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Editorial

Complexity and Statistical Physics Approaches to Earthquakes
Georgios Michas

Section of Geophysics-Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian
University of Athens, 15772 Athens, Greece; gemichas@geol.uoa.gr

This Special Issue of Entropy, “Complexity and Statistical Physics Approaches to
Earthquakes”, sees the successful publication of 11 original scientific articles. This collection
presents broad perspectives on the complexity of earthquakes and the use of statistical
physics as a consistent, but also necessary, theoretical framework to unravel the complex
dynamics that lead to the nucleation and evolution of the phenomenon.

Earthquakes are inherently a complex phenomenon, incorporating intermittency,
hierarchy, nonlinear dynamics and interactions over a wide range of spatial and temporal
scales [1–5]. However, a simple phenomenology seems to apply to their collective behavior.
The most prominent property is scale-invariance. This applies to a variety of key attributes
of seismicity manifested as power–law distributions [6–8], as the distribution of fault-trace
lengths [9], the Gutenberg–Richter scaling relation that resembles power–law scaling in the
frequency of dissipative seismic energies [7] or the Omori–Utsu relation for the power–law
decay rate of aftershocks [10]. Such properties motivate the statistical physics approach
to fracturing and earthquakes as a consistent and promising theoretical framework for
deriving the macroscopic properties observed in fault and earthquake populations from the
specification of the laws that govern friction, fluid–rock interactions, fracture nucleation,
propagation and so on, at the microscopic level [11].

Since the 1980s, when concepts such as fractals, entropy and self-organized criticality
(SOC) became relevant to seismicity, considerable progress has been made in the statistical
physics of earthquakes. Within this context, earthquakes are considered a critical-point
phenomenon undergoing continuous phase transition [8]. According to SOC, the Earth’s
crust spontaneously self-organizes in a dynamical stationary state to generate earthquakes
with self-similar size distributions and fractal geometries [12]. Earthquakes occur on a
fractal set of faults, characterized by long-range correlations and scale-invariant properties
in their size and spatiotemporal organization [6–9]. Moreover, based on the maximum
entropy principle, classic and generalized statistical mechanics can be used to infer the
macroscopic properties of fractures and earthquakes from the specification of their mi-
croscopic constituents and their interactions [13]. Other statistical-physics-based models
and analysis techniques that have been applied to understand the multiscale dynamics
of earthquakes include renormalization group theory, phase diagrams, stochastic models,
cellular automata models, correlation lengths, turbulence, percolation and fiber models,
multifractals, damage mechanics models, random walks and wavelets and network theory,
among others [2,3,7,8,14–17].

Some of these concepts and tools have been applied to the articles found in this Special
Issue. This collection features original studies on regional seismicity that evolves into
large and destructive earthquakes, as with the recent cases of the 2023 Mw 7.8 and Mw
7.6 doublet that struck the Kahramanmaraş region in East Turkey (contribution 1), the
2019 Mw 7.1 Ridgecrest earthquake in California (contribution 2) and the large subduction
earthquakes of magnitudes greater than 7 that occurred on the Cocos subducting plate in
Mexico over the last years (contribution 3). The development of early warning systems is
exceptionally important in managing such extreme seismic risks, as pointed out by Donciu
et al. (contribution 4) in their uniaxial shaking table testing regarding seismic frequency re-
sponse. To effectively mitigate seismic risk, pattern recognition and probabilistic forecasting
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of earthquake occurrence using appropriate statistical models are essential, as discussed
by Varini and Rotondi (contribution 5) in relation to large earthquakes in Italy and by
Anyfadi et al. (contribution 6) regarding major subduction zone aftershock sequences. In
this vein, emerging machine learning approaches, such as the NESTORE algorithm applied
to the seismicity of Greece by Anyfadi et al. (contribution 7), are becoming more and more
valuable. Nonetheless, the theoretical comprehensiveness of fundamental empirical scaling
relations in observational seismology, such as the Omori–Utsu relation of the aftershock
production rate discussed by Abe et al. (contribution 8) and the development of models
that can mimic the physical mechanisms of earthquakes (contribution 9), are important in
better understanding earthquake interactions and evolution. In addition, complex network
approaches to the physics of earthquakes, as applied to intraplate seismicity in Norway by
Pavez-Orrego and Pastén (contribution 10), have been in constant development in recent
times. Finally, the integrative study of other natural complex systems with earthquakes,
such as solar flare fluctuations, as discussed by Morikawa and Nakamichi (contribution 11),
may provide universal patterns regarding the physical behavior of such systems.

Despite the considerable progress that has been achieved over the last forty years,
fundamental challenges regarding the complexity and the statistical physics of earthquakes
remain wide open, with many important findings anticipated in the years to come. Not
only do the exact dynamics that lead to the deformation of the Earth’s brittle crust and the
subsequent generation of earthquakes remain unknown, but the physical laws that govern
friction, rheological and chemical processes, as well as fracture nucleation and propagation
at a microscopic scale, are generally elusive and at a primal stage [18,19]. Statistical
physics thus remains an expedient framework for bridging the gap between the complex
microscopic laws that govern the deformation and brittle failure of solid earth materials
and the macroscopic behavior of their ensemble average manifested in fault networks
and regional seismicity [11,13,19,20]. Given the overwhelming amount of data that are
continually collected, the constantly increasing computational power available and the
new models and artificial intelligence methods that emerge, statistical physics, in synergy
with seismology and other related fields branching from geology and physics, can lead to a
unified framework that will provide a better understanding of the earthquake generation
phenomenon, with the ultimate goal of providing efficient earthquake forecasting that can
effectively mitigate risk for people and infrastructures.
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Clustering Analysis of Seismicity in the Anatolian Region with
Implications for Seismic Hazard
Davide Zaccagnino 1,*, Luciano Telesca 2, Onur Tan 3 and Carlo Doglioni 1,4

1 Department of Earth Sciences, Sapienza University of Rome, 00185 Roma, Italy; carlo.doglioni@uniroma1.it
2 Institute of Methodologies for Environmental Analysis, National Research Council, 85050 Tito, Italy;

luciano.telesca@imaa.cnr.it
3 Department of Geophysical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa,

Istanbul 34320, Turkey; onur.tan@iuc.edu.tr
4 National Institute of Geophysics and Volcanology, 00143 Roma, Italy
* Correspondence: davide.zaccagnino@uniroma1.it

Abstract: The Anatolian region is one of the most seismically active tectonic settings in the world.
Here, we perform a clustering analysis of Turkish seismicity using an updated version of the Turkish
Homogenized Earthquake Catalogue (TURHEC), which contains the recent developments of the
still ongoing Kahramanmaraş seismic sequence. We show that some statistical properties of seismic
activity are related to the regional seismogenic potential. Mapping the local and global coefficients
of variation of inter-event times of crustal seismicity which occurred during the last three decades,
we find that territories prone to major seismic events during the last century usually host globally
clustered and locally Poissonian seismic activity. We suggest that regions with seismicity associated
with higher values of the global coefficient of variation of inter-event times, CV , are likely to be more
prone to hosting large earthquakes in the near future than other regions characterized by lower values,
if their largest seismic events have the same magnitude. If our hypothesis is confirmed, clustering
properties should be considered as a possible additional information source for the assessment of
seismic hazard. We also find positive correlations between global clustering properties, the maximum
magnitude and the seismic rate, while the b-value of the Gutenberg–Richter law is weakly correlated
with them. Finally, we identify possible changes in such parameters before and during the 2023
Kahramanmaraş seismic sequence.

Keywords: clustering coefficients; b-value; maximum magnitude; seismogenic potential

1. Introduction
1.1. Current State of Knowledge

Earthquakes are the final outcome of long-lasting processes of energy accumulation in
the brittle crust due to the action of tectonic forces [1]. The nucleation of seismic events starts
as soon as the local differential stress overcomes friction and fracture resistance; however,
the dynamics of rupture propagation and arrest, as well as the spatial and temporal
evolution of seismicity, depend on both the physical properties and the detailed structural
organization of the fault systems, e.g., [2]. Therefore, both on- and off-fault rheology and
boundary conditions play a role in shaping seismic sequences [3]. Rheology is likely to
control the mechanism of stress accumulation and drop, i.e., how tectonic strain is spatially
accommodated and released via a wide range of possible seismic dynamics, e.g., [4–6]. For
instance, slow slip events tend to be nucleated within weak interfaces along the shallow
section of subduction zones, large megathrust events occur in the locked segments close to
the trench and aseismic creep takes place where stress is continuously dissipated by spread
ductile deformations. On the other hand, long-range interactions are mainly responsible for
the temporal evolution of seismicity [7–9]; for this reason, statistical patterns of earthquake
activity preceding major seismic events have been widely investigated, e.g., [10–13]. Stress
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transfer due to preceding events and strain arrangement within crustal volumes provide the
ultimate conditions for the dynamic propagation of fracture during the coseismic phase and
for the destabilization of fault patches during seismic sequences. Such a complex pattern
of interactions leads to both long- and short-term clustering of seismicity over several
spatial scales, e.g., [14]. For this reason, clustering features of seismic activity have been
extensively studied using different approaches, ranging from classical statistical analysis to
artificial intelligence, both in the laboratory and in real fault systems [15–18].

1.2. Aim of the Work

Collective parameters can be extremely useful for characterizing the clustering prop-
erties of seismicity [19–22]; moreover, more recently, it has been suggested that they can
be related to the behavior of seismogenetic sources at a regional scale [23]. Therefore, they
may be of interest to infer the seismogenic potential of still poorly investigated areas. In this
work, we analyze Anatolian seismicity since 1990, considering the major (Mw ≥ 5.5) events
since 1905 listed in the Turkish Homogenized Earthquake Catalogue (TURHEC) [24,25].
Particular attention is devoted to the southeastern region of Turkey, recently affected by
the Kahramanmaraş seismic sequence. We mostly focus on its statistical properties, in
particular, long-term global clustering, and the scaling exponent of the frequency-size
Gutenberg–Richter law.

2. Methods

In this work, we only consider seismic events contained in the TURHEC seismic
catalogue which occurred from 1 January 1990 to 27 February 2023 from latitude 34◦ to 44◦

N and between longitude 25◦ and 46◦ E. In addition, seismic events are only considered if
their depth is shallower than 30 km and their size is above the completeness magnitude
(compare with the next paragraph). We also consider the Mw 5.5+ earthquakes that occurred
from 1905 to 2023 in the same region reported in the same catalogue. In our analysis, we
divide the Anatolian region into rectangular contiguous areas. The number of parts is
chosen to allow a reliable assessment of the statistical properties of seismicity according
to the different sources of uncertainty and their variation along the catalogue. For the
assessment of the b-value, a 15 × 6 grid, along longitude and latitude, respectively, is used
to guarantee reliable statistical resultswhile a 30 × 15 grid is applied otherwise.

2.1. Catalogue Completeness

In this investigation, only earthquakes above the completeness magnitude are consid-
ered. We apply the Wiemer–Wyss method [26] and add a correction of +0.2 magnitude
units, as suggested in [27]. The completeness magnitude is computed for samples of one
thousand earthquakes each in order to take into account the different stages of seismic
activity usually associated with variable catalogue completeness.

2.2. Coefficients of Variation

The global coefficient of variation of inter-event times, CV , defined by [28]

CV =
σ∆T
〈∆T〉 (1)

where 〈∆T〉 represents the mean value of the inter-event time and σ∆T is its standard
deviation, is applied to study the temporal clustering of seismicity. If CV < 1, the dynamics
is regular; in contrast, if CV > 1, the dynamics is clustered. The condition CV = 1 stands
for a completely random Poisson process [29]. Conversely, the local coefficient of variation,
LV defined by [30]

LV =
3

N − 1

N−1

∑
i=1

(Ti − Ti+1)
2

(Ti + Ti+1)2 (2)
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is routinely utilized for quantifying the local variability of the inter-event time series. The
meaning of the values of LV is the same as CV .

2.3. b-Value

The Tinti–Mulargia [31] and the maximum likelihood Aki–Utsu [32] methods are
applied for the estimation of the b-value of the Gutenberg–Richter law. The first tech-
nique performs well in the case of limited catalogues; moreover, it takes into account the
magnitude of binning, while the second technique is a standard method with widespread
applicability in the case of quite large catalogues and magnitudes ranging at least over three
bins. In order to utilize it, 〈Mw〉 and the threshold (minimum completeness) magnitude
Mwc are required.

The first is obtained by the definition of the arithmetic mean of the N magnitudes in
the catalogue, while the second is estimated using the Wiemer–Wyss method [26], with an
additional correction of +0.2 magnitude units, as described above.

3. Analysis and Results

Since 1990, seismicity in Turkey has mainly taken place offshore in the Aegean Sea
and along different segments of the Northern and, more recently, of the Eastern Anatolian
fault systems (Figure 1).

Figure 1. Map of seismicity in the Anatolian region. Each point represents an earthquake (TURHEC
Catalogue, 1990–2023). Seismic events with epicenters located between 25 and 46◦ E of longitude and
34 and 44◦ N of latitude and a hypocenter shallower than 30 km. Red lines represent mapped active
faults (data from GEM Global Active Faults database).

More than one hundred thousand earthquakes have been recorded above the com-
pleteness magnitude, whose average value has been estimated to be about Mc ∼ 2.8, which
decreased from about ∼3.3 in 1990 to less than 2.0 currently (compare with Figure 2) be-
cause of the increase in the number of AFAD and KOERI stations after the 1999 Izmit and
Düzce earthquakes.
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Figure 2. (A) Frequency-size distribution of the shallow Turkish seismicity (1990–2023, longitude
25–46◦ E and latitude 34–44◦ N, and hypocenters shallower than 30 km). (B) Catalogue completeness
from 1990 to 2023. The red line represents the smoothed completeness magnitude calculated using
samples of one thousand earthquakes each.

The largest seismic events of the last three decades occurred in the Kahramanmarş
region, being the 6th February 2023 Mw 7.8 and 7.6 seismic doublet [33] and the Mw 7.4
17 August 1999 Izmit earthquake [34]. Both areas are characterized by high values of the
global coefficient of variation. This peculiarity is also shared with other zones along the
western Aegean coast of Turkey, which is also prone to large seismic events (Figure 3).

Moreover, a comparative analysis of the spatial distribution of CV and LV estimated
using data from the TURHEC (1990–2023) shows that the largest seismic events from 1905 to
2023 were nucleated in regions hosting globally clustered and locally Poissonian seismicity
(Figure 4).

In addition, a positive correlation has been observed between the global clustering
coefficient of the inter-event times and the local seismic rate, defined as the annual amount
of energy nucleated by seismicity in the selected area, expressed as a moment magnitude
equivalent, and the number of events. For the sake of simplicity, we use a linear fit, as
the data is too scattered to apply more complex functions; however, the coefficient of
variation is a positive number and the linear relationship is to be considered within the
range of magnitudes constrained by the observations. The second trend shows a roughly
logarithmic dependence of CV on the number of earthquakes N, so that, while for small
subsets (N ≤ 500) an almost linear relationship exists between the two parameters, for large
datasets (N ≥ 1000), the size effect is almost negligible (Figure 5).
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Even clearer is the correlation between the global coefficient of variation of the inter-
event times and the maximum magnitude observed in the catalogue (1990–2023). Surpris-
ingly, the statistical trend is still observed considering the maximum magnitude listed in
the whole TURHEC, which supports the output already reported in Figure 4. Compare
with Figure 6: the blue dots represent the global coefficient of variation of seismicity from
1990 to 2023 in each investigated region as a function of the maximum observed magnitude,
while the orange stars mark the same in the case of the TURHEC catalogue since 1905
(Mw ≥ 5.5). It is worth noting that the blue points tend to be located above the dashed red
fit line; in contrast, the stars (except for an outlier) are mainly below the dashed line. A
possible interpretation is that regions where higher values of the coefficient of variation
of the inter-event times are observed, determined by the size of the largest seismic event
in catalogue, are likely to be more prone to hosting major earthquakes in the future with
respect to regions characterized by lower values. So, it might just be a matter of time before
the next large event. This hypothesis is consistent with what is shown in Figures 4 and 5.

Figure 3. (A) Map of the maximum magnitude in the catalogue. (B) Map of the global coefficient of
variation CV of inter-event times (seismic events occurring in the period 1 January 1990–27 February
2023, longitude 25–46◦ E, latitude 34–44◦ N, and hypocenters shallower than 30 km, are considered).
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Figure 4. Spatial distribution of the global CV (A) and local LV (B) coefficient of variation of inter-
event times. The blue line represents the CV for seismicity reported in the TURHEC catalogue from
1990 to 2023, while the orange asterisks stand for the large (Mw 5.5+) recorded in Turkey since 1905.

In our study, we also investigate the spatial and temporal distribution of the b-values
of the Gutenberg–Richter law. We find some regions with lower values of the scaling
exponents located along the Northern Anatolian and, above all, along the Eastern Anatolian
fault system and offshore of the western coasts of Turkey. A zone with an apparently low
b-value is also observed close to the Karliova Triple Junction. Higher values are located in
the central and western part of the country between longitude 28 and 31◦ E. We identify
a negative correlation with the maximum magnitude in the TURHEC catalogue (shallow
crustal events from 1990 to 2023). Compare with Figure 7.

A more quantitative analysis shows a negative relationship between the b-values of
the Gutenberg–Richter law and the seismic rate and the maximum magnitude. However,
the negative trend between the scaling exponent of the frequency-size distribution and the
amount of annual nucleated energy within sub-regions of a looser grid (see the Section 2),
although statistically significant, shows large residuals with respect to the linear trend. The
reason is that the uncertainties of the b-values are quite small; so, the R2 is extremely low,
which means that the data variability cannot be explained just by the linear relationship
used for fitting our data. Compare with Figure 8. The same result is found in the case of
the maximum magnitudes. A possible explanation is that the b-value is investigated across
the entire Anatolian region where a mixture of different tectonic settings exists and a large
variation in crustal states of stress takes place and a simple linear fit is not able to take into
account such local effects.

9



Entropy 2023, 26, 835

Figure 5. (A) Correlation between the global coefficient of variation CV and the annual seismic rate
inferred using the regional seismic activity above the completeness magnitude from 1990 to 2023. The
linear fit is represented by the dashed thick red line, while the 0.95 prediction intervals are marked by
the dashed pink thin ones. (B) The global coefficient of variation is weakly positively related to the
length of the seismic catalogue. For large seismic catalogues (≥1000 events), CV appears to be almost
independent of the number of recordings.

Figure 6. The global coefficient of variation is positively correlated with the maximum magnitude in
catalogue. The blue circles represent the CV for each spatial grid element; we segmented the whole
region (30 × 15) with at least one hundred seismic events in the catalogue (occurring in the period 1
January 1990–27 February 2023, longitude 25–46◦ E, latitude 34–44◦ N, and hypocenter shallower
than 30 km). Orange stars stand for the largest earthquakes (≥Mw 5.5) occurring since 1905 in each
segment. The linear fit is represented by the dashed thick red line, while the pink thin ones mark the
0.95 prediction intervals.
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Figure 7. (A) Map of the b-values of the Gutenberg–Richter scaling law (seismic events occurring in
the period 1 January 1990–27 February 2023, longitude 25–46◦ E, latitude 34–44◦ N, and hypocenter
shallower than 30 km, are considered). (B) Map of the maximum magnitude in the catalogue.

In the second part of our investigation, we focus on the Kahramanmaraş region
and the seismic sequence still ongoing there. Figure 9 represents seismicity from 1990 to
2023 (events with longitude 34–41◦ E, latitude 35–40◦ N, and hypocenter shallower than
30 km are plotted), considering the Gutenberg–Richter law (orange line, Figure 9B) and
the density distribution of magnitudes (blue bars). In the lower plots (Figure 9C,D), the
temporal evolution of the completeness magnitude is shown.

We analyze the spatial distribution of seismicity above the completeness magnitude
since 1990 and the inter-event times (Figure 10). Although from 1990 to 2010 a decreasing
trend in the duration of the inter-event intervals is observed because of the progressive
lowering of the completeness magnitude due to improvements in the seismic network, a
slow, but significant, acceleration in seismic activity is detected since 2014. This evolution
led to the Mw 6.7 Doğanyol which occurred on 24 January 2020 and culminated just after
the Kahramanmaraş seismic doublet on 4 February 2023. The decrease in the inter-event
times from 2014 to 2020 is mainly due to seismic events located at a depth of 10–25 km
distributed along almost all the considered faulting region, without the occurrence of any
sizeable spatial cluster.
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Figure 8. A negative trend is observed between the b-value and the annual seismic rate (A) and the
maximum magnitude in the catalogue (B) in Turkey (seismic events occurring in the period 1January
1990–28 February 2023, longitude 25–46◦ E, latitude 34–44◦ N, and hypocenter shallower than 30 km,
are considered). The Anatolian region is segmented using a rectangular grid (6 × 15 elements); the
b-value is included in the plots above provided that at least 300 earthquakes are reported within each
region. The error bars stand for the 2σ uncertainty confidence intervals and the dashed pink thin
lines represent the 95% confidence intervals for the linear fit (in dashed thick red).

Figure 9. (A) Map of seismicity in the Kahramanmaraş region from 1990 to 2023 (events with
longitude 34–41◦ E, latitude 35–40◦ N, and hypocenter shallower than 30 km, are considered).
(B) Frequency-size distribution of seismicity. Blue bars represent the probability density function,
while the orange line stands for the cumulative magnitude distribution. (C) Catalogue completeness
from 1990 to 2023 and from 6 February 2023 to 19 March 2023 (D). The red line is the smoothed
completeness magnitude calculated using samples of one thousand seismic events each.
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Figure 10. Spatial and temporal distribution of seismicity in the Kahramanmaraş region. The plots
(A–C) show the outputs relative to the whole period of investigation (1990–2023); (D–F) present
the results for the Kahramanmaraş seismic sequence. The upper panels represent the inter-event
time, while the mid and lower plots show how the seismicity above the completeness magnitude is
distributed in latitude and depth.

Jointly with the inter-event time and the global coefficient of variation, the temporal
changes in the b-value of the Gutenberg–Richter law are usually estimated, providing
insightful information about the dynamics preceding large seismic events. Therefore, even
in this work, we report the temporal variation in the scaling exponent of the frequency-size
law of earthquakes above the completeness magnitude in the investigated area. Figure 11
shows that the large 2020 and 2023 earthquakes are forewarned by a several-months-long
drop in the b-value, as well as by an increase in the global coefficient of variation of the
inter-event times, CV (see Figure 11A–C). The decrease in the b-value from about 1.0 to
0.4 started during the second half of 2018. A progressive increase is observed after the
Mw 6.7 earthquake, but its values have never returned to their previous level, with further
fluctuations occurring during the Kahramanmaraş seismic sequence. The variations in
the b-value are also accompanied by changes in CV ; in our case, an accelerated increase is
observed both before the 2020 and the 2023 seismic sequences. It may suggest that seismicity
tends to cluster before major events in this region. A real physical effect in the change in
the b-value is likely, even more so in light of the concomitant variations in the clustering
properties. Nevertheless, non-physical contributions might play a role in reducing its value,
for instance, because of rapid changes in the magnitude completeness that our analysis
(based on groups of several hundred events each to provide better estimates of the scaling
exponent of the Gutenberg–Richter law) does not have the resolution to highlight.
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Figure 11. A comparison of the statistical and clustering properties of seismicity in the Kahraman-
maraş region from 1990 to 2023 (A–C) and since 6 February 2023 (D–F). In the upper plots, the
variations in the b-values of the Gutenberg–Richter law are reported. The b-value is estimated using
two different techniques (the Tinti–Mulargia method—blue points—and Aki’s maximum likelihood
method—orange circles). Seismicity above Mw 3.0 is shown in the central plots, while the global
clustering coefficient is plotted below.

4. Discussion
4.1. Seismotectonic Context and Historical Seismicity

The Anatolian Plate is located in a quite complex geodynamic setting, at the boundary
between the African, Arabian and Eurasian Plates. Extended GNSS time surveys show
that the Anatolian Plate undergoes a counter-clockwise rotation [35]. Moreover, a motion
ranging between 18 and 28 mm/year is recorded by geodetic stations across the North
Anatolian Fault and the Marmara Sea, e.g., [36]. Along the northern transform boundary
near the Black Sea coast, as well as along the East Anatolian Fault, frequent seismic activity
is recorded. Being prone to major seismic events and densely populated in some areas, great
attention has been paid by the scientific community to improve the hazard assessment of
this region (e.g., [37–40]). In addition, the Aegean area hosts large earthquakes. Therefore,
except for a small portion of its territory, mainly located in the inner regions, Turkey is an
extremely active earthquake and volcanic region [41] (Figure 1). Turkey has been hit by
several large events. The 17 August 1668 North Anatolia earthquake (Mw 7.8–8.0) [42] was
likely the largest known. More recent sequences followed the devastating 26 December
1939 Erzincan Mw 7.9 quake [43], which likely produced the further destabilization which
was the reason for the 1942–1944 seismic activity, continuing with major quakes in 1949,
1951, 1957, 1966–1967, 1992 and two in 1999. The last one culminated with the 17 August
1999 Mw 7.4 Izmit earthquake [44] and the following 12 November 1999 Mw 7.2 Düzce
event [45]. The Aegean region also nucleated large seismic events, such as the 23 July 1949
Chios [46], the 24 April 1957 Mw 7.1 Ortaca, and the 30 October 2020 Mw 7.0 Izmir Bay
earthquake [47]. Large seismic events also occur in intraplate Turkish territories, such as in
the case of the 28 March 1970 Gediz Mw 7.0 earthquake [48]. More recently, south-eastern
Turkey and its neighboring areas of Syria have been hit by the largest seismic events ever
reported in regional instrumental catalogues. On 6 February 2023 at 01:17:35 UTC, a Mw
7.8 strike-slip faulting earthquake involved the East Anatolian Fault. After nine hours,
the main shock was followed by a Mw 7.6 twin earthquake nucleated by the Sürgü fault
at 10:24:49 UTC about 150 km to the north-west [33]. Thanks to the recent enhancement
of the regional KOERI and AFAD seismic networks [49] (compare with the progressive
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lowering of the completeness magnitude in Figure 2) and the publication of homogeneous
catalogues [25] since the occurrence of the 1999 Izmit event, it is now possible to perform an
advanced statistical and clustering analysis covering more than thirty years of recordings.

4.2. Clustering and Scaling Properties of Turkish Seismicity and Its Regional Variability

Our analysis shows that the largest seismic events in Turkey occur in regions where
seismicity is featured by locally Poissonian and globally clustered behavior (Figures 3B and 4).
The maximum magnitudes in the catalogue since 1905 are also positively correlated with
the global coefficient of variation, calculated using available seismicity data from events
occurring during the last three decades (Figures 5 and 6). Our results are in agreement with
preceding recently published research [23,50]. Moreover, the spatial mapping of the scaling
exponent of the Gutenberg–Richter law also provides interesting information. This analysis
is performed by taking advantage of the events above the completeness magnitude listed
in the TURHEC and which occurred from 1 January 1990 to 27 February 2023 from latitude
34◦ to 44◦ N and between longitude 25◦ and 46◦ E, with hypocentral depth shallower
than 30 km. We divide the Anatolian region into rectangular contiguous areas. For the
assessment of the b-value, a 15 × 6 grid, along longitude and latitude, respectively, is
utilized in order to guarantee reliable statistical results. See Figures 7 and 8. Regions where
seismicity is characterized by lower b-values than the surrounding areas are identified
along a large part of the East Anatolian fault system, while isolated spots are observed along
the North Anatolian transcurrent boundary. The Aegean coast and sea is also characterized
by low b-values. Conversely, the northwestern part of Turkey, as well as the Antalya area,
host seismic activity with rather high b-values. A negative correlation between the local
b-value, the seismic rate, and the maximum magnitude is observed (Figure 8).

4.3. Seismic Activity in the Kahramanmaraş Region

Our analysis focussing on the Kahramanmaraş region confirms the results discussed
above and also highlights an anomalous drop in the b-value since 2018 (from 1.0 to b ∼ 0.4)
in the region shaken by the 2023 seismic sequence, accompanied by significant changes
in the global coefficient of variation (Figure 11). The value of the scaling exponent of the
Gutenberg–Richter law appears to recover its equilibrium condition (b ≈ 0.9–1.0) after the
occurrence of the earthquake doublet on 6 February 2023, even though fluctuations are
still observed with an apparent long-term decrease. This evidence is consistent with other
peculiar seismological patterns recently reported in scientific publications, e.g., [51]. Our
results suggest a progressive acceleration of seismic activity in the region since 2018 with
a first peak reaching to the north in January 2020, corresponding to the Doğanyol 2020
seismic sequence, which, probably, produced a further destabilization in the southern area,
subsequently hit by the Kahramanmaraş events.

4.4. Implications and Physical Interpretation

Our research clearly shows that a relationship exists between the clustering and
statistical properties of seismicity in Turkey. Large seismic events tend to occur where
small to moderate activity is featured by locally Poissonian and globally clustered behavior,
low b-values, and an elevated seismic rate. As suggested in [23], such a connection may
arise from the mechanism of stress accumulation and release as a function of the structural
complexity, fault roughness and rheological heterogeneity of fault systems, e.g., [52–55].
A mechanically weak interface is characterized by low internal friction, so it cannot hold
high spatial stress concentration, producing diffuse small magnitude seismicity along
the interface; conversely, strong faults enhance stress accumulation and, therefore, the
probability of large seismic events increases. Frequent strain release seems to be associated
with diffuse, globally Poissonian seismicity with mid-to-high b-values and a relatively low
maximum magnitude; in contrast, where fault systems are completely locked, small events
occur clustered in time and space, usually organized in swarms or short seismic sequences.
Cascade triggering processes are ultimately responsible for larger seismic events, which
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play a crucial role in re-establishing the mechanical stability of the whole fault system,
and also producing significant stress drop. In summary, the geophysical properties of the
crustal volumes and major faults, fracturing, statistical features, and clustering of seismicity,
are closely connected to each other and to the regional seismogenic potential.

5. Conclusions

In this study we perform a clustering analysis of seismicity in Turkey, paying special
attention to the Eastern Anatolian region recently hit by the Mw 7.8 and 7.6 seismic doublet,
followed by widespread aftershocks. Our results suggest that large earthquakes are more
likely to occur in zones characterized by globally clustered, locally Poissonian seismicity,
and low b-values. A clear positive correlation is observed between CV and the annual
seismic rate (Figure 5) and the maximum magnitude in catalogue (1990–2023). The effect is
still observed when comparing the clustering properties with large seismic events recorded
over longer time periods (1905–2023) (see Figures 4 and 6). The prediction intervals and the
goodness-of-fit confirm that our conclusions are supported by statistical analysis. Regions
with higher values of the global coefficient of variation of inter-event times, CV , are likely to
be more prone to nucleating large earthquakes in the near future than regions characterized
by lower values, if their largest seismic events have the same magnitude. We think that
new studies are required in order to understand to what extent such effects are common
to, and statistically significant in, different tectonic regions, having already been observed
in New Zealand [23]. If our hypothesis is confirmed, the clustering properties should be
considered as a possible additional information source for the assessment of seismic hazard.
We also highlight significant variations in both the b-values and the global coefficient of
variation of inter-event time series before the largest seismic events in the Kahramanmaraş
region, suggesting accelerated energy release and foreshock activity. The result is verified
using two different methods for the estimation of the frequency-size scaling exponent, as
shown in Figure 11.
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Abstract: Significant seismic activity has been witnessed in the area of Ridgecrest (Southern Califor-
nia) over the past 40 years, with the largest being the Mw 5.8 event on 20 September 1995. In July
2019, a strong earthquake of Mw 7.1, preceded by a Mw 6.4 foreshock, impacted Ridgecrest. The
mainshock triggered thousands of aftershocks that were thoroughly documented along the activated
faults. In this study, we analyzed the spatiotemporal variations of the frequency–magnitude distri-
bution in the area of Ridgecrest using the fragment–asperity model derived within the framework
of non-extensive statistical physics (NESP), which is well-suited for investigating complex dynamic
systems with scale-invariant properties, multi-fractality, and long-range interactions. Analysis was
performed for the entire duration, as well as within various time windows during 1981–2022, in
order to estimate the qM parameter and to investigate how these variations are related to the dynamic
evolution of seismic activity. In addition, we analyzed the spatiotemporal qM value distributions
along the activated fault zone during 1981–2019 and during each month after the occurrence of the
Mw 7.1 Ridgecrest earthquake. The results indicate a significant increase in the qM parameter when
large-magnitude earthquakes occur, suggesting the system’s transition in an out-of-equilibrium phase
and its preparation for seismic energy release.

Keywords: Ridgecrest; earthquake sequence; frequency–magnitude distribution; fragment–asperity
model; Tsallis entropy; non-extensive statistical physics; complexity

1. Introduction

The 2019 Ridgecrest earthquake sequence took place in the eastern California shear
zone, near the town of Ridgecrest and southwest of Searles Valley. The sequence initially
evolved as a series of foreshocks, with the largest one of magnitude Mw 6.4 on 4 July
2019, preceding a strong mainshock of magnitude Mw 7.1 that occurred two days later, on
6 July 2019 (3:19:53 UTC). The Mw 7.1 event was accompanied by thousands of aftershocks
during the following months (Figure 1) [1–3]. The spatial distribution of the two events of
strong magnitudes, Mw 6.4 and Mw 7.1, as well as the thousands of aftershocks, revealed
the activation of two main strike-slip fault zones: a previously unnoticed NE–SW left-
lateral strike-slip fault zone associated with the Mw 6.4 seismic event and a NW–SE right-
lateral strike-slip Little Lake fault zone associated with the Mw 7.1 mainshock [1,4–6]. The
activated area is situated near the Airport Lake and Little Lake fault zones, both of which
have a lengthy history of seismic activity [7]. More specifically, the activated fault zone
displays widespread orthogonal faulting over multiple length scales, characterized by
intricate geometric patterns [1]. The largest scale is approximately 55 km in a northwest-
striking direction, intersected orthogonally by a fault roughly 15 km in length [1,4]. During
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the Mw 7.1 earthquake, the larger of these structures was the main one that ruptured,
whereas, the Mw 6.4 event affected the smaller structure [1,4].
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Figure 1. The spatial distribution of the 2019 Ridgecrest earthquake sequence for 38,452 events that
occurred during the period between 4 July 2019 and 31 December 2019. The green and yellow stars
indicate the foreshock and mainshock of magnitudes 6.4 and 7.1, respectively. Regional faults are
marked with solid purple lines (https://koordinates.com/layer/701-california-faults/, accessed on
26 June 2023), and the seismic events are colored according to depth.

The rupture processes of the Mw 6.4 and the Mw 7.1 strong events have also been
studied using geodetic and seismic data, revealing a complex interaction between multiple
fault segments and branches, as well as the spatial and temporal variations of slip, stress
drop, rupture speed, and directivity [2,4,5,8]. The 2019 Ridgecrest earthquake sequence
has provided an exceptional occasion to investigate the physics of faulting and earthquake
interactions in a complex fault system.

Over the past forty years, seismic activity in the Ridgecrest area has been characterized
by swarms of earthquakes, with some lasting for over a year, and some notable moderate-
magnitude events, such as the 1982 ML 4.9 Indian Wells Valley event and the 1995–1996
Ridgecrest sequence, including three Mw 5+ earthquakes [9]. The 1995 earthquake se-
quence began on 17 August 1995, with an earthquake of magnitude Mw 5.4, followed by
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a Mw 5.8 event on 20 September 1995 and a Mw 5.2 event on 7 January 1996. The 1995
events occurred on normal and strike-slip NW- and NE-trending faults [9], showing similar
complexity to the 2019 events.

In the present study, Ridgecrest’s seismicity is being investigated in terms of the
frequency–magnitude distribution (FMD), which is an inherent component of the regional
level of seismic activity and a fundamental part of seismic hazard assessments. The analysis
of the FMD is performed with the fragment–asperity (F–A) model, initially developed
by Sotolongo-Costa and Posadas [10] within the framework of non-extensive statistical
physics (NESP) [11]. Using the F–A model, we analyzed the spatiotemporal variations of
the derived entropic index qM, which is used as an index for the physical state of the studied
region. The F–A model is used to calculate the seismic energy distribution function (EDF)
utilizing fragment size distribution, providing an EDF that includes the Gutenberg–Richter
(G–R) scaling relation as a specific case [12,13].

The qM parameter is herein estimated for the entire duration and also for various time
windows, during the period 1981–2022. The variations of qM are examined to identify
patterns associated with the evolution of the seismic activity and the results are subject
to discussion. Additionally, we estimated the spatiotemporal variations in qM values
derived from the F–A model for the Ridgecrest earthquake sequence. We analyzed the
background seismicity from 1981 to 2019 (before the foreshock of Mw 6.4 on 4 July 2019) to
estimate the background qM values during this period, and then for the period after the
foreshock of Mw 6.4, before the occurrence of the Mw 7.1 mainshock, and finally, after the
Mw 7.1 mainshock on 6 July 2019 to November 2019 for each month of aftershock activity.

2. Methodological Approach Based on NESP
Non-Extensive Fragment–Asperity Model for Seismic Energies

In 2004, Sotolongo-Costa and Posadas [10] introduced the fragment–asperity (F–A)
model of earthquake interactions, outlining the earthquake generation mechanism based on
the small-scale processes within fault zones. This general model [10], developed within the
non-extensive statistical physics (NESP) framework, considers the interaction between two
rough profiles (fault blocks) and the fragments that occupy the space between them, caused
by the local fracturing of tectonic plates. The fragments can have a significant impact
on the earthquake triggering process. As stress between two fault surfaces rises, these
rough fragments act both as roller bearings, expediting the slipping process, whereas when
a fragment is displaced or an asperity brakes, the fault planes slip and seismic energy
releases. Since fragments result from the violent fractioning between fault planes, it is
anticipated that there will be long-range interactions between all parts of existent fragments.
This implies that the size distribution function of the fragments is more appropriately
treated using the NESP formalism.

NESP, introduced by Tsallis [14–16], is proposed as a possible generalization of
Boltzmann–Gibbs (BG) statistical physics and has found wide applications in various
non-linear dynamical systems [11]. Furthermore, the non-additive Tsallis entropy Sq, in-
cludes the parameter q, which quantifies the non-extensivity of a system. In the limit,
where q = 1, Sq approaches the BG entropy. Even though Sq and SBG have several common
characteristics, such as non-negativity, expansibility, and concavity, there is a characteristic
dissimilarity between the two entropies. The BG entropy is additive, signifying that the
entropy of a combined system is the sum of the entropies of its individual parts, whereas
the Tsallis entropy Sq is non-additive. In addition, the equilibrium phase of various short-
range interacting systems (e.g., Hamiltonians) is well approximated with BG statistical
physics, whereas various non-linear long-range interacting systems are better described
with NESP [16,17].

Following Sotolongo-Costa and Posadas [10], the non-additive entropy Sq, in terms of
the probability p(σ) of finding a fragment of area σ, is presented as follows:

Sq = k
1−

∫
pq(σ)dσ

q− 1
(1)
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where q is the non-extensive parameter. Silva et al. [18] introduced the fragment size
distribution function as:

p(σ) =
[

1− (1− q)
(2− q)

(σ− σq)

] 1
1−q

(2)

Moreover, Silva et al. [18] introduced a scaling law between the released relative energy E
and the volume of fragments r with the relationship E~r3, in agreement with the standard
seismic moment theory [19]. The proportionality between the released energy E and r3 can
then be expressed as:

σ− σq =

(
E
A

) 2
3

(3)

where σ scales with r2, and A is proportional to the volumetric energy density.
Using Equations (2) and (3), the energy distribution function (EDF) of earthquakes is

derived as:

p(E) =
C1E

1
3

[
1 + C2E2/3

]1/q− 1
(4)

with C1 = 2
3A2/3 and C2 = − (1−q)

(2−q)A2/3

Telesca [20] further used the relation M = 2/3log E to derive the cumulative magni-
tude distribution:

log
(

N(> M)

N

)
=

2− qM
1− qM

log
[

1−
(

1− qM
2− qM

)(
10M

A2/3

)]
(5)

Furthermore, by considering the threshold magnitude (Mc), Telesca [13] introduced a
modified function that links the cumulative number of earthquakes with magnitude,
expressed as:

log
(

N(> M)

N

)
=

2− qM
1− qM

log




1−
(

1−qM
2−qM

)(
10M

A2/3

)

1−
(

1−qM
2−qM

)(
10Mc

A2/3

)


 (6)

Temporal variations and an increase in qM suggest that the seismic area’s physical state is
departing from equilibrium [21–23]. The fitting procedure of Equation (6) to the observed
distribution, is the Levenberg–Marquardt non-linear least-square method [24,25] which is
used to solve non-linear least squares problems. As mentioned in [26], this approach is
widely known for its effectiveness in achieving high precision and swiftly converging to the
best possible solution. The F–A model has found utility in diverse applications, including
regional and local seismic activity, as well as volcanic seismicity [21,22,27,28].

According to Telesca [13], the maximum likelihood qM values are linked to the maxi-
mum likelihood Gutenberg–Richter b value, as follows:

b =
2− qM
qM − 1

(7)

which is equivalent to the relation derived by [23].
As it is commonly known, the computation of b value using the maximum likelihood

approach [29] is highly sensitive to the initial choice of minimum earthquake magnitude
Mc in the seismic catalogue. On the other hand, qM value estimation is relatively stable
irrespective of the choice of Mc [30].

3. Seismological Data

In this work, we used the waveform relocation catalogue for Southern California [31]
provided by the Southern California Earthquake Data Center (SCEDC), which expands
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from 1981 to 2022. A total of 103,706 earthquakes, which occurred in the period between
3 January 1981 and 31 March 2022, within a defined boundary of 117.2◦ E~118.0◦ E longi-
tude and 35.4◦ N~36.0◦ N latitude, were considered. The depth distribution of seismicity
varies from –1.41 to 30.8 km, whereas the magnitudes range between –1.02 and 7.1.

The research area has experienced thousands of small events, with some of the largest
in the magnitude range of 4 to 7. On 4 July 2019, a Mw 6.4 earthquake occurred, pre-
ceded by a series of small events in the prior hour. The largest earthquake occurred
34 h later, on 6 June, with a magnitude of Mw 7.1. Eleven months later, on 4 June 2020,
a Mw 5.53 aftershock took place to the east of Ridgecrest (Figure 1). Over the past 40 years,
11 other M > 5 earthquakes have occurred in this area. The largest one was an earth-
quake of magnitude Mw 5.8 on 20 September 1995, about 13 km to the west–northwest of
Ridgecrest [31]. In addition, according to the catalogue, an earthquake of magnitude Mw
5.2 occurred on 1 October 1982.

Within the study area, there were a total of 8924 events in 1995, with 2722 of them occur-
ring in September of that year (Figure 2a). In 2019, there was a seismic burst of 38,530 events
associated with the Ridgecrest earthquake sequence, with 6 of them over a magnitude of
M 5. Figure 2b illustrates the temporal progression of the earthquake magnitudes in the
Ridgecrest area, as well as the cumulative seismic moment release throughout the 41-year
observation period. The equation log Mo = 1.5×M + 9.1 was used to approximate the
seismic moment release (in Nm) in relation to earthquake magnitudes [32].

Figure 2. Cont.
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Figure 2. (a) Histogram showing the annual number of events during the period between January
1981 and April 2022. The black line illustrates the cumulative number of seismic events, N, in the
research area. (b) Magnitude distribution per day versus time. The black line shows the cumulative
seismic moment release.

4. Results
4.1. Frequency–Magnitude Distribution during 1981–2022

The F–A model, as discussed in the preceding section, is applied to the normalized
cumulative magnitude distribution for our dataset from 1981 to 2022, for the entire magni-
tude range. This model describes quite well the observed magnitude distribution, while
fitting Equation (6) to the observed data provides the values qM and A using a non-linear
squares algorithm. The results of this analysis are presented in Figure 3. The F–A model
fits well the data for the values of qM = 1.52 ± 0.01 and A = 27.92 ± 8.04.
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and α = 5.561 ± 0.077.
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One of the most renowned empirical scaling relations in seismology is the Gutenberg–
Richter (G-R) [33] relation, which expresses a power-law dependence between the number
of earthquakes N and the released seismic energies E. In terms of earthquake magnitudes
M, it is expressed as N(> M) = 10a−bM, where N(>M) is the number of earthquakes
greater than a threshold magnitude M, and a, b are positive scaling parameters. The b
value is usually calculated using the maximum likelihood method [29], as subsequently
amended by [34], as: b = (1 / M−M0

)
log e, where M is the observed mean magnitude

and M0 is the minimum magnitude. Therefore, for comparison, a maximum likelihood fit
that corresponds to the G–R relation is also plotted in Figure 3, for the values of M0 = 1.6,
b = 0.771 ± 0.005, and α = 5.561 ± 0.077.

4.2. Variations of qM Values with Time

The F–A model is initially applied to the seismic catalogue for the entire period from
1981 to 2022. A notable aspect in this analysis is to examine the temporal variations of the
qM parameter and how these variations are related to the dynamic evolution of earthquake
activity, which can offer valuable insights into the physical processes of earthquake gen-
eration. Initially, we divided the data into various time intervals using a sliding window
approach. Subsequently, we calculated the qM values within time intervals containing
1000 events, with a 500-event overlap, resulting in a 50% overlap between consecutive
windows. In the statistical analysis we used, in one case, all the seismic events (blue
solid line in Figure 4), while in the other case, we focused on events with M ≥ Mc (red
solid line in Figure 4). In the latter case, within each temporal window consisting of
1000 events, we applied the maximum curvature method [35] along with an additional
+0.2 correction, to determine the magnitude of completeness (Mc). The findings of this
analysis are displayed in Figure 4, showing the temporal variations of the qM values along
with their standard deviations. The parameter qM varies between 1.3 and 1.6 during the
studied period. Furthermore, as observed in Figure 4, the qM value estimation is relatively
stable in each temporal window, irrespective of the selection of Mc, an important aspect for
reliable analysis of the FMD.

Figure 4. Temporal evolution of the qM value for all the seismic events (blue solid line) and for
M ≥ Mc (red solid line), along with their corresponding standard deviations (gray dashed lines),
calculated in successive time intervals with a 50% overlap covering the period from 1981 to 2022.
Stars indicate earthquakes of a magnitude greater than 5.
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The qM values exhibit an increase during periods characterized by higher-magnitude
earthquakes and decrease during more seismically quiet intervals. In Figure 4, we can
observe that the largest magnitude events of 1982, 1995, and 2019 induced variations in the
values of qM. The occurrence of such significant events, which are illustrated with stars in
Figure 4, causes the increase in the qM value. We remind that when qM approaches unity,
the system reaches equilibrium and transitions into BG statistical physics. Conversely, as
qM increases, the system deviates from equilibrium and this instability may cause larger
magnitude events to occur.

In Figure 5, we zoom in into the variations of qM values from 2019 to 2020, during the
period of the Ridgecrest earthquake sequence. The parameter qM exhibits a notable increase,
reaching its peak (qM = 1.6) on 7 July 2019 and on 4 June 2020, when the Mw 7.1 and the Mw
5.53 events occurred. After the strong events, the qM parameter starts decreasing rapidly.

Figure 5. Temporal evolution of the qM value for all the seismic events (blue solid line) and for
M ≥Mc (red solid line), along with their corresponding standard deviations (gray dashed lines),
calculated in successive time intervals with a 50% overlap. The stars indicate earthquakes of
a magnitude greater than 5 during the period from 2019 to 2020. The Mw 6.4 on 4 July 2019,
the Mw 7.1 on 6 July 2019, and the Mw 5.53 on 4 June 2020, seismic events are represented with green
dashed, orange solid and pink dashed lines, respectively.

To better resolve the correlations between the released seismic energy and qM value
variations, we perform a cross-correlation analysis [36] designed to quantify the statistical
confidence between two datasets, the qM value and the seismic moment release (Mo).
This analysis is used to delineate the strength of correlations and the time lag between
qM and Mo for the period 1981–2022. Cross-correlation analysis is based on two discrete
datasets in time, which are then normalized by subtracting the mean value so that the
estimated correlation coefficients range between −1 and 1 [36,37]. The normalized cross-
correlation close to zero suggests no correlation, while maximum positive or negative peaks
may indicate correlated or anti-correlated signals, respectively. The next step is the use
of surrogate reshuffling tests which allow dynamic testing against statistical confidence
intervals of anticipated spurious correlations [36]. These tests determine the confidence
curves of the estimated normalized cross-correlation. In particular, surrogate datasets of
the original series are determined using Monte Carlo methods [36,37]. The reshuffling
procedure removes any correlation from the original time series while maintaining their
spectral amplitudes in order to enforce the same cyclic autocorrelation [38]. In this test,
10,000 surrogates were computed, and the main peak was observed at cross-correlations
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greater than 99.9% confidence curves. The cross-correlation between qM and Mo for the
time period 1981–2022 is shown in Figure 6 along with the 95%, 99%, and 99.9% confidence
curves. We observe nine positive peaks exceeding the 95% confidence curve. The highest
peak, with an amplitude of 0.71, occurs with a statistical significance of 99.9% of being non-
coincidental. The results of the analysis indicate that the surrogate tests place confidence
greater than 99.9% which shows that the qM value in each temporal window and the
corresponding cumulative seismic energy Mo are positively correlated.

Figure 6. The cross-correlation between the qM values and cumulative seismic energy Mo for
the period 1981–2022 and the corresponding 95%, 99%, and 99.9% confidence curves (are labeled
with text).

4.3. Spatiotemporal Distributions of qM Values

To investigate the spatiotemporal distributions of qM values within the activated
fault zone based on the F–A model, we proceeded to assess the spatial distribution of the
parameter qM for different time windows. According to the model, the observation of qM
values in space reflects the scale of interactions between fault planes and the fragments that
occupy the space between them. Furthermore, an increase in qM signifies that the physical
state moves away from equilibrium in a statistical physics context.

Initially, we divided the dataset into temporal segments. The first one covers the period
from 1981 to 2019, before the foreshock of magnitude Mw 6.4 on 4 July 2019 (Figure 7a),
while the second, covers the period starting from the foreshock of Mw 6.4 to the mainshock
of Mw 7.1 on 6 July 2019 (Figure 7b). To estimate the spatial qM values, we employed the
nearest neighbor search method, where for each seismic event, the 200 nearest neighboring
events within the dataset were identified. Then, we applied the F–A model to calculate
the parameter qM, using Equation (6). Since qM remains relatively stable regardless of
the choice of completeness magnitude, as it was previously discussed, we opted not to
incorporate Mc in our calculations. By executing this analysis for each seismic event, we
obtained a detailed and comprehensive overview of the qM parameter in the studied area.
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Figure 7. Spatial distribution of qM values along the 2019 Ridgecrest earthquake fault zone in
various time windows, within the studied region defined by coordinates 117.35◦ E~117.75◦ E,
35.54◦ N~35.92◦ N. (a) During the period 1981–2019 (before the Mw 6.4 foreshock), (b) from the
Mw 6.4 foreshock to the Mw 7.1 mainshock. Larger stars represent the seismic events of Mw 6.4 and
Mw 7.1, while other stars indicate earthquakes with magnitudes greater than 5, respectively.

An inspection of Figure 7 indicates that the qM value ranges from 1.1 to 1.7, sup-
porting subadditivity. In Figure 7a, we observe that the seismicity background is char-
acterized by relatively high qM values in the areas where the Mw 6.4 foreshock and
the Mw 7.1 mainshock took place. In Figure 7b, which covers the period from the Mw
6.4 foreshock to the Mw 7.1 mainshock on 6 July 2019, we can observe the high qM val-
ues in the area where the Mw 6.4 occurred. Furthermore, we can observe that the Mw
7.1 mainshock, located to the NW of the Mw 6.4 event, occurred in a high qM value region
(Figure 7b).

Moreover, we analyzed the aftershock sequence of the Mw 7.1 Ridgecrest mainshock
from July to November 2019 based on the F–A model. We divided the dataset into four
monthly segments, covering the periods from 6 July 2019 (including the Mw 7.1 mainshock)
to 6 August 2019, from 7 August 2019 to 7 September 2019, from 8 September 2019 to
8 October 2019, and from 9 October 2019 to 9 November 2019.

Two-dimensional spatial analysis (Figure 8) shows that the parameter qM varies from
1.2 to 1.7 and is high at the locations where the strongest earthquakes occurred. In particular,
the black star in Figure 8a indicates the seismic event of Mw 7.1, with the qM value reaching
as high as 1.7, the highest value in the area. The presence of numerous substantial events
with a magnitude of M > 4 results in an increase in qM in the studied area, in which we have
depicted the two largest ones to the north of the Mw 7.1 event (Figure 8a). However, in the
same area where the Mw 7.1 event occurred (Figure 8b), a decrease from 1.7 to 1.45 was
observed after 1 month, suggesting stress relaxation in the area of the mainshock. Moreover,
in Figure 8b, we observe that the two largest earthquakes during August–September 2019
coincide with the high qM value regions to the north of the active fault zone. Similar
observations are made in Figure 8c,d, where the highest magnitude aftershocks (black
stars) coincide with high qM value areas, particularly in the south and central parts of the
activated zone.
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Figure 8. The qM values along the 2019 activated fault zone. (a) From 6 July to 6 August 2019, in the
area 117.35◦ E~117.75◦ E, 35.54◦ N~35.92◦ N. (b) The same as (a), but for the period from 7 August to
7 September 2019, (c) from 8 September to 8 October 2019, (d) from 9 October to 9 November 2019.
Black stars indicate the strongest events within each month. The gray stars illustrate the locations of
the Mw 6.4 and Mw 7.1 events.

5. Discussion

In the present work, we used the F–A model, developed within the framework of
NESP, to study the temporal and spatial variations of the qM parameter over the period
from 1981 to 2022 in the area of Ridgecrest. The remarkable consistency observed between
the F–A model (Equation (6)) and the earthquake magnitude distributions highlights the
effectiveness of the F–A model. The parameter qM informs about the scale of interactions
between the fault planes and the fragments that occupy the space between them. When
qM is low (≈1), it indicates the presence of short-ranged spatial correlations and physical
states that are near equilibrium [26,39–41]. As qM increases, it signifies a departure from
equilibrium in the physical state, suggesting a non-equilibrium state where more earth-
quakes occur [26]. Regarding the Ridgecrest seismicity during the period 1981–2022, the
values obtained for qM with time vary between 1.3 and 1.6. The observed increase in the
entropic index qM implies that the system is moving further away from an equilibrium
state and is in a preparatory process for seismic energy release. In our study, an increase in
the qM parameter can be observed when the major earthquakes of 1982, 1995, 2019, and
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2020 occur, with a significant positive correlation between qM values and seismic moment
release throughout the studied period.

Additional studies into the analysis of qM variations in various cases and within
different seismotectonic settings have previously been conducted. In particular, according
to [22], the qM parameter showed a significant increase on 9 April 1994, signaling the
onset of a transitional phase leading up to the 1995 Kobe earthquake. Furthermore, the qM
parameter exhibited variations, with an increase observed in the days prior to the strong
earthquake of ML 5.8 in the L’Aquila area (central Italy) [26]. It should be noticed that in [41],
a sharp increase in qM was observed a few days before the occurrence of the significant Mw
6.4 event in the southwest segment of the Hellenic Arc. Similar research suggests a possible
association between qM and seismicity patterns [40] in the South Pacific coast of Mexico.
Moreover, seismic activity in the Hellenic region from 1976 to 2009 was investigated using
the method of NESP along with the G–R relation by [42], which concludes that the qM
parameter can be viewed as a distinctive parameter that characterizes the seismic history of
a specific region. Previous studies indicate that the NESP approach seems to be a suitable
method for analyzing the spatiotemporal patterns of seismicity, as also demonstrated
by [28] for the spatial variability of qM within the Yellowstone Park volcanic region.

Non-extensivity is incorporated in the F–A model as a fundamental statistical compo-
nent for deriving a cumulative magnitude distribution, of which the Gutenberg–Richter
(G–R) relation can be regarded as a specific case [13]. In addition, it is a widely acknowl-
edged and nearly universally observed phenomenon that the stress alterations induced
by significant earthquakes have a substantial impact on seismic activity in surrounding
areas [43,44]. As suggested by several case studies, mainshock-induced stress changes are
therefore anticipated to consistently influence b values [35,45–49]. The Ridgecrest earth-
quake sequence of Mw 7.1 in California in July 2019 offered an opportunity for [50] to assess
both the temporal and spatial variations of the b value and its forecasting skills. Hence,
a comparison can be made between the fluctuations in the values of qM and b. Accord-
ing to [50], the b values were substantially lower after the Mw 6.4 event compared to the
background b value, whereas after the mainshock of Mw 7.1, the b value increased within
the first week. A decreasing b value inside the seismogenic volume has been observed to
correspond with increased effective stress levels before significant shocks [51]. Our results
for the temporal analysis show that the parameter qM is higher when the strong events in
2019 occur, and then it decreases over time, in accordance with the results of [50].

Furthermore, the spatiotemporal patterns of variations in b values provide additional
insights into the prospective location of forthcoming significant events. According to the
findings of [50], the Mw 7.1 event took place near the area of the steepest b value decrease.
In our study, we can observe that the Mw 7.1 event occurs in the area where the parameter
qM is increased. The spatiotemporal qM value distributions, based on the F–A model
for each month after the mainshock of Mw 7.1 can further be compared with the study
by [52], in which the aftershock sequence is investigated in terms of the spatiotemporal
b value distributions within the three-dimensional fault zone. The findings indicate that
b values were initially homogeneous throughout the spatial area, with a low level of b
value immediately following the mainshock. However, within 3 months, a rapid increase
occurred, reaching a level that is considered typical for California during the interseismic
period. As for the parameter qM, when the Mw 7.1 occurred, a high value of 1.7 was found
in the epicentral area, which is indicated by a black star (Figure 8a). The next month, as we
can see in Figure 8b, there was a decrease in the same region (gray star) from 1.7 to 1.45,
while an increase in the qM parameter was observed in the areas where strong aftershocks
occurred. Furthermore, the same pattern is observed in the case of the Mw 6.4 foreshock,
where the parameter qM decreased from 1.7 (Figure 7b) to 1.4 (Figure 8b) within 2 months.

6. Conclusions

In the present work, the Ridgecrest earthquake sequence is studied using non-extensive
statistical physics (NESP) and the fragment–asperity (F–A) model. Within the context of
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the F–A model, we calculated the non-extensive parameter qM and its spatiotemporal
variations during 1981–2022, an analysis that informs about the physical state of the studied
area. To study the temporal variations of qM values, we used the entire period and a sliding
time window method. Notably, the results show a significant increase in the qM parameter,
which coincides with the occurrence of the strongest earthquakes. Furthermore, it seems
that qM fluctuations over time are a valuable indicator of a seismic area’s physical condi-
tion, suggesting different dynamic regimes that can decipher the physical mechanisms
leading to a significant seismic event. In addition, we analyzed the seismic events for the
spatiotemporal qM value distributions along the activated fault zone during 1981–2019 and
for each month separately after the Mw 7.1 Ridgecrest earthquake. The results show that
qM values exhibit significant increases in areas where the higher-magnitude events occur,
and after the mainshock, qM values decrease over time, highlighting the stress relaxation
process in the activated area.
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Abstract: The understanding of the dynamical behavior of seismic phenomena is currently an open
problem, mainly because seismic series can be considered to be produced by phenomena exhibiting
dynamic phase transitions; that is, with some complexity. For this purpose, the Middle America
Trench in central Mexico is considered a natural laboratory for examining subduction because of its
heterogenous natural structure. In this study, the Visibility Graph method was applied to study the
seismic activity of three regions within the Cocos plate: the Tehuantepec Isthmus, the Flat slab and
Michoacan, each one with a different level of seismicity. The method maps time series into graphs,
and it is possible to connect the topological properties of the graph with the dynamical features
underlying the time series. The seismicity analyzed was monitored in the three areas studied between
2010 and 2022. At the Flat Slab and Tehuantepec Isthmus, two intense earthquakes occurred on 7 and
19 September 2017, respectively, and, on 19 September 2022, another one occurred at Michoacan. The
aim of this study was to determine the dynamical features and the possible differences between the
three areas by applying the following method. First, the time evolution of the a- and b-values in the
Gutenberg–Richter law was analyzed, followed by the relationship between the seismic properties
and topological features using the VG method, the k–M slope and the characterization of the temporal
correlations from the γ-exponent of the power law distribution, P(k) ∼ k−γ, and its relationship with
the Hurst parameter, which allowed us to identify the correlation and persistence of each zone.

Keywords: visibility graph; seismic activity; subduction; tectonics; k–M slope

1. Introduction

The dynamics of tectonic plates are considered to be one of the most important topics
in geosciences, not only to improve scientific knowledge, but also to ensure the safety of
small towns and big cities located in seismic zones considered to be high-risk. One of the
main mechanisms of earthquake generation is convection in the interior of the Earth [1,2].
The convective processes involve nonlinear interactions which are far from equilibrium
processes. Seismic processes originate from the interaction between plates in relative
movement due to inner convection and strong correlations in time and space, as well as
released energy or magnitudes ([3] and references therein). Although the vast majority of
earthquakes occur in the interplate regions, the physical mechanism of the anthropogenic
triggering of large earthquakes on active faults is connected with mining, artificial reservoir
impoundment, geothermal operations, oil and gas field production and hydraulic fracturing
(i.e., fracking) [4]. While almost all earthquakes occur at the plate boundaries, some
anomalous events, called intraplate earthquakes, occur far from the boundaries [5]. The
seismic mechanism can be considered to be a critical phenomenon exhibiting dynamic
phase transitions [6], where a mainshock represents the new phase. In this context, seismic
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properties, such as the magnitude of an earthquake and the energy released during fracture
processes, behave dynamically, showing short- and long-range temporal correlations, and
these characteristics are governed by fractional Brownian processes and fractal/multifractal
properties [3]. In fact, the complexity of the systems in the real world arises mainly from
non-linear processes; thus, when the variability of a measurable parameter is registered
in time, the system can be represented by a time series that can maintain some features of
the underlying complex processes. In nonlinear signals analysis methods, there has been a
trend of merging nonlinear time series analysis based on complex network theory.

In recent years, complex network theory has received important attention as a pow-
erful tool to analyze complex time series [7–19]. In 2008, Lacasa et al. [16] introduced the
Visibility Graph (VG) method, whose aim is to map a time series into a complex network
or a graph. Under these transformations, it is expected that the topological properties of
the network inherit the dynamical properties of the original time series and vice versa. The
transformation of a time series into a graph entails building a geometric structure with
two classes of sets, nodes and edges, where the nodes are the time series values and the
edges determine the connectivity between nodes. The topological properties on a graph
are defined by imposing conditions defining the connection between pairs of nodes by
edges. In the case of the VG method, the connections between pairs of nodes are given by
the reciprocal “visibility” between the values of the series [16], such that the connectivity
between nodes can be defined. Visibility graph analysis has been applied as a powerful
statistical method in extracting characteristic features of the time series, such as the period-
icity, fractality, chaoticity and non-linearity [20]. For instance, some applications have been
found in various research fields, such as medicine [21,22], economy and finances [23–26],
seismology [27,28], oceanography [29] and meteorology [30,31], among others. Nowadays,
the seismic activity in the world is continuously monitored by many seismic monitoring
station networks, which have increased the amount of available seismicity data.

Among other methods, VG has allowed a deeper focus on the presence of dynamic
features in the temporal distribution of seismic sequences [27]; a merit of the VG method
is its ability to capture non-trivial correlations in non-stationary time series without in-
troducing elaborate algorithms [7,32]. In addition, VGA has been shown to be a very
useful tool to reveal the complex characteristics of seismic processes [20,27,28]. Because
of its simple implementation, as well as its wide range of applicability, the VG algorithm
has become popular in contrast with other methods. Telesca and Lovallo [20] were the
first authors to apply the VG method to analyzing seismic sequences between 2005 and
2010 in Italy. These authors found that the VG method showed a collapse effect on the
distributions of the degrees of connectivity of the seismic series with an increase in the
magnitude threshold, which suggests that the properties of the distribution of the degree
of connectivity can be independent of the magnitude of the threshold. In 2013, Telesca
et al. [28] analyzed the seismic sequences monitored from 2005 to 2012 in five areas of the
subduction zone in Mexico. In this investigation, an empirical link was found between the
b-value of the Gutenberg–Richter law and the slope of the fitted line in the k–M plot by
using the least-squares method. This outlined the relationship between k and M and was
called the k–M slope. Other studies focused on the relationship between the b value and the
k–M slope have been carried out, for example, in three dominant seismic areas of northern
Iran [33], in seismogenic zones of Alaska, the Aleutian subduction zone [34] in Taiwan
and Italy [35] and, recently, seismicity from Song Tranh 2 hydropower (Vietnam) was ana-
lyzed [20]. On the other hand, synthetic seismicity has also been generated experimentally
in the laboratory through a system based on a stick–slip mechanical process, where two
rough surfaces with different degrees of roughness move each other with different relative
velocities [36], giving rise to avalanches that emulate earthquakes, and numerically by
using the Olami–Feder–Christiansen numerical model [37]. In these cases, it has also been
shown that the b-value is closely related to the k–M slope, suggesting that this relationship
might be characterized by a kind of universality [20].
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In addition, another dynamical property obtained from the VG method is the temporal
correlation, which can be estimated by the k-degree distribution function. Kundu et al. [7]
investigated the temporal correlations of two kinds of time series, a sequence of magnitudes
and the inter-event times for three different types of seismicity: regular earthquakes, earth-
quake swarms and tectonic tremors. Their results were obtained by assessing the exponents
of the k-degree distributions for the inter-event series, which showed a correlation similar
to fractional Brownian motion. Additionally, they studied the time series of three different
categories of earthquakes, from which they were able to distinguish topological features
from the graph associated by using a visibility graph. As Telesca et al. [27] rightly point
out, in all cited studies, the investigation of the relationship between the seismological
and topological properties of seismicity has mainly been focused on tectonic or natural
seismicity until now, because these regions still represent an open problem in the world.

The subduction areas located at Tehuantepec Isthmus, Chiapas (TCh), Flat Slab (FS)
and Michoacan (Mi) belong to the Cocos plate, and each one has its own structural char-
acteristics; their most important features are described in the next section. The Mexican
subduction zone is a complex dynamical system with significant variation in slab geometry
along the strike from northeast to southwest [38]. Some of these differences are the dip an-
gle and subduction velocity, which are features that can determine the local seismic activity.
The motivation for this work is because three large earthquakes occurred within these three
zones recently: the first one (M8.2) struck on 7 September 2017, in the Tehuantepec Isthmus,
which was considered an unusual event; the second one (M7.2) was a deadly event that oc-
curred in the Flat Slab on 19 September 2017; and the third (M7.2) occurred on 19 September
2022, within the Michoacan zone. The coincidences in terms of month and day have drawn
attention within the population, especially considering that two earthquakes, M8.2 and
M7.9, occurred on 19 and 20 September 1985, respectively, causing huge losses of human
life and damages in Mexico City. The aim of this paper is to study the seismic activity of
the three zones by analyzing the catalogs from 2010 to 2022 using the VG method. First,
the analysis is focused to identify the yearly variability of the a- and b-values, the seismic
parameters of the Gutenberg–Richter Law, followed by the characterization of the three
zones using the k–M slope’s behavior and, finally, the estimation of the temporal correlation
from the γ-exponent associated with each k-degree distribution computed yearly and with
the catalogs that comprise the whole period.

2. Tectonic Cocos Plate Settings

The Mexican subduction zone is a complex system characterized by variability in the
shape of the subducted plate. Many authors have conducted significant studies into the
crustal anisotropy and state of stress of the Mexican subduction zone ([39] and references
therein). While in Jalisco, the Rivera plate subducts with a steep angle, in Michoacán,
Guerrero and western Oaxaca, the Cocos plate becomes almost subhorizontal, changing
again to a steep angle in the Tehuantepec Isthmus. This subducting activity also gave rise
to the Trans-Mexican Volcanic Belt, an active continental volcanic arc that spans across
Mexico, developed within an extensional tectonics setting. At the same time, there is
new evidence of the geometry of the subducted slab being potentially due to subduction
tearing or break-off. Therefore, the subducted slab is not laterally continuous but abruptly
changes due to break-offs. Carciumaru et al. (2020) [39] presented a seismological study of
the Earth’s crust using three different methods: azimuthal anisotropy based on ambient
noise, shear-wave splitting of tectonic tremors and moment tensor inversions of the M8.2
earthquakes of 7 September 2017 in Tehuantepec, Mexico. In their work, they identify two
slab tearings: in the Michoacan–Guerrero border and in Oaxaca, near the Tehuantepec
fracture Transform/Ridge, the trench has an inflection point that slightly changes its trend
to the southeast. At the Michoacan–Guerrero border, the subducted slab is subhorizontal,
whereas in central Oaxaca the plate is characterized by northeast convergence. In this
paper, we focus our seismic analysis on three regions of the subduction plate: Michoacan
(Mi), Flat Slab (FS) and Tehuantepec Isthmus, Chiapas (TCh), because these regions better
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represent the slab geometry of the Mexican subduction zone and are examples of how the
subducted plate presents variability in its shape and dynamics. These three regions are
analyzed in terms of complexity measures in order to show their differences and to identify
the characteristic values of the subduction regimes.

As was indicated by Carciumaru et al. in [39], the slab tearing at the Michoacan–
Guerrero border constitutes an important change in the subducting slab. This tearing marks
two different subduction regimes: in the north-west (Michoacan), where the subduction is
perpendicular, the coast follows a constant slip and is less pronounced than in Jalisco, but
not as flat as in Guerrero; and at the FS, inland at the southeast of the center of the Volcanic
Belt, where the subduction shows a subhorizontal behavior. This flat slab area, referring to
the subhorizontal shallow dipping lower plate, is delimited by considering the depths of
the Mohorovicic interface between 40 and 60 km [40], a type of ellipse that circumscribes (or
encloses) the earthquakes that occur in the area, and also where the intraslab earthquakes
occur. Some authors [41–46] have already introduced the north Cocos tearing. However,
the variability of the Cocos subducting plate has been well established by the bathymetric
evidence of the Orozco and O’Gorman fractures and the Tehuantepec Transform/Ridge,
and because the dip of the subducting plate varies from steep (in the Jalisco–Colima region)
to flat (in central Mexico and at the southeast), there is a steep subduction in Chiapas (see
Figure 8 in [39]). The Middle American Trench (MAT) also presents changes in velocity
regimes and large dip variations along the strike [47]. Singh et al. [48] consider that this
variability is precisely what explains the difference in the damage pattern in Mexico City,
comparing the 2017 earthquakes and the disastrous interplate earthquake of 1985 (M8.0).
The intraslab earthquakes occur closer to Mexico City, at greater depth, and involve higher
stress drops than their interplate counterparts. Accordingly, the ground motion is relatively
enriched at high frequencies as compared with that during interplate earthquakes, and
damage is dominated by site effects [48].

The Michoacan region is characterized by high seismic activity, not only due to sub-
duction events but also because of the existence of crustal faults in the interior. Of particular
interest are the large earthquakes that have occurred in the region, such as the earthquakes
on 19 and 20 September 1985, measuring M8.1 and M7.5, respectively, which occurred
on a segment of the subduction zone known as the Michoacan gap [49]. This region is
also responsible for intraplate earthquakes, such as those that occurred on 7 April 1845
and 19 June 1858 [50]. Moreover, the existence of crustal fault systems, such as those of
Morelia–Acambay and la Paloma, have produced several earthquakes that have affected
populations. The research carried out by [51] concludes that there are at least 316 seismically
active faults in the region, derived from an extensional tectonics setting resulting from
subduction. Additionally, the volcanic activity in the area is very important (as an example,
the emergence of volcanoes: Jorullo in 1759 and Paricutín in 1943) and, as a consequence,
the existence of associated seismic swarms.

After the Tehuantepec earthquake (M8.2), a particular interest arose in the Tehuan-
tepec, Chiapas area. The sequence of earthquakes that followed after this earthquake
occurred in two regions: one region is located at the Isthmus of Tehuantepec (coincident
with the inferred location of the Tehuantepec Transform/Ridge [52] where slab tearing
was reported [44–46]), and the other is considered as the aftershock zone (see Figure 1).
According to [53], the Cocos plate convergence rate and directions at both sides (6.43 and
7.2 cm/year) of the Tehuantepec ridge are different. Mandujano-Velazquez et al. [54] and
Keppie and Moran-Zenteno [55] investigated spreading rate changes, leading them to
propose the existence of a microplate. This microplate would have been bound by the
Tehuantepec Ridge and by a pseudo-transform fault.

37



Entropy 2023, 25, 799

Entropy 2023, 25, x FOR PEER REVIEW  5  of  18 
 

 

 

Figure 1. Mexican map. The three studied regions of the subduction Cocos Plate are depicted; also, 

the main tectonic features [39–41,47] and the larger earthquakes are shown. 

3. Data Sets and Seismic Catalogs 

The analyzed data sets, corresponding to the three seismic areas, were obtained from 

the National Seismic Service  (SSN) website of  the Universidad Nacional Autónoma de 

México  (UNAM)  (www.ssn.unam.mx  (accessed  on  10  November  2022)  DOI: 

10.21766/SSNMX/EC/MX). The chosen periods for each monitored sequence were from 1 

January 2012 to 10 November 2022. Within the selected areas, three large earthquakes oc-

curred with M > 7.5: two in September 2017 and one in 2022. The first one, with an epicen-

ter located within the Tehuantepec Gulf, struck on 7 September 2017 (M8.2) and was con-

sidered an unusual earthquake because it was in the intraplate. The second one, a deadly 

mainshock, had an epicenter in the Flat Slab area, a horizontal plate, located beneath the 

central area of Mexico and occurred on 19 September 2017 (M7.6) and the third and latest, 

whose epicenter was located in Michoacan State, struck on 19 September 2022 (M7.6). The 

areas where the three mainshocks occurred are indicated on the map shown in Figure 1. 

The catalogs were selected by considering the epicenters located in the areas for Mi, for 

FS and for the TCh. 

The seismic activity of the three regions is shown in Figure 2, where the cumulative 

rate growth of the number of earthquakes monitored at Mi, FS and TCh can be observed. 

FS registered the minimum number of earthquakes at around 5000 over 13 years (Figure 

2a in blue), whilst in Mi, around 15,000 earthquakes were registered (Figure 2a in red), 

and in TCh the number of earthquakes was approximately 75,000 (see Figure 2b) during 

the same period. 

Figure 1. Mexican map. The three studied regions of the subduction Cocos Plate are depicted; also,
the main tectonic features [39–41,47] and the larger earthquakes are shown.

3. Data Sets and Seismic Catalogs

The analyzed data sets, corresponding to the three seismic areas, were obtained from the
National Seismic Service (SSN) website of the Universidad Nacional Autónoma de México
(UNAM) (www.ssn.unam.mx (accessed on 10 November 2022) DOI:10.21766/SSNMX/EC/MX).
The chosen periods for each monitored sequence were from 1 January 2012 to 10 November
2022. Within the selected areas, three large earthquakes occurred with M > 7.5: two in
September 2017 and one in 2022. The first one, with an epicenter located within the
Tehuantepec Gulf, struck on 7 September 2017 (M8.2) and was considered an unusual
earthquake because it was in the intraplate. The second one, a deadly mainshock, had
an epicenter in the Flat Slab area, a horizontal plate, located beneath the central area of
Mexico and occurred on 19 September 2017 (M7.6) and the third and latest, whose epicenter
was located in Michoacan State, struck on 19 September 2022 (M7.6). The areas where the
three mainshocks occurred are indicated on the map shown in Figure 1. The catalogs were
selected by considering the epicenters located in the areas for Mi, for FS and for the TCh.
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The seismic activity of the three regions is shown in Figure 2, where the cumulative
rate growth of the number of earthquakes monitored at Mi, FS and TCh can be observed.
FS registered the minimum number of earthquakes at around 5000 over 13 years (Figure 2a
in blue), whilst in Mi, around 15,000 earthquakes were registered (Figure 2a in red), and
in TCh the number of earthquakes was approximately 75,000 (see Figure 2b) during the
same period.
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Figure 2. Cumulative number of earthquakes (EQs) per year; comparison between the three seismic
regions. (a) The number of earthquakes in the Mi (red) and FS (blue) regions and (b) in the Tehuante-
pec Isthmus. The vertical line indicates the year when the activity increased: in 2016 at the Michoacan
and Flat Slab and in 2017 at Tehuantepec.

4. Methods
4.1. Gutenberg–Richter Law

The Gutenberg–Richter (GR) law describes an empirical relationship between the fre-
quency and magnitude (M) of earthquakes in a specific region [56] following the distribution:

log10(N) = a − bM (1)

where a and b values are constants that characterize the seismic region, and N is the number
of earthquakes with a magnitude ≥ M. It has been observed that both values, a and b,
depend on the studied region and time. Changes in the b-value have been observed that
are related to the spatial location of the analyzed area and to the time span observed.
Additionally, changes in the b-value are inversely related to changes in stress [52]. In
addition, in [57], a linear relationship between the a-value and b-value parameters of the
Gutenberg–Richter (GR) law was shown, following a~4b.
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4.2. Visibility Graph

This method considers a sequence of N events of a variable monitored evenly by a
dynamical system. The VG means that any two events are connected by a right-line segment
if they can see each other so that such a segment is not broken by any other intermediate
value of the sequence. The VG maps each event as a node in a graph; therefore, each node
connects with the other nodes based on the mutual visibility condition defined with the
corresponding data heights. The visibility condition is expressed mathematically as follows:
let two arbitrary data values (ta, Ma) and (tb, Mb), where ta < tb. Both points are visible to
each other if any other data (tc, Mc) placed between them satisfy the visibility condition, as
is shown in Figure 3, that is:

Mb −Mc

tb − tc
<

Mb −Ma

tb − ta
(2)

Lacasa et al. [16] showed that for this visibility condition, the associated graph of the time
series is always (a) connected, (b) undirected and (c) invariant under affine transformations
of the time series, including rescaling of both axes and horizontal and vertical translations.
When the events represent earthquakes of magnitudes M such as seismic catalogs, the
transformation is applied such that each earthquake of magnitude Mi represents a node in
the graph, and the number of earthquakes that satisfy Equation (2) indicates the connectivity
between earthquakes counting the k-degree (k-degree is defined as the number of direct
connections between the i-vertex with the other ones; see Figure 3), and can also be
associated with the temporal correlations of the data set in connection with the k-degree
distribution of the nodes, as will be described in the next subsection.

Entropy 2023, 25, x FOR PEER REVIEW  7  of  18 
 

 

visible to each other if any other data (tc, Mc) placed between them satisfy the visibility 

condition, as is shown in Figure 3, that is: 

𝑀  െ  𝑀

𝑡  െ  𝑡
 ൏  

𝑀  െ  𝑀

𝑡  െ  𝑡
  (2)

Lacasa et al. [16] showed that for this visibility condition, the associated graph of the time 

series  is  always  (a)  connected,  (b)  undirected  and  (c)  invariant  under  affine  transfor-

mations of the time series,  including rescaling of both axes and horizontal and vertical 

translations. When the events represent earthquakes of magnitudes M such as seismic cat-

alogs, the transformation is applied such that each earthquake of magnitude Mi represents 

a node in the graph, and the number of earthquakes that satisfy Equation (2) indicates the 

connectivity between earthquakes counting the k-degree (k-degree is defined as the num-

ber of direct connections between the i-vertex with the other ones; see Figure 3), and can 

also be associated with the temporal correlations of the data set in connection with the k-

degree distribution of the nodes, as will be described in the next subsection. 

   

Figure 3. Example of the VG method of a seismic catalog. The black points are the magnitudes, and 

the black lines show the visibility condition. (a) VG for a seismic catalog as point processes; (b) the 

same catalog drawn as a discrete process where it can be seen that the connectivity does not change. 

4.3. k‐Degree Distribution 

In complex networks, the dynamical characteristics of the underlying system can be 

quantified by different measures; however, in the particular case of VG, one of the most 

interesting and important measures is the so-called vertex degree or k-degree: the number 

of direct connections between the i-vertex and the other ones. Because the graph is con-

nected, each node has at least k = 1 degree for the first and the last nodes and k = 2 degrees 

for the other ones. In several works where VG has been applied to analyze time series, the 

connectivity has highlighted topological properties in the graph that are associated with 

the processes underlying the time series. This information is mainly given by the k-degree, 

as well as their distribution function, P(k). For different kinds of processes, P(k) displays 

specific behaviors; for periodic signals, VG is transformed as a concatenation of a finite 

number of motifs because the basic period is an integer multiple of the sampling rate. On 

the other hand, the opposite extreme case is white noise. For this process, the k-degree 

distribution behaves as an exponential distribution. For fractal time series, the k-degree 

distribution is generally scale-free following the power law: 

𝑃ሺ𝑘ሻ~𝑘ିఊ  (3)

where the  𝛾-exponent is related to the Hurst exponent H of the underlying time series as 

𝛾 ൌ  3 െ  2𝐻  for fractional Brownian motion and  𝛾 ൌ  5 െ  2𝐻  for fractional Gaussian 
noise, so that it is possible to estimate a measure of the persistence and correlation, as well 

as the relationship with the  𝛽-spectral exponent from the power spectrum scaled as  𝑓ିఉ. 

   

Figure 3. Example of the VG method of a seismic catalog. The black points are the magnitudes, and
the black lines show the visibility condition. (a) VG for a seismic catalog as point processes; (b) the
same catalog drawn as a discrete process where it can be seen that the connectivity does not change.

4.3. k-Degree Distribution

In complex networks, the dynamical characteristics of the underlying system can be
quantified by different measures; however, in the particular case of VG, one of the most
interesting and important measures is the so-called vertex degree or k-degree: the number of
direct connections between the i-vertex and the other ones. Because the graph is connected,
each node has at least k = 1 degree for the first and the last nodes and k = 2 degrees for
the other ones. In several works where VG has been applied to analyze time series, the
connectivity has highlighted topological properties in the graph that are associated with
the processes underlying the time series. This information is mainly given by the k-degree,
as well as their distribution function, P(k). For different kinds of processes, P(k) displays
specific behaviors; for periodic signals, VG is transformed as a concatenation of a finite
number of motifs because the basic period is an integer multiple of the sampling rate. On
the other hand, the opposite extreme case is white noise. For this process, the k-degree
distribution behaves as an exponential distribution. For fractal time series, the k-degree
distribution is generally scale-free following the power law:

P(k) ∼ k−γ (3)
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where the γ-exponent is related to the Hurst exponent H of the underlying time series as
γ = 3− 2H for fractional Brownian motion and γ = 5− 2H for fractional Gaussian noise,
so that it is possible to estimate a measure of the persistence and correlation, as well as the
relationship with the β-spectral exponent from the power spectrum scaled as f−β.

5. Results
5.1. Gutenberg–Richter Parameters

The local seismic activity is usually characterized by the Gutenberg–Richter law
(Equation (1)), where the completeness magnitude “Mc”, as well as the “a” and “b” param-
eters, are estimated. In this study, we employed the maximum likelihood method in the
estimation of the b-value [27]. First, the a- and b-values for the entire catalogs of the three
areas are listed in Table 1.

Table 1. Seismic parameters of the entire catalogs.

Region a b Mc N (M ≥Mc)

Mi 5.43 0.85 3.7 4357
FS 5.53 0.92 3.5 3232

TCh 7.83 1.12 3.6 62,571

It has been shown that these parameters can change over time [58], showing possible
fluctuations in the seismic activity of each zone. We analyzed the seismic activity of three
different regions: Michoacan (MI), Flat Slab (FS) and the Tehuantepec Isthmus (TCh), as
is shown in Figure 1. The period analyzed was from 2010 to 2022, in which the numbers
of earthquakes registered were 14,003 in Mi, 5679 in the FS and 76,889 in TCh. Figure 3
indicates the growing rate of the occurrence of earthquakes. The temporal variability of
the b-values calculated with the Gutenberg–Richter parameters for the activity of Mi, FS
and TCh are shown in Figure 4. The b-value changed each year and displays an irregular
pattern; nevertheless, in 2017, the b-values of FS and TCh attained low values, and after
that, such values increased. Regarding the latest main shock at Mi in 2022, the respective
b-value also decreased at a low.
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Figure 4. Yearly behavior of the seismic parameters (a) a-values, (b) b-values of the Gutenberg–Richter
law, (c) completeness magnitude and (d) number of earthquakes with M ≥ Mc.

.
The relationship between the a- and b-values of the Gutenberg–Richter law is depicted

in Figure 5 and is in accordance with the result reported by [57]. It is important to point out
that the expected relation a~4b is fulfilled in Mi and FS in accordance with [57]; however,
for the TCh catalog, the relationship is given as a = 4.52b. This difference could be due to
the post-seismic activity of the M8.2 main shock, which could be considered aftershocks
and outside the tearing region of the Tehuantepec transform/ridge [39].
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5.2. k-Degree vs. Magnitude Relationship

In order to characterize the topological and seismic properties between the graph and
the seismic activity, Telesca et al. [36] introduced the k–M plane. The k–M slope is obtained
as the mean square fitting of the right line in the k–M plane. The fact that the k–M slope is
positive indicates a positive correlation; thus, the larger magnitude is then higher than the
connectivity degree. The k–M slopes were calculated for the entire catalogs (including all
magnitudes). In Figure 6a–c the k–M plane is shown for the catalogs of the three regions
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from the completeness magnitude threshold (M ≥Mc). The differences in the k–M slope
values are summarized in Table 2; in the third column, the reported values are from whole
catalogs (M < Mc). The fitting in the k–M plot for the three regions can be considered linear
when (M > Mc); however, for (M < Mc), the behavior is dominated by low seismicity and
differs from linear fit, and is not reliable.
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Table 2. Comparison of k–M slope between the entire catalog and with M ≥Mc.

Region k–M Slope with M ≥Mc k–M Slope Entire Catalog

Mi 31.07 15.94
FS 29.73 9.78

TCh 27.97 17.45

In Figure 6d, the variation of k–M slope is plotted versus the threshold magnitudes
for the three catalogs. The first threshold magnitude, Mth, is 3.2, and then increases by
steps of 0.1; the maximum threshold magnitude depends on each catalog. In all cases, the
k–M slope attains a maximum Mth

∼= MC, after which the number of earthquakes becomes
very small.
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On the other hand, the k–M slope variability as a function of year is depicted in Figure 7
for the three catalogs. The k–M slopes values show an increasing trend for the three regions.
FS and TCh stopped showing this trend in 2017, but Mi continued increasing until 2022.
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5.3. P(k) Distribution

When estimating the correlation of seismic activity, this can be performed using the se-
quence of magnitude of earthquakes by applying the VG method to seismology, as has been
reported in [20,34]. To do so, the seismic catalog is considered as a magnitude-discrete time
series, rather than a continuous process, where the earthquakes are events with specified
occurrence time. In fact, the catalogs are magnitude time series marked as temporal point
processes that are described by the sum of Dirac’s delta centered on the occurrence time
with amplitude proportional to the magnitude of the event; see Figure 3a, which shows
a sequence of earthquakes in the catalog analyzed. In Figure 3b, the representation as a
magnitude-discrete time series is displayed where the connectivity remains invariant. Next,
the time series of magnitudes can be identified as a fractional Brownian motion so that the
relationship between γ and H is valid [30]. The k-degree distribution (Equation (3)) of the
visibility graph is assessed for the sequences of magnitudes of earthquakes monitored in
the three regions. In [30], the authors showed the relationship between g-exponents in the
P(k) power law, and the Hurst exponent was given by γ = 3− 2H. It is well known that
the significance of H is determined by its deviations from the value of 0.5, which indicates
randomness. The k-degree distribution P(k) vs. k in a log–log plane of each region was
estimated for each one of the three regions, choosing the sequences as (a) the whole catalogs
and (b) for the M ≥ Mc, displayed in Figure 8a and b, respectively. The P(k) distributions
display a behavior associated with correlated processes which are characterized by means
of H. In Table 3, the γ-exponent values are summarized and in Figure 8a,b, the R2 adjust
indicates the goodness of the γ-exponent fitted. It is observed that the γ-exponent of the
Tehuantepec Isthmus is the largest, whilst for FS, it is the lowest in both cases.
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Table 3. Comparison of γ between the whole catalog and with M > Mc.

Region γ Whole γ M > Mc Catalog

Mi 2.88 2.58
FS 2.4 2.08

TCh 2.95 3.04

5.4. Correlation Measure

Next, the k-degree distribution of the visibility graph was constructed (Equation (3)).
The correlation of the seismic activity is directly related to the γ-exponent and H. A process
is characterized as persistent if (0.5 < H < 1), antipersistent when (0 < H < 0.5) and uncorre-
lated or random if H = 0.5. In accordance with the relationship γ = 3− 2H, in Figure 9, the
yearly variability of the H-values is displayed.
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5.5. Three-Dimensional Plot: k–M Slope–b-Value–H-Exponent

In order to describe a generalized behavior, in this study we introduce a 3D plot
(Figure 10a) in which the topological, seismic and dynamical properties of the three regions
are identified.
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Figure 10. Each small point represents the yearly variation from 2010 to 2022 of the three seismic
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versus b-value.

The 3D plot, as shown in Figure 10a, condenses the information between the yearly
variability and the whole catalogs with the M ≥ Mc of the three studied parameters: the
topological properties represented by the k–M slope; the seismic features in terms of the
b-value and the dynamical characteristic with the Hurst exponent (H). In addition, to
represent the possible relationship between pairs of the three parameters, Figure 10b–d
are the projections in three planes. Figure 10b, k–M slopes vs. b-value, shows a messy
relationship between these parameters. Figure 10c, k–M slope vs. Hurst exponent, shows a
poor linear fit in the sense of least squares with a negative slope. Finally, Hurst vs. b-value
in Figure 10d also depicts some type of linearity with a negative slope. Regarding the
parameters calculated for the entire catalogs with M ≥ Mc (stars) inside the purple ellipses,
it can be seen that the yearly variability displays dispersion; however, a clear clusterization
is observed when the entire catalogs are considered as marked by the purple ellipses.
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6. Discussion

In this work, the study of three regions of the subduction Cocos plate was performed
using the VG method. First, a study of the temporal behavior of the seismic parameters,
the a- and b-values in the Gutenberg–Richter law, was performed. As has been reported
in different works, both a- and b-values in the Gutenberg–Richter law change with time
and region. When both seismic parameters are evaluated yearly, variability is found in
both of them. The yearly variability of the b-value for the three regions (Mi, FS and TCh)
is displayed in Figure 4, where it can be observed that FS and Mi attained the minimal
value (b = 0.5) in 2011 and 2012, respectively, while in 2014 (b = 0.8), the lowest value was
registered at TCh. This variation is mainly associated with the stress field as is discussed in
[58 and references therein]. In Figure 4b, it can also be observed that the b-value decreased
when the strong earthquakes occurred in 2017 at TCh and FS and also at Mi in 2022. In
addition, in times when the number of seisms is low, the b-values seem to increase and
remain so. Over the years, the behavior of the mean b-value is approximately 1.2 until
2016, but from 2017, this parameter increases. Concerning the relationship between a
and b-values, Perez-Oregon et al. [57] obtained an analytical deduction of the positive
correlation between parameters a and b, where a = (4.01 ± 0.02M)b + logC (where M is
the magnitude and C is a constant), which is corroborated by the present analysis of the
three zones. In Figure 5, the yearly relationship between both parameters for the three
zones is shown; the relationship in [57] is fulfilled for FS and Mi, a ≈ 4b, whilst for TCh,
a ≈ 4.5b, it is slightly different than expected.

This difference in TCh is most likely due to the sequence of earthquakes follow-
ing the M8.2 earthquake that occurred on 7 September 2017. The sequences occurred
in two regions: one that is coincident with the inferred location of the Tehuantepec
Transform/Ridge [52,54,55] where the slab tearing [44–46] is reported, and the other con-
sidered to be the aftershock zone [39].

On the other hand, the relationship between the topological properties and the seismic
activity is identified for the three areas considered. As was introduced in [28], the k–M
slope is the parameter that connects the topological properties and the seismic variability,
which is calculated by the best linear fitting in the k–M plane, as is shown in Figure 6a–c.
In this representation, the slope of the k–M relationship conveys information about the
earthquake productivity of the seismic areas; thus, a measure of the correlation between
the connectivity and magnitude is given by the k–M slope [28]. All the k–M plots show an
increasing trend in the degree with the increase of the magnitude, as was shown by [36],
which means that the k–M slope is a measure of the level of correlation. In addition, for
the higher-magnitude events (M > 7), the relationship with the higher k-degree becomes
almost one-to-one, as is shown in Figure 6a–c, where the k-degree is maximum. In the
three studied cases, it can be observed that the behavior indicates that the correlations are
positive. The numerical value of the k–M slope is a measure of the level of correlation and
consequently of the degree of connectivity.

In Figure 6d, the k–M slope versus the threshold magnitudes is plotted for the three
catalogs. The k–M slope attains maxima when Mth

∼= MC, and afterward, the number of
earthquakes becomes very small; therefore, it is not statistically representative.

Figure 7 shows the yearly behavior of the k–M slope, with M ≥ Mc for each case. It
can be observed that the connectivity displays an increasing trend; nevertheless, FS and TCh
stopped showing this trend in 2017, when the larger earthquakes occurred in September
in each region. On the other hand, the connectivity of Mi kept increasing until 2022. This
increasing r suggests that the connectivity could be associated with stress accumulation,
and after the release, the variability of the connectivity is very low.

The distributions of P(k) vs. k-degree in logarithmic scale are shown in Figure 8a,b,
where the γ-values are shown in the box inside for each catalog.

The H values are obtained from the γ-values. Figure 9 depicts the yearly H variability;
from this behavior, it can be observed that all processes analyzed show short- and long-
range temporal correlations, whose characteristics are governed by processes similar to
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fractional Brownian motion. The case of TCh activity shows antipersistence because H < 0.5
along the analyzed period. This behavior indicates that the dominant fluctuations come
from low-magnitude seismicity over the 13 years studied. On the other hand, FS and
Mi are persistent (H > 0.5); in the case of the seismicity of Mi, this can be observed from
2010 to 2014, and for FS, the persistence is between 2010 and 2017. After these periods,
the behavior of Mi and FS changed to antipersistent processes from 2015 to 2022 and from
2018 to 2022, respectively. These behaviors suggest that the seismic activity in each region
has different dynamics, whose conditions are established by the stress fields between the
Cocos and North American plates, as illustrated in Figure 1 and has been reported in other
studies [39,47,52,54,55].

Finally, a 3D plot (Figure 10a) is introduced with the aim to concentrate the information
on the topological (k–M slope), seismic (b-value) and dynamical (H) properties of the
three studied seismic sequences: FS, Mi and TCh. This plot contains the behavior of the
yearly variability and, also, the value of the parameters, taking into account the entire
catalogs with M ≥ Mc. In this representation, we can perceive a dispersion of these
properties from 2010 to 2022, but the same parameters estimated for the complete catalogs
are located close to each other. When the 3D is projected, we obtain Figure 10b–d. Figure 10b
conveys information about the earthquake productivity of the seismic areas. In terms of the
dynamical properties of the sequences, the k–M slope vs. b-value displays a clusterization
for k–M values above 14 and b-values ranging between 0.5 and 2.0; thus, it seems to be
strongly related to the b-value of the Gutenberg–Richter law.

Figure 10c represents the projection of the k–M slope vs. H; it can be seen that TCh
indicates antipersistence with high connectivity, while Mi also displays high connectivity
while it is persistent or antipersistent and finally FS shows a mainly low level of connectivity
when it is antipersistent or persistent but displays high connectivity only in some cases
of persistence. Figure 10d displays the relationship between H and b-value; the main
clusterization is located in the antipersistent area with b-values ranging between 0.5 and 2.0.

From these results, we can suggest that the VG properties of seismicity can resemble
the seismological properties given by the parameters of the Gutenberg–Richter law. As
already mentioned by [36], since the VG method takes into account the magnitudes of the
events, this could suggest a way to analyze the statistical properties of seismicity more
generally than the Gutenberg–Richter law.

As previously mentioned, Figure 10a, representing a 3D plot, was introduced with the
aim of condensing the information between the yearly variability and the whole catalogs
with M ≥ Mc of the three parameters studied: the topological properties represented by
the k–M slope; the seismic features in terms of the b-value; and the dynamical characteristic
of the Hurst exponent (H). The projections of data in three planes are also shown. When
observing Figure 10c,d a poor linear fit can be seen in the sense of least squares with
negative slopes. The parameters calculated for the whole catalogs with M ≥ Mc (stars)
show a clear clusterization.

7. Conclusions

The aim of this study was to identify features and their possible differences between
the three seismic areas of Mi, FS and TCh, belonging to the subducted Cocos plate and
the North American plate. The selection of these zones was motivated because three large
earthquakes (M > 7) have occurred in this area in the last five years: two of them on 7 and
19 September 2017 at TCh and FS, respectively, and the third in Mi on 19 September 2022.
Our finding reveals the variability of the b-value in the GR law, as the b-value estimated
yearly for each zone displayed large fluctuations, ranging from 0.5 to 2.5 in Mi and FS, and
from 0.8 to 2 in TCh. It is worth noting that the b-value attains a minimum value in the
years when the main shocks occurred, although it cannot be considered a generalization.
The a-value in the GR law is related to the b-value as a = 4b, which is fulfilled for Mi and FS;
nevertheless, for TCh, a = 4.5b was found, which indicates a difference in the seismic activity
at Tehuantepec Isthmus. Regarding the seismic parameters, our findings suggest that the
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seismic activity at Tehauntepec Isthmus displays important differences with respect to Mi
and FS. In terms of the topological and seismic properties, the numerical value of the k–M
slope is a measure of the level of correlation and consequently of the degree of connectivity.
TCh shows the lowest value in comparison with Mi and FS. The k–M slope values show
an increasing trend for the three regions. FS and TCh stopped demonstrating this trend
in 2017, after which their behavior was almost horizontal and parallel, but the Mi trend
continued to increase until 2022. The k-degree distribution P(k) allows us to evaluate the
temporal correlation of each sequence of magnitudes. TCh remains antipersistent during
the period analyzed, while Mi and FS remain persistent, becoming antipersistent behavior,
which suggests that the seismic activity of Mi and FS changed during the period analyzed.
Finally, the 3D plot of k–M slope–b-value–H was introduced to represent the joint seismic,
topological and dynamical properties of the three studied zones. The projections of data
in the three planes of Figure 10c,d show a poor linear fit in the sense of least squares with
negative slopes. The entire catalogs’ calculated parameters, for M ≥ Mc (stars), show
clear clusterization.
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Abstract: Earthquake early warning systems are used as important tools in earthquake risk manage-
ment, providing timely information to residents and both public and private emergency managers.
By doing this, the potential impact of large magnitude seismic events is significantly reduced. These
systems use seismic sensors in order to acquire real-time data for the weaker but fast moving P
wave (usually the first 3–5 s of the earthquake) and specific algorithms to predict the magnitude
and the arrival time of the slower but more destructive surface waves. Most of these projection
algorithms make use only of the vertical component of the acceleration and need extensive training in
earthquake simulators in order to enhance their performance. Therefore, a low-inertial-mass uniaxial
shaking table is proposed and analyzed in terms of frequency response in this paper, providing
an effective cost/control ratio and high daily duty cycle. Furthermore, with the large variety of
prediction algorithms, which use different frequency ranges, a new concept of selective frequency
band error is also introduced and discussed in this paper as being a necessary tool for the final
assessment of magnitude estimation algorithm error.

Keywords: earthquake; seismic response; frequency; shaking table

1. Introduction

The lithospheric plates of Earth are continuously set in motion by their thermal energy
through the convection currents inside the mantle, generated by the difference between
the high temperatures of the nucleus and the low temperatures of the mantle. When the
plates slide past one another, this energy is internally stored and when a fault interaction or
rupture zone occurs, the energy is suddenly released as radiated energy, fracture energy and
thermal energy [1]. The share of the potential energy that radiates propagates through the
crust outward in all directions in the form of seismic (elastic) waves. Only rapidly slipping
(or seismic) events generate elastic waves, while the energy released during slow-slip events
(aseismic events) would mostly dissipate [2]. The radiated energy is ordinarily calculated
by measuring the energy flux at the point where the wave field of an earthquake is recorded,
and from that inferring the total energy flux in all directions from the epicenter [3]. For
spectral models and ground motion prediction, it is assumed that earthquakes radiate about
half of the available strain energy into the surrounding medium [4]. Radiation efficiency,
as the ratio between seismic radiated energy and the available strain energy, is correlated
with fault geometry and symmetry and with rupture velocity.

Based on the energy released, an earthquake is quantitatively mainly inferred af-
ter moment magnitude Mw (logarithmic scale). One magnitude corresponds to several
distributed intensities, depending on the distance from the hypocenter: as distance de-
creases, the intensity increases [5]. Being assessed as a scattered seismic effect, earthquake
intensity is a qualitative measure, which together with the direction of the fault rupture
propagation and with the surface geology gives the weight of the potential damage [6].
Co-seismic, post-seismic and inter-seismic impact regarding crustal deformations, struc-
tural damage [7] and humming to the endangerment of any integrity is contingent on
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the approach to disaster preparedness. For the most exposed areas with the highest den-
sity and vulnerability to earthquakes, it is necessary to ensure a good resilience of the
assets [8], namely non-structural or structural systems, of which the most exposed are
the buildings. Each presents a degree of seismic fragility that can be effectively predicted
using an analytical–mechanical-based procedure, revealing the seismic behavior of build-
ing portfolios on a typological base [9]. The seismic response can be accurately predicted
for reinforced concrete buildings as well, with different degrees of diaphragm flexibility,
and for non-structural components [10], facilitating the creation of a system model that
is as realistic as possible in order to include the seismic effects in a local resilience plan.
This new concept of resilience comprises the capabilities of a complex system, composed
of interacting physical and social components, to withstand external stress and return
to a state of equilibrium or bounce forward to improved new states of equilibrium [11].
These capabilities are bordered by the disaster response and community preparedness
in case of an earthquake. Whereas some capabilities must be mobilized subsequently to
support disaster responses, others need to serve a particular response situation continu-
ously and accurately. A mechanism that upholds this type of capability is the earthquake
early warning system (EEWS), an integrated architecture of hazard monitoring, forecasting
and prediction, disaster risk assessment and communication [12]. EEWSs are critical not
only in proximate areas but also far from the epicenter because earthquake magnitude
and location cannot be precisely detected in the first instance [13]. Typically, earthquake
parameters are estimated based on simultaneous real-time waveform records from three to
six stations [14]. The detection is based on the primary P wave propagation and the EEWS
trigger is settled after computing the secondary S wave travel time, proportional to the
distance from the epicenter. The warning window can range from a few seconds to tens of
seconds (Table 1), depending on the size of the earthquake and on the number and type
of sensors in the EEWS architecture [15]. S wave arrival time is defined as the duration in
which the S wave travels from the first to the farthest observation sensor from the epicenter.
The arrival values are computed using point source algorithms (based on ground motion
prediction-specific equations), which retrieve information on the P wave from at least three
stations in the vicinity of the epicenter. The prediction algorithms neglect the tectonic
stratigraphy or the depth of the earthquake and serve as an approximate guide because the
shaking intensity at any specific location can vary compared to the average shaking at that
distance according to ground motion prediction equations; thus, the strongest shaking can
actually be felt later than the S wave arrival time [16].

Table 1. Example of EEWS appraisal for seismic parameters (after [17]).

Earthquake Moment
Magnitude (Mw)

Approximate
Fault Length

(km)

Maximum Epicentral
Distance Where Earthquake

Is Expected (km)

S Wave Arrival at
Maximum Distance

Where Earthquake Is
Expected (s)

Potential Damage

5 1 10 4 insignificant
5.9 6 40 10 minor
6 50 200 40 moderate

6.9 (crustal) 400 700 200 moderate to major
7 (subduction) 1000 1000 300 major

Seismic sensors are the most critical elements of seismographs or EEWS, as they
must measure dynamic ground motion higher than the ground noise distinctly from
human-induced artificial noise. Their frequency band must cover 0.01 to 100 Hz and
ground motions from 1 nm to 10 mm [18]. From classical seismic receivers placed at or
close to a designated area [19] to downhole receivers immersed at typical depths [20]
or to latest optical fiber network enhancing [21], seismic sensors detect certain ground
vibrations with the highest precision and process the information in real-time to trigger
an alert. Lately, seismic recording instruments have gained particular importance in
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assisting the monitoring processes of other natural phenomena, such as rainfall episodes
or thunderstorms [22], or for target detection and activity recognition [23]. Seismic nodal
sensors differ in terms of performance, ease of deployment, size, power consumption, data
format and storage and battery lives [24], characteristics that are reflected in their cost and
further in the spatial distribution and density of the earthquake monitoring networks.

Since both the sensor’s technology (range, resolution, noise density and frequency
response) and prediction algorithms (including data preprocessing) are continuously evolv-
ing, researchers need an enormous volume of training data in order to match the seismic
waveform parameters to the real-time (sensor-specific) acquired data and projection algo-
rithm’s error.

In order to fulfill the increasing demand of easy-to-use but also precise earthquake
simulators, a low-inertial-mass (tailored to the purpose of carrying only the seismic sensor)
uniaxial shaking table (because most algorithms use only the vertical component of the
acceleration) is proposed in this paper.

By maintaining the hardware arrangement to a minimum, the pre-experimental phase
is lowered and therefore the proposed solution provides an effective cost/control ratio and
high daily duty cycle.

Its performances, in terms of frequency response, are compared with those reported
in the literature. Furthermore, a new concept of selective frequency band error is also
introduced and discussed in this paper, as being a necessary tool for the final assessment of
magnitude estimation error.

2. Laboratory Small-Scale Shaking Table Design and Control

An earthquake laboratory reproduction is better realized with six-degrees-of-freedom
vibrating tables, because structures are generally excited to three orthogonal components
of ground motion: two orthogonal horizontal components in the principal directions
of structures (chosen for convenience of understanding and analysis) and one vertical
component of the earthquake [25]. As EEWS use only the vertical component for estimating
earthquake parameters (the maximum acceleration is obtained from the vertical component
of the waveform [26]), the designed shaking table for EEWS sensor testing is unidirectional
(single axis and single degree of freedom).

The performance evaluation of unidirectional shaking tables has been issued in much
research, addressing the interaction effects with different loading configurations [27], the
accuracy of a small-scale low-cost electrodynamic shaker [28] and the bearing capacity
issues when reproducing sinusoidal ground motion with frequencies up to 10 Hz [29],
or revealing synchronization and tracking control advances [30]. The shaking table test
outlasts the seismic test closest to the real seismic response, exhaustively appraising the im-
pact of damping natural vibration frequency in all types of investigations, from laboratory
validations to practical studies for settling the dynamic behavior of a dry-joint masonry
arch [31] or to evaluate the effectiveness of coupling between a 2-degree-of-freedom shear-
type frame system and a rigid block [32]. Intended for simulating all types of vibrations
generated by sine waves, chirp signals or scaled earthquakes, the frequency range of small
electrodynamic tables is 0~10 kHz, and for wide size tables for large process models it is
0~2 kHz. Sine wave and random wave tests can be realized; the acceleration waveform
distortion is small, but executing large output and large displacement tests remains dif-
ficult [33]. To determine the essential characteristics of the seismic analysis for coupled
systems or nonstructural components, a small-scale vibration table with a control algorithm
(PID, adaptive, neural network or fuzzy control) provides an alternative cost-effective
research method [34]. Reducing the vulnerability of non-structural components (such
as EEWS) is crucial for achieving full earthquake resilience and for avoiding the loss of
functionality and downtime. Although EEWSs are very efficient in reducing damage and
have a reliable response thanks to quality control tests, they often show a brittle behavior
that may strongly reduce global robustness in the case of extreme and rare seismic actions.

54



Entropy 2023, 25, 655

This highlights the need for additional studies with the purpose of the exact correlation of
safety coefficients to required reliability levels [8].

The shaking table model from Figure 1, designed to test EEWS sensors, consists of
three functional parts, with the following subcomponents:

- Mechanical part: (1) a standard steel plate, (2) a slide cart (linear rail system) with
smooth surfaces to minimize the frictional resistance and auxiliary fixing elements.

- Electrodynamic part: (3) an actuator able to drive the mechanical component (a DC
micromotor and an optical encoder), supplied through a power amplifier (4).

- Controlling part: computer with LabVIEW interface for generating input signals and (5)
a data acquisition board through which command and data acquisition are executed.
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Figure 1. Small-scale unidirectional vibration table prototype.

Usually, to control table motions in order to reproduce seismic vibration, a PID al-
gorithm for the shake table response is used [35]. Under the PID scheme the controller
responds to the difference between the table command and feedback displacements (the
error). This value is continously calculated and the displacement is corrected by the con-
troller based on predefined ratios of proportional, integral, and derivative of the error [36].
The implemented control loop (Figure 2) operates in control displacement mode and to op-
timize the signal reproduction by controlling feedback parameters, which are continuously
adjusted to increase the precision in acceleration.
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Figure 2. Block diagram of a unidirectional shaking table control with displacement feedback.
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3. Test Results

To establish stability contingency, frequency domain analysis was performed for
12 earthquake sequences, as listed in Table 2.

Table 2. Seismic parameters used as the reference for testing.

No. Name Year Station Name Magnitude
(Mw)

Rjb
(km)

Rrup
(km)

Sampling
Period (s)

1 Chi-Chi_Taiwan-02 1999 CHY065 5.9 125.26 125.89 0.005
2 Chi-Chi_Taiwan-02 1999 CHY067 5.9 126.39 126.56 0.004
3 Chi-Chi_Taiwan-02 1999 CHY071 5.9 122.02 122.19 0.005
4 Parkfield-02_CA 2004 Hollister—Airport Bldg #3 6 121.51 121.54 0.005
5 Parkfield-02_CA 2004 Salinas—County Hospital Gnds 6 120.74 120.79 0.005
6 Chi-Chi_Taiwan-03 1999 ILA006 6.2 129.11 129.4 0.004
7 Chi-Chi_Taiwan-03 1999 ILA007 6.2 127.25 127.54 0.004
8 San Fernando 1971 Isabella Dam (Aux Abut) 6.61 130 130.98 0.005
9 San Fernando 1971 Bakersfield—Harvey Aud 6.61 111.88 113.02 0.005

10 El Alamo 1956 El Centro Array #9 6.8 121 121.7 0.005
11 Hector Mine 1999 Bombay Beach Fire Station 7.13 120.69 120.69 0.005
12 Lander 1992 Covina—W Badillo 7.28 128.06 128.06 0.005

These reference sequences, obtained from the PEER Ground Motion Database and
available at https://ngawest2.berkeley.edu/, accessed on 17 October 2022, were selected to
fulfill the following conditions:

- High enough magnitude because most of the EEWSs trigger the alarm at magnitudes
higher than six;

- Different enough spectral content because the simulator’s performances are evaluated
in the frequency domain.

The amplitude of a seismic wave recorded in a site depends on two parameters: the
magnitude of the earthquake measured in the epicenter and Rjb—the surface distance from
the epicenter to the site. In order to compare the seismic waves, they were chosen from the
database records with constant Rjb (as can be seen in Table 2, between 111 and 130 km) and
variable magnitude in the coverage area of the EEWS (>5.9 Mw). Moreover, to verify the
reproducibility of the data, a series of earthquakes with similar Mw and Rjb, but recorded at
different stations, were selected: for Chi-Chi Taiwan-02, the data from three sites (stations)
were processed, and for Parkfield-02 CA, Chi-Chi Taiwan-03 and San Fernando, the data
from two different sites (stations) were processed. For the purposes of being informative,
and for observing the depth at which the earthquake occurred, the parameter Rrup is given
together with Rjb.

The experimental information flow from Figure 3 introduces the uniaxial shaking table
as a displacement tracking system feed with the time domain displacement waveforms, as
selected from the PEER database. Every seismic event from the sequence of 12 is treated
individually, as the sapling parameters differ (from 0.004 s to 0.005 s). Both reference and
output (slide cart) displacement are analyzed in the frequency domain using fast Fourier
transform to obtain the frequency spectrum.

The performance in the frequency domain of the shaking table is further evaluated
from two perspectives:

1. Locally, for each individual frequency magnitude, in terms of magnitude absolute
error.

2. Globally, for the entire spectrum, in terms of root mean square error and normalized
root mean square error, as to be compared with other reported results.
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Figure 3. Experimental information flow: left panels: reference and output displacement waveforms
and right panels: frequency spectrum with the error calculation point indicator.

The analysis of the results starts with the evaluation of the absolute error, a type of
primary information about the system’s performances.

In Figure 4, spectrograms of the reference signal (left column) and the absolute error
for each spectral frequency (the difference between the amplitude of the same i spectral
component in the input Ii and output Oi spectrograms) are depicted. The evaluation
range is from 0 to 10 Hz (the highest reachable frequency that corresponds to the natural
frequency), as this is what typical seismographs routinely record [37].

From the graphs displayed in Figure 4, it can be seen that the absolute errors of the
proposed shaking table model, calculated as the difference between the reference and the
output frequency spectrums, are very small, with a band amplitude of 0.001 cm for small
events and 0.0032 for large events.

However, the individual absolute errors do not give a relevant overview of the system’s
performances, with the universally recognized indicator for analyzing clustered data being
the root mean square error (RMSE). Therefore, in Section 4, the results are discussed using
this approach for comparing the model fitting for 12 seismic response variables and for
assessing residual variance.

Entropy 2023, 25, x FOR PEER REVIEW 6 of 12 
 

 

The experimental information flow from Figure 3 introduces the uniaxial shaking 
table as a displacement tracking system feed with the time domain displacement wave-
forms, as selected from the PEER database. Every seismic event from the sequence of 12 
is treated individually, as the sapling parameters differ (from 0.004 s to 0.005 s). Both ref-
erence and output (slide cart) displacement are analyzed in the frequency domain using 
fast Fourier transform to obtain the frequency spectrum. 

The performance in the frequency domain of the shaking table is further evaluated 
from two perspectives: 
1. Locally, for each individual frequency magnitude, in terms of magnitude absolute 

error. 
2. Globally, for the entire spectrum, in terms of root mean square error and normalized 

root mean square error, as to be compared with other reported results. 
The analysis of the results starts with the evaluation of the absolute error, a type of 

primary information about the system�s performances. 

 
Figure 3. Experimental information flow: left panels: reference and output displacement waveforms 
and right panels: frequency spectrum with the error calculation point indicator. 

In Figure 4, spectrograms of the reference signal (left column) and the absolute error 
for each spectral frequency (the difference between the amplitude of the same i spectral 
component in the input Ii and output Oi spectrograms) are depicted. The evaluation range 
is from 0 to 10 Hz (the highest reachable frequency that corresponds to the natural fre-
quency), as this is what typical seismographs routinely record [37]. 

 

Figure 4. Cont.

57



Entropy 2023, 25, 655Entropy 2023, 25, x FOR PEER REVIEW 7 of 12 
 

 

 

 

 

 

 

 

Figure 4. Cont.

58



Entropy 2023, 25, 655Entropy 2023, 25, x FOR PEER REVIEW 8 of 12 
 

 

 

 

 

 

 
Figure 4. Shaking table frequency seismic response to unidirectional input ground motions ((1–
12): the reference earthquake sequence; (E1–E12): the associated displacement absolute errors). 
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4. Discussion

An important aspect of the error metrics used for simulators’ evaluation is their capa-
bility to discriminate among simulation results. Giving higher weighting to the unfavorable
conditions, the root mean square error (RMSE) is better at revealing performance differ-
ences, being the widely used standard statistical metric that measures performance in
natural phenomena studies [38]. For a specific spectrogram, with n points in the frequency
domain, RMSE is defined as

RMSE =

√
∑n

i=0(Ii −Oi)2

n
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with Ii being the reference seismic frequency from the database (amplitude of spectral com-
ponent i) and Oi being the recorded seismic frequency from the shaking table (amplitude
of spectral component i).

However, the use of this global performance indicator can lead to an erroneous
assessment of the quality of the prediction algorithm.

As pointed out before, all prediction algorithms use extensive sets of experimental data,
but these data are preprocessed prior to feeding the computational unit. The preprocessing
includes one or more bandpass filtering stage, an essential but an unstandardized process
since the high cutoff frequency varies from 3 to 10 Hz. It is important to use a performance
indicator tailored to the specific bandpass of each algorithm if its quality is to be assessed.

Therefore, we will discuss the performance of the proposed shaking table in terms of
selective frequency band error, with the process being depicted in Figure 5.
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For different frequencies, different values of RMSE are computed using only the
components lower than the frequency of interest:

RMSE f =

√√√√√∑
f

∆ f
i=0(Ii −Oi)2

f
∆ f

[cm]

where f = the frequency of interest, ∆f = the resolution in frequency and f /∆f = sample
size, with the number of measuring points in the frequency spectrum of [0, f].

Normalization was further included to assess the simulator’s performance, as it is
sensitive to the amplitude and frequency errors and provides better identification of the
output fitting correctness, similar to reference [39]. The normalized root mean square error
was calculated using the following equation:

NRMSE =
RMSE

max(I i)−min(Ii)
[%]

RMSE and NRMSE variation are presented in Table 3, for four different band frequencies
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Table 3. RMSE and NRMSE values for different band frequencies.

Cutoff
Frequency

RMSE (Cm)
Min.

RMSE (cm)
Max.

NRMSE (%)
Min.

NRMSE (%)
Max.

3 Hz 0.00021 0.00061 0.09 2.18
5 Hz 0.00019 0.00047 0.058 1.75
7 Hz 0.00017 0.00042 0.05 1.55

10 Hz 0.00016 0.00038 0.044 1.48

The obtained results reveal two important aspects:

- Global RMSEs, computed for all spectral components to be compared with other
reported results, have lower values than those reported in recent papers [39–42].
Even if simple control algorithms have been used, the minimization of the hardware
arrangement, and the low weight of the moving parts (only 390 g for the cart and
accelerometer), yields very good seismic-waveform-tracking characteristics. Addi-
tionally, the absence of some heavy actuators makes the pre-experimental phase very
short, hence ensuring a high daily duty cycle.

- For lower cutoff frequencies, both RMSE and NRMSE increase their values. The
assessment of the prediction algorithm accuracy by using the standard (full frequency
domain) RMSE can lead to unrealistic expectations.

5. Conclusions

Research into earthquake simulation for particular vibration effects on structural and
non-structural elements is mainly performed using a shaking table. It can realistically
simulate the state of stress or deficiency of the tested system under a seismic action,
but its dynamic behavior is poor because of the heavy moving parts and actuators. In
order to perform seismic sensor testing, as required by EEWS algorithm development and
optimization, a tailored uniaxial shaking table was developed and analyzed in terms of
dynamic response.

Meeting a set of favorable characteristics, from minimal architecture with low-weight
moving parts to a simple control algorithm, the proposed shaking table yield is effective
in tracking fidelity and the cost/control ratio. Moreover, because of the absence of some
heavy actuators, the pre-experimental phase is very short, ensuring a high daily duty cycle.

When analyzing the system’s frequency domain performances, it is important to use
an indicator tailored to the specific bandpass of each EEWS prediction algorithm. Therefore,
a new frequency domain error evaluation tool is used and defined as being appropriate for
contributing to a more accurate assessment of the quality of the prediction algorithms.
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Abstract: The probability distribution of the interevent time between two successive earthquakes
has been the subject of numerous studies for its key role in seismic hazard assessment. In recent
decades, many distributions have been considered, and there has been a long debate about the
possible universality of the shape of this distribution when the interevent times are properly rescaled.
In this work, we aim to discover if there is a link between the different phases of a seismic cycle
and the variations in the distribution that best fits the interevent times. To do this, we consider the
seismic activity related to the Mw 6.1 L’Aquila earthquake that occurred on 6 April 2009 in central
Italy by analyzing the sequence of events recorded from April 2005 to July 2009, and then the seismic
activity linked to the sequence of the Amatrice-Norcia earthquakes of Mw 6 and 6.5, respectively,
and recorded in the period from January 2009 to June 2018. We take into account some of the most
studied distributions in the literature: q-exponential, q-generalized gamma, gamma and exponential
distributions and, according to the Bayesian paradigm, we compare the value of their posterior
marginal likelihood in shifting time windows with a fixed number of data. The results suggest
that the distribution providing the best performance changes over time and its variations may be
associated with different phases of the seismic crisis.

Keywords: interevent time; probability distributions; probabilistic forecasting; seismic cycle; statistical
seismology; statistical methods; Bayesian inference

1. Introduction

The time between two successive earthquakes, referred to as recurrence or waiting
or interevent time, is one of the most studied quantities describing the seismic activity;
it plays an important role in seismic hazard assessment being the main component of
some stochastic processes—such as renewal processes, Markov processes—which model
the temporal evolution of seismic phenomena. Several probability distributions have
been proposed in the literature to model the recurrence time τ, including the gamma,
Weibull, lognormal, and exponential distributions, but the most remarkable result was
that the shape of this distribution appeared to be universal when the times were suitably
scaled by some critical indices, such as the Gutenberg–Richter b value, the α exponent
of the Omori law and the fractal dimension d f of the set of earthquake epicenters [1]. In
other words, the distribution F(τ) would be independent of the spatial scale and of the
magnitude threshold of the observations, which expresses a hierarchical organization in
time, space, and magnitude. Further studies found that scaling by the average rate λ of
seismic activity—number of earthquakes per unit time—was sufficient to get approximately
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the same distribution in many different seismic regions [2]. A similar behavior was also
obtained by Corral by fitting the density function given by

f (τ) =
C δ

aΓ(γ/δ)

(τ

a

)γ−1
e−(τ/a)δ

γ, δ, a > 0 (1)

to some regional data sets [3], where C is the normalizing constant, a is a scale parameter,
and γ and δ control the shape for small and large τ, respectively. This scaling function
shows a power-law behavior for short times, and an exponential decrease for long times.

By simulations of the ETAS model with varying rate µ of independent events, which
can be considered a proxy for regional size, Touati et al. [4] showed that the interevent time
distribution is generally bimodal, and is best described as a mixture of two distributions: a
gamma distribution for short waiting times between correlated events which belong to the
same aftershock sequence, and an exponential distribution for longer waiting times between
uncorrelated events. Completely general forms for the interevent time distribution can be
obtained by resorting to a Bayesian nonparametric estimation method and considering the
unknown distribution as a random measure [5].

Properties such as fractal structures and long-range correlations present in the earth-
quake activity have led to adopt theoretical tools of non-extensive statistical physics in the
analysis of the statistical properties of some quantities describing the seismic activity in the
space–time–magnitude domain. This approach is based on a generalization of the classic
Boltzmann–Gibbs entropy proposed by Tsallis in 1988 [6]; by maximizing the non-extensive
Tsallis entropy, a probability distribution, denoted as q-exponential distribution, was ob-
tained and then successfully applied to investigate the distribution of various seismic
quantities, such as magnitude ([7] and references therein), fault length [8], spatial distribu-
tion of epicenters [9], and interevent time [10]. To improve the fit of the gamma distribution
by exploiting the results obtained through the q-exponential distribution, Michas et al. [11]
used the q-generalized gamma distribution, borrowed from Queirós [12], which behaves as
a power-law function for both short and large interevent times so as to provide a best fit
when the seismicity is correlated at all timescales.

Generally, the aforementioned studies aim to obtain the best probability distribution
for sets of interevent times which cover a large period, where the occurrences may involve
a complex summation of triggered and/or independent events on different time scales.
On the contrary, in this work, we wonder whether the probability distribution changes
over time and whether these variations can be associated with different phases of the
seismic process. To do this, we consider data from time windows with the same number
of observations which shift at each new event; we compare the performance of some
distributions chosen among the most studied ones by evaluating their posterior marginal
likelihood in the Bayesian framework. We apply this procedure to two data sets related to
the severe seismic sequences that hit central Italy in the last decades. The best probability
distribution, i.e., the one that significantly outperforms the others, varies over time; in
particular, we highlight that these changes characterize specific periods in the temporal
evolution of seismic activity and therefore could be used for forecasting purposes.

2. Probability Distributions

Let us consider the sequence of (N + 1) seismic events that occurred at times {t0, t1, . . . , tN},
and let T = {τi}N

i=1 be the set of the interevent times τ between successive events defined
as τi = ti − ti−1, i = 1, 2, . . . , N. We assume that all events have a magnitude larger than,
or equal to, the threshold Mc, which guarantees a sufficient degree of completeness for the
data set. We present the main properties of the most studied probability distributions of the
intervent time random variable.
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2.1. Exponential Distribution

The simplest probability distribution for the interevent time is the exponential distri-
bution with density function given by

f1(τ) = λ e−λ τ . (2)

It describes the time between events in a homogeneous Poisson point process, i.e., a
process in which events occur continuously and independently at a constant average rate;
hence, the exponential distribution indicates uncorrelated behavior. Its key property is that
it is memoryless, that is, the probability that the waiting time τ for an event exceeds a value
(t + s), conditioned on the fact that the time t has already passed, is equal to the original
probability of exceeding s:

Prob(τ > t + s | τ > t) = Prob(τ > s) = e−λ s. (3)

Consequently, the exponential distribution is the only continuous probability distri-
bution that has a constant hazard rate, equal to λ. According to Bayesian inference, the
conjugate prior for the exponential distribution is the gamma distribution; hence, we con-
sider the parameter λ to be a gamma-distributed random variable with hyperparameters a0,
b0 so that its posterior distribution is still a gamma distribution with parameters (a0 + N)
and (b0 + ∑N

i=1 τi).

2.2. Gamma Distribution

The gamma probability density function is given by

f2(τ) =
βα

Γ(α)
τα−1 e−β τ (4)

where α is the shape parameter and β is the scale parameter, both positive. In particular,
the gamma distribution models the sum of exponentially distributed random variables;
that is, if we consider a sequence of events such that each interevent time follows the
exponential distribution with parameter β, then the waiting time of the n-th event is a
gamma-distributed random variable with integer shape α = n. In general, the extensive use
of the gamma distribution is due to its ability to model the intertime between triggered af-
tershocks through its short-term scale power-law factor and the long-term scale Poissonian
background activity through the exponential factor. Regarding parameter inference, since
there is only the conjugate prior distribution of the scale parameter, we prefer to estimate
the posterior distribution of both parameters through the Metropolis–Hastings algorithm, a
stochastic simulation method of the class of Markov chain Monte Carlo (MCMC) methods.
This algorithm generates a Markov chain that converges to the target distribution—in our
case, the posterior distribution—using a proposal density for generating new candidate
values and a method for rejecting some of the proposed values [13]. In this way, we obtain
not only the parameter estimates, typically as their posterior means (average of the sampled,
possibly thinned, values), but also a measure of their uncertainty as expressed through the
simulated posterior distribution of each parameter.

2.3. Q-Exponential Distribution

Nonlinear dynamical systems showing fractal structures and long-range correlations
are successfully studied in the framework of non-extensive statistical physics. The presence
of the same properties also in seismicity [11] suggests analyzing the temporal behavior of
the seismic activity through the q-exponential distribution:

f3(τ) =
1
γ

(
1− (1− q)

(2− q)
τ

γ

)1/(1− q)
, 1 < q < 2 (5)
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obtained by maximizing the non-additive Tsallis entropy Sq:

Sq = kB
1−

∫
pq(x) dx

q− 1
(6)

under suitable constraints [6]; q is called the entropic index, and γ is the generalized
expectation value, that is, the mean with respect to the escort probability distribution [14]:

fq(x) =
f q(x)

∫ +∞

0
f q(x) dx

. (7)

Given two independent systems A and B, the Boltzmann–Gibbs entropy SBG satisfies
the additive property SBG(A + B) = SBG(A) + SBG(B), whereas for the Tsallis entropy, we
can verify that

Sq(A + B)
kB

=
Sq(A)

kB
+

Sq(B)
kB

+ (1− q)
Sq(A)

kB

Sq(B)
kB

(8)

i.e., Sq is nonadditive; in particular, the cases q < 1, q = 1, and q > 1 correspond to super-
additivity (or superextensivity), additivity (extensivity), and subadditivity (subextensivity),
respectively, and when q→ 1, Sq recovers SBG. Extensivity and additivity are terms often
used interchangeably even though they are not equivalent because in most cases encoun-
tered in physics, additivity does imply extensivity [15]. In the Supplementary Material, we
show the link between estimates of the q-index and specific states of the system.

For large τ, the q-exponential density function (5) goes to zero as a power τ−1/(q−1),
and it is also always bounded below by the exponential density function; hence, it is a
fat-tailed distribution and, in particular, a heavy-tailed distribution, being

lim
τ→+∞

etτ F̄3(τ) = lim
τ→+∞

etτ
(

1 +
q− 1
2− q

τ

γ

)−(2−q)/(q−1)
= +∞ ∀τ > 0 (9)

where F̄3(τ) = 1− F3(τ).
Since conjugate priors of the q and γ parameters with respect to the q-exponential

function are unavailable, we again resort to Markov chain Monte Carlo methods to sample
from the posterior probability distributions of the parameters after reparameterizing them
as follows: θ = (2− q)/(q− 1) with θ ∈ (0,+∞).

2.4. Q-Generalized Gamma Distribution

Substituting the exponential term in (4) with the q-exponential function defined as

expq(x) = [1 + (1− q) x]1/(1−q)

borrowed from the nonextensive statistical mechanics, one obtains the so-called q-generalized
gamma density function, which is characterized by two power-law regimes indicating cluster-
ing effects at all time scales and both short- and long-term memory in the seismogenic process.
This distribution was proposed for the first time in the financial framework by Queirós [12]; it
is based on local fluctuations of the ω mean value of the gamma distributed τ variable under
study. Hence, scaling the variable by its mean value, we have the conditional density function

f (τ | ω) =
ϕϕ

ω Γ(ϕ)

( τ

ω

)ϕ−1
exp

[
− ϕ

ω
τ
]

(10)
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where E(τ) = ω. Let us assume that ω varies over time and follows the inverse gamma
distribution:

g(ω) =

( ϕ
λ

)δ

Γ(δ)
ω−δ−1 exp

[
− ϕ

ω λ

]
. (11)

Integrating the joint density f (τ | ω) g(ω) with respect to ω, we obtain the marginal
density function:

h(τ) =
λ Γ(ϕ + δ)

Γ(ϕ) Γ(δ)
(λτ)ϕ−1 (1 + λ τ)−ϕ−δ (12)

and carrying out the changes of variables

λ =
ρ− 1

ξ
, δ =

1
ρ− 1

− ϕ, α = ϕ− 1 (13)

we have the q-generalized gamma probability density function

f4(τ) =
(ρ− 1)ϕ Γ

(
1

ρ−1

)

ξ Γ
(

1
ρ−1 − ϕ

)
Γ(ϕ)

(
τ

ξ

)ϕ−1 [
1 +

ρ− 1
ξ

τ

]1/(1−ρ)

. (14)

In the limit ρ→ 1, it recovers the ordinary gamma distribution. Finally, as in the case
of the q-exponential distribution (5), we reparametrize as follows: η = (2−ρ)

(ρ−1) , to simplify
parameter estimation through MCMC methods.

3. Inferential Issues

We briefly give the basic concepts on the Bayesian approach that we followed in esti-
mation and comparison of the four models. Let us assume that the data τ = (τ1, τ2, . . . , τN)
are realizations of a random variable T whose density function belongs to the parametric
family F = { f (τ; ψ) : ψ ∈ Ψ}. Contrary to the frequentist approach, the parameter ψ is
considered a random variable and its prior distribution p0(ψ) collects our initial beliefs
about the phenomenon under study. Through the Bayes’ theorem, the information pro-
vided by the data and expressed by the likelihood L( f (τ |ψ)) = ∏N

i=1 f (τi; ψ) is combined
with that in the prior distribution into the posterior distribution:

p(ψ | τ) = p0(ψ)L( f (τ |ψ))∫
Ψ p0(ψ)L( f (τ |ψ)) dψ

. (15)

From this distribution, we obtain not only the parameter estimate, typically as the
posterior mean Ep(ψ) but also indications on its accuracy through statistical summaries
such as the posterior variance or the quartiles. The computational difficulties due to
the evaluation of the integral in (15), which is often multi-dimensional as in our case,
can be solved by resorting to the application of Markov chain Monte Carlo (MCMC)
methods, which produce a sequence of random samples from the posterior distribution (15)
through which the distribution can be approximated [16]. In particular, we apply the
Metropolis–Hastings (MH) algorithm, which consists of the following steps: (a) generate
an initial value ψ0 from its prior distribution p0(ψ) and set i = 0, (b) for each iteration i,
generate a next candidate sample ψ̃ from an arbitrary probability density q(ψ | ψi), referred
to as proposal or jumping density, (c) calculate the acceptance probability

αi = min
(

1,
L( f (τ | ψ̃)) p0(ψ̃) q(ψi | ψ̃)

L( f (τ | ψi)) p0(ψi) q(ψ̃ | ψi)

)
,

and accept ψ̃ as ψi+1 with probability αi, or set ψi+1 = ψi with probability (1− αi).
The initial values of the chain may be highly dependent on the starting value; for this,

we neglect the first k samples and use the sequence {ψi}M+k
i=k+1, for large enough values of
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k and M, to estimate the posterior distribution p(ψ | τ) and to approximate the posterior
marginal log-likelihood:

logL( f (τ)) =
∫

Ψ
logL( f (τ | ψ)) p (ψ | τ) d ψ ≈ 1/M

M+k

∑
j=k+1

logL( f (τ | ψj)) (16)

which enables us to verify how well the fitted model f (·) is able to describe the observed
data. In general, given two statistical models f j(·|φ) and fk(·|η), we can compare them using
the difference of their posterior marginal log-likelihoods ∆jk = log L ( fj(τ)) − log L ( fk(τ)),
and then, similar to the Bayes factor, we establish the degree of evidence in favor of the
first model according to the value K of the Jeffreys scale [17,18].

Considering our four probability models in detail, we note that only the λ parameter
of the exponential distribution has the gamma distribution as a conjugate prior. For each
of the parameters of the other models, we choose a lognormal distribution both as a prior
and as a proposal distribution in the Metropolis–Hastings algorithm. Let us consider, for
instance, the parameter θ of the q-exponential distribution; we express our initial beliefs
about it by specifying its prior distribution Lognormal(meanθ , varθ), where mean and var
indicate the mean and variance of the random variable θ and not the mean and variance of
its logarithm, as in the common representation of the lognormal distribution. Moreover,
regarding the generation of the Markov chain converging to the posterior distribution of θ,
at the (i + 1)-th iteration, we adopt a Lognormal (θi, (θi/κ1)

2) as a proposal distribution
for the next candidate value, where θi is the current value of the Markov chain and the
value of κ1 is calibrated through pilot runs so that the acceptance rate of the MH algorithm
is approximately from 25% to 40%. The same applies for the other parameters.

4. Case Studies

To evaluate the performance of the four probability distributions of the interevent
time presented in Section 2, we examine two sequences of earthquakes related to two
strong seismic crises that occurred in central Italy in the last decades: the L’Aquila
(Mw 6.1) earthquake in 2009 and the Amatrice (Mw 6)–Norcia (Mw 6.5) earthquakes in
2016. These earthquakes have been associated with two composite seismogenic sources
of the Database of Individual Seismogenic Sources (DISS, version 3.2.1) [19] that can
have the potential for earthquakes up to Mmax 6.5. Both data sequences analyzed in this
study are taken from the Italian National Institute of Geophysics and Volcanology (Istituto
Nazionale di Geofisica e Vulcanologia; INGV) web services: Italian Seismological Instru-
mental and Parametric Database (ISIDe) working group (2016), version 1.0, accessible at
http://cnt.rm.ingv.it/en/iside accessed on 6 September 2023 [20], in which the size of the
events is expressed in different magnitude units, as local magnitude ML, duration mag-
nitude MD, and moment magnitude Mw. We therefore applied the orthogonal regression
relationships: Mw = 1.066 ML − 0.164 and Mw = 1.718 MD − 1.897 [21] to convert ML and
MD to Mw in order to construct the homogeneous data sets. The spatial extension of the
areas under examination is established by taking into account the empirical relationship
between the magnitude and rupture length RL—log10(RL) = −3.22+ 0.69 Mmax—by Wells
and Coppersmith [22].

For each of the two sequences, we calculate the time between pairs of successive
earthquakes in order to obtain a set of N observed interevent times; then, we consider time
windows that consist of n = 100 observations and that shift at each new event through
the seismic sequence under examination. In this way, we obtain (N − n + 1) data sets
on which to evaluate the fitting of the probability distributions listed in Section 2 and to
investigate whether the best distribution is unique or varies over time with the change of
the seismic phases.
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4.1. L’Aquila Sequence

On April 6, 2009 (01:13:40 UTC), a Mw 6.1 shock was recorded with an epicenter at
latitude 42.342 and longitude 13.380 near L’Aquila, the capital of the Abruzzo region in
Central Italy. Consistent with the above criteria, we choose the rectangular area centered
on the epicenter, of latitude size (41.8, 43.0) degrees and longitude size (12.8, 13.8) degrees
as the study area, and we analyze the temporal period from 7 April 2005 to the end of July
2009, taking m0 = 2 as the magnitude threshold to ensure the completeness of the data set,
except, at most, a few hours after the main shock when temporary partial incompleteness
can be observed due to the well-known difficulty in recording all the events at the beginning
of the aftershock sequence, and especially those of low magnitude [23]. The main shock was
preceded by a Mw 4 foreshock on 30 March 2009 [24], and was followed by an aftershock
sequence, which lasted more than a year, of which the strongest was of Mw 5.4 occurred on
7 April 2009 [25].

Overall, we have 2725 events, that is, N = 2724 interevent times through which we
construct m = 2625 temporal windows, each of 100 consecutive observations, shifting
at each new event. To observe how the temporal distribution changes, we fit the four
probability models (Section 2) to the data set associated with each time window, and then
compare the pairwise differences of their posterior marginal log-likelihoods with the value
K = 2.3026 on the Jeffreys scale, indicating strong evidence in favor of the first model.
In the case of the exponential probability density, f1(τ) = λ exp{−λ τ}, we adopt the
conjugate Gamma(2,1) distribution as a prior distribution of the λ parameter so that the
expected seismic rate is approximately 2 (time in days). For the other three probability
models under examination, Table 1 reports the parameters of the prior distributions and
the κ coefficients used in the proposal distributions of the MH algorithm to obtain suitable
acceptance rates.

Table 1. Parameters of the prior distributions and κ coefficients used in the proposal distributions in
the MH algorithm.

L’Aquila Case Amatrice-Norcia Case

Model Parameters Mean0 Var0 κ Mean0 Var0 κ

Gamma α 0.04 0.01 3.0 0.8 0.15 3.0
β 0.1 0.01 2.0 10.0 50.0 1.5

Q-exponential θ 3.0 9.0 0.8 7.0 9.0 2.5
γ 3.0 9.0 2.1 0.3 4.0 1.3

Q-generalized gamma
ξ 5.5 12.25 2.2 3.5 2.0 1.3
η 6.5 6.25 2 9.0 2.5 1.6
ϕ 0.7 0.04 4.0 0.7 0.02 3.5

Figure 1 shows the estimated density functions and the histogram of the interevent
times belonging to the time window in which each density function, represented by a solid
line, provides, respectively, the best fit to the data. In particular, (a) the window in the left
top panel refers to the events that occurred from 1 April 2009 up to two hours after the main
shock, 90% of which are aftershocks; the q-exponential density function has both its largest
posterior marginal likelihood and the maximum difference from the second best density
function (q-generalized gamma). (b) Right top panel: the window contains the events from
30 January 2009 to 1 h after the main shock; the q-generalized gamma density function is
the best model but it is not worth more than a mere mention for the evidence shown by
its fit to the data with respect to the second-best density (gamma). (c) Left bottom panel:
the window is all made up of aftershocks that occurred in the first three hours after the
main shock; the gamma density function is the best model, and it has a decisive strength
of the evidence against the second best model (q-exponential). (d) Right bottom panel:
the window covers the period from 24 April to 30 April 2009; there is nothing more than
evidence barely worthy of note in favor of the exponential density against the q-exponential
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and gamma density functions. We note that the heavy-tailed q-exponential distribution best
describes the data set with the mass most concentrated on the left and skewed to the right,
while the gamma density fits well the unimodal histogram associated with the aftershock
set immediately following the main shock. The relative lack of very short interevent times
is probably related to the temporary incompleteness of the catalog in that period.

Figure 2 shows the largest value among the posterior marginal likelihoods of the four
probability models at each time window; different colors highlight how the probability
distribution that fits best the observations varies over time. To understand the motivations
of these changes, we analyze the characteristics of each data set by showing some of their
statistical summaries, such as first and third quartiles, median, mean and skewness. We
remind that skewness is a measure of the asymmetry of the probability distribution. When
it is positive, as in our cases, the right tail is longer, and the mean is greater than the median;
more precisely, the greater the skewness, the more the distribution is left-leaning, that is,
the more the observed intertimes are concentrated around short values; viceversa smaller
skewness corresponds to more homogeneously distributed data where the median is closer
to (to the left of) the mean.

Figure 1. L’Aquila case—time window in which the q-exponential (left top panel), the q-generalized
gamma (right top panel), the gamma (left bottom panel), and the exponential (right bottom panel)
distribution provides the best fit to the data in terms of posterior marginal likelihood.

The time windows are divided as follows: in 1745 (66%), the q-exponential distribution
represents the best model; in 68 (2.6%), the q-generalized gamma distribution; in 760 (29%),
the gamma distribution; and in 52 (2%), the exponential distribution. We point out that the
strength of the evidence in favor of the best distribution over the second-best model is strong
in only about half of the time windows, particularly for the q-exponential and the gamma
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distribution in 828 and 334 windows, respectively, concentrated in the hours after the
main shock, whereas for the q-generalized gamma and the exponential distribution, in no
window. Moreover, we note that the difference between all four models is not particularly
significant in 143 (∼5%, approximately from the 2300-th to 2450-th window) time windows
mainly concentrated between May and June 2009; we address this issue in more detail
in the Supplementary Material. For brevity, we will say hereinafter that the models are
interchangeable when the difference between their posterior marginal log-likelihoods does
not exceed the threshold K = 2.3026.

Figure 2. L’Aquila case—value of the posterior marginal log-likelihood of the probability distribution
which provides the best fit to the data in each time window of the period (7 April 2005–31 July
2009) versus the number of the time window. Statistical summaries of the data set in each window:
first and third quartile (gray dotted lines), median (violet dotted line), mean (black dotted line),
skewness (orange points and line). Vertical bars indicate the occurrence time of the 30 March
2009 Mw 4 earthquake (red dashed line), L’Aquila Mw 6.1 earthquake (red solid line), and events of
5.0 ≤ Mw < 5.5 (blue line) respectively.

We examine the characteristic features of each probability model; the q-exponential
distribution shows very strong evidence with respect to the other distributions (the q-
generalized gamma is the second best model) in the time windows over the main shock,
that is, which include some pre-main shock event and some aftershock and during the
aftershock sequence, particularly since the end of June. The gamma distribution exceeds
the other distributions on the day of the main shock—6 April 2009—and is the second-best
model early in the aftershock sequence, often interchangeable with the best q-exponential
model. Substantially, the exponential distribution outperforms the other distributions with
slight evidence only in a few time windows in May–June 2009.

To better understand what happens before the main shock, in Figure 3, we zoom
in on the first 350 time windows covering the period from 7 April 2005 to 6 April 2009
h. 4. The q-generalized gamma distribution is the best model in the period from 12 March
2009 to 6 April 2009, one hour after the main shock; that is, the period that we can denote
as the preparatory phase in the seismic crisis because it includes the foreshock occurred
on 30 March 2009 and is denoted by a red dotted line in Figure 3. In this period, the
q-generalized gamma distribution is interchangeable with the gamma distribution but
exceeds the other distributions with strong evidence. The role exchanges in the preceding
period of background activity between April 2005 and March 2009, in which the gamma
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distribution is the best model, is interchangeable with the q-generalized gamma distribution
and exceeds the other distributions with strong evidence (see the Supplementary Material).

As regards the statistical summaries, we note that the preparatory phase is character-
ized by a constant decrease in the mean and in the median of the data sets approximately
from the beginning of 2009, while overall, the skewness increases up to 2 April 2009 and
then decreases. This means that the interevent times get shorter between January and
March 2009; obviously, the minimum values of the mean and median are observed during
the aftershock sequence.

Figure 3. L’Aquila case—value of the posterior marginal likelihood of the probability distribution
which provides the best fit to the data in the first 350 time windows covering the period (7 April
2005–6 April 2009 h. 4) versus the number of the time window. Statistical summaries of the data set
in each window: first and third quartile (gray dotted lines), median (violet dotted line), mean (black
dotted line), and skewness (orange points and line). Vertical red bars indicate the occurrence time
of the 30 March 2009 Mw 4 earthquake (red dashed line) and L’Aquila Mw 6.1 earthquake (red solid
line), respectively.

4.2. Amatrice-Norcia Sequence

In 2016–2017, the junction area of the three regions Lazio, Marche, and Umbria in
Central Italy was hit by a complex sequence of destructive seismic events; on 24 August
2016 (01:36:32 UTC, latitude 42.698, longitude 13.234), an earthquake of Mw 6 shook the
city of Amatrice and caused about 300 fatalities. This shock, initially considered the main
shock, later proved to be the foreshock of the Mw 6.5 strongest shock that struck the city of
Norcia on 30 October 2016 (06:40:17 UTC, latitude 42.830, longitude 13.109). The aftershock
sequence lasted roughly up to July 2017 [25] and recorded four Mw 5+ earthquakes on
18 January 2017. We consider 5062 events (N = 5061 interevent times), which fall in the
rectangular area of latitude size (42.3, 43.2) degrees and longitude size (12.7, 13.5) degrees
and span the temporal period from January 2014 to June 2018, taking m0 = 2.5 as the
magnitude threshold in order to guarantee the completeness of the data set apart from the
first hours following the main shock on 30 October 2016.

We investigate the behavior of the four probability distributions, given in Section 2, in
m = 4962 data sets, each of which obtained, by shifting at each new event, a time window
constituted of 100 consecutive waiting times. First, we evaluate the posterior marginal
log-likelihood of each distribution in every time window by applying the MH algorithm to
estimate the posterior distribution of the model parameters; Table 1 shows the parameters
of the prior distributions and the κ coefficients used in the proposal distributions of the MH
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algorithm to obtain suitable acceptance rates. Comparing the pairwise differences between
the four posterior marginal log-likelihoods with the value K = 2.3026 of the Jeffreys scale,
we obtain the probability distribution with the best performance in each time window and
the strength of its evidence with respect to the other distributions.

Figure 4 shows the estimated density functions and the histogram of the interevent
times belonging to the time window in which each density function, represented by a
solid line, provides, respectively, the best fit to the data, that is, it has its largest posterior
marginal likelihood and the maximum difference from the likelihood of the second-best
density function. In particular, (a) the left top panel refers to the time window which
includes the first 98 aftershocks covering the two hours following the Amatrice shock,
which was preceded by two waiting times of approximately 28 and 63 days; the data
set is therefore very right skewed with a long right tail, and it is best described by the
q-exponential density function, which outperforms the other distributions with decisive
evidence. (b) Right top panel: the q-generalized gamma distribution is the best model
in the time window from 26 June 2009 to 15 January 2010, which includes the final part
of the L’Aquila aftershock sequence. (c) Left bottom panel: the time window includes
the aftershocks that occurred between h. 8 and h. 10 of the occurrence day of the Norcia
main shock (30 October 2016, 06:40:17 UTC); the gamma density function shows a decisive
strength of evidence against the other probability distributions by adapting very well to
the unimodal histogram of the interevent times, which are probably missing the shorter
ones due to the temporary incompleteness of the catalog after the strongest event. (d) Right
bottom panel: the exponential distribution is interchangeable with the gamma and q-
exponential distribution in the time window from 25 December 2016 to 18 January 2017,
when the first of the four Mw 5+ events occurred at Capitignano.

Figure 5 shows the value of the largest posterior marginal log-likelihood at each time
window, and the different colors indicate which probability model this value corresponds
to; the x axis represents the window number in the left panel and the time in the right
panel. The first and third quartiles, median, mean and skewness of each data set are shown
to highlight how the distribution of the observations changes over time. The time windows
are divided as follows: in 1825 (36.8%), the q-exponential distribution represents the best
model; in 360 (7.3%), the q-generalized gamma distribution; in 2748 (55.4%), the gamma
distribution; and in 29 (0.6%), the exponential distribution. The strength of the evidence in
favor of the best distribution with respect to the second-best model is strong or decisive
in only about a third of the time windows, in which the outperforming distribution is
especially q-exponential or gamma; in particular, as for the q-exponential, the q-generalized
gamma and the gamma distribution in 613, 12 and 1025 windows, respectively, are essen-
tially concentrated in the hours after the strongest shocks, whereas for the exponential
distribution, in no window. The Supplementary Material provides a detailed visualization
of the time windows in which the strength of the evidence in favor of a probability model
is particularly significant and those in which it is not.

Let us take a more thorough look at the behavior of the various distributions. The
q-exponential distribution is significantly the best model essentially in the first hours
following the strongest earthquakes: from h. 5 to h. 8 of the day of occurrence of the
L’Aquila earthquake (6 April 2009), from h. 2 to h. 3 of the day of occurrence of the
Amatrice earthquake (24 August 2016), in the time windows including the first aftershocks
of the Norcia earthquake (30 October 2016), and in the days of occurrence of the Mw 5+
shocks on 18 and 19 January 2017; in the other time windows in which it has the largest log-
likelihood, always during the aftershock sequences, it is interchangeable with the gamma
distribution (see the Supplementary Material). The q-generalized gamma distribution
characterizes the periods from January 2010 to November 2012 and from September 2017
to the end of our study; the difference from the other distributions has strong evidence
only in January 2010, while in the other time windows, the q-generalized gamma density is
interchangeable with the gamma density (see the Supplementary Material).
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Figure 4. Amatrice-Norcia case—time window in which the q-exponential (left top panel), the q-
generalized gamma (right top panel), the gamma (left bottom panel), and the exponential (right
bottom panel) distribution provide the best fit to the data in terms of posterior marginal likelihood.

Figure 5. Amatrice-Norcia case—value of the posterior marginal log-likelihood of the proba-
bility distribution which provides the best fit to the data in each time window of the period
(1 January 2009–31 June 2018) vs. (left) the number of the time window and (right) the time. Statisti-
cal summaries of the data set in each window: first and third quartiles (gray dotted lines), mean (black
dotted line), median (violet dotted line), skewness (orange points and line). Vertical bars indicate the
occurrence time of Amatrice 24 August 2016 Mw 6.0 earthquake (magenta line), Norcia 30 October
2016 Mw 6.5 earthquake (red line), events of 5.0 ≤ Mw < 5.5 (blue line) and of 5.5 ≤ Mw < 6.0 (violet
line) respectively.
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The gamma distribution has the largest value of the posterior marginal log-likelihood
in most time windows—in almost half of them with strong or decisive evidence—and
precisely in those covering both part of the aftershock sequences (in particular, the windows,
including the first forty aftershocks following the Amatrice shock and the first hours after
the main shock in Norcia) and the quiescence period from December 2012 to August 2016;
in some of the first ones, the gamma model is interchangeable with the q-exponential model,
while in the second ones, it is interchangeable with the q-generalized gamma model (see
the Supplementary Material).

In Figure 6, we distinguish the results obtained before the start of the Amatrice-
Norcia seismic crisis (left panels) from those produced by the sequence of earthquakes
following the Amatrice shock (right panels); the value of the largest posterior marginal
log-likelihood is plotted versus the time window number in the top panels and versus
time in the bottom panels. We note that the average interevent time and the likelihood
are inversely correlated, i.e., the more the observed recurrence times are concentrated
in short times, the greater the likelihood, or, in other words, the likelihood decreases as
the seismic activity decreases. Furthermore, the gamma distribution is the best model in
correspondence with the minimum values of likelihood: local minima before the shocks
of greater magnitude and the absolute minimum reached on 11 February 2015. The years
leading up to the onset of the Amatrice-Norcia seismic crisis are characterized by decreasing
values of the log-likelihood and by the gamma distribution as the best model but with
barely noteworthy evidence with respect to the q-generalized gamma distribution, which is
the second-best model; vice versa, the q-generalized gamma distribution is the best model,
and it is interchangeable with the gamma distribution in the years between the end of the
L’Aquila aftershock sequence and the beginning of 2013. Since 2009, the average interevent
time has a constantly increasing trend, which becomes almost flat starting from 2015 at the
same time that the value of the median approaches that of the average.

Figure 6. Amatrice-Norcia case—value of the posterior marginal log-likelihood of the probability
distribution which provides the best fit to the data in the first 1000 time windows covering the pe-
riod (1 January 2009–24 August 2016 h. 3) (left panels) and in the remaining time windows up to
31 June 2018 (right panels), versus the number of the time window (top panels) and versus the time
(bottom panels). Statistical summaries of the data set in each window: mean (black dotted line), median
(violet dotted line), skewness (orange points and line). Vertical bars indicate the occurrence time of
Amatrice 24 August 2016 Mw 6.0 earthquake (magenta line), Norcia 30 October 2016 Mw 6.5 earthquake
(red line), events of 5.0 ≤ Mw < 5.5 (blue line) and of 5.5 ≤ Mw < 6.0 (violet line), respectively.
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5. Discussion

We investigated the probability distributions of the time between two successive
earthquakes with the aim of finding out if there are links between the seismic phases and
variations of the probabilistic model that best fits the data in those phases. To this end, we
examined two seismic crises that hit central Italy and are related to the L’Aquila earthquake
in 2009 and the Amatrice-Norcia shocks in 2016. Their retrospective analysis showed that
the first crisis had a foreshock of Mw 4 on 30 March 2009, while the second had one so
strong—Mw 6—that it was initially mistaken for the main shock. Overall, the Amatrice-
Norcia sequence turned out to be more complex with greater energy release. As for the
relationships between seismic phases and variations of the best probability distribution of
the recurrence time, the two events share some features:

• Most of the probability densities estimated in the various time windows have a
decreasing shape as an inverse power law.

• The time windows with many very short interevent times—like those in the after-
shock sequences—are associated with great likelihood, while the data sets which
are less concentrated around short times, typical of the quiescence period, have
smaller likelihood.

• The q-exponential distribution outperforms the other distributions in the initial part of
the aftershock sequence, and it becomes interchangeable with the gamma distribution.

• The q-generalized gamma distribution is associated with time intervals following
aftershock sequences, such as, for example, the years from 2010 to 2012 following the
aftershock sequence of L’Aquila earthquake and from September 2017 after the Mw 5+
Capitignano shocks; in these periods, it slightly exceeds the gamma distribution.
Only in the case of the L’Aquila earthquake, the q-generalized gamma distribution
characterizes the initial phase of the activation between the fore- and the main shock.

• The gamma distribution is interchangeable with the q-generalized gamma distribution
in the periods of low seismic activity and with the q-exponential distribution in part
of the aftershock sequences.

Similar results have also been found in other studies, in which the phases of a seismic
cycle are related to changes in the probability distribution of the magnitude [26] and of the
spatial location of the epicenters [9].

Another remark can be made on the value of the log-likelihood in the case of the
Amatrice-Norcia crisis. As we expect, it decreases during the aftershock sequences; how-
ever, we note that it becomes even negative just over two months after the Capitignano
Mw 5+ earthquakes, while it remains high when the same time has elapsed after the Ama-
trice and Norcia shocks. This could suggest that we should expect further energy releases
after the Amatrice and Norcia events.

As regards the effects on the results of the possible partial incompleteness of the
catalog in the few hours following a strong shock, we recall that a sensitivity analysis for
the q-exponential distribution of the magnitude was carried out in [26] and highlighted
a substantial similarity in the behavior of the entropy and of the q-index curves obtained
from the different completeness magnitudes.

6. Conclusions

If, upon repeating the same analyses on different cases and in different seismotectonic
contexts, the connection between changes in the probability distributions and seismic
phases were confirmed, it could be hypothesized that these observations have the value of
precursors of the activation level in a seismic region. The existence of the seismic precursors
is still a widely open problem; but, already in 1999, Evison claimed that “despite the
difficulties confronting experimentation in this field, there is growing empirical evidence
that precursors exist.” [27]. Just as it is true that the most informative way to convey an
earthquake prediction, including the uncertainties, is by means of probability distributions
in the space–time–magnitude domain [28], it could be the same probability distributions
that play the role of precursors.
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We conclude by adopting Evison’s statement [27]: “Prediction is ubiquitous in science
as a test of understanding: to the extent that a phenomenon is understood, it can be
predicted, and vice-versa. If earthquakes were unpredictable, seismogenesis would be a
closed book, research would be futile, and the earthquake would remain, in the words of
Alexander McKay [29] ‘a visitation and a mistery’”.
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Abstract: Large subduction-zone earthquakes generate long-lasting and wide-spread aftershock
sequences. The physical and statistical patterns of these aftershock sequences are of considerable
importance for better understanding earthquake dynamics and for seismic hazard assessments and
earthquake risk mitigation. In this work, we analyzed the statistical properties of 42 aftershock
sequences in terms of their temporal evolution. These aftershock sequences followed recent large
subduction-zone earthquakes of M ≥ 7.0 with focal depths less than 70 km that have occurred
worldwide since 1976. Their temporal properties were analyzed by investigating the probability
distribution of the interevent times between successive aftershocks in terms of non-extensive sta-
tistical physics (NESP). We demonstrate the presence of a crossover behavior from power-law (q
6= 1) to exponential (q = 1) scaling for greater interevent times. The estimated entropic q-values
characterizing the observed distributions range from 1.67 to 1.83. The q-exponential behavior, along
with the crossover behavior observed for greater interevent times, are further discussed in terms of
superstatistics and in view of a stochastic mechanism with memory effects, which could generate the
observed scaling patterns of the interevent time evolution in earthquake aftershock sequences.

Keywords: subduction zones; megathrust earthquakes; aftershock sequences; interevent times;
superstatistics; Tsallis entropy

1. Introduction

Megathrust faults, which bring together the surfaces of overthrusting and underthrust-
ing plates in subduction zones, host the largest earthquakes on Earth. The downward
motion of the subducting plate can generate exceptionally larger earthquakes with magni-
tudes even greater than Mw 7, releasing tremendous amounts of seismic energy that can
have devastating repercussions across wide geographic regions. These large earthquakes
generate prolonged aftershock sequences, which may last days to months or even years [1–
6]. Not only can the mainshock of a megathrust earthquake cause extensive damages to
many structures in its vicinity and the loss of lives, but the aftershocks that follow may also
have destructive consequences. As a result, emergency preparedness and planning must
include the effects of aftershocks on susceptible sectors of society and infrastructure [1–4].
This is achieved by estimating the parameters of various well-established empirical laws for
aftershock sequences following major mainshocks in a specific seismogenic region [6–8]. In
a subduction zone, the intense friction between the descending and overriding plates may
generate shallow, intermediate, or deep earthquakes, which may occur both within the de-
scending and overriding plates as well as along the interface between the two plates [9,10].
The magnitudes of such earthquakes vary greatly, depending on the sorts of boundaries
that cause them. Almost all major earthquakes occur along boundaries of convergence
or transform. Megathrust earthquakes are the most devastating events, with magnitudes

Entropy 2022, 24, 1850. https://doi.org/10.3390/e24121850 https://www.mdpi.com/journal/entropy
80



Entropy 2022, 24, 1850

reaching or exceeding Mw 9.0 in some cases. As a result, a deeper understanding is crucial
for earthquake physics and earthquake early warning systems. Aftershock sequences
following megathrust earthquakes can raise the level of seismic risk, even in distant areas
far away from the mainshock’s fault zone.

To this aim, the aftershock sequences of significant subduction-zone earthquakes with
magnitudes greater than 7.0 that occurred between 1976 and 2020 were investigated, with
a focus on their temporal distributions in view of the ideas of statistical physics. The
statistical physics approach expresses the basic principles of the evolution of seismicity
using the universal principle of entropy. In particular, we used the non-extensive statistical
physics (NESP) framework, which provides a generalization of the ordinary Boltzmann–
Gibbs (BG) statistical physics [11–17]. The main advantage of using NESP is that all length
correlations and memory effects are considered in the temporal evolution of seismicity,
including BG statistical physics as a particular case [18–22]. In this work, the temporal
scaling characteristics of major subduction zone aftershock sequences in terms of NESP
were studied by estimating the probability distribution of the interevent times between
successive aftershocks and its non-additive entropic parameter (q) [12,18,23–29]. We show
that the observed probability distributions present a universal behavior with a crossover
from power-law (q 6= 1) to exponential (q = 1) scaling at longer interevent times.

2. Materials and Methods

Non-extensive statistical physics (NESP), based on the generalization of BG statistics,
is an appropriate method to describe complex systems with (multi)fractality, long-range
interactions, and long-term memory effects, resulting in power-law asymptotic behavior
that is widely observed in nature [12,30–40]. Central to NESP is the expression of Tsallis
entropy (Sq) [12,31–33], which is given as

Sq = kB
1−∑ pq(X)

q− 1
, (1)

in terms of a fundamental parameter’s probability distribution (p(X)). In the present work, X
is the interevent time (T), i.e., the time interval between successive aftershock events [35,41],
and kB is Boltzmann’s constant. The q parameter is the so-called entropic index, which
signifies the degree of non-additivity in the system [12]. For the particular case of q = 1,
Sq = SBG and the BG entropy is recovered. Despite the fact that Sq and SBG have many
similarities, such as non-negativity, expansibility, and concavity, there is a major difference
between the two formalisms. The BG entropy is additive, meaning that the entropy of a
coupled system is equal to the sum of the entropies of its constituent components, whereas
the Tsallis entropy (Sq) (with q 6= 1) is non-additive [12,18,30,42,43]. Tsallis entropy satisfies
the following condition for any two probabilistically independent systems, A and B:

Sq(A + B) = Sq(A) + Sq(B) +
(q− 1)

kB
Sq(A)Sq(B), (2)

In particular, q < 1 corresponds to superadditivity, and q > 1 corresponds to subaddi-
tivity, while the right-hand side of Equation (2) disappears when q = 1, so it corresponds to
the additivity characteristics [12,24,44–56].

If X is a physical parameter that characterizes the system, such as earthquake in-
terevent times (T), the probability distribution (p(T)) is determined using the Lagrange
multipliers method by maximizing the entropy under suitable constraints [12]. Using the
previous approach, Equation (1) leads to the probability distribution function

p(T) =

[
1− (1− q)

(
T
T q

)] 1
1−q

Zq
=

expq
(
−T/Tq

)

Zq
, (3)
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where Zq is the q-partition function

Zq =
∫ ∞

0
expq

(
−T/Tq

)
dT, (4)

and Tq is a generalized scaled interevent time. The nominator of Equation (3) is the
q-exponential function, which is defined as [12]

expq(X) = [1 + (1− q)X]
1

1−q , (5)

for 1 + (1− q)X ≥ 0, while in other cases expq(X) = 0.
The cumulative distribution function P(> T) = N(> T)/No, where N(>T) is the

number of interevent times with values greater than T and No, their total number, is
estimated as [24]

P(> T) = expQ(−T/T∗), (6)

which has the mathematical form of a q-exponential function with T∗ = TqQ and
q = 2− (1/Q). The inverse function of the Q-exponential function is the so-called Q-
logarithmic function, which is defined as [24]

lnQP(> T) =
P(> T)1−Q − 1

1−Q
, (7)

From Equation (7), it follows that lnQP(> T) = − T
T∗ , indicating a straight line with

slope −1/T∗.

3. Data Selection and Analysis

Herein, the statistical properties of the temporal evolution of aftershock sequences that
followed large subduction-zone earthquakes worldwide during the last few decades are
presented. The analyzed earthquakes occurred in various subduction zones all around the
edge of the Pacific Ocean, Canada, Alaska, Russia, Indonesia, and Japan (Figure 1). We used
42 aftershock sequences generated by mainshocks of Mw 7.0 and greater with focal depths
less than 70 km that occurred from January 1976 to July 2020 and were located at a maximum
distance of 100 km from the main event. The aftershock catalogues were extracted from
the United States Geological Survey (USGS) database [48]. To create the catalogues of the
aftershock sequences, an elliptical region with a maximum distance of 100 km from the
mainshock was selected for each main event, based on the distribution of aftershocks, to
designate a probable aftershock zone. Then, all earthquake events that occurred within
this region, for a maximum period of two years after the mainshock, were included in the
catalogue. Once the catalogues were defined, the frequency–magnitude distribution was
used to estimate the completeness magnitude (Mc) of each aftershock sequence [49,50]. The
catalogues that were analyzed consisted of at least 100 events. Ultimately, the final list
included 42 mainshocks and their aftershock sequences (see Table 1).

Figure 1 depicts the geographical locations of the 42 studied mainshocks that occurred
in subduction zones around the world. The event indexes correspond to the number of each
mainshock in Table 1, which are listed chronologically from the oldest to the most recent.
The parameters of each mainshock and its aftershock sequence, along with the entropic
parameter (q), were calculated for the interevent time distribution and are presented in
Table 1, along with the parameter Tc, which marks the crossover points between the
non-additive and additive behavior in each aftershock sequence.
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Figure 1. (a) Geographical distribution of the 42 subduction-zone earthquakes that were studied. The
event indexes correspond to those listed in Table 1, while the dashed lines represent the subduction
zones. The details of earthquakes located on the dashed squares are extracted in panels (b,c).
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Table 1. Summary of the results for the 42 subduction zone aftershock sequences. Mc is the completeness
magnitude of each catalogue, N is the number of aftershocks, q the entropic index of the interevent time
distribution, Tq is the generalized scaled interevent time, and Tc is the critical interevent time, where a
crossover from NESP to BG statistical mechanics appeared (see the text for details).

Index
Number Date Epicenter

(Lat, Lon)
Depth
(km)

Duration
(days)

Mainshock
Magnitude (Mw) Mc N qT Tq (s) Tc (s)

1 14 January 1976 −28.43, −177.66 33.00 346 8.0 5.4 101 1.78 4444 4 × 105

2 19 August 1977 −11.14, 118.23 23.30 649 8.3 5.3 124 1.69 3750 5 × 105

3 20 October 1986 −27.93, −176.07 50.40 732 7.7 5.3 103 1.74 1579 10 × 105

4 4 October 1994 43.60, 147.63 68.20 248 8.3 5.2 219 1.72 472 2 × 105

5 16 August 1995 −5.51, 153.64 45.60 89 7.7 5.2 100 1.77 2791 4 × 105

6 3 December 1995 44.82, 150.17 25.90 333 7.9 5.2 138 1.83 200 2 × 105

7 4 June 2000 −4.73, 101.94 43.90 719 7.9 5.2 162 1.82 1636 3 × 105

8 16 November 2000 −4.56, 152.79 24.00 357 8.0 5.5 165 1.73 822 5 × 105

9 23 June 2001 −17.28, −72.71 29.60 710 8.4 5.2 109 1.79 250 20 × 105

10 25 September 2003 42.21, 143.84 28.20 708 8.3 5.1 110 1.78 4000 6 × 105

11 26 December 2004 3.09, 94.26 28.60 692 9.0 5.1 356 1.69 3063 3 × 105

12 28 March 2005 1.67, 97.07 25.80 709 8.6 5.1 210 1.83 667 2 × 105

13 3 May 2006 −20.39, −173.47 67.80 713 8.0 5.0 100 1.75 22,500 3 × 105

14 17 July 2006 −10.28, 107.78 20.00 186 7.7 5.3 133 1.67 433 0.2 × 105

15 1 April 2007 −7.79, 156.34 14.10 687 8.1 5.2 115 1.81 2692 8 × 105

16 12 September 2007 −3.78, 100.99 24.40 722 8.5 5.1 174 1.83 833 1 × 105

17 11 February 2009 3.92, 126.81 23.90 699 7.2 5.2 126 1.81 346 20 × 105

18 29 September 2009 −15.13, −171.97 12.00 728 8.1 5.2 228 1.83 1500 1 × 105

19 7 October 2009 −11.86, 166.01 41.70 695 7.8 5.1 154 1.80 1600 4 × 105

20 27 February 2010 −35.98, −73.15 23.20 720 8.8 5.0 190 1.76 6098 3 × 105

21 11 March 2011 37.52, 143.05 20.20 717 9.1 5.0 435 1.74 26,316 1 × 105

22 6 July 2011 −29.22, −175.83 32.50 364 7.6 5.1 140 1.71 6286 4 × 105

23 11 April 2012 2.35, 92.82 45.60 359 8.6 5.2 129 1.80 286 8 × 105

24 30 August 2013 51.54, −175.23 29.00 724 7.0 4.8 133 1.80 224 10 × 105

25 12 April 2014 −11.35, 162.24 27.30 411 7.6 4.9 177 1.75 173 60 × 105

26 19 April 2014 −6.64, 154.67 43.40 722 7.5 4.7 107 1.83 776 2 × 105

27 15 November 2014 1.98, 126.37 45.00 664 7.1 4.6 119 1.81 472 3 × 105

28 29 March 2015 −5.18, 152.59 37.60 719 7.5 4.7 245 1.71 2857 2 × 105

29 16 September 2015 −31.57, −71.67 22.40 575 8.3 4.6 213 1.78 222 6 × 105

30 28 May 2016 −56.24, −26.94 68.00 616 7.2 4.9 107 1.78 3333 3 × 105

31 1 September 2016 −37.36, 179.15 19.00 580 7.0 4.7 166 1.74 263 3 × 105

32 13 November 2016 −42.74, 173.05 15.10 648 7.8 4.9 144 1.72 556 50 × 105

33 8 December 2016 −10.68, 161.33 40.00 479 7.8 5.0 100 1.72 278 10 × 105

34 8 September 2017 15.02, −93.90 47.40 737 8.2 4.8 252 1.74 921 3 × 105

35 23 January 2018 56.00, −149.17 14.10 437 7.9 4.5 113 1.81 367 2 × 105

36 5 December 2018 −21.95, 169.43 10.00 670 7.5 4.8 166 1.78 217 1 × 105

37 20 December 2018 55.10, 164.70 16.60 662 7.3 4.6 131 1.78 435 8 × 105

38 14 May 2019 −4.05, 152.60 10.00 573 7.6 4.9 103 1.86 411 4 × 105

39 15 June 2019 −30.64, −178.10 46.00 530 7.3 4.8 217 1.75 2250 3 × 105

40 14 November 2019 1.62, 126.42 33.00 364 7.1 4.8 191 1.82 143 2 × 105

41 18 June 2020 −33.29, −177.86 10.00 102 7.4 4.9 121 1.72 694 0.6 × 105

42 22 July 2020 55.07, −158.60 28.00 138 7.8 4.2 207 1.69 313 0.5 × 105

For each aftershock sequence, the cumulative interevent time distribution was esti-
mated, and the corresponding fitting with the Q-exponential function, up to the value
Tc, provided the Q and q parameter values. We noted that, for large values of T, with

84



Entropy 2022, 24, 1850

T > Tc, a deviation from the Q-exponential function was observed (e.g., Figure 2a). In
addition, the Q-logarithmic function of P(>T) as a function of the interevent times (T) was
plotted using the Q value estimated in the previous analysis. Then, the range of interevent
times where lnQP(>T) vs. T was a straight line, given by Equation (8), was defined with
its correlation coefficient. The deviation from the linearity at Tc indicated the crossover
between NESP and BG statistical physics. Furthermore, the evolution of the interevent
times (T) as a function of time (t) since the main event further indicated that, in short time
scales after the mainshock, the main driving mechanism is governed by NESP, while, as the
aftershock sequence evolves at T > Tc, the system is governed by BG statistical mechanics.
The aforementioned earthquake statistical analysis and processing was carried out for all
major earthquake aftershock sequences listed in Table 1, with results consistent with the
previous analysis for all aftershock sequences, indicating a universal behavior in their
temporal evolution.

Figure 2. (a) The cumulative distribution function of the interevent times for the 2004 Mw 9.0 Sumatra–
Andaman Islands Earthquake. The magenta line is the Q-exponential function fitting with q = 1.69.
(b) The Q-logarithmic function of P(>T) as a function of the interevent times (T), where the dashed
line is the Q-exponential function fitting with q = 1.69, exhibiting a correlation coefficient of 0.9923.
The deviation from linearity suggests a Tc value close to 3 × 105 s. (c) The evolution of interevent
times (T) as a function of the time (t) since the main event. The Tc value is indicated by the red
dashed line.
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In Table 1, the results of the analysis of the 42 subduction zone aftershock sequences
are summarized. For each aftershock sequence, the entropic index (q) of the interevent
time distribution, along with the generalized scaled interevent time (Tq) and the critical
interevent time (Tc), are presented. In the following section, we present some characteristic
cases referring to the strongest events during the last few decades: the 2004 Mw 9.0 Sumatra–
Andaman Islands Earthquake and the 2011 Mw 9.1 Great Tohoku (Japan) Earthquake. The
corresponding results for the other aftershock sequences listed in Table 1 are provided in
the Supplementary Materials.

3.1. The 2004 Mw 9.0 Sumatra–Andaman Islands Earthquake

The Mw 9.0 Sumatra earthquake, which occurred on 26 December 2004 at a focal
depth of 30 km, was the fourth largest earthquake recorded since 1900. It originated from
thrust faulting between the meeting point of the Indian plate and the Burma micro-plate.
According to the USGS database, 356 aftershocks occurred with magnitudes greater than
Mw 5.1 in a period of two years after the mainshock. One of the greatest disasters recorded
in human history was brought on by the tsunami generated by the mainshock. More than
283,000 people were killed in total, while the severeness and impact of the earthquake
were demonstrated by the fact that the tsunami crossed the Pacific and Atlantic Oceans
and was recorded in New Zealand as well as along the west and east coasts of South and
North America. Tsunamis continued to occur in Mozambique, South Africa, Australia, and
Antarctica. The mainshock even caused eruptions in a mud volcano at Baratang, Andaman
Islands, on 28 December 2004 [51,52].

The cumulative distribution function of the interevent times for the 2004 Mw 9.0
Sumatra–Andaman Islands Earthquake was fitted for T < Tc with the Q-exponential func-
tion for q = 1.69 (Figure 2). The corresponding Q-logarithmic function of P(>T), as a function
of the interevent times for q = 1.69, was fitted by a straight line, as given by Equation (8),
with a correlation coefficient of 0.9923. The deviation from linearity was observed at a Tc
value close to 3 × 105 s, indicating the crossover point between NESP and BG statistical
physics. Furthermore, the evolution of the interevent times (T) as a function of the time (t)
since the main event is presented in Figure 2c. The Tc value (red dashed line in Figure 2c)
indicates that the majority of interevent times in the early period following the mainshock
had T values less than Tc, suggesting that the Tsallis entropic mechanism was predominant
in the immediate part of the aftershocks’ evolution. As time evolved, some of the character-
istics of the early aftershock sequence, such as that of the long-range memory related to
NESP, were less predominant and the BG statistical physics recovered (i.e., q = 1).

3.2. The 2011 Mw 9.1 Great Tohoku (Japan) Earthquake

The Mw 9.1 Tohoku earthquake, which occurred on 11 March 2011, was generated by
thrust faulting at the boundary of the subduction zone between the Pacific and North Amer-
ican plates. It was located close to Honshu, on Japan’s northeast coast. This earthquake
was preceded by many strong foreshocks that occurred over a period of two days prior to
the mainshock, starting on March 9 with an Mw 7.2 earthquake and continuing the same
day with three more earthquakes greater than Mw 6.0. Additionally, during the period of
two years after the mainshock, 435 aftershocks of magnitudes equal or greater than Mw
5.0 occurred. The mainshock generated a tsunami reaching heights up to 40.5 m, with a
devastating impact on Japan’s northern island coastal areas, before spreading all over the
Pacific coasts of North and South America, from Alaska to Chile. The event’s destructive
tsunami waves are estimated to have contributed to 19,759 fatalities and 6242 injuries. The
Fukushima nuclear power plant was damaged as a result of the tsunami, which led to
significant radioactive pollution [52,53].

The cumulative distribution function of the interevent times, presented in Figure 3a,
presented similar characteristics as the previous case of the Mw 9.0 Sumatra earthquake.
For T < Tc, it was fitted by a Q-exponential function with q = 1.74 (Figure 3a), while
the corresponding Q-logarithmic function of P(>T) presented a correlation coefficient of
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0.9828 for T values up to Tc (Figure 3b). The deviation from linearity was observed at a Tc
value close to 1 × 105 s, indicating the crossover point between NESP and BG statistical
physics (Figure 3c).

Figure 3. (a) The cumulative distribution function of the interevent times (T) for the 2011 Mw 9.1
Great Tohoku (Japan) Earthquake. The magenta line is the Q-exponential function fitting with q = 1.74.
(b) The Q-logarithmic function of P(>T) as a function of the interevent times (T). The dashed line is
the Q-exponential function fitting with q = 1.74, presenting the correlation coefficient of 0.9828. The
deviation from linearity suggests a Tc value close to 1 × 105 s. (c) The evolution of the interevent
times (T) as a function of the time (t) since the main event. The Tc value is indicated by the red
dashed line.

Since the results have demonstrated that P(>T) = expQ (−T/T*) for T < Tc, we intro-
duced a new variable, x = T/Tc, for which x < 1 suggests the range where the Tsallis entropic
mechanism is predominant, while x > 1 is related to the exponential roll-off in the tail of the
distribution. In Figure 4, the cumulative interevent time distributions are presented for all
aftershock sequences listed in Table 1. For all analyzed aftershock sequences, a deviation
from the Q-exponential function existed for x > 1 (i.e., T > Tc). It is straightforward that
P(>x) = expQ(−x/x*), where x* = T*/Tc. An inspection of Figure 4 suggested that for
0.01 < x < 1 a power-law scaling range was observed for all aftershock sequences, with an
average slope of 0.33, which corresponds to a value of q ≈ 1.75, in general agreement with
the range of q values reported in Table 1.
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Figure 4. The cumulative interevent time distributions for all analyzed aftershock sequences as
functions of T/Tc. For all sequences, a deviation from the Q-exponential function is presented
for T/Tc > 1.

4. Discussion

In the present work, the temporal patterns of major subduction zone aftershock se-
quences that occurred from 1976 to 2020 were analyzed in terms of non-extensive statistical
physics. We observed that in all cases a Q-exponential function described the cumulative
distribution P(>T) of the aftershock interevent times for short timescales, while for large val-
ues of T (T > Tc), where Tc was a critical crossover interevent time between the non-additive
and additive behavior, a deviation from the Q-exponential function appeared. For each
aftershock sequence, the entropic parameter (q) was estimated by fitting a Q-exponential
function to the observed data up to a value near Tc. Thus, the applicability of non-extensive
statistical physics to the cumulative distribution functions of interevent times and the
presence of a crossover behavior from power-law (q 6= 1) to exponential (q = 1) scaling for
greater interevent times was demonstrated. The latter implies a sub-additive process with
q-values greater than one, supporting the concept of long-range memory in the temporal
evolution of aftershocks for T < Tc. Furthermore, most of the estimated non-extensive
q-values that characterized the observed distributions were within the range of 1.67–1.83.

The observed deviation from the Q-exponential function for longer interevent times
can be described as the superposition of two aftershock mechanisms. The first mechanism,
described by Tsallis entropy, was dominant for interevent times with T < Tc, whereas the
second, characterized by an exponential function, became evident for T > Tc. To incorporate
a crossover from anomalous (q 6= 1) to normal BG (q = 1) statistical physics, we introduced
the generalization presented in [54,55] where

dp(T)
dT

= −β1 p−
(

βq − β1
)

pq, (8)

whose solution is

p(T) = C
[

1− βq

β1
+

βq

β1
e(q−1)β1T

]1/1−q
, (9)

where C is a normalization factor and p(T) decreases monotonically with increasing T for
positive βq and β1. As a result, in the case where (q− 1)β1� 1, Equation (9) is approximated
with a q-exponential, p(T) ≈ Cexpq

(
−T/Tq

)
, where Tq = 1/βq, whereas for (q − 1)β1 � 1,

the asymptotic behavior of the probability distribution p(T) ∝
(

β1
βq

)1/(q−1)
e−β1T is an

exponential function, where Tc = 1/(q− 1)β1 is the crossover point between the non-
additive and additive behavior [11,32].
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The q-exponential scaling behavior of interevent times for T < Tc can be originated
from a simple mechanism, namely a gamma-distributed allocated parameter (β) of the local
Poisson process, and may be used to explain the interevent time distribution in aftershock
sequences. The Tc value indicated that in the early aftershock period the majority of
interevent times had T values lower than Tc and their distributions were described by
NESP, while properties such as long-range memory, associated with NESP, became less
prominent as the system relaxed and the BG statistical physics recovered [56–61].

The q-exponential behavior of the interevent times can further be viewed in terms of
superstatistics, which are based on a superposition of ordinary local equilibrium statistical
mechanics with a suitable intensive parameter (β) that varies as a gamma distribution on a
reasonably wide temporal scale and is supplementary to NESP [19,23,61–65].

Then, a superstatistical approach for the interevent times of the earthquake aftershock
sequences can be used, where the local Poisson process p(T|β) = βe−βT with β as an
intensive fluctuating parameter has a particular value denoted by the equation p(T|β). On
a long time scale, this parameter is distributed with the probability density (f (β)) [19,62–66].
Then, the probability distribution (p(T)) is given as:

p(T) =
∫ ∞

0
f (β)βe−βTdβ, (10)

In the case where the probability density of β is given by a gamma distribution:

f (β) =
1

Γ(n/2)

(
n

2β0

)n/2
β

n
2−1exp

(
− nβ

2β0

)
, (11)

the integral (10) can easily be evaluated [67] and p(T) ≈ C(1 + B(q− 1)T)1/(1−q) is ob-
tained, which is exactly the result estimated in the frame of NESP, with q = 1 +

( 2
n+2
)

and
B = 2β0/(2− q) [23]. Since the q value was in the range of 1.67–1.81, it suggested that the
system was derived by a low number of degrees of freedom, possibly close to one.

This implied that a stochastic mechanism with memory effects can be the driving
mechanism in the temporal evolution of an aftershock sequence. In agreement with [68] (see
also [59]), we may consider the following stochastic differential equation for the evolution
of seismicity:

dT = −γ(T − 〈T〉)dt + ϕ
√

T Wt, (12)

where the temporal occurrence of earthquakes is represented by the interevent time series
(T) after some time (t). The latter stochastic equation manifests two parts controlling the
evolution of seismicity. The first deterministic part aims to keep the seismic rate (R) stable to
the typical value of R = 1/<T>, according to a restoring constant (γ) that represents the rate
of relaxation to the mean waiting time (<T>). The second stochastic part represents memory
effects in the evolution of seismicity. The stochastic term Wt is the standard Wiener process
following a Gaussian distribution with a zero mean and unitary variance that mimics the
microscopic effects in the evolution of interevent times in the aftershock sequence. Due to
its random sign, Wt leads to an increase (Wt > 0) or decrease (Wt < 0) in T. We note that
large values of T provoke large amplitudes in the stochastic term, leading to an increase or
decrease in T, depending on the sign of Wt. The term ϕ adds some noise to the process and
can be expressed as a function of the mean interevent time (<T>) and the restoring constant
(γ) as ϕ =

√
2γ〈T〉.

The stochastic differential equation given in Equation (12) is a classic example of
multiplicative noise, further known in statistics as the Feller process [67,69].

To determine the evolution of the interevent time series (T) after some time (t), given by
the probability distribution f (T,t), we can write the corresponding Fokker–Planck equation
for Equation (12) [70,71]:

∂ f (T, t)
∂t

=
∂

∂T
[γ(T − 〈T〉) f (T, t)] +

∂2

∂T2 [T〈T〉γ f (T, t)], (13)
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The stationary solution of the latter Fokker–Planck equation, Equation (13), is the
distribution [70]:

p(T/〈T〉) = f (T) =
1
〈T〉 e

− γ
〈T〉 T , (14)

In this case, Equation (14) provides the conditional probability of T, given <T>.
Furthermore, we can consider local fluctuations in the seismic rate (R = 1/<T>), which

are associated with non-stationarities in the evolution of the earthquake activity over time
scales much larger than γ−1, which is necessary for Equation (12) to reach stationarity. In
this case, local fluctuations in the mean interevent time (<T>) appear, and we may assume
that these fluctuations follow the stationary gamma distribution:

f (〈T〉) = ( 1
λ )

δ

Γ[δ]
〈T〉−(1+δ)e−

1
λ〈T〉 , (15)

The marginal probability of T, independent of <T>, is then given by [68]:

p(T) =
∫ ∞

0
p(T/〈T〉) f (〈T〉)d〈T〉, (16)

Performing the integration, we obtain the solution for varying <T>:

p(T) =
λΓ[1 + δ]

Γ[δ]
(1 + λT)−(1+δ), (17)

By further carrying out the changes in the variables:

λ =
q− 1

To
and δ =

1
q− 1

− 1 =
2− q
q− 1

(18)

and considering the q-exponential function given in Equation (3), Equation (12) can be
written as [26,68]:

p(T) =
(q− 1)Γ

(
1

q−1

)

ToΓ
[

1
q−1 − 1

] expq

(
− T

To

)
(19)

The last equation, Equation (19), is the q-generalized gamma function [68], and the
last term on the right-hand side has the exact form of the q-exponential function given
in Equation (3). Equation (19) was derived by the stochastic model, Equation (12), for a
varying mean interevent time (<T>), i.e., non-stationary earthquake activity.

5. Conclusions

In order to statistically analyze the temporal patterns of aftershock sequences in
major subduction zones, we examined the interevent time distribution for each sequence.
The NESP approach to the interevent time distribution indicated a system in anomalous
equilibrium, with a crossover behavior from anomalous (q > 1) to normal (q = 1) statistical
physics for greater interevent times. The range of the non-extensive parameter (qT) for
all analyzed sequences was between 1.67 and 1.83. The models used in the analysis fit
the observed distributions rather well, indicating the usefulness of NESP in investigating
such phenomena. Finally, the superstatistical approach led us to the conclusion that
significant non-additive characteristics and a high-level organizational structure describe
the earthquake aftershock sequences that occurred in subduction zones [55].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24121850/s1.
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Abstract: Aftershocks of earthquakes can destroy many urban infrastructures and exacerbate the
damage already inflicted upon weak structures. Therefore, it is important to have a method to
forecast the probability of occurrence of stronger earthquakes in order to mitigate their effects. In this
work, we applied the NESTORE machine learning approach to Greek seismicity from 1995 to 2022
to forecast the probability of a strong aftershock. Depending on the magnitude difference between
the mainshock and the strongest aftershock, NESTORE classifies clusters into two types, Type A and
Type B. Type A clusters are the most dangerous clusters, characterized by a smaller difference. The
algorithm requires region-dependent training as input and evaluates performance on an independent
test set. In our tests, we obtained the best results 6 h after the mainshock, as we correctly forecasted
92% of clusters corresponding to 100% of Type A clusters and more than 90% of Type B clusters. These
results were also obtained thanks to an accurate analysis of cluster detection in a large part of Greece.
The successful overall results show that the algorithm can be applied in this area. The approach is
particularly attractive for seismic risk mitigation due to the short time required for forecasting.

Keywords: NESTORE; machine learning algorithm; aftershocks; features; Greek seismicity; clusters;
forecasting; training procedure

1. Introduction

It is widely known that large earthquakes are followed by other earthquakes, usually
smaller and occurring in close proximity, days to years later, and that it takes some time
for seismicity to return to normal levels [1–4]. However, it may happen that the following
earthquake magnitude is comparable with the previous one. Moreover, aftershocks can
affect numerous facilities in a city, and repeated earthquakes worsen the damage already
inflicted upon vulnerable structures and infrastructure. Greece’s location at the point of
contact between the tectonic plates of Eurasia and Africa has resulted in several geodynamic
processes and high seismicity, with multiple events of large magnitude recorded both in
ancient and modern times. Greece ranks sixth in the world and first in the Mediterranean
region for seismic energy emission [5,6]. The significant geotectonic phenomena, such as the
continental convergence, where the oceanic crust of the North African plate is subducted
under the European plate, are often associated in the literature with the high seismic activity
in Greece. This migration was accompanied by significant crustal shortening and an uplift
rate of a few millimeters per year along the Hellenic Arc because of the accretion of African
plate sediments beneath the underlying Aegean plate. The rollback of the subducting
African slab, resulting in high-rate extension in the back-arc region, is also a significant
seismic source. Last but not least, seismic activity is caused by the North Aegean Trough
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(NAT), the most notable tectonic feature of the North Aegean Sea and the Cephalonia
Transform Fault Zone (CTFZ) [7].

The Mediterranean and Greek regions are particularly well-known both for intense
seismicity and the large-scale earthquakes that have taken place both in recent years and in
ancient times. A typical example is the devastating 365 earthquake of Crete, estimated to
have had a moment magnitude of 8.5 or greater. The earthquake is believed to have caused
the island of Crete to rise by nine meters, while a tsunami that followed the earthquake
destroyed the southern and eastern Mediterranean coasts [8]. On 3 April 1881, the deadliest
earthquake (Mw 6.5) in Greece’s seismic history devastated the SE Chios island. Numerous
fatalities occurred, and the vast majority of facilities were totally destroyed [9,10]. The
Great Kefalonia earthquake, which devastated the southern Ionian Islands in Greece in 1953
with a magnitude of Ms 7.2 and killed over 500 people, was another significant earthquake
of the 20th century [11]. Among the earthquakes used for the analysis in this article, some
are major and particularly important, such as the Mw 6.4 Aigio (15 June 1995) [12], the Mw
6.5 Andravida (8 June 2008) [13], the Mw 6.9 Limnos (24 May 2014) [14], the Mw 7.0 Samos
(30 October 2020) [15], the Mw 6.3 Elassona (3 March 2021) [16], and the Mw 5.7 Arkalochori
(27 September 2021) [17] earthquakes.

In such seismotectonic context, to help mitigate the seismic risk after a strong earth-
quake, it may be useful to develop and test an algorithm, based on the immediate mild
aftershocks, for forecasting the occurrence of stronger subsequent earthquakes. For real-
time or near-real-time applications carried out during a cluster occurrence, it is not known
whether a first high-magnitude earthquake will be followed by one or more strong events.
For this reason, we use the term “o-mainshock” (short for “operative-mainshock”), which
refers to the first earthquake in the cluster that exceeds a certain magnitude threshold [18].

Many studies have focused on the value of Dm, which corresponds to the magni-
tude difference between the mainshock and the Strongest Subsequent Large Earthquake
(SSLE) [19–24]. The magnitude of the SSLE increases as Dm decreases, making the cluster
more dangerous for the population. Using the assumption of the self-similarity theory of
seismicity, which assumes similar behavior for shocks of different magnitudes, studies
on this topic are based on Dm rather than SSLE magnitude. This approach also has the
advantage of using clusters characterized by mainshocks of lower magnitude, which are
more frequent than others, and thus, by increasing the training and testing database, im-
prove statistical reliability. Some studies investigating the relationship between Dm and
mainshock characteristics show that they vary considerably depending on the region [18].

In this paper, we propose a machine learning approach to the problem of Dm fore-
casting during the occurrence of seismic clusters. NESTORE (NExt STrOng Related Earth-
quake) is a machine learning-based approach for SSLE forecasting that can be applied to
clusters whose magnitude of completeness is at least equal to the mainshock magnitude
minus 2 [18,25–27]. The clusters are divided into two groups based on the mainshock
magnitude Mm and the SSLE magnitude: Type A if Dm ≤ 1 and Type B otherwise. The
method is based on the analysis of the seismicity after the mainshock by extracting some
features used for machine learning. The features describe the characteristics of the seis-
micity during the cluster in terms of radiated energy, number of events, and space and
time distribution. NESTORE trains a one-node decision tree for each feature separately and
evaluates thresholds so that clusters whose feature is above the threshold are classified as
Type A and the others are classified as Type B. The probability of being a Type A cluster is
independently estimated for each feature classifier from the percentage of Type A clusters
below and above the threshold in the training set; these probabilities are combined for
a final probability estimate using a Bayesian approach [25]. To simulate the increase in
knowledge over time after the o-mainshock, the analysis was performed at different time
intervals Ti, ranging from 6 h to 7 days after the mainshock. In this case, we applied the
NESTORE algorithm to the Greek seismicity by using the NESTOREv1.0 software available
on GitHub [26].
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2. Geology and Tectonics

Greece is a typical region of Neo-Europe and is associated with the Alpine orogenic
system, which includes the Hellenides. The subduction of the African plate under the
Eurasian plate defines the Hellenic Arc system, and the complex process of detachment
at the top of the orogenic arc forms the numerous tectonic units of the Hellenides (see
Figure 1) [28]. The most recent evolutionary stages of Greece are represented by the Ionian
and Paxi geotectonic units, whose rocks are overthrust blocks of the external Hellenides
with limestones, schists, and dolomites. The Peloponnese peninsula includes several
geotectonic units, such as the Ionian and the Pindos units, which is composed of Mesozoic
deep-water carbonates and siliciclastic rocks. The Tripolis unit consists of Paleogene
flysch sediments and thick Mesozoic shallow-water carbonates, while the Sub-Pelagonian
is made up of clastic formations, limestones, dolomites, and in some cases, ophiolitic
formations [29–31].

Internal and external Hellenides are found throughout central Greece. Attica is lo-
cated at the easternmost point of Central Greece and is mostly composed of post-alpine
formations and alpine basement rocks, both metamorphic and nonmetamorphic. The
high-pressure metamorphic units of the Attic-Cycladic (shales, marbles, schists) and the
Sub-Pelagonian unit are the origins of the Alpine rocks. Thessaly is part of the Internal
Hellenides, with the Pelagonian Massif and Sub-Pelagonian unit [32]. The Rhodope Massif,
the Serbomacedonian Massif, the Axios-Vardaris (Vardar Zone), and the Circum-Rhodope
Belt are the tectonostratigraphic units that encompass the Halkidiki Peninsula from east to
west. The Vadar zone, an extensive belt with NNW and SSE trends, is considered a suture
zone due to its numerous ophiolitic bodies [33]. The Serbmacedonian Massif is mainly
composed of gneiss and marble in the north. The Rhodope and Circum-Rhodope belts are
composed mainly of marble [34]. Crete is formed by the Gavrovo (Tripolis), the Pindos,
the Plattenkalk tectonostratigraphic units, and the Phyllite-Quarzite sequence. On the
island, limestones, partially recrystallized, are the lowest rocks visible and near-horizontal
faults during crustal compression deposited limestones and other rocks of comparable
age above [35].

Apart from the Hellenic Trench, the Kefalonian Transform Zone [36], and the North
Anatolian Fault (NAF) [37], there is a large number of active faults on both the mainland
and the islands, contributing to the release of seismic energy in Greece. More precisely, the
Peloponnese and Central Greece are mainly influenced by alpine thrusts and characterized
by post-alpine faults [38]. Furthermore, these regions are mainly dominated by active
normal faults [39]. Evia is dominated by normal and strike-slip faults that mainly rotate
counterclockwise [40]. Thessaly is characterized by an active tectonic regime as well as
sporadic earthquakes [41,42]. Crete is part of the Hellenic Arc and was formed by the
subduction of the African plate under the Aegean Sea.
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3. Data and Region Analyzed

Most statistical or machine learning methods require a large training dataset (hundreds
of samples). Even though NESTORE is optimized for small datasets [18], it requires a
sufficiently large number of Type A and B clusters (tens of clusters) whose magnitude of
completeness is at least two magnitudes lower than that of the corresponding mainshocks.
To achieve this, the use of an earthquake catalogue with a long time span, a large area, and a
low completeness magnitude is essential to obtain an adequate input database. At the same
time, data with low location accuracy and volcanic areas should be avoided because the
triggering mechanism of earthquakes is different. Considering all these points, several tests
were carried out with different available catalogues, and it was found that the Aristotle
University of Thessaloniki earthquake catalogue (AUTH) [44] was the most suitable for the
time period 1995–2022. This database was also previously used in the study conducted by
Bountzis et al. (2022) to identify seismic clusters in specific regions of Greece [45].

For the analysis, we took into account the regions selected by Bountzis et al. (2022)
corresponding to the Corinthian Gulf area, the Ionian Islands, and the North Aegean Sea.
Bountzis et al. (2022) selected these regions based on factors such as the homogeneity
of focal mechanisms and continuous, comparatively intense seismicity. The Corinthian
Gulf is characterized by high rates of extensional deformation, and eight significant faults
bounding the rift to the south and dipping to the north are mainly responsible for seis-
micity [46–50]. In the central Ionian Islands, the Kefalonian Transform Fault Zone, which
includes the Lefkada and Kefalonian faults and extends for more than 100 km along
the western coast of these islands, is the main seismotectonic domain, and the predomi-
nant fault type is right-lateral strike-slip motion. The northern Aegean is characterized
by a dextral strike-slip fault running through the North Aegean Trough and its parallel
branches, which is the result of the westward propagation of the North Anatolian Fault
into the Aegean [51–53].

In order to extend the available dataset over a particularly seismically active region,
we extended the analysis to the area of Crete for the same time period. An area of predomi-
nantly oblique motion is located over well-defined detachment zones in southern Crete,
while north-dipping thrust faults are found due to the westward propagating Hellenic
fold-and-thrust system [54].
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In the first tests, we performed the analysis for each region separately to account for
the different seismotectonic regimes. However, the results were not statistically relevant
due to the small number of clusters in each region. We performed an analysis to check if the
clusters belong to the same population and we combined all the above regions into a single
area (see Figure 2); we merged the original regions by adding the Peloponnese, Thessaly,
Central Greece, and Crete, but omitting (1) the area of the Greek volcanic arc because of the
possible different origins of the earthquakes, (2) the area of the subduction zone because of
possible viscoelastic effects, and (3) the western Turkish coast and offshore regions because
of the poor coverage by the national seismological network.
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4. NESTORE Algorithm

The multiparameter machine learning approach called NESTORE examines the evolu-
tion of seismicity at various time intervals. Its main goal is the estimate of the probability
that the analyzed clusters are of Type A. This machine learning approach is designed par-
ticularly for the analysis of seismicity problems and limited data, as there are typically tens
of available clusters. In order to simulate the evolution of seismicity over time, the analysis
was conducted on increasing time intervals Ti, beginning shortly after the mainshock.
NESTOREv1.0 uses earthquakes with magnitude M ≥Mm − 2, and to avoid classifications
of clusters in which the class has been already defined, it examines Type A clusters for time
intervals shorter than the time difference between the mainshock and the first aftershock
with magnitude ≥Mm − 1. For this reason, both the training and the test sets change
depending on the considered time interval, because for longer time intervals, fewer Type A
clusters are available.

A set of features (see Supplementary Materials for a detailed description) are extracted
from spatio-temporal and energy distribution of seismicity, and for each feature indepen-
dently, a simple threshold is used to distinguish between the classes. The analysis focuses
on features based on the earthquakes following the o-mainshock attempting to capture
high and irregular earthquake activity [55,56]. It is important to remark that the framework
of the algorithm is independent of the specific features used, which can be adapted based
on the study area’s characteristics, including both aspects of seismicity and data availability.
Before strong earthquakes, some variations and a change in earthquake flow, which be-
comes more intense and anomalous in space and time, have been reported and analyzed as
a symptom of instability of a nonlinear system equivalent to seismic faults [57]; Vorobieva
and Panza (1993) supposed that similar behavior can be detected if a strong subsequent
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earthquake is expected (Type A clusters) [19]. This is the assumption on which the features
adopted by NESTOREv1.0 software package are based. From a physical standpoint, these
variances are comprehensible because the lithosphere may respond to tectonic stress more
strongly, and since those symptoms appear after a mainshock, they may be precursors to
the occurrence of a second major event [58].

The NESTOREv1.0 software package is divided into four main modules. In our
analysis, we used the cluster identification, training, and testing modules [26]. The cluster
identification module identifies seismic clusters whose mainshock has a magnitude Mm
above a given threshold of magnitude Mth. The training module uses decision trees based
on different features to find appropriate thresholds with the aim of discriminating clusters
of known class (A or B) in a training database. The testing module is used to check the
performances of the training; it uses the outputs of the training module to provide an
estimate of the probability that a cluster is of Type A in a test database; then it compares the
result with the already known actual class of the clusters. The last module, not used in this
work, is the near-real-time classification module, which has been proposed recently [26]
for new ongoing cluster classifications after validation of the method in an area. Such
validation is the topic of this paper.

4.1. NESTORE Cluster Identification

Since cluster identification is a non-unique process, there are numerous methods in
the literature that provide a range of results. It is easier to solve the task of declustering
a catalogue by removing dependent earthquakes than to assign each dependent event to
a particular cluster, since this may be controversial for clusters that are close in time and
space. The events belonging to each cluster can be significantly affected by the choice of
cluster identification procedure. Different methods have been used to identify clusters,
depending on the research field. For example, a deep learnable scattering network had
been used to cluster seismic events in continuous waveforms [59]. Another method related
to distinguishing different structures of lightning phenomena in a multidimensional image
developed an analysis pipeline using the t-distributed stochastic neighbor embedding
(t-SNE) method and a DBSCAN algorithm for further cluster detection [60]. In space-time
analysis of seismicity, many cluster identification algorithms are applied (for further details,
see [61]). In particular, in our research, the NESTOREv1.0 cluster identification module
implements a simple method of cluster identification, a window-based technique [61],
where the cluster is defined as all events occurring within a time and space window around
the mainshock, the size of which depends on the magnitude of the mainshock. Window
techniques provide a quick and easy way to detect mainshocks and aftershocks, but it is
necessary to define a region-dependent law for the maximum time interval t(Mm) after
the mainshock and the maximum distance d(Mm) from the mainshock of the earthquakes
inside the cluster [61].

4.2. NESTORE Training Procedure

NESTORE assesses a set of features individually before combining the best feature
classification after training. In particular, each feature is assessed using a pattern recog-
nition method that employs an independent decision tree [62,63] and the algorithm then
determines a threshold Th for each feature, f, so that if f ≥ Th, the cluster is designated
as A and otherwise as B. The features are calculated at time intervals [s1, s2], where s1
is the time after the mainshock used to guarantee that the completeness magnitude of
Mc ≤ Mm − 2 can be achieved [18] and s2 corresponds to the ending time for the analysis.
The features [27] used by NESTORE in this case are evaluated using events having mag-
nitude M ≥ Mm − 2 and correspond to nine seismicity parameters related to the number
of events, their spatial distribution, magnitude, and energy trend over time in increasing
time intervals following the occurrence of the mainshock [18,26]; see the Supplementary
Materials for a detailed description.
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The major goal of utilizing these features is to spot changes in the flow of earthquakes,
such as irregularities in space, time, and magnitude that can be related to different seismic
behaviors between Type A and B clusters. In addition, in order to achieve a balance between
the need for as many clusters as possible for our study and the necessity for a strong enough
statistic on the development of seismicity, we set up the analysis starting at the first 6 h
(0.25 days) after the mainshock and at time intervals Ti ending 0.25, 0.50, 0.75, 1, 2, 3, 4, 5,
and 7 days after [18,25–27,64].

The training set of samples and the expected output class are inputs to the training
procedure, which consists of the following sections: feature extraction, decision tree training,
good interval identification, inheritance, and validation [18].

NESTORE algorithm is based on a supervised training approach. For each time
interval following the mainshock, the algorithm extracts the desired features from the input
training clusters (see Figure 3). To prevent a too complex structure of the classifier, which
would lead to an overfitting of the data if the data are few, the training is performed using
binary decision trees with a depth of 1, which splits classes based simply on a threshold.
Using the information on the class of the training clusters, the threshold is chosen such
that (most of) the clusters of Type A have features greater than or equal to the threshold,
while (most) Type B clusters have values of the features under the threshold. If no tree can
be found to solve the issue, the value NaN (Not a Number) is assigned as the threshold
and the feature is ignored for that time interval. The performance could be poor even
when the decision tree finds a threshold; in order to avoid this problem, the quality of
threshold-based classifiers is estimated by performance evaluators.
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Specifically, performance evaluators are Accuracy, Recall, Precision, and Informedness.
The last evaluator is given between −1 and 1, where 1 is the best and −1 is the worst. The
first previous three evaluators are specified between 0 and 1, where 1 is the best and 0 is the
worst. As the observation time Ti grows, the value of these performance indicators often
increases until it reaches a peak, and then stabilizes or decreases with longer observation
time. The algorithm chooses intervals Ti in which three requirements are satisfied. The first
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states that Recall, Precision, and Accuracy should all be greater than 0.5. The second one
specifies that Accuracy should be greater than or equal to the Accuracy we can obtain from
a constant response corresponding to the most populous class (Class B). The last one states
that Informedness should be greater than zero. Therefore, for each time interval, a set of
reliable classifiers corresponding to a subset of the original features is selected.

When the greatest level of Informedness is reached for a feature at a particular Ti, the
instances of that feature for each cluster of NESTORE are automatically set to the value they
have for T = Ti. The time intervals smaller than or equal to Ti that satisfy the previous three
conditions are called good intervals. For longer time intervals, both the feature value and
its threshold are set to the ones corresponding to the maximum value of Informedness. This
procedure, called inheritance, is intended to use features with high performance in a given
time period, even for longer periods when performance is becoming poorer. However, as
Ti increases, inherited features and thresholds may experience a fall in performance due
to a selection effect on clusters, since for some features, Type A clusters with later SSLEs
belong to a separate population. Over time, the percentage of these clusters in the dataset
rises, resulting in a decline in feature performance. For this reason, the algorithm rechecks
the performances. It determines if the percentage of Type A clusters properly categorized
is higher than the percentage of Type B clusters mistakenly classified as Type A, for all
inherited thresholds and features. If this does not happen, the interval Ti is removed from
the list of intervals associated with the feature [18].

4.3. NESTORE Testing Procedure

The NESTORE testing procedure (see Figure 4) uses the information from the training
procedure to classify clusters of an independent test set and compares the obtained results
with the actual value of the cluster typology. The classification is performed for all the time
intervals and for all the classifiers considered reliable in those time intervals by the training
procedure. For each time interval, combining the different classification results, a unique
classification is produced, which can be binary (“class A” or “class B”) or continuous (“class
A probability”). A voting process is the simplest method for classifying combinations,
where each classifier receives one vote (A or B). If the number of A votes exceeds the
number of B votes by a certain amount, the classification is A; otherwise, it is B. The
previous methods presuppose that all classifiers are equally reliable, but in reality, this is
frequently not the case. Therefore, for each time interval and feature, NESTORE estimates
the probability that a cluster belongs to Type A depending not only on whether it is above
or below the corresponding threshold Th for single features, but also on how reliable each
feature classification is above or below Th. By combining many independent classifiers,
NESTORE uses a Bayesian technique to determine the total probability [25].

Entropy 2023, 25, x FOR PEER REVIEW 9 of 23 
 

 

 𝑃(𝐶|𝐷ଵ, … 𝐷ே) = 1  (2) 

where Ck are the classes of the problem. 
In our case, we have two classes, A and B and, assuming for each i-th time interval 𝑃(𝐴) = ே()ே()ାே()   and  𝑃(𝐵) = ே()ே()ାே()      (3) 

where N(A) and N(B) are the number of A and B clusters in the dataset for the i-th interval, 
respectively. Equation (1) can be written as 𝑃(𝐴|𝐷ଵ … 𝐷ே) = ሾே()ሿಿషభ ∏ ಿసభሾே()ሿಿషభ ∏ ಿసభ ାሾே()ሿಿషభ ∏ (ଵି)ಿసభ   (4) 

where 𝑝 = 𝑃(𝐴|𝐷𝑛) is the probability of having the cluster of Class A at a Dn value for 
the feature n; pn is calculated from the training as the percentage of Type A clusters 
(divided by 100) that are above or below the output threshold and acts as a weight 
depending on different features’ reliability. A benefit of this method is that it takes into 
consideration the number of Type A and B clusters in the dataset, which is crucial for 
imbalanced classes such as the one we have (e.g., the Type A clusters account for one-fifth 
of the total clusters in Greece). The testing supplies in output the Receiver Operating 
Characteristics (ROC) and the Precision–Recall graphs, which show the performances of 
the training on an independent test set (see the Supplementary Materials for a detailed 
description). 

 
Figure 4. Classification procedure for a time interval Ti. 

Binary classifiers distinguish between two classes, one positive (in our case, Class A) 
and one negative (in our case, Class B). To evaluate the effectiveness of single-features 
classifiers to determine if a strong aftershock would occur within a cluster, the output 
Prob(A) for each test set cluster is binarized, so that if Prob(A) ≥ 0.5, the class is A; 
otherwise, it is B. Resulting classes are compared with the actual one for each cluster and 
the results are shown by using the ROC graph together with the Precision–Recall graph. 

The ROC graph (see, e.g., 6th figure (a,c) in Section 5) shows the normalized 
percentage of positive instances correctly classified as positives (True Positive Rate or 
Recall) vs. the percentage of negatives incorrectly classified as positives (False Positive 

Figure 4. Classification procedure for a time interval Ti.

101



Entropy 2023, 25, 797

According to Bailer-Jones et al. (2011), utilizing independent information (feature) D1,
. . . , Dn, the posterior probability that class is C is [65]:

P(C|D1 . . . DN) = α
∏N

n=1 P(C|Dn)

P(C)(N−1)
(1)

where P(C) is the probability of having a class C and P(C|Dn) is the posterior probability
that the class C is at Dn. N is the number of classifiers and α is the normalized factor
such that

∑k P(Ck|D1, . . . DN) = 1 (2)

where Ck are the classes of the problem.
In our case, we have two classes, A and B and, assuming for each i-th time interval

P(A) =
N(A)

N(A) + N(B)
and P(B) =

N(B)
N(A) + N(B)

(3)

where N(A) and N(B) are the number of A and B clusters in the dataset for the i-th interval,
respectively. Equation (1) can be written as

P(A|D1 . . . DN) =
[N(B)]N−1 ∏N

n=1 pn

[N(B)]N−1 ∏N
n=1 pn + [N(A)]N−1 ∏N

n=1(1− pn)
(4)

where pn = P(A|Dn) is the probability of having the cluster of Class A at a Dn value for
the feature n; pn is calculated from the training as the percentage of Type A clusters (divided
by 100) that are above or below the output threshold and acts as a weight depending on
different features’ reliability. A benefit of this method is that it takes into consideration the
number of Type A and B clusters in the dataset, which is crucial for imbalanced classes
such as the one we have (e.g., the Type A clusters account for one-fifth of the total clusters
in Greece). The testing supplies in output the Receiver Operating Characteristics (ROC)
and the Precision–Recall graphs, which show the performances of the training on an
independent test set (see the Supplementary Materials for a detailed description).

Binary classifiers distinguish between two classes, one positive (in our case, Class
A) and one negative (in our case, Class B). To evaluate the effectiveness of single-features
classifiers to determine if a strong aftershock would occur within a cluster, the output
Prob(A) for each test set cluster is binarized, so that if Prob(A) ≥ 0.5, the class is A;
otherwise, it is B. Resulting classes are compared with the actual one for each cluster and
the results are shown by using the ROC graph together with the Precision–Recall graph.

The ROC graph (see, e.g., 6th figure (a,c) in Section 5) shows the normalized percentage
of positive instances correctly classified as positives (True Positive Rate or Recall) vs. the
percentage of negatives incorrectly classified as positives (False Positive Rate). In the ROC
graph, a discrete classifier generates some points whose coordinates graphically represent
its performances [27]. The ideal classifier is represented by the point (0, 1) when all instances
are correctly classified [27]. In fact, if a point in the space ROC is closer to the point (0, 1), it
has a higher rate of positive and/or a lower rate of negative results, so it is preferable to
other points. The diagonal line indicates random guessing, and any classifier that occurs in
the lower right triangle performs worse than the random one and should be discarded.

The Precision–Recall graph (see, e.g., 6th figure (b,d) in Section 5) shows other useful
information: the Precision, which corresponds to the percentage (normalized to 1) of
clusters classified as A that are actually A. This information is important for evaluating
performance on imbalanced datasets. While both Recall and the False Positive Rate are
independent on the relative abundance of the classes, the abundance affects Precision and,
therefore, the random guessing horizontal line in the Precision–Recall (PR) graph. As there
are fewer A’s over longer time periods, the random guessing line parallel to the x-axis has
a decreasing y-intercept as Ti increases. A classifier that lies below the random guessing
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line is characterized by unreliable results; the closer it is to the upper right corner, the more
effective it is. The ideal classifier, shown by the upper right corner of the PR graph, correctly
classifies all Type A clusters and misclassifies no Type B cluster as A. The best performance
for the Precision–Recall graph corresponds to point (1,1) [27].

5. Results

In our case study, we applied NESTOREv1.0 to Greek seismicity using the AUTH earth-
quake catalogue, expressed in magnitude ML, for the period 1995–2022 with a maximum
focal depth of 50 km; the analyzed region is shown in Figure 5.
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Figure 5. Analyzed region. The mainshocks of the clusters are shown by circles.

5.1. Cluster Identification and Completeness Magnitude Assessment in Greece

In window-based cluster identification applications, the first step is to evaluate how
the temporal and spatial extent of the cluster depends on the magnitude of the mainshock.
An incorrect assessment may lead to the loss of events belonging to some clusters, thus
underestimating their impact on the analyzed area, or, conversely, in including background
events or events belonging to other clusters, thus overestimating the impact of the clusters
on the area. Since this pre-selection can influence the results of the following analysis, it is
an important preliminary step of the cluster analysis. In order to understand which was
the most appropriate law for window-based cluster identification in Greece, we compared
several laws available in the literature that have been successfully applied to other parts of
the world. In these laws, both the duration of the cluster and the radius of a circular area
around the mainshock in which aftershocks occur are given as functions of the mainshock
magnitude. We set the minimum magnitude of the mainshocks equal to 4, and we tested the
equations for duration of Gardner and Knopoff (1974) [66], Lolli and Gasperini (2003) [67],
Gentili and Bressan (2008) [68], and Uhrhammer (1986) [69]. For space windows, the
equations of Kagan et al. (2002) [70], Uhrhammer (1986) [69], Gardner and Knopoff
(2000) [71], and Gentili and Bressan (2008) [68] were tested, the last one with the addition
of two kilometers to account for localization inaccuracies.
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The choice of the best law for Greece was performed manually. First of all, we
estimated manually the distance between the mainshock and the most distant aftershock
for a large dataset of clusters and plotted this radius as a function of magnitude, comparing
it with the curves representing the equations to be checked. The main idea was to select a
curve that corresponds to the smallest radius that encompass most of the clusters, in order
not to lose events belonging to the cluster but, on the other hand, to avoid the inclusion of
independent events. Figure 6a shows such a plot on 177 clusters in the area.
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allowing more aftershocks to be included in the defined cluster. For time window, we 
plotted the magnitude vs. time for the obtained clusters (see Figure 7) and we compared 
it to the duration obtained by different equations. Again, the best choice was the equation 
proposed by Uhrhammer (1986) [69], which supplies a shorter t(Mm) compared to the 

Figure 6. (a) Plot of the calculated radius vs. the magnitude of the cluster mainshock. The coloured
lines indicate the radius estimation equations. (b) Determination of the best space-window law by
map visualization [66–71].

In order to check the results on a larger dataset, we also manually inspected the
maps of all the clusters obtained by imposing the larger radius equation (Gardner and
Knopoff, 1974) [66] and comparing earthquakes’ positions with the circles representing the
checked equations (see Figure 6b). In both cases, the best choice was the equation proposed
by Uhrhammer (1986) [69]. This equation provides a much smaller radius than the one
proposed by Gardner and Knopoff (1974) [66], but also helps to avoid the inclusion of
independent earthquakes in a cluster. In addition, it provides a larger radius compared
to the equations proposed by Kagan et al. (2002) [70] and Gentili and Bressan (2008) [68],
allowing more aftershocks to be included in the defined cluster. For time window, we
plotted the magnitude vs. time for the obtained clusters (see Figure 7) and we compared it
to the duration obtained by different equations. Again, the best choice was the equation
proposed by Uhrhammer (1986) [69], which supplies a shorter t(Mm) compared to the
other methods (see Figure 7) and has the advantage of including highly dependent events
in the cluster.

Entropy 2023, 25, x FOR PEER REVIEW 12 of 23 
 

 

other methods (see Figure 7) and has the advantage of including highly dependent events 
in the cluster. 

Equations (5) and (6) show the selected radius (in km) and duration (in days): 𝑑 = 𝑒ିଵ.ଶସା.଼ସெ (5) 𝑡 = 𝑒ିଶ.଼ାଵ.ଶଷହெ (6) 

 
Figure 7. Determination of the best time-window law [67-69,71]. 

This procedure failed only in two earthquakes in the northern Gulf of Evia. The first 
occurred on 17 November 2014 and the second on 9 June 2015, with magnitudes ML of 5.3 
and 5.1, respectively. As indicated by Ganas et al. (2016) [72], the above earthquakes 
belong to the same cluster, which is a Type A cluster according to the NESTORE 
classification. However, the applied method of cluster identification leads to an obvious 
classification failure as it splits the cluster into two parts. Since the NESTOREv1.0 module 
is independent of the others in the NESTOREv1.0 package, it can be substituted with a 
different cluster identification procedure. A more reliable cluster identification method 
will be used in the future for the analysis of the region. In this application, we removed 
the cluster from the analysis. 

As previously stated, NESTOREv1.0 needs clusters with a completeness magnitude 
of ≤Mm-2, where Mm is the o-mainshock magnitude. When at least 80 earthquakes are 
available in a cluster, NESTOREv1.0 automatically evaluates the completeness magnitude 
for the cluster using the maximum curvature method (+0.2 to account for possible 
underestimates of the method); otherwise, it allows a default value. We considered a 
completeness magnitude value of 3.0 for clusters that occurred before 2009 and a 
magnitude value of 2.5 for those starting in 2009. This assumption is based on a general 
analysis of the completeness magnitude as a function of time for the analyzed area that 
we carried out using Zmap software [73] (see Figure 8). 

Figure 7. Determination of the best time-window law [67–69,71].

104



Entropy 2023, 25, 797

Equations (5) and (6) show the selected radius (in km) and duration (in days):

d = e−1.024+0.804Mm (5)

t = e−2.87+1.235Mm (6)

This procedure failed only in two earthquakes in the northern Gulf of Evia. The first
occurred on 17 November 2014 and the second on 9 June 2015, with magnitudes ML of 5.3
and 5.1, respectively. As indicated by Ganas et al. (2016) [72], the above earthquakes belong
to the same cluster, which is a Type A cluster according to the NESTORE classification.
However, the applied method of cluster identification leads to an obvious classification
failure as it splits the cluster into two parts. Since the NESTOREv1.0 module is independent
of the others in the NESTOREv1.0 package, it can be substituted with a different cluster
identification procedure. A more reliable cluster identification method will be used in
the future for the analysis of the region. In this application, we removed the cluster from
the analysis.

As previously stated, NESTOREv1.0 needs clusters with a completeness magnitude
of ≤Mm − 2, where Mm is the o-mainshock magnitude. When at least 80 earthquakes are
available in a cluster, NESTOREv1.0 automatically evaluates the completeness magnitude
for the cluster using the maximum curvature method (+0.2 to account for possible underes-
timates of the method); otherwise, it allows a default value. We considered a completeness
magnitude value of 3.0 for clusters that occurred before 2009 and a magnitude value of 2.5
for those starting in 2009. This assumption is based on a general analysis of the complete-
ness magnitude as a function of time for the analyzed area that we carried out using Zmap
software [73] (see Figure 8).
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Besides the selection based on the completeness magnitude, another selection of Type
A clusters was performed based on the time of the strongest aftershock: since the first
analysis is performed 6 h after the mainshock, NESTOREv1.0 analyzed only the Type A
clusters which did not have an aftershock with magnitude ≥Mm − 1 in the first 6 h.

At the end of the selection procedure, we detected 75 clusters satisfying NESTORE
requirements, of which 12 are Type A and 63 are Type B. In Figure 5, we superimposed
on the map of the studied area the locations of the o-mainshock of the clusters; we used
red color for Type A clusters and blue for Type B clusters. The clusters are located both
offshore and along the mainland.

Analyzing the characteristics of the clusters, we did not find any correlation between
the type of cluster (A or B) and some parameters of the mainshock, such as the focal
mechanism [37], location, depth, or magnitude.
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5.2. NESTOREv1.0 Application to the Current Dataset

As described in Sections 2 and 3, Greece is extremely heterogenous from a seismo-
tectonic point of view. For this reason, it is important to check that, given one type of
cluster (Type A or Type B), all the clusters of that type have similar characteristics (i.e.,
they belong to the same population) according to the NESTORE model. If there is more
than one population depending on the sub-region, the training of each sub-region must
be performed separately. In order to check this, we trained NESTOREv1.0 with the whole
dataset of 1995–2022 both as a training set and a test set (autotest). Figure 9 illustrates the
probability P(A) of being a Type A cluster for different time intervals. The analysis was
performed on increasing time intervals ending every 6 h in the first day and every day in
the first week after the mainshock.
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Figure 9. Estimated probability of being a Type A cluster vs. time for all the clusters in the dataset
(autotest). Red points correspond to A type clusters, while blue points correspond to B type ones.

Each cell corresponds to a different cluster classification for different time intervals.
Red circles correspond to Type A clusters and blue ones to Type B clusters.

The figure shows that for most time periods, the probability of being A is close
to 1 and close to 0 for B. This is not an assessment of the performance of the method,
since overfitting is an obvious risk when the training and test sets are coincident, but a
preliminary check of the coherence of the dataset, showing that the two classes can be
distinguished and that there are no obvious outliers. In detail, the good result in Figure 9
shows that the clusters of the same type in different parts of Greece belong to the same
population from NESTOREv1.0’s point of view, and the analysis can be performed on the
whole area together.

To fully exploit the potential of the machine learning approach for Type A cluster
forecasting, we created a test set separate from the training set that contains instances with
known classes. In the testing procedure, the class of each cluster in the test set is evaluated
using the information obtained from training. The forecasted cluster class is compared
to the already known actual class to obtain an estimate of the training performance. The
choice of the number of clusters to be selected for the training set and the test set could, in
principle, affects the results. Especially when few data are available, it is important from one
side to have enough data in the training set to have a good estimate of the parameters, but
on the other hand to have enough data in the test set, such that the obtained performances
are reliable. A rule of thumb often used in machine learning suggests that three-quarters of
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the total data should be used for training and the remaining one-quarter for testing [74];
however, the number of Type A clusters is only 12 in the dataset 6 h after the mainshock.
This means there are only three clusters to check the results for a time interval of 6 h, and
fewer for longer time periods, due to the decrease in the number of Type A clusters. Xu
and Goodacre proposed a range between 50% and 70% [75], which is more suitable for our
application. We used the years from 1995 to 2015 for the training and the following 7 years
for testing (see Table 1). Table 1 shows in detail the number of clusters, particularly Type A
clusters, in the training set and the test set.

Table 1. Training and testing dataset information.

Training Period Testing Period No. of Clusters
(Training Set)

No. of A Clusters
(Training Set)

No. of Clusters
(Test Set)

No. of A Clusters
(Test Set)

1995–2015 2016–2022 46 6 29 6

Figure 10 shows the performances of the method. The NESTOREv1.0 Bayesian classifi-
cation performance for each time period Ti is shown by magenta stars, and some examples
of single-feature classifier performances are shown with different symbols.
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Figure 11 shows the probability vs. time of being a Type A cluster obtained for different
time periods Ti for the clusters of the test set.
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Figure 11. Estimated probability of being a Type A cluster vs. time for all the clusters in the time
period 2016–2022 (training period 1995–2015).

Both the ROC and PR plots in Figure 10a,b show that NESTOREv1.0 Bayesian clas-
sification consistently lies within ranges corresponding to reliable classifiers for all time
periods, above the random rate line in the PR plots and in the top left triangle for the ROC
plots. Longer time periods correspond to a small number of Type A clusters, due to the
elimination from the dataset of clusters that already had strong aftershocks. This affects the
capability of both the training set and the test set to accurately describe the characteristics
of the clusters, and thus, the reliability of results. Therefore, the analysis was stopped
at Ti = 0.75 days (18 h) so that we have at least three Type A clusters both in the training
set and in the test set. The best performance for both ROC and PR graphs is at 6 h. We
hypothesize that this is because, by including more data in the training set and using a more
balanced dataset, we were able to better model the complexity of Greek seismicity, allowing
the decision trees to converge to a more stable result. The good performances’ short time
intervals after the mainshock are noteworthy for the seismic risk mitigation assessment.

Figure 10c,d illustrates the characteristics of some features, selected because of their
different performances, to illustrate the whole method procedure. They are calculated for
different time intervals and are the normalized cumulative source area (S), the normalized
radiated energy (Q), the cumulative variation of magnitude between each occurrence (Vm),
and the number of events (N2). From one feature to another, different time intervals Ti were
needed to achieve the best performance. For shorter intervals following the mainshock,
not all of the features were considered reliable or could be computed. Six hours after the
mainshock, the feature Q, S, Z, and N2 are considered reliable, but only two of them supply
high-performance results. Comparing feature performances in Figure 10c,d, it can be seen
that the features S and Q produced the best performances, the feature N2 produced the
poorest, and the feature Vm had intermediate results. These differences are mainly related
to the smaller recall (True Positive Rate) of these features, very low especially for N2 (blue
dots). At 6 h after the mainshock, the NESTOREv1.0 Bayesian performances coincides with
Q and S feature ones, with a True Positive Rate of 1 (all Type A clusters correctly classified),
a False Positive Rate of 0.095 (90.5% of Type B clusters correctly classified), and a Precision
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of 0.75 (75% of the clusters classified as Type A were actually A). This result corresponds
in Figure 11 to two Type B clusters wrongly classified: one in the third row and second
column, correctly classified for longer time periods, and the cluster in the fourth row and
fourth column, automatically outlined in yellow by NESTOREv1.0 as an outlier, because it
supplies a wrong classification in all the analyzed time periods.

In order to evaluate the best value of the threshold for future application of the method
to Greek seismicity (by using the near-real-time classification module), we used the ones
obtained during the autotest. Since, using all the data, we have no independent test set to
evaluate the performances, we stopped our analysis at Ti = 18 h, as in the test shown in
Figure 10. Table 2 shows the values of the thresholds for the training set of the autotest
at these time intervals. It is noticeable that the larger training set eliminates the poorly
performing feature N2 from the classification at 6 and 12 h.

Table 2. Values of the thresholds of the features obtained by the training procedure on the whole
dataset. Inh. = inherited threshold value.

Features
Thresholds

Th (6 h) Th (12 h) Th (18 h)

S 0.053 0.053 0.084
Z 0.026 0.026 0.026

SLCum 0.056 Inh.
QLCum 2.318 2.318
SLCum2 0.090
QLCum2 2.79

Q 0.012 0.012 0.013
Vm 0.035 0.450
N2 2.5

Table 3 shows the values of pu and po that are used to evaluate pn of Equation (4): if
the cluster is under the threshold, pu is used; otherwise, po is used.

Table 3. Values of the probability of being Type A under and over the threshold for the whole dataset.

Features
Thresholds

pu (6 h) po (6 h) pu (12 h) po (12 h) pu (18 h) po (18 h)

S 0.02 0.85 0.00 0.83 0.02 0.88
Z 0.06 0.64 0.03 0.62 0.02 0.58

SLCum 0.02 0.82 0.02 0.78
QLCum 0.02 0.69 0.02 0.64
SLCum2 0.02 1.00
QLCum2 0.00 0.67

Q 0.02 0.92 0.02 0.90 0.02 0.88
Vm 0.02 0.75 0.02 0.78
N2 0.02 0.63

Figure 12 shows a comparison between the features Q and N2 for the 6 h time interval.
The clusters are ordered in time, so the circles with cluster numbers from 1 to 46 are the
ones from the 1995–2015 training set. It is noticeable how the A clusters can be clearly
discriminated from the B ones using the Q feature, while N2 shows mixed classes. In
particular, several Type B clusters show a number of events N2 equal to 2 at 6 h, while there
are Type A clusters with a smaller or equal number of events. The bad performances of the
N2 feature in Figure 12 can be explained with the attempt of the algorithm to discriminate
the two classes setting high values of the threshold (in this case, 3.50). This choice supplied
poor results for the testing of Figure 10c,d because half of the Type A clusters in the test set
are under the threshold.
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dataset. Red circles: Type A clusters; blue circles: Type B clusters; black dashed line: the threshold
obtained by NESTOREv1.0.

6. Discussion

In analyzing Greek seismicity from the perspective of Type A and B cluster analysis,
several interesting results emerged that distinguish the seismicity of the area from that
of other regions of the world. The first interesting result is that the percentage of Type A
clusters in Greece is very low, even considering the smallest time interval analyzed after
the mainshock (6 h). In fact, for a time interval of 6 h, the number of Type B clusters is
about five times higher than the number of Type A clusters. This number is very high
when compared with Italy, northeastern Italy and western Slovenia, and California, where
NESTORE has already been applied [18,25,27], where the number of Type B clusters is
between 1.5 and 2 times the number of Type A clusters. Moreover, there are no correlations
between the cluster type and the focal mechanism, focal depth, magnitude, and location of
the mainshock, as observed in some cases in other regions [27].

Previous studies in California [18], Italy [27], and northeastern Italy and western
Slovenia [25], corresponding to very different seismotectonic regions, have shown good
performance of classifiers based on the number of events (feature N2) shortly after the
mainshock [18]. Classifiers based on the features Q and S perform well in Italy and
western Slovenia, while in California, they provide reliable results only some days after
the mainshock. Conversely, feature N2 gives the worst results in Greece, while features Q
and S give the best results. The difference in performance between features Q and N2 in
Greece can be clearly seen in Figure 12. The main difference is related to a large number of
Type A clusters with a similar number of aftershocks as B clusters. A further comparison
of the N2 feature at 6 and 18 h, shows that the performance of the N2 feature improves at
longer time periods, since the Type A clusters, characterized by an early strong aftershock
and therefore removed from the dataset, are precisely those with a low number of events.
These strong early aftershock clusters are not very productive in terms of the number of
aftershocks, but they are still productive in terms of the energy of the aftershocks and can
therefore be discriminated from B clusters using the features Q and S, which are related to
the magnitude of the aftershocks. This fact and the low percentage of A clusters make us
hypothesize that there may be fewer high-energy earthquakes in Greece for the same total
energy radiation. This hypothesis is beyond the scope of this paper and should be verified
in future work.

Another interesting feature is QLcum, which corresponds to the deviation of Q from
the long-term trend. This feature gives good short-term results after the mainshock for
California as well as for northern Italy and western Slovenia, while it requires longer
time intervals for Italian seismicity. The numerical values of this feature can only be
compared with the application for California, since the interval start time and completeness
requirements have changed from previous work. However, it is interesting to note that
the thresholds of the other features defined in both Greece and California are similar, with
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variations within 25%, while the threshold of the QLcum feature in Greece is about 12 times
higher than that in California. This could be related to the strong temporal variations in the
radiated energy in both the Greek Type A and Type B clusters.

For this NESTOREv1.0 application, the performance is good at 6 h and deteriorates
over time for longer periods. This trend is explained by the fact that shorter time intervals
have a higher percentage of Type A clusters than longer time intervals, where performance
is affected by the imbalance of A and B classes, resulting in a reduced ability of the
classification system to distinguish between classes. In addition, the effects of background
seismicity and activation of nearby fault segments, especially in case of large earthquakes,
may reduce the reliability of the features. Importantly, the improved performance shortly
after the mainshock is a notable advantage for the application of the algorithm for risk
mitigation purposes.

7. Conclusions

The NESTORE machine learning algorithm, implemented in the NESTOREv1.0 soft-
ware package [26], was applied to Greek seismicity to forecast the occurrence of a strong
earthquake after an intense mainshock. We used the AUTH earthquake catalogue between
1995 and 2022 over a large area of Greece, consisting of the Gulf of Corinth, the Ionian
Islands, the northern Aegean Sea, Thessaly and central Greece, Crete, and the Peloponnese,
in order to obtain a long time period and a large area for analysis, and thus to analyze a
sufficiently large number of clusters. Using a window-based approach, in which a cluster
is defined as all events occurring within a temporal and spatial window around the main
earthquake, we tested several laws for cluster detection and found that Uhrhammer’s
(1986) [69] law was the most appropriate for identifying clusters in Greece.

NESTORE classifies clusters into two classes, Type A or Type B, depending on the
magnitude of the strongest aftershock. The algorithm analyzes seismicity features at in-
creasing time intervals from the mainshock using a training procedure based on single-node
decision trees (one threshold for each feature) and found statistically validated thresholds
for the features to discriminate the two typologies. After training, a testing procedure
estimates the probability for each feature to be a Type A cluster on an independent test
set. The estimated probabilities from the different features are combined using a Bayesian
approach to obtain the NESTORE response, which takes into account the different degrees
of reliability of each feature.

The NESTOREv1.0 cluster identification module is independent of the other two. It
allows the user to choose the equations for the radius and time interval of the cluster. This
approach allows fitting to different regions for which different equations should be used.
However, if a more accurate cluster evaluation procedure is required for a particular region,
this module can be modified without affecting the following two modules.

The training and testing modules can be applied to clusters whose magnitude of
completeness is at least equal to the magnitude of the mainshock minus 2. The modules
require a dataset of tens of clusters for reliable training and testing. Thus, the success of the
application of the NESTORE algorithm is influenced by the earthquake catalogue: if the
completeness magnitude is too large, and thus, the number of clusters that can be analyzed
is too small, the algorithm cannot be successfully applied. In addition, the performance of
the features can be affected by the quality of the catalogue used and the magnitudes and
the epicenters of the earthquakes. For this reason, a well-covered seismological network is
important. To avoid too few clusters or problems related to changes in seismicity over time,
the use of data over a period longer than 10–20 years is strongly recommended to cover the
variability of seismicity features. Considering these catalogue property requirements, the
algorithm has been shown to be robust enough to be applied in different seismotectonic
environments. Crucial to this are the training procedure, which allows the algorithm to
automatically adapt to the study area, and the clustering approach, which allows different
region-specific equations as input.

111



Entropy 2023, 25, 797

In our work, we carried out the analysis by NESTOREv1.0 on 75 clusters reported
in the AUTH earthquake catalogue from 1995 to 2022, using a training set from 1995 to
2015 and a test set in the following 7 years. In particular, by using ROC and Precision–
Recall plots, we show that NESTOREv1.0 provided good performances in terms of Type A
clusters forecasting. The best performance was obtained for a time interval of 0.25 days
(6 h) after the o-mainshock. Notably, 100% of Type A clusters were forecasted correctly, the
percentage of Type B clusters misclassified as Type A clusters was less than 10%, and the
percentage of correct classifications was 92%. This makes the method particularly attractive
for application in the field of seismic risk mitigation, as it allows estimating the probability
of a future hazardous earthquake occurring after an initial strong event.

Our understanding of the SSLE preparation process can benefit from a detailed exami-
nation of the features and time periods in which they are relevant to the cluster classification.
In particular, the features S and Q, both depending on the earthquake’s magnitude, per-
form well shortly after the mainshock, while N2, depending on the number of earthquakes,
performs poorly. Interestingly, in a previous application of the code to California, Italy, and
northeastern Italy and western Slovenia, in [18,25,27], N2 performed best, while Q and S
feature performances depended on the analyzed region.

It is important to remark that NESTORE performs well independently on different
regional characteristics because is based on a region-dependent training and because it
is based on different features of seismicity. In our opinion, such an approach based on
multiple features is pivotal to develop a robust algorithm able to work in different regions.
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Abstract: The Omori-Utsu law shows the temporal power-law-like decrease of the frequency of
earthquake aftershocks and, interestingly, is found in a variety of complex systems/phenomena
exhibiting catastrophes. Now, it may be interpreted as a characteristic response of such systems to
large events. Here, hierarchical dynamics with the fast and slow degrees of freedom is studied on the
basis of the Fokker-Planck theory for the load-state distribution to formulate the law as a relaxation
process, in which diffusion coefficient in the space of the load state is treated as a fluctuating slow
variable. The evolution equation reduced from the full Fokker-Planck equation and its Green’s
function are analyzed for the subdynamics governing the load state as the fast degree of freedom. It
is shown that the subsystem has the temporal translational invariance in the logarithmic time, not in
the conventional time, and consequently the aging phenomenon appears.

Keywords: Omori-Utsu law for aftershocks; slow relaxation; Fokker-Planck theory with hierarchical
dynamics; fluctuating diffusivity; logarithmic time and aging

1. Introduction

Given a system, it is essential for understanding its properties out of equilibrium to
look at how the system responds to a sudden disturbance and returns to a typical state
such as the equilibrium one. Therefore, the relaxation phenomena are of major inter-
est for a stable system. Most celebrated may be the exponential relaxation, to the type
of which the mechanical stress relaxation of Maxwell [1] and the Drude-Lorentz-Debye
dielectric(-paramagnetic) relaxation [2,3] belong. However, it is also known that there exist
systems of another type characterized by the stretched exponential function exhibiting
temporal decays of disturbances slower than the exponential type. Such an exotic type
has been identified already in the 19th century [4]. It is termed the Kohlrausch-Williams-
Watts relaxation and is widely observed in disordered systems such as glass-forming
liquids (Reference [5] for a review) and polymers (see Reference [6], for example). Further-
more, it has been found [7,8] that there are soft matters obeying even slower power-law
stress relaxation.

The power-law relaxation phenomenon has actually been long known in seismology.
Omori [9] has discovered in the 19th century that the temporal decrease of aftershocks
following a large earthquake obeys a power law. Later, this empirical law has been modi-
fied and made more precise by Utsu [10]. Accordingly, today it is commonly referred to
as the Omori-Utsu law for earthquake aftershocks. It is as follows. Suppose that a main
shock has occurred at t = 0. Then, the law states that the number of aftershocks occur-
ring during the later time interval between t and t + ∆t, ∆ N (t) = N(t + ∆t)− N(t), is
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∆ N(t) ∼ (c + t)−p ∆t with p and c being positive constants. In the continuous approxi-
mation, it is written in the form of differential as

d N(t)
d t

= n 0 φ (t), (1)

where n 0 is a positive constant, and φ (t) is the function describing the power-law relaxation

φ (t) =
1

(1 + t/τ) p (2)

with τ = c. The value of the exponent p is generally considered to be close to unity but
actually ranges between about 0.5 and 1.5, depending on datasets.

An interesting point is that the Omori-Utsu law has its analogs outside seismology.
A couple of examples have been observed in connection with the World Wide Web. It
has been reported [11] that the download rate of an article uploaded online obeys the
Omori-Utsu-like law. It has also been shown [12] that the pattern of the Internet traffic
after a heavily congested state also obeys it. Furthermore, analogous phenomena have
been discovered in the behaviors of the financial markets. In Reference [13], it has been
found that the dynamics of the stock market after a large crash is well described by the
Omori-Utsu-like law. In addition, it has also been demonstrated to be the case concerning
the crash of the currency exchange rate [14]. These facts suggest that the Omori-Utsu law
may serve as a key for understanding complex systems with catastrophes, in general.

In this paper, we develop a discussion about the Omori-Utsu law for occurrence of
earthquake aftershocks based on physical kinetics. In particular, a generalization of the
Fokker-Planck theory, in which the diffusion coefficient is not a constant but a fluctuating
variable that may describe the effects originating from heterogeneity of the crust and a
complex landscape of the stress distribution at faults, and see how such an theory can
explain the features of the temporal pattern of aftershocks. For this purpose, “a modified
version” of the approach recently proposed in Reference [15] is employed for representing
the dynamical hierarchy. It is shown that the relaxation function in Equation (2) can
be obtained for the subsystem defined through elimination of the fluctuating diffusivity.
This, in turn, gives information on the dynamics underlying the aftershock phenomenon.
Then, we study the reduction of the generalized Fokker-Planck equation and analyze
associated Green’s function characterizing the transition of the load state. It is found that
Green’s function has the temporal translational invariance not in the conventional time
but in the logarithmic time. As a result, the system exhibits the phenomenon of aging,
that is, the system has its own clock. This is in conformity with the discovery in real
seismicity reported in References [16,17]. On the other hand, time evolution is however still
Markovian since Green’s function obeys the Chapman-Kolmogorov equation, in contrast
to the non-Markovian nature of aftershocks [18] (see also Reference [17]). Thus, the present
theory can partially describe the properties of aftershocks.

2. Omori-Utsu Law and Hierarchical Fokker-Planck Equation with
Fluctuating Diffusivity

The concept of Brownian motion has been discussed in the context of seismology in
References [19,20] (see also other works cited therein). There, recurrence of earthquakes has
been modeled as a problem of passage times [21]. The basic random variable considered
there, which experiences random perturbations, is termed “load state” [20]. In the context
of statistical mechanics, it may be thought of as the mean field of stresses distributed over
faults in a geographical region under consideration. We shall denote its realization by ξ.
Thus, ξ should not be confused with a spatial coordinate.

Our point is as follows. We hypothesize that the load state in the spatial regime of
aftershocks undergoes the heterogeneity described by the fluctuating diffusivity, implying
that the diffusion coefficient D itself is regarded as the realization of a random variable, not
a fixed constant. On the other hand, such exotic diffusion with fluctuating diffusivities has
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been observed in laboratories [22,23], where the heterogeneities of the systems are essential.
To theoretically describe it, a kinetic approach has been developed in Reference [15] on the
basis of the Fokker-Planck theory endowed with the hierarchical dynamics characterized
by largely separated time scales. In view of that approach, the load-state variable ξ is
the fast degree of freedom, whereas the diffusivity variable D should be the slow degree
of freedom.

Thus, we consider a 2-tuple of the dynamical random variables X = (X 1, X 2)
T ,

which obeys a general stochastic differential equation [24]: d X =
~
K d t + G̃ d W.

~
K

is a drift term and G̃ is a 2 × 2 matrix. Both of them depend on X 1, X 2 and time t.
d W = (d W 1, d W 2)

T is assumed to be the Wiener noise satisfying Itô’s rule:
d W i d W j = δ i j d t. This implies that d W 1 and d W 2 are mutually independent, but a
possible correlation between them may effectively be taken into account by a nondiagonal
G̃. Now, X 1 is taken to be the random variable of the load state whose realization is ξ and
X 2 is the logarithm of the nonnegative random variable of diffusivity with its realization D.
Since the diffusivity variable is dimensioned, its logarithm contains a constant eliminating
the dimensionality. However, without loss of generality, such a constant can be set equal to
unity. Therefore, the realization x of X is denoted by x = (x 1, x 2)

T = (ξ, ln D) T .

Our interest is in determining
~
K and G̃ that lead to the Omori-Utsu law since these

quantities carry information on the dynamics underlying the law. In this respect, the
Fokker-Planck theory may give a clue. In what follows, we examine this point based on a
modification of the method presented in Reference [15].

Let P̃ (x 1, x 2, t) be the probability distribution normalized in the whole plane:
−∞ < x 1 < ∞, −∞ < x 2 < ∞. Physically, this infinite support can be approximated to
be a finite one for the well-localized system/phenomenon. See the later discussion about
Equation (31). This distribution obeys the Fokker-Planck equation [24] associated with the
above-mentioned stochastic differential equation in the following general form:

∂ P̃
∂ t

= − ∑
i=1,2

∂

∂ xi

(
K̃i P̃

)
+ ∑

i,j=1,2

∂2

∂ xi ∂ xj

(
σ̃i j P̃

)
, (3)

where σ̃ = (σ̃ i j) is a positive matrix (i.e., being symmetric and having only positive
eigenvalues) given by σ̃ = (1/2) G̃ G̃ T , and both K̃ i and σ̃i j are the functions of x1, x2
and t. Mathematically, the drift term has the dependency on calculi since the underlying
stochastic process mentioned above is multiplicative. Here, Itô calculus has been employed.

To be explicit, it is convenient to directly employ the pair (ξ, D). Accordingly,
∂/∂ x1 = ∂/∂ ξ, ∂/∂ x2 = D ∂/∂ D and P (ξ, D, t) = (1/D)P̃ (ξ, lnD, t) with the
prefactor 1/D being the Jacobian. P (ξ, D, t) is normalized in the upper-half plane since D
is nonnegative. Then, Equation (1) is rewritten as

∂ P
∂ t = − ∂

∂ ξ (K1 P)− D ∂
∂ D (K2 P)

+ ∂2

∂ ξ2 (σ11 P) + 2 ∂2

∂ ξ ∂ D (σ12 P) + ∂2

∂ D2 (σ22 P)
, (4)

which is “a modification” of Equation (13) in Reference [15]. In this equation, K’s and σ’s
may depend on ξ and D as well as t and are related to K̃’s and σ̃’s in Equation (3) as follows:
K1 = K̃1, K2 = D

(
K̃2 + σ̃22

)
, σ11 = σ̃11, σ12 = D σ̃12, σ22 = D2 σ̃22. As mentioned, ξ and

D are the fast and slow degrees of freedom, respectively. To implement such a hierarchy,
the method analogous to the Born-Oppenheimer approximation may be applied [15]. That
is, the fast degree of freedom is strongly influenced by the slow degree of freedom, whereas the slow
degree of freedom is not affected by the fast degree of freedom. This leads to

K2 = K2(D), σ22 = σ22(D), (5)
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provided that time dependence in these quantities are ignored since they are relevant to the
slow degree of freedom. In addition, the joint probability distribution should be factorized
as follows:

P (ξ, D, t) = p (ξ, t|D) Π(D), (6)

where p (ξ, t|D) is the conditional probability distribution given the value of D and Π(D)
is the marginal probability distribution of D, time dependence of which is ignored as in
Equation (5). Then, Equation (4) becomes

Π(D) ∂ p(ξ, t|D)
∂ t = −Π(D) ∂

∂ ξ [K1(ξ, D, t) p(ξ, t|D)]

− ∂
∂ D [K2(D) p(ξ, t|D) Π(D)]

+Π(D) ∂2

∂ ξ2 [σ11(ξ, D, t) p (ξ, t|D)]

+2 ∂
∂ D

{
Π(D) ∂

∂ ξ [σ12(ξ, D, t) p (ξ, t|D)]
}

+ ∂ 2

∂ D2 [σ22(D) p (ξ, t|D) Π(D)].

(7)

As shown in Reference [15] with the present modification, this equation can be separated
as follows:

∂ p (ξ, t|D)
∂ t = − ∂

∂ ξ [K1(ξ, D, t) p (ξ, t|D)]

+ ∂2

∂ ξ2 [σ11(ξ, D, t) p (ξ, t|D)]
(8)

for the fast degree of freedom and

− ∂
∂ D [K2(D) p (ξ, t|D) Π(D)]

+2 ∂
∂ D

{
Π(D) ∂

∂ ξ [σ12(ξ, D, t) p (ξ, t|D) ]
}

+ ∂ 2

∂ D 2 [σ22(D) p (ξ, t|D) Π(D)] = 0

(9)

for the rest. Equation (9) is immediately integrated to be

−K2(D) p (ξ, t|D) Π(D) + 2 Π(D) ∂
∂ ξ [σ12(ξ, D, t) p (ξ, t|D) ]

+ d [σ22(D) Π(D)]
d D p (ξ, t|D) + σ22(D) Π(D) ∂ p (ξ, t|D)

∂ D
= f (ξ, t).

(10)

Here, f (ξ, t) is a certain function. This equation is further separated as follows:

− K2(D) Π(D) +
d [σ22(D) Π(D)]

d D
= 0 (11)

for the slow degree of freedom and

2 Π(D) ∂
∂ ξ [σ12(ξ, D, t) p (ξ, t|D) ] + σ22(D) Π(D) ∂ p (ξ, t|D)

∂ D
= f (ξ, t).

(12)

for the coupling between the fast and slow degrees of freedom. Actually, it is possible
to set

f (ξ, t) = 0. (13)

This is because the integration of Equation (12) over−∞ < ξ < ∞ leads to the fact that such
an integration of f (ξ, t) vanishes, provided that σ12(ξ, D, t) p (ξ, t|D)→ 0 (ξ → ±∞)
is assumed. [There is still a possibility that f (ξ, t) is an integrable odd function of ξ, but
such a case turns out to be ruled out]. Thus, the equation for the coupling is given by

2
∂

∂ ξ
[σ12(ξ, D, t) p (ξ, t|D)] + σ22(D)

∂ p (ξ, t|D)

∂ D
= 0. (14)
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As required, the slow degree of freedom does not depend on the fast degree of freedom in
Equation (11). Equations (8), (11) and (14) characterize the hierarchical dynamics. Let us
analyze these for the Omori-Utsu law.

Firstly, we discuss Equation (8) for the fast degree of freedom. Since the external
loading on the region under consideration such as the tectonic one [19] is negligible, we
impose the condition on the drift term in Equation (8) that it is actually absent:

K1 = 0. (15)

Therefore, we have

∂ p (ξ, t|D)

∂ t
=

∂2

∂ ξ2 [σ11(ξ, D, t) p (ξ, t|D)]. (16)

Following the Brownian model of seismicity proposed in References [19,20], we take the
Gaussian solution to Equation (16):

p (ξ, t|D) =
1√

4πD t
exp

(
− ξ2

4 D t

)
, (17)

which corresponds to the initial condition p (ξ, 0|D) = δ (ξ) , representing a main shock
at t = 0. Although a more general initial condition may actually be employed, here we
consider this simplest one. Substituting Equation (17) into Equation (16), we have

σ11 = D, (18)

as expected.
Let us see how Equation (17) can give rise to the Omori-Utsu law. Recall that the

relaxation function in a symmetric random walk model is given by the characteristic
function of the distribution [25–27]. In the present case, it is the characteristic function of
the marginal distribution of ξ obtained by the integration of the joint distribution P (ξ, D, t)
over D. That is,

φ k(t) =
∞∫

0

d D χ (k, t|D) Π(D) . (19)

In this equation, χ (k, t|D) stands for the characteristic function of the conditional distri-
bution

χ (k, t|D) =

∞∫

−∞

d ξ e i k ξ p (ξ, t|D) , (20)

which is calculated for Equation (17) to be

χ (k, t|D) = exp
(
−D k2t

)
. (21)

Let us examine the case when the fluctuating diffusivity obeys the gamma distribution

Π(D) =
1

Γ (p)
D p−1

D p
0

exp
(
− D

D0

)
(p > 0), (22)

where Γ (p) is the gamma function and D0 is a constant given by D0 = 〈D〉/p with
〈Q〉 ≡

∫ ∞
0 dD

∫ ∞
−∞ dξ Q P (ξ, D, t), Equations (6), (17) and (22). Then, from

Equations (19)–(21), we obtain the relaxation function for the Omori-Utsu law

φk(t) =
1

(1 + t/τk)
p , (23)
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where τ k is given by

τk =
1

D0 k2 . (24)

Thus, Equation (2) is in fact obtained for each mode k. This is our first result.
Secondly, let us analyze Equation (11). Using Equation (22), that equation leads to the

following relation:

K2(D) =
d σ22(D)

d D
+

(
p− 1

D
− 1

D0

)
σ22(D). (25)

σ22 will be determined later.
Thirdly, substituting Equation (17) into Equation (14), we have the following equation

for the coupling between the fast and slow degrees of freedom:

2
∂ σ12(ξ, D, t)

∂ ξ
− ξ

D t
σ12(ξ, D, t) +

(
ξ2

4D2t
− 1

2D

)
σ22(D) = 0. (26)

This equation has the solution

σ12(ξ, D) =
ξ

4D
σ22(D), (27)

which shows that the coupling is fixed in time.
Finally, as in Reference [15], we determine σ22 by the positivity of σ. Using

Equations (5), (18) and (27), this matrix is written as

σ =

(
D [ξ/(4D)] σ22(D)

[ξ/(4D)] σ22(D) σ22(D)

)
. (28)

Since the positivity implies that the eigenvalues of this 2 × 2 matrix is positive, it
follows that

tr σ = D + σ22(D) > 0, (29)

det σ = σ22(D)

[
D− ξ2

16 D2 σ22(D)

]
> 0. (30)

Equation (29) is natural, whereas Equation (30) needs some considerations. Clearly, in
order for the quantity inside the square brackets in Equation (30) to be positive, ξ cannot
arbitrarily be large. This, in turn, imposes a constraint on the time scale for the validity
of the present theory [15]. Let such a time scale be denoted by T. The diffusion property
suggests that ξ2 ∼

〈
ξ2〉 = 2p D0 T, where

〈
ξ2〉 =

∫ ∞
−∞ d ξ

∫ ∞
0 dD ξ2 P (ξ, D, T) is the

variance of ξ in terms of the distribution in Equation (6) with Equations (17) and (22) and
〈ξ〉 = 0 (see the last paragraph in this section). This may indicate that the corresponding
scale S is a constant satisfying √

2 p D0T << S. (31)

In other words, the value of ξ should be well localized in this way. Thus, Equation (30) may
hold up to S (or correspondingly T). In terms of such a scale, we have

σ22(D) =
16 D3

S2 (32)

as the solution. Substituting this equation into Equations (25) and (27), we obtain

K2(D) = (p + 2)
16 D2

S2 − 16 D3

D0 S2 , (33)
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σ12(ξ, D) =
4 ξD2

S2 , (34)

respectively.
Consequently, we find that the present theory based on the Fokker-Planck equation

with fluctuating diffusivity describes the Omori-Utsu law if K’s and σ’s are given by
Equations (15), (18) and (32)–(34).

Closing this section, we present the explicit form of the marginal distribution of ξ,
which is denoted here by p̂ (ξ, t). As seen in Equations (19) and (20), it is given by the
inverse Fourier transformation of Equation (23):

p̂ (ξ, t) =
1

2π

∞∫

−∞

dk e −i k ξ φk(t). (35)

Then, using the Formula (9.6.25) in Reference [28], we have

p̂ (ξ, t) =
1

2 p−1/2√π Γ (p)
√

D0 t

( |ξ|√
D0 t

) p−1/2
Kp−1/2

( |ξ|√
D0 t

)
, (36)

where K ν(z) is the modified Bessel function. The ξ-dependence appears only in the
combined form

∣∣ξ
∣∣/
√

D0 t , implying the normal diffusion: the variance of ξ linearly grows
in time t. Therefore, the present model offers an example of the non-Gaussian normal
diffusion, the phenomenon of which is currently attracting much attention [22,23]. It is
however noted that this diffusion process takes place in the space of the load state, not in the
conventional space.

3. Subdynamics, Logarithmic Time and Aging

Now, we address ourselves to studying the subdynamics obtained by reduction of the
fluctuating diffusivity.

Let us derive the evolution equation for the marginal distribution p̂ (ξ, t). It is should
be noted that such an equation is necessarily specific to the initial condition. Equation (17)
satisfies

∂ p (ξ, t|D)

∂ t
= − 1

2 t

(
ξ

∂

∂ ξ
+ 1
)

p (ξ, t|D). (37)

With this form, multiplying the both sides by Π(D) and integrating over D, we have the
following equation for the marginal distribution:

∂ p̂ (ξ, t)
∂ t

= − 1
2 t

(
ξ

∂

∂ ξ
+ 1
)

p̂ (ξ, t), (38)

which describes how the subsystem evolves in time.
Here, we wish to make a comment on the fact that the operator in Equation (37) does

not have explicit dependence on D and accordingly the marginal distribution satisfies a
closed form as in Equation (38). In fact, upon deriving that equation, we do not have to
assume the explicit form of Π(D) in Equation (22). Actually, this feature has its origin in
the scaling property of the conditional distribution in Equation (17):

p (ξ, t|D) =
1

t1/2 p (ξ/t1/2|D), (39)

where p (x|D) is the Gaussian scaling function p (x|D) = (4πD)−1/2 exp
[
−x2/(4D)

]
. In

this context, the scale invariance of Equation (38) should be noted: it does not change its
form under the individual rescaling transformations of ξ and t. In Section 4, a further
discussion will be made about the relation between the scaling property and derivability of
a local equation of evolution for a marginal distribution in a closed form.
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To see the property of the subdynamics, let us analyze Green’s function G (ξ, t : ξ ′, t′)
associated with Equation (38), which is the solution of the equation

[
∂

∂ t
+

1
2 t

(
ξ

∂

∂ ξ
+ 1
)]

G (ξ, t : ξ ′, t′) = δ (ξ − ξ ′) δ (t− t′), (40)

satisfying the condition

lim
t→t′+0

G (ξ, t : ξ ′, t′) = δ (ξ − ξ ′). (41)

The explicit form of the solution is found to be given by

G (ξ, t : ξ ′, t′) =
1

t 1/2 δ
(

ξ/t1/2 − ξ ′/t′1/2
)

θ (t− t′), (42)

where θ(s) is the Heaviside step function: θ(s) = 0 (s < 0), 1/2 (s = 0), 1 (s > 0).
From Equation (42), we obtain three important results, which are as follows.
Firstly, the transition from one value of the load state to another is deterministic because of

the delta-function nature of Green’s function. This is due to the fact that Equation (40) does
not depend on D0: no remnants of the diffusivity are contained. The functional form in
Equation (36) is kept unchanged under time evolution (as discussed in Section 4, this comes
from the scaling property of the conditional distribution that still depends on D).

Secondly, Green’s function clearly satisfies the Chapman-Kolmogorov equation [24]

G (ξ, t : ξ ′, t′) =
∞∫

−∞

d ξ ′′ G (ξ, t : ξ ′′ , t′′ ) G (ξ ′′ , t′′ : ξ ′, t′)
(
t > t′′ > t′

)
. (43)

Therefore, the evolution process is Markovian.
Thirdly, the evolution is not stationary since the dependence of Green’s function on

t and t′ cannot be expressed in terms only of the difference t − t′ and so the temporal
translational invariance is violated. This is actually clear since the operator in Equation (40)
has explicit time dependence. However, it is of significance to rewrite Equation (42) in the
following form:

G (ξ, t : ξ ′, t′) = δ
(

ξ − ξ ′ e(ln t−ln t′)/2
)

θ (ln t− ln t′). (44)

This implies that the temporal translational invariance is restored in terms of the logarithmic time.
Finally, let us examine the above-mentioned second and third results in view of the

known properties of aftershocks. The second result is unsatisfactory since it has been
reported in References [17,18] that processes of aftershocks are generally non-Markovian.
Clearly, Markovianity of the present theory comes from that of Equation (3) and the
hierarchical structure although subdynamics of a Markovian dynamics is not necessarily
Markovian, in general. This point needs further investigations. On the other hand, the
third result is intriguing since it shows how the subdynamics experiences slowing down
in terms of the logarithmic time. This captures an element of criticality. Let us note that
Green’s function is actually a tri-variate function G (ξ, t : ξ ′, t′) ≡ g (ξ, ξ ′, t/t′), as seen in
Equation (44). Rewriting as t→ t + tw and t′ → tw with the waiting time tw, this becomes

G (ξ, t + tw : ξ ′, tw) = g (ξ, ξ ′, t/tw + 1), (45)

which depends on not only t but also the waiting time, showing nonstationarity of the
evolution. The dependence on the waiting time here is specific: the larger the waiting
time is, the slower the evolution in terms of the conventional time t becomes. That is,
the subsystem exhibits the aging phenomenon (not in the two-time correlation function
but in Green’s function), implying that the subsystem has its own “internal clock”. We
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mention that such a phenomenon has been discovered for the event-event correlation of real
aftershocks [16,17]. It is also noted that the logarithmic time and the aging phenomenon
appear in glassy dynamics [29].

4. Concluding Remarks

We have presented a theoretical approach to describing the Omori-Utsu law for
earthquake aftershocks. Assuming fluctuating diffusivity effectively representing the
system heterogeneity, we have examined the Fokker-Planck theory with the hierarchical
structure, in which the load-state and diffusivity variables are the fast and slow degrees of
freedom, respectively. In this way, we have extracted the information about the dynamics
underlying the law that can be used in the stochastic process of aftershocks. Then, we have
studied the evolution equation for the load state that is reduced from the Fokker-Planck
equation. We have analyzed Green’s function of that equation and have observed how the
logarithmic time and the aging phenomenon naturally appear.

An additional point we make here is concerned with Equation (38) or, more funda-
mentally, Equation (37). As mentioned, these equations have the invariance under the
individual rescaling transformations of the load-state variable and time. This symmetry
makes the equations independent of the diffusivity (i.e., D 0) and leads to the deterministic
transition between the load states. We have claimed that this symmetry has its origin in
the scaling property of the conditional distribution in Equation (39). To see this somewhat
in a wider context, let us look at, as an explicit example, the symmetric Lévy distribution
indexed by α ∈ (0, 2) [30]:

L α(ξ, t|D ∗) =
1

2π

∞∫

−∞

d k exp
(
−i k ξ − D ∗ t |k| α), (46)

where D ∗ stands for a generalized diffusion coefficient. The Gaussian case corresponds to
the limit α→ 2− . This decays as a power law, L α(ξ, t|D ∗) ∼ 1/|ξ|1+α and therefore its
second moment is divergent. Accordingly, the diffusion property should be characterized
not by the standard deviation but by e.g., the half width. We note that the conditional
distribution in Equation (46) has the scaling property

L α(ξ, t|D ∗) =
1

t1/α
L α(ξ/t1/α|D ∗) (47)

with the Lévy scaling function L α(x) = (2π)−1 ∫ ∞
−∞ d k exp

(
−i k x− D ∗ |k|α

)
. This im-

plies that the half width grows in time as ∼ t1/α, exhibiting superdiffusion faster than
normal diffusion ∼

√
t. Then, from Equation (47), it follows that

∂ L α(ξ, t|D ∗)
∂ t

= − 1
α t

(
ξ

∂

∂ ξ
+ 1
)

L α(ξ, t|D ∗), (48)

which generalizes Equation (37). This equation still does not explicitly contain the (general-
ized) diffusion coefficient and therefore is invariant under the rescaling transformations
of ξ and t. It is however known that, in order to obtain the Lévy distribution as a solution
of the Fokker-Planck equation, the operator ∂2/∂ ξ2 should be fractionalized [30,31] and
replaced by e.g. Riesz’s fractional Laplacian. In general, not limited to the example in
Equation (46), appearance of the deterministic transition is related to the scaling property
of the conditional distribution.

Note added. After completing the present work, we have noticed Reference [32]. There,
the authors discuss the Fokker-Planck theory with the hierarchical structure to the biological
process experienced by the cell in connection with decision making. It shows how the
theory can shed new light on its application to information theory.
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Abstract: In this work, a model is proposed to examine the role of viscoelasticity in the generation
of simulated earthquake-like events. This model serves to investigate how nonlinear processes in
the Earth’s crust affect the triggering and decay patterns of earthquake sequences. These synthetic
earthquake events are numerically simulated using a slider-block model containing viscoelastic
standard linear solid (SLS) elements to reproduce the dynamics of an earthquake fault. The simulated
system exhibits elements of self-organized criticality, and results in the generation of avalanches
that behave similarly to naturally occurring seismic events. The model behavior is analyzed using
the Epidemic-Type Aftershock Sequence (ETAS) model, which suitably represents the observed
triggering and decay patterns; however, parameter estimates deviate from those resulting from
natural aftershock sequences. Simulated aftershock sequences from this model are characterized by
slightly larger p-values, indicating a faster-than-normal decay of aftershock rates within the system.
The ETAS fit, along with realistic simulated frequency-size distributions, supports the inclusion of
viscoelastic rheology to model the seismogenic fault dynamics.

Keywords: earthquake physics; ETAS model; friction; viscoelasticity; slider-block model; power–law

1. Introduction

Despite the complex nature of earthquake dynamics, simple models may be used to
understand many aspects of earthquake behavior. In particular, these models aim to explain
and represent the physical mechanisms behind the generation of earthquakes [1,2]. This
is accomplished by analyzing and replicating patterns observed in aftershock sequences
and other seismic activity in accordance with statistical observations and known properties
of the Earth’s crust. These models are designed to examine earthquake behavior from the
perspective of either statistical seismology or physics, and allow for a more comprehensive
understanding of the physics involved with common earthquake patterns [3,4]. A better
understanding of these characteristics provides additional resources for risk estimation and
forecasting efforts, which serve to mitigate the damage resulting from future earthquake
events [5–8].

When considering a traditional earthquake model, earthquakes result from interac-
tions between tectonic plates within the Earth’s crust. This system, defined by networks of
constantly moving plates and their corresponding dynamics, can be classified as an incredi-
bly complex nonlinear system, exhibiting self-organized criticality [9,10]. Plainly, as the
plates are constantly driven forward and interacting with one another, the system hovers at
a state extremely close to instability, and at a certain stress threshold, critical instabilities
appear in the form of abrupt slippage along a fault [3,11,12]. In this context, earthquakes are
viewed as the outward expression of these sudden slippages, as segments of the rock walls
on either side of the fault are suddenly displaced in a series of “avalanches” [12,13]. The
resulting earthquake dynamics within a certain region (a single fault or a system of faults)
then depend on the physical properties of the surrounding rock medium, particularly its
elastic, viscous, and frictional responses.
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Due to the complexity of this system, it is impossible to design a model that represents
the Earth’s crust in its entirety. Instead, models are designed to be much simpler analogs,
which still exhibit similar system dynamics on a much smaller scale. The slider-block
model, first introduced by Burridge and Knopoff in 1967, is an example of one such model
used to represent the behavior of a single seismogenic fault within a surrounding elastic
medium [14]. This slider-block model focuses on the interaction between two opposing
walls of a fault, and how the corresponding friction and elastic responses play a role in
the occurrence of earthquakes [11,12,14,15]. The original formulation represents a chain
of blocks of equal mass, connected in series using elastic springs. These blocks are placed
on a surface with uniform friction, which acts in opposition to a constant driving force.
This system, much like the Earth’s system of tectonic plates, is persistently driven toward
instability. This instability results from the constant driving force, alongside the linear and
nonlinear forces acting on each block due to the elastic springs and velocity weakening
friction force [12,16]. Each block eventually approaches critical slipping points, resulting
in abrupt displacements of previously stuck blocks, or “avalanches” affecting a series of
neighboring blocks, mimicking earthquakes propagation along a fault.

Many studies incorporating this slider-block concept have been carried out, utilizing
two-dimensional arrays of slider blocks, cellular automata, and a variety of nonlinear
velocity-dependant friction laws, all in an attempt to discern more information regarding
the dynamics of seismogenic faults [1,3,17–19]. Those studies examined the sizes of gener-
ated avalanche events, and determined that models similar to the Burridge and Knopoff
model produce size distributions similar to those commonly associated with seismic activity.
In particular, for slider-block models and other models that display aspects of self-organized
criticality, frequency-size distributions often follow power–law-type functional form with
relevant finite-size effects. [1,12]. It should be stated that although slider-block models are
not considered as systems that exhibit strictly self-organized critical behaviour, due to the
presence of tuning parameters, these models still provide meaningful methods through
which this behavior can be studied.

Despite the simple premise, the slider-block model can be a useful tool for simulating
the behavior of earthquake faults as complex, chaotic systems, while simultaneously ex-
amining the properties of self-organized criticality within the field of seismology [2,3,20].
However, this model does have its limitations. In particular, large earthquakes are often
followed by a series of aftershocks [21,22], proportional to the initial shock, which decrease
in magnitude and frequency according to several well-studied patterns, such as the Omori–
Utsu law [23], or the Epidemic-Type Aftershock Sequence (ETAS) model [24,25]. Purely
elastic slider-block models often lack these aftershock patterns, reducing the applicability
of these models to real-life earthquake forecasting or risk assessments. It is because of this
that recent studies have introduced slider-block models with additional components or
processes to better resemble seismologic observations, primarily through the introduction
of physical properties such as viscoelasticity [19,26–31]. The addition of viscoelastic compo-
nents to existing slider-block models serves to recreate the physical properties of the Earth’s
crust along a seismogenic fault, in the hopes of recreating realistic aftershock sequences
following a sufficiently large event.

Although the linearly elastic properties of a rock medium strongly influence earth-
quake dynamics over short timescales, nonlinear properties of the Earth’s crust are thought
to influence many aspects of observed seismic activity [32,33]. The lithosphere, the lower
regions of the Earth’s crust, the upper mantle, and regions along active fault zones ex-
hibit the greatest deviation from linear elasticity [34–37]. In these regions, the addition of
nonlinear viscoelasticity may be responsible for the presence of the temporal clustering,
or aftershocks, generated independently of the initial driving forces behind the initial
avalanche [19,28,38].

In this paper, we investigate the influence of viscoelasticity on a one-dimensional
slider-block model, specifically through the use of standard linear solid (SLS) viscoelastic
components, composed of a Maxwell element connected in parallel to an elastic spring.
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Using computer simulation to depict the motion of each slider-block over a set time interval,
a catalog of avalanche events is then analyzed using the ETAS model to determine the
model parameters and the quantitative behaviour of the model. The viscoelastic slider-
block model reproduces frequency–magnitude behavior and temporal clustering similar to
that of natural seismic activity. Reasonable values are obtained through ETAS parameter
estimates, which indicate the generation of realistic, rapidly decaying aftershock sequences.
The purpose of this model is to investigate the behavior of simulated earthquake catalogs.
This is performed to better understand the influence of different physical properties on
seismic activity, using metrics like ETAS model parameters to compare simulated events to
real-life seismicity.

The paper is organized as follows. In Section 2, the model is formulated and the
governing equations are derived. In Section 3, the model simulations are presented and
the obtained results are described. And finally, in Section 4, the results are discussed and
future research directions are outlined.

2. Viscoelastic Slider-Block Model

The model consists of a one-dimensional chain of slider blocks, each of equal mass
m and connected to neighboring blocks by the SLS elements. This model is illustrated in
Figure 1. These SLS components contain a viscous dashpot and an elastic spring, with
characteristic parameters η and kd, respectively, connected in series. This is known as a
Maxwell element. This Maxwell element is connected in parallel to a second elastic spring,
with parameter k, to form the SLS component [39]. This component was chosen to model
the observed nonlinear viscoelastic response of common natural materials, specifically with
regard to the behavior of the Earth’s crust. Each block is then individually attached to an
upper plate via separate SLS components, characterized by parameters kpd and ηp within
the Maxwell element, and parameter kp for the elastic spring placed in parallel. The chain of
blocks is then placed on a conveyor belt, which moves at a constant driving velocity, −vdr.

Figure 1. Schematic illustration of the model with N = 4 blocks, with model parameters
{k, kd, η, kp, kpd, ηp}. The slider blocks are interconnected by SLS elements and are driven by the
conveyor belt. The positive x direction is opposite the direction of the driving velocity, −vdr.

This model also relies on a nonlinear slip–stick friction law, dependant on the velocity
of the blocks relative to the moving conveyor belt. The chosen friction law originates from
the 1989 Carlson and Langer slider-block model, in which the magnitude of the friction
force ranges between fs and − fs. This friction force takes the form [11]:

Ff (vi) = fsφ

(
vi + vdr

v0

)
, (1)

where vi is the velocity of a single block i; v0 is a chosen reference velocity; and the velocity-
dependant component, φ, is chosen such that the friction force vanishes at high velocity. In
this model, φ is defined as follows [11]:

129



Entropy 2023, 25, 1419

φ(z) =





(−∞; 1] , z = 0 ,
sign(z)
1 + δ|z| , z > 0 .

(2)

To simulate the motion of N blocks in a linear array, the equation of motion for a single
block i can be written as

m
d2xi
dt2 = −k (2xi − xi−1 − xi+1)− kp xi + F(i−1)

M (t) + F(i+1)
M (t)

+FMp(t)− fs φ

(
vi + vdr

v0

)
,

(3)

where FMp(t) is the force exerted by the Maxwell element connecting the block to the

top plate, and F(i−1)
M (t) and F(i+1)

M (t) are the forces due to the two Maxwell elements
connecting the block to its neighboring blocks. When the forces acting on the block from
both the upper driving plate and the nearest neighbor blocks exceed that of the velocity-
weakening frictional force, the block abruptly slips. These sudden displacements may
trigger subsequent slippages of neighboring blocks, resulting in an avalanche in the system.

The force exerted by the Maxwell elements in both SLS components can be defined
as follows. Assume that x represents the total displacement of the Maxwell element and
is defined by x = xd + xs, where xd is the displacement in the dashpot and xs is the
displacement in the spring. It is possible to show that the force due to the Maxwell element
satisfies the following ODE [39]:

dF
dt

= −kd
dx
dt
− kd

η
F. (4)

This was used to define the forces exerted by the Maxwell elements in the SLS compo-
nent connected to the top plate, and on either side of block i, by blocks (i− 1) and (i + 1).

dFMp

dt
= −kpd

dxi
dt
−

kpd

ηp
FMp , (5)

dF(i−1)
M
dt

= −kd
d(xi − xi−1)

dt
− kd

η
F(i−1)

M , (6)

dF(i+11)
M
dt

= −kd
d(xi − xi+1)

dt
− kd

η
F(i+1)

M . (7)

Equations (6) and (7) can be combined into a single ordinary differential equation,
where the force exerted by the Maxwell elements of both neighbor blocks is equal to
FM = F(i−1)

M + F(i+1)
M , and is defined by:

dFM

dt
= −kd

d(2xi − xi−1 − xi+1)

dt
− kd

η
FM . (8)

A chain of N slider blocks can then be described by the system of ODE equations for
each block i, which can then be solved numerically to simulate the motion of each block
within a set time interval. The linearly elastic interactions between neighboring blocks
and the upper plate result in an instantaneous transfer of stress within the system, while
the presence of the viscous dashpots allows for a delay in transfer that enables the further
potential triggering of slipping events [19,28,38,39].
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Performing the nondimensionalization of this system of equations allows for a further
analysis of the model behavior, while reducing the number of independent parameters.
The following dimensionless variables can be introduced for this purpose:

τ =
t√ m
kpd

, ui =
xikpd

fs
, F̃M =

FMkpd

fskd
, F̃Mp =

FMp

fs
, (9)

where

Vi = u̇i =
dui
dτ

=

√
mkpd

fs

dxi
dt

=

√
mkpd

fs
ẋi =

√
mkpd

fs
vi . (10)

These nondimensional variables can be used to rewrite the equations of motion (3)
with (5) and (8) in the following form:

d2ui
dτ2 = −ω (2ui − ui−1 − ui+1)−ωp ui + ωf F̃M(τ) + F̃Mp(τ)− φ(z) ,

dF̃M

dτ
= −d(2ui − ui−1 − ui+1)

dτ
−ωd F̃M , (11)

dF̃Mp

dτ
= −dui

dτ
−ωpd F̃Mp ,

where the new dimensionless parameters are given as follows:

ω =
k

kpd
, ωp =

kp

kpd
, ωf =

kd
kpd

,

ωd =
kd
η

√
m

kpd
, ωpd =

kpd

ηp

√
m

kpd
.

(12)

The parameters ω and ωp describe the elastic coupling of the system, and ωf, ωpd,
and ωd dictate the viscous response of the SLS elements. The variable representing the
velocity of each block i within the velocity-weakening friction law, z, is given by

z =
vi + vdr

v0
= δ (Vi + ν), (13)

where

δ =
1
v0

B
A

=
1
v0

fs

kpd

√
kpd

m
, ν = vdr

kpd

fs

√
m

kpd
. (14)

To simulate the model using this system of equations, one can use the following switch
algorithm, which allows for transitions between the stick and slip states [40,41]. This is
evaluated at each time step within the numerical solution process, where F(i)

SLS is the force
applied by both the upper plate and neighboring blocks (Algorithm 1).

Finally, for the model to produce suitable results, boundary conditions must be as-
signed to prevent irregular behavior on either side of the slider-block chain. For this model,
the displacement of the end blocks was set to zero. Additionally, the initial condition for
each slider block is the “stuck” position, with a velocity of zero relative to the conveyor
belt. To provide the required spatial heterogeneity in the model, the initial displacement of
each block was generated according to uniformly distributed random numbers within a
limited interval.
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Algorithm 1 The switch algorithm to simulate the numerical integration of slider blocks
assembled in a chain.

1: procedure SLIDERBLOCK(ui, ui−1, ui+1, Vi, Vi−1, Vi+1, ω, ωp, ωf, ωd, ωpd, ν, dV)

2: F(i)
SLS ← −ω (2ui − ui−1 − ui+1)−ωp ui + ωf F̃M(τ) + F̃Mp(τ) . compute the force

3: if |Vi + ν| > dV then . slip phase

4:
dui
dτ
← Vi

5:
dVi
dτ
← F(i)

SLS − φ(z)

6: else if
∣∣∣F(i)

SLS

∣∣∣ > 1 then . stick to slip transition

7:
dui
dτ
← Vi

8:
dVi
dτ
← F(i)

SLS − sign
(

F(i)
SLS

)

9: else . stick phase

10:
dui
dτ
← −ν

11:
dVi
dτ
← −(Vi + ν)

12:
dF̃M

dτ
← −(2Vi −Vi−1 −Vi+1)−ωd F̃M

13:
dF̃Mp

dτ
← −Vi −ωpd F̃Mp

14: return

(
dui
dτ

,
dVi
dτ

,
dF̃M

dτ
,

dF̃Mp

dτ

)
. return the slider block state

Within the simulation itself, an analysis was performed, following an initial transient
regime to allow for the system to fall into a statistically steady state. During the steady state,
a procedure was conducted to identify, examine, and record the properties of the observed
block movement that form clusters or avalanches. The properties of each cluster, including the
number of involved blocks, the velocity at which the slippage events occurred, and the area
over which the total displacement occurred, were used to quantify the size of each avalanche.

It is the size and frequency regarding these events that form the basis of the fol-
lowing analysis. Particularly, the triggering and decay of avalanche events following a
sufficiently large event was analyzed using the ETAS model [25]. This model describes
aftershock sequences as a clustering of seismic activity; each earthquake triggers a subse-
quent proportional increase in the rate of earthquake events depending on the frequency
and magnitude of past earthquakes. The variation of event occurrence rate can be described
by the following equation [25]:

λω(t) = µ + K
Nt

∑
i:ti<t

eα(mi−m0)

(
t−ti

c + 1
)p , (15)

where λω(t) is the event rate with respect to time, with reference magnitude m0 and
the model parameters ω = {µ, α, K, c, p}. In this model, the rate is a superposition of a
constant background activity rate µ, alongside contributions from each previous event.
The parameter c describes the rate of aftershocks in the beginning stages of an aftershock
sequence, the parameter p describes the speed at which the aftershock rate decays, and
both the parameters K and α describe the productivity of an aftershock sequence.

The parameters of simulated aftershock sequences according to the ETAS model
were estimated using the maximum likelihood estimation (MLE) method, utilizing the
corresponding log-likelihood function:
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log(L) = −µ(Te − Ts)−
Kc

p− 1

k

∑
i=1

eα(mi−m0)

[(
Ts − ti

c
+ 1
)1−p

−
(

Te − ti
c

+ 1
)1−p

]

− Kc
p− 1

NTe

∑
i=k+1:Ts≤ti≤Te

eα(mi−m0)

[
1−

(
Te − ti

c
+ 1
)1−p

]

+
n

∑
j=1

log


µ + K

Ntk+j

∑
i:ti<tk+j

eα(mi−m0)

(
tk+j−ti

c + 1
)p


 ,

(16)

where ti is the event times within a time interval [T0, Te] in a given catalog with NTe events
and the time interval [Ts, Te], with Ts > T0 encompassing all events within the fitting time in-
terval. k is the number of events in the interval [T0, Ts] and n is the number of event in [Ts, Te].

3. Results
3.1. Model Simulation

Simulations of the above viscoelastic slider-block model were performed through the
numerical integration of a system of ODE equations for a linear array of N = 100 slider
blocks. Each simulation was permitted to complete an initial transient regime, after which
statistics and observations were collected regarding the behavior of the system while in a
steady state. Each simulation had a transient regime length of τ = 10, 000, followed by a
steady state regime with length τ = 50, 000.

The simulation described in this section is characterized by the dimensionless model
parameters {ω, ωp, ωf, ωd, ωpd, ν, δ} = {8, 2.5, 1.5, 0.03, 0.01, 0.001, 10}. The degree of elas-
tic coupling within the system is defined by the initial three parameters, while parameters
ωd and ωpd (12) define the magnitude of the viscous response of the SLS components
connected between slider blocks and to the upper plate, respectively. The magnitude of the
friction between slider blocks and the conveyor belt is determined by the parameter δ (14),
and the driving velocity of the conveyor belt is determined by the parameter ν (14).

These dimensionless parameters {ω, ωp, ωf, ωd, ωpd, ν, δ} define the amplitudes of
the corresponding forces acting on each slider block. Values were chosen to reproduce
realistic behaviour observed for natural seismicity, and later on, these values were varied
to enhance the viscoelastic effect, and to observe how the frequency–magnitude behaviour
changes accordingly. For this, we used small values of ωp and ωpd, as they are entered as
a dumping parameter for forces FM and FMp in (11). The smaller values result in longer
viscous effects associated with the slippage of each block. Parameter ν was chosen to be
small as it represents the driving or loading velocity.

The velocity of each slider block vi, determined at each time step of the numerical
solution, is shown in Figure 2. The sharp, velocity spikes represent the sudden slippage of
a slider block that occurs once the nonlinear friction force is overcome. Sufficiently large
sudden displacements of a single slider block acts as a trigger for neighboring blocks to
undergo similar displacements, generating an avalanche. The size, s, of each avalanche is
determined by the sum displacement of each block involved in the avalanche. Figure 3
displays the displacement resulting from the above velocity spikes. Figure 4 displays the
distribution of these events in time.
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Figure 2. Nondimensional steady-state velocity measurements with time τ for N = 100 slider blocks
for the simulation of the model with parameters ω = 8, ωp = 2.5, ωf = 1.5, ωd = 0.03, ωpd = 0.01,
ν = 0.001, δ = 10, recorded following an initial transient regime. Sharp velocity spikes spanning
multiple slider blocks within a sufficiently small time interval are counted as avalanche events.
Velocity is measured in arbitrary units.

Figure 3. Pseudocolor plot displaying nondimensional displacement measurements with time τ, for
N = 100 slider blocks, for an iteration of the model with the same parameters as in Figure 2. The
magnitude of displacement is represented by the adjacent color bar, with arbitrary units.
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Figure 4. Plot depicting the evolution of event sizes in time for N = 100 slider blocks, and for the
simulation of the model with the same parameters as in Figure 2.

The simulation collects characteristics of the avalanches, including the block at which
the sequence was initiated and the duration of the avalanche, as defined by the period of
time in which any block within the event has a velocity relative to the conveyor belt greater
than some small cutoff value. This cutoff value allows for a distinction between avalanche
events. In both Figures 2 and 3, regular instances of both negative velocity and negative or
“backward” displacement may be observed alongside movement in the positive direction.

For the model simulations performed in this work, a single run with the specified
transient and steady time intervals took several hours to run on a PC computer. Increasing
the system size can be a challenging task; however, the implementation of the parallel
version of the model can help to speed up the computations.

3.2. Avalanche Statistics and Model Fitting

The viscoelastic slider-block model was capable of generating frequency-size distri-
butions, resembling those observed in natural seismicity [21,22,42]. The frequency-size
distributions associated with five parameter variations can be observed in Figure 5, along-
side an associated power–law fit P(s) ∼ s−γ, where P(s) is the probability distribution
function for the sum displacement s, and γ is the scaling exponent. Each simulation was
performed over τ = 200, 000, following an initial transient regime.

When compared to naturally occurring aftershock sequences, the temporal clustering
observed in this model deviated slightly. The slider-block avalanche sequences were
described using parameters obtained from the fitting of the ETAS model. The ETAS model
is used to describe the rate of aftershock generation, Equation (15), as a direct response to the
triggering and decay of seismic activity following prior earthquake events. Parameters were
obtained using maximum likelihood estimation. A comparison between the cumulative
number of simulated avalanche events for one simulation with the given model parameters
during a specific time interval and the corresponding ETAS fit is shown in Figure 6.
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Figure 5. Frequency-size distribution of simulated avalanches for the simulations of the model with
N = 100 blocks, with parameters ωf = 1.5, ωd = 0.03, ωpd = 0.01, ν = 0.001, δ = 10, and varying
parameters ω and ωp. The corresponding parameters for each simulation run are in the legend, with
the associated symbol. The straight solid line corresponds to the power–law fit P(s) ∼ s−γ to the
data with ω = 8 and ωp = 2.5.

Figure 6. ETAS model fitting for cumulative simulated avalanche events for an iteration of an N = 100
linear array, with parameters ω = 8, ωp = 2.5, ωf = 1.5, ωd = 0.03, ωpd = 0.01, ν = 0.001, δ = 10.
The red points represent the cumulative number of events during the given nondimensional time
interval. The blue line represents the corresponding ETAS fit using MLE (15). All parameters are
displayed within a 95% confidence interval.
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As the model avalanches do allow for a successful ETAS model fitting, temporal
clustering does exist within the model; however, across repeated simulations, the estimated
p-value took a value of approximately 1.46, and an α-value of 0.377. These values, respec-
tively, indicate that the aftershock rate of decay is relatively high, and that the aftershock
rate stays relatively constant during this time interval, then drops abruptly. When reviewed
in contrast to Omori’s law, this behavior indicates that these simulated aftershock sequences
may not be as prolific as naturally occurring aftershock sequences. This α-value is lower
than typically observed in real-life earthquake events, indicating that generated aftershock
sequences are not as vigorous as those observed in real world; however, a p-value of
1.46 is a physically reasonable value, and indicates similarity between simulated and real
earthquake behavior [43,44].

4. Discussion and Conclusions

The objective of this work was to use the viscoelastic slider-block model to replicate
the conditions of a seismogenic fault within a medium similar to that of the Earth’s crust.
This model is characterized by the introduction of SLS elements, and subsequently, the
introduction of nonlinear viscous processes involved with the redistribution of stress.
Simulations were performed to determine the role of viscous processes in the generation of
avalanche events that follow well-known laws regarding frequency-size distribution and
aftershock decay rates.

The simulations provided favorable results regarding frequency-size distributions,
resulting in consistent power–law scaling [45–47]. All simulations reproduced frequency-
size relations similar to those generated by natural earthquake dynamics. Using this model,
and other similar slider-block models exhibiting elements of self-organized criticality,
simulations can produce realistic results and can re-affirm the hypothesis that naturally
occurring frequency-size distributions of events may partially be the result of SOC within
the Earth’s crust [9,31].

Moreover, the ETAS model fitting produced favorable results, despite relatively high
p-values and a low productivity of aftershock sequences reflected in the α parameter. Using
the input model parameters outlined in the previous section, model fitting returned p-
values of approximately 1.46, demonstrating a comparatively high, but still physically
reasonable, decay rate of aftershocks. The results of this work confirm that to observe an
Omori-like decay rates for aftershock sequences, one needs to consider the viscous effects
governed by linear or power–law rheology as was demonstrated by similar slider-block
and cellular automata models [19,29,30].

In this paper, initial conditions and physical parameters were varied to observe how
frequency–magnitude statistics change as the properties of the model change. In future
works, a full analysis of the parameter space of the model will be completed, both to deter-
mine the effects of the input parameters on the frequency–magnitude distribution, but also
to determine the relationship between input parameters and corresponding ETAS model
parameters. This will help deduce the physical meaning of the ETAS parameters, and may
provide a theoretical basis to support the application of the ETAS model to natural seismic-
ity. In particular, future model parameter space exploration should further examine how
variations in viscoelasticity influence the generation of simulated earthquake sequences.

The ETAS model describes the behavior of aftershock sequences as a direct conse-
quence of previous seismic activity. This places an emphasis on the redistribution of stress
within a system following any seismic activity, as events are generated not through the
direct constant application of force (plate tectonics, conveyor belt), but through previous
trigger activity and instability [28,48]. The introduction of nonlinear behavior within a
medium provides a mechanism through which this redistribution of stress may be delayed,
allowing for the generation of aftershocks. The presence of temporal clustering within the
system described by this model supports the theory that nonlinear viscoelasticity influences
the generation of aftershocks, and that viscous responses within the Earth’s crust and upper
mantle may contribute to the observed aftershock dynamics.
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Abstract: We present a new complex network-based study focused on intraplate earthquakes recorded
in southern Norway during the period 1980–2020. One of the most recognized limitations of spatial
complex network procedures and analyses concerns the definition of adequate cell size, which is
the focus of this approach. In the present study, we analyze the influence of observational errors
of hypocentral and epicentral locations of seismic events in the construction of a complex network,
looking for the best cell size to build it and to develop a basis for interpreting the results in terms
of the structure of the complex network in this seismic region. We focus the analysis on the degree
distribution of the complex networks. We observed a strong result of the cell size for the slope of the
degree distribution of the nodes, called the critical exponent γ. Based on the Abe–Suzuki method, the
slope (γ) showed a negligible variation between the construction of 3- and 2-dimensional complex
networks. The results were also very similar for a complex network built with subsets of seismic
events. These results suggest a weak influence of observational errors measured for the coordinates
latitude, longitude, and depth in the outcomes obtained with this particular methodology and for
this high-quality dataset. These results imply stable behavior of the complex network, which shows a
structure of hubs for small values of the cell size and a more homogeneous degree distribution when
the cell size increases. In all the analyses, the γ parameter showed smaller values of the error bars
for greater values of the cell size. To keep the structure of hubs and small error bars, a better range
of the side sizes was determined to be between 8 to 16 km. From now on, these values can be used
as the most stable cell sizes to perform any kind of study concerning complex network studies in
southern Norway.

Keywords: complex networks; intraplate seismicity; earthquake distribution

1. Introduction

The analysis of the distribution and physical behavior of earthquakes in Norway
has been approached from different points of view, which include, for example, imaging
studies [1–13], the physics of earthquakes [14], seismic hazards [15,16], and tectonics and
seismology [14,17–19]. Recently, a whole new area regarding complex networks and fractal-
ity has been investigated, which aims to build a deeper understanding of the connections
between seismic events in time and space [20].

Complex networks are able to show non-trivial behavior of physical systems through
the analysis of their topological features. They can be categorized into many different types,
such as random complex networks [21], small-world behavior [22], which indicates the
need to take just a small number of steps to go from one node to another one, and scale-free
behavior [23], which shows the structural organization of a system. Complex networks have
been developed and applied in the study of different systems that show non-trivial topo-
logical behavior, such as biology [24–26], economics [27,28] or social relationships [29,30].
The application of complex networks in geophysics has grown in recent years, providing a
new perspective in the Earth sciences [31–41].
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In particular, over the last twenty years, complex networks have been used to an-
alyze the complex behavior of earthquake distribution in time and space. In this sense,
many studies have been carried out. For example, building networks based on the spa-
tial position of earthquakes, their epicenters or hypocenters [39,42–44], or following their
time series [45,46], has included application of the visibility graph method (VG) to earth-
quakes in Italy, finding that the probability distribution of connectivity follows a power
law. Moreover, Telesca et al. (2020) [47], applied a horizontal visibility graph (HVG) to de-
termine changes in the reversibility of the time series measured for the Iquique earthquake
(Chile, 2014), showing that they were reversible for the dataset without the aftershocks
and irreversible for the catalog with aftershocks.Therefore, earthquakes have been studied
through complex networks mainly in two different ways: (1) based on following temporal
sequences or (2) based on the spatial distribution of seismic events. One of the most recog-
nized approaches is that developed by Abe and Suzuki (2006) [39], whose method involves
the building of spatial complex networks with earthquake datasets. The method is based
on the size of a cubic or a plane cell: if the cell contains a hypocenter (cubic) or an epicenter
(plane), a network node is defined. Then, the network can be based on the dimension of the
cubes used to divide the three-dimensional space (latitude, longitude, and depth). In this
sense, any attempt to define complex networks on these kinds of systems will require a
suitable and stable cell size as the network topology and its physical properties depend
on it.

In this study, we build a complex network with earthquakes recorded in southern
Norway, using the above-described method of Abe and Suzuki, (2006) [39]. Our purpose
is to define a cell size range independent of the measurement errors generally associated
with hypocenter and epicenter estimations, with the aim of gaining a better understanding
of scale effects in the complex network. This will be carried out by testing the stability of
the values obtained for the critical exponent γ in directed complex networks built with an
earthquake dataset measured in southern Norway and with temporal and spatial subsets.
We also analyze the influence of the measurement errors in the size of the chosen cell in
the degree distribution. As a main result, we obtain a range of cubic cell sizes that show
independence of the measurement errors and for which the construction of a complex
network will be reliable.

2. Intraplate Seismicity in Southern Norway

Seismicity rates in Norway are the highest in northern Europe [17]. Seismic events oc-
cur periodically (NNSN report, 2018) [48], with low to intermediate magnitudes (ML ≤ 4.0).
Natural earthquakes are strictly intraplate, both onshore and offshore, at the passive conti-
nental margin [17,49].

It is commonly accepted by the seismological community that this intraplate activity
emerges due to a combination of stress-generating mechanisms, which include crustal to
local scale (Olesen et al., 2013): (i) gravitational potential energy changes produced due
to topographic loads, (ii) post-glacial isostatic adjustments, (iii) Mid-Atlantic ridge push
(iv) Quaternary glacial erosion (v) flexural stresses through sedimentation [17], (vi) crustal
density variations, and spatial coincidence with anomalous low-velocity zones of seismic
waves in the upper mantle [50–52] (Figure 1).

Concerning the spatial earthquake location, the highest seismicity levels occur in the
rifted continental margin as well as in the strongly faulted regions near to the rifts in the
North Sea, and in the coast of south-western Norway [18,48]. This area, in which we focus
this study, also presents high amounts of seismic events on the mainland in a zone that is
highly influenced by the post-Caledonian faults [53]. Most of the seismic events are located
in the upper 20 km of the crust [17,18] (Figure 2). Meanwhile, deep earthquakes occur
mainly offshore, dominated by reverse faulting and the Mid-Atlantic Ridge push. On the
other side, shallow earthquakes occur onshore, where normal faulting is dominant and the
horizontal tension is coast perpendicular [54].
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Figure 1. Summary of the main stress generating mechanisms for intraplate seismicity in Norway.

Figure 2. (a) Seismicity map with local events. Color legend shows earthquakes arranged by depth.
The study area is marked with a red box in the regional inset. (b) 3D−view of hypocenters, showing
in−depth earthquake distribution.

3. Data

The seismic catalog for the period 1980–2019 was downloaded from the EPOS Norway
portal, the European Plate Observing System https://epos-no.uib.no/eposn-data-portal/
(accessed on 12 January 2023). To the present day, the database offers a list of 40 possible
data services. This list includes access to the seismological data offered by the Norwegian
National Seismic Network. The direct way to access the data is shown in Appendix A.
The EPOS-N project is research-based, and is focused on understanding of the Earth’s defor-
mational processes, geohazards, and georesources. The project is collaborative, with many
Norwegian institutions continuously contributing geological and geophysical datasets to
the data portal: the University of Bergen (coordinator), the University of Oslo, the Geologi-
cal Survey of Norway, NORSAR, the Norwegian Mapping Authority, and the Christian
Michelsen Research Centre.

The original catalog consisted of 77,622 global seismic events. This catalog was
downloaded as an Excel sheet (see Appendix A) and contains origin time and hypocentral
location with their respective errors, magnitude and magnitude type, number of stations,
rms, azimuthal gap, strike, dip, and rake. More details about the construction process of
this catalog can be found in the 2018 and 2019 NNSN annual reports (NNSN annual report,
2018–2019) [48,55].

With the aim of selecting the relevant information for our study, the catalog was
initially filtered for southern Norway, considering the area between 3◦ and 12◦ E and
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57◦ and 64◦ N. Large hypocentral errors were observed in the catalog, which might be
explained as a consequence of picking errors or large azimuthal gaps for events with a
high number of observations. To avoid this, we consider a minimum number of recording
stations equal to six. With this number, we also prevent incorrect low errors based on a low
number of observations, where the location solutions might fit with small residuals. Based
on the distribution of latitude, longitude, and depth errors, the last filtering consisted of
the inspection of the histogram, from where out-of-average events—48, 81, and 100 km
error locations for the y, x, z axes—were excluded from the curve (Figure 3). The spatial,
error, and distribution filters resulted in a total of 6469 earthquakes for further analysis
(Figures 2 and 3). Moreover, the catalog was filtered by its magnitude of completeness
Mc = 1.3. After this process, the total number of events was 3739 (Figure 4a,b).

Figure 3. (a–c) Histograms with location errors in latitude, longitude and depth, respectively.

Figure 4. (a) Magnitude of completeness (blue triangle), calculated through the maximum curvature
method. Gray and white squares represent the cumulative and discrete number of events, respectively.
(b) Magnitude distribution vs. time.
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4. Methodology

We built a complex network using the Abe and Suzuki [39] method applied over a
seismic dataset measured in southern Norway during the period 1980–2020, i.e., we used
their hypocenter coordinates and the time sequence as inputs. To perform the spatial
analyses, we then used the spatial coordinates (longitude, latitude, depth) in kilometers.
The latitude is represented by the angle θ, and the longitude is represented by the angle φ.
This conversion is performed by using the following expressions:

dNS
i = R(θi − θ0), (1)

dEW
i = R(φi − φ0) cos(θav), (2)

dz
i = zi, (3)

where zi is the depth and θav is the average latitude, θ0 and φ0 are the minimum values for
the latitude and longitude, and R is the radius of the Earth, assumed for this study to be
6370 km.

A complex network consists of nodes connected between them through links. Once
we have converted the spatial coordinates (longitude, latitude, depth) into kilometers, we
can build the complex network with the seismic dataset. To follow the method of Abe
and Suzuki (2006) [39], we must define what a node is. For this, we divide each zone into
cubic cells with a side size between ∆ = 5 km and ∆ = 20 km. Then, we check if one
or more hypocenters are inside the cubic cell; if so, the cell is called a node. Then, we
place the connections between the nodes following the temporal sequence of the seismic
events. The direction of the connections between the nodes is defined through the temporal
sequence of the seismic events in the region, as shown in Figure 5. Consequently, a directed
network following the Abe–Suzuki method [39] is built.

Then, we place the connections between the nodes following the temporal sequence of
the seismic events, so the order of events is preserved as in the standard time analysis [56–58].
The direction of the connections between nodes is defined through the temporal sequence
of the seismic events in the region, as shown in Figure 5.

Figure 5. Schematic representation of the cubic cells representing nodes in the complex network.
The cube side size is ∆.
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A complex network can be characterized by different metrics. Among them, it is
important here to mention the clustering coefficient (C), which measures the tendency of
the nodes to form triangles (clusters) between them, the path length (L), defined as the
average of the shortest path length in the network, and the degree ki, which represents
the number of connections of the node i. Good examples regarding metrics applications
can be found, for example, in Watts and Strogatz (1998) [22], who defined the term “small
world” for complex networks, following certain metric criteria imposed over L and C. Also,
Barabási and Albert, (1999) [23] defined “scale-free” behavior of a complex network when
the probability of the degree ki is a power law in a log-log plot.

Now, once we have built the directed complex network for a one cubic cell side value,
we focus on a complex network basic measure: the degree of the node. We analyze the
behavior of the critical exponent γ, which corresponds to the slope of the degree distribution.
For earthquake datasets, this probability is represented by a power law [39–43],

P(k) ∼ k−γ, (4)

where k is the degree of the nodes and γ is the slope of the distribution in a log-log plot.
To understand the response of the γ exponent in different scenarios, the analyses

are carried out over both the prefiltered and the complete datasets (without and with
Mc). For the first case, we analyze the entire catalog (6469 events), and the first half of it
(3235 events). For the second case, we separate the dataset into two regions: the western
zone (longitude 3.0° to 7.5° E, with 3111 seismic events) and the Oslo region (longitude 7.5°
to 12.0° E, with 628 seismic events).

5. Results
5.1. Prefiltered Dataset

As a first result, we show the scale-free behavior for the degree distribution of the
dataset without the magnitude of the completeness filter, and, for all the used sizes of
∆, which vary from 5 to 20 km (Figure 6). We choose those values of the cell side size to
have a sufficient number of cubic cells to analyze. As particular examples, Figure 7a–d
show the scale-free behavior and the adjustment of the slopes for ∆ = 5, 10, 15 and 20 km,
respectively. In order to calculate the best fit for each degree distribution, we considered
the same kmin = 1 for all the cubic cell sizes, and we neglected between one to three points
of the tails. We then computed their respective slopes, which represent the critical exponent
γ. From Figure 7, it is possible to observe a better fit of the slope from ∆ = 10 km, being
the best fit for ∆ = 20 km. The values of γ, together with their respective errors, are listed
in Table 1.

Figure 6. Log-log plot of the degree distribution for the studied complex networks. The complex
networks were built with values of the side between ∆ = 5 km and ∆ = 20 km. The scale-free
behavior is clear.
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Figure 7. Examples of the scale-free behavior of the degree distribution of nodes with their respective
linear fits. (a) Degree distribution for ∆ = 5 km with γ = 2.1 ± 0.1. (b) Degree distribution for
∆ = 10 km with γ = 1.7± 0.1. (c) Degree distributions for ∆ = 15 km with γ = 1.45± 0.08. (d) Degree
distribution for ∆ = 20 km with γ = 1.24 ± 0.05.

After corroborating that all the complex networks show scale-free behavior, we fo-
cus on the γ value. Figure 8a,b show the values of γ and the number of nodes, respec-
tively, for different values of the cubic cell side, considering a range of ∆ from 5 to 20 km.
Figures 7a–d and 8a show that smaller values of ∆ have few nodes with a large degree,
implying that the slope of the degree distribution is large (close to 2.0). On the other hand,
values of ∆ close to 20 km show a more homogeneous degree distribution, with a lower
value of γ (close to 1.2). We can interpret these results in dependence of the cubic cell size
as follows: with side sizes close to 20 km, the number of contained hypocenters is higher,
so the degree distribution is more homogeneous. The error bars from the linear fit of the
degree distribution decrease as the cubic cell side grows. We can also notice from Table 1
that the error bars decrease from ∆ = 14 km.

Figure 8. (a) Values of the critical exponent γ for side sizes ∆ between 5 and 20 km. (b) Values of the
number of nodes N for the same range of ∆.

The earthquake dataset measured in southern Norway is of high quality, with associ-
ated errors for each hypocentral location. This allows us to include the average hypocentral
errors in kilometers for all nodes in longitude, latitude, and depth. As an example, Figure 9
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shows the average errors for ∆ = 5, 9, 10, 11, 15, and 20 km, respectively. Specifically,
groups (a), (b) and (c) in Figure 9 show a comparison between the average hypocentral
longitude, latitude, and depth in km, with their respective average errors.

Figure 9. Values of the average coordinates in longitude (group (a)), latitude (group (b)), and depth
(group (c)) and associated errors. These plots correspond to ∆ equal to 5, 9, 10, 11, 15, and 20 km,
from top to bottom. All averages are in km.

Figures 3 and 9 show the measurement errors in latitude, longitude, and depth.
From Figure 3, we can observe that the largest errors in both latitude and longitude are
concentrated in a few measurements, while most of the data have low errors (less than
15 km). Meanwhile, Figure 9 shows that the average error by node in the coordinates’
longitude and latitude is negligible. Nevertheless, the errors in depth are considerable.
The percentage of seismic events with errors greater than 20 km is less than the 4%, 23%,
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and 12% in latitude, longitude, and depth, respectively. As a consequence of this, we
analyze the stability of the values of γ for a 2-dimensional complex network, i.e., using
only the coordinates of longitude and latitude. This result is shown in Figure 10a,b.

Figure 10. (a) Values of the critical exponent γ in 2 dimensions for ∆ between 5 and 20 km. (b) Values
of the number of nodes N for each value of ∆ between 5 and 20 km.

Finally, we compare the results obtained in three dimensions (latitude, longitude,
depth) and in two dimensions (latitude, longitude) in Figure 11. From this comparison, we
observe a considerable similarity in the results for the value of γ in 2D and 3D, showing
that the distribution of degrees is not affected by the change in dimension. This point
is interesting because it means that the complex network keeps its behavior with few
nodes with a large degree for small values of ∆, while the degree distribution evolves
to a homogeneous distribution of the degree for larger values of ∆. In addition, we
observe a decrease in the error bars for ∆ values larger than 14 km, which suggests that
this range is the best for applying any kind of analyses in complex networks for this
tectonic environment.

Figure 11. Values of the critical exponent γ in 3 dimensions (blue dots) and for 2 dimensions (yellow
dots) for ∆ between 5 km and 20 km.

Prefiltered Subset

A relevant step during complex network analyses is to check the results’ stability.
To verify our first round of outcomes, we perform the same analysis by taking a subset of
the entire catalog.

Figure 12a show the same behavior that we found for the first analysis: for small
values of ∆, the complex networks have few nodes with a larger degree (high values of γ),
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whilst larger values of ∆ give small values of γ (homogeneous degree distribution). We
note how the error bars grow by using less seismic data.

Figure 12. (a) Values of the critical exponent γ in 3 dimensions for ∆ between 5 and 20 km (b) Values
of the number of nodes N for each value of ∆ between 5 and 20 km.

5.2. Complete Dataset

The analyses must then be complemented using the seismic dataset with the magni-
tude of completeness Mc = 1.3, which was computed in Section 3 (Figure 4). Figure 13
shows the scale-free behavior for the complex networks built with Mc.

Figure 13. Examples of the scale-free behavior of the degree distribution of nodes with the respective
linear fit for the dataset with the completeness magnitude. (a) Degree distribution for ∆ = 5 km.
(b) Degree distribution for ∆ = 10 km. (c) Degree distribution for ∆ = 15 km. (d) Degree distribution
for ∆ = 20 km.

Figure 14a shows the behavior of γ vs. different cubic cell sizes. It is possible to
observe the same behavior as for the previous results: the value of γ decreases with
growing cubic cells.

Table 1 shows an increase in the value of γ for all the values of ∆ in the case in which
the completeness magnitude was considered, with respect to the previous results. Values
of γ are close to 2.0 for all the previous analyses and between 2.2 to 2.4 when Mc is added.
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In this case, the error bars are larger for small values of ∆, between 5 to 8 km. However,
the general behavior of the complex network remains: a structure with hubs for small
values of ∆ (few nodes with large degree) and a more homogeneous degree distribution for
larger values of ∆.

Figure 14. (a) Values of the critical exponent γ in 3 dimensions for ∆ between 5 and 20 km (b) Values
of the number of nodes N for each value of ∆ between 5 and 20 km. Both figures use the MC ≥ 1.3.

Table 1. Values of the critical exponent γ in 3D, 2D, for half of the seismic events and for the Mc,
respectively.

∆ γ 3D γ 2D γ Half Data MC

5 km 2.1 ± 0.1 2.2 ± 0.1 2.1 ± 0.1 2.4 ± 0.2

6 km 2.1 ± 0.1 2.0 ± 0.1 2.1 ± 0.1 2.3 ± 0.2

7 km 2.1 ± 0.1 1.83 ± 0.09 2.0 ± 0.1 2.2 ± 0.2

8 km 1.9 ± 0.1 1.74 ± 0.09 1.9 ± 0.1 2.1 ± 0.2

9 km 1.7 ± 0.1 1.73 ± 0.09 2.1 ± 0.1 2.0 ± 0.1

10 km 1.7 ± 0.1 1.6 ± 0.1 1.9 ± 0.1 2.0 ± 0.1

11 km 1.7 ± 0.09 1.6 ± 0.1 1.9 ± 0.1 1.9 ± 0.1

12 km 1.6 ± 0.1 1.52 ± 0.07 1.7 ± 0.1 2.0 ± 0.1

13 km 1.6 ± 0.1 1.47 ± 0.07 1.7 ± 0.1 1.8 ± 0.1

14 km 1.56 ± 0.08 1.43 ± 0.08 1.6 ± 0.1 1.8 ± 0.1

15 km 1.45 ± 0.08 1.38 ± 0.06 1.54 ± 0.08 1.8 ± 0.1

16 km 1.46 ± 0.06 1.38 ± 0.06 1.55 ± 0.08 1.54 ± 0.08

17 km 1.36 ± 0.07 1.35 ± 0.07 1.30 ± 0.09 1.45 ± 0.08

18 km 1.37 ± 0.06 1.27 ± 0.07 1.34 ± 0.07 1.46 ± 0.08

19 km 1.29 ± 0.06 1.26 ± 0.06 1.32 ± 0.08 1.41 ± 0.08

20 km 1.24 ± 0.05 1.17 ± 0.06 1.24 ± 0.08 1.35 ± 0.08

5.2.1. Southwestern Norway

The intraplate seismicity in Norway is varied in terms of causes (Figure 1). The
seismicity patterns, if any, are still unknown, and the seismic events seem to behave
in different ways according to the region, with large influence of regional variation in
geological structures and stress fields [4,17]. For example, it has been established that
seismicity in the southwestern coast is related to a high degree of weakness in the area,
which strongly depends on the high degree of observed fracturing [17]. To determine if
these behaviors are reflected in the complex network parameters, we analyzed 3111 seismic
events located in the western zone (longitude 3.0° to 7.5° E). The results are shown in
Figure 15.
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Figure 15. (a) Southwestern Norway: Values of the critical exponent γ in 3 dimensions for ∆ between
5 and 20 km (b) Values of the number of nodes N for each value of ∆ between 5 and 20 km. Both
figures use the Mc.

5.2.2. Southeastern Norway

Seismicity in southeastern Norway is predominantly linked to the Oslo region. This
and adjacent areas were exposed to stretching and rifting between 359 and 252 Ma ago
(Late Carboniferous–Early Permian). The rifting process implied high levels of magmatism,
volcanism, and seismic activity. Traces of this intense activity include, for example, the
main bodies of igneous rocks, which can be found inside the Oslo Graben [59]. The rifting
process, which stopped 65 Ma ago (Cretaceous), left behind several tectonic episodes. Some
of these are related to the emplacement of large intrusive bodies, which created a set of
extensional structures like normal faults and grabens [59]. Nowadays, the seismic activity
in the area can be partially linked to these faults [16].

The Oslo region subset has 628 seismic events after filtering (longitude 7.5° to 12.0° E).
In this case, the scale-free behavior of the degree distribution can be analyzed only for
side sizes starting from 7 km due to the small number of degrees for the 5 and 6 km cases.
Figure 16a show the values of γ.

Figure 16. (a) Southeastern Norway: Values of the critical exponent γ in 3 dimensions for ∆ between
5 and 20 km (b) Values of the number of nodes N for each value of ∆ between 5 and 20 km. Both
figures use the Mc.

If we compare both areas, it is possible to observe differences between these two
complex networks (Table 2). In the case of southwestern Norway, the behavior is the same
as that we have found before: a structure of hubs. However, for the case of southeastern
Norway, we found larger values of γ, and the slope did not decrease as fast as in the case of
the western region. In this sense, the southeastern region clearly shows a different complex
network structure.

Table 2 shows the γ values for the southwestern and the southeastern sub-catalogs
in the first and second columns, respectively. It is easy to note that the values of the
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southwestern zone are smaller than the values for the southeastern zone. However, this
might be because the quantity of data used to make the complex network analysis was
smaller for the southeastern zone. To determine if the larger values of the critical exponent
are influenced by the quantity of data, we repeated the same analysis for a small temporally
sorted subset of data for the southwestern region. The results are shown in the third column
of Table 2. The value of γ for the 628 seismic events of the southwestern zone is very similar
to the results for the total of 3111 seismic events in the same zone, but with larger error
bars. This result suggests that the larger values of γ obtained in the southeastern zone
are due to the seismic environment of this zone and not due to the small quantity of data
considered for this analysis. In fact, this result shows that the southeastern region has a
smaller range of degrees than the southeastern region, which could suggest the presence of
a larger number of hubs in the Oslo area.

Table 2. Values of the critical exponent γ for southwestern Norway, southeastern Norway and for
628 seismic events in southwestern Norway.

∆ γ SW Norway γ SE Norway (Oslo) γ Subset SW
Norway

5 km 2.1 ± 0.1 – —

6 km 2.1 ± 0.1 – —

7 km 2.1 ± 0.1 3.0 ± 0.1 1.9 ± 0.4

8 km 2.0 ± 0.1 2.7 ± 0.2 1.8 ± 0.4

9 km 1.9 ± 0.1 2.5 ± 0.2 1.9 ± 0.3

10 km 1.7 ± 0.1 2.6 ± 0.2 1.9 ± 0.3

11 km 1.8 ± 0.1 2.4 ± 0.2 1.7 ± 0.3

12 km 1.8 ± 0.1 2.2 ± 0.2 1.7 ± 0.3

13 km 1.76 ± 0.09 2.3 ± 0.2 1.7 ± 0.2

14 km 1.63 ± 0.08 2.2 ± 0.1 1.7 ± 0.2

15 km 1.48 ± 0.09 2.2 ± 0.1 1.7 ± 0.2

16 km 1.28 ± 0.09 1.9 ± 0.1 1.5 ± 0.2

17 km 1.23 ± 0.09 1.7 ± 0.1 1.5 ± 0.1

18 km 1.20 ± 0.08 1.7 ± 0.1 1.4 ± 0.2

19 km 1.09 ± 0.08 1.8 ± 0.1 1.4 ± 0.1

20 km 1.10 ± 0.07 1.8 ± 0.1 1.4 ± 0.1

6. Discussion and Conclusions

We used the method developed by Abe and Suzuki (2006) [39] to analyze the scale used
to build nodes in a spatial earthquake complex network. To do so, we placed emphasis on
the degree distribution of the nodes in the network, which is a well-known and extensively
used measure in complex analyses. For earthquakes, it has been previously shown that the
behavior of the degree distribution is a power law in a log-log plot of P(k) versus k, where
k is the degree [39,43,45]. The slope of this power law is the critical exponent γ. In this
study, our focal point is the analysis of γ, examining the reliability of the cell size that is
used to define the nodes in this spatial complex network.

The analysis was performed using the hypocenters of seismic events for prefiltered
and complete datasets, which, in this context, means without and with the magnitude of
completeness, Mc = 1.3. Figure 8a show how the value of the critical exponent depends
on the side size of the cubic cell, which is called ∆. In this figure, error bars decrease with
increasing ∆, a fact that could suggest a better adjustment for larger values of ∆. Figure 8b
shows a decreasing number of nodes for larger ∆ values.
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In order to analyze the influence of the observational errors, Figure 9 shows the
average error for each spatial coordinate: longitude, latitude, and depth. In groups (a) and
(b) in Figure 9, the errors in longitude and latitude are negligible with respect to the change
in the hypocentral longitude and latitude values in the studied area. However, the average
error in depth is larger and considerable when compared to the average depth hypocentral
values. To explore the influence of the error in depth on the obtained results, we also
consider the complex network in two dimensions, i.e., (latitude, longitude). Figure 10a,b
show the values of γ and the number of nodes for values of ∆ between 5 and 20 km,
respectively. Here, we can observe the same behavior that we found for the 3-dimensional
case: the error bars decrease as ∆ grows. However, for the largest values of ∆, the network
structure is lost due to the homogenization of the degree distribution. Then, the best range
of ∆ is defined to be between 8 and 16 km.

Figure 11 shows the values of the critical exponent γ for 2D and 3D. It is interesting
to note how the γ values do not seem to be affected by the change in dimension. This
result is not conclusive, so we performed new analyses using a temporal subset of the data
to verify if the quantity of data could affect the γ value. Figure 12a shows the behavior
of γ for half of the seismic events, showing very similar results to those obtained before.
Table 1 summarizes these three results, showing how the values of γ are very similar
between them for all the cases, presenting great stability under a change of dimension or
the number of events considered. The values obtained for ∆ = 5, 10 and 20 km are close to
2, 1.4, and 1.2, respectively. These results suggest that the topology of the complex network
changes with the values of ∆: the complex network built with ∆ = 5 km shows a structure
with central nodes; meanwhile, with ∆ = 20 km, the values of γ are associated with a
more homogeneous distribution of the degree in the complex network. Although these
first results are not conclusive concerning the influence of measurement errors, they clearly
show that nodes with smaller delta sizes can provide information about the complex
network topology.

Since the previous results failed to provide clear information about the physics of
intraplate seismic events, we performed a second analysis for the same dataset, but using
the magnitude of completeness. Figure 14a and Table 1 summarize these results. In Table 1,
it is possible to observe how the value of γ increases when the magnitude of completeness
is used. For ∆ between 5 and 7 km, the value of γ is greater than 2.0, and ∆ between 9 and
15 km shows values of γ close to 2.0. For ∆ between 16 and 20 km, the values of γ decrease
and fluctuate between 1.35 and 1.54, showing again a more homogeneous distribution
of the node degree. These results show the different behaviors of the complex network
when the magnitude of completeness is used: the filtered low-magnitude events improve
the complex network connection. When removed, the network has fewer nodes with a
higher degree.

We have additionally compared the values obtained for Norway with the values
computed for other regions of the planet, with different cubic cell sizes and using the same
method. Table 3 summarizes these values. It is possible to observe that the values obtained
by Abe and Suzuki [39] are smaller than the values obtained by Pastén et al. [40]. This
difference may be because some results published by Abe and Suzuki do not consider the
magnitude of completeness. However, the values of γ seem to follow the same behavior:
larger γ values for smaller values of ∆. The values for Japan and Chile show similar
behavior. In the Chilean case, the results before the occurrence of a large earthquake are
more similar to the results obtained for the case of Norway, but with values 5 km lower
than those found for Norwegian seismicity. California and Iran show the greatest difference
from the other seismic regions. Although our intention in presenting these results was to
initiate discussions in terms of the comparison between the different γ values, we finally
conclude that there is no universality in the results. This means that some complex network
parameters, for example, the one analyzed in this study, are strongly dependent on the
seismicity type.
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Finally, in order to understand the relevance of these results for the physical processes
of intraplate seismicity in southern Norway, we added an extra analysis considering the
spatial distribution of earthquakes in terms of longitude. This criterion is not random
as the geological structures, the seismicity rates, the stress field, and the fracturing levels
vary between the western and the eastern south Norwegian coasts, as explained before.
The values of γ are greater for the Oslo region than in the zone of southwestern Norway,
showing behavior where there are few nodes with a larger degree and more nodes with
a small degree, as a tree structure with main hubs. This corresponds to an advance
in linking the behavior of these parameters of complex networks with the physics of
intraplate seismicity.

Table 3. Different results for the γ value obtained for different authors at several tectonic settings.

Place ∆ (km) γ Ref.

California 5 1.61 Abe and Suzuki 2006 [39]
10 1.33 Abe and Suzuki 2006 [39]
20 1.28 Abe et al. 2011 [43]

Japan 5 2.5 Abe and Suzuki 2006 [39]
10 2.22 Abe and Suzuki 2006 [39]
20 1.40 Abe et al. 2011 [43]

Iran 20 2.01 Abe et al. 2011 [43]

Chile 20 1.35 Abe et al. 2011 [43]

Chile (Illapel earthquake) 5 3.0 (before earthquake) Pastén et al. 2016 [40]
Chile (Illapel earthquake) 10 2.2 (before earthquake) Pastén et al. 2016 [40]
Chile (Illapel earthquake) 5 3.6 (after earthquake) Pastén et al. 2016 [40]
Chile (Illapel earthquake) 10 2.2 (after earthquake) Pastén et al. 2016 [40]

This is the first complex network-related study that has been carried out with seismic
data recorded in Norway, so this research constitutes the first step to associate measure-
ments of complex networks with the underlying physics involved in the occurrence of
earthquakes, especially in this area of the planet and for this intraplate seismicity envi-
ronment. All the constructed networks show stable behavior, which is replicated for the
prefiltered catalog, the complete catalog, and the subsets. Even though we could character-
ize the complex network with all the above-mentioned variations, we can conclude that it
is not easy to determine the best range of delta values. As a tentative conclusion, it seems
better to analyze the complex network using 5, 10, and 15 km cell sizes, as larger values
homogenize the network. Now, we will expand this study by calculating the clustering
coefficient, different measures of centrality, and their associated critical exponents.
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Appendix A

The instructions to download the original catalogue as further processed to be used in
this study are presented here.

After entering the EPOS-N portal, the SEARCH/FIND option must be selected
(Figure A1).

Figure A1. Capture from https://epos$-$no.uib.no/eposn$-$data$-$portal/(accesed on 12 January
2023).

Then, a list of around 40 different data services will appear on the right-hand side of
the screen. The option to download the NNSN seismological catalog is located at the end
of the list (Figure A2). By pressing the ADD button (Figure A2), the data will be added to
the project (Figure A3).

Figure A2. Capture from https://epos$-$no.uib.no/eposn$-$data$-$portal/ (accesed on 12 January
2023).
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Using the DISPLAY option, the data can be visualized in several formats. As shown in
(Figure A3), the options include map, linear, and histogram plotting, among others. The cat-
alog will also be available in .csv format to be downloaded and processed (Figure A3).

Figure A3. Capture from https://epos$-$no.uib.no/eposn$-$data$-$portal/ (accesed on 12 January
2023).
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Abstract: We first report that the solar flare time sequence exhibits a fluctuation characterized by its
power spectral density being inversely proportional to the signal frequency. This is the 1/f fluctuation,
or pink noise, observed ubiquitously in nature. Using GOES16 data, we found that low-energy flares
(E ≤ Emean) display 1/f fluctuations, whereas high-energy flares (E > Emean) show a flat spectrum.
Furthermore, we found that the timing sequence of the flares reveals clearer 1/f fluctuations. These
observations suggest that the solar flare 1/f fluctuations are associated with low-energy phenomena.
We investigated the origin of these 1/f fluctuations based on our recent hypothesis: 1/f fluctuations
arise from amplitude modulation and demodulation. We propose that this amplitude modulation is
encoded by the resonance with the solar five-minute oscillation (SFO) and demodulated by magnetic
reconnections. We partially demonstrate this scenario by analyzing the SFO eigenmodes resolving
the frequency degeneration in the azimuthal order number m using the solar rotation and resonance.
Given the robust nature of 1/f fluctuations, we speculated that the solar flare 1/f fluctuations may be
inherited by the various phenomena around the Sun, such as the sunspot numbers and cosmic rays.
In addition, we draw parallels between solar flares and earthquakes, both exhibiting 1/f fluctuations.
Interestingly, the analysis applied to solar flares can also be adapted to earthquakes if we read the
SFO as Earth’s free oscillation and magnetic reconnections as fault ruptures. Moreover, we point out
the possibility that the same analysis also applies to the activity of a black hole/disk system if we
read the SFO as the quasi-periodic oscillation of a black hole.

Keywords: 1/f fluctuations; solar flare; solar five-minute oscillation; resonance; amplitude modulation

1. Introduction

A solar flare is a sudden energy eruption in the solar atmosphere [1]. It is triggered
by magnetic reconnections, and the enormous magnetic energy of 1017–1026 J is converted
into plasma particle acceleration, heating, and light emission. Solar flares are complex
phenomena, and the statistical approach to predicting them is effective, as in the case of
earthquakes, which are sudden energy eruptions of the Earth’s crust.

It is well known that solar flares and earthquakes are similar to each other, and they
show similar statistical properties. In particular, the scaling relation laws, such as the
Gutenberg–Richter law [2] and the Omori law [3], are universal laws for both solar flares
and earthquakes [4,5].

Here, in this study, we concentrated on solar flares and aimed to add one more
universal scaling law in the ultra-low-frequency region of the power spectral density (PSD)
for the long time sequence of solar flares. It was revealed that the solar flare time sequence
shows a power law that is almost inversely proportional to the frequency in the PSD. This
is often called the 1/f fluctuation or pink noise and appears in most fields of nature and
human activities [6,7]. However, the origin of this fluctuation has not been clarified despite
a large number of studies performed in the past century.
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We recently proposed that the general origin of the 1/f fluctuation is amplitude modu-
lation (AM), or the beat of many waves with accumulating frequencies [8]. In particular,
this frequency accumulation is possible in resonance, where many eigenfrequencies are
systematically concentrated in a narrow domain.

Applying this method in [9], we studied the 1/f fluctuations in seismic activity.
The seismic-energy time sequence shows an apparent 1/f fluctuation in its PSD by more
than three digits if giant earthquakes are excluded. Therefore, seismic 1/f fluctuations are
considered to be associated with low-energy phenomena. In this case, perpetually exciting
Earth’s free oscillation (EFO) in the lithosphere results in resonance, which yields an AM or
wave beats. A relatively low-energy EFO will sufficiently trigger the fault eruption and
cause earthquakes.

In this study, applying this proposal to solar flares, we aimed to verify our proposal
and determine the statistical properties of complex systems in general. When we naively
used all the energy time series data, we obtained almost a flat PSD at low-frequency regions
and discerned no clear pink noise. However, if we restricted the solar flare events to having
their energy below the mean, we obtained clear pink noise. Therefore, we speculated that
the 1/f fluctuation in solar flares is associated with low-energy phenomena. Interestingly,
this situation is the same as for seismic activity, as explained above.

The resonance in the solar case would be characterized by solar five-minute oscil-
lations (SFOs), which are perpetually excited by the turbulence in the solar convective
region [10,11]. The eigenfrequencies have been precisely measured and calculated by many
studies assuming appropriate solar models. Using these observational data, we constructed
the superposition of many waves with these eigenoscillations, including the fine splitting
structure using the solar rotation and the resonance effects. Then, we could obtain 1/f fluc-
tuations from the thresholding of these data in the PSD. Thus, we can partially demonstrate
the AM theory for 1/f fluctuations in solar flares.

Since pink noises often appear in various fields of science, we explored the neighboring
phenomena to the solar flares. Then, we found 1/f fluctuations in several phenomena such
as solar winds, sun spot numbers, and some terrestrial traces. These facts may indicate the
robustness of pink noises.

This paper is organized as follows. In Section 2, we explore the GOES data and RHESSI
data of solar flares and analyze the PSD. In Section 3, we explain the AM proposal for the
origin of 1/f fluctuations from resonance. In Section 4, we superpose the eigenmodes of
the SFO and obtain pink noise. In Section 5, we study another statistical characterization
of solar flares using the Weibull distribution and compare it with 1/f characterization.
In Section 6, we emphasize the robustness of 1/f fluctuations being the origin of a variety
of pink noises. We point out that the 1/f fluctuation property is inherited by solar winds,
sunspot events, and some traces on Earth. In Section 7, we conclude our work and briefly
describe the possible future research, including the back hole.

2. Solar Flare Fluctuations

Solar flares are eruptive energy-release events in the solar atmosphere. Each event
transforms enormous magnetic energy into plasma particle acceleration, visible light, X-ray
emission, and more. Our focus was specifically directed towards the soft X-ray flux data
acquired by the GOES16 satellite from February 2017 to September 2023, covering a span of
6.6 years [12]. We mainly used xrsa1_flux and xrsa2_flux xrsa_flux.

Initially, we used all the time sequence data of the soft X-ray energy flux in units of
W/m2, as shown in Figure 1 (left). The corresponding PSD appears almost flat and random
in the low-frequency regions, as depicted in Figure 1 (right). However, this is consistent
with the previous research [13], in which the authors partially extracted the 1/f fluctuations
in the GOES6 data by superposing multiple PSDs. We adopted another approach to extract
the entirety of the 1/f fluctuations by restricting the energy flux.
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Figure 1. (left) Goes16 soft X-ray flux data from February 2017 to September 2023 (6.6 years) [12].
The vertical unit is W/m2 in the logarithmic scale. Although the data show an apparent trend
associated with the eleven-year solar activity cycle, we did not apply any artificial operation for our
analysis, as extraction of the trend does not greatly affect the result. (right) Power spectral density
(PSD) of the energy-flux time sequence of all the GOES16 solar flare data over 6.6 years. The time is
measured in seconds, and the frequency unit is Hz. Since the time interval of the original data is not
uniform, we redistributed the energy-flux data after making the time interval equal and assigned
zero values for vacant intervals. Then, we applied the fast Fourier transformation to obtain the PSD.
Various window functions were tested, but as they did not significantly alter the results, the data
without any artificial arrangement were used. The Fourier-transformed data were averaged within
the equal bins on a logarithmic scale. A red line in the low-frequency domain in the PSD graph
represents the best fits of the data according to the least squares method within that domain. This
procedure is the same for all PSD analyses below. This PSD illustrates that the energy time sequence
is random, as indicated by the almost flat red line fitting the data points in the low-frequency domain.

Subsequently, we analyzed two datasets: the high-energy group, which include all
events with energy exceeding the mean (4.4× 10−8 W/m2) (i.e., comprising part of class B,
and classes C, M, and X), and the low-energy group, comprising events with energy below
the mean (class A and part of class B). Figure 2 presents the PSDs for these two groups. The
1/f fluctuation is evident in Figure 2 (right), representing the low-energy data. Conversely,
the high-energy group’s PSD as in Figure 2 (left), does not exhibit 1/f fluctuations and
resembles the pattern in Figure 1 (right); high-energy data disrupt the 1/f fluctuations in
the solar flare. These observations suggest that solar flare 1/f fluctuations are associated
with low-energy phenomena.

To confirm that the solar flare 1/f fluctuation is independent of energy, we removed the
energy information from the data: all energy values in the time sequence were set to one. The
PSD for the entire dataset then displayed a 1/f fluctuation with a power index of −1.1 as
shown in Figure 3 (left). Similarly, the high-energy group’s PSD, with energy information
removed, exhibits a 1/f fluctuation with a power index of −0.98 as in Figure 3 (right).

All together, 1/f fluctuation with a power index of approximately −0.9 ∼ −1.1 is
observed within about five orders of frequencies, corresponding to timescales from about an
hour (10−3 Hz) to 6.6 years (2× 10−8 Hz). This 1/f fluctuation appears when high-energy
solar flare events are excluded or when energy information is completely removed.

These findings suggest that the solar flare 1/f fluctuation does not reflect the energy
scaling structure typically caused by the self-organized criticality (SOC) formed by energy
cascades from small to large, although SOC may be crucial for explaining popular scaling
laws like the Gutenberg–Richter and Omori laws. On the contrary, solar flare 1/f fluctuation
seems to be a low-energy phenomenon, probably triggered by a tiny energy source. This
point will be further discussed in the next section.
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Figure 2. (left) PSD for the high-energy group, encompassing events with energy exceeding the mean.
The PSD does not exhibit 1/f fluctuations, akin to Figure 1 (right). (right) PSD for the low-energy
group, including events with energy below the mean. The PSD clearly shows 1/f fluctuation with
an index of −0.88 over more than five orders of magnitude. Generally, 1/f fluctuation is defined
by a power index of −1± 0.5 in the PSD. A red line in the low-frequency domain in the PSD graph
represents the best fits of the data according to the least squares method within that domain.

Figure 3. (left) Similar to Figure 1 (right), but with energy information entirely removed: following
time-uniformization, finite energy values were reset to one, leaving the others at zero. This represents
the time sequence of the flare occurrence, or the unweighted distribution. The PSD displays typical
pink noise behavior with a power index of −1.1 in the frequency range 10−3 to 2× 10−8 Hz. (right)
Corresponding PSD for the high-energy group. This clear 1/f fluctuation, with a power index −0.98,
contrasts with Figure 2, where all energy information is included, resulting in a flat spectrum. A red
line in the low-frequency domain in the PSD graph represents the best fits of the data according to
the least squares method within that domain.

We also analyzed short-term GOES16 solar flare data for one week, chosen arbitrarily.
The results are consistent, showing a 1/f fluctuation with an index of −1.2 across a fre-
quency range of 2× 10−3 to 2× 10−6 Hz. This extends across the entire week, encompassing
frequencies lower than the typical frequency of SFO.

So far, we have examined soft X-ray data from GOES observations, which provide one
perspective of solar flares. We now turn to hard X-ray data from RHESSI observations for
another perspective on solar flare.

Analysis of 16 years of RHESSI solar flare data from 2002 to 2018 [14] mostly aligns
with the GOES findings. The RHESSI solar flare energy time sequence displays a marginal
1/f fluctuation with an index of−0.59 as shown in Figure 4 (left). In contrast, the occurrence
time sequence exhibits a pronounced 1/f fluctuation with an index of −0.90 within the
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frequency range of 10−5 to 2× 10−9 Hz, as depicted in Figure 4 (right). This fluctuation
spans from a day to the entire observation period, though data scattering at the lowest
frequency domain is notable. Other flare indicators, such as total count, peak count rate,
and duration times mean energy, were also examined. These indicators generally yielded a
power index around −0.40, diverging significantly from 1/f fluctuations. However, the
duration alone demonstrated a 1/f fluctuation with a power index of −0.88, with slightly
less scattering than Figure 4 (right).

Finally, in our analysis of solar flares in this section, we acknowledge certain limitations.
Each solar flare event has been characterized as instantaneous in our dataset. However,
realistically, a solar flare involves substantial energy transfer from the magnetic field to
plasma and particles over a finite duration; large flares may have prolonged durations,
while smaller flares are more instantaneous. We have excluded the extended profiles,
such as the decay phases of large flares. This decision is based on the fact that, in the
16-year RHESSI dataset, the average time interval between flares is 4865 s, while the
average duration of a flare is 642 s, with a maximum of 4500 s. Consequently, we believe
this approach does not significantly alter our conclusion that solar flare 1/f fluctuation is
predominantly a low-energy phenomenon. This does not discount the high-energy core
component of a solar flare. The relationship between the low-energy and high-energy
components of solar flares, particularly in the context of SOC, will be further discussed in
the next section.

Figure 4. PSD analysis was conducted on the energy time sequence of RHESSI solar flare data
spanning 16 years, from 2002 to 2018. The mean energy range spans from 4.5keV to 3.9 MeV. A red
line in the low-frequency domain in the PSD graph represents the best fits of the data according to
the least squares method within that domain. (left) The PSD of the energy time sequence reveals a
power behavior with an index of −0.59, where 1/f fluctuation is not distinctly apparent. (right) The
PSD of the flare occurrence time sequence is presented. It displays a power behavior with an index of
−0.90, clearly indicating the presence of 1/f fluctuation. Additionally, we analyzed the PSD of other
indicators of the solar flare time sequence. Most of these indicators exhibited a power index around
−0.40, with the notable exception of the duration, which demonstrates a power index of −0.88.

What mechanism then gives rise to this universal 1/f fluctuation at the low-energy
regime of various solar flare datasets?

3. Amplitude Modulation from Resonance

We recently proposed a potential origin for 1/f fluctuation, attributing it to wave beat
or amplitude modulation [8]. Given the generality of this mechanism, our intention is
to extend its application to the context of solar flare 1/f fluctuation within the scope of
this paper.

The foundation of this theory rests on the observation that waves with accumulat-
ing frequencies yield robust low-frequency signals. In cases where this accumulation is
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systematic, such as in instances of resonance, synchronization, or infrared divergence,
the wave beats consistently manifest a power law with an index approximately equal to −1.
The ubiquity of this phenomenon in nature stems from the prevalence of simple physics:
wave beat or amplitude modulation.

Consider an example of a beat: waves with frequencies of 440 Hz and 441 Hz yield a
beat. In musical sounds, this beat is ‘audible’ as a sinusoidal amplitude oscillation with
a frequency of 1 Hz. However, a Fourier transform of the original signal does not yield
this 1 Hz signal, only the original two frequencies. To extract this encoded 1 Hz signal, one
simple method is to square the data and then apply a Fourier transform. This approach
allows for the extraction of the encoded low-frequency signal at 2 Hz, though it is twice the
original frequency. Decoding is not limited to squaring but can also involve absolute value,
rectification, fourth-order power, thresholding, or other methods, resulting in a variety of
pink noise patterns.

Another example is AM radio, where amplitude modulation is employed. Using
high-frequency radio waves between 526.5 kHz and 1606.5 kHz, a low-frequency audible
signal is encoded. However, the encoded sound cannot be directly heard, as the rapidly
oscillating positive and negative parts in the wave cancel each other out, leaving no audible
signal. Demodulation is achieved by rectifying the radio wave signal, traditionally through
germanium diodes or vacuum tubes. This process is indispensable for extracting the
encoded low-frequency signal, such as 1/f fluctuation [8].

In the context of solar flares, we hypothesize that the resonant mode crucial for the
manifestation of 1/f fluctuations is the solar five-minute oscillation (SFO), a phenomenon
consistently activated within the solar atmosphere through turbulent convection [10,11].
Specifically, pressure modes of SFO exhibit accumulating eigenfrequencies, particularly
converging towards lower angular indices l. We aim to examine whether this frequency
accumulation effectively produces a 1/f power spectral density.

If SFO induces amplitude modulation, demodulation becomes imperative for observ-
ing 1/f fluctuation [8]. This necessity arises due to the cancellation of positive and negative
components within the relatively high-frequency wave, encompassing 1/f modulation.
In the context of solar flares, the demodulation process is envisioned to be facilitated by
the threshold established through magnetic reconnection. The tiny energy required for
magnetic reconnection may exhibit the 1/f fluctuation characteristic, aligning with the tiny
energy associated with SFO that can trigger solar flares.

The energy associated with SFO may be significantly small compared with the total
energy of a flare. Despite this, we believe that the SFO determines the 1/f fluctuation
property of flares.

In general, a solar flare appears to involve two consecutive stages: (a) the gradual
accrual of core magnetic energy manifested as accumulating intensity of magnetic fields
with opposite polarities and (b) a subsequent tiny trigger that reconnects a very local
strained magnetic fields initiating a sudden discharge of energy. From the preceding
discussion, it is apparent that the 1/f fluctuation is closely associated with the second
stage, (b).

The first stage, (a), is characterized by the progressive buildup of magnetic strain
energy within many local domains of concentrated magnetic fields. This buildup phe-
nomenon may be well described by applying the theory of self-organized criticality (SOC).

Regarding the second stage, (b), the final trigger, though minor, introduces sufficient
energy to cause the reconnection of magnetic fields in a local area, overcoming the energy
threshold and resulting in the burst release of magnetic energy. This minor final trigger,
possibly linked to ongoing fluctuations of SFO on the solar surface, determines the timing
of a solar flare; the characteristics of 1/f fluctuation in SFO may be inherited by the flares.

Moving forward, our analysis will focus more closely on this latter stage, (b), by
applying the amplitude modulation theory to the analysis of 1/f fluctuations in solar flares.
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4. Resonating Solar Five-Minute Oscillation

We delve into the potentiality of the solar five-minute oscillation (SFO) as a catalyst
for 1/f fluctuation in solar flare activity. Specifically, our focus centers on elucidating
how SFO eigenmodes contribute to the accumulation of frequencies, thereby generating
low-frequency signals through amplitude modulation mechanisms.

The small displacement, denoted as u(t, r, θ, φ), of the solar atmosphere from its
equilibrium position follows the Poisson equation

ρü = κ4u− ρ∇φg, ∆φg = 4πGρ (1)

where ρ, κ, G, φg represent the mass density, bulk modulus, gravitational constant, and grav-
itational potential, respectively.

The stationary solution u(t, r, θ, φ) = v(r, θ, φ)e−iωt leads to the eigenvalue equation.
Utilizing the variable separation method in the spherical coordinate system, we obtain a
solution of the form

u(t, r, θ, φ) = Rn,l,m(r)Ym
l (θ, φ)e−iωn,l,mt, (2)

where Ym
l (θ, φ) represents spherical harmonics. Modes are characterized by quantum

numbers n = 0, 1, 2, . . ., l = 0, 1, 2, . . ., and −l 5 m 5 l. These modes are further
categorized as pressure and gravitational modes. All parameters are uncertain depending
on the detail of the solar interior, making the solution of the eigenvalue equation a complex
task. Numerous numerical calculations and observational studies have been conducted on
these eigenmode equations.

We utilize observational data pertaining to eigenmodes of solar oscillations obtained
through helioseismology [15]. This dataset provides valuable information on numerous
observed frequencies, disregarding the degeneration in the azimuthal order number pa-
rameter m (−l ≤ m ≤ l). A distinctive characteristic of these modes is the accumulation of
frequencies towards smaller values of l for each n parameter, typically around 3× 10−3 Hz.
This property is pivotal for the emergence of 1/f fluctuation through the amplitude modu-
lation mechanism [8].

To simulate the phenomenon, we randomly superimposed all sinusoidal waves with
frequencies ranging from the lowest at 848.241 µHz up to 4669.16 µHz. The wave mode
superposition is expressed as

Φ(t) =
N

∑
k=1

ξksin(2πΩkt), (3)

where ξk is a random variable within the range [0, 1], and N = 2247 represents the
total number of eigenfrequencies in the dataset. Subsequently, we conducted Fourier
analysis (FFT) on the power spectral density (PSD) for the time series of the absolute value
|Φ(t)|. Notably, calculating the PSD for the bare Φ(t) yields no signal in the low-frequency
domain. As the 1/f fluctuation signal is modulated in our model, a demodulation process
is imperative; taking the absolute value is a typical demodulation method, essential for
extracting 1/f fluctuations in the PSD analysis. The specifics of the demodulation process
will be explored further in the subsequent discussion.

The PSD analysis results in a power-law with an index of approximately−0.42 within
the low-frequency range of 2× 10−5–5× 10−3 Hz, as illustrated in Figure 4 (left). How-
ever, it is noteworthy that the observed solar flare 1/f fluctuation occurs in the range of
2× 10−8 ∼ 10−3 Hz, considerably lower than our analysis. Further, the power index is
definitely larger than in the case of the observed solar flare. These discrepancies suggest
the need for a more nuanced consideration of realistic fine structures of the eigenstates and
additional resonances, a facet we will delve into in the subsequent analysis.

Our analysis of resonance is currently incomplete, with several aspects requiring
further exploration. Firstly, (a) each eigenmode is associated with a resonance curve,
and numerous frequency-accumulating modes are linked to each mode. Secondly, (b)
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the degeneration in the azimuthal order number m should give rise to a fine structure
around each principal frequency characterized by n and l. This degeneration in m is
resolved by the solar non-spherical symmetry or the solar rotation. In this paper, we
examine representative modes for both cases (a) and (b) to illustrate how the fine structure
contributes to the emergence of 1/f fluctuation. A comprehensive analysis encompassing
these aspects will be presented in our forthcoming publications.

To refine the power spectral density (PSD), we introduce the following effects: (a) each
eigenfrequency labeled by n and l possesses a finite width, and (b) the degeneration in m is
resolved by the solar rotation.

(a) Resonant modes are typically modeled by the Lorentzian distribution,

R[ω] =
1

(
κ
2
)2

+ (ω−Ω)2
, (4)

where Ω is the fiducial resonance frequency, and κ characterizes the sharpness of the
resonance. This function represents the frequency distribution density associated with
the fiducial frequency Ω. The inverse function (tangent) of the cumulative distribution
function (hyperbolic tangent) generates this distribution from the Poisson random field.

(b) Solar rotation resolves the degeneration in m by breaking the spherical symmetry of
the system. Although the details are intricate, a rough estimate is provided by the resolved
frequency [16,17] in the lowest perturbation in Ω/ω (� 1),

ωnlm = ωnl +
m

l(l + 1)
Ω, (5)

where ωnl is the degenerate eigenfrequency, and Ω = 4.3 × 10−7 Hz is the frequency
associated with the solar rotation. The coefficient of Ω is chosen approximately according
to [16,17].

These effects are implemented through a specific process. Initially, we construct
wave data by superposing N sinusoidal waves with eigenfrequencies after eliminating
the degeneration in m. Additionally, we superimpose M resonant waves with frequencies
proximate to the fiducial frequency, following the distribution in Equation (4). The fully
superposed wave is defined as:

Φ(t) =
N

∑
n=1

M

∑
i=1

sin(2π(1 + c tan(ξi))Ωnt), (6)

where the parameter c = κ/Ω represents the relative line width for each eigenfrequency.
The random variable ξi, ranging in [0, π/2], generates the frequency distribution through
R(ω) in Equation (4). While c actually depends on each n, for simplicity, we use c = 0.01.
We utilized data [15], limiting M to 100 and N to 100.

As before, the power spectral density (PSD) of the bare Φ(t) exhibits no signal in the
low-frequency region. However, taking the absolute value |Φ(t)| or applying arbitrarily
set threshold data produces 1/f fluctuations (details in the caption of Figure 5). These
operations essentially function as a demodulation of the original signal. Consequently,
the 1/f fluctuation becomes evident only after demodulation and proves to be quite robust.
Figure 5 (right) illustrates the PSD of the thresholded data, demonstrating an approximate
1/f fluctuation with a power index of −1.1, covering a frequency range extended down
to 2× 10−7 Hz. This range partially coincides with the observed range below 10−3 Hz.
In our future study, further refinement of the PSD analysis is intended, incorporating
finer structures of eigenfrequencies, decay times, and deviations of the Sun from spherical
symmetry. The introduction of gravitational modes, alongside pressure modes, which
operate in much lower frequency domains, is also of interest.

166



Entropy 2023, 25, 1593

Figure 5. left: On the left side, the graph depicts the power spectral density (PSD) of the absolute value
of the time sequence given by Equation (3), denoted as |Φ(t)|. Here, Φ(t) represents the superposition
of sinusoidal waves with the N = 2247 eigenfrequencies of the solar five-minute oscillation (SFO),
each with a random amplitude. Each mode is identified by the parameters n, l, and the azimuthal
order number m, which is degenerate. Despite exhibiting a power law, this presentation barely
demonstrates the characteristics of pink noise. right: On the right side, analogous to the left graph,
this graph includes resonant modes and fine eigenmodes after resolving the degeneration in m.
In constructing the data Φ(t), we superimpose sinusoidal waves with 100 frequencies from the lowest
and introduce N = 100 Lorentzian-distributed modes. The latter are randomly generated following
Equation (4). The graph displays the PSD of the thresholded timing sequence of Equation (6), Φ(t).
The threshold is set to select data points Φ(t) that surpass the mean although is moderately insensitive
to the demodulation method. This presentation reveals nearly 1/f fluctuation with an index of −1.1
spanning over four digits. Notably, variations in thresholds and sample sizes in the PSD analysis
consistently yield similar 1/f fluctuations. A red line in the low-frequency domain in the PSD graph
represents the best fits of the data according to the least squares method within that domain.

In the preceding discussion, we superimposed the eigenmodes of the solar five-minute
oscillation (SFO) to obtain amplitude modulation and pink noise, explaining the observed
1/f fluctuation in solar flares. However, a more direct examination of the bare data of SFO
before decomposition into eigenmodes is warranted. This implies that the resonance of SFO
directly yields pink noise. Initially, we utilize SOHO-GOLF data on the fluctuations of the
time elapsed T(t), for the acoustic waves to travel through the solar center [18] measured
in the unit second. Details are expounded in [19], with the data spanning about 16.5 years
and an interval of 80 s, albeit with some data-missing periods.

We commenced by calculating the power spectral density (PSD) of the original data
T(t). The result is depicted in the left graph of Figure 6. A prominent peak appears around
3× 10−3 Hz, corresponding to the typical five-minute mode of solar oscillation. From there,
a partial power-law behavior is observed toward 6× 10−6 Hz with an index of about −1,
followed by a flat behavior at lower frequencies. This partial 1/f fluctuation may stem from
instrumental origins [20], potentially not reflecting genuine solar properties.

Conversely, when taking the absolute value of the data, the 1/f fluctuation region
in the PSD extends toward the lowest frequency limit, as illustrated in Figure 6 (right).
The behavior of the SOHO-GOLF data T(t) is precisely the same as the sound data of
orchestra music [21] or the sound of a big bell. While the sound wave amplitude time-
sequence data do not exhibit pink noise, the square of the amplitude showcases apparent
pink noise. These operations of squaring or taking the absolute value naturally correspond
to the demodulation process, revealing the encoded pink noise.

This forms part of the rationale behind our belief that solar eigenoscillations contribute
to the 1/f fluctuation observed in solar flares. To extract 1/f fluctuation from the wave T(t),
we required operational demodulation, such as taking the absolute value, due to the low-
frequency 1/f fluctuation being encoded as amplitude modulation. In contrast, operational
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demodulation was not necessary in the case of solar flares, as the demodulation process is
considered intrinsic to the Sun and is already facilitated by magnetic reconnection.

Figure 6. (left) The power spectral density (PSD) is presented for the SOHO-GOLF 16.5-year data,
focusing on the time elapsed T(t) for the waves circumnavigating the Sun [18]. The rightmost peak
corresponds to the typical five-minute mode of the solar five-minute oscillation (SFO) at 3× 10−3 Hz.
(right) The PSD is shown for the absolute value of the original data, revealing 1/f fluctuation with a
slope of −0.82 over approximately six digits. In both figures, the frequency region corresponding to
SFO is deliberately excluded from the fitting region of 1/f fluctuations. This exclusion is based on
our consideration that the 1/f fluctuation originates from the wave beat produced by the resonating
SFO; such a beat typically manifests in a lower frequency domain than the resonator itself. Practically,
including the SFO frequency region in the analysis is not expected to influence the results significantly.
A red line in the low-frequency domain in the PSD graph represents the best fits of the data according
to the least squares method within that domain.

An alternative analysis involves ground-based data from BiSON [22,23], measuring
radial velocity from January 1985 to January 2023 (all sites, optimized for quality). The PSD
of the original bare data does not exhibit pink noise. However, taking the absolute value of
the original data results in clear 1/f fluctuation with a slope of −0.71, although this index
is slightly larger than the right side of Figure 6. This discrepancy is likely influenced by ar-
tificial peaks corresponding to the periods of the Earth’s spin and rotation at 1.1× 10−5 Hz
and 3× 10−8 Hz.

A variety of demodulation methods have been considered in association with this
BiSON data manipulation. In our previous analysis, we focused on the absolute value of
the data, but it is noteworthy that other manipulations can also be employed to extract
pink noise. For instance, the squared data exhibit pink noise, while the 1/f fluctuation
disappears in the cubed data. However, when the data is raised to the fourth power, 1/f
fluctuation reappears. These findings strongly indicate that the amplitude-modulated 1/f
fluctuation emerges after specific demodulation processes.

Similar phenomena are often observed in sound systems. For example, we examined
sound data collected at the water-harp cave (Suikinkutsu) at HosenIn Temple in Kyoto [24].
The sound is generated by the perpetual impact of water drops on the water surface in
the two-meter Mino-yaki pot underground [25]. Although the original sound data barely
show pink noise, the squared data from this sound source clearly display 1/f fluctuation
with an index of −0.80 for four digits. The resonator, in this case, is presumed to be the
Mino-yaki pot.

5. Timing Statistics

In our analysis of Section 2, we identified 1/f fluctuation in the time series of solar
flare timing and speculated that this characteristic might be indicative of the low-energy
trigger for solar flares. Similar pink noise behavior is observed in seismic activity [9],
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where time series of earthquake occurrences is often described by the Weibull distribution
function [26,27]:

f (x) =
α

β

(
x
β

)α−1
exp

(
−
(

x
β

)α)
. (7)

This leads us to explore whether the solar flare timing sequence is characterized by the
Weibull distribution and its potential connection to pink noise.

Upon examination of the GOES data [12] used in our analysis, we discover that,
the logarithm of the time intervals between solar flares follows the Weibull distribution,
as illustrated in Figure 7 (left). The best-fit parameters are α = 5.3 and β = 9.9. Therefore,
similar to seismic activity, the statistical distribution of solar flare timing can be effectively
characterized by the Weibull distribution. The question then arises: to what extent does
this Weibull distribution characterize the 1/f fluctuation property?

We have checked that a time sequence simply following the Weibull distribution does
not exhibit pink noise; the power spectral density (PSD) becomes flat in the low-frequency
range, as depicted in Figure 7 (right). Consequently, the 1/f fluctuation observed in solar
flare timing is independent of the Weibull distribution, as the behavior observed in seismic
cases. This property is readily understood; the time sequence, constructed with randomly
chosen intervals according to Weibull distribution statistics, lacks long correlation times. In
contrast, 1/f fluctuation inherently possesses long correlation times, thereby manifesting as
a low-frequency property.
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Figure 7. (left) Orange bars indicate the frequency distribution of the logarithm of the time intervals
between solar flare occurrences, while the thin red line represents the smoothed version of the fitting
curve. The blue line denotes the Weibull distribution with the parameters α = 5.3 and β = 9.9, best
fitting the solar flare data. (right) The PSD is presented for artificial data with random time intervals
generated by the best-fit Weibull distribution. It is evident that the PSD of these artificial data is
flat, indicative of a random distribution. A red line in the low-frequency domain in the PSD graph
represents the best fits of the data according to the least squares method within that domain.

6. Robustness and Inherited 1/f Fluctuation

We have delved into the origin of 1/f fluctuation in solar flares, applying the overar-
ching concept that the accumulation of frequencies in numerous waves leads to beat or
amplitude modulation. Frequency accumulation is achieved through resonance, and we
have successfully explored this concept using the solar five-minute oscillation (SFO), which
are consistently resonating. It is plausible that magnetic reconnection serves as the de-
modulation (DM) of this amplitude modulation (AM), resulting in 1/f fluctuation in solar
flares. If this holds true, the combination of SFO (as AM) and magnetic reconnection (as
DM) may generate 1/f fluctuation beyond solar flare in other extended regions of the
solar neighborhood.
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For instance, if magnetic reconnection induces solar wind through jetlets [28], triggered
by SFO, then the solar wind [29] may also exhibit pink noise. Indeed, 1/f fluctuation in the
solar wind has been observed over many years [30–32]. SFO has been detected in the solar
corona [33], suggesting the potential observation of 1/f fluctuation in that context as well.

Furthermore, the solar wind may interact with the Earth’s atmosphere, inducing
chemical reactions leading to the production of the NO−3 isotope. This isotope could then
become embedded in Antarctic ice cubes. Research in this area is ongoing. If solar wind
and solar flares influence the Earth’s surface, then sea surface temperature may also exhibit
1/f fluctuation, similar to the case of seismic activity.

In seismic activity, which also displays pink noise, seismic events inherit a 1/f fluc-
tuation pattern, potentially resulting from amplitude modulation due to resonance with
Earth free oscillation (EFO) in the lithosphere [9]. This EFO may further contribute to the
1/f fluctuation observed in the time sequences of volcano eruptions and the fluctuation of
the Earth’s rotation axes.

Including the above robustness of pink noise, we compare solar flares and earthquakes
in Table 1. This table is preliminary and will be finalized in our forthcoming study.

Table 1. Similarity of solar flares and earthquakes from the view point of pink noise. This is a
tentative table, and the detail will be reported soon by the authors.

Solar Flare Earthquakes

AM (resonator) Solar five-minute oscillation (SFO) Earth free oscillation (EFO)

DM magnetic reconnection fault rupture

PSD total data flat (GOES16, RHESSI) flat (USGS)

PSD low-energy pink (GOES16, RHESSI) pink (USGS)

PSD timing pink (GOES16, RHESSI) pink (USGS)

PSD superposed
eigenmodes pink (JSOC) pink (T. G. Masters, R. Widmer )

Weibull distribution yes: α = 5.3 and β = 9.9 (GOES16) yes: α = 6.3 and β = 7.63 (USGS)

PSD resonator pink (SOHO-GOLF, BiSON) ?

inherent phenomena solar wind, sunspot number, nitrate, SST, cosmic ray volcano eruption, rotation axes

7. Conclusions and Prospects

In conclusion, our investigation has identified 1/f fluctuation in the solar flare time
series, and we have partially elucidated its origin by applying our proposed mechanism: 1/f
fluctuation emerges from the resonance of the solar five-minute oscillations via amplitude
modulation and demodulation.

Our GOES data analysis of the solar flare time sequence has revealed distinct low-
frequency properties. Specifically, the power spectral density of low-energy flares (E ≤ Emean)
exhibited 1/f fluctuations, while high-energy flares (E > Emean) displayed a flat spectrum.
Notably, the time sequence of flare occurrences demonstrated clearer 1/f fluctuations,
indicating that low-energy characteristics play a pivotal role in triggering the observed
1/f fluctuations in solar flares. Building on our recent proposal that 1/f noise arises
from amplitude modulation and demodulation, we postulated that this modulation is
encoded through resonance with the solar five-minute oscillation (SFO) and demodulated
via magnetic reconnection.

To test this hypothesis, we constructed a dataset by superposing sinusoidal waves with
2247 eigenfrequencies of SFO. The absolute value of this time sequence marginally exhibited
1/f fluctuations with a power index of −0.42 down to 2× 10−5 Hz. Further refinement of
the data, considering resonance effects and finer structures labeled by m induced by solar
rotation, involved adding 100 extra modes generated by resonant Lorentzian distributions
for the first 100 eigenfrequencies of SFO after resolving the degeneration in m. The absolute
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value of this refined time sequence clearly displayed 1/f fluctuations with a power index
of −1.1 down to 10−7 Hz, largely overlapping with the observed range of solar flare 1/f
fluctuations (power index −1.0 from about 2× 10−3 Hz down to2× 10−8 Hz). Thus, our
analysis provided partial verification that SFO triggers seismic 1/f fluctuations.

Further investigation into SOHO-GOLF data and BiSON data for velocity fluctuations
in the solar atmosphere revealed that the original time sequence of these data barely
exhibited 1/f fluctuations, while the absolute values of the time sequence did display clear
1/f fluctuations. This lends additional support to our proposition: SFO is the origin of solar
flare 1/f fluctuations.

Additionally, our examination of the time sequence of solar flare occurrences revealed
adherence to a Weibull distribution. However, an artificial time sequence composed from
the Weibull distribution barely exhibited 1/f fluctuations, suggesting that the Weibull
distribution does not fully characterize solar 1/f fluctuations.

Lastly, our comparison of 1/f fluctuations in solar flares and earthquakes, as demon-
strated above, has revealed remarkable similarities between them [34,35]. The underlying
commonality in these phenomena is the generation of 1/f fluctuations through amplitude
modulation by spherical resonators in the universe, such as stars and planets. This concept
can naturally extend to other celestial objects, including black holes and neutron stars.
Specifically, we have conducted a preliminary analysis of six years of MAXI X-ray data
from Cyg X-1, obtaining 1/f fluctuations with a power index of −0.8 over four orders of
magnitude. We hypothesize that the resonator in this case is the quasi-periodic oscillation of
a black hole. Additionally, the similarity of repeated Fast Radio Burst (FRB) data with solar
flares and earthquakes is noteworthy. It would be intriguing to explore whether this signal
is related to the eigenoscillations of neutron stars or magnetars. These analyses will be
detailed in our forthcoming separate papers. This broader perspective underscores the po-
tential universality of the proposed amplitude modulation and demodulation mechanism
across diverse astrophysical phenomena.
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