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Preface

Linear models are statistical models that play a crucial role in several fields of science and are

of practical importance in statistics. Their most typical type is the linear regression model. Many

phenomena, such as those in biology, medicine, economics, management, geology, meteorology,

agriculture, and industry, can be approximately described with linear models. Moreover, the further

research and development of linear models is still a hot research topic.

This reprint encompasses the study and practical implementation of linear models in diverse

scientific domains through a collection of several articles. The text furnishes a comprehensive

examination of various classifications of linear models, such as linear regression, ANOVA, and

MANOVA, elucidating their respective applications. Additionally, it delves into the presumptions

and limitations inherent in these models, employing practical instances to exemplify their pragmatic

utility. This compilation of articles on linear models assumes a significant role as it equips

analysts with a potent instrument to scrutinize and model intricate data, enabling them to expound

upon the relationship between variables, conduct hypothesis testing, and make predictions. The

ongoing research endeavors to devise novel linear models and data analysis methodologies hold

tremendous potential in advancing our comprehension and enhancing our predictive capabilities.

A comprehensive overview of linear models and their applications is presented herein. This

compilation was completed as research in this field is witnessing a surge due to the mounting

availability of data and the consequent requirement for robust analytical tools. These models furnish a

versatile and formidable framework for unraveling complex data patterns and facilitating prediction.

The pursuit of novel linear models and data analysis techniques remains a vibrant field of research,

harboring the promise of furthering our understanding and improving our predictive prowess.

This publication will undoubtedly captivate researchers and students specializing in statistics, data

science, and allied fields, who seek to broaden their knowledge of linear models and their practical

implementations. It also caters to professionals who aspire to comprehend and apply these models

to real-world scenarios and their own research endeavors.

I would like to avail myself of this occasion to express my gratitude for the entirety of the

assistance extended by this scholarly publication, which extended an invitation to me to act as a guest

editor for this distinctive edition, as well as for the remarkable efforts exerted by all the contributors

and reviewers throughout the process of editing.

The paper titled “A Quantile Functions-Based Investigation on the Characteristics of Southern

African Solar Irradiation Data” investigates the climatic attributes of solar irradiation data in the

region of Southern Africa, thus offering crucial information for planners, designers, and investors

involved in the solar power generation sector. Moreover, it scrutinizes the seasonal changes in

these data, including the highest daily solar irradiation. Within this paper, a suggestion is made

to employ quantile functions to model solar irradiation data. This approach is grounded in the

idea that quantile functions can reveal insights into data skewness, outliers, and tail behaviors.

Quantile functions can reveal insights into data skewness, outliers, and tail behaviors. Furthermore,

their use can be extended to various probability distributions, broadening their applicability in the

analysis of solar irradiation data. Future investigations can explore the use of quantile functions in

different probability distributions. Such advancements would simplify the approximation process

and enhance the accuracy of quantile functions in the modeling of solar irradiation data.

The paper “A New Sine Family of Generalized Distributions: Statistical Inference with

Applications” introduces a new family of distributions called the alpha-sine-G family, which is

derived from the trigonometric function and includes an additional parameter. The statistical
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properties of this new distribution are investigated, and several families of trigonometric

distributions are developed. Two real data sets were analyzed to help illustrate the suggested

model. The performance was presented based on various criteria measures, such as the Akaike

information criteria, the consistent Akaike information criteria, the Bayesian information criteria, the

Hannan–Quinn information criteria, box plots, TTT plots, and PP plots to support the assertion that

the AS-W model provides the best fit among its competitors.

The paper “Computation of the Distribution of the Sum of Independent Negative Binomial

Random Variables” compares different methods to estimate the distribution of the sum of negative

binomial random variables. The authors compare different methods for estimating this distribution,

including a finite-sum exact expression, a series expression via convolution, a normalized saddle

point approximation, and normal and single distribution negative binomial approximations. This

paper highlights the limitations and advantages of each method, providing insights for applied

practitioners in terms of memory usage, computing time, and precision of the estimates. Exact series

expressions, for estimating the distribution of the sum of negative binomial random variables, are

deemed not practical for high numbers of random variables due to their high memory usage. Thus,

it is commendable that the authors propose the exploration of alternative approximation methods or

techniques for estimating the distribution of the sum of negative binomial random variables in future

studies.

In the paper titled “Prediction Interval for Compound Conway–Maxwell–Poisson Regression

Model with Application to Vehicle Insurance Claim Data”, the authors introduce a regression model

utilizing a compound Conway–Maxwell–Poisson distribution—a succinct Poisson distribution with

just two parameters—that is adept at accommodating under-dispersed count data, which render it

versatile across numerous domains. A two-step approach involves estimating the parameters of the

compound Conway–Maxwell–Poisson regression model within the context of a generalized linear

model. Additionally, a novel technique is outlined for deriving prediction intervals for the response

variable in this compound regression model. The practicality of this methodology is illustrated

through an application to actual vehicle insurance claims data, showcasing its efficacy in parameter

estimation and prediction interval generation.

The paper “The Arctan Power Distribution: Properties, Quantile and Modal Regressions with

Applications to Biomedical Data” tests the arctan power distribution, which is a versatile distribution

capable of representing data with left-skewedness, right-skewness, and J and reversed-J shapes.

The authors proceed to develop a bivariate extension of the arctan power distribution to represent

the interdependence of two random variables or pairs of data. They further elucidate that the

parameters of the arctan power distribution can be accurately estimated through the utilization of

a Bayesian approach. Additionally, quantile and modal regression models based on the arctan power

distribution are presented by the authors. It is discovered that these models yield superior fits to

biomedical data in comparison to other existing regression models.

The paper “Forecasting Financial and Macroeconomic Variables Using an Adaptive Parameter

VAR-KF Model” examines the demand for robust economic and financial forecasting tools, a necessity

driven by growing uncertainty in these sectors. Various prediction methods have been developed

covering time series models. This research spotlights the hybrid vector autoregressive and Kalman

filter approach for economic and financial trend projection, incorporating updated coefficients via

the unified state-parameter Kalman filter process. Findings from simulated experiments, involving

Thailand and Indonesia’s main stock exchange index, real effective exchange rate, and consumer

price index, spanning from January 1997 to May 2021, demonstrate the general superiority of the

adaptive parameter vector autoregressive and Kalman filter model in predictive accuracy compared
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to other models. The model’s success is attributed to the two-step Kalman filter process that gleans

valuable insights from training data, combined with adaptive parameters that enhance hybrid model

performance. This study recognizes that the vector autoregressive lag 1 assumption may present

limitations and recommends exploring higher lag orders and introducing additional macroeconomic

variables in future research.

In this research paper entitled “Pseudo-Poisson Distributions with Concomitant Variables”, the

impact of accompanying variables on the parameters of the bivariate pseudo-Poisson distribution

is thoroughly examined, focusing on distributional and inferential aspects. This study covers a

simulation analysis and references the work of Kokonendji and Puig, introducing the concept of

the bivariate Fisher dispersion index. Furthermore, the authors investigate the null hypothesis and

the parameter space to evaluate how concomitant variables affect the dependence structure of the

pseudo-Poisson model. The concept of concomitant variables that influence the parameters of the

considered distribution is also introduced. Additionally, it explores the distributional characteristics

and inferential dimensions of models enriched by these variables. The inclusion of a real-world

application highlights the pragmatic utility of augmented models in analyzing bivariate data.

Augmented models provide a valuable framework for integrating these variables and produce

valuable insights into the distributional characteristics and inferential capabilities of the model.

“New Lifetime Distribution for Modeling Data on the Unit Interval: Properties, Applications

and Quantile Regression”. This paper presents a new distribution, the Cauchy-bounded truncated

exponential power distribution, designed to model unit interval data sets with versatile formats

and hazard rate functions. It introduces a bivariate extension of this distribution to capture

dependencies within datasets. The effectiveness of this distribution is demonstrated through its

successful application to COVID-19 data, particularly in modeling mortality and recovery rates.

The manuscript incorporates a quantile regression model that presents a reasonable fit to the data,

validated through residual analysis. The authors of this manuscript intend to conduct future research

that will be dedicated to further exploring the properties of the bivariate distribution, parameter

estimation, and their potential applications.

The article “Flexible Parametric Accelerated Hazard Model: Simulation and Application to

Censored Lifetime Data with Crossing Survival Curves” introduces a flexible, fully parametric

regression model for censored time-to-event data with crossing survival curves, known as the

accelerated hazard model. This model offers the ability to analyze various types of survival data with

crossover survival curves. The proposed accelerated hazard model explores the use of a versatile

parametric baseline distribution, specifically the generalized log-logistic distribution. This choice

allows for a more flexible representation of the baseline hazard and enables different hazard rate

shapes to be captured. The article showcases that both Bayesian and classical likelihood inference

can be performed using the proposed accelerated hazard model and a package in the R programming

language. This addresses the limited utilization of the semi-parametric accelerated hazard model,

which has been hindered by a lack of efficient and reliable estimation methods. Further examinations

can be conducted to assess the performance of the proposed accelerated hazard model with various

types of baseline distributions and to compare it against existing models. The authors suggest that

there is room for additional research to examine the performance of the suggested model with various

baseline distributions and to make comparisons with existing models. They also propose that the

application of the AH parametric model can be extended to encompass various forms of survival data

characterized by the intersection of survival curves, including applications in areas such as medical

research and engineering.

The investigation presented in the paper titled “Bivariate Generalized Half-Logistic Distribution:
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Properties and Its Application in Household Financial Affordability in KSA” examines the study of

adaptive life distributions, which exhibit various characteristics of probability density and risk rate.

This area of research is particularly relevant in the field of reliability analysis. Within this study,

the authors introduce the bivariate generalized semi-logistic distribution (BGHLD), referred to as

FGMBGHLD. This distribution is well-suited for describing bivariate life data sets in which variables

show weak correlations. The primary focus of this manuscript is to conduct a comparative analysis

with a contemporary bivariate Weibull distribution, highlighting the competitive performance of

the proposed model. The authors also mention that future research perspectives should involve

the exploration of this distribution’s applications in different types of bivariate data, developing its

multivariate counterpart and expanding its use to various types of regression models.

The present study, titled “Odd Exponential-Logarithmic Family of Distributions: Features and

Modeling”, showcases a wide range of distributions called the ”odd exponential logarithmic family”,

which can be effectively employed in practical applications. This family encompasses distinct

members that have versatile shape properties, allowing for great flexibility in data modeling. A

comprehensive mathematical analysis of this family is provided in this article. It also demonstrates

how the model’s parameters can be estimated using the maximum likelihood method and the

observed information matrix, which are discussed in detail within. Moreover, a comparative analysis

is carried out, revealing the superior data fitting performance of the odd exponential logarithmic

model when compared to two competitors—an analysis carried out using three sets of practical data.

The findings included in this study strongly indicate that the odd exponential logarithmic family

adds significant value to the existing knowledge in the field of distribution modeling and that it is

particularly relevant in several disciplines where it has already demonstrated its importance.

Sandra Ferreira

Editor
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Odd Exponential-Logarithmic Family of Distributions:
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Christophe Chesneau 1,*, Lishamol Tomy 2, Meenu Jose 3 and Kuttappan Vallikkattil Jayamol 4
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Abstract: This paper introduces a general family of continuous distributions, based on the exponential-
logarithmic distribution and the odd transformation. It is called the “odd exponential logarithmic
family”. We intend to create novel distributions with desired qualities for practical applications, using
the unique properties of the exponential-logarithmic distribution as an initial inspiration. Thus, we
present some special members of this family that stand out for the versatile shape properties of their
corresponding functions. Then, a comprehensive mathematical treatment of the family is provided,
including some asymptotic properties, the determination of the quantile function, a useful sum
expression of the probability density function, tractable series expressions for the moments, moment
generating function, Rényi entropy and Shannon entropy, as well as results on order statistics and
stochastic ordering. We estimate the model parameters quite efficiently by the method of maximum
likelihood, with discussions on the observed information matrix and a complete simulation study.
As a major interest, the odd exponential logarithmic models reveal how to successfully accommodate
various kinds of data. This aspect is demonstrated by using three practical data sets, showing that an
odd exponential logarithmic model outperforms two strong competitors in terms of data fitting.

Keywords: exponential-logarithmic distribution; T-X transformation; moments; entropy; maximum
likelihood estimation; simulation; data sciences

1. Introduction

There has been a growing interest in defining new flexible distributions in the modern
age, which has been submerged by the volume of data arriving from all disciplines. To de-
fine such mathematical objects, “thoroughly changing” a baseline (continuous) distribution
is a straightforward and fast method. The addition of parameters has been shown to be
useful in investigating tail properties as well as increasing the goodness-of-fit of the related
models. Among the proposed distributions, the T-X family of continuous distributions
(focds) by [1] is the most popular one. An exhaustive review of it can be found in [2]. Also,
one of the most useful transformers for the T-X focds is the following odd transformation:
W[G(x;=)] = G(x;=)/[1− G(x;=)], where G(x;=) denotes the cumulative density func-
tion (cdf) and = the parameters of the cdf. That is, the focds defined by G(x;=) is modified,
defining a new focd based on a transformed cdf through the use of W[G(x;=)]. Such a
transformed focds is generally called an “odd family” of distributions. Some odd families
available in the modern literature are the odd log-logistic (OLL) focds by [3], odd-gamma
generated type 3 (OGGT3) focds by [4], odd exponentiated generated (odd exp-G) focds
by [5], odd Weibull generated (OW-G) focds by [6], odd generalized exponential (OGE)
focds by [7], odd generalized exponential log-logistic (OGELL) focds by [8], odd log-logistic
normal (OLLN) focds by [9], new generalized odd log-logistic (NGOLL) focds by [10],
odd Fréchet generated (OF-G) focds by [11], generalized odd gamma generated (GOG-G)

Math. Comput. Appl. 2022, 27, 68. https://doi.org/10.3390/mca27040068 https://www.mdpi.com/journal/mca
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focds by [12], generalized odd Lindley generated (GOL-G) focds by [13], Marshall-Olkin
odd Lindley generated (MOOL-G) focds by [14], extended odd generated (EO-G) focds
by [15], generalized odd inverted exponential generated (GOIE-G) focds by [16], odd
flexible Weibull-H (OFW-H) family by [17], transmuted odd Fréchet generated (TOF-G)
focds by [18], odd generalized gamma generated (OGG-G) focds by [19], modified odd
Weibull generated (MOW-G) focds by [20], Topp-Leone odd Fréchet generated (TLOF-G)
focds by [21], weighted odd Weibull generated (WOW-G) focds by [22], additive odd (AO)
focds by [23], exponentiated odd Chen-G (EOC-G) focds by [24], generalized odd linear
exponential (GOLE) focds by [25], and sine extended odd Fréchet generated (SEOF-G)
focds by [26].

The new idea in this paper is centered around the notorious exponential-logarithmic
(EL) distribution introduced by [27]. The EL distribution plays a fundamental role in
reliability in several disciplines such as manufacturing, finance, biological sciences, and en-
gineering. It is mathematically defined as follows. Let p ∈ (0, 1) and β > 0. Then, the EL
distribution with parameters p and β is defined by the following cdf:

F∗(x; p, β) = 1− 1
log(p)

log
[
1− (1− p)e−βx

]
, x > 0. (1)

Thus, it has the feature of combining exponential and logarithmic functions.
The related probability density function (pdf) is given by

f∗(x; p, β) =

(
1

− log(p)

)
β(1− p)e−βx

1− (1− p)e−βx , x > 0.

This pdf has the following notable properties: it is strictly decreasing with respect
to x, it tends to zero as x → +∞, it is unimodal with a modal value at x = 0 and it is
reduced to the pdf of the exponential distribution with rate parameter β as p → 1. Also,
as a complementary key function, the corresponding hazard rate function (hrf) is given by

h∗(x; p, β) =
−β(1− p)e−βx

[1− (1− p)e−βx] log[1− (1− p)e−βx]
, x > 0.

It is proved to be decreasing (contrary to the former exponential distribution having a
constant hrf). As an advantage for statistical analysis, the quantile function (qf) of the EL
distribution has a closed-form expression; it is given by

Q∗(u; p, β) =
1
β

log
(

1− p
1− p1−u

)
, u ∈ [0, 1).

Also, the EL distribution has a solid physical interpretation. Indeed, consider
T = (Tn)n∈N∗ to be a sequence of independent and identically distributed random vari-
ables with an exponential distribution and a common parameter, β. Let N be a random
variable following the discrete logarithmic distribution with parameter 1− p, also indepen-
dent of T. Then, the random variable X = inf(T1, . . . , TN) follows the EL distribution with
parameters p and β. As an example, such a random variable can model the lifetime of a
system that failed when one of its components failed, assuming that it is dependent on a
random number of independent components represented by N and that the lifetime of the
i-th component is represented by Ti.

We leverage these characteristics of the EL distribution to create a new odd focds
based on it. We present three special four-parameter distributions of the family that
have very desirable statistical properties, such as versatile hazard rate shapes; increasing,
decreasing, J, reversed-J, and bathtub shapes. Then, a complete mathematical treatment
of the focds is derived, with several results on the pdf, moments, entropy (Rényi and
Shannon entropy), order statistics, and stochastic ordering. By turning out some special
distributions as models, we prove that they are more adequate to fit some data sets than
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notable competitors, with the same or more numbers of parameters, and the same baseline
distribution as well. We explain this success by the original exponential-logarithmic
definitions of the corresponding functions, offering some ability in the modeling that can
be reached by other families.

The paper is composed of the following sections. In Section 2, we introduce the
odd exponential-logarithmic focds. We present some special distributions in Section 3.
The mathematical properties of the focds are derived in Section 4. For the inferential aspect,
the maximum likelihood method is discussed in Section 5. The analysis of two real data
sets is presented to illustrate the modeling potential of the focds in Section 6. Finally,
the conclusion of the paper appears in Section 7.

2. The New Family

The proposed focds, called the odd EL generated (OEL-G) focds, is characterized by
the cdf given by

F(x; p, β,=) = 1− 1
log(p)

log
[

1− (1− p)e−β
G(x;=)

1−G(x;=)
]

, x ∈ R, (2)

where G(x;=) denotes the cdf of an absolutely continuous distribution based on a pa-
rameter vector denoted by =. We recall that p ∈ (0, 1). Its definition is based on the
T-X transformation introduced by [1], the EL distribution previously presented and the
odd transformation, i.e., we can write F(x; p, β,=) as F(x; p, β,=) = F∗(W[G(x;=)]; p, β),
where F∗(y; p, β) is the cdf of the EL distribution given by (1) and W(y) is the following
odd transformation: W(y) = y/(1− y). One can also notice some compounding relations
between the OEL-G and the OW-G and Pappas and Loukas generated (PAL-G) families
by [6,28], respectively. Indeed, we can write F(x; p, β,=) as

F(x; p, β,=) = 1− 1
log(p)

log[1− (1− p)So(x; β,=)],

where So(x; β,=) denotes the survival function (sf) of the OW-G focds with parameters β
and =, which also corresponds to the cdf of the PAL-G focds, with parameter p and the cdf
of the OW-G focds as a baseline. However, to the best of our knowledge, the OEL-G focds
as defined by (2) is new in the literature.

The sf of the OEL-G focds is given by S(x; p, β,=) = 1− F(x; p, β,=), hence

S(x; p, β,=) = 1
log(p)

log
[

1− (1− p)e−β
G(x;=)

1−G(x;=)
]

, x ∈ R,

The appropriate pdf is given by deriving F(x; p, β,=) from x; we get

f (x; p, β,=) =
(

1
− log(p)

)
g(x;=)

[1− G(x;=)]2
(1− p)βe−β

G(x;=)
1−G(x;=)

1− (1− p)e−β
G(x;=)

1−G(x;=)
, x ∈ R, (3)

where g(x;=) refers to the pdf related to G(x;=).
Also, the hrf of the OEL-G focds is specified by h(x; p, β,=) = f (x; p, β,=)/S(x; p, β,=),

hence

h(x; p, β,=) = g(x;=)
[1− G(x;=)]2

−(1− p)βe−β
G(x;=)

1−G(x;=)
[

1− (1− p)e−β
G(x;=)

1−G(x;=)
]

log
[

1− (1− p)e−β
G(x;=)

1−G(x;=)
] , x ∈ R.

These two last functions are crucial to handling some statistical features of the OEL-G
focds, such as the possible adequateness of the related models to various kinds of data.
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3. Special Distributions

Three special four-parameter distributions of the OEL-G focds are described in this
section, all defined with well-established baseline distributions, namely: the Weibull,
gamma, and Fréchet distributions.

3.1. The OELW Distribution

The OEL Weibull (OELW) distribution is now introduced. It is defined by the cdf
given by (2) with the Weibull distribution as baseline distribution, i.e., with the cdf given by
G(x; a, b) = 1− e−(x/b)a

and the pdf given by g(x; a, b) = (a/b)(x/b)a−1e−(x/b)a
, a, b, x > 0.

When x ≤ 0, the cdf and pdf are equal to 0. Thus, the cdf of the OELW distribution is
given by

F(x; p, β, a, b) = 1− 1
log(p)

log
[

1− (1− p)e−β
{

e(
x
b )a
−1
}]

, x > 0.

In this setting, the pdf is expressed as

f (x; p, β, a, b) =
(

1
− log(p)

)
a
b

( x
b

)a−1
e(

x
b )

a (1− p)βe−β
{

e(
x
b )a
−1
}

1− (1− p)e−β
{

e(
x
b )a−1

} , x > 0.

The hrf is obtained as

h(x; p, β, a, b) =
a
b

( x
b

)a−1
e(

x
b )

a −(1− p)βe−β
{

e(
x
b )a
−1
}

[
1− (1− p)e−β

{
e(

x
b )a−1

}]
log
[

1− (1− p)e−β
{

e(
x
b )a−1

}] , x > 0.

The functions above are equal to 0 when x ≤ 0. As graphical illustrations, Figure 1
shows some plots of f (x; p, β, a, b) and h(x; p, β, a, b), for selected values of the parameters
p, β, a and b. These plots show that the pdf of the OELW distribution has a great shape
flexibility. It can be left skewed, right skewed, J-shaped, reversed J-shape, and symmetric.
Furthermore, the corresponding hrf can be increasing, decreasing, J, or bathtub in shape.
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Figure 1. Examples of plots of the (a) pdf and (b) hrf of the OELW distribution for various values of
p, β, a and b.

The applicability of the OLEW distribution will be highlighted in the application part
of the paper (see Section 6).

3.2. Two Other Examples

To show other perspectives of lifetime modeling, two other special cases are briefly
described below.
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3.2.1. The OELGa Distribution

We now introduce the OEL gamma (OELGa) distribution. It is defined by the cdf
given by (2) with the gamma distribution as baseline distribution, i.e., with the cdf given
by G(x; a, b) = (1/Γ(a))γ(a, bx) and the pdf given by g(x; a, b) = (ba/Γ(a))xα−1e−bx,
a, b, x > 0, where Γ(a) =

∫ +∞
0 ta−1e−tdt and γ(a, bx) =

∫ bx
0 ta−1e−tdt. When x ≤ 0, the cdf

and pdf are equal to 0. So, the cdf of the OELGa distribution is given by

F(x; p, β, a, b) = 1− 1
log(p)

log
[

1− (1− p)e−β
γ(a,bx)

Γ(a)−γ(a,bx)

]
, x > 0.

The related pdf is given as

f (x; p, β, a, b) =
(

1
− log(p)

)
baxα−1e−bx γ(a, bx)

[Γ(a)− γ(a, bx)]2
(1− p)βe−β

γ(a,bx)
Γ(a)−γ(a,bx)

1− (1− p)e−β
γ(a,bx)

Γ(a)−γ(a,bx)

, x > 0.

The hrf is given by

h(x; p, β, a, b) = baxα−1e−bx γ(a, bx)
[Γ(a)− γ(a, bx)]2

×

−(1− p)βe−β
γ(a,bx)

Γ(a)−γ(a,bx)
[

1− (1− p)e−β
γ(a,bx)

Γ(a)−γ(a,bx)

]
log
[

1− (1− p)e−β
γ(a,bx)

Γ(a)−γ(a,bx)

] , x > 0.

The functions above are equal to 0 when x ≤ 0. Figure 2 shows some plots of
f (x; p, β, a, b) and h(x; p, β, a, b), for selected values of the parameters p, β, a and b. The plots
indicate that the pdf of the OELGa distribution can be reverse J-shaped, symmetric, right
skewed, left-skewed, and unimodal, whereas the hrf of the OELGa has J and increas-
ing shapes.
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Figure 2. Examples of plots of the (a) pdf and (b) hrf of the OELGa distribution for various values of
p, β, a and b.

3.2.2. The OELF Distribution

We now introduce the OEL Fréchet (OELF) distribution. It is defined by the cdf given
by (2) with the Fréchet distribution as baseline distribution, i.e., with the cdf given by
G(x; a, b) = e−(x/b)−a

and the pdf given by g(x; a, b) = (a/b)(x/b)−a−1e−(x/b)−a
, a, b, x > 0.

When x ≤ 0, the cdf and pdf are equal to 0. Hence, the cdf of the OELF distribution is
given by

F(x; p, β, a, b) = 1− 1
log(p)

log


1− (1− p)e

−β e
−( x

b )−a

1−e
−( x

b )−a


, x > 0.
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The pdf can be deduced as

f (x; p, β, a, b) =
(

1
− log(p)

)
a
b

( x
b

)−a−1 e−(
x
b )
−a

[1− e−(
x
b )
−a
]2

(1− p)βe
−β e

−( x
b )−a

1−e
−( x

b )−a

1− (1− p)e
−β e

−( x
b )−a

1−e
−( x

b )−a

, x > 0.

The hrf is expressed as

h(x; p, β, a, b) =
a
b

( x
b

)−a−1 e−(
x
b )
−a

[1− e−(
x
b )
−a
]2
×

−(1− p)βe
−β e

−( x
b )−a

1−e
−( x

b )−a


1− (1− p)e

−β e
−( x

b )−a

1−e
−( x

b )−a


 log


1− (1− p)e

−β e
−( x

b )−a

1−e
−( x

b )−a




, x > 0.

The functions above are equal to 0 when x ≤ 0. Figure 3 shows some plots of
f (x; p, β, a, b) and h(x; p, β, a, b), for selected values of the parameters p, β, a and b. The plots
indicate that the OELF distribution can be reverse J-shaped, right skewed, left-skewed,
and unimodal. On the other hand, the corresponding hrf has decreasing, increasing, J,
reverse J- shapes.
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Figure 3. Examples of plots of the (a) pdf and (b) hrf of the OELF distribution for various values of p,
β, a and b.

4. Mathematical Features

This section is devoted to some mathematical properties of the OEL-G focds. In the
following, it is assumed that the criterion for interchanging summation and integration
and the criterion for interchanging summation and differentiation are satisfied. Also, let
us mention that most of the presented formulas can be handled in standard mathematical
software (Mathematica, Maple, . . . ).

4.1. Asymptotic Results

Here, we investigate some asymptotic results of the pdf and hrf of the OEL-G focds.
First of all, as x → −∞ (or G(x;=)→ 0), we have

f (x; p, β,=) ∼
(

1− p
−p log(p)

)
βg(x;=), h(x; p, β,=) ∼

(
1− p
−p log(p)

)
βg(x;=).

6
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When x → +∞ (or G(x;=)→ 1), we have

f (x; p, β,=) ∼
(

1− p
− log(p)

)
β

g(x;=)
[1− G(x;=)]2 e−β

G(x;=)
1−G(x;=) , h(x; p, β,=) ∼ β

g(x;=)
[1− G(x;=)]2 .

We thus see the role of the parameters β and p in the possible asymptotes for these
functions. In particular, when x → +∞, we see that β has large impact on the conver-
gence of f (x; p, β,=) due to the exponential term, whereas p has no effect on the limit of
h(x; p, β,=). Also, the function u(p) = (1− p)/[−p log(p)] appearing multiple times is
decreasing in p and convex, with limp→0 u(p) = +∞ and limp→1 u(p) = 0.

4.2. Shapes of the pdf and hrf

The shapes of the pdf and hrf of the OEL-G focds can be described analytically. The
critical point(s) of the pdf (also called mode(s)) of the OEL-G focds is(are) the root(s) of the
following equation: d[log( f (x; p, β,=))]/dx = 0, i.e.,

dg(x;=)/dx
g(x;=) + 2

g(x;=)
1− G(x;=) − β

g(x;=)
[1− G(x;=)]2

1[
1− (1− p)e−β

G(x;=)
1−G(x;=)

] = 0.

Similarly, the critical point(s) of the hrf of the OEL-G focds is(are) the root(s) of the
following equation: d[log(h(x; p, β,=))]/dx = 0, i.e.,

dg(x;=)/dx
g(x;=) + 2

g(x;=)
1− G(x;=) − β

g(x;=)
[1− G(x;=)]2

1[
1− (1− p)e−β

G(x;=)
1−G(x;=)

]×


1 + (1− p)

e−β
G(x;=)

1−G(x;=)

log
[

1− (1− p)e−β
G(x;=)

1−G(x;=)
]


 = 0.

Mathematical software (R, Python, Mathematica, . . . ) can be used to solve these
two equations and determine whether the critical points are local maximums, minimums,
or inflexion points for a given cdf G(x;=). It is the case for the proposed OELW, OELGa,
and OELF distributions, where the equations above have no analytical solutions. For them,
Figures 1–3, are informative on their global mode properties; these special distributions
can be unimodal, with various hrf shapes.

4.3. Quantile Function

The qf of the OEL-G focds, say Q(u; p, β,=), satisfies the following functional equation:
F(Q(u; p, β,=); p, β,=)) = Q(F(u; p, β,=); p, β,=)) = u, u ∈ (0, 1). After some alge-

braic manipulations, we get

Q(u; p, β,=) = QG




log
(

1−p
1−p1−u

)

β + log
(

1−p
1−p1−u

) ;=

 u ∈ (0, 1), (4)

where QG(u;=) denotes the qf related to G(x;=). As a result, with appropriate values of u,
quantiles of interest can be obtained. In particular, the median is reduced to

M = Q(0.5; p, β,=) = QG

(
log
(
1 +
√

p
)

β + log
(
1 +
√

p
) ;=

)
.

7
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One can also use the quantile function for simulating values for a special OEL-
G distribution. For any random variable U with the standard uniform distribution,
X = Q(U; p, β,=) has the cdf given by (2).

4.4. Expansions of the cdf and pdf

The cdf and pdf of the OEL-G focds are expressed here using exp-G cdfs and pdfs as
defined by [29]. Then, the structural properties of the exp-G focds can be used to derive
those of the OEL-G focds.

The following result is about the series expansion of the cdf.

Proposition 1. Let F(x; p, β,=) be the cdf given by (2). Then, assuming that G(x;=) ∈ (0, 1),
the following series expansion is valid:

F(x; p, β,=) =
+∞

∑
k,`=1

+∞

∑
m=0

ak,`,mG(x;=)`+m,

where

ak,`,m =
1

log(p)
(−1)`+m

(−`
m

)
1
k

1
`!
(1− p)kβ`k`. (5)

Proof. It follows from the Taylor theorem applied to the logarithmic function that

log(1− x) = −
+∞
∑

k=1

1
k xk, x ∈ (−1, 1), and some sum manipulations, that

F(x; p, β,=) = 1 +
1

log(p)

+∞

∑
k=1

1
k
(1− p)ke−βk G(x;=)

1−G(x;=)

=
1

log(p)

+∞

∑
k=1

1
k
(1− p)k

[
e−βk G(x;=)

1−G(x;=) − 1
]

.

For the term in brackets, the Taylor theorem applied to the exponential function,

i.e., ex =
+∞
∑

k=0

1
k! xk, x ∈ R, gives

e−βk G(x;=)
1−G(x;=) − 1 =

+∞

∑
`=1

1
`!
(−1)`β`k`G(x;=)`[1− G(x;=)]−`.

Now, the generalized binomial theorem, i.e., (1− x)υ =
+∞
∑

k=0
(υ

k)(−1)kxk, x ∈ (−1, 1),

υ ∈ R, gives

[1− G(x;=)]−` =
+∞

∑
m=0

(−`
m

)
(−1)mG(x;=)m.

By combining all of the foregoing equalities, we get the desired result. The proof of
Proposition 1 is now complete.

Corollary 1. Owing to Proposition 1, upon differentiation of the involved functions, a series
expansion for f (x; p, β,=) is given by

f (x; p, β,=) =
+∞

∑
k,`=1

+∞

∑
m=0

bk,`,mg(x;=)G(x;=)`+m−1,

where bk,`,m = (`+ m)ak,`,m.
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In comparison to the former analytical definition, for practical purposes (integra-
tion. . . ), the expression of f (x; p, β,=) in Corollary 1 can be more easy to handle through
the following approximation:

f (x; p, β,=) ≈
M

∑
k,`=1

M

∑
m=0

bk,`,mg(x;=)G(x;=)`+m−1,

where M is a carefully chosen number.

4.5. Moments

Hereafter, we denote by X a random variable having the cdf of the OEL-G focds
given by (2). Corollary 1 can be used to have a tractable expression for the moments of X,
among other things. Indeed, for any integer r, the rth moment of X is given by

µ′r = E(Xr) =
∫ +∞

−∞
xr f (x; p, β,=)dx =

+∞

∑
k,`=1

+∞

∑
m=0

bk,`,mτ`,m,r,

where τ`,m,r =
∫ +∞
−∞ xrg(x;=)G(x;=)`+m−1dx =

∫ 1
0 u`+m−1[QG(u;=)]rdu. For a given

G(x;=), this integral can be calculated or computed numerically. We refer to [30], where
τ`,m,r has been determined for some standard distributions (normal, beta, Weibull . . . ).
For practical purposes, another remark concerns the infinity limit in the sums; as mentioned
before, it can be substituted by a large positive integer.

As usual, the mean of X is obtained directly by µ = µ′1. Also, the variance of X can be
calculated using the following formula: σ2 = µ′2 − µ2.

In a similar vein, for y ∈ R, the rth incomplete moment of X is given by

µ′r(y) = E(Xr1{X≤y}) =
∫ y

−∞
xr f (x; p, β,=)dx =

+∞

∑
k,`=1

+∞

∑
m=0

bk,`,mτ`,m,r(y),

where τ`,m,r(y) =
∫ y
−∞ xrg(x;=)G(x;=)`+m−1dx =

∫ G(y;=)
0 u`+m−1[QG(u;=)]rdu. Then,

one can express the mean deviations about the mean and about the median, as well as
Bonferroni and Lorenz curves, which play a central role in life testing, reliability, and re-
newal theory.

Similarly, the moment generating function of X is given by

M(t) = E(etX) =
∫ +∞

−∞
etx f (x; p, β,=)dx =

+∞

∑
k,`=1

+∞

∑
m=0

bk,`,mυ`,m(t),

where υ`,m(t) =
∫ +∞
−∞ etxg(x;=)G(x;=)`+m−1dx =

∫ 1
0 u`+m−1etQG(u;=)du.

4.6. Skewness and Kurtosis

The skewness and kurtosis properties of the OEL-G focds can be explored via the four
first moments or the use of the qf given by (4). The main measures defined by moments are
the skewness and kurtosis parameters defined by

S = E

[(
X− µ

σ

)3
]
=

µ′3 − 3µ′2µ + 2µ3

σ3

and

K = E

[(
X− µ

σ

)4
]
=

µ′4 − 4µ′3µ + 6µ′2µ2 − 3µ4

σ4 .

They can be expressed for a given baseline cdf G(x;=).
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Alternatively, if the moments do not exist (or in full generality), one can consider the
measures defined with the qf. Examples are the Bowley skewness and the Moors kurtosis
defined by, respectively,

S∗ =
Q( 1

4 ; p, β,=) + Q( 3
4 ; p, β,=)− 2Q( 1

2 ; p, β,=)
Q( 3

4 ; p, β,=)−Q( 1
4 ; p, β,=)

,

and

K∗ =
Q( 7

8 ; p, β,=)−Q( 5
8 ; p, β,=) + Q( 3

8 ; p, β,=)−Q( 1
8 ; p, β,=)

Q( 6
8 ; p, β,=)−Q( 2

8 ; p, β,=) .

We refer to [31,32] for more information on these quantile measures.
Table 1 provides the mean, variance, skewness S and kurtosis K (defined with the

moments) of one of the members of the OEL-G focds, the OELW distribution, for different
choices of parameter values.

Table 1. Moment measures of the OELW distribution for various choices of parameters.

Parameter Mean Variance Skewness Kurtosis

a = 0.5
b = 1.5 0.1375667 0.05076667 12.77926 21.5475
β = 3

p = 0.5

a = 0.5
b = 1.5 0.06894464 0.03067229 27.02119 42.1311
β = 3

p = 0.05

a = 0.5
b = 1.5 0.04940314 0.02260463 38.03328 57.77719
β = 3

p = 0.012

a = 0.5
b = 2 1.324836 6.267231 8.523013 13.13688

β = 0.3
p = 0.2

a = 0.5
b = 0.02 7.938928× 10−8 1.69951× 10−10 26,964.99 26,960.99
β = 30

p = 0.012

a = 0.5
b = 5 0.1737497 0.09645452 15.83522 27.64176

β = 6.25
p = 0.96

Table 1 indicates that, for fixed a, b and β, the mean and variance of the OELW
distribution are decreasing functions with respect to p. Also, the OELW distribution tends
to be skewed more to the right as p decreases.

4.7. Entropy

Entropy is a measure of the variation of uncertainty that finds numerous applications
in various areas such as engineering, mathematical physics, and probability. One of the
most famous useful entropy measures is the Rényi entropy, introduced by [33] and the

10
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Shannon entropy by [34]. In the context of the OEL-G focds, the Rényi entropy of X is
defined by

Iδ(X) =
1

1− δ
log
[∫ +∞

−∞
f (x; p, β,=)δdx

]
,

where δ > 0 and δ 6= 1. As an alternative to direct computation, we now present an
expression that depends on a tractable series expansion. In this regard, let us present and
prove the following proposition, which can be viewed as an extension of Corollary 1.

Proposition 2. Let δ ∈ R and f (x; p, β,=) be the pdf given by (3). Then, the following series
expansion is valid:

f (x; p, β,=)δ =
+∞

∑
k,`,m=0

ck,`,m(δ)g(x;=)δG(x;=)`+m,

where

ck,`,m(δ) =

(
1

− log(p)

)δ(−δ

k

)(−(2δ + `)

m

)
(−1)k+`+m 1

`!
(1− p)δ+kβδ+`(δ + k)`.

Proof. We have

f (x; p, β,=)δ =

(
1

− log(p)

)δ g(x;=)δ

[1− G(x;=)]2δ

(1− p)δβδe−δβ
G(x;=)

1−G(x;=)
[

1− (1− p)e−β
G(x;=)

1−G(x;=)
]δ

.

The generalized binomial formula demonstrates that

[
1− (1− p)e−β

G(x;=)
1−G(x;=)

]−δ

=
+∞

∑
k=0

(−δ

k

)
(−1)k(1− p)ke−kβ

G(x;=)
1−G(x;=) .

By the Taylor series of the exponential function, we get

e−(δ+k)β
G(x;=)

1−G(x;=) =
+∞

∑
`=0

1
`!
(−1)`(δ + k)`β`G(x;=)`[1− G(x;=)]−`.

Furthermore, the generalized binomial formula gives

[1− G(x;=)]−(2δ+`) =
+∞

∑
m=0

(−(2δ + `)

m

)
(−1)mG(x;=)m.

By combining all of the aforementioned equality, we get the desired result.

As a direct application of Proposition 2, the Rényi entropy is given by

Iδ(X) =
1

1− δ
log

[
+∞

∑
k,`,m=0

ck,`,m(δ)
∫ +∞

−∞
g(x;=)δG(x;=)`+mdx

]
.

On the other side, the Shannon entropy of X is defined by

η(X) = −E{log[ f (X; p, β,=)]}.

It can be determined via the limit result: η(X) = limδ→1 Iδ(X). However, this limit is
not easy to handle. Some sum expressions can also be proved as an alternative. Indeed,
we have

11
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η(X) = − log
[

1
− log(p)

]
− log(1− p)− log(β)− E{log[g(X;=)]}+ 2E{log[1− G(X;=)]}

+ βE
[

G(X;=)
1− G(X;=)

]
− log(p){E[F(X; p, β,=)]− 1}.

Now, by using Corollary 1, we have

E{log[g(X;=)]} =
+∞

∑
k,`=1

+∞

∑
m=0

bk,`,mκ`,m,

where κ`,m =
∫ +∞
−∞ log[g(x;=)]g(x;=)G(x;=)`+m−1dx =

∫ 1
0 log[g(QG(u;=);=)]u`+m−1dx.

By using the Taylor series of the logarithmic function, we have

E{log[1− G(X;=)]} = −
+∞

∑
i=1

1
i

E
[

G(X;=)i
]
.

By using the geometric series, it comes

E
[

G(X;=)
1− G(X;=)

]
=

+∞

∑
i=0

E
[

G(X;=)i+1
]
.

By using Proposition 1, we have

E[F(X; p, β,=)] =
+∞

∑
k,`=1

+∞

∑
m=0

ak,`,mE
[

G(X;=)`+m
]
.

All the terms involving the expectation of exponentiated G(X;=) are expressible by
using the following results. For any ζ ≥ 0, by Corollary 1, we have

E
[

G(X;=)ζ
]
=

+∞

∑
k,`=1

+∞

∑
m=0

bk,`,m

∫ +∞

−∞
g(x;=)G(x;=)ζ+`+m−1dx

=
+∞

∑
k,`=1

+∞

∑
m=0

bk,`,m
1

ζ + `+ m
.

By putting all the above equalities together, we get a tractable expression for the
Shannon entropy, and possible approximations can be derived for practical purposes.

4.8. Order Statistics

The following result concerns a distributional property of a mth order statistic related
to the OEL-G focds.

Proposition 3. Let X1, . . . , Xn be a random sample of size n from X and Xm:n be the corresponding
mth order statistic, i.e., the mth random variable satisfying the inequalities X1:n ≤ X2:n ≤
. . . Xm:n ≤ . . . ≤ Xn:n, almost surely. The pdf of Xm:n is then linearly represented in terms of pdfs
of the exp-G focds.

Proof. By definition, the pdf of Xm:n is given by

fm:n(x; p, β,=) = n!
(m− 1)!(n−m)!

F(x; p, β,=)m−1[1− F(x; p, β,=)]n−m f (x; p, β,=).

Owing to the binomial formula, we can write

12
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fm:n(x; p, β,=) = n!
(m− 1)!(n−m)!

m−1

∑
d=0

(
m− 1

d

)
(−1)d[1− F(x; p, β,=)]d+n−m f (x; p, β,=).

It follows from Corollary 1 that f (x; p, β,=) can be expressed as a sum of pdfs of the
exp-G focds. As a result, the proof concludes by demonstrating that [1− F(x; p, β,=)]d+n−m

can be expressed as a sum of cdfs of the exp-G focds, by exploiting the fact that the
multiplication of a pdf and a cdf of the exp-G focds is a pdf of the exp-G focds, up to a
constant factor. We have

[1− F(x; p, β,=)]d+n−m =

(
1

− log(p)

)d+n−m{
− log

[
1− (1− p)e−β

G(x;=)
1−G(x;=)

]}d+n−m
.

By the Taylor series of the integer power of the logarithmic function (see, for instance,
http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/, accessed on 4
July 2022), we have

{
− log

[
1− (1− p)e−β

G(x;=)
1−G(x;=)

]}d+n−m

= (d + n−m)
+∞

∑
k=0

k

∑
j=0

(
k− (d + n−m)

k

)(
k
j

)
(−1)j+k 1

d + n−m− j
×

uj,k(1− p)d+n−m+ke−(d+n−m+k)β
G(x;=)

1−G(x;=) ,

where uj,k can be determined recursively by uj,0 = 1 and, for k ∈ N∗,

uj,k =
1
k

k

∑
s=1

[k− s(j + 1)]
(−1)s+1

s + 1
uj,k−s.

We will now proceed in the same manner that we did in the proof of Proposition 1.
The Taylor theorem applied to the exponential function gives

e−(d+n−m+k)β
G(x;=)

1−G(x;=) =
+∞

∑
`=0

1
`!
(−1)`β`(d + n−m + k)`G(x;=)`[1− G(x;=)]−`.

It follows from the general binomial theorem that

[1− G(x;=)]−` =
+∞

∑
m=0

(−`
m

)
(−1)mG(x;=)m.

By combining the aforementioned equalities, we arrive at

[1− F(x; p, β,=)]d+n−m =
+∞

∑
k,`,m=0

wk,`,mG(x;=)`+m,

where

wk,`,m =

(
1

− log(p)

)d+n−m
(d + n−m)

k

∑
j=0

(
k− (d + n−m)

k

)(
k
j

)(−`
m

)
(−1)j+k+`+m×

1
d + n−m− j

uj,k(1− p)d+n−m+k 1
`!

β`(d + n−m + k)`.

We thus have a linear representation of [1− F(x; p, β,=)]d+n−m in terms of cdfs of the
exp-G focds, ending the proof of Proposition 3.
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Thanks to Proposition 3, one can determine various mathematical properties for the
mth order statistic, such as moments, incomplete moments, entropy, and so on.

4.9. Stochastic Ordering

Here, a stochastic ordering result involving the OEL-G focds is investigated. First of
all, some elementary relations are presented below. The complete theory can be found
in [35]. Let X1 and X2 be two random variables having the sfs and pdfs given by S1(x) and
S2(x), and f1(x) and f2(x), respectively. Then, X1 is said to be “smaller than X2” in the
following senses:

1. stochastic order, denoted by X1 ≤st X2, if S1(x) ≤ S2(x) for all x,
2. hazard rate order, denoted by X1 ≤hr X2, if S1(x)/S2(x) is decreasing in x,
3. likelihood ratio order, denoted by X1 ≤lr X2, if f1(x)/ f2(x) is decreasing in x.

Then, we have the following implications:

(X1 ≤lr X2)⇒ (X1 ≤hr X2)⇒ (X1 ≤st X2).

A stochastic ordering result on the OEL-G focds is presented below.

Proposition 4. Let X1 having the cdf given by (2) with p = p1 and X2 having the cdf given by (2)
with p = p2. Then, if p1 ≤ p2, we have X1 ≤lr X2 (implying X1 ≤hr X2 and X1 ≤st X2). The
equality in the likelihood ratio order is satisfied if and only if p1 = p2.

Proof. Let f (x; p1, β,=) and f (x; p2, β,=) be the pdfs of X1 and X2, respectively. Then,
by using (3), we have

f (x; p1, β,=)
f (x; p2, β,=) =

(
log(p2)

log(p1)

)(
1− p1

1− p2

)
1− (1− p2)e

−β
G(x;=)

1−G(x;=)

1− (1− p1)e
−β

G(x;=)
1−G(x;=)

.

Hence, by differentiation, we obtain

d
dx

f (x; p1, β,=)
f (x; p2, β,=) =

(
log(p2)

log(p1)

)(
1− p1

1− p2

)
β(p1 − p2)

g(x;=)
[1− G(x;=)]2

e−β
G(x;=)

1−G(x;=)
[

1− (1− p1)e
−β

G(x;=)
1−G(x;=)

]2 .

Now, observe that the sign of d[ f (x; p1, β,=)/ f (x; p2, β,=)]/dx is the same to the
sign of p1 − p2. So, if p1 ≤ p2, f (x; p1, β,=)/ f (x; p2, β,=) is decreasing with respect to x,
implying the desired result. The proof of Proposition 4 is now complete.

5. Maximum Likelihood Estimation

In this section, we examine the statistical practice of the OEL-G model.

5.1. Method

To begin, we determine the (standard) maximum likelihood estimates (MLEs) of the
parameters p, β, and =.

Let x1, . . . , xn be observed values from X. Then, the log-likelihood function for
Θ = (p, β,=) is given by

`n = n log
[

1
− log(p)

]
+ n log(1− p) + n log(β) +

n

∑
i=1

log[g(xi;=)]− 2
n

∑
i=1

log[1− G(xi;=)]

− β
n

∑
i=1

G(xi;=)
1− G(xi;=)

−
n

∑
i=1

log

[
1− (1− p)e

−β
G(xi ;=)

1−G(xi ;=)

]
.
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The first derivatives of `n with respect to p, β and = are

∂`n

∂p
= − n

p log(p)
− n

1− p
−

n

∑
i=1

e
−β

G(xi ;=)
1−G(xi ;=)

1− (1− p)e
−β

G(xi ;=)
1−G(xi ;=)

,

∂`n

∂β
=

n
β
−

n

∑
i=1

G(xi;=)
1− G(xi;=)

1

1− (1− p)e
−β

G(xi ;=)
1−G(xi ;=)

and

∂`n

∂= =
n

∑
i=1

g(=)(xi;=)
g(xi;=)

+ 2
n

∑
i=1

G(=)(xi;=)
1− G(xi;=)

− β
n

∑
i=1

G(=)(xi;=)
[1− G(xi;=)]2

1

1− (1− p)e
−β

G(xi ;=)
1−G(xi ;=)

,

where g(=)(xi;=) = ∂g(xi;=)/∂= and G(=)(xi;=) = ∂G(xi;=)/∂=.
The MLEs of Θ, say Θ̂ = ( p̂, β̂, =̂), are the simultaneous solutions of the following

equations: ∂`n/∂p = 0, ∂`n/∂β = 0 and ∂`n/∂= = 0. These MLEs do not have analytical
expressions, but they can be computed numerically using well-established algorithms
available in mathematical software. Moreover, assuming that there are r components in
=, with = = (=1, . . . ,=r), the corresponding observed information matrix at Θ = Θ∗ is
given by

J(Θ∗) = −




∂2`n
∂p2

∂2`n
∂p∂β

∂2`n
∂p∂=1

. . . ∂2`n
∂p∂=r

. ∂2`n
∂β2

∂2`n
∂β∂=1

. . . ∂2`n
∂β∂=r

. . ∂2`n
∂=2

1
. . . ∂2`n

∂=1∂=r

. . . . . . .

. . . . . . .

. . . . . . ∂2`n
∂=2

r




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Θ=Θ∗

.

Under some standard conditions of regularity, when n is large, the sub-jacent distri-
bution of Θ̂ can be assimilated to the following Gaussian distribution: Nr+2(Θ, J(Θ̂)−1),
where J(Θ̂) is the observed information matrix at Θ = Θ̂. Confidence intervals and statisti-
cal tests for the model parameters can be constructed from this result. Further details on
the maximum likelihood estimation in the setting of odd focds can be found in [16,36].

5.2. Simulation

Here, we perform a simulation study evaluating the performance of the MLEs pre-
sented above for the OELW distribution for selected values of the parameters a, b, p, and β.
The simulation experiment was repeated 1000 times each with sample sizes of 30, 60, and
100, and parameter combinations are

(I) a = 0.5, b = 0.2, p = 0.05 and β = 0.01
(II) a = 0.55, b = 0.3, p = 0.04 and β = 0.01
(III) a = 0.5, b = 0.4, p = 0.8 and β = 0.1

Table 2 presents the average estimates (AEs), average bias (Bias), and mean square
error (MSE) values of parameters for different sample sizes.
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Table 2. AEs, Bias, and MSE of parameters based on 1000 simulations of the OELW distribution.

n Parameter AEs Bias MSE

I 30 a 0.4917 −0.0083 0.0138
b 0.2122 0.0122 0.0032
p 0.1716 0.1216 0.4697
β 0.0174 0.0074 0.0315

60 a 0.4983 −0.0017 0.0003
b 0.2015 0.0015 0.0002
p 0.0614 0.0114 0.0108
β 0.0121 0.0021 0.0004

100 a 0.5002 0.0002 3.9531× 10−5

b 0.1998 −0.0002 3.9531× 10−5

p 0.0487 −0.0013 0.0017
β 0.0094 −0.0006 0.0004

II 30 a 0.0373 −0.5127 0.2823
b 0.0211 −0.2789 0.0840
p 0.0075 −0.0324 0.0174
β 0.0007 −0.0092 0.0012

60 a 0.5481 −0.0019 0.0020
b 0.3002 0.0002 0.0009
p 0.0460 0.0060 0.0751
β 0.0106 0.0006 0.0028

100 a 0.5498 −0.0002 3.3018× 10−5

b 0.3001 8.4933× 10−6 3.9531× 10−5

p 0.0410 0.0010 0.0009
β 0.0102 0.0002 4.8256× 10−5

III 30 a 0.0327 −0.4673 0.2377
b 0.0230 −0.3770 0.1507
p 0.0467 −0.7532 0.3422
β 0.0044 −0.0956 0.0105

60 a 0.3342 −0.1658 0.0930
b 0.2598 −0.1402 0.0559
p 0.5333 −0.2666 0.2138
β 0.0621 −0.0379 0.0058

100 a 0.5013 0.0013 0.0017
b 0.3998 −0.0002 4.2791× 10−5

p 0.8053 0.0053 0.0703
β 0.0995 −0.0005 0.0003

It can be noted that as the sample size increases, the bias decays towards zero and the
MSE decreases. That is, the random versions of the MLEs are asymptotically unbiased and
consistent. Therefore, the maximum likelihood method works quite well to estimate the
parameters of the OELW distribution.

6. Applications

In this section, we show how the OELW model can be used in real-world data analysis
applications. We fit the OELW distribution to two data sets and compare the results with
those of the fitted four or five-parameter distributions also based on the Weibull distri-
bution, namely the log-logistic Weibull (LLoGW) distribution by [37] and exponentiated
generalized modified Weibull (EGMW) distribution by [38]. The Akaike information cri-
terion (AIC), Bayesian information criterion (BIC), Anderson-Darling (A*), Cramér-von
Mises (W*) and the values of the Kolmogorov-Smirnov (K-S) statistic and the correspond-
ing p-values (p-Vs) are used to compare the three models after we estimate the unknown
parameters of each model using the maximum likelihood method of estimation. In addi-
tion, for three data sets, the observed Fisher information matrix for the OELW distribution
is provided.
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6.1. The Survival Data Sets

The first real data set is a subset of the findings of [39]. It is based on the survival peri-
ods (in years) of 46 patients who received just chemotherapy. The data are provided below.

{0.047; 0.115; 0.121; 0.132; 0.164; 0.197; 0.203; 0.260; 0.282; 0.296; 0.334; 0.395; 0.458;
0.466; 0.501; 0.507; 0.529; 0.534; 0.540; 0.641; 0.644; 0.696; 0.841; 0.863; 1.099; 1.219; 1.271;
1.326; 1.447; 1.485; 1.553; 1.581; 1.589; 2.178; 2.343; 2.416; 2.444; 2.825; 2.830; 3.578; 3.658;
3.743; 3.978; 4.003; 4.033}

A summary of measures of descriptive statistics is provided in Table 3.

Table 3. Descriptive statistics of the survival data set.

Minimum Mean Median Variance Skewness Kurtosis Maximum

0.047 1.341 0.841 1.5540 0.9721 2.6638 4.033

Table 4 gives the relevant numerical summaries for the three fits based on the survival
data set.

Table 4. Estimated values, log-likelihood, AIC, and BIC for the survival data set.

Distribution Estimates − log(L) AIC BIC A* W* K-S p-V

â = 1.2911 55.6795 119.3589 126.5856 0.5029 0.0794 0.1000 0.7213

OELW b̂ = 1.8757
p̂ = 0.0086
β̂ = 0.1485

ŝ = 5.4074 58.1248 124.2497 131.4763 0.5297 0.0802 0.1086 0.6245

LLoGW ĉ = 0.9984
β̂ = 1.0963
α̂ = 0.5519

α̂ = 0.0262 58.0787 126.1574 135.1907 0.5339 0.0813 0.109 0.6197

EGMW
θ̂ = 23.6778
β̂ = 1.1346
µ̂ = 7.4771
λ̂ = 0.9329

Figure 4 gives the graphs of the estimated pdfs and cdfs of the considered distributions.
Figure 5 gives the probability-probability (PP) plot of the OELW distribution.

The observed Fisher information matrix for the OELW distribution is given by

J(Θ∗) =




46614.05 −4027.669 1022.565 460.6903
. 715.1325 49.82654 −149.2407
. . 80.76499 −136.9867
. . . 33.75663


.
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Figure 4. Obtained plots of the (a) estimated pdfs and (b) estimated cdfs of the considered distribu-
tions for the survival data set.
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Figure 5. PP plot of the survival data set.

6.2. The Vinyl Chloride Data Set

The second data set represents 34 observations of the vinyl chloride data (in mg/L)
that was obtained from clean-up gradient groundwater monitoring wells. The data are
obtained from by [40] and are given below.

{5.1; 1.2; 1.3; 0.6; 0.5; 2.4; 0.5; 1.1; 8; 0.8; 0.4; 0.6; 0.9; 0.4; 2; 0.5; 5.3; 3.2; 2.7; 2.9; 2.5; 2.3; 1;
0.2; 0.1; 0.1; 1.8; 0.9; 2; 4; 6.8; 1.2; 0.4; 0.2}

A summary of measures of descriptive statistics is provided in Table 5.

Table 5. Descriptive statistics of the vinyl chloride data set.

Minimum Mean Median Variance Skewness Kurtosis Maximum

0.100 1.879 1.150 3.8126 1.6037 5.0054 8.000
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Table 6 gives the relevant numerical summaries for the three fits based on the vinyl
chloride data set.

Table 6. Estimated values, log-likelihood, AIC, and BIC for the vinyl chloride data set.

Distribution Estimates − log(L) AIC BIC A* W* K-S p-V

â = 1.9409 54.2109 116.4218 122.5273 0.2002 0.0289 0.0785 0.9849

OELW b̂ = 8.7259
p̂ = 0.0023
β̂ = 2.0977

ŝ = 9.7787 55.354 118.708 124.8134 0.2881 0.0438 0.0931 0.9301

LLoGW ĉ = 5.0155
β̂ = 0.9910
α̂ = 0.5270

α̂ = 0.0158 55.3950 120.79 128.4218 0.3159 0.0517 0.0973 0.9043

EGMW
θ̂ = 33.6386
β̂ = 1.0908
µ̂ = 2.2873
λ̂ = 0.8806

Figure 6 gives the graph of the estimated pdfs and cdfs of the considered distributions.
Figure 7 gives the PP plot of the OELW distribution.
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Figure 6. Obtained plots of the (a) estimated pdfs and (b) estimated cdfs of the considered distribu-
tions for the vinyl chloride data set.

The observed Fisher information matrix for the OELW distribution is

J(Θ∗) =




357010.6 −570.5293 3586.215 267.4771
. 2.083823 −5.523455 −1.17793
. . 37.51406 432.3013
. . . 0.3955599


.
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Figure 7. PP plot of the vinyl chloride data set.

6.3. Carbon Dioxide Data Sets

The third data set contains the annual mean growth rate of carbon dioxide during the
period of 1959 to 2016 in Mauna Loa, Hawaii. The measurements are given in parts per
million by year (ppm/yr). These data are taken from the given website https://www.esrl.
noaa.gov/gmd/ccgg/trends/gr.html/, accessed on 4 July 2022. They are given below.

{0.94; 0.50; 0.96; 0.64; 0.71; 0.32; 1.06; 1.28; 0.70; 1.06; 1.35; 1.00; 0.81; 1.74; 1.18; 0.95;
1.06; 0.83; 2.15; 1.31; 1.82; 1.68; 1.43; 0.86; 2.36; 1.51; 1.21; 1.47; 2.06; 2.24; 1.24; 1.20; 1.05; 0.49;
1.36; 1.95; 2.01; 1.24; 1.91; 2.97; 0.92; 1.62; 1.62; 2.51; 2.27; 1.59; 2.57; 1.69; 2.31; 1.54; 2.00; 2.30;
1.92; 2.65; 1.99; 2.17; 2.95; 3.03}

A summary of measures of descriptive statistics is provided in Table 7.

Table 7. Descriptive statistics of the carbon dioxide data set.

Minimum Mean Median Variance Skewness Kurtosis Maximum

0.320 1.556 1.490 0.4457 0.3413 2.3618 3.030

Table 8 gives the relevant numerical summaries for the three fits based on the carbon
dioxide data set.

Figure 8 gives the graph of the estimated pdfs and cdfs of the considered distributions.
Figure 9 gives the PP plot of the OELW distribution.
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Table 8. Estimated values, log-likelihood, AIC, BIC, A*, W*, K-S and p-V for the carbon dioxide
data set.

Distribution Estimates − log(L) AIC BIC A* W* K-S p-V

â = 3.7419 55.6190 119.2381 127.4798 0.1204 0.0132 0.0461 0.9997

OELW b̂ = 2.8634
p̂ = 0.0143
β̂ = 1.2442

ŝ = 5.7793 56.68579 121.3716 129.6134 0.2053 0.0339 0.0682 0.9499

LLoGW ĉ = 2.5283
β̂ = 2.5456
α̂ = 0.2272

α̂ = 0.0601 56.16804 122.3361 132.6383 0.2144 0.0271 0.0650 0.967

EGMW
θ̂ = 25.4632
β̂ = 6.3678
µ̂ = 0.0151
λ̂ = 6.6891
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Figure 8. Obtained plots of the (a) estimated pdfs and (b) estimated cdfs of the considered distribu-
tions for the carbon dioxide data set.

The observed Fisher information matrix for the OELW distribution is

J(Θ∗) =




18811.95 −362.08 444.2855 606.4949
. 13.93288 −6.794833 −30.04717
. . 11.62585 626.3218
. . . 25.90807


.
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Figure 9. PP plot of the carbon dioxide data set.

In Tables 4, 6 and 8, the MLEs of the parameters for the fitted distributions, along with
log-likelihood, AIC, BIC, A*, (W*) and K-S with p-V values are presented for three different
data sets, respectively. From these tables, it is quite obvious that for the three data sets,
the OELW distribution is the best model with the lowest values of AIC, BIC, A*, W*, K-S,
and highest p-V of the K-S statistics. Hence, the OELW distribution turns out to be a better
model than the LLoGW and EGMW models. A visual comparison of the closeness of the
fitted pdfs with the observed histogram of the data, fitted cdfs with empirical cdfs, and PP
plots for different data is presented in Figures 4–9, respectively. These plots indicate that
the proposed distributions provide a closer fit to these data.

7. Conclusions

The OEL-G family of continuous distributions is a new family that we introduced
and analyzed in this research. It has the feature of combining the functionalities of the
logarithmic and odd transformations, of the EL distributions, and odd transformations,
respectively. We gave explicit formulations for the moments, generating function, skewness,
kurtosis, entropies, and order statistics, as well as a convenient linear representation for
the probability density function. The OELW distribution, which is a subset of the OEL-G
family, has been given special attention. Then there are statistical applications. The OELW
model parameters are estimated using the maximum likelihood method, and the observed
Fisher information matrix is explained. When compared to the famous LLoGW and EGMW
distributions, three examples of real-life data fitting demonstrate good results in favor of
the suggested distribution. Based on the findings, the proposed family might be regarded
as a valuable addition to the field’s existing knowledge.
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Abstract: The generalized half-logistic distribution is ideal to fit the lifetime of some products, such
as ball bearings and electrical insulation. In this paper, we aim to extend this scope by creating a
motivated bivariate version. We thus introduce the bivariate generalized half-logistic distribution
using the Farlie Gumbel Morgenstern (FGM) copula, which is called the FGM bivariate generalized
half-logistic distribution (FGMBGHLD for short). In particular, the FGMBGHLD finds application in
describing bivariate lifetime datasets that have weak correlations between variables. Some statistical
properties and functions of our new distribution, such as the product moments, moment generating
function, reliability function, and hazard rate function, are derived. We discuss the maximum
likelihood estimation method of the FGMBGHLD parameters. As an application of the FGMBGHLD
in reliability, we consider the stress–strength model when the stress and strength random variables
are dependent. We also derive the point and interval estimates of the stress–strength coefficient.
Finally, we use the data from the household income and expenditure survey of KSA 2018 for Saudi
households by administrative region to demonstrate the practicability of the proposed model. A
comparison with a modern bivariate Weibull distribution is performed.

Keywords: Farlie Gumbel Morgenstern (FGM) copula; generalized half-logistic distribution (GHLD);
reliability parameter; Monte Carlo simulation; statistical properties; household financial affordability

MSC: 62N01; 62N02; 62E10

1. Introduction

In various fields, such as life testing, reliability, and biological and engineering sci-
ences, there is a need for flexible lifetime distributions with various probability density
and hazard rate properties. To this end, Mudholkar et al. (1995) [1] introduced the ex-
ponentiated Weibull family of distributions, which includes unimodal distributions with
bathtub hazard rates as well as a broader class of monotone hazard rates. Alternative
distributions have been examined since, presenting slightly different features. Gupta and
Kundu (1999) [2] proposed a generalized exponential distribution. Olopade (2008) [3] con-
sidered two distributions, named type-I and type-III generalized half-logistic distributions.
Kantam et al. (2014) [4] proposed a type-II generalized half-logistic distribution (GHLD-II
for short). For the purpose of this paper, a brief presentation of the GHLD-II is necessary.
On the mathematical plan, the probability density function (PDF), cumulative distribution
function (CDF), and reliability function of the GHLD-II with scale parameter σ and power
parameter µ are given by

f (x) = f (x; σ, µ) =
µ (2 e−

x
σ )

µ

σ
(

1 + e−
x
σ

)µ+1 , 0 < x < ∞, σ > 0, µ > 0 (1)
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F(x) = F(x; σ, µ) = 1−
(

2 e−
x
σ

1 + e−
x
σ

)µ

(2)

and

R(x) = R(x; σ, µ) =

(
2 e−

x
σ

1 + e−
x
σ

)µ

. (3)

Thus, the GHLD-II is developed through the exponentiation of the reliability function of
the half-logistic distribution (see Balakrishnan (1985) [5]).

The flexibility of the GHLD-II is mainly in the mode and tail of the distribution, making
it an interesting distribution for the modeling of lifetime phenomena. It is proven to define
a better model than the exponential, Weibull, and half-logistic models (see Kantam et al.
(2014) [4]).

The first objective of this paper is to derive a comprehensive bivariate generalized
half-logistic distribution (BGHLD for short) using the copula approach and study its
statistical properties, such as PDF, CDF, product moments, moment generating function,
and hazard rate function. Many authors discuss the same idea but other distributions; see
Almetwally et al. (2020) [6], Almetwally and Muhammed (2020) [7], and Muhammed et al.
(2021) [8]. In view of the impact of the GHLD-II in the recent literature, we derive that
bivariate versions have a promising future in terms of modeling and data analysis. Now, in
order to detail and motivate the construction of our BGHLD, let us present some basics
of the notion of the copula. As a first approach, we can say that a copula is a multivariate
CDF for which the marginal distribution of each variable is uniform on the interval (0, 1). It
describes the dependence between random variables. The definitions below provide more
technical details.

Definition 1. Let us consider a random vector (X1, . . . , Xd) and the marginal CDFs denoted by
Fi(x) = P(Xi < x), for i = 1, . . . , d. Then, using probability integral transform (PIT) for each
component, the distribution of the random vector (U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd)) belongs
to the (uni f (0, 1))d family of distributions, and the copula related to (X1, . . . , Xd) is defined as the
joint CDF of (U1, . . . , Ud), i.e.,

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud), (4)

with (u1, . . . , ud) ∈ [0, 1]d.

Definition 2. C: [0, 1]d → [0, 1] is a d-dimensional copula if it is a CDF with

C(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0, C(1, . . . , u, 1, . . . , 1) = u, (5)

with (u1, . . . , ud) ∈ [0, 1]d and u ∈ [0, 1]. In the bivariate case, C : [0, 1]2 → [0, 1] is a
bivariate copula if C(0, u) = C(u, 0) = 0, C(1, u) = C(u, 1) = u and C(u2, v2)− C(u2, v1)−
C(u1, v2) + C(u1, v1) ≥ 0 for all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1.

The Sklar theorem, established by Sklar (1959) [9], is pivotal in copula theory. It states
that, for two random variables X1 and X2 with marginal CDFs F1(x1) and F2(x2) and
marginal PDFS f1(x1) and f2(x2), respectively, the CDF and PDF of (X1, X2) are given by

F(x1, x2) = C(F1(x1), F2(x2)) (6)

and
f (x1, x2) = f (x1) f (x2)c(F1(x1), F2(x2)), (7)

respectively, where c(u1, u2) denotes the copula density related to C(u1, u2), i.e., c(u1, u2) =
∂2C(u1, u2)/(∂u1∂u2).
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Gumbel (1960) [10] discussed one of the most popular parametric families of copulas,
called the Farlie Gumbel Morgenstern (FGM) copula. The FGM copula and its density are
specified by

C(u1, u2) = u1 u2(1 + θ(1− u1)(1− u2)), −1 ≤ θ ≤ 1, (8)

and
c(u1, u2) = 1 + θ(1− 2u1)(1− 2u2), (9)

respectively. The parameter θ can be thought of as a dependence parameter that is depen-
dent on the underlying random variables, with the independent case being θ = 0. The FGM
copula is thus simple, flexible, and can be adapted when dealing with the construction of
bivariate distributions with complicated marginal distributions in terms of functions. It is
used in our study to create our BGHLD, which we naturally call the FGMBGHLD.

The second objective is to develop the maximum likelihood (ML) estimation method
of the FGMBGHLD parameters. Finally, the third goal is to derive the corresponding
stress–strength model, but when and how this makes sense: in the dependent case, which
can occur in engineering, operations research, quality control, education, economics, and
insurance. Domma and Giordano (2013) [11] provided an example. In this paper, we are
interested in economics, where X and Y are household income and consumption, and
R = P(Y < X) is a measure of household financial affordability.

This paper is organized as follows. In Section 2, the FGMBGHLD is described. In
Section 3, we derive some statistical properties of the FGMBGHLD. In Section 4, we exploit
the copula approach to take into account the dependence of stress and strength variables in
evaluating R. In Section 5, the ML estimation method for the FGMBGHLD parameters is
discussed. In Section 6, point and interval estimations for R are elaborated. In Section 7, a
Monte Carlo simulation study is performed to study the behavior of different estimates. In
Section 8, the estimation of R is applied to KSA data (year 2018) to measure the household
financial affordability for Saudi households by administrative region, with comparison to a
modern bivariate Weibull distribution. The conclusion of this paper appears in Section 9.

2. FGM Bivariate Generalized Half-Logistic Distribution (FGMBGHLD)

Applying the Sklar theorem as stated in Equations (6) and (7) with Equations (1) and (2),
and the FGM copula in Equations (8) and (9), we obtain the CDF and PDF of a random
vector (Y1, Y2) following the FGMBGHLD. They are given by

F(y1, y2) =


1−


 2 e−

y1
σ1

1 + e−
y1
σ1




µ1



1−


 2 e−

y2
σ2

1 + e−
y2
σ2




µ2



1 + θ


 2 e−

y1
σ1

1 + e−
y1
σ1




µ1

 2 e−

y2
σ2

1 + e−
y2
σ2




µ2

 (10)

and

f (y1, y2) =
µ1 (2 e−

y1
σ1 )

µ1

σ1

(
1 + e−

y1
σ1

)µ1+1
µ2 (2 e−

y2
σ2 )

µ2

σ2

(
1 + e−

y2
σ2

)µ2+1


1 + θ


2


 2 e−

y1
σ1

1 + e−
y1
σ1




µ1

− 1




2


 2 e−

y2
σ2

1 + e−
y2
σ2




µ2

− 1




, (11)

respectively, with the restrictions of the variables and parameters already mentioned.
In order to illustrate the effect of the dependence parameter θ on the shape of these

functions, Figure 1 shows the three-dimensional plots of the PDF and CDF with different
values of θ (positive and negative).
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Figure 1. Three-dimensional plots for the PDF and CDF of the FGMBGHLD with different values of
θ (for µ1 = µ2 = 0.5, σ1 = 0.2 and σ2 = 0.1).

From Figure 1, we see that the variable variations of θ play a significant role; the PDF
can take different forms in the space, with various skewness and kurtosis.

3. Statistical Properties of the FGMBGHLD

Here, we discuss some statistical properties of the FGMBHLD as defined by
Equations (10) and (11). The marginal distributions, product moments, moment gen-
erating function, conditional distribution, generating random variables, and reliability
function are derived.

3.1. Marginal PDFs

From a random vector (Y1, Y2) following the FGMBHLD, for i = 1, 2, the distribution
of Yi has the following PDF:

fi(yi) =
∫ ∞

0
f (yi, yj)dyj, i 6= j, j = 1, 2. (12)

Thus, more concretely, Y1 has the following PDF:

f1(y1) =

µ1

(
2 e−

y1
σ1

)µ1

σ1

(
1 + e−

y1
σ1

)µ1+1 , y1 > 0, µ1, σ1 > 0 (13)

and Y2 has the following PDF:

f2(y2) =

µ2

(
2 e−

y2
σ2

)µ2

σ2

(
1 + e−

y2
σ2

)µ2+1 , y2 > 0, µ2, σ2 > 0. (14)
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On the other hand, for i 6= j with i, j = 1, 2, the general formula for the conditional
PDF of Yi given Yj = yj is

f
(
yi
∣∣yj
)
= fi(yi)

[
1 + θ(1− 2 Fi(yi))

(
1− 2 Fj

(
yj
))]

, −1 ≤ θ ≤ 1, (15)

where Fi(yi) and Fj
(
yj
)

denote the CDFs of Yi and Yj, respectively.
Similarly, the conditional CDF of Yi given Yj = yj is

F
(
yi
∣∣yj
)
= Fi(yi)

[
1 + θ(1− Fi(yi))− 2 Fj

(
yj
)
+ 2 Fi(yi)Fj

(
yj
)]

. (16)

We omit their analytical expressions for the FGMBHLD for the sake of brevity.

3.2. Moment Generating Function

The moment generating function of (Y1, Y2) following the FGMBHLD is obtained as

M(Y1,Y2)(t1, t2) = E
(

et1Y1 et2 Y2
)
=
∫ ∞

0

∫ ∞

0
et1y1 et2 y2 f (y1, y2)dy1dy2

=
µ1 µ2 2µ1+µ2

(1 + t1 σ1)(1 + t2 σ2)

[
21+µ1 θ W1

(
21+µ2 W2 −W3

)
−
(

W4

(
21+µ2W2 − (1 + θ)W3

))]
, (17)

where
W1 =2 F1(−1− 2µ1,−1− t1σ1;−t1σ1;−1), (18)

W2 =2 F1(−1− 2µ2,−1− t2σ2;−t2σ2;−1), (19)

W3 =2 F1(−1− µ2,−1− t2σ2;−t2σ2;−1) (20)

and
W4 =2 F1(−1− µ1,−1− t1σ1;−t1σ1;−1), (21)

where 2F1(a, b; c; z) refers to the (generalized) hypergeometric function.
The parameters t1 and t2 must be selected such that the above quantities exist in

the mathematical sense, which is the case for t1 ≤ 0 and t2 ≤ 0 among other more
technical cases.

3.3. Product Moments

To obtain the product moments about the origin of (Y1, Y2) following the FGMBHLD,
for any positive real numbers r1 and r2, we calculate

`
µr1r2 = E

(
Yr1

1 Yr2
2
)
=
∫ ∞

0

∫ ∞

0
yr1

1 yr2
2 f (y1, y2)dy1dy2 =

µ1 µ2 2µ1+µ2

σ1 σ2
(A + B + C + D), (22)

where

A = (1 + θ)

[
∞

∑
s1=0

(
1 + µ1

s1

)(−1 + s1

σ1

)−1−r1

Γ(1 + r1)

][
∞

∑
s2=0

(
1 + µ2

s2

)(−1 + s2

σ2

)−1−r2

Γ(1 + r2)

]
, (23)

B = θ22+(µ1+µ2)

[
∞

∑
s3=0

(
1 + 2µ1

s3

)(−1 + s3

σ1

)−1−r1

Γ(1 + r1)

][
∞

∑
s4=0

(
1 + 2µ2

s4

)(−1 + s4

σ2

)−1−r2

Γ(1 + r2)

]
, (24)

C = −θ2(µ1+1)

[
∞

∑
s3=0

(
1 + 2µ1

s3

)(−1 + s3

σ1

)−1−r1

Γ(1 + r1)

][
∞

∑
s2=0

(
1 + µ2

s2

) (−1 + s2

σ2

)−1−r2

Γ(1 + r2)

]
(25)

and
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D = −θ2(µ2+1)

[
∞

∑
s1=0

(
1 + µ1

s1

)(−1 + s1

σ1

)−1−r1

Γ(1 + r1)

][
∞

∑
s4=0

(
1 + 2µ2

s4

)(−1 + s4

σ2

)−1−r2

Γ(1 + r2)

]
. (26)

It is understood that Γ(x) refers to the standard gamma function, with Γ(m + 1) = m! for
any integer m. From the product moments, various measures of moment skewness and
kurtosis can be presented. On this topic, see, for instance, Almetwally et al. (2020) [6],
Almetwally and Muhammed (2020) [7], and Muhammed et al. (2021) [8].

3.4. Reliability and Hazard Rate Functions

The reliability function of a bivariate distribution with an associated copula is defined
by the copula composed with its marginal reliability functions. See Osmetti and Chiodini
(2011) [12]. Hence, based on (Y1, Y2) following the FGMBHLD, it is expressed as

R(y1, y2) = C(R1(y1), R2(y2)), (27)

where R1(y1) and R2(y2) denote the reliability functions of Y1 and Y2, respectively. Accord-
ing to the FGM copula, we obtain

R(y1, y2) = R1(y1)R2(y2)[1 + θ(1− R1(y1))(1− R2(y2))], −1 ≤ θ ≤ 1. (28)

For the FGMBHLD, the reliability function is

R(y1, y2) =


 2 e−

y1
σ1

1 + e−
y1
σ1




µ1

 2 e−

y2
σ2

1 + e−
y2
σ2




µ2

1 + θ


1−


 2 e−

y1
σ1

1 + e−
y1
σ1




µ1



1−


 2 e−

y2
σ2

1 + e−
y2
σ2




µ2



. (29)

Moreover, Basu (1971) [13] defined the bivariate hazard rate function as

h(y1, y2) =
f (y1, y2)

R(y1, y2)
. (30)

For the FGMBHLD, the hazard rate function is indicated as

h(y1, y2) =
µ1 µ2

σ1 σ2

(
1 + e−

y1
σ1

) (
1 + e−

y2
σ2

)
1 + θ

(
2

(
2 e
− y1

σ1

1+e
− y1

σ1

)µ1

− 1

)(
2
(

2 e
− y2

σ2

1+e
− y2

σ2

)µ2

− 1

)

1 + θ

(
1−

(
2 e
− y1

σ1

1+e
− y1

σ1

)µ1
)(

1−
(

2 e
− y2

σ2

1+e
− y2

σ2

)µ2
) . (31)

4. Reliability for Dependence Stress–Strength Model

Domma and Giordano (2013) [11] introduced the concept of dependence via the stress–
strength model. They calculated the reliability measure under the hypothesis that the
bivariate distribution of the stress and strength variables, modeled by the random variables
X and Y, is defined by joining their respective marginal CDFs F(x) and G(y) for any copula.
In this setting, the measure R for dependent X and Y can be defined as

R = P(Y < X) =
∫ ∞

0

∫ x

0
c(F(x), G(y)) f (x)g(y)dy dx, (32)

where f (x) and g(y) denote the PDFs of X and Y, respectively, and c(u1, u2) the copula density.
Using the FGM copula, we have the following relationship: R = R1 + θ D, where

R1 =
∫ ∞

0

∫ x

0
f (x)g(y)dy dx =

∫ ∞

0
G(x) f (x)dx = E[G(X)] (33)

and
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D =
∫ ∞

0

∫ x

0
(1− 2F(x))(1− 2 G(y))dF(x)dG(y) = E[G(X)(1− G(X))(1− 2F(X))]. (34)

Now, we calculate R when X and Y have possibly non-identical GHLD with the CDFs

F(x) = 1−
(

2 e−
x
σ

1+e−
x
σ

)µ1
and G(y) = 1−

(
2 e−

y
σ

1+e−
y
σ

)µ2

, respectively. Hence, σ is common to

the two marginal distributions. In this case, after some integral developments, we obtain

R =
µ2

µ1 + µ2
+ θ µ1

(
1

2 µ1 + µ2
− 2

µ1 + µ2
+

1
µ1 + 2 µ2

)
. (35)

5. Estimation Method for the Distribution Parameters

In this section, we present the ML method for estimating the FGMBHLD parameters.
Let (x1, y1) . . . (xn, yn) be a random sample from a random vector (X, Y) following the

FGMBHLD with the parameters µ1, µ2, σ1, σ2, and θ. Hence, in particular, X follows the
GBHLD(µ1, σ1) and Y follows the GBHLD(µ2, σ2). Elaal and Jarwan (2017) [14] introduced
the ML estimation method for bivariate distributions based on copula. The basis consists of
constructing the log-likelihood function as

Ln L =
n

∑
i=1

ln[ f (xi) g(yi)c(F(xi), G(yi))], (36)

where F(x) and G(y) are the CDFs of X and Y, and f (x) and g(y) are their respective
PDFs, and c(u1, u2) refers to the copula density. The ML estimates (MLEs) of the involved
parameters are obtained by maximizing this function with respect to these parameters.

Under the setting of the FGMBHLD, we have

Ln L = n Ln (µ1) + n Ln (µ2) + n (µ1 + µ2) ln(2)− µ1

σ1

n

∑
i=1

xi −
µ2

σ2

n

∑
i=1

yi − n ln(σ1)

− n ln(σ2)− (µ1 + 1)
n

∑
i=1

ln
(

1 + e−
xi
σ1

)
− (µ2 + 1)

n

∑
i=1

ln
(

1 + e−
yi
σ2

)

+
n

∑
i=1

ln(1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2)), (37)

where φ(xi, µ1, σ1) = 1− 2F(xi) and η(yi, µ2, σ2) = 1− 2G(yi).
The MLEs of the parameters µ1, µ2, σ1, σ2 and θ, say µ̂1, µ̂2, σ̂1, σ̂2, and θ̂, are those

maximizing this function. They can be obtained by differentiation. To be more precise, by
differentiating the log-likelihood with respect to the distribution parameters, we obtain

∂Ln L
∂µ1

=
n
µ1

+ n ln(2)− 1
σ1

n

∑
i=1

xi −
n

∑
i=1

ln
(

1 + e−
xi
σ1

)
+

n

∑
i=1

θ η(yi, µ2, σ2) φµ1(xi, µ1, σ1)

(1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2))
, (38)

∂Ln L
∂µ2

=
n
µ2

+ n ln(2)− 1
σ2

n

∑
i=1

yi −
n

∑
i=1

ln
(

1 + e−
yi
σ2

)
+

n

∑
i=1

θ φ(xi, µ1, σ1)ηµ2(yi, µ2, σ2)

(1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2))
, (39)

∂Ln L
∂σ1

=
µ1

σ2
1

n

∑
i=1

xi −
n
σ1

+
(µ1 + 1)

σ2
1

n

∑
i=1

xi e−
xi
σ1

1 + e−
xi
σ1

+
n

∑
i=1

θ η(yi, µ2, σ2) φσ1(xi, µ1, σ1)

(1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2))
, (40)

∂Ln L
∂σ2

=
µ2

σ2
2

n

∑
i=1

yi −
n
σ2

+
(µ2 + 1)

σ2
2

n

∑
i=1

yi e−
yi
σ2

1 + e−
yi
σ2

+
n

∑
i=1

θ φ(xi, µ1, σ1)ησ2(yi, µ2, σ2)

(1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2))
(41)

and
∂Ln L

∂θ
=

n

∑
i=1

φ(xi, µ1, σ1)η(yi, µ2, σ2)

1 + θφ(xi, µ1, σ1) η(yi, µ2, σ2)
, (42)
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where

φµ1(xi, µ1, σ1) = 2µ1+1

(
1

1 + e
xi
σ1

)µ1 (
− xi

σ1
+ ln(2)− ln

(
1 + e−

xi
σ1

))
, (43)

ηµ2(yi, µ2, σ2) = 2µ2+1

(
1

1 + e
yi
σ2

)µ2 (
− yi

σ2
+ ln(2)− ln

(
1 + e−

yi
σ2

))
, (44)

φσ1(xi, µ1, σ1) =

µ1 xi2µ1+1
(

e−
xi
σ1

)µ1−1 (
1 + e−

xi
σ1

)−µ1

σ2
1

(
1 + e

xi
σ1

) (45)

and

ησ2(yi, µ2, σ2) =

µ2 yi2µ2+1
(

e−
yi
σ2

)µ2−1 (
1 + e−

yi
σ2

)−µ2

σ2
2

(
1 + e

yi
σ1

) . (46)

By setting the above first partial derivatives of Ln L to zero, we obtain µ̂1, µ̂2, σ̂1, σ̂2
and θ̂. Since we cannot obtain a closed form for these estimates, a numerical method must
be used.

6. Estimation of the Stress–Strength Distribution Parameter

In this section, we introduce the MLE for R = P(Y < X). Moreover, we derive a
motivated asymptotic confidence interval and a bootstrap confidence interval for it.

6.1. Maximum Likelihood Estimate of R

From observed data (x1, y1) . . . (xn, yn), which are taken from a random vector (X, Y)
following the FGMBHLD with the parameters µ1, µ2, σ1, σ2, and θ, with σ = σ1 = σ2,
we consider the MLEs µ̂1, µ̂2, σ̂ and θ̂ of these parameters, respectively. Then, based on
Equation (35) and the invariance property, the MLE of R is obtained by substitution as

RMLE =
µ̂2

µ̂1 + µ̂2
+ θ̂ µ̂1

(
1

2 µ̂1 + µ̂2
− 2

µ̂1 + µ̂2
+

1
µ̂1 + 2 µ̂2

)
. (47)

6.2. Asymptotic Confidence Interval (ACI)

We now aim to compute the ACI for R with a large sample. Let Θ = (µ1, µ2, σ, θ), and
Θi be the i-th component of this vector. First, we construct the Fisher information matrix
as follows:

I(Θ) = I(µ1, µ2, σ, θ) =




I11 · · · I14
...

. . .
...

I41 · · · I44


, (48)

where Iij = −E[ ∂2Ln L(X,Y)
∂Θi∂Θj

], i, j = 1, . . . , 4, Θi refereing to the ith component of Θ.
Second, we construct the variance–covariance matrix by replacing the distribution

parameters by their MLEs, and we obtain

V̂ =




V̂11 · · · V̂14
...

. . .
...

V̂41 · · · V̂44


, (49)

where V̂ij = − ∂2Ln L
∂Θi∂Θj

∣∣∣
Θ=Θ̂

, i, j = 1, . . . , 4.

To obtain the ACI of R, the following two theorems are useful.
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Theorem 1. As n→ ∞, we have

(
√

n(µ̂1 − µ1),
√

n(µ̂2 − µ2),
√

n(σ̂− σ),
√

n
(

θ̂ − θ
)
)→ N4(0, A−1), (50)

where A = V̂
n .

Proof. The theorem can be demonstrated using the asymptotic properties of MLEs of the distri-
bution parameters under regularity conditions and the multivariate central limit theorem.

Theorem 2. As n→ ∞, we have
√

n
(

R̂− R
)
→ N(0, B), where B = bT A−1b,

b =

(
∂R
∂µ1

,
∂R
∂µ2

,
∂R
∂σ

,
∂R
∂θ

)
. (51)

Proof. The proof is based on Theorem 1 and the application of the delta method.

According to Xu and Long (2007) [15], a 100(1− α)% ACI of R is

R̂− Zα/2

√
B̂
n

, R̂ + Zα/2

√
B̂
n


, (52)

where Zα/2 denotes the value providing an area of α
2 in the upper tail of the standard

normal distribution, and B̂ = b̂T A−1b̂, where b̂ is defined as Equation (51) with substitution
of the unknown parameters by the corresponding MLEs.

7. Simulation

In this section, a Monte Carlo simulation study is introduced to describe the point and
interval estimation of R.

7.1. Random Variate Generation

Nelsen (2006) [16] discussed the generation of a sample from a specified joint distribu-
tion using the conditional distribution method. In the setting of the FGMBHLD, it consists
of the following steps:

(i) Generate u and v independently from a uniform (0, 1) distribution.
(ii) Put y1 = σ1 ln(1− 2 (1− u)µ1) .
(iii) Put F(y2|y1 ) = v to find y2 using numerical simulation.
(iv) Repeat (i) to (iii) n-times to obtain (y1j, y2j), j = 1, . . . , n.

The obtained n pair of values are thus generated values from (Y1, Y2) following the
FGMBHLD.

7.2. Bootstrap Confidence Interval (BCI)

Efron (1982) [17] proposed the bootstrap percentile method (Boot-P) as follows:

(i) Select the simple random sample (xi, yi), i = 1, . . . , n.
(ii) Re-sample the simple random sample (xi, yi) with replacement.
(iii) Obtain the new simple random sample (x∗i , y∗i ).
(iv) Compute R∗.
(v) Repeat step (i)–(iv) B-times and compute R∗1 , . . . , R∗n.
(vi) Arrange R∗1 , . . . , R∗n, from the smallest to the largest R∗(1), . . . , R∗(n).

(vii) Construct a 100(1− α)% ACI of R as

(
R∗α

2 ,B, R∗
(1− α

2 ),B

)
. (53)
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7.3. Experiment

1. Assume some true values of the parameters µ1, µ2, σ, θ and compute the correspond-
ing true values of R.
Case 1: If µ1 = 0.5, µ2 = 1.5, σ = 1, θ = −0.75, then R = 0.8678.
Case 2: If µ1 = 0.5, µ2 = 1.5, σ = 1, θ = −0.25, then R = 0.7892.
Case 3: If µ1 = 0.5, µ2 = 1.5, σ = 1, θ = 0.25, then R = 0.7107.
Case 4: If µ1 = 0.5, µ2 = 1.5, σ = 1, θ = 0.75, then R = 0.6321.

2. Use the algorithm in Section 7.2 to generate different sample sizes with n = 30, 50, 70
and 100, with 10,000 replications. All computations are obtained using Mathematica
11.1.

3. Calculate RMLE according to the methodology in Section 6.1 and the “average RMLE”,
say R∗MLE, based on all the samples at a fixed size.

4. Evaluate the ACI and BCI according to the methodology in Sections 6.2 and 7.2.
5. Study the behavior of RMLE by evaluating the bias defined by the “average of (RMLE − R)”

and the mean square error (MSE) indicated as the “average of (RMLE − R)2”.
6. In the context of interval estimation, we compare the ACI and BCI using the asymp-

totic confidence length (ACL) and converge probability (CP).

The results of the simulation study are presented in Table 1.

Table 1. Results of the Monte Carlo simulation study.

Sample Size Rtrue R∗MLE MLE ACI BCI

Bias MSE ACL CP ACL CP

µ1 = 0.5, µ2 = 1.5, σ = 1, θ = −0.75

n = 30 0.8678 0.3960 −0.0228 0.0157 0.205 0.935 0.598 0.780

n = 50 0.6463 −0.0064 0.0020 0.474 0.831 0.838 0.690

n = 70 0.7841 −0.0084 0.0049 0.397 0.846 0.858 0.684

n = 100 0.3392 −0.0037 0.0014 0.223 0.980 0.503 0.819

µ1 = 0.5, µ2 = 1.5, σ = 1, θ = −0.25

n = 30 0.7892 0.1027 −0.0157 0.0074 0.792 0.856 0.511 0.818

n = 50 0.4670 −0.0044 0.0009 0.418 0.864 0.463 0.842

n = 70 0.1989 −0.0011 0.0001 0.251 0.926 0.524 0.810

n = 100 0.4110 −0.0052 0.0027 0.226 0.932 0.282 0.903

µ1 = 0.5, µ2 = 1.5, σ = 1, θ = 0.25

n = 30 0.7107 0.0858 −0.0208 0.0130 0.171 0.940 0.730 0.731

n = 50 0.3216 −0.0077 0.0030 0.367 0.861 0.806 0.693

n = 70 0.7090 −0.0001 0.0001 0.537 0.980 0.095 0.970

n = 100 0.6757 −0.0003 0.0001 0.099 0.967 0.126 0.960

µ1 = 0.5, µ2 = 1.5, σ = 1, θ = 0.75

n = 30 0.6321 0.6630 0.0010 0.0000 0.272 0.912 0.189 0.941

n = 50 0.5554 −0.0015 0.0001 0.308 0.894 0.194 0.922

n = 70 0.2641 −0.0052 0.0019 0.291 0.887 0.136 0.946

n = 100 0.6775 0.0004 0.0000 0.108 0.965 0.0931 0.970

From Table 1, we can conclude that:

1. At n = 100, the value of the MSE becomes very small.
2. In general, the length of the ACI becomes smaller than the length of the BCI.
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3. When the ACL decreases, the CP increases.
4. The CP in almost all cases of the ACI is more than the CP in the BCI.

Hence, from the above results, the behavior of the MLEs is good for large samples.
Moreover, the ACI is more suitable than the BCI for the stress–strength model.

8. Application: Household Financial Affordability in KSA 2018

In this section, we introduce a real application of the stress–strength model in an
economic data setting, where X and Y represent household income and consumption,
respectively. Here, R = P(Y < X) is a household’s financial affordability. We use the data
from the household income and expenditure survey of KSA 2018. The survey period was
from 28 February 2017 to 31 March 2018 in each month. In this study, we are interested
in studying the behavior of R when X represents the average household monthly income
by administrative region for Saudi households and Y represents the average household
monthly consumption expenditure by administrative region for Saudi households, in order
to measure the financial affordability for Saudi households by administrative region in
2018. The data are shown in Table 2. Table 3 presents the descriptive statistics for the data.

Table 2. Average household monthly income (X) and consumption expenditure (Y) by administrative
region for Saudi households in 2018.

Administrative Region Income Consumption

Riyadh 16,011 15,917
Makkah 14,648 14,256
Madinah 12,016 118,322

Al-Qassim 15,322 14,371
Eastern Region 17,872 17,665

Asir 11,817 11,666
Tabuk 11,024 10,890
Hail 11,571 11,461

North Board 12,051 11,876
Jazan 15,199 15,071

Najran 11,388 11,376
Al-Baha 13,728 13,605
Aljouf 14,193 14,101
Total 14,823 14,584

Table 3. Descriptive statistics for the income and consumption.

Measure Income Consumption

Min 11,024 10,890
Max 17,872 17,665

Median 13,728 13,605
SE 592.605 574.401

Skewness 0.529 0.637
Kurtosis −0.686 −0.378

Mean 13,603.076 13,391.307

To achieve our aim, we demonstrate the practicability of our proposed model. The
Anderson–Darling (AD) goodness of fit statistic value is used to confirm that the GHLD
is suitable for the income and consumption data; the corresponding p-values are almost
equal to 1. Moreover, the quantile–quantile (Q–Q) plot is used to confirm this statement, as
shown in Figure 2.
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Figure 2. Q–Q plot for the income and consumption.

Now, we evaluate R = P(Y < X) in the following two cases:

Case 1: If X and Y are independent with X following the GHLD(µ1, σ) and Y following
the GHLD(µ2, σ), and the dependent parameter θ is set as 0;
Case 2: If X and Y are dependent with (X,Y) following the FGMBGHLD.

We calculate, in both cases, the MLEs of the distribution parameters and R, as well as
the ACI and ACL. The results are shown in Table 4.

Table 4. The MLEs, ACIs, and ACLs of the distribution parameters for the income and consumption.

Case MLE MLE for R ACI ACL

Case 1
µ̂1 = 0.0143
µ̂2 = 0.0270
σ̂ = 0.3529

0.3462 (0.2979, 0.3945) 0.0965

Case 2

µ̂1 = 0.0135
µ̂2 = 0.0201
σ̂ = 0.1403
θ̂ = 0.4713

0.2149 (0.1248, 0.3050) 0.1802

From Table 4, we can conclude that:

1. Since θ is estimated as 0.4713, and is therefore positive, then the relation between X
and Y is positive, as we see in Figure 3.

2. The measure of affordability when X and Y are dependent is less than when X and Y
are independent, so the case of dependent variables is more realistic.

Figure 3. The scatter plot for the income and consumption of KSA, year 2018.
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Finally, Figure 4 shows the (estimated) PDF and CDF of the FGMGBHLD with the
estimated parameters from the considered data.

Figure 4. The estimated PDF and CDF of the FGMBGHLD for the income and consumption of KSA,
year 2018.

It can be noted that the PDF seems unimodal (bump effect) with a long two-dimensional
tail. With the FGMBGHLD, the equation behind the calculated PDF and CDF can be em-
ployed for further modeling.

To conclude this section, in order to show the performance of our new distribution on
KSA data, we compare it with the bivariate Weibull distribution (BWD) as presented in
Almetwally et al. (2020) [6]. First, we use the goodness of fit test and Q–Q plot to show that
the BWD is a good fit to the KSA data. From the AD goodness of fit test, we find that the
p-value equals 0.082 and 0.125 for the two considered data sets, respectively. As a result,
the BWD fits the KSA data well. Figure 5 illustrates this conclusion.

Figure 5. Q–Q plot for the BWD for the income and consumption of KSA, year 2018.

Now, we repeat our application but replace our proposed distribution by the BWD.
Table 5 shows the result of the MLEs, R, ACIs, and ACLs of the distribution parameters
and stress–strength model in the following two cases:

Case 1: If X and Y are independent with X following the Weibull(α1, β) and Y follow-
ing the Weibull(α2, β);
Case 2: If X and Y are dependent with (X,Y) following the BWD.
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Table 5. The MLEs, ACIs, and ACLs of the BWD parameters for the income and consumption of
KSA, year 2018.

Case MLE MLE for R ACI ACL

Case 1
α̂1 = 6.5
α̂2 = 7.5
β̂ = 1.45

0.4642 (0.4631, 0.6461) 0.1820

Case 2

α̂1 = 6.5
α̂2 = 7.5
β̂ = 1.45
θ̂ = 0.1082

0.4275 (0.3456, 0.6058) 0.2602

From the ACL viewpoint, we can compare the performance of our distribution and
the BWD on the KSA data. Thus, from Tables 4 and 5, we observe that the ACLs for our
proposed distribution are lower than those of the BWD for both cases.

We complete this result by using the AD test for copula-based distributions as de-
scribed in Genest et al. (2013) [18]. Table 6 shows the p-values of this AD test for our
distribution and the BWD (dependent case for both).

Table 6. AD test for the proposed distribution and the BWD.

Distribution p-Value

FGMBGHLD 0.4999
BWD 0.2067

The lower p-value is obtained for the FGMBGHLD distribution. Based on the results
above, we can confirm that the proposed distribution is more suitable than the BWD for
the considered KSA data.

9. Conclusions

In this paper, we introduced the bivariate distribution using the FGM copula approach,
abbreviated as FGMBGHLD. We studied some of its statistical properties, such as the PDF,
CDF, product moments, moment generating function, reliability function, and hazard rate
function. In a multivariate statistical setting (and bivariate in particular), it is well known
that the maximum likelihood estimation method gives unique estimates (under some
regularity conditions) and guarantees their asymptotic performance from the unbiased and
normality viewpoints. For these reasons, we developed it for the FGMBGHLD. We also
applied the FGMBGHLD in a real-life data analysis scenario. We investigated the stress–
strength model represented by R when the stress and strength variables are dependent
and have the FGMBGHLD as a joint distribution. A simulated study was performed to
study the behavior of the maximum likelihood estimate of R. Confidence intervals were
constructed using two different techniques. Finally, we provided a real application of
the considered (dependent) stress–strength model when X and Y measure the household
financial affordability in KSA 2018 for Saudi households by administrative region. The
obtained results are quite good and competitive with those of a valuable competitor (the
bivariate Weibull distribution as introduced by [6]). Research perspectives include the
application of the FGMBGHLD to more different bivariate data types, its multivariate
version, and the development of regression model types.
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Abstract: This study aims to propose a flexible, fully parametric hazard-based regression model
for censored time-to-event data with crossing survival curves. We call it the accelerated hazard
(AH) model. The AH model can be written with or without a baseline distribution for lifetimes.
The former assumption results in parametric regression models, whereas the latter results in semi-
parametric regression models, which are by far the most commonly used in time-to-event analysis.
However, under certain conditions, a parametric hazard-based regression model may produce more
efficient estimates than a semi-parametric model. The parametric AH model, on the other hand,
is inappropriate when the baseline distribution is exponential because it is constant over time;
similarly, when the baseline distribution is the Weibull distribution, the AH model coincides with
the accelerated failure time (AFT) and proportional hazard (PH) models. The use of a versatile
parametric baseline distribution (generalized log-logistic distribution) for modeling the baseline
hazard rate function is investigated. For the parameters of the proposed AH model, the classical (via
maximum likelihood estimation) and Bayesian approaches using noninformative priors are discussed.
A comprehensive simulation study was conducted to assess the performance of the proposed model’s
estimators. A real-life right-censored gastric cancer dataset with crossover survival curves is used
to demonstrate the tractability and utility of the proposed fully parametric AH model. The study
concluded that the parametric AH model is effective and could be useful for assessing a variety of
survival data types with crossover survival curves.

Keywords: Bayesian inference; hazard-based regression model; survival analysis; accelerated hazard
model; generalized log-logistic distribution; crossover survival curves; censored data; maximum
likelihood estimation.

1. Introduction

In the analysis of lifetime data, hazard-based regression models have played a pivotal
role. Such models produce a much more versatile framework for modeling survival
data. They also make it conceivable to easily interpret the parameters from a practical
perspective. When using regression models to analyze lifetime data, the Cox proportional
hazard (PH) [1,2] model is the most widely assumed semi-parametric framework. The
PH model’s main assumption is that the hazard ratios are proportional over time. When
such assumptions are not validated by data, alternative survival regression models, such as
the accelerated failure time (AFT) [3,4], and proportional odds (PO) [5] models might be
applied in the analysis. However, none of them are appropriate for capturing lifetime data
with crossing survival and hazard curves [6].
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This kind of issue is frequently associated with clinical trials, including control and
treatment groups. The survival function (SF) of one group may degrade swiftly while the
SF of the other group decays slowly. The curves tend to meet at some point, resulting in
an inversion in terms of who is on the bottom/top. The study of this change is essential
in many clinical studies because determining the crossing time reveals when the target
treatment for an illness can be judged beneficial [6].

In practice, time-to-event data with crossing survival curves can occur for a variety of
reasons. Crossing survival curves, according to Breslow [7], may occur when a treatment
has an early rapid benefit and then becomes equally or worse than placebo treatment after
such a time period. Additionally, as described in Diao et al. [8], crossing survival curves
may occur in clinical studies when a particular intensive treatment (i.e., surgery) may have
negative consequences at first but show good results in the long term.

Several techniques have been presented in the literature to handle this crossover
feature in time-to-event data. The most often used are based on regression coefficients that
change over time; see, for instance, Egge and Zahl [9], Putter et al. [10], Shyur et al. [11],
and Zhang et al. [12]. Two recent works considering the modeling and analysis of time-
to-event data with crossing survival curves are [6,13]. For this type of problem, Chen
and Wang [14] developed a semi-parametric two-sample framework. The two-sample
feature refers to a scenario in which there is a control, and a treatment group, which can be
readily represented by a binary variable. The AH model is an intriguing choice because it
formulates similarly to the PH and AFT models. In their model, they leave the baseline
hazard rate function (HRF) undefined. As an alternative to the PO or AFT models, their
model relaxes the proportional hazard assumption while still allowing for the inclusion of
both time-independent and time-dependent factors.

Although they offered an exploratory visual examination of the model’s suitability,
they did not completely cover statistical model checking of the proposed model. Chen and
Jewell [15] presented the AH model and its applicability to censored survival data. They
used the AH model to analyze real data from a randomized clinical study of biodegradable
carmustine polymers for the treatment of brain cancer. This analysis illustrated the model’s
useful applications and the recommended test statistics.

The semi-parametric AH model estimators, on the other hand, include the unknown
distribution in the asymptotic variance. Thus, numerically demanding approaches are
required to make an inference about this parameter. As a result, Lee [16] suggested a
straightforward estimation method for the semi-parametric AH model in which estimators
are asymptotically normal with a distribution-free asymptotic variance. This also yields
several lack-of-fit tests. These tests are similar to Gill–Schumacher tests in that the esti-
mating functions are assessed at two separate weight functions, generating two estimators
that are close to each other. They demonstrated that the estimators and tests perform well
for some weight functions using numerical experiments. For more information about the
estimators and tests for the semi-parametric AH model, we refer to [17].

Cox [1] pioneered the use of semi-parametric hazard-based regression models for
univariate time-to-event data with the PH model. Rubio et al. [18] and Khan [19] presented
two influential papers that propose the use of extended lifetime distributions to substitute
the baseline hazard in a time-to-event analysis. The formulation of parametric hazard-based
regression models is a central issue in Lawless [20]. The authors explored the benefits of
using parametric hazard-based regression models. It is noticed that the baseline-modified
distribution should be chosen based on its flexibility to incorporate varied failure rate
shapes. A few examples include: Muse et al. [21], Muse et al. [22], Ashraful-Ul-Alam
and Khan [23], Alvares and Rubio [24], Muse et al. [25], Al-aziz et al. [26], and Khan and
Khosa [27].

Despite the numerous advantages of the semi-parametric AH framework, its imple-
mentation in applications appears to be restricted, owing to the technical difficulties in
implementing theoretical breakthroughs. Estimation for the covariance matrices is chal-
lenging when the data are censored because the asymptotic covariance matrices for the
regression estimators in this model involve the unknown baseline HRF and its derivative.
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However, censored data present a new technological barrier. Numerically demanding
approaches, such as resampling techniques, can be used to approximate the covariance ma-
trices. However, they are inefficient in actual settings due to their high computing cost [28].

The current study presents a fully parametric hazard-based regression model to fit the
AH model to address the aforementioned concerns. The fundamental idea is to represent
the baseline hazard by using a generalized log-logistic (GLL) distribution that is closed
under both the AFT [25] and PH [22] frameworks and may incorporate various hazard
rate shapes data including monotone and non-monotone shapes. Another advantage of
the baseline is that it encompasses some of the most parametric distributions used in
reliability and survival studies, such as log-logistic (LL), Burr XII with both 2-parameter
and 3-parameter cases, Weibull, and exponential distributions. The shared tractability of
parametric regression models and the adaptability of semi-parametric regression models is
another appealing aspect of the suggested parametric AH model.

Thus, the main contribution of this study is to introduce and study a novel, flexible,
parametric AH model to incorporate right-censored lifetime data with crossing survival
curves. This is done by assuming the GLL lifetime distribution to deal with the baseline
hazard in the parametric AH model. To the best of the author’s knowledge, we emphasize
that using the parametric AH model with GLL baseline distribution hazard to extend
the original AH semi-parametric model has never been considered in the literature. The
methods are studied by using the classical and Bayesian frameworks for a more comprehen-
sive presentation of models for all statistical audiences to consider. A detailed simulation
study is also being developed. This entails introducing one binary and one continuous
covariate into the baseline hazard. The reader should be aware that the majority of the
single covariate scenarios have been researched in prominent references, such as [8].

Additionally, the following are some significant benefits of the methodology
proposed here.

i. It possesses the adaptability of parametric survival regression models.
ii. It offers a continuous SF that makes it simple to find where two survival curves

overlap.
iii. It allows different shapes for the HRF and has the tractability of a parametric survival

regression model.

The following is a brief description of the sections that compose the article. Section 2
discusses the formulation of the parametric AH model and associated probabilistic func-
tions. Section 3 presents the baseline distribution under consideration, as well as alternative
competing lifetime distributions, including some of its special cases. The proposed para-
metric AH model with GLL baseline distribution HRF and its submodels are presented
in Section 4. Section 5 discusses the model inferential procedures. Section 6 performs the
simulation studies. Section 7 demonstrates a real-life, right-censored cancer dataset with
crossed survival curves. Section 8 concludes the study with some farewell remarks and
suggests future research.

2. AH Model Formulation

In order to handle lifetime data with crossing of hazard and survival curves, Chen
and Weng [14] proposed a hazard-based regression model known as the AH model that is
expressed as follows:

h(t; x) = h0
(
tψ
(

x′β
))

= h0

(
tex′β

)
, (1)

where ψ(x′β) = ex′β is the link function of the explanatory variables, x =
(

x1, x2, . . . , xp
)

is a vector of covariates, β′ =
(

β1, β2, . . . , βp
)

is a vector of coefficients of regression, and
h0(t) corresponds to the baseline hrf.

In this model, ex′β characterizes how the explanatory variables into x change the time
scale of the underlying HRF. In this case, β < 0 or β > 0 imply deceleration or acceleration
of the HRF’s time scale, respectively. For example, if one explanatory variable has a value
of 1 for a treatment group and a value of 0 for a control group, then eβ = 1

2 indicates that
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the HRF of the treatment group advances in half the time as those in the control group.
The same is true for eβ = 2, which indicates that the HRF of the treatment group advances
twice as quickly as those in the control group. There are no differences between the groups,
according to eβ = 1.

The AH model offers some appealing and intriguing characteristics. The AH model,
unlike the AFT and PH models, can handle the crossing of survival and hazard curves [29].
Furthermore, the AH framework enables both the control and treatment groups’ hazard
curves to begin at the same time point. This is especially beneficial in randomized controlled
trials, because it is more reasonable to hypothesize that the hazard or risk between groups
is comparable at t = 0 [30].

The inability of the parametric AH model to incorporate situations where the HRF
is constant over time is a limitation that is not shared by the AFT and PH models (e.g.,
exponential distribution) [28]. As a result, before implementing this model, it is crucial to
assess the non-constancy of the baseline function. The AH model, like the AFT and PH
models, has coincidences when the baseline HRF is a Weibull distribution [31].

As an alternative, the cumulative hazard function (CHF) can be used to represent the
parametric AH model as follows:

H(t; x) = H0

(
tex′β

)
e−x′β, (2)

where H0(t) denotes the baseline CHF.
The other probabilistic functions for the parametric AH model, associated with

Equation (2), can be expressed as follows.
The sf for the parametric AH model is

S(t; x) =
[
S0

(
tex′β

)]e−x′β
, (3)

where S0(t) denotes the baseline SF. The cumulative distribution function (CDF) for the
parametric AH model is

F(t; x) = 1−
[
S0

(
tex′β

)]e−x′β
. (4)

The probability density function (PDF) for the parametric AH model is

f (t; x) = f0

(
tex′β

)[
S0

(
tex′β

)]e−x′β
, (5)

where f0(t) denotes the baseline PDF.

3. Baseline Hazard

Standard parametric models using several prominent survival distributions are com-
monly used in survival data analysis. The LL distribution is one of the most commonly
utilized in oncology research, owing to the flexibility of its HRF and the ability to estimate its
parameters. We frequently have datasets in medical research that demand more advanced
parametric models. To do this, the literature has introduced new classes of parametric
distributions based on the modification of the LL distribution. Specific situations include
the GLL distribution [32], Kumaraswamy LL (KuLL) distribution [33], heavy-tailed LL
(HTLL) distribution [34], tan LL (TLL) distribution [35], a novel LL (NLL) distribution [36],
arctan LL distribution [37], and an extended LL (ELL) distribution [38], among others [39].

For fully parametric hazard-based regression models, we must assume a parametric
form for the baseline, of which there are an infinite number of options, and which one
is appropriate will generally depend on the situation. We analyze a general-purpose
candidate, the chosen GLL distribution presented by Khan and Khosa [27], in this paper.
The GLL distribution is constructed by using the AH framework, and it is then contrasted
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with various baseline hazards that can take into account different hazard rate shapes as
well as some of its special case distributions.

The HRF and the CHF of the GLL distribution are expressed as follows:

hGLL(t; θ) =
αk(kt)α−1

1 + (ηt)α
, t ≥ 0, k, α, η > 0, (6)

HGLL(t; θ) =
kα

ηα
log[1 + (ηt)α], t ≥ 0, k, α, η > 0, (7)

where θ represents the vector of the involved parameters.
The HRF in Equation (6) consists of different submodels of the GLL distribution [32].

These distributions are listed as follows:
Log-logistic (LL): when k = η, Equation (6) reduces to the hrf of the LL distribution,

which is

hLL(t; θ) =
αk(kt)α−1

1 + (kt)α
, t ≥ 0, k, α > 0. (8)

Burr-XII (BXII): when η = 1, equation (6) reduces to the hrf of the BXII-2 distribution,
which is

hBXII(t; θ) =
αk(kt)α−1

1 + tα
, t ≥ 0, k, α > 0. (9)

Weibull (W): when η → 0, Equation (6) reduces to the hrf of the W distribution,
which is

hW(t; θ) = αk(kt)α−1, t ≥ 0, k, α > 0. (10)

In this work, we compare the proposed baseline hazard to its submodels as well as
three additional baseline hazard candidates that can be incorporated for both monotone
and nonmonotone hazard rate shapes: the power generalized Weibull (PGW) model [40],
exponentiated Weibull (EW) model [41], and the generalized gamma (GG) model [42]. The
corresponding distributions have comparable levels of adaptability and tractability. The
following are the HRF functions for the PGW, EW, and GG distributions, respectively:

hPGW(t; θ) =
α

ηkα
tα−1

[
1 +

(
t
k

)α]
(

1
η−1

)

, t ≥ 0, k, α, η > 0, (11)

hGG(t; θ) =

η

Γ
(

α
η

)
kα

tα−1e−(
t
k )

η

1− γ
(

α
η ,( t

k )
η
)

Γ
(

α
η

)
, t ≥ 0, k, α, η > 0, (12)

where γ(t, x) and Γ(x) denote the incomplete and complete gamma functions,
respectively, and

hEW(t; θ) =
αkη(kt)α−1

[
1− e−(kt)α

]η−1
ee−(kt)α

1−
[
1− e−(kt)α]η , t ≥ 0, k, α, η > 0. (13)

We also used the gamma (G) and log-normal (LN) distributions, two additional
popular classical distributions used in survival and reliability research.

4. The Proposed Model

There are several approaches to expressing parametric hazard-based regression models.
The AH model formulation is one such strategy. The GLL hazard-based regression model
can be written in the context of the AH framework by substituting the exponential function
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for the link function in Equation (1). We recall that the HRF under the AH framework is
computed as follows:

h(t) = h0

(
tex′β

)
.

We begin with the GLL baseline distribution HRF with parameters α, η, and k (with
the AH model notations). The HRF with an explanatory variable vector x is as follows:

h(t; θ, β, x) = h0

(
tex′β; θ

)
=

αk(kt∗)α−1

1 + (ηt∗)α , (14)

which is the GLL HRF with t∗ = tex′β once more. In addition, the other survival
probabilistic functions for the GLL–AH framework are expressed as follows.

The SF for the GLL–AH model is

S(t; θ, β, x) =
[
S0

(
tex′β; θ

)]e−x′β
=
[
1 +

(
ηtex′β

)α] kαe−x′β
ηα

. (15)

The CDF for the GLL–AH model is

F(t; θ, β, x) = 1−
[
S0

(
tex′β; θ

)]e−x′β
= 1−

[
1 +

(
ηtex′β

)α] kαe−x′β
ηα

. (16)

The CHF for the GLL–AH model is

H(t; θ, β, x) = H0

(
tex′β; θ

)
e−x′β =

(
kα

ηα
log
[
1 +

(
ηtex′β

)α])
e−x′β. (17)

The PDF for the GLL–AH model is

f (t; θ, β, x) = f0

(
tex′β; θ

)[
S0

(
tex′β; θ

)]e−x′β
=

αk
(

ktex′β
)α−1

[
1 +

(
ηtex′β

)α
] kα

ηα +1

[
1 +

(
ηtex′β

)α] kαe−x′β
ηα

. (18)

4.1. Submodels

The proposed parametric hazard-based GLL–AH model framework has three sub-
models that are also closed under the AH framework.

4.1.1. Submodel I: η = 1

If we put η = 1 in Equation (14), we get the HRF of the BXII–AH model, which is
expressed mathematically as

h(t; x) =
αk
(

ktex′β
)α−1

1 +
(
tex′β

)α . (19)

4.1.2. Submodel II: η = k

If we put η = k in Equation (14), we are referred to the HRF of the LL–AH model,
which is stated mathematically as

h(t; x) =
αk
(

ktex′β
)α−1

1 +
(
ktex′β

)α . (20)
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4.1.3. Submodel III: ηα → 0.

If we put ηα → 0 in Equation (14), we are referred to the HRF of the W–AH model,
which is stated mathematically as

h(t; x) = αk
(

ktex′β
)α−1

. (21)

5. Inferential Procedures

In this section, the parameters of the proposed parametric AH model with GLL
baseline distribution HRF are estimated by using a classical approach (via the maximum
likelihood estimation (MLE) method) and Bayesian inference using noninformative priors.

5.1. Classical Approach

We are concerned in this subsection with a full likelihood function for the proposed
parametric AH model. The likelihood function is an important component not only in
the Bayesian approach but also in classical inference, in which the standard approach
for estimating parameters involves maximizing it. Consider both noninformative and
independent (right) censorship.

Suppose there are n individuals with survival times denoted by T1, T2, . . . , Tn. Assum-
ing that the data are subject to right censoring, we observe ti = min(Ti, RCi), where RCi > 0
being the censoring time for individual i. Letting δi = I(Ti ≤ RCi) that equals 1 if Ti ≤ RCi
and 0 otherwise, the observed data for individual i consists of {ti, δi, xi}, i = 1, 2, . . . , n,
where ti is a survival time or censoring time according to whether δi = 1 or 0 , respectively,
and xi =

(
xi1, xi2, . . . , xip

)′ is a p× 1 column vector of external covariates.
When considering a parametric AH model, the censored likelihood function can be

written as follows:

L(θ, β; D) =
n

∏
i=1

[ f (ti; θ, β, xi)]
δi [S(ti; θ, β, xi)]

1−δi

=
n

∏
i=1

[
h(ti; θ, β, xi)

S(ti; θ, β, xi)

]δi

[S(ti; θ, β, xi)]
1−δi

=
n

∏
i=1

[h(ti; θ, β, xi)]
δi S(ti; θ, β, xi)

=
n

∏
i=1

[h(ti; θ, β, xi)]
δi exp[−H(ti; θ, β, xi)]

=
n

∏
i=1

[
h0

(
tiex′i β; θ

)]δi
exp

[
−H0

(
tiex′i β; θ

)
e−x′i β

]
,

(22)

where D = (ti, δi, xi, i = 1, 2, . . . , n) represents the observed data, which includes survival
times, censoring time, and covariates. In our expression, we recall that θ is the vector
of baseline distributional parameters, and β is the regression coefficients. An iterative
optimization approach can be used to produce the MLE (e.g., the Newton–Raphson algo-
rithm). Because the MLEs are approaching normalcy, various hypothesis tests and interval
constructions of model parameters are conceivable.

The log-likelihood function is expressed as follows:

`(θ, β; D) =
n

∑
i=1

δi log
[

h0

(
tex′i β; θ

)]
−

n

∑
i=1

H0

(
tiex′i β; θ

)
e−x′i β. (23)
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The GLL–AH model’s full log-likelihood function is expressed as follows:

`(θ, β; D) =
n

∑
i=1

δi log(α) +
n

∑
i=1

δiα log(k) + (α− 1)
n

∑
i=1

δi log
(

tiex′i β
)

−
n

∑
i=1

δi log
[
1 +

(
ηtiex′i β

)α]
−
(

k
η

)α n

∑
i=1

e−x′i β log
[
1 +

(
ηtiex′i β

)α]
.

(24)

To obtain the MLE of θ′ = (k, α, η), and β, we can directly maximize Equation (24)
with respect to (k, α, η), and β. Alternatively, we can express the first derivative of the log-
likelihood function in order to solve the nonlinear equations below for the log-likelihood
function’s first derivative.

With this aim, let us set ϕ = (k, α, η, β). Then the first derivatives of the log-likelihood
functions are as follows:

∂`(ϕ)

∂α
=

1
α

n

∑
i=1

δi +
n

∑
i=1

δi log(k) +
n

∑
i=1

δi log
(

tiex′i β
)

−
n

∑
i=1

δi

(
ηtiex′i β

)α
log
(

ηtiex′i β
)

1 +
(

ηtiex′i β
)α

−
(

k
η

)α

log(k)
n

∑
i=1

e−x′i β log
[
1 +

(
ηtiex′i β

)α]

+

(
k
η

)α

log(η)
n

∑
i=1

e−x′i β log
[
1 +

(
ηtiex′i β

)α]

−
(

k
η

)α n

∑
i=1

e−x′i β
(

ηtiex′i β
)α

log
(

ηtiex′i β
)

1 +
(

ηtiex′i β
)α ,

(25)

∂`(ϕ)

∂η
= −

(
α

η

) n

∑
i=1

δi

(
ηtiex′i β

)α

1 +
(

ηtiex′i β
)α

+

(
α

η

)(
k
η

)α n

∑
i=1

e−x′i β log
[
1 +

(
ηtiex′i β

)α]

−
(

α

η

)(
k
η

)α n

∑
i=1

e−x′i β
(

ηtiex′i β
)α

1 +
(

ηtiex′i β
)α ,

(26)

∂`(ϕ)

∂k
=
(α

k

) n

∑
i=1

δi −
(α

k

)( k
η

)α n

∑
i=1

e−x′i β log
[
1 +

(
ηtiex′i β

)α]
(27)

and

∂`(ϕ)

∂β j
= (α− 1)

n

∑
i=1

δixij − α
n

∑
i=1

δixij

(
ηtiex′i β

)α

1 +
(

ηtiex′i β
)α

+

(
k
η

)a n

∑
i=1

xij log
[
1 +

(
ηtiex′i β

)α]
.

(28)

5.2. Bayesian Approach

In this subsection, the prior distributions for the parameters of the proposed model
are first established, and these distributions are then multiplied by the likelihood function
to create the Bayesian model.
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5.2.1. Prior Distribution

The formulation of a prior distribution is a crucial step in every Bayesian approach.
This is especially true for fully parametric survival regression models. Because we lack
prior knowledge from historical data or from prior experiments, we set the prior scenario
in this study using a noninformative independent gamma distribution, Gamma (10, 10),
as the baseline distribution parameters. Gamma distributions are flexible and include
noninformative priors (uniform) and the marginal priors distribution for each regression
coefficient is taken as a normal distribution centered at zero with a wide known variance
(0, 100). Numerous study articles in the literature, such as [19,22,24–26,43], take these priors
into account. Here, we consider

π(α) ∼ G(a1, b1) =
ba1

1
Γ(a1)

αa1−1e−b1α; a1, b1, α > 0, (29)

π(η) ∼ G(a2, b2) =
ba2

2
Γ(a2)

ηa2−1e−b2η ; a2, b2, η > 0, (30)

π(k) ∼ G(a3, b3) =
ba3

3
Γ(a3)

ka3−1e−b3k; a3, b3, k > 0. (31)

From historical data of the baseline distribution, it is simple to determine the hy-
perparametric values of the prior distributions [32]. When the explanatory variables are
assumed to have a prior normal distribution, we have the following regression coefficients:

π
(

β′
)
∼ N(a4, b4). (32)

The joint prior distribution of all unknown parameters has a PDF given by

π
(
α, k, η, β′

)
= π(α)π(η)π(k)π

(
β′
)
. (33)

5.2.2. Likelihood Function

The likelihood function for the GLL general hazard model is computed as follows:

LGLL−AH(θ, β; D) = =
n

∏
i=1

[
h0

(
tiex′i β; θ

)]δi
exp

[
−H0

(
tiex′i β; θ

)
e−x′i β

]

=
n

∏
i=1




αk
(

ktiex′i β
)α−1

1 +
(

ηtiex′i β
)α




δi

exp
[
−
{

kα

ηα
log
[
1 +

(
ηtiex′i β

)α]}
e−x′i β

]
.

(34)

5.2.3. Posterior Distribution

The joint posterior PDF is expressed as the multiplication of the likelihood function in
Equation (34) and the prior distribution in Equation (33):

p(α, k, η, β; t) ∝
n

∏
i=1




αk
(

ktiex′i β
)α−1

1 +
(

ηtiex′i β
)α




δi

exp
[
−
{

kα

ηα
log
[
1 +

(
ηtiex′i β

)α]}
e−x′i β

]

× π
(
α, k, η, β′

)
,

(35)

where the prior specification for the unknown parameters is represented by the first four
terms on the right-hand side of the equation.
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The joint posterior PDF is analytically intractable because of how challenging it is to
integrate. Therefore, the inference can be supported by the Markov chain Monte Carlo
(McMC) simulation methods, including the Gibbs sampler and Metropolis–Hastings algo-
rithms, which can be used to generate samples from which features of the relevant marginal
distributions can be inferred.

6. Simulation Study

In this section, we offer a thorough Monte Carlo (MC) simulation analysis to assess
how well the suggested model performs in terms of estimating the parameters of the
baseline distribution and the regression coefficients. There are two inferential techniques
used in the analysis.

I. Procedure I: An MLE estimate technique.
II. Procedure II: A Bayesian estimation technique with independent gamma priors for

the baseline distribution parameters and a normal prior for the regression coefficients,
as well as non-informative priors.

Two explanatory variables in an AH regression framework were considered in all
simulations: one binary covariate (x1) generated from Bernoulli (0.5) distribution and one
continuous covariate (x2) generated from the standard normal distribution. Regression
parameter values were chosen to be β = (0.75, 0.5) corresponding to the covariate vector
x = (x1, x2)

′.
The GLL baseline distribution hazard was used to generate the survival data, and the

exponential distribution with a rate parameter equal to the censoring proportion of 10%
was used to generate the censoring times.

We were particularly interested in the performance and accuracy of the proposed
model’s estimators in the simulation exercise, specifically the bias, standard error, and
mean square error. The simulation’s findings were derived from 500 replications with 50,
100, 300, and 500 samples for each parameter value. The results are shown in Table 1, which
includes the mean estimate (est), standard error (SE), average bias (AB), mean square error
(MSE), and coverage probability for the MLE estimates for both inferential techniques. The
estimates’ averages are extremely close, and generally, the AB and MSE are less as sample
size rises. Additionally, as sample sizes are increased, estimates for all evaluated parameters
perform better. We also note that, compared to MLE estimates, Bayesian estimates have a
lower SE.

Similar results were obtained from a simulation analysis with around 20% censored
observations for each dataset (data not shown). In conclusion, our simulation work has
shown that the suggested parametric AH model may prove to be a highly helpful paramet-
ric hazard-based regression model to accurately represent survival data with or without
crossover survival curves.

Table 1. Simulation study for GLL–AH regression model. True values (True), Estimates (Est.),
standard error (SE), average bias (AB), mean square error (MSE), and coverage probability (CP 95%)
are presented for the parameters.

True Est. SE AB MSE CP Est. SE AB MSE R̂
Set I n = 50

M2 MLE Approach Bayesian

β1 0.75 0.800 0.100 0.050 0.037 93.85 0.790 0.002 0.040 0.036 1.002
β2 0.5 0.558 0.042 0.058 0.024 94.50 0.512 0.003 0.012 0.011 1.002
α 1.50 1.590 0.010 0.090 0.008 95.20 1.505 0.001 0.005 0.003 1.000
k 0.75 0.900 0.435 0.150 0.063 92.05 0.850 0.005 0.100 0.045 1.002
η 1.20 1.265 0.011 0.065 0.046 94.25 1.212 0.000 0.012 0.004 1.003
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Table 1. Cont.

True Est. SE AB MSE CP Est. SE AB MSE R̂
Set II n = 100

M2 MLE approach Bayesian

β1 0.75 0.790 0.100 0.040 0.036 94.10 0.770 0.001 0.020 0.018 1.000
β2 0.5 0.530 0.030 0.030 0.024 94.80 0.510 0.002 0.010 0.010 1.001
α 1.50 1.610 0.040 0.110 0.087 93.40 1.553 0.001 0.053 0.041 1.003
k 0.75 0.850 0.250 0.100 0.056 93.20 0.800 0.004 0.050 0.037 1.002
η 1.20 1.250 0.008 0.050 0.034 94.80 1.205 0.000 0.005 0.003 1.001

Set III n = 300
True Est. SE AB MSE CP Est. SE AB MSE R̂

M2 MLE approach Bayesian

β1 0.75 0.78 0.092 0.030 0.032 94.40 0.768 0.001 0.018 0.016 1.000
β2 0.5 0.525 0.013 0.025 0.021 93.90 0.503 0.001 0.003 0.002 1.000
α 1.50 1.592 0.021 0.042 0.030 93.85 1.506 0.001 0.006 0.006 1.001
k 0.75 0.844 0.212 0.094 0.049 93.46 0.798 0.003 0.048 0.036 1.000
η 1.20 1.252 0.008 0.052 0.034 94.60 1.205 0.000 0.005 0.003 1.001

True Est. SE AB MSE CP Est. SE AB MSE R̂

Set IV n = 500

M2 MLE approach Bayesian

β1 0.75 0.775 0.065 0.025 0.017 95.10 0.752 0.000 0.002 0.002 1.000
β2 0.5 0.526 0.013 0.026 0.021 94.00 0.503 0.001 0.003 0.002 1.000
α 1.50 1.550 0.040 0.050 0.037 94.70 1.503 0.001 0.003 0.001 1.000
k 0.75 0.825 0.110 0.075 0.048 94.07 0.780 0.003 0.030 0.027 1.001
η 1.20 1.205 0.005 0.005 0.003 95.04 1.203 0.000 0.003 0.001 1.001

7. Applications

This section examines a right-censored dataset from an oncology clinical trial with
crossover survival curves to show how the proposed parametric AH model can be used
to model lifetime data with crossing survival curves. First, the Rstan package’s Bayesian
analysis of the AH model and its competing models, such as the PH, PO, and AFT models,
is provided. After performing a traditional analysis with the MLE technique, add model
comparison. Next, by using a frequentist estimation approach, regression analyses were
conducted by using the proposed baseline hazard (GLL), power generalized Weibull
(PGW), generalized gamma (GG), exponentiated Weibull (EW), log-logistic (LL), and
Weibull (W) distributions as a baseline to AH models, and the fits were compared by
using information criteria (Akaike information criterion (AIC), Consistent AIC (CAIC), and
Hannan–Quinn information criterion (QIC)). The GLL–AH and its submodels are then
used to do a Bayesian analysis.

7.1. Gastric Cancer Dataset

We look at the Gastrointestinal Tumor Study Group’s gastric cancer data collection
(1982). This dataset has frequently been used in studies involving crossing survival curves,
particularly in the field related to survival analysis. A few instances include Demarqui and
Mayrink [6] and Diao et al. [8]. The dataset is freely accessible under the label “gastric” by
using the R package AmoudSurv [44].

This oncology clinical trial includes 90 patients who have been diagnosed with locally
advanced gastric cancer. The patients were randomly assigned to the following groups:
(i) a control group, which included 45 patients who got chemotherapy; and (ii) a treatment
group, which included 45 patients who received radiation therapy along with chemother-
apy. In this study, these patients were followed for around 5 years. For each patient, three
variables are reported in the datasets: the response time, which indicates failure (time to
death) or right censoring (the censoring proportion in this data set is around 12.22%), a
binary failure indicator, which identifies patients who experienced the event of interest,
and a group binary indicator with 1, indicating the type of treatment.
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Figure 1 shows the overall survival curve for the gastric cancer dataset as well as the
survival curves for the two types of therapies (chemotherapy vs. chemotherapy mixed with
radiotherapy) used to treat locally unresectable gastric cancer. Close inspection reveals
crossovers and crossings between the curves, which supports the AH model’s efficacy and
suitability for this data analysis. The fundamental non-parametric plots for the survival
time of the gastric cancer dataset are presented in Figure 2.

Figure 1. Illustrating the overall survival curve and the crossing survival curves for the two types
of treatment.
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Figure 2. Fundamental plots for the survival time of the gastric cancer dataset.

7.2. Classical Analysis

The MLE estimates for baseline distribution parameters and coefficients of regres-
sion for the proposed AH model with different baseline distributions and other survival
regression models with the GLL baseline distribution are provided in Tables 2 and 3.

Table 2 summarizes the statistics for the GLL–AH model and other survival regression
models, including the PH, PO, and AFT models with all GLL baseline distributions. Based
on the information criterion values, we conclude that the GLL–AH model has the lowest
AIC, CAIC, and HQIC values compared to the other survival regression models, which
indicates that the GLL–AH model outperforms its competing models.

Table 2. Results from the fitted proposed fully parametric AH regression model and other survival
regression models with the GLL baseline distribution to gastric cancer dataset.

Models Parameter(s) Estimate SE AIC CAIC HQIC

GLL-AH β 2.690 0.021 244.318 242.845 248.351
α 1.505 0.040
k 0.542 0.036
η 0.133 0.022

GLL-PO β 0.750 0.101 251.816 250.522 255.848
α 1.382 0.100
k 0.650 0.074
η 0.500 0.042

GLL-PH β 0.130 0.241 255.565 254.345 259.598
α 1.302 0.140
k 0.759 0.136
η 0.580 0.222

GLL-AFT β 0.540 0.135 252.139 250.851 256.171
α 1.545 0.127
k 0.557 0.106
η 0.728 0.231
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The statistics summary under the GLL–AH model, and other AH models with different
baseline distributions are presented in Table 3. Based on the information criteria values,
we deduce that the GLL–AH model beats its rival AH models becaue it has the lowest
AIC, CAIC, and HQIC values when compared to the other AH models with various
baseline distributions.

Table 3. Results from the fitted proposed fully parametric AH regression model with different
baseline distributions to gastric cancer dataset.

Models Parameter(s) Estimate SE AIC CAIC HQIC

GLL-AH β 2.690 0.021 244.318 242.845 248.351
α 1.505 0.040
k 0.542 0.036
η 0.133 0.022

PGW-AH β 1.930 0.082 251.186 249.878 255.218
α 1.687 0.142
k 0.821 0.066
η 2.226 0.102

GG-AH β 2.688 0.130 252.645 251.368 256.677
α 1.821 0.122
k 0.482 0.236
η 0.737 0.042

EW-AH β 2.066 0.110 252.667 251.390 256.699
α 0.789 0.212
k 0.911 0.086
η 2.283 0.052

LL-AH β 1.097 0.020 247.492 246.686 250.517
α 1.913 0.052
k 1.213 0.019

LN-AH β 0.261 0.120 263.830 263.197 266.854
α 0.065 0.101
k 1.260 0.032

BXII-AH β 0.923 0.142 249.144 248.359 252.168
α 0.880 0.119
k 1.890 0.120

W-AH β 2.581 0.214 256.776 256.078 259.800
α 1.013 0.049
k 1.818 0.112

G-AH β 2.367 0.430 255.121 254.406 258.145
α 1.495 0.039
k 1.252 0.123

7.3. Likelihood Ratio Test

The proposed AH model with the GLL baseline distribution is compared to its sub-
models, which include the log-logistic AH, Burr-XII AH, and Weibull AH models, by using
the likelihood ratio test (LRT). It is required to reduce the number of parameters in a model
and evaluate how this affects the model’s capacity to match the data in order to draw
thorough statistical conclusions about the model. In Table 4, statistics and related P-values
demonstrate that the GLL–AH model fits the gastric dataset with crossing survival curves
better than its submodels.
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Table 4. LRT test for the GH model and its submodels.

Model Hypothesis LRT p-Value

GLL-AH vs. BXII-AH H0 : η = 1, H1 : H0 is false, 6.999 0.008

GLL-AH vs. LL-AH H0: η = k, H1 : H0 is false, 5.347 0.021

GLL-AH vs. W-AH H0: ηα → 0, H1 : H0 is false, 14.533 <0.001

7.4. Bayesian Analysis

We used Bayesian analysis to compare the proposed GLL–AH model with its com-
peting models, such as the GLL–PH, GLL–AH, and GLL–AFT models, and some of its
submodels, including the LL–AH, BXII–AH, and W–AH regression models. The baseline
distribution parameters α ∼ G(a1, b1), η ∼ G(a2, b2), and k ∼ G(a3, b3) with hyperparame-
ter values (a1 = b1 = a2 = b2 = a3 = b3 = 10) are assumed to have separate gamma priors
that are independent and noninformative normal prior with a value of N(0, 100) for β′s
(regression coefficients). The Rstan package was utilized for our analysis [45].

7.4.1. Numerical Summary

In this section, we used the McMC sample of posterior properties for the proposed
fully parametric AH, PO, AFT, and PH models with the GLL baseline distribution in Table 5
to examine several posterior characteristics of interest and their numerical values. The
submodels of the GLL baseline distribution using the AH model are also examined in
Table 6 to assess several posterior characteristics of interest and their numerical values.

Table 5. Results for the posterior properties of the GLL–AH, GLL–PO, GLL–PH and GLL–AFT
models.

Models Par (s) Estimate SE SD 2.5% Medium 97.5% Ne f f R̂

GLL–AH β 1.016 0.009 0.476 0.030 1.027 1.909 2684 1.001
α 0.836 0.002 0.106 0.648 0.829 1.064 3097 1.002
k 1.553 0.004 0.196 1.205 1.544 1.969 2714 1.001
η 0.674 0.003 0.191 0.353 0.653 1.105 3023 1.001

GLL–PO β 0.565 0.006 0.353 −0.135 0.562 1.268 3617 1.001
α 1.414 0.003 0.156 1.136 1.405 1.741 3257 1.000
k 0.804 0.002 0.115 0.600 0.796 1.054 2951 1.001
η 0.806 0.004 0.214 0.429 0.792 1.262 2918 1.000

GLL–PH β 0.106 0.004 0.224 −0.330 0.107 0.540 3216 1.000
α 1.341 0.002 0.146 1.077 1.332 1.646 3588 1.001
k 0.876 0.002 0.122 0.662 0.869 1.134 3068 1.001
η 0.837 0.004 0.221 0.452 0.820 1.315 3239 1.001

GLL–AFT β 0.418 0.005 0.269 −0.116 0.415 0.949 3396 1.000
α 1.435 0.003 0.177 1.124 1.423 1.804 3373 1.000
k 0.809 0.002 0.114 0.609 0.801 1.060 2963 1.000
η 0.850 0.004 0.210 0.479 0.836 1.311 2728 1.000

Table 6. Results for the posterior properties of the submodels of the GLL–AH model including
LL–AH, W–AH, and BXII–AH models.

Models Par (s) Estimate SE SD 2.5% Medium 97.5% Ne f f R̂

LL–AH β 0.764 0.007 0.385 −0.073 0.800 1.421 3228 1.001
α 1.636 0.004 0.197 1.261 1.629 2.039 2930 1.000
k 0.879 0.002 0.107 0.688 0.873 1.109 3681 1.001

W–AH β −0.007 0.014 0.949 −1.850 −0.019 1.860 4377 1.000
α 0.984 0.001 0.085 0.821 0.982 1.152 3521 1.000
k 0.559 0.001 0.068 0.437 0.554 0.702 3875 1.001

BXII–AH β 0.678 0.007 0.378 −0.135 0.697 1.345 3291 1.000
α 1.627 0.004 0.209 1.247 1.620 2.062 3099 1.000
k 0.949 0.002 0.115 0.740 0.943 1.186 3932 1.000
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7.4.2. Visual Summary

Figures 3–9 provide the trace and autocorrelation (AC) plots for the baseline distribu-
tion parameters and regression coefficients of the proposed AH model and its submodels,
plus other competing survival regression models, including the GLL–PH, GLL–PO, and
GLL–AFT models, indicating convergence of the chains.

Figure 3. The GLL–AH model posterior parameters trace plots of the gastric cancer data.

Figure 4. The GLL–PH model posterior parameters trace plots of the gastric cancer data.

Figure 5. The GLL–PO model posterior parameters trace plots of the gastric cancer data.
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Figure 6. The GLL–AFT model posterior parameters trace plots of the gastric cancer data.

Figure 7. The LL–AH model posterior parameters trace plots of the gastric cancer data.

Figure 8. The W–AH model posterior parameters trace plots of the gastric cancer data.

Figure 9. The BXII–AH model posterior parameters trace plots of the gastric cancer data.
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7.4.3. Posterior Predictive Checks

If a fitted Bayesian parametric hazard-based regression model predicts future obser-
vations that are consistent with the current data, it is considered sufficient or performing
well. By using the Bayesplot R package, posterior predictive check (PPC) plots are used to
visually evaluate model fit. It can be seen from PPC in Figure 10, that the GLL–AH model
fits the data quite well.

Figure 10. The empirical CDF, the dotted line and the CDF of the fitted model, the smooth curve,
show that the fitted GLL–AH model predicts the future observations that are consistent with the
current data.

7.4.4. McMC Convergence Diagnostics

We applied both numerical and visual methods to evaluate the convergence of the
McMC algorithm for the proposed models and their special cases. The McMC algorithm
HMC-NUTS has converged to the joint posterior distribution, as shown by the summary
results in the above table, because the potential scale reduction factor hatR is 1, the effective
sample size (ne f f ) is greater than 400, and the MC error (SE) is less than 0.05 of the posterior
standard deviations for all parameters.

Visually assessing convergence is often done by using AC and trace graphs [23].
Figures 3–9 show a stationary pattern fluctuating within a band, demonstrating the con-
vergence of the McMC algorithm. Figure 11, showing the AC plot, demonstrates how the
AC rapidly decreases to zero as the period of lag increases, indicating good mixing and
the convergence of the algorithm to the desired posterior distribution. Finally, Figure 12
indicates the pdf plots for the GLL-AH model posterior parameters.

Figure 11. The GLL–AH model posterior parameters AC plots of the gastric cancer data.
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Figure 12. The GLL–AH model posterior parameters PDF plots of the gastric cancer data.

7.4.5. Bayesian Model Selection

We implemented two information criteria, the Watanabe–Akaike information criterion
(WAIC), proposed by [46], for the Bayesian model comparison, and the leave-one-out
information criterion (LOOIC) proposed by Vehtari et al. [47]. A model may be said to
be best suited if it has the lowest WAIC and LOOIC values for both information criteria.
In addition to Stan fitting, posterior predictive check (PPC) and determining WAIC and
LOOIC are performed by using the R package loo [47]. Table 7 below shows that, when
compared to its rival models, the GLL–AH model is the most effective. In addition, Table 8
demonstrates that, when compared to its sub-models, again the GLL–AH model is the
superior one.

Table 7. Bayesian model comparison for the GLL–AH, GLL–PO, GLL–AFT, and GLL–PH models.

Model WAIC LOOIC

GLL–AH 243.20 243.20

GLL–PO 251.40 251.42

GLL–AFT 251.80 251.90

GLL–PH 254.80 254.82

Table 8. Bayesian model comparison for the GLL–AH and its special cases including LL–AH, W–AH,
and BXII–AH models

Model WAIC LOOIC

GLL–AH 243.20 243.20

LL–AH 249.30 249.40

W–AH 255.01 255.00

BXII–AH 247.05 247.08

Figure 13 indicates the Kaplan–Meier estimate and the sf estimate for the proposed
GLL–AH model parameters.

Figures 14 and 15 demonstrate the Kaplan–Meier estimate and the survival estimate
curves for the proposed regression models with GLL baseline distribution and the AH
model with various baseline hazards. In Figure 14, the GLL–AH model survival curve is
closer to the KM survival curve compared to all other survival regression models. The
same thing occurred in Figure 15.
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Figure 13. Kaplan–Meier and fitted survival curve for the GLL–AH model of the gastric
cancer dataset.

Figure 14. Kaplan–Meier and estimated survival plots for the competitive regression models with
the GLL baseline distribution of the gastric cancer dataset.

The main advantage of this study is that, unlike other parametric survival regression
models like the PH, PO, and AFT models, the parametric AH model may accommodate
survival datasets with crossover survival curves. The proposed parametric model, on
the other hand, is inappropriate when the baseline distribution is exponential, which is
one of the study’s limitations. Another limitation is that when the baseline distribution is
the Weibull distribution, the proposed model performs identically to existing parametric
hazard-based regression models, such as PH and AFT models.

Extension of the AH model’s structure to incorporate survival datasets with or with-
out crossover survival curves is one possible future endeavor. Additionally, this frame-
work may include other parametric survival regression models, such as the additive
hazards model.

59



Math. Comput. Appl. 2022, 27, 104

Figure 15. Kaplan–Meier and estimated survival plots for the competitive AH models of the gastric
cancer dataset.

8. Conclusions

This article proposes a fully parametric AH model for dealing with censored lifetime
data with crossover survival curves as an extension of the semi-parametric AH model [14].
The primary distinction between this modification and others is that we used a modified
baseline distribution that can capture different hazard rate shapes to provide a more flexible
depiction of the baseline hazard. By adopting a flexible parametric baseline distribution
like the GLL distribution, we showed that it is possible to carry out both Bayesian and
classical likelihood inference using the rstan package of the R programming language.

This also defines the paper’s key contribution, as no other study combining these
two characteristics (AH model and a modified baseline distribution) can be found in the
time-to-event analysis field. Furthermore, employing both Bayesian and classical inference
via MLE will address the semi-parametric AH model’s limited use due to a lack of efficient
and trustworthy estimation methods. Additionally, using the GLL distribution as a baseline
hazard offers several benefits as compared to other parametric baseline distributions that
may accept different hazard rate shapes, such as the gamma, GG, Weibull, EW, PGW, LL,
Bur-XII, and LN distributions.

Following the simulation study, the paper gave a real-world demonstration involving
a well-known dataset with crossover survival curves and was concerned with a clinical
study for patients with gastric cancer. In summary, the GLL–AH model outperforms the
other competing parametric AH models with various baseline hazards and other survival
regression models with the same baseline hazard. Finally, we developed an R package,
“AHSurv”, to fit the proposed model in this study as an addendum to this paper; the source
code is accessible at [48].
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Abstract: Probability distributions are very useful in modeling lifetime datasets. However, no spe‑
cific distribution is suitable for all kinds of datasets. In this study, the bounded truncated Cauchy
power exponential distribution is proposed for modeling datasets on the unit interval. The proba‑
bility density function exhibits desirable shapes, such as left‑skewed, right‑skewed, reversed J, and
bathtub shapes, whereas the hazard rate function displays J and bathtub shapes. For the purpose of
modeling dependence between measures in a dataset, a bivariate extension of the proposed distribu‑
tion is developed. The bivariate probability density function displaysmonotonic and non‑monotonic
shapes, making it suitable for modeling complex bivariate relations. Subsequently, the applications
of the distribution are illustrated using COVID‑19 data. The results revealed that the new distri‑
bution provides a better fit to the datasets compared to other existing distributions. Finally, a new
quantile regression model is developed and its application demonstrated. The generated quantile
regression model offers a decent fit to the data, according to the residual analysis.

Keywords: COVID‑19; bounded distribution; estimation methods; Cauchy; regression; bivariate

1. Introduction
Diseasemodeling andprediction are primary tasks of epidemiologists and researchers

interested in the estimation of disease occurrences. To perform these tasks, modeling the
variability in disease occurrences using probability distributions is essential. With the
emergence of the novel coronavirus disease in late 2019 (COVID‑19) and its negative im‑
pact on humanity, many researchers have proposed newprobability distributions (discrete
or continuous) for modeling the number of infections, mortality rate, and recovery rates,
among others. Some of the proposed probability distributions or families of distributions
include: Marshall–Olkin reduced Kies distribution [1], modified inverse Weibull distribu‑
tion [2], weighted Weibull distribution [3], type I half logistic Burr X‑G family [4], unit
power Weibull distribution [5], new extended exponentiated Weibull distribution [6], dis‑
crete extended oddWeibull exponential distribution [7], oddWeibull inverse Topp–Leone
distribution [8], log‑logistic tangent distribution [9], discrete‑type half‑logistic exponential
distribution [10], and unit Johnson SU distribution [11].

Among these probability distributions used for modeling diseases, those defined on
the unit interval play a major role due to their usefulness in areas such as health, psy‑
chology, and epidemiology, among others. For instance, researchers may be interested in
modeling mortality or recovery rates. Observations measured on these variables are usu‑
ally proportions, fractions, or rates, which are defined in the unit interval. Although the
beta distribution is the oldest for modeling datasets measured on the unit interval, the in‑
tractability of its cumulative distribution function (CDF) and quantile function has called
for the development of new distributions with tractable CDFs and quantile functions that
are also capable ofmodeling data on the unit interval. Unit distributions proposed recently
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in literature include: unit Gamma/Gompertzdistribution [12], bounded odd inverse Pareto
exponential distribution [13], bounded shifted Gompertz distribution [14], unit modified
Burr‑III distribution [15], unit generalized half normal distribution [16], unit Lindley dis‑
tribution [17], unit Gompertz distribution [18], logit slash distribution [19], unit Weibull
distribution [20] and unit inverse Gaussian distribution [21].

Despite the existence ofmanyunit distributions in the literature, no single distribution
is capable of modeling all forms of data since the data generating process produces data
with different characteristics such as symmetric, skewed, varied degrees of kurtosis, and
monotonic and non‑monotonic failure rates. This study thus proposes a new unit distribu‑
tion called the bounded truncated Cauchy power exponential (BTCPE) distribution. The
motivations for developing the newdistribution are as follows: to provide amodel capable
of modeling complex data on unit interval that exhibits platykurtic, leptokurtic, reversed
J, left‑skewed, right‑skewed, bathtub, and J shapes; to develop a bivariate distribution for
modeling interdependence between random data on unit interval; and to develop a quan‑
tile regression model for understanding the relationship between a response variable and
given covariates.

The remainder of the paper is organized in nine sections, described as follows: Section 2
presents the development of the BTCPE distribution, Section 3 describes some of its impor‑
tant properties, Section 4 focuses on a special bivariate extension of the BTCPE distribution,
Section 5 is devoted to the parametric estimation methods, Section 6 presents the Monte
Carlo simulation of nine frequentist estimation methods, Section 7 contains the univariate
applications of the BTCPE distribution, Section 8 is about the quantile regression model
and its application, and finally the conclusion of the paper is presented in Section 9.

2. Bounded Truncated Cauchy Power Exponential Distribution
A random variable X follows the truncated Cauchy power exponential (TCPE) distri‑

bution if its CDF and probability density function (PDF), respectively, are defined as

FX(x; α, λ) =
4
π
arctan[(1 − e−λx)

α
], α > 0, λ > 0, x > 0, (1)

and

fX(x; α, λ) =
4αλe−λx(1 − e−λx)

α−1

π[1 + (1 − e−λx)
2α
]

, x > 0. (2)

The TCPE distribution can be presented as a special case of the TCP Weibull distri‑
bution proposed by [22]. Now, we define a new unit distribution, called the BTCPE dis‑
tribution, corresponding to the distribution of Y = e−X . The associated CDF is obtained
as follows:

FY(y; α, λ) = P(e−X ≤ y) = P(−X ≤ log(y))

= 1 − P(X ≤ − log(y))

= 1 − FX(− log(y); α, λ).

Hence, the CDF of the BTCPE distribution is expressed as

FY(y; α, λ) = 1 − 4
π
arctan[(1 − yλ)

α
], 0 < y < 1, (3)

and α > 0 and λ > 0 are the shape parameters that have to be estimated. The associated
PDF of the BTCPE distribution is obtained by differentiating Equation (3), and it is given by

fY(y; α, λ) =
4αλyλ−1(1 − yλ)

α−1

π[1 + (1 − yλ)
2α
]

, 0 < y < 1. (4)

Often, the PDFs are expressed in expanded form for easy derivation of the statistical
properties of the proposed distribution. The expanded form of the PDF of the BTCPE
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distribution is mainly obtained using the generalized binomial expansion, (y + a)−n =
∞
∑

k=0

(−n
k

)
yka−n−k, |y| < a, where n is any real number. Thus, it is given by

fY(y; α, λ) =
4αλ

π

∞

∑
i=0

(−1)iyλ−1(1 − yλ)
α(2i+1)−1

, 0 < y < 1. (5)

The corresponding hazard rate function (HRF) is given by

hY(y; α, λ) =
αλyλ−1(1 − yλ)

α−1

[1 + (1 − yλ)
2α
]arctan[(1 − yλ)

α
]
, 0 < y < 1. (6)

The shapes of the PDF and HRF for some given parameter values are shown in
Figure 1. The PDF exhibits symmetric, bathtub, left‑skewed and right‑skewed shapes for
the given parameter values. The HRF displays bathtub and increasing failure rates.

Math. Comput. Appl. 2022, 27, x FOR PEER REVIEW 3 of 31 
 

 

4( ; , ) 1 arctan[(1 ) ],0 1,YF y y yλ αα λ
π

= − − < <  (3)

and 0α >  and 0λ >  are the shape parameters that have to be estimated. The associ-
ated PDF of the BTCPE distribution is obtained by differentiating Equation (3), and it is 
given by 

1 1

2
4 (1 )( ; , ) ,0 1.

[1 (1 ) ]Y
y yf y y

y

λ λ α

λ α
αλα λ
π

− −−= < <
+ −

 (4)

Often, the PDFs are expressed in expanded form for easy derivation of the statistical 
properties of the proposed distribution. The expanded form of the PDF of the BTCPE 
distribution is mainly obtained using the generalized binomial expansion, 

0
( ) ,| |n k n k

k

n
y a y a y a

k

∞
− − −

=

− 
+ = < 

 
 , where n  is any real number. Thus, it is given by 

1 (2 1) 1

0

4( ; , ) ( 1) (1 ) ,0 1.i i
Y

i
f y y y yλ λ ααλα λ

π

∞
− + −

=

= − − < <  (5)

The corresponding hazard rate function (HRF) is given by 

1 1

2
(1 )( ; , ) ,0 1.

[1 (1 ) ]arctan[(1 ) ]Y
y yh y y

y y

λ λ α

λ α λ α
αλα λ

− −−= < <
+ − −

 (6)

The shapes of the PDF and HRF for some given parameter values are shown in 
Figure 1. The PDF exhibits symmetric, bathtub, left-skewed and right-skewed shapes for 
the given parameter values. The HRF displays bathtub and increasing failure rates. 

 
Figure 1. PDF (left) and HRF (right) of the BTCPE distribution. 

3. Some Important Properties 
This section presents some relevant properties of the BTCPE distribution. 

3.1. Distribution Inequalities 

Figure 1. PDF (left) and HRF (right) of the BTCPE distribution.

3. Some Important Properties
This section presents some relevant properties of the BTCPE distribution.

3.1. Distribution Inequalities
This subsection investigates some desirable inequalities satisfied by the CDF of the

BTCPE distribution. These inequalities are very essential in determining the first order
stochastic dominance of random variables [23].

Proposition 1. The CDF of the BTCPE distribution is increasing with respect to the parameter α.
The CDF of the BTCPE distribution is decreasing with respect to the parameter λ.

Proof. For the first point, since (1 − yλ)
α log(1 − yλ) < 0 , for y ∈ (0, 1), we have

∂FY(y; α, λ)

∂α
= −4(1 − yλ)

α log(1 − yλ)

π[1 + (1 − yλ)
2α
]

≥ 0.

This means that FY(y; α, λ) is increasing with respect to α. For the second point, since
yλ(1 − yλ)

α−1 log(y) < 0, for y ∈ (0, 1), we have

∂FY(y; α, λ)

∂λ
=

4αyλ(1 − yλ)
α−1 log(y)

π[1 + (1 − yλ)
2α
]

≤ 0.
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This implies that FY(y; α, λ) is decreasing with respect to λ. This completes the proof
of the proposition. From Proposition 1, the following stochastic ordering property fol‑
lows immediately: if α1 ≤ α2 then FY(y; α1, λ) ≤ FY(y; α2, λ). Also, if λ1 ≤ λ2 then
FY(y; α, λ2) ≤ FY(y; α, λ1). �

3.2. Quantile Function
The quantile function or the inverse CDF is simply the solution Q(u; α, λ) of the fol‑

lowing nonlinear equation: FY(Q(u; α, λ); α, λ) = u, for all u ∈ (0, 1). Thus, after some
algebraic manipulation, we have

Q(u; α, λ) =

{
1 −

(
tan

[π

4
(1 − u)

])1/α
}1/λ

, u ∈ (0, 1). (7)

The median is obtained by substituting u = 0.5. The quantile function plays an im‑
portant role in the generation of random observations from the BTCPE distribution. The
quantile function values are also useful in computing measures of skewness and kurtosis.
As a classical quantile measure, the MacGillivray measure of skewness [24] is given by

ρ(u; α, λ) =
Q(1 − u; α, λ) + Q(u; α, λ)− 2Q(0.5; α, λ)

Q(1 − u; α, λ)− Q(u; α, λ)
, u ∈ (0, 1).

In particular, theMacGillivraymeasure of skewness can be used to efficiently describe
the effect of the parameters (α, λ) on the skewness. The more the shapes of ρ(u; α, λ) vary
according to the parameters, the more flexible the skewness is. Figure 2 shows the plot
of this skewness measure for a fixed value of λ while α varies and for a fixed value of α
while λ varies. From Figure 2, the wider variations seen imply that both parameters have
a strong influence on the skewness of the BTCPE distribution. In addition, as the values of
α or λ increase, ρ(u; α, λ) gets closer to the horizontal line. This shows that utilizing higher
values of the parameter can result in a symmetrical distribution.
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The kurtosis of the BTCPE distribution can be studied using the Moors kurtosis [25].
The Moors (coefficient of) kurtosis is usually given by

K(α, λ) =
Q(7/8; α, λ)− Q(5/8; α, λ) + Q(3/8; α, λ)− Q(1/8; α, λ)

Q(3/4; α, λ)− Q(1/4; α, λ)
.
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Large values of the Moors kurtosis imply that the distribution has a heavy tail, and
small values are indications of a light tail. Figure 3 displays the Moors kurtosis for the
BTCPE distribution. It can be observed that the BTCPE distribution exhibits various de‑
grees of kurtosis. When the parameters α and λ are equal, the distribution displays a
platykurtic shape. The overall shapes show how flexible the BTCPE distribution is with
regards to modeling datasets having different degrees of kurtosis and skewness.
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3.3. Moments and Moments Generating Function
The rth moments, incompletemoments andmoment generating function of the BTCPE

distribution are presented in this subsection.

Proposition 2. If Y is a BTCPE random variable, i.e., a random variable with the BTCPE distri‑
bution, then its rthnon‑central moment is given by

µ′
r =

4α

π

∞

∑
i=0

(−1)iB
( r

λ
+ 1, α(1 + 2i)

)
, r = 1, 2, . . . , (8)

where B(a, b) =
1∫

0
za−1(1 − z)b−1dz is the beta integral function.

Proof. The rth non‑central moment of the BTCPE random variable is defined as µ′
r =

E(Yr) =
1∫

0
yr fY(y; α, λ)dy. Thus, substituting the expanded form of the PDF given in Equa‑

tion (5) yields

µ′
r =

4αλ

π

∞

∑
i=0

(−1)i
1∫

0

yr+λ−1(1 − yλ)
α(1+2i)−1

dy.

Letting z = yλ, y → 0, z → 0; y → 1, z → 1 and dz = λyλ−1dy , we get

µ′
r =

4α

π

∞

∑
i=0

(−1)i
1∫

0

z
r
λ (1 − z)α(1+2i)−1dz.

Hence, several algebraic manipulation yield

µ′
r =

4α

π

∞

∑
i=0

(−1)iB
( r

λ
+ 1, α(1 + 2i)

)
.
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This completes the proof. �

The non‑central moments can be used to derive other important characteristics of the
BTCPE distribution such as estimating the variance, coefficient of skewness and kurtosis.

Proposition 3. The rth incomplete moment of the BTCPE random variable is given by

φr =
4α

π

∞

∑
i=0

(−1)iB
(

yλ;
r
λ
+ 1, α(1 + 2i)

)
, r = 1, 2, . . . , (9)

where B(q; a, b) =
q∫

0
za−1(1 − z)b−1dz is the incomplete beta integral function.

Proof. By definition, the rth incomplete moment is given by

φr = E(Yr1{Y < y}) =
y∫

0

xr f (x; α, λ)dx.

Hence, substituting the expanded form of the PDF into the definition yields

φr =
4αλ

π

∞

∑
i=0

(−1)i
y∫

0

xr+λ−1(1 − xλ)
α(1+2i)−1

dx.

Letting z = xλ, x → 0, z → 0; x → y, z → yλ and dz = λxλ−1dx . Hence, applying similar
concepts for proving the incomplete moments yields

φr =
4α

π

∞

∑
i=0

(−1)iB
(

yλ;
r
λ
+ 1, α(1 + 2i)

)
.

This completes the proof. �

Themoment generating function is useful for deriving the moments of a random vari‑
able if only the moment exists.

Proposition 4. The moment generating function of the BTCPE random variable is given by

MY(t) =
4α

π

∞

∑
r=0

∞

∑
i=0

(−1)itr

r!
B
( r

λ
+ 1, α(1 + 2i)

)
. (10)

Proof. By definition and a standard exponential expansion, we have MY(t) = E(etY) =
∞
∑

r=0

tr

r! µ′
r. Hence, substituting the rthnon‑central moment of the BTCPE distribution into

the definition completes the proof. �

Table 1 shows the first six moments of the BTCPE distribution and other useful mea‑
sures, such as the standard deviation (SD), coefficients of variation (CV), skewness (CS)
and kurtosis (CK). The SD, CV, CS and CK are, respectively, given by

SD =
√

µ′
2 − µ2,

CV =
σ

µ
=

√
µ′

2
µ2 − 1,
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CS =
µ′

3 − 3µµ′
2 + 2µ3

(µ′
2 − µ2)3/2

and

CK =
µ′

4 − 4µµ′
3 + 6µ2µ′

2 − 3µ4

(µ′
2 − µ2)2 .

Table 1. Values of moment measures, including the SD, CV, CS and CK.

µ’r α = 0.4, λ = 2.5 α = 4.5, λ = 3.1 α = 20.0, λ = 1.5

µ′
1 0.8799 0.5602 0.1339

µ′
2 0.8021 0.3401 0.0242

µ′
3 0.7457 0.2185 0.0053

µ′
4 0.7020 0.1465 0.0013

µ′
5 0.6667 0.1017 0.0004

µ′
6 0.6373 0.0726 0.0001

SD 0.1668 0.1619 0.0794

CV 0.1896 0.2890 0.5931

CS −1.9527 −0.3403 0.7713

CK 6.6850 2.7084 3.5390

FromTable 1, the CS is negative for the given parameter values and positive for others.
It can be seen that the BTCPE distribution can be leptokurtic or platykurtic depending on
the parameter values, since the CK can be lower than 3 or greater than 3, respectively. The
coefficient of skewness also reveals that the BTCPE distribution can model both left and
right‑skewed data.

3.4. Order Statistics
Order statistics play an imperative role in both statistics and industrial reliability anal‑

ysis. They can be used to estimate the minimum, maximum, and range of observations.
They are used in developing control charts that are useful in industrial quality control
analyses. Let Y1:n ≤ Y2:n ≤ . . . ≤ Yn:n be n order statistics from n BTCPE random variables.
Then, the PDF of Yk:n is given by

fk:n(y; α, λ) = Ωk:n[FY(y; α, λ)]k−1[1 − FY(y; α, λ)]n−k fY(y; α, λ),

where
Ωk:n =

n!
(k − 1)!(n − k)!

.

Using the binomial expansion (1 − y)λ−1 =
∞
∑

i=0
(−1)i

(
λ − 1

i

)
yi, |y| < 1, we canwrite

fk:n(y; α, λ) = Ωk:n

k−1

∑
i=0

(−1)i
(

k − 1
i

)
[1 − FY(y; α, λ)]n−k+i fY(y; α, λ).

Thus, we have

fk:n(y; α, λ) =
Ωk:n4αλyλ−1(1 − yλ)

α−1

π[1 + (1 − yλ)
2α
]

k−1

∑
i=0

(−1)i
(

k − 1
i

)[
4
π
arctan[(1 − yλ)

α
]

]n−k+i
. (11)
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On the other side, the CDF of Y1:n is simply given by

F1:n(y; α, λ) = 1 − [1 − FY(y; α, λ)]n

= 1 −
[

4
πarctan[(1 − yλ)

α
]
]n

,

and the CDF of Yn:n is derived as

Fn:n(y; α, λ) = [FY(y; α, λ)]n =

[
1 − 4

π
arctan[(1 − yλ)

α
]

]n
.

The distribution of the smallest order statistic represents the lifetime of a system con‑
nected in series, and that of the maximum order statistic denotes the lifetime of a system
connected in parallel. Hence, they are vital in studying the minimum and maximum time
to failure of components in engineering reliability. The minimum and maximum (min‑
max) plots of the order statistics can be used to investigate the distributional behavior of
observations. The min–max plot captures not only the information in the tails but all the
information about the whole distribution. The min–max plots shown in Figure 4 for some
parameter values depend on E(Y1:n) and E(Yn:n). From themin–max plots, the distribution
can exhibit symmetrical, left‑skewed, and right‑skewed shapes.
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4. Bivariate Extension
Researchers may be interested in modeling the dependence between two (quantita‑

tive) measures in a dataset. For instance, one may be interested in modeling the rela‑
tionship between age and the body mass index of individuals. Bivariate distributions
have been used in reliability analysis, queuing theory, finance, and insurance risk anal‑
ysis, among others, to study interdependency (see [26]). In this section, the bivariate exten‑
sion of the BTCPE (BEBTCPE) distribution is proposed following the strategy developed
in [26,27]. Given a bivariate continuous random vector (X, Y), the CDF of the BEBTCPE
distribution with parameters α, λ, δ1, δ2, δ3, where α > 0, λ > 0, −1 < δ1 + δ3 < 1,
−1 < δ2 + δ3 < 1, 0 < x < 1 and 0 < y < 1, is given by

FXY(x, y; η) =
(1 − 4

πarctan[(1 − xλ)
α
])(1 − 4

πarctan[(1 − yλ)
α
])

{
1 + (δ1 + δ3)

4
πarctan[(1 − xλ)

α
] + (δ2 + δ3)

4
πarctan[(1 − yλ)

α
]
}−1 , (12)
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where η = (α, β, δ1, δ2, δ3)
T. The parameters δ1, δ2 and δ3 quantify the dependence between

the two variables of a BEBTCPE random vector. The plots of the CDF for the following
parameter values are shown in Figure 5:
(a) α = 3.5, λ = 8.2, δ1 = 0.3, δ2 = 0.1, δ3 = 0.3;
(b) α = 2.5, λ = 0.8, δ1 = 0.5, δ2 = 0.4, δ3 = 0.2 and
(c) α = 0.5, λ = 4.8, δ1 = −0.3, δ2 = −0.7, δ3 = −0.1.
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We notice various concave and convex shapes from these plots.
The corresponding bivariate PDF is given by

fXY(x, y; η) =
(4αλ/π)2(xy)λ−1(1 − xλ − yλ + (xy)λ)

α−1
[1 + (1 − xλ)

2α
]
−1

[1 + (1 − yλ)
2α
]
−1

{
1 + (δ1 + δ3)

8
πarctan[(1 − xλ)

α
] + (δ2 + δ3)

8
πarctan[(1 − yλ)

α
]
}−1 . (13)

Figure 6 shows the bivariate PDF plots of the BEBTCPE distribution for the following
parameter values:
(a) α = 3.5, λ = 8.2, δ1 = 0.3, δ2 = 0.1, δ3 = 0.3;
(b) α = 2.5, λ = 0.8, δ1 = 0.5, δ2 = 0.4, δ3 = 0.2 and
(c) α = 0.5, λ = 4.8, δ1 = −0.3, δ2 = −0.7, δ3 = −0.1.

The first graph displays a non‑monotonic shape whereas the other two exhibit mono‑
tonic shapes, illustrating the versatility in the bivariate modeling sense.
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5. Parameter Estimation Methods
This section presents nine estimation methods for estimating the parameters of the

BTCPE distribution. These include the maximum likelihood (ML) estimation (MLE), or‑
dinary least squares (OLS), weighted least squares (WLS), Cramér–von Mises (CVM), per‑
centile (PC) estimation, Anderson–Darling (AD) methods, and maximum and minimum
product spacing methods.

5.1. Maximum Likelihood Estimation
One of the most common methods used for estimating the parameters of a devel‑

oped model is the MLE method. Suppose that Y follows the BTCPE distribution, with
ϑ = (α, λ)T as the parameter vector. For a single observation y of Y, the log‑likelihood
function ℓ = ℓ(ϑ) is

ℓ = log
(

4αλ

π

)
+ (λ − 1) log(y) + (α − 1) log(1 − yλ)− log(1 + (1 − yλ)

2α
). (14)

To obtain the estimates of the parameters for the single observation, the first partial
derivative of Equation (14) with respect to the parameters needs to be derive. Here, we
obtain

∂ℓ

∂α
=

1
α
+ log(1 − yλ)− 2(1 − yλ)

2α log(1 − yλ)

1 + (1 − yλ)
2α

, (15)

and
∂ℓ

∂λ
=

1
λ
+ log(y)− yλ(α − 1) log(y)

1 − yλ
+

2αyλ(1 − yλ)
2α−1 log(y)

1 + (1 − yλ)
2α

. (16)

Given that y1, y2, . . . , yn are (independent and identically) observations from n BTCPE

random variables, then the total log‑likelihood function is given by ℓ∗n =
n
∑

i=1
ℓi(ϑ), where

ℓi(ϑ), i = 1, 2, . . . , n is defined in Equation (14)with y = yi. The estimates of the parameters
can be obtained by maximizing the total log‑likelihood function directly using MATLAB,
MATHEMATICA and R software. In this study, the R software is used [28]. Alternatively,
the estimates of the parameters can be obtained by equating the first partial derivatives
with respect to the parameters to zero and solving the resulting system of equations simul‑
taneously. However, since the resulting system of equations does not have a closed form,

the nonlinear system of equations
(

∂ℓ∗n
∂α , ∂ℓ∗n

∂λ

)T
= (0, 0)T is solved numerically to obtain the

estimates of the parameters.

5.2. Ordinary and Weighted Least Squares Estimation
Suppose that y(1), y(2), . . . , y(n) are ordered observations from n BTCPE random vari‑

ables. The OLS estimates of the parameters α̂LSE and λ̂LSE are obtained by minimizing the
following function:

LSE(α, λ) =
n

∑
i=1

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− i

n + 1

]2
, (17)

with respect to the parameters α and λ. On the other hand, the OLS estimates can be
obtained by numerically solving the following nonlinear equations:

n

∑
i=1

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− i

n + 1

]
∆s(y(i)|α, λ) = 0, s = 1, 2, (18)
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where

∆1(y(i)|α, λ) = −
8(1 − yλ

(i))
α log(1 − yλ

(i))

π[1 + (1 − yλ
(i))

2α
]

and

∆2(y(i)|α, λ) =
8αyλ

(i)(1 − yλ
(i))

α−1 log(y(i))

π[1 + (1 − yλ
(i))

2α
]

.

The WLS estimates α̂WLS and λ̂WLS are obtained by minimizing the following func‑
tion:

WLS(α, λ) =
n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− i

n + 1

]2
, (19)

with respect to the parameters α and λ. Alternatively, the WLS estimates can be obtained
by numerically solving the following nonlinear equations:

n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− i

n + 1

]
∆s(y(i)|α, λ) = 0, s = 1, 2, (20)

where ∆s(x(i)|α, λ), s = 1, 2 are defined above.

5.3. Cramér–Von Mises Estimation
Let y(1), y(2), . . . , y(n) be ordered observations from n BTCPE random variables. The

CVM estimates of the parameters α̂CVM and λ̂CVM are obtained by minimizing the follow‑
ing function:

CVM(α, λ) =
1

12n
+

n

∑
i=1

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− 2i − 1

2n

]2
, (21)

with respect to the parameters α and λ. The estimates of the parameters can also be ob‑
tained by numerically solving the following equations:

n

∑
i=1

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− 2i − 1

2n

]
∆s(y(i)|α, λ) = 0, s = 1, 2, (22)

where ∆s(y(i)|α, λ), s = 1, 2 are given above.

5.4. Anderson–Darling Estimation
Another minimum distance estimation method is the AD estimation technique. Let

y(1), y(2), . . . , y(n) be ordered observations from n BTCPE random variables. The AD esti‑
mates for the parameters of the BTCPE distribution are obtained byminimizing the follow‑
ing function:

AD(α, λ) = −n − 1
n

n

∑
i=1

(2i − 1)
[

log
(

1 − 4
π
arctan[(1 − yλ

(i))]

)
+ log

(
4
π
arctan[(1 − yλ

(i))]

)]
, (23)

with respect to the parameters α and λ.

5.5. Percentile Estimation
ThePC estimation approach is anothermethod of estimating the parameters of a given

model. Let y(1), y(2), . . . , y(n) be ordered observations from n BTCPE random variables and
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ui = i/(n+ 1) be an unbiased estimate of FY(y(i); α, λ). The PC estimates of the parameters
of the BTCPE distribution are obtained by minimizing the following function:

PC(α, λ) =
n

∑
i=1

[
y(i) −

{
1 −

(
tan

[π

4
(1 − ui)

])1/α
}1/λ

]2

, (24)

with respect to the parameters α and λ.

5.6. Maximum and Minimum Product Spacing Estimation
Analternative parameter estimation techniquewhich is based on theKullback–Leibler

information measure is the maximum product spacing (MPS). Let y(1), y(2), . . . , y(n) be or‑
dered observations from n BTCPE random variables. Consider the uniform spacing

Di = FY(y(i); α, λ)− FY(y(i−1); α, λ)

= 4
πarctan[(1 − yλ

(i−1))]− 4
πarctan[(1 − yλ

(i))]

where FY(y(0); α, λ) = 0, FY(y(n+1); α, λ) = 1 and D0(α, λ) + D1(α, λ) + . . . + Dn+1(α, λ) =
1. The estimates of the parameters are obtained via the MPS approach by maximizing the
logarithm of the geometric mean of the spacing defined by

MPS(α, λ) =
1

n + 1

n+1

∑
i=1

log Di(α, λ), (25)

with respect to the parameters α and λ.
Additionally, the minimum spacing distance (MSD) estimates for the parameters α

and λ are obtained by minimizing the following function:

MSD(α, λ) =
n+1

∑
i=1

ϑ(Di(α, λ),
1

n + 1
), (26)

where ϑ(x, y) is an appropriate distance, with respect to the parameters α and λ. Although
different choices of ϑ(x, y) exist, in this study the absolute distance |x − y| and the absolute‑
log distance |log x − log y| are utilized. Thus, the minimum spacing absolute distance
(MSAD) andminimum spacing absolute‑log distance (MSALD) estimates are, respectively,
obtained by minimizing the following functions:

MSAD(α, λ) =
n+1

∑
i=1

|Di(α, λ)− 1
n + 1

| (27)

and

MSALD(α, λ) =
n+1

∑
i=1

|log Di(α, λ)− log
1

n + 1
|, (28)

where Di(α, λ) ̸= 1
n+1 and log Di(α, λ) ̸= log 1

n+1 .

6. Simulation
In this section, simulation experiments are carried out to assess howwell the proposed

parameters of the BTCPE distribution have been estimated. The experiments are carried
out with the following two different parameter combinations: α = 4.1, λ = 2.5 and α =
3.1, λ = 8.5. The experiments are replicated 5000 timeswith the following different sample
sizes: n = 25, 75, 125, 175 and 225. The bias (AB) and root mean square error (RMSE) of
the estimates are then computed and compared.
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The AB and RMSE are, respectively, computed using

AB =
1
R

R

∑
i=1

(
ϑ̂i − ϑ

)

and

RMSE =

√√√√ 1
R

R

∑
i=1

(
ϑ̂i − ϑ

)2
,

where ϑ̂ is either α̂ or λ̂ and R = 5000 is used in this study.
From Tables 2 and 3, most of the estimates have their ABs and RMSEs decreasing

as the sample size increases. This is an indication that most of the estimates exhibit the
consistency property. From Table 2, it can be observed that for sample sizes 25, 75 and 125
the PC estimate is the best for α and, for the sample sizes 175 and 225, the MLE is the best
for α. For the parameter λ, the PC estimate is the best for the sample size 25 and the MLE
is the best for 75, 125, 175 and 225. In Table 3, for sample sizes 25 and 75 the AD estimate is
the best for the parameter α and theMLE is the best for 125, 175 and 225. For the parameter
λ, the MLE is the best for sample sizes 25, 125, 175 and 225. The AD estimate is best for λ
when the sample size is 75.
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7. Applications
Three applications of the BTCPE distribution are illustrated in this section, and its per‑

formance is compared to other competitive distributions defined in the unit interval. The
performance of the BTCPE distribution was compared with that of the beta, unit Burr‑III
(UBIII) [29], bounded M‑O extended exponential (BMOEE) [30], unit Gompertz (UG) [18],
unit Lindley (UL) [17], unit Weibull (UW) [20] and unit‑improved second‑degree Lindley
(UISDL) [31] distributions. The Akaike information criterion (AIC), Bayesian information
criterion (BIC), Anderson–Darling (AD) test, and Cramér–vonMises (CVM) are the model
selection techniques employed in arriving at the bestmodel. For these selection techniques,
the best model is the one with the smallest test statistic. The datasets represent the mortal‑
ity rate of COVID‑19 patients in Canada and the United Kingdom (UK), and the recovery
rate of COVID‑19 patients in Spain. The first two datasets were recently reported by [8].

The first dataset is the mortality rate for UK from 1 December 2020 to 29 January 2021.
The data are: 0.1292, 0.3805, 0.4049, 0.2564, 0.3091, 0.2413, 0.1390, 0.1127, 0.3547, 0.3126,
0.2991, 0.2428, 0.2942, 0.0807, 0.1285, 0.2775, 0.3311, 0.2825, 0.2559, 0.2756, 0.1652, 0.1072,
0.3383, 0.3575, 0.2708, 0.2649, 0.0961, 0.1565, 0.1580, 0.1981, 0.4154, 0.3990, 0.2483, 0.1762,
0.1760, 0.1543, 0.3238, 0.3771, 0.4132, 0.4602, 0.352, 0.1882, 0.1742, 0.4033, 0.4999, 0.3930,
0.3963, 0.3960, 0.2029, 0.1791, 0.4768, 0.5331, 0.3739, 0.4015, 0.3828, 0.1718, 0.1657, 0.4542,
0.4772, 0.3402.

The second dataset denotes the mortality rate for Canada from 1 November to 26
December 2020. The data are: 0.1622, 0.1159, 0.1897, 0.1260, 0.3025, 0.2190, 0.2075, 0.2241,
0.2163, 0.1262, 0.1627, 0.2591, 0.1989, 0.3053, 0.2170, 0.2241, 0.2174, 0.2541, 0.1997, 0.3333,
0.2594, 0.2230, 0.2290, 0.1536, 0.2024, 0.2931, 0.2739, 0.2607, 0.2736, 0.2323, 0.1563, 0.2677,
0.2181, 0.3019, 0.2136, 0.2281, 0.2346, 0.1888, 0.2729, 0.2162, 0.2746, 0.2936, 0.3259, 0.2242,
0.1810, 0.2679, 0.2296, 0.2992, 0.2464, 0.2576, 0.2338, 0.1499, 0.2075, 0.1834, 0.3347, 0.2362.

The third dataset constitutes the recovery rates of COVID‑19 patients in Spain from 3
March to 7May 2020. The dataset can be found in [1] and are: 0.6670, 0.5000, 0.5000, 0.4286,
0.7500, 0.6531, 0.5161, 0.7895, 0.7689, 0.6873, 0.5200, 0.7251, 0.6375, 0.6078, 0.6289, 0.5712,
0.5923, 0.6061, 0.5924, 0.5921, 0.5592, 0.5954, 0.6164, 0.6455, 0.6725, 0.6838, 0.6850, 0.6947,
0.7210, 0.7315, 0.7412, 0.7508, 0.7519, 0.7547, 0.7645, 0.7715, 0.7759, 0.7807, 0.7838, 0.7847,
0.7871, 0.7902, 0.7934, 0.7913, 0.7962, 0.7971, 0.7977, 0.8007, 0.8038, 0.8289, 0.8322, 0.8354,
0.8371, 0.8387, 0.8456, 0.8490,0.8535, 0.8547, 0.8564, 0.8580, 0.8604, 0.8628, 0.6586, 0.7070,
0.7963, 0.8516.

The ML estimates of the parameters are estimated using the bbmle package in R [32].
The initial values of the parameters of the fitted distributions used for the optimization are
obtained using the GenSA package in R [33]. Table 4 displays the descriptive statistics for
COVID‑19 mortality for the UK and Canada, as well as the recovery rate for Spain. The
datasets are platykurtic due to the negative excess kurtosis. The UK mortality is right‑
skewed and that of Canada is left‑skewed. The recovery rate for Spain is also left‑skewed.
This is affirmed by the boxplot of the datasets shown in Figure 7.

Table 4. Descriptive statistics for datasets.

Country Minimum Maximum Mean Skewness Kurtosis

UK 0.0807 0.5331 0.2888 0.0476 −1.1034
Canada 0.1159 0.3347 0.2305 −0.0850 −0.4402
Spain 0.4286 0.8628 0.7240 −0.6890 −0.4761

7.1. UK COVID‑19 Mortality
Table 5 presents ML estimates of the parameters and their corresponding standard

errors in brackets, the log‑likelihood (ℓ), AIC, BIC,AD, andCVM for the fitteddistributions.
Given that it has the lowest values for the AIC, BIC, AD, and CVM and the maximum log‑
likelihood, the BTCPE distribution offers the best fit to the UK mortality dataset.
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Table 5. Parameter estimates and model selection criteria for UK.

Model Parameter ℓ AIC BIC AD CVM

BTCPE α = 16.6904(5.2798)
λ = 2.3884(0.2865) 45.4400 −86.8726 −82.6840 0.6494 0.1049

Beta α = 4.0502(0.7128)
β = 10.0132(1.8287) 45.4000 −86.7958 −82.6071 0.7356 0.1280

UBIII α = 0.0757(0.0383)
β = 13.3804(6.5631) 38.9000 −73.8075 −69.6188 2.8948 0.5248

BMOEE α = 105.2655(59.9004)
β = 3.5949(0.4092) 40.7200 −77.4396 −73.2509 1.1465 0.1698

UW α = 0.2834(0.0602)
β = 3.1228(0.3047) 42.5600 −81.1208 −76.9322 1.0656 0.1820

UG α = 686.3600(2.2295 × 10−10)
β = 0.0011(1.4051 × 10−4)

2.8400 −1.6760 2.5127 12.2290 2.4707

UL α = 2.8293(0.3029) 32.3800 −62.7533 −60.6590 4.4878 0.7574

UISDL α = 3.4259(0.3151) 33.6100 −65.2142 −63.1198 3.9972 0.6545

Figure 8 displays the empirical and fitted PDFs and CDFs of the various distributions
used to model the UK mortality dataset. The figure gives an indication that the BTCPE
distribution provides a good fit to the dataset compared to the other models.

Figure 9 is the probability–probability (P‑P) plots of the fitted distributions. Figure 9
once more shows that the BTCPE distribution fits the UK drought mortality well because
the points cluster along the diagonal.

The profile log‑likelihoodplots for the estimatedparameter values of the BTCPEdistri‑
bution for the UKmortality data are shown in Figure 10. From the plots, it can be observed
that the estimated values are the true maxima.

7.2. Canada COVID‑19 Mortality
Table 6 presents ML estimates of the parameters and their corresponding standard

errors in brackets and model selection criteria for the fitted distributions. The BTCPE dis‑
tribution again provides the best fit to the Canadamortality dataset since it has the highest
log‑likelihood and the lowest values of the AIC, BIC, AD, and CVM.
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Table 6. Parameter estimates and model selection criteria for Canada.

Model Parameter ℓ AIC BIC AD CVM

BTCPE α = 622.2064(399.8188)
λ = 4.5085(0.4837) 86.4400 −168.8806 −164.8299 0.3767 0.0689

Beta α = 14.5128(2.7128)
β = 48.4900(9.1745) 85.9400 −167.8800 −163.8293 0.4398 0.0692

UBIII α = 0.0080(0.0011)
β = 101.7700(8.4127 × 10−8) 30.8900 −57.7749 −53.7242 14.8770 3.1113

BMOEE α = 2822.9776(3.3087 × 10−5)
β = 5.4444(0.1439) 80.6700 −157.3394 −153.2887 1.5514 0.2327

UW α = 0.0552(0.0193)
β = 6.1602(0.5868) 79.9500 −155.9080 −151.8573 1.4890 0.2389

UG α = 628.3885(2.4072 × 10−10)
β = 0.0011(1.4212 × 10−4) 5.2500 −6.4901 −2.4393 18.5180 3.9712

UL α = 3.9381(0.4506) 41.1400 −80.2707 −78.2453 12.7090 2.5936

UISDL α = 3.4259(0.3151) 42.2000 −82.3913 −80.3660 12.3010 2.4925

Figure 11 shows the empirical and fitted PDFs and CDFs of the various distributions
used to model the Canada drought mortality dataset. The figure gives an indication that
the BTCPE distribution provides a better fit to the drought mortality for Canada than
the other models, as it mimics the empirical PDF and CDF of the dataset better than the
other models.
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Figure 12 shows the P‑P plots of the fitted models. Figure 12 gives an indication that
the BTCPE distribution provides a good fit to the Canada mortality as the points cluster
along the diagonal.
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Figure 13 displays the profile log‑likelihood plots for the estimated parameter values
of the BTCPE distribution for the Canada mortality data. It can be observed from the plots
that the estimates are unique and represent the true maxima.
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7.3. Spain COVID‑19 Recovery Rate
TheML estimates of the parameters and their corresponding standard errors in brack‑

ets and model selection criteria for the fitted distributions are shown in Table 7. Because
it has the lowest values for the AIC, BIC, AD, and CVM and the maximum log‑likelihood,
the BTCPE distribution again offers the best fit to the Spain recovery rate dataset.

Table 7. Parameter estimates and model selection criteria for Canada.

Model Parameter ℓ AIC BIC AD CVM

BTCPE α = 7.1385(1.7764)
λ = 7.1961(0.9033) 58.7500 −113.4953 −109.1160 0.8770 0.1363

Beta α = 12.7943(2.2291)
β = 4.8994(0.8270) 57.5700 −111.1489 −106.7692 1.0520 0.1783

UBIII α = 5.4398(0.7948)
β = 2.0613(0.1723) 53.8000 −103.5927 −99.2134 1.3725 0.2209

BMOEE α = 22.1286(9.9041)
β = 10.0043(1.2381) 51.4600 −98.9276 −94.5483 1.4958 0.2100

UW α = 8.6445(1.6973)
β = 2.2320(0.2036) 53.9700 −103.9316 −99.5523 1.3830 0.2238

UG α = 0.2792(0.1059)
β = 3.8482(0.6025) 46.0300 −88.0569 −83.6776 2.4709 0.3691

UL α = 0.5200(0.0466) 46.1100 −90.2298 −88.0402 4.2480 0.6736

UISDL α = 0.7403(0.0539) 52.0400 −102.0717 −99.8820 2.3450 0.3194

The empirical and fitted PDFs and CDFs of the various distributions used to model
the Spain recovery rate dataset are shown in Figure 14. It can be seen that the BTCPE
distribution provides a better fit to the recovery rate data than the other models.
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The P‑P plots of the fittedmodels for the recovery rate data are displayed in Figure 15.
The plots indicate that the BTCPE distribution provides a good fit to the recovery rate data
as the points cluster along the diagonal.
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The profile log‑likelihood plots for the estimated parameter values of the BTCPE dis‑
tribution for the recovery rate data are shown in Figure 16. The plots suggest that the
estimates are unique and represent the true maxima.
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The parameter ρ  is the quantile parameter. The BTCPE quantile regression is de-
fined as 

( )i ig ρ ′= z θ , 
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Figure 16. Profile log‑likelihood plots for estimated parameters of BTCPE for Spain.

8. Quantile Regression
When the response variable defined in the unit interval is skewed or contaminated

with outliers, the beta regression model, which models the conditional mean of the re‑
sponse variable, is no longer reliable. A robust regression model is needed to model
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the effects of the covariates on the response variable. In this study, a quantile regres‑
sion model is proposed for modeling the conditional quantile of the response variable.
Given the quantile function of the BTCPE distribution, the PDF of the BTCPE distribu‑
tion can be re‑parameterized in terms of its uth quantile as ρ = Q(u; α, λ), ρ ∈ [0, 1]. If
λ = log(1 − (tan[π(1 − u)/4])1/α)/ log(ρ), then the re‑parameterized PDF is

fY(y; α, λ) =

4α(log(1−(tan[π(1−u)/4])1/α)/ log(ρ))y(log(1−(tan[π(1−u)/4])1/α)/ log(ρ))−1(1−y(log(1−(tan[π(1−u)/4])1/α)/ log(ρ)))
α−1

π[1+(1−y(log(1−(tan[π(1−u)/4])1/α)/ log(ρ)))
2α
]

.
(29)

The parameter ρ is the quantile parameter. The BTCPE quantile regression is de‑
fined as

g(ρi) = z′ iθ,

where θ = (θ0, θ1, . . . , θp)′ is the vector of unknown parameters, ρi is the ith quantile pa‑
rameter and z′ i = (1, zi1, zi2, . . . , zip) are the known ith vector of covariates. The link func‑
tion g(·) is used to link the covariates to the conditional median of the dependent variable
Y. The logit link function is used to link the covariates to the conditional quantile since
y ∈ (0, 1). Hence, we have

g(ρi) = logit(ρi) = log(
ρi

1 − ρi
).

Further, we can write

ρi =
exp(z′ iθ)

1 + exp(z′ iθ)
.

Substituting ρi into the re‑parameterized PDF, the log‑likelihood for estimating the
parameters of the BTCPE quantile regression is given by

ℓ =
n
∑

i=1
log

(
(4α/π)(log(1 − (tan[π(1 − u)/4])1/α)/ log(ρi))

)
−

n
∑

i=1
log(1 + (1 − zi)

2α)+

n
∑

i=1
[(log(1 − (tan[π(1 − u)/4])1/α)/ log(ρi))− 1] log(yi) + (α − 1)

n
∑

i=1
log(1 − zi),

(30)

where zi = yi
(log(1−(tan[π(1−u)/4])1/α)/ log(ρi)). The estimates of the parameters of the regres‑

sion equation are obtained by directly maximizing the log‑likelihood function. They will
be denoted as α̂ and θ̂ = (θ̂0, . . . , θ̂p)′ of α and θ, respectively.

8.1. Residual Analysis
Model diagnostics are very essential when fitting a model to a dataset. Often, the

behavior of themodel residuals is examined to see if themodel really provides a good fit to
the data. In this study, the randomized quantile residuals are used to assess the adequacy
of the regression model. The randomized quantile residuals are defined as

ri = Φ−1(FY(yi; α̂, θ̂)), i = 1, 2, . . . , n,

whereΦ−1(·) is the quantile of the standard normal distribution. The randomized quantile
residuals are expected to be distributed as the standard normal distribution if the models
provide a good fit to the data.

8.2. Monte Carlo Simulation for Quantile Regression
Monte Carlo simulations are carried out in this section to examine the performance

of the ML estimates of the parameters of the BTCPE regression model. The exercise is
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performed with two covariates. The following regression structure is adopted for the sim‑
ulation:

ρi =
exp(θ0 + θ1zi1 + θ2zi2)

1 + exp(θ0 + θ1zi1 + θ2zi2)
.

The observations for the response variable are generated from the BTCPE distribution
using sample sizes n = 50, 100, 250, 350, 500, 600 and 700. The experiments were repeated
5000 times for each sample size. The performance of the ML estimates is examined using
AB and RMSE. The simulations were carried out using the median, u = 0.5. The following
parameter combinations were used in the simulation: I : (α, θ0, θ1, θ2) = (0.7, 0.2, 0.8, 0.3),
I I : (α, θ0, θ1, θ2) = (0.6, 0.5, 0.4, 1.8) and I I I : (α, θ0, θ1, θ2) = (0.8, 0.4, 0.9, 0.6). From the
simulation results shown in Table 8, the ABs and RMSEs of the estimates’ decrease as the
sample size increases. Hence, the ML estimates for the BTCPE regression parameters are
consistent.

Table 8. Simulation results for the quantile regression.

I II III

Parameter n AB RMSE AB RMSE AB RMSE

θ0 50 0.1949 0.2235 0.3599 0.3753 0.2609 0.2969
100 0.1946 0.1961 0.3551 0.3726 0.2178 0.2579
250 0.1919 0.1941 0.3465 0.3673 0.1525 0.1926
350 0.1898 0.1928 0.3271 0.3544 0.1320 0.1700
500 0.1838 0.1927 0.3109 0.3482 0.1101 0.1431
600 0.1779 0.1886 0.3051 0.3434 0.0998 0.1318
700 0.1761 0.1850 0.2908 0.3333 0.0908 0.1196

θ1 50 0.2826 0.3067 0.3485 0.3807 0.8194 0.8276
100 0.2605 0.2904 0.3181 0.3486 0.8142 0.8238
250 0.2290 0.2651 0.3171 0.3363 0.8013 0.8134
350 0.2176 0.2539 0.3138 0.3342 0.7872 0.8041
500 0.2097 0.2454 0.3083 0.3305 0.7727 0.7945
600 0.2079 0.2433 0.3020 0.3272 0.7188 0.7610
700 0.2053 0.2389 0.2978 0.3253 0.6862 0.7447

θ2 50 1.5889 1.5959 1.7104 1.7153 0.5212 0.5338
100 1.5835 1.5913 1.7046 1.7102 0.5140 0.5291
250 1.5818 1.5910 1.6938 1.7006 0.5073 0.5250
350 1.5698 1.5815 1.6751 1.6845 0.4893 0.5130
500 1.5566 1.5723 1.6432 1.6578 0.4753 0.5046
600 1.4749 1.5132 1.5559 1.5917 0.4601 0.4999
700 1.3803 1.4520 1.4593 1.5264 0.4535 0.4921

α 50 0.0792 0.0998 0.0842 0.1110 0.1091 0.1520
100 0.0577 0.0745 0.0570 0.0747 0.0872 0.1382
250 0.0352 0.0463 0.0339 0.0437 0.0523 0.0859
350 0.0295 0.0378 0.0287 0.0366 0.0427 0.0650
500 0.0246 0.0316 0.0239 0.0317 0.0340 0.0467
600 0.0227 0.0287 0.0217 0.0290 0.0317 0.0449
700 0.0210 0.0267 0.0201 0.0259 0.0287 0.0375

8.3. Application
The application of the quantile regressionmodel is demonstrated in this section using

a real dataset. The data are taken from [34] and are also available at http://www.leg.ufpr.
br/doku.php/publications:papercompanions:multquasibeta (accessed on 30 August 2022).
The data consist of body fat percentage (response variable) measured in five regions: an‑
droid, arms, gynoids, legs and trunk. The data are comprised of 298 observations and the
independent variables are: age (in years), bodymass index (in kg/m2), sex (female or male)
and IPAQ (sedentary (S), insufficiently active (I), or active (A)). In this study, the response
variable body fat percentage at arms is regressed on age (zi1), bodymass index (zi2) and sex
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(zi3, 0 for female and 1 for male). The response variable is regressed on the covariates us‑
ing the relationship logit(ρi) = θ0 + θ1zi1 + θ2zi2 + θ3zi3, i = 1, 2, . . . , 298. Table 9 presents
ML estimates, standard errors, and p‑values for the parameters of the fitted models for the
different quantiles. The estimates are all significant at the 5% level of significance.

Table 9. ML estimates for quantile regression.

u θ̂0 θ̂1 θ̂2 θ̂3 α̂

0.10
Estimates −3.6699 0.0076 0.0905 −1.004 308.7724

Standard error 0.1681 1.1670 × 10−3 7.5355 × 10−3 4.3797 × 10−2 9.3305 × 10−5

p‑value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

0.25
Estimates −3.2544 0.0071 0.0845 −0.9326 325.4705

Standard error 0.1545 1.0687 × 10−3 6.9379 × 10−3 4.0103 × 10−2 4.6137 × 10−5

p‑value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

0.50
Estimates −2.8977 0.0067 0.0792 −0.8732 340.4285

Standard error 0.1436 9.9065 × 104 6.4570 × 10−3 3.7166 × 10−2 1.3990 × 10−5

p‑value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

0.75
Estimates −2.6424 0.0064 0.0766 −0.8384 281.1611

Standard error 0.1405 9.7128 × 10−4 6.3363 × 10−3 3.6303 × 10−2 6.4012 × 10−6

p‑value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

0.90
Estimates −2.4030 0.0061 0.0731 −0.7987 273.9968

Standard error 0.1353 9.3470 × 10−4 6.1047 × 10−3 3.4900 × 10−2 2.9792 × 10−5

p‑value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 10 presents the model selection criteria for the different quantiles. It is observed
that the 0.90th quantile provides the best fit for the data as it has the least values of the
model selection criteria.

Table 10. Model selection criteria for quantile regression.

u −2ℓ AIC BIC

0.10 −885.3517 −875.3517 −856.8663
0.25 −887.4067 −877.4067 −858.9212
0.50 −889.1990 −879.1990 −860.7136
0.75 −889.8634 −879.8634 −861.3779
0.90 −890.8307 −880.8307 −862.3453

Figure 17 shows the rate of change of the regression coefficients for the different quan‑
tile levels and the corresponding 95% confidence interval (CI). It can be observed that all
the coefficients approach zero as the quantile level increases, suggesting that they aremore
important in explaining smaller quantiles.

Figures 18 and 19 show the P‑P plots and half‑normal plots with simulated envelopes,
respectively, for the randomized quantile residuals. These figures display good fits of
the BTCPE quantile regression model to the uth percentage of body fat in arms for u ∈
(0.10, 0.25, 0.50, 0.75, 0.90).
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9. Conclusions
In this study, the BTCPE distribution is proposed for modeling datasets that are de‑

fined on the unit interval. The PDF of this distribution exhibits left‑skewed, right‑skewed,
reversed J, and approximately symmetric shapes. The HRF displays increasing and bath‑
tub shapes. This makes the distribution a suitable candidate for modeling datasets that
exhibit these traits. Nine estimation methods were proposed for estimating the parame‑
ters of the distribution, and simulation results revealed that most of these estimates were
consistent when it came to the estimation of the parameters of the distribution. The appli‑
cations of the BTCPE distribution were illustrated using datasets on the mortality rate and
recovery rates of COVID‑19. The results revealed that for the three datasets, the BTCPE
model provided a better fit than the other competing models. A quantile regression model
for studying the relationship between the conditional quantiles of a bounded response
variable and a set of covariates was proposed. The application of the regression model
was illustrated using real data. The study only defined the cumulative distribution and
probability density functions of the bivariate distribution. Our future research will study
the detailed properties of the bivariate distribution, estimate its parameters, and illustrate
its applications.
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Abstract: It has been argued in Arnold and Manjunath (2021) that the bivariate pseudo-Poisson
distribution will be the model of choice for bivariate data with one equidispersed marginal and
the other marginal over-dispersed. This is due to its simple structure, straightforward parameter
estimation and fast computation. In the current note, we introduce the effects of concomitant variables
on the bivariate pseudo-Poisson parameters and explore the distributional and inferential aspects of
the augmented models. We also include a small simulation study and an example of application to
real-life data.

Keywords: correlation; likelihood ratio test; maximum likelihood estimators; pseudo-Poisson;
regression

1. Introduction

The classical “one-dimensional” Poisson distribution has historically been found to be
useful in modeling a wide variety of “integer-valued” phenomena, such as the number of
accidents and associated fatalities, disease advances, rate of rare event occurrences and so
on. With regard to the Poisson model with concomitants, i.e., Poisson regression or count
regression, its best known applications are in (i) modeling counts of bacteria exposed to
various environmental conditions and dilutions; (ii) modeling counts of infant mortality
among groups with different demographics. All these examples are typically modeled
under the assumption of equi-dispersion. However, count data also exhibits over and
under dispersion. In this context, the one-dimensional Conway–Maxwell–Poisson model
or its regression version fills the bill precisely by allowing us to model over, equi- and
under-dispersion data.

In general, bivariate count data, along with having marginal over-, under- or equi-
dispersion, will also exhibit a variety of dependence structures. In particular, for linear
dependence, the possible relations are positive or negative correlation. The classical bivari-
ate Poisson model is appropriate for data having equi-dispersed marginals with positive
correlation. Here again, the bivariate Conway–Maxwell–Poisson is more flexible in that it
can adapt to both under and over dispersed data, see Sellers et al. [1]. Concerning bivariate
Poisson regression models, the first version involving explanatory variables acting on the
marginal means was introduced in Kocherlakota and Kocherlakota [2] based on the classical
bivariate Poisson model. In addition, the derivation of Wald, score and likelihood ratio test
statistics for testing a single coefficient parameter vector are discussed in Riggs et al. [3].
Zamani et al. [4] proposed a bivariate Poisson model which can be fitted to both positive
and negatively correlated data. Recently, Chowdhury et al. [5] considered the Poisson–
Poisson regression model (which is the particular case of the bivariate pseudo-Poisson
model) to analyze the impact of covariates on the daily new cases and fatalities associated
with the COVID-19 pandemic. Finally, we refer to Karlis and Ntzoufras [6] and the R
package bivpois for maximum likelihood estimation, using an Expectation-Maximization
(EM) algorithm, for diagonally inflated bivariate Poisson regression models.
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In recent work, Arnold and Manjunath [7] recommended the bivariate pseudo-Poisson
model to fit data which have one marginal and other conditional of the Poisson form. Due
to its straightforward structure with no restrictions on the conditional mean function, it
allows us to include a variety of dependence structures, including positive and negative cor-
relation. In the following, we introduce explanatory variables acting on the pseudo-Poisson
parameters. Thanks to the simple structure, the concomitant effects can be introduced into
each of the parameters to generate a family of models with a variety of dependence struc-
tures. We refer to Arnold et al. [8] and Veeranna et al. [9] on Bayesian and goodness-of-fit
tests for the bivariate pseudo-Poisson model, respectively, which can also be adapted to
accommodate the presence of concomitant variables. We refer to Arnold et al. [10] and
Filus et al. [11] for further reading on conditional specified models and the triangular
transformations, respectively. Finally, we refer Ghosh et al. [12] on the recent results on
bivariate count model which has both conditionals with a Poisson structure.

We next review the concept of multivariate pseudo-Poisson distributions, as discussed
in Arnold and Manjunath [7].

Definition 1. A k-dimensional random variable X = (X1, X2, . . . , Xk) is said to have a k-
dimensional pseudo-Poisson distribution if there exists a positive constant λ1 such that

X1 ∼P(λ1)

and k − 1 functions {λ` : ` = 2, 3, . . . , k} where, for each `, λ` : {0, 1, 2, . . . }(`−1) → (0, ∞)
such that

X`|X(`−1) = x(`−1) ∼P(λ`(x(`−1))),

where X(`−1) = (X1, . . . , Xl−1)
>. Note that there are no constraints on the forms of the functions

λ`, ` = 2, 3, . . . , k that appear in the definition, save for measurability. In applications, it would
typically be the case that the λ`’s would be chosen to be relatively simple functions depending on a
limited number of parameters.

Definition 2. A random pair of variables (X1, X2) is said to have a bivariate pseudo-Poisson
distribution if there exists a positive constant λ1 such that

X1 ∼P(λ1)

and a function λ2 : {0, 1, 2, . . . } → (0, ∞) such that, for every non-negative integer x1,

X2|X1 = x1 ∼P(λ2(x1)).

The fact that there are no constraints on the λ2(x1) allows us to adapt to a variety of
dependence structures including positive or negative correlation.

Example 1. A judicious choice of a parametric family for λ2(x1) will admit positive and negative
correlation between X1 and X2. For example, if we consider

λ2(x1; γ, δ) = 1 + (2γ− 1)(1− e−δx1). (1)

For δ > 0, the above function will be increasing if γ > 1/2, decreasing if γ < 1/2 and constant if
γ = 1/2. Consequently, X1 and X2 will have a positive correlation if γ > 1/2, negative correlation
if γ < 1/2 and will be uncorrelated if γ = 1/2. A more general model with the same properties
can be obtained by replacing 1− e−δx1 by F(x1; θ), a parameterized family of distribution functions
with support (0, ∞).

2. Incorporating Concomitant Variables

In many (perhaps, most) applications, in addition to the observed values of the
(X1,i, X2,i)’s pairs, there will be available values of arrays of concomitant variables which are
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expected to influence the stochastic behavior of the observed data points. A straightforward
manner in which to incorporate vectors of concomitant variables ui = (u1i, . . . , udi)

> into
the model is as follows:

X1 ∼P

(
λ1 exp

(
α>u

))
(2)

and

X2|X1 = x1 ∼P

(
λ2 exp

(
β>u

)
+ λ3 exp

(
γ>u

)
x1

)
(3)

where λ1 > 0, λ2 ≥ 0, λ3 > 0, α = (α1, . . . , αd)
>, β = (β1, . . . , βd)

> and γ = (γ1, . . . , γd)
>

are d-dimensional unknown parameters.
There are certainly many other manners in which one can model the influence of

concomitant variables. If there is scientific justification for alternative models that do not
introduce the concomitants via log-linear adjustments of the form specified in (2) and (3),
then one should certainly utilize the scientifically appropriate link functions.

Just as in classical multiple regression, it is worthwhile to determine whether a simple
linear dependence assumption for the effect of concomitants will be adequate to fit the data.
In the remainder of this paper, we will focus on the simple model (2) and (3).

3. Moments

In the following, we derive some population moments for the model specified in (2)
and (3).

E(X1) = Var(X1) = λ1 exp
(

α>u
)

E(X2) = λ2 exp
(

β>u
)
+ λ1λ3 exp

(
(γ + α)>u

)

V(X2) = λ2 exp
(

β>u
)
+ λ1λ3 exp

(
(γ + α)>u

)

+λ1λ2
3 exp

(
(2γ + α)>u

)

Cov(X1, X2) = λ1λ3 exp
(
(γ + α)>u

)
.

The marginal dispersion indices are

DI(X1) =
Var(X1)

E(X1)
= 1.

DI(X2) =
Var(X2)

E(X2)
= 1 +

λ1λ2
3 exp

(
(2γ + α)>u

)

λ2 exp
(

β>u
)
+ λ1λ3 exp

(
(γ + α)>u

) .

For λ2 = 0

DI(X2) = 1 + λ3 exp
(

γ>u
)

.

Define

E(X) = (E(X1), E(X2))
>

=

(
λ1 exp

(
α>u

)
, λ2 exp

(
β>u

)
+ λ1λ3 exp

(
(γ + α)>u

))>
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and

Cov(X) =




λ1 exp
(

α>u
)

λ1λ3 exp
(
(γ + α)>u

)

λ1λ3 exp
(
(γ + α)>u

)
λ2 exp

(
β>u

)
+ λ1λ3 exp

(
(γ + α)>u

)
+

+λ1λ2
3 exp

(
(2γ + α)>u

)




By using the definition given in the paper by Kokonendji and Puig [13] page 183, the
bivariate Fisher index of dispersion is given by

GDI(X) =

√
E(X)>Cov(X)

√
E(X)

E(X)>E(X)

which is a case of over-disperson, cf. Arnold and Manjunath [7] page 2311 for the dispersion
index proof for the bivariate pseudo-Poisson distribution.

4. Statistical Inference

In this section, we obtain maximum likelihood estimators (m.l.e.) of parameters λ1, λ2,
λ3, α, β and γ. In addition, we construct the likelihood ratio test for the possible parallelism,
coincidence and significance of each of the regression coefficients.

4.1. Estimation

Let (X1i, X2i)
>, i = 1, 2, . . . , n be a bivariate count sample from the pseudo-Poisson

distribution (in Section 2) and let u1, . . . , un be d-dimensional known covariates. Then, the
log-likelihood function is

log L = −λ1

n

∑
i=1

exp
(

α>ui

)
+

n

∑
i=1

x1i log
(

λ1 exp
(

α>ui

))

−
n

∑
i=1

(
λ2 exp

(
β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

)

+
n

∑
i=1

x2i log

(
λ2 exp

(
β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

)

−
n

∑
i=1

log(x1i!x2i!). (4)

Partial differentiation with respect to each parameters λ1, λ2 and λ3 and equating to
zero gives

−
n

∑
i=1

exp
(

α>ui

)
+

n

∑
i=1

x1i

exp
(

α>ui

)

λ1 exp
(

α>ui

) = 0 (5)

−
n

∑
i=1

exp
(

β>ui

)
+

n

∑
i=1

x2i

exp
(

β>ui

)

λ2 exp
(

β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

= 0 (6)

−
n

∑
i=1

x1i exp
(

γ>ui

)
+

n

∑
i=1

x1ix2i

exp
(

γ>ui

)

λ2 exp
(

β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

= 0. (7)
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Now, taking partial derivatives of log L with respect to αj, β j and γj for j ∈ {1, . . . , d}
and equating to zero yields

−λ1

n

∑
i=1

uji exp
(

α>ui

)
+

n

∑
i=1

x1iuji = 0 (8)

−
n

∑
i=1

uji exp
(

β>ui

)
+

n

∑
i=1

x2iuji

exp
(

β>ui

)

λ2 exp
(

β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

= 0 (9)

−
n

∑
i=1

x1iuji exp
(

γ>ui

)
+

n

∑
i=1

x1ix2iuji

exp
(

γ>ui

)

λ2 exp
(

β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

= 0. (10)

In particular, consider d = 1 and let u1, . . . , un be the observed covariates. The
likelihood equations from (5) to (10) simplify to become (with notation α1 = α, β1 = β and
γ1 = γ)

λ1

n

∑
i=1

exp(αui) =
n

∑
i=1

x1i (11)

n

∑
i=1

exp(uiβ) =
n

∑
i=1

x2i
1

λ2 + λ3 exp(ui(γ− β))x1i
(12)

n

∑
i=1

x1i exp(uiγ) =
n

∑
i=1

x1ix2i
1

λ2 exp(ui(β− γ)) + λ3x1i
. (13)

In the same way,

λ1

n

∑
i=1

ui exp
(

αui

)
=

n

∑
i=1

x1iui (14)

n

∑
i=1

ui exp
(

βui

)
=

n

∑
i=1

x2iui
1

λ2 + λ3x1i exp(ui(γ− β))
(15)

n

∑
i=1

x1iui exp
(

γui

)
=

n

∑
i=1

x1ix2iui
1

λ2 exp(ui(β− γ)) + λ3x1i
. (16)

Note that the equations from (11) to (16) do not yield explicit expressions for the maximum
likelihood estimates. However, one can use numerical methods to solve the system of six
equations with six unknown parameters.

4.2. Likelihood Ratio Test

The general form of a generalized likelihood ratio test statistic is of the form

Λ =
supθ∈Θ0

L(θ)
supθ∈Θ L(θ)

(17)

Here, Θ0 is a subset of Θ and we envision testing H0 : θ ∈ Θ0. We reject the null hypothesis
for small values of Λ.

Now, for the bivariate pseudo-Poisson model, the natural parameter space under
the full model is Θ = {(λ1, λ2, λ3, α, β, γ)> : λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, α ∈ Rd, β ∈ Rd,
γ ∈ Rd}. The m.l.e.’s under the complete parameter space are obtained by taking partial
differentiation of Equation (4) with respect to λ1, λ2, λ3, α, β, γ and equating to zero. We
denote the obtained numerical solution m.l.e.’s by λ̂1, λ̂2, λ̂3 and α̂, β̂, γ̂.
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Remark 1. We used the “maxLik” optimization function in R (in the package “maxLik”) to ob-
tain the m.l.e.’s by numerical solution. This function also allows us to use a different methods
of optimization using algorithms such as Newton–Raphson, Broyden–Fletcher–Goldfarb–Shanno,
Berndt–Hall–Hall–Hausman, Berndt–Hall–Hall–Hausman, Simulated Annealing, Conjugate Gra-
dients and Nelder–Mead methods. In the current paper, we use the Newton–Raphson method to
estimate parameters and to compute their standard errors.

4.2.1. Testing H0 : α = β = γ = 0

In the following, we will construct a likelihood ratio test for testing whether the
observed concomitant does not affect the distribution of (X1, X2). Under the null hypoth-
esis, the natural parameter space is Θ0 = {(λ1, λ2, λ3, α, β, γ)> : λ1 > 0, λ2 ≥ 0, λ3 ≥ 0,
α = 0, β = 0, γ = 0}. Now, taking partial derivatives of Equation (4) with respect to each
parameters λ1, λ2, λ3 and equating to zero yields

−n +
1

λ1

n

∑
i=1

X1i = 0 (18)

−n +
n

∑
i=1

X2i
λ2 + λ3X1i

= 0 (19)

−
n

∑
i=1

X1i +
n

∑
i=1

X1iX2i
λ2 + λ3X1i

= 0. (20)

Equation (18) is readily solved, to obtain the m.l.e. for λ1, namely, λ̂∗1 = X1. The remaining
two Equations (19) and (20) must be solved numerically to obtain λ̂∗2 , λ̂∗3 .

Now let λ̂1, λ̂2, λ̂3 and α̂, β̂, γ̂ be the m.l.e. estimates on unrestricted space. Then, the
likelihood (as defined in Equation (4)) ratio test statistic is

Λ1 =
L(λ̂∗1 , λ̂∗2 , λ̂∗3 , 0, 0, 0)

L(λ̂1, λ̂2, λ̂3, α̂, β̂, γ̂)
. (21)

If n is large, then −2 log(Λ1) may be compared with a suitable χ2
3d percentile in order

to decide whether H0 should be rejected or not.

4.2.2. Testing H0 : α = 0

Here, we are testing that the observed concomitant does not affect the marginal
distribution of X1. Note that under the null hypothesis, the natural parameter space is
Θ0 = {(λ1, λ2, λ3, α, β, γ)> : λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, α = 0, β ∈ Rd, γ ∈ Rd}. Now, again
taking partial derivatives of Equation (4) with respect to parameters λ1,λ2, λ3 & β, γ and

equating to zero gives m.l.e.’s, denoted by λ̂∗1 , λ̂∗2 , λ̂∗3 , β̂
∗

and γ̂∗, respectively. The likelihood
ratio test statistic is

Λ2 =
L(λ̂∗1 , λ̂∗2 , λ̂∗3 , 0, β̂

∗
γ̂∗)

L(λ̂1, λ̂2, λ̂3, α̂, β̂, γ̂)
(22)

If n is large, then −2 log(Λ2) may be compared with a suitable χ2
d percentile in order

to decide whether H0 should be rejected or not.

4.2.3. Testing H0 : β = γ = 0

In this case, we are testing whether the observed concomitant does not affect the
conditional distribution of X2 given X1. Under the null hypothesis, the natural parameter
space is Θ0 = {(λ1, λ2, λ3, α, β, γ)> : λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, α ∈ Rd, β = 0, γ = 0}. Again,
taking partial derivatives of Equation (4) with respect to each parameters λ1, λ2, λ3 & α
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and equating to zero gives to m.l.e.’s denoted by λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗. The likelihood ratio test
statistic is

Λ3 =
L(λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗, 0, 0)

L(λ̂1, λ̂2, λ̂3, α̂, β̂, γ̂)
(23)

If n is large, then −2 log(Λ3) may be compared with a suitable χ2
2d percentile in order

to decide whether H0 should be rejected or not.

4.2.4. Testing H0 : β = 0

Here, we are interested in testing whether the observed concomitant does not affect the
intercept term of the pseudo-Poisson model. Now, under the null hypothesis, the natural
parameter space is Θ0 = {(λ1, λ2, λ3, α, β, γ)> : λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, α ∈ Rd, β = 0,
γ ∈ Rd}. Again, taking partial derivatives of Equation (4) with respect to each parameters
λ1,λ2, λ3 & α, γ and equating to zero gives to m.l.e.’s denoted by λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗, γ̂∗. The
likelihood ratio test statistic is

Λ4 =
L(λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗, 0, γ̂∗)

L(λ̂1, λ̂2, λ̂3, α̂, β̂, γ̂)
(24)

If n is large, then −2 log(Λ4) may be compared with a suitable χ2
d percentile in order

to decide whether H0 should be rejected or not.

4.2.5. Testing H0 : γ = 0

In this case, we wish to determine whether the concomitant does not affect the depen-
dence structure of the pseudo-Poisson model. Thus, under the null hypothesis, parameter
space is Θ0 = {(λ1, λ2, λ3, α, β, γ)> : λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, α ∈ Rd, β ∈ Rd, γ = 0}. Now,
taking partial derivatives of Equation (4) with respect to the parameters λ1,λ2, λ3 & α, β

and equating to zero gives, m.l.e.’s denoted by λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗, β̂
∗
. The likelihood ratio test

statistic is

Λ5 =
L(λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗, β̂

∗
, 0)

L(λ̂1, λ̂2, λ̂3, α̂, β̂, γ̂)
(25)

If n is large, then −2 log(Λ5) may be compared with a suitable χ2
d percentile in order

to decide whether H0 should be rejected or not.
In the next examples, we are interested in testing some hypotheses concerning the re-

lationship between the explanatory and response variables. In particular, we are interested
in testing whether the regression planes are parallel or if they are coincident. We illustrate
the testing procedure using the simple sub-model given by

X1 ∼P

(
exp

( d

∑
j=1

uijαj

))
(26)

and

X2|X1 = x1 ∼P

(
exp

( d

∑
j=1

uijγj

)
x1

)
. (27)
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4.2.6. Testing for Parallelism

In the following, we are interested in testing whether the planes on which the means
lie are parallel. If we set u1i = 1 for i ∈ {1, . . . , n} then the two marginal means are

log(E(X1)) = α1 +
d

∑
j=2

uijαj (28)

log(E(X2)) = α1 + γ1 +
d

∑
j=2

uij(αj + γj). (29)

For the bivariate pseudo-Poisson regression model specified in (26) and (27), now it is
interesting to examine the hypothesis that the planes on which the mean lies are parallel.
This is equivalent to testing for the hypothesis H0 : γj = 0, for j ∈ {1, . . . , d}. Under the
null hypothesis, the pseudo-Poisson regression model will be

X1 ∼P

(
exp

(
α1 +

d

∑
j=2

uijαj

))
(30)

and

X2|X1 = x1 ∼P

(
exp(γ1)x1

)
. (31)

The log-likelihood is

log(LPH) = −
n

∑
i=1

exp
(

α1 +
d

∑
j=2

uijαj

)
+

n

∑
i=1

x1i log
(

exp
(

α1 +
d

∑
j=2

uijαj

))

−
n

∑
i=1

exp(γ1)x1i +
n

∑
i=1

x2i log

(
exp(γ1)x1i

)
−

n

∑
i=1

log(x1i!x2i!).

(32)

Note that testing for parallelism for the model specified in (30) and (31) is equivalent
to testing for the observed concomitant and has no effect on the conditional distribution
of X2 given X1. Now, partial differentiation with respect to γ1 and αj, j ∈ {1, . . . , d} and
equating to zero gives us

log(X̄1) = α1 +
d

∑
j=2

uijαj

n

∑
i=1

x1iuij =
n

∑
i=1

exp
(

α1 +
d

∑
j=2

αjuij

)
, j ∈ {2, . . . , d} (33)

Solving the above d equations leads us to the m.l.e. of αi denoted by ˆα∗Pj, j ∈ {1, . . . , d}
and the m.l.e. of γ1 is

ˆγ∗P1 = log
( n

∑
i=1

x2i log(x1i)−
n

∑
i=1

x1i

)
. (34)

Now, we denote the obtained m.l.e.’s under the complete parameter space by α̂Pj and
γ̂Pj, j ∈ {1, . . . , d}. The likelihood ratio test statistic is

ΛP =
LPH(α̂

∗
P, 0)

LP(α̂P, γ̂P)
,
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where LP(., .) is the likelihood of the model in (26) & (27) and (30) & (31). If n is large, then
−2log(ΛP) may be compared with a suitable χ2

d−1 percentile in order to decide whether
H0 should be rejected or not.

4.2.7. Testing for Coincidence

Here, we assume that the regression relationship does not change from time 1 to time
2 which will occur if the planes on which means lies are coincident. Now, for the given
model in (26) and (27), the two marginal means are

log(E(X1)) =
d

∑
j=1

uijαj (35)

log(E(X2)) =
d

∑
j=1

uij(αj + γj). (36)

The assumption of coincidence leads us to test H0 : γj = 0, for j ∈ {1, . . . , d}. Denote
by α̂∗Cj for j ∈ {1, . . . , d} are m.l.e.’s under the null hypothesis and by α̂Cj and γ̂Cj for
j ∈ {1, . . . , d} are m.l.e.’s under complete parameter space, for . Now, the likelihood ratio
test statistic is

ΛC =
LCH(α̂

∗
P, 0)

LC(α̂P, γ̂P)
,

where LCH(., ) and LC(., .) are likelihood under null and complete parameter space, re-
spectively. If n is large, then −2log(ΛC) may be compared with a suitable χ2

d percentile to
decide whether H0 should be rejected or not.

5. Applications

In the following two subsections, we illustrate a simulation study and give examples
of real-life applications of the bivariate pseudo-Poisson regression model.

5.1. Simulation

We have simulated 2000 data sets of sample size n = 20, 30, 50, 100, 200, 500, 1000 for
the parameter values λ1 = 1, λ2 = 1, λ3 = 4, α1 = 1, α2 = 0, α3 = −1, β1 = 0, β2 = 1,
β3 = 1, γ1 = 0, γ2 = 0 and γ3 = 1 from the pseudo-Poisson regression model. We refer
to Figures 1–4 for the bootstrapped distribution of each of the parameters. The numerical
evidence suggests that as sample size increases, m.l.e.’s approach the true parameter values
with standard errors that are decreasing as the sample size increases.

(a) α1 = 1 (b) α2 = 0 (c) α3 = −1

Figure 1. Boostrapped distribution of α = (α1, α2, α3)
>.
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(a) β1 = 0 (b) β2 = 1 (c) β3 = 1

Figure 2. Boostrapped distribution of β = (β1, β2, β3)
>.

(a) γ1 = 0 (b) γ2 = 0 (c) γ3 = 1

Figure 3. Boostrapped distribution of γ = (γ1, γ2, γ3)
>.

(a) λ1 = 1 (b) λ2 = 1 (c) λ3 = 4

Figure 4. Boostrapped distribution of (λ1, λ2, λ3).

5.2. Real-Life Data
5.2.1. Australian Health Service Utilization Data: 1977–1978

We consider a data set which is mentioned in Islam and Chowdhury [14] that is part of
the Health and Retirement Study (HRS). The data represent the number of conditions ever
had (X1) as mentioned by the doctors and utilization of healthcare services (say, hospital,
nursing home, doctor and home care) (X2). The concomitant variables are Gender, Age,
Hispanic, and Veteran.

The marginal estimated dispersion indices are 0.779 and 1.029. The sample Pearson
correlation coefficient between X1 and X2 is 0.063. We can conclude that marginal X1 is
approximately equi-dispersed and marginal X2 is slightly over-dispersed. Further, the data
were also tested for independence and it was concluded that the assumption was rejected,
cf. Arnold and Manjunath [7] pages 2321–2322.
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We refer to the Table 1 for the log-likelihood values for the following models:

Full Model: The parameters are λ1, λ2, λ3, α = (α1, α2, α3, α4)
>,

β = (β1, β2, β3, β4)
>, γ = (γ1, γ2, γ3, γ4)

>

Mirrored, Model (in which X1 and X2 are interchanged): The parameters are λ1, λ2, λ3,
α = (α1, α2, α3, α4)

>, β = (β1, β2, β3, β4)
>, γ = (γ1, γ2, γ3, γ4)

>

Sub-Model I (λ2 = 0): The parameters are λ1,λ3, α = (α1, α2, α3, α4)
>,

γ = (γ1, γ2, γ3, γ4)
>

Sub-Model II (λ2 = λ3): The parameters are λ1,λ3, α = (α1, α2, α3, α4)
>,

γ = (γ1, γ2, γ3, γ4)
>

Sub-Model II (Mirrored): The parameters are λ1,λ3, α = (α1, α2, α3, α4)
>,

γ = (γ1, γ2, γ3, γ4)
>.

Table 1. Models for the Australian Health Service Utilization Data.

Models No. Parameters Log-Likelihood

Full Model 15 −52,654.13
Mirrored, Full Model 15 −16,229.24
Sub-Model I (λ2 = 0) 11 −16,586.07

Sub-Model II (λ2 = λ3) 11 −16,371.95
Mirrored Sub-Model II

(λ2 = λ3) 11 −17,585.37

The mirrored Full Model fits the data best. For the detailed discussion on the mirrored
model, see Arnold and Manjunath [7] page 2323. In Islam and Chowdhury [14], page 122,
the authors fitted the Poisson–Poisson regression model for the same data set. Note that the
Poisson–Poisson regression model is a sub-model of the pseudo-Poisson regression model
when λ2 = 0. Hence, we conclude that our generalized pseudo-Poisson mirrored model
fits the data better than the Poisson–Poisson regression model. The parameter estimates for
the pseudo-Poisson mirrored model and their standard errors are displayed in Table 2.

Further, we tested for the significance of the regression coefficients. With reference to
Table 3, the computed −2 log λ and compared with χ2 table values with respective degrees
of freedom and the size of 0.05 or 0.10 and concluded that there is not enough evidence to
accept the null hypotheses.

Table 2. Final model estimates and its standard error (s.e.) for the Australian Health Service
Utilization Data.

Parameter m.l.e. s.e.

α1 0.292 0.039
α2 −0.008 0.004
α3 −0.186 0.058
α4 0.140 0.042
β1 −0.132 0.0273
β2 0.016 0.0036
β3 0.038 0.0277
β4 0.053 0.035
γ1 1.636 0.656
γ2 −0.025 0.039
γ3 −0.996 −
γ4 −0.148 0.273
λ1 1.172 0.385
λ2 0.824 0.224
λ3 0.313 1.037
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Table 3. Hypothesis testing for the Australian Health Service Utilization Data.

Hypothesis log Λ∗ − log Λ d.f.

α = β = γ = 0 −113.7227 12
α = 0 −103.483 4

β = γ = 0 −28.26604 8
β = 0 −24.26104 4
γ = 0 −6.857175 4

5.2.2. Road Safety Data

The second data set is on road safety, published by the Department for Transport,
United Kingdom. The data comprise information about personal injury road accidents in
Great Britain and the consequent casualties on public roads. The concomitant variables are
Gender of the driver (Male = 1, Female = 0), Area (Urban = 0, Rural = 1), Accident Severity
(Fatal Severity = 1 else = 0), Accident Severity ( Serious Severity = 1, else = 0), and Light
condition (Daylight = 1, Others = 0).

We refer to Table 4 for the log-likelihood values for the following:

Full Model: parameters are λ1, λ2, λ3, α = (α1, α2, α3, α4, α5)
>,

β = (β1, β2, β3, β4, β5)
>, γ = (γ1, γ2, γ3, γ4, γ5)

>

Mirrored, Model (X1 and X2 are interchanged): parameters are λ1, λ2, λ3,
α = (α1, α2, α3, α4, α5)

>, β = (β1, β2, β3, β4, β5)
>, γ = (γ1, γ2, γ3, γ4, γ5)

>

Sub-Model I (λ2 = 0): parameters are λ1,λ3, α = (α1, α2, α3, α4, α5)
>,

γ = (γ1, γ2, γ3, γ4, γ5)
>

Sub-Model I (Mirrored): parameters are λ1,λ3, α = (α1, α2, α3, α4, α5)
>,

γ = (γ1, γ2, γ3, γ4, γ5)
>

Sub-Model II (λ2 = λ3): parameters are λ1,λ3, α = (α1, α2, α3, α4, α5)
>,

γ = (γ1, γ2, γ3, γ4, γ5)
>

Sub-Model II (Mirrored): parameters are λ1,λ3, α = (α1, α2, α3, α4, α5)
>,

γ = (γ1, γ2, γ3, γ4, γ5)
>.

Table 4. Models for the Road safety data.

Models No. Parameters Log-Likelihood

Full Model 18 −223,743.3
Mirrored Full Model 18 −243,538.7
Sub-Model I(λ2 = 0) 11 −251,937.1

Mirrored Sub-Model I(λ2 = 0) 11 −37,599.63
Sub-Model II(λ2 = λ3) 11 −36,201.52
Mirrored Sub-Model

II(λ2 = λ3) 11 −36,516.22

We refer to Table 4 and conclude that the Full Model fits the road safety data and refer
to Table 5 for the estimates and their standard errors.
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Table 5. Final model estimates and its standard error (s.e.) Road safety data.

Parameter m.l.e. s.e.

α1 1.002 0.006
α2 0.999 0.005
α3 0.999 0.017
α4 0.999 0.005
β1 1.000 0.005
β2 1.004 0.005
β3 1.003 0.005
β4 1.000 0.015
γ1 0.999 0.0036
γ2 1.005 0.004
γ3 1.355 –
γ4 1.319 –
λ1 1.010 –
λ2 1.105 –
λ3 −0.078 0.007

6. Concluding Remarks

The bivariate pseudo-Poisson model with its straightforward structure with no re-
strictions on the conditional mean function allows us to model a variety of dependence
structures, including positive and negative correlation. Introducing explanatory variables
in such models will be a useful additional to the toolkit for modelers dealing with bivariate
count data which have positive or negative correlation. In the current note, we explored
distributional and inferential aspects of such models and also included a simulation and
real-life data applications. We emphasize the advantage of considering the current model
over other available count regression models in Section 5.2. The bivariate pseudo-Poisson
regression model has a simple structure, straightforward parameter estimation and fast
computation, and will deserve a place in the analysis of count data sets with concomitants.
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Abstract: The primary objective of this article is to present an adaptive parameter VAR-KF technique
(APVAR-KF) to forecast stock market performance and macroeconomic factors. The method exploits
a vector autoregressive model as a system identification technique, and the Kalman filter is served as
a recursive state parameter estimation tool. A further development was designed by incorporating
the GARCH model to quantify an automatic observation covariance matrix in the Kalman filter step.
To verify the efficiency of our proposed method, we conducted an experimental simulation applied
to the main stock exchange index, real effective exchange rate and consumer price index of Thailand
and Indonesia from January 1997 to May 2021. The APVAR-KF method is generally shown to have
a superior performance relative to the conventional VAR(1) model and the VAR-KF model with
constant parameters.

Keywords: Kalman filter; VAR; GARCH

1. Introduction
1.1. Motivation and Related Work

Due to an unprecedented increase in the uncertainty of economic and financial market
activities, independent investors and policy makers require effective forecasting tools in or-
der to facilitate more accurate decision plans. Numerous forecasting methods, ranging from
univariate to multivariate time series models, have been developed to forecast stock market
pricing and macroeconomic variables. Some of the most notable univariate techniques
include autoregressive integrated moving average (ARIMA) models [1,2], artificial neural
networks (ANNs) [3,4] and support vector machines (SVMs) [5,6]. In practice, economics
and finance are correlated disciplines in which a change in one activity can cause uncer-
tainty in the other. Macroeconomic fundamentals reflect the general economic environment
and can influence the degree of variation in future cash flow in a stock market. Conversely,
stock prices are often used as leading indicators that aggregate information about the
economy’s direction. The existence of an association between macroeconomic indicators
and stock prices has been extensively verified by several research studies [7–9]. Therefore,
instead of using univariate time series forecasting techniques, multivariate time-series
models are more suitable approaches for the predictability of macroeconomic variables, as
well as stock indices.

Vector autoregressive (VAR) [10] models are multivariate time series techniques in
which the dynamics of state variables can be expressed as a linear combination of past
realizations. They are predominantly utilized for structural analysis and macroeconomic
forecasting purposes because of their implementation’s simplicity and flexibility. Some
studies that used VAR models for time series prediction include Suhasono et al. [11], who
compared the forecasting performance between vector error correction modeling (VECM)
and VAR models for ASEAN stock price indices. Öğünç [12] forecasted the inflation,
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nominal exchange rate and interest rate in Turkey through VAR variants. However, despite
all of their advantages, the linearity assumption underlying VAR models can potentially
lead to biased estimates, especially for a highly volatile time series. Several improvements
for VAR models have been put forward to handle the inherent nonlinearity structure in data.
One extensively used technique is to introduce drifting autoregressive coefficients to capture
the presence of nonlinear effects in lagged dependent models. A time-varying parameter
vector autoregression (TVP-VAR) model with stochastic volatility is a VAR-based approach
in which the parameter estimation is calculated via the Markov chain Monte Carlo (MCMC)
sampling algorithm [13]. D’Agostino et al. [14] compared the forecasting accuracy of nine
time series methods in US inflation, unemployment and interest rates over the period of
1970–2007. They concluded that the TVP-VAR is the only method that can forecast all three
variables accurately. Bekiros et al. [15] reported that using the TVP-VAR technique leads
to a better forecasting ability than benchmark autoregression and random walk models
when predicting the oil price movement with economic policy uncertainty being included.
Kumar [16] examined the forecast ability of the ARIMA, VAR and TVP-VAR methods to
predict the daily exchange rates of the Indian rupee against the U.S. dollar. The empirical
results show that the TVP-VAR model outperforms other competing approaches. However,
in the process of computing the posterior distribution of parameters of the traditional
TVP-VAR model, the MCMC sampling algorithm requires a heavy computational burden
in high-dimensional cases. To attenuate the curse of dimensionality, Korobilis [17] adopted
a stochastic search algorithm using the Gibbs sampler to select potential variables that have
a larger contribution to the forecasting accuracy. Many researchers make use of Bayesian
data assimilation techniques, preferably the Kalman filtering (KF) [18], for the parameter
estimation problem. Bekiros [19] exploited the KF algorithm and an extension of the
univariate methodology framework for the parameter estimation in the TVP-VAR model to
predict the monthly macroeconomic factors of the EU economy. Koop and Korobilis [20]
introduced forgetting factors in the TVP-VAR model with parameters being recursively
updated through the KF approach. Their purposed method leads to the scalability of the
state-space estimator, and ultimately aids in a dimensionality reduction.

As far as the relationship between stock prices and macroeconomic fundamentals
is concerned, it is accordingly plausible to include financial factors in macroeconomic
forecasting and vice versa. Nevertheless, researchers tend to not forecast these variables
simultaneously via multivariate time series models due to their different observed fre-
quencies. In this work, we will present the hybrid VAR and KF method for the economic
and financial trend prediction based on the monthly data. Motivated by Bekiros [19] and
Koop and Korobilis [20], the model coefficients were sequentially updated through the joint
state-parameter KF procedure rather than employing the filtering technique, particularly
for the parameter estimation. The use of the KF model also involves the predetermination
of noise covariances, where they are mostly constructed in an ad hoc manner that cannot ac-
curately quantify model uncertainties under complex circumstances. Meanwhile, economic
and financial time series are typically characterized by volatility clustering properties, or
heteroscedasticity. We therefore enhanced our model with heteroscedastic noise by using a
statistical technique to model an observation error covariance matrix and an average of
sample covariances for a process error covariance matrix.

1.2. Contribution

The objectives of this paper are:

1. We present a forecasting technique, the adaptive parameter VAR-KF (APVAR-KF)
method, in which the state-space equations are constructed through the VAR model
and the optimal state and parameter estimates are achieved using the KF approach.

2. A generalized autoregressive conditional heteroskedasticity (GARCH) model was
used to generate a measurement noise covariance matrix in the KF step in case of the
presence of heteroscedasticity.
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3. The estimation and prediction performance of the APVAR-KF method was conducted
and compared with VAR-based models with time-invariant parameters for the main
stock exchange index and macroeconomic indicators in two selected emerging market
economies: Thailand and Indonesia.

1.3. Article Structure

The remainder of this paper is organized as follows. Section 2 presents a detailed
description of the proposed model, the APVAR-KF method, where a measurement noise
covariance matrix was constructed through the multivariate GARCH with BEKK specifi-
cation. Section 3 provides a comparative investigation of the estimation and prediction
performances of the APVAR-KF and benchmark models for stock exchange index, real
effective exchange rate and consumer price index of Thailand and Indonesia. Conclusions
and discussion are drawn in Section 4.

2. Methodology
The Adaptive Parameter VAR-KF Model (APVAR-KF)

Consider the vector autoregressive (VAR) model for a stationary n-dimensional state
vector at time instant k, x(k) ∈ Rn. The VAR model of order p, denoted by VAR(p), has the
form [10]

x(k) = c + B1x(k− 1) + B2x(k− 2) + · · ·+ Bpx(k− p) + η(k) (1)

where c ∈ Rn is an intercept vector, Bi for i = 1, 2, . . . , p is an n× n matrix of autoregressive
coefficients and η is an n-dimensional error vector.

Specifically, we assume the VAR model of order one, VAR(1), which can be expressed as

x(k) = c + Bx(k− 1) + η(k) (2)

Equation (2) is treated as a state-space dynamical system in the KF method. This
equation also signifies the validity of the linearity assumption of the KF through the VAR
process. Let y(k) be the q-dimensional observation vector, which is related to the model
state by the following equation:

y(k) = Hx(k) + µ(k) (3)

where H ∈ Rq×n is an observation operator and µ ∈ Rq is an observational error vector.
To introduce time-variation parameters into the state Equation (2), we assume that the
parameter transition equations follow a random walk process; therefore, for i, j = 1, 2, . . . , n,

ci(k) = ci(k− 1) + δi(k− 1), bij(k) = bij(k− 1) + εij(k− 1) (4)

where ci and bij for i, j = 1, 2, . . . , n are coefficient components of matrices c and B, re-
spectively, and δi and εij represent random noises, which are assumed to have the same
distribution as ηi.

By treating the parameters as additional state variables, they are concatenated to
the model state vector in order to form a single vector z(k) = [x(k), c(k), β(k)], where
c(k) = [c1(k), c2(k), . . . , cn(k)] and β(k) = [b11(k), b12(k), . . . , bnn(k)]. The modified state
propagation equation becomes

z(k) = B̃(k)z(k− 1) + η̃(k) (5)

where η̃(k) is the zero-mean white noise with covariance matrix Q. The model coefficient
matrix is formulated as

B̃(k) =




B(k− 1) In 0
0 In 0
0 0 In2



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where Ij denotes the j× j identity matrix and 0 is a zero matrix of appropriate size. The
elements of B(k− 1) are the parameter estimates from the previous time step, where the
elements of B(1) are computed by the least square method.

The observation equation is subsequently modified as

y(k) = H̃z(k) + µ(k) (6)

where the observation operator H̃ = [H 0] ∈ Rn×(n2+2n) and the observation noise term
µ(k) ∈ Rn is assumed to be an independent and identically distributed observational
Gaussian noise with associated error covariance matrix R. Since a volatility persistence is
usually detected in financial and macroeconomic time series, we therefore incorporated
a volatility feature through the observational covariance matrix R, which was modeled
by the generalized autoregressive conditional heteroscedasticity (GARCH) process [21].
In particular, the multivariate BEKK [22] representation was selected to parametrize the
GARCH model as the matrix R is guaranteed to be positive definite with unrestricted
parameterizations. The BEKK(1,1) specification is written as

R(k) = D′D + A′µ(k− 1)µ′(k− 1)A + M′R(k− 1)M (7)

where D is restricted to be a lower triangular matrix representing constant components
and A denotes an ARCH coefficient matrix that describes the effects of both own and
cross fluctuations. The coefficient matrix M characterizes the GARCH effects reflecting
the degree of its own and cross volatility persistence. To estimate the elements of these
parameter matrices, we made use of the quasi-maximum likelihood [23] estimation, in
which the likelihood function is given by

L(θ) =
T

∑
k=1

(
−n

2
ln(2π)− 1

2

(
ln |R(k; θ)|+ µ′(k)R−1(k; θ)µ(k)

))
(8)

where T is the number of observations and θ denotes an unknown parameter vector.
Similar to the KF process, the APVAR-KF method comprises two steps: the forecast

(prediction) and analysis (update) steps. In the forecast step, the aggregated state vector
z(k) is propagated through the governing Equation (5). The resulting estimates are subse-
quently integrated with observation information in the analysis step to produce the optimal
estimates. Superscripts f and a stand for forecast and analysis estimates, respectively, and
we assumed the initial state estimate, z f (1), to be a Gaussian vector of zero mean with
corresponding error covariance matrix P f (1). A description of how the error covariance
matrices P f (1) and Q in the KF step are attained is given in Section 3.

The Forecast Step
Given that the analysis mean za(k − 1) and its corresponding analysis covariance

matrix Pa(k− 1) are available, the forecast state z f (k) can be obtained through

z f (k) = B̃(k)za(k− 1) (9)

and the forecast covariance matrix

P f (k) = B̃(k)Pa(k− 1)B̃′(k) + Q. (10)

The Analysis Step
The analysis state za(k) and analysis covariance Pa(k) are expressed as

za(k) = z f (k) + G(y(k)− H̃z f (k)), (11)

Pa(k) = (I − GH̃)P f (k), (12)
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where the Kalman gain matrix, G, determines the weight attributed to recent measurements,
and is given by

G = P f (k)H̃′(H̃P f (k)H̃′ + R(k))−1. (13)

3. Data and Simulation Results

To evaluate the efficiency of our proposed method, the monthly historical data used in
this study include the stock market index, real effective exchange rate (REER) and consumer
price index (CPI) of Thailand and Indonesia spanning from January 1997 to May 2021. The
stock exchange of Thailand (SET) index data were collected from the Stock Exchange of
Thailand website [24] and the REER and CPI data were acquired from the Bank of Thailand
website [25], whereas the Jakarta stock exchange (JKSE) composite index was obtained from
the investing.com database [26] and its REER and CPI data were taken from the Federal
Reserve Economic Data (FRED) statistics [27]. The dataset is divided into two groups: the
data from January 1997 to March 2021 were utilized for the training phase and data from
April 2021 to May 2021 were treated as the testing phase. These raw data were transformed
into monthly returns by taking the first logarithm difference. A z-score normalization [28]
was subsequently applied to these return time series in order to adjust the range variation
to comparable scales. The normalized returns were constructed by extracting the average
from attribute values and dividing by the corresponding standard deviation.

3.1. Granger Causality Analysis

This section demonstrates an assessment of the interactions between different pairs
of time series using the bivariate Granger causality test [29]. This analysis helps us to
determine whether lagged values of one variable are linearly informative in forecasting
another variable. Given two stationary variables x1(k) and x2(k) at time instant k, the
bivariate Granger causality test follows a pair of regression equations:

x1(k) =
J

∑
j=1

ajx1(k− j) +
J

∑
j=1

bjx2(k− j) + u1(k) (14)

x2(k) =
J

∑
j=1

cjx1(k− j) +
J

∑
j=1

djx2(k− j) + u2(k) (15)

where u1 and u2 are random disturbances and J is the maximum lag order. From the
equations above, a unidirectional causality from the variable x2 to variable x1 is indicated
if ∑k

j=1 bj in Equation (14) is significantly different to zero by F-statistics whereas ∑k
j=1 cj in

the Equation (15) is not significant.
Table 1 presents the results of the Granger causality test for the direction of causality

(F-statistics and p-value in parenthesis) among the normalized returns of the SET index,
REER and CPI. The results show that the CPI does Granger-cause the SET index and REER
at a 1% level of significance. Although the null hypothesis, which states that REER does
not Granger-cause the CPI and SET index, is accepted, the null hypothesis in the opposite
direction is rejected with a significance level of 1%. In the case of Indonesia, Table 2 reveals
a two-way directional relationship between the CPI and JKSE index, and also between CPI
and REER at a 5% level of significance. In addition, there is a unidirection causality running
from the JKSE index to REER. With regard to the causality direction, the sufficient condition
for the cointegration between two variables is that the Granger causality must exist in at
least one direction [30]. Since our results indicate unidirectional causality between each
pair of variables, it therefore suggests that all factors can be included in the model.

Table 3 presents some descriptive statistics of the monthly normalized return series.
All normalized return series for both Thailand and Indonesia are highly leptokurtic and
skewed with respect to the normal distribution, as indicated by the kurtosis and skewness
measures. These results can be further confirmed by the Jarque–Bera test in which the
normality hypothesis is rejected at a 1% significant level for all three variables. Similarly, the
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ARCH test rejects the null hypothesis of homoscedasticity at a 1% level of significance for all
variables except the JKSE index with a 5% level of significance. This suggests the validation
of the GARCH model in capturing the volatility interaction among variables, resulting in
a plausible assumption of the observational covariance matrix in Equation (7). Since the
VAR approach requires the data input to be stationary prior to the model implementation
to avoid spurious regressions, the presence of unit roots was examined by a standard
augmented Dickey–Fuller (ADF) test [31,32]. The ADF test well rejects the null hypothesis,
with a statistical significance of 1% for every variable, which provides strong evidence of
stationarity in the normalized return series for both countries.

Table 1. Pairwise Granger causality test of the normalized return series of Thailand.

Dependent Variable
F-Statistics Test

SET Index (Prob. Values) REER (Prob. Values) CPI (Prob. Values)

SET index 21.2505 1.6713
(0.0000) *** (0.1971)

REER 1.0583 0.2262
(0.3045) (0.6347)

CPI 10.6046 15.7289
(0.0013) *** (0.0000) ***

Notes: *** denotes significance at the 1%.

Table 2. Pairwise Granger causality test of the normalized return series of Indonesia.

Dependent Variable
F-Statistics Test

JKSE Index (Prob. Values) REER (Prob. Values) CPI (Prob. Values)

JKSE index 21.0083 4.3218
(0.0000) *** (0.0385) **

REER 0.5960 93.2368
(0.4408) (0.0000) ***

CPI 6.5980 5.8258
(0.0107) ** (0.0164) **

Notes: ** and *** denote significance at the 5% and 1%, respectively.

Table 3. Descriptive statistics of normalized return series.

Variable Stock Index REER CPI

Thailand
Skewness −0.4037 −1.7799 −0.8021
Kurtosis 6.1646 25.6633 11.7886
Maximum 3.5321 5.5006 4.6552
Minimum −4.5314 −7.9811 −5.8710
Jarque–Bera 128.8900 *** 6359.4434 *** 964.3984 ***
ARCH test 8.1017 *** 37.2224 *** 29.8895 ***
ADF −11.2860 *** −11.1884 *** −9.4615 ***

Indonesia
Skewness −1.2042 −3.5107 4.7035
Kurtosis 8.6444 39.2024 31.6584
Maximum 3.1898 3.6852 8.6086
Minimum −5.0722 −9.8602 −1.3426
Jarque–Bera 455.0480 *** 16432.3347 *** 10993.3566 ***
ARCH test 5.7372 ** 20.9877 *** 47.8145 ***
ADF −12.2780 *** −12.8950 *** −7.2100 ***

Notes: ** and *** denote significance at the 5% and 1%, respectively.
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3.2. Results

A prior requirement for a Kalman-filter-based recursive algorithm is the specifica-
tion of an initial state vector, as well as its error covariance matrix. At the initial time
instant k = 1, we used the actual initial data during our sample period along with the
coefficients estimated from the ordinary least square method to be the elements of the
initial state vector, z f (1). The corresponding error covariance matrix P f (1) is assumed to
be equal to the process noise covariance matrix Q, which is often assigned to be arbitrarily
constant. We estimated the matrix Q through an average of sample covariances of the
state prediction errors. The reference state vector at time instant k, zref(k), corresponds
to a collection of the actual data and parameters evaluated from the VAR(1) model, and
this gives zref(k) = [xref(k), cref(k), βref(k)]. The noisy state-parameter vector z(k) was sam-
pled from a Gaussian distribution with mean equal to zref(k), and the standard deviation
was set to 25% of the reference values. The matrix Q was thus constructed using the
following estimation:

Q =
1
m

m

∑
k=1

(zref(k)− B̃(k)z(k− 1)(zref(k)− B̃(k)z(k− 1))T (16)

where m is the number of time instants. There are three sample periods used to approximate
the matrix Q, ranging from the first 12 months up to 60 months: January 1997–December
1997, January 1997–December 1999 and January 1997–December 2001. The resulting matrix
Q applied to the APVAR-KF method was calculated on a statistical basis through the use
of Monte Carlo simulations; that is, the matrix Q was determined by taking an average of
over 50 experiments for each time instant. The results presented for the APVAR-KF method
were obtained from the best-tuned values of the matrices P f (1) and Q, which relied on the
optimal achievable values of MAPE in the training period.

To demonstrate the performance of the APVAR-KF method in estimation and pre-
diction, the classical vector autoregressive model of order one, VAR(1), was taken as a
benchmark scheme. Meanwhile, an augmentation between the VAR model and KF with
fixed model coefficients in Equation (2), the VAR-KF method, was additionally computed
to illustrate the effects of a two-step procedure with and without time-variant model pa-
rameters upon the forecasting accuracy. The mean absolute percentage error (MAPE) and
root mean square error (RMSE) were used as the performance evaluation indicators. They
are formulated as follows:

MAPE =
1
T

T

∑
k=1

(∣∣∣∣
z̃(k)− ẑ(k)

z̃(k)

∣∣∣∣× 100
)

and

RMSE =

√√√√ 1
T

T

∑
k=1

(z̃(k)− ẑ(k))2

where T is the total number of simulations, z̃(k) represents the actual measured data and
ẑ(k) denotes the estimated value.

Table 4 displays the estimation efficiency during the training period through the MAPE
and RMSE statistics. According to MAPE and RMSE measures, both hybrid models have a
superior estimation performance to the single model with lower MAPE and RMSE values
for all variables of both countries. In the case of Thailand, the average MAPE values of
VAR(1), VAR-KF and APVAR-KF models are 2.3460%, 2.0556% and 1.4089%, respectively.
The VAR-KF approach reduces MAPE and RMSE values by over 10% compared to the
benchmark model, whereas those of APVAR-KF by up to 40%. The same estimation pattern
can be seen for Indonesia, where the overall improvement when using hybrid models
is above 40%. These findings suggest that, by augmenting the Kalman filter in the VAR
model, a significant improvement in the estimation accuracy is attained. When comparing
among hybrid models, the APVAR-KF model exhibits better MAPE and RMSE values
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for all variables. The APVAR-KF model improves the quality of the overall estimation
by approximately 30% for Thailand and approximately 6% for Indonesia regarding the
MAPE values.

Table 4. Mean absolute percentage errors and root mean square errors during the training phase
(January 1997–March 2021).

Variable
MAPE RMSE

VAR(1) VAR-KF APVAR-KF VAR(1) VAR-KF APVAR-KF

Thailand
SET index 5.5705 5.0223 3.4655 54.8660 50.5360 34.8130
REER 1.1547 0.8920 0.5892 2.0094 1.5422 1.1419
CPI 0.3129 0.2525 0.1721 0.4243 0.3529 0.2415

Average error 2.3460 2.0556 1.4089 31.6991 29.1913 20.1106

Indonesia
JKSE index 5.2524 2.8055 2.7349 158.7900 70.9540 69.4390
REER 2.7593 1.6239 1.4992 3.3597 2.3697 2.2680
CPI 0.5095 0.3356 0.2279 0.4702 0.2827 0.1906

Average error 2.8404 1.5883 1.4873 91.6984 40.9885 40.1122

To assess the predictability using initial states acquired from three models, the state
estimates in March 2021 were treated as the initial state vector for the underlying dy-
namical Equation (2) to forecast the state values of April 2021 and May 2021 (the testing
phase). There are two different scenarios with respect to the model coefficients. The coeffi-
cients remain unchanged from the training phase for the VAR(1) and VAR-KF approaches,
whereas those that relied on the APVAR-KF method are based on the parameter estimates
in March 2021.

Table 5 demonstrates the forecasting performance in April 2021 of three models in
terms of MAPE and RMSE criteria. The hybrid models in comparison with the VAR(1)
model for Thailand yield a higher forecasting accuracy for all factors, with the average
MAPE being 0.8303% and 0.6213%. These are, respectively, equivalent to a 18.8695%
and 39.2900% improvement for the VAR-KF and APVAR-KF models, with the SET index
being best improved. Similarly, both VAR-KF and APVAR-KF models achieve a better
performance than the benchmark method for Indonesia, with a considerable improvement
in the REER variable. Most errors attained from the APVAR-KF model are less than those
of the VAR-KF method, except the REER variable of Indonesia, where the errors of using
time-variant parameters are slightly greater than using fixed parameters. This indicates that
the first time step prediction can predominantly be improved by exploiting the adjustable
model parameters.

Table 5. Mean absolute percentage errors and root mean square errors of April 2021.

Variable
MAPE RMSE

VAR(1) VAR-KF APVAR-KF VAR(1) VAR-KF APVAR-KF

Thailand
SET index 1.0765 0.6936 0.1845 17.0420 10.9800 2.9212
REER 0.6606 0.6199 0.5341 0.7087 0.6650 0.5730
CPI 1.3333 1.1776 1.1454 1.3397 1.1832 1.1509

Average error 1.0235 0.8303 0.6213 9.8780 6.3876 1.8427

Indonesia
JKSE index 0.9919 0.5629 0.4873 59.4720 33.7510 29.2170
REER 0.9884 0.0666 0.0844 0.8703 0.0586 0.0743
CPI 0.3198 0.3065 0.2595 0.3773 0.3616 0.3062

Average error 0.7667 0.3120 0.2771 34.3405 19.4873 16.8694
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Table 6 reports the prediction efficiency of May 2021 forecasts. The VAR-KF and
APVAR-KF models continue to outperform the traditional VAR(1) method for Thailand,
with lower errors for all variables. By comparing among different hybrid algorithms, the
APVAR-KF model provides better results for the REER and CPI, with a lower average
MAPE of 0.8725%. Nevertheless, a different result arises for Indonesia, where the REER
forecasts of the two-step methods are worse than the VAR(1) model despite the fact that the
JKSE index and CPI errors achieved by the APVAR-KF technique are lowest among all of
the individual algorithms. The predicted values for June 2021 are not shown in this report,
considering that the error trends are similar to those in May 2021. The APVAR-KF model
remains providing superior predictions for all variables of Thailand and for the main stock
market price index of Indonesia.

Table 6. Mean absolute percentage errors and root mean square errors of May 2021.

Variable
MAPE RMSE

VAR(1) VAR-KF APVAR-KF VAR(1) VAR-KF APVAR-KF

Thailand
SET index 0.8830 0.2855 0.3552 14.0720 4.5503 5.6597
REER 2.4384 2.3650 2.2208 2.5718 2.4943 2.3423
CPI 0.2959 0.0811 0.0415 0.2946 0.0807 0.0413

Average error 1.2058 0.9105 0.8725 8.2608 2.9963 3.5365

Indonesia
JKSE index 2.8246 2.3965 2.2698 167.9900 142.5300 135.0000
REER 0.0547 1.2434 1.4632 0.0486 1.1049 1.3002
CPI 0.5235 0.5752 0.5049 0.6197 0.6809 0.5977

Average error 1.1343 1.4050 1.4126 96.9897 82.2931 77.9467

Figures 1 and 2 depict a visual comparison between the normalized return estimates
and actual data of all three variables of Thailand and Indonesia from July 2018 to May 2021.
The plots of actual data and their corresponding estimates over the whole study period can
be seen in Figures A1 and A2. The discrepancy between the estimated values derived from
all approaches and actual data appears to be minor over the tranquil period. In the course
of the COVID-19 outbreak, when drastic changes in economic and financial situations
took place, the APVAR-KF method performs best in capturing these abrupt changes in all
variables, followed by the VAR-KF and VAR(1) models. These results may reflect that a
variation in parameters allows the model to better track the actual data, especially during
times of high uncertainty. This may be due to that fact that the coefficients of a model
system are sequentially updated using recent observations, causing the underlying model
to be able to forecast abruptly changing trends. For Indonesia, it appears that the forecasting
results derived from the hybrid models exhibit similar increasing trends to the REER actual
data, with relatively lower slopes during the testing phase, whereas the opposite trend
direction pattern is found in the VAR(1) method. Although the results in Table 6 indicate
a better REER forecasting ability when using the VAR(1) model, a further examination of
how the trend direction changes can be of importance.
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(a)

(b)

(c)

Figure 1. A comparison between the actual data and the estimated values from three methods for
Thailand during July 2018–May 2021. (a) Normalized SET index return; (b) normalized real effective
exchange rate return; (c) normalized CPI return.

(a)

Figure 2. Cont.
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(b)

(c)

Figure 2. A comparison between the actual data and the estimated values from three methods for
Indonesia during July 2018–May 2021. (a) Normalized JKSE index return; (b) normalized real effective
exchange rate return; (c) normalized CPI return.

4. Conclusions and Discussion

Forecasting economic and financial time series can have substantial implications for
the implementation of monetary policies and regulations and for an individual investor’s
investment decision. This paper is designed to model and forecast the complex interactions
between the economic factors and financial market by introducing the hybrid APVAR-KF
model for joint state parameter estimation. The method combines the Kalman filter with
the VAR model, in which, the observational error covariance matrix is implemented using
the multivariate BEKK-GARCH representation.

In addition to providing the best estimation performance, the APVAR-KF technique
tends to offer satisfactory short-term predictions and future trend patterns. As presented in
Figures A1 and A2, the coefficient of determination (R-square) values between the observed
data and the estimates of the APVAR-KF model range from 0.6109 to 0.8713, or 61.09% to
87.13%, which suggests that our proposed model has the ability to capture the dynamics of
economic and financial time series.

In this regard, the benefits of the APVAR-KF model in estimation and prediction
may be attributed to two reasons. The first reason is that this is a two-step process in
which the Kalman filter provides a mechanism that can extract discriminative information
from the training data. Another reason is that adaptive parameters can enhance the
hybrid performance, creating a plausible model structure that adjusts to a change in state
characteristics over time. This is considerably beneficial, especially when an unexpected
fluctuation caused by economic instability occurs. Despite the favorable results of this
study, the assumption of lag one in the VAR step can be a limitation of the method. The
VAR model specification with higher lag orders and an inclusion of more macro factors,
can be of particular interest. However, this is an apparent tradeoff problem between a more
elaborate model and a heavy computational burden due to a large dimension of the state
space. Ensemble-based filters that allow for the error covariance matrices to be computed
without a moment closure assumption can potentially provide computational feasibility
and efficiency. Due to the sensitivity of the process noise covariance Q to the prediction
performance of the APVAR-KF approach, another challenge concerns the selection criteria
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of the matrix Q. In this work, we used the sample covariance calculated from a particular
time period to represent the process noise statistics. Instead, other techniques, including
the adaptive Q algorithm, covariance inflation and some rigorous optimization approaches,
can be adopted, especially under some complex and dynamic circumstances.
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(a)
Figure A1. Cont.
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(b)

(c)

Figure A1. Plots of the actual data and the estimated values from three methods for Thailand.
(a) Normalized SET index return; (b) normalized real effective exchange rate return; (c) normalized
CPI return.

(a)

(b)

Figure A2. Cont.
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(c)

Figure A2. Plots of the actual data and the estimated values from three methods for Indonesia.
(a) Normalized SET index return; (b) normalized real effective exchange rate return; (c) normalized
CPI return.
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Abstract: The usefulness of (probability) distributions in the field of biomedical science cannot be
underestimated. Hence, several distributions have been used in this field to perform statistical
analyses and make inferences. In this study, we develop the arctan power (AP) distribution and
illustrate its application using biomedical data. The distribution is flexible in the sense that its
probability density function exhibits characteristics such as left-skewedness, right-skewedness, and J
and reversed-J shapes. The characteristic of the corresponding hazard rate function also suggests
that the distribution is capable of modeling data with monotonic and non-monotonic failure rates.
A bivariate extension of the AP distribution is also created to model the interdependence of two
random variables or pairs of data. The application reveals that the AP distribution provides a better
fit to the biomedical data than other existing distributions. The parameters of the distribution can
also be fairly accurately estimated using a Bayesian approach, which is also elaborated. To end the
study, the quantile and modal regression models based on the AP distribution provided better fits to
the biomedical data than other existing regression models.

Keywords: quantile regression; modal regression; biomedical; unit distribution; skewed data

1. Introduction

Parametric statistical techniques have been used in biomedical studies to conduct
analyses and draw conclusions. These parametric analyses, however, are constrained
by some assumptions about (probability) distributions. Thus, the task of selecting an
appropriate distribution for such analyses is incredibly essential. In addition, it is nontrivial,
as the use of an incorrect distribution will result in misleading inferences. Knowing which
distribution to use in biomedical modeling has become increasingly important as it is
used to develop new parametric regression models for modeling the relationship between
endogenous variables and a set of exogenous variables. These new regression models often
provide a good fit with minimal loss of information compared to the existing ones. This
has triggered new interest in developing regression models using extended or modified
forms of existing distributions.

Among the distributions used for developing the regression models, those that are de-
fined on the unit interval have received much attention due to the small loss of information
they offer in modeling data on this interval. Some of these distributions include the unit
folded normal distribution [1], bounded truncated Cauchy power exponential distribu-
tion [2], unit exponentiated Fréchet distribution [3], log XLindley (LXL) distribution [4], unit
Chen distribution [5], unit Burr XII distribution (UBXII) [6], unit generalized half-normal
distribution [7], unit Burr III (UBIII) distribution [8], unit Lindley distribution [9], unit
Gompertz distribution [10], unit improved second degree Lindley (UISDL) distribution [11],
unit Weibull distribution [12], and exponentiated Topp–Leone distribution [13].
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Despite the existence of these distributions, it is worth noting that the behavior of
humans or organisms is nondeterministic, and a single distribution cannot be selected in
all situations to describe or model these traits. Therefore, we develop a new distribution
called the arctan power (AP) distribution for modeling data on the unit interval based on
the following motivations:

1. Develop a flexible unit distribution that is able to model data that are left-skewed,
right-skewed, symmetric, J, and reversed-J shapes.

2. Develop a unit distribution capable of modeling data with increasing, bathtub, and
modified upside-down bathtub hazard rate functions (HRFs).

3. Develop quantile regression for modeling response variables that are skewed or
contain extreme values.

4. Develop modal regression for modeling response variables that are asymmetric or
heavy-tailed.

The article is organized into eight sections. Section 2 describes the development
of the AP distribution. Section 3 presents their statistical properties. Section 4 shows
the construction of a possible bivariate extension of the AP distribution. Nine frequentist
approaches to estimating the involved parameters are proposed in Section 5. The frequentist
and Bayesian univariate applications of the distribution are given in Section 6. Section 7
is devoted to the quantile and modal regressions based on the AP distribution and their
applications. The conclusion of the study is presented in Section 8.

2. Development of AP Distribution

Suppose that a random variable, X, follows the arctan uniform (AU) distribution.
Then, according to [14], the cumulative distribution function (CDF) and probability density
function (PDF) of X are, respectively, given by

FX(x; α) =
arctan(αx)
arctan(α)

, α > 0, x ∈ (0, 1) (1)

and
fX(x; α) =

α

arctan(α)(1 + α2x2)
, x ∈ (0, 1). (2)

The proposed AP distribution is obtained using the power transformation
Y = X1/β, β > 0. The motivations for introducing the power parameter, β, are to im-
prove the tail properties of the new distribution, making it capable of handling both
monotonic and non-monotonic HRFs. Other researchers have used the power transfor-
mation approach to modify existing continuous distributions. See, for instance, [15–17].
Hence, using standard mathematical developments, the CDF of Y is obtained as

FY(y; α, β) = FX(yβ; α)

= arctan(αyβ)
arctan(α) , α > 0, β > 0, y ∈ (0, 1).

(3)

The PDF and HRF are, respectively, given by

fY(y; α, β) =
αβyβ−1

arctan(α)(1 + α2y2β)
, y ∈ (0, 1) (4)

and

hY(y; α, β) =
αβyβ−1

(arctan(α)− arctan(αyβ))(1 + α2y2β)
, y ∈ (0, 1). (5)

Basically, when α→ 0+ , the PDF of the AP distribution reduces to the one of the
power distribution. As α→ 0+ and β = 1, the PDF of the AP distribution reduces to the
one of the standard uniform distribution. Furthermore, when β = 1, the PDF of the AP
distribution reduces to the one of the AU distribution.
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The expanded form of the PDF is often useful when deriving the statistical properties
of the distribution. Thus, using the arctangent function expansion indicated as follows:

arctan(z) =
∞
∑

k=0

(−1)kz2k+1

2k+1 , |z| < 1 (see [18]) and α ∈ (0, 1), the CDF of Y can be expressed as

FY(y; α, β) =
∞

∑
k=0

(−1)kα2k+1y(2k+1)β

(2k + 1)arctan(α)
, y ∈ (0, 1). (6)

Differentiating the expanded form of the CDF in Equation (6), the corresponding PDF
is given by

fY(y; α, β) =
∞

∑
k=0

(−1)kβα2k+1y(2k+1)β−1

arctan(α)
, y ∈ (0, 1). (7)

The PDF and HRF plots are shown in Figure 1 for some given parameter values. In it,
the PDF exhibits left-skewed, right-skewed, J, and reversed-J shapes. This makes the AP
distribution superior to the AU distribution, which exhibits only J shapes. On this side, the
HRF displays increasing, bathtub, and modified upside-down bathtub shapes.

Figure 1. PDF (left) and HRF (right) plots.

3. Some Statistical Properties

In this section, some statistical properties of the AP distribution are presented.

3.1. Mode

The mode of a distribution is a useful measure of central tendency. It can be used as it
for data measured on the nominal, ordinal, interval, or ratio scale. The AP distribution has
a unique mode when β > 1, and it is expressed in the result below.

Proposition 1. The mode of the AP distribution is given by

mode =

(
β− 1

α2(β + 1)

) 1
2β

, β > 1. (8)

Proof. To establish this expression, it is essential to locate the critical point(s) of the PDF.
A critical point of the PDF is a point of the PDF, or equivalently, the logarithm of the PDF,
where its derivative is zero or infinity. Taking the logarithm of the PDF and differentiating,
we have

d log fY(y; α, β)

dy
=

β− 1− α2(β + 1)y2β

y(1 + α2y2β)
.

Equating the derivative to zero and simplifying yields the mode. This completes the
proof. �
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3.2. Quantile Function

The quantile function can be used to generate random observations from the AP
distribution and to compute shape-related metrics like skewness and kurtosis.

Proposition 2. The quantile function of the AP distribution is given by

Q(u; α, β) =

[
tan(uarctan(α))

α

] 1
β

, u ∈ (0, 1). (9)

Proof. The quantile function is the solution Q(u; α, β) of the following nonlinear equation:
FY(Q(u; α, β); α, β) = u for all u ∈ (0, 1). After some simplifications, letting y = Q(u; α, β)
in the CDF and equating the CDF to u ∈ (0, 1) yields the quantile function. This completes
the proof. �

It is important to note that the quantile function of the AP distribution is uniquely
determined with simple trigonometric and power functions.

The median Q(0.5; α, β), first quartile Q(0.25; α, β), and upper quartile Q(0.75; α, β)
are obtained, respectively, by substituting 0.5, 0.25, and 0.75 into the quantile function. The
Bowley’s (BS) measure of skewness and the Moors’ (MK) measure of kurtosis can then be
calculated using the quantiles. They are, respectively, given by

BS =
Q(0.75; α, β) + Q(0.25; α, β)− 2Q(0.5; α, β)

Q(0.75; α, β)−Q(0.25; α, β)
,

and

MK =
Q(0.375; α, β)−Q(0.125; α, β) + Q(0.875; α, β)−Q(0.625; α, β)

Q(0.75; α, β)−Q(0.25; α, β)
.

The plots of the Bowley’s coefficient of skewness and Moor’s coefficient of kurtosis
are displayed in Figure 2. Both the skewness and kurtosis are affected by changes in the
values of the parameters. From this figure, we can observe that the AP distribution can be
left-skewed or right-skewed.

Figure 2. Skewness (left) and Kurtosis (right) plots.

3.3. Moments and Generating Function

The moments are useful for estimating measures of central tendency, dispersion, and
shapes. The generating functions can be used to estimate the moments, if they exist in the
mathematical sense.

Proposition 3. For α ∈ (0, 1), the rthraw moment of an AP random variable Yis given by

µ′r =
∞

∑
k=0

(−1)kβα2k+1

(r + (2k + 1)β)arctan(α)
, r = 1, 2, ... (10)
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Proof. The rth raw moment by definition is given by µ′r = E(Yr) =
1∫

0
yr fY(y; α, β)dy. Thus,

we obtain

µ′r =
∞

∑
k=0

(−1)kβα2k+1

arctan(α)

1∫

0

yr+(2k+1)β−1dy.

After some algebraic simplifications, the raw moment of the AP random variable is
obtained. This completes the proof. �

The incomplete moment is very useful when computing measures of inequalities, such
as the Lorenz and Bonferroni curves.

Proposition 4. For α ∈ (0, 1), the rth incomplete moment of an AP random variable Y is given by

ϑr(y) =
∞

∑
k=0

(−1)kβα2k+1yr+(2k+1)β

(r + (2k + 1)β)arctan(α)
, r = 1, 2, ... (11)

Proof. By definition, ϑr(y) = E(Yr1{Y < y}) =
y∫

0
zr fY(z; α, β)dz. Hence, substituting the

expanded PDF into the definition and simplifying it completes the proof. �

The Lorenz and Bonferroni curves are obtained, respectively, as

LF(y) =
1
µ

y∫

0

z fY(z; α, β)dz

and

BF(y) =
1

µFY(y; α, β)

y∫

0

z fY(z; α, β)dz,

where µ = µ′1 is the mean.
Figure 3 displays the plots of the Lorenz and Bonferroni curves of the AP distribution

for some selected parameter values. For the Lorenz curve, when LF(y) = y, the minimal
point of inequality is obtained. When BF(y) = y, the so-called equidistributional line for
the Bonferroni curve is obtained.

Figure 3. Plots of Lorenz curve (left) and Bonferroni curve (right).

When non-central moments of a random variable exist, they can be found using the
moment-generating function (MGF).
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Proposition 5. For α ∈ (0, 1), the MGF of an AP random variable Y is given by

MY(t) =
∞

∑
r=0

∞

∑
k=0

(−1)ktrβα2k+1

r!(r + (2k + 1)β)arctan(α)
. (12)

Proof. Using the definition MY(t) = E(etY) =
1∫

0
ety fY(y; α, β)dy and applying the Taylor

series expansion, we get

MY(t) =
∞

∑
r=0

tr

r!
µ′r

Hence, substituting the rth non-central moment completes the proof. �

3.4. Order Statistics

Order statistics are very useful in extreme value analysis. They can be used to de-
termine the behavior of the minimum and maximum value. Consider the order statistics
Y1:n ≤ Y2:n ≤ . . . ≤ Yn:n from the AP distribution. Then, the PDF of Yk:n, k = 1, 2, ..., n is

fk:n(y; α, β) = Ck:n[FY(y; α, β)]k−1[1− FY(y; α, β)]n−k fY(y; α, β),

where the factor constant is given by

Ck:n =
n!

(k− 1)!(n− k)!
.

Using the standard binomial expansion, we can express this PDF as

fk:n(y; α, β) = Ck:n

n−k

∑
j=0

(−1)j
(

n− k
j

)
[FY(y; α, β)]k+j−1 fY(y; α, β).

Hence, we obtain

fk:n(y; α, β) =
αβyβ−1Ck:n

arctan(α)(1 + α2y2β)

n−k

∑
j=0

(−1)j
(

n− k
j

)[
arctan(αyβ)

arctan(α)

]k+j−1

. (13)

The minimum (Y1:n) and maximum (Yn:n) order statistics can serve to investigate the
minimum and maximum failure time of a system, respectively. The PDF of Y1:n is given by

f1:n(y; α, β) = n fY(y; α, β)[1− FY(y; α, β)]n−1

= nαβyβ−1(arctan(α)−arctan(αyβ))
n−1

(1+α2y2β)(arctan(α))n

and the PDF of Yn:n is

fn:n(y; α, β) = n fY(y; α, β)[FY(y; α, β)]n−1

= nαβyβ−1(arctan(αyβ))
n−1

(1+α2y2β)(arctan(α))n .

The minimum and maximum (min-max) plot of the order statistics can be used to
describe whether the distribution is symmetrical or skewed. The min-max plots depend
on E(Y1:n) and E(Yn:n). The min-max plots for some chosen parameter values for the AP
distribution are shown in Figure 4. This figure reveals that the AP distribution can be
right-skewed, left-skewed, or symmetric.
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Figure 4. Min-max plots for the AP distribution.

4. Bivariate AP Distribution

The development of bivariate distributions is very useful in the context of investigating
the joint relationship between two random variables. For example, one may be interested
in studying the relationship between the human development index and literacy rate
of a country, the maternal mortality rate and literacy rate, or rainfall and temperature,
among others. There are different methods of developing bivariate distributions. One
way to do this is to use copula functions (see [19]). However, in this study, we follow the
approach used by [20,21]. Let (X, Y) be a bivariate continuous random vector. The CDF
of the bivariate AP (BAP) distribution with parameters α, β, ρ1, ρ2, ρ3, where α > 0, β > 0,
−1 < ρ1 + ρ3 < 1, −1 < ρ2 + ρ3 < 1, x ∈ (0, 1) and y ∈ (0, 1), is given by

FXY(x, y; ς) =
arctan(αxβ)arctan(αyβ)(arctan(α))−2

[
1 + (ρ1 + ρ3)

(
arctan(α)−arctan(αxβ)

arctan(α)

)
+ (ρ2 + ρ3)

(
arctan(α)−arctan(αyβ)

arctan(α)

)]−1 , (14)

where ς= (α, β, ρ1, ρ2, ρ3). The plots of the CDF of the BAP distribution for the given
parameter values are shown in Figure 5:

(a) α = 8.5, β = 2.5, ρ1 = 0.4, ρ2 = 0.1, ρ3 = 0.2,
(b) α = 4.5, β = 8.2, ρ1 = −0.3, ρ2 = 0.4, ρ3 = −0.2 and
(c) α = 3.4, β = 6.2, ρ1 = 0.3, ρ2 = 0.4, ρ3 = −0.6.

These plots reveal different concave and convex shapes for the chosen parameter values.
The PDF of the BAP distribution is given by

fXY(x, y; ς) =
(αβ)2(xy)β−1(arctan(α))−2[1 + (αxβ)

2
+ (αyβ)

2
+ α4(xy)2β]

−1

[
1 + (ρ1 + ρ3)

(
arctan(α)−arctan(αxβ)

arctan(α)

)
+ (ρ2 + ρ3)

(
arctan(α)−arctan(αyβ)

arctan(α)

)]−1 . (15)

The PDF plots of the BAP distribution for the following selected parameter values are
displayed in Figure 6:

(a) α = 8.5, β = 2.5, ρ1 = 0.4, ρ2 = 0.1, ρ3 = 0.2,
(b) α = 4.5, β = 8.2, ρ1 = −0.3, ρ2 = 0.4, ρ3 = −0.2 and
(c) α = 3.4, β = 2.5, ρ1 = 0.3, ρ2 = 0.4, ρ3 = −0.6.

These plots display left-skewed, right-skewed, and approximate symmetrical shapes.
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Figure 5. CDF plots of the BAP distribution.

Figure 6. PDF plots of the BAP distribution.

5. Estimation Methods and Simulations

This section presents nine frequentist estimation procedures for estimating the pa-
rameters of the AP distribution. These are the maximum likelihood (ML) estimation,
ordinary least squares (OLS), weighted least squares (WLS), Cramér–von Mises (CVM)
estimation, Anderson–Darling (AD) estimation, percentile estimation (PE), and product
spacing estimations.

5.1. Maximum Likelihood Estimation

Let y1, y2, . . . , yn be independent and identically random observations of sample size
n from the AP distribution. Suppose that ξ = (α, β)′ is the vector of parameters; then, the
total log-likelihood function is

`(ξ) = n log(αβ)− n log(arctan(α)) + (β− 1)
n

∑
i=1

log(yi)−
n

∑
i=1

log(1 + α2y2β
i ). (16)

The total likelihood function can be maximized directly with respect to the parameters
α and β to obtain the ML estimates of the parameters. Alternatively, these estimates can
be obtained by equating the score functions to zero and solving the resulting system of
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equations simultaneously. The score functions, obtained by differentiating Equation (16)
with respect to the parameters, are given by

∂`(ξ)

∂α
=

n
α
− n

(1 + α2)arctan(α)
−

n

∑
i=1

2αy2β
i

1 + α2y2β
i

(17)

and
∂`(ξ)

∂β
=

n
β
+

n

∑
i=1

log(yi)−
n

∑
i=1

2α2 log(yi)y
2β
i

1 + α2y2β
i

. (18)

The score functions do not have a closed form, thus, the resulting system of equations
are solved numerically to obtain the estimates α̂ and β̂.

5.2. Ordinary and Weighted Least Squares Estimation

Consider an ordered random sample y(1), y(2), . . . , y(n) of size n from the AP distribu-
tion; then, the OLS estimates, α̂OLS and β̂OLS, of the parameters are obtained by minimizing
the function

OLS =
n

∑
i=1




arctan(αyβ

(i))

arctan(α)
− i

n + 1




2

, (19)

with respect to the parameters α and β. The OLS estimates can also be obtained by
numerically solving the nonlinear equations

n

∑
i=1




arctan(αyβ

(i))

arctan(α)
− i

n + 1


πs(y(i); α, β) = 0, s = 1, 2, (20)

where

π1(y; α, β) =
2yβ

(i)

arctan(α)(1 + α2y2β

(i))
−

2arctan(αyβ

(i))

(arctan(α))2(1 + α2)
(21)

and

π2(y; α, β) =
2yβ

(i)

arctan(α)(1 + α2y2β

(i))
. (22)

The WLS estimates, α̂WLS and β̂WLS, of the parameters are obtained by minimizing
the function

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)




arctan(αyβ

(i))

arctan(α)
− i

n + 1




2

, (23)

with respect to the parameters α and β. Alternatively, the WLS estimates are obtained by
numerically solving the nonlinear equations

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)




arctan(αyβ

(i))

arctan(α)
− i

n + 1


πs(y(i); α, β) = 0, s = 1, 2, (24)

where πs(y; α, β), s = 1, 2 are defined in Equations (21) and (22).

5.3. Cramér–Von Mises Estimation

Given that y(1), y(2), . . . , y(n) are the ordered observations of size n from the AP distri-
bution, the CVM estimates, α̂CVM and β̂CVM, of the parameters are obtained by minimizing
the function
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CVM =
1

12n
+

n

∑
i=1




arctan(αyβ

(i))

arctan(α)
− 2i− 1

2n




2

, (25)

with respect to the parameters α and β. The CVM estimates can also be obtained by solving
the nonlinear equation

n

∑
i=1




arctan(αyβ

(i))

arctan(α)
− 2i− 1

2n


πs(y(i); α, β) = 0, s = 1, 2, (26)

where πs(y; α, β), s = 1, 2 are given in Equations (21) and (22).

5.4. Anderson–Darling Estimation

Let y(1), y(2), . . . , y(n) be ordered observations of size n from the AP distribution. The
AD estimates, α̂AD and β̂AD, of the parameters of the AP distribution are obtained by
minimizing the function

AD = −n− 1
n

n

∑
i=1

(2i− 1)


log




arctan(αyβ

(i))

arctan(α)


− log




arctan(α)− arctan(αyβ

(i))

arctan(α)




, (27)

with respect to the parameters α and β.

5.5. Percentile Estimation

Let y(1), y(2), . . . , y(n) be ordered observations of size n from the AP distribution,
and ui = i/(n + 1). The percentile estimates, α̂PE and β̂PE, of the parameters of the AP
distribution are obtained by minimizing the function

PE =
n

∑
i=1

[
y(i) −

(
tan(uiarctan(α))

α

)1/β
]2

, (28)

with respect to the parameters α and β.

5.6. Product Spacing Estimations

In this subsection, the maximum product spacing (MPS) and minimum spacing dis-
tance (MSD) estimation methods are discussed. The MPS estimation method is based on
the Kullback–Leibler information measure. Let us consider the uniform spacing

Di = FY(y(i); α, β)− FY(y(i−1); α, β)

=
arctan(αyβ

(i))

arctan(α) −
arctan(αyβ

(i−1))

arctan(α) ,

where FY(y(0); α, β) = 0, FY(y(n+1); α, β) = 1 and D0(α, β)+D1(α, β)+ . . .+Dn+1(α, β) = 1.
The MPS estimates, α̂MPS and β̂MPS, of the parameters are obtained by directly maximizing
the logarithm of the geometric mean of the spacing given by

MPS =
1

n + 1

n+1

∑
i=1

log Di(α, β), (29)

with respect to the parameters α and β.
The MSD estimates, α̂MSD and β̂MSD, of the parameters of the AP distribution are

obtained my minimizing the function
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MSD =
n

∑
i=1

∆(Di(α, β),
1

n + 1
), (30)

where ∆(a, b) represents an appropriate distance. Several choices of ∆(a, b) exist. However,
in this study, we employ the absolute |a− b| and absolute-logarithm |log(a)− log(b)|
distances. Hence, the minimum spacing absolute distance (MSAD) and minimum spacing
absolute-logarithm (MSALD) estimates of the parameters are obtained by minimizing
the functions

MSAD =
n

∑
i=1

∣∣∣∣Di(α, β)− 1
n + 1

∣∣∣∣ (31)

and

MSAD =
n

∑
i=1

∣∣∣∣log(Di(α, β))− log(
1

n + 1
)

∣∣∣∣, (32)

where Di(α, β) 6= 1
n+1 and log(Di(α, β)) 6= log( 1

n+1 ).

5.7. Monte Carlo Simulation

In this section, we conduct Monte Carlo simulation studies to investigate how the
various estimation techniques perform with regards to estimating the parameter of the
AP distribution. The exercise is carried out with two sets of parameter values, which are
α = 0.8, β = 0.4 and α = 4.5, β = 6.2. The simulation experiments are repeated 5000 times
using the sample sizes n = 25, 50, 100, 250 and 350. The average estimates (AE), average
absolute bias (AB), and root mean square error (RMSE) of the parameters are estimated
and reported in Tables 1 and 2. We observe that as the sample size increases, the AE of the
parameters approaches the true parameter values. Furthermore, the ABs and RMSEs of the
parameters decrease as the sample size increases for all the estimation methods used. Thus,
the various estimation methods produce consistent estimates for the parameters of the AP
distribution. However, none of the estimation methods proves to be superior to the others.

Table 1. AE, AB, and RMSE for α = 0.8 and β = 0.4.

Parameter n ML MPS OLS WLS AD CVM PE MADS MALDS

AE

α

25 0.7609 1.1013 0.4303 0.5079 0.5634 0.6210 0.8969 0.1730 0.5673

50 0.8989 1.1131 0.6865 0.7679 0.7794 0.8387 0.9400 0.1718 0.5865

100 0.5186 0.6330 0.5285 0.5408 0.5316 0.6020 0.7364 0.3013 0.4153

250 0.7563 0.8212 0.6438 0.6947 0.6821 0.6737 0.6598 0.4516 0.5850

350 0.8082 0.8765 0.7720 0.8039 0.7933 0.7969 0.6947 0.5602 0.7547

β

25 0.4217 0.4674 0.3992 0.4005 0.4065 0.4237 0.4895 0.3323 0.4021

50 0.4294 0.4580 0.4086 0.4158 0.4174 0.4258 0.4584 0.2995 0.3967

100 0.3903 0.4039 0.3947 0.3944 0.3926 0.4016 0.4371 0.3582 0.3858

250 0.4035 0.4115 0.3938 0.3975 0.3966 0.3974 0.4061 0.3673 0.3940

350 0.3949 0.4026 0.3907 0.3944 0.3931 0.3936 0.3904 0.3719 0.3899

AB

α

25 0.5584 0.6872 0.6047 0.5382 0.5453 0.6459 0.7676 0.6845 0.6637

50 0.5308 0.6270 0.5159 0.5405 0.4941 0.5491 0.9510 0.6712 0.6083

100 0.6628 0.6447 0.7083 0.6909 0.6867 0.6793 0.8618 0.5800 0.6805

250 0.2803 0.2719 0.3670 0.3164 0.3256 0.3616 0.4728 0.5443 0.4994

350 0.2584 0.2666 0.2306 0.2376 0.2389 0.2336 0.4586 0.4518 0.3332
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Table 1. Cont.

Parameter n ML MPS OLS WLS AD CVM PE MADS MALDS

β

25 0.0701 0.1000 0.0807 0.0724 0.0686 0.0844 0.1327 0.2182 0.1001

50 0.0442 0.0643 0.0495 0.0435 0.0428 0.0580 0.1059 0.1275 0.0445

100 0.0504 0.0530 0.0493 0.0493 0.0490 0.0500 0.0657 0.0640 0.0480

250 0.0270 0.0286 0.0352 0.0306 0.0314 0.0358 0.0534 0.0557 0.0356

350 0.0226 0.0222 0.0243 0.0176 0.0192 0.0243 0.0520 0.0428 0.0268

RMSE

α

25 0.6832 0.8824 0.6642 0.6196 0.6373 0.7498 0.9374 0.7249 0.7684

50 0.6291 0.7570 0.6603 0.6831 0.5963 0.7164 1.4860 0.7176 0.6671

100 0.7322 0.7492 0.7848 0.7744 0.7611 0.7921 0.9537 0.6576 0.7420

250 0.3359 0.3366 0.4614 0.3988 0.4108 0.4615 0.5893 0.6260 0.5625

350 0.3129 0.3093 0.3154 0.3086 0.3098 0.3142 0.5602 0.5355 0.4107

β

25 0.0910 0.1217 0.1029 0.0918 0.0880 0.1174 0.1684 0.2464 0.1214

50 0.0542 0.0782 0.0607 0.0559 0.0493 0.0712 0.1646 0.1592 0.0603

100 0.0612 0.0655 0.0627 0.0618 0.0606 0.0652 0.0875 0.0981 0.0604

250 0.0337 0.0362 0.0402 0.0364 0.0374 0.0411 0.0679 0.0696 0.0446

350 0.0259 0.0259 0.0293 0.0242 0.0249 0.0289 0.0619 0.0560 0.0337

Table 2. AE, AB, and RMSE for α = 4.5 and β = 6.2.

Parameter n ML MPS OLS WLS AD CVM PE MADS MALDS

AE

α

25 7.0765 10.3643 5.9141 5.8055 6.6186 7.5983 4.8574 1.2794 8.3329

50 5.0499 5.9801 4.8062 4.7651 4.7680 5.3690 4.1797 3.3758 5.4587

100 4.3862 4.8383 4.1504 4.2629 4.2891 4.3589 3.9500 3.6863 4.3552

250 4.3660 4.5560 4.2758 4.3155 4.3307 4.3597 4.1551 3.9716 4.4893

350 4.3334 4.4767 4.2076 4.2748 4.2766 4.2668 4.2163 4.1250 4.3294

β

25 6.4914 7.3170 5.9496 5.9510 6.2163 6.5382 5.5927 3.3139 5.9368

50 6.1885 6.6336 5.9530 6.0059 6.0516 6.2226 5.7082 4.6987 6.1925

100 6.2534 6.5278 6.0770 6.1657 6.1849 6.2094 5.9914 5.5851 6.2811

250 6.1297 6.2481 6.0714 6.1025 6.1135 6.1240 6.0026 5.7696 6.1201

350 6.0608 6.1514 5.9857 6.0232 6.0258 6.0232 5.9824 5.8618 6.0932

AB

α

25 3.4127 5.9293 3.3920 3.1570 3.4268 4.2622 2.7449 3.2862 5.8446

50 1.8288 2.1741 2.1320 1.9167 1.7383 2.2757 1.7767 2.4817 2.5227

100 1.0012 0.9566 1.0738 1.0249 1.0781 1.0474 1.0521 1.5290 1.2026

250 0.8031 0.8054 0.8103 0.7709 0.7570 0.7912 0.8309 1.2029 1.0822

350 0.6395 0.6136 0.6138 0.6133 0.6086 0.6041 0.6972 0.8890 0.5945

β

25 1.2038 1.4981 1.3240 1.2379 1.1823 1.3926 1.2174 2.9029 1.2698

50 0.9340 0.9660 1.0599 0.9933 0.9327 1.0433 1.0666 2.1079 1.2164

100 0.5449 0.5436 0.5723 0.5544 0.5715 0.5383 0.5769 0.9975 0.6254

250 0.4017 0.4156 0.4049 0.4016 0.3959 0.4026 0.4575 0.7574 0.6456

350 0.3707 0.3538 0.3835 0.3678 0.3652 0.3723 0.4190 0.5258 0.3588
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Table 2. Cont.

Parameter n ML MPS OLS WLS AD CVM PE MADS MALDS

RMSE

α

25 9.0289 16.6588 7.7515 7.0825 8.9366 10.7903 5.1325 3.5862 19.9363

50 3.1101 4.1306 3.7004 2.9429 2.7048 4.3787 2.2720 3.1047 4.0033

100 1.2746 1.4424 1.3415 1.3020 1.3645 1.3743 1.1958 2.0602 1.7619

250 1.0203 1.0631 1.0172 1.0052 0.9906 1.0217 1.0439 1.6323 1.3097

350 0.7575 0.7559 0.7539 0.7476 0.7376 0.7427 0.8050 1.2130 0.7278

β

25 1.5369 2.0307 1.6441 1.5388 1.5357 1.7984 1.4325 3.3678 1.7998

50 1.2005 1.3372 1.3614 1.2314 1.1733 1.3964 1.2318 2.6988 1.5320

100 0.6942 0.7728 0.7270 0.6891 0.7131 0.7296 0.6689 1.5722 0.8371

250 0.5388 0.5432 0.5306 0.5343 0.5215 0.5232 0.5916 0.9666 0.7900

350 0.4264 0.4122 0.4673 0.4368 0.4343 0.4534 0.4743 0.6624 0.4570

6. Empirical Application

In this section, we present frequentist and Bayesian applications of the AP distribution
using biomedical data.

6.1. Frequentist Application

In this subsection, the univariate application of the AP distribution is illustrated using
the ML estimation approach. The illustration is done using data on the recovery rates for
viable CD34+ cells of 239 patients who agreed to an autologous peripheral blood stem cell
(PBSC) transplant after myeloablative doses of chemotherapy between the years 2003 and
2008 at the Edmonton Hematopoietic Stem Cell Lab in the Cross Cancer Institute-Alberta
Health Services. The data can be found in the simplexreg package developed by [22].
Ref. [6] recently fitted the unit Burr XII (UBXII) distribution to improve the recovery rates
for viable CD34+ cells. The AP distribution is fitted to the recovery rates in this study,
and its performance is compared to the AU distribution [14], unit power Weibull (UPW)
distribution [23], log-XLindley (LXL) distribution [4], unit Lindley (UL) distribution [9],
unit improved second degree Lindley (UISDL) distribution [11], bounded Marshall–Olkin
extended exponential (BMOEE) distribution [24], unit Burr III (UBIII) distribution [8],
unit Gompertz (UG) distribution [10], unit Weibull (UW) distribution [12], exponentiated
Topp–Leone (ETL) distribution [13], Kumaraswamy distribution [25], and beta distribu-
tion. The performances of the distributions are compared using the log-likelihood (`),
Akaike information criterion (AIC), AIC difference (DAIC), Bayesian information criterion
(BIC), Anderson–Darling (AD) test, Cramér–von Mises (CVM) test, and Kolmogorov–
Smirnov (KS) test. The distribution with the highest value of ` and lowest values of
AIC, BIC, AD, CVM, and KS is considered to be the best. The DAIC is computed as
DAICi = AICi −AICmin, i = 1, 2, ..., S, where S is the number of distributions under com-
parison. The best distribution satisfies DAIC = 0. If DAIC > 2, then the difference in
performance between the two models is significant. Before fitting the models to the recov-
ery rate for viable CD34+ cells, we explore their characteristics. From the kernel density,
boxplot, and violin plots shown in Figure 7, we observe that the recovery rate for viable
CD34+ cells is left-skewed. Hence, a distribution capable of modeling left-skewed data is
required, which is the case for the AP distribution.

Table 3 presents the ML estimates of the parameters with their respective standard
errors in brackets. The AP distribution appears to be the best model since it has the highest
log-likelihood values and the smallest values for the AIC, BIC, AD, CVM, and KS. The
p-values of the AD, CVM, and KS tests are given in parentheses. The p-values also indicate
that the AP distribution is the best. Furthermore, looking at the DAIC values, the AP
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distribution significantly performs better than the other fitted distributions. Comparing
the goodness-of-fit statistics of the AP and AU distributions, it can be concluded that
the induction of the new parameter has greatly improved the performance of the AP
distribution, making it superior to the AU distribution.

Table 3. Parameter estimates, standard errors, goodness-of-fit tests.

Model Parameter ` AIC DAIC BIC AD CVM K-S

AP α = 5.0250(0.9841)
β = 8.1856(0.6324) 194.5900 −385.1756 0.0000 −378.2227 0.3670

(0.8806)
0.0461

(0.8999)
0.0430

(0.7694)

AU α = 2.5208× 10−14(0.0828) 0.0000 2.0000 387.1756 5.4765 131.0700
(<0.0001)

28.2090
(<0.0001)

0.5572
(<0.0001)

Beta α = 8.6671(0.8063)
β = 2.2859(0.1962) 191.8700 −379.7345 5.4411 −372.7816 0.8732

(0.4310)
0.1402

(0.4213)
0.0650

(0.2647)

Kumaraswamy α = 6.6942(0.4546)
β = 2.4355(0.2411) 190.7600 −377.5820 7.5936 −370.5751 1.1438

(0.2899)
0.1916

(0.2845)
0.0723

(0.1646)

UBIII α = 6.4356(0.5341)
β = 1.5532(0.0695) 192.5000 −381.0031 4.1725 −374.0501 0.7758

(0.4987)
0.1191

(0.4996)
0.0535

(0.4997)

BMOEE α = 7.6885(1.7248)
β = 9.6771(0.7554) 192.4200 −380.8355 4.3401 −373.8825 0.6848

(0.5715)
0.0866

(0.6551)
0.0489

(0.6182)

UG α = 1.0457(0.2360)
β = 2.3734(0.3237) 177.0300 −350.0612 35.1144 −343.1082 4.9419

(0.0031)
0.7829

(0.0080)
0.1106

(0.0058)

UW α = 8.0560(0.8314)
β = 1.6182(0.0791) 192.0200 −380.0314 5.1442 −373.0785 0.8636

(0.4373)
0.1328

(0.4467)
0.0557

(0.4486)

ETL α = 14.9326(1.3241)
β = 0.8641(0.0718) 192.6800 −381.3601 3.8155 −374.4072 0.6705

(0.5838)
0.0996

(0.5873)
0.0520

(0.5370)

UBXII α = 10.0760(1.0039)
β = 1.7321(0.0787) 193.5000 −383.0054 2.1702 −376.0525 0.5806

(0.6664)
0.0887

(0.6437)
0.0522

(0.5321)

UISDL α = 0.3571(0.0134) 54.2900 −106.5865 278.5891 −103.1101 34.4330
(<0.0001)

20.1010
(<0.0001)

0.2851
(<0.0001)

UL α = 0.2424(0.0112) 97.6400 −193.2741 191.9015 −189.7976 20.1010
(<0.0001 )

4.0961
(<0.0001)

0.2365
(<0.0001)

LXL α = 4.2040(0.2569) 154.6800 −307.3564 77.8192 −303.8799 15.7970
(<0.0001)

3.0033
(<0.0001)

0.2010
(<0.0001)

UPW
α = 500.0000(8.1076× 10−6)

β = 2.4183(9.9309× 10−2)
λ = 0.0372(3.5461× 10−3)

168.2600 −330.5111 54.6645 −320.0817 5.3084
(0.0021)

0.8375
(0.0059)

0.1152
(0.0035)

Figure 7. Kernel density, boxplot, and violin plots.
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Figure 8 displays the histogram of the data and the estimated PDF of the AP distribu-
tion on the one hand and the empirical CDF and the estimated CDF of the AP distribution
on the other hand, using the estimates of the parameter. This figure suggests that the AP
distribution provides good fit to the data.

Figure 8. Histogram and estimated PDF (left), and empirical CDF and estimated CDF (right).

Figure 9 displays the probability-probability (P-P) plots of the fitted distributions. This
figure suggests that the AP distribution provides a good fit to the data as its expected and
observed probabilities cluster along the diagonal line.

Figure 9. P-P plots of the fitted distributions.
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The profile log-likelihood plots of the estimated parameters of the AP distribution
are shown in Figure 10. These plots suggest that the ML estimates of the parameters are
unique and denote the true maxima.

Figure 10. Profile log-likelihood plots of the estimated parameters of the AP distribution.

6.2. Bayesian Application

In this subsection, we demonstrate how to use the Bayesian approach to estimate
the parameters of the AP distribution. To proceed, we need to first establish the prior
distributions for the parameters, as it is very essential in Bayesian estimation. In this study,
we use the non-informative gamma distribution as the prior distribution. Numerous studies
have recommended the use of this approach (see [26,27]). Thus, the prior distributions of
the parameters are

π(α) ∼ Gamma(a1, b1) =
ba1

1
Γ(a1)

αa1−1e−b1α, a1 > 0, b1 > 0, α > 0

and

π(β) ∼ Gamma(a2, b2) =
ba2

2
Γ(a2)

βa2−1e−b2β, a2 > 0, b2 > 0, β > 0

The joint PDF of the prior distributions of the parameters is given by

π(α, β) = π(α)π(β).

The joint posterior PDF is therefore given by

P(α, β|y) ∝
n

∏
i=1

fY(yi; α, β)× π(α, β),

where
n
∏
i=1

fY(yi; α, β) is the likelihood function of the AP distribution. The joint posterior

PDF is not analytically tractable; hence, we employ the Markov Chain Monte Carlo (MCMC)
approach to obtain samples from which features of the marginal distributions can be
inferred. The following hyperparameter values a1 = a2 = b1 = b2 = 0.001 are considered
for the analysis. The analysis is performed using the R2jags package in R (see [28]) and the
data described in Section 6.1. We use three parallel chains, each with 40,000 iterations and a
burn-in of 5000. Hence, posterior sample of size 7000 and thinning interval 5 is used in the
analysis. Table 4 presents the mean estimate, Monte Carlo standard error (SE), posterior
standard deviation (SD), and other numerical summaries of the posterior distribution.
From the results, the MCMC algorithm has converged because the potential reduction scale
factor (R̂) is approximately 1 and the effective sample size (neff) is greater than 400. The
estimated deviance information criterion (DIC) is −385.2000. It can be observed that the
Bayesian estimates and ML estimates of the parameters are quite close.
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Table 4. Posterior summaries of the parameters of the AP distribution.

Parameter Estimate SE SD 2.50% 50% 97.50% R̂ Neff

α 5.0600 0.0107 1.0150 3.3760 4.9540 7.3560 1.0010 5500

β 8.1600 0.0066 0.6300 6.9640 8.1490 9.4110 1.0010 6200

We investigate the convergence of the chains visually using the trace, ergodic mean,
and autocorrelation plots. The trace plots shown in Figure 11 suggest a stationary pattern
and thus convergence of the chains.

Figure 11. The AP distribution posterior parameters trace plots.

The ergodic mean plots (Figure 12) of the parameters clearly show that the chains have
converged after 3000 iterations.

Figure 12. The AP distribution posterior parameters ergodic mean plots.
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The rapid decay of the autocorrelation plots, as shown in Figure 13, suggests good
mixing of the chains and the convergence of the MCMC algorithm.

Figure 13. The AP distribution posterior parameters autocorrelation plots.

7. Regression Models

In this section, the quantile and modal regression models are developed for investigating
the relationship between a dependent variable and a set of independent variable (s).

7.1. Quantile Regression Model

When investigating the influence of covariates on a skewed, bounded response vari-
able, the beta regression model cannot produce reliable results since it models the con-
ditional mean of the response variable. This is because the mean is not an appropriate
measure of central tendency when the data are skewed. Thus, a regression model that is
not influenced by outliers is required. The quantile regression is appropriate when dealing
with skewed response variables. In this subsection, the AP quantile regression model is
developed. To this aim, we re-parameterize the PDF of the AP distribution in terms of its
quantile function. Let η = Q(u; α, β), η ∈ (0, 1), making β the subject in the quantile func-
tion, and we have β = (log(η))−1 log(α−1 tan(uarctan(α))). Hence, the re-parametrized
PDF in terms of the quantile function is given by

fY(y; α, η) =
α(log(η))−1λy(log(η))−1λ−1

arctan(α)(1 + α2y2(log(η))−1λ)
, (33)

where λ = log(α−1 tan(uarctan(α))) and η is the quantile parameter. Suppose that
y1, y2, ..., yn are random observations from the AP distribution and zi is non-random covari-
ates. The AP quantile regression model is thus given by

ηi = g−1(zT
i δ)

where δ = (δ0, δ1, δ2, . . . , δp)
T is the vector of coefficients of the covariates to be estimated,

zT
i = (1, zi1, zi2, . . . , zip) is the known ith vector of independent variables, and g(·) is an

appropriate link function that relates the independent variables to the conditional quantile
of the dependent variable. When u = 0.5, the median regression is obtained. Although
different link functions exist for modeling bounded response variables, in this study, the
logit link function is used due to the easy interpretation of the parameters. Hence, we have
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log
(

ηi
1− ηi

)
= δ0 + δ1zi1 + δ2zi2 + . . . + δpzip

The log-likelihood for estimating the parameters of the regression model is

` = n log(α)− n log(arctan(α)) + n log(λ)−
n
∑

i=1
log( log(ηi)) +

n
∑

i=1
((log(ηi))

−1λ− 1) log(yi)

−
n
∑

i=1
log(1 + α2y2(log(ηi))

−1λ
i ).

(34)

Maximizing the log-likelihood function in Equation (34) with respect to the involved
parameters gives the estimates of the parameters of the model. For more information on
the development of parametric quantile regressions, we refer the readers to [2,3,6].

7.2. Modal Regression

When the response variable is heavy-tailed or asymmetric, modal regression is known
to give a better fit than the conditional mean or median regression [29]. It is also es-
tablished that the prediction intervals from modal regression possess a higher coverage
probability than the mean-based prediction interval (see [29,30]). This subsection presents
the modal-based regression using the AP distribution. Suppose that the transformation
(α, β)→ (η, ϕ) is one-to-one, where η ∈ (0, 1) is the mode and ϕ > 1 is a precision/shape
parameter. Then the PDF of the AP distribution can be re-parameterized in terms of the
mode (see [29]). Let β = ϕ, then α = η−ϕ(ϕ + 1)−1/2(ϕ− 1)1/2 and the PDF of the AP
distribution in terms of mode is given by

fY(y; η, ϕ) =
η−ϕ ϕ(ϕ + 1)−1/2(ϕ− 1)1/2yϕ−1

arctan(η−ϕ(ϕ + 1)−1/2(ϕ− 1)1/2)(1 + η−2ϕ(ϕ + 1)−1(ϕ− 1)y2ϕ)
. (35)

The modal regression is given by

ηi = h−1(zT
i δ)

where δ = (δ0, δ1, δ2, . . . , δp)
T is the vector of unknown parameters to be estimated,

zT
i = (1, zi1, zi2, . . . , zip) are the known ith vector of covariates and h(·) is an appropri-

ate link function that links the covariates to the conditional mode of the response variable.
The logit link function is adopted since the mode of the AP distribution lies on (0, 1). Thus,
we have

log
(

ηi
1− ηi

)
= δ0 + δ1zi1 + δ2zi2 + . . . + δpzip

The log-likelihood for estimating the parameters of the model is given by

` = n log(ϕ(ϕ + 1)−1/2(ϕ− 1)1/2)− ϕ
n
∑

i=1
log(ηi) + (ϕ− 1)

n
∑

i=1
log(yi)−

n
∑

i=1
log(arctan(η−ϕ

i (ϕ + 1)−1/2(ϕ− 1)1/2))−
n
∑

i=1
log(1 + η

−2ϕ
i (ϕ + 1)−1(ϕ− 1)y2ϕ

i ).

(36)
The estimates of the parameters of the modal regression are obtained by maximizing

Equation (36) with respect to the involved parameters.

7.3. Residual Analysis

Investigating how well a model fits a given data set is very important. Hence, the
adequacy of the model is often examined using the residuals from the fitted model. The
Cox–Snell and randomized quantile residuals are used to assess the performance of the
regression models in this study.
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Thus, the Cox–Snell residuals (see [31]) are used to assess the adequacy of the regres-
sion models. The Cox–Snell residuals are defined as

ei = − log(1− FY(yi; δ̂), i = 1, 2, ..., n

where δ̂ is the vector of the estimated parameters of the regression models. The Cox–Snell
residuals are expected to be standard exponentially distributed if the models provide good
fit to the data.

Assessing the randomized quantile residuals of the model is another alternative for
examining the adequacy of the regression model. The randomized quantile residual is
given by

ei = Φ−1(FY(yi; δ̂), i = 1, 2, ..., n,

where Φ−1(·) is the quantile of the standard normal distribution. If the regression model
provides good fit to the data, the randomized quantile residuals are expected to follow the
standard normal distribution (see [32]).

7.4. Monte Carlo Simulation for Regression Models

In this section, Monte Carlo simulation experiments are carried out to assess how the
ML estimates perform with regards to estimating the parameters of the AP quantile and
modal regressions. The simulations for the quantile regression are carried out using the
conditional median. The conditional median in this case is the median of the response
variable given the values of the covariates. The experiment is replicated 5000 times for
each sample size n = 50, 150, 250, 350, 450, and 550. For the first scenario, the following
parameter combinations are used for the quantile and modal regressions, respectively:
(δ0, δ1, δ2, α) = (0.8, 0.3, 0.6, 1.5) and (δ0, δ1, δ2, ϕ) = (0.8, 0.3, 0.6, 1.5). In the second sce-
nario, the parameter following combinations are used, respectively, for the quantile and
modal regressions: (δ0, δ1, δ2, α) = (0.1, 0.4, 0.8, 1.3) and (δ0, δ1, δ2, ϕ) = (0.1, 0.4, 0.8, 1.3).
The following regression structure with two covariates is employed during the simulation
for both regression models:

log
(

ηi
1− ηi

)
= δ0 + δ1zi1 + δ2zi2, i = 1, 2, ..., n.

The covariate, zi1, is generated from a standard normal distribution and zi2 is from
a t distribution with four degrees of freedom. The covariates are held fixed during the
simulation process. The observations for the response variable are generated using the
inversion method for both the quantile and modal regressions. The performance of the
estimation method is assessed using the average estimate (AE), absolute bias (AB), and
root mean square error (RMSE). The results in Tables 5 and 6 reveal that the AEs approach
the true parameter values as the sample size increases. Furthermore, the ABs and RMSEs
decrease as the sample size increases. Hence, the estimates of the parameters for both
models are consistent based on the ML technique.

Table 5. Simulation results for the first scenario.

Parameter n
AP Quantile Regression

Parameter n
AP Modal Regression

AE AB RMSE AE AB RMSE

δ0

50 0.7659 0.2028 0.2533

δ0

50 0.6495 0.5931 0.6372

150 0.7870 0.1286 0.1586 150 0.7551 0.5240 0.5771

250 0.7837 0.1041 0.1304 250 0.7015 0.4583 0.5226

350 0.7953 0.0896 0.1104 350 0.7526 0.4226 0.4880

450 0.7990 0.0868 0.1071 450 0.7674 0.3745 0.4419

550 0.7990 0.0681 0.0844 550 0.7668 0.3499 0.4195
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Table 5. Cont.

Parameter n
AP Quantile Regression

Parameter n
AP Modal Regression

AE AB RMSE AE AB RMSE

δ1

50 0.4010 0.3256 0.3983

δ1

50 0.7202 0.6676 0.7959

150 0.3266 0.1974 0.2407 150 0.6208 0.5630 0.7027

250 0.3308 0.1737 0.2122 250 0.6470 0.5746 0.7074

350 0.3119 0.1443 0.1742 350 0.5695 0.5176 0.6518

450 0.3012 0.1403 0.1711 450 0.5439 0.4813 0.6098

550 0.2951 0.1044 0.1309 550 0.4965 0.4450 0.5669

δ2

50 0.6015 0.0893 0.1157

δ2

50 0.5921 0.3502 0.4263

150 0.6045 0.0480 0.0614 150 0.6143 0.2171 0.2787

250 0.6057 0.0381 0.0469 250 0.6090 0.1694 0.2232

350 0.6006 0.0325 0.0410 350 0.6183 0.1563 0.2020

450 0.6001 0.0291 0.0371 450 0.6174 0.1259 0.1659

550 0.6017 0.0272 0.0336 550 0.6187 0.1193 0.1569

α

50 1.8184 0.7279 0.8795

ϕ

50 1.6644 0.2465 0.2948

150 1.6469 0.4111 0.5266 150 1.5793 0.1477 0.1879

250 1.5957 0.3058 0.3971 250 1.5376 0.1026 0.1333

350 1.5689 0.2526 0.3190 350 1.5289 0.0840 0.1100

450 1.5586 0.2227 0.2891 450 1.5216 0.0721 0.0931

550 1.5412 0.2047 0.2602 550 1.5085 0.0693 0.0870

7.5. Application of Regression Models

The use of quantile and modal regressions is demonstrated in this subsection. The
application of the quantile regression is illustrated via the conditional median regression by
setting u = 0.5. The application of the models is illustrated by regressing the recovery rates
for viable CD34+ cells of 239 patients described in Section 6 on the following covariates:
gender (zi1, 0 for female and 1 for male), chemotherapy (zi2, 0 for receiving chemotherapy
on a one-day protocol and 1 for a three-day protocol), and adjusted patient’s age (zi3, that
is the current age minus 40). Ref. [6] fitted the UBXII median regression with the following
results: AIC = −384.2649 and BIC = −366.8826. The authors showed that the UBXII
median regression performs better than the Kumaraswamy median regression with the
following results: AIC = −375.6599 and BIC = −358.2775, and beta mean regression with
the following results: AIC = −381.7912 and BIC = −364.4089. The exploratory analysis
in Section 6.1 suggests that the response variable is left-skewed or contains some extreme
values. This is an indication that robust regression models are required for modeling the
data, and thus our choice of using the median and modal regressions is appropriate. We
adopt the following regression structure:

log
(

ηi
1− ηi

)
= δ0 + δ1zi1 + δ2zi2 + δ3zi3, i = 1, 2, ..., 239

to model the data. Table 7 displays the estimates of the model parameters, standard errors, p-
values, and information criteria. From the information criteria, the AP regressions (median
and modal) perform better than the UBXII median, Kumaraswamy median, and beta mean
regressions. Since DAIC > 2, the AP regressions perform significantly better than the
compared regressions. Comparing the AP median regression with the modal regression, it
can be said that the AP median regression performs better than the modal regression. From
Table 7, it can be seen that the parameter δ1 is not statistically significant at 5% level of
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significance. Hence, the variable gender has no significant effect on the recovery rate. The
parameters δ2 and δ3 are statistically significant at the 5% level of significance. This implies
that the recovery rate of older patients is higher than that of younger ones. Furthermore,
the recovery rate of patients who receive chemotherapy on a three-day protocol is higher
than that of those who receive chemotherapy on a one-day protocol.

Table 6. Simulation results for the second scenario.

Parameter n
AP Quantile Regression

Parameter n
AP Modal Regression

AE AB RMSE AE AB RMSE

δ0

50 0.1667 0.1496 0.1906

δ0

50 0.3746 0.3802 0.6027

150 0.1484 0.1207 0.1502 150 0.3336 0.3336 0.5220

250 0.1136 0.0907 0.1097 250 0.2376 0.2422 0.3747

350 0.1171 0.0845 0.1021 350 0.2302 0.2282 0.3570

450 0.1164 0.0842 0.1028 450 0.2165 0.2085 0.3172

550 0.1122 0.0714 0.0856 550 0.1841 0.1748 0.2572

δ1

50 0.4049 0.3025 0.3523

δ1

50 0.5759 0.5815 0.6773

150 0.3681 0.1882 0.2312 150 0.4728 0.4831 0.5746

250 0.4042 0.1654 0.2011 250 0.4892 0.4385 0.5127

350 0.3862 0.1498 0.1808 350 0.4187 0.3793 0.4540

450 0.3912 0.1453 0.1771 450 0.4457 0.3684 0.4586

550 0.3730 0.1047 0.1324 550 0.3974 0.3408 0.4147

δ2

50 0.7935 0.1038 0.1363

δ2

50 0.8970 0.3344 0.4124

150 0.8057 0.0546 0.0699 150 0.8773 0.2046 0.2720

250 0.8013 0.0426 0.0519 250 0.8651 0.1441 0.2004

350 0.8008 0.0364 0.0457 350 0.8471 0.1296 0.1734

450 0.7987 0.0327 0.0414 450 0.8440 0.1052 0.1468

550 0.8050 0.0326 0.0394 550 0.8339 0.1025 0.1397

α

50 1.2087 0.3183 0.4361

ϕ

50 1.4403 0.2164 0.2713

150 1.2667 0.2281 0.2932 150 1.3604 0.1242 0.1589

250 1.2719 0.1967 0.2448 250 1.3258 0.0870 0.1127

350 1.2930 0.1702 0.2034 350 1.3211 0.0700 0.0911

450 1.2871 0.1632 0.1971 450 1.3153 0.0609 0.0785

550 1.2919 0.1546 0.1845 550 1.3063 0.0588 0.0739

Table 7. Estimates, standard errors, and information criteria for the regression models.

AP Quantile Regression AP Modal Regression

Parameter Estimate Standard Error p-Value Parameter Estimate Standard Error p-Value

δ0 1.0119 0.1226 <0.0001 δ0 0.8903 0.1715 <0.0001
δ1 0.0533 0.0912 0.5585 δ1 0.0921 0.1235 0.4560
δ2 0.2392 0.0940 0.0110 δ2 0.3153 0.1559 0.0432
δ3 0.0169 0.0049 0.0006 δ3 0.0253 0.0082 0.0020
α 5.6100 1.1128 <0.0001 ϕ 8.4244 0.6471 <0.0001

` = 201.1400 ` = 199.7300
AIC = −392.2835 AIC = −389.4540
BIC = −374.9012 BIC = −372.0717
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The adequacy of the fitted regression models is assessed by examining the residuals
of the fitted models. The P-P plots and half-normal plots with simulated envelopes of the
randomized quantile residuals in Figure 14 indicate that the models are adequate.

Figure 14. P-P (top) and half-normal (bottom) plots of the randomized quantile residuals.

The P-P and quantile-quantile (Q-Q) plots with simulated envelopes of the Cox–Snell
residuals shown in Figure 15 again affirm that the fitted models are adequate.

Figure 15. P-P (top) and Q-Q (bottom) plots of the Cox–Snell residuals.

8. Conclusions

In this study, the AP distribution and its associated quantile and modal regressions
were developed. The PDF of the AP distribution exhibits flexible shapes such as left-skewed,
right-skewed, J, and reversed-J shapes. This makes the distribution a suitable candidate
for fitting data with such characteristics. The corresponding HRF also suggests that the
distribution is capable of fitting data with monotonic and non-monotonic failure rates.
We explored the performance of nine frequentist estimation procedures for estimating the
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parameters of the distribution using Monte Carlo simulations, and the results revealed
that most of the procedures are consistent with regards to estimating the parameters. A
biomedical application of the distribution showed that the model provides a good fit to the
data. A Bayesian illustration of how to apply the distribution showed that the approach
is able to estimate the parameters of the distribution very well. The applications of the
elaborated quantile and modal regressions demonstrated that the new regression models
outperformed some existing regression models. The future perspective of this work is to
demonstrate the Bayesian applications of the quantile and modal regressions.
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Abstract: Regression models in which the response variable has a compound distribution have
applications in actuarial science. For example, the aggregate claim amount in a vehicle insurance
portfolio can be modeled using a compound Poisson distribution. In this paper, we propose a
regression model, wherein the response variable is assumed to have a compound Conway–Maxwell–
Poisson (CMP) distribution. This distribution is a parsimonious two-parameter Poisson distribution
that accounts for both over- and under-dispersed count data, making it more suitable for application
in various fields. A two-part methodology in the framework of a generalized linear model is proposed
to estimate the parameters. Additionally, a method to obtain the prediction interval of the response
variable is developed. The workings of the proposed methodology are illustrated through simulated
data. An application of the compound CMP regression model to real-life vehicle insurance claims
data is presented.

Keywords: aggregate claims distribution; compound CMP regression model; generalized linear
models; prediction intervals

1. Introduction

Compound regression models have applications in various research fields, including
economics and finance. In economic consumer theory, for example, compound Poisson
regression models are often used to examine the factors that account for the expenditures
incurred by tourists during their stay at a location. The factors may include length of stay,
type of holiday accommodations, age, occupation, socio-economic status of the tourist, etc.
See Gómez-Déniz and Pérez-Rodríguez [1]. In actuarial risk theory, the aggregate claim
amount incurred by the insurance company against the claims made by the policyholders
is modeled using compound models. See Klugman et al. [2] and Bahnemann [3] for a
detailed discussion on compound models, their distributional properties and applications
in insurance claim modeling. Jørgensen and Paes De Souza [4] applied the compound
Poisson regression model to determine the impact on the conditional mean of the aggregate
claim amount caused by factors such as age and model of the vehicle, exposure, deductibles,
etc., in the context of car insurance. In this paper, we propose a compound regression
model using a two-parameter Poisson distribution. On this topic, some mathematical
backgrounds are presented below in order to fix the notations. Let

S =
N

∑
j=1

Yj, (1)

denote the random sum, where the distributions of the random variables N and Y1, Y2, . . . , YN
are assumed to be discrete and continuous, respectively. Moreover, (Yj)s are assumed to
be independent and identically distributed. Therefore, in the sequel, we refer to Yjs as Y.

Math. Comput. Appl. 2023, 28, 39. https://doi.org/10.3390/mca28020039 https://www.mdpi.com/journal/mca
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Further, N and Y in general are assumed to be independent. The above-mentioned S is a
compound random variable. Suppose Yj represents the claim amounts on an insurance
portfolio, N denotes the number of claims made, then S represents the aggregate claim
amount. When N has a Poisson distribution, the distribution of S is known as the com-
pound Poisson distribution. Though the Poisson distribution is often used in constructing
compound distributions, it is not suitable for modeling over- or under-dispersed count data.
As an alternative to the Poisson distribution, one can use a generalized Poisson distribution
(Consul and Jain [5]) to model count data that are either over- or under-dispersed. Recently,
Shmueli et al. [6] studied a two-parameter Poisson distribution developed by Conway
and Maxwell [7] known as the Conway–Maxwell–Poisson (CMP) distribution. This is
a two-parameter flexible generalization of the Poisson distribution that can model both
over- and under-dispersed data and has the feature to include the Poisson, geometric and
Bernoulli distributions as special cases. A detailed discussion on the properties of this distri-
bution and its applications can be found in Sellers et al. [8]. Also, Sellers and Premeaux [9]
contains a detailed review on CMP regression models. In the context of compound dis-
tributions, assuming the CMP and binomial distributions for N and Y in Equation (1), a
discrete compound CMP-binomial distribution is developed by Saavithri et al. [10].

Considering the Poisson distribution as the counting distribution, compound Poisson
regression models are available in the literature. See Frees et al. [11], Andersen and
Bonat [12], and Delong et al. [13]. However, its applicability is limited to data with equi-
dispersed counts. To allow for flexibility in the compound regression models in terms of
accommodating dispersed counts, a counting distribution that can model both over- and
under-dispersed data should be considered. This serves as motivation to use the CMP
distribution as the counting distribution to build a compound regression model.

The goal of this work is to create a regression model for S using a CMP distribution
for N. The present work is novel because of the distribution used for N and its convolution
with the distribution of Y. The problem of obtaining prediction intervals for the response
variable S is also addressed. The parameters of the compound regression model are
estimated using the generalized linear model (GLM) approach in two cases. In the first case,
we assume that data on S are available but not on N and Y. We assume data on both N
and Y are available in the latter case. For this case, a two-part likelihood-based estimation
procedure is developed within the framework of the GLM. A methodology to obtain the
prediction interval (PI) for the response variable of the proposed compound regression
model is developed.

The rest of the paper is organized as follows: The compound CMP regression model
is given in Section 2. In Section 3, the estimation of the parameters of the proposed
regression model using the GLM approach is discussed. Section 4 deals with the suggested
methodology for obtaining the prediction intervals for the compound CMP regression
model. A numerical illustration of the estimation procedure using simulated data and
an application to real-life vehicle insurance claims data is presented in Section 5. The
conclusion of the paper is given in Section 6.

2. Compound CMP Regression Model

The probability mass function (pmf) of the random variable N having the CMP
distribution is given by

P(N = n) =
λn

(n!)νZ(λ, ν)
, n = 0, 1, 2, . . . , λ > 0, ν ≥ 0, (2)

where Z(λ, ν) = ∑∞
j=0 λj/(j!)ν is the normalizing constant. Some important remarks on

this distribution are given below. The parameters λ and ν are the location and dispersion
parameters, respectively. This pmf is not defined for λ ≥ 1 and ν = 0. The mean and

variance of N are given by E(N) = λ
∂ ln Z(λ, ν)

∂λ
and V(N) = λ

∂E(N)

∂λ
, respectively. When
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ν = 1, the CMP distribution reduces to the Poisson distribution. For ν > 1, the distribution
is under-dispersed, and for ν < 1, it is over-dispersed.

Since the location parameter λ of the CMP distribution does not represent its mean, a
mean reparameterized form of the distribution is used in building the compound regression
model. The pmf of N under the mean-reparametrization is given by

P(N = n) =
(

µ1 +
eφ − 1

2eφ

)neφ

(n!)−eφ

Z(µ1, φ)
, n = 0, 1, 2, . . . , µ1 > 0, φ ∈ R, (3)

where Z(µ1, φ) = ∑∞
j=0

(
µ1 +

eφ − 1
2eφ

)jeφ

1
(j!)eφ is the normalizing constant. When φ =

0, the distribution reduces to the Poisson distribution. For φ > 0, the distribution is
under-dispersed, and for φ < 0, it is over-dispersed. See Ribeiro Jr et al. [14]. Here,

µ1 ≈ λ1/ν − ν− 1
2ν

corresponds to the mean of the distribution and φ = ln(ν). This
approximation works reasonably well for ν ≤ 1 or λ > 10ν. The mean and variance of N
are E(N) = µ1 and V(N) = µ1e−φ, respectively.

Convolutions can be used to obtain the probability density function (pdf) of the
random sum S defined in Equation (1). In Equation (1), N = 0 implies S = 0. Let p0 denote
the probability mass at S = 0. Since S is not continuous at zero, the pdf of S is represented
as a generalized pdf in terms of Dirac delta function as

f (s) = p0δ(s) +
∞

∑
i=1

g∗iY (s)P(N = i), s ≥ 0, (4)

where δ(s) is the Dirac delta function such that
∫ ∞

0 δ(s)ds = 1. Here, P(N = i) denotes the
pmf of the CMP distribution defined in Equation (3), and g∗iY (.) denotes the pdf of the i-fold
convolution of Y, whose distribution is assumed to be continuous with support in R+.
Note that p0 = P(N = 0) = Z(µ1, φ)−1. In this paper, the distribution of Y is considered to
be a mean reparameterized gamma distribution. Based on Jorgensen [15] (Chapter 3), the
pdf of Y is given by

gY(y; µ2, ψ) =
1

Γ(ψ)

(
ψ

µ2

)ψ

yψ−1 exp
(
−ψy

µ2

)
, y > 0, µ2 > 0, ψ > 0, (5)

where µ2 denotes the mean of Y, ψ denotes the dispersion parameter and Γ(.) denotes the
gamma function. This form is taken for mathematical convenience and to accommodate
asymmetry in the distribution of Y. For example, in the context of insurance claim modeling,
the individual claim amounts are always positive and often right-skewed. Since the gamma
distribution is closed under convolution, we obtain

g∗iY (y) =
1

Γ(ψ)

(
ψ

iµ2

)ψ

yψ−1 exp
(
− ψy

iµ2

)
, y > 0, µ2 > 0, ψ > 0. (6)

Using Equations (3) and (6) in Equation (4), we obtain

f (s) = p0δ(s) +
sψ−1ψψ

Z(µ1, φ)µ
ψ
2 Γ(ψ)

∞

∑
i=1

(
µ1 +

eφ − 1
2eφ

)ieφ

(i!)−eφ

iψ exp
(−ψs

iµ2

)
, s ≥ 0. (7)

The pdf of S defined in Equation (7) is called the compound CMP gamma pdf. For the
random sum defined in Equation (1), we have

{
E(S) = E(N)E(Y),
V(S) = E(N)V(Y) + V(N)[E(Y)]2.

(8)
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See, for instance, Bahnemann [3] (Chapter 4). Using Equation (8), the mean and
variance of the compound CMP gamma distribution given in Equation (7) are obtained as

{
E(S) = µ1µ2,
V(S) = µ2

2µ1[ψ
−1 + e−φ].

(9)

To build a compound regression model for S, let X = (~1, ~X1, ~X2, . . . , ~Xp) denote
the design matrix where ~Xi, i = 1, 2, . . . , p are the column vectors corresponding to the
covariates Xi, i = 1, 2, . . . , p and~1 is the vector of 1′s. Following the GLM procedure given
in De Jong et al. [16] (Chapter 5), the model is built by regressing S on X using the log-link
function. This is because the log-link function guarantees that the expected value of the
response variable is positive. Let µ denote the expected value of S. Then, the compound
CMP gamma regression model is given by

µ = exp (Xδ), (10)

where δ = (δ0, δ1, . . . , δp)′ is a (p + 1)× 1 vector of regression parameters. In the context of
modeling vehicle insurance claims data, S may denote the aggregate claim amount, and the
covariates may denote the driver’s age, vehicle type, and so on. In the sequel, the method
of estimating the regression parameters using the likelihood approach is discussed.

3. Parameter Estimation

Consider a sample ~s = (s1, s2, . . . , sr)′ of r observations on S. Let D(> 0) positive
values in ~s and r − D zeros exist. Note that D can be assimilated to be random and
D ∼ Binomial(r, 1− p0), where p0 = Z(µ1, φ)−1. Therefore, the likelihood function L
based on~s and D = d is

L =

(
r
d

)
pr−d

0 (1− p0)
d

d

∏
k=1

f (s+k )

=

(
r
d

)(
1

Z(µ1, φ)

)r−d(
1− 1

Z(µ1, φ)

)d d

∏
k=1

f (s+k ), (11)

where f (s+k ) =
sψ−1

k ψψ

(Z(µ1, φ)− 1)µψ
2 Γ(ψ)

∑∞
i=1

(
µ1 +

eφ − 1
2eφ

)ieφ

(i!)−eφ

iψ exp
(−ψsk

iµ2

)
.

Thus, the log-likelihood function l based on~s and D = d is obtained as

l(µ1, µ2, φ, ψ;~s) = ln
((

r
d

))
− r ln(Z(µ1, φ)) + (ψ− 1)

d

∑
k=1

ln(sk)−
d

∑
k=1

ψ ln(µ2) + dψ ln(ψ)

− d ln(Γ(ψ)) +
d

∑
k=1

ln

[
∞

∑
i=1

(
µ1 +

eφ − 1
2eφ

)ieφ

(i!)−eφ

iψ exp
(−ψsk

iµ2

)]
. (12)

Since E(N) = µ1 and E(Y) = µ2, from Equation (9), we obtain µ = µ1µ2. Let the
elements of the design matrix X be xkl , l = 0, 1, . . . , p; k = 1, 2, . . . , d with the kth row given

by xk = (1, xk1, xk2, . . . , xkp). Replacing µ2 with
µ

µ1
and µ with exp (Xδ) in Equation (12),

the log-likelihood function based on~s and D = d becomes

l(δ, µ1, φ, ψ;~s) = ln
((

r
d

))
− r ln(Z(µ1, φ)) + (ψ− 1)

d

∑
k=1

ln(sk)−
d

∑
k=1

ψ ln

(
e∑

p
l=0 xkl δl

µ1

)

+ dψ ln(ψ)− d ln(Γ(ψ)) +
d

∑
k=1

ln

[
∞

∑
i=1

{(
µ1 +

eφ − 1
2eφ

)ieφ

(i!)−eφ

iψ exp
( −ψskµ1

ie∑
p
l=0 xkl δl

)}]
. (13)
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The maximum likelihood (ML) estimates of the parameters in Equation (13) can be
obtained by solving the (p + 4) log-likelihood equations simultaneously. However, these
equations are non-linear, and therefore closed-form solutions cannot be obtained. Hence,
iterative algorithms based on numerical methods can be used to solve the equations to get
the estimates for the parameters. Let δ̂ denote the ML estimate of δ. By the asymptotic
property of the ML estimators, for large r, the following distribution approximation holds:

Σ1/2
δ (δ̂− δ) ∼ Np+1(0, I),

where δ and Σδ denote the mean vector and the covariance matrix of δ̂, respectively. Using
Equation (10), an estimate of the expected value of S given the covariates X can be obtained
as µ̂ = exp (Xδ̂).

Assume that data on S are unavailable, but data on N and Y are. This can happen in
such situations as, for example, when modeling the aggregate claim amount when one has
data on the claim frequency (N) and the individual claim amounts (Y). Using N and Y, we
can compute the value of S and then build the regression model using the method described
above. However, it is computationally more challenging to compute the estimates due to
the presence of an infinite sum in the log-likelihood function. To reduce the computational
difficulty, we can use N and Y to build two separate regression models to obtain µ̂. Towards
this, a two-part GLM methodology is proposed to estimate µ assuming N and Y to be (1)
independent and (2) dependent.

3.1. Independent Compound Regression Model

Using Equation (9), we have µ = µ1µ2. The proposed two-part GLM method is
implemented by building two separate regression models, namely, the CMP regression
model and the gamma regression model, for the means of N and Y, respectively. Given
the data on N, Y and X, the estimated mean of S is computed as µ̂ = µ̂1µ̂2. Here, µ̂1 and µ̂2
are obtained by regressing N and Y separately on X. Using the log-link function, we have
µ1 = E(N) = eXα, µ2 = E(Y) = eXβ, where α = (α0, α1, . . . , αp)′ and β = (β0, β1, . . . , βp)′

denote the set of regression parameters.
Let ~n = (n1, . . . , nm)′ denote m observations on N. For each nk > 0, let there be nk

observations on Y denoted by ykj, j = 1, 2, . . . , nk, k = 1, 2, . . . , m. Let ~̄y = (ȳ1, ȳ2, . . . , ȳm)′

where ȳk =

{
∑nk

j=1 ykj/nk if nk > 0

0 if nk = 0.
Let the design matrix X be of order m× (p + 1) with elements xkl , k = 1, 2, . . . , m; l =

0, 1, . . . , p. Since the distribution of Y has positive support, zeros in ~̄y, if any, are not to
be considered. The corresponding sample observation in ~̄y and the observed covariate
matrix X are not included when building the gamma regression model. Let q denote
the number of observations for which ȳk = 0, k = 1, 2, . . . , m and let t = m − q. Fol-
lowing Garrido et al. [17], the distribution of Y ∼ gamma(µ2, ψ) is equivalent to Ȳ|N ∼
gamma

(
µ2,

ψ

N

)
for independently identically distributed Y1, . . . , YN . Using the pmf of N

given in Equation (3) with µ1 = eXα, the corresponding log-likelihood function is given by

l(α, φ;~n) =
m

∑
k=1

eφ

[
nk ln

(
e∑

p
l=0 xklαl +

eφ − 1
2eφ

)
− ln(nk!)

]
−

m

∑
k=1

ln
(

Z(e∑
p
l=0 xkl αl , φ)

)
. (14)

The ML estimates for the (p+ 1) regression parameters are obtained by simultaneously
solving the corresponding log-likelihood equations. Let α̂ = (α̂0, α̂1, . . . , α̂p)′ denote the
ML estimate of α. Then the ML estimate of µ1 is obtained as µ̂1 = eXα̂. In similar lines, the
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ML estimate of β, namely, β̂ = (β̂0, β̂1, . . . , β̂p)′, is obtained using the likelihood function
corresponding to the conditional pdf of Ȳ given N = n. The conditional pdf is given by

f (ȳ|n; µ2, ψ) =
1

Γ(ψ/n)

(
ψ/n
µ2

)ψ/n
ȳ(ψ/n)−1 exp

(
− ψȳ

nµ2

)
, ȳ > 0. (15)

Taking µ2 = eXβ in Equation (15), the log-likelihood function is obtained as

l(β, ψ; ~̄y) = −t ln
(

Γ
(

ψ

n

))
+

tψ
n

ln
(

ψ

n

)
+

t

∑
k=1

[(
ψ

n
− 1
)

ln(ȳk)−
ψȳk

ne∑
p
l=0 xkl βl

− ψ

n

p

∑
l=0

xkl βl

]
. (16)

The likelihood equations for α and β are, respectively, given by

m

∑
k=1

xkl(nk − e∑
p
l=0 xklαl ) = 0 (17)

and
t

∑
k=1

xklnk

e∑
p
l=0 xkl βl

(ȳk − e∑
p
l=0 xkl βl ) = 0, l = 0, 1, . . . , p. (18)

Since Equations (17) and (18) are non-linear, iterative procedures can be used to solve
them. As an alternate, one can use the in-built functions cmp() and glm(., family=“gamma”)
available in R to obtain α̂ and β̂. Using α̂ and β̂, the ML estimate of the expected value of
S, namely, µ̂ = µ̂1µ̂2, can be computed. By the asymptotic property of the ML estimators,
we have

Σ1/2
α (α̂− α) ∼ Np+1(0, I)

and
Σ1/2

β (β̂− β) ∼ Np+1(0, I).

Here, α and Σα denote the mean vector and covariance matrix of α̂, respectively.
Similarly, β and Σβ denote the mean vector and covariance matrix of β̂, respectively. The
standard errors of α̂ and β̂ are the square root of the diagonal elements of the corresponding
covariance matrices. Since α̂ and β̂ do not have closed-form expressions, their standard
errors can be obtained using the sample Hessian matrix. The sample Hessian matrices of
α̂ and β̂, namely, Hα̂ and Hβ̂, are given by Hα̂ = eφ̂eXα̂XX′ and Hβ̂ = ψ̂XX′, respectively.
Since the expressions of the standard errors of the parameters α and β contain the dispersion
parameters φ and ψ, respectively, they may be estimated using the following formulas:

φ̂ = ln

{
(m− (p + 1))

m

∑
k=1

µ̂1k
(nk − µ̂1k)2

}
(19)

and

ψ̂ =
1

(t− (p + 1))

t

∑
k=1

(
ȳk − µ̂2k

µ̂2k

)2
, (20)

where µ̂1k and µ̂2k are the estimated values of µ1 and µ2, respectively, corresponding to the
kth observation.

3.2. Dependent Compound Regression Model

Although independence between N and Y is commonly assumed in compound regres-
sion models, it is rarely observed in practice. For instance, in the framework of modeling
the aggregate claim amounts, it is typical to observe that the claim amounts depend on
the claim frequency as well. See, for example, the work of Garrido et al. [17]. As a result,
N is included as a covariate in the regression model of Ȳ. Let θ represent the regression
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parameter associated with N. Since S denotes a random sum, it can be written as S = NȲ.
The GLM of S through the log-link function is given by Garrido et al. [17] as

µ = eXβ M′N(θ),

where M′N(θ) represents the derivative of the moment generating function of N with
respect to θ. Taking N as CMP, M′N(θ) is obtained as

M′N(θ) =
∞

∑
n=0

neθn
(

µ1 +
eφ − 1

2eφ

)neφ

(n!)−eφ

Z(µ1, φ)
.

Note that if θ = 0, i.e., when N is independent of Ȳ, M′N(θ) = E(N), and thus the
dependent compound regression model will coincide with the independent compound
regression model. The pdf of S under dependent case is given by

fS(s) = fȲ|N(ȳ|n) fN(n),

where fȲ|N(ȳ|n) is indicated in Equation (15) with µ2 = µθ and ψ = ψθ . The corresponding
log-likelihood function is

l(α, β, φ, ψ, θ) = l(α, φ;~n) + l(β, ψ, θ; ~̄y|~n),

where l(α, φ;~n) corresponds to Equation (14). Let the ML estimates of α, β and θ be
denoted as α̃, β̃ and θ̃, where α̃ is obtained using Equation (17). The function l(β, ψ, θ; ~̄y|~n)
corresponds to Equation (16) with µ2 replaced with µθ . To obtain the estimates of β and θ,
the GLM of E(Ȳ|N, X) is used with the log-link function and is defined by µθ = eXβ+θN .
The corresponding likelihood equations of the regression parameters are

t

∑
k=1

nkxkl

e∑
p
l=0 xkl βl+θnk

(ȳk − e∑
p
l=0 xkl βl+θnk ) = 0 (21)

and
t

∑
k=1

n2
k

e∑
p
l=0 xkl βl+θnk

(ȳk − e∑
p
l=0 xkl βl+θnk ) = 0, l = 0, 1, . . . , p. (22)

The dispersion parameter ψθ can be estimated using

ψ̂θ =
1

(t− (p + 1))

t

∑
k=1

(
ȳk − µ̂θk

µ̂θk

)2
,

where µ̂θk is the estimated value of µθ corresponding to the kth observation. In addition,
β̃ and θ̃ can be obtained by solving Equations (21) and (22) through iterative algorithms.

Thus, the estimate of µ is given by µ̃ = eXβ̃ M′N(θ̃). Denote βθ =

[
β
θ

]

(p+2)×1
and its ML

estimate as β̃θ =

[
β̃
θ̃

]

(p+2)×1
. By the asymptotic property of the ML estimators, we have

Σ1/2
βθ

(β̃θ− βθ) ∼ Np+2(0, I).

Here, βθ and Σβθ
denote the mean vector and covariance matrix of β̃θ, respectively. The

standard error of β̃θ corresponds to the square root of the diagonal elements of the sample
Hessian matrix, which is given by Hβ̃θ

= ψ̂θX∗′AX∗, where X∗ is a matrix of order t×
(p + 2) that denotes the design matrix which includes~n. A is a t× t diagonal matrix with
positive elements of~n. Note that Hα̃ = Hα̂.
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4. Prediction Intervals

From the estimates of the regression parameters, we can obtain an estimate of the
expected value of S for some fixed values of the covariates. Given the covariates, it is
frequently useful to predict the actual value of S. In a regression setup, the actual value of
S is related to its expected value as

S = Ê(S|X) + ε,

where ε is the error term. Since ε is unobserved, it is not possible to predict the actual S. In
contrast, the prediction interval is a constructed interval that contains the predicted value of
actual S. In this section, a method for calculating the PI for S is proposed. Let S0 denote the
response given the covariate x0 = (1, x01, . . . , x0p). Thus, we have S0 = Ê(S0|x0) + ε, where
Ê(S0|x0) = exp (x0δ̂) = µ̂0 (say). Assuming E(ε) = 0, we get, E(S0) = µ̂0. Additionally,
we have V(S0) = V(µ̂0) + V(ε). Hence, the 100(1− α)% PI for S0 is given by [k1, k2],
such that

P[k1 ≤ S0 ≤ k2] = 1− α, (23)

where α ∈ (0, 1). Here, k1 and k2 correspond, respectively, to the lower
(α

2

)th
and upper

(α

2

)th
percentiles of the distribution of S0, which is the compound CMP gamma distribu-

tion with mean E(S0) and variance V(S0). Since V(S0) depends on V(µ̂0), we proceed as
below to obtain an expression for V(µ̂0). To begin, consider

µ̂0 = exp(x0δ̂) =⇒ ln(µ̂0) = x0δ̂. (24)

Using the Taylor series expansion of ln(A) at E(A), we have

ln(A) ≈ ln(E(A)) + (A− E(A))
1

E(A)
.

Thus, we have

E(ln(A)) ≈ ln(E(A)) (25)

and

V(ln(A)) ≈ V(A)

E(A)2 . (26)

Taking A to be µ̂0 in Equations (25) and (26), we obtain E(ln(µ̂0)) ≈ ln E(µ̂0) and

V(ln(µ̂0)) ≈
V(µ̂0)

E(µ̂0)2 . From Equation (24), we establish that

E(ln(µ̂0)) ≈ E(x0δ̂) = x0E(δ̂)

=⇒ E(µ̂0) ≈ exp(x0E(δ̂)) = exp (x0δ) = µ0.

In a similar manner, we obtain

V(µ̂0) ≈ V(ln(µ̂0))E(µ̂0)
2 = V(x0δ̂)µ2

0 = x0V(δ̂)x′0µ2
0

= x0diag(Σδ)x′0µ2
0.

An estimate of V(ε), namely, V̂(ε), can be obtained by dividing the residual sum of
squares (RSS) of the compound CMP regression model by m− (p + 1). Using V(µ̂0) and
V̂(ε), we obtain V(S0). However, obtaining the values of k1 and k2 from Equation (23) is not
easy since the cumulative distribution function of the compound CMP gamma distribution
is not invertible. One may use bootstrap procedures to identify k1 and k2. We propose
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below a heuristic method to obtain the PI using the two-part GLM methodology given in
the previous section.

The PI for S0 is obtained using the PIs of N0 and Ȳ0, where N0 = Ê(N0|x0) + ε and
Ȳ0 = Ê(Ȳ0|x0) + ε. Note that Ê(N0|x0) is obtained from the GLM of N on X and Ê(Ȳ0|x0)
is obtained using the GLM of Ȳ on X. Denoting Ê(N0|x0) = µ̂01 and Ê(Ȳ0|x0) = µ̂02, we
have, µ̂01 = exp(x0α̂) and µ̂02 = exp(x0β̂). Proceeding along similar lines for obtaining the
PI for S0, the PIs for N0 and Ȳ0 can be obtained, respectively, as [a1, a2] and [b1, b2], such that

P[a1 ≤ N0 ≤ a2] = 1− α

and
P[b1 ≤ Ȳ0 ≤ b2] = 1− α,

where α ∈ (0, 1). Since N0 has a mean reparameterized CMP distribution given in

Equation (3), a1 and a2 are respectively, the lower
(α

2

)th
and upper

(α

2

)th
percentiles

of the CMP distribution with mean µ̂01 and dispersion parameter φ =
µ̂01

V(µ̂01) + V̂(ε)
,

where V(µ̂01) = x0diag(Σα)x′0µ2
01. Likewise, b1 and b2 correspond respectively, to the

lower
(α

2

)th
and upper

(α

2

)th
percentiles of the mean reparameterized gamma distribu-

tion given in Equation (15) with mean µ̂02 and dispersion parameter ψ =
V(µ̂02) + V̂(ε)

µ̂2
02

,

where V(µ̂02) = x0diag(Σβ)x′0µ2
02. Supposing Σα and Σβ are not known, the corresponding

sample Hessian matrices can be used to compute V(µ̂01) and V(µ̂02). The values of V̂(ε)
of the CMP and gamma regression models can be obtained by dividing the RSS of the
corresponding regression models by m − h and t − h, where h denotes the number of
regression parameters in the model.

The PI for S0 given x0 can be constructed using the PIs of N0 and Ȳ0. By virtue of
equality S = NȲ, a trivial PI for S0 given x0 can be taken to be [k1, k2] = [a1b1, a2b2]. When
N is large, it may be useful to know the PI for S0. For example, in modeling aggregate claim
amounts from insurance data, the company may want to know the PI for the aggregate
claim amount for high claim frequencies so that enough funds can be maintained. In this
case, the PI for S0 given x0 can be defined as [a2b1, a2b2]. This definition of PI is used in the
remaining part.

5. Numerical Illustration
5.1. Simulation Study

This section provides a numerical illustration of how to compute the PI for S using
simulated data for the independent and dependent compound regression models. To
generate random samples from the CMP and gamma regression models with a single
covariate ~X1 = (x11, x21, . . . , xm1)

′, generated from a standard normal distribution, the
following steps are implemented:

1. Generate nk, k = 1, 2, . . . , m, from the CMP distribution given in Equation (3) with
mean µ1k = exp(α0 + α1xk1) by fixing α0, α1 and φ. Obtain~n = (n1, n2, . . . , nm)′.

2. For each nk > 0, generate ykj, j = 1, 2, . . . , nk from the gamma distribution given in
Equation (5) with mean µ2k by fixing ψ, β0, β1, and θ, where µ2k = exp(β0 + β1xk1)
for the independent compound regression model and exp(β0 + β1xk1 + θnk) for the
dependent compound regression model. Compute ȳk and obtain ~̄y = (ȳ1, ȳ2, . . . , ȳm)′.

For simulation, the values of the regression parameters are taken as α0 = 0.5, α1 =
0.3, β0 = 1, β1 = 0.5 and θ = 0.5. The dispersion parameter ψ of the gamma distribution
is set to 1.5. To accommodate over-, equi- and under-dispersion in N, three choices of
the dispersion parameter φ, namely, φ = −1.6, 0, and 1.6, are considered. The CMP
and gamma GLMs are fitted to the generated ~n and ~̄y values, using their respective log-
link functions for both the independent and dependent compound regression models.
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All the computations are carried out in R (version 4.1.1). The cmp() function in cmpreg
package (Ribeiro Jr [18]) and the glm() function are used to carry out the CMP and gamma
regression, respectively. To compute the value of M′N(θ̂) in the dependent compound
regression model, the com.expectation() function in compoisson package is employed.
qcom() function in the compoisson package is used to determine the quantile values from
the CMP distribution and the function qgammaAlt() in the EnvStats package is used to
determine quantile values from the gamma distribution. For the above choices of the
parameters, the 95% PI for S is obtained for the independent and dependent compound
regression models under three choices of sample size (m), namely, m = 25, 50 and 100. The
actual S observations, denoted by ~s = (s1, s2, . . . , sm)′, are computed by sk = nk ȳk, k =
1, 2, . . . , m.

The proportion of~s lying within its PI is presented in Table 1 for the various choices of
m and φ. Additionally, the plots of the corresponding prediction bands are displayed in
Tables 2 and 3. From Table 1, it can be observed that, for the choices of the covariate and
coefficients considered, the proportion is large for φ = 1.6 in the independent compound
regression model and for φ = −1.6 in the dependent compound regression model.

Table 1. Proportion of S lying in its respective PIs.

m φ Independent Model Dependent Model

25
−1.6 0.6667 0.9444

0 0.7777 0.8333
1.6 0.8400 0.8400

50
−1.6 0.7353 0.8529

0 0.6500 0.7000
1.6 0.7656 0.8297

100
−1.6 0.6615 0.9077

0 0.7088 0.9493
1.6 0.7777 0.9393

Table 2. Prediction bands of independent compound regression model for over-, equi- and under-
dispersed data.

m φ = −1.6 φ = 0 φ = 1.6

25

50
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Table 2. Cont.

m φ = −1.6 φ = 0 φ = 1.6

100

Table 3. Prediction bands of dependent compound regression model for over-, equi- and under-
dispersed data.

m φ = −1.6 φ = 0 φ = 1.6

25

50

100

5.2. Real-Life Application

In this section, the proposed two-part methodology to obtain the PI for the compound
CMP gamma regression is applied to real-life vehicle insurance claims data. The dataset
pertains to the average damage claims for privately owned and insured vehicles in Britain
in the year 1975. See Dutang and Charpentier [19]. It consists of 128 observations on five
variables, namely, the owner’s age (X1), car age (X2), model (X3), number of claims (N) and
average claim amount (Ȳ) in pounds. The variable X1 consists of eight categories of age
group; the variable X2, four categories of car age; and the variable X3, four categories of
model. The aggregate claim amount (S) for each observation is obtained by multiplying the
average claim amount by the number of claims. A dispersion test on N, performed using
the function dispersiontest() available in R under AER package, resulted in a dispersion
index of 119.8246 and a p-value of 2.091 × 10−6, indicating that N is over-dispersed.
Similarly, the Kolmogorov–Smirnov test on Ȳ yielded a p-value of 0.7191 to assess the
goodness-of-fit of the gamma distribution. As a result, the CMP distribution can be used
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to model N, whereas the gamma distribution can be used to model Ȳ. To implement the
proposed estimation methodology and validate its performance, 80% of the observations
are randomly chosen as training data and the rest 20% as test data. The observations in the
training data are used to fit the independent and dependent compound regression models.
The owner’s age, car age and car model are the considered covariates in the model. The
in-built functions cmp() function in cmpreg package and the glm() function are used to
obtain the estimates of CMP and gamma regression models, respectively. The estimates
of the regression parameters, their corresponding p-values (in parenthesis) and the AIC
values are given in Table 4. Using the AIC values for the CMP and gamma regression
models, the combined AIC values for the compound regression models are obtained as
2110.31 and 2108.31, respectively. For each observation in the test data, the PI for S is
computed using the estimates of the fitted model. The corresponding prediction band
of the independent and dependent compound regression model is displayed in Figure 1.
From this figure, it can be noted that some observations do not fall within the prediction
band. One reason for this is that these observations have large claim frequencies when
compared with the other observations, and the corresponding limits of the PI based on the
CMP regression are also large. As a result, the limits of the PI of such observations deviate
from their observed values. The proportion of observed S in the test data lying within its PI
is found to be 0.4782 and 0.6956 for the independent and dependent compound regression
models, respectively. Based on the combined AIC values and the proportions, it can be
inferred that the dependent compound regression model provides a relatively better fit for
modeling the aggregate claim amount.

Table 4. Parameter estimates, p-values and AIC for the CMP and gamma regression models for the
real-life data.

Covariates CMP Regression Model Gamma Regression Model
(Independent Case)

Gamma Regression Model
(Dependent Case)

(Intercept) 1.5007
(< 2 × 10−16)

5.7421
(< 2 × 10−16)

5.7754
(< 2 × 10−16)

OwnerAge21–24 1.5885
(< 2 × 10−16)

−0.2010
(0.0670)

−0.1800
(0.0964)

OwnerAge25–29 2.6237
(< 2 × 10−16)

−0.1129
(0.2705)

−0.0497
(0.6357)

OwnerAge30–34 2.7585
(< 2 × 10−16)

−0.3276
(0.0034)

−0.2542
(0.0262)

OwnerAge35–39 2.8854
(< 2 × 10−16)

−0.3150
(0.0047)

−0.2271
(0.0496)

OwnerAge40–49 3.5362
(< 2 × 10−16)

−0.2722
(0.0081)

−0.1140
(0.3528)

OwnerAge50–59 3.3678
(< 2 × 10−16)

−0.1854
(0.0843)

−0.0590
(0.6219)

OwnerAge60+ 3.0280
(< 2 × 10−16)

−0.3054
(0.0036)

−0.2120
(0.0553)

ModelB 1.0255
(< 2 × 10−16)

0.0584
(0.4260)

0.1414
(0.0877)

ModelC 0.6930
(< 2 × 10−16)

0.1083
(0.1387)

0.1500
(0.0450)

ModelD −0.1889
(0.00485)

0.4041
(6.01 × 10−7)

0.3762
(2.40 × 10−6)

CarAge10+ −1.9174
(< 2 × 10−16)

−0.8138
(< 2 × 10−16)

−0.9494
(5.87 × 10−16)

CarAge4–7 −0.1558
(6.65 × 10−5)

−0.0615
(0.3959)

−0.0727
(0.3089)
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Table 4. Cont.

Covariates CMP Regression Model Gamma Regression Model
(Independent Case)

Gamma Regression Model
(Dependent Case)

CarAge8–9 −1.4876
(< 2 × 10−16)

−0.4188
(8.64 × 10−8)

−0.5323
(2.02 × 10−8)

NClaims - - −0.0010
(0.0301)

φ̂ −0.8374
(< 2 × 10−16)

- -

ψ̂ - 0.0667 0.0644
AIC 984.7148 1125.6 1123.6

Figure 1. Prediction band for the test data under independent model and dependent model.

6. Conclusions

The Poisson distribution is generally used in compound regression models as the
counting distribution. In practice, the Poisson distribution’s equi-dispersion assumption is
frequently violated. The methodology presented in this paper provided a way to handle
non-equi-dispersed count data in the context of compound regression models by using
the CMP distribution. The proposed compound regression model can be used when the
count data are over- or under-dispersed. The estimation of the parameters was carried out
using a two-part GLM approach for the independent and dependent compound regression
models. This approach is less complex and provides separate estimates for the count
and the continuous distribution involved in the model. Since, in practice, knowledge of
the actual value of the response variable rather than its predicted value is more useful,
a methodology to obtain the prediction interval of the response variable was proposed.
An application of the two-part GLM method to real-life data revealed that the dependent
compound regression model performs relatively better than the independent compound
regression model. Thus, in practice, one can start with the dependent compound regression
model and look for the significance of the count variable in the model. If the count variable
is found to be not significant, then the independent compound regression model can be
used. To conclude, the proposed compound CMP regression model could be an alternative
to modeling a compound random variable when the count data are not equi-dispersed.

Author Contributions: J.M. has contributed to the conceptualization, methodology, mathematical
derivation and simulation. V.S.V. and C.C. have contributed equally to mathematical derivation
and original draft preparation. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

156



Math. Comput. Appl. 2023, 28, 39

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gómez-Déniz, E.; Pérez-Rodríguez, J.V. Modelling distribution of aggregate expenditure on tourism. Econ. Model. 2019,

78, 293–308. [CrossRef]
2. Klugman, S.A.; Panjer, H.H.; Willmot, G.E. Loss Models: From Data to Decisions; John Wiley & Sons: New York, NY, USA, 2012;

Volume 715.
3. Bahnemann, D. Distributions for Actuaries; Casualty Actuarial Society: Arlington, VA, USA, 2015; Volume 2.
4. Jørgensen, B.; Paes De Souza, M.C. Fitting Tweedie’s compound Poisson model to insurance claims data. Scand. Actuar. J. 1994,

1994, 69–93. [CrossRef]
5. Consul, P.C.; Jain, G.C. A generalization of the Poisson distribution. Technometrics 1973, 15, 791–799. [CrossRef]
6. Shmueli, G.; Minka, T.P.; Kadane, J.B.; Borle, S.; Boatwright, P. A useful distribution for fitting discrete data: Revival of the

Conway-Maxwell-Poisson distribution. J. R. Stat. Soc. Ser. (Appl. Stat.) 2005, 54, 127–142. [CrossRef]
7. Conway, R.W.; Maxwell, W.L. A queuing model with state dependent service rates. J. Ind. Eng. 1962, 12, 132–136.
8. Sellers, K.F.; Borle, S.; Shmueli, G. The COM-Poisson model for count data: A survey of methods and applications. Appl. Stoch.

Model. Bus. Ind. 2012, 28, 104–116. [CrossRef]
9. Sellers, K.F.; Premeaux, B. Conway-Maxwell-Poisson regression models for dispersed count data. Wiley Interdiscip. Rev. Comput.

Stat. 2021, 13, e1533. [CrossRef]
10. Saavithri, V.; Priyadharshini, J.; Banu, Z.P. Compound COM-Poisson Distribution with Binomial Compounding Distribution.

Acailable online: https://www.internationaljournalssrg.org/uploads/specialissuepdf/ICRMIT/2018/MTT/ICRMIT-P122.pdf
(accessed on 15 January 2023).

11. Frees, E.W.; Gao, J.; Rosenberg, M.A. Predicting the frequency and amount of health care expenditures. N. Am. Actuar. J. 2011,
15, 377–392. [CrossRef]

12. Andersen, D.A.; Bonat, W.H. Double generalized linear compound Poisson models to insurance claims data. Electron. J. Appl.
Stat. Anal. 2017, 10, 384–407.

13. Delong, Ł.; Lindholm, M.; Wüthrich, M.V. Making Tweedie’s compound Poisson model more accessible. Eur. Actuar. J. 2021,
11, 185–226. [CrossRef]

14. Ribeiro, E.E., Jr.; Zeviani, W.M.; Bonat, W.H.; Demétrio, C.G.; Hinde, J. Reparametrization of COM-Poisson regression models
with applications in the analysis of experimental data. Stat. Model. 2020, 20, 443–466. [CrossRef]

15. Jorgensen, B. The Theory of Dispersion Models; CRC Press: Boca Raton, FL, USA, 1997.
16. De Jong, P.; Heller, G.Z. Generalized Linear Models for Insurance Data; Cambridge University Press: Cambridge, UK, 2008.
17. Garrido, J.; Genest, C.; Schulz, J. Generalized linear models for dependent frequency and severity of insurance claims. Insur.

Math. Econ. 2016, 70, 205–215. [CrossRef]
18. Ribeiro, E.E., Jr. Cmpreg: Reparametrized COM-Poisson Regression Models; R Package Version 0.0.1. Available online: https:

//rdrr.io/github/JrEduardo/cmpreg/ (accessed on 15 January 2023).
19. Dutang, C.; Charpentier, A. CASdatasets: Insurance Datasets; 2019. R Package Version 1.0-11. Available online: http://cas.uqam.ca/

(accessed on 15 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

157



Citation: Girondot, M.; Barry, J.

Computation of the Distribution of

the Sum of Independent Negative

Binomial Random Variables. Math.

Comput. Appl. 2023, 28, 63. https://

doi.org/10.3390/mca28030063

Academic Editor: Sandra Ferreira

Received: 7 February 2023

Revised: 13 April 2023

Accepted: 26 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Article

Computation of the Distribution of the Sum of Independent
Negative Binomial Random Variables
Marc Girondot 1,* and Jon Barry 2

1 Laboratoire Écologie, Systématique et Évolution, Université Paris-Saclay, CNRS, AgroParisTech,
91190 Gif-sur-Yvette, France

2 Lowestoft Laboratory, Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft,
Suffolk NR33 OHT, UK

* Correspondence: marc.girondot@universite-paris-saclay.fr

Abstract: The distribution of the sum of negative binomial random variables has a special role in
insurance mathematics, actuarial sciences, and ecology. Two methods to estimate this distribution
have been published: a finite-sum exact expression and a series expression by convolution. We
compare both methods, as well as a new normalized saddlepoint approximation, and normal and
single distribution negative binomial approximations. We show that the exact series expression used
lots of memory when the number of random variables was high (>7). The normalized saddlepoint
approximation gives an output with a high relative error (around 3–5%), which can be a problem in
some situations. The convolution method is a good compromise for applied practitioners, considering
the amount of memory used, the computing time, and the precision of the estimates. However, a
simplistic implementation of the algorithm could produce incorrect results due to the non-monotony
of the convergence rate. The tolerance limit must be chosen depending on the expected magnitude
order of the estimate, for which we used the answer generated by the saddlepoint approximation.
Finally, the normal and negative binomial approximations should not be used, as they produced
outputs with a very low accuracy.

Keywords: negative binomial distribution; computation; R package; sum of negative binomial variables

1. Introduction

The negative binomial (NB) distribution is a discrete probability distribution that
models counts [1]. It widely used in statistics, from statistics of accidents [2] to animal
counts [3]. The NB distribution can be used to describe the distribution of the number
of successes or failures. Suppose that there is a sequence of independent Bernoulli trials,
each trial having two potential outcomes called “success” and “failure”. The probability of
success is p and of failure q = 1− p. We observe this sequence until a predefined number,
r, of successes has occurred. Then, the random number of failures has the NB distribution
X ∼ NB(r; p) with density P(X = x), x being a particular realization of X:

P(X = x) =
(x + r− 1)!
x!(r− 1)!

pr(1− p)x (1)

with 0 < p < 1, x and r being integer > 0. The mean is µ = r (1− p)/p.
The moment-generating function of the NB distribution is:

M(t) =
(

q
1− p et

)r
(2)

Math. Comput. Appl. 2023, 28, 63. https://doi.org/10.3390/mca28030063 https://www.mdpi.com/journal/mca
158



Math. Comput. Appl. 2023, 28, 63

An alternative parametrization X ∼ NB(µ, θ) can also be derived from assuming
that the mean parameter of a Poisson distribution has a gamma distribution:

P(X = x) =
Γ(x + θ)

x!Γ(θ)

(
θ

µ + θ

)θ( µ

µ + θ

)x
(3)

with µ > 0 and θ > 0. Note that θ is not necessarily an integer, contrary to r in (1); hence, the
gamma function is used in (3) instead of a factorial, with Γ(x) = (x− 1)!. The variance of
the NB distribution is µ (1 + µ/θ). As θ approaches infinity, the NB distribution tends to
follow the Poisson distribution, with the mean µ.

1.1. Sum of Negative Binomials

The sum of independent NB variables is of special interest in different contexts, such
as the study of animal distribution [4,5], fecal egg counts in infected goats [6], the number
of emergency medical calls [7], empirical distribution of the duration of wet periods in
days [8] or insurance risk [9]. When the sum of several independent NB counts is available,
determining the distribution of ∑ Xi with Xi ∼ NB(ri; pi) is a problem. When the pis
are all the same and equal to p, a classical result is ∑ Xi ∼ NB(∑ ri; p) [10], but more
general forms without this constraint are often needed. For example, if counts are available
for various spatial or temporal units of the form X ∼ NB(µi; ri), pi being ri/(µi + ri), it
implies that the pis are not all the same, because µi varies among the units [4].

With the mean and variance of the NB(r; p) distribution being r(1− p)/p and r(1− p)/p2,
respectively, it follows that the mean and variance of the sum of n-independent NB variables
are respective:

mean(Sn) = ∑n
i=1(ri(1− pi)/pi) and var(Sn) = ∑n

i=1

(
ri(1− pi)/pi

2
)

(4)

Our paper has developed some novel methods in relation to the practical computation
and use of the convolution approach [9]. However, the paper also collects five different
methods and presents them in one place, a useful resource for the working data scientist or
statistician. We describe and reference these methods and outline the computational diffi-
culties in getting them to work. We also point the reader to the freely available R software
that implements each of the methods (plus a sixth method based purely on simulation).

Two methods have been published to estimate the distribution of the sum of NB inde-
pendent variables using a finite-sum exact expression [11] or the convolution method [9].
However, the computer implementation of both methods was not available, and we have
detected potential problems when a practitioner implements them. The finite-sum exact
expression computer implementation is relatively straightforward, but memory overflow
can occur, and the time of computing will increase as a function of the factorial of the
number of observations, x. This precision was not given in the original publication [11].
The convolution method is very complex to implement and has been described as being
“cumbersome” [12]; indeed, we found that its implementation was not straightforward and
was even counterintuitive. The method uses a sum to infinity, and the condition to stop the
recursion was not defined in the original publication.

Our solution for computation of the convolution method, presented here, is novel
and has proven to be robust for extensive testing. A naïve tolerance condition has been
used by one of the authors of this note (MG) (recursion stops when the change is lower
than the tolerance limit) as in [4,5], but the other author (JB) found that outputs can be
strongly biased in some conditions. It has been the beginning of a collaboration between
the two authors to understand and solve the origin of this bias. We detected two problems:
(1) the tolerance check must be applied only when the first-order change of the estimate
is negative (convergence criteria being adaptive), and (2) the value of the tolerance must
be proportional to the expected estimate. Then, it was necessary to have an estimate of
the density to set the tolerance, to better estimate the correct density. To solve this, we
used the saddlepoint approximation of the density. We show that the absolute error of this
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approximation can be on the order of 5%, being too high to be used in many applications,
but it is sufficiently low to define a correct tolerance to be used with the convolution method.

1.2. Normal and Negative Binomial Approximations

When working on the sum of variables, the first thought is to use the central limit the-
orem [13] that establishes that, in many situations, the distribution of the sum-independent
random variables tends to go toward a normal distribution. An alternative is to model the
distribution of the sum of NB variables, as an NB distribution is based on the observation
that the distribution of the sum of NB variables is a mixture NB distribution [9], according
to Theorem 2, proposed by Makun, Abdulganiyu, Shaibu, Otaru, Okubanjo, Kudi, and
Notter [6].

1.3. Finite-Sum Exact Expression

An exact form for the distribution of the sum of NB is:

P(Sn = x) = ∑µ1+···+µn=x ∏n
j=1

Γ
(
µj + θ

)

µ!Γ
(
rθj
) pj

θj qj
µj (5)

The expression (5) is compact and the exact value can be computed [11].

1.4. Approximation by Convolution

When Xi ∼ NB(ri; pi), with i from 1 to n, the distribution of Sn = ∑ Xi is a mixture
NB [9], with the probability mass function being approximated by:

P(Sn = x) = R ∑∞
k=0 δk

Γ(r + x + k)
Γ(r + k)x!

M1
r+k(1−M1)

x, x = 0, 1, 2, · · · (6)

where r = ∑n
i=1 ri , and M1 = maxj

(
pj
)
.

R = ∏n
j=1

( qj M1
(1−M1)pj

)−rj

and δk+1 = 1
k+1 ∑k+1

i=1 i ξi δk+1−i, k = 0, 1, . . . with δ0 = 1 and

ξi =
n
∑

j=1

rj(1−(1−M1)pj/qj M1)
i

i

Expression (6) is used iteratively, with k being the counter of the rank of iterations, but
a condition to stop the iterations when a certain level of approximation is reached was not
defined in the original publication [9].

1.5. Saddlepoint Approximation

The saddlepoint approximation method provides a highly accurate approximation
formula for any probability density function (continuous distribution) or probability mass
function (discrete distribution) of a distribution, based on the moment-generating func-
tion [14].

Taking the log of the moment-generating function of the NB distribution (2) and
summing over n-independent NB variables, the cumulant of sum of NBs is:

K(t) = ∑n
i=1 ri

(
log(qi)− log

(
1− pi et))

Or K(t) = ∑n
i=1 θi

(
log(θi)− log

(
θi + µi

(
1− et))) (7)

The first and second order of the derivatives of K(t) are:

K′(t) = ∑n
i=1

θi µi et

θi + µi(1− et)
(8)
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K′′ (t) = ∑n
i=1

θi µi (θi + µi) et

(θi + µi(1− et))2 (9)

The saddlepoint, sx, is found by solving K′(sx) = x. Once sx is found, P(Sn = x) can
be approximated by:

P(Sn = x) ≈ 1√
2π K′′ (sx)

e(K(sx)−x sx) (10)

The value P(Sn = x) is normalized to ensure that ∑ P(Sn) = 1.
In the remainder of this note, we describe the computational problems that applied

statisticians or practitioners face in implementing the distribution of the sum of NB-
independent variables using finite-sum exact expression [11], the convolution method [9],
saddlepoint approximation, or the approximation by normal and NB distributions. We
describe how these have been overcome in the publicly available R package (HelpersMG
package version 5.9 and higher (https://CRAN.R-project.org/package=HelpersMG, ac-
cessed on 6 February 2023). The code can be checked after loading this package with the
command ?dSnbinom.

2. Computations

Figure 1 gives two examples of the sum S of independent NB random variables, and
how these distributions are approximated using the four methods (convolution, saddle-
point, single normal, single NB) outlined in this note. In (A), we use n = 10, j = 1 . . . n,
pj = 0.4 + j

10 and rj = j× 10, and in (B) n = 2, pj =
j

10 , and rj = j.

2.1. Normal and Negative Binomial Approximations

When n is large and standard deviation is small as compared to the mean, the normal
approximation with P(Sn = x) =

∫ x+0.5
x−0.5 N (µ, σ ), where N (µ, σ ) is the normal probabil-

ity density function with µ = mean(Sn) and σ =
√

var(Sn) can be used as an approximation
for the distribution of the sum of independent NB random variables (Figure 1A). However,
for a small n or large standard deviation, as compared to the mean (corresponding to a
highly skewed distribution), the approximation can be very poor (Figure 1B). The NB distri-
bution modeled with the probability density function, NB(µ, θ), such that µ = mean(Sn)

and θ = mean(Sn)
2/(var(Sn)−mean(Sn)) , better fits the exact distribution of the sum of

NB variables, but still with a bias (Figure 1B). This confirms that the distribution of the
sum of independent NB variables is not an NB, as wrongly stated in [6]. It is, rather, a
mixture NB (see below) [9]. In summary, the normal and NB approximations generate the
highest errors (>30% in some cases) and they should not be used, especially as there are
better alternatives.

2.2. Finite-Sum Exact Expression

This method permits the calculation of the exact value for P(Sn = x). It will therefore
be used as a reference here.

For the finite form exact expression method [11], a table of n columns with all the
combinations of integers, from 0 to x, that produce a sum of x (m1 + · · ·+ mn = x), must
be first established. The number of different ways to distribute x-indistinguishable objects
into n-distinguishable categories is C(x + n − 1, n − 1). This is the memory-consuming
part of the Vellaisamy and Upadhye [11] method. The density P(X = x) in Equation (1)
is calculated n times for each of these combinations in the final table (the ∏n

j=1 part of
Equation (5)). This is the computationally time-consuming part of the method.

161



Math. Comput. Appl. 2023, 28, 63

Figure 1. Sum of independent NB distributions approximated with convolution, saddlepoint approx-
imation, normal, and single NB distribution. (A) n = 10, j = 1 . . . n, pj = 0.4 +

j
10 and rj = j× 10;

mean(Sn) = 183.92, var(Sn) = 270.75. (B) n = 2, pj =
j

10 and rj = j; mean(Sn) = 17, var(Sn) = 130.
The bar plots show the exact distribution, and the top graphs show the absolute % of error of
the approximation.

When n and/or x are large, this method requires lot of iterations. For example, there
are 1,081,575 different combinations of 17 objects in nine categories. Then, Equation (1)
must be applied 9,734,175 times to estimate P(Sn = x) when using Equation (5).

2.3. Approximation by Convolution

The coefficients of Equation (6) are iteratively defined, and we rewrite the published
formula to make the computation more efficient using the recursion:

W(Sn = x)0 =
Γ(r + x)
Γ(r)x!

M1
r(1−M1)

x

W(Sn = x)k+1 = W(Sn = x)k + δk+1
Γ(r + x + k + 1)
Γ(r + k + 1)x!

M1
r+k+1(1−M1)

x

P(Sn = x)k = R W(Sn = x)k (11)

Intermediate estimates in (11) used log of expressions to prevent a computing overflow.
The conditions to stop the iterations were not defined in Furman’s original publication.
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A typical method in such situations is to stop the recursion when the change in the fi-
nal output is below a defined tolerance. However, it cannot be used in the context of
Equations (6) or (11), because, at the beginning of iterations, the change in P(Sn = x) is
sometimes so small that recursions will be stopped immediately and the resulting proba-
bility P(Sn = x) will be biased. An example of this is shown in Figure 2A, which shows
the value of P(S7 = 6)k (n = 7, j = 1 . . . n, pj = j/10, and rj = j) as a function of the recursive
iterations k from Equation (6). For the first eight iterations, the change in P(S7 = 6)k is very
small. To alleviate this problem, many iterations can be used, but without being sure that
they are sufficient, and it is done at the expense of running time. This solution was chosen
with at least 1000 iterations in [5], but this number of iterations is not always large enough
to ensure a correct estimate when n or x are large.

Figure 2. (A) Dynamics of the convergence of P(S7 = 6)k with n = 7, j = 1 . . . n, pj = j/10, and
rj = j using Equation (6), with k being the rank of iterations. (B) Trend of the changes in Pk with
tolerance = 10−12.

A better approach came from the study on the trend of the rate of change of P(Sn = x)
according to the rank of iteration k: Pk − Pk−1 vs. Pk+1 − Pk, where Pk denotes the
value of P(Sn = x) at iteration k. In its initial phase, the rate of change of P is posi-
tive, with Pk − Pk−1 > Pk+1 − Pk, then it shows a peak and becomes negative, with
Pk − Pk−1 < Pk+1 − Pk (Figure 2B). The tolerance threshold must be used only after
the occurrence of the peak to ensure that the phase of rapid change of P is reached. The
number of iterations before the peak is dependent on the values of n, x, ri and pi, and
cannot be easily anticipated at the beginning of the iterations. We have therefore developed
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an adaptative strategy to stop the recursion when two conditions are met: the rate of
change of P(Sn = x) is negative, and the change of P(Sn = x) is less than the user-defined
tolerance. The tolerance value must be lower than P(Sn = x) or the output will be biased.
As an example, if µ = (0.01, 0.02, 0.03) and θ = (2, 2, 2), then P(S3 = 20) = 7.73139× 10−35

using the exact method. If the Furman method is used with the tolerance set to 10−12,
P(S3 = 20) = 3.879379× 10−35, which is two times lower than the exact answer. The
solution is to define a tolerance much lower than the anticipated results, for example,
here, with the tolerance being 10−45, P(S3 = 20) = 7.73139× 10−35, which is the correct
probability. This can be done using the saddlepoint estimate (see below).

The comparison of the results obtained by Equation (6), with an adaptative stopping
of the recursion and tolerance setup, using saddlepoint approximation (see below) and
Equation (5), are shown in Table 1 with the corresponding computing time. This table is
similar to those used in Tables 1 and 2 in Vellaisamy and Upadhye [11].

Table 1. Comparison of accuracy and computing time of the sum of n numbers x = 3, 5, 8, 10, and
15 obtained from NB distributions with j = 1 . . . n, pj = j/10, rj = j, and n from 2 to 7 based on
Equations (5), (11), and (10). For each (n, x) combination in (A), the top number is the probability
P(Sn = x) and the bottom number is the number of iterations. In (B), the number of recursions
required to stabilize P(Sn = x) is shown. The P(Sn = x) values are exactly the same as those in
(A) and are not shown. In (C), the P(Sn = x) values for saddlepoint approximation are shown.
Computing times for the different methods are shown at the right of each table. The code for
Equation (5) was parallelized on an 8-core computer in R 4.2.3 and HelpersMG package version 5.9
(https://CRAN.R-project.org/package=HelpersMG, accessed on 6 February 2023).

A: Vellaisamy and Upadhye [11]: Exact Probabilities No Parallel Parallel
8-Core

x = 3 x = 5 x = 8 x = 10 x = 15 Time (s) Time (s)

n = 2 0.02320400 0.03403236 0.04283461 0.04425234 0.03856123 0.001 0.011
16 36 81 121 256

n = 3 0.00273650 0.00730772 0.01724312 0.02421915 0.03607386 0.003 0.011
40 126 405 726 2176

n = 4 0.00020980 0.00094784 0.00408465 0.00785680 0.02099302 0.014 0.012
80 336 1485 3146 13,056

n = 5 0.00001503 0.00010490 0.00076597 0.00196540 0.00920145 0.062 0.015
140 756 4455 11,011 62,016

n = 6 0.00000131 0.00001291 0.00014555 0.00047692 0.00365038 0.249 0.023
224 1512 11,583 33,033 248,064

n = 7 0.00000017 0.00000218 0.00003427 0.00013604 0.00154413 0.906 0.049
336 2772 27,027 88,088 868,224

B: Furman [9]: Convolution Tol = Psaddlepoint(Sn = x)× 10−10

x = 3 x = 5 x = 8 x = 10 x = 15 Time (s)

n = 2 13 14 15 16 18 0.007
n = 3 19 20 23 24 27 0.008
n = 4 27 29 32 34 38 0.009
n = 5 39 42 45 48 54 0.009
n = 6 58 62 67 70 79 0.009
n = 7 92 97 104 109 122 0.011

C: Normalized Saddlepoint Approximation
x = 3 x = 5 x = 8 x = 10 x = 15 Time (s)

n = 2 0.02372254 0.03448835 0.04314218 0.04442429 0.03841261 0.007
n = 3 0.00283042 0.00748306 0.01754862 0.02458058 0.03637448 0.007
n = 4 0.00021836 0.00097613 0.00418037 0.00802118 0.02132508 0.008
n = 5 0.00001571 0.00010840 0.00078653 0.00201341 0.00938611 0.008
n = 6 0.00000137 0.00001337 0.00014977 0.00048960 0.00373283 0.008
n = 7 0.00000018 0.00000226 0.00003531 0.00013984 0.00158133 0.018
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2.4. Saddlepoint Approximation

The saddlepoint approximation (we used the Brent’ algorithm [15] for the mini-
mization needed to find the saddlepoint) is computationally fast. However, the esti-
mate must be normalized so that the density function sums to 1 [16]. The normalization
used the sum of P(Sn = x), with x from 0 to mean(Sn) + Max

√
var(Sn), with mean(Sn)

and var(Sn) from Equation (4) and Max = 20. A test was performed to ensure that
P
(

Sn = mean(Sn) + Max
√

var(Sn)
)

was 0 or that the Max was increased until this con-
dition was reached. The relative difference between the exact value of P(Sn = x) and the
saddlepoint approximation can be sometimes of the order of 5% (Figure 1). On the other
hand, this approximation is good enough to set the tolerance of the approximation by
convolution, using a tolerance equal to Psaddlepoint(Sn = x)× 10−10.

The tolerance value to cut the iterations for an approximate Furman [9] method must
be of the same order as the value of P(Sn = x), multiplied by the tolerance and set at
the value of 10−10, to have an estimate precise up to the 10th digit. The difficulty is that
P(Sn = x) needs to be estimated here. The chosen solution was to use a rough estimate
of P(Sn = x) from the very fast saddlepoint approximation method first. This approach
proved to be very efficient, because the estimates of the approximate Furman [9] method
are exactly the same as for the exact method (Table 1A).

Equation (5) has the advantage that it is parallelizable, but for a large n and x (see
Table 1A), doing so requires a large number of both iterations and memory. Equations (6)
and (11), however, are not disadvantaged by these problems. Vellaisamy and Upadhye [11]
indicated that Equation (5) required less computing time than Equation (6), even for n = 7 and
n = 15. This would be true only if the authors used a very large number of iterations to stop
the iterations in Equation (6), or if their conditions to stop the iterations were sub-optimal.

As a general conclusion, we consider that the approximate form of distribution for
the sum of independent NB proposed by Furman [9] should be used in all the contexts,
whatever the parameters n, x, pi or ri. The tolerance can be approximated by using the
value of P(Sn = x), estimated using the saddlepoint approximation method. This solution
is used by default in the R package HelpersMG (version > 5.9), available in CRAN: The
Comprehensive R Archive Network [17].
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Abstract: In this article, we extensively study a family of distributions using the trigonometric
function. We add an extra parameter to the sine transformation family and name it the alpha-sine-G
family of distributions. Some important functional forms and properties of the family are provided
in a general form. A specific sub-model alpha-sine Weibull of this family is also introduced using the
Weibull distribution as a parent distribution and studied deeply. The statistical properties of this new
distribution are investigated and intended parameters are estimated using the maximum likelihood,
maximum product of spacings, least square, weighted least square, and minimum distance methods.
For further justification of these estimates, a simulation experiment is carried out. Two real data
sets are analyzed to show the suggested model’s application. The suggested model performed well
compares to some existing models considered in the study.

Keywords: sine function; Weibull distribution; moments; estimation methods; hazard function

1. Introduction

Statistical distributions are commonly used to study real-world phenomena. The
theory of statistical distributions is extensively studied, as are new developments for their
application. Several families of distributions have been developed to describe various real-
world phenomena. In reality, this new development in distribution theory is a continuing
practice. Most probability distributions proposed in the literature have many parameters
to make the model more flexible. According to some authors, these estimates are difficult
to obtain using numerical resources (see [1]). For modeling real data, it is preferable to
create models with few parameters and a high degree of flexibility. To achieve this goal, a
group of researchers decided to look for new distributions using trigonometric functions.
In the last several years, researchers have been attracted to trigonometric models due to
their flexibility and mathematical tractability. Among the various trigonometric G-families,
ref. [2] defined the new class of distribution using the sine trigonometric function and
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defined the sine-exponential model as its member. The probability density function (PDF)
of this family is given by

f (x; ϕ) =
π

2
g(x; ϕ) sin

{π

2
G(x; ϕ)

}
x ∈ <, (1)

where G(x; ϕ) is the cumulative distribution function (CDF) of any baseline model and
g(x; ϕ) its PDF.

At the same time, the arctangent function defines the arc-tan-G family of distribu-
tion [3]. The authors presented the new family of distribution which was used to model
Norwegian fire insurance data. This distribution family was proposed for an underlying
Pareto distribution and a new distribution called the Pareto arctan distribution, and it was
discovered that this distribution provides a good fit when compared to other well-known
distributions. Using a similar technique of sine-G, the cosine-G family of distributions
was introduced by [4], who also introduced the cosine-Weibul distribution as a member
of cosine-G class. Similarly, [5] introduced another sine-G class and studied the sine in-
verse Weibull distribution as a particular member. Ref. [6] developed the new sine-G
family and analyzed the sine-inverse Weibull model in particular. Ref. [7] defined the
sine Kumaraswamy-G family of distributions as having two extra parameters. Ref. [8]
defined the exponentiated sine-G family and analyzed the particular distribution as the
exponentiated sine-Weibull distribution. Further arcsine-G distributions were introduced
by [9], and the arcsine exponential distribution with constant and sharp decreasing hazard
functions was defined. Another trigonometric function-related probability model intro-
duced by [10] is called the arctan generalized exponential distribution. Using the sine-G
family of distribution, [11] developed a new two-parameter model called the sine Burr XII
distribution. Hence, we noticed that the simple functions are associated with trigonometric
distribution and are mathematically tractable (see [2,5]). Further, we observed that the
sine transformation can remarkably enhance the flexibility of G(x) [7]. A new extended
cosine-G family of distributions was proposed by [12]. Truncated Cauchy power family of
distributions was studied by [13]. Truncated Cauchy power Weibull-G class of distributions
was proposed by [14]. The sine half-logistic inverse Rayleigh and sine inverse exponential
distributions were discussed in [15,16]. Due to these pleasant features, we are motivated to
conduct research on the sine transformation family.

In this study, we developed a new family of trigonometric models using the sine
function by introducing an additional scale parameter α, and we called it the alpha sine-G
family (AS-G) of distributions.

The remaining sections of this study are organized as follows. The methodology of
model development and some key functions of the family of distributions are introduced
in Section 2. Some general properties of the AS-G family of distributions (AS-D FD) are
presented in Section 3. In Section 4, a particular member of the AS-G family is introduced.
A detailed study and application of this model are presented in Section 5. We discuss
parametric estimation and simulation experiments in Sections 6 and 7. The applicability
of the suggested model is presented in Section 8. Finally, we present the conclusion in
Section 9.

2. The New Sine Family of Distributions
2.1. Methodology

To develop a new family of distributions, [17] defined a relation of G(x; ϕ), the
cumulative distribution function (CDF) of any baseline distribution and r(t), the PDF of
any arbitrary distribution, to obtain the CDF of the new family as

F(x; ϕ) =

G(x;ϕ)∫

0

r(t) dt, (2)
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where F(x; ϕ) is the CDF of the new class of distributions and ϕ is the parameter space of
baseline distribution. To develop the new sine-G family, Equation (2) can be written as

F(x; ϕ) =

π
2 G(x;ϕ)∫

0

cos(t) dt = sin
{π

2
G(x; ϕ)

}
x ∈ <. (3)

Using the structure of Equation (3), we introduce an additional parameter to Equation (3)
and the new CDF of AS-G FD can be expressed as

F(x; α, ϕ) =
sin
{

πα
2 G(x; ϕ)

}

sin
(

πα
2
) ; x ∈ <, 0 < α < 1. (4)

The PDF corresponding to Equation (4) is

f (x; α, ϕ) =
πα

2 sin
(

πα
2
) g(x; ϕ) cos

{πα

2
G(x; ϕ)

}
; x ∈ <, 0 < α < 1, (5)

where α is the scale parameter of the AS-G distribution.

Special Case of AS-G FD. When α = 1 in the CDF of AS-G FD defined in Equation (4), it
is reduced to the sine-G family defined by [2]. Hence, the sine-G family is a special case of
AS-G FD.

2.2. Some Important Functional Forms of the New Sine Family of Distributions

In this subsection, we explicitly present some important functions that are necessary
for survival analysis, reliability theory, etc.

• Reliability function: In probability theory, the reliability function is a function that
offers the probability that a system or device will function correctly for a given amount
of time, assuming that it has not failed up to that point. Intuitively, the reliability
function offers the probability that the device or system will continue to function
beyond time x given that it has not failed up to that point. The reliability function for
AS-G FD can be expressed as

R(x; α, ϕ) = 1− sin
{

πα
2 G(x; ϕ)

}

sin
(

πα
2
) ; x ∈ <, 0 < α < 1. (6)

• Hazard function: In probability theory, the hazard function is a function that describes
the rate at which an event occurs given that the event has not yet occurred up to a
certain time. The hazard function is often used in survival analysis to model the failure
rate of a system over time. The AS-G FD can be defined as

h(x) =
πα

2
g(x; ϕ) cos

{
πα
2 G(x; ϕ)

}

sin
(

πα
2
)
− sin

{
πα
2 G(x; ϕ)

} ; x ∈ <. (7)

• Odd function: Odd functions are a useful tool in probability theory for describing
certain types of distributions and for simplifying calculations involving them. Here,
the odd function for AS-G FD can be expressed as

O(x) =
sin
{

πα
2 G(x; ϕ)

}

sin
(

πα
2
)
− sin

{
πα
2 G(x; ϕ)

} ; x ∈ <. (8)

• Failure rate average (FRA): The failure rate average function has important applica-
tions in reliability engineering and survival analysis, where it is used to model the
behavior of systems and estimate their probability of failure over time. It can also be
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used to compare different systems’ reliability and identify the factors that affect their
failure rates.

K(x) = − 1
x

[
log
{

sin
(πα

2

)
− sin

{πα

2
G(x; ϕ)

}}
− log

{
sin
(πα

2

)}]
; x ∈ <. (9)

3. Properties of the New Sine Family of Distributions
3.1. Linear Representation

One can derive useful linear expansions using exponentiated distributions, specifically
the exponentiated-G (Exp-G) distribution with power parameter z > 0 which has the CDF:

Gz(x; ϕ) = [G(x; ϕ)]z; x ∈ <, (10)

where x ∈ <. The corresponding PDF can be expressed as

gz(x; ϕ) = zg(x; ϕ)[G(x; ϕ)](z−1), x ∈ <. (11)

These notations are used in the following discussion. Exponentiated distributions have
well-known properties for a wide range of baseline CDF G(x; ϕ) (for more information,
see [5,18,19]). The linear representations of F(x; ϕ) and f (x; ϕ) in terms of Exp-G functions
are shown in the following result. Using the Tayler expansion for trigonometric function
Sin(x), the CDF of AS-G FD can be expressed as

F∗(x; α, ϕ) =
∞

∑
j=0

∆jG2j+1(x; ϕ), (12)

where ∆j =
(−1)j( πα

2 )
2j+1

(2j+1)! sin( πα
2 )

. The PDF corresponding to Equation (12) can be calculated by

differentiating it with respect to x; we obtain

f ∗(x; α, ϕ) =
∞

∑
j=0

∆∗j G2j(x; ϕ)g(x; ϕ), (13)

where ∆∗j = ∆j(2j + 1).

3.2. Critical Points of the New Sine Family of Distributions

By solving equation f (x;α,ϕ)
dx = 0 for x, we can obtain the critical points of f (x; α, ϕ).

Let the solution of this equation be x1, which can be calculated from

sin
(πα

2
G(x1)

)
[g(x1)]

2 + cos
(πα

2
G(x1)

)
g′(x1) = 0. (14)

Similarly, the critical points for hazard function h(x) can be obtained by solving the follow-
ing equation for solution x2:

{
sin
(πα

2

)
− sin

(πα

2
G(x2)

)}{
cos
(πα

2
G(x2)

)
g′(x2) +

πα

2
sin
(πα

2
G(x2)

)
[g(x2)]

2
}
= 0. (15)

3.3. Quantile Function

The quantile function is useful in statistical analysis and modeling as it provides a way
to estimate percentiles and other summary statistics of a probability distribution. Suppose
Q(p) is the smallest value of X for which the probability that X is less than or equal to that
value is at least p. The quantile function of CDF F(x; α, ϕ) of AS-G FD can be obtained as

Q(p; α, ϕ) = G−1
(

2
πα

arcsin
{

p sin
(πα

2

)})
; p ∈ (0, 1). (16)
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Using Equation (16), we can calculate the median, upper and lower quartile, quartile
deviation (QD), coefficient of QD, skewness, and kurtosis as presented in Table 1.

Table 1. Various measures based on quantiles.

Statistical Measure Expression

Median G−1
(

2
πα

arcsin
{

0.5 sin
(πα

2

)})

Lower Quartile G−1
(

2
πα

arcsin
{

0.25 sin
(πα

2

)})

Upper Quartile G−1
(

2
πα

arcsin
{

0.75 sin
(πα

2

)})

QD
1
2

[
G−1

(
2

πα
arcsin

{
0.75 sin

(πα

2

)})
− G−1

(
2

πα
arcsin

{
0.25 sin

(πα

2

)})]

Coefficient of QD

[
G−1

(
2

πα
arcsin

{
0.75 sin

(πα

2

)})
− G−1

(
2

πα
arcsin

{
0.25 sin

(πα

2

)})]

[
G−1

(
2

πα
arcsin

{
0.75 sin

(πα

2

)})
+ G−1

(
2

πα
arcsin

{
0.25 sin

(πα

2

)})]

Skewness [20]
Q
(

3
4

; α, ϕ

)
− 2Q

(
1
2

; α, ϕ

)
+ Q

(
1
4

; α, ϕ

)

Q
(

3
4

; α, ϕ

)
−Q

(
1
4

; α, ϕ

)

Kurtosis [21]
Q
(

7
8

; α, ϕ

)
−Q

(
5
8

; α, ϕ

)
−Q

(
1
8

; α, ϕ

)
+ Q

(
3
8

; α, ϕ

)

Q
(

3
4

; α, ϕ

)
−Q

(
1
4

; α, ϕ

)

3.4. Moments

In probability theory and statistics, moments of a random variable X are numerical
quantities that measure various aspects of its probability distribution. The moments of X
are calculated using the values of X and the PDF of X. The Kth moment about the origin
can be calculated as

µ′k =
∞∫

−∞

xk f (x)dx. (17)

Now, considering the integral and summation terms exist and are interchangeable, using
the PDF defined in Equation (5), we can calculate the Kth moment as

µ′k =
∞

∑
j=0

∆∗j

∞∫

−∞

xkG2j(x; ϕ)g(x; ϕ)dx. (18)

Further, the Kth moment can also be calculated using the quantile function (for more detail,
see [22]) as

µ′k =
∞

∑
j=0

∆∗j

1∫

0

x2j{Q(x; α, ϕ)}kdx. (19)
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3.5. Moment Generating Function

Let MX(t) be the MGF of X. Using Equation (18), MGF can be defined as

MX(t) =
∞

∑
j=0

∞

∑
m=0

tm∆∗j
m!

∞∫

−∞

xkG2j(x; ϕ)g(x; ϕ)dx. (20)

Similarly, using Equation (19), MGF can be expressed as

MX(t) =
∞

∑
j=0

∞

∑
m=0

tm∆∗j
m!

1∫

0

x2j{Q(x; α, ϕ)}kdx. (21)

3.6. Mean Residual Life Function

Suppose t is the lifetime of a component or item; then, MRF can be obtained as

µMRF(t) =
1

R(t)


E(t)−

∞

∑
j=0

∆∗j

t∫

0

x G2j(x; ϕ)g(x; ϕ)dx


, (22)

where R(t) is the reliability function.

4. Alpha-Sine Weibull Distribution
Model Presentation

In this section, a particular model of AS-G FD is introduced, and we analyze this model
briefly. To define the new member, we select G(x; ϕ) as the CDF of Weibull distribution as

G(x; δ, λ) = 1− exp
[
−
( x

δ

)λ
]

; x > 0, δ, λ > 0. (23)

The PDF corresponding to CDF (23) can be written as

g(x; δ, λ) = λδ−λxλ−1 exp
[
−
( x

δ

)λ
]

; x > 0, δ, λ > 0. (24)

Substituting Equation (23) in the CDF of AS-G FD defined in Equation (4), we obtain the
new member distribution called the AS-Weibull (AS-W) distribution with CDF:

F(x; α, δ, λ) =
1

sin
(

πα
2
) sin

{
πα

2

[
1− exp

(
−
( x

δ

)λ
)]}

; x > 0, 0 < α < 1, δ, λ > 0. (25)

The PDF of the AS-W distribution can be obtained by differentiating Equation (25) and can
be expressed as

f (x; α, δ, λ) =
παλδ−λ

2 sin
(

πα
2
) xλ−1 exp

[
−
( x

δ

)λ
]

cos
{

πα

2

[
1− exp

(
−
( x

δ

)λ
)]}

. (26)

Similarly, the HRF of the AS-W distribution is given by

h(x; α, δ, λ) =
π

2
αλδ−λxλ−1 exp

[
−
( x

δ

)λ
] cos

{
πα
2

[
1− exp

(
−
( x

δ

)λ
)]}

sin
(

πα
2
)
− sin

{
πα
2

[
1− exp

(
−
( x

δ

)λ
)]} . (27)

We demonstrate the various shapes of PDF and HRF for varying two parameters keeping δ
and λ constant, respectively; Figures 1 and 2. In Figure 3, we use all three parameters with
different combinations. From all these graphical investigations, we find that the suggested
model is versatile regarding skewness and kurtosis. Both PDF and HRF can have either
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increasing or decreasing or bathtub or inverted bathtub or -j- or reverse-j-shaped curves
according to parameter values. Hence, the AS-W model is capable of fitting highly skewed
heterogeneous data sets.

Figure 1. The plots of PDF keeping constant δ = 1.5 (left) and λ = 1.5 (right).

Figure 2. The plots of HRF keeping constant δ = 1.5 (left) and λ = 1.5 (right).

Figure 3. The plots of PDF and HRF with a variation of all three parameters.
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5. Properties of the Alpha-Sine Weibull Distribution
5.1. Quantile Function

The QF can be used in statistical analysis and modeling to estimate probability distri-
bution percentiles and other summary statistics. The QF for the AS-W distribution can be
expressed as

Q(p; α, δ, λ) =

[
−δλ log

{
1− 2

πα
arcsin

{
p sin

(πα

2

)}}] 1
λ

; p ∈ (0, 1). (28)

Using Equation (28), we can obtain various statistical measures provided in Table 1. Also, for
generating random numbers to the distribution AS-W, we can use the following expression:

x =

[
−δλ log

{
1− 2

πα
arcsin

{
u sin

(πα

2

)}}] 1
λ

; u ∈ (0, 1). (29)

Using the formulae defined by [20,21] for skewness and kurtosis using quantiles, we
plotted the graphs of skewness and kurtosis with various combinations of parameter
values presented in Figures 4 and 5.

Figure 4. The plots of skewness with constant α = 0.5 (left) and constant δ = 0.75 (right).

Figure 5. The plots of kurtosis with constant α = 0.5 (left) and constant δ = 0.75 (right).

5.2. Linear Expansion of Alpha-Sine Weibull Distribution

Using Equation (12), the expansion of the CDF defined in Equation (25) is given by

F∗(x; α, δ, λ) =
∞

∑
j=0

∆j

{
1− exp

[
−
( x

δ

)λ
]}(2j+1)

; x > 0, (30)
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where ∆j =
(−1)j( πα

2 )
2j+1

(2j+1)! sin( πα
2 )

. Further using the binomial expansion, Equation (30) can be

expressed as

F∗(x; α, δ, λ) =
∞

∑
j=0

∞

∑
m=0

∆∗jm exp
[
−m

( x
δ

)λ
]

; x > 0, (31)

where ∆∗jm = ∆j(−1)m
(

2j + 1
m

)
. The PDF corresponding to Equation (31) can be written as

f ∗(x; α, δ, λ) =
∞

∑
j=0

∞

∑
m=0

∆∗∗jmxλ−1 exp
[
−(1 + m)

( x
δ

)λ
]

; x > 0, (32)

where ∆∗∗jm = ∆j(−1)m
(

2j
m

)
λδ−λ.

5.3. Moments

The Kth moment of random variable X ∼ AS−W(α, δ, λ) can be obtained by using
the following expression:

µ′k =
∞

∑
j=0

∞

∑
m=0

∆∗∗jm
Γ
(

k+λ
λ

)

(
1+m

δλ

) k+λ
λ

. (33)

5.4. Moment Generating Function of Alpha-Sine Weibull Distribution

The MGF of AS-W for any real number t can be expressed as

MX(t) =
∞

∑
j=0

∞

∑
m=0

∞

∑
n=0

∆∗∗jm
tn

n!

Γ
(

k+λ
λ

)

(
1+m

δλ

) k+λ
λ

, (34)

where Γ(.) is the gamma function.

5.5. Mean Waiting Time Function

Let t denote the waiting time or time to failure of an item or event; then, the MWT
function can be defined as

µ(t) = t− 1
F(t; α, δ, λ)

∞

∑
j=0

∞

∑
m=0

λ−1∆∗∗jm
γ
(

1
λ , 1+m

δλ tλ
)

(
1+m

δλ

) 1
λ

, (35)

where γ(.) is the lower incomplete gamma function.

6. Estimation Methods

In this part of the work, we consider different methods for estimating the parameters
of the AS-W distribution.

6.1. Maximum Likelihood Method

Consider a simple random sample x = (x1, x2, . . . , xm) of size m following the AS-W
distribution; then, the likelihood function can be presented as
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L(x; α, δ, λ) =
m

∏
j=1

(
παλδ−λ

2 sin
(

πα
2
)
)

e
−
( xj

δ

)λ

(
xj
)λ−1 cos




πα

(
1− e−

( xj
δ

)λ
)

2




=

(
παλδ−λ

2 sin
(

πα
2
)
)m

e

(
−

m

∑
j=1

( xj

δ

)λ
)

m

∏
j=1

(
xj
)λ−1 cos




πα

(
1− e−

( xj
δ

)λ
)

2




.

(36)

Hence, the corresponding log-likelihood function is given as

log L (x; α, δ, λ) = m log(π) + m log(α) + m log(λ)−mλ log(δ)−m log(2 sin
(πα

2

)
)

−
m

∑
j=1

( xj

δ

)λ

+ (λ− 1)
m

∑
j=1

log(xj) +
m

∑
j=1

log




cos




πα

(
1− e−

( xj
δ

)λ
)

2







.

The MLEs Θ̂ = (α̂, δ̂, λ̂) of Θ = (α, δ, λ) are obtained, respectively, using numerical methods.

6.2. Maximum Product of Spacings Method

Cheng and Amin [23] present this technique as a different method to MLE. It relies on
the geometric mean of the spacings, which is

υj(α, δ, λ) = F(x(j)|α, δ, λ)− F(x(j−1)|α, δ, λ), j = 1, . . . , m + 1,

where F(t(0)|α, δ, λ) = 0 and F(t(m+1)|α, δ, λ) = 1. We can consider that
m+1

∑
j=1

υj(α, δ, λ) = 1.

The MPS estimators of Θ = (α, δ, λ) can be solved by increasing the geometric mean of the
spacing,

ϑ(α, δ, λ|x) =
[

m+1

∏
j=1

υj(α, δ, λ)

] 1
m+1

, (37)

or similarly by increasing the natural logarithm of the product spacing function of (37)
given by

ψ(α, δ, λ|x) = 1
m + 1

m+1

∑
j=1

log υj(α, δ, λ).

6.3. Least Squares Methods

Our study proposes two variants of least squares, Ordinary Least Squares (OLS) and
Weighted Least Squares (WLS).
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The OLS estimators can be determined by minimizing

∆(α, δ, λ|x) =
m

∑
j=1

[
F(x(j)|α, δ, λ)− j

m + 1

]2

=
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However, the WLS estimators can be obtained by minimizing
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6.4. Minimum Distance Methods

Various methods have been proposed based on the minimization of empirical distribu-
tion functions and estimated distribution functions. This work uses the Cramer–Von–Mises
(CV) and Anderson–Darling (AD) methods. We start with a CV estimator, and we can
derive these estimators by minimizing the following functions:

ζ(α, δ, λ|x) =
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12m
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moreover, the AD estimators are determined by minimizing

ξ(α, δ, λ|x) = −m− 1
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. (38)

7. Numerical Simulation

To compare unknown parameter estimates of the (AS-W) distribution, a simulation
study is conducted with different parameters, and several sample sizes m = 30, 60, 100,
150, 200, and 500 are presented. Based on 1000 runs, we compute the average estimate (AE)
and mean square error (MSE), which are considered to be the optimality criteria.

From Tables 2–5, the following is clear from the numerical experiments:

• Based on all estimation methods, the average estimate converges to the true values,
which shows that these estimators are consistent.

• The AE tends to its initial values as the sample size increase, so we can say that our
estimates are unbiased.

• For all methods, whenever the MSEs decrease, the sample size m increases.
• The MLE estimators perform better than all the other methods considered in this

work.

Table 2. The AES and MSEs of α = 0.4, δ = 2, λ = 3.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

30 α̂ 0.4282 0.2229 0.5727 0.2056 0.4468 0.2089 0.4707 0.2165 0.3965 0.2279 0.4661 0.2144
δ̂ 2.0909 0.3833 2.2162 0.4673 2.1140 0.2179 2.1152 0.1477 2.0552 0.0475 2.1046 0.1377
λ̂ 3.1459 0.3697 2.7929 0.2730 2.9844 0.3670 3.0017 0.3144 3.2108 0.4036 3.0294 0.2770

60 α̂ 0.5516 0.0155 0.5333 0.1673 0.4501 0.1589 0.4570 0.1585 0.3957 0.1626 0.4503 0.1587
δ̂ 2.0105 0.0031 2.1136 0.0490 2.0668 0.0376 2.0637 0.0282 2.0285 0.0191 2.0594 0.0284
λ̂ 3.0861 0.0258 2.8456 0.1225 2.9515 0.1485 2.9718 0.1242 3.0802 0.1362 2.9820 0.1158

100 α̂ 0.5429 0.0129 0.5160 0.1593 0.4173 0.1547 0.4282 0.1496 0.3918 0.1458 0.4378 0.1519
δ̂ 2.0054 0.0016 2.0937 0.0366 2.0448 0.0194 2.0446 0.0189 2.0211 0.0134 2.0490 0.0206
λ̂ 3.0741 0.0222 2.8854 0.0665 2.9601 0.0819 2.9766 0.0678 3.0436 0.0701 2.9799 0.0655
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Table 2. Cont.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

150 α̂ 0.5333 0.0100 0.5197 0.1487 0.4428 0.1360 0.4476 0.1369 0.4175 0.1318 0.4463 0.1386
δ̂ 2.0021 0.0006 2.0819 0.0287 2.0388 0.0154 2.0411 0.0155 2.0230 0.0125 2.0409 0.0157
λ̂ 3.0633 0.0190 2.9047 0.0439 2.9641 0.0539 2.9732 0.0442 3.0188 0.0451 2.9764 0.0427

200 α̂ 0.5237 0.0071 0.5464 0.1465 0.4247 0.1372 0.4404 0.1344 0.4234 0.1303 0.4439 0.1322
δ̂ 2.0003 0.0001 2.0910 0.0290 2.0323 0.0129 2.0366 0.0137 2.0256 0.0121 2.0366 0.0135
λ̂ 3.0531 0.0159 2.9242 0.0342 2.9802 0.0411 2.9868 0.0325 3.0209 0.0342 2.9892 0.0327

500 α̂ 0.5027 0.0008 0.4988 0.1292 0.4153 0.1220 0.4110 0.1198 0.3952 0.1173 0.4115 0.1188
δ̂ 2.0000 0.0000 2.0624 0.0207 2.0232 0.0096 2.0205 0.0095 2.0122 0.0081 2.0200 0.0094
λ̂ 3.0297 0.0089 2.9533 0.0145 2.9794 0.0166 2.9861 0.0138 3.0008 0.0137 2.9871 0.0136

Table 3. The AES and MSEs of α = 0.4, δ = 1, λ = 1.5.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

30 α̂ 0.2849 0.1535 0.4189 0.1723 0.3544 0.1660 0.3813 0.1785 0.3276 0.1644 0.3751 0.1642
δ̂ 1.0271 0.0322 1.1228 0.2186 1.0844 0.3253 1.0866 0.0735 1.0361 0.0235 1.0658 0.0312
λ̂ 1.5828 0.0631 1.4216 0.0535 1.4915 0.0732 1.5027 0.0642 1.6071 0.0870 1.5224 0.0585

60 α̂ 0.4456 0.0091 0.4559 0.1658 0.3692 0.1467 0.3912 0.1513 0.3620 0.1387 0.3953 0.1506
δ̂ 1.0211 0.0049 1.1065 0.0401 1.0575 0.0192 1.0652 0.0222 1.0406 0.0167 1.0647 0.0230
λ̂ 1.5492 0.0098 1.4396 0.0255 1.4911 0.0357 1.4999 0.0295 1.5527 0.0348 1.5045 0.0271

100 α̂ 0.4443 0.0066 0.4371 0.1590 0.3933 0.1348 0.3974 0.1376 0.3694 0.1267 0.4026 0.1380
δ̂ 1.0214 0.0032 1.0922 0.0333 1.0584 0.0173 1.0603 0.0187 1.0403 0.0139 1.0611 0.0192
λ̂ 1.5381 0.0057 1.4635 0.0143 1.4995 0.0197 1.5059 0.0160 1.5389 0.0182 1.5087 0.0157

150 α̂ 0.4456 0.0068 0.4645 0.1582 0.3779 0.1307 0.3865 0.1320 0.3649 0.1234 0.3895 0.1330
δ̂ 1.0136 0.0020 1.0971 0.0329 1.0486 0.0138 1.0509 0.0149 1.0363 0.0116 1.0520 0.0157
λ̂ 1.5297 0.0045 1.4626 0.0106 1.4918 0.0140 1.4976 0.0114 1.5198 0.0122 1.4988 0.0110

200 α̂ 0.4410 0.0061 0.4412 0.1528 0.3754 0.1280 0.3748 0.1271 0.3583 0.1200 0.3764 0.1296
δ̂ 1.0118 0.0018 1.0898 0.0296 1.0505 0.0129 1.0492 0.0137 1.0379 0.0111 1.0508 0.0146
λ̂ 1.5245 0.0037 1.4695 0.0080 1.4901 0.0101 1.4969 0.0082 1.5137 0.0086 1.4972 0.0080

500 α̂ 0.4380 0.0057 0.4484 0.1420 0.3764 0.1161 0.3778 0.1151 0.3629 0.1094 0.3789 0.1153
δ̂ 1.0012 0.0002 1.0815 0.0264 1.0413 0.0110 1.0416 0.0121 1.0330 0.0098 1.0418 0.0122
λ̂ 1.5115 0.0017 1.4802 0.0034 1.4932 0.0039 1.4960 0.0032 1.5034 0.0032 1.4964 0.0032

Table 4. The AES and MSEs of α = 0.6, δ = 2, λ = 1.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

30 α̂ 0.6597 0.0195 0.5390 0.2054 0.5081 0.1784 0.5212 0.1858 0.4882 0.1821 0.5191 0.1895
δ̂ 2.0642 0.1340 2.6170 8.4422 2.3168 2.3140 2.3242 1.8946 2.2091 2.7088 2.2942 1.1570
λ̂ 1.0537 0.0140 0.9369 0.0276 0.9900 0.0380 0.9979 0.0330 1.0665 0.0433 1.0081 0.0285

60 α̂ 0.6494 0.0099 0.5570 0.1611 0.4988 0.1622 0.5099 0.1605 0.4692 0.1636 0.5016 0.1645
δ̂ 2.0634 0.0127 2.2948 0.4264 2.1652 0.3995 2.1645 0.2667 2.0678 0.1926 2.1487 0.2479
λ̂ 1.0276 0.0055 0.9435 0.0135 0.9803 0.0164 0.9865 0.0139 1.0219 0.0152 0.9883 0.0125

100 α̂ 0.6442 0.0088 0.5808 0.1450 0.5099 0.1456 0.5104 0.1474 0.4700 0.1500 0.5034 0.1487
δ̂ 2.0510 0.0102 2.2622 0.3124 2.1219 0.2023 2.1178 0.1835 2.0400 0.1417 2.1039 0.1735
λ̂ 1.0250 0.0050 0.9625 0.0075 0.9858 0.0086 0.9913 0.0073 1.0135 0.0078 0.9944 0.0070
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Table 4. Cont.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

150 α̂ 0.6378 0.0076 0.5631 0.1385 0.4894 0.1464 0.4867 0.1480 0.4572 0.1500 0.4871 0.1483
δ̂ 2.0552 0.0110 2.2113 0.2558 2.0807 0.1505 2.0728 0.1324 2.0186 0.1090 2.0729 0.1341
λ̂ 1.0140 0.0028 0.9649 0.0054 0.9829 0.0063 0.9873 0.0051 1.0024 0.0051 0.9883 0.0050

200 α̂ 0.6272 0.0054 0.5662 0.1418 0.4872 0.1449 0.4817 0.1453 0.4546 0.1477 0.4877 0.1450
δ̂ 2.0500 0.0100 2.2230 0.2529 2.0804 0.1423 2.0684 0.1301 2.0218 0.1096 2.0768 0.1367
λ̂ 1.0108 0.0022 0.9718 0.0041 0.9895 0.0048 0.9929 0.0039 1.0045 0.0040 0.9931 0.0038

500 α̂ 0.608 0.0016 0.5878 0.1189 0.4732 0.1353 0.4847 0.1241 0.4688 0.1234 0.4885 0.1239
δ̂ 2.000 0.0000 2.2199 0.2269 2.0446 0.0999 2.0459 0.0965 2.0175 0.0843 2.0511 0.1001
λ̂ 1.000 0.0000 0.9808 0.0018 0.9936 0.0018 0.9949 0.0015 1.0000 0.0015 0.9949 0.0015

Table 5. The AES and MSEs of α = 0.7, δ = 3, λ = 2.5.

Sample
Size

MLE MPS LSE WLS CVE ADE

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

30 α̂ 0.7483 0.0274 0.7345 0.1700 0.6787 0.1822 0.6691 0.1730 0.5878 0.2083 0.6681 0.1844
δ̂ 3.0782 0.0368 3.5572 3.0963 3.4365 2.7615 3.3212 1.4609 3.1723 0.7521 3.3279 1.4390
λ̂ 2.5959 0.0441 2.2631 0.2335 2.4062 0.2695 2.4325 0.2375 2.6046 0.2761 2.4583 0.2202

60 α̂ 0.7210 0.0063 0.6983 0.1259 0.6762 0.1393 0.6420 0.1358 0.5789 0.1566 0.6587 0.1363
δ̂ 3.0507 0.0152 3.2034 0.1991 3.1919 0.3088 3.1130 0.1402 3.0399 0.1163 3.1341 0.1548
λ̂ 2.5813 0.0244 2.3468 0.1024 2.4330 0.1317 2.4604 0.1028 2.5513 0.1109 2.4620 0.0987

100 α̂ 0.7054 0.0016 0.6886 0.1179 0.6692 0.1197 0.6293 0.1264 0.5736 0.1445 0.6494 0.1217
δ̂ 3.0354 0.0106 3.1517 0.1021 3.1244 0.1366 3.0739 0.0787 3.0172 0.0689 3.0901 0.0833
λ̂ 2.5756 0.0227 2.3837 0.0631 2.4531 0.0757 2.4717 0.0618 2.5291 0.0638 2.4711 0.0590

150 α̂ 0.7027 0.0008 0.6884 0.1119 0.6650 0.1186 0.6020 0.1345 0.5654 0.1444 0.6330 0.1253
δ̂ 3.0246 0.0074 3.1333 0.0846 3.1112 0.1146 3.0444 0.0621 3.0061 0.0571 3.0696 0.0679
λ̂ 2.5552 0.0166 2.3985 0.0393 2.4481 0.0500 2.4685 0.0377 2.5075 0.0375 2.4649 0.0371

200 α̂ 0.7006 0.0002 0.6686 0.1123 0.6532 0.1147 0.5924 0.1309 0.5587 0.1392 0.6294 0.1191
δ̂ 3.0168 0.0050 3.1048 0.0724 3.0849 0.0863 3.0256 0.0514 2.9926 0.0492 3.0551 0.0578
λ̂ 2.5450 0.0135 2.4154 0.0282 2.4574 0.0366 2.4756 0.0275 2.5059 0.0279 2.4706 0.0272

500 α̂ 0.7000 0.0000 0.6829 0.0887 0.6505 0.0995 0.5927 0.1110 0.5671 0.1176 0.6345 0.0976
δ̂ 3.0000 0.0000 3.0887 0.0561 3.0578 0.0586 3.0039 0.0359 2.9809 0.0339 3.0369 0.0428
λ̂ 2.5126 0.0038 2.4351 0.0132 2.4620 0.0144 2.4740 0.0107 2.4876 0.0101 2.4687 0.0112

8. Applications

In this part of the work, we provide two application datasets to show the effectiveness
and flexibility of the AS-W distribution. Different statistic measures for the two data sets
are presented in Table 6.

Table 6. Summary statistics for the selected datasets.

Datasets Minimum One Quntile Median Mean Three Quntile Maximum Skew Kurt

Dataset 1 0.070 1.170 2.490 3.494 5.840 13.300 1.152 3.890
Dataset 2 2.998 21.187 51.385 55.123 75.435 138.500 0.555 2.108

8.1. First Data Set

The first data set represents the total annual rainfall (in inches) during the month of
January from 1880 to 1916 recorded at Los Angeles Civic Center; ref. [24] provided the
values. The data are reported in Table 7.
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Table 7. The total annual rainfall.

1.33 1.43 1.01 1.62 3.15 1.05 7.72 0.2 6.03 0.25 7.83 0.25 0.88 6.29 0.94
5.84 3.23 3.7 1.26 2.64 1.17 2.49 1.62 2.1 0.14 2.57 3.85 7.02 5.04 7.27
1.53 6.7 0.07 2.01 10.35 5.42 13.3

8.2. Second DataSet

The second data set is the failure times of eight components at three different tempera-
tures, 100, 120, 140, introduced by [25]. The value data are described Table 8.

Table 8. The values of the failure times of eight components at three different temperatures.

14.712 32.644 61.979 65.521 105.50 114.60 120.40
138.50 8.610 11.741 54.535 55.047 58.928 63.391
105.18 113.02 2.998 5.016 15.628 23.040 27.851
37.843 38.050 48.226

The AS-W distribution is fitted to these two datasets and compared with the following:

• Sine-inverse Weibull [4]:

F(x, α, θ) = sin
{π

2
e(−αx−θ)

}
.

f (x; α, θ) =
π

2
αθx−θ−1e(−αx−θ) cos

{π

2
e(−αx−θ)

}
x > 0, α, θ > 0.

• The inverse Weibull distribution [26]:

F(x, τ, θ) = e−(
θ
x )

τ

.

f (x; τ, θ) = f (x) =
τ(θ/x)τe−(θ/x)τ

x
x > 0, τ, θ > 0.

• Weighted generalized quasi Lindley distribution (WGQLD) [27]:

F(x, α, θ) = 1−

24 + 6α2[2 + xθ(2 + xθ)]
+6α[6 + xθ(6 + xθ(3 + xθ))]
+xθ[24 + xθ(12 + xθ(4 + xθ))]

12(1 + α)(2 + α)
e−θx.

f (x; α, θ) =
θ3x2 ·

(
θ2x2 + 6αθx + 6α2)e−θx

12(α + 1)(α + 2)
x > 0, α, θ > 0.

• Sine Burr XII distribution [11]:

F(x) = sin

{
π

2

[
1− 1

(1 + xa)b

]}
: a, b, x > 0.

f (x) =
π

2
abxa+1

(1 + xa)b+1 cos

{
π

2

[
1− 1

(1 + xa)b

]}
, a, b, x > 0.

The MLEs, SEs and corresponding log-likelihood l(.) values for AS-G FD model
for both datasets are provided in Table 9. For the decision about the best fitting of the
competing model, we computed several criteria measures such as the Akaike information
criteria (AIc), the consistent Akaike information criteria (CAIc), the Bayesian information
criteria (BIc), and the Hannan–Quinn information criteria (HQIc).
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Table 9. The MLEs, SEs and corresponding log-likelihood l(.) values for the AS-G FD model.

Datasets Estimate SE l(x; ·)
Dataset 1 α̂ = 0.0003 1.1977 −83.265

λ̂ = 1.0495 0.1381
δ̂ = 3.55905 0.5862

Dataset 2 α̂ = 0.002 1.083 −119.119
λ̂ = 59.518 9.820
δ̂ = 1.300 0.216

From the results given in Tables 10 and 11, we noted that the AS-W model provides
a better fit with the minimum value of AIC, AICc, BIC, HQIC, and KS and the largest
p-values compared with other models considered in this work. Figures 6 and 7 support
this assertion. Box plot and TTT plot along with the PP-Plot for the two real data sets are,
respectively, presented in Figures 8 and 9.

Table 10. The goodness of fit tests for Dataset 1.

Model AIC AICc BIC HQIC K-S p-Value

AS-W 172.5304 173.2577 177.3632 174.2342 0.0907 0.9212
Sine-inverse Weibull 184.3137 184.6666 187.5355 185.4495 0.15862 0.3096
Inverse Weibull 190.8537 191.2066 194.0755 191.9896 0.1897 0.1394
WGQLD 206.7907 207.1436 210.0125 207.9265 0.2682 0.0097
Sine Burr XII 181.3963 181.7493 184.6181 182.5322 0.1423 0.4417

Table 11. The goodness of fit tests for Dataset 2.

Model AIC AICc BIC HQIC K-S p-Value

AS-W 244.239 245.439 247.7732 245.1767 0.1271 0.7875
Sine-inverse Weibull 251.187 251.7585 253.5431 251.8121 0.1546 0.5622
Inverse Weibull 255.0592 255.6306 257.4153 255.6843 0.1778 0.3884
WGQLD 252.8124 253.3839 255.1686 253.4375 0.1950 0.2824
Sine Burr XII 284.8518 285.4232 287.2079 285.4768 0.3609 0.0026

Figure 6. Plots of estimated probability density functions and cumulative distribution functions for
Dataset 1.
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Figure 7. Plots of estimated probability density functions and cumulative distribution functions for
Dataset 2.

Figure 8. Box, TTT, and PP plots for the first real data set.

Figure 9. Box, TTT, and PP plots for the second real data set.

9. Conclusions

We intensely study a new family of distributions with a trigonometric function. We
introduce an extra parameter to the sine transformation family and name it the alpha-
sine-G family of distributions. Some important functional forms and properties of the
family are provided in a general form. A specific three-parameter sub-model alpha-sine
Weibull of this family is also introduced using Weibull distribution as a parent distribution;
it is studied deeply. The statistical properties of this new distribution are investigated.
From the graphical investigations of the PDF and HRF shapes, we find that the suggested
model is versatile regarding skewness and kurtosis. Both the PDF and HRF can have
either increasing or decreasing or bathtub or inverted bathtub or -j- or reverse-j-shaped
curves according to the parameter values. Hence, the AS-W model is also capable of fitting
highly skewed heterogeneous data sets. We obtain the estimates of AS-W parameters using
several methods, including MLE, MPS, OLS, WLS, CV, and AD. A simulation experiment is

183



Math. Comput. Appl. 2023, 28, 83

carried out to justify these estimates further and finds that AEs nearly converge to the true
values of the parameter, and MSEs are approaching zero as the sample size increases. We
study two real data applications and demonstrate that the AS-W distribution is consistently
the best model among all its competitors. Hence, we expect that the suggested family of
distributions can be used to generate new flexible models for modeling real data, even
heterogeneous data from different fields of application. For future works, many authors can
use the new suggested family of distributions to generate new continuous statistical models,
such as alpha-sine-power Lomax, alpha-sine-power Topp Leone and alpha-sine-power
Lindley distributions.
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Abstract: Exploration of solar irradiance can greatly assist in understanding how renewable energy
can be better harnessed. It helps in establishing the solar irradiance climate in a particular region
for effective and efficient harvesting of solar energy. Understanding the climate provides planners,
designers and investors in the solar power generation sector with critical information. However, a
detailed exploration of these climatic characteristics has not yet been studied for the Southern African
data. Very little exploration is being done through the use of measures of centrality only. These
descriptive statistics may be misleading. As a result, we overcome limitations in the currently used
deterministic models through the application of distributional modelling through quantile functions.
Deterministic and stochastic elements in the data were combined and analysed simultaneously when
fitting quantile distributional function models. The fitted models were then used to find population
means as explorative parameters that consist of both deterministic and stochastic properties of the
data. The application of QFs has been shown to be a practical tool and gives more information than
approaches that focus separately on either measures of central tendency or empirical distributions.
Seasonal effects were detected in the data from the whole region and can be attributed to the cyclical
behaviour exhibited. Daily maximum solar irradiation is taking place within two hours of midday
and monthly accumulates in summer months. Windhoek is receiving the best daily total mean, while
the maximum monthly accumulated total mean is taking place in Durban. Developing separate solar
irradiation models for summer and winter is highly recommended. Though robust and rigorous,
quantile distributional function modelling enables exploration and understanding of all components
of the behaviour of the data being studied. Therefore, a starting base for understanding Southern
Africa’s solar climate was developed in this study.

Keywords: solar irradiation; quantile; quantile function; median rankit; population mean

1. Introduction

With ample sunshine in the Southern African region, an exploratory study of solar
irradiation (SI) data can play a significant role in better understanding how this enor-
mous source of energy can be harnessed in a bid to satisfy the energy demands within
regional countries. However, solar irradiation is significantly affected by weather elements.
In addition, most, if not all, meteorological features have error distributions with finite
limits such that assuming normality of the distributions is not appropriate. As a result,
deterministic models have intrinsic limitations when dealing with weather data that is
characterised by such rapid-fluctuating uncertainties. Therefore, using the measures of
central tendency (such as the mean) only to describe the characteristics of solar irradiation
data is not enough. Exploring meteorological features using the statistics of the mean can
be a misleading summary of a distribution.
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As a result, to overcome these limitations, solar irradiation data can be modelled
using quantile functions. We can learn the data’s skewness, tails and outliers by plotting
quantile function graphs. The application of quantile functions to exploratory data analysis
considers the data’s deterministic and stochastic elements.

1.1. Rationale of the Study

The Southern African region’s solar irradiation data characteristics have not yet been
studied according to the best of our knowledge. Most authors have been interested in
forecasting solar irradiation, and they have been using locational data of at most three sites
from the region within the same country. Very little exploration of this data has been done.
The little exploratory analysis conducted has focused on measures of central tendency or
the statistics of the mean per se. In addition, of course, with the interpretation of measures
of dispersion, the standard error and kurtosis are the commonly used explorative statistics
to describe the variability of the data. However, data exploration that ends with measures
of central tendency and dispersion can be a misleading analysis [1]. The big challenge
comes with efforts to explore solar irradiation data in the Southern African region with a
minimum error of misleading results. A complete understanding of this data is desired.
Therefore, an approach that satisfies this completeness can be the introduction of quantile
functions in the exploratory analysis. In addition to the deterministic element, quantile
functions model the stochastic element of the data which cannot be done using the statistics
of the mean. The two elements of the solar irradiation data can be developed with a
common construction kit approach [2]. In addition, the use of quantile functions is part of
distributional modelling which cannot be done when exploring data using the statistics
of the mean. Moreover, the analysis of empirical distributions tends to focus on only the
stochastic element of the variable. Empirical distributions are much more suitable than
exploratory analysis for forecasting modelling.

1.2. Contribution of the Study

This explorative investigation helps with the establishment of the solar irradiance
climate in the Southern African region. Instead of exploring the deterministic compo-
nent only, and separately (by applying the statistics of central tendency) and then again
exploring separately the stochastic element through a simple analysis of empirical distribu-
tions, a complete exploration can be done through quantile distributional function models
(QDFMs). In addition, some approaches to solar irradiance modelling are non-parametric
like the complete-history persistence ensemble (CH-PeEn) developed by [3]. They lack
inferences of statistic(s) like population mean that can be used to describe the behaviour
of SI, especially the physical characteristics inherent in the stochastic component. The
statistical characteristics and climate of solar irradiation that are explored help planners
and designers in the solar panels manufacturing industry and solar power generation sector.
They can understand better the factors that affect the efficient generation of solar power.
The study may help investors to appreciate how investing in solar power generation can be
profitable financially and socio-economically by exposing the characteristics of Southern
African solar irradiation into the finance world. Experts in meteorological services will be
made aware of how solar irradiation weather studies can be enhanced. Researchers and
academics can be made aware of the new data exploratory technique of QDFMs which
completes the description of data characteristics by combining deterministic and stochastic
elements of variables.

1.3. Review of Literature

Several previous studies on solar irradiation in the Southern African region have been
conducted dating back to as early as 1983 by Jain. Unfortunately, only a few have included
study of the characteristics of radiation. The majority of the studies were concentrating
on measuring and/or predicting (forecasting) solar irradiation in the different countries
of the region. The earliest study that included an analysis of the characteristics of solar
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irradiation in the region, according to the best of our knowledge, was done by J. Andringa
in 1988. They used monthly averages to establish the SI pattern in Botswana. Another early
study was done by [4], and they concluded that SI data from Botswana showed weak non-
seasonal effects while moving average parameters showed strong seasonal effects. Later, [5]
reached the same conclusions as [6] after observing that Malawi SI data had average
daily maximums in October and minimums in January. This highly significant seasonality
characteristic in SI made [7] split the Ritchersveld training data set into two samples, one
from January to May and the other one from June to December. Ref. [7] are the only
authors so far, according to the best of our knowledge, who have done a periodogram
analysis of SI in the region. They identified the largest ordinate periods and produced the
harmonic frequencies of the ordinate periods. All of the ordinates they identified were
highly significant at a 1% level of significance when using a Fisher’s G-test. One of the latest
studies to confirm seasonality in SI data was done by [8] using the University of Pretoria
data. The interpretation of constructed box plots was used to deduce seasonality in the data.
They also came up with a monthly pattern of the data. Earlier on, [9] had already produced
a detailed daily SI pattern for Sebele data. They concluded that solar conditions during
the summer and winter months tend to be uniform over consecutive months (i.e., the SI
series had a memory of two months). Therefore, the data had a persistent pattern. The
same conclusion was also made by [10]. Ref. [11] discovered that the introduction of this
persistent pattern improved their model performance when predicting distillate production
while monitoring meteorological conditions at Malawi Polytechnic. On the other hand,
shortly before, their solar distilled water project [12] concentrated on the relationship
between SI and the sky clearness index. Their results confirmed that the SI pattern is
associated with sky clearness (sunshine duration) or cloud cover. Ref. [13] concurred
by deducing that the SI pattern depends on sunshine duration. Probably that was the
rationale [14] that applied the K-means algorithm when classifying sunshine duration into
four classes. Previously, [15] had already improved the quality of this classification by
cutting the hierarchical tree and further produced a fifth class of ‘good weather’ throughout
the day with intermittent clouds passing over.

Other researchers like [16–19] described the distribution of SI in different parts of SA
using the measures of skewness and kurtosis. They all found their data to be positively
skewed and platykurtic, that is, SI did not follow a normal probability distribution. The
non-normality of the data was confirmed by the constructed Q-Q plots which exhibited
non-linear relationships between the theoretical and sample quantiles. Refs. [16–19] went
further to extract non-linear trends from their respective data sets by fitting penalised
cubic smoothing spline functions. They also constructed time plots as well as density plots;
however, the time plots constructed by [19] exhibited some dominant cycles. In addition to
the various plots they constructed, they computed some measures like the minimum, mean,
median and quartiles to describe the SI. Though the data were from different parts of South
Africa, the different researchers reached the same conclusions regarding SI characteristics.

However, none of the previous studies reviewed in this study fitted a probability
distribution and used it to describe SI. They all concentrated on the statistics of the mean.
In contrast, we extend the property description of SI through application of the statistics
of quantiles. This includes analysing a fitted QDFM which has never been done in pre-
vious studies when investigating the characteristics of SI in the Southern African region
and beyond.

2. Materials and Methods

Expressing statistical ideas in terms of quantile functions gives a new perspective on
data exploration which is simpler and clearer. Quantile functions enable distributional
model development with a common construction kit approach including both the deter-
ministic and stochastic elements in the process. This implies that QDFM can present both
deterministic and stochastic components of SI. If we denote a quantile function Q(p) as a
function that gives quantile values for all probabilities p, 0 ≤ p ≤ 1 then a quantile can be
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defined as the observation that corresponds to a specified proportion of an ordered sample.
That is, if x lies on a proportion p of the way through the data set of n observations, then
x(r) lies a proportion pr of the way through the data set. Therefore, (x(r), pr) describes the
data where x(r) is the rth observation in the data set and pr =

r
n .

2.1. Quantile Functions

If we let X be the random variable and p = P(X ≤ x) then we can formally define a
quantile function (QF) as follows:

xp = Q(p), (1)

where xp is the p-quantile of the population and p = F(x) is the cumulative distribution
function (CDF) such that,

Q(p) = F−1(p) and F(x) =F−1(x). (2)

That is, the plot of Q(p) against p corresponds to the plot of x against p. It has to
be noted that an empirical distribution replaces the cumulative distribution in practice.
According to [20], the p-quantile can be written as

xp = argmin︸ ︷︷ ︸
x

E
[
ρp(X− x)

]
,

for each p ∈ (0, 1) and ρp is the quantile loss function given by

ρp =

{
up, if u ≥ 0

u(p− 1), if u < 0.

Since this quantile loss function is not differentiable, then the statistics of central
tendency cannot be applied in a quantile analysis context. The estimate of the p-quantile
is computed as a sample quantile, and we consider Theorem 1 (the result of Linderberg’s
central limit theorem) when finding its asymptotic distribution.

Theorem 1. Given a random variable X with associated cumulative distribution function F(x),
that is continuous in a neighbourhood of the p-th quantile of interest, with f (xp) > 0. Then, the
asymptotic distribution of the sample quantile, x′p, is given by

√
n(x′p − xp)

d→ N(0, σ2),

where σ2 = p(1−p)
f 2(xp)

and N(0, σ2) represents the Gaussian distribution with zero mean and

variance σ2.

If we introduce S(p) as the QF of the basic form of a probability distribution, then

Q(p) = λ + ηS(p, α), (3)

where λ and η are the position and scale parameters, respectively, and α has components
that give the shape parameter of the ‘basic distribution’. We assume that:

1. the uniform transformation rule applies and
2. ordered Ur leads to the corresponding ordered Xr such that

Xr = Q(Ur).

We also introduce the statistics of the median and the median rankit, where percentiles
are applicable. So, we treat quantile basic forms as QDFM components to provide a flexible
and effective means of constructing distributions that mimic observed data properties. The
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most important property of quantile basic forms is that we can compute the population
mean by evaluating the integral of the QDFM overall percentiles [21,22],

µ =
∫ 1

0
Q(p)dp. (4)

This population mean describes simultaneously both the deterministic and stochastic
components of a variable. In addition, [18] listed the following two main properties of
quantile functions.

1. If X has a quantile distribution, R(p), on the positive axis, 0 ≤ x < 1, then the distri-
bution −R(1 − p) is the quantile distribution that is its reflection in the axis at x = 0,
called the reflected distribution on −1 < x ≤ 0.

2. The reciprocal 1/X has the reciprocal distribution 1/R(1 − p) also on 0 ≤ x < 1.

2.2. Method of Percentiles

The method involves equating population and sample quantiles (percentiles) on
distributions defined by their quantile functions. Percentiles are descriptive statistics of
positions (the centrality) of ordered data. These positions are the expected values of the
observations in the data set. Letting p(r), r = 1, 2, 3, . . ., n to be the corresponding ordered
sequence probabilities of X(1), X(2), X(3), . . ., X(n), then any quantile distribution X = Q(p)
can be generated from a uniform distribution U on the domain (0, 1) by X = Q(U). That is,
ordering X corresponds to ordering U as in (5) here under:

X(r) = Q(U(r)). (5)

We now obtain the mean of the distribution of the rth order statistic from the uniform
distribution as,

p(r) =
1

n + 1
, (6)

and the median is given by:

pM(r) = I IB(0.5, r, n + 1− r). (7)

IIB in (7) is the acronym for the inverse of the incomplete beta function. IIB(p, r, n + 1 − r)
generally gives the quantile distribution for the ordered statistics. Thus, the median for
X(r), technically called the median rankit is defined as

Median
(

X(r)

)
= Q

(
Median

(
U(r)

)
= Q(pM(r)). (8)

Therefore, we analyse the centrality of ordered data, which is ignored by most statisti-
cal estimation methods.

2.3. Parameter Estimation

The natural approach to estimating parameters using quantile-based models is the
method based on minimising the differences between ordered observations and their
predictions. That can be done using either the distributional least squares (DLS) technique
(which uses the mean rankit) and/or the distributional least absolute (DLA) technique.
The techniques are based on developing some measure of lack of fit (LoF), i.e., fitting
a distribution based on deviations between ordered observations and some measure of
position derived from the fitted model. In some cases, the mean rankit does not exist; as a
result, we extend the parameter estimation procedure by using the median rankit. Thus,
we introduce the DLA technique in the parameter estimation exercise. When applying the
DLA technique, the best QDFM fit is obtained from parameters that minimise,

DA = ∑
∣∣∣x(r) −M(r)

∣∣∣, (9)
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such that the measure of the best fit is the distributional mean absolute error (DMAE),
where

DMAE =
DA
n

. (10)

In Equation (9), M(r) is the median of the distribution of X(r) obtained from the median
rankit. The DLA technique is associated with the least absolute deviation (LAD) technique
in linear regression. LAD supersedes the ordinary least squares (OLS) technique in that it
is resilient to outliers and more accurate as the sample size gets larger. However, LAD is
computationally extensive.

2.4. Model Validation
2.4.1. Graphical Analysis

Ref. [22] recommended the use of graphical inspection of suitable plots for testing the
adequacy of quantile functions as shown in Table 1.

Table 1. QDFM validation plots.

Name of Plot y Against Comment

Fit observation x(r) Q’(pr)
Points to exhibit an

approximately linear pattern

Distributional plots fr = x(r) − Q’(pr) Q’(pr)
Points to be

randomly distributed

2.4.2. Chi-Square Goodness of Fit Test

Hosmer and Leme use a chi-square test statistic on the null hypothesis that the model
is a good fit for the data. An insignificant p-value indicates that we fail to reject the
null hypothesis.

3. Results and Discussions
3.1. Ground-Based Data

Ground-based data from the Southern African Universities Radiometric Association
Network (SAURAN) website was used, and the radiometric stations have geographical
locations as shown in Table 2. Some of the stations are currently inactive as shown on the
map in Figure 1.

Table 2. SAURAN stations.

Station Latitude Longitude Location Period

University of Venda (UV) −23.13100052 30.42399979 Venda April 2015–April 2022

University of Pretoria (UP) −25.75308037 28.22859001 Pretoria July 2017–June 2021

University of KwaZulu-Natal
Howard College (UKZNH) −29.87097931 30.97694969 Durban December 2015–September 2022

Stellenbosch University (SUN) −33.92810059 18.86540031 Cape Town July 2017–June 2021

Namibian University of Science
and Technology (NUST) −22.56500053 17.07500076 Windhoek July 2017–June 2021

University of Gaborone (UG) −24.6609993 25.93400002 Gaborone January 2015–November 2020

3.2. Hourly Solar Irradiance Distributional Modelling

Solar irradiance (SI) for a particular day is significantly affected by the time horizon.
This is supported by the time plots from all of the locations which have a general pattern
shown in Figure 2. When measured in hours starting from midnight to midnight, [23]
demonstrated that ignoring sidebands in the data causes overshoots just before sunrise and
after sunset. As a result, we use up to 3 cycles per day which consider the sidebands.
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Ref. [23] modelled this hourly profile for a particular day through a Fourier series.
Thus, the mean function of SI in an hour for the three cycles in a day can be modelled
as follows:
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The Fourier series expansion model should satisfy the following constraints:

• ysunrise = ysunset = 0.
• ysunrise−1hr = ysunset+1hr = 0.

As a result, this profile is considered on the QDFM of the SI hourly distribution such
that we apply the following regression quantile distributional model as suggested by [2]:

Qy(p
∣∣t) = yt + ηS(p, α, γ, δ, τ) t = 1, 2, 3, . . . , 24. (12)
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where S(p, α, γ, δ, τ) is the basic quantile distribution function of the residuals (from the
Fourier series expansion model in (11)) described by α, γ, δ and τ, the respective shape,
scale, skewness and kurtosis parameters. We assume that E(ε) = 0 and S(0.5) = 0. That is, the
deterministic part of the distributional model in (12) becomes Galton’s median regression
line. This means that

M[S(Ur)] = S(p∗) = Mr (13)

which is called the median rankit for p* = IIB(0.5, r, n + 1 − r).

3.2.1. Venda and Gaborone Hourly Quantile Profiles

The ‘fitdistrplus’ R package developed by [24] automatically selects the best distri-
bution that particular data follows. The package estimates the distribution parameters
through a default maximum likelihood optimisation algorithm. As a result, the residuals
on fitting the SI Fourier series for the Venda and Gaborone hourly profile followed a skew
normal type 2 (SN2) distribution with the probability distribution parameters as estimated
in Table 3. The ‘gamlss.dist’ R package developed by [25] was used to fit the distributions
as shown in Figure A1. That is, the fitted QDFM is as shown in (14),

Qy(p
∣∣t) = β0 + β1Cos
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π
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2δ2

)
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(14)

so that the model parameters are as shown in Table 4.

Table 3. Venda and Gaborone distributional parameters.

Location Shape Scale Skewness

Venda 22.676906 −2.308079 −5.612271
Gaborone 23.233404 2.127659 −1.204687

Table 4. Venda and Gaborone model parameters.

Location β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 η̂

Venda 143.24 −327.52 −55.60 148.90 57.37 −17.33 18.81 2.02

Gaborone 422.36 −372.09 −92.34 163.73 71.42 −16.13 −6.71 −8.17

3.2.2. Durban, Pretoria, Cape Town and Windhoek Hourly Quantile Profiles

The residuals on Durban followed a skew exponential power type 3 distribution and
the Cape Town and Windhoek profiles followed a sinh-arcsinh distribution. However, the
skew exponential power type 3 and sinh-arcsinh probability distributions do not have
corresponding quantile functions as yet. As a result, the closest alternative probability
distribution is a normal or Cauchy distribution. The results in Table 5 show that the normal
distribution better fits the residuals for the three locations than the Cauchy distribution.
Thus, the fitted normal distributions (as second best fits) using the ‘fitdistrplus’ R package
are shown in Figure A1.

The Durban and Cape Town residuals from the Fourier series model had means
of −2.3122 × 10−16 and 1.1102 × 10−16 and standard deviations of 11.0653 and 13.4113
respectively. The residuals had also respective skewness of 0.051 and −0.055. As a result,
the fitted QDFM is
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Table 5. Residual fitted distribution comparisons.

Location Metric Normal Cauchy

Durban AIC 187.4920 199.3287
BIC 189.8481 201.6848

Cape Town AIC 196.7216 211.7815
BIC 199.077 214.1376

Windhoek AIC 218.9350 222.8473
BIC 221.2911 225.2034

The residuals from the Windhoek and Pretoria deterministic models had a mean
(µNUST = 0.2567696, µUP = −1.15597) and standard deviation of (σNUST = 21.3035529,
σUP = 2.77733). However, the residuals from the Windhoek and Pretoria deterministic
models have respective skewness of 0.162308 and −0.1442648, which cannot be ignored
(that is, the skewness cannot be approximated to zero). That is, the residuals are suggesting
some skewness, so considering a skewed lambda quantile distribution (in Equation (16))
for the residuals will give better results [21]. Therefore, we fit the following QDFM for
the Pretoria and Windhoek hourly profiles. Thus, the estimated parameters are shown
in Table 6.
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( 3π
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+ η

2σ

[
(1− δ)pσ − (1 + δ)(1− p)σ]. (16)

Table 6. Pretoria, Cape Town and Windhoek model parameters.

Location β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 η̂

Durban 186.88 −300.05 −27.46 145.53 28.01 −26.56 −11.13 1.089

Cape Town 220.88 −309.44 −111.00 110.03 91.52 −6.93 −11.83 1.034

Windhoek 267.82 −400.60 −137.34 159.85 114.20 −27.07 −29.39 3676.63

Pretoria 247.62 −362.25 −54.47 163.33 51.28 −23.25 −10.66 −312.92

3.2.3. Hourly Population Means

On average, the daily maximum irradiance was observed at 13:00 on all the stations
considered, with either the second or third maximum taking place at 12:00 or 14:00. Using
the hourly profile QDFMs fitted for each location, we can then estimate the population
means at 12:00 up to 14:00 as follows:

µt =

1∫

0

Q(p|t)dp , t = 12, 13, 14. (17)

Now, some QDFMs discussed in previous sections include the inverse cumulative dis-
tribution function (CDF) of the standard normal distribution, Φ−1(p). We adopt the method
suggested by [26] of probabilistic polynomial approximations to evaluate the inverse. Re-
searchers like [27,28] and the latest [29] concentrated on approximating the CDF. Ref. [29]
are claiming to have the most accurate approximation using both the MATLAB Global
Optimization Toolbox and BARON, but they did not document evaluating the inverse of
the CDF. The approximation developed by [26] is explicit and has an acceptable maximum
absolute percentage relative error (APRE) of 1.4 × 10−2. We find their approximation
function simple and very accurate for the purposes of estimating the population mean SI in
any time interval of interest. Therefore, Table 7 shows the estimated population mean of
the average SI for 12:00, 13:00 and 14:00 time hours at each location.
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Table 7. 12:00–14:00 population means (Wh/m2).

Location 12:00 13:00 14:00

Venda 704.5501 724.3324 664.2824
Pretoria 792.3848 798.1858 720.3530
Durban 653.7334 646.0031 566.3265

Cape Town 647.2710 702.8115 690.4624
Windhoek 856.5969 927.0284 892.8881
Gaborone 789.5647 814.5785 756.4473

That is, for a period of 13:00 ± 2 h we can have an accumulative radiation of at least
3000 Wh/m2 which is the amount of energy required to fully charge a 12 Volt and 250 Amp
solar battery. This means that given the correct solar panel capacity such a solar battery
can be fully charged in at least five hours i.e., a period from 11:00 up to 15:00 at any of the
locations in the Southern Africa region.

3.3. Daily Total SI Distributional Modelling

The daily total SI distribution is not that significantly influenced so much by other
variables in such a way that it is not necessary to consider other meteorological features
when modelling its quantile distribution. That is, a day’s total SI distribution for a particular
month is presumed identical. The basic quantile functions S(p,α), considered on each
month’s daily total fitted QDFMs at the locations under study are shown in Table 8. If we
look at the population mean daily totals in Table 9, location by location then the maximums
in a year were all received in summer (i.e., either November, December or January), except
for Windhoek which has its maximum in autumn. The maximum population mean daily
totals are shown in bold for each location. All locations receive their population mean daily
total minimums in winter. Our results contrast with the conclusion drawn by [6] who had a
maximum taking place in October and a minimum in January, though they analysed daily
averages for Malawi.

Table 8. Probability distributions’ quantile functions.

Probability Distribution Quantile Function

Normal µ + σΦ−1(p)

Lognormal Exp(µ + σΦ−1(p))

Skewed Lambda 1
2σ ((1− δ)pσ − (1 + δ)(1− p)σ)

Weibull α(− log(1− p))1/γ

Gumbel α + γ log (− log(1− p))

Reverse Gumbel α− γ log (− log(1− p))

Logistic α + γ log
(

p
1−p

)

Cauchy α + γTan(π(p− 0.5))

Weibull Type 3 β(− log(1− p))1/γ

We see it as not a proper descriptive analysis to consider the daily average because the
minimum SI on every single day is always zero. In addition, SI is always approximately
equal to zero from sunset progressing through the night up to sunrise. However, on some
clear nights, we may have significant but very low SI readings. As a result, meaningful
daily average analysis has to exclude readings from sunset up to sunrise when targeting
the solar power generation industry. On the other hand, comparing the mean daily totals
across the locations on each month Windhoek receives the maximum (daily population
mean totals with an asterisk) in 75% of the year except for January, February and October.
It is Cape Town, instead, which receives maximums in those other three months.
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Table 9. Daily total population means (Wh/m2).

Month Venda Pretoria Durban Cape
Town Windhoek Gaborone

January 5808.48 6570.46 7419.84 8350.78 * 7966.67 7045.33

February 5118.63 5796.38 5569.62 7339.92 * 6655.05 6741.43

March 5328.46 5549.78 5727.71 5478.89 6969.69 * 5847.43

April 4218.16 4563.87 3869.33 4241.18 5855.68 * 5143.91

May 4189.18 4626.59 2832.39 3321.19 5183.17 * 4593.42

June 4207.39 4002.05 3543.30 2380.00 4946.30 * 4292.30

July 4463.09 4554.78 3146.75 3077.00 5109.11 * 4522.42

August 4338.57 5237.01 4393.84 3331.33 10,342.86 * 3966.38

September 5820.81 6381.69 4684.33 4937.00 10,678.41 * 6310.75

October 5441.11 6508.65 5773.34 7396.06 * 7342.81 6881.60

November 5992.28 7045.96 5197.02 7909.29 8022.61 * 7370.91

December 5786.87 7165.13 7118.95 8392.25 8799.95 * 6856.38

Maximum 5992.28 7165.13 7419.84 8350.78 10,678.41 7370.91

Minimum 4189.79 4002.05 2832.39 2379.96 4946.30 4292.30
* means a monthly maximum and bold means a locational maximum.

3.4. Monthly Total SI Distribution Modelling

The monthly total SI for a particular year is significantly affected by the month. The
deterministic component of monthly totals is suspected to be affected by the seasons of
summer and winter because from Table 9 we can conclude that the daily population mean
totals are affected by seasonal variation. This agrees with the results of [30], which showed
that SI greatly changed its pattern according to seasonal variation. Figure 3 exhibits some
cyclical variations in the monthly totals at all locations. As a result, we can attribute these
cyclical variations to seasonal effects that were also discovered by [5–7] from different
countries in Southern Africa. Thus, our cycle must have a period of 12 months. Therefore,
we can fit the deterministic component of the monthly totals as the following trigonometric
regression model:

yt = β0 + β1Cos
( π

12
t
)
+ β2Sin

( π

12
t
)
+ ε (18)

If a trend is observed on the time series plot of the monthly totals, then a trend
component can be added to the deterministic model as follows:

yt = β0 + β1t + β2Cos
( π

12
t
)
+ β3Sin

( π

12
t
)
+ ε. (19)

Thus, the quantile distribution of the monthly totals can now be modelled as

Qy(p
∣∣t) = yt + ηS(p, α, γ), (20)

where S(p, α, γ) is the quantile distribution function of the residuals, ε, from the trigonomet-
ric regression model. However, the time series plots exhibited in Figure 3 show that we can
suspect a trend in the Pretoria and Venda monthly totals’ time series, but fitting both the
trigonometric regression models with and without a trend gave the results in Table 10. We
can conclude that monthly total solar irradiance in the Southern African region is neither
increasing nor decreasing. There is no significant trend in SI monthly totals from year to
year. However, it is evident that due to global warming, atmospheric temperatures are
increasing [31–33]. In contrast, our time series plots and model comparisons do not show
that. Thus, the effects of global warming may not be influencing SI in the Southern African
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region. Rather, in variable selection concepts, the temperature is a significant explanatory
variable for SI as demonstrated by researchers like [8,16,34,35] who had the meteorological
feature as one of the important predictors of SI in their forecasting models. As a result, all
of the QDFMs for the monthly totals are fitted without considering trend regression being
part of the deterministic component.
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Table 10. Trend model AIC comparison.

Location With Without

Venda 266.7684 265.613
Pretoria 256.3586 255.4424

The residuals for Cape Town and Durban followed sinh-arcsinh and skew exponential
power type 2 distributions, respectively. Like the sinh-arcsinh distribution, the skew
exponential power type 2 distribution does not have an existing quantile function. Likewise,
we compare the closest two distributions to them as shown in Table 11. As a result, the better
distribution was the normal distribution. Figure A4 shows the fitted normal distributions.

Table 11. Comparisons of residual distributions on Cape Town.

Location Metric Normal Cauchy

Cape Town AIC 187.4920 199.3287
BIC 189.8481 201.6848

Durban AIC 268.5895 271.3327
BIC 269.5593 272.3025

The residuals in the other locations were best fitted by the distributions shown in
Table 12 and are also shown graphically as in Figure A4. Our results are in tandem with
the results from [36]. The original residual distributions are different over the year and
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the day. However, because some distributions do not have existing quantile functions,
Durban and Cape Town had the same second-best-fitted distribution over the day and the
year. The fitted QDFMs for the monthly totals have the estimated parameters as shown in
Table 12. All stations received maximum total population mean solar irradiation during
summer and minimum in winter. These results agree with the seasonality in SI observed by
researchers who studied the meteorological feature in Southern Africa. Durban is receiving
the maximum total population mean all year round of all the locations considered, while the
minimum is received in Cape Town (Figure 4). Therefore, Durban is the best location to set
up a solar farm in the region when considering the monthly accumulated solar irradiation.

Table 12. Monthly total SI model parameters.

Location Probability
Distribution β̂0 β̂1 β̂2 η̂ α̂ γ̂

Venda R. Gumbel 1,678,882.00 −8767.19 40,937.26 2013.06 −768.98 9.11

Pretoria R. Gumbel 3,692,969.00 −9175.68 20,756.98 4163.51 −852.62 8.72

Windhoek SN2 −24,798,121 −5434.35 36,610.50 2870.26 8700.05 −0.69

Location Probability
Distribution β̂0 β̂1 β̂2 η̂ µ̂ σ̂

Cape Town Normal 155,245.11 12,380.08 82,328.01 −39.04 −2.31 × 10−16 11.06526

Durban Normal 197,409.84 3445.95 37,525.34 2536.12 2488.44 9834.54

Gaborone Normal 148,521.33 22,150.61 41,991.97 2372.42 2863 23,670.46Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 14 of 23 
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Figure 4. Monthly population mean totals (Wh/m2).

3.5. Model Validations

The Hosmer and Lemeshow (HL) goodness of fit test done on all of the fitted QDFMs
had a p-value greater than 0.05 to indicate that all of the QDFMs were good fits to the
respective data. In addition, a runs test on all the fitted models showed that the QDFMs
were generating random fitted values except for the Venda and Gaborone monthly QDFMs.
The Hosmer and Lemeshow p-values as well as those for the runs test are shown in Table 13.

All of the fit-observation plots were approximately linear as shown in Figures A2 and A5.
All of the distributional residual plots did not exhibit any pattern. The points on the plots
were haphazardly distributed on the scatter plots as shown in Figures A3 and A6. Therefore,
all of the fitted models are valid to use in describing the characteristics of solar irradiation
in the locations studied.
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Table 13. Goodness of fit test p-values.

Location Hourly QDFM Monthly QDFM

HL Runs test HL Runs test

Venda 1 0.09498 1 0.0154
Pretoria 1 1 1 0.2259
Durban 1 0.4038 1 0.5431

Cape Town 1 0.4038 1 0.2154
Windhoek 1 0.4038 1 0.2259
Gaborone 1 0.2105 1 0.0154

4. Conclusions

The main objective of this study was not to predict but to explore the behaviour of SI
using the unpopular quantile distributional functions modelling approach. The application
of QFs has been shown to be a practical tool and gives more information than the use of
only empirical distributions when exploring data. Both the deterministic and stochastic
elements inherent in SI could be modelled on par to give a complete description of data
characteristics. Application of the Fourier series in our residual analysis gave a direct
physical interpretation of the deterministic component while QFs modelled the stochastic
element. It enabled the representation of seasonality in the data when we considered
different seasons. However, the seasonal modelling could be done over the year at once
like the study from [37]. Therefore, the QDFM structure was developed by combining the
two modelling components.

Although QDFMs are comprehensive and powerful data exploration tools, some prob-
ability distributions do not have existing QFs. This emerges as a drawback in accurately
estimating the stochastic properties inherent in the data that follow such probability dis-
tributions. Therefore, further studies can be done on developing QFs of such probability
distributions. Another challenge is approximating the inverse of the cumulative stan-
dardised normal distribution function. The approximations developed so far are complex.
More studies can be done on simplifying the approximation process as well as increasing
its accuracy.

Daily SI recorded on an hourly time horizon is cyclical, and that pattern can be
modelled using a Fourier series. In the Southern African region, the meteorological feature
is received on the earth’s surface at a maximum between 12:00 and 14:00 depending on
seasonal variations, but on average the maximum is experienced during the 13th hour of the
day throughout the whole year. Therefore, maximum solar power generation can be done
within two hours of midday at any location in Southern Africa regardless of any weather
conditions. Maximum daily totals are generally being received during summer (November,
December and January) across the region except at Windhoek where the maximum true
mean daily total is being received in autumn. We also conclude that Windhoek can be the
best solar power generation location in the region when considering daily accumulated
solar irradiation because it had the maximum daily population mean total in 9 months of
the year, then followed by Cape Town. However, if we consider the monthly accumulated
solar irradiance, then Durban is the best location to set up a solar farm in the region. All
maximum monthly population mean totals are received at that location in the region. The
monthly total SI across the region is a maximum in summer and a minimum in winter.
This shows that SI is highly seasonal in the region. Therefore, we suggest that when
forecasting SI in the region the modelling process should be split into summer models and
winter models. Though seasonal in nature, we can also conclude that Southern Africa’s
solar irradiance is not being influenced by global warming yet. With such solar irradiance
climatic information, then, planners, designers and investors in the solar power generation
industry can use this research when identifying where, when and how effective and efficient
electricity generation can be operationalised in this region.
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Finally, we acknowledge the availability of some meteorology approaches that can be
used to further describe the climate of solar irradiation. Therefore, this research creates a
starting platform for understanding solar irradiance climate in Southern Africa.
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Appendix A.2. Hourly Profile QDFM Validation Plots
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Figure A3. Distributional residual plots (a) Venda; (b) Pretoria; (c) Durban; (d) Cape Town; (e) 
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Figure A4. Fitted residual distribution plot for (a) Venda; (b) Pretoria; (c) Durban; (d) Cape Town; 
(e) Windhoek; (f) Gaborone. 
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Appendix B.2. Monthly Total Profile QDFMS Validation Plots
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(f) Gaborone. 
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Figure A6. Distributional residual plots (a) Venda; (b) Pretoria; (c) Durban; (d) Cape Town; (e) Wind-
hoek; (f) Gaborone. 
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