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s
NN

= 5.02 TeV PbPb Collisions at CMS
Reprinted from: Universe 2023, 9, 318, doi:10.3390/universe9070318 . . . . . . . . . . . . . . . . . 35

László Kovács
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Abstract: It is known that the Real Extended Bialas–Bzdak (ReBB) model describes the proton–
proton (pp) and proton–antiproton (pp̄) differential cross-section data in a statistically non-excludible
way, i.e., with a confidence level greater than or equal to 0.1% in the center of mass energy range
546 GeV ≤ √s ≤ 8 TeV and in the squared four-momentum transfer range 0.37 GeV2 ≤ −t ≤ 1.2 GeV2.
Considering, instead of Gaussian, a more general Lévy α-stable shape for the parton distributions of
the constituent quark and diquark inside the proton and for the relative separation between them, a
generalized description of data is obtained, where the ReBB model corresponds to the α = 2 special
case. Extending the model to α < 2, we conjecture that the validity of the model can be extended
to a wider kinematic range, in particular, to lower values of the four-momentum transfer −t. We
present the formal Lévy α-stable generalization of the Bialas–Bzdak model and show that a simplified
version of this model can be successfully fitted, with α < 2, to the non-exponential, low−t differential
cross-section data of elastic proton–proton scattering at

√
s = 8 TeV.

Keywords: elastic scattering; proton-proton; scattering amplitude

1. Introduction

The Bialas–Bzdak (BB) model considers the proton as a bound state of a quark and a
diquark, p = (q, d) for short [1]. The diquark in the proton may also be considered to be a
weakly bound state of two constituent quarks, leading to the p = (q, (q, q)) variant of the
BB model; however, in Ref. [2], it was shown that the p = (q, (q, q)) variant of the BB model
gives two many diffractive minima, whereas, experimentally, only a single minimum is
observed in the differential cross-section of proton–proton (pp) collisions. Thus, in recent
studies, in Refs. [3,4], the p = (q, d) version of the model was utilized.

Originally, the BB model considers Gaussian shapes for the parton distributions of
constituent quarks and diquarks inside the proton and for the relative separation between
them. By these considerations based on R. J. Glauber’s multiple scattering theory [5,6],
the inelastic scattering cross-section of protons at a fixed

√
s energy and a fixed b impact

parameter value is constructed and denoted as σ̃in(s,~b).
The elastic scattering amplitude in the impact parameter representation is written in

terms of σ̃in(s,~b) as a solution of the unitarity equation. The imaginary part of the elastic
scattering amplitude is the dominant part, whereas the real part can be considered as a
smaller correction. Bialas and Bzdak in Ref. [1] neglected the real part of the amplitude and
used a fully imaginary amplitude,

t̃el(s,~b) = i
(

1−
√

1− σ̃in(s,~b)
)

, (1)

for the calculations of the scattering cross sections. However, in a model where the am-
plitude does not have a real part, the characteristic minimum–maximum region of the pp

Universe 2023, 9, 361. https://doi.org/10.3390/universe9080361 https://www.mdpi.com/journal/universe1
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differential cross-section can not be described properly. In Ref. [7], the elastic scattering
amplitude was extended with a real part in a way that the unitarity constraint is fulfilled.
This amplitude reads as:

tel(s,~b) = i
(

1− ei α σ̃in(s,~b)
√

1− σ̃in(s,~b)
)

, (2)

where α is a free parameter to be fitted to the data. In the case of α = 0, Equation (2) reduces
to Equation (1), i.e., to a scattering amplitude that has a vanishing real part.

The model for the elastic proton–proton scattering amplitude, as defined by
Equation (2), with σ̃in(s,~b), as defined in Ref. [1], is called the Real Extended Bialas–Bzdak
(ReBB) model. In recent studies [3,4], it was shown that the ReBB model describes pp
and proton–antiproton (pp̄) differential cross-section data in the center of mass energy
range of 0.546 TeV ≤ √s ≤ 8 TeV and in the squared four-momentum transfer range of
0.37 GeV2 ≤ −t ≤ 1.2 GeV2 in a statistically non-excludible manner, i.e., with a confidence
level greater than or equal to 0.1%.

The free parameters of the ReBB model are the Gaussian radii of the quark, the
diquark, and the separation between them (correspondingly, Rq, Rd, and Rqd) and also,
the α parameter regulating the real part of the scattering amplitude. Two additional fit
parameters could be present: λ, the ratio of the quark and diquark masses, and Aqq, the
normalization parameter appearing in the inelastic quark–quark cross-section. However, it
was shown in Ref. [2] and later confirmed in Ref. [3] that Aqq can be fixed at a value of 1.0,
whereas λ can be fixed at a value of 1/2.

The energy dependence of the ReBB model parameters for pp and pp̄ scattering were
determined in Ref. [3]. It was found that the energy dependencies of the radius parameters
are the same for pp and pp̄ scattering, whereas the energy dependencies of the α parameter
for pp and pp̄ scattering are different, i.e., there are different αpp and αpp̄ parameters. The
energy dependencies of all the five parameters in the energy range of 0.546 ≤ √s ≤ 8 TeV
are determined by linear logarithmic functions [3,4].

Considering, instead of Gaussian, a more general Lévy α-stable shape for the parton
distributions of the constituent quark and diquark inside the proton and for the relative
separation between them, an improved description to the data in a wider kinematic range
(
√

s < 0.546 TeV,
√

s > 8 TeV, −t < 0.37 GeV2, −t > 1.2 GeV2) is anticipated.
The 0.37 GeV2 ≤ −t ≤ 1.2 GeV2 interval at LHC energies includes the region of the

characteristic minimum–maximum structure of the pp elastic differential cross-section.
In the 0.01 GeV2 . −t . 0.15 GeV2 interval, another characteristic structure, a non-
exponential behavior is observed. A significant non-exponential behavior was measured
by TOTEM at CERN LHC at 8 and 13 TeV center of mass energies [8,9]. Similar behavior
was observed also at the CERN ISR accelerator in the 1970s [10], where measurements were
made in the 20 GeV . √s . 60 GeV energy region.

In Ref. [11], the model-independent Lévy imaging method is successfully employed
to describe the pp and pp̄ differential cross-section data both at the low and the high −t
region simultaneously. In Ref. [12], the model-independent Lévy imaging method was
employed to reconstruct the proton inelasticity profile function. This method established
a statistically significant proton hollowness effect [13–17], well beyond the 5σ discovery
limit at

√
s = 13 TeV. These results suggest that Lévy α-stable models are efficient tools

in describing pp and pp̄ differential cross-section data, and the ReBB model needs to be
Lévy α-stable generalized to have a stronger non-exponential feature at low −t and to
accommodate the new features of the differential cross-section data such the hollowness
effect at

√
s = 13 TeV or larger energies. In the present work, we complete the formal Lévy

α-stable generalization of the Bialas–Bzdak model.
This paper is organized as follows. In Section 2, we deduce the formal Lévy α-stable

generalization of the Bialas–Bzdak model and discuss the technical difficulties preventing
us to perform an efficient fitting procedure of the model parameters to the experimental
data with the full Lévy α-stable generalized Bialas-Bzdak model. In Section 3, we show

2
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successful fits to the low −t differential cross-section data at LHC energies with a simple
Lévy α-stable model deduced by approximations from the Lévy α-stable generalized Bialas–
Bzdak (LBB) model. In Section 4, the parameters of the LBB model is related to the t = 0
measurable quantities and to the parameters of the simple Lévy α-stable model. Finally, we
summarize and conclude in Section 5.

2. From Gaussian to Lévy α-Stable p = (q, d) BB Model

First, we recapitulate the BB model using normalized Gaussian distributions and
introduce some reinterpretations of some of its parts. Then, we change the normalized
Gaussian distributions to normalized Lévy α-stable distributions, resulting in the Lévy
α-stable generalized BB model.

The inelastic scattering cross-section at a fixed~b impact parameter value is given as [1]:

σ̃in(~b) =
∫ +∞

−∞
...
∫ +∞

−∞
d2~sqd2~s ′qd2~sdd2~s ′dD(~sq,~sd)D(~s ′q,~s ′d)σ(~sq,~sd;~s ′q,~s ′d;~b), (3)

where D(~s ′q,~s ′d) is the quark–diquark distribution inside one of the colliding protons,

σ(~sq,~sd;~s ′q,~s ′d;~b) is the probability of inelastic collision, and the variables we integrate over
are the transverse positions of the quarks and diquarks inside the two colliding protons.
Note that the energy dependence of σ̃in(~b) is not written out here for clarity reasons;
however, through the

√
s dependence of the model parameters, Rq(s), Rd(s), and Rqd(s),

σ̃in(~b) has an
√

s dependence too.
The quark–diquark distribution is considered to be Gaussian:

D
(
~sq,~sd

)
=

1 + λ2

R2
qd π

e−(s
2
q+s2

d)/R2
qd δ2(~sd + λ~sq), (4)

where λ = mq/md, the ratio of the quark and diquark masses, and Rqd are free parameters
of the model. The two-dimensional Dirac δ function fixes the center-of-mass of the proton
and reduces the dimension of the integral in Equation (3) from 8 to 4. Accordingly, the
diquark positions can be expressed by that of the quarks:

~sd = −λ~sq, ~s ′d = −λ~s ′q . (5)

After integration over~sd, D(~sq,~sd) becomes a Gaussian in~sq; then, after the integration,
also over~sq, we obtain unity:

∫
d2~sdD(~sq,~sd) = G

(
~sq|Rqd/

√
2(1 + λ2)

)
, (6)

∫
d2~sqd2~sdD(~sq,~sd) = 1, (7)

where:

G(~x|RG) =
1

(2π)2

∫
d2qei~qT~xe−

1
2 q2R2

G =
1

2πR2
G

e
− x2

2R2
G (8)

is the normalized bivariate Gaussian distribution.
We may reinterpret D(~sq,~sd) as the distribution of the relative separation between the

quark and the diquark in a single proton, namely:

D(~sq,~sd) = (1 + λ)2G
(
~sq −~sd|Rqd/

√
2
)

δ2(~sd + λ~sq) (9)

3
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which is correctly normalized as follows:
∫

d2~sdD(~sq,~sd) = G
(
~sq|Rqd∗/

√
2
)

, (10)
∫

d2~sqd2~sdD(~sq,~sd) = 1, (11)

where:

Rqd∗ =
Rqd

1 + λ
. (12)

Here, we have rescaled the parameter Rqd of the original Bialas–Bzdak model to the
parameter that characterizes the uncertainty of the location of a dressed quark inside
the proton. The advantage of this interpretation is that we prepare the ground for the
generalization to the case of Levy α-stable distributions and instead of taking the product
of two Gaussians, as in Equation (4), we had an equivalent rewrite where the relative
coordinate distribution of a quark and a diquark is Gaussian, with rescaled parameters.
This rewrite is very advantageous, as the product of two Levy distributions is not a Levy
distribution, with the exception of the αL = 2 Gaussian case. As such, to have only one
Gaussian in the relative coordinate avoids the problem of having products of Levy α-stable
distributions in the formulas.

The term σ(~sq,~sd;~s ′q,~s ′d;~b) is the probability of inelastic interactions at a fixed impact
parameter and transverse positions of all constituents and given by a Glauber expansion
as follows:

σ(~sq,~sd;~s ′q,~s ′d;~b) = 1−
[
1− σqq(~sq,~s ′q;~b)

][
1− σqd(~sq,~s ′d;~b)

]
× (13)

×
[
1− σdq(~s ′q,~sd;~b)

][
1− σdd(~sd,~s ′d;~b)

]
,

where:
σqq(~sq,~s ′q;~b) ≡ σqq(~b +~s ′q −~sq),

σqd(~sq,~s ′d;~b) ≡ σqd(~b +~s ′d −~sq),

σdq(~sd,~s ′q;~b) ≡ σdq(~b +~s ′q −~sd),

and:
σdd(~sd,~s ′d;~b) ≡ σdd(~b +~s ′d −~sd)

are the inelastic differential cross-sections of the binary collisions of the constituents. They
have Gaussian shapes:

σab(~x) = Aabe−~s
2/S2

ab (14)

with S2
ab = R2

a + R2
b and a, b ∈ {q, d}. Equation (14) can be rewritten in terms of normalized

bivariate Gaussian distribution:

σab(~s) = AabπS2
abG
(
~s|Sab/

√
2
)

. (15)

We can reinterpret the inelastic constituent–constituent collisions by assuming that the
constituent quark and the constituent diquark have Gaussian parton distributions, charac-
terized by G(~sq|Rq/

√
2) and G(~sd|Rd/

√
2). Then, the probability of inelastic collisions at a

given impact parameter b is proportional to their convolution:

σab(~s) = AabπS2
ab

∫
d2saG(~sa|Ra/

√
2)G(~s−~sa|Rb/

√
2) (16)

≡ AabπS2
abG
(
~s|Sab/

√
2
)

.

4
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The inelastic quark–quark, quark–diquark, and diquark–diquark cross-sections are
obtained by integration:

σab,inel =

+∞∫

−∞

+∞∫

−∞

σab(~s)d2s = AabπS2
ab . (17)

The number of the free parameters of the model can be reduced by demanding that
the ratios of the cross-sections are:

σqq,inel : σqd,inel : σdd,inel = 1 : 2 : 4 , (18)

expressing the idea that the constituent diquark contains twice as many partons than the
constituent quark and also that the colliding constituents do not “shadow” each other.

Then, the probabilities of inelastic constituent–constituent collisions can be written in
the following form:

σqq(~sq,~s ′q;~b) = 2πAqqR2
qG(~b +~s ′q −~sq|Rq), (19)

σqd(~sq,~s ′d;~b) = 4πAqqR2
qG

(
~b +~s ′d −~sq

∣∣∣∣∣

√
R2

q + R2
d

2

)
, (20)

σdq(~s ′q,~sd;~b) = 4πAqqR2
qG

(
~b +~s ′q −~sd

∣∣∣∣∣

√
R2

q + R2
d

2

)
, (21)

σdd(~sd,~s ′d;~b) = 8πAqqR2
qG(~b +~s ′d −~sd|Rd). (22)

Substituting these into Equation (13), then substituting σ(~sq,~sd;~s ′q,~s ′d;~b) into Equation (3),

we get a sum of eleven integral terms (with proper sign) for σ̃in(~b):

σ̃in(~b) = σ̃
qq
in (
~b) + 2σ̃

qd
in (
~b) + σ̃dd

in (~b)− [2σ̃
qq,qd
in (~b) + σ̃

qd,dq
in (~b) + σ̃

qq,dd
in (~b)+ (23)

+ 2σ̃
qd,dd
in (~b)] + [σ̃

qq,qd,dq
in (~b) + 2σ̃

qq,qd,dd
in (~b) + σ̃

dd,qd,dq
in (~b)]− σ̃

qq,qd,dq,dd
in (~b).

Let us have a look for the most general fourth-order term, σ̃
qq,qd,dq,dd
in (~b). After making

use of the presence of the Dirac δ function in Equation (9), we have to calculate a four-
dimensional integral of products of normalized bivariate Gaussian distributions:

σ̃
qq,qd,dq,dd
in (~b) =

∫
d2sqd2s′qG(~sq|Rqd∗/

√
2)G(~s ′q |Rqd∗/

√
2)× (24)

× σqq(~sq,~s ′q ;~b)σqd(~sq,−λ~s ′q ;~b)σdq(~s ′q ,−λ~sq;~b)σdd(−λ~sq,−λ~s ′q ;~b).

Such an integral results in an expression having a Gaussian shape. The lower-order
terms can be obtained from Equation (24) by excluding the proper σab term/terms from
the integrand. Thus, after computing the integrals in all order, we get the sum of eleven
different Gaussian-shaped terms, i.e., the BB model as introduced in Ref. [1].

Now, we perform the Lévy α-stable generalization of the BB model.
Let us introduce the normalized bivariate symmetric Lévy α-stable distribution,

L(~x|αL, RL) =
1

(2π)2

∫
d2qei~qT~xe−|q2R2

L|αL/2
, (25)

5
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which, for αL = 2, gives exactly the bivariate Gaussian distribution:

L(~x|αL = 2, RL = RG/
√

2) ≡ G(~x|RG). (26)

Note that the Lévy index of stability αL, that controls the power-law tails of the inelastic
cross-sections, is a different parameter from the α parameter of the ReBB model, that
controls the opacity or the real part of the scattering amplitude. Due to historic reasons,
both were denoted by α originally, but in this work, we add a subscripted L to distinguish
the Lévy parameter αL from the opacity parameter α.

Since we work with here with symmetric Lévy α-stable distribution, the skewness
parameter βL = 0 of the Lévy stable source distributions is implicit and are assumed to
have zero values. The shift parameter δL of the Lévy stable source distribution is explicitely
written out when considering the impact parameter picture, while the overall shift of the
impact parameter cancels from the final results hence it is assumed to have a vanishing
value.

We then consider that the relative separation between the quark and the diquark in a
single proton follows Lévy α-stable distribution:

D(~sq,~sd) = (1 + λ)2L
(
~sq −~sd|αL, RL = Rqd/2

)
δ2(~sd + λ~sq) (27)

with:
∫

d2~sdD(~sq,~sd) = L
(
~sq|αL, Rqd∗/2

)
, (28)

∫
d2~sqd2~sdD(~sq,~sd) = 1, (29)

similarly to the original case with Gaussian distributions.
As the next step in the generalization, we consider, instead of Gaussian, Lévy α-stable

parton distributions for the constituent quark and the constituent diquark: L(~sq|αL, Rq/2)
and L(~sd|αL, Rd/2). Then, as in the Gaussian case above, the probability of inelastic
collisions at a given impact parameter b is proportional to their convolution:

σab(~s) = AabπS2
ab

∫
d2saL(~sa|αL, Ra/2)L(~s−~sa|αL, Rb/2) (30)

= AabπS2
abL(~s|αL, Sab/2),

where now:
Sab =

(
RαL

a + RαL
b
)1/αL , (31)

i.e., in this case, after making use of the convolution theorem, the radii add up not
quadratically, but at the power of αL.

Then:

σqq(~sq,~s ′q;~b) = πAqq
(
2RαL

q
)2/αL L

(
~b +~s ′q −~sq|αL,

(
2RαL

q
)1/αL /2

)
, (32)

σqd(~sq,~s ′d;~b) = 2πAqq
(
2RαL

q
)2/αL L

(
~b +~s ′d −~sq

∣∣∣∣∣αL,
(

RαL
q + RαL

d
)1/αL /2

)
, (33)

σdq(~s ′q,~sd;~b) = 2πAqq
(
2RαL

q
)2/αL L

(
~b +~s ′q −~sd

∣∣∣∣∣αL,
(

RαL
q + RαL

d
)1/αL /2

)
, (34)

and
σdd(~sd,~s ′d;~b) = 4πAqq

(
2RαL

q
)2/αL L

(
~b +~s ′d −~sd)|αL,

(
2RαL

d
)1/αL /2

)
. (35)
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Equation (3) with Equation (13), Equation (27), and Equations (32)–(35) define the
Lévy αL-stable generalized Bialas–Bzdak (LBB) model for σ̃in(b). Now, in Equation (23),
instead of a sum of integrals of products of normalized Gaussian distributions, there are a
sum of integrals of products of normalized Lévy αL-stable distributions. Though integrals
of products of Gaussian distributions can be calculated, the calculation of integrals of
products of Lévy αL-stable distributions is an issue. Integrals of products of Lévy αL-stable
distributions can be easily calculated if the integral can be written in a convolution form.
This is the case for the first three terms in Equation (23). The results can be written in terms
of Lévy αL-stable distributions:

σ̃
qq
in (
~b) = πAqq

(
2RαL

q

)2/αL× (36)

×
∫

d2sqd2s′qL(~sq|αL, Rqd∗/2)L(~s ′q |Rqd∗/2)L
(
~b +~s ′q −~sq|

(
2RαL

q

)1/αL
/2
)

= πAqq

(
2RαL

q

)2/αL
L
(
~b
∣∣∣αL,

(
2RαL

qd∗ + 2RαL
q

)1/αL
/2
)

,

σ̃
qd
in (
~b) = 2πAqq

(
2RαL

q

)2/αL× (37)

×
∫

d2sqd2s′qL(~sq|Rqd∗/2)L(~s ′q |Rqd∗/2)L

(
~b− λ~s ′q −~sq

∣∣∣∣∣αL,
(

RαL
q + RαL

d

)1/αL
/2

)

= 2πAqq

(
2RαL

q

)2/αL
L
(
~b
∣∣∣αL,

(
(1 + λαL )RαL

qd∗ + RαL
q + RαL

d

)1/αL
/2
)

,

σ̃dd
in (~b) = 4πAqq

(
2RαL

q

)2/αL× (38)

×
∫

d2sqd2s′qL(~sq|Rqd∗/2)L(~s ′q |Rqd∗/2)L
(
~b + λ(~sq −~s ′q )|αL,

(
2RαL

d
)1/αL /2

)

= 4πAqq

(
2RαL

q

)2/αL
L
(
~b
∣∣∣αL,

(
2λαL RαL

qd∗ + 2RαL
d

)1/αL
/2
)

.

The results of the remaining eight integrals, corresponding to higher-order terms in
the BB model, are yet to be determined in terms of analytic formulas.

Whereas univariate and multivariate Gaussian distributions have closed forms in
terms of elementary functions, univariate and multivariate Lévy αL-stable distributions
have forms in terms of special functions. This makes it hard to perform a numerical fitting
procedure of the model parameters to the experimental data. To complete this work in the
future, a relatively high computing capacity or improved analytic insight will be needed.
In this work, we have chosen another approach, limiting the domain of the applicability
of the calculations in the squared four-momentum transfer −t. This allows for certain
simplifications and results in an increased analytic insight to certain properties of the
LBB model.

A possible alternative to the Lévy α-stable generalization of the BB model could be its
Tsallis or q-exponential generalization, since data from high-energy collisions have shown
such distribution. The presence of the Tsallis distribution was explained in Ref. [18] using
the fractal approach to the non-perturbative QCD, and also, the q index was expressed
in terms of the number of colors and the number of flavors. The validity of the derived
relation was reinforced later in Ref. [19]. These results suggest that the investigation of the
Tsallis generalization of the BB model is worthwhile. This will be done in a future study. In
this manuscript, we investigate the Lévy α-stable generalization of the BB model.

3. A Simple Lévy α-Stable Model

Now, we check if the Lévy α-stable generalization of the BB model has an enhanced
potential, as compared to the ReBB model, or not. The mathematical and computing difficul-

7



Universe 2023, 9, 361

ties discussed in the previous section can be bypassed by introducing new approximations
that are valid at low −t, in the domain where the original ReBB model had difficulties to
describe the strongly non-exponential features of the experimental data of elastic proton-
proton scattering at the TeV energy scale. Our aim is, thus, to deduce a model for the
differential cross-section which is valid at the low-|t| region.

Since the elastic scattering amplitude is predominantly imaginary in this kinematic
region, we approximate it by an imaginary part, as given by Equation (1). Low-|t| scattering
corresponds to high-b scattering and, at high b values σ̃in(s, b), is small. Thus, the leading
order term in the Taylor expansion of Equation (1), i.e.,

t̃el(s,~b) =
i
2

σ̃in(s,~b), (39)

should be a reasonable approximation at low −t values in the α = 0 (vanishing real
part) case.

As discussed in Section 3, low-|t| scattering corresponds to high-b scattering and, at
high b values σ̃in(s, b), is small. Thus, the leading order term in the Taylor expansion of
Equation (2), i.e.,

t̃el(s,~b) =
(

α +
i
2

)
σ̃in(s,~b), (40)

should be a reasonable approximation at low −t values if the opacity parameter α is small.
In Section 2, we discussed that in the Lévy α-stable generalized case of the BB model,

the leading order terms in σ̃in(s, b) are Lévy-α-stable-shaped terms. Motivated by this
fact in our simplified model, we approximate σ̃in(s, b) with a single Lévy-αstable-shaped
term, i.e.,

σ̃in(s,~b) = c̃(s)L(~b|αL(s), r(s)) (41)

where c̃(s) is in general a complex-valued and s dependent function, while αL(s), and
r(s) are adjustable parameters determined at a given

√
s energy,

Then, by Equation (39), we have:

t̃el(s,~b) = ic(s)L(~b|αL(s), r(s)), (42)

where c(s) = c̃(s)/2 is a rescaled and complex valued parameter. Now, we transform the
impact parameter amplitude into momentum space:

t(s, t) =
∫

d2bei~∆T~b t̃(s,~b) = ic(s)e−|tr
2(s)|αL(s)/2

, (43)

where |~∆| ' √−t. The resulting differential cross-section is:

dσ

dt
(s, t) =

1
4π
|t(s, t)|2 = a(s)e−|tb(s)|

αL(s)/2
, (44)

where a(s) = |c(s)|2
4π and b(s) = 22/αL(s)r2(s). Thus, finally, this simple model for the

differential cross-sections has three adjustable parameters, αL, a, and b, to be determined at
a given energy.

The result of a fit to the TOTEM pp elastic differential cross-section data at
√

s = 8 TeV
by the model defined by Equation (44) is shown in Figure 1. One can see that the non-
exponential model with αL = 1.953 ± 0.004 represents the low-|t| differential cross-section
data with a confidence level of 55%.

Figure 2 shows the ratio, (dσ/dt− re f )/re f , with re f = Ae−Bt, used by the TOTEM
collaboration [8] to make the relatively small, but significant, low-|t| non-exponential
behavior visible. One can clearly see that our model successfully describes the low-|t| data.

8
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Figure 1. Fit-to-the-TOTEM pp elastic differential cross-section data at
√

s = 8 TeV [8] by the model
defined by Equation (44).

Figure 2. The ratio, (dσ/dt− re f )/re f , evaluated from the TOTEM pp elastic differential cross-section
data at

√
s = 8 TeV [8]. The curve corresponds to the fitted model defined by Equation (44).

9
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4. The t = 0 Measurable Quantities and the BB Model Parameters

In this section, we relate the t = 0 measurable quantities and the LBB parameters.
First, we work with the original BB model with Gaussian distributions and then derive the
formulas for the Levy α-stable generalized case. We note again that to avoid confusion
with the α parameter of the ReBB model regulating the real part of the amplitude and that
of the Lévy α-stable distribution, the latter we have denoted in this manuscript as αL. For
the αL = 2 limiting case, the relations obtained in the original BB model are recovered.

Now, we consider only the leading order terms in σ̃in(s, b), i.e., σ̃
qq
in (
~b), σ̃

qd
in (
~b), and

σ̃dd
in (~b), which give the dominant contribution at t = 0. We get the amplitude in momentum

space by Fourier transformation as in Equation (43). As discussed in the Introduction, the
parameter Aqq can be fixed at a value of 1.0, whereas λ can be fixed at a value of 1/2. We
use these specific values below.

With Gaussian distributions in the BB model, in the low-|t| approximation, σtot is
related to the square of the quark radius Rq,

σtot = 2Imt(s, t = 0) = 18πR2
q, (45)

whereas the ratio of the real to the imaginary part of the forward scattering amplitude is
related to the α parameter of the ReBB model,

ρ0 =
Ret(s, t = 0)
Imt(s, t = 0)

= 2α. (46)

Note that this result for ρ0 holds also in the Levy α-stable generalized case.
The low-|t| pp differential cross-section is in the form [8]:

dσ

dt
=

1
4π
|t(s, t)|2 = ae−b1t+b2t2

(47)

where:
a =

dσ

dt

∣∣∣
t=0

(48)

is the optical point,

b1 =

(
d
dt

ln
dσ

dt

)∣∣∣∣∣
t=0

(49)

is the slope parameter, and

b2 =
1
2

(
d

dt2 ln
dσ

dt

)∣∣∣∣∣
t=0

(50)

is the curvature parameter. These measurable quantities can be expressed in terms of the
ReBB model parameters:

a =
81
4

πRq4
(

1 + 4α2
)

, (51)

b1 =
2
9

R2
qd +

2
3

R2
d +

1
3

R2
q, (52)

and
b2 =

1
324

(
R2

qd − 3R2
d + 3R2

q

)2
. (53)

Now, we turn to the LBB model. Using the Levy α-stable generalized forms of the
leading order terms in σ̃in(s, b), i.e., Equations (36)–(38), the total cross-section is:

σtot = 9π
(
2RαL

q
)2/αL . (54)
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Furthermore, we consider now that the differential cross-section has the form as
written in Equation (44). Now, the optical point is:

a =
81
16

π(2RqαL)4/αL
(

1 + 4α2
)

, (55)

whereas the slope parameter is:

b =
1
36

(
4
3

)2/αL(
(2 + 2αL)RαL

qd + 3αL
(
2RαL

d + RαL
q
))2/αL

. (56)

One can easily check that for αL = 2, Equation (54) reduces to Equation (45),
Equation (55) to Equation (51), and Equation (56) to Equation (52). Since the function
in Equation (44) is not an analytic function of t at t = 0, Equation (56) was obtained by a
Taylor expansion in tαL/2 around zero and by keeping only the leading order term.

As discussed in Section 3, the Levy scale parameter r in our simple Lévy α-stable
model is related to the slope parameter. The relation can be rewritten as r =

√
b/21/αL .

Then, this r parameter can be expressed in terms of the LBB model parameters:

r =
1
6

(
2
3

)1/αL(
(2 + 2αL)RαL

qd + 3αL
(
2RαL

d + RαL
q
))1/αL

. (57)

Thus, we have shown that the parameters of our simple Lévy α-stable model, namely,
a and b (or equivalently, r), can be approximately expressed in terms of those of the
LBB model.

In Ref. [20], the three-dimensional radius of the proton is defined and its relation to
the slope parameter is derived. In our work, we related the Levy scale parameter r in our
simple Lévy α-stable model to the elastic slope parameter and expressed it in terms of the
radii of the constituents of the proton (Rq and Rd) and their typical separation (Rqd).

Finally, we note that there are five measurable parameters at the forward region: the
total cross-section, the ratio of the real to the imaginary part of the forward scattering
amplitude, the optical point, the slope parameter, and the curvature parameter. The ReBB
model has four free parameters, whereas the LBB model has five. This naturally suggests
that the LBB can give a better description to the data than the ReBB model.

5. Summary

The ReBB model turned out to be an efficient tool in describing pp and pp̄ differential
cross-section data, but in a limited

√
s and −t range. The validity range of the ReBB

model in
√

s does not include 13 TeV, possibly due to the significant hollowness effect
observed at that energy. The validity range of the ReBB model in−t includes the minimum–
maximum structure of the differential cross-section, but does not include the significant
non-exponential behavior at low −t values. To overcome these shortcomings of the ReBB
model, in this paper, we introduce the Lévy α-stable generalized Real Extended Bialas–
Bzdak (LBB) model. The fitting of the parameters of the LBB model to the experimental
data, however, requires the solution of difficult and complex technical (mathematical and
computational) problems. However, in the low four-momentum transfer region, based
on our novel approximations and the idea of the Levy-α-stable-shaped inelastic scattering
probability suggested by the LBB model, we deduced and fitted a highly simplified Levy
α-stable model of the pp differential cross section to the measured data at

√
s = 8 TeV. The

results show that our simple model represents the low-|t| experimental data in a statistically
acceptable manner. This is a promising prospect for the future utility of the Lévy α-stable
generalized Real Extended Bialas–Bzdak (LBB) model.

We have shown also that the parameters of our simple Lévy α-stable model, namely,
a and b (or equivalently, r), can be approximately expressed in terms of those of the
LBB model, which is based on R. J. Glauber’s multiple diffractive scattering theory. We
emphasize that there are five measurable parameters at the forward region, whereas the

11
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ReBB model has only four free parameters. Since the LBB model has five free parameters, it
is natural to expect that it can give a better description to the data than the ReBB model.

In the next steps of our research, we are planning to extend the fits with our simple
model for all the energies where low-|t| experimental data exist, and after solving the
technical issues, to fit the full LBB model to all the existing experimental pp and pp̄
differential cross-section data.
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Abstract: In the study of femtoscopic correlations in high-energy physics, besides Bose–Einstein
correlations, one has to take final-state interactions into account. Amongst them, Coulomb interactions
play a prominent role in the case of charged particles. Recent measurements have shown that in
heavy-ion collisions, Bose–Einstein correlations can be best described by Lévy-type sources instead
of the more common Gaussian assumption. Furthermore, three-dimensional measurements have
indicated that, depending on the choice of frame, a deviation from spherical symmetry observed
under the assumption of Gaussian source functions persists in the case of Lévy-type sources. To
clarify such three-dimensional Lévy-type correlation measurements, it is thus important to study the
effect of Coulomb interactions in the case of non-spherical Lévy sources. We calculated the Coulomb
correction factor numerically in the case of such a source function for assorted kinematic domains and
parameter values using the Metropolis–Hastings algorithm and compared our results with previous
methods to treat Coulomb interactions in the presence of Lévy sources.

Keywords: femtoscopy; Bose–Einstein correlations; Lévy distribution; anomalous diffusion;
heavy-ion collisions; high-energy physics

1. Introduction

The investigation of Bose–Einstein or HBT correlations offers a way to gain information
about the space-time dynamics of heavy-ion collisions on the femtometer scale. Such
information can lead to a better understanding of the space-time geometry of the collision
and particle production mechanisms and could even indicate critical phenomena [1–4].

For the study of Bose–Einstein correlation functions, one usually makes an assumption
for the source function. There is now a large amount of evidence showing that in heavy-ion
collisions, there is indeed a significant deviation from Gaussian shape, such as source
imaging results showing a long-range, power-law-type component [5–7]. It turns out that a
suitable choice is a Lévy-type source function [4,8,9].

In one-dimensional correlation measurements, the correlation function is measured
as a function of only one relative momentum variable, the magnitude of the momentum
difference. This type of measurement assumes the spherical symmetry of the spatial source
(and thus the momentum space correlation) and is more suitable for situations wherein
a lack of experimental statistics prevents the detailed mapping of the momentum space.
Three-dimensional measurements, on the other hand, can yield further information about
the space-time geometry of the source, so whenever experimental statistics make it possible,
it is desirable to perform such measurements. Building on the substantial progress that
three-dimensional Gaussian measurements have made in the understanding of the space-
time structure of particle production in heavy-ion collisions, it is also of interest to perform
Lévy-type measurements in a three-dimensional setting. The first such measurement has
already been reported [10].

In the present paper, we aimed at developing a methodology for such a measurement.
Coulomb corrections are an essential ingredient of all HBT correlation measurements
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that use identical charged particles, as most do: the final-state Coulomb repulsion of the
outgoing particles modifies the shape of the observed correlation function in a complicated
manner, and in experimental analyses, one usually applies a correction factor, the Coulomb
correction, to account for this effect [11,12]. At present, the Coulomb correction for Lévy
distributions is available only in the spherically symmetric case [13]. Our goal was two-
fold: first, we investigated the Coulomb correction for three-dimensional Lévy sources
and determined a sound method for its use in experimental work. Second, in doing
so we encountered the question of the proper choice of coordinate frame, namely the
longitudinally co-moving system (LCMS) and pair center of mass system (PCMS) of the
particle pair. We thus investigated the implications of using these coordinate frames for the
measurements and calculations.

1.1. Two-Particle Correlation Functions

The n-particle correlation functions are defined as

Cn =
Nn(k1, · · · kn)

∏n
i=1 N1(ki)

, (1)

where Nn is the n-particle invariant momentum distribution. In a statistical picture, one
introduces the source function S(x, k) that characterizes the particle production at a given
space-time point x and momentum k, and writes up the Nn(k1, . . . , kn) distribution using
this function and the n-particle wave function ψn(x1, · · · xn, k1, · · · kn) as

Nn(k1, · · · kn) =
∫
|ψn(x1, · · · xn, k1, · · · kn)|2

n

∏
i=1

S(xi, ki)dxi. (2)

In particular, for single-particle distributions, we have |ψ1|2 = 1. Thus,

N1(k) =
∫

dx S(x, k), (3)

and so one obtains the two-particle correlation function as

C2(k1, k2) =

∫
dx1dx2 S(x1, k1)S(x2, k2)|ψ2(x1, k1, x2, k2)|2∫

dx1 S(x1, k1)
∫

dx2 S(x2, k2)
. (4)

We introduced the average and relative space-time and momentum variables as

q ≡ k1 − k2, K ≡ k1 + k2

2
, ρ ≡ x1 − x2, R =

x1 + x2

2
. (5)

Although the two-particle wave function appearing in the above formula itself is a function
of all relevant variables, its modulus square depends only on ρ and q, as shown below. We
assumed this in advance and used a notation that reflected this by suppressing the K and R
variables in the notation of |ψ2|2.

The overall normalization of the S(x, k) source function cancels from the C2 correlation
function, so from now on we treat it as unity, i.e., we write

C2(q, K) =
∫
|ψ2(q, ρ)|2S(R− 1

2 ρ, K− 1
2 q)S(R + 1

2 ρ, K + 1
2 q)dρ dR. (6)

A usual approximation is that one neglects the ± 1
2 k in the arguments of the source

functions; in other words, one approximates the k1 and k2 momenta in the source functions
as k1 ≈ k2 ≈ K. In doing so, we noted that it was useful to introduce the relative coordinate
distribution, also called pair distribution, D(ρ, K), which is the auto-convolution of the
source function in the first variable:

D(ρ, K) =
∫

dR S
(

R + 1
2 ρ, K

)
S
(

R− 1
2 ρ, K

)
, (7)
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with which the two-particle correlation function could then be expressed as

C2(q, K) =
∫
|ψ2(q, ρ)|2D(ρ, K)dρ. (8)

1.2. Lévy Sources

For the source function, we assumed a symmetric Lévy distribution [14]:

S(r, K) = L(4D)(rµ, α(K), R2
σν(K)) =

∫ d4q
(2π)4 eiqµrµ

e−
1
2 |qσ R2

σνqν |α/2
, (9)

where α is the Lévy exponent, and R2
σν is a two-index symmetric tensor containing the

squares of the Lévy scale parameters. The momentum dependence of the source was as-
sumed to manifest itself through the momentum dependence of these parameters. For such
a Lévy-type source, the relative coordinate distribution D(r, K) is itself a Lévy distribution
with the same α but with scale parameters modified as R2 → 22/αR2.

By choosing a reference frame and making some assumptions, we constrained the
form of the R2

σν matrix. In the case of Bose–Einstein correlation measurements in high-
energy heavy-ion collisions, one sets the laboratory frame as the center-of-mass frame of
the colliding nuclei. Most two-particle Bose–Einstein measurements are carried out with
respect to the so-called longitudinally co-moving system (LCMS) (see, e.g., Refs. [3,4]),
which is defined as the frame that is connected to the laboratory frame by a Lorentz boost
along the collision axis (z axis), with the criterion that the longitudinal component of the
average momentum of the particle pair Kz vanishes in this frame.

We made the assumption that our source could be described by a spatially three-
dimensional symmetric Lévy shape with only diagonal terms in the scale parameter matrix
R2

σν, and that the freeze-out was simultaneous in the LCMS frame. We saw that the
momentum variable of the source function translated essentially as the average momentum
of the particle pair (after the k1 ≈ k2 ≈ K approximation), so for S(x, K), we determined
the mean LCMS frame as the frame wherein its K variable has no Kz component. Therefore,
the R2

σν tensor has the following form:

R2
σν =




0 0 0 0
0 R2

out 0 0
0 0 R2

side 0
0 0 0 R2

long


, (10)

where out, side, and long indicate that we used Bertsch–Pratt coordinates [15,16]. We could
then simplify the four-dimensional Lévy distribution as a product of a Dirac delta function
and a three-dimensional symmetric Lévy distribution:

L(4D) = δ(tL)L(3D)(~rL, α, Rout, Rside, Rlong), (11)

L(3D)(~rL, α, Rout, Rside, Rlong) =
∫ d3q

(2π)3 e−i~q~rL
e−

1
2 |q2

outR
2
out+q2

sideR2
side+q2

longR2
long|α/2

, (12)

where the L superscript indicates that these coordinates are in the LCMS. As noted above,
for such a source function, the pair distribution is a Lévy distribution with modified
scale parameters:

D(~rL, K) = δ(tL)L(3D)(~rL, α, 2
1
α Rout, 2

1
α Rside, 2

1
α Rlong), (13)

From this, in the case when final-state interactions were neglected and thus the final-
state wave function was a symmetrized plane wave, we could easily obtain the form of the
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two-particle correlation function in the LCMS with the above-mentioned source by means
of an (inverse) Fourier transform [14]:

C(0)
2 (~q, α, Rout, Rside, Rlong) = 1 + e−|q

2
outR

2
out+q2

sideR2
side+q2

longR2
long|α/2

. (14)

2. Methodology
2.1. Coulomb Interaction

To take into account the Coulomb interaction, one has to use the Coulomb interacting
two-particle wave function. This is the solution of the two-particle Schrödinger equation
with a repulsive Coulomb force and the appropriate boundary conditions at infinity.

Utilizing the Schrödinger equation implies a non-relativistic treatment, which is a
justifiable approximation in the PCMS (pair co-moving system) frame, i.e., the center-of-
mass frame of the two particles. The solution of the Schrödinger equation of interest to us
is written as [11,17]

ψ(~RP,~rP, ~KP,~kP) =
N√

2
e−i2~K~R[ei~k~rF(−iη, 1, i(kr−~k~r))+

+e−i~k~rF(−iη, 1, i(kr +~k~r))
]
,

(15)

where a symmetrization has been performed, as required for pairs of identical bosons. In
this expression, F(a, b, z) is the confluent hypergeometric function,~k = ~q/2, k = |~k|, and

η =
mc2α

2h̄ck
, N = e−

πη
2 Γ(1 + iη), (16)

where α is the fine-structure constant; m is the particle mass (e.g., pion mass); and Γ(z) is
the gamma function.

To evaluate the two-particle correlation function, we needed the modulus square of
the wave function, with which the ~R and ~K dependence was lost (as mentioned earlier):

|ψ(~rP,~kP)|2 =
2πη

e2πη − 1
· 1

2
·
[
|F(−iη, 1, i(kr +~k~r))|2+

+e2i~k~rF(−iη, 1, i(kr−~k~r))F(iη, 1,−i(kr +~k~r))
]
+ (~r ↔ −~r).

. (17)

To arrive at the two-particle correlation function, one has to evaluate a d4r integral
over the whole space-time. This can be performed in any coordinate frame, but our ap-
proximations detailed above made strong arguments in favor of some preferred coordinate
systems. However, even with these in mind, we had several options to explore:

1. We could assume that the R2
σν matrix, and thus the whole source function, is the

same in the PCMS and the LCMS frames. This is essentially an approximation where
~K ≈ 0. However, this is a rather strong approximation, and one of the goals of
HBT measurements is indeed to explore the average momentum (or transverse mass)
dependence of the parameters that describe the source.

2. There are two objects, one in the PCMS (the wave function) and the other in the LCMS
(the source function). We could try to transform the wave function from the PCMS to
the LCMS and then use the simple form of the source function and obtain the result
in LCMS coordinates. However, the two-particle wave function of Equation (17) is
not a relativistic expression; thus, we refrained from trying to come up with the right
transformation of this object.

3. The third option was to evaluate the integral in the PCMS, as the two-particle Coulomb
wave function is only known in the PCMS. This meant that the Lévy source had to be
transformed from the LCMS to the PCMS.
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Below, we proceed with the third option listed above. We introduce some further notations:

the average transverse momentum in the LCMS KT , the transverse mass mT =
√

m2 + K2
T ,

and the βT = KT/mT factor. The Lorentz boost from the LCMS to the PCMS is then

Λν
µ =

1
m




mT −KT 0 0
−KT mT 0 0

0 0 m 0
0 0 0 m


. (18)

The Lévy distribution then transforms as a scalar from the LCMS to the PCMS, mean-
ing we had to evaluate Equation (11) at the coordinates r′ = Λ−1r, where the transformation
is the following:

(
tL

~rL

)
=

1
m




mTtP + KTrP
out

KTtP + mTrP
out

mrP
side

mrP
long


. (19)

The temporal integral could then be easily evaluated and, subsequently, knowing
the form of D(~r, K) from Equation (13) above, we were left with the following expression
(where 2~k = ~q):

C(C)
2 (~q) =

∫
d3r|ψ(~k,~r)|2L(3D)

(√
1−β2

Trout, rside, rlong, α, 2
1
α Rout, 2

1
α Rside, 2

1
α Rlong

)
, (20)

where we dropped the P superscripts for simplicity, but every momentum and spatial
coordinate is in the PCMS. Furthermore, we could utilize a simple scaling relation of the
three-dimensional Lévy distribution:

L(3D)

(√
1− β2

Trout, rside, rlong, α, 2
1
α Rout, 2

1
α Rside, 2

1
α Rlong

)
∼

∼ L(3D)

(
~r, α, 2

1
α Rout/

√
1− β2

T , 2
1
α Rside, 2

1
α Rlong

)
,

(21)

a relation that could be derived by scaling the ~q integration variable in the definition of
L(3D), Equation (11). In this equation, ∼ stands for proportionality, and constant factors in
S(x, k) cancel from the two-particle correlation function. Thus, the integral we intended to
calculate was

C(C)
2 (~q, α, R1, R2, R3) =

∫
d3r|ψ(~k,~r)|2L(3D)(~r, α, R1, R2, R3), (22)

where R1 = 2
1
α Rout/

√
1− β2

T , R2 = 2
1
α Rside, R3 = 2

1
α Rlong. This expression could be

evaluated numerically.

2.2. Numerical Simulations

For the evaluation of the integral, we utilized the Metropolis–Hastings algorithm. This
algorithm can be used to evaluate integrals of the form

I =
∫

Ω
dx f (x) · g(x), (23)

where f (x) can be thought of as a probability distribution, and g(x) is the function of
interest [18,19]. In our case, the three-dimensional symmetric Lévy distribution was the
probability distribution, and the function of interest was from Equation (17):

f (x)dx := L(3D)(~r, α, R1, R2, R3)d3r, (24)

g(x) := |ψ(~k,~r)|2. (25)
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We could utilize two transformations. First, with the reflection relations of the conflu-
ent hypergeometric functions, we used the second term in Equation (17):

e2i~k~rF(−iη, 1, i(kr−~k~r))F(iη, 1,−i(kr +~k~r)) =

= F(1 + iη, 1,−i(kr−~k~r))F(1− iη, 1,−i(kr +~k~r)).
(26)

Additionally, we could transform the 3D symmetric Lévy distribution:

L(3D)(~r, α, R1, R2, R3) =
1

R1R2R3
L(1D)(s(~r), α, 1), (27)

where

s(~r) =

√√√√ r2
out
R2

1
+

r2
side
R2

2
+

r2
long

R2
3

, (28)

and L(1D) is the spherically symmetric version of the three-dimensional Lévy distribution,
as a function of the radial variable. Its its expression is then

L(1D)(x, α, 1) =
1

2π2x

∫ ∞

0
dq q2 sin(qx)e−

1
2 qα

. (29)

We could thus perform the integral in Equation (22); this was carried out using
spherical coordinates on the domain Ω = [0, rmax]× [0, 2π]× [0, π], with an rmax chosen
so that the integral of the Lévy distribution (I =

∫
L) was a maximum of 1% less than 1

(I ≥ 0.99).

3. Results

First, we compared our three-dimensional calculations and other available, spherically
symmetric calculations for Lévy sources. Then, we investigated the implications of the fact
that most measurements are in the LCMS, and the source is assumed to be spherical there
for one-dimensional analyses, but the integral of Equation (22) is in the PCMS.

3.1. Three-Dimensional Calculations

Three-dimensional calculations are rather time-consuming, and their numerical preci-
sion could also be problematic for implementation when investigating experimental data.
Instead, we aimed to find an approximation that was precise and fast enough to be utilized
in actual experimental analyses. Our approach here was that we fixed a set of parameters
(α, R1, R2, R3) and evaluated the integral at 1003 points in momentum space. This gave
us a fine enough resolution in momentum space for comparison purposes. First, let us
compare the two-particle correlation functions in the PCMS. In Figure 1, we can see the
Bose–Einstein correlation functions with Coulomb interactions (full BEC) and without any
final-state interactions (free BEC) from our 3D calculation and from the 1D calculation with
quadratic and arithmetic average scale parameters and the angle averaged values of the
3D calculation. In the spherical case, on the left-hand plot, everything was as we would
expect; however, on the right-hand plot, when we had a non-spherical source for the 3D
calculation, we can see that there was a large difference between the correlation functions,
both in the Coulomb interacting and in the free case.

However, we were interested in the question of whether we could use the 1D cal-
culation for the purposes of Coulomb correction only, viz., the ratio of the full and free
BEC functions (K = C(C)

2 /C(0)
2 ). One can see the comparison of Coulomb corrections in

Figure 2 with two sets of non-spherical parameters. The full BEC functions are here the
Coulomb-corrected three-dimensional correlation functions (full BEC = K · C(0)

2,3D). The
one-dimensional Coulomb corrections were evaluated at |~q| in the PCMS, i.e., at qinv and at
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an average R for R1, R2 and R3. Although the correlation functions were quite different,
we can see that the Coulomb corrections were very much the same. Now, we would like to
point out the fact that one-dimensional and three-dimensional Coulomb corrections are
very similar; therefore, in an experimental analysis, it is sufficient to use a one-dimensional
Coulomb correction with the right parameter values. The error caused by the spherical
Coulomb correction could be estimated, but it was not in the scope of this paper to give a
quantitative limit for this uncertainty.

Figure 1. On the left-hand side, the two-particle correlation functions are shown in a spherical
case for the three-dimensional calculation in comparison with one-dimensional calculations in the
presence of Coulomb interactions in final-state interactions. On the right-hand side, a non-spherical
three-dimensional calculation is shown alongside one-dimensional calculations with quadratic and
arithmetic mean scale parameters.

Figure 2. The Coulomb corrections and the Coulomb-corrected three-dimensional two-particle
correlation function is shown in two non-spherical cases.

The application of the Coulomb correction in three-dimensional analyses is quite straight-
forward. If the measurement is in the LCMS and one has the momenta qL = qL

out, qL
side, qL

long
and the Lévy scale parameters Rout, Rside, Rlong for particles with an average transverse
momentum of KT , which gives βT , then one proceeds as follows. We used the assumption
that the Coulomb correction transformed as a scalar. We evaluated the Coulomb correc-
tion (which was calculated in the PCMS) at momenta qP = (

√
1− β2

TqL
out, qL

side, qL
long) and
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scale parameters R1 = Rout/
√

1− β2
T , R2 = Rside, and R3 = Rlong. Accordingly, we used

qinv =
√
(1− β2

T)q
L2
out + qL2

side + qL2
long and an average of R1, R2, and R3 when we used a 1D

Coulomb correction. For example, we could use the quadratic average:

RPCMS =

√
R2

out
1− β2

T
+ R2

side + R2
long. (30)

Therefore, the Coulomb correction that could be applied in a three-dimensional mea-
surement was the following:

K3D =
C(C)

2,1D(qinv, RPCMS, α)

1 + exp (−|qinvRPCMS|α)
, (31)

where C(C)
2,1D is the result from the integral of Equation (22) in a spherical case with a radius

of RPCMS according to Equation (30) and at momentum qinv, which can be calculated for
every point in a three-dimensional measurement in the LCMS.

3.2. Spherical (One-Dimensional) HBT Measurements

Below, we investigate the implications of our calculations for one-dimensional HBT
measurements. When we performed a one-dimensional measurement in the LCMS, we
assumed that the source was spherical in this frame, i.e., R = Rout = Rside = Rlong, and

we had a single momentum variable qLCMS =
√

qL2
out + qL2

side + qL2
long. But the Coulomb

correction was calculated in the PCMS with R1, R2, R3. This meant that a spherical source

in the LCMS would imply a non-spherical (R1 = R/
√

1− β2
T , R2 = R3 = R) source in the

PCMS and the need for a three-dimensional Coulomb correction. However, we saw above
that the non-spherical Coulomb correction could be well approximated with a spherical
Coulomb correction if we used the right average R, viz., instead of RLCMS = R, we had
to use

RPCMS =

√
1− 2

3 β2
T

1− β2
T

R, (32)

if we used a quadratic average R. Another problem stemmed from the fact that we could
not reconstruct qinv from qLCMS. An obvious solution would be to measure all momentum
variables instead of just the length of the momentum difference, but then the advantage
of the 1D measurement over the 3D measurement (the possibility of a measurement with
higher statistical significance) would be lost. We could try to overcome this obstacle in some
other ways. One solid approximation could be the following: measure an A(qLCMS, qinv)
distribution of particle pairs, and then use this to obtain a weighted Coulomb-correction,
as shown below.

Kweighted(qLCMS) =

∫
A(qLCMS, qinv)K(qinv)dqinv∫

A(qLCMS, qinv)dqinv
. (33)

In Figure 3, we see the Coulomb correction and the corrected three-dimensional two-
particle correlation functions for KT = 0.8 GeV/c in the LCMS. The parameters were chosen
so that in the LCMS we had an approximately spherically symmetric source (Rout = 2.06 fm,
Rside = Rlong = 2 fm). We can see that there was a clear difference between the two one-
dimensional corrections, with one having an LCMS average R and the other having an
average in accordance with Equation (32). In the low-q region, there was some difference
between the angle-averaged, one-dimensional, and three-dimensional Coulomb corrections.
Also, the numerical precision of the three-dimensional calculation made it challenging to
decide between the options. However, we can see that from q > 20 MeV/c, the angle-
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averaged and the three-dimensional Coulomb correction were in good agreement with
the one-dimensional Coulomb correction with the average R of Equation (32), and there
was a consistent difference compared to the other one. The fact that the angle-averaged
case was most similar to the one-dimensional case with the transformed average R of
Equation (32) indicated that using the latter for one-dimensional measurements was best.
On the left-hand side, the three-dimensional correlation function was taken at a diagonal
line in the LCMS (qout = qside = qlong), and on the right-hand side along the out axis. We
did not rely on a weighted average for the one-dimensional Coulomb correction, as we
could calculate qinv.

Figure 3. The Coulomb corrections and the Coulomb-corrected three-dimensional two-particle
correlation function are shown in the LCMS when the source was spherical in the LCMS but not for
the calculation. On the left-hand side, we took the three-dimensional Coulomb correction along a
diagonal line, and on the right-hand side along the qout axis.

Let us list the possible approaches to deal with Coulomb interactions in one-dimensional
measurements carried out in an LCMS. We only list the options that make use of a one-
dimensional calculation for the integral in Equation (22); in these cases, the factor of Ref. [13]
can be used. A simpler solution would be to use the Gamow factor, where the source size is
neglected. The most sophisticated approach would be to use the angle-averaged Coulomb
correction from a three-dimensional calculation, but this would be an overly complex solu-
tion. The possibilities for making use of a one-dimensional Coulomb integral calculation
are the following, ordered by increasing sophistication:

1. Simply use C(C)
2 (qLCMS, RLCMS), which means that one formally substitutes qLCMS =

qinv and RPCMS = RLCMS.
2. Take into account the fact that qinv 6= qLCMS but neglect the same for the scale pa-

rameters, and use the weighting method of Equation (33); however, implement this
not for the Coulomb correction, but for the correlation function instead. Thus, use
C2,weighted(qLCMS, RLCMS) for the fitting:

C2,weighted(qLCMS, RLCMS) =

∫
A(qLCMS, qinv)C2(qinv, RLCMS)dqinv∫

A(qLCMS, qinv)dqinv
. (34)

3. Following the same approach as above, use RLCMS for the Coulomb correction and
use a weighted average, though for the Coulomb correction this time. This approach
is more sensible if one considers Figure 1, where we saw that the correlation functions
could look rather different even if in Figure 2 the Coulomb corrections looked very
much the same. Now, one uses Kweighted(qLCMS, RLCMS) · C(0)

2 (qLCMS, RLCMS) for
fitting.

22



Universe 2023, 9, 328

4. One improvement to the methods mentioned above would be to consider the trans-
formation of scale parameters; thus, use the average as in Equation (32). The simpler
version is the same as no. 3 above, i.e., weighing the correlation function and using
C2,weighted(qLCMS, RPCMS) for fitting. Here, however, one loses the explicit form of

C(0)
2 in the LCMS, which is known.

5. The most sophisticated option would be to use RPCMS only for the Coulomb correc-
tion and use the weighting of Equation (33). The function used for fitting is now
Kweighted(qLCMS, RPCMS) · C(0)

2 (qLCMS, RLCMS).
6. Finally, an approach that is easier to implement than the previous methods making

use of a distribution A(qLCMS, qinv) is to make an approximation for the qLCMS-qinv
relationship that is appropriate for the Coulomb correction. One could be motivated
by the left-hand plot of Figure 3, as the one-dimensional Coulomb correction with
RPCMS and the angle-averaged three-dimensional calculation were in relatively good

agreement. The relationship qinv =
√

1− β2
T/3qLCMS could be used, as it would hold

for the diagonal line qout = qside = qlong. Therefore, the function that could be used

for fitting would be K(
√

1− β2
T/3qLCMS, RPCMS) · C(0)

2 (qLCMS, RLCMS).

Additionally, either the distribution of particle pairs from same events (usually de-
noted with A) or some background distribution that has no quantum-statistical effects (B)
could be used for weighting C2 and K [4]. Here, one could argue in favor of the latter; how-
ever, it is expected to make a small difference. The soundest approach for one-dimensional
analyses is no. 5 in the above list.

4. Conclusions

We investigated Coulomb interactions for HBT measurements in the presence of
Lévy sources. Our results can be applied to three-dimensional and one-dimensional
measurements alike. The results also hold for Gaussian or Cauchy sources, because these
are special cases of the Lévy source (α = 2 for Gaussian and α = 1 for Cauchy). We
learned that a one-dimensional Coulomb correction could be reasonably effectively applied
for three-dimensional measurements if we used the appropriately defined average of the
three directional scale parameters (as in Equation (30) above) and implemented the qinv
invariant momentum difference as the momentum variable for the Coulomb correction.
For one-dimensional measurements in the LCMS frame, we saw that one should use the
average scale parameter as defined in Equation (32) and evaluate the Coulomb correction
at qinv as we calculated this in the PCMS frame, which in practice could be estimated
with a weighted Coulomb correction according to option no. 5 in the previous section.
The above-detailed treatment of Coulomb interactions in heavy-ion collisions could be
readily applied to experimental measurements. To our knowledge this indeed has now
been achieved in several analyses from SPS through RHIC to LHC, based on the technique
outlined in this paper [8,9,20–24].
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14. Csörgő, T.; Hegyi, S.; Zajc, W.A. Bose-Einstein correlations for Levy stable source distributions. Eur. Phys. J. 2004, C36, 67–78.

[CrossRef]
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Abstract: Measuring quantum-statistical, femtoscopic (including final state interactions) momen-
tum correlations with final state interactions in high-energy nucleus-nucleus collisions reveal the
space-time structure of the particle-emitting source created. In this paper, we report NA61/SHINE
measurements of femtoscopic correlations of identified pion pairs and describe said correlations based
on symmetric Lévy-type sources in Ar+Sc collisions at 150A GeV/c. We investigate the transverse
mass dependence of the Lévy-type source parameters and discuss their possible interpretations.

Keywords: quark-gluon plasma; femtoscopy; critical endpoint; small systems

1. Introduction

The NA61/SHINE is a fixed target experiment using a large acceptance hadron spec-
trometer located in the North Area H2 beam line of the CERN Super Proton Synchrotron
accelerator [1]. Its main goals include the investigation and mapping of the phase diagram
of strongly interacting matter, as well as measuring cross sections of processes relevant for
cosmic rays and neutrino physics. In this paper, we are focusing on mapping the QCD
phase diagram. In order to accomplish this, NA61/SHINE performs measurements of
different collision systems at multiple energies. The experiment provides excellent tracking
down to pT = 0 GeV/c. This performance is achieved by using four large Time Projection
Chambers (TPC’s), which cover the full forward hemisphere. The experiment also features
a modular calorimeter, called the Projectile Spectator Detector. It is located on the beam
axis, after the TPC’s, and measures the forward energy which determines the collision
centrality of the events. A setup of the NA61/SHINE detector system is shown in Figure 1.

The search for the critical endpoint (CEP) and investigation of the QCD phase di-
agram requires analysis at different temperatures and baryon-chemical potentials. To
study, we need to map the phase diagram using different system sizes at various energies.
NA61/SHINE investigations cover several beam momenta (13A, 20A, 30A, 40A, 75A and
150A GeV/c) and collision systems (p+p,p+Pb,Be+Be,Ar+Sc,Xe+La,Pb+Pb). In this paper,
we describe the femtoscopic correlations of identical pions emitted from central Ar+Sc
collisions at beam momentum of 150A GeV/c. This field is often called femtoscopy as it
reveals the femtometer scale structure of particle production.

Universe 2023, 9, 298. https://doi.org/10.3390/universe9070298 https://www.mdpi.com/journal/universe25
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Figure 1. The setup of the NA61/SHINE detector system during the run of Ar+Sc.

2. Femtoscopy with Lévy Shaped Sources

The method of quantum-statistical (Bose-Einstein) correlations is based on the work of
R. Hanbury Brown and R. Q. Twiss (HBT) [2], who applied it first in astrophysical intensity
correlation measurements. The method was developed to determine the apparent angular
diameter of stellar objects. Shortly afterwards, a similar quantum-statistical method was
applied in momentum correlation measurements for proton-antiproton collisions [3,4] by
Goldhaber and collaborators. Their objective was to understand pion-pion correlations and
gain information on the radius, R, of the interaction volume in high-energy particle colli-
sions. The key relationship for measuring Bose-Einstein correlations shows that the spatial
momentum correlations, C(q), are related to the properties of the particle emitting source,
S(x), that describes the probability density of particle creation for a relative coordinate x as:

C2(q) ∼= 1 + |S̃(q)|2, (1)

where S̃(q) is the Fourier transform of S(x), and q is the relative momentum of the particle
pair (with the dependence on the average momentum, K, of the pair suppressed and
described in more detail in [5]). The usual assumption for the shape of the source based on
the central limit theorem, is a Gaussian. However, such Gaussian shaped sources lead to
Gaussian correlation functions. A more general assumption is the Lévy distribution [6,7].
It exhibits a power-law tail and includes a Gaussian limit, as well. Correlation functions
based on this approach have been shown to describe data from different experiments, such
as LEP [8], RHIC [9], and LHC [10,11] quite well. Several phenomena could explain the
appearance of Lévy shaped sources. The non-Gaussianity of the source could be attributed
to critical fluctuations and the emergence of spatial correlations on a large scale, which may
indicate the existence of similar sources with power-law tails [12]. Further reasons include
the fractal structure of QCD jets [13].

In this paper, the measured femtoscopic correlation (including final state interaction)
with spherically symmetric Lévy distributions is defined as:

L(α, R,~r) =
1

(2π)3

∫
d3~ζei~ζ~re−

1
2 |~ζR|α , (2)

where R is the Lévy scale parameter and α defined as the Lévy stability index. In addition,
~ζ is the three-dimensional integration variable with dimensions of MeV/c and~r is the
vector of spatial coordinates. There are two special cases where the distribution can be
expressed analytically. One such case is, the already mentioned, Gaussian distribution for
α = 2. Besides this, the α = 1 case leads to a Cauchy distribution. An important difference
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between Lévy distributions and Gaussians is the presence of a power-law tail ∼ r−(d−2+α)

in case of α < 2, where d represents the number of spatial dimensions. With the assumption
of Lévy sources, the femtoscopic correlation functions can be expressed in the following
way:

C2(q) = 1 + λ · e−(qR)α
. (3)

C2(q) is a stretched type of exponential, where the λ intercept parameter is defined as:

C2(q→ 0) = 1 + λ. (4)

At vanishing relative momentum, the correlation function has a value of 1+ λ. This value is
not accessible in the measurements and extrapolation from the region, when two tracks are
experimentally resolved, is needed. However, it is commonly observed that the intercept
parameter λ is less than 1. The core-halo model, explained in Refs. [14,15], can provide
some insights into this parameter.

The model assumes that the source S is made up of two parts, the core and the halo
(Score and Shalo), respectively. The core contains pions created directly from hadronic freeze-
out or from extremely short lived (strongly decaying) resonances. The halo consists of
pions created from longer-lived resonances and the general background. It may extend to
thousands of femtometers, while core part has a size of around a few femtometers. In this
picture, the λ parameter turns out to be connected to the ratio of the core and the halo as:

λ =

(
Ncore

Ncore + Nhalo

)2
. (5)

Then, one can modify the correlation function to take the effect of the halo into account, by
utilizing the Bowler-Sinyukov method [16,17] as:

C2(q) = 1− λ + λ · (1 + e−|qR|α). (6)

The halo part contributes at very small values of relative momenta, q. Therefore, it does not
affect the source radii of the core part [18].

It is well known that critical points are characterized by critical exponents. One, in
particular, is related to spatial correlations by the exponent denoted as η. The appearance
of the parameter can be explained by the second-order phase transition at the CEP, where
fluctuations will appear at all scales causing the spatial correlation function to exhibit a
power-law tail with an exponent of −(d− 2 + η), with d denoting the dimension. The Lévy
exponent, α, is the exponent in the case of, previously defined, Lévy distributed sources
and will also exhibit a power-law tail, with an exponent of −d + 2− α [19]. Hence, α was
suggested to be directly related to or being explicitly equal to, the critical exponent, η [12],
in absence of other phenomena affecting the source shape. This is the basis of the idea
connecting α and η. However, the Lévy-shape of the source can be attributed to several
different factors besides critical phenomena, including QCD jets, anomalous diffusion,
critical phenomena, and others [6,7,13,20,21]. Hence, while a non-monotonic behavior of
α is expected near the critical point, a detailed understanding of the collision energy and
system size dependence of α is needed to draw conclusions about the critical point.

It has been suggested that the universality class of QCD is the same as that of the 3D
Ising model [22,23]. The value of η in the 3D Ising model is 0.03631 ± 0.00003 [24]. An
alternative solution is to use the universality class of the 3D Ising model with a random
external field, which yields an η value of 0.50 ± 0.05 [25]. The statements mentioned
suggest that α would decrease to 0.50, or below, at the vicinity of the CEP. To confirm this,
measurements of α are needed in different collision systems at various energies.

In this analysis, we are dealing with like-charged particles that are influenced by
Coulomb repulsion. The final state Coulomb effect has been neglected in the previously
defined correlation function. Thus, the correlation function in Equation (6) that lacks this
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effect will be denoted as C0
2(q) from now on. The correction necessitated by this effect can

be done by simply taking the ratio of CCoul
2 and C0

2(q):

KCoulomb(q) =
C Coul

2 (q)
C0

2(q)
, (7)

where CCoul
2 (q) is the interference of solutions of the two-particle Schrödinger equation;

with a Coulomb-potential [26,27]. The numerator in Equation (7) cannot be calculated
analytically and requires a large numerical effort to estimate.

An approximate formula for CCoul
2 (q) was obtained in Ref. [10] for the case of Cauchy-

shaped sources. However, a more precise treatment is required due to our assumption of
Lévy-shaped sources. We are utilizing a new method in our analysis for estimating the
effect of Coulomb repulsion. The treatment includes the numerical calculation presented
in Refs. [27,28], the parametrization of its results, and, finally; the parametrization of the
dependence of the physical parameters R, λ, and α. Thus Equation (6) is modified as:

C2(q) = N ·
(

1− λ + λ · (1 + e−|qR|α) · KCoulomb(q)
)

, (8)

where N is introduced as normalization parameter and KCoulomb(q) denotes the Coulomb
correction.

It is important to highlight that the Coulomb correction is calculated in the pair-
center-of-mass (PCMS) system, while the measurement is often done in the longitudinally
co-moving system (LCMS). The assumption of Coulomb correction in the one-dimensional
HBT in LCMS picture is that the shape of the source is spherical, i.e. Rout = Rside = Rlong =
R ≡ RLCMS. The shape of the source, however, is spherical in the LCMS and not in the
PCMS. Therefore, an approximate one-dimensional PCMS size parameter is needed. A
study was done, where an average PCMS radius of

RPCMS =

√
1− 2

3 β2
T

1− β2
T
· R (9)

was calculated [29], with βT = KT
mT

.

3. Measurement Details

For the measurements this paper is based on, we analyzed Ar+Sc collisions at 150A
GeV/c beam momentum in the 0–10% most central events. The available data set contains
around 2.7 million events, which was reduced to around 700,000 events in the analysis. The
following paragraph describes the various event, track and pair selection performed on
the data. As mentioned, we have selected 0–10% of the most central events by measuring
the energy contained in the projectile remnants, with the Projectile Spectator Detector
(PSD). We have also selected events where no off-time beam particle was detected. These
are particles which come within the drift time of the chambers which are not emptied
out. Furthermore, all the events chosen have between ±10 cm as that is the maximal
distance between the main vertex z position and the center of the scandium target. Particle
identification was handled by using dE/dx energy deposit in the TPC gas. The tracks were
extrapolated to the interaction plane and matched with the distance against the interaction
point. If the distance was ≤ 4 cm in the horizontal plane and ≤ 2 cm in the vertical plane,
the track was kept. Moreover, track splitting was handled by selecting the ratio of the
total number of reconstructed points on the track to the potential number of points to
be between 0.5 and 1.0. Finally, to counter track merging, we have used a selection on
the momentum space distance between the two tracks. It uses non-standard momentum
coordinates, sx = px/pxz, sy = py/pxz and ρ = 1/pxz.

We then analyzed the combination of negative pion pairs and positive pion pairs. It is
important to note that this analysis was done with a one-dimensional relative momentum
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variable q, calculated in LCMS. These pairs were sorted into eight KT (average transverse
momentum of the pair) bins in the range of 0–450 MeV/c. In each momentum bin, the
relative momentum distribution of coincident pion pairs were obtained. Let us call this
the actual pair momentum difference distribution, A(q). A(q) contains quantum-statistical
correlations, as well as many other residual effects related to kinematics and acceptance.
The effects can be removed by constructing a combinatorial background pair distribution,
denoted as B(q), which is measured in the same KT or mT intervals as the A(q) distribution.
The method we use involves randomly selecting the same number of particles as the
multiplicity of the actual event. The selected particles are from other events of similar
parameters and each is selected from a different event. Let us call the pair momentum
difference distribution made from this method as, the background distribution, B(q). This,
by construction, enables us to have an uncorrelated pool of events. Then the correlation
function is calculated as

C2(q) =
A(q)
B(q)

·
∫ q2

q1
B(q)dq

∫ q2
q1

A(q)dq
, (10)

in a [q1, q2] range where quantum-statistical correlations are not expected. Upon adding
the contribution from the background, the previously defined Equation (8) is modified as
follows:

C(q) = N · (1 + ε · q) ·
(

1− λ + λ ·
(

1 + e−(qR)α
)
· KCoulomb(q)

)
, (11)

with N being a normalization parameter responsible for the proper normalization of
the A(q)/B(q) ratio, ε describing the linearity of background, and KCoulomb(q) being the
Coulomb correction. We then use this formula to our measured C2(q) as shown in Figure 2.
We then use this formula to our measured C2(q) as shown in Figure 2. To determine the
fitting range where the effects of detector resolution do not play a significant role, we have
used EPOS simulation [30] with GEANT3 for particle propagation [31]. Note that in the
low-q region, the fit does not describe the data. This can be explained, according to Monte
Carlo simulations of the detector response, by the limited resolution of pairs with small
relative momentum.

Figure 2. Example fit with Bose–Einstein correlation function at KT = 0.25–0.30 GeV/c for the sum(
π+ + π+

)
+
(
π− + π−

)
. Blue points with error bars represent the data, the green dash-dotted line
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shows the fitted function with Coulomb correction given by Equation (11) within the range of
0.0525 GeV/c to 0.2 GeV/c and red dashed line represent normalization to background 0.2 GeV/c to
0.4 GeV/c. In the low-q region, the black dotted line indicates the extrapolated function outside of
the fit range due to prominent detector resolution effects, mentioned in the text.

4. Results

The three physical parameters (α, R, and λ) were measured in eight bins of pair trans-
verse momentum, KT. The three mentioned parameters were obtained through fitting
the measured correlation functions with the formula shown in Equation (11). The results
were investigated regarding their transverse momentum dependence. In the following,
we report on the transverse mass dependence of α, λ, and R; where transverse mass is

expressed as mT =
√

m2
πc4 + K2

Tc2, with mπ being the pion mass.
As explained above, the shape of the source is often assumed to be Gaussian. The

Lévy stability exponent, α, can be used to extract the shape of the tail of the source. Our
results, shown in Figure 3, yield values for α between 1.5 and 2.0, which imply a source
closer to the Gaussian shape than the one in Be+Be collisions [5], but are still significantly
lower than the α = 2 (Gaussian) case. The observed α parameter is also significantly higher
than the conjectured value at the critical point (α = 0.5). Altogether, these results suggest
that measured correlation functions align with the assumption of a Lévy source, indicating
that it is more advantageous over the Gaussian assumption. Further studies are ongoing
at NA61/SHINE, using different collision energies and system sizes, in order to map the
evolution of the Lévy stability index, α, as a function of collision energy and system size.

As a second parameter, let us look at the Lévy scale parameter, R, visible in Figure 4.
It determines the length of homogeneity of the pion emitting source. The parameter R
depends on the transverse-mass as 1/

√
mT . This can be derived using simple, hydrody-

namical predictions for Gaussian sources [15,32]:

1
R2

HBT
=

1
R2

geom
+ u2

T ·
mT
T0

, (12)

where u2
T is the average, transverse expansion and T0 is the hadronisation temperature. In

our case, rather surprisingly, despite the non-Gaussian nature of the source, this formula
works in describing the measured femtoscopic radii. More precisely, as mentioned above,
observing an R ∼ 1/

√
mT is particularly interesting as this type of mT dependence should

rise in case of Gaussian sources (α = 2) [33]. It is not entirely clear why this happens, the
indicated mT dependence could form in the QGP or at a later stage. This phenomenon was
also observed at RHIC [9] and in simulations at RHIC and LHC energies [20,21].

The final parameter being investigated is the intercept (also known as the correlation
strength) parameter, λ, defined in Equation (5). The dependence of λ on mT is shown in
Figure 5. One may observe a slight dependence on mT , but this can still can be considered
constant in the investigated range. When compared to measurements from RHIC Au+Au
collisions [9,34,35] and from SPS Pb+Pb interactions [36,37], an interesting phenomenon
is observed. At the energies of SPS, there is no visible “hole” at lower mT values, but at
RHIC energies, the “hole” appears at mT values of around a few hundred MeV. This “hole”
was interpreted in Refs. [9,38] to be a sign of in-medium mass modification. The results
presented in Figure 5, at the given statistical precision, do not indicate the presence of such
a low-mT hole. This trend might imply that this phenomenon can be turned off at SPS.
Furthermore, it can be highlighted that the λ values we obtained are significantly below
unity. A possible answer can be given by the halo part of the core-halo model. It may
indicate that a significant fraction of pions are the decay products of long-lived resonances.
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Figure 3. The Lévy stability index, α, for 0–10% central Ar+Sc at 150A GeV/c, as a function of mT .
Special cases corresponding to a Gaussian (α = 2) or a Cauchy (α = 1) source are shown, as well
as α = 0.5, the conjectured value corresponding to the critical endpoint. Boxes denote systematic
uncertainties, bars represent statistical uncertainties.

Figure 4. The radial scale parameter, R, for 0–10% central Ar+Sc at 150A GeV/c, as a function of mT .
Boxes denote systematic uncertainties, bars represent statistical uncertainties.
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Figure 5. The correlation strength parameter, λ, for 0–10% central Ar+Sc at 150A GeV/c, as a function
of mT . Boxes denote systematic uncertainties, bars represent statistical uncertainties.

5. Conclusions

In the report above, we discussed the NA61/SHINE measurement of one-dimensional,
identified, two-pion, femtoscopic correlation functions; in the 0–10% most central Ar+Sc
collisions at 150A GeV/c. We discussed the transverse mass dependencies of the Lévy
source parameters. Results on the Lévy scale parameter, α, showed a significant deviation
from Gaussian sources and are not in the vicinity of the conjectured value at the critical
point. The Lévy scale parameter, R, shows a visible decrease with mT . The correlation
strength parameter, λ, does not show any significant mT dependence, but, maps different
patterns at RHIC and similar trends at SPS energies. With these results at hand, we plan
to measure Bose-Einstein correlations in larger systems, as well as at smaller energies, to
continue mapping the phase diagram of the strongly interacting matter.
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HBT Hanbury Brown and Twiss
BE Bose-Einstein
CEP critical endpoint
NA61/SHINE North Area 61 / SPS Heavy Ion and Neutrino Experiment
LCMS Longitudinally Co-Moving System
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Abstract: The measurement of two-particle Bose–Einstein momentum correlation functions are
presented using

√
sNN = 5.02 TeV PbPb collision data, recorded by the CMS experiment in 2018.

The measured correlation functions are discussed in terms of Lévy-type source distributions. The
Lévy source parameters are extracted as functions of transverse mass and collision centrality. These
source parameters include the correlation strength λ, the Lévy stability index α, and the Lévy scale
parameter R. The source shape, characterized by α, is found to be neither Gaussian nor Cauchy. A
hydrodynamic-like scaling of R is also observed.

Keywords: heavy ions; quark–gluon plasma; femtoscopy; Lévy HBT

1. Introduction

The investigation of the femtometer-scale space–time geometry of high-energy heavy-
ion collisions has been an important area, called femtoscopy, of high-energy physics for
several decades [1]. The main idea of this field originates from astronomy, since it is
analogous with the well-known Hanbury Brown and Twiss (HBT) effect that describes the
intensity correlation of photons [2,3]. In high-energy physics, however, the observable is
the quantum-statistical momentum correlation of hadrons, which carries information about
the femtometer-scale structure of the particle-emitting source [4,5]. The measurements
of such momentum correlations are partially responsible for establishing the fluid nature
of the quark–gluon plasma (QGP) created in heavy-ion collisions [6,7]. Furthermore,
the measured source radii provide information about the transition from the QGP to the
hadronic phase [8,9], as well as about the phase space of quantum chromodynamics [10].

Recent high-precision femtoscopic measurements [11,12] have shown that the previ-
ously widely assumed Gaussian [6,13,14] or Cauchy [15,16] source distributions do not
provide an adequate description of the measured correlation functions. Instead, a gen-
eralization of these distribution, the Lévy alpha-stable distribution [17], is needed for a
statistically acceptable description [11,12]. The shape of the Lévy distribution is character-
ized by the Lévy stability index α, and can be influenced by various physical phenomena,
e.g., anomalous diffusion [18–20], resonance decays [21,22], jet fragmentation [23], and
critical phenomena [24]. Until now, the α parameter had not been measured at the largest
energies accessible at the LHC. The question of how α changes compared to lower energies
signifies the need for a Lévy HBT analysis at LHC energy.

In this paper, the Lévy HBT analysis of two-particle Bose–Einstein momentum cor-
relations is presented using √sNN = 5.02 TeV PbPb collision data recorded by the CMS
experiment. The source parameters, extracted from the correlations functions, are studied
as functions of transverse mass and collision centrality.

2. Femtoscopy with Lévy Sources

The quantum-statistical momentum correlation of identical bosons is called Bose–
Einstein correlation. This correlation is in connection with the source function S(x, p) [4,5],
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which is the phase-space probability density of particle production at space–time point x
and four-momentum p. After some approximations detailed in Refs. [4,5], the following
formula is obtained:

C(0)(Q, K) ≈ 1 +
|S̃(Q, K)|2
|S̃(0, K)|2

, (1)

where C(0)(Q, K) is the two-particle momentum correlation function, Q is the pair relative
four-momentum, K is the pair average four-momentum, the superscript (0) denotes the
neglection of final-state interactions, and S̃(Q, K) is the Fourier transform of the source with

S̃(Q, K) =
∫

S(x, K)eiQxd4x. (2)

Equation (1) implies that C(0)(Q = 0, K) = 2. In previous measurements, it was
found, however, that C(0)(Q→ 0, K) < 2. This result can be understood via the core–halo
model [25,26], wherein the source is divided into two parts, a core of primordial hadrons
and a halo of long-lived resonances. The halo is experimentally unresolvable due to its
large size, which leads to small momentum in Fourier space. If S represents only the core
part of the source, its connection to the correlation function becomes

C(0)(Q, K) ≈ 1 + λ
|S̃(Q, K)|2
|S̃(0, K)|2

, (3)

where λ is the square of the core fraction, and it is often called the correlation strength parameter.
Using Equation (3), a theoretical formula for C(0)(Q, K) can be calculated by assuming

a given source distribution. In this analysis, a generalization of the Gaussian distribution,
the so-called spherically symmetric Lévy alpha-stable distribution [17], was assumed for
the spatial part of the source. This distribution is defined by the following Fourier transform
in three dimensions:

L(r; α, R) =
1

(2π)3

∫
d3q eiqre−

1
2 |qR|α , (4)

where q is an integration variable, r is the variable of the distribution, α and R are parame-
ters; the Lévy stability index and the Lévy scale parameter, respectively. The α parameter
describes the shape of the distribution, with α = 2 corresponding to the Gaussian and
α = 1 to the Cauchy case. The R parameter describes the spatial scale of the source, as it is
proportional to the full width at half maximum. There are many possible reasons [18–24]
behind the appearance of the Lévy distribution in heavy-ion collisions, but these possibili-
ties are still under investigation by the community. In case of a spherically symmetric Lévy
source, the two-particle correlation function has the form [19]

C(0)(q) = 1 + λe−(qR)α
, (5)

where q = |Q| is the magnitude of the spatial part of Q.
In the above formulas, the presence of final-state interactions was neglected. In the case

of charged particles, the most important final-state interaction is the Coulomb interaction,
which is usually taken into account in the form of a Coulomb correction KC(q; R, α) [27–29].
Using the Bowler–Sinyukov method [30], one obtains

C(q) = 1− λ + λ(1 + e−(qR)α
)KC(q; R, α). (6)

In this analysis, the R and α-dependent Coulomb correction, calculated in Ref. [31], was
utilized. A formula based on Equation (6) was used for fitting to the measured correla-
tion functions.
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3. Measurement Details

The used data sample contains 4.27× 109 PbPb events at a center-of-mass energy per
nucleon pair of √sNN = 5.02 TeV, recorded by the CMS experiment in 2018. The detailed
description of the CMS detector system can be found in Ref. [32]. For the analysis, only
events with precisely one nucleus–nucleus collision were used, where the longitudinal
distance of the interaction point from the center of the detector was also less than 15 cm.
Further event selections were applied to reject events from beam–gas interactions and
nonhadronic collisions [33]. The individual tracks were filtered based on their transverse
momentum, pseudorapidity, distance to the vertex, the goodness of the track fit, and the
number of hits in the tracking detectors.

Particle identification in central PbPb collisions is not possible with the CMS detector;
therefore, all charged tracks passing the other selection criteria were used. The majority
of these charged particles are pions [34], so the pion mass was assumed for all of them.
The largest contamination is caused by kaons and protons [34], and this effect is discussed
in Section 4.

Measuring two-particle Bose–Einstein correlation functions means measuring pair dis-
tributions. Besides the quantum-statistical effects, these pair distributions are influenced by
detector acceptance, kinematics, and other phenomena. In order to remove these unwanted
effects, the correlation function is calculated as the normalized ratio of two distributions,
the actual (signal) distribution A(q), and the background distribution B(q), with

C(q) =
A(q)
B(q)

∫
B(q)dq∫
A(q)dq

, (7)

where the integrals are calculated over a range where the quantum-statistical effects are
not present. The A(q) distribution contains all same charged pairs of a given event, while
the B(q) distribution contains all same charged pairs of a mixed event. This mixed event is
obtained by randomly selecting particles from different events, as detailed in Refs. [11,35].
For the validity of Equation (7), it was assumed that the produced particles had a uniform
rapidity distribution [36].

In the measurement of C(q), the q variable is taken as the magnitude of the relative
momentum in the longitudinally comoving system (LCMS), where the longitudinal com-
ponent of the average momentum is zero. This coordinate system was chosen because, in
earlier measurements, the source was found to be approximately spherically symmetric in
this frame [6]. The measurement is carried out up to q = 8 GeV/c in 6 centrality (0–60%)
and 24 average transverse momentum KT (0.5–1.9 GeV/c) classes, separately for positively
and negatively charged pairs. In order to remove the merging and splitting effects caused
by the finite resolution of the tracking detectors, a pair selection was applied. These arti-
facts were limited to a region with small ∆η and ∆φ; therefore, each pair had to satisfy the
following condition: ( |∆η|

0.014

)2

+

( |∆φ|
0.022

)2

> 1, (8)

where ∆η is the pseudorapidity difference and ∆φ is the azimuthal angle difference. Track-
ing efficiency correction factors were also utilized when measuring the A(q) and B(q)
distributions.

Even after removing most of the non-quantum-statistical effects by taking the ratio
of A(q) and B(q), a structure was observed in C(q) at large q values, where the quantum-
statistical effects were not present. This long-range background can be the result of phe-
nomena such as energy and momentum conservation, resonance decays, bulk flow [15],
and minijets [15]. To remove any potential influence of the long-range background on the
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low q region where the Bose–Einstein peak is present, C(q) was divided by a background
function BG(q), resulting in the double-ratio correlation function DR(q):

DR(q) =
C(q)

BG(q)
. (9)

The explicit form of BG(q) was determined by fitting the following empirically determined
formula [15,37,38] to the large q part of C(q):

BG(q) = N
(

1 + α1e−(qR1)
2
)(

1− α2e−(qR2)
2
)

, (10)

where N, α1, α2, R1, R2 are fit parameters with no physical meaning.
The DR(q) distributions were fitted with the following formula based on Equation (6):

DR(q) = N(1 + εq)
[
1− λ + λ(1 + e−(qR)α

)KC(q; R, α)
]
, (11)

where N is a normalization parameter and a possible residual linear background is allowed
through the ε parameter. The fits were performed using the MINUIT2 package [39,40] and
the statistical uncertainties were calculated with the MINOS algorithm [39,40]. The lower
and upper fit limits were determined individually in each centrality and KT class by
selecting the limits resulting in the best fit. The goodness of fit was measured by the
confidence level, calculated from the χ2 and the number of degrees of freedom of the fit. This
confidence level was in the statistically acceptable range (>0.1%) for each fit. An example fit
is shown in Figure 1. In the region below approximately q = 0.05 GeV/c, the measured data
are not reliable due to the finite momentum resolution and pair reconstruction efficiency of
the detectors; consequently, that region was not used for fitting.

Figure 1. An example fit to the double-ratio correlation function DR(q) of negatively charged
hadrons [41]. The fitted function is shown in black, while the red overlay indicates the range used for
the fit. The KT and centrality class is shown in the legend. The lower panel indicates the deviation of
the fit from the data.

The systematic uncertainties of R, α, and λ were determined by individually changing
each of the analysis settings to slightly larger and smaller values, and conducting the whole
analysis procedure again. The deviations from the nominal results were then added in
quadrature, resulting in the full systematic uncertainty. The considered analysis settings
were the centrality calibration, the vertex selection, the different track selection criteria,
the pair selection, and the fit limits. Out of these, the dominant sources of systematic
uncertainty were the fit limits. The full systematic uncertainty was separated into correlated
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and uncorrelated parts, so that the latter could be taken into account when fitting to
the parameters.

4. Results and Discussion

As mentioned before, the parameters α, R, and λ were measured separately for pos-
itively and negatively charged hadron pairs. As not much difference was observed be-
tween the two cases, some of the results for negatively charged pairs are shown only in
Appendix A.

The measurement was carried out in KT classes, but in order to facilitate the com-
parison with previous measurements and with theory, the parameters are presented as
functions of the transverse mass mT, defined as

mT =

√
K2

T
c2 + m2, (12)

where m is the mass of the investigated particle species. Although all charged tracks were
used in the analysis, the pion mass was used for m, since above 90% of the identical particle
pairs were pion pairs.

The measured α values are shown in Figure 2 as a function of mT, for positively
charged pairs. Within uncertainties, most of the values are between 1.6 and 2.0, meaning
that the source follows the general Lévy distribution, instead of the Gaussian. However,
the deviation from the Gaussian case is not as large as it was found for 0–30% centrality
AuAu collisions at √sNN = 200 GeV [11], where a mean value for α of 1.207 was obtained
for pion pairs with |η| < 0.35 and 228 < mT < 871 MeV/c2. For a given centrality
class, α is almost constant with mT. The average of α (〈α〉) is indicated in Figure 2 for
each centrality class, and it is shown in Figure 3 as a function of the average number of
participating nucleons in the collision (〈Npart〉), for both positively and negatively charged
pairs. The 〈Npart〉 values were calculated for each centrality class [42], with a larger value
corresponding to a more central case. The 〈α〉 values show a monotonic increasing trend
with 〈Npart〉, which means that the shape of the source is 〈Npart〉 (or equivalently, centrality)
-dependent. The shape is closer to the Gaussian distribution in case of more central events.
The 〈α〉 values are slightly higher for positively charged pairs, although the deviations are
within systematic uncertainties.

Figure 2. The Lévy stability index α versus the transverse mass mT in different centrality classes for
positively charged hadron pairs [41]. The error bars are the statistical uncertainties, while the boxes
indicate the uncorrelated systematic uncertainties. The correlated systematic uncertainty is shown in
the legend.
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Figure 3. The average Lévy stability index 〈α〉 versus 〈Npart〉 in different centrality classes for
positively and negatively charged hadron pairs [41]. The error bars are the statistical uncertainties,
while the boxes indicate the systematic uncertainties.

The measured R values are shown in Figure 4 as a function of mT for positively
charged pairs. A decreasing trend with mT and as the collisions become more peripheral
is observed, with the values ranging between 1.6 and 5.8 fm. The centrality dependence
confirms the geometrical interpretation of the R parameter, because a smaller source size is
expected in case of more peripheral collisions. To further investigate the mT dependence of
R, 1/R2 was plotted as a function of mT, as shown in Figure 5. In case of a Gaussian source,
hydrodynamic models [7,43] predict the linear scaling

1
R2 = AmT + B, (13)

where A and B are parameters with physical meaning. The slope A is connected to the
Hubble constant (H) of the QGP with [7,44]

A =
H2

Tf
, (14)

where Tf is the freeze-out temperature. The intercept B is connected to the size of the source
(Rf) at freeze-out with [7,44]

B =
1

R2
f

. (15)

In order to verify whether the linear scaling also holds in the Lévy case, a linear fit
was performed for each centrality class using Equation (13). The statistical uncertainty and
the uncorrelated systematic uncertainty of 1/R2 was added in quadrature and used for
determining the χ2 of the fits. In this way, the confidence levels were statistically acceptable
for each centrality class, showing that a hydrodynamic-like scaling holds for a Lévy source
as well. The fitted lines are shown in Figure 5, and the fit parameters (A and B) are
shown in Figure 6 as functions of 〈Npart〉, for both positively and negatively charged pairs.
By assuming a constant freeze-out temperature of Tf = 156 MeV [45], the Hubble constant
falls between 0.12 c/fm and 0.18 c/fm. Due to the fact that the A parameter decreases
toward more central collisions (larger 〈Npart〉), the Hubble constant also decreases, making
the speed of the expansion lower in central collisions. The B parameter has a negative value
in each case, which makes it impossible to calculate a freeze-out size using Equation (15).
The reasons behind a negative intercept and the interpretation of this result are currently
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unknown. This may be connected to fluctuations in the initial state [46] which were not
taken into account in the hydrodynamic models.

Figure 4. The Lévy scale parameter R versus mT in different centrality classes for positively charged
hadron pairs [41]. The error bars are the statistical uncertainties, while the boxes indicate the
uncorrelated systematic uncertainties. The correlated systematic uncertainty is shown in the legend.

Figure 5. The inverse square of the Lévy scale parameter R versus mT in different centrality classes
for positively charged hadron pairs [41]. The error bars are the statistical uncertainties, while the
boxes indicate the uncorrelated systematic uncertainties. The correlated systematic uncertainty is
shown in the legend. A line is fitted to the data for each centrality.

The measured λ values are shown in the upper panel of Figure 7 as a function of
mT, for positively charged pairs. A decreasing trend with mT as the collisions became
more central is observed. In case of identified particles, λ is the square of the ratio of core
particles. Due to the lack of particle identification, our sample contained particles other
than pions, mostly kaons and protons. As a result of this contamination, λ was suppressed
by a factor of the square of the pion fraction. The pion fraction was measured by the ALICE
Collaboration [34], and it decreased with mT, resulting in the decreasing trend of λ in the
upper panel of Figure 7. For the α and the R parameters, a characteristic mT dependence
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was observed; thus, these parameters could not have been influenced by the mT-dependent
effect of the lack of particle identification. To remove the effect of the contamination from λ,
the λ∗ parameter was introduced by rescaling λ with the square of the pion fraction:

λ∗ =
λ

(Npion/Nhadron)2 . (16)

The rescaled correlation strength λ∗ is shown in the lower panel of Figure 7. Compared
to λ, the decreasing trend with mT is no longer shown in the data, suggesting that it was
caused purely by the lack of particle identification. The centrality dependence, on the other
hand, remained the same, which means that the fraction of core pions is smaller in more
central collisions.

Figure 6. The two fit parameters from the linear fit: the slope A (upper) and the intercept B (lower)
versus 〈Npart〉 for negatively and positively charged hadron pairs [41]. The error bars are the statistical
uncertainties, while the boxes indicate the systematic uncertainties.
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Figure 7. The correlation strength λ and the rescaled correlation strength λ∗ versus mT in different
centrality classes for positively charged hadron pairs [41]. The error bars are the statistical uncertain-
ties, while the boxes indicate the uncorrelated systematic uncertainties. The correlated systematic
uncertainty is shown in the legend.

5. Conclusions

In this paper, a centrality-dependent Lévy HBT analysis of two-particle Bose–Einstein
correlations was presented, using √sNN = 5.02 TeV PbPb collision data recorded by the
CMS experiment. The measured correlation functions were described by the assumption of
a Lévy alpha-stable source distribution. Three source parameters, the Lévy stability index
α, the Lévy scale parameter R, and the correlation strength λ were determined, and their
centrality and transverse mass (mT) dependence was investigated.

The α parameter was found to be centrality-dependent, but constant in mT, with the
average values ranging between 1.6 and 2.0. A decreasing trend with mT and as the
collisions become more peripheral was observed for the R parameter, which could be
explained by the hydrodynamic-like scaling and the geometrical interpretation, respectively.
The λ parameter showed a decreasing trend with mT, but after removing the effects of the
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lack of particle identification, a constant behavior was obtained. A decrease toward more
central collisions was also observed for λ.
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Appendix A. Results for Negatively Charged Pairs

The results for negatively charged hadron pairs are presented. Due to the fact that
they are very similar to the results for positively charged pairs presented in Section 4,
the interpretations of these results are the same. The Lévy stability index α is shown as a
function of mT in Figure A1. The Lévy scale parameter R and its inverse square 1/R2 are
shown as functions of mT in Figures A2 and A3, respectively. The correlation strength λ
and the rescaled correlation strength λ∗ are shown as functions of mT in Figure A4.

Figure A1. The Lévy stability index α versus the transverse mass mT in different centrality classes for
negatively charged hadron pairs [41]. The error bars are the statistical uncertainties, while the boxes
indicate the uncorrelated systematic uncertainties. The correlated systematic uncertainty is shown in
the legend.
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Figure A2. The Lévy scale parameter R versus mT in different centrality classes for negatively
charged hadron pairs [41]. The error bars are the statistical uncertainties, while the boxes indicate the
uncorrelated systematic uncertainties. The correlated systematic uncertainty is shown in the legend.

Figure A3. The inverse square of the Lévy scale parameter R versus mT in different centrality classes
for negatively charged hadron pairs [41]. The error bars are the statistical uncertainties, while the
boxes indicate the uncorrelated systematic uncertainties. The correlated systematic uncertainty is
shown in the legend. A line is fitted to the data for each centrality.
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Figure A4. The correlation strength λ and the rescaled correlation strength λ∗ versus mT in different
centrality classes for negatively charged hadron pairs [41]. The error bars are the statistical uncertain-
ties, while the boxes indicate the uncorrelated systematic uncertainties. The correlated systematic
uncertainty is shown in the legend.
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24. Csörgő, T.; Hegyi, S.; Novák, T.; Zajc, W.A. Bose-Einstein or HBT correlation signature of a second order QCD phase transition.

AIP Conf. Proc. 2006, 828, 525–532. [CrossRef]
25. Bolz, J.; Ornik, U.; Plumer, M.; Schlei, B.R.; Weiner, R.M. Resonance decays and partial coherence in Bose-Einstein correlations.

Phys. Rev. D 1993, 47, 3860. [CrossRef] [PubMed]
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Abstract: The PHENIX experiment measured two-particle Bose–Einstein quantum-statistical cor-
relations of charged kaons in Au+Au collisions at

√
sNN = 200 GeV. The correlation functions are

parametrized assuming that the source emitting the particles has a Lévy shape, characterized by the
Lévy exponent α and the Lévy scale R. By introducing the intercept parameter λ, we account for the
core–halo fraction. The parameters are investigated as a function of transverse mass. The comparison
of the parameters measured for kaon–kaon with those measured from pion–pion correlation may
clarify the connection of Lévy parameters to physical processes .

Keywords: heavy ions; quark–gluon plasma; femtoscopy; Lévy HBT

1. Introduction

To study the space-time structure of the quark–gluon plasma, the most commonly
used method is femtoscopy. It is a sub-field of high-energy particles and nuclear physics,
and it allows us to explore the properties of the matter created in particle collisions on the
femtometer scale. Femtoscopy typically investigates correlations of particle pairs. However,
it is worth mentioning that prior to the development of femtoscopy, a similar physical phe-
nomenon was discovered and utilized in the field of radio astronomy. R. Hanbury Brown
and R. Q. Twiss measured the angular size of stars by analyzing intensity correlations,
which became known as the Hanbury Brown and Twiss effect (HBT) [1]. Roy Glauber’s
work that laid the foundations of quantum optics [2–4] greatly increased our understanding
of this effect. G. Goldhaber and his collaborators observed intensity correlations among
same-charged pions while searching for ρ mesons in high-energy collisions. These cor-
relations were explained by G. Goldhaber, S. Goldhaber, W-Y. Lee, and A. Pais (GGLP),
based on the Bose–Einstein symmetrization of the wave-function of identical pion pairs [5].
This is the reason why these correlations are often called Bose–Einstein correlations. Due
to the relationship between the two-particle Bose–Einstein correlation function and the
phase-space density of the particle-emitting source, by measuring the correlation function
we can obtain information about the source function.

Let us note that while there are conceptual similarities between the HBT effect in radio
astronomy and the correlations studied in femtoscopy, there are also fundamental differences.
In femtoscopy, we can extract information about the space-time structure of the particle source,
often represented by femtoscopic radii. On the other hand, the HBT effect in radio astronomy
provides insights into the spectral-angular structure of the source radiation.

The fundamentals of modern correlation femtoscopy were established by Kopylov
and Podgoretsky [6,7]. They successfully overcame the drawback of the GGLP technique
by utilizing the momentum differences of the particle pairs instead of the opening angles.

Based on the central limit theorem, it is a good approach to assume a Gaussian shape
for the phase-space density of the particle-emitting source. However, we can go further
and take a more general approach. Anomalous diffusion indicates the appearance of
Lévy-stable distributions for the source [8,9]. In Ref. [10], it was found that Lévy-stable
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source distributions in
√

sNN = 200 GeV Au+Au collisions give a high-quality, statistically
acceptable description of the measured correlation functions in the case of pions. In the
present paper, we will investigate kaon–kaon correlation functions assuming a Lévy shaped
source. By comparing the obtained results with the pion data, more insights can be gained
regarding the Lévy parameters.

The dataset used in this analysis is Au+Au collisions at
√

sNN = 200 GeV recorded
by the PHENIX (Pioneering High Energy Nuclear Interaction eXperiment) detector. It
is one of the four experiments that have taken data at the relativistic heavy ion collider
(RHIC) in Brookhaven National Laboratory. Its primary mission was to search for a new
state of matter called the quark–gluon plasma and to study various different particle types
produced in heavy ion collisions, such as photons, electrons, muons, and charged hadrons.
A beam view layout of the PHENIX detector can be seen in Figure 1. The detectors can be
divided into four main subgroups:

1. Global detectors characterize the nature of heavy ion collision events, i.e., zero degree
calorimeters (ZDC) and beam-beam counters (BBC);

2. Mid-rapidity detectors form the “central arm spectrometer”, which consists of three
sets of pad chambers (PC), drift chambers (DC), electromagnetic calorimeters (Em-
Cal), and time-of-flight detectors (ToF), are used for energy, momentum, and mass
measurements;

3. Two muon spectrometers at forward rapidity;
4. A triggering and computing system to select and archive events of potential physics

interest.

Figure 1. View of the PHENIX central arm spectrometer detector setup in the 2010 data-taking period.

2. Femtoscopy and Lévy Sources

As we mentioned in the previous section, there is a connection between the Bose–
Einstein correlation function and the phase-space density of the particle-emitting source.
Let us discuss this relationship in more detail. The one- and two-particle momentum
distributions can be expressed as [11]

N1(p) =
∫

d4rS(r, p)|ψp(r)|2, (1)

N2(p1, p2) =
∫

d4r1d4r2S(r1, p1)S(r2, p2)|ψ(2)
p1,p2(r1, r2)|2, (2)

where S(r, p) is the source function, which describes the probability density of particle
creation at space-time point r with four-momentum p; ψp(r) denotes the single-particle

wave function; and ψ
(2)
p1,p2 is the two-particle wave function, which must be symmetric in

the spatial variables r1 and r2 for bosons. Bose–Einstein correlations arise from this sym-
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metrization effect. Using Equations (1) and (2), we can express the two-particle correlation
function as [12,13]

C2(p1, p2) =
N2(p1, p2)

N1(p1)N1(p2)
. (3)

Let us introduce the average momentum K = 0.5(p1 + p2) and relative momentum
q = p1 − p2 as new variables. If p1 ≈ p2 ≈ K and the final state interactions are neglected,
the two-particle correlation function can be written as

C(0)
2 (q, K) ≈ 1 +

|S̃(q, K)|2
|S̃(0, K)|2 , (4)

where the superscript (0) denotes the neglection of final state interactions and S̃(q, K) is the
Fourier transform of the source with

S̃(q, K) =
∫

S(x, K)eiqxd4x. (5)

The significance of Equation (4) lies in the fact that by measuring the Bose–Einstein
correlation function, we can obtain information about the spatial shape of the source function.

The correlation function depends on the four-momentum difference and the average
four-momentum. Since the Lorentz product of q and K is zero in the case of identical parti-
cles, the correlation function depends only on the spatial q instead of the four dimensional
q vector:

qK = q0K0 − qK = 0 ⇒ q0 =
qK
K0

. (6)

In Ref. [7], Kopylov and Podgoretsky showcased the three-dimensional character of
the momentum correlation effect due to the particles detected on-mass-shell.

For our correlation function measurements, we use the co-moving system (LCMS)
frame, where it was found in earlier measurements [14] that the correlation function is
nearly spherically symmetric. Due to the relatively low number of produced kaons and
this symmetrical characteristic, we have chosen to perform a one-dimensional (1D) analysis
instead of a three-dimensional (3D) one. Based on Ref. [10], we used Q = |qLCMS| as the 1D
variable of the correlation function.

We assumed that the source emitting the particles has a Lévy shape. The symmetric
Lévy-stable distribution is defined as

L(r; R, α) =
1

(2π)3

∫
d3ϕ eiϕre−

1
2 |ϕR|α , (7)

where R is the Lévy scale parameter, α is the Lévy exponent, and ϕ is a three-dimensional
integration variable. The α parameter describes the shape of the distribution, in the case of
a Gaussian distribution α = 2, while for a Cauchy distribution, the value of α is 1.

In case of such Lévy-stable source functions, the raw (i.e., final-state interaction ne-
glected) correlation function in the observable Q-range will be [8]

C(0)
2 (Q; λ, R, α) = 1 + λe−|QR|α , (8)

where the intercept parameter λ is introduced as the extrapolated C(0)
2 (Q = 0) value.

According to the core–halo model [15,16], the source can be divided into two parts:
the core, which contains the promptly produced particles, and the halo, which is composed
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of the products of resonance decays. The ratio of these two parts can be characterized by
the correlation strength parameter:

λ =

(
Ncore

Ncore + Nhalo

)2
, (9)

where Ncore refers to the number of particles produced in the core, while Nhalo denotes
the number of particles produced in the halo. Considering that the particles from the halo
contribute to the correlation function as an unresolvably narrow peak around Q = 0, we
indeed see that this λ value will be the extrapolated C(0)

2 (Q = 0) value.
For charged particles, the most significant final state interaction is the Coulomb

interaction. To take care of this effect, we used the Sinyukov–Bowler method [17,18].
Taking an additional possible linear background shape into account, our final assumption
for the functional form of the correlation function is

C2(Q; λ, R, α) =
[
1− λ + K(qinv; α, R) · λ ·

(
1 + e−|QR|α

)]
· N · (1 + εQ), (10)

where K is the Coulomb correction, N is the normalization parameter, and ε represents a
small background long-range correlation effect. Let us note that the Coulomb correction is
a function of qinv, which is the Lorentz invariant four-momentum difference1, while the
correlation function has a different variable, denoted by Q. We calculated the Coulomb
correction K with the variable Q and analyzed the error coming from this approximation,
which was handled as a source of systematic uncertainty the same way as in Ref. [10].
The correction is quite small compared to other sources, so it does not mean a large
additional term to the systematics, and this way we have more comparable results to
the pions.

3. Motivation

In Ref. [10], the significance of the appearance of the Lévy distribution in the case
of pion–pion correlations was investigated. In order to dive into the exploration of the
Lévy-shape, we aimed to analyze kaon correlations.

The Lévy source parameters for kaon–kaon two particle correlations have never been
measured in PHENIX before.

Anomalous diffusion could be a reason for a Lévy distribution [19]. In such a scenario,
the Lévy index for the different particles is different, i.e., απ

Lévy 6= αK
Lévy. The smaller the

cross section is, the longer the mean free path, thus the longer the power-law like “tail” of
the source distribution. Kaons have a smaller cross section than pions, so we would expect
that απ

Lévy > αK
Lévy. If this explanation fails to match the reality, other alternatives should

be investigated.
The Lévy width (or, equivalently, scale parameter) R has an unclear interpretation.

It exhibits similar behavior as the Gaussian source radii, but its precise relation to the
geometrical source size is not clear. By measuring this parameter for kaons, we can get
closer to clarifying its precise physical interpretation.

4. Measurement Details

In this measurement, we analyzed Au+Au collisions at
√

sNN = 200 GeV. The dataset
consists of about 7.3 billion (minimum bias triggered) events. As the number of produced
kaons is relatively low, all minimum bias events (of any centrality) were taken together.
We cut out those events whose distance from the nominal collision point was greater than
30 cm along the beam axis.

We also need to take into account the detector inefficiencies and the particularities
of the track reconstruction algorithm, which sometimes splits one track into two. On the
other hand, when two different tracks are too close to each other, it is possible that they
will be detected as a single track. To remove these possible effects, we applied cuts in the
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∆φ and ∆z variables, where ∆φ and ∆z stand for the azimuthal angle and longitudinal
position difference of track pairs, respectively (as measured in the drift chamber, the main
tracking detector).

For particle identification (PID), we calculated the square of the particle mass:

m2 =
p2

c2

[(
ct
L

)2
− 1

]
, (11)

where t is the time of flight (measured either in the PbSc or the ToF East/West detectors), L
is the path length, and p is the momentum. The distributions of m2 were fitted mostly using
single Gaussians; in cases of merging peaks, a double Gaussian was applied. To identify
kaons, we applied a 2.5 standard deviation (σp) cut around the nominal kaon m2 peak
position and a 2.5σp veto cut around the pion and proton m2 peaks. An example scatter
plot of the charge times momentum vs. m2 before and after the cuts can be seen in
Figure 2a,b, respectively.

(a) (b)

Figure 2. Example plots for PID. (a) Scatter plot of the charge times momentum vs. m2 in TOF West
with no cut. (b) Scatter plot of the charge times momentum vs. m2 in TOF West after the applied cuts.

Since the correlation function’s dependence on K is smoother than its dependence
on Q, it is reasonable to create several K bins, and in each bin, the Q dependence can be
investigated. At midrapidity, the transverse mass mT can be used instead of K:

mT =
√

m2 + (KT/c)2, (12)

where m is the mass of the particle and

KT =
√

K2
x + K2

y (13)

is the average transverse momentum. In this analysis, 7 mT bins were created. In each bin,
we analyzed the dependence of the correlation function on Q.

To measure the correlation functions, “actual” (foreground) and “background” distri-
butions of the kaon pairs were created. To construct the actual pair distribution, the mo-
mentum differences were calculated of the same-charged particles from the same event
and filled into a histogram. Since there are other effects (stemming from acceptance, single-
particle distributions, efficiency, etc.) in the actual pair distribution that are not related to
the HBT effect, we have to cancel them out with a properly constructed background distri-
bution that contains pairs from different events, where there can be no HBT effect. To create
the background pair distribution, we employed the same mixed event method as described
in Ref. [10]. The first step is to construct a pool that contains several events. This pool
needs to be at least as large as the number of produced kaons in the event with the highest
multiplicity. In order to ensure that we meet this condition, a pool with 50 events was used.
Every time we process an event to construct the actual pair distribution, we construct a
mixed event for the background distribution as well. Since we do not want to introduce any
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correlations and we would like to avoid the presence of the quantum-statistical correlation
between the particles in the background, we have to select the particles as follows. First
of all, to ensure that the background event exhibits the same kinematics and acceptance
effects, we have to construct the background event from events of similar centrality and
with a similar z coordinate of the collision vertex. To accomplish this, we used 5% wide
centrality and 2 cm wide z-vertex bins. Secondly, it is essential that the selected particles for
the background pair distribution originate from different events. After the particle selection
from mixed eventsm we calculate the momentum differences of these particles.

The two-particle correlation function can be calculated from the ratio of the normalized
actual and background pair distributions:

C2(mT, Q) =
A(mT, Q)

B(mT, Q)
·
∫ Qmax

Qmin
B(mT, Q)

∫ Qmax
Qmin

A(mT, Q)
, (14)

where A is the actual, B is the background pair distribution, and the integral is performed
over a range (Qmin − Qmax), where the correlation function does not exhibit quantum
statistical features.

We fitted the measured correlation functions with the Coulomb-corrected Lévy-type
correlation function and the linear background. Of all the final state interactions, the Coulomb
effect has the greatest impact as it causes same-charged pairs to repel each other. As shown in
Figure 3, the function drops off sharply at small Q due to the Coulomb effect.

Figure 3. An example fit with the Coulomb-corrected correlation function based on a Lévy source for
kaon pairs with transverse mass ranging from 0.856 GeV/c2 to 0.940 GeV/c2.

To deal with the Coulomb correction, we applied the same method that was used
in Ref. [10] for pions; we did this to obtain comparable results. First, we needed to
numerically solve the Coulomb correction; then, the results were loaded into a binary look
up table as described in Refs. [20,21]. This numerical table contains the values discretely,
so interpolation was needed, which can cause numerical fluctuations. These fluctuations
can be handled with a proper iterative fitting procedure. The first round fit was performed
with a functional form of the correlation function incorporating the Coulomb correction,
which yields a set of parameters λ0, R0, and α0. Based on Equation (10), the second round
fit was with

C(0)
2 (Q; λ, R, α)

C2(Q; λn, Rn, αn)

C(0)
2 (Q; λn, Rn, αn)

· N · (1 + εQ), (15)
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where the fitted parameters are denoted as λ, R, α, N, and ε. In the second round, the values
of λn, Rn, and αn were equal to the corresponding values from the first fit. The correlation
function without the Coulomb correction is denoted by C(0)

2 (Q; λ, R, α), while C2(Q; λ, R, α)
refers to the Coulomb-corrected one. We continued this iterative procedure until the param-
eters of the previous fit (λn, Rn, αn) and the new ones from the latest fit (λn+1, Rn+1, αn+1)
differed less then 2%. Let us note that usually N ≈ 1 and ε ≈ 0, and these parameters
converge faster than λ, R and α, so only the latter parameters are used in the test of the
convergence criteria.

To determine the systematic uncertainties of the parameters, alternative measurement
settings were applied. These considered settings can be seen in Table 1. In case of the
PID cut, the default setting was 2.5σp, while the lower one was 2.0σp and the upper one
was 3.0σp. As for the PC3 matching cut, there was no cut in the default setting, but an
alternative cut of 2.0σm was applied, where σm is the standard deviation of the differenece
of the projected track position and the closest hit position in the detector, in both the φ and
z directions. Regarding the EMCal/ToF track matching cut, the default setting was 1.5σm,
while the lower one was 1.0σm and the upper one was 3.5σm. Pair cuts were applied in the
∆φ− ∆z plane by cutting off a two-dimensional region, as described in Ref. [10]. The fit
range (Qmin − Qmax) was also varied. We modified the default setting with ±8 MeV/c.
As we mentioned earlier in this paper, the Coulomb correction is a function of qinv, while
the correlation function has a different variable, denoted by Q. We calculated the Coulomb
correction with the variable Q and treated this approximation as a systematic uncertainty.
The parameters were recalculated by individually changing each of the measurement
settings; then, we calculated the relative difference of the values of the parameters obtained
from the alternative settings and from the default settings. After calculating the relative
differences for all the settings, we obtained the final systematics by taking into account the
statistical uncertainties of the data points. A similar argument can be found in Ref. [22].

Table 1. The varied settings in order to determine the systematic uncertainties of the results.

Setting Name Settings

PID cut 3 cut settings
PC3 matching cut 1 cut setting

EMCal/ToF matching cut 3 cut settings
DC pair cut 3 cut settings

ToF East pair cut 3 cut settings
ToF Wast pair cut 3 cut settings
EMCal pair cut 3 cut settings
Fit range (Qmax) 3 ranges
Fit range (Qmin) 3 ranges

Coulomb correction variable 2 versions

The method we used is described below. The variance of the difference of two
variables is

σ2(Adef − Aalt) = σ2(Adef) + σ2(Aalt)− 2cov(Adef, Aalt), (16)

where Adef represents the parameter value obtained from the default cut, while Aalt, the
parameter value, is obtained from the alternative cut; cov(Adef, Aalt) = ρσ(Adef)σ(Aalt)
is the covariance matrix; and ρ is the correlation coefficient. The total uncertainties are
composed of the systematic and the statistical uncertainties:

σ2
tot = σ2

stat + σ2
syst so σ2

syst = σ2
tot − σ2

stat. (17)
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We require that the total uncertainty cover 1 standard deviation (1σ), i.e., σtot =
|Adef − Aalt|. Thus,

σ2
syst = (Adef − Aalt)

2 − σ2
stat(Adef)− σ2

stat(Aalt) + 2ρσstat(Adef)σstat(Aalt). (18)

The advantage of using Equation (18) is that it allows us to consider the impact of the
statistical uncertainties. In this analysis, we assumed that Adef is completely correlated with
Aalt, thus ρ = 1. The final systematic uncertainties were obtained by taking the squared
sum of the calculated σsyst values for each alternative setting.

5. Results

In this section, we present our main results: a comparison of the transverse mass
dependence of the Lévy parameters in the case of kaon–kaon and pion–pion correlations.

One of the main reasons why analyzing the kaon–kaon Lévy distribution is interesting
is because it could shed light on the physical interpretation of the Lévy exponent. The Lévy
exponent α is shown in Figure 4. Within statistical uncertainties, we can draw the conclusion
that the value of the parameter is between 1 and 2; however, the systematic uncertainties
are quite large. As it is described in Ref. [19], a higher α value is expected for pions than
for kaons based on the anomalous diffusion; however, we cannot observe this trend here,
which indicates that beside anomalous diffusion of hadrons, there may be other physical
processes causing the appearance of Lévy distributions, such as the resonances, as was
concluded in Ref. [23]. The violation of the mT-scaling of the two-pion and two-kaon
correlations suggested by hydrodynamic models was explained by a rescattering phase in
Ref. [24], which was not taken into account in the pure hydrodynamic models. A slight
increase in the α values of the kaon measurements can be observed, although the large
uncertainties do not allow us to draw any strong conclusions.

Figure 4. Values of the α parameter in the case of pions and kaons. Boxes indicate the systematic
uncertainties, while error bars are used to represent the statistical ones.

The transverse mass dependence of the intercept parameter λ is shown in Figure 5.
Compared to the pion data, it is not inconsistent with the given large uncertainties, having
approximately matching values at around mT = 0.7 GeV/c2, although their trends appear
to be different. No significant mT dependence was observed for this parameter, and
it is fairly constant; however, we have to note that a slight decreasing trend is visible.
This parameter characterizes the strength of the correlation as it was introduced as the
extrapolated C(0)

2 (Q = 0) value. Since there is no correlation between particles of different
species, a possible worsening of PID efficiency may cause a decrease in the value of this
parameter as our dataset may contain particles other than kaons.
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Figure 5. Values of the λ parameter in the case of pions and kaons. Boxes indicate the systematic
uncertainties, while error bars are used to represent the statistical ones.

The transverse mass dependence of the Lévy scale parameter R is shown in Figure 6.
The mT scaling of HBT radii across particle species has been predicted in Ref. [25]. From the-
oretical works, e.g., Refs. [8,26], we know that R is not an RMS so it cannot be related to
the source size directly. However, it was clear from previously published analyses (see
Refs. [10,27–32]) that the Lévy-scale R exhibits a similar trend as its Gaussian counterpart,
namely, it decreases with mT. In the case of a Gaussian source, hydrodynamic models
predict a linear scaling for its inverse square [33–35]:

1
R2 = A ·mT + B. (19)

As we see it on Figure 7, the linear scaling holds for the Lévy source as well, requiring
the need for further theoretical investigations.

Figure 6. Values of the R parameter in the case of pions and kaons. Boxes indicate the systematic
uncertainties, while error bars are used to represent the statistical ones.

It is worthwhile to note that there is a significant amount of point-by-point fluctuation
in the systematic uncertainties. Furthermore, the non-fluctuating part of the systematic
uncertainty of the pion and kaon data points is also partly correlated.
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Figure 7. The transverse mass dependence of the 1/R2 points. It is worthwhile to note that due to the
large uncertainties, one could fit these data points with different powers of mT as well. A line is fitted
to the data points, and the fitted parameters are shown in the legend. Boxes indicate the systematic
uncertainties, while error bars are used to represent the statistical ones.

In Ref. [10], a new empirical scaling variable was found:

R̂ =
R

λ(1 + α)
. (20)

The motivation behind this parameter was the fact that the α, R, and λ parameters are
strongly correlated, and it is possible to obtain good fits with multiple sets of co-varied
parameters. The discovery of R̂ was made without any theoretical motivation, and in
Ref. [10] it was observed that 1

R̂
scales linearly with mT. In Figure 8, we can see the same

linear behavior for kaons as well.

Figure 8. The transverse mass dependence of the 1/R̂ points. It is worthwhile to note that due to the
large uncertainties, one could fit these data points with different powers of mT as well. A line is fitted
to the data points, and the fitted parameters are shown in the legend. Boxes indicate the systematic
uncertainties, while error bars are used to represent the statistical ones.

6. Conclusions

In this paper, we discussed two-kaon Bose–Einstein correlation functions in Au+Au
collisions at

√
sNN = 200 GeV, from the PHENIX experiment. We assumed that the source

has a Lévy shape. The Lévy parameters were investigated as functions of mT and compared
to the pion results. In the case of the Lévy stability index α, the large uncertainties prevent
us from drawing any strong conclusions. The prediction that was based on anomalous
diffusion that απ

Lévy > αK
Lévy does not seem to be strongly supported. To clarify this question,

further measurements and investigations might be necessary. Considering the intercept
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parameter λ, kaons and pions have matching values at around mT = 0.7 GeV/c2, and a
slight decreasing trend is visible for kaons, possibly due to the worsening of the PID
efficiency. The Lévy-scale R exhibits a similar trend as its Gaussian counterpart; it decreases
with mT, and its inverse square is linear in mT, although this was predicted only for the
Gaussian width. A new empirical scaling variable, R̂, was found, and it was observed that
1
R̂

scales linearly with mT.
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Abbreviations
The following abbreviations are used in this manuscript:

HBT R. Hanbury Brown and R. Q. Twiss
GGLP G. Goldhaber, S. Goldhaber, W-Y. Lee, and A. Pais
RHIC Relativistic heavy ion collider
LCMS Longitudinal co-moving system
PCMS Pair co-moving system
Au+Au Gold–gold
RMS Root mean square

Notes
1 This variable can be expressed in the PCMS system, which is the pair rest frame: qinv = |qPCMS|.

References
1. Hanbury Brown, R.; Twiss, R.Q. A Test of a new type of stellar interferometer on Sirius. Nature 1956, 178, 1046–1048. [CrossRef]
2. Glauber, R.J. Photon Correlations. Phys. Rev. Lett. 1963, 10, 84–86. [CrossRef]
3. Glauber, R.J. Nobel Lecture: One hundred years of light quanta. Rev. Mod. Phys. 2006, 78, 1267–1278. [CrossRef]
4. Glauber, R.J. Quantum Optics and Heavy Ion Physics. Nucl. Phys. A 2006, 774, 3–13. [CrossRef]
5. Goldhaber, G.; Goldhaber, S.; Lee, W.; Pais, A. Influence of Bose-Einstein Statistics on the Antiproton-Proton Annihilation Process.

Phys. Rev. 1960, 120, 300–312. [CrossRef]
6. Kopylov, G.I. Like particle correlations as a tool to study the multiple production mechanism. Phys. Lett. B 1974, 50, 472–474.

[CrossRef]
7. Podgoretsky, M.I. Interference correlations of identical pions. Sov. J. Part. Nucl. 1989, 20, 266–282.
8. Csörgő, T.; Hegyi, S.; Zajc, W.A. Bose-Einstein correlations for Levy stable source distributions. Eur. Phys. J. 2004, C36, 67–78.

[CrossRef]
9. Metzler, R.; Barkai, E.; Klafter, J. Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck

Equation Approach. Phys. Rev. Lett. 1999, 82, 3563–3567. [CrossRef]
10. Adare, A. et al. [PHENIX Collaboration]. Lévy-stable two-pion Bose-Einstein correlations in

√
sNN = 200 GeV Au+Au collisions.

Phys. Rev. C 2018, 97, 064911. [CrossRef]
11. Yano, F.B.; Koonin, S.E. Determining Pion Source Parameters in Relativistic Heavy Ion Collisions. Phys. Lett. 1978, 78B, 556–559.

[CrossRef]
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Abstract: Femtoscopy has the capacity to probe the space-time geometry of the particle-emitting
source in heavy-ion collisions. In particular, femtoscopy of like-sign kaon pairs may shed light on
the origin of non-Gaussianity of the spatial emission probability density. The momentum correla-
tions between like-sign kaon pairs are measured in data recorded by the STAR experiment, from
√

sNN = 200 GeV Au + Au collisions at RHIC, BNL. Preliminary results hint at the possible existence
of non-Gaussian, Lévy-stable sources, with the likely presence of an anomalous diffusion process in
the signal for the identically charged kaon pairs so produced. More statistically significant studies at
lower centre-of-mass energies may contribute to the search for the critical end point of QCD.

Keywords: RHIC; STAR; femtoscopy; Bose–Einstein correlations; Lévy distribution; anomalous
diffusion; identically charged kaons; heavy-ion collisions; high-energy physics

1. Introduction

Following the discovery of quark–gluon plasma, one of the main thrusts of high-
energy nuclear physics has been the understanding and exploration of the space-time
geometry of the particle-emitting source created in heavy-ion collisions [1]. The quantity
mainly investigated to this end is the two-particle source function, sometimes called the
spatial correlation function (CF) or the pair-source distribution. Although this quantity
is not easy to reconstruct experimentally, detailed studies of its behaviour are merited
by a multitude of reasons, including its connections to hydrodynamic expansion [2,3],
critical phenomena [4], light nuclei formation [5], etc. Phenomenological studies and
experimental analyses both, emphasise the importance of describing the shape of the source
function. Previously conducted hydrodynamical studies seem to suggest a Gaussian source
shape [3,6]. Multiple measurements were also taken with the Gaussian assumption [7,8].
However, recent source-imaging studies suggest that the two-particle source function for
pions has a long-range component, obeying power-law behaviour [9–14].

Femtoscopy [15] is the sub-field of high-energy heavy-ions physics that allows for the
investigation of the space-time structure of femtometre-scale processes encountered in high-
energy nuclear and particle physics experiments. Femtoscopic correlations in heavy-ion
collisions are currently understood to be caused partly by Bose–Einstein statistics [16–19].
Alternatively, they are called Hanbury-Brown–Twiss (HBT) correlations in recognition of
pioneering works by Hanbury-Brown and Twiss [21? ,22] on intensity interferometry in
the field of observational astronomy to extract the apparent angular sizes of stars from
correlations between the signals of two detectors. Additionally, correlations can arise out
of final-state interactions, such as electromagnetic interactions and strong interactions
undergone by the investigated particles. These correlations between pairs of identical
bosons can be used to explore the properties of the matter created in heavy-ion collisions
and to map the geometry of the particle-emitting source [1].
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2. Correlations

Femtoscopy works on the principle that the momentum correlation function of a
pair of particles is related to the probability density of particle creation at a space-time
point (X) for a particle with four-momentum P. This probability density (S(X, P)) is also
called the source function. Defining N1(P)—obtained by multiplying the particle-creation
probability density by 〈n〉, the average number of particles—as the momentum-invariant
distribution and N2(P1, P2)—obtained by multiplying the pair-creation probability density
by 〈n(n − 1)〉, the average number of pairs—as the pair-momentum distribution, the
two-particle correlation function can be written as [23]:

C(P1, P2) =
N2(P1, P2)

N1(P1)N1(P2)
; (1)

where
N2(P1, P2) =

∫
S(X1, P1)S(X2, P2)

∣∣ψP1,P2(X1, X2)
∣∣2d4X1d4X2 , (2)

where ψP1,P2(X1, X2) is the two-particle wave function that simplifies to:

∣∣ψP1,P2(X1, X2)
∣∣2 =

∣∣∣ψ(0)
P1,P2

(X1, X2)
∣∣∣
2
= 1 + cos[(P1 − P2)(X1 − X2)] (3)

in the interaction-free case for bosons, when only the quantum-statistical effects are taken
into account. Thus, the correlation function can be redefined as [24]:

C(Q, K) ' 1 +

∣∣S̃(Q, K)
∣∣2

∣∣S̃(0, K)
∣∣2 ; (4)

where
Q = P1 − P2 , K =

P1 + P2

2
(5)

and
S̃(Q, K) =

∫
S(X, K)eiQXd4X (6)

denote the pair-momentum difference, the average momentum and the Fourier transform
(FT) of the source, respectively, assuming that Q� K holds for the kinematic range under
investigation. The correlation functions are measured with respect to Q over a range of
well-defined K values; then, the properties of the correlation functions are analysed as
functions of the average K for each of those ranges.

A significant fraction of the particles created in a heavy-ion collision is secondary,
i.e., they come from decay. Whereas the primordial particles are created directly from the
hydrodynamic expansion of the collision volume, the decay particles arise from interactions
that take place much later. Hence, the source can be assumed to consist of the following
two components [25]:

1. a core (SC(X, K)) consisting of primordial particles created by the hydrodynami-
cally expanding, strongly interacting quark–gluon plasma, along with the decays of
resonances with half lives of less than a few fm/c; and

2. a halo (SH(X, K)) consisting of the products created by the decay of long-lived reso-
nances, including but not limited to η, η′, K0

S and ω, making it possible to decompose
S(X, K) as [25]:

S(X, K) = SC(X, K) + SH(X, K). (7)

As explained in detail in Ref. [25], the Fourier-transformed emission function of the
halo vanishes for resolvable relative momenta, i.e., the Q values that lie in the experimen-
tally achievable region. Hence, the halo does not contribute to the measured correlation
function, which, in turn, is determined by the core component. Hence, the measured
correlation function, when extrapolated to Q = 0, does not take a value of 2 as expected
from Equation (4) but takes the following form:
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lim
Q→0

C(Q, K) = 1 + λ(K) < 2. (8)

This “intercept parameter” of the correlation function, also called the correlation
strength (λ(K)) may depend on the pair-momentum K. It can be understood on the basis of
the core-halo model by rewriting the correlation function using Equations (4), (6) and (7); and
the fact that S̃H(Q, K) ≈ 0 for experimentally accessible values of Q [9]:

C(Q, K) = 1 +
[

NC(K)
NC(K) + NH(K)

]2 ∣∣S̃C(Q, K)
∣∣2

∣∣S̃C(0, K)
∣∣2

= 1 + λ(K)

∣∣S̃C(Q, K)
∣∣2

∣∣S̃C(0, K)
∣∣2 , (9)

where NC(K) =
∫

SC(X, K)d4X and NH(K) =
∫

SH(X, K)d4X are contributions of the core
and the halo, respectively, and λ(K) is:

λ(K) =
[

NC(K)
NC(K) + NH(K)

]2

. (10)

Realising that X ≡ X(~r, t), the spatial correlation function:

D(~r, K) =
∫

S(~r′ +
~r
2

, K)S(~r′ − ~r
2

, K)d3~r′ (11)

can be used to rewrite C(Q, K) as [24]:

C(Q, K) ≈
∫

D(~r, K)
∣∣ψQ(~r)

∣∣2d3~r∫
D(~r, K)d3~r

. (12)

3. Lévy Distribution

Usually, the shape of the source distribution is assumed to be Gaussian. However,
evidence of a non-Gaussian source for correlated pions has been found in multiple studies,
necessitating a generalisation of the distribution to a Lévy-stable one [26]:

S(x, K) = L(x; α, λ, R) =
1

2π

∫
e−(Q

′R)α
eiQ′xdQ′; (13)

where L is the one-dimensional Lévy function, R is the Lévy-scale parameter, λ is the corre-
lation strength, 0 < α ≤ 2 is the Lévy exponent and Q′ is the integration variable. These
parameters are generally understood to depend on K. Salient features of the distribution
include moments greater than α being undefined and D(~r, K) necessarily having a Lévy
shape with the same α in cases in which S(X, K) is Lévy-shaped. The distribution exhibits
a power-law behaviour for α < 2, where α = 1 represents a Cauchy distribution and α = 2
represents a Gaussian distribution. Multiple factors, such as anomalous diffusion, jet frag-
mentation and proximity to the critical end point (CEP), can contribute to the appearance
of Lévy-stable sources. However, the high-multiplicity, nucleon-on-nucleon nature of the
analysed heavy-ion collisions makes it unlikely for jet fragmentation to be the dominant
reason for the appearance of Lévy sources in this study—as it has been identified as the
cause of Lévy-stable sources in e+e− collisions at LEP [13]. On the other hand, the high
centre-of-mass-energy of the collisions explored here rules out the possibility of the system
being close to the critical end point [4,27,28].

Interestingly, it is trivial to establish that α is related to one of the critical exponents
(η). In the case of a second-order phase transition, the η exponent describes the power-law
behaviour of the spatial correlation function at the critical end point with an exponent of
−(d− 2+ η), where d is the dimension. In a three-dimensional analysis in which d = 3, this
exponent would compute to−(1+ η). However, it is established that the three-dimensional
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Lévy distribution describes the power-law tail of the spatial correlation function with an
exponent of −(1 + α). Thus, comparing the exponents at the critical end point, it can be
easily seen that the Lévy exponent (α) is identical to the critical exponent (η), a conjecture
explored in Ref. [29]. The second-order QCD phase transition is expected to be in the same
universality class as the three-dimensional Ising model. In that case, the η exponent has a
value of 0.03631 ± 0.00003 at the critical end point [30]. However, the universality class of
the random-field, three-dimensional Ising model may also be of relevance here, where the
value of η is 0.50 ± 0.05 [31]. Thus, extracting α at collision energies lower than those used
in this analysis while taking into account finite size and time effects might yield insightful
information about the nature of the quark–hadron phase transition and shed light on the
location of the critical end point in the QCD phase diagram [4,32–35].

As coordinate-space distributions extracted from experimental data show a heavy tail,
the limitations of the hydrodynamical approach—assuming idealised freeze-out with a
sudden jump in the mean free path from zero to infinity—become clear. This requires a
more realistic approach using hadronic rescattering whereby the system cools as it dilutes
with an expanding hadron gas, its mean free path diverges to infinity in a finite time interval
and rescattering occurs in the presence of a time-dependent mean free path. This signals the
existence of anomalous diffusion—experimentally observed as power-law-shaped tails in
coordinate-space distributions of the source—in the system, as opposed to normal diffusion,
with the Gaussian source exhibiting a strongly decaying tail caused by the Brownian motion
of the particles constituting the system.

The momentum-space diffusion equation of one-dimensional, normal diffusion is
expressed as [28]:

∂W(q, t)
∂t

= −kNq2W(q, t); (14)

where kN is the normal-diffusion constant, q is the momentum, t is the time and W(q, t) is
the momentum-space probability distribution. The coordinate-space solution to Equation (14)
is given by the following Gaussian expression:

W(x, t) =
1√

4πkNt
exp

(
− x2

4kNt

)
. (15)

For anomalous diffusion, the coordinate-space diffusion equation, in terms of the
spatial probability distribution (W(x, v, t)), is the generalised Fokker–Planck equation [28]:

∂W
∂t

+ v
∂W
∂x

+
F(x)

m
∂W
∂v

= ηα′0D1−α′
t LFPW. (16)

where ηα′ is the generalised friction constant of dimension [ηα′ ] = sα′−2, 0D1−α′
t is the

Riemann–Liouville operator:

0D1−α′
t tp =

(
∂

∂t

)
0D−α′

t tp =
Γ(1 + p)
Γ(p + α′)

tp+α′−1 (17)

and LFP is the Fokker–Planck operator:

LFP =
∂

∂x
V′(x)
mηα′

+ kA
∂2

∂x2 , (18)

where V′(x) is related to the force (F(x)) by F(x) = − dV(x)
dx , as explained in Refs. [36,37].

The momentum-space solution to Equation (16) is given by:

W(q, t) = exp (−tkα
A|q|α). (19)

where W(q, t) happens to be the FT or the characteristic function of Lévy-stable source
distributions, where α is the Lévy exponent from Equation (13) and kA is the anomalous
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diffusion constant. If a centred, spherically symmetric, Lévy-stable source-distribution is
assumed and all final-state interactions are neglected, the one-dimensional, two-particle
correlation function takes the following simplified form:

C(q) = 1 + λ · e−(qR)α
, (20)

where λ is the correlation strength from Equations (10) and (8), R is the Lévy scale, α is
the Lévy exponent and q is the absolute value of the three-momentum difference in the
longitudinally co moving system (LCMS) [9]:

q = qLCMS = |~p1 − ~p2|LCMS. (21)

R can be interpreted as the homogeneity length of the particle species, while α repre-
sents the extent of the anomalous diffusion occurring in the system. The spherical symmetry
in qLCMS is ideal for a one-dimensional analysis of a three-dimensional, spherically sym-
metric system. Subsequent measurements with higher precision might necessitate a move
towards a full, three-dimensional analysis. Until then, the approximations used in Ref. [38]
may be utilised for a preliminary analysis.

Momentum correlations of like-sign kaon pairs at √sNN = 200 GeV can be utilised
to calculate C(q) and to, consequently, ascertain the shape of the pair-source distribution.
If anomalous diffusion is the sole source of non-Gaussianity, then it is expected that the
extent of the anomaly will depend on the total cross section or, equivalently, on the mean
free path. Since the mean free path is larger for kaons than for pions, the diffusion of the
former is expected to be more anomalous in the hadron gas. Hence, the α for kaons (ακ) is
expected to be smaller [28]. Thus, measuring ακ may shed light on the role of anomalous
diffusion in the hadron gas as the origin of the appearance of Lévy distributions.

4. Measurement

The data used for this analysis were obtained from RHIC’s gold-on-gold collisions at
a 200 GeV centre-of-mass energy per nucleon pair. The collisions were performed in 2016
and measured by the solenoidal tracker at RHIC (STAR) experiment. The STAR experiment
detects multiple particle species emanating from the medium created by the collisions.
These different particle species, depending on their mass and charge, produce different
shapes when their ionisation energy loss (dE/dx) is plotted as a function of momentum.
These shapes can help distinguish the particle species from each other and help isolate
the kaons, as observed in Figure 1. For this investigation, the analysis processes about
410 million events in the 0–30% centrality range. They are subjected to strict track and pair
selection criteria that, following Ref. [39], include the identification of kaons via energy loss
measured by the time-projection chamber (TPC); pair selection based on the fraction-of-
merged-hits (FMH) and the splitting-level (SL); and limitations on the track’s momentum,
rapidity and distance-of-closest-approach (DCA).

(a) (b)
Figure 1. Sample ionisation energy loss as a function of momentum × charge (a) for all available
charged particles and (b) after being cut only for the charged kaons to be isolated.
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The one-dimensional, like-sign, two-kaon, femtoscopic correlation functions are then
experimentally constructed using the event-mixing technique [40]. A(q)—the actual pair
distribution—is formed from kaon pairs, with members of the pair belonging to the same
event. This distribution is affected by various effects, such as kinematics and acceptance.
B(q)—a background distribution—is constructed with the pairs to correct for these effects
and the members of this distribution originate from separate events. In this analysis, the
method for event mixing described in Refs. [9,13] is used to correct for residual correlations.
For a set of event classes based on the centrality and the location of the collision vertex, a
background event pool is established. Then, for each real event, a mixed event of the same
event class is created from this pool, making sure that each particle in this mixed event
belongs to a different real event. Subsequently, pairs within the mixed event contribute to
the formation the aforementioned B(q). Finally, the pre-normalised correlation function is
calculated as:

C(q) =
A(q)
B(q)

·
∫

B(q) dq∫
A(q) dq

, (22)

for three different ranges of transverse mass (mT), defined as mT =
√

m2 + (KT/c)2, where
m is the kaon mass and KT is the average transverse momentum of the pair. The normalisa-
tion integrals are performed over a range in which the correlation function is not supposed
to exhibit quantum-statistical features. It is to be noted that the method outlined here
is applied to pairs belonging to a given range of average momenta. Furthermore, in the
event-mixing technique described above, the number of actual and background pairs is the
same, aside from the effect of the pair-selection criteria mentioned earlier.

With the momentum correlations, obtained from experimental data (both measured
and the empirical values of the calculated correlation function ), preparations are made
to fit the Lévy function detailed in Equation (20) to C(q). However, the assumptions
behind Equation (20) make it unsuitable for a direct fit to experimentally obtained data. As
mentioned in Section 1, final-state interactions have considerable effects on the momentum
correlations between like-sign kaon pairs; therefore, they need to be imbibed into the
analysis as corrections to Equation (20) in order to make it suitable and physically relevant
as a fit for the correlation function obtained above. Multiple factors can contribute to the
final-state modifications of the momentum correlations, the leading of which are Coulomb
interactions, as a gas of charged hadrons can never be entirely devoid of Coulomb repulsion.

The final-state Coulomb interactions are incorporated into the CF by using the Bowler–
Sinyukov formula, which includes a correction term for Coulomb repulsion, which is
expressed as [41,42]:

C(q) =
[
1− λ + λ · K(q; α, R) ·

(
1 + e−(qR)α

)]
· N · (1 + qε) , (23)

where N is a normalisation factor; ε is responsible for a linear, residual, long-range back-
ground; and K is the Coulomb correction [24]:

K(q; α, R) =

∫
D(~r)

∣∣∣ψCoul
q (~r)

∣∣∣
2
d3~r

∫
D(~r)

∣∣ψq(~r)
∣∣2d3~r

, (24)

where D(~r) is the simplified spatial pair distribution, and ψCoul
q (~r) is the solution to

the two-particle Schrödinger equation in the presence of a Coulomb potential. In this
study, K(q; α, R) for kaons is calculated by numerically employing the procedure used in
Refs. [12,24,43]. The inclusion of other final-state contributions, such as the strong inter-
action, can resolve the possible underestimation regarding R and λ and overestimation
regarding α of the Lévy parameters [44]. However, the statistical significance of such precise
corrections turns out to be negligible in the context of the current measurement.

66



Universe 2023, 9, 300

5. Results

As illustrated in Figure 2, the Coulomb-corrected Lévy distribution function is in agree-
ment with the measured C(q) over the entire qLCMS range. The femtoscopic peak [18,19]
and the Coulomb hole [42] are both observed as expected. The values of the normali-
sation factor (N) and the linear background factor (ε) are observed to be close to 1 and
0, respectively.

Figure 2. C(q) as a function of qLCMS for positively charged kaon pairs in the mT range (703–777 MeV/c2)
and the centrality range (0–30%). The red dots denote the measured data, and the blue lines (solid
and dotted) denote the fit. The systematic uncertainties are shown as hollow rectangles.

The systematic uncertainties are obtained by combining the uncertainties arising from
variations in the event- and pair-selection criteria, denoted by ∆cuts, as mentioned above,
and those arising out of variations to the range of the fit are denoted by ∆fits. At this
preliminary stage, systematic uncertainties arising out of variations in the track-selection
criteria are not included. Thus, the final systematic uncertainties (∆total) are obtained as:

∆total =
√
(∆fits)2 + (∆cuts)2 . (25)

Figure 3 shows the kaon homogeneity length (R), otherwise known as the Lévy scale,
as a function of mT. It is observed to exhibit large, systematic uncertainties, a very weak
dependence on mT and a possible decrease with respect to it, as reported in previous
studies [2,3,6,8,14,45]. However, hydrodynamical studies predicting a decrease in the Lévy
scale as a function of mT are based on the Gaussian source assumption [2,3]. Hence, more
investigations on this topic are in order. The extracted values of the Lévy scale in this
charged-kaon analysis are also found to be similar to PHENIX’s like-sign pion results [9],
with Rπ∼5–7 fm for the mT range of 600–700 MeV/c2. A more detailed comparison of the
mT dependence of Lévy scales of different particle species could shed light on the origin
of the appearance of Lévy-stable sources, given that, according to calculations based on
hydrodynamics, species-independent mT scaling was predicted in Ref. [46].

The intercept of the correlation function—the correlation strength, i.e., λ—is shown in
Figure 4. Values extracted from the fits show that it is close to unity, as is to be expected
based on the small fraction of decay kaons present in the system.
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Figure 3. R as a function of mT for 0–30% centrality. The hollow, blue squares denote positively charged
kaon pairs and the solid, and blue circles denote negatively charged kaon pairs, along with their error
bars. The systematic uncertainties are shown as hollow (K+K+) and shaded (K−K−) rectangles.

Figure 4. λ as a function of mT for 0–30% centrality. The hollow, blue squares denote positively
charged kaon pairs, and the solid, blue circles denote negatively charged kaon pairs, along with their
error bars. The systematic uncertainties are shown as hollow (K+K+) and shaded (K−K−) rectangles.

The extent of the anomalous diffusion might be gleaned from the Lévy exponent
(α) as shown in Figure 5, also illustrating the values corresponding to the Gaussian and
Cauchy distributions, with dashed and dotted blue lines, respectively. The Lévy exponent
is observed to have values between those two extremes, indicating power-law behaviour
and the likely existence of anomalous diffusion. The extracted values of α∼1.0–1.5 for
kaons are similar to PHENIX’s pion results, with απ∼1.2 in the same transverse mass range.
ακ not being smaller than απ hints at the existence of other factors on top of anomalous
diffusion, contributing to the appearance of non-Gaussian source shapes. However, the
current statistics prevent the drawing of more definitive conclusions.
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Figure 5. α as a function of mT for 0–30% centrality. The hollow, blue squares denote positively
charged kaon pairs, and the solid, blue circles denote negatively charged kaon pairs, along with their
error bars. The systematic uncertainties are shown as hollow (K+K+) and shaded (K−K−) rectangles.

6. Summary

Preliminary analysis of data collected by STAR from RHIC’s 2016 BES√sNN = 200 GeV
Au + Au collisions suggests a non-Gaussian, Lévy-stable source shape for pairs of the
identically charged kaons produced in the collisions. The Lévy-stability exponent ακ is
observed to be comparable to that of like-sign pion pairs obtained from PHENIX.

However, anomalous diffusion may not be solely responsible for the heavy tails
observed in the source distributions, as suggested by the comparability of ακ to απ . It is
to be noted that, a complete systematic uncertainty analysis, which is currently ongoing,
is required to draw definitive conclusions about any and all claims made herein. Because
Lévy-stable sources can arise in strongly interacting systems due to their proximity to the
QCD critical end point at higher chemical potentials, similar studies at lower beam energies
would likely strengthen the search for the QCD critical end point.
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3. Csörgő, T.; Lörstad, B. Bose-Einstein correlations for three-dimensionally expanding, cylindrically symmetric, finite systems.

Phys. Rev. C 1996, 54, 1390–1403. [CrossRef] [PubMed]
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Abstract: In 2018, in preparation for the Beam Energy Scan II, the STAR detector was upgraded
with the Event Plane Detector (EPD). The instrument enhanced STAR’s capabilities in centrality
determination for fluctuation measurements, event plane resolution for flow measurements, and in
triggering overall. Due to its fine radial granularity, it can also be utilized to measure pseudorapidity
distributions of the produced charged primary particles, in EPD’s pseudorapidity coverage of
2.15 < |η| < 5.09. As such a measurement cannot be done directly, the response of the detector to the
primary particles has to be understood well. The detector response matrix was determined via Monte
Carlo simulations, and corrected charged particle pseudorapidity distributions were obtained in
Au+Au collisions at the center of mass collision energies

√
sNN = 19.6 and 27.0 GeV using an iterative

unfolding procedure. Several systematic checks of the method were also done.

Keywords: high-energy heavy-ion collisions; STAR EPD; pseudorapidity distributions; Bayesian
unfolding

1. Introduction

According to quantum chromodynamics, quarks cannot be observed in their free
form—only in hadrons due to the color confinement. This effect also causes the strong
interaction to have a finite range of around 10−15 m—even though the gluon mass is
known to be zero. In the very early Universe with enormous pressure and temperature,
it is assumed that these particles could exist in a form of quark–gluon plasma (QGP). To
create such a state experimentally, particle accelerators that perform high-energy heavy-ion
collisions are utilized. Since the lifetime of the QGP is short, the information about the
partonic state has to be deduced from the final-state particles, e.g., hadronic jets.

One of the experimental facilities studying the formation and the evolution of the QGP
is the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory, and
one of its experiments is the Solenoidal Tracker at RHIC (STAR) [1]. The complex STAR
detector system consists of several instruments; one of them is the Event Plane Detector
(EPD) [2].

In these proceedings, measurements of charged particle1 pseudorapidity distributions
in Au+Au collision data at

√
sNN = 19.6 and 27.0 GeV utilizing the EPD are presented.

Detailed systematic uncertainty checks are also discussed.

1.1. The EPD

The EPD was installed in 2018, as a part of the preparation for the BES-II program.
Among motivations behind building the detector were: improving the event plane res-
olution for flow measurements, independent centrality determination for fluctuation
measurements, and using it as a trigger in the high-luminosity environment during the
BES-II program.

The EPD is a completely new subdetector that was supposed to improve the event
plane resolution—for example, by about a factor of 2 in Au + Au collisions at
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√
sNN = 19.6 GeV [3]. Its predecessor (in event plane determination), the Beam–Beam

Counter (BBC) has much less fine granularity than the EPD: only 36 tiles, with the 18 inner
smaller tiles used - compared to the 372 tiles of the EPD [2]. It also has smaller acceptance
of 3.3 < |η| < 5.0 in pseudorapidity [4].

The detector consists of two “wheels” on either (West and East) side of the STAR
detector system, installed ±375 cm from the nominal interaction point (the detector’s
center). Each wheel consists of 12 “supersectors” covering φ = 30◦ in azimuthal angle,
each further segmented to 31 “tiles”, thus giving 16 radial segments so-called “rings”2

covering a relatively large forward pseudorapidity range of 2.15 < |η| < 5.09 (or, range of
0.7◦ < θ < 13.5◦ angle to particle beam axis). Each supersector is connected to a bundle of
31 optical cables that transport light to high-efficiency silicone photo-multipliers (SiPM).
The signals are then sent to the digital data acquisition systems [2].

Each tile registers hits, mostly Minimum Ionizing Particles (MIPs). Assuming that
the probability distribution of the measured signal of a single hit can be described by a
Landau distribution, the presence of multiple hits will result in a convolution of multiple
Landau distributions. The measured Analog Digital Count (ADC) distributions were fitted
with a multi-MIP Landau function, shown in Figure 1. The different Landau distributions
corresponding to the ADC contribution caused by n number of MIPs were convolved with
different convolution weights (n-MIP weight).

The conclusion drawn was that convolving with less than 5 n-MIP weights are ade-
quate to achieve a good fit, as the contribution of the 5-MIP weight was already zero within
uncertainties—under the asssumption that the MIP weights were Poisson-distributed
which was validated during data analysis. In view of this result, the systematic uncer-
tainty contribution from this source—that is, fitting only up to 5 n-MIP weights—can be
considered negligible.

Figure 1. Example multi-MIP Landau fit of ADC count distribution in ring #16, with ADC counts
in arbitrary units. Blue points with error bars represent the data, red continuous line shows the
fitted function.

2. Methodology
2.1. Charged Particle Pseudorapidity Measurement with the EPD

The aim is to measure the angle θ between the three-momentum p of the particle and
the beam. Instead, a more convenient3 quantity, the pseudorapidity η is used, which is
defined as:

η ≡ − ln
[

tan
(

θ

2

)]
=

1
2

ln
( |p|+ pz

|p| − pz

)
, (1)

where pz is the z component of the momentum, and the z direction is chosen to coincide
with the direction of the beam [5].

Beyond the event plane determination, the EPD’s fine radial granularity allows for
pseudorapidity measurements to be performed. The raw EPD hit numbers could be used
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to calculate the pseudorapidity distribution of charged particles (dNch/dη) by using the
corresponding η value of the given ring.

However, this also includes the secondary particles that do not originate from the
primary vertex. As the EPD is preceded by the rest of the detector system and is relatively
far from the interaction point, multiple factors distort (“blur”) the measured distribution.

The factors assumed to cause the most significant distortion effect are as follows.
First of all, charged primary particles scatter in detector material (or in rare cases with
each other), creating secondary particles contributing to dNch/dη significantly. This is
demonstrated in Figure 2a, where the vertices (origins) of particles hitting the EPD in a
detector material simulation are depicted. Second, neutral primary particles contribute
through decays (e.g., a neutral Λ baryon decaying into proton and pion). In Figure 2b, it is
clearly demonstrated that this contribution is non-negligible (based on the same simulation
as mentioned above).

(a) (b)

Figure 2. (a) Vertices of particles registered by the EPD, based on a HIJING [6] + Geant4 [7] MC
detector simulation. The plots shows the vertex distribution in the x–y plane, integrated along the z
axis, revealing the detector structure and surrounding materials. (b) Distribution of various types
of simulated primary particles hitting EPD, ring-by-ring, where rings in the backward direction
are in the left hand part of this panel, while rings in the forward direction are in the right hand
side—ordered by apparent spatial rapidity of the given ring.

2.2. From Raw EPD Data to Pseudorapidity Distribution [dN/dη]

Using the previously mentioned multi-MIP Landau fit, one can extract the number
of EPD hits for each ring; denoted as N(iRing) in the ith ring. Given the underlying
pseudorapidity distribution of the primary particles (dN/dη), assuming linear dependence
from the dN/dη, the number of hits in a given ring can be calculated formally as a
convolution:

dN(iRing) =
∫

R(η, iRing)
dN
dη

dη, (2)

where R denotes the response matrix, which encodes response of the detector, i.e., connects
a detector-level distribution with the true distribution to be measured. In this analysis, it
contains the number of hits in the given ring number distribution’s bin, originating from a
particle at given η pseudorapidity distribution’s bin.

No probabilistic consideration guarantees this matrix to be invertible; therefore, a
simple (or even a regularized) matrix inversion might not be an option even if the exact
form of R would be known. Instead, a method called Bayesian iterative unfolding [8]
(“deblurring”) is used.

Using this approach, the R needs to be extracted from simulations that are as close to
the real system as possible. Using a complex event generator, a list of primary particles is
obtained, along with a list of EPD hits—preferably all linked to primary tracks causing them.

In this analysis, the events were generated using the STAR’s HIJING Monte Carlo
event generator combined with Geant4 to simulate the precise geometry of the EPD. In the
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following, the abbreviation MC will indicate data from these simulations. Such a response
matrix can be seen in Figure 3.

It should be noted that no (light) ion fragments can be simulated in HIJING, which are,
in reality, inevitable with heavy-ion collisions. However, this shortfall should not change
the results significantly, according to PHOBOS results [9]: the contribution from light ion
fragments causes at least an order of magnitude smaller contribution to dN/dη than the
results in this analysis (see Section 4).

Figure 3. Heatmap visualization of the R response matrix, connecting bins containing numbers of
EPD ring hits (caused by either primary or secondary particles) with bins corresponding to primary
particles at given η pseudorapidity. The left side corresponds to East EPD wheel, the right side to
West EPD wheel. It is worth noting that many primaries create hits even in the opposite side EPD via
secondaries, as seen in upper left and bottom right quarters.

In the following step, the unfolding technique is utilized to determine an uncorrected
dN/dη. The software used for this purpose is the RooUnfold [10] framework, implemented
in C++, running within the ROOT environment [11]. The package itself defines classes for
the different unfolding algorithms—among others, the Bayesian iterative unfolding.

The response matrix class of the software includes functions for populating the re-
sponse matrix4 as well as for managing the background (missed hits from real primaries
and hits resulting from other sources5).

During the unfolding, one can choose to propagate the statistical uncertainty in
different ways; in this case, the most appropriate method should be propagating the
(mostly badly conditioned, thus noninvertible) covariance matrix [8].

The resulting EPD ring distribution6 needs to be corrected for the multiple counting
(efficiency, ε), explained as follows. The unfolding procedure results in one unfolded track
for each individual EPD hit. However, it should be noted that one primary track can
cause multiple hits. This effect needs to be corrected for—either via a bin-by-bin correction
calculated from MC data (via a Number of hits from 1 primary(η) distribution), or by
weighing the values filled in response matrix such that it could compensate for the multiple
counts during the unfolding. In this analysis, the first method was used.

2.3. Extracting Charged Particle Pseudorapidity Distribution

In order to obtain the charged particle distribution (dNch/dη) from dN/dη, either dif-
ferent bin-by-bin corrections can be used, or neutral particles can be marked as background
(“fake”) using RooUnfold’s Fake() method. In this analysis, the following methods were
used as the charged factor correction:

1. Bin-by-bin correction of the already unfolded dN/dη using the charged particle
fraction Ncharged(η)/Nall(η) from MC data;

2. Bin-by-bin correction of the raw EPD data via Ncharged(iRing)/Nall(iRing) from MC
data; then unfolding of the EPD charged particle distribution.7
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3. Mark neutral particles as background and fill the response matrix as in the second
method, except that the hits from neutral primaries are considered as “fake”.

The three different methods can later be used to estimate the systematic uncertainty of
the unfolding procedure itself.

2.4. Consistency Check of the Unfolding Methods

Before unfolding the real data, a closure test was done to check whether the unfolding
method can recover the “true” training data itself (MC “truth”).

It was found that unfolding done on the input training MC sample reproduces well
the input η distribution. When some noise (±1–10%) was added to the training sample, the
resulting unfolded distribution was in agreement with the input distribution within <3%.
All in all, the unfolding itself was found to work well.

Furthermore, after applying the multiple counting correction and the three different
methods of charged factor correction on the unfolded distribution8, the resulting distribu-
tions were compared to the original MC dataset’s dNch/dη. As it is visible in Figure 4, the
maximal relative deviation is up to 2% in certain bins for the first method and less than
0.1% for the other two methods.

It is worth noting that although the third method (marking neutral particles) shows
the most precise result here, the systematic checks showed that it is the least reliable in
terms of most heavily depending on the MC input provided to the response matrix.

Figure 4. Consistency check of the three different methods to get dNch/dη from MC EPD ring
distribution. The difference is shown as unfolded dNch/dη over MC “truth”, the distributions
divided bin-by-bin. Blue marker represents the first method (η-dependent charged factor correction),
black shows the second method (EPD ring number dependent charged factor correction), and red
represents the third method (marking neutral particles), relative to MC truth’s dNch/dη. The errorbars
are only plotted for informative purposes: they were calculated using the ROOT’s TH1 class’ default
square root of sum of squares of weights.

Given the result of the closure test, the unfolding and correction methods were consid-
ered adequately self-consistent.

3. Systematic Checks

In the following section, the examined systematic uncertainty sources and their contri-
bution to the results are discussed.

3.1. Dependence on Input MC Distribution

The Bayesian iterative unfolding process, via its iterative nature, should mostly over-
come differences in response matrix from real response that are not related to distortion
effects, such as detector geometry [8]. However, as the exact response matrix cannot be
determined even with precise MC simulations and the unfolding process itself is not perfect,
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some dependencies on the various parameters in the MC simulations can occur. Those are
considered as systematic uncertainties of the measurement.

3.1.1. Tightening and Shifting the Input MC dN/dη

First, the simulated sample’s dNch/dη was modified (“suppressed”) using a Gaussian
shape with width σ and mean η0. These suppression factors can be seen in Figure 5a.
This was done via a random selection based on Gaussian distribution while filling the
response matrices.

(a)

(b)

Figure 5. Tightening and shifting the MC input distribution using random selection based on
Gaussian distribution of σ width and η0 curve peak position. (a) Demonstration of the Gaussian
suppression factors used. (b) The dNch/dη of the distorted MC input samples.

Using this approach, all combinations could be analyzed, that is, unfolding the ith MC
sample’s EPD ring hit distribution via response from jth MC sample. In case of i = j, the
unfolding was as close to perfect as expected, discussed in Section 2.4.

Unfolding results with the Gaussian width of σ / 1 were not considered here as in
this case there are almost no particles in the EPD range. Otherwise, there was less than a
few percent variation in the EPD’s η region.

Overall, in the analysis, the effect of tightening the dNch/dη of the training sample to
σ = 2 and shifting it by ±3 units of pseudorapidity was investigated.
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3.1.2. Broadening the Input MC dN/dη

Similar to modification done in Section 3.1.1, here, the tracks were modified with a
factor of

exp
(

η2 − η2
max

2σbroad

)
. (3)

There was no suppression utilized for |η| > ηmax, with ηmax = 6. The resulting shape of
the distributions can be seen in Figure 6.

Figure 6. Broadening the MC input distribution using random selection based on Gaussian distribu-
tion of σbroad width.

While unfolding the data with these input MC distributions, a significant decrease
at midrapidity values was observed. However, this occurred mostly outside the EPD’s η
region; the unfolding was considered acceptable down to σbroad ≈ 3.

3.2. Changing the Charged Fraction in the MC Training Dataset

The fraction of the charged particles in the MC input data was changed by ±15%. This
was achieved by randomly rejecting either the neutral or the charged particles.

3.3. Changing the pT Slope of the MC Training Dataset

The transverse momentum (pT) distribution slope of the MC input data was changed
by ±10% via randomly rejecting particles of small or large pT.

3.4. Centrality and z-Vertex Selection

It was investigated, by how much the unfolded distribution would change if either
the z-vertex or the centrality selection are modified. For the former investigation, a ±5 cm
calibration uncertainty in the z-vertex measurement of the real EPD data was employed;
for the second one, ±5% calibration uncertainty was assumed in centrality determination
of the real EPD data.

3.5. z-Vertex Choice

Due to the detector geometry, it is important to also take into account the interaction
point’s z-vertex position in the calculations, as the resulting pseudorapidity distribution
should not depend on it.

The EPD data, as well as the responses, were collected in nine different z-vertex
classes, equally distributed from −45 to +45 cm. Depending on which range was un-
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folded, the resulting distribution still may differ and has to be taken into account as
systematic uncertainty.

3.6. Unfolding Method Choice

The most significant systematic uncertainty contribution was caused by the difference
between the results achieved using different unfolding and correction methods (as listed
in Section 2.3). The first method was used as benchmark, from which the differences
were calculated.

3.7. EPD Related Uncertainties

As previously stated, the EPD electronics were considered fully efficient (except some
“dead areas” in the detector from, e.g., glue and gaps, but these were assumed to be correctly
handled in the simulation). The uncertainty from multi-MIP Landau fit was considered
negligible compared to other systematic sources.

In conclusion, the systematic uncertainties coming from the detector system itself were
considered negligible.

The different systematic uncertainty sources and their contribution with informative
percentage values can be seen in Table 1.

Table 1. Summary of systematic uncertainty sources and their contribution.

Source Systematic Uncertainty

MC input dNch/dη tightening, shifting 6%
MC input dNch/dη broadening 4%
Charged fraction in MC 6%
pT slope change in MC 1%
Centrality selection 2%
z-vertex selection negligible
z-vertex choice 1%
Unfolding method choice 8%
EPD related uncertainties, electronics, efficiency negligible

4. Results

In this manuscript, charged particle pseudorapidity distributions with systematic
uncertainties listed in Section 3 were obtained at two RHIC energies in the EPD pseudo-
rapidity range. The results at

√
sNN = 19.6 and 27.0 GeV can be seen in Figures 7 and 8,

respectively. The caption #MIP ≤ 5 written on the plot indicates the number of convolution
members in the multi-MIP Landau fit, as described in Section 1.1.

Comparison with the PHOBOS Results

Another experiment of the RHIC complex was the PHOBOS experiment, which com-
pleted data taking in 2006. The PHOBOS was a large acceptance silicon detector, covering
almost 2π in azimuth and |η| < 5.4 in pseudorapidity [9]. Compared to STAR’s EPD, there
are differences in both detector topology and granularity: the silicone pad detectors mea-
sure the total number of charged particles emitted in the collision, with modules mounted
onto a centrally located octagonal frame (Octagon) covering |eta| ≤ 3.2, as well as three
annular frames (Rings) on either side of the collision vertex, extending the coverage out to
|η| ≤ 5.4 [12].
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Figure 7. Charged particle pseudorapidity distributions measured with STAR EPD on RHIC energy√
sNN = 19.6 GeV. The data was processed in eight centrality classes, presented with the different

markers. The statistical uncertainties, marked by errorbars, are not visible on this plot, as the markers
themselves are larger. The colored area indicates the systematic uncertainties of the measurement.

Figure 8. Charged particle pseudorapidity distributions measured with STAR EPD on RHIC energy√
sNN = 27.0 GeV. The data were processed in eight centrality classes, presented with the different

markers. The errorbars represent the statistical uncertainty, and the colored area indicates the
systematic uncertainties of the measurement.

The PHOBOS also measured dNch/dη at 19.6, 62.4, 130, 200 GeV energies [13]. Al-
though in that paper a slightly different centrality binning was used (0–3%, 3–6% and
6–10% instead of 0–5% and 5–10%; the other centrality classes were the same), at 19.6 GeV
the results can be compared.
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In Figure 9, it is apparent that the two measurements show sizeable differences,
depending on η: around up to a factor of two, increasing from small |η| toward for-
ward/backward rapidities.

The exact reasons behind this discrepancy are not yet known but the difference cannot
be explained by the systematic uncertainties described in Section 3.

Figure 9. Charged particle pseudorapidity distributions measured in PHOBOS (hollow circles)
and STAR (star markers). Note that on the upper left graph, the centrality class of the PHOBOS
experiment’s result is actually 6–10%.

5. Discussion

In summary, based on EPD ring-by-ring distributions, charged particle pseudorapidity
measurements at

√
sNN = 19.6 and 27.0 GeV were performed with detailed systematic

investigations regarding simulation data, calibration data, and unfolding methods.
The results at

√
sNN = 19.6 GeV show significant difference compared to the results

from PHOBOS. There are four components in this comparison: EPD spectrum measurement,
Geant4 simulation, unfolding procedure from the STAR part, and the PHOBOS data itself.

The method presented in this manuscript is to be extended to other
√

sNN values (as
part of the BES-II program) and to fixed target data—mainly at energies where the QCD
critical point is expected [14]. Refining this measurement method is also important for the
search of the QCD critical point, in order to fine-tune the models used in these analyses.

Measuring pseudorapidity values of charged particles is important due to the pos-
sibility of estimating the initial energy density of the quark–gluon plasma created in the
collisions, based on them [15,16]. Furthermore, the forward and backward rapidity mea-
surements can provide information about the nuclear-matter effects as well [17].
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Abbreviations
The following abbreviations are used in this manuscript:

QGP quark–gluon plasma
RHIC Relativistic Heavy-Ion Collider
STAR Solenoidal Tracker
EPD Event Plane Detector
BES Beam Energy Scan
MIP minimum ionizing particle
ADC analog-to-digital converter
MC Monte Carlo (simulation)
QCD quantum chromodynamics

Notes
1 The EPD is more sensitive to charged particles, as detailed subsequently.
2 The rings are numbered from 1 to 32 in the following manner: the innermost East EPD ring is the #1 which follows outward until

#16; then, the #17 continues on the West EPD side’s outermost ring until #32 being the innermost one.
3 In the ultrarelativistic limit, it approaches to rapidity (in c = 1 unit system, c being the speed of light): η ≈ y ≡ 1

2 ln
(

E+pz
E−pz

)
, with

E being the energy of the particle.
4 Fill(xmeasured, xtruth); naturally, “measured” and “truth” here stand for the training datasets obtained from MC (simulation).
5 Miss(xtruth) and Fake(xmeasured).
6 Caused by both primary and secondary particles.
7 In this case, another type of response matrix has to be used that was filled only with the charged particles’ data.
8 Note that the mentioned unfolding procedure was at this stage still done on the MC EPD ring distribution and thus on the

training sample.
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Abstract: J/ψ, a charmonium bound state made of a charm and an anti-charm quark, was discovered
in the 1970s and confirmed the quark model. Because the mass of charm quarks is significantly
above the quantum chromodynamics (QCD) scale ΛQCD, charmonia are considered excellent probes
to test perturbative quantum chromodynamics (pQCD) calculations. In recent decades, they have
been studied extensively at different high-energy colliders. However, their production mechanisms,
which involve multiple scales, are still not very well understood. Recently, in high-multiplicity p + p
collisions at RHIC and at the LHC, a significant enhancement of J/ψ production yield has been
observed, which suggests a strong contribution of multi-parton interaction (MPI). This is different
from the traditional pQCD picture, where charm quark pairs are produced from a single hard
scattering between partons in p + p collisions. In this work, we will report the J/ψ normalized
production yield as a function of normalized charged particle multiplicity over a board range of
rapidity and event multiplicity in the J/ψ → µ+µ− channel with PHENIX Run 15 p + p data at√

s = 200 GeV. The results are compared with PYTHIA 8 simulations with the MPI option turned
on and off. Finally, the outlooks of J/ψ in p + Au and Au + p collisions, along with color glass
condensate (CGC) predictions and the multiplicity-dependent ψ(2S)/J/ψ ratio in p + p data, will be
briefly discussed.

Keywords: quantum chromodynamics; charmonium; multi-parton interactions; production yield;
high event multiplicity; p + p collisions; initial state effect; final state interaction; hadronization; color
glass condensate

1. Introduction

In 1974, J/ψ, a charmonium-bound state made of charm and anti-charm quark (cc̄)
was discovered at Brookhaven National Laboratory [1] and the Stanford National Linear
Accelerator [2] and confirmed the existence of charm quarks [3] and validated the quark
model. Because the charm quark mass is above the QCD scale ΛQCD, the production of a
cc̄ pair in high-energy collisions is perturbative, which makes J/ψ an excellent probe to
test pQCD calculations.

The production of J/ψ at high-energy hadronic colliders involves multiple stages
across many different scales. In recent decades, J/ψ has been studied extensively at dif-
ferent colliders [4–6]. Nonetheless, the description of J/ψ production is still not fully
developed and cannot reach very high precision. However, thanks to the QCD factoriza-
tion theorem [7], hard processes, which are perturbatively calculable, are factorized from
soft processes, which are non-perturbative but can be modeled phenomenologically and
constrained by experiments. This allows us to apply pQCD to calculate the production
cross-section of J/ψ. We can test QCD at high-energy colliders through a comparison of
the J/ψ production data with model calculations.

Universe 2023, 9, 322. https://doi.org/10.3390/universe9070322 https://www.mdpi.com/journal/universe84
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In hadronic collision events, both elastic and inelastic scatterings may occur. Exper-
imentally, we are interested in inelastic collision events. There are two types of inelastic
hadronic collision events: diffractive and non-diffractive dissociations [8]. In this work, we
focus on J/ψ, produced in non-diffractive hadronic collision events, which can be denoted
as pp→ J/ψ + X.

A simple sketch of J/ψ production in high-energy hadronic collision events can be
summarized as below:

Initial Dynamics of Partons: According to the Parton Model, the structure of hadrons
can be described by constituent partons [9]. The initial dynamics of partons are non-
perturbative but can be parametrized by parton distribution function (PDF) [10]. They
can be measured in deep inelastic scattering experiments at different colliders and related
with each other via scaling [7]. Alternatively, phenomenological approaches [11], such
as String Percolation [12] and Color Glass Condensate [13], can be applied to model the
incoming hadrons. These models have been compared with experimental data such as
charged particle pT spectra and rapidity distribution dNch/dη and demonstrate reasonably
good agreement [14,15].

Initial State Interactions: They occur among energetic partons before hard scatterings.
One example is the soft radiation of partons [16], which is called the initial state radiation
(ISR). ISR will influence the initial heavy-quark pair production [17]. Usually, the effect can
widen cc̄ azimuthal angle correlation [18] and broaden the pT spectra [19].

Hard Partonic Scattering: Energetic partons scatter off each other with large momen-
tum transfers. In the traditional pQCD picture, it is simply described as a single hard
scattering between two partons in each collision. They can be calculated analytically
by pQCD with Feynman diagrams to a very high precision [20]. At RHIC, the cc̄ pair
production is dominated by gluon–gluon fusion: gg→ cc̄.

Multiple Parton Interaction (MPI): MPI is an elaborate paradigm to describe the
partonic interaction stage at high-energy colliders at RHIC, Tevatron, and the LHC [21].
According to MPI, one hard scattering, accompanied by several semi-hard interactions,
takes place in each collision. All of them need to be included in the partonic scattering
amplitudes. At present, high-energy hadronic colliders create more phase space for MPI
to occur. Many studies at the LHC suggest MPI should be included to better describe the
data [22].

Hadronization: In the final state, the cc̄ pairs will lose energy via radiation and
evolve into the color-neutral J/ψ bound state. Because this process is also soft and non-
perturbative, many phenomenological models have been developed to describe the cc̄→
J/ψ process in different collision systems. Selected examples of theoretical models are
listed below:

Non-Relativistic QCD (NRQCD): This is an effective field theory approach to describe
the hadronization of cc̄ pairs thanks to their large mass compared to its internal kinetic
energy, which results in a slow speed β [23] within the non-relativistic limit β << 1.
NRQCD includes perturbative short-distance and non-perturbative long-distance effects
for a range of strong coupling αs. To the leading order (LO), there are two mechanisms
describing charmonium production.

• Color Singlet (CS): The cc̄ pairs are in the color-singlet state with the same quantum
number as the cc̄ bound state in J/ψ. When the cc̄ pair kinematics reach the J/ψ mass,
they will bind together [24].

• Color Octet (CO): The cc̄ pairs are in the color-octet state carrying net color changes
and emit extra gluons [25] to reach the color-neutral state, which results in additional
hadron production associated with the J/ψ observed in the J/ψ-hadron correlation
studies [26].

NRQCD predicts sizable transverse polarization of J/ψ, which has also been observed
experimentally [27]. There are other phenomenological models, such as the Color Evap-
oration Model [28], Statistical Hadronization Model [29], and Color String Reconnection
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Model [30], that describe the J/ψ hadronization. Currently, physicists are testing all these
models with experimental data.

Final State Interaction (FSI): In the final state, the newly formed J/ψ mesons may still
interact with comoving particles nearby [31]. In the elastic scenario, J/ψ kinematics will be
modified. Inelastically, J/ψ may possibly be broken up [32]. Hence, the final state comover
effect may affect J/ψ production yield and will become more prominent at high levels of
multiplicity. Experimentally, the final state comover effect can be studied by J/ψ-hadron
femtoscopic correlation measurements [32]. Theoretically, FSI has also been implemented
in the EPOS event generator [33].

Experimental Observables: All the above-mentioned processes will contribute to the
final production of J/ψ, which can be reconstructed from its decay particles with detectors
in the experiment. The experimental observables used to study J/ψ production may be the
production yield as a function of event activity for fully reconstructed J/ψ. Experimentally,
the event activity is quantified by charged particle multiplicity. The production yield, as a
function of event multiplicity, can probe the processes at the partonic level and will shed
light on the interplay between soft and hard particle production [34].

In particular, we can use a relative quantity: the normalized J/ψ yield R ≡ N J/ψ/〈N J/ψ〉
as a function of normalized charged particle multiplicity Nch/〈Nch〉. In experiments, this
observable has an advantage because it can cancel the luminosity and some efficiency
corrections, such as J/ψ acceptance and reconstruction efficiency, which ultimately reduces
the systematic uncertainties. Theoretically, in the string percolation picture [12], there is
a simple scaling of N J/ψ by the number of color strings Ns at the partonic level, which
is similar to Ncoll in heavy-ion collisions at the nucleon level. Moreover, Nch is scaled by
Ns, another analog to the Npart scaling for soft particle production in heavy-ion collisions.
Therefore, this is also inspired by theoretical perspectives. The normalized J/ψ yield
as a function of normalized charged particle multiplicity measurements was studied by
experiments conducted at RHIC and the LHC over different kinematic regions.

Autocorrelation: The J/ψ itself can contribute to the charged particle multiplicity in
many different ways, as listed below [35]:

• The J/ψ decay daughters, such as the dipion, dielectron, and dimuon pairs.
• The extra gluons emitted from the cc̄ pair in the color-octet state producing additional

charged hadrons [26].
• The J/ψ cluster collapsing into hadrons [36].
• The feed down from b-hadron decays for non-prompt J/ψ.

Generally speaking, the autocorrelation increases Nch in J/ψ events compared to
minimum bias (MB) events. Reducing the autocorrelation effects can improve our study
for dedicated physics processes.

2. Recent Developments

Today, with the advancement of technologies related to detector instrumentation,
high-performance computing, and artificial intelligence, we are moving toward a high-
precision QCD era. Many novel studies of J/ψ production have been conducted at RHIC
and the LHC.

Recently, the ALICE Collaboration reported results on J/ψ production measured
in dielectron channel with the LHC Run 2 pp data at

√
s = 5, 7, 13 TeV [37–39]. The

measurements of the J/ψ-normalized yield are performed in both middle- and forward-
rapidity regions over a wide range of normalized charged particle multiplicities [40]. The
normalized J/ψ yield, as a function of N J/ψ/〈N J/ψ〉 at mid-rapidity, generally lies above
the forward-rapidity region. A significant enhancement of J/ψ production with respect to
linear scaling is observed at high multiplicities for both middle and forward rapidities [39].
Several theoretical models incorporating both initial state effects and MPI attempt to explain
the data [39].

At RHIC, the STAR experiment carried out the J/ψ studies in the dielectron channel,
which only shows up to about three units of average charged particle multiplicities at a
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rapidity of |y| < 1 [41]. The data are presented in different pT regions. However, the
results also suggest a slight enhancement for J/ψ production and are comparable to ALICE
at the LHC energy rate. The increase becomes steeper at a higher pT and multiplicity
region, although this difference is not significant due to the large uncertainties and does
not occur at a very high event multiplicity, where the FSI is reduced and MPI effect is more
prominent. The STAR result are generally well described by CEM, CGC, and NLO with
NRQCD calculations at different pT regions. However, no conclusion regarding the use
of MPI for J/ψ production at RHIC at mid-rapidity and near the average charged particle
multiplicity has been drawn.

Phenomenologically, the MPI effect plays a significant role in charm-quark produc-
tion [42]. In the MPI picture, the average number of heavy-quark pairs in pp collision
increases compared to the traditional pQCD picture of single hard scattering [43]. Along
with the color reconnection model for J/ψ hadronization treatment, a significant enhance-
ment of the J/ψ production cross-section [30] is predicted. Hence, the linear scaling
assumed in the traditional pQCD picture does not hold [44].

From the simulation side, the latest versions of PYTHIA 8 event generator incorporated
many physics processes, including ISR, hadronization, and FSR, in addition to MPI, to
describe underlying events in high-energy pp collisions [45]. PYTHIA 8 simulations are able
to reproduce the charged particle pT spectra and dN/dη with reasonably good agreement
at RHIC with Detroit tune [46] and the LHC with Monash tune [47]. PYTHIA users can
turn MPI on and off, use different underlying event tunes, and adjust the CSM and COM
contribution in cc̄→ J/ψ to compare with the data.

The J/ψ produced from the recombination of the cc̄ pair described in the Introduction
is traditionally considered the dominant production mechanism of J/ψ [48] and will
lead to a substantial amount of transverse polarization. However, recently, at the LHC,
unpolarized J/ψ production from jets, an alternative production mechanism in pp [49] and
PbPb [50] collisions was observed by the CMS experiment. Moreover, LHCb has shown that
unpolarized J/ψ, down to low pT , is produced from jet fragmentation in pp collisions [51].
J/ψ are observed to be hadrons within the jet cones’ radius. The J/ψ produced from jets
will have different production processes compared to those described above.

Most J/ψ measurements are carried out in non-diffractive dissociation events at
hadronic colliders. There are also some theoretical efforts to study novel QCD with J/ψ
production in single diffractive pp collisions via Pomerons exchange (pp → pX) [52].
Measurements on a single diffractive pp cross-section have also been carried out by the
ALICE [53] and ATLAS experiments [54] at the LHC.

These latest developments motivate us to investigate J/ψ at high event multiplici-
ties in forward-rapidity at RHIC. The PHENIX detector is capable of carrying out this
physics [55]. Thanks to the excellent tracking, vertexing, and muon performance of the
PHENIX detector, we can perform charmonium studies in the forward-region up to high
multiplicities. Historically, the research on the event multiplicity dependence of J/ψ pro-
duction in small systems with PHENIX dates back to early 2013, focusing on p+ p collisions
at
√

s = 510 GeV [56]. We will report our latest studies on J/ψ using PHENIX Run 15 p + p
data at

√
s = 200 GeV.

3. Experimental Apparatus and Data Samples

The PHENIX experiment [55] is a general-purpose detector at RHIC at Brookhaven
National Laboratory for relativistic heavy-ion physics research [57]. It has broad φ and
η acceptance coverage [58] and can collect large data samples to perform measurements
at middle and forward rapidities. The tracking, particle identification, calorimeter, and
muon systems of the PHENIX experiment apply various radiation detection techniques to
maximize its physics capabilities.

The forward silicon tracker detector (FVTX) employs advanced silicon strip tech-
nologies and is installed as four endcaps in the forward and backward regions covering
1.2 < |η| < 2.2 [59]. Its sensor contains two columns of mini-strips with 75 µm pitches in
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the radial direction and lengths varying from 3.4 to 11.5 mm in the azimuthal direction.
The FVTX is capable of excellent tracklet reconstruction and precise vertex determination.
In addition to the FVTX, at mid-rapidity |η| < 1, the Silicon Vertex Tracker (SVX) is a
four-layer barrel detector built to enhance the capabilities of the central arm spectrometers
and provides excellent position resolution [60], which enables tracking at mid-rapidity.

Two muon arms are built in the forward and backward regions, far away from the
beam spot, with a rapidity coverage of 1.2 < |η| < 2.4 [61]. A stack of absorber/low
resolution tracking layers allow for excellent muon detection and identification. Along with
the three new resistive plate chambers, the rejection factor for muon from pions and kaons
is in the order magnitude of 103. Each muon arm is equipped with a radial field magnetic
spectrometer to provide precision muon tracking. The muon momentum resolution is
δp/p ∼ 1.7%, allowing for an excellent performance in quarkonia reconstruction and clean
separation between J/ψ and ψ′ [62].

The PHENIX Electromagnetic Calorimeter (EMCAL) uses Pb as the absorber material
and a shashlik design with a block size of 5.5 cm × 5.5 cm and wavelength shifting fibers
to measure the electromagnetic shower energy [63]. The EMCAL can provide an excellent
energy linearity and resolution for jet reconstruction.

The PHENIX experiment is also equipped with a ring image Cherenkov detector
(RICH) to perform electron identification [64]. It can achieve a great electron selection
performance from π, K, p separation at a very high pT .

The beam–beam counters (BBC) are installed in both far-north and far-south directions
with advanced electronics to determine the event vertex and activity [65]. BBC uses the
coincidence of both sides along with a minimum ADC threshold to select MB events. The
zero-degree calorimeter (ZDC) is used in an identical form for all four experiments at RHIC
to characterize global event parameters in the very forward direction [66]. It can achieve the
precise determination of event activity, luminosity, and forward-neutron-counting through
the measurements of beam-fragment energy deposition in the far-forward direction.

With excellent detector hardware capabilities, PHENIX also designs and deploys a
dedicated Level 1 trigger to collect data samples for different physics topics [67], applying
high-performance computing and electronic readout technologies [68]. Many collisions
occur at RHIC when the collider is running. However, only a small fraction of them are
relevant to our physics studies. Thus, the MB trigger was developed for general physics
studies. The MB trigger uses both BBC and ZDC to select non-diffractive dissociation
processes and determine global event parameters such as the collision vertex, luminosity,
and impact parameter. The overall efficiency of the MB trigger is approximately 55 ± 5%.

For charmonium physics studies, we need high statistics J/ψ samples. The dimuon
trigger samples enrich J/ψ by requiring an MuID trigger to identify muons and applying
quality selections to the muon tracks (MuTr). The overall efficiency of the dimuon trigger is
approximately 79 ± 2%.

The PHENIX detector is also equipped with a beam clock trigger utilizing the granule
timing module with fast electronics [69]. It can operate at high frequencies with an excellent
timing resolution to provide precise timing information for the raw data, which allows for
synchronization among subdetectors and event-building. In addition, the EMCal/RICH
trigger (ERT) is dedicated to sampling hard scattering events for heavy flavor and jet
physics studies.

4. Analysis

In 2015, PHENIX acquired p + p, p + Al, and p + Au data with transversely polar-
ized protons at

√
s = 200 GeV. Based on the PHENIX p + p data, we can define the J/ψ

normalized yield R(J/ψ) from quantities as follows:

R(J/ψ) = [
N J/ψ

S
NMB

εMB
trig

ε
J/ψ
trig

]

/
[
N J/ψ

S (total)
NMB(total)

〈εMB
trig 〉
〈εJ/ψ

trig 〉
]× fcoll (1)
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The quantities are defined below:

• N J/ψ
S : the J/ψ signal raw yield extracted from dimuon invariant mass mµµ distribution.

• NMB: the number of minimum biased events recorded.
• εMB

trig : minimum biased trigger efficiency.

• ε
J/ψ
trig : J/ψ trigger efficiency.

• fcoll : correction factor for multiple collisions obtained from a data-model method.

The quantities in the bracket stand for the average value over the integral event
multiplicity and the total in the parentheses means the sum over all multiplicity bins. We
reconstructed J/ψ from the dimuon decay channel: J/ψ→ µ+µ−. It should be noted that
we assumed that the luminosity, the branching ratio of J/ψ→ µ+µ−, the acceptance, and
the reconstruction efficiency would cancel out in the normalization because they do not
have significant event multiplicity dependence.

The normalized J/ψ yield R(J/ψ) is plotted as a function of normalized charged
particle multiplicity Nch/〈Nch〉, defined as the number of tracklets reconstructed by FVTX
or SVX hits. Thus, the pseudorapidity ranges of Nch are 1.2 < η < 2.4 for FVTX north,
−2.4 < η < −1.2 for FVTX south, and −1.0 < η < 1.0 for SVX. Our results are presented
in charged particle multiplicity bins of [0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 19]. In our analysis, we
used the MB data sample to obtain the NMB. The dimuon trigger sample was used to
reconstruct J/ψ. Finally, the beam clock trigger sample was used for efficiency correction
and systematic uncertainties studies in a data-driven manner.

4.1. Event, Track, and J/ψ Candidate Selections

In order to achieve the best analysis results, we need to apply selections to the data
samples. We applied event, track, muon, and J/ψ candidate selections to the data sample
to reduce the size and ensure the quality of our analysis results. Specifically, we required
the z-component of the reconstructed event vertex (z_vtx) to be within 10 cm, which was
used to define the charge particle multiplicity counting.

4.2. MB Event Multiplicity Determination

We used the MB sample to determine the NMB. With the NMB as a function of Nch, we
can also obtain the NMB(total) by summing the distribution and 〈Nch〉, taking the average
on the distribution. We can then rescale the x-axis to Nch/〈Nch〉 and plot the NMB as a
function of Nch/〈Nch〉.

4.3. J/ψ Signal Extraction

After applying all selections to the dimuon sample, we were able to observe a very clear
J/ψ signal with good resolution and a correct peak near the PDG value. The kinematics
of the reconstructed J/ψ has 〈pT〉 ∼ 1.7 GeV/c and 1.2 < |y| < 2.2. To determine the
J/ψ raw yield, we need to extract the signal in the dimuon invariant mass in data. We
developed a fitting model using a single asymmetric Crystal Ball function to describe the
J/ψ signal component to account for the bremsstrahlung tail and an exponential decay
function to describe the background component in the data. The functional form of the
signal component is given by

fS(x; α, n, µ, σ) =

{
N exp[− (x−µ)2

2σ2 ], if ( x−µ
σ > α)

NA(B− x−µ
σ )−n if ( x−µ

σ ≤ α)
(2)

where

A =

(
n
|α|

)n
exp

(
−|α|

2

2

)
(3)

and
B =

n
|α| − |α| (4)
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The functional form of the background component is given by

fB(x; D, λ) = De−λx (5)

Hence, the total fit function is given by

f = N J/ψ
S · fs + NB · fB (6)

We then used the RooFit package [70] to fit the data points and obtain the J/ψ signal
raw yield N J/ψ

S . The invariant mass distribution of J/ψ from the north and south muon
arms for inclusive event multiplicity, along with the fits, are shown below in Figure 1.

Figure 1. The dimuon invariant mass distributions of the J/ψ at 1.2 < yJ/ψ < 2.2 (left) and
−2.2 < yJ/ψ < −1.2 (right) with their fits are shown above. It should be noted that the south muon
arm on the right has a higher J/ψ yield than the north one with the same selections because it has
better performance with a higher muon efficiency in Run 2015 data collection.

The free parameters for the fits are N, A, B, µ, σ, D, and λ. We fixed A and N in the
fit on the inclusive north and south muons arm samples to keep the overall shape needed
to fit each Nch/〈Nch〉 bin. Good statistics, with a reconstruction performance of J/ψ in the
dimuon channel, can be observed in Figure 1. We sum N J/ψ

S of all Nch/〈Nch〉 bins to obtain

N J/ψ
S (total).

4.4. Efficiency Correction

We quoted the 〈εMB
trig 〉 = 55% and 〈εJ/ψ

trig 〉 = 79%, as mentioned in the description for
the PHENIX detector. Then, we employed a data-drive method to correct the MB and J/ψ
efficiencies.

To determine εMB
trig as a function of event multiplicity, we used the the RHIC beam

clock trigger data. A collision is declared to have occurred if there is at least one tracklet in
the FVTX or SVX. Hence, εMB

trig is the ratio of the RHIC beam clock trigger sample with BBC
local level 1 trigger, which is also fired, f to the whole sample for BBC rate between 1000
and 1500 kHz. The systematic uncertainties σ(εMB

trig ) are given by the deviation of εMB
trig at a

BBC rate from 600 to 800 kHz and 2000 to 2500 kHz from the nominal value 1000–1500 kHz
as the upper and lower bounds, respectfully.

To determine ε
J/ψ
trig as a function of event multiplicity, we used the ERT trigger sample.

We calculated ε
J/ψ
trig using the multiplicity distribution of the ERT sample with at least one

track as the denominator, and the multiplicity distribution of the ERT sample with at
least one track and a valid BBC vertex z-component within 200 cm as the numerator. The
statistical uncertainties of the first bin Nch = 1 are quoted as global systematic uncertainties
σ(ε

J/ψ
trig ).
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4.5. Multiple Collection Factor Correction

Multiple p + p collisions may occur at RHIC. Experimentally, each collision results
in a primary vertex. The number of collisions in each event generally obeys the Poisson
distribution. According to our studies, the double-collision probability is at the level of a
few percent.

Because we focused on J/ψ produced in a single p + p collision, we needed to cor-
rect multiple collision effects in our data. We employed a data-model hybrid method to
determine fcoll . We used a model to calculate NMB as a function of Nch. We divided the
normalized NMB distribution for the south FVTX arm near a BBC rate of 830 kHz, which
consists of less than 2% of double-collisions, using the single-collision model and the ratio
as fcoll . We quoted the deviation from the model to the PHENIX data with a BBC rate
between 1000 and 1500 kHz as the systematic error on the multiple collision correction
factor σ( fcoll), accounting for the disagreement between the model and the data.

4.6. Systematic Uncertainties Estimation

The systematic uncertainties on this measurement consist of the MB trigger efficiency,
J/ψ trigger efficiency, multiple-collision correction, and J/ψ reconstruction efficiency.
The J/ψ reconstruction efficiency ε

J/ψ
reco has a weak dependence on Nch. This is treated

as a constant but can be assigned using a global systematics of 5% from previous J/ψ
measurements in the dimuon channel [71]. Finally, we treated individual uncertainties as
uncorrelated, and thus could estimate the total systematic uncertainties as follows:

σ(total) = σ(εMB
trig )⊕ σ(ε

J/ψ
trig )⊕ σ(ε

J/ψ
reco)⊕ σ( fcoll) (7)

5. Results

After finishing the data analysis, we gathered all the ingredients to obtain the final
results. Different underlying physics processes can be studied from different rapidity
combinations of J/ψ and tracklet multiplicity measurements. Figure 2 illustrates the
physics with different measurements.

𝑱/𝝍 → 𝝁! + 𝝁"

z

FVTX North Arm

Same Muon and FVTX Arm
MPI + FSI

𝑱/𝝍 → 𝝁! + 𝝁"

z

FVTX South Arm

Opposite Muon and FVTX Arms
MPI

𝑱/𝝍 → 𝝁! + 𝝁"

z

SVX Arm

Muon Arm and SVX
MPI + Reduced FSI

𝑱/𝝍 → 𝝁! + 𝝁"

z

FVTX North Arm

Same Muon and FVTX Arm with dimuon removed
Eliminated Autocorrelation + MPI

(-)

(-)

Figure 2. The definitions of four different rapidity measurements of the J/ψ with respect to the
silicon tracklet measurements and the physics processes involved are illustrated above.

Phenomenologically, MPI always occurs, regardless of the rapidity of the J/ψ and
the charged particles. In the PHENIX experiment, when both the J/ψ and the tracklets
point in the same rapidity direction, we expect to find significant FSI contributions to
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J/ψ production due to the presence of nearby particles [33]. In the elastic scenario, J/ψ
kinematics will be modified. Inelastically, J/ψ may be broken up [32]. As the J/ψ moves
away from the charged particles, the comover effect in the final state is expected to diminish.
This can be achieved by measuring the SVX and the opposite FVTX arm for the tracklet
multiplicity with respect to the muon arms. Finally, muons can also contribute to the
event multiplicity. For J/ψ → µ+µ−, the two muons, on average, increase the Nch by
approximately 1.4. After removing this autocorrelation effect from the J/ψ decayed muons,
the charged particle multiplicity will become Ñch. We can also present the normalized J/ψ
yield as a function of Ñch/〈Ñch〉 by adjusting the x-axis in our measurement. These cases
are all shown in Figure 2.

The final results of J/ψ, reconstructed from the north muon arm located in the forward-
rapidity direction 1.2 < yJ/ψ < 2.2 and the south muon arm located at the backward-
rapidity−2.2 < yJ/ψ < −1.2 with respect to FVTX north and south and SVX measurements,
are shown in Figure 3.

Figure 3. The J/ψ reconstructed from the north muon arm 1.2 < yJ/ψ < 2.2 (left) and the south
muon arm −2.2 < yJ/ψ < −1.2 (right) are shown above. The J/ψ normalized signal yields R(J/ψ)

from the dimuon channel are presented as a function of normalized charged particle multiplicity
Nch/〈Nch〉 measured by FVTX and SVX. In addition, we show the results when J/ψ and the charged
particles are in the same direction, with the dimuon contribution subtracted. In terms of color
convention, the FVTX north data are shown in red, FVTX south data in blue, SVX in magenta, and
the dimuon-subtracted results are shown in magenta. These four sets of data points are all overlaid
with each other in the same figure.

The J/ψ yields up to approximately 10 units of average charged particle multiplicity,
which are measured with good precision. A stronger than linear rise is observed at the
same rapidity direction between the J/ψ and the charged particles. The enhancement
becomes more prominent at high-multiplicity regions. The slope decreases as the rapidity
gap between the J/ψ and the charged particles increases when Nch/〈Nch〉 > 1. Finally,
after subtracting the dimuon contributions at the same rapidity directions, the data points
drop drastically and become consistent with the opposite rapidity measurements. These
results imply that the FSI effect does not have a substantial impact on J/ψ production in
p + p collisions. However, MPI effects should be considered in order to the enhancement,
particularly in the high-multiplicity region.

We also compare our data with recent measurements from STAR at RHIC [41] and
ALICE at the LHC [39], as shown below.

In Figure 4, we can see that PHENIX has broader charged particle multiplicity mea-
surements with better precision than STAR and a comparable reach to ALICE, albeit with
lower precision. At a low charged-particle multiplicity, PHENIX data points are system-
atically below the STAR ones. In a higher-event-multiplicity region, PHENIX data points
(1.2 < |y| < 2.2) lie in between the ALICE middle (|y| < 0.9) and forward-rapidity
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(2.5 < y < 4) measurements, filling the missing-rapidity region from ALICE. All data
points have slopes significantly above 1 when Nch/〈Nch〉 > 1. Hence, the comparisons
suggest that J/ψ produced in the middle-rapidity is generally above the forward-rapidity
at both RHIC and LHC energies, which corresponds to the different phase-space regions of
x1,2 of the partons during hard interactions.

Figure 4. The J/ψ normalized yield as a function of normalized charged particle multiplicity of
PHENIX, STAR [41], and ALICE [39] are all shown above. To make our results comparable with STAR
and ALICE data, we present the measurements where J/ψ and tracklets are both in the north (green,
left) and the south (blue, right). STAR uses the RHIC p + p data at

√
s = 200 GeV to reconstruct J/ψ

from the dielectron channel and the charged particle multiplicity, both measured at the mid-rapidity
region |y| < 1 (orange). ALICE carries out both middle-rapidity |y| < 0.9 with the SPD tracklets
and forward-rapidity 2.5 < y < 4 with the V0 tracklets from J/ψ→ e+e− channel. All these results
include daughter lepton tracks from J/ψ decay in the event multiplicity.

Finally, we compare our data with the PYTHIA 8 simulations with Monash and Detroit
tunes including, and not including, the MPI effect shown in Figure 5.

Figure 5. In the figure, the same muon arms and FVTX directions are used for J/ψ and charged
particle tracklet reconstructions. J/ψ in the forward (green) and backward (blue) rapidities, and
PYTHIA 8 simulations without dimuon subtraction (left) and with dimuon subtraction (right), are
shown above. The PYTHIA 8 simulations present four different combinations, Monash Tune and
Detroit Tune, with the MPI option turned on and off, to directly study MPI using the data.

In PYTHIA 8 p + p simulations, we set up the cc̄ event with a large p̂T for J/ψ
production and used general inelastic hadronic collisions to model MB events. Because it
is unlikely to generate events with high multiplicities, our simulation only covers up to
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Nch/〈Nch〉 ' 6 and has large statistical uncertainties at high multiplicities. Nonetheless,
PYTHIA 8 simulations with different setups diverge at high multiplicities. PYTHIA 8, when
using the Detroit Tune and turning on the MPI effect, can best describe the data. Hence, the
MPI effect is significant for J/ψ production in p + p collisions at RHIC, particularly in the
high-multiplicity region.

6. Summary

We have reported the measurement of J/ψ normalized yield as a function of normal
charged particle multiplicity with PHENIX Run 2015 p + p collisions at

√
s = 200 GeV. The

J/ψ is reconstructed from the dimuon channel with the PHENIX muon arms in the forward
rapidity. The charged particle tracklets are reconstructed with FVTX and SVX detectors.
Our results are presented in different combinations of J/ψ with 〈pT〉 ∼ 1.7 GeV/c and
1.2 < |y| < 2.2 and charged particles at 1.2 < |η| < 2.4 for FVTX and |y| < 1 for SVX
up to approximately 10 units of normalized event multiplicity. The J/ψ normalized yield
beyond linear scaling is observed when the J/ψ and charged particles are both measured
at the same rapidity. The enhancement of J/ψ production becomes more pronounced at
high event multiplicities, which could possibly be explained by MPI. The J/ψ normalized
yield decreases significantly, as the rapidity gap between the J/ψ and the charged particles
increases. After subtracting the dimuon contributions from the event multiplicity when
the J/ψ and the charged particles point in the same rapidity direction, the results become
consistent with the results where J/ψ and charged particles are produced in opposite
rapidity directions, which hints at the insignificance of the final-state comover effects for
J/ψ production in p + p collisions.

Our forward J/ψ results lie systematically below the STAR measurement in the middle
rapidity and in between the ALICE data in the forward and middle rapidities. We notice
that J/ψ produced in the middle rapidity is generally below that of the forward rapidity
within the same normalized charged-particle multiplicity. This allows for us to probe
the parton distribution function in different phase-space regions. Finally, through the
comparison of our data with PYTHIA 8 simulation using the Detroit and Monash Tunes
with MPI options turned on and off, we found that the Detroit Tune with MPI on best
describes our data. Hence, the MPI contribution should be included in order to precisely
describe J/ψ production in p + p collisions at RHIC, especially in high-multiplicity events.

To investigate the possibility of J/ψ production from jet fragmentation, we plan to
look at our results in different J/ψ pT regions. We expect J/ψ production from jets to
be more likely at a high pT . This study is currently ongoing. However, because of the
limited statistics, particularly for pT > 3 GeV/c, we may not achieve sufficient precision to
conclude the possible J/ψ production from jet fragmentation in p + p collisions at RHIC.

We are also carrying out J/ψ production in p + Au collisions to test CGC calculations.
In addition, the ongoing measurement of ψ(2S)/J/ψ ratio in p + p collisions will help us to
understand charmonium hadronization. Many novel and exciting physics results regarding
charmonium production in different collision systems with PHENIX data are coming in the
near future.
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Abstract: In high-energy collisions of small systems, by high-enough final-state multiplicities,
a collective behaviour is present that is similar to the flow patterns observed in heavy-ion collisions.
Recent studies connect this collectivity to semi-soft vacuum-QCD processes. Here we explore QCD
production mechanisms using angular correlations of heavy flavour using simulated proton-proton
collisions at

√
s = 13 TeV with the PYTHIA8 Monte Carlo event generator. We demonstrate that the

event shape is strongly connected to the production mechanisms. Flattenicity, a novel event descriptor,
can be used to separate events containing the final-state radiation from the rest of the events.

Keywords: high-energy collisions; LHC; multiple parton interactions

1. Introduction

In high-energy heavy-ion collisions, a strongly interacting quark–gluon plasma (QGP)
is created, which was found to behave as an almost-perfect fluid [1,2]. Surprisingly, a similar
collective behaviour was observed in small (proton–proton and proton–nucleus) collisions
with high final-state multiplicity [3,4]. Whether or not QGP is created in these smaller
collision systems is still an open question today. Recent works suggest that vacuum-QCD
processes on the soft-hard boundary, such as multiple parton interactions (MPI) with
colour reconnection, are able to generate the collective patterns that are observed in
such systems [5,6].

Heavy quarks are mostly created in the early stages of the collision, in perturbatively
accessible quantum chromodynamics (QCD) processes; a heavy quark can be created
from a pair of gluons or light quarks by flavour creation (FLC), a gluon splitting into the
quark–antiquark pair (GSP), or through flavour excitation (FLX) [7,8]. Moreover, they
may interact in semi-hard processes and participate in the formation of the underlying
event [9]. Further insight to the connection of the hard process and the underlying event
can be gained by the differential exploration of events with respect to event-shape variables.
While, traditionally, the final-state multiplicity is used to categorize events by activity, other
recently introduced event-shape variables, such as transverse sphericity and flattenicity,
are sensitive to event topology and have a more direct connection to multiple parton
interactions and the emerging collective patterns [10,11].

Angular correlation measurements are sensitive probes of parton production and
fragmentation down to low momenta where jet reconstruction is problematic in a rich
final-state environment. The current experimental precision enables the exploration
of heavy-flavour hadron correlations, which provides information about heavy-flavour
fragmentation but very little insight to their creation. A recent ALICE measurement did
not find event-activity dependence in the angular correlation of D0 mesons to charged
hadrons [12]. The experimental possibilities will be significantly extended with the arrival
of LHC Run3 data, where heavy-flavour–heavy-flavour correlations will be possible to
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reconstruct. The full potential of the forthcoming LHC Run3+Run4 data, however, can be
exploited with measurements that are differential in event-activity or event-shape.

In this work, we explore the azimuthal correlations of charm–anticharm quark pairs
in Monte Carlo (MC) simulations, in terms of different event-activity variables. We use MC
information to explore the connection of the partonic processes with the emerging final
state and propose an experimental method to separate them.

2. Methods

We analyzed proton–proton collisions simulated at
√

s = 13 TeV center-of-mass
energy with the PYTHIA8 [13] (version 8.308) MC event generator. In PYTHIA, the initial
leading-order production process is amended by other partonic processes, initial and
final-state radiation (ISR and FSR, respectively), as well as multiple parton interactions.
By enabling these processes one by one, we simulated just the initial hard process (all
off), the initial hard scattering and multiple parton interactions added (MPI on), with the
initial-state gluon radiations included (MPI, ISR on), and with all the previous processes
and the final-state radiations also enabled in the events (all on). With each setting,
10 million events were simulated.

We computed the azimuthal correlations of charm quarks with anticharm quarks.
Only those quarks that directly hadronised were considered, to avoid multiple counting
of the same quark. As an arbitrary choice, charm quarks were used as trigger particles
and anticharm quarks as associated particles. Both the charm and anticharm quarks were
required to fall within the |y| < 1.44 rapidity window. The distribution of the azimuthal
angles between each pair (∆ϕ) was calculated to explore the event structures. In some
of our results, we separately analysed the soft and hard production of the c–c pairs by
requiring their momenta to fall below or above pT = 4 GeV/c.

We categorized the simulated events by the parton-level production process in which
the trigger particles (charm quarks) were created. The flavour creation, flavour excitation,
and gluon splitting processes were separated in the simulations by tracing back the trigger
charm quark to the first charm quark in the ancestry line and examining the status code
of its parents. If this quark only had gluon parents that are not connected to the hardest
process, the pair was considered to be a result of gluon splitting. In the case when the charm
quark had gluon parents, and it was an incoming particle in the hardest (sub)process, it
was categorised as flavour excitation. When both of the parents were incoming light quarks
or gluons in the hardest process, and created a charm quark, then the pair was categorised
to come from pair creation. In a small number of events, where the charm did not originate
from the hardest process, this method was not able to categorize the production process.
These charm quarks, coming from subsequent soft processes, were added to the gluon
splitting group.

The c–c azimuthal correlations were categorized with respect to charged hadron
multiplicity, transverse sphericity and flattenicity. In all three cases, event variable cuts were
applied to separate the top and bottom thirds of the sample. Charged hadron multiplicity
(Nch) was defined as the number of final charged hadrons with a transverse momentum
of pT > 0.15 GeV in the central pseudorapidity range |η| < 1. The low-activity range
was taken as Nch ≤ 21, and the high-activity range as Nch ≥ 38. Transverse sphericity is
calculated by finding the unit vector~n that minimalises the expression

S0 =
π2

4

(
Σi| ~pTi ×~n|

Σi| ~pTi |

)2

,

where the sum runs over all final-state charged particles with pT > 0.15 GeV and |η| < 1.
With this definition, transverse sphericity is 0 < S0 < 1, where S0 ≈ 0 events have
a “pencil-like” back-to-back dijet topology, and S0 ≈ 1 events are isotropic [11]. For the
low-S0 range S0 < 0.53 was used, and for the high-S0 range S0 > 0.70 was used. Flattenicity
(ρ) is a recently introduced event-shape variable that describes the distribution of transverse
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momenta over the azimuthal angle–pseudorapidity plane, which is capable of selecting
“hedgehog-like” events without any discernible jetty structure in high-multiplicity PP
collisions [10]. To calculate this, one has to divide the ϕ–η plane into equal sections, and
take the average transverse momenta of the charged particles in each of them. Flattenicity
is the relative standard deviation of the average momentum in a cell:

ρ =
σpcell

T

〈pcell
T 〉

.

Larger ρ implies a greater jetty event, and around ρ ≈ 1 is where at least one jet can
be seen [10]. The low flattenicity range was ρ < 1.00, and the high flattenicity range was
ρ > 1.28.

3. Results

First, we compare c–c azimuthal correlations for the high and low values of the
event-shape variables, as well as without selection for the variables. The distributions are
normalised with the number of triggers Ntrig, as well as with the integral of the distributions
for the given range divided by the integral of the distribution without selection for the
event-shape variable, Iclass.

Figure 1 shows the azimuthal correlation of c–c pairs in the low and high charged
hadron multiplicity ranges, as well as without selection for Nch. We observe that for lower
multiplicities the away-side peak of the correlation is sharper than at higher multiplicities.
This can be explained by considering that low-multiplicity events are produced more often
from simpler back-to-back correlations, while events with more complicated underlying
physics tend to have higher multiplicities.
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Figure 1. The azimuthal correlation of c–c pairs in the low and high charged hadron multiplicity
ranges, as well as without selection for Nch, normalised by the number of triggers and the integral of
the interval.

Figure 2 shows the azimuthal correlation of c–c pairs in the low and high transverse
sphericity ranges, as well as without selection for S0. We observe that events with low
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sphericity, which tend to be more jetty, result in a stronger correlation, and the more
isotropic high S0 range selects more random correlation.
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Figure 2. The azimuthal correlation of c–c pairs in the low and high transverse sphericity ranges, as
well as without selection for S0, normalised by the number of triggers and the integral of the interval.

Figure 3 shows the azimuthal correlation of c–c pairs in the low and high flattenicity cuts.
We can see that flattenicity highlights the correlation peaks, as high ρ gives both a sharper
near-side and away-side peak, similarly to the observations made from the S0 correlations.

In Figure 4, we see the different trigger quark creation processes in the same flattenicity
intervals, normalised by the number of triggers. Both the trigger and associated particle
were required to have a transverse momentum pT > 4 GeV/c. The dominant creation
process in this high-pT range is gluon splitting, which gives the largest contribution to
the near-side peak, while adding to the away-side peak as well. Flavour creation gave
a sharp away-side peak, and, though less visible, flavour excitation also adds mainly
to the away-side peak. We can see that the flattenicity cut separates the peaks of gluon
splitting (high ρ GSP) from mostly random correlation (low ρ GSP), which can be attributed
to flattenicity geometrically separating isotropic events from jetty events. We can also
note that above a flat baseline of mostly gluon splitting, the away-side peak in the low
ρ range arises mainly due to flavour creation. On the other hand, the near-side peak
in the high ρ range is created by gluon splitting. We can see that flattenicity has the
ability to geometrically separate these different creation processes via azimuthal correlation
of c–c quarks. This could provide an opportunity to experimentally separate different
QCD production processes by observing the distribution of final-state particles through
correlations of heavy-flavour jets.

Figure 5 shows the contributions of different PYTHIA8 parton-level processes for
high and low ρ values (top and bottom rows, respectively), both in the pT < 4 GeV/c
and pT > 4 GeV/c momentum ranges separately (left and right panels). The c–c pairs
created back-to-back in the initial leading-order production result in an away-side peak.
Multi-parton interactions and initial-state radiations also add to the away-side peak, while
contributing to the baseline as well. The near-side peak arises from final-state radiations.
Contrasting the two rows, we see that the flattenicity cut isolates most of the final-state
radiation from multi-parton interaction and initial-state radiation. We also observe that
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the correlation peaks are stronger in the high ρ events, that on average correspond to more
jetty topologies. As expected, higher transverse momenta also results in less baseline.
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Figure 3. The azimuthal correlation of c–c in the low and high flattenicity ranges, as well as without
selection for ρ, normalised by the number of triggers and the integral of the interval.
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Figure 5. The azimuthal correlation of c–c pairs where pT < 4 GeV/c and pT > 4 GeV/c (left and
right columns, respectively), and the top row shows the low ρ range, and the bottom row shows the
high ρ range. The different parton-level process settings are presented with different colours.

It is to be noted that although we use experimentally available rapidity and transverse
momentum windows in the selection of the correlated pairs, we do not reconstruct the final
state, and instead used Monte Carlo truth information to investigate the correlation at the
parton level. This allows for the exploration of the connection between the partonic processes
and the emerging final state, without having to deal with the effect of hadronization.
In experiment, correlations of c–c pairs may be accessible either through correlations
of charmed hadrons (e.g., D0–D0), or through the correlations of reconstructed pairs of
jets containing a charmed hadrons. In the first case, the results will be influenced by
jet fragmentation into hadrons, while in the latter case the the jet definition will affect
the outcome (e.g., because small-angle parton pairs may be reconstructed as a single jet).
Such future results may, therefore, be compared to simulations adapted to the specific
experimental conditions, which may be the subject of a later study.

4. Conclusions

In this work, we explored the azimuthal correlation of charm quarks and antiquarks
in PYTHIA8-simulated proton–proton collisions with respect to final-state charged hadron
multiplicity, transverse sphericity, and flattenicity. We investigated the event-activity and
event-shape dependent results in terms of different QCD heavy flavour creation processes,
as well as parton-level processes. We observed that flattenicity is the most selective for the
different QCD processes. By selecting events with low and high flattenicity, on a statistical
basis we were able to differentiate between parton-level production processes, just by
observing the event shape. Moreover, by selecting low-flattenicity events we can also
differentiate c–c pairs coming from events with final-state radiation.
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Using the above-mentioned methods, it will be possible to select certain QCD processes
in future heavy-quark (such as D0–D0 or jet–jet) azimuthal correlation measurements in
the LHC Run3 data. The results also outline a method for the detailed validation of
heavy-flavour production models with data.
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Abstract: (1) Purpose: Conditions of formation of compound nuclear systems needed for synthesis
of heavy nuclei in pycnonuclear reactions in compact stars are studied on a quantum mechanical
basis. (2) Methods: The method of multiple internal reflections is applied for pycnonuclear reactions
in compact stars with new calculations of quasibound spectra and spectra of zero-point vibrations.
(3) Results: Peculiarities of the method are analyzed for reaction with isotopes of Carbon. The
developed method takes into account continuity and conservation of quantum flux (describing
pycnonuclear reaction) inside the full spacial region of reaction, including the nuclear region. This
gives the appearance of new states (called quasibound states) in which compound nuclear systems of
Magnesium are formed with the largest probability. These states have not been studied yet in synthesis
of elements in stars. Energy spectra of zero-point vibrations and spectra of quasibound states are
estimated with high precision for reactions with isotopes of Carbon. For the first time, the influence of
plasma screening on quasibound states and states of zero-point vibrations in pycnonuclear reactions
has been studied. (4) Conclusions: The probability of formation of a compound nucleus in quasibound
states in pycnonuclear reaction is essentially larger than the probability of formation of this system
in states of zero-point vibrations studied by Zel’dovich and followers. Therefore, synthesis of
Magnesium from isotopes of Carbon is more probable through the quasibound states than through
the states of zero-point vibrations in compact stars. Energy spectra of zero-point vibrations are
changed essentially after taking plasma screening into account. Analysis shows that from all studied
isotopes of Magnesium, only 24Mg is stable after synthesis at an energy of relative motion of 4.881 MeV
of the incident nuclei 12C.

Keywords: pycnonuclear reaction; compact star; neutron star; multiple internal reflections; coefficients
of penetrability and reflection; fusion; quasibound state; energy of zero-point vibrations; compound
nucleus; dense nuclear matter; tunneling

1. Introduction

The phenomenon of nuclear burning occurs in the cold and dense cores of white
dwarfs [1] and crusts of neutron stars [2,3]. Such a phenomenon, known as a pycnonuclear
reaction [4], is a reaction at sufficiently high densities in stars where zero-point vibrations
of nuclei in the lattice sites lead to an essential increasing rate of formation of more
heavy nuclei. Insight into this phenomenon was provided by Zel’dovich, who estimated
zero-point energy as the energy of the ground state of the harmonic oscillator potential,
which is formed near the middle point between two nuclei located in lattice sites [5].
Rates of reactions at such zero-point energies are calculated for some nuclei in compact
stars [6].

Fusion is the key process in pycnonuclear reactions. In this process, a new nucleus
with a larger mass is produced from the two closest nuclei in the lattice sites. This
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question was analyzed for reactions with nuclei of different charges and masses [7]. In
that paper, the authors calculated the astrophysical S-factors for Carbon–Oxygen and
Oxygen–Oxygen fusion reactions, wherein a microscopic basis was used. In Ref. [8], S-
factors were calculated for 946 fusion reactions including stable and neutron-rich isotopes
of C, O, Ne, and Mg at energies in the range of 2 to ≈18–30 MeV. Results in that paper
can be converted to thermonuclear or pycnonuclear reaction rates to simulate stellar
burning at high temperatures and nucleosynthesis in high-density environments. A large
collection of astrophysical S-factors and their compact representation for isotopes of Be,
B, C, N, O, F, Ne, Na, Mg, and Si were presented in Ref. [9]. Finally, a large database
of S-factors was formed for about 5000 nonresonant fusion reactions. The structure of
the multi-component matter (a regular lattice, a uniform mix, etc.) in these reactions,
plasma screening [10], and rates of reactions in a wide range of temperatures and stellar
densities [7,11] have been studied by many researchers.

It has been known that cross-sections of reactions are essentially changed after tak-
ing conservation of quantum fluxes into account in the internal region of the nuclear
system [12–14]. This question has been studied for α decays of nuclei and captures of
α-particles by nuclei. For example, nuclear processes during capture before fusion depend
on the shape of the nuclear potential [13,14]. Such changes are controlled by additional
independent parameters appearing from the fully quantum study. In the fully quantum
study, different scenarios of capture (before fusion) can be modelled. Corresponding
cross-sections are different by up to four times at the same beam energies of α-particles
in experiments. Often, approaches used with the basis of WKB-approximation neglect
these quantum phenomena. It is important to note that this dependence of cross-sections
in the fully quantum study is not small. For example, it can be larger essentially than
the inclusion of nuclear deformations to the calculation of cross-sections without such
quantum parameters. Up to now, the method in Ref. [13] has been the most accurate for the
description of experimental data for α-capture (this calculation is in Figure 3b in Ref. [14]
for α + 44Ca in comparison with experimental data [15]).

In the fully quantum study, the accuracy of the determination of penetrability of the
barrier and cross-section is about 10−14, while such an accuracy in the WKB-approximation
is about 10−1–10−3 [13,14]. Pycnonuclear processes are at essentially low energies. In this
situation, deep tunneling under the barrier exists only where the semiclassical approxi-
mation is not applicable [16]. This indicates the importance of developing fully quantum
methods outside of semiclassical approximations. These quantum effects have not been
studied yet by other researchers for pycnonuclear reactions in stars. In Ref. [17], investi-
gation of these questions on the fully quantum basis was initiated, for example, for the
reaction of 12C + 12C. The interest in that reaction is explained by its impact on nucleosyn-
thesis, energy production, and other questions in stellar evolution [11,18]. In addition,
this reaction has a significant impact on the evolution and structure of massive stars with
M ≥ M� (M� is the Solar mass). 12C + 12C fusion is known as a pycnonulear reaction that
reignites a Carbon–Oxygen white dwarf into a type Ia supernova explosion. However, it
could be useful to obtain a more complete picture for the systematic analysis of nuclear
processes and fusion for reactions with isotopes of Carbon. Therefore, in this paper, we
perform such an investigation for pycnonuclear reactions with Carbon.

The paper is organized in the following way. In Section 2, a new generalized formalism
of the multiple internal reflections is reviewed with focus on new elements for fusion and
quasibound states in pycnonuclear reactions. In Section 3, reactions with isotopes of Carbon
on the basis of the method are studied using calculations of penetrabilities of the potential
barriers, probabilities of formation of the compound nucleus, estimation of energies for
zero-point vibrations and quasibound states, etc. In Section 4, the influence of plasma
screening on properties of the pycnonuclear reaction is studied in the example of 12C + 12C.
Conclusions are summarized in Section 6.
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2. Method of Quantum Mechanics for Nucleus–Nucleus Scattering with Fusion

We will study the capture of one nucleus with smaller mass by another nucleus with
larger mass. This process can be studied on the basis of the solution of the Schrödinger
equation with radial potential, which has a barrier approximated by a large number N of
rectangular steps:

V(r) =





V1 at rmin < r ≤ r1 (region 1),
. . . . . . . . .

VNcap at rNcap−1 ≤ r ≤ rcap (region Ncap),
. . . . . . . . .
VN at rN−1 ≤ r ≤ rmax (region N),

(1)

where Vj are constants (j = 1 . . . N). r1 . . . rN are parameters of the discretization scheme
with constant step used in computer calculations. One can calculate these parameters
as follows:

∆r =
rmax − rmin

N
,

r1 = ∆r · 1 + rmin, rN−1 = ∆r · (N − 1) + rmin,
r2 = ∆r · 2 + rmin, rN = ∆r · N + rmin = rmax.
ri = ∆r · i + rmin,

(2)

The solution of the radial wave function for the above barrier energies is:

χ(r) =





α1 eik1r + β1 e−ik1r, at rmin < r ≤ r1,
α2 eik2r + β2 e−ik2r, at r1 ≤ r ≤ r2,
. . . . . . . . .
αN−1eikN−1r + βN−1e−ikN−1r, at rN−2 ≤ r ≤ rN−1,
e−ikNr + AR eikNr, at rN−1 ≤ r ≤ rmax,

(3)

where αj, β j, and AR are unknown amplitudes and k j =
1
h̄

√
2m(Ẽ−Vj) are wave numbers.

We will present the solution of this problem on the basis of the method of multiple internal
reflections (see Refs. [19,20], references therein).

Note that, previously, the process of the capture of α-particles on nuclei was studied
by us in Ref. [13], where we presented details of our formalism, demonstrated its accuracy
in comparison with other existing methods, and used tests to check calculations. However,
in Ref. [13], it was not taken into account that after tunneling through the barrier, further
propagation of waves inside the internal region of potential exists. This aspect requires
important modification of the formalism and estimations that were studied in Ref. [14].
In the current paper, we use results of the study in Ref. [14]. According to that research,
we will indicate the region with the number Ncapture as the place where the capture of the
particle by the nucleus takes place with the largest probability.

In each region of potential, we calculate summed amplitudes as:

T̃−j−1 =
T̃−j T−j−1

1− R−j−1R̃+
j

, R̃+
j−1 = R+

j−1 +
T+

j−1R̃+
j T−j−1

1− R̃+
j R−j−1

, R̃−j+1 = R−j+1 +
T−j+1R̃−j T+

j+1

1− R+
j+1R̃−j

, (4)

where:

T+
j =

2k j

k j + k j+1
ei(kj−kj+1)rj , T−j =

2k j+1

k j + k j+1
ei(kj−kj+1)rj ,

R+
j =

k j − k j+1

k j + k j+1
e2ikjrj , R−j =

k j+1 − k j

k j + k j+1
e−2ikj+1rj .

(5)
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All amplitudes R̃+
N−2 . . . R̃+

Ncap
and T̃−N−2 . . . T̃−Ncap

are calculated on the basis of these
recurrent relations, above where at the start one can use:

R̃+
N−1 = R+

N−1, T̃−N−1 = T−N−1. (6)

On the basis of such amplitudes, we calculate summed amplitudes αj and β j as:

β j ≡ ∑
i=1

β
(i)
j =

T̃−j
1− R̃j−1R̃+

j
, αj ≡ ∑

i=1
α
(i)
j =

R̃j−1T̃−j
1− R̃j−1R̃+

1
. (7)

Summed amplitude AT,bar of transition through the barrier or summed amplitude
AR,bar of reflection from the barrier are determined as all waves transmitted through the
potential region with the barrier from rcap to rN−1 or reflected from this potential region as:

AT,bar = T̃−Ncap
, AR,bar = R̃−N−1, at R̃−Ncap

= R−Ncap
. (8)

The method of multiple internal reflections also allows us to determine resonant and
potential scatterings. Here, potential scattering can be defined on the basis of summed
amplitude AR,ext of all waves reflected from the external barrier region, i.e., the region
between the external turning point rtp,ext and rN−1, and propagated outside as:

AR,ext = R̃−N−1, at R̃−Ntp,ext
= R−Ntp,ext

. (9)

Resonant scattering can be defined on the basis of the summed amplitude AR,tun of
all waves that are reflected from the potential region between point rcap and the external
turning point rtp,ext as:

AR,tun = AR,bar − AR,ext. (10)

The coefficient of penetrability Tbar and the coefficient of reflection Rbar concerning
the potential barrier region, the coefficient Rext of reflection from the external part of the
barrier, and the coefficient Rtun of reflection from the pure barrier region are defined as:

Tbar =
kcap

kN

∥∥AT,bar
∥∥2, Rbar =

∥∥AR,bar
∥∥2, Rext =

∥∥AR,ext
∥∥2, Rtun =

∥∥AR,tun
∥∥2. (11)

A useful characteristic is amplitude of oscillations, defined concerning the point of
capture with the number Ncap as:

Aosc(Ncap) =
1

1− R̃−Ncap−1R̃+
Ncap

. (12)

In the standard test of quantum mechanics:

Tbar + Rbar = 1 (13)

is naturally used in the formalism of multiple internal reflections.
According to the formalism of the method of multiple internal reflections [17], the

probability of the existence of a compound nucleus is defined, as the integral over the
region between two internal turning points, as:

Pcn ≡
rint,2∫

rint,1

‖χ(r)‖2 dr =
nint

∑
j=1

{(
‖αj‖2 + ‖β j‖2)∆r +

αjβ
∗
j

2ik j
e2ikjr

∥∥∥
rj

rj−1
−

α∗j β j

2ik j
e−2ikjr

∥∥∥
rj

rj−1

}
. (14)

The solutions presented above are essentially simplified for the simplest barrier in
Equation (1) in Ref. [14]. We write down Pcn(E) as in Ref. [14] (see Equations (6) and (7)):
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P(without fusion)
cn = Posc Tbar Ploc,

Posc = ‖Aosc‖2 =
(k + k1)

2

2k2(1− cos(2k1r1)) + 2k2
1 (1 + cos(2k1r1))

,

Tbar ≡
k1

k2

∥∥T−1
∥∥2,

Ploc = 2
k2

k1

(
r1 −

sin(2k1r1)

2k1

)
.

(15)

For fast fusion for the simplest barrier, we obtain:

P(fast fusion)
cn =

∥∥∥∑
i=1

β
(i)
1

∥∥∥
2

r1∫

0

∥∥∥R0eik1r + e−ik1r
∥∥∥

2
dr =

∥∥T−1
∥∥2 r1 =

k2 r1

k1
Tbar. (16)

The fusion cross-section σ is defined as (see Ref. [13] for details):

σfus(E) =
+∞

∑
l=0

σl(E), σl =
πh̄2

2mE
(2l + 1) fl(E) Pcn(E). (17)

Here, E is the energy of the relative motion between two nuclei, σl is the partial
cross-section at l, and P is the probability of formation of a compound nuclear system as
defined in Equation (14) or (16). In this formula, an additional factor fl(E) is included,
which is needed to connect the old factor of fusion Pl and the new probability Pcn(E) and
penetrability of the barrier region Tbar,l(E). This coefficient can be written down in explicit
form for complete fusion:

f (E) =
kcap

kN ‖rcap − rtp,in,1‖
. (18)

The formalism developed above allows us to model different scenarios of fusion.
For example, for the formation of the compound nucleus with slow fusion (i.e., with-
out instantaneous fusion), we vary fusion coefficients in the region between points rcap
and rint,2.

3. Analysis

We will study the reactions XC + XC = 2XMg [11] (X = 10, 12, 14, 18, 20, 22, 24) in
this paper. The first indications of the possibility to synthesize more heavy elements from
Carbon isotopes can be found in the research of Hamada and Salpeter [21], based on
pycnonuclear reaction rates derived by Cameron [4]. Hamada and Salpeter estimated a
density of 6× 109 g× cm−3 via a pycnonuclear process where nuclei of 12C are transformed
into 24Mg at low energies. Then, estimates of densities of the stellar medium for those
reactions were improved [1]. Note that there were uncertainties in the estimation of
densities in those calculations. Moreover, estimations of rates can be changed to include
temperatures and crystal imperfections in analysis. Summarizing, the critical density for
Carbon was found to be 5× 1010 g× cm−3. We will focus on the understanding of new
quantum phenomena, which exist in pycnonclear reactions and have not been studied yet
by other researchers. As the inclusion of such effects can significantly change the rates
of reactions and even the picture of participating mechanisms, for brevity of calculations,
we will use the density obtained by Hamada and Salpeter for the analysis of isotopes
of Carbon.

3.1. Potential of Interaction for Nuclei in Lattice Sites

The potential of interactions between isotopes of Carbon XC is defined as:

V(r) = vc(r) + vN(r) + vl=0(r), (19)

where vc(r), vN(r), and vl(r) are Coulomb, nuclear, and centrifugal components that have
the form:
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vN(r) = −
VR

1 + exp
{

r− RR
aR

} , vl(r) =
l (l + 1)

2mr2 ,

vc(r) =





Z1Z2 e2

r
, at r ≥ Rc,

Z1Z2 e2

2Rc

{
3− r2

R2
c

}
, at r < Rc.

(20)

Here, VR is the strength of the nuclear term, defined as:

VR = −75.0 MeV. (21)

Rc is the Coulomb radius of the nuclear system, RR is the nuclear radius of the nuclear
system, m is the reduced mass defined in Equation (30), and aR is the diffusion parameter.
We define these parameters as [17,22]:

RR = rR (A1/3
1 + A1/3

2 ), Rc = rc (A1/3
1 + A1/3

2 ), aR = 0.44 fm,
rR = 1.30 fm, rc = 1.30 fm.

(22)

These potentials for isotopes of Carbon are presented in Figure 1.

Figure 1. Potentials of interaction between two nuclei of Carbon XC (potentials and parameters are
defined in Equations (19)–(21)).

A small difference between the shapes of the internal wells of the potentials is clearly
visible in this figure (this internal well is absent in potentials used in Ref. [6], for example).
For brevity, we include maximums of barriers and minimums of wells for potentials of
interaction between nuclei in Table 1.

Table 1. Minimums of wells and maximums of barriers of potentials of interactions between two
isotopes of Carbon, as well as distance R0 between nuclei and their concentration nA (isotopes of
Carbon are chosen in accordance with Ref. [8] on the systematic study of astrophysical S-factors in

fusion reactions for C, O, Ne, Mg; parameters are determined for density ρ0 = 6× 109 g
cm3 ).

Reaction X C+ X C rmin, fm Vmin, MeV rmax, fm Vmax, MeV R0, fm nA, 10−7 fm−3

10C + 10C 3.36 −62.157 7.98 +6.249 87.06 3.61702731
12C + 12C 3.64 −63.018 8.33 +5.972 92.52 3.01418941
14C + 14C 3.92 −63.702 8.68 +5.743 97.40 2.58359092
16C + 16C 4.20 −64.258 8.96 +5.552 101.83 2.26064206
18C + 18C 4.48 −64.726 9.24 +5.386 105.91 2.00945961
20C + 20C 4.62 −65.133 9.52 +5.242 109.69 1.80851365
22C + 22C 4.90 −65.483 9.80 +5.115 113.23 1.64410331
24C + 24C 5.04 −65.792 10.08 +5.001 116.57 1.50709470
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3.2. Space Location of Nuclei in Lattice Sites

Following the logic in Ref. [6] (see p. 90, Figure 3.5 in that book), the distance between
the two closest nuclei located in lattice sites is 2 R0. We place the “incident” nucleus between
these nuclei. Such a distance can be derived as:

ρ0 =
mA
VA

=
A mu

4/3 π R3
0

(23)

or:

R0 =
( A mu

4/3 π ρ0

)1/3
. (24)

Here, ρ0 is the density in the sphere surrounding one nucleus of the lattice site, VA is
the volume inside this sphere, A is the mass number of the nucleus, mA is the mass of the
nucleus, and mu is the mass of the nucleon. One can calculate the concentration of nuclei
nA as:

nA =
ρ0

A mu
. (25)

For analysis of the pycnonuclear reactions XC + XC = 2XMg, we choose to use the
density estimated in Ref. [6]:

ρ0 = 6× 109 g
cm3 . (26)

The derived distance R0 and concentration nA for different isotopes of Carbon at such
a density are given in Table 1.

3.3. Energy Spectra of Zero-Point Vibrations of Nuclei in Lattice Sites

A nucleus located in a lattice site and located between two nuclei with adjacent sites
can oscillate and has a discrete spectrum of energy from such oscillations. The approach to
determine the energy levels of such a spectrum was investigated by Zel’dovich and other
researchers. In this approach, the energy of zero-point vibrations of the nucleus in the
lattice site is calculated as [6] (see Equations (3.7.19) and (3.7.20)):

E(zero)
0 =

h̄w
2

=
h̄ Ze√
m R3

0

, ∆E =
2 Z2e2

R0
, Efull = E(zero)

0 + ∆E. (27)

Here, E(zero)
0 is the energy of the ground state of the harmonic oscillator relative to

the potential minimum of this oscillator, ∆E is the shift of the oscillator relative to the zero
value of the potential of interaction between nuclei (i.e., the distance between the minimum
of the oscillator and the zero value of the potential of the interaction), and Efull is the energy
value of the ground state in the system relative to the zero value of the potential. For
example, for the reaction 12C + 12C = 24Mg, we obtain:

E(zero)
0 = 0.02180806 MeV, ∆E = 0.56787237 MeV, E(zero mode)

full = 0.58968043 MeV. (28)

We call such a state the state of zero-point vibrations of nuclei (or the state of zero mode).
However, the harmonic oscillator has not only the ground state but the full discrete

energy spectrum, which is calculated as:

E(zero)
n =

(
2n + 1

)
· h̄w

2
=
(
2n + 1

)
· E(zero)

n=0 =
(
2n + 1

) h̄ Ze√
m R3

0

. (29)

The energy spectrum can be written down via density of matter ρ0 instead of distance
R0. Using Equation (24) and the formula for reduced mass:

R0 =
( A mu

4/3 π ρ0

)1/3
, m = mp

A1 A2

A1 + A2
, (30)

111



Universe 2023, 9, 354

from Equation (27), we obtain (let us consider the case of the same nuclei in the lattice:
A1 = A2, and A = A1):

E(zero)
0 = c1 ·

Z
A
√

ρ0, c1 = h̄ e

√
8π

3 mump
,

∆E = c2 · Z2
(ρ0

A

)1/3
, c2 = 2e2

( 4π

3mu

)1/3
.

(31)

We find new interesting property for nuclei of type 2Z = A:

E(zero)
0 =

c1

2
√

ρ0, ∆E = c2 · Z2
( ρ0

2Z

)1/3
. (32)

Thus, according to this property, the spectra E(zero)
n are the same for nuclei 8Be, 10B,

12C, 14N, 16O, 18F, 20Ne, 22Na, 24Mg, 26Si, etc. Those depend only on the chosen density
in the stellar medium. In Table 2, energy values are presented for the first 10 states of
zero-point vibrations calculated by Equation (27) for reactions XC + XC.

Table 2. Energy levels for the first 10 states of zero-point vibtations calculated by Equations (27) for
reactions XC + XC.

No. Energy, E(zero)
n , MeV Energy, E(zero)

full , MeV

1 0.021808061833736 0.589680437522993
2 0.065424185501208 0.633296561190465
3 0.109040309168680 0.676912684857937
4 0.152656432836153 0.720528808525410
5 0.196272556503626 0.764144932192882
6 0.239888680171098 0.807761055860354
7 0.283504803838570 0.851377179527827
8 0.327120927506043 0.894993303195299
9 0.370737051173515 0.938609426862772
10 0.414353174840987 0.982225550530244

Energies of states of zero-point vibrations can be reestimated on the basis of the
method of multiple internal reflections. For that, let us write down the radial wave function
in the asymptotic region:

χ(r) = e−ikr + AR e+ikr. (33)

Following quantum mechanics, the full wave function should be zero at point R0 (for
odd states) or be maximal in the module at that point (for even states):

(1) χ(R0) = e−ikR0 + AR e+ikR0 = e−ikR0 + e+ikR0 , AR = +1,

(2) χ(R0) = e−ikR0 + AR e+ikR0 = e−ikR0 − e+ikR0 , AR = −1.
(34)

This requirement gives discreteness of the spectrum of energy for such states. Energy
levels can be found if we impose a condition on the imaginary part of such an amplitude to
equal zero:

even states: AR = +1, Re(AR) = +1, Im(AR) = 0,

odd states: AR = −1, Re(AR) = −1, Im(AR) = 0.
(35)

The energies for states of zero-point vibrations for Carbon isotopes XC + XC→ 2XMg
are given in Table 3.
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Table 3. Energies of zero-point vibrations E(mir)
zero for reactions XC + XC (presented data are in MeV,

below 5 MeV) calculated by the method of multiple internal reflections (see Section 3.3 for details).
Distances between each two adjacent energies are essentially different from the energy spectrum
of the harmonic oscillator (see Equation (31), Table 2). There are few energies below the energy of

the zero-point vibrations in the ground state E(zero)
full,0 derived by the approach of Zel’dovich and his

colleagues (see Equation (27)). These energies are derived with accuracy, which can be estimated from
condition |Re(AR)| ≈ 1. Additional estimation of accuracy of the calculated amplitude can be done
by checking the condition of [Re(AR)]

2 + [Im(ArmR)]
2 = 1. Summation of [Re(AR)]

2 + [Im(ArmR)]
2

is an additional estimation of accuracy for the method of MIR in determination of obtained digits of
the amplitude.

No. 10C + 10C 12C + 12C 14C + 14C 16C + 16C

1 0.517434869739479 0.517434869739479 0.517434869739479 0.527054108216433
2 0.536673346693387 0.536673346693387 0.536673346693387 0.536072144288577
3 0.546292585170341 0.546292585170341 0.546292585170341 0.545090180360721
4 0.565531062124249 0.555911823647295 0.555911823647295 0.554108216432866
5 0.584769539078156 0.575150300601202 0.565531062124249 0.572144288577154
6 0.613627254509018 0.594388777555110 0.575150300601202 0.581162324649299
7 0.642484969939880 0.613627254509018 0.594388777555110 0.599198396793587
8 0.680961923847695 0.642484969939880 0.623246492985972 0.626252505010020
9 0.738677354709419 0.680961923847695 0.652104208416834 0.653306613226453
10 0.815631262525050 0.729058116232465 0.690581162324649 0.689378757515030
11 0.950300601202405 0.806012024048096 0.729058116232465 0.734468937875752
12 1.27735470941884 0.911823647294589 0.796392785571142 0.797595190380762
13 2.23927855711423 1.11382765531062 0.892585170340681 0.878757515030060
14 3.69178356713427 2.76833667334669 1.04649298597194 1.02304609218437
15 — 4.08617234468938 1.64288577154309 1.39278557114228
16 — — 3.04729458917836 1.99699398797595
17 — — 4.28817635270541 3.20541082164329
18 — — — 4.37775551102204

No. 18C + 18C 20C + 20C 22C + 22C 24C + 24C

1 0.517434869739479 0.527054108216433 0.536673346693387 0.517434869739479
2 0.527054108216433 0.546292585170341 0.546292585170341 0.527054108216433
3 0.536673346693387 0.555911823647295 0.555911823647295 0.536673346693387
4 0.546292585170341 0.565531062124249 0.565531062124249 0.584769539078156
5 0.555911823647295 0.584769539078156 0.575150300601202 0.594388777555110
6 0.565531062124249 0.604008016032064 0.594388777555110 0.613627254509018
7 0.575150300601202 0.623246492985972 0.604008016032064 0.632865731462926
8 0.584769539078156 0.642484969939880 0.623246492985972 0.661723446893788
9 0.594388777555110 0.671342685370741 0.652104208416834 0.690581162324649
10 0.613627254509018 0.709819639278557 0.680961923847695 0.729058116232465
11 0.632865731462926 0.748296593186373 0.719438877755511 0.767535070140281
12 0.661723446893788 0.806012024048096 0.757915831663327 0.825250501002004
13 0.738677354709419 0.882965931863727 0.815631262525050 0.911823647294589
14 0.796392785571142 1.00801603206413 0.892585170340681 1.02725450901804
15 0.882965931863727 1.27735470941884 1.01763527054108 1.29659318637275
16 1.00801603206413 2.24889779559118 1.27735470941884 2.20080160320641
17 1.30621242484970 3.26853707414830 2.24889779559118 3.14348697394790
18 2.18156312625251 4.29779559118237 3.22044088176353 4.08617234468938
19 3.26853707414830 — 4.21122244488978 —

3.4. Probabilities of Formation of Compound Nuclei in Pycnonuclear Reactions

Our analysis has shown that the coefficients of penetrability and reflection increase
monotonously with the energy of the incident nucleus [17]. This means that penetrability
and reflection themselves cannot indicate the possible existence of some definite states
of more heavy nuclei synthesized in pycnonuclear reactions in stars. Such behavior of
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these characteristics is in agreement with the analysis of the capture of α-particles by
nuclei [13,14].

Another important quantum characteristic is the probability of formation of acom-
pound nucleus, which can be created during the studied reactions with nuclei. In Figure 2,
we present such probabilities for isotopes of Carbon calculated by our method.

Figure 2. Probabilities of formation of a compound nucleus Pcn in dependence on energy for inci-
dent isotopes of Carbon in reactions 10C + 10C, 12C + 12C (a), 14C + 14C, 16C + 16C (b), 18C + 18C,
20C + 20C (c), and 22C + 22C, 24C + 24C (d) in lattice (potentials and parameters are defined in
Equations (19)–(21)). One can clearly see the presence of maxima of such probabilities for all studied
isotopes. Energies corresponding to maxima of such probabilities are given in Table 4.

In these figures, one can clearly see the presence of maxima in probabilities at certain
definite energies for all studied isotopes of Carbon. This means that at such energies,
compound nuclei are formed with maximum probability. Another conclusion from such
calculations is that the formation of XMg nuclei is much more probable at such energies
than at energies of zero-mode vibrations. These maxima are explained by strict require-
ments of quantum mechanics [16], which take into account the further propagation of
quantum fluxes in the potential region, in contrast to the existing modern description of
pychonuclear reactions, where these fluxes are omitted in the nuclear region from the
internal turning point.

In Table 4, we present the energies of the quasibound states for reactions with isotopes
of Carbon up to 150 MeV.

Only first quasibound energies for 10C + 10C, 12C + 12C, and 24C + 24C are smaller
than the barrier maximums for these nuclear systems. This means that at such energies,
compound nuclear systems are the most stable and are transformed to new synthesized
isotopes of Magnesium 20Mg, 24Mg, and 48Mg with large probability. There is a simple
way to estimate half-lives of these obtained heavier nuclei using Gamow’s approach (well
developed in the problem of nuclear decays) or the method of multiple internal reflections
for higher precision (we omit these calculations in this paper).

114



Universe 2023, 9, 354

Table 4. Energies of the quasibound states of the compound nuclear systems in reactions with
isotopes of Carbon 10C, 12C, 14C, 16C, 18C, 20C, 22C, and 24C, calculated by the method of multiple
internal reflections up to 150 MeV (accuracy of about 10−14 in checking test |Tbar + Rbar| = 1 is
obtained for each calculation). Comparing these energies with maximums of the potential barriers
for all studied systems given in Table 1, we find that only first quasibound energies for 10C + 10C,
12C + 12C, and 24C + 24C are smaller than barrier maximums for these nuclear systems. That means
that at such energies, the compound nuclear systems have barriers that prevent decays from going
through the tunneling phenomenon.

No. 10C + 10C 12C + 12C 14C + 14C 16C + 16C 18C + 18C 20C + 20C 22C + 22C 24C + 24C

1 0.63471 4.88176 9.06212 7.27054 6.37475 5.47896 5.18036 4.58317
2 15.33267 11.45090 16.52705 13.83968 11.74950 10.55511 9.06212 8.46493
3 26.38076 20.40882 25.78357 21.90180 18.31864 16.52705 14.43687 13.24248
4 40.11623 31.45691 36.23447 30.85972 26.38076 23.69339 20.70741 19.21443
5 55.04609 43.69940 47.58116 40.71343 34.74148 31.15832 27.57515 25.48497
6 71.76754 57.13627 59.82365 51.46293 43.99800 39.51904 35.04008 32.35271
7 89.68337 71.76754 72.96192 62.80962 53.85170 48.47695 42.80361 39.81764
8 109.39078 87.29459 86.99599 74.75351 64.30261 57.73347 51.16433 47.58116
9 130.29259 104.01603 101.62725 87.59319 75.35070 67.88577 60.12224 55.64329

10 – 121.93186 117.45291 101.03006 86.99599 78.03808 69.37000 64.30261
11 – – 134.17435 115.36273 98.93988 89.08617 79.23246 72.96192
12 – – – 130.29259 112.07816 100.43287 89.08617 82.51703
13 – – – 146.11824 125.21643 112.37675 99.83567 92.07214
14 – – – – 139.25050 124.91784 110.88377 102.22445
15 – – – – – 137.75752 122.23046 112.67535
16 – – – – – – 134.17435 123.42485
17 – – – – – – 146.11824 134.77154
18 – – – – – – – 146.11824

4. Plasma Screening in Nuclear Reactions

It is well known that nuclear reactions at high densities of matter in compact stars
are essentially modified due to plasma screening effects [1]. Therefore, a natural question
appears as to how many of the results presented above are changed after taking effects of
plasma screening into account. We will follow Ref. [10], where effects of plasma screening
in thermonuclear fusion reactions in dense nuclear matter in stars were studied. Here, in
addition to physical analysis, the authors provided a clear formalism for use and implemen-
tations into other research. Therefore, we will estimate the influence of plasma screening
on pycnonuclear reactions on the basis of isotope 12C, and we use that research as a basis
for our analysis.

The methodology of the influence of electron clouds on the studied nuclear process
is presented in Ref. [10], and we follow this approach. In frameworks of model [10],
nuclear reactions are studied under the influence of strong plasma screening. At the first
stage, authors introduce the Coulomb potential for colliding nuclei in the standard form
as UC(r) = Z1Z2e2/r − H(r), where H(r) is the mean-field plasma screening potential
and Zi is the electric charge of the nucleus with the number i (i = 1, 2). Potential H(r) is
determined by the ion-sphere model proposed by Salpeter [23].

H(r) is produced by an electron cloud near nuclei (ions) (see Onsager molecules, e.g.,
Ref. [24], references therein). Following model [10], the electron cloud is considered as
an incompressible uniformly charged liquid drop. This drop has a constant volume, but
variable shape. The charge of this drop fully compensates for the charge of the interacting
nuclei. The electron drop acts as a Wigner–Seitz cell with tunneling ions.

In the approach of [10], the authors also calculate the astrophysical S-factors and the
reaction rates for thermonuclear reactions by including the screening potential in the total
potential. The new modified S-factor is determined not only by nuclear interactions but
also by parameters of dense matter. With the estimation of new rates, the authors found
factors of the plasma screening enhancement.
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Following Ref. [10] (see Equation (7) in that paper), we define the Coulomb potential
UC(r) for colliding nuclei in the standard form:

UC, f ull(r) = vC(r) + H(r), (36)

where vC(r) is the pure Coulomb potential without screening and H(r) is the mean-field
plasma screening potential. In contrast to Ref. [10], we calculate the pure Coulomb potential
vC(r) on the basis of Equations (20)–(22) (here, the Coulomb potential in the nuclear region
at r < RC is different from the corresponding potential in Equation (7) in Ref. [10]), and we
use nuclear potential vN(r) in Equation (20) (we set l = 0). In definition of the screening
part of potential, we follow Ref. [10] and use (see Equations (10) and (11) in that paper):

H(r) = E12 h(x), x =
r

a12
, (37)

where:
h(x) = b0 + b2 x2 + b4 x4 + . . . . (38)

At Z1/Z2 = 1, parameters b0, b2, and b4 are derived in Ref. [10] as:

b0 = 1.0573, b2 = −0.25, b4 = 0.0394. (39)

Other parameters are (see Equations (2) and (4) in Ref. [10]):

ae =
( 3

4π ne

)1/3
, aj = Z1/3

j ae, (40)

a12 =
a1 + a2

2
, E12 =

Z1Z2 e2

a12
, (41)

where ne is concentration of electrons.
On the basis of Equation (25), we calculate the concentration of nuclei nA at the studied

density as:

12C + 12C, ρ0 = 6× 109 g
cm3 : nA = 3. 014 18× 10−7 fm−3. (42)

This can be understood as each 12C nucleus having size of about 200 fm in volume.
From here, we find the concentration of electrons:

ne = Z · nA, ne = 1. 808 51× 10−6 fm−3 (43)

and from Equations (38) and (39), we obtain:

a12 = 92. 522 41 fm. (44)

As it is indicated in Ref. [10], Equation (38) should be used at x � 2. We estimate
that this condition is fulfilled in the full region of study of reaction 12C + 12C at the chosen
density, so we use Equation (38) for the description of the screening part of the potential.

The potential of interactions taking into account screening, calculated by such an
approach, is shown in Figure 3.

From this figure, one can see that the screening does not change the potential much at
the density of matter under consideration. Therefore, one can suppose that the screening
does not influence essentially the results of quasibound states and energies above. However,
energies of zero-point vibrations are essentially smaller than quasibound energies, and one
can suppose that the energy spectrum of zero-point vibrations will be changed after the
inclusion of plasma screening in calculations.
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Figure 3. Potential of interaction between two 12C nuclei with the inclusion of screening in comparison
with the same potential without screening (a) and the part of the potential describing screening (b) (the
potential and parameters are defined in Equations (19)–(21), and the screening part of the potential is
defined in Equations (36)–(38)).

In Table 5, values of energies of zero-point vibrations calculated for the reaction
12C + 12C are presented with and without taking into account screening.

Table 5. Energies for zero-point vibrations E(mir)
zero (values are presented in MeV, below 5 MeV)

calculated for the reaction 12C + 12C.

No. 12C + 12C with Screening 12C + 12C without Screening

1 0.209619238476954 0.517434869739479
2 0.267334669338677 0.536673346693387
3 0.344288577154309 0.546292585170341
4 0.478957915831663 0.555911823647295
5 0.786773547094188 0.575150300601202
6 2.21042084168337 0.594388777555110
7 3.83607214428858 0.613627254509018
8 0.642484969939880
9 0.680961923847695
10 0.729058116232465
11 0.806012024048096
12 0.911823647294589
13 1.11382765531062
14 2.76833667334669
15 — 4.08617234468938

From this table, one can see that the energy spectrum of the zero-point vibrations for
the reaction 12C + 12C is modified essentially after taking plasma screening into account.

5. Influence of Vibration of External Nuclei on Calculation of Quasibound States

Vibrations of the nucleus can be understood as oscillations of the particle inside the
potential well in quantum mechanics (for example, see Ref. [16], p. 91). Here, the harmonic
oscillator provides a clear example. The ground energy level of this particle inside the
potential of the harmonic oscillator is not zero (exited energy levels are also not zero) due to
the quantum nature of this phenomenon. Non-zero frequencies correspond to such energies.
At the same time, quantum mechanics provides a formalism to calculate the most probable
location of this particle, which is at the coordinates of the minimum of the potential well.
This picture corresponds to the most probable position of the studied nucleus with non-zero
frequencies (i.e., the position of nucleus is fixed in general logic). In other words, vibrations
of the nucleus (inside some external field) can be studied in quantum mechanics as a
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particle oscillating inside the potential well, and quantum mechanics provides a formalism
to calculate non-zero frequencies and the most probable location of this particle.

If we consider the nucleus to be between the two closest nuclei (we will call them
“external nuclei”), one can find that this nucleus is located inside the Coulomb fields of the
external nuclei. The summation of the Coulomb potentials of the external nuclei gives the
harmonic oscillator enough of a small middle region between the external nuclei, which is
the approximation for full potential (where we neglect interactions with external nuclei at
closer distances). In such a way, we obtain a picture of the oscillation of the particle inside
the harmonic potential well, and we report the vibrations of the corresponding nucleus.

However, we should be reminded that nuclear interactions of nuclei exist, which
influence the phenomenon described above. In particular, this is crucial in the study of
nuclear scattering. From our experience, the role of the nuclear part of the potentials is
increased at low energies (this is the case of pycnonuclear reactions). Therefore, we obtain
motivation to take into account the influence of nuclear forces from the external nuclei
on the process of oscillation of the middle nucleus (the particle inside the more complex
potential well, which continues to exist).

After the inclusion of the nuclear parts of the potentials from external nuclei, we
obtain two additional (more deep) wells outside the well of harmonic oscillator type.
Now, potential barriers appear, and there is a possibility to transfer a particle through any
barrier with not-zero probability. This is estimated on the basis of penetrability, which
we calculate with high precision, and we propose tests to check the calculations by other
researchers. In addition, we find that after tunneling (or transferring the region of the
barrier at above-barrier energies), the joint nuclear system (from the middle nucleus and
one external nucleus) can exist with higher probability, which we describe and estimate via
the formalism of quasibound states.

If we study the interaction of the middle nucleus with one external nucleus, quantum
mechanics provides a strict formalism, where the particle with reduced mass moves in the
external potential (for example, see Ref. [16], pp. 133–136). The vibrating effects of both
nuclei are included in such a model, which can be studied via estimation of energy levels,
frequencies, properties of the wave function of this particle, etc. The influence of the second
external nucleus can be included also as correction with the addition of a second potential
with a second barrier.

However, outside such a correction above, more self-consistent study of joint vibrations
of all external nuclei and the middle nucleus can be performed as the next step in this
research line (this is a three-body problem in quantum mechanics). This study is omitted in
the current manuscript.

6. Conclusions and Perspectives

The question of conditions needed for the most probable formation of compound
nuclei (as the first stage needed for the synthesis of more heavy elements) in pycnonuclear
reactions in compact stars is investigated in this paper. The method is based on the
formalism of multiple internal reflections, constructed for the study of quantum phenomena
with details, high precision, and tests in nuclear decays [12,19,20] and nuclear captures by
nuclei [13,14]. In this paper, we continue investigations of pycnonuclear reactions with
isotopes of Carbon, started in Ref. [17] for 12C + 12C. Conclusions of our analysis are
the following.

• In this research, pycnonuclear processes are studied, taking the nuclear part of the
potential of interactions between nuclei into account. The requirement of continuity of
quantum flux (describing pycnonuclear reactions on the basis of quantum mechanics)
gives new states in which the compound nuclear system of 2XMg is formed with the
highest probability (see Figure 2). Following the logic in Refs. [13,14,17], we call such
states quasibound states in pycnonuclear reactions. Note that these states have not been
studied yet by other researchers in the study of the synthesis of elements in stars.
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• As shown in Figure 2, the probability of formation of a compound nuclear system
in quasibound states is essentially higher than the probability of formation of this
system in states of zero-point vibrations studied by Zel’dovich [5] and followers
of that idea. The synthesis of more heavy nuclei of Magnesium from isotopes of
Carbon is essentially more probable in quasibound states than in states of zero-point
vibrations. This leads to the revision (reconsideration) of pictures of the formation of
heavy elements in compact stars to use quasibound states as the basis for synthesis.
Note the perspective to study in more detail the method in this paper on the basis of
experimental measurements in Ref. [25].

• Only the first quasibound energies for 10C + 10C, 12C + 12C, and 24C + 24C
(see Table 4) are smaller than the barrier maximums for these nuclear systems (see
Table 1). Therefore, at such energies, the compound nuclear systems have barriers that
prevent their decays from going through the tunneling phenomenon. At such energies,
the compound nuclear systems are the most probable and the most long lived. These
systems are transformed into new synthesized isotopes of Magnesium 20Mg, 24Mg,
and 48Mg with large probabilities. There is a simple way to estimate the half-lives of
these obtained more heavy nuclei using Gamow’s approach or the method of multiple
internal reflections for higher precision. Note that other approaches cannot estimate
the quasibound energies needed for the prediction of the synthesis of more stable
nuclear systems by such a way described above. At the same time, the method of mul-
tiple internal reflections calculates such energies with high precision, also providing
tests to check calculations. However, the analysis of binding energies for the obtained
isotopes of Magnesium shows that only 24Mg will be stable after synthesis.

• For the first time, the influence of plasma screening on quasibound states and states of
zero-point vibrations in pycnonuclear processes has been studied. It is found that the
energy spectrum of zero-point vibrations is essentially modified after taking plasma
screening into account (see Table 5 for the reaction 12C + 12C).
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Abstract: The thermodynamic properties of the interacting particle–antiparticle boson system at high
temperatures and densities were investigated within the framework of scalar and thermodynamic
mean-field models. We assume isospin (charge) density conservation in the system. The equations of
state and thermodynamic functions are determined after solving the self-consistent equations. We
study the relationship between attractive and repulsive forces in the system and the influence of these
interactions on the thermodynamic properties of the bosonic system, especially on the development
of the Bose–Einstein condensate. It is shown that under “weak” attraction, the boson system has a
phase transition of the second order, which occurs every time the dependence of the particle density
crosses the critical curve or even touches it. It was found that with a “strong” attractive interaction,
the system forms a Bose condensate during a phase transition of the first order, and, despite the
finite value of the isospin density, these condensate states are characterized by a zero chemical
potential. That is, such condensate states cannot be described by the grand canonical ensemble since
the chemical potential is involved in the conditions of condensate formation, so it cannot be a free
variable when the system is in the condensate phase.

Keywords: relativistic boson system of particles and antiparticles; Bose–Einstein condensation

1. Introduction

Knowledge of the phase structure of meson systems in the regime of finite temper-
atures and isospin densities is crucial for understanding a wide range of phenomena,
from nucleus–nucleus collisions to neutron stars, as well as cosmology. This field is an
important part of hot and dense hadronic matter research. Meanwhile, the study of meson
systems has its own specifics due to the possibility of the Bose–Einstein condensation of
bosonic particles. The aim of this paper is to investigate thermodynamic properties of a
bosonic many-particle system, specifically the character of the phase transitions during
the Bose–Einstein condensation at high densities. The latter condition means that the
interaction in the bosonic system plays a sufficient role.

Historically, the problem of the Bose–Einstein condensation in the system of interacting
bosons has been studied, starting from the pioneering works of N.N. Bogolyubov [1], where
he investigated non-ideal gas of bosons and managed to describe the excitations of the
system of interacting bosons in terms of non-interacting quasi-particles. Starting from
this approach, the investigation of interacting bosons at the temperatures close to zero
yielded the powerful impulse from the mean-field approach. Indeed, if the interactions in
the diluted atomic gases are sufficiently weak, it can be argued that the mean field is the
condensate wave function itself, as it was argued in Refs. [1–3]. Bogolyubov developed
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this idea systematically to study Bose condensation and superfluidity. Then, neglecting
the fluctuations altogether, it is possible to derive the equation of motion for the wave
function of the mean field, i.e., for the condensate wave function. This is the nonlinear
Schrodinger equation or Gross–Pitaevskii equation [4,5]. Afterwards, these approaches
were supplemented by the number of fruitful generalizations.

However, these methods and approaches are not suitable for the study of the Bose–Einstein
condensation at high densities. That has two main reasons. First, high densities imply that
the possible condensate states occupy the region of high temperatures where the density of
thermal particles can no longer be treated as a small fluctuation comparing with the density
of condensate. Second, as was pointed out by Kerson Huang in his textbook [6], the real
conservation law deals with the conserved quantity that is the number of particles minus
the number of antiparticles. That is why any study of the Bose–Einstein condensation in the
relativistic Bose gas must take antiparticles into account. Firstly, this was discussed in Ref. [7].
Moreover, as was shown in [8] in the case of the “weak” attraction in the system and a conserved
charge, the particles only develop the condensate states, but the antiparticles are in the thermal
phase for all temperature ranges beginning from zero temperature.

In the present study, we are focused first of all on meson systems. This field is
an essential part of investigations of hot and dense hadronic matter, which is a subject of
active research [9]. In our study, we name the bosonic particles “pions” conventionally. The
preference is made because the charged π mesons are the lightest hadrons that couple to the
isospin chemical potential. At the same time, the pions are the lightest nuclear boson parti-
cles and thus, an account for “temperature creation” of particle–antiparticle pairs is a task
for quantum statistics widely exploited in the paper. The problem of the Bose–Einstein
condensation of π mesons has been studied previously, starting from the pioneering works
of A.B. Migdal and coworkers (see [10] for references). Formation of classical pion fields in
heavy-ion collisions was discussed in Refs. [11–14], and the systems of pions and K mesons
with a finite isospin chemical potential have been considered in more recent studies [15–19].
A scalar model of a bosonic system that develops a Bose–Einstein condensate with conserva-
tion of isospin (charge) was first studied in [7,20,21]. Various aspects of free and interacting
systems of relativistic bosons are discussed further in Refs. [22–26]. First-principles lattice
calculations provide interesting new results concerning dense pion systems [27,28].

The presented study is associated with the approach proposed in Ref. [8], where the
boson system was considered when the attraction between particles is “weak”. Here, we
proceed to investigate the thermodynamic properties of interacting particle–antiparticle
meson systems at the conserved isospin density in the framework of the canonical ensemble
using the mean-field model (see Appendix A). In this paper, we study also the boson
systems where the attractive interaction between particles is “strong”. (The rigorous
definitions of the “weak” and “strong” attractive interactions will be given further.) We
regard a studied self-interacting many-particle system as a toy model that can help us
understand the Bose–Einstein condensation and phase transitions over a wide range of
temperatures and densities.

The paper is organized as follows. Section 2 shortly describes the thermodynamic
properties and condensation in an ideal Boson gas at the particle-number conservation.
In Section 3, we introduce a self-interacting scalar mean-field model, which is then used
to investigate condensate creation in the bosonic system of particles and antiparticles.
An analogous description of the bosonic system of particles and antiparticles, but in the
framework of the thermodynamic mean-field model, is given in Section 4. Section 5
compares the results obtained in the former two approaches for describing the bosonic
system and the condensate formation at zero total charge. The phase transitions in the
particle–antiparticle system with conserved isospin (charge) density are studied in Section 6.
Section 7 is a final one, where we compare the description of the Boson systems in the
presence of condensate in the framework of the canonical ensemble and the grand canonical
ensemble. Conclusions of the present study are given in Section 8.
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2. Canonical Ensemble: Condensation in Ideal Boson Gas

As a referring point, let us give a reminder about the main properties of the Bose
condensation in a single-component ideal gas at conserved particle-number density n. This
is shown in Figure 1, where two samples of the particle-number density are presented,
n = 0.1, 0.2 fm−3. The red dashed line is the critical curve n(id)

lim that determines the critical
temperature Tc. The critical curve is the dependence of the particle-number density on the
temperature at the maximum value of the chemical potential, which is equal to the particle
mass, µ = m 1. Thus, the formula that determines the critical curve reads

n(id)
lim = g

∫ d3k
(2π)3 fBE(E, µ)

∣∣
µ=m , (1)

where E = ωk =
√

m2 + k2 and

fBE(E, µ) =
1

e(E−µ)/T − 1
. (2)

In Figure 1 and further in the text, the dependence n(T) given in Equation (3) is noted
as n = n(id)

lim (T). The solution of Equation (3) with respect to temperature for the given
particle density n determines the critical temperature Tc(n).

c
(0.1)T c

(0.2)T

n = 0.2

n = 0.1

lim
(id)n

T1

T2

n1 n2

~

~

~ ~

Figure 1. Left panel: particle-number density versus temperature in ideal single-component gas.
The horizontal lines represent two constant particle density samples, n = 0.1, 0.2 fm−3, which

correspond to critical temperatures T(0.1)
c and T(0.2)

c , respectively. Here, the critical curve n(id)
lim (T)

is defined in (3). Right panel: normalized critical temperature T̃ = T/m vs. normalized particle
density ñ = n/m3 in ideal single-component gas.

In the condensate phase, the generalization of Equation (3) is

n = ncond(T) + g
∫ d3k

(2π)3 fBE(E, µ)
∣∣
µ=m . (3)

The results of calculation of the energy density and heat capacity represented in
Figure 2 evidently show that at the crossing point of the particle-number density and the
critical curve, the phase transition of the second order occurs. Indeed, there is a finite
discontinuity of the derivative of the heat capacity in the Tc points and a smooth behavior
of the energy–density dependence in these points, i.e, there is no release of the latent heat.
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n = 0.1

lim
(id)

(0.1)Tc
(0.2)Tc

n = 0.2

(0.1)Tc
(0.2)Tc

n = 0.2
n = 0.1

vc(cond)

Figure 2. Left panel: energy density versus temperature for the same system and conditions as in the

left panel. The red dashed line marked as ε
(id)
lim represents the energy density of the states that belong

to the critical curve n(id)
lim depicted in the upper panel. Right panel: heat capacity normalized to T3 as

a function of temperature in the ideal single-component gas where the particle-number density is
kept constant.

Let us briefly discuss the results obtained for a single-component ideal gas, where
the particle-number density n remains constant. First of all, we fix that when the line
n(T) = const intersects the critical curve n(id)

lim (T), the system undergoes a phase transition
of the second order or follows the Ehrenfest classification of the third order. It has long been
known, see Ref. [29], that the Bose–Einstein condensation is indeed a third-order phase
transition according to the first classification of general types of transitions between phases
of matter, introduced by Paul Ehrenfest in 1933 [30,31]. Therefore, the obtained temperature
Tc is really the temperature of the phase transition of the second order (according to modern
terminology), and the density of condensate ncond is the order parameter. In what follows,
we will show that the same behavior is typical also in the case of interacting two-component
systems at conserved charge density.

3. Self-Interacting Scalar Field

We start our consideration from the Lagrangian density of the self-interacting real
scalar field

L(x) =
1
2

[
∂µφ̂(x)∂ µφ̂(x)−m2 φ̂2(x)

]
+ Lint[φ̂

2(x)] , (4)

where x = (t, r). We adopt that

φ̂(r) = φcond + ψ̂(r) , where
〈

ψ̂(r)
〉
= 0 . (5)

Here, we use the famous Bogolyubov’s decomposition of the field operator into
two contributions [1–3]

φ̂(r) =
1√
V

a0 +
1√
V

∑
k 6=0

akeik·r/h̄ . (6)

Due to the argument that at T → 0 in a non-perfect Bose gas, the number of particles
on the ground state N0 approximately equals to the total number of particles N,

N0 = 〈a+0 a0〉 ≈ N , (7)

one can treat a0 and a+0 as classical values.
Heisenberg representation:

φ̂(x) = eiHtφ̂(r)e−iHt = φcond + ψ̂(x) with 〈ψ̂(x)〉 = 0 , (8)
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[
ψ̂(t, r),

∂ψ̂(t, r′)
∂t

]
=

[
φ̂(t, r),

∂φ̂(t, r′)
∂t

]
= iδ3(r− r′) . (9)

Hence, the quantum fluctuations of the field ψ̂(x) have the same commutation relation
as the complete field φ̂(x). Expansion over solutions of the Klein–Gordon equation is

ψ̂(x) =
∫

|p|6=0

d3 p
(2π)32ωp

(
ap e−ip·x + a+p eip·x

)∣∣
p0=ωp

, (10)

where
[ak, a+p ] = (2π)32ωp δ3(k− p) , [ak, ap] = 0 . (11)

For the field variance, we obtain the following decomposition:
〈

φ̂2(x)
〉

=
〈

φ2
cond + 2φcondψ̂ + ψ̂2

〉
= φ2

cond +
〈

ψ̂2
〉

. (12)

We see that the field variance is decomposed also on classical and quantum pieces.

3.1. The Effective Lagrangian in the Mean-Field Approximation

We are going to consider the Bose–Einstein condensation of the scalar field (for details
see Ref. [32]),

L(x) =
1
2

[
∂µφ̂(x) ∂ µφ̂(x)−m2 σ̂(x)

]
+ Lint(σ̂) , (13)

where we introduced notation
σ̂(x) = φ̂2(x) . (14)

We use the quantum statistical averaging of the operator Â:

〈
Â
〉
=

1
Z

Tr
[
e−β(Ĥ−µN̂) Â

]
, Z = Tr

[
e−β(Ĥ−µN̂)

]
. (15)

Next, we introduce the mean value σ of the operator σ̂

σ = 〈σ̂〉 , δσ̂ = σ̂− σ . (16)

Here, δσ̂ is the deviation of the operator σ̂ from its mean value. One can expand the
Lagrangian (13) as the function on the variable σ̂ around the point σ:

Lint(σ̂) ' Lint(σ) + δσ̂L′int (σ) = Lint(σ) + σ̂L′int (σ) − σL′int (σ) , (17)

where prime means the derivative with respect to σ. We come to the effective Lagrangian
in the mean-field approximation

L(x) ' 1
2

[
∂µφ̂(x) ∂ µφ̂(x)−M2(σ) φ̂2(x)

]
+ Pex(σ) , (18)

where we introduced the following notations

Pex(σ) ≡ Lint(σ)− σ
∂Lint(σ)

∂σ
, M̂2(σ) = m2 + 2 U(σ) , (19)

with

U(σ) ≡ − ∂Lint(σ)

∂σ
. (20)

The differential relation between the excess pressure Pex(σ) and the mean field U(σ)
follows from this definition

σ
∂U(σ)

∂σ
=

∂Pex(σ)

∂σ
. (21)
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3.2. Hamiltonian Density in the Mean-Field Approximation

Momentum operator π̂ satisfies the equal-time commutation relations

π̂(x) = ∂t φ̂(x) ,
[
φ̂(t, r), π̂(t, r′)

]
= iδ3(r− r′). (22)

The Hamiltonian density Ĥ = π̂ ∂tφ̂−L reads

Ĥ ' 1
2

[
π̂2(x) +∇φ̂(x) ·∇φ̂(x) + M2(σ)φ̂2(x)

]
− Pex(σ) . (23)

Using solutions of the Klein–Gordon equation,

∂ µ∂µ φ̂ + M2(σ) φ̂ = 0, (24)

one can represent the scalar field φ̂(x) as

φ̂(x) = g
∫ d 3k

(2π)3
√

2ωk

[
ake−ik·x + a+k eik·x

]
, (25)

where k0 = ωk =
√

k2 + M2(σ) and the operators of creation and annihilation satisfy the
standard commutation relations

[
ak, a+

k′

]
= (2π)3δ(k− k′),

[
ak, ak′

]
=
[

a+k , a+
k′

]
= 0 . (26)

As a first step, we consider a boson system at zero isospin (charge) density nI = 0,
i.e., the numbers of particles and antiparticles are equal. In this case, the Hamiltonian in
the mean-field (MF) approximation reads

Ĥ =
∫

d 3x Ĥ = V

[
g
∫ d3k

(2π)3 ωk a+k ak − Pex(σ)

]
. (27)

In the MF approximation, the equilibrium momentum distribution coincides with that
of an ideal gas of bosons with the effective mass M(σ)

nk(σ) ≡ 〈a+k ak〉 = (eβ ωk − 1)−1 , β = 1/T , kB = 1 , µI = 0 , (28)

where ωk =
√

M2(σ) + k2 with M2(σ) = m2 + 2U(σ).
The thermodynamical description of the system is obtained by means of solution of

self-consistent equations for the thermal phase and condensate phase with respect to the
scalar density σ = 〈φ̂2〉 2. In the thermal phase, this equation reads

σ = g
∫ d3k

(2π)3
nk(σ)

ωk
. (29)

In the condensate phase, one should take into account the necessary condition for
condensate creation M2(σ) = 0 and include into the equation the density of the scalar
condensate, then the equation becomes

σ = σcond + g
∫ d3k

(2π)3
nk(σ)

ωk

∣∣∣
M2(σ)=0

, (30)

where, in the case of µI = 0 (or nI = 0), we are left with one canonical variable T. The last
equation corresponds to the relation

〈
φ̂2
〉

= φ2
cond +

〈
ψ̂2
〉

, (31)
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which we obtained as a result of the decomposition of the field operator (5) and specific
features of the quantum fluctuations, see Equation (12).

Other thermodynamic quantities that characterize the quasi-particle boson system can
be obtained in a regular way in the framework of the quantum statistics. The pressure reads

p = pkin(T, σ) + Pex(σ) , (32)

where the kinetic pressure in the thermal phase is

pkin(T, σ) =
g
3

∫ d 3k
(2π)3

k2

ωk
nk(σ) , (33)

whereas the kinetic pressure in the condensate phase reads

pkin(T, σ) =
g
3

∫ d 3k
(2π)3

k2

ωk
nk(σ)

∣∣∣
M2(σ)=0

. (34)

The energy density and entropy density s = (ε + p)/T in the thermal phase read

ε = g
∫ d3k

(2π)3 ωk nk(σ) − Pex(σ) , (35)

s =
g
T

∫ d 3k
(2π)3

(
ωk +

k2

3ωk

)
nk(σ) . (36)

The energy density and entropy density in the condensate phase read

ε = εcond + g
∫ d3k

(2π)3 ωk nk(σ)
∣∣∣

M2(σ)=0
− Pex(σ) , (37)

s = scond +
g
T

∫ d 3k
(2π)3

(
ωk +

k2

3ωk

)
nk(σ)

∣∣∣
M2(σ)=0

. (38)

3.3. Bosonic System with ϕ4 + ϕ6 Self-Interaction

For specific numerical calculations, we adopt the following parametrization of the
interaction part of the Lagrangian

Lint

(
φ̂2(x)

)
=

a
4

φ̂4(x) − b
6

φ̂6(x) . (39)

Then, the mean field and the excess pressure are

U(σ) = −1
2

a σ +
1
2

b σ2, Pex(σ) = − a
4

σ2 +
b
3

σ3 , (40)

where σ = 〈φ̂2〉. This means that attraction and repulsion between particles in the form of
a mean field are simultaneously present in the system of bosons. The distribution function

nk =
[
exp (

√
k2 + M2/T)− 1

]−1
makes sense when the argument is positive, i.e.,

M2(σ) = m2 + 2U(σ) = m2 − aσ + b σ2 > 0 . (41)

The limiting case in this relation is the condition for the occurrence of scalar conden-
sate:

M2(σ) = m2 − aσ + b σ2 = 0 . (42)
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Solutions of this equation are

σ1,2 =
m√

b

(
κ ∓

√
κ2 − 1

)
, (43)

where we introduce the dimensionless parameter κ:

κ =
a

2m
√

b
, → a = κ ac , ac = 2m

√
b . (44)

Thus, we conclude that when κ ≤ 1, the quasi-particle effective mass becomes imagi-
nary (M2 < 0), and the system becomes unstable. The stability is restored by the formation
of the Bose condensate.

4. An Interacting Boson System within the Thermodynamic Mean-Field Model

We are going to compare a description of the boson system at high densities in the
field-theoretical and in the quantum-statistical approaches. The consideration of the latter
one starts from separation of the free energy F(T, N, V) into free and interaction parts as

F(T, N, V) = F0 + Fint . (45)

Or, for the free energy density as Φ(T, n) = Φ0 +Φint, where Φ(T, n) = F(T, N, V)/V.
Then, we introduce the following important notations (for details, see [33])

U(n, T) =

[
∂Φint(n, T)

∂n

]

T
, (46)

Pex(n, T) = n
[

∂Φint(n, T)
∂n

]

T
− Φint(n, T) . (47)

These quantities are related to one another by the differential equality

n
∂U(n, T)

∂n
=

∂Pex(n, T)
∂n

. (48)

In these notations, the pressure in the system can be written as

p(T, µI) =
g
3

∫ d3k
(2π)3

k2
√

m2 + k2
fBE

(
Ek(n), µI

)
+ Pex(n) , (49)

where g is the degeneracy factor, Ek(n) =
√

m2 + k2 + U(n) is the effective single-particle
energy, µI is the isospin chemical potential and fBE is the Bose–Einstein distribution function

fBE

(
E, µ

)
=

{
exp

[
E− µ

T

]
− 1
}−1

. (50)

In the particle–antiparticle system, the Euler relation is ε + p = Ts + µInI , where nI is
the isospin (charge) density. Let us first consider the case of zero charge density, i.e., nI = 0,
that corresponds to µI = 0 in the grand canonical ensemble.

The mean-field model implies that the thermodynamic description of the system is
obtained via a self-consistent approach. In our case, this is achieved by a self-consistent
equation for the total particle density n, which should be solved separately in the thermal
and condensate phases. In the thermal phase, this equation has a structure n = nth(T, n),
and it should be solved with respect to the total particle density n for every fixed value
of T,

n = g
∫ d3k

(2π)3 fBE(Ek(n)) , (51)
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where fBE(E) = [exp (E/T) − 1]−1. The solution of Equation (51) in the thermal phase
results in the explicit dependence n = n(T), which in general differs from the ideal gas
dependence, n0(T). Knowledge of the dependence n(T) gives a possibility to obtain
equation of state through a direct calculation of other thermodynamic quantities such as
pressure, energy density, entropy density, etc.

In the condensate phase, one should take into account the condensation condition at
µI = 0, U(n) + m = 0 that leads to specific “critical” density nc, which is a real root of this
equation. The solution of this equation has the following structure: nc = ncond(T) + nth(T),
where the density of the condensate component ncond appears as a new degree of freedom.
Thus, in the condensate phase, the self-consistent equation for ncond reads

nc = ncond + g
∫ d3k

(2π)3 fBE(Ekin) , (52)

where Ekin =
√

m2 + k2 −m.

4.1. Parametrization of the Interaction

To be closer to the field-theoretical approach, we use the following correspondence
between the scalar density 〈φ2〉 and particle number density n, which simply coincide
with one another in the non-relativistic limit. Then, using the correspondence ϕ4 → n2

and ϕ6 → n3, we write the excess pressure and the corresponding mean field (see the
differential relation (48)) as

Pex(n) = − 1
2

A n2 +
2
3

B n3 , → U(n) = − A n + B n2 , (53)

where the positive parameter A is responsible for attraction between particles and the
positive parameter B for repulsion between particles in a boson system (for details see [10]).
The parameter A will be varied, whereas the parameter B, associated with a hard-core
repulsion, will be kept constant. It is advisable to parameterize A in the following way: let
us use solutions of equation U(n) +m = 0, which determine the condition for a condensate
creation (a similar algorithm was adopted in Refs. [10,34]). For the given mean field (53),
there are two roots of this equation

n1 =

√
m
B

(
κ −

√
κ2 − 1

)
, n2 =

√
m
B

(
κ +

√
κ2 − 1

)
, (54)

where we introduce the dimensionless parameter κ:

κ ≡ A
2
√

m B
. (55)

Then, one can parameterize the attraction coefficient as A = κAc with Ac = 2
√

mB. As
it is seen below, the parameter κ is the scale parameter that determines the phase structure
of the system. We consider two intervals of the parameter κ: (1) a “weak” attraction that
corresponds to κ < 1, i.e., n1,2 are not the real roots, and (2) a “strong” attraction that
corresponds to κ > 1, i.e., n1,2 are the real roots. The critical value Ac is obtained when
both roots coincide, i.e., when κ = 1, then A = Ac = 2

√
mB.

5. Condensation of Interacting Bosons at Finite Temperatures

In this section, we compare the numerical results obtained within two approaches,
the field-theoretical approach, which is based on the scalar mean-field (SMF) model, and
the quantum-statistical approach, which is based on the thermodynamic mean-field (TMF)
model. Our purpose is to study an influence of the attraction and repulsion between
particles on the thermodynamic properties of a Boson system, especially in the presence of
the condensate. In both cases, we will keep constant the repulsive term while varying the at-
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tractive interaction by means of the parameter κ. We present the solutions of self-consistent
equations for different values of the attraction coefficient a in the SMF model while fixing
the repulsion coefficient as b = 25 m−2

π . The same is done for the TMF model, where we vary
the attraction coefficient A while fixing the repulsion coefficient as B/mπ = 10v2

0. It is nec-
essary to note that these variations of the attraction coefficients are done in the same way in
both approaches by means of the dimensionless parameter κ: in the SMF model as a = κac,
where ac = 2m

√
b, and in the TMF model as A = κAc, where Ac = 2

√
mB. We name the

boson particles “pions” and take their mass as m = mπ = 139 MeV for the degeneracy
factor g = 3. In the SMF model, the critical curve is obtained when M2 = m2 + 2U(n) = 0,
and it reads

σlim = g
∫ d3k

(2π)3

(
ek/T − 1

)−1
=

g
12

T2 . (56)

In the case of the TMF model, there is a similar condition for determination of the
critical curve, m + U(n) = 0, that looks like a presence of the effective chemical potential
µ = m. Therefore, the critical curve in the case of the TMF model reads

nlim = g
∫ d3k

(2π)3

{
exp

[√
m2 + k2 −m

T

]
− 1

}−1

. (57)

The numerical calculations of the particle density vs, temperature for the SMF model
and TMF model are presented in Figure 3 in the left and right panels, respectively. The
calculations are done for different values of the attraction coefficients a and A, which are
parameterized by parameter κ in both models. We name κ < 1 as the “weak” attraction and
κ > 1 as the “strong” attraction. It is seen that for “weak” attraction, the scalar densities
and the particle number densities are in the thermal phase. At κ = κc = 1, the density
curves have one common point with the critical (red dashed line). The critical curve σlim(T)
is depicted in Figure 3 in the left panel as a red dotted-dashed line, and the critical curve
nlim(T) is depicted in Figure 3 in the right panel as a red dashed line. In both approaches,
at “strong” attraction, κ > 1, there is a first-order phase transition at T = Tc with creation
of the condensate. This is a result of competition of pressure corresponding to two different
solutions of the self-consistent equation in the thermal and in the condensate phases.
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Figure 3. Left panel: scalar density vs. temperature, b = 25 m−2
π , a = κ ac , ac = 2m

√
b.

Right panel: particle-number density vs. temperature, B = 10mπv2
0, A = κ Ac , Ac = 2

√
mB. In

both panels, the shaded area indicates the states of the Bose–Einstein condensate. Crosses on both
panels separate metastable and non-physical states.

In the SMF model, we solve Equation (30) to obtain the scalar density σ = σtherm(T)
in the thermal (liquid–gas) phase and a corresponding pressure plg(T). On the other
hand, Equation (30) for the condensate (mix) phase 3 is characterized by two constant
solutions σ = σ1 and σ = σ2, see Figure 3, the left panel. Then, we compare the pressure
dependencies p(1)mix(T) and p(2)mix(T) corresponding to σ1 and σ2, respectively, with one
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another and with plg(T). The result of this comparison is depicted in Figure 4 in left

panel as the solid blue line. It is seen that at T = Tc, the pressure p(2)mix(T) becomes the
largest, which determines the phase transition of the first order with creation of the scalar
condensate (for details, see [32]).

The same analysis is made also for the TMF model. We solve Equation (51) to obtain
the dependence of the particle density n = ntherm(T) in the thermal (liquid–gas) phase and
a corresponding pressure plg(T). Equation (52) is characterized by two constant real roots
nc1 and nc2 and two corresponding pressures. The result of this comparison is depicted in
Figure 4 in the right panel as the solid blue line.
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Figure 4. In both panels: Pressure vs. temperature for the supercritical attraction, κ = 1.1. The

solid blue line that consists of two segments, plg and p(2)mix, is the final equation of state, Tc is the
critical temperature that indicates the phase transition of the first order. Crosses on both panels
separate metastable and non-physical states. Left panel: The scalar mean-field model. The pressure

p(1)mix corresponds to the scalar density σ1. Right panel: The thermodynamic mean-field model. The

pressure p(1)mix corresponds to the particle-number density n1.

It is seen from the comparison of results depicted in the two panels in Figure 3, and
in the two panels in Figure 4, that the two models show a very similar behavior. That
is why in what follows, we consider only the TMF model, assuming that it gives a true
thermodynamic description of the bosonic system at high densities.

6. Particle–Antiparticle System with Conserved Isospin (Charge) Density
6.1. Derivation of Basic Equations

Let us consider a homogeneous system with conserved charge (isospin). The de-
scription of such a system can be done within the canonical ensemble with the canonical
variables (T, nI). Here, nI = n(−) − n(+) is the difference between the densities of π−

and π+ mesons. Note, now we use the thermodynamic mean-field (TMF) model for
many-component boson systems, see Appendix A. As a first step, we consider the “weak”
attraction between particles, i.e., κ ≤ 1. In this case, there are two pairs of self-consistent
equations. The first set of equations describes the system when both components, i.e.,
both the π− and π+ mesons, are in the thermal phase (high temperatures). The second
set of equations describes the system at low temperatures, when the π− mesons are in
the condensate phase but the π+ mesons are in the thermal (kinetic) phase (see details in
Ref. [8]). At high temperatures, the set of equations reads

n =
∫ d3k

(2π)3

[
fBE

(
E(k, n), µI

)
+ fBE

(
E(k, n),−µI

)]
, (58)

nI =
∫ d3k

(2π)3

[
fBE

(
E(k, n), µI

)
− fBE

(
E(k, n),−µI

)]
, (59)
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where the Bose–Einstein distribution function fBE

(
E, µ

)
is defined in (2) and E(k, n) =√

m2 + k2 + U(n). These equations should be solved with respect to the particle den-
sity n and chemical potential µI . We use the same parameterization as in the case of
zero charge density (see Section 4.1), it depends on the total particle-number density n:
Pex(n) = −(1/2)An2 + (2/3)Bn3 → U(n) = −An + Bn2 . Actually, this parameteriza-
tion of the interaction is in analogy to the field-theoretical approach with a correspondence
〈ϕ+ϕ〉 ↔ n, then, in the same manner, one can write ϕ4 → n 2 and ϕ6 → n 3.

One of the main goals of our research is to investigate the influence of attraction
and repulsion between particles on the thermodynamic properties of the bosonic system,
especially in the presence of a condensate. In this study, we fix the repulsive interaction
in the system while changing the attraction between particles. As in the case of zero
isospin density [10], we use the same parameterization of the attraction coefficient A using
the solutions (54) of equation U(n) + m = 0. Then, in the same manner, we introduce
dimensionless coefficient κ ≡ A/(2

√
mB) that parameterizes the parameter A as A = κAc

with Ac = 2
√

mB. Below, we use parameter κ to vary attraction between particles.
If one of the components of the particle–antiparticle system is in the condensate phase

(low temperatures) 4 , then self-consistent equations that determine the thermodynamic
structure of the system read

n = n(−)
cond(T) + nlim(T) +

∫ d3k
(2π)3 fBE

(
E(k, n),−µI

)∣∣∣
µI=m+U(n)

, (60)

nI = n(−)
cond(T) + nlim(T)−

∫ d3k
(2π)3 fBE

(
E(k, n),−µI

)∣∣∣
µI=m+U(n)

, (61)

where we assume that the condensed state of π− mesons develops under the (neces-
sary) condition

m + U(n) − µI = 0 . (62)

We use notation

nlim(T) =
∫ d3k

(2π)3 fBE

(
ωk, µI

)∣∣∣
µI=m

(63)

for a density of the thermal particles at the onset of condensation (the critical curve).

6.2. Numerical Results: Second-Order Phase Transitions Generated by the Particles That Carry
Dominant Charge

The solutions of Equations (58)–(61) are depicted in Figure 5 as the dependence of
particle-number densities of π− mesons (left panel) and π+ mesons (right panel) at fixed
isospin density nI = 0.1 fm−3 and a set of attraction parameters κ = 0, 0.6, 0.85, 0.96, 1.
The red dashed lines in both panels are the critical curves nlim, which reflect the maximal
density of thermal π− pions (left panel) or π+ pions (right panel). The dashed area indicates
the phase with the condensed particles. The open stars in the left panel indicate the Bose
condensation as a phase transition of the second order in the π− component, where T(−)

c is
the temperature of the Bose condensation of π− mesons. The “dark” star in the right panel
indicates a virtual-like second-order phase transition created by the π+ meson subsystem
at the attraction parameter κ = 1. Each “star” on the graphs corresponds to a second-order
phase transition. Roughly speaking, each intersection of the particle density curve with the
critical curve corresponds to a phase transition of the second order.

It turns out that the phase structure of π− mesons (the particles with dominant charge)
can be grouped into two types: (a) the curve n = n(−)(T) has one cross with the critical
curve nlim(T), and (b) the curve n = n(−)(T) has three crosses with the critical curve. The
regular behavior or the type (a) occurs when the parameter κ belongs to the low interval
0 ≤ κ < κs, where κs ≈ 0.93. In this case, π− mesons for T < T(−)

c1 are in the condensate

phase, and in the temperature interval T > T(−)
c1 they are in the thermal phase, see Figure 5,

the left panel.
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Figure 5. Left panel: The particle-number densities n(−) of π− mesons versus temperature for the
system of interacting π+ - π− mesons at fixed isospin density nI = 0.1 fm−3 and the set of “weak”
attraction parameters κ = 0, 0.6, 0.85, 0.96, 1. The red dashed curve nlim reflects the maximal density
of thermal π− mesons (or π+ mesons) in the ideal π+ - π− gas. The dashed area indicates the phase
with the condensed particles. The open stars show the onset of phase transition of the second order of
the π− mesons. Right panel: The particle-number densities n(+) of π+ mesons versus temperature
at the same set of parameters as in the left panel. The “dark” star corresponding to the T∗ temperature
indicates a virtual second-order phase transition of the π+ component without condensate formation.

Therefore, for the κ of type (a), the temperature of the phase transition Tc in the
whole system is determined as Tc = T(−)

c1 , or it is a regular phase transition of the second
order. Indeed, in Figure 6, in the left panel, one can clearly see a finite discontinuity of the
derivative of heat capacity (left panel) and the absence of the latent heat (right panel) at the
temperature Tc.
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Figure 6. Left panel: Energy density versus temperature in the interacting particle–antiparticle
system of pions at κ = 0, 0.6, 0.85, 0.96, 1. The isospin (charge) density is kept constant, nI = 0.1 fm−3.
The points of the phase transition of the second order are indicated by the corresponding temperatures

T(−)
c1 , T(−)

c2 , T∗, T(−)
c . Right panel: heat capacity as a function of temperature for the same system

and conditions as in the left panel.

In fact, in case (a), the dependence n(−)(T), which reflects the behavior of the density
of π− mesons (Figure 5, left panel), looks very similar to the behavior at a constant density
of particles in a single-component system, at least in the condensate phase, that is, for
temperatures 0 ≤ T ≤ Tc, see Figure 1 in Section 2. On the other hand, the dependence
n(+)(T) (Figure 5, right panel) that reflects behavior of the π+ particle density looks very
similar to the particle-density dependence at nI = 0 and κ < 1, shown in Figure 3 in the
right panel. Both of these features can be explained by the similar initial conditions at T = 0
and a slow creation of the thermal pion pairs at low temperatures.
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When the attraction parameter κ increases and becomes type (b), i.e., κs < κ ≤ 1,
the phase structure of the charge-dominant component (π− mesons) is more complex. In
this case, the curve n(−)(T) consistently crosses the critical curve nlim(T) three times at
temperatures T(−)

c1 < T(−)
c2 < Tc, see Figure 5, the left panel. The obvious explanation of

this phenomenon is due to the charge conservation. Indeed, for sufficiently high values
of κ, say κ > κs, the π+ density approaches the critical curve (see Figure 5, right panel)
and simply “squeezes out” to the other side of the critical curve the π− density since
its values must be higher by nI than π+ density. That is, the states of the π− mesons
again “pass” into the condensate phase. As can be seen in Figure 6, each intersection of
the curve n(−)(T) with the critical curve nlim(T) corresponds to a phase transition of the
second order. Indeed, in Figure 6, in the right panel, one can see a finite discontinuity of
the derivative of heat capacity at temperatures T(−)

c1 , T(−)
c2 , T∗ and Tc. At the same time,

in the left panel in Figure 6, we see no jumps corresponding to the latent heat at these
temperatures. Therefore, we can conclude that due to the conservation of charge, along
with the regular phase transition of the second order, multiple “weak” phase transitions
can also occur in a particle–antiparticle system.

At the same time, the antiparticle component of the system or π+ mesons are in the
thermal phase for the whole temperature range, see Figure 5, the right panel. Only at
the critical value κ = κc = 1, the density n(+)(T) touches the critical curve nlim(T) at the
temperature T = T∗. For this special case where κ = 1, we have calculated the heat capacity
and its derivative, see Figure 7. One can see that heat capacity (left panel) has a pronounced
peak at a relatively high temperature of ∼190 MeV.
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Figure 7. Left panel: Heat capacity normalized by T3 as a function of temperature in the interacting
particle–antiparticle system at κ = 1 (black solid curve). The isospin (charge) density is kept constant,
nI = 0.1 fm−3. The derivative of heat capacity is shown in a small window. Right panel: Energy
density normalized by T4 versus temperature for the same system and conditions as in the left panel
(black solid curve). The enlarged central area of the graphic is shown in a small window.

It is necessary to point out that the heat capacity and energy density are the physical
quantities, which reflect the integrated behavior of the total particle–antiparticle system.
That is why the curves cv(T) and ε(T) “carry” specific peculiarities that are due to the
joined behavior of the particles and antiparticles. This can be seen clearly in Figure 7 for
κ = 1. Indeed, we see three phase transitions of second order at T = Tc1, Tc2, Tc that are
due to behavior of π− mesons at κ = 1. Meanwhile, for the π+ meson subsystem at κ = 1,
one can see the virtual second-order phase transition at T = T∗, marked as the filled star
on the critical curve in Figure 5, right panel. It is a specific phase transition of the second
order because there is no creation of the condensate in both directions from the temperature
T∗ 5. The character of this phase transition is clearly seen in Figure 7, in the small window
in left panel as a discontinuity of the heat-capacity derivative at T = T∗. At the same time,
we see a smooth behavior of the energy density at this temperature, see the small window
in Figure 7 in the right panel.
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We notice that all crosses of the dependencies n(−)(T) and n(+)(T) with the critical
curve nlim(T) are exhibited as the finite discontinuity of the derivatives of heat capacity
cv(T) at the temperatures T = Tc1, Tc2, T∗, Tc, see the left panel in Figure 7. In the right
panel in this figure, we plot the energy density. One can recognize that it is really the
second-order phase transitions at these four temperature points because the dependence of
the energy density, ε(T), is indeed continuous and without release of the latent heat.

Therefore, regarding thermodynamic behavior of the particle–antiparticle bosonic
system at “weak” attraction (κ ≤ 1), we identified the phase transitions of the second
order at every cross point of the density n(−)(T) with the critical curve nlim(T) defined in
Equation (63). For parameter κ in the interval 0 ≤ κ < κs, we fix the onset of condensation
at one temperature T = T(−)

c , corresponding to a phase transition of the second order.
However, for the values of parameter κ in the interval κs < κ ≤ 1, we find the onset of
condensation at three temperatures T(−)

c1 , T(−)
c2 and Tc due to an oscillating behavior of the

curve n(−)(T) around the line nlim(T).
The density dependence n(+)(T) of π+ mesons at κ = 1 provides a remarkable feature

that we once noted above. As one can see in Figure 5, in the right panel, at the temperature
T∗ = 202 MeV, the curve n(+)(T), calculated at κ = 1, touches the critical curve nlim(T),
but it does not cross it. Let us look at this in some detail. For the value κ = 1, the roots (54)
of equation U(n) + m = 0 coincide with one another: n1 = n2 ≡ n∗, where n∗ =

√
m/B.

At this density, because U(n∗) + m = 0, the condition (62) of the condensate creation leads
to zero value of the chemical potential, i.e., µI = 0, but U(n∗) = −m. Therefore, for the
particle-density point n = n∗, the arguments in the Bose–Einstein distribution functions
of the densities n(+) and nlim coincide and equal to (ωk −m)/T. Hence, it is possible to
calculate the temperature that corresponds to the total particle density n∗ by solving the
following equation: nlim(T∗) = (n∗ − nI)/2. One can see the behavior of the chemical
potential vs. temperature at κ = 1 in Figure 8 in the left panel as the blue solid curve (the
axis indicating the value of the chemical potential is on the right of the graph). The chemical
potential drops down to zero at one point T = T∗, where the density of π+ mesons touches
the critical curve, see Figure 5, the right panel. As can be seen in Figure 7, in the left panel,
the common point of the line n(+)(T) with the line nlim(T) is sufficient to create a finite
discontinuity of the derivative of the heat capacity with a continuous behavior of the energy
density, that is, to cause a phase transition of the second order at the temperature T∗. We
name this phenomenon the virtual phase transition of the second order because it does not
lead to the creation of the condensate that plays a role of the order parameter.
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Figure 8. Left panel: Density of the condensate of π− mesons as a function of temperature in
the interacting particle–antiparticle gas at κ = 1. The isospin (charge) density is kept constant,
nI = 0.1 fm−3. Shaded blue areas show the condensate states of π− mesons. The blue solid line
shows the behavior of the chemical potential. Right panel: The same as in the left panel but for
κ = 1.1. The sail-like shaded area indicates the condensate states created by π− mesons and by π+

mesons at the same time. The gap of the chemical potential at T = Tcd reflects phase transition of the
first order, which creates the condensate of π− and π+ mesons.
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At the end of this section, we can formulate the following theorem: Each intersection
of the particle density curve n(±)(T) with the critical curve nlim(T) (or even touching the critical
curve) leads to a phase transition of the second order at the temperature that characterizes this
intersection point. At the temperature T∗ corresponding to the point of touching, we encounter a
virtual phase transition of the second order without the formation of a condensate, that is, without
the formation of an order parameter.

7. Canonical Ensemble vs. Grand Canonical Ensemble: Description of the Boson
Systems in the Presence of a Condensate
7.1. Particle-Number Conservation in an Ideal Single-Component Bosonic System

Let us assume that in the case of the conserved charge, we want to describe the
boson system in the framework of the grand canonical ensemble, where the canonical
variables are (T, µ). As a starting point, let us consider an isolated ideal single-component
boson gas with a conserved number of particles (next, in the framework of the grand
canonical ensemble, we will consider a particle–antiparticle boson system at a conserved
charge density).

It turns out that even in this case, the general procedure is not so unambiguous. First of
all, one should adjust the chemical potential at high temperatures T, where no condensate
is present in the system, at a given particle density n, which should be treated as a mean
value. In the canonical ensemble, where the free variable is the particle density n, the
chemical potential is found from equation

n = g
∫ d3k

(2π)3 fBE(ωk, µ) . (64)

On the other hand, it can be represented vice versa: at some given temperature T′

and chemical potential µ′, by using Equation (64), one can calculate the mean value n̄,
which will be adopted as a conserved particle-number density in the canonical ensemble.
However, further, for other temperatures than T′, one has to know the chemical potential
that provides the same particle density n. Again, it is necessary to solve Equation (64)
with respect to the chemical potential to obtain a dependence µ(T, n). The solution of
Equation (64) is represented in Figure 9 in the left panel for two densities n = 0.1 fm−3 and
n = 0.2 fm−3, where the critical curve is depicted as n(id)

lim . It should be noted that in the
condensed phase T < Tc, the chemical potential is equal to the maximum value, which is
the mass of particles µ = m. Then, in the condensate phase, the variables (T, µ) determine
only the density of thermal particles in this temperature interval, see two examples of
curves in Figure 9 in the right panel. In addition to this, it should be noted that if the
chemical potential participates in the condition of condensate formation, i.e., µ = m, then
from a formal point of view, it cannot be a free variable in the condensate phase.

Therefore, if we continue to investigate the conservation of the number of particles in
a single-component ideal gas over a wide temperature interval, we must use the chemical
potential profile depicted in Figure 9 in the left panel. Then, indeed, if we use this function
µ(T, n) in Equation (64) to calculate the particle density, the resulting dependence n(T)
actually remains constant, n(T) = n̄ = const. However, in fact, this is not the use of
the grand canonical ensemble, where the two free variables (T, µ) should determine the
thermodynamic state of the system, we see that the chemical potential profile is calculated
with the help of some value of n. This especially applies to the condensate phase, where
the chemical potential is limited by the condition of condensate formation, i.e., µ = m.
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Figure 9. Left panel: Chemical potential vs. temperature in an ideal single-component boson gas at

conserved mean value n of the particle-number density for two samples: n = 0.1 fm−3 with T(0.1)
c

(the black solid line) and n = 0.2 fm−3 with T(0.2)
c (the black dashed line). The segment µ = m

belongs to the condensate phase. Right panel: Density of thermal particles vs. temperature in an

ideal single-component boson gas. The critical curve n(id)
lim is defined in (3). (The same notations as in

the left panel).

The picture obtained becomes even more striking when we study the conservation
of charge in a relativistic ideal boson gas of particles and antiparticles at nI 6= 0. Indeed,
if we assume that particles and antiparticles are simultaneously in the condensate phase,
then two conditions must be satisfied simultaneously: m− µI = 0 and m + µI = 0, where
µI is the isospin chemical potential, which corresponds to nI . This leads to two equations:
m = 0 and µI = 0. As we can see, the first equation is impossible or unphysical. That is,
only one condition can be fulfilled, for example m− µI = 0. Therefore, we can formulate
the following theorem: in a relativistic bosonic ideal gas of particles and antiparticles with a
conserved charge nI 6= 0, only one component of the system can form a condensate phase. The sign
of the excess charge, the modulus of which is equal to nI , determines the answer, which
component of the system, particles or antiparticles, can be in the condensate.

7.2. Charge Conservation in an Interacting Particle–Antiparticle Boson System

A similar paradoxical picture arises when describing an interacting particle–antiparticle
bosonic system at a finite isospin (charge) density nI 6= 0 within the grand canonical
ensemble. With “strong” attraction, when the temperature rises from zero, the system
has a different phase structure in different temperature intervals, as was the case with
“weak” attraction.

As we saw in the previous Section 6.1, with “weak” attraction, the boson system has
a different phase structure in different temperature intervals. With a “strong” interaction,
an additional thermodynamic state arises, when both components, that is, particles and
antiparticles, can simultaneously be in the condensate phase. Therefore, if κ > 1, it is
necessary to sequentially solve three sets of equations, each of which corresponds to
a certain thermodynamic phase:

(a) at low temperatures, when the charge-dominant component of the particle–antiparticle
system is in the condensate phase 6 and the low-density component is only in the
thermal phase, this is a set of Equations (60) and (61);

(b) when both components, i.e., mesons π− and π+, are in the condensate phase, it is
necessary to modify set (a), see hereinafter;

(c) at high temperatures, it is a set of Equations (58) and (59), which defines the state
when both components of the system, that is, particles and antiparticles, are only in
the thermal phase.

There is a delicate issue when both particles and antiparticles undergo the Bose–Einstein
condensation at the same time. In this case, in addition to the condensate condition (62) for
π− mesons, the argument of the distribution function for π+ mesons must satisfy a similar
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condition to ensure that this component of the system is also present in the condensate
at the same temperature T and chemical potential µ. Therefore, when both particles and
antiparticles are in the condensate, we obtain two conditions simultaneously:

U(n) − µI + m = 0 ,

U(n) + µI + m = 0 .

(65)

(66)

Then, Equations (60) and (61) should be modified to take these conditions into account.
We must include a condensate component n(+)

cond of π+ mesons, accounting for the fact that
the density of thermal π+ mesons is now nlim(T), as well as the density of thermal π−

mesons. Hence, when both components are in the condensate, the set of self-consistent
equations reads (case (b))

n = n(−)
cond(T) + n(+)

cond(T) + 2 nlim(T) , (67)

nI = n(−)
cond(T) − n(+)

cond(T) . (68)

It turns out that the solutions of sets (a) and (b) exist in the same temperature interval.
Indeed, in addition to self-consistent solutions of equation (a), there are two other branches
of solutions: (n(−)

1 = const, n(+)
1 = const) and (n(−)

2 = const, n(+)
2 = const), which

satisfy Equations (67) and (68). It can be shown that the branch (n(−)
2 = (n2 + nI)/2,

n(+)
2 = (n2 − nI)/2, where n2 is the root (54) of equation U(n) + m = 0, is preferable

because of the higher pressure corresponding to these states.
The competition between branches (a) and (b) is resolved in the standard way ac-

cording to the Gibbs criterion: the state corresponding to the highest pressure is preferred
in the thermodynamic realization. Using this rule we find the temperature Tcd from
equation p(a)(T, nI) = p(b)(T, nI), where the pressure p(a)(T, nI) corresponds to solutions
of the set of equation (a) and p(b)(T, nI) to the set of equation (b). For temperatures
above Tcd, the pressure that corresponds to the states determined by set (b) dominates,
i.e., p(b)(T, nI) > p(a)(T, nI). This leads to the transition from branch (a) to branch (b)
of self-consistent solutions, which leads to a phase transition of the first order at the
temperature T = Tcd.

The set of Equations (65) and (66) can be rewritten as

µI = 0 ,

U(n) + m = 0 .

(69)

(70)

Note, in Ref. [10], the system of pions was studied in the grand canonical ensemble at
µI = 0 in the mean-field approach, and the condition for the onset of the condensate phase
leads to the same equation U(n) + m = 0.

Results of the numerical solution of the sets of equations (a), (b) and (c) for the particle
density at κ = 1.1 are shown in Figure 10 in the left panel. The density n(−)(T) of π−

mesons is represented by a solid blue curve, which consists of several horizontal segments
and one vertical segment, which reflects a phase transition of the first order. The density
n(+)(T) of π+ mesons is depicted as a dashed blue curve, which also consists of several
horizontal segments and one vertical segment, which also reflects a first-order phase
transition. It can be seen from the figure that the isospin (charge) density in the system of
bosons under consideration remains constant. Indeed, for each temperature point on the
graph, it can be seen that n(−)(T)− n(+)(T) = 0.1 fm−3.
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Figure 10. Interacting particle-antiparticle boson system in the thermodynamic mean-field model.
Left panel: Particle densities vs. temperature at conserved isospin (charge) density nI = 0.1 fm−3 as
the solid blue line consisting of several segments (π− mesons) and the dashed blue line consisting
of several segments (π+ mesons). The vertical segment for both dependencies indicates a phase
transition of the first order with the creation of the condensate. In the condensate phase, µI = 0.
A dashed red line is the critical curve nlim(T), see Equation (63). Right panel: Particle-number
densities vs. temperature at nI = 0 (or at µI = 0): (1) the supercritical attraction κ = 1.1 is shown
as a solid blue line consisting of several segments; the vertical segment (solid blue line) indicates
a phase transition of the first order with the creation of the condensate; (2) particle densities at
“weak” attraction κ ≤ 1 are shown as solid black lines in the thermal phase. A dashed red line is the
critical curve. Crosses on both panels separate metastable and non-physical states.

For a clearer comparison in the right panel in Figure 10, we took the liberty of depicting
the right panel of Figure 3 once again. We would like to emphasize that in the condensate
phase, both systems are represented by a zero chemical potential regardless of whether
the particle–antiparticle system described in the left panel has a finite charge density,
i.e., nI = 0.1 fm−3, while the particle–antiparticle system described in the right panel is
characterized by zero charge density, i.e., nI = 0. Therefore, if one intends to study both
systems, one system with a finite charge density and another with zero charge density
within the grand canonical ensemble, then the canonical variables should be (T, µI = 0)
when describing the condensate phase in both systems.

We seem to be coming to a kind of contradiction, since the textbooks say that the chem-
ical potential should reflect charge conservation or particle-number density conservation,
as we saw in the previous Section 7.1. The resolution of this contradiction occurs according
to the statement that the grand canonical ensemble with canonical variables (T, µ) is suitable for
describing only the thermal phase or for describing particles that are in kinetic states, but not in
condensed states. We verified that this is true for particle-number conservation in the case of
an ideal gas of bosons, where with the canonical variables (T, µ) in the condensate phase
we were able to describe only the kinetic particles, see Section 7.1.

This is also the case in our particular consideration of the relativistic particle–antiparticle
boson system with conserved isospin charge nI . Indeed, it can be seen in Figure 10 in
the left panel in the temperature interval that corresponds to the condensate phase, i.e.,
between points 2 and 3 on the graph, that for each temperature from this interval, the
thermal density of π− mesons is equal to the thermal density of π+ mesons, since these
two densities are equal to nlim(T). In other words, these kinetic densities are equal to the
critical curve density. Therefore, the charge density, which is determined only by thermal
particles and antiparticles, is zero. Respectively, the chemical potential, which corresponds
to the charge of the system, which is determined only by thermal particles, is also zero. In
addition, we see that the chemical potential µI is really useful for describing only thermal
or kinetic particles. Actually, this can be understood from the very beginning, because the
chemical potential “works” in the integral (in the distribution function), which determines
only the density of kinetic particles.
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The results of solving the self-consistent equations for κ = 1.1 are shown in Figure 8 in
the right panel (the axis indicating the value of the chemical potential is on the right side
of the graph). One can see the behavior of the chemical potential, the value of which is
actually zero in the phase where the particles and antiparticles are in a condensed state. It
can be seen that the chemical potential drops to zero at the temperature Tcd, which indicates
a phase transition of the first order. We can also see in Figure 8 in the right panel that
condensate forms in two different temperature intervals, at low temperatures the presence
of condensate is exclusively due to charge conservation, but at higher temperatures, the
formation of condensate is caused by supercritical attraction between particles.

7.3. Other Examples

Consider the thermodynamic mean-field model, where the mean field also depends on
the isospin density. As shown in Ref. [35], since n and nI are independent thermodynamic
variables, the form of this mean field is as follows: U(∓)(n, nI) = U(n)∓UI(nI), where
UI(nI) is an odd function, for example, UI(nI) ∝ nI , and the field U(−) acts on π− mesons,
while U(+) acts on π+ mesons. Then, if π− and π+ mesons are in the condensate phase,
two necessary conditions must be fulfilled: m + U(n)−UI(nI)− µI = 0 and m + U(n) +
UI(nI) + µI = 0. From here, we obtain the equivalent equations: m + U(n) = 0 and
µI = −UI(nI). Therefore, the chemical potential is fixed by the condition of condensate
formation and is determined by the isospin density, which remains constant. Hence, when
the mean interaction in the system depends on the isospin (charge) density, we again
conclude that µI cannot be a free variable in the presence of a condensate, and hence, the
grand canonical ensemble is not applicable in the condensate phase.

When describing the interacting particle–antiparticle bosonic system at a finite isospin
(charge) density nI 6= 0 in the field-theoretic approach formulated in Section 3, we encounter
exactly the same paradox. Indeed, for development of the condensate by both particles
and antiparticles, two conditions must be met: M2 − µI = 0 and M2 + µI = 0, where M is
the effective mass of quasi-particles. By complete analogy with case (c) discussed above,
these conditions lead to two equations: M2 = 0 and µI = 0. Therefore, it turns out that the
system with a finite charge density nI 6= 0 is characterized by zero value of the chemical
potential. On the other hand, we see that in the presence of condensate, the density of
thermal particles is the same in the negatively and positively charged components of the
system, i.e., n(−)

th (T) = n(+)
th (T). Hence, the problem can be resolved by accepting that the

chemical potential is responsible only for thermal (kinetic) particles.

8. Conclusions

Therefore, in the present study, we have investigated the relativistic interacting system
of Bose particles and antiparticles, which we conventionally named “pions” due to zero
spin and mass m = 139 MeV/c2. The repulsion between particles was fixed (hard-core
repulsion), but attraction between particles, which was parameterized by the dimensionless
parameter κ, changes from zero (κ = 0) to some supercritical value (κ > 1).

We proved, and by this we confirmed the conclusion obtained in [8], that at “weak”
attraction (κ ≤ 1), the π− component of the system only can develop the Bose–Einstein
condensate, the π+ component is in the thermal phase for all temperatures. We have shown
that for 0.93 ≤ κ ≤ 1, in addition to the condensate of π− mesons at low temperatures, it
can appear again in some interval at higher temperatures.

• The intersections of the particle density curves with the critical curve indicate second-
order phase transitions in the system.

• At the point where the particle density of π− mesons touches the critical curve, the
virtual phase transition of second order, i.e., a phase transition without setting the
order parameter, appears.

• The meson system develops a first-order phase transition for sufficiently strong attrac-
tive interactions via forming a Bose condensate, thus releasing the latent heat. The
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model predicts that the condensed phase is characterized by a constant total density
of particles.

• The grand canonical ensemble cannot describe the state of the condensate since
the chemical potential µI is significantly affected by the conditions of condensate
formation, so it cannot be used as a free variable if the system is in the condensed
phase. That is why the grand canonical ensemble is not suitable for describing a
multi-component system in the condensate phase, even if only one of the components
is in the condensate.
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Appendix A. Thermodynamically Consistent Mean-Field Model for the Interacting
Particle–Antiparticle System

The consideration in this section is based on the thermodynamic mean-field model
developed in Ref. [33], where a multi-component system consisting of any number of
species was studied. Here, we consider specific equations of the thermodynamic mean-
field model for the system of particles and antiparticles.

We limit our study to the case where at a fixed temperature, the interacting boson
particles and boson antiparticles are in dynamical equilibrium with respect to annihilation
and pair-creation processes. To take into account the interaction between the bosons, we
introduce a phenomenological Skyrme-like mean field U(n), which depends only on the
total density of mesons n.

To start with, let us consider a thermodynamic system consisting of two sorts of
particles. The free energy of the system and its differential can be written as

F(N1, N2, T, V) = µ1N1 + µ2N2 − pV , (A1)

dF = µ1dN1 + µ2dN2 − SdT − pdV , (A2)

where N1,2 is the number of particles of the first and second sorts, µ1,2 are their chemical
potentials, p is the pressure in the system and S and V are its entropy and volume. The
differential of the free energy density (FED), which, for a homogeneous system, is defined
as Φ = F/V, reads

dΦ(n1, n2, T) = µ1dn1 + µ2dn2 − sdT , (A3)
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where s = S/V, n1,2 = N1,2/V are the entropy density and the particle number density,
respectively. The chemical potentials are expressed as

µ1 =

(
∂Φ
∂n1

)

T
, (A4)

µ2 =

(
∂Φ
∂n2

)

T
. (A5)

We assume that the FED of a system of interacting particles can be represented as a
sum of FEDs of the system without interaction Φ(0)

1 + Φ(0)
2 and the term Φint responsible

for interaction, which, in turn, depends on the total density of particles n = n1 + n2,

Φ(n1, n2, T) = Φ(0)
1 (n1, T) + Φ(0)

2 (n2, T) + Φint(n1 + n2, T). (A6)

Then, in accordance with Equations (A4) and (A5), we obtain

µ1 =
∂Φ(0)

1
∂n1

+
∂Φint

∂n
= µ

(0)
1 +

∂Φint

∂n
, (A7)

µ2 =
∂Φ(0)

2
∂n2

+
∂Φint

∂n
= µ

(0)
2 +

∂Φint

∂n
. (A8)

The pressure can be written as

p(n1, n2, T) = µ1n1 + µ2n2 −Φ(n1, n2, T)

=
{

µ
(0)
1 n1 −Φ(0)

1

}
+
{

µ
(0)
2 n2 −Φ(0)

2

}
+

{
n

∂Φint

∂n
−Φint

}
. (A9)

We introduce the following notations

U(n, T) =

[
∂Φint(n, T)

∂n

]

T
, (A10)

P(n, T) = n
[

∂Φint(n, T)
∂n

]

T
− Φint(n, T). (A11)

From these definitions, one immediately obtains a relation that connects these two quantities

n
∂U(n, T)

∂n
=

∂P(n, T)
∂n

. (A12)

Next, in Equation (A9), we use expressions for the pressure in the single-particle
ideal gas

p(0)1 = µ
(0)
1 n1 −Φ(0)

1 =
g
3

∫ d3k
(2π)3

k2

ωk
f (ωk; µ

(0)
1 ), (A13)

p(0)2 = µ
(0)
2 n2 −Φ(0)

2 =
g
3

∫ d3k
(2π)3

k2

ωk
f (ωk; µ

0)
2 ) , (A14)

where f (ωk; T, µ(0)) is the Bose–Einstein distribution function of ideal gas

f
(

ωk; µ(0)
)

=

{
exp

[
ωk − µ(0)

T

]
− 1

}−1

with ωk =

√
m2 + k2 . (A15)
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Using relations (A7) and (A8) in the form

µ
(0)
1 = µ1 −U(n) , (A16)

µ
(0)
2 = µ2 −U(n) , (A17)

one can insert these expressions into Equations (A13) and (A14) and then rewrite the total
pressure (A9) as

p(T, n1, n2) =
g
3

∫ d3k
(2π)3

k2

ωk

[
f
(
E(k, n); µ1

)
+ f

(
E(k, n); µ2

)]
+ P(T, n), (A18)

where g is the degeneracy factor, E(k, n) =
√

m2 + k2 + U(T, n) is the effective single-
particle energy and P(T, n) can be treated now as the excess pressure.

To obtain a self-consistent equation for the total particle-number density n, it is conve-
nient to pass from the variables (T, n1, n2) to the variables (T, µ1, µ2). In this case, the total
number of particles n in the system is also a function of new variables (T, µ1, µ2). Then, for
the total number of particles n, we obtain

n = n1 + n2 =

(
∂p
∂µ1

)

T
+

(
∂p
∂µ2

)

T

= g
∫ d3k

(2π)3

[
f
(
E(k, n); µ1

)
+ f

(
E(k, n); µ2

)]
. (A19)

For free energy density, one has (see Equation (A1)) an expression

Φ = µ1n1 + µ2n2 − p . (A20)

The System of Particles and Antiparticles

The chemical potential µ includes components related to different quantum numbers

µ = BµB + SµS + QµQ + IµI + . . . , (A21)

where B, S, Q and I correspond to the baryon quantum number, strangeness, electric charge
and isospin, respectively. It is clear that the chemical potentials of boson particles µ1 and
boson antiparticles µ2 have opposite signs [33]

µ1 = −µ2 ≡ µI . (A22)

Requiring the conservation of the isotopic spin nI in the system, we obtain the set
of equations

n = g
∫ d3k

(2π)3

[
f
(
E(k, n); µI

)
+ f

(
E(k, n);−µI

)]
, (A23)

nI = g
∫ d3k

(2π)3

[
f
(
E(k, n); µI

)
− f

(
E(k, n);−µI

)]
, (A24)

where the Bose–Einstein distribution function reads

f (E; µ) =

{
exp

[
E− µ

T

]
− 1

}−1
. (A25)

The set of Equations (A23) and (A24) can be solved with respect to the thermody-
namic quantities n and µI for given canonical variables T and nI . As a result, we obtain
the functions

n = n(T, nI), µI = µI(T, nI). (A26)
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In our case, the interaction between particles is described by the Skyrme-like mean field

U(n) = −An + Bn2 , (A27)

where n is the total particle-number density. Using the self-consistent solutions n(T, nI)
and µI(T, nI) of the set of Equations (A23) and (A24), one can obtain the expressions for
the pressure and free energy density in the boson interacting system in the following form

p =
g
3

∫ d3k
(2π)3

k2

ωk

[
f
(
E(k, n); µI

)
+ f

(
E(k, n);−µI

)]
+ P(n) , (A28)

Φ = nIµI(T, nI)− p(T, nI) , (A29)

where E(k, n) =
√

m2 + k2 + U(n). 7 Here, the excess pressure P(n) is known, and it can
be calculated with the help of integration of relation (A12) using the given mean field (A27)
and a natural initial condition P(n = 0) = 0. Hence, after integration, one obtains

P(n) = −A
2

n2 +
2B
3

n3 . (A30)

With the help of free energy density, it is easy to calculate the volumetric heat capacity cV

cV = −T
∂2Φ
∂T2 . (A31)

Notes
1 In the nonrelativistic case, where µnonrel = µ − m, the maximum value of the thermal-particle density is achieved at zero

chemical potential.
2 It should be noted that we just conventionally say “condensate phase”. In fact, it is the thermodynamic state of a system that

contains thermal particles and condensed particles at the same time.
3 In fact, the name “condensate phase” is just a conventional one because this phase is a mixture of the thermal (kinetic) particles

and the condensed particles.
4 For our choice of the total charge of the system, it is the π− mesons.
5 Because we named it as the virtual phase transition of the second order.
6 For our choice of the total charge of the system, these are π− mesons.
7 It should be noted that Equations (A23), (A24) and (A28) take place only in the absence of condensate in the system.
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Abstract: We explore the emergence of the collisional broadening of hadrons under the influence
of different media using the hadronic transport approach SMASH (Simulating Many Accelerated
Strongly interacting Hadrons), which employs vacuum properties and contains no a priori infor-
mation about in-medium effects. In this context, we define collisional broadening as a decrease
in the lifetime of hadrons, and it arises from an interplay between the cross-sections for inelastic
processes and the available phase space. We quantify this effect for various hadron species, in both
a thermal gas in equilibrium and in nuclear collisions. Furthermore, we distinguish the individual
contribution of each process and verify the medium response to different vacuum assumptions; we
see that the decay width that depends on the resonance mass leads to a larger broadening than a
mass-independent scenario.

Keywords: hadronic transport; resonance properties; collisional broadening

1. Introduction

The properties of Quantum Chromodynamics (QCD) at finite temperature and finite
baryochemical potential are not well understood, as they comprise a region of the phase di-
agram difficult to access both in experiments and in first-principle theories. In the confined
phase, the degrees of freedom consist of colorless hadrons, and the system evolution is
well described by hadronic transport. As a baseline for any further medium modifications,
it is of interest to understand how hadron properties are modified when embedded in a
hadronic medium.

One natural change caused by the presence of a medium is the reduction in hadron life-
times due to absorption processes. The usual prescription in hadronic transport approaches
is to associate the lifetime (τvac) of a resonance in vacuum with the inverse of its width,
such that its decay in a small time interval ∆τ happens as a Bernoulli trial with probability
Pdecay(∆τ) = Γvac∆τ. Here, Γvac is called vacuum decay width, and the medium-induced
shortening of lifetimes can be thought of as an effective increase in the width. This effect is
known as collisional broadening.

From a historical and experimental perspective, medium modifications are studied by
comparing elementary collisions and heavy-ion collisions (HICs), scaling the observable
appropriately. Specifically, the NA60 Collaboration revealed that the softening of the
invariant mass spectra of dileptons [1] around the ρ meson pole mass is consistent with
the in-medium broadening of vector mesons proposed by Rapp et al. [2,3]. This was later
covered in off-shell hadronic transport approaches—where the hadron spectral function
can change dynamically during propagation—by including a collisional width explicitly
parameterized as a linear function of the local density [4,5]. On the other hand, on-shell
hadronic transport approaches use the coarse-graining method: the average of several

Universe 2023, 9, 414. https://doi.org/10.3390/universe9090414 https://www.mdpi.com/journal/universe146



Universe 2023, 9, 414

collisions gives local values for thermodynamic quantities, with which the corresponding
rates from the in-medium model are computed [6–8].

In [8], dilepton emission was included and found to be in agreement with experimental
yields in elementary collisions at HADES energies but not in the heavy-ion yields around
the ρ meson pole mass, showing that the collisional broadening intrinsic to hadronic
transport is not sufficient to account for the full effect of a medium. In [9], we studied
the collisional broadening of ρ in an equilibrated hadron gas and in nuclear collisions.
The thermal gas exhibited a spectral function similar to the full in-medium model but
expectedly less broadened.

In this work, we extend that previous study to some resonances of particular interest,
determine the processes that contribute the most to ρ collisional broadening, and investigate
the effect of the two different model assumptions usually chosen for the vacuum properties
of resonances in hadronic transport. This paper is organized as follows: Section 2 describes
the aspects of the SMASH approach relevant to this work. In Sections 3.1 and 3.2, we display
the behavior of the dynamically generated collisional broadening of different particles in
a thermal scenario and in nuclear collisions, respectively. In Section 3.3, we compare the
collisional broadening of ρ and ω mesons under different vacuum assumptions. A brief
summary of the results is given in Section 4, along with a discussion of their interpretation.
Appendix A shows the inelastic cross-sections of some relevant interactions.

2. SMASH Transport Approach

In this study, we used the hadronic transport approach SMASH-2.2 (Simulating Many
Accelerated Strongly interacting Hadrons) to simulate different states of nuclear matter,
such as a thermal gas in equilibrium and nuclear collisions [10]. In this microscopic
transport approach, the complete information of the phase space is accessible at all times
according to effective solutions of the relativistic Boltzmann equation.

We employ the geometric collision criterion of SMASH to determine possible scatter-
ings, in which an interaction can happen if

dtrans < dint =

√
σtot

π
, (1)

where σtot is the total cross-section and dtrans is the distance between two particles in a given
time interval in the center of the mass frame. With this criterion, the only possible processes
are binary: resonance formation (2→ 1), its corresponding resonance decay (1 → 2), as
well as elastic and inelastic scatterings (2→ 2). To account for multi-particle interactions,
intermediate resonances are produced or decay in a chain. The available species, their
vacuum mass M0 and pole width Γ0, possible decay channels, and associated branching
ratios are taken from Particle Data Group 2016 [11].

The mass of a new resonance is constant during propagation and randomly chosen at
production using the normalized vacuum spectral function

Avac(m) =
2N
π

m2Γdec(m)

(m2 −M2
0)

2 + [mΓdec(m)]2
(2)

as a probability distribution, where normalization factor N is defined by the relation

1 =
∫ ∞

mmin

Avac(m) dm, (3)

with threshold mass mmin being equal to the sum of masses from its lightest decay channel.
The mass-dependent decay width is based on the Manley formalism [12], given by

Γdec
R→ab(m) = Γ0

R→ab
ρab(m)

ρab(M0)
, (4)
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where Γ0
R→ab is the partial width at the pole mass and ρab(

√
s) is a mass-dependent function

evaluating the available phase space for the creation of particles a and b from energy
√

s.
The total decay width of R in (2) is the sum of the partial widths in (4) over all possible
final states ab. If decay happens, the particle decays in a randomly chosen decay channel
according to the corresponding branching ratios. Stable hadrons1 have Γdec ≈ 0, so Avac

reduces to a δ-distribution, and the particle always has pole mass. We also employ a second
assumption for vacuum decays to investigate the impact on collisional broadening. Here,
Γvac = Γ0 independently of the resonance mass. This is referred to as the mass-independent
decay assumption.

The SMASH approach uses vacuum properties, so the average lifetime of a particle
corresponds to its inverse width only in vacuum. When it is surrounded by other hadrons
with which it can interact inelastically, the average lifetime naturally decreases, as illustrated
in Figure 1 for a ρ embedded in a medium. We describe this setup in Section 3.1. We notice
that the medium suppresses the lifetimes of low-mass particles more, while higher masses
are not very affected. This reflects the overall inelastic cross-section between the particle
and the rest of the medium.

We remark that this prescription of sampling lifetimes from the (inverse) vacuum
width breaks down close to the threshold. The available phase space, ρab, approaches
0, so Equation (4) leads to 1/Γdec → ∞, and the resonance can live forever. A more
grounded definition was introduced in [13] from the fundaments of quantal scattering
theory, associating the lifetime of a resonance with the time delay equal to the derivative of
the phase shift, which can be computed analytically from the resonance shape. However,
there is no consensus on how to implement this prescription appropriately in real transport
model calculations, as it can generate negative time delays or require cross-sections for
the “forward-going” part of the resonant wave packet, which are unmeasurable and must
be parametrized [14,15]. Therefore, we stick to the usual prescription and investigate the
consequences by comparing it to the aforementioned mass-independent assumption, which
does not lead to infinite-lasting resonances.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

m[GeV]

100

101

〈τ
(m

)〉[
fm

]

T [MeV]

Vacuum

120

140

160

ρ(770)

Figure 1. Proper lifetime of the ρ meson for a gas in equilibrium at different temperatures and
baryochemical potential µB = 400 MeV.

To probe the effect of these inelastic interactions, we follow [9] and define the effective
width as

Γeff = 〈τ〉−1 =

〈 t f − ti

γ

〉−1
, (5)
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where ti and t f are the initial time (“birth”) and final time (“death”) of the particle, re-
spectively, and γ is its Lorentz factor in the computational frame. This definition follows
naturally from the prescription we use for the resonance lifetimes in vacuum; since they
are sampled from the vacuum width, the effective width should be defined in terms of the
effective lifetime. In this work, we only consider the dependence of Γeff on the resonance
(on-shell) mass. Because the decays are randomly selected at each time step, it may happen
that Γeff < Γdec if there is little to no broadening and the statistics are insufficient.

We consider the “death” of a particle when it either decays or scatters inelastically,
and we compute γ with its initial momentum. This means that if it goes through elastic
scatterings at times t1, ..., tN before its death, the exact lifetime is

τ̃ =
t f − tN

γN
+

tN − tN−1

γN−1
+ ... +

t1 − ti
γi

. (6)

We checked that this leads to the same effective width as simply computing τ =
t f − ti

γi
in the analyzed systems. We believe that this happens because the momentum change in
elastic collisions is small enough and can be either positive or negative, such that 〈τ〉 ≈ 〈τ̃〉.

To further quantify collisional broadening, we also define the collisional width as

Γcoll(m) = Γeff(m)− Γdec(m). (7)

Subtracting the contribution of the vacuum from equation (5) results in the contributions
solely caused by absorption processes. The medium effects can be further reframed in
terms of the dynamical spectral function,

Adyn(m) =
2Ñ
π

m2Γeff(m)

(m2 −M2
0)

2 + m2Γeff(m)2
, (8)

which amounts to replacing the vacuum width in (2) with the effective width (5). Since the
system is restricted to finite phase space, the support of this spectral function is not infinite.
Therefore, we normalize it with respect to the vacuum spectral function (2):

Ñ =

∫ mmax
mmin

Avac(m)dm
∫ mmax

mmin
Adyn(m)dm

, (9)

allowing for a proper comparison between the spectral functions for different assumptions.
Usually, the expression “spectral function” is used interchangeably with “invariant mass
spectra”. We find it important to highlight that this is not the case here. The former refers
to Adyn, which encompasses the modifications to the propagator of the resonance, while
the latter is denoted by dN/dm and describes the production of resonances; it was also
studied in [9,16].

3. Results
3.1. Hadron Gas in Equilibrium

In this section, we demonstrate how particle interactions with a thermal medium affect
the effective width (5). To do so, we employ an equilibrated hadron gas with different
temperatures T and baryochemical potential µB = 400 MeV. The system is simulated
with a large box with periodic boundary conditions, initialized with thermal multiplicities
according to the given (T, µB), and momenta are assigned according to the Boltzmann
distribution. To ensure thermalization, we allow the gas to relax and only include particles
with ti > 1000 fm, which modifies the nominal (T, µB) values. The systems starting at
T = 120/140/160 MeV fall to 106/128/149 MeV, respectively. In the following, legends
denote the initial temperature, and error bands are statistical.
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Since collisional broadening originates from absorption processes, it is also possible to
probe it for stable particles. For example, the πρ→ ω process contributes to the broadening
of both π and ρ.

Using (5), we extract the effective width for nucleons and pions. Table 1 shows that
similar to ρ, they display an increasing effective width for rising temperatures, and we
observe it to be significantly stronger for π than for N. The reason for this is the different
number of inelastic channels; many mesonic and baryonic resonances decay into pions,
while nucleons only participate in baryonic processes. As the temperature rises, more and
more of these channels are opened, so the difference between the effective widths increases.

Table 1. Effective width of stable particles in thermal equilibrium. Errors are statistical.

Γeff [GeV]

T [MeV] 120 140 160

N 0.063 (1) 0.1082 (8) 0.1789 (7)
π 0.0802 (4) 0.2033 (5) 0.4376 (6)

Next, we investigate the collisional broadening of some selected resonances of particu-
lar interest. Along with the ρ meson, ω and ∆(1232) are relevant for dilepton yield, and the
latter is also important for pion production, which is famously too high in most transport
models. The reconstructability of K∗(892) in HICs was investigated in [17]. a1(1260) is the
chiral partner to ρ, so whether it also broadens is a natural question. Since the average
lifetime of the ρ meson is shown in Figure 1, we do not repeat its inverse plot here. The
effective width for ω in Figure 2a shows that Γeff grows with the medium temperature and
that the difference from the vacuum is higher at lower masses. The curves converge to
the vacuum decay width at large masses, so the decay probability dominates over the ab-
sorption probability, meaning that collisional broadening decreases. This happens because
the processes that absorb the resonance become less likely, as detailed in Appendix A. We
also see a non-monotonic structure in the effective width, caused by the shape of Γdec(m),
which increases relatively sharply while the medium effect decreases.

(a) (b)

Figure 2. Effective width of (a) ω mesons and (b) ∆(1232) baryons in thermal equilibrium.

This convergence at high enough masses is generally shared between the resonances
we probe, as shown in Figure 2b for the ∆(1232) baryon and in Figure 3a for the K∗(892)
meson, respectively. Another possible effect coming into play here is that if the vacuum
width is large, the particle decays more quickly, so it has less time to scatter inelastically.
Unlike the other resonances, low-mass ∆(1232) do not seem more sensitive to the medium
temperature.
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Moreover, a1(1260) does not develop any collisional broadening, as we show in
Figure 3b. This is because there is no known process in which it emerges as a decay product;
hence, there is no absorption process for it. One possible interesting consequence is that if
the a1 spectral function does broaden in a real QCD medium, as expected if chiral symmetry
is restored [2], it has no contribution from collisional broadening, unlike the broadening of
the ρ meson, its chiral partner.

(a) (b)

Figure 3. Effective width of (a) K∗(892) and (b) a1(1260) mesons in thermal equilibrium.

3.2. Heavy-Ion Collisions

In this chapter, we study the collisional broadening of different particles in the off-
equilibrium systems created after HICs. In SMASH, the nucleons in each nucleus are
sampled from a Woods–Saxon distribution and move along the z-axis with the input beam
energy. One key difference from the thermal hadron gas setup is the presence of strings,
representing 2 → N processes. They are formed in an interaction when the incoming
particles have sufficient energy and are handled by PYTHIA 8.2 [18]. Another consequence
of this initial state is in the system chemistry; in the thermal gas, all possible hadrons are
initialized, using the full support ofAvac. On the other hand, HICs start with only nucleons,
and the available energy limits the phase space for particle production.

We restrict the analysis to central Au+Au collisions at 1.23A GeV kinetic energy and
C+C collisions at 1A GeV, which are setups run by the HADES experiment at GSI [19,20].
A larger set of systems was investigated in [9], but these two provide a good grasp of the
effect of medium size.

Figure 4a shows the effective width of the ω meson, where the broadening increases
with system size. Since the vacuum width is small and close to the pole mass, the spectral
function (2) is sharp; therefore, particles with masses far from the pole value are rare. For
the C+C system, which contains little energy in total, this means that large-mass ω mesons
are not produced. Compared with Figure 2a, lower-mass particles have a small broadening.
We understand this in light of the medium expansion: as the system expands, the energy
available to produce resonances decreases; consequently, lower masses become more likely.
At the same time, the medium is diluted; therefore, the broadening of these particles is
suppressed.

The ∆(1232) baryon also broadens more in a collision between heavier nuclei, as we
show in Figure 4b. In the C+C collision, lower masses are not produced. The behavior is
similar to the thermal gas in Figure 2b, where the collisional broadening displays weak
dependence on the mass. This suggests that the ∆ baryons behave thermally, with most
being created via the first NN → N∆ interactions.
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(a) (b)

Figure 4. Effective width of the (a) ω(782) meson and (b) ∆(1232) baryon for different nuclear
collision systems.

In Figure 5a, we see a small broadening of K∗(892), which increases at high masses
in the Au+Au system. In our implementation of low-energy nuclear collisions, the only2

channel for strange hadron production is the decay of heavier resonances into a strange–
antistrange pair. The first NN interactions rarely produce states able to decay into K∗(892)
(see Appendix A). Then, at least three interactions must happen to produce it, when the
medium may have already become dilute. This is consistent with a previous study that
used reconstructable K∗ [17]; since they leave the medium before being absorbed, their
decay products are also unaffected.

(a) (b)

Figure 5. Effective width of the (a) K∗(892) and (b) ρ mesons for different nuclear collision systems.

Much like in Figure 3b, we do not observe the collisional broadening of the a1(1260)
meson, since there is no process where it is a decay product; therefore, we do not plot the
result. We show the effective width of the ρ meson in these collision systems in Figure 5b.
Similar to the ω meson, the difference from the thermal gas behavior in lower masses
happens because of the medium dilution, since they are mostly produced in the late
stage [9].

To discriminate the processes that cause this broadening, we weigh the collisional
width (7) with the fraction of each process at a given mass. The dominant contributions are
shown in Figure 6 in the Au+Au system. Out of the five most important processes, four
are baryonic, similar to the results of Rapp’s full in-medium model [2], where ρ couples to
nucleons more. As previously suggested in [21], we see a significant contribution from the
ρN → N(1520) channel around m ≈ 0.5 GeV. The biggest mesonic contribution is from
chiral partner a1(1260), as was the case in [22] in the same mass range.
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Figure 6. Contributions of the 5 most significant absorption channels to the collisional width of ρ in
central Au+Au collisions at 1.23 GeV.

3.3. Collisional Broadening under Different Vacuum Assumptions

In this section, we discuss the effects of the different vacuum decay assumptions
(described in Section 2) on collisional broadening. We evaluate the collisional width (7)
for both assumptions in the framework of a hadronic thermal gas and show it for ρ and
ω in Figure 7, using Γ0

ρ = 149 MeV and Γ0
ω = 8.5 MeV. ρ is more broadened in the mass-

dependent case, while ω displays a more complicated structure. This arises from different
effects:

1. Particles that decay cannot be absorbed, so a larger vacuum width suppresses colli-
sional broadening. At low masses, the vacuum decay width tapers down to 0 in the
mass-dependent assumption. This makes the particles more prone to be absorbed by
the medium in comparison with the mass-independent case.

2. Inelastic cross-section σab affects the broadening of both a and b, since it determines
how much one absorbs the other. It has peaks around the pole mass (M0

R) of possible
resonances ab → R [10]. The masses of the incoming particles control the off-shell
mass of the outgoing resonance (mR =

√
sab), so such peaks lead to structures in the

collisional width of a and b, as exemplified by Figure 6; the contribution of the process
ρN → N(1520) is higher and close3 to M0

N(1520) − mN = 0.57 GeV, and heavier
resonances lead to peaks in larger mρ. This effect is not relevant for very small masses,
when Avac

R → 0.
3. Absorption cross-section σab→R is also proportional to Γvac

R , so that different mass
assumptions give different weights to the resonance peaks.

4. At high enough masses, the absorption cross-section decreases so much that particles
stop undergoing collisional broadening, as detailed in Appendix A, such that the
vacuum assumption has no effect.

The interplay among the aforementioned effects causes a mass-dependent ρ to always
be more absorbed than a mass-independent one. In the case of ω, both cases lead to the
same broadening in the range mω = 0.6− 0.75 GeV, but a peak is more pronounced in the
mass-dependent assumption in the range mω = 0.75− 1.0 GeV.
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(b)

Figure 7. Collisional widths of (a) ρ and (b) ω in thermal equilibrium under different vacuum decay
assumptions.

In order to assess the net effect of both assumptions, we show the corresponding
broadened spectral functions (Adyn) in Figure 8, using definition (8) with the same normal-
ization (9) for both assumptions. As expected, the mass-dependent assumption leads to a
broader spectral function, but this is only significant around the pole mass.

As mentioned in Section 2, the prescription of setting resonance lifetimes to their
inverse widths is not consistent with scattering theory derivations, as they approach
infinity close to the threshold. In the mass-independent assumption, this does not happen;
subsequently, the medium effect in that region is reduced. In the phase-shift prescription,
the time delay (that is, the vacuum lifetime) approaches 0 at the threshold, so we predict
that if it is used appropriately, the collisional broadening at low masses is suppressed, as
resonances decay immediately after formation.

(a) (b)

Figure 8. Dynamical spectral function of the (a) ρ and (b) ω mesons at different temperatures
and baryochemical potential µB = 400 MeV in thermal equilibrium under different vacuum decay
assumptions.

4. Conclusions and Discussion

In this work, we investigate the collisional broadening of different particles by com-
puting their effective width in the framework of a hadronic transport approach. First, we
evolve a hadron gas to equilibrium at different temperatures and baryochemical potential
µB = 400 MeV, allowing us to establish the thermal behavior of such particles. The effective
width shows dependence on the system temperature, where large temperatures enhance
the collisional broadening of all hadron species except the a1(1260) meson, which does not
have any absorption channel available. The particles that can broaden are generally more
affected at lower masses, because the absorption cross-sections decrease at high masses.

Furthermore, we study the effect of collisional broadening in non-equilibrium systems
created in HICs. In this framework, the effective width shows dependence on the system
size, as collisional broadening is enhanced by a larger system. We observe that each
resonance behaves differently, depending on when it is produced the most. ∆(1232)
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baryons show a behavior similar in both the thermal gas and HICs, since they are mostly
created in the first NN interactions and move across a relatively thermalized medium [8].
On the other hand, K∗(892) mesons, being strange particles, tend to appear after the third
interactions, when the medium has already dissipated.

We also investigate the processes that cause a collisional broadening of ρ mesons.
Particularly, the contribution of the ρN → N(1520) absorption channel shows a significant
effect around mρ ≈ 0.5 GeV. In agreement with the full in-medium model [3,22], the
coupling to nucleons is the most important, with π coupling being a distant second. We
also find that the pole mass of the outgoing particle in each absorption channel determines
the peaks in their contribution to collisional broadening, with some differences to account
for the final kinetic energy.

Lastly, we compare two assumptions for the decay probability in vacuum in the
thermal gas framework. We observe that a mass-dependent description of Γdec slightly
enhances collisional broadening close to the pole mass.
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Appendix A. Interaction Cross-Sections

As discussed in Section 3, the collisional broadening of a particle results from the
processes where it is absorbed, which are determined by inelastic cross-sections. These are
functions of the center-of-mass energy between the incoming particles and thus depend
on the off-shell mass of each, as well as on the relative momenta. We exemplify this in
Figure A1, which shows the inelastic cross-sections for ω + p and ω + π scatterings and
how they depend on the excess energy for different values of mω.

In the thermal hadron gas, the inelastic processes consist of 2→ 1 and 2→ 2 interac-
tions. The peaks of each cross-section are always around the same

√
s, so the peaks in excess

energy trivially shift with the increase in resonance mass. This happens until the peak
cannot shift any further, since the center-of-mass energy is bounded from below by the sum
of incoming masses. After this, heavier resonances have a progressively smaller σinel, and
consequently a smaller collisional width, as seen in Figure 2a. The incoming particles still
interact, but mostly through elastic scattering, which does not cause collisional broadening.

Figure A2 shows the cross-sections of p + p scatterings that happen in the first mo-
ments of an HIC. For energies below

√
s = 3.5 GeV, the largest inelastic contribution is

the excitation of ∆ via NN → N∆, followed by double ∆ production. This is why the ∆
baryons in the nuclear collisions of Section 3.2 behave similarly to the those in the thermal
gas of Section 3.1. Other 2 → 2 channels are possible but very unlikely, with branching
ratio σ/σtot ≤ 2%.
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(a) (b)

Figure A1. Inelastic cross-sections of (a) ω + p and (b) ω + π scatterings in a thermal gas for different
off-shell masses mω .

Between
√

s = 3.5 and 4.5 GeV, we use a transition from the resonance to the string
picture, with non-diffractive string fragmentations quickly dominating; above that, only
strings are produced.

Concerning the K∗(892) meson, the lowest mass states that can decay into it are
N(1875) and ∆(1900), both of which are rarely produced in these interactions. The systems
analyzed in Section 3.2 have

√
sNN = 2.32–2.41 GeV, so most K∗(892) will be produced

from a tertiary or later interaction.

Figure A2. Cross-sections of p + p scatterings we use in a nuclear collision, including string fragmen-
tation (“2-diff”, “1-diff”, and “non-diff”). Below is an enlargement of smaller contributions.

Notes
1 We consider stable the hadrons with Γ0 ≤ 10 keV.
2 In collisions with energies higher than

√
sNN ≈ 3.5 GeV, strange hadrons also come from string fragmentation (see Appendix A).
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3 The difference from the actual peak is due to the kinetic energy given to the created resonance.
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Abstract: We present a dark fluid model described as a non-viscous, non-relativistic, rotating, and
self-gravitating fluid. We assume that the system has spherical symmetry and that the matter can
be described by the polytropic equation of state. The induced coupled nonlinear partial differential
system of equations was solved using a self-similar time-dependent ansatz introduced by L. Sedov
and G.I. Taylor. These kinds of solutions were successfully used to describe blast waves induced by
an explosion following the Guderley–Landau–Stanyukovich problem. We show that the result of
our quasi-analytic solutions are fully consistent with the Newtonian cosmological framework. We
analyzed relevant quantities from the model, namely, the evolution of the Hubble parameter and the
density parameter ratio, finding that our solutions can be applied to describe normal-to-dark energy
on the cosmological scale.

Keywords: dark fluid; Sedov–Taylor Ansatz; self-similarity

1. Introduction

In the second half of the 20th century, various self-similar solutions have been found
following Gottfried Gurderley’s famous discovery of spherically symmetric self-similar
solutions that describe an imploding gas that collapses to the center [1]. In this paper, we
use the kinds of self-similar solutions that were independently found by Leonid Ivanovich
Sedov and Sir Geoffrey Ingram Taylor during the 1940s [2,3]. Despite the fact that such
models have been well-known for decades, they have recently received attention again.
This ansatz has been already applied successfully in several hydrodynamical systems, such
as in the context of the three-dimensional Navier–Stokes and Euler equations [4], heat
equations [5,6], and star formation [7]. In addition, the concept of self-similarity has a
wide range of applications in general relativity. Homothetic solutions were first introduced
by Cahill and Taub [8], and have been studied extensively for such different topics as
asymptotic solutions in cosmology [9] and the gravitational collapse of black holes [10].

The existence of the dark matter was first proposed by the Dutch astronomer Jacobus
Cornelius Kapteyn [11], and became widely known through Zwicky’s famous work from
1933 [12]. During the second half of the century, solid experimental evidence was pro-
vided by Vera Rubin, Ken Ford, and others [13,14]. However, the general existence and
specified properties of dark matter remain one of the most disputed topics in theoretical
astrophysics. Dark fluid is a theoretical attempt to describe the properties of dark matter
and its unification with dark energy into one hypothesized substance [15].

Our goal is to use the Sedov–Taylor ansatz to describe the time evolution of a dark
fluid-like material characterized by a coupled nonlinear partial differential equation system.
In our model, we study one of the simplest dark fluid materials, described by a polytropic
(linear) equation of state. The dynamical evolution of the dark fluid is governed by
the Euler equation and the gravitational field is described by the corresponding Poisson
equation. We find time-dependent scaling solutions of the velocity flow, density flow,
and gravitational fields, which can be good candidates to describe the evolution of the
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gravitationally coupled dust-like dark matter in the universe. We show that these kinds
of solutions are consistent with the Newtonian Friedmann equations. They satisfy the
mass conservation and acceleration equations and provide a similar expansion rate of the
universe as the traditional solutions. The aim of this study is to broaden the knowledge of
time-dependent self-similar solutions in these dark fluid models by improving upon and
extending our previous model [16]. We tested our model on cosmological scales; moreover,
we studied how the obtained evolution of the Hubble parameter and the ratio of the density
parameters resemble other physical models.

2. The Model

We consider a set of coupled nonlinear partial differential equations which describe
the non-relativistic dynamics of a compressible fluid with zero thermal conductivity and
zero viscosity [17],

∂tρ + div(ρu) = 0 , (1a)

∂t(ρu) + div(ρu⊗ u) = −∇P(ρ) + ρg , (1b)

P = P(ρ) . (1c)

These equations are the continuity, Euler equation, and equation of state (EoS), respec-
tively. We assume that the system has spherical symmetry, and we are interested in solving
it in one dimension. If we assume the fluid is ideal and the system has spherical symmetry,
we can reduce the multi-dimensional partial differential equation (PDE) system into the
one-dimensional radial-dependent one:

∂tρ + (∂rρ)u + (∂ru)ρ +
2uρ

r
= 0 , (2a)

∂tu + (u∂r)u = −1
ρ

∂rP + g , (2b)

P = P(ρ) . (2c)

Here, the dynamical variables are ρ = ρ(r, t), u = u(r, t), and P = P(r, t), respectively
referring to the density, radial velocity flow, and pressure field distributions, with g being
the radial component of an exterior force density. As we noted briefly in the introduction,
we use the following general linear equation of state:

P(ρ) = wρn, n = 1 . (3)

Several forms of the EOS are available in astrophysics, and polytropic ones have
been successfully used in the past; see Emden’s famous book [18]. A great variety of
applications can be found [19]. In Equation (3), the w parameter can vary depending on the
type of matter that governs the system’s evolution. Traditionally, w = 0 is used; this value
corresponds to the EoS for ordinary non-relativistic matter or cold dust. For our case, we
choose a negative value for w which leads to different kinds of dark-fluid scenarios, as was
presented in detail by Perkovic [20]. In this paper, we choose w = −1 which represents the
simplest case of an expanding universe governed by dark matter. Smaller values could
cause a “big rip”. The adiabatic speed of sound can be evaluated from Equation (3), and it
is easy to show that it is constant:

dP(ρ)
dρ

= c2
s = w , (4)
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which is a necessary physical condition. Furthermore, let us assume that we have an
additional self-gravitating term in Equation (2b). In this case, the exterior force density g
can be expressed in the following way:

g = −∂rΦ , (5)

where Φ = Φ(r, t) is the Newtonian gravitational potential and satisfies the Poisson
equation, which is coupled to the previously proposed PDE system [21]

∇2Φ = 4πGρ , (6)

where G is the universal gravitational constant, which is set to unity in our further calcula-
tions. Note that we can add an additional constant term Λ to Equation (1b) which plays a
similar role to the cosmological constant in Einstein’s equations:

∂tu + (u∂r)u = −1
ρ

∂r p− ∂rΦ(r) + Λ . (7)

Below, we show that this constant cannot be used, as it does not lead to a consistent
self-similar solution, which is what we are looking for here. Note that this observation
in our model can be an indirect proof of the nonexistence of the static Universe picture. We
can extend the exterior force density further with a rotating term. In this case, we add
a phenomenological rotation term to Equation (2b), meaning that the equation takes the
following modified form:

∂tu + (u∂r)u = −w
1
ρ

∂rρ− ∂rΦ(r) +
sin θω2r

t2 , (8)

where ω is a dimensionless parameter that describes the strength of the rotational effect
and θ is the polar angle. We assume that the rotation is slow; therefore, we can expect that
the spherical symmetry is not broken. This statement is satisfied if the ω parameter is suffi-
ciently small, implying that the rotational energy is negligible compared to the gravitational
energy. The self-similar analysis of various rotating and stratified incompressible ideal
fluids was investigated in two Cartesian coordinates in [22]. Note that the geometrized
unit system (c = 1, G = 1) was applied for the calculations below, which can be converted
to other units as well. See Appendix A for more details and unit conversations.

3. Scaling Solution and Sedov–Taylor Ansatz

We would like to find and study analytic solutions of equations by applying the
long-established self-similar ansatz by Sedov and Taylor [2,3], which can be expressed in
the following form:

u(r, t) = t−α f
(

r
tβ

)
, (9a)

ρ(r, t) = t−γg
(

r
tβ

)
, (9b)

Φ(r, t) = t−δh
(

r
tβ

)
, (9c)

where r means radial and t means time dependence. Note that the so-called shape functions
( f , g, h) only depend on rt−β; thus, we introduce a new variable

ζ = rt−β. (10)

where ζ is a dimensionless quantity in geometrized units. The (not yet determined) ex-
ponents are called similarity exponents (α, β, γ, and δ), and have physical relevance; β
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describes the rate of spread of the spatial distribution during the time evolution (if the
exponent is positive) or contraction (if β < 0). In addition, the other exponents describe
the rate of decay of the intensity of the corresponding field. Solutions with integer expo-
nents are called self-similar solutions of the first kind, while the second kind denotes the
non-integer ones. Self-similarity is based on the concept that physical quantities preserve
their shape during time evolution. A general description of the properties of these types of
scaling solutions can be found in our previous publication [16].

We assume that the shape functions are sufficiently smooth and continuously differ-
entiable at least twice in ζ over the entire domain. Thus, we calculate the relevant time
and space derivatives of the shape functions and substitute them into Equation (2). As
a consequence, we usually obtain an overdetermined algebraic equation system for the
similarity exponents. Other possible scenarios may play out as well; these have been
presented in detail in [16]. We obtain the following numerical value for the exponents
for both the non-rotating and rotating cases: α = 0, β = 1, γ = 2, and δ = 0. If we add
the Λ constant to the Euler equation, such a solution for the similarity equation cannot be
found. From these results, it is evident that the dynamical variables such as the velocity,
gravitational potential, and density flow have spreading properties. Our physical intuition
says that spreading is somehow similar to expansion, which is a basic property of the
universe at astronomical or cosmological scales.

By substituting the obtained numerical values of the similarity exponents, we can
reduce the induced PDE system into an ordinary differential equation (ODE) system that
depends only on the ζ independent variable. We find that the obtained equation system
has the following form:

−ζg′(ζ) + f ′(ζ)g(ζ) + f (ζ)g′(ζ) +
2 f (ζ)g(ζ)

ζ
= 0, (11a)

−ζ2 f ′(ζ) + ζ f ′(ζ) f (ζ) = −wg′(ζ)
g(ζ)

− h′(ζ)ζ + ω2 sin θζ2, (11b)

h′(ζ) + h′′(ζ)ζ = g(ζ)4πGζ . (11c)

It can easily be noticed that the ordinary differential equation system presented in
Equation (11) cannot be solved analytically. For linearized nonautonomous ordinary dif-
ferential equation systems, the stationary point of the phase space can be found, and we
can say something about the general asymptotic behavior of the solutions as well [23].
Nonetheless, there is no generally known method for nonlinearized nonautonomous dif-
ferential equation systems. Moreover, the existence and uniqueness of smooth solutions
has not yet been proven in multiple dimensions. Therefore, it is a reasonable approach to
solve the obtained ordinary differential equation system in Equation (11) numerically for a
large number of parameter sets (based on physical considerations) in order to explore the
behavior of the solution of the system with different boundary and initial conditions. One
example of such a numerical solution can be seen in Figure 1.
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Figure 1. Numerical solutions of the shape functions; integration was started at ζ0 = 0.001 and initial
conditions of f (ζ0) = 0.5, g(ζ0) = 0.01, h(ζ0) = 0, and h′(ζ0) = 1 were used. For better visibility, the
g(ζ) function was upscaled by a factor of 200. The values are provided in geometrized units.

As an example, at a specific parameter and initial condition set, the shape function
of the velocity f (ζ) is almost linear and increasing after a short decrease, providing a hint
of Hubble expansion-like behavior. The shape function g(ζ) is asymptotically flat after a
quick ramp-up, corresponding to the conservation of matter. The last shape function h(ζ)
has an increasing polynomial trend with a slight positive exponent, which is connected
to the gravitational potential. To obtain a sufficiently smooth numerical solution, we
solved the ODE system using an adaptive numerical integration provided by Wolfram
Mathematica 13.1 [24]. For all of our calculations, the integration limits were ζ0 = 0.001 and
ζmax = 40, the same as in [16]. As has been said before, we established initial conditions to
obtain the numerical solution; for this reason, we use rangesR of f (ζ0) = 0.005− 0.5 and
g(ζ0) = 0.001− 0.1, while for the second-order differential equation we have h(ζ0) = 0
and h′(ζ0) = 1.

This choice of initial conditions reflects that, first it is physically reasonable that the
density flow range isR(g) ⊂ R+ and finite. Recent results suggest that dark fluid could
possibly have negative mass [25]; however, in the present model this leads to singular
solutions. Second, our choice of initial velocity flow R( f ) ⊂ R+ makes for an initially
radially expanding fluid. We have seen that if the initial value for f (ζ) and g(ζ) is set
outside of the previously given range, the solution of the differential equation becomes
singular. Moreover, we have seen that the variation in the initial condition corresponding
to the shape function of the gravitational potential does not affect the trend of the time
evolution of the system, as it only causes vertical shifts. Therefore, we set the initial
numerical value equal to zero.

We are interested in finding the solution of the ODE system as a function of the
spatial and time coordinates. We transform our single-variable numerical solutions into
two-variable functions, for which we use the inverted form of Equation (10). It can easily
be noticed that if we look at the shape of the ansatz, the solution has a singularity at t = 0.
Thus, we use the 0.001 ≤ t ≤ 25 and 0.001 ≤ r ≤ 25 domains to obtain the space- and
time-dependent initial dynamical functions u(r, t), ρ(r, t), and Φ(r, t).

4. Results

Here, we present the solutions of the self-gravitating non-relativistic dark fluid. First,
we provide a detailed introduction to the global properties of the solutions in a non-rotating
system. Second, we show the effect of slow rotation on the solutions. In addition, we
compare the results from the two cases with each other and with the previous results in [16].
Note that the spherical symmetry of the system was kept conserved for all the cases.
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4.1. Non-Rotating System

In the first case, we set the ω parameter to zero and used the obtained numerical
values for the similarity exponents (α, β, γ, and δ) to obtain the exact ordinary differential
equation. For the numerical integration, we used the same initial conditions f (ζ0) = 0.5 and
g(ζ0) = 0.01 applied in our previous paper for the velocity and density flows, respectively.
First, we used the time and radial projection of the unknown functions to obtain a better
understanding. Figure 2 illustrates the spatial and time projections of the obtained velocity,
density, and gravitational potential. These results for the velocity and density flows are
consistent with our initial statement that these kinds of solutions of dark fluids can be
used as a model to describe the exploding system (e.g., the universe). Similar behaviors
can be seen for the radial velocity and the density, which both have fast decays in time at
all distances. In addition, they both have a real singularity at t = 0 due to the shape of
the ansatz. However, the radial distribution has a different nature; the density increases
excessively at distances near the center of the explosion, and becomes linear at larger
distances. On the contrary, the velocity grows polynomially with the radial distance. It can
be seen that the gravitational potential decreases hyperbolically over time and becomes
asymptotically flat. The gravitational potential has a natural singularity at the origin. The
local existence of global weak solutions on a domain outside of the origin in spite of the
existence of a singularity has been shown by Tsunge and others.
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Figure 2. Different radial (left) and time (right) projections of the velocity flow (first row), density
(second row), and gravitational potential (third row), respectively, for the non-rotating case. A detailed
explanation is provided in the main text. The domain range is provided in geometrized units.
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Here, we find a different radial velocity profile than in the previous non-rotating model
with two equations presented in [16]. Furthermore, the similarity exponents are different
(α = 0, β = 1, and γ = −1 in the two-equation model). This is most likely due to the new
smoother solution forming as a consequence of a result of the second derivative appearing
in the Poisson equation. It can be seen that the solution depicted above in Figure 2 is
numerically stable in the specified initial and boundary condition range. It is more relevant
to investigate the dynamics of the complete fluid in time and space in order to understand
certain general trends or physical phenomena as the function of the initial conditions. For
this reason, we now evaluate the related energy densities, which are as follows:

εkin(r, t) =
1
2

ρ(r, t)u2(r, t), Φ(r, t) = h(r, t), εtot(r, t) = εkin(r, t) + Φ(r, t). (12)

Figure 3 further illustrates the fact that the kinetic energy density has a singularity at
t = 0, as we have already seen in the case of the radial velocity. It has linearly enhancing
maxima at larger distances, and has a fast decay in time for all radial distances. As
mentioned above, the gravitational potential is a negative polynomial in time; therefore, we
can obtain the total energy density of the system. From the total energy density distribution,
it is apparent that the short-time behavior of the system is dominated by the initial explosion,
while the long-range structure is regulated by the gravitational potential.

Figure 3. Numerical solutions of the velocity flow u(r, t), density flow ρ(r, t), and gravitational
potential Φ(r, t) as a function of the spatial and time coordinates in the case of a non-rotating system,
additionally showing the distribution of the total and kinetic energy densities. We used ζ0 = 0.001
for numerical integration and initial conditions f (ζ0) = 0.5, g(ζ0) = 0.01, h(ζ0) = 0, and h′(ζ0) = 1.
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4.2. Rotating System

In this section, we analyzed the effect of slow rotation compared to the non-rotating
case. First, we studied the effect of the variation of the maximal angular velocity (the ω
parameter). We chose the polar angle (the θ parameter at the equatorial), as it provides the
largest effect. As previously stated, we assume in our further analysis that the spherical
symmetry is not broken. According to this assumption, we fix the gravitational force
density to be at least one magnitude larger than the centrifugal force density at every time
and space (‖ fgrav‖ � ‖ fcentr‖). The numerical results show that we can find a range of ω
within which the constraint is fulfilled as long as the previously specified initial condition
set is valid. We demonstrate that the asymptotic behavior of the numerical solution includes
a significant dependence of ω on the acceptable domain (0 < ω < 0.3) of the parameters and
initial conditions.

Comparing the results shown in Figure 4 with the non-rotating case in Figure 2, it is
evident that slow and constant rotation does not affect the time or spatial distribution of
the gravitational potential. Moreover, it can be seen that the radial density profile of the
system is nearly uniform, and is identical to the previous case in that it decreases rapidly
over time. Thus, we can conclude that the rotation accelerates the even distribution of the
material in space and speeds up inflation.

u(
r,
t)

u(r,t=1)

u(r,t=2)

u(r,t=5)

0 2 4 6 8 10 12

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

r

u(
r,
t)

u(r=1,t)

u(r=2,t)

u(r=5,t)

0 2 4 6 8 10 12

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

t

ρ
(r
,t)

ρ(r,t=1)

ρ(r,t=2)

ρ(r,t=5)

0 2 4 6 8 10 12

0.000

0.002

0.004

0.006

0.008

0.010

r

ρ
(r
,t)

ρ(r=1,t)

ρ(r=2,t)

ρ(r=5,t)

0 2 4 6 8 10 12

0.000

0.001

0.002

0.003

0.004

0.005

t

ϕ
(r
,t)

ϕ(r,t=1)

ϕ(r,t=2)

ϕ(r,t=5)

0 2 4 6 8 10 12

1.0

1.5

2.0

2.5

3.0

3.5

r

ϕ
(r
,t)

ϕ(r=1,t)

ϕ(r=2,t)

ϕ(r=5,t)

0 2 4 6 8 10 12
1.00

1.02

1.04

1.06

1.08

1.10

1.12

t

Figure 4. Time and radial projections of the velocity flow (first row), density (second row), and
gravitational potential (third row) for the rotating system (ω = 0.2535). We used ζ0 = 0.001 for
numerical integration and initial conditions f (ζ0) = 0.5, g(ζ0) = 0.01, h(ζ0) = 0, and h′(ζ0) = 1.

The singular behavior close to t = 0 is not affected by the rotation, as was expected.
However, a significant difference can be seen in the first graph (the top left panel of Figure 4).

165



Universe 2023, 9, 431

It can be seen that the radial profile of the velocity flow starts from zero in the origin and
shows exponential growth for the short-range behavior.

Figure 5 illustrates the critical influence of the ω on the long-range asymptotic behavior
of the time evolution of the velocity flow. Moreover, an increase in the ω value causes
significant modifications in the radial profile for both the velocity and density flows while
leaving the time evolution unaltered. In our analysis of the behavior of the obtained
numerical solutions, we found that the inspected initial value range shows similar behavior;
ω < 1 can be found for every initial and boundary condition in which the long-range
asymptotic structure alternates. An example of this can be seen in Figure 5. Likewise, we
studied the properties of the relevant dynamic variables for the previous case. The energy
density associated with the rotation and the total energy is

εrot(r, t) =
1
2

ρ(r, t)ω2r εtot(r, t) = Φ(r, t) + εkin(r, t) + εrot(r, t). (13)

these quantities are depicted in Figure 6.
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Figure 5. Dependence of the space and time evolution on the maximal angular velocity ω; the
different lines correspond to different values of the angular velocity ω. The curves were evaluated
at a particular time (left), with radial coordinates provided on the vertical axis (right). A detailed
explanation is provided in the main text.
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Figure 6. Numerical solutions of the velocity flow u(r, t), density flow ρ(r, t), and gravitational
potential Φ(r, t) as a function of the spatial and time coordinates for the rotating case. In addition, we
present the distribution of the total and kinetic energy densities. We used ζ0 = 0.001 for numerical
integration, ω = 0.2535, and initial conditions f (ζ0) = 0.5, g(ζ0) = 0.01, h(ζ0) = 0, and h′(ζ0) = 1.

5. Connection to Newtonian Friedmann Equation

Next, we apply the obtained scaling solution to cosmology in order to explain the
evolution of the universe. Our strategy is to describe the concept of a cosmic fluid in
terms of Newtonian cosmology, which we use because relativistic effects are not of great
significance in this context. In this case, there is no need for a global reference point; thus,
a scale factor a(t) can be introduced which contains the entire time evolution that affects
our chosen reference frame. Henceforth, the relative distances in time can be denoted in
this term:

R(t) = a(t) l (14)

where R(t) is a continuous function and l is real number. In this chapter, we use classical
conservation equations to show the connection between the obtained self-similar solution
and the traditional Friedmann equations.
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5.1. Connection to the Expansion Rate

Here, we introduce the total mass inside a radius r:

M(t) =
∫

V(t)
ρ(R(t), t)dV = 4π

∫ r

0
ρ(R(t), t) R(t)2 dR(t), (15)

where V(t) ⊂ R3 is a sphere with radius R(t) and r ∈ (0, R(t)). Therefore, within
the classical Newtonian framework, the energy and mass conservation principle are
fulfilled separately:

d
dt

M(t) = 4π
d
dt

∫
ρ(a(t)l, t) a3(t) l2 dl !

= 0. (16)

Replacing the derivation with the integral formula, we can assume that equality holds
for every l:

ρ(a(t)l, t)
d
dt

[
ρ(a(t)l, t)

]
= −3

ȧ(t)
a(t)

. (17)

In addition, we impose the kinematic condition that

d
dt

R(t) = u(R(t), t)⇒ 1
g(R(t), t)

d
dt

[
t−γg(R(t), t)

]
= −3

t−α f (R(t), t)
R(t)

. (18)

We impose ρ(r, t) > 0 for ∀r ≥ R(t) and assume that the velocity u(r, t) and density
ρ(r, t) are obtained from the self-similar ansatz in Equation (9). We expand the density and
velocity flow into the following respective power series:

ρ(r, t) ∼ t−γ
∞

∑
m=0

ρmζm and u(r, t) ∼ t−α
∞

∑
n=0

unζn. (19)

After substituting ζ = R(t)t−β, Equation (18) becomes

−γt−(γ+1) + t−γ
∞

∑
m=1

ρmm
(

R(t)t−β
)m−1(Ṙ(t)t−β − βR(t)t−(β+1)) =

= − 3
R(t)

[
t−α

∞

∑
n=0

un
(

R(t)t−β
)n
][

t−γ
∞

∑
m=0

ρm
(

R(t)t−β
)m
]

.
(20)

On the relevant space and time scale, we only consider the contributions of the finite
term. The discussion of the rotating case in Section 4 requires that we use a high-order
polynomial to approximate the f (η) function. Based on the analysis of the numerical results
in Figure 4, we restrict ourselves to using polynomes up to the eighth order, which are well
able to approximate the curves:

u(r, t) ∼ t−α
8

∑
n=0

ũnζn and ρ(r, t) ∼ t−γ
8

∑
m=0

ρ̃mζm . (21)

Moreover, a further simplification can be applied within the domain of interest for
ρ by describing it as a polynomial with a rational exponent ρ(ζ) ∼ Aζκ , where κ = 6/7.
Hence, Equation (20) can be rewritten as

κṘ(t)− 1
t
[γ + κβ]R(t) + 3t−α

8

∑
n=0

ũk(R(t)t−β)n = 0. (22)

Consequently, the mass conservation equation in (15) becomes a nonautonomous first-
order differential equation that cannot be solved analytically due to its highly nonlinear terms.
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We can find further simplifications in the non-rotating limit (ω → 0), as the higher-
order terms are less and less significant; therefore, the velocity flow simply becomes
u(r, t) ∼ u1ζ1 + u2ζ2 and the mass conservation equation is

κṘ(t) + 3u2t−(α+2β)[R(t)]2 − 1
t
[γ + κβ]R(t) + 3u1R(t)t−(α+β) = 0. (23)

The above equation can be solved analytically; the solution is

R(t) = u1tβ+ γ
κ exp

[
−3u1tµ

µκ

]
×
[

3−
γ
µκ u2tγ/κ

(
u1tµ

ν

)− γ
µκ

Γ
(

1 +
γ

ν
,

3u1tµ

ν

)
−H1u1

]−1

, (24)

where µ = 1− (α + β), ν = κ − βκ, α, β, γ are the similarity exponents and A, u1, u2 the
positive constants, the κ positive exponent is obtained from the solution of Equation (11),
H1 is an integration constant, and Γ() is the upper incomplete Gamma function [26].
Equation (24) can be simplified by substituting the similarity exponents and constants from
the non-rotating case:

R(t) =
t

H1t
3u1−2

κ + 3u2
2−3u1

, where κ =
6
7

. (25)

We can now use Hubble’s law of expansion to determine theH1 integration constant
and the numerical integration for the rotating case:

ȧ(t)
a(t)

∣∣∣∣
t=t0

= H0, if a(t0) = 1 , (26)

where H0 = 66.6+4.1
−3.3 km/s/Mpc is the experimental value of the Hubble constant [27].

The expansion rates for the rotating (yellow line) and non-rotating (blue line) Universe are
drawn in Figure 7 in the usual units of standard cosmology. The dashed line represents the
present measured value of the Hubble parameter.
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Figure 7. Analytical (non-rotating) and numerical (rotating) solutions of the expansion rate of the
universe; integration started at ζ0 = 0.001, and the initial conditions were f (ζ0) = 0.5, g(ζ0) = 0.008,
h(ζ0) = 0, and h′(ζ0) = 1. These results match well with the data from [28].

5.2. Connection to the Critical Density

Energy conservation has to be investigated as well, as it leads to the critical density
parameter of the universe. We can apply the Newton equation to obtain the so-called
acceleration equation [29]:
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ä(t)
a(t)

= −4πG
3

ρ(R(t), t) ⇒ R̈(t) = −4πG
3

ρ(R(t), t)R(t) . (27)

Next, we multiply the equation by Ṙ(t) and integrate over time; then, Equation (27)
becomes

Ṙ(t)2 =
8πG

3
ρ(t)R2(t) + U0, (28)

which is the energy conservation equation. In general relativity, U0 is related to the
curvature of spacetime. However, because we are working in the framework of Newtonian
cosmology it is instead associated with a kind of mechanical energy. Equation (28) can be
transformed into the following form using the definition H(t) := Ṙ(t)/R(t):

H2(t) =
8πG

3
ρ(R(t), t) + Ut, (29)

where Ut = U0/R(t)2 is a dynamical constant, U0 = H2
0(1−Ω0,k), and we use the follow-

ing definition for the critical density:

ρ0 = Ω0ρc, where ρc =
3H2

0
8πG

. (30)

The value of the dynamical constant Ut determines the evolution of the system. If
Ut > 0, then the universe eventually re-collapses. On the other hand, if Ut < 0 then the
system expands to infinity. Thus, Ut = 0 is a special case in which the universe shows
similar expanding behavior but reaches zero velocity only in infinite time [29]. Here, we
are searching for an isentropic solution; therefore, we introduce the entropy conservation
equation dE + pdV = 0 from [30]. Using the non-steady flow internal energy formula
E = Vρ(u + 1) in the c = 1 unit system, and using the equation of state from Equation (3)
in [31], the entropy conservation [32] can be expressed in terms of

Ė + pV̇ = 0 ⇒ ρ̇

ρ
= −3

[
Ṙ
Ṙ
+

R̈
Ṙ

]
, (31)

with the solution
ρ

ρ0
= H3

0(ȧ(t)a(t))−3. (32)

Thus, in this model the relationship between the time-dependent Hubble parameter
and the density parameter is

H(t) = H2
0

√
Ω0,CDM

(
H0

H(t)

)3 1
a3(t)

+ ΩDE,0
1

a2(t)
, (33)

which cannot be solved explicitly. Here, Ω0,CDM or ΩDE,0 are density parameters related to
the cold dark matter (CDM) and dark energy (DE), respectively. The relationship between
the density parameters and the dynamical parameters of the self-similar solution is defined
and explained in the next section.

6. Discussion

According to current scientific understanding, dark matter and dark energy make up
about 95% of the total energy density of the observable universe today. The dark fluid
theory suggests that a single substance may explain both dark matter and dark energy. The
behaviour of the hypothetical dark fluid is believed to resemble that of cold dark matter on
galactic scales while exhibiting similar characteristics to dark energy at larger scales [25].
Predictions can be obtained from our Sedov–von Neumann–Taylor blast wave-inspired
nonrelativistic dark fluid model on galactic and cosmological scales. A useful feature of
this model is that the initial value problem of the reduced ordinary differential equation
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system is easier to handle than the boundary and initial condition problem of the original
partial differential equations. To provide a reliable practical basis for our dark fluid model,
we have tested the theoretical results on astrophysical scales in order to demonstrate the
similar nature of the solutions on the cosmological scale.

Our solution was developed based on cosmological observations, using the Hubble
law to scale the expansion of the universe. Our model includes various scaling mechanisms
through the use of a Sedov-type self-similar ansatz, which allows for describing different
time decay scenarios [33]. In the case of a non-rotating system, we can conclude that
the radial velocity profile of the solution provides Hubble-like expansion, while the non-
rotating model provides inflation-like behavior u(r, t) > 1 on a long-range timescale, which
cannot be physical (causal). We have seen that the high initial velocity of the dark fluid
relaxes to a small, constant, and non-relativistic value on long timescales (t > 6 billion
years). Another interesting feature of the model is that the gravitation potential is a negative
polynomial in time, which is consistent with the distribution of the density of the dark fluid.

One notable aspect in the case of the rotating model is that it does not show su-
perluminous behavior in the expected time range, contrary to the non-rotating model.
Simultaneously, we have found that the radial profile of the density becomes saturated and
close to flat at far distances from the initial point; see the top right panel of Figure 6. In
addition, it is possible to set the initial conditions such that the universe today is observed
as flat Euclidean with the density parameter

Ω(t) = ∑i ρi
ρc
≈ 1 (34)

being the critical density corresponding to the Hubble parameter H0. The flatness of
the universe is indicated by the recent measurements of WMAP [34]. The sum index
uses the baryonic energy (B), dark energy (DE), and cold dark matter (CDM). We
can define the matter part of ΩM = ΩCDM + ΩB along with the full Ω = ∑i Ωi and
i ∈ {B, CDM, DE} [35]. If the ΩCDM � ΩB relation is correct, then we can assume the
following identity:

ΩM(t)
Ω(t)

∣∣∣∣
t=t0

∼ Ekin(R(t), t)
Etot(R(t), t)

∣∣∣∣
t=t0

= 0.26. (35)

Accordingly, we can determine the relevant time and radial coordinates from the
obtained results, which correspond to this specific energy relation evaluated at r = R(t0)
and t = t0. In the absence of dark fluid, the universe continues to expand indefinitely,
though at a gradually slowing rate that eventually approaches zero. This causes an open-
topology universe. In this case, the ultimate fate of the universe is that the temperature
asymptotically approaches absolute zero in a so-called “big freeze”. At the same time, it is
essential to mention that a weakness of our non-relativistic model is that its results are not
as precise as those of relativistic Friedmann equation-based models [25].

7. Conclusions and Outlook

In this paper, we have studied the behaviour of self-similar time-dependent solutions
in a coupled nonlinear partial differential equation system describing a non-viscous, non-
relativistic, and self-gravitating fluid (Euler–Poisson system). The reason behind the applied
self-similar solutions is that they provide a very efficient method to analyze various kinds
of physical systems, particularly as concerns the hydrodynamical description of systems
that involve collapse and explosion.

The analysis presented in this paper is a Euler–Poisson extension of our previous
model [16]. We found that a Sedov–Taylor type solutions exists and that the algebraic
equation obtained for the similarity exponents has only one unique solution. We have
used the obtained solution to describe the behaviour of a non-relativistic dark fluid on
cosmological scales, and have presented the relevant kinematical and dynamical quantities.
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In addition, we have shown that our model based on self-similarity is in agreement with
the Newtonian Friedmann equations.

It can easily be noticed that this model has certain limitations due to its classical nature,
although it does provide relatively adequate results on the cosmological scale. We have
shown that the obtained quasi-analytical solution for the evolution of the Hubble parameter
is in agreement with the standard cosmological model, e.g., [28]. Moreover, in the previous
section we have shown that the energy ratio from our model closely resembles the ratio of
ΩM(t)/Ω(t), i.e., the relevant density parameters as of today.

This model has the additional practical benefit that the calculation does not require
high computing performance and resources. Therefore, it can be used to estimate the
physical value of the initial and boundary values when more sophisticated theoretical or
numerical simulations are used. Moreover, it can provide a reliable basis for comparing
for two- and three-dimensional hydrodynamical simulations. In future research, through
reasonable effort it would be possible to improve this model in order to describe relativistic
matter [36], Chaplygin gas [37], and two-fluid models.

Author Contributions: Original idea, I.F.B.; formal analysis, B.E.S.; software, B.E.S.; visualization,
B.E.S.; writing—original draft, B.E.S.; correction, I.F.B. and G.G.B. All authors have read and agreed
to the published version of the manuscript.

Funding: The authors gratefully acknowledge the financial support of the Hungarian National
Research, Development, and Innovation Office (NKFIH) under Contracts No. OTKA K135515, No.
NKFIH 2019-2.1.11-TET-2019-00078, and No. 2019-2.1.11-TET-2019-00050, and of the Wigner Scientific
Computing Laboratory (WSCLAB, the former Wigner GPU Laboratory).

Data Availability Statement: This work is based on analytic calculation of the given formulae. All
data are included in the plots. The data underlying this article can be shared upon reasonable request
to the corresponding author.

Acknowledgments: The authors gratefully acknowledge their useful discussions with N. Barankai.
Author I.F.B. offers this study in memory of the astronomer György Paál (1934–1992), who taught
him physics and sailing in the summer of 1990 at Lake Balaton.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1 summarizes the macroscopic and astronomical scales, quantities, and cou-
plings in different units (SI) and geometrized) along with the factors to convert them.
Table A2 shows the astronomical units used in the Discussion section 6.

Table A1. Relevant physical quantities in SI and geometrized units. Geometrized units can be
converted into SI units using the factors provided.

Variable SI Unit Geometrized Unit Factor

mass kg m c2G−1

length m m 1

time s m c−1

density kg m−1 m−2 c2G

velocity m s−1 1 c

acceleration m s−2 m−1 c2

force kg m s−2 1 c4G−1

energy kg m2 s−2 m−1 c4G−1

energy density kg m−1 s−2 m−2 c4G−1
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Table A2. Relevant astronomical quantities and their corresponding values in SI units.

Variable Astronomical Unit SI Unit

length ly 9.46073047258 · 1015m

length Gly 9.46073047258 · 1024m

length kPc 3.08567758128 · 1019m

time Gy 3.1556926 · 1016s
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Abstract: In the description of transport phenomena, diffusion represents an important aspect. In
certain cases, the diffusion may appear together with convection. In this paper, we study the diffusion
equation with the self-similar Ansatz. With an appropriate change of variables, we have found an
original new type of solution of the diffusion equation for infinite horizon. We derive novel even
solutions of diffusion equation for the boundary conditions presented. For completeness, the odd
solutions are also mentioned as well, as part of the previous works. We have found a countable set of
even and odd solutions, of which linear combinations also fulfill the diffusion equation. Finally, the
diffusion equation with a constant source term is discussed, which also has even and odd solutions.

Keywords: partial differential equations; diffusion and thermal diffusion; self-similarity

MSC: 60G18; 76R50

1. Introduction

It is evident that mass diffusion or heat conduction is a fundamental physical process
which attracted enormous intellectual interest from mathematicians, physicists and engi-
neers over the last two centuries. The existing literature about mass and heat diffusion is
immense; we only mention some fundamental textbooks [1–5].

Regular diffusion is the cornerstone of many scientific disciplines, such as surface
growth [6–8], reactions diffusion [9] or even flow problems in porous media. In our last
two papers, we gave an exhaustive summary of such processes with numerous relevant
reviews [10,11].

In connection with thermal diffusion [12,13], the simultaneous presence of heat and
mass transfer is also possible, which may lead to cross effects [14]. One may find relevant
applications related to general issues of heat transfer or engineering in [15]. Important
diffusive phenomena occur in the universe [16], which is another field of interest.

The study of population dynamics or biological processes [17–19] also involves dif-
fusive processes, especially in spatial extended systems. In environmental sciences, the
effects of spreading, distribution and adsorption of particulate matter or pollutants are
also relevant [20–23]. Furthermore, diffusion coefficients have been measured for practical
purposes in food sciences as well [24].

New applications of diffusion have gained ground in social sciences in the last decades
as well. As examples, we can mention diffusion of innovations [25,26], diffusion of tech-
nologies and social behavior [27] or even diffusion of cultures, humans or ideas [28,29].
One may also find aspects related to diffusion in the theory of pricing [30,31]. The struc-
ture of the network has also a crucial role which influences the spread of innovations,
ideas or even computer viruses [32]. Parallel to such diffusion activities, generalization of
heat-transport equations was done by Ván and coauthors [33], e.g., fourth-order partial

Universe 2023, 9, 264. https://doi.org/10.3390/universe9060264 https://www.mdpi.com/journal/universe175
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differential equations (PDE)s were formulated to elaborate the problem of non-regular
heat conduction phenomena. Finally, we should not forget the continuously developing
numerical methods of PDEs; it is worth mentioning the new results obtained by Kovács
and coworkers [34,35]. Such spirit of the times clearly shows that investigation of diffusion
(and heat conduction) is still an important task.

Having in mind that diffusion can be a general, three-dimensional process beyond
Cartesian symmetry, here we investigate the one-dimensional diffusion equation. The
change in time of variable C(x, t) is influenced by the presence of it in the neighbors:

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2 , (1)

where D is the diffusion coefficient which should have positive real values. Usually, it can
be considered constant for given temperature and pressure in gases. A counter-example
is the heat diffusion process in large-temperature-gradient semiconductor crystals where
heat conduction coefficients have a complicated temperature dependence [36].

One assumes that C(x, t) is a sufficiently smooth function together with existing
derivatives regarding both variables. In this general form, one may observe that if C(x, t) is
a solution, then C(x, t) + C0 is also a solution, where C0 is a constant.

In this study, we consider a constant diffusion coefficient. From a practical point of
view, a typical case is the diffusion in gases, where at constant temperature and constant
pressure, the diffusion coefficient is constant as is described in [37].

For a finite horizon or interval, in case the concentration is fixed at the two ends
C(x = 0, t) = C0 and C(x = L, t) = C0, the solutions are

Ck(x, t) = C0 + e−D π2k2t
L2 · sin

(
kπ

L
x
)

, (2)

where k = 1, 2, 3 . . .; it can be any positive integer number. In general, beyond C0, any
linear combination of the product of the exponent and sine for different k is a solution. For
finite horizon, in the case when the density is fixed to zero on both ends, the solutions are
changed to

Ck(x, t) = C0 + e−D π2n2t
L2 · cos

(nπ

L
x
)

, (3)

where n = 1, 2, 3 . . . can be any positive integer number. Thanks to the Fourier theorem,
with the help of Equations (2) and (3) arbitrary diffusion profile can be approximated on
a closed interval. These are well-known analytic results and can be found in any usual
physics textbooks such as [1,2].

In the present study—with the help of the self-similar Ansatz—we are going to present
generic symmetric solutions for infinite horizon. These solutions have their roots at the
very beginning of the theory, in the form of the Gaussian [1,2]:

C(x, t) = Const. · 1√
t
e−

x2
4Dt . (4)

For infinite horizon, there are also certain works which present a given aspect of the
diffusion, and it may arrive to a slightly more general aspect than the classical solution
presented above [38].

In the following, we will go much beyond that point and will present and analyze
completely new type of solutions. For finite horizon, an even initial condition can be
expressed as a linear combination of the countable solutions of Equation (3), for t = 0. For
positive times, the linear combination gives the dynamics of C(x, t). In a similar way, we
expect in the following that if we can find a countable set of even solutions, for infinite
horizon, then by linear combinations of these functions, we can give the dynamics in time
of a certain number of even functions. The initial conditions for infinite horizon can be set
more easily after the change of variables, which will be discussed in more detail later.
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2. Theory and Results

In the case of infinite horizon, when we want to derive the corresponding solutions,
we make the following self-similar transformation:

C(x, t) = t−α f
(

x
tβ

)
= t−α f (η). (5)

Note that the spatial coordinate x now runs along the whole real axis. The role of of α and
β is illustrated on Figure 1. As is indicated in the figure, β shows the spreading and α the
decay in time.

Figure 1. The importance of α and β in case of the change of variables of Equation (5).

This kind of Ansatz has been applied by Sedov [39], and was later also used by Raizer
and Zel’dowich [40] For certain systems, Barenblatt applied it successfully [41] as well. We
have also used it for linear or non-linear partial differential equation (PDE) systems, which
are from fluid mechanics [42–44] or quantum mechanical systems [45]. In certain cases, the
equation of state of the fluid also plays a role [46,47]. Diffusion-related applications of the
self-similar analysis method can be found in relatively recent works as well [48–50].

The transformation takes into account the (4) formula, and before the function f ,
instead of 1/

√
t there is a generalized function 1/tα, and in the argument of f , the fraction

x/tβ is possible, with a β which should be determined later.
We evaluate the first and second derivative of relation (5), and insert it in the equation

of diffusion (1). This yields the following ordinary differential equation (ODE)

− αt−α−1 f (η)− βt−α−1η
d f (η)

dη
= Dt−α−2β d2 f (η)

dη2 . (6)

The reasoning is self-consistent if all three terms have the same decay in time. This is
possible if

α = arbitrary real number, β = 1/2, (7)

and yields the following ODE

− α f − 1
2

η f ′ = D f ′′. (8)

This ODE is a kind of characteristic equation, with the above-presented change of variable.
One can observe that for α = 1/2, this equation can be written as

− 1
2
(η f )′′ = D f ′′. (9)
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If this equation is integrated once

Const0 −
1
2

η f = D f ′, (10)

where Const0 is an arbitrary constant, which may depend on certain conditions related to
the problem. If we take this Const0 = 0, then one arrives to the generic solution

f = f0e−
η2
4D , (11)

where f0 is a constant. Inserting this form of f in form of C(x, t) given by Equation (5)—for
α = 1/2 as it was mentioned earlier—one obtains an even solution for the space variable:

C(x, t) = f0
1

t
1
2

e−
x2

4Dt . (12)

By this, we have recovered the generic Gaussian solution, which can be seen in Figure 2a.

Figure 2. The solution C(x, t) for (a) α = 1/2, (b) α = 3/2 (c) α = 5/2 and (d) α = 7/2, respectively.

If we want to find further solutions, the Equation (8) has to be solved for general α.
The general solution for infinite horizon of (8) can be written as:

f (η) = η · e−
η2
4D

(
c1M

[
1− α,

3
2

,
η2

4D

]
+ c2U

[
1− α,

3
2

,
η2

4D

])
, (13)

where c1 and c2 are real integration constants, which are fixed by the initial conditions, and
M(, , ) and U(, , ) are the Kummer’s functions. For exhaustive details, consult [51].
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If α are positive integer numbers, then both special functions M and U are finite

polynomials in terms of the third argument η2

4D

f (η) = η · e−
η2
4D

(
κ0 + κ1

η2

4D
+ . . . + κn−1 ·

[
η2

4D

]n−1)
. (14)

These give the odd solutions of the diffusion equation for α = n, (where n positive integer),
in terms of the space variable. It follows for the complete solution C(x, t)

C(x, t) =
1
tn f (η) =

1
tn

x√
t
e−

x2
4Dt ·

(
κ0 + κ1

x2

4Dt
+ . . . + κn−1 ·

[
x2

4Dt

]n−1)
. (15)

These odd solutions have been studied thoroughly by Mátyás and Barna in previous
works [10,11] and for completeness, we present these solutions in Appendix A.

For the even solutions, we denote by g(η) the following function

f (η) = η · e−
η2
4D g(η), (16)

Inserting this equation into Equation (8), we have

ηg′′ + 2g′ − η2

2D
g′ + (α− 1)

η

D
g = 0. (17)

In concordance with Equation (13), we get the general solution

g(η) =
(

c1M
[

1− α,
3
2

,
η2

4D

]
+ c2U

[
1− α,

3
2

,
η2

4D

])
. (18)

At this point, we make the conjecture from the forms of U and M, that if we had the classical
spatially even solution for α = 1/2, than the next spatially even solution would be for
α = 3/2, with the form of g

g(η) = K0
1
η
+ K1η, (19)

where K0 and K1 are arbitrary constants, which should be determined later. We insert this
form of g in (17); we find that the form (19) fulfills the Equation (17) if

K1 = − 1
2D

K0. (20)

We obtain the same result if we insert the form

f (η) = η · e−
η2
4D

(
K0

1
η
+ K1η

)
, (21)

directly into the Equation (8). By this, for α = 3/2, we get for the function f

f (η) = K0 · η · e−
η2
4D

(
1
η
− 1

2D
η

)
= K0 · e−

η2
4D

(
1− 1

2D
η2
)

. (22)

Substituting this form into (5), one gets

C(x, t) = K0
1

t
3
2

e−
x2

4Dt

(
1− 1

2D
x2

t

)
. (23)

This result is visualized in Figure 2b.
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If we follow the case α = 5/2 = 2.5, then the following form for the function g(η) can
be considered

g(η) = K0 ·
1
η
+ K1 · η + K2 · η3. (24)

If we insert this form in the Equation (17), the following relations for the constants K0, K1
and K2 can be derived

K1 =
K0

D
, (25)

and
K2 = − K1

12D
=

K0

12D2 . (26)

By this, we get for the g(η)

g(η) = K0

(
1
η
− 1

D
η +

1
12D2 η3

)
. (27)

Correspondingly the final form for f (η) for α = 2.5 is

f (η) = K0 · e−
η2
4D

(
1− 1

D
η2 +

1
12D2 η4

)
. (28)

Inserting this form into (5), one gets

C(x, t) = K0
1

t
5
2

e−
x2

4Dt

(
1− 1

D
x2

t
+

1
12D2

x4

t2

)
. (29)

This result can be seen in Figure 2c.
If we follow the case α = 7/2 = 3.5, then the following form for the function g(η) can

be considered:
g(η) = K0 ·

1
η
+ K1 · η + K2 · η3 + K3 · η5. (30)

If we replace this form into Equation (17), the next relations among the constants K0, K1, K2
and K3 can be derived:

K1 = −3
2

K0

D
, (31)

for the next coefficient
K2 = − K1

6D
=

K0

4D2 . (32)

Finally, for the third coefficient one obtains

K3 = − K2

30D
= − K0

120D3 . (33)

Inserting these coefficients into the Formula (30), one obtains the following expression

g(η) = K0

(
1
η
− 3

2D
· η +

1
4D2 · η

3 − 1
120D3 · η

5
)

. (34)

This form of g yields, by Equation (16), for the function f

f (η) = K0 · e−
η2
4D

(
1− 3

2D
η2 +

1
4D2 η4 − 1

120D3 η6
)

. (35)

Inserting this form into (5), one obtains

C(x, t) = K0
1

t
7
2

e−
x2

4Dt

(
1− 3

2D
x2

t
+

1
4D2

x4

t2 −
1

120D3
x6

t3

)
. (36)

180



Universe 2023, 9, 264

This result is clearly visualized in Figure 2d.
It is evident that by including higher terms in the finite series of Equation (30), the

solutions for α = 9/2, 11/2, etc. can be evaluated in a direct way.
For completeness, we present the shape functions f (η)s on Figure 3. Note that solu-

tions with higher α values have more oscillations and quicker decay. The same features
appear for odd solutions as well.

Figure 3. Even shape functions f (η) of Equation (16) for three different self-similar α exponents. The
black, blue and red curves are for α = 1/2, 3/2 and 5/2 numerical values, with the same diffusion
constant (D = 2), respectively. Note that shape functions with larger αs have more zero transitions.
We will show that for α > 0 integer values, the integral of the shape functions give zero on the whole
and the half-axis as well.

As we can see, at this point, the solutions fulfills the boundary condition C()→ 0 if
x → ±∞, for positive α values.

The general initial value problem can be solved with the usage of the Green’s functions
formalism. According to the standard theory of the Green’s functions, the solution of the
diffusion Equation (1) can be obtained via the next convolution integral:

C(x, t) =
1

2
√

πt

∫ +∞

−∞
w(x0)G(x− x0)dx0, (37)

where w(x0) defines the initial condition of the problem, C|t=0 = w(x0). The Green’s
function for diffusion is well defined and can be found in many mathematical textbooks
e.g., [52–55]:

G(x− x0) = exp
[
− (x− x0)

2

4tD

]
. (38)

On the other side, the Gaussian function is a fundamental solution of diffusion.
We will see in the following that for some special forms of the initial conditions, such as

polynomials, Gaussian, Sinus or Cosines, the convolution integral can be done analytically.
In the following, we evaluate the convolution integral for α = 1/2.
As an example for the initial condition problem, we may consider the following

smooth function with a compact support:

w(x0) =
Heaviside(3− x0) ·Heaviside(3 + x0) · (9− x2

0)

9
. (39)
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This initial condition is a typical initial distribution for diffusion, and one can see on
Figure 4a.

The convolution integral for α = 1/2:

C(x, t) =
1

2
√

πt

∫ +∞

−∞

Heaviside(3− x0) ·Heaviside(3 + x0) · (9− x2
0)

9
· e

(x−x0)
2

4Dt dx0. (40)

The result of this evaluation is

C(x, t) = 1
2
√

πt

[√
πt erf

(
3+x
2
√

t

)
+ 2

9 xt e−
6x+x2+9

4t + 2
3 t e−

6x+x2+9
4t − 2

9 t
3
2
√

π erf
(

3+x
2
√

t

)

− 1
9 x2
√

πt erf
(

3+x
2
√

t

)
−
√

πt erf
(

x−3
2
√

t

)
− 2

9 xt e−
−6x+x2+9

4t + 2
3 t e−

−6x+x2+9
4t

+ 2
9 t

3
2
√

π erf
(

x−3
2
√

t

)
+ 1

9 x2
√

πt erf
(

x−3
2
√

t

)]
, (41)

which is presented on Figure 4b.

Figure 4. (a) The initial condition (39) (b) The convolution integral for α = 1/2 of Equation (40).

3. The Properties of the Shape Functions and Solutions

In the following, we study some properties of the shape functions f (η) and of the
complete solutions C(x, t). First, we consider the L1 integral norms.

For the case α = 1/2 the form of
∫ ∞

−∞
f (η)dη =

∫ ∞

−∞
f0e−

η2
4D dη = f0 2

√
πD. (42)

The constant f0 is chosen, depending on the problem. If C stands for the density which
diffuses, f0 in the above integral is related to the total mass of the system.

Correspondingly,

∫ ∞

−∞
C(x, t)dx =

∫ ∞

−∞
f0

1√
t
e−

x2
4Dt dx = f0 2

√
πD. (43)

For the case α = 3/2:
∫ ∞

−∞
f (η)dη =

∫ ∞

−∞
K0 · e−

η2
4D

(
1− 1

2D
η2
)

dη = 0. (44)
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It is interesting to see that the integral of first even shape function beyond Gaussian is zero.
An even more remarkable feature is, however, that

∫ 0

−∞
f (η)dη =

∫ ∞

0
f (η)dη = 0. (45)

So the oscillations, the positions of the zero transitions, divide the function in such a way
that the integral is not only on the whole real axis (−∞ . . . ∞) but on the half axis (0 . . . ∞)
or (−∞ . . . 0) gives zero as well.

Evaluating the same type of integrals for the corresponding solution C(x, t), we have

∫ ∞

−∞
C(x, t)dx =

∫ ∞

0
C(x, t)dx =

∫ 0

−∞
C(x, t)dx =

∫ ∞

−∞
K0 ·

1
t3/2 e−

x2
4Dt

(
1− 1

2D
x2

t

)
dx = 0,

at any time point, (and for any diffusion coefficient D).
The same property is true for all possible higher harmonic solutions if α is positive half-

integer number α = (2n + 1)/2 when (n ε N). This property has far-reaching consequences.
The linearity of the regular diffusion equation and this additional property of this even
series of solutions makes it possible to perturb the usual Gaussian in such a way that the
total number of particles is conserved during the diffusion process; however, the initial
distribution can be changed significantly. One can see from the final form of the solutions
C(x, t)α ∼ 1

tα that the decay of these perturbations are, however, short-lived because they
have a quicker decay than the standard Gaussian solutions. For completeness, we present
a C(x, t) solution which is a linear combination of the first two even solutions α = 1/2, 3/2
in the form of

C(x, t) =
60

t
1
2

e−
−x2

4t − 0.001

t
3
2

e−
−x2

4t

(
1− x2

2t

)
, (46)

on Figure 5. Note that coefficients with different orders of magnitude have to be applied to
reach a visible effect when the sum of two functions have to be visualised with different
power-law decay.

As a second property, we investigate the cosine Fourier transform of the shape
functions:

Cα(k) =
∫ ∞

−∞
Cos(k · η) fα(η)dη. (47)

It can be shown with direct integration that the Fourier transform is

Cα= 2N+1
2

(k) ∝ l ·
√

π · k2N · DN · e−k2D
√

1
D

, (48)

for all N ε N\0 positive integer and l is a real constant. This means that qualitatively, the
spectra for all positive half integer α are similar. They start from zero, have a global positive
maximum and a quick decay to zero. It is generally known from spectral analysis that
pulses of finite length have band spectra which have a minimal, a maximal and a central
frequency.

In Appendix A, the corresponding normalization coefficients are given for the odd
functions as well.
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Figure 5. The function C(x, t), solution of Equation (46).

4. The Diffusion Equation with Constant Source

At this point we try to find solutions of the diffusion equation, mainly with the self
similar Ansatz, where on the right hand side, there is a constant source term:

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2 + n. (49)

For this equation, one also apply the self-similar transformation (5), and we get a modified
equation relative to the homogeneous one

− αt−α−1 f (η)− βt−α−1η
d f (η)

dη
= Dt−α−2β d2 f (η)

dη2 + n. (50)

The free term on the r.h.s. has no explicit time decay; consequently, we expect the same
from the other terms, which means

−α− 1 = 0 (51)

−α− 2β = 0. (52)

The two equations have to be fulfilled simultaneously. Solving these equations, we get the
following values for α and β:

α = −1 and β =
1
2

(53)

Inserting these values to the Equation (50), we get the following ODE

f (η)− 1
2

η
d f (η)

dη
= D

d2 f (η)
dη2 + n. (54)

We emphasize that we arrived to this equation by a self-similar transformation. At this
point, we observe that if we shift the function f by a constant, and introduce the function h:

h(η) = f (η)− n (55)

we arrive to a slightly modified equation

h(η)− 1
2

η
dh(η)

dη
= D

d2h(η)
dη2 . (56)
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One may observe that if the transformation η → −η and h(−η) = h(η) is applied, the
equation still remains the same; consequently, we expect at least one even solution.

If we look for the even solution by polynomial expansion,

h(η) = A + Bη2 + . . . (57)

then, we get by direct substitution

A = 2 · B · D. (58)

This means that the even solution reads as follows

h(η) = B(2D + η2) (59)

where B is a constant depending on initial conditions.
Furthermore, we observe that the transformation η → −η and h(−η) = −h(η) also

leaves Equation (56) unchanged. This means that it is worthwhile to look for an odd
solution as well. The odd solution of the equation is

h(η) = 2D η e−
η2
4D +

√
π (2D3/2 +

√
D η2) er f

(
1
2

η√
D

)
(60)

One can see the form of this odd solution in Figure 6.

Figure 6. The shape function h(η), described by Equation (60), the odd solution of Equation (56).

We mention, that Equation (56) may have a further solution, which eventually does
not have the symmetry to be even or odd, and that may be expressed in terms of a Hermite
function with a negative integer as one can see in Equation (8) of the Reference [11]. Such a
solution reads as follows

h(η) = e−
η2
4D · Hermite[−3,

η

2
√

D
] (61)

We try to find certain relevant features of this result. In an interesting way, the series
expansion of the above solution (61) means a sum of an even function with second order
and another odd function, which appears to be proportional to the series of solution (60).
The first terms of these series are presented in Appendix B.

If n is positive in the Equation (49), then we can talk about a source in the equation,
and if n is negative, than we say that there is a sink in the diffusion process. The sink can
be considered physical by the time C(x, t) ≥ 0. Diffusive systems with sinks have been
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studied in ref. [56], and water purification by adsorption also means a process with change
of concentration in space and decrease in time [57].

A general solution for the shape function can be obtained from the linear combination
of the even and odd solutions presented above

h(η) = κ1

[
2D η e−

η2
4D +

√
π (2D3/2 +

√
D η2) er f

(
1
2

η√
D

)]
+ κ2[2D + η2] (62)

where κ1 and κ2 are constants depending on the initial or boundary conditions of the
problem.

Inserting this shape function to the general solution (5), we get for the final form of
C(x, t) in the presence of a constant source

C(x, t) = t ·
[

κ1

(
2D

x√
t

e−
x2

4Dt +
√

π

(
2D3/2 +

√
D

x2

t

)
er f
(

1
2

x√
Dt

))
+ κ2

(
2D +

x2

t

)
+ n

]
(63)

For relatively shorter times, the general solution has interesting features depending
on the weight of the even or the odd part of the solution, as one can see in Figure 7a.

Figure 7. The shape function C(x, t), solution of Equation (63), for D = 1 and n = 1, in case
(a) κ1 = 0.1 κ2 = 0.03 and (b) κ1 = 0.2 κ2 = 0.2.

The long time behavior is dominated by the constant of the even solution and the source
term. Correspondingly, for sufficiently long times, the relation C(x, t) ∼ (2κ2 D + n) · t charac-
terizes the dynamics, as one can see in Figure 7b.

5. Summary and Outlook

Applying the well-known self-similar Ansatz—together with an additional change of
variables—we derived symmetric solutions for the one-dimensional diffusion equations.
Using the Fourier series analogy, we might say that these solutions may be considered as
possible higher harmonics of the fundamental Gaussian solution. As unusual properties,
we found that the integral of these solutions—beyond Gaussian—gives zero on both the
half and the whole real axis as well. Thanks to the linearity of the diffusion equation,
these kinds of functions can be added to the particle- (or energy-) conserving fundamental
Gaussian solution; therefore, a new kind of particle diffusion process can be described. Due
to the higher α self-similar exponents, these kinds of solutions give relevant contributions
only at smaller time coordinates, because the corresponding solutions decay more quickly
than the usual Gaussian solution. In case of a constant source or sink term in the diffusion
equation, the value of α is no more arbitrary; it has a constant value α = −1. Even for
this fixed value of α, the diffusion equation with source term has even and odd solutions
as well.
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These kinds of solutions can also be evaluated for two- or three-dimensional, cylin-
drical or spherical symmetric systems as well. Work is in progress to apply this kind of
analysis to more sophisticated diffusion systems as well. We hope that our new solutions
have far-reaching consequences and that they will be successfully applied in other scientific
disciplines such as quantum mechanics, quantum field theory, astrophysics, probability
theory or in financial mathematics in the near future.
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Appendix A

For completeness and for direct comparison, we show the first five odd shape functions
f (η) and the corresponding solutions C(x, t):

f (η) = er f
(

η

2
√

D

)
,

f (η) = κ0 · η · e−
η2
4D ,

f (η) = κ0 · η · e−
η2
4D ·

(
1− 1

6D
η2
)

,

f (η) = κ0 · η · e−
η2
4D ·

(
1− 1

3D
η2 +

1
60

1
D2 η4

)
,

f (η) = κ0 · η · e−
η2
4D ·

(
1− 1

2D
η2 +

1
20

1
D2 η4 − 1

840
1

D3 η6
)

, (A1)

for α = 0, 1, 2, 3, 4 . . .N. The first case with the change of variable x/
√

t with no α (or
implicitly α = 0) dates back to Boltzmann [58], as is also mentioned by [59,60].

All integrals of the functions from (A1) on the whole real axis give zero:
∫ ∞

−∞
fα(η)dη = 0, (A2)

However, on the half-axis: ∫ ∞

0
fα=0(η)dη = ∞, (A3)

and for additional non-zero integer αs, we get:

∫ ∞

0
fα(η)dη =

D
α− 1/2

. (A4)

Integrals on the opposite half-axis (−∞ . . . 0] have the same value with a negative sign,
respectively. The forms for odd C(x, t)s are the following:
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C(x, t) = er f
(

x
2
√

Dt

)
,

C(x, t) =

(
κ1x

t
3
2

)
e−

x2
4Dt ,

C(x, t) =

(
κ1x

t
5
2

)
e−

x2
4Dt

(
1− x2

6Dt

)
,

C(x, t) =

(
κ1x

t
7
2

)
e−

x2
4Dt

(
1− x2

3Dt
+

x4

60(Dt)2

)
,

C(x, t) =

(
κ1x

t
9
2

)
e−

x2
4Dt

(
1− x2

2Dt
+

x4

20(Dt)2 −
x6

840(Dt)3

)
. (A5)

The space integrals of
∫ ∞
−∞ Cα(x, t)dx = 0 for all positive integers αs. On the positive

half-axis for α = 0, the integral of the error function in infinite, for positive αa, it is:

∫ ∞

−∞
Cα(x, t) =

Dt
1
2−α

α− 1
2

. (A6)

which are well-defined values for finite, D, t and α. On the (−∞ . . . 0] half axis, the sign is
opposite. Additional detailed analysis of the odd functions was presented in our former
study [11].

Appendix B

The power series of the Equation (61) reads as follows

e−
η2
4D · Hermite[−3,

η

2
√

D
] =

√
π

8
− η

4
√

D
+

√
πη2

16D
(A7)

− η3

48D3/2 +
η5

1920D5/2 −
η7

53760D7/2 + o(η9)

=

√
π

8
+

√
π

16
η2

D

+
1
16

(
−4

η√
D
− 1

3
η3

D3/2 +
1

120
η5

D5/2 −
1

3360
η7

D7/2

)
+ o(η9).

The series of relation (60) yields the following

2D η e−
η2
4D +

√
π (2D3/2 +

√
D η2) er f

(
1
2

η√
D

)
= (A8)

= D3/2
(

4
η√
D

+
1
3

η3

D3/2 −
1

120
η5

D5/2 +
1

3360
η7

D7/2 + o(η9)

)
.

As one can see—based on power expansions—the solution related to the Hermite function
(A7) is still a kind of linear combination of the quadratic even solution and the odd solution
(A8).
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Abstract: A status report is presented about the Nanoplasmonic Laser Induced Fusion Experiment
(NAPLIFE). The goal is to investigate and verify plasmonically enhanced phenomena on the surfaces
of nanoantennas embedded in a polymer target at laser intensities up to a few times 1016 W/cm2

and pulse durations of 40–120 fs. The first results on enhanced crater formation for Au-doped
polymer targets are shown, and SERS signals typical for CD2 and ND bound vibrations are cited.
Trials to detect D/H ratio by means of LIBS measurments are reported. Plasmonics has the
potential to work at these intensities, enhancing the energy and deuterium production, due to thus
far unknown mechanisms.

Keywords: fusion; plasmonics; nanotechnology; energy production

1. Laser Fusion Ignition Improvement by Nanoantennas

Taming nuclear fusion is a long-term dream [1]. Since the 1950s, several approaches
have been developed towards this goal. To date, the most characteristic experiments
belong to two groups of approaches: (i) magnetic confinement fusion (MCF) techniques
and (ii) laser inertial heating and compression (ICF). The former approach has developed
different techniques for producing the magnetic field which confines the hot plasma, such as
tokamak and stellarator, while the latter uses more and more powerful lasers to increase the
compression and to reach the ignition temperature necessary for starting elementary fusion
reactions in thermal equilibrium. ITER in Cadarash, France is building the largest tokamak
ever seen, and NIF in Los Alamos, Nevada collects the energy of 192 huge lasers onto a
miniscule target (hohlraum). In both cases, magnetic confinement or inertial compressed
fusion, there are plasma instabilities to fight.

The third type of approach, which generally do not aim for thermal equilibrium, have
been discredited over the years by the “cold” fusion fallacy which presented high claims but
provided no evidence. Yet, some fusion as a by-product of mechanical manipulations, such
as sonoluminescence or cracking of metals enriched with hydrogen, have been reported
in the passing decades. Generally, the chemical type of spectral or other evidence hunted
down the presence of deuterium (atoms, not nuclei) in such cases. The real goal is to reach
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tamed fusion, even as nanofusion in a controllable quantity is preferred for slow but rich
energy production.

Nanoplasmonics is one of the efficient means of squeezing electromagnetic energy
into nanosized volumes. It may result in hotspots around nanoparticles with high electron
density, and thus high electromagnetic fields with characteristic lifetimes in the few times
ten femtosecond range. The near field of these localized plasmons has a screening effect
around positively charged particles (e.g., protons) and the momentum of the correlated
motion of the plasmonic electrons may be transferred to these positively charged particles,
resulting in their acceleration to high momentum and energy. These positive effects may
play significant role in increasing the probability of fusion of these positive (e.g., proton,
deuterium, boron, etc.) ions.

Our Nanoplasmonic Laser-Induced Fusion Experiment (NAPLIFE) investigates the
extent to which nanotechnology may improve the laser beam targets in order to come
closer to fusion ignition conditions at a lower input energy than is provided by the direct
methods applied in big facilities. In this way, we hope to assist with the effects from
plasmonics, from the collective motion of electrons illuminated by intense and ultrashort,
well-contrasted laser pulses. After the first few years of this project, carried out with modest
means, we report our initial experiences of the enhancement of laser energy absorption due
to nanoplasmonic effects, stemming from doping metal (Au) nanoantennas in a transparent
polymer target [2–7].

We prepare 20–160 micrometer-thick targets made of UDMA-TEGDMA copolymer, a
material used in dentistry as tooth filler [2]. Our choice was motivated by the fact that while
nanometals are easy to mix under a fluid, for laser shootings and transportation, a solid
carrier is advantageous. The UDMA-TEGDMA can be solidified using UV light treatment
after mixing. Au nanorods have been implemented into the polymer with carefully chosen
size resonant to the laser wavelength of 795 nm. Furthermore, after finding the first signals
for the presence of deuterium in the target remainder in molecular vibration spectra after
shooting at it, for comparison and background measurements, we also use deuterized
targets. This is achieved by admixing another, shorter molecule, the MMA, where all eight
H atoms can be replaced by D atoms. In this way, up to 31 per cent D/H ratio can be
achieved in the total copolymer molecule of the target. The width of the target is larger
(160 µm), permitting us to study the crater sizes remaining after single shots, while it shall
be smaller when planning multilayer targets in successive experiments.

The theory behind hoping for an enhancement of energy density due to plasmonics
requires extended computer simulations on the motion of electrons on the Au nanoan-
tennas of resonant size and various shapes. Although in the experiment, we are using
cylindrical shapes, other shapes and metals sometimes promise a higher value of near
field enhancement [8]. Theoretically, near-field enhancement (NFE) factors in the order of
100 can be reached, meaning an energy density enhancement of 104 in near atomic layers,
up to cca. 10–30 nm-s.

The classical approach to studying plasmonic effects on nanoparticles involves the
use of the dielectric function of the free electron gas, which often neglects important
phenomena such as electron–electron interactions and spill-out effects; these are typically
included by fit parameters. However, alongside such classical methods, we also use kinetic
models utilizing the particle-in-cell (PIC) method. In PIC simulations, marker particles are
randomly distributed on the metal surface based on the electron number density, and these
particles move in a continuous phase space, while densities and currents are computed in
stationary mesh cells.

The PIC method has been shown to be an efficient tool for analyzing the electron
dynamics and for modeling spill-out effects in plasmon simulations [9,10].

A kinetic model simulation [11–14] reveals collectively moving electrons and protons
up to momenta in the 100 MeV range—such projectiles in principle may initiate a few
nuclear reactions in the surrounding polymer atomic layers (cf. Figure 1) [15,16].
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Figure 1. Result of a single nanoantenna simulation using a hydrodynamic (HDM) model imple-
mented into FEM numerical codes. The importance of the in–medium resonant length is shown by
the energy of accelerated electrons from the conducting band in the metal.

Embedding nanoantennas into the fusion remedies another obstacle inherent in present
nuclear fusion techniques. Both MCF and ICF methods are fighting the Rayleigh–Taylor
instabilities when the target is compressed to achieve high nuclear reaction rates. This leads
to more and to less compressed domains, and consequently, only the highly compressed
domains ignite. Due to the rapid expansion arising from the high pressure, the less
compressed domains do not reach ignition at all.

In ultra-relativistic heavy ion reactions, this problem does not occur, since the hadroniza-
tion process takes place on a timelike oriented hypersurface that is simultaneously in the
whole spatial volume. It is possible to achieve a similar situation in ICF fusion with short
laser ignition pulses of picosecond or femtosecond lengths [17]. For this purpose, one has
to regulate the energy deposition in the fusion target. The implanted nanoantennas, with
an adequately designed density distribution, also help to reach this goal [8,18].

In the following section, we concentrate on the results of spectral investigations and
their correlation within each other.

2. Results: Sers, Crater Sizes, Libs Spectra

The study of the effect of 40 fs laser pulses ranging in energy from 1 mJ to 30 mJ
on the above-described target reveals a monotonic, almost linear dependence of crater
diameters on the increasing pulse energy [19,20]. All measurements are compared at the
best focusing, i.e., at maximal laser field intensity. For the optimal focusing case, down to
a light beam hit diameter of about 20 µm, high enough intensities can be reached (up to
1017 W/cm2). At the best focus position plus–minus 1 mm, the reflection drops dramatically
from 70% down to around 10%. In this situation, the effects on the target are not disturbed
by much light reflection on plasma mirrors. The craters are investigated sometimes days
after the shootings, since the target material conserves them in a way similar to that of the
old-fashioned gel-film detectors in nuclear experiments. Hundreds of craters have been
studied by our research team using white light interferometry. As an example cf. Figure 2.
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Additionally, soft spectral measurements on the treated targets were also conducted af-
ter the shootings. Most prominently, SERS (surface enhanced Raman scattering) performed
by illumination with infrared lasers with low-energy (ns long) pulses was used to study
molecular vibrations, which are typical in organic polymers. In particular, CH2 and NH
bonds were sought, with the aim of replacing them with CD2 and ND groups. Certainly, a
standard computer model also had to be used in the background to produce and calculate
the wavelength of the corresponding lines in the SERS spectrum [21–23]. Here, we have
found a wide enhancement of the intensity in the ranges characteristic for CD2 and ND,
in an integrated yield way beyond that which could have been counted for the natural
deuterium ratio of D/H ≈ 1/6000 cf. Ref. [19].

Laser-Induced Breakdown Spectroscopy (LIBS) is being employed more and more
in the nuclear/fusion research field of late [24–29], due to the fact that it can sensitively
detect not only heavy but also the lightest elements. It is microdestructive, can be applied
remotely, and in a high-vacuum environment, it is able to provide isotopic resolution for all
three hydrogen isotopes. All these features make this method appealing for laser-ignited
fusion research conducted in a vacuum chamber, where the microplasma generated on the
surface of the target can act as an emission source for LIBS-monitoring measurements. We
are studying the emission intensities of the Balmer alpha line of protium (H) at 656.240 nm
and deuterium (D) at 656.123 nm in the plasma plume. The wavelengths of these lines
differ with 0.117 nanometer, but in a high-vacuum environment, the line widths are smaller
than this; thus, they can be separated.

We are using LIBS to detect a possible excess D being formed from H via nuclear pro-
cesses. Comparative monitoring experiments are being carried out on UDMA/TEGDMA
co-polymer targets with and without gold nanorods added. For optimization and calibra-
tion purposes, we also prepare and use partially deuterized targets made from a mixture
of UDMA and a fully deuterized methyl-methacrylate (MMA) monomer. By changing
the mixing ratio of the monomers, a series of co-polymer targets with varying D content
is fabricated.

Figure 2. Comparison of crater sizes between undoped and Au-doped targets at the same laser
pulse of 27 mJ energy. The pictures are made using white light interferometry and brought to their
respective sizes to agree based on the real micrometer dimension of the horizontal line notations.
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Complementary in situ high-resolution mass spectrometry measurements, aiming at
the detection of low mass/charge ratio charged and chargeless products by controlling the
ionization source, are also currently being performed during the laser irradiation of the
targets. Since these measurements are still ongoing, we cannot report the final results here.

Preliminary experimental data show that the particular experimental conditions and
requirements make the measurements difficult. A large number of repeated measurements
are needed to obtain reliable spectra. Given the association of the laser intensity not only
with the possible ignition of a few fusion reactions, but also with the LIBS emission signal
generation, further increasing of the laser intensity (including better focusing of the beam
and an improved contrast of the pulse with a preceding pedestal) would make this analysis
even more sensitive.

3. Conclusions

In conclusion, we have presented the NAPLIFE collaboration and project with the goal
of studying ultrashort laser pulse energy utilization based on their plasmonic effects in
nanotechnologically manipulated polymer targets towards nuclear fusion ignition energies.
The present preliminary experiments did show a drastic change in the energy absorption
due to gold nanorod embedding into UDMA/TEGDMA copolymer, even at random orien-
tation and low density. The crater sizes observed after laser shots by microscope techniques
reveal a factor of 3–4-fold enhancement, while theoretical simulations of the near field
enhancement (NFE) predict up to a factor of 100 in the field strength enhancement [8,20,30].
The first results from the kinetic modeling of electron and proton motion on and near to the
nanoantennas are also presented [11]. Here, we find proton momenta up to the 100 MeV
range; to overcome the Coulomb barrier in vacuum (without nanoparticle effects on the
screening of it) one needs a factor of roughly 10 more.

Further studies are planned by varying the nanoparticle density, form and material, as
well as trying different coatings, possibly delivering nuclear reactants with near-threshold
resonances, such as boron and beryllium. Beyond our local activity, we plan to join
experiments at facilities providing higher laser pulse energy and better contrast, e.g., at
ELI-ALPS in Szeged, Hungary.
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20. Rigó, I.; Kámán, J.; Szokol, Ṅ.; Bonyár, A.; Szalóki, M.; Borók, A.; Zangana, S.; Rácz, P.; Aladi, M.; Kedves, M.; et al. Raman spec-
troscopic characterization of crater walls formed upon single-shot high energy femtosecond laser irradiation of dimethacrylate
polymer doped with plasmonic gold nanorods. arXiv 2022, arXiv:2210.00619. [CrossRef]

21. Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1998, 38,
3098–3100. [CrossRef]

22. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron
density. Phys. Rev. B 1998, 37, 785–789. [CrossRef]

23. Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 1998, 109,
1223–1229. [CrossRef]

24. Csernai, L.P.; Mishustin, I.N.; Satarov, L.M.; Stoecker, H.; Bravina, L.; Csete, M.; Kámán, J.; Kumari, A.; Motornenko, A.; Papp, I.;
et al. Crater Formation and Deuterium Production in Laser Irradiation of Polymers with Implanted Nano-antennas. arXiv 2022,
arXiv:2211.14031. [CrossRef]

25. Galbács, G.; Kovács-Széles, É. Nuclear Applications of Laser-Induced Breakdown Spectroscopy. In Laser Induced Breakdown
Spectroscopy (LIBS); Singh, V.K., Tripathi, D.K., Deguchi, Y., Wang, Z., Eds.; Wiley: Hoboken, NJ, USA, 2023. [CrossRef]

26. Li, C.; Feng, C.L.; Oderji, H.Y.; Luo, G.N.; Ding, H.B. Review of LIBS application in nuclear fusion technology. Front. Phys. 2016,
11, 114–214. [CrossRef]

27. Wu, J.; Qiu, Y.; Li, X.; Yu, H.; Zhang, Z.; Qiu, A. Progress of laser-induced breakdown spectroscopy in nuclear industry
applications. J. Phys. Appl. Phys. 2020, 53, 023001. [CrossRef]

196



Universe 2023, 9, 233

28. Kurniawan, K.H.; Kagawa, K. Hydrogen and deuterium analysis using laser-induced plasma spectroscopy. Appl. Spectrosc. Rev.
2006, 41, 99–130. [CrossRef]

29. Craners, D.A.; Chinni, R.C. Lares-Induced Breakdown Spectroscopy—Capabilities and Limitations. Appl. Spectrosc. Rev. 2009,
44, 457–506. [CrossRef]

30. Vass, D.; Szenes, A.; Tóth, E.; Bánhelyi, B.; Papp, I.; Bíró, T.; Csernai, L.P.; Kroó, N.; Csete, M. Plasmonic nanoresonator
distributions for uniform energy deposition in active targets. Opt. Mater. Express 2023, 13, 9–27. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

197





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Universe Editorial Office
E-mail: universe@mdpi.com

www.mdpi.com/journal/universe

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-7258-0039-1


	Cover-front.pdf
	Cover-back.pdf

