u′′′(1) = g(u(1)),

where f : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) is continuous. The existence of monotone
positive solutions is obtained by using the monotone iteration method.

Many scholars have considered the case of the fourth-order boundary value problem
that f contains the fully derivative terms

{
u(4)(t) = f (t, u, u′, u′′, u′′′), t ∈ (0, 1),
u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

(4)

In [22], Li used the fixed point index theory in cones to obtain the existence results of prob-
lem (16) when f (t, u0, u1, u2, u3) is superlinear or sublinear growth on u0, u1, u2, u3. In [23],
Li and Chen extended the existence result by letting f may be superlinear growth and have
negative value. Using the method of lower and upper solutions and the monotone iterative
technique, some existence results are obtained in [24]. For fully fourth-order nonlinear
BVPs with other boundary conditions, the existence of solutions has been discussed by
the use of nonlinear analysis method such as the lower and upper solution method [25],
Rus’s contraction mapping [26], the monotone iterative technique [27], the Fourier analysis
method and Leray-Schauder fixed point theorem [28]. However, the key to the application
of the monotone iterative technique use in [21,24,27] is the monotonicity assumptions on
nonlinearity f .

Inspired by the work mentioned above, the aim of this paper is to discuss the exis-
tence of extremal solutions to the boundary value problem of the nonlinear differential
Equation (1) by the monotone iterative technique and the upper and lower solution method.
According to the author’s knowledge, it is the first application of this method to such
problems under nomonotonicity assumptions on unknown function and monotonicity
assumptions on the first order derivative of unknown function in nonlinearity. The paper
is organized as follows. In Section 2, we present here the necessary lemmas and establish
two new comparison results. In Section 3, we give the definitions of the upper and lower
solutions and obtain the existence results of extremal solutions of the problems (1) and (2).

2. Preliminaries

In this sections, we present Green’s function, some lemmas and comparison results
that will be used to prove our main results.

Let E = C[0, 1] be a Banach space endowed with the maximum norm ‖u‖ =
max0≤t≤1 |u(t)|.

Lemma 1 ([21]). For σ ∈ C[0, 1], the linear boundary value problem

{
u(4)(t) = σ(t), t ∈ (0, 1),

u(0) = a, u′(0) = b, u′′(1) = c, u′′′(1) = −d,
(5)
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has the unique solution

u(t) =
∫ 1

0
G(t, s)σ(s)ds + d(

t2

2
− t3

6
) +

ct2

2
+ bt + a,

where G(t, s) is the Green’s function defined by

G(t, s) =





1
6

s2(3t− s), 0 ≤ s ≤ t ≤ 1,

1
6

t2(3s− t), 0 ≤ t < s ≤ 1.

From the expression of G, we easily verify that Gt(t, s), the partial derivative of G(t, s)
to t, is given by

Gt(t, s) =





1
2

s2, 0 ≤ s ≤ t ≤ 1,

ts− 1
2

t2, 0 ≤ t < s ≤ 1.

Lemma 2 ([19,22]). The following inequalities hold true.

(1) G(t, s) ≤ 1
2

s2t and G(t, s) ≤ 1
2

t2s, ∀ t, s ∈ [0, 1],

(2) G(t, s) ≥ 1
3

t2s2, ∀ t, s ∈ [0, 1],

(3) Gt(t, s) ≤ ts, ∀ t, s ∈ [0, 1],

(4) Gt(t, s) ≥ 1
2

ts2, ∀ t, s ∈ [0, 1].

Lemma 3. Assume that the nonnegative constant M satisfies

1
8

M < 1, (6)

the boundary value problem

{
u(4)(t) = −Mu(t) + σ(t), t ∈ (0, 1),

u(0) = a, u′(0) = b, u′′(1) = c, u′′′(1) = −d
(7)

has the unique solution

u(t) = ψ(t) +
∫ 1

0
H(t, s)σ(s)ds +

∫ 1

0
Q(t, s)ψ(s)ds,
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where

ψ(t) = d(
t2

2
− t3

6
) +

ct2

2
+ bt + a,

K1(t, s) = −MG(t, s),

Km(t, s) = −M
∫ 1

0
G(t, rm−1)Km−1(rm−1, s)ds

= (−M)m
∫ 1

0
· · ·

∫ 1

0
G(t, rm−1) · · ·G(r1, s)dr1 · · · drm−1, m ≥ 2,

Q(t, s) =
+∞

∑
m=1

Km(t, s),

H(t, s) =
∫ 1

0
Q(t, τ)G(τ, s)dτ + G(t, s).

Proof. By Lemma 1, we know the solution of problem (7) as follows

u(t) =
∫ 1

0
G(t, s)(−Mu(s) + σ(s))ds + d(

t2

2
− t3

6
) +

ct2

2
+ bt + a. (8)

Define the operator T : E→ E given by

(Tu)(t) = M
∫ 1

0
G(t, s)u(s)ds, (9)

and let

ϕ(t) =
∫ 1

0
G(t, s)σ(s)ds.

It is clear that the operator T is a positive linear continuous operator, and we can rewrite (8) as

(I + T)u = ϕ + ψ, (10)

where I stands for the identity operator. For any u ∈ E, by the definition of operator norm,
it follows that

‖Tu‖ = max
t∈[0,1]

|Tu(t)| ≤ max
t∈[0,1]

M
∫ 1

0
G(t, s)|u(s)|ds

≤ max
t∈[0,1]

M
∫ 1

0
G(t, s)ds‖u‖ = max

t∈[0,1]
M
(

1
24

t4 − 1
6

t3 +
1
4

t2
)
‖u‖

=
1
8

M‖u‖.

Note that 0 < 1
8 M < 1, then we get

‖T‖ ≤ 1
8

M < 1.

Thus, the operator T is a contraction mapping. By Banach fixed-point theorem, T has a
unique fixed point in E, or equivalently, the problem (7) has a unique solution u ∈ E.

It follows from the perturbation theorem of identity operator that I + T has a bounded
inverse operator

(I + T)−1 =
+∞

∑
i=0

(−1)i(T)i

= I − T + T2 − · · ·+ (−1)i(T)i + · · · .
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Though direct calculation, we have

(Iϕ)(t) =
∫ 1

0
G(t, s)σ(s)ds,

(Tϕ)(t) = M
∫ 1

0
G(t, τ)dτ

∫ 1

0
G(τ, s)σ(s)ds = (−1)

∫ 1

0

[∫ 1

0
K1(t, τ)G(τ, s)dτ

]
σ(s)ds

(T2 ϕ)(t) = M
∫ 1

0
G(t, r1)(Tϕ)(r1)dr1

= M2
∫ 1

0
G(t, r1)dr1

∫ 1

0
G(r1, τ)dτ

∫ 1

0
G(τ, s)σ(s)ds

= M2
∫ 1

0

[∫ 1

0

[∫ 1

0
G(t, r1)G(r1, τ)dr1

]
G(τ, s)dτ

]
σ(s)ds

= (−1)2
∫ 1

0

[∫ 1

0
K2(t, τ)G(τ, s)dτ

]
σ(s)ds,

then, we can obtain

(Tm ϕ)(t) = M
∫ 1

0
G(t, rm−1)(Tm−1 ϕ)(rm−1)drm−1

= Mm
∫ 1

0
G(t, rm−1)drm−1 · · ·

∫ 1

0
G(r2, r1)dr1

∫ 1

0
G(r1, τ)dτ

∫ 1

0
G(τ, s)σ(s)ds

= (−1)m
∫ 1

0

[∫ 1

0
Km(t, τ)G(τ, s)dτ

]
σ(s)ds.

Thus, we have

[(I − T + T2 + · · ·+ (−1)mTm + · · · )ϕ](t)

=
∫ 1

0

[
G(t, s) +

∫ 1

0

+∞

∑
m=1

Km(t, τ)G(τ, s)dτ

]
σ(s)ds

=
∫ 1

0
H(t, s)σ(s)ds.

Similarly, we can obtain

(Iψ)(t) = d
(

t2

2
− t3

6

)
+

ct2

2
+ bt + a,

(Tψ)(t) = M
∫ 1

0
G(t, s)ψ(s)ds = (−1)

∫ 1

0
K1(t, s)ψ(s)ds,

(T2ψ)(t) = M2
∫ 1

0

∫ 1

0
G(t, t1)G(t1, s)ψ(s)dt1ds = (−1)2

∫ 1

0
K2(t, s)ψ(s)ds

and

(Tmψ)(t) = Mm
∫ 1

0
· · ·

∫ 1

0
G(t, tm−1) · · ·G(t1, s)ψ(s)dtm−1 · · · dt1ds

= (−1)m
∫ 1

0
Km(t, s)ψ(s)ds, m ≥ 2.

163



Axioms 2023, 12, 178

This is,
[(I − T + T2 + · · ·+ (−1)mTm + · · · )ψ](t)

= ψ(t) +
∫ 1

0

+∞

∑
m=1

Km(t, s)ψ(s)ds,

= ψ(t) +
∫ 1

0
Q(t, s)ψ(s)ds.

Thus, we get the solution of problem (4)

u(t) = ψ(t) +
∫ 1

0
H(t, s)σ(s)ds +

∫ 1

0
Q(t, s)ψ(s)ds.

Remark 1. It follows from the proof of Lemma 3 that the series
+∞
∑

m=1
Km(t, s) converges

uniformly on [0, 1] × [0, 1] and all functions Kn(t, s), Q(t, s), H(t, s) are continuous on
[0, 1]× [0, 1]. Furthermore, by the differentiability of parametrized integrals, we obtain

Qt(t, s) =
+∞

∑
m=1

∂Km

∂t
(t, s)

= −MGt(t, s)−M
+∞

∑
m=2

∫ 1

0
Gt(t, rm−1)Km−1(rm−1, s)ds

and

Ht(t, s) =
∫ 1

0
Qt(t, τ)G(τ, s)dτ + Gt(t, s).

This together with the expression of Gt implies that Qt(t, s), Ht(t, s) are continuous on
[0, 1]× [0, 1].

Define F : C[0, 1]→ C1[0, 1] by

(Fu)(t) =
∫ 1

0
H(t, s)u(s)ds. (11)

Based on the continuity of functions H and Ht, standard arguments show that the
following lemma hold.

Lemma 4. F is complete continuous.

Lemma 5. (Comparison result) Assume u ∈ C4[0, 1] satisfies

{
u(4)(t) ≥ −Mu(t), t ∈ (0, 1),
u(0) = 0, u′(0) ≥ 0, u′′(1) ≥ 0, u′′′(1) ≤ 0,

where the nonnegative constant M satisfying (6) and

1
3
− M

12
− 2(M

8 )3

3[1− (M
8 )2]

+
(M

15 )
2

3[1− (M
15 )

2]
≥ 0, (12)

1
3
− M

6
− 4(M

8 )3

3[1− (M
8 )2]

+
13(M

15 )
2

36[1− (M
15 )

2]
≥ 0, (13)

1
2
− M

6
− 4(M

8 )3

3[1− (M
8 )2]

+
(M

15 )
2

2[1− (M
15 )

2]
≥ 0, (14)
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1
2
− M

3
− 8(M

8 )3

3[1− (M
8 )2]

+
13(M

15 )
2

24[1− (M
15 )

2]
≥ 0, (15)

then u(t) ≥ 0 and u′(t) ≥ 0 for t ∈ [0, 1].

Proof. Let σ(t) = u(4)(t) + Mu(t) and a = u(0), b = u′(0), c = u′′(1), d = −u′′′(1), then
σ(t) ≥ 0 for t ∈ [0, 1] and a = 0, b ≥ 0, c ≥ 0, d ≥ 0. By Lemma 3, the linear problem (7) has
a unique solution

u(t) = ψ(t) +
∫ 1

0
H(t, s)σ(s)ds +

∫ 1

0
Q(t, s)ψ(s)ds.

Moreover,

u′(t) = ψ′(t) +
∫ 1

0
Ht(t, s)σ(s)ds +

∫ 1

0
Qt(t, s)ψ(s)ds.

Now, we consider
∫ 1

0 H(t, s)σ(s)ds for t ∈ [0, 1]. Let m = 2k + 1, k = 1, 2, · · · ,
by Lemma 2, we have

K2k+1(t, s) = −M2k+1
∫ 1

0
· · ·

∫ 1

0
G(t, r2k) · · ·G(r1, s)dr1 · · · dr2k

≥ −M2k+1
∫ 1

0
· · ·

∫ 1

0
(

1
2

t2 · r2k)(
1
2

r2
2k · r2k−1) · · · (

1
2

r2
2 · r1) · (

1
2

r1 · s2)dr1 · · · dr2k

= −16M2k+1

3 · 82k+1 t2s2.

Let m = 2k, k = 1, 2, · · · , we have

K2k(t, s) = M2k
∫ 1

0
· · ·

∫ 1

0
G(t, r2k−1) · · ·G(r1, s)dr1 · · · dr2k−1

≥ M2k
∫ 1

0
· · ·

∫ 1

0
(

1
3

t2 · r2
2k−1) · · · (

1
3

r2
2 · r2

1)(
1
3

r2
1 · s2)dr1 · · · dr2k−1

=
5M2k

152k t2s2.

Thus, we can gain

H(t, s) =
∫ 1

0
Q(t, τ)G(τ, s)dτ + G(t, s)

=
∫ 1

0

+∞

∑
m=1

Km(t, τ)G(τ, s)dτ + G(t, s)

≥ G(t, s)−M
∫ 1

0
G(t, τ)G(τ, s)dτ +

+∞

∑
m=1

∫ 1

0
K2m+1(t, τ)G(τ, s)dτ

+
+∞

∑
m=1

∫ 1

0
K2m(t, τ)G(τ, s)dτ

≥ 1
3

t2s2 −M
∫ 1

0

(
1
2

t2τ

)(
1
2

τs2
)

dτ −
+∞

∑
m=1

16M2m+1

3 · 82m+1

∫ 1

0
t2τ2

(
1
2

τs2
)

dτ

+
+∞

∑
m=1

5M2m

152m

∫ 1

0
t2τ2

(
1
3

τ2s2
)

dτ

=
1
3

t2s2 − M
12

t2s2 − 2
3

+∞

∑
m=1

M2m+1

82m+1 t2s2 +
1
3

+∞

∑
m=1

M2m

152m t2s2.
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Since 0 < 1
8 M < 1 and

+∞
∑

m=1

M2m+1

82m+1 ,
+∞
∑

m=1

M2m

152m is convergence, we get

H(t, s) ≥
{

1
3
− M

12
− 2(M

8 )3

3[1− (M
8 )2]

+
(M

15 )
2

3[1− (M
15 )

2]

}
t2s2.

By (12), we know
∫ 1

0 H(t, s)σ(s)ds ≥ 0 for t ∈ [0, 1].

Next, we claim that ψ(t) +
∫ 1

0 Q(t, s)ψ(s)ds ≥ 0 for t ∈ [0, 1]. Let n(t) = t, p(t) =
t2

2 , q(t) = t2

2 − t3

6 , then we have ψ(t) = dq(t) + cp(t) + bn(t). By simple calculation and
deduction, we can get

n(t) +
∫ 1

0
Q(t, s)n(s)ds

= n(t) +
∫ 1

0

+∞

∑
m=1

Km(t, s)n(s)ds

= t−M
∫ 1

0
G(t, s)n(s)ds +

+∞

∑
m=1

∫ 1

0
K2m+1(t, s)n(s)ds +

+∞

∑
m=1

∫ 1

0
K2m(t, s)n(s)ds

≥ t2 −M(
t3

120
− t

12
+

1
6
)t2 −

+∞

∑
m=1

16M2m+1

3 · 82m+1
t2

4
+

+∞

∑
m=1

5M2m

152m
t2

4

≥
{

1− M
6
− 4(M

8 )3

3[1− (M
8 )2]

+
5(M

15 )
2

4[1− (M
15 )

2]

}
t2

= n1(t) ≥ 0,

p(t) +
∫ 1

0
Q(t, s)p(s)ds

= p(t) +
∫ 1

0

+∞

∑
m=1

Km(t, s)p(s)ds

=
1
2

t2 −M
∫ 1

0
G(t, s)p(s)ds +

+∞

∑
m=1

∫ 1

0
K2m+1(t, s)p(s)ds +

+∞

∑
m=1

∫ 1

0
K2m(t, s)p(s)ds

≥ 1
2

t2 −M(
t4

720
− t

36
+

1
16

)t2 −
+∞

∑
m=1

16M2m+1

3 · 82m+1
t2

10
+

+∞

∑
m=1

5M2m

152m
t2

10

≥
{

1
2
− M

16
− 8(M

8 )3

15[1− (M
8 )2]

+
(M

15 )
2

2[1− (M
15 )

2]

}
t2

= p1(t) ≥ 0,

166



Axioms 2023, 12, 178

and

q(t) +
∫ 1

0
Q(t, s)q(s)ds

= q(t) +
∫ 1

0

+∞

∑
m=1

Km(t, s)q(s)ds

= (
t2

2
− t3

6
)−M

∫ 1

0
G(t, s)q(s)ds +

+∞

∑
m=1

∫ 1

0
K2m+1(t, s)q(s)ds +

+∞

∑
m=1

∫ 1

0
K2m(t, s)q(s)ds

≥ 3− t
6

t2 − M
120

(− t5

42
+

t4

6
− 5t

2
+

11
2
)t2 −

+∞

∑
m=1

16M2m+1

3 · 82m+1
13t2

180
+

+∞

∑
m=1

5M2m

152m
13t2

180

≥
{

1
3
− 11M

240
− 52(M

8 )3

135[1− (M
8 )2]

+
13(M

15 )
2

36[1− (M
15 )

2]

}
t2

= q1(t) ≥ 0.

By (13), we have

ψ(t) +
∫ 1

0
Q(t, s)ψ(s)ds

= [dq(t) + cp(t) + bn(t)] +
∫ 1

0
Q(t, s)[dq(s) + cp(s) + bn(s)]ds

= d[q(t) +
∫ 1

0
Q(t, s)q(s)ds] + c[p(t) +

∫ 1

0
Q(t, s)p(s)ds] + b[n(t) +

∫ 1

0
Q(t, s)n(s)ds]

≥ bn1(t) + cp1(t) + dq1(t) ≥ 0.

Thus, we can obtain that u(t) ≥ 0 for t ∈ [0, 1].
Next, we consider

∫ 1
0 Ht(t, s)σ(s)ds for t ∈ [0, 1]. Let m = 2k + 1, k = 1, 2, · · · , we gain

∂K2k+1(t, s)
∂t

= −M2k+1
∫ 1

0
· · ·

∫ 1

0
Gt(t, r2k) · · ·G(r1, s)dr1 · · · dr2k

≥ −M2k+1
∫ 1

0
· · ·

∫ 1

0
(t · r2k)(

1
2

r2k · r2
2k−1) · · · (

1
2

r2 · r2
1)(

1
2

r1 · s2)dr1 · · · dr2k

= −32
3

M2k+1

82k+1 ts2.

Let m = 2k, k = 1, 2, · · · , we obtain

∂K2k(t,s)
∂t = M2k

∫ 1

0
· · ·

∫ 1

0
Gt(t, r2k−1) · · ·G(r1, s)dr1 · · · dr2k−1

≥ M2k
∫ 1

0
· · ·

∫ 1

0
(

1
2

t · r2
2k−1)(

1
3

r2
2k−1 · r2

2k−2) · · · (
1
3

r2
1 · s2)dr1 · · · dr2k−1

=
15M2k

2 · 152k ts2.
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Therefore, we know

Ht(t, s) =
∫ 1

0
Qt(t, τ)G(τ, s)dτ + Gt(t, s)

=
∫ 1

0

+∞

∑
m=1

∂Km(t, τ)

∂t
G(τ, s)dτ + Gt(t, s)

≥ Gt(t, s)−M
∫ 1

0
Gt(t, τ)G(τ, s)dτ +

+∞

∑
m=1

∫ 1

0

∂K2m+1(t, τ)

∂t
G(τ, s)dτ

+
+∞

∑
m=1

∫ 1

0

∂K2m(t, τ)

∂t
G(τ, s)dτ

≥ 1
2

ts2 − M
6

ts2 − 4
3

+∞

∑
m=1

M2m+1

82m+1 ts2 +
1
2

+∞

∑
m=1

M2m

152m ts2.

Since 0 < 1
8 M < 1 and

+∞
∑

m=1

M2m+1

82m+1 ,
+∞
∑

m=1

M2m

152m is convergence, we get

Ht(t, s) ≥
{

1
2
− M

6
− 4(M

8 )3

3[1− (M
8 )2]

+
(M

15 )
2

2[1− (M
15 )

2]

}
ts2.

By (14), we know
∫ 1

0 Ht(t, s)σ(s)ds ≥ 0 for t ∈ [0, 1].

Lastly, we consider ψ′(t) +
∫ 1

0 Qt(t, s)ψ(s)ds for t ∈ [0, 1], where ψt(t) = dq′(t) +
cp′(t) + bn′(t). Though calculation and deduction, we have

n′(t) +
∫ 1

0
Qt(t, s)n(s)ds

= n′(t) +
∫ 1

0

+∞

∑
m=1

∂Km(t, s)
∂t

n(s)ds

= 1−M
∫ 1

0
Gt(t, s)sds +

+∞

∑
m=1

∫ 1

0

∂K2m+1(t, s)
∂t

n(s)ds +
+∞

∑
m=1

∫ 1

0

∂K2m(t, s)
∂t

n(s)ds

≥ 1−M(
t3

24
− t

4
+

1
3
)t−

+∞

∑
m=1

32M2m+1

3 · 82m+1
t
4
+

+∞

∑
m=1

15M2m

2 · 152m
t
4

≥
{

1− M
3
− 8(M

8 )3

3[1− (M
8 )2]

+
15(M

15 )
2

8[1− (M
15 )

2]

}
t

= n2(t) ≥ 0,

p′(t) +
∫ 1

0
Qt(t, s)p(s)ds

= p′(t) +
∫ 1

0

+∞

∑
m=1

∂Km(t, s)
∂t

p(s)ds

= t−M
∫ 1

0
Gt(t, s)

s2

2
ds +

+∞

∑
m=1

∫ 1

0

∂K2m+1(t, s)
∂t

p(s)ds +
+∞

∑
m=1

∫ 1

0

∂K2m(t, s)
∂t

p(s)ds

≥ t−M(
t4

120
− t

12
+

1
8
)t−

+∞

∑
m=1

32M2m+1

3 · 82m+1
t

10
+

+∞

∑
m=1

15M2m

2 · 152m
t

10

≥ {1− M
8
− 16(M

8 )3

15[1− (M
8 )2]

+
3(M

15 )
2

4[1− (M
15 )

2]
}t

= p2(t) ≥ 0
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and

q′(t) +
∫ 1

0
Qt(t, s)q(s)ds

= q′(t) +
∫ 1

0

+∞

∑
m=1

∂Km(t, s)
∂t

q(s)ds

= (t− t2

2
)−M

∫ 1

0
Gt(t, s)ds +

+∞

∑
m=1

∫ 1

0

∂K2m+1(t, s)
∂t

q(s)ds +
+∞

∑
m=1

∫ 1

0

∂K2m(t, s)
∂t

q(s)ds

≥ (1− t
2
)t− M

6
(− t5

120
+

t4

20
− 3t

8
+

11
20

)t−
+∞

∑
m=1

32M2m+1

3 · 82m+1
13t
180

+
+∞

∑
m=1

15M2m

2 · 152m
13t
180

≥ {1
2
− 11M

120
− 104(M

8 )3

135[1− (M
8 )2]

+
13(M

15 )
2

24[1− (M
15 )

2]
}t

= q2(t) ≥ 0.

By (15), we get

ψ′(t) +
∫ 1

0
Qt(t, s)ψ(s)ds

= [dq′(t) + cp′(t) + bn′(t)] +
∫ 1

0
Qt(t, s)[dq′(t) + cp′(t) + bn′(t)]ds

= d[q′(t) +
∫ 1

0
Qt(t, s)q′(t)ds] + c[p′(t) +

∫ 1

0
Qt(t, s)p′(t)ds] + b[n′(t) +

∫ 1

0
Qt(t, s)n′(t)ds]

≥ dq2(t) + cp2(t) + bn2(t) ≥ 0.

Thus, we can obtain that u′(t) ≥ 0 for t ∈ [0, 1].

If the condition u(0) = 0 replaced by u(0) ≥ 0, the result in Lemma 5 may be invalid.
However, similar to the proof of Lemma 5, we have the following comparison result.

Lemma 6. Assume u ∈ C4[0, 1] satisfies

{
u(4)(t) ≥ −Mu(t), t ∈ (0, 1),
u(0) ≥ 0, u′(0) ≥ 0, u′′(1) ≥ 0, u′′′(1) ≤ 0,

where the nonnegative constant M satisfying (6), (12) and

1
3
− M

4
− 16(M

8 )3

9[1− (M
8 )2]

+
13(M

15 )
2

36[1− (M
15 )

2]
≥ 0, (16)

then u(t) ≥ 0 for t ∈ [0, 1].

3. Main Results

Definition 1. A function v ∈ C4[0, 1] is called a lower solution of problem (1) if it satisfies

{
v(4)(t) ≤ f (t, v(t), v′(t)), t ∈ (0, 1),
v(0) = 0, v′(0) ≤ 0, v′′(1) ≤ 0, v′′′(1) ≥ 0.

Definition 2. A function w ∈ C4[0, 1] is called a upper solution of problem (1) if it satisfies

{
w(4)(t) ≥ f (t, w(t), w′(t)), t ∈ (0, 1),
w(0) = 0, w′(0) ≥ 0, w′′(1) ≥ 0, w′′′(1) ≤ 0.

For v0, w0 ∈ C1[0, 1], we write v0 ≤ w0 if and only if v0(t) ≤ w0(t) and v′0(t) ≤ w′0(t)
for all t ∈ [0, 1]. In such a case, we denote

[v0, w0] = {u ∈ C1[0, 1] : v0(t) ≤ u(t) ≤ w0(t), v′0(t) ≤ u′(t) ≤ w′0(t) t ∈ [0, 1]}.
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In the following, we list the assumptions to be used throughout our main results.
(H1) Assume that the functions v0, w0 are lower and upper solutions of the problem (1)

respectively, and v0 ≤ w0.
(H2) For fixed (t, x) ∈ [0, 1]× [mint∈[0,1] v0(t), maxt∈[0,1] w0(t)], f (t, x, y) is monotone

nondecreasing to y.
(H3) The function f ∈ C([0, 1]×R×R,R) satisfies

f (t, x, z)− f (t, y, z) ≥ −M(x− y)

where M > 0 satisfying Lemma 5 and v0(t) ≤ y ≤ x ≤ w0(t), v′0(t) ≤ z ≤ w′0(t), t ∈ [0, 1].

Theorem 1. Assume that M satisfies (H1), (H2) and (H3). Then there exist monotone sequences
{vn(t)}, {wn(t)} which converge in C1[0, 1] to the extremal solutions of the problem (1) in [v0, w0],
respectively.

Proof. For any α ∈ [v0, w0], we consider the following problem:

{
u(4)(t) = M(α(t)− u(t)) + f (t, α(t), α′(t)), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.
(17)

From the proof of Lemma 1, the problem (17) has a unique solution u ∈ E, which can be
expressed as

u(t) =
∫ 1

0
H(t, s)[ f (s, α(s), α′(s)) + Mα(s)]ds.

Define an operator A : [v0, w0]→ C1[0, 1] written as

Aα(t) =
∫ 1

0
H(t, s)[ f (s, α(s), α′(s)) + Mα(s)]ds.

So, u ∈ [v0, w0] is a solution of the problem (17) if and only if u ∈ [v0, w0] is the fixed point
of A.

Define a Nemytsky operator Q : [v0, w0]→ C[0, 1] written as

Qα(t) = f (t, α(t), α′(t)) + Mα(t), α ∈ [v0, w0].

Obviously, A = F ◦ Q and A is compact. Moreover, the operator A has the following
properties:

(i) v0 ≤ Av0, Aw0 ≤ w0;
(ii) Ay1 ≤ Ay2, if v0 ≤ y1 ≤ y2 ≤ w0.
To prove (i), let α = v0, v1 = Av0, and p = v1 − v0. Then from condition (H1) and the

definition of the lower solution, we obtain




p(4)(t) ≥ −Mv1(t) + f (t, v0(t), v′0(t)) + Mv0 − f (t, v0(t), v′0(t))

= −Mp(t),

p(0) = 0, p′(0) ≥ 0, p′′(1) ≥ 0, p′′′(1) ≤ 0.

Then, from Lemma 5, we get p(t) ≥ 0, p′(t) ≥ 0 for t ∈ [0, 1], that is, v0 ≤ Av0. Similarly,
we can prove that Aw0 ≤ w0.
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To prove (ii), let y1, y2 ∈ [v0, w0] with y1 ≤ y2. Suppose that u1 = Ay1, u2 = Ay2. Let
p = u2 − u1. By condition (H3), we get





p4(t) = f (t, y2(t), y′2(t))− f (t, y1(t), y′1(t)) + M(y2(t)− y1(t))

−Mu2(t) + Mu1(t)

≥ f (t, y2(t), y′1(t))− f (t, y1(t), y′1(t)) + M(y2(t)− y1(t))

−Mu2(t) + Mu1(t) ≥ −Mp(t),

p(0) = p′(0) = p′′(1) = p′′′(1) = 0.

By Lemma 5, we deduce p(t) ≥ 0, p′(t) ≥ 0 which implies Ay1 ≤ Ay2. Therefore, A is a
monotone operator on [v0, w0].

Let vm = Avm−1, wm = Awm−1, by (i) and (ii), we have

v0(t) ≤ v1(t) ≤ v2(t) ≤ · · · ≤ vm(t) ≤ · · · ≤ wm(t) ≤ · · · ≤ w2(t) ≤ w1(t) ≤ w0(t),

and

v′0(t) ≤ v′1(t) ≤ v′2(t) ≤ · · · ≤ v′m(t) ≤ · · · ≤ w′m(t) ≤ · · · ≤ w′2(t) ≤ w′1(t) ≤ w′0(t).

Note that {vm(t)} and {v′m(t)} are monotone nondecreasing and are bounded from above,
and that {wm(t)} and {w′m(t)} are monotone nonincreasing and are bounded from below.
Then, by the completely continuity of operator A and vm(0) = wm(0) = 0 for all m ∈ N,
we obtain

lim
n→∞

vn(t) = v∗(t), lim
n→∞

wn(t) = w∗(t)

lim
n→∞

v′n(t) = v′∗(t), lim
n→∞

w′n(t) = w∗′(t)

uniformly on [0, 1], respectively. And the limit functions v∗, w∗ ∈ [v0, w0] are solutions of
the problem (1).

In the following, we prove v∗, w∗ are extremal solutions of the problem (1) in [v0, w0].
Let u ∈ [v0, w0] be a solution of the problem (1). In view of the monotonicity of A and
u = Au, we conclude

v0 ≤ v1 = Av0 ≤ Au = u ≤ w1 = Aw0 ≤ w0,

which yields
v0 ≤ vm ≤ u ≤ wm ≤ w0, m = 1, 2, . . . .

Therefore, we have v0 ≤ v∗ ≤ u ≤ w∗ ≤ w0. This shows v∗ and w∗ are minimal solution
and maximal solution of the problem (1) in [v0, w0], respectively. This ends the proof.

For the boundary value problem (2), appears as the special case of problem (1) that f
does not contain first-order derivative term, the definition of the upper and lower solutions
can be weakened.

Definition 3 ([24]). A function v ∈ C4[0, 1] is called a lower solution of problem (2) if it satisfies

{
v(4)(t) ≤ f (t, v(t)), t ∈ (0, 1),
v(0) ≤ 0, v′(0) ≤ 0, v′′(1) ≤ 0, v′′′(1) ≥ 0.

Definition 4 ([24]). A function w ∈ C4[0, 1] is called a upper solution of problem (2) if it satisfies

{
w(4)(t) ≥ f (t, w(t)), t ∈ (0, 1),
w(0) ≥ 0, w′(0) ≥ 0, w′′(1) ≥ 0, w′′′(1) ≤ 0.
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Based on Lemma 6, we present the existence of extremal solutions for problem (2).

Theorem 2. Assume that f : [0, 1]×R→ R is continuous, problem (2) has a lower solution v0
and an upper solution w0 with v0(t) ≤ w0(t) for t ∈ [0, 1], and f satisfies the following condition:

f (t, x)− f (t, y) ≥ −M(x− y)

where M > 0 satisfying Lemma 6 and v0(t) ≤ y ≤ x ≤ w0(t), t ∈ [0, 1]. Then there exist
monotone sequences {vn(t)}, {wn(t)} which converge in C[0, 1] to the extremal solutions of the
problem (2) in [v0, w0], respectively.

4. Example

Consider the problem




u(4) = − 7
15

(
t3

6
+ u)3 +

7
30

t4 sin u +
7

45
(

u′

2
)6 +

7
90

t6,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(18)

Take f (t, u, v) = − 7
15 (

t3

6 + u)3 + 7
30 t4 sin u + 7

45 (
v
2 )

6 + 7
90 t6, v0(t) = 0 and w0(t) =

t2 − t3

6 , then we have





v(4)0 (t) = 0 ≤ 7
90

t6(1− t3) = f (t, v0(t), v′0(t)),

v0(0) = 0, v′0(0) ≤ 0, v′′0 (1) ≤ 0, v′′′0 (1) ≥ 0

and




w(4)
0 (t) = 0 ≥ − 7

15
t6 +

7
30

t4 sin(t2 − t3

6
) +

7
45

(t− t2

4
)6 +

7
90

t6 = f (t, w0(t), w′0(t)),

w0(0) = 0, w′0(0) ≥ 0, w′′0 (1) ≥ 0, w′′′0 (1) ≤ 0.

It shows that condition (H1) of Theorem 1 holds.
Note that the definition of f , f is monotone nondecreasing to y ∈ [v′0, w′0] for fixed

(t, x) ∈ [0, 1]× [v0, w0]. Therefore, the condition (H2) of Theorem 1 holds.
Let M = 7

5 . Then, for v0(t) ≤ y ≤ x ≤ w0(t), v′0(t) ≤ z ≤ w′0(t), t ∈ [0, 1],

f (t, x, z)− f (t, y, z)

= − 7
15

[(
t3

6
+ x)3 − (

t3

6
+ y)3] +

7
30

t4(sin x− sin y)

≥ −7
5
(x− y),

where M > 0 satisfying Lemma 5. Thus, the condition (H3) of Theorem 1 holds.
In consequence, the problem (18) has the extremal solutions in [v0, w0].

5. Conclusions

In this article, on a cantilever beam equation models the deformations of an elastic
beam, we use the monotone iterative technique and the methods of lower and upper
solutions to investigate the existence results for extremal solutions for problems (1) and (2).
At the same time, two sequences are obtained for approximating the extremal solutions
of the nonlinear fourth-order differential equation. It should be noted that the proof of
comparison result does depend on the the perturbation theorem of identity operator. In the
future, we will continue to use the monotone iterative technique to investigate problems (1)
under nomonotonicity assumptions on u and v in nonlinearity f (t, u, v).
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Abstract: We establish a non-linear diffusion partial differential equation (PDE) model to depict the
dynamic mechanism of Internet gaming disorder (IGD). By constructing appropriate super- and
sub-solutions and applying Schauder’s fixed point theorem and continuation method, we study the
existence and asymptotic stability of traveling wave solutions to probe into the oscillating behavior
of IGD. An example is numerically simulated to examine the correctness of our outcomes.

Keywords: Internet game addiction; nonlinear diffusion PDE model; super- and sub-solutions;
traveling wave; existence and stability

MSC: 35B35; 35K57; 35Q92; 92D25

1. Introduction
1.1. Background and Model

In the past decade, with the continuous popularization of the Internet, the number of
Internet users has increased sharply. The convenience and other benefits of the Internet
are obvious to all. However, there is also some harmful content on the Internet, such as
pornography, violence, online games and so on. In particular, various types of Internet
games are full of major Internet websites with legal identities. These Internet games have
attracted a large number of game players, especially teenagers. Many game players become
addicted to Internet games. People with Internet gaming addiction tend to be impulsive,
violent, misanthropic and withdrawn. This not only brings great harm to the physical and
mental health of Internet game addicts but also endangers society and their families. In
recent years, the number of Internet game addicts has continued to rise. This phenomenon
has been widely concerning and studied. The World Health Organization [1] has pointed
out that Internet game addiction is a new disease. The disease is named Internet gaming
disorder (IGD) and is characterized by “Persistent and recurrent use of the Internet to
engage in games, often with other players, leading to clinically significant impairment or
distress” [2]. IGD is often referred to as a mental illness. The Diagnostic and Statistical
Manual of Mental Disorders [3,4] provides some classifications of IGD. In order to cure and
reduce the number of people with IGD, scholars from all walks of life have begun to study
IGD from various aspects. Some researchers [5–9] use mathematical theories and methods
to study IGD by establishing mathematical models.

In this context, we also try to use calculus methods to establish a differential equation
model to study IGD. To this end, we make the underlying assumptions as follows:

(i) Internet game players are simply divided into two categories: moderate gamers M
and addictive gamers A;

(ii) Because it is very difficult to stop playing games through self-control, Internet game
players M and A are treated.

(iii) The spatial distribution of the number of Internet game players is very uneven, which
is concentrated in places such as Internet cafes and schools, and then gradually
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decreases outward. Based on this, we assume that the population distribution of the
two types of Internet game players is diffuse in space.

Below, we give the state changes in Internet game players, as shown in the Figure 1.

New gamer Moderate  gamer Addictive  gamer
Self  transformation

Transformation after 
treatment

Stop playing 
after treatment

Stop playing 
after treatment

Figure 1. General scheme of the state transition of Internet gamers in our modeling.

Based on the assumptions (i)–(iii), we explain the process described in Figure 1 in
detail. M(x, t) and A(x, t) stand for the population density of moderate gamers and addic-
tive gamers at time t and position x, respectively. In time period ∆t, the moderate gamers
M have increased by αM(x, t)∆t and δA(x, t)∆t because some non-gamers have become
new gamers and some addictive gamers have converted to moderate gamers after treat-
ment. In the meantime, the moderate gamers M have declined by βM(x, t)A(x, t)∆t and
γ1M(x, t)∆t because some moderate gamers have become addictive gamers and another
moderate gamers have converted to non-gamers after treatment. Vice versa, the addictive
gamers A have only raised by βM(x, t)A(x, t)∆t because of the transformation from moder-
ate gamers to addictive gamers. At the same time, the addictive gamers M have reduced by
δA(x, t)∆t and γ2 A(x, t)∆t because some addictive gamers have become moderate gamers
and another addictive gamers have converted to non-gamers after treatment. Furthermore,
we added the diffusion terms d1

∂2 M
∂x2 ∆t and d2

∂2 A
∂x2 ∆t, where d1 and d2 are the diffusion

coefficients. Through the above analysis, we build a new model as follows:
{

∂M
∂t = d1

∂2

∂x2 M(x, t) + α− βM(x, t)A(x, t)− γ1M(x, t) + δA(x, t),
∂A
∂t = d2

∂2

∂x2 A(x, t) + βM(x, t)A(x, t)− (γ2 + δ)A(x, t),
(1)

where (x, t) ∈ R× (0, ∞), α, β, δ, γ1, γ2, d1, d2 > 0 are some constants.

Remark 1. In (1), if there is lack of treatment and diffusion, then M + A = M(0) + A(0) + αt→
+∞, as t → +∞. This will lead to everyone eventually becoming a gamer. Therefore, proper
treatment is necessary. Moreover, there are two kinds of healing effects on addicted gamers. One is
to cure them completely and make them non-gamers. The other is to reduce their addiction and make
them moderate gamers. This shows that game addiction is a stubborn psychological disease. It is
difficult to eradicate completely.

1.2. Significance and Contribution

The traveling wave solutions of non-linear reaction–diffusion equations have im-
portant applications in many disciplines, such as biological dynamics [10,11], epidemic
dynamics [12–14] and tumor dynamics [15,16]. Therefore, the study of traveling wave
solutions and their properties of diffusion of non-linear partial differential equation models
has attracted the attention of many scholars. There have been many good works [17–23]
dealing with the traveling wave of reaction–diffusion equations. Enlightened by the ideas
and methods in these references, this paper focuses on the existence of traveling wave
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solutions to Equation (1). So, let M(x, t) = M̃(ξ), A(x, t) = Ã(ξ), ξ = x + ct(c > 0), then
(1) becomes

{
cM̃′(ξ)− d1M̃′′(ξ) = α− βM̃(ξ)Ã(ξ)− γ1M̃(ξ) + δÃ(ξ),
cÃ′(ξ)− d2 Ã′′(ξ) = βM̃(ξ)Ã(ξ)− (γ2 + δ)Ã(ξ).

(2)

It is easy to verify that Equation (2) has a unique non-negative constant solution
(M̃(ξ), Ã(ξ)) = ( α

γ1
, 0). LetM(ξ) = M̃(ξ)− α

γ1
, A(ξ) = Ã(ξ), then Equation (2) changes

into
{

cM′(ξ)− d1M′′(ξ) = −βM(ξ)A(ξ)− γ1M(ξ)− (αβγ−1
1 − δ)A(ξ),

cA′(ξ)− d2A′′(ξ) = βM(ξ)A(ξ) + (αβγ−1
1 − γ2 − δ)A(ξ). (3)

The whole paper requires the following assumptions.

(A) For some given constants α, β, δ, γ1, γ2, d1, d2 > 0 and an unknown constant c > 0,

there are γ2 + δ < αβγ−1
1 and c > 2

√
d2(αβγ−1

1 − γ2 − δ).

The paper mainly includes the following contributions. (a) We propose a novel diffu-
sion PDE (1) modeling Internet game addiction, which is rare in previous papers. (b) Based
on Schauder’s fixed point theorem and continuation method, we study the existence and
asymptotic stability of traveling waves of the model (1) to reveal the oscillating behavior of
IGD. (c) Our research provides some theoretical help for the study and treatment of IGD.
The remaining structure of the paper is as follows. Section 2 introduces super- and sub-
solutions and their properties. Section 3 gives the detailed proof process of the existence
of traveling waves. Section 4 studies the global asymptotic stability of traveling waves.
In Section 5, we provide an example and carry out numerical simulation to examine the
validity of our results. Section 6 is a brief summary.

2. Super- and Sub-Solutions

This section provides the upper and lower solutions of (3) and their properties. Define
the super-solutions P(ξ) = eλξ , and Q(ξ) = eµξ , where

λ =
c +

√
c2 + 4d1γ1

2d1
, µ =

c +
√

c2 − 4d2(αβγ−1
1 − γ2 − δ)

2d2
.

By the condition (B), one has λ, µ > 0, and

cP′(ξ)− d1P′′(ξ) = −γ1P(ξ), cQ′(ξ)− d2Q′′(ξ) = (αβγ−1
1 − γ2 − δ)Q(ξ).

Take the sub-solutions P(ξ) = eλξ − Pe(λ−ε)ξ and Q(ξ) = eµξ − Qe(µ−ε)ξ , where
P ,Q > 1 and ε ∈ (0, min{λ, µ}) are small enough such that

ρ = −d1(λ− ε)2 + c(λ− ε) > 0, $ = −d2(µ− ε)2 + c(µ− ε)− (αβγ−1
1 − γ2 − δ) > 0,

ξ , max
{

lnP
ε

,
lnQ

ε

}
< min

{
1
λ

ln
ρ(αβγ−1

1 − δ)

βγ1
,

1
µ

ln
Pγ1

αβγ−1
1 − δ

}
, ξ.
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When ξ < ξ < ξ, we obtain P(ξ), Q(ξ) > 0, and

cP′(ξ)− d1P′′(ξ) + βP(ξ)Q(ξ) + γ1P(ξ) + (αβγ−1
1 − δ)Q(ξ)

=c
[
λeλξ −P(λ− ε)e(λ−ε)ξ

]
− d1

[
λ2eλξ −P(λ− ε)2e(λ−ε)ξ

]
+ γ1

[
eλξ −Pe(λ−ε)ξ

]

+ β
[
eλξ −Pe(λ−ε)ξ

][
eµξ −Qe(µ−ε)ξ

]
+
(
αβγ−1

1 − δ
)[

eµξ − be(µ−ε)ξ
]

<
[
Pd1(λ− ε)2 −Pc(λ− ε)−Pγ1

]
e(λ−ε)ξ + βeλξ eµξ +

(
αβγ−1

1 − δ
)
eµξ

<−
[
Pρ− βeλξ eµξ + Pγ1 −

(
αβγ−1

1 − δ
)
eµξ
]
e(λ−ε)ξ

<−
[
Pρ− β · ρ(αβγ−1

1 − δ)

βγ1
· Pγ1

αβγ−1
1 − δ

+ Pγ1 −
(
αβγ−1

1 − δ
)
· Pγ1

αβγ−1
1 − δ

]
e(λ−ε)ξ = 0,

cQ′(ξ)− d2Q′′(ξ)− βP(ξ)Q(ξ)− (αβγ−1
1 − γ2 − δ)Q(ξ)

=c
[
µeµξ −Q(µ− ε)e(µ−ε)ξ

]
− d2

[
µ2eµξ −Q(µ− ε)2e(µ−ε)ξ

]

− β
[
eλξ −Pe(λ−ε)ξ

][
eµξ −Qe(µ−ε)ξ

]
− (αβγ−1

1 − γ2 − δ)
[
eµξ −Qe(µ−ε)ξ

]

<−Q
[
− d2(µ− ε)2 + c(µ− ε)− (αβγ−1

1 − γ2 − δ)
]
e(µ−ε)ξ = −Q$e(µ−ε)ξ < 0.

Let P̃(ξ) = max{0, P(ξ)}, Q̃(ξ) = max{0, Q(ξ)}, ξ ∈ R, then, we have

cP̃′(ξ)− d1P̃′′(ξ) + βP̃(ξ)Q̃(ξ) + γ1P̃(ξ) + (αβγ−1
1 − δ)Q̃(ξ) ≤ 0, ∀ ξ 6= lnP

ε
,

cQ̃′(ξ)− d2Q̃′′(ξ)− βP̃(ξ)Q̃(ξ)− (αβγ−1
1 − γ2 − δ)Q̃(ξ) ≤ 0, ∀ ξ 6= lnQ

ε
.

3. Existence of Traveling Wave

This section mainly discusses the existence and non-existence of traveling waves and
some properties of traveling waves. We boil them down to the following theorem.

Theorem 1. Assume that (A) holds, then the following assertions are true:

(a) For any c > c∗ = 2
√

d2(αβγ−1
1 − γ2 − δ), there is a traveling wave solution (M̃∗(ξ),

Ã∗(ξ)) of model (1) satisfying lim
ξ→−∞

M̃∗(ξ) = α
γ1

, lim
ξ→−∞

Ã∗(ξ) = 0.

(b) ∃ ξ0 > 0, when ξ ∈ (−∞,−ξ0), M̃∗(ξ) and Ã∗(ξ) are monotone increasing functions.
(c) There is no traveling wave solution of model (1) provided that c < c∗.
(d) lim inf

ξ→+∞
M̃∗(ξ) > α

γ1
, lim inf

ξ→+∞
Ã∗(ξ) > 0.

Proof. (1) The proof of assertion (a). Here, we prove it in two steps.

Step 1: Local existence of traveling wave. For c > 2
√

d2(αβγ−1
1 − γ2 − δ), consider a

two-point BVP in (−l, l) of the form




cM′(ξ)− d1M′′(ξ) = −βM(ξ)A(ξ)− γ1M(ξ)− (αβγ−1
1 − δ)A(ξ)

, F(M(ξ),A(ξ)),
cA′(ξ)− d2A′′(ξ) = βM(ξ)M(ξ) + (αβγ−1

1 − γ2 − δ)A(ξ) , G(M(ξ),A(ξ)),
M(±l) = P̃(±l), A(±l) = Q̃(±l), M′(±l) = P̃′(±l), A′(±l) = Q̃′(±l),

(4)

where l > ξ, and

M(ξ) =




M(−l), ξ < −l,
M(ξ), −l ≤ ξ ≤ l,
M(l), ξ > l,

A(ξ) =




A(−l), ξ < −l,
A(ξ), −l ≤ ξ ≤ l,
A(l), ξ > l.

(5)
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By Section 2, for a solution (M(ξ),A(ξ)) of (4), one has P̃(ξ) ≤ M(ξ) ≤ P(ξ),
Q̃(ξ) ≤ A(ξ) ≤ Q(ξ). Introducing a norm

‖(u, v)‖ = max
{

sup
ξ∈[−l,l]

|u(ξ)|, sup
ξ∈[−l,l]

|v(ξ)|, sup
ξ∈[−l,l]

|u′(ξ)|, sup
ξ∈[−l,l]

|v′(ξ)|
}

,

for (u, v) ∈ C2([−l, l],R2), then C2([−l, l],R2) is a Banach space. Let ‖(P̃, Q̃)‖ = R1,

‖(P, Q)‖ = R2, R3 = R1 + R1d1c−1(e
2cl
d1 − 1

)
+ d1R2c−2(βR2 + γ1 + αβγ−1

1 − δ)
(
e

cl
d1 −

1
)(

e
cl
d1 − e−

cl
d1
)
, R4 = R1 + R1d1c−1(e

2cl
d2 − 1

)
+ d2R2c−2(βR2 + αβγ−1

1 − γ2 − δ)
(
e

cl
d2 −

1
)(

e
cl
d2 − e−

cl
d2
)
, R = max{R1, R2, R3, R4}, Ω = {(u, v) ∈ C2([−l, l],R2) : ‖(u, v)‖ < R+ 1}.

For (u, v) ∈ Ω, define a mapping L = (L1, L2)
T : Ω→ R2 as

(L (u, v))(ξ) =
(

(L (u, v))(ξ)
(L (u, v))(ξ)

)
, (6)

where

(L1(u, v))(ξ) = u(−l) + u′(−l)e
cl
d1

∫ ξ

−l
e

c
d1

τdτ − 1
d1

∫ ξ

−l

[ ∫ τ

−l
e−

c
d1
(s−τ)F(u(s), v(s))ds

]
dτ,

(L2(u, v))(ξ) = v(−l) + v′(−l)e
cl
d2

∫ ξ

−l
e

c
d2

τdτ − 1
d2

∫ ξ

−l

[ ∫ τ

−l
e−

c
d2
(s−τ)G(u(s), v(s))ds

]
dτ.

By the boundary conditions, (A) and (6), we have

|(L1(u, v))(ξ)|

=

∣∣∣∣P̃(−l) + P̃′(−l)e
cl
d1

∫ ξ

−l
e

c
d1

τdτ − 1
d1

∫ ξ

−l

[ ∫ τ

−l
e−

c
d1
(s−τ)F(u(s), v(s))ds

]
dτ

∣∣∣∣

≤|P̃(−l)|+ |P̃′(−l)|e
cl
d1

∫ l

−l
e

c
d1

τdτ +
1
d1

∫ l

−l

[ ∫ τ

−l
e−

c
d1
(s−τ)|F(u(s), v(s))|ds

]
dτ

≤R1 + R1
d1

c
(
e

2cl
d1 − 1

)
+

1
d1

∫ l

−l

[ ∫ l

−l
e−

c
d1
(s−τ)

[β|u(s)||v(s))|

+ γ1|u(s)|+ (αβγ−1
1 − δ)|v(s)|]ds

]
dτ

≤R1 + R1d1c−1(e
2cl
d1 − 1

)
+ d1R2c−2(βR2 + γ1 + αβγ−1

1 − δ)
(
e

cl
d1 − 1

)(
e

cl
d1 − e−

cl
d1
)

=R3 < R + 1. (7)

Similar to (7), we obtain

|(L2(u, v))(ξ)|

=

∣∣∣∣v(−l) + v′(−l)e
cl
d2

∫ ξ

−l
e

c
d2

τdτ − 1
d2

∫ ξ

−l

[ ∫ τ

−l
e−

c
d2
(s−τ)G(u(s), v(s))ds

]
dτ

∣∣∣∣

≤R1 + R1d1c−1(e
2cl
d2 − 1

)
+ d2R2c−2(βR2 + αβγ−1

1 − γ2 − δ)
(
e

cl
d2 − 1

)(
e

cl
d2 − e−

cl
d2
)

=R4 < R + 1. (8)

From (7) and (8), one knows that L (Ω) ⊂ Ω. Obviously, L is continuous. Moreover,
it is easy to prove by Arzela–Ascoli theorem that L is compact. Therefore, by applying
Schauder’s fixed point theorem, L exists as a fixed point (M∗

l (ξ),A∗l (ξ)) ∈ Ω, which is the
solution of (4). Furthermore, 0 ≤ P̃(ξ) ≤M∗

l (ξ) < R + 1 and 0 ≤ Q̃(ξ) ≤ A∗l (ξ) < R + 1.
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Step 2: Global continuation of traveling wave. For (Ml(ξ),Al(ξ)), from the standard
elliptic estimates, one derives that there is N0 > 0 such that

‖Ml(ξ)‖C2,ν(− l
2 , l

2 )
≤ N0, ‖Al(ξ)‖C2,ν(− l

2 , l
2 )
≤ N0, ∀ l > max

{
lnP

ε
,

lnQ
ε

}
,

where ν ∈ (0, 1) is a constant. Taking l → +∞, then, one hasM∗
l (ξ)→M∗(ξ), A∗l (ξ)→

A∗(ξ) in C2
loc(R), and (M∗(ξ),A∗(ξ)) satisfies Equation (3). Noticing that 0 ≤ P̃(ξ) ≤

M∗(ξ) ≤ eλξ = P(ξ) and 0 ≤ Q̃(ξ) ≤ A∗(ξ) ≤ eµξ = Q(ξ), we have lim
ξ→−∞

M∗(ξ) =

lim
ξ→−∞

A∗(ξ) = 0. Thus, M̃∗(ξ) =M∗(ξ) + α
γ1

and Ã∗(ξ) = A∗(ξ) satisfy the Equation (2).

Therefore, (M̃∗(ξ), Ã∗(ξ)) is a traveling wave solution of (1) and satisfies lim
ξ→−∞

M̃∗(ξ) =

α
γ1

and lim
ξ→−∞

Ã∗(ξ) = 0.

(2) The proof of assertion (b). For this purpose, we adopt the reduction to absurdity.
Assume that, ∀ ξ > 0, M∗(ξ), and A∗(ξ) is non-monotonic in (−∞, ξ), then, there are
two infinite points sequences {ξk}∞

k=1 and {ηk}∞
k=1 satisfying lim

k→∞
ξk = lim

k→∞
ηk = −∞,

lim
k→∞
M∗(ξk) = lim

k→∞
A(ηk) = 0, andM∗(ξ) taking the maximum at ξ = ξk(k ∈ N+) and

A∗(ξ) taking the minimum at ξ = ηk(k ∈ N+). Thus, we have

(M∗)′(ξk) = (A∗)′(ηk) = 0, (M∗)′′(ξk) < 0, (A∗)′′(ηk) > 0,

which, together with (A), implies that

0 < c(M∗)′(ξk)− d1(M∗)′′(ξk) = −βM∗(ξk)A∗(ξk)− γ1M∗(ξk) < 0, (9)

and

0 > c(A∗)′(ηk)− d2(A∗)′′(ηk) = βM∗(ηk)A∗(ηk) + (αβγ−1
1 − γ2 − δ)A∗(ηk) > 0. (10)

Obviously, (9) and (10) are contradictory in themselves. So, there is a constant ξ0 > 0
such that M∗(ξ) and A∗(ξ) are all monotonous in (−∞,−ξ0). Moreover, assume that
M∗(ξ) and A∗(ξ) are all monotonically decreasing in (−∞,−ξ0), then, for any −ξ0 > ξ >
−∞, we have 0 <M∗(ξ) <M∗(−∞) = 0 and 0 < A∗(ξ) < A∗(−∞) = 0, which is an
evident fallacy. Therefore,M∗(ξ) andA∗(ξ) are all monotonically increasing in (−∞,−ξ0).
By M̃∗(ξ) = M∗(ξ) + α

γ1
and Ã∗(ξ) = A∗(ξ), one knows that M̃∗(ξ) and Ã∗(ξ) are all

monotonically increasing in (−∞,−ξ0) as well.
(3) The proof of assertion (c). We still adopt the fallacy reduction. Assume that, when

c < c∗, the model (1) has a traveling wave solution (M̃(ξ), Ã(ξ)), then, the Equation (3)
has a traveling wave solution M(ξ) = M̃(ξ) − α

γ1
, A(ξ) = Ã(ξ). Choose an infinite

point sequence {ξk}∞
k=1 such that lim

k→∞
ξk = −∞, and let Mk(ξ) = M(ξ+ξk)

M(ξk)
, Ak(ξ) =

A(ξ+ξk)
A(ξk)

, M̂k(ξ) =M(ξ + ξk) and Âk(ξ) = A(ξ + ξk), then, M̂k(ξ) and Âk(ξ) satisfy the
Equation (3), which yields

cÂ′k(ξ)− d2Â′′k (ξ) = βM̂k(ξ)Âk(ξ) + (αβγ−1
1 − γ2 − δ)Âk(ξ). (11)

Dividing by A(ξk) at both ends of (11) leads to

cA′k(ξ)− d2A′′k (ξ) = βM̂k(ξ)Ak(ξ) + (αβγ−1
1 − γ2 − δ)Ak(ξ). (12)
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In addition,Mk(0) = Ak(0) = 1 and (M̂k(ξ), Âk(ξ)) → (0, 0) as k → ∞ because of
(M(ξ),A(ξ)) → (0, 0) as ξ → −∞. Setting k → ∞ on both sides of (12), and denoting
lim
k→∞
Ak(ξ) = A0(ξ) in C2

loc(R), then, we obtain

cA′0(ξ)− d2A′′0 (ξ) = (αβγ−1
1 − γ2 − δ)A0(ξ). (13)

The general solution of ODE (13) is

A0(ξ) = C1eµ1ξ + C2eµ2ξ , (14)

where C1, C2 are two arbitrary constants, and the characteristic roots

µ1,2 =
c±

√
c2 − 4d2(αβγ−1

1 − γ2 − δ)

2d2
.

Moreover, Ak(0) = 1 implies A0(0) = 1. Since Ak(ξ) > 0 is monotonically increasing,
A0(ξ) > 0 is monotonically increasing, too, which indicates that µ1,2 ∈ R. Thus, we obtain

c > c∗ = 2
√

d2(αβγ−1
1 − γ2 − δ), which is contradictory to c < c∗. So, the model (1) has no

traveling wave solution when c < c∗.
(4) The proof of assertion (d). Let us first prove that lim inf

ξ→+∞
[M∗(ξ) +A∗(ξ)] > 0.

Indeed, since M∗(ξ),A∗(ξ) > 0, one has lim inf
ξ→+∞

[M∗(ξ) + A∗(ξ)] ≥ 0. Now, we just

need to prove lim inf
ξ→+∞

[M∗(ξ) + A∗(ξ)] 6= 0. By application of fallacy reduction, sup-

pose that the conclusion is not true, then, there is an infinite point sequence {ζk})∞
k=1

such that lim
k→∞

ζk = +∞ and lim
k→∞

[M∗(ζk) +A∗(ζk)] = 0, which deduces lim
k→∞
M∗(ζk) =

lim
k→∞
A∗(ζk) = 0. Let ζk = −ωk, M∗(ζk) = M̂∗(−ζk) and A∗(ζk) = Â∗(−ζk), then

lim
k→∞

ωk = −∞, lim
k→∞
M̂∗(ωk) = lim

k→∞
Â∗(ωk) = 0, M̂∗(ωk) and Â∗(ωk) satisfy

(−c)Â′(ωk)− d2Â′′(ωk) = βM̂(ωk)Â(ωk) + (αβγ−1
1 − γ2 − δ)Â(ωk). (15)

Meanwhile, from the assertion (b), we know that M∗(ωk) and A∗(ωk) are mono-
tonically increasing in (−∞, ξ0). Similar to the proof process of assertion (c), only when

−c > 2
√

d2(αβγ−1
1 − γ2 − δ),M∗(ωk) and A∗(ωk) satisfying (15) are monotonically in-

creasing in (−∞, ξ0). Thus, we obtain c < 2
√

d2(αβγ−1
1 − γ2 − δ) = c∗, which is contradic-

tory to the hypothesis c > c∗.
Next, we show that lim inf

ξ→+∞
M∗(ξ) > 0 and lim inf

ξ→+∞
A∗(ξ) > 0. One can easily obtain

lim inf
ξ→+∞

M∗(ξ) ≥ 0 and lim inf
ξ→+∞

A∗(ξ) ≥ 0 due toM∗(ξ),A∗(ξ) > 0. Now, we apply the

proof by contradiction to prove that lim inf
ξ→+∞

M∗(ξ) 6= 0 and lim inf
ξ→+∞

A∗(ξ) 6= 0. Consider

lim inf
ξ→+∞

M∗(ξ) 6= 0 at first, if lim inf
ξ→+∞

M∗(ξ) = 0, there exists an infinite point {ξk}∞
k=1 such

that lim
k→∞

ξk = +∞ and lim
k→∞
M∗(ξk) = 0. For A∗(ξ), there are two cases, namely, Case 1:

lim inf
k→∞

A∗(ξk) = 0 and Case 2: lim inf
k→∞

A∗(ξk) > 0. In Case 1, there is a sub-sequence {ξ∗k} ⊂
{ξk} such that lim

k→∞
A∗(ξ∗k ) = lim

k→∞
M∗(ξ∗k ) = 0. Similar to the proof of lim inf

ξ→+∞
[M∗(ξ) +

A∗(ξ)] > 0, we find the contradiction between c > c∗ and c < c∗. In Case 2, there is a
sub-sequence {ξ∗∗k } ⊂ {ξk} such that lim

k→∞
A∗(ξ∗∗k ) > 0 and lim

k→∞
M∗(ξ∗∗k ) = 0 and satisfies

c(M∗)′(ξ∗∗k )− d1(M∗)′′(ξ∗∗k )

=− βM∗(ξ∗∗k )A∗(ξ∗∗k )− γ1M(ξ∗∗k )− (αβγ−1
1 − δ)A∗(ξ∗∗k ). (16)
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It is worth noting that we apply lim
k→∞
M∗(ξ∗∗k ) = 0 and Taylor expansion formula

to obtain lim
k→∞

(M∗)′(ξ∗∗k ) = lim
k→∞

(M∗)′′(ξ∗∗k ) = 0. So, taking the limit k → ∞ at both

ends of (16), we have 0 = 0− (αβγ−1
1 − δ) lim

k→∞
A∗(ξ∗∗k ) < 0, which is an evident false-

hood. Thus, we completed the proof of lim inf
ξ→+∞

M∗(ξ) > 0. Similar discussions can prove

that lim inf
ξ→+∞

A∗(ξ) > 0 hold, and the specific proof process is omitted. Noticing the trans-

formation M(ξ) = M̃(ξ) − α
γ1

and A(ξ) = Ã(ξ), one obtains lim inf
ξ→+∞

Ã∗(ξ) > α
γ1

and

lim inf
ξ→+∞

Ã∗(ξ) > 0.

So far, we completed the proof of all the propositions of the Theorem 1.

4. Asymptotical Stability of Traveling Wave

This section focuses on the stability of the traveling wave solution of the model (1).
Some preparatory work is necessary. According to the actual situation, our model considers
the distribution and change in the number of Internet game addicts in a fixed spatial area,
so we assume that there is no flow between the population in the spatial area and the
outside of the area. Based on this assumption, we give the initial and boundary value
conditions for the model (1) as follows:

{
∂M(x,t)

∂−→ν = ∂A(x,t)
∂−→ν = 0, (x, t) ∈ ∂Λ×R+,

M(x, 0) = φ1(x), A(x, 0) = φ2(x), x ∈ Λ,
(17)

here, R+ = (0, ∞), Λ ⊂ R is bounded with smooth boundary ∂Λ, −→ν is outer normal vector
of ∂Λ and φ1(x), φ2(x) > 0 are continuous.

Let X = C3(Λ×R+,R2) be a Banach space, then X + = {(u, v) ∈ X : u > 0, v > 0}
is a closed positive cone of X . We discuss the stability of traveling wave solutions of model (1).
Obviously, (M(x, t), A(x, t)) = ( α

γ1
, 0) is a non-negative constant stationary solution of model

(1). Here, we have the following result about the stability of the model (1).

Theorem 2. If (A) is true, then the traveling wave solution (M∗(x, t), A∗(x, t)) of model (1)
satisfying condition (17) is globally asymptotically stable in X +.

Proof. LetM(x, t) = M(x, t)− α
γ1

and A(x, t) = A(x, t), then system (1) and condition
(17) change into





∂M
∂t = d1∆M− βMA− γ1M− (αβγ−1

1 − δ)A, (x, t) ∈ Λ×R+,
∂A
∂t = d2∆A+ βMA+ (αβγ−1

1 − γ2 − δ)A, (x, t) ∈ Λ×R+,
∂M(x,t)

∂−→ν = ∂A(x,t)
∂−→ν = 0, (x, t) ∈ ∂Λ×R+,

M(x, 0) = φ1(x)− α
γ1

, A(x, 0) = φ2(x), x ∈ Λ.

(18)

Now, it suffices to prove that the traveling wave solution (M∗(x, t),A∗(x, t)) of
(18) is globally asymptotically stable in X +. To this end, build a functional V(t) =∫

Λ[M(x, t) +A(x, t)]dx. Obviously, V(t) is smooth, V(t) > 0 for all t 6= 0 and V(0) = 0 in
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X +. It follows from [24] that {t ∈ R : V(t) ≤ µ} is bounded for µ ≥ 0. Thus, calculating
the derivative of V(t) along (18), we have

dV
dt

=
∫

Λ

[
∂M
∂t

+
∂A
∂t

]
dx =

∫

Λ

[
d1∆M− βMA− γ1M− (αβγ−1

1 − δ)A

+ d2∆A+ βMA+ (αβγ−1
1 − γ2 − δ)A

]
dx

=
∫

Λ

[
d1∆M+ d2∆A− γ1M− γ2A

]
dx

=
∫

Λ

[
d1∆M+ d2∆A

]
dx−

∫

Λ

[
γ1M+ γ2A

]
dx. (19)

From the boundary value condition ∂M(x,t)
∂−→ν = ∂A(x,t)

∂−→ν = 0, we obtain

∫

Λ
∆Mdx =

∂M
∂x

∣∣∣∣
∂Λ

= 0,
∫

Λ
∆Adx =

∂A
∂x

∣∣∣∣
∂Λ

= 0. (20)

(19) and (20) yield

dV
dt

= −
∫

Λ

[
γ1M+ γ2A

]
dx < 0. (21)

In view of (21) and [24], we know that V(t) is a Lyapunov function of (18). From
the parabolic Lp-theory, the Sobolev Embedding Theorem and the standard compactness
argument [25], we conclude that there are some constants N, t0 > 0 such that ‖M‖C2(Λ) +

‖A‖C2(Λ) ≤ N, ∀ t > t0. So, we apply the Sobolev Embedding Theorem [26] to obtain that

(M,A) → (0, 0) in L2(Λ)× L2(Λ), as t → ∞. Additionally, dV
dt = 0 iff (M,A) = (0, 0),

which leads to {(M,A) : dV
dt = 0} = {(0, 0)}. Thus, according to Lyapunov stability

theory, we conclude that the traveling wave solution (M∗(x, t), A∗(x, t)) of (18) is globally
asymptotically stable in X +. The proof is completed.

5. Numerical Simulation

Consider the following non-linear diffusion PDE model of IGD




∂M
∂t = d1∆M + α− βMA− γ1M + δA, (x, t) ∈ Λ×R+,

∂A
∂t = d2∆A + βMA− (γ2 + δ)A, (x, t) ∈ Λ×R+,
∂M(x,t)

∂−→ν = ∂A(x,t)
∂−→ν = 0, (x, t) ∈ ∂Λ×R+,

M(x, 0) = φ1(x), A(x, 0) = φ2(x), x ∈ Λ,

(22)

where R+ = (0, ∞), Λ = (0, 10), α = 10, β = 6, γ1 = 3 γ2 = 2, δ = 3, d1 = 0.5, d2 = 0.8,
φ1(x) = 5 + 3 sin(x), φ2(x) = 7 + 4 cos(x).

A simple calculation gives 5 = γ2 + δ < αβγ−1
1 = 20 and c∗ = 2

√
d2(αβγ−1

1 − γ2 − δ)

= 8. The condition (A) holds. According to Theorem 1 and Theorem 2, for any c >
c∗ = 8, the model (22) has a traveling wave solution (M̃∗(ξ), Ã∗(ξ)), which is globally
asymptotically stable.

Figure 2 shows that when the initial conditions are the periodic functions φ1(x) =
5 + 3 sin(x) and φ2(x) = 7 + 4 cos(x), the system (22) exists as a globally asymptotically
stable oscillatory periodic traveling wave solution.
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Figure 2. Evolutions of M(x, t) and A(x, t) over time t.

6. Conclusions

In the last decade, with the popularity of the Internet, the number of Internet users
has continued to increase. While people enjoy the convenience and benefits brought by
the Internet, some disadvantages brought by the Internet also begin to appear gradually.
For example, Internet game addiction endangers the physical and mental health of players.
In particular, many young addictive gamers are trapped in it. Many scholars, including
mathematicians, have begun to pay attention to and study this phenomenon. Through
the analysis of the dynamic change process of Internet gamers, we put forward a new
non-linear diffusion PDE model (1) of IGD in this paper. By applying fixed point theory and
Lyapunov stability theory, we study the existence and asymptotic stability of the traveling
wave of model (1). With the help of the MATLAB toolbox, an example is numerically
simulated to examine the correctness of our outcomes. The major findings of the paper
provide theoretical help for the research and treatment of Internet game addiction. For
example, our results show that appropriate treatment can ensure that the number of gamers
is bounded without unlimited increase. The population density of gamers will gradually
stabilize at ( α

γ1
, 0), which suggests that we can eventually make the gamers disappear

by reducing the number of moderate gamers and strengthening their treatment. Our
work provides an example for applying mathematical theories and methods to solve social
problems such as Internet game addiction, which makes the study of this kind of problem
transform from qualitative research to quantitative research. In addition, recently published
papers [27–46] enlighten us to discuss the existence, exponential stability and Ulam–Hyers
stability of model (1) in the sense of fractional calculus in the future.
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