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Abstract: This work presented the design and fabrication of a blood vessel and breast tumor detection
device (BKA-06) based on optical energy spectroscopy. The BKA-06 device uses red-to-near-infrared
light-emitting diodes that allow physicians or physicians to visualize blood vessels and surface
structures such as breast tumors with the naked eye. The device consists of a built-in current control
circuit to have the appropriate brightness (maximum illuminance of 98,592 lux) for the examination of
superficial tumors deep under the skin, with a scan time of 3–5 min. The device BKA-06 can facilely
observe each layer of blood vessels at the depth of the skin. For breast tumors, the location, size, and
invasive areas around the tumor can also be visualized with the naked eye using the BKA-06 sensor.
The results show that the BKA-06 sensor can provide clear breast tumor and vascular images, with
a penetration of up to 15 cm in the skin and tissue layers of the breast. The breast tumor scanning
tests with the BKA-06 sensor gave patients quick results and compared them through cell biopsy
and MRI, respectively. The device has the advantages of being simple and easy to use, providing
potential practical applications in the medical field and reducing costs for patients when taking MRI
or CT scans. Therefore, the BKA-06 device is expected to help doctors and medical staff overcome
difficulties in infusion, as well as identify breast tumors to support early breast cancer diagnosis
and treatment.

Keywords: BKA-06; blood vessels detection device; red LED lights; medicine

1. Introduction

In medicine, the skill of identifying veins in infusions and taking blood is a skill that
not all doctors can perform well. Finding a vein is difficult (especially for children, women,
and obesity) [1]. It is not uncommon for cases of vein deviation or the rupture of vessels
when injected or drawn blood that has adversely affected the patient. The vein retriever
process requires the precise operation of people with experience that are not allowed to
make mistakes because, if performed many times, will cause pain and discomfort to the
patient [2].

On the other hand, the problem of breast cancer shows that the incidence of breast
cancer is increasing in many parts of the world, especially in transition countries [3].
Sadly, an estimated 685,000 women lost their lives to breast cancer in 2020, making up
16% of all cancer deaths in women or 1 in every 6 deaths. To address this concerning
trend, the World Health Organization (WHO) recently initiated the Global Breast Cancer
Initiative [4]. In 2018, Vietnam ranked first in the world in terms of breast cancer incidence,
with 15,229 new cases and 6103 deaths. In 2020, there were over 21,555 new cases, including
more than 9345 deaths because of breast cancer [5]. Currently, Vietnam annually records
about 183,000 new cases of cancer, of which breast cancer accounts for 25.8% of cancers
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in women, with nearly 22,000 new cases and more than 9000 deaths [6]. Notably, often,
the younger breast cancer patients are, the worse the prognosis and the lower the cure
rate compared to the elderly. Epidemiological studies indicated that the most effective
method to increase the cure rate of breast cancer, especially in young people, is screening
examination to detect the disease early. While the over 5-year survival rate for the very
early stage reaches 98%, for the late stage, this rate is only about 10%. This collaborative
effort aims to reduce breast cancer mortality by promoting prompt diagnosis, effective
treatment, and comprehensive patient management. Currently, there are many advanced
diagnostic techniques, such as the BRCA1/2 gene test, breast ultrasound elastography,
3D mammogram, magnetic resonance imaging (MRI), breast tumor biopsy, ultrasound,
computed tomography (CT), etc.

Past studies have indicated that the timely detection and appropriate treatment of
breast cancer could significantly decrease mortality rates in the long run [7]. At present,
there is a wide array of clinical approaches employed for the screening and diagnosis of
breast cancer. Although mammography is currently the standard screening method for
breast cancer, it has limitations. It is less effective for individuals under 40 years old and
with dense breasts, and it is not sensitive enough to detect small tumors (less than 1 mm,
approximately 100,000 cells). Furthermore, it does not provide any information on the
potential outcome of the disease [8,9]. Contrast-enhanced (CE) digital mammography, on
the other hand, offers a more precise diagnosis than mammography and ultrasound for
individuals with dense breasts. However, this technique is not widely accessible due to
its cost and the high levels of radiation involved [10]. Ultrasound has been utilized as
an additional tool for screening. Magnetic resonance imaging (MRI) has the capability to
identify small lesions that may not be detectable through mammography, but it is also
costly and has low specificity, potentially leading to overdiagnosis [9,10]. Positron emission
tomography (PET) is recognized as the most accurate method for visualizing tumor spread
or monitoring their response to treatment [11].

However, the aforementioned methods face challenges when it comes to widespread
implementation in early-stage cancer screening due to their limited availability in local med-
ical facilities, high costs, lengthy result turnaround times, and complex processes [12]. On
the other hand, thermal imaging has emerged as an effective method for the early detection
and diagnosis of breast cancer. Reflectance optical imaging operates by quantifying both
transmitted and reflected photons and utilizing this data alongside tomography reconstruc-
tion algorithms to create images of spatial absorption and/or scattering patterns [13,14].
These optical imaging systems have the capacity to generate three-dimensional (3D) im-
ages [15]. In recent decades, efforts have been made to advance these techniques for
clinical research [16]. However, the complexity and high expenses associated with time
domain (TD) systems have impeded their widespread adoption [17]. On the other hand,
frequency domain (FD) systems function by modulating the light source’s amplitude at
a high frequency (>50 MHz), with detectors measuring the reduction in amplitude and
phase shift of the transmitted signal [18]. Conversely, continuous wave (CW) systems
emit near-infrared (NIR) light at a consistent intensity or with low-frequency modulation
(a few kHz) to enhance the signal-to-noise ratio. In CW systems, detectors gauge the
reduction in amplitude of the transmitted signals [19]. CW systems have been enhanced
with multiwavelength laser diodes and dense arrays of sources and detectors, making
them valuable in clinical research [20,21]. CW systems only require photo detectors with a
slow response rate and low-frequency circuits. Consequently, CW systems are significantly
more cost-effective and less complex than FD systems, allowing for the integration of
more sources and detectors [22]. Nevertheless, relying solely on amplitude data from CW
systems presents limitations in quantitative optical reconstruction, and clinical applications
have predominantly focused on monitoring dynamic changes in breast abnormalities [23].
To address this limitation and strike a balance between cost and complexity, FD and CW
systems have been combined [24].
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In this study, we have focused on the development and testing of the CW light-based
reflectance device (named BKA-06 device), which simulates the energy absorption image
of cancer (particularly breast cancer and superficial cancers). BK06 can provide valuable
contribution to the field by addressing the limitations of the optical reflectance imaging
method, such as enhanced accuracy, providing real-time results, cost-efficient, and less
harmful to tissues. Through testing on both volunteers and patients, this device has
demonstrated outstanding advantages compared to similar devices, such as (1) cheap
price (250–300 USD/device); (2) to give fast results (in 3–5 min); (3) no side effects; (4) to
produce a clear and accurate image and location of the tumor within a range of less
than 15 cm (compared with MRI). Additionally, the device also aids in identifying blood
vessels during patient treatment, which is crucial for procedures such as blood collection
and injection/infusion. It is worth noting that not all medical professionals possess the
expertise to accurately identify blood vessels, and misidentification can have detrimental
effects on patients, especially children.

2. Materials and Methods
2.1. Research Methods

BKA-06 is based on the biomedical physics principles. Analyze and select electronic
elements and suitable materials for fabrication equipment.

2.2. Physical Basis and Operating Principle of BKA-06

In the composition of red blood cells, there is a heme pigment, the porphyrin type that
may combine with metal atoms. Heme in humans is protoporphyrin IX in combination
with Fe. Heme has 4 pyrol nuclei linked together by the menten bridge (-CH=). Porphyrin
rings are attached to the groups as metyl (-CH3) at the sites 1, 3, 5, and 8; vinyl (-CH=CH2)
at the sites 2 and 4; and propionyl (-CH2-CH2-C00H) at the sites 6 and 7.

Within heme, the iron atom is attached to the pyrrole nucleus by two symmetrical and
two coordinated links, as well as to the protein globin through a histidine residue at the
base. These bonds are crucial for the functioning of hemoglobin (Hb) (Figure 1), as they
help to stabilize the structure and allow for the reversible binding of oxygen.
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Figure 1. Chemical formular and structure of isoleucine and hemoglobin—the nucleus of red
blood cells.

Each Hb molecule consists of four hemes, with one heme containing 1 Fe2+ Spectrom-
etry analysis of blood with the maximum absorption spectrum within the 540–700 nm
region, with the maximum absorbance of the SHb component at 622.8 nm [11,25]. Human
blood with a hematocrit of 10% and oxygen saturation of 98% displays optical properties of
0.210 ± 0.002 mm−1 for µa, 77.3 ± 0.5 mm−1 for µs, and 0.994 ± 0.001 for the g factor [26].
As hematocrit increases up to 50%, there is a linear increase in absorption and a decrease
in scattering. Variations in osmosis and the wall cutting speed affect all three parame-
ters, while oxygen saturation has a significant impact solely on the absorption coefficient.
Measurements of oxidized and deoxidized blood absorption spectra in the 400–2500 nm
wavelength range demonstrate that blood absorption follows that of hemoglobin and water.
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The scattering factor for λ = 500 nm reduces to approximately 1.7, and the g coefficient is
0.9 higher for the entire wavelength range [17].

2.3. Techniques

Analysis of the circuit components and electronic devices.
Determine the physical parameters of the device by modern measuring devices and

reliable devices such as: Kyoritsu 1052 (Kyoritsu, Tokyo, Japan), Lux Meter Testo 0500
(Testo, PA, USA), and Testo 608-H2-US electronic thermometer (Testo, PA, USA).

2.4. Fabrication Design

Component selection: RED LIGHT LED Chip, IC Stable Pressure, and Line Stabilization.
Line stabilization circuit design for LED as shown in Figure 2.
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Figure 2. Current stabilizer circuit for LED and sensor (the red line is the positive wire, the blue line
is the ground wire, the orange line is the neutral wire; D1 to D4 are the 1N4001 diodes, C1 to C3 are
the capacitors; R refers to the resistor; Q refers to the transistors; L refers to the coils; D5 to D7 are the
red light-emitting diodes).

The equipment shell of the device is exhibited in Figure 3.
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Figure 3. Device shell scheme. Device case: aluminum. Projector material: hard plastic. Projector
diameter: Φ = 32.90 mm. Projector length: 34.50 mm. Device size: 200.00 × 38.20 × 50.06 mm.

2.5. Measurement Process

Experiment 1: After designing and testing the elements of the device, the equipment
is assembled according to the design scheme, and then, the basic electrical parameters of
the BKA-06 (voltage and current intensity when operating) are measured using a universal
meter (Kyoritsu 1052—Japan) and some other indicators.

Experiment 2: Survey the parameters of BKA-06: measure the brightness intensity
using the three modes of the device (start, shallow test, and deep test) and check the heat
increase of the device in the screening area for a period of 1 to 25 min.

Experiment 3: Screening of BKA-06 on the surface of the hands of adults and children.
Experiment 4: Use BKA-06 to identify the position on volunteers and breast cancer

patients and then test with MRI.
The results obtained from both patients and volunteers have been officially certified

with ethics certificate number V11.CN6.3000.23 by the Vietnam Metrology Institute.
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3. Results
3.1. Studies of Basic Parameters of BKA-06
3.1.1. Device Specifications

Figure 4 shows the printed circuit scheme, BKA-06 device, and schematic layout of
the device with following specifications:
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Changing power source: 220 V~50 Hz, power supply: lithium–ion battery of 9 V
Power Consumption: 12.19 W
Dimensions: 210.08 × 41.22 × 50.08 mm; Φ 32.92 ± 0.02 mm (use caliper, micrometer)
Weight: 892 g
The ability to penetrate the layers of tissue in the breast is 15 cm.
Device BKA-06 (early vein detection and breast cancer detection device by the energy

spectrum) has been licensed by the Metrology Institute—Vietnam Academy (attached to
certificate no.: V11.CN6.300.23).

3.1.2. Measure Brightness

Using the lux meter (Testo 0500, Testo, PA, USA) and multimeter (Kyoritsu 1062,
Kyoritsu, Tokyo, Japan), place the sensor head of the lux meter close to the header of the
BKA-06 equipment and measure the brightness intensity in different changing modes. The
result is shown in Table 1 and Figure 5.

The survey results show that the amperage reaches 0.75 to 2.80 A, the maximum power
consumption is 12.19 W, and the illuminance increases from 5.03 to 143.93 W/m2. With an
illuminance from 5.03 to 21.73 W/m2, which is bright enough to examine capillaries close
to the skin, this mode is suitable for superficial tumor surfacing or vascular examination
with the BKA-06 device (Figure 6b,c). With an illuminance from 28.08 to 91.31 W/m2,
suitable for the vascular examination of tumors and superficial subcutaneous lymph nodes
(neck, nasopharynx, and breast), this mode has a penetration depth of about 3 ÷ 7 cm
(Figure 6a). The illuminance from 91.31 to 143.93 W/m2 is suitable for deep lymph nodes
under the skin of the breast 7 ÷ 15 cm for breast cancer diagnosis (using the Sony Alpha
ILCE-6400L/A6400 Kit and 16–50 mm F3.5–5.6 OSS Camera).
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Table 1. Results of measuring the device power and illuminance.

Amperage
I (A) Voltage U (V) Power P (W) Light Intensity (W/m2)

3.02 0.75 2.27 5.03

3.06 0.82 2.50 6.07

3.14 0.90 2.82 7.70

3.26 1.00 3.25 10.24

3.35 1.10 3.68 13.16

3.45 1.21 4.17 17.07

3.55 1.33 4.73 21.73

3.65 1.46 5.35 28.08

3.75 1.61 6.04 35.59

3.85 1.77 6.81 45.22

3.95 1.94 7.67 57.33

4.05 2.13 8.63 72.49

4.15 2.33 9.69 91.31

4.25 2.56 10.87 114.99

4.35 2.80 12.19 143.93

3.2. Vascular Results in Adults and Children

An angiogram of the blood vessels in the arm and hands (6 adults) is shown in
Figure 6b,c.

The obtained results show that the images of the blood vessels under the skin are very
clear, and their positions are easily recognized with the naked eye.

The results obtained show that the images of blood vessels under the skin are very
clear and easily identifiable with the naked eye when using the BKA-06 device. Because
the BKA-06 device heats the area for imaging, the thermal camera also provides clear
images of the blood vessel locations. Additionally, for blood vessels located deeper at 2 cm
to 3 cm, heating with the BKA-06 also yields images with clearer contrast of the blood
vessels on the thermal camera. The maximum temperature increase of the device during
scanning is ∆T ◦C < 1 ◦C; this temperature increase is very small compared to the change in
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body temperature according to environmental temperature. The comparison of the images
clearly indicates that the contrast of blood vessel images by the BKA-06 is more distinct.
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Figure 6. (a) BKA-06 equipment image that scans through layers of adult breast tissue. (b) Vascular
screening on the surface of an adult’s arm using BKA-06 equipment. (c) Vascular screening on an
adult’s hand using BKA-06 equipment. (d) Vascular screening on a child’s hands using BKA-06
equipment. (e) The thermal images of blood vessels illuminated by BKA-06 on (A1, C, and D) a
child’s forearm and (A2, E, and F) adult’s breast.

3.3. Breast Test Results on Volunteers and Patients
3.3.1. Volunteers

Volunteers were randomly selected between the ages of 18 and 60 (never had breast
cancer tested with any medical devices, no suspicious or conclusive signs of breast cancer).
The initial scan results are shown in Figures 7 and 8 and Table 2.
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Table 2. List of volunteers for breast cancer screening (3 April–28 May 2022).

No. Full Name Age Code

1 Volunteer 1 43 CV1

2 Volunteer 2 31 CV2

3 Volunteer 3 28 CV3

4 Volunteer 4 41 CV4

5 Volunteer 5 55 CV5

6 Volunteer 6 30 CV6

7 Volunteer 7 60 CV7

8 Volunteer 8 40 CV8

9 Volunteer 9 65 CV9

10 Volunteer 10 40 CV10

11 Volunteer 11 18 CV11
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Table 2. Cont.

No. Full Name Age Code

12 Volunteer 12 42 CV12

13 Volunteer 13 36 CV13

14 Volunteer 14 25 CV14

15 Volunteer 15 58 CV15
(In this table, some volunteers requested not to publish their phone number, the last two numbers of the
symbol XX, and the image of their breasts is committed to each individual to be allowed to publish the images
and the information in scientific journals. They volunteered to participate for scientific purposes, not for any
other purposes).

Figure 9 clearly shows the non-screening area and the scanning area. At the illuminated
area, we observe with the eye the mammary gland blood vessels with a dark red color,
and with the appropriate brightness intensity, we can observe the layers of breast tissue.
Therefore, there is no need for an infrared camera auxiliary device to connect a computer
to simulate the image, as we can also see the inside image of the breast when using
the equipment.
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The results of breast cancer screening with the BKA-06 device on 15 volunteers showed
quality images, observed with the naked eye; the mammary glands and blood vessels were
very clear, with no abnormal organization and no lymphoma.

3.3.2. Patient Participation

Twelve (12) patients who took part in the scan had abnormal breast abnormalities.
Two MRI patients were found to have tumors, then had breast cancer scans using BKA-06
devices; the rest were clinically examined and suspected of a tumor from a MRI scan, so
conducted a BKA-06 scan, MRI scan, and cell biopsies.

Results:
+ Patient profile: Patient No. 6, age of 58. Profile number: 7673/20. Diagnose:

Mammary tumor (T), size 60 × 63 mm, middle tumor in the breast (T), non-mobile soft
tumor (∆(t): left mammary K (T) T4N0M0. GTB UT GDII). The MRI image shows the tumor,
location, and size of 60 × 63 mm of these images taken after the photoreceptor injection
and through a computer simulation system. Observing two perpendicular images from the
BKA-06 device, we also see that the tumor area is darker than the area around the tumor;
the border area is especially very clear, so it is easy to recognize the shape of the tumor’s
position and size. Because the device has not been integrated with a computer, the tumor
size on the image of BKA-06 is not quantized, but through the naked eye, we also estimate
the size of the tumor. The results are shown in Figure 9.

+ Patient profile: Patient No. 7. Profile number: 7692/20. Diagnose: Mammary tumor
(T), size 16 × 29 mm, inner protrusive bottom (T), I am probably not mobile (∆(t): left
mammary gland (T) T4N0M0. GTB UT GDII). Results of MRI scans, BKA-06, and cell
biopsies are shown in Figure 10.

Similar to patient 6, the images taken of the disease give clearer and darker images (it
may be because one patient has a different type with solid lymph nodes, according to the
results of the clinical examination) so we can observe the depth of the tumor; the area around
the tumor (yellow vinculum) develops many capillary organizations, so it is darker than
the middle area tumor center (blue vinculum in Figure 11). The cell biopsy results show
melanoma. The results on the MRI show the location and size of the tumor (16 × 29 mm).

The results of the BKA-06, MRI, and cell biopsies are summarized in Table 3. Observa-
tions from the images taken with BKA-06 shows that the location and size of the tumor is
very clear and with a shallow depth or same cell density.

Table 3. List of breast cancer test patients (April–December 2022).

Number Full Name Age Encrypted Image

1 Patient 1 25 UHV1–MRI1

2 Patient 2 67 UHV1–MRI2

3 Patient 3 45 UHV3–MRI3

4 Patient 4 65 UHV4–MRI4

5 Patient 5 45 UHV5–MRI5

6 Patient 6 58 UHV6–MRI6

7 Patient 7 64 UHV7–MRI7

8 Patient 8 52 UHV8–MRI8

9 Patient 9 46 UHV9–MRI9

10 Patient 10 43 UHV10–MRI10

11 Patient 11 59 UHV11–MRI11

12 Patient 12 58 UHV12–MRI12
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The results of the MRI scans, BKA-06, and cell biopsies are exhibited in Figure 12.
Observations from the images taken using the BKA-06 show that the location and size
of the tumor are very clear, no matter the depth or density of the cells and the internal
environment in and outside the typical tumors in patients UHV1, UHV7, UHV8, and UHV9.
On the other hand, the upper breast MRI images in Figure 12 from the patients also show
the location and size of the tumor with the same results as BKA-06. The advantage is that
the penetrating image compared to the black and white image on the MRI is recommended
to observe the tumor boundary area.

Bioengineering 2023, 10, x FOR PEER REVIEW 13 of 16 
 

 
Figure 12. Images of MRI scans, BKA-06, and cell biopsies of breast cancer patients. 

4. Discussion 
The BKA-06 device obtains 2D images of the screening area on the body. Visually 

observing the images with the naked eye, we can see some of the structures inside the skin 
that are layer-by-layer vascular systems in depth [27–29]. For breast tumors, it is also close 
to the location, size, and invasive areas around the tumor. 

The device has the advantages of a simple structure, easy to use, and clear images 
that can be observed with the naked eye. The area of light emitted in the red area of the 
spectrum is not harmful to the eyes or skin, because infrared lights are used in the treat-
ment of skin diseases in the cosmetic industry and other areas in health. 

The initial results of the successful manufacture of BKA-06 and some potential results 
can be upgraded to create new essential products for the medical industry, improving the 
quality of infusions and blood draws. 

BKA-06 is specialized for a blood angiogram of shallow tumors. There are outstand-
ing advantages when it comes to breast scans compared to CT scan or MRI methods. With-
out photovoltaic injections, the 3 ÷ 5 min scan time (CT scan, MRI 25 ÷ 30 min) costs an 
estimated 7 ÷ 9 million USD, so if the cost of a test is negligible compared to the MRI (2.3 
÷ 2.8 million USD/1 degree), the patient can take a selfie and easily see their results, mak-
ing it easy to use and with a low cost about 250–300 USD/1 BKA-06 device. 

BKA-06 has not been able to capture internal organs, deeper locations, and bone or-
ganizations that can be taken by MRI or CT scans, and deep positions on breasts larger 
than 15 cm cannot be observed. 

The theory successfully helped design BKA-06 and initially achieved some good 
results that can be upgraded to create new essential products for the medical industry and 

Figure 12. Images of MRI scans, BKA-06, and cell biopsies of breast cancer patients.

4. Discussion

The BKA-06 device obtains 2D images of the screening area on the body. Visually
observing the images with the naked eye, we can see some of the structures inside the skin
that are layer-by-layer vascular systems in depth [27–29]. For breast tumors, it is also close
to the location, size, and invasive areas around the tumor.

The device has the advantages of a simple structure, easy to use, and clear images
that can be observed with the naked eye. The area of light emitted in the red area of the
spectrum is not harmful to the eyes or skin, because infrared lights are used in the treatment
of skin diseases in the cosmetic industry and other areas in health.

The initial results of the successful manufacture of BKA-06 and some potential results
can be upgraded to create new essential products for the medical industry, improving the
quality of infusions and blood draws.

BKA-06 is specialized for a blood angiogram of shallow tumors. There are outstanding
advantages when it comes to breast scans compared to CT scan or MRI methods. Without
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photovoltaic injections, the 3 ÷ 5 min scan time (CT scan, MRI 25 ÷ 30 min) costs an
estimated 7 ÷ 9 million USD, so if the cost of a test is negligible compared to the MRI
(2.3 ÷ 2.8 million USD/1 degree), the patient can take a selfie and easily see their results,
making it easy to use and with a low cost about 250–300 USD/1 BKA-06 device.

BKA-06 has not been able to capture internal organs, deeper locations, and bone
organizations that can be taken by MRI or CT scans, and deep positions on breasts larger
than 15 cm cannot be observed.

The theory successfully helped design BKA-06 and initially achieved some good
results that can be upgraded to create new essential products for the medical industry and
improve diagnostic methods for medical facilities on the domestic and international levels.

The imaging method based on the principle of energy absorption of the mass is a new
method in diagnostic imaging, both in the world and in Vietnam, so this study could help
to access and update research and applications in other industries. The BKA-06 device is
also expected to have superior applications with other diagnostic methods. The BKA-06
device is also expected to have applications that are superior to reality.

The BKA-06 has many advantages, such as technological advancements: The device is
capable of providing high-resolution, real-time images of breast tissue, allowing for better
visualization of potential abnormalities; non-invasiveness: Unlike traditional mammog-
raphy, it does not involve ionizing radiation, making it a safer option for regular breast
cancer screening; cost-effectiveness: Reflectance optical imaging has the potential to be a
cost-effective breast cancer detection method, especially in comparison to more expensive
imaging modalities like MRI; and patient comfort: Patients may find reflectance optical
imaging more comfortable and less intimidating than traditional mammography, which
could encourage more regular screenings.

However, for clinical application, it might also pose several challenges, such as clinical
validation (large-scale clinical trials are needed to establish its accuracy and reliability),
limited depth penetration (this can affect its sensitivity in detecting tumors located deeper
within the breast), operator training (effective use of these devices requires specialized
training for healthcare providers), false positives and negatives, integration into the clinical
workflow, and reimbursement and regulations (regulatory approval and reimbursement
policies need to align with the adoption of this technology. It may take time to navigate these
aspects.). Addressing the challenges related to clinical validation, operator training, and
integration into clinical practice will be critical for its successful implementation as a routine
screening tool for breast cancer. Ongoing research and collaboration between healthcare
providers, researchers, and regulatory agencies are essential to overcome these challenges.

5. Conclusions

In short, we successfully designed and fabricated equipment (BKA-06) with ba-
sic specifications: power consumption of 12.19 W, size of 210.08 × 41.22 × 50.08 mm,
Φ 32.92 ± 0.02 mm, and weight of 892 g. The device is capable of penetrating the layers
of tissue on the breast up to 15 cm. BKA-06 does not burn during screening, emits red
light (the main wavelength of 633 nm is healthy radiation and does not cause side effects),
there are three screening modes, the maximum brightness intensity is 98,238 lux, inspection
time is 3 ÷ 5 min, and the image is visible to the naked eye. We have reviewed the safety
specifications when using the device in various modes (starting, shallow test, and deep
test mode) during venipuncture, as well as breast scan examinations. We have successfully
tested the device on volunteers and patients, with very good initial results. The XCS obser-
vations identified blood vessels, tumors in the breast, and surrounding organizations very
clearly to determine the location, size of the tumor, and the area around the tumor directly
without surgery or other diagnostic methods. A parallel examination using MRI and cell
biopsies were performed, with reliable results. In future work, we will continue the testing
of patients on a larger scale to evaluate the reliability of the device, as well as optimizing
the processing factors of the device, to obtain reliable results for breast cancer detection.
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Abstract: Dental imaging plays a crucial role in clinical dental practice. Conventional 2D dental
imaging serves general-purpose tasks, such as patient documentation, while high-precision 3D dental
scanning is tailored for specialized procedures, such as orthodontics and implant surgeries. In this
study, we aimed to develop a cost-effective 3D imaging technique that could bridge the gap between
conventional dental photography and high-precision 3D dental scanning, with the goal of improving
patient dental care. We developed a 3D imaging technique based on close-range photogrammetry and
termed it close-range photogrammetry-based dental imaging (CPDI). We evaluated this technique on
both in vitro dental models and in vivo teeth. For dental models, we conducted a parametric study
to examine the effects of the depth of field and specular reflection on reconstruction quality. We
showed that the optimal results were achieved with an f/5.6 lens and without a circular polarizer for
reflection suppression. This configuration generated 3D scans with 57.7 ± 3.2% and 82.4 ± 2.7% of
reconstructed points falling within ±0.1 mm and ±0.2 mm error margins, respectively. With such
accuracy, these 3D dental models can faithfully represent dental morphology and features. During
in vivo imaging, we were able to reconstruct high-quality 3D models of the anterior arch, further
demonstrating its clinical relevance. The reconstructed models carry both 3D shapes and detail
full-color surface textures, which positions CPDI as a versatile imaging tool in different areas of
clinical dental care.

Keywords: photogrammetry; dental imaging; 3D dental reconstruction; intraoral scanner

1. Introduction

Dental photography serves as an effective way for documentation, patient commu-
nication and education, and treatment planning in modern dental practice [1–4]. While
conventional dental photography captures images in high spatial resolution and in color,
it is limited to providing 2D information. In certain cases, without a comprehensive 3D
representation, specific dental conditions may necessitate the capture of multiple photos
from different angles, thus complicating diagnosis and treatment. In addition to dental
photography, 3D dental imaging is also available [5,6]. Applications with 3D dental imag-
ing tend to be more specialized areas, such as orthodontics and dental implants. Within
orthodontics, 3D scanning has become a standard procedure for assessment, treatment
planning, and the fabrication of dental aligners [7,8]. In dental implant surgeries, the use of
3D imaging improves surgical outcomes by reducing potential complications and enabling
more precise implant placement [9–11].

Several imaging techniques have been developed for dental imaging, including struc-
tured light and stereo vision [6,12]. Structured light uses active illumination to project
patterns, such as coded stripes and speckles, onto the surface [13,14]. Due to the surface
elevation (3D shape), these patterns are deformed, and this deformation is analyzed to
reconstruct the 3D shape of the scene. On the other hand, stereo vision utilizes two cameras
to image the scene. Due to parallax, identical features are captured at different locations
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on the two sensors [6,15]. This positional difference on the sensor is known as disparity,
which is utilized to determine the depth [16,17]. While these imaging techniques provide
excellent results for orthodontics and implant surgeries, the cost and complexity of the
technology probably do not justify adopting such methods for other general imaging needs
in dental care.

In recent years, close-range photogrammetry has emerged as an appealing alternative
to the existing 3D imaging technologies [18–20]. Close-range photogrammetry does not
require active illumination and only needs a single camera. It can generate full-color
3D models from a set of images or a video. Photogrammetry estimates the 3D positions
of points by triangulating common features found in multiple images [21]. Due to its
straightforward system setup and ease of use, close-range photogrammetry-based dental
imaging (CPDI) has shown great potential in dental practice and has undergone extensive
exploration [22–24]. Notably, the majority of CPDI has been performed on plaster cast
dental models typically with a professional digital camera. Data on in vivo CDPI are
limited, possibly due to the lack of appropriate intraoral imaging devices. In this study,
we focused on (1) demonstrating and evaluating the capability of CDPI to generate 3D
dental models in an in vivo setting by (2) developing and testing a compact and cost-
effective intraoral camera. An affordable camera would lower the barrier for adopting this
technology, potentially improving the quality of patient care.

2. Materials and Methods
2.1. Imaging Device Development

We developed two low-cost imaging setups based on a Raspberry Pi 4 (RPi) single-
board computer (1) to conduct parametric studies of the effects of depth-of-field and surface
reflection on reconstruction and (2) to evaluate the performance of in vivo teeth imaging. A
typical configuration of the imaging system is shown in Figure 1A. For parametric studies,
we adopted an RPi-compatible camera module featuring an M12 mount (UR-261, Arducam,
Nanjing, China). This camera is later referred to as the M12 camera. Although this camera
type is typically large and not ideal for in vivo imaging, its standard M12 mount allows
for the use of a variety of M12 camera lenses. Illumination was provided by two 1 W
white LEDs positioned on both sides of the camera. To reduce stray light, two flexible
light-blocking sheets were placed between the LED and the camera. A more compact
setup was developed for in vivo imaging, which comprised a compact Rpi imaging module
(Module V2, Raspberry Pi, Cambridge, UK) with a fixed lens and a single 1 W white LED
for illumination. The imaging setup was assembled into a toothbrush-like structure with
a compact imaging head (2 × 1 × 1 cm, L × W × D). This camera is later referred to as
the intraoral camera. Both imaging setups utilized the same 8 MP imaging sensor (IMX
219, SONY, Tokyo, Japan). Circular polarizers could be added to both imaging modules
to reduce specular reflection, given that both illumination and imaging share a common
optical path [25]. Figure 1B illustrates the principle of reflection suppression with a circular
polarizer. A circular polarizer consists of a linear polarizer and a quarter-wave plate. The
quarter-wave plate introduces a 90 degree phase shift to the polarized light [26]. In the
incident direction, the 90 degree phase shift turns the linear polarized light into circular
polarized light. Upon reflection from the teeth surface, the handedness of the circular
polarized light is reversed. The 90 degree phase shift from the quarter-wave plate converts
the reflected light into linear polarized light with the polarization direction 90 degrees
apart from the original one, which is blocked by the linear polarizer. A custom Python
script was developed to adjust imaging parameters and capture images. To ensure high-
quality and consistent images, we used a fixed white balance setting and an ISO value
of 200. Throughout imaging, an auto-exposure setting was used with a fixed exposure
compensation value to reduce the risk of overexposure.
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2.2. Parametric Studies of the Effects of Depth-of-Field and Surface Reflection on
Reconstruction Quality

Intraoral imaging poses several challenges, such as a short working distance and
surface reflection, that can potentially impact the quality of the 3D reconstruction. The
parametric study was designed to understand these challenges and optimize imaging
parameters. The working distance of intraoral imaging needs to be short to accommodate
the limited space in the oral cavity. A shorter working distance will result in a shallower
depth-of-field (DoF), which means a smaller portion of the object will remain in focus. A
lens with a smaller aperture can be used to alleviate this issue at the expense of lower
light collection efficiency, potentially affecting the image quality. To understand how DoF
affects the reconstruction quality, we imaged a dental model using the M12 camera with
two lenses sharing the same focal length but differing in aperture sizes. The F/2.8 lens
(89342, Edmund Optics, Barrington, NJ, USA) features a larger aperture, producing a
shallower DoF, while the F/5.6 lens (89343, Edmund Optics, Barrington, NJ, USA) has a
smaller aperture, resulting in a more moderate DoF. The enamel reflects light strongly under
illumination, often leading to image saturation and subsequent loss of information. To
study whether the suppression of reflected light can improve the reconstruction quality, we
imaged the same dental model both with and without a circular polarizer (88-085, Edmund
Optics, Barrington, NJ, USA). A circular polarizer effectively reduces reflection when the
illumination and imaging share a common optical path. For each testing condition, the
dental model was imaged three times.

2.3. In Vivo Teeth Imaging

The anterior sections of both the upper and lower arches of a volunteer were im-
aged using an intraoral camera. Prior to imaging, the volunteer brushed the teeth, and
excess fluids on the teeth were wiped with gauze. The intraoral camera was positioned
approximately 2 cm in front of the teeth and followed the curvature of the arch during
image acquisition. Each portion of the arch was imaged from multiple angles with a good
focus, which was visually confirmed before taking the picture. It is worth noting that the
imaging was performed by the same volunteer without the need for additional assistance,
further demonstrating the user-friendly nature of this imaging technique. Due to the specu-
lar reflections from the moist teeth surface, a circular polarizer (88-085, Edmund Optics,
Barrington, NJ, USA) was used throughout the in vivo teeth imaging to mitigate these
reflections. Images were subsequently reconstructed for visualization.
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2.4. Photogrammetry-Based 3D Reconstruction

Photogrammetry, as a versatile 3D reconstruction technique, has been widely used in
remote sensing and aerial applications [27–29], archaeology [30], and augmented/virtual
reality applications [31]. Detailed descriptions of the working principles of photogrammetry
are beyond the scope of this study and have been well documented elsewhere [20,30].
Briefly, photogrammetry involves capturing a set of images of the subject from various
directions. Common features of the subject within a subset of the images are detected and
extracted using certain techniques, such as the scale-invariant feature transformation (SIFT)
method [32]. These detected features are then used to estimate the 3D coordinates of the
features based on triangulation [21]. The point cloud of the subject is generated after the
3D coordinates of all features have been estimated. This point cloud is further processed,
meshed, and textured to create a faithful 3D representation of the subject.

In practice, photogrammetry requires that images have sufficient overlap to facilitate
feature detection, registration, and reconstruction [20]. In both parametric studies and
in vivo imaging, we maintained approximately 50% image overlap for all acquired images.
As illustrated in Figure 2A, we followed specific imaging paths to ensure comprehensive
coverage from various angles. The camera was positioned sequentially at approximately
45, 90, and 135 degrees towards the dental model (indicated by blue arrows in Figure 2A).
At each angle, images were taken while following the curvature of the arch, as depicted by
the red arrow. Figure 2B visualizes the camera positions and angles during a CPDI session.
For the parametric study, 30–40 images were acquired to reconstruct the full arch, while in
in vivo imaging, 20–30 images were acquired.
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2.5. Reconstruction and Trueness Analysis

Following image acquisition, we reconstructed 3D models using PhotoCatch (EOS
Innovations LLC) running on a M1 Mac Mini. The reconstructed 3D model was exported
in .obj format, which contains both the 3D structure mesh and color texture of the dental
model. The 3D model was imported into CloudCompare (V 2.12.4), an open-source point
processing software, for visualization and trueness analysis.

To facilitate the trueness analysis, the teeth portion of the reconstructed dental model
was manually segmented out in CloudCompare. Due to the lack of a physical dimension of
the 3D model generated with the photogrammetry technique, the initial alignment between
the 3D teeth model and the ground truth model was performed manually. Specifically,
the 3D teeth model was manually scaled to the approximate size of the ground truth
mode. Following scaling, the orientation of the 3D teeth model was adjusted to match the
orientation of the ground truth model. Once a good manual alignment between these two
models was achieved, we utilized the registration function provided in CloudCompare
for a more precise registration. During the registration process, we designated the ground
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truth as the target and allowed the 3D teeth model to be further scaled to minimize the
overall error between the two models. Unlike CPDI, the ground truth model was generated
on an absolute scale using a commercial intraoral scanner. Local deviations, measured in
millimeters, between the ground truth model and the reconstructed model were quantified
to indicate the reconstruction errors. As the ground truth for the in vivo dental model was
not available, trueness analysis was not conducted for in vivo imaging.

3. Results
3.1. Imaging Device Development

Both the M12 camera for parametric studies (Figure 3A) and the in vivo intraoral
camera (Figure 3B) share a similar configuration; however, the intraoral camera is noticeably
smaller. The lens on both devices was adjusted to achieve a short working distance of
approximately 1.5 to 2 cm. The horizontal field-of-view (FoV) is about 70 degrees for both
cameras.
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Figure 3. (A) Camera setup for parametric study with interchangeable M12 lens. (B) Toothbrush-like
compact camera for in vivo imaging. Both cameras can be equipped with a circular polarizer to
suppress surface reflection.

3.2. Parametric Studies of the Effects of Depth-of-Field and Surface Reflection on
Reconstruction Quality

The reconstructed 3D dental models under three camera configurations (Figure 4A–C)
exhibited an excellent and detailed visual representation of the physical dental model
(Figure 4D). The colors of the teeth and the plaster base were faithfully reproduced along
with their surface textures. The morphology of the incisor, pre-molar, and molar teeth are
distinctly shown in the reconstructed model. The models generated with f/2.5 (Figure 4A)
and f/5.6 (Figure 4B) lenses, both without a polarizer, are visually comparable. However,
the model obtained with a polarizer in combination with an f/5.6 lens (Figure 4C) showed
noticeable reconstruction errors, as indicated by the red arrows, unlike the models obtained
without a polarizer (Figure 4A,B). This result was surprising, given that the polarizer
typically improves the image quality by reducing surface glare. Comparing images acquired
with and without a polarizer, we noticed that the image acquired with a polarizer showed
reduced contrast in certain regions, as indicated by the orange arrows (Figure 5). During
the interaction between the polarized light and the teeth, reflection occurs both at the tooth
surface and within the deeper layers (diffuse reflection). The surface reflection carries
crucial surface contrast information necessary for the reconstruction process. However, the
circular polarized light reflected from the surface exhibited a reversed handedness, which
was suppressed by the circular polarizer in its return path. As a result, the surface contrast
information was reduced, which may have adversely affected the reconstruction accuracy.
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Comparing the reconstructed 3D dental models (Figure 4E–G) to the ground true
model (Figure 4H) in wireframe mode effectively eliminates potential interference from
color texture. It is evident that the ground truth model was reproduced with a higher
accuracy, exhibiting a higher level of detail with sharper edges and smoother surfaces. For
instance, while the top surfaces of one incisor (indicated with a white arrow) are small,
they are clearly visible in the ground truth model. The three reconstructed models failed to
capture the same surface features. Similarly, the individual teeth are more distinctly sepa-
rated with clearly defined gaps in the ground truth model, as opposed to the reconstructed
models (indicated by yellow arrows).
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Trueness was quantified within two error ranges: ±0.1 mm and ±0.2 mm. An accuracy 
of 0.1 mm is generally accepted to be clinically adequate and has been used for evaluating 
the performance of conventional intraoral scanners [33]. A typical histogram of the recon-
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Figure 4. Parametric study of CPDI under three imaging settings: f/2.5 lens without circular polarizer
(A,E,I), f/5.6 lens without circular polarizer (B,F,J), and f/5.6 lens with circular polarizer (C,G,K).
Results were visualized in full color (A–C) and in wireframe (E,F). The reconstruction error was
quantified and visualized (I–K) against the ground truth model (H). A color picture of the dental
model is shown in (D).
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The error maps generated from the quantitative trueness analysis aligned well with
the results of the visual inspection (Figure 4I–K). Figure 4I–K reveal that areas with high
reconstruction errors typically appear in the recessed regions (gaps) (indicated by orange
arrows) or on the smooth surfaces (indicated by cyan arrows).

Trueness was quantified within two error ranges: ±0.1 mm and ±0.2 mm. An accuracy
of 0.1 mm is generally accepted to be clinically adequate and has been used for evaluating
the performance of conventional intraoral scanners [33]. A typical histogram of the recon-
struction error is shown in Figure 6A. It is evident that the majority of the reconstructed
points fall within the ±0.2 mm error range. Notably, some reconstructed points exhibit
a larger error (>0.5 mm, shown in gray color). Without a polarizer, the f/2.5 and f/5.6
lenses achieved averages of 55.9 ± 5.4% and 57.7 ± 3.2% of the reconstructed points within
the ±0.1 mm error range. The extended DoF offered by the f/5.6 lens resulted in a minor
improvement in reconstruction quality. With the f/5.6 lens, the reconstruction accuracy
was notably higher without a polarizer than that achieved with a polarizer, which was
44.1 ± 5.6%. When relaxing the error to ±0.2 mm, the f/2.5 and f/5.6 lenses without a
polarizer achieved an averaged inlier ratio of 80.9 ± 3.1% and 82.4 ± 2.7%, which was
approximately a 25% improvement over the ±0.1 mm error range. A slightly greater im-
provement in the inlier ratio (74.9 ± 5.2%) was realized using an f/5.6 lens and a polarizer.
Overall, the reconstruction with an f/5.6 lens without a polarizer yielded the most accurate
and consistent results.
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3.3. In Vivo Teeth Imaging

The in vivo teeth imaging demonstrated that both the color and 3D shape of teeth
can be reproduced with high fidelity with CPDI. The anterior (Figure 7A) and posterior
(Figure 7B) views of the full-color 3D models effectively captured the volunteer’s intraoral
condition. It is worth noting that the gums were also reconstructed as part of the 3D model.
Owing to the nature of the image-based reconstruction, the 3D model accurately preserved
colors and intricate features, which could enable a comprehensive evaluation of dental
health and the examination of gum-related conditions. For instance, the discoloration of the
incisor teeth (indicated by the green arrow in Figure 7A), small blood vessels in the gums
(indicated by the yellow arrow in Figure 7A), and dental calculus (indicated by the cyan
arrow in Figure 7D) were all visible in high resolution. The full-color meshes (Figure 7B,E)
revealed the 3D models were densely reconstructed. In the solid body view, individual
teeth were reconstructed with precise morphological features and clear separation from
neighboring teeth. For instance, a small chip of an incisor tooth is clearly visible (indicated
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by the red arrow in Figure 7C). Some imperfections, such as non-smooth surfaces, were
noticeable in the solid model. However, these imperfections did not significantly impact
the visualization of the teeth and gums, particularly with the full-color models. Despite the
lack of a ground truth model of the volunteer for quantitative analysis, it is evident, based
on the visual inspection, that CPDI is effective in in vivo 3D dental imaging.
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and dental plaque, respectively. The red arrow shows a small chip in the incisor tooth.

4. Discussion

CPDI aims to fill the gap between conventional 2D dental photography and high-
precision 3D dental scanning and to improve the quality of patient care. Similar to 2D
dental photography, CPDI provides rich and accurate color information in high spatial
resolution, facilitating detailed close-up examinations. Furthermore, this color information
is integrated into the 3D dental model, allowing it to be visualized and evaluated from
arbitrary angles with the awareness of its 3D geometry. It is worth noting that while
CPDI-derived models may not achieve the precision of those obtained with commercial
3D dental scanners, they faithfully reconstruct the most prominent morphological and
structural dental features of the dental arch and individual teeth. This compromise is
justified as CPDI is not intended for orthodontics and dental surgeries where a highly
precise dental scan is critical to ensure optimal treatment outcomes. The low-cost nature
of CPDI could lower the barrier for adopting this technology in clinical dental practice,
potentially improving the quality of patient care.

The parametric study suggested that while the surface reflection is undesirable in an
image, it appears not to significantly affect the reconstruction results. This is potentially
because the same region exhibiting high reflection in one image may not do so in other
images due to the change in imaging angles. With the information from multiple images,
those regions can still be reconstructed. Suppressing reflection seems to deteriorate the
reconstruction quality, possibly due to the loss of surface contrast, as discussed in Section 3.2.
In the in vivo imaging, we had to use a polarizer to mitigate excessive reflection. The
reconstruction quality, however, was better than the result presented in the parametric
study with a polarizer. While the exact cause warrants further investigation, we speculate
that sufficient surface contrast of the teeth was retained for this specific volunteer, even
with a polarizer. This also suggests that whether or not to use a polarizer for surface
reflection suppression needs to be tested and evaluated for each imaging task. A lens with a
smaller aperture (offering a larger DoF) indeed improved the overall reconstruction quality,
but only by a small margin, suggesting that such a lens is still preferable under adequate
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illumination. If illumination intensity and potential motion blur become a point of concern,
opting for a lens with a larger aperture would still yield satisfactory results.

Through in vivo 3D imaging, we demonstrated accurate reconstructions of both the
incisor and canine teeth. However, it proved challenging to reconstruct the pre-molar and
molar teeth due to certain limitations within the current system. These limitations, in turn,
provide valuable insights for guiding future improvements. Despite the overall compact
size of the intraoral camera, the working distance is still too large to comfortably image the
teeth positioned deep within the oral cavity. A potential improvement could be achieved
by introducing a variable extension tube to the imaging system. This adaptation will allow
easy adjustment of the working distance and FoV to facilitate imaging different portions of
the arch, such as a larger working distance (larger FoV) for imaging the anterior arch and
a shorter working distance (smaller FoV) for imaging the posterior arch. Furthermore, a
warm and moist intraoral environment often leads to rapid condensation that complicates
imaging. To counteract this issue, an anti-fogging coating on the lens or a heating mech-
anism to keep the imager warm might be necessary. Finally, the camera needs to move
around the teeth in order to capture images from multiple angles. In the case of molar teeth,
moving from the anterior to the posterior of the teeth will flip the imaged field vertically.
Such a sudden change can disorient the operator and interrupt the imaging process. This
issue could be alleviated by incorporating an inertial measurement unit (IMU) within the
camera system to estimate the camera orientation and adjust the image accordingly.

The reconstruction algorithm of CPDI relies on subject contrast to triangulate and
recover shape. Healthy teeth unfortunately typically lack pronounced visual contrast,
which could partly explain the reconstruction errors shown in our studies, particularly
on the smooth teeth surface. Surface contrast is determined by the local absorption and
scattering properties, which are wavelength dependent. It would be valuable to perform
a multispectral analysis of the intrinsic sources of contrast [34], and identify the most
effective wavelengths in red, green, and blue spectral bands to maximize the contrast.
Another inherent limitation of photogrammetry lies in its inability to recover the absolute
physical scale. If a dimensional measurement is required with CPDI, a calibrator with
known dimensions can be placed within the scene to serve as a reference [24].

The low-cost nature and ease of use of CPDI will potentially benefit patient care both
within dental clinics and home settings. 3D full-color dental models have the potential
to replace conventional dental images and augment the text-based descriptions in patient
charts. CPDI could also reduce the frequency of dental visits and overall costs by enabling
at-home applications [35]. For instance, dental visits after orthodontic procedures could be
replaced by providing the 3D dental model generated at home to the dental care providers
for progress evaluation. Similarly, a 3D dental model could aid dental examination during
remote dental visits.

5. Conclusions

In this study, we demonstrated that CPDI is a viable, cost-effective technique for
achieving full-color 3D dental imaging. CPDI can generate 3D scans of dental models and
in vivo teeth with good representations of their morphology and dental features. Future
studies will focus on a comprehensive evaluation of its clinical benefits through a large
patient cohort.
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Abstract: Otitis media (OM) is among the most common of childhood illnesses. It has long been
hypothesized that children under age two are predisposed to OM due to differences in the anatomy
of the Eustachian tube (ET), including the angle of the ET. OM in later childhood is less common
but does occur, begging the question, are there shape differences in the ET that persist underlying
later occurrences of OM? To answer this question, a novel method, which applied geometric and
morphometric shape analysis to landmarks obtained from MRI data, was used. MRI scans were
performed on 16 children (5 control, 3 cOME, and 8 rAOM) between 2011 and 2015. Sixteen landmarks
representing the shape of the ET, cranial base, and palate were analyzed. The results of a Procrustes
ANOVA indicate that the shape of the ET varies significantly (p < 0.01) between the OM and control
groups. The shape differences between the OM group and the control are a medial and low attachment
site of the tensor veli palatini (TVP) muscle, a posterior and high torus tubarius, and an anteriorly
projected palate. These results support previous findings that a relatively horizontal ET is associated
with a predisposition for OM. This study used a novel approach to examine anatomical differences in
children with and without OM. First, the data set is unique in that it includes MRI scans of children
with a confirmed OM diagnosis. Second, the use of MRI scans in craniofacial anatomy OM research
is novel and allows for the collection of soft tissue landmarks and the visualization of soft tissue
structures. Third, geometric morphometric shape analysis is a statistical method that captures shape
differences, offering a more universal picture of nuanced changes within the entire set of landmarks,
in contrast to more traditional linear and angular measurements used in prior OM studies examining
craniofacial anatomy.

Keywords: Eustachian; pharyngotympanic; craniofacial growth; biomedical imaging; MRI scans;
geometric morphometric; Procrustes analysis; canonical variate analysis; principal component
analysis

1. Introduction

In the wake of a global pandemic, respiratory health and predisposition for upper
respiratory tract infections are at the forefront of concerns for health professionals, patients,
and parents. Upper respiratory tract infections are often complicated with coinciding mid-
dle ear infections in children [1–3]. There is a range of middle ear pathologies distinguished
by frequency, duration, and fluid with and without signs of infection (e.g., otitis media with
effusion (OME), acute otitis media (AOM), recurrent acute otitis media (rAOM), chronic
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otitis media with effusion (cOME), and chronic suppurative otitis media (CSOM)). Otitis
media (OM) peaks in prevalence at approximately one to two years of age; the incidence
decreases after age six, although cases can be seen into adolescence and adulthood [4–8].
This correlation between age, respiratory health, and OM has been linked to an immature
immune system and several anatomical and functional differences, including the relative
horizontal Eustachian tube (ET) in young children [9–12].

The ET’s function is several-fold: (1) pressure equalizing—when the lumen is dilated,
air pressure in the middle ear can equalize with the external environment; (2) clearance—
the ET provides a channel through which middle ear secretions and pathogens can drain;
and (3) protection—the ET’s normally closed lumen prevents particulates, pathogens, na-
sopharyngeal sounds, and pressure variations from easily accessing the middle ear [13,14].
The ET lumen is closed at rest but can be opened passively by either middle ear or nasopha-
ryngeal pressures that exceed that of the paratubal tissue or action of paratubal muscles,
mainly the tensor veli palatini (TVP) and levator veli palatini muscles (LVP) [15–21]. These
muscles are adjacent and/or attached to the ET, and their coordinated contraction dilates
the ET lumen, facilitating the clearance and pressure equalizing functions of the ET, thus
contributing to the health of the middle ear cavity.

The ET, located deep within the head, is particularly challenging to assess and visualize,
even with modern imaging technology, which perhaps explains the relatively few studies
that directly compare its shape in groups with known diagnoses. Methodologies for
evaluating the shape of this structure range from two-dimensional lateral radiographs [22]
to three-dimensional quantification from dry skulls and CT imaging [23–28]. Past literature
suggests that the angle of the ET changes dramatically from infancy to adulthood and
that shape changes in the basicranium and nasopharynx coincide with the timing of peak
OM incidence. Those changes include an increase in verticality of the cartilaginous ET, an
increase in height and narrowing of the choana, and an increase in basicranial flexion from
infancy [27]. These changes are a reflection of the displacements of osseous landmarks
created by the attachments of ET soft tissues to bone. The inability of these imaging
modalities to discriminate soft tissue differences is the primary challenge for studying the
functional cartilaginous ET.

Medical radiographs and computed tomography (CT) scans often fail to capture the
cartilaginous ET; even MRI is likely to miss the ET unless the scan is optimized because,
under resting conditions, the ET lumen is closed [29]. Smith et al. [29] point out that
high-resolution CT and MRI can both be used to assess the ET with relative accuracy, but
MRI is preferred because the Ostmann’s fat pad, which runs the length of the ET and has
high MRI signal intensity, is particularly useful in identifying the ET [30–33].

The anatomy important for ET function and middle ear health consists of a network of
structures located in the anatomical spaces of the head and neck; these spaces include the
petrous temporal bone, the parapharyngeal space, the infratemporal fossa, the nasopharynx,
and the oropharyngeal isthmus. The shape and orientation of additional structures (e.g.,
the hard palate) have been shown to play a role in OM risk, and even more structures (e.g.,
the maxillary sinus and nasal cavity) may play a role in the transmission of pathogens
and the development of OM [34–39]. Prior studies [16,22,36] have focused on linear and
angular measurements to study this interrelated network of structures, but those methods
do not account for global shape differences and consequently have the potential to miss
more nuanced differences that include multiple structures. Geometric morphometric shape
analysis records landmarks as three-dimensional cartesian coordinates. The cartesian
coordinates are then plotted and compared to look for global shape differences while
minimizing the effects of size, rotation, and translation.

In the present study, we applied geometric morphometric shape analysis to T1-
weighted MRI scans of children with and without a history of OM. Our goal was to
study the differences in the cartilaginous ET and the muscles acting on it. We hypothesize
that the shape of the basicranium and associated anatomy of the ET would be significantly
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different between the OM and control groups and that the OM groups would exhibit ETs
that were significantly more horizontal.

2. Materials and Methods

The included children were enrolled in a larger NIH (DC007667)-funded longitudinal
study investigating the relationship between age-related changes in ET anatomy and ET
function. The children were recruited by advertisements in the Pittsburgh area. The
enrolled subjects had an ENT exam every 6 months from 3 to 7.5 years of age. They
also had regularly scheduled ET function tests and regularly scheduled measurements of
craniofacial anatomy, which included anthropometry, cephalometric measurements, and
dental casts. A subset of the enrolled children had a non-sedated MRI between 6 and
7 years of age. A 3 Tesla GE Signa scanner was used to capture the MRI scans. For this
analysis, proton density-weighted fast-spin echo scans taken in the oblique axial plane
were used (matrix 512 × 512, field of view = 12 cm, 2.0 mm slices). The location for this
data scan was obtained by first imaging in the sagittal plane, then using the midsagittal
slice to identify the orientation of the oblique axial scan as the plane through the incisive
occlusion point and the inferior pontine sulcus (Figure 1). Exclusion criteria for enrollment
included any child with (1) a syndrome that predisposed them to OM (e.g., cleft palate),
(2) a significant history of orthodontic treatment, (3) a history of ear surgery, excluding
ventilation tube insertion, or (4) a child unable to cooperate for testing.
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Twenty-three children completed the MRI, and 16 children were included in this
analysis. Seven subjects were excluded because the scan area did not include the relevant
landmarks. On enrollment in the longitudinal study, the subjects were allocated into
one of three groups: control, cOME, and rAOM. The control group had no history of
ventilation tubes and did not meet the criteria for the cOME and rAOM groups. The cOME
group met at least one of the following criteria: (1) bilateral middle ear effusion for at
least 3 consecutive months; (2) unilateral middle ear effusion for at least 6 consecutive
months; (3) at least 3 episodes of OM lasting at least 2 months and at least 1 episode within
12 months of enrollment in the study; or (4) ventilation tubes inserted for cOME. The rAOM
group met at least one of the following criteria: (1) at least 3 episodes of AOM within
one year; (2) at least 5 episodes of AOM by 3 years of age and 2 episodes of AOM within
12 months of enrollment in the study; or (3) ventilation tubes inserted for rAOM.

Of the 16 children included in the analysis, 5 were in the control group, 3 in the cOME
group and 8 in the rAOM group. There were 7 males and 9 females. Race was reported as
1 black, 13 white, and 2 American Indian. The average age at the time of the MRI scan was
6.92 +/−0.33 years.

Landmarks that captured the shape of the cartilaginous ET, as well as some of the basi-
cranial anatomy, were collected (Table 1 and Figures 2–5). Where possible, landmarks were
pulled from the literature, many of which are standard craniometric points. Several novel
landmarks were established for the present study that describe the soft tissue, including
the anterior and posterior torus tubarius and the TVP point. These novel landmarks can
only be viewed and analyzed using MRI and specific imaging. Landmarking was done
in Checkpoint software on individual slices of the MRI scan and exported to MorphoJ
and SPSS for analysis [24,25]. The Procrustes analysis and PCA convert the data (i.e., the
three-dimensional Cartesian coordinates) into a shape for each subject. The shapes are then
scaled and rotated to find the orientation that produces the least difference among subjects.
PCA takes a covariance matrix of the Procrustes aligned coordinates and identifies the
axes of greatest variation. Specific shape differences in the cranial base can be isolated and
visualized in a scatter plot; further, PC scores can be used to test for significant correlation
with an independent variable like OM diagnosis. Each PC explains a different dimension
of variance, and variance is a measure of the difference from the mean (i.e., it is the spread
of data and more specifically, the average of the squared differences from the mean). The
first PC encompasses the greatest proportion of total shape variance, and each consecutive
PC represents orthogonal vectors of descending proportions of the variance [40,41]. PCs
can be plotted against one another (e.g., PC1 against PC2) or against the centroid size,
the calculated size of the shape. Each point in the scatterplot represents the shape of the
cranium of a single individual. The data points within the scatterplots can be assigned
different colors based on the research group (e.g., control and disease). This is used as a
visual representation of the distribution of the research groups. Confidence ellipses can
then be used to illustrate if there are shape differences in any of the PCs between the groups.

A Procrustes ANOVA can be used to test whether shape, as described by the Procrustes
distances, is significantly correlated with an independent variable, in this case, OM status.
Canonical variate analysis is a complementary analysis that uses the Procrustes distances
to identify the shape features that maximize the distance between groups by modifying the
data so that within-group variation is isotropic; the variance is equally distributed around
the mean. This was particularly useful in a study like this one, with known groupings (OM
and control), to test whether the two groups can be significantly separated and identify the
shape features that separate them best.

Measurement error was assessed using Procrustes ANOVA in MorphoJ. A second
iteration of landmarking was completed on a subset of the sample (n = 5) with at least
1 week between trials. Results of the error study indicate that the effect of individual shape
remains significant despite intraobserver error associated with landmarking (p < 0.01).
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Table 1. Landmarks included in the present study.

Bone Landmark Abbr. Location Definition Description Figure

Sphenobasion SB Midline
Midline of
spheno-occipital
synchondrosis

In a midsagittal plane, identify the clivus and place the
landmark on the superior border of the clivus on the
external surface in between the sphenoid and occipital
bones; this is a cartilaginous plate in children.

Figure 2

Basion (exo-basion) BA Midline Midline of anterior
foramen magnum

In a midsagittal plane, identify the most
inferior–posterior point on the clivus. Figure 2

Staphylion S Midline Posterior maxillary
spine

In the oblique axial plane, identify the slice that
contains the maxillary palatine process and palatine
bones; these form the hard palate. Place the landmark
on the most posteromedial point of the palatine palate.

Figures 4
and 5

Prosthion
(endoprosthion) P Midline Midline of the

anterior palate

In the oblique axial plane, identify the slice that
contains the cementoenamel junction of the upper
central incisors (the cross-section of the incisors will be
oval). Place the landmark on the lingual surface of the
palate between the right and left upper central incisors
at the level of the cementoenamel junction.

Figure 4

Internal acoustic
meatus IAM Right and left

Internal opening of
the petrous temporal
bone

In the oblique axial plane, identify the facial and
vestibulocochlear nerves emerging from the brainstem
and follow the nerves medially. Locate the point of
greatest curvature at the anterior entry to the IAM.

Figure 3

Eustachian point EP Right and left Junction of bony and
cartilaginous ET

In the oblique axial plane, identify the external
acoustic meatus, and follow the space into the middle
ear cavity, and place the landmark at the most
anteromedial opening.

Figure 4

Proximal tensor
veli palatini
attachment point

TPP Right and left
Origin of the TVP
muscle at the skull
base

In the oblique axial plane, identify the TVP muscle
fibers and follow them proximally (toward the cranial
base), and place the landmark at the most proximal
insertion.

Figure 4

Anterior torus
tubarius AT Right and left Anterior border of

the distal ET
In the oblique axial plane, identify anterior and
posterior medial ends of the nasopharyngeal orifice of
the ET.

Figure 4

Posterior torus
tubarius PT Right and left Posterior border of

the distal ET Figure 4

Ectomolare E Right and left
Most lateral point on
the exterior surface of
the alveolus

In the oblique axial plane, identify the slice with the
widest alveolus and palate. Place the landmark on the
external surface of the alveolus at the widest point.

Figure 4

3. Results

The results of the Procrustes ANOVA indicate that the shape and orientation of the
ET significantly vary between the OM (combined rAOM, and cOME) and control groups
(p < 0.01). Results of the CVA support these results, with significant differences found in
the Procrustes distances between the OM and control groups (Wilks lambda = 0.226—a
Wilk’s lambda close to 0 indicates significant discrimination between groups; Figure 6). A
set of ad hoc analyses were completed on a subset of landmarks, excluding those of the
palate, because they showed high levels of variability. Palatal variation seems to, at least in
part, be swamping out some of the finer variation in the cranial base. In the ad hoc analyses,
results remained significant (Wilks lambda = 0.147).

Results of the PCA show that groups do not separate well on PCs 1 or 2 (Table 2;
Figure S1). Principal component 1 (PC1) did not correlate with centroid size (Figure 7;
β= −0.32); this result suggests that although PC1 captures most of the variance, it is not
associated with head size. Based on the Kruskal–Wallis test, the differences between the
groups (control and OM) are best summarized by PC3. PC3 describes a medial and low
attachment site of the TVP muscle on the osseous ET, a posteriorly oriented and high torus
tubarius, and an anteriorly projected palate in the OM group (rAOM and cOME) compared
to the control group (Figures 8 and 9).
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Figure 6. Results of CVA. The OM and control groups separated significantly on CV 1 (a). Canonical
variate 1 captures a more horizontal ET in the OM group; a lateral view (b) of the shape differences
illustrates the differences in ET between the OM group (red) and control (blue). Landmarks include
internal acoustic meatus (IAM), basion (BA), Eustachian point (EP), tensor veli palatini proximal
attachment (TPP), sphenobasion (SB), staphylion (S), ectomalare (E), endoprosthion (P), and anterior
and posterior torus tubarius (AT and PT).

Table 2. Description of shape variation captured in PCs 1–3. PC 3 is the only PC that significantly
correlated with OM diagnosis.

PC % Variance Total Variance Cranial Base Eustachian Torus Tubarius

1 29.8 29.8 Wide (medial/lateral) Lateral Anterior

2 21.1 50.9 Tall (superior/inferior) Inferior High

3 11.4 62.3 Short Inferior Posterior, superior
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Figure 9. PC3 shape differences. PC 3 captures 11.4% of the variation. Superior (A) and lateral
(B) views of basicranial shape illustrating average (nodes) and high values (lines) on PC 3. The ET
angulation and nasopharynx (NP) are illustrated in blue (average) and yellow (OM). Landmarks
include internal acoustic meatus (IAM), basion (BA), Eustachian point (EP), tensor veli palatini
proximal attachment (TPP), sphenobasion (SB), staphylion (S), ectomalare (E), endoprosthion (P), and
anterior and posterior torus tubarius (AT and PT). The node is the average of all individuals, and the
vector illustrates variation in the direction of shapes associated with OM diagnosis of PC3.

4. Discussion

Otitis media is extremely common in children under age 2. Many factors contribute to
OM susceptibility, including viral type and load, immune system immaturity, life history,
and/or craniofacial anatomy, which includes ET shape and orientation. The anatomical and
structural factors are at the foundation of OM in infancy, over which the immune system
immaturity and infection are overlaid. The peak age of rAOM is around 18 months, but
maturing immune defense mechanisms through acquired immunity in response to repeated
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viral and bacterial infections increase the causal weight of anatomical/structural factors in
the etiopathogenesis [9]. In the current study, an enrollment age of 3 years and follow-up
until age 7.5 years reduces the impact of infectious and immune etiologies, allowing the
role of morphology (i.e., ET shape) on OM incidence to emerge. While rAOM continues
to be seen in children older than 3, the prevalence of cOME becomes more dominant
after this age [9]. Group assignments may be in error if they are made based on recall
or retrospective history. Thus, being part of a prospectively and closely followed cohort
employing validated and experienced clinicians, particularly ENT specialists, diminishes
the risk of misdiagnosis. The main hypothesis relies on differentiating between children
with and without the history of OM. One of the strengths of the current study is having
a reliable follow-up and assessment, resulting in an accurate differentiation of study and
control groups.

Many differences between adult and infant ET anatomy exist that may affect suscepti-
bility to OM. Of greatest interest to this study is the relative horizontality of the Eustachian
tube, but others are important to note as well, although they could not be tested using the
current methodology [42]. Bluestone [42] classifies the pathophysiological effects of ET
dysfunction into three categories: impairment of pressure regulation, loss of protective
function, and impairment of clearance. The angulation of the ET falls under the category
of impairment of pressure regulation due to the ET being too closed. A more horizontal
angulation of the ET tube can lead to inefficient action of the TVP and, thus, ineffective
opening of the ET. Conversely, ET dysfunction may be caused by the ET being too open
(i.e., patulous), which can lead to a loss of the protective function. The cartilage itself is
less stiff in the infant and is less supported by a smaller Ostmann’s fat pad, resulting in a
floppier ET. Additionally, the ET is relatively short in the infant. These factors also likely
play a role in OM susceptibility.

Few studies have directly compared the shape of the craniofacial complex between
children with and without a history of OM, at least partially because most children with
OM do not require imaging for the diagnosis or treatment of the disease. Using lateral
radiographs, Gremba et al. [22] found that the shape of the basicranium in children with
rAOM had distinct craniofacial morphologies compared to the control group in their 4-year-
old age group. Takasaki et al. [36] found no significant difference in the angle or length
of the ET in their sample of children with and without OME. Geometric morphometric
shape analysis of MRI scans has several distinct advantages over both linear measurements
and X-ray imaging techniques (radiographs and CT scans). First, with MRI scans, soft
tissue landmarks may be captured, which is not possible with radiographs or CT scans, and
second, MRI scans allow for more accurate placement of some bony landmarks because
of the visibility of relative soft tissue. One of the major advantages of this study was to
analyze previously unstudied soft-tissue landmarks in relation to OM. Due to MRI scan
constraints, novel soft tissue landmarks were limited to the following: the anterior and
posterior torus tubarius and tensor veli palatini point. However, the presence of soft tissue
structures allowed precise landmarking of the following bony landmarks as well, which
would not have been possible with an X-ray or CT scan: Eustachian point and internal
acoustic meatus. Therefore, the use of MRI scans (i.e., visualization of soft tissue structures)
was essential in placing landmarks for 5/10 landmarks, and if we exclude the landmarks of
the maxilla and cranial base, then it was essential for 5/6 ET and TVP-specific landmarks.

Geometric morphometric analysis offers its own advantages over linear measurements
because it reduces differences due to size and tests the differences between groups based
on the relative location of landmarks to one another. Therefore, the plane in which the
data was collected does not matter. Pagano et al. [25] found that the length and shape of
the cartilaginous ET, as represented by bony proxies in dry skulls, changes dynamically
throughout infancy and early childhood and correlates with peak incidences of OM. OM is
much less common by the age of six but can and does occur into later childhood and adult-
hood [29]. It is possible that some of the same variables that go into OM susceptibility in
infancy persist [43]. Relatively few studies exist that directly compare children with known
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medical histories, and even fewer take into account soft tissue and/or three-dimensional re-
lationships. The results of this study indicate there are significant differences in anatomical
relationships between groups with and without a history of OM.

Previous studies have found that the TVP muscles are necessary for the opening
of the ET lumen, and by extension, the function of these muscles may be an important
protection of the middle ear that may help prevent OM [11,19,34]. Sapci et al. [44] is one
of the few studies that directly compared TVP muscle electromyography in adult subjects
with or without OM, and they found no difference in motor unit potential or duration
of the TVP. While the present study did find differences in the position of the proximal
insertion of the TVP on the cranial base, the TVP landmarks varied with the middle ear
landmark Eustachian point. So, while the TVP was found to be oriented more inferiorly
in the OM group, it did not vary relative to the positioning of the middle ear in the PCs,
which captured a significant amount of the variation. Regardless, it is possible that the
angle of the TVP relative to the hamulus of the pterygoid plates (the fulcrum around which
the TVP is set) is less acute and thus may be suboptimal in the OM group. One thing that
could not be tested using the method presented here is the insertion ratio or the relative
length of the insertion of the TVP to the total length of the ET [45]. It may be that a lower
posterior boundary of the TVP attachment would mean a lower anterior boundary as well,
but it is certainly possible that the thickness of the muscle varies, not the total position.

It is interesting that the variation at the palate had to be removed in some analyses
because it was “swamping out” the fine-grained differences at the ET. The relationship
between OM and palate shape is frequently discussed in clinical research, as exemplified
by the extensive literature concerning cleft palate and OM (e.g., [20,34,35,44,46]). A cleft
palate leads to many anatomical and structural differences in the craniofacial complex that
may lead to OM, including differences in TVP size as measured on MRI in adults with and
without a cleft palate [47]. The shape of the palate certainly seems to vary between patients
with and without OM in this study, though it was not specifically isolated and analyzed.
The palate shape is integrated with the shape of the oral cavity and dentition—especially
the mixed dentition, which characterizes this age group. Further, the shape of the palate
reflects the general width of the face. The oral vestibule and palate are continuous with the
nasopharynx posteriorly; thus, an anteriorly projected palate could be associated with a
long (anteroposterior) nasopharynx. A large nasopharynx would have implications for the
position of the hamulus of the pterygoid plates. The presented results provide a basis upon
which future analyses of the palate shape in OM children can be based.

5. Conclusions

This study contributes to the growing literature on imaging and shape analysis of
the ET. This is the first attempt that the authors could find at using MRI data to perform
geometric morphometric shape analysis on the ET in any age group. In the present study,
we found evidence that the shape of the Eustachian tube varies significantly between these
groups of children with and without OM.

6. Limitations and Future Directions

It is important to note our limitations. The sample size is small, and a larger sample
would increase the power of the statistical analyses. However, despite the small sample size,
the authors found significant differences between cohorts and established novel protocols
for the collection of soft tissue landmarks in the ET that can be used in future studies. The
soft tissue landmarks presented here open up the types of hypotheses that can be tested
using three-dimensional geometric morphometrics of the middle ear and its pathologies.

While the MRI scans capture an enormous amount of anatomy, the slice thicknesses
and window sizes limit the types of landmarks collected. Certain biologically significant
landmarks could not be collected in the present study due to the window size of the
original scans, including landmarks around the paranasal sinus drainage points, nasal, and
nasopharyngeal landmarks. Further, placing landmarks on individual slices did not allow
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for the use of semilandmarks that extended beyond a single plane. This can be addressed
in the future by using this pilot protocol and adjusting scan settings to widen the scan
windows and narrow the slice thicknesses.

In the future, this method should be tested with a larger sample and other age ranges,
particularly in the older ages that have been historically under-evaluated in the literature.
With a larger sample size, the authors will be able to test for potentially confounding or
informative variables like sex, population affinity, and life history. Further, digital isolation
of the ET and the paratubal muscles will allow for a wider range of statistical analyses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10101115/s1.
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39. Güçlü, O.; Şahin, E.M.; Tekin, K.; Dereköy, F.S. Evaluation of nasal airways by objective methods in chronic otitis media. Eur.

Arch. Oto-Rhino-Laryngol. 2013, 270, 1263–1266. [CrossRef]
40. Zelditch, M.L.; Swiderski, D.L.; Sheets, H.D. Geometric Morphometrics for Biologists: A Primer; Academic Press: New York, NY,

USA, 2012.
41. Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: Cambridge, UK, 1997.
42. Bluestone, C. Eustachian Tube: Structure, Function, and Role in Otitis Media; PMPH-USA: Shelton, CT, USA, 2005; pp. 67–90.
43. Teixeira, M.S.; Banks, J.; Swarts, J.D.; Alper, C.M.; Doyle, W.J. Eustachian tube opening measured by sonotubometry is poorer in

adults with a history of past middle ear disease. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 593–598. [CrossRef]

40



Bioengineering 2023, 10, 1115

44. Sapci, T.; Mercangoz, E.; Evcimik, M.F.; Karavus, A.; Gozke, E. The evaluation of the tensor veli palatini muscle function with
electromyography in chronic middle ear diseases. Eur. Arch. Oto-Rhino-Laryngol. 2008, 265, 271–278. [CrossRef] [PubMed]

45. Matsune, S.; Sando, I.; Takahashi, H. Insertion of the tensor veli palatini muscle into the eustachian tube cartilage in cleft palate
cases. Ann. Otol. Rhinol. Laryngol. 1991, 100, 439–446. [CrossRef] [PubMed]

46. Dayan, J.H.; Smith, D.; Oliker, A.; Haring, J.; Cutting, C.B. A virtual reality model of eustachian tube dilation and clinical
implications for cleft palate repair. Plast. Reconstr. Surg. 2005, 116, 236–241. [CrossRef] [PubMed]

47. George, T.N.; Kotlarek, K.J.; Kuehn, D.P.; Sutton, B.P.; Perry, J.L. Differences in the tensor veli palatini between adults with and
without cleft palate using high-resolution 3-dimensional magnetic resonance imaging. Cleft Palate-Craniofacial J. 2018, 55, 697–705.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

41



Citation: Paul, T.C.; Johnson, K.A.;

Hagen, G.M. Super-Resolution

Imaging of Neuronal Structures with

Structured Illumination Microscopy.

Bioengineering 2023, 10, 1081.

https://doi.org/10.3390/

bioengineering10091081

Academic Editor: Cuneyt M. Alper

Received: 2 September 2023

Accepted: 9 September 2023

Published: 13 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Super-Resolution Imaging of Neuronal Structures with
Structured Illumination Microscopy
Tristan C. Paul, Karl A. Johnson and Guy M. Hagen *

UCCS BioFrontiers Center, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway,
Colorado Springs, CO 80918, USA; tpaul@uccs.edu (T.C.P.); k9johnso@ucsd.edu (K.A.J.)
* Correspondence: ghagen@uccs.edu

Abstract: Super-resolution structured illumination microscopy (SR-SIM) is an optical fluorescence
microscopy method which is suitable for imaging a wide variety of cells and tissues in biological
and biomedical research. Typically, SIM methods use high spatial frequency illumination patterns
generated by laser interference. This approach provides high resolution but is limited to thin samples
such as cultured cells. Using a different strategy for processing raw data and coarser illumination
patterns, we imaged through a 150-micrometer-thick coronal section of a mouse brain expressing
GFP in a subset of neurons. The resolution reached 144 nm, an improvement of 1.7-fold beyond
conventional widefield imaging.

Keywords: fluorescence microscopy; structured illumination; brain; Bayesian methods; super-resolution

1. Introduction

Recently developed methods for surpassing the diffraction limit in optical fluores-
cence microscopy include stimulated emission depletion microscopy (STED) [1], stochastic
optical reconstruction microscopy (STORM) [2], photoactivated localization microscopy
(PALM) [3], super-resolution optical fluctuation imaging (SOFI) [4], and structured illumi-
nation microscopy (SIM) [5,6]. These methods have had large impacts in many fields, with
super-resolution microscopy previously being used in many applications, including imag-
ing the a mouse brain using STED [7], STORM [8], and SIM approaches [9]. SIM methods
have been used in many situations, including the rapid imaging of clinical samples [10].

SIM is a method in which sets of images are acquired with shifting illumination
patterns. The subsequent processing of these image sets results in images with optical
sectioning, resolutions beyond the diffraction limit (super-resolution), or both [5,6,11–14].
Since its emergence over two decades ago [15], SIM has matured as an imaging technique,
with multiple proposed methods for generating the structured illumination patterns [12–25]
and processing the image data [6,13,26–30]. Compared to other super-resolution techniques,
the speed, high signal-to-noise ratio, and low excitation light intensities characteristic to
SIM make it a good choice for imaging a variety of samples in three dimensions. As shown
here, SIM is accomplished with a standard fluorescence microscope with some additional
required elements, whereas other approaches such as light-sheet microscopy require more
specialized setups. There is an increasing interest in the methods and applications of
SIM, with the field seeing many recent (2022–2023) improvements [31–37], including new
methods involving deep learning approaches [38,39].

The imaging method we used, maximum a posteriori probability SIM (MAP-SIM),
uses a Bayesian framework to reconstruct super-resolution SIM images [26,29,40]. This
method has advantages including flexibility in the range of SIM illumination patterns which
can be used and, in our case, the ability to use patterns with lower spatial frequencies.
This, in turn, allows imaging deeper into samples in which scattering degrades the high
spatial frequency patterns which are more commonly used in SIM. When the SIM pattern
is out of focus, it blurs rapidly with increasing depth, producing a high intensity of out
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of focus light. This results in reduced pattern contrast in the acquired images. Because of
this, traditional super-resolution SIM methods are typically limited to an imaging depth of
10–20 µm [41,42]. Here, we used MAP-SIM to image a fixed, optically cleared, ~150-µm-
thick mouse brain coronal slice expressing a neuronal GFP marker while achieving a lateral
resolution of 144 nm.

To overcome the challenges of imaging deeper into brain tissues, SIM has previously
been combined with two-photon excitation [16] or with adaptive optics for in vivo stud-
ies [43,44]. These methods have offered impressive results, but they do involve additional
costs and require additional optical devices and expertise, reducing the number of labs that
can use these approaches. Here, we used a simpler and more economical approach with a
non-laser light source and open-source software for SIM [45].

2. Methods

The sample used for this work was an optically cleared, green fluorescent protein
(GFP) -labeled coronal mouse brain slice. The slice was approximately 150 µm thick and
was obtained from SunJin Lab (Hsinchu City, Taiwan). The supplier used a Thy1-GFP
mouse strain, and they stated that the sample was prepared as follows:

1. cardiac perfusion with cold, freshly prepared 4% paraformaldehyde (PFA)
2. fixation of the dissected brain with a 4% PFA solution on an orbital shaker overnight

at 4 ◦C followed by washing three times with phosphate-buffered saline (PBS) at
room temperature

3. sectioning the brain manually using a vibratome followed by clearing of the slice with
RapiClear 1.52 (SunJin Lab) overnight at room temperature

4. mounting of the cleared sample with fresh RapiClear 1.52 reagent in a 0.25-mm-deep
iSpacer microchamber (SunJin Lab)

For the SIM imaging, we used a home-built set-up based on the same design as de-
scribed previously [20,26,40,46]. The current SIM system was based on an IX83 microscope
equipped with several objectives (Olympus, Tokyo, Japan). Illumination was provided
by a liquid light guide-coupled Spectra-X light source (Lumencor, Beaverton, OR, USA)
using the cyan channel, which had an emission maximum of 470 nm. The illumination
was collimated by an achromatic 50 mm focal length lens (Thor labs, Newton, NJ, USA)
and vertically polarized with a linear polarizer (Edmund Optics, Barrington, NJ, USA)
before entering a polarized beam splitter (PBS) cube (Thor Labs) and reflecting onto a
liquid-crystal on silicon (LOCS) microdisplay (Forth Dimension Displays, Dalgety Bay,
Scotland, UK). This device is a ferroelectric reflective-type spatial light modulator. The pix-
els, which were turned on, rotated the polarization of the light by ~90 degrees, converting
vertical polarization to horizontal polarization. The horizontally polarized output of the
microdisplay then passed through the PBS and was imaged into the microscope using a
180 mm focal-length lens (SWTLU-C, Olympus). The emitted fluorescent light was filtered
(using a GFP filter set with dichroic T495lpxr and ET525/50 emission filters; Chroma,
Bellows Falls, VT, USA) and then imaged with an sCMOS camera (Zyla 4.2+, Andor). The
illumination power density on the sample used a 100× objective that was measured at
2.542 W/cm2 without SIM patterning (widefield illumination) and at 0.214 W/cm2 with
the SIM pattern active. Sample movements and focusing were controlled by an XY piezo Z
stage (Applied Scientific Instrumentation, Eugene, OR, USA).

The microdisplay was used to produce the SIM patterns, and it was controlled by the
software supplied with the device (MetroCon, Forth Dimension Displays). Various SIM
patterns were used as shown in the supplementary material in Table S6. The pattern position
was shifted by one pixel after each image was acquired such that the sum of all illumination
masks resulted in homogenous illumination. Figure 1 shows a simplified diagram of the
SIM optical system and a connection diagram illustrating how the microdisplay system
was synchronized with the camera using IQ software (Andor) and a digital input/output
computer card (DDA06/16, Measurement Computing, Concord, NH, USA). More details
about the SIM system are given in the supplementary material. Table S1 shows a list of
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the components we used along with the manufacturer, part number, and vendor website.
Tables S2–S5 show some of the relevant optical and performance characteristics of the
camera, microdisplay, and light source. These details should be useful for those wishing to
build their own SIM systems of this type. The supplementary text explains, and Figure S7
shows, a schematic of the timing scheme used by the SIM system, and they illustrate the
function of the AND gates shown in Figure 1. The supplementary text also explains, and
Figure S8 shows, additional details about the operation of the microdisplay.
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Figure 1. Simplified optical diagram (left) and connection diagram (right). The connection setup for
the two-wavelength acquisition is shown, and in this study, only 470 nm illumination was used.

3. Data Analysis
3.1. Optical Sectioning SIM (OS-SIM)

Several data processing methods are possible for generating optically sectioned im-
ages from SIM data (OS-SIM) [20,47]. The most commonly used implementation of this
technique was introduced in 1997 by Neil et al. [15]. Their method worked by projecting a
line illumination pattern onto a sample, followed by the acquisition of a set of three images
with the pattern shifted by the relative spatial phases 0, 2π/3, and 4π/3, respectively. Using
this method, an optically sectioned image can be recovered computationally as follows:

IOS−SIM =
[
(I1 − I2)

2 + (I1 − I3)
2 + (I2 − I3)

2
]1/2

, (1)

where IOS-SIM is an optically sectioned image and I1, I2, and I3 are the three images acquired
with the different pattern positions. This type of optically sectioned image is expected to
be similar to that obtained with a laser scanning confocal microscope. If the sum of the
individual SIM patterns results in homogeneous illumination, as was the case in our setup,
a widefield (WF) image can also be recovered from the SIM data by taking the average of
all images In, as follows:

IWF =
1
N

N

∑
n=1

In. (2)

This was the approach we used throughout this study to generate conventional wide-
field images.

Instead of using Equation (1), in this study, we used a method originally shown by
Neil et al. [15] and later elaborated upon [20,47], as follows:

IOS−SIM =

∣∣∣∣∣
N

∑
n=1

In exp
(

2πi
n
N

)∣∣∣∣∣. (3)

We found that this method provided consistent results and could be applied when
using any number of patterns instead of the three patterns used in the original work. The
actual positions of the illumination patterns in the camera images were determined using a
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calibrated camera according to our previous work [15], and this was based on a well-known
method for the spatial calibration of a camera [48].

3.2. SIM with Maximum a Posteriori Probability Estimation

MAP-SIM has been described previously [26]. In our study, the imaging process could
be denoted as follows:

yk = HMkx + nk, (4)

where Mk is a matrix in which the elements represent the k-th illumination pattern; yk de-
notes a low-resolution image acquired using the k-th illumination pattern; x is an unknown,
high-resolution image; and nk is (Gaussian) additive noise. H is a matrix that models the
convolution between the high-resolution image and the point-spread function (PSF) of the
system. Each SIM image acquired generates an Equation (4) with a different illumination
pattern (k). The linear system of Equation (4) produced in a SIM experiment must be solved
in order to reconstruct a high-resolution image. This reconstruction can be defined as the
inversion of the system of equations. In the presence of noise (nk), the inversion becomes
unstable and is considered an ill-posed problem. This means we need to add a constraint
which stabilizes the inversion of the system and ensures the uniqueness of the solution. In
this imaging model, the low-resolution images (yk), high-resolution image (x), and nose
(nk) are measurement-dependent.

We modeled the PSF as an Airy disk which, in Fourier space, would lead to an optical
transfer function (OTF) of the form [49] as follows:

OTF( f ) =
1
π

[
2 cos−1

(
f
fc

)
− sin

(
2 cos−1

(
f
fc

))]
, (5)

where f is the spatial frequency. We estimated the cut-off frequency (fc) by calculating
the radial average of the power spectral density (PSD) of a widefield image of 100 nm
fluorescent beads [50]. This could also be calculated by taking the Rayleigh limit of the
resolution d = 0.61λ/NA and expressing this value in terms of spatial frequency (1/d).

Using a Bayesian approach [26,27,29,51–54], high-resolution image estimation can be
expressed as a minimized cost function according to the following:

xHR−MAP = argmin
x

[
K

∑
k=1
‖yk − HMkx‖2 + λΓ(x)

]
. (6)

The cost function in Equation (6) consists of two terms. The first term describes
the mean square error between the estimated HR image and the observed LR images.
The second term (λΓ(x)) is a regularization term. To ensure positivity and promote a
smoothness condition, we relied on quadratic regularization [54]. The contribution of
Γ(x) was controlled by the parameter λ, a small positive constant defining the strength
of the regularization (typically, λ = 0.01). We solved Equation (6) using gradient descent
methods [54].

3.3. Spectral Merging

MAP estimation of high-resolution images obtained with structured illumination
enables the reconstruction of high-resolution images (HR-MAP) with details that are
unresolvable in a widefield microscope. However, MAP estimation, as described above,
does not suppress out-of-focus light. On the other hand, the processing method according to
Equation (3) used in optical sectioning SIM [15,20] provides images (LR-HOM) with optical
sectioning. Noting that the unwanted, out-of-focus light was dominant at low spatial
frequencies, we merged the LR-HOM and HR-MAP images in the frequency domain to
obtain the final HR image (MAP-SIM). For 3D data, this is completed in a slice-by-slice
fashion, resulting in a Z-stack of SIM images. Frequency-domain Gaussian low-pass
filtering was applied to the LR-HOM image, and a complementary high-pass filter was
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applied to the HR-MAP image. We used a weighting scheme that could be described by
the following equation:

xMAP−SIM = F−1
{
(1− β)F{xLR−HOM} exp

(
− f 2

2σ2

)
+ βF{xHR−MAP}

(
1− exp

(
− f 2

2σ2

))}
, (7)

where F ,F−1 denotes the Fourier transform operator and its inverse, respectively,
and f is the spatial frequency, σ is the standard deviation of the Gaussian filter, and β
is a weighting coefficient. Usually, we would set β to 0.85. We would typically use a
standard incoherent apodizing function to shape the MAP-SIM spectrum before the final
inverse FFT.

4. Results

To acquire an overview of the slice with SIM methods, we first imaged using a
10×/0.4 NA water immersion objective. We acquired 60 image positions with a 20-percent
overlap between each position and with 12 z-planes. In this image, the Z-plane spacing
was 20 µm. Image stitching was accomplished using our lab’s methods and an ImageJ
plugin [55], as shown in [46]. A composite image of the slice is shown in Figure 2, and it is
color-coded based on depth using the isolum color table [56]. This image was acquired in 5 min
and 30 s, with an additional 15 min and 35 s required for the OS-SIM processing, according to
Equation (3). The final image was 8.4 GB in size, and it had 16,859 × 10,378 × 12 pixels.

This slice was matched to Paxinos and Franklin’s mouse brain atlas [57] to identify
which section of the brain was being imaged. Our slice was visually matched with slice 64.
We further matched our sample to slice 92 of 132 in the Allen brain atlas [58,59]. Second
order polynomial fits were made for both the horizontal and vertical directions using the
edges and the central aqueduct as reference points. This allowed any point on this brain
slice, recorded from the microscope stage coordinates, to be translated into the coordinates
of the atlas. This method placed the neuron shown in Figure 3 in the temporal association
area (TeA) of the mouse brain isocortex, as indicated by the yellow box in Figure 2a.

Imaging Deep Neurons

To demonstrate MAP-SIM’s ability to image deeper into the sample than traditional SR-
SIM, a TeA neuron 41–66 µm deep was imaged. The depth was measured using the closed-
loop piezo stage. A 100×/1.4 NA oil immersion objective was used with an exposure time of
300 ms per SIM phase. This image is shown in Figure 3. The profile of a dendric spine neck
was also measured (Figure 3d,e). The profile was fit in MatLab using a Gaussian function
weighted by the square root of the counts, with nonlinear least squares methods. The full
width at half-max (FWHM) was determined to be 164.0 ± 4.9 nm. To determine the image
resolution, we calculated the power spectral density (PSD) as previously described [50].
We found that the WF image had a resolution of 247.6 nm while the MAP-SIM image had
a resolution of 143.6 nm, an improvement of ~1.7-fold. These results are summarized in
Table 1. Figures S1–S3 show additional images of cortical neurons imaged with MAP-SIM
and a resolution analysis by a Fourier ring correlation (FRC) [60,61] and the PSD methods.
The FRC measurements indicated a MAP-SIM resolution of approximately 150–160 nm, in
good agreement with the 144 nm measured by the PSD methods.

A comparison of widefield, basic OS-SIM (Equation (3)), and MAP-SIM (Equations (6)
and (7)) for this same cortical neuron is shown in Figure 4 and further analyzed in Table 1.
As is evident in the figure, widefield had the largest background due to out-of-focus light,
with basic OS-SIM providing optical sectioning and MAP-SIM providing both optical
sectioning and super-resolution. The imaging depth of 41–66 µm exceeded the depth limit
of traditional SIM by approximately three-fold.
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Figure 2. (a) Overview of the OS-SIM image. The yellow box indicates the temporal association area
where the neurons were imaged with super-resolution MAP-SIM. (b) Nissl (left) and anatomical
annotations (right) from the Allen mouse brain atlas and the Allen Reference Atlas—Mouse Brain,
at the same slice position as (a) (slice 92 of 132, Allen Mouse Brain Atlas, mouse.brain-map.org and
atlas.brain-map.org).
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Figure 3. (a) TeA neuron imaged at a depth of 41 µm to 66 µm using a 100×/1.4 NA oil immersion
objective. (b,c) Zoomed in views of the selected areas indicated in (a) by yellow boxes. The width of
the spine neck, selected in (d), was fit to a Gaussian function (FWHM 164.0 ± 4.9 nm).
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color-coded by depth.

Table 1. SNR and resolution measurements.

SNR (dB) Resolution (nm)

Widefield 43.87 247.6
Basic SIM 29.33 251.6
MAP-SIM 39.27 143.6

We further imaged a neuron at a depth of 71–83 µm. This is shown in Figure 5. In this
particular image, the resolution, measured by calculating the PSD, was 161 nm. While this
was a decrease in resolution from the shallower neuron shown in Figure 3, it still surpassed
the diffraction limit. Imaging at approximately 100 µm using these methods often resulted
in images with large amounts of noise, and so the maximum imaging depth with a 100×
objective in this sample appeared to be approximately 85 µm. Using a 60× objective, we
were able to image up to 113 µm, as shown in Figure 6.
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Figure 6. Neurons of the subiculum, ventral part, pyramidal layer (SUBv-sp), with an imaging depth 

of 0 to 113 μm (60×/1.42 NA oil immersion objective). The maximum-intensity projections of the 

imaged area have depths of (a) 0.2–28.4 μm, (b) 28.6–56.6 μm, (c) 56.8–84.8 μm, and (d) 85.0–113.0 

μm. (e) X-Z projection of the imaged area. 

Figure 5. (a) TeA neuron imaged at a depth of 71 µm to 83 µm using a 100×/1.4 NA oil immersion
objective. The inset shows the fast Fourier transform (FFT) of the image in (a), the boundary of which
indicates the resolution. (b) Zoomed-in view of the selected area indicated in (a) by a yellow box.
(c) A measurement of the resolution determined by measuring the power spectral density. (d) The
MAP-SIM image color-coded by depth.
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Figure 6. Neurons of the subiculum, ventral part, pyramidal layer (SUBv-sp), with an imaging depth
of 0 to 113 µm (60×/1.42 NA oil immersion objective). The maximum-intensity projections of the
imaged area have depths of (a) 0.2–28.4 µm, (b) 28.6–56.6 µm, (c) 56.8–84.8 µm, and (d) 85.0–113.0 µm.
(e) X-Z projection of the imaged area.
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In addition to the cortical neurons imaged in Figures 3–5 (and in Figures S1, S2 and S4),
we also imaged an area of the brain in which a higher proportion of the neurons expressed
the GFP marker (SUBv-sp subiculum, ventral part, pyramidal layer, also see Figure S5).
This is shown in Figure 6. The maximum-intensity projection images, shown at different
depths, showed good imaging at all depths. In addition, the imaging quality remained
high even at depths past 100 µm using this objective (60× oil immersion).

Typically, SIM uses high-frequency patterns to maximize the obtainable resolution,
but it has limited imaging depth due to scattering and the generation of large amounts
of background fluorescence. The pattern used here used a lower spatial frequency to
penetrate deeper into the mouse brain while maintaining the pattern integrity. A compar-
ison of (cropped) images acquired using a high-frequency pattern (i.e., one out of three
microdisplay pixels was activated) and our lower-frequency pattern (i.e., two out of ten
microdisplay pixels were activated) is shown in Figure 7. Also shown is a plot of the
measured modulation of the SIM pattern vs. the depth for various SIM patterns using a
thick fluorescent plastic slide (obtained from Chroma). The modulation, measured as the
average of the (max − min/max + min) in a region of interest, fell as the pattern spatial
frequency increased and as the depth increased. This was expected in the case of incoherent
illumination, as we used here, because the incoherent optical transfer function applied [49].
The higher-frequency pattern resulted in a weaker signal and poorer image reconstruction
when imaging deep into the sample, as shown in Figure 7c.
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Figure 7. (a) Plot of modulation vs. axial depth for the different SIM patterns. (b) High-frequency
pattern imaging of the TeA cortical neurons at the surface of the slice (0–10 µm). (c) High-frequency
pattern imaging of the TeA cortical neurons at a depth of 41–45 µm. (d) Low-frequency pattern
imaging of the same field of view shown in (c).
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5. Discussion

By combining a structured illumination microscope with a large field-of-view and
an image reconstruction method based on Bayesian statistics, we demonstrated synapse-
resolving meso- and micro-scale volumetric imaging in an optically cleared coronal slice
of adult mouse brain. The use of MAP-SIM and sample-optimized illumination patterns
allowed us to collect super-resolution images well beyond the typical depth limit for SIM.

Compared to other super-resolution methods, SIM has poorer resolution. For example,
the 144 nm lateral resolution achieved here is worse in comparison to the approximately
20 nm resolution that is typically achieved with STORM. However, SIM requires ~15 (or
less, depending on the method used) images to reconstruct a super-resolution image. This
is far lower than the 20,000 (or more) images usually required for STORM, making SIM
imaging much faster and, therefore, a possibility for use when imaging live cells. The
excitation power needed for SIM is much lower than that used in STORM. Here, we used
0.214 W/cm2 for SIM compared to the 2 kW/cm2 we previously used for STORM [62]. We
found that the photobleaching in our experiments was minimal (Figure S6).

Most of the progress in super-resolution SIM has been in the acquisition and processing
of images, but SIM was used in a detailed study on dendritic spines [9] where the authors
developed a method for reconstructing and measuring the surface geometries of dendritic
spines from 3D-SIM images. By adopting more flexible strategies for image acquisition and
processing, such as the methods shown here, SIM is expected to be used more frequently in
biological studies, including those on dense tissues such as brain tissue.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering10091081/s1, Table S1. Main components of the SIM
system; Table S2. Camera parameters; Table S3. Light source parameters; Table S4. Microdisplay
parameters; Table S5. Camera parameters for the machine vision camera used (only) in Figures S4
and S5; Table S6. Parameters of the imaging data; Figure S1: Cortical neuron; Figure S2: Enlarged
views; Figure S3: Resolution analysis; Figure S4: Cortical neuron; Figure S5: Neurons of the midbrain;
Figure S6: Photobleaching analysis; Figure S7: SIM system details; Figure S8: SIM system diagrams.
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Abstract: The COVID-19 pandemic has underscored the urgent need for rapid and accurate diagnosis
facilitated by artificial intelligence (AI), particularly in computer-aided diagnosis using medical imag-
ing. However, this context presents two notable challenges: high diagnostic accuracy demand and
limited availability of medical data for training AI models. To address these issues, we proposed the
implementation of a Masked AutoEncoder (MAE), an innovative self-supervised learning approach,
for classifying 2D Chest X-ray images. Our approach involved performing imaging reconstruction
using a Vision Transformer (ViT) model as the feature encoder, paired with a custom-defined decoder.
Additionally, we fine-tuned the pretrained ViT encoder using a labeled medical dataset, serving
as the backbone. To evaluate our approach, we conducted a comparative analysis of three distinct
training methods: training from scratch, transfer learning, and MAE-based training, all employing
COVID-19 chest X-ray images. The results demonstrate that MAE-based training produces superior
performance, achieving an accuracy of 0.985 and an AUC of 0.9957. We explored the mask ratio influ-
ence on MAE and found ratio = 0.4 shows the best performance. Furthermore, we illustrate that MAE
exhibits remarkable efficiency when applied to labeled data, delivering comparable performance
to utilizing only 30% of the original training dataset. Overall, our findings highlight the significant
performance enhancement achieved by using MAE, particularly when working with limited datasets.
This approach holds profound implications for future disease diagnosis, especially in scenarios where
imaging information is scarce.

Keywords: vision transformer (ViT); self-supervised learning; chest X-ray image; image classification

1. Introduction

The COVID-19 pandemic has brought attention to the vital role of artificial intelligence
(AI) in combating infectious diseases, specifically through the analysis of lung images, such
as X-ray chest images. Computer-aided diagnosis (CAD) has emerged as a promising tool
for accurate and rapid diagnosis in this context. deep learning (DL) models, known for
their exceptional performance in computer vision tasks such as image recognition [1–4],
semantic segmentation [5,6], and object detection [7–9], have increasingly been adopted for
CAD and other healthcare applications [10–13].

Despite the significant potential of DL models in medical data analysis, there are
several practical challenges impeding their widespread adoption. First, medical datasets
are often smaller compared to those used for natural image analysis, such as the widely
used ImageNet dataset [14]. DL models have numerous parameters and require substantial
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data for effective training. Consequently, training such models with limited datasets can be
challenging and may lead to overfitting [15,16]. Second, labeling medical data is a resource-
intensive and time-consuming process. CAD relies on labeled data for training, but labeling
medical data necessitates specialized medical knowledge and expertise, making it more
demanding than labeling natural images. Lastly, current DL models for medical image
analysis primarily rely on convolutional neural networks (CNNs) [17,18]. While CNNs
excel at capturing local features, they may not be optimally suited for capturing global
information across an entire image. Therefore, further research is necessary to develop
more effective DL network architectures capable of capturing both local and global features
for medical image analysis, particularly when dealing with limited datasets.

To address these challenges, various methods have been proposed. For example,
transfer learning [19] has gained widespread usage, wherein DL models are pretrained
on large-scale natural image datasets such as ImageNet and subsequently fine-tuned on
smaller medical datasets. This approach helps mitigate the overfitting issue caused by
limited medical datasets, although it may not fully bridge the gap between natural and
medical images. Regarding labeling issues, weakly supervised learning (WSL) [20,21] has
become popular, where models are trained using only image-level labels for tasks such
as object detection [22]. However, WSL may not be suitable for classification tasks that
still require image-level labels. Recently, novel DL models such as the Vision Transformer
(ViT) [23] and its variants [24,25] have demonstrated promising results in capturing global
information from medical images. Nevertheless, these models often necessitate extensive
amounts of data for effective training.

In our study, we explored a novel method for medical image analysis that addresses
the challenges associated with training strategy and limited medical datasets. We propose
the utilization of self-supervised learning (SSL) [26], a method that leverages the intrinsic
attributes of the data as pretraining tasks, eliminating the reliance on labeled data. SSL
implementation involves utilizing attributes such as image rotation prediction [27], patch
localization [28], and image reconstruction [29], which can be accessed without manual
labeling. Additionally, by substituting the conventional CNN backbone with a Vision
Transformer (ViT) model, our method effectively captures both local and global features of
medical images. To accomplish this, we employ a Masked Autoencoder (MAE) model [30],
a self-supervised learning approach that utilizes the ViT model as its backbone. By combin-
ing SSL with ViT through the MAE model, we anticipate that this method can contribute to
more accurate and efficient medical image analysis.

To our best knowledge, we are the first to apply MAE on COVID-19 X-ray imaging.
During the exploration, we found an innovative application of MAE on the limited dataset,
which is not studied by the previous work [30]. We demonstrated the superior performance
of the MAE model compared to baseline models, explored the influence of mask ratios
on the MAE model’s performance, and evaluated the MAE model’s performance using
different proportions of limited training data. The contributions of our study are as follows:

• We conducted a comparative analysis of various training strategies using the same
public COVID-19 dataset and observed that the MAE model outperformed other
approaches, demonstrating superior performance.

• To further investigate the impact of different mask ratios on the MAE model’s perfor-
mance, we examined how varying mask ratios affected the effectiveness of the model.
Our experiments revealed that the model achieved its best performance with a mask
ratio of 0.4.

• Through extensive evaluations, we examined the applicability of the MAE model
across different proportions of available training data. Remarkably, the MAE model
achieved comparable performance even when trained with only 30% of the avail-
able data.
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2. Materials and Methods
2.1. Data

Our study adopted the chest X-ray classification dataset: COVIDxCXR-3 [31], which
is a public dataset with more than 29,000 chest X-ray images, for positive/negative de-
tection. COVIDxCXR-3 collects the data from different public data sources: covid-chest
x-ray-dataset [32], Figure 1 COVID-19 Chest X-ray Dataset Initiative [33], Actualmed
COVID-19 Chest X-ray Dataset Initiative [34], COVID-19 Radiography Database—Version
3 [35], RSNA Pneumonia Detection Challenge [36], RSNA International COVID-19 Open
Radiology Database (RICORD) [37], BIMCV-COVID19+: a large annotated dataset of RX
and CT images of COVID-19 patients [38], and Stony Brook University COVID-19 Pos-
itive Cases (COVID-19-NY-SBU) [39]. Figure 1 visualizes the positive/negative image
samples of the COVID-19 subject. Table 1 shows the details of the COVIDxCXR-3 dataset
distribution. The dataset has a multinational cohort of over 16,600 patients. The whole
dataset is split into training and testing sets by the dataset authors. The training dataset has
13,992 negative and 16,490 positive images. The testing dataset has 200 negative and
positive images, respectively.

Original Masked Reconstruction

Covid

Normal

Figure 1. The visualization of the chest X-ray image of the COVIDxCXR-3. The first row shows the
negative subjects and the second row shows the positive subjects. The input image size is 224 × 224.
We normalize the image pixel from 0 to 255.

Table 1. The images and patients distribution of the dataset COVIDxCXR-3.

Type Negative Positive Total

Images Distribution

Train 13,992 15,994 29,986
Test 200 200 400

Patients Distribution

Train 13,850 2808 16,648
Test 200 178 378

During the implementation of our experiment, we configured the image size to
224 × 224 pixels, while normalizing the image pixel values within the range of 0 to 255.
Under normal circumstances, in order to provide an unbiased evaluation of a model,

57



Bioengineering 2023, 10, 901

cross-validation is typically conducted during the training process. However, as demon-
strated in Table 1, there exists an inequality in both image and patient distributions.
There are 15,994 positive images for COVID-19, derived from 2808 COVID-19-positive
patients, indicating multiple X-ray images per patient in the dataset (approximately
6 images per patient). Meanwhile, the dataset authors have not provided the specific
subject information, precluding the possibility of conducting subject-level cross-validation.
Concurrently, cross-validation at the image level would result in data leakage. There-
fore, we chose to adopt the train/test split as defined by the dataset authors in these
particular circumstances.

2.2. Vision Transformer

Since ViT is built upon the self-attention mechanism and many works adopt multi-head
attention in the implementation, we first introduce the basics of the attention mechanism,
then describe the ViT architecture.

The attention mechanism includes three inputs: a query (Q), a key (K), and a value (V).
The attention operation is defined as Equation (1):

Attention(Q, K, V) = Softmax(
QKT
√

dk
)V (1)

Afterward, the multi-head attention is defined as Equation (2):

MultiHeadAttn(Q, K, V) = Concat(head1, ..., headn)Wo

headi = Attention(QWQ
i , KWK

i , VWV
i )

(2)

where WQ
i , WK

i , and WV
i are learnable projection matrices.

Figure 2 illustrates the ViT structure, which has a patch embedding module and N×
stacked transformer encoder blocks. Each transformer encoder block contains a multi-head
attention (MSA), two layer normalization (LN) [40], and a multi-layer perceptron (MLP).

Patch Embedding

Input Image

LN

Self-Attention

LN

MLP

Add

Add

Transformer Encoder

N x
Self-Attention

Input 

K Q V

MatMul

Softmax

MatMul

Output 
a. b.

Figure 2. The structure of Vision Transformer. Sub-figure (a) illustrates the structure of the self-
attention module. Sub-figure (b) shows the architecture of the Vision Transformer encoder.
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In the implementation, the input image I is first transformed into a series of
patch embeddings:

z0 = PatchEmbedding(I) (3)

The patch embeddings are forwarded through the transformer encoder under the
following operations:

zl = MLP(Norm(MSA(Norm(zl−1)))) (4)

where zl−1 and zl are the l-th transformer encoder block input and output, respectively.

2.3. MAE

Originally, MAE is a proficient self-supervised learning method employed in Natural
Language Processing (NLP) tasks. Building upon its initial foundations, the MAE has
significantly broadened its application scope beyond the NLP field, marking its presence in
the field of computer vision. This widening of its application is facilitated by the universality
of its core principle—the strategic “masking” operation. This operation forms the core of
the self-supervised learning methodology, by selectively omitting sections of input data to
create a challenge for the model to reconstruct these masked elements. This process allows
the model to develop a robust understanding of the intrinsic structure and properties of
the target dataset, optimizing its ability to generate representative features during the
pretraining phase. This initial phase is followed by a fine-tuning stage, which utilizes
labeled input data to further refine the model’s comprehension of the dataset, thereby
improving its overall performance. This two-tiered approach equips the model with the
essential tools to tackle novel data and perform reliably on the target dataset. The successful
adaptation of the MAE methodology to the realm of computer vision was achieved by
employing techniques parallel to its NLP counterpart. Images are decomposed into a
multitude of patches, a subset of which are randomly masked. Subsequently, the model is
trained to perform the reconstruction pretraining task, effectively learning to predict the
obscured sections of the image. Following this, a fine-tuning phase is undertaken with
labeled data, ensuring the model’s efficient performance on the target dataset.

When considering the choice of backbone for the MAE model, ViT emerges as an
optimal option when compared to the convolutional neural network (CNN). As previously
mentioned, the ViT architecture offers distinct advantages. One notable feature of the ViT
model is its initial operation, where the input image is segmented into various patches.
This patch-based approach can easily utilize the masking of random regions. Given these
advantages, it is judicious to adopt a ViT architecture as the backbone for the MAE model.

Figure 3 illustrates the comprehensive workflow of a self-supervised learning system
based on the MAE, encompassing two essential stages: the pretext task of image recon-
struction and the subsequent fine-tuning stage. When it comes to the architecture of the
model during the pretraining stage, it incorporates a Vision Transformer (ViT) as both the
encoder and decoder. Serving as an encoder, the ViT is applied to mask certain segments
of the input image patches. In its role as a decoder, it is tasked with the restoration of the
masked patches. Upon transitioning to the fine-tuning phase, the pretrained ViT encoder
is trained further with samples and labels from the target dataset. In the context of our
implementation, we elected to employ a ViT-small structure with a hidden size of 768 as the
encoder and the standard decoder within the framework of the MAE. The overall pipeline,
founded on block representation, is presented in Figure 4.
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ViT Decoder

Stage 1: Pre-text task (Image Reconstruction) 
training

Stage 2: Covid Positive/Negative task training

ViT Classifier

Positive

Negative

Apply the Stage 1 pretrained 
ViT for Stage 2 

Figure 3. The workflow of the MAE method on the COVID-19 classification task. There are two
stages for MAE training. The first stage is the image reconstruction pretraining stage, with the ViT
backbone as the image encoder. The second stage is a fine-tuning stage, with the ViT backbone as the
feature extractor for the labeled images.

MAE 
Pre-training Stage

MAE
Fine-tuning Stage Prediction

Training data 
with pre-text 

task

Training data 
with label

Testing data

Figure 4. The block presentation of the MAE pipeline.

2.4. Loss Function

Since our work concentrates on binary classification, the overall loss function is a
binary cross-entropy. For a chest X-ray image V with label l and probability prediction
p(l|V), the loss function is

loss(l, V) = l log(p(l|V)) + (1− l) log(1− p(l|V)) (5)

where the label l = 0 indicates a negative sample and l = 1 indicates a positive
sample, respectively.
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2.5. Implementation and Metrics

We implemented the experiment models using PyTorch. We trained and tested the
models based on the default setting of the dataset. For the pretrained baseline, the model is
pretrained on ImageNet [14]. For the model training, we set the batch size to 16. Adam
optimizer [41] with beta1 = 0.9, beta2 = 0.999, and a learning rate of 1× 10−4 was used
during the training. For the SSL model, we pretrained the model with 100 epochs. In the
fine-tuning stage, we trained all the models for 40 epochs.

To evaluate the performance of our model, we used accuracy (Acc), area under the
curve of receiver operating characteristics (AUC), F1 score (F1), Precision, Recall, and
Average Precision (AP) as our evaluation metrics. We evaluated the training computation
cost by the average epoch training time (e-Time). The accuracy is calculated with the
following Equation (6):

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where TP is the True Positive, TN is the True Negative, FP is the False Positive, and FN is
the False Negative.

The precision is calculated by the following Equation (7):

precision =
TP

TP + FP
(7)

The recall is calculated by the following Equation (8):

recall =
TP

TP + FN
(8)

The F1-score is calculated by the following Equation (9):

F1-score = 2× precision · recall
precision + recall

(9)

AUC curves compare the true positive rate and the false positive rate at different
decision thresholds. AP summarizes a precision–recall curve as the weighted mean of
precision achieved at each threshold.

3. Results
3.1. Model Performance Increasing by MAE

We conducted training experiments on the ViT model architecture using three dif-
ferent approaches: ViT-scratch, ViT-pretrain, and ViT-MAE. In the ViT-scratch approach,
the ViT model was trained directly on the medical image data. The ViT-pretrain approach
involved fine-tuning a pretrained ViT model on ImageNet using the medical image data.
ViT-MAE refers to training the ViT model using the MAE pipeline. Accuracy was chosen
as the performance metric. As depicted in Table 2, ViT-MAE achieved a remarkable accu-
racy of 0.985 in COVID-19 positive/negative detection, surpassing the other approaches
(ViT-scratch accuracy = 0.7075 and ViT-pretrain accuracy = 0.9350) on the same dataset.
To further compare ViT-MAE with CNN models, namely, ResNet50 and DenseNet121,
we conducted additional experiments. It was observed that ViT-MAE outperformed both
ResNet50 and DenseNet121 in terms of all metrics, except for AUC, where the difference
was minimal. We think this minimal difference is due to (1) the model experiment’s random-
ness, a common characteristic of machine learning models, and (2) the size of the test dataset.
The size of the test dataset would overestimate/underestimate the model. In our exper-
iments, compared with the training dataset, the test dataset is relatively small with only
400 images, which may overestimate the models. However, in terms of the same ViT
backbone, we think ViT-MAE models exhibit comparable performance in our experiments.
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Figure 5 illustrates the AUC curves for the three training approaches, clearly demonstrating
that ViT-MAE outperforms the other strategies in terms of AUC performance.

We studied statistical tests that compare the ViT-MAE performance with ViT-scratch
and ViT-pretrain. The metric chosen to evaluate their performance was accuracy. To ensure
robustness, we conducted four independent experiments for each ViT model, employing
different random seeds. The statistical summary of the three pretraining methods yielded
the following mean and standard deviation values: For ViT-scratch, the mean was 0.7135
with a standard deviation of 0.0142. For ViT-pretrain, the mean was 0.9293 with a standard
deviation of 0.0207. Lastly, for ViT-MAE, the mean was 0.9775 with a standard deviation
of 0.006. In order to assess the significance of the differences in performance, we con-
ducted two t-tests: ViT-scratch vs. ViT-MAE and ViT-pretrain vs. ViT-MAE. The resulting
p-values for the two group t-tests were found to be less than 0.001 and 0.02, respectively.
Our analysis revealed that ViT-MAE significantly outperformed ViT-scratch, indicating the
critical influence of the training strategy on model performance. Additionally, we observed
a relatively narrow performance gap between ViT-MAE and ViT-pretrain. These findings
suggest that while ViT-MAE exhibits superior performance compared to ViT-scratch, the
disparity in performance between ViT-MAE and ViT-pretrain is comparatively smaller.

Table 2. The performance of different training strategies over the ViT model. ViT-MAE model
outperforms the other two training strategies.

Type Acc AUC F1 Precision Recall AP

DenseNet121 0.9775 0.9970 0.9771 0.9948 0.96 0.9750
ResNet50 0.9650 0.9969 0.9641 0.9894 0.94 0.9601

ViT-scratch 0.7075 0.7808 0.7082 0.7065 0.7100 0.6466
ViT-pretrain 0.9350 0.9783 0.9340 0.9484 0.9200 0.9125

ViT-MAE 0.9850 0.9957 0.9850 0.9950 0.9850 0.9859

Figure 5. The AUC plot of the different training strategies for ViT model.
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3.2. Mask Ratio Influence on MAE Performance

Since the pretraining of ViT-MAE is a reconstruction task, the mask ratio of the input
image is a parameter that may affect the final performance. In this section, we study the
mask ratio influence on ViT-MAE training. Table 3 shows the performance of different
mask ratios over the MAE pretraining stage. Figure 6 illustrates the AUC curves of different
mask ratios. The 40% percentage mask ratio outperforms the other mask ratio situations
with Acc = 0.9850 and AUC = 0.9957. The mask ratio result indicates that a large mask ratio
may decrease the final performance for the medical image dataset, while the large mask
ratio (mask ratio = 0.75) shows good performance in the natural dataset. We think this
may due to the difference between the medical and natural datasets, and the reconstruction
results on the medical image may not show better performance than the natural image.
We prove our thoughts in Section 3.4.

Table 3. The performance of different mask ratios over the MAE pretraining stage. The pre-training
mask ratio = 0.4 of MAE outperforms the other pretraining strategies.

Ratio Acc AUC F1 Precision Recall AP

0.4 0.9850 0.9957 0.9850 0.9850 0.9850 0.9559
0.5 0.9100 0.9653 0.9086 0.9277 0.8950 0.8783
0.6 0.8875 0.9579 0.8819 0.9282 0.8400 0.8597
0.7 0.8900 0.9502 0.8894 0.8939 0.8850 0.8486
0.8 0.8925 0.9516 0.8900 0.9110 0.8700 0.8576

Figure 6. The AUC plot of the different mask ratios for ViT-MAE pretraining.

3.3. MAE Performance on the Limited Training Dataset

One advantage of self-supervised learning is that people can use a small labeled
dataset to train a large DL model well. To explore the potential of SSL, we conduct experi-
ments on the limited training dataset. We randomly split the partial training dataset to train
our model from 10% to 90% . Table 4 shows the performance under different percentage
splitting, and Figure 7 shows the AUC curves of different percentage situations. It appears
that using only 30% of the training dataset is sufficient to achieve better performance than
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that of the ViT-pretrain scenario with the whole training dataset (94.25 vs. 93.5). Mean-
while, it is clear that increasing the labeled training percentage will contribute to better
performance of the model. The promising results provide the potential training procedure
for small medical dataset training on DL models.

Table 4. The performance of different percentages of training datasets at the MAE pretraining stage.
The pretraining mask ratio = 0.4 of MAE outperforms the other pretraining strategies.

Percentage (%) Acc AUC F1 Precision Recall AP

10 0.8800 0.9394 0.8776 0.8958 0.8600 0.8404
20 0.8925 0.9588 0.8877 0.9290 0.8500 0.8646
30 0.9425 0.9772 0.9415 0.9585 0.9250 0.9242
40 0.9600 0.9866 0.9602 0.9554 0.9650 0.9395
50 0.9675 0.9879 0.9673 0.9746 0.9600 0.9556
60 0.9650 0.9876 0.9645 0.9794 0.9500 0.9554
70 0.9675 0.9896 0.9669 0.9845 0.9500 0.9602
80 0.9775 0.9978 0.9771 0.9948 0.9600 0.9750
90 0.9825 0.9944 0.9823 0.9949 0.9700 0.9800

Figure 7. The AUC plot of the different percentages of training dataset for ViT-MAE model.

3.4. Visualization of MAE on Image Reconstruction

We present a visualization of the X-ray image reconstruction phase. As demonstrated
in Figure 8, the depiction includes both Covid and Normal subjects, showcasing the original,
masked, and reconstructed images. Upon visual comparison, it can be observed that the
reconstructed images are relatively coarse. However, it should be emphasized that our
primary objective is not to achieve pixel-perfect image reconstruction but to ensure that the
deep learning model’s parameters are properly initialized for the fine-tuning process on the
specific dataset. Concurrently, the rough outcome of the reconstruction task implies that
increasing the mask ratio will not contribute to enhanced model performance during the
fine-tuning stage. This is due to the model’s inability to extract additional learning during
the reconstruction stage.
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Original Masked Reconstruction

Covid

Normal

Figure 8. The visualization of the MAE for the image reconstruction pretraining. From the left column
to the right are the original input image, the random masked image, and the reconstruction image.
Even though the final reconstruction is not well-defined, the target of the pretraining stage is boosting
the initial parameters of the ViT model.

4. Discussion

Our study involved an in-depth exploration of the MAE through a comprehensive
series of experiments utilizing a publicly available COVID-19 Chest X-ray image dataset.
Our study is innovative as we applied MAE to an X-ray imaging dataset for COVID-19
diagnosis, which has not been reported before. Further, we demonstrated that MAE exhibits
remarkable efficiency when applied to labeled data, delivering comparable performance
to utilizing only 30% of the original training dataset. The findings may have profound
implications for the diagnosis of various diseases with the limited imaging dataset in the
future, given that we showed that the accuracy can be maintained even with a reduced,
smaller dataset. Our findings also yield several significant insights on the application of
MAE in medical imaging as follows: First, by leveraging self-supervised learning with
MAE, we observed notable improvements in model performance compared to alternative
training methods. This underscores the efficacy of MAE in the context of medical image
analysis. Second, the performance of the MAE model on medical images was found to be
influenced by the masked ratio employed during training. Notably, we achieved optimal
results with a masked ratio of 0.4 in our implementation. This indicates the importance of
carefully selecting the appropriate ratio to achieve the best performance. Finally, our study
demonstrates that MAE operates as a labeled data-efficient model, showcasing comparable
performance even when trained on a partial dataset. This finding highlights the potential
of MAE in situations where acquiring large quantities of labeled data may be challenging
or resource-intensive.

In our implementation, we utilized a Vision Transformer (ViT) as the DL model. Com-
pared to traditional CNN models, the ViT has shown promising performance across a
range of tasks, but it is prone to being data-hungry during the training phase. We con-
ducted experiments on the same DL model and training setting but with different training
strategies: ViT-scratch, ViT-pretrain, and ViT-MAE. The results demonstrate the efficacy of
self-supervised learning, yielding an accuracy of 0.985 and an AUC of 0.9957. Meanwhile,
we compared the performance of the MAE model with the CNN-based models [42], which
shows MAE outperforms the CNN models.
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In our experiments, we explored the association between the mask ratio, a hyper-
parameter in the masked token reconstruction task, and the model’s performance. We
set the mask ratio from 0.4 to 0.8 and found that increasing the mask ratio led to a de-
crease in performance, which is different from the mask ratio result (0.75) of MAE on
natural images [30]. To explain this trend, we visualized the original images, masked
images, and reconstructed images. Comparing the original and reconstructed images, we
observed that the reconstructed images were blurrier. The goal of reconstruction pretrain-
ing is to initialize the model parameters and enhance the model’s understanding of the
medical dataset. However, a high mask ratio may hinder the reconstruction process and
weaken the model’s understanding ability. Therefore, the mask ratio is a crucial factor
in practical implementation.

To further highlight the advantages of self-supervised learning, we conducted limited
dataset experiments. We randomly sampled the training dataset from 10% to 90% and
applied the sample to conduct the reconstruction pretraining and fine-tuning of the model.
The results strongly indicate the advantage of self-supervised learning on limited data.
For example, using only a 30% sample of the training dataset, the ViT-MAE model still
achieved 0.9425 accuracy, comparable to the performance of the ViT-pretrain model using
the entire training dataset. This is particularly important in clinical applications, where
datasets are often limited. Training large DL models on limited data can be challenging
and can easily lead to overfitting due to the large number of parameters in the model. By
this pretraining stage, the model can learn the good representation of the target dataset.
Compared to the pretained model by natural image datasets, such as the ImageNet dataset,
the pretraining stage MAE model has a narrow gap for the target dataset (i.e., small medical
dataset) and is suitable for the later fine-tuning stage. Therefore, the MAE is suitable for
the limited dataset. Additionally, using a smaller training dataset to train a large DL model
reduces the cost of labeling, as traditional supervised DL training requires a large labeled
training dataset to ensure model convergence. However, data labeling can be another issue
when the dataset size is large, as in the case of the ImageNet dataset with one million im-
ages. Furthermore, medical image labeling often requires professional domain knowledge,
such as an X-ray radiologist, to ensure accurate labeling.

The limitations of our study include the focus on COVID-19 alone. For future work, we
plan to extend our work in two directions: first, we will extend the MAE model to handle
3D medical images, such as 3D brain imaging for Alzheimer’s Disease [43–45]; second,
we will explore the potential of the MAE for other tasks, such as image segmentation and
localization [6,46], beyond image classification.

In conclusion, we applied MAE to the X-ray imaging dataset for COVID-19 diag-
nosis and illustrated that MAE exhibits remarkable efficiency when applied to labeled
data, delivering comparable performance to utilizing only 30% of the original training
dataset. Overall, our findings highlight the significant performance enhancement achieved
by using MAE, particularly when working with limited datasets. This approach holds
profound implications for future disease diagnosis, especially in scenarios where imaging
information is scarce.
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Abstract: Neuropathic pain (NP) following spinal cord injury (SCI) is refractory to pain control
strategies, and the underlying neuronal mechanisms remain poorly understood. This study aimed
to determine the brain regions engaged in maintaining a spontaneous resting state and the link
between those regions and the severity of NP in patients with incomplete SCI. Seventy-three subjects
(41 patients and 32 age- and sex-matched healthy controls) participated in this retrospective study.
Regarding the neurological level of injury, patients with incomplete SCI experienced at-level or
below-level NP. The severity of NP was evaluated using a visual analog scale (VAS), and patients
were divided into mild and moderate–severe NP groups based on VAS scores. Graph theory and
fractional amplitude of low-frequency fluctuation (fALFF) analyses were performed to compare
resting-state functional magnetic resonance imaging (fMRI) analysis results among the three groups.
Graph theory analysis was performed through a region of interest (ROI)-to-ROI analysis and then
fALFF analysis was performed in the brain regions demonstrating significant differences among the
three groups analyzed using the graph theory. We evaluated whether the brain regions showing
significant differences using graph theory and fALFF correlated with the VAS scores. Patients
with moderate–severe NP showed reduced node degree and fALFF in the left middle frontal gyrus
compared with those with mild NP and healthy controls. Furthermore, patients with severe NP
demonstrated increased average path lengths and reduced fALFF values in the posterior cingulate
gyrus. This study found that changes in intrinsic oscillations of fMRI signals in the middle frontal
gyrus and posterior cingulate gyrus were significant considering the severity of NP.

Keywords: neuropathic pain; resting-state fMRI; spinal cord injury

1. Introduction

Approximately 50% of patients with spinal cord injury (SCI) suffer from neuropathic
pain (NP) [1,2]. The presence and severity of NP are associated with substantial physical
and emotional functioning impairment, thereby affecting quality of life [3]. Reducing NP
is essential to improve the quality of life of patients with SCI. However, provoking or

Bioengineering 2023, 10, 860. https://doi.org/10.3390/bioengineering10070860 https://www.mdpi.com/journal/bioengineering
69



Bioengineering 2023, 10, 860

relieving factors associated with NP following SCI remain poorly understood. Furthermore,
NP is usually refractory to pain control strategies, such as pharmaceutical, behavioral, and
neurological approaches [4,5].

Recent neuroimaging studies have indicated the possibility of anatomical and func-
tional changes in brain regions associated with NP following SCI. In a diffusion tensor
imaging study, SCI with NP showed significant differences in mean diffusivity (MD) values
in pain-related areas compared to SCI without NP [6]. MD values increased in regions,
such as the posterior parietal cortex, dorsolateral prefrontal cortex, anterior insula, and
premotor cortex. Conversely, MD values decreased in the ventroposterior thalamus and
amygdala [6]. A functional magnetic resonance imaging (fMRI) study in patients with
SCI and NP demonstrated functional reorganization in the primary somatosensory cortex
(S1) [7]. Furthermore, a recent study using resting-state fMRI (rs-fMRI) on an SCI animal
model found that the development of mechanical hypersensitivity was strongly associ-
ated with increased functional connectivity between the thalamus and the S1 cortical re-
gions [8]. Another rs-fMRI study investigated the mutual effects of motor- and pain-related
networks in different brain regions on motor disability and NP intensity [9]. However,
functional changes in brain regions associated with NP following SCI remain poorly un-
derstood. Moreover, brain regions that are related to the severity of NP following SCI are
rarely investigated.

Low-frequency blood oxygenation level-dependent (BOLD) signal oscillations, which
are intrinsic components of brain activity, are represented by rs-fMRI [10]. Several analyses
are used to process rs-fMRI data to explore oscillatory BOLD signal dynamics associated
with changes in neural activity. A graph theory analysis helps elucidate the organization of
functional connections and their efficient integration of neural information in a whole brain.
In a graph theory analysis, a whole-brain network is described as a graph comprising a
collection of nodes and edges between nodes, revealing that the brain network is organized
according to an efficient small-world organization [11,12]. A recent systematic review
found that differences between patients with chronic pain and healthy controls were
mainly observed in terms of the global graph-based connectivity; however, there are no
particularly affected brain regions [13]. Fractional amplitude of low-frequency fluctuation
(fALFF) analysis characterizes the frequency distribution of signal variance in a time series
in particular brain regions [14,15]. The fALFF is an index that quantifies spontaneous
neuronal activity related to the regional metabolic level of glucose [16].

In this study, we used a novel method by combining graph theory and fALFF analyses
to investigate the possible alterations in brain networks associated with the severity of NP
after SCI. We hypothesized that increased NP severity following SCI is related to less effi-
cient connections in a whole-brain region assessed using graph theory analysis. Moreover,
these inefficient brain regions would be associated with less spontaneous neuronal activity
assessed using fALFF analysis to modulate more severe pain conditions. Therefore, this
study is the first to simultaneously investigate less efficient connections and spontaneous
neuronal activities at these connections. Our findings can provide a useful reference on
brain responses to the severity of NP following SCI.

2. Materials and Methods
2.1. Subjects

The following subjects were included in this retrospective cross-sectional study:
(1) diagnosed with SCI more than 3 months after a traumatic injury; (2) diagnosed with
incomplete SCI, defined as some degree of retained motor or sensory function below the
site of injury, including sacral root segments (S4–5), according to the American Spinal
Injury Association Impairment Scale (AIS) [17,18]; and (3) diagnosed with persistent at-
or below-level NP according to the International Association for the Study of Pain (IASP)
definition [19,20]. The exclusion criteria were as follows: (1) history of nociceptive muscu-
loskeletal pain after SCI, (2) history of traumatic brain hemorrhage or contusion on brain
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computed tomography, (3) history of any peripheral nervous system disorder, (4) history of
any neurologic or neuropsychiatric condition, or (5) history of alcohol or drug misuse.

Seventy-three subjects (41 patients and 32 healthy controls) participated in this study.
The ages of the subjects in the control (n = 32), mild NP (n = 24), and moderate–severe NP
(n = 17) groups were 50.12 ± 13.33, 49.87 ± 14.74, and 53.82 ± 12.18 years old, respectively,
with no significant age difference among the groups (p = 0.60). The sex of the subjects also
did not differ significantly between the control (male 20, female 12), mild NP (male 15,
female 9), and moderate–severe NP (male 13, female 4) groups (p = 0.57).

This study was approved by the Institutional Review Board of Kyungpook National
University Chilgok Hospital (No. 2018-12-004).

2.2. Clinical Assessments

Based on the use of the International Standards for Neurological Classification of
SCI worksheet, the AIS comprises an anorectal examination, a dermatome-based sensory
examination, and a myotome-based motor test [17,18]. The most caudal functioning
root level with intact motor and sensory functions is identified as the neurologic level of
injury (NLI).

The IASP describes NP as a burning, stabbing, or shooting sensation occurring sponta-
neously or in response to a central nervous system injury or disease [19]. NP is characterized
as either at-level or below-level NP depending on the type of NLI. At-level NP is felt in a
segmental pattern anywhere along the dermatome of the NLI, whereas below-level NP is
felt in more than three dermatomes beneath the dermatome of the NLI [19,20]. The average
NP intensity over the previous 7 days was measured using a visual analog scale (VAS)
ranging 0–100 at the time of rs-fMRI acquisition [21]. The higher the VAS score is, the more
severe the NP is. The patients were then divided into two groups based on the severity of
NP. A VAS score of 34 was used as the cutoff for dividing the patients into the mild and
moderate–severe NP groups [22].

The Beck Depression Inventory (BDI)-II was used to measure the severity of depressive
mood, and it comprised 21 items, each answer being graded from 0 to 3, with higher BDI
scores indicating greater severity [23].

2.3. rs-fMRI Data Acquisition

The whole-brain function was acquired using a Discovery MR750w 3.0 T (GE Health-
care, Milwaukee, WI, USA) with a 24-channel head coil. Participants were given no
instructions other than to close their eyes during rs-fMRI scanning to avoid falling asleep.
The 240 image volumes were acquired using a T2-weighted echoplanar imaging pulse
sequence with the parameters of repetition time (TR, 2000 ms), echo time (TE, 30 ms), field
of view (FOV, 23 cm), matrix (64 × 64), and slice thickness:gap (4:0 mm) and no gap for
resting-state imaging. T1-weighted fast spoiled gradient echo sequence (FSPGR) with a
TR of 8.5 ms, TE of 3.2 ms, FA of 13◦, FOV of 25.6 cm, acquisition matrix of 256 × 256, and
iso-voxel resolution of 1 mm was used to obtain structural brain images.

2.4. rs-fMRI Data Preprocessing

Image data were preprocessed and statistically analyzed using the Statistical Para-
metric Mapping program (SPM12; Wellcome Centre for Human Neuroimaging, London,
UK) and MATLAB (The MathWorks, Inc., Natick, MA, USA). Preprocessing included
slice timing, realignment, coregistration on individual T1 structural image volume and
normalization into the standard stereotaxic coordinate space (Montreal Neurological In-
stitute). Normalized images were spatially smoothed with an 8-mm Gaussian kernel.
The preprocessed rs-fMRI data were then temporally band-pass filtered (0.008–0.09 Hz)
to eliminate low-frequency drift and high-frequency noise. A component-based noise
correction method (CompCor) was used in the denoising part of the CONN toolbox
to identify and eliminate components, such as physiological influences on fMRI data
(https://www.nitrc.org/projects/conn/) (accessed on 12 March 2020) [24].
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2.5. Graph Theory and fALFF Analyses

Graph theory and fALFF analyses were performed using the CONN toolbox. A total
of 140 regions of interest (ROIs) provided by the CONN toolbox were used for the analyses.
First, graph theory analysis was performed via ROI-to-ROI analysis, and the brain region
exhibiting a significant difference among the three groups was confirmed using analysis
of variance (ANOVA). Subsequently, fALFF analysis was performed in the brain regions
demonstrating significant differences (identified using ANOVA) among the three groups
analyzed using graph theory. We then investigated whether the graph theory and fALFF
analyses values in the region with significant differences correlated with VAS scores (an
index of pain). Finally, in regions that correlated with VAS scores, we observed whether
graph theory and fALFF analyses values were correlated.

2.5.1. Graph Theory Analysis

Graph theory analysis was performed within 140 ROIs provided using the CONN
toolbox [25]. A network can be represented as a graph by G (n, k), indicating the number of
nodes (n) and the number of edges (k). The threshold for the ROI-to-ROI connectivity matrix
for each subject is at a set level (cost = 0.15, two-sided). The normalized Z-scores of raw
connectivity values can be used to calculate this threshold, resulting in graphs with fixed
network-level costs. Supra-threshold connectivity values are used to create an adjacency
matrix that represents a graph with nodes representing ROIs and edges representing the
intensity of their functional connectivity. The degree of a node is defined as the number of
its connected links. The clustering coefficient of a node is defined as the ratio of the actual
number of links between neighbors and the maximum possible number of links between
these neighbors. The average path length is defined by the integration of a network and
the easy flow of information within this network. For each node n in a graph G, the cost is
defined as the proportion of connected neighbors, global efficiency is defined as the average
inverse shortest path distance from node n to all other nodes in the graph G, and local
efficiency is defined as the average global efficiency across all nodes in the local subgraph
of node n [26].

The graph theory analysis of each node revealed a region with significant differences
among the three groups and correlation with VAS, and this region was used for fALFF
analysis. The significance level was set at p < 0.005 (uncorrected).

2.5.2. fALFF Analysis

The rs-fMRI data with preprocessing were subjected to fALFF analysis using the
CONN toolbox. The value of fALFF is equal to the sum of amplitudes within a low-
frequency band divided by the sum of amplitudes across the entire frequency band [15]. To
standardize raw power measures, Z-transformation was performed for the fALFF analysis,
which can improve the subsequent statistical analyses on the group level. The fALFF value
was obtained for the regions identified via the graph theory analysis and was used to
evaluate the fALFF difference among the three groups and the correlation with VAS.

2.6. Statistical Analysis

All statistical analyses were performed using the SPSS software version 23 (SPSS,
Inc., Armonk, NY, USA); a p value of <0.05 was considered statistically significant. After
verifying normality by performing the Shapiro–Wilk test, one-way ANOVA was performed
if normality was satisfied. For post-hoc analysis, Scheffe’s multiple comparisons were
performed if equality of variance was satisfied after verification of equal variance through
the Levene’s test. If the equality of variance is not satisfied, Bunnett T3 verification was
performed. If the normality was not satisfied, analysis was performed using the Kruskal–
Wallis t-test.
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3. Results
3.1. General Characteristics

The VAS and BDI scores were evaluated in patients with NP. The VAS score differed
significantly between the mild and moderate–severe NP groups (p < 0.001), whereas the
BDI score did not (p = 0.67). The demographic and clinical characteristics of patients with
incomplete SCI are summarized in Table 1 and Table S1.

Table 1. Demographic of the incomplete spinal cord injury patients.

Group Age VAS BDI

Mild NP 49.87 ± 14.74 20.58 ± 8.59 13.37 ± 8.85
Moderate–Severe NP 53.82 ± 12.18 54.35 ± 14.92 14.82 ± 11.99

Neuropathic pain, NP; visual analog scale, VAS; Beck depression inventory, BDI.

3.2. Graph Theory Analysis According to the Severity of NP Following SCI

Figure 1, Tables 2 and 3 shows the brain regions analyzed by one-way ANOVA in the
three groups based on graph theory analysis (uncorrected p < 0.005). The left middle frontal
gyrus (MidFG) and the left superior division of lateral occipital cortex (sLOC) showed
differences among the three groups in global efficiency, cost, average path length, and
degree. The moderate–severe NP group showed lower values than the control and mild
NP groups in global efficiency, cost, and degree of the left MidFG and higher values in the
average path length. No difference was observed between the control and mild NP groups.
The posterior division of the cingulate gyrus (PCC) showed differences among the three
groups in average path length and betweenness centrality. The moderate–severe NP group
demonstrated the highest value of the average path length in the PCC area, which differed
significantly from that of the control group. However, no significant difference was found
between the mild NP and the other two groups.
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Figure 1. Graph theory analysis at 165 nodes. The nodes exhibited a significant difference (un-
corrected p < 0.005) among the three groups and correlated with the VAS score (p < 0.05). Neuro-
pathic pain, NP; left, Lt.; middle frontal gyrus, MidFG; superior division of lateral occipital cortex,
sLOC; posterior division of cingulate gyrus, PCC; right, Rt.; posterior division of superior temporal
gyrus, pSTG.
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Table 2. The ANOVA result of graph theory analysis among three groups and the result of correlation
with VAS.

Measure ROI
ANOVA Correlation with VAS

F p r p

Global
Efficiency

MidFG Lt. 7.35 0.001 −0.3629 0.001
sLOC Lt. 6.45 0.002 −0.2524 0.031

Cost
MidFG Lt. 6.48 0.002 −0.3371 0.003
sLOC Lt. 5.89 0.004 −0.2549 0.029

Degree MidFG Lt. 6.48 0.000 −0.3371 0.003
sLOC Lt. 5.84 0.004 −0.2549 0.029

Average
Path Length

MidFG Lt. 8.01 0.000 0.3948 0.000
sLOC Lt. 7.11 0.001 0.2751 0.018

PCC 7.08 0.001 0.3379 0.003
Visual analog scale, VAS; left, Lt.; middle frontal gyrus, MidFG; superior division of lateral occipital cortex, sLOC;
posterior division of cingulate gyrus, PCC.

Table 3. Post hoc analysis of graph theory results in the area where there is a statistical difference
among the three groups and is correlated with VAS.

Measure ROI
Control

vs.
Mild NP

Control
vs.

Moderate-Severe
NP

Mild NP
vs.

Moderate-Severe
NP

Global
Efficiency

MidFG Lt. 0.9990 0.0030 0.0060
sLOC Lt. 0.6970 0.0190 0.0040

Cost
MidFG Lt. 1.0000 0.0140 0.0080
sLOC Lt. 0.7700 0.0280 0.0060

Degree MidFG Lt. 1.0000 0.0140 0.0080
sLOC Lt. 0.7170 0.0280 0.0060

Average Path
Length

MidFG Lt. 1.0000 0.0110 0.0130
sLOC Lt. 1.0000 0.0360 0.0140

PCC 1.0000 0.0310 0.3130
Neuropathic pain, NP; visual analog scale, VAS; left, Lt.; middle frontal gyrus, MidFG; superior division of lateral
occipital cortex, sLOC; posterior division of cingulate gyrus, PCC.

In the left MidFG, the global efficiency, cost, average path length, and degree showed
significantly high correlations with the VAS score (p < 0.01), and in the left sLOC, these
parameters showed negative correlations with the VAS score (Figure 2). However, the left
sLOC showed a significance level of p < 0.05, which was lower than that of the left MidFG. In
the left MidFG and left sLOC, the average path lengths demonstrated positive correlations
with VAS, but other results of graph theory analysis showed negative correlations. In the
PCC, the average path length was highly significantly positively correlated with the VAS
score (p < 0.01).
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Figure 2. Correlation between the graph theory analysis values and VAS scores at nodes analyzed
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MidFG; superior division of lateral occipital cortex, sLOC; posterior division of cingulate gyrus, PCC.
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3.3. fALFF Analysis According to the Severity of NP Following SCI

Figure 3 and Tables 4–6 show the fALFF analysis results for three brain regions selected
from the graph theory analysis results. Among the three regions selected through graph
theory analysis, the regions showing significant differences among the three groups were
the left MidFG (p = 0.004) and PCC (p = 0.041). No significant difference was observed
among groups in other regions. For the left MidFG region, the fALFF values were ranked in
the following order of groups: mild NP < control < moderate–severe NP. The fALFF value
of the moderate–severe NP group differed significantly from those of the mild NP and
control groups (no significant difference was observed between the mild NP and control
groups). In the PCC region, the fALFF values were ranked in the following order of groups:
control < mild NP < moderate–severe NP; the fALFF values differed significantly between
the control and moderate–severe NP groups but not between the control and mild NP
groups or between the mild NP and moderate–severe NP groups.
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Figure 3. (a) The graph on the left shows the fractional amplitude of low-frequency fluctuation
(fALFF) analysis results for three regions selected from the graph theory analysis results. (b) The
graph on the right shows two regions with fALFF values differing among the three groups and
correlating with VAS scores. Neuropathic pain, NP; visual analog scale, VAS; left, Lt.; middle frontal
gyrus, MidFG; superior division of lateral occipital cortex, sLOC; posterior division of cingulate
gyrus, PCC.

Table 4. In the area of graph theory analysis result, the ANOVA result of ALFF analysis among three
groups and the result of correlation with VAS.

ROI
ANOVA Correlation with VAS

F p-unc r p

MidFG Lt. 5.73 0.004 −0.348 0.002
sLOC Lt. 0.71 0.491 0.102 0.387

PCC 3.33 0.041 −0.234 0.045
Visual analog scale, VAS; left, Lt.; middle frontal gyrus, MidFG; superior division of lateral occipital cortex, sLOC;
posterior division of cingulate gyrus, PCC.
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Table 5. Post hoc analysis of ALFF results in the area where there is a statistical difference among the
three groups and is correlated with VAS.

ROI
Control

vs.
Mild NP

Control
vs.

Moderate-Severe NP

Mild NP
vs.

Moderate-Severe NP

MidFG Lt. 0.619 0.096 0.027
PCC 0.451 0.043 0.409

Neuropathic pain, NP; visual analog scale, VAS; left, Lt.; middle frontal gyrus, MidFG; posterior division of
cingulate gyrus, PCC.

Table 6. In the area of graph theory analysis result, the ALFF value for each group.

ROI Control Mild NP Moderate-Severe NP

MidFG Lt. 0.726 ± 0.247 0.813 ± 0.326 0.48 ± 0.411
sLOC Lt. 0.755 ± 0.258 0.841 ± 0.276 0.816 ± 0.303

PCC 1.055 ± 0.274 0.963 ± 0.263 0.849 ± 0.264
Neuropathic pain, NP; left, Lt.; middle frontal gyrus, MidFG; superior division of lateral occipital cortex, sLOC;
posterior division of cingulate gyrus, PCC.

The fALFF value of the left MidFG showed a high statistical level of negative correla-
tion with the VAS score (less than p < 0.01, Figure 3b). Similarly, the fALFF value of the
PCC showed a negative correlation with the VAS score, but the statistical level (p < 0.05)
was lower than that of the left MidFG.

4. Discussion

This study found that changes in intrinsic BOLD oscillations in the MidFG and PCC
were statistically significant in association with the severity of NP. Patients with moderate–
severe NP showed reduced degree and fALFF in the MidFG compared with those with
mild NP or healthy controls. Furthermore, patients with more severe NP had increased
average path length and reduced fALFF in the PCC.

Neuroimaging studies of chronic pain have focused on nociceptive pain-processing-
related brain regions. The brain regions most commonly activated by noxious stimuli are
somatosensory (e.g., the S1, thalamus, and secondary somatosensory cortex), limbic (e.g.,
the anterior cingulate cortex and insula), and associative structures (e.g., the prefrontal cor-
tex) [27]. Emotional and cognitive process regions, such as the dorsolateral prefrontal cortex,
anterior cingulate cortex, and anterior insula [28,29], show increased activations under
conditions of prolonged exposure to pain, including chronic pain induced by fibromyalgia,
diabetes, and amputation. However, SCI-induced NP can be regarded as chronic pain if
classified in terms of time and is not a nociceptive pain. Nevertheless, non-nociceptive
pain is classified as a neurophysiological concept. A chronic lesion may cause chronic pain
and continue to appear even after the injury has healed. It is known that the intensity
and duration of pain is affected by adding other exacerbating factors surrounding the
patient, such as stress, environment, emotions, occupation, chronic disease, and traumatic
injury [30–32]. To the best of our knowledge, this study is the first to determine the brain
regions that are highly associated with the severity of NP, affecting resting-state network
efficiency and regional neural activity, after SCI.

In this study, we first analyzed the relationship between resting-state connectivity of
whole-brain ROIs using graph theory and the severity of NP after SCI. Reduced global
efficiency and cost values, which were interpreted in the weak potential for network inte-
gration in the left MidFG and left sLOC, were related to severe pain intensity. This finding
indicates that MidFG and sLOC regions in patients with more severe NP demonstrate
reduced communication with other distributed brain regions compared with healthy con-
trols. Additionally, increased values of average path length in the left MidFG, left sLOC,
and PCC were associated with increased NP severity. Higher average path length in the
severe pain group was interpreted as lower efficiency in the network than that in the control
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group. Furthermore, reduced degree value, which was interpreted on the basis of decreased
interaction with other nodes in the network in the left MidFG and sLOC, was associated
with increased NP severity.

Compared with patients with mild NP or healthy controls, those with moderate–severe
NP showed a reduced degree and fALFF in the MidFG. The dorsal attention network in
resting-state neural networks comprises the intraparietal sulcus and the MidFG in the
prefrontal cortex [33]. This network exhibits an increase in activity after presenting cues
indicating where, when, or what subjects should receive attention [33,34]. Attention and
cognitive function are known to modulate pain [35]. Animal studies have shown that pain
stimuli interrupt attention; thus, distracting attention from that pain can reduce pain-related
behaviors [36,37]. Human studies also showed that cognitive tasks induced a change in
neural activity in brain regions related to pain processing, such as the thalamus, S1, anterior
cingulate cortex, and insular cortex [38,39]. In addition, Wiech et al. reported that the
prefrontal cortex mediated analgesic effects on expected or perceived pain [40]. In the
present study, patients with moderate–severe NP showed a lower degree of connection
in the MidFG than those with mild NP. A previous study proposed that a low degree of
connections was linked to decreased glucose metabolism, as determined using 18F-FDG-
PET [41]. Furthermore, reduced fALFF value in the MidFG might be related to reduced
spontaneous neural activity in more severe pain. Prolonged NP following SCI might induce
attention distraction in the MidFG to adjust to more severe pain. Further neuroimaging
studies are warranted to confirm the relationship between attention-related cognitive task
performance and the severity of NP in patients with SCI.

This study also showed an increased average path length and reduced fALFF in the
PCC in patients with moderate–severe NP compared with those with mild NP. The average
path length in graph metrics indicates brain network integration. The low efficiency of
information transfer between any pair of neurons is equivalent to the increased average path
length of connections between nodes [12,42]. The PCC area includes an intrinsic default
mode network, and neural activity changes in the default mode network are related to
chronic pain conditions, such as complex regional pain syndrome and fibromyalgia [43,44].
PCC has been closely associated with pain processing and was found to be more related
to disgust than to the painful aspect of stimulation [43,44]. Particularly, the activation of
ventral PCC is associated with catastrophizing and widespreadness of chronic pain [45].
Considering previous evidence, the results of our study suggest that inefficient path and
reduced neuronal activity in PCC might be related to the modulation of severe NP.

Recent research demonstrates that physiotherapy may enhance the utilization of sen-
sorimotor strategies in body representation for individuals suffering from SCI [46]. This
finding implies that even when the body is affected by de-afferentation/de-efferantation,
physiotherapy can modify the relationship between sensorimotor and visual aspects of
body representation [46]. These alterations appear to be associated with changes in func-
tional connectivity within and between frontal and parietal networks [47]. Furthermore, a
recent study reported that alterations in intralimbic and limbostriatal connectivity were as-
sociated with the severity of neuropathic pain [48]. The study also found that the functional
reorganization of cortico-cerebellar connectivity and subcortical areas varied depending on
the onset time after SCI [49]. Based on these findings, the present study could contribute to
the development of more comprehensive rehabilitation strategies to alleviate neuropathic
pain. We propose that physiotherapy following SCI, which could affect functional neuro-
plastic changes, may help relieve neuropathic pain depending on the onset time of SCI.
Additionally, further studies are needed to explore the relationship between spontaneous
neural changes of functional reorganization after SCI, the severity of neuropathic pain, and
the neuroplastic effects of post-SCI rehabilitation strategies.

This study has some limitations. First, the sample size was small; thus, this study
is effectively considered a pilot. Further studies with a large population are required
to conclude general outcomes in patients with NP after SCI. Second, although age- and
sex-matched healthy subjects were enrolled as controls, further studies are needed to
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confirm the vulnerability of including patients with SCI without NP as a control group
for investigating whether the current study findings are specific to individuals with NP
following SCI. Finally, the interslice gap technique was not introduced in the current study.
The gap technique is usually recommended for receiving good signal. However, using
gap technique requires spatial interpolation when processing the imaging data, and thus,
spatial uncertainty may have a chance to increase. Therefore, we decided not to use gap
technique in the current study.

5. Conclusions

We investigated the changes in intrinsic BOLD oscillations associated with the severity
of NP after incomplete SCI using graph theory and fALFF analyses. The results revealed
that an increase in NP severity following SCI is related to less efficient connections, such
as those represented by reduced degrees and increased average path length, and less
spontaneous activity, such as those represented by reduced fALFF values, in the MidFG
and PCC. Therefore, for possible therapeutic application, the findings of the current study
could help determine the candidate brain regions to control severe and refractory NP using
noninvasive brain stimulation.
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Abstract: The precise display of blood vessel information for doctors is crucial. This is not only true
for facilitating intravenous injections, but also for the diagnosis and analysis of diseases. Currently,
infrared cameras can be used to capture images of superficial blood vessels. However, their imaging
quality always has the problems of noises, breaks, and uneven vascular information. In order
to overcome these problems, this paper proposes an image segmentation algorithm based on the
background subtraction and improved mathematical morphology. The algorithm regards the image
as a superposition of blood vessels into the background, removes the noise by calculating the size of
connected domains, achieves uniform blood vessel width, and smooths edges that reflect the actual
blood vessel state. The algorithm is evaluated subjectively and objectively in this paper to provide a
basis for vascular image quality assessment. Extensive experimental results demonstrate that the
proposed method can effectively extract accurate and clear vascular information.

Keywords: near-infrared image; blood vessel segmentation; noise reduction; image quality;
mathematical morphology

1. Introduction

Subcutaneous venipuncture is one of the common medical treatments encountered in
daily life. As a category, it includes intravenous infusions and injections, and venous blood
collection and transfusions [1]. In hospitals, most current methods of venipuncture require
the use of a tourniquet fixed to a patient’s limb and then request the patient to clench a
fist in order to make the blood vessel more prominent before puncturing it. Clearly, this
method relies on the experience and proficiency of doctors or nurses, and there are many
drawbacks to this method: one is that it is affected by skin pigmentation, vessel depth
and thickness, and fat thickness [2]. Second, some patients fail to make a hand-clenched
fist in some cases, resulting in the blood vessels not being prominently displayed. These
conditions may lead to venipuncture failure, which not only increases the patient’s anxiety
and pain but also brings psychological pressure to health care workers; sometimes, this
also results in a risk of doctor-patient conflict. Therefore, the rapid and accurate acquisition
of blood vessel location becomes a very important and urgent problem. The solution of this
problem will help the evaluation of the quality of vessels, providing effective information
to support nurses in their clinical care.

Many methods are currently proposed for blood vessel segmentation, and they are
classified into two categories: the traditional methods and the machine learning methods.
The traditional methods include the Gaussian function-based vessel segmentation, mul-
tiscale matched filtering, and threshold processing-based segmentation [3–5], etc. These
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methods usually need some preprocessing, such as the contrast limited adaptive histogram
equalization (CLAHE) or Gabor filtering [6]. There is also a blood vessel feature extraction
method which uses fuzzy theory to segment the veins [7]. The vessel tracking method, on
the other hand, requires the initialization of a point on a vessel and then tracking of the
localized vessel’s centerline by the monitoring of the image’s local information [8]. A vessel
segmentation method based on the spatial feature point set of a rotating coordinate system
clears off the error feature points, which has a good effect on peripheral blood vessels [9].
Some researchers have also proposed designing an active contour strategy coupled with
Kalman filtering, which can be used to segment pulmonary vascular images [10].

The machine learning algorithm has two steps: the training step and image segmen-
tation step. In the training step, the researchers use the segmented standard vascular
images to train the classifiers according to certain learning methods. In the recognition
segmentation phase, the unknown blood vessel images with certain features are fed into
the trained classifier for segmentation. Support vector machine, convolutional neural
networks, deep neural network [11–13], etc., are the representative methods. U-net is
a typical deep learning network that can rely on data enhancement from a very small
number of training images [14]. It has been used to segment human tissue images such as
skeleton, muscle, and knee joints [15–17]. ResU-net focuses on solving problems such as
tiny vessels at the end that are difficult to segment, and blurred edges caused by illumina-
tion [18]. R2U-net can enhance pixel correlation and increase the network depth effectively,
having a good segmentation effect for lung CT images and fundus vascular images [19].
The LadderNet is essentially equivalent to the concatenation of two U-net networks [20].
The SMU-net proposes a saliency-guided morphology-aware U-net (SMU-net) for lesion
segmentation, which tries to explore and exploit background-salient representations for
assisting foreground segmentation [21].

Although many segmentation methods have been proposed, there are still many
problems in their applications. The machine learning method has a high segmentation
accuracy; however, its performance depends on the use of large amounts of data in the
early stage to train the model. Due to the lack of unified calibration and tools, manual
calibration by experts is still difficult. As a result, there is not enough standard dataset
available for training currently. Therefore, it is not feasible to use the machine learning
method to segment the near-infrared vascular images of forearm. Traditional segmentation
methods do not need training, and their computation speeds are fast. However, traditional
segmentation methods also have many shortcomings: first, because the edge of near-
infrared vascular image is blurry, it is still hard to define the edge after enhancement, which
requires higher criteria for the selection of threshold value in the traditional threshold
segmentation. Second, the traditional segmentation is not effective at extracting some deep
blood vessels and small blood vessels at the end. To address these problems of traditional
segmentation algorithms, this paper proposes a vascular segmentation method based on
background subtraction and improved mathematical morphology.

As shown in Figure 1, an improved vascular segmentation method using background
subtraction and an improved mathematical morphology is proposed. Its computation
can be roughly divided into the following steps: first, preprocessing, which improves
the image brightness uniformity and prepares for image enhancement. Second, image
background extraction, which uses the minimum filtering and median filtering to obtain
image background information. Third, to obtain vascular information, the preprocessed
image is used to subtract the extracted background information to obtain preliminary
vascular information. Fourth, the method based on the connected domain is used to
remove the isolated noises. Fifth, mathematical morphological processing is developed.
This repairs some breakpoints in the preliminary results according to the state of blood
vessel growth and the uniform blood vessel width is developed. The primary contributions
of this paper include: (1) a vascular image segmentation method based on background
subtraction is proposed, which ensures the accuracy of blood vessel assessments and
simplifies the algorithm. (2) An improved mathematical morphology algorithm with a
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T-type structural element is proposed to extract information from blood vessels and smooth
the edges of blood vessels.
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Figure 1. Proposed algorithm flow chart of near-infrared blood vessel image segmentation.

2. Primary Computational Methods
2.1. Dataset Preprocessing and Enhancement

In previous work [22], we built a near-infrared image acquisition system and collected
a forearm near-infrared vascular image dataset containing 360 images. Figure 2a shows an
image sample taken from this dataset. It can be seen that the vascular image of the forearm
is characterized by low contrast and uneven brightness distribution in imaging area, and
that the finer blood vessels cannot be clearly observed under the light source irradiation.
This is because the background of the human vascular region is complex, the difference
between muscle and vascular region is not clear, and the imaging effect is easily affected
by factors such as shooting angle, light source distribution, and other factors. Figure 2b
presents its local vascular area of the image. It is not difficult to find that the edges of
blood vessels in the image are fuzzy. However, it is difficult to observe the thinner blood
vessels, and that there are a lot of noises. Figure 2c is the gray histogram of the local image
Figure 2b. The gray distribution in the figure is concentrated, which indicates that the
image is brighter overall and the contrast between foreground and background of blood
vessels is low. In order to improve image contrast and enhance its details, this paper applies
CLAHE to improve image contrast [23].
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Figure 2. Image sample and its local vascular areas histogram. (a) An image sample from our dataset.
(b) The local vascular areas image of (a). (c) The histogram of (b).

CLAHE is improved based on adaptive histogram equalization (AHE), which makes
up for the noises brought by the AHE algorithm while enhancing image contrast [24]. The
basic idea of CLAHE is to divide the image into a number of non-overlapping sub-regions
and calculate the gray gradient value according to the statistics of gray level in each sub-
region. When the local contrast of image is reduced or increased, CLAHE will automatically
adjust, avoiding the problem of local excessive light or darkness. CLAHE’s specific steps
are as follows.

First, CLAHE segments the original low-contrast image into M× N non-overlapping
sub-regions and then calculates their local histograms. Second, CLAHE constrains the
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grayscale height of each local histogram and calculates the average number of pixels
assigned to, the calculation method is shown in Equation (1):

Aν =
uXuY
NXY

(1)

where NXY denotes the number of gray levels in the corresponding subregion, and uX , and uY
are the number of pixels in the X and Y directions of the subregion, respectively.

Third, CLAHE calculates the extreme values for which cropping is required, and
calculate according to Equation (2):

LC = NCLip Av (2)

where NCLip is the factor to limit the amplitude.
Fourth, let S mean the total number of pixels cropped, then the number of “cropped”

pixels can be calculated as Equation (3):

av =
S

NXY
(3)

Finally, the step size for assigning the remaining pixels is calculated as Equation (4):

L =
LG
S

(4)

where L denotes the step size to be assigned to the remaining pixels and LG is the length
range of grayscale.

Due to the imperfections in the formation, transmission, and recording of digital image
signals, these factors can cause the contamination of digital image signals with a variety of
noises. This can disrupt the observation of useful information in images, degrade image
quality severely, and affect the enhancement and edge segmentation of blood vessel images.
Therefore, this is an indispensable step to suppressing the noises of blood vessel images
while trying to keep that the image quality detail features are not affected. In this paper,
Gaussian filtering is chosen to suppress the noise just because it can effectively remove
spot noises while preserving the edge information of an image [25]. Gaussian filtering is a
linear filter that can smooth an image and make it more homogeneous. It operates by using
a Gaussian function to perform a convolution operation. The two-dimensional Gaussian
function is given by:

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (5)

where x and y denote the positions of the convolution kernel, respectively; additionally, σ
is the standard deviation.

There are two reasons for using Gaussian filtering used in this paper. On the one
hand, the Gaussian function can simulate the distribution of many phenomena in nature,
such as sound, light, temperature [26], etc. The noise generated by the imaging sensor
under many conditions belongs to Gaussian noise. On the other hand, the local image
with relatively uniform brightness and non-vascular region in the near-infrared vascular
image is captured and its gray histogram is calculated. As Figure 3b, from histogram,
it can be found that its probability density function is similar to the density function of
Gaussian noise distribution. Therefore, it can be concluded that the primary noise type in
the near-infrared image is Gaussian noise. In this paper, the convolution kernel of 3× 3
with σ = 1.5 is used to convolve the image, and the noises in the image will be removed
smoothly after Gaussian filtering.
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Figure 3. Local image of near-infrared blood vessel and its gray histogram. (a) Local image of
near-infrared blood vessel. (b) The histogram of (a).

2.2. Vascular Information Extraction and Image Background Subtraction

It is not difficult to observe that the grayscale value of the vascular region is lower
than that of the non-vascular region, showing that the blood vessel is darker compared to
the non-vascular region. According to this feature, the near-infrared vascular image can
be regarded as a combination of background and vascular information. The image can be
expressed as follows:

I(x, y) = R(x, y) + G(x, y) (6)

where I(x, y) denotes the near-infrared vessel image information, R(x, y) is the image
information of vessel region, and G(x, y) indicates the background image information.

According to Equation (6), it is not difficult to derive that:

R(x, y) = I(x, y)− G(x, y) (7)

The function G(x, y) can be obtained as a background by applying minimum filtering
and median filtering methods. Minimum filtering is a relatively conservative method
of image processing. The processing principle of it is that the surrounding pixels and
the center pixel value are first sorted. Then, the center pixel value is compared with the
minimum pixel values. If the center pixel is smaller than the minimum value, the center
pixel is replaced by the minimum value. In this paper, small circular regions with different
gray values appear in the image after minimum filtering with 3× 3 template. In the image,
the difference of gray values on both sides of the inner and outer edges of blood vessels
increased, and the number of different gray values decreased, which is helpful for clarifying
the edge of blood vessels.

After the processing, the image background can be obtained by using the median
filtering algorithm, which is a nonlinear signal processing technique based on the statistical
theory of sorting, which can effectively suppress noises [27]. The basic principle of median
filtering is to replace the value of a point in a digital image or digital sequence with the
median of the values of points in a neighborhood of the center point, so that the surrounding
pixel values are closed to the true value. Clearly, median filtering can blur the blood
vessel image effectively. In this paper, the median filtering uses a two-dimensional sliding
template of some structure to sort the pixels in a plate according to the size of pixel values,
generating a monotonically increasing (or decreasing) tendency for two-dimensional data
sequences. The expressions are:

g(x, y) = Med[ f (i, j)]
(i,j)∈Sxy

(8)

where Sxy is the set of neighborhoods centered on (x, y) and Med is a function to take the
middle value of the set.
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2.3. Image Denoising and Morphological Processing

After subtracting the background operation, there are still many noise points and
breaks. Additionally, if these isolated noise points are not removed, they will affect the
subsequent link to repair the edges of blood vessels. Therefore, a connectivity domain-
based element screening method is used in this algorithm to eliminate the isolated noise
points [28]. The connected-domain-based element screening method refers to the calcula-
tion of the size of each connected domain in an image to determine whether it is a noise
point or not. Since most blood vessels have elongated structures, the isolated noise points
are generally round and irregular in shape, and their areas are much smaller than those
of the connected blood vessel areas, a threshold can be set. If the area of the connected
domain is smaller than a specific threshold, the connected domain can be considered as a
noise region [29]. Its mathematical expression is:

Sn =

{
Sn S > T
0 S < T

(9)

where Sn represents the nth connected domain, S is the area of Sn, and T is the set threshold.
In this algorithm, after a series of experiment tests, the T value can be set between 1500
and 1800 for our dataset, a value which can eliminate most of the noise points in blood
vessel images.

After removing the isolated noise points, the edges of blood vessels may still have
problems such as unevenness or even fractures. These problems do not correspond to the
direction of normal blood vessels. To solve these problems, this paper develops an improved
mathematical morphology algorithm. Mathematical morphology is a mathematical tool
for image analysis based on morphological structural elements [30]. Its core idea is to
use structures with certain morphologies to extract features such as the shape, structure,
and spatial relationships of an image. When the template is continuously moved in an
image, information about the interrelationships between various parts of the image can be
collected to understand the image structure features. A novel mathematical morphology
method of a T-type structural element is proposed in this paper. Using this method can
allow researchers to simplify the image data, keep its basic shape features, and eliminate
the skeleton of blood vessel.

The operations commonly used in mathematical morphology include dilation and
erosion. In binary and grayscale images, each operation has its own unique characteristics.
These basic operations can be further combined and derived to obtain various practical
mathematical morphology algorithms. In dealing with the vascular edge problem, the
dilation and erosion operations of morphological algorithm are used first. The dilation
operation can expand the range of vessel edges and make them smoother, while the
erosion operation can reduce the range of vessel edges and make them clearer. By properly
combining these two operations, it can become more accurate and produce finer blood
vessel images. In a binary image, the erosion operation is defined as:

( f 	 e)(x, y) = min{ f (x + a, y + b)− e(a, b) | (x + a),
(y + b) ∈ D f and (a, b) ∈ De

} (10)

where f 	 e indicates that e is used to erode f , f represents the original image, and D f
and De are the definition domains of f and e, respectively; f (a, b) is outside the definition
domain of f , assuming it is +∞.

In the binary image, the dilation operation is defined as:

( f ⊕ e)(x, y) = max{ f (x− a, y− b) + e(a, b) | (x− a),
(y− b) ∈ D f and (a, b) ∈ De

} (11)
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where f ⊕ e indicates that e is used to dilate, f represents the original image, and D f and
De are the definition domains of f and e, respectively; additionally, f (a, b) is outside the
definition domain of f , assuming it is −∞.

The analysis of mathematical morphology theory shows that the selection of struc-
tural elements is crucial in the process of erosion and dilation, which directly determines
the shape of processed image. The traditional structural elements are rectangles, circles,
and crosses. However, in some cases, these structural elements do not fit well with the
characteristics of an image and also do not perform well in the edge direction. Therefore,
new structural elements need to be proposed to overcome this shortcoming. This paper
proposes a novel T-type structural element. The advantage of this structural element is
that it has high directionality, which can better process the line segmentations in different
directions and smooth the protruding and depressed parts of image edges. As shown in
Figure 4, the blue structure at the top is used to simulate a small segmentation of a blood
vessel image, and the green structure at the bottom is the blood vessel structure corroded
by a T-type structural element after background reduction and denoising. The vascular
binary graph obtained initially has uneven edges, protrusions, or dents. The template of
T-type structural element traverses all pixel points in image and retains the part that can
completely overlap with this template, while the rest is corroded. As can be seen from the
diagram, the T-type structural element effectively smooths some protruding parts, making
the lines of the edge pixels smoother.
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Figure 4. Proposed T-type structural element of mathematical morphology method.

The algorithm in this paper is based on the T-type structural element, which is rotated
by 90◦ in sequence and processed several times. In the algorithm, the following four
structural elements are used to erode images.

t1 =




0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
0 0 1 1 0 0
0 0 1 1 0 0




(12)

t2 =




0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 0 0
0 0 1 1 0 0




(13)

88



Bioengineering 2023, 10, 726

t3 =




0 0 1 1 0 0
0 0 1 1 0 0
1 1 1 1 1 1
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0




(14)

t4 =




0 0 1 1 0 0
0 0 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0




(15)

According to the definition of dilation and erosion, this paper defines fn as the result
of the nth processing. First, the t1 structural element is used for erosion to remove small
noise and fine lines on the edges; then, the circular template is also used to fill in some
dotted lines and holes. The result of the first processing is shown below.

f1 = ( f 	 t1)⊕ b (16)

where f is the original image and b represents the circular structural element.
For the second step, t2 is used for corrosion and b is still used for dilation. The result

of the second operation can be expressed as follows.

f2 = ((( f 	 t1)⊕ b)	 t2)⊕b) (17)

Next, t3 and t4 are used for the same operation, and finally the processing result can
be estimated by (13).

f4 = ( f3 	 t4)⊕ b (18)

Four calculations are completed in this step and the image is fully processed to obtain
the desired shape. By using the T-type structural element and multiple rotations, this
method can better deal with the problems of lines and voids in the binarized image and
achieve a better denoising effect. This process can effectively eliminate horizontal and
vertical line segments and noises.

3. Experiment Results and Evaluations

This section validates the noise reduction algorithm, segmentation algorithm, and
morphological processing algorithm. The comparison tests randomly select forearm in-
frared blood vessel images from our dataset and crop each image into a region of interest
(ROI) with a size of 548 × 335. Python programming is used for simulation experiments on
PC Intel(R) Core(TM) i5-1035G1 CPU @ 1.00 GH, 8 GB RAM, NVIDIA GeForce MX 250).

3.1. Evaluation of Image Enhancement Algorithm

To evaluate the enhancement effect further, five algorithms, i.e., CLAHE, histogram
equalization (HE) algorithm [31], AHE algorithm [31], single-scale Retinex (SSR) algo-
rithm [32], brightness compensation method for different brightness regions in the image
(BCMDBR), and homomorphic filtering [33] are compared in this section. The results are
shown in Figure 5. It can be observed from the results that, although the HE algorithm
can improve image contrast, it can produce situations of local over dark or over bright
images, and the effects of detail retention are not good. Although the above problems do
not occur in AHE, noise is reflected and contrast enhancement is not as good as CLAHE.
The SSR algorithm and BCMDBR appear to be over dark or over bright, and no vascular
information can be observed. The homomorphic filtering algorithm is not effective for
vascular edge processing, and its contrast is still not clear enough. Figure 5f shows the
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experimental results of the CLAHE. The forearm blood vessel image in ROI is investigated.
The result shows that the CLAHE algorithm overcomes the problems of local overexposure
and loss of details and can achieve better contrast enhancement while keeping the blood
vessel images clearer.
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3.2. Evaluation of Noise Reduction Algorithm

To compare the effect of noise reduction algorithms, the other traditional noise re-
duction methods like bilateral filtering [34], median filter algorithm [35], mean filter algo-
rithm [36], non-local-mean filtering [37], and bandpass filtering are applied to the same
noisy image for performance evaluation, respectively. The corresponding results are shown
in Figure 6. From Figure 6, it can be observed that the bilateral filtering and mean filtering
retain the edge information of images, but that the effects of noise removal are not as good
as the effects of Gaussian filtering. The processing results of median filtering and non-local
means denoising will cause the image to become blurred, and the bandpass filtering cannot
remove the noise in the image well.
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Figure 6. Experiment results of image noise reduction. (a) The result of bilateral filtering. (b) The
result of median filtering. (c) The result of mean filtering. (d) The result of non-local-mean filtering.
(e) The result of bandpass filtering. (f) The result of Gaussian filtering.

Since the image denoising evaluation is closely related to human vision and subjective
perception, and human eye still has a certain deficiency in terms of detail discrimination,
this paper introduces three metrics in order to further test the processing effect, i.e., the
energy [38], Brenner [39], and visual information fidelity (VIF) [40]. This is carried out to
evaluate image quality after denoising. The corresponding scores are shown in Table 1.
Energy is an evaluation index used to measure the brightness value distribution, contrast,
and other characteristics of an image. Generally, the higher the energy of an image is, the
wider the distribution of luminance values and the stronger the contrast will be.

D( f ) = ΣyΣx(| f (x + 1, y)− f (x, y) |2 + | f (x, y + 1)− f (x, y) |2) (19)

Table 1. Evaluation results of different noise reduction algorithms.

Name of Filtering Algorithm Energy Brenner VIF

Bilateral filtering 0.111113 0.149405 0.0229357
Median filtering 0.142327 0.185371 0.0171459
Mean filtering 0.542328 0.717005 0.228890

Non-local means denoising 0.166525 0.200364 0.192109
Bandpass filtering 0 0 6.829285 × 10−5

Gaussian filtering (Our method) 0.579129 0.788554 0.314532
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Brenner is an evaluation metric based on image gradient information. This method
is usually used to measure image sharpness. The Brenner metric is sensitive to grayscale
changes and can effectively distinguish the sharpness of various parts of an image.

D( f ) = ΣyΣx | f (x + 2, y)− f (x, y) |2 (20)

VIF is an objective metric used to evaluate the quality of an image or video. It is based
on the human visual system’s perception of information, and it also can quantify degrees of
distortion. It takes into account several factors, including spatial frequency, brightness, or
color, in order to more accurately simulate variation in perceived quality by the human eye.
In the calculation of VIF function, multi-scale decomposition is firstly carried out, and then
the information quantity is modeled and calculated at each scale. Finally, the VIF value
is formed by combination. Higher VIF scores indicate better denoising effects. As shown
in Table 1, the Gaussian filtering used in this paper has a good noise reduction effect on
our dataset.

3.3. Evaluation of Image Segmentation Algorithm

Figure 7a shows the background of the near-infrared image obtained by minimum
filtering processed by 3× 3 template and the median filtering. The background image
obtained can be considered as the luminance information without blood vessel information.
By using Formula (7), the image information of the blood vessel region can be obtained
without background information, as shown in Figure 7b. From the results, it can be
observed that the background of near-infrared blood vessel image can be well extracted.
Although there are some noises in the blood vessel information obtained by eliminating the
background, the blood vessel information is well extracted without missing segmentation
or wrong segmentation, and there are not many breakpoints in an image.
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Figure 7. Processing result of background subtraction. (a) The background image extracted from the
vascular image. (b) The extracted vascular image result.

To compare the experiment of segmentation algorithm performance, the global thresholding-
based segmentation algorithm [41], region-growth-based thresholding method [42], entropy
thresholding process [43], OTSU algorithm [44], and histogram-based segmentation algo-
rithm [45] are applied to the same dataset to assess their processing effects, respectively.
The results are shown in Figure 8. It can be observed that, although the segmentation
algorithms based on global threshold, OTSU algorithm, and entropy threshold processing
can segment the blood vessels, they cannot process the small-blood-vessel information
well, and more details are lost. The segmentation effects of the threshold method assessed
based on region growth, alongside the algorithms investigated based on histograms, are
not good, respectively. Even for the primary blood vessels, the blood vessels cannot be
clearly identified. In contrast, the algorithm in this paper does not omit details when con-
sidering the primary blood vessels, and its use can segment a relatively clear and complete
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vascular framework. This is because the traditional segmentation algorithms are based on
the threshold value, which can be considered as the vascular feature. The segmentation
algorithm based on the global threshold is to choose the manual threshold, and it needs to
be adjusted continuously to obtain a more appropriate value, meaning that the algorithm
is not robust. Based on the histogram technique and other algorithms, the appropriate
threshold value can be obtained through calculation, but the easy threshold value will be
affected by many factors in the calculation process, such as brightness, noise, etc. There are
high requirements for using the pre-processing algorithm, and its use is not suitable for
processing near infrared vascular images. However, our image reduction algorithm does
not use threshold value and is less affected by brightness and other factors, and as a result
it has a good effect.

Bioengineering 2023, 10, x FOR PEER REVIEW 12 of 19 
 

choose the manual threshold, and it needs to be adjusted continuously to obtain a more 

appropriate value, meaning that the algorithm is not robust. Based on the histogram tech-

nique and other algorithms, the appropriate threshold value can be obtained through cal-

culation, but the easy threshold value will be affected by many factors in the calculation 

process, such as brightness, noise, etc. There are high requirements for using the pre-pro-

cessing algorithm, and its use is not suitable for processing near infrared vascular images. 

However, our image reduction algorithm does not use threshold value and is less affected 

by brightness and other factors, and as a result it has a good effect. 

 

 

 

Figure 8. Experiment results of image segmentation. (a) The result of the global threshold-based 

segmentation. (b) The result of the region-growth-based thresholding method. (c) The result of the 

entropy thresholding method. (d) The result of the OTSU algorithm. (e) The result shows the histo-

gram-based segmentation. (f) The result of our method. 

Some objective quantitative analyses are also performed. Three indexes are consid-

ered in this paper, i.e., Dice, accuracy (Acc), and sensitivity (Sen) [46,47]. The Dice coeffi-

cient is a function to evaluate similarity. This is usually used to calculate the similarity or 

overlap of two samples. Its computation method is defined in (11). Acc indicates the pro-

portion of correctly segmented pixel points in segmentation result to the total number of 

pixel points in the whole image. Its formula can be calculated by (12). Sen means the pro-

portion of correct vessel points in the segmentation results to the total number of vessel 

points in the standard segmentation result [47]. Its calculation method is illustrated in (13). 

(b) (a) 

(d) (c) 

(f) (e) 

Figure 8. Experiment results of image segmentation. (a) The result of the global threshold-based
segmentation. (b) The result of the region-growth-based thresholding method. (c) The result of
the entropy thresholding method. (d) The result of the OTSU algorithm. (e) The result shows the
histogram-based segmentation. (f) The result of our method.

Some objective quantitative analyses are also performed. Three indexes are considered
in this paper, i.e., Dice, accuracy (Acc), and sensitivity (Sen) [46,47]. The Dice coefficient is
a function to evaluate similarity. This is usually used to calculate the similarity or overlap
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of two samples. Its computation method is defined in (11). Acc indicates the proportion of
correctly segmented pixel points in segmentation result to the total number of pixel points
in the whole image. Its formula can be calculated by (12). Sen means the proportion of
correct vessel points in the segmentation results to the total number of vessel points in the
standard segmentation result [47]. Its calculation method is illustrated in (13).

Dice = 2
Vseg ∩Vgt

Vseg ∪ Vgt
(21)

Acc = (TP + TN)/(TP + TN + FP + FN) (22)

Sen = TP/(TP + FN) (23)

where Vseg denotes the segmentation result, Vgt means the expert segmentation result;
Vseg ∩Vgt represents the intersection of Vseg and Vgt, Vseg, and ∪Vgt represents the union of
Vseg and Vgt. True positive (TP) shows the correctly segmented vessel points; false positive
(FP) indicates the incorrectly segmented vessel points; true negative (TN) indicates the
correctly segmented background points; and false negative (FN) means the incorrectly
segmented background points [47].

Table 2 presents the corresponding results. Table 2 shows that, although the Acc score
of our method is not as good as those of other algorithms, the reason for the low Acc in
the segmentation evaluation results in this paper is the class imbalance in the vascular
images. Vascular segmentation is essentially a classification problem. In near-infrared
vascular images, the area of non-vascular regions is much larger than the area of vascular
regions, causing class imbalance and low Acc. In contrast, Dice and Sen focus more on
the degree of overlap between prediction and ground truth. As a result, Dice and Sen
are higher, which also reflects that the segmentation effects in this paper are closer to the
manual segmentation results of experts.

Table 2. Evaluation results of different segmentation algorithms.

Name of Filtering Algorithm Dice Acc Sen

Threshold segmentation method based on region growth 0.66151 0.570808 0.668102
Threshold method based on regional growth 0.670982 0.489470 0.811824

Entropy threshold method 0.662919 0.456471 0.8487629
OTSU threshold segmentation algorithm 0.670982 0.489471 0.811824

Histogram-based technique for threshold segmentation 0.457068 0.657206 0.319836
The algorithm in this paper 0.697933 0.443855 0.938922

3.4. Evaluation of Morphological Algorithm

This paper assesses the morphological processing algorithms. The traditional corroded
and inflated structural elements, whether elliptical, rectangular, or cross-type, are compared
with T-type structural element to obtain the same dataset of binarized images. In order
to facilitate the understanding of the advantages of T-type structural elements, this paper
firstly draws pictures to demonstrate the working process of ellipse, rectangular, cross-
type and T-type structures. As can be seen from Figure 9, although the ellipse structure
cannot handle the upper and lower edge structures, the gentle convex part of them cannot
be processed well. The rectangular structure can remove the convex part of edge better,
but the angles of shape details are lost. The cross-type structure has little effect on the
sharp protrusions. The T-type structural element can retain as much shape information as
possible, and it can also “smooth” the convex part of the upper and lower edges.
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Figure 9. Processing effect examples of different shape structural elements.

Figure 10 shows the corresponding processing results of the blood vessel images using
the T-type, elliptic, rectangular and cross-type structural elements. It can be seen from
Figure 10 that the morphologic processing algorithm based on T-type structural element can
remove the noise and holes better and extract the target region more accurately. Compared
with the traditional ellipse type and cross-type, the T-type structural element smooths the
upper and lower edges better. Although the rectangular structural element has a better
smoothing effect, it displays more distortions compared with the real blood vessel region.
Therefore, a T-type structural element is considered better able to adapt to the characteristics
of blood vessel image, which can improve the effect of image processing to a certain extent.
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4. Discussion

In this research, a method based on background subtraction and improved morphology
is proposed to design an effective preprocessing and segmentation method for forearm near-
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infrared blood vessel images. Not only the gray characteristics, but also the morphological
features, are considered when designing this algorithm. The target vascular region is
accurately processed according to the relevant morphological characteristics in order to
ensure segmentation accuracy. The algorithm has a better anti-noise performance than
the traditional algorithm. The proposed algorithm aims to improve the extracted blood
vessel information by applying several steps: firstly, the original image is preprocessed
with CLAHE to achieve a highlighted vascular part. Then, Gaussian filtering is applied
to reduce the noise in the image. Next, the background image is obtained by blurring the
image with minimum filtering and median filtering. It is then subtracted from the enhanced
image to obtain a preliminary binary image of a blood vessel. In the segmentation step, the
isolated noises are removed using the element screening method based on the connected
domain. Then, the image is dilated and eroded with T-type structural elements to render
uniform the width of blood vessels and smooth edges. Through these steps, the vascular
region in the forearm near-infrared venous vessel image can be effectively extracted with
better performance and accuracy than other existing methods.

At present, there are limited datasets for near-infrared vascular images, and manual
segmentation of vascular images cost lots of manpower; therefore, it is difficult to use
supervised learning method to segment images. This paper also tries other techniques
to segment the blood vessel image. For example, the K-means clustering algorithm [48],
watershed algorithm [49], active contour method [50], and the method of implicit active
contours, driven by local binary fitting energy (LBF) [51], are all considered. According
to the results which are shown in Figure 11, the first three algorithms cannot segment
the near-infrared vascular images with poor results, and cannot extract the blood vessel
skeleton with more details lost. The segmentation result of LBF the method exhibit a serious
over-segmentation phenomenon, and the blood vessel information cannot be extracted
in the image. The primary reasons for these phenomena are as follows: the K-means
segmentation is based on gray level segmentation in essence, which has high requirements
on illumination changes, initial clustering center selection, and other factors. Additionally,
the watershed segmentation easily produces segmentation deviation and has poor effects
on images with low contrast. The algorithm model of active contour is dependent on
parameters, and suitable parameters should be found for different images to achieve good
segmentation effect. Additionally, the LBF method has high requirements for application to
an the image, and when image noises are strong, its segmentation effects are not accurate.
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This study is of great significance for the field of medical image processing, which can
improve the quality and readability of near-infrared vascular images and provide more
accurate and effective information for clinical diagnosis and treatment. In addition, this
study provides a new non-invasive detection method for the field of cardiovascular disease.
It can be used to assist nurses in the evaluation of vascular quality and help doctors in
the detection, localization and intervention to treat venous thrombosis, which is helpful
in efforts to improve the quality of life and safety of patients. However, this study also
has some limitations. These must be addressed in the future. For example, this study
only verifies the algorithm on forearm near-infrared vascular images without considering
other parts or other types of vascular images. The repair effect of this paper needs to be
improved in relation to some fractures. Based on these limitations, future research can be
carried out in the following aspects: first, the cooperation with hospitals to collect more
data will be established for expanding the scope of the experiment, which will test the
effect of the algorithm on other sites or other types of vessel images. Second, the ability of
the algorithm to deal with more details of the blood vessels will be improved, and efforts
will be constantly made to design a corresponding solution or improvement strategy will.

5. Conclusions

In this paper, background subtraction and improved mathematical morphology tech-
nique are used to extract blood vessel information for the task of forearm infrared blood
vessel segmentation. Initially, image enhancement and spatial domain filtering are used to
enhance near-infrared vascular images and highlight the target vascular region. Secondly,
the fuzzy method is used to obtain the image background, and then the idea of removing
the background from the image is used to obtain the blood vessel information. Finally,
the element screening method based on the basic operation of connecting domain and
enhanced morphology is used to remove noise and smooth edges in order to ensure the
uniformity of the width of the target blood vessel region. Compared with traditional
vascular detection technology, the method proposed in this work is simpler, more intuitive,
efficient and accurate, and can provide valuable information and support for non-invasive
medical diagnosis and treatment. In addition, it has a wide range of possible applications in
medical image processing and is likely to make greater contributions to the field of medical
diagnosis in the future.

Author Contributions: Conceptualization, L.L., H.L., Q.L., Z.T. and Y.L.; Data curation, L.L. and H.L.;
Formal analysis, L.L., H.L., Q.L., Z.T., Y.L. and W.G.; Funding acquisition, H.L.; Investigation, L.L.,
H.L., Q.L. and Z.T.; Methodology, L.L., H.L., Q.L., Z.T., Y.L., W.G. and S.W.; Project administration,
H.L.; Resources, L.L., H.L., W.G. and S.W.; Software, L.L., Z.T. and Y.L.; Supervision, H.L., Q.L., W.G.
and S.W.; Validation, L.L., H.L., Q.L., Z.T., W.G. and S.W.; Visualization, L.L.; Writing—original draft,
L.L.; Writing—review and editing, L.L. and H.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China under Grant
61975011, the Fund of Science and Technology on Near-Surface Detection Laboratory under Grant
6142414221403, the Fund of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect
under Grant SKLIPR2024, the Natural Science Foundation of Guangdong Province under Grant
2023A1515010275, and the Fundamental Research Fund for the China Central Universities of USTB
under Grant FRF-BD-19-002A.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author Haoting Liu.

Conflicts of Interest: The authors declare no conflict of interest.

97



Bioengineering 2023, 10, 726

References
1. Waitt, C.; Waitt, P.; Pirmohamed, M. Intravenous therapy. Postgrad. Med. J. 2004, 80, 1–6. [CrossRef] [PubMed]
2. Lamperti, M.; Pittiruti, M., II. Difficult peripheral veins: Turn on the lights. Br. J. Anaesth. 2013, 110, 888–891. [CrossRef] [PubMed]
3. Chaudhuri, S.; Chatterjee, S.; Katz, N.; Nelson, M.; Goldbaum, M. Detection of blood vessels in retinal images using two-

dimensional matched filters. IEEE Trans. Med. Imaging 1989, 8, 263–269. [CrossRef] [PubMed]
4. Li, Q.; You, J.; Zang, D. Vessel segmentation and width estimation in retinal images using multiscale production of matched filter

responses. Expert Syst. Appl. 2012, 39, 7600–7610. [CrossRef]
5. Hoover, A.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched

filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [CrossRef]
6. Zhang, J.; Yang, J. Finger-vein image enhancement based on combination of gray-level grouping and circular Gabor filter. In

Proceedings of the 2009 International Conference on Information Engineering and Computer Science, Wuhan, China, 19–21
December 2009; pp. 1–4.

7. Lee, E.C.; Park, K.R. Restoration method of skin scattering blurred vein image for finger vein recognition. Electron. Lett. 2009, 45,
1074–1076. [CrossRef]

8. Yin, Y.; Adel, M.; Bourennane, S. Retinal vessel segmentation using a probabilistic tracking method. Pattern Recognit. 2012, 45,
1235–1244. [CrossRef]

9. Liu, B.; Jiang, Q.; Liu, W.; Wang, M.; Zhang, S.; Zhang, X.; Zhang, B.; Yue, Z. A vessel segmentation method for serialized cerebral
vascular DSA images based on spatial feature point set of rotating coordinate system. Comput. Methods Programs Biomed. 2018,
161, 55–72. [CrossRef]

10. Lee, S.H.; Lee, S. Adaptive Kalman snake for semiautonomous 3D vessel tracking. Comput. Methods Programs Biomed. 2015, 122,
56–75. [CrossRef]

11. Song, M.; Civco, D. Road extraction using SVM and image segmentation. Photogramm. Eng. Rem. 2004, 70, 1365–1371. [CrossRef]
12. Pathak, D.; Krähenbühl, P.; Darrell, T. Constrained convolutional neural networks for weakly supervised segmentation. IEEE Int.

Conf. Comput. Vis. 2015, 15, 1796–1804.
13. Liskowski, P.; Krawiec, K. Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 2016, 35,

2369–2380. [CrossRef] [PubMed]
14. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci.

2015, 16, 711–720.
15. Sánchez, J.C.G.; Magnusson, M.; Sandborg, M.; Carlsson; Tedgren, Å.; Malusek, A. Segmentation of bones in medical dual-energy

computed tomography volumes using the 3D U-Net. Phys. Med. 2020, 69, 241–247. [CrossRef] [PubMed]
16. Hiasa, Y.; Otake, Y.; Takao, M.; Ogawa, T.; Sugano, N.; Sato, Y. Automated muscle segmentation from clinical CT using Bayesian

U-Net for personalized musculoskeletal modeling. IEEE Trans. Med. Imaging 2020, 39, 1030–1040. [CrossRef] [PubMed]
17. Perslev, M.; Pai, A.; Runhaar, J.; Igel, C.; Dam, E.B. Cross-cohort automatic knee MRI segmentation with multi-planar U-Nets. J.

Magn. Reason. Imaging 2022, 55, 1650–1663. [CrossRef]
18. Xiao, X.; Lian, S.; Luo, Z.; Li, S. Weighted Res-UNet for high-quality retina vessel segmentation. In Proceedings of the 2018 IEEE

9th International Conference on Information Technology in Medicine and Education, Hangzhou, China, 19–21 October 2018;
pp. 327–331.

19. Alom, M.Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual U-Net for medical image segmentation. J. Med.
Imaging 2018, 16, 228–233. [CrossRef]

20. Zhao, P.; Zhang, Y.; Bian, K.; Tuo, H.; Song, L. LadderNet: Knowledge transfer based viewpoint prediction in 360◦ video. In
Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May
2019; pp. 1657–1661.

21. Ning, Z.; Zhong, S.; Feng, Q.; Chen, W.; Zhang, Y. SMU-Net: Saliency-guided morphology-aware U-Net for breast lesion
segmentation in ultrasound image. IEEE Trans. Med. Imaging 2021, 41, 476–490. [CrossRef]

22. Li, Y.; Liu, H.; Tian, Z.; Geng, W. Near-infrared vascular image segmentation using improved level set method. Infrared Phys.
Technol. 2023, 133, 104678. [CrossRef]

23. Alwazzan, M.J.; Ismael, M.A.; Ahmed, A.N. A hybrid algorithm to enhance colour Retinal fundus images using a Wiener filter
and CLAHE. J. Digit. Imaging 2021, 34, 750–759. [CrossRef]

24. Arpah, B.A.S.; Taib, M.N.; Khalid, N.E.; Taib, H. Variations of adaptive histogram equalization (AHE) analysis on intra-oral dental
radiograph. In Proceedings of the 2015 IEEE 6th Control and System Graduate Research Colloquium, Shah Alam, Malaysia, 10–11
August 2015; pp. 87–92.

25. Liu, X.W.; Liu, C.Y. An optional Gauss filter image denoising method based on difference image fast fuzzy clustering. Appl. Mech.
Mater. 2013, 414, 1348–1352. [CrossRef]

26. Portilla, J.; Strela, V.; Wainwright, M.J.; Simoncelli, E.P. Image denoising using scale mixtures of Gaussians in the wavelet domain.
IEEE Trans. Image Process. 2003, 12, 1338–1351. [CrossRef] [PubMed]

27. Tang, J.; Wang, Y.; Cao, W.; Yang, J. Improved adaptive median filtering for structured light image denoising. In Proceedings of the
2019 7th International Conference on Information, Communication and Networks, Macao, China, 24–26 April 2019; pp. 146–149.

28. Cheng, H.; Jiang, X.; Sun, Y.; Wang, J. Color image segmentation: Advances and prospects. Pattern Recognit. 2001, 34, 2259–2281.
[CrossRef]

98



Bioengineering 2023, 10, 726

29. Xiaosong, S.; Yongjie, H.; Yongge, L. Text on Oracle rubbing segmentation method based on connected domain. In Proceedings of
the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, Xi’an, China,
3–5 October 2016; pp. 414–418.

30. Haralick, R.M.; Sternberg, S.R.; Zhuang, X. Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell.
1987, 9, 532–550. [CrossRef] [PubMed]

31. Sargun; Rana, S.B. Performance evaluation of HE, AHE and fuzzy image enhancement. Int. J. Comput. Appl. 2015, 122, 14–19.
[CrossRef]

32. Zhang, G.; Sun, D.; Yan, P.; Zhao, H.; Li, Z. A LDCT image contrast enhancement algorithm based on single-scale Retinex theory.
In Proceedings of the 2008 International Conference on Computational Intelligence for Modelling Control & Automation, Vienna,
Austria, 10–12 December 2008; pp. 1282–1287.

33. Yu, H.; Li, X.; Lou, Q.; Yan, L. Underwater image enhancement based on color-line model and homomorphic filtering. Signal
Image Video P 2021, 16, 83–91. [CrossRef]

34. Chen, B.; Tseng, Y.; Yin, J. Gaussian-adaptive bilateral filter. IEEE Signal Process. Lett. 2020, 27, 1670–1674. [CrossRef]
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Abstract: (1) Background: although digital infrared thermographic imaging (DITI) is used for diverse
medical conditions of the upper limbs, no reference standards have been established. This study
aims to establish reference standards by analyzing DITI results of the upper limbs. (2) Methods: we
recruited 905 healthy Korean adults and conducted thermography on six regions (dorsal arm, ventral
arm, lateral arm, medial arm, dorsal hand, and ventral hand region). We analyzed the data based
on the proximity of regions of interest (ROIs), sex, and age. (3) Results: the average temperature
(◦C) and temperature discrepancy between the right and the left sides (∆T) of each ROI varied
significantly (p < 0.001), ranging from 28.45 ± 5.71 to 29.74 ± 5.14 and from 0.01 ± 0.49 to 0.15 ± 0.62,
respectively. The temperature decreased towards the distal ROIs compared to proximal ROIs. The
average temperatures of the same ROIs were significantly higher for men than women in all regions
(p < 0.001). Across all regions, except the dorsal hand region, average temperatures tended to increase
with age, particularly in individuals in their 30s and older (p < 0.001). (4) Conclusions: these data
could be used as DITI reference standards to identify skin temperature abnormalities of the upper
limbs. However, it is important to consider various confounding factors, and further research is
required to validate the accuracy of our results under pathological conditions.

Keywords: infrared rays; reference standard; skin temperature; thermography; upper limb

1. Introduction

Digital infrared thermographic imaging (DITI) has been utilized as an ancillary diag-
nostic method for various medical conditions related to the upper extremities. For instance,
cervical radiculopathy; peripheral nerve entrapment syndrome (e.g., carpal tunnel syn-
drome); rheumatic disease (e.g., Raynaud’s disease); complex regional pain syndrome;
tendinopathy; hand arthritis (e.g., psoriatic arthritis); and skin cancer can be confirmed
by DITI [1–13]. The hypo-radiant (hypothermia) or hyper-radiant (hyperthermia) regions
can be identified by comparing the temperature between the right and left arms or with
empirical normal ranges. However, the significant temperature differences between both
sides and deviations from normal ranges have not been established. Furthermore, body
surface temperatures are influenced by the measurement environment, ana-tomical area,
and subject characteristics, which presents a challenge in deriving reference values from
the existing literature [14,15].

Consequently, previous attempts to establish reference standards for DITI using sys-
tematic reviews based on meta-analysis or machine learning methods have been limited in
providing detailed standard DITI values [10,16–18]. Although a recent study suggested
a correct differential diagnosis process for Raynaud’s phenomenon in the hand using a
deep convolutional neural network, a type of deep learning method, its small data set
had limitations [19]. To address this gap and establish scientific reference standards for
DITI, we investigated the DITI results of several body regions, including the lower limbs,

Bioengineering 2023, 10, 671. https://doi.org/10.3390/bioengineering10060671 https://www.mdpi.com/journal/bioengineering
100



Bioengineering 2023, 10, 671

upper limbs, trunk, and face, in a large cohort of subjects under a controlled protocol. We
previously reported DITI reference standards for the lower limbs [16]. In the present study,
we provide DITI reference standards for the upper limbs, including the hands.

2. Materials and Methods
2.1. Study Design, Ethics, and Sample Size

This multi-center, single-arm, open label study was conducted in compliance with
global/local ethics. The Institutional Review Board of three hospitals approved the study
protocol. In addition, this clinical trial was registered with the Clinical Research Infor-
mation Service of Korea (CRIS, http://cris.nih.go.kr, accessed on 1 April 2023, number
KCT0006880) [20].

The sample size for this study was determined to be 922 participants, with a dropout
rate of 15%, based on the equation provided in our previous report [20]. The equation used
was as follows:

n =
θ(1 − θ)2z2

α/2

d2

(Population proportion [θ] = 0.85; margin of error [d] = 0.025; and significance level of
5% with confidence level of 95%).

2.2. Subjects Recruitment

Healthy Korean adults were recruited through open announcements at three hospitals
between March 2018 and December 2020.

The general qualifications for participation in the DITI examination of whole body,
including the upper extremities, lower extremities, trunk, and face, were as follows: (1) age
between 20 and 69; (2) the absence of any potential contraindication for DITI (e.g., preg-
nancy or claustrophobia); (3) the ability to maintain posture during the test; and (4) the
absence of any other issue considered by the investigator to adversely influence DITI
results [20].

To minimize potential confounders, the following criteria were adopted: (1) no specific
medical history, such as cervical spine disease, diabetes mellitus, peripheral neuropathy or
entrapment, joint disorder of the arm or hand, previous history of cervical spine or upper
extremity surgery; and (2) currently no pain or skin abnormality of the upper extremity.

Initially, 922 healthy Korean adults were enrolled. However, 17 patients were excluded
due to test failure or withdrawal of consent. Therefore, the results from 905 participants
were included in the analysis [20]. All testing was performed under controlled conditions
after obtaining informed consent.

2.3. Equipment and Examination Protocol

DITI testing was performed using the same equipment and methodology as we
previously described [20]. The Iris-XP Digital infrared imaging system (Medicore, Seoul,
Republic of Korea) was employed to obtain the images. Prior to the test, subjects were
required to spend 20 min in the test room to acclimatize to the controlled room conditions,
which maintained a temperature of 20.0–23.0 ◦C and humidity of 30–75%. The distance
between the subject and the equipment was set at 1.5 m.

During the DITI imaging, upper limbs were divided into six sections based on em-
pirical classification, which facilitated classification into various two-dimensional planes,
including the front, back, and lateral sides. The upper limbs were tested in a neutral
standing position, encompassing six regions, including the dorsal, ventral, lateral, and
medial arm regions, as well as the dorsal and ventral hand regions. Regions of interest
(ROIs) were manually marked on both sides and comprised 18 ROIs in the dorsal arm
region, 19 ROIs in the ventral arm region, 19 ROIs in the lateral arm region, 7 ROIs in the
medial arm region, 26 ROIs in the dorsal hand region, and 26 ROIs in the ventral hand
region (Figure 1). Five certified examiners performed the testing using a diagram that
provided details of measurements and ROI locations.
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Figure 1. Schematics and actual photographs showing the regions of interest in the dorsal arm,
ventral arm, lateral arm, medial arm, dorsal hand, and ventral hand of the upper limbs. The red dots
represent each region of interest, and the related numbers are the serial numbers assigned to each
regions of interest.

2.4. Statistical Analysis

SPSS version 27.0 (IBM Corporation, Armonk, NY, USA) was used for statistical
analysis. Data were checked for normality using the Kolmogorov–Smirnov test, and the
results were expressed as mean ± standard deviation (SD), mean with 95% confidence
intervals (CI), or median with range. One-way analysis of variance (ANOVA), paired t-test,
or linear regression analysis were applied according to the purpose of analysis. A p value
of less than 0.05 was considered statistically significant.

3. Results
3.1. Basic Demographic Data

The average age of all subjects (n = 905) was 42.86 ± 12.87 years, and the male-to-
female ratio was 411:405. The sample consisted of 183 individuals (97 males and 86 females)
in their 20s, 213 (108 males and 105 females) in their 30s; 228 (109 males and 119 females) in
their 40s; 177 (65 males and 112 females) in their 50s; and 104 individuals (32 males and
72 females) in their 60s [20].

3.2. Average Temperatures and Temperature Discrepancies between Right and Left Sides for Each
ROI (◦C)

The average temperatures and average temperature discrepancies between the right and
left (∆T, temperature of right side−temperature of the left side) of each ROI were as follows:
29.22± 5.71 (range, 28.56± 5.42–30.24± 5.90) and 0.06± 0.49 (range, −0.08 ± 0.64–0.25 ± 0.48)
in the dorsal arm region; 29.63 ± 5.74 (range, 29.08 ± 5.69–30.51 ± 6.00) and 0.01 ± 0.49 (range,
−0.18 ± 0.49–0.18 ± 0.43) in the ventral arm region; 28.45 ± 5.71 (range, 27.59 ± 5.39–29.53 ± 5.90)
and 0.15 ± 0. 62 (range,–0.20 ± 0.76–0.52 ± 0.78) in the lateral arm region; 28.84 ± 5.57
(range, 28.00 ± 5.23–29.46 ± 5.79) and 0.04 ± 0.48 (range, −0.10 ± 0.69–0.11 ± 0.42) in
the medial arm region; 29.74 ± 5.14 (range, 28.08 ± 4.89–31.27 ± 5.53) and 0.06 ± 0.59
(range, −0.17 ± 0.57–0.26 ± 0.49) in the dorsal hand region; and 28.62 ± 5.44 (range,
27.08 ± 5.14–29.98 ± 5.60) and 0.07 ± 0.69 (range, −0.15 ± 0.57–0.20 ± 0.88) in the ventral
hand region (Tables 1–6).
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Table 1. The average temperature of each region of interest in the dorsal arm region.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side–Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

1_1 29.63 5.88 11.78 0.00
1_2 29.74 5.93 11.88 −0.10 0.55 −0.22 0.01 1.35
2_1 29.96 5.93 11.88 0.00
2_2 29.99 5.97 11.96 −0.03 0.54 −0.14 0.08 1.33
3_1 28.78 5.76 11.54 0.00
3_2 28.82 5.77 11.56 −0.04 0.52 −0.15 0.06 1.30
4_1 29.18 5.80 11.62 0.00
4_2 29.24 5.80 11.63 −0.06 0.49 −0.16 0.04 1.24
5_1 29.59 5.81 11.63 0.00
5_2 29.62 5.82 11.67 −0.02 0.45 −0.12 0.07 1.17
6_1 29.26 5.81 11.64 0.00
6_2 29.16 5.80 11.62 0.10 0.51 0.00 0.21 1.26
7_1 29.64 5.87 11.76 0.00
7_2 29.72 5.94 11.90 −0.08 0.64 −0.21 0.06 1.48
8_1 30.24 5.90 11.82 0.00
8_2 30.20 5.86 11.74 0.04 0.65 −0.09 0.17 1.49
9_1 29.66 5.86 11.74 0.00
9_2 29.43 5.82 11.66 0.23 0.50 0.12 0.33 1.26
10_1 29.47 5.81 11.65 0.00
10_2 29.21 5.77 11.56 0.25 0.48 0.15 0.35 1.22
11_1 29.22 5.73 11.48 0.00
11_2 29.09 5.71 11.45 0.14 0.41 0.05 0.22 1.10
12_1 28.87 5.61 11.25 0.00
12_2 28.77 5.61 11.24 0.11 0.52 0.00 0.21 1.28
13_1 28.97 5.62 11.26 0.00
13_2 28.80 5.61 11.23 0.17 0.43 0.08 0.26 1.14
14_1 28.96 5.58 11.19 0.00
14_2 28.81 5.56 11.14 0.15 0.43 0.06 0.23 1.13
15_1 28.56 5.42 10.87 0.00
15_2 28.59 5.43 10.89 −0.03 0.42 −0.11 0.06 1.12
16_1 28.75 5.44 10.90 0.00
16_2 28.69 5.43 10.89 0.06 0.44 −0.03 0.15 1.14
17_1 28.85 5.44 10.90 0.00
17_2 28.72 5.43 10.89 0.13 0.44 0.03 0.22 1.15
18_1 28.88 5.49 11.01 0.00
18_2 28.90 5.51 11.05 −0.01 0.47 −0.11 0.08 1.20

Mean 29.22 5.71 11.44 0.06 0.49 −0.05 0.16 1.24

CI, confidence interval; ROI, region of interest; SD, standard deviation.

Table 2. The average temperature of each region of interest in the ventral arm region.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side–Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

1_1 29.81 5.90 11.82
1_2 29.80 5.91 11.83 0.01 0.43 −0.08 0.10 1.13
2_1 29.88 5.91 11.84
2_2 29.96 5.94 11.90 −0.08 0.44 −0.17 0.01 1.14
3_1 29.14 5.74 11.51
3_2 29.16 5.73 11.48 −0.03 0.49 −0.13 0.07 1.23
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Table 2. Cont.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side–Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

4_1 29.60 5.77 11.57
4_2 29.64 5.80 11.62 −0.04 0.46 −0.13 0.06 1.18
5_1 29.84 5.84 11.69
5_2 29.86 5.88 11.78 −0.01 0.49 −0.11 0.09 1.24
6_1 29.76 5.83 11.67
6_2 29.85 5.87 11.75 −0.08 0.54 −0.19 0.03 1.31
7_1 30.51 6.00 12.03
7_2 30.47 5.96 11.94 0.04 0.51 −0.06 0.15 1.26
8_1 30.11 5.93 11.89
8_2 29.92 5.84 11.71 0.19 0.54 0.07 0.30 1.32
9_1 29.12 5.70 11.42
9_2 29.08 5.69 11.41 0.04 0.39 −0.04 0.12 1.07
10_1 29.46 5.70 11.43
10_2 29.54 5.77 11.57 −0.07 0.42 −0.16 0.01 1.12
11_1 29.80 5.83 11.68
11_2 29.73 5.83 11.67 0.08 0.41 −0.01 0.16 1.11
12_1 29.24 5.57 11.16
12_2 29.42 5.65 11.33 −0.18 0.49 −0.29 −0.08 1.24
13_1 29.81 5.75 11.52
13_2 29.84 5.77 11.57 −0.02 0.42 −0.11 0.07 1.13
14_1 29.69 5.76 11.55
14_2 29.50 5.70 11.43 0.18 0.43 0.10 0.27 1.14
15_1 29.37 5.61 11.24
15_2 29.53 5.65 11.32 −0.16 0.54 −0.27 −0.05 1.30
16_1 29.69 5.66 11.34
16_2 29.59 5.63 11.28 0.10 0.52 −0.01 0.21 1.28
17_1 29.45 5.58 11.18
17_2 29.27 5.49 11.00 0.18 0.59 0.06 0.30 1.39
18_1 29.45 5.51 11.04
18_2 29.43 5.51 11.05 0.02 0.53 −0.09 0.13 1.30
19_1 29.42 5.50 11.02
19_2 29.32 5.47 10.96 0.10 0.66 −0.03 0.24 1.51

Mean 29.63 5.74 11.51 0.01 0.49 −0.09 0.12 1.23

CI, confidence interval; ROI, region of interest; SD, standard deviation.

Table 3. The average temperature of each region of interest in the lateral arm region.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side–Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

1_1 28.68 5.76 11.55
1_2 28.88 5.88 11.79 −0.20 0.76 −0.36 −0.04 1.69
2_1 28.73 5.85 11.72
2_2 28.62 5.86 11.75 0.12 0.56 0.00 0.23 1.34
3_1 28.63 5.84 11.70
3_2 28.11 5.73 11.49 0.52 0.78 0.36 0.68 1.72
4_1 28.13 5.70 11.42
4_2 28.19 5.74 11.51 −0.06 0.67 −0.19 0.08 1.52
5_1 28.28 5.73 11.48
5_2 28.16 5.72 11.47 0.11 0.42 0.02 0.19 1.12
6_1 28.16 5.74 11.51
6_2 27.88 5.67 11.37 0.28 0.56 0.16 0.40 1.35
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Table 3. Cont.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side–Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

7_1 28.64 5.81 11.63
7_2 28.36 5.73 11.48 0.27 0.76 0.12 0.43 1.69
8_1 29.02 5.89 11.79
8_2 28.73 5.83 11.68 0.29 0.63 0.16 0.42 1.46
9_1 28.46 5.79 11.60
9_2 28.22 5.77 11.56 0.23 0.79 0.07 0.39 1.75
10_1 29.14 5.86 11.74
10_2 28.71 5.79 11.61 0.43 0.67 0.29 0.57 1.54
11_1 29.53 5.90 11.82
11_2 29.27 5.89 11.80 0.26 0.42 0.17 0.35 1.12
12_1 29.19 5.88 11.79
12_2 29.11 5.90 11.82 0.07 0.59 −0.05 0.19 1.39
13_1 28.35 5.64 11.31
13_2 28.12 5.61 11.25 0.22 0.71 0.07 0.37 1.59
14_1 28.76 5.71 11.44
14_2 28.66 5.71 11.45 0.10 0.60 −0.03 0.22 1.41
15_1 28.47 5.65 11.32
15_2 28.56 5.72 11.47 −0.10 0.70 −0.24 0.05 1.58
16_1 27.73 5.40 10.82
16_2 27.59 5.39 10.80 0.14 0.65 0.01 0.28 1.49
17_1 28.01 5.44 10.90
17_2 27.91 5.42 10.86 0.10 0.46 0.00 0.20 1.19
18_1 27.70 5.47 10.96
18_2 27.63 5.44 10.91 0.06 0.69 −0.08 0.21 1.57
19_1 28.43 5.50 11.03
19_2 28.37 5.50 11.03 0.05 0.45 −0.05 0.14 1.17

Mean 28.45 5.71 11.44 0.15 0.62 0.02 0.28 1.46

CI, confidence interval; ROI, region of interest; SD, standard deviation.

Table 4. The average temperature of each region of interest in the medial arm region.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side–Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

1_1 28.60 5.48 10.98
1_2 28.57 5.47 10.97 0.03 0.49 −0.07 0.13 1.24
2_1 28.68 5.43 10.88
2_2 28.70 5.45 10.93 −0.01 0.45 −0.11 0.08 1.17
3_1 29.46 5.79 11.60
3_2 29.36 5.76 11.54 0.10 0.45 0.01 0.20 1.17
4_1 28.85 5.57 11.16
4_2 28.77 5.56 11.14 0.08 0.40 0.00 0.17 1.09
5_1 29.39 5.84 11.71
5_2 29.31 5.80 11.63 0.08 0.43 −0.02 0.17 1.14
6_1 29.02 5.70 11.42
6_2 28.91 5.66 11.34 0.11 0.42 0.02 0.20 1.12
7_1 28.00 5.23 10.50
7_2 28.10 5.28 10.58 −0.10 0.69 −0.25 0.04 1.57

Mean 28.84 5.57 11.17 0.04 0.48 −0.06 0.14 1.21

CI, confidence interval; ROI, region of interest; SD, standard deviation.
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Table 5. The average temperature of each region of interest in the dorsal hand region.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side–Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

1_1 31.25 5.51 11.05
1_2 31.11 5.53 11.08 0.13 0.44 0.04 0.22 1.15
2_1 31.27 5.53 11.08
2_2 31.01 5.49 11.00 0.26 0.49 0.15 0.36 1.22
3_1 30.85 5.38 10.79
3_2 30.73 5.37 10.76 0.11 0.59 −0.01 0.23 1.41
4_1 30.56 5.29 10.60
4_2 30.60 5.31 10.65 −0.04 0.48 −0.14 0.06 1.21
5_1 30.76 5.32 10.67
5_2 30.65 5.33 10.68 0.11 0.48 0.01 0.21 1.22
6_1 30.54 5.25 10.52
6_2 30.36 5.21 10.46 0.18 0.52 0.07 0.29 1.28
7_1 29.93 5.06 10.15
7_2 30.04 5.13 10.29 −0.11 0.45 −0.20 −0.01 1.17
8_1 30.34 5.13 10.29
8_2 30.29 5.13 10.29 0.06 0.44 −0.03 0.15 1.16
9_1 30.37 5.14 10.32
9_2 30.14 5.11 10.24 0.23 0.48 0.13 0.33 1.21
10_1 30.27 5.16 10.35
10_2 30.31 5.22 10.46 −0.04 0.53 −0.15 0.07 1.29
11_1 30.47 5.08 10.20
11_2 30.62 5.13 10.29 −0.16 0.50 −0.26 −0.05 1.25
12_1 30.64 5.52 11.07
12_2 30.57 5.50 11.03 0.07 0.72 −0.07 0.22 1.62
13_1 30.05 5.13 10.29
13_2 29.84 5.10 10.23 0.21 0.71 0.06 0.36 1.61
14_1 29.76 4.96 9.95
14_2 29.69 4.97 9.98 0.06 0.64 −0.07 0.20 1.49
15_1 28.73 5.19 10.40
15_2 28.77 5.23 10.48 −0.04 0.66 −0.18 0.10 1.51
16_1 28.33 5.05 10.13
16_2 28.27 5.07 10.16 0.06 0.63 −0.07 0.19 1.47
17_1 28.15 4.91 9.84
17_2 28.08 4.89 9.82 0.07 0.75 −0.09 0.23 1.67
18_1 29.26 4.96 9.94
18_2 29.43 4.95 9.92 −0.17 0.57 −0.29 −0.06 1.36
19_1 28.89 4.96 9.95
19_2 28.88 4.97 9.96 0.01 0.61 −0.11 0.14 1.43
20_1 28.77 5.13 10.29
20_2 28.74 5.15 10.32 0.02 0.80 −0.14 0.18 1.76
21_1 29.28 4.96 9.95
21_2 29.25 4.90 9.83 0.03 0.52 −0.08 0.14 1.28
22_1 28.99 5.07 10.17
22_2 28.98 4.90 9.84 0.00 0.69 −0.14 0.14 1.56
23_1 29.11 5.12 10.28
23_2 28.97 5.03 10.10 0.14 0.74 −0.02 0.29 1.65
24_1 29.29 4.87 9.77
24_2 29.11 4.82 9.67 0.17 0.55 0.06 0.29 1.32
25_1 29.10 4.95 9.94
25_2 29.02 4.86 9.74 0.08 0.64 −0.05 0.22 1.48
26_1 29.10 5.14 10.32
26_2 28.88 5.05 10.13 0.21 0.79 0.05 0.38 1.75

Mean 29.74 5.14 10.30 0.06 0.59 −0.06 0.19 1.40

CI, confidence interval; ROI, region of interest; SD, standard deviation.
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Table 6. The average temperature of each region of interest in the ventral hand region.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side–Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

1_1 29.10 5.66 11.34
1_2 29.09 5.67 11.36 0.01 0.40 −0.07 0.10 1.09
2_1 29.63 5.73 11.47
2_2 29.71 5.77 11.57 −0.08 0.41 −0.17 0.00 1.11
3_1 29.73 5.80 11.62
3_2 29.57 5.76 11.54 0.17 0.38 0.08 0.25 1.06
4_1 29.01 5.53 11.08
4_2 29.13 5.59 11.20 −0.11 0.51 −0.22 −0.01 1.27
5_1 29.82 5.74 11.49
5_2 29.85 5.76 11.55 −0.03 0.44 −0.13 0.06 1.16
6_1 29.53 5.70 11.43
6_2 29.38 5.65 11.32 0.16 0.45 0.07 0.25 1.17
7_1 29.19 5.52 11.06
7_2 29.33 5.60 11.23 −0.15 0.57 −0.26 −0.03 1.37
8_1 29.69 5.60 11.22
8_2 29.62 5.59 11.21 0.07 0.57 −0.05 0.18 1.38
9_1 29.31 5.52 11.06
9_2 29.12 5.50 11.02 0.19 0.68 0.05 0.33 1.55
10_1 28.16 5.13 10.29
10_2 28.17 5.14 10.30 0.00 0.63 −0.14 0.13 1.47
11_1 28.70 5.33 10.68
11_2 28.80 5.36 10.74 −0.10 0.83 −0.27 0.08 1.81
12_1 29.32 5.51 11.05
12_2 29.30 5.57 11.16 0.02 0.73 −0.13 0.17 1.64
13_1 29.98 5.60 11.22
13_2 29.88 5.60 11.22 0.10 0.63 −0.03 0.23 1.48
14_1 29.15 5.51 11.03
14_2 29.09 5.47 10.96 0.06 0.86 −0.12 0.24 1.88
15_1 27.55 5.26 10.55
15_2 27.49 5.32 10.67 0.06 0.87 −0.12 0.24 1.89
16_1 28.16 5.23 10.48
16_2 28.05 5.31 10.65 0.11 0.84 −0.06 0.29 1.84
17_1 28.41 5.25 10.52
17_2 28.37 5.27 10.57 0.04 0.69 −0.10 0.18 1.56
18_1 27.71 5.25 10.52
18_2 27.52 5.21 10.44 0.19 0.82 0.02 0.36 1.80
19_1 28.16 5.31 10.64
19_2 27.97 5.34 10.70 0.20 0.88 0.02 0.38 1.91
20_1 28.41 5.35 10.72
20_2 28.30 5.36 10.74 0.11 0.74 −0.04 0.26 1.66
21_1 27.35 5.29 10.61
21_2 27.26 5.23 10.49 0.09 0.84 −0.09 0.26 1.85
22_1 28.00 5.36 10.75
22_2 27.88 5.25 10.54 0.12 0.85 −0.06 0.29 1.86
23_1 28.40 5.36 10.75
23_2 28.20 5.30 10.63 0.20 0.76 0.04 0.36 1.70
24_1 27.25 5.16 10.35
24_2 27.08 5.14 10.31 0.17 0.77 0.01 0.33 1.71
25_1 27.59 5.34 10.71
25_2 27.41 5.33 10.69 0.19 0.79 0.02 0.35 1.75
26_1 27.84 5.48 10.98
26_2 27.65 5.48 10.98 0.19 0.93 −0.01 0.38 2.01

Mean 28.62 5.44 10.91 0.07 0.69 −0.07 0.22 1.58

CI, confidence interval; ROI, region of interest; SD, standard deviation.
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The average temperatures of the ROIs differed significantly between the six regions
(p < 0.001, ANOVA) (Figure 2).
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Figure 2. Comparison of the average temperatures of each ROI in the six regions. ROI: region of
interest; and ◦ indicates a label out of range.

The overall median of the average of the absolute value of the ∆T (|∆T|,√
[temperature of the right side − left side]2) was 0.10 (range, 0.00–0.52). Additionally,

|∆T| values differed significantly between the six regions (p < 0.001, ANOVA). In par-
ticular, the |∆T| in the lateral arm region was significantly larger (median 0.14 [range,
0.05–0.52]) than that of any other regions (Figure 3).
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3.3. Subgroup Analysis Based on ROI Location

Distally located ROIs had significantly lower average surface temperatures, except
for the lateral arm region, as indicated by the regression analysis. The relationship be-
tween the average temperature of each ROI and the proximity of ROIs were as follows:
dorsal arm region temperature = 29.916 − (0.181 × ROIs) (p < 0.001, R2 = 0.480); ven-
tral arm region temperature = 29.915 − (0.070 × ROIs) (p = 0.012, R2 = 0.162); lateral
arm region temperature = 28.684 − (0.063 × ROIs) (p = 0.132, R2 = 0.062); medial arm re-
gion temperature = 29.591 − (0.188 × ROIs) (p < 0.001, R2 = 0.750); dorsal hand region
temperature = 31.474 − (0.399 × ROIs) (p < 0.001, R2 = 0.799); and ventral hand region
temperature = 29.855 − (0.284 × ROIs) (p < 0.001, R2 = 0.429) (Figure 4).
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Figure 4. Correlation between the average temperatures of each ROI and the proximity of ROIs to
the body core of the six regions, as determined by linear regression analysis. The trend observed in
the figure demonstrates a gradual decrease in surface temperature from proximal to distal for each
ROI, except for the lateral arm region. ROIs, regions of interest.

The average |∆T| values of the ROIs did not show any specific trend. The rela-
tionship between the average |∆T| of each ROI and the proximity of ROIs were as
follows: dorsal arm region |∆T| = 0.074 + (0.006 × ROIs) (p = 0.535, R2 = 0.024); ven-
tral arm region |∆T| = 0.031 + (0.013 × ROIs) (p = 0.090, R2 = 0.160); lateral arm region
|∆T| = 0.299− (0.030×ROIs) (p = 0.066, R2 = 0.185); medial arm region |∆T| = 0.090− (0.001×ROIs)
(p = 0.855, R2 = 0.007); dorsal hand region |∆T| = 0.157 − (0.012× ROIs) (p = 0.117,
R2 = 0.099); and ventral hand region |∆T| = 0.078 + (0.008 × ROIs) (p = 0.225, R2 = 0.061)
(Figure 5).
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Figure 5. Correlation between right to left temperature discrepancies and the proximity of ROIs to the
body core of the six regions, as determined by linear regression analysis. No perceptible correlation
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ROIs, regions of interest.

3.4. Subgroup Analysis Based on Sex

The average temperatures of each same ROI were significantly higher in male sub-
jects compared to female subjects across all regions and age groups (p < 0.001, paired
t-test). The average temperatures for each region were as follows: 30.31 ± 5.43 (range,
29.45 ± 5.83–32.51 ± 4.59) for men and 28.32 ± 5.94 (range, 26.06 ± 5.85–29.59 ± 5.82)
for women in the dorsal arm region; 30.72 ± 5.47 (range, 29.9 ± 5.93–32.89 ± 4.55)
for men and 28.73 ± 5.97 (range, 26.51 ± 5.92–30.05 ± 5.86) for women in the ventral
arm region; 29.66 ± 5.45 (range, 28.76 ± 5.89–31.67 ± 4.60) for men and 27.44 ± 5.92
(range, 25.13 ± 5.85–28.81 ± 5.73) for women in the lateral arm region; 29.84 ± 5.33 (range,
29.11 ± 5.72–31.84 ± 4.56) for men and 28.00 ± 5.78 (range, 25.80 ± 5.64–29.34 ± 5.72)
for women in the medial arm region; 30.51 ± 4.93 (range, 29.67 ± 5.33–32.38 ± 3.83) for
men and 28.81 ± 5.38 (range, 27.34 ± 5.21–29.38 ± 5.25) for women in the dorsal hand
region; and 29.71 ± 5.22 (range, 29.12 ± 5.14–31.30 ± 4.55) for men and 27.72 ± 5.63 (range,
25.48 ± 5.43–29.14 ± 5.67) for women in the ventral hand region (Table 7).

Table 7. Comparison of the average temperature in the same region of interest according to sex and
age group.

Characteristics Male (◦C) Female (◦C) Mean (◦C) Difference between Sexes (◦C) p Value

Dorsal arm region <0.001 a

20s (n = 183) 29.82 ± 5.37 28.99 ± 6.05 29.43 ± 5.69 0.83 (95% CI, 0.57–1.09) <0.001 b

30s (n = 213) 29.45 ± 5.83 26.06 ± 5.85 27.79 ± 5.84 3.39 (95% CI, 3.19–3.59) <0.001 b

40s (n = 228) 30.44 ± 5.55 28.58 ± 6.41 29.47 ± 6.00 1.86 (95% CI, 1.61–2.12) <0.001 b

50s (n = 177) 31.15 ± 5.04 28.82 ± 5.53 29.68 ± 5.35 2.33 (95% CI, 2.12–2.54) <0.001 b

60s (n = 104) 32.51 ± 4.59 29.59 ± 5.82 30.49 ± 5.44 2.92 (95% CI, 2.65–3.18) <0.001 b

Sum 30.31 ± 5.43 28.32 ± 5.94 29.22 ± 5.71 1.99 (95% CI, 1.76–2.22 <0.001 b
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Table 7. Cont.

Characteristics Male (◦C) Female (◦C) Mean (◦C) Difference between Sexes (◦C) p Value

Ventral arm region <0.001 a

20s (n = 183) 30.18 ± 5.41 29.40 ± 6.12 29.81 ± 5.74 0.78 (95% CI, 0.60–0.96) <0.001 b

30s (n = 213) 29.95 ± 5.93 26.51 ± 5.92 28.25 ± 5.93 3.44 (95% CI, 3.31–3.58) <0.001 b

40s (n = 228) 30.82 ± 5.59 28.90 ± 6.35 29.82 ± 5.99 1.92 (95% CI, 1.73–2.10) <0.001 b

50s (n = 177) 31.59 ± 5.05 29.25 ± 5.56 30.11 ± 5.37 2.34 (95% CI, 2.19–2.49) <0.001 b

60s (n = 104) 32.89 ± 4.55 30.05 ± 5.86 30.92 ± 5.46 2.84 (95% CI, 2.64–3.05) <0.001 b

Sum 30.72 ± 5.47 28.73 ± 5.97 29.63 ± 5.74 2.00 (95% CI, 1.84–2.16) <0.001 b

Lateral arm region <0.001 a

20s (n = 183) 29.18 ± 5.40 28.29 ± 6.16 28.76 ± 5.76 0.90 (95% CI, 0.66–1.14) <0.001 b

30s (n = 213) 28.76 ± 5.89 25.13 ± 5.85 26.97 ± 5.87 3.63 (95% CI, 3.43–3.83) <0.001 b

40s (n = 228) 29.85 ± 5.52 27.62 ± 6.31 28.69 ± 5.93 2.23 (95% CI, 1.99–2.48) <0.001 b

50s (n = 177) 30.57 ± 5.07 27.88 ± 5.52 28.87 ± 5.35 2.69 (95% CI, 2.48–2.90) <0.001 b

60s (n = 104) 31.67 ± 4.60 28.81 ± 5.73 29.69 ± 5.38 2.85 (95% CI, 2.58–3.13) <0.001 b

Sum 29.66 ± 5.45 27.44 ± 5.92 28.62 ± 5.67 2.22 (95% CI, 2.00–2.45) <0.001 b

Medial arm region <0.001 a

20s (n = 183) 29.25 ± 5.25 28.62 ± 5.97 28.94 ± 5.60 0.63 (95% CI, 0.24–1.01) 0.003 b

30s (n = 213) 29.11 ± 5.72 25.80 ± 5.64 27.38 ± 5.68 3.15 (95% CI, 2.90–3.40) <0.001 b

40s (n = 228) 29.96 ± 5.44 28.21 ± 6.18 28.85 ± 5.91 1.74 (95% CI, 1.29–2.20) <0.001 b

50s (n = 177) 30.77 ± 4.98 28.50 ± 5.37 29.20 ± 5.25 2.27 (95% CI, 1.96–2.58) <0.001 b

60s (n = 104) 31.84 ± 4.56 29.34 ± 5.72 30.48 ± 5.19 2.51 (95% CI, 2.06–2.95) <0.001 b

Sum 29.84 ± 5.33 28.00 ± 5.78 28.84 ± 5.57 1.84 (95% CI, 1.49–2.20) <0.001 b

Dorsal hand region <0.001 a

20s (n = 183) 29.86 ± 5.31 29.04 ± 5.81 29.46 ± 5.56 0.82 (95% CI, 0.45–1.18) <0.001 b

30s (n = 213) 32.38 ± 3.83 29.38 ± 5.25 30.81 ± 4.57 3.00 (95% CI, 2.63–3.38) <0.001 b

40s (n = 228) 30.70 ± 4.92 28.93 ± 5.36 29.87 ± 5.13 1.77 (95% CI, 1.44–2.11) <0.001 b

50s (n = 177) 29.67 ± 5.33 27.34 ± 5.21 28.52 ± 5.27 2.33 (95% CI, 2.01–2.66) <0.001 b

60s (n = 104) 29.58 ± 5.51 28.76 ± 4.98 29.15 ± 5.23 0.83 (95% CI, 0.51–1.14) <0.001 b

Sum 30.51 ± 4.93 28.81 ± 5.38 29.74 ± 5.14 1.70 (95% CI, 1.36–2.05) <0.001 b

Ventral hand
region <0.001 a

20s (n = 183) 29.12 ± 5.14 28.07 ± 5.79 28.39 ± 5.59 1.05 (95% CI, 0.70–1.40) <0.001 b

30s (n = 213) 29.28 ± 5.78 25.48 ± 5.43 27.21 ± 5.59 3.80 (95% CI, 3.49–4.10) <0.001 b

40s (n = 228) 29.52 ± 5.21 27.88 ± 5.80 28.75 ± 5.49 1.64 (95% CI, 1.27–2.02) <0.001 b

50s (n = 177) 30.86 ± 4.75 28.45 ± 5.49 29.67 ± 5.11 2.41 (95% CI, 2.12–2.70) <0.001 b

60s (n = 104) 31.30 ± 4.55 29.14 ± 5.67 30.17 ± 5.13 2.16 (95% CI, 1.74–2.59) <0.001 b

Sum 29.71 ± 5.22 27.72 ± 5.63 28.62 ± 5.44 2.00 (95% CI, 1.67–2.33) <0.001 b

a analysis of variance, b paired t-test.

The temperature difference between both sexes ranged from 0 ◦C 63 (95% CI, 0.24–1.01)
to 3.80 ◦C (95% CI, 3.49–4.10), depending on region and age group (Figure 6).
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3.5. Subgroup Analysis Based on Age Group

The average temperatures of the ROIs significantly increased with age, particularly in
individuals in their 30s and older in all regions, except for the dorsal hand region (p < 0.001,
ANOVA). However, subjects in their 20s had a higher surface temperature than those in
their 30s (p < 0.001, paired t-test). Consequently, surface temperatures were lowest for
those in their 30s for all regions, except for the dorsal hand region (p< 0.001, ANOVA post
hoc analysis) (Table 7 and Figure 7).
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4. Discussion
4.1. Average Temperature and |∆T| of Each ROI

The average surface temperature of the upper limbs varied depending on regions and
ROIs, ranging from 27.08 ± 5.14 ◦C to 31.27 ± 5.53 ◦C, which is consistent with the results
found in our previous study on the lower limbs. However, the average temperatures of the upper
limbs were higher than those of the lower limbs (range, 24.60 ± 5.06 ◦C–27.75 ± 5.76 ◦C) [20].
We believe this difference is due to the different distance from the heart [21–23].

The average of |∆T| of each ROI also varied by regions and ROIs, ranging from 0.00
to 0.52 ◦C. However, these values are smaller compared to the reference standards of the
lower limbs, where |∆T| reached 0.76 ◦C [20]. Nevertheless, the practical value of |∆T|
of the upper limbs was not within 0.1–0.3 ◦C, which is considered the normal range, based
on the previous consensus [15,24,25].

These data for each ROI provide reference standards for DITI of the upper limbs.
Clinically significant cold/hot areas, or specific areas with a significant difference between
both sides, can be detected based on comparative analysis between the practical patient’s
image and these data. Additionally, the detailed ROIs in this study can be modified
simply during the processing of DITI capture in actual clinical practice. However, accurate
diagnosis requires a comparison of each ROI, not just the averages of whole regions, as
normal ranges of surface temperature and ∆T values vary depending on region or ROI.

Various intrinsic factors, such as sex, age, fat percentage, and menstrual cycle stage,
and extrinsic factors, such as test environment, testing time, and season, can influence
the results [26–29]. As a result, actual DITI measurements may fall outside the reference
standard values. Therefore, further clinical studies are necessary to validate these data by
comparing the DITI results of patients with specific diseases with those of healthy subjects.
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4.2. Subgroup Analysis Based on Proximity of ROIs, Sex, and Age Group

A significant correlation was found between the proximity of ROIs to the body core
and surface temperature in all regions, except for the lateral arm region, i.e., surface
temperatures decreased from the proximal regions to the distal ends. These findings are
consistent with a previous suggestion that the surface temperatures of peripheral regions
(e.g., hand or foot) tend to be cooler than central regions (e.g., trunk or proximal arm), due
to the greater distances from the main thermal organs, such as the heart, large vessels, or
viscera [20–23]. This tendency was found to be greater for the upper limbs than lower
limbs, which can be attributed to the fact that the upper limbs are closer to the heart than
the lower limbs, resulting in the proximal region being distinctly warmer than the distal
region [20].

However, the |∆T| values showed no specific trend based on proximity of ROIs to the
body core, which is different from a previous suggestion that the |∆T| values are higher
in the distal regions compared to the proximal regions [2,15]. This was also found in the
lower limbs in a previous study [20].

Surface temperatures were found to be higher for men in all regions, which is consistent
with suggestions that surface temperatures are lower for women due to the insulating effect
of thicker subcutaneous fat [30]. This trend was also observed for the lower limbs [20].

Surface temperatures increased significantly with age from the 30s, except for the
dorsal hand region, which is also consistent with previous research on the lower extremi-
ties [20]. These trends may be caused by age-related diminished vasoconstriction by the
sympathetic nervous system [31–33]. The paradoxical higher temperatures for those in their
20s can be explained by a higher basal metabolic rate and less subcutaneous fat [34,35].

4.3. Limitations and Significance

Establishing reference standards for DITI is a complex task due to the influence of
various confounding factors on skin temperature and DITI measurements [36]. Therefore,
it is important to acknowledge several limitations of our study. First, body fat percentage is
a significant confounding factor in measuring body surface temperature using DITI [37]
However, we did not collect data on body fat percentage or calculate the body mass index
based on body weight and height. Secondly, daily biorhythms, such as menstrual cycle
status, menopause, sleep patterns, and emotional stress, can also impact DITI results [38,39].
Unfortunately, we did not account for these factors during the examination. Thirdly,
various extrinsic factors, including diurnal testing time, season, and ethnicity were not
considered [39]. Moreover, even though we recruited healthy adult volunteers based on
questionnaire responses, the process does not guarantee the exclusion of specific diseases
or conditions that may have affected DITI results.

Nonetheless, the study holds value due to its large sample size and the use of a
consistent protocol for measurements. It represents the first attempt to establish reference
standards for DITI measurements of the upper limbs.

5. Conclusions

The findings of this study provide a basis for establishing reference standards for
DITI measurements of surface temperatures in the upper extremities. These standards can
aid physicians in making objective diagnoses by comparing patient DITI results with the
provided data. However, it is crucial to consider the influence of various confounding
factors in surface temperature measurements. Moreover, before confirming the results, it is
important to consider several parameters, including the specific location of the ROIs, sex,
and age.
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7. Ćurković, S.; Antabak, A.; Halužan, D.; Luetić, T.; Prlić, I.; Šiško, J. Medical thermography (digital infrared thermal imaging—DITI)
in paediatric forearm fractures—A pilot study. Injury 2015, 46 (Suppl. S6), S36–S39. [CrossRef]

8. Chlebicka, I.; Matusiak, Ł.; Maj, J.; Baran, E.; Szepietowski, J.C. Freezing fingers syndrome, primary and secondary Raynaud’s
phenomenon: Characteristic features with hand thermography. Acta Derm. Venereol. 2013, 93, 428–432. [CrossRef]

9. Branco, J.H.L.; Branco, R.L.L.; Siqueira, T.C.; de Souza, L.C.; Dalago, K.M.S.; Andrade, A. Clinical applicability of infrared
thermography in rheumatic diseases: A systematic review. J. Therm. Biol. 2022, 104, 103172. [CrossRef]

10. Albuquerque, N.F.; Lopes, B.S. Musculoskeletal applications of infrared thermography on back and neck syndromes: A systematic
review. Eur. J. Phys. Rehabil. Med. 2021, 57, 386–396. [CrossRef]

11. Capo, A.; Ismail, E.; Cardone, D.; Celletti, E.; Auriemma, M.; Sabatini, E.; Merla, A.; Amerio, P. Joint functional impairment and
thermal alterations in patients with Psoriatic Arthritis: A thermal imaging study. Microvasc. Res. 2015, 102, 86–91. [CrossRef]
[PubMed]

12. Park, Y.E.; Lee, S.E.; Eom, Y.S.; Cho, J.M.; Yang, J.W.; Kim, M.S.; Kwon, H.D.; Lee, J.W.; Park, D. Infrared thermographic changes
after decompression surgery in patients with carpal tunnel syndrome. BMC Musculoskelet. Disord. 2023, 24, 79. [CrossRef]
[PubMed]

13. Park, D.; Kim, B.H.; Lee, S.E.; Kim, D.Y.; Eom, Y.S.; Cho, J.M.; Yang, J.W.; Kim, M.; Kwon, H.D.; Lee, J.W. Application of digital
infrared thermography for carpal tunnel syndrome evaluation. Sci. Rep. 2021, 11, 21963. [CrossRef]

14. Edeiken, J.; Shaber, G. Thermography: A reevaluation. Skelet. Radiol. 1986, 15, 545–548. [CrossRef]
15. Zhang, H.Y.; Kim, Y.S.; Cho, Y.E. Thermatomal changes in cervical disc herniations. Yonsei Med. J. 1999, 40, 401–412. [CrossRef]

[PubMed]
16. Hoffman, R.M.; Kent, D.L.; Deyo, R.A. Diagnostic accuracy and clinical utility of thermography for lumbar radiculopathy. A

meta-analysis. Spine 1991, 16, 623–628. [CrossRef]

114



Bioengineering 2023, 10, 671

17. Berner, J.E.; Pereira, N.; Troisi, L.; Will, P.; Nanchahal, J.; Jain, A. Accuracy of infrared thermography for perforator mapping: A
systematic review and meta-analysis of diagnostic studies. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 1173–1179. [CrossRef]

18. Kim, G.N.; Zhang, H.Y.; Cho, Y.E.; Ryu, S.J. Differential Screening of Herniated Lumbar Discs Based on Bag of Visual Words
Image Classification Using Digital Infrared Thermographic Images. Healthcare 2022, 10, 1094. [CrossRef]

19. Filippini, C.; Cardone, D.; Perpetuini, D.; Chiarelli, A.M.; Gualdi, G.; Amerio, P.; Merla, A. Convolutional Neural Networks for
Differential Diagnosis of Raynaud’s Phenomenon Based on Hands Thermal Patterns. Appl. Sci. 2021, 11, 3614. [CrossRef]

20. Zhang, H.Y.; Son, S.; Yoo, B.R.; Youk, T.-M. Reference Standard for Digital Infrared Thermography of the Surface Temperature of
the Lower Limbs. Bioengineering 2023, 10, 283. [CrossRef]

21. Abe, N.; Kodama, H. Distal-proximal skin temperature gradient prior to sleep onset in infants for clinical use. Pediatr. Int. Off. J.
Jpn. Pediatr. Soc. 2015, 57, 227–233. [CrossRef] [PubMed]

22. Johnson, J.M.; Kellogg, D.L., Jr. Thermoregulatory and thermal control in the human cutaneous circulation. Front. Biosci. (Sch.
Ed.) 2010, 2, 825–853. [CrossRef]

23. Braverman, I.M. The cutaneous microcirculation: Ultrastructure and microanatomical organization. Microcirculation 1997, 4,
329–340. [CrossRef] [PubMed]

24. Uematsu, S.; Edwin, D.H.; Jankel, W.R.; Kozikowski, J.; Trattner, M. Quantification of thermal asymmetry. Part 1: Normal values
and reproducibility. J. Neurosurg. 1988, 69, 552–555. [CrossRef]

25. Uematsu, S.; Jankel, W.R.; Edwin, D.H.; Kim, W.; Kozikowski, J.; Rosenbaum, A.; Long, D.M. Quantification of thermal asymmetry.
Part 2: Application in low-back pain and sciatica. J. Neurosurg. 1988, 69, 556–561. [CrossRef]

26. Neves, E.B.; Salamunes, A.C.C.; de Oliveira, R.M.; Stadnik, A.M.W. Effect of body fat and gender on body temperature distribution.
J. Therm. Biol. 2017, 70, 1–8. [CrossRef]

27. Chudecka, M.; Lubkowska, A. Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa.
Eur. Eat. Disord. Rev. J. Eat. Disord. Assoc. 2016, 24, 57–61. [CrossRef]

28. Te Lindert, B.H.W.; Van Someren, E.J.W. Skin temperature, sleep, and vigilance. Handb. Clin. Neurol. 2018, 156, 353–365. [CrossRef]
29. Van Someren, E.J.; Raymann, R.J.; Scherder, E.J.; Daanen, H.A.; Swaab, D.F. Circadian and age-related modulation of thermore-

ception and temperature regulation: Mechanisms and functional implications. Ageing Res. Rev. 2002, 1, 721–778. [CrossRef]
30. Savastano, D.M.; Gorbach, A.M.; Eden, H.S.; Brady, S.M.; Reynolds, J.C.; Yanovski, J.A. Adiposity and human regional body

temperature. Am. J. Clin. Nutr. 2009, 90, 1124–1131. [CrossRef]
31. Kenney, W.L.; Munce, T.A. Invited review: Aging and human temperature regulation. J. Appl. Physiol. 2003, 95, 2598–2603.

[CrossRef]
32. Kenney, W.L.; Armstrong, C.G. Reflex peripheral vasoconstriction is diminished in older men. J. Appl. Physiol. 1996, 80, 512–515.

[CrossRef]
33. Borisov, V.V.; Lin, D.C. Temperature fluctuations in the lower limbs of young and elderly individuals during activities of daily

living. Exp. Gerontol. 2014, 57, 243–249. [CrossRef]
34. Marion, G.S.; McGann, K.P.; Camp, D.L. Core body temperature in the elderly and factors which influence its measurement.

Gerontology 1991, 37, 225–232. [CrossRef] [PubMed]
35. Fox, R.H.; Woodward, P.M.; Exton-Smith, A.N.; Green, M.F.; Donnison, D.V.; Wicks, M.H. Body temperatures in the elderly: A

national study of physiological, social, and environmental conditions. Br. Med. J. 1973, 1, 200–206. [CrossRef] [PubMed]
36. Sivanandam, S.; Anburajan, M.; Venkatraman, B.; Menaka, M.; Sharath, D. Medical thermography: A diagnostic approach for

type 2 diabetes based on non-contact infrared thermal imaging. Endocrine 2012, 42, 343–351. [CrossRef] [PubMed]
37. Morrissey, M.C.; Wu, Y.; Zuk, E.F.; Livingston, J.; Casa, D.J.; Pescatello, L.S. The impact of body fat on thermoregulation during

exercise in the heat: A systematic review and meta-analysis. J. Sci. Med. Sport 2021, 24, 843–850. [CrossRef]
38. Miyake, T.; Doi, M. Roles of the Circadian Clock Mechanism in the Regulation of Daily Rhythms of Body Temperature. Brain

Nerve = Shinkei Kenkyu No Shinpo 2022, 74, 159–166. [CrossRef]
39. Costa, C.M.A.; Moreira, D.G.; Sillero-Quintana, M.; Brito, C.J.; de Azambuja Pussieldi, G.; de Andrade Fernandes, A.; Cano, S.P.;

Bouzas Marins, J.C. Daily rhythm of skin temperature of women evaluated by infrared thermal imaging. J. Therm. Biol. 2018, 72,
1–9. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

115



Citation: Parker, M.; Annamdevula,

N.S.; Pleshinger, D.; Ijaz, Z.; Jalkh, J.;

Penn, R.; Deshpande, D.; Rich, T.C.;

Leavesley, S.J. Comparing

Performance of Spectral Image

Analysis Approaches for Detection of

Cellular Signals in Time-Lapse

Hyperspectral Imaging Fluorescence

Excitation-Scanning Microscopy.

Bioengineering 2023, 10, 642.

https://doi.org/10.3390/

bioengineering10060642

Academic Editor: Cuneyt M. Alper

Received: 24 April 2023

Revised: 13 May 2023

Accepted: 16 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Comparing Performance of Spectral Image Analysis
Approaches for Detection of Cellular Signals in Time-Lapse
Hyperspectral Imaging Fluorescence Excitation-Scanning
Microscopy
Marina Parker 1,2,†, Naga S. Annamdevula 3,4,†, Donald Pleshinger 3,4, Zara Ijaz 5, Josephine Jalkh 5,
Raymond Penn 6, Deepak Deshpande 6, Thomas C. Rich 3,4 and Silas J. Leavesley 1,2,3,4,*

1 Department of Chemical and Biomolecular Engineering, University of South Alabama,
150 Student Services Dr., Mobile, AL 36688, USA

2 Department of Systems Engineering, University of South Alabama, 150 Student Services Dr.,
Mobile, AL 36688, USA

3 Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA;
annamdevula@southalabama.edu (N.S.A.)

4 Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
5 College of Medicine, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
6 College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
* Correspondence: leavesley@southalabama.edu
† These authors contributed equally to this work.

Abstract: Hyperspectral imaging (HSI) technology has been applied in a range of fields for target
detection and mixture analysis. While HSI was originally developed for remote sensing applications,
modern uses include agriculture, historical document authentication, and medicine. HSI has also
shown great utility in fluorescence microscopy. However, traditional fluorescence microscopy HSI
systems have suffered from limited signal strength due to the need to filter or disperse the emitted
light across many spectral bands. We have previously demonstrated that sampling the fluorescence
excitation spectrum may provide an alternative approach with improved signal strength. Here, we
report on the use of excitation-scanning HSI for dynamic cell signaling studies—in this case, the study
of the second messenger Ca2+. Time-lapse excitation-scanning HSI data of Ca2+ signals in human
airway smooth muscle cells (HASMCs) were acquired and analyzed using four spectral analysis
algorithms: linear unmixing (LU), spectral angle mapper (SAM), constrained energy minimization
(CEM), and matched filter (MF), and the performances were compared. Results indicate that LU
and MF provided similar linear responses to increasing Ca2+ and could both be effectively used
for excitation-scanning HSI. A theoretical sensitivity framework was used to enable the filtering of
analyzed images to reject pixels with signals below a minimum detectable limit. The results indicated
that subtle kinetic features might be revealed through pixel filtering. Overall, the results suggest that
excitation-scanning HSI can be employed for kinetic measurements of cell signals or other dynamic
cellular events and that the selection of an appropriate analysis algorithm and pixel filtering may aid
in the extraction of quantitative signal traces. These approaches may be especially helpful for cases
where the signal of interest is masked by strong cellular autofluorescence or other competing signals.

Keywords: hyperspectral imaging; fluorescence microscopy; theoretical sensitivity; cellular
autofluorescence

1. Introduction

Hyperspectral imaging (HSI) technologies were originally developed by NASA and
the United States Department of Defense for Earth resource monitoring and military appli-
cations [1,2]. More recently, HSI technologies have been applied to a wide range of fields,
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including document preservation [3,4], agriculture monitoring [5], and medicine [6]. Within
the field of biological cellular imaging, HSI technologies have displayed great potential
for use with fluorescence microscopy [2,7,8]. In specific, HSI has enabled the detection of
many fluorescent labels simultaneously [9–11]; the separation of fluorescence signals from
cellular and tissue autofluorescence [11–13]; and the quantitation of signals, such as for
measurement of ratiometric Förster resonance energy transfer (FRET) reporters [14–16].

A range of technologies and approaches have been developed in adapting HSI to
clinical and biomedical research applications. If the imaging application presents a strong
optical signal, high contrast, and does not require high-speed or time-sensitive imaging, a
straight-forward approach may be to apply a pre-existing or semi-customized HSI camera
or spectral filtering module, along with customized analysis algorithms. This approach
is well-suited for transmitted or reflected light HSI, where broad-band illumination may
be used to enable a wide spectral scanning range. For example, imaging of fixed and
stained histology slides, which present a bright transmitted light signal with negligible
photobleaching, can be imaged using a spectral detector consisting of a camera and tunable
filter, such as a liquid-crystal tunable filter (LCTF) [17–19], acousto-optic tunable filter
(AOTF) [20,21], or thin-film tunable filter (TFTF) [22]. Li and colleagues have implemented
this approach on an upright microscope platform with illumination provided by a standard
microscope lamp (presumed to be a halogen bulb) and spectral detection provided by an
AOTF module coupled with a charge-coupled device (CCD) camera [23]. This system
provided an HSI range of 550–1000 nm and allowed segmentation and spectral analysis
of red blood cell (RBC) smears. The same system was later utilized by the group in a
manuscript by Wang et al. for HSI-based studies of melanoma pathology slides, where a
convolutional neural network (CNN) analysis was developed to allow segmentation of
pathology images as well as automated detection of melanomas, with an overall accuracy of
92% [24]. Finally, HSI datasets of pathology slides of bile duct tissues were acquired using
this same system, analyzed with deep neural network (DNN) approaches for detection
of cholangiocarcinoma, and found to achieve a patch-level classification accuracy of 94%
using the ResNet50 algorithm [25].

In other scenarios, a sample may present a sensitive fluorescence signal that is prone
to photobleaching or a live cell, tissue, or in vivo sample may require dynamic imaging
to measure a range of cell signaling or physiologic processes. In these cases, there are
inherent trade-offs or limitations when implementing HSI for advanced microscopy ap-
plications [26,27]. These limitations primarily occur due to the need to divide the photon
budget—the fluorescence emission signal—among several dimensions: spatial (X, Y, and
in some instances, Z), temporal for time-dependent studies, and spectral (λ). In many
cases, the selection of a fluorescence microscope platform and corresponding spectral
filtering is determined so as to optimize the imaging performance and shift the weight
of the trade-off for a specific application. For example, if high-speed imaging is required
for kinetic cellular signaling studies, a widefield or spinning disk confocal microscope
may be used where only one or several axial images are acquired, and only one or several
wavelength bands are sampled [28,29]. By sampling only one or a minimal number of axial
slices and wavelength bands, the temporal sampling may be increased at the expense of
axial or spectral sampling. However, there are many biological imaging scenarios where
multiple requirements must be considered, such as performing cell signaling studies in
cell lines or tissues that are inherently autofluorescent, where both temporal sampling and
spectral sampling are needed [30,31]. In these cases, the selection of an appropriate imaging
platform and acquisition settings must be performed carefully in order to achieve optimal
microscope settings for the study. Post-acquisition image processing may also be applied
in an effort to mitigate imaging system trade-offs [32]. Often there is no perfect solution.

We, and others, have previously demonstrated that an alternative approach for hyper-
spectral imaging—where spectral filtering is implemented in the excitation optics rather
than the emission optics, as shown in the optical light path in Figure 1—may provide an
increased signal for some studies [33–35]. In traditional emission-scanning HSI fluores-
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cence microscope systems (Figure 1A), illumination is typically provided by a broad-band
source and a band-pass excitation filter, and the fluorescence emission spectrum is scanned
using a tunable filter and camera or a dispersion-based spectral detector based on a grat-
ing [36] or prism [37]. A typical emission-scanning experiment would utilize spectral
settings so as to excite one or several fluorescence labels near the corresponding excitation
spectral peak wavelength(s) and acquire images of fluorescence emission sampled across
many spectral bands using a narrow wavelength band for each (Figure 1B). By contrast,
in excitation-scanning HSI fluorescence microscope systems (Figure 1C), narrow-band
illumination is provided that can be tuned over many different excitation wavelengths
while the fluorescence emission is detected using a broad-band or long-pass emission
filter and camera. A typical excitation-scanning experiment would utilize spectral settings
so as to scan the fluorescence excitation over the range of excitation spectral peak wave-
lengths while sequentially acquiring an image of fluorescence emission for each excitation
wavelength scanned (Figure 1D). Hence, the excitation-scanning HSI approach utilizes the
wavelength-dependent properties of the excitation spectrum of each fluorophore in order
to perform spectral separation. Because the fluorescence emission is minimally processed
in the spectral dimension, the signal reaching the detector is stronger, enabling increased
imaging speeds and/or decreased photobleaching.
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microscope system utilizes one or several narrow bandwidths of illumination for excitation while
acquiring fluorescence emission over many narrow spectral bands using a tunable filter or other
wavelength sampling device (prism, grating, etc.). (B) An illustration of the spectral scan range for
an emission-scanning HSI system. The fluorescence excitation and emission spectra of a hypothetical
fluorescence label are shown as dotted and solid green lines. Excitation is provided at one narrow
band, illustrated by the solid green bar placed at the peak excitation wavelength. Fluorescence
emission is sampled across many narrow bands, illustrated by the many individual bars across
the fluorescence emission spectrum. (C) The excitation-scanning HSI microscope system utilizes
a tunable filter to sequentially select between many narrow excitation wavelength bands while
acquiring fluorescence emission using a broad-band or long-pass emission filter (LP EM Filter).
(D) An illustration of the spectral scan range for an excitation-scanning HSI system. The fluorescence
excitation spectrum is sequentially sampled using many narrow excitation bands, as indicated by
narrow bars placed over the excitation spectrum. The emitted fluorescence is detected in bulk using a
broad-band or long-pass emission filter.

The overall goal of this study is to compare the performance of common spectral
analysis algorithms for use in kinetic cell signaling experiments where excitation-scanning
HSI is implemented to enable the separation of the fluorescent label of interest from
cellular autofluorescence. Specifically, the goal is to accurately identify a fluorescent
label for intracellular Ca2+ and to separate this signal from autofluorescence in time-lapse
excitation-scanning HSI image data. Recent studies highlight the significance of signal
localization in differentiating contractile from non-contractile agonists [38–42]. However,
non-uniform cellular autofluorescence can complicate these studies, and HSI approaches
offer the potential to separate autofluorescence from Ca2+ and other labels. Here, we
compare four spectral analysis algorithms: linear unmixing (LU) [43,44], constrained
energy minimization (CEM) [45], matched filtering (MF) [46,47], and spectral angle mapper
(SAM) [48]. In addition, the effects of using signal intensity thresholding and pixel filtering
are evaluated, which enables the analysis of selected pixels above a defined minimum
detectable limit. The results indicate that utilizing an optimal spectral analysis algorithm,
as well as pixel filtering, can provide an improved ability to quantify weak transient signals,
or signals from small regions of the image or localized subcellular regions.

2. Materials and Methods
2.1. Cell Culture

Human airway smooth muscle cells (HASMCs) were selected as a model system
because of the critical role that localized Ca2+ signals play in maintaining a contractile
state. Recent studies highlight the significance of signal localization in segregating con-
tractile from non-contractile agonists [38–42]. HASMCs were isolated and cultured as
described previously [49]. Briefly, HASMCs were grown in 100 mm culture dishes and
were maintained in Dulbecco’s Modified Eagles Medium (DMEM, GIBCO) supplemented
with 5% fetal bovine serum (Gemini), basic fibroblast growth factor (SIGMA), epidermal
growth factor (Invitrogen), 100 U/mL penicillin, and 100 µg/mL streptomycin (Gibco) at
pH 7.0. HASMCs were seeded onto 20 mm laminin-coated round glass coverslips and were
incubated 37 ◦C and 5% CO2 for 48 h (or until the cells were grown to 70–80% confluency).

Samples with a single label of either NucBlue (nuclear label, ThermoFisher Scientific,
Inc., Waltham, MA, USA), Cal 520-AM (Ca+2 indicator, AAT Bioquest, Inc., Pleasanton, CA,
USA), or unlabeled cells for cellular autofluorescence validation were prepared according to
manufacturer labeling specifications. Briefly, single-label NucBlue samples were prepared
using 2 drops of NucBlue followed by incubation at 37 ◦C for 20 min. Single-label Cal
520-AM samples were prepared using 5 µM Cal 520-AM followed by incubation at 37 ◦C
for 30 min. Mixed-label samples were prepared for time-lapse measurements using both
Cal 520-AM and NucBlue labeling, using identical labeling concentrations and incubation
times as the single-label control samples. After labeling, coverslips were transferred to
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an attoflour holder (ThermoFisher) for imaging and covered with an extracellular buffer
containing (mM): 145 NaCl, 4 KCl, 10 HEPES, 10 D-glucose, 1 MgCl2, 1 CaCl2, pH 7.4.

2.2. Hyperspectral Imaging Acquisition

Excitation-scanning hyperspectral images were acquired utilizing a custom TE-2000 in-
verted widefield fluorescence microscope (Nikon Instruments, Melville, NY, USA) equipped
with 20X objective (Plan Apo 20X, N/A 0.75, Nikon Instruments), Titan 300 Xenon arc
lamp (Sunoptics Surgical, Jacksonville, FL, USA), and Prime 95B sCMOS camera (Teledyne
Photometrics, Tucson, AZ, USA) as previously described [22,33]. The image acquisition
parameters are described in Table 1. A set of thin-film tunable filters (VersaChrome, Sem-
rock, IDEX Health & Science LLC, Rochester, NY, USA) were mounted in a custom tiltable
filter wheel (VF-5, Sutter Instrument Co., Novato, CA, USA) that allowed switching be-
tween individual TFTFs and tuning of TFTFs by adjusting the angle of the filter wheel.
Hyperspectral image data were acquired by sequentially scanning excitation wavelengths
from 360 to 480 nm in 5 nm increments while detecting the fluorescence emission at each
excitation wavelength using a long-pass dichroic beamsplitter (FF495-Di03, Semrock) and
corresponding long-pass emission filter (FF01-496/LP, Semrock). For single-label control
samples, only a single hyperspectral image of each sample was acquired. For dynamic Ca2+

studies, time-lapse hyperspectral images were acquired by acquiring an excitation-scanning
hyperspectral image every 30 s for 15 min. After 5 min of baseline acquisition, cells were
treated with either 50 µM carbachol or vehicle control. Spectral image stacks were exported
as individual tiff images using NIS Elements software (Nikon Instruments) for subsequent
image analysis.

Table 1. Experimental spectral microscope acquisition parameters.

Microscope Light Source Objective Detector

TE2000-U inverted
epifluorescence widefield

microscope
(Nikon Instruments)

Titan 300 Xe arc lamp
(Sunoptics Surgical)

TFTF array:
scan range 360–480 nm in

5 nm increments

Plan Apo 20X,
N/A 0.75

(Nikon Instruments)

Prime 95B sCMOS camera (Teledyne
Photometrics)

30 ms exposure time
0 averaging

2 × 2 binning
0 gain or offset

200 MHz readout speed
Overall imaging speed =

~15 s/spectral image stack

2.3. Hyperspectral Image Data Preprocessing

To account for background and wavelength-dependent attenuation, spectral image
data were corrected to a NIST-traceable spectral response, as described previously [33]. In
brief, a microscope slide-configured laser power meter (ArgoPower, Argolight SA, Pessac,
France) was used to measure the illumination power at each excitation wavelength, and
the resulting illumination power vs. wavelength data were used as the excitation spectral

power and saved as an array,
→
Φ. The inverse of the illumination power vs. wavelength data

series was normalized to a peak value of unity and used as a spectral correction coefficient.

→
cc =

→
Φ
−1

max
→
Φ
−1 (1)

Spectral images were corrected by background subtraction and multiplying by the
spectral correction coefficient.

120



Bioengineering 2023, 10, 642

2.4. Reference Spectra and Spectral Library

Reference spectra were identified from single-label samples for each fluorescent
species: Cal 520, NucBlue, and cellular autofluorescence (unlabeled cells). Spectral images
were acquired for each single-label sample, and images were corrected to a flat spectral
response, as described above. Regions of interest were then selected corresponding to
areas of intense, but not oversaturated, signals using the freehand selection region tool in
ImageJ software [50]. The pixel-averaged spectrum from each region was extracted using
the Image→ Stacks→ Plot Z-axis Profile command in ImageJ. This served as the reference
spectrum for each label. Reference spectra were compiled in Excel (Microsoft Corporation,
Redmond, WA, USA) and subsequently transferred to MATLAB (The MathWorks, Inc.,
Natick, MA, USA) as a spectral library for use with the analysis algorithms described below.

2.5. Spectral Analysis Algorithms
2.5.1. Linear Unmixing

Linear unmixing (LU) is a standard approach used by the fluorescence microscopy
spectral imaging community for estimating endmember abundances [43,51]. LU enables
estimation of the abundance of each endmember present in each pixel, typically using least-
squares regression—for fluorescence microscopy, this corresponds to an estimation of the
relative signal from each fluorescent label. To utilize linear unmixing, control samples were
prepared and imaged to build a spectral library a priori. Linear unmixing was implemented
using a modified version of the “lsqnonneg” function in MATLAB, which utilizes a non-
negatively constrained least-squares unmixing approach [43,44] (Equation (2)).

→
x = ∑m

i=1 ai
→
ri +

→
w (2)

where
→
x is the detected pixel spectrum vector, ai is the endmember,

→
ri is the respective

endmember spectrum and
→
w is the additive observation noise vector.

2.5.2. Spectral Angle Mapper

Spectral angle mapper (SAM) is an algorithm that measures the spectral similarities
by finding the angle between the spectral signatures of two pixel vectors and has been
widely used in remote sensing due to its advantage of only requiring the target endmember
spectrum to be known [48,51]. The angle between pixels and the reference spectrum is then
used to classify the image, usually by applying a global threshold. SAM was implemented
using a custom MATLAB script to calculate the arccosine of the dot product of the spectra
between the measured pixel spectrum and the ith endmember spectrum (Equation (3))

θi = cos−1

( →
r ·→x

‖ →ri ‖ · ‖
→
x ‖

)
(3)

where
→
r is the test spectrum and

→
x is the reference spectrum.

2.5.3. Constrained Energy Minimization

Constrained energy minimization (CEM) is an algorithm that applies a mathematical
filter to amplify the desired spectral signature while minimizing the output energy (e.g.,
background noise) resulting from target sources other than the desired target [45,52].
CEM utilizes an optical linear operator, LCEM (Equation (4)), to minimize the intensity of
undesired signatures while intensifying desired signatures. When using CEM, only the
target endmember signature needs to be known. However, CEM presents limitations as
it is a single-target detection method and therefore does not allow the preprocessing of
known undesired targets for detection enhancement.

LCEM = R−1
corr
→
ri

(
→
ri

T
R−1

corr
→
ri

)−1
(4)
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where the inverse of the sample correlation matrix of the observation pixel vectors (R−1
corr) is

calculated as:

R−1
corr =

∑kl
j=1

(
→
xj
→
xj

T
)

kl
(5)

2.5.4. Matched Filter

Matched filter (MF) is an algorithm used to quantify the abundance of a known
spectral signature by partially unmixing the desired endmember from the image and
maximizing the intensity while minimizing the remaining signatures [46,47]. The MF
algorithm increases the signal-to-noise ratio for the desired endmember while minimizing
the background signals by calculating a rejection operator (Equation (6))

P = I −UU# (6)

where U represents all signatures in the spectral library acquired a priori while excluding
the target endmember, and U# is the pseudo-inverse of U and is calculated by:

U# =
(

UTU
)−1

UT (7)

The rejection operator (Equation (8)) is then used to calculate the filter operator, ai,
(Equation (9)) used for calculating the abundance via the MF method.

→
q =

→
ri

T
P (8)

ai =
→
q
(→

xi

)
(9)

2.6. Theoretical Sensitivity Analysis Approaches

A theoretical sensitivity analysis (TSA) framework that was previously described [34]
was implemented to estimate the performance of various spectral image analysis algorithms
for the detection of the Cal 520 signal in excitation-scanning spectral image data. To
accomplish this, a region of interest (ROI) containing all spectral components (except for
the endmember spectra) was selected from each control sample to perform the TSA. Next,
a binary mask corresponding to the selected ROI was created using ImageJ (Equation (6)),
and the target endmember was multiplied by a scalar (a) and added to each pixel in
the region.

→
xi =

→
xi + a

→
ri (10)

The value of a was varied across a range resulting in a series of images, each with a
different level of the target signature added to a selected region of the spectral autofluores-
cence image. This enabled the creation of a specified region within the image with a known
simulated ground truth for the target signature—in this case, Cal 520.

The resulting spectral images were analyzed to produce three curves: a theoretical
sensitivity curve (TSC, see example in Figure 2A), a thresholded positive pixel curve
(TPPC, Figure 2B), and a receiver operator characteristic (ROC, Figure 2C) curve. The
TSC was generated by plotting the unmixed intensity of each pixel in the selected ROI for
different levels of the added endmember signal. The black squares represent unmixed pixel
intensities, while the red error bars represent the standard deviation in pixel intensities.
The mean pixel intensity was also calculated for each level of the added endmember signal
and fit to a linear response. The TSC can be used to visualize the linearity of the detected
signal response.
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Figure 2. An example theoretical sensitivity analysis, as performed for non-negatively constrained
linear unmixing (LU). (A) The theoretical sensitivity curve (TSC) demonstrates a linear response of
the LU algorithm to varying levels of the added target endmember, Cal 520. (B) The thresholded
positive pixel curve (TPPC) indicates a sharp slope in detection accuracy for a threshold of 15
(unmixed intensity units). Importantly, using the threshold of 15, no false-positive pixels were
detected when the 0 endmember signal was added. (C) The receiver operator characteristic (ROC)
curve demonstrates a high predicted performance for LU for this application of Cal 520 detection,
with an area under the curve (AUC) of 0.96. The TSC analysis was performed for all 4 spectral
analysis algorithms, as described in the Results.

The TPPC was generated by plotting the number of pixels within the entire image that
were detected as “positive”, as defined by an intensity above a specific threshold—in this
example, the threshold = 15 A.U. The TPPC can be used to visualize the number of unmixed
“positive” pixels above this fixed threshold value as a function of the endmember signal
added to pixels in the ROI. The TPPC also allowed visualization of the detection response
slope and the false-positive rate. A more vertical response (increased slope) signifies an
increased ability to discriminate negative and positive pixels.

The ROC curve [53] was generated by counting the number of positive pixels that
were detected within the ROI as true-positive detections while counting the number of
positive pixels counted outside of the ROI as false-positive detections. The number of
true-positive and false-positive detections was measured for a range of detection threshold
levels at a fixed level of target endmember signal that was added to the ROI. The ROC
curve provides an overall visualization of spectral analysis algorithm performance, with
ideal target detection represented by an area under the curve equal to 1.

2.7. Pixel Threshold Analysis Approach

To improve the reliability of kinetic measurements and to remove bias from non-
cell background pixels, the detection threshold can be utilized to allow quantification of
only pixels above a minimum detectable limit within a field of view or single-cell region.
Utilizing a pixel filtering technique may help to identify subtle changes in time course
dynamics that would not be visible when averaging signals from all pixels within a field or
large region. These signals, essentially, are hidden or diluted by signals from background
pixels or those with weak labeling. To implement the pixel filtering approach, a binary
mask was created and used to filter the Cal 520 signal using three different threshold levels:
0 (no threshold), 20 (threshold calculated using the theoretical sensitivity analysis), and 24
(threshold calculated using Otsu, as implemented in ImageJ software [50]). Time-dependent
Cal 520 signal levels were quantified for the entire field. In addition, single-cell regions
were defined, and Cal 520 signal traces were measured for three different cells using each
pixel-filtering threshold level.
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3. Results and Discussion

Hyperspectral imaging approaches have been applied to microscope systems using a
variety of spectral technologies: LCTFs [18,19], AOTFs [13,20], TFTFs [22], gratings [36],
prisms [37], interferometers [54], spectral snapshot cameras [55], and light-emitting diode
(LED) arrays [56,57]. Each technology has associated advantages and disadvantages, and
in some cases, may be implemented in more than one way, such as for scanning of the
fluorescence emission or excitation spectrum. The focus of this study was to utilize HSI
microscopy for a particularly challenging application—measurement of time-dependent
fluorescence in the midst of cellular autofluorescence for dynamic, live-cell, cell signaling
experiments. The spectral imaging requirements for this application include the need for:

1. High sensitivity—sufficient to detect subtle differences in the Cal 520 signal due to
temporal or spatial changes in Ca2+ concentration.

2. High speed—sufficient to detect dynamic changes in the Cal 520 signal on the order
of 20–30 s consistent with slower Ca2+ signals or waves.

3. High photon efficiency—necessary to minimize photobleaching effects during time-
lapse experiments.

4. High spatial resolution—sufficient to allow localization of Ca2+ signals to spatial
regions within the cell, such as near the cell membrane, near the nucleus, etc.

5. Moderate field of view—sufficient to allow simultaneous imaging of multiple (~20–100)
cells.

6. Moderate spectral resolution—sufficient to allow discrimination of spectral peaks from
Cal 520, NucBlue, and cellular autofluorescence—a spectral resolution of 10–20 nm is
likely sufficient for this study as Cal 520 and NucBlue excitation wavelength peaks
are ~150 nm in separation, and autofluorescence presents a broad intensity across this
excitation spectral range.

7. A moderate and compromised spectral bandwidth—sufficiently narrow to achieve the
needed spectral resolution (the TFTF system provides a bandwidth of ~18–20 nm), but
sufficiently broad as to provide a strong excitation intensity for detecting weak signals.

8. A clean spectral band with high out-of-band rejection—sufficient to prevent excitation-
emission spectral cross-talk and to minimize cross-talk between spectral bands.

The excitation-scanning HSI microscope system and corresponding acquisition settings
were selected for this study to satisfy the range of spectral imaging requirements described
above. In specific, the use of a TFTF array provides ~95% optical transmission, a bandwidth
of between 18 and 20 nm depending on center wavelength, and a clean spectral band with
out-of-band rejection of OD 5+. The excitation-scanning approach provides high overall
photon efficiency for the system and helps to minimize photobleaching. These capabilities
could be further enhanced by the development of very-high-speed rotation mechanisms to
allow rapid tuning of the TFTF array, which could reduce the temporal sampling speed to
1–2 s per spectral band and allow the sampling of rapid Ca2+ transient signals.

3.1. Experimental Results and Discussion

Agonist-induced Ca2+ responses were measured using excitation-scanning HSI and
analysis approaches. To provide the a priori information required for linear unmixing, as
well as other spectral analysis approaches, images of single-label control samples were
acquired for NucBlue (Figure 3A), unlabeled cells for cellular autofluorescence (Figure 3B),
and Cal 520 (Figure 3C). The magnitude of signals within spectral images was visualized
by summing all spectral bands. A region was then selected in each single-label image
that corresponded to an area of high signal intensity. This region was transferred to
the corresponding spectral image stack, and the pixel-averaged spectrum was extracted,
yielding the measured reference spectrum (also known as the pure endmember spectrum).
Pure spectra were combined into a spectral library (Figure 3D) for use with spectral analysis
algorithms. Spectra were also validated against manufacturer-supplied and previously
reported excitation spectra, as measured using a spectrofluorometer (Figure 3E). In general,
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there was high agreement between the spectral shape of the measured pure spectra and
previously reported spectra.
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Figure 3. Spectral image data from three single-label control samples were analyzed to construct
a spectral library. (A) Representation of HSI image data from HASMCs labeled with the nuclear
label, NucBlue. For visualization purposes, all wavelength bands have been summed to represent a
total or summed fluorescence intensity image, and the intensity range linearly adjusted from 0 to
6300 A.U. for display. (B) A summed fluorescence intensity representation of HSI image data from
a separate sample of unlabeled HASMCs with intensity range linearly adjusted from 0 to 315 A.U.
for display. (C) A summed fluorescence intensity representation of HSI image data from a separate
sample of HASMCs labeled with Cal 520 with intensity range linearly adjusted from 0 to 550 A.U.
(D) A spectral library was generated by selecting a region of high signal intensity within each of the
single-label control spectral images (A–C), extracting the pixel-averaged spectrum, and normalizing
to a peak value of unity. (E) Comparison of measured spectra for NucBlue (blue squares) and Cal
520 (green triangles) to reported spectra. The Cal 520 spectrum was supplied from AAT Bioquest,
while the NucBlue spectrum was approximated as that of DAPI and obtained using the Semrock
Searchlight spectral plotting tool [58].

Fluorescence excitation-scanning HSI data of Ca2+ signaling in HASMCs were then
analyzed to detect each endmember. For visualization in a print format, single time points
have been selected for viewing time-lapse microscopy data (Figure 4). The full time-lapse
image data set for this study is available in Supplemental Video S1. Results from non-
negatively constrained linear unmixing (LU) demonstrate the ability to separate the Ca2+

label signal (Cal 520) from the NucBlue and Autofluorescence. Results indicate that all
three signals are identifiable and that the residual root mean square (RMS) (Figure 4) error
is less than any of the unmixed endmembers. Increased Ca2+ signaling activity is clearly
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visible at time point 340 s after the addition of 50 µM carbachol, and dynamics can be seen
in Supplemental Video S1.
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Figure 4. Linear spectral unmixing of spectral images from Cal 520 labeled HASMCs. All wavelength
bands were summed to show the total intensity of raw spectral images (column 1) at different time
points. A region of interest corresponding to a single cell was selected to illustrate the change in
excitation spectrum over time (Column 2). The primary contributors to the mixed spectra shown in
Column 2 were NucBlue (excitation peak at 360 nm) and Cal 520 (excitation peak at 520 nm). Note
that the excitation peak of Cal 520 is beyond the scan range used for the current study, and hence
the highest wavelength response for Cal 520 occurs at the last wavelength scanned of 480 nm—see
Figure 3E for a comparison of measured and manufacturer excitation spectra. Note that the Cal 520
contribution is increased at time point 340 s, which corresponds to 40 s after agonist addition and a
strong Ca2+ release response visualized in the unmixed Cal 520 images (Column 4). Columns 3–5
show false-colored unmixed endmember images of NucBlue, Cal 520, and AF signals. Column 6
shows the RMS error associated with linear spectral unmixing. The color bar at the right represents
the color look-up table used to visualize Ca2+ signal intensity in Column 4.

Four spectral analysis algorithms—LU, SAM, CEM, and MF—were utilized to evaluate
the ability to separate and identify endmember signals in fluorescence excitation-scanning
time-lapse HSI data (Figure 5). While these algorithms have been previously used for the
analysis of remote sensing HSI data, only the LU algorithm has been applied to fluorescence
excitation-scanning HSI microscopy data. Hence, it is important to evaluate the perfor-
mance of these algorithms with respect to the ability to detect Cal 520 and NucBlue signals
and the ability to accurately differentiate these signals from confounding cellular autofluo-
rescence. This is especially important when considering that signal levels and the mixture
of spectral signatures will dynamically change for time-lapse live-cell imaging studies.

In a side-by-side comparison, all four algorithms were able to identify dynamic
changes in Cal 520 due to changes in the Ca2+ concentration. However, the different
algorithms presented different abilities to separate endmember signals. For example,
SAM is a spectral angle measure and not an unmixing algorithm and, as such, provided
spectral angle measurements that, when viewed as images, displayed contributions from
endmembers other than the target endmember. Most notable is that the AF signal is
visible in the SAM channel for Cal 520. All the other three analysis algorithms (CEM, LU,
and MF) are subpixel analysis techniques and provide endmember images with visibly
lower contributions from endmembers other than the target endmember. However, subtle
analysis artifacts can still be visualized, especially when viewing time-dependent analyzed

126



Bioengineering 2023, 10, 642

image data (Supplemental Video S1). For example, time-dependent changes in NucBlue
can be seen, which are likely artifactual. The nuclei signal should be relatively static over
the time span of these experiments, and rapid changes in the nuclear signal are likely due to
the Cal 520 signal being incorrectly identified as NucBlue. This incorrect signal assignment
is more apparent in CEM than in LU and MF and is also present in the AF channel.
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Figure 5. A comparison of 4 common spectral analysis algorithms for identifying endmembers in
excitation-scanning spectral image data. Analyzed images were displayed using a greyscale look-up
table for each endmember: NucBlue, Cal 520, and autofluorescence (AF). Images were analyzed using
constrained energy minimization (CEM), linear unmixing (LU), matched filtering (MF), and spectral
angle mapper (SAM). A video showing the full timelapse data set can be viewed in Supplemental
Video S1. The same look-up tables were used for both Figures 4 and 5 to permit comparison.

An important consideration when analyzing HSI fluorescence microscopy data, es-
pecially from dynamic live cell studies such as this, is that generation of an image data
set with a known ground truth is experimentally prohibitive. For cases of fixed cells or
fluorescently labeled microspheres, it may be possible to experimentally generate a sample
with a known ground truth through very precise fluorescent label titration so as to achieve
a specified labeling density. However, for live cell samples, knowledge of the exact labeling
density (the number of labels per area or per volume) is prohibitively difficult to ascertain
due to an unequal uptake of fluorescent labels by the cell, unequal distributions of cell
label binding sites, non-specific binding of the label to other sites, variations in cellular
autofluorescence, variations in cell geometry (a typical “fried-egg” shaped cell will be
thicker near the nuclear region and very thin near the periphery), and important variations
in these parameters over time due to both normal and induced changes in cell physiology.
To address these concerns, we have previously utilized a “theoretical sensitivity analysis”
framework for probing the sensitivity of a spectral imaging assay, with a corresponding
analysis algorithm, to varying theoretical levels of signals that are artificially added post-
acquisition to a spectral image dataset [34]. In this study (Sections 3.2 and 3.3), we extend
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the theoretical sensitivity analysis framework to differentiate between pixels that are above
a minimum detectable limit threshold and pixels that are below the detectable limit and
may be considered background.

3.2. Theoretical Sensitivity Analysis Results and Discussion

In microscopy, it is often prohibitively difficult to establish a known ground truth for a
specific location in a cell signaling experiment. To assess spectral image analysis perfor-
mance, a theoretical sensitivity framework may be used to estimate detection sensitivity
and specificity. This is advantageous as the contributions due to cellular autofluorescence
are unknown and variable. Here, we evaluate the performance of four conventional spectral
analysis algorithms (LU, SAM, CEM, and MF) for identifying a target endmember in the
midst of other endmembers and confounding AF in fluorescence excitation-scanning HSI
data (Figure 6).

The TSC was used to visualize the analyzed intensity of each pixel within a region as
a function of the amount of target endmember added. LU (Figure 6A) and MF (Figure 6J)
analyses provided a linear response (denoted by the black line) to increasing target end-
members, while SAM (Figure 6D) and CEM (Figure 6G) responses were nonlinear. By
inspecting the standard deviation (red error bars), it can be seen that the standard deviation
for LU and MF were insensitive to the amount of target endmember added, while SAM
showed a decreasing standard deviation as a function of increasing endmember added,
and CEM provided an increasing standard deviation with each target endmember added.

The threshold positive pixel curve (TPPC) was used to visualize the ability to detect
positive pixels in the image when given a specified detection threshold. Specifically, the
TPPC provides the ability to visualize both the false-positive level (the baseline number of
positive pixels detected when no target endmember signal is added) as well as the slope of
the transition from pixels being detected as negative to being detected as positive. LU and
MF algorithms (Figure 6B,K) displayed a more vertical slope of the TPPC, indicating the
ability to detect positive pixels once the amount of the target endmember was at or above
the detection threshold. For SAM (Figure 6E), pixels with angles less than the detection
threshold (in this case, 0.98 radians) were defined as positive, as the SAM algorithm
calculates the spectral angle in radians where a small spectral angle indicates a high
similarity between endmember and unknown pixel spectra. For SAM, 147,267 pixels (29.5%
of total pixels) were detected as positive (below the 0.98 radian threshold) prior to adding
any Cal 520 signal. This indicates that the AF signature was sufficiently similar to Cal
520 in these pixels to produce a false-positive detection. A 29.5% false-positive detection
rate is unacceptable for sensitive signal detection. Hence, if SAM were to be utilized,
a more stringent threshold should be selected at the expense of reduced sensitivity for
detecting true-positive pixels (see Supplemental Figure S1 for alternative SAM classification
threshold that results in decreased false positives, but also inability to detect weak true
positive signals).

The ROC curve was used to visualize the overall performance of pixel classification
based on results from each analysis algorithm. The area under the ROC curve is typically
the most valuable indicator of detection performance, although the shape of the ROC curve
may also be informative. All four algorithms produced different ROC curve shapes, with
LU (Figure 6C) presenting the best result with an area under the curve (AUC) of 0.963,and
SAM, CEM, and MF (Figure 6F,I,L), with areas of 0.570, 0.872, and 0.957, respectively. This
signifies that when performing a sensitivity analysis based on the ROC curve, LU and MF
provide similar performance that is much higher than SAM or somewhat higher than CEM.
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Figure 6. A theoretical sensitivity analysis was applied using 4 spectral analysis algorithms for
identifying fluorescence excitation-scanning signals. Three curves were calculated for each analysis
algorithm: the Theoretical Sensitivity Curve (TSC), Thresholded Positive Pixel Curve (TPPC), and
Receiver Operator Characteristic (ROC) curve. (A–C) TSC, TPPC, and ROC for linear unmixing
(LU); (D–F) TSC, TPPC, and ROC for spectral angle mapper (SAM); (G–I) TSC, TPPC, and ROC for
constrained energy minimization (CEM); (J–L) TSC, TPPC, and ROC for matched filter (MF). TSC and
TPPC plots were generated by adding the spectrum of the target endmember, Cal 520, to a specified
region of interest (ROI) in set amounts (increments of 1 were 0–30, 0–25, 0–25, and 0–30 for LU, SAM,
CEM, and MF, respectively). ROC scale factors were 5 for all algorithms. Threshold values for TPPC
were 15 for LU, 0.98 radians for SAM, and 15 for both CEM and MF. ROC threshold values were
varied from 0 to 50 in increments of 1 for LU, CEM, and MF. ROC threshold values for SAM varied
from 0 to 1.8 radians. ROC performance, as described by area under the curve (AUC), was 0.963 for
LU, 0.570 for SAM, 0.872 for CEM, and 0.957 for MF.
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3.3. Pixel Threshold Analysis Results and Discussion

Biological samples frequently have higher variability than is encountered in tradi-
tional satellite or aerial remote sensing applications. In addition, cellular autofluorescence
often confounds measurements of target signatures. We have previously shown that a
theoretical sensitivity analysis framework can be used to provide an estimate of the images
with varying autofluorescence. A minimum detectable limit (the detection threshold) is
evaluated in theoretical sensitivity analysis, and this limit can be further used to identify
pixels that have a detectable signal level and those that do not (a signal may be present but
is not above the detection threshold). This is advantageous, as traditional cell signaling
assays often quantify the signal level for the entire field of view or, at best, specify a region
of interest, such as one or several cells. However, when specifying the whole field of view
or large regions, it is likely that an error will be present due to non-cell background pixels.
In addition, when analyzing data from specific, single-cell regions, there may be pixels
within a region that present low or, in practice, unusable levels of fluorescent labels. These
weakly labeled pixels may bias extracted time-dependent kinetic measurements.

The Cal 520 signal was filtered using three different threshold levels: 0 (no threshold,
Figure 7A), 20 (threshold calculated using the theoretical sensitivity analysis, Figure 7B), and
24 (threshold calculated using Otsu, Figure 7C). The Cal 520 signal levels were quantified
for the entire field (Figure 7D). Each pixel filtering threshold level was used to measure
traces of the Cal 520 signal for defined single-cell regions (Figure 7E–G). We observed
different signal trace kinetics for the entire field (ensemble average response) and for each
cell selected, although all cells displayed increased signaling activity after treatment with 50
µM carbachol. These observations can be seen in Supplemental Video S2. The application of
pixel filtering through the binary mask resulted in the identification of subtler Cal 520 signal
variations for the entire field, as well as for cells 1 and 2. The results of pixel thresholding
were least pronounced for cell 3, which appeared to be very well labeled (all pixels above
the minimum detectable limit threshold). Hence, a pixel thresholding technique such as this
may be helpful in identifying subtle changes in Ca2+ of other cell signaling agent dynamics,
given the caveat that pixel filtering also may provide an additional analysis step that could
introduce signal measurement bias or artifacts if used inappropriately.

To further evaluate the effects of selecting pixels above a minimum detectable limit for
measurement of Cal 520 signal dynamics, additional experiments were conducted utilizing
HASMCs treated with either 50 µM carbochol (Figure 8) or 50 µM histamine (Figure 9).
Hyperspectral images were analyzed using the MF algorithm and thresholded as described
above (Figure 7) to retain only pixels that were above a defined minimum detectable
limit. Single-cell ROIs were selected, and region-averaged signal traces were extracted for
four representative cells. A comparison of time traces before and after pixel thresholding
revealed that subtle variations in single-cell Cal 520 signals could be visualized in the
pixel-thresholded image sets (compare cell 1 time traces for non-thresholded, Figure 8C,
and thresholded, Figure 8F plots). These results indicate that there are likely transient
signal variations within cell 1, as well as other cells, that may be masked or altered by
pixels below the minimum detectable limit and which become further pronounced with
pixel-thresholding techniques.

The effects of pixel thresholding were also investigated using cells treated with an
alternative agonist, 50 µM histamine (Figure 9). In this experiment, pixel thresholding
resulted in changes in Cal 520 traces for several of the single cells investigated. For example,
cell 1 displayed increased fluctuations in Cal 520 signal levels prior to treatment with pixel
thresholding (Figure 9F) when compared to non-thresholded images (Figure 9C). These
results indicate that there were perhaps time-dependent fluctuations in a subset of pixels
within cell 1 but that when averaging all pixels within the cell, these fluctuations were
damped by a large number of low-intensity pixels. In contrast, when averaging only pixels
above the minimum detectable limit threshold, these fluctuations were more pronounced.
In addition, pixel thresholding appeared to bring the baseline value for cells 2–4 to a more
consistent value, indicating that perhaps in non-thresholded data, these cells had variable
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amounts of low-intensity pixels (below the minimum detectable limit) that affected the
whole-cell Cal 520 signal level. Taken together, these data indicate that a single-cell ROI
may likely contain a mixture of low-intensity pixels that are below a minimum detectable
limit for Cal 520 and high-intensity pixels that are above the limit. In addition, changes in
intensity may not occur uniformly. In the case of cell 1, there are likely high-intensity pixels
that undergo large fluctuations in intensity as well as low-intensity pixels that undergo
minimal fluctuations in intensity. Hence, when measuring single-cell Cal 520 time traces
from analyzed HSI data, the trend and accuracy of results are likely dependent on both the
ability to perform accurate cell segmentation as well as on whether all pixels within a cell
ROI are considered or only pixels above a defined minimum detectable limit.
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Figure 7. Effects of pixel filtering on time-lapse Ca2+ image data acquired using excitation-scanning
spectral imaging microscopy and matched filter (MF) analysis. Thresholds for pixel filtering were
determined using a theoretical sensitivity analysis and a standard Otsu thresholding algorithm
available in ImageJ. (A) A representative endmember image of Cal 520 at time point 40 s after
treatment obtained using the MF algorithm. The Cal 520 image from panel (A) was also processed
using pixel filtering to remove low-intensity (below detection limit) pixels using a threshold estimated
from the theoretical sensitivity analysis ((B), threshold = 20) and from Otsu ((C), threshold = 24).
(D) The field of view averaged time course for Cal 520 signal as estimated from the original and
pixel-filtered image sets. Agonist-induced Ca2+ signals in three different cells (cells 1, 2, and 3 shown
as red, yellow, and blue regions on image panels (A–C)) were measured using the original and
pixel-filtered image sets ((E)—(cell1), (F)—(cell2), and (G)—(cell3)).

3.4. Considerations for Live-Cell HSI Studies

In this study, fluorescence excitation-scanning HSI microscopy was utilized to study
dynamic Ca2+ signals in HASMC preparations using time-lapse imaging. Analysis of
dynamic signals in live cell samples presents an especially unique set of challenges due to
requirements for temporal, spectral, and spatial sampling; effects of photobleaching and
cell movement; and confounding factors such as autofluorescence. Detailed descriptions of
these requirements for live cell imaging are provided at the beginning of Section 3. The
results from this study have indicated that excitation-scanning HSI can provide an effective
approach for separating desired fluorescence labels, such as Cal 520, from other labels as
well as competing autofluorescence. Of the four spectral analysis algorithms evaluated, LU
and MF provided similar results that were deemed to be overall more accurate than SAM
or CEM algorithms. MF provided a reduced computational burden and was utilized for
further study of time-course measurements from specific cells of interest. The use of pixel-
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wise thresholding provided an additional ability to improve the reliability of time-course
measurements by rejecting pixels below a specified minimum detectable limit.
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520 image at time point 300 after applying a pixel threshold of 20. A video showing all time points 
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thresholded data. 

The effects of pixel thresholding were also investigated using cells treated with an 

alternative agonist, 50 μM histamine (Figure 9). In this experiment, pixel thresholding re-

sulted in changes in Cal 520 traces for several of the single cells investigated. For example, 

cell 1 displayed increased fluctuations in Cal 520 signal levels prior to treatment with pixel 

thresholding (Figure 9F) when compared to non-thresholded images (Figure 9C). These 

results indicate that there were perhaps time-dependent fluctuations in a subset of pixels 

within cell 1 but that when averaging all pixels within the cell, these fluctuations were 

damped by a large number of low-intensity pixels. In contrast, when averaging only pixels 

Figure 8. Effects of pixel filtering were further evaluated using time-lapse excitation-scanning HSI
data of Cal 520 and NucBlue labeled HASMCs to identify dynamic Ca2+ signals. Hyperspectral
images were analyzed using a matched filter (MF) algorithm, and thresholds for pixel filtering were
set to a value of 20, corresponding to the theoretical sensitivity analysis identified threshold used
in Figure 7B. (A) The initial time point Cal 520 endmember image (time point 0 s) corresponding to
baseline Cal 520 fluorescence. Outlines for single-cell regions of interest (ROIs) are shown in yellow,
and the cell number is indicated by colored text. A video showing all time points is provided in
Supplemental Video S3. (B) The Cal 520 endmember image at a time point of 300 s, corresponding
to a time point immediately after addition of 50 µM carbochol. A high-intensity response is seen in
most cells. (C) The corresponding time trace for Cal 520 intensity for each of the single-cell ROIs.
(D) The Cal 520 endmember image at time point 0 after applying a pixel threshold of 20. (E) The
Cal 520 image at time point 300 after applying a pixel threshold of 20. A video showing all time
points after pixel thresholding is provided in Supplemental Video S4. (F) The corresponding time
trace for pixel-thresholded Cal 520 intensity for each of the single-cell ROIs. Periodic oscillations in
Cal 520 intensity can be seen in cell 1 in the pixel-thresholded image data that are not visible in the
non-thresholded data.

The advantages of this combined excitation-scanning hardware and custom analytical
approach include the ability to measure time-dependent fluorescence image data and
to discriminate among fluorescent labels and cellular autofluorescence—in general, the
approach is effective. However, there are several considerations and limitations that
should be noted. First, the current hardware embodiment of the excitation-scanning HSI
microscope is limited in terms of the wavelength switch time by the need to mechanically
rotate between adjacent TFTFs housed in a filter wheel and the need to tilt the TFTF filter
wheel so as to tune the center wavelength band. There is much potential to improve the
wavelength tuning speed through the revision of the optomechanical tuning assembly and
the potential use of high-speed piezoelectric rotation stages or galvanometers.
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3.4. Considerations for Live-Cell HSI Studies 

In this study, fluorescence excitation-scanning HSI microscopy was utilized to study 

dynamic Ca2+ signals in HASMC preparations using time-lapse imaging. Analysis of dy-

namic signals in live cell samples presents an especially unique set of challenges due to 

requirements for temporal, spectral, and spatial sampling; effects of photobleaching and 

cell movement; and confounding factors such as autofluorescence. Detailed descriptions 

Figure 9. Effects of pixel filtering were also evaluated in hyperspectral images of HASMCs treated
with 50 µM histamine. Hyperspectral images were acquired and analyzed identically to images
shown in Figure 8. (A) The initial time point Cal 520 endmember image (time point 0 s), corresponding
to baseline Cal 520 fluorescence. Outlines for single-cell regions of interest (ROIs) are shown in yellow,
and the cell number is indicated by colored text. A video showing all time points is provided in
Supplemental Video S5. (B) The Cal 520 endmember image at a time point of 330 s, corresponding
to a time point immediately after addition of 50 µM carbochol. A high-intensity response is seen in
most cells. (C) The corresponding time trace for Cal 520 intensity for each of the single-cell ROIs.
(D) The Cal 520 endmember image at time point 0 after applying a pixel threshold of 20. (E) The Cal
520 image at time point 330 after applying a pixel threshold of 20. A video showing all time points
after pixel thresholding is provided in Supplemental Video S6. (F) The corresponding time trace for
pixel-thresholded Cal 520 intensity for each of the single-cell ROIs. Fluctuations in Cal 520 signal
prior to treatment can be seen in cell 1 in the pixel-thresholded image data that are not present in the
non-thresholded data.

Second, when configuring an HSI microscope system for a particular assay, it is impor-
tant to match the spectral scanning parameters to the fluorescent labels or, alternatively,
to select appropriate fluorescent labels that match the spectral scanning capabilities of the
microscope system. In this study, the Cal 520 and NucBlue excitation peak wavelengths
were separated by ~150 nm (see Figure 3), with a broad cellular autofluorescence covering
the entire spectral scan range. While the excitation spectral scan range of 360–480 nm was
sufficient to capture the full signature of NucBlue, it was only sufficient to capture part
of the spectral signature of Cal 520, with the peak excitation wavelength reported by the
manufacturer to occur at ~495 nm. If available, the selection of an alternative Ca2+ label
with a lower excitation peak—for example, at 425 nm—would have allowed more of the
spectral signature to be detected using the current scan range and may have provided an
improved ability to separate signals from each fluorescent label. Alternatively, the use of
such an alternative fluorescent label could enable a reduced excitation-scanning spectral
range, resulting in an increase in overall spectral image acquisition time and enabling either
reduced photobleaching or improved temporal sampling.

Third, the approach of fluorescence excitation-scanning HSI carries the potential
to generate time-dependent spectral artifacts if high-speed changes in fluorescent label
distribution or intensity occur between the onset and the completion of a spectral scan.
These artifacts could affect the accuracy of any resulting spectral image analysis algorithms.
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However, it should be noted that alternative push–broom or whisk–broom spectral scanning
techniques would also present the capacity for a motion-induced artifact, but in this case,
the artifact would not affect the spectral domain, but would instead manifest as a spatial
artifact, as changes to label distribution or intensity could occur between the scanning of
one pixel and an adjacent pixel. Snapshot spectral imaging may present an alternative
approach to mitigate these motion artifacts but presents a trade-off in providing reduced
spatial resolution/reduced field of view, as well as reduced spectral resolution and the
inability to scan continuously across a range of spectral bands. It is important to consider
these potential limitations and potential sources of artifacts when selecting a system and
settings for HSI fluorescence microscopy.

4. Conclusions

Hyperspectral imaging technologies have undergone rapid development, from initial
applications in remote sensing to a wide range of applications, including biomedical imag-
ing and fluorescence microscopy. However, there is still much potential to improve both
HSI hardware and software for use in live cell fluorescence microscopy. New approaches
are needed that provide improved temporal sampling and reduced photobleaching. The
excitation-scanning HSI system utilized in this study has been previously demonstrated
to provide improved acquisition sensitivity and speeds in comparison to a similarly con-
figured emission-scanning HSI system. However, these prior studies were performed in
non-dynamic experimental conditions. Here, we have demonstrated the use of excitation-
scanning HSI for live cell dynamic Ca2+ imaging. We have also evaluated four analysis
algorithms that have been previously used in the remote sensing field (LU, SAM, CE, and
MF) for the ability to detect and discriminate fluorescence excitation signatures. All three
subpixel analysis techniques (CEM, LU, and MF) provided a high ability to quantify the
Cal 520 signal. As seen in Figure 6, LU and MF provided a linear response to increasing Cal
520 signal and a steep slope of the TPPC, indicating that both are effective algorithms for
quantifying Cal 520. At a threshold value of 15, LU resulted in 0 false-positive detections,
while MF resulted in 127 (out of a total of 498,436 pixels within the image); hence, LU
provided slightly improved false-positive rejection. The classification analysis algorithm
(SAM) was able to identify regions of the Cal 520 signal but displayed a nonlinear depen-
dence endmember signal. Hence, SAM could be useful for identifying regions within an
image but was not suitable for quantifying Cal 520 signal over time.

To improve the ability to extract dynamic Ca2+ signals from small ROIs, the theoretical
sensitivity framework was extended to allow the estimation of a minimum detectable limit
for use in pixel filtering. The results indicated that pixel filtering could be used to remove
bias from unlabeled or weakly labeled pixels, especially when measuring bulk signals from
an entire field of view. When pixel filtering was applied to whole-field time-lapse data,
the resultant Cal 520 time course included subtle kinetic features that were not present in
unfiltered data—features that were likely washed out by averaging with background pixels.
This approach could be further extended to a range of dynamic cell signaling experiments
and may also be modified to allow for the use of autofluorescence signals as either fiducial
or metabolic markers [35]. Hence, the use of excitation-scanning HSI with suitable spectral
analysis algorithms and pixel filtering may provide a mechanism for measuring subtle
kinetic events in cell signaling and other live cell dynamic assays.
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Abstract: Objective: To develop a methodology for the measurement of balloon dilation (BD) effects
on Eustachian Tube (ET) structure using Computerized Tomography (CT) images. Methods: The
BD of the ET was performed on three cadaver heads (five ears) through the nasopharyngeal orifice.
The axial CT images of the temporal bones were obtained before dilation, while an inflated balloon
was in the lumen of ET, and after balloon removal in each ear. Utilizing Dicom images captured
by the ImageJ software 3D volume viewer function, the anatomical landmark coordinates of the ET
were matched with their pre- and post-dilation counterparts, and the longitudinal axis of the ET was
captured with serial images. The histograms of the regions of interest (ROI) and three different lumen
width and length measurements were obtained from captured images. The densities of air, tissue,
and bone were determined with histograms as a baseline to determine the BD rate as a function of
increased air in the lumen. Results: The small ROI box included the area of prominently dilated
ET lumen after BD and best represented the visually obvious changes in the lumen, compared to
the ROIs that extended the wider areas (longest and longer). Air density was the outcome measure
for comparison with each corresponding baseline value. The average increase in air density in the
small ROI was 64%, while the longest and long ROI boxes showed 44 and 56% increases, respectively.
Conclusion: This study describes a method to image the ET and quantify the outcomes of BD of the
ET using anatomical landmarks.

Keywords: eustachian tube; eustachian tube dysfunction; balloon dilation of eustachian tube; imag-
ing; CT imaging; cadaver

1. Introduction

The Eustachian tube (ET) is an anatomical connector structure between the middle
ear (ME) and nasopharynx (NP) [1]. The ET opening is the main means of pressure
regulation in the ME and is impaired in patients presenting with otitis media with effusion
(OME) [2]. Standard medical therapy for Eustachian tube dysfunction (ETD) is the insertion
of ventilation tubes (VTs) to temporarily bypass the ET, equalize ME pressure with the
environment, and prevent fluid recurrence. Although widely used, VTs come with potential
inconveniences such as otorrhea and rare complications and sequelae such as tympanic
membrane perforation, tympanosclerosis, and cholesteatoma, making management of ETD
a challenge for otolaryngologists [3]. Balloon dilation (BD) of the ET (BDET) was introduced
as an alternative and feasible procedure to treat ETD, with promising outcomes [4–7]. There
is still no consensus for patient selection for BDET or for objective outcome measures to
evaluate the long-term effect of BDET [8,9]. Our recent clinical trial in patients with ETD
aimed to quantify ET function and structural changes using Computerized Tomography
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(CT) images that were captured before and after BDET [10]. A pilot study was performed
to develop methodology for verification of the anatomical landmarks and the feasibility of
quantification of the changes in ET structure utilizing a balloon catheter in the ET lumen for
guidance on CT scan X-ray images. The eventual aim was to use this method to evaluate
the effect of BDET as a measurable outcome.

2. Materials and Methods

This protocol was approved by the Committee for Oversight of Research and Clinical
Training Involving Decedents. Three frozen whole male cadaver heads from the University
of Pittsburgh School of Medicine Department of Neurobiology and Office for Oversight of
Anatomic Specimens were used.

2.1. Specimen Preparation

Four days before the experiment, the cadaver heads were thawed, first at room temper-
ature and then in a 4 ◦C refrigerator. On the day of the experiment, an exam of the mouth,
nose, and throat was performed, including 0◦ and 45◦ rigid nasal endoscopies (Hopkins
II, 2.7 mm, 18 cm, Karl Storz Endoscopy, Storz Xenon 300 light source, Germany). The
external ear canals were cleaned under microscopy, and myringotomies were performed
bilaterally in all tympanic membranes.

2.2. Experimental Protocol

The cadaver head was placed in the supine position, and a plastic ear probe connected
to tubing and a three-way valve were placed in the right ear canal to administer contrast
medium to the middle ear.

Under the guidance of a 45◦ rigid endoscope, a 16 mm long balloon catheter (with
maximum and minimum diameters of 7 and 3 mm, respectively) was introduced in the
left nostril. (Acclarent Balloon Dilation System, Irvine, CA [https://www.jnjmedtech.
com/en-US/companies/acclarent, accessed 10 May 2023] . The pharyngeal opening of
the ET was identified, and the balloon advanced into the ET lumen. A baseline axial CT
scan acquisition was performed by a helical 64 channel multidetector CT scanner (GE
LightSpeed VCT; GE Healthcare; Milwaukee, WI, USA). The CT scan protocol parameters
were: mAS = 180, kvP = 100, rotation time = 0.6 s, thickness = 0.625 mm, pitch = 0.969, and
FOV = 160 mm. The image field of view extended from the tegmen of the temporal bone
through the pterygoid processes.

Next, approximately 4–6 mL of 1:3 diluted contrast (Omnipaque [Iohexol] 180 mg/mL,
GE Healthcare Inc., Princeton, NJ, USA) was infused through the probe into the right
middle ear, and the valve was closed. A balloon was introduced into the left ET lumen
and kept uninflated, and a second CT scan acquisition was obtained. A second balloon
was then introduced into the right ET lumen, and a third CT scan acquisition of both ears
was performed. Both balloons were then inflated to 12 atm for 1 min, and two additional
acquisitions were performed: one while both balloons were inflated and another after
deflation. Lastly, both balloons were removed, and one final CT scan acquisition was
performed.

2.3. Image Analysis

First, axial CT images were formatted into the RadiAnt DICOM viewer (version
1.9.14.7431) to be able to be viewed in the ImageJ program (1.51K National Institutes of
Health, Bethesda, MD USA). Images with uninflated balloons on the left side were used as
the baseline for the images, while the right side had contrast, which was visible in most
axial images although not always in the canal. Secondly, sequential images of each series
before, during, and after balloon dilation were viewed in the 3D volume viewer plugin
of the ImageJ software (Figure 1). The center of the ET longitudinal axis was saved as a
single JPEG image after determining X, Y, and Z coordinates and superior-inferior distances
by using the image of the inflated balloon as guidance in each ET. This was followed
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by 12 sequential images from the superior (cranial) and inferior (caudal) directions of the
images recaptured and numbered accordingly to include measurements of the whole lumen
dimension.

Bioengineering 2023, 10, x FOR PEER REVIEW 3 of 14 
 

2.3. Image Analysis 
First, axial CT images were formatted into the RadiAnt DICOM viewer (version 

1.9.14.7431) to be able to be viewed in the ImageJ program (1.51K National Institutes of 
Health, Bethesda, MD USA). Images with uninflated balloons on the left side were used 
as the baseline for the images, while the right side had contrast, which was visible in most 
axial images although not always in the canal. Secondly, sequential images of each series 
before, during, and after balloon dilation were viewed in the 3D volume viewer plugin of 
the ImageJ software (Figure 1). The center of the ET longitudinal axis was saved as a single 
JPEG image after determining X, Y, and Z coordinates and superior-inferior distances by 
using the image of the inflated balloon as guidance in each ET. This was followed by 12 
sequential images from the superior (cranial) and inferior (caudal) directions of the images 
recaptured and numbered accordingly to include measurements of the whole lumen 
dimension. 

 
Figure 1. Example of 3D volume viewing of a CT image in ImageJ software under the guidance of 
anatomical landmarks (* medial pterygoid plate spine, ¤ opposite medial pterygoid plate spine, and Ø 
sphenoid spine) and an inflated balloon to determine the ET longitudinal axis coordinates at the center 
as a starting point of image analysis. The X, Y, and Z coordinates of the image on the right are 
demonstrated on the smaller images on the left side as blue line (top), green line (middle image), 
and red line (bottom image). 

Third, the corresponding centers of the luminal areas in the pre- and post-dilation 
conditions were re-imaged by creating a plane in the 3D volume viewer using the medial 
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sequential images were captured in similar fashion in the 3D volume viewer for each 
counterpart. 

Finally, vertical rectangles of the regions of interest (ROIs) were created in the ImageJ 
software at the mid-cartilaginous ET lumen level after rotating all the images to bring 
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Figure 1. Example of 3D volume viewing of a CT image in ImageJ software under the guidance
of anatomical landmarks (* medial pterygoid plate spine, ¤ opposite medial pterygoid plate spine, and Ø
sphenoid spine) and an inflated balloon to determine the ET longitudinal axis coordinates at the center
as a starting point of image analysis. The X, Y, and Z coordinates of the image on the right are
demonstrated on the smaller images on the left side as blue line (top), green line (middle image), and
red line (bottom image).

Third, the corresponding centers of the luminal areas in the pre- and post-dilation
conditions were re-imaged by creating a plane in the 3D volume viewer using the medial
pterygoid plate, hamulus, and sphenoid spine as landmarks. Twenty-four more total
sequential images were captured in similar fashion in the 3D volume viewer for each
counterpart.

Finally, vertical rectangles of the regions of interest (ROIs) were created in the ImageJ
software at the mid-cartilaginous ET lumen level after rotating all the images to bring
lumens in the same direction (Figure 2). Initial small ROIs were chosen in the images with
inflated balloons with guidance from the contrast at mid-bead level at the two vertical
ends. Then the original rectangle was extended toward the NP orifice until the tip of the
torus and at the posterior opening to the tip of the balloon by an equal distance in the
number of pixels without including the bony structures (longest box), and the last ROI box
was shaped by decreasing 5 pixels from each end of the longest box (long box) (Figure 3).
Histograms were constructed in the corresponding ROIs of each pre- and post-dilation
series in all ET images (Figure 4), followed by baseline histograms from the nasopharyngeal
air, surrounding tissue, and the petrous bone (Figure 5) for the determination of the density
range of each structure. The mean gray values of each ROI were also measured with ImageJ
software in all series images (Figure 6).
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Figure 3. Example of how vertical ROI boxes (white rectangle) (A)—small; (B)—longest; (C)—long)
are placed in an inflated balloon-guided ET lumen (Ear 1). Outline of the small ROI boxes (A) was
formed to include the main body of the inflated balloons, to include the 6 mm width in the full 16
mm cylindrical segment. Radiopaque markers were used as markers, and short sides of the ROI
boxes were set to cross these markers. This segment of the balloon represents the section of the ET
that was subjected to the maximum dilation pressure. Proximal and distal ends of the balloons had
conical sections which had a relatively less dilation force on the tissues. In order to include a longer
section of the ET in the ROI, and to differentiate the effect of these cylindrical and conical sections of
the balloons on the tissues, the longest ROI box (B) was extended to the end of the balloon towards
the middle ear (bottom of the images) and towards the nasopharyngeal end of the balloon (top of the
images) while avoiding inclusion of nasopharyngeal air column. The long ROI (C) was then formed
by retracting the box by 5 pixel units from the middle ear and the NP end.
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Figure 6. Representative graph for the measurement of mean gray values in small ROIs in pre- and
post-dilation images in ET (Ear 4). The graph with mean gray value depicts markedly the visually
observed dilation in the serial CT images of the ears pre- versus post dilation image of this example ear.

Additionally, three different measurements were taken for the length of the lumen
with the guidance of the inflated balloon. The longest length of the lumen measurement
was from the tip of the torus to the posterior end where the tip of the balloon was located
(1); the second length measurement was the distance from the torus to the end of the widest
part of the balloon (2); and the last length measurement was the distance from the widest
part of the balloon to the tip of the balloon (3) (Figure 7). Finally, pre- and post-dilation
widths were measured at 3 different levels of the lumen: at the nasopharyngeal opening
(4), mid-cartilaginous (5), and at the posterior end (6) (Figure 8), using the longest ROI as a
constant locator of the points in all ears.
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Figure 7. Measurements of ET structure under the guidance of the balloon and ROI. (A) Image during
dilation at the center of the balloon lumen, representing the center of the longitudinal axis of the ET
(Ear 1). The longest luminal length (distance 1), the length from the torus to the end of the widest
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Figure 8. Center of the ET longitudinal axis in images pre-, during, and post-dilation in each ear (Ear
1–Ear 5).

3. Results

One of the balloon catheter insertions created a false passage, which was determined
before the image analysis and excluded that ET from the data. Other catheter insertions
were adequate from the NP orifice to the isthmic end.

The baseline histograms of air, tissue, and bony structures in the representative mid-
section images of each ear illustrated the number of pixels distributed on the images for
each level (gray value), from the darkest (0) to the brightest (256), for all ROIs that were
saved with the ImageJ software, for each described step of imaging. The pixel values in the
air density found 0–16 with the baseline histograms that were taken with locating small
ROIs in the nasopharyngeal space and areas out of the frame adjacent to the cadaver head.
We also checked the pixel values in the dilated portion of the ET lumen in several sequential
images. These measurements increased the air density distribution per pixel up to 31 units
in the histograms, suggesting there is a partial volume effect in the lumen. Tissue and
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bone pixel values were also documented to be within the ranges of 42–88 and 214–255,
respectively. We have used two different ranges of pixel values for the air density (0–16 and
0–31) in two different calculations as the total number of pixels in all ROIs in the sequential
images of each pre- and post-dilation condition in five ears. Small ROI box measurements
depicted the change better than the longest and long box ROIs as pixel distribution in the
air density, which were observed with clearly widened lumens in post-dilation images
compared to the pre-dilation counterparts (Figure 8). The number of pixels in the air
density range pre- and post-dilation for all five ears is demonstrated in Figure 9. This
representation with small ROIs was expected since the longest and long boxes included
more heterogeneous structures. There was a 20–100% increase in air pixel values with small
ROI histograms (average 64%), while the longest and long ROI boxes showed an increase
between 6–68 and 8–97% (averages 44 and 56%), respectively (Table 1).
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Figure 9. Total pixel values in the ROI (small box) in the air density values (0–31) pre- versus
post-dilation in each ear.

Table 1. Percentage increase in air density (pixel unit) pre- versus post-dilation in all three ROIs in
each ear. There was a 20–100% increase in air pixel values with small ROI histograms (average 64%),
while the longest and long ROI boxes showed an increase between 6–68 and 8–97% (averages 44 and
56%), respectively.

Small Longest Long

Ear 1 20 6 8

Ear 2 33 23 26

Ear 3 68 50 62

Ear 4 100 74 97

Ear 5 98 68 88

% Increase 64 44 56

ET lumen width measurements also showed increases compared to baseline values,
especially the width at the center of the balloon (width 2). The width percentage increase
was 57.8–93.5% (width 2, average 71.8%, and SD = 16.4), while NP opening and the lumen
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at the isthmic end dilated between 0 and 25 (width 1, average 8.3, and SD = 9.9) and 0–100
(width 3, average 37.8, and SD = 39.4%, respectively) (Table 2).

Table 2. Percentage increase in lumen width (pre- versus post-dilation) in all ears.

Width 1 Width 2 Width 3 Average

Ear 1 3.5 57.8 31.6 31

Ear 2 0 93.5 10 34.5

Ear 3 9 75.6 100 61.5

Ear 4 4.2 53.3 47.2 34.9

Ear 5 25 78.9 0 34.6

Average pixel 8.3 71.8 37.8 39.3

The average of the longest lumen in the five ears was 75.42 (SD = 7.4) pixels. The aver-
age lengths of the cartilaginous part and the bony part of the ET lumen were 45.26 (SD = 8)
and 31.26 (SD = 6.5) pixels, respectively, which are approximated with the distance 2 and 3
measurements as an average in the five ears (Table 3).

Table 3. Distance measurements as pixels in all ETs.

Distance 1 Distance 2 Distance 3

Ear 1 67.99 50.45 20.82

Ear 2 87.74 56.01 34.41

Ear 3 73.37 44.24 30.16

Ear 4 75.41 37.79 38.09

Ear 5 72.6 37.79 32.82

Average (pixel) 75.42 45.26 31.26

4. Discussion

Balloon Dilation Eustachian Tuboplasty (BDET) is being increasingly used for ETD in
adults and now children, first in Europe and then in the US, with the intention of decreasing
and/or eliminating the need for long-term ventilation tubes in chronic conditions such
as chronic OME [6,7,11–14]. Evaluations of BDET effects are mostly subjective, involving
clinical outcome scoring before and after the procedure using a questionnaire such as
the Eustachian Tube Dysfunction Questionnaire-7 (ETDQ-7) and/or the Eustachian Tube
Score (ETS), in some studies combined with Valsalva and Toynbee maneuvers [15,16].
Tympanometry has been widely used as part of the diagnostic tools for ETD for comparison
before and after the procedure [5–7]. The R value measured with tubomanometry while
swallowing water (R ≤ 1 immediate opening, R >1 late opening, non-measurable R closed
tube) was recommended as a functional outcome measure for BDET, indicating latency
of the ET [17]. In our previous study, we found that the presence of an R value had high
sensitivity for detecting an ET opening but low specificity for detecting a non-opening [18].
For this reason, the tubomanometry test by itself may not be an ideal objective measure of
the BDET outcome.

The ETDQ-7 is widely used by clinicians, and a recent randomized study indicated
that BDET is significantly superior to medical management for persistent ETD [8], but our
previous study showed it is only moderately associated with an objective measure of ET
function and appears less reliable when applied to people with non-intact tympanic mem-
branes [19]. We think scoring systems should be supported by functional and structural
objective measures for the evaluation of BDET effects to confirm its long-term benefits in
clinical trials.
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Visualization of the ET in imaging studies has always been a challenge due to its
normally closed status and small size, unless it is patulous [20]. The first CT studies in a
cadaver head and/or live images were mostly performed to determine the length, volume,
and angle of the ET lumen for better understanding ET structure and function [10,21–24].
Nasopharyngeal maneuvers such as Valsalva were added to the scans to get a clear open-
ing, but capturing the ET was still complicated by the lack of contrast in the tissues.
Three-dimensional (3D) CT imaging studies were very beneficial for the understanding of
temporal bone structure and for the diagnosis and follow-up of malignant tumors [25–29].

CT imaging of the ET has been part of the pre-procedure evaluation for BDET to deter-
mine if there is dehiscence and abnormality of the carotid artery and to prevent potential
lethal complications [23,29,30] CT imaging preoperatively has been part of the protocol
for BDET for most surgeons, and sometimes it is obtained after the procedure to see if
there is any damage to the structures. A study showed no predictivity of difficulties and
complications with preoperative high-resolution CT scanning, and these same authors
suggested that the fear of injury to the internal carotid artery during the procedure might
be disproportionate since there has not been published data about this complication [23].
Because physicians feel safer visualizing ET structure preoperatively, adding a quantifi-
cation technique to the image analysis that helps to see the correlation between dilated
lumen and symptoms could magnify the benefit of CT exposure pre- and post-operatively.
We can also synchronize these imaging studies with the forced response test (FRT), as we
established the method in our previous pilot study with five non-intact ears and/or some
of the nasopharyngeal maneuvers to capture cartilaginous lumen opening before and after
BDET [10]. Measurements would be performed in Hounsfield Units (HU) as in the later
study, or histograms can be counted as pixel values after creating the area of interest as
detailed in the methods in this paper. The idea is to compare air and tissue intensities in pre-
and post-procedure images after determining the baseline values of the known anatomical
areas, such as the nasopharyngeal space for air, surrounding tissues, and petrous bone
intensities. However, HU is a universal, appropriately standardized metric for the analysis
of CT images across scanner models. Even though in the current study, conversion of HU
to the non-standard ranges (0, 255) for tissue types has been utilized with ImageJ software,
utilizing a 16 or 32 bit image may allow preservation of the previously accepted ranges for
various tissue types.

In this cadaver study, we have used contrast instilled through a non-intact tympanic
membrane in an attempt to picture the ET before catheter insertion. Although contrast
was visible in most images, the time it took to pass the contrast was too short to be able to
visualize the entire length of the ET lumen, even with synchronized imaging in the cadaver
heads. Using CT images with the inflated balloon served the purposes of determining
feasibility and finding anatomical landmarks while viewing the whole anatomy of the head
in 3D without a need for contrast locally or systemically. Even though there was some
degree of potential mismatch between the pre- and post-dilation CT images, when there
were all three landmarks in one plane, it was possible to approximate the counterparts to
capture reasonably comparable images at the same plane of anatomy.

While many case series have suggested BDET can successfully restore ET function,
systematic reviews have indicated no high-quality evidence exists to support its effective-
ness [8,9,31]. Recently, otolaryngologists have been focused on creating a consensus for the
eligibility criteria of ETD for BDET and the objective evaluation of its effects with more
randomized clinical trials [32].

One study showed CT scanning in the sitting position may visualize ET opening better,
especially in patients with a patulous ET [33]. These authors also suggested that vertical
CT, which is mainly used in dental clinics, can be used to visualize the ET at a low cost and
with less radiation exposure than conventional temporal bone CT imaging [29]. Since we
are proposing an additional postoperative CT for BDET, it would be important to decrease
the cost and radiation exposure of vertical CT imaging and increase its effectiveness by
accommodating the position while scanning.
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The proposed image analysis and quantification method with ImageJ is relatively
practical for the clinician, and the software is freely available from the NIH. This was
our choice of image analysis software due to its availability and our familiarity with it
from our previous work. However, there is other, more advanced image analysis software
available that may be more user-friendly. Some options may be able to generate ROIs,
and most will be able to get various summary data from these ROIs. Even though explicit
histograms may or may not be possible with a specific software program, such a feature
may not be needed with some study material. Although a time-consuming learning curve
is the downside of the ImageJ method, there is the advantage of more than one obtainable
measure in matched pre- and post-procedure images of the ET. Additionally, we could
depict the increase in width measurements with visually prominent lumen dilation in all
ears in the CT images. The length measurements were also comparable to those in the
previous literature; the cartilaginous part and the bony part of the ET lumen averaged
45.26 (16.8 mm) and 31.26 (11.3 mm) pixels, respectively, displaying the precision of the
technique [28]. The mean gray value was one of the useful measures that can be performed
in ImageJ software, and representation as a graph is also available for future studies for the
confirmation of dilation rates. We previously presented the ETF test data from the clinical
BDET study with eleven adult subjects [14] and are in the process of evaluating the pre-
and post-procedure CT images in the same data set with the proposed method. Of course,
we did not have the advantage of having the balloon in the canal during inflation on these
live images, and dilations were not as prominent as in the cadaver ETs without tissue
elasticity, but we found this image analysis method applicable, having three landmarks
(medial pterygoid plate where the tissue thickness is the minimum, immediate opposite
side medial pterygoid plate hamulus, and sphenoid spine superiorly) in the same plane
by the 3D viewing tool. This could be an important part of the quantification of the effect
of BDET in clinical research studies and aid physicians in future patient selection and
evaluation of BDET outcomes. Future studies should also take into account tissue elasticity,
recoil, and elastic fiber remodeling during and after the application of such pressure on the
ET with various tissue properties including cartilage, muscle, fat, and possibly inflamed
and thickened mucosa. Moreover, even though ET dilation balloons do reach a maximum
diameter of 6 mm at pressures of 10 ATM, the biomechanics of the balloons would need to
be considered.

5. Study Limitations

1. The main limitation of this study is the small sample size. Even for method develop-
ment, a larger sample size would have been better;

2. The ImageJ image analysis software may have limitations compared to other newer
software that may eliminate some of the labor-intensive steps in standardizing ROIs
and generating outcome images and reports;

3. Utilizing a cadaver head in the study has inherent limitations due to tissue elasticity
and recoil properties similar to those in live human subjects. On the other hand, it
was possible to have six consecutive CT scans as per the protocol on cadaver heads for
the purpose of method development, while this would not be justified in live human
subjects;

4. The effects of balloon shape and length, as well as different durations of balloon
inflation, have not been explored in this study. Future studies incorporating and
controlling the biomechanics of the balloons and their effects on tissues may provide
a better understanding of the role of this treatment and its long-term outcomes and
consequences.

6. Conclusions

Imaging of the ET, particularly comparison of the effect of an intervention, has inherent
challenges due to the technique and image analysis. This study is an attempt to describe
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a method to image the ET and quantify the outcomes of BD of the ET using anatomical
landmarks.
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Abstract: Digital infrared thermographic imaging (DITI) is a supplementary diagnostic technique
to visualize the surface temperature of the human body. However, there is currently no reference
standard for the lower limbs for accurate diagnosis. In this study, we performed DITI on the lower
limbs of 905 healthy Korean volunteers (411 males and 494 females aged between 20 and 69 years) to
obtain reference standard data. Thermography was conducted on the front, back, lateral sides, and
sole area, and 188 regions of interest (ROIs) were analyzed. Additionally, subgroup analysis was
conducted according to the proximity of ROIs, sex, and age groups. The mean temperatures of ROIs
ranged from 24.60 ± 5.06 to 28.75 ± 5.76 ◦C and the absolute value of the temperature difference
between both sides reached up to 1.06 ± 2.75 ◦C. According to subgroup analysis, the sole area had a
significantly lower temperature than any other areas, men had higher temperatures than women, and
the elderly had higher temperatures than the young adults except for the 20s age group (p < 0.001,
respectively). This result could be used as a foundation for the establishment of a reference standard
for DITI. Practical patient DITI can be accurately interpreted using these data, and it can serve as a
basis for further scientific research.

Keywords: infrared rays; lower limb; reference standard; skin temperature; thermography

1. Introduction

Digital infrared thermographic imaging (DITI) is a technique used to display the
body’s surface temperature using thermography [1,2]. DITI has been used as a comple-
mentary diagnostic tool in various clinical fields [3–9]. In several disorders involving the
lower limbs, such as lumbar radicular pain, chronic regional pain syndrome, vascular
disease, and peripheral nerve entrapment, DITI allows visualization of the affected area as
hypo-radiant (hypothermia) or hyper-radiant (hyperthermia) compared to the unaffected
area [10–15].

In terms of interpreting DITI, the normal range of skin temperature and criteria for
hypo-radiant and hyper-radiant are ambiguous. Empirically, the temperature difference
between both sides of the lower limbs is significant when it is more than 0.1–0.3 ◦C,
depending on the location of the surface area [1,16,17]. However, a formally approved
consensus on the definition of significant difference between both sides, as well as hypo-
radiant or hyper-radiant, is still undetermined due to variations in equipment, environment
(room temperature and humidity) of the test room, and the ability of the surveyor [5].
Furthermore, despite the consistent examination conditions, the range of normal surface
temperature still varies according to baseline characteristics such as sex, age, body mass
index, patient condition, and medical history [17].
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To overcome these barriers to the definition of abnormality and to establish a correct
standard for DITI, a standardized measurement protocol and a reference standard for DITI
are necessary. However, there are no studies about reference standard data for DITI of
the lower limbs. In this study, we performed DITI on a large group of healthy volunteers
using a standardized protocol and provide detailed reference standard data for DITI of the
lower extremities.

2. Materials and Methods
2.1. Trial Design and Ethics

This multi-center, single-arm, open-label trial was conducted for 2 years in accordance
with the 1964 Helsinki Declaration and its later amendments. All processes of the study
were approved by the Institutional Review Board of three different research centers. Addi-
tionally, this research was registered as a clinical trial in the Clinical Research Information
Service of the Republic of Korea (number KCT0006880).

2.2. Sample Size

The number of samples was calculated as follows:

n =
θ(1 – θ)2z2

α/2

d2

The population proportion (θ) for the exam was set to 0.85 and the margin of error (d)
was set to 0.025. Using the above formula with a significance level of 5% and a confidence
level of 95%, a sample size of 784 was calculated. Considering a dropout rate of 15%, a total
of 922 participants were necessary.

2.3. Subjects

Healthy test subjects were voluntarily recruited through public announcements and
tests were conducted at three institutions from March 2018 to December 2020.

To minimize bias related to subject selection and external effect, inclusion criteria
were as follows: (1) adults between the ages of 20 and 69; (2) no specific medical history
including diabetes mellitus, peripheral neuropathy, spinal stenosis, disc herniation, joint
disease of the leg, previous surgery history of the spine and lower limbs, or recent trauma;
(3) no definite present pain or skin lesion in the lower limbs; (4) no potential risk of test
such as claustrophobia, pregnant, or lactating women; (5) who can maintain a stationary
posture for the required amount of time during the test; (6) without any other reason for
disqualification according to the judgment of the researchers. Participation was granted
when the requirements were met based on the inclusion criteria questionnaire.

A total of 922 healthy Korean volunteers were registered with an even distribution
based on sex and age group. DITI was conducted following a standardized protocol and
informed consent was obtained in advance from all participants. Among them, 905 partici-
pants were evaluated after excluding 17 participants due to measurement failure and/or
withdrawal of consent.

2.4. Equipment and Examination Protocol

All examinations were conducted in outpatient clinics in three different hospitals.
DITI was performed using the Iris-XP Digital infrared imaging system (Medicore, Seoul,
Republic of Korea). Volunteers scheduled for DITI were informed about general precautions
such as avoiding exposure to cold or hot environments, not smoking, and not consuming
caffeine for 1 h before the test [18].

The skin temperature of subjects can be affected by environmental temperature and
humidity due to sweating evaporation and vasoconstriction/vasodilation response [19–21].
To maintain consistency, we controlled the air temperature and humidity in the test room.
Specifically, the room temperature and humidity were maintained at 20.0–23.0 ◦C and
30–75%, respectively. After undressing completely, the subjects remained in the room for
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approximately 20 min to acclimate prior to the examination. They were allowed to stand or
sit on a chair with a back, depending on their preference.

The measurement reliability of temperature using the DITI equipment was found to
be reasonable. The uncertainty of the thermography equipment ranged from 0.000 ◦C to
0.369 ◦C, as specified by the Korean Agency for Technology and Standards.

The test was conducted in the front area, back area including buttocks, both lateral-
side areas, and the sole area of both feet. A total of 188 regions of interest (ROIs) were
manually divided into 15 × 2 ROIs in the front area, 44 × 2 ROIs in both lateral-side areas,
20 × 2 ROIs in the back area, and 15 × 2 ROIs in the sole area (Figure 1). To ensure the
accuracy of ROI division and measurement, objective testing and diagraming of pictures
based on 188 ROIs of all subjects were performed by five certified surveyors.

Figure 1. Diagram and practical imaging of regions of interest in the front, lateral-side, back, and sole
areas of the leg.

2.5. Statistical Analysis

A quantitative analysis of data was conducted by a specialized doctor and a statistician
who was blinded to participant information.

The analysis was performed using SPSS version 27.0 (IBM Corporation, Armonk,
NY, USA). The normal distribution of the data was evaluated using the Kolmogorov–
Smirnov test, and all data were reported as mean ± standard deviation or mean with
95% confidence intervals (CI). One-way analysis of variance (ANOVA), linear regression
analysis, and paired t-tests were performed according to the characteristics of the values.
Statistical significance was accepted at p < 0.05.

3. Results
3.1. Subjects

The mean age of all participants (n = 905) was 42.86 ± 12.87 years, and 45.4% of the
participants were male (n = 411). The demographic distribution of volunteers according to
age group was as follows: 183 (97 males and 86 females) in their 20s; 213 (108 males and
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105 females) in their 30s; 228 (109 males and 119 females) in their 40s; 177 (65 males and
112 females) in their 50s; 104 (32 males and 72 females) in their 60s.

3.2. Overall Data: The Mean Temperature and Difference between Both Sides (◦C)

The mean temperature of the ROIs of each area and the temperature difference between
both sides (∆T, right—left) were as follows: in the front area, the overall mean temperature
was 27.69 ± 5.34 (ranged from 26.73 ± 5.12 (extended uncertainty 10.27) to 28.75 ± 5.76
(extended uncertainty 11.54)) and the overall mean difference was 0.03 ± 0.41 (ranged from
−0.09 ± 0.33 to 0.24 ± 0.47); in the back area, the overall mean temperature was 27.70 ± 5.38
(ranged from 25.74 ± 5.09 (extended uncertainty 10.21) to 28.48 ± 5.74 (extended uncertainty
11.50)) and the overall mean difference was −0.04 ± 0.42 (ranged from −0.23 ± 0.59 to
0.20 ± 0.42); in the lateral-side area, the overall mean temperature was 27.18 ± 5.49 (ranged
from 25.56 ± 5.19 (extended uncertainty 10.41) to 28.53 ± 5.79 (extended uncertainty
11.60)) and the overall mean difference was −0.58 ± 2.72 (ranged from −1.06 ± 2.75 to
−0.09 ± 2.37); in the sole area, the overall mean temperature was 25.74 ± 4.98 (ranged from
24.60 ± 5.06 (extended uncertainty 10.1) to 27.69 ± 5.31 (extended uncertainty 10.65)) and
the overall mean difference was −0.09 ± 0.80 (ranged from −0.17 ± 0.74 to 0.06 ± 0.71)
(Tables 1–4).

Table 1. Overall mean temperature of regions of interest in the front area.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side—Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

1_1 27.76 5.63 11.28
1_2 27.85 5.65 11.32 −0.09 0.33 −0.11 −0.07 0.99
2_1 27.92 5.65 11.32
2_2 27.96 5.67 11.36 −0.04 0.28 −0.06 −0.02 0.93
3_1 28.06 5.67 11.36
3_2 28.09 5.75 11.52 −0.03 0.43 −0.05 0.00 1.13
4_1 27.68 5.58 11.18
4_2 27.68 5.54 11.10 0.00 0.30 −0.02 0.02 0.95
5_1 27.68 5.57 11.16
5_2 27.69 5.58 11.18 −0.01 0.29 −0.03 0.01 0.94
6_1 27.74 5.57 11.16
6_2 27.72 5.58 11.18 0.02 0.33 0.00 0.05 0.99
7_1 27.19 5.42 10.87
7_2 27.18 5.40 10.83 0.01 0.36 −0.01 0.03 1.03
8_1 27.61 5.49 11.00
8_2 27.71 5.58 11.18 −0.10 0.36 −0.12 −0.07 1.03
9_1 27.30 5.33 10.69
9_2 27.17 5.26 10.55 0.12 0.58 0.09 0.16 1.37

10_1 27.15 5.34 10.71
10_2 27.17 5.40 10.83 −0.01 0.53 −0.05 0.02 1.29
11_1 28.68 5.71 11.44
11_2 28.75 5.76 11.54 −0.07 0.38 −0.09 −0.04 1.06
12_1 28.41 5.73 11.48
12_2 28.17 5.65 11.32 0.24 0.47 0.21 0.27 1.20
13_1 27.89 5.55 11.12
13_2 27.80 5.53 11.08 0.09 0.40 0.07 0.12 1.09
14_1 27.61 5.48 10.98
14_2 27.43 5.40 10.83 0.18 0.51 0.15 0.21 1.26
15_1 26.81 5.19 10.41
15_2 26.73 5.12 10.27 0.07 0.65 0.03 0.11 1.49

Mean 27.69 5.34 0.03 0.41 0.00 0.06

CI: confidence interval; ROI: region of interest; SD: standard deviation.
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Table 2. Overall mean temperature of regions of interest in the back area.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side—Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

1_1 27.62 5.69 11.40
1_2 27.69 5.69 11.40 −0.07 0.53 −0.11 −0.04 1.29
2_1 27.52 5.67 11.36
2_2 27.58 5.67 11.36 −0.06 0.40 −0.09 −0.03 1.09
3_1 27.67 5.64 11.30
3_2 27.90 5.76 11.54 −0.23 0.59 −0.27 −0.19 1.39
4_1 27.50 5.61 11.24
4_2 27.60 5.62 11.26 −0.10 0.49 −0.13 −0.06 1.23
5_1 27.52 5.59 11.20
5_2 27.46 5.56 11.14 0.06 0.36 0.03 0.08 1.03
6_1 27.50 5.57 11.16
6_2 27.53 5.59 11.20 −0.03 0.39 −0.06 −0.01 1.07
7_1 27.21 5.49 11.00
7_2 27.34 5.52 11.06 −0.13 0.46 −0.16 −0.10 1.18
8_1 27.87 5.61 11.24
8_2 27.84 5.60 11.22 0.02 0.36 0.00 0.05 1.03
9_1 28.22 5.66 11.34
9_2 28.20 5.68 11.38 0.01 0.36 −0.01 0.04 1.03

10_1 27.59 5.54 11.10
10_2 27.75 5.58 11.18 −0.17 0.41 −0.19 −0.14 1.10
11_1 27.94 5.61 11.24
11_2 28.00 5.61 11.24 −0.06 0.33 −0.08 −0.03 0.99
12_1 28.14 5.64 11.30
12_2 28.21 5.67 11.36 −0.06 0.35 −0.09 −0.04 1.02
13_1 27.91 5.61 11.24
13_2 27.89 5.59 11.20 0.02 0.32 0.00 0.04 0.98
14_1 28.03 5.67 11.36
14_2 27.82 5.60 11.22 0.20 0.42 0.18 0.23 1.12
15_1 28.05 5.63 11.28
15_2 28.23 5.68 11.38 −0.19 0.32 −0.21 −0.17 0.98
16_1 28.48 5.74 11.50
16_2 28.39 5.72 11.46 0.09 0.42 0.07 0.12 1.12
17_1 27.81 5.60 11.22
17_2 27.72 5.56 11.14 0.09 0.38 0.06 0.11 1.06
18_1 27.93 5.59 11.20
18_2 28.09 5.63 11.28 −0.17 0.43 −0.20 −0.14 1.13
19_1 27.38 5.50 11.02
19_2 27.44 5.51 11.04 −0.06 0.42 −0.09 −0.03 1.12
20_1 25.74 5.09 10.21
20_2 25.75 5.06 10.15 −0.01 0.65 −0.05 0.03 1.49

Mean 27.70 5.38 −0.04 0.42 −0.07 −0.01

CI: confidence interval; ROI: region of interest; SD: standard deviation.

Table 3. Overall mean temperature of regions of interest in the lateral-side area.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side—Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

1_1 27.09 5.90 11.82
1_2 27.54 5.73 11.48 −0.44 2.84 −0.63 −0.26 5.73
2_1 27.40 5.97 11.96
2_2 28.01 5.85 11.72 −0.60 2.93 −0.79 −0.41 5.91
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Table 3. Cont.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side—Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

3_1 27.30 5.92 11.86
3_2 27.94 5.78 11.58 −0.63 2.95 −0.82 −0.43 5.95
4_1 26.91 5.81 11.64
4_2 27.46 5.69 11.40 −0.54 2.83 −0.72 −0.35 5.71
5_1 26.84 5.81 11.64
5_2 27.49 5.69 11.40 −0.64 2.91 −0.83 −0.45 5.87
6_1 26.61 5.65 11.32
6_2 27.29 5.58 11.18 −0.66 2.75 −0.84 −0.48 5.55
7_1 26.43 5.60 11.22
7_2 27.05 5.54 11.10 −0.61 2.74 −0.78 −0.43 5.53
8_1 26.79 5.73 11.48
8_2 27.57 5.70 11.42 −0.77 2.85 −0.95 −0.58 5.75
9_1 27.03 5.81 11.64
9_2 27.67 5.70 11.42 −0.62 2.80 −0.81 −0.44 5.65

10_1 26.77 5.70 11.42
10_2 27.48 5.68 11.38 −0.70 2.81 −0.89 −0.52 5.67
11_1 27.22 5.81 11.64
11_2 27.92 5.74 11.50 −0.69 2.84 −0.88 −0.51 5.73
12_1 27.27 5.86 11.74
12_2 27.86 5.70 11.42 −0.58 2.85 −0.76 −0.39 5.75
13_1 26.91 5.71 11.44
13_2 27.54 5.61 11.24 −0.62 2.75 −0.80 −0.44 5.55
14_1 27.19 5.79 11.60
14_2 27.84 5.68 11.38 −0.64 2.83 −0.83 −0.46 5.71
15_1 27.23 5.78 11.58
15_2 27.75 5.63 11.28 −0.50 2.83 −0.69 −0.32 5.71
16_1 27.16 5.75 11.52
16_2 27.78 5.61 11.24 −0.61 2.77 −0.79 −0.42 5.59
17_1 26.88 5.68 11.38
17_2 27.44 5.56 11.14 −0.55 2.76 −0.73 −0.37 5.57
18_1 26.75 5.63 11.28
18_2 26.95 5.40 10.83 −0.20 2.71 −0.37 −0.02 5.47
19_1 27.41 5.86 11.74
19_2 28.00 5.69 11.40 −0.58 2.75 −0.76 −0.40 5.55
20_1 27.21 5.73 11.48
20_2 27.84 5.60 11.22 −0.62 2.64 −0.79 −0.44 5.33
21_1 27.14 5.71 11.44
21_2 27.35 5.43 10.89 −0.19 2.73 −0.37 −0.01 5.51
22_1 27.24 5.77 11.56
22_2 27.96 5.69 11.40 −0.70 2.73 −0.88 −0.52 5.51
23_1 27.71 5.89 11.80
23_2 28.53 5.79 11.60 −0.80 2.86 −0.99 −0.62 5.77
24_1 27.80 5.92 11.86
24_2 28.20 5.68 11.38 −0.38 2.91 −0.57 −0.19 5.87
25_1 27.04 5.75 11.52
25_2 27.86 5.69 11.40 −0.80 2.79 −0.98 −0.62 5.63
26_1 27.26 5.81 11.64
26_2 27.86 5.67 11.36 −0.59 2.79 −0.77 −0.41 5.63
27_1 26.29 5.45 10.92
27_2 26.83 5.42 10.87 −0.53 2.44 −0.69 −0.37 4.94
28_1 26.75 5.52 11.06
28_2 27.25 5.38 10.79 −0.49 2.51 −0.65 −0.33 5.07
29_1 25.56 5.19 10.41
29_2 25.66 5.09 10.21 −0.09 2.37 −0.24 0.07 4.80
30_1 26.14 5.34 10.71
30_2 26.52 5.30 10.63 −0.37 2.42 −0.52 −0.21 4.90
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Table 3. Cont.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side—Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

31_1 26.20 5.35 10.73
31_2 26.83 5.35 10.73 −0.61 2.44 −0.77 −0.45 4.94
32_1 26.72 5.59 11.20
32_2 27.78 5.66 11.34 −1.04 2.79 −1.22 −0.86 5.63
33_1 27.04 5.67 11.36
33_2 27.64 5.60 11.22 −0.57 2.81 −0.76 −0.39 5.67
34_1 26.74 5.59 11.20
34_2 26.94 5.40 10.83 −0.18 2.80 −0.37 0.00 5.65
35_1 26.95 5.66 11.34
35_2 28.04 5.71 11.44 −1.06 2.75 −1.24 −0.88 5.55
36_1 27.47 5.83 11.68
36_2 28.19 5.72 11.46 −0.69 2.82 −0.88 −0.51 5.69
37_1 27.31 5.78 11.58
37_2 27.51 5.49 11.00 −0.18 2.89 −0.37 0.01 5.83
38_1 26.65 5.62 11.26
38_2 27.45 5.59 11.20 −0.78 2.68 −0.96 −0.61 5.41
39_1 26.73 5.64 11.30
39_2 27.30 5.52 11.06 −0.56 2.70 −0.73 −0.38 5.45
40_1 26.38 5.34 10.71
40_2 27.31 5.45 10.92 −0.92 2.41 −1.08 −0.76 4.88
41_1 26.64 5.50 11.02
41_2 27.09 5.40 10.83 −0.44 2.61 −0.61 −0.27 5.27
42_1 26.01 5.31 10.65
42_2 26.94 5.41 10.85 −0.91 2.44 −1.07 −0.75 4.94
43_1 26.49 5.41 10.85
43_2 26.87 5.31 10.65 −0.37 2.47 −0.53 −0.21 4.99
44_1 25.74 5.25 10.53
44_2 26.05 5.13 10.29 −0.30 2.41 −0.46 −0.14 4.88

Mean 27.18 5.49 −0.58 2.72 −0.76 −0.40

CI: confidence interval; ROI: region of interest; SD: standard deviation.

Table 4. Overall mean temperature of regions of interest in the sole area.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side—Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

1_1 26.05 5.12 10.27
1_2 26.07 5.12 10.27 −0.02 0.86 −0.08 0.04 1.87
2_1 26.26 4.97 9.97
2_2 26.36 5.02 10.07 −0.10 0.75 −0.15 −0.05 1.67
3_1 26.33 5.00 10.03
3_2 26.42 5.03 10.09 −0.09 0.73 −0.14 −0.04 1.64
4_1 25.96 4.96 9.95
4_2 26.13 5.00 10.03 −0.17 0.74 −0.22 −0.12 1.65
5_1 27.65 5.29 10.61
5_2 27.69 5.31 10.65 −0.04 0.61 −0.08 0.00 1.43
6_1 25.69 5.07 10.17
6_2 25.85 5.07 10.17 −0.15 0.87 −0.21 −0.10 1.89
7_1 25.87 5.12 10.27
7_2 25.99 5.08 10.19 −0.12 0.76 −0.17 −0.07 1.69
8_1 25.93 5.07 10.17
8_2 26.02 5.05 10.13 −0.09 0.72 −0.14 −0.04 1.62
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Table 4. Cont.

ROI Mean (◦C) SD
Extended

Uncertainty

Difference (∆T, Right Side—Left Side)

Mean (◦C) SD 95% CI
Lower

95% CI
Upper

Extended
Uncertainty

9_1 25.99 5.03 10.09
9_2 26.05 5.04 10.11 −0.06 0.71 −0.11 −0.01 1.60

10_1 25.92 5.04 10.11
10_2 25.86 5.06 10.15 0.06 0.71 0.02 0.11 1.60
11_1 24.82 5.07 10.17
11_2 24.95 5.07 10.17 −0.13 0.94 −0.20 −0.07 2.02
12_1 24.60 5.06 10.15
12_2 24.77 5.06 10.15 −0.16 0.87 −0.22 −0.11 1.89
13_1 24.66 5.13 10.29
13_2 24.79 5.11 10.25 −0.13 0.88 −0.19 −0.07 1.91
14_1 24.74 5.16 10.35
14_2 24.84 5.16 10.35 −0.10 0.88 −0.16 −0.04 1.91
15_1 25.19 5.22 10.47
15_2 25.24 5.24 10.51 −0.05 0.91 −0.11 0.01 1.96

Mean 25.74 4.98 −0.09 0.80 −0.14 −0.04

CI: confidence interval; ROI: region of interest; SD: standard deviation.

According to the location of the ROIs, the mean temperature of the ROIs was signifi-
cantly different between the four areas (p < 0.001, ANOVA). In particular, the temperature
of the sole area was significantly lower than that of any other areas; the difference between
the sole and other areas was 1.93 (95% CI, 1.53–2.33), 1.95 (95% CI, 1.57–2.32), and 1.41
(95% CI, 1.08–1.74), respectively (p < 0.001, ANOVA post hoc analysis) (Figure 2).

Figure 2. Diagram of the mean temperature according to the four areas. ROIs: region of interests;
and * and ◦ are labels that are out of range.
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Moreover, the absolute value of the temperature difference between both sides (|∆T|)
was also significantly different between the four areas (p < 0.001, ANOVA). In particular, the
|∆T| of the lateral-side area was 0.58 ± 2.72 ◦C (95% CI, 0.40–0.76), which was significantly
larger compared to any other area; the mean difference of |∆T| between lateral-side
and other areas was 0.50 (95% CI, 0.38–0.63), 0.48 (95% CI, 0.37–0.60), and 0.48 (95% CI,
0.36–0.60), respectively (p < 0.001, ANOVA post hoc analysis) (Figure 3).
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3.3. Subgroup Analysis of the Temperature (◦C) According to Proximity of ROIs

The temperature tended to drop from the proximal to the distal part in only the
lateral-side area (p = 0.001, regression analysis), not in the front or back areas (Figure 4).

Figure 4. Relation between the mean temperature of the region of interest (ROIs) and the proximity of
ROIs in three areas according to regression analysis. Front area temperature = 27.871 − (0.023 × ROIs)
(p = 0.260, R2 = 0.045); back area temperature = 27.792 − (0.009 × ROIs) (p = 0.569, R2 = 0.009); lateral-
side area temperature = 27.595 − (0.023 × ROIs) (p = 0.001, R2 = 0.114).

In terms of |∆T| according to the proximity of ROIs, the |∆T| tended to increase
from the proximal to the distal part in only the front area (p = 0.047, regression analysis),
not in the back or lateral-side areas (Figure 5).
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Figure 5. Relation between the absolute values of difference between both sides (|∆T|, |right—left|)
and the proximity of region of interest in each of the three areas according to regression analysis. |∆T|
front area = 0.008 + (0.008 × ROIs) (p = 0.047, R2 = 0.270); |∆T| back area = 0.090 + (9.774 × 10−5 × ROIs)
(p = 0.972, R2 = 0.000); |∆T| lateral-side area = 0.645 − (0.004 × ROIs) (p = 0.327, R2 = 0.023).

3.4. Subgroup Analysis of the Temperature (◦C) According to Sex

The mean temperature of each area depending on the sex was as follows: in the front
area, the mean temperature was 28.83 ± 5.15 (ranged from 27.10 ± 5.16 to 32.02 ± 4.85) in
males and 26.54 ± 5.53 (ranged from 24.03 ± 5.16 to 29.32 ± 5.66) in females; in the back
area, the mean temperature was 28.90 ± 5.18 (ranged from 25.99 ± 5.05 to 31.84 ± 4.65) in
males and 26.50 ± 5.61 (ranged from 22.86 ± 4.86 to 28.74 ± 5.59) in females; in the lateral-
side area, the mean temperature was 27.99 ± 5.45 (ranged from 25.32 ± 5.25 to 32.15 ± 4.71
in males and 26.29 ± 5.55 (ranged from 22.89 ± 4.95 to 29.02 ± 5.58) in females; in the sole
area, the mean temperature was 26.59 ± 4.87 (ranged from 25.32 ± 5.08 to 30.36 ± 5.03)
in males and 24.85 ± 5.03 (ranged from 22.19 ± 4.69 to 28.21 ± 5.40) in females; and in
all areas, the mean temperature was 28.08 ± 5.16 in males and 26.05 ± 5.43 in females
(Table 1).

In terms of trends according to sex, the mean surface temperature in the same ROIs
was higher in males than in females in all areas of all age groups (p < 0.001, paired t-test),
although the mean differences varied depending on the areas and age groups. The males’
surface temperatures were at least 0.52 (95% CI, 0.09–0.94) and at most 3.42 (95% CI,
3.19–3.65) higher than that of females (Table 5 and Figure 6).

Table 5. Comparison of mean temperature for the same region of interest according to sex and
age group.

Characteristics Male (◦C) Female (◦C) Mean (◦C) Difference Between Sexes (◦C) p Value

Front area <0.001 a

20s (n = 183) 28.46 ± 5.02 27.50 ± 5.68 28.01 ± 5.33 0.96 (95% CI, 0.70–1.21) <0.001 b

30s (n =213) 27.96 ± 5.51 24.54 ± 5.34 26.27 ± 5.43 3.42 (95% CI, 3.19–3.65) <0.001 b

40s (n = 228) 28.83 ± 5.18 26.74 ± 5.84 27.74 ± 5.52 2.09 (95% CI, 1.80–2.38) <0.001 b

50s (n = 177) 29.82 ± 4.91 27.31 ± 5.16 28.23 ± 5.07 2.51 (95% CI, 2.24–2.78) <0.001 b

60s (n = 104) 30.86 ± 4.71 28.15 ± 5.42 28.98 ± 5.20 2.71 (95% CI, 2.39–3.04) <0.001 b

Sum 28.83 ± 5.15 26.54 ± 5.53 27.69 ± 5.34 2.29 (95% CI, 2.18–2.39) <0.001 b

Back area <0.001 a

20s (n = 183) 28.46 ± 5.05 27.54 ± 5.83 28.03 ± 5.42 0.92 (95% CI, 0.65–1.18) <0.001 b

30s (n =213) 27.96 ± 5.57 24.46 ± 5.49 26.23 ± 5.53 3.50 (95% CI, 3.27–3.74) <0.001 b

40s (n = 228) 28.96 ± 5.27 26.65 ± 5.85 27.75 ± 5.57 2.31 (95% CI, 2.05–2.56) <0.001 b

50s (n = 177) 29.97 ± 4.88 27.30 ± 5.14 28.28 ± 5.04 2.67 (95% CI, 2.43–2.91) <0.001 b

60s (n = 104) 31.06 ± 4.62 28.09 ± 5.44 29.00 ± 5.19 2.97 (95% CI, 2.67–3.26) <0.001 b

Sum 28.90 ± 5.18 26.50 ± 5.61 27.70 ± 5.38 2.40 (95% CI, 2.34–2.46)
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Table 5. Cont.

Characteristics Male (◦C) Female (◦C) Mean (◦C) Difference Between Sexes (◦C) p Value

Lateral-side area <0.001 a

20s (n = 183) 28.09 ± 5.06 27.05 ± 5.73 27.60 ± 5.37 1.04 (95% CI, 0.87–1.20) <0.001 b

30s (n =213) 27.25 ± 5.68 24.45 ± 5.40 25.89 ± 5.54 2.79 (95% CI, 2.61–2.98) <0.001 b

40s (n = 228) 27.84 ± 5.56 26.52 ± 5.77 27.15 ± 5.67 1.32 (95% CI, 1.07–1.57) <0.001 b

50s (n = 177) 28.67 ± 5.43 27.16 ± 5.19 27.71 ± 5.28 1.51 (95% CI, 1.23–1.78) <0.001 b

60s (n = 104) 29.34 ± 5.54 27.69 ± 5.54 28.21 ± 5.54 1.65 (95% CI, 1.29–2.00) <0.001 b

Sum 27.99 ± 5.45 26.29 ± 5.55 27.18 ±5.49 1.70 (95% CI, 1.53–1.87)

Sole area <0.001 a

20s (n = 183) 25.97 ± 4.35 25.46 ± 4.76 25.73 ± 4.54 0.52 (95% CI, 0.09–0.94) 0.019 b

30s (n =213) 26.46 ± 5.13 23.30 ± 4.80 24.90 ± 4.97 3.16 (95% CI, 2.79–3.53) <0.001 b

40s (n = 228) 26.47 ± 4.96 24.91 ± 5.37 25.65 ± 5.17 1.57 (95% CI, 1.14–2.00) <0.001 b

50s (n = 177) 27.47 ± 4.93 25.75 ± 5.12 26.38 ± 5.02 1.72 (95% CI, 1.35–2.10) <0.001 b

60s (n = 104) 27.49 ± 5.19 26.22 ± 5.26 26.61 ± 5.24 1.26 (95% CI, 0.76–1.77) <0.001 b

Sum 26.59 ± 4.87 24.85 ± 5.03 25.74 ± 4.98 1.74 (95% CI, 1.70–1.77)

All areas <0.001 a

20s (n = 183) 27.75 ± 4.87 26.89 ± 5.50 27.34 ± 5.17 0.86 (95% CI, 0.59–1.12) <0.001 b

30s (n =213) 27.41 ± 5.47 24.19 ± 5.26 25.82 ± 5.37 3.22 (95% CI, 2.82–3.62) <0.001 b

40s (n = 228) 28.03 ± 5.24 26.21 ± 5.71 27.07 ± 5.48 1.82 (95% CI, 1.77–1.87) <0.001 b

50s (n = 177) 28.98 ± 5.04 26.88 ± 5.15 27.65 ± 5.11 2.10 (95% CI, 1.83–2.37) <0.001 b

60s (n = 104) 29.70 ± 5.02 27.54 ± 5.42 28.20 ± 5.29 2.16 (95% CI, 1.88–2.44) <0.001 b

Sum 28.08 ± 5.16 26.05 ± 5.43 26.97 ± 5.31 2.03 (95% CI, 1.74–2.32) <0.001 b

CI: confidence interval. a ANOVA between five age groups; b paired t-test between both sexes.

Figure 6. Trend of temperature according to sex in each area.

3.5. Subgroup Analysis of the Temperature (◦C) According to Age Group

The mean temperature of each area depending on the age group was as follows: in
the 20s age group, the mean temperature was 27.34 ± 5.17 (ranged from 24.14 ± 4.69 to
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29.33 ± 5.21); in the 30s age group, the mean temperature was 25.82 ± 5.37 (ranged from
22.19 ± 4.69 to 28.95 ± 5.74); in the 40s age group, the mean temperature was 26.21 ± 5.71
(ranged from 23.74 ± 5.30 to 30.00 ± 5.43); in the 50s age group, the mean temperature was
27.65 ± 5.11 (ranged from 24.67 ± 5.16 to 30.84 ± 4.95); in the 60s age group, the mean
temperature was 28.20 ± 5.29 (ranged from 25.06 ± 5.34 to 32.15 ± 4.85) (Table 5).

In terms of trends according to age group, the surface temperature increased as age
increased, except for the 20s age group, in all areas (p < 0.001, ANOVA). Among all age
groups, the 30s age group of both sexes showed the lowest temperature in all areas (p< 0.001,
ANOVA post hoc analysis) (Table 5 and Figure 7).

Figure 7. Trend of temperature according to age group in each area.

4. Discussion
4.1. The Mean Temperature and Difference between Both Sides

The surface temperature of the lower limb was difficult to define as a single numerical
average because the mean temperature of ROIs was significantly different between the
areas and location of ROIs (ranging from 24.60 ± 5.06 ◦C to 28.75 ± 5.76 ◦C). Notably, the
temperature of the sole area was significantly lower than that of other areas. This finding
supports the previous suggestion that distal skin regions, including feet and hands, are
hypo-radiant areas because they are further away from the body’s main thermal cores, such
as the great vessels and viscera [22,23].

In previous clinical studies, the normal range of |∆T| was limited to 0.2 ◦C, although
it varied depending on the region [10,15,17]. According to the present study, |∆T| was
within 0.2 ◦C, as suggested previously in almost all ROIs except in the lateral-side area. In
the lateral-side area, |∆T| was higher than 0.2 ◦C at 0.58 ± 2.72 ◦C (95% CI, 0.40–0.76).
The reason for this variability requires further study, and careful interpretation should be
taken when evaluating |∆T| in the lateral-side area.

The results of this study, which include mean temperature and mean ∆T of each ROI
from a large sample, can serve as a reference standard in DITI. Based on this reference
standard, objective hypo-radiant/hyper-radiant and clinical significance of ∆T can be
determined by comparing the practical DITI results with this reference data. However, it
may be difficult to subdivide the ROIs in practical clinics as was done in this study. In such
cases, abbreviations for representative RIOs can be used and analyzed. It is important to
compare values in each ROI of each area, rather than relying on simple overall averages.
Additionally, because various individual characteristics, such as sex, age, medical condition,
body composition, and circadian rhythm, can affect the skin temperature [24–27], normal
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values for an individual may fall outside the range of reference standards from this study.
Therefore, further research is needed to assess the sensitivity and specificity of this reference
standard by applying it to actual patients in the future.

4.2. Subgroup Analysis

We investigated subgroup analysis, including the trend of surface temperature accord-
ing to the proximity of ROIs, sex, and age groups, to verify existing claims and controversies
related to surface temperature. A previous suggestion that the surface temperature de-
creases and |∆T| increases from the proximal to the distal part was limited to only certain
areas. Additionally, it was confirmed that men have significantly higher surface temper-
atures than women in all areas and in all age groups. In terms of the trend of surface
temperature related to age, a complex phenomenon that the temperature increased with
age except for the 20s age group concluded several existing controversies.

This study’s findings that the surface temperature in the lateral-side area decreases
from the proximal to the distal part and that the temperature of the sole is the lowest among
the four areas are consistent with existing hypotheses. Previous studies suggested that the
body temperature would drop from the proximal part to the distal part of the body [6]. We
speculate that the reason for this phenomenon is that the bloodstream temperature of the
proximal part is warmer than that of the distal part. However, in the front and back areas,
this hypothesis does not apply and is, therefore, still controversial.

Based on the results of this study, |∆T| increased toward the distal part in the front
area only, but not in other areas. Furthermore, |∆T| was within 0.2 ◦C in the sole area and
it was measured as higher than 0.2 in the lateral-side area. In contrast, some authors have
suggested that |∆T| increases toward the distal part of the body and that the normal range
of |∆T| can be larger than 0.2 ◦C in the periphery [10,17]. As a result, previous findings are
controversial, and it is necessary to be careful about the interpretation of the significance of
|∆T| depending on the area.

According to this study, there was a significant trend that the surface temperature of
females was lower than that of males in all areas of lower limbs. The influence of sex on
surface temperature has been a subject of controversy. Some studies have reported that sex
differences were significant for only certain ROIs, while others have suggested that women
have lower skin temperatures [24]. This study concludes the previous controversy in this
regard. A possible explanation is that the higher level of subcutaneous adipose tissue in
women is associated with decreased surface temperature [28]. Greater subcutaneous fat in
females may provide a significant insulating layer that blunts heat transfer from the core of
the body or major blood vessels [29].

In terms of the relationship between surface temperature and aging, there has been
controversy. Several studies have identified lower surface temperatures in the elderly
and suggested that elderly individuals may have a lower skin temperature due to the
association of aging with the loss of muscle mass, which reduces metabolism and limits
heat generation [30–32]. In contrast, other studies have found that the elderly tend to have
similar or higher skin temperature than young people and insisted that the blood flow
of the human skin is controlled by the sympathetic nervous system innervation, which is
mainly affected by the aging process [33–35].

According to the present study, the trend of surface temperature across age groups
revealed a complicated pattern. Specifically, although the surface temperature tended to
increase with age, the surface temperature in the 20s age group was paradoxically higher
than that in the 30s age group. Consequently, individuals in their 30s showed the lowest
temperature compared to all other age groups in both sexes. This trend may suggest that
body surface temperature can vary according to age, even within the same individual.

Aging is related to the alteration of the cutaneous vasodilation and vasoconstriction
reflexes that modify peripheral circulation [3]. In other words, older adults have a higher
skin temperature due to increased blood flow in the skin caused by a deficit in the venous
return [36,37]. On the other hand, the higher metabolic rate of the muscle tissue and active
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reproductive organs with higher blood supply could have a positive influence on the higher
surface temperature of young adults, especially the 20s age group [30,31]. We presume that
the 30s age group has a paradoxical heat loss (heat redistribution) in the subcutaneous or
skin layer, although they also have a high core temperature. Abundant subcutaneous fat in
the 30s age group compared to the 20s age group could lower skin temperature by blocking
heat transfer from the core of the body or major blood vessels [29]. In summary, we assume
that the trend of body surface temperature according to age reveals a complicated pattern
due to complex physiological phenomena related to heat generation and heat redistribution
according to the aging process.

4.3. Limitations

This study has some limitations regarding various intrinsic or extrinsic factors that
can influence surface temperature [38,39]. Firstly, the environment of the subjects was not
entirely controlled during the DITI exam. All physiological and psychological factors, such
as time of the test, circadian rhythm, menstrual cycle, menopause, emotional stress, and
season, that can affect autonomic function, were neither controlled nor collected. Secondly,
the control range of the test room temperature and humidity was too wide. We were unable
to strictly control these factors due to practical limitations in the test room environment and
seasonal variations. Thirdly, other demographic factors, such as ethnic variability, body
mass index, and body fat percentage, were not considered.

However, we tried to minimize errors by limiting the inclusion criteria to healthy
subjects with no specific medical history or symptoms, although healthy volunteers did
not rule out the possibility of varicose veins, knee osteoarthritis, scars on the lower limbs,
limb shortening, postural deviations, or extra hair on the legs. Additionally, a large number
of participants who underwent consistent measurement techniques could strengthen the
reliability of our examination and analysis. To the best of our knowledge, this study is the
first report to investigate the reference standard data of DITI.

5. Conclusions

This large-scale study of DITI of the lower limb could serve as a basis for establishing
a reference standard for DITI. Additionally, we were able to analyze the trend of the surface
temperature of lower limbs in terms of the proximity of ROIs, sex, and age. Using these
reference standards and trends, DITI results in various diseases can be assessed through
comparative analysis. Furthermore, the results of the present study can be used in the
development of diagnosis using deep learning-based artificial intelligence in the future.
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Abstract: Transplant pathology plays a critical role in ensuring that transplanted organs function
properly and the immune systems of the recipients do not reject them. To improve outcomes
for transplant recipients, accurate diagnosis and timely treatment are essential. Recent advances
in artificial intelligence (AI)-empowered digital pathology could help monitor allograft rejection
and weaning of immunosuppressive drugs. To explore the role of AI in transplant pathology, we
conducted a systematic search of electronic databases from January 2010 to April 2023. The PRISMA
checklist was used as a guide for screening article titles, abstracts, and full texts, and we selected
articles that met our inclusion criteria. Through this search, we identified 68 articles from multiple
databases. After careful screening, only 14 articles were included based on title and abstract. Our
review focuses on the AI approaches applied to four transplant organs: heart, lungs, liver, and
kidneys. Specifically, we found that several deep learning-based AI models have been developed
to analyze digital pathology slides of biopsy specimens from transplant organs. The use of AI
models could improve clinicians’ decision-making capabilities and reduce diagnostic variability. In
conclusion, our review highlights the advancements and limitations of AI in transplant pathology.
We believe that these AI technologies have the potential to significantly improve transplant outcomes
and pave the way for future advancements in this field.

Keywords: transplant pathology; artificial intelligence; kidney transplant; heart transplant; liver
transplant; lung transplant; digital pathology

1. Introduction

According to the Centers for Disease Control and Prevention (CDC), the most com-
monly transplanted organs in the USA are the kidneys, liver, heart, lungs, pancreas, and
intestines. Although there are approximately 100,000 people waiting for organ transplants
every day, organ supplies remain limited. An estimated 14,000 deceased organ donors
are available, each providing an average of 3.5 organs, while living donors supply only
6000 organs each year [1]. In the standard of care for organ transplantation, both donors
and recipients undergo a pre-transplant assessment of histocompatibility, pathology, and
clinical case histories. When a matched pair is found, the organ transplantation will proceed
and then subsequently be monitored. Post-transplant monitoring includes electronic medi-
cal record (EMR) review, blood and body fluid assessment for organ function and formation
of donor-specific antibodies, and protocol biopsies if there is a suspicion of rejection.

Recent advancements in deep learning-based AI approaches have revolutionized
the field of digital pathology by enabling the development of AI-empowered diagnostic
models for analyzing digitized glass slides of biopsy specimens. AI-empowered digital
pathology can be extremely helpful in transplant pathology, as it could reduce inter-reader
variability between pathologists, allow teleconsultation for pre and post transplantation,
and provide a second opinion as well as assessing several morphological parameters and
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their spatial relationships. Over the years, several AI models have been developed for
assessing transplant-related heart, lung, kidney, and liver pathologies [2–5]. Transplant
pathology is a highly specialized field in which AI-empowered digital pathology tools
could aid pathologists in making better decisions and eliminating/reducing the diagnostic
variability among them. In addition to AI advances in transplant pathology, AI has also
been used in organ allocation and donor-recipient matching [6–9], transplant oncology [10],
and immunosuppressive therapy [11].

In spite of the impressive success of AI models in integrating information from multi-
modality data sources (e.g., histopathological reports, lab test results, radiological features,
and patient demographics), our focus in this review is on the AI-empowered analysis of
whole-slide images (WSIs), which is the cornerstone of diagnosis and prognosis in trans-
plant pathology. Within the scope of this review, we aim to present the advancements of AI
in the diagnosis and prognosis of transplant-related heart, lung, liver, and kidney patholo-
gies. Furthermore, we offer insights into the future trajectory of AI-assisted approaches
in the domain of transplant pathology. A flowchart of AI-assisted transplant pathology
is depicted in Figure 1. An example of a web-based framework that could be used for
transplant pathology is suggested in Akkus et al. [12]
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2. Methods
2.1. Literature Search Strategy

We performed a thorough analysis of the literature using the Web Of Science and
PubMed search engines. We included peer-reviewed journal publications and conference
proceedings addressing the application of deep learning-based AI to transplant pathology
before 30 April 2023. This systematic review was conducted using the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA) checklist [13]. The details of
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the search and our systematic review protocol are registered in the OSF public registries of
systematic reviews: https://doi.org/10.17605/OSF.IO/XFGZN, (accessed on 1 May 2023).

2.2. Study Inclusion and Exclusion Criteria

We included all full-text articles focusing on deep learning-based artificial intelligence
in transplant pathology. We excluded studies using classical machine learning algorithms
that rely on hand-crafted feature extraction. Furthermore, we also searched reference lists
of retrieved articles and reviewed articles in the field to identify eligible studies that met
inclusion and exclusion criteria. MAR and ZA reviewed titles and abstracts. To facilitate a
structured analysis, the gathered reports were categorized into four distinct groups based
on the transplanted organs: heart, lungs, kidneys, and liver. (See Figure 2 for a detailed
flowchart used for identification, screening, eligibility, and inclusion).
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3. Results

The initial systematic literature search yielded a total of 167 relevant articles. After
removing duplicates, a rigorous selection process resulted in the inclusion of 14 journal
papers that aligned with the defined scope and objectives of this review.

3.1. AI Advances in Transplant Heart Pathology

Cardiac allograft rejection is a critical concern in heart transplantation, primarily
due to the limited availability of donor organs. Although endomyocardial biopsy with
histopathology grading is the standard of care for diagnosing cardiac allograft rejection,
substantial inter- and intra- observer variability among pathologists may result in inap-
propriate treatment with immunosuppressive drugs, redundant follow-up biopsies, and
deteriorated transplant outcomes.

To date, there were four studies that discussed the use of artificial intelligence to
assess cardiac allograft rejection and survival prediction. Giuste et al. [14] studied synthetic
image generation to improve the risk assessment of rare pediatric heart transplant rejection.
They trained progressive and inspirational Generative Adversarial Networks (GANs) to
generate high resolution synthetic images with rejection signs that helped improve the
performance of their allograft rejection classifier model. Despite their limited dataset
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consisting of only 12 non-rejection and 12 rejection slides, their approach significantly
improved the performance of their allograft rejection classifier model, which achieved
an area under receiver operating curve (AUC) of 98.84% for image tile-based rejection
detection and 95.56% for biopsy rejection prediction at the WSI level. Peyster et al. [2]
presented an automated WSI analysis pipeline based on handcrafted feature extraction and
selection for histological grading of cardiac allograft rejection. Their study cohort included
2472 biopsy slides from three major US transplant centers. Their model performance was
comparable to pathologists’ agreement (65.9% vs. 60.7%). Although this study did not meet
our inclusion criteria, we refer readers to this paper for comparison to deep learning-based
AI models. A limitation of this study is that the ground truth diagnosis label was obtained
based on scoring only one section of tissue digitally while pathologists examine multiple
slide sections under the microscope to reach the consensus of a final grade. Later, Lipkova
et al. [15] published a study based on deep learning for the assessment of cardiac allograft
rejection from the WSIs of endomyocardial biopsies. Their model demonstrated allograft
rejection with a notable AUC of 0.962, which is a significant improvement compared to the
study of Peyster et al. [2] that used hand-crafted features and a classical machine learning
approach. Additionally, the AUC for differentiating between low and high-grade rejection
was reported as 0.83. In their pipeline, they used a pre-trained CNN model to extract
features from image patches and fine-tuned on three fully connected layers and a separate
classifier was trained to estimate the rejection grade. The model was trained on 80% of
1690 internal WSI image datasets and validated on two external datasets: 1717 WSI slides
of 585 patients from Turkey and 123 WSI slides of 123 patients from Switzerland. Lastly,
Glass et al. [16] fine-tuned a pre-trained VGG model to predict myocyte damage in cardiac
transplant acute cellular rejection (ACR). The authors annotated 19,617 regions including
10,855 regions of ACR, 5002 of healing injury, and 3760 of normal from 200 H&E slides and
reported 94% for validation accuracy. A summary of these studies is provided in Table 1.

Table 1. A summary of previous AI studies investigating transplant heart pathology.

Author, Year Objective AI Model Dataset Performance

Giuste et al.,
2023 [14]

Enhancing risk assessment
of rare pediatric heart

transplant rejection
through the generation of

synthetic images

Progressive and
inspirational
GAN [17,18]

12 non rejection and
12 rejection slides

95.56% AUROC for biopsy
level rejection detection

with 83.33% sensitivity and
66.67% specificity

Lipkova et al.,
2022 [15]

Assessment of cardiac
allograft rejection from

endomyocardial biopsies

Pre-trained deep
residual CNN [19]

Training: 1352 WSI
slides; Validation:
1840 WSI slides

Allograft reject detection
with an AUC of 0.962

Peyster et al.,
2021 [2]

Histological grading of
cardiac allograft rejection

Computer-Assisted
Cardiac Histologic

Evaluation (CACHE)
grader pipeline

2472 endomyocardial
biopsy slides

Differentiate low- and
high-grade rejection with

an AUC of 0.83

Glass et al.,
2020 [16]

Determine myocyte
damage in cardiac

transplant acute cellular
rejection

Pre-trained
VGG16 [20]

19,617 annotations
(10,855 regions of ACR;

5002 healing injury;
3760 normal)

Detection of myocyte
damage (Grade 1R2) from

non-myocyte damage
(Grade 1R1A) with 94%

validation accuracy

3.2. AI Advances in Transplant Lung Pathology

Despite advances in the immunosuppressive therapies and immunosuppressive drugs
used, one-third of lung transplant recipients experience at least one episode of treated acute
rejection in the first year after transplantation according to the report of the registry of
the International Society of Heart and Lung Transplantation [21]. However, contrasting
findings from the Organ Procurement and Transplantation Network/Scientific Registry of
Transplant Recipients indicate a lower incidence of less than one-fifth in the first year [22].
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Gholamzadeh et al. [23] published an in-depth systematic review about classical machine
learning-based techniques to improve lung transplantation outcomes and complications.
However, we exclusively focused on deep learning-based AI studies in our review and
refer readers to their paper for further information. In one notable study, Davis et al. [3]
investigated detecting acute cellular rejection (ACR) in lung transplant biopsies using AI.
Board-certified lung transplant pathologists annotated a total of 3349 annotations (2580 re-
gions of normal, 769 lesions of A1/A2 rejection). They included 614 A1/A2 lesions and
2064 regions of normal for the training set. On the other hand, the validation set included
155 A1/A2 lesions and 156 regions of normal to evaluate their AI model performance.
Remarkably, their AI model distinguished the vascular component of ACR from normal
alveolated lung tissue with 95% validation accuracy. Throughout our search, we identified
only one study about lung transplant pathology using AI and one study about donor-
recipient matching using AI [24]. Davis et al. presented promising results in identifying
ACR, which is related to chronic lung allograft rejection, in lung transplant patients. The
main limitation of their research is the lack of multi-institutional validation testing.

3.3. AI Advances in Transplant Kidney Pathology

Kidney transplantation is the most frequently performed solid organ transplantation
worldwide. According to the United Network of Organ Sharing (UNOS), more than
25,000 people in the USA had kidney transplants performed in 2022, which was 3.4% more
than in 2021 [25]. Despite the growing demand for kidney transplantation, the field of
pathology is facing a decline in the available workforce. As per the Organ Procurement
and Transplantation Network (OPTN), there are 88629 patients in the US currently on the
waiting list for a kidney transplant as of July 23, 2023 [26]. Based on transplants conducted
between 2008 and 2015, the 5 years post-transplant survival rates for males and females are
85.85% and 88.2%, respectively [26]. Although leveraging AI is new in this field, it could
be useful in many ways such as finding a better matchmaking process between donors
and patients, assessing histopathology of kidney biopsies, and guiding the treatment and
management of transplant patients. The most common kidney biopsy scoring systems
are Remuzzi [27], Banff [28], Leuven [29], and the Maryland Aggregate Pathology Index
(MAPI) [30,31]. Table 2 provides a comparative overview of these models. The application
of AI in transplant kidney pathology has been examined in a number of studies [4,32–34].

Table 2. Comparison of kidney biopsy scoring system models [30,35–37].

Remuzzi Banff Leuven MAPI

Scoring System Scoring range between
0–12

3 grades (Mild, Moderate,
and Severe) and

6 rejection categories
Score > 60 or Score < 60 Scoring range

between 0–15

Selection Criteria

Glomerulosclerosis,
tubular atrophy,

interstitial fibrosis, and
arterial narrowing

Vascular and other
histologic abnormalities

Glomerulosclerosis,
donor age, interstitial
fibrosis, and tubular

atrophy

Histologic parameters
(glomerular sclerosis,
arteriolar hyalinosis,

cortical scar, and
periglomerular fibrosis)

Hermsen et al. [32] employed a UNet [38] architectural CNN model for multiclass
segmentation of digitized kidney biopsy tissue sections with periodic acid-Schiff (PAS)
staining. The model was trained on 40 WSIs and validated 10 WSIs from their home institu-
tion and 10 WSIs from an external institution. In another study, Hermsen at al. [33] trained
a UNet model to quantify inflammatory and chronic features in kidney transplant biopsies.
Kers et al. [34] investigated the performance of multiple CNN architectures to predict
transplant rejection. The study encompassed retrospective multicentered data, including
5844 digital whole-slide images of kidney allograft biopsies obtained from 1948 patients.
A 3-fold cross-validation approach was employed, and an external dataset consisting of
101 WSIs was used for evaluation. The limitations of this study encompass its concentration

171



Bioengineering 2023, 10, 1041

on Western European institutions, lack of ethnicity data due to legal restrictions, absence of
certain baseline characteristics, and restricted staining variability. Smith et al. [4] used a
binary thresholding approach and trained a UNet model for glomeruli segmentation to
assess interstitial inflammation from CD45-stained digital slides. They included a total
of 60 biopsies from 53 patients in their study and observed a strong correlation between
their automated inflammation scoring and Banff scoring. This study’s limitations include
focusing on pixel counting rather than cell counting, potential complexity in implementing
a deep learning approach, and a retrospective design with limited statistical power. Wilbur
et al. [39] trained a modified version of the AlexNet CNN model to identify glomeruli
on renal biopsies containing four stains (H&E, trichrome, silver, and PAS) from multiple
institutions. The study encompassed 71 biopsies that were split into training/validation
(n = 52) and testing (n = 19). The authors emphasized the importance of diverse datasets
for developing generalizable AI models. The sensitivity of their model ranged from 90% to
93% for the intra-institutional dataset vs. 77% for the inter-institutional dataset. A summary
of these studies is shown in Table 3. Furthermore, several review papers discussing AI
in kidney transplantation and the assessment of renal transplant prognosis using clas-
sical machine learning approaches are available for interested readers in the additional
resources [27,40–45].

Table 3. Summary of previous AI studies on transplant kidney pathology.

Author, Year Objective AI Model Dataset Performance

Hermsen et al.,
2019 [32]

Multiclass
segmentation of

digitized kidney biopsy
tissue sections

UNet [38]

Training: 40 WSIs;
Validation: 20 WSIs
(Home: 10; External

Institution: 10)

Detected 92.7% of all
glomeruli in nephrectomy
samples with 10.4% false

positives

Hermsen et al.,
2022 [33]

Quantifying the chronic
and inflammatory

lesions
in kidney transplant

biopsies

UNet [38]
125 WSI pairs of

periodic acid-schiff-
and CD3-stained slides

The tissue class glomeruli
was segmented with

precision, recall, and dice
scores of 0.96, 0.94, 0.95,

respectively

Kers et al.,
2022 [34]

Classifying histology of
kidney allograft

biopsies

Single CNN
(InceptionV3) [46],

Serial CNN

5844 WSIs from 1948
patients

AUROC (Single CNN) of
0.86, 0.78, and 0.70 for the

normal and rejection disease
classes, respectively

Smith et al.,
2023 [4]

Quantifying the
amount of

non-glomerular
inflammation within

the cortex

UNet [38] 60 biopsies from 53
patients

Precision, recall, and dice
scores for glomeruli

identification were 0.888,
0.830, and 0.858, respectively

Wilbur et al.,
2021 [39]

Identifying glomeruli
on renal biopsy

containing four stains
from multiple

institutions

Modified version of
AlexNet

71 biopsies (Training:
52; Testing: 19)

Sensitivity of 90–93% for
intra-institutional and 77%

for inter-institutional dataset

3.4. AI Advances in Transplant Liver Pathology

Like other organ transplants, Liver Transplantation (LT) is a crucial treatment for pa-
tients with end-stage liver diseases. Recent advancements in surgical techniques, improved
management of immunosuppressive drugs, and enhanced understanding of post-transplant
morbidities have led to a significant increase in LT procedures. This surge in demand,
however, has also led to a shortage of organ donors, resulting in a substantial waiting list
for LT candidates [47]. Despite the disparity between organ supply and demand, over
a third of donor livers are being rejected due to the risk of early allograft dysfunction
(EAD), based on histopathologic findings [48]. The management of LT is complex, and
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the current approaches are not sufficient in clinical decision making. So, a data-driven
LT could be useful in both pre- and post- LT settings [48,49]. Although this research area
is quite new, several studies have already been conducted. Narayan et al. [50] published
research regarding the use of AI for predicting donor liver allograft steatosis and early
post-transplantation graft failure. They developed a Computer Vision AI platform (CVAI)
to score donor liver steatosis and compared its capability for predicting EAD against
pathologist steatosis scores. The study included liver biopsy slides data from 2014 to 2019
consisting of 25,494 images from 90 liver biopsies. The results indicated that the CVAI
platform demonstrated slightly better calibration scores than pathologist steatosis scores.
Their study was chiefly limited by a small sample of donor liver from a single institution
and the presence of selection bias in the test for association with EAD. Yu et al. [51] de-
signed a Multiple Up-sampling and Spatial Attention guided UNet model (MUSA-UNet) to
segment liver portal tract regions in liver WSI that correlates with the stage of liver fibrosis.
The dataset consisted of 53 WSIs, 30 of which were used for training and 23 for testing.
They obtained an average of 0.94 precision, 0.85 recall, 0.89 F1 score, 0.89 (accuracy), and
0.80 (Jaccard Index) for their model MUSA-UNet. The major limitation of their study is
the need for a more diverse training dataset with stain variations and annotations from
multiple pathologists at various institutions.

Lu et al. [5] proposed an improved deep learning classifier (MobileNetV2_HCC_class)
that could predict hepatocellular carcinoma (HCC) recurrence after liver transplantation.
Their study was conducted on 1118 patients where 642 patients were used for training,
144 for testing, and 302 for validation. The hazard ratio obtained from the classifier in the
LT set was 3.44 (95% CI 2.01–5.87, p < 0.001) and 2.55 (95% CI 1.64–3.99, p < 0.001) when
known prognostic factors were adjusted.

Sun et al. [52] developed a deep learning model constructed from the pretrained
VGG16 architecture [20] to estimate the percent steatosis in donor liver biopsy frozen
sections. Their model generated a probability map from an input WSI to the output percent
steatosis. Their research dataset comprised 96 WSIs, with 30 slides allocated for training
and 66 for testing purposes. During the testing phase, their AI model demonstrated a
notable correlation coefficient (r) of 0.85 and intraclass correlation coefficient (ICC) of 0.85,
both of which surpassed the on-service pathologist’s performance (r = 0.74 and ICC = 0.72).
A summary of these studies can be found in Table 4.

Table 4. Summary of previous AI studies on transplant liver pathology.

Author, Year Objective AI Model Dataset Performance

Narayan et al.,
2022 [50]

Prediction of donor liver
allograft steatosis

and early
post-transplantation

graft failure

CVAI model consisting
of Fully Convolutional
Networks (FCN) [53]

and UNet

25,494 images from 90
liver biopsies

CVAI peak mean IU
0.80; steatosis score

median (CVAI 3% vs.
pathologist 20%)

Yu et al., 2022 [51]

Segmentation of
portal tract

regions from whole-slide
images of liver
tissue biopsies

MUSA-UNet, FCN,
UNet, DeepLab V3 [54]

53 WSIs (Training and
Validation: 30; Testing:

20)

The precision, recall,
and F1 score of

MUSA-UNet were 0.94,
0.85, and 0.89,
respectively

Liu et al., 2022 [5] Predict HCC recurrence
after liver transplantation

UNet, Mo-
bileNetV2_HCC_class

1118 patients (Training:
642; Testing: 144;
Validation: 302)

Hazard ratio of 3.44 for
LT set and 2.55 with

adjusted known
prognostic factors

Sun et al., 2020 [52]
Quantify percent

steatosis in donor liver
biopsy frozen sections

Pre-trained VGG16
(truncated at bottleneck

layer)

96 WSIs (Training: 30;
Testing: 66)

r = 0.85, ICC = 0.85 on
testing samples
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4. Discussion

In this comprehensive review, we have presented the latest advancements in AI-
assisted transplant pathology, with a specific focus on the utilization of WSI. As we embark
upon the emerging era of digital pathology coupled with the promising potential of AI
technologies, therein lies a significant opportunity to revolutionize various aspects of solid
organ transplantation. These advancements hold the capacity to positively impact organ
procurement processes, optimize the dynamic adaptation of immunosuppressive drugs,
and enhance graft and patient survival through effective post-transplant monitoring. No-
tably, numerous deep learning-based AI applications have emerged, catering to different
transplant organs for the precise assessment of histopathology in tissue biopsies. The
majority of these proposed AI models, however, have been trained primarily on relatively
modest datasets and lack external validation. In order to ensure robust and reliable out-
comes, it is imperative to have well-trained and rigorously validated AI models that assess
the histopathology of transplant organ biopsies. With such AI models, the field will be
able to gain valuable insights into the decision-making process surrounding rejection or
acceptance of organs, possibly predict poor outcomes in advance, and reduce postoper-
ative complications significantly. By enhancing patient care and outcomes in the area of
solid organ transplantation, this development promises to elevate transplant pathology to
new heights.

The histopathological evaluation of organ biopsies could play a crucial role in the
decision-making process of accepting or discarding the organs of deceased donors for
transplantation and in post-transplant monitoring if there is a suspicion of rejection. The
major issue in the current practice of pre-transplant histopathology assessment is the low
agreement between the pathologists [55]. The presence of wide variability and subjectivity
among pathologists raises a big concern in biopsy scoring that leads to the suboptimal
usage of organs. The issue of variability in pre-transplant biopsies can be attributed to
the rapid embedding and fixation methods used for examination, resulting in frozen
artifacts and generating lower quality slides. Conversely, permanent slides with more
elaborate preparations are employed for post-transplant biopsy examinations. Despite
the fact that histopathology assessment of transplant organ biopsy requires specialized
training and expert consultancy, pre-transplant biopsies are frequently interpreted by on-
call general pathologists on most occasions. We, therefore, believe that adaptation of digital
pathology and exploiting AI and informatics tools could eliminate the wide variability and
subjectivity among pathologists, provide a second virtual expert opinion, and improve
clinical workflow efficiency. Embracing these advancements could shape a new era in
solid organ transplantation, improving diagnostic accuracy, and helping patients in need of
life-saving surgery.

The procurement of transplant organs primarily relies on donations from deceased
or unrelated individuals. Therefore, immunosuppressive drugs are given to patients to
increase tolerance to transplanted organs in the long term and prevent rejections. Moni-
toring significant histopathologic changes of allografts over time is essential in assessing
transplant rejection and the refinement of immunosuppressive regimens to improve out-
comes of transplant patients. In this context, the integration of AI-empowered digital
pathology and EMR data proves valuable, as it can support informed decision making for
tailoring individualized immunosuppression treatment regimens, thereby optimizing the
management of transplant patients.

High-throughput digital pathology slide scanners have recently become available
and are being adapted in clinical workflows. Concurrently, developments in computing
hardware, cloud resources, AI tools, data storage, and network speed have facilitated more
efficient processing of vast quantities of WSI data. Moreover, the availability of portable
single slide scanners allows for rapid onsite evaluation of pathology slides which may prove
beneficial in organ procurement scenarios. In the realm of pathology departments, digital
pathology, automated image analysis of WSI with AI, and web/cloud-based applications
have emerged which enables instant access and sharing of WSI and diagnostic reports.
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These technologies facilitate ready access to second opinions. The adoption of AI-assisted
digital pathology workflows holds immense potential for improving patient outcomes
and optimizing organ utilization in transplant pathology. Digital workflows, however,
pose challenges due to their cost-intensive nature. Additionally, ensuring reproducibility
and generalizability of AI models requires the development of datasets from multiple
institutions and scanners. In addition, it is difficult to integrate existing AI tools effectively
into clinical workflows at scale while maintaining efficiency. It will be essential to address
these challenges and integrate AI-assisted digital pathology into transplant pathology to
enhance patient care and organ preservation.

5. Conclusions

AI-empowered digital pathology is currently showing promise in facilitating the
histopathological evaluation of organ biopsies, with the potential to mitigate the issues
of variability and subjectivity encountered among pathologists. While AI applications in
solid organ transplantation remain a nascent field, ongoing research is being conducted
by investigators to explore its full potential. It is crucial to acknowledge that certain
limitations, as previously discussed, warrant careful consideration and resolution before
the widespread implementation of these AI tools in clinical workflows. Referring to the
global aspect, cross-border organ transplantation presents significantly greater complexities
due to a range of intricate challenges such as the illicit trafficking of human organs, variation
of legal and regulatory frameworks, cultural and ethical differences, and financial and
insurance matters, as well as travel and visa restrictions, etc. All of these factors need to be
carefully addressed to ensure the safety, success, and ethical integrity of the procedures.
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