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Preface

With its roots in diverse fields, optimization has evolved into an indispensable tool shaping the

landscapes of engineering, economics, the environment, health, systems, businesses and more. It

has become a guiding light, leading us toward optimal solutions in the intricate web of scientific

challenges. In the celestial expanse of optimization, this book explores the convergence of theory and

practice, shedding light on the transformative applications across various domains. Furthermore,

it serves as a platform bridging theoretical rigor with practical significance, addressing scientific

challenges across disciplines such as functional analysis, critical point theory, bifurcation theory,

set-valued analysis, calculus of variations, etc. The convergence of theory and reality within this

realm aims to advance optimization solutions and provide insights into the fundamental scientific

challenges of our time. We extend our heartfelt gratitude to the authors for their outstanding

contributions and to the diligent reviewers whose valuable comments have enhanced the quality of

the articles. Special thanks to the Editorial Board and the Editorial Office of Axioms for their invaluable

support and guidance throughout the publication process. We trust that our readers will find the

articles in this journal to be informative, insightful and rich sources of new and valuable information

on optimization models and their practical applications.

We wish you a happy reading!

Siamak Pedrammehr and Mohammad Reza Chalak Qazani

Editors
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Editorial

Special Issue “Optimisation Models and Applications”
Siamak Pedrammehr 1,2,* and Mohammad Reza Chalak Qazani 1,3

1 IISRI, Deakin University, Waurn Ponds, VIC 3216, Australia; m.r.chalakqazani@gmail.com
2 Faculty of Design, Tabriz Islamic Art University, Tabriz 5164736931, Iran
3 FoCIT, Sohar University, Sohar 311, Oman
* Correspondence: s.pedrammehr@tabriziau.ac.ir

Optimisation models have transcended their origins to become indispensable tools
across many fields, including engineering, economics, the environment, health, systems
of systems, businesses, and beyond. These models serve as guiding lights, illuminating
the path toward optimal solutions. Within the optimisation realm, the following four
distinct categories emerge, akin to constellations in the scientific cosmos: physics-based
optimisation algorithms, swarm-based optimisation algorithms, game-based optimisation
algorithms, and evolutionary-based optimisation algorithms. Over the past half-century,
the optimisation domain has been a crucible where theory meets practice, generating solu-
tions that have left indelible marks on diverse applications. In this Special Issue, our study
takes us to the heart of the intricate interplay between optimisation models and their prac-
tical applications. In this realm, theory and reality merge to address fundamental scientific
challenges. We earnestly invite researchers, akin to celestial navigators, to contribute their
original, high-quality research papers. Let us explore the celestial expanse of optimisation
and its transformative applications.

This Special Issue explores the intersection of optimisation models and real-world
applications, encompassing diverse disciplines such as functional analysis, the critical point
theory, bifurcation theory, set-valued analysis, calculus of variations, partial differential
equations, variational and topological methods, fixed-point theory, game theory, convex
analysis, matrix theory, control theory, and data mining. As a platform for researchers,
it aims to bridge theoretical rigour with practical significance in addressing scientific
challenges and advancing optimisation solutions across domains.

Rasouli et al. (Contribution 1) devised an adaptive sliding mode control for fractional-
order chaotic systems, addressing an unknown time delay, uncertainty, and disturbances.
Utilising a nonlinear fractional order PID sliding surface, stability is ensured using the
Lyapunov theory and validated through MATLAB simulations. This approach extends to
secure image communication, showcasing positive outcomes in correlation with NPCR,
PSNR, and information entropy, even under uncertain parameters.

Ma and Xu (Contribution 2) introduced a method tackling robust multi-criteria traffic
network equilibrium problems with path-capacity constraints. This study formulates an
equivalent min-max optimisation problem, deploying a direct search algorithm and a
smoothing optimisation approach based on a ReLU activation function variant for efficient
solutions. Numerical examples highlight algorithm efficiency, particularly in small-scale
traffic networks.

Giuffrè (Contribution 3) explored a nonconstant gradient-constrained problem, es-
tablishing a connection with a double obstacle problem. This study fulfils a constraint
qualification condition, enabling the application of solid duality theory. It provides evi-
dence for the existence of Lagrange multipliers, suggesting potential avenues for future
research within this framework.

Swarup et al. (Contribution 4) delved into K-bonvexity/K-pseudo convexity concepts,
establishing duality theorems for a K-Wolfe multi-objective second-order symmetric du-
ality model. This work broadens mathematical perspectives, potentially contributing to
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applications in higher-order symmetric fractional programming problems and variational
control problems over cones.

Gismelseed et al. (Contribution 5) employed a mathematical model to investigate
factors influencing the sit-to-stand (STS) motion, formulating an optimisation problem to
minimise joint torques. The model successfully predicted key STS motion characteristics,
considering the motion speed, reduced joint strength, and seat height. These results
align with experimental findings, providing insights into STS biomechanics for clinical
investigations and daily activities related to human mobility.

Acosta-Portilla et al. (Contribution 6) introduced a methodology for solving the
Monge–Kantorovich mass transfer problem, utilising Haar multiresolution analysis and
wavelet transform. This approach significantly reduces computational operations, achiev-
ing efficient solutions at different resolution levels. Comparative results demonstrate
consistent improvement over previous resolution levels, with exact solutions in some
cases. This work offers valuable insights and suggests research opportunities for different
discretisation techniques and cost function characteristics.

Rajebi et al. (Contribution 7) presented a robust license plate recognition system that
is effective in adverse environmental conditions. Unlike prior approaches, this method
evaluates and recognises license plates from various sources, handling environmental
challenges by removing image artifacts before recognition. Utilising Hopfield’s neural
network for recognition reduces the execution time. It enhances accuracy compared to
traditional methods, contributing significantly to automated surveillance systems.

Pourmostaghimi et al. (Contribution 8) introduced a helical gear reverse engineering
methodology employing swarm-based optimisation, specifically the Grey Wolf Optimisa-
tion and Particle Swarm Optimisation. Results showcase superior performance in accuracy,
convergence speed, and stability. This study suggests diverse gear applications and ex-
plores the impact of algorithm tuners on convergence speed.

Rasouli et al. (Contribution 9) proposed a robust synchronisation method for chaotic
systems amid uncertainty. Combining the sliding mode control with adaptive rules ensures
the convergence of unknown parameters and time delays to zero. Simulations show the
robust synchronisation of uncertain, jerk-crusty systems, and the control strategy is applied
successfully to secure communication.

Yaghoubi et al. (Contribution 10) present a novel approach for robust stability in
polynomial fractional differential (PFD) systems using Caputo derivatives. Employing
the sum of squares (SOSs) method, this research addresses stability challenges beyond
linear matrix inequalities. Demonstrating robust Mittag–Leffler stability conditions, this
study introduces a robust controller for PFD systems with unknown parameters and
a polynomial state feedback controller for PFD-controlled systems, validated through
simulations, offering innovative solutions for stability and control challenges.

Guo (Contribution 11) investigated a Mond–Weir-type robust duality for uncertain
semi-infinite multi-objective fractional optimisation problems. It establishes a robust dual
problem, incorporating a new subdifferential constraint qualification and a generalised
convex-inclusion assumption. This study unveils robust #-quasi-weak, strong duality prop-
erties, extending previous results. These findings contribute to understanding uncertain
fractional optimisation and suggest the future exploration of mixed-type robust approxi-
mate dual problems. Specific research funding sources for this work are not provided in
the article.

We extend our heartfelt gratitude to the authors for their outstanding contributions to
this journal in the field of ‘Optimisation Models and Applications’. Our sincere appreciation
goes to the diligent reviewers whose valuable comments and feedback have significantly
enhanced the quality of the articles. We also acknowledge the invaluable support and
guidance provided by the editorial board and the editorial office of Axioms throughout the
publication process. We trust that our readers will find the articles in this journal to be
informative, insightful, and rich sources of new and valuable information on optimization
models and their practical applications.
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Article

The Synchronization of a Class of Time-Delayed Chaotic
Systems Using Sliding Mode Control Based on
a Fractional-Order Nonlinear PID Sliding Surface and Its
Application in Secure Communication
Mohammad Rasouli 1, Assef Zare 1,* , Majid Hallaji 2 and Roohallah Alizadehsani 3

1 Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad 6518115743, Iran
2 Faculty of Electrical Engineering, Neyshabure Branch, Islamic Azad University, Neyshabure 6518115743, Iran
3 Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University,

Geelong, VIC 3216, Australia
* Correspondence: assefzare@gmail.com

Abstract: A novel approach for the synchronization of a class of chaotic systems with uncertainty,
unknown time delays, and external disturbances is presented. The control method given here is
expressed by combining sliding mode control approaches with adaptive rules. A sliding surface
of fractional order has been developed to construct the control strategy of the abovementioned
sliding mode by employing the structure of nonlinear fractional PID (NLPID) controllers. The
suggested control mechanism using Lyapunov’s theorem developed robust adaptive rules in such
a way that the estimation error of the system’s unknown parameters and time delays tends to be
zero. Furthermore, the proposed robust control approach’s stability has been demonstrated using
Lyapunov stability criteria and Lipschitz conditions. Then, in order to assess the performance of the
proposed mechanism, the presented control approach was used to simulate the synchronization of
two chaotic jerk systems with uncertainty, unknown time delays, and external distortion. The results
of the simulation confirm the robust and desirable synchronization performance. Finally, a secure
communications mechanism based on the proposed technique is shown as a practical implementation
of the introduced control strategy, in which the message signal is disguised in the transmitter with
high security and well recovered in the receiver with high quality, according to the mean squared
error (MES) criteria.

Keywords: chaotic synchronization; sliding mode control; adaptive control; uncertainty; unknown
time-delay; secure communication

MSC: 93D09; 93B51

1. Introduction

Chaos is a phenomenon that occurs in nonlinear dynamic systems. The dynamic
behavior of these systems is fully dependent on the initial conditions; therefore, even the
tiniest change in these parameters generates big changes in their behavior. Many domains
of study, including economics [1,2], chemistry [3,4], biology [5,6], and engineering [7,8],
have discovered chaotic systems. Many scientists from numerous domains have been
interested in the synchronization of chaotic systems in recent years [5]. Pecora and Carroll
proposed chaos synchronization in 1990 [6].

Fractional order (FO) controllers were developed by combining fractional calculation
with existing controllers. The increased number of configurable parameters in this type of
controller creates more flexibility in the control process, which improves the performance
of the controlled system. In this regard, the fractional PI controller [7,8], the fractional PD
controller [9], the fractional lag–lead controller [10], the fractional CRONE controller [11,12],

4
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the adaptive FO PID controller [13], the reference adaptive control [14], the fractional
model [15,16], and the fractional sliding mode control [17–19] have all been mentioned.

Adaptive sliding mode controllers have been shown to exhibit robust performance
against system parameter changes and system uncertainties [20,21], with their greatest
advantage being stability against system disturbances.

Adaptive control [22–24] is used to achieve control objectives when there is uncertainty
in the system. Because of the benefits of stability against system parameter uncertainties,
adaptive control has a faster convergence speed.

Sliding mode control, on the other hand, is a popular and successful strategy that is
simple to implement [25,26]. The sliding mode controller is a variable structure controller
that works well for nonlinear systems with model uncertainty. The primary aspect of
sliding mode control is that it directs the system’s states from the initial states to a suitable
sliding surface that is provided and then maintains the states at the mentioned sliding
surface for all subsequent iterations. Several articles have been provided in this area for
the synchronization of chaotic systems utilizing sliding mode control. Qamati et al. [27]
successfully synchronized identical Genesio–Tesi chaotic systems using adaptive sliding
mode control. The integrated sliding mode control method was used to examine the control
and synchronization of extremely chaotic Zhou systems, as discussed in [28].

The authors of [29] proposed a hybrid fractional-order sliding mode control method
for finite-time synchronization of a chaotic class using the direct Lyapunov method. Syn-
chronization of fractional order chaotic systems is introduced in [30]. In this design,
a sliding surface based on non-linear fractional order PID is presented. In [31], Khan et al.
have proposed an adaptive sliding mode control approach for synchronizing complicated
chaotic systems with uncertainty and disturbance. The authors of [32] have investigated
an adaptive sliding control with fuzzy logic for the synchronization of chaotic fractional
order systems with uncertainty and exogenous shocks. In [33], a class of complicated frac-
tional order systems with non-uniform order has been explored, and an adaptive sliding
control has been proposed for synchronizing this class of systems. An adaptive controller
has been devised in [34] for integer-order synchronization with uncertainty and unknown
time delays.

The time delays in the system being unknown is one of the factors to consider for
uncertain systems with time delays. This issue can provide significant challenges in the
controller design process for a variety of purposes, including synchronization. The amount
of time delays in the system is unknown which, on the other hand, increases the complexity
of the system model, which can be considered in enhancing the security level of data
transmission in the field of secure telecommunications. A sliding surface based on NLFPID
is proposed to direct and keep all the states of the system to the sliding surface in order to
synchronize a class of chaotic systems with uncertainty and unknown time delays.

A sliding surface based on NLFPID is proposed to direct and keep all the states of
the system on the sliding surface in order to synchronize a class of chaotic systems with
uncertainty and unknown time delays. Then, for robust synchronization of uncertain
chaotic systems with unknown time delays, a fractional order adaptive control is adopted.
Following that, updating and estimating laws for uncertain parameters are determined
using an appropriate Lyapunov function and Lipschitz condition to ensure the system’s sta-
bility. Finally, the synchronization of two chaotic jerk systems with uncertain and unknown
time delays, as well as uncertainty and distortion, are examined and simulated in order to
evaluate the performance of the proposed approach. The simulation results demonstrate
the efficacy of the proposed adaptive-sliding control mechanism for synchronization that is
robust against uncertainty, external distortions, and unknown time delays. Furthermore,
based on the obtained results, the proposed control approach is effective in estimating
uncertain parameters and unknown delays.

To implement the proposed control strategy, a secure telecommunication mechanism
based on chaos masking is presented at the end, indicating optimal security in sending and

5
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high quality in retrieving information despite the presence of various uncertainties and
uncertain parameters in the system structure.

The following innovations have been presented in the study that was carried out in
order to synchronize two uncertain chaotic systems.

1. Using the NLFOPID sliding surface instead of conventional sliding surfaces.
2. The existence of unknown time delays.
3. The limits of uncertainty and disturbance are unknown.

Accordingly, based on the above concepts, using the appropriate Lyapunov function
and update rules, a control mechanism has been proposed, which can overcome the problem
of unknown time delays, uncertain uncertainty, and uncertain disturbances by properly
adjusting the controller parameters.

This article is structured as follows. Section 2 presents the basic definitions used in
the article. Section 3 describes the description of chaotic systems with uncertainty and
unknown time delays. Section 4 presents an NLFPID-based sliding surface for directing
and maintaining system states on the sliding surface. The adaptive robust control tech-
nique for the synchronization of uncertain chaotic systems with finite and uncertain time
delays is detailed in Section 5. Section 6 investigates and simulates the synchronization of
two chaotic jerk systems with unknown time delays, as well as uncertainty and distortion,
and Section 7 presents results based on the stated ideas.

2. Basic Definitions of the Fractional-Order Derivative

Definition 1. The fractional order integral and derivative are defined as follows [27]:

Dα
t =





dα

dtα α > 0

1 α = 0

∫ t
a (dτ)−α α < 0

(1)

where Dα
t is the fractional order operator.

Definition 2. The Riemann–Liouville fractional order integral order α of the function f (t) is
defined as follows [28]:

t0 Iα
t f (t) =

1
Γ(α)

∫ t

t0

f (τ)

(t− τ)1−α
dτ (2)

where t0 is the initial time and Γ(α) is the Gamma function, which is defined as follows:

Γ(α) =
∫ ∞

0
e−ttα−1dt (3)

where is the Gamma function operator.

Definition 3. Suppose n− 1 < α ≤ n. n ∈ N. The fractional Riemann–Liouville derivative of
order α is defined for the function f (t) as follows [26]:

t0Dα
t f (t) =

dα f (t)
dtα

=
1

Γ(n− α)

dn

dtn

∫ t

t0

f (τ)

(t− τ)α−n+1 dτ (4)

Remark 1. The Riemann–Liouville fractional order derivative in Equation (4) is first integrated
and then derived. Therefore, the derivative of a constant number in this definition is not equal
to zero.

6
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Definition 4. The Caputo fractional order derivative of order α in the continuous function f (t) is
defined as follows [29]:

t0Dα
t f (t) =





1
Γ(m−α)

∫ t
t0

f (m)(τ)

(t−τ)α−m+1 dτ m− 1 < α < m

dm f (t)
dtm α = m

(5)

where m is the first integer after α.

Definition 5. If the function f (x, t) is piecewise linear and satisfies the Lipschitz conditions,
then [34]:

| f (t, x)− f (t, x̂)| ≤ γ f |x− x̂| ∀ x, x̂ ∈ Rn (6)

where f (x, t) is Lipschitz at x and the positive constant γ f , is called the Lipschitz constant.

3. The System Descriptor Equations

The equations characterizing a class of master–slave chaotic systems with uncertainty
and unknown time delays in the presence of an unknown disturbance will be introduced
in this section; the canonical form dynamics of the master system are as follows:





.
xi = xi+1. 1 ≤ i ≤ n− 1

.
xn = σT

0 x + f (x(t− τ1), t) + ∆ f (x(t), t) + d1(t).
(7)

Equations of the slave system are as follows:




.
yi = yi+1. 1 ≤ i ≤ n− 1

.
yn = σT

0 y + g(y(t− τ2), t) + ∆g(y(t), t) + d2(t) + u(t).
(8)

The differential equations are expressed in the forms corresponding to a number
of well-known chaotic systems, such as the Van der Pol oscillator, Duffing’s oscillator,
Genesio–Tesi’s system, Arneodo’s system, etc. [35], where x(t), y(t) ∈ Rn describes the
dynamic states of the master and slave systems, σT

0 represents the constant coefficients in
linear states of the system, and f (x(t− τ1), t)·g(y(t− τ2), t) ∈ R are the terms of nonlin-
ear functions with unknown time delays with a τ1 , τ2 delay, and ∆ f (x(t), t), ∆g(x(t), t)
describes nonlinear bounded uncertainties of the master and slave systems. Additionally,
d1(t), d2(t) describes the external disturbances of the master and slave systems, and u(t) is
the control law applied to the slave system.

Definition 6. If the following criterion is met for the systems given in Equations (1) and (2) for all
conditions influencing the system, including all initial conditions, uncertainties, and unknown time
delays, as well as external disturbance, the system has robust synchronization:

limt→∞|yi(t)− xi(t)| = limt→∞|ei(t)| = 0. i = 1, . . . , n, (9)

where ei(t) introduces synchronization errors in the master and slave systems.

As a result, the following are the dynamic equations proposing the synchronization
error for the uncertain chaotic master and slave systems with unknown time delays, as
specified in Equations (1) and (2):

7



Axioms 2022, 11, 738





.
ei = ei+1. 1 ≤ i ≤ n− 1

.
en = σT

0 E + g(y(t− τ2), t) + ∆g(x(t), t) + d2(t)

− f (x(t− τ1), t)− ∆ f (x(t), t)− d1(t) + u(t).

(10)

where E = (e1·e2· · · · ·en)
T . As a result, by initially introducing a PI sliding surface and

a fractional order non-linear derivative, all states of the system should be directed to and
held on the sliding surface. The system’s uncertainty bounds and unknown parameters
should then be estimated and updated by creating an adaptive controller. In the continua-
tion of the robust synchronization of chaotic systems (7) and (8) in the presence of external
disturbances, bounded nonlinear uncertainties, and unknown time delays, it should be
performed such that the dynamics of the slave system state in a finite time conforms to
the dynamic behavior. The estimation error of the unknown parameters in both chaotic
systems tend to zero in any state, and the robust stability of the system in finite time
is guaranteed.

Assumption 1. The unknown external disturbances d1(t), d2(t) and unknown bounded nonlinear
uncertainties ∆ f (x(t), t) and ∆g(x(t), t) in the master and slave systems (7) and (8) satisfy the
following conditions:

|∆ f (x(t), t)| ≤ β1ω1(x).

|∆g(y(t), t)| ≤ β2ω2(y).

|d1(t)| ≤ ρ1.

|d2(t)| ≤ ρ2.

(11)

where |·| describes l1 norm and β2, β1, ρ2, ρ1 are unknown real positive constants, and ω2(·) , ω1(·)
are known functions.

Assumption 2. Unknown time delays introduced by non-linear functions f (x(t− τ1), t),
g(y(t− τ2), t) ∈ R are represented in the general forms of (7) and (8) in the master and slave
systems, for each x(t), y(t) ∈ R and, according to (6), they satisfy the following Lipschitz condition:

| f (x(t− τ1))− f (x(t− τ̂1))| ≤ k1|x(t− τ1)− x(t− τ̂1)|
|x(t− τ1)− x(t− τ̂1)| ≤ m1|(t− τ1)− (t− τ̂1)| = m1|τ̃1|

⇒ | f (x(t− τ1))− f (x(t− τ̂1))| ≤ l1|τ1 − τ̂1| = l1|τ̃1|, l1 = k1m1

|g(y(t− τ2))− g(y(t− τ̂2))| ≤ k2|y(t− τ2)− y(t− τ̂2)|
|y(t− τ2)− y(t− τ̂2)| ≤ m1|(t− τ2)− (t− τ̂2)| = m2|τ̃2|

⇒ |g(y(t− τ2))− g(y(t− τ̂2))| ≤ l2|τ2 − τ̂2| = l2|τ̃2|, l2 = k2m2

(12)

where τ1 , τ2 ∈ R expresses unknown time delays, τ̂1 , τ̂2 ∈ R estimates unknown time delays, and
l1 and l2 are positive and uncertain constants.

4. The Sliding Mode Control Approach Based on NLFPID Controllers

We will provide an NLFPID-based sliding surface to synchronize the chaotic system
with unknown uncertainty and time delays presented in (7) and (8). The novel NLF sliding
surface is presented in accordance with the NLFPID controller structure established in [35],
which enhances tracking:

s(t) = h(e)·
[
kpen(t) + TI D−λ ∑n

i=1 k1iei + TdDδ ∑n
i=1 k2iei(t)

]
. (13)

8
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where h(e) is a nonlinear function, defined as follows:

h(e) = k0 + (1− k0)‖E(t)‖. k0 ∈ (0, 1) (14)

where ‖E‖ is the first norm of the dynamic state of the system error, expressed as
‖E(t)‖ = ∑n

i=1|ei|. TI and Td are the time constants of integral and derivative phrases.
The parameters k1i and k2i are positive constant values of the sliding surface that fulfill
the intended system’s stability. The following conditions must be met if the system is in
sliding mode:

s(t) = 0 ,
.
s(t) = 0. (15)

Therefore, the fractional order derivative of the sliding surface in Equation (13) is
as follows:

.
s(t) = k0kp

.
en(t) + k0TiD1−λ ∑n

i=1 k1iei(t) + k0TdD1+δ ∑n
i=1 k2iei(t)

+(1− k0)
[
kp

d
dt (‖E(t)‖en(t))

+TI
d
dt
(
‖E(t)‖D−λ ∑n

i=1 k1iei(t)
)

+Td
d
dt
(
‖E(t)‖Dδ ∑n

i=1 k2iei(t)
)]

= 0.

(16)

In this scenario, we will substitute the final dynamic of the system’s integer order error
specified in Equation (10) in Equation (16), yielding:

.
s(t) = k0kp(g(y(t− τ2), t) + ∆g(x(t), t) + d2(t)− f (x(t− τ1), t)

−∆ f (x(t), t)− d1(t) + σT
0 ·E(t) + u(t))

+k0TiD1−λ ∑n
i=1 k1iei(t) + k0TdD1+δ ∑n

i=1 k2iei(t)

+(1− k0)
[
kp

d
dt (‖E(t)‖en(t))

+TI
d
dt
(
‖E(t)‖D−λ ∑n

i=1 k1iei(t)
)

+Td
d
dt
(
‖E(t)‖Dδ ∑n

i=1 k2iei(t)
)]

= 0.

(17)

The control signal in this scenario is as follows:

u(t) = −1
k0kp

(
k0TiD1−λ ∑n

i=1 k1iei(t) + k0TdD1+δ ∑n
i=1 k2iei(t)

+(1− k0)
[
kp

d
dt (‖E(t)‖en(t))

+TI
d
dt
(
‖E(t)‖D−λ ∑n

i=1 k1iei(t)
)

+Td
d
dt
(
‖E(t)‖Dδ ∑n

i=1 k2iei(t)
)]
)

+ f (x(t− τ̂1), t)− g(y(t− τ̂2), t)− σT
0 ·E(t)− bs + u(t).

(18)

In Equation (18), the phrase u(t) comprises the sentences arising from estimating the
bounds of the system’s uncertainties and disturbances, which are specified as follows:

u(t) = −sgn(s)[β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1)]. (19)

9
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5. Stability Analysis of the Proposed Mechanism

In this section, the robust adaptive controller is designed using the sliding surface
based on NLFPID such that the synchronization of chaotic systems is guaranteed by the
proposed control approach.

Theorem 1. Synchronization of systems (6) and (7) is guaranteed by the definition of the controller
u(t) in spite of disturbances d1 and d2 and uncertainties ∆ f and ∆g along with unknown time
delays τ1 and τ2:

u(t) = −g(y(t− τ̂1)) + f (x(t− τ̂2))

− 1
k0kp

(k0Tl D1−λ ∑n
i=1 k1iei(t) + k0TdD1+δ ∑n

i=1 k2iei(t)

+(1− k0)
[
kp

d
dt (‖E(t)‖en(t))

+TI
d
dt
(
‖E(t)‖D−λ ∑n

i=1 k1iei(t)
)

+Td
d
dt
(
‖E(t)‖Dδ ∑n

i=1 k2iei(t)
)]
)− σT

0 ·E(t)− bs

−sgn(s)(β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1).

(20)

where ρ̂1 and ρ̂2 are the estimations of input disturbances, τ̂1 and τ̂2 are estimates of time delays,
and β̂1ω1 and β̂2ω2 are estimates of uncertainty in the master and slave systems. Therefore, in
order to guarantee the stability of the system, we use the update laws to estimate the mentioned
parameters as follows:

τ̃i = τi − τ̂i. β̃i = βi − β̂i. ρ̃i = ρi − ρ̂i.

.
τ̂i = −

.
τ̃i = |s|sgn(τ̃i) + bτ̃i.

.
ρ̂i = −

.
ρ̃i = k0kp|s|+ bρ̃i.

.
β̂2 = −

.
β̃2 = k0kp|s|ω2(y) + bβ̃2.

.
β̂1 = −

.
β̃1 = k0kp|s|ω1(x) + bβ̃1.

(21)

Proof. The following Lyapunov function is defined as follows:

v(t) =
1
2
[s2(t) + β̃2

1 + β̃2
2 + l1τ̃2

1 + l2τ̃2
2 + ρ̃2

1 + ρ̃2
2]. (22)

According to Equation (22), the derivative of the Lyapunov function is as follows:

⇒ .
v(t) = 1

2
d
dt (s

2 + β̃2
1 + β̃2

2 + l1τ̃2
1 + l2τ̃2

2 + ρ̃2
1 + ρ̃2

2)

= s
.
s +

2
∑

i=1

(
β̃i

.
β̃i + liτ̃i

.
τ̃i + ρ̃i

.
ρ̃i

)
.

(23)

By substituting (17) in (23), Equation (24) is obtained:

10
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.
v(t) = s·

[
k0kp(g(y(t− τ2), t) + ∆g(x(t), t) + d2(t)

−( f (x(t− τ1), t) + ∆ f (x(t), t) + d1(t)) + σT
0 ·E(t) + u(t)

)

+k0TiD1−λ ∑n
i=1 k1iei(t) + k0TdD1+δ ∑n

i=1 k2iei(t)

+(1− k0)
[
kp

d
dt (‖E(t)‖en(t))

+TI
d
dt
(
‖E(t)‖D−λ ∑n

i=1 k1iei(t)
)

+Td
d
dt
(
‖E(t)‖Dδ ∑n

i=1 k2iei(t)
)]
] +

2
∑

i=1

(
β̃i

.
β̃i + liτ̃i

.
τ̃i + ρ̃i

.
ρ̃i

)
.

(24)

By substituting (20) in (24), Equation (25) is obtained:

.
v(t) = s·k0kp(g(y(t− τ2), t)− g(y(t− τ̂2), t) + ∆g(x(t), t) + d2(t)

+ f (x(t− τ̂1), t)− f (x(t− τ1), t)− ∆ f (x(t), t)− d1(t)− bs

−sgn(s)[β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1])

+
2
∑

i=1

(
β̃i

.
β̃i + liτ̃i

.
τ̃i + ρ̃i

.
ρ̃i

)
.

(25)

Thus, we have:
.
v(t) ≤ |s|·[k0kp(|g(y(t− τ2), t)− g(y(t− τ̂2), t)|+ |∆g(x(t), t)|

+| f (x(t− τ̂1), t)− f (x(t− τ1), t)| − |∆ f (x(t), t)|

+|d2(t)− d1(t)|)]− k0kpbs2

+k0kps(−sgn(s)[β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1)])

+
2
∑

i=1

(
β̃i

.
β̃i + liτ̃i

.
τ̃i + ρ̃i

.
ρ̃i

)
.

(26)

By substituting (11) and (12) in (26), Equation (27) is obtained:

.
v(t) ≤ |s|·

[
k0kp(l2|τ2 − τ̂2|+ β2ω2(y) + l1|τ1 − τ̂1|+ β1ω1(x) + ρ1 − ρ2)

]

−k0kpbs2

+k0kps
(
(−sgn(s)[β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1)])

)

+
2
∑

i=1

(
β̃i

.
β̃i + liτ̃i

.
τ̃i + ρ̃i

.
ρ̃i

)
.

(27)

The derivative of the Lyapunov function would be as follows:

.
v(t) ≤ |s|[k0kp(l1|τ̃1|+ β̃2ω2(y) + l2|τ̃2|+ β̃1ω1(y) + ρ̂2 + ρ̂1)]− bs2

+
2
∑

i=1

(
β̃i

.
β̃i + liτ̃i

.
τ̃i + ρ̃i

.
ρ̃i

)
.

(28)

11
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Using the update laws (21) and substituting them in (28), Equation (29) is obtained:

⇒ .
v(t) ≤ −b(s2 + β̃2

1 + β̃2
2 + τ̃2

1 + τ̃2
2 + ρ̃2

1 + ρ̃2
2) = −bv(t). (29)

Thus, the stability of the proposed method for synchronization of the chaotic system
with uncertainty, disturbance, and unknown time delays is proved. �

6. Simulation Results

This section evaluates the accuracy of synchronizing uncertain chaotic systems with
unknown time delays using the proposed control mechanism based on an NLF sliding
surface, adaptive controller, and update rules that estimate the system’s parameters.
Two modified jerk chaotic systems with the aforementioned properties were used for
this purpose. The equations governing the master system in the canonical form are as
follows [33]: 




.
x1 = x2.
x2 = x3.

x3 = −ε1x1(t)− x2(t)− ε2x3(t) + f3(x1(t− τ1), t).
(30)

where ε1 = 3
2 , ε2 = 0.35, and f3(x1(t− τ1), t) is a piecewise linear function:

f3(x1(t− τ1), t) = 1
2 (v0 − v1)[|x1(t− τ1) + 1| − |x1(t− τ1)− 1|]

+v1x1(t− τ1).
(31)

where v0 < −1 < v1 < 0 and v0 = −2.5, v1 = −0.5.
When the initial conditions are selected as (x1(0); x2(0); x3(0))

T = (−0.52; 0.52; 0.87)T ,
the system’s chaotic behavior would be as shown in Figure 1.





.
x1 = x2.
x2 = x3.

x3 = −ε1x1(t)− x2(t)− ε2x3(t) + f3(x1(t− τ1), t) + ∆ f (x(t), t) + d1(t).
(32)

The dynamic of the slave system follows the equations below:




.
y1 = y2.
y2 = y3.

y3 = −ε1y1(t)− y2(t)− ε2y3(t) + g3(y1(t− τ2), t) + ∆g(y(t), t) + d2(t) + u(t).
(33)

where the nonlinear terms of the slave system are as follows:

g3(y1(t− τ2), t) = 1
2 (v0 − v1)[|y1(t− τ2) + 1| − |y1(t− τ2)− 1|]

+v1y1(t− τ2).
(34)

Accordingly, the dynamic of the synchronization error for the chaotic jerk master and
slave systems would be as follows:





.
e1 = e2.
e2 = e3.

e3 = −ε1e1(t)− e2(t)− ε2e3(t)− g(y1(t− τ2)) + f (x1(t− τ1))
+∆g(y(t), t)− ∆ f (x(t), t) + d2(t)− d1(t) + u(t).

(35)

In this step, we apply the robust adaptive control signal, which is designed by combin-
ing the sliding surface based on the NLFPID controllers and described in Equation (20), to
the slave system.

12
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The following figures show the behavior of the chaotic system synchronized with
the above dynamic equations before and after applying the proposed control signal.
Figures 1 and 2 respectively show the phase diagram and the behavior of the jerk system
without applying the controller.

Axioms 2022, 11, 738  9  of  17 
 

൝
𝑥ሶଵ ൌ 𝑥ଶ                                                        
𝑥ሶଶ ൌ 𝑥ଷ                                                        

𝑥ሶଷ ൌ െ𝜀ଵ𝑥ଵሺ𝑡ሻ െ 𝑥ଶሺ𝑡ሻ െ 𝜀ଶ𝑥ଷሺ𝑡ሻ  𝑓ଷሺ𝑥ଵሺ𝑡 െ 𝜏ଵሻ, 𝑡ሻ  ∆𝑓ሺ𝑥ሺ𝑡ሻ, 𝑡ሻ  𝑑ଵሺ𝑡ሻ.
  (32)

The dynamic of the slave system follows the equations below: 

ቐ
𝑦ሶଵ ൌ 𝑦ଶ                                                               
𝑦ሶଶ ൌ 𝑦ଷ                                                               

𝑦ሶଷ ൌ െ𝜀ଵ𝑦ଵሺ𝑡ሻ െ 𝑦ଶሺ𝑡ሻ െ 𝜀ଶ𝑦ଷሺ𝑡ሻ  𝑔ଷሺ𝑦ଵሺ𝑡 െ 𝜏ଶሻ, 𝑡ሻ  ∆𝑔ሺ𝑦ሺ𝑡ሻ, 𝑡ሻ  𝑑ଶሺ𝑡ሻ  𝑢ሺ𝑡ሻ.
  (33)

where the nonlinear terms of the slave system are as follows: 

𝑔ଷሺ𝑦ଵሺ𝑡 െ 𝜏ଶሻ, 𝑡ሻ ൌ
1
2
ሺ𝑣 െ 𝑣ଵሻሾ|𝑦ଵሺ𝑡 െ 𝜏ଶሻ  1| െ |𝑦ଵሺ𝑡 െ 𝜏ଶሻ െ 1|ሿ 

𝑣ଵ𝑦ଵሺ𝑡 െ 𝜏ଶሻ. 
(34)

Accordingly, the dynamic of the synchronization error for the chaotic jerk master and 

slave systems would be as follows: 

⎩
⎨

⎧
𝑒ሶଵ ൌ 𝑒ଶ                                                
𝑒ሶଶ ൌ 𝑒ଷ                                                

𝑒ሶଷ ൌ െ𝜀ଵ𝑒ଵሺ𝑡ሻ െ 𝑒ଶሺ𝑡ሻ െ 𝜀ଶ𝑒ଷሺ𝑡ሻ െ 𝑔൫𝑦ଵሺ𝑡 െ 𝜏ଶሻ൯  𝑓൫𝑥ଵሺ𝑡 െ 𝜏ଵሻ൯
∆𝑔ሺ𝑦ሺ𝑡ሻ, 𝑡ሻ െ ∆𝑓ሺ𝑥ሺ𝑡ሻ, 𝑡ሻ𝑑ଶሺ𝑡ሻ െ 𝑑ଵሺ𝑡ሻ  𝑢ሺ𝑡ሻ.

  (35)

In this step, we apply the robust adaptive control signal, which is designed by com‐

bining the sliding surface based on the NLFPID controllers and described in Equation (20), 

to the slave system. 

The following figures show the behavior of the chaotic system synchronized with the 

above dynamic equations before and after applying the proposed control signal. Figures 

1 and 2 respectively show the phase diagram and the behavior of the jerk system without 

applying the controller. 

 

Figure 1. Phase diagram of the jerk master and slave systems without applying the controller. 
Figure 1. Phase diagram of the jerk master and slave systems without applying the controller.

Axioms 2022, 11, 738  10  of  17 
 

 

Figure 2. Behavior of master and slave system states without applying the control signal. 

Figure 3 shows the behavior of the synchronized system. The synchronization error 

of the jerk system is shown in Figure 4. The control signal based on the proposed mecha‐

nism is shown in Figure 5. The estimation of the system parameters is shown in Figure 6. 

The disturbance and uncertainty of the master and slave system are shown in Figure 7. 

 

Figure 3. Synchronization of jerk systems using the proposed mechanism and applying the control 

signal at t = 5 s. 

Figure 2. Behavior of master and slave system states without applying the control signal.

Figure 3 shows the behavior of the synchronized system. The synchronization error of
the jerk system is shown in Figure 4. The control signal based on the proposed mechanism
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is shown in Figure 5. The estimation of the system parameters is shown in Figure 6. The
disturbance and uncertainty of the master and slave system are shown in Figure 7.

Axioms 2022, 11, 738  10  of  17 
 

 

Figure 2. Behavior of master and slave system states without applying the control signal. 

Figure 3 shows the behavior of the synchronized system. The synchronization error 

of the jerk system is shown in Figure 4. The control signal based on the proposed mecha‐

nism is shown in Figure 5. The estimation of the system parameters is shown in Figure 6. 

The disturbance and uncertainty of the master and slave system are shown in Figure 7. 

 

Figure 3. Synchronization of jerk systems using the proposed mechanism and applying the control 

signal at t = 5 s. 

Figure 3. Synchronization of jerk systems using the proposed mechanism and applying the control
signal at t = 5 s.

Axioms 2022, 11, 738  11  of  17 
 

 

Figure 4. Synchronization error of the master and slave systems. 

 

Figure 5. The control signal based on the proposed adaptive sliding mode control. 

Figure 4. Synchronization error of the master and slave systems.

14



Axioms 2022, 11, 738

Axioms 2022, 11, 738  11  of  17 
 

 

Figure 4. Synchronization error of the master and slave systems. 

 

Figure 5. The control signal based on the proposed adaptive sliding mode control. Figure 5. The control signal based on the proposed adaptive sliding mode control.

Axioms 2022, 11, 738  12  of  17 
 

 

Figure 6. Estimation error of the system parameters. 

 

Figure 7. Uncertainty and disturbances of the master and slave systems. 

In this article, simulations have been performed for  𝑡 ൌ 40 S, where  𝑘ଵଵ ൌ 𝑘ଶଶ ൌ 10 
and  𝑘ଵଶ ൌ 𝑘ଶଵ ൌ 20  have been selected. Additionally, the gain and time constants of the 

non‐linear fractional order PID sliding surface are  𝑘 ൌ 1.5,  𝑇 ൌ 0.75  and  𝑇ௗ ൌ 0.5. The 
fractional order of the integral and derivative part of the sliding surface is defined as  𝛿 ൌ
0.4  and  𝜆 ൌ 0.75. The parameters of the proposed robust controller are  𝑏 ൌ 2. The uncer‐
tain time delays of the system are  𝜏ଵ ൌ 0.65  and  𝜏ଶ ൌ 0.35. Unknown disturbances ap‐

plied to both systems are as follows: 

𝑑ଵሺ𝑡ሻ ൌ 𝑠𝑖𝑛ଶ3𝑡  2𝑐𝑜𝑠4𝑡, 𝑑ଶሺ𝑡ሻ ൌ 𝑠𝑖𝑛2𝑡  0.4𝑠𝑖𝑛𝜋𝑡 

Figure 6. Estimation error of the system parameters.

15



Axioms 2022, 11, 738

Axioms 2022, 11, 738  12  of  17 
 

 

Figure 6. Estimation error of the system parameters. 

 

Figure 7. Uncertainty and disturbances of the master and slave systems. 

In this article, simulations have been performed for  𝑡 ൌ 40 S, where  𝑘ଵଵ ൌ 𝑘ଶଶ ൌ 10 
and  𝑘ଵଶ ൌ 𝑘ଶଵ ൌ 20  have been selected. Additionally, the gain and time constants of the 

non‐linear fractional order PID sliding surface are  𝑘 ൌ 1.5,  𝑇 ൌ 0.75  and  𝑇ௗ ൌ 0.5. The 
fractional order of the integral and derivative part of the sliding surface is defined as  𝛿 ൌ
0.4  and  𝜆 ൌ 0.75. The parameters of the proposed robust controller are  𝑏 ൌ 2. The uncer‐
tain time delays of the system are  𝜏ଵ ൌ 0.65  and  𝜏ଶ ൌ 0.35. Unknown disturbances ap‐

plied to both systems are as follows: 

𝑑ଵሺ𝑡ሻ ൌ 𝑠𝑖𝑛ଶ3𝑡  2𝑐𝑜𝑠4𝑡, 𝑑ଶሺ𝑡ሻ ൌ 𝑠𝑖𝑛2𝑡  0.4𝑠𝑖𝑛𝜋𝑡 

Figure 7. Uncertainty and disturbances of the master and slave systems.

In this article, simulations have been performed for t = 40 S, where k11 = k22 = 10
and k12 = k21 = 20 have been selected. Additionally, the gain and time constants of the
non-linear fractional order PID sliding surface are kp = 1.5, Ti = 0.75 and Td = 0.5. The
fractional order of the integral and derivative part of the sliding surface is defined as δ = 0.4
and λ = 0.75. The parameters of the proposed robust controller are b = 2. The uncertain
time delays of the system are τ1 = 0.65 and τ2 = 0.35. Unknown disturbances applied to
both systems are as follows:

d1(t) = sin23t + 2cos4t, d2(t) = sin2t + 0.4sinπt

7. Application in Secure Communication

The synchronization of the chaotic system with uncertainty and unknown time delays
was discussed in the preceding section. The proposed robust control strategy is placed in
the framework of a secure communication mechanism in this part such that the message
signal is sent by the master system after the encryption process. The chaotic masking
method was utilized for this aim. Figure 8 depicts how to convey the primary message
signal using the proposed mechanism. A wireless communication channel is employed in
this block diagram. The communication channel might be either wired or wireless.

If M(t) is the original message signal that is coupled with the master system and S(t)
is the sent message, then [36]:

S(t) = M(t) +
n

∑
j=1

γjxj. (36)

where xj is the state of the chaotic system and γj is the constant number. S(t) is the masked
chaotic signal that is sent by the created communication channel. Using the proposed
chaotic synchronization mechanism, the system states are integrated with the message
signal in a weighted manner to perform the masking process. The receiver side can receive
the message signal as follows:
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R(t) = S(t)−
n

∑
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γjyj. (37)
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Using the concept of synchronization, the following signal can be reconstructed in the
receiver as follows:

R(t) = M(t) +
n
∑

j=1
γjxj −

n
∑

j=1
γjyj = M(t) +

n
∑

j=1
γj
(
xj − yj

)

⇒ xj − yj = ej
∼= 0 ⇒ R(t)→ M(t).

(38)

In this step, two message signals are generated, which are applied to the synchronized
system via the chaotic masking mechanism mentioned above. In this phase, the control
signal is applied to the slave system, and the message signal is applied to the synchronized
system after achieving the established time to reduce the mean square error. The transition
time in the simulations ends at t = 4.5 s. At this point, the encrypted message’s signal is
applied, and the signal S(t) is received on the receiver’s side and decoded to extract the
signal R(t). The simulation results in the Figures 9 and 10 demonstrate a good performance
of the proposed system.

Table 1 shows the mean square error of the original message signal and the
recovered signal.
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The following are the message signals:

M1(t) = 1.8sin(1.7t) + 4.5cos(10.2t) + 5.4sin(1.33πt).

M2(t) = 2.25sin(1.9t) + 2.88cos(10.66t) + 4.05sin(2.33πt).

The masked parameters of the message signal are γ1 = 1, γ2 = 0.5, and γ3 = 0.33.
Thus, encoding is as follows:

S1(t) = M1 + γ1x1

S2(t) = M2 + γ2x1 + γ3x2

8. Conclusions

This study investigates the robust synchronization of a class of chaotic systems with
uncertainty, external disturbances, and unknown parameters, such as unknown time delays,
by introducing a new adaptive sliding mode control technique. First, an NLFPID-based
sliding surface is proposed in the suggested robust control mechanism. The adaptive
laws are then defined in order to estimate the uncertain parameters of the system using
Lyapunov theory and Lipschitz conditions in chaotic systems, and ultimately the stability
of the proposed robust control system is proven. The synchronization of two uncertain jerk
chaotic systems with unknown time delays based on the proposed controller is simulated
using MATLAB, and the results express the capability and desired performance of the
proposed approach in the robust synchronization of the mentioned systems. Finally, the
proposed adaptive sliding mode control approach has been used in a robust secure chaotic
communication mechanism, and the simulation results indicate favorable quality in the
secure transmission and reception of information despite uncertain parameters in the
master and slave systems of the communication mechanism.
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Abstract: With the progress of society and the diversification of transportation modes, people
are faced with more and more complicated travel choices, and thus, multi-criteria route choosing
optimization problems have drawn increased attention in recent years. A number of multi-criteria
traffic network equilibrium problems have been proposed, but most of them do not involve data
uncertainty nor computational methods. This paper focuses on the methods for solving robust
multi-criteria traffic network equilibrium problems with path capacity constraints. The concepts of
the robust vector equilibrium and the robust vector equilibrium with respect to the worst case are
introduced, respectively. For the robust vector equilibrium, an equivalent min–max optimization
problem is constructed. A direct search algorithm, in which the step size without derivatives and
redundant parameters, is proposed for solving this min–max problem. In addition, we construct a
smoothing optimization problem based on a variant version of ReLU activation function to compute
the robust weak vector equilibrium flows with respect to the worst case and then find robust vector
equilibrium flows with respect to the worst case by using the heaviside step function. Finally,
extensive numerical examples are given to illustrate the excellence of our algorithms compared with
existing algorithms. It is shown that the proposed min–max algorithm may take less time to find the
robust vector equilibrium flows and the smoothing method can more effectively generate a subset of
the robust vector equilibrium with respect to the worst case.

Keywords: multi-criteria traffic network; robust vector equilibrium; min–max method; smoothing method

1. Introduction

Traveling is necessary for everyday human life. However, with the progress of society
and the diversification of transportation modes, people also expect to find the most efficient
route. Traffic network equilibrium problem can describe the distributions of traffic flows
in the logistics industry and transportation network, which is expected to provide an
effective method for travelers to choose an optimization route. The fundamental principle
in the model is the concept of equilibrium that was initially introduced by Wardrop [1].
The principle asserts that travelers will choose the path only if the cost for this path is the
minimum possible among all the paths joining the same O-D pair.

1.1. Literature Reviews

It has been shown that the Wardrop equilibrium concept is a powerful principle which
is widely used in supply and demand networks, traffic assignment, optimization of traffic
control, and other fields (see, e.g., Athanasenas [2]; Nagurney [3]; Ji and Chu [4]; Xu et al. [5];
Wang et al. [6]; Ma et al. [7]). It is worth noting that most of these equilibrium models in the
above references are based on a single criterion. Travelers (in this paper, we use the terms
’user’ and ’traveler’ interchangeably) will naturally consider multi-criteria when choosing
travel paths, including travel time, distance, cost, weather, safety, and other relevant factors.
The equilibrium model with multi-criteria was first put forward by Chen and Yen [8],
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which was an extension of the classical Wardrop user equilibrium principle. Regarding
the theoretical analysis for multi-criteria traffic equilibrium models, we refer the reader to
Yang and Goh [9], Li et al. [10], Luc et al. [11], and Raith and Ehrgott [12].

Recently, Phuong and Luc [13] established the equivalent relationship between strong
vector equilibrium flows and the solutions of variational inequality problems in terms of
a kind of increasing functions. Moreover, they presented a modified projection method
to handle multi-criteria traffic network equilibrium problems. Subsequently, Luc and
Phuong [14] introduced two optimization problems to show that the optimal solutions
are exactly the equilibrium of the traffic network and then put forward a modified Frank–
Wolfe gradient algorithm for multi-criteria traffic network equilibrium problems. However,
this method may lead to the non-differentiability of the objective functions of the two
optimization problems. After that, Phuong [15] proposed a smoothing method to solve
multi-criteria network equilibrium problems. Although this method solves the defects
existing in [14], it does not take into account the data uncertainty.

In the actual traffic network, there are various uncertain factors, such as traveler prefer-
ences, weather, traffic congestion, and holidays. Hence, uncertainty in the logistics industry
and transportation has received more and more attention. In recent years, some related
works with uncertain demands or uncertain parameters in traffic network or ecological
networks have been investigated in [16–21]. Daniele and Giuffré [16] investigated a general
random traffic equilibrium problem and characterize the random Wardrop equilibrium
distribution by means of a random variational inequality. Dragicevic and Gurtoo [17]
modeled the maintenance of ecological networks in forest environments based on random
processes, such as extreme natural events. However, the two above papers do not con-
sider the multi-criteria. Recently, Ehrgott and Wang [18] presented alternative approaches
for combining the principles of multi-objective decision-making with a stochastic user
equilibrium model based on random utility theory. However, since uncertain parameters
in [18] need to know probabilistic information, this may be inconsistent with the reality
because the probabilistic information of related data are usually known. Cao et al. [19]
and Wei et al. [20] only discussed relationships between and the solutions of variational
inequality and robust equilibrium flows but not give the computational methods. Minh
and Phuong [21] paid attention to a modified Frank–Wolfe gradient algorithm for robust
equilibrium flows. The uncertain data in the model proposed in [21] are in a parameter
set that does not need probability information. However, the computational efficiency
of the algorithm is not good, due to the non-differentiability of the objective functions.
In all, there are some research gaps on computational methods for robust multi-criteria
traffic network equilibrium problems with path capacity constraint. This prompts us to
continuously investigate this topic.

1.2. Contributions

To overcome computational inefficiency for the robust vector equilibrium flows in
existing methods, this paper proposes two new computational methods for the robust vector
equilibrium principle and the robust vector equilibrium principle with respect to the worst
case, respectively. Firstly, an equivalent min–max optimization problem is constructed,
in which the solution is equivalent to the robust vector equilibrium flow. A direct search
algorithm with constraints for solving this problem is proposed. For the robust vector
equilibrium with respect to the worst case, we transform it into an deterministic vector
equilibrium problem based on a variant version of ReLU activation function. Then, we
give an algorithm to solve the robust vector equilibrium with respect to the worst case.

In summary, the contributions of the manuscript are ranked in ascending gathered
as follows:

(1) The robust vector equilibrium and the robust vector equilibrium with respect to the
worst case principles are introduced.

(2) An equivalent min–max optimization problem is established and then a direct search
algorithm is proposed to generate a subset of robust vector equilibrium flows.
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(3) To generate a subset of the robust vector equilibrium with respect to the worst case,
a two-step strategy is implemented. More specifically, a smoothing optimization
problem is constructed based on a variant version of ReLU activation function to
compute the robust weak vector equilibrium flows with respect to the worst case, and
then, the robust vector equilibrium flows are found with respect to the worst case by
using the heaviside step function.

This paper is divided into the following parts. Section 2 mainly introduces the robust
vector equilibrium principle and robust vector equilibrium principle with respect to the
worst case. Section 3 gives a min–max method to generate the subset of robust vector
equilibrium flows. Section 4 presents a smoothing algorithm to find the subset of the robust
vector equilibrium principle with respect to the worst case. Finally, conclusions of this
paper and discussions for future research are provided in Section 5.

2. Definitions and Main Derivations

We review some fundamental definitions and properties that are relevant to this study.
Throughout this paper, let R∗(∗ = n, m) denote the ∗-dimensional Euclidean space. Let
Rm
+ := {x ∈ Rm : xi ≥ 0, i = 1, · · · , m} and Rm

++ := {x ∈ Rm : xi > 0, i = 1, · · · , m}.
The superscript > denotes transpose. The partial order in Rm is induced by Rm

+, defined by:

x = y if xi ≥ yi for all i = 1, . . . , m,

x � y if xi ≥ yi for all i = 1, . . . , m and there exists i0 such that xi0 > yi0 .

and the following stronger relation is given by:

x � y if xi > yi for all i = 1, . . . , m.

Next, we will denote by e the vector of all ones. Given X ⊆ Rm, the set of minimal
elements of X is denoted by Min(X), consists of vectors x ∈ X such that there is no
x′ ∈ X, x′ � x.

Definition 1. Given f : R×R→ R, we say that a point (x∗, y∗) is a saddle-point of the function
f , if

f (x∗, y) ≤ f (x∗, y∗) ≤ f (x, y∗), ∀(x, y) ∈ R×R.

2.1. Robust Multi-Criteria Traffic Network

For a traffic network, N denotes the set of the nodes and E denotes the set of directed
arcs. LetW be the set of origin–destination (O-D) pairs and D = (dω)ω∈W be the demand
vector, where dω > 0 is the flow demand on O-D pair ω. Thus, a traffic network is always
denoted by G = {N , E ,W ,D}. For ω ∈ W , Pω is the set of available paths on the O-D pair
ω and P = ∪ω∈WPω is the set of all available paths of the network. Let n = ∑ω∈W |pω |.
For a given pk ∈ Pω, ypk is the traffic flow on this path and y = (y1, y2, · · · , yn)> ∈ Rn is
called a path flow. For given pk ∈ Pω , suppose lpk ∈ R+, upk ∈ R+ with lpk < upk ; the path
flow ypk needs to satisfy the capacity constraint lpk ≤ ypk ≤ upk . The traffic load is always
presented by arc flows zα, α ∈ E , or path flows ypk , pk ∈ P. Given a path flow, the arc flow
can be obtained by the following formula:

zα = ∑
pk∈P

ypk δαpk ,

where

δαpk =

{
1, if α belongs to path pk,
0, otherwise.
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The arc flow is denoted by z := (zα)α∈E . A path flow y is said to be feasible flow if
it satisfies:

Ω = {y ∈ R+ : ∀ω ∈ W , ∀pk ∈ Pω, lpk ≤ ypk ≤ upk , ∑
pk∈Pω

ypk = dω}.

Let tα : Rn → Rm be a vector-valued cost function along with arc α ∈ E . Let
cpk : Rn → Rm be a vector-valued cost function on the path pk. Thus, we have that the cost
function cpk for path pk is the sum of cost functions for arcs belonging to path pk, namely:

cpk (y) = ∑
α∈E

δαpk tα(y). (1)

However, the path cost functions may be perturbed in reality. This means that it not only de-
pends on the path flow y but also on parameters of ξ ∈ U := U1 ×U2 × · · · ×Un. Throughout
this paper, the cost function cpk (y, ξ) is often given in the form cpk (y, ξ) = cpk (y) + ξpk .

2.2. Robust Vector Equilibrium and Related Concepts

Now, we give the following definitions on a robust vector equilibrium and a robust
(weak) vector equilibrium with respect to the worst case.

Definition 2. A feasible flow ȳ ∈ Ω is said to be a robust vector equilibrium, if for each O-D
ω ∈W, path pk, pj ∈ Pω, one has:

cpk (ȳ, ξ)− cpj(ȳ, ξ) � 0Rm , ∀ξ ∈ U ⇒ either ȳpk = lpk or ȳpj = upj .

The worst case of the cost function on the path pk under all possible scenarios is
defined as follows:

Cpk (y) =




sup
ξ∈U

c1pk (y, ξ)

...

sup
ξ∈U

cmpk (y, ξ)




, Cpj(y) =




sup
ξ∈U

c1pj(y, ξ)

...

sup
ξ∈U

cmpj(y, ξ)




The following definitions are given based on the worst case of path costs, which is
called the robust vector equilibrium with respect to the worst case and the robust weak
vector equilibrium with respect to the worst case.

Definition 3. A feasible flow ȳ ∈ Ω is a robust vector equilibrium with respect to the worst case,
if for ∀ω ∈W, ∀ pk, pj ∈ Pω, one has:

Cpk (ȳ)− Cpj(ȳ) � 0Rm ⇒ either ȳpk = lpk or ȳpj = upj .

Definition 4. A feasible flow ȳ ∈ Ω is in robust weak vector equilibrium with respect to the worst
case , if for ω ∈W, pk, pj ∈ Pω, one has:

Cpk (ȳ)− Cpj(ȳ) � 0Rm ⇒ either ȳpk = lpk or ȳpj = upj .

Remark 1. What should be noteworthy is that a robust vector equilibrium with respect to the worst case is
also a robust vector equilibrium when U is a compact set. Conversely, it is not necessarily true. Although
there is no parameter in the concept of the robust vector equilibrium with respect to the worst case, it still
depends on the values of the parameter or sensitive to parameters. Now, we give the following example to
illustrate the above cases.

Example 1. Consider a network problem with one O-D pair ω = (x, x
′
). Two criteria, i.e., travel

time and travel cost, and two available paths, i.e., Pω = {p1, p2}, with the travel demand dω = 30.
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Assume that the path capacity constraints and cost function on the paths p1 and p2 are, respectively,
given as follows:

lp1 = 0, lp2 = 0; up1 = 30, up2 = 30.

cp1(y, ξ1) =

(
y1 + 2y2 + ξ1

6y1 + 2y2 + ξ1

)
, cp2(y, ξ2) =

(
y1 + 6y2

6y1 + 2y2 − ξ2

)
.

with ξ1 ∈ [−1, 2] and ξ2 ∈ [0, 1].

Direct computation shows that ȳ = (30, 0) is the robust vector equilibrium. However,
it is not the robust vector equilibrium with respect to the worst case since we have:

Cp1(ȳ) =

(
32

182

)
, Cp2(ȳ) =

(
30

180

)
,

but yp1 6= lp1 and yp2 6= up2 .
If ξ1 ∈ [−1, 0] and ξ2 ∈ [−2, 0], then we have Cp2(ȳ)− Cp1(ȳ) � 0Rm , yp1 = up1 and

yp2 = lp2 . Hence, ȳ = (30, 0) is the robust vector equilibrium with respect to the worst case.
It can be seen that the robust vector equilibrium with respect to the worst case is sensitive
to parameter perturbations.

3. Min–Max Method for Robust Vector Equilibrium

In this section, a min–max algorithm is proposed to look for a subset of the robust
vector equilibrium flows.

3.1. Description of the Algorithm

In this subsection, we construct an optimization problem whose solution is equivalent
to the the robust vector equilibrium flow. For (y, ξ) ∈ Ω×U, we define:

ψ(y, ξ) := ∑
pk ,pj∈Pω ,ω∈W

(ypk − lpk )(upj − ypj)[cpk (y, ξ)− cpj(y, ξ)]>H+[cpk (y, ξ)− cpj(y, ξ)].

Proposition 1. Let ȳ be a feasible flow. The following statements are equivalent.

(i) ȳ is a robust vector equilibrium;
(ii) There exists (ȳ, ξ̄) such that it is a saddle-point of the problem, denoted as follows:

min
y∈Ω

max
ξ∈U

ψ(y, ξ)

s.t. y ∈ Ω.
(2)

and ψ(ȳ, ξ̄) is equal to zero.

Proof. Firstly, we prove the implication (i) ⇒ (ii). Since ψ(y, ξ) ≥ 0, it suffices to prove
ψ(ȳ, ξ) = 0 for all ξ ∈ U, i.e., 0 = ψ(ȳ, ξ) = ψ(ȳ, ξ̄) ≤ ψ(y, ξ). Hence, for every
ξ ∈ U, pk ∈ Pω, ω ∈ W , we consider the following term:

Opk = ∑
pj∈Pω

(ypk − lpk )(upj − ypj)[cpk (y, ξ)− cpj(y, ξ)]>H+[cpk (y, ξ)− cpj(y, ξ)].

If cpk (ȳ, ξ)− cpj(ȳ, ξ) � 0Rm for some pj ∈ Pω, then by Definition 2, one has ȳpk = lpk

or ȳpj = upj and so Opk = 0. If cpk (ȳ, ξ)− cpj(ȳ, ξ) ≺ 0Rm , for some pj ∈ Pω , H+[cpk (ȳ, ξ)−
cpj(ȳ, ξ)] = 0Rm , and hence, Opk = 0. By the above cases, one has ψ(ȳ, ξ) = 0 for all ξ ∈ U.

Conversely, if (ii) is satisfied, (ȳ, ξ̄) is a saddle-point and Opk = 0. If for every
ξ ∈ U, some pk, pj ∈ Pω, ω ∈ W one has cpk (ȳ, ξ) − cpj(ȳ, ξ) � 0Rm , then [cpk (ȳ, ξ) −
cpj(ȳ, ξ)]>H+[cpk (ȳ, ξ)− cpj(ȳ, ξ)] > 0 and so ȳpk = lpk or ȳpj = upj . Consequently, ȳ is a
robust vector equilibrium.
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Now, a min–max algorithm is proposed to solve problem (2). In our algorithm, we
select different steps for the two variables y and ξ, which is different from one proposed
in [22]. In addition, we extend the search directions of the algorithm to make the search
faster and more suitable for different needs. Thus, our algorithm is an improvement of that
in [22].

Direction set: The set D consist of finite unit vectors which can span Rn. Here, in order
to reduce the computational cost, we only consider some directions in D. For example,

when n = 2, in this paper, let D =
{
(1, 0), (

√
3

2 , 1
2 ), (1, 1), ( 1

2 ,
√

3
2 ), (0, 1), (− 1

2 ,
√

3
2 ), (−1, 1),

(−
√

3
2 , 1

2 ), (−1, 0), (−
√

3
2 ,− 1

2 ), (−1,−1), (− 1
2 ,−

√
3

2 ), (0,−1), ( 1
2 ,−

√
3

2 ), (1,−1), (
√

3
2 ,− 1

2 )
}

.

Step length: Let initial step t0 = 1 and dk = arg minyi ψk(yk + tkd, ξk), d ∈ D. Let
ỹk = yk + tkdk. If iteration is successful, i.e., ψk(ỹk, ξk)) < ψk(yk + tkd, ξk) − ct2

k for all
d ∈ D (c > 0), then the next step length value tk+1 = 1; if the iteration is unsuccessful, then
tk+1 = ‖ỹ− yk‖/2.

Remark 2. It is worth noting that computations for yt and ξt in Algorithm 1 are based on
Algorithm 2.

Algorithm 1: Min–max algorithm (Algorithm 1).
input : ψ: objective function; c: forcing function constant c > 0;

T: maximum number of iterations; t0: initialize step size;
(y0, ξ0): initial iteration point; S = ∅, SE = ∅.

1 for t = 1, · · ·, T do
2 ξt = A1(−ψ(yt−1, .), ξt−1)
3 yt = A1(ψ(., ξt), yt−1)
4 return (yT , ξT), store it in S.

5 Choose a (yT , ξT) from S, compute ψ(yT , ξT).
6 If ψ(yT , ξT) ≤ ε, store yT in SE and return to Step 5 until no element of S left.

Algorithm 2: Algorithm 2 (ψ(), y0).
input : ψ: objective function; c: forcing function constant c > 0;

T: maximum number of iterations; t0: initialize step size value;
y0: initial iteration point.

1 for k = 0, · · ·, T − 1 do
2 1. Generate direction set

D = {di : any one unit direction of a certain point}.
3 2. Generate the points

y = yk + tkd ⊂ Ω, ∀ d ∈ D.

3. Choose dk = arg mind ψ(y, ξk)and let ỹk = yk + tkdk.
4 4. if ψ(ỹ, ξk) < ψ(yk, ξk)− ct2

k then
5 (Iteration is successful)
6 yk+1 = ỹ, tk+1 = 1;
7 else

8 (Iteration is unsuccessful)
9 yk+1 = yk, tk+1 = ‖ỹ− yk‖/2.

10 return yT
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3.2. Comparison with Other Methods

In this subsection, we will give three numerical examples to show the comparison with
that of [22]. In these numerical examples, both Algorithm 1 and the algorithm proposed
in [22] start from the same set of initial points. To make a fair comparison, all test problems
are run five times to reduce the impact of randomness.

Remark 3. There is a step calculation method in reference [22]—if the iteration is successful:
tk+1 = min(tmax, γtk), γ > 1, where tmax is the largest step size; if iteration is unsuccessful:
tk+1 = 1

γ tk. Compared with the step calculation method in reference [22], the step calculation
method presented in Algorithm 1 has better performance, since Algorithm 1 selects different step
size for different variables and extends the search directions. What is more, Algorithm 1 requires
neither gradient information nor redundant parameters.

Example 2. Consider a network problem depicted in Figure 1, where N = {1, 2},
W = {ω} =

{
(1, 2)

}
, E = {α1, α2},D = dω = 30. There are two criteria: travel time

and travel cost. The cost functions of arcs and constraints of paths are given as bel-
low: t1,α1(y, ξ) = y2

1 + 2y1y2 + y2 − ξ1, t2,α1(y, ξ) = y1 + y2
2; t1,α2(y, ξ) = y2

1 + 10y2y2,
t2,α2(y, ξ) = 7y1 + 6y2

2 − 6ξ2.

lp1 = 0, lp2 = 0; up1 = 30, up2 = 30.

Figure 1. Network topology for Example 2.

Then, we have:

cp1(y, ξ) =

(
y2

1 + 2y1y2 + y2 − ξ1

y1 + y2
2

)
, cp2(y, ξ) =

(
y2

1 + 10y2y2

7y1 + 6y2
2 − 6ξ2

)
.

where ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1]. Initial feasible flows and a subset of the robust vector
equilibrium flows are obtained in 23.82s. The results are shown in Table 1. However, if we
use step calculational method in [22], then it takes 25.68 s and the obtain the same robust
vector equilibrium flows with our algorithm.

Table 1. Computational results of Algorithm 1.

Initial Feasible Flows Robust Vector Equilibrium Flows

(0.00, 30.00) (3.75, 26.25) (25.00, 5.00) (25.75, 4.25)
(11.25, 18.75) (11.25, 18.75) (25.50, 4.50) (25.25, 4.75)
(15.00, 15.00) (18.75, 11.25) (25.00, 5.00) (25.75, 4.25)
(22.50, 7.50) (26.25, 3.75) (25.50, 4.50) (26.25, 3.75)
(30.00, 0.00) (30.00, 0.00)

Example 3. Consider the network problem depicted in Figure 2, where N = {1, 2, 3, 4},
W =

{
(1, 4), (2, 4)

}
, and there are two O-D pairs, ω1, ω2. E = {α1, α2, α3, α4, α5},

p1 = (α1α5), p2 = (α2), p3 = (α3α5), p4 = (α4), D = {dω1 , dω2} = {55, 35}. There
are two criteria: travel time and travel cost. Constrains of paths are given as follows:

lp1 = 0, lp2 = 0, lp3 = 0, lp4 = 0;

up1 = 55, up2 = 55, up3 = 35, up4 = 35.
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Figure 2. Network topology for Example 3.

The cost functions of arcs are defined as follows:

tα1(y, ξ) =

(
y2

1 + 2y2 + y2
3 + y2

4 + 1
2y1 + y2

2 + 2y3 + y4 +
3
2 − 6ξ1

)
, tα2(y, ξ) =

(
2y1 + 3y2 + 5y3 + y4 + 1 + ξ2

2y1y2 + y2 + y2
3 + y4 +

1
2

)
,

tα3(y, ξ) =

(
2y1 + y2 + y2

3 + y4 +
3
2 + 3ξ3

y2
3 + 5y4 + 1

)
, tα4(y, ξ) =

(
2y2 + 3y3y4 + y2

4 + 1
y2

1 + y2 + y4 +
1
2 − 8ξ4

)
, tα5(y, ξ) =

(
y1 + y2
y3 + y4

)
.

Then, we have:

cp1(y, ξ) =

(
y2

1 + y1 + 3y2 + y2
3 + y2

4 + 1

2y1 + y2
2 + 3y3 + 2y4 + 1.5− 6ξ1

)
, cp2(y, ξ) =

(
2y1 + 3y2 + 5y3 + y4 + 1 + ξ2

2y1y2 + y2 + y2
3 + y4 + 0.5

)

cp3(y, ξ) =

(
3y1 + 2y2 + y2

3 + y4 + 1.5 + 3ξ3

y2
3 + y3 + 6y4 + 1

)
, cp4(y, ξ) =

(
2y2 + 3y3y4 + y2

4 + 1

y2
1 + y2 + 8y4 + 0.5− 8ξ4

)

where ξi ∈ [0, 1], i = 1, 2, 3, 4. Initial feasible flows and a subset of the robust vector
equilibrium flows are obtained in 40.56 s. The results are shown in Table 2. The time cost of
Algorithm 1 is 4% lower than that of the step calculation method in [22].

Table 2. Computational results of Algorithm 1.

Initial Feasible Flows Robust Vector Equilibrium Flows

(0.00, 55.00, 0.00, 35.00)
(5.00, 50.00, 5.00, 30.00)

(27.00, 28.00, 27.00, 8.00)
(27.00, 28.00, 27.00, 8.00)

(10.00, 45.00, 10.00, 25.00)
(15.00, 40.00, 15.00, 20.00)

(27.00, 28.00, 27.00, 8.00)
(27.00, 28.00, 27.00, 8.00)

(20.00, 35.00, 20.00, 15.00)
(25.00, 30.00, 25.00, 10.00)

(27.00, 28.00, 27.00, 8.00)
(29.00, 26.00, 29.00, 6.00)

(30.00, 25.00, 30.00, 5.00)
(35.00, 20.00, 35.00, 0.00)

(29.00, 26.00, 29.00, 6.00)

Example 4. Consider the network problem depicted in Figure 3, where N = {1, 2, 3, 4, 5, 6},
W = {ω1, ω2} =

{
(1, 5), (2, 6)

}
, E = {α1, α2, α3, α4, α5, α6, α7, α8, α9}, D = {dω1 , dω2},

dω1 = 25, dω2 = 20, with two criteria: travel time and travel cost. Pω = {p1, p2, p3, p4, p5, p6, p7},
where Pω1 = {p1, p2, p3, p4}, Pω2 = {p5, p6, p7}, p1 = (α3), p2 = (α2α5α8),
p3 = (α1α4α5α8), p4 = (α1α6α8), p5 = (α7), p6 = (α6α9), and p7 = (α4α5α9).
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Figure 3. Network topology for Example 4.

The constrains of paths and cost functions are given as follows:

lp1 = 0, lp2 = 0, lp3 = 0, lp4 = 0, lp5 = 0, lp6 = 0, lp7 = 0;

up1 = 25, up2 = 25, up3 = 25, up4 = 25, up5 = 20, up6 = 20, up7 = 20.

t1,α1(y, ξ) = 4(y6 + y7) + 50− 2ξ3, t2,α1(y, ξ) = (y6 + y7)
2 + 90− 2ξ3;

t1,α2(y, ξ) = 2y2 + 20− ξ2 + 4ξ6, t2,α2(y, ξ) = 3y2
2 + 10;

t1,α3(y, ξ) = 4y2
1 + 100 + ξ1, t2,α3(y, ξ) = 2y2

1 + 110 + 6ξ1;

t1,α4(y, ξ) = 2(y4 + y7) + 10 + ξ2, t2,α4(y, ξ) = (y4 + y7)
2 + 30− ξ2 + ξ3;

t1,α5(y, ξ) = 2(y3 + y4 + y7)
2 + 10− ξ2, t2,α5(y, ξ) = (y3 + y4 + y7)

2 + 20 + ξ2;

t1,α6(y, ξ) = 5(y4 + y5)
2 + 430 + 2ξ3 + ξ4, t2,α6(y, ξ) = 2(y4 + y5) + 530 + 2ξ3 − ξ4;

t1,α7(y, ξ) = 2y2
2 + 100 + 5ξ5, t2,α7(y, ξ) = 3y5 + 300;

t1,α8(y, ξ) = (y3 + y6 + y7)
2 + 20, t2,α8(y, ξ) = 2(y3 + y6 + y7)

2 + 10;

t1,α9(y, ξ) = (y5 + y6)
2 + 30− 4ξ6, t2,α9(y, ξ) = 2(y5 + y6) + 10 + 2ξ7 − ξ3;

where zαi (i = 1, 2, . . . , 9) denotes the flow on arc αi. Then we have

cp1(y, ξ) =

(
4y2

1 + 100 + ξ1

2y2
1 + 110 + 6ξ1

)
, cp2(y, ξ) =

(
2y2 + 2(y3 + y4 + y7)

2 + (y3 + y6 + y7)
2 + 50− 2ξ2

3y2
2 + (y3 + y4 + y7)

2 + 2(y3 + y6 + y7)
2 + 40 + ξ2

)

cp3(y, ξ) =

(
4(y6 + y7) + 2(y4 + y7) + 2(y3 + y4 + y7)

2 + (y3 + y6 + y7)
2 + 90− 2ξ3

(y6 + y7)
2 + (y4 + y7)

2 + (y3 + y4 + y7)
2 + 2(y3 + y6 + y7)

2 + 150− ξ3

)

cp4(y, ξ) =

(
4(y6 + y7) + 5(y4 + y5)

2 + (y3 + y6 + y7)
2 + 500 + ξ4

(y6 + y7)
2 + 2(y4 + y5) + 2(y3 + y6 + y7)

2 + 630− ξ4

)

cp5(y, ξ) =

(
2y2

2 + 100 + 5ξ5

3y5 + 300

)
, cp6(y, ξ) =

(
5(y4 + y5)

2 + (y5 + y6)
2 + 460− 4ξ6

2(y4 + y5) + 2(y5 + y6) + 540

)

cp7(y, ξ) =

(
2(y4 + y7) + 2(y3 + y4 + y7)

2 + (y5 + y6)
2 + 50

(y4 + y7)
2 + (y3 + y4 + y7)

2 + 2(y5 + y6)
2 + 60 + 2ξ7

)

where ξi ∈ [0, 1], i = 1, 2, 3, 4, 5, 6, 7. Initial feasible flows and a subset of the robust vector
equilibrium flows are obtained in 538.47 s. The results are shown in Table 3. The algo-
rithm proposed in [22] obtains the same robust vector equilibrium flows, but its time cost
is 548.32 s.
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Table 3. Computational results of Algorithm 1.

Initial Feasible Flows Robust Vector Equilibrium Flows

(0, 0, 0, 25, 0, 0, 20) (0, 0, 25, 0, 0, 0, 20) (9, 7, 9, 0, 19, 0, 1) (12, 13, 0, 0, 8, 0, 12)
(0, 25, 0, 0, 0, 0, 20) (25, 0, 0, 0, 0, 0, 20) (15, 10, 0, 0, 9, 0, 11) (15, 10, 0, 0, 9, 0, 11)
(0, 0, 0, 25, 0, 20, 0) (0, 0, 25, 0, 0, 20, 0) (12, 8, 5, 0, 15, 0, 5) (15, 10, 0, 0, 9, 0, 11)
(0, 25, 0, 0, 0, 20, 0) (25, 0, 0, 0, 0, 20, 0) (9, 7, 9, 0, 19, 0, 1) (12, 13, 0, 0, 8, 0, 12)
(0, 0, 0, 25, 20, 0, 0) (0, 0, 25, 0, 20, 0, 0) (11, 7, 7, 0, 18, 0, 2)
(0, 25, 0, 0, 20, 0, 0) (25, 0, 0, 0, 20, 0, 0)

4. Smoothing Method for the Robust Vector Equilibrium with the Worst Case

It is worth noting that the algorithm in [21] needs to solve a non-smoothing optimiza-
tion problem. This results in its computational inefficiency. This prompts us to continuously
investigate algorithm for solving robust equilibrium flows. In this section, we propose a
smoothing method to calculate a subset of the robust vector equilibrium with respect to
the worst case. The algorithm is denoted Algorithm 3. To generalize a subset of the robust
vector equilibrium flows with respect to the worst case, we use a two-step strategy. The first
step is to construct an equivalent optimization problem with the help of a variant version
of ReLU activation function for finding the robust weak vector equilibrium flows with
respect to the worst case. The second step is to judge whether or not the robust weak vector
equilibrium flows with respect to the worst case are equal to the robust vector equilibrium
flows with respect to the worst case by an equivalent optimization problem using the vector
version of heaviside step function.

Algorithm 3: Robust vector equilibrium algorithm (denoted Algorithm 3).

1 Choose a positive integer q and a tolerance level ε ≥ 0.
2 Enter l = (lpk )pk∈P and u = (upk )Pk∈P. Set δj = dωj /(q|Pωj |), j = 1, · · · , l̃.
3 Choose (k1, · · · , kn)> ∈ Nn satisfying

∑
i∈Ij

ki = q|Pωj |, and lpi ≤ kiδj ≤ upi , i ∈ Ij, j = 1, · · · , l̃.

4 Store y = (yp1 , · · · , ypn)
> in S0 where

ypi = kiδj, i ∈ Ij, j = 1, · · · , l̃

and return to Step 3 for other vectors (k1, · · · , kn) unless no one left.
5 Choose a feasible flow y0 from S0 to start. Set k = 0, S0 = S0 \ {y0} and

WE = ∅.
6 For every i, j ∈ {1, · · · , n}, solve

minimize φ(y)

subject to y ∈ Ω
∣∣∣ypi − y0

pi

∣∣∣ ≤ δω(i), i = 1, · · · , n.

If φ(y) 5 ε, store y in WE and return to Step 5 until no element of S0 left.
7 Choose a feasible flow y ∈WE, WE = WE\{y}.
8 Compute

ϕ(y) = ∑
ω∈W

∑
pk ,pj∈Pω

(ypk − lpk )(upj − ypj)(Cpk (y)−Cpj(y))
>H+[Cpk (y)−Cpj(y)]

9 If ϕ(y) 5 ε, store y in E and return to Step 7 until no element of WE left.
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Define a function r : R → R and give its vector version function R : Rn → Rm

as follows:

r(a) =
(

max{0, a}
)2

.

R(x) = (
n

∏
i=1

r(xi))e,

In addition, the heaviside step function h+ : R → R and its vector version function
H+ : Rn → Rm are also given below:

h+(a) =

{
1, if a ≥ 0,
0, otherwise.

H+(x) = (
n

∏
i=1

h+(xi))e, ∀x ∈ Rm.

4.1. Description of the Algorithm

In this subsection, we construct an optimization problem whose solution is equivalent
to a robust weak vector equilibrium flow with respect to the worst case. For y ∈ Ω, we
define:

φ(y) := ∑
ω∈W

∑
pk ,pj∈Pω

(ypk − lpk )(upj − ypj)(Cpk (y)− Cpj(y))
>R[Cpk (y)− Cpj(y)].

Proposition 2. Let ȳ be a feasible flow. The following statements are equivalent.

(i) ȳ is a robust weak vector equilibrium with respect to the worst case;
(ii) ȳ is an optimal solution of the problem, denoted:

min φ(ȳ)

s.t. y ∈ Ω.
(3)

and the optimal value φ(ȳ) is equal to zero.

Proof. We first prove the implication (i) ⇒ (ii). It is not hard to see φ(y) ≥ 0 for every
y ∈ Ω. Thus, if ȳ is a robust weak vector equilibrium with respect to the worst case, in order
to deduce (ii), it suffices to prove φ(ȳ) = 0. In addition, for every pk ∈ pω, ω ∈ W,
consider the term:

Qp = ∑
ω∈W

∑
pk ,pj∈Pω

(ypk − lpk )(upj − ypj)(Cpk (y)− Cpj(y))
>R[Cpk (y)− Cpj(y)].

If Cpk (ȳ) − Cpj(ȳ) � 0Rm , for some pj ∈ Pω, then by Definition 4, either
ȳpk = lpk or ȳpj = upj ; if Cpk (ȳ)− Cpj(ȳ) = 0Rm , for some pj ∈ Pω, we also get Qp = 0; if
Cpk (ȳ)− Cpj(ȳ) ≺ 0Rm , thenR[Cpk (y)− Cpj(y)] = 0Rm , and thus, Qp = 0. As a result, one
has φ(ȳ) = 0.

Conversely, assume that ȳ is an optimal solution of Problem (3) and φ(ȳ) = 0. Then,
we have Qp = 0 for all p ∈ P. If there exists some pk, pj ∈ pω, ω ∈ W such that
Cpk (ȳ)− Cpj(ȳ) � 0Rm , then (Cpk (y)− Cpj(y))

′R[Cpk (y)− Cpj(y) � 0Rm , and thus, either
ȳpk = lpk or ȳpj = upj by Qp = 0. Consequently, we deduce that ȳ is a robust weak vector
equilibrium with respect to the worst case.

For y ∈ Ω, we define

ϕ(y) = ∑
ω∈W

∑
pk ,pj∈Pω

(ypk − lpk )(upj − ypj)(Cpk (y)− Cpj(y))
>H+[Cpk (y)− Cpj(y)].
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Then, by using a similar method of proof, we may establish the following result for
the robust vector equilibrium with respect to the worst case.

Proposition 3. Let ȳ be a feasible flow. The following statements are equivalent.

(i) ȳ is a robust vector equilibrium with respect to the worst case.
(ii) ȳ is an optimal solution of the problem, denoted as follows:

min ϕ(y)

s.t. y ∈ Ω.
(4)

and the optimal value ϕ(ȳ) is equal to zero.

Algorithm 3 is mainly based on ideas of Propositions 2 and 3. Steps 1–4 create a
subset of feasible flows with the initial conditions, denoted as S0, with which Steps 4–6
will start. Steps 5–6 are aimed at solving Problem (3) given in Proposition 2 by using
first-order optimization methods, and then a subset of the robust weak vector equilibrium
flows with respect to the worst case is gained. Steps 7–9 focus on solving Problem (4) given
in Proposition 3, and then a subset of the robust vector equilibrium flows with respect to
the worst case is generated.

Assume thatW consists of l̃ elements ω1, . . . , ωl̃ in the network and for each pair ωi.

Let Ij =
{

i ∈ {1, . . . , n} : pi ∈ Pwj

}
. Denote WE by the subset of the robust weak vector

equilibrium flows with respect to the worst case and E by the subset of the robust vector
equilibrium flows with respect to worst case.

4.2. Comparison with Other Methods

In this subsection, we will give two numerical examples to show the comparison with
that of [21]. In these numerical examples, both Algorithm 3 and the algorithm proposed
in [21] start from the same set of initial points. To make a fair comparison, all test problems
are run five times to reduce the impact of randomness.

Example 5. Consider the network problem depicted in Figure 4, where N = {1, 2, 3, 4, 5},
W = {ω1, ω2} =

{
(1, 4), (1, 5)

}
, E = {α1, α2, α3, α4, α5, α6, α7, α8, α9},D = {dω1 , dω2},

dω1 = 25, dω2 = 20, with two criteria: travel time and travel cost, Pω = {p1, p2, p3, p4, p5, p6, p7},
where Pω1 = {p1, p2, p3, p4}, Pω2 = {p5, p6, p7}.

Figure 4. Network topology for Example 5.

Assume that:

lp1 = lp2 = lp3 = lp4 = lp5 = lp6 = lp7 = lp8 = 0;

up1 = 100, up2 = 100, up3 = 100, up4 = 200, up5 = 100, up6 = 120, up7 = 150, up8 = 100;
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t1,α1(y, ξ) = y2
1 + y2

2 + y3
3 + ξ1, t2,α1(y, ξ) = 2y1 + 5y2 + 3y3 + y4 − 2ξ1;

t1,α2(y, ξ) = 8y1y2 + y2
2 + y7 + y8 + 4ξ2, t2,α2(y, ξ) = y2 + 10y3 + 2y7 + y8 + 2ξ2;

t1,α3(y, ξ) = y1 + y2
2 + y3

3 + y5 + y6 − 3ξ3, t2,α3(y, ξ) = 10y3
3 + 2y5 + ξ3;

t1,α4(y, ξ) = y1 + y2 + y3
4 + y2

5 + y3
8 + ξ4, t2,α4(y, ξ) = y1 + 2y4 + y6y5 + 15y8;

t1,α5(y, ξ) = y1 + y3 + y3
4 + y2

5 + y2
6, t2,α5(y, ξ) = y1 + 5y3 + 5y5 + 3y6 + 12y7 + 4ξ5;

t1,α6(y, ξ) = y3 + y4 + y5 + y3
6 − 3ξ6, t2,α6(y, ξ) = 3y3 + 10y5 + y6 + 2y8 − 2ξ6;

t1,α7(y, ξ) = y2 + 8y2
4 + y5 + y3

7 + 2ξ7, t2,α7(y, ξ) = y1 + y2 + 5y4 + 3y7;

t1,α8(y, ξ) = y1 + y3 + 8y6y7 + y2
8 + ξ8, t2,α8(y, ξ) = y1 + y3 + 10y3

5 + y8 − ξ8,

where ξi ∈ [0, 1], i = 1, 2, 3, 4, 5, 6, 7, 8. Then, we have

Cp1(y) =

(
y2

1 + y2
2 + y3

3 + 1

2y1 + 5y2 + 3y3 + y4

)
, Cp2(y) =

(
8y1y2 + y2

2 + y7 + y8 + 4

y2 + 10y3 + 2y7 + y8 + 2

)

Cp3(y) =

(
y1 + y2

2 + y3
3 + y5 + y6

10y3
3 + 2y5 + 1

)
, Cp4(y) =

(
y1 + y2 + y3

4 + y2
5 + y3

8 + 1

y1 + 2y4 + y6y5 + 15y8

)

Cp5(y) =

(
y1 + y3 + y3

4 + y2
5 + y2

6

y1 + 5y3 + 5y5 + 3y6 + 12y7 + 4

)
, Cp6(y) =

(
y3 + y4 + y5 + y3

6

3y3 + 10y5 + y6 + 2y8

)

Cp7(y) =

(
y2 + 8y2

4 + y5 + y3
7 + 2

y1 + y2 + 5y4 + 3y7

)
, Cp8(y) =

(
y1 + y3 + 8y6y7 + y2

8 + 1

y1 + y3 + 10y3
5 + y8

)

Choosing q = 2, we have 32 feasible flows and 2 robust (weak) vector equilibrium
flows with respect to the worst case, which are obtained in 0.18 s. Robust (weak) vector
equilibrium flows with respect to the worst case are shown in Table 4. However, using the
algorithm proposed in [21], it will take 13.826 s to obtain five robust vector equilibrium
flows with respect to the worst case, which are shown in Table 5.

Table 4. Computational results of Algorithm 3.

Robust Weak Vector Equilibrium Flows
(Worst Case)

Robust Vector Equilibrium Flows (Worst
Case)

(100, 100, 100, 145.125, 0, 120, 134.875, 100) (100, 100, 100, 145.125, 0, 120, 134.875, 100)
(100, 100, 100, 150, 0, 120, 130, 100) (100, 100, 100, 150, 0, 120, 130, 100)

Table 5. Computational results of algorithm in [21].

Robust Vector Equilibrium Flows (Worst Case)

(100, 100, 100, 30, 100, 120, 150, 100)
(100, 100, 100, 50, 100, 120, 130, 100)
(100, 100, 100, 100, 100, 120, 80, 100)
(100, 100, 100, 150, 100, 120, 30, 100)
(100, 100, 100, 200, 100, 100, 100, 0)

Example 6. Consider the network problem depicted in Figure 5, where N = {1, 2, 3, 4, 5},
W = {ω1, ω2} =

{
(1, 4), (1, 5)

}
, E = {α1, α2, α3, α4, α5, α6, α7, α8, α9},D = {dω1 , dω2} with

dω1 = 25, dω2 = 20, with two criteria: travel time and travel cost, Pω = {p1, p2, p3, p4, p5, p6, p7},
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where Pω1 = {p1, p2, p3, p4}, Pω2 = {p5, p6, p7}. p1 = (α4), p2 = (α2α8), p3 = (α2α6α3),
p4 = (α1α3), p5 = (α5), p6 = (α2α9), p7 = (α1α7). Let:

l1 = 0, l2 = 0, l3 = 0, l4 = 0, l5 = 0, l6 = 0, l7 = 0;

u1 = 15, u2 = 20, u3 = 15, u4 = 10, u5 = 15, u6 = 10, u7 = 15.

Figure 5. Network topology for Example 6.

Now, we give the cost function of arcs as follows:

tα1(y, ξ) =

(
4(y6 + y7) + 2(y3 + y4 + y7)

2 + 300− 2ξ1

(y6 + y7)
2 + (y3 + y4 + y7)

2 + 330− ξ1

)
, tα2(y, ξ) =

(
2(y3 + y4 + y7)

2 + 50 + ξ2

(y3 + y4 + y7)
2

)

tα3(y, ξ) =

(
2(y3 + y7) + 2(y4 + y7)

2 + 300 + 2ξ1 + ξ6

(y3 + y7)
2 + 2(y4 + y7) + 100 + ξ1 − ξ3

)
, tα4(y, ξ) =

(
4y2

1 + 100 + ξ4

2y2
1 + 110 + 6ξ4

)

tα5(y, ξ) =

(
2y2

2 + 100 + 5ξ5

3y2 + y5 + 300

)
, tα6(y, ξ) =

(
(y3 + y6 + y7)

2 − 260− ξ6 − ξ2

2(y3 + y6 + y7)
2 + 50− ξ1

)

tα7(y, ξ) =

(
2(y3 + y7) + 2(y4 + y7)

2 − 150 + 3ξ1 − ξ7

(y3 + y7)
2 + (y4 + y7)

2 − 310 + ξ1

)
, tα8(y, ξ) =

(
2y2 + (y3 + y6 + y7)

2 − ξ2

3y2
2 + 2(y3 + y6 + y7)

2 + 40− ξ8

)

tα9(y, ξ) =

(
5(y5 + y6)

2 + 410 + ξ2

2(y5 + y6)
2 + 540− ξ9

)

where ξi ∈ [0, 1], i = 1, 2, 3, 4, 5, 6, 7, 8, 9. Then, we have:

Cp1(y) =

(
4y2

1 + 101

2y2
1 + 116

)
, Cp2(y) =

(
2y2 + 2(y3 + y4 + y7)

2 + (y3 + y6 + y7)
2 + 50

3y2
2 + (y3 + y4 + y7)

2 + 2(y3 + y6 + y7)
2 + 41

)
,

Cp3(y) =

(
4(y3 + y7) + 2(y4 + y7)

2 + 2(y3 + y4 + y7)
2 + (y3 + y6 + y7)

2 + 90

(y3 + y7)
2 + 2(y4 + y7) + (y3 + y4 + y7)

2 + 2(y3 + y6 + y7)
2 + 150

)
,

Cp4(y) =

(
4(y3 + y7) + 2(y4 + y7)

2 + 4(y6 + y7) + 2(y3 + y4 + y7)
2 + 601

(y3 + y7)
2 + 2(y4 + y7) + (y6 + y7)

2 + (y3 + y4 + y7)
2 + 430

)
,
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Cp5(y) =

(
2y2

2 + 105

3y2 + y5 + 300

)
, Cp6(y) =

(
5(y5 + y6)

2 + 2(y3 + y4 + y7)
2 + 460

2(y5 + y6) + (y3 + y4 + y7)
2 + 540

)
,

Cp7(y) =

(
4(y6 + y7) + 2(y4 + y7)

2 + 2(y3 + y4 + y7)
2 + 2(y3 + y7) + 152

(y6 + y7)
2 + (y4 + y7)

2 + (y3 + y4 + y7)
2 + (y3 + y7)

2 + 20

)
.

Choosing q = 1, 80 feasible flows are created and a subset of robust vector equilibrium
flows with respect to the worst case (displayed in Tables 6) are obtained. This takes about
0.62 s. However, using the algorithm presented in [21], it spends 579 s to obtain a subset of
robust vector equilibrium flows with respect to the worst case, which are shown in Table 7.

Table 6. Computational results of Algorithm 3.

Robust Weak Vector Equilibrium Flows
(Worst Case)

Robust Vector Equilibrium Flows (Worst
Case)

(11.88, 11.29, 1.83, 0, 13.23, 0, 6.77) (11.88, 11.29, 1.83, 0, 13.23, 0, 6.77)
(10.56, 12.5, 1.94, 0, 13.33, 0, 6.67) (10.56, 12.5, 1.94, 0, 13.33, 0, 6.67)
(10.04, 14.92, 0.04, 0, 11.89, 0, 8.11) (10.04, 14.92, 0.04, 0, 11.89, 0, 8.11)
(11.03, 12.4, 1.57, 0, 13.33, 0, 6.67) (11.03, 12.4, 1.57, 0, 13.33, 0, 6.67)
(11.42, 13.58, 0, 0, 11.93, 0, 8.07) (11.42, 13.58, 0, 0, 11.93, 0, 8.07)
(10.45, 12.5, 2.05, 0, 13.33, 0, 6.67) (10.45, 12.5, 2.05, 0, 13.33, 0, 6.67)
(11.12, 10, 3.88, 0, 15, 0, 5) (11.12, 10, 3.88, 0, 15, 0, 5)

Table 7. Computational results of algorithm in [21].

Robust Vector Equilibrium Flows (Worst Case)

(10.94, 12.5, 1.56, 0, 12.29, 0, 7.71)
(10.94, 13.28, 0.78, 0, 12.29, 0, 7.71)
(12.66, 10.78, 1.56, 0, 12.29, 0, 7.71)
(10.94, 12.5, 1.56, 0, 12.5, 0, 7.5)

5. Conclusions

In this paper, we mainly consider a robust multi-criteria traffic network equilibrium
problem with path capacity constraints. Firstly, the robust vector equilibrium principle
and the robust vector equilibrium principle with respect to the worst case are given. We
pay attention to constructing an equivalent min–max optimization problem for the robust
vector equilibrium, in which the solution is equivalent to a robust vector equilibrium. Then,
a direct search algorithm is proposed for solving the corresponding min–max optimization
problem. The step size in the algorithm requires neither gradient information nor redundant
parameters. What is more, we select different step sizes for different variables and extend
the search directions. The results of three numerical experiments show that it takes less
time than the method in [22] to find the robust vector equilibrium flows.

To generate a subset of the robust vector equilibrium with respect to the worst case,
we employ a two-step strategy. The first step is to construct a smoothing optimization
problem based on a variant version of the ReLU activation function to compute the robust
weak vector equilibrium flows with respect to the worst case. The second step is to judge
whether or not the robust weak vector equilibrium flows with respect to the worst case are
equal to the robust vector equilibrium flows with respect to the worst case. Compared with
the algorithm in [21], the results of two numerical experiments show that our algorithm
can greatly reduce the computational cost.

Recently, robust vector optimization based on set orders is widely used in the uncertain
optimization environment [23,24]. It is noteworthy that the robust vector equilibrium
principles considered in this paper are all based on vector order. In addition, our method
can only be applied to small-scale traffic networks. Therefore, an interesting topic for future
research is to investigate large-scale, multi-criteria traffic networks based on set orders.
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Abstract: The purpose of the research is the study of a nonconstant gradient constrained problem for
nonlinear monotone operators. In particular, we study a stationary variational inequality, defined
by a strongly monotone operator, in a convex set of gradient-type constraints. We investigate the
relationship between the nonconstant gradient constrained problem and a suitable double obstacle
problem, where the obstacles are the viscosity solutions to a Hamilton–Jacobi equation, and we show
the equivalence between the two variational problems. To obtain the equivalence, we prove that a
suitable constraint qualification condition, Assumption S, is fulfilled at the solution of the double
obstacle problem. It allows us to apply a strong duality theory, holding under Assumption S. Then,
we also provide the proof of existence of Lagrange multipliers. The elements in question can be not
only functions in L2, but also measures.

Keywords: variational inequalities; non-constant gradient constraints; obstacle problem; nonlinear
monotone operators; Lagrange multipliers
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1. Introduction

A very interesting problem, which has attracted much interest for many decades
because of its simple formulation in terms of differential equations, is the elastic–plastic
torsion problem, namely, the problem of minimizing the functional

1
2

∫

Ω
(|Dv|2 − hv)dx (1)

on the class of functions {v ∈ H1
0(Ω) : |Dv| ≤ 1}.

The elastic–plastic torsion problem arises when a long elastic bar with cross section Ω
is twisted by an angle. In particular, the formulation due to R. von Mises (see [1]) of the
elastic–plastic torsion problem of a cylindrical bar is the following one:

“Find a function u(x), which vanishes on ∂Ω and is continuous, together with its first
derivatives on Ω; on Ω the gradient of u, Du, must have an absolute value less than or
equal to a given positive constant t; whenever, in Ω, |Du| < t, the function u must satisfy
the differential equation ∆u = −2να, where the positive constants ν and α denote the
shearing modulus and the angle of twist per unit length respectively”.

The plastic region, P, refers to the range of deformation in which the material exhibits
significant plastic or irreversible behavior. It is the region beyond the elastic limit where the
material undergoes permanent changes in shape, and the deformation is not recoverable.
When a material is loaded within its elastic limit, it deforms elastically, meaning that it can
return to its original shape once the load is removed. However, beyond the elastic limit, the
material enters the plastic region, and plastic deformation occurs. In particular, the set

E = {x ∈ Ω : |Du(x)| < t}
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is the set of points where the cross section still remains elastic, namely the elastic set, and
the set

P = {x ∈ Ω : |Du(x)| = t},
is the set of points where the material has become plastic due to the torsion, namely the
plastic set.

The ridge R of Ω is, by definition, the set of points in Ω where dist(x, ∂Ω) is not C1,1,
whereas the part of ∂E, which is contained in Ω, is called the free boundary (see [2]).

For the derivation of the variational inequality from the physical problem see [3].
Ting [4] investigated problem (1) for n = 2, whereas the existence of a Lagrange

multiplier formulation for (1) (and hence of a corresponding system of partial differential
equations) was proved for constant h in [5] by Brézis.

Glowinski et al. [6] studied the numerical aspects; for results on the elastic and plastic
sets E and P and on the free boundary we refer to Caffarelli and Friedman [2]. In [7] Brezis
and Sibony proved that the elastic–plastic torsion problem is equivalent to an obstacle-type
problem, in which the distance function represents the obstacle. Moreover, they proposed
two numerical methods for the obstacle problem.

In [8] Chiadò Piat and Percivale proved the existence of measure-type Lagrange
multipliers under more general assumptions on the operator and on h.

Daniele et al. [9] obtained similar results, solving a problem unsolved for a long time
by using a new infinite dimensional duality theory. They show, for a class of problems
including Problem (1), the existence of an L∞ Lagrange multiplier, if the problem admits
solution and a constraint qualification condition is fulfilled at this solution (see Section 3).
The Lagrange multiplier is the solution to a dual problem (see also [10–12] for other results
related to linear and nonlinear monotone operators).

Many other studies in the past years are related to the problem when the gradient
constraints are no longer constant, since it models many interesting physical and biological
phenomena (see [13] for an overview of constrained and unconstrained free boundary
problems).

Studying variational problems with gradient constraints involves techniques from
the calculus of variations and constrained optimization. Some common methods include:
Lagrange multipliers, penalty methods, augmented Lagrangian methods, and projection
methods. As is well known, Lagrange multipliers introduce additional unknowns and
allow the constraints to be incorporated into the objective function through a modified
Lagrangian. The resulting problem can then be solved using variational methods or
numerical optimization techniques.

Relevant issues related to the problem with gradient constraints are existence and reg-
ularity of the solution, existence of Lagrange multipliers, connection with double obstacle
problem, and numerical aspects.

Regarding the existence and regularity of the solution, we refer to L. Evans in [14], who
studied general linear elliptic equations with a non-constant gradient constraint g(x) ∈
C2(Ω), and proved that there exists a unique solution in the space W2,p

loc (Ω) ∩W1,∞
0 (Ω),

with 1 < p < ∞ (see also [15–18] for other regularity results).
The conditions required for the existence of a Lagrange multiplier are typically re-

lated to the regularity of the problem, such as the smoothness of the objective function
and constraints.

One of the important conditions for the existence of a Lagrange multiplier is the
constraint qualification. There are different types of constraint qualifications, such as the
linear independence constraint qualification (LICQ), the Mangasarian–Fromovitz constraint
qualification (MFCQ), and Slater’s condition (see Theorem 4).

If the qualification condition is satisfied, then according to the Lagrange multiplier
theorem, there exists a Lagrange multiplier associated with the optimal solution. The
Lagrange multiplier, generally, provides information about the sensitivity of the objective
function to changes in the constraints.
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However, let us stress that the existence of a Lagrange multiplier does not guarantee a
unique solution to the optimization problem. It only indicates the existence of a necessary
condition for an optimum.

A very interesting property of variational problems with gradient constraints is the
relationship with double obstacle problems. Let us remark that the equivalence is not
always true, as observed in [14] (see also [19,20]). Equivalence results between the two
problems associated to the Laplacian or to a linear operator are contained in [19–21]
(see also [22]).

The equivalence also holds for the problem associated to a nonlinear strongly mono-
tone operator a(Du) with nonconstant gradient constraint of type G(Du) ≤ M, where G is
a strictly convex function (see [23]).

Let us note that monotone operators play a fundamental role in various branches of
mathematics, including optimization theory, to analyze several mathematical problems
involving nonlinear operators. Monotone operators are extensively used in the study of
variational inequalities too (see [24]).

The paper adds to the literature on nonconstant gradient constrained problem further
results related to the relationship with double obstacle problem and the existence of La-
grange multipliers. Here we investigate the problem associated to a nonlinear strongly
monotone operator as in [23], but we consider the nonconstant gradient constraint of type
|Du| ≤ g(x), with g(x) ∈ C2(Ω), g(x) > 0. We also prove the existence of L2 Lagrange
multipliers and, under less restrective assumptions, an existence result of measure-type
Lagrange multipliers. Let us note that the existence of Lagrange multipliers as measures is
not proved for gradient contraints of type G(Du) ≤ M.

In particular, the problem under consideration is

Find u ∈ Kg =

{
v ∈ H1,2

0 (Ω) : |Dv|2 =
n

∑
i=1

(Div)
2 ≤ g(x), a.e. in Ω

}
such that:

∫

Ω

n

∑
i=1

ai(Du)(Div− Diu) dx ≥
∫

Ω
f (v− u)dx, ∀v ∈ Kg, (2)

where a(p) : Rn → Rn is a strongly monotone operator of class C2 (see (6)).
Let us note that it follows from classical results in the literature that there exists a

unique solution to problem (2) (see [25]).
In the first result of the paper (Theorem 1) we show that, under a condition on the

gradient constraint g, problem (2) is equivalent to the following double obstacle problem
Find u ∈ K such that:

∫

Ω

n

∑
i=1

ai(Du)(Div− Diu) dx ≥
∫

Ω
f (v− u) dx, ∀v ∈ K, (3)

where K =
{

v ∈ H1,2
0 (Ω) : w1(x) ≤ v(x) ≤ w2(x) a.e. in Ω

}
, and

w1 = inf
v∈K

v(x), w2 = sup
v∈K

v(x).

From Theorem 5.1 in [26] (see also [20]), w2 ∈ H1,∞(Ω) is the viscosity solution to the
Hamilton–Jacobi equation

{
|Du| =

√
g(x) a.e. in Ω

u = 0 on ∂Ω
(4)

and
w2(x) = in fx0∈∂ΩL(x, x0) (5)

where
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L(x, x0) =

in f
{∫ T0

0

√
g(ξ(s))ds : ξ : [0, T0]→ Ω, ξ(0) = x, ξ(T0) = x0, |ξ ′(s)| ≤ 1 a.e. in [0, T0]

}

w1 can be calculated analagously.
It is important to note that the regularity of these obstacles follows from the theory of

the viscosity solutions to Hamilton–Jacobi equations (see [17], p. 31), even if the solutions
to the Hamilton–Jacobi equations are, in general, not smooth.

As already recalled, the problems are, generally, not equivalent, but a condition on the
sign of the second derivatives of g is required.

Before proving the equivalence, in Section 3 we achieve a regularity result for solutions
to (3) (Theorem 8), that we need in the sequel.

Then, thanks to the equivalence, it is possible to prove that Lagrange multipliers exist
in L2 (Theorem 2).

Finally, an existence result of Lagrange multipliers as Radon measures holds, under
less restrictive assumptions (Theorem 3).

The results are obtained following variational arguments and the strong duality theory.
Let us remark, that, during the past several decades, the variational methods have

played a key role in solving many problems arising in nonlinear analysis and optimiza-
tion theory such as differential hemivariational inequalities systems (see [27]), monotone
bilevel equilibrium problems, generalized global fractional-order composite dynamical
systems, generalized time-dependent hemivariational inequalities systems, optimal control
of feedback control system, and so on.

Moreover, let us emphasize that real-life applications have been investigated on the
basis of the theory of variational inequalities with operators of monotone type (see [28–30]
for mathematical models describing flows of Bingham-type fluids and flows of an Oldroyd
type by means of a variational inequality approach).

Finally, let us stress that the problem under consideration is strictly connected to the
Monge–Kantorovich mass transfer problem. In particular, in [31] the authors study the
integrability of the Lagrange multiplier, assuming that f belongs to Lp(Ω) in the case of con-
stant gradient constraint (see also [32] for variable constraint g). The Monge–Kantorovich
mass transfer problem has applications in diverse fields such as economics, image pro-
cessing, computer vision, transportation planning, and statistical physics. It provides a
mathematical framework for studying the optimal flow of mass, resources, or information
between different distributions or regions.

The paper is organized as follows: in Section 2 we state our main results of equivalence
between the variational problems and existence of Lagrange multipliers, in Section 3 we
provide a preliminary regularity result and some results of the theory of strong duality
are recalled. In Section 4 we prove Theorem 1 and Section 5 is devoted to the proofs
of Theorems 2 and 3. Finally, in Section 6 we provide our conclusions and suggest new
problems that may be of interest for future research.

2. Results

The main results of the paper are presented in this section.
In what follows we assume that Ω is an open bounded convex subset of Rn and the

boundary ∂Ω is of class C2.
Moreover, the operator a is of class C2, with a(0) = 0.
In the first two results, we assume that a is a strongly monotone operator, that is, there

exists λ > 0, such that

(a(p)− a(q), p− q) ≥ λ‖p− q‖2 ∀p, q ∈ Rn, p 6= q. (6)
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Theorem 1. Assuming that a satisfies assumption (6), f ≡ constant > 0, and the following
condition is fulfilled

−
n

∑
i,j=1

∂

∂xi

(
∂ai
∂pj

∂g
∂xj

)
≥ 0 in Ω, (7)

then, the solution u to problem (2) is also the solution to problem (3).
Moreover, the following coincidence of sets holds:

P = {x ∈ Ω : |Du|2 = g(x)} = I = {x ∈ Ω : u(x) = w1(x) or u(x) = w2(x)}.

Regarding the Lagrange multipliers, we prove the existence in two different cases. In
the first one, the Lagrange multipliers are L2 functions, whereas, in the second one, under
less restrictive assumptions, they are measures.

Let us stress that the second result (Theorem 3) holds under assumption of strictly
monotonicity on the operator a, namely

(a(P)− a(Q), P−Q) > 0 ∀P, Q ∈ Rn, P 6= Q. (8)

Theorem 2. Under the same assumptions as in Theorem 1, if u ∈ Kg ∩W2,p(Ω) solves problem (2),
then, there exists a Lagrange multiplier ν ∈ L2(Ω), ν ≥ 0 a.e. in Ω, that is





ν

(
n

∑
i=1

(Diu)2 − g(x)

)
= 0 a.e. in Ω

n

∑
i=1

∂ai(Du)
∂xi

+ f = ν a.e. in Ω.
(9)

Theorem 3. Assume that a satisfies assumption (8) and f ∈ Lp(Ω), p > 1. If u ∈ Kg solves
problem (2), then there exists a Lagrange multiplier µ∗ ∈ (L∞(Ω))∗, that is





〈µ∗, y〉 ≥ 0 ∀y ∈ L∞(Ω), y ≥ 0 a.e. in Ω;

〈µ∗,
n

∑
i=1

(
Diu)2 − g(x)

)
〉 = 0;

∫

Ω

{
n

∑
i=1

ai(Du)
∂ϕ

∂xi
− f ϕ

}
dx = 〈µ∗,−2

n

∑
i=1

∂u
∂xi

∂ϕ

∂xi
〉 ∀ϕ ∈ H1,∞

0 (Ω).

(10)

3. Preliminary Results

This section is devoted to some preliminary results that we need to prove our theorems.
In particular, first we recall the strong duality theory and, then, we prove a regularity

result for the solution to the double obstacle problem (3) that we need to apply in Section 4
a maximum principle.

For the sake of clarity, here we provide the main results of classical strong duality
theory and a new strong duality theory, obtained using new separation theorems based on
the notion of quasi-relative interior.

For the classical results of strong duality theory we refer to ([33], Theorems 6.7 and 6.11).
It is important to note that strong duality has important implications in optimization

theory. It allows us to obtain lower bounds on the optimal value of the primal problem
by solving the dual problem. It also provides a way to assess optimality and obtain
dual solutions that can provide additional information about the primal problem, such as
shadow prices or sensitivity analysis.

The framework, in which the classical theory works, is the following one: X is a real
linear space and S ⊂ X is a nonempty subset; (Y, ‖ · ‖) is a partially ordered real normed
space with ordering cone C, and C∗ = {λ ∈ Y∗ : 〈λ, y〉 ≥ 0 ∀y ∈ C} is the dual cone
of C, whereas Y∗ is the topological dual of Y. Moreover, F : S → R is a given objective
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functional, G : S → Y is a given constraint mapping and the constraint set is given as
K := {v ∈ S : G(v) ∈ −C}.

We consider the primal problem

min
G(v)∈−C

v∈S

F(v) (11)

and the dual problem
max
λ∈C∗

inf
v∈S

[F(v) + λ(G(v))], (12)

where λ is the Lagrange multiplier associated with the sign constraints.
As is well known (see [33]), the weak duality always holds, namely,

max
λ∈C∗

inf
v∈S

[F(v) + λ(G(v))] ≤ min
G(v)∈−C

v∈S

F(v) (13)

Moerover, if problem (11) is solvable and in (13) the equality holds, the strong duality
between the primal problem (11) and the dual problem (12) holds.

Theorem 4 (classical strong duality property [33]). Assume that the composite mapping (F, G) :
S → R× Y is convex-like with respect to product cone R+ × C in R× Y, K is nonempty and
the ordering cone C has a nonempty interior int(C). If the primal problem (11) is solvable and
the generalized Slater condition is satisfied, namely there is a vector v̄ ∈ S with G(v̄) ∈ −int(C),
then the dual problem (12) is also solvable and the extremal values of the two problems are equal.
Moreover, if u is the optimal solution to problem (11) and ν ∈ C∗ is a solution to problem (12),
it follows that

ν(G(u)) = 0. (14)

Moreover, if
L(v, ν) = F(v) + ν(G(v)),

is the Lagrange functional, then the following relationship with the saddle points of
L(v, ν) holds.

Theorem 5 (see [33]). Under the same assumptions as in Theorem 4, if the ordering cone C is
closed, then a point (u, ν) ∈ S× C∗ is a saddle point of the Lagrange functional L(v, ν), namely

L(u, ν) ≤ L(u, ν) ≤ L(v, ν), ∀v ∈ S, ∀ν ∈ C∗,

if and only if u is a solution to the primal problem (11), ν is a solution to the dual problem (12) and
the extremal values of the two problems are equal.

Let us stress that we apply classical strong duality theory to prove Theorem 3, whereas
we need a new theory (see [9]) to obtain the other results. Indeed, in our framework, as in
many applications in infinite dimensional settings, the classical theory does not work, since
the assumption of nonemptiness of the ordering cone is not fulfilled.

Here, we recall the new strong duality theory in its complete version, namely in the
case of inequality and equality constraints.

The assumptions read as follows:
Let (X, ‖ · ‖X), (Y, ‖ · ‖Y), (Z, ‖ · ‖Z) be real normed spaces with Y∗, Z∗ topological

dual of Y and Z, respectively; Y is partially ordered by a convex cone C, C∗ = {µ ∈ Y∗ :
〈µ, y〉 ≥ 0 ∀y ∈ C} is the dual cone of C. S is a nonempty subset of X, and F : S → R,
G : S→ Y, H : S→ Z are three functions.

Moreover, we define the feasible set

K = {v ∈ S : G(v) ∈ −C, H(v) = θZ}.
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We recall the definition of tangent cone to S∗ ⊂ X at a point v ∈ X:

TS∗(v) :=
{

l ∈ X : l = lim
n

µn(vn − v), µn > 0, vn ∈ S∗ ∀n ∈ N, lim
n

vn = v
}

We introduce the following constraint qualification assumption: we say that Assump-
tion S is satisfied at a point v0 ∈ K if

TÑ(0, θY, θZ) ∩
(
]−∞, 0[×{θY} × {θZ}

)
= ∅, (15)

where

Ñ = {(F(v)− F(v0) + α, G(v) + w, H(v)) : v ∈ S \K, α ≥ 0, w ∈ C}.

Under Assumption S the following strong duality property holds (see [9]).

Theorem 6. Let us assume that F and G are convex functions, H is an affine-linear mapping and
v0 ∈ K is a solution to the primal problem

min
v∈K

F(v). (16)

Then, if Assumption S is fulfilled at v0, the dual problem

max
λ∈C∗
µ∈Z∗

inf
v∈S
{F(v) + 〈λ, G(v)〉+ 〈µ, H(v)〉} (17)

is also solvable and the extreme values of the primal problem and of the dual problem coincide.
Moreover, if (v0, λ∗, µ∗) ∈ K× C∗ × Z∗ solves problem (17), then 〈λ∗, G(v0)〉 = 0.

Moreover, if
L(v, λ, µ) = F(v) + 〈λ, G(v)〉+ 〈µ, H(v)〉

is the Lagrange functional, then the following result on the saddle points of the Lagrange
functional holds.

Theorem 7 ([9]). Under the same assumptions as in Theorem 6, v0 ∈ K solves problem (16) if
and only if there exist λ∗ ∈ C∗ and µ∗ ∈ Z∗ such that (x0, λ∗, µ∗) is a saddle point of the Lagrange
functional, namely

L(v0, λ, µ) ≤ L(v0, λ∗, µ∗) ≤ L(v, λ∗, µ∗), ∀v ∈ S, λ ∈ C∗, µ ∈ Z∗.

Now, we prove the following regularity result, that we will use in Section 4.

Theorem 8. Let the assumptions of Theorem 1 be satisfied and u be the solution to problem (3).
Then, u ∈W2,p(Ω). In particular, if p > n, Du ∈ C0,α(Ω).

Proof. The first goal is an estimate for

|u|1 = sup
{ |u(x)− u(y)|

|x− y| : x, y,∈ Ω, x 6= y
}

,

obtained using similar arguments as in [34].
Let u be the solution to (3), we set ũ the extension by zero of u to Rn and

uh(x) = max{ũ(x + h)− ũ(x)−M|h|, 0} ∀x, h ∈ Rn, (18)

where M = max{|w1|1, |w2|1}.
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Defining

u1(x) = max{ũ(x), ũ(x + h)−M |h|} = ũ(x) + uh(x),

u2(x) = min{ũ(x), ũ(x− h) + M |h|} = ũ(x)− uh(x− h).

as in [19,23], we have u1/Ω, u2/Ω ∈ K and

w̃1(x) ≤ u2(x) ≤ u1(x) ≤ w̃2(x) a.e. in Ω.

Following the same arguments as in [12], we get

∫

Rn

n

∑
i=1

(ai(Dũ(x + h))− ai(Dũ(x)))Diuh(x)dx ≤ 0. (19)

Setting X+
h = {x ∈ Rn : ũ(x + h)− ũ(x)−M |h| ≥ 0}, from (18) and (19) it follows

that ∫

X+
h

n

∑
i=1

(ai(Dũ(x + h))− ai(Dũ(x)))(Di ũ(x + h)− Diũ(x))dx ≤ 0. (20)

Thanks to strong monotonicity assumption (6) and to inequality (20), we may conclude
that uh = 0 in X+

h and then

ũ(x + h)− ũ(x)−M |h| ≤ 0 ∀x, h ∈ Rn,

namely,
|u|1 ≤ M

and
|Du| ≤ M a.e. in Ω. (21)

To conclude, we consider the following elastic–plastic torsion problem
Find w ∈ KM = K ∩ {v ∈ H1

0 : |Dv| ≤ M a.e. in Ω} such that:

∫

Ω

n

∑
i=1

ai(Dw)(Div− Diw) dx ≥
∫

Ω
f (v− w)dx, ∀v ∈ KM. (22)

Since the feasible set KM is a bounded, closed, and convex set, from classical results
(see [35]), the unique solution u ∈ KM to the variational inequality (22) belongs to W2,p(Ω).
Then, the thesis is achieved.

4. The Equivalence of the Two Variational Problems

Now, we may prove Theorem 1.
Obviously,

Kg ⊆ K. (23)

Then, to prove the equivalence of the two problems, we have to show that if u ∈ K is
the solution to (3), then u belongs to Kg.

To this aim, setting

F(v) =
∫

Ω

{
n

∑
i=1

ai(Du)(Div− Diu)− f (v− u)

}
dx

we note that problem (3) may be rewritten as the optimization problem

min
v∈K

F(v), (24)

which satisfies Assumption S.
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Indeed, if we set

X = S = L2(Ω), Y = L2(Ω)× L2(Ω),

C = C∗ =
{
(a(x), b(x)) ∈ L2(Ω)× L2(Ω) : a(x), b(x) ≥ 0 a.e. in Ω

}
,

G(v) = (G1(v), G2(v)) = (w1 − v, v− w2),

we have

Ñ = {(F(v) + α, w1 − v + a, v− w2 + b), v ∈ L2 \ K, α ≥ 0, y = (a, b) ∈ C}.

Following similar arguments as in [23,36] we may show that, if
(

l, θL2(Ω), θL2(Ω)

)
= lim

n
[µn(F(vn) + αn, w1 − vn + an, vn − w2 + bn)],

with µn > 0, limn(F(vn) + αn) = 0, αn ≥ 0, vn ∈ L2(Ω) \ K, limn µn(w1 − vn + an) =
θL2(Ω), limn µn(vn − w2 + bn) = θL2(Ω), yn = (an, bn) ∈ C, then

l ≥ 0,

namely, Assumption S is fulfilled at the solution to problem (24).
Then, if we consider the Lagrange functional

L(v, λ, µ) = (25)

=
∫

Ω
(−

n

∑
i=1

∂ai(Du)
∂xi

− f )(v− u) dx +
∫

Ω
λ(w1(x)− v(x)) dx +

∫

Ω
µ(v(x)− w2(x)) dx,

thanks to Theorem 7, there exists a saddle point (λ∗, µ∗) ∈ C, namely,

L(u, λ, µ) ≤ L(u, λ∗, µ∗) ≤ L(v, λ∗, µ∗) ∀v ∈ L2(Ω), ∀(λ, µ) ∈ C, (26)

and ∫

Ω
λ∗(w1(x)− u(x)) dx = 0,

∫

Ω
µ∗(u(x)− w2(x)) dx = 0, (27)

that is,

λ∗(w1(x)− u(x)) = 0, µ∗(u(x)− w2(x)) = 0, a.e. in Ω. (28)

Using variational arguments (see [12]), it follows

−
n

∑
i=1

∂ai(Du)
∂xi

− f − λ∗ + µ∗ = 0 a.e. in Ω. (29)

Now, we consider the coincidence set I = {x ∈ Ω : u(x) = w1(x) or u(x) = w2(x)}
and the non-coincidence set N = {x ∈ Ω : w1(x) < u(x) < w2(x)}.

From [26], Theorem 5.1, we have that |Dw1(x)| = |Dw2(x)| =
√

g(x) a.e. in Ω, then

|Du| =
√

g(x) in I. (30)

Moreover, from (28) and (29) it follows that λ∗ = µ∗ = 0 a.e. in N and

−
n

∑
i=1

∂ai(Du)
∂xi

= f a.e. in N. (31)
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Thanks to the regularity of u, stated in Theorem 8, and since f is a constant function,
we follow the same steps used in [35], Lemma III.10. We differentiate (31) with respect to
xk, multiply it by ∂u

∂xk
and sum it with respect to k. Then, it follows that

n

∑
i,j,k=1

∂

∂xk

(
∂ai(Du)

∂pj

)
∂2u

∂xj∂xi

∂u
∂xk

+
n

∑
i,j,k=1

∂ai(Du)
∂pj

∂3u
∂xj∂xi∂xk

∂u
∂xk

= 0. (32)

It follows that

1
2

∂

∂xi

[
n

∑
j=1

∂ai(Du)
∂pj

∂

∂xj

(
|Du|2 − g(x)

)]
=

n

∑
i,j,k=1

∂

∂xi

(
∂ai(Du)

∂pj

)
∂u
∂xk

∂2u
∂xk∂xj

+
n

∑
i,j,k=1

∂ai(Du)
∂pj

∂2u
∂xk∂xj

∂2u
∂xk∂xi

+
n

∑
i,j,k=1

∂ai(Du)
∂pj

∂u
∂xk

∂3u
∂xj∂xi∂xk

−1
2

n

∑
i,j=1

∂

∂xi

(
∂ai(Du)

∂pj

∂g(x)
∂xj

)
.

(33)

From assumptions (6) and (7), we have

1
2

∂

∂xi

[
n

∑
j=1

∂ai(Du)
∂pj

∂

∂xj

(
|Du|2 − g(x)

)]

≥
n

∑
i,j,k=1

[
∂

∂xi

(
∂ai(Du)

∂pj

)
∂2u

∂xk∂xj
− ∂

∂xk

(
∂ai(Du)

∂pj

)
∂2u

∂xj∂xi

]
∂u
∂xk

=
n

∑
i,j,k=1

[
n

∑
l=1

∂2ai(Du)
∂pj∂pl

∂2u
∂xl∂xi

∂2u
∂xk∂xj

−
n

∑
l=1

∂2ai(Du)
∂pj∂pl

∂2u
∂xk∂xl

∂2u
∂xj∂xi

]
∂u
∂xk

= 0.

(34)

Finally, since the coefficients are bounded, N is an open set, applying the maximum
principle to the operator

−A(ϕ) = −1
2

n

∑
i,j=1

∂

∂xi

(
∂ai
∂pj

∂ϕ

∂xj

)
,

acting on |Du|2 − g(x) on N, we have

|Du(x)| <
√

g(x) a.e. ∈ N. (35)

From (30) and (35) it follows that, if u ∈ K is a solution to (3), then

|Du(x)| ≤
√

g(x) a.e. ∈ Ω. (36)

Taking into account the uniqueness of the solution, we may conclude that the solution
to (3) is also the solution to (2) and Theorem 1 is proved.

Finally, the following interesting coincidence of sets follows from (30) and (35)

E = {x ∈ Ω : |Du| <
√

g(x)} = N.

5. Lagrange Multipliers

In this section we provide the proofs of the existence of Lagrange multipliers.
A first result, the existence of L2 Lagrange multipliers, holds under the assumption

f ≡ constant > 0 and a strongly monotone operator. It follows from (28) and (29) as in the
proof of Theorem 1.
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The second result holds assuming that f ∈ Lp(Ω), p > 1, and the operator a is strictly
monotone. In this case the Lagrange multipliers exist in the dual of L∞.

Indeed, we set

X = S = W1,∞
0 (Ω); C = {v ∈ L∞(Ω) : v(x) ≥ 0 a.e. in Ω}.

In this case C has a nonempty interior, then we may apply the classical strong duality
theory (see [33]).

We may rewrite problem (2) as

Find u ∈ K1 =

{
v ∈ H1,∞

0 (Ω) :
n

∑
i=1

(
∂v
∂xi

)2
≤ g(x), a.e. on Ω

}
such that:

∫

Ω

{
n

∑
i=1

ai(Du)(Div− Diu)− f (v− u)

}
dx ≥ 0, ∀v ∈ K1. (37)

Following the same steps as in [19], we may prove that C is closed and the generalized
Slater condition is verified. Moreover, since F and G are convex, then the composite
mapping (F, G) is convex-like, namely all the assumptions of Theorems 6.7 and 6.11 in [33]
are fulfilled.

Then, it follows that there exists µ∗ ∈ C∗ solution to the dual problem

max
µ∈C∗

inf
v∈S

[F(v) + 〈µ, G(v)〉], (38)

with

F(v) =
∫

Ω

{
n

∑
i=1

ai(Du)(Div− Diu)− f (v− u)

}
dx (39)

and
G(v) = |Dv|2 − g(x).

Moreover, (u, µ∗) is a saddle point of the Lagrange functional

L(v, µ) = F(v) + 〈µ, G(v)〉, ∀v ∈ H1,∞
0 (Ω), ∀µ ∈ C∗,

that is
L(u, µ) ≤ L(u, µ∗) ≤ L(v, µ∗), ∀v ∈ H1,∞

0 (Ω), ∀µ ∈ C∗. (40)

Using variational arguments as in [19], we obtain that µ∗ ∈ (L∞(Ω))∗ satisfies
conditions (10).

6. Discussions

The paper adds to the already existing literature on nonconstant gradient constrained
problem further results related to the relationship with double obstacle problem and the
existence of Lagrange multipliers.

In particular, in the paper we focused on the nonconstant gradient constraint
|Du| ≤ g(x) associated with a nonlinear monotone operator a(Du).

The existence of Lagrange multipliers as Lebesgue functions is guaranteed in the
case f ≡ constant > 0 and strong monotonicity assumption on the operator, whereas
the Lagrange multipliers exist as Radon measure in the case f ∈ Lp, p > 1, and strict
monotonicity assumption is required.

In the future, several studies could be carried out in several directions in this frame-
work. For example it will be interesting to consider a regular, nonconstant, free term f ,
or studying the problem associated with different nonlinear operators. Moreover, the
properties of the Lagrange multiplier may be investigated. Finally, one could analyze the
natural parabolic counterpart.
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Abstract: In this paper, we present meanings of K-G f -bonvexity/K-G f -pseudobonvexity and their
generalization between the above-notice functions. We also construct various concrete non-trivial
examples for existing these types of functions. We formulate K-G f -Wolfe type multiobjective second-
order symmetric duality model with cone objective as well as cone constraints and duality theorems
have been established under these aforesaid conditions. Further, we have validates the weak duality
theorem under those assumptions. Our results are more generalized than previous known results in
the literature.

Keywords: K-G f -pseudobonvexity; second-order; K-G f -Wolfe type; efficient solution; multiobjective
programming; arbitrary cones; strong duality; generalized assumptions

MSC: 90C26; 90C30; 90C32; 90C46

1. Introduction

The field of optimization theory has progressed far beyond anyone’s expectations. Due
to its wide variety of uses, it has made its way into all disciplines of science and engineering.
When approximations are utilized, one of the most important practical applications of
duality is that it provides bounds on the value of the objective functions because there are
more factors involved, second-order duality has a greater computational benefit than first-
order duality. For intriguing applications and breakthroughs in multiobjective optimization,
we refer to [1] , and the references cited therein. Dorn [2] presented the primary symmetric
duality definition for quadratic programming in 1965. Dantzig et al. [3] and Mond [4]
proposed a pair of symmetric dual Duality plays a vital role in investigating nonlinear
programming problem solutions. Several writers have proposed several duality models,
such as Wolfe dual [5] and Mond-Weir dual [6]. Nanda and Das [7] introduced four different
forms of duality models for the nonlinear programming problem with cone constraints.
The work of Bazaraa and Goode [8] and Hanson and Mond [9] inspired these findings.

Mangasian [10] established the duality theorem in the context of a second-order dual
problem in nonlinear programming, where none of the constraints imposed convexity
restrictions on all functions. Mond [11] introduced second-order symmetric dual models
and established second-order symmetric duality theorems under second-order convexity
conditions for the first time. In mathematical programming, Hasnson [12] defined the
second-order invexity of a differentiable function and studied it. In 1999, Mishra [13]
proposed a pair of second-order vector symmetric dual multiobjective models for arbitrary
cones based on the Wolfe and Mond-Weir types. In addition 2006, ref. [14] a couple of
Mond–Weir type second-order symmetric duality multiobjective calculations for cone
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second-order pseudoinvex and emphatically cone second-order pseudoinvex algorithm
were presented. A couple of Mond–Weir type second-order symmetric dual multiobjective
projects over discretion cones is created under pseudoinvexity/K˘F-convexity assumptions
by Gulati [15], which is as:
Primal(MP):

K-minimize ψ(ι, κ)

subject to

−
(
∇κ(λ

Tψ)(ι, κ) +∇κκ(wTφ)(ι, κ)p
)
∈ C∗2 ,

κT
(
∇κ(λ

Tψ)(ι, κ) +∇κκ(wTφ)(ι, κ)p
)
= 0,

λ ∈ intK∗, ι ∈ C1

Dual(MD):

K-maximize ψ(µ, ν)

subject to
(
∇ι(λ

Tψ)(µ, ν) +∇ιι(wTφ)(µ, ν)p
)
∈ C∗1 ,

µT
(
∇ι(λ

Tψ)(µ, ν) +∇ιι(wTφ)(µ, ν)r
)
5 0,

λ ∈ intK∗, ι ∈ C2,

where,

(i) R1 ⊆ Rn, R2 ⊆ Rm are open sets,
(ii) ψ, φ : R1 × R2 → Rk is a twice differentiable function of ι and κ, is a differentiable

function of ι and κ,
(iii) λ ∈ Rk, w ∈ Rq, p ∈ Rm and r ∈ Rn,
(iv) for i=1,2, Ci ⊂ Si is a closed convex cone with non-empty interior and C∗i is its positive

polar cone.
Aside from them, a number of other researchers are working in this field. For addi-
tional information, see [16–20].
In this paper be start by defining in section 2, K-G f -bonvexity as well as pseduobon-
vexity and construct non-trivial numerical examples for clear understanding the
concept introduced by authors. We identify several examples lying exclusively K-
G f -bonvex and not in the class of K-invex function with respect to same η already
exist in the literature. We illustrate an example which is K-G f -pseudobonvex but not
K-G f -bonvex with respect to same η. In the next section, we formulate a new pair of
multiobjective symmetric second order K-G f -primal-dual models over arbitrary cone
and drive duality results under K-G f -bonvex as well as K-G f -pseudobonvex assump-
tions. We, also construct a non-trivial example for validate the weak duality theorem
presented in the paper. we also introduced geometry figure for clear understanding
the concept through figure.

2. Preliminaries and Definitions

In this paper, we used Rn for n-dimensional Euclidean space and Rn
+ for semi-positive

orthant. Also, here C1 and C2 used for closed convex cone Rn and Rm respectively, with
non-void interiors. For a real-valued twice differentiable function g(ϕ, ϑ) described on an
open set in Rn ×Rm, indicate by ∇ϕg(ϕ̄, ϑ̄) the gradient vector of g with respect to a at
(ϕ̄, ϑ̄), ∇ϕϕg(ϕ̄, ϑ̄) the Hessian matrix with respect to ϕ an at (ϕ̄, ϑ̄).
Throughout the paper Ñ = {1, 2, ..., k}, Õ = {1, 2, ..., m}.

A differentiable function f : X × Y → Rk, η1 : X × Y → Rk, η2 : X × Y → Rk,
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G f = (G f1 , G f2 , ..., G fk
) : R → Rk, G fi

: I fi
(X) → R is range fi for i = Ñ. Also, K is

used for pointed convex cone with non-void interiors in Rk, for ϑ, z ∈ Rk and we specify
cone orders with respect to K as follows:

ϑ 5 z ⇐⇒ z− ϑ ∈ K; ϑ ≤ z ⇐⇒ z− ϑ ∈ K\{0}; ϑ < z ⇐⇒ z− ϑ ∈ intK.

Let f : X → Rk be a differentiable function defined on open set φ 6= X ⊆ Rn and
I fi
(X), i ∈ Ñ be the range of fi.

Consider the following multiobjective programming problem with cone objective as well
as constraints as :

(MP) K-min f (ϕ)
subject to

ϕ ∈ X0 =
{

ϕ ∈ S : g(ϕ) ∈ Q
}

.

where S ⊆ Rn, f : S→ Rk, g : S→ Rm. Q is a closed convex cone with a non-empty interior
in Rm.

Definition 1 ([21]). ϕ̄ ∈ X0 is a weak efficient solution of (MP), @ ϕ ∈ X such that

f (ϕ̄)− f (ϕ) ∈ intK.

Definition 2 ([21]). ϕ̄ ∈ X0 is an efficient solution of (MP), @ ϕ ∈ X such that

f (ϕ̄)− f (ϕ) ∈ K \ {0}.

Now, we consider the following multiobjective programming with cone objective and cone con-
straints as:

(GMP) K−min G f ( f (z))

subject to z ∈ Z0 =
{

z ∈ S : −Gg(g(z)) ∈ Q
}

.

Definition 3 ([21]). z̄ ∈ Z0 is a weak efficient solution of (GMP), @ z ∈ Z0 s.t.

G f ( f (z̄))− G f ( f (z)) ∈ intK.

Definition 4 ([21]). z̄ ∈ Z0 is a efficient solution of (GMP), @ z ∈ Z0 s.t. G f ( f (z̄)) −
G f ( f (z)) ∈ K\{0}.

Definition 5 ([21]). The positive polar cone C∗i of Ci (i=1,2) is defined as C∗i =
{

z : ϕTz =

0, ∀ϕ ∈ C1

}
.

Suppose that S1 ⊆ Rn and S2 ⊆ Rm are open sets such that

C1 × C2 ⊂ S1 × S2.

A differentiable function f : X → Rk and G f such that every component G fi
is strictly increasing

on the range of I fi
.
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Definition 6. If ∃ G f and η such that ∀ ϕ ∈ X and pi ∈ Rn, we have

{
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

pT
1

[
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

]
p1 − ηT(ϕ, δ)

[
G
′
f1
( f1(δ))∇ϕ f1(δ)

+
{

G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
p1

]
, ..., G fk

( fk(ϕ))− G fk
( fk(δ)) +

1
2 pT

k

[
G
′′
fk
( fk(δ))∇ϕ fk(δ)(∇ϕ fk(δ))

T

+G
′
fk
( fk(δ))∇ϕϕ fk(δ)

]
pk − ηT(ϕ, δ)

[
G
′
fk
( fk(δ))∇ϕ fk(δ) +

{
G
′′
fk
( fk(δ))∇ϕ fk(δ)(∇ϕ fk(δ))

T + G
′
fk
( fk(δ))∇ϕϕ fk(δ)

}
pk

]}
∈ K,

then f is K-G f -bonvex at δ ∈ X with respect to η.

Definition 7. If ∃ G f and η such that ∀ ϕ ∈ X and pi ∈ Rm, we have

{
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

pT
1

[
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

]
p1 − ηT(ϕ, δ)

[
G
′
f1
( f1(δ))∇ϕ f1(δ)

+
{

G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
p1

]
, ..., G fk

( fk(ϕ))− G fk
( fk(δ)) +

1
2

pT
k

[
G
′′
fk
( fk(δ))∇ϕ fk(δ)(∇ϕ fk(δ))

T

+ G
′
fk
( fk(δ))∇ϕϕ fk(δ)

]
pk − ηT(ϕ, δ)

[
G
′
fk
( fk(δ))∇ϕ fk(δ) +

{
G
′′
fk
( fk(δ))∇ϕ fk(δ)(∇ϕ fk(δ))

T + G
′
fk
( fk(δ))∇ϕϕ fk(δ)

}
pk

]}
∈ −K,

then f is K-G f -boncave at δ ∈ X with respect to η.
Generalized the above definitions on two variable, as follows,

Definition 8. If ∃ and G f and η1 such that ∀ ϕ ∈ X and qi ∈ Rn, we have

{
G f1

( f1(ϕ, `))− G f1
( f1(δ, `)) +

1
2

qT
1

[
G
′′
f1
( f1(δ, `))∇ϕ f1(δ, `)(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

]
q1 − ηT

1 (ϕ, δ)
[

G
′
f1
( f1(δ, `))

∇ϕ f1(δ, `) + {G′′f1
( f1(δ, `))∇ϕ f1(δ, `)(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)}q1

]
, ..., G fk

( fk(ϕ, `))− G fk
( fk(δ, `))

+
1
2

qT
k

[
G
′′
fk
( fk(δ, `))∇ϕ fk(δ, `)(∇ϕ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϕϕ fk(δ, `)

]
qk

− ηT
1 (ϕ, δ)

[
G
′
fk
( fk(δ))∇ϕ fk(δ, `) +

{
G
′′
fk
( fk(δ, `))∇ϕ fk(δ, `)(∇ϕ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϕϕ fk(δ, `)

}
qk

]}
∈ K,

then, f is K-G f -bonvex in the first variable at δ ∈ X for fixed ` ∈ Y with η1,
and
If ∃ G f η2 such that ∀ ϑ ∈ Y and pi ∈ Rm, we have

{
G f1

( f1(δ, ϑ))− G f1
( f1(δ, `)) +

1
2

pT
1

[
G
′′
f1
( f1(δ, `))∇ϑ f1(δ, `)(∇ϑ f1(δ, `))T + G

′
f1

f1(δ, `)∇ϑϑ f1(δ, `)
]

p1 − ηT
2 (`, ϑ)

[
G
′
f1
( f1(δ, `))

∇ϑ f1(δ, `) + {G′′f1
( f1(δ, `))∇ϑ f1(δ, `)(∇ϑ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϑϑ f1(δ, `)}p1

]
, ..., G fk

( fk(δ, ϑ))− G fk
( fk(δ, `))

+
1
2

pT
k

[
G
′′
fk
( fk(δ, `))∇ϑ fk(δ, `)(∇ϑ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϑϑ fk(δ, `)

]
pk

− ηT
2 (`, ϑ)

[
G
′
fk
( fk(δ, `))∇ϑ fk(δ, `) +

{
G
′′
fk
( fk(δ, `))∇ϑ fk(δ, `)(∇ϑ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϑϑ fk(δ, `)

}
pk

]}
∈ K,

then, f is K-G f -bonvex in the second variable at ` ∈ Y for fixed δ ∈ X with η2.
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Definition 9. If ∃ G f and η1 such that ∀ ϕ ∈ X and qi ∈ Rn, we have

{
G f1

( f1(ϕ, `))− G f1
( f1(δ, `)) +

1
2

qT
1

[
G
′′
f1
( f1(δ, `))∇ϕ f1(δ, `)(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

]
q1 − ηT

1 (ϕ, δ)
[

G
′
f1
( f1(δ, `))

∇ϕ f1(δ, `) + {G′′f1
( f1(δ, `))∇ϕ f1(δ, `)(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)}q1

]
, ..., G fk

( fk(ϕ, `))− G fk
( fk(δ, `))

+
1
2

qT
k

[
G
′′
fk
( fk(δ, `))∇ϕ fk(δ, `)(∇ϕ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϕϕ fk(δ, `)

]
qk

− ηT
1 (ϕ, δ)

[
G
′
fk
( fk(δ))∇ϕ fk(δ, `) +

{
G
′′
fk
( fk(δ, `))∇ϕ fk(δ, `)(∇ϕ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϕϕ fk(δ, `)

}
qk

]}
∈ −K,

then, f is K-G f -boncave in the first variable at δ ∈ X for fixed ` ∈ Y with respect to η1,
and
If ∃ G f and η2 such that ∀ ϑ ∈ Y and pi ∈ Rm, we have

{
G f1

( f1(δ, ϑ))− G f1
( f1(δ, `)) +

1
2

pT
1

[
G
′′
f1
( f1(δ, `))∇ϑ f1(δ, `)(∇ϑ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϑϑ f1(δ, `)

]
p1 − ηT

2 (`, ϑ)
[

G
′
f1
( f1(δ, `))

∇ϑ f1(δ, `) + {G′′f1
( f1(δ, `))∇ϑ f1(δ, `)(∇ϑ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϑϑ f1(δ, `)}p1

]
, ..., G fk

( fk(δ, ϑ))− G fk
( fk(δ, `))

+
1
2

pT
k

[
G”

fk
( fk(δ, `))∇ϑ fk(δ, `)(∇ϑ fk(δ, `))T

− ηT
2 (`, ϑ)[G

′
fk
( fk(δ, `))∇ϑ fk(δ, `) +

{
G
′′
fk
( fk(δ, `))∇ϑ fk(δ, `)(∇ϑ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϑϑ fk(δ, `)

}
pk

]}
∈ −K,

then function f is K-G f -boncave in the second variable at ` ∈ Y for fixed δ ∈ X with respect to η2.

Example 1. Let X = [1, 2] ⊆ R, n = m = 1 and k = 2. Consider f : X → R2 be defined by

f (ϕ) =
(

f1(ϕ), f2(ϕ)
)

,

where,

f1(ϕ) = ϕsin
(

1
ϕ

)
, f2(ϕ) = cosϕ.

Next, G f : (G f1 , G f2) : R→ R2 defined by

G f1 = t2, G f2 = t4.

Let K =
{
(ϕ, ϑ); ϕ = 0 and ϑ = 0

}
and η : X× X → R be given by

η(ϕ, δ) = (1− δ2).

Now, we have to claim that f is K− G f -bonvex, for this, we have driven that the following expression as

{
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

pT
1

[
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

]
p1 − ηT(ϕ, δ)

[
G
′
f1
( f1(δ))∇ϕ f1(δ)

+{G′′f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)}p1

]
, G f2 ( f2(ϕ))− G f2 ( f2(δ)) +

1
2

pT
2

[
G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T

+ G
′
f2
( f2(δ))∇ϕϕ f2(δ)

]
p2 − ηT(ϕ, δ)[G

′
f2
( f2(δ))∇ϕ f2(δ) + {G

′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T + G
′
f2
( f2(δ))∇ϕϕ f2(δ)}p2]

}
∈ K.
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Let

∏ =

{
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

pT
1

[
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

]
p1 − ηT(ϕ, δ)

[
G
′
f1
( f1(δ))∇ϕ f1(δ)

+
{

G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
p1

]
, G f2 ( f2(ϕ))− G f2 ( f2(δ)) +

1
2

pT
2

[
G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T

+ G
′
f2
( f2(δ))∇ϕϕ f2(δ)

]
p2 − ηT(ϕ, δ)

[
G
′
f2
( f2(δ))∇ϕ f2(δ) +

{
G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T + G
′
f2
( f2(δ))∇ϕϕ f2(δ)

}
p2

]}
.

Substituting the values of f1, f2, G f1 , G f2 and η, we obtain

∏ =

{
ϕ2sin2 1

ϕ2 − δ2sin2 1
δ2 +

1
2

p2
[

2
(

sin
1
δ
− 1

δ
cos

1
δ

)2

+ 2δsin
1
δ

(
− 1

δ3 sin
1
δ

)]
− (1− δ2)

[
2δsin

1
δ

(
sin

1
δ
− 1

δ
cos

1
δ

)

+ p
[

2
(

sin
1
δ
− 1

δ
cos

1
δ

)2

+ 2δsin
1
δ

(
− 1

δ3 sin
1
δ

)]]
, cos4 ϕ− cos4δ +

1
2

p2[12cos2δ(−sinδ)2

+ 4cos3δ(−cosδ)]− (1− δ2)[4cos3δ(−sinδ) + p(12cos2δ(−sinδ)2 + 4cos3δ(−cosδ))]

}
.

Now, we consider

Ψ = ϕ2sin2 1
ϕ2 − δ2sin2 1

δ2 +
1
2

p2
[

2
(

sin
1
δ
− 1

δ
cos

1
δ

)2

+ 2δsin
1
δ

(
− 1

δ3 sin
1
δ

)]

−(1− δ2)

[
2δsin

1
δ

(
sin

1
δ
− 1

δ
cos

1
δ

)
+ p

[
2
(

sin
1
δ
− 1

δ
cos

1
δ

)2

+ 2δsin
1
δ

(
− 1

δ3 sin
1
δ

)]]
.

Let us apply the following ansatz:

Ψ = Ψ1 + Ψ2

(
say
)

,

consider

Φ =

{
cos4 ϕ− cos4δ +

1
2

p2
[
12cos2δ(−sinδ)2 + 4cos3δ(−cosδ)

]

−(1− δ2)
[
4cos3δ(−sinδ) + p

(
12cos2δ(−sinδ)2 + 4cos3δ(−cosδ)

)]}
∈ K.

The above expression breaks in Φ1 and Φ2 (say) as follows:

Φ = Φ1 + Φ2,

where

Ψ1 = ϕ2sin2 1
ϕ2 − δ2sin2 1

δ2 − (1− δ2)

[
2δsin

1
δ

(
sin

1
δ
− 1

δ
cos

1
δ

)]
.

It is easily verified from Figure 1, we have

Ψ1 = 0, ∀ ϕ, δ ∈ X.

Ψ2 =
1
2

p2

[
2
(

sin
1
δ
− 1

δ
cos

1
δ

)2
+ 2δsin

1
δ

(
− 1

δ3 sin
1
δ

)]
+ p

[
2
(

sin
1
δ
− 1

δ
cos

1
δ

)2
+ 2δsin

1
δ

(
− 1

δ3 sin
1
δ

)]
.
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Figure 1. Ψ1 =

{
ϕ2sin2 1

ϕ2 − δ2sin2 1
δ2 − (1− δ2)

[
2δsin

1
δ

(
sin

1
δ
− 1

δ
cos

1
δ

)]}
.

It is clear from Figure 2, we obtain

Ψ2 = 0, ∀ δ ∈ X and p ∈
[
− 1

1010 ,−1
]

.

Figure 2. Ψ2 =
1
2

p2

[
2
(

sin
1
δ
− 1

δ
cos

1
δ

)2
+ 2δsin

1
δ

(
− 1

δ3 sin
1
δ

)]
+

p

[
2
(

sin
1
δ
− 1

δ
cos

1
δ

)2
+ 2δsin

1
δ

(
− 1

δ3 sin
1
δ

)]
.

Now,
Φ1 = cos4 ϕ− cos4δ +−(1− δ2)

[
4cos3δ(−sinδ)

]
,

as can be seen from Figure 3.
Φ1 = 0 ∀ ϕ, δ ∈ X,
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Figure 3. Φ1 =
{

cos4 ϕ− cos4δ +−(1− δ2)4cos3δ(−sinδ)
}

.

and

Φ2 =
1
2

p2
[
12cos2δ(−sinδ)2 + 4cos3δ(−cosδ) + p

(
12cos2δ(−sinδ)2 + 4cos3δ(−cosδ)

)]
.

As can be seen from Figure 4. Φ2 = 0, ∀δ ∈ X and p1, p2 ∈ [− 1
1010 ,−1]. (From Figure 4).

Figure 4. Φ2 =
1
2

p2
[
12cos2δ(−sinδ)2 + 4cos3δ(−cosδ) + p

(
12cos2δ(−sinδ)2 + 4cos3δ(−cosδ)

)]
.

Hence, Ψ = 0 and Φ = 0 . This gives ψ + φ = 0 . Thus, we can find that (Ψ, Φ) ∈ K.

Hence, f is K-G f -bonvex function at (Ψ, Φ) w.r.t. η.

We will show that f is not invex. For this it is either

f1(ϕ)− f1(δ)− ηT(ϕ, δ)∇ϕ f1(δ) � 0

or
f2(ϕ)− f2(δ)− ηT(ϕ, δ)∇ϕ f2(δ) � 0.

57



Axioms 2023, 12, 571

Since f1(ϕ) − f1(δ) − ηT(ϕ, δ)∇ϕ f1(δ) = ϕsin 1
ϕ − δsin 1

δ − (1− δ2)sin 1
δ − 1

δ cos 1
δ � 0, is

not ∀ϕ, δ ∈ X as can be seen from Figure 5. Also, f2(ϕ) − f1(δ) − ηT(ϕ, δ)∇ϕ f2(δ) =
cosϕ− cosδ + (1− δ2)sinδ � 0, is not ∀ϕ, δ ∈ X as can be seen from Figure 6.

Figure 5. ϕsin 1
ϕ − δsin 1

δ − (1− δ2)sin 1
δ − 1

δ cos 1
δ .

Figure 6. cosϕ− cosδ + (1− δ2)sinδ.

Therefore, from the above example, it shows that f is K-G f -bonvex, but it is not invex
with respect to same η.

Definition 10. If ∃ G f and η such that ∀ ϕ ∈ X and qi ∈ Rn, we have

ηT(ϕ, δ)
{

G
′
f1
( f1(δ))∇ϕ f1(δ) + q1

{
G
′′
f1
( f1(δ))(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
, ..., G

′
fk
( fk(δ))∇ϕ fk(δ) + qk

{
G
′′
fk
( fk(δ))(∇ϕ fk(δ))

T

+ G
′
fk
( fk(δ))∇ϕϕ fk(δ)

}}
∈ K ⇒

[
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

qT
1

{
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
q1

, ..., G fk
( fk(ϕ))− G fk

( fk(δ)) +
1
2 qT

k

{
G
′′
fk
( fk(δ))∇ϕ fk(δ)(∇ϕ fk(δ))

T + G
′
fk
( fk(δ))∇ϕϕ fk(δ)

}
qk

]
∈ K,

then, f is G f -pseudobonvex at δ ∈ X with η.
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Definition 11. If ∃ G f and η such that ∀ ϕ ∈ X and q1 ∈ Rn, we have

ηT(ϕ, δ)
{

G
′
f1
( f1(δ))∇ϕ f1(δ) + q1

{
G
′′
f1
( f1(δ))(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
, ..., G

′
fk
( fk(δ))∇ϕ fk(δ) + qk

{
G
′′
fk
( fk(δ))(∇ϕ fk(δ))

T

+ G
′
fk
( fk(δ))∇ϕϕ fk(δ)

}}
∈ −K ⇒

[
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

qT
1

{
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
q1

, ..., G fk
( fk(ϕ))− G fk

( fk(δ)) +
1
2 qT

k

{
G
′′
fk
( fk(δ))∇ϕ fk(δ)(∇ϕ fk(δ))

T + G
′
fk
( fk(δ))∇ϕϕ fk(δ)

}
qk

]
∈ −K,

then f is G f -pseudoboncave at δ ∈ X with respect to η.

We generalized the above definition as follows:

Definition 12. If ∃ G f and η1 such that ∀ ϕ ∈ X and qi ∈ Rn, we have

ηT
1 (ϕ, δ)

{
G
′
f1
( f1(δ, `))∇ϕ f1(δ, `) + q1

{
G
′′
f1
( f1(δ, `))(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

}
, ..., G

′
fk
( fk(δ, `))∇ϕ fk(δ, `)

+ qk

{
G
′′
fk
( fk(δ, `))(∇ϕ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϕϕ fk(δ, `)

}}
∈ K

⇒
[

G f1
( f1(ϕ, `))− G f1

( f1(δ, `)) +
1
2

qT
1

{
G
′′
f1
( f1(δ, `))∇ϕ f1(δ, `)(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

}
q1, ..., G fk

( fk(ϕ, `))

− G fk
( fk(δ, `)) +

1
2

qT
k

{
G
′′
fk
( fk(δ, `))∇ϕ fk(δ, `)(∇ϕ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϕϕ fk(δ, `)

}
qk

]
∈ K,

then f is K-G f -bonvex in the first variable at δ ∈ X for fixed ` ∈ Y with η1,

and

if ∃ G f and η2 such that ∀ ϑ ∈ Y and pi ∈ Rm, we have

ηT
2 (δ, ϑ)

{
G
′
f1
( f1(δ, ϑ))∇ϑ f1(δ, `) +

{
G
′′
f1
( f1(δ, `))(∇ϑ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϑϑ f1(δ, `)`}p1, ..., G

′
fk
( fk(δ, `))∇ϑ fk(δ, `)

+ pk

{
G
′′
fk
( fk(δ, `))(∇ϑ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϑϑ fk(δ, `)

}}
∈ K

⇒
[

G f1
( f1(δ, ϑ))− G f1

( f1(δ, `)) +
1
2

pT
1

{
G
′′
f1
( f1(δ, `))∇ϑ f1(δ, `)(∇ϑ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϑϑ f1(δ, `)

}
p1, ..., G fk

( fk(δ, ϑ))

− G fk
( fk(δ, `)) +

1
2

pT
k

{
G
′′
fk
( fk(δ, `))∇ϑ fk(δ, `)(∇ϑ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϑϑ fk(δ, `)

}
pk

]
∈ K,

then f is K-G f -bonvex in the second variable at ` ∈ Y for fixed δ ∈ X with η2.

Definition 13. If ∃ G f and η1 such that ∀ ϕ ∈ X and qi ∈ Rn, we have

ηT
1 (ϕ, δ)

{
G
′
f1
( f1(δ, `))∇ϕ f1(δ, `) + q1

{
G
′′
f1
( f1(δ, `))(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

}
, ..., G

′
fk
( fk(δ, `))∇ϕ fk(δ, `)

+ qk

{
G
′′
fk
( fk(δ, `))(∇ϕ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϕϕ fk(δ, `)

}}
∈ −K

⇒
[

G f1
( f1(ϕ, `))− G f1

( f1(δ, `)) +
1
2

qT
1

{
G
′′
f1
( f1(δ, `))∇ϕ f1(δ, `)(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

}
q1, ..., G fk

( fk(ϕ, `))

− G fk
( fk(δ, `)) +

1
2

qT
k

{
G
′′
fk
( fk(δ, `))∇ϕ fk(δ, `)(∇ϕ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϕϕ fk(δ, `)

}
qk

]
∈ −K,

then f is K-G f -bonvex in the first variable at δ ∈ X for fixed ` ∈ Y with η1,

and

If ∃ G f and η2 such that ∀ ϑ ∈ Y and pi ∈ Rm, we have

ηT
2 (δ, ϑ)

{
G
′
f1
( f1(δ, ϑ))∇ϑ f1(δ, `) +

{
G
′′
f1
( f1(δ, `))(∇ϑ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϑϑ f1(δ, `)

}
p1, ..., G

′
fk
( fk(δ, `))∇ϑ fk(δ, `)

+ pk

{
G
′′
fk
( fk(δ, `))(∇ϑ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϑϑ fk(δ, `)

}}
∈ −K

⇒
[

G f1
( f1(δ, ϑ))− G f1

( f1(δ, `)) +
1
2

pT
1

{
G
′′
f1
( f1(δ, `))∇ϑ f1(δ, `)(∇ϑ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϑϑ f1(δ, `)

}
p1, ..., G fk

( fk(δ, ϑ))

− G fk
( fk(δ, `)) +

1
2

pT
k

{
G
′′
fk
( fk(δ, `))∇ϑ fk(δ, `)(∇ϑ fk(δ, `))T + G

′
fk
( fk(δ, `))∇ϑϑ fk(δ, `)

}
pk

]
∈ −K.

then f is K-G f -boncave in the second variable at ` ∈ Y for fixed δ ∈ X with respect to η2.
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Remark 1. If G f (t) = t, then above definition reduces in K− η-pseudo bonvex w.r.t. η,

ηT(ϕ, δ)
[
∇ϕ f1(δ) +∇ϕϕ f1(δ)q1, .....,∇ϕ fk(δ) +∇ϕϕ fk(δ)qk

]
∈ K

⇒
[

f1(ϕ)− f1(δ) +
1
2

qT
1∇ϕϕ f1(δ)q1, ...., fk(ϕ)− fk(δ) +

1
2

qT∇ϕϕ fk(δ)qk

]
∈ K.

Example 2. Let X = [−10, 10] and K =
{
(ϕ, ϑ) : ϕ = 0, ϕ 5 ϑ

}
. Consider the function

f : X → R2 defined by
f (ϕ) = ( f1(ϕ), f2(ϕ)),

where
f1(ϕ) = sinϕ, f2(ϕ) = eϕ

Define G f = (G f1 , G f2) : R2 → R given by

G f1 = t2, G f2 = t3, η = ϕ2 − δ2, and q1 = q2 ∈ [2, ∞].

We have to claim that function f is K-G f -pseudobonvex at point δ, i.e.,

ηT(ϕ, δ)
{

G
′
f1
( f1(δ))∇ϕ f1(δ) + q1

{
G
′′
f1
( f1(δ))(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
, G

′
f2
( f2(δ))∇ϕ f2(δ) + q2

{
G
′′
f2
( f2(δ))(∇ϕ f2(δ))

T

+ G
′
f2
( f2(δ))∇ϕϕ f2(δ)

}}
∈ K ⇒

{
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

qT
1

{
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
q1,

G f2 ( f2(ϕ))− G f2 ( f2(δ)) +
1
2 qT

2

{
G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T + G
′
f2
( f2(δ))∇ϕϕ f2(δ)

}
q2

}
∈ K.

Consider

τ = ηT(ϕ, δ)
{

G
′
f1
( f1(δ))∇ϕ f1(δ) + q1

{
G
′′
f1
( f1(δ))(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
, G

′
f2
( f2(δ))∇ϕ f2(δ)

+ q2

{
G
′′
f2
( f2(δ))(∇ϕ f2(δ))

T + G
′
f2
( f2(δ))∇ϕϕ f2(δ)

}}
.

Putting the values of f1, f2, G f1 , G f2 and η, we have

τ = (ϕ2 − δ2)
(

sin2δ + 2q1(cosδ− sin2δ), 3e3δ + 9e2δq2

)
.

At the point δ = 0, the value of above expression becomes

τ =
{

2ϕ2q1, 3ϕ2(1 + 3q2)
}

, ∀ q1 = q2 ∈ [2, ∞)

Obviously,

τ =
{

2ϕ2q1, 3ϕ2(1 + 3q2)
}
∈ K.

Next, consider

Ψ =

{
G f1( f1(ϕ))− G f1( f1(δ)) +

1
2

qT
1 {G

′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)}q1, G f2( f2(ϕ))

− G f2( f2(δ)) +
1
2

qT
2 {G

′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T + G
′
f2
( f2(δ))∇ϕϕ f2(δ)}q2

}
.

Putting the values of f1, f2, G f1 , G f2 and η, we have

Ψ =
{

sin2 ϕ− sin2δ +
1
2

q2
1(2cos2δ− 2sin2δ), e3ϕ − e3δ +

9
2

q2
2e3δ

}
.

The value of above expression at the point δ = 0, we get

Ψ =
{

sin2 ϕ + q2
1, e3ϕ +

9
2

q2
2 − 1

}
∈ K.
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From the Figure 7. We can easily observe that the value of ϕ-coordinate always less than ϑ-coordinate
in K, so ϕ ∈ K.

Hence, f is K-G f -pseudobonvex at the point δ = 0 with respect to η.

Next,

{
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

pT
1

[
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

]
p1 − ηT(ϕ, δ)

[
G
′
f1
( f1(δ))∇ϕ f1(δ)

+
{

G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
p1

]
,

G f2 ( f2(ϕ))− G f2 ( f2(δ)) +
1
2

pT
2

[
G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T

+G
′
f2

f2(δ)∇ϕϕ f2(δ)
]

p2 − ηT(ϕ, δ)
[

G
′
f2

f2(δ)∇ϕ f2(δ) + {G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T + G
′
f2

f2(δ)∇ϕϕ f2(δ)}p2

]}
/∈ K.

Let

Ψ =

{
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

pT
1

[
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

]
p1 − ηT(ϕ, δ)

[
G
′
f1
( f1(δ))∇ϕ f1(δ)

+{G′′f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)}p1

]
, G f2 ( f2(ϕ))− G f2 ( f2(δ)) +

1
2

pT
2

[
G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T

+ G
′
f2

f2(δ)∇ϕϕ f2(δ)
]

p2 − ηT(ϕ, δ)
[

G
′
f2

f2(δ)∇ϕ f2(δ) +
{

G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T + G
′
f2

f2(δ)∇ϕϕ f2(δ)
}

p2

]}
.

Substituting the values of f1, f2, G f1 , G f2 and η, we obtain

Ψ =

{
sin2 ϕ− sin2δ + p2

1(cos2δ− sin2δ)− (ϕ2 − δ2)(sin2δ + 2p1(cosδ− sin2δ)), e3ϕ − e3δ +
9
2

p2
2e3δ − (ϕ2 − δ2)(3e3δ + 9e2δ p2)

}
.

At the point δ = 0 , it follows that

Ψ =

{
sin2 ϕ + p2

1 − 2p1 ϕ2, e3ϕ +
9
2

p2
2 − 1− ϕ2(3 + 9p2)

}
, p1 = p2 ∈ [2, ∞).

Take particular point ϕ = −π
2 and p1 = p2 = 2 ∈ [2, ∞), we obtain,

Ψ = (−4.86, − 34.80) /∈ K.

Hence, f is K-G f -pseudobonvex, but it is not K-G f -bonvex at δ = 0 with respect to η.
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In the following example, we showed that the function f is K-G f -pseudobonvex, but
it is not K-G f -bonvex function with same η.

Example 3. Let X =
[
0, π

2
]

and K = {(ϕ, ϑ) : ϕ = 0, ϑ = ϕ}. Consider G f = (G f1 , G f2) :
R2 → R and f : X → R2 given by

f (ϕ) = ( f1(ϕ), f2(ϕ)),

where
f1(ϕ) = sinϕ, f2(ϕ) = ϕ,

G f1 = t, G f2 = t2.

Define η : X× X → Rn given by

η(ϕ, δ) = ϕ− δ and q1, q2 ∈ [1, ∞].

Solution: In this example, we will try to derive that f is K-G f -pseudobonvex i.e.,

ηT(ϕ, δ)
{

G
′
f1
( f1(δ))∇ϕ f1(δ) + q1

{
G
′′
f1
( f1(δ))(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
, G

′
f2
( f2(δ))∇ϕ f2(δ) + q2

{
G
′′
f2
( f2(δ))(∇ϕ f2(δ))

T

+ G
′
f2
( f2(δ))∇ϕϕ f2(δ)

}}
∈ K ⇒

{
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

qT
1

{
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
q1,

G f2 ( f2(ϕ))− G f2 ( f2(δ)) +
1
2 qT

2

{
G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T + G
′
f2
( f2(δ))∇ϕϕ f2(δ)

}
q2

}
∈ K.

Consider

Π1 = ηT(ϕ, δ)
{

G
′
f1
( f1(δ))∇ϕ f1(δ) + q1

{
G
′′
f1
( f1(δ))(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
, G

′
f2
( f2(δ))∇ϕ f2(δ)

+ q2

{
G
′′
f2
( f2(δ))(∇ϕ f2(δ))

T + G
′
f2
( f2(δ))∇ϕϕ f2(δ)

}}
.

Putting the values of f1, f2, G f1 , G f2 and η, we have

Π1 = {(ϕ− δ)cosδ, (ϕ− δ)(2δ + 2q2)}.

The value of above expression at the point δ = 0, we get

Π1 = {ϕ, 2δq2} ∈ K.

Next, let

Π2 =
{

G f1
( f1(ϕ))− G f1

( f1(δ)) +
1
2 qT

1

{
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
q1, G f2 ( f2(ϕ))

− G f2 ( f2(δ)) +
1
2 qT

2

{
G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T + G
′
f2
( f2(δ))∇ϕϕ f2(δ)

}
q2

}
.

Putting the values of f1, f2, G f1 , G f2 and η, we have

Π2 =

{
sinϕ− sinδ +

1
2

q2
1(−sinδ), ϕ− δ + q2

2

}
.

After simplifying and the value at δ = 0 , it follows that

Π2 =
{

sinϕ, ϕ + q2
2

}
∈ K.

Hence, f is K-G f -pseudobonvex at the point δ = 0 with respect to η.

Next,
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{
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

pT
1

[
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

]
p1 − ηT(ϕ, δ)

[
G
′
f1
( f1(δ))∇ϕ f1(δ)

+
{

G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

}
p1

]
,

G f2 ( f2(ϕ))− G f2 ( f2(δ)) +
1
2

pT
2

[
G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T

+G
′
f2

f2(δ)∇ϕϕ f2(δ)
]

p2 − ηT(ϕ, δ)
[

G
′
f2

f2(δ)∇ϕ f2(δ) + {G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T + G
′
f2

f2(δ)∇ϕϕ f2(δ)}p2

]}
/∈ K.

Let

Ψ =

{
G f1

( f1(ϕ))− G f1
( f1(δ)) +

1
2

pT
1

[
G
′′
f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)

]
p1 − ηT(ϕ, δ)

[
G
′
f1
( f1(δ))∇ϕ f1(δ)

+{G′′f1
( f1(δ))∇ϕ f1(δ)(∇ϕ f1(δ))

T + G
′
f1
( f1(δ))∇ϕϕ f1(δ)}p1

]
, G f2 ( f2(ϕ))− G f2 ( f2(δ)) +

1
2

pT
2

[
G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T

+G
′
f2

f2(δ)∇ϕϕ f2(δ)
]

p2 − ηT(ϕ, δ)
[

G
′
f2

f2(δ)∇ϕ f2(δ) +
{

G
′′
f2
( f2(δ))∇ϕ f2(δ)(∇ϕ f2(δ))

T + G
′
f2

f2(δ)∇ϕϕ f2(δ)
}

p2

]}
.

Substituting the values of f1, f2, G f1 , G f2 and η, we obtain

Ψ =

{
sinϕ− sinδ +

1
2

p2
1(−sinδ)− (ϕ− δ)p1cosδ, ϕ2 + p2

2 − 2(ϕ− δ)p2

}
.

At the point δ = 0, it follows that

Ψ =
{

sinϕ− p1 ϕ, (ϕ− p2)
2
}

/∈ K.

Hence, f is K-G f -pseudobonvex, but it is not K-G f -bonvex at δ = 0 with respect to η.

3. K-G f -Wolfe Type Second-Order Symmetric Primal-Dual Pair with Cones

The study of second-order duality is more significant due to computational advantage
over first order duality as it provides tighter bounds for the objective functions, when
approximation is used.

The motivated by [21–27] several researches in this area, we formulated a new type
K-G f -Wolfe type primal dual pair, with cone objectives as well as cone constraint as follows:
Primal Problem (GWPP):

K-min L(ϕ, ϑ, λ, p) =
{

L1(ϕ, ϑ, λ, p), L2(ϕ, ϑ, λ, p), L3(ϕ, ϑ, λ, p), ..., Lk(ϕ, ϑ, λ, p)
}

,

where

Li(ϕ, ϑ, λ, p) = G fi
( fi(ϕ, ϑ))− ϑT

k

∑
i=1

λi

[
G
′
fi
( fi(ϕ, ϑ))∇ϑ fi(ϕ, ϑ) +

{
G
′′
fi
( fi(ϕ, ϑ))∇ϑ fi(ϕ, ϑ)(∇ϑ fi(ϕ, ϑ))T

+G
′
fi
( fi(ϕ, ϑ))∇ϕ,ϑ fi(ϕ, ϑ)

}
pi

]
− 1

2 ∑k
i=1 λi pi

{
G
′′
fi
( fi(ϕ, ϑ))∇ϑ fi(ϕ, ϑ)(∇ϑ fi(ϕ, ϑ))T + G

′
fi
( fi(ϕ, ϑ))∇ϑϑ fi(ϕ, ϑ)

}
pi,

subject to

−
k

∑
i=1

λi

[
G
′
fi
( fi(ϕ, ϑ))∇ϑ fi(ϕ, ϑ) +

{
G
′′
fi
( fi(ϕ, ϑ))∇ϑ fi(ϕ, ϑ)(∇ϑ fi(ϕ, ϑ))T + G

′
fi
( fi(ϕ, ϑ))∇ϑϑ fi(ϕ, ϑ)

}
pi

]
∈ C∗2 , (1)

λTek = 1, λ ∈ intK∗, ϕ ∈ C1. (2)

Dual Problem (GWDP):

K-max M(δ, `, λ, q) =
{

M1(δ, `, q), M2(δ, `, λ, q), M3(δ, `, λ, q), ..., Mk(δ, `, λ, q)
}

,

where
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Mi(δ, `, λ, q) = G fi
( fi(δ, `))− δT

k

∑
i=1

λi

[
G
′
fi
( fi(δ, `))∇ϕ fi(δ, `) +

{
G
′′
fi
( fi(δ, `))∇ϕ fi(δ, `)(∇ϕ fi(δ, `))T

+G
′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}
qi

]
− 1

2 ∑k
i=1 λiqi

[
G”

fi
( fi(δ, `))∇ϕ fi(δ, `)(∇ϕ fi(δ, `))T + G

′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

]
qi,

subject to

k

∑
i=1

λi

[
G
′
fi
( fi(δ, `))∇ϕ fi(δ, `) +

{
G
′′
fi
( fi(δ, `))∇ϕ fi(δ, `)(∇ϕ fi(δ, `))T + G

′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}
qi

]
∈ C∗1 , (3)

λTek = 1, λ ∈ intK∗, δ ∈ C2, (4)

where, for i ∈ Q̃,

• fi : R1 × R2 → R, is a differential function of ϕ and ϑ, ek = (1, 1, ..., 1)T ∈ Rk,
• qi and pi are vectors in Rn and Rm, respectively and λ ∈ Rk.

Let V∗ and W∗ be the sets of feasible solutions of (GWPP) and (GWDP) respectively.

Theorem 1 (Weak duality). Let (ϕ, ϑ, λ, p) ∈ V∗ and (δ, `, λ, q) ∈W∗. Let, for i ∈ Ñ

(i)
{

f1(., `), f2(., `), ..., fk(., `)
}

be K-G fi
-bonvex at δ w.r.t. η1,

(ii)
{

f1(ϕ, .), f2(ϕ, .), ..., fk(ϕ, .)
}

be K-G fi
-boncave in ϑ w.r.t. η2,

(iii) η1(ϕ, δ) + δ ∈ C1, ∀ (ϕ, δ) ∈ C1 × C2,
(iv) η2(`, ϑ) + ϑ ∈ C2, ∀ (`, ϑ) ∈ C1 × C2,

Then, L(ϕ, ϑ, λ, p)−M(δ, `, λ, q) /∈ −K\{0}.

Proof. If possible, then suppose

L(ϕ, ϑ, λ, p)−M(δ, `, λ, q) ∈ −K\{0},

or
{

G f1 ( f1(ϕ, ϑ))− ϑT
k

∑
i=1

λi

(
G
′
fi
( fi(ϕ, ϑ))∇ϑ fi(ϕ, ϑ) +

{
G
′′
fi
( fi(ϕ, ϑ))(∇ϑ fi(ϕ, ϑ))(∇ϑ fi(ϕ, ϑ))T + G

′
fi
( fi(ϕ, ϑ))∇ϑϑ fi(ϕ, ϑ)

}
pi

)

− 1
2 ∑k

i=1 λi pT
i

{
G
′′
fi
( fi(ϕ, ϑ))(∇ϑ fi(ϕ, ϑ))(∇ϑ fi(ϕ, ϑ))T + G

′
fi
( fi(ϕ, ϑ))∇ϑϑ fi(ϕ, ϑ)

}
pi, ..., G fk

( fk(ϕ, ϑ))

−ϑT ∑k
i=1 λi

(
G
′
fi
( fi(ϕ, ϑ))∇ϑ fi(ϕ, ϑ) +

{
G
′′
fi
( fi(ϕ, ϑ))(∇ϑ fi(ϕ, ϑ))(∇ϑ fi(ϕ, ϑ))T + G

′
fi
( fi(ϕ, ϑ))∇ϑϑ fi(ϕ, ϑ)

}
pi

)

− 1
2 ∑k

i=1 λi pT
i

{
G
′′
fi
( fi(ϕ, ϑ))(∇ϑ fi(ϕ, ϑ))(∇ϑ fi(ϕ, ϑ))T + G

′
fi
( fi(ϕ, ϑ))∇ϑϑ fi(ϕ, ϑ)

}
pi − G f1 ( f1(δ, `))− δT ∑k

i=1 λi

(
G
′
fi
( fi(δ, `))

∇ϕ fi(δ, `) +
{

G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))(∇ϕ fi(δ, `))T + G

′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}
qi

)
− 1

2 ∑k
i=1 λiqT

i

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))(∇ϕ fi(δ, `))T

+G
′
fi
( f (δ, `))∇ϕϕ fi(δ, `)

}
qi, ..., G fk

( fk(δ, `))− δT ∑k
i=1 λi(G

′
fi
( fi(δ, `))∇ϕ fi(δ, `) +

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))(∇ϕ fi(δ, `))T

+G
′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}
qi)− 1

2 ∑k
i=1 λiqT

i

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))(∇ϕ fi(δ, `))T + G

′
fi
( f (δ, `))∇ϕϕ fi(δ, `)

}
qi

}
∈ −K\{0}.

Since λ ∈ intK∗, we get

k

∑
i=1

λi

{
G fi

( fi(ϕ, ϑ))− ϑT
k

∑
i=1

λi

[
G
′
fi
( fi(ϕ, ϑ))∇ϑ fi(ϕ, ϑ) +

{
G
′′
fi
( fi(ϕ, ϑ))∇ϑ fi(ϕ, ϑ)(∇ϑ fi(ϕ, ϑ))T

+G
′
fi
( fi(ϕ, ϑ))∇ϑϑ fi(ϕ, ϑ)

}
pi

]
− δT ∑k

i=1 λi

[
G
′
fi
( fi(δ, `))∇ϕ fi(δ, `) +

{
G
′′
fi
( fi(δ, `))∇ϕ fi(δ, `)

(∇ϕ fi(δ, `))T
}]
− 1

2 ∑k
i=1 λi pT

i

{
G
′′
fi
( fi(ϕ, ϑ))∇ϑ fi(ϕ, ϑ)(∇ϑ fi(ϕ, ϑ))T + G

′
fi
( fi(ϕ, ϑ))∇ϑϑ fi(ϕ, ϑ)

}
−
{

G fi
( fi(δ, `))

+G
′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}
− 1

2 ∑k
i=1 λiqT

i

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))(∇ϕ fi(δ, `))T + G

′
fi
( fi(δ, `))∇ϕϕ fi(ϕ, ϑ)

}
qi

}
< 0.

(5)

By hypothesis (i) and using λ ∈ int K∗, we get
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k

∑
i=1

λi

{
G fi

( fi(ϕ, `))− G fi
( fi(δ, `)) +

1
2

qT
i

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))∇ϕ fi(δ, `)T + G

′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}
qi

−ηT
1 (ϕ, δ)

[
G
′
fi
( fi(δ, `))∇ϕ fi(δ, `) +

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))∇ϕ fi(δ, `)T + G

′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}
qi

]}
= 0,

Using feasibility of dual problem (GWDP) & using dual constraints with assumption (iii),
it yields

(
η1(ϕ, δ) + δ

)T k

∑
i=1

λi

[
G
′
fi
( fi(δ, `))∇ϕ fi(δ, `) +

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))(∇ϕ fi(δ, `))T + G

′
fi
( fi(δ, `))∇ϕ fi(δ, `)

}
qi

]
= 0,

it implies that

k

∑
i=1

λi

[
G fi

( fi(ϕ, `))− G fi
( fi(δ, `)) +

1
2

qT
i

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))(∇ϕ fi(δ, `))T + G

′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}
qi

]

= −δT
k

∑
i=1

λi

[
G
′
fi
( fi(δ, `))∇ϕ( fi(δ, `)) +

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))(∇ϕ fi(δ, `))T + G

′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}
qi

]
. (6)

Similarly, using hypotheses (ii), (iv), feasible conditions of primal problem (GWPP), dual
constraint and λ ∈ intK∗,
we get

k

∑
i=1

λi

[
G fi

( fi(ϕ, ϑ))− G fi
( fi(ϕ, `)) +

1
2

pT
i

{
G
′′
fi
( fi(δ, `))(∇ϑ fi(δ, `))(∇ϑ fi(δ, `))T + G

′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}
pi

]

= ϑT
k

∑
i=1

λi

[
G
′
fi
( fi(δ, `))∇ϑ( fi(δ, `)) +

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))(∇ϕ fi(δ, `))T + G

′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}
pi

]
. (7)

Now, from inequalities (6), (7) and using the fact that λTek = 1, we find that

k

∑
i=1

λi

[
G fi

( fi(ϕ, ϑ))− ϑT
k

∑
i=1

λi

[
G
′
fi
( fi(ϕ, ϑ))∇ϑ( fi(ϕ, ϑ)) +

{
G
′′
fi
( fi(ϕ, ϑ))(∇ϑ fi(δ, `))(∇ϑ fi(δ, `))T + G

′
fi
( fi(ϕ, ϑ))∇ϑϑ fi(ϕ, ϑ)

}
pi

]

− 1
2 ∑k

i=1 λi pT
i

{
G
′′
fi
( fi(ϕ, ϑ))(∇ϑ fi(ϕ, ϑ))(∇ϑ fi(ϕ, ϑ))T + G

′
fi
( fi(ϕ, ϑ))∇ϑϑ fi(ϕ, ϑ)

}
− G fi

( fi(δ, `))

−δT ∑k
i=1 λi

[
G
′
fi
( fi(δ, `))∇ϕ( fi(δ, `)) +

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))(∇ϕ fi(δ, `))T + G

′
fi
( fi(δ, `))∇ϕϕ fi(δ, `)

}]

− 1
2 δT ∑k

i=1 λiqT
i

{
G
′′
fi
( fi(δ, `))(∇ϕ fi(δ, `))(∇ϕ fi(δ, `))T + G

′
fi
( fi(δ, `))(∇ϕ fi(δ, `))qi

}]
= 0,

we arrive at contradiction.

Through following example, we validate the Weak duality theorem as:

Example 4. Let n=m=1, k = 2, X = [1, 2], p ∈ [22, 210], q ∈ [10−19, 1019], K =
{
(ϕ, ϑ); ϕ =

0, ϕ = ϑ
}

and

− K =
{
(ϕ, ϑ); ϕ ≤ 0, ϕ ≤ ϑ

}
, R1 = R2 = R+. Let fi : R1 × R2 → R and G fi

for
i = 1, 2. be defined as

f1(ϕ, ϑ) = ϕ + cosϑ, f2(ϕ, ϑ) = sinϑ, G f1(t) = t2, G f2(t) = t.

Further, let
η1(ϕ, δ) = ϕδ, η2(`, ϑ) = `− ϑ.
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Assume that C1 = C2 = C∗1 = C∗2 = R+.

(GWPP) K-minimize L(ϕ, ϑ, λ, p) =
{

L1(ϕ, ϑ, λ, p), L2(ϕ, ϑ, λ, p)
}

Subject to constraints

λ1

[
2(ϕ + cosϑ)(−sinϑ) +

{
2sin2ϑ + 2(ϕ + cosϑ)(−cosϑ)

}
p1

]
+ λ2

[
cosϑ− p2sinϑ

]
5 0, (8)

λ1 + λ2 = 1, λi ∈ intK∗, ϕ ∈ C1, i = 1, 2. (9)

(GWDP) K-maximize M(δ, `, λ, q) =
{

M1(δ, `, λ, q), M2(δ, `, λ, q)
}

Subject to constraints

λ1

[
2(ϕ + cosϑ) + 2q1

]
= 0, (10)

λ1 + λ2 = 1, λi ∈ intK∗, ϕ ∈ C2, i = 1, 2. (11)

(A1).
{

f1(., `), f2(., `)
}

is K-G f -bonvex at δ = 0 w.r.t. η1 ,∀ ϕ ∈ S1, i.e.,

{
G f1

( f1(ϕ, `))− G f1
( f1(δ, `)) +

1
2

pT
1

[
G
′′
f1
( f1(δ, `))∇ϕ f1(δ, `)(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

]
p1

−ηT(ϕ, δ)
[

G
′
f1
( f1(δ, `))∇ϕ f1(δ, `) +

{
G
′′
f1
( f1(δ, `))∇ϕ f1(δ, `)(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

}
p1

]
,

G f2 ( f2(ϕ, `))− G f2 ( f2(δ, `)) +
1
2

pT
2

[
G
′′
f2
( f2(δ, `))∇ϕ f2(δ, `)(∇ϕ f2(δ, `))T + G

′
f2
( f2(δ, `))∇ϕϕ f2(δ, `)

]
p2

−ηT(ϕ, δ)
[

G
′
f2
( f2(δ, `))∇ϕ f2(δ, `) +

{
G
′′
f2
( f2(δ, `))∇ϕ f2(δ, `)(∇ϕ f2(δ, `))T + G

′
f2
( f2(δ, `))∇ϕϕ f2(δ, `)

}
p2

]}
∈ K. (12)

Consider

Ψ =
{

G f1
( f1(ϕ, `))− G f1

( f1(δ, `)) +
1
2

pT
1

[
G
′′
f1
( f1(δ, `))∇ϕ f1(δ, `)(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

]
p1

−ηT(ϕ, δ)
[

G
′
f1
( f1(δ, `))∇ϕ f1(δ, `) +

{
G
′′
f1
( f1(δ, `))∇ϕ f1(δ, `)(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

}
p1

]
,

G f2 ( f2(ϕ, `))− G f2 ( f2(δ, `)) +
1
2

pT
2

[
G
′′
f2
( f2(δ, `))∇ϕ f2(δ, `)(∇ϕ f2(δ, `))T + G

′
f2
( f2(δ, `))∇ϕϕ f2(δ, `)

]
p2

−ηT(ϕ, δ)
[

G
′
f2
( f2(δ, `))∇ϕ f2(δ, `) +

{
G
′′
f2
( f2(δ, `))∇ϕ f2(δ, `)(∇ϕ f2(δ, `))T + G

′
f2
( f2(δ, `))∇ϕϕ f2(δ, `)

}
p2

]}
. (13)

Putting the values of f1, f2, G f1 , G f2 and η1 at the point δ = 0, and simplifying, we get

Ψ =
(

ϕ2 + 2 ϕ cos`+ p2, 0
)

.

It is clear that
Ψ =

(
ϕ2 + 2 ϕ cos`+ p2, 0

)
∈ K.

(A2).
{

f1(ϕ, .), f2(ϕ, .)
}

is K-G f -boncave at ϑ = 0 w.r.t. η2, ` ∈ S2,

{
G f1( f1(ϕ, `))− G f1( f1(ϕ, ϑ)) +

1
2

pT
1

[
G
′′
f1
( f1(ϕ, ϑ))∇ϑ f1(ϕ, ϑ)(∇ϑ f1(ϕ, ϑ))T + G

′
f1
( f1(ϕ, ϑ))∇ϑϑ f1(ϕ, ϑ)

]
p1

−ηT(`, ϑ)
[

G
′
f1
( f1(ϕ, ϑ))∇ϑ f1(ϕ, ϑ) +

{
G
′′
f1
( f1(ϕ, ϑ))∇ϑ f1(ϕ, ϑ)(∇ϑ f1(ϕ, ϑ))T + G

′
f1
( f1(ϕ, ϑ))∇ϑϑ f1(ϕ, ϑ)

}
p1

]
,

G f2( f2(ϕ, `))− G f2( f2(ϕ, ϑ)) +
1
2

pT
2

[
G
′′
f2
( f2(ϕ, ϑ))∇ϑ f2(ϕ, ϑ)(∇ϑ f2(ϕ, ϑ))T + G

′
f2
( f2(ϕ, ϑ))∇ϑϑ f2(ϕ, ϑ)

]
p2
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−ηT(`, ϑ)
[

G
′
f2
( f2(ϕ, ϑ))∇ϑ f2(ϕ, ϑ) +

{
G
′′
f2
( f2(ϕ, ϑ))∇ϑ f2(ϕ, ϑ)(∇ϑ f2(ϕ, ϑ))T + G

′
f2
( f2(ϕ, ϑ))∇ϑϑ f2(ϕ, ϑ)

}
p2

]}
∈ −K. (14)

Let Ψ1 =

{
G f1( f1(ϕ, `))− G f1( f1(ϕ, ϑ)) +

1
2

pT
1

[
G
′′
f1
( f1(ϕ, ϑ))∇ϑ f1(ϕ, ϑ)(∇ϑ f1(ϕ, ϑ))T + G

′
f1
( f1(ϕ, ϑ))∇ϑϑ f1(ϕ, ϑ)

]
p1

− ηT(`, ϑ)
[

G
′
f1
( f1(ϕ, ϑ))∇ϑ f1(ϕ, ϑ) +

{
G
′′
f1
( f1(ϕ, ϑ))∇ϑ f1(ϕ, ϑ)(∇ϑ f1(ϕ, ϑ))T + G

′
f1
( f1(ϕ, ϑ))∇ϑϑ f1(ϕ, ϑ)

}
p1

]
,

G f2( f2(ϕ, `))− G f2( f2(ϕ, ϑ)) +
1
2

pT
2

[
G
′′
f2
( f2(ϕ, ϑ))∇ϑ f2(ϕ, ϑ)(∇ϑ f2(ϕ, ϑ))T + G

′
f2
( f2(ϕ, ϑ))∇ϑϑ f2(ϕ, ϑ)

]
p2

−ηT(`, ϑ)
[

G
′
f2
( f2(ϕ, ϑ)∇ϑ f2(ϕ, ϑ) +

{
G
′′
f2
( f2(ϕ, ϑ))∇ϑ f2(ϕ, ϑ)(∇ϑ f2(ϕ, ϑ))T + G

′
f2
( f2(ϕ, ϑ))∇ϑϑ f2(ϕ, ϑ)

}
p2

]}
. (15)

Putting the values of f1, f2, G f1 , G f2 and η2 at ϑ = 0, we obtain

Ψ1 =
(
(ϕ + cos`)2 − (ϕ + 1)2 − p2

1(ϕ + 1) + 2`(ϕ + 1), sin`− `
)

.

Ψ1 =
(
(ϕ + cos`)2 − (ϕ + 1)2 − p2

1(ϕ + 1) + 2`(ϕ + 1), sin`− `
)
∈ −K.

(A3). η1(ϕ, δ) + δ ∈ C1, ∀ ϕ ∈ C1.

(A4). η2(`, ϑ) + ϑ ∈ C2, ∀ ` ∈ C2.

Validation: To validate Weak duality theorem it is enough to claim that any point (ϕ, 0, λ1, λ2, p)
such that ϕ = 0, λ1 + λ2 = 1 are feasible to (GWPP). Also, the points (0, `, λ1, λ2, q) such that
` = 0, λ1 + λ2 = 1 are feasible to (GWDP). Now, at these feasible points,

L = (L1, L2) =
(
(ϕ + 1)2 + λ1 p2

1(ϕ + 1), λ1 p2
1(ϕ + 1)

)
,

and
M = (M1, M2) =

(
cos2`− λ1q2

1, sin`− λ1q2
1

)
.

Now, calculate the value at above feasible points, we have

L(ϕ, ϑ, λ, p)−M(δ, `, λ, q) =
(
(ϕ + 1)2 + λ1 p2

1(ϕ + 1)− cos2`+ λ1q2
1, λ1 p2

1(ϕ + 1)− sin`+ λ1q2
1

)
/∈ K\{0}. (16)

In particular, the points
(

ϕ, ϑ, λ1, λ2, p
)

=

(
1, 0,

1
2

,
1
2

, 4
)

and
(

δ, `, λ1, λ2, q
)

=

(
0, 22

14 , 1
2 , 1

2 , 2
)

are feasible solutions for (GWPP) and (GWDP), respectively. Also

L(ϕ, ϑ, λ, p)−M(δ, `, λ, q) = (22, 17) /∈ −K\{0}. (17)

Hence, this validate the results.

Remark 2. Every pseudoconvex function is convex function. On the same pattern we can proof
that K-G f -pseudobonvex is K-G f -bonvex with respect to same η. So, above proof of Weak duality
3.2 follows on same pattern as Theorem 1.

Theorem 2 (Weak duality). Let (ϕ, ϑ, λ, p) ∈ V∗ and (δ, `, λ, q) ∈W∗ . Let, For i ∈ Ñ

(i)
{

f1(., `), f2(., `), ..., fk(., `)
}

be K-G f -pseudobonvex at ` w.r.t. η1,

(ii)
{

f1(ϕ, .), f2(ϕ, .), ..., fk(ϕ, .)
}

be K-G f -pseudoboncave at ϑ, w.r.t. η2,

(iii) η1(ϕ, δ) + δ ∈ C1, ∀ (ϕ, δ) ∈ C1 × C2,
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(iv) η2(`, ϑ) + ϑ ∈ C2, ∀ (`, ϑ) ∈ C1 × C2,

Then, L(ϕ, ϑ, λ, p)−M(δ, `, λ, q) /∈ −K\{0}.

Proof. Proof follows on same lines as Weak Duality Theorem 1.

Example 5. For n= m= 1, k = 2, X = [2, 3], p ∈ [0, 1], q ∈ [2, 210], K =
{
(ϕ, ϑ);

ϕ 5 0, ϑ = 0, |ϕ| = ϑ
}

,

R1 = R2 = R+. Let fi : R1 × R2 → R be given as

f1(ϕ, ϑ) = ϕ + ϑ2, f2(ϕ, ϑ) = 1− ϑ, G f1(t) = t2, G f2(t) = t.

Further, Let
η1(ϕ, δ) = ϕδ, η2(`, ϑ) = `− ϑ.

Assume that C1 = C2 = C∗1 = C∗2 = R+.

(GWPP) K-minimize L(ϕ, ϑ, λ, p) =
{

L1(ϕ, ϑ, λ, p), L2(ϕ, ϑ, λ, p)
}

Subject to constraints

λ1

[
4ϑ(ϕ + ϑ2) + p1{8ϑ2 + 4(ϕ + ϑ2)}

]
− λ2 5 0, (18)

λ1 + λ2 = 1, λi ∈ intK∗, ϕ ∈ C1, i = 1, 2. (19)

(GWDP) K-maximize M(δ, `, λ, q) =
{

M1(δ, `, λ, q), M2(δ, `, λ, q)
}

Subject to constraints

λ1

[
2(δ + `2 + q)

]
= 0, (20)

λ1 + λ2 = 1, λi ∈ intK∗, δ ∈ C2, i = 1, 2. (21)

(A1).
{

f1(., `), f2(., `)
}

is K-G f -pseudobonvex at δ with respect to η1 , ϕ ∈ R1, so that

ηT
1 (ϕ, δ)

{
G
′
f1
( f1(δ, `))∇ϕ f1(δ, `) + p

{
G
′′
f1
( f1(δ, `))(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

}
,

G
′
f2
( f2(δ, `))∇ϕ f2(δ, `) + p

{
G
′′
f2
( f2(δ, `))(∇ϕ f2(δ, `))T + G

′
f2
( f2(δ, `))∇ϕϕ f2(δ, `)

}}
∈ K. (22)

Let

Π1 = ηT
1 (ϕ, δ)

{
G
′
f1
( f1(δ, `))∇ϕ f1(δ, `) + p

{
G
′′
f1
( f1(δ, `))(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

}
,

G
′
f2
( f2(δ, `))∇ϕ f2(δ, `) + p

{
G
′′
f2
( f2(δ, `))(∇ϕ f2(δ, `))T + G

′
f2
( f2(δ, `))∇ϕϕ f2(δ, `)

}}
. (23)

Next, let

Π2 =
[

G f1( f1(ϕ, `))− G f1( f1(δ, `)) +
1
2

pT
{

G
′′
f1
( f1(δ, `))∇ϕ f1(δ, `)(∇ϕ f1(δ, `))T + G

′
f1
( f1(δ, `))∇ϕϕ f1(δ, `)

}
p,

G f2( f2(ϕ, `))− G f2( f2(δ, `)) +
1
2

pT
{

G
′′
f2
( f2(δ, `))∇ϕ f2(δ, `)(∇ϕ f2(δ, `))T + G

′
f2
( f2(δ, `))∇ϕϕ f2(δ, `)

}
p
]
. (24)
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After simplification, substituting the value of f1, f2, G f1 , G f2 and η1 at δ = 0, we get

Π1 = (0, 0) ∈ K ⇒ Π2 = (ϕ2 − 2ϕ`2 + p2, 0) ∈ K.

(A2).
{

f1(ϕ, .), f2(ϕ, .)
}

is K-G f -pseudoboncave at ϑ with respect to η2 for fixed ϕ for all
` ∈ S2, i.e.,

ηT
2 (ϕ, δ)

{
G
′
f1
( f1(ϕ, ϑ))∇ϑ f1(ϕ, ϑ) + q

{
G
′′
f1
( f1(ϕ, ϑ))(∇ϑ f1(ϕ, ϑ))T + G

′
f1
( f1(ϕ, ϑ))∇ϑϑ f1(ϕ, ϑ)

}
, G

′
f2
( f2(ϕ, ϑ))∇ϑ f2(ϕ, ϑ)

+ q
{

G
′′
f2
( f2(ϕ, ϑ))(∇ϑ f2(ϕ, ϑ))T + G

′
f2
( f2(ϕ, ϑ))∇ϑϑ f2(ϕ, ϑ)

}}
∈ K

⇒
[

G f1
( f1(ϕ, `))− G f1

( f1(ϕ, ϑ)) +
1
2

qT
{

G
′′
f1
( f1(ϕ, ϑ)) ∇ϑ f1(ϕ, ϑ)(∇ϑ f1(ϕ, ϑ))T + G

′
f1
( f1(ϕ, ϑ))∇ϑϑ f1(ϕ, ϑ)

}
q,

G f2 ( f2(ϕ, `))− G f2 ( f2(ϕ, ϑ)) +
1
2

qT
{

G
′′
f2
( f2(ϕ, ϑ))∇ϑ f2(ϕ, ϑ)(∇ϑ f2(ϕ, ϑ))T + G

′
f2
( f2(ϕ, ϑ))∇ϑϑ f2(ϕ, ϑ)

}
q
]
∈ −K. (25)

Let Π3 = ηT
2 (ϕ, δ)

{
G
′
f1
( f1(ϕ, ϑ))∇ϑ f1(ϕ, ϑ) + q

{
G
′′
f1
( f1(ϕ, ϑ))(∇ϑ f1(ϕ, ϑ))T + G

′
f1
( f1(ϕ, ϑ))∇ϑϑ f1(ϕ, ϑ)

}
,

G
′
f2
( f2(ϕ, ϑ))∇ϑ f2(ϕ, ϑ) + q

{
G
′′
f2
( f2(ϕ, ϑ))(∇ϑ f2(ϕ, ϑ))T + G

′
f2
( f2(ϕ, ϑ))∇ϑϑ f2(ϕ, ϑ)

}}
, (26)

and

Π4 =
[

G f1
( f1(ϕ, `))− G f1

( f1(ϕ, ϑ)) +
1
2

qT
{

G
′′
f1
( f1(ϕ, ϑ)) ∇ϑ f1(ϕ, ϑ)(∇ϑ f1(ϕ, ϑ))T + G

′
f1
( f1(ϕ, ϑ))∇ϑϑ f1(ϕ, ϑ)

}
q,

G f2 ( f2(ϕ, `))− G f2 ( f2(ϕ, ϑ)) +
1
2

qT
{

G
′′
f2
( f2(ϕ, ϑ))∇ϑ f2(ϕ, ϑ)(∇ϑ f2(ϕ, ϑ))T + G

′
f2
( f2(ϕ, ϑ))∇ϑϑ f2(ϕ, ϑ)

}
q
]
. (27)

Substituting the value of f1, f2, G f1 , G f2 and η2 at the point δ = 0 and simplify, we get

Π3 =
(

4vqϕ, − 1
)
∈ −K ⇒ Π4 =

(
`4 + 2ϕ`2, − `

)
∈ −K.

(A3). η1(ϕ, δ) + δ ∈ C1, ∀ ϕ ∈ C1.

(A4). η2(`, ϑ) + ϑ ∈ C2, ∀ ` ∈ C2.

Validation: To prove our result its enough to prove that any point
(

ϕ, 0, λ1, λ2, p
)

such that ϕ = 0, λ1 + λ2 = 1 are feasible to (GWPP). Also, the points
(

0, `, λ1, λ2, q
)

such

that ` = 0, λ1 + λ2 = 1 are feasible to (GWDP). Now, at these feasible points,

L =
(

L1, L2

)
=
(

ϕ2 − 2ϕλ1 p2, 1− 2ϕλ1 p2
)

and
M =

(
M1, M2

)
=
(
`4 − λ1q2, 1− `− λ1q2

)
.

Now at above feasible condition

L−M =
(

ϕ2 − 2ϕλ1 p2 − `4 + λ1q2, `− 2ϕλ1 p2 + λ1q2
)

/∈ K\{0}. (28)

In particular, the points
(

ϕ, ϑ, λ1, λ2, p
)
=
(

2, 0,
1
2

,
1
2

, 1
)

and
(

δ, `, λ1, λ2, q
)
=

(
0, 2,

1
2

,
1
2

, 2
)

are
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feasible for (GWPP) and (GWDP) respectively,
Now, calculate

L(ϕ, ϑ, λ, p)−M(δ, `, λ, q) = (−12, 2) /∈ K\{0}. (29)

Hence, this validate the Weak duality Theorem 2.

Theorem 3 (Strong duality). Let (ϕ̄, ϑ̄, λ̄, p̄1 = p̄2 = p̄3 = ... = p̄k) is an efficient solution of
(GWPP); fix λ = λ̄ in (GWDP) such that

(i) for all i ∈ Ñ,
[

G′′fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi

( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)
]

is nonsingular,

(ii) the vector
k

∑
i=1

λ̄i∇ϑ

[
p̄i{G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)} p̄i

]

/∈span
{

G′f1
( f1(ϕ̄, ϑ̄))∇ϑ f1(ϕ̄, ϑ̄), G′f2

( f2(ϕ̄, ϑ̄))∇ϑ f2(ϕ̄, ϑ̄), ..., G′fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)

}
,

(iii) the set of vectors
{

G′f1 ( f1(ϕ̄, ϑ̄))∇ϑ f1(ϕ̄, ϑ̄), G′f2 ( f2(ϕ̄, ϑ̄))∇ϑ f2(ϕ̄, ϑ̄), ..., G′fk
( fk(ϕ̄, ϑ̄))∇ϑ fk(ϕ̄, ϑ̄)

}
are

linearly independent,

(iv)
k

∑
i=1

λ̄i∇ϑ

[
p̄i{G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)} p̄i

]
= 0⇒ p̄i = 0, ∀ i, and

(v) K is closed convex pointed cone with Rk
+ ⊆ K.

Then, (ϕ̄, ϑ̄, λ̄, q̄1 = q̄2 = q̄3 = ... = q̄k = 0) ∈W∗ and L(ϕ̄, ϑ̄, p̄) = M(ϕ̄, ϑ̄, q̄). Also, if the hy-
potheses of Theorem 1 or Theorem 2 are satisfied for all feasible solutions for (GWPP) and (GWDP),
then (ϕ̄, ϑ̄, λ̄, p̄) and (ϕ̄, ϑ̄, λ̄, q̄) is an efficient solution for (GWPP) and (GWDP), respectively.

Proof. Since (ϕ̄, ϑ̄, λ̄, p̄1, p̄2, p̄3, ...., p̄k), is an efficient solution of (GWPP), there exist
α ∈ K∗, β ∈ C2 and η̄ ∈ R such that the following Fritz -John optimality condition stated
by [28] are satisfied at (ϕ̄, ϑ̄, λ̄, p̄1, p̄2, p̄3, ..., p̄k) :

(
ϕ− ϕ̄)T

[
k

∑
i=1

αi

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)
]
+

k

∑
i=1

λ̄i

[
G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)∇ϑ fi(ϕ̄, ϑ̄) + G′fi
( fi(ϕ̄, ϑ̄))∇ϕϑ fi(ϕ̄, ϑ̄)

][
β− (ᾱTek)ϑ̄

]

+
k

∑
i=1

λ̄i∇ϕ

[
(G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)) p̄i

](
β− (ᾱTek)

(
ϑ̄ +

1
2

p̄i

))]
= 0, ∀ ϕ ∈ C1, (30)

(
ϑ− ϑ̄

)T
{

k

∑
i=1

αi

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)
]
+

k

∑
i=1

λ̄i

[
G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)

]

(
β̄− (ᾱTek)ϑ̄

)
+

k

∑
i=1

λ̄i∇ϑ

[
(G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)) p̄i

]

[
β̄− (ᾱTek)

(
ϑ̄ +

1
2

p̄i

)]
−

k

∑
i=1

λ̄i

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)

+ (G′′fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi

( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)) p̄i

]
(ᾱTek)

}
= 0, ∀ ϑ ∈ Rm, (31)

G′fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)

(
β̄− (ᾱTek)ϑ̄

)
+ η̄ek +

{{
β− (ᾱTek)

(
ϑ̄ +

1
2

p̄1

)}T(
G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T

+ G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)

)
p̄1,

{{
β− (ᾱTek)

(
ϑ̄ +

1
2

p̄2

)}T(
G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T

{{
β− (ᾱTek)

(
ϑ̄ +

1
2

p̄3

)}T(
G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)

)
p̄3, . . . ,

{{
β− (ᾱTek)

(
ϑ̄ +

1
2

p̄3

)}T(
G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)

)
p̄k

}
= 0, (32)
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[
G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)

](
(β̄− (ᾱTek)( p̄i + ϑ̄))λ̄i

)
= 0, i ∈ Ñ, (33)

β̄T
k

∑
i=1

λ̄i

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄) +
{

G′′fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi

( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)
}

p̄i

]
= 0, (34)

η̄T
[
λ̄Tek − 1

]
= 0, (35)

(
ᾱ, β̄, η̄

)
= 0,

(
ᾱ, β̄, η̄

)
6= 0. (36)

Inequalities (31) and (32) can be rewritten in the following expressions:

k

∑
i=1

αi

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)
]
+

k

∑
i=1

λ̄i

[
G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)

]

(
β̄− (ᾱTek)ϑ̄

)
+

k

∑
i=1

λ̄i∇ϑ

[
(G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)) p̄i

]

[
β̄− (ᾱTek)

(
ϑ̄ +

1
2

p̄i

)]
−

k

∑
i=1

λ̄i

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)

+
(

G′′fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi

( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)
)

p̄i

]
(ᾱTek) = 0. (37)

G′fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)

(
β̄− (ᾱTek)ϑ̄

)
+

{{
β− (ᾱTek)

(
ϑ̄ +

1
2

p̄i

)}T

(
G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)

)
p̄i

}
+ η̄ = 0, i ∈ Ñ. (38)

Now, from hypothesis (iv), it is given that Rk
+ ⊆ K⇒ int K∗ ⊆ int Rk

+.

Obviously, λ̄ > 0 because λ̄ ∈ int K∗.

By hypothesis (i), (33) gives

β = (ᾱTek)( p̄i + ϑ̄), i ∈ Ñ. (39)

Suppose ᾱ = 0, then (39) yields β̄ = 0. Further, from (38) gives η̄ = 0. Now, we reach at
contradiction (36). Hence, ᾱ 6= 0. Further, ᾱ ∈ K∗ ⊆ Rk

+ implies

ᾱTek > 0. (40)

Now, we have to claim that p̄i = 0, i ∈ Ñ. Using (39) and (40) in (38), we get

k

∑
i=1

λ̄i

[
∇ϑ

{
1
2

p̄i(G′′fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi

( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)) p̄i

}]

= − 1
µ

k

∑
i=1

(
αi − µλ̄i

)
[G′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)], (41)

By hypothesis (ii), we get

k

∑
i=1

λ̄i

[
∇ϑ

{
p̄i(G′′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G′fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)) p̄i

}]
= 0. (42)
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Again, from hypothesis (iv), we have

p̄i = 0, ∀ i ∈ Ñ. (43)

From (39) implies

β̄ = (ᾱTek)ϑ̄. (44)

Using (42) and (43) in (37), we obtain

k

∑
i=1

(
αi − (ᾱTek)λ̄i

)[
G′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)
]
= 0. (45)

From hypothesis (iii), it yields

αi = (ᾱTek)λ̄i, i ∈ Ñ. (46)

Using (43) and (44) in (30), we get

(ϕ− ϕ̄)T
k

∑
i=1

αi

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)]

]
= 0.

Using (40), (43), (44) and (46) in (30) , we find that

(ϕ− ϕ̄)T
k

∑
i=1

λ̄i

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)]

]
= 0, ∀ ϕ ∈ C1. (47)

Let ϕ ∈ C1. Then, ϕ + ϕ̄ ∈ C1 and inequality (47) gives that

ϕ̄T
k

∑
i=1

λ̄i

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)]

]
= 0, ∀ ϕ ∈ C1. (48)

Therefore,

k

∑
i=1

λ̄i

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)]

]
∈ C∗1 . (49)

Also, from (44), we obtain

ϑ̄ =
β̄

ᾱTek
∈ C2. (50)

Therefore, (ϕ̄, ϑ̄, λ̄, q̄1 = q̄2 = q̄3 = ... = q̄k = 0) satisfies the constraint of (GWDP) and is
therefore a feasible solution for the dual problem (GWDP).

Now, letting ϕ = 0 and ϕ = 2ϕ̄ in (47), we obtain

ϕ̄T
k

∑
i=1

λ̄i

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)
]
= 0. (51)

72



Axioms 2023, 12, 571

Further, from (34), (40), (43) and (44), we get

ϑ̄T
k

∑
i=1

λ̄i

[
G′fi

( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)
]
= 0. (52)

Therefore, using (43), (51) and (52), we obtain

(
G f1 ( f1(ϕ̄, ϑ̄))− ϑ̄T

k

∑
i=1

λ̄i

[
G
′
fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄) +

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)

}
p̄i

]

−1
2

k

∑
i=1

λi p̄i

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)

}
p̄i

]
, ..., G fk

( fk(ϕ̄, ϑ̄))− ϑ̄T
k

∑
i=1

λ̄i

[
G
′
fi
( fi(ϕ̄, ϑ̄))

∇ϑ fi(ϕ̄, ϑ̄) +
{

G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)

}
p̄i

]
− 1

2

k

∑
i=1

λi p̄i

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄)(∇ϑ fi(ϕ̄, ϑ̄))T

+ G
′
fi
( fi(ϕ̄, ϑ̄))∇ϑϑ fi(ϕ̄, ϑ̄)

}
p̄i

])

=

(
G f1 ( f1(ϕ̄, ϑ̄))− ϕ̄T

k

∑
i=1

λ̄i

[
G
′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄) +

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

]

−1
2

k

∑
i=1

λi q̄i

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

]
, ..., G fk

( fk(ϕ̄, ϑ̄))− ϕ̄T
k

∑
i=1

λ̄i

[
G
′
fi
( fi(ϕ̄, ϑ̄))

∇ϕ fi(ϕ̄, ϑ̄) +
{

G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

]
− 1

2

k

∑
i=1

λi q̄i

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T

+ G
′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

])
.

This shows that the objective values are equal.

Finally, we have to claim that (ϕ̄, ϑ̄, λ̄, q̄1 = q̄2 = q̄3 = ... = q̄k = 0) is an efficient so-
lution of (GWDP).

If possible, then suppose that (ϕ̄, ϑ̄, λ̄, q̄1 = q̄2 = q̄3 = ... = q̄k = 0) is not an efficient
solution of (GWDP), then there exist (δ̄, ¯̀, λ̄, q̄1 = q̄2 = q̄3 = ... = q̄k = 0) is efficient
solution of (GWDP) such that

(
G f1 ( f1(ϕ̄, ϑ̄))− ϕ̄T

k

∑
i=1

λ̄i

[
G
′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄) +

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

]

− 1
2

k

∑
i=1

λi q̄i

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

]
, ..., G fk

( fk(ϕ̄, ϑ̄))− ϕ̄T
k

∑
i=1

λ̄i

[
G
′
fi
( fi(ϕ̄, ϑ̄))

∇ϕ fi(ϕ̄, ϑ̄) +
{

G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

]
− 1

2

k

∑
i=1

λi q̄i

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T

+ G
′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

]
− G f1 ( f1(δ̄, ¯̀))− δ̄T

k

∑
i=1

λ̄i

[
G
′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(δ̄, ¯̀) +

{
G
′′
fi
( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)(∇ϕ fi(δ̄, ¯̀))T

+G
′
fi
( fi(δ̄, ¯̀))∇ϕϕ fi(δ̄, ¯̀)

}
q̄i

]

− 1
2

k

∑
i=1

λi q̄i

{
G
′′
fi
( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)(∇ϕ fi(δ̄, ¯̀))T + G

′
fi
( fi(δ̄, ¯̀))∇ϕϕ fi(δ̄, ¯̀)

}
q̄i

]
, ..., G fk

( fk(δ̄, ¯̀))− δ̄T
k

∑
i=1

λ̄i

[
G
′
fi
( fi(δ̄, ¯̀))

∇ϕ fi(δ̄, ¯̀) +
{

G
′′
fi
( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)(∇ϕ fi(δ̄, ¯̀))T + G

′
fi
( fi(δ̄, ¯̀))∇ϕϕ fi(δ̄, ¯̀)

}
q̄i

]
− 1

2

k

∑
i=1

λi q̄i

{
G
′′
fi
( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)(∇ϕ fi(δ̄, ¯̀))T

+ G
′
fi
( fi(δ̄, ¯̀))∇ϕϕ fi(δ̄, ¯̀)

}
q̄i

])
∈ −K\{0}.
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As

ϕ̄T
k

∑
i=1

λ̄iG
′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄) = ϑ̄T

k

∑
i=1

λ̄iG
′
fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄) and p̄i = 0, i ∈ Ñ,

(
G f1 ( f1(ϕ̄, ϑ̄))− ϑ̄T

k

∑
i=1

λ̄i

[
G
′
fi
( fi(ϕ̄, ϑ̄))∇ϑ fi(ϕ̄, ϑ̄) +

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

]

−1
2

k

∑
i=1

λi q̄i

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

]
, ..., G fk

( fk(ϕ̄, ϑ̄))− ϕ̄T
k

∑
i=1

λ̄i

[
G
′
fi
( fi(ϕ̄, ϑ̄))

∇ϕ fi(ϕ̄, ϑ̄) +
{

G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T + G

′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

]
− 1

2

k

∑
i=1

λi q̄i

{
G
′′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(ϕ̄, ϑ̄)(∇ϕ fi(ϕ̄, ϑ̄))T

+ G
′
fi
( fi(ϕ̄, ϑ̄))∇ϕϕ fi(ϕ̄, ϑ̄)

}
q̄i

]
− G f1 ( f1(δ̄, ¯̀))− δ̄T

k

∑
i=1

λ̄i

[
G
′
fi
( fi(ϕ̄, ϑ̄))∇ϕ fi(δ̄, ¯̀)+

{
G
′′
fi
( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)(∇ϕ fi(δ̄, ¯̀))T + G

′
fi
( fi(δ̄, ¯̀))∇ϕϕ fi(δ̄, ¯̀)

}
q̄i

]

−1
2

k

∑
i=1

λi q̄i

{
G
′′
fi
( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)(∇ϕ fi(δ̄, ¯̀))T + G

′
fi
( fi(δ̄, ¯̀))∇ϕϕ fi(δ̄, ¯̀)

}
q̄i

]
, ..., G fk

( fk(δ̄, ¯̀))− δ̄T
k

∑
i=1

λ̄i

[
G
′
fi
( fi(δ̄, ¯̀))

∇ϕ fi(δ̄, ¯̀) +
{

G
′′
fi
( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)(∇ϕ fi(δ̄, ¯̀))T + G

′
fi
( fi(δ̄, ¯̀))∇ϕϕ fi(δ̄, ¯̀)

}
q̄i

]
− 1

2

k

∑
i=1

λi q̄i

{
G
′′
fi
( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)(∇ϕ fi(δ̄, ¯̀))T

+ G
′
fi
( fi(δ̄, ¯̀))∇ϕϕ fi(δ̄, ¯̀)

}
q̄i

])
∈ −K\{0},

which contradicts the Weak duality Theorem 1 or Theorem 2. Hence, completes the proof.

Theorem 4 (Converse duality). Let (δ̄, ¯̀, λ̄, q̄) is an efficient solution of (GWDP); fix λ = λ̄ in
(GWPP) such that

(i) for all i ∈ {1, 2, ..., k},
[

G′′fi
( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)(∇ϕ fi(δ̄, ¯̀))T +G′fi

( fi(δ̄, ¯̀))∇ϕϕ fi(δ̄, ¯̀)
]

is non singular,

(ii)
k

∑
i=1

λ̄i∇ϕ

[
q̄i{G′′fi

( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)(∇ϕ fi(δ̄, ¯̀))T + G′fi
( fi(δ̄, ¯̀))∇ϕϕ fi(δ̄, ¯̀)}q̄i

]

/∈ span
{

G′f1
( f1(δ̄, ¯̀))∇ϕ f1(δ̄, ¯̀), G′f2

( f2(δ̄, ¯̀))∇ϕ f2(δ̄, ¯̀)...., G′fi
( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)

}
.

(iii) the set of vectors
{

G′f1
( f1(δ̄, ¯̀))∇ϕ f1(δ̄, ¯̀), G′f2

( f2(δ̄, ¯̀))∇ϕ f2(δ̄, ¯̀), ..., G′fk
( fk(δ̄, ¯̀))∇ϕ fk(δ̄, ¯̀)

}
are

linearly independent,

(iv)
k

∑
i=1

λ̄i∇ϑ

[
q̄i

{
G′′fi

( fi(δ̄, ¯̀))∇ϕ fi(δ̄, ¯̀)(∇ϕ fi(δ̄, ¯̀))T + G′fi
( fi(δ̄, ¯̀))∇ϕϕ fi(δ̄, ¯̀)

}
q̄i

]
= 0 ⇒ q̄i =

0, ∀ i,
(v) K is closed convex pointed cone with Rk

+ ⊆ K.

Then, (δ̄, ¯̀, λ̄, p̄ = 0) is a feasible solution for (GWPP) and the objective values of (GWDP) and
(GWPP) are equal. Furthermore, if the hypotheses of Theorem 1 or Theorem 2 are satisfied for
all feasible solutions of (GWDP) and (GWPP), then (δ̄, ¯̀, λ̄, p̄ = 0) is an optimal solution of
(GWPP). Also, if the hypotheses of Theorem 1 or Theorem 2 are satisfied for all feasible solutions for
(GWDP) and (GWPP), then (δ̄, ¯̀, λ̄, q̄) and (δ̄, ¯̀, λ̄, p̄) is an efficient solution for (GWDP)and
(GWPP), respectively.

Proof. It follows on the lines of Theorem 3.

4. Conclusions

In this paper, we have presented a novel generalized group of definitions and illus-
trated various non-trivial numerical examples for existing such type of functions. Nu-
merical examples have also been illustrated to justify the weak duality theorem. Fur-
thermore, we have studied a new class of K-G f -Wolfe type primal-dual model with cone
objective as well as constraint and proved duality theorem under K-G f -bonvexity and
K-G f -pseudobonvexity. This work can further be extended to higher order symmetric
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fractional programming problem and variational control problem over cones. This will be
feature task for the researchers.
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Abstract: Mathematical models that simulate human motion are used widely due to their potential in
predicting basic characteristics of human motion. These models have been involved in investigating
various aspects of gait and human-related tasks, especially walking and running. This study uses a
simple model to study the impact of different factors on sit-to-stand motion through the formulation
of an optimization problem that aims at minimizing joint torques. The simulated results validated
experimental results reported in the literature and showed the ability of the model to predict the
changes in kinetic and kinematic parameters as adaptation to any change in the speed of motion,
reduction in the joint strength, and change in the seat height. The model discovered that changing one
of these determinants would affect joint angular displacement, joint torques, joint angular velocities,
center of mass position, and ground reaction force.

Keywords: sit-to-stand; discrete mechanics; optimization; sit-to-stand determinates

MSC: 37N99

1. Introduction

Mathematical models that simulate human motion and capture the basic pattern
of human motor characteristics in the absence of empirical data (or what is known as
predictive simulation [1]), were used to study many human kinetic characteristics, such
as targeting a specific kinetic speed while reducing the metabolic cost associated with this
movement [1,2]. By applying dynamic optimization processes while considering physical
and physiological constraints [3,4], researchers were able to derive whole body dynamics,
aiding in the production of movements that closely resemble human motion by controlling
relevant parameters. Most of the predictive simulation studies were done to study human
gait characteristics since it is the main feature of human beings [3,5,6]; however, Sit-to-Stand
(STS) motion is also one of the main daily activities, which is also considered as a distinctive
feature of human beings.

STS motion has been attracting scientists and physical therapists to experimentally
study and analyze the aspects of how humans perform this task that is mainly defined by
the process of going to a standing position from a sitting position [7,8]. This motion has
a direct effect on humans’ quality of life, and the significance of this motion will not be
appreciated until it becomes physically or cognitively challenging, which can be temporary
due to injury or permanent due to aging or illness. All the previous reasons may cause
difficulties in completing this motion successfully, especially in an elderly population.
Studies showed that at the age of 55 years and above, 45% of women and 30% of men
suffer from moderate to serious inabilities in rising from sitting [9]. Inability to properly
perform the STS motion may be associated with decreased mobility and balance, with
an increased risk of falling, as well. Several factors influencing the performance of STS
motion are considered as determinants, as they can either facilitate successful completion
of the task or make it more challenging [10,11]. The determinants of STS motion have
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been categorized into different groups according to the source of the determinates, which
are strategy-related determinants such as speed, foot position, trunk rotation, etc. [8,11];
subject-related determinants such as age, muscle force, and disease [7,12,13]; and chair-
related determinants [14,15] such as seat height, armrests, and backrest [16,17]. The impact
of these determinants on body behavior and movement performance differs according to
the type of determinants, and it has been studied in order to investigate how the body
adapts to the changes of these determinants.

The predictive simulation has been involved in studying the STS motion [6,18] to have
a better understanding of how we usually move and when this movement occurs [18].
A good understanding of the normal way of movement during STS will help as well in
applying this knowledge to some cases of predictive simulation that involve studying losing
mobility or some difficulties in performing this task. The complexity of biomechanical
models used to study STS motion varies from simple to complicated based on the number
of segments and muscles included in these models, in addition to the number of planes
used in the modeling [9,19]. Most of the models were modeled as 2D models in the sagittal
plane [20] since most of the joints’ movement occur in this plane; however, few were
modeled as 3D models. These models were involved in studying various aspects of STS
motion and the effect of different parameters on this motion, including the effect of chair
height, the effect of initial foot position, the effect of muscle strength, etc. Garner proposed a
biomechanical model modeled in the sagittal plane that has three rigid segments (i.e., thigh,
leg, and HAT (Head, Arms, and Torso) and eight muscles [19]. Garner used dynamic
optimization to explain the execution of this motion by minimizing a cost function split into
two parts; the first part is aimed at minimizing muscle stress until the time the biped leaves
the chair, and the second part is aimed at minimizing peak forces developed by the muscles
from the time the biped leaves the chair until the time required to accomplish this task [19].
This cost function produced simulation results that were very similar to the experimental
results. The model of Garner is further enhanced by Daigle by adding a foot segment and
increasing the number of muscles to 18 [20], and the model was used to understand the
difficulties related to muscle strength and its effect on accomplishing this task by using an
optimization formulation that minimizes the motion time with different muscle strength
varied from 50% to 200% [20]. The model was able to define which muscles have a great
contribution and power activation in the sit-to-stand task [20]. On other hand, Domire
used a sagittal plane model that consists of three links connected with three joints and
actuated by eight muscles to study the effect of seat height on STS motion [21]. Domire
predicted the effect of seat height using the same objective function described by Garner
and simulated the movement during STS from different seat heights, adjusted by rotating
the thigh segment at four different angles: 80◦, 90◦, 98◦, and 100◦ [21]. The study concluded
that as the seat height decreased, the movement of STS became more difficult, and it was
impossible at the lowest seat height corresponding to the 100◦ thigh angle.

In this study, a simple 2D model is used to predict the effect of changing three STS
determinants (speed, joint strength, and seat height) on lower limb and upper body kinetic
and kinematic parameters by applying dynamic optimization to minimize the joint torques.
First, the derivation of the proposed model and the formulation of the optimization problem
are shown in the following section. Then, the simulation results are shown in the third
section of this study with the validation of some simulation results with experimental
results from the literature. In the fourth section, results from this study are discussed
and compared to reported results and conclusions from experimental studies. Finally, we
summarize our work with the main conclusions in the last section.

2. Materials and Methods

Accurately predicting STS motion requires a biomechanics model that accurately
represents the human body, as well as an understanding of how to identify the specific
movements involved in STS motion. The model proposed in this study is modeled in the
sagittal plane since the movement of humans’ joints are mostly obvious when it is seen
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from the sagittal plane compared to the other planes [22]. This will allow for simplifying
the human body to a three-links model, as shown in Figure 1, through assuming that the
two legs are symmetrical and can be modeled as one leg with two segments, tibia and
femur, in addition to the torso segment. A male subject of height 1.70 m and mass 70 kg is
considered for approximating the model physical parameters. The physical parameters
shown in Table 1 were calculated using anthropometric percentages compiled by different
investigators (the detailed calculations are given in Appendix A) [23–25].
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Figure 1. Three-links model, ui is the torque applied at each joint, and each link is assigned with a
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Table 1. Physical parameters.

Link Body
Segment

Length of
Segment

(m)
li

Distance from
Center of Mass

to Next Joint (m)
di

Mass of
Segment

(kg)
mi

Moment of Inertia
of Segment

(kg·m2)
Ii

1 tibia 0.390 0.182 6.650 0.088
2 femur 0.420 0.170 14.70 0.163
3 torso 0.690 0.372 46.60 2.068

The problem is formulated as an optimization problem in the goal is to minimize
a given cost function while satisfying constraints imposed by the task. Due to the high
degree of nonlinearity of the problem, the use of the direct (single) shooting method to
solve the resulting optimization problem may likely cause the algorithm to fail to find
a solution. One can either use collocation methods or use direct discretization of the
Lagrange-d’Alembert Principle for the system. We chose to use direct discretization of the
Lagrange-d’Alembert Principle (discrete mechanics) [26,27]. Discrete mechanics requires
that the Lagrange equation of the system be derived first. The Lagrange equation of the
model is given by:

L = 1
2

(
m1(l1 − d1)

2 +m2l2
1 + m3l2

1
) .
θ

2
1 +

1
2

(
m2(l2 − d2)

2 + m3l2
2

) .
θ

2
2 +

1
2 m3d2

3

.
θ

2
3

−(m2l1(l2 − d2) + m3l1l2)
.
θ1

.
θ2cos(θ1 + θ2) + m3l1d3

.
θ1

.
θ3cos(θ1 − θ3)

−m3l2d3
.
θ2

.
θ3cos(θ2 + θ3)− g(m1(l1 − d1) + m2l1 + m3l1)cosθ1

−g(m2(l2 − d2) + m3l2)cosθ2 −m3gd3cosθ3

(1)

the discrete Lagrange equation is derived from the continuous Lagrange equation, using
the mid-point rule as follows (for the detailed derivations, check Appendix A):

L(q,
.
q)→ hLd(

qk+1 + qk
2

,
qk+1 − qk

h
) (2)
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The system dynamics is then:

D1Ld(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1) + fd
−(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

+D2Ld(θ1k−1, θ1k, θ2k−1, θ2k, θ3k−1, θ3k)

+ fd
+(θ1k−1, θ1k, θ2k−1, θ2k, θ3k−1, θ3k) = 0

(3)

where D1Ld(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1) is the first derivative of the discrete Lagrange
with respect to current coordinates (i.e., θ1k, θ2k, and θ3k), and is the first derivative of the
discrete Lagrange with respect to future coordinates (i.e., θ1k+1, θ2k+1, and θ3k+1).

D1Ld =




∂Ld
∂θ1k

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

∂Ld
∂θ2k

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

∂Ld
∂θ3k

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)


 (4)

D2Ld =




∂Ld
∂θ1k+1

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

∂Ld
∂θ2k+1

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

∂Ld
∂θ3k+1

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)




(5)

Both discrete torques, i.e., left and right forces, are defined as follows.

ud
− = ud

+ =




u1k − u2k
u2k − u3k

u3k


 (6)

To raise the body from the sitting position to the standing position, it is necessary to
provide an appropriate amount of torque at the joints. Therefore, an optimization problem
is formulated to mimic the Sit-to-Stand function with the aim of minimizing the effort
required to complete this motion, which is represented as the total torque-squared applied
by each joint [28]. The torques are equally minimized ( α1 = α2 = α3 = 1) to study the
effect of speed and seat height on the motion; however, α2 (coefficient of the knee torque) is
increased to study the effect of knee strength while keeping α1 = α3 = 1, assuming that the
model is mimicking sitting on a desk chair in which the femur is making a 90◦ angle with
the vertical axis, whereas the tibias and torso are allowed to have unfixed initial states but
within reasonable bounded range. Conversely, the standing position requires all joints to
make around 0◦ with the vertical as defined in our model. Then, the optimization problem
can be simplified as follows:

min J =∑N
k=1 ∑3

i=1 αiui
2(N) = ∑N

k=1 α1u2
1(N) + α2u2

2(N) + α3u2
3(N) (7)

with both decision variables θiandui subjected to the following constraints:

• System dynamics

D1Ld(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1) + fd
−(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

+D2Ld(θ1k−1, θ1k, θ2k−1, θ2k, θ3k−1, θ3k)

+ fd
+(θ1k−1, θ1k, θ2k−1, θ2k, θ3k−1, θ3k) = 0

• Boundary constraints

θ3(1) = 0◦, θ2(1) = 90◦
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θ1(N + 1) = 0◦, θ2(N + 1) = 0◦, θ3(N + 1) = 0◦

• Path constraints

θi min ≤ θi ≤ θi max

ui min ≤ ui ≤ ui max

The optimization problem was solved using the MATLAB® and SNOPT® (Sparse
Nonlinear OPTimizer) toolbox, and the simulation was run with different initial conditions
for each case in this study.

3. Results

The results of the optimization provided a unique solution for each case that describes
the optimal STS movement for the given conditions. The normal pattern of STS can be
explained using the ground force and the velocity of Center of Mass (COM) by dividing the
STS motion into phases, starting from the model at sitting position and ending when the
velocity of center of mass approaches zero [29]. The first phase starts at the sitting position
and initiates the movement by bending the torso forward, and it ends by raising both
thighs, as seen in Figure 2. Bending the torso forward helps to get torso flexion, which shifts
COM forward. This phase transfers momentum to the next phase, and it occurs quickly.
Therefore, it requires the generation of an efficient flexion momentum to be able to transfer
a lot of it to the lower extremities in the next phase. Before standing up, the tibia segment is
placed backward behind the knee, which results in ankle dorsiflexion. The results showed
that the profile of GRF directed forward under the feet and the velocity of COM have a
bell shape with a peak just before seat off, as seen in Figures 3 and 4 respectively [29]. The
GRF for the model and the experimental results [30] have the same pattern; however, for
the case of the experimental results, the GRF starts from zero due to the presence of the
chair that holds the weight of the person. For the model, the GRF as a percentage of body
weight starts from one because we assume that the model is at the sitting position on foot
(no chair). Moreover, we noticed that the model obtained the same profile of COM velocity
reported in the literature [29].
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Figure 2. The normal pattern of STS can be explained using the ground force reaction and the velocity
of center of mass by dividing the movement into phases starting from the model sitting and ending
when the velocity of center of mass approaches zero.

Then, the model is considered to be in the second phase once it is no longer in the
sitting position. The hip will continue to flex, and the model uses the flexion momen-
tum transferred from the previous phase, which was generated from torso flexion and
distributed to all segments, but more to the lower segments. For human beings, the flexion
momentum produced in the first phase is for the upper body, since the thighs are still on the
seat. Whenever the thighs are taken off the seat, this flexion momentum can be transferred
to the total body and into the legs, as well. Meanwhile, we will have continued flexion
of the hips and continued ankle dorsiflexion in this phase. One of the most important
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characteristics of this phase is that it has the largest amount of ground reaction force among
all four phases of STS. This is because during this phase, all the body weight is on the feet.
Looking at the pattern of Ground Reaction Force (GRF), we see that there is a basic need
to produce ground force greater than body weight in order to accelerate the body in the
upward direction [30].
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Figure 4. The velocity of COM of the model and the experimental results [29].

The third phase starts at maximum ankle dorsiflexion and ends at hip extension. It
includes a sequence of lower limb extensions, knee extension, hip extension, and ankle
extension. When a person stands up to a standing position from the point of maximum
ankle dorsiflexion, the foot does not change position, but the tibia will move backward on
the ankle. Therefore, the angle between tibia and the foot will be around 60◦ in this phase,
whereas in the standing position it will be around 90◦. In the previous phase, muscles
are activated to flex the knee, whereas in this phase, the muscles are activated to extend
the knee.

The GRF will start to decrease from its maximum value, indicating that the thigh is
leaving the seat [30]. Again, the ground reaction force will start to increase once the body
is in the upward standing position [31]. This phase is terminated once the hip reaches its
maximum extension. The last phase is mainly about stabilizing the body and preventing
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it from falling down, since the body is already in a standing position. In this phase, the
velocity of COM will approach zero, indicating the termination of STS movement.

3.1. STS Speed

The effect of STS speed on joints’ kinetic and kinematics was investigated using the
three-links model by changing the time required to stand up from sitting position. In order
to stand up from the sitting position, the model flexes the torso forward with the presence
of the hip flexion. The results show that as the speed increases (time to stand up is reduced),
the torso remains flexed for a longer time interval as a percentage of total STS duration,
as seen in Figure 5. Additionally, at very short time of STS, the model stands up with a
flexed torso. This means that the duration of the stabilization phase reduces as the speed
increases. In addition to the increment in the flexion duration of the torso, the torso angular
velocity tends to increase as the speed increases, as shown in Figure 6.
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An initial flexion angular velocity (negative) is observed at the hip joint as the torso is
leaning forwards, followed by a positive angular velocity indicating the extension of the hip
joint, which is continuous until the standing position is attained, as is clear from Figure 7.
On the other hand, the velocity of the knee joint shows a smooth increase and decrease
in the negative direction (extension velocity), demonstrating the control of the movement
towards the full extension position, as shown in Figure 7. The peak of the angular velocity
increases as the speed of rising increases, indicating the presence of exaggerated knee joint
loading and causing an increment in the knee joint torque, as portrayed in Figure 8.
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Figure 8. Ankle, knee, and hip torques at different STS speeds.

A sufficient torque needs to be generated at the joints to overcome the challenges that
will need to be faced to accomplish this task successfully, including moving the body’s
center of mass forward and raising it vertically to the standing position.

The results have shown that the increment in the speed of STS increases the ankle
dorsiflexion, knee extension, and hip flexion joint torques, and among the models’ joints,
the results of the optimization demonstrated that the knee is the most affected joint by
increasing speed, as displayed in Figure 8.

3.2. Reduction in Joint Strength

To investigate the effect of reduced knee strength on STS motion, the model is used to
optimize the STS motion with minimum joint torques and especially the knee joint torque.
This can be accomplished by reformulating the cost function in Equation (7) to have a larger
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coefficient for the knee joint torque. The optimizer was run with different coefficients for
the knee joint torque (α2 = 1, 3, 5, and 7). The results of the optimization showed that as the
coefficient of knee joint torque increases, the model tends to flex the knee and the torso as
well while standing up and start to extend them at the moment just before the standing
position, which is as shown in Figure 9.
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Figure 9. The model standing up with reduced knee joint strength corresponds to different coefficients
of knee joint torque (α2 = 1, α2 = 3, α2 = 5, and α2 = 7).

Increasing the coefficient of knee joint torque to indicate the difficulties in rising due
to the knee joint seems to increase the angular velocity of hip flexion and angular velocity
of knee extension as seen in Figure 10. Moreover, an increment in the hip joint torque
was observed in Figure 11 when increasing the coefficient of knee joint torque, indicating
that the model depends on the hip joint to accommodate for the losing of some knee
joint strength.
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Figure 11. The Hip and knee joint torques of the model with reduced knee joint strength correspond
to different coefficients of knee joint torque (α2 = 1, α2 = 3, α2 = 5, and α2 = 7).

Furthermore, the effect of reduced knee strength was studied at two speeds, fast and
slow, corresponding to STS duration of 1.5 s and 0.8 s, respectively. The results of different
STS speeds showed a similar pattern of joint motion, as shown in Figure 12. The model first
flexed the hip while still at the sitting position with the knee initially flexed at 90◦, and then
performed a series of extension movements by extending the hip and knee (after a short
delay) joints while plantar flexing the ankle during the remaining time of the standing.
Immoderate hip flexion is resisted by the contraction of muscles, which at the same time
motivates the knee flexion just prior standing up. Knee flexion is also controlled by the
contraction of muscles to avoid excessive knee flexion. Figure 12 shows that the joint angle
profiles for the case of larger knee torque coefficients were identical to the normal case at a
slow speed; however, the range of joint motion with reduced knee strength was slightly
decreased at a fast speed. On the other hand, for the same case (normal knee strength or
reduced knee strength), increasing the speed resulted in increased joint range of motion.
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Figure 12. Hip angle, Knee angle, and Ankle angle at different STS speeds with normal and reduced
knee joint strength (α2 = 1 and α2 = 5, respectively).

With normal knee strength, and as a consequence of a more upright torso during
standing up, as stated in the previous section, the body’s center of mass exhibited a more
posterior location (behind the foot) in the cases of a fast speed that corresponds to a standing
duration of 0.8 s and 1.0 s. However, with reduced knee strength, the increment in the
speed increases the horizontal position of the center of mass, as seen in Figure 13. On the
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other hand, with normal knee strength and reduced knee strength, the vertical position of
the body’s center of mass starts to increase earlier for the cases of slow motion, indicating
that the torso is remaining flexed while standing up for the cases of fast motion. However,
the impact of speed on the vertical position of center of mass is clearer for the case of
reduced knee strength than normal knee strength.
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in the peak value of knee angular velocity compared to the hip angular velocity.
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3.3. Seat Height

The results of the optimization of four seat heights (30 cm, 33 cm, 37 cm, and 44 cm)
showed almost a similar time taken by the model to stand from the sitting position, although
the time required to attain the full standing position was longer for the lowest seat height.
Moreover, the torso angle showed noticeable differences in the forward movement by
showing an increment in the maximum torso angle, as seen in Figure 15, as the seat height
decreases with larger angular displacements of the joints due to the larger space needing to
be covered.
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The results apparently showed that as the seat height decreases, the hip and knee
extension velocity increases, as seen in Figure 16, resulting in more foot repositioning,
which led to an increase in the ground reaction force, as shown in Figure 17.
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We have found that lowering the seat height increases the hip torque before and after
the seat off, as well; however, reducing the height decreases the knee torque before seat off
while increases it after seat off, as clear from Figure 18.
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4. Discussion

We have found that increasing STS speed resulted in a shorter duration of STS phases,
which agrees with reported experimental studies in the literature [32,33] and a more upright
position of the torso at lift-off. Furthermore, in order to speed up the motion of STS by
reducing the duration of phases, the joint torque was significantly affected, which agrees
with reported experimental studies in the literature [7,13,34,35]. It is also found that
increasing the speed of STS motion increased the hip flexion torque, knee extension torque,
and ankle dorsiflexion torque for the model with both normal knee strength and reduced
knee strength, and this validates the results of other experimental studies on healthy people
and people with weakened knees [7,13,34,35]. However, between the model joints, the knee
joint was the most affected joint, and it was clear from the significant increment in the knee
extension moment and knee extension velocity [8,35]. This impact may be due to the load
of body weight on the knee at the moment of standing up, since the model was standing
with a flexed torso.

Therefore, due to the great increment in the knee joint torque, more attention was paid
to the knee joint by increasing the coefficient of knee joint torque in the cost function to
represent individuals with weakened or impaired knee joints, such as patients with some
knee osteoarthritis or elderly people, and investigated the effect of this on STS motion.
Furthermore, it was observed that as the strength of the knee joint was reduced (increasing
the coefficient of knee joint torque), the angular velocities of hip and knee joints slightly
increased; however, the increment in the hip joint torque was very significant. This indicated
that the hip joint was trying to compensate for the reduction in the available knee joint
torque. To avoid the load on the knee joint, a person can stand up slowly, especially when
there are abnormalities in the knee joint; however, fast STS motion is required not only as a
daily life activity, but also to do some clinical settings and tests like fast STS tests, in which
patients are asked to stand up as quickly as possible. Regarding the kinetic parameters of
lower limb joints and how they are affected by speed, the results of fast STS motion for the
model with normal and reduced knee strength was characterized by increased knee and hip
peak velocities, similar results being reported in experimental studies in the literature [7,8]
and they tended to be unsmooth at fast speed as we increased the coefficient of knee
joint torque. We have found that as the speed of motion was increased, the horizontal
position of center of mass also increased, which can be related to the upright position of the
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torso while standing up, and the results of this simulation are in agreement with reported
experimental studies reported in the literature [35,36]. However, the pattern of lower limb
joints, including the hip, was similar when performing STS motion at fast and slow speeds
for both normal knee strength and reduced knee strength [36].

Conversely, we have investigated the effects of seat height on the kinetic and kinematic
parameters of the model during STS motion, as it has been considered as the most influential
factor related to the chair properties [16,37,38]. The results indicated that reducing the seat
height increases the angular velocity of the hip and knee joints required to stand up, which
was a consequence of the increment in the torso angular velocity required to move the
torso further forward from a lower seat height before seat off [16,37,38]. The higher angular
velocity resulted in a higher torque at the hip joint, which transferred to the lower limb
joints after leaving the seat. It is also noticed that the model exhibited an increment in the
torso movement which was demonstrated by Weiner et al. as a result of increasing the
demand to move the center of mass closer to the knees and reduce the required effort [39].
The higher torque at the hip joint was used by the model to assist in the remaining phases
of STS, which was also due to the high forward velocity of the torso at seat off [39]. The
increment in the joints’ angular displacement exhibited by the model as the seat height
is decreased is also confirmed by other studies [11,40], and the reason behind that was
demonstrated by Yamada and Demura as reported in [17] that standing up from a lower
seat height is more difficult due to the increment in the distance that must be covered by
the person in order to stand up. The increase in the distance covered will also lead to an
increment in the muscle activity of the lower limbs, which is represented by the increment
of the model’s joint torques in this study [11]. It has been known that the increment in
the torso’s forward movement increases the chance of falling down due to the huge torso
mass compared to lower limbs; therefore, more feet repositioning was observed by the
model when lowering the seat height as a stabilizing strategy [37,38], which resulted in an
increment in the peak of the ground reaction force.

5. Conclusions

In this study, we have used a mathematical model to investigate its ability to predict
STS body adaptations by formulating an optimization problem that minimizes joints’
torques. The model was able to predict basic features of STS motion by following the
constraints of the optimization problem. We have found that STS motion may be influenced
by different factors such as motion speed, reduced joint strength, and seat height. We have
first investigated the effect of motion speed by changing the total time required to stand
up from the sitting position while equally optimizing the joint torques. Then, we reduced
the knee joint strength, since it was the most affected joint, by increasing the coefficient of
joint torque in the cost function for the purpose of optimizing it more than the other joints
torques. Finally, we studied the effect of seat height on the STS motion by changing the
femur link to get different seat heights, and again equally optimized the joints torque.

The results of this study for the three cases agreed with published experimental results,
indicating that the model was able to predict the STS body adaptation. Increasing STS
motion speed, reducing knee strength, and reducing seat height was found to increase
joints torque and joints angular velocity, whereas reducing the knee strength was found
to decrease the range of joints motion. On the other hand, we have found that reducing
knee strength and reducing seat height led to increased torso flexion, while increasing STS
motion speed led to standing up with an upright torso position. Moreover, the model
expressed higher ground reaction force as the height of the seat was reduced and more
posterior center of mass position as the knee strength was reduced.

Since STS motion is used for clinical investigation as well as daily activity as human
beings, it is very important to pay attention to the factors that may impact this motion.
Therefore, the model involved in this study can help in understanding these factors and
determining the ability of the person to complete this motion and the challenges that may
be faced.
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Appendix A

The model under study consists of three segments: the torso, the femur, and the tibia.
This model is simplified as we study human motion in the sagittal plane in which we can
assume that the two legs move in an asymmetric manner, so we can include one leg only.
The system dynamics are derived using direct discretization of the Lagrange-d’Alembert
Principle (discrete mechanics). First, we define the positions of center of mass of each link
in the x and y coordinates:

xc1 = −(l1 − d1)sinθ1 (A1)

yc1 = (l1 − d1)cosθ1 (A2)

xc2 = −l1sinθ1 − (l2 − d2)sinθ2 (A3)

yc2 = l1cosθ1 + (l2 − d2)cosθ2 (A4)

xc3 = −l1sinθ1 − l2sinθ2 − (l3 − d3)sinθ3 (A5)

yc3 = l1cosθ1 + l2cosθ2 + (l3 − d3)cosθ3 (A6)

The velocities of center of mass of each link in the x and y coordinates are:

.
xc1 = −(l1 − d1)

.
θ1cosθ1 (A7)

.
yc1 = −(l1 − d1)

.
θ1sinθ1 (A8)

.
xc2 = −l1

.
θ1cosθ1 − (l2 − d2)

.
θ2cosθ2 (A9)

.
yc2 = −l1

.
θ1sinθ1 − (l2 − d2)

.
θ2sinθ2 (A10)

.
xc3 = −l1

.
θ1cosθ1 − l2

.
θ2cosθ2 − d3

.
θ3cosθ3 (A11)

.
yc3 = −l1

.
θ1sinθ1 − l2

.
θ2sinθ2 − d3

.
θ3sinθ3 (A12)

The kinetic energy of each link:

KE1 =
1
2

m1v2
c1 =

1
2

m1(l1 − d1)
2 .
θ

2
1 +

1
2

I1
.
θ

2
1 (A13)

KE2 =
1
2

m2v2
c2 =

1
2

m2l2
1

.
θ

2
1 +

1
2

m2(l2 − d2)
2 .
θ

2
2 +

1
2

I2
.
θ

2
2 + m2l1(l2 − d2)

.
θ1

.
θ2cos(θ1 − θ2) (A14)
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KE3 = 1
2 m3v2

c3 = 1
2 m3l2

1

.
θ

2
1 +

1
2 m3l2

2

.
θ

2
2 +

1
2 m3(l3 − d3)

2 .
θ

2
3 +

1
2 I3

.
θ

2
3

+m3l1l2
.
θ1

.
θ2cos(θ1 − θ2) + m3l1(l3 − d3)

.
θ1

.
θ3cos(θ1 − θ3)

+m3l2(l3 − d3)
.
θ2

.
θ3cos(θ2 − θ3)

(A15)

The potential energy of each link:

PE1 = m1gy1 = m1g(l1 − d1)cosθ1 (A16)

PE2 = m2gy2 = m2gl1cosθ1 + m2g(l2 − d2)cosθ2 (A17)

PE3 = m3gy3 = m3gl1cosθ1 + m3gl2cosθ2 + m3g(l3 − d3)cosθ3 (A18)

Now we derive the Lagrange equation of the model:

L = total kinetic energy− total potential energy = KE− PE (A19)

L = 1
2

(
m1(l1 − d1)

2 +m2l2
1 + m3l2

1
) .
θ

2
1 +

1
2

(
m2(l2 − d2)

2 + m3l2
2

) .
θ

2
2 +

1
2 m3d2

3

.
θ

2
3

−(m2l1(l2 − d2) + m3l1l2)
.
θ1

.
θ2cos(θ1 + θ2)

+m3l1d3
.
θ1

.
θ3cos(θ1 − θ3)−m3l2d3

.
θ2

.
θ3cos(θ2 + θ3)

−g(m1(l1 − d1) + m2l1 + m3l1)cosθ1

−g(m2(l2 − d2) + m3l2)cosθ2 −m3gd3cosθ3

(A20)

Now we convert the continuous Lagrange equation into a discrete Lagrange equation
using the mid-point rule as follows:

L(q,
.
q)→ hLd(

qk+1 + qk
2

,
qk+1 − qk

h
) (A21)

Ld = 1
2h a1∆θ1k

2+ 1
2h a2∆θ2k

2 + 1
2h a3∆θ3k

2 + 1
h b1∆θ1k∆θ2kcos

(
∑ θ1k

2 − ∑ θ2k
2

)

+ 1
h b2∆θ1k∆θ3kcos

(
∑ θ1k

2 − ∑ θ3k
2

)

+ 1
h b3∆θ2k∆θ3kcos

(
∑ θ2k

2 − ∑ θ3k
2

)
− ghc1cos

(
∑ θ1k

2

)

−ghc2cos
(

∑ θ2k
2

)
− ghc3cos

(
∑ θ3k

2

)

(A22)

where:

a1 = I1 + m1(l1 − d1)
2 + m2l2

1 + m3l2
1 (A23)

a2 = I2 + m2(l2 − d2)
2 + m3l2

2 (A24)

a3 = I3 + m3(l3 − d3)
2 (A25)

b1 = m2l1(l2 − d2) + m3l1l2 (A26)

b2 = m3l1(l3 − d3) (A27)

b3 = m3l2(l3 − d3) (A28)

c1 = m1(l1 − d1) + m2l1 + m3l1 (A29)
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c2 = m2(l2 − d2) + m3l2 (A30)

Nowfind D1Ld(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1) and D2Ld(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1).
D1Ld(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1): The first derivative of the discrete Lagrange with

respect to the current coordinates (i.e., θ1k, θ2k, and θ3k)

D1Ld = ∂Ld
∂θ1k

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

= − 1
h a1∆θ1k − 1

h b1∆θ2kcos
(

∑ θ1k
2 − ∑ θ2k

2

)

− 1
2h b1∆θ1k∆θ2ksin

(
∑ θ1k

2 − ∑ θ2k
2

)
− 1

h b2∆θ3kcos
(

∑ θ1k
2 − ∑ θ3k

2

)

− 1
2h b2∆θ1k∆θ3ksin

(
∑ θ1k

2 − ∑ θ3k
2

)
+ ghc1

2 sin
(

∑ θ1k
2

)

(A31)

D1Ld = ∂Ld
∂θ2k

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

= − 1
h a2∆θ2k − 1

h b1∆θ1kcos
(

∑ θ1k
2 − ∑ θ2k

2

)

+ 1
2h b1∆θ1k∆θ2ksin

(
∑ θ1k

2 − ∑ θ2k
2

)
− 1

h b3∆θ3kcos
(

∑ θ2k
2 − ∑ θ3k

2

)

− 1
2h b3∆θ2k∆θ3ksin

(
∑ θ2k

2 − ∑ θ3k
2

)
ghc2

2 sin
(

∑ θ2k
2

)

(A32)

D1Ld = ∂Ld
∂θ3k

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

= − 1
h a3∆θ3k − 1

h b2∆θ1kcos
(
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2 − ∑ θ3k
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)
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2h b3∆θ2k∆θ3ksin

(
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2 − ∑ θ3k
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)
+ ghc3

2 sin
(

∑ θ3k
2

)

(A33)

D2Ld(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1): The first derivative of the discrete Lagrange with
respect to the current coordinates (i.e.,θ1k+1, θ2k+1, and θ3k+1)

D2Ld = ∂Ld
∂θ1k+1

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

= 1
h a1∆θ1k +

1
h b1∆θ2kcos
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∑ θ1k

2 − ∑ θ2k
2

)
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2h b1∆θ1k∆θ2ksin
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2 − ∑ θ2k
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h b2∆θ3kcos
(
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2 − ∑ θ3k
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)

− 1
2h b2∆θ1k∆θ3ksin

(
∑ θ1k

2 − ∑ θ3k
2

)
+ ghc1sin

(
∑ θ1k

2

)

(A34)

D2Ld = ∂Ld
∂θ2k+1

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

= 1
h a2∆θ2k +

1
h b1∆θ1kcos

(
∑ θ1k

2 − ∑ θ2k
2

)

+ 1
2h b1∆θ1k∆θ2ksin

(
∑ θ1k

2 − ∑ θ2k
2

)
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h b3∆θ3kcos
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∑ θ2k
2 − ∑ θ3k

2

)

− 1
2h b3∆θ2k∆θ3ksin

(
∑ θ2k

2 − ∑ θ3k
2

)
+ ghc2sin

(
∑ θ2k

2

)

(A35)

D2Ld = ∂Ld
∂θ3k+1

(θ1k, θ1k+1, θ2k, θ2k+1, θ3k, θ3k+1)

= 1
h a3∆θ3k +

1
h b2∆θ1kcos

(
∑ θ1k

2 − ∑ θ3k
2

)
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2h b2∆θ1k∆θ3ksin

(
∑ θ2k

2 − ∑ θ3k
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)
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2 − ∑ θ3k

2

)

+ 1
2h b3∆θ2k∆θ3ksin

(
∑ θ2k

2 − ∑ θ3k
2

)
+ ghc3sin

(
∑ θ3k

2

)

(A36)
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After several investigations, we came out with the proper and most commonly used
set of anthropometric information. Table A1 provides the weight of each segment as a
percentage of the total body weight, the length of each segment as a percentage of total
body height [25,26], the location of Center of Mass (COM) of each segment, measured as
percentage of segment length [26], the segments’ radius of gyration in the frontal plane
(perpendicular to the sagittal plane) as a percentage of segment length [24], and it will be
used to calculate the Moment of Inertia (MOI) for each segment. Based on this information,
the required anthropometric data of the model is calculated for a male with 70 kg mass and
1.70 m height.

Table A1. Anthropometric percentages of different body segments required for the model.

Body Segment
Segment Mass as a

PERCENTAGE of Body
Mass

Segment Length as a
Percentage of Total

Body Height

Distance of Segment
COM from Proximal

End as a Percentage of
Segment Length

Radius of Gyration of
Body Segments in Frontal
Plane as a Percentage of

Segment Length

Head and Neck 8.2 10.75 56.7 31.5

Trunk 46.84 30.00 56.2 38.3

Upper arm 3.25 17.20 43.6 31.0

Forearm 1.8 15.70 43.0 28.4

Hand 0.65 5.75 46.8 23.3

Thigh 10.5 23.20 43.3 26.7

Calf 4.75 24.70 43.4 27.5

The moment of inertia for each segment is calculated using the anthropometric data
associated with each segment. For instance, evaluation of MOI of the head and neck will be
as follows:

• Mass of the head and neck segment is considered to be 8.2% of total body mass
according to the data provided in Table A1, and hence, mHN = 5.78 kg.

• According to Table A1, the length of the head and neck segment is 10.75% of the body
height and is found to be LHN = 0.18 m.

• Radius of gyration of the head and neck in the frontal axis is 31.5%, and hence,
kHN = 0.058 m.

• Now, the MOI of the head and neck can be determined using the following equation:

IHN = mHNk2
HN = 5.78× 0.0582 = 0.0192 kg·m2 (A37)

Using the same technique, the MOI of torso, hand segments, and leg segments are cal-
culated, and the values are given in Table A2 with the other anthropometric measurements
of each segment. The mass and moment of inertia of the head, the arms, and the torso
(HAT) segment is simply found by summing up the individual mass of these segments;
however, the center of mass is found using the parallel axis theorem [41]:

mHATdHAT = mHNdHN + mTdT + 2 ∗mUAdUA + 2 ∗mFAdFA + 2 ∗mHdH (A38)

The distance of the COM of the head and neck from the top of the head is dHN and is
calculated directly from Table A1. The distance of the COM of the torso from the top of
the head is dT , and it is equivalent to the total length of the head and neck segment and
the distance from the neck to the COM of the torso. The same procedure is followed to
calculate the distance from the top of the head to the COM of each segment of the arm.

(5.78 + 32.8 + 2× 2.275 +2× 1.309 + 2× 0.455)dHAT
= 5.78× 0.078 + 32.8× 0.4034 + 2× 2.275× 0.3075 + 2× 1.309× 0.585
+2× 0.455× 0.84

(A39)
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dHAT =
17.379
46.66

= 0.3725 m (A40)
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The MOI of upper body segments around the axis of rotation, which is the y-axis, can
be approximated using the principle Parallel Axes Theorem. For applying the theorem, we
need to determine the offset (r) for each segment, which is the shortest distance between the
axis of rotation and the other axis passing through the COG of that segment. For example,
the offset distance between the axis of rotation and the axis of the head and neck segment
is defined as rHN , and it can be found as the distance between the COG of the head and
neck segment to the joint of the shoulder and the distance from the joint of the shoulder to
the COG of the HAT segment.

rHN = dHAT − dHN = 0.3725− 0.078 = 0.2945 m (A41)

The MOI of the head and neck about the axis of rotation is found as shown below.

IHN
′ = IHN + mHNr2

HN = 0.0192 +
(

5.78× 0.29452
)
= 0.5205 kg·m2 (A42)

Using the same procedure, we found the offset distances and the moments of inertia
about the axis of rotation for the other segments:

For the torso:

rT = dT − dHAT = 0.4034− 0.3725 = 0.0309 m (A43)

IT
′ = IT + mTr2

T = 1.251 +
(

32.8× 0.03092
)
= 1.2823 kg·m2 (A44)

For the upper arms:

rUA = dHAT − dUA = 0.3725− 0.3075 = 0.065 m (A45)
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IUA
′ = IUA + mUAr2

UA = 0.0187 +
(

2.275× 0.0652
)
= 0.0283 kg·m2 (A46)

For the forearms:

rFA = dFA − dHAT = 0.585− 0.3075 = 0.2775 m (A47)

IFA
′ = IFA + mFAr2

FA = 0.00752 +
(

1.309× 0.27752
)
= 0.1083 kg·m2 (A48)

For the hands:

rH = dH − dHAT = 0.84− 0.3075 = 0.5325 m (A49)

IH
′ = IH + mHr2

H = 0.000236 +
(

0.455× 0.53252
)
= 0.1292 kg·m2 (A50)

Then, the total MOI of the HAT segment about the axis of rotation is found by summing
up the MOI of the individual segments about the same axis of rotation:

IHAT
′ = IHN

′ + IT
′ + IUA

′ + IFA
′ + IH

′

= 0.5205 + 1.2823 + 0.0283 + 0.1083 + 0.1292 = 2.0686 kg·m2
(A51)

The table below shows the physical parameters for a male with 70 kg and 1.70 m
required to build the model. Since the model does not include the head and the arms, the
head and the three segments of the arms will be considered as one segment with the torso,
represented as HAT (Head, Arms, and Torso).

Table A2. Model physical parameters based on a male with 70 kg mass and 1.70 m height.

Body Segment Segment Mass
(KG)

Segment Length
(m)

Distance of Segment
COM from Proximal

(m)
Moment of Inertia

Head & Neck 0.18 5.782 0.10361925 0.019160814

Trunk 0.51 32.788 0.28662 1.250987086

Upper arm 0.29 2.275 0.1274864 0.018692162

Forearm 0.27 1.309 0.1155677 0.007520963

Hand 0.10 0.455 0.045747 0.000236024

Thigh 0.39 7.35 0.1707752 0.081504892

Calf 0.42 3.325 0.1822366 0.044335212

HAT 0.69 46.648 0.214937 2.0686
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Abstract: In this paper, we present and justify a methodology to solve the Monge–Kantorovich mass
transfer problem through Haar multiresolution analysis and wavelet transform with the advantage
of requiring a reduced number of operations to carry out. The methodology has the following steps.
We apply wavelet analysis on a discretization of the cost function level j and obtain four components
comprising one corresponding to a low-pass filter plus three from a high-pass filter. We obtain the
solution corresponding to the low-pass component in level j− 1 denoted by µ∗j−1, and using the
information of the high-pass filter components, we get a solution in level j denoted by µ̂j. Finally, we
make a local refinement of µ̂j and obtain the final solution µσ

j .

Keywords: mass transfer problem; wavelets; multiresolution analysis

MSC: 42C40; 49Q20; 65T60

1. Introduction

In recent years, schemes to approximate infinite linear programs have become very
important in theory. The authors of [1] showed that under suitable assumptions, the pro-
gram’s optimum value can be approximated by the values of finite-dimensional linear
programs and that every accumulation point of a sequence of optimal solutions for the
approximating programs is an optimal solution for the original problem. In particular, in [2]
the authors studied the Monge–Kantorovich mass transfer (MT) problem on metric spaces.
They considered conditions under the MT problem as solvable and, furthermore, that
an optimal solution can be obtained as the weak limit of a sequence of optimal solutions to
suitably approximate MT problems.

Moreover, in [3], the authors presented a numerical approximation for the value of
the mass transfer (MT) problem on compact metric spaces. A sequence of transportation
problems was built, and it proved that the value of the MT problem is a limit of the
optimal values of these problems. Moreover, they gave an error bound for the numerical
approximation. A generalization of this scheme of approximation was presented in [4,5].
They proposed an approximation scheme for the Monge–Kantorovich (MK) mass transfer
problem on compact spaces that consisted of reducing to solve a sequence of finite transport
problems. The method presented in that work uses a metaheuristic algorithm inspired by a
scatter search in order to reduce the dimensionality of each transport problem. Finally, they
provided some examples of that method.

On the other hand, the authors of [6] provided orthonormal bases for L2(Rn) that
have properties that are similar to those enjoyed by the classical Haar basis for L2(R).
For example, each basis consists of appropriate dilates and translates of a finite collection of
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“piecewise constant” functions. The construction is based on the notion of multiresolution
analysis and reveals an interesting connection between the theory of compactly supported
wavelet bases and the theory of self-similar tilings. Recent applications of the wavelet filter
methodology have been used in various problems arising in communication systems and
detection of thermal defects (see, for example, [7,8], respectively).

In [9], the authors gave a scheme to approximate the MK problem based on the
symmetries of the underlying spaces. They took a Haar-type MRA constructed according
to the geometry of the spaces. Thus, they applied the Haar-type MRA based on symmetries
to the MK problem and obtained a sequence-of-transport problem that approximates the
original MK problem for each MRA space. Note that in the case of Haar’s classical wavelet,
this methodology coincides with the methods presented in [2,3].

It is important to note that various scientific problems are modeled through the
Monge–Kantorovich approach; therefore, providing new efficient methodologies to find
approximations of such problems turns out to be very useful. Within the applications of
problems whose solutions are the Monge–Kantorovich problem are found: the use of the
transport problem for the analysis of elastic image registration (see, for example, [10–12]).
Other optimization problems related to this topic and differential equation tools can be
found in recent works such as [13,14].

The main goal of this paper is to present a scheme of approximation of the MK problem
based on wavelet analysis in which we use wavelet filters to split the original problem.
That is, we apply the filter to the discrete cost function in level j, which results in a cost
function of level j− 1 and three components of wavelet analysis. Using the information of
the cost function given by the low-pass filter, which belongs to level j− 1, we construct µ∗j−1
a solution of the MK problem for that level j− 1, and using the additional information, the
other three components of wavelet analysis are extended to µ̂j, which is a solution to level
j, where the projection of µ̂j to level j− 1 is µ∗j−1. Finally, we make a local analysis of the
solution µ̂j to obtain an improved solution based on the type of points of that solution (we
have two type of points that are defined in the base in the connectedness of the solution).

This work has three non-introductory sections. In the first of them we present the
Haar multiresolution analysis (MRA) in one and two dimensions. Next, we relate this to
the absolutely continuous measures over a compact in R2. We finish with the definition of
the Monge–Kantorovich mass transfer problem and its relation to the MRA.

In the second section, we define a proximity criterion for the components of the
support of the simple solutions of the MK problem and study in detail the problem of,
given a solution µ∗j−1 at level j− 1 of resolution for the MK problem, construct a feasible
solution µ̂j for the MK problem at level of resolution j such that it is a refinement of the
solution with lees resolution.

On the other hand, in the third section we present a methodological proposal to solve
the MKj problem such that it can be summarized in a simple algorithm of six steps:

Step 1. We consider a discretization of the cost function for the level j, denoted by cj.
Step 2. We apply the wavelet transform to cj; we obtain the low-pass component cj−1 and

three high-pass components, denoted by Ψ1, Ψ2 and Ψ3, respectively.
Step 3. Using cj−1 and the methodology of [3,4,9], we obtain a solution µ∗j−1 for MK j−1

associated with this cost function.
Step 4. We classify the points of the support of the solution µ∗j−1 by proximity criteria as

points of Type I or Type II.
Step 5. Using the solution µ∗j−1, the information of the high-pass components and Lemma 1,

we obtain a feasible solution for the level j, which is denoted by µ̂j. This feasible
solution has the property that its projection to the level j − 1 is equal to µ∗j−1;
moreover, the support of µ̂j is contained in the support of µ∗j−1.

Step 6. The classification of the points of µ∗j−1 induce classification of the points in µ̂j by
contention in the support. Over the points of Type I of the solution µ̂j, we do
not move those points. For the points of Type II, we apply a permutation to the
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solution over the two points that better improves the solution, and we repeat the
process with the rest of the points.

Finally, we present a series of examples that use the proposed methodology based on
wavelet analysis and compare their results with those obtained applying the methodology
of [3,4,9].

2. Preliminaries
2.1. One-Dimensional MRA

The results of this and the following subsection are well known, and for a detailed
exposition, we recommend consulting [15–17]. We begin by defining a general multiresolu-
tion analysis and developing the particular case of the Haar multiresolution analysis on
R. Given a > 0 and b ∈ R, the dilatation operator Da and the translation operator Tb are
defined by

(Da f )(x) = a1/2 f (ax) and (Tb f )(x) = f (x− b) (1)

for every f ∈ L2(R), where the latter denotes the usual Hilbert space of square integrable
real functions defined on R. A multiresolution analysis (MRA) on R is a sequence of
subspaces (Vj)j∈Z of L2(R) such that it satisfies the following properties:

(1) Vj ⊂ Vj+1 for every j ∈ Z.
(2) L2(R) = span

⋃

j∈Z
Vj.

(3)
⋂

j∈Z
Vj = {0}.

(4) Vj = D2j V0.
(5) There exists a function ϕ ∈ L2, called the scaling function, such that the collection

{Tj ϕ}j∈Z is an orthonormal system of translates and

V0 = span{Tj ϕ}i∈Z. (2)

We denote as χA the characteristic function of the set A. Then, the Haar scaling
function is defined by

ϕ(x) = χ[0,1)(x). (3)

For each pair j, k ∈ Z, we call

Ij,k = [2−jk, 2−j(k + 1)). (4)

Hence, we define the function

ϕj,k(x) = (TkD2j ϕ)(x)

= 2j/2 ϕ(2jx− k)

= 2j/2χIj,k (x).

(5)

The collection {ϕj,k}j,k∈Z is called the system of Haar scaling functions. For j0 ∈ Z,
the collection {ϕj0,k}k∈Z is referred to as the system of scale j0 Haar scaling functions.
The Haar function is defined by

ψ(x) = χ[0,1/2)(x)− χ[1/2,1)(x). (6)

For each pair j, k ∈ Z, we define the function

ψj,k(x) = (TkD2j ψ)(x)

= 2j/2ψ(2jx− k)

= 2j/2(χIj+1,2k − χIj+1,2k+1

)
(x).

(7)
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The collection {ψj,k}j,k∈Z is referred to as the Haar system on R. For j0 ∈ Z, the col-
lection {ψj0,k}k∈Z is referred to as the system of scale j0 Haar functions. It is well known
that with respect to the usual inner product 〈·, ·〉 in L2(R), the Haar system on R is an
orthonormal system. Moreover, for each j0 ∈ Z, the collection of scale j0 Haar scaling
functions is an orthonormal system. Thus, for each j ∈ Z, the approximation operator Pj on
L2(R) is defined by

(Pj f )(x) = ∑
k
〈 f , ϕj,k〉ϕj,k(x), for all f ∈ L2(R), (8)

and the approximation space Vj by

Vj = span{ϕj,k}k∈Z. (9)

The collection {Vj}j∈Z is called Haar multiresolution analysis. Similarly, we have that
for each j0 ∈ Z, the detail operator Qj on L2(R) is defined by

(Qj f )(x) = (Pj+1 f )(x)− (Pj f )(x), for all f ∈ L2(R), (10)

and the wavelet space Wj by
Wj = span{ψj,k}k∈Z. (11)

Note that Vj+1 = Vj ⊕Wj for all j ∈ Z. Hence, the collection

{ϕj0,k, ψj,k : j ≥ j0, k ∈ Z} (12)

is a complete orthonormal system on R; this system is called the scale j0 Haar system on R.
As a consequence, the Haar system {ψj,k}j,k∈Z is a complete orthonormal system on R.

2.2. Two-Dimensional MRA

To obtain the Haar MRA on R2, we consider the Haar MRA on R defined in the
previous subsection with scaling and Haar functions ϕ and ψ, and from them, through a
tensor product approach we can construct a two-dimensional scaling and Haar function.
First, we define the four possible products:

Φ(x, y) = ϕ(x)ϕ(y), Ψ(1)(x, y) = ϕ(x)ψ(y)

Ψ(2)(x, y) = ψ(x)ϕ(y), Ψ(3)(x, y) = ψ(x)ψ(y),
(13)

which are the scaling function associated with the unitary square and three Haar functions,
respectively. Hence, for each j, k1, k2 ∈ Z, we define naturally the scaling and Haar function
systems:

Φj,k1,k2(x, y) = ϕj,k1(x)ϕ(y)j,k2 , Ψ(1)
j,k1,k2

(x, y) = ϕ(x)j,k1 ψ(y)j,k2

Ψ(2)
j,k1,k2

(x, y) = ψ(x)j,k1 ϕ(y)j,k2 , Ψ(3)
j,k1,k2

(x, y) = ψj,k1(x)ψ(y)j,k2 .
(14)

Then for j0 ∈ Z, as in the one-dimensional case, we have that the collection

{Φj0,k1,k2 : k1, k2 ∈ Z} ∪ {Ψ(i)
j,k1,k2

: 1 ≤ i ≤ 3, j ≥ j0} (15)

is an orthonormal basis on L2(R2). Thus, the collection

{Ψ(i)
j,k1,k2

: 1 ≤ i ≤ 3, j, k1, k2 ∈ Z} (16)
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is an orthonormal basis on L2(R2). Then for j ∈ Z and f ∈ L2(R2), the approximation
operator is defined by

(Pj f )(x, y) = ∑
k1

∑
k2

〈 f , Φj,k1,k2〉Φj,k1,k2(x, y), (17)

and for i = 1, 2, 3, the detail operators are

(Q(i)
j f )(x, y) = ∑

k1

∑
k2

〈 f , Ψ(i)
j,k1,k2

〉Ψ(i)
j,k1,k2

(x, y). (18)

Hence, the projection can be written as

(Pj+1 f )(x, y) = (Pj f )(x, y) + (Q(1)
j f )(x, y) + (Q(2)

j f )(x, y) + (Q(3)
j f )(x, y). (19)

We will describe the approximation Pj and detail operators Q(i)
j from the geometric

point of view. First of all, we fix some j, k1, k2 ∈ Z and define the square

S(j, k1, k2) = Ij,k1 × Ij,k2

= [2−jk1, 2−j(k1 + 1))× [2−jk2, 2−j(k2 + 1)).
(20)

Then, we have that Φj,k1,k2 is the characteristic function of S(j, k1, k2), in symbols

Φj,k1,k2(x, y) = χS(x, y) (21)

where S = S(j, k1, k2). Therefore for f ∈ L2(R2), the operator Pj f acts as a discretization of
f that is constant over the disjointed S(j, k1, k2) squares. On the other hand, we can split
S(j, k1, k2) as follows (see Figure 1):

Figure 1. Functions Φj,k1,k2 , Ψ(1)
j,k1,k2

, Ψ(2)
j,k1,k2

and Ψ(3)
j,k1,k2

.

(i) Into two rectangles with half the height and the same width as S(j, k1, k2), namely, the
sets

A1(j, k1, k2) = [2−jk1, 2−j(k1 + 1))× [2−j−12k2, 2−j−1(2k2 + 1)) and

A2(j, k1, k2) = [2−jk1, 2−j(k1 + 1))× [2−j−12k2 + 1, 2−j−1(2k2 + 2)).
(22)

(ii) Into two rectangles with the same height and half the width as S(j, k1, k2), namely,

B1(j, k1, k2) = [2−j−12k1, 2−j−1(2k1 + 1))× [2−jk2, 2−j(k2 + 1)) and

B2(j, k1, k2) = [2−j−12k1 + 1, 2−j−1(2k1 + 2))× [2−jk2, 2−j(k2 + 1)).
(23)
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(iii) Into four squares with half the side lengths of S(j, k1, k2), namely,

C1(j, k1, k2) = [2−j−12k1, 2−j−1(2k1 + 1))× [2−j−12k2, 2−j−1(2k2 + 1)),

C2(j, k1, k2) = [2−j−12k1 + 1, 2−j−1(2k1 + 2))× [2−j−12k2, 2−j−1(2k2 + 1)),

C3(j, k1, k2) = [2−j−12k1, 2−j−1(2k1 + 1))× [2−j−12k2 + 1, 2−j−1(2k2 + 2)) and

C4(j, k1, k2) = [2−j−12k1 + 1, 2−j−1(2k1 + 2))× [2−j−12k2 + 1, 2−j−1(2k2 + 2)).

(24)

Hence, for i = 1, 2, 3, the function Ψ(i)
j,k1,k2

is defined by

Ψ(1)
j,k1,k2

(x, y) = χA1(x, y)− χA2(x, y) with Al = Al(j, k1, k2) for l = 1, 2.

Ψ(2)
j,k1,k2

(x, y) = χB1(x, y)− χB2(x, y) with Bl = Bl(j, k1, k2) for l = 1, 2.

Ψ(3)
j,k1,k2

(x, y) = χC1∪C4(x, y)− χC2∪C3(x, y) with Cl = Cl(j, k1, k2) for l = 1, 2, 3, 4.

(25)

(see Figure 1). Thus, the image of f ∈ L2(R2) under the detail operator Q(i)
j is a function

Q(i)
j f formed by pieces that oscillate symmetrically on each square S(j, k1, k2).

Now we have the elements to define an MRA on R2; to do this, we will use the notation
introduced for the one-dimensional MRA on R defined in the previous subsection. For each
j ∈ Z, we define

Vj = Vj ⊗Vj. (26)

Then the collection {Vj}j∈Z is the Haar multiresolution analysis on R2, where the
dilatation and translation operators are defined by

D2j = D2j ⊗ D2j and Tm,n = Tm ⊗ Tn, (27)

respectively. Note that we have the following relation:

Vj+1 = Vj ⊕W(1)
j ⊕W(2)

j ⊕W(3)
j , (28)

where W(1)
j = Vj ⊗Wj, W(2)

j = Wj ⊗ Vj and W(3)
j = Wj ⊗Wj. For more detail with

respect to the Haar MRA, see [15].

2.3. Measures and MRA

In this subsection, we will use the two previous ones and the [9] approach to relate
measures over R2 with the Haar MRA on R2. The results and definitions presented in this
and the following subsection can be found in the classical references [18,19]. We consider a
compact subset X of R2 and a measure µ such that it is absolutely continuous with respect
to the Lebesgue measure λ. We call

fµ =
dµ

dλ
(29)

the Radon–Nikodym derivative of µ with respect to λ. By construction, it necessary holds
that fµ ∈ L1(X). We additionally suppose that fµ ∈ L2(X). Then, as a consequence of the
Haar MRA on R2, we have that

‖Pj fµ − fµ‖2 → 0 as j→ ∞. (30)

Moreover, the compactness of X ensures that

‖Pj fµ − fµ‖1 ≤ λ(X)1/2‖Pj fµ − fµ‖2. (31)
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The above allow us to define µj, the approximation of the measure µ to the level j ∈ Z
of the Haar MRA on R2, as the measure induced by the projection of the Radon–Nikodym
to the level j. That is, µj is defined by the relation

dµj = Pj fµ dλ. (32)

We denote the expectation of a function g ∈ L(R2) with respect to λ as

E[g] =
∫

R2
gdλ. (33)

Then Theorem 4 and Corollary 5 in [9] ensure that for each g ∈ L2(R2) and j ∈ Z, it is
fulfilled that

E[Pjg] = E[g]. (34)

Thus, µj is absolutely continuous with respect to the Lebesgue measure. If, additionally,
we suppose that µ is a measure with support on X, then (µj) converges to µ in the L1 and
L2 sense. That is, by the Riesz Theorem, we can associate each of these measures µj to an
integrable function µ̂j ∈ PjL2(R2) such that for each Lebesgue measurable set A ⊂ R2,

µj(A) =
∫

A
µ̂jdλ

=
∫

µ̂jχAdλ

= E[µ̂jχA],

(35)

and we apply the respective convergence mode. Further, the compact support of measures
ensures that the sequence (µj) converges weakly to the measure µ, proof of which can be
found in [9] Theorem 7.

2.4. M-K Problem and MRA

In this subsection, we study the Monge–Kantorovich problem from the point of view
of the Haar MRA on R2 (for a detailed exposition, we recommend consulting [9]). Let
X and Y be two compact subsets of R2. We denote by M+(X × Y) the family of finite
measures on X×Y. Given µ ∈ M+(X×Y), we denote its marginal measures on X and Y
as

Π1µ(E1) = µ(E1 ×Y) (36)

and
Π2µ(E2) = µ(X× E2) (37)

for each µ-measurable set E1 ⊂ X and E2 ⊂ Y. Let c be a real function defined on X × Y,
and η1, η2 are two measures defined on X and Y, respectively. The Monge–Kantorovich
mass transfer problem is given as follows:

MK: minimize 〈µ, c〉 :=
∫

cdµ

subject to: Π1µ = η1, Π2µ = η2, µ ∈ M+(X×Y).
(38)

A measure µ ∈ M+(X × Y) is said to be a feasible solution for the MK problem if it
satisfies (38) and 〈µ, c〉 is finite. We said that the MK problem is solvable if there is a feasible
solution µ∗ that attains the optimal value for it. So µ∗ is called an optimal solution for (38).
If, additionally, we assume that µ, η1 and η2 are absolutely continuous with respect to the
Lebesgue measures on R2 and R, then in a natural way, we can discretize the MK problem
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through the Haar MRA on R2 as follows. For j ∈ Z, we define the MK problem of level j
by:

MKj: minimize 〈µj, c〉 :=
∫

cdµj

subject to: Π1µj = η1
j , Π2µj = η2

j , µ ∈ M+(X×Y).
(39)

where µj, η1
j and η2

j are the projections to level j of the measures µ, η1 and η2, respectively,
to the Haar MRA.

3. Technical Results

In this section, we present a series of results that ensure the good behavior of the
methodological proposal of the next section. In order to do this, we start by assuming
an MK problem with cost function c = c(x, y), base sets X = Y = [0, 1] and measure
restrictions η1 = η2 = λ|[0,1]. In other words, we consider the problem of moving a uniform
distribution to a uniform one with the minimum movement cost. Since in applications we
work with discretized problems, then as a result of applying the MRA on R2, we have that
our objective is to solve:

MKj: minimize ∑
i,k

µ
j
i,kcj

i,k

subject to: ∑
i

µ
j
i,k =

1
2j , for each k = 1, . . . , 2j.

∑
k

µ
j
i,k =

1
2j , for each i = 1, . . . , 2j.

∑
i,k

µ
j
i,k = 1.

µ
j
i,k ≥ 0, for each i, k = 1, . . . , 2j.

(40)

where µ
j
i,k is the portion of the initial value

1
2j in the position Ij,i of the x-axis allocated to

the position Ij,k of the y-axis. We call j-discrete unit square the grid formed by the squares
S(j, k1, k2) (see (20)), dividing the set [0, 1] × [0, 1] in 2j × 2j blocks, in a such way that
each one is identified with the point (k1, k2). We suppose that there is a simple solution µ
for (40). That is, µ is a feasible solution such that, given i0, k0 ∈ {1, . . . , 2j} with µi0,k0 6= 0, it
necessarily holds that µi0,k = 0 for each k 6= k0 and µi,k0 = 0 for each i 6= i0. Geometrically,
if the measure µ is plotted as a discrete heat map in the j-discrete unit square, then no color
element in the plot has another color element in its same row and column, as can be seen in
Figure 2.

Definition 1. We define a proximity criteria in the j-discrete unit square as follows: (i, k) is a
neighbor of (l, m) if

|i− l| = 1 or |k−m| = 1. (41)

In Figure 2, we plot the support of the hypothetical simple solution µ. Hence, the
neighbors of the position in the middle of the cross are those that touch the yellow stripes.
Then in this example, the middle point has four neighbors.
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Figure 2. Support of µ and the proximity criteria.

With this in mind, we can classify the points in support(µ) as follows.

Definition 2. We say that (k1, k2) ∈ support(µ) is a border point if k1 or k2 equals 0 or 1;
otherwise, we call it an interior point. It is clear that a border point has at least one neighbor and at
most three, whereas an interior point has at least two neighbors and at most four. Hence, we can
partition support(µ) into two sets as follows.

The set of the points of Type I is given by

T1 = {(i, k) ∈ support(µ) | (i, k) has minimun neighbors}, (42)

and the set of the points of Type II is given by

T2 = support(µ) \ T1. (43)

Intuitively, the set T1 is composed of well-controlled points, whereas the set T2 has
the points that admit permutations between them, since, as we will see in the next section,
in the proposed algorithm they will be permuted. See Figures 3 and 4. Naturally, since µ
is a feasible solution for (40), then given elements (k1, k2), (m1, m2) ∈ support(µ) and for
i = 1, 2 permutations σi over {ki, mi}, the measure µσ defined by

µσ(a, b) = µ(σ1(a), σ2(b)) (44)

is a feasible solution.

Figure 3. Classification of the points in support(µ): Type I points.
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Figure 4. Classification of the points in support(µ): Type II points.

Refining Projections

In this subsection, we study the problem of improving an optimal solution µ∗j−1 for (40)
on level j− 1 ∈ Z to a feasible solution µ̂j for the next level j. Let µ∗j−1 be an optimal solution
for level j− 1. Then we are looking for µ̂j such that:

(1) µ̂j is a feasible solution.

(2) Pj−1µ̂j = µ∗j−1.
(45)

As described in the previous section, the measure µ̂j ∈ L2(R2) can be decomposed in

µ̂j = µ∗j−1 + ν1 + ν2 + ν3 (46)

where

νi(x, y) = (Q(i)
j µ̂j)(x, y)

= ∑
k1

∑
k2

〈µ̂j, Ψ(i)
j,k1,k2

〉Ψ(i)
j,k1,k2

(x, y).
(47)

From the geometric point of view, the projections νi are formed from differences of
characteristic functions, as we mentioned in Section 2.2. So we have the following result:

Lemma 1. Let j ∈ Z and µ∗j−1 be an optimal solution for (40) at level j− 1. Then for each positive
measure µ̂j ∈ PjL2(R2) such that Pj−1µ̂j = µ∗j−1 and µ̂j = µ∗j−1 + ν1 + ν2 + ν3, it necessarily
holds that

µ∗j−1(A) = 0 implies νi(A) = 0 (48)

for each Lebesgue measurable set A ⊂ R2 and each i = 1, 2, 3. Therefore, the support of µ̂j is
contained in the support of µ∗j−1.

Proof. We only make the proof for the case i = 1, since the other two are very similar.
To simplify the notation, we use the symbols µ− and ν− as measures or functions in the
respective subspace of L2(R2). Since when setting a level j ∈ Z all the measures in question
are constant in pairs of rectangles dividing S(j, k1, k2), as we prove in Section 2.2, then it is
enough to prove that (65) is valid on this rectangles. Let

A1 = A1(j, k′1, k′2)

= [2−jk′1, 2−j(k′1 + 1))× [2−j−12k′2, 2−j−1(2k′2 + 1)).
(49)

and

A2 = A2(j, k′1, k′2)

= [2−jk′1, 2−j(k′1 + 1))× [2−j−12k′2 + 1, 2−j−1(2k′2 + 2)),
(50)
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as in (22). Then for l = 1, 2, we have that

µ̂j(Al) = µ∗j−1(Al) +
3

∑
i=1

νi(Al)

= E[µ∗j−1χAl ] +
3

∑
i=1

E[νiχAl ].

(51)

Now we will calculate each one of the expectations separately. By (17), (18) and (25),
we have that

µ∗j−1(x, y) = ∑
k1

∑
k2

〈µ∗j−1, Φj,k1,k2〉Φj,k1,k2(x, y) (52)

and

ν1(x, y) = ∑
k1

∑
k2

〈ν1, Ψ(1)
j,k1,k2

〉Ψ(1)
j,k1,k2

(x, y)

= ∑
k1

∑
k2

〈ν1, Ψ(1)
j,k1,k2

〉[χA1(j,k1,k2)
(x, y)− χA2(j,k1,k2)

(x, y)].
(53)

Then for l = 1 and by (15), (16) and (22), we have that

E[µ∗j−1χA1 ] = E[χA1 ∑
k1

∑
k2

〈µ∗j−1, Φj,k1,k2〉Φj,k1,k2 ]

= 〈µ∗j−1, Φj,k′1,k′2
〉E[χA1 Φj,k′1,k′2

]]

= dE[χA1 ]

= d
1

22j+1

(54)

where d = 〈µ∗j−1, Φj,k′1,k′2
〉 and

E[ν1χA1 ] = E[χA1 ∑
k1

∑
k2

〈ν1, Ψ(1)
j,k1,k2

〉(χA1(j,k1,k2)
− χA2(j,k1,k2)

)]

= 〈ν1, Ψ(1)
j,k′1,k′2

〉EχA1

= cE[χA1 ]

= c
1

22j+1

(55)

where c = 〈ν1, Ψ(1)
j,k′1,k′2

〉. Similarly, but using (23) and (24), we can prove that

E[ν2χA1 ] = 0 (56)

and
E[ν3χA1 ] = 0. (57)

Then

µ̂j(A1) = d
1

22j+1 + c
1

22j+1

= µ∗j−1(A1) + ν(A1)
(58)
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Now, we will make an analogous argument for the case l = 2. Hence,

E[µ∗j−1χA2 ] = E[χA2 ∑
k1

∑
k2

〈µ∗j−1, Φj,k1,k2〉Φj,k1,k2 ]

= 〈µ∗j−1, Φj,k1,k2〉E[χA2 Φj,k′1,k′2
]]

= dE[χA2 ]

= d
1

22j+1

(59)

and

E[ν1χA2 ] = E[χA2 ∑
k1

∑
k2

〈ν1, Ψ(1)
j,k1,k2

〉(χA1(j,k1,k2)
− χA2(j,k1,k2)

)]

= −〈ν1, Ψ(1)
j,k′1,k′2

〉EχA2

= −cE[χA2 ]

= −c
1

22j+1 .

(60)

Thus,

µ̂j(A2) = d
1

22j+1 − c
1

22j+1

= µ∗j−1(A2) + ν(A2)
(61)

and by (54), (55), (59) and (60), we have that

µ∗j−1(A1) = µ∗j−1(A2) (62)

and
ν1(A1) = −ν1(A2). (63)

Therefore, it follows from (58), (61), (62), (63) and the fact that µ̂j is a positive measure,
that

|ν1(A1)| = |ν1(A2)|
≤ |µ∗j−1(A1)|
= |µ∗j−1(A2)|

(64)

From which we conclude that µ∗j−1(A) = 0 implies ν1(A) = 0. Similarly, it can be
shown that µ∗j−1(A) = 0 implies νi(A) = 0 for i = 2, 3; for this, analogous proofs are
carried out, with the difference being that for i = 2, the sets to be considered are B1 and B2
as in (23), whereas C1 ∪ C4 and C2 ∪ C3 as in (24) are the respective sets when i = 3.

We have proved that if it is intended to go back to the preimage of the projection of
the approximation operator P from a level j− 1 to a level j, the support of the level j− 1
delimits that of the j level. Now, we will prove that for every measure µ̂j that satisfies (45)
and (46), it necessarily holds that ν1 = ν2 = 0.

Lemma 2. Let j ∈ Z and µ∗j−1 be an optimal simple solution for (40) at level j − 1. Then
for each feasible solution µ̂j ∈ PjL2(R2) to (40) at level j such that Pj−1µ̂j = µ∗j−1 and µ̂j =

µ∗j−1 + ν1 + ν2 + ν3. It necessarily holds that

ν1 = ν2 = 0. (65)
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Proof. In order to perform this proof, we use the restrictions of the MK problem (40),
which in turn, are related to the marginal measures. Therefore, we will only complete the
proof for one of the projections, since the other is analogous. From the linearity of the
Radon–Nikodym derivative, it follows that

η1
j = Π1µ̂j

= Π(µ∗j−1 + ν1 + ν2 + ν3)

= Πµ∗j−1 + Πν1 + Πν2 + Πν3.

(66)

Let k′ ∈ Z and Ij+1,2k′ = [2−j−12k′, 2−j−1(2k′ + 1)). Thus, by (39) and (66), we have
that

Π1µ̂j(Ij+1,2k′) = η1
j (Ij+1,2k′)

= Π1µ∗j−1(Ij+1,2k′)

= α.

(67)

That is, we are evaluating feasible solutions on rectangles whose height is half the size
of the squares with which they are discretized at the j level of the Haar MRA. Now, we will
develop in detail (66) evaluated on Ij,k′ . Since µ∗j−1 is a simple solution, we call l′ ∈ Z the
only number such that µ+

j−1(S(j, k′, l′)) > 0, where S(j, k1, k2) is defined as in (20). With the
aim of simplifying the notation, we define I = Ij+1,2k′ ×R. By (16) and (25), we have that

Π1ν1(Ij+1,2k′) = νi(I)
= E[χIν1]

= E[χI ∑
k1

∑
k2

〈ν1, Ψ(1)
j,k1,k2

〉(χA1(j,k1,k2)
− χA2(j,k1,k2)

)]

= E[χI ∑
k2

〈ν1, Ψ(1)
j,k′ ,k2
〉(χA1(j,k′ ,k2)

− χA2(j,k′ ,k2)
)]

= E[χI 〈ν1, Ψ(1)
j,k′ ,l′〉(χA1(j,k′ ,l′) − χA2(j,k′ ,l′))]

(68)

By the way I was defined, necessarily in the last equality it must be fulfilled that one
of the terms in the expectation is equal to 0. Hence, it is fulfilled that

Π1ν1(Ij+1,2k′) = 〈ν1, Ψ(1)
j,k′ ,l′〉E[χI ]

=
1

22j+1 〈ν1, Ψ(1)
j,k′ ,l′〉.

(69)

By a similar argument, it can be proved that

Πν2(Ij+1,2k′) = 0 (70)

and
Πν2(Ij+1,2k′) = 0. (71)

Then from (66) to (71), it follows that

α = α +
1

22j+1 〈ν1, Ψ(1)
j,k′ ,l′〉+ 0 + 0. (72)

Hence,
〈ν1, Ψ(1)

j,k′ ,l′〉 = 0. (73)

Therefore, ν1 = 0. In a similar way, we can prove that ν2 = 0.
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Suppose we have a simple optimal solution µ∗j−1 for the MK problem discretized
through the Haar MRA at level j− 1 ∈ Z and that we are interested in refining that solution
to the next level j. By Lemmas 1 and 2, any µ̂j that satisfies (45) has its support contained in
the support of µ∗j−1 and has components ν1 = ν2 = 0. Then the problem of constructing a
feasible solution µ̂j such that it refines µ∗j−1 is reduced to construct

µ̂j(x, y) = µ∗j−1(x, y) + ν3(x, y)

= µ∗j−1(x, y) + ∑
k1

∑
k2

〈µ̂j, Ψ(i)
j,k1,k2

〉Ψ(i)
j,k1,k2

(x, y), (74)

which is equivalent to chosing for each k1, k2 ∈ Z a value ν3
k1,k2

such that

µ̂
j
k1,k2

= µ
∗,j−1
k1,k2

+ ν3
k1,k2

. (75)

By Lemma 1 for each k1, k2 ∈ Z, it is fulfilled that

|ν3
k1,k2
| ≤ µ

∗,j−1
k1,k2

. (76)

Therefore, the choice of ν3
k1,k2

is restricted to a compact collection, and since µ̂j is a
solution of the linear program (40), then

|ν3
k1,k2
| = µ

∗,j−1
k1,k2

. (77)

Thus, the sign of ν3
k1,k2

must be such that it minimizes ν3
k1,k2

cj
k1,k2

. That is,

ν3
k1,k2

cj
k1,k2
≤ 0 (78)

4. Methodological Proposal

In this section, we show through examples a process that builds solutions to the MK
problem with a reduced number of operations. First, we consider the MK problem with
cost function c : [0, 1]× [0, 1]→ R defined by

c(x, y) = 4x2y− xy2 (79)

and homogeneous restrictions ν1, ν2 over [0, 1]. So that the algorithm can be graphically
appreciated, we take a small level of discretization, namely j = 6. Thus, in the Haar MRA
over R2 at level j = 6, the cost function has the form shown in Figure 5, which can be stored
in a vector of size 22j = 22(6) = 212.

Now, we apply the filtering process to the cost function at level j = 6, which results in
four functions

c6(x, y) = c5(x, y) + Ψ(1)(x, y) + Ψ(2)(x, y) + Ψ(3)(x, y); (80)

see Figures 6–9.

112



Axioms 2023, 12, 555
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Figure 5. Step 1. Discretization of the cost function to the level j, which is denoted by cj. In particular,
the cost function is c(x, y) = 4x2y− xy2 for lever j = 6.

Step 2. Filtering the original discrete function using the high-pass filter, which yield
three discrete functions denoted by Ψ1, Ψ2 and Ψ3, that functions correspond to Figures 7, 8
and 9, respectively, each describing local changes in the original discrete function. It is
then low-pass filtered to produce the approximate discrete function c5, which is given by
Figure 6.
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Figure 6. c5(x, y).
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Figure 7. Ψ(1)(x, y).
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Figure 8. Ψ(2)(x, y).

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

Figure 9. Ψ(3)(x, y).

We then solve the MK problem for the level j− 1 = 5. That is, we find a measure
µ∗j−1 = µ∗5 that is an optimal solution for the MK problem with cost function c5. Such data

can be stored in a vector of size 22j−2 = 210; see Figure 10. For each entry k, the formal
application that plots this vector in a square is defined by k → (k1 + 1, k2 + 1), where
0 ≤ k1, k2 < 2n−1 and k = k1 · 2j−1 + k2.
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Figure 10. Step 3. We obtain a solution µ∗5 for MK5 associated with the cost function c5 given in
Figure 6.
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Since the measure µ∗j−1 = µ∗5 is an optimal simple solution for the MK problem, then
we can represent its support in a simple way, as we show below:

support(µ∗j−1) =
⋃

k1,k2

Sk1,k2 (81)

where Sk1,k2 = S(j, k1, k2) is the square in (20). Next, we split each block Sk1,k2 ⊂ support(µ∗j−1)

into four parts as in (24); see Figure 11.

Figure 11. Division of the components of support(µ∗j−1) into four parts.

From the technical point of view, in the discretization at level j− 1 = 5, we have a
grid of 2j−1 × 2j−1 = 32× 32 squares that we call Sk1,k2 and identify with the points (k1, k2).
Thus, we refine to a grid of 64× 64, splitting each square into four, which in the new grid
are determined by points

(2k1 − 1, 2k2), (2k1 − 1, 2k2 − 1), (2k1, 2k2 − 1) and (2k1, 2k2); (82)

see Figure 12.

Figure 12. Refinement of grid from level j− 1 to j of discretization.

As we prove in Lemma 1, any feasible solution µ̂j = µ̂6 that refines µ∗5 has its support
contained in support(µ∗5). Therefore, we must only deal with the region delimited by the
support of µ∗5 . By Lemma 2, in order to construct the solution µ̂6, we only need to determine
the values n3

k1,k2
corresponding to the coefficients of the wavelet part ν3; however, by (77)

and (78), those values are well determined and satisfy that when added with the scaling
part µ∗k1,k2

, the result is a scalar multiple of a characteristic function. For example if the

115



Axioms 2023, 12, 555

square Sk1,k2 has scaling part coefficient µ∗k1,k2
= c, then we choose ν3

k1,k2
= −c. Hence,

by (21) and (25), we have that

µ̂ 6
k1,k2

(x, y) = µ∗k1,k2
(x, y) + ν3

k1,k2
(x, y)

= cχS(x, y)− c[χC1∪C4(x, y)− χC2∪C3(x, y)]

= 2cχC2∪C3(x, y).

(83)

Thus, from an operational point of view, we only need to chose between two options
of supporting each division of square Sk1,k2 , as we illustrate in Figures 13 and 14.

Figure 13. Supports for refinement of the element Sk1,k2 corresponding to the level j : Option I.

Figure 14. Supports for refinement of the element Sk1,k2 corresponding to the level j: Option II.

This coincides with our geometric intuition. Hence, the resulting feasible solution
µ̂6 has its support contained in support(µ∗5), and its weight within each square Sk1,k2 is
presented in a diagonal within that block; see Figure 15. Finally, we can improve µ̂6 by
observing the way the filtering process acts. To do this, we apply the proximity criteria (41)
and split the support of µ̂6 into points of Type I and II. In Figure 16, we identify the points
of Type I and II of solution µ∗5 , whereas in Figure 15, we do the same but for µ̂6.

Intuitively, the division of the support into points of Type I and II allows us to classify
the points so that they have an identity function form and, consequently, that come from
the discretization of a continuous function—points of Type I—and in points that come
from the discretization of a discontinuous function—points of Type II. Thus, the points of
Type I are located in such a way that they generate a desired solution, and therefore it is
not convenient to move them, whereas Type II points are free to be changed as this does
not lead to the destruction of a continuous structure in the solution. As we mentioned in
the previous section, each permutation of rows or columns of one weighted element Sk1,k2
with another Sk′1,k′2

constructs a feasible solution; see (44). Thus, as a heuristic technique
to improve the solution, we check the values 〈c6, µσ

6 〉 associated with each solution µσ
6

obtained by permuting rows or columns of points of Type II of the solution µ̂6. We call µσ∗
6

the solution for which its permutation gives it the best performance. See Figure 17.
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Figure 15. Step 5. Using the solution µ∗5 which is given by Figure 10, the information of the high-pass
components (Figures 7, 8 and 9) and Lemma 1, we obtain a feasible solution for Level 6, which is
denoted by µ̂6.
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Figure 16. Step 4. We classify the points of the support of the solution µ∗5 by proximity criteria as
points of Type I � or Type II � (the measure µ∗5 corresponds to Figure 10).

Finally, we present Table 1 that compare the solutions of the MK problem, in which
MK5 is the value associated with the optimal solution µ∗5 at level of discretization j− 1 = 5,
MK6 is the value associated with an optimal solution µ∗6 at level of discretization j = 6,
and MKσ∗

6 is the value associated with the solution µσ∗
6 obtained by the heuristic method

described in the previous paragraph.
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Figure 17. Step 6. Classification of the points of µ∗5 induces classification of the points in µ̂6 by
contention in the support. Over the points of Type I of the solution µ̂6, we do not move those points.
For the points of Type II, we apply a permutation to the solution over the two points that improve
the solution and repeat the process with the rest of the points.

Table 1. Comparison of the values corresponding to MK5, MKσ∗
6 and MK6.

MK5 MKσ∗
6 MK6

0.24785 0.247738 0.247726

5. Other Examples of This Methodology

We conclude this work with a series of examples in which we apply the proposed
methodology. Each of them is divided into the six-step algorithm introduced in the previous
section and corresponds to a classical example existing in the literature.

5.1. Example with Cost Function c(x, y) = x2y− xy2

Let MK be the MK problem with cost function c(x, y) = x2y − xy2 and uniform
restrictions η1 and η2 over the unitary interval [0, 1]. In order to be more didactic, we
consider the level of discretization j = 6. Next, we present the reduced algorithm.

Step 1. Discretize the cost function at level j—that is, over a grid of 2j × 2j. Figure 18.
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Figure 18. Discretization of the cost function c(x, y) = x2y− xy2 at level j = 6.
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Step 2. Apply the filtering process to the cost function at level j− 1, obtaining the filtered
cost function c5, which is plotted on a grid of 2j−1 × 2j−1. Figure 19.
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Figure 19. Filtering of the cost function c at level j− 1 = 5.

Step 3. Find an optimal simple solution µ∗j−1 for the discretized MKj problem. That is,
solve for the cost function c5 and obtain an optimal simple solution µ∗5 . Figure 20.
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Figure 20. MK solution for the filtered function c at level j− 1 = 5.

Step 4. Apply the proximity criteria to the support of µ∗j−1. Figure 21.

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

Figure 21. Classification of points of support(µ∗5) into Type I � and Type II �.
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Step 5. Refine the optimal simple solution µ∗j−1 to a feasible solution µ̂j, dividing each
weighted square Sk1,k2 at level j− 1 into four squares at level j (see (82)) and place
mass according to the criteria (83). Figure 22.
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Figure 22. Solution µ̂6 from refinement of µ∗5 .

Step 6. Permute the rows and columns of the points of Type II in support(µ̂j) using (44)
to construct feasible solutions µσ

j and chose the one that has better performance.
Figure 23.
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Figure 23. Final result µσ∗
6 .

The following Table 2 contains the comparison of the proposed methodology with the
two immediate levels of resolution.

Table 2. Comparison of the values corresponding to MK5, MKσ∗
6 and MK6.

MK5 MKσ∗
6 MK6

−0.0350952 −0.035141 −0.035141

5.2. Example with Cost Function c(x, y) = xy

Let MK be the MK problem with cost function c(x, y) = xy and uniform restrictions
η1 and η2 over the unitary interval [0, 1]. In order to be more didactic, we consider the level
of discretization j = 6. Next, we present the reduced algorithm.

Step 1. Discretize the cost function at level j—that is, over a grid of 2j × 2j. Figure 24.
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Figure 24. Discretization of the cost function c(x, y) = xy at level j = 6.

Step 2. Apply the filtering process to the cost function at level j− 1, obtaining the filtered
cost function c5, which is plotted on a grid of 2j−1 × 2j−1. Figure 25.
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Figure 25. Apply the filter to the cost function c at level j− 1 = 5.

Step 3. Find an optimal simple solution µ∗j−1 for the discretized MKj problem. That is,
solve for the cost function c5 and obtain an optimal simple solution µ∗5 . Figure 26.

1 10 20 32

1

10

20

32

1 10 20 32

1

10

20

Figure 26. Solution of the MK for the function c at level j− 1 = 5.

Step 4. Apply the proximity criteria to the support of µ∗j−1. Figure 27.
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Figure 27. In this example there are only Type I points �.

Step 5. Refine the optimal simple solution µ∗j−1 to a feasible solution µ̂j, dividing each
weighted square Sk1,k2 at level j− 1 into four squares at level j (see (82)) and placing
mass according to the criteria (83). Figure 28.
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Figure 28. Solution µ̂6 from refinement of µ∗5 .

Step 6. Permute the rows and columns of the points of Type II in support(µ̂j) using (44)
to construct feasible solutions µσ

j and chose the one that has better performance.
Figure 29.
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Figure 29. Final result µσ∗
6 .
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The following Table 3 contains the comparison of the proposed methodology with the
two immediate levels of resolution.

Table 3. Comparison of the values corresponding to MK5, MKσ∗
6 and MK6.

MK5 MKσ∗
6 MK6

0.166748 0.166687 0.166687

5.3. Example with Cost Function c(x, y) = (2y− x− 1)2(2y− x)2

We take the MK problem with cost function c(x, y) = (2y− x− 1)2(2y− x)2 and homo-
geneous restrictions over the unitary interval. Again, we consider the level of discretization
j = 6.

Step 1. Discretize the cost function at level j. Figure 30.
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Figure 30. Discretization of cost function c(x, y) = (2y− x− 1)2(2y− x)2 for level j = 6.

Step 2. Apply the filtering process at level j− 1 to the cost function. Figure 31.
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Figure 31. Filtered cost function for j = 5.

Step 3. Find an optimal simple solution µ∗j−1 for the MKj−1 problem. Figure 32.
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Figure 32. Solution of the MK5 problem.

Step 4. Apply the proximity criteria to the support of µ∗j−1. Figure 33.

Figure 33. In this example, there are only Type II points �.

Step 5. Refine the solution µ∗j−1 to a feasible solution µ̂6 applying the criteria (82) and (83).
Figure 34.

Figure 34. Feasible solution µ̂6 from refinement of µ∗5 .

Step 6. Permute points of Type II of µ̂j using (44) to construct feasible solutions µσ
j and

chose which has better performance. Figure 35.
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Figure 35. Final result µσ∗
6 .

The Table 4 summarizes the results obtained.

Table 4. Comparison of values MK5, MKσ∗
6 and MK6.

MK5 MKσ∗
6 MK6

0.000236571 0.0000600852 0.0000597889

6. Conclusions and Future Work

Note that with the methodology of [3,4,9], the authors obtain a solution of MK j.
For this, they need to resolve a transport problem with 4j variables. We call this methodol-
ogy an exhaustive method. For our methodology, in Step 3, we need to resolve a transport
problem with 4j−1 variables, and the other steps of the methodology are methods of classi-
fication, ordering and filtering; with 2j data for classification and ordering and 4j data for
filtering, it is clear that this method requires fewer operations to resolve transport problems.

In summary, we have the following table comparing the results of solving the examples
more often used in the literature with our methodology versus the exhaustive method
(using all variables).

Cost Function MK6 MKσ
6 Error

xy 0.166687 0.166687
x2y− xy2 −0.035141 −0.035141 1.52588× 10−5

4x2y− xy2 0.247726 0.247738 5.31762× 10−5

(2y− x− 1)2(2y− x)2 0.0000600947 0.0000600947

Cost Function MK7 MKσ
7 Error

xy 0.166672 0.166672
x2y− xy2 −0.0351524 −0.0351524 3.8147× 10−6

4x2y− xy2 0.247695 0.247698 1.24066× 10−5

(2y− x− 1)2(2y− x)2 0.0000600852 0.0000600852

Cost Function MK8 MKσ
8 Error

xy 0.166668 0.166668
x2y− xy2 −0.0351553 −0.0351553 9.53674× 10−7

4x2y− xy2 0.247688 0.247688 3.21631× 10−6

(2y− x− 1)2(2y− x)2

Note that our method always improves the solution of the level j− 1 and for some
examples give an exact solution; we use Mathematica© and basic computer equipment
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for programming this methodology, and maybe we can improve the results with software
focused on numerical calculus and better computer equipment. It is also important to
mention that the methodology presented in this work has some weaknesses. In our
computational experiments, we noticed that if we did not start with a sufficient amount
of information, then the methodology tended to give very distant results. In other words,
if the initial level of discretization was not fine enough, then because the algorithm lowers
the resolution level when executed, such loss of information generates poor performance.
However, when starting with an adequate level of discretization, experimentally it can
be observed that the distribution of the solutions for the discretized problems, as well
as the respective optimal values, have stable behavior with a clear trend. The question
that arises naturally is: “In practice, what are the parameters that determine good or
bad behavior of the algorithm?” Clearly, if the cost function is fixed and we rule out the
possible technical problems associated with programming and computing power, the only
remaining parameter is the initial refinement level at which the algorithm is going to
work—that is, the level j. However, if we reflect more deeply on the reasons why there is a
practical threshold beyond which at a certain level of discretization the algorithm has stable
behavior, we only have as a possible causes the level of information of the cost function
that captures the MR analysis. In other words, if the oscillation of the cost function at a
certain level of resolution is well determined by MR analysis, then the algorithm will have
good performance.

The approach presented in this paper is far from exhaustive and, on the contrary,
opens the possibility for a number of new proposals for approximating solutions to the MK
problem. The above is due to the fact that in the work [9], it was proven that discretization of
the MK problem can be performed from any MR analysis over R2. Therefore, the possibility
of implementing other types of discretions remains open. In principle, as we mentioned in
the previous paragraph, the most natural thing is to expect better performance if the nature
of the cost function and the types of symmetric geometric structures that it induces in space
are studied in order to use an MR analysis that fits this information and therefore has more
efficient performance.
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Abstract: License plates typically have unique color, size, and shape characteristics in each country.
This paper presents a general method for character extraction and pattern matching in license plate
recognition systems. The proposed method is based on a combination of morphological operations
and edge detection techniques, along with the bounding box method for identifying and revealing
license plate characters while removing unwanted artifacts such as dust and fog. The mathematical
model of foggy images is presented and the sum of gradients of the image, which represents the
visibility of the image, is improved. Previous works on license plate recognition have utilized non-
intelligent pattern matching techniques. The proposed technique can be applied in a variety of
settings, including traffic monitoring, parking management, and law enforcement, among others.
The applied algorithm, unlike SOTA-based methods, does not need a huge set of training data and is
implemented only by applying standard templates. The main advantages of the proposed algorithm
are the lack of a need for a training set, the high speed of the training process, the ability to respond
to different standards, the high response speed, and higher accuracy compared to similar tasks.

Keywords: pattern recognition; image processing; independent component analysis; Hopfield’s
neural network; license plate; LPR

MSC: 68T07

1. Introduction

Nowadays, the use of surveillance-based security systems has become increasingly
important in various applications, such as home security and traffic monitoring. Object
detection is one of the fundamental building blocks of automated surveillance systems.
Among the most used techniques for object recognition in surveillance systems is the
recognition of vehicle license plates [1]. Automatic license plate recognition is an image-
processing-based method that is used for security applications such as controlling access to
restricted areas and tracking vehicles.

In real-world applications, simple License Plate Recognition (LPR) systems have low
detection accuracy [2]. On the one hand, the effects of external factors such as sunlight
and car headlights, license plates with inappropriate designs, the wide variety of license
plates and, on the other hand, the limited quality of the software and hardware related
to the camera, have reduced the accuracy of these systems. However, recent advances in
software and hardware have made LPR systems much safer and more widespread [3,4].
A countless number of these systems are working around the world and are growing
exponentially and can do more tasks automatically in different market segments. Even
if the recognition is not 100%, a results-dependent side program can compensate for the
errors and provide an almost flawless system. For example, to calculate the car’s parking
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time, from entering to leaving the parking lot, this side program can ignore some ignorable
errors in the two recognitions. This intelligent integration can overcome the shortcomings
of LPR and produce reliable and fully automated systems [5–7].

Figure 1 shows a typical configuration of an LPR system. The license plate reader
software is a Windows background program on a PC and an interface between a set of
cameras. The program receives the images of the cameras, and by processing them it
extracts the license plates of the cars in traffic. The program then displays the results, and
can also send them to other parts of the system such as a camera or LED display via serial
communication. It then sends this information to the local database or external databases
(through the network).
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Figure 1. Typical configuration of an LPR system.

The first step in recognizing a car license plate is to distinguish the car from other
objects in the image. For this, the methods presented in previous works can be used [8–12].
In similar works, the use of a convolutional neural network (CNN) replaces parts of the
proposed method in this paper. Despite the ease of use of this new neural network, there
are major disadvantages associated with CNNs. The main disadvantage is that CNNs take
a much longer time to train. Another important disadvantage is the need for larger training
datasets (i.e., hundreds or thousands of images), and for their proper annotation, which
is a delicate procedure that must be performed by domain experts. Other disadvantages
include problems that might occur when using pretrained models on similar and smaller
datasets (i.e., of a few hundreds of images, or smaller), optimization issues due to model
complexities, and hardware restrictions [13]. However, the proposed algorithm assumes
there are only cars on highways or an absence of objects corresponding to license plates in
non-car elements (such as humans, etc.). This contribution can overcome the burdens that
were present in previous works.

In the literature, the pixel-by-pixel comparison method has been used to match the
segments extracted from the image with the defined standard characters. This method,
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in addition to the low classification accuracy, lack of identification, and removal of noise,
also requires a lot of execution time. We employed the Hopfield neural network [14] to
simultaneously speed up the program’s execution and increase the precision, while remov-
ing noises on the segments extracted from the image. License plate recognition systems
are usually used outdoors. The presence of air pollution, fog, and other factors causes the
car license plate images to become blurred. By using frequency domain techniques, it is
possible to remove the side- and destructive effects of the environment on the image. In
this paper, first, the location of the license plate is identified, and then the disturbing effects
of the environment are removed. After extracting the license plate image’s segments, the
Hopfield neural network classifies these segments to corresponding defined characters.

2. Methodology and Simulation Results

Figure 2 shows the five main steps of license plate recognition. In this structure, the
steps for image scheduling, camera settings, and the saving and transferring of results have
been ignored. In the following, each of these five steps will be explained in full detail.

Axioms 2023, 12, x FOR PEER REVIEW 3 of 13 
 

also requires a lot of execution time. We employed the Hopfield neural network [14] to 
simultaneously speed up the program’s execution and increase the precision, while 
removing noises on the segments extracted from the image. License plate recognition 
systems are usually used outdoors. The presence of air pollution, fog, and other factors 
causes the car license plate images to become blurred. By using frequency domain 
techniques, it is possible to remove the side- and destructive effects of the environment on 
the image. In this paper, first, the location of the license plate is identified, and then the 
disturbing effects of the environment are removed. After extracting the license plate 
image’s segments, the Hopfield neural network classifies these segments to corresponding 
defined characters. 

2. Methodology and Simulation Results 
Figure 2 shows the five main steps of license plate recognition. In this structure, the 

steps for image scheduling, camera settings, and the saving and transferring of results 
have been ignored. In the following, each of these five steps will be explained in full detail. 

 
Figure 2. The proposed five main steps of license plate recognition. 

2.1. Preprocessing of the Image 
In tasks based on image processing, such as car license plate recognition [15–18] or 

eye tracking, etc., the first step is usually to determine the approximate location of the 
target object. For this, a large number of different cars with different license plate locations 
were studied. All the studied cars were photographed at the same distance and angle. In 
all these photos, the place of installation of the license plates was marked. Figure 3 shows 
the border of the area where it was possible for a license plate to exist, taking a suitable 
tolerance. 

Figure 2. The proposed five main steps of license plate recognition.

2.1. Preprocessing of the Image

In tasks based on image processing, such as car license plate recognition [15–18] or eye
tracking, etc., the first step is usually to determine the approximate location of the target
object. For this, a large number of different cars with different license plate locations were
studied. All the studied cars were photographed at the same distance and angle. In all these
photos, the place of installation of the license plates was marked. Figure 3 shows the border
of the area where it was possible for a license plate to exist, taking a suitable tolerance.
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The area outside the border of the license plate’s zone (which has non-useful informa-
tion) will be affected by the Blur filter. Applying this filter reduces the calculations and the
possibility of errors in future processing. Figure 4 shows a typical image affected by this
filter, where non-useful areas have been blurred.
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2.2. Elimination of Adverse Environmental Effects

Before determining the exact location of the license plate, and then its characters’
segments, the adverse effects of the environment, such as the effects of possible fog or
smoke in the space between the camera and the license plate, should be corrected as much
as possible. Equation (1) shows a blurry image relation [19–24]:

I(x) = J(x)t(x) + A(1− t(x)) (1)

where I is the intensity of the light in the image, J is the illumination of the scene, A is the
general light of the environment, and t is a parameter that describes the part of the light that
was not scattered and reached the camera. The elimination of adverse environmental effects
means recovering J, A, and t from I. The term J(x)t(x) in this equation is called direct
attenuation, which describes the brightness of the scene and its decay in the environment.
The term A(1− t(x)) is called ambient light, which comes from the previously scattered
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light and leads to a change in the color of the environment. When the space is homogeneous,
the transfer coefficient t is described as follows:

t(x) = e−β d(x) (2)

where β is the dispersion coefficient. Equation (2) clearly shows that the image brightness
decreases exponentially with its depth d.

Equation (1) shows that in the RGB color space, vectors A, I(x), and J(x) are copla-
nar while their endpoints are located on a single line. The transfer coefficient t can be
expressed by

t(x) =
||A− I(x)||
||A− J(x)|| =

Ac − Ic(x)
Ac − Jc(x)

(3)

where c represents the index of the color channel. In blurred images, t is less than one.
Thus, the resolution of the image, which is the sum of the image gradients, is low. The
following illustrates this reduction:

∑
t
||∇I(x)|| = t∑

t
||∇J(x)|| < ∑

t
||∇J(x)|| (4)

The transmission coefficient, t, is estimated by maximizing the image resolution, while
the intensity J(x) is less than the intensity A. The dark channel for a haze-free outer space
image is defined as the following: in a non-sky image, at least one color channel has very
low brightness in some pixels. In other words, the image brightness in these pixels is
minimum. Equation (5) shows the dark channel definition:

Jdark(x) = min
c∈{r.g.b}

( min
y∈Ω(x)

(Jc(y))) (5)

where Jc is a color channel of J and Ω(x) is a piece of the image centered at x. If the image
does not include the sky and does not have fog, the intensity of Jdark will be almost zero.
Assuming the value of A for the ambient light and the constant transmission coefficient
t(x) in a piece of the image, minimizing the intensity (1) gives:

min
y∈Ω(x)

(Ic(x)) = t(x) min
y∈Ω(x)

(Jc(y)) + Ac(1− t(x)) (6)

Dividing the sides of Equation (6) by A and minimizing again, this time among the
color channels gives:

min
c

( min
y∈Ω(x)

(
Ic(x)

Ac )) = t(x)min
c

( min
y∈Ω(x)

(
Jc(y)

Ac )) + (1− t(x)) (7)

By approximating Equation (7) to zero, the transfer coefficient can be defined as
Equation (8). The coefficient w is defined to adjust the blurring in the image.

t(x) = 1− w min
c

( min
y∈Ω(x)

(
Ic(x)

Ac )) (8)

By limiting the transmission coefficient on the limit of t0, the brightness of the image
is expressed as:

J(x) =
I(x)− A

max(t(x), t0)
+ A (9)

According to the above-stated contents and the presented equations, using the algo-
rithm shown in Figure 5 it is possible to reduce the image blurring to an acceptable level.
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Figure 6 demonstrates the results of the algorithm in modifying an image that was
artificially and exaggeratedly fogged.
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2.3. Determining the Exact Location of the License Plate

After removing the adverse environmental effects, according to the following two
principles, the exact location of the license plate must be determined: First, due to the
difference in the colors around the license plate and its background, by using edge detection
on the black–white image the edge of the license plate frame will appear as an edge and a
closed path shape. Secondly, according to each country’s standards, the length-to-width
ratio of the license plate will be a fixed value.
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According to the above content, all the edges on the image are detected. Detected
edges become bolder to remove any interruptions in the closed paths. Then, by defining
the closed path edges in the image as objects, the one with the standard license plate’s
length-to-width ratio is selected as the main object (the license plate frame). Detecting the
main object’s position from the initial image determines the license plate frame. Figure 7
shows all the above steps on a sample image.
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Figure 7. Detecting the license plate frame: (a) the initial image; (b) edge detection for black–white
mode of initial image; (c) filling of closed-path detected edges; (d) the main objects in the image and
finding the object corresponding to the standard license plate; (e) detecting the main object’s position
from the initial image determined the license plate frame.

2.4. Determining the Segments inside the Plate

After cutting the image of the license plate from the original image, by applying
rotation if needed, removing the unessential edges of the license plate, and turning it
into the black and white mode, the segments of recognizable license plate characters are
separated [25–29].
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In the image shown in Figure 8, from the left side, the index of the first column has
at least one white pixel, labeled as the start index of the first segment. Additionally, the
index of the first column without a white pixel is labeled the final index of the first segment.
This process is repeated for the whole of the plate to determine all its character segments.
Figure 9 shows the cut segments separately.
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2.5. Recognizing the Segments Using Hopfield’s Neural Network

Determined character segments in the previous section should be recognized using
standard character patterns. Diverse methods of pattern recognition include matching
pixel by pixel [26], the k-nearest neighbor, and Bayesian, and various neural networks
can be used [30]. The Hopfield neural network is known as the most common method
for detecting patterns with binary features. Since the extracted black and white segment
images have binary values (zero for black and one for white), they can be recognized using
this neural network [31].

The main idea of the Hopfield neural network is based on state variables. If the new
position of a system depends on its previous one, it can be written in terms of state variables
in the form of the following equation [32–35]:

x(t + 1) = f (x(t)) (10)

The sequence above continues until its energy is exhausted, and then remains in a
balanced state. The system energy should decrease to reach this state. For this purpose,
as shown in Figure 10, the Hopfield neural network is designed such that, firstly, the
new position of the system is dependent on its previous one, and second, its energy
equation decreases.

Axioms 2023, 12, x FOR PEER REVIEW 9 of 13 
 

 
Figure 10. A typical Hopfield neural network; its position depends on the previous time’s position 
and its energy is decreasing. 

The energy function and its gradient for the system shown in Figure 10 are defined 
as: 

1
2 ij i j i i

i j i
E x x b xω= − −   

( )

2

2

i

i i

i i

i i i

i i i

i i

i i

i i

i
i

i

dxdE dE
dt dx dt

dx dnetdE
dx dnet dt
dnet dx dnet
dt dnet dt

dnet dx
dt dnet

dnet net
dt

ϕ

=

=

 = − 
 

 = −  
 

  ′= −  
 











 
(11) 

where ϕ  is the function of the neurons in the network and inet  is the output of the ith 
neuron. According to Equation (11), the energy gradient of the system decreases if the 
derivative of the neuron function is positive. Choosing sign function as a function of the 
neuron can meet this condition. When Hopfield’s neural network is used as an image 
classifier, the two-dimensional images should be mapped to one-dimensional mode, and 
the black pixel values set to −1 (while the value of the white pixels are +1). 

The segments which are in black and white format are resized to a standard size. The 
matrix of each segment, which is two-dimensional, is transformed into a one-column 
vector. The black pixels marked with 0 in this matrix are changed to −1 and then applied 
to the Hopfield neural network. On the other hand, in this neural network, the main 
characters in standard size and 0 values corresponding to black pixels, which are replaced 
by −1, are defined as balanced points. The Hopfield neural network moves the input 
matrix to the nearest balanced state. In other words, the closest standard character similar 

Figure 10. A typical Hopfield neural network; its position depends on the previous time’s position
and its energy is decreasing.

135



Axioms 2023, 12, 424

The energy function and its gradient for the system shown in Figure 10 are defined as:
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where ϕ is the function of the neurons in the network and neti is the output of the ith
neuron. According to Equation (11), the energy gradient of the system decreases if the
derivative of the neuron function is positive. Choosing sign function as a function of the
neuron can meet this condition. When Hopfield’s neural network is used as an image
classifier, the two-dimensional images should be mapped to one-dimensional mode, and
the black pixel values set to −1 (while the value of the white pixels are +1).

The segments which are in black and white format are resized to a standard size. The
matrix of each segment, which is two-dimensional, is transformed into a one-column vector.
The black pixels marked with 0 in this matrix are changed to −1 and then applied to the
Hopfield neural network. On the other hand, in this neural network, the main characters in
standard size and 0 values corresponding to black pixels, which are replaced by −1, are
defined as balanced points. The Hopfield neural network moves the input matrix to the
nearest balanced state. In other words, the closest standard character similar to the target
segment is recognized. Figure 11 shows the noise (caused by mud) on the license plate. The
designed Hopfield’s neural network classified this noised license plate’s character segments
without error.
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To determine the accuracy of Hopfield’s neural network in determining numbers and
letters, according to Figure 12, a set of different car license plates was considered. The
graphics on these plates can play the role of noise. Hopfield’s neural network classified
the 253 characters on the license plates of this collection (after image processing and
segmentation). Among the 253 test characters, only 6 characters were recognized wrongly,
showing an accuracy of 97.6%. Using a computer with Core(TM) i7-2640 CPU and 8 GB
RAM, the time spent on determining the characters of each license plate is about 0.08 s.
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Figure 12. A set of selected license plates from different standards to determine the CCR of the
proposed algorithm.

In addition to the 253 main characters (numbers or letters), there are also 26 special
characters (such as a dash or a combination of numbers and letters). According to the
different standards in these plates, all special characters were considered as a unit pattern. In
addition to correctly recognizing the main characters, Hopfield’s neural network could also
classify special characters in this unit pattern. The updated classification rate considering
the special characters was 97.1%.

The agile training capability of the Hopfield neural network has made it appropriate
for application to plates with different standards, while for other neural networks, such
as convolutional neural networks, a huge set of training data must be collected for each
standard of the plates. Moreover, the accuracy of the proposed algorithm was higher than
a number of similar ones developed on SOTA [15,16]. On the other hand, the time spent
on recognizing the characters of each license plate was almost equal to the time spent on
recognizing only one character in methods based on convolutional neural networks [15–18].
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3. Conclusions

A new license plate pattern recognition system has been presented that is robust
against adverse environmental effects such as fog or mud. Unlike previous studies that
only considered a certain standard of license plates, this work evaluated all objects ir-
respective of their types. However, the selection of objects depends on their positions,
and if the recognition of the license plate characters is unsuccessful another object enters
the recognition process. Additionally, the paper has addressed the challenges posed by
the presence of fog and smoke in the image by removing the matter of the image before
initiating the license plate recognition process. More importantly, the use of Hopfield’s
neural network for license plate recognition, instead of the conventional method of pixel-
to-pixel comparison of image segments with standard characters, has significantly reduced
the execution time and increased the accuracy. The results pinpoint the efficacy of this
approach. The neural network has shown capability in removing the noise on the license
plate, making it a reliable tool for license plate recognition. The findings of this study
contribute to the field of automated surveillance systems by providing an effective and
efficient method for license plate recognition.

Author Contributions: All authors contributed equally to writing, editing, and reviewing the
manuscript. All authors have read and agreed to the published version of the manuscript.
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Abstract: Reverse engineering plays an important role in the manufacturing and automobile in-
dustries in designing complicated spare parts, reducing actual production time, and allowing for
multiple redesign possibilities, including shape alterations, different materials, and changes to other
significant parameters of the component. Using reverse engineering methodology, damaged gears
can be identified and modeled meticulously. Influential parameters can be obtained in the shortest
time. Because most of the time it is impossible to solve gear-related inverse equations mathematically,
metaheuristic methods can be used to reverse-engineer gears. This paper presents a methodology
based on measurement over balls and span measurement along with evolutionary optimization
techniques to determine the geometry of a pure involute of a cylindrical helical gear. Advanced
optimization techniques, i.e., Grey Wolf Optimization, Whale Optimization, Particle Swarm Opti-
mization, and Genetic Algorithm, were applied for the considered reverse engineering case, and the
effectiveness and accuracy of the proposed algorithms were compared. Confirmatory calculations
and experiments reveal the remarkable efficiency of Grey Wolf Optimization and Particle Swarm
Optimization techniques in the reverse engineering of helical gears compared to other techniques
and in obtaining influential gear design parameters.

Keywords: reverse engineering; helical gear; evolutionary optimization techniques; grey wolf
optimization; whale optimization; particle swarm optimization; genetic algorithm

1. Introduction

Widely exploited in almost all engineering fields, reverse engineering (RE) is an
approach that consists of digitizing a real component to create a numerical or virtual
model [1]. This numerical or virtual model can also be emulated in presenting a Digital
Twin. The Digital Twin, which started to be used recently, is a new concept for describing a
new wave in modeling and simulation. While the use of simulation tools was previously
restricted to design stages, nowadays different types of simulation tools are used in testing,
validation, or optimization that can be referred to as Digital Twin [2]. This technology is an
emerging concept that has become the center of attention in industry, particularly in the
manufacturing industry. The Digital Twin is best described as the effortless integration of
data between a physical and virtual machine in either direction [3]. Digital Twin has been
widely used in different industries, especially manufacturing, to monitor performance,
optimize progress, simulate results, and predict potential errors. This technique also plays
various roles within the whole product lifecycle from design, manufacturing, delivery, use,
and end of life. With the growing demands of individualized products and implementation
of Industry 4.0, Digital Twin can provide an effective solution for future product design,
development, and innovation [4]. Generally, RE can be defined as a principled process
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that extracts design information from a product. Hence, components in various industries,
including engineering, medical, defense systems, software, consumer electronics, etc., can
be reverse-engineered comprehensively. Chikofsky and Cross introduced RE as “the process
which analyzes a certain system to identify the systems” parts and their relationships and
to create alternatives of the system in another form or at a higher level of abstraction [5]. In
addition, the definition of RE in mechanical design is to “commence the redesign process
where a product is observed, disassembled, analyzed, tested, and documented in terms of
its functionality, form, physical principles, manufacturability, and assemble-ability.

In recent years, traditional approaches to designing, manufacturing, and constructing
mechanical components and systems have been abolished. In other words, state-of-the-art
methods in design and manufacturing have provided some outstanding benefits, including
production preparation time decline, outstanding precision, etc., that completely change
the quality of the product [6]. Nowadays, the implementation of RE is in manufacturing
three-dimensional digital models of different mechanically damaged or broken compo-
nents [7]. Lippmann et al. used RE for the verification of physical designs in nanoscale
technologies [8]. RE is used in various fields, especially mechanics, such as composites,
aerospace industries, energy plants, turbines, internal combustion components, etc.

One of the most prevalent applications of RE is redesigning and manufacturing gears
with a high-precision involute widely used in the automobile industry. Modeling machine
components, especially gears, with parametric or non-parametric RE methods is becoming
more popular before producing samples using rapid prototype processes [9,10]. Numerous
studies have been conducted on the redesign, modeling, and manufacturing of various
types of gears through RE. Shamekhi et al. used RE to redesign and optimize the gear ratio
and corresponding teeth number of the gears of an automatic transmission system. They
proposed an accurate and efficient model to find optimum design parameters [11]. Verim
et al. redesigned a damaged motor cam gear by the 3D scanning method. They evaluated
the geometric values of the damaged model and the prototyped one. They reported
acceptable deviations between the RE model and the actual component [12]. Dubravcik
et al. made a 3D model of a damaged gear wheel using scanning and rapid prototyping.
They compared and identified the new gear wheel’s proportions and geometry with the
original point cloud of the damaged gear. The results revealed good compliance between
the original and RE-made gear [9]. Palkahas worked on the reconstruction of gears using
RE and 3D printing methods. He reported that the final component’s quality is highly
related to the use of appropriate methods, software, hardware, and material [6]. Baehr et al.
used machine learning for structural characterization in the RE domain [13].

The design of gears has a rather complex procedure involving numerous design pa-
rameters and factors. Finding an optimal or near-optimal solution for this complexity turns
it into a challenging demand. There are plenty of studies in which different optimization
algorithms, such as the Genetic Algorithm (GA) [14], Simulated Annealing (SA) [15], Re-
sponse Surface Methodology (RSM) [16], Particle Swarm Optimization (PSO) [17], Grey
Wolf Optimization (GWO), Whale Optimization Algorithm (WOA) [18], etc., have been
implemented for the design optimization of gears. Xia et al. have used PSO combined with
GA to optimize the operational quality of power shift transmission. The simulation and test
results showed that the proposed control strategy effectively avoids the power cycle when
shifting and consequently improves shift quality [19]. Artony has proposed a deterministic
approach to solve simulation-based, multi-objective gear design optimization problems
in the presence of general nonlinear constraints on the design variables. He has declared
that, although developed with gear optimization in mind, it is broader in scope and should
be tested in other computer-assisted engineering optimization problems [20]. Rai et al.
used a Real-Coded Genetic Algorithm (RCGA) to achieve optimal helical gear design.
They minimized the volume of a helical gear by increasing the profile shift coefficient
as a design factor and other parameters such as the module, face width, and number of
teeth using RCGA [21]. Mendi et al. investigated the difference between the dimensional
optimization of motion and force-transmitting components of a gearbox performed by the
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genetic algorithm and analytical method. The results illustrated that GA is a considerably
better and more reliable method to obtain minimum gear volume [22].

Because of the drawbacks of the commonly performed research in the field of RE of
gears, there is an urgent demand to carry out an extensive investigation to determine accu-
rate gear design parameters using relevant measurements such as over-ball measurements.
For instance, in the reviewed case study, the matter of RE for a single gear has not been
investigated. In the studies dealing with this issue, parameters such as outside diameter
and root diameter are considered known input parameters in the RE process. These prac-
tices pose an excessive error in the obtained design parameters. On the other hand, current
industrially applicable gear design software requires initial design parameters such as the
pressure angle and module to initiate the RE process. This problem adversely affects the
accuracy of calculated design parameters. In industry, to replace a damaged gear wheel,
it is commonplace to get its CAD model using scanning techniques. Many factors affect
3D scanning processes. One of them is the reflective ability of the parts’ surfaces. Such
inaccuracies and incompetence are mainly of the tooth systems because of uncontrolled
laser ray scattering and incorrect scanning [10]. Therefore, a systematic methodology is
needed to solve the RE problem of gears more comprehensively. However, the major
requirement that has to be satisfied for successful gear RE is the modeling of the system at
hand as accurately as possible [23].

Due to the complexities governing the calculations of input gear parameters, a new
methodology was proposed in the current study to reverse-engineer gears using evolu-
tionary optimization techniques. A number of commonly used metaheuristic optimization
methods with successful applications reported in engineering optimization problems, such
as GWO, WOA, PSO, and GA, were applied to solve the introduced RE problem. The
stability, convergence speed, and accuracy of the mentioned algorithms were compared
and evaluated. The paper has the following sections. A brief theoretical background of
gear calculations is presented in Section 2. The proposed methodology and optimization
techniques are explained in Section 3. Section 4 describes the remarkable results of the
study. The conclusion is presented in Section 5.

2. Theoretical Background of Gear Calculations

The accurate design of gears requires considerable effort in calculating the relevant
gear geometry to fulfil the essential requirements of operational characteristics such as load
capacity, reliability, and gear size, which directly affect the quality of power transmission.
The independent variables that define a gear are the number of teeth z, normal module
mn, normal pressure angle αn, addendum modification x, and helix angle β. Knowing the
parameters mentioned, the involute form of a gear flank can be determined. The other
dependent variables, including outside diameter, root diameter, and face width, are usually
determined based on transmission load, which can be manipulated by the designer through
design limitations and requirements [24]. The parameters that directly relate to the gear
flank involute form and the parameters that do not have such a relationship are listed
in Table 1.

Table 1. Division of the geometrical characteristics of gears.

Input Parameters Output Parameters

Direct relation with
involute form

Module (mn)
Normal pressure angle (αn)
Helix angle (β)
Addendum modification (x)

Span measurement (sm)
Over-ball measurement (dm)
Chordal thickness measurement (sj)

No relation with
involute form Face width

Outside diameter
Root diameter
...
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One of the most important parameters that greatly impacts the gear design character-
istics, load capacity of the gear, and backlash of engaged gears is tooth thickness. Normal
tooth thickness can be calculated as follows:

TTn =
mnπ

2
+ 2×mn × x× tan(αn) (1)

There are direct and indirect methods for measuring tooth thickness, including chordal
thickness measurement (sj), span measurement (sm), and over-ball measurement (dm).
Among these methods, span and over-ball measurements are more industrially applicable
because of their higher measurement precision and the comparatively lower equipment
involved in the measurement process [25]. A schematic view of span and ball measurements
is illustrated in Figure 1.

Figure 1. A schematic view of span measurement and over-balls measurement for a gear.

The value for sm based on the aforementioned input parameters can be calculated as
follows [24]:

sm = mn × [(zk − 0.5)× π × cos(αn) + z× inv(αn)× cos(αn) + 2× x× sin(αn)] (2)

in which zk is the number of spanned teeth. The function inv(αn) is calculated according to
Equation (3).

inv(αn) = tan(αn)− (αn) (3)

The parameter dm is obtained as follows:

dm =





dk +
mn×z×cos(αn)
cos(ϕ)×cos(β)

z = even

dk +
mn×z×cos(αn)
cos(ϕ)×cos(β)

× cos(90/z) z = odd
(4)

in which dk is the diameter of the measuring ball, and ϕ is the pressure angle at the center
of the measuring ball, which can be calculated according to Equation (5) [24].

inv(ϕ) =
dk

mn × z× cos(αn)
− π

2× z
+ inv(αt) +

2× x× tan αn

z
(5)
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In Equation (5), αt is the transverse pressure angle and is defined as below:

αt = tan−1
(

tan(αn)

cos(β)

)
(6)

Consequently, the value of inv(αt) is calculated as Equation (7) [24]:

inv(αt) = tan(αt)− (αt) (7)

3. Materials and Methods

The design of gears has become more of a necessity than ever before. In particular,
gear design optimization and transmission accuracy have attracted more attention [26].
One of the most frequently used techniques in gear design is RE methods. These methods
are necessary for remodeling or measuring damaged or non-damaged gears. RE also
enables the design of complex mechanical components, effectively reducing production
time and relevant prototyping costs. Using RE methods, damaged gear components can be
calculated and modeled in a short time, and obtained models can be produced economically
in a comparably short period [26].

3.1. Reverse Engineering of Cylindrical Helical Gear

When designing a new set of gears, there are many alternatives in the gear parameters
selection. Therefore, the designer can freely choose among the various options. How-
ever, RE imposes a considerable challenge to the gear designer since the main problem is
characterizing a previously manufactured gear whose geometry is unknown.

With a valid reference for the design, the designer must extract the exact geometry
of the redesigned gear. For the completion of the RE of a cylindrical helical gear, it is
obligatory to determine the number of teeth z, normal module mn, normal pressure angleαn,
addendum modification x, and helix angle β. According to Equations (2)–(7), identifying
the primary gear input parameters based on measurements obtained from sm and dm is
impossible to solve these equations. This arises from the complex calculations governing
the relations between gear input parameters and measured output characteristics. So, there
is a great need to use novel methods in the RE of gears to obtain influential input parameters.
Because of the inability of existing computational and mathematical methods to analytically
solve these equations, it seems that applying modern evolutionary optimization algorithms
can be a good choice to obtain gear design parameters in the RE process.

Inspired by natural processes, these techniques can optimize a function or find the
answer to a complex equation in a logical period and with relatively high precision.

3.2. Problem Description and Solving Method
3.2.1. Objective Function

The general constrained problem considered in the present research was expressed as:

minimize E(mn, αn, β, x)
subject to mnmin ≤ mn ≤ mnmax

αnmin ≤ αn ≤ αnmax

βmin ≤ β ≤ βmax
xnmin ≤ αn ≤ xnmax

(8)

The objective function E(x1, x2, x3, x4) to find input design parameters was set as follows:

E(mn, αn, β, x) =
n

∑
i=1

√
(Formula obtained valuei −Measured valuei)

2 (9)
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Since, in the present study, three values for dm and one value for sm are measured,
Equation (9) can be rewritten as:

E(mn, αn, β, x) =
√
(sm − Smeasured)

2 +
3

∑
i=1

√
(di

m − Di
measured)

2 (10)

in which Smeasured and Dmeasured are practically measured span and over-balls measure-
ments, respectively. According to Equation (8), it can be concluded that the defined
objective function is the resulting error of the selected design parameters and measured
values. Therefore, the minimum possible value for E(mn,αn, β, x) can lead to the exact
input gear design parameters. In this way, the present investigation strived to substitute an
unsolvable series of complicated equations with an optimization problem to discover the
answers by exploiting evolutionary optimization algorithms.

3.2.2. Methodology

Figure 2 presents a schematic framework that integrates the described RE technique
with evolutionary optimization algorithms. The raw measured data are fed into the
optimization unit to minimize the defined objective function. After the termination of the
optimization algorithm, based on measured values and formulas, the optimum results
are gained.

Figure 2. Flowchart of the proposed RE of gear framework.

Several termination conditions can be used to terminate the algorithm and obtain
calculated optimum results. However, two are more frequently used for the problems under
consideration, including the maximum number of function evaluations and minimum
specific error. The former is suitable for computationally demanding problems when only
a limited number of function evaluations is allowed. At the same time, the latter specifies
that the optimization is terminated when the minimum desired error is reached [20].

Relatively high accuracy is required to determine the parameters in this research.
Therefore, the algorithm is terminated in two modes, after a definite number of function
evaluations and after reaching a predefined error. The minimum value for the cost function,
ε, reflects the resolution of searching for optimum answers in the space of all possible
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answers. The proposed algorithmic framework is illustrated by the pseudocode in Figure 3,
which summarizes the methodology discussed.

Figure 3. Pseudocode of the proposed algorithmic framework.

3.2.3. Evolutionary Optimization Algorithms

Although they have been used widely in various design problems, conventional
optimization methods impose some serious difficulties on the matter; accordingly, to
have a slow convergence speed, these methods may be stuck in the local optimum point.
Furthermore, when the objective function or constraints cannot be stated functionally
explicit in the input parameters, it is hard to utilize these methods to solve the given
problem. Consequently, some novel methods, quite often inspired by nature, such as GA,
PSO, SA, etc., are applied to solve complex optimization problems [22]. In this research, an
investigation was carried out to find the design parameters of a gear based on performed
measurements. The proposed algorithms were GWO, WOA, PSO, and GA, which were
used under similar conditions and objective functions. The population size was set to 40 for
all of the algorithms. The primary population was created as uniformly as possible within
the search space. The results of the methods above were compared, and their competencies
to solve the problem were evaluated.

Metaheuristic methods have been proved to be a powerful technique to solve complex
optimization problems. The majority of them consider a set of parameters that must
be tuned before the triggering of the algorithm or during the process and are based on
multiple runs of the metaheuristic algorithm [27]. During each iteration, significantly worse
configurations are removed, and new configurations are formed through crossover and
mutation. Each of the presented methods has its own features as well as advantages and
disadvantages [28].
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A good setup of these parameter values can result in a better and effective application
of the optimization process. This job can be carried out by trial-and-error methodol-
ogy [29] or by intelligent tuning methods [27]. In this regard, various tuning methods
have been presented such as CRS [28], F-Race [30], Revac [31], and ParamILS [32]. Control
parameters for selected optimization algorithms in this research were selected based on a
trial-and-error approach.

Grey Wolf Optimization Algorithm: GWO is a metaheuristic optimization algorithm
that imitates the intelligent foraging behavior of grey wolves when hunting prey. Strictly
following their social hierarchy, grey wolves are divided into 4 groups from top to bottom.
The top group which makes decisions during hunting is called α. The next level belongs
to βwolves who help as deputy chiefs in the group. The αwolves are replaced by β ones
after dying or becoming inefficient as leaders. In the third level are δwolves, which act as
hunters and scouts of the group. The last level in the established hierarchy is occupied by
the weakest members, titled ω wolves. When hunting, all types of wolves are organized
according to decisions made by α wolves to identify, follow the prey, encircle it, and finally
attack it. In this optimization algorithm, α, β, and δ indicate the members with fitness from
high to low, in that order [33].

The simulation of wolves’ behavior when hunting includes encircling and catching
the prey. The mathematical description of encircling the prey can be expressed as follows:

→
D =

∣∣∣∣
→
C .
→
Xp(t)−

→
X(t)

∣∣∣∣ (11)

→
X(t + 1) =

→
Xp(t)−

→
A.
→
D (12)

in which
→
A and

→
C act as coefficient vectors.

→
Xp determines the position of the prey or global

answer. The vector
→
X describes the current position of the wolves; the new position of α, β,

and δwolves in the tth iteration would be determined by
→
D. The values for

→
A and

→
C can

be calculated as below: →
A = 2.

→
a .
→
r 1 −

→
a (13)

→
C = 2.

→
r 2 (14)

where
→
r 1 and

→
r 2 are random vectors varying in the range of [0, 1], and

→
a is the convergence

vector value changing linearly in [0, 2].
In the next step, the hunting process starts with α wolves as the leaders and δ wolves

as the hunting contributors. Mathematically simulated hunting assumes that α, β, and δ
individuals have better information about the location of prey. Therefore, all individuals
update their positions according to the below equations:

→
X1 =

→
Xα − A1.

∣∣∣∣
→
C1.
→
Xα −

→
X
∣∣∣∣ (15)

→
X2 =

→
Xβ − A2.

∣∣∣∣
→
C2.
→
Xβ −

→
X
∣∣∣∣ (16)

→
X3 =

→
Xδ − A3.

∣∣∣∣
→
C3.
→
Xδ −

→
X
∣∣∣∣ (17)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(18)

At the ones where the prey stops, the wolves attack. Mathematically, this happens

when |
→
A| ≤ 1. Unless the attack is delayed until finding a better position or answer [34],

the schematic position update of members in the GWO algorithm is illustrated in Figure 4.
The population size is set to 40.
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Figure 4. Position update in GWO.

Whale Optimization Algorithm: Introduced by Mirjalili et al., WOA is a swarm op-
timization method inspired by the hunting behavior of humpback whales. The hunting
process involves searching, encircling the prey, and finally attacking to catch it [35]. The
relatively easy implementation of the algorithm and its configuration with fewer param-
eters are the advantages of this optimization technique. The prey is the answer to the
optimization problem that must be determined during the WOA process [36]. The hunting
of humpback whales is illustrated in Figure 5. The movement of randomly created whales
toward the prey or leader whale is shown in Figure 5a. The encircling process of the prey
by the whales and their spiral movement while emitting bubbles to surround the prey is
illustrated in Figure 5b,c, respectively [37].

Figure 5. Hunting process of humpback whales: (a) movement of whales in a random direction or
toward leader; (b) encircling process after finding the prey; (c) reaching the prey in spiral route.

First, a group of whales or members is created randomly to search for the prey or
answer in the search space. This stage can be expressed mathematically as follows:

→
X(t + 1) =

→
Xrand(t)−

→
A.
∣∣∣∣
→
C .
→
Xrand(t)−

→
X(t)

∣∣∣∣ (19)
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in which
→
A and

→
C act as coefficient vectors.

→
Xrand(t) determines the position of whales in

tth iteration. The values for
→
A and

→
C can be obtained as follows:

→
A = 2.

→
a .
→
r −→a (20)

→
C = 2.

→
r (21)

a = 2− 2t
tmax

(22)

In these equations,
→
r is a vector selected randomly in [0,1]. The maximum number

of permissible iterations is tmax, and
→
a is the convergence vector value which decreases

linearly from 2 to 0 by increasing the number of iterations.
After having found the prey, the whales move closer to the prey. The mathematical

formula of this shrinkage mechanism can be expressed as follows:

→
X(t + 1) =

→
Xg−best −

→
A.
∣∣∣∣
→
C .
→
Xg−best −

→
X(t)

∣∣∣∣ (23)

It must be added that if |
→
A| ≤ 1,

→
Xg−best determines the member with the best fitness

value. Therefore,
→
Xg−best will update the position of members automatically to encircle

the prey. In the final step, the whales catch their prey, start to move in a spiral route, and
simultaneously narrow the siege [38]. This process is illustrated in Figure 6.

Figure 6. Search mechanism and whales’ movement in WOA: (a) shrinking encircling process;
(b) position update in the spiral way.

Figure 6a demonstrates a probable number of positions such as (X,Y), which can be
achieved by the current global optimum (X*,Y*) in any determined way. The spiral way to
narrow the encirclement is shown in Figure 6b [37]. This behavior can be mathematically
expressed as below:

→
X(t + 1) =

∣∣∣∣
→
Xg−best −

→
X(t)

∣∣∣∣.ebl . cos(2πl) +
→
Xg−best (24)

in which b determines the shape of the spiral route, and l is a random value in the range of
[0, 1] [39]. The population size is set to 40.

Particle Swarm Optimization: Nature-inspired metaheuristic optimization algorithms
have recently been extensively utilized to optimize various manufacturing problems [40].
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PSO has gained a special place among these algorithms because of its simplicity in pro-
gramming and solving relatively complex functions [41].

Introduced by Eberhart and Kennedy in 1995 [42], PSO is a population-based opti-
mization algorithm which comprises several particles representing a probable solution to
the defined optimization problem. The goal of these particles in the algorithm is to find the
answer by improving their positions [43].

Particles have a fitness factor, which determines the ability of each particle to solve
the optimization problem, and a velocity factor which affects the movement direction of a
particle in the course of iterations and can be mathematically obtained as follows:

V(t+1)
id = wV(t)

id + c1rand1

(
p(t)best id − X(t)

id

)
+ c2rand2

(
g(t)best id − X(t)

id

)
(25)

where X(t)
id and V(t)

id stand for the position and velocity of particle i in d dimensional space,

respectively. p(t)best id and g(t)best id, respectively, give the best position of particle i and other
particles in the population until generation t. Inertia weight factor w adjusts the dynamic
behavior of particles. Parameters rand1 and rand2 are random variables in the range of
[0, 1], c1 is the determined cognitive factor, and c2 is the preferred social factor of each
particle. The positions of particles are updated considering the calculated velocity:

X(t+1)
id = X(t)

id + V(t−1)
id (26)

in which X(t+1)
id and X(t)

id are a new position and previous position of particle i. The
updating process of particles’ positions is illustrated in Figure 7.

Figure 7. Updating the position of particles in PSO.

The optimization process terminates when the best answer is found, or the desired
iteration is reached. The parameter configuration selected in the PSO implementation
process in the research is shown in Table 2. The data were selected based on a trial-and-
error method to reach the minimum possible error.

Table 2. PSO parameter configuration.

Population size 40

Range of inertia weight 0.4–0.8

Cognitive factor 1.5

Social factor 1.5

Stopping criteria Minimum Specified Error
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Genetic Algorithm: As the most recognized subset of evolutionary algorithms, it
mimics the biological evolution of organisms in nature. Having been utilized in various
engineering problems, GA was initially developed and characterized by John Holland [44].
This naturally inspired optimization algorithm is structured on natural genetics and se-
lection. It allows only the solutions to survive and produce successive generations with
maximum fitness according to the defined optimization problem [45].

GA deals with a set of members or solutions in the total generated population. The
solutions are ranked in the population based on their fitness values. The solutions placed
at the top have more chance to participate in the reproduction of the next generations,
and other solutions with lower fitness must be removed from the population, and new
solutions can be generated. This happens by applying crossover and mutation operators to
individuals. A sample of operators applied to a pair of parents to generate new offspring is
illustrated in Figure 8.

Figure 8. Crossover and mutation operators in GA.

Parameter configurations of GA in this research are given in Table 3. These parameters
were obtained through the trial-and-error method.

Table 3. Parameter configuration of GA.

Population size 40

Length of chromosomes 6

Selection operator Roulette wheel

Crossover operator Single-point operator

Crossover probability 0.7

Mutation probability 0.15

Fitness parameter Operation time

3.2.4. Experimental Methodology

For evaluating the proposed RE methodology of a sample gear, a helical gear related
to the 1st forward movement gear of a Massey Ferguson 399 tractor’s gearbox was selected.
The drawing specifications, including the input-independent design parameters of the
selected transmission gear, are given in Table 4.

The output measurable parameters of the gear, including values for span size and
over-two-balls measurement, are listed in Table 5. The values were validated using special
gear software. The measurements over two balls and span size using appropriate balls,
a caliper, and a disc micrometer are demonstrated in Figure 9. To determine the form of
involute, three values for dm with different balls were obtained. The smallest one fell below
the pitch diameter of the gear, the medium one was closer to the pitch diameter, and the
bigger pin diameter was used to encompass the involute area of the gear over the pitch
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diameter. Moreover, a span measurement sm was used to decrease the potential error of
calculations and increase the precision of obtained results.

Table 4. Input-independent design parameters of the selected gear.

Input Parameter Values of the Selected Gear Part

z 42
mn 4.233
αn 25
β 17◦ 59′ 58”
x +0.0863

Table 5. Measurements of the selected gear.

Output Parameter Condition of Measurement Measured Value

d1
m dk = 6.5 195.264

d2
m dk = 7 196.890

d3
m dk = 7.5 198.493

sm k = 7 87.206

Figure 9. Measuring of over two balls and span size.

Since αn is usually an integer value in the design process of gears, the value of this
parameter is taken with no decimal while applying the optimization algorithm to find the
valid answer in the search space. The rest of the parameters, including mn, β, and x, are
considered with three decimal places.

The optimization is performed in two scenarios. In the first mode, the algorithm
terminates after reaching 10,000 function evaluations. The algorithms continue in the latter
until the minimum desired error of 0.005 is reached. This error value guarantees that the
calculated input design parameters would be obtained with the highest possible accuracy
and the least deviation from actual input parameters.

All evolutionary optimization algorithms were triggered in MATLAB software. The
minimum and maximum values for design parameters in search space are given in Table 6.
These limits have been selected according to widespread applications observed in the
power transmission mechanisms used in the automotive industry.

Table 6. The limit values of input design parameters in search space.

Parameter Minimum Maximum

mn 1 5
αn 10 30
β 0 30
x −1 1
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4. Results and Discussion

A computer equipped with Intel® core TM i7, 4.00 GHz CPU, and 16 GB RAM was
selected to run algorithms in MATLAB® software, version 2020b. For optimization with the
GA, function ga in MATLAB was used. For optimization with the PSO algorithm, Particle
Swarm Optimization MATLAB Toolbox Version 1.0.0.0 was selected. For optimization with
the GWO algorithm, Grey Wolf Optimizer MATLAB Toolbox Version 1.0 was utilized, and
for optimization with WOA, Whale Optimization Algorithm MATLAB Toolbox Version
1.0 was applied. The population size for all algorithms was equal to perform a fair com-
parison of the accuracy and convergence speed of the algorithms. The performance of all
optimization algorithms was submitted after 20 runs, and the run with the best result was
selected in comparison with the efficiency of the algorithms. The parameter configurations
for GA and PSO were discussed in the corresponding sections. GWO and WOA do not
need any specific parameters [13]. As mentioned before, the RE problem was approached
with two different scenarios. Concerning the first one, the efficiency of the algorithms in
terms of their convergence speed was assessed by selecting a definite number of function
evaluations for each algorithm to run. In the second scenario, the minimum error was
selected as the final goal of optimization. Overall, the fastest algorithm to find optimum
input design parameters will be determined in this case.

Scenario I: After performing 10,000 function evaluations, the algorithm’s performance
in finding the best solution for the problem was evaluated. The results of the optimizations
and the time elapsed for each algorithm to find its best solution are given in Table 7. While
the PSO method presents the best solution, other algorithms offer different values for the
problem. The best result for GWO was obtained after 8824 function evaluations within
549.8 s. This means that GWO is superior to other algorithms in terms of convergence
speed and proximity to the best answer. The WOA, PSO, and GA algorithms followed in
obtained accuracy with elapsed times of 736.4 s, 1122.3 s, and 2364.1 s, respectively.

Table 7. Best solutions of the proposed algorithms for scenario I and relevant obtained input
design parameters.

GWO WOA PSO GA

Normal module (mn) 4.2333 4.0012 4.2122 5.2666
Normal pressure angle (αn) 25◦ 25◦ 25◦ 21◦

Addendum modification (x) 0.0863 −0.0128 0.0055 0.1992
Helix angle (β) 17◦ 59′ 58′′ 14◦ 36′ 32′′ 17◦ 02′ 11′′ 13◦ 52′ 20′′

Function evaluations 8824 10,000 10,000 10,000
Elapsed time 549.8 736.4 1122.3 2364.1

The values obtained by the algorithms given in Table 7 show that the error of PSO
and WOA is 2.2% and 12.3% greater than the expected value of 0.003. This value is 41.9%
for GA, which indicates the weakness of this method compared to the other swarm-based
optimization techniques utilized in the present research. The error was calculated based
on Equation (10) for the input design parameters for each algorithm and measured values.
The obtained design parameters for each algorithm are also given in Table 7.

In Table 8, the statistical results of the performance of each algorithm in all the runs
are summarized. The table contains the average number of function evaluations, elapsed
computation times, and the deviation of obtained results.

Table 8. Statistical results of the performance of each algorithm in all runs.

GWO WOA PSO GA

Function evaluations (ave.) 9502 10,000 10,000 10,000
Elapsed time (ave.) 601.5 751.1 1206.7 2404
Standard deviation 0.1421 4.0255 0.9054 29.1512

Function evaluations (ave.) 9502 10,000 10,000 10,000
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The values given in Table 8 reveal that the repeatability of the algorithms can differ
drastically. While PSO and GWO demonstrate relatively stable repeatability, the other
two algorithms have negligible values, attributed to their inadequate efficiency in the
optimization process in the RE of gears.

Scenario II: In this case, all algorithms were expected to fulfill predefined error criteria.
The aim was to compare the efficiency of the proposed algorithms in terms of their conver-
gence speed in finding the best solution. The results of the optimizations, including the
optimum design parameter, number of function evaluations, and time elapsed for each
algorithm to find its best solutions, are given in Table 9. While PSO, GWO, and WOA
reached the best solution with differences in the function evaluations and consequently
the computation time, the best answer was not reached by all the runs for GA. The results
show the superiority of swarm-based methods in optimizing complicated problems. GWO
has the highest convergence speed and lowest number of function evaluations among the
proposed swarm-based optimization methods. PSO and WOA are placed in the next levels
with 127.4% and 228.7% more required time and a 26.2% and 178.1% higher number of
function evaluations, respectively.

Table 9. Best solutions of the proposed algorithms for scenario II and relevant obtained input
design parameters.

GWO WOA PSO GA

Normal module (mn) 4.2333 4.2333 4.2333 4.0882
Normal pressure angle (αn) 25◦ 25◦ 25◦ 25◦

Addendum modification (x) 0.0863 0.0863 0.0863 0.0012
Helix angle (β) 17◦ 59′ 58′′ 17◦ 59′ 58′′ 17◦ 59′ 58′′ 14◦ 12′ 10′′

Function evaluations 8824 24,541 11,142 -
Elapsed time 549.8 1807.1 1250.5 -

The statistical results of the performance of each algorithm in all the runs are given in
Table 10. In the table, each algorithm’s best, mean, and worst performance; average number
of function evaluations; and average elapsed time to terminate the algorithms are given.

Table 10. Statistical results of the performance of each algorithm in all runs.

GWO WOA PSO GA

Function evaluations (ave.) 9816 34,101 12,294 -
Elapsed time (ave.) 712.5 2511 1892.1 -
Standard deviation 0.1902 8.9778 0.2252 -

According to the data given in Table 10, the GWO algorithm with the lowest standard
deviation is superior to the other considered algorithms in terms of stability and robustness.
In all performed runs, GWO showed relatively uniform performance in reaching the best
solution. Furthermore, based on Table 10, GWO, with quite a short elapsed time, is the
fastest algorithm compared to the others.

The convergence graphs by the considered algorithms are shown in Figure 10. The
curves are derived from the best performance of each algorithm during the optimization run.

All the methods except GA obtained the optimum input design parameters. GWO and
PSO converge to the optimum values much more quickly than others without being stuck in
the local minimum solution. However, the convergence speed of GWO is relatively higher
than that of PSO. This method finds the optimum value in fewer function evaluations. The
performance of WOA is relatively weak in this scenario. Being attached to a local minimum
during the optimization progress requires more time and function evaluations for the WOA
to reach the optimum value. Among the proposed optimization algorithm, GA has the
lowest convergence performance. No optimum results were found in any of the runs for
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GA. Therefore, it can be concluded that GA is attached to the local optimum solution and
cannot be considered as an appropriate algorithm for the defined problem.

Figure 10. The algorithms’ convergent curves reaching the minimum defined objective function for
GWO, WOA, PSO, and GA.

To consider the average number of iterations in which the best results for each pro-
posed algorithm are reached, boxplots for GWO, WOA, and PSO were generated and are
shown in Figure 11. An illustrative comparison via the given boxplots demonstrates the
superiority of GWO over the other two algorithms. Because of the poor performance of GA
in finding optimum results, it has been omitted from the performance comparison.

Figure 11. Boxplots of the iterations for GWO, WOA and PSO.

A two-sample unpaired t-test was performed to test the hypothesis that the mean
number of iterations for GWO is lower than the same for the WOA and PSO algorithms.
t-tests are divided into two groups. The first group is an unpaired t-test, which can be
used when the two groups under comparison are independent of each other, and the
second is a paired t-test, which can be used when the two groups under comparison are
dependent on each other. As the t-test is a parametric test, samples should meet certain
preconditions, such as normality and equal variances. In other words, in order to reach a
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statistical conclusion about a sample mean with a t-distribution, certain conditions must
be satisfied: the two samples under comparison must be independently sampled from the
same population, satisfying the conditions of normality and equal variance. For checking
the normality and equality of variance, a Shapiro–Wilk test and Levene’s test were utilized,
respectively. According to the calculated Shapiro–Wilk test, the obtained p value is 0.193.
Since the Shapiro–Wilk p value is greater than 0.05, it can be concluded that the samples
satisfy the condition of normality. Moreover, the results of the Levene’s test show that the
condition of equal variance is also met.

The results for the t-test are given in Table 11. It is obvious from the test results that
the zero hypothesis is rejected, and it can be concluded that there will be a meaningful
difference between the effectiveness and convergence speed of the optimization algorithms
in terms of the mean number of iterations, as given in Table 11.

Table 11. Two-sample t-test results for used algorithms based on iterations.

T-Test for GWO-WOA T-Test for GWO-PSO

p value <0.0001 0.0005
Significant difference (p < 0.05) YES YES
t value 12.80 4.211
df 18 18
Mean iterations 10,957/28,800 10,957/15,722
Difference between mean values 17,843 ± 1394 4765 ± 1132
95% confidence interval 14,913 to 20,773 2388 to 7143

According to the performed t-tests, the hypothesis claiming the higher effectiveness
of the GWO over WOA and PSO algorithms in reverse engineering using metaheuristic
algorithms is confirmed.

5. Conclusions

This study proposes a new method for the RE of helical gears. This issue has been
less addressed in previous studies in the literature. The main objective of the study was
to find accurate gear design parameters of a helical gear, such as the normal module mn,
normal pressure angle αn, addendum modification x, and helix angle β, using performed
span and over-balls measurements. The relation between the input design parameters
and relevant output measurable characteristics is obtainable with complex mathematical
equations. Since it is impossible to mathematically solve the mentioned inverse equations,
metaheuristic methods should be used. First, an objective function based on measurements
and equations was defined. Then the defined problem was optimized by four different
algorithms that have widespread use in engineering problems: GWO, WOA, PSO, and
GA. The convergence speed and stability of the proposed methods were compared via
statistical measures, and various indicators of the algorithms such as the convergence
speed and number of function evaluations were examined. Finally, the following results
were obtained:

• Based on the proposed methodology, accurate input parameters were reached. The
validation of the obtained results was evaluated by the given equations.

• The performance of the algorithms was assessed in terms of the ability to reach
the best solution, convergence speed, and stability. It was found that swarm-based
optimization methods such as GWO and PSO are superior to the other considered
algorithms such as GA.

For future work, applying the proposed methodology in the RE of other types of
gears such as bevel gears and worm gears is suggested. Examining the other nature-
inspired algorithms and recently published and advanced optimization methods in the RE
of mechanical parts, especially gear components, is another field of research that could be
considered extensively. Another vast area of research is applying the various discussed
tuners in metaheuristics and their effect on the convergence speed of algorithms.
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Abstract: A control method for the robust synchronization of a class of chaotic systems with unknown
time delay, unknown uncertainty, and unknown disturbance is presented. The robust controller was
designed using a nonlinear fractional order PID sliding surface. The Lyapunov method was used
to determine the update laws, prove the stability of the proposed mechanism, and guarantee the
convergence of the synchronization errors to zero. The simulation was performed using MATLAB
software to evaluate the performance of the proposed mechanism, and the results showed that it was
efficient. Finally, the proposed method was combined with a secure communication application to
encrypt images, and the results obtained were favorable regarding the standard criteria of correlation,
NPCR, PSNR, and information entropy.

Keywords: chaotic synchronization; fractional order sliding mode control; adaptive control; se-
cure communication

MSC: 93D09; 93B51

1. Introduction

Chaos is a nonlinear phenomenon that appears to be random but actually follows
a pattern. It was discovered about a half-century ago by Lorenz [1]. Scientists began to
pay more attention to the phenomenon of chaos after that. Some systems, including the
Liu system [2], the IU system [3], and the Chen system [4], have been proposed on the
basis of Lorenz’s ideas. About 300 years ago, fractional calculations were introduced, and
more complete definitions and theorems have been introduced since then [5]. Physical
systems can be represented as integer or fractional equations in this context. It is evident
that modeling using fractional order systems can have more accuracy than modeling with
integer order systems. Recently, the description of systems using fractional calculus has
been developed in various sciences, including chemical reaction systems [6,7], biological
systems [8,9], power converters [10], electrochemical processes [11], robotics [12], and
others. The problem of synchronizing two chaotic systems has piqued the interest of
scientists working in the field of secure communication over the past two decades. In
fact, the synchronization of two chaotic systems can be described as a situation in which
two or more chaotic systems coordinate their responses by the controller. As a result,
two subsystems, the main or driving system and the slave or response system, constitute
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a coupled system. The master system’s response is unconstrained and drives the slave
system.

To tackle the problem, Petras et al. presented a fractional sliding surface [13]. Zare Hal-
laji et al. [14,15] presented research on the synchronization of positive and fractional chaotic
systems with system uncertainty. They evaluated the conditions of the described problem
from several perspectives, including unknown uncertainties in the system characteristics,
in their research. In [16], the chaotic system was synchronized using a nonlinear observer
and the benefit of adaptive control in order to determine the system’s uncertainties. In
this design, a sliding surface equivalent to one of the system states was provided, and
its stability was demonstrated using a Lyapunov function. The authors of [17] proposed
an adaptive terminal sliding mode controller (ATSMC). First, a fractional order sliding
surface for the master and slave system was introduced in this article. The stability of the
suggested controller was then examined, as was the ongoing convergence of the error in
the synchronization problem.

A sliding surface based on the nonlinear fractional order PID was developed in this
study for the synchronization of two systems with uncertainty and unknown disturbances
with unknown and time-varying time delay. The following benefits might be highlighted
in this research, which was conducted to synchronize two systems:

- The use of the nonlinear fractional PID (NLFOPID) sliding surface instead of typical
sliding surfaces.

- The presence of unknown time delays
- The presence of uncertainty and disturbance with unknown boundaries. Then, using

the suitable Lyapunov function and update laws, a control signal was extracted that
could be used to overcome the chattering problem by properly adjusting the controller
parameters. This is a critical issue for the suggested controller’s implementation.
In [10,18], a controller for the synchronization of chaotic systems in finite time was
constructed utilizing a sliding surface, and the synchronization of the integer order
chaotic system was investigated in [19].

The preliminary calculations of deficit accounts are reported in Section 2 of this article.
Section 3 presents the equations characterizing the system as well as the set limitations for
uncertainty. Section 4 introduces the sliding surface based on the proportional–integral–
nonlinear fractional derivative, as well as the controller architecture. Section 5 investigates
the adaptive controller’s stability analysis and update laws. Section 6 presents the simu-
lation results and visualization of the synchronized system. Section 7 discusses chaotic
masking for image encryption. Finally, in the last section, conclusions and recommenda-
tions are offered.

2. Preliminary Definitions of Fractional Order Differentiation

Definition 1. The fractional order integration and differentiation are defined as follows [20]:

Dq
t =





dq

dtq q > 0
1 q = 0∫ t

q (dτ)−q q < 0
(1)

in which q is a real number.

Definition 2. The Riemann–Liouville fractional integral of order q of the function f(t) is defined as
follows [21]:

t0 Iq
t f (t) =

1
Γ(q)

∫ t

t0

f (τ)(
t− τ)1−q dτ (2)

in which t0 is the initial time and Γ(q) is the Gamma function defined as follows:
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Definition 3. Suppose n− 1 < q ≤ n, n ∈ N. The fractional Riemann–Liouville differentiation
of order q is defined for the function f(t) below [21]:

t0Dq
t f (t) =

dq f (t)
dtq =

1
Γ(n− q)

dn

dtn

∫ t

t0

f (τ)(
t− τ)q−n+1 dτ (3)

Note 1: In Equation (4), the Riemann-Liouville fractional order integral is first calcu-
lated, and then differentiation is performed; thus, the derivative of a constant number in
this formulation is not equal to zero.

Definition 4. In the continuous function f(t), the Caputo fractional order derivative of order q is
defined as follows [21]:

t0Dq
t f (t) =





1
Γ(m−q)

∫ t
t0

f (m)(τ)

(t−τ)q−m+1 dτ m− 1 < q < m
dm f (t)

dtm q = m
(4)

Γ(q) =
∫ ∞

0
e−ttq−1dt (5)

Such that m is the first integer number after q.

Lemma 1. If f(t) is a constant function and q > 0, the Caputo derivative in Equation (5) for f(t)
would be as follows:

Dq f (t) = 0 (6)

The authors of [22] presented the stability analysis of fractional order systems using
the direct Lyapunov method, as well as the determination of the necessary and sufficient
conditions guaranteeing stability using the Mittag–Leffler concept, and the authors of [23]
reviewed the stability analysis of nonlinear systems using convex Lyapunov functions.

Lemma 2 [23]. Suppose that h(t) ∈ R is a continuous and differentiable function. Then, for
t ≥ t0, Equation (7) is satisfied.

Dqh2(t) ≤ 2h(t) · Dqh(t) (7)

Lemma 3 [23]. Suppose that h(t) ∈ Rn is a continuous and differentiable function. Then, for
t ≥ t0 , we have:

DqhT(t)·h(t) ≤ 2hT(t) · Dqh(t) (8)

Theorem 1 [22]. Assume that the origin (x = 0) is the equilibrium point of the fractional order
system (5) and that its definition domain covers the origin. Furthermore, v(x(t), t) is a continuous
and differentiable Lipschitz function, implying the following:

Dqx(t) = f (x, t)
a1 ‖ x ‖a≤ v(x(t), t) ≤ a2 ‖ x ‖ab

Dqv(x(t), t) ≤ −a3 ‖ x ‖ab
(9)

in which 0 < q < 1 and a, a1, a2, a3, b are positive arbitrary constants. Then, the origin is
stable in the Mittag–Leffler sense.

Definition 5. The continuous function p : [0, ∞) → [0, ∞) belongs to class k if its derivative is
positive and p(0) = 0.
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Theorem 2 [22]. Assume x = 0 is the equilibrium point of the fractional order system (5), the
Lipschitz condition for f (x, t) is satisfied, and q ∈ (0, 1). If Equations (8) and (9) are satisfied for
the Lyapunov function v(x(t), t) and functions δi of class K:

δ1(‖ x ‖) ≤ v(x(t), t) ≤ δ2(‖ x ‖)
Dqv(x(t), t) ≤ −δ3(‖ x ‖) (10)

Then, system (5) is asymptotically stable in the Mittag–Leffler sense.

Theorem 3 [24]. For the fractional order system (5) and the Lyapunov function v(x), we have:

Dqv(x) ≤
(

∂v
∂x

)T
·Dqx =

(
∂v
∂x

)T
· f (x, t) (11)

Definition 6 [25]. A continuous piecewise function f (x, t) has the Lipschitz condition if:

‖ f (x, t)− f (z, t)‖ ≤ γ f ‖x− z‖, ∀ x, z ∈ Rn (12)

3. System Descriptor Equations

The equations characterizing a class of master–slave chaotic systems with uncertainty
and indeterminate time delay in the presence of an unknown disturbance are introduced in
this section. Following standardization, the master system dynamics in canonical form are
as follows: {

Dqxi = xi+1 1 ≤ i ≤ n− 1
Dqxn = σT

0 x + f (x(t− τ1), t) + ∆ f (x(t), t) + d1(t).
(13)

The slave system equations are as follows:

{
Dqyi = yi+1 1 ≤ i ≤ n− 1

Dqyn = σT
0 y + g(y(t− τ2), t) + ∆g(y(t), t) + d2(t) + u(t).

(14)

The differential equations are written in the forms of well-known chaotic systems,
such as the Van der Pol Oscillator, Duffing’s Oscillator, the Genesio–Tesi System, Arneodo’s
System, and so on [26], where x(t), y(t) ∈ Rn denote the dynamic states of the master
and slave systems, σT

0 denotes the constant coefficients in the system’s linear states, and
f (x(t− τ1), t), g(y(t− τ2), t) ∈ R are nonlinear functions with an unknown delay with
τ1, τ2 delays, and ∆ f (x(t), t), ∆g(x(t), t) represent bounded uncertainty in the master and
slave systems. Furthermore, d1(t), d2(t) indicate the external distortions applied to the
master and slave systems, respectively, while u(t) is the control law applied to the slave
system.

Definition 7. If the following conditions are satisfied for the systems described in Equations (13)
and (14) for all the conditions governing the system, including all initial conditions, uncertainties,
unknown time delay, and external disturbance, the system has robust synchronization:

lim
t→∞
|yi(t)− xi(t)| = lim

t→∞
|ei(t)| = 0, i = 1, . . . , n. (15)

As a result, ei(t) introduces the synchronization error of the master and slave systems.
As a result, the following are the dynamic equations describing the synchronization

error for the uncertain chaotic master and slave systems with unknown time delay described
in (13) and (14):





Dqei = ei+1 1 ≤ i ≤ n− 1
Dqen = σT

0 (y− x) + g(y(t− τ2), t) + ∆g(x(t), t) + d2(t)
−( f (x(t− τ1), t) + ∆ f (x(t), t) + d1(t)) + u(t).

(16)
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Assumption 1. The uncertain external disturbances d1(t).d2(t) and the uncertain bounded
nonlinear uncertainties ∆f(x(t).t) and ∆g(x(t).t) in the master and slave systems (13) and (14)
meet the following conditions:

‖∆f(x(t), t)‖ ≤ β1ω1(x)
‖∆g(y(t), t)‖ ≤ β2ω2(y)
‖d1(t)‖ ≤ ρ1
‖d2(t)‖ ≤ ρ2
τi < τi < τi

(17)

Such that ‖.‖ denotes the l1 norm, β2, β1, ρ2, ρ1 are unknown positive real numbers,
and ω2(·), ω1(·) are positive and known functions. Also, ρi < ρi, βi < βi where ρi, βi, τi,
and τi are known values.

Assumption 2. The nonlinear functions f (x(t− τ1), t), g(y(t− τ2), t) ∈ R satisfy the Lipschitz
conditions for any x(t), y(t) ∈ R:

| f (x(t− τ1))− f (x(t− τ̂1))| ≤ l1|τ1 − τ̂1| = l1
∣∣∣∼τ1

∣∣∣
|g(y(t− τ2))− g(y(t− τ̂2))| ≤ l2|τ2 − τ̂2| = l2

∣∣∣∼τ2

∣∣∣
(18)

Table 1 presents the system parameters and the proposed mechanism:

Table 1. Symbols and concepts.

Symbol Concept Symbol Concept

ρi Disturbance bound ρ̂i Disturbance bound estimate

βi Uncertainty bound β̂i Uncertainty bound estimate

li Lipschitz constant τ̂i Time delay bound estimate

τi Time delay
∼
ρ i Disturbance bound estimate error

ρi Disturbance upper bound
∼
βi Uncertainty bound estimate error

βi Uncertainty upper bound
∼
τ i Time delay estimate error

τi Time delay upper bound b Positive constant number

τi Time delay lower bound ε Small positive constant number

In this study, all states of the system were directed to and kept on the sliding surface
by designing a robust adaptive controller and introducing an integral proportional sliding
surface and a fractional order nonlinear derivative. Furthermore, the system’s uncertainties
and unknown parameters should be estimated and updated. Then, in the robust synchro-
nization of chaotic systems (13) and (14) in the presence of external distortions, bounded
nonlinear uncertainties, and uncertain time delays, the dynamics of the slave system state
must match the behavior of the master system dynamics, and the estimation error of the
unknown parameters in both chaotic systems approach zero in any circumstance, ensuring
the system’s robust stability.

4. The Sliding Mode Control Approach Based on Fractional Order Nonlinear PID
Controllers

A proportional integral sliding surface and a nonlinear fractional order derivative
are presented in this section in order to synchronize chaotic systems (13) and (14) with
unknown uncertainty and unknown time delay. The fractional order sliding surface is
as follows, according to the nonlinear fractional order PID controller structure presented
in [26], which enhances tracking:

s(t) = h(e)·
[
kpen(t) + TI D−λ ∑n

i=1 k1iei + TdDδ ∑n
i=1 k2iei(t)

]
(19)
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Such that h(e) is a nonlinear function, defined as follows:

h(e) = k0 + (1− k0)‖E(t)‖, k0 ∈ (0, 1) (20)

where ‖E(t)‖ =
n
∑

i=1
|ei|. Coefficients TI and Td are time constants of integral and derivative

sentences. The parameters k1i and k2i are positive constant values of the sliding surface
such that they satisfy the stability of the desired system. If the system is in sliding mode,
the following conditions must be met:

s(t) = 0, Dqs(t) = 0 (21)

The fractional order derivative of the sliding surface in Equation (21) is as follows:

Dqs(t) =
(
k0kpDqen(t) + k0TiDq−λ ∑n

i=1 k1iei(t) + k0TdDq+δ ∑n
i=1 k2iei(t) + (1− k0)kpDq(‖E(t)‖en(t))

+(1− k0)TI Dq(‖E(t)‖D−λ ∑n
i=1 k1iei(t)

)
+ (1− k0)TdDq(‖E(t)‖Dδ ∑n

i=1 k2iei(t)
))

= 0
(22)

Now, Dqen is substituted into Equation (21) using Equation (16):

Dqs(t) =
(
k0kp

(
g(y(t− τ2), t) + ∆g(x(t), t) + d2(t)− ( f (x(t− τ1), t) + ∆ f (x(t), t) + d1(t)) + σT

0 ·E(t)
+u(t)) + k0TiD1−λ ∑n

i=1 k1iei(t) + k0TdD1+δ ∑n
i=1 k2iei(t) + (1− k0)kpDq(‖E(t)‖en(t))

+(1− k0)TI Dq(‖E(t)‖D−λ ∑n
i=1 k1iei(t)

)
+ (1− k0)TdDq(‖E(t)‖Dδ ∑n

i=1 k2iei(t)
))

= 0
(23)

In this case, the control signal is determined as follows:

u(t) = −1
k0kp

(
k0TiDq−λ ∑n

i=1 k1iei(t) + k0TdDq+δ ∑n
i=1 k2iei(t) + (1− k0)kpDq(‖E(t)‖en(t))

+(1− k0)TI Dq(‖E(t)‖D−λ ∑n
i=1 k1iei(t)

)
+ (1− k0)TdDq(‖E(t)‖Dδ ∑n

i=1 k2iei(t)
))

+ f (x(t− τ̂1).t)− g(y(t− τ̂2).t)− σT
0 ·E(t)− bs + u(t)

(24)

In Equation (25), the term u(t) comprises the terms coming from the estimation of the
system’s bounds of uncertainties and disturbances, which are defined using the adaptive
controller, as follows:

u(t) = −sgn(s)
[

β̂2ω2(y) + β̂1ω1(x)+ρ̂2 + ρ̂1)
]
+ u00(t)

u00(t) = −b
k0kps

2
∑

i=1

[(
|ρ̂i|+ ρi)

2 + (|τ̂i|+ τi)
2 +

(∣∣∣β̂i

∣∣∣+ βi

)2
] (25)

5. Stability Analysis and Determining the Update Laws

The construction of the robust adaptive controller is described in this part, employing
the sliding surface based on nonlinear fractional order PID in such a way that the suggested
control strategy guarantees the stability of the synchronization of chaotic systems.

Theorem 4. The synchronization of systems (13) and (14) in the presence of disturbances d1 and
d2 and unknown uncertainties ∆ f and ∆g with unknown time delays τ1 and τ2 and the definition
of the controller u(t) is guaranteed as follows:

u(t) = −g(y(t− τ̂1)) + f (x(t− τ̂2))
− 1

k0kp

(
k0Tl Dq−λ ∑n

i=1 k1iei(t) + k0TdDq+δ ∑n
i=1 k2iei(t) + (1− k0)kpDq(‖E(t)‖en(t))

+(1− k0)TI Dq(‖E(t)‖D−λ ∑n
i=1 k1iei(t)

)
+ (1− k0)TdDq(‖E(t)‖Dδ ∑n

i=1 k2iei(t)
))
− σT

0
·E(t)− bs− sgn(s)

(
β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1

)
+ u00(t)

(26)
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Such that the update laws are as follows:

Dqτ̂i = −Dq∼τ i = li|s|sgn
(∼

τ i

)
, τ̂i(0) = τi

Dqρ̂i = −Dq∼ρ i = k0kp|s|
Dq β̂1 = −Dq

∼
β1 = −k0kp|s|ω2(y)

Dq β̂2 = −Dq
∼
β2 = −k0kp|s|ω1(x)

(27)

Thus, the convergence of the chaotic systems’ synchronization error to zero is ensured.

Proof. Consider the following Lyapunov function:

v(t) =
1
2

[
s2(t) +

∼
β

2

1 +
∼
β

2

2 + l1
∼
τ

2
1 + l2

∼
τ

2
2 +

∼
ρ

2
1 +

∼
ρ

2
2

]
(28)

in which the parameters’ estimation error is defined as follows:

∼
τ i = τi − τ̂i,

∼
ρ i = ρi − ρ̂i,

∼
βi = βi − β̂i (29)

Considering Equation (28), the derivative of the Lyapunov function is as follows:

Dqv(t) =
1
2

Dq
(

s2 +
∼
β

2

1 +
∼
β

2

2 + l1
∼
τ

2
1 + l2

∼
τ

2
2 +

∼
ρ

2
1 +

∼
ρ

2
2

)
≤ s·Dqs + ∑2

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

)
(30)

By applying Equation (23) in Equation (30), Equation (31) is determined:

Dqv(t) ≤ s·
[
k0kp

(
g(y(t− τ2), t) + ∆g(x(t), t) + d2(t)− ( f (x(t− τ1), t) + ∆ f (x(t), t) + d1(t)) + σT

0 ·E(t)
+u(t)) + k0TiDq−λ ∑n

i=1 k1iei(t) + k0TdDq+δ ∑n
i=1 k2iei(t) + (1− k0)kpDq(‖E(t)‖en(t))

+(1− k0)TI Dq(‖E(t)‖D−λ ∑n
i=1 k1iei(t)

)
+ (1− k0)TdDq(‖E(t)‖Dδ ∑n

i=1 k2iei(t)
)
+ u00(t)

]

+
2
∑

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

) (31)

In this case, the Lyapunov function derivate is as follows:

Dqv(t) ≤ s·
[
k0kp(g(y(t− τ2), t)− g(y(t− τ̂2), t) + ∆g(x(t), t) + d2(t) + f (x(t− τ̂1), t)− f (x(t− τ1), t)
−∆ f (x(t), t)− d1(t)− bs− sgn(s)

[
β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1

])
] + sk0kpu00(t)

+
2
∑

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

) (32)

Thus, we have:

Dqv(t) ≤ |s|·
[
k0kp(|g(y(t− τ2), t)− g(y(t− τ̂2), t)|+ |∆g(x(t), t)|+ | f (x(t− τ̂1), t)− f (x(t− τ1), t)|

−|∆ f (x(t), t)|+ |d2(t)− d1(t)|)]− k0kpbs2

+k0kps
(
−sgn(s)

[
β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1

])
+ sk0kpu00(t)

+
2
∑

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

) (33)

On the basis of assumptions 1-2 and 2-2 presented in Equations (17) and (18) in
Section 3 of the article, Equation (33) is rewritten as follows:

Dqv(t) ≤ |s|·
[
k0kp(l2|τ2 − τ̂2|+ β2ω2(y) + l1|τ1 − τ̂1|+ β1ω1(x) + ρ1 + ρ2)

]
− k0kpbs2

−k0kpsgn(s)s
[
β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1

]
+ sk0kpu00(t)

+
2
∑

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

) (34)

The derivative of the Lyapunov function is as follows:
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Dqv(t) ≤ |s|
[

k0kp

(
l1
∣∣∣∼τ1

∣∣∣+
∼
β2ω2(y) + l2

∣∣∣∼τ2

∣∣∣+
∼
β1ω1(x) +

∼
ρ2 +

∼
ρ1

)]
− bs2 + sk0kpu00(t)

+
2
∑

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

) (35)

Now, by substituting the update laws (27) into (35), the derivative of the Lyapunov
function is simplified as follows:

⇒ Dqv(t) ≤ −bs2 + sk0kpu00(t) (36)

In the following, by substituting u00(t) from (25) into (36), Equation (37) is obtained:

⇒ Dqv(t) ≤ −bs2 − sk0kp
b

k0kps

2

∑
i=1

[(
|ρ̂i|+ ρi)

2 + (|τ̂i|+ τi)
2 +

(∣∣β̂i
∣∣+ βi

)2
]

(37)

On the other hand:
∣∣∣∼τ i

∣∣∣ = |τi − τ̂i | ≤ |τi |+ |τ̂i | ≤ |τ̂i |+ τi ⇒ −(|τ̂i|+ τi)
2 ≤ −

∣∣∣∼τ i

∣∣∣
2

∣∣∣∣
∼
βi

∣∣∣∣ =
∣∣βi − β̂i

∣∣ ≤ |βi |+
∣∣β̂i
∣∣ ≤

∣∣β̂i
∣∣+ βi ⇒ −

(∣∣β̂i
∣∣+ βi

)2 ≤ −
∣∣∣∣
∼
βi

∣∣∣∣
2

∣∣∣∼ρ i

∣∣∣ = |ρi − ρ̂i | ≤ |ρi |+ |ρ̂i | ≤ |ρ̂i |+ ρi ⇒ −(|ρ̂i|+ ρi)
2 ≤ −

∣∣∣∼ρ i

∣∣∣
2

(38)

By substituting Equation (38) into Equation (35), the derivative of the Lyapunov
function is simplified to Equation (39).

⇒ Dqv(t) ≤ −b

(
s2 +

2

∑
i=1

[∼
βi

2
+
∼
τ i

2
+
∼
ρ i

2
])
≤ −2bv (39)

The convergence of v(t) to zero is guaranteed by Theorems (1) and (2). As a result, the
sliding surface s and the estimation errors approach zero. In the following, it is proven that
the synchronization errors approach zero. For this purpose, first, αi , T Ik1i and βi , Tdk2i
are defined. Then, by applying Equations (19)–(21), expression (40) is obtained:

⇒ kpen(t) + TI D−λ ∑n
i=1 k1iei + TdDδ ∑n

i=1 k2iei(t) = 0 (40)

Thus, the fractional order derivative of is obtained from both sides of Equation (37)

kpDλen(t) + ∑n
i=1 βiei(t) + ∑n

i=1 αiDλ+δei(t) = 0, 0 < λ + δ ≤ 1 (41)

The dynamics of the system error are defined as follows:





Dqe1 = e2
Dqe2 = e3

...
Dqen−1 = en

⇒





sqE1 = E2 + k‘
2(s)

sqE2 = E3 + k‘
3(s)

...
sqEn−1 = En + k‘

n(s)

⇒ Ei = s(i−1)qE1(s) + k‘
i(s) (42)

in which Ei(s) = L(ei), and k‘
i(s) is the effect of the initial condition of the Laplace transform.

By calculating the Laplace transform using Equation (40), Equation (42) is obtained:

kpsλEn(s) +
n

∑
i=1

(
αisq+λEi + βiEi

)
= k0(s) (43)
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where k0(s) is the general effect of the initial conditions. By substituting Equation (42) into
Equation (43), Equation (44) is obtained:

[
kpsλs(n−1)q +

n

∑
i=1

(
αisδ+λs(i−1)q + βis(i−1)q

)]
E1(s) = k0(s) (44)

Therefore, the system’s characteristic equation is as follows:

kps(n−1)q+λ +
n

∑
i=1

(
αisδ+λ+(i−1)q + βis(i−1)q

)
= 0 (45)

If the coefficients αi, βi, and kp on the sliding surface are chosen in such a way that the
roots of the above equation have a negative real part, then all eis approach zero.

Therefore, a sufficient condition for the synchronization errors to converge to zero is
that the characteristic Equation (45) is stable.

In Equation (25), if the sliding surface approaches zero, u00(t) will be very big; to
avoid this, u00(t) is modified as follows:

u00(t) =
−bs

k0kp(s2 + ε)∑
2
i=1

[(
|ρ̂i|+ ρi)

2 + (|τ̂i|+ τi)
2 +

(∣∣β̂i
∣∣+ βi

)2
]

(46)

in which ε is a small positive number.
The update laws for delays in Equation (27), which are not available, depend on the

estimation error. This problem can be solved by the following:
Given that 0 < τi < τi < τi, such that τi is the upper limit and τi is the lower limit of

the time delay, as a result of selecting τ̂i(0) = τi, we have:

∼
τ i(0) = τi − τ̂i(0) = τi − τ < 0⇒ sgn

(∼
τ i

)
= −1

By defining V∼
τ i
= 1

2
∼
τ i

2
and calculating its derivate:

DqV∼
τ i
≤ ∼τ iDq∼τ i = −

∼
τ ili|s|sgn

(∼
τ i

)
= −li

∣∣∣∼τ i

∣∣∣|s| < 0 (47)

Therefore, V∼
τ i

is a decreasing function that tends to zero as a result: ∀t ≥ 0 :
∼
τ i < 0⇒

sgn(
∼
τ i) = −1.
In this way, the update laws for time delays are as follows:

Dqτ̂i = li|s|sgn
(∼

τ i

)
= −li|s| i = 1.2 (48)

Also, in order to increase the robustness of the adaptive laws against uncertainties and
disturbances, the Sigma correction law was used. The behavior of the sigma function is
shown in Figure 1.

The sigma function is defined as follows:

σ(t) =





0 i f
∣∣θ̂(t)

∣∣ ≤ M0(∣∣θ̂(t)
∣∣/M0 − 1

)n
σ0 i f M0 <

∣∣θ̂(t)
∣∣ ≤ 2M0

σ0 i f
∣∣θ̂(t)

∣∣ ≥ 2M0

(49)
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Therefore, the update laws for estimations of delays, disturbance, and uncertainty
bounds are as follows:

Dqτ̂i = −li|s| − σ0(|τ̂i|)τ̂i, τ̂i(0) = τi, i = 1.2
Dqρ̂i = k0kp|s| − σ0(|ρ̂i|)ρ̂i, i = 1.2
Dq β̂1 = −k0kp|s|ω1(x)− σ0

(∣∣β̂1
∣∣)β̂1,

Dq β̂2 = −k0kp|s|ω2(y)− σ0
(∣∣β̂2

∣∣)β̂2,

(50)

Its stability is demonstrated for chaotic systems with unknown uncertainty, fractional
order unknown time delay, and considering PI sliding surface and nonlinear fractional
order derivative. �

6. Simulation Results

In this section, the process of synchronizing time-varying chaotic systems with un-
known uncertainty and time delay of the fractional order using the proposed control
mechanism based on the nonlinear fractional order PID and with the advantage of the
adaptive controller and update laws that estimate system parameters is verified, and its
accuracy is evaluated. Two modified Jerk chaotic systems with the aforementioned charac-
teristics were utilized for this purpose. The canonical form of the master system’s governing
equations are as follows [15]:





Dqx1 = x2
Dqx2 = x3

Dqx3 = −ε1x1(t)− x2(t)− ε2x3(t) + f3(x1(t− τ1), t)
(51)

In this system, f3(x1(t− τ1), t) is a piecewise linear function, as follows:

f3(x1(t− τ1), t) =
1
2
(v0 − v1)[|x1(t− τ1) + 1| − |x1(t− τ1)− 1|] + v1x1(t− τ1) (52)

Such that v0 < −1 < v1 < 0, v0 = −2.5, and v1 = −0.5.
Also, εi is a time-varying function, defined as follows.

ε1(t) = 0.5 + 0.3 sin(t) cos(5πt)
ε2(t) = 0.2 + 0.15 sin(0.5t) cos(3πt)

(53)

If εi(t) = ε0i + ∆εi(t), ∆εi(t) can be considered a part of the uncertainty and summed
with the general uncertainty.
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Thus, Equation (49) can be rewritten as follows:





Dqx1 = x2
Dqx2 = x3

Dqx3 = −ε10x1(t)− x2(t)− ε20x3(t) + f3(x1(t− τ1), t)
+∆ f new(x(t), t) + d1(t).

(54)

in which ∆ f new(x(t), t)) = ∆ f (x(t), t)− ∆ε1(t)x1(t)− ∆ε2(t)x3(t) with the previous struc-
ture. The same is carried out for the slave system.

When the initial conditions are chosen as (x1(0); x2(0); x3(0))T = (−0.5032; 2.8545;
−1.37)T , the chaotic behavior of the system is as shown in Figure 2.
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Figure 2. Chaotic behavior of the fractional order Jerk master and slave systems without applying
the controller.

If the bounded uncertainty functions of the master and slave systems are as follows:

∆ f (x(t), t)) = 0.3sin(4x1(t) + x2(t)− x3(t))
∆g(x(t), t)) = 0.2sin(y1(t) + 2y2(t)− y3(t))

(55)

The dynamic equations of the master and slave system are as follows:





Dqx1 = x2
Dqx2 = x3

Dqx3 = −ε1x1(t)− x2(t)− ε2x3(t) + f3(x1(t− τ1), t)
+∆ f new(x(t), t)) + d1(t)

(56)

The dynamic of the master system follows the following equations:





Dqy1 = y2
Dqy2 = y3

Dqy3 = −ε1y1(t)− y2(t)− ε2y3(t) + g3(y1(t− τ2), t)
+∆gnew(x(t), t)) + d2(t) + u(t)

(57)

Such that the nonlinear terms of the slave system are as follows:

g3(y1(t− τ2), t) =
1
2
(v0 − v1)[|y1(t− τ2) + 1| − |y1(t− τ2)− 1|] + v1y1(t− τ2) (58)
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According to the dynamic of the master and slave systems described in Equations (51)
and (52), the synchronization error is given as follows:





Dqei = ei+1 1 ≤ i ≤ n− 1
Dqen = σT

0 ·e(t) + g(y(t− τ2), t) + ∆g(y(t), t) + d2(t)
− f (x1(t− τ1))− ∆ f new(x(t), t))− d1(t) + u(t)

(59)

Accordingly, the error dynamics for the chaotic Jerk system are as follows:





Dqe1 = e2
Dqe2 = e3

Dqe3 = −ε1e1(t)− e2(t)− ε2e3(t)− g(y1(t− τ2)) + f (x1(t− τ1))
+∆gnew(x(t), t))− ∆ f new(x(t), t))

d2(t)− d1(t) + u(t)

(60)

At this stage, we applied the robust adaptive control signal, which is devised by
combining the sliding surface based on the structure of the fractional order nonlinear PID
controllers and described in Equation (26), to the slave system.

In this article, simulations were run for 100 s. Figure 2 depicts the master and slave
systems in three-dimensional space. Figure 3 illustrates the behavior of the master and slave
system states in the absence of any controller actions. Figure 4 shows the synchronization
of the master and slave system. It is clear that after applying the control signal based on the
proposed mechanism, the slave system follows the master system well. Figure 5 depicts the
synchronization error of the master and slave system utilizing the proposed mechanism.
Figure 6 depicts the control signal based on the proposed method. According to the range
of the image’s control signal (6), it is unquestionable that the proposed controller can be
implemented. As this figure demonstrates, the controller signal exhibited no chattering,
and a saturation limit of 24 volts was used, which is simple to implement. In this design,
the controller coefficients k11 = k22 = 9 and k12 = k21 = 18 were selected. Also, the gain
and time constants of the PID sliding surface are nonlinear fractional orders, as kp = 3,
Ti = 0.8, and Td = 0.65. The fractional order of the integral part and the derivative of the
sliding surface are defined as δ = 0.15 and λ = 0.75. The parameters of the proposed robust
controller are ε = 0.01 and b = 2. The unknown time delays of the system are τ1 = 0.3
and τ2 = 0.5. The time delay of the master system changes to the value of τ1 = 0.45 at
the moment t = 40 s, and the time delay of the follower system changes to the value of
τ2 = 0.58 at the moment t = 50 s. The error in estimating the uncertainty, disturbance,
and delay bounds is shown in Figure 7. Figure 8 shows the uncertainties and disturbances
applied to the master and slave systems. The unknown disturbances are applied to both
systems as follows:

d1(t) = 0.8sin22t + 1.2cos3t + 1.6sin1.3t
d2(t) = sin1.4t + 0.3sinπt + 0.3cos πt

2
(61)
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7. Application of Secure Communication in Encryption and Image Retrieval

Despite the uncertainties and time delays in the system, the fractional order chaotic
master and slave systems were entirely synchronized according to the proposed mechanism,
the details of which were described in the previous section. Images were encrypted
using the [27] algorithm in this section. The encrypted image was then transmitted using
fractional order chaotic masking and received with high precision before being decoded.

Figure 9 is a block diagram detailing the encryption technique applied to the images.
In this block diagram, information is exchanged via a wireless communication channel.

Various statistical parameters, including the histogram difference between the original
image and the restored image, correlation, NPCR, PSNR, and information entropy, were
calculated for standard color benchmark images and medical color images to demonstrate
the efficacy of the proposed method. These parameters are standard criteria that have been
used in numerous articles [27].

This section encrypts images for secure communication utilizing the mechanism whose
efficacy was evaluated in Section 6. Figure 10 shows the result of image encryption and
recovery using secure communication for the original image, and Figure 11 shows their
histogram for Aletta (Isekai.Shokudou) color image.
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Figure 12 shows the encryption on the lena color image and Figure 13 shows its
histogram.
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Figure 13. Histogram of the original, encrypted, and decrypted color image.

It can be seen that the decoded images were well restored using the proposed synchro-
nization scheme.

Table 2 shows the results of the statistical criteria of Figures 10 and 12.

Table 2. Results of statistical criteria of color images.

Images
Histogram

Correlation
Differential Attack

PSNR
Information

EntropyStandard Encrypted NPCR (%) UACI (%)

Images 10 21,153.1171 21,148.239 0.0068 99.68 33.23 8.10 7.9690

Images 12 18,144.3510 18,143.750 0.0043 99.40 33.46 8.27 7.9700

Image encryption using the above mechanism along with histogram for cameraman’s
black and white image is shown in Figures 14 and 15, respectively, and for panda is
presented in Figures 16 and 17.
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Table 3 shows the results of the statistical criteria of the black and white images in
Figures 14 and 16.
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Table 3. Results of statistical measures of black and white images.

Images
Histogram

Correlation
Differential Attack

PSNR
Information

EntropyMain Decoded NPCR (%) UACI (%)

Images 14 398,232.09375 398,201.1053 0.9923 99.21 33.55 8.9671 7.9783

Images 16 24,466.718750 24,421.32934 0.9953 99.48 33.21 8.0221 7.9458

The encryption of the medical color image along with its histogram for the single
image mode is shown in Figures 18 and 19 and for the multiple image in Figures 20 and 21,
respectively.
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Table 4 shows the results of the statistical criteria of the color medical images in
Figures 18 and 20. The results of encryption entropy indicate excellent quality of image
retrieval.

Table 4. Results of statistical measures of medical images.

Images
Histogram

Correlation
Differential Attack

PSNR
Information

EntropyStandard Decrypted NPCR (%) UACI (%)

Images 18 65,536 65,535 0.9986 99.96 33.46 9.23 7.9627

Images 20 65,536 65,534 0.9987 99.97 33.47 9.24 7.9842

8. Conclusions

This study examined a novel adaptive sliding mode control approach for robust
synchronization of a class of fractional order chaotic systems with uncertainty, external dis-
turbance, and unknown parameters, such as unknown time delay. In the proposed robust
control mechanism, a nonlinear fractional order sliding surface was first proposed based
on the structure of nonlinear proportional, integral, and fractional derivative controllers.
Using the Lyapunov theory and Lipschitz conditions in chaotic systems, matching criteria
were established in order to estimate the unknown parameters of the system. In order
to facilitate the implementation process, the control signal’s saturation limit was defined,
and the robust control system’s stability was demonstrated. The synchronization of two
fractional order Jerk chaotic systems with the stated characteristics, including uncertainties
and unknown time delays, based on the proposed control mechanism was simulated using
MATLAB, and the results express the capability and optimal performance of the proposed
approach in the robust synchronization of the mentioned systems. In closing, the proposed
adaptive sliding mode control approach was implemented in the structure of a chaotic
secure communication mechanism, and the simulation results indicate a high level of
quality in the secure encryption and decryption of digital images despite the presence of
uncertain parameters in the master and slave systems of the communication mechanism.
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Abstract: This paper discusses the robust stability and stabilization of polynomial fractional differen-
tial (PFD) systems with a Caputo derivative using the sum of squares. In addition, it presents a novel
method of stability and stabilization for PFD systems. It demonstrates the feasibility of designing
problems that cannot be represented in LMIs (linear matrix inequalities). First, sufficient conditions
of stability are expressed for the PFD equation system. Based on the results, the fractional differ-
ential system is Mittag–Leffler stable when there is a polynomial function to satisfy the inequality
conditions. These functions are obtained from the sum of the square (SOS) approach. The result
presents a valuable method to select the Lyapunov function for the stability of PFD systems. Then,
robust Mittag–Leffler stability conditions were able to demonstrate better convergence performance
compared to asymptotic stabilization and a robust controller design for a PFD equation system
with unknown system parameters, and design performance based on a polynomial state feedback
controller for PFD-controlled systems. Finally, simulation results indicate the effectiveness of the
proposed theorems.

Keywords: polynomial fractional-order system; robust controller; stability; stabilization;
Mittag–Leffler stable

MSC: 93D09; 93B51

1. Introduction

Fractional calculus concerns mathematical relations about the generalizations of dif-
ferentiation and integration to a noninteger order with a history of more than 300 years.
Integer-order derivatives and integrals as specific cases paved the way for this mathe-
matical branch to become very popular in fractional calculus, which resulted in many
applications in engineering, physics, economics, etc. [1]. In addition, new possibilities
have caused fractional calculus to model various physical systems in engineering, which
have more accuracy than the classical integer system such as a robot, chaos, information
science, and so on [2,3]. Moreover, new methods were proposed to solve the complexity
of modeling by the fractional-order method [4]. Recently, the study of the stability and
stabilization of fractional differential equations (FDEs) has attracted a lot of attention in
control theory [5,6]. To this aim, many studies have focused on linear fractional differential
and nonlinear fractional differential equations [7], which could conform to linear FDE
systems and analyze stability based on LMI conditions.

Zhang, Tian, et al. [8] considered the stability of nonlinear FDEs, and similar stability
conditions of Caputo FDEs were obtained for Riemann–Liouville FDEs. Based on the result,
the stability condition of nonlinear FDEs is the same as linear FDEs if the nonlinear section
follows the same conditions. Wang et al. [9] investigated the asymptotical stability of
nonlinear FDEs and sufficient conditions obtained by using the state feedback stabilization
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controller. Furthermore, the pole replacement method was used in linear systems to design
the controller gains for nonlinear FDEs [10].

Nowadays, stability analysis of nonlinear FDE systems has been considered by re-
searchers. Thus, most of the studies are related to stability and stabilization for the fractional
differential equation [11]. FDE is analyzed by Lyapunov’s first and second methods. In
the first method, nonlinear FDEs are converted to linear FDEs at the equilibrium point.
Therefore, the nonlinear FDE is asymptotically stable if the linearization system is asymp-
totically stable [12,13]. In the second method, energy is decreased and allows us to evaluate
the stability of the system without integrating the differential equation explicitly. The
Lyapunov technique provides a sufficient condition for the asymptotic stabilization of
systems. In this regard, the LMI approach can be used as a method for selecting a Lyapunov
candidate. The LMI method is based on numerical solutions and optimization due to its
popularity. Various studies have been conducted in the field of stability evaluation by the
LMI method. In the study of Lu and Chen [14], less conservative conditions have been
evaluated in terms of LMIs for robust stability and stabilization of FO dynamic interval
systems. Furthermore, Li and Zhang [15] presented robust stability of the FO linear un-
certain system by focusing on the observer and obtaining the necessary conditions. All of
the results in some studies [14–16] were obtained based on LMI, although many design
problems cannot be represented by the LMI approach. The analysis stability by using
Lyapunov’s method is considered an explicit way of solving the FDE in nonlinear FDE sys-
tems. Thus, Mittag–Leffler introduced stability for nonlinear fractional differential systems
by the fractional Lyapunov’s method [17]. Based on this method, systems are stable but
have no candidate for the Lyapunov function [18]. Two theorems were proved for frac-
tional nonlinear time-delay systems that were related to stability in the study of Badri and
Tavazoei [19]. M-L stability for nonlinear FDE systems can generalize better convergence
performance against asymptotic stabilization. Chen et al. [20] studied the stabilization of
fractional nonautonomous systems by using the M-L function and the Lyapunov direct
method. Some studies reported that it is usually difficult to find a Lyapunov candidate
and calculate a fractional derivative for the FDE system (e.g., [10,18–20]). By considering
all of the above-mentioned studies, a new method was presented for finding a Lyapunov
candidate function. This method can help find the Lyapunov function more easily than
the previous methods. The result is based on the new property of the Caputo fractional
derivative, which allows the stability analysis of many FO systems to be studied [21,22].

Some studies reported that stability analysis based on M-L stability is more efficient
than asymptotic stabilization [17,19–23]. In this paper, the application of the Lyapunov
function method was expanded in PFD systems. To this aim, the stability of the PFD system
was analyzed by using three polynomial PFD inequalities, which can be solved via the
SOS toolbox in Matlab. Then, robust Mittag–Leffler stability conditions were obtained
based on the SOS approach, which can exhibit better convergence. The desired robust
M-L stabilization was obtained by selecting the polynomials state feedback control, which
resulted in designing flexible controllers.

This paper is organized as follows. In Section 2, some definitions and lemmas are
given. A sufficient condition of stability for PFD is given in Section 3. Section 4 provides
sufficient conditions for robust stability and the stabilization of the PFD system. Simulation
results are given in Section 5. Finally, some conclusions are made in Section 6.

2. Preliminaries
Notations and Definitions

There are several definitions of FO derivatives, among which Riemann–Liouville and
Caputo’s definition is considered the most common and practical definition in the literature.
Thus, the Caputo definition is selected in this study.

Definition 1 ([8]). The Caputo fractional derivative is defined as follows
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Dq
t f (t) =

1
Γ(n− q)

∫ t

t0

(t− τ)n−q−1 f (n)(τ)dτ. (1)

where q is the fractional order and n shows integer.

n− 1 ≤ q < n

Γ(·) represents the Euler’s function

Γ(t) =
∫ ∞

0
xt−1e−xdx. (2)

Mittag–Leffler is a function that is mostly used in solving in fractional-order systems
as follows

Eq(z) =
∞

∑
k=0

zk

Γ(kq + 1)
. (3)

where q > 0. The M-L function with two parameters appears most frequently and has the
following form

Eq,β(z) =
∞

∑
k=0

zk

Γ(kq + β)
. (4)

where q > 0, β > 0.
By using the Caputo derivative, an FO system is defined by

Dq
t x(t) = (A(x) + ∆A(x))x(t) + u(x). (5)

where x = (x1, x2, . . . ., xn)
T ∈ Rn is the state vector of the state system, A(x) ∈ Rn×n

defines a nonlinear matrix function field in the n× n-dimensional space, and ∆A(x) rep-
resents the admissible uncertainty function. q is the order of the fractional derivative,
(0 < q ≤ 1) u(x) as the control input. Let the equilibrium point be x = 0 when u(x) = 0.

Definition 2 ([24]). The sum of squares (SOS) approach is an important subset of the polynomials
used for modeling and controlling nonlinear systems. Assume that ∑n is the set of all SOS
polynomials with degree n defined as follows

∑
n

= {s ∈ Rn|∃M ≺ ∞, ∃{pi}M
i=1 ⊂ Rnsuch that s =

M

∑
i=1

pi
2}

where R indicates the real number. Assume that monomial
{

mαj

}k

j=1
is defined as mα(x) = xα =

xα1
1 .xα2

2 . . . . .xαn
n , α ∈ Z+. Then, polynomial p is the issue of squares if p is a monomial

{
mαj

}k

j=1
linear combination.

{
mαj

}k

j=1
so that mα : Rn → R subject to

mα(x) = xα = xα1
1 .xα2

2 . . . . .xαn
n , α ∈ Z+,

{
cj
}k

j=1 ∈ R,

p = ∑k
j=1 cjmαj

p = ∑k
j=1 cjmαj ,

{
cj
}k

j=1 ∈ R

A subset of Rn, Rn,d = {p ∈ Rn|deg p ≤ d} is defined in such a way that n is the
number of variables and d is the degree of polynomials. Based on this definition, we can
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define ∑n,d, which can directly lead to sufficient conditions for polynomial programming.
Therefore, we have ∑n,d = ∑n ∩Rn,d.

Lemma 1 ([11]). Fix p ∈ Rn,2d. p ∈ ∑n,2d if and only if there exists a Q ≥ 0 such that

p(x) = z∗n,d(x)Qzn,d(x) (6)

According to Lemma 1, polynomial p is SOS if necessary and sufficient conditions are
satisfied for Lemma 1.

zn,d(x) is monomials with n variables of degree less than or equal to d.

Theorem 1 ([11]). The polynomial system
.
x(t) = f (x(t)) is globally asymptotically stable about

equilibrium point if there exists a positive-definite function V : Rn → R+ such that − .
v(x) is

positive-definite.

This theorem is important in stability, which is defined based on the following impor-
tant theorem in the field of stability of polynomial systems.

Theorem 2. Given the system
.
x(t) = f (x(t))and fixed positive-definite functions l1 , l2 ∈ Rn,

the system is globally asymptotically stable if there exists v(x) ∈ Rn with v(0) = 0 such that

v(x)− l1 ∈ ∑n .
−
( .
v(x) + l2

)
∈ ∑n .

.
v(x) = ∆v(x)A(x)x

(7)

Proof. Given a finite set {pi} m
i=0 ∈ Rn, the existence of (p0 + ∑m

i=1 αi pi) ∈ ∑n is such that
{αi}m

i=1 ∈ R. It is evident that the conditions (v(x)− l1) and −(∇v(x)A(x) + l2) are SOS
polynomials if a polynomial function of v(x) is found for satisfying these conditions. The
positive definiteness of l1 and l2 is selected to satisfy the assumptions of theorem, in which
both v(x) and − .

v(x) are positive-definite. �

Definition 3 ([20]). Assume that v(x) : Ω→ R , Ω ∈ Rn is a convex function in Ω
and x : [t0, ∞)→ Ω is a continuous differential function. For t ≥ t0

c
t0

Dq
t v(x) ≤ (

∂v
∂x

)
T

c
t0

Dq
t x(t). (8)

Definition 4 ([20]). Consider the FO nonlinear system

c
t0

Dq
t x(t) = A(x)x(t). (9)

If the convex Lyapunov function v(x) can satisfy the following conditions, x = 0 is an
equilibrium point for the FO system and the system is globally Mittag–Leffler stable in
equilibrium point.

γ1||x||α ≤ v(x) ≤ γ2||x||αb.
c
t0

Dq
t v(x) ≤ −γ3||x||αb.

(10)

3. PFDE Stability

In this section, a sufficient condition of stability is presented for the PFD equations
system.

Theorem 3. Consider the system c
t0

Dq
t x(t) = A(x)x(t). Suppose that Let x = 0 is an equilib-

rium point in the domain D ⊂ Rn and v(x) : [0, ∞)× D → R is a continuously differentiable
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function and locally Lipschitz in x. System is M-L stable in x = 0 if and only if there exists
w1(x), w2(x), w3(x) ∈ ∑n by satisfying the following condition

w1(x) ≤ v(x) ≤ w2(x).
c
t0

Dq
t v(x) ≤ −w3(x). (11)

Proof. It follows from inequalities (11) that

c
t0

Dq
t v(x) ≤ −w3(x) ≤ −w3(x)

w2(x)
v(x) ≤ −in fx

(
w3(x)
w2(x)

)
v(x) = −βv(x). (12)

where β = in fx

(
W3(x)
W2(x)

)
.

w2(x), w3(x) are positive and have the same degree, therefore: β > 0.
There exists a nonnegative function m0(t) satisfying

c
t0

Dq
t v(x) + m0(t) = −βv(x). (13)

By taking the Laplace transform from both sides of Equation (13)

v(s) = v(0)sq−1−M0(s)
sq+β

sqv(s)− v(0)sq−1 + M(s) = −βv(s)
(14)

Then, if x(0) = 0, then v(0) = 0, and if x 6= 0, then v(0) > 0. Applying the inverse
Laplace transform to (14) and according to Definition 1 gives

v(t) = v(0)Eq(−βtq)−M(t)
[
tq−1Eq(−βtq)

]
. (15)

tq−1 ≥ 0, Eq ≥ 0 are nonnegative functions. It follows that

v(t) ≤ v(0)Eq(−βtq). (16)

Substituting (16) into (11) yields

w1(x) ≤ v(0)Eq(−βtq) = v(0)∑∞
k=0

(−βtq)k

Γ(kq + 1)
. (17)

where v(0) > 0 for x(0) 6= 0.
Therefore w1(x) is bounded, also v(x) is locally Lipschitz in x. v(0, x(0)) = 0 if and

only if x(0) = 0, which guarantees the Mittag–Leffler stability of system (9). �

4. Robust Stability

In this section, a sufficient condition of robust stability is presented for the PFD
equations system. The uncertain FDE system (18) is robust M-L stable if there is SOS
polynomial w1(x), w2(x), w3(x) so that conditions (20) are satisfied.

Theorem 4. Consider the FO nonlinear system

c
t0

Dq
t x(t) = (A(x) + ∆A(x, t))x(t). (18)

where ∆A(x, t) represents the admissible uncertainty function
and where the following condition is satisfied

||∆A(x, t)||≤ γ. (19)
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This polynomial FO system is robust Mittag–Leffler stability if and only if this condi-
tion is satisfied

w1(x) ≤ v(x) ≤ w2(x). (20)

(
∂v(x)

∂x
)

T
A(x)x(t) ≤ −w3(x)−

M

∑
k=1

αk||x||2k. (21)

∣∣∣∣
∣∣∣∣
∂v(x)

∂x

∣∣∣∣
∣∣∣∣γ||x|| ≤ w(x). (22)

w(x)−
M

∑
k=1

αk||x||2k ≤ (1− η)w3(x). (23)

where: w1(x), w2(x), w3(x) are SOS, αk > 0, M ∈ N and η ∈ (0, 1).

Proof. The convex function v(x) = x(t)T p(x)x(t) is selected as the Lyapunov function for
the PFD system c

t0
Dq

t x(t) = (A(x) + ∆A(x, t))x(t). Based on Definition 3, we have

c
t0

Dq
t v(x) ≤ ( ∂v(x)

∂x )
T
(A(x) + ∆A(x))x(t) =

( ∂v(x)
∂x )

T
A(x)x(t) + ( ∂v(x)

∂x )
T

∆A(x)x(t) ≤ ( ∂v(x)
∂x )

T
A(x)x(t) +

∣∣∣
∣∣∣ ∂v(x)

∂x

∣∣∣
∣∣∣γ||x||

≤ −w3(x)−
M
∑

k=1
αkx2k + w(x) ≤ −ηw3(x).

(24)

Therefore, according to Theorem 3, the system is Mittag–Leffler stable. �

For simplicity, we assume that

h(x) = (1− η)w3(x) +
M

∑
k=1

αk||x||2k − w(x). (25)

Therefore, if conditions (20)–(23) are satisfied and h(x) ≥ 0, the system is Mittag–
Leffler stable. In this theorem, if ∆A(x, t) = 0 then γ = 0, α = 0, η = 0 and conditions of
Theorem 4 are converted to Theorem 3.

5. Robust Stabilization

In this section, robust stability PFD equations are studied by designing a polynomial
feedback controller.

Theorem 5. Consider the PFDE systems

c
t0

Dq
t x(t) = (A(x) + ∆A(x))x(t) + u(x). (26)

System (26) is robust Mittag–Leffler stability if and only if the condition of Theorem 4 is
satisfied for A(x) = A(x)− k(x). By using state feedback controller,u(x) = −k(x)x, k(x) ∈
Rn×n, the closed-loop system including (23) becomes as follows

c
t0

Dq
t x(t) = (A(x)− k(x))x + ∆A(x)x = A(x)x + ∆A(x)x. (27)

The main purpose is designing the controller, which ensures asymptotic stability.
The flowchart of the proposed method is drawn in Figure 1.
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6. Examples and Simulations

In this section, by giving examples, we show the efficiency of the methods expressed
in Theorems 3–5.

Example 1. Consider the following PFD equations system

c
t0

D0.8
t x1(t) = −x1 − 2x1x2

2 − 2x2
3.

c
t0

D0.8
t x2(t) = −2x1

2x2 − 2x2 + 0.33x2
3.

A(x) =
[ −1 −2x1x2 − 2x2

2

−2x1x2 0.33x2
2 − 2

]
, ∆A(x) = 0

(28)

By using SOSTOOLS we have

v(x) = 0.40401x1
4+0.375x1

2x2
2 + 0.866x1

2 + 0.396x2
3x1 − 0.026x1x2

+0.473x2
4 + 0.918x2

2.
(29)

The Lyapunov function obtained is degrees four in this example, whereas no quadratic
function can be found for the system.

v(x) = zTQz, where zT =
[
x1 x2 x1

2 x1x2 x2
2 ] and

Q =




0.8662
−0.0134
0.0000

−0.0134
0.9180
0.0000

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

0.4016 0.0000 −0.1046
0.0000 0.0000 0.000 0.5843 0.1981
0.0000 0.0000 −0.1046 0.1981 0.4737




(30)
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According to Theorem 3:

w1(x) = 0.246x1
4+0.22875x1

2x2
2 + 0.571x1

2 + 0.1702x2
3x1 − 0.026x1x2

+0.010x2
4 + 0.605x2

2.
(31)

w2(x) = 0.741x1
8+0.695x1

6x2
2 + 1.866x1

6 + 0.3315x2
3x1

5 − 0.0228x1
5x2

+1.575x2
4x1

4 + 1.683x2
2x1

4 + 0.695x1
4x2

6 + 1.866x1
2x2

4

+0.3315x2
7x1 − 0.0228x2

5x1 + 0.875x2
8 + 1.683x2

6.

(32)

w3(x) = −4.77x1
4x2

2−1.606x1
4 − 5.590x3

1x3
2 + 0.053x1

3x2 − 0.0075x1
2x6

2

−5.064x2
1x4

2 − 9.38x2
1x2

2 − 1.73x2
1 − 0.011x1x7

2

−1.935x1x5
2 − 6.192x1x1x3

2 + 0.0803x1x1x2
2 − 0.018x8

2.

(33)

Then x = 0 is Mittag–Leffler stable.
Figure 2 is drawn for different initial conditions that show the stability of the system (25).
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Example 2. Consider the following PFD system

c
t0

D0.8
t x1(t) = −4x1 + 2x1x2

2 + 0.2x1 sin (x1 + 2x2).
c
t0

D0.8
t x2(t) = −x2 − 2x1

2x2 + 0.3x2cosx1.
(34)

Thus A(x) =

[ −4 2x1x2
−2x1

2x2 −1

]
, ∆A(x(t)) =

[
0.2 sin(x1 + 2x2) 0

0 0.3 cos x1

]
is the

uncertainty function and ||∆A(x)||≤ 0.36 . The state response of the system (34) with q
= 0.8 demonstrate the instability of the system. According to Equation (26), we obtain
polynomial controller u1(x) = 2.98x1 + 4.0761x2

2x1 and obtain the condition of Theorem 4
by using SOSTOOLS.

The degree of Lyapunov function is 6 by using η = 0.01, α1 = 3.6 in Equations (21)
and (23).

v(x) = 0.0328x6
1 + 0.3831x4

1x2
2 + 0.3287x4

1 + 1.211x2
1x4

21.512x2
1x2

2
+0.9734x2

1 + 1.285x6
2 + 1.313x4

2 + 1.276x2
2.

(35)

w1(x) = 0.001x6
1+0.1731x4

1x2
2 + 0.0187x4

1 + 0.134x2
1x4

2 + 0.414x2
1x2

2

+0.253x2
1 + 0.175x6

2 + 0.115x4
2 + 0.575x2

2.
(36)
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w2(x) = 1.234x6
1+2.485x4

1x2
2 + 1.52x4

1 + 4.314x2
1x4

2 + 3.812x2
1x2

2

+0.973x2
1 + 1.285x6

2 + 1.313x4
2 + 3.54x2

2.
(37)

w3(x) = 0.24x4
1x2

2+0.206x4
1 + 0.744x2

1x4
2 + 1.01x2

1x2
2 + 2.62x2

1 + 0.39x4
2

+2.16x2
2 .

(38)

w1(x), w2(x), w3(x) are SOS and h(x) ≥ 0. Then the closed-loop system (34) is robust
M-L stable.

Figure 3 is drawn for different initial conditions that show the stability of the closed-
loop system (34).
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Figures 4 and 5 demonstrate that Equation (25) is valid and its value is also valid for
different values of x1(t), x2(t).
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Example 3. Consider the following PFD equations system

c
t0

D0.9
t x1(t) = −2x1 − 4x1x2

2 + 0.3x1 sin(t) sin(x1 − x2).
c
t0

D0.9
t x2(t) = −x2 − 2x1

2x2 + 0.4x2 cos x1 cos(t)
(39)

where ∆A(x(t), t) =
[

0.3 sin(t) sin(x1 − x2) 0
0 0.4 cos(t) cos x1

]
is the uncertainty function and

||∆A(x, t)||≤ 0.5 .

The state response of the system (39) with q = 0.9 demonstrates the instability of the
system.

According to Equation (26), we obtain a polynomial controller

u1(x) = −1.85x1 + 7.24x1x2
2. (40)

By obtaining η = 0.98, α1 = 0.2, then

w1(x) = 0.002x6
1+0.218x4

1x2
2 + 0.224x4

1 + 0.325x2
1x4

2 + 0.458x2
1x2

2

+0.281x2
1 + 0.021x6

1 + 0.321x4
1x2

2 + 0.236x4
1 + 0.352x2

1x4
2

+0.432x2
2 + 0.621x2

1 + 0.321x6
2 + 0.123x4

2 + 0.218x2
2.

(41)

w2(x) = 3.78738x6
1x2

2+0.9357x6
1 + 14.481x4

1x4
2 + 14.200x2

1x2
2 + 2.79x2

1

+14.52x4
1x2

2 + 3.4918x4
1 + 13.8665x2

1x6
2 + 14.10980x2

1x4
2

+3.5244x6
2 + 0.89449x4

2 + 2.2365x2
2.

(42)

w3(x) = 0.98x6
1x2

2+1.77x6
1 + 2.985x4

1x4
2 + 7.2x4

1x2
2 + 6.633x4

1 + 3.64x2
1x6

2

+7.9x2
1x4

2 − 7.864x2
1x2

2 + 5.319x2
1 + 2.467x6

2 + 0.626x4
2

−1.656x2
2.

(43)

The degree of Lyapunov function is 6 by using the conditions of Theorem 4.

v(x) = 0.007798x6
1+0.479x4

1x2
2 + 0.4365x4

1 + 0.8522x2
1x4

2 + 0.6879x2
1x2

2

+0.741x2
1 + 0.07798x6

1 + 0.479x4
1x2

2 + 0.4365x4
1

+0.8522x2
1x4

2 + 0.67879x2
1x2

2 + 0.7x2
1 + 0.5874x6

2

+0.2236x4
2 + 1.118x2

2.

(44)

Figure 6 is drawn for different initial conditions that show the stability of the closed-
loop system (39).
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Figures 7 and 8 demonstrate that Equation (25) is valid and its value is also valid for
different values of x1(t), x2(t).
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7. Advantages of the Proposed Approach and Suggestions for Future Research

In this paper, the method of PFD systems was highlighted. The main advantages of
the proposed method are as follows.

First, the convex Lyapunov methods in the literature such as [19,21] are complicated
and are not able to handle the stability and control performances. Second, although the
results of some studies (e.g., [9,14,15]) are obtained based on the LMI approach, many
design problems cannot be represented by the LMI inequality. This paper focused on
the sum of squares approach for finding a Lyapunov candidate function for PFD systems
with uncertainty.

Finally, compared with the existing studies on the stability analysis of nonlinear
fractional differential systems (e.g., [14]), the results use the Lyapunov quadratic function
in the stability analysis. In this paper, higher-order Lyapunov functions were used in the
stability analysis of FDE systems based on the sum of squares approach. Following this, by
working on PFD fuzzy systems, the stability analysis and stabilization of these systems can
be obtained.

8. Conclusions

Finding a Lyapunov candidate function is difficult considering the previous methods.
In this paper, the stability and stabilization of PFD systems are presently based on the
Lyapunov candidate function. This method can provide the Lyapunov candidate function
with a degree higher than two. Therefore, they cannot be solved with LMI techniques.
Accordingly, the SOS method is used for solving. For this reason, the system (7) is Mittag–
Leffler stable if the Lyapunov functional can satisfy the conditions of Theorem 3. Following
this, the sufficient condition of a robust stability system (17) is expressed in Theorem (4).
Finally, the polynomial Lyapunov approach is proposed using SOSTOOLS for fractional
systems. This method can provide an efficient way for analyzing the stability of an uncertain
polynomial fractional system.
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Abstract: This article is focused on the investigation of Mond–Weir-type robust duality for a class of
semi-infinite multi-objective fractional optimization with uncertainty in the constraint functions. We
first establish a Mond–Weir-type robust dual problem for this fractional optimization problem. Then,
by combining a new robust-type subdifferential constraint qualification condition and a generalized
convex-inclusion assumption, we present robust ε-quasi-weak and strong duality properties be-
tween this uncertain fractional optimization and its uncertain Mond–Weir-type robust dual problem.
Moreover, we also investigate robust ε-quasi converse-like duality properties between them.

Keywords: fractional optimization; robust duality; constraint qualification condition

MSC: 90C29; 90C46

1. Introduction

Let T be a nonempty infinite index set. Suppose that fi : Rn → R, i = 1, . . . , p, and
ht : Rn → R, t ∈ T. Let us consider the semi-infinite optimization problem:

(MP)





MinRp
+

(
f1(x), . . . , fp(x)

)

s.t. ht(x) ≤ 0, ∀t ∈ T,
x ∈ Rn.

The study of optimization problem (MP) is a very interesting topic and has been
considered extensively by many scholars from different points of view, see [1–13]. How-
ever, most semi-infinite optimization models of real-world problems are contaminated
by prediction errors or asymmetry knowledge. Thus, it is necessary to consider semi-
infinite optimization problems under uncertain data. This optimization problem (MP) with
uncertainty can be captured by

(UMP)





MinRp
+

(
f1(x), . . . , fp(x)

)

s.t. ht(x, vt) ≤ 0, ∀t ∈ T,
x ∈ Rn.

Here, ht : Rn ×Rq → R, t ∈ T, are given functions, vt, t ∈ T, are uncertain parameters
which belongs to compact sets Vt ⊆ Rq.

As we know, robust optimization [14–16] is an useful approach to solve optimiza-
tion problems with uncertainty. Following robust optimization methodology, we usually
associate UMP with its robust counterpart
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(RMP)





MinRp
+

(
f1(x), . . . , fp(x)

)

s.t. ht(x, vt) ≤ 0, ∀vt ∈ Vt, t ∈ T,
x ∈ Rn.

Recently, following robust optimization methodology, many interesting results de-
voted to (UMP) and its generalizations have been obtained from several different perspec-
tives. By using scalarizing methods and robust optimization, Lee and Lee [17] establish
necessary optimality theorems for robust weakly and properly efficient solutions of a multi-
objective optimization problem with uncertainty. By virtue of a new concept of generalized
convexity and robust type constraint qualification conditions, Chen et al. [18] give some
optimality conditions and duality results for an uncertain nonconvex and nonsmooth
multi-objective optimization problem. Guo and Yu [19] obtain optimality conditions for
robust approximate quasi-weakly efficient solutions for uncertain multi-objective convex
optimization problems. By combining robust optimization and scalarization technique, Sun
et al. [20] give some new characterizations of Wolfe type robust approximate duality and
saddle point theorems for a nonsmooth robust multi-objective optimization problem. Sun
et al. [21] investigate optimality conditions for robust ε-quasi efficient solutions of a class
of uncertain semi-infinite multi-objective optimization under some tools of non-smooth
analysis and a new modified scalarization technique. In addition, nonsmooth robust ε-
duality properties and ε-quasi saddle point theorems are also established. New results
on optimality and duality results for uncertain multiobjective polynomial optimization
problems are given in [22]. By using tangential subdifferential and robust optimization, Liu
et al. [23] obtained some characterizations of robust optimal solution sets for nonconvex
uncertain semi-infinite optimization problems.

On the other hand, the fractional multi-objective optimization problem is an important sub-
class of multi-objective optimization problems. In the last decades, a wide variety of interesting
works devoted to fractional multi-objective optimization problems and its generalizations have
been given, see, for example, [24–33]. We observe that there are some papers devoted to the
study of uncertain fractional multi-objective optimization problems under a robust optimiza-
tion approach. In [34], the authors study approximate optimality conditions and Wolfe-type
robust approximate duality of robust approximate weakly efficient solutions for uncertain
fractional multi-objective optimization problems. Li et al. [35] establish optimality theorems
and robust duality properties for minimax convex–concave fractional optimization problems
with uncertainty. Antczak [36] establish a new parametric approach for robust approximate
quasi-efficient solutions of robust fractional multi-objective optimization problems. Feng and
Sun [37] obtain some new results for robust weakly ε-efficient solutions for an uncertain frac-
tional multi-objective semi-infinite optimization by employing conjugate analysis. Very recently,
by employing robust limiting constraint qualification conditions and generalized convexity as-
sumptions, Thuy and Su [38] consider optimality conditions and duality results for nonsmooth
fractional multi-objective semi-infinite optimization problems with uncertain data.

In this paper, our main concern is to give new duality results of robust ε-quasi-
efficient solutions for fractional multi-objective semi-infinite optimization problems (UFP,
for brevity) with uncertainty appearing in the constraint functions. We first introduce the
robust counterpart model (RFP, for brevity) for UFP. Then, with the help of a robust-type
subdifferential constraint qualification, we present a necessary approximate optimality
condition for robust ε-quasi-efficient solutions for (UFP). Subsequently, we introduce
a Mond–Weir-type robust approximate dual problem of (UFP) based on the obtained
necessary optimality conditions. Then, we investigate robust weak, strong and converse-
like duality results between them under a new assumption of generalized convex-inclusion
for Lipschitz functions.

This paper is organized as follows. In Section 2, we first recall some basic concepts in
nonsmooth analysis and present approximate optimality results for robust ε-quasi-efficient
solutions of (UFP). In Section 3, we introduce a Mond–Weir-type robust approximate dual
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problem for (UFP), and establish the robust ε-quasi duality results between them. As a
special case, we also deal with robust ε-quasi duality results of the uncertain multi-objective
optimization problem (UMP) and its robust approximate dual problem.

2. Mathematical Preliminaries

In this paper, let us recall some concepts and preliminary results [39,40]. Let Rp be the
p-dimensional Euclidean space. We use the notation ‖ · ‖ for the Euclidean norm for Rp.
The nonnegative orthant of Rp is defined by Rp

+ := {x = (x1, . . . , xn) | xk ≥ 0, k = 1, . . . , n}.
We always use the symbol 〈·, ·〉 for the inner product in Rp. The closed unit ball of Rp is
denoted by B∗. For a nonempty infinite index set T, the linear space R(T)[41] is denoted by

R(T) := {γT = (γt)t∈T | γt = 0 for all t ∈ T except for finitely many γt 6= 0}.

Let R(T)
+ be the nonnegative cone of R(T), i.e.,

R(T)
+ := {γT ∈ R(T) | γt ≥ 0, ∀t ∈ T}.

Let φ : Rp → R be a locally Lipschitz function. The Clarke generalized directional
derivative of φ at x ∈ Rp in the direction d ∈ Rp is defined by

φc(x; d) := lim sup
y→x,t↓0

φ(y + td)− φ(y)
t

.

The one-sided directional derivative of φ at x ∈ Rp in direction d ∈ Rp is defined by

φ′(x; d) := lim
t↓0

φ(x + td)− φ(x)
t

.

We say that φ is quasidifferentiable at x ∈ Rp iff, for each d ∈ Rn, ϕ′(x; d) exists and
ϕ′(x; d) = ϕc(x; d). The Clarke subdifferential ∂cφ(x) of φ at x ∈ Rp is defined by

∂cφ(x) := {ξ∗ ∈ Rp | φc(x; d) ≥ 〈ξ∗, d〉, ∀d ∈ Rp}.

Obviously,
φc(x; d) = sup

ξ∈∂cφ(x)
〈ξ, d〉, ∀d ∈ Rn.

On the other hand, if φ : Rp → R is a convex function, ∂cφ(x) coincides with the
convex subdifferential ∂φ(x), that is

∂φ(x) := {ξ∗ ∈ Rp | φ(y)− φ(x) ≥ 〈ξ∗, y− x〉, ∀y ∈ Rp}.

Let Ω ⊆ Rp be a nonempty subset. The Clarke normal cone to Ω at x ∈ Ω is defined
by

Nc(Ω, x) := {ξ ∈ Rp | 〈ξ∗, w〉 ≤ 0, ∀w ∈ TΩ(x)}.
Here, TΩ(x) is the Clarke tangent cone to Ω at x ∈ Ω. Clearly, if Ω ⊆ Rn is a nonempty

closed convex set, Nc(Ω, x) becomes the following normal cone:

N(Ω, x) := {ξ∗ ∈ Rp | 〈ξ∗, y− x〉 ≤ 0, ∀y ∈ Ω}.

In what follows, let fi, gi : Rn → R, i = 1, . . . , p, and ht : Rn → R, t ∈ T. We consider
the following fractional multi-objective optimization problem

(FP)





MinRp
+

(
f1(x)
g1(x) , . . . , fp(x)

gp(x)

)

s.t. ht(x) ≤ 0, ∀t ∈ T,
x ∈ Rn.
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The fractional optimization problem (FP) under uncertain data in the constraint
functions becomes

(UFP)





MinRp
+

(
f1(x)
g1(x) , . . . , fp(x)

gp(x)

)

s.t. ht(x, vt) ≤ 0, ∀t ∈ T,
x ∈ Rn.

Here ht : Rn ×Rq → R. vt ∈ Vt ⊆ Rq, t ∈ T are uncertain parameters.
For (UFP), we consider its robust counterpart, namely

(RFP)





MinRp
+

(
f1(x)
g1(x) , . . . , fp(x)

gp(x)

)

s.t. ht(x, vt) ≤ 0, ∀vt ∈ Vt, t ∈ T,
x ∈ Rn.

In this paper, without special statements, let fi, i = 1, . . . , p, be locally Lipschitz
functions with fi(x) ≥ 0, ∀x ∈ Rn, and gi, i = 1, . . . , p, be locally Lipschitz functions with
gi(x) > 0, ∀x ∈ Rn.

Now, we give the following important notations, which will be used later in this paper.

Definition 1. For (UFP). We say that F is the robust feasible set of (UFP) iff

F := {x ∈ Rn | ht(x, vt) ≤ 0, ∀vt ∈ Vt, t ∈ T}.

Now, we consider the concept of robust ε-quasi efficient solution for (UFP). We refer
the readers to [19,21,37] for other kinds of robust approximate efficient solutions.

Definition 2. Let ε ∈ Rp
+\{0}. x̄ ∈ F is a robust ε-quasi efficient solution of (UFP) if there is

not x ∈ F , such that

fi(x)
gi(x)

≤ fi(x̄)
gi(x̄)

− εi‖x− x̄‖, for all i = 1, . . . , p,

and

f j(x)
gj(x)

<
f j(x̄)
gj(x̄)

− εj‖x− x̄‖, for some j ∈ {1, . . . , p}.

Remark 1. Note that gi ≡ 1, the concept of robust ε-quasi efficient solution of (UFP) deduces to
the robust ε-quasi efficient solution of (UMP), i.e., there is not x ∈ F , such that

fi(x) ≤ fi(x̄)− εi‖x− x̄‖, for all i = 1, . . . , p,

and

f j(x) < f j(x̄)− εj‖x− x̄‖, for some j ∈ {1, . . . , p}.

For more details, see [20,21,42].

Definition 3 ([43] (Definition 3.2)). Consider (UFP). We say that the robust-type subdifferential
constraint qualification condition RSCQ holds at x̄ ∈ F , iff

Nc(F , x̄) ⊆
⋃

λT∈T(x̄),
vT∈VT

[
∑
t∈T

λt∂
c
xht(x̄, vt)

]
,
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where T(x̄) =
{

λT ∈ R(T)
+

∣∣ λtht(x̄, vt) = 0, ∀vt ∈ Vt, t ∈ T
}

.

Next, we recall the following necessary optimality conditions for robust ε-quasi-
efficient solutions for (UFP) under the RSCQ . For convenience, let ε := (ε1, . . . , εp) ∈
Rp
+\{0}.

Proposition 1 ([44] (Theorem 1)). Let ε ∈ Rp
+\{0}. Assume that (RSCQ) holds at x̄ ∈ F . If x̄

is a robust ε-quasi-efficient solution of (UFP), then there exist η̄t ≥ 0, and v̄t ∈ Vt, t ∈ T, such that

0 ∈
p

∑
i=1

∂c fi(x̄) +
p

∑
i=1

φi(x̄)∂c(−gi)(x̄) + ∑
t∈T

η̄t∂
cht(·, v̄t)(x̄) + 2

p

∑
i=1

εigi(x̄)B∗, (1)

and
η̄tht(x̄, v̄t) = 0, ∀t ∈ T. (2)

Here, φi(·) = fi(x̄)
gi(x̄) − εi‖ · −x̄‖, i = 1, . . . , p.

Remark 2. Proposition 1 extends [45] (Theorem 3.1) from the case of scalar optimization to the
multi-objective setting.

In the case that gi ≡ 1, the following result can be easily obtained by Proposition 1.

Proposition 2. Let ε ∈ Rp
+\{0}. Assume that (RSCQ) holds at x̄ ∈ F . If x̄ is a robust ε-quasi-

efficient solution of (UMP), then there exist η̄t ≥ 0, and v̄t ∈ Vt, t ∈ T, such that

0 ∈
p

∑
i=1

∂c fi(x̄) + ∑
t∈T

η̄t∂
cht(·, v̄t)(x̄) + 2

p

∑
i=1

εiB∗, (3)

and
η̄tht(x̄, v̄t) = 0, ∀t ∈ T. (4)

3. Main Results

In this section, based on the optimality conditions obtained in Proposition 1, we estab-
lish a robust Mond-Weir-type approximate dual problem for (UMFP), and then investigate
robust duality properties between them. Here, we only consider their robust ε-quasi-
efficient solutions. For the sake of convenience in the sequel, we set f := ( f1, . . . , fp), g :=

(g1, . . . , gp), hT := (ht)t∈T , ηT := (ηt)t ∈ R(T)
+ , VT := ∏t∈T Vt, and vT := (vt)t∈T ∈ VT .

Let y ∈ Rn and ε ∈ Rp
+\{0}. For given vt ∈ Vt, t ∈ T, the Mond-Weir-type uncertain

approximate dual problem (UFD) of (UFP) is

(UFD)





MaxRp
+

(
f1(y)
g1(y)

, . . . , fp(y)
gp(y)

)

s.t. 0 ∈
p
∑

i=1
∂c fi(y) +

p
∑

i=1

fi(y)
gi(y)

∂c(−gi)(y) + ∑
t∈T

ηt∂
cht(·, vt)(y) + 2

p
∑

i=1
εigi(y)B∗,

ηtht(y, vt) ≥ 0, t ∈ T,
y ∈ Rn, εi ≥ 0, i = 1, . . . , p, ηt ≥ 0, t ∈ T.

The optimistic counterpart of (UFD) is defined by

(OFD)





MaxRp
+

(
f1(y)
g1(y)

, . . . , fp(y)
gp(y)

)

s.t. 0 ∈
p
∑

i=1
∂c fi(y) +

p
∑

i=1

fi(y)
gi(y)

∂c(−gi)(y) + ∑
t∈T

ηt∂
cht(·, vt)(y) + 2

p
∑

i=1
εigi(y)B∗,

ηtht(y, vt) ≥ 0, t ∈ T,
y ∈ Rn, εi ≥ 0, i = 1, . . . , p, ηt ≥ 0, vt ∈ Vt, t ∈ T.
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Here, the maximization is also over all the parameters vt ∈ Vt, t ∈ T. The feasible set
of (OFD) is defined as

F̂ :=

{
(y, ηT , vT) ∈ Rn ×R(T)

+ × VT

∣∣∣0 ∈
p

∑
i=1

∂c fi(y) +
p

∑
i=1

fi(y)
gi(y)

∂c(−gi)(y) + ∑
t∈T

ηt∂
cht(·, vt)(y)

+2
p

∑
i=1

εigi(y)B∗, ηtht(y, vt) ≥ 0, t ∈ T

}
.

Remark 3. (i) Obviously, if gi(x) ≡ 1, i = 1, . . . , p, (UFD) becomes the following conventional
Mond-Weir-type uncertain approximate dual problem of (UMP)

(UMD)





MaxRp
+

(
f1(y), . . . , fp(y)

)

s.t. 0 ∈
p
∑

i=1
∂c fi(y) + ∑

t∈T
ηt∂

cht(·, vt)(y) + 2
p
∑

i=1
εiB∗,

ηtht(y, vt) ≥ 0, t ∈ T,
y ∈ Rn, εi ≥ 0, i = 1, . . . , p, ηt ≥ 0, t ∈ T.

and (OFD) becomes the following Mond-Weir-type optimistic dual problem of (UMP)

(OMD)





MaxRp
+

(
f1(y), . . . , fp(y)

)

s.t. 0 ∈
p
∑

i=1
∂c fi(y) + ∑

t∈T
ηt∂

cht(·, vt)(y) + 2
p
∑

i=1
εiB∗,

ηtht(y, vt) ≥ 0, t ∈ T,
y ∈ Rn, εi ≥ 0, i = 1, . . . , p, ηt ≥ 0, vt ∈ Vt, t ∈ T.

Here, we denote the feasible set of (OMD) by

F :=

{
(y, ηT , vT) ∈ Rn ×R(T)

+ × VT

∣∣∣0 ∈
p

∑
i=1

∂c fi(y) + ∑
t∈T

ηt∂
cht(·, vt)(y)

+2
p

∑
i=1

εigi(y)B∗, ηtht(y, vt) ≥ 0, t ∈ T

}
.

(ii) In the case that ε = 0 and there is no uncertainty in the constraint functions. Then, (UFP)
becomes (FP), and (OMD) collapses to





MaxRp
+

(
f1(y)
g1(y)

, . . . , fp(y)
gp(y)

)

s.t. 0 ∈
p
∑

i=1
∂ fi(y) +

p
∑

i=1

fi(y)
gi(y)

∂c(−gi)(y) + ∑
t∈T

ηt∂
cht(y),

ηtht(y) ≥ 0, t ∈ T,
y ∈ Rn, ηt ≥ 0, t ∈ T.

Now, similar to Definition 2, we introduce robust ε-quasi efficient solutions for (UFD).

Definition 4. Let ε ∈ Rp
+\{0}. (ȳ, η̄T , v̄T) ∈ F̂ is said to be a robust ε-quasi efficient solution of

(UFD), iff it is an ε-quasi efficient solution of (OFD), i.e., there is no (y, ηT , vT) ∈ F̂ , such that

fi(y)
gi(y)

≥ fi(ȳ)
gi(ȳ)

+ εi‖y− ȳ‖, for all i = 1, . . . , p,
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and

f j(y)
gj(y)

>
f j(ȳ)
gj(ȳ)

+ εj‖y− ȳ‖, for some j ∈ {1, . . . , p}.

Remark 4. In particular, if gi ≡ 1, the concept of robust ε-quasi efficient solution of (UFD) deduces
to the robust ε-quasi efficient solution of (UMD), i.e., there is no (y, ηT , vT) ∈ F , such that

fi(y) ≥ fi(ȳ) + εi‖y− ȳ‖, for all i = 1, . . . , p,

and

f j(y) > f j(ȳ) + εj‖y− ȳ‖, for some j ∈ {1, . . . , p}.

In order to give robust duality relations for (UFP) and (UFD), we introduce the new
definition of generalized convex-inclusion for Lipschitz functions, which is inspired by [32]
(Definition 3.4) and [21] (Definition 3.3).

Definition 5. Let Ω ⊆ Rn. ( f ,−g, hT) is said to generalized convex-inclusion on Ω at x ∈ Ω,
iff for any y ∈ Ω, ξ∗i ∈ ∂c fi(x), ξ∗∗i ∈ ∂c(−gi)(x), i = 1, . . . , p, and γ∗t ∈ ∂c

xht(x, vt), vt ∈ Vt,
t ∈ T, there exists ω ∈ Rn, such that

fi(y)− fi(x) > 〈ξ∗i , ω〉, i = 1, . . . , p,

−gi(y) + gi(x) ≥ 〈ξ∗∗i , ω〉, i = 1, . . . , p,

ht(y, vt)− ht(x, vt) ≥ 〈γ∗t , ω〉, t ∈ T,

〈b∗, ω〉 ≤ ‖y− x‖, ∀b∗ ∈ B∗,

and
0 ∈ ∂cgi(y), i = 1, . . . , p.

Remark 5. (i) In the special case that gi ≡ 1, the concept of generalized convex-inclusion
reduces to the concept of generalized convexity, i.e., ( f , hT) is generalized convex on Ω at
x ∈ Ω, iff for any y ∈ Ω, ξ∗i ∈ ∂c fi(x), i = 1, . . . , p, and γ∗t ∈ ∂c

xgt(x, vt), vt ∈ Vt, t ∈ T,
there exists ω ∈ Rn, such that

fi(y)− fi(x) > 〈ξ∗i , ω〉, i = 1, . . . , p,

ht(y, vt)− ht(x, vt) ≥ 〈γ∗t , ω〉, t ∈ T,

and
〈b∗, ω〉 ≤ ‖y− x‖, ∀b∗ ∈ B∗.

(ii) If gi ≡ 1 and there is uncertain data on fi, i = 1, . . . , p, Definition 5 reduces to [21]
(Definition 3.3).

(iii) If gi ≡ 1 and there is no uncertain data on ht, t ∈ T, Definition 5 reduces to the concept
of generalized convexity-inclusion introduced in [32] (Definition 3.4), i.e., for any y ∈ Ω,
ξ∗i ∈ ∂c fi(x), ξ∗∗i ∈ ∂c(−gi)(x), i = 1, . . . , p, and γ∗t ∈ ∂cht(x), t ∈ T, there exists
ω ∈ Rn, such that

fi(y)− fi(x) > 〈ξ∗i , ω〉, i = 1, . . . , p,

−gi(y) + gi(x) ≥ 〈ξ∗∗i , ω〉, i = 1, . . . , p,

ht(y)− ht(x) ≥ 〈γ∗t , ω〉, t ∈ T,

〈b∗, ω〉 ≤ ‖y− x‖, ∀b∗ ∈ B∗,
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and
0 ∈ ∂cgi(y), i = 1, . . . , p.

Note that this concept has been used to establish sufficient optimality conditions for weakly
ε-quasi-efficient solution for fractional optimization problem. For more details, please see [32]
(Theorem 3.5).

Now, we show robust approximate duality properties for (UFP) and (UFD) by show-
ing approximate duality properties between the robust counterpart (RMP) and the opti-
mistic counterpart (OFD). In what follows, we set

ω1 � ω2 ⇔ ω2 −ω1 ∈ Rp
+ \ {0}, ∀ω1, ω2 ∈ Rp,

ω1 6� ω2 ⇔ ω2 −ω1 6∈ Rp
+ \ {0}, ∀ω1, ω2 ∈ Rp.

The following result gives robust ε-quasi-weak duality between (UFP) and (UFD).

Theorem 1. Let ε ∈ Rp
+\{0}. Suppose that x ∈ F and (y, ηT , vT) ∈ F̂ . If ( f ,−g, hT) is

generalized convex-inclusion on Rn at y ∈ Rn, then,
(

f1(x)
g1(x)

, . . . ,
fp(x)
gp(x)

)
6�
(

f1(y)
g1(y)

− 2ε1‖x− y‖, . . . ,
fp(y)
gp(y)

− 2εp‖x− y‖
)

.

Proof. Suppose to the contrary that

(
f1(x)
g1(x)

, . . . ,
fp(x)
gp(x)

)
�
(

f1(y)
g1(y)

− 2ε1‖y− x‖, . . . ,
fp(y)
gp(y)

− 2εp‖y− x‖
)

.

Then,

fi(x)
gi(x)

≤ fi(y)
gi(y)

− 2εi‖y− x‖, for all i = 1, . . . , p, (5)

and

fi(x)
gi(x)

<
f j(y)
gj(y)

− 2εj‖y− x‖, for some j ∈ {1, . . . , p}. (6)

On the other hand, note that (y, ηT , vT) ∈ F̂ . Then, y ∈ Rn, ηt ≥ 0, vt ∈ Vt, t ∈ T, and

0 ∈
p

∑
i=1

∂c fi(y) +
p

∑
i=1

fi(y)
gi(y)

∂c(−gi)(y) + ∑
t∈T

ηt∂
cht(·, vt)(y) + 2

p

∑
i=1

εigi(y)B∗, (7)

and

ηtht(y, vt) ≥ 0, t ∈ T. (8)

By (5), there exist ξ∗i ∈ ∂c fi(y), ξ∗∗i ∈ ∂c(−gi)(y), i = 1, . . . , p, ζ∗t ∈ ∂cht(·, vt)(y),
t ∈ T, and b∗ ∈ B∗, such that

p

∑
i=1

ξ∗i +
p

∑
i=1

fi(y)
gi(y)

ξ∗∗i + ∑
t∈T

ηtζ
∗
t + 2

p

∑
i=1

εigi(y)b∗ = 0. (9)

Since ( f ,−g, hT) is generalized convex-inclusion on Rn at y ∈ Rn, we have for such
ξ∗i ∈ ∂c fi(y), ξ∗∗i ∈ ∂c(−gi)(y), i = 1, . . . , p, and ζ∗t ∈ ∂cht(·, vt)(y), t ∈ T, there exists
ϑ ∈ Rn, such that

fi(x)− fi(y) > 〈ξ∗i , ϑ〉, i = 1, . . . , p,
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−gi(x) + gi(y) ≥ 〈ξ∗∗i , ϑ〉, i = 1, . . . , p,

ht(x, vt)− ht(y, vt) ≥ 〈ζ∗t , ϑ〉, t ∈ T,

〈b∗, ϑ〉 ≤ ‖x− y‖, ∀b∗ ∈ B∗,

and
0 ∈ ∂cgi(y), i = 1, . . . , p.

Together with (7)–(9), these follow that

p

∑
i=1

(
fi(x)− fi(y)

gi(y)
gi(x) + 2εigi(y)‖y− x‖

)

>
p

∑
i=1

(
fi(y) + 〈ξ∗i , ϑ〉 − fi(y)

gi(y)
gi(y) +

fi(y)
gi(y)

〈ξ∗∗i , ϑ〉+ 2εigi(y)〈b∗, ϑ〉
)

=

〈
p

∑
i=1

ξ∗i +
p

∑
i=1

fi(y)
gi(y)

ξ∗∗i + 2
p

∑
i=1

εigi(y)b∗, ϑ

〉

= −
〈

p

∑
i=1

ηtζ
∗
t , ϑ

〉

≥ −∑
t∈T

ηtht(x, vt) + ∑
t∈T

ηtht(y, vt).

Together with ηtht(x, vt) ≤ 0, ∀x ∈ F, and ηtht(y, vt ≥ 0, we have

p

∑
i=1

(
fi(x)− fi(y)

gi(y)
gi(x) + 2εigi(y)‖y− x‖

)
> 0.

Then, there exists i0 ∈ {1, . . . , p}, such that

fi0(x)− fi0(y)
gi0(y)

gi0(x) + 2εi0 gi0(y)‖y− x‖ > 0,

which follows that

fi0(x)
gi0(x)

− fi0(y)
gi0(y)

+ 2εi0
gi0(y)
gi0(x)

‖y− x‖ > 0. (10)

Moreover, it follows from 0 ∈ ∂cgi(y), i = 1, . . . , p, that

gi0(x) ≥ gi0(y). (11)

Together with (10) and (11) , we have

fi0(x)
gi0(x)

− fi0(y)
gi0(y)

+ 2εi0‖y− x‖ > 0.

which is a contradiction to (5) and (6). Thus, the conclusion holds.

Now, we give the following example to justify the importance of the assumption of
generalized convex-inclusion in Theorem 1.

Example 1. Let Vt := [1 − t, 1 + t], t ∈ T :=
[
0, 1

2

]
. Let f1, f2, g1, g2 : R → R and gt :

R×R→ R, t ∈ T, be defined by

f1(x) = f2(x) :=
1
2
|x|+ 1

6
x3, g1(x) = g2(x) := |x|+ 1,
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and
ht(x, vt) := tx2 − tx− 2vt,

where x ∈ R and vt ∈ Vt, t ∈ T. Then, (UFP) becomes




MinR2
+

(
1
2 |x|+ 1

6 x3

|x|+1 ,
1
2 |x|+ 1

6 x3

|x|+1

)

s.t. tx2 − tx− 2vt ≤ 0, ∀t ∈
[
0, 1

2

]
,

x ∈ R,

and (RFP) becomes




MinR2
+

(
1
2 |x|+ 1

6 x3

|x|+1 ,
1
2 |x|+ 1

6 x3

|x|+1

)

s.t. tx2 − tx− 2vt ≤ 0, ∀vt ∈ [1− t, 1 + t], t ∈
[
0, 1

2

]
,

x ∈ R.

Obviously, F = [−1, 2]. Let us consider x̄ := −1 ∈ F . Then,
(

f1(x̄)
g1(x̄)

,
f2(x̄)
g2(x̄)

)
=

(
1
6

,
1
6

)
.

Now, consider the dual problem (UFD). In this setting, (OFD) becomes




MaxR2
+

(
f1(y)
g1(y)

, f2(y)
g2(y)

)

s.t. 0 ∈ ∂c f1(y) + ∂c f2(y) +
f1(y)
g1(y)

∂c(−g1)(y) +
f2(y)
g2(y)

∂c(−g2)(y)
+ ∑

t∈T
ηt∂

cht(·, vt)(y) + 2ε1g1(y)B∗ + 2ε2g2(y)B∗,

ηtht(y, vt) ≥ 0, t ∈
[
0, 1

2

]
,

y ∈ R, ε1 ≥ 0, ε2 ≥ 0, ηt ≥ 0, vt ∈ [1− t, 1 + t], t ∈
[
0, 1

2

]
.

Clearly, for any y ∈ R and vT ∈ VT , we have

∂c f1(y) = ∂c f2(y) =
[

1
2

y2 − 1
2

,
1
2

y2 +
1
2

]
,

∂c(−g1)(y) = ∂c(−g2)(y) = [−1, 1],

and
∂cht(·, vt)(y) = {2ty− t}, ∀t ∈ T.

By selecting ȳ := 1, η̄t := 0, and v̄t := −t, we have

∂c f1(ȳ) + ∂c f2(ȳ) +
f1(ȳ)
g1(ȳ)

∂c(−g1)(ȳ) +
f2(ȳ)
g2(ȳ)

∂c(−g2)(ȳ)

+ ∑
t∈T

η̄t∂
cht(·, v̄t)(ȳ) + 2ε1g1(ȳ)B∗ + 2ε2g2(ȳ)B∗

=

[
−4ε1 − 4ε2 −

1
3

, 4ε1 + 4ε2 +
7
3

]
,

and

η̄tht(ȳ, v̄t) ≥ 0, t ∈
[

0,
1
2

]
.

These mean that (ȳ, η̄T , v̄T) ∈ F̂ .
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Now, take an arbitrarily ε = (ε1, ε2) ∈ R2
+\{0} such that εi <

1
12 , i = 1, 2. Clearly,

(
f1(ȳ)
g1(ȳ)

− 2ε1‖x̄− ȳ‖, f2(ȳ)
g2(ȳ)

− 2ε2‖x̄− ȳ‖
)
=

(
1
3
− 2ε1,

1
3
− 2ε2

)

�
(

1
6

,
1
6

)
=

(
f1(x̄)
g1(x̄)

,
f2(x̄)
g2(x̄)

)
.

Thus, Theorem 1 is not applicable since ( f ,−g, hT) is not generalized convex-inclusion at ȳ.
To do this, by choosing ξ̄i := 0 ∈ ∂c fi(ȳ), i = 1, 2, we have

fi(x̄)− fi(ȳ) = −
2
3
< 0 = 〈ξ̄k, ω〉, ∀ω ∈ R.

Similarly, we obtain the following robust weak duality between (UMP) and (UMD).

Corollary 1. Let ε ∈ Rp
+\{0}. Suppose that x ∈ F and (y, ηT , vT) ∈ F . If ( f , hT) is generalized

convex on Rn at y ∈ Rn, then,
(

f1(x), . . . , fp(x)
)
6�
(

f1(y)− 2ε1‖x− y‖, . . . , fp(y)− 2εp‖x− y‖
)
.

Remark 6. Clearly, by virtue of Example 1, we can also illustrate that the assumption of generalized
convexity imposed in Corollary 1 is indispensable.

Now, we give robust strong duality results between (UFP) and (UFD).

Theorem 2. Let ε ∈ Rp
+\{0}. Assume that (RSCQ) holds at x̄ ∈ F . Suppose that ( f ,−g, hT) is

generalized convex-inclusion on Rn at y ∈ Rn. If x̄ is a robust ε-quasi-efficient solution of (UFP),
then there exist η̄T ∈ R(T)

+ and v̄T ∈ VT , such that (x̄, η̄T , v̄T) ∈ F̂ is a robust 2ε-quasi-efficient
solution of (UFD).

Proof. Assume that x̄ ∈ F is a robust ε-quasi-efficient solution of (UFP). By Theorem 1,
there exist η̄t ≥ 0, and v̄t ∈ Vt, t ∈ T, such that

0 ∈
p

∑
i=1

∂ fi(x̄)−
p

∑
i=1

φi(x̄)∂gi(x̄) + ∑
t∈T

η̄t∂ht(·, v̄t)(x̄) + 2
p

∑
i=1

εigi(x̄)B∗, (12)

and
η̄tht(x̄, v̄t) = 0, ∀t ∈ T. (13)

From (12), (13) and φi(x̄) = fi(x̄)
gi(x̄) , we have

(x̄, η̄T , v̄T) ∈ F̂ .

By Theorem 1, for all (y, ηT , vT) ∈ F̂ , we have

(
f1(x̄)
g1(x̄)

, . . . ,
fp(x̄)
gp(x̄)

)
6�
(

f1(y)
g1(y)

− 2ε1‖x̄− y‖, . . . ,
fp(y)
gp(y)

− 2εp‖x̄− y‖
)

.

Thus, (x̄, η̄T , v̄T) is a robust 2ε-quasi-efficient solutions of (UFD). Thus, the conclusion
holds.

Remark 7. In [32] (Theorem 4.2), the authors established duality properties for ε-quasi-weakly
efficient solutions between (FP) and its Mond Weir-type dual problem. Therefore, Theorem 2
encompasses [32] (Theorem 4.2), where the corresponding results were given in terms of the
similar methods.
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Similarly, we give robust strong duality properties for robust ε-quasi efficient solutions
between (UMP) and (UMD).

Corollary 2. Let ε ∈ Rp
+\{0}. Assume that (RSCQ) holds at x̄ ∈ F . Suppose that ( f , hT) is

generalized convex on Rn at y ∈ Rn. If x̄ is a robust ε-quasi-efficient solution of (UMP), then there
exist η̄T ∈ R(T)

+ and v̄T ∈ VT , such that (x̄, η̄T , v̄T) ∈ F is a robust 2ε-quasi-efficient solution
of (UMD).

Now, we give a robust converse-like duality property between (UFP) and (UFD).

Theorem 3. Let ε ∈ Rp
+\{0} and (x̄, η̄T , v̄T) ∈ F̂ . If ( f ,−g, hT) is generalized convex-inclusion

on Rn at x̄ ∈ F , then, x̄ ∈ F is a robust 2ε-quasi efficient solution of (UMP).

Proof. Sine (x̄, η̄T , v̄T) ∈ F̂ and ( f ,−g, hT) is generalized convex-inclusion on Rn at x̄, it
follows from Theorem 1 that

(
f1(x)
g1(x)

, . . . ,
fp(x)
gp(x)

)
6�
(

f1(x̄)
g1(x̄)

− 2ε1‖x− x̄‖, . . . ,
fp(x̄)
gp(x̄)

− 2εp‖x− x̄|
)

, ∀x ∈ F .

Therefore, x̄ ∈ F is a robust 2ε-quasi efficient solution of (UFP) and the proof is com-
plete.

Remark 8. Note that the converse-like duality result obtained in Theorem 3 extends [32] (Theorem 4.4)
from the deterministic (i.e., with singleton uncertainty sets) to the robust setting. Moreover, Theorem
3 extends [43] (Theorem 4.3) from the scalar case to the multi-objective setting.

Similarly, we have the following results for (UMP) and (UMD), which has been
considered in [21] (Theorem 4.3).

Corollary 3. Let ε ∈ Rp
+\{0} and (x̄, η̄T , v̄T) ∈ F . If ( f , hT) is generalized convex on Rn at

x̄ ∈ F , then, x̄ ∈ F is a robust ε-quasi efficient solution of (UMP).

4. Conclusions

In this paper, we consider robust ε-quasi-efficient solutions for a class of uncertain
fractional optimization problems. By employing robust optimization and the obtained opti-
mality conditions, a Mond–Weir-type robust dual problem for the fractional optimization
problem is established. Then, we give robust ε-quasi-weak, strong and converse duality
properties between them in terms of generalized convex-inclusion assumptions. We also
show that the obtained results extend the corresponding results obtained in [21,32,37].

In the future, similar to [21,43], it is of interest to formulate Mixed-type robust ap-
proximate dual problem of uncertain fractional optimization problems, and study robust
ε-quasi-weak, strong, and converse duality properties between them.
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