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Preface

Nonlinear control, characterized by robust stabilization and adaptive tracking, has emerged

as an indispensable field in the realm of control systems. The complexities inherent in nonlinearly

controlled systems, coupled with unknown uncertainties and time-varying disturbances, necessitate

sophisticated methodologies to ensure effective control. The last few decades have witnessed

remarkable strides in the evolution of design techniques tailored for nonlinear systems. This progress,

underpinned by diverse mathematical tools, has paved the way for applications spanning energy,

health care, robotics, biology, and big data research.

The landscape of nonlinear control systems is rife with intriguing challenges, promising

an intellectually stimulating future. As we navigate the intricacies of diverse control tasks,

especially those emanating from the integration of cutting-edge technologies in communication and

computation, this field is poised for unprecedented growth. The nexus of nonlinear control with

emerging technologies not only presents challenges but also opens avenues for innovative solutions

that transcend traditional boundaries.

This reprint endeavors to encapsulate the state-of-the-art developments in nonlinear control,

both in theoretical underpinnings and practical applications. While the existing literature boasts a

wealth of valuable results, the synthesis of control strategies for a broader class of nonlinear systems,

as well as their application across diverse domains, remains an ongoing challenge. Our collective

ambition is to contribute to the resolution of these challenges by presenting a collection of articles that

showcase novel approaches to nonlinear control. Through this comprehensive compilation, we aim

to provide insights into the latest advancements, bridging the gap between theory and application.

The overarching goal of this reprint is to serve as a beacon for researchers, practitioners, and

enthusiasts in the field of control systems. By delving into the intricacies of nonlinear control, we

hope to inspire fresh perspectives and foster collaborative efforts that will shape the future trajectory

of this dynamic and evolving discipline.

Ahmad Taher Azar, Amjad J. Humaidi, Ibraheem Kasim Ibraheem, Giuseppe Fusco, and

Quanmin Zhu

Editors
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From Nonlinear Dominant System to Linear Dominant System:
Virtual Equivalent System Approach for Multiple Variable
Self-Tuning Control System Analysis

Jinghui Pan, Kaixiang Peng and Weicun Zhang *

School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
* Correspondence: weicunzhang@263.net

Abstract: The stability and convergence analysis of a multivariable stochastic self-tuning system (STC)
is very difficult because of its highly nonlinear structure. In this paper, based on the virtual equivalent
system method, the structural nonlinear or nonlinear dominated multivariable self-tuning system
is transformed into a structural linear or linear dominated system, thus simplifying the stability
and convergence analysis of multivariable STC systems. For the control process of a multivariable
stochastic STC system, parameter estimation is required, and there may be three cases of parameter
estimation convergence, convergence to the actual value and divergence. For these three cases,
this paper provides four theorems and two corollaries. Given the theorems and corollaries, it can
be directly concluded that the convergence of parameter estimation is a sufficient condition for
the stability and convergence of stochastic STC systems but not a necessary condition, and the
four theorems and two corollaries proposed in this paper are independent of specific controller
design strategies and specific parameter estimation algorithms. The virtual equivalent system theory
proposed in this paper does not need specific control strategies, parameters and estimation algorithms
but only needs the nature of the system itself, which can judge the stability and convergence of the
self-tuning system and relax the dependence of the system stability convergence criterion on the
system structure information. The virtual equivalent system method proposed in this paper is proved
to be effective when the parameter estimation may have convergence, convergence to the actual value
and divergence.

Keywords: virtual equivalent system; stochastic multivariable STC; stability; convergence

1. Introduction

The stability and convergence analysis of stochastic self-tuning control systems is
more difficult than that of deterministic self-tuning control systems. It is difficult to analyze
and understand in theory, which makes it very difficult for engineers and technicians to
analyze the stability and convergence of such systems in practice.

References [1–4] studied the stability and convergence of the self-tuning control system
consisting of the minimum variance control strategy and the stochastic gradient parameter
estimation algorithm. References [5,6] provided the stability and convergence results of
the self-tuning control system consisting of the minimum variance control strategy and
the least squares parameter estimation algorithm. References [7,8] presented the stability
and convergence results of the self-tuning control system consisting of the pole-placement
control strategy and the weighted least squares parameter estimation algorithm. As a
summary of the stability and convergence of STC, the results regarding the minimum
variance control strategy do not require parameter estimation convergence; however,
the results regarding other control strategies, such as pole placement, require parameter
estimation convergence [9,10].

The above results are all for the minimum phase object, and the common feature is
that the convergence of parameter estimation is not required. If the controlled object is of

Entropy 2023, 25, 173. https://doi.org/10.3390/e25010173 https://www.mdpi.com/journal/entropy1
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a non-minimum phase, the self-tuning algorithm of the minimum variance type cannot
be used for control, but pole assignment and other control strategies need to be used.
The corresponding stability and convergence analysis are more difficult than the adaptive
control system of the minimum variance type. The existing results are basically obtained
under the premise of parameter estimation convergence (can converge to the real value or
non-real value); there are also some results that do not require the convergence of parameter
estimation but can only guarantee the stability and robustness of the system, and cannot
guarantee the convergence of the system.

For the controlled object with non-minimum phase certainty, [11,12] proved the sta-
bility and convergence of pole placement self-tuning control by introducing additional
excitation signals. The stability and convergence of pole assignment self-tuning control can
also be obtained by modifying the estimation model without introducing an additional
excitation signal [13]. The literature [1,14] analyzes the stability and convergence of the pole
assignment algorithm with a “key technology lemma”. For non-minimum phase random
controlled objects, refs. [15,16] adopted the method of adding an “attenuated excitation
signal” to ensure the stability and convergence of random pole assignment self-tuning
control, while [7,8] provided that it does not need an external excitation signal, but uses a
self-convergent weighted least squares parameter estimation algorithm to ensure the stabil-
ity and convergence of random pole assignment self-tuning control. The literature [17–20]
analyzed the stability and convergence of the adaptive decoupling control system, and the
literature [21] analyzed the stability and convergence of generalized minimum variance self-
tuning control for minimum phase objects and some non-minimum phase objects based on
the Lyapunov function. The literature [22] proposed a theory of virtual equivalent systems,
but it mainly focused on single-variable systems and did not study multivariable systems.

The disadvantage of the minimum variance self-tuning control method is that it is
not suitable for non-minimum phase objects. The main reason is that the unstable pole of
the regulator cannot be exactly canceled with the zero point of the object, resulting in the
instability of the system. In addition, even if the generalized minimum variance self-tuning
controller is used, in order to ensure the closed-loop stability of the system, the control
weight factor is usually determined through trial and error. This constraint also introduces
significant inconvenience to specific applications. The computation amount of the random
gradient algorithm is much less than that of the least squares algorithm, but its convergence
speed is very slow. Moreover, under the conditions of strong, persistent excitation, the
parameter estimation error of the system using the stochastic gradient algorithm converges
to zero uniformly, but under other conditions, it is very difficult to prove the convergence
of the stochastic gradient algorithm. The least squares estimation method is simple in its
algorithm and is easy to implement. It does not need to know the statistical information of
the measurement error, but its accuracy is difficult to improve. Its limitations are reflected
in two aspects: first, it can only estimate the deterministic constant value vector but cannot
estimate the time process of the random vector; second, it can only ensure the minimum
mean square error of the measurement, but it does not ensure the best estimation error of
the estimator, and the accuracy is not high. The stochastic self-tuning system using the pole
placement method requires high accuracy of the model, has the problem of modeling error,
and requires the convergence of parameter estimation.

In view of the characteristics and shortcomings of the above control algorithms,
this paper, based on the theory of virtual equivalent systems, weakens the conditions
required by the stability and convergence criteria of the stochastic self-tuning system,
mainly eliminating the direct dependence on the order information of the controlled
object, reducing the requirements for parameter estimation errors, and eliminating the
dependence of the pole placement self-tuning control strategy on the convergence of
parameter estimation, The difficulty of analysis is transferred from the system structure to
the compensation signal, thus reducing the difficulty of the original problem.

New self-tuning control schemes are still emerging, such as the robust multi-model
adaptive control system, fuzzy parameter self-tuning PID method, intelligent AC contactor

2
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self-tuning control technology, self-tuning control method of simulation turntable based
on the accurate identification of the model parameters, sliding model adaptive control
method [23–27], and the traditional approach cannot prove its stability and convergence
due to the lack of a general theory of adaptive control. In general, it is expected that the
stability and convergence analysis methods of stochastic STC systems are independent of
specific control strategies and parameter estimation methods. Some scholars have made
efforts in this field to develop a general theory [28–31], but the results are not satisfactory.

There are many related achievements that are difficult to enumerate one by one. In recent
years, many adaptive control schemes related to stability and convergence have achieved
good results in practical applications [32], but there are no theoretical analysis results.

New adaptive control schemes are emerging, and it is difficult to analyze the stability
and convergence of each adaptive control system one by one. For this reason, people
have been expecting to find a unified stability and convergence analysis method [23,33–36].
However, despite some sporadic results [32,34,37,38], the expected unified analysis method
and theory still need to be explored. The concept of the virtual equivalent system and
its corresponding analysis methods are generated under such a background [25,39–41].
Weicun Zhang, one of the authors of this paper, proposed the concept of the virtual
equivalent system and then analyzed the stability and convergence of various self-tuning
control systems in a unified framework, converting the nonlinear system into an equivalent
linear system with an infinitesimal nonlinear compensation signal.

In this paper, we will consider three cases of parameter estimation: (1) The parameter
estimation converges to the real value; (2) the parameter estimation converges to the non-
real value; (3) and the parameter estimation may not converge. The second and third cases
do not require the structural information of the plant. Considering the particularity of the
minimum variance self-tuning control, a criterion with an intuitive explanation is given for
this kind of STC system.

It is worth pointing out that for a general multiple-input multiple-output stochastic
self-tuning control system, not only the minimum variance control system but also the
convergence of parameter estimation is not a necessary condition for the stability and
convergence of the STC system.

Through the theoretical and experimental research in this paper, it is concluded that
for the self-tuning control system of nonlinear controlled objects (deterministic or stochastic,
minimum phase or non-minimum phase), to ensure its stability and convergence, only the
boundedness of parameter estimation, slow time variation and the output approximation
effect of the estimation model (i.e., the parameter estimation error is relatively infinitesi-
mal) are required, and the control strategy meets the stability and tracking requirements
according to the principle of deterministic equivalence.

2. Virtual Equivalent System of Stochastic Self-Tuning Control System

For the convenience of description, we first consider the following multivariable
stochastic system ΣP with known structural information but unknown parameters (for the
discussion of general stochastic systems containing colored noise, see Section 4).

ΣP : A(q−1)y(k) = q−dB(q−1)u(k) + ω(k) (1)

where, y(k), u(k) and ω(k), are the output signals, the input signal and the noise signal
with the appropriate dimension of the plant to be controlled, respectively.

Assuming that
y(k) = 0, u(k) = 0, ω(k) = 0, ∀k < 0,

lim
n→∞

1
n

n

∑
i=1

‖ω(i)‖2 = R < ∞, a.s. (2)

A(q−1) = I + A1q−1 + . . . + Anq−n, n ≥ 1
B(q−1) = B0 + B1q−1 + . . . + Bmq−m, m ≥ 1

(3)

3
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Introducing symbols

θT = [−A1, . . . − An, B0, ..Bm],

φT(k − d) = [y(k − 1), . . . y(k − n), . . . , u(k − d), ..u(k − d − m)],

Then, we have
y(k) = φT(k − d)θ + ω(k) (4)

The estimated model is denoted as ΣPm(k), and its parameter matrix is

ΣPm(k) : θ̂T(k) =
[−Â1, . . . ,−Ân, B̂0, .., B̂m

]
The performance of the parameter estimation can be expressed by the (posterior)

model output error

e(k) = y(k)− φT(k − d)θ̂(k)− ω(k) = φT(k − d)θ0 − φT(k − d)θ̂(k). (5)

The self-tuning controller is denoted by ΣC(k), and can also be treated as a matrix
θc(k). The controller can be obtained by various design methods, such as pole placement.
Different control strategies actually represent different mapping, i.e.,

f : θ̂(k) → θc(k), or θc(k) = f (θ̂(k)),

Additionally, the control law is generally denoted by

u(k) = φT
c (k)θc(k),

where
φc

T(k) = [yr(k), yr(k − 1) . . . y(k), y(k − 1) . . . , u(k − 1), . . .].

where yr(k) is a known bounded reference signal.
The above-described self-tuning control system is shown in Figure 1, which is abbrevi-

ated as (ΣC(k), ΣP).

+ 

u(k)

y(k) 
PC(k)

(k)

yr

Figure 1. Stochastic self-tuning control system.

Accordingly, the real plant corresponds to an ‘ideal’ controller, i.e.,{
θc = f (θ)
u0(k) = φT

c (k)θc
.

This constant control system is abbreviated as (ΣC, ΣP),as shown in Figure 2. On
the basis of (ΣC, ΣP), we can artificially construct a system that is equivalent in the input–
output sense to the self-tuning control system. It consists of the constant control system of
Figure 2 and a compensational signal Δu(k), abbreviated as (ΣC, ΣP, Δu(k)), as shown in
Figure 3.

Δu(k) = u(k)− u0(k) = φT
c (k)θc(k)− φT

c (k)θc. (6)

4
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+ 

u1(k)

y1(k)
P

(k)

yr  
C

Figure 2. Constant control system corresponding to self-tuning control system.

+ 

u(k) 

y(k)
PC

(k)

yr  + 

+ 

 u(k)

Figure 3. Virtual equivalent system of stochastic self-tuning control system.

Since θc is unknown, Δu(k) cannot be calculated exactly, but it can be estimated (see
the analysis below for details).

The above equivalent system is recorded as the “virtual equivalent system” of the
self-tuning control system. The reason why it is recorded as “virtual” is that it exists but
is unknown. One of the merits of the “virtual equivalent system” is that it quantitatively
reflects the difference between a self-tuning control system and the corresponding constant
control system. The definition of the convergence of the self-tuning control system is based
on the constant system shown in Figure 2.

The stability of the self-tuning control system is defined by

lim
n→∞

sup
1
n

n

∑
i=1

(‖y(i)‖2 + ‖u(i)‖2) < ∞.

The convergence of the self-tuning control system is defined by

lim
n→∞

1
n

n

∑
i=1

‖(y(i)− yr(i))‖2 = lim
n→∞

1
n

n

∑
i=1

‖(y1(i)− yr(i))‖2.

3. Main Results

3.1. Parameter Estimation Converges to the True Value

Considering a self-tuning control system based on an arbitrary control strategy and an
arbitrary parameter estimation algorithm, the following results are obtained.

Theorem 1. For the self-tuning control system of (1), if the following conditions are met.
The parameter estimation converges to a true value.
The control strategy satisfies the stability requirements of the object with known parameters,

then the close- loop system composed by (ΣP, ΣC) is stable.
The mapping f (·) is continuous at θ̂(k) = θ.
Then, the self-tuning control system is stable and convergent.

Proof. The stability of the system is proved by the method of contradiction, and then the
convergence is proved.

5
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Since the virtual equivalent system shown in Figure 3 is a linear constant structure
(its time-varying nonlinear features are transferred to Δu(k)), it can be decomposed into
two subsystems, one is the constant control system shown in Figure 2, and the other is the
system shown in Figure 4.

y(k) = y1(k) + y2(k), (7)

u(k) = u1(k) + u2(k). (8)

+ 

u2(k)

y2(k)
PC

0 + 

+ 

 u(k)

Figure 4. Decomposition subsystem of the virtual equivalent system 2.

By the superposition principle and considering the situation of the two subsystems
separately, the system shown in Figure 2 is a conventional random control system. The
second condition in Theorem 1 ensures that it is closed-loop stable, so there is

lim
n→∞

sup
1
n

n

∑
i=1

(‖y1(i)‖2 + ‖u1(i)‖2) < ∞, (9)

lim
n→∞

1
n

n

∑
i=1

‖(y1(i)− yr(i))‖2 < ∞. (10)

For the system shown in Figure 4, there is no influence of noise due to the closed-loop
system being stable, so we have [42]

n

∑
k=1

||y2(k)||2 ≤ M1

n

∑
k=1

‖Δu(k)‖2 + M2 , 0 < M1 < ∞, 0 ≤ M2 < ∞, (11)

n

∑
k=1

||u2(k)||2 ≤ M3

n

∑
k=1

‖Δu(k)‖2 + M4 , 0 < M3 < ∞, 0 ≤ M4 < ∞, (12)

That is,

n

∑
k=1

||y2(k)||2 = O

(
n

∑
k=1

‖Δu(k)‖2

)
+ M2,

n

∑
k=1

||u2(k)||2 = O

(
n

∑
k=1

‖Δu(k)‖2

)
+ M4.

By theorem condition (1) and condition (3) in Theorem 1, we have θc(k) → θc ,
‖Δu(k)‖ = o(‖φc(k)‖).

By the composition of φc(k), we know that ‖φc(k)‖ = O(‖φ(k − d)‖) + M, M is a
bounded constant.

Furthermore, by the convergence of parameter estimation, we have

1
n

n

∑
k=1

‖Δu(k)‖2 = o(
1
n

n

∑
k=1

(
1
n

n

∑
k=1

‖φ(k − d)‖2

)
).

Thus,
1
n

n

∑
k=1

||y2(k)||2 = o

(
1
n

n

∑
k=1

‖φ(k − d)‖2

)
(13)

6
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1
n

n

∑
k=1

||u2(k)||2 = o

(
1
n

n

∑
k=1

‖φ(k − d)‖2

)
(14)

Then, to prove the following formula

lim
n→∞

sup
1
n

n

∑
i=1

(‖y(i)‖2 + ‖u(i)‖2) < ∞.

It suffices to prove that

lim
n→∞

sup
1
n

n

∑
i=1

‖φ(k − d)‖2 < ∞.

We can construct φ1(k − d) (corresponding to the system of Figure 2) and φ2(k − d)
(corresponding to the system of Figure 4), so that

φ(k − d) = φ1(k − d) + φ2(k − d).

It can be seen from Equations (13) and (14) that

1
n

n

∑
i=1

‖φ2(k − d)‖2 = o(
1
n

n

∑
k=1

‖φ(k − d)‖2)

By the triangle inequalities, we have

1
n

n
∑

i=1
‖φ(k − d)‖2 = 1

n

n
∑

i=1
‖φ1(k − d) + φ2(k − d)‖2

≤ 1
n

n
∑

i=1
‖φ1(k − d)‖2 + 1

n

n
∑

i=1
‖φ2(k − d)‖2

= 1
n

n
∑

i=1
‖φ1(k − d)‖2 + o( 1

n

n
∑

k=1
‖φ(k − d)‖2).

(15)

Furthermore, considering

lim
n→∞

sup
1
n

n

∑
i=1

(
‖y1(i)‖2 + ‖u1(i)‖2

)
< ∞

Thus, we obtain

lim
n→∞

sup
1
n

n

∑
i=1

‖φ1(k − d)‖2 < ∞.

Taking (15) into consideration, we obtain

lim
n→∞

sup
1
n

n

∑
i=1

‖φ(k − d)‖2 < ∞.

Thus, combining the above formula with (13) and (14), it follows that

1
n

n

∑
k=1

||y2(k)||2 = o(1), (16)

1
n

n

∑
k=1

||u2(k)||2 = o(1). (17)

Next, we prove

lim
n→∞

1
n

n

∑
i=1

||y(i)− yr(i)||2 = lim
n→∞

1
n

n

∑
i=1

||y1(i)− yr(i)||2.

7
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Combining Cauchy’s Inequality with (10) and (16), we have

0 ≤
{

1
n

n

∑
i=1

‖y1(i)− yr(i)‖ · ‖y2(i)‖
}2

≤ { 1
n

n

∑
i=1

‖y1(i)− yr(i)‖2}.{ 1
n

n

∑
i=1

‖y2(i)‖2} → 0.

By the Squeeze Theorem, we obtain

lim
n→∞

{
1
n

n

∑
i=1

‖y1(i)− yr(i)‖ · ‖y2(i)‖
}2

= 0.

It follows that

lim
n→∞

1
n

n

∑
i=1

‖y1(i)− yr(i)‖ · ‖y2(i)‖ = 0. (18)

Finally, let us consider

lim
n→∞

1
n

n

∑
i=1

‖y(i)− yr(i)‖2 = lim
n→∞

1
n

n

∑
i=1

‖(y1(i)− yr(i)) + y2(i)‖2.

According to the norm triangle inequality and (16) and (18), we have

1
n

n
∑

i=1
‖(y1(i)− yr(i)) + y2(i)‖2 ≤ 1

n

n
∑

i=1
‖y1(i)− yr(i)‖2 + 1

n

n
∑

i=1
‖y2(i)‖2 + 2

n

n
∑

i=1
‖y1(i)− yr(i)‖ · ‖y2(i)‖

→ 1
n

n
∑

i=1
‖y1(i)− yr(i)‖2

.

Similarly,

1
n

n
∑

i=1
‖(y1(i)− yr(i)) + y2(i)‖2 ≥ 1

n

n
∑

i=1
‖y1(i)− yr(i)‖2 + 1

n

n
∑

i=1
‖y2(i)‖2 − 2

n

n
∑

i=1
‖y1(i)− yr(i)‖ · ‖y2(i)‖

→ 1
n

n
∑

i=1
‖y1(i)− yr(i)‖2

.

According to the Squeeze Theorem, we have

lim
n→∞

1
n

n

∑
i=1

‖(y1(i)− yr(i)) + y2(i)‖2 = lim
n→∞

1
n

n

∑
i=1

‖y1(i)− yr(i)‖2,

i.e.,

lim
n→∞

1
n

n

∑
i=1

‖y(i)− yr(i)‖2 = lim
n→∞

1
n

n

∑
i=1

‖y1(i)− yr(i)‖2.

That completes the proof of Theorem 1. �

3.2. Parameter Estimation Converges to Non-True Value

Considering the fact that the structure information of the controlled object is unknown,
the order of the estimated model can be lower than the order of the real controlled object,
which is often the case in practical engineering applications.

Theorem 2. For the self-tuning control system of the plant (1), if

(1) The parameter estimate converges to θ0 , the estimated model ΣPm(k) is consistently controllable,

n

∑
k=1

∥∥∥y(k)− φT(k − d)θ̂(k)− ω(k)
∥∥∥2

= o(1 +
n

∑
k=1

‖φ(k − d)‖2).

(2) The control strategy satisfies the stability requirements for the known objects of the parameters;

8
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(3) The mapping f (·) is continuous at θ̂(k) = θ0. Then, the self-tuning control system is stable
and convergent.

Proof. The stability of the system is proved by the method of contradiction, and then the
convergence is proved.

In order to prove Theorem 2, we need to build another virtual equivalent system, as
shown in Figure 5.

+ 

u(k)

y(k)
C0

(k) 

yr (k)

 u' (k)

u0(k)

e' (k)- (k)  

P0

Figure 5. Virtual equivalent system when parameter estimates converge to non-true values.

ΣP0 represents the model corresponding to the convergence value θ0 of the parameter
estimation, and ΣC0 represents the controller corresponding to ΣP0.

The virtual equivalent system shown in Figure 5 is different from the virtual equivalent
system shown in Figure 3. First, ΣC0 and ΣP0 are different from ΣC and ΣP, respectively.
Second, the definitions of e′(k) and Δu′(k) are different from (5) and (6), respectively. In
Figure 5

e′(k) = y(k)− φT(k − d)θ0 = y(k)− φT(k − d)θ̂(k) + φT(k − d)θ̂(k)− φT(k − d)θ0, is

e′(k) = e(k) + φT(k − d)θ̂(k)− φT(k − d)θ0, (19)

Δu′(k) = u(k)− u0(k) = φT
c (k)θc(k)− φT

c (k)θc0. (20)

It is known from condition (1) in Theorem 2.

n

∑
k=1

‖e(k)− ω(k)‖2 = o(1 +
n

∑
k=1

‖φ(k − d)‖2). (21)

Then, we have

e′(k)− ω(k) = e(k)− ω(k) + φT(k − d)θ̂(k)− φT(k − d)θ0.

It is also known by condition (1) that θ̂(k) → θ0 , so we have

n

∑
k=1

∥∥e′(k)− ω(k)
∥∥2

= o(1 +
n

∑
k=1

‖φ(k − d)‖2). (22)

Further, from condition (3), we have∥∥Δu′(k)
∥∥ = o(β + ‖φ(k − d)‖). (23)

Thus, Δu(k) has the same properties as in the proof of Theorem 1, i.e.,

1
n

n

∑
k=1

‖Δu(k)‖2 = o(
1
n

n

∑
k=1

‖φ(k − d)‖2).

Decomposing the system shown in Figure 5 into three subsystems (as shown in
Figures 6–8, respectively), it is known from condition (2) that the subsystem, as shown in

9
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Figure 6, is stable; and the rest of the proof process is similar to that of Theorem 1 (details
are omitted to save space). �

+ 

u1(k)

y1(k)
P0C0

(k)

yr(k)  

Figure 6. Decomposition system of virtual equivalent system 1.

+ 

u2(k)

y2(k)
P0C0

0 

 u' (k)

Figure 7. Decomposition system of virtual equivalent system 2.

Figure 8. Decomposition system of virtual equivalent system 3.

3.3. Parameter Estimation May Not Converge

This section demonstrates two theorems for the STC, consisting of the minimum
variance control strategy and the arbitrary control strategy. As described in Section 3.2,
the structural information of the estimated model could be inconsistent with the real
control plant.

First, let us consider the minimum variance control strategy and explain why this particular
type of self-tuning control system does not require the convergence of parameter estimation.

Theorem 3. For the minimum variance type self-tuning control system of plant (1), any feasible
parameter estimation algorithm can be used if the following conditions are met.

(1) B
(
q−1) is Hurwitz stable polynomial, and |B0| �= 0.

(2) Control strategy u(k) exists.

(3) Parameter estimation satisfies.
n
∑

k=1
‖e(k)− ω(k)‖2 = o(α +

n
∑

k=1
‖φ(k − d)‖2), α is a non-

zero constant. The self-tuning control system is then stable and convergent.

Proof. Using the virtual equivalent system shown in Figure 3, under the condition that
condition (2) and condition (3) are satisfied, it can be proved that the minimum variance
self-tuning control has the following special properties [22].

Δu(k) = B0
−1[φT(k − 1)(θ0 − θ̂(k))]. (24)

10
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Further,
Δu(k) = B0

−1[e(k)− ω(k)].

Therefore, Δu(k) has the following property

1
n

n

∑
k=1

‖Δu(k)‖2 = o(
1
n

n

∑
k=1

‖φ(k − d)‖2).

Decompose the virtual equivalent system of the minimum variance self-tuning control
system into two subsystems, as shown in Figures 3 and 4. The rest of the proof process is
similar to that of Theorem 1, and the details are omitted.

In fact, the key to the proof process of the three theorems is to prove the property
of Δu(k) or Δu′(k) in the virtual equivalent system. In Theorems 1 and 2, considering
the arbitrary (linear) control strategy, the mapping relationship between the estimated
parameters and the controller parameters is complicated. Therefore, parameter estimation
convergence is required to ensure the properties of Δu(k). In the minimum variance control
strategy, the controller parameters can be directly represented by the estimated parame-
ters. Additionally, we have Δu(k) = B0

−1[e(k)− ω(k)]; therefore, parameter estimation
convergence is not required. Only

n
∑

k=1
‖e(k)− ω(k)‖2 = o(α +

n
∑

k=1
‖φ(k − d)‖2) is needed to ensure the stability and con-

vergence of the minimum variance controller. �

Corollary 1. Considering a minimum-variance type self-correcting control system using any
feasible parameter estimation algorithm, if

(1) B(q−1) is a Hurwitz stable polynomial, and |B0| �= 0.
(2) Control law u(k) exists.

(3) The parameter estimation error is bounded; that is, 1
n

n
∑

k=1
‖e(k)− ω(k)‖2 ≤ M′ < ∞, then

the self-tuning control system is stable.

The stability and convergence of a self-tuning control system consisting of an arbitrary
control strategy when parameter estimation may not converge are considered below.

Theorem 4. Self-tuning control system for the controlled plant (1), if

(1)
∥∥θ̂(k)

∥∥ ≤ M < ∞,
∥∥θ̂(k)− θ̂(k − l)

∥∥→ 0 ,l is a finite value.

(2)
n
∑

k=1
‖e(k)− ω(k)‖2 = o(α +

n
∑

k=1
‖φ(k − d)‖2), α is a non-zero constant.

(3) The control strategy satisfies the stability requirements for the known parameters and tracks
the reference signal

(4) The controller parameter is a continuous function of the parameter estimates; that is, θc(k) is
a continuous function of θ̂(k).
If the above conditions are met, the self-tuning control system is stable and convergent.

Remark 1. To ensure that the parameter estimates are bounded, a projection approach can be used,
see references [43–46].

Proof. Considering another virtual equivalent system, as shown in Figure 9, where Pm(k)
and C(k) are corresponding to ΣPm(k) and ΣC(k), respectively.

11
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Figure 9. Virtual equivalent system I when parameter estimation may not converge.

The system shown in Figure 9 is further converted into the virtual equivalent system
shown in Figure 10. From conditions (1) and (4) of Theorem 4, the interval between tk
and tk−1 can be chosen to be sufficiently large, such that to maintain the property of the
required Δu′(k). Therefore, the system as shown in Figure 10 is a “slow switching” system.

Figure 10. Virtual Equivalent System II when parameter Estimation may not convergence.

Next, the virtual equivalent system shown in Figure 10 is decomposed into three
subsystems, as shown in Figures 11–13, respectively. Figure 11 is a stochastic system.
Figures 12 and 13 are deterministic systems. By conditions (1) and (2), we have

n

∑
k=1

‖ei(k)− ω(k)‖2 = o(α +
n

∑
k=1

‖φ(k − d)‖2).

Figure 11. Decomposed subsystem 1.

Figure 12. Decomposed subsystem 2.

12
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Figure 13. Decomposed subsystem 3.

Based on the results of the “slow switching” stochastic system [43–46] and conditions
(1) and (3), it is known that the system shown in Figure 11 is stable and tracking. The rest
of the proof process is similar to that of Theorem 1.

Further, considering the low-order modeling situation, we have the following result.

Corollary 2. Consider a self-tuning control system consisting of any feasible parameter estimation
algorithm and control strategy if the following conditions hold.

(1)
∥∥θ̂(k)

∥∥ ≤ M < ∞,
∥∥θ̂(k)− θ̂(k − l)

∥∥→ 0 , l is a finite value.

(2) 1
n

n
∑

k=1
‖e(k)− ω(k)‖2 ≤ M′ < ∞.

(3) The control strategy satisfies the stability requirements for the known objects of the parameters
and tracks the reference.

(4) The controller parameter is a continuous function of the parameter estimate; that is, θc(k) is a
continuous function of θ̂(k).

Then, the self-tuning control system is stable and convergent. �

4. Extended Results

The above results can be extended to the colored noise situation. The difficulty is that
the noise must be estimated together with the parameter estimation.

Considering a general multivariate stochastic system ΣP.

A(q−1)y(k) = q−dB(q−1)u(k) + C(q−1)ω(k), (25)

where y(k), u(k), ω(k) has the same meanings as in (1).

A(q−1) = I + A1q−1 + . . . + Anq−n, n ≥ 1
B(q−1) = B0 + B1q−1 + . . . + Bmq−m, m ≥ 1
C(q−1) = I + C1q−1 + . . . + Crq−r, r ≥ 1

Introducing symbols

θT = [−A1, . . . ,−An, B0, . . . , Bm, C1, . . . , Cr],
φ0

T(k − d) = [y(k − 1), . . . y(k − n), . . . , u(k − d), .. u(k − d − m), ω(k − 1), . . . , ω(k − r)].

Then, we have
y(k) = φ0

T(k − d)θ + ω(k).

The elements of the parameter matrix have changed to.

θ̂T(k) = [−Â1, . . . ,−Ân, B̂0, .., B̂m, Ĉ1, . . . , Ĉr].

13
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Since φ0
T(k − d) contains unknown noise terms, it is necessary to estimate the noise

terms while estimating the parameters so that the regression matrix (vector) of the parame-
ter estimation is as follows.

φT(k − d) = [y(k − 1), . . . y(k − n), . . . , u(k − d), ..u(k − d − m), ω̂(k − 1), . . . , ω̂(k − r)],

where
ω̂(k) = y(k)− φT(k − d)θ̂(k).

The other symbols are the same as before. The self-tuning controller is denoted as
ΣC(k), and can also be regarded as a matrix θc(k), which can be obtained by various
control design methods. The self-tuning control system is abbreviated as (ΣC(k), ΣP), and
the corresponding non-adaptive control system is abbreviated as (ΣC, ΣP). The virtual
equivalent system of the self-tuning control system is abbreviated as (ΣC, ΣP, Δu(k)),
which can still be illustrated by Figure 3.

If the calculation of the control law does not require the estimation of noise, the
calculation of u(k), Δu(k), φc(k) will not cause noise estimation problems.

If the calculation of the control law requires the estimation of noise, there will be the
following problem. The regression matrices (vector) used to calculate u(k) and calculate
u0(k) are different; that is,

u(k) = φT
c (k)θc(k), u0(k) = φT

c0(k)θc.

where

φc
T(k) = [yr(k), yr(k − 1) . . . y(k), y(k − 1) . . . , u(k − 1), . . . , ω̂(k − 1), . . .],

φc0
T(k) = [yr(k), yr(k − 1) . . . y(k), y(k − 1) . . . , u(k − 1), . . . , ω(k − 1), . . .].

However, due to condition (2) in Theorem 3.

n

∑
k=1

‖e(k)− ω(k)‖2 = o(α +
n

∑
k=1

‖φ(k − d)‖2).

That is equivalent to (by definition, ω̂(k) is e(k))

n

∑
k=1

∥∥∥∧ω(k)− ω(k)
∥∥∥2

= o(α +
n

∑
k=1

‖ϕ(k − d)‖2).

Thus, the difference between φc(k) and φc0(k) can be merged into Δu(k) without
affecting the property of Δu(k). Therefore, the above results (with white noise) still hold
true for the general stochastic system (25).

Remark 2. For simulation verification, see reference [47].

5. Conclusions

Based on the equivalent system concept, a unified analysis of multivariable stochastic
self-tuning control (STC) systems is presented. In this paper, by the virtual equivalent
system, the difficulty of analyzing the stability and convergence of the stochastic self-
tuning control system is transferred from the system structure to the compensational
signal, which reduces the difficulty of the original problem, making the stability and
convergence analysis of the stochastic self-tuning control system more intuitive and easier
to understand. We investigated three situations, i.e., parameter estimation converges to the
true value, parameter estimation converges to a non-true value, and parameter estimation
may not converge.
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Abstract: In this investigation, the adaptive fractional-order non-singular fixed-time terminal sliding
mode (AFoFxNTSM) control for the uncertain dynamics of robotic manipulators with external
disturbances is introduced. The idea of fractional-order non-singular fixed-time terminal sliding
mode (FoFxNTSM) control is presented as the initial step. This approach, which combines the benefits
of a fractional-order parameter with the advantages of NTSM, gives rapid fixed-time convergence,
non-singularity, and chatter-free control inputs. After that, an adaptive control strategy is merged
with the FoFxNTSM, and the resulting model is given the label AFoFxNTSM. This is done in order to
account for the unknown dynamics of the system, which are caused by uncertainties and bounded
external disturbances. The Lyapunov analysis reveals how stable the closed-loop system is over
a fixed time. The pertinent simulation results are offered here for the purposes of evaluating and
illustrating the performance of the suggested scheme applied on a PUMA 560 robot.

Keywords: robotic manipulators; adaptive fixed-time control; fractional-order sliding mode control;
unknown dynamics

1. Introduction

The latest advancements in the domain of control systems are having a signifi-
cant impact on the field of mechatronics and robotic system design and development.
The topic of controlling a robotic manipulator is investigated in the field of control theory.
Specifically, it is a highly non-linear system that also possesses a high degree of mechanical
instability. Due to this, the system in question needs to be able to maintain a high level
of stability, while still having the capacity to monitor accurately its course in the face of
external disturbance and uncertainty [1]. Despite the fact that a large variety of viable
solutions have been proposed for uncertain robotic systems that are subject to external
disturbances, it is impossible to avoid the uncertain parameters when operating under
real-world conditions. Due to this, it is difficult for a system to be precisely regulated
if the controller is impacted in any way by the disturbance. As a direct result of this,
there is a growing interest in the creation of robust control systems, which have been
the subject of substantial research and are currently being deployed in a wide variety of
industries [2]. Moreover, a robust adaptive control mechanism is built to compensate for the
unknown uncertainties and disturbances so that the system continues to function effectively.
The advantage of the approach behind robust adaptive control is that the control system
itself needs to be robust in order to guarantee the attainment of the necessary level of both
performance and stability.

Sliding mode control, commonly known as SMC, is a type of control strategy that
is both non-linear and robust [3]. It can effectively deal with non-linear systems that are
uncertain, have confined disturbances, and have a low sensitivity to changes in the system’s
parameters. Terminal SMC (TSMC) was introduced in [4] with the objective of achiev-
ing robust finite-time stability. TSMC offers accurate tracking and increased precision.
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However, delayed convergence and singularity are problematic. As a result, SMC ap-
proaches were created as solutions to these issues in order to achieve rapid convergence
with fast terminal SMC (FTSMC) and eliminate singularities with non-singular terminal
SMC (NTSMC) [5,6]. Moreover, the initial values of the non-linear system have a significant
impact on the amount of time required for the finite-time system to converge, and this
amount of time always increases as the initial values of the non-linear system increase.
Fixed-time stability is, therefore, an option that can be utilized to precisely compute the
time of convergence irrespective of the initial conditions [7,8].

The theory of fractional-order (Fo) calculus, which has been around for the past three
centuries and deals with derivatives and integrals of non-integer order [9–13], was recently
rediscovered by scientists and engineers and is being utilized in various domains such
as material sciences [14], bioengineering [15], finance [16], and electronic circuits [17,18],
including the field of control theory [19–24]. The numerous control techniques such as
proportional–integral–derivative (PID) control, the SMC method, and various fuzzy and
neural network schemes have all implemented their respective control techniques using
a Fo controller [25–29]. Dadras [30] is credited with being the first author to present the
ideas of Fo in combination with finite-time TSMC. Moreover, the adaptive scheme with
fractional-order non-singular fast TSMC (FOTSMC) was introduced with the intention
of controlling the robotic manipulator. This was done so as to address the issue of deal-
ing with unknown dynamics [31]. Recently, several Fo fixed-time SMC schemes have
been developed for applications such as micro-gyroscopes [32], chaotic systems [33], un-
manned surface vessesl [34], nonholonomic mobile robots [35], and multimachine power
systems [36].

Control engineering applications are increasingly gravitating toward the use of adap-
tive control, which is a well-known control technology that is gaining popularity [37,38].
It demonstrates an unusual capacity for adaptation in the face of system uncertainty
and external disturbances, and it helps improve the tracking performance of closed-loop
systems [39,40]. A robust adaptive strategy based on a class of high-order SMC was
devised for a fractional chaotic system in the presence of non-linearity [41]. Several
adaptive finite-time FoSMC techniques have been suggested for use with the robotic ma-
nipulator, which also takes into account the presence of uncertainties and disturbances.
In the study in [25], a robust adaptive finite-time FoFTSM was built for the robotic system.
Within this model, unknown dynamics were estimated by employing an adaptive con-
troller. It was suggested to estimate the unknowable dynamics of the non-linear robot using
an output feedback adaptive super-twisting finite-time FoSMC [31]. Moreover, a fixed-
time disturbance observer-based adaptive FoNFTSM has been designed for indeterminate
manipulators under unknown disturbances [42].

It is fascinating to note that each of the aforementioned papers concentrated their
attention largely on the adaptive scheme for the estimate of the upper bounds of uncertain
dynamics by applying finite-time FoNTSM control. It is generally agreed that the most
significant benefit of using fixed-time non-singular TSMC (FxNTSM) control is that it
eliminates the risk of singularity, possesses high robustness in the face of both internal and
external disturbances, and ensures that convergence time is independent of the initial values.
This research has shown that very few works provide adaptive FxNTSM control, and that
no research whatsoever has been conducted on adaptive FoFxTSMC. Within the scope of
this study, the fixed-time convergence of robotic manipulator systems that are vulnerable
to external disturbances is explored. Specifically, the research focuses on the effects of the
unknown dynamics of the systems. Considering all of this, the adaptive fractional-order
fixed-time non-singular terminal SMC is designed, which is also known as AFoFxNTSM,
for uncertain robotic manipulators that are influenced by external disturbances. The most
important contributions given by this work are organized into the following points:

1. Based on the characteristics of fractional-order fixed-time non-singular terminal SMC,
a sliding surface with good tracking performance, reduced control input chattering,
and rapid convergence is designed.
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2. The fractional-order control is applied in an attempt to improve the performance of
the closed system.

3. It is proposed to use adaptive control with FoFxNTSM, so that the unknown dynamics
are compensated for in order to produce the robust and sustainable performance for
the PUMA 560 robotic manipulator.

4. The Lyapunov theory is utilized in order to carry out an investigation into the system’s
fixed-time stability.

The remaining parts of this work are organized as follows: The preliminaries are
presented in Section 2. The modeling of the system, the control design, and its stability
are explained in Section 3. The adaptive control approach and its stability are presented in
Section 4. The numerical simulations to validate the performance of the proposed method
are presented in Section 5. Section 6 is devoted to discussing the simulation findings.
Section 7 delivers the conclusion of the paper.

2. Preliminaries

Definition 1. For fractional calculus, the Riemann–Liouville (RL) definition is often employed
[43]. Consequently, the Fo integral and derivative are given as follows. The following equation gives
the RL fractional integral, as well as the derivative of the αth − order function f (t) in relation to t
and a, provided by

aIα
t f (t) =

1
Γ(α)

∫ t

a

f (τ)

(t − τ)1−α
dτ (1)

aDα
t f (t) =

dα f (t)
dtα

=
1

Γ(1 − α)

d
dt

∫ t

a

f (τ)
(t − τ)α dτ (2)

where n − 1 < α < n, m ∈ N and Γ(·) is the Gamma function, described by Euler as

Γ(α) =
∫ ∞

0
e−ttα−1dt

whereas D and I represent, respectively, the fractional integral and the derivative of the function.

Lemma 1. Consider the following non-linear system [44]

ẋ(t) = f (t, x), x(0) = x0 (3)

where f (t, x) is a continuous non-linear function. For fixed-time stability with fast time conver-
gence, the Lyapunov function V(x) satisfies that

a. V(x) = 0 ⇔ x = 0
b. V̇(x) ≤ −ξ1Vη1(x)− ξ2V(x)η2

where ξ1, ξ2 > 0, 0 < η1 < 1 and η2 > 1. Then, the system is fixed-time stable and the
convergence time can be computed as

T ≤ 1
ξ1(1 − η1)

+
1

ξ2(η2 − 1)
(4)

Lemma 2. With the fractional derivative such as aDα1
t f (t) = 1

Γ(1−α1)
d
dt

∫ t
a

f (τ)
(t−τ)α1 dτ with f (t) ∈

R, 0 ≤ α1 < 1, and its sign function, then, for the fractional derivative of the sign function [45],

one obtains aDα1
t sign( f (t))

{
> 0 i f f (t) > 0, t > 0
< 0 i f f (t) < 0, t > 0

.

3. Fractional-Order Fixed-Time Non-Singular Terminal Sliding Control Design

This part begins with an introduction to the dynamics of the robot manipulator and
continues with a study of the characteristics of a fractional-order non-singular fixed-time
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sliding surface and the development of a control design called FoFxNTSM. In addition
to this, a study of the suggested FoFxNTSM’s stability using the Lyapunov theorem is
presented.

The following is a description of the dynamic equation of the n − DOF robotic manip-
ulator [46].

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ(t) + τf (t) + τd(t) (5)

where q ∈ Rn is the joints position, q̇ ∈ Rn is the joint velocity, and q̈ ∈ Rn is
the joint acceleration. M(q) ∈ Rn×n represents the inertia matrix and satisfies that
m1(M(q)) ≤ ‖M(q)‖ ≤ m2(M(q)), with m1 and m2 illustrating the positive min and
the max eigenvalues of the matrix M(q). C(q, q̇) ∈ Rn×n denotes the coriolis, centripetal,
and friction forces matrix; G(q) ∈ Rn is the gravitational vector. τf ∈ Rn is system’s
uncertainty, τd ∈ Rn is a representation of the unknown external disturbance, τ(t) ∈ Rn is
the input torque at the joints.

The dynamic Equation (5) can be rewritten as

q̈ = M−1(q)τ − M−1(q)[C(q, q̇)q̇ + G(q)] +�(q, q̇, q̈, τd) (6)

where �(q, q̇, q̈, τd) = M−1(q)
[
τd(t) + τf (t)

]
represents the uncertainties and external

disturbances.
Using Equation (6), the trajectory tracking error can be expressed as

ε̈ = M−1(q)τ + ∂(q, q̇) +�(q, q̇, q̈, τd) (7)

where ∂(q, q̇) = −M−1(q)[C(q, q̇)q̇ + G(q)] − q̈d denotes the known system dynamics.
The tracking error is represented by the equation ε = q − qd, where q represents the actual
position vectors and qd represents the desired position vectors.

Assumption 1. Conditional bounds on the uncertainty and external disturbance are
expressed by (8), which is shown below:

‖�(q, q̇, q̈, τd)‖ ≤ ι1 + ι2‖q‖+ ι3‖q̇‖2 (8)

where ι1, ι2, and ι3 are unknown constants of the uncertainties’ and disturbances’ upper
bounds.

3.1. FoFxNTSM Surface

The aforementioned techniques served as inspiration for the development of the
fractional-order non-singular terminal sliding mode control, which can be built to provide
the robust and precise tracking performance of the n − DOF robotic manipulators in a fixed
time. Therefore, based on the features of fractional-order calculus, the proposed sliding
surface is given as

s(t) = ε̇(t) + δ1
1/β1

√
|ε|sign(ε) + δ2

1/β2

√
|ε|sign(ε) + δ3Dα−1[|ε|sign(ε)] (9)

where s(t) ∈ Rn is the sliding surface, and δ1 ∈ R+ and δ2 ∈ R+ are positive constants.
To be more specific, β1 and β2 are the set of constants, such that 0 < β1 < 1, 1 < β2, and
0 < α < 1.

ṡ(t) = ε̈(t) + β1δ1|ε|β1−1 ε̇ + β2δ2|ε|β2−1 ε̇ + δ3Dα[|ε|sign(ε)] (10)

ṡ(t) = M−1(q)τ + ∂(q, q̇) +�(q, q̇, q̈, τd)

+δ1K(ε)ε̇ + β2δ2|ε|β2−1 ε̇ + δ3Dα[|ε|sign(ε)]
(11)

where K(ε) =

{
β1|ε|β1−1 i f ε �= 0

0 i f ε = 0
.
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Now that the construction of the sliding manifold is complete, the robust performance
against uncertainty and external disturbances is achieved using the proposed FoFxNTSM
control design for n − DOF robotic manipulators.

Throughout the course of the sliding mode, when s(t) = 0, the following dynamics
can be derived from (9) as

ε̇(t) = −δ1
1/β1

√
|ε|sign(ε)− δ2

1/β2

√
|ε|sign(ε)− δ3Dα−1[|ε|sign(ε)] (12)

The Lyapunov function is defined as follows

V1(t) = 0.5ε(t)Tε(t) (13)

With (13), the V̇1(t) can be computed as

V̇1(t) = ε(t)T ε̇(t) = ε(t)T
[
−δ1

1/β1

√
|ε|sign(ε)− δ2

1/β2

√
|ε|sign(ε)− δ3Dα−1[|ε|sign(ε)]

]
(14)

By simplifying (14), one has

V̇1(t) = −δ1ε(t)T 1/β1

√
|ε|sign(ε)− δ2ε(t)T 1/β2

√
|ε|sign(ε)− δ3|ε(t)|TDα−1

[
|ε|sign2(ε)

]
(15)

V̇1(t) ≤ −δ1‖ε‖β1+1 − δ2‖ε‖β2+1 (16)

V̇1(t) ≤ −2
β1+1

2 δ1V
β1+1

2
1 − 2

β2+1
2 δ2V

β2+1
2

1 (17)

In accordance with Lemma 1, the sliding surface (9) converges to zero in a fixed time,
and the amount of time it takes to get there is bounded by

T1 = 1

2
β1+1

2 δ1

(
1− β1+1

2

) + 1

2
β2+1

2 δ2

(
β2+1

2 −1
)

= 2

2
β1+1

2 δ1(1−β1)

+ 2

2
β2+1

2 δ2(β2−1)

(18)

3.2. FoFxNTSM Control Design

For the purpose of controlling a robotic manipulator in the presence of known bounded
uncertainties and external disturbances, the FoFxNTSM control law can be designed as
follows

τ(t) = τnm(t) + τsw(t) (19)

where τnm(t) refers to the control input that is employed in the control of the known
dynamics and τsw(t) refers to the control input that is utilized to deal with uncertain
dynamics.

τnm = −M(q)
{

∂(q, q̇) + δ1K(ε)ε̇ + β2δ2|ε|β2−1 ε̇ + δ3Dα[|ε|sign(ε)]
}

(20)

τsw = −M(q)

{
(ι1 + ι2‖q‖+ ι3‖q̇‖2)sign(s)
+δ4

1/ς1
√|s|sign(s) + δ5

1/ς2
√|s|sign(s) + δ6Dα1 sign(s)

}
(21)

where δ4 ∈ R+, δ5 ∈ R+ and δ6 ∈ R+ are positive constants, and ς1 and ς2 are constants,
such that 0 < ς1 < 1, 1 < ς2 and 0 ≤ α1 < 1, respectively.

3.3. Stability Analysis

The Lyapunov theorem is applied in this subsection to establish the closed-loop system
stability.
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Theorem 1. Considering the described robotic manipulator (5), the suggested sliding manifold (9)
and the designed FoFxNTSM controller (19) enable the intended angular position of the uncertain
robotic manipulator to converge in a fixed amount of time with condition (8).

Proof. The Lyapunov function is considered as follows

V2(t) = 0.5s(t)Ts(t) (22)

where V̇2(t) can be computed as

V̇2(t) = s(t)Tṡ(t) (23)

With ṡ(t) from (10) substituted into Equation (23), one obtains

V̇2(t) = s(t)T
[
ε̈(t) + δ1K(ε)ε̇ + β2δ2|ε|β2−1 ε̇ + δ3Dα[|ε|sign(ε)]

]
(24)

By substituting ε̈(t) from (7) in (24), one obtains

V̇2(t) = s(t)T

{
M−1(q)τ + ∂(q, q̇) +�(q, q̇, q̈, τd)

+δ1K(ε)ε̇ + β2δ2|ε|β2−1 ε̇ + δ3Dα[|ε|sign(ε)]

}
(25)

By substituting τ(t) from (19) in (25), one has

V̇2(t) = s(t)T

⎡⎢⎢⎢⎣ −

⎧⎪⎨⎪⎩
(ι1 + ι2‖q‖+ ι3‖q̇‖2)sign(s) + ∂(q, q̇)
+δ1K(ε)ε̇ + β2δ2|ε|β2−1 ε̇ + δ3Dα[|ε|sign(ε)]
+δ4

1/ς1
√|s|sign(s) + δ5

1/ς2
√|s|sign(s) + δ6Dα1 sign(s)

⎫⎪⎬⎪⎭
+∂(q, q̇) +�(q, q̇, q̈, τd) + δ1K(ε)ε̇ + β2δ2|ε|β2−1 ε̇ + δ3Dα[|ε|sign(ε)]

⎤⎥⎥⎥⎦ (26)

The simplification of (26) yields

V̇2(t) = s(t)T

⎡⎢⎣ −
{

(ι1 + ι2‖q‖+ ι3‖q̇‖2)sign(s) + δ4
1/ς1
√|s|sign(s)

+δ5
1/ς2
√|s|sign(s) + δ6Dα1 sign(s)

}
+�(q, q̇, q̈, τd)

⎤⎥⎦ (27)

According to Assumption 1 and Lemma 2, one can easily obtain

V̇2(t) ≤ −δ4‖s‖ς1+1 − δ5‖s‖ς2+1 (28)

and (28) can be rewritten as

V̇2(t) ≤ −2
ς1+1

2 δ4V2(t)
ς1+1

2 − 2
ς2+1

2 δ5V2(t)
ς2+1

2 (29)

Therefore, the trajectory of the system reaches s(t) in a fixed time. In accordance with
Lemma 1, the time required for convergence can be expressed as

T2 =
1

2
ς1+1

2 δ4

(
1 − ς1+1

2

) +
1

2
ς2+1

2 δ5

(
ς2+1

2 − 1
) (30)

Using relation Ts1 = T1 + T2, the settling time Ts1 can be formulated as

Ts1 =
2

2
β1+1

2 δ1(1 − β1)
+

2

2
β2+1

2 δ2(β2 − 1)
+

2

2
ς1+1

2 δ4(1 − ς1)
+

2

2
ς2+1

2 δ5(ς2 − 1)
(31)

As a result, it can be deduced from (31) that the suggested scheme is a fixed-time
control scheme.
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4. Adaptive FoFxNTSM Control Design

The following describes how the control input utilizing an adaptive method is devised
to account for the unknown dynamics and external disturbances.

τ(t) = τad(t) (32)

τad(t) = −M(q)

⎧⎪⎨⎪⎩
(ι̂1 + ι̂2‖q‖+ ι̂3‖q̇‖2)sign(s) + ∂(q, q̇)
+δ1K(ε)ε̇ + β2δ2|ε|β2−1 ε̇ + δ3Dα[|ε|sign(ε)]
+δ4

1/ς1
√|s|sign(s) + δ5

1/ς2
√|s|sign(s) + δ6Dα1 sign(s)

⎫⎪⎬⎪⎭ (33)

where ι̂1, ι̂2, and ι̂3 denote the estimation variable of ι1, ι2, and ι3, respectively.
To compensate for unknown dynamics, the adaptive laws are proposed. In addition,

the dead-zone method is applied to avoid the parameter drifting problem; thus, the adaptive
laws are given as

˙̂ιi =
{

γi‖s‖Δ� i f ‖s‖ > �
0 i f ‖s‖ ≤ �

& i = 1, 2, 3 (34)

where Δ� =
[
1, ‖q‖, ‖q̇‖2

]
, � > 0 denotes the size of the dead zone, and γ1, γ2 , and

γ3 > 0 are constants. The proposed model is given in Figure 1.

Figure 1. Control model of proposed scheme.

Compensating for the upper bounds of the unknown dynamics is dealt with the use
of (34). Therefore, the AFoFxNTSM technique is what ultimately determines the tracking
performance of the uncertain robot manipulators under disturbances.

Theorem 2. Considering the given robotic manipulator (5) and its susceptibility to issues such
as uncertainty and external disturbances, accordingly, the desired angular position of the robotic
manipulator converges in a fixed time with the condition of Assumption 1, thanks to the suggested
sliding surface (9), AFoFxNTSM control input (32), and adaptive laws (34).
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Proof. The following Lyapunov candidate is selected as

V3(t) = 0.5s(t)Ts(t) +
0.5
γ1

ι̃21 +
0.5
γ2

ι̃22 +
0.5
γ3

ι̃23 (35)

where ι̃1 = ι̂1 − ι1, ι̃2 = ι̂2 − ι2, ι̃3 = ι̂3 − ι3 are estimation errors.

V̇3(t) can be expressed as

V̇3(t) = s(t)Tṡ(t) +
1

γ1
ι̃1 ˙̂ι1 +

1
γ2

ι̃2 ˙̂ι2 +
1

γ3
ι̃3 ˙̂ι3 (36)

With the substitution of ṡ(t) from (11) into (36), one can obtain

V̇3(t) = s(t)T
{

M−1(q)τ + ∂(q, q̇) +�(q, q̇, q̈, τd) + δ1K(ε)ε̇ + β2δ2|ε|β2−1 ε̇ + δ3Dα[|ε|sign(ε)]
}

+ 1
γ1

ι̃1
˙̂ι1 +

1
γ2

ι̃2
˙̂ι2 +

1
γ3

ι̃3
˙̂ι3

(37)

With the substitution of τ(t) from (32) into (37), one can obtain

V̇3(t) = s(t)T

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ι̂1 + ι̂2‖q‖+ ι̂3‖q̇‖2)sign(s) + ∂(q, q̇)
+δ1K(ε)ε̇ + β2δ2|ε|β2−1 ε̇

+δ3Dα[|ε|sign(ε)] + δ4
1/ς1
√|s|sign(s)

+δ5
1/ς2
√|s|sign(s) + δ6Dα1 sign(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+∂(q, q̇) +�(q, q̇, q̈, τd) + δ1K(ε)ε̇

+β2δ2|ε|β2−1 ε̇ + δ3Dα[|ε|sign(ε)]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ 1

γ1
ι̃1

˙̂ι1 +
1

γ2
ι̃2

˙̂ι2 +
1

γ3
ι̃3

˙̂ι3

(38)

Simplifying (38) yields

V̇3(t) = s(t)T

⎡⎢⎣ −
{

(ι̂1 + ι̂2‖q‖+ ι̂3‖q̇‖2)sign(s) + δ4
1/ς1
√|s|sign(s)

+δ5
1/ς2
√|s|sign(s) + δ6Dα1 sign(s)

}
+�(q, q̇, q̈, τd)

⎤⎥⎦
+ 1

γ1
ι̃1

˙̂ι1 +
1

γ2
ι̃2

˙̂ι2 +
1

γ3
ι̃3

˙̂ι3

(39)

According to Lemma 2, (39) can be computed as

V̇3(t) ≤ −δ4‖s‖ς1+1 − δ5‖s‖ς2+1 − ι̂1‖s‖ − ι̂2‖q‖‖s‖ − ι̂3‖q̇‖2‖s‖+ ‖�(q, q̇, q̈, τd)‖‖s‖
+ 1

γ1
ι̃1

˙̂ι1 +
1

γ2
ι̃2

˙̂ι2 +
1

γ3
ι̃3

˙̂ι3
(40)

Using Assumption 1 and the substitution of (34) into (40), one can obtain

V̇3(t) ≤ −δ4‖s‖ς1+1 − δ5‖s‖ς2+1 (41)

As a result, the robotic manipulator that is utilized for the purpose of precise trajectory
tracking is only capable of maintaining its fixed-time stability under specific circumstances.
As a consequence of this, the proof of stability is investigated in great detail.

Following that, the fixed settling time is calculated, and Equation (41) can be expressed
as [47]

V̇3(t) ≤ −δ4{2(V3(t)− Ξ)}
ς1+1

2 − δ5{2(V3(t)− Ξ)}
ς2+1

2 (42)

where Ξ = 0.5
γ1

ι̃21 +
0.5
γ2

ι̃22 +
0.5
γ3

ι̃23
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V̇3(t) ≤ −δ42
ς1+1

2 {V3(t)− Ξ}
ς1+1

2 − δ52
ς2+1

2 {V3(t)− Ξ}
ς2+1

2 (43)

V̇3(t) ≤ −δ42
ς1+1

2

{
1 − Ξ

V3(t)

} ς1+1
2

V3(t)
ς1+1

2 − δ52
ς2+1

2

{
1 − Ξ

V3(t)

} ς2+1
2

V3(t)
ς2+1

2 (44)

Calculating the fixed time using Lemma 1 yields the following

T3 =
1

p1

(
1 − ς1+1

2

) +
1

p2

(
ς2+1

2 − 1
) =

2
p1(1 − ς1)

+
2

p2(ς2 − 1)
(45)

where p1 = δ42
ς1+1

2

{
1 − Ξ

V3(t)

} ς1+1
2 , and p2 = δ52

ς2+1
2

{
1 − Ξ

V3(t)

} ς2+1
2 . Calculating the

settling time Ts2 using the relation Ts2 = T1 + T3 yields

Ts2 =
2

p1(1 − ς1)
+

2
p2(ς2 − 1)

+
2

2
β1+1

2 δ1(1 − β1)
+

2

2
β2+1

2 δ2(β2 − 1)
(46)

The resulting state trajectory tends to zero in a fixed amount of time.

Remark 1. When the proposed adaptive fractional-order fixed-time sliding mode control method is
applied to the uncertain dynamics of the robotic system (5), which includes the fractional sliding
surface (9), the proposed control input (32), and the adaptive laws (34), it is implied that the tracking
error tends toward zero at a fixed time. The numerical simulation is provided in the following
section.

5. Simulation Results and Comparative Analyses

The PUMA 560 robotic manipulator is utilized to demonstrate the simulation perfor-
mance in order to validate the AFoFxNTSM approach; its dynamics have been given in [48].
A 3 − DOF of the PUMA 560 manipulator is employed, and it operates in an environment
containing external disturbances and uncertainties. In order to show the great performance
of AFoFxNTSM, two different scenarios, one with known dynamics and one with unknown
uncertainties and disturbances, are described, and MATLAB/Simulink is used to simulate
the proposed method. To demonstrate further the efficacy of the suggested strategy, a
comparison is made with adaptive fractional-order non-singular terminal sliding mode
control (ATDENTSM) [49]. Therefore, the planned trajectories, external disturbance, and
uncertainty levels are given as:

qd = [ cos(tπ/5) − 1, cos(tπ/5 + π/2), cos(tπ/5 + π/2)− 1]T

τf = [0.5q̇1 + sin(3q1), 1.3q̇2 − 1.8sin(2q2), −1.8q̇3 − 2sin(q3)]
T

τd = [20.5sin(q̇1), 21.1sin(q̇2) , 10.15sin(q̇3)]
T

To select the suitable Fo value, the position tracking errors at different values of α are
demonstrated in Figure 2.

As seen in Figure 2, setting α = 0.9 is a simple way to achieve the best results. On the
other hand, at α = 0.1 and α = 0.5, the desired trajectories are not achieved in terms of
tracking errors.
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Figure 2. Tracking errors at different α values.

5.1. Case 1: Comparison for Nominal Plant

In this subsection, the proposed FoFxNTSM approach is applied to the 3 − DOF
PUMA 560 robotic manipulator with known dynamics; however, external disturbances are
not taken into consideration. For (9), the FoFxNTSM parameters are set to δ1 = 6, δ2 = 6,
δ3 = 6, β1 = 0.8, β2 = 1.9, and α = 0.9. The suitable parameters of (19) are set as δ4 = 50,
δ5 = 50, δ6 = 0.01, α1 = 0.1, ς1 = 0.7, ς2 = 1.5, and �= 0.1. The initial conditions of the
joint positions are chosen as q1(0) = −0.2, q2(0) = −0.2, and q3(0) = −0.2.
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The comparative results of the proposed FoFxNTSM approach and ATDENTSM
on 3 − DOF robotic manipulators are depicted in Figures 3–6, which show the joint’s
position performance, its tracking errors, smooth control inputs, and sliding mode surfaces,
respectively.

Figure 3. Position tracking.
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Figure 4. Tracking errors.
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Figure 5. Control inputs.
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Figure 6. Sliding surfaces.

The suggested FoFxNTSM scheme has improved performance and obtains small
tracking errors, rapid convergence, and chatter-free control inputs. These advantages are
achieved by taking into account the high tracking performance and robustness against the
system’s known uncertainties.
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5.2. Case 2: Comparison Under Unknown Dynamics

In this subsection, the proposed adaptive technique with the FoFxNTSM method
is used to control the dynamics of the 3 − DOF robotic manipulator in the presence of
unknown uncertainties, as well as external disturbances. The parameters of (32) are set
such that they are identical to those of (19), and the parameters of (34) are set such that
γ1 = 0.01, γ2 = 0.01, and γ3 = 0.01. Figures 7–10 present the results of comparing the
proposed AFoFxNTSM scheme with ATDENTSM in terms of its performance in the face of
unknown dynamics, as well as benchmark simulations of trajectories, control inputs, and
sliding surfaces. Moreover, the adaptive parameter estimations of the unknown dynamics
of AFoFxNTSM and ATDENTSM are given in Figures 11 and 12, respectively.

Figure 7. Position tracking method under uncertainties and disturbances.
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Figure 8. Tracking errors under uncertainties and disturbances.
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Figure 9. Control inputs under uncertainties and disturbances.
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Figure 10. Sliding surfaces under uncertainties and disturbances.
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Figure 11. Adaptive parameters under uncertainties and disturbances—Proposed method.

Figure 12. Adaptive parameters under uncertainties and disturbances—ATDENTSM.

The findings that are compared and obtained reveal that the AFoFxNTSM has an
improved tracking performance, chatter-free control inputs, and adaptive estimation in
the presence of unknown uncertainties and external disturbances. Figures 7–12 make it
abundantly clear that the proposed method, when subjected to uncertainties and external
disturbances, yields a superior convergence and trajectory tracking performance, whereas
the ATDENTSM method demonstrates significant angular position errors and is less robust
when exposed to unknown dynamics.

6. Discussion

The discussion of the simulated results of the proposed AFoFxNTSM is presented
in this section. In particular, a concise discussion of the shortcomings of the suggested
controller in terms of its parameters and stability analyses is included. In addition to this,
potential applications of the proposed method to non-linear systems are also covered.

A comparison is made between the control strategy that has been suggested
(AFoFxNTSM) and ATDENTSM, and the parameters of both systems are set in an ap-
propriate way. Therefore, it is clear from looking at Figures 7 and 8 that the suggested
controller has the least amount of tracking errors and, accordingly, the least amount of
time needed to converge. In addition, the control inputs of the joints can be noticed in
Figure 9, and one can see the suggested method that was provided offers the control input
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that is the most smooth and efficient. Figures 11 and 12 present the adaptive estimation,
which demonstrates that there is no drifting problem with the adaptive rules. In addition,
the root-mean-square (RMS) errors of the proposed AFoFxNTSM scheme are calculated
as ε1RMS = 0.0124, ε2RMS = 0.0125, and ε3RMS = 0.0123, and the RMS errors of the AT-
DENTSM method are obtained as e1RMS = 0.0317, e2RMS = 0.0189, and e3RMS = 0.0294.
Hence, both the simulation and the quantitative analyses demonstrate that the proposed
method has a superior performance.

The parameters of the suggested control technique are chosen in accordance with the
range that was provided, such as δ1 > 0, δ2 > 0, δ3 > 0, 0 < β1 < 1, β2 > 1, 0 < α < 1,
δ4 > 0, δ5 > 0, δ6 > 0, 0 < ς1 < 1, ς2 > 1, and 0 ≤ α1 < 1. In the event that these concerns
are not considered, the closed-loop system does not continue to exhibit fixed-time stability.
It is clear, based on the results of (31) and (46), that Ts1 and Ts2 are inversely proportional to
δi, whereas δi is proportional to τ(t) in (19) and (32). Therefore, in order to attain fixed-time
convergence and closed-loop system stability at the same time, the suitable values of δi
need to be set. These values determine the stability of the system. In addition, the ranges of
the other parameters are known, which makes it possible to select the suitable value in a
manner that is adequate. In fact, the scope of this work could be broadened to include the
consideration of non-linearities that are not smooth for the non-linear systems.

7. Conclusions

An AFoFxNTSM was proposed in order to facilitate robotic manipulator trajectory
tracking in the presence of uncertainties and external disturbances. An adaptive method
was used in the construction of the proposed scheme so that it could estimate the un-
known bounds of uncertainties and disturbances. This method also made it possible
for the FoFxNTSM to achieve fixed-time convergence and tracking performance. On the
3 − DOF PUMA 560 robotic manipulator, the AFoFxNTSM is implemented with known
and unknown dynamics to demonstrate and explain the usefulness of the suggested tech-
nique. The findings of the simulation reveal that the suggested AFoFxNTSM method,
compared with ATDENTSM, is superior in terms of response time and trajectory tracking
errors, and has a higher capability to reject uncertainties and disturbances.
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Abstract: A new fixed-time adaptive neural network control strategy is designed for pure-feedback
non-affine nonlinear systems with state constraints according to the feedback signal of the error
system. Based on the adaptive backstepping technology, the Lyapunov function is designed for
each subsystem. The neural network is used to identify the unknown parameters of the system
in a fixed-time, and the designed control strategy makes the output signal of the system track the
expected signal in a fixed-time. Through the stability analysis, it is proved that the tracking error
converges in a fixed-time, and the design of the upper bound of the setting time of the error system
only needs to modify the parameters and adaptive law of the controlled system controller, which
does not depend on the initial conditions.

Keywords: adaptive control; neural network control; nonlinear constraint systems; non-affine nonlinear
systems; pure feedback

1. Introduction

In recent years, great breakthroughs have been made in the research of adaptive
trajectory tracking control for uncertain nonlinear systems [1–3]. When solving such
problems, neural network technology has become the key technology [4–6]. Combining
neural network technology with backstepping control and adaptive control, the results
have been widely used in different types of nonlinear systems such as strict feedback
and pure feedback [7–9]. With the development of increasing power integrators, great
progress has been made in the research of non-affine nonlinear systems. In recent years,
the problems studied include output feedback stability, state output constraints, etc. Many
methods have been introduced to solve these problems, such as backstepping technology,
adaptive technology, and neural network control [10–12]. For nonlinear systems with time
delays, the authors of reference [13] designed the control strategy by combining adaptive
neural network and backstepping technology, and then the neural network technology
based on adaptive backstepping was developed and applied [14–16].

With the development of society, the accuracy requirements of industrial control
systems for convergence time are increasing. For example, in antimissile control systems,
aircraft attitude control systems, and robot control systems, the purpose of controller
design is to realize the stability of the controlled system and maintain stability in finite
time (for example, in antimissile control systems, there is no need for control after missile
explosion). For nonlinear systems with uncertainties, researchers have combined fixed-
time controls with adaptive neural network technology to produce many excellent control
schemes [17–19].

Researchers combine neural networks with adaptive control for online identification
of complex nonlinear objects. In the design of these control systems, neural networks are
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generally used to approximate the uncertain nonlinear terms of the system, and neural
networks are effective in compact sets [20–22]. In recent years, some fixed-time control
methods based on the neural networks have been developed [23–25]. The author of
reference [26] studies the control method of unknown nonlinear systems based on free
model control. Based on Lyapunov functional and analysis technology, combined with
advanced control algorithms, sufficient conditions for the master–slave memristor systems
to realize timing synchronization are established. The authors of reference [27] extended
the method to time-varying delay discontinuous fuzzy inertial neural network fixed-time
synchronous control.

Although the research on fixed-time adaptive neural network control has produced
a series of research results, there are still many problems to be solved in the existing
control strategies, such as system constraints. In reference [28–30], the control problem of
constrained nonlinear systems is discussed. For the control problem of systems with state
constraints, the difficulty of constraints can be solved by using the boundary Lyapunov
function. However, for the control problem of constrained non-affine nonlinear systems,
the control strategies in the above literature cannot be used directly, and the research results
based on fixed-time control are relatively few.

In summary, when there are state constraints in non-affine nonlinear systems, how to
combine the adaptive neural network control and backstepping control to design effective
control strategies so that the system can achieve the expected performance in fixed time,
with the setting time not depending on the initial state of the system, is a problem. To
solve this problem, some control problems have not been solved, such as for pure-feedback
non-affine nonlinear systems, how to combine the backstepping method with Lyapunov
function theory to design a fixed-time adaptive neural network tracking control strategy, so
that the system output can track the desired signal and maintain fixed-time stability, the
control performance can be guaranteed without initial conditions, and all state variables
are bounded to a fixed region.

This article consists of the following parts. In Section 2, a constrained nonlinear system
mathematical description of the problem is presented. In Section 3, firstly, the novel fixed-
time stability theorem for constrained nonlinear systems is proposed, secondly, the adaptive
neural network fixed-time tracking control scheme for constrained nonlinear systems is
presented. In Section 4, the performances of the tracking control scheme are illustrated by a
simulation example. In Section 5, some conclusions of the article are summarized.

2. Problem Formation and Preliminaries

Based on backstepping technology, combined with an adaptive neural network and
fixed-time control, the tracking control of pure-feedback non-affine nonlinear intercon-
nected systems was studied. Consider pure-feedback nonlinear systems:⎧⎨⎩

.
xi(t) = fi(xi+1(t)), i = 1, 2, . . . , n − 1

.
xn(t) = fn(xn(t), u(t))

y(t) = x1(t)
(1)

where x =
(

x1 x2 · · · xn
)T ∈ n, u ∈ , y ∈ , indicate the state, control and

output, respectively, fi(·), i = 1, 2, . . . , n are nonlinear smooth functions, yd ∈  is de-
sired trajectory.

Remark 1. Based on the existing algorithms, this article attempts to further design a novel neural
network adaptive control algorithm. The control objective of the algorithm is the output of the
pure-feedback non-affine nonlinear system that can track the desired signal and maintain fixed-time
stability. The designed upper bound of the setting time does not rely on the initial parameters, only
by adjusting the parameters of the controller.
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Lemma 1 [6]. For xi ∈ R and xi ≥ 0, i = 1, 2, · · · , n, 0 < p < 1, q > 1, then(
n

∑
i=1

xi

)p

≤
n

∑
i=1

xi
p ≤ n1−p

(
n

∑
i=1

xi

)p

(2)

n1−q

(
n

∑
i=1

xi

)q

≤
n

∑
i=1

xi
q ≤

(
n

∑
i=1

xi

)q

(3)

3. Main Results

The control algorithm was designed for the system (1). The objective of the control
was to propose a new adaptive fixed-time neural network tracking control algorithm for
the pure-feedback nonlinear system. Adaptive neural network technology is used to solve
the uncertainty of the unknown system. Under the proposed control scheme, through the
Lyapunov stability analysis, the closed system is fixed-time stability.

For a nonlinear system (1), combine homeomorphism mapping and backstepping
control to design constraint control, in the first step, consider system state

z1 = x1 − yd (4)

Design homeomorphism mapping

ξ1 = arctanh
(

z1

kb1

)
(5)

where kb1 > 0 is the bound of z1 and satisfy the |z1| < kb1, then the system can obtain

.
ξ1 = kb1

k2
b1−z2

1

.
z1

= kb1
k2

b1−z2
1

(
f1(x1, x2)− .

yd
) (6)

Choose the NN to approximate the nonlinear system f1(x2),x2 ∈ Ω1 ⊂ 2 and Ω1 is
compact set

kb1

k2
b1 − z2

1

(
f1(x1, x2)− .

yd
)
= WT∗

1 Ψ1(x2) + ε1 (7)

where
∥∥W∗

1

∥∥ = θ1, θ̂1 is estimation of θ1 and θ̃1 = θ̂1 − θ1, then we have

W∗T
1 Ψ1(x2) ≤ θ1‖Ψ1(x2)‖ (8)

Define a Lyapunov functional candidate as

V1 =
1
2

ξ2
1 +

1
2μ1

θ̃2
1 (9)

take the time derivative (9) along the trajectory of (6) as

.
V1 = ξ1

kb1
k2

b1−z2
1

(
f1(x1, x2)− .

yd
)
+ 1

μ1
θ̃1

.
θ̂1

= ξ1
(
W∗T

1 Ψ1(x2) + ε1
)
+ 1

μ1
θ̃1

.
θ̂1

(10)

Choose the virtual control law

ξ2 = k1ξ1 + kp1ξ
p
1 + kq1ξ

q
1 + sign(ξ1)θ̂1‖Ψ1(x2)‖ (11)
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where k1 > 1
2 , kp1 > 0, kq1 > 0, 0 < p < 1, q > 1, based on homeomorphism mapping

z2 = kb2tanh(ξ2) (12)

where kb2 > 0 is the bound of z2 and satisfies the |z2| < kb2, and

α1 = x2 − z2 (13)

then we have
.

V1 = ξ1W∗T
1 Ψ1(x2) + ξ1ε1 − k1ξ2

1 − kp1ξ
p+1
1 − kq1ξ

q+1
1

−θ̂1|ξ1|‖Ψ1(x2)‖+ ξ1ξ2 +
1

μ1
θ̃1

.
θ̂1

(14)

when
∥∥W∗

1

∥∥ = θ1, we have

ξ1W∗T
1 Ψ1(x2) ≤ θ1|ξ1|‖Ψ1(x2)‖ (15)

and
ξ1ε1 ≤ 1

2
ξ2

1 +
1
2

ε2
1 (16)

then we have
.

V1 = −θ̃1|ξ1|‖Ψ1(x2)‖+ 1
2 ξ2

1 +
1
2 ε2

1 − k1ξ2
1 − kp1ξ

p+1
1 − kq1ξ

q+1
1

+ξ1ξ2 +
1

μ1
θ̃1

.
θ̂1

(17)

where
θ̃1 = θ̂1 − θ1 (18)

Choose the NN adaptive law as

.
θ̂1 = μ1

(
|ξ1|‖Ψ1(x2)‖ − ρp1θ̂

p
1 − ρq1θ̂

q
1

)
, θ̂1(0) = 0 (19)

where μ1 > 0, ρp1 > 0, ρq1 > 0, then we have

.
V1 = −θ̃1|ξ1|‖Ψ1(x2)‖+ 1

2 ξ2
1 +

1
2 ε2

1 − k1ξ2
1 − kp1ξ

p+1
1 − kq1ξ

q+1
1

+ξ1ξ2 + θ̃1

(
|ξ1|‖Ψ1(x2)‖ − ρp1θ̂

p
1 − ρq1θ̂

q
1

)
= −

(
k1 − 1

2

)
ξ2

1 − kp1ξ
p+1
1 − kq1ξ

q+1
1 + ξ1ξ2

−ρp1θ̃1θ̂
p
1 − ρq1θ̃1θ̂

q
1 +

1
2 ε2

1

(20)

based on inequalities from [7], the following hold:

−ρp1θ̃1θ̂
p
1 ≤ −ςp1θ̃

p+1
1 + υp1θ

p+1
1

−ρq1θ̃1θ̂
q
1 ≤ −ςq1θ̃

q+1
1 + υq1θ

q+1
1

(21)

where ρp1, ςp1, υp1, ρq1, ςq1, υq1 > 0, therefore, we have

.
V1 ≤ −

(
k1 − 1

2

)
ξ2

1 − kp1ξ
p+1
1 − kq1ξ

q+1
1 + ξ1ξ2 − ςp1θ̃

p+1
1 + υp1θ

p+1
1

−ςq1θ̃
q+1
1 + υq1θ

q+1
1 + 1

2 ε2
1

≤ −kp1ξ
p+1
1 − kq1ξ

q+1
1 − ςp1θ̃

p+1
1 − ςq1θ̃

q+1
1 + ξ1ξ2 + δ1

(22)

where
δ1 =

1
2

ε2
1 + υp1θ

p+1
1 + υq1θ

q+1
1 (23)
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The ith step 2 ≤ i ≤ n, consider system state

zi = xi − αi−1 (24)

Design homeomorphism mapping

ξi = arctanh
(

zi
kbi

)
(25)

where kbi > 0 is the bound of zi and satisfies the |zi| < kbi, then the system can obtain

.
ξ i = kbi

k2
bi−z2

i

.
zi

= kbi
k2

bi−z2
i

(
fi − .

αi−1
) (26)

The neural network is constructed as fi,xi+1 ∈ Ωi ⊂ i+1 and Ωi is compact set

kbi

k2
bi − z2

i

(
fi − .

αi−1
)
= WT∗

i Ψi(xi+1) + εi (27)

where
∥∥W∗

i

∥∥ = θi, θ̂i is estimation of θi and θ̃i = θ̂i − θi, then we have

W∗T
i Ψ1(xi+1) ≤ θi‖Ψi(xi+1)‖ (28)

Define a Lyapunov functional candidate as

Vi =
1
2

ξ2
i +

1
2μi

θ̃2
i (29)

Take the time derivative (29) along the trajectory of (26) as

.
Vi = ξi

kbi
1−z2

i

(
fi − .

αi−1
)
+ 1

μi
θ̃i

.
θ̂i

= ξi
(
W∗T

i Ψi(xi+1) + εi
)
+ 1

μi
θ̃i

.
θ̂i

(30)

The virtual control signal is constructed as

ξi+1 = ξi−1 + kiξi + kpiξ
p
i + kqiξ

q
i + sign(ξi)θ̂i‖Ψi(xi+1)‖ (31)

where ki >
1
2 , kpi > 0, kqi > 0, 0 < p < 1, q > 1, based on homeomorphism mapping

zi+1 = kbi+1tanh(ξi+1) (32)

where kbi+1 > 0 is the bound of zi+1 and satisfies the |zi+1| < kbi+1 where

zi+1 = xi+1 − αi (33)

and assume xn+1 = u, then we have

.
Vi = ξiW∗T

i Ψi(xi+1) + ξiεi − ξi−1ξi − kiξ
2
i − kpiξ

p+1
i − kqiξ

q+1
i

−θ̂i|ξi|‖Ψi(xi+1)‖+ ξiξi+1 +
1
μi

θ̃i

.
θ̂i

(34)

when
∥∥W∗

i

∥∥ = θi, we have

ξiW∗T
i Ψi(xi+1) ≤ θi|ξi|‖Ψi(xi+1)‖ (35)
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and
ξiεi ≤ 1

2
ξ2

i +
1
2

ε2
i (36)

then we have
.

Vi = −θ̃i|ξi|‖Ψi(xi+1)‖+ 1
2 ξ2

i +
1
2 ε2

i − k1ξ2
i − kpiξ

p+1
i − kqiξ

q+1
i

−ξi−1ξi + ξiξi+1 +
1
μi

θ̃i

.
θ̂i

(37)

where
θ̃i = θ̂i − θi (38)

The NN adaptive signal is constructed as

.
θ̂i = μi

(
|ξi|‖Ψi(xi+1)‖ − ρpi θ̂

p
i − ρqi θ̂

q
i

)
, θ̂i(0) = 0 (39)

where μi > 0, ρpi > 0, ρqi > 0, then we have

.
Vi = −θ̃i|ξi|‖Ψi(xi+1)‖+ 1

2 ξ2
i +

1
2 ε2

i − kiξ
2
i − kpiξ

p+1
i − kqiξ

q+1
i

−ξi−1ξi + ξiξi+1 + θ̃i

(
|ξi|‖Ψi(xi+1)‖ − ρpi θ̂

p
i − ρqi θ̂

q
i

)
= −

(
ki − 1

2

)
ξ2

i − kpiξ
p+1
i − kqiξ

q+1
i − ξi−1ξi + ξiξi+1

−ρpi θ̃i θ̂
p
i − ρqi θ̃i θ̂

q
i +

1
2 ε2

i

(40)

Based on inequalities from [7], the following hold:

−ρpi θ̃i θ̂
p
i ≤ −ςpi θ̃

p+1
i + υpiθ

p+1
i

−ρqi θ̃i θ̂
q
i ≤ −ςqi θ̃

q+1
i + υqiθ

q+1
i

(41)

where ρpi, ςpi, υpi, ρqi, ςqi, υqi > 0, therefore we have

.
Vi ≤ −

(
ki − 1

2

)
ξ2

i − kpiξ
p+1
i − kqiξ

q+1
i − ξi−1ξi + ξiξi+1 − ςpi θ̃

p+1
i

+υpiθ
p+1
i − ςqi θ̃

q+1
i + υqiθ

q+1
i + 1

2 ε2
i

≤ −ξi−1ξi − kpiξ
p+1
i − kqiξ

q+1
i − ςpi θ̃

p+1
i − ςqi θ̃

q+1
i + ξiξi+1 + δi

(42)

where
δi =

1
2

ε2
i + υpiθ

p+1
i + υqiθ

q+1
i (43)

The n + 1th step, this is the most important step.

zn+1 = u − αn (44)

Based on system
.
zn+1 = v − .

αn (45)

Design homeomorphism mapping

ξn+1 = arctanh
(

zn+1

kbn+1

)
(46)

where kbn+1 > 0 is the bound of zn+1 and satisfies the |zn+1| < kbn+1, then the system
can obtain .

ξn+1 =
kbn+1

k2
bn+1−z2

n+1

.
zn+1

=
kbn+1

k2
bn+1−z2

n+1

(
v − .

αn
) (47)
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The neural network is constructed as
.
αn,xn+1 = (x, u) ∈ Ωn+1 ⊂ n+1 and Ωn+1 is

compact set
kbn+1

k2
bn+1 − z2

n+1

.
αn = WT∗

n+1Ψn+1(xn+1) + εn+1 (48)

where
∥∥W∗

n+1

∥∥ = θn+1, θ̂n+1 is an estimation of θn+1 and θ̃n+1 = θ̂n+1 − θn+1, then we have

W∗T
n+1Ψn+1(xn+1) ≤ θn+1‖Ψn+1(xn+1)‖ (49)

Define a Lyapunov functional candidate as

Vn+1 =
1
2

ξ2
n+1 +

1
2μn+1

θ̃2
n+1 (50)

Take the time derivative (9) along the trajectory of (6) as

.
Vn+1 = ξn+1

kbn+1
k2

bn+1−z2
n+1

(
v − .

αi
)
+ 1

μn+1
θ̃n+1

.
θ̂n+1

= ξn+1
kbn+1

k2
bn+1−z2

n+1
v − ξn+1

(
W∗T

n+1Ψn+1(xn+1) + εn+1
)

+ 1
μn+1

θ̃n+1

.
θ̂n+1

(51)

Choose the control

v =
−ξn − kn+1ξn+1 − kpn+1ξ

p
n+1 − kqn+1ξ

q
n+1 − sign(ξn+1)θ̂n+1‖Ψn+1(xn+1)‖

kbn+1
k2

bn+1−z2
n+1

(52)

where kn+1 > 1
2 , kpn+1 > 0, kqn+1 > 0, 0 < p < 1, q > 1, then

.
Vn+1 = −ξn+1

(
W∗T

n+1Ψn+1(xn+1) + εn+1
)
+ 1

μn+1
θ̃n+1

.
θ̂n+1 − ξnξn+1 − kn+1ξ2

n+1

−kpn+1ξ
p+1
n+1 − kqn+1ξ

q+1
n+1 − θ̂n+1|ξn+1|‖Ψn+1(xn+1)‖

(53)

when
∥∥W∗

n+1

∥∥ = θn+1, we have

ξn+1W∗T
n+1Ψn+1(xn+1) ≤ θn+1|ξn+1|‖Ψn+1(xn+1)‖ (54)

and
ξn+1εn+1 ≤ 1

2
ξ2

n+1 +
1
2

ε2
n+1 (55)

then we have

.
Vn+1 = −θ̃n+1|ξn+1|‖Ψn+1(xn+1)‖+ 1

2 ξ2
n+1 +

1
2 ε2

n+1 +
1

μn+1
θ̃n+1

.
θ̂n+1

−ξnξn+1 − kn+1ξ2
n+1 − kpn+1ξ

p+1
n+1 − kqn+1ξ

q+1
n+1

(56)

where
θ̃n+1 = θ̂n+1 − θn+1 (57)

choose the NN adaptive law as

.
θ̂n+1 = μn+1

(
|ξn+1|‖Ψn+1(xn+1)‖ − ρpn+1θ̂

p
n+1 − ρqn+1θ̂

q
n+1

)
, θ̂n+1(0) = 0 (58)
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where μn+1 > 0, ρpn+1 > 0, ρqn+1 > 0, then we have

.
Vn+1 = −θ̃n+1|ξn+1|‖Ψn+1(xn+1)‖+ 1

2 ξ2
n+1 +

1
2 ε2

n+1

+θ̃n+1

(
|ξn+1|‖Ψn+1(xn+1)‖ − ρpn+1θ̂

p
n+1 − ρqn+1θ̂

q
n+1

)
−ξnξn+1 − kn+1ξ2

n+1 − kpn+1ξ
p+1
n+1 − kqn+1ξ

q+1
n+1

(59)

based on inequalities from [7], the following hold:

−ρpn+1θ̃n+1θ̂
p
n+1 ≤ −ςpn+1θ̃

p+1
n+1 + υpn+1θ

p+1
n+1

−ρqn+1θ̃n+1θ̂
q
n+1 ≤ −ςqn+1θ̃

q+1
n+1 + υqn+1θ

q+1
n+1

(60)

where ρpn+1, ςpn+1, υpn+1, ρqn+1, ςqn+1, υqn+1 > 0, therefore, we have

.
Vn+1 ≤ −

(
kn+1 − 1

2

)
ξ2

n+1 +
1
2 ε2

n+1 − ςpn+1θ̃
p+1
n+1 + υpn+1θ

p+1
n+1

−ςqn+1θ̃
q+1
n+1 + υqn+1θ

q+1
n+1 − ξnξn+1 − kpn+1ξ

p+1
n+1 − kqn+1ξ

q+1
n+1

≤ −ξnξn+1 − kpn+1ξ
p+1
n+1 − kqn+1ξ

q+1
n+1 − ςpn+1θ̃

p+1
n+1 − ςqn+1θ̃

q+1
n+1 + δn+1

(61)

where
δn+1 =

1
2

ε2
n+1 + υpn+1θ

p+1
n+1 + υqn+1θ

q+1
n+1 (62)

Theorem 1. Consider the non-affine pure-feedback nonlinear system (1), based on the homeomor-
phism mapping and adaptive fixed-time neural network control scheme, choose the virtual control
law as (8), (27), the adaptive fixed-time law (16) as (35), and the actual controller as (47). The
tracking error system is practical fixed-time stability, and the upper bound of the settling time T is
independent of the initial parameters. The settling time T satisfies

T ≤ Tmax =
2

3−p
2

kp(1 − p)
+

2
kq(q − 1)

(63)

Proof. Select the following Lyapunov function

V =
n+1

∑
i=1

Vi (64)

then it has

.
V ≤ −

n+1

∑
i=1

(
kpiξ

p+1
i + ςpi θ̃

p+1
i

)
−

n+1

∑
i=1

(
kqiξ

q+1
i + ςqi θ̃

q+1
i

)
+

n+1

∑
i=1

δi (65)

Based on Lemma 1

n+1
∑

i=1

(
kpiξ

p+1
i + ςpi θ̃

p+1
i

)
≥ kp

(
n+1
∑

i=1

(
ξ2

i
2 + 1

2μi
θ̃2

i

)) p+1
2

n+1
∑

i=1

(
kqiξ

q+1
i + ςqi θ̃

q+1
i

)
≥ kq

(
n+1
∑

i=1

(
ξ2

i
2 + 1

2μi
θ̃2

i

)) p+1
2

(66)

where

kp = min
(

2
p+1

2 kpi, 2
p+1

2 μ
p+1

2
i ςpi

)
, i = 1, 2, 3 · · · n + 1

kq = min
(

2(n + 1)
1−q

2 kqi, 2(n + 1)
1−q

2 μ
q+1

2
i ςqi

)
, i = 1, 2, 3 · · · n + 1

δ =
n+1
∑

i=1
δi

(67)
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.
V ≤ −kpV

p+1
2 − kqV

q+1
2 + δ (68)

based on Lemma in [6], the system is practically fixed-time stability. �

Remark 2. A new adaptive neural network control strategy is designed. The control objective is to
drive the output signal of the error system to track the expected signal in a fixed-time. The neural
network is used to approximate the unknown function of the system and design a fixed-time adaptive
law to update the weight of the neural network. Without considering the initial conditions, the
setting time can be designed by selecting the controller parameters. Based on the fixed-time stability
theory, it is proved that the controller can realize the fixed-time stability of the closed-loop system.

Remark 3. The control deviation is obtained from the given value and the actual output value of
the system, the fixed-time adaptive laws are designed by the homeomorphic mapping of the deviation,
and the neural network weights are trained through the adaptive rate to form the control signal, to
change the regulation quality of the system. This forms a fixed-time adaptive neural network control
system, and its control structure is shown in Figure 1.

Remark 4. Programming according to the control algorithm described in equation to Equations (4),
(23), (43) and the program block diagram is shown in Figure 2

Step 1: Calculate the control deviation zi by value and output value.
Step 2: Calculate ξi according to the principle of homeomorphic mapping.
Step 3: Design the fixed-time adaptive laws to train the weights of the neural network.
Step 4: Design the neural network to estimate the nonlinear system.
Step 5: Repeat Step 1 to Step 4 when i ≤ n + 1.
Step 6: The control variables are determined based on backstepping control.

Figure 1. Fixed-time adaptive neural network control system.
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Figure 2. Fixed-time adaptive neural network control algorithm.

4. Numerical Examples

This section gives two examples to show the effectiveness of the proposed con-
trol scheme.

A. Mathematical example

The nonlinear dynamics is

.
x1 = x2 sin(x1) +

(
3 + x2

1
)(

x2 + x3
2
)

.
x2 = 2x1x2

(
sin(x1) + x2

2
)
+ x3 +

x3
3

7.
x3 = x1 + x1x2 + x3 + u

y = x1

(69)

Consider the system state
z1 = y − yd (70)

Choose the homeomorphism mapping

ξ1 = arctanh(z1) (71)

and adaptive functions have the following form:

ξ2 = ξ1 + ξ
3
5
1 + ξ

5
3
1 + sign(ξ1)θ̂1‖Ψ1(x2)‖ (72)

and controller has the following form:

u =
(

1 − z2
3

)(
−ξ2 − ξ3 − ξ

3
5
3 − ξ

5
3
3 − sign(ξ3)θ̂3‖Ψ3(x3)‖

)
(73)

where yd = sin(t) being the desired signal. Select the initial parameters as x = (1, 0, 0)T ,
and the neural network parameters chosen zeros.
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The simulation results are shown in Figures 3–6. Figure 3 depicts the tracking curve of
the given value and output value. It can be seen from the figure that the tracking error can
be sufficiently small in fixed-time and the system output is bounded. Figure 4 shows that
the system state is bounded and can converge to zero in fixed time. Figure 5 depicts the
tracking errors’ tracking curve, which shows that the tracking errors are bounded. Because
tanh(ξi) = zi, i = 1, 2, 3, therefore, the system states zi, i = 1, 2, 3 are bounded with |zi| < 1.
Figure 6 shows the time response of the output, the output is bounded, and its value is
constant after a fixed time.

Figure 3. Trajectories of the output and the desired signal.

Figure 4. Trajectories of the homeomorphism mapping states.

B. Robot model

Consider a robot model [31] is

Mr
..
qr +

1
2

mrglr sin(qr) = τr (74)

where qr is angle displacement, g and Mr are the gravitational acceleration and moment
of inertia, respectively, and mr is the mass of link and lr represents its length, τr is the
considered input torque. If x1 = qr, x2 =

.
qr, and u = τr, the dynamic system can be

transformed as follows: { .
x1 = x2

.
x2 = −mglr

2Mr
sin(x1) +

1
Mr

u
(75)
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For simulation process, the neural networks adaptive fixed-time control, the yd = 0.1 sin(t)
being the desired signal.

Figure 5. Trajectories of the system states.

Figure 6. Trajectories of the controller.

The simulation results are shown in Figures 7 and 8. Figure 7 depicts the tracking
curve of the given value and output value. It can be seen from the figure that the tracking
error can be sufficiently small in fixed-time and the system output is bounded. Figure 8
shows the time response of the control input.

Figure 7. Trajectories of the output and the desired signal.
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Figure 8. Trajectories of the controller.

5. Conclusions

So far, great breakthroughs have been made in the research of adaptive neural network
tracking controls for nonlinear systems, but there are still some control problems to be
solved. In this paper, a new fixed-time adaptive neural network tracking control strategy
is designed for pure-feedback non-affine nonlinear constrained systems. Based on the
backstepping control technology, the fixed-time adaptive neural network function of the
error system is designed. The setting time by the control parameters and adaptive law gain
parameters, that is, the control performance can be guaranteed without initial conditions,
which is more practical than the control algorithm based on Lyapunov stability theory.
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Abstract: This paper proposes an H∞ observer based on descriptor systems to estimate the state of
charge (SOC). The battery’s open-current voltage is chosen as a generalized state variable, thereby
avoiding the artificial derivative calculation of the algebraic equation for the SOC. Furthermore,
the observer’s dynamic performance is saved. To decrease the impacts of the uncertain noise and
parameter perturbations, nonlinear H∞ theory is implemented to design the observer. The sufficient
conditions for the H∞ observer to guarantee the disturbance suppression performance index are
given and proved by the Lyapunov stability theory. This paper systematically gives the design steps
of battery SOC H∞ observers. The simulation results highlight the accuracy, transient performance,
and robustness of the presented method.

Keywords: descriptor systems; SOC estimation; H∞ observer; disturbance suppression performance

1. Introduction

Over the past few years, renewable energy vehicles (REVs) have become a mainstream
consumer option, so related research about REV batteries has been of great interest [1]. The
state of charge (SOC) is a percentage of the remaining capacity to the actual capacity of the
battery, which is a vital indicator to evaluate battery performance [2,3]. Accurately tracking
the SOC can dramatically avoid battery overcharge or overdischarge, thereby extending the
battery life. However, due to a series of complex electrochemical reactions inside the battery,
it is often impossible to obtain the SOC directly through the sensors. In other words, SOC
can only be estimated by the measurable electrical signals and battery parameters. Even
worse, battery parameters are affected by external factors such as temperature, battery age,
and noise in electrical signals [4]. Accordingly, the SOC observer needs to provide sufficient
estimation accuracy even in noise and parameter perturbations, which is a daunting task.

A variety of algorithms are proposed to estimate SOC, such as the coulomb counting
method (CCM), open-circuit voltage method (OCVM), Kalaman filter (KF), sliding-mode
observer (SMO), H∞ observer, neural network algorithm, proportional-integral (PI) ob-
server, and adaptive observer [5–7]. The CCM estimates SOC by continuously measuring
and integrating the current in time. The main drawbacks of CCM are two-fold: the first
is that CCM highly depends on the initial value of observers, and the second is that it is
known as an open-loop method whose estimation value will drift in the long term [8]. Alter-
natively, because of the one-to-one correspondence (as shown in Figure 1) between the SOC
and the open-circuit voltage (OCV), the OCVM estimates the SOC by measuring the OCV
of the battery without load. However, this technique fails to estimate SOC online. Due to
their drawbacks, CCM and OCVM are never utilized separately in practical applications [9].
The KF and SMO are widely employed in the field of SOC estimation [10,11]. Nevertheless,
due to the assumption of a noise signal Gaussian, the KF falls short when the system has
noise or unmodeled dynamics [12,13]. The SMO is commonly used for SOC estimation due
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to its robustness. In [14], an OCV–SOC formula was modeled by the Nernst equation, and
a SMO was proposed to estimate SOC; simulation results validate its accuracy. However,
the estimate error of SOC may fluctuate because of the discontinuous input. A new SMO,
based on the two-circuit model presented in [15], exhibits good performance. However,
without accurate initial states, the SMO in [15] takes longer to track the true SOC.
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Figure 1. The relationship between SOC and OCV.

The influence of possible error sources on the SOC observation was analyzed in [16],
and the results show that measurement noise and modeling errors are the main factors that
limit the observation accuracy. The H∞ observer is a promising tool to handle unknown
noise and modeling errors, and its effectiveness under a variety of operating conditions has
been confirmed by experiments [17–20]. Based on the OCV–SOC formula, an H∞-switched
observer was presented in [21]; the experimental results confirm that, compared with the
KF, both the accuracy and robustness of SOC estimation are improved by its use.

Regardless of the above approaches, it is impossible to ignore the piecewise nonlinear
function of OCV versus SOC shown in Figure 1. In the battery model, the SOC fails to be
expressed explicitly in the state equation, which brings difficulties to the design observer.
In [22,23], the piecewise nonlinear function was linearized and differentiated before the
observer design. However, the differential operation produced two problems:

1. The derivation of the piecewise function increased the order of the observer, which did
not match the original system, and the observer error was not converged potentially;

2. The derivation of the current was ignored completely, so the dynamic performance of
the observer became worse.

There are both differential equations and algebraic equations in battery systems.
Such systems are also called descriptor systems, singular systems, or differential-algebraic
systems [24,25]. To avoid the differentiation of the OCV–SOC formula, it is feasible to
design the observer after modeling the battery as a descriptor system. Various methods are
developed to design observers for descriptor systems [26].

The main objective of this paper is to design a noncomplex observer to estimate
SOC accurately. To balance accuracy and complexity, this paper innovatively models the
battery as a descriptor system. The H∞ theory is applied to design the observer to improve
disturbance suppression performance. Compared with the traditional SOC estimation
method, the method proposed in this paper can accurately estimate the SOC online, and
does not require an accurate initial value. The designed observer exhibits good robustness
in the presence of noise.

This paper is organized as follows. In Section 2, for the equivalent circuit model, a
descriptor system with state variable OCV is established. In Section 3, the H∞ observer is
proposed. The sufficient conditions to solve the observer are given and proved. In Section 4,
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several simulation experiments verify the accuracy and robustness of the proposed method.
Section 5 summarizes the contribution of this paper.

Notations: M+ is the generalized inverse of matrix M, satisfying MM+M = M.
I denotes an identity matrix with appropriate dimensions. 0 is the zero matrix with
appropriate dimensions.

2. Battery Model

A resistance–capacitance (RC) equivalent circuit model is used to build a dynamic
model of the battery, as shown in Figure 2, where the variable s represents the SOC. CN is
the nominal capacity of the battery. voc represents the OCV, which is the function of SOC.
vc is the voltage across the polarized capacitor Cc. Re and Rc represent the conduction
resistance and the diffusion resistance, respectively; ie and ic are the currents of the two
branches; Rt is the terminal resistance; vt is the measurable terminal voltage, and i is the
charge and discharge current.

Figure 2. RC equivalent circuit model of the battery.

From the definition of SOC, the dynamic relationship of SOC is ṡ =
ie

CN
. In addition,

the aforementioned nonlinear function voc can be reasonably approximated as voc = k1s +
k2 + Δ f1, where Δ f1 is the nonlinearity of the OCV–SOC relationship. The two constants
k1 and k2 can be determined by fitting the curve in Figure 1. From Kirchhoff’s law and
Figure 2, the dynamic equations of the battery are:

ṡ =
−voc + vc

CN(Re + Rc)
+

iRc

CN(Re + Rc)
+ Δ f2,

v̇c =
voc − vc

Cc(Re + Rc)
+

iRe

Cc(Re + Rc)
+ Δ f3,

vt =
Rcvc + Revoc

Re + Rc
+ (

ReRc

Re + Rc
+ Rt)i,

(1)

where Δ f2 and Δ f3 are the uncertainties caused by modeling accuracy.
In this model, s ∈ (0, 1) is the independent variable of the voc, which essentially

introduces a piecewise algebraic constraint. To solve this piecewise algebraic system state
estimation problem, Refs. [22,23] ignore the change of the current to derive the voc and
vt, respectively, and model the system as a third-order system which is primordially two-
order. In the above modeling process, the derivation operation increases the order of the
system, and it is doubtful whether the observer error converges. In the actual application of
batteries, especially in the course of REVs, the current of the battery is constantly changing.
Therefore, it is obviously unreasonable to completely ignore the derivative of the current.
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Motivated by these considerations, this paper regards the OCV–SOC function as an
algebraic constraint between state variables, thereby modeling the system battery as a
descriptor system. x =

[
sT vT

c vT
oc
]T is identified as a state variable, u =

[
iT 1

]T , and

ω =
[
Δ f T

1 Δ f T
2 Δ f T

3
]T ; then, the battery is modeled as a descriptor system (2) with

n = 3 dimensions.

Eẋ = Ax + Bu + D1ω,

y = Cx + Du,
(2)

where:

E =

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦, A =

⎡⎢⎢⎢⎢⎣
0

1
CN(Re + Rc)

−1
CN(Re + Rc)

0
−1

Cc(Re + Rc)

1
Cc(Re + Rc)

k1 0 −1

⎤⎥⎥⎥⎥⎦,

B =

⎡⎢⎢⎢⎣
Rc

CN(Re + Rc)
0

Re

Cc(Re + Rc)
0

0 k2

⎤⎥⎥⎥⎦, C =

[
0

Rc

Re + Rc

Re

Re + Rc

]
,

D =

[
ReRc

Re + Rc
+ Rt 0

]
, D1 =

⎡⎣0 1 0
0 0 1
1 0 0

⎤⎦.

Before the observer design, assume that the descriptor system (2) satisfies Assump-
tion 1.

Assumption 1.

rank

⎡⎣ E A
0 E
0 C

⎤⎦ = n + rank E, (3)

where n is the number of state variables.

Under Assumption 1, the descriptor system (2) is impulse observable, which guaran-
tees there exists an observer to track the states. Actually, this assumption is not strict and
easy to achieve in battery models.

3. H∞ Observer

Design an H∞ observer described as follows:

ż =Hz + Jȳ + Mu,

x̂ =Pz − QΦBu + Rȳ,
(4)

where z ∈ Rr is the state variable of the observer, x̂ ∈ Rn is the estimated value of the
battery state, H, J, M, P, Q, and R are all unknown matrices with appropriate dimensions,
and ȳ = y − Du is the virtual output. Φ satisfies ΦE = 0.

The H∞ observer design target can be expressed as designing a stable observer (4) to
satisfy that:

1. With ω = 0, the estimate error e = x − x̂ is asymptotically stable;
2. With ω �= 0, for a prescribed level of noise γ > 0, ‖ e ‖L2< γ ‖ ω ‖L2 will be satisfied.

Define the error δ = z − NEx, where N is of appropriate dimensions. Then, one has:
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δ̇ =ż − NEẋ

=Hδ + (HNE + JC − NA)x + (M − NB)u − ND1ω,

e =x̂ − x

=Pδ + (PNE + QΦA + RC − In)x + QΦD1ω,

(5)

where ΦE = 0 is applied. Under Assumption 1, to make the error system (5) be a homoge-
neous linear differential equation for δ, the observer (4) should satisfy:

[
H ψ J
P Q R

]⎡⎣N
′
E

ΦA
C

⎤⎦ =

[
N

′
A

In

]
, (6)

M = NB, (7)

where ψ is an arbitrary matrix of appropriate dimension and N
′
= N + ψΦ.

To facilitate the analysis, define ϕ1 = −ND1 and ϕ2 = QΦD1; then, the dynamics of
the error system are given by:

δ̇ = Hδ + ϕ1ω,

e = Pδ + ϕ2ω.
(8)

Notice that Equation (6) can be solvable if and only if:

rank

⎡⎣N
′
E

ΦA
C

⎤⎦ = n. (9)

With Equation (9), the solution of Equation (6) can be described as:

H = ΓH + η1ΔP, ψ = Γψ + η1ΔQ, J = ΓJ + η1ΔR,

P = ΓP + η2ΔP, Q = ΓQ + η2ΔQ, R = ΓR + η1ΔR,

ϕ1 = Γϕ1 + η1Δϕ1 , ϕ2 = Γϕ2 + η2Δϕ2 ,

(10)

where η1 and η2 are of appropriate dimension. Define the following matrices:

ΓP = Ω+

⎡⎣ I
0

0

⎤⎦, ΔP = (I − ΩΩ+)

⎡⎣ I
0

0

⎤⎦, ΓH = N
′
AΓP,

ΓQ = Ω+

⎡⎣0

I
0

⎤⎦, ΔQ = (I − ΩΩ+)

⎡⎣0

I
0

⎤⎦, Γψ = N
′
AΓQ,

ΓR = Ω+

⎡⎣0

0

I

⎤⎦, ΔR = (I − ΩΩ+)

⎡⎣0

0

I

⎤⎦, ΓJ = N
′
AΓR,

Γϕ1 = −N
′
D1 − ΓψΦD1, Δϕ1 = −ΔQΦD1,

Γϕ2 = ΓQΦD1, Δϕ2 = ΔQΦD1,

where Ω =

⎡⎣N
′
E

ΦA
C

⎤⎦.

The following theorem gives the sufficient conditions for error system (8) to be stable
and ‖ e ‖L2< γ ‖ ω ‖L2 with (6) and (7).
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Theorem 1. For a prescribed level of noise γ > 0, under δ = 0, the error system (8) with (6) and
(7) is asymptotically stable for ω = 0, and satisfies ‖ e ‖L2< γ ‖ ω ‖L2 for ω �= 0, if there exists
a matrix X = XT > 0 and matrices Xη1 and η2, such that the following linear matrix inequality
(LMI) is satisfied:

Σ =

⎡⎣σ1 σ2 σ3
σT

2 −γ2 I σ4
σT

3 σT
4 −I

⎤⎦ < 0, (11)

where:
σ1 =ΓT

HX + XΓH + ΔT
PXT

η1
+ Xη1 ΔP, σ2 = XΓϕ1 + Xη1 Δϕ1 ,

σ3 = ΓP + η2ΔP, σ4 = ΓT
ϕ2

+ ΔT
ϕ2

ηT
2 , Xη1 = Xη1.

Proof of Theorem 1. According to (10) and (11), one can obtain:⎡⎣HTX + XH Xϕ1 PT

ϕT
1 X −γ2 I ϕT

2
P ϕ2 −I

⎤⎦ < 0. (12)

The Lyapunov function is chosen as V = δTXδ. The derivative of V is obtained as:

V̇(t) =δ̇TXδ + δTXδ̇

=δT(HTX + XH)δ + ωT ϕT
1 Xδ + δTXϕ1ω.

With ω = 0 and (12), V̇ < 0 is satisfied; hence, the system (8) is asymptotically stable.

V̇ + eTe − γ2ωTω

=
[
δT ωT][HTX + XH + PT P Xϕ1 + PT ϕ2

ϕT
1 X + ϕT

2 P ϕT
2 ϕ2 − γ2 I

][
δ
ω

]
By the Schur complement to (12), one obtains:[

HTX + XH + PT P Xϕ1 + PT ϕ2
ϕT

1 X + ϕT
2 P ϕT

2 ϕ2 − γ2 I

]
< 0.

Therefore:

V̇ < γ2ωTω − eTe,∫ ∞

0
V̇(τ)dτ <

∫ ∞

0
γ2wT(τ)w(τ)dτ −

∫ ∞

0
eT(τ)e(τ)dτ.

Under the zero initial condition, V(∞) < γ2‖w‖2 − ‖e‖2. Hence, the error system
satisfies ‖ e ‖L2< γ ‖ ω ‖L2 for ω �= 0.

Inserting the solution of (6) into (12), Theorem 1 is obtained. Then, the theorem
is proved.

From Theorem 1, the prescribed level of noise γ determines the feasibility of (11). Ac-
cording to robust control theory, γ can be selected by the following optimization problems:

min(γ)

s.t. X = XT > 0,

Σ < 0.

(13)

This optimization problem can be solved with the YALMIP toolbox [27].
The proof process of Theorem 1 embodies the following observer design steps:

1. Model the battery system as a descriptor system (2);
2. Determine the matrix Φ by ΦE = 0;
3. Determine the matrix N

′
by the (9);
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4. Choose the prescribed level of noise γ by optimization problems (13);
5. Solve the feasible solution of (11) given by Theorem 1;
6. Calculate the matrices H, J, P, Q, R, ϕ1, and ϕ2;
7. Convert the virtual output into the actual measurable output by ȳ = y − Du.

From the above steps, there are some parameters that need to be chosen. γ determines
the disturbance rejection level of the observer, which usually cannot be a large value. N

′

only needs to satisfy (9), and the numerical size of each element in the matrix N
′

has little
effect on the final result. Therefore, compared with the existing method for SOC estimation,
the proposed H∞ observer does not require complex tuning.

4. Results and Discussion

In order to illustrate the superiority of the proposed H∞ observer, this paper will
compare it with the PI observer [7] and SMO [15]. To ensure the fairness of the test, the
parameters of battery Figure 2 are shown in Table 1.

Table 1. Parameters of the lithium battery.

CN CC Re Rc Rt

18,000 F 200 F 0.003 Ω 0.003 Ω 0.001 Ω

The piecewise algebraic relationship between voc and SOC is voc = 1.2s + 3; bring the
battery parameters and voc functions into the model, and the battery modeling is complete.

It can be verified that the battery system whose parameters are shown in Table 1
satisfies Assumption 1; therefore, we can design an H∞ observer of the construction (4) by
Theorem 1.

Take a non-zero solution of the equation ΦE = 0 as Φ =
[
0 0 1

]
. Note that N

′
=[

1 0 0
0 1 1

]
satisfies (9). Based on the γmin = 0.7124 from the optimization problem (13), we

take γ = 1.1, use the YALMIP toolbox to solve the (11), and obtain the H∞ observer as:

ż =

[−0.6694 −0.5393
0.3236 −1.3969

]
z +
[−0.0027 −1.6735
−0.0003 0.8091

]
u +

[
1.0971
1.1272

]
y,

x̂ =

⎡⎣ 0.9095 −0.0754
−0.7095 0.9409
0.8825 −0.2646

⎤⎦z −
⎡⎣0.0004 0.2262

0.0003 0.1774
0.0013 −2.2062

⎤⎦u +

⎡⎣0.1508
0.1182
0.5292

⎤⎦y.
(14)

As a comparison, the PI observer applied in the technique proposed in [7] is:

˙̂x =

⎡⎣−0.0111 0.0111 0
−0.8333 0.8333 0
0.8222 0 −0.8222

⎤⎦x̂ +

⎡⎣−0.0000324
−0.0025
0.003322

⎤⎦u

+

⎡⎣0.1845
0.005

0.2

⎤⎦(y − ŷ) +

⎡⎣ 0.1
0.005

0.2

⎤⎦α,

α̇ =0.01(y − ŷ),

ŷ =
[
0 0 1

]
x̂,

(15)

where x̂ and ŷ are the estimate of
[
vT

oc vT
c vT

t
]T and vt, respectively. Notice that u = i.

The SMO proposed in [15] is shown as:
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˙̂x =

[−0.8333 0.8333
0.00926 −0.00926

]
x̂ +

[
0.0025

0.000027

]
u −

[
1.667
0.0185

]
(y − ŷ) +

[
0.0025

0.000027

]
v,

v =

⎧⎨⎩ −661.376
y − ŷ

(
6.048 × 10−3(y − ŷ) + 6.929 × 10−5(y − ŷ)1.4) y − ŷ �= 0

0 y − ŷ = 0
,

ŷ =
[
0.5 0.5

]
x̂ + 0.0025u,

(16)

where x̂ and ŷ are the estimatse of
[
vT

c vT
oc
]T and vt, respectively. The input u is the

current i.
The constant current discharge experiment, to evaluate the performance of the ob-

server, is employed as follows: choose a discharge current of 5 A whose discharge period is
3980 s, and discharge for 180 s. Figure 3 shows the current of the constant current discharge
experiment. For fairness, the known initial SOC of the battery model is 0.8, and Figure 4
shows the estimate errors from the different observers in this experiment.
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Time(s)
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Figure 3. The current of the constant current discharge experiment.
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Figure 4. SOC estimate error under the constant current discharge experiment: (a) based on the H∞

observer; (b) based on the PI observer; (c) based on SMO.

From Figure 4, the H∞ observer and the PI observer can converge to zero quicker, with
respect to the SMO. However, at each instant of discharge, the PI observer and SMO need a
short period of adjustment to reach the steady state again, while the H∞ observer based on
the descriptor system overcomes this drawback.

The initial conditions of the SOC are set as 0.3 for observers and 0.8 for the battery. In
this case, the simulation result is shown in Figure 5. Due to the inaccurate initial SOC, there
is large error of SOC from each observer at the initial moment. However, the estimate error
of the H∞ observer converges to zero within 20 s, while the estimate error of the PI observer
and SMO converge to zero within 500 s and 200 s, respectively. So, the H∞ observer is not
sensitive to accurate initial SOC and has a fast convergence speed.
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Figure 5. SOC estimate error under the constant current discharge experiment with inaccurate initial
SOC: (a) based on the H∞ observer; (b) based on the PI observer; (c) based on SMO.

The dynamic stress test (DST) is a standard test condition proposed by the Advanced
Battery Association of the United States to simulate urban driving condition for electric
vehicles. It is commonly applied to test the dynamic performance of SOC observers. The
current of DST is shown in Figure 6.
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0
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Figure 6. The current of the dynamic stress test.

Under the DST, the estimated SOC is shown in Figure 7. Generally, each observer can
track the SOC. However, from Figure 7b, the true SOC is covered by the estimated SOC from
the H∞ observer completely, which means the H∞ observer exhibits better performance for
tracking the real SOC, with respect to the PI observer and SMO.
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Figure 7. Real SOC and its estimate under the DST: (a) full graph; (b) zoomed graph.

The estimate error under the DST is plotted in Figure 8. Because of the reservation of
the current dynamic performance, there does not exist pulse mode in the estimation error
of the H∞ observer. Figures 7 and 8 illustrate the outstanding dynamic performance.
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Figure 8. Error of SOC for DST from the H∞ observer, PI observer, and SMO.

We are also interested in measuring the performance of the proposed observer’s
deleted structure (4) in the presence of parameter perturbations to see if there are im-
provements in the robustness, with respect to the PI observer and SMO. So, the case when
the capacitance and resistance parameter perturbations are given (Figure 9) is consid-
ered. Figure 10 shows the behavior of the true SOC and its estimate when the uncertainty
is present.
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Figure 9. The uncertainty factor in the battery model: (a) full graph; (b) zoomed graph.
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Figure 10. The real SOC and its estimate from the H∞ observer, PI observer, and SMO under
parameter perturbations: (a) full graph; (b) zoomed graph.

From Figure 10, due to the parameter perturbations, each observer is unable to track
the true SOC accurately. However, the estimate error of SOC from the H∞ observer is less
than the PI observer and SMO, which illustrates the robustness of the schema proposed in
this paper.
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5. Conclusions

To improve the accuracy of SOC observers and decrease the effects of the parameter
perturbations, an H∞ observer, based on descriptor systems, is designed to estimate SOC.
Firstly, the battery is modeled as a descriptor system without the extra derivative operation
of nonlinear piecewise constraints. For the uncertainty, robustness nonlinear H∞ theory is
employed to solve the observer. Furthermore, the design steps of a type of battery SOC
observer are given systematically. The simulation results show that the H∞ observer based
on descriptor systems is more effective, and the observation accuracy is higher with respect
to the PI observer and SMO. The method proposed in this paper is not sensitive to battery
parameter changes. Therefore, the proposed H∞ observer based on descriptor systems
provides a new and effective online method to estimate SOC in REVs. The extension of our
work to nonlinear H∞ observers is under study.
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Abbreviations

The following abbreviations are used in this manuscript:

REVs Renewable energy vehicles
SOC State of charge
OCVM Open-circuit voltage method
CCM Coulomb counting method
KF Kalman filter
SMO Sliding-mode observer
PI Proportional-integral
OCV Open-circuit voltage
RC Resistance–capacitance
LMI Linear matrix inequality
DST Dynamic stress test
RMSE Root mean square error
MAE Maximum absolute error
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Abstract: A disturbance/uncertainty estimation and disturbance rejection technique are proposed in
this work and verified on a ground two-wheel differential drive mobile robot (DDMR) in the presence
of a mismatched disturbance. The offered scheme is the an improved active disturbance rejection
control (IADRC) approach-based enhanced dynamic speed controller. To efficiently eliminate the effect
produced by the system uncertainties and external torque disturbance on both wheels, the IADRC is
adopted, whereby all the torque disturbances and DDMR parameter uncertainties are conglomerated
altogether and considered a generalized disturbance. This generalized disturbance is observed and
cancelled by a novel nonlinear sliding mode extended state observer (NSMESO) in real-time. Through
numerical simulations, various performance indices are measured, with a reduction of 86% and 97% in
the ITAE index for the right and left wheels, respectively. Finally, these indices validate the efficacy of
the proposed dynamic speed controller by almost damping the chattering phenomena and supplying a
high insusceptibility in the closed-loop system against torque disturbance.

Keywords: mobile robot; speed controller; active disturbance rejection control; extended state
observer; chattering phenomenon; torque disturbance; system uncertainties

1. Introduction

Generally, in most engineering applications, disturbances/uncertainties (D/Us) are
widely presented and negatively affect the performance of the control systems [1]. Control
engineering strives to minimize D/Us, and feedforward methods may attenuate or reject
the effect of disturbances that can be detected through measurement [2]. Nevertheless,
exogenous disturbances cannot be calculated or are exceptionally difficult to calculate. The
first spontaneous thought to treat this challenge is to build an observer to estimate the
disturbance. Then, an activation signal can be established to compensate for the exoge-
nous disturbance effect. The simplicity of this indication can be expanded to also reject
uncertainties. The unmodeled effects of uncertainties or dynamics can be estimated as a
proportion of the overall disturbance. As a consequence, a new term was introduced for dis-
turbance activity, which is known as “total disturbance”, which describes the accumulation
of exogenous disturbances, unmodeled dynamics, and uncertain conditions in plants. This
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class of techniques is denoted as estimation and attenuation of disturbance/uncertainty
(EAD/U). Several EAD/U structures have been individually suggested. Han first sug-
gested an extended state observer (ESO) in the 1990s [3]. An ESO is generally viewed as
playing a major essential role in the technique termed active disturbance rejection control
(ADRC) [4]. ADRC consists of three essential parts: a tracking differentiator (TD), extended
state observer (ESO), and nonlinear state error feedback controller (NLSEF).

In precision assembly applications, ADRC has been used as a whole configuration;
it has been used to perform high-accuracy control of ball screw feed drives [5]. Likewise,
a double-loop ADRC scheme was utilized for an active hydraulic suspension system [6].
Taking into account the fact that ADRC is very useful in the field of robotics, this method is
particularly useful for the control of quad helicopters because of its capability to handle
nonlinear models with significant unsettling influences with vulnerability [7]. Moreover,
many engineering systems with ADRC have proven successful [8–10]. The main objective
of this work is to design a controller that provides an active rejection of the bounded
mismatched total disturbances, which have a direct effect on the performance of permanent
magnet direct current (PMDC) motors of the DDMR. The controller guarantees a minimum
orientation error despite disturbances. Exogenous disturbance involves disturbances
including friction torques, fluctuations of the load, changes in parameters for the actuators,
and external disturbances that occur due to collisions with obstacles.

The contribution of this paper lies in applying an improved version of Han’s classical
ADRC to motion control of a DDMR, which is a nonlinear, multi-input–multi-output
(MIMO) system, as an extension of our four previous published papers [11–14]. The
proposed IADRC is constructed by combining three primary units. The first unit is the
improved nonlinear tracking differentiator (INTD), which is used to obtain a smooth and
accurate differentiation of any nonlinear signal. The INTD also declines signals with
frequencies outside a certain frequency band. The second unit in the proposed controller
is the improved nonlinear state error feedback (INSEF) controller. This unit is derived by
combining the nonlinear gains and the classical PID controller with a new control structure.
The last unit is the sliding mode extended state observer (SMESO), which is an expansion
of the linear extended state observer (LESO) method; to reduce the chattering in the control
signal, the nonlinearity and a sliding mode term are added to the LESO to obtain the
proposed SMESO, which performs better than the LESO.

The remainder of this work is structured as follows: Section 2 presents the main
results of the IADRC. In Section 3, the convergence of the proposed observers, in addition
to stability analysis of the closed-loop system, is investigated. Handling of mismatched
disturbances is analyzed within the context of the ADRC in Section 4. Mathematical
modeling of the DDMR and PMDC is introduced in Section 5. Section 6 presents the
numerical simulations of the proposed IADRC control scheme on DDMR. Finally, the work
is concluded in Section 7.

2. The Main Results: Improved Active Disturbance Rejection Control (IADRC)

Classical active disturbance rejection control is a powerful controlling method that
was first suggested by J. Han [4]. Classical ADRC can be structured by gathering a linear
extended state observer (LESO), a tracking differentiator (TD), and a nonlinear state error
feedback (NLSEF); the entire structure is presented in [4,15,16].

The enhanced configuration of the improved active disturbance rejection control
(IADRC) is shown in Figure 1. The following subsections discuss each part of the proposed
control scheme supported by necessary explanations.
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Figure 1. Schematic diagram of the second-order IADRC.

2.1. The Improved Nonlinear TD (INTD)

The INTD is the improved version of the classical tracking differentiator. The im-
provement is achieved by adopting a smooth sigmoid nonlinear function ϕ(.) = tanh(·),
instead of a sign(·) function. The reason behind choosing the sigmoid function tanh(·)
is that the ϕ(.) = tanh(·) near the origin provides a slope with a smooth shape, which
reduces the chattering phenomenon and speeds up the convergence of the proposed track-
ing differentiator in a significant way. Moreover, adding nonlinearity to the design of
the TD increases the robustness of the proposed TD against noise. Another improvement
is introduced by integrating nonlinear and linear parts. This TD presents an enhanced
dynamic performance relative to Han’s TD. An INTD for second-order systems has been
designed using the hyperbolic tangent function [11,17],{ .

r1 = r2.
r2 = −R2 ϕ(r1(t)− r(t))− Rr2

(1)

where ϕ(r1(t)− r(t)) = tanh
(

βr1−(1−α)r
γ

)
, r is the reference signal, and r1 and r2 are the

tracking reference and its derivative, respectively. The coefficients R, β, γ, and α are tuning
coefficients, with 0 < α〈1, β〉1, γ > 0, and R > 0. The configuration with the proposed
INTD can effectively eliminate the chattering phenomenon and measurement noise and
provide swift and smooth tracking of the desired reference signal. To check the stability of
the proposed tracking differentiator, the Lyapunov stability approach is utilized [11].

Definition 1 (simple sigmoid functions) [18]. a function ( ϕ : R → (−1, 1) ) is supposed to be a
sigmoid. The sigmoid function meets the following conditions:

1. The function ϕ(·) is smooth, i.e., ϕ(x) ∈ C∞;
2. ϕ(·) is an odd function;
3. The function ϕ(·) satisfies lim

x→±∞
|ϕ(x)| = 1.

Assumption 1. The function ϕ(.) in definition (4.1) is an odd function with ψ(y) =
∫ y

0 ϕ(u)du ≥ 0,
where u is a variable without any special physical meaning.

The proposed INTD has the following advantages relative to other tracking differentiators:

(i) The proposed tracking differentiator is built using a smooth nonlinear function (ϕ(·))
instead of the sign(·) function used in most conventional nonlinear differentiators. This is
an essential step toward preventing a chattering phenomenon from the output derivatives;

(ii) A second improvement is accomplished by combining the linear and the nonlinear
terms. The benefits of this are clear in suppressing high-frequency components in
the signal, such as noise. With this feature, the proposed GTD also achieves better
performance than other tracking differentiators;
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(iii) The saturation feature of the function ϕ(·) increases the robustness against noisy
signals because for large errors, even with a wide range of noise, it is mapped to a
small domain set of the function ϕ(·) (see Figure 2, range and domain sets A);

(iv) Increasing the slope of the continuous function ϕ(·) near the origin significantly
accelerates the convergence of the proposed tracking differentiator (see Figure 2,
range and domain sets B).

Figure 2. The domain and range sets of the function ϕ(·)

The convergence of the proposed INTD is investigated in the next theorem.

Theorem 1. Consider the dynamic system (1). If the signal r(t) is differentiable and
supt∈[0,∞)|

.
r(t)| = B < ∞ , then the solution of (1) is convergent in the sense that, r1(t) is

convergent to r(t) as R → ∞ .

Proof. Let, t = τ
R . Then

.
ri(t) =

dri(t)
dτ

dτ

dt
= R

dri(t)
dτ

i ∈ {1, 2} (2)

Combining (1) and (2) yields⎧⎨⎩ R
dr1( τ

R )
dτ = r2

(
τ
R
)

R
dr2( τ

R )
dτ = −R2 ϕ

(
r1
(

τ
R
)− r

(
τ
R
))− Rr2

(
τ
R
) (3)

which leads to ⎧⎨⎩
dr1( τ

R )
dτ = 1

R r2
(

τ
R
)

dr2( τ
R )

dτ = −Rϕ
(
r1
(

τ
R
)− r

(
τ
R
))− r2

(
τ
R
) (4)

Assume {
z1(τ) = r1

(
τ
R
)− r

(
τ
R
)
,

z2(τ) =
1
R r2
(

τ
R
) (5)

which results in ⎧⎨⎩ dz1(τ)
dτ =

dr1( τ
R )

dτ − dr( τ
R )

dτ
dz2(τ)

dτ = 1
R

dr2( τ
R )

dτ

(6)
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This, together with (4), yields,{
dz1(τ)

dτ = 1
R r2
(

τ
R
)− dr( τ

R )
dτ ,

dz2(τ)
dτ = 1

R
[−Rϕ

(
r1
(

τ
R
)− r

(
τ
R
))− r2

(
τ
R
)] (7)

Then, {
.
z1(τ) =

1
R r2
(

τ
R
)− dr( τ

R )
dτ ,

.
z2(τ) = −ϕ

(
r1
(

τ
R
)− r

(
τ
R
))− 1

R r2
(

τ
R
) (8)

Substituting (5) and (8), we obtain,{
.
z1(τ) = z2(τ)− dr( τ

R )
dτ ,

.
z2(τ) = −ϕ(z1(τ))− z2(τ)

(9)

Select the candidate Lyapunov function (V(z)) as

V(z) =
∫ z1

0
ϕ(v) dv +

1
2

z2
2(τ) (10)

The total derivative of V(z) with respect to τ along the trajectory of the system (9) is
given as,

.
V(z) = ϕ(z1)

.
z1 + z2

.
z2 (11)

This, together with (8), yields,

.
V(z) = ϕ(z1)

[
z2(τ)−

dr
(

τ
R
)

dτ

]
+ z2[−ϕ(z1(τ))− z2(τ)] (12)

which is derived from
.

V(z) = −ϕ(z1)
dr
(

τ
R
)

dτ
− z2

2 (13)

Finally, we obtain
.

V(z) ≤ |ϕ(z1)|
∣∣ .r(t)∣∣ 1

R
(14)

According to Assumption 1 and Definition 1,

.
V(z) ≤ B

R
(15)

lim
R→∞

.
V(z) ≤ 0 (16)

Then, the solution of (9) is globally asymptotically stable (GAS) by invoking LaSalle’s
invariance principle [19]. It follows that lim

R→∞
z1 = 0. According to (5), we obtain

lim
R→∞

r1 = r (17)

�

2.2. The Improved Nonlinear State Error Feedback Controller (INSEFC)

Consider the following observable nth-order nonlinear affine-in-control system,{
ξ(n) = f

(
ξ,

.
ξ, . . . , ξ(n−1), t

)
+ bu

y = ξ
(18)

69



Entropy 2023, 25, 514

where u(t) ∈ C(R,R) is the control input, y(t) ∈ C(R,R) is the measured output, b ∈ R

is the input gain, and f ∈ C(Rn ×R, R) is a nonlinear function. It is necessary to design
a nonlinear feedback controller ( Ψ : R → R ) such that the control effort (u(t)) is at its
minimum while achieving the following:

1. The closed-loop system is asymptotically stable in the presence of external distur-
bances, system uncertainties, and measurement noise;

2. The output (y(t)) is forced to track a known reference signal (r(t)), i.e., lim
t→∞

|r(t)− y(t)| = 0,

satisfying the transient response specifications;
3. The chattering phenomenon in the control signal (u(t)) is reduced.

The original version of the nonlinear state error feedback (SEF) functions in the form
of fal(.) was first proposed by Han [4] and expressed as,

f al(e, α, δ) =

{ e
δ1−α |e| ≤ δ

|e|αsgn(e) |e| > δ
(19)

where δ . is a small number used to express the domain of the linear function near zero [3],
and 0 < α < 1. The f al(·) is a nonsmooth, piecewise, continuous, nonlinear saturation and
a monotonously increasing function [20–23]. The curve of the f al(·) function when δ = 0.1
is shown in Figure 3a. The curve of the f al(·) function when α = 0.25 is shown in Figure 3b.
The f al(·) function is nonsmooth at the inflection point [24], and when the value of δ is too
small, it is still easy for the phenomenon of high-frequency chattering to appear. This is
true even for large δ values [25].

(a) 

 
(b) 

Figure 3. The curve of the f al(·) function: (a) δ = 0.1; (b) α = 0.25.
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When α = 0.75, the f al(·) function is almost linear. In practical terms, the value
of α is generally selected as δ = 0.01 [26] and can be further tuned and determined by
experiments [27].

The improved nonlinear state error feedback control (INSEFC) law provides more
shape flexibility within a wide range of the state error vector. This behavior improves both
the performance and the robustness of the controlled system.

The enhanced nonlinear control law uses exponential functions and sign(.), and it is
established as follows,

uINLSEF = Ψ(e) = k(e)T f (e) + uintegrator (20)

where e is the n × 1 state error vector, which is defined as,

e =
[
e(0) . . . .e(i) . . . . e(n−1)

]T
(21)

where e(i) is the state error derivative of an nth order and expressed as,

e(i) = ri+1 − ξ̂i+1 (22)

k(e) is a function of nonlinear gains and expressed as,

k(e) =

⎛⎜⎜⎜⎜⎜⎜⎝

k1(e)
...

ki(e)
...

kn(e)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
k11 +

k12

1+exp
(

μ1(e(0))
2
)
)

...(
ki1 +

ki2

1+exp
(

μi(e(i−1))
2
)
)

...(
kn1 +

kn2

1+exp
(

μn(e(n−1))
2
)
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(23)

where ki1, ki2, and μi are positive coefficients, and i ∈ {1, 2, . . . , n},. The advantage of
k(e)i is that it improves the nonlinear controller’s ability to detect even small errors.
When e(i−1) = 0, k(e)i = ki1 + ki2/2, while as e(i−1) increases, k(e)i ≈ ki1. For values of
e(i−1) in between, the value of k(e)i lies in the sector of [ki1, ki1+ki2/2], as shown in Figure 4.

Figure 4. Characteristics of the nonlinear gain function (ki(e)) for ki1 = 20 and ki2 = 5.
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The function f (e) is expressed as,

f (e) =
[∣∣∣e(0)∣∣∣α1

sign(e) . . .
∣∣∣e(i)∣∣∣αi

sign
(

e(i)
)

. . .
∣∣∣e(n−2)

∣∣∣αn
sign

(
e(n−1)

)]T
(24)

Equation (24) shows significant features in the nonlinear term |e|αsign(e). For αi � 1,
the term rapidly switches its state, as shown in Figure 5a. This feature makes the error
function ( f (e)) sensitive to small error values. When α exceeds 1, the nonlinear term
becomes less sensitive to small variations in e (see Figure 5b).

(a) 

 
(b) 

Figure 5. Characteristics of the nonlinear error function ( f (e)): (a) 0 ≤ α ≤ 0.2; (b) 0.8 ≤ α ≤ 1.2.

The control signal (u) can be limited using the nonlinear hyperbolic function (tanh(·))
in the form,

u = δ tanh
(uINLSEF

δ

)
(25)

where uINLSEF is defined in (17) and has the following features:

(i) Any real number (−∞, ∞) is mapped to a number in the range of [−δ, δ];
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(ii) The tanh(·) function is symmetric about the origin, and only zero-valued inputs are
mapped to zero outputs;

(iii) The control action (u) is limited via mapping but not clipped. Therefore, there are no
strong harmonics in the high-frequency range.

Figure 6 shows the control signal (u) against e(t) and
.
e(t), considering (25).

Figure 6. The characteristics of the control signal (u) of (25): n = 2, k11 = 20, k12 = 5, k21 = 20, k22 = 5,
μ1 = 2.5, μ2 = 1.5, α1 = 0.5, α2 = 0.5, and δ = 2.5.

Theorem 2. Consider the following observable second-order nonlinear control system (n = 2){ ..
ξ = f

(
ξ,

.
ξ
)
+ bu,

y = ξ.
(26)

as shown in Figure 7a. The PD controller is described as,

u = kpe + kd
.
e (27)

where the tracking error is e = r − y. Then, the linear control law (u) can be generalized to the form
u = Ψ(e) (see Figure 7b) such that Ψ is sector-bounded and satisfies Ψ(0) = 0.

Proof. Let x1 = x, and x2 =
.
x. Then, the system (26) can be represented as,⎧⎪⎨⎪⎩

.
ξ1 = ξ2,

.
ξ2 = f (ξ1, ξ2) + bu,

y = ξ1

(28)

Consider a convergent TD, which is described as lim
t→∞

|r1 − r| = 0, lim
t→∞

∣∣r2 − .
r
∣∣ = 0. Let

a convergent state observer be characterized by lim
t→∞

∣∣∣ξ̃1 − ξ1

∣∣∣ = 0, and lim
t→∞

∣∣∣ξ̃2 − ξ2

∣∣∣ = 0.

Since the tracking error is e = y − r,
.
e =

.
y − .

r; then, the two errors can be defined as
lim
t→∞

e = lim
t→∞

(ξ1 − r1) and lim
t→∞

.
e = lim

t→∞
(ξ2 − r2). Finally, as t → ∞ , the control law (25)

takes the following form: u = kp(r1 − ξ1) + kd(r2 − ξ2).
This formula can be expanded for an nth-order system to take the following form: u =

KTe, where K = (k1, k2, . . . , kn )T is the gain vector, e =
(

e,
.
e, . . . , e(n−1)

)T
is the tracking
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error vector, and the linear combination can be generalized to a nonlinear combination
formula described as u = Ψ(e). �

 
(a) 

 
(b) 

Figure 7. The SISO system in Theorem 1. (a) Linear combination control law; (b) nonlinear combina-
tional control law.

2.3. Sliding Mode Extended State Observer (SMESO)

In state space form, the suggested SMESO can be expressed as follows,

.
ξ̂ = FX̂ + B1u + B2g

(
y − ξ̂1

)
(29)

where ξ̂ ∈ R(n+1)×1 is a vector that comprises the observed total disturbance and states of

the plant,
.

X̂ ∈ R(n+1)×1, B1 ∈ R(n+1)×1, B2 ∈ R(n+1)×1, and F ∈ R(n+1)×(n+1).

ξ =
[
ξ1 ξ2 . . . ξn+1

]T ,
.
ξ̂ =

[ .
ξ̂1

.
ξ̂2 . . .

.
ξ̂n+1

]T

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 0

0 0
1 0

· · · 0
· · · 0

0 0

0
...

0 1
...

...

· · · 0
. . .

...
0 0
0 0

0 0
0 0

· · · 1
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(30)

B1 =
[
0 0 . . . 1 0

]T , B2 =
[
β1 β2 . . . βn+1

]T
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Now, g
(
y − ξ̂1

)
= Kα

∣∣y − ξ̂1
∣∣αsign

(
y − ξ̂1

)
+ Kβ

∣∣y − ξ̂1
∣∣β(y − ξ̂1

)
, where Kα, α, Kβ,

and β are appropriate design parameters. With n = 2, the SMESO can be expressed as,⎧⎪⎪⎨⎪⎪⎩
.
ξ̂1 = x2 + β1(Kα

∣∣y − ξ̂1
∣∣αsign

(
y − ξ̂1

)
+ Kβ

∣∣y − ξ̂1
∣∣β(y − ξ̂1

)
)

.
ξ̂2 = ξ3 + bu + β2(Kα

∣∣y − ξ̂1
∣∣αsign

(
y − ξ̂1

)
+ Kβ

∣∣y − ξ̂1
∣∣β(y − ξ̂1

)
)

.
ξ̂3 = β3(Kα

∣∣y − ξ̂1
∣∣αsign

(
y − ξ̂1

)
+ Kβ

∣∣y − ξ̂1
∣∣β(y − ξ̂1

)
)

(31)

The SMESO is the nonlinear modified version of the LESO. The proposed SMESO is
the third part of the IADRC, which considers the main part that is used to actively estimate
what is known as the “total disturbance”. Compared with the LESO, SMESO performs
better when it comes to reducing chattering in control signals. In [13], the proposed SMESO
demonstrated in detail that estimation error converges to zero asymptotically for nonlinear
gain functions. With a sliding term, estimation accuracy is increased for the nonlinear
extended state observer. As a result, the proposed method achieves excellent performance
when it comes to smoothed control signals, requiring less control energy to accomplish the
intended result [13].

3. Convergence and Stability Analysis

In this section, the convergence of the proposed SMESO and the stability of the closed-
loop system are investigated in detail to validate the proposed design techniques.

3.1. Convergence Analysis of the Proposed SMESO

To prove the convergence of the SMESO, the following assumptions are needed.

Assumption 2. There exists an upper bound for the time derivative of the generalized disturbance
(i.e., at least

.
L ∈ C1 and supt∈[0,∞)

∣∣∣ .
L
∣∣∣ = M < ∞, where ∈ R);

Assumption 3. L is a continuously differentiable function;

Assumption 4. V : Rn+1 → R+ and W : Rn+1 → R+ are continuously differentiable functions
with [16],

λ1‖η‖2 ≤ V(η) ≤ λ2‖η‖2 , W(η) = ‖η‖2 (32)

∑n−1
i=1

∂V(η)

ηi

(
ηi+1 − aik

(
η1

ω0
ρ

)
.η1

)
− ∂V(η)

∂yn
ank
(

η1

ω0n

)
η1 ≤ −W(η) (33)

Theorem 3. (SMESO convergence). Given the system of (18) and SMESO of (29), it follows that
under assumptions A3 and A5, for any initial conditions,

(i) lim
t→∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = O

(
1

ω0
n+2−i

)
(ii) lim

t → ∞
ω0 → ∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = 0

where ξi and ξ̂i symbolize the state of (18) and (29), respectively, where i ∈ {1, 2, . . . , n + 1}.

Proof. Let ei = ξi − ξ̂i, i ∈ {1, 2, . . . , n + 1}. Correspondingly, let

ηi = ω0
n−iei

(
t

ω0

)
, i ∈ {1, 2, . . . , n + 1} (34)
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Then, the dynamics of the estimation error can be expressed in a time scale as,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dη1
dt = η2 − a1k

(
η1

ω0
n−1

)
η1

dη2
dt = η3 − a2k

(
η1

ω0
n−1

)
η1

...
dηn
dt = ηn − ank

(
η1

ω0
n−1

)
η1

dηn+1
dt = Δh

ω0
2 − an+1k

(
η1

ω0
n−1

)
η1

(35)

Let the candidate Lyapunov functions (V, W : Rn+1 → R+ ) denoted by
V(η) = 〈Pη, η〉 = ηT Pη, where η ∈ Rn+1, and P is a positive definite symmetric ma-
trix. Consider (22) of assumption A4 with λ1 = λmin(P) and λ2 = λmax(P), where λmin(P)
and λmax(P) are the minimum and maximum eigenvalues of P, respectively.

.
V with regard

to t over η (over the solution of (35) )is determined as follows:

.
V(η)

∣∣∣
along (35)

= ∑n+1
i=1

∂V(η)

∂ηi

.
ηi(t) (36)

Then,

.
V(η)

∣∣∣
along (35)

=
n−1

∑
i=1

∂V(η)

ηi

(
ηi+1(t)− aik

(
η1(t)
ω0n

)
.η1(t)

)
− ∂V(η)

∂ηn
ank
(

η1(t)
ω0n

)
.η1(t) +

∂V(η)

∂ηn+1

M
ω02 (37)

Consider (33) of assumption A4; then,

.
V(η)

∣∣∣
along (35)

≤ −W(η) +
∂V(η)

∂ηn+1

M
ω02 (38)

As V(η) ≤ λmax(P)‖η‖2 and
∣∣∣ ∂V(η)

∂ηn+1

∣∣∣ ≤ ‖ ∂V(η)
∂η ‖, then

∣∣∣ ∂V
∂ηn+1

∣∣∣ ≤ 2λmax(P)‖η‖. As

V(η) ≤ λmax(P)‖η‖2 = λmax(P)W(η). Thus, −W(η) ≤ − V(η)
λmax( P) . Finally, because

λmin(P)‖η‖2 ≤ V(η), this leads to ‖η‖ ≤
√

V(η)
λmin(P) . Accordingly, and given assumption

A4,
.

V(η) becomes,
.

V(η) ≤ − V(η)
λmax(P) +

M
ω0

2 2λmax(P)
√

V(η)√
λmin(P)

. Since d
dt

√
V(η) = 1

2
1√

V(η)

.
V(η), then,

d
dt

√
V(η) ≤ 1

2
1√

V(η)

(
− V(η)

λmax(P)
+

M
ω02 2λmax(P)

√
V(η)√

λmin(η)

)
(39)

which gives
d
dt

√
V(η) ≤ −

√
V(η)

2λmax(P)
+

M
ω02

λmax(P)√
λmin(P)

(40)

which can be solved as√
V(η) ≤ 2Mλ2

max(P)
ω02
√

λmin(P)

(
1 − e−

t
2λmax(P)

)
+
√

V(η(0))e−
t

2λmax(P)
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According to assumption A4, we have λmin(P)‖η‖2 ≤ V(η). This leads to

‖η‖ ≤
√

V(η)
λmin(P) . Then,

‖η‖ ≤
√

1
λmin(P)

(
2Mλ2

max(P)
ω02
√

λmin(P)

(
1 − e−

t
2λmax(P)

)
+
√

V(η(0))e−
t

2λmax(P)

)

which yields

‖η‖ ≤ 2Mλ2
max(P)

ω02λmin(P)

(
1 − e−

t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
t

2λmax(P) (41)

It follows from (34) that,

∣∣ξi − ξ̂i
∣∣ ≤ 1

ω0n−i ‖η(ω0t)‖

It follows from (41) that,

∣∣ξi − ξ̂i
∣∣ ≤ 1

ω0n−i

(
2Mλ2

max(P)
ω02λmin(P)

(
1 − e−

ω0t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
ω0t

2λmax(P)

)

Finally,

lim
t→∞

∣∣ξi − ξ̂i
∣∣ = 1

ω0n+2−i
2Mλ2

max(P)
λmin(P)

= O
(

1
ω0n+2−i

)
(42)

and
lim

t → ∞
ω0 → ∞

∣∣ξi − ξ̂i
∣∣ (43)

�

3.2. Stability Analysis of the Closed-Loop System

In this section, the closed-loop stability is investigated for a general nonlinear SISO
uncertain system with an ADRC controller.

Assumption 5. The states ξ̂i (i = 1, 2, . . . , n) and the generalized disturbance ξn+1 = f of an
n-dimensional uncertain nonlinear SISO system are estimated by a convergent ESO, which produces
the estimated states ξ̂i, i ∈ {1, 2, . . . , n} of the plant and the estimated generalized disturbance
ξ̂n+1 as t → ∞ , i.e.,

lim
t→∞

∣∣ξi − ξ̂i
∣∣ = 0, i ∈ {1, 2, . . . , n}, (44)

and
lim
t→∞

∣∣ f − ξ̂n+1
∣∣ = 0 (45)

Assumption 6. A tracking differentiator produces a trajectory (ri , i ∈ {1, 2, . . . , n}) with mini-
mum set point change. The trajectory converges to a reference trajectory (r(i−1)) for
i ∈ {1, 2, . . . , n} with r(n) = 0 as t → ∞ , i.e.,

lim
t→∞

∣∣∣r(i−1) − ri

∣∣∣ = 0, i ∈ {1, 2, . . . , n} (46)
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Theorem 4. Consider a n-dimensional uncertain nonlinear SISO system expressed as⎧⎪⎨⎪⎩
ξi = ξi+1, i ∈ {1, 2. . . . , n − 1}
.
ξn = f

(
ξ1, ξ2, . . . , ξρ, w, t

)
+ u

y = ξ1

(47)

The system (47) is controlled by the linearization control law (LCL) signal (u) expressed by,

u = v − ξ̂n+1 (48)

where v is expressed by,

v = 1(ẽ1)ẽ1 + 2(ẽ2)ẽ2 + . . . + n(ẽn)ẽn (49)

where ẽi = ri − ξ̂i , i ∈ {1, 2, . . . , n} is the tracking error, and i : R → R+, i ∈ {1, 2, . . . , n} ;
assume that assumptions A5 and A6 hold. Then

lim
t→∞

|ẽi| = 0, i ∈ {1, 2, . . . , n} (50)

Proof. The tracking error (ẽi, i ∈ {1, 2, . . . , n}) of the closed-loop system is the error between
the reference trajectory and the corresponding plant estimated states expressed as,

ẽi = ri − ξ̂i , i ∈ {1, 2, . . . , n}

After convergence occurs, the tracking error is described by,

ẽi = r(i−1) − ξi , i ∈ {1, 2, . . . , n} (51)

For the system given in (33), the states (ξi) are expressed in terms of the plant output,
which is expressed as,

ξi = y(i−1) , i ∈ {1, 2, . . . , ρ} (52)

Substitute (52) in (51), and the tracking error is expressed by,

.
ẽi = r(i−1) − y(i−1) , i ∈ {1, 2, . . . , ρ} (53)

Differentiating the tracking error (ei, i ∈ {1, 2, . . . , n}) with regard to time yields

.
ẽi = r(i) − y(i) = ẽi+1 , i ∈ {1, 2, . . . , n} (54)

It follows that the tracking error dynamics ẽi , i ∈ {1, 2, . . . , n}) are expressed as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − y(n) = r(n) −

.
ξn

(55)

This, together with (47), yields,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − ( f + u)

(56)
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From (48) and (56), we obtain,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − v + ξ̂n+1 − f

(57)

It follows from (45) and (57) that,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − v

(58)

The tracking error dynamics given in (58) associated with the control law (v) designed
in (49) produce the following dynamics⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − 1(ẽ1)ẽ1 − 2(ẽ2)ẽ2 − . . . − n(ẽn)ẽn

(59)

Based on assumption A6, the dynamics given in (59) can be represented in compact
form as, .

ẽ = Aẽ (60)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1
... . . . . . .

. . . 0 0

. . . 0 0

. . .
...

...
0 0 0
0 0 0

− 1(ẽ1) − 2(ẽ2) − 3(ẽ3)

. . . 1 0

. . . 0 1

. . . − n−1(ẽn−1) − ρ(ẽn)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(61)

and ẽ = (ẽ1, ẽ2, . . . , ẽn)
T

The characteristic polynomial of A is expressed by

|λI − A| = λn + n(ẽn)λ
n−1 + n−1(ẽn−1)λ

n−2 + . . . + 1(ẽ1) (62)

The design parameters of the proposed controller are selected to ensure that the roots
of the characteristic polynomial (43) have a strictly negative real part, which makes (61)
asymptotically stable. Hence, lim

t→∞
|ẽi| = 0. �

Remark 1. The error vector is calculated up to the relative degree (n) of the system because the ESO
estimate system states up to n, i.e., ei = ri − ξ̂i, i ∈ {1, 2, . . . , n}. This implies that the vector k(e)
of (23) and the vector f (e) of (24) are of size n.

Corollary 1. Consider the nonlinear system and the control signal given in Theorem 2. The
control signal (v) is expressed as v = ∑n

i=1 ki(ẽi) fi(ẽi), where ki(ẽi) =
(

ki1 +
ki2

1+exp(μi ẽi
2)

)
, and

fi(ẽi) = |ẽi|αi sign(ẽi) for i ∈ {1, 2, . . . , n}. Moreover, if assumptions A5 and A6 hold, then
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lim
t→∞

∣∣ri − ξ̂i
∣∣ = 0, i ∈ {1, 2, . . . , ρ} for a suitable set of the design parameters ki1, ki2, μi, and αi with

i ∈ {1, 2, . . . , n}.

Proof. Since

ki(ẽi) fi(ẽi) =

(
ki1 +

ki2
1 + exp(μi ẽi

2)

)
|ẽi|αi sign(ẽi), i ∈ {1, 2, . . . , n} (63)

Equation (63) can be expressed as,

ki(ẽi) fi(ẽi) =

{
0 ẽi = 0

i(ẽi)ẽi ẽi �= 0
(64)

where the function i : R/{0} → R+ is an even nonlinear gain function, and:

i(ẽi) =

(
ki1 +

ki2

1 + exp
(
μi ẽ2

i
))|ẽi|αi−1, i ∈ {1, 2, . . . , n} (65)

The expression (65) is time-varying because it is a function of ẽi. For simplicity,
consider that the parameters ki2 = 0 and αi = 1 and that the expression (65) is reduced to

i(ẽi) = ki1. Consider the tracking error dynamics given in (59) with n = 2, which provides{ .
ẽ1 = ẽ2,

.
ẽn = −k11 ẽ1 − k21 ẽ2

(66)

The characteristic equation of (66) is expressed as,

|λI − A| = λ2 + k21λ + k11 (67)

The roots of the characteristic equation (67) are λ1,2 = − k21
2 +

√
k21

2−4k11
2 for

k21
2 < 4k11, which leads to a complex conjugate with a negative real part. Then,

ẽ1 → 0 and ẽ2 → 0 at t → ∞.
In Theorem 4, we assumed that r(n) = 0 for the case of r(n) in (59) not satisfying

assumption A 6, i.e., r(n) �= 0. Then, for n = 2,{ .
ẽ1 = ẽ2,

.
ẽ2 = −k11 ẽ1 − k21 ẽ2 + r(2)(t)

(68)

Let q(t) = r(2)(t) after taking the Laplace transform of both sides of (68)

sẼ1(s) = Ẽ2(s)

sẼ2(s) = −k11Ẽ1(s)− k21Ẽ1(s) + Q(s)

Solving for Ẽ1(s) and Ẽ2(s) in terms of Q(s) , we obtain

Ẽ1(s) =
Q(s)

s2 + k21s + k11
(69)

Ẽ2(s) =
sQ(s)

s2 + k21s + k11
(70)

It can be noticed from (70) that for nonzero r(2)(t) = q(t), the error ẽ1(t) tracks r(2),
which means that at a steady state, ẽ1(t) is nonzero, depending on r(2)(t). The error ẽ2 is
the derivative of ẽ1(t). �
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4. Mismatched Disturbances

To satisfy the matched condition, the ESO assumes that the plant is expressed in
the normal form [28,29]. Thus, it can only be applied to systems that can be directly
expressed in the normal form or by changing variables. When a system has zero dynamics,
performing such a transformation can be challenging. There are also nonlinear systems
with disturbances appearing in a different channel of control input; these systems fail
to satisfy the matching condition. Therefore, ADRC is no longer able to manipulate this
mismatched disturbance as before. For instance, the following nonlinear model belongs
to a class of uncertain nonlinear systems in a lower triangular form with mismatched
disturbance [30–35],⎧⎨⎩

ξi = aiξi+1 + φi(ξ1, . . . , ξi) + wi, i ∈ {1, 2, . . . , n − 1}
ξn = φn(ξ1, ξ2, . . . , ξn) + wn + bu,

y = ξ1

(71)

where ξ = (ξ1(t), ξ2(t), . . . , ξn(t))
T ∈ Rn is the system state, y(t) ∈ R is the measured out-

put, u(t) ∈ R is the control input, wi(t) ∈ R, i ∈ {1, 2, . . . , n} is the unknown exogenous dis-
turbance, and b ∈ R is the control coefficient. The function φi : Ri → R, i ∈ {1, 2, . . . , n} .

Theorem 5. A second-order nonlinear system in a lower triangular form with mismatched distur-
bances can be described as follows,⎧⎪⎨⎪⎩

.
ξ1 = a1ξ2 + φ1(ξ1) + w1.

ξ2 = φ2(ξ1, ξ2) + w2 + bu
y = ξ1

(72)

where ξ = (ξ1(t), ξ2(t))
T ∈ R2 is the system state, y(t) ∈ R is the measured output, u(t) ∈ R is

the control input, wi(t) ∈ R, i ∈ {1, 2} is the unknown exogenous disturbance, and b ∈ R is the
control coefficient. The function φi : Ri → R, i ∈ {1, 2} . If the function φ1 and the exogenous
disturbance (w1) are differentiable with regard to t, the system (72) can be transformed into the
following form, ⎧⎪⎪⎨⎪⎪⎩

.
ξ̃1 = ξ̃2.

ξ̃2 = f
(

ξ̃1, ξ̃2, w1,
.

w1, w2

)
+ b̂u

y = ξ̃1

(73)

where f
(

ξ̃1, ξ̃2, w1,
.

w1, w2

)
= a1φ2

(
ξ̃1,

ξ̃2−φ1(ξ̃1)−w1
a1

)
+

∂φ1(ξ̃1)
∂ξ1

ξ̃2 + a1w2 +
.

w1, and b̂ = a1b.

Proof. Let ξ̃1 = ξ1 and ξ̃2 =
.
ξ1. Then,

.
ξ̃2 = a1

.
ξ2 +

∂φ1(ξ1)

∂ξ1

.
ξ1 +

.
w1 (74)

By substituting (72) in (74), we obtain,

.
ξ̃2 = a1φ2

(
ξ̃1, ξ2

)
+

∂φ1

(
ξ̃1

)
∂ξ1

ξ̃2 + a1w2 +
.

w1 + a1bu (75)

Since ξ2 =
ξ̃2−φ1(ξ̃1)−w1

a1
, (75) can be expressed as,

.
ξ̃2 = a1φ2

⎛⎝ξ̃1,
ξ̃2 − φ1

(
ξ̃1

)
− w1

a1

⎞⎠+
∂φ1

(
ξ̃1

)
∂ξ1

ξ̃2 + a1w2 +
.

w1 + a1bu (76)
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Finally, system (72) can be defined as,⎧⎪⎪⎨⎪⎪⎩
.
ξ̃1 = ξ̃2,

.
ξ̃2 = f

(
ξ̃1, ξ̃2, w1,

.
w1, w2

)
+ b̂u,

y = ξ̃1

(77)

where f
(

ξ̃1, ξ̃2, w1,
.

w1, w2

)
= a1φ2

(
ξ̃1,

ξ̃2−φ1(ξ̃1)−w1
a1

)
+

∂φ1(ξ̃1)
∂ξ1

ξ̃2 + a1w2 +
.

w1, b̂ = a1b. �

Theorem 5 can be generalized easily for nth-order uncertain nonlinear systems in a
lower triangular form with mismatched disturbance wi(t), i ∈ {1, 2 . . . , n} as in (71).

5. Mathematical Modelling of The Differential Drive Mobile Robot

The mathematical model of the mobile robot mathematical is an approximation of the
physical mobile robot, which consists of the dynamical kinematic and actuator models. To
restrain the robot’s motor dynamics, an internal loop is also involved. Figure 8 illustrates
the mobile robot block diagram with an internal control loop [36].

Figure 8. Mobile robot with an internal control loop.

As shown in Figure 8, w(t), q(t), and p(t) represent the reference input velocity, the
output of the internal loop (i.e., recent velocity), and the kinematic model output (i.e.,
robot posture), respectively. The control inputs are the differences between the required
and the recent velocities (e(t) = w(t)− q(t)), while the control output (u(t)) influences
the dynamics of the mobile robot as forces or torques. The posture of the mobile robot
regarding the origin of the global coordinate system (GCS) is described by the position
coordinates (x, y) of its local coordinate system (LCS) origin, with rotation defined by an
angle (θm) [36].

As shown in Figure 9, the kinematic model can be described by the robot’s linear
velocity (Vm) and its angular velocity (ωm). However, it is desirable to describe most control
configurations according the wheel angular velocities (ωwr, ωwl). The general kinematic
model of DDMR is defined as [37–42],⎧⎪⎨⎪⎩

.
x′ = Vmcos(θm)
.
y′ = Vmsin(θm).

θm = ωm

(78)

Linear velocity is computed by averaging the linear velocities of the two wheels in the
LCS [37–40],

Vm =
(Vwr + Vwl)

2
= rw

(ωwr + ωwl)

2
(79)

The DDMR angular velocity is expressed as,

ωm =
(Vwr − Vwl)

D
= rw

(ωwr − ωwl)

D
(80)
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where Vm is the longitudinal velocity of the center of mass; ωm is the angular velocity of
DDMR; Vwr and Vwl are the longitudinal velocities of the left and right wheels, respec-
tively; ωwr and ωwl are the angular tire velocities of the left and right wheels, respectively;
and rw is the nominal radius of the tire.

Figure 9. The differential drive mobile robot (DDMR).

In [13], the nonlinear dynamics of the motor wheels were illustrated and presented in
detail. The state-space depiction of the overall motor and wheel dynamics is summarized
as follows (for the right wheel):

Jeqn
.

ωwr = −Beqnωwr + ktiar − τ′
lr (81)

La
diar

dt
= −kbnωwr − Raiar + var (82)

τ′
lr = τrext/n (83)

where var and val are the input voltages applied to the right and left motors, respectively;
iar and ial are the armature current of the right and left motors, respectively; τ′

lr and τ′
ll

are the right and left motor-developed torques, respectively; kt is a torque constant; kb is
a voltage constant; La is an electric self-inductance constant; Ra is an electric resistance
constant; the total equivalent inertia is denoted as Jeq; total equivalent damping is denoted
as Beq; n is the ratio of the gearbox; and τrext and τlext are the external torque applied at the
wheel side for the right land left wheels, respectively. Let ξ1 = ωwr ξ2 = iar, d = τ′

lr, and
u = var. Then,

.
ξ1 = −Beq

Jeq
ξ1 +

kt

Jeqn
ξ2 − 1

Jeqn
d (84)

.
ξ2 = − kbn

La
ξ1 − Ra

La
ξ2 +

1
La

u (85)

Let b1 = − 1
Jeqn , b2 = 1

La
,

f1(ξ1, ξ2) = −Beq

Jeq
ξ1 +

kt

Jeqn
ξ2 (86)

and
f2(ξ1, ξ2) = − kbn

La
(87)

The simplified model with the mismatched uncertainties and external disturbances of
the DDMR exactly fits the state-space formulation given in (53). According to Theorem 1,
the state-space model with mismatched uncertainties can be transformed into ADRC
canonical form with b̂ = 1

La
kt

Jeqn for the motor wheel model.

83



Entropy 2023, 25, 514

6. Numerical Simulations

The kinematic model of the DDMR with PMDC motors and the proposed IADRC
was designed and simulated in the MATLAB®/SIMULINK environment. Numerical
simulations of continuous state models were conducted using the MATLAB® ODE45 solver.
This Runge–Kutta ODE45 solver produces a fourth-order estimate of error using a fifth-
order method. Figure 10 shows the Simulink block diagram of the DDMR and the PMDC
motors with IADRC.

Figure 10. The Simulink® block diagram of the DDMR kinematics and the PMDC motor controlled
by the IADRC.

The PMDC motor coefficient values are set to La = 0.82, Ra = 0.1557, Kt = 1.1882,
Kb = 1.185, Beq = 0.3922, Jeq = 0.2752, and n = 3.0. The DDMR used in the simulation is
assumed to have the following coefficients: D = 0.40 and rw = 0.075. The coefficients of the
classical ADRC controller are δ1 = 0.4620, δ2 = 0.24807, α1 = 0.1726, α2 = 0.8730, β1 = 30.4,
β2 = 523.4, β3 = 2970.8, and R = 100. The coefficients of the proposed IADRC scheme
include the coefficients of the NLSEFC, which are expressed as k11 = 144.6642, k12 = 8.0475,
k21 = 25.5574, k22 = 4.8814, k3 = 0.5308, δ = 3.8831, μ1 = 44.3160, μ2 = 48.8179, μ3 = 26.1493,
α1 = 0.9675, α2 = 1.4487, and α3 = 3.5032. The ITD suggested in this paper has a set of
coefficients expressed as α = 0.4968, β = 2.1555, γ = 11.9554, and R = 16.8199. Kα = 0.6265,
α = 0.8433, Kβ = 0.5878, β = 0.04078, β0 = 30.4, β1 = 513.4, and β2 = 1570.8 represent the
coefficients of the SMESO used in this work.

The DDMR was tested by applying reference angular velocities for both wheels of
1 rad/s at t = 0 and t = 100 s. To examine the proposed IADRC performance, an exogenous
torque acting as a constant disturbance was applied to the right wheel during the simulation
at t = 30 and removed after 20 s. Figure 11 shows the applied external disturbance. Figure 12
shows the transient response of the controlled PMDC motor for the right wheel when both
the ADRC and the IADRC are applied. The figure shows an enhancement in system
response before and during the applied disturbance when the IADRC is adopted; this
behavior is evident in Figure 12c,d.
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Figure 11. The applied external torque.

(a) 
Figure 12. Cont.
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(b) 

(c) 

Figure 12. Cont.
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(d) 

Figure 12. Simulation results: (a) the angular velocity of the right wheel using classical ADRC; (b)
close-up of the response depicted in (a); (c) the angular velocity of the left wheel using IADRC; (d)
close-up of the response depicted in (c).

The orientation error (eθ) associated with the tested case is reduced intensely due to the
effectiveness of the proposed technique (see Figure 13). Note that eθ = θre f − θactual , where
θre f is the orientation of the reference trajectory, and θactual is the actual orientation. The
IADRC produces an error signal with less overshoot (3.4 × 10−3) than in the ADRC scheme
(10.5 × 10−3). The IADRC also shows a faster convergence for the error signal because of
the proposed nonlinearities in the NLSEFC controller, which strongly and quickly damp
the error signals.

(a) 

Figure 13. Cont.
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(b) 

Figure 13. Simulation results; (a) the DDMR orientation error in the case of ADRC; (b) the DDMR
orientation error in the case of IADRC.

The chattering phenomenon found in the estimated total disturbances produced by
the LESO of the conventional ADRC for both wheels (Dr and Dl) are extremely reduced by
using the SMESO of the proposed IADRC. The same is true of the control signals that drive
the two wheels (ur and ul ; see Figure 14), where a very smooth control signal is obtained as
a result of the slight increase in the overshot (compare Figure 14a,b).

(a) 

Figure 14. Cont.
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(b) 

(c) 

Figure 14. Cont.
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(d) 

Figure 14. Simulation results: (a) the control signals generated by the ADRC; (b) the control signals
generated by the IADRC; (c) the estimated total disturbance from the LESO; (d) the observed total
disturbance from the SMESO.

Tables 1 and 2 show the results based on evaluation of several OPIs. These indices
reflect the performance of the adaptive improved active disturbance rejection control. The
results are classified into kinematic and dynamic performance indices.

Table 1. DDMR kinematic performance indices.

Performance Index
Controller

ADRC IADRC

OPIx 0.0010884970 0.0005257305

OPIy 0.0016112239 0.0007447036

OPIθ 0.0000059780 0.0000017459

Table 2. Performance indices of both wheels.

Wheel Performance Index
Controller

ADRC IADRC

Right
ITAE 13.302889 1.780254

ISU 1372.090423 1407.300305

Left
ITAE 6.919226 0.146694

ISU 1343.542226 1372.124019
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where OPIx = 1
N ∑
(

xre f − xactual

)2
,

OPIy = 1
N ∑
(

yre f − yactual

)2
,

OPIθ = 1
N ∑
(

θre f − θactual

)2

ITAE = ∑ t
∣∣∣ωre f − ωactual

∣∣∣dt

ISU = ∑ u2dt

Discussion

A new nonlinear error combination (Ψ(e)) is proposed, which was used to construct
an NLSEFC. When used solely in the feedback loop, it leads to a noticeable improvement
in the performance of the closed-loop system in terms of the ISU index for both models.
This closeness is due to the common term ( f (e) = |e|αsign(e)) included in the structure of
the NLSEFC. Furthermore, the nonlinear gain function (k(e)), in contrast to the conven-
tional PID controller, produces a variable gain depending on the error value, which, in
turn, enhances the transient behavior of the system response. Furthermore, an SMESO is
suggested in this paper; the smoothness of the control signal u and the minimum overshoot
in the output response are due to using the proposed nonlinear error function (·) with
the following features: it is a smooth function, and it has high gain near the origin and
a small gain with large error values. Finally, a new tracking differentiator, named the
INTD, is proposed; it proved superior to the other tracking differentiators by solving the
common issues extant in conventional differentiators. One of these issues is the “peaking
phenomenon”. This phenomenon is reduced by considering the INTD of 4.35 with an
optimized set of parameters, i.e., a1 and a2. In addition, the proposed INTD eliminates the
“phase lag” problem that is extant in most conventional tracking differentiators due to the
scaling parameters, i.e., α and β. The input scaling parameter (α) reduces the values of the
input signal (r(t)) level (1 − α), while scaling parameter β amplifies the level of the output
signal (r1(t)), thereby accelerating the tracking phase. When these three parts are combined
to synthesize the IADRC, the proposed IADRC scheme presented in this paper and applied
to DDMR achieves the improvements mentioned above in an easier manner because the
nonlinear system is converted into a chain of integrators by the SMESO, which is simply
a linearized system controlled by a nonlinear controller. This is reflected in the DDMR in
terms of the smooth output response and chatter-free control signal. Moreover, the torque
disturbance is canceled by the IADRC scheme and provides very small values for the ITAE
and ISU indices, as shown in Tables 1 and 2.

A major improvement in the kinematic indices is achieved for the IADRC against
the conventional ADRC, where the OPIx, OPIy, and OPIθ are reduced by 51.7%, 53.78%,
and 70.794%, respectively. A significant enhancement in the time-domain response is
achieved (ITAE is lowered by 86.6175%) by increasing the ISU, which signifies the power
provided to the PMDC motor. In addition, the chattering in the control signal caused by
Han’s classical ADRC is almost eliminated by the proposed IADRC. Finally, the DDMR
orientation error is clearly reduced and swiftly decreases to zero.

7. Conclusions

An improved nonlinear ADRC controller was developed for a DDMR to provide
accurate speed tracking in the presence of high external torque disturbance. The proposed
IADRC with the SMESO generates an exact estimation of the states and the total disturbance.
The proposed IADRC with three parts, namely the SMESO, the NLSEF, and the INTD,
provides a committed scheme to enhance the ability of the conventional ADRC to achieve
disturbance estimation and attenuation. In conclusion, the simulation results show that the
developed IADRC can effectively enhance the performance of the system and improve the
accuracy and the speed of the PMDC motor of the DDMR under mismatched uncertainties
and torque disturbance. The IADRC eliminates the chattering phenomenon, which is
coherent in the conventional ADRC, with minimal increase in the overshoot of the control
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signal when disturbance occurs. The future directions for our proposed IADRC including
extending its applications to include consensus multiagent systems. The first step will be
to design a control system for every local agent for consensus disturbance rejection. The
second step with involve analysis of the design for network-connected multi-input linear or
nonlinear systems using relative state information of the subsystems in the neighborhood.
The consensus multiagent system can be configured with in leaderless or leader–follower
consensus setups under common assumptions of the network connections.
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Abstract: To address the time-optimal trajectory planning (TOTP) problem with joint jerk constraints
in a Cartesian coordinate system, we propose a time-optimal path-parameterization (TOPP) algo-
rithm based on nonlinear optimization. The key insight of our approach is the presentation of a
comprehensive and effective iterative optimization framework for solving the optimal control prob-
lem (OCP) formulation of the TOTP problem in the (s, ṡ)-phase plane. In particular, we identify
two major difficulties: establishing TOPP in Cartesian space satisfying third-order constraints in joint
space, and finding an efficient computational solution to TOPP, which includes nonlinear constraints.
Experimental results demonstrate that the proposed method is an effective solution for time-optimal
trajectory planning with joint jerk limits, and can be applied to a wide range of robotic systems.

Keywords: time-optimal trajectory planning; iterative optimization; jerk limits; time-optimal path
parameterization; phase plane

1. Introduction

Presently, industrial robotics has a wide range of applications, including welding,
palletizing, grinding and polishing, assembly, and painting [1–3]. After decades of research,
the problem of time-optimal trajectory planning (TOTP) of robots along specified paths
has been extensively studied to optimize operation time and improve the efficiency of
automated industrial robot operations [4]. TOTP is based on interpolation and introduces
the concepts of constraint and optimization to maximize the performance of the robot
and ensure the shortest time, while making the trajectory smooth and the operation run
smoothly [5]. Time-optimal path parameterization (TOPP) is a fast method for determining
critical conditions for navigating a pre-defined smooth path in a robot system’s configu-
ration space while respecting physical constraints [6]. Although finding the time-optimal
parameterization of a path subject to second-order constraints is a well-studied problem in
robotics, TOPP subject to third-order constraints (such as jerk and torque rate) has received
relatively little attention and remains largely open. Moreover, joint space trajectory plan-
ning cannot visualize the end position of the robotic arm, and Cartesian space trajectory
planning is often used in many specific industrial scenarios such as welding, cutting, or
machining that require operation on a predetermined path. Therefore, a TOTP algorithm
that satisfies the joint third-order constraints in Cartesian space is urgently needed.

Entropy 2023, 25, 610. https://doi.org/10.3390/e25040610 https://www.mdpi.com/journal/entropy95
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1.1. Related Works

Over the years, many academics have worked on the issue of TOTP for industrial
robots. This problem can be roughly divided into three main families of methods: Numeri-
cal Integration (NI), Convex Optimization (CO), and Dynamic Programming (DP).

The NI-based strategy was initiated by Bobrow et al. [7] and further developed by
other researchers. Kunz et al. [8] provided a circular-blends route differentiability approach
to ensure that the trajectory precisely follows the specified path of differentiable joint space.
Pham [9] provided a comprehensive solution to the problem of dynamic singularities.
Pham et al. [10] proposed TOPP3, a novel TOPP algorithm that addresses third-order
constraints, as well as the problem of singularities that may hinder the integration of
motion profiles and the smooth connection of optimal profiles.Shen et al. [11,12] proposed
various new characteristics of the NI method for TOTP along the defined path, and provided
explicit mathematical confirmation of these traits. Lu et al. [13] proposed a time-optimal
motion planning method for sculpted surface robot machining that takes joint space and
tool tip motion constraints into account. They solved the time-optimal tool motion planning
in robot machining using an efficient numerical integration method based on the Pontryagin
maximum principle. Methods based on NI explicitly calculate the optimal control at each
position along the path, instead of performing an implicit search such as the CO-based
method, which makes them very fast. However, finding the switch points between the
acceleration and deceleration phases is necessary, and the main reason for their failure.

The CO-based strategy has been expanded upon by numerous researchers after being
introduced by Verscheure et al. [14]. Xiao et al. [15] used the cubic polynomial fitting
method to construct the maximum pseudo-speed curve that meets the torque and speed
limits. Debrouwere et al. [16] proposed an effective sequential convex programming (SCP)
method to solve the corresponding nonconvex optimal control problems as a difference of
convex (DC) function. Pham et al. [6] presented a TOPP approach based on reachability
analysis (TOPP-RA), which iteratively computes the reachable and controllable sets at dis-
crete points along the path by solving linear programming problems (LP). Nagy et al. [17]
considered kinematics and dynamics constraints and generated the time-optimal veloc-
ity distribution for the LP control problem using the sequential optimization method.
Ma et al. [18] converted a nonconvex jerk limit into a linear acceleration constraint and
indirectly introduced it into CO for TOTP. This method preserves CO’s convexity and does
not increase the number of optimization variables, resulting in a quick calculation speed.
CO-based methods are easy to implement and quite robust, and can consider multiple
optimization objectives beyond just time. However, the optimization problem they solve is
very large. The number of variables and constraint inequalities scales with the discretiza-
tion grid size, resulting in implementation that is an order of magnitude slower than the
NI-based method.

The DP-based approach was first developed by [19] and has since been expanded
and improved upon by numerous researchers. Kaserer et al. [20] proposed a DP-based
method for solving the optimal path-tracking problem, which uses interpolation in the
phase plane. This approach considers joint speed, acceleration, torque, and mechanical
power, as well as joint jerk and torque rate limitations. Kaserer et al. [21] extended this
method to solve the time-optimal path-tracking problem for cooperative grasping tasks
involving two robots, while also accounting for robot speed, acceleration, jerk, and torque
constraints. Barnett et al. [22] introduced the bisection algorithm (BA), a novel technique
that extends DP approaches to tackle more complex problems with a larger number of
constraints. These approaches, which break down the larger problem into smaller sub-
problems, become increasingly advantageous as the number of constraints grows, compared
to direct transcription methods. Methods based on DP are simple to implement and do not
suffer from local minima problems, and they traverse all states at each path point (rather
than requiring convex space or convex function assumptions such as the CO-based method).
However, the state space to be searched is huge, resulting in implementation being one (or
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even more) orders of magnitude slower than the CO-based method. Additionally, the DP
method cannot truly achieve the global optimal point due to the issue of grid precision.

There are several alternative approaches to the TOTP problem beyond the three
groups mentioned above [23–28]. Nevertheless, these approaches also neglect the third-
order constraint and do not perform planning in Cartesian space. Table 1 summarizes and
compares the similarities and differences of the above three methods in the following five
aspects: the requirement for calculating switching points, the ability to consider multiple
optimization objectives, the ability to achieve the optimal point (rather than approximately
achieving the optimal point), the planning space, and the highest constraint order.

Table 1. A brief overview of related methods.

Methods
Calculate

Switch Points

Optimization
Objectives

(Simple,
Multiple)

Achieve
Optimal Point

Planning
Space

Constraint Order
(Second-Order,
Third-Order)

NI-based

[7,11,12] Need Simple Yes Joint/Cartesian Second-order

[8,9] Need Simple Yes Joint Second-order

[10,13] Need Simple Yes Joint Third-order

CO-based

[6,17] Not need Simple Yes Joint Third-order

[14,15] Not need Multiple Yes Joint/Cartesian Second-order

[16] Not need Multiple Yes Joint/Cartesian Third-order (Limit)

[18] Need Simple Yes Joint Third-order (Limit)

DP-based
[19,20] Not need Multiple No Joint Third-order

[21] Not need Multiple No Joint/Cartesian Third-order

[22] Not need Multiple No Joint Second-order

Ours Not need Multiple Yes Joint/Cartesian Third-order

1.2. Motivations and Contributions

Motivated by previous approaches, this paper proposes aTOTP algorithm that consid-
ers joint third-order limits in a Cartesian coordinate system, maximizing the robot operation
efficiency while maintaining smoothness and minimizing time. To achieve this, kinematic
feasibility is ensured by introducing joint velocity, acceleration, and jerk constraints on
the path parameters s, which are then relocated to the Cartesian space using a constraint
transfer method based on Lie theory (We use the Lie group SE(3) to represent the motion
of the robot end-effector in Cartesian space. The detailed description of using Lie theory
for robot forward and inverse kinematic analysis and the Jacobian matrix derivation pro-
cess is presented in the Appendix A), reducing the number of decision variables. After
establishing the optimal control problem (OCP) formulation of the TOTP problem in the
(s, ṡ) phase plane, the TOPP-RA algorithm is extended to the Cartesian space to obtain
an initial solution, and a constraint relaxation approach is used to simplify nonconvex
state-update constraints. The method is validated through simulation experiments on a
ROS-based platform and real-world experiments on an actual robot, demonstrating effec-
tiveness, generality, and robustness. This paper makes several contributions to the field of
optimal trajectory generation:

• A comprehensive and effective framework for iterative optimization is presented to
establish the OCP formulation of the TOTP problem, which is described by the path
parameter s;

• Given an efficient computational solution for computing the nonlinear TOPP in Carte-
sian space while satisfying third-order constraints in joint space;
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• Experiments have demonstrated that the proposed method can effectively generate
smoother trajectories that satisfy jerk constraints on a wide range of robot systems.

The remainder of this paper is organized as follows. Section 2 outlines the key features
of the OCP model used for the TOPP algorithm. In Section 3, we present the Cartesian-
based TOPP-RA method and describe the proposed TOPP algorithm based on iterative
optimization. Section 4 reports extensive experimental results. Finally, in Section 5, we
provide concluding remarks.

2. Problem Statement

In this section, we establish the TOPP problem as an OCP in Cartesian space, which
includes joint third-order constraints and an objective function in the (s, ṡ) phase plane.
The details of these constraints will be formulated in the following subsections.

2.1. General Description

In a n-dof robot system, the state profiles in configuration space are denoted by
x(t) = [q(t); q̇(t); q̈(t)], where q ∈ Rn represents the configuration of the system. The
control inputs u(t) represent the third derivative of the joint angles,

...
q(t), in configuration

space. The following is a standard OCP that can be used to describe the time-optimal speed
planning problem [29]:

min J(x(t), u(t))

s.t. ẋ(t) = fStatus−update(x(t), u(t)),

xmin ≤ x(t) ≤ xmax, umin ≤ u(t) ≤ umax, t ∈ [0, T];

x(0) = xinit, u(0) = uinit, x(T) = xgoal , u(T) = ugoal .

(1)

fStatus−update = 0 forms the status-update process. [xmin, xmax, umin, umax] describes the
allowable regions of state and control profiles. [xinit, uinit, xgoal , ugoal ] denotes the start
and end conditions of the state and control profiles. T represents the total time, which is
unidentified now.

To translate the above model to a TOPP problem in the (s, ṡ) phase plane, we propose
a function p(s)s∈[0,send ]

that represents a geometric path in the Cartesian space, and is
piece-wise C2-continuous. We introduce a time parameterization that itself represents the
parameter of the path, as a piece-wise C2, increasing scalar function s : [0, T] → [0, send].
The trajectory is then recovered as p(s(t))t∈[0,T] [30]. In the rest of this section, we introduce
how to complete the transformation of the TOPP problem through s : [0, T] → [0, send].

2.2. Objective Function

To minimize the total time of robot movement, the objective function J(x(t), u(t)) is
defined as

J = T =
∫ T

t=0
1dt (2)

Replace the previous equation with ds/ds = 1 and change the integral limits from
[0, T] (time) to [0, send] (s) [31]. Formula (2) is updated as follows:

J =
∫ T

t=0
1dt =

∫ T

t=0

ds
ds

dt =
∫ send

s=0

dt
ds

ds =
∫ send

s=0

1
ṡ

ds (3)

Therefore, to minimize the time, ṡ−1(s) should be as small as possible. In other words,
ṡ(s) must be as large as possible while still satisfying the various constraints mentioned
later. This means that the state trajectory must follow the boundary of the phase diagram
plotted by (s, ṡ), which is naturally aligned with TOPP-RA method.
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2.3. Constraints

In a TOPP problem, there are generally three types of constraints: status-update con-
straints, constraints on the states/control profiles, and two-point boundary constraints [32].

2.3.1. Status-Update Constraints

The state-update/kinematic constraints of a robot describe the kinematic feasibility
of the robot’s motion. Using forward and inverse kinematics, the configuration q in the
joint space can be converted to the corresponding Cartesian space representation p (see the
Appendix A for transformation method). As a result, the state and control profiles can be
expressed in terms of the geometric path p(s), which can then be further transformed to a
form represented by path parameters s, as shown in Equation (4).

d
ds

[
ṡ
s̈

]
=

⎡⎢⎢⎣
s̈
ṡ...
s
ṡ

⎤⎥⎥⎦, s ∈ [0, send] (4)

The status-update function can be rewritten by performing a second-order Taylor
series expansion at si.

ṡ = ṡi +
s̈i

ṡi
Δ(s) +

d2 ṡ
ds2

∣∣∣∣
s=ξ

(Δ(s))2

s̈ = s̈i +

...
s i

ṡi
Δ(s) +

d2 s̈
ds2

∣∣∣∣
s=η

(Δ(s))2
(5)

where s ∈ [si, si+1], ξ, η ∈ [si, s] and Δ(s) = s− si. Let us define the first-order status-update
discretization function as follows:

ṡ = ṡi +
s̈i

ṡi
Δ(s)

s̈ = s̈i +

...
s i

ṡi
Δ(s)

(6)

The error of the first-order status-update discretization function, denoted by estate
f irst, is

as follows:
estate

f irst = O(Δ2(s)) (7)

Similarly, by performing a third-order Tylor series expansion at si, the second-order
status-update discretization function and its error can be, respectively, rewritten as:

ṡ = ṡi +
s̈i

ṡi
Δ(s) + (

...
s i

ṡ2
i
− s̈2

i

ṡ3
i
)Δ2(s)

s̈ = s̈i +

...
s i

ṡi
Δ(s)− s̈i

...
s i

ṡ3
i

Δ2(s)
(8)

estate
second = O(Δ3(s)) (9)

2.3.2. States/Control Profiles Constraints

The state/control constraints of a robot refer to the physical constraints that the robot
must adhere to during its motion process. Typically, these constraints involve the robot’s
state variables, such as position, velocity, acceleration, joint angles, and so on. The con-
straints on the robot’s states and control profiles can be formulated as xmin ≤ x(t) ≤ xmax
and umin ≤ u(t) ≤ umax, respectively, where t ∈ [0, T]. These constraints essentially
limit the speed, acceleration, and jerk of the robot’s joints [33], as illustrated in the
following equations.
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⎡⎣q̇min
q̈min...
qmin

⎤⎦ ≤
⎡⎣q̇(t)

q̈(t)...
q(t)

⎤⎦ ≤
⎡⎣q̇max

q̈max...
qmax

⎤⎦, t ∈ [0, T] (10)

The derivatives of the joints are projected into Cartesian space through the Jacobian
matrix, as shown in Formula (11), which yields the derivatives of the path parameter s.

Jq̇ = p′ ṡ
Jq̈ + J̇q̇ = p′′ ṡ2 + q′ s̈

J
...
q + 2J̇q̇ + J̈q̇ = p′′′ ṡ3 + 3p′′ ṡs̈ + p′...s

(11)

where �′ is defined as the differentiation of � with respect to the path parameter s. Hence-
forth, we shall refer to s, ṡ, s̈, and

...
s as the position, velocity, acceleration, and jerk, respec-

tively. By substituting Equation (11) into Equation (10), the inequality constraints on the
states/control profiles can be expressed as follows:⎡⎣q̇min

q̈min...
qmin

⎤⎦ ≤
⎡⎣ a(s)ṡ

b(s)ṡ2 + c(s)s̈
d(s)ṡ3 + e(s)ṡs̈ + f(s)

...
s

⎤⎦ ≤
⎡⎣q̇max

q̈max...
qmax

⎤⎦, s ∈ [0, send], where (12)

a(s) := J−1(s)p′(s),

b(s) := J−1(s)(p′′(s)− J′(s)J−1(s)p′(s)),

c(s) := J−1(s)p′(s),

d(s) := J−1[p′′′(s)− 2J′(s)J−1(s)(p′′(s)− J′(s)J−1(s)p′(s))− J′′(s)J−1(s)p′(s)],

e(s) := 3J−1(s)(p′′(s)− J′(s)J−1(s)p′(s)),

f(s) := J−1(s)p′(s).

(13)

The formulas for calculating each order derivative of the Jacobian matrix (J′, J′′) will
be presented in the Appendix A.

2.3.3. Boundary Constraints

Boundary constraints refer to the limitations imposed on the state and control vari-
ables of a robot during the initial and final stages of its operation. The constraints
x(0) = xinit, u(0) = uinit, x(T) = xgoal , and u(T) = ugoal define the boundary conditions.
These boundary conditions ensure that the state and control profiles at the start moment
s = 0(t = 0) and the end moment s = send(t = T) represent the necessary facts at those
moments, respectively.

[ṡ(0), s̈(0),
...
s (0)] = [ṡ0, s̈0,

...
s 0],

[ṡ(send), s̈(send),
...
s (send)] = [ṡsend , s̈send ,

...
s send ].

(14)

In particular, more degrees of freedom are allowed in setting the control profile
...
s at

s = 0(t = 0) to ensure the normal operation of the motor.
As a summary of this section, the following OCP is established to represent the TOPP

problem based on Cartesian space:

min (3)

s.t. Status-update constraints (4);

States/Control profiles constraints (12) and (13);

Two-point boundary constraints (14).

(15)

In general, when moving from the initial state to the target state along a predeter-
mined path, speed planning aims to resolve any potential conflicts that may arise between
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kinematics-based constraints and environmental constraints. However, due to the nonlin-
ear relationship between the state and control variables, an appropriate initial solution is
required to solve the OCP (15). There is a problem with the state/control constraints (12)
in OCP (15) because the jerk of the robot is not taken into account when solving the initial
solution, which can easily lead to leaving out the free space required for kinematic feasibility.
Therefore, directly solving OCP (15) may not always be effective. An alternative option we
propose is to build an iterative framework in which the kinematic feasibility is adaptively
adjusted when it is found to be inappropriate. The details on how to find an effective
computational solution to TOPP with nonlinear constraints are described in Section 3.

3. TOPP by Iterative Optimization (TOPP-IO)

This section introduces our proposed Cartesian-based TOPP-IO method. First, we
present the initial guess and control group generated by the Cartesian-based TOPP-RA
method, followed by an explanation of the principle of the TOPP-IO method.

3.1. Cartesian-Based TOPP-RA Method

Combining with [6], we expanded the TOPP-RA method from joint space to Cartesian
space, which we call the Cartesian-based TOPP-RA method. The geometric path in Carte-
sian space, denoted by p(s), is divided into N segments with N + 1 grid points, where
(si, ṡi, s̈i,

...
s i) represents the i-th stage state and control profiles, with i ∈ [0, 1, . . . , N]. The

constraints of joint acceleration can be formulated as follows, by taking into account (12)
and (13):

Bṡ2 + Cs̈ ≤ Q̈ (16)

where B =

[
b(s)
−b(s)

]
, C =

[
c(s)
−c(s)

]
and Q̈ =

[
q̈max
−q̈min

]
. The velocity constraints of the joints

are expressed as a range of i-stage state variables, Xi = [(ṡ2
i )

lower, (ṡ2
i )

upper], which reflects
the allowable velocity of the joints.

(ṡ2
i )

lower =max
j

{
q̇min,j

aj(si)
| aj(si) > 0 or

q̇max,j

aj(si)
| aj(si) < 0

}
,

(ṡ2
i )

upper =min
j

{
q̇max,j

aj(si)
| aj(si) > 0 or

q̇min,j

aj(si)
| aj(si) < 0

}
.

(17)

where j is the j-th element of a(si), q̇min and q̇max. The state-update function for constant
acceleration over [si, si+1] is given by:

ṡ2
i+1 = ṡ2

i + 2Δi s̈i (18)

where Δ = si+1 − si.

3.1.1. Backward Pass

In considering the segment [si, si+1] and assuming that the i+1-th feasible range,
Si+1, is known, the i-th feasible range, Si = [(ṡ2

i )
−, (ṡ2

i )
+], can be calculated using the

following formula:

(ṡ2
i )

− := min ṡ2
i ,

(ṡ2
i )

+ := max ṡ2
i ,

s.t. ṡ2
i ∈ Xi,

ṡ2
i + 2Δi s̈i ∈ Si+1,

Bṡ2
i + Cs̈i ≤ Q̈.

(19)
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Obviously, Formula (19) indicates that for any ṡ2
i ∈ Si, there always exists a state

ṡ2
i+1 ∈ Si+1 that corresponds to it. In other words, we can always move from the feasible

range Si to Si+1 using the state-update function. By applying Formula (19) recursively, we
can obtain a set of transitive feasible ranges, [S0,S1, . . . ,Sn]. Any state that belongs to the
transitive feasible ranges can be transferred to the ending state when the last feasible range
set is determined.

3.1.2. Forward Pass

By transferring ṡ2
i ∈ Si from step i to ṡ2

i+1 ∈ Si+1 of step i + 1, we can recursively
reach the final state Sn. Furthermore, literature [6] has demonstrated that the transition
process occurs on a convex polygon. Therefore, selecting control variables that can reach
the upper limit of the next S will result in the shortest task time. This selection exhibits
locally greedy behavior while globally optimizing performance. Once the transitive feasible
ranges have been derived from the backward pass, the method for transferring (ṡ2

i )
∗ to

(ṡ2
i+1)

∗ using a greedy algorithm is as follows:

(ṡ2
i+1)

∗ := max(ṡ2
i )

∗ + 2Δi s̈i,

s.t. (ṡ2
i )

∗ + 2Δi s̈i ∈ Si+1,

B(ṡ2
i )

∗ + Cs̈i ≤ Q̈.

(20)

where (ṡ2
i )

∗ denotes the optimal solution at the i-th grid point. By setting determinis-
tic values of (ṡ2

0)
∗ ∈ S0 and Sn = {(ṡ2

n)
∗}, the solution of Cartesian-based TOPP-RA,

[(ṡ2
0)

∗, (ṡ2
1)

∗, . . . , (ṡ2
n)

∗], is obtained by recursively applying Formula (20).

3.2. Principle of the Proposed TOPP-IO Method

The general principle of the TOPP iterative optimization method is illustrated by
the pseudo-codes in Algorithm 1. Given a path P in Cartesian space, Algorithm 1 first
generates an initial conjecture using the ToppraGuess() function to numerically solve (15)
without joint jerk limits. This initial conjecture includes the path discretization, all the
parameters required to solve (15), and the initial values of all the decision variables. Then,
using the full content of this initial conjecture, Algorithm 1 establishes an iterative OCP
where an intermediate optimal solution is obtained from each iteration. After the first three
lines of initialization, the while loop is applied to iteratively solve the TOPPOCP. Similar
to (15), the only difference is that we add (4) as a soft constraint to the objective function.
Specifically, this iterative OCP solves the following optimization problems.

min (3) + ωso f t · fso f t(s)

s.t. States/Control profiles constraints (12) and (13);

Two-point boundary constraints (14).

(21)

where ωsi f t > 0 is a parameter used to weight the softening of the state updating, and
fso f t(s) is denoted as

fso f t(s) =
∫ send

s=0

∥∥∥∥[ṡ
s̈

]
− fStatus−update(s)

∥∥∥∥2

ds (22)

In each iteration of the while loop, the function SolveIteratively(OCPTOPP,G) is used to
solve (21) using the initial conjecture G. The function StateUpdateInfeasibility(G) evaluates
the infeasibility degree of the status update determined by fso f t(s) as given in (22). When
fso f t(s) becomes small enough, i.e., close to 0+, the function GetTrajectoryInformation(G)
is called to extract information about the optimal trajectory from the solution G.
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Algorithm 1: An Iterative Optimal Method for TOPP
Input: Geometric path in Cartesian space P
Output: Optimal trajectory information infoopti

1 G = ToppraGuess(P ) ;
2 ωso f t ← ωso f t0, iter ← 0, infoopti ← ∅ ;
3 while iter < itermax do

4 OCPTOPP ← BuildIterativeOCP(G) ;
5 G ← SolveIteratively(OCPTOPP,G) ;
6 fso f t(s) ← StateUpdateInfeasibility(G) ;
7 if fso f t(s) < eso f t then

8 infoopti ← GetTrajectoryInformation(G) ;
9 return;

10 else

11 ωso f t ← ωso f t · α, iter ← iter + 1 ;
12 end

13 end

14 return;

3.3. Properties Discussion of Algorithm 1

This subsection describes the relevant properties of the proposed TOPP-IO method in
Algorithm 1.

First, the iterative process progressively increases the feasibility and optimality of
the phase state. It is assumed that the initial solution obtained by the Cartesian frame
TOPP-RA does not satisfy the jerk constraint and, hence, is not status-update feasible. In
such cases, restoring status-update feasibility becomes the primary goal of minimizing the
objective function of OCPTOPP. Therefore, the optimal solution differs from the initial guess
by reducing the status-update infeasibility. Although the status-update infeasibility may
not be eliminated, the resulting (s, ṡ) phase diagram is closer to being feasible, providing
opportunities for further improvement in succeeding iterations.

Second, optimality is achieved when Algorithm 1 exits from line 9. As the iteration
continues, the status-update infeasibility approaches 0+ and incrementing ωso f t expedites
the procedure. When the degree of status-update infeasibility is small, the total time (3) in
the objective function of (21) dominates. Thus, the objective function of (21) is minimized,
closing in on minimizing the original objective function (3) to an accuracy level of eso f t.

Third, the OCPTOPP is always feasible, which is a crucial cornerstone of the entire
iterative framework. With strict restrictions on CPU runtime and a willingness to accept
suboptimal solutions, a feasible solution can be obtained at any point by interrupting
the iterative optimization process. With very slow motion always feasible, the solution
procedure for each (21) is consistently in the feasible region of the solution space when the
initial solution is set to 0. Thus, as long as the obtained (s, ṡ) phase diagram’s near-future
period is status-update feasible, the resulting phase states can be transferred to the next
iterative OCPTOPP for further enhancements.

4. Simulation and Real-World Experiment Results

In this section, simulation experiments will be used to demonstrate the feasibility,
performance, and generality of the proposed method, as well as an industrial robot real
machine-verification experiment will be performed, which gives practical significance
to the TOPP-IO algorithm. The proposed method is executed on Ubuntu using an Intel
i7-7700HQ @ 2.80 GHz CPU and 16-GB RAM, and all optimization problems are solved
using CasADi (CasAdi is an open-source software framework for nonlinear optimization
and optimal control. It provides a flexible and efficient interface for constructing and
solving various optimization problems, including trajectory optimization) [34]. We use the
6-DOF Firefox robot from SIASUN in both the simulation and the real world, in addition
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to the Pioneer P3-DX robot used in the simulation. The implementation of TOPP-IO was
done in C++, and the required communication between systems for these experiments was
established. Figure 1 illustrates the architecture of the implementation.

A Cartesian-based Iterative Optimization Frame

C-space
Waypoints

C-space path P

Path Interpolation
B-spline

TOPP-RA

ToppraGuess G

TOPP-IO

Velocity & Acceleration Limits

No

YesStateUpdateInfeasibilityOCP(G)

SolveIteratively(OCPTOPP) OCPTOPP =
BuildIterativeOCP(G)

Optimal trajectory
infomation Infoopti

Trajectory

Controller
SimulationExecution

Move!It plan

Move!It
Update joint state

Real-world Experiment PlatformSimulation

Figure 1. Architecture of implementation.

4.1. Experiment Settings

The joint and wheel velocity, acceleration, and jerk limits are presented in each experi-
ment, respectively, which are critical factors for the safe and efficient operation of robotic
systems. To assess the robustness and adaptability of our proposed algorithm, TOPP-IO,
we conducted a series of experiments with varying jerk limits. Specifically, we evaluated
the performance of TOPP-IO under four different jerk limits: 0.1×, 1×, 10×, and 100× the
default value. The basic parameters for the iterative optimization are carefully selected
to ensure the convergence and efficiency of the optimization process, which are listed
in Table 2.
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Table 2. Hyperparameter setting for iterative optimization.

Hyperparameter Description Value

itermax Maximum iteration number 5
ωso f t0 ωso f t initial value 105

α Multiplier to enlarge ωso f t 10
eso f t Softened constraints tolerance 16

4.2. Comparison with TOPP-RA Method

This method is built and tested on the random geometric route depicted in Figure 2,
subject to joint velocity, acceleration, and jerk limitations which are presented in Table 3.
The simulation results are compared with those obtained from the CO algorithm (TOPP-RA)
presented in [6] to demonstrate the effectiveness of the proposed strategy in controlling the
acceleration surge caused by ignoring the jerk constraints.

Table 3. Velocity, acceleration, and jerk limits of joints.

Limits Joint1 Joint2 Joint3 Joint4 Joint5 Joint6

Vel. (rad/s) 2 2 2 4 4 4
Acc. (rad/s2) 5 6 6 12 12 12
Jerk (rad/s3) 16 16 18 20 28 28

(a) Cartesian space (b) Joint space

Figure 2. The geometric path on which this approach is implemented and tested.

The results of the two approaches, TOPP-RA and TOPP-IO, in the (s, ṡ) and (s, s̈) phase
planes are presented in Figures 3 and 4, respectively. It can be observed from Figure 4 that
TOPP-RA allows for steep slopes of acceleration due to the lack of restriction on jerk, leading
to an abrupt shift in acceleration between neighboring path points. This sudden change in
acceleration can be seen in the velocity curve of Figure 3, where there is no smooth transition
between the acceleration and deceleration portions. Such abrupt changes in acceleration can
result in jerky and unstable motion, which is not desirable in many real-world applications.
To address this issue, TOPP-IO imposes explicit joint jerk limitations, leading to smoother
acceleration profiles between neighboring path points. Figure 4 shows that the TOPP-IO
method successfully restricts the acceleration mutation, preventing any abrupt changes in
acceleration. Furthermore, the velocity curve of TOPP-IO in Figure 3 exhibits smoother
transitions between the portions representing acceleration and deceleration, guaranteeing
that the nearby segments will not violate the imposed restrictions.
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Figure 3. Comparison of the TOPP-RA resultant velocity curve without jerk limitations (red dashed
line) and the one obtained from the proposed method with jerk limits (blue solid line).

Figure 4. Comparison of the TOPP-RA resultant acceleration curve without jerk limitations (red
dashed line) and the one obtained from the proposed method with jerk limits (blue solid line).

To further evaluate the performance of the two approaches, we compare their ex-
ecution times in Table 4 and display the corresponding speed, acceleration, and jerk
curves in Figure 5 for various jerk limits (100×, 10×, 1×, and 0.1×). In the TOPP-RA
method, it is evident that the acceleration profiles are bang-bang, satisfying all joint
second-order constraints.

With all third-order kinematic constraints, the jerk profiles are bang-bang in the TOPP-
IO method, leading to smoother transitions between the portions representing acceleration
and deceleration. Without joint jerk limits, the maximum acceleration is about 1638.4 rad/s3.
As the jerk limit is decreased from “none” to 100× and 10× jerk limits, the execution time
only slightly increases from 2.81067 s to 2.89393 s and 2.90326 s, respectively, and the
smoothing effect of the speed profile is not immediately noticeable. The speed profile
becomes smoother as the jerk limits approach 1× jerk limits. Notably, even when the jerk
limit is set to 0.1× jerk limits, TOPP-IO can still produce a valid solution, albeit with an
increased execution time.
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Figure 5. Velocity, acceleration, and jerk profiles for various methods and jerk restrictions. (a) Speed,
(b) Acceleration, and (c) Jerk.

Table 4. Execution time of different trajectory planning algorithms and jerk restrictions.

Method TOPP-RA TOPP-IO

Jerk Limits (rad/s3) - 100× 10× 1× 0.1×
te (s) 2.81067 2.89393 2.90326 4.02941 8.63447

4.3. Application on Mobile Robot

Our method applies not only to manipulators but also to a wide range of robots.
To demonstrate its flexibility, we computed a ground trajectory for the Pioneer P3-DX, a
diff-drive mobile robot. The wheel velocity, acceleration, and jerk limitations are presented
in Table 5. Screenshots of the operational phase as well as the wheel speed curve in
comparison to TOPP-RA are shown in Figure 6.

Table 5. Velocity, acceleration, and jerk limits of wheels.

Limits Wheel1 Wheel2

Vel. (rad/s) 2 2
Acc. (rad/s2) 4 4
Jerk (rad/s3) 8 8

The restrictions on wheel jerk and route jerk constraints have similar effects on con-
trolling acceleration mutation. In this study, jerk restrictions were defined as wheel jerk
constraints that effectively limit acceleration mutation in the route. The robot trajectories
obtained from TOPP-RA and the proposed method are presented in Figure 7. Table 6 indi-
cates that the maximum absolute values of the robot’s acceleration and jerk curves obtained
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from the proposed method are reduced by 60.28% and 69.82%, respectively, compared to
those from TOPP-RA.

(a) Cartesian space (b) Wheel space

Figure 6. The ground path on which this approach is implemented and tested.

Table 6. Comparing the maximum absolute value of the robot’s acceleration and jerk curves between
the two approaches.

Acceleration (m/s2) Jerk (m/s3)

TOPP-RA 3.98086 26.4858
TOPP-IO 1.58118 7.9937

Degree of decline 60.28% 69.82%

(a) Mobile robot acceleration (b) Mobile robot jerk

Figure 7. Comparing the resulting mobile robot acceleration (a) and jerk (b) from TOPP-RA and the
ones obtained from the proposed approach.

4.4. Real-World Experiments

In real-world experiments, we applied our method to the welding industry where
the objective is to complete tasks as quickly, safely, and efficiently as possible. TOPP-IO
succeeded in executing the assignment in a timely, safe, and stable manner. The running
state of the Firefox robot in the actual world is shown in Figure 8 and is consistent with the
simulation results.
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(a) Simulation (t = 0 s) (b) Simulation (t = 1.42 s) (c) Simulation (t = 2.67 s) (d) Simulation (t = 4.62 s)

(e) Real Experiment (t = 0 s) (f) Real Experiment (t = 1.42 s) (g) Real Experiment (t = 2.67 s) (h) Real Experiment (t = 4.62 s)

Figure 8. Real-world experiments (e–h) in accordance with the simulation (a–d).

We performed both quantitative and qualitative analyses of our method’s performance
during the actual operation process. Specifically, we analyzed the position error of each
joint and examined the speed-tracking situation using joint1 as an example. Figure 9a
shows the joint position error of the TOPP-RA method during actual operation, while
Figure 9b displays the joint position error of the TOPP-IO method under the same path.
In addition, Table 7 compares the performance of our TOPP-IO method with that of the
TOPP-RA method. The results show that the average and maximum position errors of all
joints in TOPP-IO have been reduced to different degrees during operation. The absolute
values of the average position error and maximum position error have been reduced by
about 29% and 27%, respectively, compared to the TOPP-RA method.

Table 7. The absolute values of the average and maximum joint position error on different trajectory
planning algorithms.

Joint1 Joint2 Joint3 Joint4 Joint5 Joint6

Average
position error

TOPP-RA (rad) 0.0160 0.0296 0.0293 0.0075 0.0066 0.0192

TOPP-IO (rad) 0.0112 0.0205 0.0206 0.0053 0.0047 0.0135

Degree of decline 30.13% 30.67% 29.81% 29.60% 29.65% 29.46%

Maximum
position error

TOPP-RA (rad) 0.0518 0.0911 0.0849 0.0270 0.0183 0.0621

TOPP-IO (rad) 0.0339 0.0624 0.0557 0.0196 0.0127 0.0444

Degree of decline 34.63% 31.54% 34.36% 27.62% 30.36% 28.47%

To examine the speed-tracking situation, we used joint1 as an example. Figure 10a
shows the speed-tracking of the TOPP-RA method during actual operation, while Figure 10b
presents the speed curve of our TOPP-IO method, which considers the third-order con-
straint. Only the second-order constraint of joint space is considered, which leads to
snap-point (represented by the gray circle), or the sudden change in joint acceleration,
resulting in the inability to track the given speed on the actual physical robot. As shown in
the zoomed-in section of Figure 10a, the snap-point causes fluctuations in the speed curve.
In contrast, our TOPP-IO method eliminates the snap-point and enables smooth tracking of
joint speed. Our method ensures a smooth trajectory and efficient, steady completion of
the task while maintaining high speed.
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(a) TOPP-RA joint position error (b) TOPP-IO joint position error

Figure 9. Comparing the resulting joint position error from TOPP-RA (a) and the ones obtained from
proposed approach (b).

(a) TOPP-RA velocity curve (b) TOPP-IO velocity curve

Figure 10. Comparing the resulting joint1 velocity curve from TOPP-RA (a) and the ones obtained
from proposed approach (b). (The gray circle represented the snap-point).

5. Conclusions

In this paper, we develop a comprehensive and efficient iterative optimization frame-
work for solving the TOTP problem with joint third-order constraints. The main contribu-
tions and results of this paper are as follows:

• The framework is constructed from the bottom up in the Cartesian coordinate system
and can be applied to both manipulator and mobile robots;

• Our study has identified two main challenges in the framework: how to consistently
represent the TOTP problem in the Cartesian space using the (s, ṡ) phase plane, while
imposing third-order kinematic constraints on each joint, and how to devise an efficient
computational solution strategy that uses a constraint relaxation approach to simplify
nonconvex constraints without violating them;

• We demonstrated the effectiveness of our proposed framework through both simu-
lation and physical experiments. Compared to the TOPP-RA method, our approach
effectively reduced the maximum absolute values of the robot’s jerk and the aver-
age absolute values of the position error over 60% and 29%, respectively. These are
critical factors in ensuring smooth robotic velocity tracking and reducing impact
during operation.

Our framework has a few limitations. First, we assume that the path of the end-effector
in Cartesian space is predetermined. We use B-spline interpolation to generate continuous,
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smooth end-effector poses from the given path points. Second, our approach accepts
suboptimal solutions when a feasible solution can be obtained at any point by interrupting
the iterative optimization process.

Our future work can be divided into two main areas:

• First, we aim to extend our framework to handle both path planning and speed
planning simultaneously, which will enable our method to generate feasible solutions
more efficiently;

• Second, we plan to explore the potential of the constraint relaxation approaches
and achieve real-time performance. Moreover, handling dynamic environments is a
challenging and interesting area for future research.
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Abbreviations

The following abbreviations are used in this manuscript:

TOTP time-optimal trajectory planning
TOPP time-optimal path parameterization
NI Numerical Integration
CO Convex Optimization
DP Dynamic Programming
DC difference of convex
SCP sequential convex programming
TOPP-RA TOPP approach based on reachability analysis
TOPP-IO TOPP approach based on iterative optimization
LP linear programming
BA bisection algorithm
NLP nonlinear programming

Appendix A. From Configuration Space to Cartesian Space

In this appendix, we introduce how to determine the position and attitude of the
end-effector and their derivatives using the robot joint variables and their derivatives of
each order, and then convert them into path parameter s for representation. This process
involves forward kinematics, inverse kinematics and the derivatives of Jacobian matrix,
which will be described in detail in the following subsections.

Appendix A.1. Forward and Inverse Kinematics

ψ is defined as the screw coordinate of the spiral axis relative to the spatial coordinate
system. Its Lie algebra representation is as follows:

se(3) =
{

ψ =

[
ρ
φ

]
∈ R

6, ρ ∈ R
3, φ ∈ so(3), ψ∧ =

[
φ∧ ρ

0T 1

]
∈ R

4×4
}

(A1)
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The Lie group corresponding to ψ can be expressed as

SE(3) =
{

Ψ =

[
R �

0T 1

]
∈ R

4×4, R ∈ SO(3), � ∈ R
3
}

(A2)

where R and � separately denote the directions and positions of the rigid-body. The
mapping between the Lie algebra ψ and the corresponding Lie group Ψ is given by:

Ψ = exp(ψ∧) =
[

exp(φ∧) (I−exp(φ∧))φ∧ρ+φφTρ

‖φ‖2

0T 1

]
(A3)

Consider a robot system with n degrees of freedom, whose configuration is represented
by q = [q1, q2, · · · , qn]T ∈ Rn. The forward kinematics model of the robot is determined
as follows:

Ψend(q) =
n

∏
i=1

exp(ψ∧
i qi)ΨS =

[
Rend �end
0T 1

]
(A4)

where ΨS represents the pose matrix of the end coordinate system relative to the space
coordinate system when the robot is in the initial position; (qi, ψi) denote the joint position
and twist, respectively, of the i-th joint; Rend and �end separately denote the orientations
and positions of the end-effector.

For a given robot model, it is possible to convert the end pose p expressed in Carte-
sian space to the corresponding joint values q in joint space using inverse kinematics.
Similarly, the joint values q can be converted to the end pose p through forward kinemat-
ics. Thus, the reciprocal transformation between p and q can be achieved through these
two transformations.

Appendix A.2. Explicit Expressions of High-Order Jacobian Derivatives

Jacobian matrix in Formula (13) is as follows:

J = Jp · Jb =

[
A−1(r) O

O Rsb(r)

]
· [β1, β2, . . . , βn

]
(A5)

where Jb(q) ∈ R6×n represents the geometric Jacobian matrix; r ∈ R3 represents the
exponential coordinate of the axis angle, which is reflected in the last three lines of the p(s).
In Jp ∈ R6×6, A(r) ∈ R3×3 and Rsb(r) ∈ R3×3 can be expressed as:

A(r) = I − 1 − cos‖r‖
‖r‖2 r∧ +

‖r‖ − sin‖r‖
‖r‖3 (r∧)2,

Rsb(r) = exp(r∧).
(A6)

Since r can be expressed by p(s), the first-order and second-order path parameter
derivatives of Jp are expressed as follows:

J′p(p(s)) =

⎡⎢⎢⎣−A−1(p(s))
dA(p(s))

ds
A−1(p(s)) 0

0T dRsb

ds

⎤⎥⎥⎦,

J′′p(p(s)) =

⎡⎢⎢⎣2A−1 dA

ds
A−1 dA

ds
A−1 − A−1 d2A

ds2 A−1 0

0T d2Rsb

ds2

⎤⎥⎥⎦.

(A7)
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(1) First-order path parameter derivative J′: The first-order derivative of Jacobian matrix
J with respect to the path parameter s is as following:

J = J′p · Jb + Jp · J′b (A8)

The matrices Jp and J′p depend on the path parameter s, while Jb is a function of
the joint values q, which can be obtained by forward and inverse kinematics. Each
column of Jb(q) can be represented as an adjoint matrix, given by:

βi = Ad−1
Ψi

(ψi) = (Ψiψ
∧
i Ψ−1

i )∨ ∈ R
6, where

Ψi =
n

∏
j=1

exp(ψ∧
j qj)ΨS.

(A9)

According to the chain rule of differentiation, the first-order derivative of the geometric
Jacobian matrix with respect to the path parameter s, denoted as J′b, and its i-th column,
denoted as β′

i, can be expressed as:

J′b =
[
β′

1, β′
2, . . . , β′

n
]
,

β′
i =

n

∑
j=1

∂βi
∂qj

q′j

=

[
∂βi
∂q1

,
∂βi
∂q2

, . . . ,
∂βi
∂qn

]
q′

=

[
∂βi
∂q1

,
∂βi
∂q2

, . . . ,
∂βi
∂qn

]
J−1p′.

(A10)

In combination with the literature [35],
∂βi
∂qj

can be calculated using (βi, βj) as follows:

∂βi
∂qj

=

{
0, j < i

adβj
(βi) = (β∧

j β∧
i − β∧

i β∧
j )

∨, j ≥ i (A11)

(2) Second-order path parameter derivative J′′: The second-order derivative of the Jaco-
bian matrix J with respect to the path parameter s is given by:

J = J′′p · Jb + J′p · J′b + Jp · J′′b (A12)

According to the chain rule, the second-order path parameter derivative, J′′b , and its
i-th column, β′′

i , can be denoted as:

J′′b =
[
β′′

1 , β′′
2 , . . . , β′′

n
]
,

β′′
i =

∂

∂s
(

n

∑
j=1

∂βi
∂qj

q′j)

=
n

∑
j=1

∂βi
∂qj

q′′j +
∂

∂s
(

n

∑
j=1

∂βi
∂qj

)q′j

=

[
∂βi
∂q1

,
∂βi
∂q2

, . . . ,
∂βi
∂qn

]
q′′

+

[
∂

∂s
(

∂βi
∂q1

),
∂

∂s
(

∂βi
∂q2

), . . . ,
∂

∂s
(

∂βi
∂qn

)

]
J−1p′.

(A13)

where
q′′ = J−1(p′′ − J′J−1p′) (A14)

113



Entropy 2023, 25, 610

and
∂

∂s
(

∂βi
∂qj

) =

{
0, j < i

adβj
(β′

i) + adβ′
j
(βi), j ≥ i (A15)

Overall, this appendix establishes the forward kinematics of a robot using Lie theory
and symbolically derives the first-order and second-order derivatives of the Jacobian
matrix. Higher-order Jacobian matrices could be derived similarly. Furthermore, the
inverse kinematics for a specific robot model can be easily obtained.
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Abstract: Aimed at the objective of anti-disturbance and reducing data transmission, this article
discusses a novel dynamic neural network (DNN) modeling-based anti-disturbance control for a
system under the framework of an event trigger. In order to describe dynamical characteristics of
irregular disturbances, exogenous DNN disturbance models with different excitation functions are
firstly introduced. A novel disturbance observer-based adaptive regulation (DOBAR) method is then
proposed, which can capture the dynamics of unknown disturbance. By integrating the augmented
triggering condition and the convex optimization method, an effective anti-disturbance controller is
then found to guarantee the system stability and the convergence of the output. Meanwhile, both the
augmented state and the system output are constrained within given regions. Moreover, the Zeno
phenomenon existing in event-triggered mechanisms is also successfully avoided. Simulation results
for the A4D aircraft models are shown to verify the availability of the algorithm.

Keywords: dynamic neural networks (DNNs); event-triggered control; anti-disturbance control;
adaptive control; saturation constraint; output constraint

1. Introduction

As is well-known, many real-world controlled systems are often subjected to unknown
external disturbances [1–5]. Currently, there are various recognized anti-disturbance con-
trol algorithms that can be used to eliminate the effects caused by unknown disturbances,
such as adaptive theory, robust control and sliding mode control [6–8]. However, the
motivation of these methods is to suppress disturbances in the form of feedback rather than
feed-forward compensation, which usually makes the reaction time linger and reduces the
accuracy [1,2,9]. In order to overcome these limitations, an active feed-forward method of
rejecting disturbances based on the disturbance estimation technique is proposed. This
method is usually called a disturbance-observer-based control (DOBC) and can proactively
offset those unknown disturbances [1,2,4,10–17]. Due to its fast reaction and good com-
patibility, the DOBC method has been successfully applied to many classical controlled
systems, such as permanent magnet synchronous motor (PMSM) systems [11], vehicle
control systems [12], Markov jump systems [13], multi-agent systems [15], non-Gaussian
distribution systems [16] and so on. However, in order to better estimate disturbances, the
DOBC method usually needs to acquire information on the frequency and amplitude of
unknown disturbances [1,2]. As a result, most of the DOBC results can only cope with linear
or regular disturbances, including constant and harmonic disturbances (see [1,2,14–16]
for details). When being affected by those irregular nonlinear disturbances—for example,
variable amplitude or frequency disturbances—how to realize the dynamic estimation is a
major motivation. In short, exploring more in-depth disturbance observation strategies is
one of the most important research objectives.
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In either practical systems or theoretical analysis, the problem of control constraints
is inevitable. As a typical input constraint phenomenon, actuator saturations frequently
occur in almost all control devices and can have a great negative impact on the system
performance [18]. Based on this, many researchers began to study effective saturation
control algorithms [19–27]. In [19], multiple auxiliary matrices and convex hull partitioning
methods were discussed to enlarge the ellipsoidal region of stability. By using bilinear
matrix inequalities (BLMIs) or linear matrix inequalities (LMIs) schemes, the polytopic tech-
nique was explored to drag the saturation constraint into a designed convex set [20–23]. In
order to obtain less conservative results, the sector bounding approach also became popular
for describing the saturation function [22]. Moreover, when coupling with other nonlinear
characteristics or typical controlled systems, corresponding anti-windup strategies and
performance analysis were also discussed in [22–27]. Parallel to the input constraint, both
the output and state-constrained controls are also attractive topics driven by both practical
and theoretical requirements [28,29]. Among the existing results, the symmetric barrier
Lyapunov function (BLF), asymmetric BLF and error transformation proved to be effective
in dealing with output constraints [28–31]. However, the aforementioned discussions are
only limited to the single-input single-output (SISO) systems or triangular multiple-input
multiple-output (MIMO) systems. It is urgent to explore new control methods to guar-
antee the state or output constraints of general MIMO nonlinear systems. Further, when
multiple constraints and unknown disturbances are coupled, how to design an effective
anti-disturbance constrained controller is another motivation of the work.

Generally, most controlled systems adopt a time-triggered mechanism (also called
periodic sampling mechanism), which is rather convenient for theoretical analysis and con-
ventional engineering applications. However, when the system performance has reached
the designed requirements in networked environments, data transmission and calcula-
tion do not stop immediately, which will inevitably cause a waste of bandwidths and
computing resources to a certain extent [32]. Due to this consideration, the idea of event
triggering is proposed by equipping event-triggered schedulers at sensor nodes [33,34].
In the event-triggered control (ETC) framework, control tasks are carried out only after
the well-designed triggering criteria are violated, which can availably decrease resource
utilization while achieving a satisfactory system performance [35]. Some exciting results
regarding ETC systems have successfully addressed traditional problems of robust control,
output feedback control, sliding mode control, adaptive control, and so on [34–40]. In prac-
tical applications, Ref. [41] proposed an effective decentralized event-triggered algorithm
to guarantee the dynamical performance of power systems. Based on the event-triggered
theory, the effective attitude tracking control was discussed for the surface vessels [42].

On the basis of the analysis above, this paper explores a novel event-based anti-
disturbance constraint control problem for general MIMO systems subject to unknown
disturbances and multiple constraints. The proposed scheme has the following charac-
teristics. Firstly, a DNN disturbance model was employed to identify those indescribable
irregular disturbances, which further enriches the varieties of disturbances when compared
with most existing anti-disturbance results [1,2,11,13–15]. By designing the adaptive law
for adjustable parameters of DNNs, an active disturbance-observer-based adaptive control
(DOBAC) algorithm was designed to successfully realize the dynamical estimation and
rejection of unknown disturbances. Secondly, in order to avoid the waste of resources and
achieve favorable dynamical tracking, an event-triggered mechanism with the designed
augmented triggering condition was introduced into the controlled system. Further, a
composite event-triggered anti-disturbance controller can be smoothly implemented after
decoupling the saturated input with the disturbances. Thirdly, unlike many previous
non-convex results [20,22], the improved convex optimization algorithm was constructed
to simultaneously satisfy the multi-objective control requirements, including the stability of
the augmented system, dynamical tracking performance, state constraint, output constraint
and non-Zeno phenomenon. It also represents a major expansion with respect to those
single-constraint control or dynamical tracking problems. By introducing two kinds of
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different disturbances, the simulation examples of the A4D model are presented to reflect
the significance of the algorithm.

2. Problem Description

Considering the MIMO system with external disturbances and an input constraint as{
ẋ(t) = Ax(t) + Bsat(u(t) + g(t))

z(t) = Cx(t)
(1)

where u(t) ∈ Rm, z(t) ∈ Rp, x(t) ∈ Rn and g(t) ∈ Rm are, respectively, the control input,
the system output, the state vector and the unknown disturbance. A ∈ Rn×n, B ∈ Rn×m

and C ∈ Rp×n are the coefficient matrices. sat(∗) stands for the saturation constraint,
which is expanded as sat(∗) = [sat1(∗), . . . , satm(∗)]T , where sati(∗) = sign(∗)min(∗, 1)
stands for the signum function.

To better estimate unknown disturbances, g(t) is described by an external model with
adjustable parameters as {

σ̇(t) = Wσ(t) + M∗Φ(σ(t))

g(t) = Vσ(t)
(2)

where σ(t) ∈ Rn1 represents the middle state of the DNN model, and W and V are
corresponding coefficient matrices. In addition, M∗ ∈ Rn1×n1 represents the optimal
model parameter matrix, and Φ(∗) can be seen as the activation function of DNNs
with Φ(∗) = [φ1(∗), . . . , φn1(∗)]T . Due to the powerful identification capacity of DNNs
(see [43,44]), DNN models ought to be useful identifiers to depict different types of distur-
bances by selecting different activation functions.

For the purpose of achieving a favorable dynamic tracking performance, an augmented
state is defined as

x̄(t) =
[

xT(t),
∫ t

0
eT(τ)dτ

]T
(3)

where the error is defined by e(t) := z(t)− zd with zd standing for the expected system
output, and zd is a nonzero vector. According to (1) as well as (3), the extended system can
be expressed by {

˙̄x(t) = Āx̄(t) + B̄sat(u(t) + g(t)) + Ḡzd

z(t) = C̄x̄(t)
(4)

with

Ā =

[
A 0
C 0

]
, B̄ =

[
B
0

]
, Ḡ =

[
0
−I

]
, C̄ =

[
CT

0

]T

Moreover, the polyhedron boundary skill is employed to identify the function with
saturation. By selecting a matrix P1, the ellipsoid is constructed as

Λ(P1, 1) =
{

x̄(t) ∈ R
n+p : x̄T P1 x̄ ≤ 1

}
(5)

Based on this, a polyhedron is structured as

L(H) =
{

x̄(t) ∈ R
n+p :

∣∣∣Hl x̄
∣∣∣ ≤ 1, l ∈ Qm

}
(6)

where Qm = {1, 2, · · ·, m},Hl stands for the lth row of H. Further, the lemma is imported.

Lemma 1 ([18–20]). Let K, H ∈ Rm×(n+p). For every ζ ∈ Rn+p, if ζ ∈ L(H), then

sat(Kζ) = co
{

DiKζ + D−
i Hζ, i ∈ Q

}
(7)
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where co(∗) stands for the convex hull representation, and Q = {1, · · · , 2m}. In addition, Di is a
diagonal matrix, in which each element is 0 or 1, and it satisfies Di + D−

i = I.

3. Event-Triggered PI Controller Design

For reducing the waste of resources in networked environments, an event-trigger-
based proportional-integral (PI) controller is designed in this part.

First, the novel augmented event triggering condition is defined as

tk+1 = inf
{

t > tk : (x̄(t)− x̄(tk))
TΨ(x̄(t)− x̄(tk)) > δ2 x̄T(t)Ψx̄(t)

}
(8)

where tk represents the moment at which the event is triggered in kth, and x̄(t) and x̄(tk)
are the augmented states at the current sampling time and the latest triggered time. The
scalar δ satisfies 0 ≤ δ < 1, and Ψ > 0 represents a designed positive definite matrix.

Define

ek(t) =
[

e1k
e2k

]
, t ∈ [tk, tk+1) (9)

with ⎧⎪⎨⎪⎩
e1k(t) = x(t)− x(tk)

e2k(t) =
∫ t

0
e(τ)dτ −

∫ tk

0
e(τ)dτ =

∫ t

tk

e(τ)dτ
(10)

Then, we can derive from (9) and (10) that

ėk(t) =
[

ẋ(t)
e(t)

]
=

[
ẋ(t)

Cx(t)− zd

]
(11)

In the event-triggered mechanism, the event trigger monitors whether the events
occur. Once the triggering condition eT

k (t)Ψek(t) ≤ δ2 x̄T(t)Ψx̄(t) + δ1e−ςt is not met, a new
event will occur. The event detector then sends the updated data x̄(t) to the control port.
Otherwise, the current updated data will be put away.

Based on this, the event-triggered PI state feedback controller is expressed by the form

u(t) = −ĝ(t) + Kx̄(tk), K = [KP, KI ], t ∈ [tk, tk+1) (12)

where KP and KI stand for the control gains to be sought.

4. Event-Triggered DOBAC Algorithm Design

For the sake of estimating unknown disturbance g(t) accurately, an adaptive observer
with adjustable weight is built. The specific expression of the adaptive DO is described as⎧⎪⎨⎪⎩

ṙ(t) = M̂(t)Φ(σ̂(t))− L(−Āx̄(t)− Ḡzd − B̄u(t)) + (W+LB̄V)(−Lx̄(t) + r(t))
σ̂(t) = −Lx̄(t) + r(t)

ĝ(t) = Vσ̂(t)

(13)

where L is the gain to be devised later, r(t) represents the instrumental variable and M̂(t)
is the adjustable dynamical weight, and its adaptive law is defined as

˙̂M(t) = −‖σ̂(t)‖M̂(t) + γP2σ̂(t)ΦT(σ̂(t)) (14)

where γ > 0 is a given parameter and P2 > 0 will be solved in the next section.
The following theorem gives the boundedness proof of the adjustable parameter M̂(t).
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Theorem 1. If the adaptive parameter M̂(t) is updated by (14) and the initial condition satisfies
M̂(0) ∈ ΘM̂, then M̂(t) ∈ ΘM̂ will be guaranteed for all t ≥ 0, where

ΘM̂ =
{

M̂(t) | ‖M̂‖F ≤ γ
√

n1‖P2‖
}

is a known compact set.

Proof. Design the function as

Γ(t) =
1
2

tr
{

M̂T(t)γ−1M̂(t)
}

. (15)

According to the above Formula (14), we have

Γ̇ = −γ−1‖σ̂(t)‖‖M̂(t)‖2
F +
∥∥∥σ̂T(t)P2M̂(t)Φ(σ̂(t))

∥∥∥ (16)

The excitation function is chosen as

Φ(σ(t)) =
[
1/
(
e−κσ1 + 1

)
, · · · , 1/

(
e−κσn1−1 + 1

)
, 1
]T

where κ is a positive constant. The boundary condition ‖Φ(σ̂(t))‖ ≤ √
n1 can easily be

achieved. Further, (16) is rewritten as

Γ̇ = ‖σ̂(t)‖‖M̂‖F

(
γ−1‖M̂‖F −√

n1‖P2‖
)

(17)

which certifies that Γ̇(t) ≤ 0 once the inequality ‖M̂(t)‖F > γ
√

n1‖P2‖ holds. Hence, if the
initial condition satisfies M̂(0) ∈ ΘM̂, then holds M̂(t) ∈ ΘM̂ holds.

The following discussion is concerned with the decoupling problem of a nonlinear
saturated input under the event-triggered framework. According to Lemma 1, by choosing
H = [H1,−V] to satisfy η(t) ∈ L(H), ∀t ∈ [tk, tk+1), one has

sat(u(t) + g(t)) =
2m

∑
i=1

χi(DiK + D−
i H1)x̄(tk)− Veσ(t) (18)

where the scalars χi meet the condition 0 ≤ χi ≤ 1 and ∑2m

i=1 χi = 1. eσ(t) = σ̂(t)− σ(t),
η(t) =

[
x̄T(tk), eT

σ (t)
]T .

Introducing the input (18) to the system (4) results in the form

˙̄x(t) =

(
Ā +

2m

∑
i=1

χi B̄(DiK + D−
i H1)

)
x̄(t)−

2m

∑
i=1

χi B̄(DiK + D−
i H1)ek(t)− B̄Veσ(t) + Ḡyd (19)

Defining M̃(t) = M∗ − M̂(t) and applying (2), (13) and (17), we arrive at

ėσ(t) = (W + LB̄V)eσ(t)−
2m

∑
i=1

χiLB̄D−
i (H1 − K)x̄(t)− M̃(t)Φ(σ̂(t))

+
2m

∑
i=1

χiLB̄D−
i (H1 − K)ek(t) + M∗(Φ(σ̂(t))− Φ(σ(t))) (20)

Further, by integrating the system (19) with the error dynamic system (20), we
can obtain

ξ̇(t) = Ãξ(t) + G̃yd + Ĩ
(

M∗(Φ(σ̂(t))− Φ(σ(t)))− M̃Φ(σ̂(t))
)

(21)
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where

ξ(t) =

⎡⎣ x̄(t)
eσ(t)
ek(t)

⎤⎦, G̃ =

⎡⎣ Ḡ
0
Ḡ

⎤⎦, Ĩ =

⎡⎣ 0
I
0

⎤⎦, Ã =

⎡⎣ Ā + ∏11 −B̄V −∏11
−∏21 W + LB̄V ∏21

Ā + ∏11 −B̄V −∏11

⎤⎦

∏
11

=
2m

∑
i=1

χi B̄(DiK + D−
i H1), ∏

21
=

2m

∑
i=1

χiLB̄D−
i (H1 − K)

In the next section, by importing the convex optimization method, the desirable
gains K and L will be given to meet the multi-objective control requirements of the
augmented system.

5. Analysis and Proof of Multi-Objective Tracking Control Performance

For the sake of ensuring the performance of the closed-loop system, some related
assumptions are necessary.

Assumption 1. The selected basis function Φ(∗) is assumed to satisfy the following Lipschitz
condition:

(Φ(σ)− Φ(σ̂))T(Φ(σ)− Φ(σ̂)) ≤ eT
σ (t)U

T
σ Uσeσ(t) (22)

where Uσ is a known positive definite matrix.

Assumption 2. The optimal parameter M∗ is usually an unknown bounded matrix, so there exists
a positive definite matrix M̄ satisfying the inequality M∗T M∗ ≤ M̄.

Assumption 3. The unknown disturbance g(t) is supposed to satisfy the condition gT(t)g(t) ≤ θg,
where θg is a constant. Further, because of gT(t)g(t) = σT(t)VTVσ(t) ≤ θg, another inequality

condition follows: σT(t)σ(t) ≤ θg
λmin(VTV)

.

In this section, the following four theorems will give the relevant proofs of dynamic
performances of the closed-loop system (19), including the stability, dynamical tracking,
output constraint and non-Zeno phenomenon.

Theorem 2. For given parameters μi > 0, i = 1, 2, δ > 0 and δ1 > 0, if there exist the matrices
Ψ̃ > 0, Q1 = P−1

1 > 0, P2 > 0 and Ri, i = 1, 2, 3, the following inequality is made:⎡⎢⎢⎢⎢⎣
σ11 σ12 σ13 Ḡ 0
∗ σ22 σ23 0 P2
∗ ∗ μ2Ψ−1 − 2μQ1 0 0
∗ ∗ ∗ −μ2

1 I 0
∗ ∗ ∗ ∗ −M̄−1

⎤⎥⎥⎥⎥⎦ < 0 (23)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11 = sym

{
ĀQ1 +

2m

∑
i=1

χi B̄
(

DiR1 + D−
i R2

)}
+ δ2Ψ̃ + Q1

σ12 = −B̄V −
(

2m

∑
i=1

χiR3B̄D−
i (R2 − R1)

)T

σ13 = −
2m

∑
i=1

χi B̄(DiR1 + D−
i R2)

σ22 = sym{P2W + R3B̄V}+ UT
σ Uσ + μ−2

2 I + P2

σ23 =
2m

∑
i=1

χiR3B̄D−
i (R2 − R1)
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is solvable, and the adaptive law of M̂(t) is designed by (14); then, both the controlled system (19)
and the dynamical error system (20) will be stable and the augmented variable ξ(t) will retain a
small set Θξ(t), where

Θξ(t) =

{
ξ(t) | ‖ξ(t)‖ ≤

√(
μ2

1y2
d + κ

)
/λmin(P1)

}
.

Moreover, the gain matrices K, H1, L and Ψ are, respectively, given by

K = R1Q−1
1 , H1 = R2Q−1

1 , L = P−1
2 R3, Ψ̃ = Q1ΨQ1

Proof. Select the Lyapunov functions as

V1(x̄(t), t) = x̄T(t)P1 x̄(t) (24)

and
V2(eσ(t), t) = eT

σ (t)P2eσ(t) + tr
{

M̃T(t)γ−1M̃(t)
}

(25)

Along the trajectory of (19), we have, from (24), that

V̇1 ≤ x̄T(t)sym

{
P1 Ā +

2m

∑
i=1

χiP1B̄
(

DiK + D−
i H1

)}
x̄(t) + x̄T(t)

{
μ−2

1 P1ḠḠT P1 + δ2Ψ
}

x̄(t)

− 2x̄T(t)
2m

∑
i=1

χiP1B̄
(

DiK + D−
i H1

)
ek(t)− 2x̄T P1B̄Veσ(t) + μ2

1z2
d − eT

k (t)Ψek(t) (26)

The derivative of V2 along (20) is deduced by

V̇2 ≤ eT
σ (t)

(
sym(P2W+P2LB̄V)+P2M̄P2+UT

σ Uσ

)
eσ(t)

− 2eT
σ (t)

2m

∑
i=1

χiP2LB̄D−
i (H1 − K)x̄(t) + 2eT

σ (t)
2m

∑
i=1

χiP2LB̄D−
i (H1 − K)ēk(t)

+ 2‖σ̂(t)‖‖M∗‖2
F +

√
2θgn1

λmin(VTV)
‖P2‖

(
γ
√

n1P2 +
√

tr(M̄)

)
(27)

Notice that

2‖σ̂(t)‖‖M∗‖2
F ≤ 2‖σ(t)‖‖M∗‖2

F + 2‖eσ(t)‖‖M∗‖2
F

≤ 2

√
θg

λmin(VTV)
tr(M̄) + μ2

2(tr(M̄))
2 + μ−2

2 eT
σ (t)eσ(t) (28)

Then, integrating (26) and (27) with (28) produces

V̇1 + V̇2 ≤ ξT(t)Ωξ(t) + μ2
1y2

d + κ (29)

where the parameter κ is expressed as

κ =

√
2θgn1

λmin(VTV)
‖P2‖

(
γ
√

n1P2 +
√

tr(M̄)

)
+ 2

√
θg

λmin(VTV)
tr(M̄) + μ2

2(tr(M̄))
2 (30)

and

Ω =

⎡⎣ �11 �12 �13
∗ �22 �23
∗ ∗ −Ψ

⎤⎦ (31)
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�11 = sym

{
P1 Ā + P1

2m

∑
i=1

χi B̄(DiK + D−
i H1)

}
+ μ−2

1 P1ḠḠT P1 + δ2Ψ

�12 = −P1B̄V −
(

P2

2m

∑
i=1

χiLB̄D−
i (H1 − K)

)T

�13 = −P1

2m

∑
i=1

χi B̄(DiK + D−
i H1)

�22 = sym{P2(W + LB̄V)}+ P2M̄P2 + UT
σ Uσ + μ−2

2 I

�23 = P2

2m

∑
i=1

χiLB̄D−
i (H1 − K).

Based on the Lemma 2, by multiplying the matrix diag{P1, I, P1, I, I, I} to two sides
of (23), we have

(23) ⇐⇒ Ω < diag{P1, P2, 0}
Then, (29) is expressible as

V̇1 + V̇2 ≤ −ξT(t)P̃ξ(t) + μ2
1z2

d + κ (32)

where P̃ = diag{P1, P2, αI}, with α being a proper positive constant. If

ξT(t)P̃ξ(t) > μ2
1z2

d + κ

then it is easy to arrive at
V̇1 + V̇2 < 0.

Thus, for any x̄(t), eσ(t) and ek(t), we have

ξT(t)P̃ξ(t) ≤ max
{

ξT(0)P̃ξ(0), μ2
1z2

d + κ
}
= π (33)

which implies that the controlled system (21) is stable with the original state ξ(0). Thus,
the state ξ(t) can be ensured to converge into Θξ(t). The proof is complete.

Theorem 3. For given positive parameters μi, i = 1, 2 and δ, if there exists P−1
1 = Q1 > 0,

P2 > 0, Ψ̃ > 0 and Ri, i = 1, 2, 3 satisfying (23) and the conditions[
Q1 Q1C̄T

i
∗ (

π−1z2
di
)

I

]
≥ 0, i = 1, 2, · · · , p (34)⎡⎣ π−1 Rl

2 Vl

∗ Q1 0
∗ ∗ P2

⎤⎦ ≥ 0, l = 1, 2, · · · , m (35)

where C̄i and zdi, respectively, represent the ith row of C̄ and the ith component of zd, Rl
2 and Vl are,

respectively, the ith row of R2 and V and the adaptive regulation law of M̂(t) is designed by (14),
the augmented system (21) will be stable and the tracking error of the output will astringe to zero;
that is,

lim
t→∞

z(t) = zd

Moreover, the state saturation constraint η(t) ∈ L(H) will also be satisfied. In addition, the
gain matrices K, H1, L and Ψ are, respectively, given by

K = R1Q−1
1 , H1 = R2Q−1

1 , L = P−1
2 R3, Ψ̃ = Q1ΨQ1
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Proof. Similar to the above Theorem, the stability of the augmented system (21) will be
proved. From (34), it is not hard to deduce that

C̄T
i C̄i ≤ π−1z2

diP1.

Thus, the inequality can be obtained by

z2
i (t) = x̄T(t)C̄T

i C̄i x̄(t) ≤ π−1z2
di x̄

T(t)P1 x̄(t) ≤ z2
di (36)

On one hand, it can be known that the term
∫ t

0 e(τ)dτ is a part of x̄(t). Therefore,
when t → +∞, it can be verified that the integral item must be bounded. Meanwhile,
due to the constraint condition of each component of the output (36), the sign of e(t) will
stay the same for all t ≥ 0. In general, it can be concluded that the tracking error satisfies
limt→∞ z(t) = zd.

On the other hand, according to the Theorem 1, the η(t) will stay in the defined
ellipsoid Ω(P̄, π), where P̄ = diag{P1, P2}. In addition, by multiplying left and right sides
of (35) with the matrix diag{I, Q−1

1 , I}, one has⎡⎣ π−1 Hl
1 Vl

∗ P1 0
∗ ∗ P2

⎤⎦ > 0 (37)

Applying the Schur formula into (37) yields(
Hlη(t)

)T(
Hlη(t)

)
≤ π−1ηT(t)P̄η(t) ≤ 1 (38)

Thus, it can be inferred that Ω(P̄, π) ⊂ L(H) can be met for all η(t). Therefore,
η(t) ∈ L(H) can be pledged for all η(t) ∈ Ω(P̄, π).

The next theorem is concerned with the problem of how to determine the minimum
triggering time interval.

Theorem 4. For the system (4), under the designed event-triggering format (8), the minimum
triggering interval can be given by

T̃ = min
k

{tk+1 − tk} =
1
a

ln
(

1 +
a
b

Δ(t)
)
> 0 (39)

where

a =
∣∣λmax(Ā)

∣∣, b = a‖B̄‖‖x̄(tk)‖+ ‖Ḡ‖‖zd‖, Δ(t) = δ
λmax(Ψ)

λmin(Ψ)
‖x̄(t)‖ (40)

Proof. From (9), it is obtained that

ėk(t) = Āx̄(t) + B̄sat(u(t) + g(t)) + Ḡzd

Furthermore, for all t ∈ [tk, tk+1), one has

d
dt
‖ek(t)‖ ≤ |λmax(Ā)|‖ek(t)‖+ |λmax(Ā)|‖x̄(tk)‖+ ‖B̄‖+ ∥∥Ḡ

∥∥‖zd‖ (41)

By defining a and b as given in (40), the inequality (41) is described as

d
dt
‖ek(t)‖ ≤ a‖ek(t)‖+ b (42)
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It is easy to deduce that ∥∥∥Ψ
1
2 ek(t)

∥∥∥ ≤ a
b

(
ea(t−tk) − 1

)
Based on the event-triggering condition, by solving Δ(t) = a

b

(
ea(t−tk) − 1

)
, we

can achieve
T̃ =

1
a

ln
(

1 +
a
b

Δ(t)
)

which is the minimum triggering time interval. Based on the definition of x̄(t), ‖x(t)‖ �= 0
is true. Thus, the minimum triggering time interval T̃ > 0 holds. In conclusion, the Zeno
phenomenon will not happen in the designed event-triggered algorithm.

Please note that (23) in Theorem 2 is not a standard LMI and is actually a BLMI.
Generally, the BLMI can be solved by fixing the matrix R3 or the matrices R1 and R2
beforehand. As such, the results in Theorem 2 really do not give a convex optimization
algorithm. Therefore, the next theorem intends to further improve the results of Theorem 2.

Theorem 5. Given parameters μi > 0, αi > 0, δ > 0 and δ1 > 0, if there are matrices P2 > 0,
Q1 = P−1

1 > 0, Ψ̃ > 0, R > 0 and Ri such that the conditions⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 ψ12 ψ13 Ḡ 0 Q1 0
∗ ψ22 0 0 P2 0 0
∗ ∗ ψ33 0 0 0 Q1
∗ ∗ ∗ −μ2

1 I 0 0 0
∗ ∗ ∗ ∗ −M̄−1 0 0
∗ ∗ ∗ ∗ ∗ −α−1

1 I 0
∗ ∗ ∗ ∗ ∗ ∗ −α−1

3 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (43)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ11 = sym

{
ĀQ1 +

2m

∑
i=1

χi B̄
(

DiR1 + D−
i R2

)}
+ δ2Ψ̃

ψ12 = B̄V

ψ13 = −
2m

∑
i=1

χi B̄(DiR1 + D−
i R2)

ψ22 = sym{P2W + R3B̄V}+ UT
σ Uσ + μ−2

2 I + α2 I

ψ33 = μ2Ψ−1 − 2μQ1

and

ε < 2
√

α1α2α3

α1 + α2
(44)

are solvable, and the adaptive regulation law of M̂(t) is designed by (14), the augmented system (21)
will be stable. The gain matrices K, H1, L and Ψ are, respectively, given by

K = R1Q−1
1 , H1 = R2Q−1

1 , L = P−1
2 R3, Ψ̃ = Q1ΨQ1.

Proof. Similar to Theorem 2, by taking the derivative of the functions given in (24) and (25),
inequalities (26) and (27) can still be satisfied. As for the coupling term

eT
σ (t)

2m

∑
i=1

χiLB̄
(

DiK + D−
i H1)x̄(tk

)
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in (34), we can conclude that, if the inequality (43) holds, then there must exist a parameter
ε > 0, depending on L, K and H1, such that

eT
σ (t)

2m

∑
i=1

χiLB̄
(

DiK + D−
i H1)x̄(tk

) ≤ ε‖eσ(t)‖(‖x̄(t)‖+ ‖ek(t)‖) (45)

By means of (43), (27) is translated as

V̇2 ≤ eT
σ (t)

(
sym(P2W+P2LB̄V)+P2M̄P2+UT

σ Uσ

)
eσ(t) + ε‖eσ(t)‖(‖x̄(t)‖+ ‖ek(t)‖)

+

√
2θdn1

λmin(VTV)
‖P2‖

(
γ
√

n1P2 +
√

tr(M̄)

)
+ 2‖σ̂(t)‖‖M∗‖2

F (46)

Furthermore, by using (26) and (46), we can obtain

V̇1 + V̇2 ≤ ξT(t)Ω1ξ(t) + ε‖eσ(t)‖‖x̄(t)‖+ ε‖eσ(t)‖‖ek(t)‖+ μ2
1y2

d + κ (47)

where

Ω1 =

⎡⎣ �11 P1B̄V �13
∗ �22 0
∗ ∗ −Ψ

⎤⎦.

By using the Schur lemma, we can attain

(43) ⇐⇒ Ω1 < diag{α1 I, α2 I, α3 I}.

Then, (47) is inferred as

V̇1 + V̇2 = −ξ̄T(t)Υξ̄(t) + μ2
1y2

d + κ (48)

where

ξ̄(t) = [‖x̄(t)‖, ‖eσ(t)‖, ‖ek(t)‖]T , Υ =

⎡⎣ α1 0 − ε
2

∗ α2 − ε
2

∗ ∗ α3

⎤⎦ (49)

It is noted that, if Υ is a positive real matrix, the stability of system (21) can be pledged.
Further, the characteristic polynomial of Υ is described by

4α3λ2
i − 4(α1α3 + α2α3)λi +

(
4α1α2α3 − α1ε2 − α2ε2

)
= 0 (50)

where λi are the eigenvalues of Υ. From (50), it is inferred that

λ1 + λ2 = α1 + α2 > 0

λ1λ2 =
4α1α2α3 − (α1 + α2)ε

2

4α3

If the condition (44) is met, then it is easy to conclude that λ1λ2 > 0. To sum up,
the matrix Υ is a positive real matrix and thus the augmented system (21) is proved to
be stable.

6. Simulation

Consider the A4D aircraft model as the controlled system. In a flight environment of
16,000 ft altitude and 0.9 Mach, the dynamics of the A4D system can be modeled by (1),
where x(t) ∈ R4 represents the state of the aircraft, x1(t) is the forward velocity

(
f t · s−1),

x2(t) is the attack angle (rad), and x3(t) and x4(t) are the velocity of pitch
(
rad · s−1) and

the angle of pitch (rad), respectively. u(t) is the elevator deflection (deg) and the output z(t)
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is selected as the forward velocity x1(t). Similar to [45,46], the dynamic model was modeled
by using the principle of system identification. Based on the idea of sparse identification,
the input and output data of A4D aircraft were identified by the generalized least squares
method, and then the state parameter matrices A, B and C of the system were obtained as

A =

⎡⎢⎢⎣
−0.0605 32.38 0 32
−0.0015 −1.47 1 0
−0.0111 −34.72 −2.793 0

0 0 1 0

⎤⎥⎥⎦, B =

⎡⎢⎢⎣
0

−0.1064
−33.8

0

⎤⎥⎥⎦, C =
[

1 0 0 0
]

Next, we considered the anti-disturbance control for two types of irregular distur-
bances by selecting different excitation functions.

First, in order to describe attenuated harmonic (AH) disturbances, the DNN parame-
ters of the disturbance model were selected as

W =

[
0 4
−4 0

]
, V =

[
0.7 0

]
, M∗ =

[ −0.3 −0.05
0.01 0.45

]
, Φ(t) =

[
arctan(t)
arctan(t)

]
Preselect the candidate value of R3 as

R3 =

[
0 −30.3493 −5.6140 0 0
0 50.1378 10.9620 0 0

]
.

Meanwhile, by defining μ1 = μ2 = 1 and solving inequalities (23), (34), (35), we obtained

K =
[

0.0038 −0.6781 0.0339 0.7744 0.0008
]

L = 10−6 ∗
[

0 −0.1055 −0.0195 0 0
0 0.1743 0.0381 0 0

]
H1 =

[
0.0014 −0.1912 0.0115 0.233 0.0005

]
Assume that the initial conditions of the augmented states and the desired output are

selected as
x0 = [2,−2, 3,−2]T , σ0 = [4, 4]T , zd = 18

Suppose that Ψ is an identity matrix, δ = 0.01. Figure 1 reflects the triggered release
time and the corresponding interval. The dynamics of the states are plotted in Figure 2,
which can reflect the favorable stability. Both the attenuated harmonic disturbances and
the disturbance estimated value together with the estimated error are displayed in Figure 3.
Thus, the satisfactory capacities of disturbance modeling and estimation are fully embodied.
Figures 4 and 5 depict the dynamical trajectories of the input and output, respectively,
which verifies the favorable input constraint and dynamical tracking performance. The
dynamics of the DNN weight are exhibited in Figure 6.

Second, sawtooth wave (STW) signals usually appear in some circuit or electromag-
netism systems, and it is quite hard to monitor them using common epitaxial systems. For
modeling STW disturbances, the specific parameters of DNNs are considered as

W =

[
0 −6
2 −0.01

]
, V =

[ −0.01 −1
]
, M∗ =

[
0 0.02

−0.2 0.45

]

Φ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
1

1+e−0.5t
1

1+e−0.5t

]
t ≥ 0[ −2.1

−2.1

]
t < 0
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Figure 1. The event-triggered release times and intervals in the case of AH disturbances.

Figure 2. The trajectories of the system states in the case of AH disturbances.

Figure 3. The disturbance estimates and estimation error in the case of AH disturbances.
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Figure 4. The dynamics of the saturated control input in the case of AH disturbances.

Figure 5. The trajectory of the system output in the case of AH disturbances.

Figure 6. The trajectory of the dynamical weights in the case of AH disturbances.

By solving inequalities (23), (34) and (35), the gains K, L and H1 can be found to be

K =
[

0.0231 0.2521 0.0184 0.9451 0.0431
]
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L = 10−6 ∗
[

0 −0.1441 −0.0266 0 0
0 0.0792 0.0173 0 0

]
H1 =

[ −0.1475 0.0062 0.0230 0.1648 0.0430
]

Suppose that the initial values are, respectively, given by

x0 = [2,−2, 3,−2]T , σ0 = [3, 3]T .

The desired output is defined as zd = 17. The triggered release time and corresponding
intervals are displayed in Figure 7. Figure 8 is the tracks of the states of the A4D system.
Figure 9 exhibits the dynamics of STW and its estimates. Figures 10 and 11, respectively,
present the saturated input and the system output. Figure 12 depicts the dynamics of the
designed DNN weight. Figures 8–12 demonstrate that the designed event-triggered PI
control input can obtain favorable control performances in the case of STW disturbances
while saving a considerable amount of resources (see Figure 7).

Figure 7. The event-triggered release times and intervals in the case of STW disturbances.

Figure 8. The trajectories of the system states in the case of STW disturbances.
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Figure 9. The disturbance estimates and estimation error in the case of STW disturbances.

Figure 10. The dynamics of the saturated control input in the case of STW disturbances.

Figure 11. The trajectory of the system output in the case of STW disturbances.
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Figure 12. The trajectory of the dynamical weights in the case of STW disturbances.

By effectively estimating for AH and STW disturbances, respectively, a satisfactory
anti-disturbance control frame can be embodied in the above simulation. Compared to
those results that rely on constant or harmonic disturbances, the main advantages of the
suggested method are reflected in wider anti-disturbance ranges, more objective control
tasks and less data transfer. Of course, some existing disadvantages—for example, more
conservative algorithms and higher real-time requirements—need to be fully considered in
the future work.

7. Conclusions

In this paper, a valid anti-disturbance event-triggered control probelm is discussed
for systems with multiple constraints under the frame of DNN disturbance modeling.
Different from the usual time-triggered problem, the whole algorithm design was made
with the event-triggered frame. After constructing the augmented event-triggering condi-
tion, a novel event-triggered DOBAC algorithm was designed by integrating the modified
adaptive regulation law with the DNN disturbance models. Meanwhile, a composite event-
triggered controller was successively designed with a polytopic description of the saturated
actuator. By using the convex optimization theory, the relevant proofs were given to verify
the stability of the closed-loop augmented system and to meet the multiple constraints
regarding the augmented states, as well as the system output. Moreover, the dynamics of
the tracking error can be displayed as converging to zero. Finally, the simulation results
illustrate that the proposed scheme is effective in terms of desired control performances
and significantly reduced resource utilization.
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Abstract: In order to extract efficient power generation, a wind turbine (WT) system requires an
accurate maximum power point tracking (MPPT) technique. Therefore, a novel robust variable-step
perturb-and-observe (RVS-P&O) algorithm was developed for the machine-side converter (MSC).
The control strategy was applied on a WT based permanent-magnet synchronous generator (PMSG)
to overcome the downsides of the currently published P&O MPPT methods. Particularly, two main
points were involved. Firstly, a systematic step-size selection on the basis of power and speed
measurement normalization was proposed; secondly, to obtain acceptable robustness for high and
long wind-speed variations, a new correction to calculate the power variation was carried out. The
grid-side converter (GSC) was controlled using a second-order sliding mode controller (SOSMC)
with an adaptive-gain super-twisting algorithm (STA) to realize the high-quality seamless setting of
power injected into the grid, a satisfactory power factor correction, a high harmonic performance of
the AC source, and removal of the chatter effect compared to the traditional first-order sliding mode
controller (FOSMC). Simulation results showed the superiority of the suggested RVS-P&O over the
competing based P&O techniques. The RVS-P&O offered the WT an efficiency of 99.35%, which was
an increase of 3.82% over the variable-step P&O algorithm. Indeed, the settling time was remarkably
enhanced; it was 0.00794 s, which was better than for LS-P&O (0.0841 s), SS-P&O (0.1617 s), and
VS-P&O (0.2224 s). Therefore, in terms of energy efficiency, as well as transient and steady-state
response performances under various operating conditions, the RVS-P&O algorithm could be an
accurate candidate for MPP online operation tracking.
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1. Introduction

Global energy consumption is mostly covered by fossil fuels that have a detrimental
effect on the natural environment [1]. The increasing demand for energy with the consider-
ation of global warming and environmental pollution has pushed interesting development
of renewable energies. The wind system as an energy source has demonstrated important
progression with a considerable production rate and maintenance cost [2]. It is the fastest-
growing source, with a growing average of 20% per year in the energy sector [3]. A wind
turbine (WT) can be categorized as variable- or fixed-speed. In the first configuration, the
variable-speed wind turbine (VSWT), to permanently reach the maximum power point
(MPP), its speed is constantly varied depending on the wind-speed fluctuations [4]. Hence,
several generator types can be used, and the PMSG remains an attractive solution “without
gearbox” in onshore and offshore applications, as it provides many advantages, such as:
high energy production, good power/weight ratio, better reliability, and a high capacity to
maximize energy production [5,6]. In addition, a variable speed, PMSG, horizontal axis,
and direct drive without gearboxes are features that provide a positive impact on a WT
system’s mechanical framework design [5]. They permit the development of even larger
VSWTs at greater heights.

In a machine-side converter (MSC), the VSWT should operate at the optimum speed
during changes in wind speed to produce the maximum electrical power. This is realized by
a fast and adequate MPPT algorithm. In order to enhance the dynamic performances, the
MPPT techniques have recently gained considerable interest [7,8]. In the recent literature,
there are three categories of MPPT algorithms; namely, the indirect power controller (IPC),
direct power controller (DPC), and artificial intelligence (AI) [9,10].

The first category (IPC) involves the following techniques: optimal torque (OT) [11],
power signal feedback (PSF) [12], tip speed ratio (TSR) [13], and sliding mode control
(SMC) [14]. TSR-based MPPT is the simplest technique with a faster response time in which
the wind speed data are recorded by means of anemometers. However, the availability of
speed sensors increases the complexity of the wind power system, as well as the implemen-
tation and maintenance cost. In the OT and PSF techniques, prior knowledge of the turbine
generator’s mathematical model is necessary to predetermine the PMSG speed, TSR, and
torque constant. However, it is difficult to precisely follow the MPP under a lower wind
speed due to the relativity between the tracking speed and generator inertia. The SMC
technique has been widely proposed in the literature [15] and is simple to implement, but it
generates the well-known phenomenon of chattering, in which high-frequency oscillations
around the MPP occur in a steady state caused by the sign function nature [16,17].

Furthermore, artificial intelligence (AI)-based MPPT control techniques, such as
FLC [10] and ANN [18], have been proposed to track the MPP well, but their industrial
applications are limited. The standard FLC-based MPPT technique requires many precise
guidelines in the controller design, such as the quantity of choices to be measured, as well as
the determination of fuzzification, inferences, and defuzzification [10]. In addition, a larger
data memory space implies much more execution time to obtain the optimum solution,
which is a significant drawback for online applications. The ANN-based MPPT technique is
an expert knowledge strategy that requires a huge amount of data under various operating
conditions. It usually needs a formal method to define the optimal network layout and
number of neurons to place in the hidden layer. Indeed, choosing the initial values of the
network weights and setting the learning step are of important concern [19].

The third family (DPC) allows tracking of the MPP by controlling the power fluc-
tuation given by the mechanical speed under the wind speed variation. This category
comprises P&O [8], incremental conductance (INC) [20,21], and optimum relation-based
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(ORB) [11]. The conventional INC technique provides good results under constant wind-
speed conditions [7]. Meanwhile, their performances are not ensured under sudden and
faster wind-speed variations.

The P&O technique has been used effectively to follow the optimum rotor speed
with interesting ease of implementation, which renders it the most common and applied
algorithm in the literature [22]. It was developed in such a way to perturb the rotor speed
at several steps and then observe the change in the extracted power until the power–speed
curve slope becomes zero. The perturbation and observation actions are realized without
using anemometers. The suitable choice of step size is the major concern of the P&O
algorithm, as it directly affects the WECS performances [3,23]. The step size during the
disturbance of the rotor speed can be fixed or variable. If a small step size is adopted
by using the classical P&O algorithm, the tracking speed response becomes very slow,
which causes more power losses [5]. Meanwhile, it shows small steady-state oscillations
around the MPP. In contrast, a large step size engenders a faster tracking-speed response
but with large steady-state oscillations that harm larger inertia WTs, and hence reduce the
performance of the WECS [24,25].

To overcome the downsides of the fixed-step (FS)-P&O algorithms and efficiently
achieve the optimum dynamic performance of a WECS, many modified P&O versions have
been proposed [2,5]. They can be classified into two main groups: modified and adaptive
P&O algorithms. By applying the modified P&O algorithms, the variable step (VS) sizes
are attained by dividing the P/ω curve into several operating areas, with each one having
a predefined step size based on a synthesized curve or ratio.

Adaptive (A)-P&O was presented in [26,27]. The step size was modified according
to an objective function that relied upon various control variables and the wind speed.
This method provided interesting results under uniform atmospheric conditions. However,
the performances were reduced under a large random wind-speed variation when the
P/ω curve included multiple peak points. In [3], the proposed algorithm combined the
generation of adaptive step sizes with dividing the P/ω curve into several sections. The
authors of [28,29] used a modified (M)-P&O algorithm based on the comparison of several
P/ω curves and the sector’s intersection points. It employed a forward large step and
a small step around the MPP. Meanwhile, the larger step induced oscillations at steady
state with no structured relation to select the required step length and WT properties. The
authors of [30] proposed a robust MPPT control scheme for a grid-connected PMSG-WT
using a P&O-based nonlinear adaptive control. This approach used many assumptions
that decreased the system efficiency caused by unwanted fluctuations around the MPP.
A VS-P&O algorithm was developed in [2,22] in which the step size was determined by
observing the distance between the operating point and the MPP in the P/ω curve. The
authors subdivided the P/ω curve into modular operating sectors using predefined ratios.
However, the performances of this approach remained poor under rapid climatic variations,
as it needed to calculate a specific ratio at each wind-speed value. In [18,31], the authors
suggested a hybrid P&O algorithm to eliminate the disadvantages of the conventional
FS-P&O. Based on the error observation between the instantaneous and reference rotor
speeds, the hybridized algorithm, while usually employing FLC, ANN, PSO, and ANFIS,
etc., ensured the subdivision of the P/ω curve into several sectors. The simulation results
showed the efficiency of the hybrid techniques in spite of the algorithm complexity.

Motivated by the above discussion, this paper presents a recently developed robust
variable-step perturb-and-observe (RVS-P&O)-based MPPT algorithm to eliminate the
drawbacks of the classical P&O technique, such as “slower time response, influence of the
WT inertia and the step size selection concerns”. The control method proposed can realize
stability in the system to maximize the power extraction in the WT system under rapid
wind speed changes. Regarding the P/w curve, it is more appropriate to adjust the speed
reference step as a function of the MPP error. Hence, it was proposed to adapt this step
by a proportional factor to reach the MPP. To measure this action, the normalized power
level was subdivided into a finite number of sectors. For each sector, the corresponding
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step size was determined as the optimum speed percentage. The objective of this work
was to design the adaptive control in order to achieve the best performances of the MPPT
operation. The main contributions of this paper can be summarized as outlined below.

• Normalization of the observation measurement and the speed variation allows the
controller optimality to be maintained during the use of WTs with different dimen-
sions. In addition to the normalization of the power measurement and the set-point
speed increment:

• For more robustness, correction of the observation measurement was carried out by
compensating for the wind speed effect;

• The RVS-P&O optimization strategy was based on subdividing the P/w curve into
several modular operating sectors according to the distance in the ratio measurement
between the actual and desired MPP;

• The RVS-P&O method improved the performance and the efficiency of VS-P&O
algorithm variants while eliminating the drawbacks of the traditional FS-P&O ones;

• In terms of accelerated dynamic response capacity, the RVS-P&O algorithm tracked
the MPP well during rapid climate variations, with a fast response time of 0.00794 s;

• The RVS-P&O approach enhanced the efficiency of the WECS by 3.82% compared to
the conventional algorithms (FS-P&O and VS-P&O);

• The RVS-P&O algorithm showed a high level of stability with a small variation around
the MPP, where the mean energy loss was estimated as 13.1826 W regardless of the
operating conditions;

• The novel proposed approach was simple and easy to implement in practice;
• A DPC-SOSMC–STA controller was utilized in the grid-side converter (GSC) to obtain

a smooth setting of the active and reactive power-quantity interchange between the
generator and grid based on grid demand during realistic variable wind speeds.

To verify the performances of the proposed RVS-P&O algorithm, it was fairly com-
pared to small step (SS)-P&O, large step (LS)-P&O, and VS-P&O techniques. The proposed
algorithm was tested in different environmental conditions. This was on the basis of
multiple data sets of wind speeds: gradual changes and experimental random variations.
At the grid-side converter, a control strategy based on the DPC-SOSMC–super-twisting
algorithm (STA) controller was utilized to realize the smooth setting of active and reactive
power-quantity interchange between the generator and grid according to the real power
request and variable wind speeds.

The rest of this paper consists of five sections that are organized as follows: Section 2
provides the mathematical modeling of the PMSG-based VSWT principal parts. The
converter controller architecture is discussed in Sections 3 and 4. Simulation tests using
MATLAB/Simulink and comparison results are provided in Section 5 to validate the
effectiveness of the proposed RVS-P&O algorithm under several operating scenarios of
real wind-speed variation. Finally, Section 6 concludes by providing the obtained results
and perspectives.

2. Mathematical Modeling of the WECS

In order to establish the system control, the examined WECS is introduced in this
section. Figure 1 depicts a representative topology of the considered WECS, which included
a three-bladed turbine with a horizontal axis, with the rotor of the VSWT connected directly
without a gearbox to the PMSG shaft [26]. The electronic power devices (two back-to-back
AC/DC/AC IGBT bridges) supplied power from the used generator to the grid via a
common DC bus [5,32].
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Figure 1. Configuration of the studied wind-generation system.

2.1. Wind Turbine Model

A wind sail converts a quantity of air mass energy into movement; during the cir-
culation of the wind in an active surface (S), the power of the air mass (Pω) is given by
Equation (1) [33]:

Pω =
1
2

ρ·S·v3 (1)

It will be transmitted to the generator shaft as aerodynamic power or turbine power,
as expressed by Equation (2) [34]:

Pk =
1
2

ρ·SCp(λ, β)·V3
k (2)

where λ is the relation between the turbine angular speed and the wind speed. This
denominates the tip speed ratio (TSR), and is given by Equation (3) [35]:

λ =
R × Ωk

Vk
(3)

The aerodynamic efficiency varies according to λ. In other words, the maximum
Cp max is reached when λ is optimal ( λopti). Figure 2 presents the resultant Cp according to
the λ variation when β is fixed [36].

 

Figure 2. Model power coefficient
(
Cp
)

with tip speed ratio (λ) curve.

2.2. PMSG Model

To enhance the controlling procedure of the electric generator’s dynamic performance,
the model was based on the stator voltage within the Parck model, which is defined by
using Equation (4) [37]:
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{
Vd = Rs Id + Ld

dId
dt − ω Lq Iq

Vq = Rs Iq + Lq
dIq
dt + ω (Ld Id + ψ f )

(4)

where Rs, Ld, Lq , and ψ f are given in Tables A1 and A2 in Appendix A.

2.3. Grid Model

The grid model in the d-q plane is given by Equation (5) [4]:{
Vdg = Vdi − Rg Idg − Ldg

dIdg
dt + Lqgwg Iqg

Vqg = Vqi − Rg Iqg − Lqg
dIqg
dt − Ldgwg Idg

(5)

where Rg, Ldg, and Lqg are given in Table A3 in Appendix A.

3. Converter Controller Architecture

3.1. General Description

The energetic and environmental constraints of the WT-PMSG presented above re-
quired the application of a sophisticated supervision system and an adequate energy-
management system. The control scheme is described in Figure 3, in which the control
strategy was divided into two main parts: MSC and GSC.

• Machine-Side Converter: An advanced controller based on an RVS-P&O-based MPPT
algorithm and the SOSMC were applied to control the PMSG speed and torque, thus
extracting the MPP for each sampled wind speed value.

• Grid-Side Converter: While the wind speed fluctuated, the amplitude of the energy
produced and the electrical frequency were constantly changing, which was not a
perspective appropriate for grid integration. To resolve this problem, the GSC was
usually employed to ensure the wind system’s connection to the electrical grid with
better active and reactive powers. After that, the active and reactive power of the
reference voltage generation was directly controlled by means of the DPC-SOSMC-
STA-SVM strategy, unlike the traditional vector method.

3.2. Machine-Side Converter Controller

A WT is usually characterized by the P/w curve showing the relationship between
the rotor speed and the generated mechanical energy amount. Given the limits of (vcut−in)
and (vcut−out) as shown in Figure 4, this work focused mainly on region (2) [31].

In this region (2), the maximum speed of the rotor could be reached by adjusting the
electromagnetic torque to extract the highest mechanical power; this was done by keeping
the power coefficient (Cp) at the maximum

(
Cp max

)
. To achieve this goal, the field-oriented

control (FOC) strategy was used to control the PMSG. It comprised two control loops, an
external one for the speed and an internal one for the current, as depicted in Figure 5.

The RVS-P&O-MPPT-SOSMC algorithm was utilized in the first control loop to reach
a reference optimal speed for each wind speed in order to generate an electromagnetic
torque reference. The current control loop was exploited to control the stator currents of
the d-q axis separately based on Equation (5). The PI controller was applied to adjust the
three-phase currents by generating the commutation pulses by means of the space vector
pulse-width modulation (SVPWM) technique [5].
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Figure 3. The complete control system description.

 

Figure 4. Power/speed curve showing the various operation regions of the VSWT.
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Figure 5. Block diagram of MSC contoller.

3.3. Grid-Side Converter Controller

The utmost challenge in wind power generation is the inherently sporadic nature of the
wind, which can deviate quickly [37]. Its intermittent availability is the main impediment to
power quality and flow control. Wind-speed variations lead to a fluctuating injected power;
therefore, the stability and power quality of the grid operation is affected. Consequently,
the fluctuations in wind power should be reduced to prevent a degradation of the grid’s
performance [38].

For this reason, we proposed a GSC to provide and arrange the energy required by
the user regardless of operational conditions [37]. For controlling the active and reactive
power supplied into the electrical grid, a DPC-SVM-based SOSMC-STA was recommended
at this stage. The schematic diagram of the GSC control approach is shown in Figure 6.
In contrast to the traditional vector technique [38], the DPC-SVM-based SOSMC-STA
approach provided the grid voltage directly to the GSC.

Figure 6. Block diagram of GSC-based DPC-SVM with SOSMC-STA controller.

A. Higher Order SMC Based DPC-SVM Design

The first-order SMC engenders the chattering phenomena, which is a major incon-
venience in practical operating implementation. To avoid such an issue, higher-order
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SMC application is a feasible solution that significantly reduces the multiple undesirable
oscillations by maintaining the performances of the first-order controller [39,40].

The active and reactive grid powers are given by Equation (6) as follows:{
Pg = 3

2 Vdg Idg
Qg = 3

2 Vdg Iqg
(6)

In order to establish a null operating-power factor, the optimal reactive power was set
to be Qg re f = 0, while the optimal active power Pg re f depended on the grid requirement.
The SOSMC block diagram is shown in Figure 6. The sliding surfaces of the active and
reactive powers (SP and SQ) were determined using Equation (7):{

sP = Pgre f − Pg
sQ = Qgre f − Qg

(7)

The first derivatives of the sliding surfaces are given by Equation (8):⎧⎨⎩
.
sP =

.
Pgre f − 1.5 Vdg

Lg
(−Vdg − Rg Idg + Lgwg Iqg)− Vid

Lg
.
sQ =

.
Qgre f − 1.5 Vqg

Lg
(−Vqg − Rg Iqg − Lgwg Idg)− Viq

Lg

(8)

Equation (9) gives the second derivative of both surfaces:⎧⎪⎨⎪⎩
..
sP =

.
Gp −

.
Vid
Lg

..
sQ =

.
GQ −

.
Viq
Lg

(9)

where GP and GQ are defined by Equation (10):⎧⎨⎩ GP =
.
Pgre f − 1.5 Vdg

Lg
(−Vdg − Rg Idg + Lgwg Iqg)

GQ =
.

Qgre f − 1.5 Vqg
Lg

(−Vqg − Rg Iqg − Lgwg Idg)
(10)

The SOSMC defines two main parts, either for Vp
re f or VQ

re f , as given by Equation (11):{
VP

re f = Vp
N + Vp

eq

VQ
re f = VQ

N + VQ
eq (11)

where VN is determined by Equation (12):⎧⎪⎪⎨⎪⎪⎩
.

w1 = −K·sign(sP)
w2 = −M·√|sP|sign (sP)
Vp

N = w1 + w2
VQ

N = w1 + w2

(12)

The STA introduced by Levant [41] can be determined using Equation (13):{
Vp

re f = Vp
eq − M

√|sP|sign (sP)− K
∫

sign(sP)

VQ
re f = VQ

eq − M
√∣∣sQ

∣∣sign
(
sQ
)− K

∫
sign

(
sQ
) (13)

where K and M are unknown parameters to maintain the sliding manifolds’ convergence to
zero in finite time [42]. Both parameters could be limited as determined by Equation (14):{

K > C0
Km

0 < ρ < 0.5

M2 ≥ 4C0KM(K−C0)
Km2Km(K−C0)

i f ρ = 0.5
(14)
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where C0, Km, and KM are positive constants.

4. MPPT-Based Control Algorithms

To enhance the overall efficiency of the WTs by capturing the highest energy output of
the VSWT, an accurate MPPT algorithm should usually be implemented. Less-transient
response oscillations, rapid dynamics, and a low design cost are the important requirements
for an efficient MPPT technique. The VSWT is regulated to extract the highest generated
power below the nominal wind speed. Therefore, to place the WT blades in front of the
wind, the pitch angle should be zero. The MPP was determined by achieving the ideal
values of λopt and Cp opt, which were 8.1 and 0.48, respectively.

4.1. Classical P&O Algorithm

The P&O algorithm is determined by the introduction of a small speed perturbation
of (+ΔΩ − re f / + ΔΩ − re f ), as illustrated in Figure 7. The effect of this disturbance is
subsequently noticed in the PMSG output power.

Rotor speed(rad/sec)
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l P
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 (W
) 

Figure 7. Working principal of the P&O-based MPPT technique.

A P&O algorithm is an iterative approach that needs just two sensors for sensing the
power and the speed of the WT. Its operating principle, as depicted in Table 1, is based
on perturbing the speed in small increments and comparing the power with that of the
preceding perturbation cycle. If the perturbation leads to an increase (decrease) in wind
power, the succeeding perturbation is made in the same (opposite) direction. In this manner,
the MPP tracker incessantly seeks to find the maximum power location.

Table 1. Effect of wind-speed variation on the conventional P&O algorithm’s convergence rate.

Operating Point is on the Left Side of Pmax Operating Point is on the Right Side of Pmax

ΔΩ < 0 ΔΩ > 0 ΔΩ < 0 ΔΩ > 0

Increase in wind speed Moves away to the left
side of Pmax

Converges toward the
best Pmax

Moves away to the left
side of Pmax

Moves away to the
right side of Pmax

Decrease in wind speed Very slow convergence to reach Pmax

The behavior of the conventional P&O technique under varying climatic conditions
was evaluated. In a basic analysis, this technique showed remarkable drawbacks, such as:

• The P&O algorithm step size was usually fixed and lacked any clarification regarding
how it was determined;
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• Through the observation of the P/w curve, it was more convenient to adjust the speed
reference step according to the MPP error;

• The P&O algorithm was developed on the basis of a constant or slowly varying wind
speed, which is not practical. In reality, the convergence rate is strongly affected by
the rapid variation in the wind speed;

• The output power displayed several oscillations with a large magnitude permanently,
even during fixed wind speeds.

To overcome these concerns, we proposed a robust variable-step P&O.

4.2. Proposed Robust Variable-Step P&O Algorithm

The RVS-P&O was based on the standardization of the generator speed and the
mechanical power variables. Algorithm characteristic parameters are summarized in
Table 2. A correction of the power-variation calculation was introduced by canceling the
effect of wind disturbances.

Table 2. Algorithm characteristic parameters.

Sector βL−1 αL

l = 1 0.6 0.03
l = 2 0.4 0.02
l = 3 0.01 0.01
l = L 0 0.0001

4.2.1. Power Normalization

To provide a systematic method for sizing the reference step size, a WT-PMSG system
operating under the wind speed vk at instant k was considered. The maximum mechanical
power Pmax

k is given by Equation (15):

Pmax
k =

1
2

ρ·s·vk
3·Cp max (15)

To maintain the optimal controller dynamics with turbines of different sizes, a stan-
dardization of the power measurement and the set-point speed increment is suggested [43].

The normalized power PN
k is instantaneously defined as the ratio of the actual absorbed

power to the maximum available one using Equation (16):

PN
k =

Pk
Pmax

k
× 100 (16)

4.2.2. Speed Step Selection

If the speed reference step is taken to be constant, for considerable variation in wind
speed, the controller will take more time to reach the MPP, as a nonadaptive step will
provide the same action as that taken in a small variation in the wind speed case. Therefore,
to avoid the slow reaction, an adaptation of this step size by a proportional amount to
the correction signal to reach the MPP was proposed [42]. To subdivide the range of the
normalized power in finite number of sectors (l = 1 . . . L), it is required to define (L − 1)
level as the delimiter. For that, let us consider a maximum power level in each sector,
denoted by Pl

max as a ratio (βl) of the maximum mechanical actual power Pmax
k , which is

defined by means of Equation (17):

Pl
max = βl .Pmax

k (17)

where the ratio βl is in the range of [0,1], while l = 1, . . . , L − 1.
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For each sector, the corresponding step size is defined by the weighting factor (αl )
from the actual optimal speed (Ωopt

k ) at instant k using Equation (18).

ΔΩre f
k = αl × Ωopt

k (18)

In addition, the normalized actual speed is defined by Equation (19):

ΩN
k =

Ωk

Ωopt
k

× 100 (19)

while the optimal speed (Ωopt
k ) is given by Equation (20):

Ωopt
k =

λopt × Vk

R
(20)

where l = 1, . . . , L denotes the sector index and αl is in the range of [0,1]. The weighting
factor reflects the amount of the speed adjustment relative to the optimal speed. Since a
fine adjustment is needed near the MPP, this factor should be decreased when moving from
a sector to the upper one. Figure 8 shows an example of the normalized P/w curve with
three modular operating sectors.

Po
we

r N
or

m
al

iza
tio

n

Rotor Speed  Normalizatio

Figure 8. Operation principal of the RVS-P&O-based MPPT controller.
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4.2.3. Compensation for Wind-Speed Variation

The P&O algorithm is based essentially on the product sign of the power variation and
the speed step increment. If positive, the speed reference step will be increased, and in the
negative case, it will be decreased. The power variation also depends on the wind-speed
variation, as it introduces a perturbation of the power variation ΔPk, and the algorithm
will behave with less efficiency. This is one of the reasons we proposed the RVS-P&O
strategy. It is necessary to eliminate this perturbation while taking into account only the
part of ΔPk induced by the speed adjustment in the previous step. This makes the control
algorithm more robust against perturbations of the variation in wind speed. It is known
that the power at instant k depends on the turbine speed and the wind speed as given by
Equation (21):

Pk = f (Ωk, vk) (21)

Hence, the power variation at instant k is given by Equation (22):

ΔPk = Pk(Ωk, vk)− Pk(Ωk−1, vk−1) (22)

The development in the first order of Equation (22) is given by Equation (23):

ΔPk � f (Ωk, vk−1) +
∂ f
∂v

∣∣∣∣
(Ωk ,vk−1)

Δvk − f (Ωk−1, vk−1) (23)

The second term in Equation (23) represents the perturbation of the wind-speed
variation. When the wind speed is constant, this term goes to zero. So, the corrected power
variation ΔPω

k without wind disturbance is determined by Equation (24):

ΔPω
k = ΔPk − ∂ f

∂v

∣∣∣∣
(Ωk ,vk−1)

Δvk (24)

Practically, ΔPk is easily deduced through successively finding the error between the
calculated powers (Pk and Pk−1) at different instances. The RVS-P&O algorithm flowchart
is illustrated in Figure 9.

It should be mentioned that the arbitrary parameter βi defines the corresponding
sector size, since a coarse action should be taken when the operating point is located far
from the MPP, and conversely. A fine step-size adjustment must be applied around the
MPP, where the condition determined by Equation (24) is suggested:

βl =

{
0.5 l = 1
1.5 βl−1 1 < l < L

(25)

This will ensure an initial fast response in the presence of perturbation at steady state.
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Figure 9. Detailed flowchart of the RVS-P&O-based MPPT technique.
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5. Simulation Results and Discussion

To verify the effectiveness of the proposed algorithm, as well as its robustness com-
pared to other existing MPPT algorithms, several simulations using MATLAB/Simulink
were performed. This was done by using two different case studies of wind-speed profiles.
Tables A1–A3 in Appendix A provide the control parameters of the WT, PMSG, and grid,
respectively. The organic ranking cycles (ORCs) and the overall efficiency of the WECS
were calculated. The results are summarized in Table 3.

Table 3. Overall performance assessment of the competing algorithms under variable fluctuations in
wind speed.

MPPT Method
Average Value Average Error Value Efficiency

Pt (w) Cp λ Pt (w) Cp Ωt (rad/s) η(%)

SS-P&O 1.9935 × 103 0.4710 8.0282 30.9802 0.0090 6.5315 × 10−4 98.47
LS-P&O 1.9679 × 103 0.4690 8.0029 49.1288 0.0110 0.0696 97.57
VS-P&O 1.8868 × 103 0.4616 7.8862 88.2430 0.0184 2.3098 × 10−4 95.53

RVS-P&O 2.0097 × 103 0.4770 8.0483 13.1826 0.0030 8.9757 × 10−4 99.35

5.1. Gradual Variations in Wind Speed

Figure 10 depicts the machine-side results of four algorithms—SS-P&O, LS-P&O, VS-
P&O, and RVS-P&O—under gradual variations in the wind speed. This was to well assess
the transient and steady-state performances of the RVS-P&O as shown in Figure 10a. As
can be observed, the predicted wind speed based on the step change profile was utilized to
analyze the suggested P&O algorithms, in which the wind speed was varied by 6.6 m/s,
7.5 m/s, 9.5 m/s, 11.4 m/s, and 10 m/s every 5 s of samples. The obtained results were
compared with the standard method (FS-P&O) and VS-P&O. The most important criteria
to verify the effectiveness of the proposed technique were the optimal values of Cp and λ.
The behavior of the values is shown in Figure 10b,c. As shown in Figure 10b, the suggested
algorithm (RVS-P&O) followed the ideal Cp value faster than the SS-P&O, LS-P&O, and
VS-P&O techniques, where the 5% settling time of 7.94 ms was compared to 161.7 ms,
84.1 ms, and 222.4 ms for the SS-P&O, LS-P&O, and VS-P&O techniques, respectively. In
the transient response, during an abrupt variation in wind speed (9.5 m/s to 11.4 m/s) at
15 s, at this moment the SS-P&O and LS-P&O algorithms showed large oscillations around
the MPP, with settling times of 1.5 s and 0.55 s, respectively. Meanwhile, RVS-P&O had
an interesting settling time of 0.2 s compared to the VS-P&O algorithm, which had a time
0.37 s, as depicted in the zoomed part of Figure 10b.

The tip speed ratio was kept at the most optimal value (8.1) with all competing
algorithms, as described in Figure 10c. Nevertheless, the RVS-PO effectively preserved the
operation with an optimal TSR, and followed it with a lower settling time and without
any overshooting as compared to the other algorithms during the fast wind change. At
15 s, the overshoot values of SS-P&O, LS-P&O, and VS-P&O were 8.939, 8.697, and 8.104,
respectively. However, the RVS-P&O technique provided a better rapidity performance
of 8.101, as depicted in the zoomed section of Figure 10c. Meanwhile, the rotor speed
settling time was about 9.7 ms when using the RVS-P&O algorithm, as compared to the
SS-P&O, LS-P&O and VS-P&O algorithms, which had times of 689.2, 330.4, and 310.2 ms,
respectively, as it can be seen in the zoomed section of Figure 10d. Furthermore, it was clear
that the RVS-P&O and VS-P&O algorithms had no remarkable overshoot on the tracking of
the rotor speed compared to SS-P&O and LS-P&O.
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Figure 10. Machine-side results under gradual variations in wind speed. (a) Wind-speed profile;
(b) Power coefficient; (c) Tip speed ratio; (d) Rotor speed; (e) Mechanical power.

Figure 10e depicts the mechanical power by means of the competing algorithms in
order to verify the optimal power-extraction performances’ quality. The power oscillations
of both algorithms, VS-P&O and LS-P&O, at steady state were lower around the extracted
MPP. Meanwhile, the proposed RVS-P&O did not show any power oscillations for rapid
variations in the wind speed. Simultaneously, the RVS-P&O algorithm took less time
than the SS-P&O, LS-P&O, and VS-P&O algorithms to reach the new MPP under rapid
fluctuations in the wind speed. For instance, during an abrupt variation of 9.5 m/s to
11.4 m/s at 15 s, the RVS-P&O algorithm required only 0.1 s, which was better than the time
needed by the other algorithms (SS-P&O = 0.7 s, LS-P&O = 0.15 s, and VS-P&O = 0.3 s),
as depicted in the zoomed part of Figure 10e. Therefore, RVS-P&O showed the best the
power-extraction performances, as illustrated in Table 3.

5.2. Variable Fluctuations in Wind Speed

Figure 11 demonstrates the machine-side results of the algorithms in competition un-
der variable fluctuations in wind speed. In order to check the performance of the suggested
RVS-P&O algorithm under variable environmental conditions, the system was simulated
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using a wind speed with an average value of 9 m/s, as shown in Figure 11a. The proposed
RVS-P&O algorithm reached the optimal power coefficient (Cp = 0.48) more rapidly than the
SS-P&O, LS-P&O, and VS-P&O algorithms, as depicted in the zoomed part of Figure 11b.
It can be observed that the SS-P&O, LS-P&O, and VS-P&O algorithms were not able to
efficiently track the MPP during these rapid operating conditions. Furthermore, they took
more time to track the MPP due to the perturbation misdirection problem. In contrast, the
proposed RVS-P&O sustained the optimal Cp efficiently, with a mean value of 0.4770 during
the 10 s wind speed variation. It can be mentioned that the mean Cp values shown by the
SS-P&O, LS-P&O, and VS-P&O algorithms were 0.4710, 0.4690, and 0.4616, respectively.
The four algorithms preserved the optimal value of the TSR, as depicted in Figure 11c.
However, RVS-P&O did not show any overshoot compared to the others, which presented
relatively considerable ones. The rotor-speed tracking results are shown in Figure 11d. It
is remarkable that the RVS-P&O was able to quickly regulate the generator speed under
the rapid variation conditions, with very small ripples compared to SS-P&O, LS-P&O, and
VS-P&O. Regarding the convergence aspect, the proposed algorithm quickly tracked the
reference, with a lower speed error of 8.9757 × 10−5 rad/s compared to the competing
algorithms, as displayed in Figure 11e and Table 3. An efficient speed tracking signifi-
cantly increased the power-extraction quality, as the extracted power during 10 s in the
same conditions was estimated at 2.0097 × 103 W for RVS-P&O, while it was 1.9935 × 103,
1.9679 × 103, and 1.8868 × 103 for SS-P&O, LS-P&O, and VS-P&O, respectively.

Figure 11f,g shows the RVS-P&O algorithm efficiency quality when tracking the MPP
with small oscillations during random fluctuations in the wind speed. In addition, the
waveforms of the mechanical power when using LS-P&O, SS-P&O, and VS-P&O showed
some oscillations that affected the energy quality. This can be explained by their inability to
track the MPP. The operating step sizes of the proposed RVS-P&O algorithm are depicted
in Figure 11h.

5.3. Optimal Rotational Speed

The organic ranking cycles also denominated the optimal rotational speed; evolutions
by means of the four algorithms under variable fluctuations in wind speed are depicted
in Figure 12. The wind energy system operated around the ORC while maintaining the
MPP for each variation in the wind speed. Figure 12 illustrates the ORC profiles of the
MPPT methods. The results were obtained by applying a mean wind profile of 11.55 m/s.
It appears clearly that RVS-P&O was more efficient than the competing algorithms in the
ORC smooth tracking, as shown in Figure 12e. The produced energy quality was better
in terms of oscillation frequency and power loss, with an overall estimated efficiency of
99.35% by means of the proposed technique.

The dynamical behavior of the RVS-P&O-MPPT applied to the MSC was analyzed,
as depicted in Figure 13, in terms of settling time, rise time, and undershoot. Whatever
the instantaneous variations in the wind speed, the power extracted was the maximum
value. The settling time (s) given by RVS-P&O was 0.00794; meanwhile, it was 0.2224 and
0.0841 for VS-P&O and LS-P&O, respectively. However, it was 0.1617 when using SS-P&O.
Furthermore, the rise time was 0.0068 by means of RVS-P&O and VS-P&O, but it was 0.0496
and 0.0905 by using LS-P&O and SS-P&O, respectively. The undershoot (%) was 0.0481
when using RVS-P&O, which was better than for VS-P&O (0.0845), LS-P&O (0.0902), and
SS-P&O (0.0902).

5.4. Grid-Side Converter DPC-SOSMC-STA Controller

When guaranteeing to supply the energy demanded, the quality of that energy is
determined by the control tactics used in the regulation of parameters associated with the
electrical grid. To achieve such an objective, a novel direct power control DPC–SVM that
employed a nonlinear control SOSMC was developed. To evaluate the effectiveness of the
proposed technique, a comparison with the FOSMC classical controller and the SOSMC
was carried out; the results were validated by the harmonic analysis of each controller. The
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interchange of electric power between the PMSG and the grid is only assured if the DC bus
is set to a constant value, regardless of the momentary variation in available power from
the wind. The DC-link voltage of 800 V should be maintained around its nominal value by
the machine-side converter, as depicted in Figure 14a. The electrical power injected into the
grid was controlled by the DPC-SVM and two regulator types, as shown in Figure 14b,c.
The required value could be accurately tracked by the FOSMC and SOSMC control units.
However, there was a difference in the quality of the active and reactive powers. The
simulation results revealed the superiority of the suggested regulator (SOSMC) based on
the “super-adaptive convolution” algorithm that ensured high efficiency and a smooth
desired slip path without the phenomenon of chatter or oscillations.
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Figure 11. Cont.
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(h) 

Figure 11. Machine-side results under variable fluctuations in wind speed. (a) Wind-speed profile;
(b) Power coefficient; (c) Tip speed ratio; (d) Rotor speed; (e) Error rotor speed; (f) Mechanical power;
(g) Extracted power error; (h) Step size.
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Figure 12. Cont.
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(d) 

 
(e) 

Figure 12. Optimal rotational-speed profile. (a) Real tracking of the optimal rotational speed ORC in
region “II”; (b) ORC for SS-P&O; (c) ORC for LS-P&O; (d) ORC for VS-P&O; (e) ORC for RVS-P&O.

Figure 13. Dynamic response of the competing algorithms (SS-P&O, LS-P&O, VS-P&O,
and RVS-P&O).
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To illustrate the performance of the proposed control strategy (DPC–SVM) and the
effectiveness of the SOSMC used in this work, an evaluation and a comparison with the
conventional technique (FOSMC) was conducted. Figure 14d,e represent the grid injected
current into phase A for both controllers. Furthermore, the THD of the current (phase A)
was higher, at 1.38%. In Figure 14f, a distorted version of a highly unwanted current (phase
A) can be seen during simulations in which the use of the FOSMC led to a poor quality of
the grid’s electrical power. Through the smooth shape of the current, the superiority of
the SOMSC was evident, as illustrated in Figure 14e. In addition, the decrease in the best
current distortion reached 0.98%, as depicted in Figure 14g. The THD reduction, filtering,
and the elimination of odd harmonics all showed considerable improvements [44,45]. Using
the illustrated results, we deduced that the SOSMC approach attenuated 30% to 70% of the
odd harmonics presented when using FOSMC.
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(f) 

 
(g) 

Figure 14. Grid-side results for FOSMC and SOSMC algorithms. (a) DC-link voltage; (b) Grid active
power; (c) Grid reactive power; (d) Grid current phase “A” for FOSMC; (e) Grid current phase “A”
for SOSMC; (f) THD for FOSMC algorithm; (g) THD for SOSMC algorithm.

6. Conclusions

To obtain an optimal and beneficial behavior in a wind turbine installation, an efficient
MPPT technique to extract the wind power should be carried out. In this work, to eliminate
the drawbacks of the existing conventional MPPT algorithms, particularly FS-P&O and
VS-P&O, as they are highly used in current industrial applications, a new Robust variable-
step P&O-based MPPT algorithm was proposed and validated under variable operating
conditions of wind speed. The proposed RVS-P&O approach was based on the subdivision
of the P/w curve into several horizontal modular operating sectors by comparing a newly
synthesized ratio with another one related to the required power accuracy. To ensure an
initial fast response in the presence of perturbations, the adjustment of arbitrary parameters
(βl) defined the corresponding sector size with a smooth alignment at steady state. In
addition, to verify the performances of the proposed RVS-P&O algorithm, it was fairly
compared to SS-P&O, LS-P&O, and VS-P&O techniques. The tracking-loss concern and the
misdirection of the other techniques were avoided, and the step-size value was accurately
estimated in each modular operating sector to reach the appropriate MPP.
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In transient conditions, the proposed RVS-P&O algorithm reacted quickly to rapid
fluctuations in wind speeds, with an interesting setting time of 7.94 ms and without any
overshoot. In terms of steady-state stability, the RVS-P&O was more accurate than the
competing algorithms. In both regimes, the proposed RVS-P&O algorithm combined lower
oscillations with a power loss of 0.65% at 10 s variation, and a competitive tracking quality
under limited speed fluctuations of 8.9757 ×10−5 rad/s. Furthermore, it provided an
adeptly better quality of the extracted power during rapid changes in the wind speed,
since the overall efficiency was 99.35% which was increased by 0.88%, 1.78%, and 3.82%
compared to SS-P&O, LS-P&O, and VS-P&O, respectively. In fact, not only was the loss-of-
tracking problem avoided, but the dynamic tracking performances also were improved in
either transient or steady-state regimes under several operating conditions. The specified
high-order SMC was built to manage the active and reactive powers exchanged between
the generator and the grid in the GSC. The grid power values given by the SOSMC method,
on the other hand, displayed smooth waveforms with acceptable tracking indices and
low THD, as well as unwanted current distortion. In the case of the FOSMC control, the
chattering phenomenon was ruled out.
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Nomenclature

Variables
CP Coefficient power
F Simplex
fg Grid frequency
Id d-axis current
Idg Grid d-axis current
Iq q-axis current
Iqg Grid q-axis current
K First unknown gain
l Sector index
Ld d-axis inductance
Lq q-axis inductance
M Second unknown gain
m Complex size
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N Normalization index
P Number of independent complexes
Pg Grid active power
Pt Power of the air mass
Pk Turbine power
Qg Grid reactive power
Rs Stator resistance
S Surface
SP Sliding surface of the active power
sQ Sliding surface of the reactive power
Te Electromagnetic torque
αL Weighting factor
V Wind speed
Vd d-axis voltage
Vdg Grid d-axis voltage
Vdi Inverter d-axis voltage
Vq q-axis voltage
Vqg Grid q-axis voltage
Vqi Inverter q-axis voltage
W Selection factor
Subscripts and superscripts
d stator axis
e Electromagnetic
f Flux
g Grid
i Element (solution)
j Point index
k Complex index
max Maximum
mes Measure
opti Optimum
p Power
q Stator axis
ref Reference
s Stator
Greek letters
α Number of iteration for each simplex

Blade pitch angle
λ Tip speed ratio
ρ Air density
τ Number of offspring
ω Electric pulsation
ψf. Magnetic flux
Abbreviations
AC Alternating current
AI Artificial intelligence
ANFIS Adaptive neuro fuzzy inference system
ANN Artificial neural network
DC Firect current
DFIG Doublyfed induction generator
DPC Direct power control
FLC Fuzzy logic control
FOSMC First-order sliding mode controller
FOC Field-oriented control
FS Fixed step
GSC Grid-side converter
INC Incremental conductance
IPC Indirect power controller
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LS Large step
MPPT Maximum power point tracking
MSC Machine-side converter
ORB Optimum relation-based
ORC Optimal rotational cycle
OTC Optimal torque control
P&O Perturb and observe
PMSG Permanent magnet synchronous generator
PSO Particle swarm optimizer
PSF Power signal feedback
RVS Robust variable ste
SCIG Squirrel-cage induction generator
SS Small step
SOSMC Second-order sliding mode controller
STA Super-twisting algorithm
SVM Support vector machine
SVPWM Space vector pulse-width modulation
THD Total harmonic distortion
VS Variable step
VSWT Variable-speed wind turbine
WECS Wind-energy control system
WSE Wind speed estimated
WT Wind turbine

Appendix A

Table A1. PMSG setting parameters.

Rated power Pe = 10 kw Permanent magnet flux ψm = 0.071 wb
Stator resistance Rs = 0.00829 Ω Number of pole pairs np = 6

Stator direct inductance Ld = 0.174 mH Inertia Jt = 0.089 kg·m2

Stator quadrature inductance Lq = 0.174 mH Friction f = 0.005N·m

Table A2. WT setting parameters.

Radius of the turbine Rt = 2 m Optimal tip speed ratio λopti = 8.1
Air density ρ = 1.225 kg·m3 power Coefficient Cp = 0.48
Pitch angle β = 0

◦

Table A3. DC bus and grid setting parameters.

Grid resistance Rg = 0.02 Ω Grid quadrature inductance Lqg = 0.005 H
Grid direct inductance Ldg = 0.005 H DC-Link-Voltage Vdc = 800 v
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Abstract: The existence of the physiological tremor of the human hand significantly affects the
application of tele-operation systems in performing high-precision tasks, such as tele-surgery, and
currently, the process of effectively eliminating the physiological tremor has been an important yet
challenging research topic in the tele-operation robot field. Some scholars propose using deep learning
algorithms to solve this problem, but a large number of hyperparameters lead to a slow training
speed. Later, the support-vector-machine-based methods have been applied to solve the problem,
thereby effectively canceling tremors. However, these methods may lose the prediction accuracy,
because learning energy cannot be accurately assigned. Therefore, in this paper, we propose a broad-
learning-system-based tremor filter, which integrates a series of incremental learning algorithms to
achieve fast remodeling and reach the desired performance. Note that the broad-learning-system-
based filter has a fast learning rate while ensuring the accuracy due to its simple and novel network
structure. Unlike other algorithms, it uses incremental learning algorithms to constantly update
network parameters during training, and it stops learning when the error converges to zero. By
focusing on the control performance of the slave robot, a sliding mode control approach has been
used to improve the performance of closed-loop systems. In simulation experiments, the results
demonstrated the feasibility of our proposed method.

Keywords: hand physiological tremors; incremental broad learning system; tele-operation robot
system; sliding mode controller

1. Introduction

With the rapid advancements of tele-operation techniques, robots have gradually
improved in performance and have been applied for various areas such as medical and
space exploration, see [1–3] for examples, where they are used to complete difficult and
complicated scenes with greater precision and efficiency. The stability of tele-operating
systems is susceptible to various factors, such as human hand tremors and transmission
time delays. Hand tremors in tele-operation lead to suboptimal task tracking. The phys-
iological tremors in human hands are natural, and not pathological [4,5]. These tremors
exist in every part of the human body with an amplitude range between 50 and 100 μm
in each principal axis, and their dominant frequency is usually distributed in the range of
8–12 Hz [6,7]. Note that physiological tremors are intolerant in the tele-operation scene
requiring highly precise manual positioning [8–10], since they can make a remote robot
generate motion deviations. Hence, it is imperative to compensate for these tremor signals
to enhance the effectiveness of tele-robotic operation systems. To eliminate this influence of
tremors, various related methods have been proposed; see [11–17] for examples.

Since physiological tremors exhibit a high-frequency characteristic, while human
hand motion is low frequency, some scholars have proposed utilizing the linear low-pass
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filter [11], which can filter out high-frequency signals and retain low-frequency signals.
However, digital filters usually require caching and data processing, which can cause time
delays and affect the response speed of systems. The literature show the results of the
implementation of canceling tremors on tele-operation systems using the low-pass filter,
thereby demonstrating that it is fundamental to set the filter frequency threshold, wherein
the optimal frequency threshold still loses some information [12]. To address the limitations
of digital filters, in [13], T. A. Wei and P. K. Khosla proposed that the Kalman filter (KF)
can combine sensor measurements and dynamic system modeling, as well as estimate the
state of the system using the Kalman filter principle, to eliminate the tremor. Furthermore,
in [14], Y. Wang proposed an innovative band-limited multiple Fourier linear combiner
(BMFLC)-based KF approach (BMFLC-KF) to offer the decomposition of band-limited
signals in the time frequency, thereby facilitating effective filtering and compensation.
In [15], the authors proposed an autoregressive-based KF model (AR-KF) aimed at the
real-time estimation of oscillatory patterns by leveraging past output data. In [16], the
authors proposed algorithms based on multi-step (MS) prediction to address the phase
delays in the sensors and filters, and they accurately eliminated real-time tremors. Since
the fusion of various algorithms leads to computational cost increases, a reduced-order
Kalman-enhanced-based BMFLC model (RKE-BMFLC) was proposed in [17], which can
reduce the computational complexity of the system and improve real-time performance.
Despite their promising performance in predicting tremors, the algorithms mentioned
above still have certain limitations. First, the AR-KF method utilizes a linear prediction
model to represent the tremor signal as a linear Gaussian distribution. To achieve accurate
results, the KF approach must consider the specific characteristics of the tremor being
analyzed. Second, when applying the BMFLC-KF, one may need to select parameters
carefully, and as shown in [14]; the results clearly show that a minor frequency gap can
lead to the infeasibility of such an approach for accurate estimation.

To remove the two limitations above, many machine learning-based approaches have
been proposed, e.g., the small-scale sample learning method has been employed widely
in physiological tremor elimination applications for tele-operation systems. In [18], Luo, J.
proposed the support vector machine (SVM) algorithm as the model for tremor cancel-
lation, wherein it demonstrated good generalization ability and excellent computational
performance. In [19], Z. Liu made the SVM algorithm more adaptable to remote operating
system tasks and proposed an adaptive fuzzy SVM-based algorithm filter, which filters time
series signals and is capable of more accurately modeling tremor signals. In addition to the
small-scale sample approach, strong deep learning models [20–22] can further learn the
characteristics of tremor signals and achieve high-precision tremor elimination. Despite the
merits of the machine-learning-based approaches such as those mentioned above, they still
have some restrictions: (1) for a small-scale sample learning method, a loss in prediction
accuracy may occur, because learning energy cannot be accurately assigned, and it may be
insensitive to small amplitude signals, which may result in poor performance; (2) for deep
learning models, a large number of hyperparameters is an unavoidable problem, regardless
of their ability to process data efficiently.

Motivated by the observation above, in this study, an incremental broad learning
system filter (I-BLSF) has been proposed to predict and cancel hand physiological tremors.
In summary, the main novelties and contributions of this work are listed as follows:

• Unlike high-complexity deep learning networks, a simple and efficient network, broad
learning system (BLS), is applied in tele-operation systems as a tremor filter, which
overcomes the shortcomings of traditional deep neural networks by using the pseudo-
inverse calculation. Due to the ill-posed problem, we combine the BLS with the ridge
regression approach.

• Traditional batch-learning algorithms require a lot of time and computing resources,
and they are limited in dealing with mass data. To solve the problem, incremental
learning algorithms are introduced to rebuild the network model online, which can
improve the model performance.
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• A novel sliding mode controller is raised. The previous work [23] combined with the
PD controller to achieve tremor canceling, and there was still room for improvement in
tracking accuracy and robustness. Thus, in this paper, we apply a superior controller
to control the slave robot.

The rest of this paper is structured as follows. First, Section 2 points out the research
problem that needs to be addressed. Then, Section 3 describes the control strategies de-
signed for teleoperation. The proposed broad-learning-system-based filter (BLSF) approach
is introduced in Section 4. Section 5 shows experiment parameters and Section 6 validates
by simulation that our proposed method has the capability for canceling tremors. Finally,
Section 7 makes a summary of the paper.

2. Problem Description

The background problem of this study will be described in this section. First, we
introduce the tele-operation system, including the master and slave devices. Then, in the
master part, the joints of the master device are analyzed. Finally, the workspace relationship
between the master and the slave is given.

2.1. Tele-Operated Robot System

In Figure 1, it shows components of a tele-operation robot system, which is composed
of the following parts: (1) the master part (involving a haptic device and a sampling
device); (2) the bluetooth communication channel; and (3) the slave part (containing a slave
robot manipulator).

Figure 1. Tele-Operation robot system elements.

• Haptic device and sampling device: The haptic device contains a six degrees of
freedom (DOFs), where the first three are used to describe the position of the haptic
device, and the last three are used to describe the orientation of the haptic device. The
sampling device (Myo armband) has eight electromyography (EMG) electrodes and
one nine-axis inertial measurement unit (IMU), which can obtain the change in human
arm muscle bioelectricity versus time.

• Communication channels: Bluetooth technology eliminates the need for wires be-
tween master devices and slave devices through wireless connections. Master–slave
computers can communicate with each other at a certain distance through a wireless
receiver on the chip.

• Slave robot manipulator: A multi-DOFs robot manipulator is used as the slave control
object, which is equipped with force sensors and electric servers on each joint, where
electric servers include the control circuit, direct current (DC) motor, and reduction
gear set.

2.2. Master Joints Analysis

Although physiological tremors are normal signals in our daily life, they are a non-
negligible issue for meeting about 10 μm range position accuracy [24]. These tremor signals
affect each joint of the master device by yielding disturbance signals. In this paper, the
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modified D-H notation [25] has been adopted to express a haptic device with tremors, and
we have the following equation:{

θorii + θhi
+ Δθi = θnewi , i = 1, 2, 3, 4, 5, 6,

dorii + dhi
+ Δdi = dnewi , i = 1, 2, 3, 4, 5, 6,

(1)

where θori and dori are the original joint information, θh and dh are the desired values
from the human hand, and i represents the i-th joint. Δθ and Δd are the disturbed values
influenced by tremors, and θnew and dnew are actual joint information. And then, the
homogeneous transformation matrix can be described in the following form:

i
i−1T̂ =

⎡⎢⎢⎣
cθnewi −sθnewi 0 ai−1

sθnewi cαi−1 cθnewi cαi−1 −sαi−1 −sαi−1sdnewi

sθnewi sαi−1 sαi−1cθnewi cαi−1 cαi−1dnewi

0 0 0 1

⎤⎥⎥⎦,

s = sin(·), c = cos(·), i = 2, . . . , 6,

(2)

where α is the kinematic link twist. To obtain the joint transformation matrix for the
end effector, the six matrixes 0

1T̂, 1
2T̂, 2

3T̂, 3
4T̂, 4

5T̂, and 5
6T̂ can be multiplied in a sequence

as follows:

0
6T̂ = 0

1T̂ 1
2T̂ 2

3T̂ 3
4T̂ 4

5T̂ 5
6T̂ =

⎡⎢⎢⎣
n̂11 n̂12 n̂13 p̂x
n̂21 n̂22 n̂23 p̂y
n̂31 n̂32 n̂33 p̂z
0 0 0 1

⎤⎥⎥⎦, (3)

where n̂ij, i = 1, 2, 3, j = 1, 2, 3, and p̂x, p̂y, p̂z are the rotational factors and the position
vector, respectively.

2.3. Workspace Description

In a tele-opeation robot system, the description of the coordinate system between the
master and the slave is different due to their different physical characteristics, and their
workspace relationship is shown as follows:

Ss = Zδ × (θSm + b), (4)

where Ss defines the coordinates of the slave robot manipulator, and Sm defines the coordi-
nates of the master device. Zδ is the rotational matrix about the z-axis, and Equation (4) has
the following form:⎡⎣xs

ys
zs

⎤⎦ =

⎡⎣cosδ −sinδ 0
sinδ cosδ 0

0 0 1

⎤⎦×
⎛⎝⎡⎣θx 0 0

0 θy 0
0 0 θz

⎤⎦⎡⎣xm
ym
zm

⎤⎦+

⎡⎣bx
by
bz

⎤⎦⎞⎠, (5)

where δ is a rotation angle. θx, θy, and θz are the scale factors in the three-axis direction,
and bx, by, and bz are the translation factors the three-axis direction. The parameters of
Equation (5) are provided as below:⎧⎪⎪⎨⎪⎪⎩

δ =
π

4
[θx θy θz]T = [0.041 0.040 0.041]T

[bx by bz]T = [0.701 0.210 0.129]T .

(6)

The presence of tremors in the homogeneous transformation matrix of a haptic device
leads to changes in the master coordinates Xm, which in turn causes differences in the
slave coordinates Xs. As the error in the master–slave position increases, the accuracy of
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the system decreases. To address this issue, a tremor attenuation filter can be designed to
reduce the effects of tremors on the performance of tele-operation systems.

3. Control Strategies

In the paper, we integrated the force feedback module, the controller module, and
the tremor filter module into the teleoperation system. An initial torque τo from a human
hand is sent to the haptic device, and the haptic sends an operation trajectory Sm1 to the
filer unit. Sm2 is a filtered trajectory, Ss is an actual trajectory of the slave manipulator, and
Se is an error trajectory, i.e., Se = Sm2 − Ss. The error signal is sent to the force feedback
module to obtain the master and slave control variables q̇md and q̇sd, respectively. In the
controller module, the controller exports the master and slave torque, which are τm and τs,
respectively. Figure 2 shows this process in tele-operation robot systems. Here, we provide
more details on the control strategies as follows.

Figure 2. Control mode in teleoperation systems.

3.1. Force Feedback Control

When the end effector of the slave robot arm follows the motion of the master device,
the master device can receive feedback information from the force sensors of the slave robot
joints. Force feedback can achieve the integration of visual perception and tactile sensation,
thus ensuring that the operator can perceive the remote environment and manipulate the
robot more naturally [26]. The strength of the feedback force is expressed as [27]:

Ff = K f

√
(xs − xm)2 + (ys − ym)2 + (zs − zm)2, (7)

where xm, ym, and zm and xs, ys, and zs are the coordinate values of the master device and
the slave device, respectively. K f is a feedback force parameter. With the optimization of a
received feedback force from the slave part, the desired trajectories of the master and slave
devices, Smd and Ssd, respectively, can be obtained. The pose information can be turned
into the joint velocity information by the Jacobian matrixes J+m and J+s as follows:⎧⎨⎩q̇md = J+m ( ˙Sm)Ṡmd,

q̇sd = J+s (Ṡs)Ṡsd.
(8)

3.2. Sliding Mode Controller

The sliding mode controller, known for its ability to overcome system uncertainties
and achieve robust control characteristics [28], employs different structures on both sides
of the sliding surface. This nonlinear controller is particularly effective in dealing with the
complexities of uncertain dynamic systems. For a typical second-order nonlinear uncertain
dynamic system with a single input, its general state space expression can be described as
follows [29]:

ẋ1(t) = x2(t) (9)

ẋ2(t) =
n

∑
i=1

(ai + Δi(t)) fi(x1, x2, t) + b(x1, x2, t)u(t) + d(t) (10)
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x1(t0) = x1,0, x2(t0) = x2,0, (11)

where x1(t) and x2(t) are the state variables, ai (i = 1, . . . , n) are the constant parameters
of the system, and Δi and d(t) are the uncertain perturbations and the known disturbance,
respectively. u(t) represents the input signals, and fi(x1, x2, t) and b(x1, x2, t) are derived
by the system characteristics; x1,0 and x2,0 are initial conditions given at the initial time t0.
The main objective of this controller is to satisfy that X(t) = [x1(t), x2(t)]T can track the
desired trajectory Xd(t) = [xd1(t), xd2(t)]. Hence, the control law should be designed to
make the tracking error asymptotically arrive at zero. Since the above considered system is
single input, there exists only one sliding surface s(x1, x2) = 0 for second order systems,
and it is defined as follows:

s(x1, x2) = err2(t) + c × err1(t), (12)

where c is a strictly positive real number, and the tracking errors err1(t) and err2(t) are
written as follows:

err1(t) = x1(t)− xd1(t)

err2(t) = x2(t)− xd2(t).
(13)

Assume that ˙err1 = err2, and denote E(t) = [err1(t), err2(t)]. To obtain a unique solution of
a homogeneous differential equation err(t) = 0, s(x1, x2) is set as zero. Thus, the tracking
error will asymptotically reach zero with a proper control law that can keep the trajectory
on the sliding surface. The control law is designed as follows:

ṡ = ˙err2 + c × err2 = −bsgn(s), b > 0

˙err2 = −c × err2 − bsgn(s), b > 0,
(14)

where b is a positive number.

Remark 1. Traditional controllers often rely on control algorithms such as the PID controller,
which are simple and easy to implement but have limited accuracy and anti-interference capabilities.
In contrast, the sliding mode control is effective in reducing the effects of uncertainties and external
disturbances that are common in practical systems, which is achieved by designing a sliding surface
that drives the system towards a stable equilibrium point, regardless of the uncertainties and
disturbances. Furthermore, the sliding mode control provides a fast response and high tracking
accuracy.

3.3. Tremor Attenuation Filter

To provide a more detailed explanation of the flow of signals in the tremor filter, we
provide the mathematical model of the designed tremor filter in Figure 3. The model
illustrates the various flows involved in the filtering process and how they interact with
each other.

Figure 3. Mathematical expression of the tremor complementation model.
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Since the data sampled by the sampling unit are hand trajectories and tremor distur-
bance signals, we denote the input of the tremor filter mathematical model as actual signals
X(k) and the tremor disturbance signals as nre f (k). The actual signals with tremors can be
written as follows:

X(k) = D(k) + nre f (k), (15)

where k is the sampling point, and D(k) is the desired signal without tremors. Through the
prediction of the tremor filter, the output of the tremor filter mathematical model is

S(k) = X(k)− npre(k) = D(k) + nre f (k)− npre(k), (16)

where npre(k) is the prediction signal of the tremor filter.
We denote the error as Δn = nre f (k)− npre(k) and aim for it to equal to zero. Theoreti-

cal predictions suggest that the model error ideally should be zero. In practical scenarios,
there might exist a small residual deviation, thus resulting in a prediction error that is
slightly larger than zero.

4. Design of Broad-Learning-System-Based Tremor Filter

While deep learning algorithms are efficient at processing large amounts of data, they
often involve a large number of hyperparameters, which can be problematic. The broad
learning system is a novel and efficient network architecture that avoids the complex and
redundant structures found in traditional deep learning networks [30,31]. As a result, it
provides a more efficient, interpretable, and scalable solution for processing data.

4.1. Broad Learning System

The proposed network architecture was developed by C. L. Philip Chen and is referred
to as the broad learning system, which is depicted in Figure 4. This novel network architec-
ture differs from deep learning neural networks, as it does not require backpropagation
to update weights. The speed of the broad learning system is attributed to the fact that
weights can be obtained via pseudo-inverse formulas. Moreover, the network weights
are continuously updated as the system is trained with data, as the system employs an
incremental learning algorithm to adjust nodes without reinputting previous data.

Figure 4. Broad learning system network model architecture.

In Figure 4, we denote X ∈ RM×N as the input into the BLS, and we denote Y ∈ RM×C

as the output, where M, N, and C represent the number of samples, the number of features,
and the number of output nodes, respectively. The input data X is randomly mapped to n
sets of feature window nodes, thereby generating the feature layer of the network, which
can be expressed in the following form:

Zi = φ
(

XWfi
+ β fi

)
, i = 1, . . . , n, (17)
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where the variables Wfi
and β fi

correspond to randomly generated weights and biases,
respectively. φ(·) refers to a random mapping function. Each mapping group contains k
feature nodes. All the feature nodes can be represented as Zn ≡ [Z1, Z2, . . . , Zn], and we
denote j-th group enhancement nodes as the following:

Hj = ξ
(
[Z1, Z2, . . . , Zn]Whj + βhj

)
= ξ
(

ZnWej + βej

)
, j = 1, ..., m, (18)

where Whj and βhj are random weight coefficients, and the function ξ(·) is a nonlinear acti-
vation function, f = tanh(·). We denote all nodes as Lm

n ≡ [Z1, Z2, . . . , Zn|H1, H2, . . . , Hm].
The output of the broad learning model is represented as follows:

Y = [Z1, . . . , Zn|ξ(ZnWh1 + βh1), . . . , ξ(ZnWhm + βhm)]Wm
n

= [Z1, . . . , Zn|H1, . . . , Hm]Wm
n = Lm

n Wm
n .

(19)

Here, Wm
n represents the connection weight of the network with n feature windows and m

groups of enhancement nodes. For all nodes Lm
n , the pseudoinverse is equal to the following:

(Lm
n )

+ = [(Lm
n )

T Lm
n ]

−1(Lm
n )

T , (20)

and the weights can be represented as follows:

Wm
n = (Lm

n )
+Y = [(Lm

n )
T Lm

n ]
−1(Lm

n )
TY. (21)

Due to the ill-posed nature of the problem, where no stable or unique solution to the inverse
matrix exists, the ridge regression algorithm is employed to obtain the connection weights
of the structure. As a result, Equation (20) can be rewritten as follows:

(Lm
n )

+ = lim
λ→0

(
[λE + (Lm

n )
T Lm

n ]
−1(Lm

n )
T
)

, (22)

and we have
Wm

n = (Lm
n )

+Y = lim
λ→0

(
[λE + (Lm

n )
T Lm

n ]
−1(Lm

n )
T
)

Y. (23)

Remark 2. The broad learning model (BLM) is a computational framework that offers a fast
and efficient solution for various supervised and unsupervised machine learning tasks. The BLM
has been developed to overcome the limitations of traditional deep learning architectures, which
typically require a large number of layers and a large amount of computational resources to achieve
high predictive performance. The singular value decomposition technique is used to simplify the
complexity of the model, and incremental learning modes can be integrated to form the broad
learning system.

4.2. Incremental Learning Methods

In the broad learning system, to improve the system performance, an incremental
learning approach is integrated. This incremental learning method has three updating
forms, which contain the increment of the feature nodes, the increment of the enhance-
ment nodes, and the increment of the input data. Since the input data is enough for our
experiment, in this paper, the first two methods are considered. The details are given
as follows.

4.2.1. Increment of Additional Enhancement Nodes

Denote Lm
n = [ Zn | Hm ] and denote the group of additional enhancement nodes as

H∗ = ξ(ZnWh(m+1) + βh(m+1)). Hence, the new input matrix is written as follows:

Lm+1 ≡ [ Lm
n | ξ(ZnWh(m+1) + βh(m+1)) ], (24)
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where Wh(m+1) and βh(m+1) are random weights and random biases from n groups of
features mapping to p additional enhancement nodes, respectively. The pseudo-inverse of
the new matrix can be written as follows:

(Lm+1)+ =

[
(Lm

n )
+ − DBT

BT

]
, (25)

where D = (Lm
n )

+ξ(ZnWh(m+1) + βh(m+1)),

BT =

{
(C)+ i f C �= 0
(1 + DT D)−1DT(Am

n )
+ i f C = 0,

(26)

and C = ξ(ZnWh(m+1) + βh(m+1))− Am
n D; the new weights are denoted as the following:

Wm+1 =

[
Wm − DBTY

BTY

]
. (27)

Remark 3. When the trained network fails to achieve the desired accuracy, additional enhancement
nodes can be added to improve the accuracy. By adding extra enhancement nodes into the network,
the nonlinear capability can be enhanced. As shown in the equations above, the algorithm only
requires the calculation of the pseudo-inverse of the new nodes rather than the entire matrix, thereby
enabling the network to be rapidly restructured.

4.2.2. Increment of Additional Feature Mapping Nodes

We point out that the dynamic increment of the enhancement nodes method cannot
improve the current network performance, as it may fall into a locally optimal solution.
The increment of additional feature mapping nodes is an effective learning method for
neural networks, which only needs to calculate the pseudo-inverse of the new nodes and
does not need to retrain the whole network. This method provides the benefits of saving
time for improving the feature extraction capability.

Assume that the initial nodes are constructed by n groups of feature mapping nodes
and m groups of enhancement nodes, and denote the additional (n+1)-th group feature
mapping nodes as Zn+1 = φ(XWe(n+1) + βe(n+1)), where We(n+1) and βe(n+1) are randomly
generated. The corresponding enhancement nodes generated by the additional (n+1)-th
group feature mapping nodes are defined as follows:

H∗
j =

[
ξ(Zn+1W∗

e1 + β∗
e1), ξ(Zn+1W∗

e2 + β∗
e2), . . . , ξ(Zn+1W∗

ej + β∗
ej)
]
, j = 1, ..., m, (28)

where W∗
ei and β∗

ei are random parameters. Here, we denote Lm
n+1 = [ Lm

n | Zn+1 | H∗
j ], and

its pseudo-inverse matrix is defined as follows:

(Lm
n+1)

+ =

[
(Lm

n )
+ − dbT

bT

]
, (29)

where d = (Lm
n+1)

+[ Zn+1 | H∗
j ],

bT =

{
(c)+ i f c �= 0
(1 + dTd)−1dT(Lm

n )
+ i f c = 0,

(30)

and c = [ Zn+1 | H∗
j ]− Lm

n d; the new weights are denoted as follows:

Wm
n+1 =

[
Wm

n − dbTY
bTY

]
. (31)
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4.3. Sparse Autoencoder

Obtaining a good feature representation of input data is a critical step in machine learn-
ing. Traditionally, complex mathematical derivations have been used to derive features,
or a set of features has been generated through random initialization. However, random
features suffer from unpredictability and uncertainty, which may lead to incomplete feature
extraction. As the dimensionality or size of the input data increases, it becomes necessary
to remove redundant features.

To address these issues, the sparse autoencoder (SAE) model has been proposed,
which fine-tunes random features into a set of sparse and compact features [32–34]. The
SAE model structure is illustrated in Figure 5, and then the details of the sparse feature
learning algorithm are described below.

Input 
Data

X

Input 
Data

X

Random MappedRandom Mapped

Sparse Feature Nodes

Random Feature Nodes Inhibitory Neural Nodes

Input Nodes

Remodeling

Figure 5. Sparse autoencoder structure diagram.

The extraction of sparse features is considered to be an optimization problem that
requires addressing. Lasso regression (l1 regularization) represents a convex optimization
problem, as stated in [35]. To obtain the solution W∗ for the sparse autoencoder, the
following optimization problem can be used to obtain it:

f (W∗) = arg min
W∗

‖ZW∗ − X‖2
2 + C‖W∗‖1, (32)

where C is the regularization parameter, and Z is the output of the linear random mapping
equation, as shown in Equation (17). It is well-known that l1 regularization is often used to
solve linear inverse problems. A common approach is the alternating direction method of
multipliers (ADMM), which is used to obtain the solution by minimizing one function at a
time. To apply the ADMM algorithm, we first reformulate Equation (32) as follows:

f (W∗) = f (w, v) =arg min
w,v

h(w) + g(v)

s.t w − v = 0,
(33)

where h(w) = ‖Zw − X‖2
2, g(v) = c‖v‖1. In the augmented Lagrangian with a penalty

form, we have the following:

arg min
w,v

h(w) + g(v) + λ(w − v) +
ρ

2
‖w − v‖2

2

s.t w − v = 0,
(34)
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and then the solution of the original problem can be obtained as follows:

wk+1 =
(

ZTZ +
ρ

2
I
)−1[

ZTX +
ρ

2
(vk − uk)

]
,

vk+1 = Sk(wk+1 + uk), k =
c
ρ

,

uk+1 = uk + (wk+1 − vk+1), uk =
λT

ρ
,

(35)

where ρ is a positive penalty factor. S(·) is the soft thresholding operator, and it is defined
as follows:

Sk(wk+1 + uk) =

⎧⎪⎪⎨⎪⎪⎩
wk+1 + uk − k i f (wk+1 + uk > k)

0 i f (|wk+1 + uk| � k)

wk+1 + uk + k i f (wk+1 + uk < −k)

. (36)

4.4. Physical Model Structure of BLSF

A novel BLSF was proposed to address the effects of physiological tremors, and it
consists of three main components: the sampling unit, the tremor filter unit, and the
control unit. In the sampling unit, an internal measurement unit (IMU) captures real-
time hand movements by measuring the three-axis position acceleration ẍ, ÿ, and z̈ and
the three-axis joint angular velocity θ̇x, θ̇y, and θ̇z. The tremor filtering unit utilizes the
BLS network algorithm to forecast and compensate for tremor signals, thereby effectively
neutralizing them in the actual signals. The control unit incorporates inverse kinematics
calculations, single joint drivers, and motion feedback from deflection sensors to convert
inverse kinematics into motion control variables for the robot manipulator.

By incorporating the BLS network algorithm, the proposed BLSF effectively forecasts
tremor signals, as depicted in Figure 6. The three-axis compensation signals, namely, xp, yp,
and zp, and θxp, θyp, and θzp, exhibit equal magnitudes but opposite phases in comparison
to the tremor signals. This unique characteristic allows them to effectively neutralize the
tremor signals present in the actual signals x, y, and z.

Interial 
measurement 

module
A/D

Broad learning 
system-based 

filter

Inverse 
kinematics

Single joint 
controllerD/APower 

amplifer
Driver 

module

Deflection 
estimation A/D

Figure 6. Block diagram of the broad-learning-system-based tremor filter.

5. Simulation Experiments

A mainstream SVM algorithm in the field of machine learning was used. Its model was
built based on solving convex optimization problems in optimization problems. At the same
time, kernel functions were used to replace the nonlinear mapping of high-dimensional
space to realize the role of processing high-dimensional space data in the low-dimensional
calculation. The desired classification flat was only related to the support vector samples,

176



Entropy 2023, 25, 999

thereby enabling the SVM-based algorithm to have the ability of small sample learning.
However, this algorithm suffers from poor performance in canceling tremors because of
their characteristics.

Hence, in this subsection, we compared the broad-learning-system-based algorithm
model with the support vector machine algorithm for the tele-operation systems, which
were mainly based on the MATLAB Robotics and Libsvm toolbox.

5.1. Model Evaluation Metrics

Determing whether a model has the ability of classification or regression can be judged
by some evaluation metrics, such as the Euclidean distance error. In this topic, the (1) sum
square error (SSE); (2) root mean square error (RMSE); and (3) regression determination
coefficient (R2) were used as the evaluation strategies of the various network models.

SSE =
T

∑
t=1

(nre f (t)− npre(t))2 (37)

RMSE =

√
∑T

t=1 (nre f (t)− npre(t))2

N
(38)

R2 = 1 − ∑T
t=1 nre f (t)− npre(t)

∑T
t=1 nre f (t)− n̄re f (t)

, (39)

where T represents the periods, and N is the number of samples. n̄re f (t) is the mean values
of nre f .

5.2. Data Pre-Processing

In order to satisfy the same distribution of the input data and to prevent the difference
of varying data from being large, we pre-processed the input data. Specifically, we used
z-score normalization processing, which allows the input data to be adjusted to present a
standard normal distribution, i.e., the Gaussian distribution, which satisfies the zero mean
and the one variance.

s =
si − min(s)

max(s)− min(s)
, (40)

where s represents the input vectors on the three-axis directions in the original input data.
After standardization, all the elements in the vector are normalized to [0, 1], which can
accelerate the training and learning speed of the network.

5.3. Parameter Settings

The simulation experiment had a sampling time of 200 s with an interval time of 1 s,
thus resulting in a total of 200 sampling points. In MATLAB, we built a simulation robot, and
its joint parameters are given in Table 1. Additionally, other simulation parameters, such as
network nodes and activation functions, were set according to the following specifications.

Table 1. The MATLAB-based simulation robot arm joint parameters.

i Theta d a Alpha Offset

1 q1 105 0 π/2 0
2 q2 0 −174 0 −π/2
3 q3 0 −174 0 0
4 q4 76 0 π/2 −π/2
5 q5 80 0 −π/2 0
6 q6 44 0 0 0
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Noise signals were used to simulate the tremor signals of the human hand. We added
these simulated signals into the trajectory, and they were set as two parts: (1) the low-
frequency part and (2) the high-frequency part. The physiological tremor signal is defined
as the joint angle signal of the haptic device that comes into contact with the human hand.
Assuming the absence of any accompanying physiological tremor in the human body, the
joint angle information of the joystick is denoted by qd. However, after being affected by
tremors, the joint angle is updated as the following:

q(t) = qd(t) + n(t). (41)

In Figure 7, the presence of a physiological tremor can cause the operating human hand to
deflect during operations, particularly during slow movements. This amplifies the effect
of the physiological tremor, and the subplot in Figure 7 demonstrates that the operator’s
actual trajectory deviated significantly from the desired target trajectory.
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Figure 7. Expected values and actual values when the operator was operating.

For the BLS-based tremor filter, the sparse regularization parameter C was set to 2−30,
while the reduction parameter s for the enhanced node was set to 0.8. The broad learning
system consists of N11 = 10 feature nodes, N2 = 80 feature node windows, and N33 = 200
enhanced nodes for each window. The number of added feature nodes was m1 = 10, the
number of enhancement nodes related to the incremental feature nodes per increment step
was m2 = 20, and the number of enhancement nodes in each incremental learning was
m3 = 50. The activation function ξ(·) = tanh(·) was used for mapping the feature nodes to
the enhanced nodes. For the SVM-based filter, a method based on epsilon support vector
regression was used with a loss function parameter p set to 0.4, which indicated the penalty
degree for the input data. Moreover, the radial basis function (RBF) was selected as the
kernel function of the network.

6. Tremor Forecast Results

In this section, the comparison simulation experiments w.r.t. the broad learning system
and support vector machine were achieved under the simulated physiological tremor signal.
As shown in Figure 8, the simulated manipulator was built in our MATLAB platform, and
the motion trajectory and the joint angle of the manipulator with tremors and without
tremors are given. In millimeters, we can see that the joint angle and the motion trajectory
with tremors deviated from the desired trajectory.
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Figure 8. Joint angle and motion trajectory of robot manipulator with tremors and without tremors.

Figure 9a shows the prediction and estimation ability for the broad learning system
and the support vector machine, where four curves are shown in the figure, which are
the broad learning system, the incremental broad learning system, the support vector
machine, and the actual tremor-induced offset. Since the ability of the broad learning
system to predict the tremor-induced offset trajectory reached a saturation state, there
was still no obvious effect improvement after the reinforcement of incremental learning,
which indicates that the ability of the broad learning system to learn time sequence signals
is limited to some extent. To compare the performance of different algorithms, we can
observe the error curve shown in Figure 9b. As we can see, the SVM error fluctuated,
whereas the BLS error decreased gradually over time. In summary, the proposed BLS
algorithm outperformed the SVM. This conclusion is supported by the evaluation metrics
in Table 2, which indicate that a good regression model should have a high determination
coefficient R2. In Figure 10, we can observe the recovery trajectory of a tele-operation
system under the influence of various filters. By comparing the recovery trajectories across
multiple filters, we can gain insights into the relative effectiveness and limitations of each
filter in achieving the desired outcome. As shown in Figure 11, the position and velocity
control were achieved by applying a sliding mode controller. First, the position and velocity
references were input into the controller, which generated a control signal that was then
applied to the system. The sliding mode controller ensures that the system tracks the
desired position trajectory while also regulating the velocity. The resulting system behavior
is shown in the position and velocity plots.

Overall, the teleoperation robot system applied the sliding mode controller to obtain a
good performance, while our proposed filter was efficient in canceling tremors.

Table 2. Canceling tremor results of different filters.

Different Methods and Metrics SSE RMSE R2 Train Time

Broad learning system filter 0.0687 0.0026 80.06% 0.118

Incremental broad learning system filter 0.0587 0.0024 82.94% 0.122

Support vector machine filter 0.0918 0.0303 73.35% 0.278
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Figure 9. The results of canceling tremors based on different approaches. (a) In the case of tremors,
prediction values based on different approaches. (b) In the case of tremors, the error between tremor
values and prediction values based on different approaches.
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7. Conclusions

In this paper, we proposed a simple and efficient network model, the incremental
broad learning system, as a tremor filter architecture for the current application issues of
deep learning and machine learning in tele-operation. Unlike deep learning algorithms
that have many hyperparameters, our proposed approach simplifies the learning process
and avoids such complexities. Furthermore, the support vector machine often suffers from
poor precision in regression tasks, and our novel architecture was designed to overcome
this issue. We combined it with incremental learning algorithms to rapidly improve per-
formance. Additionally, our proposed sliding mode controller provided greater stability
and faster response performance when compared to traditional controllers. The simula-
tion results and performance metrics demonstrated the effectiveness of our approach in
attenuating tremors.

In future work, we will delve deeper into the feature extraction module of the broad
learning system to improve its ability to eliminate physiological tremors to the best of
our ability. Although our experimental results demonstrated the efficient elimination of
physiological tremors by the broad-learning-system-based, we believe that there is still
room for improvement.
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Abstract: This paper addresses the orbital rendezvous control for multiple uncertain satellites.
Against the background of a pulsar-based positioning approach, a geometric trick is applied to
determine the position of satellites. A discontinuous estimation algorithm using neighboring commu-
nications is proposed to estimate the target’s position and velocity in the Earth’s Centered Inertial
Frame for achieving distributed rendezvous control. The variables generated by the dynamic estima-
tion are viewed as virtual reference trajectories for each satellite in the group, followed by a novel
saturation-like adaptive control law with the assumption that the masses of satellites are unknown
and time-varying. The rendezvous errors are proven to be convergent to zero asymptotically. Numer-
ical simulations considering the measurement fluctuations validate the effectiveness of the proposed
control law.

Keywords: pulsar navigation; nonlinear observer; relative satellite dynamics; adaptive control

1. Introduction

In recent years, the cooperative rendezvous of orbital satellites has become a popular
research topic among the academic community [1]. Advanced positioning and rendezvous
control techniques are building a firm base for the potential applications, such as orbital
maintenance, orbital refueling, and orbital assembly [2], via steering multiple orbital
satellites to achieve rendezvous at a certain target. Particularly, research on the pulsar-
based cooperative rendezvous control is of practical significance as the pulsar sources
feature high-precision yet stable timing properties for determining the position coordinates
of orbital vehicles [3,4].

The pulsar-based positioning technology allows the orbital vehicles to locate them-
selves by comparing the received signals from pulsar sources with a database of known
pulsars and locations [5]. It is the next-generation navigation technology for orbiting
or interplanetary spacecrafts [6] and an alternative calibrated source for GNSS (Global
Navigation Satellite System) [7]. Compared with the positioning technique, the control
technology plays a more important role as the mission success can only be achieved with
a robust control design that provides orbital vehicles with robust properties towards the
external disturbance, measurement noise, and modeling uncertainty [8–13]. In Ref. [8],
the extended Kalman filter is applied to denoising the virtual noisy pulsar signal within
Poisson distribution and the state observing criteria of a linearized pulsar model via us-
ing pulsar data is also proposed. With the help of orbit information and the long-term
observation of a single pulsar, navigation algorithms developed based on the adaptive
divided different Kalman filter under scenarios of 1–3 orbital satellites are reported in [9].
For improving the reliability, robust control design features the capacity of overcoming the
problem of either parameter variation or external disturbances [10,11,14]. Considering the
limitation of fuel storage of orbital spacecraft described by Clohessy–Wiltshire equations
of motion, the robust L1 control strategy shown in [10] has achieved better fuel efficiency
during orbit transferring even with parameter variations. One other fuel optimization
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strategy based on the saw-like control updating algorithm can be found in [12]. As the
command from the ground control station to the orbital satellites features an obvious delay
phenomenon, advanced control schemes such as [15] can be applicable to fill this gap.
Sometimes the trade-off problem between impulsive efficiency and task complexity should
even be predetermined before launching the spacecraft into the space [13]. Though the
results reported in [8–15] have solved various control problems, only solutions for a single
satellite are developed without considering cooperative control of multiple orbital satellites.

As the complexity increases in space missions [16], the cooperative missions of multiple
orbital vehicles have received lots of attention [17–23]. The formation control of numerous
spacecrafts is studied in [17] under the J2 perturbation caused by the oblateness of the
Earth. Robotic arms and wheeled mobile robots are generally used for ground algorithm
investigations [18,19]. Two ground 6-DOF robotic arms are used for performing lidar-based
rendezvous and docking control design for orbital satellites [18], in which the real-time
target pose estimation and tracking algorithms are applied. A wheeled satellite simulator
testbed with experimental docking discussions is reported in [19], illustrating the basic idea of
maneuvering two spacecraft to achieve rendezvous in the final phase. In addition, applying
atmosphere lift and drag force for satellites in low Earth orbits is proved to be an alternative to
complete rendezvous and docking missions [20]. It is worth noting that the control schemes
proposed in [17–20] convert the orbital formation into a local tracking problem and only
achieve the formation control of two satellites. This, however, is not applicable for more
general tasks such as orbital assembly that requires multiple orbital vehicles to rendezvous at
the target orbit simultaneously [21–23]. In Ref. [21], the authors propose an adaptive fuzzy
control law that ensures the spacecrafts’ rendezvous errors to be ultimately bounded by small
numbers. In Ref. [22], the Lyapunov barrier functions are applied to solve the inner-agent
collision avoidance problem of multiple orbital spacecrafts for safe maneuver. Considering
the constrained field of view of vision-based devices, the feasible path generating algorithm
reported in [23] ensures that the target spacecraft maintains the view of the camera during the
rendezvous process. However, the cooperative algorithms developed for multiple satellites
in [21–23] only achieve small attraction regions of the closed-loop system, i.e., the rendezvous
errors must be initialized as tens of meters for maintaining the effectiveness of the control law
or the model simplifications. In practice, the orbital vehicles launched for cooperative missions
are orbiting in different orbits, which means that the initial distance between them might be
hundreds of kilometers, which cannot be dealt with by the control laws reported in [21–23].
Additionally, the cooperative control schemes reported in [17–23] contain the assumption that
all orbital vehicles can know the information of the reference target, which is not a necessity
for achieving cooperative missions.

Motivated by the discussions above, this paper makes a further endeavor to solve
the adaptive rendezvous control problem of multiple uncertain orbital satellites with
the background of the pulsar-based positioning method. First, we introduce a direct
geometric trick to determine orbital coordinates via assuming simultaneous observations
of three pulsars for each satellite. Second, we consider the scenario that only part of the
satellites in the group have access to the states of the orbital reference vehicle and propose
a discontinuously distributed estimation algorithm to estimate the reference orbital vehicle.
Specifically, the estimation errors are globally exponentially convergent to zero. Third,
we design a novel saturation-like adaptive control strategy via viewing the estimation
algorithm as a virtual reference trajectory for each networked satellite. It is proven in the
Lyapunov sense that the rendezvous errors of all networked satellites converge to zero
asymptotically.

The main contribution of this paper is presenting the design and analysis of a novel
adaptive rendezvous strategy for multiple uncertain orbital satellites with an initial pulsar-
based positioning method. In comparison with control schemes developed for the single
orbital satellites in [8–13] or the rendezvous of two spacecrafts in [17–20], the cooperative
control algorithm in this paper allows numerous satellites to achieve rendezvous at the
reference target. The adaptive capacity towards unknown and time-varying masses pro-
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vided by the presented control scheme also features more practical significance than that
only considers constant mass in [23]. Additionally, the proposed rendezvous algorithm still
works even if the initial rendezvous errors are initialized in hundreds of kilometers, largely
expanding the efficient range of a region of attraction in comparison with the control laws
reported in [21–23].

The remainder is organized as follows. Section 2 presents some useful preliminaries
for control formulation. In particular, the pulsar-based position scheme is introduced.
Section 3 elaborates on the designs of the estimation algorithm and adaptive control law.
Numerical simulations are included in Section 4. Section 5 concludes the work briefly.

2. Preliminaries

2.1. Notations and Definitions

In this paper, R denotes the real number set, ‖ · ‖ is the Euclidean norm, | · | represents
the absolute value of a scalar, diag{·} forms a diagonal matrix, In is an n-dimensional
identity matrix within a vector, 1n is an n-dimensional identity row vector, 0n denotes
an n-dimensional zero row vector. For a square matrix, λ(·), λm(·) and λM(·) represent
the eigenvalue, the smallest and largest eigenvalue, respectively. The time t is sometimes
omitted without making confusion.

2.2. Pulsar-Based Positioning

Position measurement for orbital satellites is essential for the onboard control systems
to maintain stability. It highly relies on the Telemetry, Tracking, and Command (TT&C)
stations built on the ground or other orbital GNSS satellites, which requires continuous
yet enormous investment. In comparison with that, pulsars are natural high-precision
timing sources and are suitable for determining the position coordinates of satellites in
both orbital and interplanetary missions. Henceforth, using pulsars as positioning sources
is of practical significance for rendezvous control.

In what follows, an initial pulsar-based positioning method is presented.

Assumption 1. The solar system barycenter coincides with the center of mass of the Sun.

Assumption 2. The axial precession of the Earth is neglected and the Earth orbit is a pure Keplerian
orbit without being affected by other celestial bodies except the Sun.

With Assumptions 1 and 2, the geometric relationship among pulsars, Sun, Earth, and
satellites can be shown in Figure 1. The Sun-Centered-Inertial (SCI) frame Os − XsYsZs that
Earth is rotating around is viewed as an inertial frame, where Os is the center of mass of
the Sun. The Xs-axis coincides with the direction from the vernal equinox to the Os, the
Zs-axis is perpendicular to the Earth’s orbit plane, and the Ys-axis completes the right-hand
law according to Z × X. For the Earth-Centered-Inertial (ECI) plane OE − XEYEZE that is
centered by the Earth, the XE-axis features the direction to the vernal equinox, the ZE-axis
points the rotating axis of the Earth upwards, and the YE satisfies the right-hand law of
ZE × XE. In Os − XsYsZs frame, the Earth orbit around the Sun satisfies the following
Keplerian dynamics [24],

�̇rs,e = �vs,e, �̇vs,e = − μs

r3
s,e
�rs,e, (1)

where�rs,e and �vs,e denote the position and velocity of the Earth, respectively.
Let αj and λj denote the right ascension and declination in frame Os − XsYsZs of the

pulsar j, respectively. The radiation signal of the pulsar j has the following direction [9]:

�qj = [cos αj cos λj, cos αj sin λj, sin αj]. (2)

Suppose that there are n satellites and the coordinate of i-th satellite is given by row vector
�rs,i = [xs,i, ys,i, zs,i]. Generally, the projection of the�rs,i on the vector �qj is supposed to be
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measurable [5,24], i.e.,�si,j = (�rs,i ·�qj)�qj is known, where rs,i = ‖�rs,i‖ = c(tst − tssb) with c
being the light speed, tst the time instant that the satellite receives the pulsar signal, and
tssb the time of solar system barycenter. Henceforth, the plane perpendicular to the vector
�si,j and passing the i-th satellite can be given by:

�si,j · (�rs,i −�si,j) = 0. (3)

Actually, the position vector of the satellite�rs,i in the Os − XsYsZs frame can be uniquely
determined via solving the linear equation set in the form of Equation (3) if there are more
than three pulsars in the detecting area of the satellite. This is because three non-parallel two-
dimensional planes would uniquely determine one single point in the three-dimensional
surface [25]. For this sake, we make the following assumption:

Assumption 3. For each satellite, at least three pulsars’ signals can be observed.

Remark 1. Note that the state-of-the-art instruments designed for observing pulsar sources, such
as those launched by NICER and XPNAV missions, can only perform observation on a single pulsar
during certain time windows. Assumption 3 is built upon future technology wherein the onboard
equipment allows the orbital satellites to observe multiple pulsar signals simultaneously, which
would be achieved by improving sensor sensitivity and minimization packaging.

Figure 1. Geometric relationships among pulsars, the Sun, the Earth and the satellites.

2.3. Relative Satellite Dynamics in ECI Frame

Considering n orbital satellites under ECI coordinates, let row vectors�ri = [xe,i, ye,i, ze,i]
and �ve,i = �̇re,i = [ẋe,i, ẏe,i, że,i] denote the ECI position and velocity of the i-th satellite,
respectively. The satellites can generate arbitrary thrust force to control their positions
and the position control is decoupled from attitude loop. Via ignoring the J2 perturbation
caused by Earth obslateness, the unperturbed orbital satellites can be described by [24]:

�̇re,i = �ve,i, �̇ve,i = − μe

r3
e,i
�re,i +

τi
mi(t)

, i ∈ N � {1, 2, . . . , n}, (4)

where μe is the gravitational constant of the Earth, mi(t) denotes the mass of the i-the
satellite, and τi ∈ R3 represents the control input. We suppose that ṁi = α‖τi‖, where α < 0
is a negative constant related to specific impulse coefficient. Via observing Equations (1),
(2) and (4), the position of the i-th satellite satisfies

�re,i =�rs,i −�rs,e, (5)

which reveals the basic principle of orbital satellite positioning by measuring pulsar signals.
We assume that the satellites can obtain Earth’s position vector in the SCI frame. In reality,
the satellite’s total mass is unknown and decreasing due to generating certain thrust forces
and torques via burning the fuel. For this sake, the mass mi(t) and its ratio of change ṁi(t)
are supposed to satisfy:
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Assumption 4. For all i ∈ N , the mass mi(t) is an unknown variable and satisfies

mi(t) ≥ mi, (6)

where mi is a known positive constant, and the ratio of change of mass ṁi(t) is a known non-positive
bounded variable and m̈i(t) is bounded.

Besides n satellites, we suppose that there is one single free-flying reference orbital
vehicle indexed by 0 and described by:

�̇re,0 = �ve,0, �̇ve,0 = − μe

r3
e,0
�re,0. (7)

Actually, the state vector of the satellite described by Equation (7) can be uniquely de-
termined by its orbital elements that include the eccentricity, semimajor axis, inclination,
longitude of the ascending node, the argument of perigee, and the true anomaly, as well
as other equivalent expressions [24]. For endowing the control formulation with the
distributed feature, we assume:

Assumption 5. There is at least one satellite in N has access to the position and velocity of the
0-th satellite described by Equation (7).

Construct a local vertical and local horizontal (LVLH) coordinate frame OL − xLyLzL
according to position vector�re,ir = [xe,ir, ye,ir, zi,r] and velocity vector �ve,ir = [ẋe,ir, ẏe,ir, żi,r],
where the local zL axis points towards the Earth center, the local yL axis perpendicular
downwards to the orbital plane and the local xL axis completes the right hand law from yL
to zL. Without losing generality, the unit axis vectors can be given as �xL = �yL ×�zL,�yL =

− �re,ir×�ve,ir
‖�re,ir×�ve,ir‖ ,�zL = − �re,ir

‖�re,ir‖ . The angular velocity of the LVLH frame OL − xLyLzL with
respect to the ECI frame is:

�ωir =
�re,ir ×�ve,ir

r2
e,ir

, (8)

where re,ir = ‖�re,ir‖. Define the relative position between the i-th satellite and �re,ir in
OL − xLyLzL frame by�rir = (�re,i −�re,ir) · [�xL;�yL;�zL]

T , whose derivative is [24]:

�vir � �̇rir = �̇re,i −�̇re,ir − �ωir ×�rir. (9)

Then, the associated relative acceleration can be given by:

�̇vir = − μe

r3
e,i
�re,i +

τi
mi

+
μe

r3
e,ir
�re,ir − �̇ωir ×�rir − �ωir × (�ωir ×�rir)− 2�ωir ×�vir, (10)

where �̇ωir = −2
�ve,ir�rT

e,ir

r2
e,ir

�ωir denotes the angular acceleration.

2.4. Graph Theory

A graph G = {N , E ,A} can be used to describe the interaction among satellites,
where E ⊆ N × N is the edge set and A denotes the adjacency matrix [26]. An edge
{(i, j) : i �= j} ∈ E denotes that the j-th satellite can send information to the i-th satellite
via wireless devices. The adjacency matrix is defined by A =

{
aij
} ∈ Rn×n, where

aij = 1 if (i, j) ∈ E , otherwise aij = 0. Self connection is not allowed, i.e., aii = 0, ∀i ∈
N . For an undirected graph, aij = 1 ⇔ aji = 1 holds, denoting that satellite i and
satellite j can exchange information with each other. The path from satellite i to satellite
j denotes an edge sequence {(i, j1), (j2, j3), . . . , (j∗, j)}. The graph G is called connected
if there is a path between any two distinct nodes. The in-degree matrix is given by:
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D= diag{[l11, l22, . . . , lnn]}, lii =
n
∑

j=1
aij, ∀i, j ∈ N , and the Laplacian matrix is: L = D −A.

As reported, the matrix L is semi-positive definite and has only one zero eigenvalue and
n − 1 positive eigenvalues provided that the graph G is undirected and connected [26].
Define ai0 = 1 if the there is a valid information flow from the spacecraft to the i-th satellite,
otherwise ai,0 = 0. Define:

H = L+ B, (11)

where B = diag{[a10, . . . , an0]}.

Assumption 6. The graph G is undirected and connected, and B �= 0n×n.

Lemma 1 ([26]). Under Assumption 6, the matrix H is positive definite.

2.5. Problem Formulation

Until now, the control objective can be formally stated as: given Assumptions 1–6, find
a control law τi, ∀i ∈ N so that the networked satellites described by Equation (4) achieve
rendezvous at the orbit trajectory generated by Equation (7), i.e.,

lim
t→∞

�re,i −�re,0 = 03. (12)

3. Control Design and Stability Analysis

3.1. Estimation Algorithm

Under Assumption 5, the states of the reference orbital vehicle are not available to all
satellites, which might obstruct achieving the control objective Equation (12). To overcome
this problem, we plan to construct an algorithm to estimate the [�re,0,�ve,0] via the neighboring
communications among satellites in the ECI frame.

Define �ηe,ir = [xe,ir, ye,ir, ze,ir],�ϕe,ir = [ẋe,ir, ẏe,ir, że,ir] and �ρe,ir = [ẍe,ir, ÿe,ir, z̈e,ir] as the
estimated position, velocity and acceleration of the reference orbital vehicle for the i-th
satellite. The updating algorithm for �ηe,ir, �ϕe,ir,�ρe,ir is designed as:⎧⎪⎪⎨⎪⎪⎩

�̇ηe,ir = �ϕe,ir

�̇ϕe,ir = �ρe,ir

�̇ρe,ir = −g1�ϕe,ir − g2�ρe,ir − g3se,ir − g4signse,ir

, (13)

where g1 > 0, g2 > 0, g3 > 0, g4 > sup
t≥0

∥∥∥�r(3)e,0 + g1�̈re,0 + g2�̇re,0

∥∥∥, sign(·) denotes sign function

and

se,ir =
n

∑
j=1

aij
(
�ρe,ir −�ρe,jr

)
+ ai0

(
�ρe,ir −�̈re,0

)
+ g1

n

∑
j=1

aij
(
�ϕe,ir − �ϕe,jr

)
+ g1ai0

(
�ϕe,ir −�̇re,0

)
+ g2

n

∑
j=1

aij
(
�ηe,ir −�ηe,jr

)
+ g2ai0(�ηe,ir −�re,0).

(14)

Lemma 2. Given Assumption 6, the gains satisfying g1 > 0, g2 > 0, g3 > 0,
g4 > sup

t≥0

∥∥∥�r(3)e,0 + g1�̈re,0 + g2�̇re,0

∥∥∥ and any initial states, the estimation algorithm given by

Equations (13) and (14) ensures that:

lim
t→∞

�ηe,ir =�re,0, lim
t→∞

�ϕe,ir = �̇re,0, lim
t→∞

�ρe,ir = �̈re,0. (15)
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Proof. Define 3n-dimensional stacked row vectors,

ηe,r = [�ηe,1r, . . . ,�ηe,nr]
T , ϕe,r = [�ϕe,1r, . . . , �ϕe,nr]

T ,

ρe,r = [�ρe,1r, . . . ,�ρe,nr]
T , se,r = [se,1r, . . . , se,nr]

T .
(16)

It then, by Equations (13) and (14) follows that:⎧⎪⎨⎪⎩
η̇e,r = ϕe,r

ϕ̇e,r = ρe,r

ρ̇e,r = −g1 ϕe,r − g2ρe,r − g3se,r − g4Pese,r

, (17)

where
Pe = diag{signse,1r, . . . , signse,nr} ∈ R

3n×3n. (18)

Define estimation error
εe,r = �ηe,r − 1n ⊗�re,0, (19)

where ⊗ denotes the Kronecker product. Within Equation (19), the se,r in Equation (16) can
be arranged as:

se,r = H⊗ I3(ε̈e,r + g2 ε̇e,r + g1εe,r), (20)

with time-derivative along the trajectory of Equation (14) being given by:

ṡe,r = H ⊗ I3
(...
�r e,r + g2 ε̈e,r + g1 ε̇e,r

)
= H ⊗ I3

[−g3se,r − g4Pese,r − 1n ⊗
(...
�r e,0 + g2�̈re,0 + g1�̇re,0

)]
.

(21)

Given Assumption 6 and Lemma 1, we know that the matrix H is positive definite. Choose
a Lyapunov candidate as:

V1 = 0.5sT
e,r(H⊗ I3)

−1se,r, (22)

which, by the relationship λ(H⊗ I3) = λ(H), leads to:

1
2λM(H)

‖se,r‖2 ≤ V1 ≤ 1
2λm(H)

‖se,r‖2. (23)

Then, calculate the time-derivative of V1 as:

V̇1 = −g3sT
e,rse,r − g4sT

e,rPese,r − sT
e,r1n ⊗

(...
�r e,0 + g2�̈re,0 + g1�̇re,0

)
= −g3sT

e,rse,r −
n

∑
i=1

[
g4se,irsignsT

e,ir + se,ir
(...
�r e,0 + g2�̈re,0 + g1�̇re,0

)T
] (24)

Let ϑ
Δ
= sup

t≥0

{∥∥...
�r e,0 + g2�̈re,0 + g1�̇re,0

∥∥}. The Equation (24) satisfies:

V̇1 ≤ −g3‖se,r‖2 −
n

∑
i=1

|se,ir|(g4 − ϑ)

≤ −g3‖se,r‖2.

(25)

Therefore, se,r would decay to zero with exponential decaying rate −0.5g3 [27]. We then
transform Equation (20) into

ε̈e,r + g2 ε̇e,r + g1εe,r = (H⊗ I3)
−1se,r. (26)

The vectors εe,r,ε̇e,r and ε̈e,r will converge to zero exponentially due to se,r decays to zero
exponentially and the matrix H⊗ I3 is positive definite [28]. By definition Equation (19),
the claims in the lemma follows. This completes the proof.
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Via the information exchange with connected satellites, all satellites achieve the estimate
of [�re,0,�ve,0] . One should notice that the generated velocity �ϕe,ir and acceleration �ρe,ir are
bounded because the associated components of the orbital reference vehicle are bounded, and
the exponential convergence to zero of the estimation errors. The generated signals �ηe,ir, �ϕe,ir
and�ρe,ir stated in Lemma 2 will be viewed as a reference signal for the i-th satellite for i ∈ N .
As can be seen, the efficacy of the proposed estimation algorithm relies only on partial access
to [�re,0,�ve,0] and undirected connected communications, which gains a more robust property
of the group as a whole when compared with the centralized ones [17–23] that require all
satellites in the group to know the information of the reference target.

3.2. Feedback Control

In this subsection, we will take the modeling uncertainty into account and design a con-
trol law for each satellite i ∈ N so as to track the reference signal generated by Equations (13)
and (14).

Define tracking errors by:

�e,i = [�re,i −�ηe,ir] ·

⎡⎢⎢⎢⎣
�ηe,ir×�ϕe,ir
‖�ηe,ir×�ϕe,ir‖ ×

�ηe,ir
‖�ηe,ir‖

− �ηe,ir×�ϕe,ir
‖�ηe,ir×�ϕe,ir‖

− �ηe,ir
‖�ηe,ir‖

⎤⎥⎥⎥⎦
T

. (27)

Following the derivations Equations (8)–(10), the first- and second-order derivatives of
Equation (27) can be calculated as:

�̇e,i = �̇re,i − ϕe,ir − ζe,ir × �e,i,

�̈e,i = − μe

r3
e,i
�re,i +

τi
mi(t)

+
μe

‖ηe,ir‖3 ηe,ir − ζ̇e,ir × �e,i − ζe,ir × (ζe,ir × �e,i)− 2ζe,ir × �̇e,i,
(28)

where ζe,ir =
ηe,ir × ϕe,ir

‖ηe,ir‖ and ζ̇e,ir = −2
ϕe,irηT

e,ir

r2
e,ir

ζ represent the angular velocity and

angular acceleration of the frame formed by the reference signal [�ηe,ir, �ϕe,ir].
Define an intermediate variable:

δe,i = − μe

r3
e,i
�re,i +

μe

‖ηe,ir‖3 ηe,ir − ζ̇e,ir × �e,i − ζe,ir × (ζe,ir × �e,i)

− 2ζe,ir × �̇e,i + k3 tanh(�̇e,i + k2�e,i) + k1 tanh(�̇e,i),
(29)

where k1, k2, k3 > 0. We then propose the following control law with a parameter updating
algorithm, {

τi = −m̂i(t)δe,i

˙̂mi = ṁi(t) + k4[k3 tanh(�̇e,i + k2�e,i) + k1 tanh �̇e,i + k2�̇e,i]δ
T
e,i

, (30)

where k4 > 0 and m̂i(t) denotes the estimated value for mi. The estimated value m̂i(t) is
updated via the integration m̂i(t) = m̂i(0) +

∫ t
0

˙̂mi(χ)dχ.

Theorem 1. If the control gains are selected such that k1 > 0, k2 > 0, k3 > 0, k4 > 0, the adaptive
control law shown in Equation (30) guarantees that the tracking error �e,i converges to zero globally
asymptotically. In addition, the control objective Equation (12) is achieved.

Proof. Substituting Equation (29) into �̈e,i in Equation (28) results in:

�̈e,i = −k3 tanh(�̇e,i + k2�e,i)− k1 tanh(�̇e,i) +
τi

mi(t)
+ δe,i. (31)
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Define estimation error as m̄i(t) = mi(t)− m̂i(t) and taking the control law Equation (30)
into Equation (31), we obtain:

�̈e,i = −k3 tanh(�̇e,i + k2�e,i)− k1 tanh(�̇e,i) +
m̄i

mi(t)
δe,i. (32)

Choose a positive definite function V2 = V2(�i, �̇i, m̄i, t) as follows:

V2 = k3mi ln cosh(�̇e,i + k2�e,i) + k1mi ln cosh �̇e,i + 0.5k2mi�̇e,i�̇
T
e,i +

m̄2
i

2k4
. (33)

The time-derivative of Equation (33) along the solution trajectory of Equation (32) can then
be calculated as:

V̇2 = ṁi

[
k3 ln cosh(�̇e,i + k2�e,i) + k1 ln cosh �̇e,i + 0.5k2�̇e,i�̇

T
e,i

]
+ k3mi tanh(�̇e,i + k2�e,i)(�̈e,i + k2�̇e,i)

T + k1mi tanh �̇e,i�̈
T
e,i + k2mi�̇e,i�̈

T
e,i

+
m̄i
k4

(
ṁi − ˙̂mi

)
.

(34)

As ṁi ≤ 0, ∀t ≥ 0, the first row of Equation (34) is non-positive and hence the V̇2 satisfies:

V̇2 ≤ k3mi tanh(�̇e,i + k2�e,i)(�̈e,i + k2�̇e,i)
T + k1mi tanh �̇e,i�̈

T
e,i + k2mi�̇e,i�̈

T
e,i

+
m̄i
k4

(
ṁi − ˙̂mi

)
.

(35)

Substitute �̈e,i of Equation (32) into Equation (35),

V̇2 ≤ mi(t)
{
−k2

3 tanh(�̇e,i + k2�e,i)[tanh(�̇e,i + k2�e,i)]
T − k2

1 tanh �̇e,i tanh (�̇e,i)
T
}

+ mi(t)
{
−k1k2�̇e,i tanh (�̇e,i)

T − 2k3k1 tanh(�̇e,i + k2�e,i) tanh (�̇e,i)
T
}

+ [k3 tanh(�̇e,i + k2�e,i) + k1 tanh �̇e,i + k2�̇e,i]m̄iδ
T
e,i +

m̄i
k4

(
ṁi − ˙̂mi

)
.

(36)

Taking the updating algorithm for m̂i in Equation (30) into Equation (36) and performing
some direct calculations, we obtain:

V̇2 ≤ −mi(t)‖k3 tanh(�̇e,i + k2�e,i) + k1 tanh �̇e,i‖2 − k1k2mi(t)�̇e,i tanh (�̇e,i)
T

≤ −mi‖k3 tanh(�̇e,i + k2�e,i) + k1 tanh �̇e,i‖2 − k1k2mi�̇e,i tanh (�̇e,i)
T

≤ 0.

(37)

It is obvious that V̇2 is semi-negative definite, which means that �e,i, �̇e,i and m̄i are
bounded. With direct calculation, one would find out that δe,i is bounded. Henceforth, �̈e,i
is bounded. All these bounded variables demonstrate that:

V̈2 = m̈i(t)
[
k3 ln cosh

(
�̇e,i + k2�e,i

)
+ k1 ln cosh �̇e,i + 0.5k2�̇e,i�̇

T
e,i

]
− ṁi(t)

∥∥k3 tanh
(
�̇e,i + k2�e,i

)
+ k1 tanh �̇e,i

∥∥2 − k1k2ṁi(t)�̇e,i tanh
(
�̇e,i
)T

− 2mi(t)
[
k3 tanh

(
�̇e,i + k2�e,i

)
+ k1 tanh �̇e,i

]× [ k3�̈e,i + k3k2�̇e,i

1 +
∥∥�̇e,i + k2�e,i

∥∥2 +
k1�̈e,i

1 +
∥∥�̇e,i

∥∥2

]T

− k1k2mi(t)�̈e,i tanh
(
�̇e,i
)T − k1k2mi(t)

�̇e,i�̈
T
e,i

1 +
∥∥�̇e,i

∥∥2

(38)
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is bounded. The boundedness of V̈2 implies that V̇2 is uniformly continuous, which,
according to Barbalat’s lemma [27], proves that �e,i and �̇e,i converge to zero globally
asymptotically. Rewrite Equation (27) as follows:

�re,i −�re,0 = �e,i + (�ηe,ir −�re,0). (39)

Because lim
t→∞

�e,i = 0 and lim
t→∞

(�ηe,ir −�re,0) = 0 hold simultaneously, we use a simple theory

of a cascade system [28] and obtain that lim
t→∞

(�re,i −�re,0) = 0. This completes the proof.

The above analysis shows that the satellites in N would achieve rendezvous at the
reference orbital vehicle. One might note that the safe orbit height is not taken into account,
i.e., the satellite must be orbiting above a certain height with respect to the Earth’s surface.
We here propose an initial solution for this issue without presenting the detailed proof.
Choose two positive numbers h1 and h2 satisfying h2 > h1 > 0, define a continuous and
derivable function f (x) : (h1,+∞) �→ R≥0 as:

f (x) =

⎧⎪⎨⎪⎩
− α1 ln α2(x − h1) + α3 ,∀h1 < x ≤ 0.5(h1 + h2);

α4(x − h2)
2 ,∀0.5(h1 + h2) < x ≤ h2;

0 ,∀h2 < x,

(40)

where the constants are chosen as α1 = 0.5α4(h2 − h1)
2, α2 =

1
2(h2 − h1)

, α3 = 0.5α1, α4 > 0.

It is direct to verify that f (x) is derivable and continuous for all x ∈ (h1,+∞), so we omit
the proof here. To ensure the orbital satellites orbiting above the h1 and ‖�re,i‖ > h1, ∀t ≥ 0,
we borrow the basic idea from an artificial potential field approach [29] and modify the
control law Equation (30) into:⎧⎪⎨⎪⎩

τi = −m̂iδe,i + f (‖�re,i‖) �re,i

‖�re,i‖τi,c

˙̂mi = ṁi(t) + k4[k3 tanh(�̇e,i + k2�e,i) + k1 tanh �̇e,i + k2�̇e,i]δ
T
e,i

, (41)

with τi,c being a constant. The introduced term f (‖�re,i‖) �re,i
‖�re,i‖τi,c would produce a reversing

force in the direction�re,i, pointing outwards from the Earth’s center, so that the ‖�re,i‖ >
h1, ∀t ≥ 0. In addition, as can be seen from Equations (40) and (41), the term becomes
efficient only when ‖�re,i‖ ∈ (h1, h2). This means that the modified control law Equation (41)
reduces to Equation (30) if ‖�re,i‖ ≥ h2.

4. Numerical Simulation

This section presents the numerical simulation to validate the proposed control design.
Two parts are involved. First, we discuss how to propagate the projection vector�si,j of
the satellite position and calculate the satellite position for feedback control. Second, we
validate the leader estimation algorithm and feed the disturbed state signals into the control
loop to verify the effectiveness of the adaptive control algorithm.

4.1. Pulsar-Based Positioning and Simulation Setup

For simulation use, we select three pulsars as positioning sources. The pulsar positions
are listed in Tables 1 and 2. The galactic coordinates shown in Table 1 are transformed
into SCI coordinates in Table 2 via the online coordinate calculator provided by https:
//ned.ipac.caltech.edu/coordinate_calculator, accessed on 11 November 2021.
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Table 1. Pulsar Position in Galactic Frame [30].

j Name Longitude Latitude

1 PSR B0531+21 184.56◦ −5.78◦
2 PSR B1821− 24 7.8◦ −5.58◦
3 PSR B1937+21 57.51◦ −0.29◦

Table 2. Pulsars Information in SCI Frame.

j Name Right Ascension Declination

1 PSR B0531+21 84.102438550◦ −1.29446370◦
2 PSR B1821− 24 275.56845533◦ −1.54719148◦
3 PSR B1937+21 301.97479547◦ 42.29726047◦

Within the pulsar position in Table 2, we use Equation (2) to calculate the fixed vectors
formed by pulsar radiations in the SCI frame as follows:

�q1 = [0.1027,−0.0023,−0.0226],

�q2 = [0.0970,−0.0026,−0.0270],

�q3 = [0.3917, 0.3564, 0.6730].

(42)

As discussed before, the projection of satellite position vector�rs,i, i ∈ N in the SCI frame
on �qj, j = {1, 2, 3} is measurable. Given three pulsars, i.e., j = 3, we define the mea-
sured row vectors for the i-th satellite by �si,1,�si,2,�si,3, which can be propagated by the
following equations:

�si,j = [(�re,i +�rs,e) ·�qj]�qj, j = {1, 2, 3}, (43)

where�re,i and�rs,e are solved by the associated Keplerian equations of motion. Then we use
the two-dimensional plane given in Equation (3) and obtain the following linear equations:⎡⎣ �si,1

�si,2
�si,3

⎤⎦�rT
s,i = [‖�si,1‖2, ‖�si,2‖2, ‖�si,3‖2]T . (44)

Equation (44) suggests that the satellite position in the SCI frame using pulsar measure-
ments can be solved by:

�rs,i =

⎡⎢⎣
⎡⎣ �si,1
�si,2
�si,3

⎤⎦−1

[‖�si,1‖2, ‖�si,2‖2, ‖�si,3‖2]T

⎤⎥⎦
T

. (45)

To investigate the robust property of the proposed algorithm regarding the disturbance
of position and velocity measurement, we inject the unknown time-varying disturbance
into the state variables for feedback control. The overall process can be summarized as
the figure shown below (Figure 2), in which the satellite ECI coordinate II is fed into the
control loop.
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Figure 2. Pulsar-based Positioning Flowchart For Simulations.

4.2. Estimate of�re,0 and �ve,0.

For validating the proposed algorithm, we suppose that four orbital satellites trans-
porting supplies to the international space station (ISS) are indexed by 0, which accords
with the rendezvous scenario. The initial orbital elements of ISS and satellites are listed in
Table 3.

Table 3. Initial Orbital Elements.

i A ECC INCL RAAN AANP APP

0 6792 km 0.005426 51.6438◦ 38.8886◦ 23.0560◦ 63◦
1 6881 km 0.006340 50.3210◦ 40.0100◦ 20.2022◦ 60◦
2 6922 km 0.005924 60.5380◦ 39.4500◦ 25.1991◦ 64◦
3 7238 km 0.007020 52.6225◦ 43.1526◦ 28.5234◦ 58◦
4 7055 km 0.009070 40.4819◦ 42.5128◦ 23.4040◦ 55◦

Where the definitions for letters in Table 3 are listed below, A: semi-major axis, ECC: orbit eccentricity, INCL: In-
clination, RAAN: right ascension of ascending node, AANP: angle between ascending node and periapsis,
APP: angle between periapsis and the satellite.

According to the initial orbital elements in Table 3, we calculate�re,i(0) and �ve,i(0), ∀i ∈
N as follows:

�re,1(0) = [−1880.5, 4055.8, 5201.9] km,�ve,1(0) = [−6.3076,−4.1772, 1.0317] km/s,

�re,2(0) = [−2082.9, 2683.1, 6010.5] km,�ve,2(0) = [−5.9198,−4.7778, 0.1278] km/s,

�re,3(0) = [−2669.4, 3486.7, 5719.6] km,�ve,3(0) = [−5.6280,−4.8637, 0.3940] km/s,

�re,4(0) = [−2493.6, 4807.7, 4463.1] km,�ve,4(0) = [−6.2565,−4.1120, 1.0216] km/s.

The initial orbits of the satellites are depicted in Figure 3. As can be seen, the satellite
i, ∀i ∈ N and the ISS are orbiting the Earth with independent orbits.
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Figure 3. The initial orbits of satellites in the ECI coordinate frame.

For achieving distributed estimation about [�re,0,�vr,0], the satellites in N are supposed
to exchange information via the communication topology shown in Figure 4.

Figure 4. The communication topology.

The coefficients are chosen as g1 = 1, g2 = 0, 1, g3 = 1, g4x = g4y = g4z = 1.2. Set
initial values by �ηe,ir(0) =�re,i(0), �ϕe,ir(0) = �ve,i(0) and �ρe,ir(0) = 03. The simulation time
length is the same as the next subsection. However, we only plot the error trajectory in
the time interval t ∈ [0, 300] for showing the convergence clearly. The simulation results
are depicted in Figure 5. It can be found out that all estimation errors converge to zero
asymptotically. Within t ≥ 50 s, the signals �ηe,1r, ∀i ∈ N = {1, 2, 3, 4} feature stable shape
without any chattering phenomenon occurring.
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Figure 5. The estimation errors.

4.3. Control Validation
For achieving cooperative tasks, we plan to steer all satellites to the orbit�re,0 via the

proposed control law and the pulsar-based positioning method. Within the initial condition
shown in Table 3, we set the control coefficients by k1 = 0.2, k2 = 0.4, k3 = 0.2, k4 = 0.01.
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The real satellite masses are set as m1 = 450 kg, m2 = 423 kg, m3 = 467 kg and m4 = 433 kg.
These masses are unknown for each satellite in N . The ratio of change of mass is chosen as
αi = −0.1, ∀i ∈ {1, 2, 3, 4}. The initial estimated mass values are set as m̂i(0) = (1 + 6%)mi.
Set the Sun gravitational constant as μs = 1.32712439935 × 1011 kg3/s2 and the Earth
gravitational constant as μe = 3.986005 × 105 kg3/s2. The semi-major axis of Earth rotating
round the Sun is chosen as aes = 1.496 × 108 km within eccentricity given by ecce = 0.0167.
The initial anomaly of the Earth is set as zero. The Earth’s radius is set as Re = 6371 (km).
Accordingly, we set h1 = Re + 300 (km) = 6671(km), h2 = Re + 350 (km) = 6721 (km),
α1 = 125, α2 = 0.04, α3 = 62.5, α4 = 0.1 and τi,c = 100. This setting means that we want all
satellites are always orbiting 300 km above the Earth’s surface. In addition, the position and
velocity measurements used for feedback control are supposed to suffer from disturbances
�Δe,r,i and �Δe,v,i respectively, defined as follows:

�Δe,r,1 = 50[sin 0.01t, cos 0.05t, sin 0.02t] (m),�Δe,r,2 = 50[sin 0.03t, sin 0.04t, cos 0.02t] (m),

�Δe,r,3 = 50[cos 0.02t, sin 0.01t, cos 0.03t] (m),�Δe,r,4 = 50[sin 0.015t, cos 0.02t, sin 0.012t] (m),

�Δe,v,1 = 2[sin 0.023t, cos 0.03t, sin 0.012t] (m/s),�Δe,v,2 = 2[sin 0.016t, sin 0.035t, cos 0.022t] (m/s),

�Δe,v,3 = 2[cos 0.026t, sin 0.013t, cos 0.03t] (m/s),�Δe,v,4 = 2[sin 0.018t, cos 0.02t, sin 0.032t] (m/s).

More precisely , the position measurement errors are fluctuated within ±75.7 m, while the
fluctuation for velocity measurement is ±3.4 m/s. We set simulation time as 5000 s and
start the control update after t ≥ 100 s according to the convergence of the estimation errors
stated previously. The simulation results are depicted in Figures 6–9.

As depicted in Figure 6a, all satellites in N move to the orbit of �re,0, achieving a
rendezvous control scenario from initial orbits. In Figure 6a, the Earth is rotating around the
Sun while the satellites are rotating with the Earth. The collective helix curves demonstrate
that the control algorithm is effective even though the controller Equation (30) is developed
in ECI coordinate frame. Figure 6b further supports this point of view and demonstrates
that the position rendezvous errors converge into small regions enclosing the zero.

Due to position and velocity measurement disturbances during the transient phase, the
rendezvous errors are not steered converging to zero. We plot the final relative position and
velocity with respect to [�re,0,�ve,0] in Figure 7. The simulation resulting in the steady-state
of t ≥ 3000 s shows that the final relative position is maintained to be less than 90 m and
the relative velocity to be less than 3 m/s. More precisely, the final relative position and
velocity mean values are calculated and summarized in Table 4. As can be seen, the relative
position and velocity in the steady-state phase are maintained at a reasonable level. The
robust property of the proposed control algorithm towards measurement disturbances is
validated. For such small ranges of final relative position and velocity difference, high-
precision onboard measurement units can then be used to guide the satellites to accomplish
tasks such as docking and circumventing.

Table 4. The mean values of final relative states for t ≥ 3000 s.

i 1 2 3 4

mean{‖�re,i −�re,0‖} 60.45 m 59.65 m 61.64 m 62.03 m

mean{‖�ve,i −�ve,0‖} 1.83 m/s 1.84 m/s 1.36 m/s 1.01 m/s

By observing Figure 8, we find that the satellites are always over the safe height h1,
i.e., they would not collide with the Earth’s surface and guarantee ‖�ri‖ > h1, ∀i ∈ N , t ≥ 0.

The change of masses due to fuel consumption is plotted in Figure 8. The mass losses
are related to the initial rendezvous error. Via simple calculation, we obtain the initial
rendezvous error for the first to the fourth satellites as 661.13 km, 1134.40 km, 569.04 km,
and 1529.90 km, respectively. These initial errors explain the fuel consumption difference
depicted in the figure. Additionally, the masses of satellites for t ≥ 3000 s decrease slightly
to overcome the measurement disturbances.
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Figure 6. Simulation results of the rendezvous of multiple uncertain satellites. (a) The orbits of
satellites in the SCI coordinate Frame; (b) The position rendezvous errors of semi-logarithmic scale.

Figure 7. The relative position and velocity in steady state.
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Figure 8. Orbital radius of satellites.
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Figure 9. Masses of satellites.

5. Conclusions

This paper presents the design and analysis of an adaptive rendezvous control strategy
for multiple orbital satellites. Nonlinear tools, including a discontinuous approach, the
reduced-order method, and saturation-like adaptive control design, are applied to derive a
novel control law that steers multiple uncertain orbital satellites to achieve rendezvous at a
certain reference orbital vehicle. It is proven that the rendezvous errors are convergent to
zero asymptotically. In the future, the authors will consider more problems for the pulsar-
based rendezvous control, such as intermitted observation of pulsar sources, statistical
measurements, and fuel optimizations.
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