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Gómez-Garcı́a and Smail Triki
Solvent-Induced Hysteresis Loop in Anionic Spin Crossover (SCO) Isomorph Complexes
Reprinted from: Magnetochemistry 2021, 7, 75, doi:10.3390/magnetochemistry7060075 . . . . . . 189

Francis L. Pratt, Tatiana Guidi, Pascal Manuel, Christopher E. Anson, Jinkui Tang and
Stephen J. Blundell et al.
Neutron Studies of a High Spin Fe19 Molecular Nanodisc
Reprinted from: Magnetochemistry 2021, 7, 74, doi:10.3390/magnetochemistry7060074 . . . . . . 203

Scott S. Turner, Joanna Daniell, Hiroki Akutsu, Peter N. Horton, Simon J. Coles and Volker
Schünemann
New Spin-Crossover Compounds Containing the [Ni(mnt)] Anion (mnt =
Maleonitriledithiolate)
Reprinted from: Magnetochemistry 2021, 7, 72, doi:10.3390/magnetochemistry7050072 . . . . . . 221

Stephen J. Blundell, Tom Lancaster, Peter J. Baker, Francis L. Pratt, Daisuke Shiomi and
Kazunobu Sato et al.
The Internal Field in a Ferromagnetic Crystal withChiral Molecular Packing of Achiral Organic
Radicals
Reprinted from: Magnetochemistry 2021, 7, 71, doi:10.3390/magnetochemistry7050071 . . . . . . 233

Nadia Marino, Marı́a Luisa Calatayud, Marta Orts-Arroyo, Alejandro Pascual-Álvarez,
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Editorial

Professor Peter Day FRS was born on 20 August 1938 in Kent (UK) and attended
Maidstone Grammar School.

Peter completed his undergraduate studies at Wadham College, Oxford, followed
by a DPhil in chemistry in 1965 under the supervision of Bob Williams. His thesis con-
cerned Light Induced Charge Transfer in Solids. After his DPhil, Peter became a junior
research fellow at St John’s College, Oxford and later became an official fellow, tutor and
university lecturer.

In 1988, Peter became the Director of the Institut Laue-Langevin in Grenoble (France).
Peter was Director of the Royal Institution of Great Britain from 1991 to 1998, following
illustrious predecessors, such as Humphry Davy (1801), Michael Faraday (1825), John
Tyndall (1867) and James Dewar (1887). Peter continued the proud traditions of the Royal
Institution with an extensive outreach program popularizing science to both adults and
children, including the Royal Institution Christmas Lectures, which were televised each
year in the UK and Japan.

At this time, Peter was also the Director of the Davy Faraday Research Laboratory
at the RI where internationally leading research in solid-state chemistry produced many
high-impact publications. As Fullerian Professor of Chemistry from 1991 to 2008, and
subsequently Emeritus Professor at University College London, Peter continued to perform
research in materials chemistry.

Peter received many honors and awards, including fellowship of the Royal Society
in 1986 for his pioneering research on mixed valence compounds. The Royal Society of
Chemistry introduced the Peter Day award in Materials Chemistry, which is awarded
each year.

Maybe some of the readers will still remember an anecdote that reflects his very fast
mind and his sense of humor. It took place in the last days of September 1995, during
the gala dinner of the NATO Advanced Workshop: Magnetism, a Supramolecular Function,
organized by his good friend Olivier Kahn, in Carcans (France). The dinner took place at
the wine cellar Chateau Maucaillou in Medoc, near Bordeaux. At the end of the dinner,
after several cups of good wine, Olivier Kahn stood up and proposed a toast suggesting
that researchers should only sign our articles when the results are really good; otherwise,
we should use a nickname. Peter stood up and asked: “Olivier, which is your true name?”

Peter passed away aged 81 on 19 May 2020.
Peter will be greatly missed by the guest editors of this Special Issue who were

privileged to work closely with him. Peter’s contributions to materials chemistry are well
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documented, but his friends and colleagues will remember the kindness of an inspirational
mentor and a dear friend.

To pay tribute to his countless key contributions in many different domains in Materi-
als Chemistry, the journal Magnetochemistry has decided to publish this memorial Special
Issue (SI) entitled Perspectives on Molecular Materials—A Tribute to Professor Peter Day, in-
cluding a total of twenty-one contributions from some of his collaborators and friends.

Among these contributions, there is a personal editorial written by S. Álvarez, from the
University of Barcelona (Spain) [1], showing that Peter Day was not only an outstanding
materials chemist, but he was also passionate about time and space. Prof. Álvarez shows
the interest of Peter Day in the history of chemistry and of those institutions he belonged
to, as well as in the many places he visited during his more than half a century-long
scientific career.

Following chronological order, the first research contribution, by F. Setifi et al. at the
University Ferhat Abbas of Sétif (Algeria), J. Reedijk at Leiden University (The Netherlands),
C. I. Yang at Tunghai University (Taiwan), S. Bernés at Autónoma University of Puebla
(Mexico), D. K. Geiger at SUNY college at Geneseo (USA) and G. Süheyla Kürkçüoğlu at
Eskişehir Osmangazi University (Turkey), ref. [2], presents the first Mn(II) chain with
alternating double end-to-end and end-on azido bridges showing coexistence of spin-
canted antiferromagnetic order (at TN = 3.4 K) and metamagnetism (with a critical field
of ca. 30 mT). The analogous Co(II) compound shows weak ferromagnetic order below
16.2 K.

The contribution by N. D. Kushch, E. B. Yagubskii et al. at the Institute of Problems
of Chemical Physics (Russia), V. N. Zverev at the Institute of Solid-State Physics (Russia),
E. Canadel at the Institute of Materials Science of Barcelona (Spain) and J. Yamada at the
University of Hyogo (Japan), ref. [3], shows three new radical salts of a fused bis-TTF
donor (BDH-TTP) with the octahedral paramagnetic [ReF6]2− anion and the tetrahedral
diamagnetic one [ReO4]−. The two salts with the [ReF6]2− anion are metallic down to
low temperatures, whereas the salt with the [ReO4]− anion is a semiconductor. No slow
relaxation of magnetization was observed in the [ReF6]2− salts.

The contribution by D. Dragancea at the Institute of Chemistry in Chis, inău (Moldova),
M. Andruh et al. at the University of Bucharest (Romania) and G. Novitchi at the University
Grenoble Alpes (France), ref. [4], reports three new cyano-bridged 3d-4f chain compounds
containing alternating Gd-Fe, Dy-Fe and Dy-Co ions. The two Dy-containing compounds
show slow relaxation of the magnetization, and the Dy-Co polymer is one the few known
examples of chains of Single-Ion Magnets.

The contribution by T. Sugano at Meiji Gakuin University (Japan), H. Mori at the
University of Tokyo (Japan) and S. J. Blundell and W. Hayes at the University of Oxford (UK),
ref. [5], presents the magnetic properties of nitronyl nitroxide (NN) and iminonitroxide
(IN) functionalized organic radicals. Among other radicals, they show that the radical
2-benzo[b]thienyl-NN presents two magnetic dimers, one exhibiting ferro- and the other
antiferromagnetic intermolecular interactions, in agreement with the crystal structure.
They also show that the 4-(2′-thienyl)phenyl-NN radical behaves as an alternating 1D
antiferromagnet, also in agreement with its crystal structure.

The contribution by N. Marino and G. De Munno at the University of Calabria (Italy)
and F. Lloret, M. Julve et al. at the University of Valencia (Spain), ref. [6], presents a very orig-
inal novel Cu(II) oxalato-based 2D coordination polymer where the oxalato ligand shows
two different coordination modes (bis-bidentate and bi/mono-dentate). This cyan 2D
polymer shows an external control of the optical and magnetic properties, since it exhibits
fast and selective adsorption of methylamine, which leads to a deep blue adsorbate that fur-
ther transforms into a third polymer under vacuum. The magnetic properties of the three
polymers show a unique switching from strong to weak antiferromagnetic interactions.

The contribution by B. Tsukerblat at Ben-Gurion University of the Negev (Israel) with
A. Palii and S. Aldoshin at the Institute of Problems of Chemical Physics (Russia), ref. [7],
shows a study of the dimeric molecular mixed-valence cell for quantum cellular automata
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(QCA) using the two-mode vibronic model. The authors consider a multielectron mixed-
valence dimer of the type d2-d1, where the double exchange and the Heisenberg-Dirac-Van
Vleck exchange interactions are operative together with the inter-center vibrational modes.
The quantum-mechanical calculations show the possibility of combining the function of
molecular QCA with that of spin switching in an electronic device and may guide the
rational design of such multifunctional molecular electronic devices.

The contribution by S. J. Blundell at the University of Oxford, T. Lancaster at Durham
University (UK), P. J. Baker and F. Pratt at Rutherford Appleton Laboratory at Oxfordshire
(UK) and K. Sato et al. at Osaka City University (Japan), ref. [8], presents the unusual
crystallization of an achiral organic radical in two chiral enantiomorphs that are mirror
images of each other. The study of the magnetic properties of the crystals by muon-spin
rotation experiments show the presence of long-range magnetic order below 1.10 K and of
two oscillatory components showing different temperature dependences.

The contribution by S. S. Turner and J. Daniell at the University of Surrey (UK),
H. Akutsu at Osaka University (Japan), P. N. Horton and S. J. Coles at the University of
Southampton (UK) and V. Schünemann at the Technical University of Kaiserslautern (Ger-
many), ref. [9], presents two novel salts with the anion [Ni(mnt)2]− (mnt = maleonitriledithi-
olate) and two cationic Fe(II) complexes with derivatives of 2,6-bis(pyazolyl)pyridine or
pyrazine. Both salts were characterized by variable temperature single crystal X-ray diffrac-
tion and magnetic measurements. The first salt displays an incomplete and gradual spin
crossover up to 300 K and a rapid increase in the high-spin fraction between 300 and 350 K.
The second salt shows a gradual and more complete SCO response centered at 250 K,
confirmed by variable temperature Mössbauer spectroscopy. In both cases, the anionic
moieties are isolated, and no electrical conductivity was observed.

The contribution by F. Pratt et al. at Rutherford Appleton Laboratory at Oxfordshire
(UK), C. E. Anson and A. K. Powell at Karlsruhe Institute of Technology (Germany), J. Tang
at Changchun Institute of Applied Chemistry (China) and S. J. Blundell at the University of
Oxford (UK), ref. [10], reports a new molecular cluster system with 19 Fe(III) ions arranged
in a disc-like structure with a total spin S = 35/2, that behaves as a single molecule magnet
with an anisotropy barrier of 16 K. Below 1.2 K, the cluster presents an antiferromagnetic
order due to the presence of weak inter-cluster interactions. The authors use neutron
diffraction to determine the nature of the magnetic ordering and easy spin axis and inelastic
neutron scattering to follow the magnetic order parameters and the magnetic excitations.

The contribution by S. Triki et al. at the University of Brest (France) and S. Benmanosur
and C. J. Gómez-García at the University of Valencia (Spain), ref. [11], describes the synthesis
and complete characterization of a rare anionic Fe(II) spin crossover (SCO) complex that
shows a two-step SCO at around 170 and 298 K, as confirmed by crystallographic and
magnetic studies. After complete de-solvation of the complex at around 400 K, the high
temperature step shifts to lower temperatures and merges in only one gradual SCO at
around 216 K.

The contribution by B. Zhang et al. at the Chinese Academy of Sciences at Beijing
(China) and Y. Zhang et al. at the University of Peking (China), ref. [12], presents a nice ex-
ample of a crystal-to-crystal transformation of a monomeric anionic oxalato Co(II) complex
into an oxalate-bridged zigzag chain via a dehydration process. The monomer shows weak
antiferromagnetic interactions mediated by hydrogen bonds, whereas the chain presents
an antiferromagnetic ordering at 8.2 K.

The contribution by T. Prokhorova, E. Yagubskii et al. at the Institute of Problems of Chem-
ical Physics (Russia), A. A. Bardin at the Russian Academy of Sciences at Chernogolovka
(Russia) and V. N. Zverev at the Institute of Solid-State Physics (Russia), ref. [13], shows the
crystal structures and physical properties of new organic (super)conductors of the β”-(BEDT-
TTF)4(NH4)[Fe3+(C2O4)3]G family, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene
and G are different halo-pyridine derivatives. In all cases, the structures show the classical
paramagnetic honeycomb anionic layers alternating with conducting layers of BEDT-TTF
radical cations. One of the crystals (with 2-fluoropyridine) undergoes a monoclinic (C2/c) to
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triclinic (P-1) phase transition at 100–150 K, while the remaining salts keep the monoclinic
phase in the temperature range 300–100 K. All the salts are metallic conductors and one of
them (with 2,6-difluoropyridine) shows the onset of a superconducting transition at 3.1 K.
The properties of these salts are compared with those of the known monoclinic phases of
the family with different mono-halo-pyridines as solvent molecules.

The contribution by N. Avarvari et al. at the University of Angers (France), P. Auban-
Senzier at the University of Paris-Saclay (France), N. Vanthuyne at the CNRS at Marseille
(France) and M. Almeida et al. at the University of Lisbon (Portugal), ref. [14], presents the
synthesis and structural characterization of different series of radical cation salts with the
organic precursors for chiral conductors: methyl-ethylenedithio-tetrathiafulvalene (1) and
dimethyl-ethylenedithio-tetrathiafulvalene (2). Thus, the authors report the salts: (1)2AsF6,
(1)I3 and (2)I3 as racemic and as (S) and (R) enantiopure forms, the enantiomeric pure forms
[(S)-1]AsF6·C4H8O and [(R)-1]AsF6·C4H8O and also the [(meso)-2]PF6 and [(meso)-2]XO4
(X = Cl, Re) salts, containing the new donor (meso)-2. The crystallographic study shows the
presence of a different packing in the latter case, compared to the chiral form, since the two
methyl substituents adopt axial and equatorial conformations. The electrical properties
show a quasi-metallic conductivity in (1)2AsF6 in the high temperature regime, whereas
the (meso)-2 based salts are semiconductors.

The contribution by L. Martin et al. at Nottingham Trent University (UK), H. Akutsu
et al. at Osaka University (Japan) and S. Imajo at the University of Tokyo (Japan), ref. [15],
reports the synthesis, crystal structure and conducting properties of two new members of
the Peter Day series, reported in 1995. These new salts are: the first superconductor with
the diamagnetic tris(oxalato)aluminate anion (with a Tc of ≈ 2.5 K) and the first example
of a β” phase with the tris(oxalato)cobaltate anion.

The contribution by H. Akutsu et al. at Osaka University (Japan) and S. S. Turner at
the University of Surrey (UK), ref. [16], reports three novel radical salts prepared with the
organic donors bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and bis(ethylenedithio)
tetraselenafulvalene (BETS) with the organic anion 2-bromoethanesulfonate (BrC2H4SO3

−).
The salt with BEDT-TTF presents a double β” packing, whereas the two BETS salts present
a double β” packing or a θ-type packing in the organic donors. The BEDT-TTF salt shows
a metal-insulator transition at ≈ 70 K, but the BETS salts are metallic down to 4.2 K.

The contribution by C. Mathonière, P. Guionneau et al. at the University of Bordeaux
(France), ref. [17], reports three new ionic salts containing [M(CN)8]4− (M = MoIV and WIV)
and large Cu(II) and Zn(II) complex cations containing a non-conventional motif built
with the ligand tris(2-aminoethyl)amine. The three novel compounds show photomagnetic
effects when irradiated with blue light at low temperatures, remarkable properties as
long-lived photomagnetic metastable states for the [Mo(CN)8]4−-based compounds above
200 K and rare efficient photomagnetic properties of the [W(CN)8]4−-based compound.
The contribution is completed with a comparison of the photomagnetic properties of the
three reported compounds with the singlet-triplet conversion recently reported for the
K4[Mo(CN)8]·2H2O compound.

The contribution by T. Mallah, L. Catala et al. at the University of Paris-Saclay (France),
ref. [18], shows the collective magnetic behavior of photo-switchable cyanide-bridged
nanoparticles, based on the Prussian blue analogue CsCoFe, when embedded in different
matrices with different concentrations. The authors study the effect of the intensity of light
irradiation and show that the magnetization and AC magnetic susceptibility data suggest
a collective magnetic behavior due to interparticle dipolar magnetic interactions, despite
the nanoparticles having a size that places them in the superparamagnetic regime.

The contribution by J. D. Wallis et al. at Nottingham Trent University (UK) and M.
Pilkington et al. at Brock University (Canada), ref. [19], reports the syntheses of new BEDT-
TTF derivatives with (i) one ethynyl group (HC≡C-), (ii) two (n-heptyl), (iii) four (n-butyl)
alkyl side chains, (iv) two trans acetal (-CH(OMe)2) groups, (v) two trans aminomethyl
(-CH2NH2) groups, or (vi) an iminodiacetate (-CH2N(CH2CO2

−)2 side chain. The contri-
bution also reports the synthesis and magnetic properties of three transition metal salts
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from the latter donor, as well as the synthesis of three tris-donor systems bearing three
BEDT-TTF derivatives with ester links to a core derived from benzene-1,3,5-tricarboxylic
acid. Authors discuss the stereochemistry and molecular structure of the donors and
describe the X-ray crystal structures of two BEDT-TTF donors: one with two CH(OMe)2
groups and one with a -CH2N(CH2CO2Me)2 side chain.

The perspective article by M. L. Mercuri et al. at the University of Cagliari (Italy)
and S. A. Sahadevan at the Royal Institute of Technology at Stockholm (Sweden), ref. [20],
presents a review of coordination networks incorporating redox activity to enhance the
magnetic, conducting and optical properties of these lattices. The contribution reviews the
compounds prepared with quinone derivatives as redox-active linkers, since they have
been widely used for electrode materials, flow batteries, pseudo-capacitors and other appli-
cations, thanks to the reversible two-electron redox reaction to form hydroquinone dianions
via intermediate semiquinone radicals. Furthermore, these quinone linkers can be easily
functionalized with different substituents and functional groups, making them excellent
building blocks to prepare multifunctional tunable metal-organic frameworks (MOFs).
The authors present an overview of the recent advances on benzoquinone-based MOFs,
including key examples where magnetic and/or conducting properties are tuned/switched
by playing with the redox activity.

Finally, there is a comprehensive review by S. Benmansour and C. J. Gómez-García at the
University of Valencia (Spain), ref. [21], with all the reported series of (super)conducting
and magnetic radical salts prepared with organic donors of the tetrathiafulvalene (TTF)
family and oxalato-based metal complexes. The review starts with the Peter Day series
of magnetic superconductors with the monoclininc β” packing prepared with the donor
bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and continues with the orthorhombic
pseudo-κ semiconducting polymorphs, also reported with BEDT-TTF for the first time by P.
Day et al. The exhaustive review shows other series prepared with different oxalate-based
complexes, including monomers, such as [MIII(C2O4)3]3−, [Ge(C2O4)3]2− or [Cu(C2O4)2]2−,
dimers, such as [Fe2(C2O4)5]4−, trimers, such as [MII(H2O)2[MIII(C2O4)3]2]4− and homo-
or heterometallic extended 2D layers, such as [MIIMIII(C2O4)3]− and [MII

2(C2O4)3]2−. In
addition to the different structural types, the review describes the magnetic properties
(dia-, para-, antiferro-, ferromagnetism or long-range magnetic ordering), coexisting with
electrical properties (semiconductivity, metallic conductivity or superconductivity) in these
salts. The review finishes including the radical salts prepared with oxalate-based complexes
and lattices with other organic donors of the TTF-type donors.

As can be seen in the previous list of contributions, Peter Day not only left a long list
of key contributions in many different domains in materials chemistry, but also an endless
list of collaborators and friends in many different countries. We would like to thank all of
them for their high-level contributions in this Special Issue devoted to his memory. We are
sure that Peter would have enjoyed reading all of them as much as we will miss him.
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Abstract: Two new compounds of general formula [M(N3)2(dmbpy)] in which dmbpy = 5,5′-
dimethyl-2,2′-bipyridine, and M = Mn(II) or Co(II), have been solvothermally synthesized and
characterized structurally and magnetically. The structures consist of zig-zag polymeric chains with
alternating bis-µ(azide-N1)2M and bis-µ(azide-N1,N3)2M units in which the cis-octahedrally based
coordination geometry is completed by the N,N’-chelating ligand dmbpy. The molecular structures
are basically the same for each metal. The Mn(II) compound has a slightly different packing mode
compared to the Co(II) compound, resulting from their different space groups. Interestingly, relatively
weak interchain interactions are present in both compounds and this originates from π–π stacking
between the dmbpy rings. The magnetic properties of both compounds have been investigated down
to 2 K. The measurements indicate that the manganese compound shows spin-canted antiferromag-
netic ordering with a Néel temperature of TN = 3.4 K and further, a field-induced magnetic transition
of metamagnetism at temperatures below the TN. This finding affords the first example of an 1D
Mn(II) compound with alternating double end-on (EO) and double end-to-end (EE) azido-bridged
ligands, showing the coexistence of spin canting and metamagnetism. The cobalt compound shows a
weak ferromagnetism resulting from a spin-canted antiferromagnetism and long-range magnetic
ordering with a critical temperature, TC = 16.2 K.

Keywords: azide; chain compounds; ferromagnetism; antiferromagnetism; metamagnetism; spin
canting

1. Introduction

Coordination compounds with azide ligand have been studied for decades, not only
for their potential use as detonation agents or explosives [1–5], but also because of the
intrinsic properties of N3

− as a “pseudo halogen” [6,7] and as a subject of magnetism [8].
Many studies of stable azide coordination compounds have been reported, and the Cam-
bridge Structural Database (2020 release) contains over 5000 items having at least one
coordinated azide ligand [9].

Azide ligands can bind monodentately to metal ions in an end-on mode (N1), or
they can bridge between two or more metal ions. Bridging azide between two metals
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can take place using one terminal nitrogen only (i.e., N1,N1, known as end-on mode,
abbreviated in this manuscript as EO), or two terminal nitrogens (i.e., N1,N3 or end-to-end
mode, abbreviated as EE). In the bridging mode, dinuclear compounds can be formed,
like in M(azide)2M species [10], as depicted in Figure 1, but also polynuclear compounds,
including polymeric linear or zig-zag species of formula ···(azide)2M(azide)2M(azide)2
···. Mixed species with both terminal (non-bridging) and bridging azide are known in the
literature [8,11–14], but are not so common.
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Figure 1. Schematic representation of the binding modes for bridging azido ligands between two
metal ions M.

In earlier reports from our laboratories, we have given attention to metal–azide
compounds as bridging ligands for dinuclear compounds, or higher aggregates up to 2D
networks [15–18] and we have found both ferromagnetic and antiferromagnetic cases. The
ferromagnetic cases are only known for the EO azido-bridged compounds. It appears that
the choice of the non-bridging co-ligands plays a major role on the formation of specific
compounds and structures, and also whether EO, EE or a combination is found. As the
azido ligands are rather small or narrow, to generate relative stable coordination spheres
around the metal, the co-ligands should be rather bulky, as shown from the literature
examples above.

In the present paper, we report on two new compounds that have alternating modes
(EE and EO) of bridging azide, forming zig-zag chains in the solid state. The compounds
have interesting magnetic properties and these are studied in detail using magnetic suscep-
tibility and magnetization studies at low-temperature (down to 2 K). We feel that the study
is relevant in the search for potentially cheap, stable and useful new magnets.

2. Results and Discussion
2.1. Synthetic Efforts

Both title compounds were easily synthesized by the hydrothermal method and the
synthesis was found to be reproducible. Despite several attempts, no pure crystalline
materials could be isolated for the similar Fe(II) compound. In most attempts, two crys-
talline forms could be obtained, one isomorphous with the Mn(II) compound and the other
isomorphous with the Co(II) compound. Therefore, this compound was not considered
suitable for the study of the magnetic properties. In contrast, pure bulk samples for the
Mn(II) and Co(II) compounds were available, as evidenced by powder diffraction data,
which are consistent with patterns simulated from single-crystal data (Figure S1).
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2.2. Characterization of the Compounds by IR and Elemental Analysis

Both compounds display very similar infrared spectra (Figure S2), where bands resem-
bling the free dmbpy ligand are easily recognized. Most characteristic is the broad strong
band (doublet) near 2087 cm−1, typical for the coordinated bridged azide ligand [19–21].
The elemental analyses of both compounds are in full agreement with the values calculated,
and with the 3D structures presented below, indicating that no secondary phases were
obtained with the used synthetic methodology.

2.3. Structure Description of the Compounds

Single crystal structures were determined for both synthesized compounds (1 and 2)
[M(N3)2(dmbpy)], with M = Mn(II) and Co(II) and dmbpy = 5,5’-dimethyl-2,2’-bipyridine
(C12H12N2). The Mn(II) compound (1) crystallizes in space group P-1, while the Co(II)
compound (2) crystallizes in space group P21/c. Even though the space groups are different,
both compounds share the same molecular structure (see Figure 2 for the Mn(II) compound).
The metal center is coordinated by the bidentate dmbpy ligand and two azido anions. Since
both pseudohalides, azido N3

− ligands, bridge between symmetry-related metal centers in
the crystal, a one-dimensional polymeric structure is formed, in which each azido anion
has a different function: two anions N3/N4/N5 form a centrosymmetric double-bridge,
with the µ-1,1 mode of coordination (EO). Two other anions, N6/N7/N8, also form a
centrosymmetric double-bridge, but this time with the µ-1,3 coordination mode (EE).
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Figure 2. Part of the polymeric structure of catena-poly-[Mn(N3)2(dmbpy)] with displacement ellipsoids for non-H atoms at
the 30% probability level. Mn and N atoms belonging to the asymmetric unit are labelled, as well as symmetry-related
metallic centers along the chain. Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −1 + x, y, z; (iii) 2 − x, 1 − y, 1 − z; (iv) 1 + x, y, z.

Both coordination modes alternate along the zig-zag polymeric chains, which run
parallel to the a-axis regardless of the crystal system, triclinic (M = Mn) or monoclinic
(M = Co). Relevant coordination bond lengths and angles are given in Table 1. The trend of
the well-known smaller ionic radii going from Mn(II) to Co(II) is clearly visible.
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Table 1. Selected bond lengths (in Å) and angles (deg.) for both compounds.

Compounds [Mn(N3)2(dmbpy)] [Co(N3)2(dmbpy)]

M–N1 2.272(3) 2.115(5)
M–N2 2.256(4) 2.133(5)
M–N3 2.215(4) 2.144(5)
M–N3 2.222(3) (a) 2.198(6) (c)

M–N6 2.208(3) 2.140(6)
M–N8 2.263(3) (b) 2.204(6) (d)

N1–M–N2 72.26(11) 76.7(2)
N3–M–N6 99.50(15) 95.2(2)
N1–M–N3 95.59(12) (a) 94.1(2)
N1–M–N6 162.97(15) 170.6(2)
N2–M–N6 91.83(14) 94.3(2)
N3–M–N3 79.08(12) (a) 78.6(2) (c)

N6–M–N8 90.56(12) (b) 88.8(2) (d)

N2–M–N3 168.67(12) 167.5(2)

Symmetry for the last N atom: (a) 1 − x, 1 − y, 1 − z; (b) 2 − x, 1 − y, 1 − z; (c) −x, −y, 1 − z; (d) 1 − x, −y, 1 − z.

Along the chain, long and short M···M separations alternate, 5.430(1) and 3.422(1) Å
for M = Mn and 3.361(2) and 5.317(2) Å for M = Co. These distances are slightly shorter for
the Co(II) compound as a result of the smaller ionic radii of the cations. The polynuclear
zig-zag chains are packed efficiently in the crystal. With M = Mn, chains are parallel, and
the dmbpy ligands of two neighboring chains are stacked in such a way that they interact
with a rather short distance, 3.440 Å. For M = Co, the arrangement of chains in the crystal is
slightly modified, because of the monoclinic cell symmetry. However, the relative position
of two neighboring chains is essentially preserved, and the π–π interactions between the
dmbpy ligands are even strengthened, with separations between ligand mean planes of
3.283 Å (Co). In Figure 3, both different packings are depicted.

In [Mn(N3)2(dmbpy)], the N–N bond lengths are symmetrical in the EE azido ligands
but are asymmetric in the EO ligands. The bite angle exhibited by the dmbpy ligand
(72.26(11)◦) is the largest distortion in the geometry of the cis-octahedral coordination
sphere. The four-membered Mn2(EO-N3)2 ring is planar as a result of the inversion center.
The eight-membered Mn2(EE-N3)2 ring adopts a chair configuration. The dihedral angle
δ, defined by the N6/Mn1/N8 plane and the (EE-N3)2 plane, is 9.69(3)◦ and Mn1 sits
0.266(7) Å out of the (EE-N3)2 plane. The Mn–azido–Mn torsion angle τ, defined by the
dihedral angle between the mean planes of Mn1-N6-N7-N8 and Mn1-N8-N7-N6, is 20.3(6)◦.
Similarly, in [Co(N3)2(dmbpy)], the N–N bond lengths are approximately symmetrical in
the EE azido ligands but are asymmetric in the EO ligands. The bite angle exhibited by
the dmbpy ligand (76.7(2)◦) is the largest distortion in the geometry of the cis-octahedral
coordination sphere. The four-membered Co2(EO-N3)2 ring is planar as a result of the
inversion center. The eight-membered Co2(EE-N3)2 ring adopts a chair configuration. The
dihedral angle δ, defined by the N6/Co1/N8 plane and the (EE-N3)2 plane, is 25.2(4)◦. Co1
sits 0.66(1) Å out of the (EE-N3)2 plane. The Co–azido–Co torsion angle τ, defined by the
dihedral angle between the mean planes of Co1-N6-N7-N8 and Co1-N8-N7-N6, is 47.7(6)◦.

The azide ligand is well known for its versatility in coordination behavior, as explained
in the introduction. When involved in metal-to-metal bridges, coordination modes EO
and EE are frequent; however, the EO mode is roughly ten times more common than
the EE mode, based on a survey of the Cambridge Structural Database [9]. Toggling
EO and EE modes along a 1D polymeric structure is rare, but not unprecedented (see
Table S1). Indeed, quite similar azido-bridged structures have been described using other
ancillary ligands and a variety of transition metals: Schiff bases and Mn(II) [22,23] pyridine
derivatives and Mn(II) [24,25], Co(II), Ni(II) [14] or Zn(II) [21] amine/pyridine derivatives
and Ni(II) [11,26,27], among others. The nearest structurally related compound is certainly
[Mn(N3)2(2,2′-bipyridine)], which crystallizes in space group P-1, with unit–cell parameters
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quite close to those of [Mn(N3)2(dmbpy)] [13,28] and in fact is even isostructural with the
Fe(II) and Co(II) analogues [29].

Compounds based on azido-EE/EO double bridges are of interest in the field of
magnetochemistry, because the type of interaction between magnetic centers is not unex-
pected. Therefore, it was decided to perform a detailed magnetic analysis down to very
low temperatures. The results are described in the next section.
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2.4. Magnetic Properties

For compounds with two different azide binding modes, one can expect interesting
magnetic properties, as metal–metal exchange can occur via two different pathways. It
is clear that the EE bridges, with their large metal···metal separations, will always be
involved in antiferromagnetic coupling (AF) [8]. The AF interaction is increased if the
eight-membered metallacycle M(N3)2M’ is essentially planar. In contrast, EO bridges may
promote ferromagnetism (F), provided the M–N–M angle is less than 108◦ [8]. Regarding
the AF component, the triclinic compound (M = Mn) is expected to display a similar or
even greater AF interaction than the monoclinic compounds (M = Co), since the former
has an EE bridge almost flat, while the bridges in the latter have a butterfly conformation:
the dihedral angle δ between the (N3)2 mean plane and the plane formed by M and the
bonded Nazido atoms is δ = 9.69(3)◦ for M = Mn, and δ = 25.2(4)◦ for M = Co. Regarding
the F component, both compounds fulfil the requirement for potentially having J > 0. The
observed angles at EO bridges are 100.92(12) and 101.4(2)◦ for M = Mn, Co, respectively.

On the other hand, the six-coordinated metal ions used in this work are located
in a slightly distorted octahedral ligand field, and their electronic configurations allow
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for either a low, or a high-spin state, depending on the crystal field splitting ∆o for 3d
orbitals. In the present case, the spectrochemical series indicates that N3

− is a relatively
weak ligand, while dmbpy is a relatively strong ligand. There is thus a competition
between π-donation and π-backdonation in the coordination sphere, which makes the
ground spin state not straightforward to anticipate. However, crystal structures are helpful
in this regard, because ∆o is also related to the strength of any Jahn–Teller (JT) effect
in a crystal field with octahedral symmetry. Assuming a small tetragonal distortion, a
symmetry measure accounting for the octahedral character of the field can be computed as
S(Oh) = 5.39∆2 − 0.33|∆|, where ∆ is the difference between the largest and the shortest
coordination bond lengths. Structures with S(Oh) < 4.42 are closer to the octahedron than
to the trigonal prism geometry [30].

For the Mn(II) compound, SMn(Oh) ∼ 10−3, reflecting a very small departure from
the ideal Oh symmetry, which, in turn, confirms that the JT distortion indeed is not present,
consistent with a high-spin configuration. For the Co(II) compound, the JT distortion is
much more noticeable, with SCo(Oh) ∼ 13× 10−3, in line with weak JT distortions, as
expected for high-spin d7 ions; (in particular, a low-spin configuration for Co2+, with an
odd number of electrons in the eg orbitals would give rise to a strong JT effect, associated
to a symmetry measure of the field S(Oh)� 10−2).

It is evident that the crystal structures for the newly synthesized compounds allow one
to predict the ground spin state for each one, S = 5/2 and S = 3/2 for M = Mn(II) and Co(II),
respectively. On the other hand, both antiferromagnetic and ferromagnetic interactions
should alternate along the 1D chains. Structural features obtained from X-ray structures
are, however, not enough to confidently assess the balance between F and AF interactions
in these materials, and a comprehensive experimental study of magnetic susceptibility was
thus warranted.

Mn Compound (1). The temperature dependences of χM and χMT are depicted in
Figure 4. At 300 K, the χMT value per Mn(II) ion of compound 1 is 3.80 cm3 mol−1 K, which
is lower than the spin-only value of 4.38 cm3 mol−1 K expected for a magnetically isolated
octahedral high-spin Mn(II) ion with g = 2.00. Upon cooling, the χMT values decrease
gradually and show the cusp around 3.5 K, with a χMT value of 0.317 cm3 mol−1 K at
3.5 K, decreasing to a value of 0.194 cm3 mol−1 K at 2.0 K. The monotonic χMT decrease
at a high temperature is indicative of the existence of antiferromagnetic coupling. Upon
cooling, the χM increases smoothly from 0.013 cm3 mol−1 at 300 K to reach a plateau
of 0.035 cm3 mol−1 at about 14.6 K, and then increases rapidly, reaching a maximum
of 0.098 cm3 mol−1 at 2.5 K, before a slight decrease to a value of 0.096 cm3 mol−1 at
2.0 K. The sharp increase in χM at a low temperature is likely due to a small amount
of paramagnetic impurities, e.g., at crystal edges and vacancies along the plane, as is
known for related cases [31,32], or perhaps to some features of uncompensated spin. The
temperature dependence of 1/χM at temperatures above 110 K can be fitted by the Curie–
Weiss law with C = 4.64(4) cm3 mol−1 K and θ =−64.7(6) K (Figure S3). The negative Weiss
constant suggests the presence of overall antiferromagnetic coupling between the adjacent
Mn(II) ions.

To try to obtain intrachain magnetic couplings between Mn(II) ions through the double
EO–N3 and double EE–N3 bridges, the magnetic susceptibility of compound 1 was fitted
using the expression proposed by Cortés [13,28], for alternating chains of classical spins on
the Hamiltonian H = −J1ΣS2iS2i+1 − J2ΣS2i+1S2i+2.

χM = [Ng2β2S(S + 1)/3kT][(1 + u1 + u2 + u1u2)/(1 − u1u2)] (1)

where ui = coth[JiS(S + 1)/kT] – kT/[JiS(S + 1)] (i = 1 and 2) with S = 5/2, J1 and J2 are the
F and AF exchange constants through double EO–N3 and double EE–N3 superexchange
pathways, respectively.
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The data above 20 K were fitted and the best fit to experimental data led to J1=
2.87(7) cm−1, and J2 = −11.3(9) cm−1 with a fixed g = 2.0. The J1 and J2 parameters are
consistent with the reported results for related compounds. As in the earlier theoretical
and experimental studies, the magnetic couplings between Mn(II) ions via the double
EO–N3 bridge were usually ferromagnetic due to small Mn–N–Mn angles which would
lead the orthogonality of the magnetic orbitals of the adjacent Mn(II) centers. In contrast,
the antiferromagnetic couplings were usually dominated via the EE–N3 bridge due to
the well overlap of magnetic orbitals of the adjacent Mn(II) centers. The ferromagnetic
interaction decreases with the increasing Mn–Nazide–Mn angle, while the antferromagnetic
couplings via double EE–N3 bridges were dependent on the δ angle, the dihedral angle
between the Nazide–Mn–Nazide plane and the plane defined by the two azido bridges, the
magnetic coupling decreases with the increasing δ angles [13]. The obtained magnetic
coupling of two Mn(II) ions is ferromagnetic for a double EO–N3 bridging with a small
Mn–Nazide–Mn angle of 100.92(12)◦, and is antiferromagnetic for a double EE–N3 bridging
with a small δ angle, 9.69(3)◦, which are consistent with the reported results for related
compounds [13,22,23,33–38]. In Table S1, a detailed overview of the literature is given with
structural details and J values for a variety of Mn compounds, including the present two
new compounds.

Furthermore, the temperature dependences of χMT for compound 1 under 100 Oe
were also collected (see Figure S4), showing similar behavior to that under 1000 Oe except
for that in the low-temperature range, in which the χMT value slightly increases with
decreasing temperature below 6.0 K to a maximum of 0.381 cm3 mol−1 K at 4.5 K and then
sharply decreases to 0.076 cm3 mol−1 K at 2.0 K. This suggests that a possible mechanism
involving weak ferromagnetic correlations is operative within compound 1 below 6.0 K
and the final decrease may be due to antiferromagnetic interactions between the chains
and/or saturation effects. These weak ferromagnetic correlations can be attributed to spin
canting, i.e., the antiferromagnetically coupled local spins within the –Mn–(EE-N3)2–Mn–
EO-N3)2–chains are not perfectly antiparallel, but are canted with respect to each other,
resulting in uncompensated residual spins [13,22,23,33–37].

To further characterize the low-temperature magnetic behavior of compound 1,
ZFC/FC magnetization measurements under a field of 10 Oe were carried out. As shown
in Figure S5, the ZFC/FC magnetizations were found to be non-bifurcated and show a
sharp maximum at 3.4 K, suggesting the occurrence of antiferromagnetic ordering. The
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temperature dependence of the AC susceptibility of compound 1 was also measured at
Hdc = 0 Oe and Hac = 3.5 Oe at different frequencies (Figure S6), which shows the sharp
frequency-independent value of the χM

′ signals with the peak maximum at 3.4 K. The ab-
sence of χM” signals confirms the onset of antiferromagnetic ordering with a conventional
TN = 3.4 K and implies the existence of a magnetic phase transition.

The isothermal field dependence data of the magnetization of compound 1 was col-
lected at 1.8 K (Figure 5), in which the magnetization shows a sigmoidal shape with an
abrupt increase at a field above ~0.3 kOe to reach a value of 0.36 Nβ at 70 kOe. This
sigmoidal magnetization clearly indicates a field-induced magnetic transition of metam-
agnetic nature [39–41]. In this metamagnetic transition, the net moments of spin-canting
Mn–N3 chains aligned antiparallel under a weak applied field by weak interchain antifer-
romagnetic interactions are overcome by a stronger external field and result in the state
transition from antiferromagnetic (AF) to paramagnetic (P). The critical field of magnetic
transition, HC, at 1.8 K, was estimated to be about 0.48 kOe as determined by dM/dH
(Figure 5, inset). The M value of 0.36 Nβ at 70 kOe is far below the expected saturation
value of 5.0 Nβ for an isotropic high-spin Mn(II) system, confirming the antiferromagnetic
nature of 1. Moreover, at 1.8 K, a small butterfly-shaped magnetic hysteresis loop was
obtained, indicating a soft magnetic behavior (see Figure S7). The spin canting angle was
estimated to be about α = 0.30◦, based on the equation sin(α) = MR/MS (MR = 0.026 Nβ;
obtained by extrapolating the high-field linear part of the magnetization curve at 1.8 K to
zero field, and MS = 5.0 Nβ) [42–45].
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Generally speaking, spin canting can arise from two contributions: (i) the presence of
an antisymmetric exchange Dzyaloshinsky−Moriya interaction [46] and (ii) the existence
of single-ion magnetic anisotropy [47–52]. The presence of an inversion center between
adjacent spin centers can result in the disappearance of the antisymmetric exchange. Hence,
the lack of antisymmetric exchange in compound 1 would be expected, due to the existence
of a crystallographic inversion center between the Mn(II) ions (see symmetry codes in
caption of Figure 2). However, the Mn1 center in 1 displays a distorted octahedral geometry
due to the small bite angle of 72.26(11)◦ of the dmbpy chelating ligand. Such distorted
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octahedral geometries were reported as originating from the weak single-ion anisotropy of
the high-spin Mn(II) site [53–57]. Therefore, it is assumed that the spin-canted antiferro-
magnetism in 1 can be attributed to weak single-ion magnetic anisotropy by a distorted
metal coordination environment at low temperature. Similar spin canting behavior has
been observed in a few other Mn(II) compounds containing chains of alternating double
EO and double EE bridging modes of azides [34,58].

The field-induced magnetic phase transition for compound 1 was further investigated
by the measurements of various fields of the FC magnetic susceptibilities, χM(T), and the
field dependence of the magnetizations, M(H), at different temperatures. As shown in
Figure S8, the maximum of χM(T) shifts to lower temperatures with increasing applied
field, until the χM(T) reaches a plateau at a field larger than 600 Oe, confirming that the
weak interchain antiferromagnetic interaction is overcome by a stronger external field. As
shown in Figure S9, at 2.0 K, the stepwise M(H) curve clearly indicates a field-induced
magnetic transition from AF to P. This stepwise magnetization becomes less pronounced
with increasing temperature, and the differentials of these curves show peaks that shift to
lower fields with increasing temperature (see Figure S10), indicating the phase transitions
of metamagnetism.

Combining M(H), FCM and the frequency-independent χM
′ data, the magnetic phase

(T, H) diagram has been plotted in Figure 6. The value of HC decreases with increasing
temperature and finally disappears at about 3.4 K. The solid line of HC (T) in Figure 6,
on an analysis of the M–H curves, signifies a typical magnetic transition from AF to P
corresponding to metamagnetic materials.
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Co compound (2). The temperature dependences of χM and χMT of compound 2 are
shown in Figure S11 and Figure 7, respectively. As the temperature decreases from 300 K,
the χM value increases smoothly, reaching a rounded maximum of 0.021 cm3 mol−1 at
about 70 K, and then decreases slightly reaching a value of 0.015 cm3 mol−1 at 20 K. Upon
further cooling, the χM value increases rapidly to a sharp maximum of 0.017 cm3 mol−1

at 12.8 K, after slightly decreasing, χM value increases again to 0.017 cm3 mol−1 at 2.0 K.
The temperature dependence of 1/χM at temperatures above 100 K has been fitted by
the Curie–Weiss law with a Curie constant C = 4.85 cm3 mol−1 K and a Weiss constant
θ = −130.5 K (see Figure S12).
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The large negative Weiss constant suggests the presence of strong spin-orbital coupling
and/or overall antiferromagnetic interactions between the adjacent Co(II) ions. As shown
in Figure 7, at 300 K, the χMT value per Co(II) of compound 2 is 3.38 cm3 mol−1 K, which is
larger than the spin-only value of 1.87 cm3 mol−1 K for a magnetically isolated octahedral
Co(II) ion (S = 3/2), with g = 2.00. Upon cooling, the value of χMT decreases monotonically
to attain a local minimum value of 0.299 cm3 mol−1 K at 18.2 K, which is indicative of the
existence of antiferromagnetic coupling. After a very small increase to a maximum value
of 0.277 cm3 mol−1 K at 14.6 K, the χMT value decreases again with further cooling to 2.0 K.
The increase in χMT below 18.2 K is field-dependent, as shown in the inset of Figure 7;
this suggests that a mechanism of weak ferromagnetic correlations due to spin canting
antiferromagnetism is operative within compound 2. The final decrease in χMT value may
be attributed to antiferromagnetic interactions between the chain and/or saturation effects.
Similar to the observations in compound 1, the lack of antisymmetric magnetic interactions
in compound 2 would be expected because of the presence of inversion centers in the P21/c
crystal structure. Thus, the spin canting of compound 2 originates from the single-ion
anisotropy of the Co(II) ion, which is in agreement with the reported Co(II) spin canting
compounds containing the same bridging mode of azide [59–61].

In order to substantiate the low-temperature magnetic properties of compound 2,
ZFC/FC magnetization studies were carried out at 50 Oe. As shown in Figure 8, upon
cooling, both ZFC and FC magnetizations increase abruptly at temperatures below 18 K
and a divergence between ZFC/FC below 16.2 K is observed, suggesting the occurrence of
magnetic ordering for the formation of an ordered state and the existence of an uncompen-
sated moment below the critical temperature of Tc = 16.2 K. Upon cooling, both ZFC and
FC magnetizations increase again below 5.0 K, which may be due to the spin-reorientations
of the domain wall. The existence of magnetic ordering was also confirmed by the AC mag-
netic susceptibility measurements of compound 2 performed at Hdc = 0 Oe and Hac = 3.5
Oe at different frequencies (Figure S13). As can be seen from Figure S13, both χM

′ and χM”
signals are frequency-independent, where the χM

′ signals show two peaks at ca. 14.8 K and
5.2 K with two corresponding non-zero χM” signals formed at temperatures below 16.2
and 6.2 K. The presence of χM

′ and χM” peaks at about 15 K are the result of the formation
of an ordered state with an uncompensated moment and the peaks of χM

′ and χM” at
about 5 K may be caused by spin-reforestation [62,63]. These data confirm the occurrence
of magnetic ordering by weak ferromagnetism due to spin canting, which is consistent
with the obtained results from ZFC/FC magnetizations data. Due to the presence of weak
non-zero χM” signals, a coercive magnetic behavior would be expected below Tc.
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To further study the magnetic ordering of compound 2, the isothermal field-dependent
magnetization was collected at 2.0 K. As depicted in Figure S14, the initial increase in
magnetization shows a positive curvature to 0.175 Nβ at 70 kOe, which is far below the
theoretical value of saturation for an isotropic high-spin Co(II) system, and the absence of
saturation of magnetization; this is an indication of an overall antiferromagnetic interaction
between the Co(II) ions in compound 2. In addition, when the field is less than 10 kOe,
a hysteresis loop is clearly observed at 2.0 K, suggesting the soft magnet property of
compound 2 (Figure S14, inset). The hysteresis loop shows a remanent magnetization
(Mr) of ≈0.007 Nβ and a coercive field of ≈350 Oe. Based on the value of Mr at 2.0 K, the
canting angle of compound 2 is estimated to be approximately 0.20◦, where MS is 2.15 Nβ
for an octahedral Co(II) at 2 K with the effective spin of S’ = 1/2 and a common value of
g’ = 4.3 [60].

Finally, to rule out any contributions of Mn(II)/Mn(III) or Co(II) oxides in the low-
temperature magnetic behaviors in compounds 1 and 2, the AC magnetic data and 2.0
K field-dependent magnetization were collected using the thermal decomposed samples
of 1 and 2 that had been heated at 350 ◦C for two hours (Figures S15–S18), in which the
disappearance of peaks in χM

′ and/or χM” and the absence of magnetic hysteresis loops in
field-dependent magnetization are obtained, excluding the contribution of the behavior of
Mn(II)/Mn(III) or Co(II) oxides.

3. Concluding Remarks

The results presented and discussed above have shown that the new compounds of
general formula [M(N3)2(dmbpy)] for M = Mn (1) and Co (2) show very similar and almost
identical linear chain structures, with alternating azide double bridging anions (EE and
EO). Using magnetic studies down to a very low T (2K), the existence of intrachain ferro-
and antiferromagnetic interactions was established, and these interactions are dominated
by the double EE and double EO azido ligand bridges. Overall, the compounds are found
to behave as antiferromagnets, and the study is relevant in the search for potentially cheap,
stable and useful new magnets.

Compounds 1·(Mn) and 2·(Co) exhibit spin-canted antiferromagnetism at very low-
temperatures, which is ascribed to the presence of single-ion anisotropy. Furthermore,
below the Néel temperature, TN, field-induced magnetic transitions have also been ob-
served, and these are indicative for metamagnetism in the case of 1·(Mn). Such coexistence
of spin-canted antiferromagnetism and metamagnetism in 1D Mn(II) compounds with
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alternating double EE and double EO azido ligands is unprecedented. Although the spin-
canted antiferromagnetism might seem incompatible with the crystal structure of 2, because
of the presence of an inversion center between the bridged Mn(II) centers, the observation
of the spin canting in 2 should be attributed to a structural phase transition, or a distortion
in the crystal at low temperature, thereby removing the inversion center. Such types of
distortions have been reported before [34,58]. The weak interchain interactions present in
both compounds are ascribed to the π–π stacking interactions between the dmbpy rings.

4. Material and Methods
4.1. General Remarks

The starting materials (metal salts, sodium azide and the ligand 5,5’-dimethyl-2,2’-
bipyridine, C12H12N2), and used solvents were purchased from commercial sources (an-
alytical reagent grade) and used without further purification. All the compounds were
synthesized solvothermally under autogenous pressure. Azido derivatives are potentially
explosive and should be handled with great care and prepared only in small quantities by
trained persons.

4.2. Synthesis

Synthesis of catena-poly-[Mn(N3)2(dmbpy)] (1) A mixture of Mn(NO3)2 · 4H2O (50 mg,
0.2 mmol), dmbpy (37 mg, 0.2 mmol) and NaN3 (26 mg, 0.4 mmol) in H2O/EtOH (3:1 v/v,
20 mL) was sealed in a Teflon-lined autoclave and heated at 130 ◦C for 2 days. After cooling
to room temperature at a rate of 10 ◦C h−1, yellow-colored crystals of 1 were obtained
(yield 32%). Anal. Calcd. (%) for C12H12MnN8: C, 44.59; H, 3.74; N, 34.67%. Found: C,
44.45; H, 3.92; N, 34.42%. Main IR band (KBr pellet, cm−1): doublet at 2089s [ν(N3

−)].
Synthesis of catena-poly-[Co(N3)2(dmbpy)] (2). This compound was prepared fol-

lowing a procedure similar to that of compound 1, except that Co(NO3)2·6H2O (58 mg,
0.2 mmol), was used instead of Mn(NO3)2·4H2O. Brown-colored crystals were obtained,
with a yield of 40%, containing 2. Anal. Calcd. (%) for C12H12CoN8: C, 44.05; H, 3.70; N,
34.24%. Found: C, 43.85; H, 3.82; N, 34.63%. Main IR band (KBr pellet, cm−1): doublet at
2085s [ν(N3

−)].
Physical Measurements. Elemental analyses of the obtained compounds (C, H and

N) were performed using a Perkin–Elmer 2400 series II CHN analyzer. Infrared spectra
were recorded as KBr pellets in the range 4000–400 cm−1 (4 cm−1 resolution) on a Perkin–
Elmer 100 FT-IR spectrometer, which was calibrated using polystyrene and CO2 bands.
The temperature dependence DC and AC magnetic susceptibility measurements were
performed on powdered samples, restrained in eicosane to prevent torquing, on a Quantum
Design MPMS-7 SQUID (Superconducting Quantum Interference Device) and a PPMS
(Physical Property Measurement System) magnetometer, equipped with 7.0 T and 9.0 T
magnets (Quantum Design, San Diego, CA, USA), respectively, operated in the range
of 2.0–300 K. Diamagnetic corrections were estimated from Pascal’s constants [64] and
subtracted from the experimental susceptibility data to obtain the molar paramagnetic
susceptibility of the compounds. Powder X-ray diffraction (PXRD) measurements of 1 and
2 were carried out on a Siemens D-5000 diffractometer (Siemens, Karlsruhe, Germany)
running in a step mode with a step size of 0.02◦ in θ and a fixed time of 10 s at 40 kV, 30 mA
for Cu-Kα (λ = 1.5406 Å).

4.3. X-ray Crystallography

Diffraction data (Table 2) were collected at 200 K on a Bruker SMART X2S (Bruker
AXS Inc., Madison, WI, USA) benchtop diffractometer [65], using the Mo Kα radiation
(λ = 0.71073 Å) and the structures were refined with SHELXL [66,67]. Crystals for M = Co(II)
were found to be twinned by a twofold rotation about the c* reciprocal axis. One batch
scale factor was refined, which converged to 0.24. All H atoms were placed in calculated
positions and refined as riding to their carrier atoms.
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Table 2. Crystal data and refinement parameters.

Compound/Deposition in CCDC 1/1954571 2/1954572

Formula C12H12MnN8 C12H12CoN8
Fw 323.24 327.23

Crystal size (mm3) 0.5 × 0.3 × 0.2 0.30 × 0.30 × 0.18
Space group P-1 P21/c

a (Å) 7.8058(18) 7.397(2)
b (Å) 9.538(3) 18.373(4)
c (Å) 10.601(3) 10.661(3)
α (◦) 113.630(8) -
β (◦) 102.610(8) 110.571(9)
γ (◦) 93.223(8) -

V (Å3) 696.4(3) 1356.5(6)
Z, Z’ 2, 1 4, 1

Diffractometer Bruker X2S Bruker X2S
Radiation Mo-Kα Mo-Kα

T (K) 200 200
Abs. coef. (mm−1) 0.954 1.272
Transmission fact. 0.56–0.83 0.51–0.80

Refl. collected 6450 8922
Sinθ/λ (Å−1) 0.62 0.61

Rint (%) 4.26 8.68
Completeness (%) 97.4 99.2
Data/parameters 2658/192 2575/194

Restraints 0 0
R1, wR2 [I > 2σ(I)] 5.87, 16.64 6.53, 16.48
R1, wR2 [all data] 7.07, 17.60 8.26, 17.88

GOF on F2 1.035 1.003

Supplementary Materials: Supplementary data (all 18 Supplementary Figures and one Table) asso-
ciated with this paper can be found at https://www.mdpi.com/article/10.3390/magnetochemistry7
040050/s1. XRD powder patterns and infrared spectra of the compounds 1 and 2, in Figures S1
and S2, as well as 16 other Figures (S3–S18) with details of magnetic studies and a supplementary
Table (S1), as indicated in the text. CCDC 1954571-1954572 contain the supplementary crystal-
lographic data for compounds 1 and 2, respectively. These data can be obtained free of charge
via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic
DataCentre, 12 Union Road, Cambridge CB2 1EZ, UK; e-mail: deposit@ccdc.cam.ac.uk.
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Abstract: Peter Day was one of the most asiduous participants of the NoSIC (Not Strictly Inorganic
Chemistry) meetings, where he showed his interest in, and knowledge of, historical, sociological and
other non-scientific aspects of the research activities in the institutions led by him as well as in those
he visited worldwide, both as a lecturer and as an active participant. This article tries to stress that
side of his personality, reflected also in his three autobiographical books, and in his motto “the past is
another country”, a quotation from L.P. Hartley.

Keywords: scientific tourism; biography; conferences

Time and space are the two main axes of Peter Day’s non-research essays and books.
On the time axis, we find his interest in the history of chemistry and, in particular, the
history of the institutions in which he developed his scientific activity: the Royal Institution
in London, the Institute Laue–Langevin in Grenoble, and the coffee rooms. The space axis
corresponds to the territories he went across during his scientific journey, the specificities
of the human atmosphere in each city and town he visited, the social constructs—both
political and academic—that float in their atmospheres, and the history that is required to
understand how all these factors converged at the time and place of his visit. This two-fold
endeavour permeates the three autobiographic books published by Peter Day [1–3], as well
as the lectures and communications he gave from 2008 to 2012 in Prullans (Table 1).

Prullans is a small town of the Catalan Pyrenees overseeing the valley of La Cerdanya
with the impressive walls of the Cadí mountain range in the background (Figure 1). There,
between 2003 and 2018, took place a series of eight NoSIC meetings. NoSIC is a convenient
acronym for an odd title, Not Strictly Inorganic Chemistry. The first call stated that the
goal was “to gather in a friendly atmosphere about 50 chemists, with research activities in
the area of Inorganic Chemistry, to discuss at the interface between Chemistry and other
areas of Culture to enhance the permeability of the Chemistry curricula to our cultural and
historical background”.

Peter Day first participated in the NoSIC-2 meeting, in 2006, kindly accepting my
invitation following a suggestion by Michel Verdaguer. The arrangements were facilitated
because he had established a second residence in the small village of Marquixanes, in the
French Roussillon, in 1997. Marquixanes is barely 85 km from Prullans, so he could easily
drive through the French–Spanish border to attend the meeting. Let me note in passing
that his interest for the historical and geographic context as well as for domestic details
and human aspects of his environment is well reflected in the description of his life in
Marquixanes that appears in a chapter of his book, “On the Cucumber Tree” [2].

He proposed as his lecture’s title “The past is another country. But is it?” (L. P. Hartley).
The quotation in the title comes from the novel “The Go-Between” by British writer Leslie
Pole Hartley (1895–1972). If we consider the full sentence “The past is another country: they
do things differently there”, it becomes clear that in his mind culture and social structures
differ from past to present as from one space (country) to another, and nicely summarizes
the two-dimensional perspective of his scientific and human activity worldwide.
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Table 1. Titles and dates of some books published, and lectures given, at the NoSIC meetings in Prullans, by Peter Day,
pointing to chapters of his books related to the contents of the talks.

Year Meeting Book Published Lectures and Related Book Chapters

2005 Nature not Mocked [1].
2006 NoSIC-2 “The past is another country...” (L. P. Hartley) But is it?

On the Cucumber Tree, chapter 8.
2008 NoSIC-3 Benjamin Thomson, Count Rumford–European Citizen and Cooking Expert

Nature not Mocked, chapter 4.
2010 NoSIC-4 Davy’s Batteries: the World’s First Research Grant Proposal.

Nature not Mocked, chapter 6.
2012 NoSIC-5 Conversation Rooms: Coffee and Chemistry.

Nature not Mocked, chapter 2.
On the Cucumber Tree [2].

2018 NoSIC-8 Scientific Tourism: Learning About the World Through Travel.
Scientific Tourism

2020 Scientific Tourism [3].

Magnetochemistry 2021, 7, x FOR PEER REVIEW  2  of  7 
 

 

Table 1. Titles and dates of some books published, and lectures given, at the NoSIC meetings in Prullans, by Peter Day, 

pointing to chapters of his books related to the contents of the talks. 

Year  Meeting 
Lectures and Books Published   

Book Chapter Related to Lecture   

2005    Publication of Nature not Mocked [1] 

2006  NoSIC‐2  “The past is another country…” (L. P. Hartley) But is it? 

    On the Cucumber Tree, chapter 8. 

2008  NoSIC‐3  Benjamin Thomson, Count Rumford–European Citizen and Cooking Expert. 

    Nature not Mocked, chapter 4. 

2010  NoSIC‐4  Davy’s Batteries: the World’s First Research Grant Proposal. 

    Nature not Mocked, chapter 6. 

2012  NoSIC‐5  Conversation Rooms: Coffee and Chemistry. 

    Nature not Mocked, chapter 2. 

    Publication of On the Cucumber Tree [2]. 

2018  NoSIC‐8  Scientific Tourism: Learning About the World Through Travel. 

    Scientific Tourism 

2020    Publication of Scientific Tourism [3]. 

 

   
(a)  (b) 

Figure 1. (a) The Romanesque church of Prullans, 11th–12th century, (b) view of the Cadí mountain range from the NoSIC 

conference site. 

He proposed as his lecture’s title “The past is another country. But is it?” (L. P. Hart‐

ley). The quotation in the title comes from the novel “The Go‐Between” by British writer 

Leslie Pole Hartley (1895–1972). If we consider the full sentence “The past is another coun‐

try: they do things differently there”, it becomes clear that in his mind culture and social 

structures differ from past to present as from one space (country) to another, and nicely 

summarizes the two‐dimensional perspective of his scientific and human activity world‐

wide. 

On that occasion, he told a series of interesting stories of the Royal Institution (RI), 

“the most unusual scientific organisation” of which he had been  the director  for some 

years. The three most remarkable leaders of that institution went then on stage: Benjamin 

Thomson, Humphry Davy and Michael Faraday. He developed  further  their relevance 

and  less well‐known activities  in  subsequent NoSIC participations  (Table 1). First,  the 

physicist Sir Benjamin Thomson, made Count Rumford by  the King of Bavaria, whom 

Day qualified as a “mover and shaker” (one who wants to organise things), and respon‐

sible for the establishment of the RI in 1799. He worked on the theory and uses of heat, 

“heat is nothing but motion”, designed lamps and fireplaces, was interested in cooking, 

Figure 1. (a) The Romanesque church of Prullans, 11th–12th century, (b) view of the Cadí mountain range from the NoSIC
conference site.

On that occasion, he told a series of interesting stories of the Royal Institution (RI),
“the most unusual scientific organisation” of which he had been the director for some
years. The three most remarkable leaders of that institution went then on stage: Benjamin
Thomson, Humphry Davy and Michael Faraday. He developed further their relevance
and less well-known activities in subsequent NoSIC participations (Table 1). First, the
physicist Sir Benjamin Thomson, made Count Rumford by the King of Bavaria, whom Day
qualified as a “mover and shaker” (one who wants to organise things), and responsible
for the establishment of the RI in 1799. He worked on the theory and uses of heat, “heat
is nothing but motion”, designed lamps and fireplaces, was interested in cooking, and
authored a book titled “The Chemistry and Physics of Cooking”. Remarks were made also
of Davy’s famous lectures on laughing gas given in 1810.

Day presented the second director of the RI, Humphry Davy, as the first researcher to
write a grant proposal, asking for financial help to make a larger battery for his electrolytic
experiments. With that battery, Davy was able to isolate new elements. Quoting Day,
“Apart from the Lawrence Berkeley Laboratory under Glenn Seaborg, there can be no
other building on the planet that has seen the isolation of so many chemical elements as 21
Albemarle Street under Davy; most of groups 1 and 2 of the periodic table and, at a further
remove, chlorine and iodine were identified there”.
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He told us about the activity of Michael Faraday, “the young man who left his trade as
a bookbinder to come to the RI as Davy’s chemical assistant”, who started the two famous
series of popular lectures, one for adults and one for children in 1826. Less well-known
activities of Faraday were also commented upon by Day, such as his contribution to the
improvement of steel or the development of optical glass.

By sheer coincidence, two books have become neighbours on the shelves of my
domestic library. One, written by Charles Tanford and Jacqueline Reynolds, is “The
Scientific Traveler” [4]. Its younger neighbour is Peter Day’s Scientific Tourism [3]. In spite
of the nearly coincident titles, hardly can two books be more different in their approach to
“scientific tourism”. Tanford and Reynolds focus on places throughout the world where
landmarks in the history of science can be visited, preceded by a general historical and
geographical introduction. Peter Day’s book, instead, should be considered as a memoir of
a scientist on duty, who travels for scientific events and yet observes the natural, urban
and human environment.

There are not many coincident geographical spots in the two books, but we can
compare, for instance, the sections devoted to Prague. Tanford and Reynolds stress the
figures of astronomers Tyco Brahe and Johannes Kepler, who worked under the patronage
of King Rudolf II. Their proposed tour for Prague includes a sculpture of both scientists,
remains of the palace used by them as residence and observatory, the sepulchre of Brahe
in a church, and a plaque that marks the house where Kepler lived. I wish one could find
some hints to the activity of famous alchemists contemporary of Brahe and Kepler, with
whom they shared the patronage of the King.

In contrast, Peter Day visits Prague in 1969, exactly one year after the Prague Spring
during which Czech Prime Minister Alexander Dubcek attempted to promote a “commu-
nism with a human face” supported by mass demonstrations of the population that ended
with the invasion of the Soviet tanks and the abolition of the political liberalization. He
explains several aspects of the conference attended by him within the political context of
the moment, without forgetting to mention the theatre where Mozart’s opera Don Giovanni
was first performed or the simultaneity of the conference organized by the Czechoslovak
Academy of Science and the meeting of the Central Committee of the Communist Party
that was to decide on the fate of Dubcek. These and other stories were transmitted by Day
in Prullans before they got published as a book, with his clear diction, tidy transparencies,
and even with his long-fingered hands (Figure 2). To get the flavour of this lecture, the
reader is urged to search for Peter Day’s quotation of Chaucer’s “Canterbury Tales” in his
book “Scientific Tourism”.
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Figure 2. Peter Day’s hands during a lecture on Scientific Tourism at NoSiC-8, 8 June 2018. Photo:
S. Alvarez.
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The travel chronicles of Peter Day have famous precedents in the history of chemistry.
Ludwig Boltzmann, professor of theoretical physics at the University of Vienna, published
an account of his travel to California in the summer of 1905 under the title “Reise eines
deutschen Professors ins Eldorado”, of which two English translations are available [5,6].
The 61-year old scientist travelled by train to Leipzig, continuing to Bremen where he took
a steamship to New York. Then, after four days and nights on a railroad, with eventual
visits to the smoking car, he made it to San Francisco. While the purpose of the travel
was to give a summer course at Berkeley, Boltzmann seems more interested in keeping
a record of the social events, meals and drinks than in the scientific aspects of his tour.
Two quotations show his gastronomic interest the word “stomach” appears 11 times in the
25 pages of the article:

«Journey to California is champagne, Veuve Clicquot, and oysters. Nobody with
any experience in traveling will be surprised when I talk about eating and drink-
ing. It is not only an important factor, it is the central point. It is most important
during travel to keep the body healthy in face of the large variety of unac-
customed influences, most of all the stomach, and in particular the pampered
stomach of a Viennese [6].»

Even when he comments on the rights of women at the university, his epicureanism emerges:

«It goes without saying that male and female students have equal rights at uni-
versities such as these. The same is true of the faculty. I just want to present one
drastic example of the far-reaching dominance achieved by the female element.
One of my faculty colleagues, Miss Lilian Seraphine Hyde, a not unworthy lady
whose name I committed to memory, gave a course of lectures on the preparation
of salads and desserts. It was announced in the catalogue just like the course I
was giving. I have kept that catalogue as evidence [6].»

Scientific tourism is of a totally different style in the pen of Humphry Davy, who
published a book titled “Consolation in Travel” [7]. It describes imagined travels to a few
archaeological and natural sites, and his interest is more on spiritual, historical, chemical
or cultural issues, often unrelated to the touristic site. The book was written after Davy’s
recovery “from a long and dangerous illness”, “under the same unfavourable and painful
circumstances, and at a period when the constitution of the author suffered from new
attacks.” It was finished on 21 February 1829, but Davy passed away three months later,
and the book was published posthumously in 1830.

The book presents Davy’s six fictitious dialogues with two friends in Rome, Ambrosio
and Onuphrio, in which they deal with history, religion and philosophy. After the first
dialogue with his friends, inspired by the impressive ruins of the Roman Colosseum, Davy
is immersed in deep reflections and has a vision in which a genius guides him through the
evolution of the civilisation. He saw, for instance:

« . . . that in the place of the rolls of papyrus, libraries were now filled with books.
“Behold”, the Genius said, “the printing press; by the invention of Faust the
productions of genius are, as it were, made imperishable, capable of indefinite
multiplication, and rendered an unalienable heritage of the human mind.»

He saw also:

«in the laboratories, alchemists searching for a universal medicine, an elixir of
life, and for the philosopher’s stone, or a method of converting all metals into
gold.»

The subsequent dialogues are in a similar spirit, and they take place during visits to
the Vesuvius, the temples of Paestum, the Austrian Alps (this time he travels by himself,
and the conversation takes place with an unknown, a philosopher, and Eubathes, a travel
companion), and Pola in the peninsula of Istria (Croatia).

There were, however, the short travels of Peter Day from Marquixanes to Prullans that
have been important to me and left a deep imprint on me and other colleagues. After Day’s
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first participation in a NoSIC, he was enthusiastic and highly encouraging about the style
and contents of the meeting and participated in all subsequent editions except when health
or family problems prevented him to do so. I have memories of him chatting with whoever
happened to be next to him at breakfast, lunch or dinner time, and participating in every
discussion after a lecture, as we see in Figure 3a, where he debates with inorganic chemist
and poet Àngel Terron after his lecture “Science and Poetry: Exploring the Same Abyss”.
He had active participation also in the hands-on workshop “Chemical Answers to Culinary
Challenges”, led by Pere Castells, the chemist behind many of the innovations introduced
by the world-famous cook Ferran Adrià, as seen in Figure 3b where he prepares pearls of
yoghurt through the spherification process. He formed part of the group that visited the
cathedral of La Seu d’Urgell, as recorded in a photograph (Figure 4a) in which he appears
in conversation with historian of Chemistry Agustí Nieto-Galán in the cloister.
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Remarkably, Peter Day has left us three autobiographical books, yet they are not
devoted to his many achievements in science, but rather to explain his perception of the
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many corners of the planet that he travelled to, and of the workings of the academic and
scientific institutions that he visited or worked in. One of those books has an apparently
odd title, “On the Cucumber Tree” a translation of a Hungarian expression “az uberkafán”
that means “on the make” or “on the climb”, taken by Day from a novel by English writer
William Cooper [8], “nom de plume” of Harry S. Hoff (1910–2002). There are at least
four botanical species known as “cucumber tree”: Averrhoa bilimbi, Dendrosicyos socotranus,
Kigelia africana and Magnolia acuminata. A photograph of the latter illustrates the cover of
Day’s book. None of them, however, is native to Europe, nor do they produce cucumbers,
but fruits of similar shape. It is also interesting to inspect the chronology of his talks at
Prullans and the publication of these autobiographical books (Table 1). In some cases, he
would lecture about topics already dealt with in one of his books, while on other occasions
he would give a talk, equally entertaining and well documented, that would be published
later. For him, giving a lecture was something as fluent and natural as talking with a friend
at teatime.

Other than the NoSIC meetings, we had a memorable chance to attend a talk delivered
by him on the history of magnetism at the University of Barcelona, where he was invited
to give the inaugural lecture of the exhibition “Two Millennia of Magnetism” organised
by the Rare Books section of the Library of Physics and Chemistry of the University of
Barcelona, on 8 October 2008. The lecture “Magnetism—A Mysterious Force of Nature
and Some of its Consequences” was praised equally by scientists and non-scientists in
the audience. In a picture taken during that event (Figure 4b) he appears to form part of
the periodic table of the elements in the front wall of the “Aula Magna Enric Casassas”,
commonly known as Taula Magna (“taula” is the Catalan for “table”).

Before concluding this account, let me quote Peter Day’s view on the social role
of research institutions and universities, taken from the epilogue of his book “Nature
not Mocked”:

«The unique positive feature distinguishing the university is the infinite and
continuously changing cohort of young people that it brings to the research
adventure. It is through fresh approaches that research flourishes most vigorously,
and the new generations are its guarantors.»

At the NoSIC meetings, Thursday evening was the time for a special dinner served on
long tables. The dates chosen were always at the beginning of June after we finished our
teaching duties at the university and before the exams took place. Those were low-season
dates for the weekdays at the Hotel Muntanya of Prullans, so we could charge a modest
registration fee and be practically the only guests, which facilitated the sense of belonging
to a group of friends. In the edition of 2010 during that dinner, a few days before my 60th
birthday, I received as a gift a book signed by all the participants. At that point, Peter Day
stood up and gave a toast to me with affection and a touch of sarcasm, “Santiago, there
is life beyond 60!” he said. I have not forgotten his words, and now am sure that for him
there is life beyond life.
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Abstract: The syntheses of new BEDT-TTF derivatives are described. These comprise BEDT-TTF
with one ethynyl group (HC≡C-), with two (n-heptyl) or four (n-butyl) alkyl side chains, with two
trans acetal (-CH(OMe)2) groups, with two trans aminomethyl (-CH2NH2) groups, and with an
iminodiacetate (-CH2N(CH2CO2

−)2 side chain. Three transition metal salts have been prepared
from the latter donor, and their magnetic properties are reported. Three tris-donor systems are
reported bearing three BEDT-TTF derivatives with ester links to a core derived from benzene-1,3,5-
tricarboxylic acid. The stereochemistry and molecular structure of the donors are discussed. X-ray
crystal structures of two BEDT-TTF donors are reported: one with two CH(OMe)2 groups and with
one a -CH2N(CH2CO2Me)2 side chain.

Keywords: organic conductors; BEDT-TTF; synthesis; magnetism; crystal structures

1. Introduction

BEDT-TTF 1 has played a significant role in the development of electroactive organic
materials. A very wide range of crystalline radical cation salts, with different stoichiome-
tries, have been prepared, some of which are semi-conductors, conductors, or low tem-
perature superconductors [1–4]. A range of different packing modes for the donors in
these salts have been identified [5–7], which includes a κ-phase in the superconducting
salts, such as (BEDT-TTF)2Cu(NCS)2, where the donors pack in face-to-face pairs but lie
roughly perpendicular to their neighbouring pairs [8–10]. BEDT-TTF has been used to
prepare hybrid materials with conducting and magnetic properties [11–14], as pioneered
initially by Day et al. who prepared salts with iron tris(oxalate) salts which also showed
low temperature superconductivity [11,12].

Following these studies on BEDT-TTF, a range of substituted BEDT-TTF derivatives
that include compounds 2–5 have been reported (Scheme 1) [15]. Particularly notable
examples are the enantiopure tetramethyl derivative 2 which forms a range of radical
cation salts [16–19], the enantiopure amide 3 which forms a 4:1 TCNQ complex which
changes from an insulator to an organic metal at 283 K and stays metallic down to ca.
4 K [20], the racemic bipyridylthiomethyl derivative 4 which forms capsular structures
with metal ions [21], and the spiro chiral derivative 5 [22]. BEDT-TTF donors with one
amino-methyl or -ethyl side chain [23], one hydroxy-methyl or -ethyl side chain [24,25], or
with multiple hydroxymethyl or 1,2-dihydroxyethyl chains such as 6 and 7 have also been
reported [26–28], as well as systems where the BEDT-TTF unit is fused to a thiophene or
furan ring [29].
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Two general synthetic routes have been used to prepare the aforementioned BEDT-
TTF derivatives (Scheme 2) [15]. The first is via the dithiolate 8, available from carbon
disulphide and sodium, by double substitutions with dihalides or cyclic sulphate esters
to give the bicyclic thione 9 [16,24]. The second is via the trithione 10, which reacts with
alkenes in a 4 + 2 electrocyclic reaction to also give the bicyclic thione 9 [22–28,30–34]. In
both cases, the synthesis is completed by conversion of the thione to the oxo compound 11
by treatment with mercuric acetate, and then reaction with triethyl or trimethyl phosphite
to form the homo-coupled BEDT-TTF system 13. Cross-coupling of an oxo compound with
a different thione is used to prepare an unsymmetrical derivative BEDT-TTF 12.
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In recent work, we have expanded our library of BEDT-TTF donors and now report
the syntheses of a range of new racemic BEDT-TTF derivatives, prepared by the second
synthetic strategy using the trithione intermediate 10. This includes BEDT-TTFs substi-
tuted with an ethynyl side chain, 38, or with metal binding groups, 48 and 53, in addition
to molecules bearing three BEDT-TTF units around a benzene ring core, 26–28. Prelimi-
nary magnetic results for complexes of donor 53 with 3D transition metals are presented.
Stereochemical aspects of substituted donors are also discussed. Full synthetic details are
provided in Section 4 and in the Supplementary Information.
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2. Results and Discussion
2.1. BEDT-TTF with Alkyl Chains

The installation of alkyl chains on a BEDT-TTF molecule should increase the solubility,
which is very low for BEDT-TTF itself. Thus, the reaction of trithione 10 with trans-dec-5-
ene gave the racemic thione 14 in 95% yield (Scheme 3). The treatment of this thione with
mercuric acetate afforded the oxo compound 15 in an almost quantitative yield, which was
homo-coupled using trimethyl phosphite to give the substituted BEDT-TTF in 57% yield
as a mixture of stereoisomers. The configurations of the two stereogenic centres at one
end of the molecule are the same but can be opposite to, or the same as, those at the other
end. Thus, there are three stereoisomers: racemic (R,R,R,R)- and (S,S,S,S)-16 and the meso
compound (R,R,S,S)-17. Unfortunately, these are not separable by chromatography, but the
structures are expected to have very similar shapes. In this respect, the conformation of the
dithiin ring is typically an envelope or a half chair. Thus, the R,R and S,S configurations
can position their side chains in similar pseudo-equatorial positions by adopting opposite
conformations of their dithiin rings.
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Scheme 3. Synthetic route to tetra-n-butyl-BEDT-TTF derivatives 16 and 17.

Following the same synthetic strategy, the trithione 10 was reacted with non-1-ene
to provide the bicyclic thione 18 with one heptyl side chain in 57% yield (Scheme 4). The
thione was directly homo-coupled using trimethyl phosphite to give a mixture of two
disubstituted BEDT-TTF donors (51%), each one having two diastereomers. The locations
of the side chains could be at the top edge of the molecule, or one can be at the bottom
edge, leading to the two differently substituted donors, each one of which has a racemic
pair and a meso stereoisomer, 19–22. Again, these were found to be inseparable. Both the
16–17 and 19–22 mixtures showed the expected two reversible oxidation peaks in their
cyclic voltammograms (Table 1) at 0.47 and 0.89 V for 16–17 and 0.49 and 0.89 V for 19–22
(relative to Ag/AgCl).
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Table 1. Cyclic voltammetry data for selected BEDT-TTF derivatives a.

Donor E1 (V) E2 (V)

16–17 0.47 0.89
19–22 0.49 0.89

26 0.48, 0.55 b 0.88 b

27 0.44, 0.56 b 0.86 b

28 0.50 0.88
38 0.52 0.92
42 0.50 0.93
48 0.72 b,c 0.89 b,c

52 0.53 0.94
a Measured in 0.1 M tetrabutylammonium hexafluorophosphate in DCM at 20 ◦C, substrate concentrations
0.01 mM, and scan rate of 0.1 V s−1, unless otherwise stated; b irreversible; c in THF.

2.2. Tris-(BEDT-TTF) Donors

To provide systems which will show different packing arrangements versus the clas-
sical BEDT-TTF systems and which could also act as supramolecular synthons, e.g., for
forming charge transfer complexes with fullerenes, three tris-donor systems 26–28 were
prepared containing three donors appended to a benzene core. The synthetic route to these
compounds involved the coupling of benzene-1,3,5-tricarboxylic acid with three equiva-
lents of a BEDT-TTF donor bearing a hydroxyalkyl side chain using n-propyl phosphonic
anhydride (“T3P”) or DCC (Scheme 5). Thus, donors 23 and 24 with a hydroxy-methyl or
hydroxyethyl side chain afforded the tris-donors 26 and 27 in 22 and 33% yields, respec-
tively. Interestingly, there are two racemic disastereomers for these two donors, one with
the same configuration at all three stereogenic centres (R,R,R) and one with the same config-
uration at just two centres (R,R,S). However, the products proved to have low solubilities
in common organic solvents, so the hydroxyethyl-BEDT-TTF donor 25, functionalised with
two trans oriented n-butyl side chains on the other ethylene bridge, was prepared and was
coupled with the triacid to give the more soluble tris-donor 28 in 45% yield. The number of
stereoisomers is increased over 26–27 because the three sets of butyl groups can have all six
or just four configurations be the same. However, these stereochemical issues are unlikely
to have a profound influence on the behaviour of the donor, due to the flexibilities of the
dithiin rings, as discussed earlier. The structures were supported by their chemical analyses
and spectral data, e.g., 26 showed a molecular ion in the mass spectrum, and 27–28 showed
the three aromatic H atoms at ca. 8.8 ppm. The more soluble tris derivative 28 showed a
reversible cyclic voltammogram with peaks at 0.50 and 0.88 V as expected of a BEDT-TTF
derivative, but tris donors 26 and 27 showed irreversible volt-ammograms probably due
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to the binding of the donor to the electrode, with two oxidation peaks between 0.44 and
0.56 V and another in the range 0.86–0.88 V on the outward scan.
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2.3. New Functionalised BEDT-TTFs: Ethynyl and Acetal Substituted Derivatives

There are several examples of the cyclisation of the trithione 10 with alkynes (Scheme 6),
in particular with those where the triple bond bears two carbonyl or acetal functionalities,
affording thiones such as 29 and 30 [35–37]. The electron deficient diarylethynes also react
with the trithione 10, giving access to thiones such as 31 and 32 [38,39]. An interesting
case, therefore, would be the reaction with 4-trimethylsilyl-1-buten-3-yne 33, which has
both an alkene and an alkyne group, to determine which group preferentially reacts with
the trithione 10 (Scheme 7). Refluxing the two materials together gave a 55% yield of the
bicyclic trithione 34 in which the alkene, and not the alkyne, had reacted. The reaction of the
trimethylsilylethynyl thione with mercuric acetate gave the oxo compound 35 in an almost
quantitative yield, without affecting the triple bond, and this material was cross-coupled
with the unsubstituted thione 36 to give the trimethylsilylethynyl substituted BEDT-TTF
donor 37 in 45% yield. Treatment with potassium fluoride in THF/methanol gave the
deprotected ethynyl-BEDT-TTF donor 38 in 88% yield. This shows the greater reactivity
of the alkene over the alkyne with the trithione. This has provided an interesting donor
which has the potential for connecting to larger molecular systems, either preserving the
triple bond by substitution of the ethynyl H atom, e.g., by a Sonogashira reaction, or using
the triple bond as a substrate for click chemistry with azide-functionalised materials.
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41 in almost quantitative yield (Scheme 8). The donor 42 was obtained by the cross-cou-
pling of oxo compound 41 with the unsubstituted thione 36 in 49% yield. However, all 
attempts to hydrolyse the acetal groups with HCl or tosic acid in a range of concentrations 
failed to give the corresponding dialdehyde. Similar experiences have been reported on 
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Scheme 7. Synthetic route to ethynyl-BEDT-TTF 38.

We were interested in making BEDT-TTF with two aldehyde groups attached, which
could facilitate further ring constructions or the attachment of side chains. Thus, we
targeted the corresponding bis(dimethylacetal) containing donor 42. The reaction of the
corresponding alkene, the bis-dimethylacetal of fumaraldehyde 39, with trithione 10 gave
the disubstituted thione 40 in a low yield of 17%, which was converted to the oxo compound
41 in almost quantitative yield (Scheme 8). The donor 42 was obtained by the cross-coupling
of oxo compound 41 with the unsubstituted thione 36 in 49% yield. However, all attempts
to hydrolyse the acetal groups with HCl or tosic acid in a range of concentrations failed
to give the corresponding dialdehyde. Similar experiences have been reported on organo-
sulphur donors containing acetal or ketal functionality [24,40]. It may be that these donor
molecules stack together in clumps and isolate themselves from the acidic environment.
Nevertheless, it is quite remarkable that these groups are resistant to hydrolysis, when
dilute acid is usually quite sufficient. The cyclic voltammograms of BEDT-TTF derivatives
38 and 42 showed the expected two reversible oxidation peaks (Table 1).

Single crystals suitable for X-ray diffraction of 42 were grown from CH3CN, and the
molecular structure of the donor was determined (Figure 1). The substituted dithiin ring
adopts a half-chair conformation and directs the acetal groups into pseudo-axial positions.
The organosulphur moiety adopts a bowed shape with inflexions about the S···S vectors
across the two dithiole rings of 19.6 and 17.2◦. In the crystal structure, the donors pack in
centrosymmetric slipped pairs to accommodate the side chains, with the shortest C···C
contact of 3.546 Å between the TTF cores.
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2.4. Donors with Metal Ion Binding Potential and the First Salts and Their Magnetic Properties

The BEDT-TTF donor 48 with trans aminomethyl groups was an interesting target,
both for further synthetic elaborations and for the binding of metal ions. In a first approach,
which we hoped would have a wide scope, thione 10 was reacted successfully with trans-
1,4-dibromobut-2-ene to give the trans bis(bromomethyl)thione 43. However, attempts to
substitute the bromide groups of this material with amines were unsuccessful, with the
amine probably causing the elimination of HBr. Therefore, to synthesize the donor with two
aminomethyl groups 48, the trithione 10 was reacted with the bis-N-boc derivative of trans-
but-2-en-1,4-diamine 44 to give the thione 45 in 53% yield (Scheme 9). The corresponding
reaction of the trithione with the readily obtained bis-phthalimido derivative of trans-but-2-
en-1,4-diamine was unsuccessful. Following the established procedure, the thione 45 was
converted to the oxo compound 46 which was cross-coupled with the unsubstituted thione
36 to give the bis-N-Boc donor 47 in 63% yield. Deprotection of this donor with HCl in
dioxane followed by basification gave the bis(aminomethyl)BEDT-TTF 48 in 78% yield. The
cyclic voltammogram of 48 in THF showed broad irreversible peaks, probably due to the
donor binding to the electrode.
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Installing an iminodicarboxylate dianion group on the side chain of BEDT-TTF could
provide another BEDT-TTF donor with potential metal binding properties, so donor 53
with just a methylene between the donor and the metal binding group was prepared. This
was synthesized following the synthetic strategy outlined in Scheme 10. The attachment
of an allyl group to diethyl iminodiacetate gave alkene 49 which reacted with trithione
10 to give the substituted thione 50 in high yield. Conversion to the corresponding oxo
compound 51 and subsequent cross-coupling with the unsubstituted thione 36 afforded
the BEDT-TTF donor 52 with an imino diethyl ester group in the side chain in 34% yield.
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Scheme 10. Synthetic route to the disodium salt of BEDT-TTF-methylamino-N,N-dicarboxylate 53.

Single crystals of 52 were grown from DCM, and the crystal structure was determined
by single crystal X-ray diffraction (Figure 2). The BEDT-TTF moiety adopts a bowed struc-
ture, with inflexions about the two S···S vectors in the dithiole rings of 14.6 and 23.3◦. The
unsubstituted ethylene bridge is disordered between two half-chair conformations (62:38).
On the other bridge the carbon bearing the side chain and its attached hydrogen atom are
disordered between two positions (82:18) which correspond to the structures of opposite
enantiomers of the donor. This illustrates how the bridge can flex to accommodate both
enantiomers without affecting the positions of either the main parts of the organosulphur
system or the side chain. The donors are packed in centrosymmetric pairs with the shortest
C···C distance between the TTF cores of 3.42 Å.
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Figure 2. Crystal structure of donor 52, showing the main molecular conformation (left) and the
crystal packing arrangement (right).

Hydrolysis of the imino diethyl ester substituted donor 52 with sodium hydroxide
gave the dianion 53 as a disodium salt in high yield. The reaction of this donor with a
range of transition metal salts afforded precipitates which were all insoluble in a wide
range of solvents, and from which single crystals could not be obtained. Thus, assignments
of compositions are tentative, based only on chemical analysis, magnetic measurements,
and infrared spectra, and we acknowledge that the structural topologies may be more
complex. Ligand 53 can show a number of coordination modes (Figure 3). It can act as
tridentate dianion (L2−) binding by two oxygens and nitrogen; be protonated once (HL−),
on nitrogen or oxygen, and act as a bidentate or tridentate monoanion, respectively; or
be protonated twice and coordinate as a neutral ligand (H2L). Such behaviours are seen
with simpler N-alkylated iminodiacetate ligands [41–43]. It can also act as just a bridging
ligand [44]. Furthermore, binding to the outer set of the BEDT-TTF unit’s sulphur atoms
cannot be excluded, as has been observed with copper(I) and silver(I) [45–47]. Details of
three of the coordination complexes obtained are provided in Table 2. With zinc triflate,
the CHN data are consistent with the product 54 containing two equivalents of the HL−
monoanion coordinated to Zn(II). With MnCl2, the product 55 contains two neutral H2L
ligands along with MnCl2 and two waters. For the MnCl2 complex, at room temperature,
the value of the χT product (4.4 cm3 K mol−1) is in excellent agreement with the theoretical
expected value for an isolated HS octahedral Mn(II) ion (4.375 cm3 K mol−1) with a g value
of 2.00. Similarly, for the second Mn(II) complex 56 prepared from Mn(hfac)2, the room
temperature χT product of 4.5 cm3 K mol−1 is again very reasonable for an isolated HS
Mn(II) ion in octahedral geometry, where compared to complex 55, the hfac ions replace the
chlorides, though with one less H2L ligand and one less water molecule. For both Mn(II)
complexes, dc magnetic studies reveal that the χT product is temperature independent
down to ca. 50 K, after which time it rapidly decreases, which is consistent with the
presence of antiferromagnetic interactions.
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Table 2. Proposed compositions, magnetic data, and chemical analysis for the reaction of ligand 53 with Zn(II) and Mn(II)
salts.

Metal salt,
Colour.

Proposed
Composition,
Compound

number,
RMM.

Magnetic properties: a

χT (cm3 K mol−1);
C (cm3 K mol−1);

θ (K).

Found
CHN (%) Calculated CHN (%)

Zn(II)triflate
Red/pink.

Zn(HL)2
54

RMM 1121.4

C: 31.95
H: 2.41
N: 2.64

C: 32.09
H: 2.51
N: 2.49

MnCl2
Red.

Mn(H2L)2Cl2.2H2O
55

RMM 1220

χT: 4.4
C: 4.47
θ: −6.07

C: 29.28
H: 2.57
N: 2.58

C: 29.50
H: 2.81
N: 2.29

Mn(hfac)2
Orange

/brown.

Mn(H2L)(hfac)2.H2O
56

RMM 1016.8

χT: 4.5
C: 4.66
θ: −7.72

C: 29.58
H: 1.88
N: 1.48

C: 29.53
H: 1.88
N: 1.38

a Plots of 1/χ vs. T, and χT vs. T are provided in the ESI.

3. Conclusions

The synthesis of a range of new BEDT-TTF derivatives, which are substrates for the
formation of charge transfer salts as well as for incorporation in more complex systems, has
been described. The development of conducting and hybrid materials is highly dependent
on the availability of new donor systems, and such syntheses are often not straightfor-
ward. For example, the trithione 10 does not react with all alkenes, and the presence of
the BEDT-TTF unit can disrupt apparently standard synthetic manipulations to side chain
functionalities. The possibility of forming hybrid materials between the donor bearing an
iminodiacetate function 53 and metal ions has been demonstrated and will be extended
in the future to the bis(diaminomethyl) donor 48, though methods for forming crystalline
products, e.g., by hydrothermal synthesis, need to be developed. Furthermore, to produce
conducting materials, an oxidation step needs to be included. Of particular note is that the
flexibility of the ethylene bridges of BEDT-TTF donors results in both enantiomers of the
substituted BEDT-TTF being close to superimposable, as shown in the crystal structure
of 52. This indicates that to prepare systems with chiral packing arrangements, the stere-
ogenic feature might be more effective in the side chain. However, we note that the first
observation of magnetochiral anisotropy in organic conductors was in the perchlorate salts
of enantiomers of dimethyl EDT-TTF, where the chirality was on the donor [48].

4. Materials and Methods

General. Solution NMR spectra were measured on either a Jeol ECLIPSE ECX or ECZ
spectrometer operating at 400 MHz for 1H and at 100.6 MHz for 13C, using CDCl3 as solvent
and tetramethylsilane (TMS) as standard unless otherwise stated, and measured in p.p.m.
downfield from TMS with coupling constants reported in hertz. IR spectra were recorded
on a Perkin Elmer Spectrum 100 FT-IR Spectrometer using attenuated total reflection
sampling on solids or oils and are reported in cm−1. Mass spectra were recorded at the
EPSRC Mass Spectrometry Centre at the University of Swansea or on a Waters Xevo QTOF
G2 XS using an ESI source with a Waters Acquity UPLC system at NTU. Chemical analysis
data were obtained from London Metropolitan University and Nottingham University, UK.
Flash chromatography was performed on 40–63 µm silica gel obtained from Fluorochem
Ltd. (Hadfield, Glossop, Derbyshire, UK).

Magnetic Measurements: Variable-temperature dc magnetic measurements were
performed on a Quantum Design SQUID MPMS magnetometer in an applied field of 0.1 T,
from 2 to 300 K. The experimental data were corrected for the diamagnetism and signal of
the sample holder.

Full details of the synthetic procedures and further details of the magnetic data are
provided in the ESI. The syntheses of 49–56 are given below to illustrate the general methods.
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Diethyl allylamino-N,N-diacetate, 49: To a stirred solution of diethyl amino-N,N-diacetate
(3.04 g, 16.1 mmol) in THF (50 mL), allyl bromide (2.20 mL, 25.3 mmol) was slowly added
followed by addition of K2CO3 (3.42 g, 24.7 mmol), and the resulting suspension was
warmed up to reflux and left to stir for 20 h. The reaction mixture was cooled to room
temperature, and THF was evaporated under reduced pressure. DCM was added to the
residue (100 mL) and the organic layer was washed with water (100 mL) and brine (100 mL)
and dried over Na2SO4. Evaporation of DCM afforded diethyl allyl-amino-N,N-diacetate
49 (3.16 g, 86%) as a pale yellow oil; δH (400 MHz, CDCl3): 5.88 (1H, m, -CH=CH2), 5.22 (1H,
dd, J = 18.8, 1.7 Hz, -CH=CHtransH), 5.17 (1H, dd, J = 10.1, 1.8 Hz, -CH=CHHcis), 4.17 (4H,
q, J = 7.2 Hz, -O-CH2-CH3), 3.57 (4H, s, 2 × –N(CH2COOEt)2), 3.38 (2H, d, J = 6.7 Hz,
-CH2-CH=), 1.27 (6H, t, J = 7.0 Hz, 2 × -CH3); δC: (100 MHz, CDCl3): 170.6 (2 × -C=O),
134.9 (=CH), 118.0 (=CH2), 60.0 (2 × -O-CH2-CH3), 57.0 (=CH-CH2-N-), 53.8 (2 × -N-
CH2CO), 13.8 (2 x-CH3); νmax: 2981, 1737, 1674, 1399, 1333, 1190, 714; HRMS: (ASAP) found:
230.1383 (100%), C11H20NO4 +H: requires: 230.1387; found C, 57.69; H, 8.36; N, 6.19%;
C11H20NO4 requires C, 57.64; H, 8.29; N, 6.11%.

Diethyl (+/−)-5,6-dihydro-2-thioxo-1,3-dithiolo[4,5-b]1,4-dithiin-5-methylamine-N,N-diacetate,
50: Diethyl allyl-amino-N,N-diacetate 49 (1.17 g, 5.0 mmol) was added to a suspension
of trithione 10 (3.25 g, 17.0 mmol) in toluene (100 mL), and the resulted suspension was
warmed up to reflux and left to stir overnight under a nitrogen atmosphere. The solid
formed during the reaction was filtered off and washed with CHCl3 until washes ran
clear. The combined filtrates were evaporated under reduced pressure to give the desired
thione 50 as a dark red oil (2.09 g, 96%). δH (400 MHz, CDCl3): 4.10 (4H, q, J = 7.0 Hz,
-O-CH2-CH3), 3.72 (1H, m, 5-H), 3.51 (4H, s, 2 × (-N-CH2-C=O), 3.43 (1H, dd, J = 13.4,
6.1 Hz, 5-(CHαH)-N), 3.29 (1H, dd, J = 13.3, 2.8 Hz, 5-(CHHβ)-N)), 3.13 (1H, dd, J = 13.8,
8.7 Hz, 6-Hα), 3.05 (1H, dd, J = 13.8, 6.5 Hz, 6-Hβ), 1.20 (6H, t, J = 7.2 Hz, 2 × -CH3); δC:
(100 MHz, CDCl3): 208.0 (C=S), 170.9 (2 × C=O), 123.6, 122.2 (3a-, 7a-C), 60.8 (2 x-O-CH2),
58.7 (5-CH2-N), 56.2 (2 x-N-CH2-C=O), 42.6 (5-C), 31.9 (6-C), 14.2 (2 x-CH3); νmax: 2975, 1729,
1483, 1368, 1259, 1180, 1140, 1054, 883, 799, 512; HRMS: (ASAP) found: 425.9995 (100%),
C14H19NO4S5 + H: requires: 425.9990; found C, 39.55; H, 4.51; N, 3.35%, C14H19NO4S5
requires C, 39.53; H, 4.47; N, 3.29%.

Diethyl (+/−)-5,6-dihydro-2-oxo-1,3-dithiolo[4,5-b]1,4-dithiin-5-methylamine-N,N-diacetate,
51: To a solution of thione 50 (1.88 g, 4.40 mmol) in CHCl3 (100 mL), mercury (II) acetate
(3.54 g, 11.0 mmol) was added, and the suspension was left stirring for 3 h at room
temperature under a nitrogen atmosphere. The solid formed during the reaction was
filtered off and washed with CHCl3 until washes ran clear. The combined filtrates were
washed with saturated sodium hydrogen carbonate solution (5 × 50 mL).The organic layer
was washed with water (50 mL) and brine (50 mL) and dried over MgSO4. Evaporation
of the chloroform yielded the desired oxo-compound 51 as a brown oil (1.71 g, 91%). δH
(400 MHz, CDCl3): 4.17 (4H, q, J = 7.1 Hz, -O-CH2CH3), 3.82 (1H, m, 5-H), 3.59 (4H, s,
2 × -N-CH2-C=O), 3.49 (1H, dd, J = 13.3, 6.2 Hz, 5-(CHα)N-), 3.39 (1H, dd, J = 13.3, 3.1 Hz,
5-(CHβH)N-), 3.23 (1H, dd, J = 13.8, 8.7 Hz, 6-Hα), 3.13 (1H, dd, J = 13.8, 6.4 Hz, 6-Hβ),
1.28 (6H, t, 2 × -CH3); δC (100 MHz, CDCl3): 188.8 (C=O), 171.0 (2 × -C=O(OEt)), 113.7,
111.8 (3a-, 7a-C), 60.8 (2 × -O-CH2-CH3), 58.8 (-CH2-N-), 56.2 (2 × -N-CH2C=O), 44.1 (5-C),
32.9 (6-C), 14.2 (2 × -CH3); νmax: 2978, 1731, 1670, 1443, 1411, 1368, 1186, 1139, 1024, 762,
463; HRMS: (ASAP) found: 410.0208, C14H19NO5S4+H: requires: 410.0219; found C, 40.94;
H, 4.72; N, 3.50%, C14H19NO5S4 requires C, 41.07; H, 4.64; N, 3.42%.

Diethyl (+/−)-BEDT-TTF-methylamino-N,N-diacetate, 52: Oxo compound 51 (2.01 g,
5.0 mmol) and 5,6-dihydro-dithiolo[4,5-b]dithiin-2-thione 36 (1.79 g, 8.0 mmol) were heated
together in freshly distilled triethyl phosphite (50 mL) at 90 ◦C for 6.5 h under a nitrogen
atmosphere. The solid formed was filtered and washed with CHCl3, and the combined
filtrates were concentrated under reduced pressure. The triethyl phosphite was distilled
off using a Kugelrohr apparatus. The residue was purified by flash chromatography
(6:1 = cyclohexane: ethyl acetate) to give the substituted BEDT-TTF 52 as an orange solid
(0.99 g, 34%), m.p. 107–108 ◦C; δH (400 MHz, CDCl3): 4.09 (4H, q, J = 7.1 Hz, 2 × -O-
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CH2-CH3), 3.64 (1H, m, 5-H), 3.50 & 3.51 (2 × 2H, 2 × s, 2 × (-N-CH2-C(O)), 3.33 (1H,
dd, J = 13.0, 6.0 Hz, 5-(CHαH)-N, 3.21 (4H, s, (5′-, 6′-CH2)), 3.20 (1H, dd, J = 13.0, 3.1 Hz,
5-(CHβH)-N), 3.03 (2H, m, 6-H2), 1.20 (6H, t, J = 7.2 Hz, 2 × -CH3); δC (100 MHz, CDCl3):
171.0 (2 × C=O), 113.8, 113.7, 112.5, 111.5, 109.8 (2-, 2′-, 3a-, 7a-, 3′a-, 7′a-C), 60.6 (2 x-O-
CH2-CH3), 58.7 (5-CH2-N-), 56.1 (2 x-N-CH2C=O), 42.6 (5-C), 32.5 (6-C), 30.1 (5′-,6′-C), 14.1
(2 x-CH3); νmax: 2921, 1733, 1449, 1412, 1372, 1190, 1022, 770; found C, 39.16; H, 4.00; N,
2.29%; C19H23NO4S8 requires C, 38.97; H, 3.93; N, 2.39%.

Disodium (+/−)-BEDT-TTF-methylamino-N,N-dicarboxylate 53 as a tetrahydrate, Na2L.4H2O:
The di-ester donor 52 (0.37 g, 6.40 mmol) was dissolved in THF (10 mL), and an aqueous
solution of NaOH (5 mL, 0.256 M, 12.8 mmol) was added. The suspension was warmed
to 50 ◦C and left stirring overnight. The THF was evaporated, and the solid filtered and
washed successively with DCM (3 × 5 mL), water (3 × 5 mL), and ether (3 × 10 mL).
Filtration gave 53 (0.41 g, quantitative) as a highly insoluble red solid, m.p. 240 ◦C (dec).
νmax: 2917, 1582, 1400, 1326, 1122, 995, 904, 771, 669; found C, 28.16; H, 3.03; N, 2.38%,
C15H13NO4S8Na2.4H2O required C, 27.90; H, 3.28; N, 2.17%.

Preparation of metal salts of 53: (a) with zinc(II) triflate to give 54: To a suspension of
sodium salt 53 (77 mg, 0.12 mmol) in dry MeOH (8 mL) at room temperature under a
nitrogen atmosphere, zinc triflate (25 mg, 0.069 mmol) was added, and immediately after
the addition, a brown suspension was formed. The reaction mixture was left to stir for 1 h,
and then the solid was filtered off, washed with diethyl ether, and left to dry in air to give
Zn(HL)2, 54, (45 mg, 58%); m.p. 243–244 ◦C (dec.), νmax: 2950, 2854, 1596 (C=O), 1422, 1398,
1342, 1143, 996, 893, 766, 748; found C, 31.94; H, 2.41; N, 2.64%; C30H28N2O8S16Zn requires
C, 32.09; H, 2.51; N, 2.49%.

(b) with manganese(II) chloride to give 55: To a suspension of sodium salt 53 (0.212 g,
0.33 mmol) in distilled water (5 mL) at room temperature, MnCl2.4H2O (0.035 g, 0.18 mmol)
was added, and immediately after the addition, a red precipitate was formed. The ob-
tained solid was filtered and washed with diethyl ether and left to dry in air to give
Mn(H2L)2Cl2.2H2O, 55, (147 mg, 68%), m.p. 206–207 ◦C (dec). νmax: 3321, 2914, 1595 (C=O),
1399, 1364, 1194, 1143, 996, 892; found C, 29.28; H, 2.57; N, 2.58%; C30H30O8S16N2Cl2Mn.2H2O
required C, 29.50; H, 2.81; H, 2.29%.

(c) with manganese(II) (hfac)2 to give 56: To a suspension of sodium salt 53 (26.0 mg,
0.052 mmol) in dry MeOH (6 mL) at room temperature under a nitrogen atmosphere,
Mn(hfac)2.3H2O (24 mg, 0.046 mmol) was added. Immediately after the addition, a
brown solid precipitated out from the mixture. The reaction was left to stir for 1 h,
and then the solid was filtered. The brown precipitate was collected, washed with di-
ethyl ether, and left to dry in air to give Mn(H2L)(hfac)2.H2O, 56, (22 mg, 48%), m.p.
137–140 ◦C; νmax: 3296, 1601, 1401, 1319, 1054, 994, 902, 771; found C, 29.61; H, 1.76; N,
1.81%; C25H17NO8F12S8Mn.H2O requires C, 29.53; H, 1.88; N, 1.38%.

X-ray Crystallography. X-ray diffraction data (MoKα) were measured at low tempera-
ture for 42 (120 K) and 52 (150 K). Structures were solved and refined using the SHELXS and
SHELXL suite of programs [49,50] using the XSEED interface [51]. Molecular illustrations
and geometric analysis were made with Mercury [52]. Data are deposited at the Cambridge
Crystallographic Data Centre with code numbers CCDC 2083578–2083579.

Crystal data for 42: C16H20O4S8, Mr = 532.80, triclinic, a = 6.3985(4), b = 12.6825(11),
c = 13.4735(10) Å, α = 89.198(4), β = 81.424(5), γ = 87.025(5)◦, V = 1079.66(14) Å3, Z = 2, P-1,
Dc = 1.64 g cm−3, µ = 0.849 mm−1, T = 120(2) K, 4995 unique reflections (Rint = 0.078), 3422
with F2 > 2σ, R(F, F2 > 2σ) = 0.059, Rw (F2, all data) = 0.13. Crystal from acetonitrile.

Crystal data for 52: C19H23NO4S8, Mr = 585.8, monoclinic, a = 6.5481(4), b = 17.6090(16),
c = 22.2441(14) Å, β = 97.298(5)◦, V = 2544.1(3) Å3, Z = 4, P21/c, Dc = 1.53 g cm−3,
µ = 0.729 mm−1, T = 150(2) K, 5831 unique reflections (Rint = 0.090), 4196 with F2 > 2σ, R(F,
F2 > 2σ) = 0.085, Rw (F2, all data) = 0.23. Crystal from dichloromethane.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/magnetochemistry7080110/s1, S1: full experimental details for the syntheses not described
in Section 4; S2: magnetic data for 55 and 56; S3: references for S1–S2.
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Abstract: Multifunctional molecular materials have attracted material scientists for several years as
they are promising materials for the future generation of electronic devices. Careful selection of their
molecular building blocks allows for the combination and/or even interplay of different physical
properties in the same crystal lattice. Incorporation of redox activity in these networks is one of the
most appealing and recent synthetic strategies used to enhance magnetic and/or conducting and/or
optical properties. Quinone derivatives are excellent redox-active linkers, widely used for various
applications such as electrode materials, flow batteries, pseudo-capacitors, etc. Quinones undergo a
reversible two-electron redox reaction to form hydroquinone dianions via intermediate semiquinone
radical formation. Moreover, the possibility to functionalize the six-membered ring of the quinone
by various substituents/functional groups make them excellent molecular building blocks for the
construction of multifunctional tunable metal-organic frameworks (MOFs). An overview of the
recent advances on benzoquinone-based MOFs, with a particular focus on key examples where
magnetic and/or conducting properties are tuned/switched, even simultaneously, by playing with
redox activity, is herein envisioned.

Keywords: metal-organic frameworks; redox; magnetism; conductivity; benzoquinones; semiquinones

1. Introduction

Over several decades, metal-organic frameworks (MOFs) have been extensively stud-
ied [1] due to their unique supramolecular architectures, which lead to high porosity and
interesting properties in magnetism [2], conductivity [3], photochromism [4,5], lumines-
cence [6–9], etc. MOFs are coordination compounds formed by metal ions linked to organic
ligands, forming an infinite array in one, two, or three dimensions (1D, 2D, and 3D) and
offering a plethora of applications in different fields including gas storage, separation,
catalysis, energy storage, sensing, biomedical applications, etc. [10–14]. Depending on
a careful choice of metal ions/linkers [15], MOFs can also show a combination and/or
even interplay of physical properties. A relatively new strategy [10,16,17] to enhance their
physical properties, in particular, magnetism and conductivity, is the incorporation of redox
activity. Redox activity can be promoted via various methods such as (i) a rational design
of redox-active metals centers or linkers [18], (ii) post-synthetic modifications of metal ions
or through ligand exchange, and (iii) encapsulation of redox-active guest ions in the pores
of MOFs [19], leading to the formation of radical species, affecting the electronic properties
of the organic linkers and, therefore, the physical properties of the related networks [20,21].

Among the redox-active linkers, derivatives of pyrazine [22], dithiolenes [23], triph-
enylamine [24], N,N-Dipyridil Naphthalenediimide [20], hexaaminobenzene [25], por-
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phyrin [26], bipyridine [27], etc., are most commonly used in MOFs, while multidentate
redox- active linkers, providing different possibilities to tune redox activity, still represent
a challenge up to now [20,21,28].

The benzoquinone/hydroquinone linkers represent a redox-active couple remarkably
studied in technologically important materials such as electrodes [6,29], flow batteries [30],
pseudo-capacitors [31], and materials used in artificial photosynthesis [32]. Benzoquinones
are a class of naturally occurring organic compounds that possess two carbonyl groups
C=O in the 1 and 4 position in an unsaturated six-membered ring [33]. Benzoquinones are
usually electron deficient, and their benzoquinoid-like configuration undergoes a mono-
electron reversible reduction to produce the para semiquinone radical species, which, in
turn, could be further reduced to form the aromatic hydroquinone dianion (vide infra), as
described in Scheme 1.

Scheme 1. Reversible redox reactions for p–quinone/hydroquinone couple.

The stability of the semiquinoid form could be influenced by different factors, such as
the nature of the ring substituents, intra/intermolecular hydrogen bonding, solvent polar-
ity, the presence of acidic or basic additives, and protonation [34–39]. Particularly, chemical
tailoring of benzoquinone linkers, through the functionalization of the six-membered
ring by various substituents (halo, nitro, amino, methoxy, etc.), can stabilize the radi-
cal anion [40], depending on the steric and electronic nature of the substituents, thus
modulating the physical properties of the benzoquinone-based networks at a molecular
level [41]. In fact, the presence of different substituents on the benzoquinoid ring can
tune the one-electron reduction potential, as shown in Table 1. When the benzoquinones
are functionalized with electron-donating substituents, i.e., methyl groups, the reduction
potential is more negative depending on how many methyl groups are present, making
these species more difficult to reduce. On the contrary, it is possible to observe an opposite
trend when electron-withdrawing substituents, such as chlorine, are present. Therefore,
benzoquinones containing chlorine substituents in the ring show more positive reduction
potentials and consequently are easier to reduce [33].

Among the parabenzoquinones derivatives, 2,5-dihydroxy-1,4-benzoquinones (dhbq)
have attracted ever-growing interest in material chemistry due to their versatile coordina-
tion modes (Scheme 2). Furthermore, when hydrogens at the 3 and 6 position are replaced
with different substituents (halogen atoms or functional groups), they are better known
in the literature as anilic acids, formulated as H2X2C6O4 (H2X2An), where X indicates the
substituent and C6O4 indicates the anilate moiety (An) [2,42,43]. When the anilic acids are
in their dianionic form, i.e., anilates, they act as valuable linkers for transition [44–51] and
lanthanide metal nodes [52–58] to build materials showing a combination of fascinating
physical properties and redox states (vide infra). All these features make them interest-
ing molecular building blocks for constructing a large variety of novel supramolecular
frameworks [49,59], as shown in Figure 1. Particularly, most of the reported structures
based on parabenzoquinone derivatives are 2D, paving the way for a further exfoliation
of bulk MOFs to fabricate metal-organic nanosheets (MON) that can show peculiar redox
behavior [60].
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Table 1. Theoretical one-electron reduction potentials of selected benzoquinone derivatives (mV vs.
NHE in CH3CN) [61] showing the influence of substituents.

Benzoquinone Derivatives (ENHE)

1,4-benzoquinone (−255 mV)

2-methylbenzoquinone
(−341 mV)

2,5-dimethylbenzoquinone
(−434 mV)

2,3,5,6-
tetramethylbenzoquinone

(−646 mV)

2-chlorobenzoquinone
(−139 mV)

2,5-dichlorobenzoquinone
(33 mV)

2,3,5,6-
tetrachlorobenzoquinone

(837 mV)

Scheme 2. Chemical structure of anilates and the most common coordination modes.

On this basis, MOFs formed by metal nodes and benzoquinoid-based ligands, es-
pecially anilates, feature an ideal platform for the construction of porous redox materi-
als with switchable conducting/magnetic properties [62], due to the changeover to the
semiquinoid form.
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Figure 1. Extended networks based on anilates.

A pioneering study on a dhbq based-framework, reported by Abrahams et al. [63],
revealed (i) the potential of benzoquinone to act as a suitable building block for constructing
extended frameworks [64] and (ii) its capability to receive/lose electrons while keeping
unchanged the supramolecular architecture. This study opened up unprecedented routes
to tune the physical properties of extended frameworks through redox activity.

The present work focuses on key examples of the latest developments (from 2015 to
date) on redox-active benzoquinone-based MOFs showing conducting and/or magnetic
properties. The aim is to evidence the enhancement/switching of magnetism and/or
conductivity due to a fine modulation of benzoquinone redox properties, highlighting the
extreme versatility of this class of redox-active linkers in tailoring the physical properties
of extended frameworks.

2. Semiquinone-Based MOFs

The incorporation of a semiquinone in a solid framework could be achieved through in
situ or post-synthetic reduction of the benzoquinone derivatives. In 2016, Stock et al. [65] re-
ported on the first example of permanently porous AlIII-MOFs, of the formulas (CH3)2NH2)3
[Al4(dhbq)3(dhbq•)3]·3DMF (1) and ((CH3)2NH2)3[Al4(Cl2An)3(Cl2An•)3]·9DMF (2), con-
taining ligands in both their dianionic form (dhbq2−) as well as in the semiquinonic
form (dhbq3−). Interestingly, MOFs 1 and 2 were obtained by in situ reduction, using
high-throughput methods, which consist of an automated solvothermal equipment with
different ligand/Al stoichiometric ratios, in DMF solvent, for optimizing the synthesis
conditions. MOFs 1 and 2 show specific surface areas of 1440 and 1430 m2g−1, respec-
tively [65]. A similar MOF was also reported by Harris et al. [62,66], by combining FeII

ions with H2Cl2An through a solvothermal reaction in DMF, leading to a novel porous
semiquinoid antiferromagnet formulated as ((CH3)2NH2)2[Fe2(Cl2An)3]·2H2O·6DMF (3).
The chloranilate bridging ligand is simultaneously present in both benzoquinoid and
semiquinoid forms, resulting from a spontaneous electron transfer from FeII to Cl2An2−,
giving rise to a mixed-valence layered MOF [62]. The ligand coordinates in its bis-bidentate
mode, which generates anionic layers where six metal ions are coordinate by the ligand
forming a hexagonal motif, the typical honeycomb packing. The (CH3)2NH2

+ cations
both balance the charge and orient the anionic layers to an eclipsed structure, forming
1D hexagonal channels, which show a Brunauer–Emmett–Teller (BET) surface area of
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1175 m2g−1. MOF 3 shows antiferromagnetic interactions with a spontaneous magnetiza-
tion below 80 K in its solvated form, while the magnetic ordering temperature decreases
to 26 K in the desolvated form (3_desolv), which shows a BET surface area of 885 m2g−1

(Figure 2) and a fully reversible structural contraction consistent with a “breathing” behav-
ior. The high value of magnetic ordering temperature compared to other extended systems
containing the same bridging ligand in its dianionic form [45] highlights the ability of
semiquinone ligands to form porous magnets with enhanced magnetic coupling between
metal ions (vide supra) [62]. Moreover, MOFs 3 and 3_desolv show conductivity values
of σ = 1.4(7) × 10−2 S/cm (Ea = 0.26(1) eV) and 1.0(3) × 10−3 S/cm (Ea = 0.19(1) eV),
respectively, proving the ability of benzoquinone derivatives to construct multifunctional
MOFs, in which porosity, magnetism, and conductivity coexist [62].

Figure 2. (a) Perspective view along the c axis of crystal structures of MOFs 3 (left) and 3_desolv
(right)—Fe, Cl, O, and C atoms are shown in orange, green, red, and grey, respectively. (b) Thermal
variation of χMT for MOFs 3 (blue) and 3_desolv (red) (applied dc field of 1000 Oe). Reprinted with
permission from Reference [62]. Copyright © 2015, American Chemical Society.

Furthermore, H2Cl2An in MOF 3 could be fully reduced to its semiquinoid form via
a post-synthetic approach by using cobaltocene (Cp2Co), which allows a single-crystal-
to-single-crystal chemical (one-electron) reduction, due to its porous crystalline structure,
affording a 2D MOF, formulated as (Cp2Co)1.43((CH3)2NH2)1.57[Fe2 Cl2An 3]·4.9DMF (4).
Remarkably, the Tc can increase up to 105 K, a rare value for MOFs, attributable to the
strong magnetic exchange interactions between metal ions mediated by the semiquinone
radical form. Variable-field measurements show a magnetic hysteresis up to 100 K, which
is consistent with the high Tc value (see Figure 3).

Figure 3. Magnetic and transport properties of 2D semiquinoid–based MOF 4. Reprinted with
permission from [66]. Copyright © 2017, American Chemical Society.

The r.t. conductivity of MOF 4, on a pressed-pellet, has a value ofσ= 5.1(3)× 10−4 Scm−1,
probably due to the complete ligand reduction that remove the mixed-valence character of
the MOF [66]. Variable-temperature conductivity data in the 300–160 K range fit well the
Arrhenius law with Ea = 0.34(1) eV, in agreement with the observed conductivity value of
MOF 4 and lower than MOFs 3 and 3_desolv, supporting the complete chemical reduction.
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Noteworthily, the coexistence of high magnetic ordering and electrical conductivity in the
same material is rather unusual, as well as the capability of the quinoid MOF to retain its
crystalline structure upon post-synthetic chemical reduction, demonstrating the potential
of quinoid-based MOFs to provide a new generation of redox-active conducting magnets
for future spintronics applications (vide infra).

In 2015, Long et al. reported the first example of a 3D dhbq-based MOF, obtained
by a solvothermal reaction and formulated as (NBu4)2FeIII

2(dhbq)3 (5) [67]. This MOF
shows a very rare topology for dhbq2−-based coordination compounds [68–70] with two
interpenetrated (10,3)-a networks of opposing chiralities (Figure 4), generating a topology
that differs from the classic honeycomb structure frequently observed for anilates [71].
This material behaves as an Arrhenius semiconductor with a very high r.t. conductivity
of 0.16(1) S/cm and an Ea of 110 meV. Mössbauer spectroscopy confirms the presence of
high-spin FeIII metal ions, and the high conductivity value can be ascribed to the presence
of mixed-valency due to dhbq3− radicals, remarkably Class II/III according to Robin-Day,
as evidenced by diffuse reflectance measurements in the UV–Vis–NIR range. Noteworthily,
MOF 5, where a FeII-semiquinoid transition occurred, provides a challenging scaffold for
constructing tunable long-range electronic communication in MOF [72].

Figure 4. (a) Molecular structure of a single FeIII center in MOF 5, showing that two radical (H2An3−)
bridging ligands and one diamagnetic (H2An2−) bridging ligand are coordinated to each metal
site. (b) View of the porous 3D crystal structure formed by dhbqn−-bridged FeIII centers, giving the
interpenetrated (10,3)-a nets. Reprinted with permission from Reference [67]. Copyright © 2015,
American Chemical Society.

Interestingly, it is possible to tune the electrical conductivity by combining dhbq or
H2Cl2An with transition metal ions having diffuse 3D orbitals. In 2018, Long et al. reported
on 2D semiquinoid-bridged frameworks based on titanium, chromium, and vanadium, for-
mulated as ((CH3)2NH2)2Ti2(Cl2An)3·4.7DMF (6), ((CH3)2NH2)1.5Cr2(dhbq)3·4.4DMF (7),
and ((CH3)2NH2)2V2(Cl2An)3·6.4DMF (8), respectively [73]. MOFs 6–8 show a honeycomb-
type structure similar to MOFs 1–4, which were studied electrochemically by using solid-
state cyclic voltammetry, which pointed out only ligand-based redox processes for com-
pounds of MOFs 6–7 and a combination of ligand- and metal-based redox activity for
MOF 8. Given their mixed-valence character, they all show electronic conductivity of
values 2.7(2) × 10−3 S/cm, 1.2(1) × 10−4 S/cm, and remarkably 0.45(3) S/cm, respectively,
for MOFs 6–8, following the expected trend based on the correlation with the electronic
structure of the frameworks and, in the case of MOF 8, consistent with the observed
metal−ligand covalency [73].

These results show that the incorporation of semiquinoid ligands in an extended scaf-
fold is a valuable strategy for developing multifunctional MOFs with improved electrical
conductivity and temperature magnetic ordering, making quinone derivatives excellent
candidates for constructing next-generation data processing and storage systems.
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3. Benzoquinone-Based MOFs

Very recently, Miyasaka et al. reported on post-synthetic generation of radical species
via solid-state bulk electrochemistry technique, in a MOF containing diamagnetic ben-
zoquinone derivatives, at the cathode of a lithium-ion battery system (LIB), produc-
ing a radical spin in the benzoquinone moiety and Li+ insertion for preserving neu-
trality [74]. In this case, porosity is a fundamental requirement for host Li+ ions. The
precursor, formulated as (H3O)2(phz)3[Fe2(Cl2An)3] (9), was obtained by the desolvatation
of (H3O)2(phz)3[Fe2(Cl2An)3]·(CH3COCH3)n·(H2O)n(9_solv). MOF 9 shows the typical
honeycomb packing shown by anilates, with alternating anionic/cationic layers, where
the counter cations [(H3O)2(phz)3]2+ are placed between the layers, acting as a templating
agent that leads to 1D hexagonal channels along the c axis, conferring porosity to the
network. MOF 9 shows paramagnetic behavior and short-range ferromagnetic correlations
among FeII ions, through a chloranilate linker, in the layered framework, as can be seen by
lack of hysteresis in the magnetization vs. field (M-H) measurements, even at 5 K. With
the ligand reduction due to the insertion of Li+ ions, antiferromagnetic superexchange
interactions between the radical anion Cl2An•3− and FeII ions took place, and the reduced
MOF, formulated as (Li)3(H3O)2(phz)3[(Fe)2(Cl2An)3] (9_red), shows one of the higher
Tc values reported so far, Tc = 128 K [74] (Figure 5). The formation of the radical ligand
Cl2An•3−, starting from Cl2An2−, leads to a long-range magnetic ordering in the MOF,
making this MOF a potential cathode material of a LIB.

Figure 5. Schematic view of spin variation during the discharge process MOF→ electron-reduced
MOF, (Li+)x[MOF]x−. Reprinted with permission from Reference [74].

Remarkably, Harris et al. [75] reported on the simultaneous switching of magnetic
and conducting properties induced by post-synthetic chemical reduction in a MOF of
formula (Me4N)2[Mn2(Cl2An)3]x.DMF, containing the diamagnetic chloranilate linker (10).
When MOF 10 is soaked in a THF equimolar reducing solution of sodium naphthalenide
and 1,2-dihydroacenaphthylene for several days, a semiquinoid-based MOF, of formula
Na3(Me4N)2[Mn2(Cl2An)3]3.9THF (11), is obtained. The reduction mechanism occurs via
single-crystal-to-single-crystal process (vide infra), provoking the formation of Cl2An•3−

semiquinone radical form starting from diamagnetic Cl2An2−, while the oxidation state
of MnII remains unchanged. Upon the conversion in the radical form of Cl2An2−, a si-
multaneous change in both conductivity and magnetic properties is observed. Indeed
MOF 10 shows a paramagnetic behavior above 1.8 K and a r.t. conductivity value of
σ = 1.14(3) × 10−13 Scm−1 (Ea = 0.74(3) eV), whereas MOF 11 shows antiferromagnetic
interactions between MnII ions below 41 K, mediated by the semiquinone, and a r.t. con-
ductivity value of σ = 2.27(1)× 10−8 Scm−1 (Ea = 0.489 (8) eV), a value 200,000 times higher
than the respective benzoquinoid framework. Furthermore, by soaking MOF 11 in fer-
rocene (Cp2Fe+) solution, a compound, formulated as Na((CH3)4N)[Mn2(Cl2An)3] 5.5THF
0.8CH3CN (12), is afforded, showing similar values of Tc and σ as MOF 10 (oxidized
compound), highlighting the reversibility of the redox process [75], as reported in Figure 6.
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Figure 6. Schematic representation of reversible redox mechanism via single-crystal-to-single-crystal
(SC-SC) process in MOFs 10–12. Reproduced from Reference [75] with permission from the Royal
Society of Chemistry.

The capability of benzoquinone-based MOFs to undergo reversible redox processes, which
provoke a simultaneous switching of magnetic and transport properties, are worth being
highlighted, as they may be considered suitable materials for future spintronic technologies.

4. Conclusions and Perspectives

The recent developments on redox-active benzoquinone-based MOFs, herein dis-
cussed, contribute to the ongoing research on the use of these materials for technologically
relevant applications. It turns out that benzoquinoid/semiquinoid redox activity is a power-
ful strategy to tune their physical properties, in particular magnetism and/or conductivity.
Porosity is a remarkable additional property and porous channels in benzoquinoid MOFs,
allowing for the facile insertion/extraction of the electrolytes, which makes them promising
materials for electrodes and rechargeable energy storage systems [76,77]. Furthermore, it
has been highlighted that post-synthetic chemical redox reactions are a promising strategy
to control ligand redox states in the MOF and the related changes of its conducting and
magnetic properties, while the scaffold with metal–semiquinoid transitions provides tun-
able and delocalized electronic structures. Therefore, the whole redox control over MOFs
is a very challenging task, specifically for their applications in the electronic devices realm.
In more detail, redox control requires open-shell ligands and metals, frontier orbitals with
similar energies, and maximal overlap to favor charge delocalization, and benzoquinones
successfully match these requirements. Finally, the fabrication of semiquinoid MOFs,
showing coexistence of simultaneously switchable conducting and magnetic properties,
represents a forefront challenge for their potential applications in next-generation spin-
tronic technologies, as magnetic transistors, terahertz information, and multifunctional
chips, where data storage and information processing can occur at the same location.
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Abstract: The collective magnetic behavior of photoswitchable 11 nm cyanide-bridged nanoparticles
based of the Prussian blue analogue CsCoFe were investigated when embedded in two different matri-
ces with different concentrations. The effect of the intensity of light irradiation was studied in the less
concentrated sample. Magnetization studies and alternating magnetic susceptibility data are consis-
tent with a collective magnetic behavior due to interparticle dipolar magnetic interaction for the two
compounds, even though the objects have a size that place them in the superparamagnetic regime.

Keywords: Prussian blue analogue; photomagnetism; nanocrystals; photo-switchable; magnetic
properties; dipolar interaction

1. Introduction

Prussian blue analogues are cyanide-bridged coordination networks with a face cen-
tered cubic (fcc) structure and general formula Ay{M[M′(CN)6]1−x�x}•zH2O, where A is
an alkali metal ion (Na, Rb or Cs in most cases), M and M′ are transition metal ions of
the first series with in most cases oxidation states II and III, respectively, and � stands
for metallocyanide vacancies. The cell parameter is close to 10 Å and corresponds to
the distance between two metal ions of the same nature. Water molecules occupy the
tetrahedral sites of the fcc structure and can also be coordinated to M when vacancies
are present. When M′ = Fe and M = Co, the two states CoIIFeIII (SCoI I = 3/2, SFeI I I = 1/2)
and CoIIIFeII (SCoI I I = 0, SFeI I = 0) are close in energy and it is possible to switch from one
to another thermally or by light irradiation at low temperatures. The electron transfer is
accompanied by a spin crossover on Co (from high spin CoII (SCoI I = 3/2) to low spin CoIII

(SCoI I I = 0)), inducing a large change in the magnetic response as first demonstrated by
Hashimoto [1]. More precisely, depending on the nature of the alkali metal ions that occupy
the tetrahedral sites or its absence and on the vacancies concentration, three situations
may be encountered: (i) the magnetic state CoIIFeIII is present at high temperature and no
electron transfer occurs upon cooling (this is the case in the absence or for low contents of
alkali ions); (ii) the diamagnetic state CoIIIFeII is present for the whole temperature range,
but no light induced electron transfer occurs at low temperature (this is the case when
Cs+ occupy the tetrahedral sites. For this case, the compound contains generally some
amount of the CoIIFeIII magnetic phase); and (iii) the magnetic state is present at high
temperature and upon cooling down a thermally assisted electron transfer occurs leading
to the diamagnetic state CoIIIFeII that may be transformed upon light irradiation to CoIIFeIII

at low temperature (this occurs usually when A = Rb or when the concentration of Cs is
well below 1 (see formulae above)). These different cases were thoroughly investigated
and rationalized for the bulk materials [2–7], made of aggregates of nanoparticles in the
hundred nanometers size range.
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Recently we reported [8], the photoswitching behavior of nanocrystals in the sub-
15 nm size containing a large concentration of Cs and almost no vacancies i.e., (CTA)0.4[Cs0.7-
Co{Fe(CN)6}0.9]•H2O that have a majority of the diamagnetic phase at room temperature
and present a light induced switching to the magnetic state at low temperatures. The
photoswitching behavior was studied when the particles were embedded in CetylTrimethy-
lAmmonium (CTA+) which serves as counter-cation for the nanocrystals and for the objects
surrounded by the organic polymer polyvinylpyrrolidone (PVP). However, we did not
report the collective magnetic behavior of the nanocrystals in the photo-induced state.
Indeed, upon irradiation the diamagnetic ions become paramagnetic and, due to an antifer-
romagnetic exchange coupling interaction, a collective ferrimagnetic behavior is observed
in the bulk with a critical temperature close to 20 K [1]. In nanoparticles, the situation
may be different since the magnetic correlation length is limited by the particles’ size if
the interparticle magnetic coupling is absent. The nanocrystals we reported are stabilized
as colloids in water in the absence of stabilizing agents so that they can be embedded in
different matrices and with different concentrations [9]. The objective of this paper is to
investigate the effect of dilution and intensity of light irradiation on the magnetic behavior
of the nanocrystals in the photoinduced metastable state when embedded in CTA and PVP.

2. Results and Discussion
2.1. Materials and Methods

The preparation and full characterization of the nanocrystals were recently reported [8].
The nanocrystals were prepared in water as a stable colloidal solution then recovered by
CTA+ and by PVP to give two samples, namely CsCoFe_CTA and CsCoFe_PVP. The two
materials were prepared as follows.

CsCoFe_CTA. 200 mL of distilled water containing 673 mg of CsCl (4 mM) and 476 mg
(2 mM) of [Co(H2O)6]Cl2 were quickly added to 200 mL of distilled water containing 658 mg
(2 mM) of K3[Fe(CN)6]. The solution was vigorously mixed for 30 min. A methanolic
solution (600 mL) containing 1.10 g (6 mM) of cetyltrimethylammonium bromide (CTABr)
was added dropwise to 200 mL (half) of the aqueous solution containing the nanoparticles.
A precipitate formed during the addition, and it was recovered by centrifugation (9000 rpm
for 20 min) washed with a small amount of water and dried under vacuum overnight.
Elemental analysis for Cs0.7(C19H42N)0.4Co[Fe(CN)6]0.9(H2O), exp. (calc.) C: 20.10 (20.60),
H: 2.43 (3.79), N: 17.70 (17.12).

CsCoFe_PVP. The remaining 200 mL of the colloidal solution containing the nanopar-
ticles was added dropwise for 3 h to 20 mL of an aqueous solution containing 12 g of
PVP. Then, 900 mL of acetone is added. A precipitate formed, and it was recovered by
centrifugation (9000 rpm for 20 min), washed with a small amount of acetone, and dried
under vacuum overnight.

A Transmission Electron Microscopy (Jeol 1400, Jeol, Tokyo, Japan) image of the CTA
materials showed objects with an average size close to 11 nm (Figure 1). The X-ray power
diffraction (Panalytical X-Pert Pro MPD, Malvern Panalytical, Malvern, UK) diagram of the
same material was consistent with face centered cubic structure as expected for Prussian
blue analogues with a cell parameter a = 10.01 Å (Figure 1) [8]. The infrared spectrum
(Perkin Elmer Spectrum 100, PerkinElmer Inc., Norwalk, Connecticut, USA) (Figure 1)
in the 2300–1900 cm−1 regions showed the asymmetric vibration mode of the cyanide at
2115 cm−1 characteristics of cyanide bridge corresponding to a mixture of Fe(II)-CN-Co(III)
and Fe(II)-CN-Co(III) sequences [8].
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and spin crossover after light irradiation [10]. They were also deposited on graphite and 
their conductance was measured, showing a long range electron transport with relatively 
weak attenuation [11]. 

In order to assess the relative concentration in nanoparticles for the two materials, 
we compared their magnetization (Quantum Design XL7, Quantum Design, San Diego, 
CA, USA) values at saturation (Msat) and at low temperature (T = 2 K and B = 6 T) that are 
proportional to the amount magnetic species within the material (Figure 2). A ratio close 
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The magnetic behavior of the two samples CsCoFe_CTA and CsCoFe_PVP was stud-
ied using a SQUID magnetometer in the dc mode by measuring the magnetization in the 
Field Cooled (FCM) and the Zero-Field Cooled (ZFCM) modes and the magnetic hystere-
sis loops at T = 2 K and in the ac mode by measuring the thermal dependence of the in-
phase and out-of-phase magnetic susceptibilities in zero dc applied magnetic field for dif-
ferent frequencies of the alternating magnetic field equal to 3 Oe. The irradiation was car-
ried out using a laser diode connected to an optical fiber at a wavelength of 635 nm with 
the values of the laser power specified below. 

Figure 1. (a) Transmission Electron Microscopy imaging with count as a function of size in the inset; (b) Powder X-ray
diffraction pattern; and (c) infra-red spectrum of the CsCoFe_CTA nanoparticles.

Combined powder X-ray diffraction, magnetic, Electron Paramagnetic Resonance,
and X-ray photoelectron spectroscopy studies are consistent with the presence at room
temperature of the different phases CoIIFeII, CoIIFeIII, and CoIIIFeII, the latter contributing
to 70% of the overall concentration of each nanocrystal [8]. Because of their stability as
isolated objects in water, they were used to unravel the mechanisms of charge transfer and
spin crossover after light irradiation [10]. They were also deposited on graphite and their
conductance was measured, showing a long range electron transport with relatively weak
attenuation [11].

In order to assess the relative concentration in nanoparticles for the two materials,
we compared their magnetization (Quantum Design XL7, Quantum Design, San Diego,
CA, USA) values at saturation (Msat) and at low temperature (T = 2 K and B = 6 T) that are
proportional to the amount magnetic species within the material (Figure 2). A ratio close to
20 was found for Msat(CTA)/Msat(PVP), showing that the concentration in nanoparticles of
the PVP containing materials was 20 times lower than that of the CTA one.
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The magnetic behavior of the two samples CsCoFe_CTA and CsCoFe_PVP was studied
using a SQUID magnetometer in the dc mode by measuring the magnetization in the Field
Cooled (FCM) and the Zero-Field Cooled (ZFCM) modes and the magnetic hysteresis
loops at T = 2 K and in the ac mode by measuring the thermal dependence of the in-phase
and out-of-phase magnetic susceptibilities in zero dc applied magnetic field for different
frequencies of the alternating magnetic field equal to 3 Oe. The irradiation was carried out
using a laser diode connected to an optical fiber at a wavelength of 635 nm with the values
of the laser power specified below.
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2.2. Magnetic Behavior of CsCoFe_CTA

Before irradiation, the FCM plot has the feature of paramagnetic species with only a
slight increase below T = 4 K, consistent with the presence of the paramagnetic species
CoIIFeII and CoIIFeIII (Figure 3a). It is worth noting that the absence of a large increase
of the magnetization at low temperature is in line with a very short correlation length
consistent with relatively isolated CoIIFeIII pairs within the nanocrystals. The sample was
irradiated at T = 2 K, heated up to 25 K, and the FCM was measured. After irradiation,
the shape of the FCM curve suggests a behavior due to a magnetic order or to a blocking
of the magnetization. The ZFCM curve after irradiation shows a maximum at T = 11.8 K
and meets the FCM curve at T = 14.5 K, which is usually associated with the blocking of
particles with different sizes.
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The magnetic hysteresis loop measured before irradiation was characteristic of a
paramagnetic behavior (Figure 3b), without an opening at zero field. After irradiation,
a hysteresis loop appeared with a coercive field HC = 0.41 T, consistent with a relatively
large magnetic anisotropy for the photoinduced state as expected from the presence of CoII

within the nanoparticles [12]. In order to check the reversibility of the photoswitching, the
sample was heated to T = 250 K (above its relaxation temperature) [8] and then cooled
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down to 2 K. The magnetization after relaxation was superimposable to its trace before
irradiation, confirming the total recovery of the ground state.

We performed ac susceptibility studies in order to get more insight into the magnetism
of the system. Before irradiation, there was no maxima in the temperature dependence of
the in-phase (χ′) susceptibility responses for frequencies (ν) ranging from 0.1 to 300 Hz
(ac magnetic field of 3 Oe and zero dc magnetic field). After irradiation, maxima of the
χ′ = f(T) and the χ” = f(T) (χ” is the out-of-phase susceptibility) curves appeared (Figure 4),
which are typical for a system with a blocking temperature that can be associated with
the isolated objects or due to a spin glass like behavior. The value of the maximum of
the χ” = f(T) curve at the lowest frequency available (ν = 0.1 Hz) was 11.2 K, consistent
with temperature of the maximum of the ZFCM curve. The analysis of the out-of-phase
data was performed by plotting the ln(τ) = f(1/T) (with τ(1/2πν) = τ0exp(∆E/kT), where
τ0 is the attempt time, ∆E the anisotropy barrier, k the Boltzmann constant, and T the
temperature of the maximum of the χ” = f(T) curve at a given frequency. The linear fit
of the data (not shown) led to τ0 = 1.2 × 10−27 s and ∆E = 690 K. For single magnetic
domain nanoparticles without (or with very weak) dipolar interactions, values for τ0 close
or larger than 10−12 s were expected [13], and were found for isolated CsNiCr cyanide-
bridged nanoparticles [14]. The τ0 value obtained from the fit had no physical meaning
for isolated objects and it can be assumed that the observed behavior was due to magnetic
interactions among the particles. The Mydosh parameter φ allows for discriminating
among various magnetic behaviors where φ = (Tmax − Tmin)/(Tmax(log νmax − log νmin))
with Tmax and Tmin being the temperatures of the maxima of the χ” = f(T) curves for the
two extreme applied frequencies νmax and νmin respectively, φ values close or larger than
0.12 are expected for nearly isolated magnetic nanoparticles [13,15]. For the present case, φ
(0.03) was much smaller than 0.12, which indicates together with the very small τ0 value the
presence of magnetic interactions (dipolar) among the particles and not to a blocking of the
magnetization of single domain isolated objects. It is possible to fit the relaxation time by
introducing a parameter that accounts for the interaction using the modified Arrhenius law
τ = τ0exp(∆E/k(T − T0), where T0 considers the interaction among the nanoparticles that
leads to more physically acceptable values for τ0 (2.2 × 10−12 s) and an average anisotropy
barrier ∆E = 114 K with T0 = 7 K.

2.3. Magnetic Behavior of CsCoFe_PVP

Here, the nanocrystals were embedded in PVP with a concentration 20 times less.
They are, therefore, spatially more separated than in CsCoFe_CTA.

The maximum of the ZFCM curve was found at T = 4.4 K, a value smaller than for
CsCoFe_CTA (11.8 K) (Figure 5a). The FCM and ZFCM curves joined at T = 5 K. The
difference in the temperature between the maximum of the ZFCM and the temperature
where the two curves join was 0.6 K, which was lower than 2.7 K found for CsCoFe_CTA.
This result means that the difference in the irreversibility temperature and the maximum
of the ZFCM curve for CsCoFe_CTA was not due to the blocking of particles with different
sizes, otherwise we would have had the same difference for CsCoFe_PVP, since the same
objects were present in the two materials. Therefore, magnetic dipolar interactions seem
to affect the irreversibility temperature of the magnetization curves in the case of the
CsCoFe nanoparticles.
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power = 50 mW/cm2.
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Figure 5. (a) M = f(T) in the form of Field Cooled before (H) and after (•) irradiation and Zero-Field
Cooled after irradiation (�), for CsCoFe_PVP and (b) Magnetic hysteresis loop at T = 2 K before (H)
and after (•) irradiation and after relaxation (N); laser power 65 mW/cm2.

The magnetic hysteresis loop opens after light irradiation with a coercive field of
0.053 T (Figure 5b), one order of magnitude weaker than for the non-diluted CsCoFe_CTA
compound. The magnetization curves before irradiation and after relaxation are superim-
posable, as expected, and are consistent with the reversibility of the process.

The susceptibility measurements with an alternating magnetic field of 3 Oe gave a
very weak signal before irradiation, as expected. After irradiation, the light induced data
were not of very good quality because we reduced, as much as possible, the thickness
of the sample in order to have a maximal light penetration. However, we observed the
maxima of the χ′ = f(T) curves at different frequencies that do not coincide (Figure 6a).
The temperature dependence of the out-of-phase susceptibility curves measured at 1 and
2.81 Hz shows slightly different temperature maxima (Figure 6b), even though there is
some uncertainty concerning these values because of the very weak signal.
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Figure 6. (a) χ′ = f(T) and (b) χ” = f(T) at different frequencies of the alternating magnetic field (3 Oe)
for CsCoFe_PVP; laser power 65 mW/cm2.

A photomagnetic effect leading to an opening of the hysteresis loop was observed
as for CsCoFe_CTA, suggesting a similar behavior. However, the maximum of the ZFCM
curve is at lower temperature and the out-of-phase susceptibility signals are too low to
reach a conclusion of the nature of the magnetic behavior of CsCoFe_PVP. We therefore
studied the effect of light intensity on the magnetic behavior of the materials.

2.4. Effect of the Power of Light Irradiation

Another way to sense the effect of magnetic dipolar interactions is to keep the same
concentration of the nanoparticles and gradually increase their magnetic moments. Since
the magnitude of the magnetic dipolar interactions is proportional to the value of the
magnetic moments of the interacting objects, increasing the magnetic moment should
lead to an upward shift of the critical temperature (everything else being equal). In order
to optimize light penetration and obtain the maximum light-induced response, we used
a thin film of few microns of PVP containing the nanoparticles. We first measured the
temporal response to light by irradiating the sample at different laser powers at T = 10 K
and B = 0.5 T. Figure 7a illustrates the variation of the magnetization (M) with time for a
power of 20 mW/cm2. It shows that 50% of the saturation is obtained within 8 min and 90%
within 30 min. When irradiating at a power of 100 mW/cm2 (not shown here), 90% of the
magnetization saturation is reached within 8 min and 50% within 1.5 min, illustrating the
relatively fast response of the sample to light irradiation. The jump at t = 97 min observed
when the laser is switched off (Figure 7a) is due to the thermalization of the sample (to
10 K) that was heated up during the irradiation process. If we assume that the process takes
place in the paramagnetic regime, the temperature during the irradiation process should
be around 20 K. Figure 7b depicts the variation of the reduced magnetization with the laser
power. It shows that at a laser power of 150 mW/cm2 the magnetization of the sample is
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multiplied by around 2.5 due to an increase of the magnetic moments of the individual
objects upon transformation of the diamagnetic CoIIIFeII pairs to magnetic CoIIFeIII.
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Figure 7. (a) Variation of the magnetization (M) with time (t) for a laser power of 20 mW/cm2 and
(b) reduced magnetization ((M−M0)/M0)) performed at T = 10 K and B = 0.5 T showing the rate of
increase of the magnetization after irradiation as a function of the laser power.

In order to assess the increase of the nanoparticles’ magnetic moments with the
intensity of light on the overall magnetic behavior, we measured the ZFCM curves after
irradiation at T = 2 K and B = 0.005 T for laser power values of 20, 65, and 150 mW/cm2

(Figure 8). The value of the maximum of the ZFCM curves shifts from 4.0 to 5.1 K when
going from 20 to 150 mW/cm2. This behavior shows that, everything else being equal, the
increase of the critical temperature is directly related to the increase of the local magnetic
moments within the sample. This behavior can be due either to interparticle magnetic
dipolar interactions that increase upon an increase of the objects’ magnetic moments,
or to an increase of the blocking temperature of the isolated objects if they were in the
superparamagnetic regime. The reversibility of the process was examined by measuring
the FCM curves after relaxation (heating up to T = 250 K) for the different laser power
values. They were all found identical to those before irradiation, showing that no damage
occurs during the irradiation process even at a power of 150 mW/cm2.
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CsCoFe_PVP.

A spin glass-like behavior was reported by us for the 3 nm NiIIFeIII cyanide-bridged
nanoparticles [16,17]. It was also observed for CsCoFe nanoparticles, but was assigned to a
size effect [18] and, later, CoFe particles embedded in mesoporous silica were investigated
with the conclusion that interparticle dipolar interactions are present [19,20]. However,
because of the nature of the materials (nanoparticles embedded in silica), it was not possible
to investigate the effect of dilution in order to confirm that the magnetic behavior is indeed
due to dipolar magnetic interactions and not to the intrinsic behavior of isolated particles.
Indeed, if the particles have a size larger than that of the critical magnetic single domain size,
they will have a behavior similar to that of superparamagnetic particles (single magnetic
domain) feeling magnetic dipolar interactions. Moreover, it is usually difficult to reach a
definite conclusion without highly diluting the nanoobjects.

We have already investigated the magnetic properties of highly diluted CsNiCr PBA
particles where we demonstrated that successive dilution in PVP allows isolating the
objects and observing the single domain regime with a Néel–Brown behavior and a crit-
ical size (D) of 22 nm [14]. It is possible to use this result to estimate the critical size
for the CsCoFe network by comparing the magnitude of the exchange coupling interac-
tion and the magnetic moments of the two networks. For cubic particles, D is given by
7.2(A/0.5µ0M2)1/2, where A is proportional to the exchange coupling between two ions
of the network and M is the magnetic moment of a pair of interacting metal ions [21].
Actually, the CoII-FeIII exchange coupling interaction for the CsCoIIFeIII network is about
four times weaker (|JCoFe| ≈ 3.7 cm−1) than that of CsNiCr (JNiCr ≈ 16 cm−1) [22] since
its TC is equal to 21 K [1] while that of CsNiCr is 90 K [1,22,23]. The magnetic moment
of a CoIIFeIII pair is equal to 2 Bohr Magnetons due to the antiferromagnetic coupling
between SCoI I (3/2) and SFeI I I (1/2), while this value is 5 Bohr Magnetons for the CsNiCr
network due to the ferromagnetic exchange coupling between NiII (SNiI I = 1 and CrIII (SCrI I I

= 3/2). Using these values and the expression of the critical size of a single magnetic
domain leads to D = 27.5 nm for the CsCoFe network, a value much larger than the size of
the nanocrystals at hand (a maximum of 11 nm if light fully converts the particles from
the ground diamagnetic to the metastable magnetic state), ensuring that the investigated
objects are in the superparamagnetic regime. In the superparamagnetic regime, a blocking
of the magnetization of the isolated objects may be observed if the magnetic correlation
length is large enough for a single object to behave as single giant spin. This cannot be
the case for the present nanoparticles since the CoII-FeIII exchange coupling interaction
value (≈ 3.7 cm−1) is very close to the temperature maxima of the ZFCM curves (Figure 8).
Consequently, the shift up of these temperature maxima upon increasing the laser power
can only be due to interparticle dipolar magnetic interactions.
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3. Concluding Remarks

The collective magnetic behavior of CsCoFe photoswitchable 11 nm cyanide-bridged
nanoparticles was investigated by examining the effect of their dilution in two different
matrices with a concentration ratio around 20 between the two compounds. The magnetic
data performed in static magnetic field (FCM, ZFCM) and the susceptibility data in the
presence of an alternating field are consistent with a spin glass-like behavior, compatible
with interparticle magnetic dipolar interactions thanks to the analysis of the out-of-phase
susceptibility data of the more concentrated sample (in CTA). For the less concentrated
sample (in PVP), increasing the light intensity shifts up the temperature maximum of the
ZFCM curves. The analysis of the critical single magnetic domain size and the magnetic
correlation length within the objects is consistent with an interparticle dipolar coupling
rather than an increase of the blocking temperature of single domain objects.
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Abstract: Three new ionic salts containing [M(CN)8]4− (M = MoIV and WIV) were prepared using
large complex cations based on a non-conventional motif built with the tris(2-aminoethyl)amine
(noted hereafter tren) ligand, [{M’(tren)}3(µ-tren)]6+ (M’ = CuII and ZnII). The crystal structures of
the three compounds show that the atomic arrangement is formed by relatively isolated anionic
and cationic entities. The three compounds were irradiated with a blue light at low temperature,
and show a significant photomagnetic effect. The remarkable properties of these compounds are
(i) the long-lived photomagnetic metastable states for the [Mo(CN)8]4−-based compounds well above
200 K and (ii) the rare efficient photomagnetic properties of the [W(CN)8]4−-based compound. These
photomagnetic properties are compared with the singlet-triplet conversion recently reported for the
K4[Mo(CN)8]·2H2O compound.

Keywords: coordination compounds; octacyanometalates; photomagnetism

1. Introduction

The richness of the photochemistry of K4[MoCN8]·2H2O in solution has been known
for a few decades [1,2]. Irradiation of aqueous solutions of [MoCN8]4− in its ligand field
bands (350–400 nm) allows photosubstitution reactions, with the isolation of different
species, [MoCN7(H2O)]3− or [MoCN7(OH)]4− [3], that depend on the pH of the solutions.
The [Mo(CN)8]4− complex can be used as a building block to form a prolific series of both
polynuclear compounds and coordination polymers [4,5]. Several of these compounds
show interesting photomagnetic properties based on either photo-induced electron transfer
for systems exhibiting Metal-to-Metal Charge Transfer (MMCT) or Singlet-Triplet formation
on MoIV [5].

More recently, an intriguing breakage of Mo_CN bond has been discovered in the
crystalline solid state after blue light irradiation at 10 K for the K4[MoCN8]·2H2O com-
plex [6]. The removal of one CN ligand from the Mo coordination sphere is accompanied
by the capture of the free CN group in the crystal lattice by water molecules. Interestingly,
first, the photo-induced effect is accompanied by a spin change, and second, it is fully
reversible through a thermal heating. This phenomenon of decoordination/coordination
is quite common in solution, in particular for Ru [7,8], Fe [9] and Ni [10] complexes, but
it remains rare in the solid state and even rarer in the crystalline solid state without loss
of crystallinity. So far, only very few compounds show a reversible bond breaking. One
example is based on a Co complex [11] that exhibits a dynamic bond switching with a
modulation of the ligand field and the orbital momentum of the metal ion. The second
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example is shown in a family of spin crossover FeII [12,13] complexes where the decoor-
dination/coordination process can be thermally and photo-induced, as it is the case in
the K4[Mo(CN)8]·2H2O complex [6]. To explore if this phenomenon can be extended to
other Mo/W-based systems, we have started a systematic study of compounds having non-
bridged [M(CN)8]4− complexes. In this work, we will present the synthesis, the structural
and magnetic characterizations of two new anionic [Mo(CN)8]4− complexes crystallized
with large coordination cations containing Cu2+ and Zn2+ ions. Additionally, we extend
this study to the analogous [W(CN)8]4− complex. For these three new systems, significant
photomagnetic responses have been obtained. These properties have been analyzed with a
model based on the recent report of the photo-induced single-triplet crossover [6].

2. Results and Discussion
2.1. Synthesis and Characterization

The compounds 1 (for [{Cu(tren)}3(µ-tren)]4[Mo(CN)8]6·45H2O·2CH3OH), 2 (for
[{Zn(tren)}3(µ-tren)]2[Mo(CN)8]3·18H2O) and 3 (for [{Zn(tren)}3(µ-tren)]2[W(CN)8]3·17H2O)
were obtained by mixing solutions containing 3d divalent metal M2+ cations, tren ligand
and [M(CN)8]4− anions following two different methods. Green crystals of compound 1
were prepared by a layering method by the diffusion of an aqueous solution of CuCl2·2H2O
and tren ligand into the solution of K4[MoIV(CN)8]·2H2O, the two solutions being sepa-
rated by a layer of methanol and water. Compounds 2 and 3 were prepared by one-pot
method. By mixing solutions of ZnCl2, tren ligand and K4[MIV(CN)8]·2H2O (M = Mo (2)
and W (3)), a clear yellow solution was obtained. Then the slow addition of about 1.5 mL
of methanol led to the formation of target yellow crystals of 2 and 3 after one night.

Infrared spectra (IR) for compounds 1, 2 and 3 are very similar (Figure S1 and Tables
S1 and S2). The three compounds show the characteristics bands of the tren ligand at 1600,
1450, 1300, and 995 cm−1. 1 and 2 show a broad band centered at 2098 cm−1, the signature
of terminal CN ligands coordinated to the Mo4+ by the C atoms. For compound 3, this band
appears at 2091 cm−1 in agreement with the coordination of the terminal CN to the W4+

by the C atoms. These spectra indicate that 1, 2 and 3 are ionic salts and that the chemical
environment of the [M(CN)8]4− anions are similar in the three compounds.

UV-Vis spectra of compounds 2 and 3 are similar to that of K4[Mo(CN)8]·2H2O and
K4[W(CN)8]·2H2O [14], while there is a broad absorption with maximum and shoulders
at 877 and 657 nm for compound 1 (Figure S2 and Table S3). These bands also appear
in [Cu(tren)]2+ complexes in square pyramidal geometry [15], and suggest that the tren
ligand acts in 1 as a tetradentate ligand for the Cu2+ ion. This means that a fifth ligand
is necessary to assure for the Cu2+ ion a bipyramid geometry. It is worth noteing that for
1 no additional transition except the transitions observed in its precursors is observed,
suggesting the absence of an outer-sphere charge transfer in Cu2+/Mo4+ pairs in 1.

2.2. Crystal Structure Description of the Compounds
2.2.1. [{Cu(tren)}3(µ-tren)]4[Mo(CN)8]6·45H2O·2CH3OH (1)

Single Crystal X-ray diffraction (SCXRD) analysis shows that 1 crystallizes in the
monoclinic space group P21/c. As shown by the crystallographic data in Table A1, the unit
cell of 1 is very large, leading to up to 323 atoms (without H atoms) with 3D coordinates
in the asymmetric unit which certainly puts this compound in the category of the giant
unit-cell ones (V > 20,000 Å3). This makes the SCXRD crystal structure determination
a challenge in itself. 1 is constructed by the assembly of [{Cu(tren)}3(µ-tren)]6+ cations
and [Mo(CN)8]4− anions with no covalent bond between them. The packing diagram
of 1 is shown on Figure S4. There are six [Mo(CN)8]4− anions and four [{Cu(tren)}3(µ-
tren)]6+ cations in the asymmetric unit (Figure 1). The very large number of solvent
molecules in the asymmetric unit (>40 water and/or methanol molecules) and the flexible
arms for the [{Cu(tren)}3(µ-tren)]6+ cations cause structural disorder, which increases the
difficulty in the crystal structure determination. Nevertheless, it is important to note that
the crystal structure has been solved without ambiguity and confirmed by the diffraction

69



Magnetochemistry 2021, 7, 97

data investigation on several crystals from different batches. As a result, while the solvent
part cannot be discussed in detail, the structural parameters and notably the 3D atomic
coordinates for the anions and cations in 1 are, on the contrary, robust and can be discussed
further. The crystallographic data and selected bond lengths and angles are presented in
Table A1, Tables S4 and S7.
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The [{Cu(tren)}3(µ-tren)]6+ is constructed by one µ-tren linked to three Cu sites, where
each copper site is blocked by another tren ligand. Therefore, the tren ligands serve as
a tetradentate ligand for the copper sites, and as a tridentate ligand to link the three
different Cu sites contained in the trimetallic cation. To the best of our knowledge, this
unusual trinuclear copper complex cation has been reported only in the crystal structure
of [Cu3(tren)4][Pt(CN)4]3·2H2O [16]. As indicated by the continuous shape measurement
(CShM) [17] values, all the copper sites adopt triangular bipyramidal geometry, with
the exception of Cu9 site which corresponds to distorted square pyramidal geometry,
in agreement with the UV-Visible spectra (see Table A2). For instance, the CShM value
for Cu1 site is 0.420, corresponding to the triangular bipyramidal geometry and for Cu9
site is 1.491, corresponding to the square pyramidal geometry. The three copper sites in
[{Cu(tren)}3(µ-tren)]6+ are arranged in the form of an irregular triangle, for example, with
rather long Cu...Cu distances, such as as 7.450, 7.542, 9.156 Å for Cu1...Cu2, Cu2...Cu3 and
Cu1...Cu3 distances, respectively.

The [Mo(CN)8]4− anion is stabilized by wide-numerous N-H . . . N≡C and O-H
. . . N≡C hydrogen bonds formed by the interaction of [{Cu(tren)3(µ-tren)]6+ or water
molecules with [Mo(CN)8]4− units, respectively. The selected bond lengths and angles
for Mo sites are presented in Table S4. Average bond distances of Mo-C and C≡N
are 2.179(10)/2.170(10)/2.176(14)/2.177(10)/2.153(13)/2.169(10) and 1.145(14)/1.141(14)/-
1.135(6)/1.137(13)/1.157(10)/1.138(14) Å, respectively, while the average Mo-C≡N bond
angles equal to 177.0(10)/176.7(10)/175.9(12)/177.5(9)/176.8(13)/177.3(10)

◦
. All the Mo

sites reveal a geometry close to the square antiprism (SAPR), as evidenced by continuous
shape measurement (CShM) analysis (Table A2). The minimum Mo . . . Mo distances are
9.65, 9.65, 9.77, 9.67, 9.80, 9.67 Å, which are much longer than the distance of 7.53 Å found
in the reference compound K4[MoIV(CN)8]·2H2O [6], but appear comparable to the values
observed for [Ni(bipy)3]2[Mo(CN)8]·12H2O [18].

2.2.2. [{Zn(tren)}3(µ-tren)]2[Mo(CN)8]3·18H2O (2)

Similarly to 1, compound 2 is based on the blocks [{M’(tren)}3(µ-tren)]6+ (M’ = Cu
(1) and Zn (2)) and [Mo(CN)8]4− (Figure 2), but it crystallizes in the non-centrosymmetric

70



Magnetochemistry 2021, 7, 97

space group Cc. The unit-cell is about twice smaller than for 1, leading to half of the
asymmetric content, namely, three [Mo(CN)8]4− anions, two [{Zn(tren)}3(µ-tren)]6+ and
roughly half of the solvent (water) molecules (one formula unit). The crystal structure
refinement is consequently of better quality than for 1, reaching almost for 2 the standard
criterion expected for small molecules, although here also the number of atoms in the
asymmetric unit remains impressive (157 without H atoms). The crystallographic data and
selected bond lengths and angles are presented in Table A1, Tables S5 and S8. In the same
way as for 1, the crystal structure of 2 contains a large number of solvent molecules that are
difficult to localize, although here the determination of H atoms position could reasonably
be conducted. However, it is hazardous to discuss in detail features that concern the solvent
entities. The coordination metal ions are on the contrary very well defined and can be
further discussed. Similar to [{Cu(tren)}3(µ-tren)]6+ found in 1, the zinc sites adopt the tri-
angular bipyramidal geometry, for example, with continuous shape measurement (CShM)
value of 0.817 for Zn1 site (see Table A2). The coordination geometry of the Zn ions is
close to the ones found in the reported trinuclear compound MoZn2–tren [19]. The selected
bond lengths and angles for Mo sites are presented in Table S5. Average bond distances
of Mo-C and C≡N are 2.174(13)/2.166(12)/2.179(12) and 1.139(12)/1.150(12)/1.132(12) Å,
respectively. The average Mo-C≡N bond angles are equal to 177.0(12)/177.7(15)/176.6(13)

◦
.

The shortest Mo . . . Mo distances are 9.48/9.46/9.46 Å, which fall in the same range as the
ones found in compound 1. The three Mo sites in 2 are also close to a square antiprism
(SAPR) geometry as evidenced by the continuous shape measurement (CShM) values
(Table A2).
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2.2.3. [{Zn(tren)}3(µ-tren)]2[W(CN)8]3·17H2O (3)

The crystallographic data of 3 are given in Table A1. It adopts the same unit-cell and
space group as 2 and atomic positions are very close in these two structures. The crystal
structure of 3 is therefore similar to the one of 2 with the replacement of [Mo(CN)8]4−

anions by [W(CN)8]4- anions. Crystal structure criteria of 3 are even slightly better than
for 2. The asymmetric unit of 3 is given in Figure S3, whereas the selected bond lengths
and angles are reported in Tables S6 and S9. The [W(CN)8]4− anions also adopt the SAPR
geometry with CShM values comparable with those of the Mo sites found in 2. The shortest
W . . . W distances are 9.40/9.45/9.40 Å.

Notably, the crystal packing for 3 is quite different from that for 1 (Figure S4). Com-
pounds 1 and 3 exhibit as two-dimensional and three-dimensional coordination polymers
if considering the semi-coordination bonds, respectively.
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The experimental powder X-ray diffraction (PXRD) patterns are globally consistent
with the above SCXRD results but the large unit-cells combined with the low symmetry
involved make the PXRD almost mute in term of reliable information (Figure S5). We can
only note that the powders of 1 and 3 look more poorly crystalline than the powder of 2.

2.3. Magnetic and Photomagnetic Properties

The magnetic and photomagnetic properties of 1, 2 and 3 have been studied with
microcrystalline powders sealed in a small PVE bag (see experimental section). Irradia-
tions at 405 nm were selected because this wavelength fits with the energy range of one
ligand field transition of the anions. For the three compounds, the magnetic properties
(i.e., magnetization versus field at low temperatures and/or χT versus temperature, χ
being the magnetic susceptibility and T the temperature) were first studied in the dark
(curves named dark). At 10 K, the samples are irradiated and the time dependence of
the magnetic properties is followed during light irradiation. After the light excitations,
magnetizations versus field at low temperature are measured. Then the samples are heated
again to evaluate the persistence of the photo-induced changes from 2 K to 300 K (curves
named after blue irradiation). Finally, the compounds are measured again in the dark from
300 K to 10 K to check the reversibility of the photo-induced magnetic changes (curves
named relaxation). All the magnetic curves shown below are normalized per Cu2Mo for 1,
Zn2Mo for 2 and Zn2W for 3. This normalization will allow an easier comparison for the
discussion of the results.

2.3.1. CutrenMo Compound (1)

As observed from the temperature dependence of the χT and low-temperature mag-
netizations in the dark (Figure 3), 1 reveals a paramagnetic behavior with a χT product
equal to 0.80 cm3 mol−1 K in agreement with two Cu2+(3d9) ions of S = 1/2 (per Cu2Mo
units) with a Zeeman factor of g = 2 (Figure S6) and one diamagnetic Mo4+(4d2 in square
antiprism geometry) ion. The superposition of the reduced magnetizations measured at
1.8, 3 and 5 K suggests the absence of magnetic anisotropy. When 1 is irradiated with
a light of 405 nm, the value of χT at 10 K increases from 0.79 to 1.4 cm3 mol−1 K after
25 h of irradiation (inset, Figure 3). Then the light is switched off, and low-temperature
magnetizations at 1.8, 3 and 5 K were measured. The saturation magnetization at 1.8 K is
now 3.09 Nβ, significantly higher than the value of 2 Nβ found before irradiation. The
non-superposed reduced magnetizations suggest anisotropy in the photo-induced state.
This observation is clearly different in the ground state. The temperature dependence of
the χT from 2 K to 300 K first increases to reach a plateau at 1.67 cm3 mol−1 K at 30 K.
When compared with the χT product before irradiation, the χT value has increased with
a maximum of 0.89 cm3 mol−1 K. Then, the χT product slightly decreases monotonously
to reach 1.43 cm3 mol−1 K at 250 K. Above this temperature, a faster decrease of the χT
product is observed. At 300 K, the χT value is back to the value obtained before the light
irradiation. A new plot χT vs. T (red curve on Figure 3) shows that the photo-induced
process is reversible.

2.3.2. ZntrenMo Compound (2)

As 2 contains only diamagnetic metal ions Zn2+(3d10) and Mo4+(4d2) in square an-
tiprism geometry, the χT values measured in the dark are in agreement with the diamag-
netic nature of the compound (Figure 4). Under light irradiation at 405 nm, the value of χT
increases from 0 to 0.9 cm3 mol−1 K after 38 h of irradiation. The reduced magnetizations
measured after the light excitation are not superimposed. This is consistent with a weak
magnetic anisotropy in the photoinduced state. The saturation value of magnetization at
1.8 K is about 1.15 Nβ. The temperature dependence of the χT product from 2 K to 300
K has a similar shape to the χT vs. T plot of 1. For 2, a maximum value of χT product of
0.89 cm3 mol−1 K is reached at 15 K. Then, the χT product decreases monotonously to reach
0.7 cm3 mol−1 K at 240 K. Above this temperature, a faster decrease of the χT product is
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observed. At 300 K, the χT value is equal at 0.3 cm3 mol−1 K, well above the value obtained
before the light irradiation. The lack of complete reversibility after thermal heating in 2
is quite unusual for a photomagnetic compound containing the [Mo(CN)8]4− unit. This
uncommon observation needs further structural investigations to be fully understood.
Finally, a new χT vs. T plot (red curve on Figure 4) shows that the photo-induced process
is not fully erased after a room-temperature treatment. A clear remaining paramagnetic
signal around 0.2 cm3 mol−1 K is observed.
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2.3.3. ZntrenW Compound (3)

As evidenced above, 2 and 3 exhibit very similar crystal structures, but they obviously
contain a different octacyanometalate anion, albeit in the same geometry. As shown by
the magnetic properties of 3 in Figure 5, 3 is a diamagnetic compound in agreement with
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the diamagnetic configuration of two Zn2+(3d10) ions and the one W4+(5d2 in square
antiprism geometry) ion, with χT values measured in the dark close to 0. Under light
irradiation at 405 nm, the value of χT increases from 0 to reach 0.49 cm3 mol−1 K after 30 h
of irradiation. The reduced magnetizations measured after the light excitation are almost
superimposed, consistent with a very weak magnetic anisotropy in the photoinduced
state. A clear saturation of magnetization at 1.8 K is observed at the value of 0.51 Nβ. The
temperature dependence of the χT product from 2 K to 300 K is of similar shape to the
χT vs. T plots of 1 and 2. For 3, a plateau is observed with a maximum value of 0.66 cm3

mol−1 K around 50 K. Then, a small decrease is observed to reach 0.4 cm3 mol−1 K at 200 K.
Above this temperature, a faster decrease of the χT product is observed, and the χT value
is back to 0 at 250 K, suggesting that the compound is back in its diamagnetic ground state.
This is confirmed by a new χT vs. T plot measured after the light excitation and thermal
heating of the sample.
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3. Discussion and Conclusions

In this work, we were able to synthesize three new ionic salts containing the 4d
[Mo(CN)8]4− anion or its 5d analog [W(CN)8]4− anion. The [Mo(CN)8]4− anion is known
to be involved in several polynuclear compounds exhibiting photomagnetic properties. On
the other hand, only few examples of photomagnetic systems based on the [W(CN)8]4−

complex have been reported [20,21]. The three systems reported in this work are ionic salts
and are based on large cations of formula of [{M’(tren)}3(µ-tren)]6+ containing 3d metal
ions and the [M(CN)8]4− anions. 1 adopts a slightly different crystal packing than the
ones found in 2 and 3 which are almost isostructural if we exclude their solvent content.
However, based on the vicinity of the coordination geometries of the metal ions in 1, 2 and
3, it is reasonable to compare their respective photomagnetic properties.

The three compounds reported in this work show a significant photomagnetic re-
sponse. Some of the characteristics of their photo-induced states are common with the
other photomagnetic systems based on [M(CN)8]4− anions. First, the photo-induced states
are formed at 10 K with a blue light irradiation. Second, they also have a high thermal
stability, and the recovering of the original magnetic properties (i.e., before irradiation)
occurs around room temperature. Several mechanisms are proposed in the literature to
explain the observed photomagnetic properties: metal-to-metal charge transfer (MMCT) or
spin crossover (SCO) mechanisms. The metal-to-metal charge transfer is possible where the
[M(CN)8]4− units can be easily oxidized by the presence of reductive species, as, for exam-
ple, Cu2+ ions. In this case, the presence of a metal-to-metal charge transfer transition (from
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Mo4+-Cu2+ to Mo5+-Cu+) in optical spectra appearing around 500 nm is the characteristic
feature of this mechanism [22]. For compound 1 of this study, no MMCT is observed in its
optical spectrum. Another indirect proof of the absence of MMCT mechanism for 1 is the
comparison with the photomagnetic properties of 2. In 2, the Cu2+ ion has been substituted
with Zn2+ ion which cannot easily form a Zn+ ion, thus excluding the MMCT mechanism.

The similarities of photomagnetic properties of 1 and 2 are nicely shown with the
photomagnetic difference curves of 1 where the Cu2+ contributions are removed by con-
sidering the difference of χT or M before and after irradiation (Figure 6). The resulting
χT vs. T and M vs. H plots display a strong similarity with the plots of 2 (Figure 4). This
suggests that the photomagnetic properties of 1 and 2 come from the [Mo(CN)8]4− anions.
As mentioned in the introduction, this anion can display a SCO between a S = 0 state and
a S = 1 state. Recently, we have investigated the photo-induced singlet-triplet trapping
in the K4[Mo(CN)8]·2H2O that is accompanied by a breaking of one Mo-CN bond in the
crystalline state [6]. To evaluate if this mechanism is active in 1 and 2, we have analyzed the
hypothesis of the photo-induced formation of the triplet state. Because the photomagnetic
properties of 2 are not fully reversible, we only analyzed the magnetic data of 1 after the
removal of the Cu2+ contributions (Figure 6). The triplet state was computed using the
anisotropy parameters calculated in [6], namely |D/kB| = 20 K and g = 1.9. To simulate
correctly the properties of 1, we also used a partial population of the triplet state at 75%
(p = 0.75). Figure 6 shows the good reproducibility of the experimental data at a low
temperature (T < 120 K), considering the triplet state. At higher temperatures, relaxation
that is not considered in the theoretical model probably occurs, and leads to discrepancies
with the experiment. This comparative analysis suggests the presence of a SCO mechanism
centered on the [Mo(CN)8]4− anions in 1 and 2.
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The photomagnetic properties of the two Zn-based compounds 2 and 3 are similar but
3 displays a lower photoconversion than 2, as shown by the lower observed values in the
χT vs. T and M vs. H plots. By analogy with 2, the observed behavior can be interpreted as
a spin crossover from a low spin S = 0 to an high spin S = 1 for a 5d2 complex. Compared
to other systems containing the [WIV(CN)8]4− units, the photoexcited state of 3 has a
significant magnetic response, even at 200 K. This feature shows that the photo-induced
state in 3 has a lifetime much higher that the lifetimes observed in 3d spin crossover metal
ions exhibiting the LIESST phenomenon [23].
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To conclude, a series of new photomagnetic compounds based on isolated octa-
cyanometalates are reported in this work. Their photomagnetic properties have been
analyzed as a photo-induced singlet-triplet crossover on the [M(CN)8]4−. Remarkably,
we have shown that the incorporation of [MIV(CN)8]4− with bulky [{M(tren)}3(µ-tren)]6+

cations leads to a high thermal stability (above 200 K). This is quite an interesting re-
sult because the thermal stability of the photo-induced magnetic changes in the refer-
ence K4[Mo(CN)8]·2H2O compound is below 65 K [6]. To check if these photo-induced
changes are also accompanied with a M-CN bond breaking, as already reported in the
K4[MoIV(CN)8]·2H2O compound, other measurements are necessary such as photocrystal-
lography at low temperature. These compounds are not the best candidates for that because
of their huge solvent content. Therefore, the solvent composition of the compounds should
be improved, for instance, by using organic cations to limit the presence of water during
the crystallization and therefore most likely to increase the crystallinity and consequently
the accuracy of the crystal structure determination. To further explain the structure and
photomagnetic property relationship in ionic compounds built with [M(CN)8]4− anions,
the exploration of other type of cations to change the spatial arrangement of photomagnetic-
active [MIV(CN)8]4− is still highly demanded.

4. Materials and Methods
4.1. General Remarks

K4[MoIV(CN)8]·2H2O and K4[WIV(CN)8]·2H2O were synthesized successfully by
following the procedures according to the literature [24].

4.2. Synthesis
4.2.1. Preparation of CutrenMo (1)

Compound 1 was prepared by a layering technique. A mixture of 3 mL solution
CuCl2·2H2O (35.7 mg, 2.0 mmol) and 528 mg of tren ligand was diffused through 20 mL MeOH:
H2O (1:1) solution into the bottom 1 mL solution of K4[MoIV(CN)8]·2H2O (100 mg, 2.0 mmol).
Green crystals of compound 1 would appear after one week of slow diffusion. Elemental
analysis for 1 is as follows. Anal. Calcd for [[{Cu(tren)}3(µ-tren)]12[Mo(CN)8]6·45H2O·2MeOH,
Cu12Mo6C146N112H386O47: C, 30.23%; H, 6.71%; N, 27.04%. Found: C, 31.08%; H, 6.29%; N,
27.70% FT-IR (cm−1): 3263vs [ν(O-H), ν(N-H)]; 3147m, 2956w, 2923w, 2886w, 2825w [ν(C-H)];
2091vs [ν(C≡N)]; 1591m [γ(O-H)]; 1471m, 1311w [ν(C-N), ν(C-C)]; 1101w, 1061ms, 997vs, 981m,
900w, 900w, 872w, 750w, 633s(br) [γ(N-H out-of-plane)].

4.2.2. Preparation of ZntrenMo (2)

In the first step, we mixed a 2 mL solution of ZnCl2 (30.0 mg, 2.2 mmol) with 240 mg
solution of tren ligand. The above mixture solution was added slowly to 1 mL solution of
K4[MoIV(CN)8]·2H2O (50 mg, 1.0 mmol) avoid shaking. Then 1.5 mL of MeOH was slowly
added, and yellow crystals of compound 2 would appear after one night. FT-IR (cm−1):
3257vs [ν(O-H), ν(N-H)]; 3145m, 2964w, 2869w [ν(C-H)]; 2098vs [ν(C≡N)]; 1585m [γ(O-
H)]; 1473m, 1322w [ν(C-N), ν(C-C)]; 1083w, 1054w, 1007ms, 989vs, 885m, 865w, 655s(br)
[γ(N-H out-of-plane)].

4.2.3. Preparation of ZntrenW (3)

Similarly to compound 2, we first mixed a 2 mL solution of ZnCl2 (30.0 mg, 2.2 mmol)
with 240 mg solution of tren ligand. The above mixture solution was added slowly to 1 mL
solution of K4[WIV(CN)8]·2H2O (58 mg, 1.0 mmol) avoid shaking. Then 1.5 mL of MeOH
was slowly added, and yellow crystals of compound 3 would appear after one night. FT-IR
(cm−1): 3246vs [ν(O-H), ν(N-H)]; 3149m, 2960w, 2917w, 2894w, 2871w [ν(C-H)]; 2091vs
[ν(C≡N)]; 1581m [γ(O-H)]; 1473m, 1322w [ν(C-N), ν(C-C)]; 1083w, 1056w, 1007ms, 983vs,
885m, 865w, 655s(br) [γ(N-H out-of-plane)].
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4.3. Physical Measurements
4.3.1. Infrared Spectroscopy

The FT-IR spectra were recorded in the range of 650 cm−1–4000 cm−1 on a Thermo-
Fisher NicoletTM 6700 ATR (attenuated total reflection) spectrometer equipped with a
Smart iTR diamond window on pure solid samples.

4.3.2. UV-Visible Spectroscopy

Solid-state UV-vis-NIR absorption spectra were recorded with a PerkinElmer Lambda
35 UV/vis spectrophotometer equipped with a PerkinElmer Labsphere on pure solid samples.

4.3.3. Magnetic Measurements

All magnetic properties were measured by a Quantum Design MPMS XL system in the
range of temperatures of 1.8–300 K. Photomagnetic studies were conducted on a smaller
sample (ca. 0.5 mg) sealed in a small PVE bag fixed with Scotch tape, blocked tightly
between two transparent polypropylene films and mounted in the probe equipped with an
optical fiber entry enabling the transmission of laser light of 405 nm line (P ≈ 3 mW/cm2)
into the sample space. We used for the three compounds the molecular weights shown in
Table A1. To compare the magnetic data of the three compounds, the plots were obtained
considering per M’2Mo or M’2W units. This means that the molecular weights have been
divided by 6 for 1 in Figure 3, and by 3 for 2 and 3 in Figures 4 and 5. Diamagnetism of the
sample holders and of the constituent atoms (Pascal’s tables) was accounted for in all the
obtained magnetic and photomagnetic data.

4.3.4. Powder X-ray Diffraction (PXRD)

PXRD was performed on a PANalytical X’PERT MDP-PRO diffractometer (Cu Kα ra-
diation) equipped with a graphite monochromator using the θ-θ Bragg–Brentano geometry.
The sample was deposited on a silicon holder for Bragg–Brentano geometry.

4.3.5. Elemental Analysis

Elemental analyses of C, H and N were carried out with a German Elementary Vario
EL III instrument.

4.3.6. Single-Crystal X-ray Crystallography

Data collection and reduction for 1 and 2 were performed on a Microfocus rotating
anode (Rigaku FRX) operating at 45 kV and 66 mA at the CuKα edge (λ = 1.54184 Å) with a
partial chi goniometer. The X-ray source is equipped with high-flux Osmic Varimax mirrors
and a Dectris Pilatus 300K detector. Data collection and reduction for 3 were performed on
the Bruker Apex II instrument operating at 50 kV and 30 mA using molybdenum radiation
Mo Kα [λ = 0.71073 Å]. The crystal structures were solved by direct methods using SHELXT
and refined using a F2 full-matrix least-squares technique of SHELXL2014/7 [25] included
in the OLEX-2 1.2 [26] software packages. The non-H atoms were refined anisotropically,
adopting weighted full-matrix least squares on F2. CCDC 2083835, 2083836 and 2083837
contain the supplementary crystallographic data for compounds 1, 2 and 3, and additional
crystallographic information is available in the Supporting Information. The structural
data presented as figures were prepared with the use of the OLEX-2 software. Geometries
of metal centers are estimated with the Continuous Shape Measures (CShM) analysis using
of SHAPE v2.0 software [27].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/magnetochemistry7070097/s1, IR, UV-Vis spectra, additional crystallographic tables and
figures, additional magnetic figures.
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Appendix A

Table A1. Crystal and experimental data for 1, 2 and 3.

Compound/CCDC Number 1/2083835 2/2083836 3/2083837

Formula Mo6Cu12C146H386N112O47 Mo3Zn6C72H180N56O18 W3Zn6C72H178N56O17
Dcalc./g cm−3 1.424 1.406 1.537

µmm−1 4.121 4.036 3.760
Formula Weight 5801.61 2798.68 3044.39

T/K 130(2) 130(2) 150(2)
Crystal System monoclinic monoclinic monoclinic
Space Group P21/c Cc Cc

a/Å 30.4150(4) 32.1487(9) 31.8599(9)
b/Å 37.1820(5) 16.8699(3) 16.9574(3)
c/Å 22.5401(2) 25.4013(6) 25.3107(6)
β/

◦
98.0410(10) 106.487(3) 106.013(3)

V/Å3 25239.8(5) 13209.8(6) 13143.8(6)
Z 4 4 4
Z’ 1 1 1

Wavelength/Å 1.54184 1.54184 0.71073
Radiation type CuKa CuKa MoKa

Qmin/
◦

2.309 2.867 1.701
Qmax/

◦
73.591 74.083 26.733

Measured refl. 199397 46339 151852
Measured indep. refl. 49550 19947 27860
Observed indep. refl. 35018 19214 22758

Rint 0.0760 0.0775 0.0796
Parameters 2908 1450 1438
Restraints 0 2 20

Largest diff. peak (e-.A−3) 19.876 1.7437 1.938
Deepest diff. hole (e-.A−3) −2.959 −1.561 −1.187

GooF (S) 1.764 1.042 1.018
wR2 (all data) 0.4624 0.2071 0.0959

wR2 0.4298 0.2049 0.0894
R1 (all data) 0.2056 0.0791 0.0574

R1 0.1830 0.0769 0.0397

Table A2. Continuous shape measurements (CShM) for metal ions in 1, 2 and 3.

[{Cu(tren)}3(µ-tren)]12[Mo(CN)8]6·45H2O·2MeOH 1

Mo(CN)8 Mo1 Mo2 Mo3 Mo4 Mo5 Mo6

SAPR 0.218 0.254 0.535 0.230 0.652 0.321

TDD 2.201 2.008 1.679 1.899 1.232 1.794

JBTPR 2.821 2.284 2.252 2.660 1.971 2.360

BTPR 2.220 1.709 1.649 2.077 1.384 1.738
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Table A2. Cont.

[{Cu(tren)}3(µ-tren)]12[Mo(CN)8]6·45H2O·2MeOH 1

CuN5 Cu1 Cu2 Cu3 Cu4 Cu5 Cu6

TBPY 0.420 0.377 0.904 0.540 0.368 0.443

SPY 4.269 4.425 3.226 4.175 4.805 4.970

JTBPY 3.967 3.731 3.928 3.661 3.794 3.911

CuN5 Cu7 Cu8 Cu9 Cu10 Cu11 Cu12

TBPY 0.380 0.321 2.225 0.348 0.514 0.789

SPY 4.975 4.832 1.491 5.009 4.016 3.401

JTBPY 3.966 3.639 4.730 3.705 4.016 3.977

[{Zn(tren)}3(µ-tren)]2[Mo(CN)8]3·18H2O 2

Mo(CN)8 Mo1 Mo2 Mo3

SAPR 0.232 0.590 0.836

TDD 2.106 1.567 1.372

JBTPR 2.245 1.907 1.819

BTPR 1.663 1.422 1.111

ZnN5 Zn1 Zn2 Zn3 Zn4 Zn5 Zn6

TBPY 0.817 0.773 1.076 0.771 0.814 0.760

SPY 5.582 4.987 5.149 5.715 4.698 5.558

JTBPY 2.594 2.368 2.152 2.654 2.510 2.548

[{Zn(tren)}3(µ-tren)]2[W(CN)8]3·17H2O 3

W(CN)8 W1 W2 W3

SAPR 0.969 0.295 0.532

TDD 1.110 1.922 1.781

JBTPR 1.868 2.104 1.934

BTPR 1.151 1.540 1.355

ZnN5 Zn1 Zn2 Zn3 Zn4 Zn5 Zn6

TBPY 0.792 0.916 0.742 0.976 0.852 0.889

SPY 5.393 4.487 5.890 4.707 4.803 5.930

JTBPY 2.514 2.535 2.449 2.285 2.290 2.413

The numbers in the tables correspond to the S shape measures relative to the square antiprism (SAPR), triangular dodecahedron (TDD J84),
Johnson elongated triangular bipyramid (JBTPR J14) and biaugmented trigonal prism (BTPR J50) for M(CN)8 unit; Trigonal bipyramid
(TBPY), Spherical square pyramid (SPY) and Johnson trigonal bipyramid (JTBPY J12) for M’N5 unit. When the respective shape measure
parameter equals zero, the real geometry coincides with the idealized one. For each site, the minimum calculated shape measure is given
in violet.
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Abstract: Here, we review the different series of (super)conducting and magnetic radical salts pre-
pared with organic donors of the tetrathiafulvalene (TTF) family and oxalato-based metal com-
plexes (ox = oxalate = C2O4

2−). Although most of these radical salts have been prepared with the
donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF = ET), we also include all the salts prepared
with other TTF-type donors such as tetrathiafulvalene (TTF), tetramethyl-tetrathiafulvalene (TM-
TTF), bis(ethylenediseleno)tetrathiafulvalene (BEST), bis(ethylenedithio)tetraselenafulvalene (BETS)
and 4,5-bis((2S)-2-hydroxypropylthio)-4′,5′-(ethylenedithio)tetrathiafulvalene (DMPET). Most of the
oxalate-based complexes are monomers of the type [MIII(C2O4)3]3−, [Ge(C2O4)3]2− or [Cu(C2O4)2]2−,
but we also include the reported salts with [Fe2(C2O4)5]4− dimers, [MII(H2O)2[MIII(C2O4)3]2]4− trimers
and homo- or heterometallic extended 2D layers such as [MIIMIII(C2O4)3]− and [MII

2(C2O4)3]2−. We
will present the different structural families and their magnetic properties (such as diamagnetism,
paramagnetism, antiferromagnetism, ferromagnetism and even long-range magnetic ordering) that
coexist with interesting electrical properties (such as semiconductivity, metallic conductivity and even
superconductivity). We will focus on the electrical and magnetic properties of the so-called Day series
formulated as β”-(BEDT-TTF)4[A+MIII(C2O4)3]·G, which represents the largest family of paramagnetic
metals and superconductors reported to date, with more than fifty reported examples.

Keywords: oxalato; tris(oxalato) complexes; TTF; BEDT-TTF; radical salts; conducting; supercon-
ducting; metallic; conductivity; paramagnetism; ferromagnetism

1. Introduction

Among the many legacies of Peter Day’s work, besides the Robin and Day classifica-
tion for mixed-valence compounds [1], one of the best known is the discovery of the super-
conducting paramagnetic radical salts prepared with bis(ethylenedithio)tetrathiafulvalene
BEDT-TTF (ET, Scheme 1) and [M(ox)3]3− anions (M = Fe, Cr, Ga, etc.) [2,3] The discovery of
the first paramagnetic molecular superconductors boosted the research in the field and led
to the preparation of around twenty-five molecular superconductors in the so-called Peter
Day series. The first member of this series, initially formulated with a water molecule as
β”-(BEDT-TTF)4[(H2O)FeIII(C2O4)3]·PhCN [2,3], and later with a H3O+ cation as β”-(BEDT-
TTF)4[(H3O)FeIII(C2O4)3]·PhCN [4], showed a superconducting transition at 8.5(3) K, one
of the highest Tc observed in any molecular superconductor to date. As Peter Day noticed
in his first report, this discovery paved the way to a synthetic strategy for obtaining further
magnetic molecular superconductors [3]. Only two months later, P. Day’s group published
a deeper characterization of this compound and a second phase (pseudo-κ or κ′) obtained
with the same donor (BEDT-TTF) and the same anion ([Fe(C2O4)3]3−), but with different
A+ cations: κ’-(BEDT-TTF)4[AFeIII(C2O4)3]·PhCN (A = K+ and NH4

+). This orthorhombic
(Pbcn) pseudo-kappa or κ’ phase was also paramagnetic, but it was a semiconductor (as we
will see below, all the known members of this κ′ phase are semiconductors) [2]. These two
initial reports in 1995 initiated the search for novel molecular conductors and supercon-
ductors with interesting magnetic properties. Besides the more than one hundred metals,
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semiconductors and superconductors that will be presented in this review, this search also
led to the synthesis of the first molecular superconducting antiferromagnets [5,6], metallic
ferromagnets [7,8] or field-induced magnetic superconductors [9].

Scheme 1. Donors of the TTF family that have been combined with metal-oxalato complexes or lattices:
tetrathiafulvalene (TTF), tetramethyl-tetrathiafulvalene (TMTTF), bis(ethylenedithio)tetrathiafulvalene (BEDT-
TTF = ET), bis(ethylenediseleno)tetrathiafulvalene (BEDS-TTF = BEST), bis(ethylenedithio)tetraselenafulvalene
(BEDT-TSF = BETS) and 4,5-bis((2S)-2-hydroxypropylthio)-4′,5′-(ethylenedithio)tetrathiafulvalene (DMPET).

The synthesis of these radical salts was performed in H-shaped or U-shaped elec-
trochemical cells containing two compartments separated by a glass frit. The anode
compartment is filled with a solution of the TTF-type donor (Scheme 1) in solvents such as
CH2Cl2 and CHCl2-CH2Cl. The cathode compartment is filled with a solution containing
the desired oxalate-based magnetic anion dissolved in different solvents or mixtures of
solvents. As we will see below, the choice of the solvents is crucial in many cases to
determine the structure and properties of the radical salt obtained. Very often, a few drops
of water were added to furnish the needed H3O+ cations. As we will see in Section 4.1, in
some cases, a crown ether such as 18-crown-6 was added to the cathode to increase the
solubility of the K+ or NH4

+ salts of the anions. Application of a very low constant DC
current (in the 0.1–1 µA range) through platinum electrodes (usually with a diameter of
1 mm) results in a slow oxidation of the TTF-type donors in the presence of the magnetic
oxalate-based anions that yields, after a few days or weeks, high-quality single crystals in
most cases. The co-crystallization of neutral donor molecules together with the oxidized
ones leads, in most cases, to lattices with a mixed-valence state in the donors and, therefore,
to a combination of electrical and magnetic properties [2,4].

As it will be shown here, the continuous efforts of P. Day’s group (and others) led to
the synthesis and characterization of more than one hundred radical salts prepared with
different TTF-type donors (Scheme 1) and metal-oxalato complexes (Figure 1). Although a
revision with a part of the work conducted in this area was published by P. Day in 2004 [10],
since then, the number of published salts has multiplied by a factor of four, passing from
less than thirty to more than one hundred and twenty. Therefore, as a late homage to
the legacy of Peter Day and his group in the area of molecular conductors, here, we will
revise the work conducted in this field since the first report of a molecular paramagnetic
superconductor by P. Day’s group in 1995 [3].
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Figure 1. Metal-oxalato anions combined with TTF-type donors: (a) monomers [MIII(C2O4)3]3− (MIII = Fe, Cr, Mn, Co,
Al, Ga, Rh, Ru and Ge) and [Ge(C2O4)3]2−, (b) the monomer [Cu(C2O4)2]2−, (c) dimers [MIII

2(C2O4)5]4− (MIII = Fe
and Cr), (d) trimers {Mn(H2O)2[MIII(C2O4)3]2}4−, (e) heterometallic layers [MnIIMIII(C2O4)3]− (MIII = Cr and Rh) and
(f) homometallic layers [CuII

2(C2O4)3]2−. Color code: Fe = light green, Cr = dark green, Mn = orange Cu = blue, C = gray
and O = red.

In this review, we present all the reported structures of radical salts with TTF-type
donors and metal-oxalato complexes, divided into five different sections. In the first section,
we present Peter Day’s series with more than fifty reported monoclinic conductors and
superconductors formulated as β”-(BEDT-TTF)4[AMIII(C2O4)3]·G with A+ = H3O+, NH4

+

and K+; MIII = Fe, Cr, Ga, Rh and Ru; and G = C6H5N (py), PhNO2, PhCN, 1,2-PhCl2, PhI,
PhBr, PhCl, PhF, dimethylformamide (dmf), 2-Clpy, 2-Brpy, 3-Clpy, 3-Brpy and CH2Cl2.

In the second section, we show all the reported BEDT-TTF radical salts with the
orthorhombic pseudo-κ or κ′ phase formulated as κ’-(BEDT-TTF)4[AMIII(C2O4)3]·G, with
A+ = H3O+, NH4

+ and K+; MIII = Fe, Cr, Co, Al, Mn, Rh and Ru; and G = PhCN and
1,2-PhCl2.

In the third section, we present all the salts with BEDT-TTF and [M(C2O4)3]n− anions
with other crystallographic phases including those containing 18-crown-6, those with
two different BEDT-TTF layers, those with 3:1 BEDT-TTF:[M(C2O4)3]3− stoichiometry,
those with other different and unusual packings and those with the monomeric dianions
[Ge(C2O4)3]2− and [Cu(C2O4)2]2−.

The fourth section shows all the reported salts with metal-oxalato complexes other
than the monomeric complexes. These complexes include dimers of the type [Fe2(C2O4)5]4−,
trimers such as {MII(H2O)2[MIII(C2O4)3]2}4−, heterometallic M(II)/M(III) layers such as
[MnIIMIII(C2O4)3]− (MIII = Cr and Rh) and homometallic M(II)/M(II) layers such as
[CuII

2(C2O4)3]2−.
Finally, in the fifth section, we will include the radical salts prepared with metal-oxalate

complexes and other TTF-type donors such as tetrathiafulvalene (TTF), tetramethyltetrathi-
afulvalene (TMTTF), bis(ethylenediseleno)tetrathiafulvalene (BEST), bis(ethylenedithio)tet-
raselenafulvalene (BETS) and 4,5-bis((2S)-2-hydroxypropylthio)-4′,5′-(ethylenedithio)tetrat-
hiafulvalene (DMPET) (Scheme 1).
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2. The Superconducting Monoclinic β” Phase

2.1. β”-BEDT-TTF Salts with the [Fe(C2O4)3]3− Anion

As it can be seen in Table 1 (and 2), there are a total of 54 reported radical salts with
BEDT-TTF and [M(C2O4)3]3− anions showing the β” packing mode. Among them, there
are 35 salts with the [Fe(C2O4)3]3− anion, formulated as β”-(BEDT-TTF)4[AFe(C2O4)3]·G
with A+ = H3O+ or NH4

+ and G = pyridine (py), PhNO2, PhCN, 1,2-PhCl2, PhI, PhBr,
PhCl, PhF, dmf, 2-Clpy, 2-Brpy, 3-Clpy and 3-Brpy (Table 1). All these isostructural salts
crystallize in the monoclinic space group C2/c and show alternating layers of BEDT-TTF
donors and anionic layers in the ab plane (Figure 2).

Figure 2. View of the alternating cationic/anionic layers at 292 K in compound β”-(BEDT-
TTF)4[(H3O)Fe(C2O4)3]·PhBr (15). Color code: Fe = light green, C = gray, O = red, S = yellow
and Br = brown. H atoms are omitted for clarity.

The BEDT-TTF layer presents the so-called β” packing motif where the donor molecules
form parallel chains with the BEDT-TTF molecules tilted with respect to the chain direction
(Figure 3a) [11]. The chains contain two independent BEDT-TTF molecules (A and B)
following the sequence . . . AABB . . . Along the chain, the A-type molecules (in red in
Figure 3b) show an eclipsed packing with their neighboring A-type molecule but are
displaced half-rings along the long molecular axis with respect to the neighboring B-type
molecules. In contrast, B-type molecules (in blue in Figure 3b) are displaced half-rings
with both neighboring molecules (A and B). There are numerous S···S contacts between
BEDT-TTF molecules of consecutive stacks that favor electron delocalization. The anionic
layer contains the [Fe(C2O4)3]3− anions, the A+ cations and the solvent molecule (G). The
[Fe(C2O4)3]3− anions and the A+ cations form a hexagonal honeycomb layer with the Fe
ions and A cations located in the vertices of the hexagons and the solvent molecules in the
center of the hexagonal cavities (Figure 3b).

There are two different anionic layers in the unit cell. Each layer contains a single
enantiomer, resulting in an achiral salt with the layers following the sequence ···⊗-Λ-⊗-
Λ.··· (Figure 2). The Fe-O bond distances are, as expected, very similar in all the structures.

In all these salts, the charge of the anionic [AFe(C2O4)3]2− layers is balanced by four
ET molecules. The charge estimated for each BEDT-TTF molecule from the bond distances
in the BEDT-TTF molecules [12] (and from Raman spectroscopy) is +0.5, leading to a mixed-
valence state with a typical 3/4 filling of the four BEDT-TTF HOMO bands, resulting in a
high electrical conductivity, as we will see below.
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Figure 3. Structure of β”-(BEDT-TTF)4[(H3O)Fe(C2O4)3]·PhBr (15): (a) View of the BEDT-TTF layer
with the β” packing mode. A and B molecules are represented in red and blue, respectively. (b) Side
view of a BEDT-TTF chain. (c) View of one hexagonal anionic layer (with the Λ enantiomers) with the
PhBr molecules in the hexagonal cavity. Color code: Fe = light green, C = gray, O = red, S = yellow,
Br = brown and H = white.

Despite the large number of reported structures in the series β”-(BEDT-TTF)4[AFe(C2O4)3]·G
(Table 1), there is only one reported example [13] with NH4

+ (and one where the exact composition
could not be determined from X-ray data) [14]. All the other solved structures contain the H3O+

cation. In contrast, there are many different solvents that can be found in the hexagonal cavities
of the anionic layers. Thus, as it can be seen in Table 1, besides the PhCN molecule used in the
first example (35) [3], there are also reported salts with PhNO2 (3, 4), pyridine (py) (1, 2), PhF
(19, 20), PhCl (17, 18), PhBr (15, 16), PhI (14), 1,2-PhCl2 (13), 2-Clpy (29, 30), 3-Clpy (33), 2-Brpy
(31, 32), 3-Brpy (34) and mixtures of PhCN and py (5–12) or PhCN with halobenzenes (21–27)
and even with dimethylformamide (dmf) (28), the only non-aromatic solvent used in the β”
series with Fe(III) [13].

The key role of the solvent on the physical properties was soon noticed by P. Day’s
group after the synthesis of the py (1, 2) and PhNO2 (4) derivatives with the same anion
and the same structure [14,15]. Thus, the pyridine derivative showed a metal–insulator
transition at TM-I = 116 K, whereas the PhNO2 derivative became a superconductor at
Tc = 6.2 K, slightly below the PhCN derivative that showed a Tc of 8.5 K [3]. Further studies
showed that the solvent molecules interact with the ethylene groups of the BEDT-TTF
molecules of consecutive layers and play a key role in the order/disorder observed in
these ethylene groups. The stronger the solvent–BEDT-TTF interaction, the better, since it
facilitates the ordering of the ethylene groups and, therefore, favors the superconducting
state. The lack of superconductivity in the salts with pyridine and the study by P. Day’s
group [16] showing a modulation of Tc with the PhCN/py ratio in the series of salts
(ET)4[(H3O)Fe(C2O4)3]·(PhCN)x(py)1-x (5–12) further supported this conclusion. Detailed
studies by E. B. Yagubskii et al. confirmed this effect with other different solvents and
mixtures of them [17–19]. A final proof of this key role of the solvent is provided by the
series of salts (ET)4[(H3O)Fe(C2O4)3]·PhX with X = F, Cl, Br and I (14–20) [20]. In this
series with halobenzene derivatives, the polarity and size of the halobenzene molecules
determine the presence of superconducting transitions at 1.0 and 4.0 K for X = F and
Br, respectively, but no superconducting transition is observed for X = Cl above 0.4 K,
and a semiconducting behavior is observed for X = I. In this series, the differences were
attributed to the combined effect of the size and the electronegativity of X. For X = F, the
solvent–BEDT-TTF interaction is quite strong, despite a longer distance, given the high
inductive effect of F. For X = Br, the larger size of X reduces the solvent–BEDT-TTF distance,
increasing the interaction. For X = Cl, we are in an intermediate situation that does not
favor the interaction (too far and not enough electronegativity). Finally, for X = I, the PhI
molecule is too large and cannot fit in the hexagonal cavity and appears slightly out of the
hexagonal cavity, with a tilted orientation that displaces the BEDT-TTF molecules, resulting
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in a loss of the metallic behavior. In fact, this compound is the only semiconducting salt
reported in P. Day’s series with Fe(III) (Table 1) [20].

A final interesting aspect of this series is the presence of a structural transition
from the high-temperature monoclinic C2/c space group to a triclinic P-1 one below
ca. 200 K, only observed in the salts with G = PhF (19, 20), PhCl (17, 18), PhBr (15,
16), 2-Clpy (29, 30) and 2-Brpy (31, 32). The first preliminary observation of this tran-
sition was reported in compound (ET)4[(H3O)Fe(C2O4)3]·PhBr (15, 16), where a change
in the unit cell parameters to a lower symmetry phase was observed at ca. 180–200 K
by single-crystal X-ray data and heat capacity measurements [21]. This result was later
confirmed and studied in more detail in the series (ET)4[(H3O)Fe(C2O4)3]·PhX (15–20)
and (ET)4[(H3O)Fe(C2O4)3]·(PhCN)x(PhX)1-x, with X = F (21, 22), Cl (24, 25) and Br (26,
27) [18,20], and in compounds (ET)4[(H3O)Fe(C2O4)3]·2-Clpy (29, 30) and (ET)4[(H3O)Fe-
(C2O4)3]·2-Brpy (31, 32) [19]. The symmetry loss that appears due to the change in the
space group from the monoclinic C2/c space group to the triclinic P-1 one leads to the
appearance of two independent BEDT-TTF layers in the unit cell (layers I and II, Figure 4),
both keeping the β” packing motif (Figure 4a,c). The number of independent BEDT-TTF
molecules increases from two in the monoclinic C2/c phase (A and B) to four in the triclinic
P-1 phase (A-B in layer I and C-D in layer II).

Figure 4. (a) View of layer I formed by A (red) and B (blue) BEDT-TTF molecules. (b) View of the structure of the triclinic P-1
phase of β”-(ET)4[(H3O)Fe(C2O4)3]·PhBr (16) at 120 K showing the two independent BEDT-TTF layers (I and II). (c) View of
layer II formed by C (green) and D (pink) BEDT-TTF molecules.

As in the monoclinic phase, the chains are also formed following the sequence . . .
AABB . . . or . . . CCDD . . . , and the overlap between neighboring molecules follows the
same scheme in both layers: A-A is eclipsed but A-B and B-B are shifted in layer I, and C-C
is eclipsed but C-D and D-D are shifted in layer II.

Nevertheless, the most important changes in the triclinic P-1 phase are observed in the
anionic layer, where the change in symmetry implies a decrease in four of the six sides of
the hexagons that forces a change in the location and orientation of the solvent molecules.
Thus, in the monoclinic C2/c phase, the hexagons are planar, and the solvent molecule is
located with the C-X bond in the hexagon plane pointing towards one Fe atom (Figure 5a).
In contrast, in the triclinic P-1 phase, there is a reduction in the sides of the hexagons, the
hexagons are not planar and the C-X bond is slightly out of the average plane and does not
point to one Fe atom (Figure 5b).
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Figure 5. Front and side views of one hexagonal cavity in (a) the monoclinic C2/c phase at 292 K and
(b) the triclinic P-1 phase at 120 K in the radical salt β”-(BEDT-TTF)4[(H3O)Fe(C2O4)3]·PhBr (15, 16).
Color code: Fe = light green, C = gray, O = red, Br = brown and H = white.

The most interesting aspect of the series β”-(ET)4[AFe(C2O4)3]·G (1-35) is their elec-
trical properties. As mentioned above, compound (ET)4[(H3O)Fe(C2O4)3]·PhCN (35)
is the first molecular paramagnetic superconductor and shows an ordering tempera-
ture of 6.5–8.5 K (depending on the quality of the single crystals and on the exact syn-
thetic conditions) [2–4,17]. There is a total of seventeen superconductors reported to
date in the β”-(ET)4[AFe(C2O4)3]·G series, with Tc ranging from 1.0 to 8.5 K (Table 1).
These superconductors include the derivatives with G = PhNO2 (4) with Tc = 6.2 K [14];
G = (PhCN)x(py)1-x (5, 7–12) with Tc = 3.9–7.3 K [16]; G = PhBr (15) with Tc = 4.0 K [21]
(Figure 6); G = PhF (19) with an onset of Tc = 1.0 K [20] (Figure 6); G = (PhCN)0.4(PhF)0.6 (21)
with Tc = 6.0 K [17]; G = (PhCN)0.86(PhCl2)0.14 (23) with Tc = 7.2 K [17]; G = (PhCN)0.35(PhCl)0.65
(24) with Tc = 6.0 K [17]; G = (PhCN)0.17(PhBr)0.83 (26) with Tc = 4.2 K [17]; G = 2-ClPy (29) with
Tc = 2.4–4.0 K [19]; G = 2-BrPy (31) with Tc = 4.3 K [19]; and G = PhCN (35) with Tc = 8.5 K [2–4].
Except for the salt with G = PhI (14) [20] (Figure 6), and for a salt with H2O and G = PhNO2
(3) [22], all the other reported salts in the β”-(ET)4[(H3O)Fe(C2O4)3]·G series are metallic at room
temperature and show metal–semiconductor or metal–insulator transitions at lower temperatures
(Table 1).

Figure 6. Electrical conductivity of the series β”-(BEDT-TTF)4[(H3O)Fe(C2O4)3]·PhX with X = F (19),
Cl (17), Br (15) and I (14).
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All the superconductors in the β”-(ET)4[(H3O)Fe(C2O4)3]·G series show abrupt transi-
tions with a sharp decrease in the resistivity values. Most of the salts reach zero resistance
around one kelvin below the onset of the superconducting transition (Figures 6 and 7). The
band structure calculations show that the monoclinic β” phase is a 2D metal with stronger
inter-chain than intra-chain interactions. These calculations also show the formation of
3/4 filled bands with the Fermi level intersecting the two upper bands, leading to the
observed metallic behavior [13].

Figure 7. (a) Field dependence of the resistivity of compounds β”-(ET)4[(H3O)Fe(C2O4)3]·PhBr (15)
with the magnetic field applied perpendicular to the conducting layers. (b) Field dependence of
the resistivity of compound β”-(ET)4[(H3O)Fe(C2O4)3]·PhF (19) with the magnetic field applied
parallel to the conducting layers. (c,d) Temperature dependence of the resistivity of compound
β”-(ET)4[(H3O)Fe(C2O4)3]·PhBr (15) with different applied DC fields parallel (c) and perpendicular
(d) to the conducting layer.

Magnetoresistance measurements show that these salts are type II superconductors
with low first critical fields of a few mT (Hc1, beginning of the penetration of the magnetic
field) and very high second critical fields of several tesla (Hc2, complete suppression
of the superconductivity) (Figure 7a,b). Furthermore, as expected for these quasi-2D
superconductors, the effect of the magnetic field and the values of the critical fields are
anisotropic and strongly depend on the direction of the applied DC field (Figure 7c,d).

The magnetic properties of these paramagnetic superconductors are those expected for
isolated high-spin S = 5/2 [Fe(C2O4)3]3− anions plus a temperature-independent paramag-
netism arising from the conducting sublattice (Pauli paramagnetism, Figure 8a). At very
low temperatures, there is a sharp decrease in the magnetic moment due to the presence of
a zero-field splitting (ZFS) in the S = 5/2 ground spin state.
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Figure 8. (a) Temperature dependence of theχmT product for the seriesβ”-(BEDT-TTF)4[(H3O)Fe(C2O4)3]·PhX
with X = F (19), Cl (17) and Br (15). (b) Temperature dependence of the zero field and field-cooled susceptibility
with different applied fields for compound β”-(BEDT-TTF)4[(H3O)Fe(C2O4)3]·PhBr (15).

Additionally, when the samples are cooled under zero magnetic field (zero field cool-
ing, ZFC), the superconducting transitions can be detected by the appearance of negative
magnetization values (Meissner effect, Figure 8b) below the transition temperature. Heat-
ing the samples with increasing magnetic fields shows the progressive cancellation of the
Meissner effect and an increase in the susceptibility values, typical of type II superconduc-
tivity (Figure 8b). For magnetic fields above a certain value, the susceptibility becomes
positive at any temperature since the paramagnetic contribution of the [Fe(C2O4)3]3− anion
dominates the magnetic response of the sample (Figure 8b).

Magnetic measurements in the presence of an alternating magnetic field (AC suscep-
tibility) further confirm the superconducting transitions in these radical salts and allow
a precise estimation of Tc and of the critical fields. Thus, AC measurements show the
presence of a negative in-phase signal (χ′m) below Tc, very similar to the ZFC susceptibility.
This in-phase signal also reduces its absolute value when a DC field is applied and becomes
positive at any temperature above a critical DC field when the paramagnetic contribution
of the [Fe(C2O4)3]3− anion becomes dominant (Figure 9a). AC measurements also show
and an out-of-phase signal (χ”m) that becomes non-zero at Tc (Figure 9b). The application
of a DC field also reduces the χ”m signal, which eventually cancels above the critical field
(Figure 9b).

Figure 9. AC measurements of compound β”-(BEDT-TTF)4[(H3O)Fe(C2O4)3]·PhBr (15): temperature
dependence of (a) the in-phase (χ′m) and (b) the out-of-phase (χ”m) AC susceptibility with different
applied DC fields.
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2.2. β”-BEDT-TTF Salts with Other [M(C2O4)3]3− Anions (M 6= Fe)

Soon after the discovery of superconductivity in compound β”-(ET)4[(H3O)Fe(C2O4)3]·PhCN,
P. Day’s group explored the [Cr(C2O4)3]3− anion and prepared the saltsβ”-(ET)4[(H3O)Cr(C2O4)3]·G
with G = PhCN (47) [24,25] and PhNO2 (40) [14], which also present superconducting transitions
at Tc = 6.0 and 5.8 K, respectively. As it can be seen in Table 2, the [Cr(C2O4)3]3− anion has
also been combined in BEDT-TTF salts with other solvents such as PhBr, PhCl, CH2Cl2, dmf,
2-Clpy and 2-Brpy with A+ cations such as H3O+, K+, NH4

+ and mixtures of them, giving rise
to a superconducting salt with Tc = 1.7 K for A+/G = H3O+/PhBr (53) [21], two metallic salts
that remain metallic down to low temperatures for A+/G = (K+/NH4

+)/dmf (50) and K+/dmf
(51) [13] and three metallic salts that show metal–insulator transitions at low temperature for
A+/G = (K+/H3O+)/2-Clpy (36), (K+/H3O+)/2-Brpy (37) and H3O+/PhCl (54) [26,27]. In one
case, with A+/G = H3O+/CH2Cl2 (48), the obtained salt is a semiconductor (although not a
classical one), most probably due to the lack of interactions between the BEDT-TTF and solvent
molecules [28].

Parallel to the Cr-containing [Cr(C2O4)3]3− anion, P. Day’s group also checked the diamagnetic
[Ga(C2O4)3]3− anion and obtained one superconductor formulated as (ET)4[(H3O)Ga(C2O4)3]·PhNO2
(46) [29] with Tc = 7.5 K, and also the pyridine derivative (ET)4[(H3O)Ga(C2O4)3]·py (45), which might
be a superconductor below 2 K, although no clear evidence was observed [29]. E. B. Yagubskii et al.
also used the [Ga(C2O4)3]3− anion to prepare the semiconducting salt (ET)4[K0.33(H3O)0.67Ga-
(C2O4)3]·PhBr (44) [30], and the metallic salts (ET)4[K0.8(H3O)0.2Ga(C2O4)3]·G with G = 2-Clpy
(38) and 2-Brpy (39) [27]. Yagubskii’s group also prepared the first example in this series with a
4d metal: (ET)4[K0.7(H3O)0.3Ru(C2O4)3]·PhBr (49). This compound is a superconductor with Tc
ranging from 2.8 to 6.3 K, depending on the measured sample [31].

There is also a preliminary account of a salt with the anion [Mn(C2O4)3]3− formulated
as (ET)4[(H3O)Mn(C2O4)3]·PhBr (52) that is also a superconductor with Tc = 2.0 K [20].

Finally, L. Martin et al. prepared the only known examples in this series with the
[Rh(C2O4)3]3− anion: (BEDT-TTF)4[ARh(C2O4)3]·PhX with A/X = NH4

+/Br (41), H3O+/F
(42) and NH4

+/Cl (43) [32]. The PhBr derivative is a superconductor with Tc = 2.5 K, but
the PhF and PhCl derivatives are metallic with metal–insulator transitions at 180 and 10 K,
respectively (Table 2). As observed for the [Fe(C2O4)3]3− anion, the adequate size of PhBr
seems to be at the origin of the superconducting transition in the salt with [Rh(C2O4)3]3−.

A detailed revision of Tables 1 and 2 shows that among the β”-(ET)4[AM(C2O4)3]·G
salts with pure solvents, the one that has produced more superconductors is bromobenzene.
This solvent has originated, to date, five superconductors, with A+/MIII = H3O+/Fe
(15), NH4

+/Rh (41), (H3O+/K+)/Ru (49), H3O+/Mn (52) and H3O+/Cr (53). The other
solvents that have given rise to more superconductors are PhNO2, which has produced
three superconductors, with A+/MIII = (H3O+/NH4

+)/Fe (4), (H3O+/NH4
+)/Cr (40) and

H3O+/Ga (46), and PhCN, with two superconductors, with A+/MIII = H3O+/Fe (35)
and H3O+/Cr (47). It is interesting to note that the size of the PhBr, PhCN and PhNO2
molecules seems to fit very well in the hexagonal cavity, and their large size allows a close
contact with the ethylene groups of the BEDT-TTF molecules. This size effect of the PhBr
solvent is clearly seen in the halobenzenes, where PhCl is too small and does not give
superconductivity and PhI is too big and does not fit in the hexagonal cavities [20].
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3. The Semiconducting pseudo-κ or κ′ Phase

κ′-BEDT-TTF Radical Salts with [M(C2O4)3]3− Anions

Besides the monoclinic C2/c β” salts described in the previous section, P. Day’s group
also obtained an orthorhombic Pbcn phase with the same [Fe(C2O4)3]3− anion and the
same PhCN solvent, but with A+ = NH4

+ and K+ [2]. These orthorhombic salts show an
original packing, called pseudo-κ or κ′ phase, and present the same general formula as
the β” phase: κ′-(BEDT-TTF)4[AM(C2O4)3]·G (Table 3). The structure of the κ′ phase also
consists of alternating cationic layers containing the BEDT-TTF molecules and anionic
layers containing the A+ cations, the [M(C2O4)3]3− anions and the solvent molecules
(Figure 10).

Figure 10. View of the alternating cationic/anionic layers in compoundκ′-(BEDT-TTF)4[(H3O)Mn(C2O4)3]·PhCN
(55). Color code: Mn = orange, K = pink, C = gray, O = red, N = blue and S = yellow. H atoms are omitted
for clarity.

The BEDT-TTF layer is also formed by two independent BEDT-TTF molecules noted as
A and B. A-type molecules bear a charge of +1, whereas B-type molecules are neutral. The
BEDT-TTF layer presents the so-called pseudo-κ or κ′ packing motif formed by eclipsed
A-A dimers surrounded by six B-type monomers in a distorted hexagonal arrangement
(Figure 11a). As in the monoclinic β” phase, the anionic layer contains the [M(C2O4)3]3−

anions and the A+ cations forming a hexagonal lattice with the solvent molecules (G) inside
the hexagonal cavities. The main difference is that now the anionic layers are equivalent
since they contain both enantiomers in a 1:1 ratio arranged in alternating rows (Figure 11b).
In both phases, the anionic layers are related by a C2 axis. This different disposition of the
⊗ and Λ enantiomers in the anionic layers is at the origin of the different packing motifs of
the BEDT-TTF molecules in both phases [4].

As already noted by Peter Day’s group [4], a close look at the cation–anion interlayer
interactions shows that the relative orientation of the BEDT-TTF molecules depends on
the chirality of the closest [M(C2O4)3]3− anions. Thus, in the monoclinic β” phase, when
the ethylene groups of the BEDT-TTF molecules interact with the terminal O atoms of ⊗-
[M(C2O4)3]3− anions, the BEDT-TTF chains run from bottom right to top left (Figure 12a),
whereas, when they interact with Λ-[M(C2O4)3]3− anions, the BEDT-TTF chains run from
bottom left to top right (Figure 12b). In the orthorhombic κ′ phase, the anionic layers
contain both enantiomers arranged in rows located close to the BEDT-TTF dimers, and,
accordingly, the orientation of these dimers follows the same trend: they run from bottom
right to top left when they interact with⊗-[M(C2O4)3]3− anions (in green in Figure 12c) and
from bottom left to top right when they interact with Λ-[M(C2O4)3]3− anions (in orange in
Figure 12c). The monomers in the κ’ phase (in pink in Figure 12c) do not interact with the
[M(C2O4)3]3− anions and are packed following the BEDT-TTF dimers that they enclose.
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Figure 11. Structure of κ′-(BEDT-TTF)4[KMn(C2O4)3]·PhCN (55): (a) View of the BEDT-TTF layer
with the κ′ packing mode (A and B molecules are drawn in red and blue, respectively). (b) View
of one hexagonal anionic layer showing the Λ and ⊗ enantiomers arranged in rows and the PhCN
molecules in the hexagonal cavities (the CN groups are disordered over two positions). Color code in
(b): Mn = orange, K = pink, C = gray, O = red, N = blue and H = white.

Figure 12. View of the relative orientation of the BEDT-TTF molecules with the chirality of the
[M(C2O4)3]3− anions closest to them (only the metal centers and the A+ cations are shown): (a)⊗-type
layer in β”-(ET)4[(H3O)Fe(C2O4)3]·PhBr (15). (b) Λ-type layer in β”-(ET)4[(H3O)Fe(C2O4)3]·PhBr
(15). (c) Alternating ⊗-Λ layer in κ′-(ET)4[KMn(C2O4)3]·PhCN (55) showing the two different
orientations of the BEDT-TTF dimers depending on the chirality (⊗ = green, Λ = orange) of the
closest [M(C2O4)3]3− anion.

The orthorhombic pseudo-κ phase has been observed in a total of nine salts to date
(Table 3). Interestingly, in all these salts, the solvent is always PhCN (in one case with a
small fraction of PhCl2) [17]. Despite the low number of reported salts, this series presents
a large variability in the anionic layer with three different A+ cations (K+, NH4

+ or H3O+)
and seven different metal ions (M = Mn, Rh, Cr, Co, Al, Ru and Fe).

Analysis of the bond distances in the BEDT-TTF molecules indicates that the molecules
forming the dimers (A-type) are completely ionized, whereas the isolated BEDT-TTF
molecules (B-type) are neutral. The presence of totally ionized (BEDT-TTF)2

2+ dimers
surrounded by neutral BEDT-TTF molecules precludes the electron delocalization in the
BEDT-TTF layers, and, accordingly, all the reported κ′ salts are semiconductors (Table 3)
with activation energies in the range 140 to 245 meV in all cases (Figure 13).
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Figure 13. (a) Thermal dependence of the resistivity and (b) Arrhenius plot (Ln ρ vs. 1/T)
for the salt κ′-(ET)4[KMn(C2O4)3]·PhCN (55) (red line is the fit to the Arrhenius equation for a
classical semiconductor).

Band structure calculations indicate that there is a very strong intradimer (A-A)
interaction corresponding to the overlap of the BEDT-TTF+ molecules of the almost eclipsed
face-to-face dimers. The transfer integrals are around ten times larger than those between
the neutral isolated molecules and the dimers (A-B). The transfer integrals between the
isolated neutral molecules (B-B) are very small except for one case [2]. The presence of
(BEDT-TTF)2

2+ dimers leads to the formation of a full band and an empty band, separated
by a band gap, resulting in the observed semiconducting behavior in all these orthorhombic
salts [4].

Table 3. Radical salts of the orthorhombic P. Day series κ′-(ET)4[AM(C2O4)3]·G (55–63).

# CCDC Formula a SG b Elect. Prop. A+ M G Ref.

55 CISMEZ κ′-(ET)4[KMn(ox)3]·PhCN Pbcn σ = 2 × 10−5 S/cm
Ea = 180 meV

K+ Mn PhCN [33]

56 FECDEZ κ′-(ET)4[(NH4)Rh(ox)3]·PhCN Pbcn Ea = 245 meV NH4
+ Rh PhCN [32]

57 JUPGUW κ′-(ET)4[(H3O)Cr(ox)3]·PhCN Pbcn Ea = 153 meV H3O+ Cr PhCN [4,25]

58 QIWMOY κ′-(ET)4[(NH4)Co(ox)3]·PhCN Pbcn Ea = 225 meV NH4
+ Co PhCN [4]

59 QIWMUE κ′-(ET)4[(NH4)Al(ox)3]·PhCN Pbcn Ea = 222 meV NH4
+ Al PhCN [4]

60 UDETOO κ′-(ET)4[K0.8(H3O)0.2Ru(ox)3]·PhCN Pbcn Semi K+/H3O+ Ru PhCN [31]

61 UJOXUN κ′-
(ET)4[(H3O)Fe(ox)3]·(PhCN)0.88(PhCl2)0.12

Pbcn Semi H3O+ Fe PhCl2/PhCN [17]

62 ZIWNEY κ′-(ET)4[(NH4)Fe(ox)3]·PhCN Pbcn σ = 10−4 S/cm
Ea = 140 meV

NH4
+ Fe PhCN [2,4]

63 ZIWNIC κ′-(ET)4[KFe(ox)3]·PhCN Pbcn σ = 10−4 S/cm
Ea = 140 meV

K+ Fe PhCN [2]

a ox = oxalate = C2O4
2−; b SG = space group.

4. Other Phases with BEDT-TTF and Oxalato Complexes

Besides the β” and κ′ phases, the intense research in the field has led to the synthesis
of several other crystallographic phases with BEDT-TTF, different [M(C2O4)3]3− anions (or
the dianions [Ge(C2O4)3]2− and [Cu(C2O4)2]2−), different solvents (including chiral ones)
and even the inclusion of 18-crown-6 molecules. In this section, we will revise all these
salts and classify them according to their composition and crystallographic phase.

4.1. BEDT-TTF Salts with [M(C2O4)3]3− Anions and 18-Crown-6

The use of the crown ether 18-crown-6 in order to solubilize the precursor NH4
+ salts of

different [M(C2O4)3]3− anions has led to the inclusion of the 18-crown-6 molecules into the
crystal structure in a total of eight salts (Table 4). The first of these 18-crown-6-containing
salts was also reported by P. Day’s group in compound β”-(BEDT-TTF)4[(H3O)Cr(C2O4)3]2-
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[(H3O)2(18-crown-6)]·5H2O (64) [34]. The structure shows alternating cationic and anionic
layers (Figure 14a). The anionic layers are formed by two layers of [M(C2O4)3]3− an-
ions separated by a layer with the 18-crown-6 molecules and the crystallization water
molecules (Figure 14a). Each of the two [M(C2O4)3]3− layers contains only one enantiomer
(Figure 14b). The cationic layers are formed by two independent BEDT-TTF molecules
with the β” packing mode (Figure 14c) with chains of BEDT-TTF molecules following
the sequence . . . AABB . . . with the same overlap mode (Figure 14d) as the supercon-
ducting monoclinic phase. This salt presents proton channels formed by the 18-crown-6
molecules containing H3O+ cations (Figure 14e) and presents a proton conductivity above
10−3 S/cm at room temperature. There is a Ga/NH4

+ derivative with the same structure:
β”-(ET)4[(NH4)Ga(C2O4)3]2[(NH4)2(18-crown-6)]·5H2O (68), also reported by P. Day’s
group [35]. Interestingly, both salts are metallic at room temperature but show metal–
insulator transitions at 190 and 240 K, respectively.

Figure 14. Structure of β”-(ET)4[(H3O)Cr(C2O4)3]2[(H3O)2(18-crown-6)]·5H2O (64). (a) View of the alternating cationic and
anionic layers parallel to the ab plane. (b) Top view of the anionic triple layer containing the ⊗-[Cr(C2O4)3]3− anions (in
red), the 18-crown-6 ether (in green) and the Λ-[Cr(C2O4)3]3− anions (in blue). (c) View of the BEDT-TTF layers showing
the β” packing (A- and B-type molecules are drawn in red and blue, respectively). (d) Side view of one BEDT-TTF stack.
(e) View of the proton channels formed by the 18-crown-6 molecules. Color code in (a,e): Cr = dark green, C = gray, O = red,
Owater = blue and S = yellow. H atoms are omitted for clarity.

A second phase obtained with 18-crown-6 is the series of salts formulated as β”-
(ET)2[(H2O)(NH4)2M(C2O4)3]·18-crown-6, with M = Ir (65) [36], Ru (66) [36], Cr (67) [37]
and Rh (69) [38] (Table 3). The structure resembles that of the previously described com-
pounds β”-(ET)4[(A)M(C2O4)3]2[(A)2(18-crown-6)]·5H2O with A+/M = H3O+/Cr (64) and
NH4

+/Ga (68). It also consists of alternating layers of BEDT-TTF molecules with the
β” packing motif and double anionic layers separated by the 18-crown-6 molecules, al-
though, now, the 18-crown-6 molecules are inserted in the hexagonal cavities formed by
the [M(C2O4)3]3− anions.

The Cr and Rh salts are superconductors with Tc = 4.0–4.9 K and 2.7 K, respec-
tively [37,38]. This phase is the second one with a [M(C2O4)3]3− complex to show super-
conductivity and is the phase with single-donor packing with the widest gap between
conducting layers. The Ir and Ru salts are not superconductors due to the shorter inter-
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layer M–M distance (worse 2D systems). The M–I transition in these salts may originate
from changes in the anionic layer which induce changes in the BEDT-TTF layer, although
Berezinski–Kosterlitz–Thouless (BKT) effects are not discarded [36]. The Ir salt is the first
radical salt with a 5d tris(oxalato)metalate anion [36].

There are two additional radical salts with [M(C2O4)3]3− anions containing 18-crown-
6: α-(ET)10(18-crown-6)6K6[Fe(C2O4)3]4·24H2O (70) [39] and (ET)4[Ga(C2O4)3](18-crown-
6)(H2O)6 (71). In compound 70, the packing is original and consists of three types of
alternating layers: BEDT-TTF layers (A-layers), layers containing [Fe(C2O4)3]3− anions,
water, 18-crown-6 and K+ cations (B-layers) and layers with water, 18-crown-6 and K+

cations (C-layers). These three layers alternate following the sequence . . . ABCBABCBA . . .
This salt behaves as a classical semiconductor with an activation energy of 15 meV [39]. The
last salt with 18-crown-6: (ET)4[Ga(C2O4)3](18-crown-6)(H2O)6 (71), has been deposited in
the CCDC database but has not been published yet.

Table 4. Radical salts of BEDT-TTF with [M(C2O4)3]3− anions containing 18-crown-6 (64–71).

# CCDC Formula a SG b Elect. Prop. A+ M G Ref.

64 ACAGUG
β”-(ET)4[(H3O)

Cr(ox)3]2[(H3O)2
(18-c-6)]·5H2O

P-1 σ = 300 S/cm
TMI = 190 K H3O+ Cr H2O/18-c-6 [34,35]

65 COLWUY β”-(ET)2[(H2O)
(NH4)2Ir(ox)3]·18-c-6 P-1 TMI ≈ 100 K NH4

+ Ir H2O/18-c-6 [36]

66 COLYOU β”-(ET)2[(H2O)
(NH4)2Ru(ox)3]·18-c-6 P-1 TMI ≈ 155 K NH4

+ Ru H2O/18-c-6 [36]

67 FENHEO β”-(ET)2[(H2O)
(NH4)2Cr(ox)3]·18-c-6 P-1 Tc = 4.0–4.9 K NH4

+ Cr H2O/18-c-6 [37]

68 FEQQAU β”-(ET)4[(NH4)Ga(ox)3]2
[(NH4)2(18-c-6)]·5H2O P-1 σ = 200 S/cm

TMI = 240 K NH4
+ Ga H2O/18-c-6 [35]

69 KATLAV β”-(ET)2[(H2O)
(NH4)2Rh(ox)3]·18-c-6 P-1 Tc = 2.7 K NH4

+ Rh H2O/18-c-6 [38]

70 NIHPEA α-(ET)10(18-c-
6)6K6[Fe(ox)3]4·24H2O P21/c Ea = 105 meV K+ Fe H2O/18-c-6 [39]

71 UJEYIR (ET)4[Ga(ox)3](18-c-
6)(H2O)6

P-1 - - Ga H2O/18-c-6 c

a ox = oxalate = C2O4
2−; 18-c-6 = 18-crown-6 = C12H24O6; b SG = space group. c Unpublished results.

4.2. BEDT-TTF Salts with [M(C2O4)3]3− Anions and Two Different Donor Layers

The use of larger non-planar solvent molecules and chiral ones has led to some nice
examples of double-layered phases. These chiral and large non-planar solvent molecules
do not fit in the hexagonal cavities of the anionic layers and are forced to cross the cavities,
resulting in anionic layers with two different sides. This asymmetry of the two sides of the
anionic layers induces two different packing modes in the BEDT-TTF molecules, resulting
in salts with two different cationic layers. There are two different series of double-layered
phases: the α,β”, and the α,κ′.

The α,β” phase has been observed in the series α,β”-(ET)4[(NH4)M(C2O4)3]·G with
M/G = Ga/PhN(CH3)CHO (72) [40], M/G = Ga/PhCH2CN (73) [40], M/G = Fe/PhCOCH3
(74) [40], M/G = Fe/(S)-PhC(OH)HCH3 (75) [41] and M/G = Fe/(R/S)-PhC(OH)HCH3
(77) [41] (Table 5). These salts are isostructural and crystallize in the triclinic P-1 space
group, except the salt α,β”-(ET)4[(NH4)Fe(C2O4)3]·(S)-PhC(OH)HCH3 (75) that contains a
single enantiomer (S) of the chiral solvent PhC(OH)HCH3 and crystallizes in the P1 space
group. The α,β” salts show alternating cationic and anionic layers following the sequence
. . . /β”/⊗/α/Λ/ . . . (Figure 15a). The anionic layers are very similar to those of the
monoclinic β” phase: they contain the [M(C2O4)3]3− anions and the NH4

+ cations forming
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a hexagonal honeycomb lattice with the solvent molecules located in the hexagonal cavities.
There are two homochiral layers that alternate along the c axis (Figure 15b,c), each with a
different [M(C2O4)3]3− enantiomer and a slightly different orientation of the polar group
of the solvent molecule. The main difference with the monoclinic β” phase is that, now,
there are two different sides since the large solvent molecules cross the hexagonal cavities
with the X groups pointing to one of the two sides to generate a corrugated side, next to
the β” layer, and a smoother face, next to the α layer (Figure 15a). The polar groups of the
solvent molecules point to the β” layer (purple circles in Figure 15a).

Figure 15. Structure of α,β”-(ET)4[(NH4)Ga(C2O4)3]·PhN(CH3)CHO (72): (a) View of the alternating cationic and anionic
layers following the sequence . . . β”-⊗-α-Λ-β” . . . The purple circles mark the position of the CHO groups of the solvent
molecules pointing to the β” layer. (b) View of the ⊗ layer. (c) View of the Λ layer. (d) View of the β” layer showing the two
independent BEDT-TTF molecules (A and B) in red and blue, respectively. (e) Side view of one BEDT-TTF chain. (f) View of
the α layer showing the two independent BEDT-TTF molecules (C and D) in pink and green, respectively. (g) Frontal view
of the C- and D-type chains. Color code in (a–c): Ga = pink, C = gray, O = red, N = blue, H = white and S = yellow. Except in
(b,c), H atoms are omitted for clarity.

There are two different cationic layers, with β” and α packing modes, alternating along
the c axis. The β” layer (Figure 15d) is formed by two independent BEDT-TTF molecules
(A and B) packing in chains with the sequence . . . AABB . . . , as in the monoclinic β”
phase. The only difference is that, now, the overlap between the BEDT-TTF molecules
in the chain is eclipsed for AA and AB but shifted for BB. This overlap mode generates
groups of four eclipsed BEDT-TTF molecules (Figure 15e). In the α layer, the molecules
of consecutive stacks are tilted in opposite directions (Figure 15f). There are also two
independent molecules (C and D) that form two different stacks containing only C or only
D molecules packed with an eclipsed overlap (Figure 15g).

Compounds 72-74, also reported by P. Day’s group [40], were the first examples of
the α,β” phase (which is the third phase found in the ET4 series, after the β” and κ′ ones).
All the reported α,β” salts show relatively high room temperature conductivities but are
semiconductors, although band structure calculations indicate that both BEDT-TTF layers
should be metallic [40].

The other double-layer phase is the α,κ′ one, reported in two isostructural compounds with
the same solvent molecule (1,2-dibromobenzene): α,κ′-(ET)4[K0.45(H3O)0.55Ga(C2O4)3]·1,2-PhBr2
(76) [30] and α,κ′-(ET)4[(H3O)Fe(C2O4)3]·1,2-PhBr2 (78) [42] (Table 5). The structure of these
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salts also consists of alternating cationic and anionic layers (Figure 16a). There are also two
alternating cationic layers with two different packing motifs: κ′ and α (Figure 16b,c). The κ′

layers are formed by four independent BEDT-TTF molecules (A–D) forming two different
face-to-face dimers (AA and CC) surrounded by isolated BEDT-TTF molecules (B and
D) (Figure 16b). The α layers also contain four independent BEDT-TTF molecules (E–H)
forming three different stacks containing only E, only H and alternating F/G molecules
(Figure 16c). The BEDT-TTF molecules are packed in an eclipsed way in the three stacks.
The anionic layers present the same hexagonal disposition observed in the β” and κ′ phases
and contain both enantiomers of the [M(C2O4)3]3− anions (arranged in parallel rows, as
observed in the κ′ phase), together with A+ cations (Figure 16d). The 1,2-PhBr2 solvent
molecules are located in the cavities with the two Br atoms pointing towards the α layer
(Figure 16a). This asymmetry in both faces of the anionic layers induces the crystallization
of two different layers, as observed in the α,β” phase. Both salts are metallic down to low
temperatures, although they do not show superconductivity. This metallic behavior is
attributed to the α layers that show a homogeneous charge distribution in the BEDT-TTF
molecules, in contrast to the κ′ layers that present the same charge localization observed in
the other κ′ phases: (BEDT-TTF)2

2+ dimers surrounded by neutral BEDT-TTF molecules.

Figure 16. Structure of α,κ′-(ET)4[(H3O)Fe(C2O4)3]·1,2-PhBr2 (78): (a) View of the alternating cationic and anionic layers
following the sequence κ′-⊗/Λ-α-⊗/Λ-κ′. The purple circles mark the position of the two Br atoms of the solvent molecules
pointing to the α layer. (b) View of the κ′ layer showing the four independent BEDT-TTF molecules in red, blue, green and
light blue. (c) View of the α layer showing the four independent BEDT-TTF molecules in pink, orange, brown and dark
green and the three eclipsed stacks. (d) View of the anionic layer with parallel rows of ⊗ and Λ enantiomers. Color code in
(a,d): Fe = green, C = gray, O = red, Br = brown and S = yellow. H atoms are omitted for clarity.
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4.3. BEDT-TTF:[M(C2O4)3]3− Phases with 3:1 Stoichiometry

Although most of the prepared radical salts of BEDT-TTF with [M(C2O4)3]3− anions
present a 4:1 stoichiometry, as observed in the β”, κ′, α,β” and α,κ′ phases and even in
some salts with 18-crown-6, there are also radical salts with a 3:1 stoichiometry and the
general formula (ET)3[AM(C2O4)3]·G with A+ = Na+ and NH4

+; M = Cr and Al and small
solvent molecules in all cases (G = CH3NO2, CH2Cl2, CH3CN, EtOH and dmf, Table 6).
Interestingly, all these salts have been prepared with chiral solvents or mixtures of chiral
and non-chiral solvents.

By using the chiral solvent (R)-(-)-carvone with small solvent molecules such as
CH3CN and CH3NO2, P. Day and L. Martin obtained a series of three isostructural chiral
salts formulated as (BEDT-TTF)3[NaM(C2O4)3]·G with M/G = Al/CH3NO2 (79) [43],
Cr/CH3CN (84) [44] and Cr/CH3NO2 (86) [45] that crystallize in the monoclinic chiral P21
space group (Table 6). The structure of this 3:1 phase also consists of alternating BEDT-TTF
and anionic layers (Figure 17b). The BEDT-TTF layers contain three independent BEDT-TTF
molecules arranged in rows containing BC dimers alternating with A monomers tilted
ca. 45◦ with respect to the dimers (Figure 17a). This disposition resembles the κ′ phase,
but now each dimer is surrounded by four monomers and four dimers (compared to six
monomers in the κ′ phase). The anionic layer contains Na+ cations and a single enantiomer
of the [M(C2O4)3]3− anions, forming a hexagonal honeycomb lattice (Figure 17c). The small
solvent molecules (CH3CN or CH3NO2) are located in the center of the hexagons. It is to be
noted that now the hexagons are smaller and, accordingly, the organic layers contain only
three BEDT-TTF molecules per hexagonal cavity. The inhomogeneous charge distribution
with (BEDT-TTF)2

2+ dimers and neutral monomers and the lack of short intermolecular
contacts explain the semiconductor behavior observed in these salts [43–45].

Figure 17. Structure of (ET)3[NaAl(C2O4)3]·CH3NO2 (79): (a) View of the BEDT-TTF layer showing the rows with alternating
dimers and monomers. The three independent BEDT-TTF molecules are depicted in red, blue and green. (b) View of the
alternating cationic and anionic layers. (c) View of the homochiral anionic layer. Color code in (b,c): Al = green, Na = pink,
C = gray, O = red, N = blue and S = yellow. H atoms are omitted for clarity.

A very similar structure was found by L. Martin et al. in compounds (BEDT-TTF)3[Li-
M(C2O4)3]·EtOH with M = Cr (81) and Fe (82) [46]. Although these compounds were also
prepared with a chiral solvent (Λ-carvone), there is a disorder between the Li+ and MIII

centers that leads to a non-chiral P21/c space group. The BEDT-TTF and the anionic layers
show the same structure as compounds 79, 84 and 86 (Figure 17), although they are not,
strictly speaking, isostructural since compounds 81 and 82 are not chiral.

L. Martin et al., using the same chiral solvent (R)-(-)-carvone, also obtained two
isostructural chiral salts formulated as (BEDT-TTF)3{Na[⊗-Cr(C2O4)3]0.64[Λ-Cr(C2O4)3]0.36}·-
CH3NO2 (85) [45] and (BEDT-TTF)3[(NH4)0.83Cr1.17(C2O4)3]·CH3NO2 (80) [43] that crystal-
lize in the orthorhombic P212121 chiral space group. The structure of these two salts also
consists of alternating anionic and cationic layers, but now the organic layers present a
different packing with double rows of face-to-face BEDT-TTF dimers (A-B) alternating with
single rows of isolated BEDT-TTF molecules (C) tilted ca. 90◦ with respect to the dimers
(Figure 18a). The charge distribution, determined from the bond distances in the BEDT-TTF
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molecules, indicates an inhomogeneous charge distribution with charges of 0.33, 0.63 and
0.88 for the three independent molecules. The anionic layer is similar to that observed in
the P21 salts with the same stoichiometry (Figure 17c) and also contains a single enantiomer
of the [Cr(C2O4)3]3− anion. In compound 80, there is an excess of the [Cr(C2O4)3]3− anion
that results in a different charge distribution in the BEDT-TTF molecules, although no
electrical properties are reported. The isostructural NaCr derivative (85) [45] presents an
excess of the ⊗ enantiomer, due to a disorder of the Cr and Na positions, and a slightly
different charge distribution in the BEDT-TTF molecules since, now, the anionic layers have
a charge of -2 per formula unit.

Figure 18. (a) Structure of the organic layer in (BEDT-TTF)3[(NH4)0.83Cr1.17(C2O4)3]·CH3NO2 (80) showing the dou-
ble stacks with dimers (in green and blue) and monomers (in red). (b) Structure of the organic layer in (BEDT-
TTF)3[NaCr(C2O4)3]·EtOH (87) showing the stacks with dimers (in green and blue) and monomers (in red). (c) Structure of
the organic layer in θ-(BEDT-TTF)3[NaCr(C2O4)3]·dmf (88) showing the alternating stacks (in red and blue). H atoms are
omitted for clarity.

L. Martin et al. also used the chiral solvent R-(-)-carvone with small solvent molecules
such as CH2Cl2 and EtOH to prepare the isostructural salts (ET)3[Na(⊗-Cr(C2O4)3)0.56(Λ-
Cr(C2O4)3)0.44]·CH2Cl2 (83) [47] and (ET)3[NaCr(C2O4)3]·EtOH (87) [44] that crystallize
in the triclinic P1 chiral space group. Salt 83 was the first chiral BEDT-TTF salt with
[M(C2O4)3]3− anions and also the first radical salt in this series with Na+ ions in the anionic
layer [47]. The structure of these two salts also consists of alternating anionic and cationic
layers, but now the organic layers present a very slightly different packing to those of
the P21 salts with similar compositions but different solvent molecules (79, 84 and 86). In
the P1 salts (83 and 87), the organic layers are also formed by rows containing alternating
BEDT-TTF dimers and monomers, but now the monomers are tilted ca. 80◦ with respect
to the dimers (compared to ca. 45◦ in the P21 salts, Figure 17b), and the offset inside the
dimers is smaller in the P1 salts. Consecutive stacks are shifted to form a chessboard of
monomers and dimers (Figure 18b).

Finally, when using dmf and the chiral solvent R-(-)-carvone, L. Martin et al. also
obtained a 3:1 salt formulated as θ-(BEDT-TTF)3[NaCr(C2O4)3]·dmf (88) [44] that also
crystallizes in the triclinic P1 chiral space group (as the CH2Cl2 and EtOH derivatives) but
shows a completely different packing in the BEDT-TTF layer. Thus, salt 88 has only two
independent BEDT-TTF molecules that pack in segregated parallel stacks with a tilt angle
close to 116◦ between molecules of different stacks, giving rise to the so-called θ phase
(Figure 18c). The two stacks show a similar shift of the BEDT-TTF molecules of half-rings
along the stack. The anionic layer contains a single enantiomer of the [Cr(C2O4)3]3− anions
and Na+ cations with the classical honeycomb structure [44].
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The lack of a homogeneous charge distribution on the BEDT-TTF molecules and the
absence of short intermolecular contacts in all these chiral salts preclude the existence of an
electron delocalization, and, accordingly, all these 3:1 salts obtained with chiral solvents
are semiconductors or insulators (Table 6).

4.4. Other Phases of BEDT-TTF Salts with [M(C2O4)3]3− Anions

Besides all the above-described phases, the combination of BEDT-TTF donors with
[M(C2O4)3]3− anions has also led to other crystal phases with unusual stoichiometries
and/or packings in the cationic and anionic layers (Table 7).

The first of these salts is α′′′-(ET)9Na18[Fe(C2O4)3]8·24H2O (95) [39], also obtained
with the [Cr(C2O4)3]3− anion in α′′′-(ET)9Na18[Cr(C2O4)3]8·24H2O (91) [47]. These salts
present a very original structure with four different layers following the sequence . . .
ABCD . . . alternating along the c direction (Figure 19b). A-type layers contain BEDT-TTF
molecules with a very unusual α′′′ packing (Figure 19a), B and D layers contain Na+ cations
and [Fe(C2O4)3]3− anions with one single enantiomer in each layer (Figure 19c) and C
layers contain Na+ cations and H2O molecules in rows parallel to the b axis (Figure 19d) [39].
In the very unusual α′′′ packing, the BEDT-TTF molecules form parallel columns as in the
α and β” packings, but in one of every three columns, the BEDT-TTF molecules are tilted in
the opposite direction (Figure 19a). There are, thus, two columns with one orientation (++)
formed by three independent BEDT-TTF molecules (A–C) with the sequence . . . ABC . . . ,
and one with the opposite orientation (-) formed by two independent BEDT-TTF molecules
(D and E) with the sequence . . . DDE . . . In both stacks (+ and -), the BEDT-TTF molecules
are eclipsed. The α′′′ packing is, therefore, described as parallel columns following the
sequence . . . /+/+/-/+/+/-/ . . . The anionic layer is also original since, now, the vertices
of the hexagons contain alternating Fe(III) ions and (Na+)2 dimers and there is an additional
[Fe(C2O4)3]3− anion in the center of the hexagon with its oxalate ligands pointing towards
the Na+ dimers (Figure 19c). Interestingly, this unusual disposition has recently been found
in a salt with the [Fe(NA)3]3− anion (NA = nitranilato ligand = C6O4(NO2)2)2−) [48], which
is topologically identical to the oxalate ligand and also forms tris-chelato anionic complexes
[MIII(L)3]3− (L = anilato-type ligand) [49] and even [A+MIII(L3)]2− honeycomb layers [50],
such as the ones here described for oxalate in previous sections. This original salt, 95, has
an inhomogeneous charge distribution in the five independent BEDT-TTF molecules, and,
therefore, it is a semiconductor.

Figure 19. Structure of α′′′-(ET)9Na18[Fe(C2O4)3]8·24H2O (95): (a) View of the BEDT-TTF layer showing the two rows
(++) with one orientation of the BEDT-TTF molecules (blue, pink and light blue molecules) and the row (-) with the
opposite orientation (green and red molecules) and their eclipsed overlap. (b) View of the alternating cationic and
anionic/Na+/anionic layers. (c) View of one of the two layers containing the [Fe(C2O4)3]3− anions and the Na+ cations.
(d) View of the layer with the Na+ ions and the water molecules. Color code: Fe = green, Na = blue, C = gray, O = red,
Owater = light blue and S = yellow. H atoms are omitted for clarity.
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Salts α-(BEDT-TTF)12[Fe(C2O4)3]2·15H2O (93) and α-(BEDT-TTF)12[Fe(C2O4)3]2·16H2O
(94) are two solvates that, despite differing only in one water molecule, show different unit
cell parameters and, therefore, are not isostructural [51]. The structure of both salts consists of
cationic and anionic layers alternating along the c axis. Both salts show the α packing mode in
the BEDT-TTF layer, formed by parallel stacks with an alternating orientation of the BEDT-TTF
molecules. The only difference between both salts is that there are twelve independent BEDT-
TTF molecules in 93, compared to only three in salt 94. The anionic layers in both compounds
are formed by isolated [Fe(C2O4)3]3− anions surrounded by water molecules connected
through H bonds in a 2D lattice (Figure 20a). The only difference is the presence of an extra
water molecule in 94 and a slight twist in one oxalato ligand. Although the average charge
per BEDT-TTF molecule is +0.5, there is an inhomogeneous charge distribution that results
in a semiconducting behavior in both salts [51].

Figure 20. (a) View of the anionic layer in salt α-(BEDT-TTF)12[Fe(C2O4)3]2·15H2O (93) show-
ing the [Fe(C2O4)3]3− anions and the water molecules around the anions. Red dotted lines rep-
resent the H bonds between the water molecules. (b) View of the anionic layers in β”-(BEDT-
TTF)5[Fe(C2O4)3]·2H2O·CH2Cl2 (96). Color code: Fe = green, C = gray, O = red, Owater = light blue
and Cl = dark green.

When using (NEt4)3[Fe(C2O4)3] as a precursor salt and CH2Cl2 as a solvent, the
lack of small cations in the medium such as H3O+, Na+, K+ or NH4

+ results in an
original salt with no other cations in the structure. This salt, formulated as β”-(BEDT-
TTF)5[Fe(C2O4)3]·2H2O·CH2Cl2 (96) [52], shows cationic and anionic layers alternating
along the c direction. The cationic layers of this 5:1 salt contain five independent BEDT-TTF
molecules with the β” packing mode, as in the superconducting 4:1 phase. The anionic
layer is quite original since it contains isolated [Fe(C2O4)3]3− anions packed in parallel
rows, surrounded by the H2O and CH2Cl2 molecules (Figure 20b). There are two different
anionic layers with only one enantiomer each. The analysis of the bond distances shows
an inhomogeneous charge distribution with four BEDT-TTF molecules with a charge of
+0.5 and one BEDT-TTF with a charge of +1. This inhomogeneous charge distribution
explains the semiconducting behavior of this salt [52].

Another original salt is α-(BEDT-TTF)6[Fe(C2O4)3] (92) [17], which shows a 6:1 stoi-
chiometry with an α packing type in the BEDT-TTF layer. Unfortunately, the crystals are
not stable, precluding the determination of the anionic layer. The use of a large solvent
such as 1,2,4-trichlorobenzene may be at the origin of the unusual structure of this salt [17].

The use of Li3[Fe(C2O4)3] as a precursor salt, besides the above-mentioned 3:1 phases
(ET)3[LiM(C2O4)3]·EtOH (81 and 82) obtained with a chiral solvent, also gave crystals of
a 4:1 phase: η-(ET)4[(H2O)LiFe(C2O4)3] (90), when no chiral solvent was used [46]. The
structure of this salt consists of cationic and anionic layers alternating along the b axis.
In this salt, the BEDT-TTF layer shows an original η packing mode (Figure 21a) formed
by parallel stacks of eclipsed BEDT-TTF molecules (Figure 21b) tilted with respect to the
stack direction (as in the β” phase), but now the orientation of the molecules changes
every two stacks, following the sequence: . . . /+/+/-/-/ . . . (Figure 21a). This original
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packing can be considered as a mixture of the β” phase, where all the stacks have the same
orientation: (+/+/+/+), and the α phase, where the stacks show alternating orientations:
(+/-/+/-). The two stacks with a given orientation are equivalent and are formed by two
independent BEDT-TTF molecules following the sequence . . . AB . . . (or . . . CD . . . in the
stacks with the opposite orientation, Figure 21a). The BEDT-TTF molecules are eclipsed in
both types of stacks (Figure 21b). The anionic layer is also very original: it shows a distorted
hexagonal packing of the [Fe(C2O4)3]3− anions and the Li+ cations. This distortion is due
to the presence of a water molecule in the layer connected to the Li+ ions, resulting in
elongated Li(H2O)+ entities that occupy alternating vertices of the hexagons (Figure 21c).
The elongated hexagonal cavities are occupied by disordered CH2Cl2 solvent molecules.
The BEDT-TTF molecules show an inhomogeneous charge distribution, and, accordingly,
this original salt is a semiconductor (Table 7) [46].

Figure 21. Structure of η-(ET)4[(H2O)LiFe(C2O4)3] (90). (a) View of the cationic layer showing the
four independent BEDT-TTF molecules (as light blue, dark blue, red and orange). (b) View of the
eclipsed packing of the BEDT-TTF molecules. (c) View of the anionic layer showing the elongated
hexagonal cavities. Thin red lines represent the H bonds between the water molecule coordinated to
the Li+ ions and the terminal oxalate oxygen atoms. Color code in (c): Fe = green, Li = blue, C = gray
and O = red. H atoms in (a) are omitted for clarity.

A final example of a radical salt with an unusual structure is a 5:1 phase formulated as
α”-(BEDT-TTF)5[Ga(C2O4)3]·3.4H2O·0.6EtOH (89) [27]. This salt is the first orthorhombic
Pbca BEDT-TTF salt with an oxalate complex. The structure consists of cationic and anionic
layers alternating along the c axis (Figure 22c). The cationic layers show an α” or η packing
mode (Figure 22a), previously observed in η-(BEDT-TTF)4[(H2O)LiFe(C2O4)3] (90) [46],
although in salt 89, each BEDT-TTF stack contains five independent molecules with the
sequence . . . ABCDE . . . , showing a dislocation every five molecules along the stack
(Figure 22b), whereas in compound 90, there are four BEDT-TTF independent molecules
in two different stacks with the sequences . . . AB . . . and . . . CD . . . The anionic layers
are formed by rows along the a direction with alternating ⊗ and Λ enantiomers of the
[Ga(C2O4)3]3− anions (Figure 22d).
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Figure 22. Structure of α”-(BEDT-TTF)5[Ga(C2O4)3]·3.4H2O·0.6EtOH (89). (a) View of the cationic layer showing the five
independent BEDT-TTF molecules (as blue, red, orange, green and pink). (b) Side view of the BEDT-TTF stack showing
the pentameric repeating unit. (c) View of the alternating cationic and anionic layers along the c direction. (d) View of
the anionic layer showing the rows along the a axis with alternating ⊗ and Λ [Ga(C2O4)3]3− anions. Color code in (b):
Ga = pink, C = gray and O = red. H atoms are omitted for clarity.

Table 7. Radical salts of BEDT-TTF with [M(C2O4)3]3− anions showing other α and β phases (89–96).

# CCDC Formula a SG b Elect. Prop. A+ M G Ref.

89 CIWNAA α”-
(ET)5[Ga(ox)3]·3.4H2O·0.6EtOH Pbca Ea = 71 meV - Ga EtOH/H2O [27]

90 DUDWOQ η-(ET)4[(H2O)LiFe(ox)3] P21/c σ = 0.41 S/cm
Ea = 80 meV Li+/H2O Fe - [46]

91 DUXNUG α′′′-
(ET)9Na18[Cr(ox)3]8·24H2O P-1 Ea = 66 meV Na+ Cr H2O [47]

92 IPEKAQ α-(ET)6[Fe(ox)3] P21 - - Fe H2O/EtOH ? [17]

93 KIVKAC α-(ET)12[Fe(ox)3]2·15H2O C2/c σ = 0.055 S/cm H3O+ Fe H2O [51]

94 KIVKEG α-(ET)12[Fe(ox)3]2·16H2O C2/c σ = 0.111 S/cm H3O+ Fe H2O [51]

95 NIHPAW α′′′-
(ET)9Na18[Fe(ox)3]8·24H2O P-1 Ea = 77 meV Na+ Fe H2O [39]

96 OGUPAI β”-
(ET)5[Fe(ox)3](H2O)2CH2Cl2

P-1 σ = 4 S/cm
Ea = 30 meV - Fe CH2Cl2/H2O [52]

a ox = oxalate = C2O4
2−; b SG = space group.

4.5. BEDT-TTF Salts with [Ge(C2O4)3]2− and [Cu(C2O4)2]2− Dianions

Interestingly, besides all the above-mentioned M(III)-based [M(C2O4)3]3− anions, there
are also two oxalate-based dianions that have been combined with BEDT-TTF (Table 8):
(i) the Ge(IV)-based [Ge(C2O4)3]2− anion, which presents the same 3:1 stoichiometry
and octahedral geometry as the previously used [M(C2O4)3]3− anions, although with a
−2 charge, and (ii) the Cu(II)-based [Cu(C2O4)2]2− anion, also with a −2 charge, but with
a 2:1 stoichiometry and a square planar geometry (Figure 1b). As we will show here, the
change in the charge in the [Ge(C2O4)3]2− anion leads to very important changes in the
structure and properties of these radical salts.

The first salt with the dianion [Ge(C2O4)3]2− was reported by P. Day’s group and
shows a 2:1 stoichiometry: (BEDT-TTF)2[Ge(C2O4)3]·PhCN (97) [53]. Surprisingly, this
salt does not show alternating cationic and anionic layers but a chessboard arrangement
of BEDT-TTF face-to-face dimers and [Ge(C2O4)3]2− dianions interspersed with layers of
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PhCN solvent molecules (Figure 23a,b). The presence of isolated (BEDT-TTF)2
2+ dimers is

at the origin of the semiconducting behavior shown by this salt [53].

Figure 23. Structure of (BEDT-TTF)2[Ge(C2O4)3]·PhCN (97). (a) View of the ac plane. (b) Projection perpendicular to the bc
plane showing the chessboard arrangement of the BEDT-TTF dimers and the [Ge(C2O4)3]2− anions. Color code: Ge = pink,
C = gray, O = red, N = blue and S = yellow. H atoms are omitted for clarity.

Salts (BEDT-TTF)5[Ge(C2O4)3]2 (98) and (BEDT-TTF)7[Ge(C2O4)3]2·0.87CH2Cl2·0.09H2O
(99) were prepared using the same conditions but changing the solvent (chiral R-(-)-carvone
for 98 and CH2Cl2 for 99) [54]. The change in the solvent leads to two very different structures
and stoichiometries. Salt (BEDT-TTF)5[Ge(C2O4)3]2 (98) contains mixed layers parallel to the ac
plane with BEDT-TTF molecules and [Ge(C2O4)3]2− anions (Figure 24a). In these layers, the
BEDT-TTF molecules form diagonal stacks where the molecules are displaced along their long
molecular axis. These stacks are separated by isolated [Ge(C2O4)3]2− anions (Figure 24b) [54].

Figure 24. Structure of (BEDT-TTF)5[Ge(C2O4)3]2 (98). (a) View of the mixed layers parallel to the ac plane. (b) Projection of
the ac plane showing the stacks of BEDT-TTF molecules separated by rows of isolated [Ge(C2O4)3]2− anions. Color code:
Ge = pink, C = gray, O = red and S = yellow. H atoms are omitted for clarity.

In contrast, salt (BEDT-TTF)7[Ge(C2O4)3]2·0.87CH2Cl2·0.09H2O (99) shows alternat-
ing cationic and anionic layers parallel to the bc plane (Figure 25c), with the BEDT-TTF
molecules packed with the α packing mode (Figure 25a) [54]. There are four independent
BEDT-TTF molecules packed following the sequence . . . ABCDCBA . . . , with a dislocation
in the stacks every seven molecules (Figure 25b). The anionic layer is very original since
it shows [Ge(C2O4)3]2− anions grouped in homochiral dimers with a water molecule in
between them forming H bonds with both monomers (Figure 25c). Dimers with different
chirality alternate along the c axis. Disordered CH2Cl2 molecules are located between the
[Ge(C2O4)3]2− dimers.
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Figure 25. Structure of (BEDT-TTF)7[Ge(C2O4)3]2·0.87CH2Cl2·0.09H2O (99). (a) View of the cationic layer showing the four
independent BEDT-TTF molecules (A–D, as red, pink, green and blue, respectively). (b) Side view of the chain. (c) View of
the alternating cationic and anionic layers. (d) View of the anionic layer showing the [Ge(C2O4)3]2− dimers H bonded to a
water molecule (H bonds as thin blue lines). Color code in (b,c): Ge = pink, C = gray, O = red, Cl = green and S = yellow. H
atoms are omitted for clarity.

Although salts 97-99 were prepared with the NH4
+ salt of the [Ge(C2O4)3]2− dianion,

the NH4
+ cation did not enter in the structure of the salts. Attempts to change the cation,

using the Cs+ salt, led to a new and original salt, although without the Cs+ cation: (BEDT-
TTF)4[Ge(C2O4)3].0.5CH2Cl2 (100) [55]. This salt also presents alternating cationic and
anionic layers (Figure 26b), both layers being original. There are four independent BEDT-
TTF molecules (A–D) packed in parallel stacks following the sequence . . . ABCD . . .
(Figure 26a), with a dislocation every four molecules (Figure 26b). Within each group of the
four BEDT-TTF molecules, the two central ones (B and C) are completely ionized, whereas
the external ones (A and D) are neutral, resulting in (BEDT-TTF)2

2+ dimers surrounded by
neutral monomers from the electronic point of view. This charge distribution results in a
semiconducting behavior, as observed experimentally (Table 8) [55]. The anionic layer is
also original. It contains dimers of [Ge(C2O4)3]2− anions (with ⊗ and Λ chirality) with a
CH2Cl2 molecule connecting both anions (Figure 26c).

Figure 26. Structure of (BEDT-TTF)4[Ge(C2O4)3].0.5CH2Cl2 (100). (a) View of the cationic layer showing the four indepen-
dent BEDT-TTF molecules (as blue, green, purple and red). (b) View of the alternating cationic and anionic layers showing
the dislocation in the BEDT-TTF stacks every four molecules. (c) View of the anionic layer showing the [Ge(C2O4)3]2−

dimers (highlighted in yellow) with a disordered CH2Cl2 molecule located between them. Color code in (b,c): Ge = pink,
C = gray, O = red and S = yellow. H atoms are omitted for clarity.
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The only salt reported with the [Cu(C2O4)2]2− dianion: (BEDT-TTF)4[Cu(C2O4)2]
(101), is also the first radical salt prepared with any metal-oxalate complex. It shows
alternating cationic and anionic layers parallel to the ac plane (Figure 27b). The BEDT-TTF
layers are formed by two independent molecules with the β packing mode (Figure 27a).
The [Cu(C2O4)2]2− dianions are isolated and show a square planar geometry (Figure 27c).
The salt is metallic down to 65 K, where it shows a metal–semiconductor transition with a
low activation energy of 15 meV below 65 K (Table 8) [56,57].

Figure 27. Structure of (BEDT-TTF)4[Cu(C2O4)2] (101). (a) View of the cationic layer showing the β packing mode of the
two independent BEDT-TTF molecules (red and blue). (b) View of the alternating cationic and anionic layers. (c) View of the
anionic layer showing the isolated square planar [Cu(C2O4)2]2− anions. Color code in (b,c): Cu = blue, C = gray, O = red
and S = yellow. H atoms are omitted for clarity.

Table 8. Radical salts of BEDT-TTF with the [Ge(C2O4)3]2− and [Cu(C2O4)2]2− dianions (97–101).

# CCDC Formula a SG b Elect. Prop. G Anion Ref.

97 MAJYUR (ET)2[Ge(ox)3]·PhCN P21/c Ea = 127 meV PhCN [Ge(ox)3]2− [53]

98 MUVFUF (ET)5[Ge(ox)3]2 C2 σ = 10−3 S/cm
Ea = 225 meV

- [Ge(ox)3]2− [54]

99 MUVGAM (ET)7[Ge(ox)3]2·0.87CH2Cl2·0.09H2O C2/c σ = 1.75 S/cm
Ea = 117–172 meV CH2Cl2/H2O [Ge(ox)3]2− [54]

100 PADDOQ (ET)4[Ge(ox)3].0.5CH2Cl2 P21/c σ = 4.7 × 10−3 S/cm
Ea = 224 meV

CH2Cl2 [Ge(ox)3]2− [55]

101 SOJLUY (ET)4[Cu(ox)2] P-1 TM-I = 65 K
Ea = 15 meV - [Cu(ox)2]2− [56,57]

a ox = oxalate = C2O4
2−; b SG = space group.

5. BEDT-TTF Salts with Oxalate Dimers and 2D Lattices

Besides monomeric tri-anions such as [M(C2O4)3]3− (M = Fe, Cr, Co, Al, Ga, Mn,
Ru, Rh, Ir, etc.) and dianions such as [Ge(C2O4)3]2− and [Cu(C2O4)2]2−, there are a
few reported radical salts of BEDT-TTF with the dimer [Fe2(C2O4)5]4− and even with
extended homo- and heterometallic hexagonal honeycomb lattices such as [MnCr(C2O4)3]−,
[MnRh(C2O4)3]− and [Cu2(C2O4)3]2− (Table 9).

The only known salt with BEDT-TTF and a dimeric anion is: (BEDT-TTF)4[Fe2(C2O4)5]
(105), also reported by P. Day’s group [58]. In this radical salt, the dimeric anion [Fe2(C2O4)5]4− is
formed in situ from the precursor [Fe(C2O4)3]3− monomer in the electrochemical cell. The struc-
ture of this unusual salt consists of mixed layers parallel to the ac plane (Figure 28a) containing the
[Fe2(C2O4)5]4− dimers interspersed with BEDT-TTF molecules that form stacks running parallel
to the a direction (Figure 28b). The [Fe2(C2O4)5]4− dimers are formed by two [Fe(C2O4)3]3−

monomers with different chirality sharing an oxalate bridge (Figure 1c). There are two indepen-
dent BEDT-TTF molecules, both with a +1 charge, in agreement with the 4:1 stoichiometry
and the -4 charge of the anion, resulting in a semiconducting salt with a high activation
energy and a low room temperature conductivity (Table 9) [58]. The oxalate-bridged
Fe(III) dimer in this salt shows, as expected, a weak antiferromagnetic interaction with
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J = −3.44 cm−1, similar to that found in the TTF and TM-TTF salts with the same dimer
that will be described in the next section [59,60].

Figure 28. (a) View of the structure of (BEDT-TTF)4[Fe2(C2O4)5] (105) showing the mixed layers parallel to the ac plane.
(b) Top view of one mixed layer showing the stacks of the BEDT-TTF molecules and the [Fe2(C2O4)5]4− dimeric anion in
between the stacks of BEDT-TTF molecules. Color code: Fe = green, C = gray, O = red and S = yellow. H atoms are omitted
for clarity.

There are three closely related BEDT-TTF salts prepared with a heterometallic honeycomb
oxalate-based layer: (ET)2.53[MnCr(C2O4)3]·CH2Cl2 (103), (ET)2.53[MnRh(C2O4)3]·CH2Cl2 (104)
and (ET)3[MnCr(C2O4)3] (106) [7,8]. These three salts are isostructural and show alternating layers
of BEDT-TTF molecules and anionic honeycomb layers (Figure 29b). The BEDT-TTF molecules
are tilted around 45◦ with respect to the anionic layer and show a β packing mode (Figure 29a).
The anionic layers show the classical honeycomb structure and contain Mn(II) and Cr(III) ions (or
Rh(III) in 104) with alternating chirality connected by oxalate bridges (Figure 29c).

Figure 29. Structure of (BEDT-TTF)3[MnCr(C2O4)3] (106). (a) View of the BEDT-TTF layer showing the β packing mode.
(b) View of the alternating cationic and anionic layers. (c) View of the honeycomb [MnCr(C2O4)3]− anionic layer. Color
code: Cr = dark green, Mn = orange, C = gray, O = red and S = yellow. H atoms are omitted for clarity.

Salt (BEDT-TTF)3[MnCr(C2O4)3] (106) was the first molecular compound showing
metallic conductivity and a ferromagnetic long-range ordering, with an ordering temper-
ature Tcurie of ca. 5.5 K (Figure 30a) [7]. This salt presents magnetoresistance below ca.
10 K (Figure 30b), indicating that both sublattices are quasi-independent from the electronic
point of view. Attempts to change the metal ions and the donor molecules and the use
of other solvents led to different radical salts [61], including isostructural compounds
(ET)2.53[MnCr(C2O4)3]·CH2Cl2 (103) and (ET)2.53[MnRh(C2O4)3]·CH2Cl2 (104) that are
also metallic and show long-range magnetic ordering, although in compound 104, there is
a broad metal to semiconducting transition at around 100 K [8]. The use of this honeycomb
layer with other TTF-type donors will be revised in the next section.
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Figure 30. (a) Temperature dependencies of the in-phase (χ′m) and the out-of-phase (χ”m) AC susceptibility of (BEDT-
TTF)3[MnCr(C2O4)3] (106) showing the long-range ordering at ca. 5.5 K. (b) Electrical conductivity of a single crystal of
(BEDT-TTF)3[MnCr(C2O4)3] (106) with and without applied DC magnetic field.

A last example of extended lattices is provided by the series of salts formulated as
(BEDT-TTF)3[Cu2(C2O4)3]·G, with G = H2O (108), CH2Cl2 (102) and CH3OH (107) [62].
The structure of these isostructural salts shows alternating cationic and anionic layers
parallel to the ab plane (Figure 31b). The BEDT-TTF layers show a θ21 packing mode,
similar to that observed in α”’-(ET)9Na18[Fe(C2O4)3]8·24H2O (95), formed by two stacks
of BEDT-TTF tilted in one direction (+/+) and one stack tilted in the opposite direction
(-), following the sequence ( . . . /+/+/-/+/+/-/ . . . ) (Figure 31a). The anionic layer is
also a honeycomb hexagonal lattice formed by Cu(II) ions in the vertices of the hexagons
and oxalate bridges as the sides of the hexagons. The crystallization solvent molecules are
located in the hexagonal cavities. As a result of the expected Jahn–Teller distortions in the
Cu(II) ions, the hexagons are quite distorted (Figure 31c). The properties of the CH3OH
derivative (the only one reported to date) show that this radical salt is a semiconductor
with an activation energy of 50 meV and presents a moderate antiferromagnetic Cu–Cu
interaction through the oxalate bridge [62].

Figure 31. Structure of (BEDT-TTF)3[Cu2(C2O4)3]·2CH3OH (107). (a) View of the BEDT-TTF layer showing the θ21 packing
mode with the three independent BEDT-TTF molecules (in red, blue and light blue). (b) View of the alternating cationic
and anionic layers. (c) View of the distorted honeycomb [Cu2(C2O4)3]2− anionic layer with the CH3OH molecules in the
hexagonal cavities. Color code in (b,c): Cu = light blue, C = gray, O = red and S = yellow. H atoms are omitted for clarity.

The tuneability of these metallic magnets was evidenced by the synthesis of different
derivatives of the metallic ferromagnet (BEDT-TTF)3[MnCr(C2O4)3] (106). One of these
derivatives is the salt (BEDT-TTF)3[CoCr(C2O4)3]·CH2Cl2, which showed an ordering
temperature of 9.2 K and a high electrical conductivity of 1 S/cm at room temperature,
although no metallic behavior was observed, maybe because the measurements were
performed on a pressed pellet as no big single crystals could be obtained [63]. The other
derivatives, prepared with different TTF-type donors, will be revised in the next section.
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Table 9. Radical salts of BEDT-TTF with metal-oxalate dimers and 2D lattices (102–108).

# CCDC Formula a SG b Elect. Prop. Anion G Ref.

102 CEMMUF (ET)3[Cu2(ox)3]·CH2Cl2 P-1 - [Cu2(ox)3]2− CH2Cl2 c

103 IPOZIY (ET)2.53[MnCr(ox)3]·CH2Cl2 P-1 σ = 10 S/cm
metal > 0.4 K [MnCr(ox)3]− CH2Cl2 [8]

104 IPOZOE (ET)2.53[MnRh(ox)3]·CH2Cl2 P-1 σ = 13 S/cm
metal > 100 K [MnRh(ox)3]− CH2Cl2 [8]

105 LOHWIO (ET)4[Fe2(ox)5] P21/n σ = 2 × 10−3 S/cm
Ea = 1200 meV [Fe2(ox)5]4− - [58]

106 NALVIG (ET)3[MnCr(ox)3] P-1 σ = 250 S/cm
metal > 0.3 K [MnCr(ox)3]2− - [7]

107 SAMMEA (ET)3[Cu2(ox)3]·2CH3OH P-1 σ = 4 S/cm
Ea = 50 meV [Cu2(ox)3]2− CH3OH [62]

108 WUXWET (ET)3[Cu2(ox)3]·2H2O P-1 - [Cu2(ox)3]2− H2O c

a ox = oxalate = C2O4
2−; b SG = space group. c Unpublished results.

6. Radical Salts of Metal-Oxalate Anions with Other TTF-Type Donor Molecules

Although BEDT-TTF is, by far, the most used donor molecule with metal-oxalato
complexes, with more than one hundred reported salts (see Tables 1–9), other TTF-type
donors have been combined with metal-oxalato complexes and lattices (Scheme 1). Here,
we will revise all these salts, prepared with donors such as tetrathiafulvalene (TTF),
tetramethyl-tetrathiafulvalene (TM-TTF), bis(ethylenediseleno)tetrathiafulvalene (BEDS-
TTF = BEST), bis(ethylenedithio)tetraselenafulvalene (BEDT-TSF = BETS) and 4,5-bis((2S)-
2-hydroxypropylthio)-4′,5′-(ethylenedithio)tetrathiafulvalene (DMPET).

6.1. TTF and TM-TTF Salts with Oxalate Complexes

There are only two radical salts with [M(C2O4)3]3− anions and the donor TTF: (TTF)7-
[Fe(C2O4)3]2·4H2O (114) [59,60] and (TTF)3[Ru(C2O4)3]·0.5EtOH·4H2O (118) [64]. Salt 114 is
an unusual 7:2 salt that shows corrugated mixed layers containing TTF molecules and the
[Fe(C2O4)3]3− anions with the water molecules located between the layers (Figure 32a) [60].
The top view of these layers shows chains of TTF molecules, running parallel to the a
axis (perpendicular to the layer), surrounded by TTF dimers and [Fe(C2O4)3]3− anions
(Figure 32b). The TTF dimers contain two independent TTF molecules (C and D), and the
TTF chains are formed by two different independent TTF molecules (A and B) following
the sequence . . . ABB . . . (Figure 32c). The [Fe(C2O4)3]3− anions form homochiral rows
running along the b axis, with opposite chirality in alternating rows, meaning that two
of the four [Fe(C2O4)3]3− anions surrounding the TTF chains are ⊗ enantiomers and the
other two are Λ (Figure 32b).

Figure 32. Structure of (TTF)7[Fe(C2O4)3]2·4H2O (114): (a) View of the corrugated mixed layers.
(b) Top view (down the a direction) of the mixed layers showing the TTF dimers (green rectangles)
and the TTF chains. (c) Side view of the TTF chains showing the . . . ABB . . . sequence. Color code in
(a,b): Fe = green, C = gray, O = red, Owater = blue and S = yellow. H atoms are omitted for clarity.
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The other salt with TTF and a monomeric [M(C2O4)3]3− anion, (TTF)3[Ru(C2O4)3]·0.5E-
tOH·4H2O (118), was the first radical salt prepared with a 4d [M(C2O4)3]3− anion and
shows a very original structure in both sublattices [64]. Its structure consists of alternating
cationic and anionic layers parallel to the ab plane (Figure 33a). There are two differ-
ent anionic layers each containing a single enantiomer. The anionic layers contain the
[M(C2O4)3]3− anions and the solvent molecules with a hexagonal arrangement (Figure 33b),
although different to the one observed in the BEDT-TTF salts of previous sections since,
now, there is no extra A+ cation orienting the terminal O atoms of the oxalate ligands. The
TTF layers are also original: they contain three independent TTF molecules (A–C) arranged
in AA dimers and chains following the sequence . . . BBCC . . . (Figure 33c). The TTF
molecules of consecutive layers run in opposite directions (Figure 33d). This salt shows a
paramagnetic behavior with contributions from the [Ru(C2O4)3]3− S = 1

2 anions and from
the TTF molecules that show a charge localization, in agreement with the semiconducting
behavior observed in this salt [64].

Figure 33. Structure of (TTF)3[Ru(C2O4)3]·0.5EtOH·4H2O (118): (a) View of the alternating cationic and anionic layers
parallel to the ab plane. (b) View of the Λ anionic layer. (c) View of the cationic layer showing the AA dimers (in red) and
the . . . BBCC . . . chains (in blue and pink). (d) View of two consecutive TTF layers (in yellow and purple) showing the
opposite orientations of the chains and the dimers. Color code in (a,b): Ru = pink, C = gray, O = red, Owater = blue and
S = yellow. H atoms are omitted for clarity.

There are two other salts with oxalate complexes and TTF, although they do not contain
monomeric [M(C2O4)3]3− anions but an [Fe2(C2O4)5]4− dimer in (TTF)5[Fe2(C2O4)5]·2Ph-
CH3·2H2O (115) [59,60], or a {Mn(H2O)2[Cr(C2O4)3]2}4− trimer in (TTF)4{Mn(H2O)2[Cr-
(C2O4)3]2}·14H2O (120) [65,66]. Interestingly, salts 115 and 120 are the first examples of any
salt with the previously unknown [Fe2(C2O4)5]4− dimer and {Mn(H2O)2[Cr(C2O4)3]2}4−

trimer, respectively. In both cases, the anions are assembled during the electrochemical
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synthesis of the radical salts from the corresponding [M(C2O4)3]3− anions (and Mn2+

cations in salt 120).
Salt 115 shows alternating cationic and anionic layers parallel to the ab plane (Figure 34b).

The cationic layers contain two independent TTF molecules (A and B). A-type TTF molecules
form chains running parallel to the b axis, whereas B-type molecules are monomers located
between the chains. The packing of the TTF molecules is unique because not only the planes of
the A- and B-type molecules are orthogonal but also their long molecular axis (Figure 34a,b).
The [Fe2(C2O4)5]4− dimer is formed by the fusion of one ⊗ and one Λ monomer through a
bis-bidentate oxalate ligand (Figure 1c). These dimers are packed in rows along the b axis
with PhCH3 molecules located between the rows (Figure 34c). The electrical properties
show that this salt is a semiconductor (Table 10), in agreement with the presence of neutral
isolated TTF molecules. The magnetic properties show that the [Fe2(C2O4)5]4− dimer
presents a weak antiferromagnetic Fe–Fe coupling with J = −3.57 cm−1, through the
oxalate bridge, as observed in the other salts prepared with this dimer [58,60].

Figure 34. Structure of (TTF)4[Fe2(C2O4)5]·2PhCH3·2H2O (115): (a) View of the cationic layer showing the chains along the
b axis containing the A-type molecules (in red) and the isolated orthogonal monomers (in blue). (b) View of the alternating
cationic and anionic layers parallel to the ab plane. (c) View of the anionic layer. Color code in (b,c): Fe = green, C = gray,
O = red, Owater = blue and S = yellow. H atoms are omitted for clarity.

The last salt with TTF and an oxalate complex is (TTF)4{Mn(H2O)2[Cr(C2O4)3]2}·14H2O
(120) [65,66]. This salt was the first one prepared with TTF and any oxalate complex and con-
tains the then-unknown {Mn(H2O)2[Cr(C2O4)3]2}4− trimer. The structure shows alternating
cationic and anionic layers parallel to the ab plane (Figure 35b). There are three independent
TTF molecules forming orthogonal AA and BC dimers (similar to the κ-phase in BEDT-
TTF) [67], although now the dimers form stacks separated by water molecules (Figure 35a).
The anionic layer contains linear trimeric {Mn(H2O)2[Cr(C2O4)3]2}4− anions formed by the
fusion of two [Cr(C2O4)3]3− monomers with different chirality with a Mn(II) ion coordi-
nated by two equatorial bidentate oxalato ligands and two axial H2O molecules (Figure 1d).
These trimers are packed in a rhombic disposition with strong H bonds between the two co-
ordinated water molecules and the terminal O atoms of the oxalato ligands of neighboring
trimers (Figure 35c).

The magnetic properties show the presence of a weak ferromagnetic Cr–Mn cou-
pling with J = 1.08 cm−1, although the salt is a semiconductor since the TTF molecules are
completely oxidized and there are no short intermolecular contacts (Table 10) [65,66]. An ad-
ditional interest of this salt is the possibility to change the anion by simply changing Cr(III)
to Fe(III) and Mn(II) to other metal ions such as Fe(II), Co(II), Ni(II), Cu(II) and Zn(II). In this
way, it was possible to prepare the series of salts (TTF)4{MII(H2O)2[MIII(C2O4)3]2}·nH2O
with MIII/MII = Cr/Mn, Cr/Fe, Cr/Co, Cr/Ni, Cr/Cu, Cr/Zn, Fe/Mn, Fe/Fe, Fe/Co,
Fe/Ni and Fe/Zn [66]. The use of different metal ions in these series allowed a modulation
of the magnetic coupling that is weak ferromagnetic for the Cr(III) derivatives and weak
antiferromagnetic for the Fe(III) ones [66].
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Figure 35. Structure of (TTF)4{Mn(H2O)2[Cr(C2O4)3]2}·14H2O (120): (a) View of the cationic layer showing the orthogonal
AA (in red) and BC (green and blue) dimers arranged in chains separated by water molecules. (b) View of the alternating
cationic and anionic layers parallel to the ab plane. (c) View of the anionic layer. Thin blue lines are the H bonds between
the anions. Color code in (a,c): Cr = dark green, Mn = orange, C = gray, O = red, Owater = blue and S = yellow. H atoms are
omitted for clarity.

The then-unknown [Fe2(C2O4)5]4− dimer was also obtained with the donor tetramethyl-
tetrathiafulvalene (TM-TTF) and published with the TTF salt described above [60]. This
salt, formulated as (TM-TTF)4[Fe2(C2O4)5]·PhCN·4H2O (116), shows mixed layers of TM-
TTF molecules and [Fe2(C2O4)5]4− anions with crystallization PhCN and water molecules
(Figure 36a). The layers contain stacks of TM-TTF separated by rows with the [Fe2(C2O4)5]4−

anions and crystallization solvent molecules (Figure 36b). The TM-TTF stacks are formed
by two independent TM-TTF molecules following the sequence . . . AABB . . . Although
the molecular planes of the donor molecules are parallel, the long axis of the molecules is
slightly tilted (Figure 36c). As the TM-TTF molecules are completely oxidized, the salt is
a semiconductor with a high activation energy (Table 10). As observed in the TTF and
BEDT-TTF salts of the same [Fe2(C2O4)5]4− anion, in compound 116, this anion shows a
weak antiferromagnetic Fe–Fe coupling with J = −3.69 cm−1, through the oxalate bridge,
similar to those of the other salts with this dimer [58,60].

Figure 36. Structure of (TM-TTF)4[Fe(C2O4)3]2·PhCN·4H2O (116): (a) Side view of the mixed cationic and anionic layers.
(b) Top view of the mixed layer showing the TM-TTF chains separated by [Fe(C2O4)5]4− anions and water molecules.
(c) View of the TM-TTF chains formed by A (red) and B (blue) TM-TTF molecules. Color code in (a,b): Fe = green, C = gray,
O = red, Owater = blue and S = yellow. H atoms are omitted for clarity.

6.2. Salts with Se-Containing Donors (BEST and BETS)

There are two selenium-containing derivatives of BEDT-TTF that have also been
used with oxalate complexes: bis(ethylenediseleno)tetrathiafulvalene (BEDS-TTF = BEST),
which contains four Se atoms in the outer rings, and bis(ethylenedithio)tetraselenafulvalene
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(BEDT-TSF = BETS), which contains four Se atoms in the inner rings (Scheme 1). With the
donor BEST, a total of five salts have been reported [68]. There are two isostructural salts
with benzoic acid and water as crystallization solvents: (BEST)4[M(C2O4)3]·PhCOOH·H2O,
with M = Cr (109) and Fe (110), and a couple of isostructural salts with the same stoichiom-
etry but different solvents formulated as (BEST)4[M(C2O4)3]·1.5H2O, with M = Cr (111)
and Fe (113). The fifth salt is a 9:2 salt formulated as (BEST)9[Fe(C2O4)3]2·7H2O (112) [68].

The structure of salts (BEST)4[M(C2O4)3]·PhCOOH·H2O, with M = Cr (109) and Fe
(110) consists of alternating cationic and anionic layers parallel to the ab plane (Figure 37b).
The cationic layer is formed by four independent BEST molecules (A–D) packed with the
β packing mode (Figure 37a) in parallel stacks, with a step every four BEST molecules
(Figure 37b), following the sequence . . . ABCDDCBA . . . (Figure 37a). The anionic layers
show an original arrangement with pairs of anions with different chirality separated by
PhCOOH molecules, also arranged in pairs, and water molecules forming moderate H
bonds (Figure 37c). A- and C-type BEST molecules are completely ionized, whereas B
and D molecules bear a charge of +1/2. The presence of totally ionized BEST molecules is
responsible of the semiconducting behavior of these two salts (Table 10) [68]. The magnetic
properties show that there is no noticeable contribution from the organic layers, and the
salts behave as isolated S = 3/2 or S = 5/2 ions for 109 and 110, respectively.

Figure 37. Structure of (BEST)4[Cr(C2O4)3]·PhCOOH·H2O (109): (a) View of the cationic layer showing the β packing
formed by four independent BEST molecules (in red, blue, green and pink). (b) View of the alternating cationic and anionic
layers parallel to the ab plane. (c) View of the anionic layer. Color code in (b,c): Cr = dark green, C = gray, O = red,
Owater = blue, Se = pink and S = yellow. H atoms are omitted for clarity.

Salts (BEST)4[M(C2O4)3]·1.5H2O, with M = Cr (111) and Fe (113), are isostructural
and represent a pair of solvates of 109 and 110, respectively, since they show the same
stoichiometry and composition and only differ in the crystallization solvent molecules
(PhCOOH and H2O in 109 and 110, compared to only H2O in 111 and 113) [68]. The
structure of salts 111 and 113 also consists of alternating cationic and anionic layers parallel
to the ab plane (Figure 38b). The cationic layer contains two independent BEST molecules
(A and B) packed in parallel stacks following the sequence . . . ABAB . . . , also with the
β packing mode (Figure 38a). The anions appear with a disorder since they are located
close to an inversion center. When only one of the two possible locations is considered,
the anions show zigzag chains with alternating chirality along the c axis (Figure 38c). The
A-type BEST molecules are completely ionized, whereas B molecules bear a charge of +1/2,
in agreement with the stoichiometry and the anionic charge. The presence of alternating
totally ionized BEST molecules results in a semiconducting behavior for these two salts
(Table 10). The magnetic properties are, as expected, similar to those of salts 109 and
110 since the Cr(III) S = 3/2 and Fe(III) S = 5/2 ions are isolated from the magnetic point of
view and there is no noticeable contribution from the organic layers [68].
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Figure 38. Structure of (BEST)4[Cr(C2O4)3]·1.5H2O (111): (a) View of the cationic layer showing the β packing formed by
two independent BEST molecules (in red and blue). (b) View of the alternating cationic and anionic layers parallel to the ac
plane. (c) View of the anionic layer showing only one of the two orientations of the [Cr(C2O4)3]3− anions. Color code in
(b,c): Cr = dark green, C = gray, O = red, Owater = blue, Se = pink and S = yellow. H atoms are omitted for clarity.

The last salt containing the donor BEST is a very original 9:2 phase, formulated
as (BEST)9[Fe(C2O4)3]2·7H2O (112) [68]. This salt also presents alternating cationic and
anionic layers parallel to the ab plane (Figure 39b), and the cationic layer also shows the β

packing mode (Figure 39a). The main difference with the other BEST layers is the presence
of five independent BEST molecules (A–E) that form two different chains (I and II) with
steps every three BEST molecules (Figure 39b). Chains of type I are formed by D and E
molecules packed following the sequence . . . DED . . . , whereas chains of type II contain
three independent molecules (A–C) packed following the sequence . . . ABC . . . There are
two chains of type II and one of type I alternating in the direction perpendicular to the
stacks following the sequence . . . /I/II/II/ . . . (Figure 39a). The [Fe(C2O4)3]3− anions are
located to form dimers with the opposite chirality, and the crystallization water molecules
are located in between the anions forming several H bonds with the anions and with the
water molecules (Figure 39c). The inhomogeneous charge distribution of the five BEST-TTF
molecules is at the origin of the semiconducting behavior observed in this salt (Table 10).
As in the previous BEST salts, the magnetic properties correspond to isolated [Fe(C2O4)3]3−

anions with no noticeable contribution from the organic layers [68].

Figure 39. Structure of (BEST)9[Fe(C2O4)3]2·7H2O (112): (a) View of the cationic layer showing the β packing and the two
different stacks (I and II) with the five independent BEST molecules (A–E in red, dark blue, green, pink and light blue,
respectively). (b) View of the alternating cationic and anionic layers parallel to the ab plane. (c) View of the anionic layer
showing the [Fe(C2O4)3]3− anions and the crystallization water molecules. Color code in (b,c): Fe = green, C = gray, O = red,
Owater = blue, Se = pink and S = yellow. H atoms are omitted for clarity.

The other Se-containing donor, bis(ethylenedithio)tetraselenafulvalene (BETS), has
never been combined with monomeric [M(C2O4)3]3− anions but only with two extended
honeycomb lattices, in compounds (BETS)3[Cu2(C2O4)3]·2CH3OH (117) [69] and (BETS)3-
[MnCr(C2O4)3]·CH2Cl2 (119) [70].
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Compound (BETS)3[Cu2(C2O4)3]·2CH3OH (117) contains alternating cationic and
anionic layers parallel to the ab plane (Figure 40b) [69]. The organic layer presents the
θ21 phase with two stacks tilted in one direction and one stack in the opposite direction
(Figure 40a), also observed in the BEDT-TTF derivatives with the same [Cu2(C2O4)3]2−

layer (compound 107, see above). The anionic sublattice in 117 is a hexagonal honeycomb
layer that shows important distortion due to the Jahn–Teller effect on the Cu(II) ions
(Figure 40c). The electrical properties show that the BETS salt is a much better electrical
conductor than the BEDT-TTF one with a higher room temperature conductivity and a
metallic behavior down to 180 K (the BEDT-TTF salt is semiconducting). The improved
electrical properties are attributed to the enhanced intermolecular interactions when S is
substituted by Se. The Cu···Cu interaction is also antiferromagnetic, as in the BEDT-TTF
derivative [69].

Figure 40. Structure of (BETS)3[Cu2(C2O4)3]·2CH3OH (117): (a) View of the cationic layer showing the θ21 packing and the
two different stacks (I and II) with the three independent BEST molecules (A–C in red, dark blue and green, respectively).
(b) View of the alternating cationic and anionic layers parallel to the ab plane. (c) View of the anionic layer showing the
[Cu2(C2O4)3]3− honeycomb lattice. Color code in (b,c): Cu = light blue, C = gray, O = red, Owater = blue, Se = pink and
S = yellow. H atoms are omitted for clarity.

The other salt prepared with BETS is (BETS)3[MnCr(C2O4)3]·CH2Cl2 (119) [70]. This
salt is the first one prepared with the BETS donor and an oxalate complex and also shows
alternating cationic and anionic layers parallel to the ab plane. The cationic layer shows the
α packing mode, where consecutive stacks are tilted in opposite directions (Figure 41a).
The anionic layer is identical to the one observed in the BEDT-TTF derivative: it shows
the classical honeycomb structure with alternating Mn(II) and Cr(III) centers connected
through oxalato bridges. This salt is metallic down to 150 K (Figure 41b) and shows the
expected ferromagnetic long-range order below 5.3 K (Figure 41c). In this case, the change
of S to Se in the donor molecule did not improve the electrical properties [70].

Figure 41. (a) View of the cationic layer in (BETS)3[MnCr(C2O4)3]·CH2Cl2 (119) showing the α packing with the two
different stacks formed by the A- (in red) and B-type (in blue) BETS molecules. H atoms are omitted for clarity. (b) Thermal
variation in the electrical resistivity of compound 119. (c) Thermal variation in the in-phase (χ′m) and out-of-phase (χ”m)
susceptibilities in compound 119.
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Finally, although its structure could not be determined, the [MnCr(C2O4)3]− lattice has
also been combined with BEST to obtain a radical salt with a formula of (BEST)3[MnCr(C2O4)3]
that shows a low room temperature conductivity of 10−6 S/cm and a ferromagnetic or-
der at Tc = 5.6 K [61]. The change of Mn(II) to Co(II) in this honeycomb lattice leads to
the isostructural lattice [CoCr(C2O4)3]− with a higher ordering temperature that has also
been combined with the donors BEST and BETS to prepare salts (BEST)3[CoCr(C2O4)3] and
(BETS)3[CoCr(C2O4)3]. These two salts show ferromagnetic ordering temperatures of 10.8 and
9.2 K, respectively, and show room temperature conductivities of 10−6 S/cm for the BEST salt
and 2.3 S/cm for the BETS one [61].

6.3. Salts with Other Donors

Finally, there is one reported salt with the [Fe2(C2O4)5]4− dimeric anion and the chiral
donor 4,5-bis((2S)-2-hydroxypropylthio)-4′,5′-(ethylenedithio)tetrathiafulvalene (DMPET-
TTF, Scheme 1): (DMPET)4[Fe2(C2O4)5] (121) [71]. The structure of this compound shows
alternating cationic and anionic layers parallel to the ac plane (Figure 42b), although the
large size of the two 2-hydroxypropylthio groups precludes the formation of parallel
donor stacks. Thus, the cationic layers are formed by single stacks of the DMPET-TTF
molecules running along the c axis (Figure 42a). The anionic layers contain well-isolated
[Fe2(C2O4)5]4− anions as a result of the large size of the DMPET molecules (Figure 42c).
No physical properties are reported for this salt [71].

Figure 42. Structure of (DMPET-TTF)4[Fe2(C2O4)5] (121): (a) View of the cationic layer showing the individual chains of
DMPET-TTF molecules along the c direction. (b) View of the alternating cationic and anionic layers parallel to the ac plane.
(c) View of the anionic layer showing the [Fe2(C2O4)5]4− anions. Color code: Fe = green, C = gray, O = red and S = yellow.
H atoms are omitted for clarity.

Finally, although there is no structural report, the honeycomb lattice [MnCr(C2O4)3]−

has also been combined with other donors such as bis(ethylenethio)tetrathiafulvalene (BET),
bis(methylenedithio)tetrathiafulvalene (BMDT-TTF), bis(ethylenedioxo)tetrathiafulvalene
(BEDO-TTF) and bis(ethylenedithio)trithiaselenafulvalene (ET-1Se), whereas the isostruc-
tural [CoCr(C2O4)3]− lattice was combined with the donor BET. The ferromagnetic ordering
temperatures are in the range 5.0–5.6 K for the MnCr lattices and 13.0 K for the CoCr one.
The room temperature conductivities, measured on pressed pellets, are quite high, in the
range 0.1–21 S/cm [61].
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7. Conclusions

The seminal work of Peter Day’s group in 1995 [2,3] with the synthesis of the first param-
agnetic superconductors in the family of salts β”-(BEDT-TTF)4[AM(C2O4)3]·G (A = monocation,
M = trivalent metal ion and G = solvent) is at the origin of the largest series of molecular metals
and superconductors prepared to date. This series constitutes a paradigmatic example of the
tuneability of molecular materials, as shown by the large number of related compounds prepared
by changing: (i) the A+ cation with other monocations (H3O+, NH4

+, K+, Na+ and Li+) or even
with dications (Mn2+, Co2+ and Cu2+); (ii) the TTF-type donors (TTF, TM-TTF, BEST, BETS, BET,
BEDO, BMDT-TTF, etc.); (iii) the M(III) ion (Fe, Cr, Ga, Mn, Rh, Ru, Al, Co and Ir), or even M(IV)
as Ge(IV) and M(II) as Cu(II); and (iv) the solvent molecule (PhCN, PhNO2, PhF, PhCl, PhBr, PhI,
PhCOOH, H2O, CH2Cl2, CH3OH, py, dmf, Cl-Py, Br-py, etc.). These relatively easy-to-perform
modifications have led to the synthesis of more than one hundred and twenty radical salts
with oxalate complexes combining electrical properties (semiconductors, metals and super-
conductors) with magnetic properties (paramagnetism, ferro-, ferri- and antiferromagnetic
couplings and even long-range magnetic ordering). These series constitute, by far, the
largest family of multifunctional molecular materials prepared to date.

No doubt, the research on this type of salt was boosted by the preparation by P.
Day’s group of the first molecular paramagnetic superconductor in 1995 [2,3]. Since then,
several groups have prepared and characterized many different salts to try to understand
the key aspects of these magnetic superconductors and to improve the magnetic and/or
the electrical properties. Furthermore, this search has allowed the synthesis of magnetic
conductors with other properties such as chirality or proton conductivity.

As a homage to the legacy of the late Peter Day, we have shown, here, the so-called
Day series of radical salts formulated as β”-(BEDT-TTF)4[AM(C2O4)3]·G, with more than
fifty reported structures to date, and of the closely related series prepared with other oxalate
complexes and different donors. Many of these related series were also initiated by Peter
Day’s group, and still, twenty-five years later, most of the most active researchers in this
field were part of his group in the past.
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Abstract: An organic anion, 2-bromoethanesulfonate (BrC2H4SO3
−), provides one bis(ethylenedithio)

tetrathiafulvalene (BEDT-TTF) and two bis(ethylenedithio)tetraselenafulvalene (BETS) salts, the
compositions of which are β”-β”-(BEDT-TTF)2BrC2H4SO3 (1), β”-β”-(BETS)2BrC2H4SO3 (2), and
θ-(BETS)2BrC2H4SO3 (3), respectively. Compound 1 shows a metal–insulator transition at around
70 K. Compound 2 is isomorphous to 1, and 3 is polymorphic with 2. Compounds 2 and 3 show
metallic behavior at least down to 4.2 K. The pressure dependence of the electrical resistivity of 1 is
also reported.

Keywords: organic conductors; organic anions; electrocrystallization; crystal structure; band struc-
ture; electrical resistivity; magnetic susceptibility

1. Introduction

Over the past half century, numerous organic conductors have been prepared [1],
particularly electron donor–anion type conductors, based on TTF (tetrathiafulvalene),
TMTTF (tetramethyltetrathiafulvalene), TMTSF (tetramethyltetraselenafulvalene), BEDT-
TTF (bis(ethylenedithio)tetrathiafulvalene), BETS (bis(ethylenedithio)tetraselenafulvalene),
etc., with a wide variety of counterions, which are commonly inorganic, such as BF4

−,
PF6

−, ClO4
−, Cl−, Br−, I−, I3

−, AuI2
−, etc. Organic anions, which are less common than

inorganic ions, have also been used. The first radical cation salts with organic anions
were reported by D. R. Rosseinsky et al. in 1979 [2], where CH3CO2

−, maleate, fumarate,
and p-MeC6H4SO2

− were used. Each electrocrystallization with TTF gave powder, micro-
crystalline, or blocklets. However, the crystal structures were not determined. According
to a review about the organic conducting salts with organic and organometallic anions [3],
in 1983, the crystal structures of a CF3SO3

− salt of TMTSF was reported [4]. However,
CF3SO3

− is not clearly organic because the anion includes no hydrogens. In 1985, the
crystal structures of TMTTF and TTMTTF (tetramethylthiotetrathiafulvalene) salts with
hexacyanobutadiene (HGBD) were reported [5]. However, HGBD was used not as an anion
but as an electron acceptor because the crystals were obtained by mixing hot acetonitrile
solutions of the donor and the acceptor, namely HGBD. This indicates that these are donor–
acceptor complexes. The crystal structure of the first organic conducting salt with an organic
anion reported in 1988 by Peter Day’s group [6] is (BEDT-TTF)2(p-CH3C6H4SO3). After
the discovery, sulfonates were widely used as counterions of organic conductors [3,7–10]
because sulfonates have relatively low pKa (<1), which indicates that the bare monoanion
state (–SO3

−) is far more stable than the protonated state (–SO3H). By contrast carboxylates
(–CO2

−) are not useful as counterions because of the relatively high pKa (>3), where the
protonated state (–CO2H) is much more stable than the bare monoanion state (–CO2

−). We
have already reported several organic conducting salts with sulfonates [11–41], which are
relatively large and anisotropic and several of which have provided unique salts having
polar counterion layers [20,28,29,35,36,38,41]. Schematic diagrams of the crystal structures
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of the salts are shown in Figure S1. Here we report new BEDT-TTF and BETS salts of a
relatively small and anisotropic sulfonate, BrC2H4SO3

−.

2. Results and Discussion

A conventional constant-current electrocrystallization in a mixed solvent of PhCl (18
mL) and EtOH (2 mL) with BEDT-TTF (10 mg), BrC2H4SO3Na (44 mg), and 18-crown-6
ether (67 mg) gave black blocks and thick needles. X-ray analyses indicated that the blocks
and needles had the same cell parameters. The resulting data were solved as β”-β”-(BEDT-
TTF)2(BrC2H4SO3) (1). Using BETS (5 mg) instead of BEDT-TTF afforded dark green plates
(3) with a small number of black blocks and needles (2). X-ray analyses indicated that 2 was
isomorphous to 1, and the composition of the major product 3 was θ-(BETS)2(BrC2H4SO3),
which is a polymorph of 2 and the cell parameters are different from those of 2. The
crystallographic data of 1, 2, and 3 are shown in Table 1. Using o-C6H4Cl2 (18 mL) instead
of PhCl in the electrocrystallization of 1 yielded black thin plates (4), X-ray analysis of
which indicated that the composition was (BEDT-TTF)3(Br3)5, the structure and properties
of which have already been reported [42]. This indicates that the BrC2H4SO3

− anion
decomposed during the electrocrystallization process. Indeed, both the cell parameters
and the crystal structure (Figure S2) were the same as reported in ref. [42]. However, the
electrical resistivity measurement indicated that the salt 4 was metallic down to 4.2 K
(Figure S3), whereas ref. [42] reported a broad metal–insulator (MI) transition at 120 K. The
difference may be caused by a difference in the direction of the resistivity measurements
and/or crystal conditions.

Table 1. Crystallographic data of 1, 2, and 3.

Compound 1 2 3 3 3

Formula C22H20O3S17Br C22H20O3S9Se8Br C22H20O3S9Se8Br C22H20O3S9Se8Br C22H20O3S9Se8Br
Fw *1 957.32 1332.52 1267.52 1267.52 1267.52

Space Group P1 P1 C2/c C2/c C2/c
a (Å) 5.8671(2) 5.93509(18) 35.850(2) 35.686(2) 35.633(2)
b (Å) 8.7790(2) 8.8364(2) 5.1587(3) 5.1193(3) 5.0986(4)
c (Å) 33.3201(7) 34.0428(9) 9.9900(6) 9.9154(7) 9.9154(7)
α (◦) 89.076(6) 88.939(6) 90.0 90.0 90.0
β (◦) 85.469(6) 85.697(6) 93.346(7) 92.695(7) 92.673(7)
γ (◦) 75.793(5) 76.167(5) 90.0 90.0 90.0

V (Å3) 1658.53(9) 1728.70(9) 1844.38(19) 1809.43(19) 1798.1(2)
Z 2 2 2 2 2

T (K) 150 150 290 150 110
dcalc (g·cm−1) 1.917 2.560 2.399 2.446 2.461

µ (cm−1) *2 23.434 101.896 95.505 97.349 97.963
F(000) *3 966 1254 1254 1254 1254

2θ range (◦) 4–55 4–55 4–55 4–55 4–55
Total ref. 16,127 16,694 8164 7936 8018

Unique ref. 7559 7871 2110 2081 2063
Rint 0.0325 0.0672 0.0733 0.0391 0.0431

Parameters 407 395 118 118 118
R1 (I > 2σ(I)) 0.032 0.049 0.063 0.051 0.059

wR2 (all data) 0.089 0.158 0.205 0.138 0.166
S *4 1.009 1.042 1.060 1.119 1.088

∆ρmax (e Å−3) 1.49 1.94 1.18 2.18 2.20
∆ρmin (e Å−3) −0.72 −1.73 −0.62 −1.92 −2.06
CCDC number 2,083,397 2,083,398 2,088,144 2,083,399 2,088,145

*1 Formula weight, *2 linear absorption coefficient, *3 total number of electrons in the unit cell, *4 goodness of fitness.
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2.1. Crystal Structures
2.1.1. Crystal Structure of β”-β”-(BEDT-TTF)2(BrC2H4SO3) (1)

Figure 1a shows the crystal structure of 1. Two BEDT-TTF molecules (A and B)
and one BrC2H4SO3

− anion are crystallographically-independent. The unit cell has two
independent donor layers, one of which consists of only the donor A (A layer) and the
other of which consists of only the donor B (B layer). One of the two ethylene groups
of A is disordered and refined over two positions, the refined occupancies of which are
found to be 0.734 and 0.266. Both donor layers have quite similar β”-type arrangements, as
shown in Figure 1b,c. Each donor layer alternates with an anionic layer. Figure 1d shows
short contacts between S atoms of BEDT-TTF molecules and O atoms of sulfo (–SO3

−)
groups. In our previous reports, concerning sulfonate salts that are in the charge-ordered
state, the donor having the shortest S···O contact with a sulfonate has the largest positive
charge, perhaps because of the largest Madelung potential [20,31,35]. However, in salt 1,
both A and B molecules have short S···O contacts, the distances of which are almost the
same. This suggests that no charge disproportionation occurs. The molecular charges of
A and B were estimated from bond lengths according to the literature method [43]. The
calculated charges, normalized by the total formula charge (and non-normalized charge),
are +0.492 (+0.567) and +0.508 (+0.586) for A and B, respectively. Both values are close to
+0.5, suggesting no charge disproportionation. Figure 1e shows the structure of the anionic
layer. All anions in the layer orient along the same direction (//b), which confers a dipole
moment on the anionic layer. However, an inversion center provides the other anionic
layer in the unit cell with the opposite dipole moment. Therefore, no net dipole moment
exists. According to our classification suggested in ref. [44], the crystal has a Type III dipole
arrangement (Figure S1) [44,45]. In addition, the dipole moment of the BrC2H4SO3

− anion
was calculated by MOPAC7 [46] using the geometry observed in 1 to be 9.9 D.
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2.1.2. Crystal Structure of β”-β”-(BETS)2(BrC2H4SO3) (2)

As shown in Table 1, the cell parameters of 2 are almost the same as 1, suggesting that
both are isomorphous. Therefore, the crystal packing structure of 2 is not shown. There are
two independent donors (A and B) and one anion in the asymmetric unit. Similar to 1, one of
the two ethylene groups of A is disordered and refined over two positions. The occupancies
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were found to be 0.799 and 0.201. Figure 2a,b shows the donor arrangements of both A
and B layers, which are almost the same as 1. However, a larger number of short contacts
were observed in A and B layers compared to 1, suggesting that 2 has stronger donor–donor
interactions than 1. Figure 2c shows short contacts between S atoms of BETS molecules and
O atoms of sulfo (–SO3

−) groups. An A molecule has a S···O contact that is 0.032 Å shorter
than that of B. However, the difference is one order smaller than those of charge-ordered
salts [20,31,35]. The relatively small difference suggests that the short anon–donor interactions
provide no charge-ordered state. In addition, this cannot be confirmed since there are no
previous studies on the relationship between bond lengths in BETS and the molecular charges.
The molecular arrangement of the anionic layers of 2 is almost the same as 1, and we do not
show the structure. All anions in the layer orient along the same direction (//b) and therefore
the crystal also has a Type III dipole arrangement [44,45]. In addition, the dipole moment
of the BrC2H4SO3

− anion was calculated by MOPAC7 [46] using the geometry observed
in 2 to be 9.7 D. In addition, a CCDC search indicated that the structures of 72 BETS salts
have already been reported, which consist of 21 κ–, 18 θ–, 7 λ–, 7 α–, 4 β–, and 15 other
miscellaneous types of salts. However, no β”-type salts have been reported yet, indicating
that 2 is the first BETS-based salt having a β”-type donor arrangement.
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2.1.3. Crystal Structure of θ-(BETS)2(BrC2H4SO3) (3)

The thin plate crystals were the main products under the electrocrystallization condi-
tion, as mentioned previously. Figure 3a shows the molecular structure of the asymmetric
unit of 3. There are a half of BETS and a quarter of anion in the asymmetric unit. The
donor is not disordered and located about the center of symmetry, whereas the anion is
heavily disordered. The asymmetric part of the anion consists of –SO3

−, each occupancy
of which is 0.25, and –CH2CH2Br disordered over two positions (–C61–C71–Br11 and
–C62–C72–Br12), where each occupancy is 0.125. Thus, the anion is disordered over eight
positions. Relatively large residual densities were observed due to the severe disorder.
The asymmetric part of the anion is located about the center of symmetry, so that the
anion layer is non-polar. The crystal structure is shown in Figure 3b. One donor layer
and one anion layer are crystallographically-independent. Figure 3c shows the packing
arrangement of the donor layer, which has a so called θ-type packing motif. The dihedral
angle (θ) shown in Figure 3c of 98.1◦ was observed. A literature source [47] shows a
phase diagram of the θ-type BEDT-TTF-based salts as a function of the dihedral angle (θ),
where 98.1◦ is located in a superconducting phase. However, the salt 3 is BETS-based, not
BEDT-TTF-based. BETS usually provides much stronger intermolecular interactions, which
give much larger transfer integrals. Therefore, the interaction in 3 is stronger than that
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of the BEDT-TTF-based salt, which suggests that 3 is a stable metal [48]. The occupancy
of the BrC2H4SO3

− anion of 0.25 suggests that there are four possible positions, one of
which is occupied by an anion and the other three of which are vacant in the actual crystal.
The anion is located about the center of symmetry, indicating that there are two possible
positions on the inversion center. The length of the b axis of 5.1193(3) Å is too short for the
anions to occupy each unit cell, suggesting that the anions exist every two-unit cells along
the b axis. If anions exist in every two-unit cells regularly, which makes the length of the b
axis double, the crystal usually provides satellite reflections and/or diffuse streaks on the
X-ray photographs. No satellite reflections and/or diffuse streaks were observed in all 44
measured photographs. The lack of any superstructures suggests that the disorder is not
so simple that each anion chain has unique periodicity. Furthermore, each donor, which
also can form a superstructure of a 2kF (four-fold) or 4kF (two-fold) charge–density wave,
gathers not to form any superstructures but to form a uniform stack. This again suggests
that the salt is a stable metal.
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2.2. Electrical Resistivity

Temperature dependences of electrical resistivities of 1, 2, and 3 are shown in Figure 4.
The BEDT-TTF salt 1 shows a metal–insulator (MI) transition at around 70 K, and then
the resistivity gradually increases, and the resistivity at 4.2 K is 20 times larger than that
at 70 K. β”-salts can be classified into several groups according to structural features [49].
According to the classification, 1 belongs to the β”211-type. Most β”211-salts are stable
metals apart from the two salts, (BEDT-TTF)2Br2SeCN and (BEDT-TTF)2Cl2SeCN, which
show relatively sharp MI transitions at 200 K. The isomorphous BETS-based salt 2 shows
metallic behavior from room temperature down to 4.2 K. Salt 3 also shows metallic behavior
across the whole temperature range.

1 
 

 

Figure 4. Temperature-dependent electrical resistivities of 1, 2, and 3.
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2.3. Magnetic Susceptibility

Temperature dependences of magnetic susceptibility of 1 and 3 are shown in Figure 5a,b,
respectively. We have not yet obtained a sufficient quantity of 2 for SQUID measurement,
and therefore the susceptibility data of 2 is not available. The magnetic susceptibility of 1
decreases monotonically from room temperature (RT) from 6 to 2× 10−4 emu mol−1, which
are in the range of normal Pauli paramagnetism of organic BEDT-TTF-based metals [50],
and then shows a more rapid decrease in susceptibility at the same temperature as was
observed (70 K) for the metal–insulator (MI) transition. The susceptibility then becomes
almost zero at the lowest measured temperature. The result indicates a non-magnetic
ground state for 1. Most β”-salts have charge-ordered ground states, suggesting that the
ground state of 1 has a non-magnetic 0011 type of charge-ordered pattern [1]. We will
discuss further this in the context of the electronic structure of 1 later. The susceptibility
of 3 (Figure 5b) is almost constant, ≈2.5 × 10−4 emu mol−1, from RT to 175 K. On further
lowering the temperature, the susceptibility decreases monotonically down to 2 K. The
non-zero susceptibility, ≈1.2 × 10−4 emu mol−1, at the lowest temperature suggests that
the sample has an itinerant nature down to 2 K. In addition, the ρ-T plot of 3 (Figure 5c) has
an anomaly at 175 K, at which temperature the susceptibility starts decreasing, suggesting
that there is a transition between two metallic phases at around 175 K. The temperature
dependence of magnetic susceptibility of θ-(BETS)2Cu2Cl6 [51], which is also a stable metal
with θ = 100◦, is similar to that of 3. The broad decrease was observed from 2.3 × 10−4
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 Figure 5. Temperature dependences of magnetic susceptibilities of (a) 1 and (b) 3, where 0.46 and 0.30% of Curie tails have
been subtracted, respectively. (c) Resistivity–temperature plots of 3.

2.4. Band Structure Calculations

Band structures of 1, 2, and 3 were calculated using the Mori’s band structure calcula-
tion software package [52]. The resultant overlap integrals are shown in Table 2. Figure 6
shows a schematic diagram of the donor layers with the directions and labelling of donor–
donor interactions. The p1 values of both A and B layers in 1 is one and two orders larger
than those of p2, respectively, indicating strong dimerization along the stacking direction
in each layer, which is also confirmed by the intermolecular spacing; the plane–plane
distances of p1 are 0.167 (A layer) and 0.226 Å (B layer) shorter than those of p2 (see
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Figure 1b,c). The side-by-side interactions (r1, r2, and s) were larger than p1, suggesting
that the salt is metallic along the side-by-side directions. Band dispersions and Fermi
surfaces of 1 are shown in Figure 7a. There are quasi-1D electron sheets and hole pockets
in the first Brillouin zone. The Fermi surface is open along the stacking direction (//b),
suggesting that the metallic tendency along the side-by-side directions is stronger than that
along the stacking direction. As previously described, the salt shows a MI transition, for
which we speculate that a tetramerization along the side-by-side direction occurs (perhaps
in the s direction because s values of A and B are the largest). The tetramerization will
make the salt a band insulator to give a diamagnetic ground state, which is consistent
with the magnetic behavior shown in Figure 5a. In addition, since the A and B layers of
1 have almost the same donor arrangements and overlap integrals (Table 2), both band
dispersions and Fermi surfaces are also quite similar.

Table 2. Overlap integrals (×10−3) of 1 and 2 at 150 K.

Salts 1 2

Layers A B A B

p1 −5.03 −4.88 −6.43 −5.97
p2 −0.36 −0.06 +2.53 +3.50
r1 −9.80 −9.89 −17.73 −17.27
r2 −10.74 −9.60 −18.70 −16.87
s −14.50 −14.98 −26.02 −26.96Magnetochemistry 2021, 7, x FOR PEER REVIEW 8 of 13 
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Figure 6. Schematic diagram of the structure of the donor layer with directions of interactions of 1
and 2.

Similarly, the band dispersions and Fermi surfaces of A and B layers of 2 are also
similar (Figure 7b) because, again, both layers have almost the same donor arrangements.
Since 1 and 2 are isomorphous, their electronic structures are almost the same as compared
in Figure 7a,b. However, 2 does not show a MI transition. The most significant difference
between 1 and 2 is a degree of dimerization along the b axis. The values of |p1|/|p2| of
1 are 14.0 and 81.3 for A and B layers, respectively, but the similar values for 2 are only
2.5 and 1.7 for A and B layers, respectively. The considerably smaller values for 2 suggest
that the support for dimerization in 2 is far weaker than in 1, which is not reflected in the
intermolecular spacing. The plane–plane distances of p1 are 0.205 (A layer) and 0.257 Å
(B layer) shorter than those of p2 (see Figure 2a,b). The differences in 2 are rather larger
than those in 1. The weak dimerization in 2 makes carriers less correlated and stabilizes
the metallic state. In addition, the band width of the conduction bands of 2 are 1.77 eV,
which is 1.9 times larger than that of the 0.93 eV of 1.

The donor arrangement of 3 is simple so that there are only two crystallographically-
independent overlap integrals, one of which (p) lies along the stacking direction, and the
other (r) lies along the side-by-side direction, as shown in Figure 3c. Values of p = 3.26 and
r = 22.52 × 10−3 were calculated. Figure 8 shows the band dispersions and Fermi surfaces
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of 3. There is a simple and large 2D Fermi surface in the first Brillouin zone, and the band
width of 1.80 eV was observed.

 

3 
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Figure 7. Band dispersions (left) and Fermi surfaces (right) of 1 (a) and 2 (b) at 150 K.
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Figure 8. Band dispersions (left) and Fermi surfaces (right) of 3 at 150 K.
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2.5. Electrical Resistivity under Pressure

For compound 1, the electrical resistivity under static pressure up to 0.5 GPa (5.0 kbar)
was measured. This was achieved using a clamp-type pressure cell from RT to 4.2 K
(Figure 9). Applying 1.0 kbar of pressure made the MI transition sharper and moved the
transition temperature (TMI) 10 K higher to 80 K. By contrast the 2.0 kbar curve reveals an
upturn at 55 K, which is 15 K lower than that at 1 bar, but the transition is still sharper than
that at 1 bar. The TMI at 3.0 kbar is 51 K, which is only 4 K smaller than that at 2.0 kbar;
however, the resistivity at 4.2 K (ρ4.2 K) is more than two orders of magnitude smaller
than that at 2 kbar. In fact, ρ4.2 K decreases with increasing pressure from 3 to 5 kbar. The
upturn for the MI transition almost disappears at 4.5 kbar, but we have not yet observed
superconductivity at the measured pressures and down to 4.2 K.
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3. Materials and Methods

BEDT-TTF, purchased from Tokyo Chemical Industry Co. Ltd., Tokyo, Japan, and
BrC2H4SO3Na, purchased from FUJIFILM Wako Pure Chemical Corporation (Chuo-Ku
Osaka, Japan), were used without purification. 18-Crown-6 ether was used after recrys-
tallization from acetonitrile. PhCl, purchased from Kishida Chemicals, was distilled from
P2O5. EtOH, special grade, purchased from Kishida Chemicals, and o-C6H4Cl2, HPLC
grade, purchased from FUJIFILM Wako Pure Chemical Corporation, were used without
further purification. Electrocrystallization was performed using a conventional H-shaped
cell with Pt wire (1 mm φ) electrodes, between which 0.9 µA for 20 days and 0.2 µA for
2 months were applied for BEDT-TTF and BETS salts, respectively.

Single crystal X-ray measurements were performed at 150 K for 1 and 2 and at 110,
150 and 290 K for 3 with a Rigaku Rapid II imaging plate system with MicroMax-007
HF/VariMax rotating-anode X-ray generator with confocal monochromated MoKα ra-
diation. The crystallographic data of 1, 2, and 3 are listed in Table 1. The structures of
1, 2, and 3 were solved by SHELXT [53], and each structure refinement was completed
with SHELXL [53] software. The intensities were corrected for absorption with ABSCOR
(Higashi, T. (1995); ABSCOR. Rigaku Corporation, Tokyo, Japan). All non-hydrogen atoms
were refined anisotropically. Hydrogen atom positions were calculated geometrically
and refined using the riding model. The disordered ethylene moieties in 1 and 2 were
constrained displacement parameters (EADP in SHELX). The anion in 3 was severely dis-
ordered and refined with bond distance and angle restraints (DFIX and DANG in SHELX)
and constrained displacement parameters (EADP in SHELX). In the circumstance, relatively
large residual densities were observed. In addition, 1 and 2 salts had relatively weaker
reflections with h + l = odd than those with h + l = even, suggesting the possibility that the
cell volumes become half. Actually, 1 and 2 can be solved using the cell parameters with the
half volumes, 1′: P1, a = 5.8667(2), b = 8.7788(2), c = 16.6858(5) Å, α = 88.451(6), β = 84.438(6),
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γ = 75.791(5)◦, V = 829.14(5) Å3, R(I > 2σ(I)) = 3.0%, wR(all data) = 8.1%, Rint = 3.2%, and 2′:
P1, a = 5.9343(2), b = 8.8354(3), c = 17.0567(5) Å, α = 88.674(6), β = 84.312(6), γ = 76.164(5)◦,
V = 864.09(5) Å3, R(I > 2σ(I)) = 3.9%, wR(all data) = 11.6%, Rint = 6.4%. Each asymmetric
unit has one donor and a half of anion, the latter of which is located about a center of
symmetry and which is disordered where Br atoms and crystallographically-independent
SO3 group are overlapped. Only one donor layer is crystallographically-independent in 1′
and 2′. However, 1 and 2 have many reflections with h + l = odd, which were significantly
observed (I >> 3σ(I)). For example, the intensity (I), sigma (σ), and I/σ(I) of (−2 2 −7) of
236.10, 3.04, and 77.66, respectively, for 1 and 123.45, 2.20, and 56.11, respectively, for 2
were observed. Moreover, 1′ and 2′ have the disorder of the anion, which does not exist in
1 and 2. Therefore, we decided that 1 and 2 are correct. The relatively low R values of 1′
and 2′ indicate that each salt has pseudosymmetry because the structures of each two inde-
pendent donor layers are quite similar in 1 and 2. Electrical AC resistivity measurements
from 4.2 to 300 K were measured by the conventional four-probe method using a HUSO
HECS 994C1 four channel resistivity meter with cooling and heating rates of ≈0.5 K/min.
Each resistivity value was recorded after averaging for 10 s. Temperature-dependent
magnetic susceptibility of a polycrystalline sample from 2 to 300 K was measured using
a Quantum Design MPMS-2S SQUID magnetometer. The magnetic susceptibility data of
1 and 3 were corrected for a contribution from an aluminum foil sample holder, and the
diamagnetic contributions of the samples were estimated from Pascal’s constant (−4.444
and –5.084 × 10−4 emu mol−1 for 1 and 3, respectively). The contributions of the Al foil
sample holders were of the same orders as those of conducting electrons. Due to the
relatively low contribution of the conducting electrons, less than 20% of absolute error was
sometimes observed.

4. Conclusions

We prepared three new BEDT-TTF- and BETS-based organic conductors with an
organic sulfonate anion, bromoethanesulfonate, β”-β”-(BEDT-TTF)2BrC2H4SO3 (1), β”-
β”-(BETS)2BrC2H4SO3 (2), and θ-(BETS)2BrC2H4SO3 (3). Salt 1 shows a MI transition at
around 70 K. The isomorphous 2 does not show a MI transition and is metallic down to at
least 4.2 K. Compound 3 is also a stable metal down to at least 4.2 K. The dihedral angle
of 3 of 98.1◦ is located in the superconducting phase of the phase diagram of the θ-type
BEDT-TTF salts. This suggests that if we can obtain the isomorphous BEDT-TTF-based salt,
it may show superconductivity (a resistivity drop and a Meissner effect). Preparation of
the θ-type BEDT-TTF salt is now in progress.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/magnetochemistry7070091/s1, Figure S1. Schematic diagrams of the crystal structures of
Type I-IV salts where the electrical di-poles of the counterions are indicated by arrows, electrically
conducting layers are shown as green squares, and counterion layers are shown as blue rectangles,
Figure S2. Crystal structure of 4, Figure S3. Temperature-dependent electrical resistivity of 4.
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Abstract: Peter Day’s research group reported the first molecular superconductor containing paramag-
netic metal ions in 1995, β”-(BEDT-TTF)4(H3O)Fe(C2O4)3·C6H5CN. Subsequent research has produced
a multitude of BEDT-TTF-tris(oxalato)metallate salts with a variety of structures and properties, in-
cluding 32 superconductors to date. We present here the synthesis, crystal structure, and conducting
properties of the newest additions to the Day series including the first superconductor incorporating
the diamagnetic tris(oxalato)aluminate anion, β”-(BEDT-TTF)4(H3O)Al(C2O4)3·C6H5Br, which has a
superconducting Tc of ~2.5 K. β”-(BEDT-TTF)4(H3O)Co(C2O4)3·C6H5Br represents the first example of
a β” phase for the tris(oxalato)cobaltate anion, but this salt does not show superconductivity.

Keywords: molecular conductor; superconductor; metal; semiconductor; BEDT-TTF; tris(oxalato)metallate

1. Introduction

The first paramagnetic superconductor, β”-(BEDT-TTF)4(H3O)Fe(C2O4)3·C6H5CN,
was discovered in 1995 by the group of Professor Peter Day at the Royal Institution of Great
Britain [1]. The ability of tris(oxalato)metallate(III) anions, M(C2O4)3

3−, to bridge through
oxalate ions with monocations or metal(II) ions and form 2D sheets opened the door to a
huge variety of structures and properties in radical cation salts with BEDT-TTF [2]. This
family of salts includes not only paramagnetic superconductors, but also a ferromagnetic
metal [3], antiferromagnetic semiconductor [4], and proton conductor [5,6].

Most of the reported salts in the BEDT-TTF-tris(oxalato)metallate family are 4:1 salts
having the formula (BEDT-TTF)4(A)M(C2O4)3·G. The lattice consists of cation layers of
BEDT-TTF alternating with anion layers where hydrogen bonding between the terminal
ethylene groups of BEDT-TTF and the anion layer determine the donor molecule packing
arrangement. The anion layers are built up of M and A bridged by oxalate ligands to form
a honeycomb with guest molecules, G, contained within the hexagons.

The most widely studied 4:1 salts in this “Day series” are the β” salts, which crystallise
in the monoclinic C2/c space group, of which 32 are superconductors [1,2,7–30]. The
counter cation (A = H3O+/K+/NH4

+/Rb+) and the tris(oxalato)metallate metal centre
can be changed (M = Fe [1,7–19,25], Cr [20–25], Co [25], Al [25], Mn [17,26], Ga [24,27,28]
Ru [29], Rh [30]), which has a small effect on the electrical properties of the material
owing to the change in size of A and M. For example, β”-(BEDT-TTF)4(A)M(C2O4)3·G,
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where G = benzonitrile, sees a reduction of superconducting Tc to 5.5–6.0 K when M = Cr,
compared to when M = Fe 7.0–8.5 K. A more marked effect on the electrical properties
and the superconducting Tc [31] is observed when changing the guest molecule, G—the
solvent used for the electrocrystallization. Changing G from benzonitrile to different sized
and shaped guest molecules can alter the conducting properties from superconducting to
metallic or semiconducting [2,7–30]. The highest superconducting Tc values are obtained
when longer guest solvent molecules are used, which increase the b axis length the furthest,
e.g., G = benzonitrile, nitrobenzene [31].

When G = benzonitrile, crystals of an additional 4:1 orthorhombic phase are also
obtained when M = Fe or Cr. Crystals of this 4:1 orthorhombic phase are the only phase
obtained with G = benzonitrile when M = Co [25], Al [25], or Rh [30], and the β” phase
has not been reported. This semiconducting phase crystallises in the orthorhombic space
group Pbcn with a pseudo-κ donor packing. (BEDT-TTF+)2 dimers are surrounded by
neutral BEDT-TTF0 monomers. The –C≡N group of benzonitrile is disordered over two
positions directed towards A, rather than along the b axis towards M, as seen in the β”
salts. The chirality of the tris(oxalato)metallates in the anion layers differs between the
β” and pseudo-κ salts despite both having an overall racemic lattice. In the β” salts, each
anion layer contains only a single enantiomer of M(C2O4)3

3− with alternating layers being
of the opposing enantiomer. However, in the pseudo-κ salts, each anion layer is identical
with alternating rows of ∆ or Λ enantiomers.

When G is too large to fit inside the honeycomb cavity of the anion layer, a 4:1 triclinic
phase is obtained. The guest molecule in these salts protrudes on one side of the anion
layer and not on the other. The two different faces of the anion layer then lead to two
different packing modes of the donor layer within the same crystal, e.g., both α and β”
donor packing (G = PhCH2CN, PhN(CH3)CHO, PhCOCH3, or PhCH(OH)CH3) [32] or α
and pseudo-κ (G =1,2-Br2Ph) [33]. An α-β” salt has also been obtained with the inclusion
of a chiral guest molecule (G = sec-phenethyl alcohol, PhCH(OH)CH3) in both the chiral
S form and the racemic R/S form. A small difference in the metal–insulator transition
temperature is observed between the racemic and the chiral salts owing to the disorder,
which is found only in the racemate [34].

While the 4:1 salts make up the majority of BEDT-TTF-tris(oxalate)metallate salts,
some semiconducting 3:1 salts have been obtained when using smaller guest molecules
(G = DMF, acetonitrile, dichloromethane, nitromethane; cation = Li+, Na+, NH4

+;
metal = Fe [35], Cr [36–39], Al [39]). A 2:1 salt has also been reported in which an 18-crown-6
molecule is the guest in the honeycomb cavity, β”-(BEDT-TTF)2[(H2O)(NH4)2M(C2O4)3].18-
crown-6 (M = Cr, Rh, Ru, Ir). Both the Cr and Rh salts show a bulk Berezinskii–Kosterlitz–
Thouless superconducting transition [40–42]. Changing the counter cation A has produced
several salts where the packing of the anion layer differs from the aforementioned honey-
comb packing arrangement giving salts β’-(BEDT-TTF)5[Fe(C2O4)3]·(H2O)2·CH2Cl2 [43]
(A = tetraethylammonium), η-(BEDT-TTF)4(H2O)LiFe(C2O4)3 [35] (A = lithium), α”’-
(BEDT-TTF)9[Fe(C2O4)3]8Na18(H2O)24 [44,45] (A = sodium, α-(BEDT-TTF)10(18-crown-
6)6K6[Fe(C2O4)3]4(H2O)24 [45] (A = potassium), andα-(BEDT-TTF)12[Fe(C2O4)3]2·(H2O)n [46]
(A = potassium or caesium, n = 15 or 16). Changing the M(III) to Ge(IV) produces very
different structures in the semiconductors (BEDT-TTF)2[Ge(C2O4)3]·PhCN [47], (BEDT-
TTF)5[Ge(C2O4)3]2 [48], (BEDT-TTF)7[Ge(C2O4)3]2(CH2Cl2)0.87(H2O)0.09 [48], and (BEDT-
TTF)4Ge(C2O4)3·(CH2Cl2)0.50 [49].

We report here the synthesis, crystal structures, and conducting properties of the
first superconductor incorporating the tris(oxalato)aluminate anion, β”-(BEDT-TTF)4(H3O)
Al(C2O4)3·C6H5Br (Tc ~ 2.5 K), the first example of a β” phase for the tris(oxalato)cobaltate
anion (G = PhBr), and two new β” salts from tris(oxalato)ruthenate (G = PhCl or PhF).
Resistivity is also presented for β”-(BEDT-TTF)4(H3O)Ru(C2O4)3.PhBr, which shows a
superconducting Tc of 2.8 K, though the crystals were very thin and not suitable for a
publishable X-ray dataset.
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2. Results and Discussion

All salts β”-(BEDT-TTF)4(H3O)M(C2O4)3·G (M-G = Al-PhBr, Co-PhBr, Ru-PhCl, Ru-
PhF) are isostructural with the previously reported Day seriesβ”-(BEDT-TTF)4[(A)M(C2O4)3]·G.
Ru-PhBr is also isostructural, though the crystals were very thin and not suitable for a
publishable X-ray dataset. They crystallise in the monoclinic space group C2/c. The
asymmetric unit contains two crystallographically independent BEDT-TTF molecules, half
an M(C2O4)3− molecule, half a guest halobenzene molecule, and half a H3O+ molecule
(Table 1). The long-range structure consists of ordered alternating layers of BEDT-TTF donor
molecules and M(C2O4)3− anions (Figure 1). The two crystallographically independent
donor BEDT-TTF molecules form two-dimensional stacks along the a/b crystallographic axis
in a β” arrangement (Figure 2). A number of predominately side-to-side sulphur-sulphur
interactions below the sum of the van der Waals radii are present (Table 2). The estimated
charge on BEDT-TTF cations can be calculated via the method of Guionneau et al. [50]
from the central C=C and C–S bond lengths of the TTF core and results in a charge of
approximately +0.5 for each BEDT-TTF molecule, as expected (Table 3).

Table 1. Crystal data for β”-(BEDT-TTF)4(H3O)M(C2O4)3·G salts.

Salt Al-PhBr 290 K Al-PhBr 110 K Co-PhBr 150 K Ru-PhF 293 K Ru-PhCl 298 K

Formula C52H40AlBrO13S32 C52H40AlBrO13S32 C52H40BrCoO13S32 C52H40FO13RuS32 C52H40O13S32ClRu
Fw (g mol−1) 2005.65 2005.65 2037.60 2018.83 2035.28

Crystal System monoclinic monoclinic monoclinic monoclinic monoclinic
Space group C2/c C2/c C2/c C2/c C2/c

Z 4 4 4 4 4
T (K) 290 (2) 110 (2) 150 (2) 293 (2) 293 (2)
a (A) 10.2851 (2) 10.2520 (3) 10.2306 (3) 10.32786 (19) 10.32017 (19)
b (A) 19.9472 (4) 19.7919 (7) 19.7508 (5) 19.9521 (4) 20.0264 (4)
c (A) 35.597 (3) 35.4275 (11) 35.2520 (9) 34.9966 (6) 35.161 (3)
α (◦) 90 90 90 90 90
β (◦) 93.399 (7) 93.843 (7) 93.938 (7) 93.010 (7) 93.586 (7)
γ (◦) 90 90 90 90 90

Volume
(

A3) 7290.1 (6) 7172.3 (4) 7106.3 (3) 7201.5 (2) 7252.6 (6)
Density (g cm−3) 1.827 1.857 1.905 1.862 1.864

µ (mm−1) 1.553 1.578 1.806 1.209 1.235
R1 0.0547 0.0688 0.0431 0.0460 0.0442

wR (all data) 0.1401 0.1526 0.0914 0.318 0.1089

Table 2. S . . . S close contacts below the van der Waals distance in β”-(BEDT-TTF)4(H3O)M(C2O4)3·G salts.

Contact (Å) Al-PhBr 290 K Al-PhBr 110 K Co-PhBr 150 K Ru-PhF 293 K Ru-PhCl 298 K

S1 . . . S7 3.4069 (13) 3.3795 (19) 3.3683 (11) 3.4015 (14) 3.4283 (11)
S3 . . . S7 3.5046 (13) 3.458 (2) 3.4544 (11) 3.5369 (15) 3.5290 (11)
S2 . . . S9 3.3138 (14) 3.2838 (19) 3.2864 (11) 3.3744 (15) 3.3528 (11)

S2 . . . S11 3.3720 (13) 3.340 (2) 3.3413 (11) 3.3954 (15) 3.3842 (11)
S6 . . . S15 3.5231 (14) 3.463 (2) 3.4475 (12) 3.5236 (17) 3.5190 (13)
S8 . . . S15 3.5704 (15) 3.502 (2) 3.4904 (13) 3.6182 (17) 3.5869 (12)
S8 . . . S10 3.5889 (14) 3.550 (2) 3.5551 (13) 3.6169 (16) 3.6031 (13)
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Table 3. Average bond lengths (Å) in BEDT-TTF molecules with approximation of the charge on the molecules. δ = (b + c) −
(a + d), Q = 6.347 − 7.463δ [50].
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bon atoms are grey, hydrogen atoms white, oxygen atoms red, sulphur atoms yellow, aluminium 

atoms pink, and bromine atoms brown. The b axis is shown in green, and the c axis is shown in blue. 

 

Figure 2. β” BEDT-TTF layer packing in Al-PhBr. The other salts reported in this paper are isostruc-
tural. The two crystallographically independent BEDT-TTF molecules are shown in different colours.
Hydrogens have been removed for clarity. The a axis is shown in red, the b axis in green, and the c
axis in blue.
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The anion layer consists of a honeycomb arrangement of M(C2O4)3−, perpendicular
to the long axis of the BEDT-TTF molecules, resulting in a hexagonal cavity that is occupied
by the guest halobenzene molecule. Each anion layer contains a single enantiomer of
the tris(oxalato)metallate ion with adjacent layers containing the alternate enantiomer,
which gives an overall racemic lattice. The hexagonal cavity and the orientation of the
guest halobenzene molecule within it are shown in Figure 3 and Table 4. Distances a, b,
h, and w represent the dimensions of the hexagonal cavity. The latter two are the height
and width of the cavity, respectively, and δ is the angle of the benzene ring plane relative
to the plane of the hexagonal cavity (measured as the least-squares plane of the three
metal atoms making up three corners of the hexagon). For M = Rh, we see a reduction in
height (h) of the hexagonal cavity going from G = PhCl to the smaller PhF, accompanied
by a reduction in the length of the b axis of the unit cell. For salt Al-PhBr, we observed
a Tc of ~2.5 K (Figure 4), which is similar to previously published salts of β”-(BEDT-
TTF)4[(H3O)M(C2O4)3].G, where G = bromobenzene. When applying a magnetic field
along the c* axis, the critical field of the superconductivity at 0.7 K is about 0.2 T. This is
comparable to other salts in the Day series, for example: the Fe-DMF salt has a Tc of 2.0 K,
and Hc2 in a perpendicular field is ~0.1 T [51]. Higher Tc salts in the Day series have higher
Hc2 values (2–5 T) [52], and these quasi-2D superconductors are strongly anisotropic [53].
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measurement parameters labelled (a–e, w = width, h = height). Carbon atoms are grey, hydrogen
atoms white, and oxygen atoms red. This image shows salt Al-PhBr, where aluminium atoms are
pink and bromine atoms brown.
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Table 4. Honeycomb cavity measurements in the anion layer (see Figure 3) of β”-(BEDT-TTF)4(H3O)M(C2O4)3·G salts.

Salt Temp. Al-PhBr 290 K Al-PhBr 110 K Co-PhBr 150 K Ru-PhF 293 K Ru-PhCl 298 K

Distances (Å)
a 6.269 (3) 6.255 (6) 6.249 (3) 6.292 (3) 6.312 (2)
b 6.387 (5) 6.111 (10) 6.286 (6) 6.380 (5) 6.377 (4)
c 4.5360 (16) 4.487 (3) 4.5212 (10) 4.804 (13) 4.331 (16)
d 1.894 (6) 1.905 (10) 1.902 (6) 1.377 (14) 1.737 (6)
e 4.401 (9) 4.338 (19) 4.296 (10) 4.786 (13) 4.543 (9)
h 13.560 (5) 13.481 (10) 13.464 (6) 13.572 (5) 13.649 (4)
w 10.2851 (2) 10.2520 (3) 10.2306 (3) 10.32786 (19) 10.32017 (19)

O4-cation 3.066 (5) 3.004 (11) 2.985 (6) 2.956 (6) 2.962 (5)
O6-cation 2.857 (3) 2.851 (6) 2.842 (3) 2.846 (6) 2.831 (3)
O1-cation 3.083 (5) 3.073 (9) 3.112 (5) 2.941 (5) 2.996 (4)

Angles (◦)
δ 33.522 (3) 33.378 (3) 33.60 (13) 33.74 (19) 32.677 (3)
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The Al3+ ion of tris(oxalato)aluminate is smaller than previous examples, where
M = Fe [13,17], Ga [28], Rh [30], and Ru [29] (Tc = ~3.8, ~3.0, ~2.9, ~2.8 K, respectively,
for G = bromobenzene), and the Tc is smaller for M = Al at ~2.5 K. A comparison of the
b axis length of these bromobenzene salts at room temperature showed that the M = Fe
salt has the longest at 20.0546(15) Å and also the highest ~3.8 K [13,17]; M = Rh has an
intermediate b axis of 20.0458(4) Å and a Tc of ~2.9 K [30]; while M = Al has the shortest b
axis of 19.9472(4) Å and the lowest Tc at ~2.5 K. A direct comparison with the M = Ga [28]
and Ru [29] salts cannot be made owing to A = Kx(H3O)1-x rather than H3O for these
salts. Salts with M = Cr [23] and Mn [17] have been reported with Tcs of 1.5 K and 2.0 K,
respectively, but crystal structures are not published for the comparison of the b axes. Our
crystals of Co-PhBr did not show superconductivity (Figure 5), with the b axis of this salt
being much shorter than all other PhBr salts at 19.7508(5) Å.
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There are thirty-two superconductors to date having the formula β”-(BEDT-TTF)4
[(A)M(C2O4)3]·G (M = Fe, Cr, Ga, Rh, Ru, Mn, G = guest molecule, A = H3O+/K+/
NH4

+) [1,2,7–30]. There is negligible π-d interaction in β”-(BEDT-TTF)4[(A)M(C2O4)3].
G salts because the M3+ ions are located in the centre of the anion layer, distant from
the BEDT-TTF layer (Figure 1). This is confirmed by the similar Tcs that are observed
for isostructural salts with the same A and G, but which differ only in the presence of
paramagnetic Fe3+ (S = 5/2) or non-magnetic Ga3+ [53,54]. A much more marked effect
on the value of Tc is observed when changing the guest molecule, G. Changing M and G
leads to a change in the length of the unit cell dimensions. A correlation between the b axis
length and superconducting Tc has been observed through structural analysis [31]. The
effect of chemical pressure through changing G and M is mainly attributed to the guest
molecule, G, which is oriented with the R-group oriented in the b direction (Figure 3). The
longest molecules, benzonitrile and nitrobenzene, have the highest Tcs observed in the
family, and the relationship between Tc and the guest molecule size can be observed in
the series of salts with halobenzene guest molecules [31]. Only the higher Tc salts in this
family show insulating behaviour just above Tc owing to charge disproportionation in
these salts [55–58].

Figure 6 shows the resistivity of β”-(BEDT-TTF)4(H3O)Ru(C2O4)3·G, where G = PhBr,
PhCl, or PhF. Ru-PhBr for A = Kx(H3O)1-x has previously been studied by
Prokhorova et al. [29] with a sample-dependent Tc in the range 2.8–6.3 K. Resistivity
measurements on our crystals of β”-(BEDT-TTF)4(H3O)Ru(C2O4)3.PhBr gave a Tc of 2.8 K,
which was as expected based on the b axis length [31]. Upon reducing the size of G from
PhBr to PhCl or PhF, no superconductivity was observed. Both Ru-PhCl and Ru-PhF
showed semiconducting behaviour (Figure 6). Both Ru-PhCl and Ru-PhF had shorter b
axis lengths compared to the Ru-PhBr salt. However, the b axis lengths in semiconduct-
ing Ru-PhCl and Ru-PhF were longer than that in superconducting Al-PhBr (Table 3).
This indicates that other factors, such as the shape and the electric dipole of the guest
molecule, may have minor influences even though the b axis length predominantly affects
the electronic state, including the Tc [31].
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3. Materials and Methods

Bromobenzene, chlorobenzene, fluorobenzene, ethanol, and 18-crown-6 were pur-
chased from Sigma Aldrich and used as received. BEDT-TTF was purchased from Sigma
Aldrich (Gillingham, Dorset, UK) and recrystallised from chloroform.

3.1. Synthesis

Ammonium tris(oxalato)aluminate and tri(oxalato)cobaltate were synthesised by the
method of Bailar and Jones [59]. Ammonium tris(oxalato)ruthenate was synthesised by the
method of Kaziro et al [60].

Al-PhBr: One-hundred milligrams of ammonium tris(oxalato)aluminate and 200 mg
of 18-crown-6 ether were dissolved in 10 mL 1,2,4-trichlorobenzene, 10 mL bromobenzene,
and 2 mL ethanol. The solution was then filtered into the cathodic side of the H-cell, while
20 mg of BEDT-TTF was added to the anodic side of the H-cell. The level of solvent was
allowed to equilibrate in the cell, and a platinum electrode was added to each side. A
constant current of 0.8 µA was applied across the H-cell which gave small black crystals of
Al-PhBr which were collected after 28 days.

Co-PhBr: One-hundred milligrams of ammonium tris(oxalato)cobaltate and 200 mg
of 18-crown-6 ether were dissolved in 10 mL 1,2,4-trichlorobenzene, 10 mL bromobenzene,
and 2 mL ethanol. Ten milligrams of BEDT-TTF were added to the anodic side of the H-cell.
A constant current of 0.6 µA was applied across the H-cell which gave tiny black crystals
of Co-PhBr which were collected after 14 days.

Ru-PhF: One-hundred milligrams of ammonium tris(oxalato)ruthenate and 200 mg of
18-crown-6 ether were dissolved in 10 mL 1,2,4-trichlorobenzene, 10 mL fluorobenzene,
and 2 mL ethanol. Ten milligrams of BEDT-TTF were added to the anodic side of the H-cell.
A constant current of 1.0 µA was applied across the H-cell which gave black block crystals
of Ru-PhF which were collected after 28 days.

Ru-PhCl: One-hundred milligrams of ammonium tris(oxalato)ruthenate and 200 mg
of 18-crown-6 ether were dissolved in 10 mL 1,2,4-trichlorobenzene, 10 mL chlorobenzene,
and 2 mL ethanol. Ten milligrams of BEDT-TTF were added to the anodic side of the H-cell.
A constant current of 1.0 µA was applied across the H-cell which gave black block crystals
of Ru-PhCl which were collected after 28 days.

Ru-PhBr: One-hundred milligrams of ammonium tris(oxalato)ruthenate and 200 mg
of 18-crown-6 ether were dissolved in 10 mL 1,2,4-trichlorobenzene, 10 mL chlorobenzene,
and 2 mL ethanol. Ten milligrams of BEDT-TTF were added to the anodic side of the H-cell.
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A constant current of 1.0 µA was applied across the H-cell which gave thin needle crystals
of Ru-PhBr which were collected after 28 days. The crystals were very thin and not suitable
for a publishable X-ray dataset.

3.2. Single-Crystal X-ray Crystallography

Data were collected using a RigakuRapid II (Tokyo, Japan) imaging plate system with
the MicroMax-007 HF/VariMax rotating-anode X-ray generator and confocal monochro-
mated Mo-Kα radiation.

3.3. Conducting Properties

Out-of-plane electrical resistance was measured using the standard four-terminal AC
method with the current along the c* axis. Four gold wires were attached using carbon
paint on both plane surfaces of single crystals.

4. Conclusions

We reported the synthesis and characterization of β”-(BEDT-TTF)4(H3O)
Al(C2O4)3·C6H5Br (Al-PhBr), which represents the first superconductor in the Day se-
ries to contain the tris(oxalato)aluminate anion. This salt (M = Al) is isostructural with
bromobenzene salts where M = Fe, Ga, Rh, Ru, Mn, Cr. A relationship between the b axis
length and superconducting Tc has previously been observed in the Day series [31]. The b
axis length of these bromobenzene salts at room temperature showed that the M = Fe salt
had the longest b axis and also the highest Tc of ~3.8 K, while M = Al had the shortest b
axis and the lowest Tc of ~2.5 K. We also reported the isostructural M = Co salt (Co-PhBr),
which did not show superconductivity. The b axis of this salt was much shorter than all
other bromobenzene salts. Isostructural salts Ru-PhCl and Ru-PhF were presented in
which the b axes were longer than that observed in superconducting Al-PhBr, but these
two ruthenium salts did not show superconductivity. This indicates that even though the b
axis length predominantly affected the electronic state, including the Tc, other factors may
also be at work, such as the shape and the electric dipole of the guest molecules, which
may have minor influences on the electronic states.
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Abstract: Methyl-ethylenedithio-tetrathiafulvalene (Me-EDT-TTF (1) and dimethyl-ethylenedithio-
tetrathiafulvalene (DM-EDT-TTF (2) are valuable precursors for chiral molecular conductors, which
are generally obtained by electrocrystallization in the presence of various counter-ions. The number
of the stereogenic centers, their relative location on the molecule, the nature of the counter-ion and
the electrocrystallization conditions play a paramount role in the crystal structures and conducting
properties of the resulting materials. Here, we report the preparation and detailed structural charac-
terization of the following series of radical cation salts: (i) mixed valence (1)2AsF6 as racemic, and (S)
and (R) enantiomers; (ii) [(S)-1]AsF6·C4H8O and [(R)-1]AsF6·C4H8O where a strong dimerization of
the donors is observed; (iii) (1)I3 and (2)I3 as racemic and enantiopure forms and (iv) [(meso)-2]PF6

and [(meso)-2]XO4 (X = Cl, Re), based on the new donor (meso)-2. In the latter, the two methyl sub-
stituents necessarily adopt axial and equatorial conformations, thus leading to a completely different
packing of the donors when compared to the chiral form (S,S)/(R,R) of 2 in its radical cation salts.
Single crystal resistivity measurements, complemented by thermoelectric power measurements in
the case of (1)2AsF6, suggest quasi-metallic conductivity for the latter in the high temperature regime,
with σRT ≈ 1–10 S cm–1, while semiconducting behavior is observed for the (meso)-2 based salts.

Keywords: organic conductors; chirality; tetrathiafulvalene; EDT-TTF; crystal structures; electri-
cal conductivity

1. Introduction

Substitution of a hydrogen atom at one or both carbon atoms of the ethylene bridge
of the ethylenedithio-tetrathiafulvalene (EDT-TTF) precursor generates one or two stere-
ogenic centers, respectively, as in methyl-EDT-TTF (Me-EDT-TTF) 1 and dimethyl-EDT-TTF
(DM-EDT-TTF) 2, thus providing chiral tetrathiafulvalenes [1,2] (Scheme 1). These pre-
cursors proved to be highly valuable since they afforded by electrocrystallization a series
of enantiopure and racemic radical cation salts showing chirality and anion-dependent
crystalline packing and conducting properties. For example, donor 1, which has been only
recently described [3], provided the complete series of mixed-valence salts (1)2PF6, with
metal-like conductivity [3], while with the perchlorate anion only the enantiopure salts,
formulated as [(S)-1]2ClO4 and [(R)-1]2ClO4, showed metallic conductivity in the high-
temperature regime, the racemic form [(rac)-1]ClO4 being a very poor conductor because
of the formation of strong heterochiral dimers by the radical cations [4]. On the other hand,
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the dimethylated donor 2, containing two stereogenic centers (S,S) or (R,R) afforded semi-
conducting 4:2 enantiopure salts and metallic 2:1 racemic salt with PF6

− [5], whereas the
use of ClO4

– proved to be of huge importance across the preparation of the enantiomorphic
salts [(S,S)-2]2ClO4 and [(R,R)-2]2ClO4 which allowed the first observation of the electrical
magnetochiral anisotropy (eMChA) effect [6,7] in a bulk crystalline chiral conductor [8].
Thus, the addition of a second stereogenic center on the EDT-TTF platform has a paramount
importance for the resulting crystalline materials. Interestingly, the use of 2 in combination
with AsF6

− or SbF6
−, having larger volumes than PF6

−, favored the formation of metallic
enantiopure salts (2)2XF6 (X = As, Sb) as a consequence of the interplay between the anion
size, its propensity to engage in intermolecular hydrogen bonding and chirality of the
donor [9], with the much larger double octahedral shaped fluorinated dianion [Ta2F10O]2−

semiconducting salts of 2 with a 3:1 stoichiometry having been obtained [10]. In order to
develop the families of chiral conducting materials further, a first objective of the present
work is directed to the association of the mono-substituted donor 1 with the larger anion
AsF6

−. Secondly, when considering the important role played by the linear monoanion
I3

– in the field of molecular conductors through the synthesis of the first ambient pres-
sure organic superconductor (BEDT-TTF)2I3 [11–13], its use in radical cation salts with
the donors 1 and 2 has been investigated and described herein. Note that tetramethyl-
bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF), the first reported enantiopure TTF
derivative [14], provided 1:1 semiconducting radical cation salts with I3

– [15], besides other
conducting materials [16–18], thus demonstrating the drastic consequences of the introduc-
tion of substituents on the ethylene carbon atoms on the stoichiometry and properties of the
resulting materials. Finally, another interesting comparison can be made between the two
diastereomers of 2, i.e., the (S,S)/(R,R) pair and the meso form (Scheme 1). Indeed, radical
cation salts based on the related donor dimethyl-bis(ethylenedithio)-tetrathiafulvalene
(DM-BEDT-TTF) [19,20], which also presents a similar pair of diastereomers (S,S)/(R,R)
and meso, show striking differences between them. For example, with the PF6

− anion,
semiconducting orthorhombic [(R,R)-DM-BEDT-TTF]2PF6 and monoclinic [(rac)-DM-BEDT-
TTF]2PF6 salts [21] have been described, while the (meso)-DM-BEDT-TTF form provided
the triclinic β-[(meso)-DM-BEDT-TTF]2PF6 salt which showed a superconducting transition
with Tc ~ 4.3 K under 4.0 kbar [22,23]. Thus, the third objective of the present work is
to introduce the hitherto unknown (meso)-2 donor and radical cation salts containing,
especially, PF6

− and ClO4
− anions, to be compared with the corresponding materials with

(S,S)/(R,R)-2 [5,8].
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We describe herein a series of radical cation salts of Me-EDT-TTF 1 with the AsF6
−

and I3
− anions, the complete series of radical cation salts of (S,S)/(R,R)-2 with I3

− and,
finally, the synthesis and structural characterization of the new donor (meso)-2 together
with its radical cation salts with PF6

− and XO4
− (X = Cl, Re) anions.
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2. Results and Discussion
2.1. Radical Cation Salts of Me-EDT-TTF (1) with the AsF6

– Anion

As outlined in the Introduction, donor 1 provided a complete series of radical cation
salts (1)2PF6 for which the enantiopure compounds crystallized in the triclinic space group
P1, with two independent donor molecules and one anion in the unit cell, while the
racemic salt crystallized in the triclinic space group P–1 with one independent donor in
the asymmetric unit and the anion located on an inversion center [3]. We describe here
the analogous complete series of chiral radical cation salts of Me-EDT-TTF 1 with AsF6

–

and compare their structural features and conducting properties with the previously re-
ported PF6

– counterparts. Donor 1, prepared according to our published procedure [3],
afforded enantiopure and racemic salts by electrocrystallization in THF in the presence of
((n-Bu)4N)AsF6. Single crystals were obtained in the form of black plates following experi-
mental conditions identical with those employed for the PF6 series. Note that, with donor
1, the use of tetrahydrofuran (THF) as an electrocrystallization solvent generally requires
working temperatures of 2–3 ◦C in order to favor crystallization of radical cation salts.

[(rac)-1]2AsF6 is isostructural with the previously described [(rac)-1]2PF6 metallic
salt [3], but also with the racemic [(rac)-2]2PF6 [5]. It crystallizes in the triclinic centrosym-
metric space group P–1 with one independent donor molecule and half of anion, located on
an inversion center, in the asymmetric unit (Figure 1a, Table S1). The ethylene bridge C7–C8
is disordered over two positions A and B with s.o.f. values of 0.62 and 0.38, respectively,
whereas the methyl group C9 is not disordered and adopts an equatorial conformation,
thus leading to the presence of both enantiomers (S) and (R) on the same crystallographic
site. The four equatorial fluorine atoms are disordered on two positions each. The enan-
tiopure salts [(S)-1]2AsF6 and [(R)-1]2AsF6 crystallize in the non-centrosymmetric triclinic
space group P1 with two independent donor molecules and one anion in the asymmetric
unit (Figure 1b for the (S) enantiomer). Since they are isostructural, only the structure of
[(S)-1]2AsF6 will be detailed.
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rial F atoms are disordered on two positions each (s.o.f. 0.66 and 0.34). The ethylene bridge is dis-
ordered over two positions A (s.o.f. 0.62) and B (s.o.f. 0.38); (b) Molecular structure of [(S)-1]2AsF6. 
F4 and F6 atoms are disordered (s.o.f. 0.57 and 0.43). 

Contrary to the racemic form, the donor molecules of the enantiopure salts have no 
occupational disorder; the methyl substituent adopts equatorial conformation in both in-
dependent molecules, and two of the fluorine atoms were modelled over two positions. 

Figure 1. (a) Molecular structure of [(rac)-1]2AsF6. H atoms have been omitted for clarity. Equatorial
F atoms are disordered on two positions each (s.o.f. 0.66 and 0.34). The ethylene bridge is disordered
over two positions A (s.o.f. 0.62) and B (s.o.f. 0.38); (b) Molecular structure of [(S)-1]2AsF6. F4 and F6
atoms are disordered (s.o.f. 0.57 and 0.43).

Contrary to the racemic form, the donor molecules of the enantiopure salts have no
occupational disorder; the methyl substituent adopts equatorial conformation in both
independent molecules, and two of the fluorine atoms were modelled over two positions.

The lengths of the central C = C bond together with the internal C–S bonds, shown in
Table 1 for [(rac)-1]2AsF6 and [(S)-1]2AsF6, are in agreement with a +0.5 oxidation state of
the donor and are comparable with the values measured for the [(rac)-1]2PF6 salt [3].
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Table 1. Selected C = C and C–S internal bond distances for [(rac)-1]2AsF6 and [(S)-1]2AsF6.

Bond lengths (Å)

[(S)-1]2AsF6 [(rac)-1]AsF6

C3A–C4A 1.367(9) C3–C4 1.363(5)

S1A–C3A 1.714(7) S1–C3 1.739(4)

A S2A–C3A 1.759(7) S2–C3 1.739(3)

S3A–C4A 1.744(7) S3–C4 1.740(3)

S4A–C4A 1.736(7) S4–C4 1.733(3)

C3B–C4B 1.374(10)

S1B–C3B 1.737(7)

B S2B–C3B 1.753(7)

S3B–C4B 1.733(7)

S4B–C4B 1.726(7)

A classical organic-inorganic segregation occurs in the packing of both enantiopure
and racemic salts, with the donors adopting a β-type organization in parallel columns,
with short intrastack and interstack S···S distances (Figure 2a and Figure S1). As in the
case of the PF6

– homologous series, the donors engage in a complex set of intermolecular
CH···F hydrogen bond interactions with the fluorine atoms of the anion (Figure 2b and
Figure S2). When comparing the structure of the two series, the CH···F distances, such as
those for CHvinyl and CHMe, are either equal or slightly smaller for AsF6

– than those with
PF6

–, as a consequence of the longer As–F bond lengths (Tables S2 and S3). All fluorine
atoms are involved in such hydrogen-bonding interactions.
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Figure 2. (a) Layer of donors in the packing of [(S)-1]2AsF6 with an emphasis on the S···S short
contacts: red dotted lines (3.55–3.59 Å), brown dotted lines (3.62 Å), blue dotted lines (3.60–3.63 Å)
and green dotted lines (3.68–3.70 Å); (b) C–H···F short contacts: blue dotted lines for CHvinyl

(2.40–2.44–2.53 Å), orange dotted lines for Me (2.42–2.55 Å), violet dotted lines for CH2 (2.49–2.66 Å)
and green dotted lines for CHMe (2.53 Å).

Thus, this (1)2AsF6 series presents the same structural characteristics as the (1)2PF6
series and also as the isostructural one of donor 2 with AsF6

–, namely (2)2AsF6 [9]. Since
the latter two show metal-like behavior, it is reasonable to envisage similar conducting
properties for the former. Although crystals of the series (1)2AsF6 were rather small and
brittle, single crystal resistivity measurements could be performed for [(rac)-1]2AsF6 and
[(R)-1]2AsF6. The metallic behavior in the high-temperature regime could not be detected,
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as in the case of two point contact measurements in the (1)2PF6 series, in spite of rather high
values of the room temperature conductivities (σRT ≈ 1–10 S cm–1) and very small activation
energies (9–12 meV) (Figure 3a). Most likely, the presence of structural disorder on the
donors and the anions prevents the observation of a metal-like conductivity. However,
thermoelectric power measurements suggest metallic behavior in the high-temperature
regime according to the small positive values of the Seebeck coefficient decreasing towards
zero upon cooling (Figure 3b).
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These values of conductivity are comparable to those in the PF6
– series; moreover, no

striking difference has been observed between the racemic and enantiopure materials. This
last feature is not really surprising in view of the similar packing of the donors, although
one might argue that the enantiopure salts could show in principle higher conductivity
since there is no structural disorder on the donors. However, the anion is disordered in all
the salts of the series; therefore, this feature can hamper such fine observations.

Surprisingly, in a second set of experiments realized with the enantiopure donor and
[(n-Bu)4N]AsF6 in separate compartments, totally different 1:1 salts crystallized in the an-
odic compartment as black prismatic blocks. Once again, a working temperature of 2–3 ◦C
was imposed in order to obtain crystalline materials. Accordingly, [(S)-1]AsF6·C4H8O
and [(R)-1]AsF6·C4H8O radical cation salts are isostructural and crystallize in the triclinic
system non-centrosymmetric system P1, with two independent donors A and B, two anions
and two tetrahydrofuran (THF) molecules in the unit cell (Figure 4 and Figure S3 for the
(R) enantiomer, Table S4).
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Figure 4. (a) The two independent donor molecules in the crystal structure of [(S)-1]AsF6·C4H8O.
C9B atom is disordered over two positions A (s.o.f. 0.69) and B (s.o.f. 0.31). H atoms have been
omitted for clarity; (b) Molecular structure of [(S)-1]AsF6·C4H8O. F1B-F6B atoms are disordered over
two positions A (s.o.f. 0.57) and B (s.o.f. 0.43).
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In one of the two donors, the methyl substituent C9B, located in an equatorial position,
is disordered over two positions (C9BA and C9BB), which is different to the previous mixed-
valence salts. Moreover, all the six fluorine atoms of one anion are disordered on two
positions each. The stoichiometry of the two compounds indicates that both independent
donors are in a radical cation state, in agreement with the values of the central C = C and
internal C–S bond lengths (Table 2). The crystallization of these 1:1 phases is very likely
favored by the much lower concentration of available AsF6

– counter ion in the anodic
compartment, leading to the complete oxidation of the donors before crystallization.

Table 2. Selected C = C and C–S internal bond distances for [(S)-1]2AsF6 and [(S)-1]2AsF6.

Bond Lengths (Å)

[(S)-1]AsF6·C4H8O [(R)-1]AsF6·C4H8O

A

C3A–C4A 1.396(13) C3A–C4A 1.4214(13)

S1A–C3A 1.737(9) S1A–C3A 1.734(12)

S2A–C3A 1.710(10) S2A–C3A 1.7068(98)

S3A–C4A 1.705(9) S3A–C4A 1.6963(91)

S4A–C4A 1.727(9) S4A–C4A 1.7142(12)

B

C3B–C4B 1.389(13) C3B–C4B 1.3577(13)

S1B–C3B 1.729(10) S1B–C3B 1.7306(89)

S2B–C3B 1.710(10) S2B–C3B 1.7154(12)

S3B–C4B 1.705(10) S3B–C4B 1.7128(12)

S4B–C4B 1.735(9) S4B–C4B 1.7485(88)

As is often observed in the case of salts based on fully oxidized donors, the radical
cations form strong eclipsed dimers in the packing, with very short S···S intradimer
distances of 3.33–3.37 Å and much longer lateral S···S interdimer distances (3.59–3.77 Å)
(Figure 5a). The dimers are separated along the stacking direction by THF molecules
(Figures S4 and S5 for the (R) enantiomer). The fluorine atoms are engaged in hydrogen
bonding with protons of the donors but also with a CH2 group of THF, thus providing a
certain stability of the crystals against the desolvation (Figure 5b and Figure S6 for the (R)
enantiomer, Tables S5 and S6). When considering this strong dimerization of the donors, it
can be safely concluded that the two salts are insulators.
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Figure 5. (a) Packing of the donors in the structure of [(S)-1]AsF6·C4H8O with emphasis on the S···S
short contacts: blue dotted lines for (3.33–3.37 Å), red dotted lines for (3.59–3.66 Å), green dotted lines
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violet dotted lines for CH2 and CH (2.64–2.65 Å).
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2.2. Radical Cation Salts of Me-EDT-TTF (1) and DM-EDT-TTF (2) with the I3
– Anion

As mentioned above, TM-BEDT-TTF afforded 1:1 radical cation salts with the tris(iodide)
anion I3

− [15]. On the other hand, BEDT-TTF provided the ambient pressure supercon-
ducting phase (BEDT-TTF)2I3 [11–13], while a 1:1 salt was described with EDT-TTF [24].
Here, we present our results on the complete series of radical cation salts of chiral EDT-TTF
derived donors 1 and 2 with the I3

– anion. The crystalline salts, collected as brown plates
for 1 and black prisms for 2, were prepared by electrocrystallization of the respective
donors in acetonitrile at 20 ◦C in the presence of [(n-Bu)4N]I3.

The racemic and enantiopure salts (1)I3 are isostructural, with [(rac)-1]I3 crystallizing
in the centrosymmetric triclinic P–1 space group, while the enantiopure [(S)-1]I3 and [(R)-
1]I3 are in the non-centrosymmetric triclinic space group P1 (Table S7). The asymmetric unit
consists of two independent donor molecules and two anions for the latter (Figure 6a for
[(S)-1]I3) and one donor and two half anions for the former. In both independent molecules
of [(S)-1]I3, the methyl substituent (C9A and C9B) adopts an axial position. The central
C = C bond lengths values, together with the internal C–S bond lengths (Table S8), are
indicative of the +1 oxidation state, in agreement with the 1:1 stoichiometry.
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The donors A and B are strongly dimerized as attested by the eclipsed arrangement
and the very short intradimer S···S distances ranging between 3.34 and 3.42 Å (Figure 6b
for [(S)-1]I3). The packing of the donors is strongly reminiscent of the one observed in the
structure of (EDT-TTF)I3 [24]. Accordingly, one I3 anion separates the layers of donors, and
the other I3 anion is embedded in the layer, with its axis parallel to the long axis of the
donors, thus leading to only lateral overlap between the dimers (Figure 7 for [(R)-1]I3).
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Although the interdimer S···S distances for these lateral donor···donor contacts are
as short as 3.45–3.48 Å (Figure 7), one can expect very weak conductivity for these radical
cation salts of 1:1 composition when considering the strong dimerization of the donors.

Thus, within this series of (1)I3, the presence of a methyl substituent on the ethylene
bridge of EDT-TTF as in donor 1 does not have a strong impact on the packing, which is
similar to the one observed in the parent (EDT-TTF)I3 salt. What would be the consequence
of introducing a second methyl substituent as in donor 2? Accordingly, we have proceeded
to electrocrystallization experiments of 2 in the presence of [(n-Bu)4N]I3 in similar condi-
tions as for 1. A complete series of isostructural crystalline radical cation salts formulated
as (2)I3 has been obtained as well, with the racemic compound having crystallized in the
triclinic space group P–1 and the enantiopure counterparts in triclinic P1 (Table S9). The
asymmetric unit of the former contains one independent donor and one anion, while those
of the latter contain two independent donors and two anions. In contrast to the previous
series based on donor 1, now both tris(iodide) ions are aligned with the long axis of the
donors, and the methyl groups are located in equatorial positions (eq, eq) (Figure 8).
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As it was recently evidenced by DFT calculations, the difference in energy between
the axial and equatorial conformers of DM-EDT-TTF amounts only to ≈3 kcal mol−1 [25],
and even less for the monomethylated precursors [26], the occurrence of one form or the
other in the solid state being determined mainly by the packing and establishment of
intermolecular interactions. The analysis of the central C = C and internal C–S bonds
lengths values allows the assignment of the oxidation state +1 to the donors, in agreement
with the 1:1 stoichiometry. Since in this case both tris(iodide) anions are aligned with the
long axis of the donors, the c direction, along which no donor···donor interaction takes
place (Figures S7 and S8), mixed donor/anion layers are formed in the ab plane, with
strongly dimerized donors interacting laterally (Figure 9a for (rac) and Figure 9b for (R,R)).
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The intradimer S···S distances of 3.27–3.31 Å for [(rac)-2]I3 and 3.25–3.34 Å for [(R,R)-
2]I3 are even shorter than in the previous series, probably as a consequence of the (eq, eq)
conformation of the methyl groups, while the interdimer ones are slightly longer (Figure 9
and Figure S9). Once again, due to the strong dimerization, the conductivity of these
materials is expected to be poor.

2.3. Synthesis and Structure of (meso)-DM-EDT-TTF

The fascinating properties shown by the radical cation salts of DM-EDT-TTF (2) in its
chiral version, that is (rac), (S,S) and (R,R) forms, with different anions (ClO4 [8], PF6 [5],
AsF6 [9], SbF6 [9], Ta2F10O [10]) prompted us to investigate the hitherto unknown (meso)
form of DM-EDT-TTF ((meso)-2 in Scheme 1). For its preparation, we have envisaged
a three-step procedure, starting with a double nucleophilic substitution of (meso)-2,3-
dibromobutane with dmit2−, generated from the protected precursor 3 in basic conditions,
to form (meso)-DM-DDDT 4. Then, a classical phosphite-mediated cross-coupling reaction
of 4 with the dicarboxylate dithiolene 5 afforded the TTF (meso)-6, which was subsequently
heated in DMF in the presence of lithium bromide to yield (meso)-2 upon a double decar-
boxylation (Scheme 2).

Magnetochemistry 2021, 7, x FOR PEER REVIEW 9 of 17 
 

 

(Figures S7 and S8), mixed donor/anion layers are formed in the ab plane, with strongly 
dimerized donors interacting laterally (Figure 9a for (rac) and Figure 9b for (R,R)). 

 
 

(a) (b) 

Figure 9. (a) Packing of the donors and highlight of the S···S short contacts for [(rac)-2]I3; (b) Packing 
of the donors and highlight of the S···S short contacts for [(R,R)-2]I3. The anions are not shown. 

The intradimer S···S distances of 3.27–3.31 Å for [(rac)-2]I3 and 3.25–3.34 Å for [(R,R)-
2]I3 are even shorter than in the previous series, probably as a consequence of the (eq, eq) 
conformation of the methyl groups, while the interdimer ones are slightly longer (Figures 
9 and S9). Once again, due to the strong dimerization, the conductivity of these materials 
is expected to be poor. 

2.3. Synthesis and Structure of (meso)-DM-EDT-TTF 

The fascinating properties shown by the radical cation salts of DM-EDT-TTF (2) in its 
chiral version, that is (rac), (S,S) and (R,R) forms, with different anions (ClO4 [8], PF6 [5], 
AsF6 [9], SbF6 [9], Ta2F10O [10]) prompted us to investigate the hitherto unknown (meso) 
form of DM-EDT-TTF ((meso)-2 in Scheme 1). For its preparation, we have envisaged a 
three-step procedure, starting with a double nucleophilic substitution of (meso)-2,3-dibro-
mobutane with dmit2−, generated from the protected precursor 3 in basic conditions, to 
form (meso)-DM-DDDT 4. Then, a classical phosphite-mediated cross-coupling reaction of 
4 with the dicarboxylate dithiolene 5 afforded the TTF (meso)-6, which was subsequently 
heated in DMF in the presence of lithium bromide to yield (meso)-2 upon a double decar-
boxylation (Scheme 2). 

S

SSNC

SNC
S

THF, r.t. to 70 °C

BrBr

CsOH, MeOH

S

S

S

S
S

DMF, 150°C

LiBr

COOMe

COOMeS

S

S

S

S

S

P(OMe) 3, 110 °C

MeOOC

MeOOC S

S
O

S

S

S

S

S

S

3
5

(meso)-4, 10%

(meso)-6, 49% (meso)-2, 34%  
Scheme 2. Synthesis of (meso)-DM-EDT-TTF donor ((meso)-2). 

The neutral donor (meso)-2 crystallizes in the monoclinic centrosymmetric space 
group P21/n, with one independent molecule in the unit cell (Table S11). The dithiin six-
membered ring shows a sofa-type conformation (dihedral angles C5−C6−S6-C7 and 

Scheme 2. Synthesis of (meso)-DM-EDT-TTF donor ((meso)-2).

The neutral donor (meso)-2 crystallizes in the monoclinic centrosymmetric space
group P21/n, with one independent molecule in the unit cell (Table S11). The dithiin
six-membered ring shows a sofa-type conformation (dihedral angles C5−C6−S6-C7 and
C6−C5−S5-C8 measure 5.05◦ and 23.2◦, respectively), with axial (C10) and equatorial (C9)
orientations of the methyl substituents (Figure 10) and boat-like conformation of the TTF
unit. Central C = C and internal C−S bond distances have typical values for neutral donors
(Table S12). In the packing, the donors organize in orthogonal dyads (Figure S10), with
intermolecular S···S contacts of 3.54–3.87 Å.
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of [(n-Bu)4N]PF6 and [(n-Bu)4N]ClO4 provided 1:1 radical cation salts [(meso)-2]PF6 and
[(meso)-2]ClO4, respectively, as black crystalline needles. Additionally, knowing that ClO4

–

and ReO4
− anions usually afford isostructural salts, the use of [(n-Bu)4N]ReO4 leads to

the formation of crystalline [(meso)-2]ReO4, isostructural with its perchlorate congener
(Table S11). A working temperature of 3 ◦C had to be imposed in the case of ClO4 and
ReO4 salts, very likely because of the use of THF as co-solvent.

[(meso)-2]PF6 crystallizes in the monoclinic centrosymmetric space group P21/n, with
one independent donor molecule and one anion in the unit cell (Figure 11a). While in
the chiral form of 2, the methyl substituents can adopt either axial (ax) or equatorial (eq)
conformations, the most common being the equatorial one in radical cation salts, thus
maximizing the overlap between the donors, in (meso)-2 the conformation is necessarily (ax,
eq). In the packing, an organic-inorganic segregation takes place along the c direction, with
the donors forming strong centrosymmetric dimers, as attested by the short intermolecular
S···S contacts of 3.35–3.37 Å (Figure 11b). The dimers interact only laterally in the ab
plane, yet with much longer S···S contacts (3.64–3.81 Å). A network of hydrogen bonding
exists between fluorine atoms and the different hydrogen atoms of the donor: Hvinyl···F
(2.32–2.36 Å) and HMe···F (2.53–2.75 Å), HCH···F (2.45−2.65 Å) (Figure S11).
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As mentioned above, [(meso)-2]ClO4 and [(meso)-2]ReO4 are isostructural, crystallizing
in the triclinic centrosymmetric space group P–1, with one independent donor and one
anion in the unit cell (Figures S12 and S13, Table S11). The donors organize in dyads,
through short S···S interactions (3.34–3.41 Å), further interacting laterally (Figure 12a), while
donors-anions’ segregation establishes along the c direction (Figure 12b and Figure S14).
The lateral S···S contacts are on average shorter in the ClO4 and ReO4 salts than in the
PF6 one.

A strong dimerization of radical cations, with little interdimer interactions, is gener-
ally detrimental for good electron transport properties. Indeed, single crystal resistivity
measurements for [(meso)-2]PF6 and [(meso)-2]ReO4 show semiconducting behavior with
room temperature conductivities σRT of 1.4 10–5 S cm−1 for the former and 1.6 10−4 S cm−1

for the latter, the activation energies Ea being around 300–340 meV (Figure 13). The origin
of the higher conductivity of the ReO4 salt compared to the PF6 salt may be in the stronger
lateral interdimer interactions observed in the former.
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Across the preparation and conducting properties of these radical cation salts based
on (meso)-2, it is clear that the mutual orientation of the methyl substituents on the ethylene
bridge plays a paramount role on the donor:anion stoichiometry and the packing of the
donors. Indeed, in (meso)-2, one of the methyl substituents is necessarily axial, thus
precluding strong axial overlap between donors, at the difference with (S,S)- and (R,R)-2
where both methyl groups are equatorial in the most conducting salts.

3. Conclusions

In the continuation of our research lines on chiral materials and, more specifically, on
chiral molecular conductors, we reported here a new series of radical cation salts based
on the chiral donors Me-EDT-TTF (1) and DM-EDT-TTF (2) as racemic and enantiopure
forms, obtained by electrocrystallization. The former provided mixed valence salts (1)2AsF6
with metal-like behavior in the high-temperature regime, which are isostructural with
the previously described PF6 counterpart, but also with the (2)2AsF6 series. Additionally,
1:1 enantiopure salts formulated as [(S)-1]AsF6·C4H8O and [(R)-1]AsF6·C4H8O have been
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obtained in slightly different conditions. With the tris(iodide) anion I3
–, both donors af-

forded 1:1 salts, i.e., (1)I3 and (2)I3, as racemic and enantiopure forms, yet the disposition
of the anions with respect to the donors is drastically different in the two series. Finally,
the synthesis, characterization and single crystal X-ray structure of the new donor (meso)-2
are described, together with its poorly semiconducting 1:1 radical cation salts with the
PF6

−, ClO4
− and ReO4

− anions. The striking difference between the salts formed by
(meso)-2 and those resulting from the chiral form (S,S)/(R,R)-2 with the same anions is very
likely due to the location of the methyl substituents which is necessarily axial, equatorial
in the former, while in the latter they can adopt an equatorial, equatorial conformation,
thus maximizing the packing. Throughout these different series of radical cation salts,
the importance of the number of stereogenic centers, of their mutual arrangement in the
case of (meso)-2 and (S,S)/(R,R)-2 and of the nature of the counter-ion on the donor:anion
stoichiometry, packing of the donors and, ultimately, electron transport properties, are high-
lighted. Future work will be devoted to conductivity measurements under high pressures,
and the use of these chiral precursors in electrocrystallization in the presence of magnetic
anions. This last direction is particularly interesting when considering the possibility of
combining chirality with conducting and magnetic properties [17,27], since in magnetic
conductors, the existence of delocalized π-electrons and localized d-electrons may lead to
exotic phenomena such as magnetic-field-induced superconductors, magnetoresistance ef-
fects and magnetic-field-switchable conductors, with applications in molecular electronics
and spintronics [28–32].

4. Materials and Methods

All commercially available reagents and solvents were used as received unless oth-
erwise noted. Dry tetrahydrofuran was directly used from the purification machines.
Chloroform as a solvent for synthesis was passed through a short column of basic alu-
mina prior to use. Chromatography purifications were performed on silica gel, and thin
layer chromatograhy (TLC) was carried out using aluminum sheets precoated with silica
gel. NMR spectra were acquired on a Bruker Avance DRX 300 spectrometer operating at
300 MHz for 1H at room temperature in CDCl3 solutions. 1H NMR spectra were referenced
to the residual protonated solvent (1H). All chemical shifts are expressed in parts per
million (ppm) downfield from external tetramethylsilane (TMS) using the solvent residual
signal as an internal standard, and the coupling constant values (J) are reported in Hertz
(Hz). The following abbreviations have been used: s, singlet; d, doublet; m, multiplet. Mass
spectrometry MALDI–TOF MS spectra were recorded on a Bruker Biflex-IIITM apparatus
equipped with a 337-nm N2 laser.

Precursors Me-EDT-TTF 1 [3], (S,S)- and (R,R)-DM-EDT-TTF 2 [5] were synthesized
according to the literature procedures, while the preparation of (meso)-2 is described in
this report.

(meso)-DM-DDDT 4: Compound 3 (4.5 g, 14.8 mmol) was added into a 500 mL Schlenk
round bottomed flask under argon, and then dry THF (400 mL) was poured into the flask.
After 10 min, a solution of caesium hydroxide (7 g, 41.6 mmol) in dry methanol (50 mL)
was added dropwise, and the color started to turn violet. Then, the resulting solution
was left under stirring for one hour at room temperature, followed by the addition of
(meso)-2,3-dibromobutane (5.5 g, 25 mmol) and reflux for one night. After cooling to room
temperature, the solvent was removed under vacuum, and the solid residue was extracted
twice with DCM and water (250/500 mL). The combined organic phases were concentrated,
and the residue was purified by column chromatography (petroleum ether/DCM 8:2) to
give compound 4 (0.36 g, 10%); 1H NMR (300 MHz, CDCl3):δ 3.57 (m, 2H, -SCH), 1.36 (d,
6H, -CH3) ppm.

(meso)-DM-EDT-TTF-(COOMe)2 6: Compound 4 (0.3 g, 1.19 mmol) and dimethyl
2-oxo-1,3-dithiole-4,5-dicarboxylate 5 (0.6 g, 2.5 mmol) were mixed under argon in freshly
distilled trimethyl phosphite (10 mL), and the mixture was heated at 110 ◦C for 5 h. After
this period, the solvent was evaporated in a rotary evaporator, and then toluene (20 mL)
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was added and evaporated. The last procedure was repeated twice. The product was
solubilized in dichloromethane and passed through a silica column to remove the remaining
phosphite and then purified by chromatography using petroleum spirit/dichloromethane
1/1 to afford a red-brown solid (0.255 g, 49%); 1H NMR (300 MHz, CDCl3) δ ppm: 3.83
(s, 6H, −OCH3), 3.54 (m, 2H, -SCH), 1.36 (d, 6H, −CH3); MS (MALDI-TOF) m/z: 437.4
(Mth = 437.92).

(meso)-DM-EDT-TTF (meso)-1: Compound 6 (0.25 g, 0.57 mmol) and LiBr (0.75 g,
8.6 mmol) were mixed in dimethylformamide (25 mL). The solution was stirred at 150 ◦C for
30 min, the formation of the product being monitored by TLC. The product was extracted
with dichloromethane, and the organic phase was washed with brine and water and then
dried over MgSO4. The solvent was removed under vacuum, and the product was purified
by chromatography on a silica gel column with petroleum spirit/dichloromethane 6/4 to
afford a red solid (62 mg, 34 %); 1H NMR (300 MHz, CDCl3) δ ppm: 6.32 (s, 2H, −SCH=),
3.54 (m, 2H, -SCH), 1.36 (d, 6H, −CH3); MS (MALDI-TOF) m/z: 321.89 (Mth = 321.91).

(1)2AsF6: Single crystals of (1)2AsF6 (rac), (S) and (R) were obtained by electrocrys-
tallization. The electrolyte solution was prepared from 34.9 mg (5 eq.) of [(n-Bu)4N]AsF6
dissolved in 12 mL of tetrahydrofuran. The anodic chamber was filled with 5 mg of the
corresponding donor dissolved in 6 mL of the previously prepared electrolyte solution,
whereas the rest of the electrolyte solution (6 mL) was added in the cathodic compartment
of the electrocrystallization cell. Single crystals, as black crystalline plates, of the salts
were grown at 2–3 ◦C over a period of 5 days on a platinum wire electrode by applying a
constant current of 1 µA.

(1)AsF6·C4H8O: Single crystals of (1)AsF6·C4H8O (S) and (R) were obtained by elec-
trocrystallization. The electrolyte solution was prepared from 34.9 mg (5 eq.) of [(n-
Bu)4N]AsF6 dissolved in 6 mL of tetrahydrofuran. The anodic chamber was filled with 5
mg of the corresponding donor dissolved in 6 mL of tetrahydrofuran, and the previously
prepared electrolyte solution was added in the cathodic compartment of the electrocrystal-
lization cell. Single crystals, as black crystalline plates, of the salt were grown at 2–3 ◦C
over a period of 4 to 6 days on a platinum wire electrode by applying a constant current of
1 µA.

(1)I3: 20 mg of [(n-Bu)4N]I3 were dissolved in 6 mL of acetonitrile, and the solution was
poured in the cathodic compartment of an electrocrystallization cell. The anodic chamber
was filled with 5 mg of the donor dissolved in 6 mL of acetonitrile. Single crystals of the
salts [(rac)-1]I3, [(S)-1]I3 and [(R)-1]I3 were grown at 20 ◦C over a period of two weeks on a
platinum wire electrode by applying a constant current of 0.5µA. Black crystalline plates
were grown on the electrode.

(2)I3: Single crystals of (2)I3 (rac), (S,S) and (R,R) were obtained by electrocrystalliza-
tion. The electrolyte solution was prepared from 48.3 mg (5 eq.) of [(n-Bu)4N]I3 dissolved
in 12 mL of acetonitrile/chloroform 1/1. The anodic chamber was filled with 5 mg of the
corresponding donor dissolved in 6 mL of the previously prepared electrolyte solution,
whereas the rest of the electrolyte solution (6 mL) was added in the cathodic compartment
of the electrocrystallization cell. Single crystals of the salts, as black crystalline blocks, were
grown at 20 ◦C over a period of 5 days on a platinum wire electrode by applying a constant
current of 1 µA.

[(meso)-2]PF6: 20 mg of [(n-Bu)4N]PF6 were dissolved in 6 mL CHCl3, and then the
solution was poured into the cathodic compartment of an electrocrystallization cell. The
anodic chamber was filled with 5 mg of [(meso)-2] dissolved in 6 mL CHCl3. Single crystals
of the salt were grown at 20 ◦C over a period of one week on a platinum wire electrode,
by applying a constant current of 0.5 µA. Black crystalline needles were collected on the
electrode.

[(meso)-2]ClO4: 20 mg of [(n-Bu)4N]ClO4 were dissolved in 6 mL of a mixture of 1,1,2-
trichloroethane: tetrahydrofuran 1:1, and then the solution was poured in the cathodic
compartment of an electrocrystallization cell. The anodic chamber was filled with 5 mg
of [(meso)-2] dissolved in 6 mL of a mixture of 1,1,2-trichloroethane/tetrahydrofuran 1/1.

164



Magnetochemistry 2021, 7, 87

Single crystals of the salt were grown at 3 ◦C over a period of one week on a platinum wire
electrode by applying a constant current of 1µA. Black crystalline needles were grown on
the electrode.

[(meso)-2]ReO4: The same procedure as previously was applied by using 20 mg of
[(n-Bu)4N]ReO4 instead of [(n-Bu)4N]ClO4. Black crystalline needles were grown on the
electrode.

Details about data collection and solution refinement are given in Tables S1, S4, S7,
S9 and S11. Single crystals of the compounds were mounted on glass fibre loops using a
viscous hydrocarbon oil to coat the crystal and then transferred directly to cold nitrogen
stream for data collection. X-ray data collection was performed at 150 K on an Agilent
Supernova with CuKα (λ = 1.54184 Å). The structures were solved by direct methods with
the SHELXS-97 and SIR92 programs and refined against all F2 values with the SHELXL-97
program using the WinGX graphical user interface. All non-H atoms were refined anisotrop-
ically. Hydrogen atoms were introduced at calculated positions (riding model), included in
structure factor calculations but not refined. Crystallographic data for the structures have
been deposited with the Cambridge Crystallographic Data Centre, deposition numbers
CCDC 2085699 ([(rac)-1]2AsF6), 2085700 ([(S)-1]2AsF6), 2085701 ([(R)-1]2AsF6), 2085702
([(S)-1]AsF6·C4H8O), 2085703 ([(R)-1]AsF6·C4H8O), 2085704 ([(rac)-1]I3), 2085705 ([(S)-1]I3),
2085706 ([(R)-1]I3), 2085707 ([(rac)-2]I3), 2085708 ([(S,S)-2]I3), 2085709 ([(R,R)-2]I3), 2085710
((meso)-2), 2085711 ([(meso)-2]ClO4), 2085712 ([(meso)-2]PF6) and 2085713 ([(meso)-2]ReO4).
These data can be obtained free of charge from CCDC, 12 Union road, Cambridge CB2 1EZ,
UK (e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Thermoelectric power and electrical conductivity measurements for [(rac)-1]2AsF6
and [(R)-1]2AsF6 were made along the longer axis of the crystals in the temperature range
of 100–310 K. The measurement cell used was attached to the cold stage of a closed cycle
helium refrigerator. The thermopower was measured using a slow AC (ca. 10−2 Hz)
technique [33], by attaching two ∅ = 25 µm diameter 99.99% pure Au wires (Goodfellow),
thermally anchored to two quartz blocks, with Pt paint (Demetron 308A) to the extremities
of an elongated sample using a previously described apparatus [34], controlled by a
computer [35]. The oscillating thermal gradient was kept below 1 K and was measured
with a differential Au-0.05 at. % Fe vs. chromel thermocouple. The absolute thermoelectric
power of the samples was obtained after correction for the absolute thermopower of the
Au leads by using the data of Huebener [36]. Electrical resistivity measurements were
conducted in a four-in-line contact configuration where a low-frequency AC method (77 Hz)
was used; the measurements were conducted with a SRS Model SR83 lock-in amplifier, and
a 5 µA current was applied. Electrical resistivity of [(meso)-2]PF6 and [(meso)-2]ReO4 was
measured in two points on needle-shaped single crystals 0.5 mm long. Gold wires were
glued with silver paste on gold-evaporated contacts. Different techniques were used to
measure resistivity, either applying a constant voltage (1–5 V) and measuring the current
with a Keithley 486 or applying a DC current (0.1–0.01 µA) and measuring the voltage
with a Keithley 2400. We have checked for each crystal that both techniques give the same
resistance value at room temperature. A low temperature was provided by a homemade
cryostat equipped with a 4 K pulse-tube.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/magnetochemistry7060087/s1: Figure S1: Layer of donors in the packing of [(rac)-1]2AsF6;
Figure S2: C–H···F short contacts in the packing of [(rac)-1]2AsF6; Figure S3: View of the ordered
donor molecule and anion in the crystal structure of [(R)-1]AsF6·C4H8O; Figure S4: Packing of the
donors in the structure of [(S)-1]AsF6·C4H8O; Figure S5: Packing of the donors in the structure
of [(R)-1]AsF6·C4H8O; Figure S6: View of the structure of [(R)-1]AsF6·C4H8O; Figure S7: View in
the bc plane of the packing within [(rac)-2]I3; Figure S8: View in the bc plane of the packing within
[(R,R)-2]I3; Figure S9: Packing of the donors and highlight of the S···S short contacts for [(rac)-2]I3;
Figure S10: Packing diagram for (meso)-2; Figure S11: Solid state structure of [(meso)-2]PF6; Figure S12:
Molecular structure of [(meso)-2]ClO4; Figure S13: Molecular structure of [(meso)-2]ReO4; Figure S14:
Packing diagram for [(meso)-2]ReO4; Table S1: Crystal Data and Structure Refinement for [(rac)-
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1]2AsF6, [(S)-1]2AsF6 and [(R)-1]2AsF6; Table S2: C–H···F hydrogen bonding distances (Å) and angles
in [(rac)-1]2AsF6; Table S3: C–H···F hydrogen bonding distances (Å) and angles in [(S)-1]2AsF6;
Table S4: Crystal Data and Structure Refinement for [(S)-1]AsF6·C4H8O and [(R)-1]AsF6·C4H8O;
Table S5: C–H···F hydrogen bonding distances (Å) and angles in [(S)-1]AsF6·C4H8O; Table S6: C–
H···F hydrogen bonding distances (Å) and angles in [(R)-1]AsF6·C4H8O; Table S7: Crystal Data
and Structure Refinement for [(rac)-1]I3, [(S)-1]I3 and [(R)-1]I3; Table S8: Selected C = C and C–S
internal bond lengths for [(S)-1]I3; Table S9: Crystal Data and Structure Refinement for [(rac)-2]I3,
[(S,S)-2]I3 and [(R,R)-2]I3; Table S10: Selected C = C and C–S internal bond lengths for (2)I3; Table S11:
Crystal Data and Structure Refinement for (meso)-2, [(meso)-2]ClO4, [(meso)-2]PF6 and [(meso)-2]ReO4;
Table S12: Selected C = C and C–S internal bond lengths for (meso)-2, [(meso)-2]ClO4, [(meso)-2]PF6
and [(meso)-2]ReO4.
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Abstract: New organic (super)conductors of the β′′-(BEDT-TTF)4A+[M3+(C2O4)3]G family, where
BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene; M is Fe; A is the monovalent cation NH4

+; G
is 2-fluoropyridine (2-FPy) (1); 2,3-difluoropyridine (2,3-DFPy) (2); 2-chloro-3-fluoropyridine (2-
Cl-3-FPy) (3); 2,6-dichloropyridine (2,6-DClPy) (4); 2,6-difluoropyridine (2,6-DFPy) (5), have been
prepared and their crystal structure and transport properties were studied. All crystals have a layered
structure in which the conducting layers of BEDT-TTF radical cations alternate with paramagnetic
supramolecular anionic layers {A+[Fe3+(C2O4)3]3−G0}2−. Crystals 1 undergo a structural phase
transition from the monoclinic (C2/c) to the triclinic (P1) symmetry in the range 100–150 K, whereas
crystals 2–5 have a monoclinic symmetry in the entire range of the X-ray experiment (100–300 K). The
alternating current (ac) conductivity of salts 1–4 exhibits metallic behavior down to 1.4 K, whereas the
salt 5 demonstrates the onset of a superconducting transition at 3.1 K. The structures and conducting
properties of 1–5 are compared with those of the known monoclinic phases of the family containing
different monohalopyridines as “guest” solvent molecules G.

Keywords: BEDT-TTF; molecular paramagnetic (super)conductors; radical cation salts; tris(oxalato)metallate
anions

1. Introduction

The large family of layered molecular (super)conductors (BEDT-TTF)4A+[M3+(C2O4)3]G,
where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene; M3+ is a magnetic or non-magnetic
metal cation (M = Fe, Cr, Mn, Ru, Rh, Ga, Co, Al); G is a neutral “guest” molecule; A+ is
a small monovalent cation (A+ = NH4

+, K+, H3O+, Rb+), continues to be actively investi-
gated [1–29]. This is due to the fact that structural and conducting properties of this four-
component system can be widely modified by changing the components A+, M3+ and G. All
crystals have a layered structure in which the conducting radical cation layers of BEDT-TTF
alternate with insulating supramolecular anionic layers {A+[M3+(C2O4)3]3−G0}2−. Cationic
and anionic layers interact with each other through the formation of a large number of
hydrogen bonds between the components of the anionic layer and terminal ethylene groups
of BEDT-TTF. The anionic layers have a familiar honeycomb-like structure in which M3+

and A+ cations linked by oxalate bridges form the hexagonal cavities in which neutral
“guest” molecules G are incorporated. Cationic layers have different BEDT-TTF packing
types depending on the chemical composition of the anionic layers.
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The main feature of (BEDT-TTF)4A+[M3+(C2O4)3]G crystals is that the crystal sym-
metry, packing type of conducting BEDT-TTF layers, and therefore, the conducting prop-
erties of crystals depend mainly on the size and shape of the included “guest” molecule
G [1,3,17–20]. The variation of M (keeping the G the same) leads to a noticeable change of
conducting properties, but does not affect the crystal symmetry and the type of packing
of cation layers. The nature of the singly charged cation A+ affects the properties of the
crystals weakly. Currently, four groups of (BEDT-TTF)4A+[M3+(C2O4)3]G crystals are
known, which have different symmetry and BEDT-TTF packing type.

The largest and more interesting group of this family is the group of monoclinic (C2/c)
crystals [1–17,19,21,23–28] with β′′-packing type of BEDT-TTF, according to the structural
classification of salts of BEDT-TTF and its analogues [30,31]. The β′′-layers are composed
of continuous stacks of radical cations, the planes of which are almost parallel and shifted
with respect to the short axis of the BEDT-TTF molecule. The interplanar distances in the
stacks are considerably shortened in comparison with the normal van der Waals distances.
There are a large number of shortened S S contacts between adjacent stacks in the layer.

Monoclinic β′′-(BEDT-TTF)4A+[M3+(C2O4)3]G crystals were obtained with a large
number of guest molecules G (G = PhCN, PhNO2, PhBr, PhCl, PhF, PhI, DMF, py, CH2Cl2,
1,2-dichloro- and 1,2-dibromorobenzene, different isomers of halopyridines). The conduct-
ing properties of these crystals vary from semiconducting to metallic and superconducting
depending on the size, shape, and orientation of G in the hexagonal cavity, while the
dimensions of the hexagonal cavity weakly depend on the size of G and are determined
by the size of the M3+ cation and the distance from the outer oxalate oxygen atoms to the
cation A+. As a result, the large molecules G occupy almost the entire volume of the cavity
and their position is strictly fixed. The smaller molecules G can occupy different positions.
This leads to an increase in the structural disorder in the anionic layers and terminal ethy-
lene groups of BEDT-TTF and to the suppression of the conductivity of molecular crystals.
It was shown later that the conductivity of these crystals depends not so much on the
molecular volume of G, as on its length along the direction c of the unit cell, [17]. Not so
long ago, a correlation between the value of the c parameter of the unit cell and conducting
properties of BEDT-TTF crystals with tris(oxalato)metallate anions was found [29].

The majority of these crystals keep the monoclinic symmetry in the entire range of the
X-ray experiment (90–300 K). An exception is several β′′-(BEDT-TTF)4(NH4

+)[Fe(C2O4)3]G
crystals containing PhHal (Hal = F, Cl, Br) or a mixture of PhHal with PhCN as G. In these
crystals, the superconducting transition is preceded by a structural phase transition from
the monoclinic to triclinic state with decreasing temperature [21,22,25]. This structural
transition arises from noticeable positional shifts of all components of the complex anion,
giving rise to two nonequivalent organic β′′-layers and the partial ordering of the ethylene
groups of BEDT-TTF molecules. The consequence of these changes is the phase transitions
of these crystals from metallic to mixed metallic/insulating states [32]. According to the
theoretical concepts of Merino and McKenzie, the appearance of this state precedes the
appearance of superconductivity in layered molecular conductors with a quarter-filled
conduction band [33]. All of the aforementioned crystals containing PhHal as G support
this conclusion.

In addition to β′′-monoclinic crystals, three more groups of crystals were discovered
in the (BEDT-TTF)4A+[M3+(C2O4)3]G family: orthorhombic crystals (space group Pbcn)
with “pseudo-k”-type of BEDT-TTF-packing [1,4,19,23,27] and bi-layered triclinic crystals
(space group P1) in the structure in which conducting layers with α- and β′′- or α- and
“pseudo-κ”-types of BEDT-TTF packing alternate [11,20,24].

The group of orthorhombic “pseudo-k”-crystals includes several semiconducting
crystals (M = Fe, Cr, Co, Al; A+ = K+, NH4

+, H3O+; G = PhCN and its mixtures with
PhNO2 or C6H4Cl2) [1,4,19]. These crystals grow in “dry” solvents G and also together
with monoclinic crystals in the presence of traces of water in the reaction medium. The
organic layer of these crystals is formed by charged [(BEDT-TTF)2]2+ dimers surrounded
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by neutral [BEDT-TTF] molecules that are perpendicular to the dimers. Due to the strong
localization of a charge on dimers, all orthorhombic crystals are semiconductors.

Triclinic crystals are formed with large unsymmetrical (including chiral) solvent
molecules (M/G = Fe/PhAc; Fe/(X)-PhCH(OH)Me, X = R/S (racemate) or S (enantiomer);
Ga/PhN(Me)CHO; Ga/BnCN; Fe/C6H4Br2, Ga/C6H4Br2) [11,18–20,24]. Bulky unsym-
metrical solvent molecules are arranged asymmetrically relative to neighboring conducting
layers and interact with them in different ways. For this reason, in the structure of tri-
clinic crystals, conducting layers alternate with two different packing types, α-β′′- or
α-“pseudo-κ”. In the α-layer, the stacks of BEDT-TTF are inclined to one another. Tri-
clinic α-“pseudo-κ”-crystals are metals down to low helium temperatures, while triclinic
α-β′′-crystals undergo a metal-semiconductor transition with decreasing temperature.

Despite the large number of investigations of the influence of guest molecules G on
the crystals and conducting properties of family crystals, these studies are ongoing and
bring interesting results. In our recent articles, we have reported on the synthesis of crystals
containing Fe, Cr, Ga as M and various isomers of monohalopyridines (HalPy) as G in
which the halogen atom occupied different positions with respect to the nitrogen atom
of the pyridine ring [25,28]. It was shown that the conducting and structural properties
of the resulting β′′-(BEDT-TTF)4A+[Fe3+(C2O4)3](HalPy) crystals strongly depend on the
position of the halogen atom in the pyridine ring and also on the nature of M (see Table 1).

Table 1. Structural and conducting properties of the β′′-(BEDT-TTF)4A+[M3+(C2O4)3]·G crystals,
where G is HalPy; M is Fe, Cr, Ga; A = H3O+, [K0.8(H3O)0.2]+.

G/M Structural Properties Conducting Properties Ref.

2-ClPy/Fe C2/c to P1 transition at 215 K SC, Tc = 2.4–4.0 K [25]
2-BrPy/Fe C2/c to P1 transition at 190 K SC, Tc = 4.3 K [25]
3-ClPy/Fe No structural transition M > 0.5 K [25]
3-BrPy/Fe No structural transition M > 0.5 K [25]

2-ClPy/Cr Incommensurate structure
appears upon cooling M > 0.5 K [28]

2-BrPy/Cr Incommensurate structure
appears upon cooling M > 0.5 K [28]

2-ClPy/Ga Incommensurate structure
appears upon cooling M > 0.5 K [28]

2-BrPy/Ga Incommensurate structure
appears upon cooling M > 0.5 K [28]

Here, we report the synthesis, crystal structure and transport properties of new
monoclinic crystals β′′-(BEDT-TTF)4(NH4

+)[Fe(C2O4)3]G in which various mono- and
dihalopyridines are included as G: 2-fluoropyridine (2-FPy) (1), 2,3-difluoropyridine (2,3-
DFPy) (2), 2-chloro-3-fluoropyridine (2-Cl-3-FPy) (3), 2,6-dichloropyridine (2,6-DClPy) (4),
2,6-difluoropyridine (2,6-DFPy) (5).

2. Results and Discussion
2.1. Synthesis

The reaction medium for the growth of (BEDT-TTF)4A+[M3+(C2O4)3]G crystal consists
of the guest solvent either neat or mixed with other solvents (H2O, CH3OH, C2H5OH,
CH3CN, etc.) which are usually not incorporated in the structure but have a considerable
effect on the electrocrystallization process. In particular, they increase the solubility of the
inorganic electrolyte in the guest organic solvent and, hence, enable variation of the current
and the donor/electrolyte molar ratio, i.e., parameters that largely determine the crystal
structure, growth rate and quality of crystals formed.

For example, in the medium of anhydrous C6H5CN, only semiconducting orthorhom-
bic crystals grow, while both orthorhombic and monoclinic superconducting crystals
(Tc = 7–8.5 K) in the form of needles were obtained by P. Day et al. using C6H5CN with
a small addition of water [1]. These were the first superconducting crystals in this large
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family. Until now, the Tc of these crystals remains the highest among the crystals of this
family. However, usually, only orthorhombic crystals form in this medium. In addition,
needle crystals are of poor quality.

Interesting results were obtained by us when we used the mixture of C6H5CN with
1,2,4-trichlorobenzene (or 1,3-dibromobenzene) and C2H5OH as a reaction medium [19].
The molecules of 1,2,4-trichlorobenzene and 1,3-dibromobenzene do not enter the structure
of crystals due to their size (1,2,4-trichlorobenzene) or geometry (1,3-dibromobenzene),
but their presence facilitates the formation of high-quality monoclinic crystals. In this
case, monoclinic crystals grow in the form of thick plates or parallelepipeds. Unlike most
crystals of BEDT-TTF salts, in which the conducting layers are arranged in the plate plane,
in these crystals, the conducting layers are perpendicular to this plane.

The addition of 1,2,4-trichlorobenzene to the reaction medium made it possible to
obtain high-quality (super)conducting monoclinic crystals where G is 1,2-dichlorobenzene
(M = Fe), various isomers of monohalopyridines (Hal = Cl, Br; M = Fe, Cr, Ga) as well
as crystals containing a 4d metal cation (M3+ = Ru3+, G = PhBr) and crystals containing
two guest solvents, β′′-(BEDT-TTF)4A[Fe(C2O4)3][(G1)x(G2)1−x], where G1 = benzoni-
trile, G2 = 1,2-dichlorobenzene, nitrobenzene, fluorobenzene, chlorobenzene, bromoben-
zene [17,19,23,25,28].

Of note is that in the medium of 1,2,4-trichlorobenzene with acetophenone or chlorobenzene
(G1) and fluorobenzene (G2), the new series of isomorphic crystals with tris(oxalato)metallate
anions β′′-(BEDT-TTF)2[(H2O)(NH4)2M(C2O4)3]18-crown-6 (M = Rh, Cr, Ru, Ir) were syn-
thesized by Lee Martin et al. [34–36]. Two of these crystals (M = Cr, Rh) are superconductors.

In this work, the new monoclinic β′′-(BEDT-TTF)4(NH4
+)[Fe(C2O4)3](HalPy) crystals

(1–5) were also obtained by using the mixtures of 1,2,4-trichlorobenzene with different
mono- and dihalopyridines as reaction medium (Table 2).

Table 2. The β′′-(BEDT-TTF)4(NH4
+)[Fe(C2O4)3]G salts obtained and their properties.

Salts G Structural Properties Conducting Properties

1 2-FPy C2/c to P1 transition at
100–150 K

M > 1.4 K

2 2,3-DFPy C2/c
no structural transition M > 1.4 K

3 2-Cl-3-FPy C2/c
no structural transition M > 1.4 K

4 2,6-DClPy C2/c
no structural transition M > 1.4 K

5 2,6-DFPy C2/c
no structural transition SC, Tc = 3.1 K

Note that unlike all previously used guest components G, which are liquids, 2,6-
dichloropyridine (crystals 4) is a solid substance. It is possible that some other solids with
interesting physical properties can also be included in the structure of the anionic layers
for obtaining new multifunctional compounds combining two or more physical properties
in the same crystal lattice.

2.2. Structure

Salts 1–5 of common formula β′′-(BEDT-TTF)4(NH4
+)[Fe(C2O4)3](HalPy) crystallize in

the monoclinic space group C2/c, with two crystallographically independent BEDT-TTF (A
and B) molecules, half a [Fe(C2O4)3]3− anion, half a NH4

+ cation, and half a halopyridine
guest molecule. The full cell contains two formula units. Salts 1–5 are isostructural with
other monoclinic C2/c BEDT-TTF tris(oxalato)metallates packed by β′′ type [27,29]. The
structure consists of β′′-type packed BEDT-TTF conducting radical cation layers separated
by complex insulating anion layers {(NH4

+)[Fe(C2O4)3]3–(HalPy)}2– interleaved along the
c axis (Figure 1). Within the layers, BEDT-TTF radical cations form dimerized stacks with
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nearly coplanar molecular mean planes, incorporating radical cations expanding in a
AABBAABBAABB manner with a shift of around a half of molecular short axis. Radical
cations from adjacent stacks are arranged into chains expanding in the same dimerized
manner. In the chains, BEDT-TTF radical cations are placed side-by-side and are nearly
coplanar (Figure 2).
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Figure 1. Crystal structure of salt 2 β′′-(BEDT-TTF)4(NH4)[Fe(C2O4)3](2,3-DFPy; the other salts are
isostructural. Carbon is dark gray, hydrogen is light gray, sulfur is yellow, oxygen is red, nitrogen is
light blue, fluorine is light green, and iron is orange.
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Crystallographically unique BEDT-TTF radical cations are denoted by color. Molecule A is colored Figure 2. Conducting BEDT-TTF radical cation layers of salts 1–5 packed by β′′-type. Crystallograph-

ically unique BEDT-TTF radical cations are denoted by color. Molecule A is colored magenta, B is
colored cyan. AABBAABB packing arrangement for BEDT-TTF stacks and chains is shown.

An average charge on the BEDT-TTF is +1/2 obtained from the charge balance re-
quirements. In the salt 5, the radical cation A is completely ordered, both terminal ethylene
groups of the radical cation B are disordered over two positions with the occupancies
of main positions of 0.61 (atoms C17, C18) and 0.74 (atoms C19, C20) for each terminal
correspondingly, Figure S1. Minor positions are complementary to the main positions
with the occupancies of 0.39 (atoms C17′, C18′) and 0.26 (atoms C19′, C20′). Mutual
arrangements of ethylene groups in a BEDT-TTF respect eclipsed conformation in an or-
dered molecule A and staggered conformation in a molecule B for both main and minor
disordered configurations (Figure 3). The data of the other salts are summarized in Table 3.

172



Magnetochemistry 2021, 7, 83

Magnetochemistry 2021, 7, x FOR PEER REVIEW 6 of 15 
 

 

magenta, B is colored cyan. AABBAABB packing arrangement for BEDT-TTF stacks and chains is 
shown. 

An average charge on the BEDT-TTF is +1/2 obtained from the charge balance 
requirements. In the salt 5, the radical cation A is completely ordered, both terminal 
ethylene groups of the radical cation B are disordered over two positions with the 
occupancies of main positions of 0.61 (atoms C17, C18) and 0.74 (atoms C19, C20) for each 
terminal correspondingly, Figure S1. Minor positions are complementary to the main 
positions with the occupancies of 0.39 (atoms C17′, C18′) and 0.26 (atoms C19′, C20′). 
Mutual arrangements of ethylene groups in a BEDT-TTF respect eclipsed conformation 
in an ordered molecule A and staggered conformation in a molecule B for both main and 
minor disordered configurations (Figure 3). The data of the other salts are summarized in 
Table 3. 

It is known that the order and configuration of BEDT-TTF radical cation terminal 
ethylene groups play an important role in the charge transport of BEDT-TTF-based 
molecular conductors. From Table 3, it becomes immediately clear that, in all salts 1–5, 
the molecule A is fully ordered and adopts eclipsed conformation. 

Table 3. BEDT-TTF radical cation terminal ethylene group occupancies and mutual conformation 
for the salts 1–5. In the case of disordered groups, the occupancies of the main positions are 
presented. In the case of completely ordered groups, occupancies are equal to unity. Terminal A1 is 
defined as the ethylene group closest to the Fe3+ ion, A2—an opposite side of the molecule. 
Terminals B1/B2 are defined by the same manner in the relation to the NH4+ ion. Letter e denotes 
the eclipsed conformation while s denotes the staggered one. An example of e/s conformation is 
presented in Figure 3. Experiment temperature is 100 K unless otherwise noted. 

Terminal 1a * 1b * 1c * 2 3 4 5 
A1 1/1 $ 1 1 1 1 1 1 
A2 1/1 $ 1 1 1 1 1 1 
B1 1/0.52 & 0.74 0.63 1 d # 1 0.74 
B2 0.86/0.63 & 0.60 0.69 0.69 d # 0.62 0.61 

A1/A2 e/e e e e e e e 
B1/B2 s/s s s e s e s 

* 1a = 100 K (triclinic), 1b = 150 K (monoclinic), 1c = 240 K (monoclinic); # severe disorder that is 
unable to be evaluated due to the low quality of the crystal; $ second value is for molecule C; & 

second value is for molecule D. 

 
Figure 3. Relative positions in a chain and conformations of terminal ethylene groups for 
independent BEDT-TTF radical cation A (left) and B (right) in salt 5. Main positions for disordered 
ethylene groups of B are colored cyan and complementary are colored navy. The conformation is 
eclipsed for A and staggered for B. Thermal ellipsoids are of 50% probability. 

Another clear observation is that the configuration of salt 1 at 240 K, and, especially 
at 150 K, resembles that of 5 at 100 K. Upon cooling in the range 100–150 K, salt 1 
experiences a crystal lattice transformation from higher (monoclinic) to lower (triclinic) 
symmetry. A similar phase transition was observed earlier in the family of halobenzene 
solvents (PhF, PhCl, PhBr) [21] or their mixtures with PhCN [22] as well as with the 
guest molecule types closest to the current research—monosubstituted halopyridines, 

Figure 3. Relative positions in a chain and conformations of terminal ethylene groups for independent
BEDT-TTF radical cation A (left) and B (right) in salt 5. Main positions for disordered ethylene groups
of B are colored cyan and complementary are colored navy. The conformation is eclipsed for A and
staggered for B. Thermal ellipsoids are of 50% probability.

Table 3. BEDT-TTF radical cation terminal ethylene group occupancies and mutual conformation for
the salts 1–5. In the case of disordered groups, the occupancies of the main positions are presented.
In the case of completely ordered groups, occupancies are equal to unity. Terminal A1 is defined
as the ethylene group closest to the Fe3+ ion, A2—an opposite side of the molecule. Terminals
B1/B2 are defined by the same manner in the relation to the NH4+ ion. Letter e denotes the eclipsed
conformation while s denotes the staggered one. An example of e/s conformation is presented in
Figure 3. Experiment temperature is 100 K unless otherwise noted.

Terminal 1a * 1b * 1c * 2 3 4 5

A1 1/1 $ 1 1 1 1 1 1
A2 1/1 $ 1 1 1 1 1 1
B1 1/0.52 & 0.74 0.63 1 d # 1 0.74
B2 0.86/0.63 & 0.60 0.69 0.69 d # 0.62 0.61

A1/A2 e/e e e e e e e
B1/B2 s/s s s e s e s

* 1a = 100 K (triclinic), 1b = 150 K (monoclinic), 1c = 240 K (monoclinic); # severe disorder that is unable to be
evaluated due to the low quality of the crystal; $ second value is for molecule C; & second value is for molecule D.

It is known that the order and configuration of BEDT-TTF radical cation terminal ethy-
lene groups play an important role in the charge transport of BEDT-TTF-based molecular
conductors. From Table 3, it becomes immediately clear that, in all salts 1–5, the molecule
A is fully ordered and adopts eclipsed conformation.

Another clear observation is that the configuration of salt 1 at 240 K, and, especially at
150 K, resembles that of 5 at 100 K. Upon cooling in the range 100–150 K, salt 1 experiences
a crystal lattice transformation from higher (monoclinic) to lower (triclinic) symmetry. A
similar phase transition was observed earlier in the family of halobenzene solvents (PhF,
PhCl, PhBr) [21] or their mixtures with PhCN [22] as well as with the guest molecule types
closest to the current research—monosubstituted halopyridines, namely, 2-Cl-Py and 2-Br-
Py (Table 1). In these cases, the structural transition was associated with a superconductive
one. However, no superconductive transition is observed in salt 1. Let us speculate about
possible reasons from the perspective of the crystal structure.

The structural transition results in halving of the unit cell volume and appearance of
four independent BEDT-TTF radical cations (A, B, C, D). Molecule C is generated from A by
the loss of symmetry, and molecule D is generated from B. It is seen from Table 3 that both
molecules A and C are still ordered and adopt the same configuration while in the pair B/D
the former is almost fully ordered but the latter, in contrast, demonstrates almost randomly
distributed occupancies of the terminal group carbon atoms. Such a redistribution of
occupancies is most likely accompanied by a charge redistribution that, in turn, results
in weak charge localization and loss of superconductive transition. Indeed, analysis
of the charge distribution over independent BEDT-TTF radical cations based on bond
lengths enables us to roughly estimate the charges on A/B/C/D as +0.5/+0.33/+0.5/+0.67,
respectively, indicating a charge redistribution in the pair B/D [37]. This formula, when
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applied to the structures with high R-values, often provides wrong absolute values and
should not be taken too seriously. However, that gives us a good qualitative insight into
the intermolecular charge distribution.

Within each anion layer, the Fe3+ and NH4
+ cations are linked by oxalate bridges

forming a hexagonal packing arrangement where Fe3+ is octahedrally coordinated by
oxalate ligands. Outer oxygens of oxalates form hydrogen bonds with the NH4

+ cations
(Figure 4). This anionic network forms large hexagonal cavities where halopyridine guest
molecules reside. Fe3+ cations and nitrogen of NH4

+ cations reside in special positions.
There are twofold symmetry axes connecting them.
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Figure 4. Projection of the anion layer along c axis showing the honeycomb packing arrangement of
the tris(oxalato)ferrate anions for the salts 1–5, using salt 5 as an example. Thermal ellipsoids are of
50% probability.

There are two chemically and structurally reasonable alternatives for a cation in-
corporating into an anion layer—ammonium (NH4

+) or oxonium (H3O+). It should be
noted that the unambiguous identification of the cation is a challenging task that has a
long history. That is especially a source of doubt for compounds demonstrating super-
conductive properties, as there is an empirical rule that H3O+ favors the superconducting
transition [1,27,29].

In the particular case of superconducting salt 5, we consider the cation to be NH4
+,

guided by the following arguments:

1. Both symmetrically unequivalent hydrogen atoms were found on the electronic
differential map;

2. Adding each of the hydrogens results in a subtle but sensible decrease of the R-value;
3. Replacing N by O does not improve the R-value;
4. NH4

+ cation is residing on a twofold axis and adopts distorted tetrahedral geometry
that has been restored to a symmetrical tetrahedron by geometrical constraints without
loss of the R-value.

It should be emphasized that, while molecules of 2,6-DFPy and 2,6-DClPy have
their own molecular twofold symmetry axes, they still reside in the cavities with the
substantial displacement of approximately 0.8 Å with no atoms occupying special positions,
resulting in a positional disorder over two positions around the lattice twofold axis (Table 4,
Figures 5 and 6). It is most likely a consequence of the requirement to completely fill up
the cavity void space by a smaller molecule. However, the larger chlorine-containing
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2,6-DClPy is almost 0.1 Å less displaced than the fluorine-containing 2,6-DFPy but requires
a larger tilt to be accommodated.

Table 4. The dimensions of the anion layer hexagonal cavity and the orientation of the HalPy guest
molecule as annotated in Figure 5. δ is the angle between the pyridine ring plane and the plane
of the hexagonal cavity. e is a mean guest molecule displacement defined as (e1 + e2)/2, where e1

is a displacement of the outer halopyridine halogen atom nearest to the cusp Fe3+ ion around the
twofold axis, e2 is a displacement of the inner halopyridine ring carbon/nitrogen atom closest to the
nadir nitrogen atom of NH4

+ ion. e’ is an alternative mean displacement value (e1 + e2 + . . . + en)/n
where averaging is taken for all displaced atoms. S is a square unit of the hexagonal cavity taken as
w(b + h)/2.

Salts 1a 1b 1c 2 3 4 5

S, Å2 101.71 102.17 102.850 102.21 101.90 102.03 101.83
h, Å 13.417 13.453 13.549 13.474 13.463 13.449 13.406
w, Å 10.298 10.309 10.330 10.331 10.309 10.327 10.322
a, Å 6.203 6.254 6.291 6.285 6.584 6.277 6.258
b, Å 6.338 6.370 6.364 6.313 6.306 6.312 6.326
c, Å 4.625 4.656 4.748 4.484 4.414 4.473 4.813
d, Å 4.881 5.108 4.969 4.520 4.750 4.535 4.519
e, Å 0 0 0.651 0.822 0 0.895 0.808
e’, Å 0 0 0.547 0.877 1.108 0.902 0.840
δ, º 31.73 34.58 34.97 38.14 32.37 39.46 36.36

1a = 100 K (triclinic), 1b = 150 K (monoclinic), 1c = 240 K (monoclinic).
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displacement. However, upon cooling, the fluorine atom and the two pyridine carbon 
atoms (C41 and C44) are situated on the lattice twofold axis (Figure 7). This effect is 
already clear at 150 K—far away from the structural transition. Thus, 2-FPy localization 
precedes or even induces a complete structural transformation. Nitrogen and carbon 
positions of 2-FPy appear to be inseparable at temperatures 150 and 100 K; that is 
probably due to the formation of a domain superstructure. The elevated electric field 
strength along the domain grains may serve as a factor causing failure of the 
superconductive transition. However, such speculations require further deeper 
investigations. 

Unlike all other salts presented in the current work, salt 3, with the most 
asymmetrical halopyridine molecule—2-Cl-3-FPy, contains an NH4+ cation displaced 
from the lattice twofold axis and shows an oxalic ligand disorder in the 
tris(oxalato)ferrate anion (Figure 8). Guest solvent molecules could not be identified by 
means of crystal structure tools and were refined as a set of separated carbon atoms plus 
fluorine with released occupancies. It appears that a highly asymmetric guest solvent 
molecule with substituents of different sizes does not favor growth of high-quality 
crystals. 

Though the structure-property correlation is a very complex and ambiguous topic, 
some preliminary conclusions can be provided: 
1. Use of highly nonsymmetrical halopyridine 2-Cl-3-FPy leads to low quality single 

crystals; 
2. Guest molecules of higher symmetry and larger volume may produce 

superconductive single crystals; 
3. Ordering of non-symmetrical guest molecules at lower temperatures may impede 
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Figure 6. View of the 2,6-DFPy molecule in the crystal structure 5 along the molecular twofold axis
(left) and along the lattice twofold axis (−x, y, 1/2 − z) (right). The 2,6-DClPy molecule in the crystal
structure 4 is arranged in the same manner.

It appears that the smallest 2-FPy guest molecule that lacks any molecular symmetry
presents the most interesting case. At higher temperatures, the arrangement of 2-FPy in the
cavity resembles 2,6-DFPy/2,6-DClPy cases with a much smaller displacement. However,
upon cooling, the fluorine atom and the two pyridine carbon atoms (C41 and C44) are
situated on the lattice twofold axis (Figure 7). This effect is already clear at 150 K—far
away from the structural transition. Thus, 2-FPy localization precedes or even induces
a complete structural transformation. Nitrogen and carbon positions of 2-FPy appear to
be inseparable at temperatures 150 and 100 K; that is probably due to the formation of
a domain superstructure. The elevated electric field strength along the domain grains
may serve as a factor causing failure of the superconductive transition. However, such
speculations require further deeper investigations.
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Figure 7. View of 2-FPy molecule in the crystal structure 1. Wireframe (a) and ellipsoid (b) views at
240 K (1c), 150 K (1b) (c) and 100 K (1a) (d). Fluorine and central carbon atoms are placed on lattice
twofold axis (−x, y, 1/2 − z) at 150 K.

Unlike all other salts presented in the current work, salt 3, with the most asymmetrical
halopyridine molecule—2-Cl-3-FPy, contains an NH4

+ cation displaced from the lattice
twofold axis and shows an oxalic ligand disorder in the tris(oxalato)ferrate anion (Figure 8).
Guest solvent molecules could not be identified by means of crystal structure tools and
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were refined as a set of separated carbon atoms plus fluorine with released occupancies.
It appears that a highly asymmetric guest solvent molecule with substituents of different
sizes does not favor growth of high-quality crystals.
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Though the structure-property correlation is a very complex and ambiguous topic,
some preliminary conclusions can be provided:

1. Use of highly nonsymmetrical halopyridine 2-Cl-3-FPy leads to low quality sin-
gle crystals;

2. Guest molecules of higher symmetry and larger volume may produce superconduc-
tive single crystals;

3. Ordering of non-symmetrical guest molecules at lower temperatures may impede the
SC transition by casting a constant dipole moment at the place of the localization.

2.3. Conducting Properties

The temperature dependences of the out-of-plane resistivity for the samples 1–5 are
presented in Figure 9. All these samples are metals despite the existence of the negative
slopes on the low-temperature parts on the ρ⊥(T) curves for the samples 5 and 1. Moreover,
the sample 5 demonstrates a sharp resistance drop at low temperature which one can surely
attribute to the onset of a superconducting transition at Tc = 3.1 K. Unfortunately, we could
not reach the real zero resistance state, even at our minimal temperature 1.4 K, because
the superconducting transition is not very narrow. This is typical for organic metals, for
which the transition width is usually more or about 2 K. The behavior of the sample 1 at
T < 20 K is similar to that of the sample 5, so we do not exclude the possibility that this
sample could also be a superconductor at temperatures below 1 K, but we could not check
this statement because our temperature region was restricted by 1.4 K.
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3. Materials and Methods
3.1. Synthesis

Crystals of five new radical cation salts of the β′′-(BEDT-TTF)4A+[M3+(C2O4)3]G
family were obtained by electrochemical oxidation of BEDT-TTF at a platinum electrode in
organic solvents, at constant current and temperature (25 ◦C), in the presence of supporting
electrolytes, namely, ammonium tris(oxalato)metallates combined with a 18-crown ether.
The electrocrystallization process was performed in conventional two-compartment U-
shaped cells separated by a porous glass filter. BEDT-TTF, (NH4)3[Fe(ox)3]·3H2O, 18-crown
ether and solvents were placed in the cathode compartment and, then, the solution obtained
was distributed between the two compartments of the cell.

BEDT-TTF, 1,2,4-trichlorobenzene, 2-fluoropyridine, 2,3-difluoropyridine, 2-chloro-
3-fluoropyridine; 2,6-difluoropyridine; 2,6-dichloropyridine, (NH4)3[Fe(ox)3]·3H2O were
used as received (Aldrich); 18-crown-6 (Aldrich) was purified by recrystallization from
acetonitrile and dried in vacuum at 30 ◦C over P2O5.

The exact conditions for the synthesis of each salt are described below.

3.1.1. β′′-(BEDT-TTF)4(NH4
+)[Fe(ox)3](2-FPy) (1)

15 mg of BEDT-TTF, 150 mg of (NH4)3[Fe(ox)3]·3H2O, 450 mg of 18-crown-6 and
the mixture of 2-FPy (10 mL) with 1,2,4-trichlorobenzene (10 mL) and 96% EtOH (2 mL);
J = 0.85 µA. Many crystals in the form of thick plates were collected from the anode after
9 days.

3.1.2. β′′-(BEDT-TTF)4(NH4
+)[Fe(ox)3](2,3-DFPy) (2)

8 mg BEDT-TTF, 75 mg of (NH4)3[Fe(ox)3]·3H2O, 250 mg of 18-crown-6 and the
mixture of 2,3-DFPy (4 mL) with 1,2,4-trichlorobenzene (4 mL) and 96% EtOH (1 mL); J = 0.
85 µA. Several thick crystals were collected from the anode after 12 days.

3.1.3. β′′-(BEDT-TTF)4(NH4
+)Fe(ox)3](2-Cl-3-FPy) (3)

8 mg BEDT-TTF, 75 mg of (NH4)3[Fe(ox)3]·3H2O, 250 mg of 18-crown-6 and the
mixture of 2-Cl-3-FPy (4 mL) with 1,2,4-trichlorobenzene (4 mL) and 96% EtOH (1 mL);
J = 0.9 µA. Very many small thick crystals were collected from the anode after 2 weeks.

3.1.4. β′′-(BEDT-TTF)4(NH4
+)Fe(ox)3](2,6-DClPy) (4)

A total of 14 mg of BEDT-TTF, 150 mg of (NH4)3Fe(ox)3·3H2O, 450 mg of 18-crown-6,
5 g of 2,6-DClPy were dissolved in the mixture of 30 mL 1,2,4-trichlorobenzene with 3 mL
of 96% ethanol. J = 0.95 µA. Several thick crystals in the form of plates were collected from
the anode after 2 weeks.
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3.1.5. β′′-(BEDT-TTF)4(NH4
+)[Fe(ox)3](2,6-DFPy) (5)

A total of 18 mg of BEDT-TTF, 150 mg of (NH4)3Fe(ox)3, 450 mg of 18-crown-6 were
dissolved in the mixture of 15 mL of 2,6-DFPy, 5 mL 1,2,4-trichlorobenzene and 2 mL of
96% ethanol. J = 0.9 µA. Several thick crystals in the form of plates were collected from the
anode after 6 days.

3.2. Structure

X-ray diffraction analyses of the salts 1–5 were carried out on a CCD Agilent XCalibur
diffractometer with an EOS detector (Agilent Technologies UK Ltd., Yarnton, Oxfordshire,
England). Data collection, determination and refinement of unit cell parameters were
carried out using the CrysAlis PRO program suite [38]. X-ray diffraction data at 100(1) K
for the salts 1–5 were collected using MoKα (λ = 0.71073 Å) radiation. The same single
crystal for the salt 1 was used for the data collection at different temperatures. Data at
100(1) K for the experiment 1a, data at 150(1) K for the experiment 1b, and data at 240(1)
K for the experiment 1c were seamlessly collected without removing the crystal from
the diffractometer.

The structures 1–5 were solved by the direct methods. The positions and thermal
parameters of non-hydrogen atoms were refined isotropically and then anisotropically by
the full-matrix least-squares method. The positions of the hydrogen atoms were calculated
geometrically. The guest molecule was found to be disordered over two positions. The
geometry of guest molecule was recovered for salts 1–5 except salt 3. Guest solvent
molecules in salt 3 were refined as a set of separated carbon atoms plus fluorine with
released occupancies.

The X-ray crystal structures data have been deposited with the Cambridge Crystal-
lographic Data Center, with reference codes CCDC 2081357 (1a), 2081360 (1b), 2081356 (1c),
2081355 (2), 2081361 (3), 2081354 (4), 2079902 (5). All calculations were performed with the
SHELX-97 program package [39].

3.3. Conducting Properties

The temperature dependences of the electrical resistance of single crystals were mea-
sured using a four-probe technique by a lock-in detector at 20 Hz alternating current
J = 1 mkA in the temperature range (1.4–300 K). Two contacts were attached to each of the
two opposite sample surfaces with conducting graphite paste. In the experiment, we have
measured the out-of-plane resistance R⊥ with the current running perpendicular to the
conducting layers. Because of the high anisotropy of the samples, we did not succeed in
the measurements of the in-plane sample resistance. The out-of-plane resistivity ρ⊥ of
the samples was calculated from R⊥ taking into account that the out-of-plane current is
uniform due to the high sample anisotropy.

4. Conclusions

Crystals of new layered molecular (super)conductors (1–5) based on radical cation salts
of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) with paramagnetic tris(oxalate)metallate
anions, β”- BEDT-TTF)4(A+)[M3+(C2O4)3]G, where M is Fe; A is NH4

+; G is an isomer
of mono- or dihalopyridine: 2-fluoropyridine (2-FPy) (1), 2,3-difluoropyridine (2,3-DFPy)
(2), 2-chloro-3-fluoropyridine (2-Cl-3-FPy) (3), 2,6-dichloropyridine (2,6-DClPy) (4) and
2,6-difluoropyridine (2,6-DFPy) (5), belong to the monoclinic group of the large family of
(BEDT-TTF)4(A+)[M3+(C2O4)3]G crystals. In the structures of these crystals, the conducting
layers of BEDT-TTF radical cations alternate with supramolecular insulating anionic layers
{A+[M3+(C2O4)3]G}2−. Changing the number of halogen atoms in the “guest” molecule
halopyridine (G) as well as their size and mutual arrangement has a significant effect on
the structure and conducting properties of the crystals. So, salt 1 (G = 2-FPy) undergoes a
structural phase transition from monoclinic to triclinic symmetry in the range 100–150 K.
A similar transition in isostructural crystals with G = 2-ClPy and 2-BrPy precedes the
superconducting transition [25]. However, crystals 1 show stable metallic properties
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down to 1.4 K and do not undergo a superconducting transition. In contrast to 1, crystals
2–5, where G are various isomers of dihalopyridine, retain monoclinic symmetry in the
entire range of the X-Ray experiment (90–300 K). Crystals 2 and 3, which contain the
asymmetric “guest” molecules (2,3-DFPy and 2-Cl-3-FPy, respectively), exhibit the stable
metallic properties down to 1.4 K without a superconducting transition. However, the
quality of crystals 2 (R-factor = 4.95%) containing two identical substituents in the pyridine
molecule is significantly higher than the quality of crystals 3, where G contain two different
substituents. Unlike all other salts, the salt 3 contains an NH4

+ cation displaced from the
lattice twofold axis and shows an oxalic ligand disorder in the tris(oxalato)ferrate anion
(see Section Structure).

Crystals 4 (G = 2,6-DClPy) and 5 (2,6-DFPy) contain the highly symmetric G molecules.
Each of these molecules contains two identical substituents. In this case, there were no
problems with the quality of the crystals formed. Crystals 4 demonstrate metallic properties
down to 1.4 K, while crystals 5 show the onset of a superconducting transition at 3.1 K.
This is the first superconductor among crystals of the β′′-(BEDT-TTF)4(A+)[M3+(C2O4)3]G
family containing dihalopyridines or dihalobenzenes as G.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/magnetochemistry7060083/s1, Figure S1: Molecular structure of crystals 5, β′′-(BEDT-
TTF)4(NH4)[Fe(C2O4)3](2,6-DFPy), with atom numbers.
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Abstract: Crystal-to-crystal transformation is a path to obtain crystals with different crystal struc-
tures and physical properties. K2[Co(C2O4)2(H2O)2]·4H2O (1) is obtained from K2C2O4·2H2O,
CoCl2·6H2O in H2O with a yield of 60%. It is crystallized in the triclinic with space group P1 and cell
parameters: a = 7.684(1) Å, b = 9.011(1) Å, c = 10.874(1) Å, α = 72.151(2)◦, β = 70.278(2)◦, γ = 80.430(2)◦,
V = 670.0(1) Å3, Z = 2 at 100 K. 1 is composed of K+, mononuclear anion [Co(C2O4)2(H2O)2

2−]
and H2O. Co2+ is coordinated by two bidentated oxalate anion and two H2O in an octahedron
environment. There is a hydrogen bond between mononuclear anion [Co(C2O4)2(H2O)2

2−] and
H2O. K2[Co(µ-C2O4)(C2O4)] (2) is obtained from 1 by dehydration. The cell parameters of 2 are
a = 8.460(5) Å, b = 6.906 (4) Å, c = 14.657(8) Å, β = 93.11(1)◦, V = 855.0(8) Å3 at 100 K, with space group
in P2/c. It is composed of K+ and zigzag [Co(µ-C2O4)(C2O4

2−]n chain. Co2+ is coordinated by two
bisbendentate oxalate and one bidentated oxalate anion in trigonal-prism. 1 is an antiferromagnetic
molecular crystal. The antiferromagnetic ordering at 8.2 K is observed in 2.

Keywords: oxalate; cobalt; crystal structure; magnetic property

1. Introduction

The change of the weak interaction of guest molecules, coordination geometry dis-
tortion, and coordination number in coordination compounds can effectively modulate
the physical properties as magnetism, absorption, and chirality, so the dynamic molec-
ular crystals have received great attention for their potential applications in molecular
devices, as molecular sensors and switches become a powerful method for obtaining a
specific compound with the yield of 100% by crystal-to-crystal transformation in crystal
engineering [1–7]. The crystal-to-crystal transformations were observed between different
dimensional coordination units as zero-dimensional (0D), one-dimensional chain (1D),
two-dimensional (2D) layer, and three-dimensional (3D) coordination frameworks [8–10].
We are interested in dynamic crystals of MX2–(1,4-dioxane)–H2O system, and 0D to 2D, 1D
to 2D, 1D to 3D crystal-to-crystal transformations were found [11–13]. Oxalate (C2O4

2−) is
one of most popular used three-atoms ligands in the study of molecular-based magnet, its
versatile abilities and intermediating efficient magnetic coupling among transition atoms
have constructed 1D, 2D, and 3D magnetic materials [14–21]. However, the research on
oxalate-based dynamic crystal is limited. Herein, we present a crystal-to-crystal transfor-
mation from 0D mononuclear compound K2[Co(C2O4)2(H2O)2]·4H2O (1) into a reported
1D coordination compound K2[Co(µ-C2O4)(C2O4)] (2) accompanied by changes in crys-
tal color, cell parameters, space group, coordination environment, crystal structure, and
magnetic property.
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2. Experiment and Discussion

1 was obtained from K2C2O4·2H2O, Co(NO3)2·6H2O in H2O with yield of 60%.
When 1 was heated at an elevated temperature (at 120 ◦C for three minutes), it

transferred to 2 after dehydration with a mass loss of 25.7%, crystal structure changed from
mononuclear to one-dimensional chain (Scheme 1) and the crystal color changed from
orange to pink. 2 remained stable until 300 ◦C (Figure 1). This is the second method to
obtain 2 except the solvothermal method. The IR bands (Figure S1) between 1 and 2 is the
strong broad band above 3000 cm−1 υ(O-H) as from H2O in 1. The existence weak broad
band above 3000 cm−1 means 2 is unstable to air as reported [17].
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Figure 1. TGA plot of 1 (black) and 2 (red).

1 crystallizes in triclinic with space group of P1: a = 7.684(1) Å, b = 9.011(1) Å,
c = 10.874(1) Å, α = 72.151(2)◦, β = 70.278(2)◦, γ = 80.430(2)◦, V = 670.0(1) Å3, Z = 2. 1 is com-
posed of K+, mononuclear coordination anion Co(C2O4)2(H2O)2

2− and H2O (Figure 2a).
There are two K+, one Co2+, two oxalate (C2O4

2−), and six H2O in an independent unit. K1
is surrounded by five O from three oxalato and four H2O, K2 is surrounded by five O from
three oxalato and four H2O. K column formed by K1 and K2 host the vacancy of H-bond
network formed by oxalate and H2O along the b axis. K1· · ·K2 distances are 3.872(2) Å
and 5.630(2) Å alternatively, and K1· · ·K1 and K2· · ·K2 distances are 9.011(1) Å. Each
Co2+ is coordinated by two oxalate anions with Co-O 2.078(2)~2.099(2) Å on the equatorial
plane, and two H2O with Co-O 2.114(4) Å~2.120(3) Å to fulfill the octahedron environment.
O-Co-O angles are among 88.4(2)~92.3(1)◦ from H2O to equatorial plane and 176(1)◦ be-
tween two H2O atoms. Viewed along the b axis, Co· · ·Co distances are of 9.011(1) Å and
7.684(2) Å alternatively along the a axis. There are hydrogen bonds between anions and
coordinated H2O: O9-H1· · ·O8(-x,1-y,1-z) 2.839(5) Å/170◦, O10-H4· · ·O1(-x,2-y,-z) 3.178(5)
Å/127◦; between anions and solvent H2O: O14-H12· · ·O1 2.795 Å/163◦, O13-H9· · ·O6(1-
x,y,z) 2.740 Å/169◦, O9-H2· · ·O14(-x,1-y,-z) 2.760 Å/179◦, O12-H8· · ·O2(1-x,1-y,z) 2.820
Å/167◦, O11-H5· · ·O8(-x,1-y,1-z) 2.826 Å/156◦, O10-H3· · ·O12(-x,1-y,z) 2.755 Å/176◦,
O11-H6· · ·O3(-x,1-y,-z) 2.709 Å/178◦, O13-H10· · ·O7 2.803 Å/164◦.

The crystal structure of 2 is the same as reported isostructural of K2[Fe(µ-C2O4)(C2O4)]
[17]. It consists of K+ and zigzag chain [Co(µ-C2O4)(C2O4)2−]n (Figure 2b). There are one
and two half K+, one Co2+, one and two half oxalato in an independent unit. Co2+ is
trigonal-prismatic coordinated by three oxalate anions with Co-O distance 2.058(3)~2.151(4)
Å. K+ is in the vacant formed by Co(C2O4)2

2− chain.
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Figure 2. Crystal structure and appearance of 1 (a) and 2 (b). Color code: K, dark green; Co, cyan; C,
light grey; O, red.; H, grey. Blue dashed lines are hydrogen bonds.

Depending on the extensive hydrogen bonds in 1 and zigzag chained structure of
2, the magnetic properties of them were investigated. The transformation from 1 to 2 is
irreversible. The sample was checked and remained the same before and after magnetic
experiments.

1: χT is 3.41 cm3 K mol−1 at 300 K. It is significantly larger than the value of
1.875 cm3 K mol−1 expected for an isolated, spin-only ion with S = 3/2 and g = 2.00. This
suggests a strong spin-orbit coupling. [20–22] The χT value decreased upon cooling and
reached 1.30 cm3 K mol−1 at 2 K. The susceptibility data above 50 K fit the Curie–Weiss law
well, giving Curie and Weiss constants of C = 3.613(6) cm3 K mol−1 and θ = −21.2(2) K,
respectively, with R = 3.74 × 10−5 (Figure 3). The negative Weiss constant means the
antiferromagnetic interaction between Co2+ ions through hydrogen bonds. At 2 K, the
isothermal magnetization is 2.24 Nβ at 65 kOe (Figure 4). No long-range magnetic ordering
was observed in 1.
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Figure 4. Isothermal magnetization of 1 (empty black square) and 2 (empty red circle) at 2 K.

2: On χ versus T plot, a broad maximum of 0.031 cm3 mol−1 was observed around
50 K, which is similar to reported oxalate-bridged one-dimensional compounds [15,17,20].
Then χ value decreased upon cooling smoothly, it is 0.0070 cm3 mol−1 at 2 K. At 300 K, χT
is 3.24 cm3 K mol−1, this means a strong spin-orbit coupling of Co2+ as 1. The χT value
decrease upon cooling and reach 0.014 cm3 K mol−1 at 2 K. The data above 120 K were
fitted with Curie–Weiss law, giving Curie and Weiss constant C = 3.66(2) cm3 K mol−1,
θ = −35(1) K, R = 4.96 × 10−5. Field-cooled magnetization (FCM) and zero-field-cooled
magnetization (ZFCM) measurements under a field of 10 Oe show a magnetic ordering at
8.2 K (Figure 3, inset). At 2 K, the isothermal magnetization increases smoothly and reaches
0.072 Nβ at 65 kOe. The Hysteresis loop (Hc) is 500 Oe.

3. Conclusions

Orange 1 transfer to pink 2 by dehydration. 1 is composed of K+, mononuclear coordi-
nation anion Co(C2O4)2(H2O)2

− and H2O with extensive hydrogen bond between anion
and H2O, H2O, and H2O. 2 is consisted of K+ and zigzag chain anion [Co(µ-C2O4)(C2O4)2−]n.
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The antiferromagnetic interaction in 1 from hydrogen bonds is weaker than oxalate-bridge
in 2 [23]. 2 shows antiferromagnetic ordering at 8.2 K.
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Abstract: Reaction of Fe(II) with the tris-(pyridin-2-yl)ethoxymethane (py3C-OEt) tripodal lig-
and in the presence of the pseudohalide ancillary NCSe− (E = S, Se, BH3) ligand leads to the
mononuclear complex [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN (3), which has been char-
acterised as an isomorph of the two previously reported complexes, Fe(py3C-OEt)2][Fe(py3C-
OEt)(NCE)3]2·2CH3CN, with E = S (1), BH3 (2). X-ray powder diffraction of the three complexes
(1–3), associated with the previously reported single crystal structures of 1–2, revealed a monomeric
isomorph structure for 3, formed by the spin crossover (SCO) anionic [Fe(py3C-OEt)(NCSe)3]−

complex, associated with the low spin (LS) [Fe(py3C-OEt)2]2+ cationic complex and two solvent
acetonitrile molecules. In the [Fe(py3C-OEt)2]2+ complex, the metal ion environment involves two
py3C-OEt tridentate ligands, while the [Fe(py3C-OEt)(NCSe)3]− anion displays a hexacoordinated
environment involving three N-donor atoms of one py3C-OEt ligand and three nitrogen atoms
arising from the three (NCSe)− coligands. The magnetic studies for 3 performed in the temperature
range 300-5-400 K, indicated the presence of a two-step SCO transition centred around 170 and 298 K,
while when the sample was heated at 400 K until its complete desolvation, the magnetic behaviour
of the high temperature transition (T1/2 = 298 K) shifted to a lower temperature until the two-step
behaviour merged with a gradual one-step transition at ca. 216 K.

Keywords: tripodal ligands; pseudohalide coligands; iron complex; spin crossover; magnetic properties

1. Introduction

The spin crossover (SCO) materials are by far the most investigated molecular systems
among switchable systems during the last decade due to their many possible applica-
tions for the development of new generations of electronic devices, such as displays [1–4],
memory devices [4–8], and sensors [9–14]. Although the SCO behaviour can be essen-
tially observed in octahedral complexes based on metal ions allowing spin state changes
between the low spin (LS) and high spin (HS) states under external stimulus, such as
temperature, pressure, light irradiation, or magnetic field, those based on Fe(II) ion exhibit-
ing d6 electronic configuration remain the most studied systems [15–29]. Nevertheless,
such complexes are mostly either cationic or neutral, and the Fe(II) anionic complexes
exhibiting SCO behaviour have been relatively scarcely reported [21–29]. Furthermore,
the few anionic SCO examples are restricted to only three different systems. The first
one is the series [FeIIH3L][FeIIL]X, (X− = AsF6

−, BF4
−, ClO4

−, PF6
− and SbF6

−), based
on the ligand tris-(2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl) amine (H3L) and
on its deprotonated anionic form (L3−) [21]. The second one consists of the trinuclear
[FeII

3(µ-L)6(H2O)6]6− complex involving the 4-(1,2,4-triazol-4-yl)ethanedisulfonate anion
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(L2−) [22], which displays a HS-HS-HS to HS-LS-HS transition around room temperature
and a large hysteresis loop (>85 K). The last system concerns the series of mononuclear com-
plexes involving the tris(2-pyridyl)methane (py3C-R, R = CnH2n+1, aryl group, O-CnH2n+1,
O-aryl, O-CO-CnH2n+1), tridentate functionalized ligands (Scheme 1a) [23–29]. Such com-
plexes, of general formula {A[Fe((py3C-R)(NCE)3)]m} (A = [(CnH2n+1)4N]+, [Fe(py3C-R)2]2+,
E = S, Se, BH3), are based on the mononuclear [Fe((py3C-R)(NCE)3)]− anion composed
by an Fe(II) metal centre, one py3C-R tridentate ligand, and three terminal κN-SCE linear
coligands (Scheme 1b). The different studies, reported essentially by Ishida et al. and
some of us [23–29], have concerned the study of different chemical effects, such as those
of the cationic counter ion or of the functional group (R) covalently linked to the tripodal
py3C motif, on the transition temperatures and the cooperativity. More recently, some of
us extended such effects to that of crystal packing by designing a series of polymorph
complexes [29].
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In order to determine the effect of the ancillary anionic coligands (NCE− with E = S,
BH3, Se) on the transition temperatures and the cooperativity, we have reported recently
two isomorphic complexes of general formula, [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCE)3]2·
2CH3CN (NCE− = NCS−, NCBH3

−), based on the SCO [Fe(py3C-OEt)(NCE)3]− anion
and on the cationic LS complex, [Fe(py3C-OEt)2]2+, as counter ion [28]. At the same time,
the NCSe− analogue complex (E = Se), which completes such isomorphic series, has been
also prepared. However, this complex, of a presumably chemical formula of [Fe(py3C-
OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN (3), could not be obtained as single crystals due
to their instability. In addition, while magnetic behaviours of complexes 1 and 2 remained
unchanged in the heating and cooling scan modes, complex 3 showed significant changes
during the cooling/warming scan modes. These unexpected observations pushed us to
explore in detail the peculiar switching behaviour of this compound. Here, we report the
syntheses, structural characterization, infrared spectroscopy, and magnetic properties of the
new isomorph [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN (3) exhibiting solvent-
induced hysteresis loop of 50 K.

2. Results and Discussion
2.1. Syntheses

The py3C-OEt (tris-(pyridin-2-yl)ethoxymethane) tripodal ligand was prepared as
previously described [28–31]. Compound 3 was obtained as a red polycrystalline powder
and as single crystals by mixing a solution of [N(C2H5)4](NCSe) with a solution of FeCl2
and tris(pyridin-2-yl)ethoxymethane at −32 ◦C (see details in Section 3).

2.2. Structural Characterization and Magnetic Properties

In contrast to complexes 1 and 2, for which the crystal structures were determined
using single crystal X-ray diffraction, complex 3, which was expected to be isomorph to
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the structure observed for 1 and 2, showed poor quality single crystal diffraction patterns
that clearly precluded any correct single crystal structural characterization. However, after
several attempts at 100 K, we succeeded in collecting some intensities, which led to unit
cell parameters depicted in Table S1. Comparison of these parameters to those of the two
isomorph complexes 1 and 2, indicated that the structure of complex 3 was isomorphic to
complexes 1 and 2 (Table S1). This conclusion was supported by the experimental X-ray
powder diffraction pattern observed for the polycrystalline powder of complex 3, which
was very similar to the one observed for complex 1, as well as to the simulated pattern
derived from the single crystal structure of complex 1 (Figure 1 and Figure S1).
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Figure 1. X-ray powder diffraction patterns for [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCE)3]2·2CH3CN
(E = S (1), Se (3)) and the simulated pattern derived from the crystal structure of complex 1.

It is also worth mentioning that the elemental analyses of complex 3 agreed with
the chemical formula, [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN, expected for a
complex isomorph to 1 and 2. Therefore, all the data strongly support that the crystal
structure of complex 3 is isomorphic to those of complexes 1 and 2 [28]; and therefore its
crystal structure consists of a low spin (LS) [Fe(py3C-OEt)2]2+ cationic complex (Figure 2b),
an anionic [Fe(py3C-OEt)(NCE)3]− (E = S (1), BH3 (2) Se (3)) complex (Figure 2a) and two
CH3CN solvent molecules.
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As previously described, complex 1 exhibited an incomplete SCO transition (T1/2 = 205 K),
while 2 displayed a complete two-step transition at 245 K and 380 K (Figure 3). Their
magnetic properties were studied in warming and cooling modes (300-2-400-2 K for 1;
300-2-500-2 K for 2), but no significant hysteretic effects or any change due to possible
desolvation were detected. Also, irradiation at 10 K with a green light for several hours re-
vealed no noticeable increase of the thermal variation of the product of the molar magnetic
susceptibility times the temperature (χmT) for both compounds. As for complex 1, suscepti-
bility measurements for complex 3 were performed in the 300-5 K and 5-400 K temperature
ranges. The thermal variation of the χmT product for the three complexes (1–3) are shown
in Figure 3. For compound 3, the χmT value per formula at 400 K (≈6.71 cm3 K mol−1)
was in agreement with the value expected for two isolated Fe(II) ions (S = 2 and g ≈ 2.1),
revealing the presence of two magnetically isolated HS Fe(II) ions [15–29]. On cooling,
the χmT value of 3 showed an initial abrupt drop, at around 298 K, reaching a value of
ca. 3.40 cm3 K mol−1 at 265 K. On further cooling, we observed a second drop, at around
170 K, to reach a plateau at ca. 0.56 cm3 K mol−1 below 116 K. This low temperature χmT
value implies the presence of a residual HS fraction of ca. 8 %. This behaviour indicates the
presence of an incomplete HS to LS two-step transition centred at around 170 and 298 K.

In contrast to isomorphs 1 and 2, where the magnetic properties did not show any
change after successive cooling and heating scans in the ranges 2–400 K for 1 and 2–500 K
for 2, the two-step behaviour described above for complex 3 (Figure 3) was irreversible
due to a gradual desolvation of the sample at 400 K, as previously observed in several
solvated systems [32–40]. As a matter of fact, when the sample was maintained at 400 K
until its complete desolvation, the second cycle (400-50-400 K) in 3 produced a shift to
lower temperatures for the high temperature step, while the transition temperature of the
low temperature step remained unchanged (See Figure 4). Similar trends were observed
for the third and fourth cycles, until the fifth cycle where the initial high temperature
step merged with the low temperature step (Figure 4), to lead to the gradual one-step
transition depicted in Figure 5a. There were no hysteretic effects and the HS fraction of ca.
8% remained unchanged after the different heating and cooling cycles.
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temperature to 390 K. In Figure 6, the mass evolution with temperature for the three com-
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and retained their solvent molecules up to 390 K, while complex 3 started to lose weight 
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irradiation at 10 K, and the subsequent thermal relaxation (•) in the dark. Inset shows the thermal variation of the derivative
of χmT.

Irradiation of the sample with a green laser (λ = 532 nm) at 10 K produced an increase
of the χmT product, indicative of the presence of a light-induced excited spin state trapping
at low temperatures (LIESST effect). After ca. 4 h, the χmT product reached saturation at
a value of ca. 1.6 cm3 K mol−1 (Figure S3). This value indicates that around 1/3 of one
of the two LS Fe(II) centres in the [Fe(py3C-OEt)(NCS)3]− anions were excited to the HS
state. After switching off the light irradiation, heating the sample further increased the
χmT value up to ca. 2.0 cm3 K mol−1 (representing ca. 44 % of one of the two Fe(II) centres).
On further heating, the sample relaxed to the LS state at a TLIESST of ca. 58 K (Figure 5b).

One of the major points, deserving special attention in regards to the three isomorphic
complexes, concerns the origin of the unexpected and singular magnetic behaviour that
only occurred for isomorph 3 (see Figures 3 and 5a). To try to understand the process
that occurred at high temperatures, we performed thermogravimetric analysis (TGA) and
X-ray powder diffraction on the three isomorphs to know more about the desolvation
and solvation processes of this system. Thus, TGA measurements were performed for
the three isomorphs, which were heated at 5 ◦C min−1, under nitrogen atmosphere, from
room temperature to 390 K. In Figure 6, the mass evolution with temperature for the three
complexes were gathered, showing clearly that the two isomorphs 1 and 2 remained stable
and retained their solvent molecules up to 390 K, while complex 3 started to lose weight
from room temperature and lost 4.37 % of its mass when heated up to 370 K, corresponding
to two CH3CN solvent molecules per formula unit. These measurements revealed that
despite their isomorphic structures, complexes 1 and 2 retained their crystallization solvent
molecules while complex 3 lost them even at moderate temperatures, suggesting that the
crystal packing in 3 has larger cavities that allow an easy desolvation (see below).

To check for the reversibility of this desolvation process, we performed successive des-
olvation and resolvation cycles, by heating the solvated sample and by adding two drops of
CH3CN on the desolvated sample, respectively. After resolvation, magnetic measurements
(Figure S4) and X-ray powder diffraction (Figure 7) showed that the sample recovered its
original behaviour, supporting the reversibility of the desolvation/resolvation process.
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Figure 7. Experimental X-ray powder diffraction patterns of solvated and desolvated samples of 3,
confirming the reversibility of the desolvation/resolvation process.

2.3. Variable Temperature Magnetic Properties and Infrared Spectroscopy

In order to confirm the Fe(II) spin state at high and low temperatures and the presence
of the incomplete HS to LS transition for 3 (see Figure 3), we measured the infrared spectrum
at 100 and 300 K in the range of the fundamental stretching vibration of the NCSe− units
(1975–2130 cm−1), since it has been clearly established that the intensities of these stretching
vibrations are very sensitive to the spin state of the Fe(II) metal ion [28,29,41–47]. We thus
recorded the infrared spectra for 3 at 350 and 100 K, according to the thermal evolution of
the χmT product depicted in Figure 5a. The infrared spectra for 3 in the C≡N frequency
region (1975–2130 cm−1) at 350 and 100 K are displayed in Figure 8. At 350 K, two νC≡N
stretching broad bands, characteristic of the HS state, appeared at 2050 and 2075 cm−1,
while at 100 K, four strong bands, characteristic of the LS state, appeared at 2044, 2075, 2082,
and 2109 cm−1. In agreement with the presence of an 8 % HS fraction at low temperatures
(see magnetic section), the three bands observed at 2044, 2075, and 2082 cm−1 can be
viewed as resulting from the decrease in intensity of the two broad and strong bands
observed for the HS state, while the band observed at a higher frequency (2109 cm−1)
appeared as the specific band of the LS state.
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orded the infrared spectra in the vicinity of the SCO transitions from 100 to 350 K. First, 
we recorded the infrared spectra for the freshly prepared complex 3, heating the sample 
from 100 to 350 K to avoid the partial desolvation of the sample (Figure 9a). Then, the 
same sample was heated during one hour at 400 K to ensure its complete desolvation, and 
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2.4. Magneto-Spectroscopic Relationships

Based on the magnetic behaviours (Figure 5a) and on the main bands that were
temperature sensitive (Figure 8) of both solvated and desolvated phases of complex 3, we
investigated the thermal evolution of the infrared spectra of the stretching vibration of
the NCSe− in the range 1975–2130 cm−1. For both phases (solvated and desolvated), we
recorded the infrared spectra in the vicinity of the SCO transitions from 100 to 350 K. First,
we recorded the infrared spectra for the freshly prepared complex 3, heating the sample
from 100 to 350 K to avoid the partial desolvation of the sample (Figure 9a). Then, the same
sample was heated during one hour at 400 K to ensure its complete desolvation, and the
corresponding infrared spectra were then recorded cooling the sample from 350 to 100 K
(Figure 9b).
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The intensities of the two ν(NCSe) broad bands (2050 and 2075 cm−1) attributed to the
HS state decreased gradually with decreasing temperature from 350 to 100 K, but persisted
even at 100 K, supporting the presence of a fraction of HS Fe(II) centres, as revealed
by the magnetic data. In parallel, a new band, characteristic of the LS state, appeared
at higher frequencies (2109 cm−1), whose intensity gradually increased with decreasing
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the temperature. However, as can be easily observed in both Figure 9a,b, the infrared
spectra did not show any clear difference between the infrared band evolutions of the
solvated (Figure 9a) and desolvated (Figure 9b) phases of complex 3, as revealed by the
magnetic data. Thus, in order to show more clearly this difference and to appreciate, at least
qualitatively, the consistency of the experimental infrared data, we correlated the thermal
variation of the χmT product derived from magnetic study and the thermal evolution of
the intensity of the infrared bands. The results, depicted in Figure 10, showed that the
intensities of the characteristic infrared bands (2109, 2075, 2050 cm−1) fit perfectly with the
thermal evolution of the χmT product, in agreement with the presence of a two-step SCO
transition in the solvated sample (Figure 10a) and a gradual one-step SCO behaviour in the
desolvated sample (Figure 10b).
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bands observed at 2109 cm−1 (∆), 2075 cm−1 (•), and at 2050 cm−1 (-•-), for the solvated (a) and
desolvated (b) samples of 3.

The final question to be answered by this study was why the isomorph based on
the NCSe− ligand (complex 3) displayed a reversible solvation/desolvation process with
CH3CN while the two other isomorphs (complexes 1 and 2) retained the solvent molecules
at temperatures exceeding 390 K. The answer could only come from the crystal packing
of this triad of isomorphs. Indeed, examination of the crystal packing revealed that the
CH3CN solvent molecules are located in tetragonal-like channels running along the [010]
direction, which are generated by eclipsed stacks of the -Fe-NCE . . . Fe . . . ECN-Fe-NCE
. . . Fe- metallacycles (see Figure 11). Even though the three isomorphs display, as expected,
similar crystal packing, the fact that they differ by the nature of the NCE− ancillary ligands
(E = S (1), BH3 (2), Se (3)), induces strong differences in the sizes of the metallacycles, due
to the different lengths of the three linear anions (the N-E distance increases from 2.72 Å for
E = BH3, to 2.80 Å for E = S and 2.94 Å for E = Se). The largest tetragonal-like channels are
expected to be those of the isomorph with the longest ancillary linear ligand (i.e., compound
3). Unfortunately, this difference could not be quantified due to the lack of single crystal
structural data of complex 3. However, in order to provide a reasonable estimation of the
effect of the NCE− ligands on the size of the metallacycles, we have calculated the relative
increase of their dimensions when passing from complex 2 to complex 1 (see Figure 11 and
Table 1 with the different Fe···Fe distances (d1–d4) determining the size of the channels).
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Table 1. Relative increase Fe···Fe distances (d1 and d2) as function of the nature of the NCE− ancillary
ligands (dN . . . .E) in the two isomorphs 1 and 2.

2 (E = BH3) 1 (E = S) 3 (E = Se)

dN . . . .E (relative increase) 2.72 Å 2.80 Å (+2.9 %) 2.94 Å (+8.1 %)
T/Spin State 200 K/LS 100 K/LS —

d1 (relative increase) 12.757 14.774 Å (+15.8%) —
d2 (relative increase) 11.683 Å 12.653 Å (+8.3%) —
d3 (relative increase) 8.146 Å 10.481 Å (+28.6%) —
d4 (relative decrease) 9.125 Å 8.907 Å (−2.4%) —

As can be seen in Table 1, when passing from complex 2 (with NCBH3
− and N···B

distance of 2.72 Å) to complex 1 (with NCS− and N···S distance of 2.80 Å), there is an
increase of +2.9 % in the size of the anion, which led to increases in the Fe···Fe distances in
the metallacycle of up to 28.6 % (see d1 to d4 in Table 1). Therefore, if we consider complex
3 based on the NCSe−linear ligand, which corresponds to the biggest linear anion (with
N···Se distance of 2.94 Å), the expected metallacycle should be significantly larger than
those observed for the isomorphs 1 and 2. These observations explain clearly why complex
3 involves larger tetragonal-like channels, allowing the easy and reversible solvation and
desolvation processes.

3. Experimental Section
3.1. Starting Materials

All starting reagents and solvents were purchased and used as received. The tris-
(pyridin-2-yl)ethoxymethane (py3C-OEt) ligand was prepared under nitrogen atmosphere
as described previously [28–31].

3.2. Synthesis of [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN (3)

Tris-(pyridin-2-yl)ethoxymethane (50.0 mg, 0.17 mmol) and FeCl2 (20.0 mg, 0.16 mmol)
were dissolved in methanol (5 mL) in the presence of a few mg of ascorbic acid. The mixture
was stirred at room temperature for 15 min. To the resulting solution was added a solution
of acetonitrile (5 mL) containing the [(C2H5)4N]NCSe salt (162 mg, 0.69 mmol). After
30 min stirring, the resulting solution was filtered and quickly cooled at −32 ◦C. After
three days, the bright red polycristalline powder of (3) as well as a few red single crystals
were obtained. Anal. Calcd. (%) for [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN
(C82H74Fe3N20O4Se6) 3: C, 48.2; H, 3.7; N, 13.7; found (%): C, 47.9; H, 3.8; N, 14.0. IR data
(ν/cm−1) for the freshly filtered sample (powder and single crystals, Figure S5): 410 (w),
423 (w), 477 (w), 500 (w), 513 (w), 530 (w), 659 (m), 726 (w), 758 (w), 886 (w), 1011 (m), 1086
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(w), 1108 (m), 1143 (m), 1205 (w), 1252 (w), 1291 (w), 1389 (w), 1434 (m), 1462 (s), 1593 (m),
2060 (s), 2244 (w), 2871 (w), 2901 (w), 2972.11 (w), 3076 (w), 3442 (br).

3.3. Characterization of the Materials

Infrared spectra of complex 3 were performed using a platinum ATR Vertex 70
BRUKER spectrometer with variable temperature cell holder (VT Cell Holder typer P/N
GS21525). 1H and 13C NMR spectra were performed using BRUKER DRX 300 MHz, Ad-
vance 400 MHz and Advance III HD 500 MHz equipment. TGA measurements were
performed on ATG-LabsysTM, Setaram (see details in Supplementary Information).

3.4. Magnetic Measurements

Magnetic susceptibility measurements were performed using a Quantum Design
MPMS-XL-5 SQUID susceptometer (San Diego, CA, USA). The susceptibility data were
corrected for the diamagnetic contributions using Pascal’s constant tables [48]. The photomag-
netic studies were performed by irradiating the sample at 10 K with a green Diode Pumped
Solid State Laser DPSS-532-20 from Chylas (see details in Supplementary Information).

4. Conclusions

We have shown that the compound [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN
(3), based on the [Fe(py3C-OEt)2]2+ LS cation and the SCO [Fe(py3C-OEt)(NCSe)3]− anion,
displays a reversible desolvation process that affects the SCO behaviour. This compound
has been prepared as a polycrystalline powder and as single crystals using a similar proto-
col to that used previously for the syntheses of the two isomorphic complexes [Fe(py3C-
OEt)2][Fe(py3C-OEt)(NCE)3]2·2CH3CN (E = S (1), BH3 (2)) based on the two ancillary linear
ligands NCS− and NCBH3

− [28]. Despite being obtained in the form of prismatic-shaped
single crystals, complex 3 could not be characterized by X-ray single crystal diffraction,
because of the low stability of its single crystals, in contrast to complexes 1 and 2, which
have been structurally characterized. However, combined X-ray powder diffraction, in-
frared spectra, and CHN elemental analyses clearly revealed that complex 3 exhibits an
isomorphic structure to those of complexes 1 and 2. TGA analyses performed on the single
crystal samples of the three isomorphs revealed clearly that the two isomorphs 1 and 2, for
which the corresponding single crystals are stable, retained their solvent molecules up to
390 K, while complex 3 began to lose its CH3CN solvent molecules from room temperature.
The magnetic studies for 3 performed in cooling and heating scans in the temperature
ranges 300–5 K and 5–400 K, respectively, indicated the presence of an incomplete HS to
LS two-step like transition centred around 170 and 298 K, while when the sample was
heated at 400 K until its complete desolvation, the magnetic behaviour of the high tempera-
ture transition (T1/2 = 298 K) shifted to a lower temperature until the two-step behaviour
merged with a gradual one-step transition at ca. 216 K. Such behaviour, which can be
viewed as a solvent-induced hysteresis loop of 50 K [41–47], was confirmed by infrared
spectra recorded in the vicinity of the SCO transition for both solvated and desolvated
samples. Furthermore, successive desolvation and solvation cycles, tracked by SQUID
measurements and X-ray powder diffraction, showed that the desolvation process is fully
reversible. As shown by the TGA analysis, compound 3 exhibited a different magnetic
behaviour due to its easy desolvation and solvation process, in contrast to the two other
isomorphs, which retained their solvent molecule up to 390 K, despite their isomorphic
structures. This unexpected behaviour was elucidated by careful examination of the crystal
packing of these isomorph complexes, which clearly revealed that the solvent molecules
are located in tetragonal-like channels generated by the eclipsed stacks of the “-Fe-NCE . . .
Fe . . . ECN-Fe-NCE . . . Fe-” metallacycles. Therefore, the isomorph based on the bigger
NCSe− ancillary ligand, should display the larger tetragonal-like channels, allowing easier
solvation and desolvation as observed in isomorph 3.
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dependence of χmT at 10 K for compound 3 under laser irradiation with green light (λ = 532 nm,
switched on at time ca. 10 min), Figure S4: Different heating and cooling scans of the χmT product
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Abstract: The molecular cluster system [Fe19(metheidi)10(OH)14O6(H2O)12]NO3·24H2O, abbrevi-
ated as Fe19, contains nineteen Fe(III) ions arranged in a disc-like structure with the total spin S = 35/2.
For the first order, it behaves magnetically as a single molecule magnet with a 16 K anisotropy barrier.
The high spin value enhances weak intermolecular interactions for both dipolar and superexchange
mechanisms and an eventual transition to antiferromagnetic order occurs at 1.2 K. We used neutron
diffraction to determine both the mode of ordering and the easy spin axis. The observed ordering
was not consistent with a purely dipolar driven order, indicating a significant contribution from
intermolecular superexchange. The easy axis is close to the molecular Fe1–Fe10 axis. Inelastic neutron
scattering was used to follow the magnetic order parameter and to measure the magnetic excitations.
Direct transitions to at least three excited states were found in the 2 to 3 meV region. Measurements
below 0.2 meV revealed two low energy excited states, which were assigned to S = 39/2 and S = 31/2
spin states with respective excitation gaps of 1.5 and 3 K. Exchange interactions operating over
distances of order 10 Å were determined to be on the order of 5 mK and were eight-times stronger
than the dipolar coupling.

Keywords: magnetic molecular cluster; high spin molecule; single molecule magnet; magnetic
nanodisc; neutron diffraction; inelastic neutron scattering; dipolar driven magnetism; Monte Carlo
simulation; weak superexchange interactions

1. Introduction

Coupled clusters of transition metal ions can provide examples of high-spin single
molecule magnets (SMMs) [1,2]. Since the field of SMMs opened with the discovery of the
slow relaxation of the magnetisation in the Mn12 molecule Mn12O12(CH3COO)16(H2O)4 [3],
a large number of further Mn(III)-based SMMs have been discovered, among them the
high anisotropy system Mn6 [4] and the high-spin system Mn17 with S = 37 [5]. In addition
to further examples based on other 3d metals, such as Fe(III), the incorporation of 4f ions
has also proven a useful strategy for introducing large anisotropy to high spin systems in
3d–4f molecules, mostly utilising Mn(III) or Fe(III) [6,7].

These SMM systems attract interest both from the viewpoint of fundamental science
and in terms of their potential applications in areas, such as data storage and quantum
computing. One of the key factors for such applications is the effect of finite intermolec-
ular interactions that can lead to decoherence of the spin state [8] and, hence, a loss of
information. While careful chemical control of the intermolecular environment can, in
principle, reduce the contribution of exchange interactions to the decoherence, dipolar
interactions are always present for such molecules and depend only on the spin orientation
and the geometry of the lattice. Weak residual dipolar interactions between the spins on
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different molecules can, therefore, ultimately lead to dipolar ordering in SMM systems at
low temperatures [9,10].

The Fe19 molecular cluster SMM system [11], which is studied here, has the full
formula [Fe19(metheidi)10(OH)14O6(H2O)12]NO3·24H2O. This provides an interesting ex-
ample combining high spin with moderate anisotropy. The high spin makes it a good
candidate to observe dipolar-driven long range magnetic ordering. The magnetic core of
the molecule (Figure 1) has a disc-like geometry; therefore, it can be described as a magnetic
nanodisc. The spin state has been identified as 35/2 [12,13], resulting from a ferrimagnetic
intramolecular arrangement of the S = 5/2 spins from the Fe sites, with thirteen of the spins
pointing in one direction and the remaining six spins antiparallel to these thirteen.
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Figure 1. The core of the Fe19 molecule viewed along the (110) crystal axis, showing only the Fe
atoms and the bridging O atoms. The site labels for the Fe atoms are shown, and site 1 is a centre of
inversion. The S = 35/2 ground state of the molecule is the result of strong intramolecular exchange
interactions that place the six Fe sites surrounding the central Fe on one spin sublattice with the
remaining thirteen Fe sites, including the central site on a second sublattice with opposite spin. The
easy axis is shown as vertical in this figure for clarity, the direction previously suggested by EPR [13]
is a vector from site 1 to site 2, whereas, in this study, we found a direction closer to the site 1 to site
10 vector.

Two variants of Fe19 have been reported [11], both having the same core structure,
but with slightly different ligands. We study here the metheidi form. Antiferromagnetic
(AF) ordering at TN = 1.19 K for this material was previously observed with the specific
heat [14,15], and this was confirmed by µSR [16]. Evidence was also found for a static
internal field and AF spin waves below 1 K using proton NMR [17].

Previous single crystal EPR studies [13] obtained anisotropy parameters for the spin
Hamiltonian and identified an easy spin axis pointing in the Fe1–Fe2 direction; however,
that study also found evidence for the presence of excited states that could not be fully
characterised. On the basis of these reported ground state properties, it was shown that
the observed ordering temperature was consistent with a predominantly dipolar driven
scenario, and this produced a clear prediction that the ordering mode would have the wave
vector k = (0 0 0.5) [16]. The present studies were carried out firstly to test this prediction
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using neutron diffraction and secondly to determine the spectrum of excited spin states
using inelastic neutron scattering.

2. Materials and Methods

Samples were prepared using the method given in the report of Goodwin et al. [11]
using either H2O or D2O in the synthesis. The sample identity and purity was checked
using powder X-ray diffraction at 300 K and confirmed to be consistent with the structure
reported at 150 K [11]. The neutron diffraction measurements were carried out on the
WISH instrument at the ISIS Neutron and Muon Source [18].

This instrument is optimised for the powder diffraction of systems with large unit cells,
such as the molecular magnet studied here. Some of the particular features of the neutron
powder diffraction for molecule-based systems were previously reviewed by Peter Day [19].
The sample was 750 mg of polycrystalline powder, and it was cooled in a helium-3 sorption
cryostat, which allowed measurements to be made down to a temperature of 0.4 K. Data
collection was made in a 5 Hz double frame mode, allowing access to a d spacing range up
to 100 Å.

For the inelastic neutron scattering measurements, a partially deuterated sample was
used in which the lattice water and hydroxide groups were deuterated but not the metheidi
ligands. In this case, 86 out of 186 hydrogen atoms were replaced by deuterium, thus,
producing the formula [Fe19(metheidi)10(OD)14O6(D2O)12]NO3·24D2O, where metheidi is
C7H10NO5. The partial deuteration of the molecule allowed us to considerably reduce the
incoherent scattering and to clearly observe the magnetic excitations up to a 5 meV energy
transfer with only a small contribution from the vibrational modes at high Q.

The spectra were measured on the LET instrument at ISIS using a helium dilution
refrigerator, which enabled measurements to be made in temperatures down to 35 mK.
The LET instrument is a multi-chopper cold neutron spectrometer [20]. Data were taken
with the focusing of the instrument centred on an incident energy of 2 meV with choppers
operating at speeds of 280 Hz (chopper 5) and 70 Hz (chopper 3) and using the high
resolution disk slot.

This configuration allows the simultaneous collection of data with incident energies
Ei and nominal resolutions at the elastic line of 5.15 meV (90 µeV), 2 meV (24 µeV),
and 1.06 meV (10 µeV). Energy transfer spectra were obtained by integrating over the
momentum range 0 to 1.4 Å−1 for Ei = 1.06 meV, 0 to 1.8 Å−1 for Ei = 2.00 meV and 0 to
2.5 Å−1 for Ei = 5.15 meV. Data reduction was done using Mantid [21], and Wimda [22]
was used for the global fitting of the data via its user modelling feature.

3. Results

The results are presented in two parts. First, we report the neutron diffraction results
determining the low temperature cell parameters, the mode of magnetic ordering, and the
orientation of the easy spin axis. The second part of the data reports the inelastic neutron
results, which allow us to determine the internal magnetic field in the ordered state and the
anisotropy parameters for the spin states. In addition to the S = 35/2 ground state multiplet,
six excited state multiplets were identified from the data with spin values ranging from
31/2 to 39/2.

3.1. Diffraction

Cell parameters were obtained from the neutron data at 1.5 K and were found to
be broadly consistent with those reported at 150 K with X-rays [11], after allowing for a
modest thermal contraction that reduces the cell volume by around 2% (Table 1).

New magnetic diffraction peaks appeared below the AF ordering transition, as can
be seen in Figure 2a, where four extra peaks are seen, and these are made clearer in the
difference plots of Figure 2b,c. Information about the spin structure and the easy axis
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orientation may be obtained from the relative intensities of these magnetic peaks. The
intensity of the magnetic peaks can be written here as a product of three terms

I(Q) ∝ (1− (Q̂ · m̂)2)|Fcell
M (Q)|2|Fmol

M (Q)|2. (1)

The first term in Equation (1) is a factor from the component of the scattering vector
Q that is perpendicular to the magnetic moment axis m̂. The second term in Equation (1)
is the structure factor for magnetic ordering, which is summed over the lattice vectors Li
defining the magnetic cell, i.e.,

Fcell
M (Q) = ∑

cell
eiQ·Li . (2)

The third term in Equation (1) is the structure factor for the spatial arrangement of
the up and down magnetic moments of the Fe sites within the molecule, as shown in
Figure 1, i.e.,

Fmol
M (Q) = ∑

↑
eiQ·ri −∑

↓
eiQ·ri . (3)

Note that no atomic form factors are needed in Equation (3), as we only have one type
of magnetic site, and the Q values are too low to produce any difference in form factor
between the magnetic peaks. The low symmetry triclinic cell also ensures that the magnetic
peaks correspond to unique scattering planes, rather than to a superposition of magnetically
inequivalent symmetry-related planes as is often found in higher symmetry structures.

Table 1. The cell parameters obtained with neutrons at 1.5 K compared with those previously
obtained at 150 K with X-rays [11].

150 K (X-rays) 1.5 K (Neutrons)

a (Å) 13.309 (3) 13.116 (1)
b (Å) 17.273 (5) 17.189 (1)
c (Å) 17.600 (4) 17.503 (2)
α (◦) 65.201 (10) 65.397 (8)
β (◦) 74.514 (16) 74.300 (8)
γ (◦) 81.30 (2) 81.753 (7)

space group P1̄ P1̄

The four magnetic peaks were found to be consistent only with an AF ordering whose
propagation wave vector was (0.5 0 0.5). Thus, the (0 0 0.5) mode and all other modes
that might be associated with purely dipolar-driven ordering are excluded (see Table 2).
This indicates that there is a significant contribution from superexchange to the magnetic
coupling between the molecules. The relative scale of the interactions will be discussed in
Section 4.

The calculated intensities for the magnetic peaks are shown in Figure 2b for the
S = 35/2 arrangement of spins in the molecule as defined in Figure 1, with the ordering
mode set to (0.5 0 0.5) and m̂ aligned in the Fe1–Fe2 easy axis direction, which was reported
in a previous EPR study [13]. These intensities are seen to be a relatively poor overall
match to the measured data with the intensity of the (−0.5 1 0.5) peak being strongly
underestimated. A significant improvement was obtained by allowing the easy axis to
rotate toward the long axis of the molecule, and this provided a very good match with the
intensities, as shown in Figure 2c.
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Table 2. Dipolar stabilisation energies for the S = 35/2 ground state of Fe19 calculated for different
modes of magnetic ordering using, firstly, the previously proposed Fe1-Fe2 easy spin axis, for which
(0 0 0.5) is the most stable mode, and secondly the axis determined from this study. A spherical sample
is assumed for the case of the (0 0 0) ferromagnetic ordering mode. Negative values are unstable.

Ordering Mode Dipolar Energy (K) Dipolar Energy (K)
(−1.12, 1, 0.06) Easy Axis (−0.45, 1, −0.34) Easy Axis

0 0 0.5 0.809 0.436
0.5 0.5 0 0.575 0.219
0 0 0 0.561 0.662

0.5 0.5 0.5 0.515 0.533
0.5 0 0.5 −0.271 −0.337
0 0.5 0 −0.425 −1.028
0 0.5 0.5 −0.556 −0.024

0.5 0 0 −0.792 −0.144

The easy axis vector obtained from fitting the data is shown in Table 3. We found this
to be quite close to the Fe1–Fe10 axis and making an angle of 12◦ to that axis, whereas
it is at 26◦ to the originally proposed Fe1–Fe2 axis. Although the molecule only has
crystallographic inversion symmetry, the molecular symmetry conforms closely to 2/m,
with the twofold axis defined by Fe3–Fe1–Fe3′. It is, thus, very likely that the orientation
of the easy axis also conforms to this symmetry (either parallel to the twofold axis or
perpendicular to it). The axis orientation found here, lying close to the molecular mirror
plane (defined by Fe10–Fe2–Fe1–Fe2′–Fe10′) is, thus, more consistent with this expectation
than that suggested by the earlier EPR study.

Table 3. For an easy axis vector specified in cell units (Sa Sb Sc), the direction is fully determined by
two parameters. The orientation obtained here is compared with the Fe1–Fe10 direction and also the
Fe1–Fe2 direction suggested by the previous EPR study [13]. The fitted orientation is close to the
plane formed by the Fe1, Fe2, and Fe10 sites and is close to the Fe1–Fe10 axis as shown by the angle
given in the final column.

S a S b S c Angle (◦)

This study −0.45(2) 1 −0.34(2)
Fe1–Fe10 −0.18 1 −0.42 12
Fe1–Fe2 (EPR) −1.12 1 0.06 26

3.2. Inelastic Neutron Scattering

In addition to the appearance of new magnetic diffraction peaks, the magnetic phase
transition can also be observed via changes in the low energy inelastic neutron scattering
spectra with temperature. This provides a measurement of the effective internal field that
appears below the transition. Using measurements at low energies, taken just above the
transition at 1.2 K, the low lying excitations are determined. Further excitations are also
found at higher energies, and the combined measurements allow the seven lowest energy
spin states to be identified. The data obtained are analysed with a spin Hamiltonian for
each spin state S taking the form

H = DS2
z + E(S2

x − S2
y) + gµB(SxBx + SyBy + SzBz), (4)

where D and E are axial and rhombic anisotropy parameters defining the zero field splitting
(z is the direction of the anisotropy axis) and B is a spontaneous static internal magnetic
field that is only present in the magnetically ordered state. The energy levels ES,Sz are
determined by the eigenvalues of each spin state, offset by ∆, the energy gap of the lowest
level of the spin state multiplet with respect to the S = 35/2, Sz = 35/2 ground state. When
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B is present, a shift in the energy levels occurs, which is mainly determined by the z
component of the field, which we will label B0.
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Figure 2. Neutron powder diffraction spectra measured on the WISH instrument. (a) Comparison of the data above and
below the 1.2 K magnetic ordering temperature. The arrows highlight four new peaks that appear with d spacings in the
region between 13 and 23 Å. (b) The difference spectrum shows the magnetic peaks more clearly. These new peaks are
only consistent with an ordering that has the propagation vector (0.5 0 0.5). The positions of absent peaks that would be
present for other modes of ordering are marked in grey. The predicted relative intensities of the observed peaks for (0.5 0
0.5) ordering are marked with blue lines, taking the Fe1–Fe2 orientation of the easy axis that was suggested by EPR [13]
(shown as the blue arrow). (c) An improved match to the measured intensities is obtained with a revised spin orientation
that is close to the Fe1–Fe10 axis of the molecule (see Table 3).
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For the current simplified model, we have treated each S-state independently within
the Giant-Spin-Approximation using Equation (4). We note that, besides the anisotropy
contribution from crystal field and dipole–dipole interactions, S-state mixing [23] can also
contribute to the effective D and E terms in the Spin Hamiltonian.

3.2.1. Internal Field

The temperature dependence of the position of the lowest energy transition is shown
in Figure 3. The magnetic transition just below 1.2 K is clearly seen in this data as an
upward shift in the excitation energy. This shift is due to the different splittings of the
Sz = 35/2 and Sz = 33/2 levels in the effective internal field of the ordered state B0, which
is obtained from the energy shift as

B0 =
∆E
gµB

. (5)

The energy shift reflects intermolecular interactions that can have contributions from
both dipolar and exchange mechanisms. Since the dipolar contribution can be determined
exactly from knowledge of the spin structure, the measured value of B0 allows the exchange
contribution to be precisely quantified. This will be explored further in Section 4.

135

140

145

150

E
(

e
V

)

0.0 0.5 1.0 1.5

T (K)

10.6(5) eV

B0 = 91(5) mT

Figure 3. Temperature dependence of the lowest energy excitation of the S = 35/2 ground state (from
Sz = 35/2 to Sz = 33/2). The measurements were made on the LET instrument with an incident
energy of 1.06 meV, and the line is a guide to the eye. The internal field in the ordered state splits the
levels and shifts the transition energy. The maximum value of the internal field B0 was determined
to be 91(5) mT.

3.2.2. Low Temperature Excitation Spectrum

The excitation spectrum measured at a temperature of 35 mK is shown in Figure 4a.
This plot combines data for Ei = 2.00 meV and Ei = 5.15 meV. At this low temperature, all
of the excitations originate from the ground state. There are four excitation bands labelled
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I to IV in Figure 4a. Labelling the states as (S, Sz), band I is assigned to the transition
from the (35/2, 35/2) ground state to the next level in the 35/2 spin state, i.e., (35/2, 33/2)
(Figure 4b). Gaussian fits of bands II to IV are shown in Figure 4a, with the parameters
listed in Table 4.

Consideration of the selection rules for allowed magnetic dipole transitions can assist
in the assignment of these bands. These are ∆S = 0 ±1 and ∆Sz = 0 ±1. Hence, a single
transition is expected for ∆S = −1, whereas two closely spaced transitions would be
expected for ∆S = 0 and three closely spaced transitions for ∆S = +1. The relative intensities
within the sets of closely spaced transitions depend on matrix elements whose ratios
within a given multiplet can be determined via the Wigner–Eckart theorem, leading to the
following expression for the intensity

I(∆S, ∆Sz) ∝
(

35/2 1 35/2 + ∆S
−35/2 ∆Sz 35/2− ∆Sz

)2

, (6)

where the six element array is the Wigner 3-j symbol. The relative intensity values are
shown in Table 5, where it can be seen that the lowest energy transition within the set
is always the strongest. The second transition, when allowed, is reduced from the first
transition by a factor of S f and the third transition, when allowed, is smaller than the first
transition by a factor of S2

f . The transitions with high intensity according to Equation (6)
and Table 5 are signified by the thicker lines in Figure 4b.

Since the fitted widths of the Gaussians are comparable for bands II and III and 50%
larger for band IV, we take this as an indication of unresolved multiple transitions in
band IV, leading to the assignments shown in Table 4 and Figure 4b with bands II and III
corresponding to transitions to two S = 35/2 excited states and band IV corresponding
to a superposition of two transitions having ∆S = ±1. In Figure 4b, we illustrate one
possibility for band IV with transitions to S = 33/2 (IVa) and to S = 37/2 (IVb). The four
states associated with bands II to IV span a region of 25 to 33 K above the ground state.

The Q dependence (Figure 5) provides further support for this assignment [24–26],
with the intensities of bands II and III tracking each other and remaining large at low Q,
consistent with ∆S = 0, whereas band IV is weaker at low Q, consistent with ∆S = ±1. We
also considered whether bands II and III could be two transitions into a single S = 35/2
excited state; however, their separation would require the magnitude of the D parameter
to be more than double that of the ground state, which we believe to be less likely than
having two separate S = 35/2 excited states.

Table 4. Parameters obtained for fitting the inelastic neutron transitions observed in the 2 to 3 meV
region with Gaussian peaks. The final column provides the assignment for the transition band.

Band Position (meV) Width (meV) Assignment

II 2.163(2) 0.120(3) ∆S = 0
III 2.492(3) 0.129(4) ∆S = 0
IV 2.841(7) 0.185(10) ∆S = ±1

Table 5. Intensity ratios for the magnetic dipole transitions from a ground state level (S, Sz) = (35/2,
−35/2) to the three possible excited spin states with spin S f . Note that the intensity ratios only apply
to the different ∆Sz transitions within a given multiplet. Comparing the intensities between different
multiplets requires knowledge of their respective reduced matrix elements.

∆Sz
∆S S f −1 0 1

−1 33/2 1
0 35/2 0.9459 0.0541
1 37/2 0.9474 0.0512 0.0014
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3.2.3. Low Lying Thermally Accessible Spin Excitations

An EPR study [13] suggested the presence of an excited spin state at 8 K rather
than at 25 K; however, we observed here no direct transitions in the associated 0.7 meV
spectral region (Figure 4a). A thermal population of low lying excited states will produce
additional low energy transitions, which allows such states to be identified, even when
direct transitions from the ground state are not allowed.

Further information is contained in the relative intensities of the transitions, which
are determined by the matrix elements for magnetic dipole transitions under Equation (4).
The temperature dependence of the spectra in the band I region are shown in Figure 4c.
These spectra were analysed using the energy levels and matrix elements derived from
Equation (4), taking into account the thermal occupancies of the levels given by

nS,Sz =
e−βES,Sz

∑
S,Sz

e−βES,Sz
, (7)

where β = 1/kBT. The relatively low anisotropy of the Fe19 system prevents us from being
able to resolve the individual transitions within a spin state multiplet in the way that was
possible for previous inelastic neutron studies on systems with larger anisotropy, such as
Fe8 [27] and Mn12 [28]. Nevertheless, the characteristic asymmetric shape of the broadened
scattering profile still enables us to extract important parameters from the data.

A global fit of the spectra obtained between 1.2 and 10 K below 0.2 meV (Figure 4c)
assigns the spectral features to the superposition of internal transitions within three spin
states corresponding to the S = 35/2 ground state and two low lying states for which direct
transitions from the S = 35/2 ground state are forbidden—namely S = 31/2 and S = 39/2.
The spectral fits are shown as the blue curves in Figure 4c, and the parameters obtained
from this analysis are shown in Table 6. The gaps obtained for these two states are 1.5 and
3 K, significantly lower than the 8 K gap to the S = 33/2 state suggested from the EPR data.
The D parameter of the ground state at −51 mK is a little larger in magnitude than the
value of −43 mK obtained from the EPR.

The E/|D| ratios here were found to be around 0.2, four times larger than the ratio of
0.05 that was suggested in the EPR study. The primary effect of a large E/|D| ratio is to
increase the minimum level separation in the upper levels of the spin multiplet (Figure 4b).
This shows up most clearly in the data as a relatively pronounced low energy cutoff for
the 5 and 10 K spectra (Figure 4c). The value of χ2 per degree of freedom for the global fit
shown in Figure 4c is 1.65. If the excited states are not included at all, then the χ2 value
becomes increased by a factor of 8 compared to the two excited state fit. If only one excited
state is included, then the χ2 value increases by a factor of 1.5 compared to the two excited
state fit.
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Figure 4. (a) Inelastic spectra measured on LET at 35 mK. Data below 1 meV are for incident energy Ei = 2.00 meV and data
above 1 meV are for Ei = 5.15 meV (with a linear background subtracted). Gaussian fits to bands II to IV are indicated, with
fit parameters given in Table 4. (b) The assignment of band I is the lowest ∆S = 0 transition of the S = 35/2 multiplet. Bands
II to IV are due to magnetic-dipole-allowed transitions with ∆S = 0, +1, or −1. On the basis of width, amplitude, and Q
dependence, bands II and III are assigned to two distinct S = 35/2 excited states and band IV to unresolved transitions into
excited states with ∆S = ±1. One possibility is shown here for band IV with transitions to the S = 33/2 and S = 37/2 states.
(c) The temperature dependence of the low energy spectral region allows two low lying excited spin states to be identified.
The blue lines show the fitted thermal dependence that is well described by three spin states, with the corresponding fit
parameters given in Table 6.
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Figure 5. The Q dependence of the scattering intensity measured at 35 mK with an incident neutron
energy of (a) 5.15 meV, showing bands II, III, and IV, and (b) 2.00 meV, showing band I.

Table 6. Parameters for the ground state and two lowest lying excited states obtained from a global
fit of the temperature dependent inelastic neutron spectra (Figure 4c). The data were analysed with
the zero field version of the model Hamiltonian, Equation (4). The offset of the minimum energy
of the excited state with respect to the S = 35/2 ground state is shown in the final column as the
excitation gap ∆.

Spin State S D (mK) E /|D| ∆ (K)

35/2 −51.0 (1) 0.20 (1) 0
39/2 −44.3 (2) 0.16 (1) 1.5 (2)
31/2 −42.6 (3) 0.22 (2) 3.0 (1)

4. Discussion

Having established the key properties of the Fe19 system, namely the mode of ordering,
the easy spin axis, the internal field in the ordered state, the ground state, and the spectrum
of excited spin states, we are now in a good position to assess the intermolecular magnetic
interactions leading to the magnetic ordering. In particular, we can determine the relative
importance of dipolar and superexchange interactions for this high spin system.
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4.1. Dipolar Interactions versus Superexchange

The relative stabilities of different modes of magnetic ordering originating from only
dipolar interactions are compared in Table 2. For an easy spin axis in the Fe1–Fe2 direction,
the ordering mode with wave vector (0 0 0.5) would be expected for a transition driven
purely by dipolar interactions [16]. The observation of the (0.5 0 0.5) ordering mode in
this study however rules out that scenario, and the easy axis orientation was also found
to be different. For the newly found easy axis, ferromagnetic ordering is the most stable
dipolar driven mode (assuming a spherical sample) and the (0.5 0.5 0.5) mode is the most
stable AF state (Table 2). The observed (0.5 0 0.5) mode is unstable for the revised easy axis
with dipolar interactions alone. This points clearly towards the presence of significant AF
superexchange interactions between the molecules.

To assess which interaction paths are the most likely to contribute, we identified
the shortest Fe–Fe distances between adjacent molecules, and the six closest interactions
are listed in Table 7. These are in a range from just below 9 Å to around 10 Å. The
magnitude of the coupling will ultimately depend on the detailed electronic structure of
the exchange path; however, the weakest link is most likely to be the hydrogen bond within
the exchange path.

The shortest length for these direct intermolecular hydrogen bonds is given in the
final column of Table 7, and these links are illustrated in Figure 6 for the b and c axes.
From this, it can be seen that the c axis interaction is expected to be the weakest. In order
to estimate the strength of the exchange interactions in relation to the dipolar coupling,
we used a simple empirical method. This involves tuning the interactions to match the
three experimental characteristics that we obtained, namely the internal field, the mode of
ordering, and the transition temperature.

As a starting point, we consider the five interactions with an overall Fe–Fe distance
around 9 Å or less (Table 7) and set them all to the same value of AF exchange coupling.
The scaling factor of the coupling J0 is then tuned so that the B0 value of the internal field
from the sum of the dipolar field in the easy axis direction and the exchange field matches
the experimental value.

Table 7. The short overall Fe–Fe distances between neighbouring molecules in the lattice and the
shortest intermolecular H-bonds not involving lattice water.

Intermolecular Vector dFe–Fe(Å) Linked Sites Shortest H-Bond (Å)

b 8.655 Fe8–Fe10′, Fe10–Fe8′ 2.388
b-c 8.741 Fe5–Fe9, Fe9–Fe5 2.387
a-b 8.798 Fe7–Fe7′ 2.533
c 8.846 Fe5–Fe8′, Fe8–Fe5′ 3.147
a 9.047 Fe7–Fe7′ 2.344

a-c 10.081 Fe8–Fe9 2.481

When this initial uniform exchange coupling model is used, we confirmed that the
magnetic ordering mode (0.5 0 0.5) was the most stable. The ordering temperature with
this set of interactions was then estimated from a Monte Carlo simulation (see the fifth
column in Table 8). The TN found in this case at 2.7 K was more than two times larger
than that observed experimentally. A high ratio of TN to the characteristic coupling energy
was found when the network of interactions had a three dimensional nature. The lower
experimental value for this ratio for Fe19, therefore, suggests that the interactions are
actually weaker in at least one of the crystal axes.
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Figure 6. The shortest direct hydrogen bonds between molecules shown as green dotted lines for molecules displaced in
the b direction (top) and the c direction (bottom). Oxygen atoms are shown as red and hydrogen atoms as light grey. The
lengths are marked in Å (see Table 7).

As noted earlier, the direct H-bonded coupling along the c axis is particularly weak,
and Appendix A shows that the indirect coupling via lattice water was also absent for
the c axis. Consequently, we explore the effect of reducing the exchange interactions for
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directions involving the c axis in the second and third rows of Table 8. Reducing the
interactions in both the c and b− c directions by a factor of four is seen to bring TN much
closer to the experimental value; however, this also has the effect of making the (0.5 0.5
0.5) mode more stable than the (0.5 0 0.5) mode. By making Jc slightly smaller than Jb-c, the
experimentally observed ordering mode of (0.5 0 0.5) is however restored (fourth row in
Table 8). An additional relative strengthening of Jb and Ja-b versus Ja brings TN down to
the experimental value of 1.2 K (last row in Table 8).

Bearing in mind the large parameter space for the set of exchange couplings, the final
parameters in Table 8 are not expected to be unique, but they provide a representative
set that is consistent with the experimental data and they serve to give a good estimate
of the order of magnitude of the exchange coupling in this system. The final result is
that the stabilising contribution of the exchange terms to the magnetic energy was found
to be eight-times larger in magnitude compared with the destabilising term from the
dipolar coupling.

Table 8. The ordering temperature obtained from Monte Carlo simulation versus superexchange
couplings between the nearest neighbour molecules. J0 is obtained from the requirement to match
the observed B0 in the ordered state.

Ja (J0) Ja-b, Jb (J0) Jc, Jb-c (J0) J0 (mK) TN (K) Ordering Mode

1 1 1 2.6 2.7 (0.5 0 0.5)
1 1 0.5 4.0 2.0 (0.5 0 0.5)
1 1 0.25 5.2 1.4 (0.5 0.5 0.5)
1 1 0.22, 0.28 5.4 1.4 (0.5 0 0.5)
1 1.18 0.22, 0.28 5.4 1.2 (0.5 0 0.5)

5. Conclusions

Finding two spin states that are 1.5 and 3 K above the ground state energy is an
important result of this study. The presence of such low lying states was suspected in
previous studies, and their existence has complicated the interpretation of previous data on
this system, leading to inconsistent conclusions from different studies that were measured
with different techniques and at different temperatures. The present results should enable
some clarification and reinterpretation of the properties of Fe19.

Whilst the high spin value of Fe19 originally suggested that it was a strong candidate
for having its AF ordering below 1.2 K driven by dipolar interactions, the present results
clearly show that the magnetic ordering is primarily due to intermolecular exchange
interactions on the order of 5 mK. These exchange interactions between neighbouring
molecules operate via superexchange paths operating through ligands and hydrogen
bonds. The hydrogen bonds reflect both direct intermolecular contacts and also lattice
water mediated paths. The dipolar interactions in this case act to destabilise the ordering,
and the magnitude of the dipolar energy is smaller than the magnitude of the exchange
energy by around a factor of eight.

When considering the use of SMMs for quantum information processing, weak inter-
molecular interactions contribute to decoherence. The results of this study show that the
exchange contribution to the intermolecular interaction can be surprisingly robust in this
type of system even when the magnetic atoms of different molecules are well separated in
the crystal structure by bulky spacer ligands and water molecules.

The present study also demonstrates that low temperature neutron scattering studies
of high spin molecular systems provide a unique opportunity to study very weak residual
superexchange interactions that can act over distances of order 10 Å. A better understand-
ing of the subtleties of interactions in such molecule based system can be obtained via
long range magnetic ordering. This understanding may also allow us to steer the organ-
isation of molecular magnets into arrays that have sufficiently weak coupling to allow
information processing.
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Appendix A. Hydrogen-Bonded Exchange Network through the Lattice Water Sites

A likely scenario to consider is that AF intercluster interactions could be mediated
by hydrogen bonding involving lattice water. Although each Fe19 cluster has several
nearest neighbours in the crystal lattice, we are concerned here with those neighbours to
which there is a clear pathway that can mediate such interactions. Inspection of the crystal
structure shows that the shortest hydrogen-bonded pathways are of the types Fe3(µ3–
OH)···OH2···Ocarb or Fe–OH2···OH2···Ocarb, in which either a triply-bridging hydroxo or a
singly-bound aquo ligand makes a hydrogen bond to a lattice water, which, in turn, makes
a further hydrogen bond to the outer oxygen (Ocarb) of a carboxylate group coordinated to
an iron centre in an adjacent cluster.

Three such pathways were identified. The first of these links a cluster with its symme-
try equivalent at {1 + x, y, z} corresponding to an interaction in the a-direction (Figure A1).
The three (µ3–OH) ligands on one face of the disc each make hydrogen bonds to one lattice
water, and each of these forms a hydrogen bond to the same outer carboxylate oxygen
on the next molecule. A further such system of hydrogen bonds, related to the first by
inversion, links the two clusters to two further clusters in the opposite direction along a
with the overall effect being to link cluster molecules into chains running parallel to the a
direction through the crystal.
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Figure A1. Intercluster hydrogen-bonding (shown as light blue dashed lines) between the Fe19

cluster and its symmetry-equivalent at {x + 1, y, z}. Note that H-atoms on the lattice waters were not
located in the structural determination.

Two further pathways involve aquo ligands. The pathway between a cluster and its
neighbour at {x, y + 1, z}, mediating interactions in the b direction, is much simpler than
the a-axis case; two inversion-related lattice waters each accept a hydrogen bond from an
aquo ligand while making a further hydrogen bond to a carboxylate oxygen of the adjacent
cluster (Figure A2).

Figure A2. Intercluster hydrogen-bonding (shown as light blue dashed lines) between the Fe19

cluster and its symmetry-equivalent at {x, y + 1, z}.

The interaction between a cluster and its equivalent at {x + 1, y, z − 1}, corresponding
to the vector a-c, is also simple (Figure A3), with two inversion-related lattice waters
each forming hydrogen bonds to carboxylate oxygens from adjacent clusters. The relative
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magnitudes of the AF superexchange interactions mediated by these three pathways are,
thus, expected to be Ja � Jb > Ja-c.

Figure A3. Intercluster hydrogen-bonding (shown as light blue dashed lines) between the Fe19

cluster and its symmetry-equivalent at {x + 1, y, z − 1}.

The simple picture that is explored here of lattice water paths dominating the inter-
molecular exchange is not, however, consistent with the observed ordering. The strong AF
interactions along the a direction, when taken in combination with the dipolar coupling,
stabilise the (0.5 0.5 0.5) mode of ordering rather than the observed (0.5 0 0.5) mode. In-
troducing the weaker lattice-water-mediated interactions along the b and a-c directions
further stabilises the (0.5 0.5 0.5) mode against the actual (0.5 0 0.5) mode. We, therefore,
conclude that additional direct intermolecular interactions that do not involve the lattice
water also provide a significant contribution to the exchange couplings.
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Abstract: Two novel salts containing the anion [Ni(mnt)2]− (mnt = maleonitriledithiolate) have
been synthesized. The counter-ions, [Fe(II)(L1 or L2)2], are cationic complexes where L1 and L2 are
methylated derivatives of 2,6-bis(pyazolyl)pyridine or pyrazine, which are similar to ligands found in a
series of spin-crossover (SCO) complexes. Both salts are characterized by variable temperature single
crystal X-ray diffraction and bulk magnetization measurements. Compound 1, [Fe(II)(L1)2][Ni(mnt)2]2

displays an incomplete and gradual SCO up to 300 K, followed by a more rapid increase in the high-spin
fraction between 300 and 350 K. Compound 2, [Fe(II)(L2)2][Ni(mnt)2]2.MeNO2, shows a gradual, but
more complete SCO response centered at 250 K. For compound 2, the SCO is confirmed by variable
temperature Mössbauer spectroscopy. In both cases, the anionic moieties are isolated from each other
and so no electrical conductivity is observed.

Keywords: spin-crossover; molecular magnets; magnetic materials; molecular materials

1. Introduction

The phenomenon of spin-crossover (SCO) has been known since the 1930s, following the
serendipitous work by Cambi et al. [1,2]. Contemporary interest in SCO is due to potential
applications in data storage devices [3], sensors and displays. Their utility relies on electronic
instability between high-spin (HS) and low-spin (LS) configurations in transition metal
complexes with octahedral geometries and 4 to 7 valence d-electrons. Exploitable switching
properties can be associated with SCO, for example color, magnetization [4,5], dielectric
constant [6,7], photo-physical properties [8–10], electrical conductivity [11] and structural
parameters [12]. The most studied complexes contain Fe(II) and N-donor heterocyclic
ligands, since spin state conversion in these compounds tend to give relatively large
changes in properties [13,14]. In these cases, HS-LS switching also involves the maximal
change in electron multiplicity, S = 0 (LS) to S = 2 (HS). A popular series of ligands in
Fe(II) complexes, relevant to this work, has been 2,6-bis(pyrazol-1-yl)pyridine (dpp) and
its derivatives, pioneered by Halcrow et al. [15–17].

In addition, SCO cationic complexes are attractive components of multifunctional
hybrid salts when combined with anions that bring other properties, such as electrical con-
ductivity or magnetic ordering [18]. This goes together with the development of molecular
conductors where the conducting network is made from anionic moieties [19–21]. The goal
is to obtain a molecular conductor that also exhibits SCO, such that the induced structural
changes affect the materials ability to conduct electricity. Indeed, it is well-known that
the electrical properties of molecular conductors are sensitive to small modifications of
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their crystal structure. There have been some successes in this area. For example, Fe(III)
complexes of salycyl-type ligands [Fe(III)(sal2-trien)][Ni(dmit)2]n with n = 1 [22–24] were
the first materials to contain [Ni(dmit)] anions and SCO cations, although the compound
did not conduct electricity, and when n = 3 SCO, it disappears with the appearance of semi-
conductivity [25]. The same group also made [Fe(III)(salten)-Mepepy][Ni(dmit)2]3, which
had a gradual SCO associated with photoisomerization of the Mepepy ligand and moder-
ated conductivity [26]. Takahashi et al. first observed a clear synergy between SCO and
electrical conduction [27] in the related compound [Fe(III)(qsal)2][Ni(dmit)2]3.CH3CN.H2O,
qsalH = N-(8-quinolyl)-salicyladimine. Generally, these early approaches focused on dmit-
based anionic components with Fe(III) SCO complex cations, whereas, more recently,
mnt-based anions (Scheme 1) have been used. Most notably, a compound closely related to
those in this work, [Fe(II)(dpp)2][Ni(III)(mnt)2]2.MeNO2 [28] was characterized by multi-
stage spin-state conversions with mixed HS-LS states. A related Fe(II)/Ni(III) compound,
[Fe(dppTTF)2][Ni(mnt)2]2(BF4)2.PhCN, included a derivatized dpp with tetrathifulvalene
(TTF) resulting in synergy between SCO and electrical conductivity [29]. In the current
work, we focus on Ni(III) mnt-based anions with Fe(II) complex cations with methylated
derivatives of dpp (Scheme 1, X = C) and the related pyrazine (X = N). This expansion is
useful to investigate if the chemical flexibility, when derivatizing the dpp ligand, allows or
disrupts SCO when metal complex anions are used.
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scheme referred to in the text. The asymmetric unit of compound 1 contains one crystal-
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Scheme 1. Ligands (left) used in this work, where X = C (ligand L1) and X = N (L2). Mono-anionic
complex, [Ni(III)(mnt)2], (right) used in this work.

2. Results and Discussion
2.1. Description of Structures of Compounds 1 and 2

Crystals amenable to single X-ray diffraction were obtained of compound 1, [Fe(II)(L1)2]
[Ni(mnt)2]2 and compound 2, [Fe(II)(L2)2][Ni(mnt)2]2.MeNO2, as detailed in
Sections 3.1 and 3.2. For both compounds, the structures were solved at 100 and ca. 290 K.
Both compounds crystalize in the P-1 (No. 2) space group. Table 1 contains the relevant
crystallographic data and collection parameters. Figures 1 and 2 show the molecular
structures of both compounds at 100 K, with thermal ellipsoids and the atom numbering
scheme referred to in the text. The asymmetric unit of compound 1 contains one crystallo-
graphically independent Fe(II) cation, two [Ni(mnt)2]− anions and no included solvent.
By contrast, compound 2 contains the same 1:2 Fe(II): Ni(III) metal complex ratio with the
additional inclusion of one CH3NO2 molecule.

For compound 1, the coordination geometry about the Fe(II) cation has a distorted
octahedral FeN6 environment. From the point of view of SCO, it is important to look
at the Fe-N bond lengths, which reflect the spin-state [12]. In compound 1, at 100 K,
these bond lengths range from 1.889 to 1.987 Å (average 1.957 Å). At 293 K, there is little
change, with the bond lengths varying between 1.891 and 1.987 Å (average 1.954 Å). At
both temperatures, this is indicative of a LS-state Fe(II) center. In addition, a change
in the distortion from ideal local octahedral geometry can indicate a spin-state change.
The OctoDist program [30] was used to determine the distortion parameters. The first
parameter, Σ, is the sum of the deviations from 90◦ of the twelve cis N-Fe-N angles. A
second parameter, Θ, is the sum of the deviations from 60◦ of the twenty-four N-Fe-N
angles, six per pseudo three-fold axis, measured on a projection of opposite triangular
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faces of the FeN6 octahedron, orientated by superimposing the face centroids. Typically, Σ
and Θ are lower for LS and higher for more distorted HS complexes [12]. For compound
1, Σ is 87.09◦ at 100 K and 87.16◦ at 293 K, essentially unchanged. Similarly, Θ is 287.00◦

at 100 K and 285.14◦ at 293 K is also unchanged. These structural parameters indicate LS
complexes at both temperatures and do not reflect the SCO found from magnetization data
(Section 2.2), most likely due to the substantially incomplete nature of the transition.

Table 1. Crystallographic data and collection parameters for compounds 1 and 2.

Parameter Compound 1 Compound 2

Empirical formula C46H34N18S8FeNi2 C45H35N21S8O2FeNi2
Molecular Mass 1268.66 1331.64

T/K 100(2) 293(2) 100(2) 290(2)
CCDC number 2080108 2080109 2080110 2080111

Crystal color & shape Brown Plate Black Prism
Crystal system Triclinic Triclinic
Space Group P-1 (2) P-1 (2)

a/Å 11.1318(3) 11.2229(5) 13.3643(6) 13.4983(8)
b/Å 12.1322(4) 12.3046(6) 14.7900(6) 15.1017(10)
c/Å 19.4594(6) 19.6208(7) 14.9875(8) 15.1633(9)
α/◦ 94.543(2) 93.625(3) 79.731(6) 79.756(6)
β/◦ 90.216(2) 89.349(3) 81.844(6) 81.882(6)
γ/◦ 92.986(2) 90.932(4) 69.962(5) 68.796(3)

Volume/Å3 2616.16(14) 2703.6(2) 2728.01(15) 2825.8(3)
Wavelength/Å 0.71075 0.71075
Radiation Type Mo Kα Mo Kα

Z 2 2 2 2
µ/mm−1 1.360 1.316 1.312 1.267

Measured reflections 33346 35619 26321 27746
Independent reflections 11866 12326 12418 12853

Reflections I ≥ 2 σ(I) 7764 6982 7709 6893
wR1 (all data) 0.0956 0.1109 0.0828 0.1435
R1, I ≥ 2 σ(I) 0.0496 0.0528 0.0456 0.0772
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At both temperatures, the overall structure of compound 1 consists of alternating
layers of cations and anions when viewed down the crystallographic ab plane, as seen
in Figure 3. The anionic Ni layer consists of discrete dimers that occupy cavities created
by the cations, with close S . . . S contacts between dimers. At 100 K, these are 3.393 Å
between S1 and S11, and 3.526 Å between S6 and S16 with significantly longer distances
to the next nearest dimer. The anionic charge, and by extension the Ni oxidation state,
can be correlated with the geometry, specifically the Ni-S bond lengths since these are
affected by the electron population of the molecular orbitals. For compound 1, the two
crystallographically independent anions have similar bond lengths that are compatible
with mono-anions and Ni(III). The bond lengths range from 2.135 to 2.143 Å at 293 K
and 2.139 to 2.151 Å at 100 K, whereas large bond lengths of ca. 2.17 Å are found for
[Ni(II)(mnt)2]2− [31].
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For compound 2, the complex geometry about Fe(II) is also a distorted octahedron,
but in this case, there is a variation in Fe-N bond lengths as a function of temperature. At
100 K, the bond lengths vary from 1.967 to 2.070 Å with an average of 2.030 Å. However,
there is an increase at 290 K to an average of 2.102 Å with a minimum bond length of 2.047
and a maximum of 2.136 Å. This change reflects the spin-state change that is seen in the
bulk magnetism and Mössbauer data vide infra. In addition, there is a clear distortion
of the octahedral geometry between the two temperatures. The parameter Σ is 109.14◦

at 100 K, meaning that the LS state of compound 2 has an intrinsically more distorted
geometry than the LS state of compound 1. However, at 290 K, this significantly increases to
132.94◦, which is indicative of a spin-state change. Additionally, an increase was seen in the
distortion parameter Θ of 354.66◦ at 100 K, but is 428.34◦ at 290 K. Furthermore, Halcrow
suggested that whole molecule deviation from ideal D2d symmetry in HS [Fe(dpp)2]2+-like
cations indicates a propensity to undergo SCO [12]. The contention is that HS structures
that deviate too much from the typical distortion seen at LS are unable to undergo SCO,
although this analysis is not definitive. The distortion from D2d is parametized by the
trans-N(pyridyl)-Fe-N(pyridyl) angle (θ) and the dihedral angle between ligand mean
planes (φ). For compound 2, parameter θ is 178.43 (100 K) and 178.11◦ (293 K), whereas φ
is 84.84◦ (100 K) and 85.20◦ (24 = 93 K). The HS and LS values do not deviate far from each
other, and therefore compound 2 is not an outlier in undergoing SCO [11].

In comparison to compound 1, the anions and cations of compound 2 are not clearly
separated into layers, since the two ions tend to interdigitate with each other. Correspond-
ingly, there are no short S . . . S contacts between anions, the shortest S . . . S distance being
3.926 Å, so that each Ni anion is isolated from the nearest neighbor (Figure 4). The Ni-S
bond lengths are similar for both crystallographically independent anions, indicating that
they have the same charge and metal oxidation state. The values range from 2.138 to
2.155 Å at 290 K and 2.141 to 2.161 Å at 100 K, typical for a Ni(III) monoanion [31].
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In both compound 1 and 2, the arrangement and isolation of the anions means that
it is unlikely that these compounds would display electrical conduction, as observed in
some mnt-containing structures with more evenly distributed layering. This is evident
from preliminary 2-probe resistance measurements, which give values above the limit of
our equipment (1 M ohm) in three perpendicular directions through the crystals at 300 K.

2.2. Magnetic Properties

Figure 5 shows the magnetic data for compound 1, [Fe(L1)2][Ni(mnt)2]2
and 2, [Fe(L2)2][Ni(mnt)2]2.MeNO2, expressed as the temperature (T) dependence of the
product χmT, where χm is the molar magnetic susceptibility. An initial analysis of the
data can assume no magnetic exchange at higher temperatures. The magnetic data would
then be a summation of contributions from HS Fe(II) (S = 2), LS Fe(II) (S = 0) and two
[Ni(III)(mnt)2] anions (S = 1/2 each). At lower temperatures there may also be a magnetic
exchange that reduces or increases the contribution.
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Full circles are measurements of warmings from 2 to 350 K, while open circles are measurements and
there is cooling across the same temperature range.

For compound 1, at 2 K the value of χmT is 0.04 cm3 K mol−1, which implies that
Fe(II) is in the LS state and there is also little contribution from the Ni anionic moieties. The
reason for the small contribution from the anions is most likely linked to their dimerization
and subsequent antiferromagnetic coupling. On warming, there is a steady, almost linear
increase in χmT up to about 300 K (1.41 cm3 K mol−1), followed by a more rapid rise to 350 K
where the maximum χmT is 1.93 cm3 K mol−1. These higher values cannot be achieved by a
simple loss of antiferromagnetic coupling between anions, which would lead to a maximum
χmT value of 0.75 cm3 K mol−1. Therefore, there must be an increased contribution from HS
Fe(II) as the temperature rises. Nevertheless, this is an incomplete SCO and is not reflected in
the variable temperature structural data of compound 1. Such behavior has been previously
seen in [FeL2](ClO4)2, where L = 2,6-bis(3-methylpyrazol-1-yl)pyrazine [32].

Compound 2 distinctly shows different behavior. At 2 K, the value of χmT
is 0.46 cm3 K mol−1, which rises slightly and reaches 0.5 cm3 K mol−1 after 100 K, af-
ter which there is a more rapid rise to a maximum value of 4.02 cm3 K mol−1 at 350 K. We
can estimate the g-value for the Fe complex using the Mossbauer data and bulk magnetic
data at 300 K. The Mossbauer data (Section 2.3) indicates that 83% of the Fe(II) complex is
in the HS state at 300 K, whereas the bulk magnetic data gives a total χmT of 3.82 cm3 K
mol−1 at the same temperature. Assuming this high temperature χmT value also includes
contributions from two independent [Ni(mnt)2] anions (total 0.75 cm3 K mol−1), then
3.07 cm3 K mol−1 is the contribution from 83% of a S = 2 HS Fe(II) and 17% S = 0 LS Fe(II).
This gives an estimate of g of 2.2 using χmT = 0.83 × 0.12505 g2S(S + 1). Using this g value
and the same calculation, with the % fraction HS as the unknown, we can estimate the
HS fraction to be 90% at 350 K and 46% at 200 K. Below about 100 K, the Fe(II) centers
are mostly in the LS state and this does not contribute to the magnetism. The small value
of χmT further implies an antiferromagnetic coupling between [Ni(mnt)2] anions, albeit
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weaker than that shown by compound 1. Indeed, the data below 80 K follows a Curie-Weiss
law, with a negative Weiss constant of -0.6 K. However, bulk magnetization data is not
an ideal method of decoupling the contributions from the Ni and Fe ions, but the above
calculation of the HS fraction at 200 K agrees well with Mössbauer data vida infra. Finally,
on measuring while cooling and warming the curves for compound 2 are essentially iden-
tical with no hysteresis, it reflects the lack of inter-cation short contacts in the structure.
We can make some speculations as to the origin of the difference in abruptness of the
SCO between the two salts. The compounds have cations with a very small molecular
change; a CH in compound 1 is replaced by a N atom in compound 2. This is unlikely to
be directly responsible for such a difference in SCO, where more abrupt transitions are
correlated to increased intermolecular interactions. However, the inclusion of the solvent
in compound 2, along with the overall change in packing, is likely to be more relevant.
Compound 1, with a much more gradual SCO, has a clear 2D layered structure, but the
more abrupt SCO for compound 2 is associated with a more 3D structure, although both
do not have any substantive inter-cation interactions. It is suggested that the more abrupt
SCO for compound 2 is a result of the 3D organization, whereas the very gradual SCO for
compound 1 is a response to more isolation of cations into layers.

2.3. Mössbauer Spectroscopy

The variable temperature 57Fe Mössbauer data for compound 2 is presented in Figure 6.
The associated hyperfine parameters were found by a least-squares fit, assuming Lorentzian
shaped peaks, and are given in Table 2. Measurements were taken at several temperatures
between 300 and 100 K but Figure 6 shows the fitted data at 300 K, 200 K and 100 K. All
spectra were found to have signals that are attributable to both HS and LS Fe(II) complexes.

The experimental data is given as black dots. The signal for the HS Fe(II) having the
largest quadrupole splitting (Table 2) is modelled by the green curve. The signal for the
LS Fe(II) with the smallest quadrupole splitting is modelled by the blue curve. In each
case, the hyperfine parameters compare well with the expected values. The red curve is
the sum of the contributions from both the HS and LS Fe(II) curves and maps well onto
the experimental data. The portion of the HS and LS complexes vary, as expected from the
SQUID magnetic data. The measurements at 300 and 200 K clearly show two quadrupole
doublets, indicating the presence of significant quantities of both HS and LS Fe(II) centers.
An analysis of the integrals of the modelled curves indicates, at 300 K, that there is 83%
of the HS fraction and 17% of the LS fraction. At 200 K, there is approximately 50% of
each, and only 1.8% of the HS complex remains at 100 K. These percentage fractions are
very close to those proposed from bulk magnetic data. Figure 7 shows all the Mössbauer
data replotted to show the temperature variation of the HS fraction. This data confirms the
conversion from almost complete LS Fe(II) at 100 K to a HS/LS mixture at 300 K, albeit
with an excess of HS Fe(II). The transition temperature seen in Figure 7 also compares well
with the bulk magnetic data in Figure 5.
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Table 2. Fitting parameters for variable temperature Mössbauer spectra 1 for compound 2.

Temperature/K Spin State δ ∆EQ Γ

300
HS 0.98 1.78 0.49
LS 0.29 0.64 0.42

200
HS 1.01 2.05 0.34
LS 0.39 0.63 0.34

100
HS 1.10 2.38 0.40
LS 0.40 0.64 0.35

1 δ is the isomer shift (±0.02 mm s−1), ∆EQ is the quadrupole splitting (±0.02 mm s−1) and Γ is the full width and
has the maximum of the peaks (±0.03 mm s−1). HS = high spin. LS = low spin.
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in an external field of 0.1 T. Each sample was cooled to 2 K and measured while being 
warmed to 300 K. Since compound 2 had a more abrupt SCO, this sample was also meas-
ured while cooling in order to determine hysteresis. Diamagnetic corrections were made 
for the sample holder and for the compound, the latter estimated using Pascals constants 
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of the high-spin Fe(II) fraction in compound 2.

3. Materials and Methods

All reactions were completed in air, unless otherwise stated, using commercial grade
chemicals. (C4H9)4N[Ni(mnt)2] was purchased from Tokyo Chemicals Industry (TCI) and
was used as received. All other chemicals were purchased from Sigma-Aldrich and used as
received. Magnetization measurements were completed using a MPMS-5 SQUID magne-
tometer (Quantum Design, CA, USA) with powdered samples held in gelatin capsules in
an external field of 0.1 T. Each sample was cooled to 2 K and measured while being warmed
to 300 K. Since compound 2 had a more abrupt SCO, this sample was also measured while
cooling in order to determine hysteresis. Diamagnetic corrections were made for the sample
holder and for the compound, the latter estimated using Pascals constants [33]. Resistance
measurements were made using a two-probe method, at ambient temperature, with gold
wire (diam 1 µm) attached to the opposite sides of a crystal with carbon paste. This was
measured using a Keithley Instruments 6517A multimeter (Tektronics, UK). For compound
1, single crystal X-ray diffraction was performed using a Rigaku AFC12 goniometer and
enhanced sensitivity Saturn724+ detector with Superbright Mo rotating anode generator.
Structure refinement was completed using SHELXL [34]. For compound 2, single crystal
X-ray diffraction was performed using a Rapid II imaging plate system with MicroMax-007
HF/VariMax rotating anode X-ray generator and confocal monochromated Mo-Ka radia-
tion. Structure refinement was completed with SHELXL [34] or CRYSTALS [35] software.
All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were
calculated geometrically and refined using the riding model. Mössbauer spectra were
recorded using a conventional spectrometer in the constant-acceleration mode. Isomer
shifts are given relative to α-Fe. Temperature dependent Mössbauer spectra were recorded
with a closed-cycle cryostat (CRYO Industries of America Inc., USA) and were analyzed by
the least-square fits using Lorentzian line shapes. CHN elemental analysis was performed
using an CE-440 Elemental Analyzer (Exeter Analytical Inc., Coventry, UK).

3.1. Synthesis of Ligands and Fe(II) Complexes

The ligand L1 was prepared by the literature procedure [36], although using the work-
up methods later described by Halcrow et al [15]. The ligand L2 was prepared following
the procedure by Halcrow et al. [32]. The reaction of Fe(BF4)2.6H2O was done by stirring
for two hours in acetone with two equivalents of L1 or L2, followed by precipitation by
adding diethyl ether yielded brown solids. The color indicates that both [Fe(L1)2](BF4)2
and [Fe(L2)2](BF4)2 are in the LS state at ambient temperature.

3.2. Synthesis of Compounds 1 and 2

Compounds 1 and 2 were produced using a moderated procedure from Oshio et al. [11].
For compound 1, [Fe(L1)2](BF4)2 (38.2 mg, 0.05 mmol) in MeNO2 (5 mL) was added drop-
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wise to a solution of (C4H9)4N[Ni(mnt)2] (69.7 mg, 0.12 mmol) in MeNO2 (10 mL). The
resulting dark green/brown solution was kept at −20 ◦C overnight to yield a dark brown
microcrystalline powder, which was collected and washed with cold MeNO2. Recrystalli-
sation was achieved by redissolving the solid in hot MeNO2, followed by cooling at –20 ◦C
to give thin brown plate-like crystals. Yield 64%. Found C, 43.18; H, 2.02; N, 19.42. Calcd
for [Fe(L1)2][Ni(mnt)2]2, C46H34N18S8FeNi2: C, 43.55; H, 2.00; N, 19.87.

Compound 2 was prepared by a similar procedure except using [Fe(L2)2](BF4)2 in place
of [Fe(L1)2](BF4)2. In this case, small black prism-shaped crystals precipitated after standing
for 2 hours, without the need for cooling. Yield 58%. Found C, 40.85; H, 2.60; N, 22.19.
Calcd for [Fe(L2)2][Ni(mnt)2]2.MeNO2, C45H35N21S8O2FeNi2: C, 40.59; H, 2.65; N, 22.09.

4. Conclusions

Two novel salts have been synthesized: compound 1 with formula [Fe(L1)2][Ni(mnt)2]2
and compound 2 with formula [Fe(L2)2][Ni(mnt)2]2.MeNO2. L1 and L2, which are methy-
lated derivatives of a series of ligands that are present in several Fe(II) complexes that
exhibit SCO, albeit such salts typically have simple counterions such as BF4 and ClO4. Bulk
magnetization studies indicate that both compounds 1 and 2 show SCO. However, for
compound 1, the SCO is incomplete up to 350 K and only represents a small conversion
from the LS to HS state. Consequently, there is little evidence from variable temperature
single crystal structural data that the typical structural transitions that accompany SCO
are fully developed. By contrast, bulk magnetization measurements on compound 2 show
that the compound is in the LS state below 100 K and almost completely HS at 350 K. The
associated Fe-ligand bond length changes and geometry distortions are clearly observed
even at 290 K, when most of the Fe complexes are in the HS state. Furthermore, the
SCO in compound 2 is confirmed using Mossbauer spectroscopy. The introduction of the
[Ni(mnt)2] anion illustrates the chemical flexibility and robust nature of SCO in these types
of Fe(II) complexes. It also points to the possibility of incorporating secondary functionality
into SCO materials.
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Abstract: The achiral organic radical dinitrophenyl nitronyl nitroxide crystallizes in two enan-
tiomorphs, both being chiral tetragonal space groups that are mirror images of each other. Muon-spin
rotation experiments have been performed to study the magnetic properties of these crystals and
demonstrate that long-range magnetic order is established below a temperature of 1.10(1) K. Two oscil-
latory components are detected in the muon data, which show two different temperature dependences.

Keywords: organic magnet; nitronyl nitroxide; chirality; muon-spin rotation

1. Introduction

The impetus to synthesize purely organic ferromagnets [1,2] arises from the aim to
achieve a goal that was once thought to be impossible: that of realising ferromagnetism
in materials containing atoms that only have s and p electrons. Heisenberg’s celebrated
theory of ferromagnetism [3], which was formulated back in the 1920s and that first
introduced the concept of the exchange interaction, provided a rationalisation for the
apparent mandatory requirement for atoms containing d and f electrons. Purely organic
materials can contain unpaired spins, and organic radical molecules are relatively common,
however few are stable enough to be assembled into crystalline structures. Moreover,
even when that is possible, it is another matter to attempt to ferromagnetically align these
spins . Ferromagnets are, in fact, rather rare, even among the elements (and, of course, the
elemental ferromagnets that do exist are only in the d- or f -blocks).

Organic ferromagnetism was first achieved using a nitronyl nitroxide organic radical [4].
The unpaired electron density in nitronyl nitroxides is predominantly distributed over the
two NO moieties with only some smaller spin density being distributed over the rest of the
molecule. The central carbon atom of the ONCNO moiety is a node of the singly-occupied
molecular orbital. Nitronyl nitroxides are chemically stable, but the vast majority of them
do not show a long range ferromagnetic order. Therefore, the discovery of long-range
ferromagnetism in the β phase of para-nitrophenyl nitronyl nitroxide (C13H16N3O4, ab-
breviated to p-NPNN), was a major milestone, even though the transition temperature
proved to be a disappointingly low 0.65 K [4]. A λ-type peak in the heat capacity at the
critical temperature and a divergence in the ac susceptibility [4–6] indicated the transition
to ferromagnetic order. µSR experiments on p-NPNN show the development of coherent
spin precession oscillations below TC [7,8]. A number of other nitronyl nitroxide systems
were studied while using this technique [9–13], but the transition temperatures are all
below 1 K.
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Chirality [14] has recently been used in designing new chiral catalysts [15], develop-
ing organic spin filters [16], and investigating spin-dependent tunnelling through chiral
molecules [17–19]. It has an important role in photochemistry that may have been impor-
tant in the origin of life [20]. Therefore, the phenomenon of structural or magnetic chirality
is an attractive feature to engineer in nitronyl nitroxide magnets, however preparing a
chiral molecular crystal from achiral radicals in a controlled manner is a formidable task. It
was first achieved ten years ago through the preparation of a crystal containing nitronyl
nitroxide radicals, in which there is a chiral packing of the molecular units [21]. The com-
pound is 3,5-dinitrophenyl nitronyl nitroxide (DNPNN), a molecule that is itself achiral
(see the molecular structure depicted in Figure 1a) and optically inactive when dissolved
in a solvent, but that is found to crystallize in two enantiomorphs, one of which is a chiral
tettragonal space group of P43 (see Figure 1b). This has a left-handed, counterclockwise
stacking of radical molecules along the fourfold screw axes. The other enantiomorph
has the P41 space group and is its mirror image. The magnetic susceptibility fits to a
one-dimensional Heisenberg ferromagnetic model with intrachain 2J/kB = 12 K (and
weak interchain 2zJ′/kB ≈ 1 K). On the basis of magnetic susceptibility and heat capacity
measurements [21], the system is believed to undergo a ferromagnetic phase transition at
TC = 1.1 K, and the entropy that is found by heat capacity is equal to R ln 2, as expected for
a system of S = 1

2 spins. The magnetic behaviour of the left-handed form and right-handed
form are identical, but it is possible to prepare crystals of one type or the other [21]. In this
paper, we report the results of a muon-spin rotation (µSR) study of this compound that
shed further light on the magnetic properties of this material.

Figure 1. (a) The molecular structure of DNPNN. (b) The crystal structure of one enantiomorph
of DNPNN (the other enantiomorph is the mirror image of this). The atoms are colour-coded, as
follows: carbon (brown), oxygen (red), nitrogen (grey), and hydrogen (pale pink and small).

2. µSR Experiment

The technique of muon-spin rotation [22–25] is very effective in establishing three-
dimensional ordering in low-dimensional magnets [26,27]. This is because, below the
critical temperature, a spontaneous precession of the muon spin-polarization in zero-
applied field can be observed (see e.g., Refs. [28–31] for examples in organic and molecular
magnets), with its frequency being proportional to the order parameter. Of course, ordering
can be detected using thermodynamic measurements, but these are often dominated by
the effect of intrachain interactions in low-dimensional magnets. For example, three-
dimensional ordering in a very anisotropic spin chain is only associated with a tiny fraction
of the total entropy. As the sample is cooled, very long correlated segments begin to develop
on the individual chains well in advance of the appearance of long range order [32]).
Therefore, µSR experiments provide a clear and unambiguous signal of long range order.
Furthermore, the magnetic susceptibility measurements can be dominated by magnetic
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impurities and, so, it is desirable to have a test of intrinsic magnetic order. µSR provides
this, as it is a volume probe; muons stop throughout the bulk of a sample and, therefore,
can provide volume fraction information. Moreover, muons do not require hydrogen-
containing samples to be deuterated, which makes µSR a more convenient technique for
studying nitronyl nitroxide magnets in comparision to neutron scattering.

The MuSR spectrometer at the ISIS Pulsed Neutron and Muon Facility based at
the Rutherford Appleton Laboratory was used to perform the µSR experiments. This
spectrometer is equipped with a dilution refrigerator. In the experiment, spin-polarized
positive muons (µ+, momentum 28 MeV/c) were implanted into an array of small crystals
of DNPNN that we prepared according to the method described in [21]. Our sample
contained a mixture of crystals with different handedness, however one would not expect a
µSR experiment to be able to distinguish between the samples that are mirror images of each
other. The muons stop quickly (in <10−9 s), without a significant loss of spin-polarization.
The observed quantity is the time evolution of the average muon spin polarization Pz(t),
which can be inferred [22–25] via the asymmetry in the angular distribution of emitted
decay positrons, being parameterized by an asymmetry function A(t) that is proportional
to Pz(t). Figure 2 shows two representative spectra for our sample of DNPNN. In the higher
temperature data, a relaxing signal is observed, which is consistent with spin fluctuations,
but not magnetic order. However, below TC, an oscillatory signal develops that contains
two distinct frequency components (that are apparent from the beating pattern observed in
the 0.65 K data in Figure 2). This identifies the presence of bulk long range magnetic order
in the sample.
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Figure 2. Example µSR spectra for DNPNN measured above and below the magnetic transition.

The µSR data are well described by the fitting function

A(t) =

[
2

∑
i=1

Aie−Λit cos(2πνit)

]
+ A3e−σ2t2

+ Abg, (1)

where Λi is a relaxation rate and νi is a muon precession frequency (that is equal to
γµBi/2π, with Bi being the magnetic field at the ith muon site, and γµ = 2π × 135.5 MHz
T−1 being the muon gyromagnetic ratio), and Abg as the background contribution from
those muons that stop outside the sample. The ratio of A1 to A2 was fixed across the
temperature range (with A2/A1 ≈ 3) although there is some temperature dependence
in the total oscillatory amplitude A1 + A2 in our fits. In addition to the two oscillatory
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components, there is also a small Gaussian contribution (amplitude A3 and relaxation
rate σ) of unknown origin, although such components are commonly found in organic
and molecular magnets [26]. These fits allow the extraction of the precession frequencies
as a function of temperature, and these are plotted in Figure 3a. Their magnitudes, both
reaching ≈ 1 MHz as T → 0, are typical for precession signals that are measured in
nitronyl nitroxide magnets [8–13], which result from a relatively dilute array of spin- 1

2
moments, one per radical molecule. Both of the precession frequencies follow a typical
temperature dependence for a magnetic order parameter and that can be fitted using the
phenomenological function ν(T) = ν(0)(1 − (T/TC)

α)β (the best fit parameters given
in Table 1) and they provide a well constrained estimate of the critical temperature as
TC = 1.105(1) K, which is consistent with the earlier measurements using magnetic
susceptibility and heat capacity [21]. The value of α, which is averaged over the two
frequencies, is ≈1.5, as expected for magnons in a three-dimensional ferromagnet, so one
can speculate that there are some structure factors that affect the sensitivity of two different
sites to an additional antiferromagnetic component. Although the statistical error on our
determination of TC is 1 mK, the possible thermal offsets and calibration errors could lead
to an uncertainty, which is an order of magnitude greater, and so our final determination of
TC from these measurements is 1.10(1) K.

Table 1. Parameters for fitting the temperature dependence of the precession frequencies to
ν(T) = ν(0)(1− (T/TC)

α)β.

Parameter Frequency 1 Frequency 2

TC (K) 1.105(1) 1.104(1)
ν(0) (MHz) 1.21(2) 1.37(2)

α 1.03(6) 1.96(14)
β 0.41(1) 0.37(1)

ν i
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Figure 3. (a) Temperature evolution of the precession frequencies of the µSR spectra in DNPNN for
T < TC from fits to Equation (1). (b) The ratio of the frequencies ν1 and ν2. (c) A scaling plot of the
frequencies ν1 and ν2 in the critical regime.

Figure 3a also reveals a surprising feature, namely that the two precession frequencies
do not follow exactly the same temperature dependence. Although they both collapse to
zero at TC, they approach the same limit as T → 0, but become increasingly different as
T → TC. This can be very clearly seen by plotting the ratio of the two frequencies as a
function of temperature, as shown in Figure 3b. It is common in µSR data to find more
than one frequency in the ordered state, but the individual frequencies usually follow the
same temperature dependence, since they all are expected to be proportional to the order
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parameter, and so should only differ by a temperature-independent scaling factor. We
return to this point in the following section.

Close to the transition, the two frequencies are expected to follow a scaling law
ν(T) ∝ M(T) ∝ (TC − T)β, where M(T) is the magnetization (or staggered magnetization
for an antiferromagnet) and β is a critical exponent. The value of β can be crudely extracted
using the phenomenological function that is discussed above, but a better estimate is
obtained by focussing on the data measured close to the transition using the scaling plot
that is shown in Figure 3c. This shows that scaling behaviour is followed well in the region
TC− T � 1 and it yields β = 0.40(2) for the higher frequency and β = 0.41(2) for the lower
frequency; hence, the two values are consistent with one another within error (and slightly
larger than 0.37, the value obtained for frequency 2 by the less reliable phenomenological
fit listed in Table 1). This is close to the value that is expected for the three-dimensional
Heisenberg model (β = 0.369 [33]). It is also much larger than the value that is found for a
chiral antiferromagnetic layered molecular magnet [34]. We note that our measured value
is even closer to the theoretical value for the O(4) model (β = 0.39 [35]), although the link
with such a model is not clear.

We carried out density functional theory (DFT) calculations to understand the nature
of the muon stopping sites [36]. The calculations were carried out using the MuFinder
software [37] and the plane-wave-based code CASTEP [38] while using the local density
approximation. Muons, which were modelled by an ultrasoft hydrogen pseudopotential,
were initialised in range of low-symmetry positions and the structure was allowed to relax
(keeping the unit cell fixed) until the change in energy per ion was less than 2× 10−5 eV. We
used a cutoff energy of 545 eV and a 1× 1× 1 Monkhorst-Pack grid for k-point sampling.
The calculations were made on both the unit cell and a supercell in order to check for any
self-interaction effects between the muons.

The lowest-energy diamagnetic muon sites are found around 1 Å from those oxygen
atoms that are bonded to the five-membered ring in the DNPNN molecule. Sites that are
close to the nitrogen atoms on these rings are also stabilised, but they are found around
0.55 eV higher in energy. In addition, sites close to the aromatic ring are also stable, although
these are found around 0.45 eV high in energy than the oxygen sites. The calculations
were repeated with muonium implanted instead of the bare muon and leading to a very
similar range of sites with slightly different energies. The oxygen site is still found to be
the lowest-energy configuration.

3. Discussion

The demonstration of long range order below 1.10(1) K in DNPNN is the main result
of this study. This value can be compared with other quasi-one-dimensional organic
ferromagnets (all of which are driven into long-range three-dimensional order due to the
weak interchain interactions), and some selected values are included in Table 2. These show
that DNPNN can be considered a to be fairly good approximation to a one-dimensional
ferromagnet due to its relatively low value of kBTC/J (the quoted value of J is obtained from
heat capacity measurements [21]), but, when compared to other examples, the interchain
interactions are still significant.
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Table 2. Magnetic properties of selected one-dimensional ferromagnets. p-NPNN = para-
nitrophenyl nitronyl nitroxide, Me = CH3, DMSO = C2H6SO, p-CDTV = 3-(4-chlorophenyl)-1,5-
dimethyl-6-thioxoverdazyl, TMSO = C4H8SO and CHAC = C6H11NH3CuCl3, p-CDpOV = 3-(4-
chlorophenyl)-1,5-diphenyl-6-oxoverdazyl, TMCuC = tetramethylammonium copper trichloride,
CHAB = C6H11NH3CuBr3, 2-BiMNN = 2-benzimidazolyl nitronyl nitroxide, F4BiMNN = 2-(4,5,6,7-
tetrafluorobenzimidazol-2-yl)-nitronyl nitroxide (F4BImNN).

Compound Reference J/kB (K) Tc (K) kBTc/J

γ-NPNN [6] 2.15 0.65 0.30
Me3NHCuCl3·2H2O [39] 0.85 0.165 0.19
CuCl2(DMSO) [40,41] 45 4.8 0.11
p-CDTV [42] 6.0 0.67 0.11
CuCl2(TMSO) [40,41] 39 3 0.08
CHAC [43,44] 45–53 2.18 0.04–0.05
p-CDpOV [45] 5.5 0.21 0.038
TMCuC [41,46,47] 30, 45 1.24 0.03–0.04
CHAB [48] 55 1.50 0.027
2-BImNN [49] 22 1.0 0.045
F4BImNN [50] 22 0.72 0.033

DNPNN [21], this work 5.6 1.015 0.18

The different temperature dependence of the two precession frequencies is an in-
triguing feature of the data. This is in stark contrast to many µSR studies of ordered
magnets, where multiple precession frequencies can be observed but all follow the same
temperature dependence, albeit with a different scaling factor. A good example of this is
found in [FeCp∗2][MnCr(ox)3], which consists of layers of bimetallic oxalate that are sepa-
rated by paramagnetic decamethylferrocenium and which that ferromagnetically below
5.17(3) K [51,52]. In this compound, µSR data show three distinct precession signals, pre-
sumably originating from three different muon sites in this rather complex structure, but,
apart from different scaling factors, they all follow the same temperature dependence [53].
This scaling arises because the observed precession frequency is given by γµBdip(rµ)/(2π),
where γµ is the muon gyromagnetic ratio and the dipolar field at the muon site is given by

Bα
dip(rµ) = ∑i Dαβ

i (rµ)mβ
i , a sum over the magnetic ions in the crystal (see e.g., [25]); the

magnetic moment of the ith ion is mi and Dαβ
i (rµ) is the dipolar tensor that is given by

Dαβ
i (rµ) =

µ0

4πR3
i

(
3Rα

i Rβ
i

R2
i
− δαβ

)
, (2)

where Ri ≡ (Rx
i , Ry

i , Rz
i ) = rµ − ri and ri is the position of the ith ion. Thus, if the magnetic

moments in the sample at temperature T take the value mi(T) = mi(0) f (T), where f (T)
is the temperature dependence of the order parameter, the precession frequency that is
corresponding to the jth muon site rµ,j will take the value

νj(T) = νj(0) f (T), (3)

the value of νj(0) being a function of rµ,j, but f (T) being independent of j. Therefore,
the only way in which one can explain two precession frequencies following different
temperature dependences is if the magnetic structure (i.e. the arrangement of magnetic
moments) is itself temperature dependent.

The magnetic moment in nitronyl nitroxide magnets results from the spin density
delocalized over the O–N–C–N–O moiety [54,55]. The calculations of the dipolar field
Bα

dip(rµ) = ∑i Dαβ
i (rµ)mβ

i for the three candidate muon sites were performed, while assum-
ing ferromagnetic order along the c-direction and with a 1µB moment being delocalized
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over the O–N–C–N–O moiety (with equal spin density on the nitrogen and oxygen atoms,
and weak negative spin density on the central carbon, as found in p-NPNN [54]). These
calculations resulted in fields that were an order of magnitude higher than we observe,
due to the fact that there is a very large coupling between the muon and molecule closest
to it. If instead, as found in p-NPNN [8], the muon brings an electron that forms a singlet
state with the molecule to which it is closest, then the magnetic moment on that molecule
will be switched off. Repeating the calculation while assuming this local molecular singlet
state gives values that are closer to the experimental values, although still too large. In-
cluding the contribution from the Lorentz field (BL = µ0M/3) and demagnetizing field
(Bdemag = −NM, where N is the demagnetizing factor, probably somewhere between
≈1/2 and 1), gives a precession frequency ≈ 4.6–4.8 MHz for the lowest-energy state close
to the oxygen, ≈3–4 MHz for the site close to the nitrogen atom, and ≈1.5–3 MHz for
the site that is close to the aromatic ring (the uncertainty in these values reflecting the
uncertainty in N, which is less important for the oxygen site for which the local field is
dominated by a component of the dipolar field perpendicular to the magnetization and,
hence, to the demagnetizing field Bdemag). These frequencies are of the right order of
magnitude, but they are all still too large, perhaps reflecting a magnetic state that is more
complex than simple ferromagnetic order.

It is believed that the dominant exchange interaction in DNPNN is between the spin
density on this O–N–C–N–O moiety on one molecule and the ortho-carbon atom of the
phenyl group in the adjacent, π/2-rotated molecule [21]. This gives rise to one-dimensional
spin chains along the helical molecular packing. In order to produce three-dimensional long
range order, it is the role of the weak coupling between the chains that produces correlations
whose length becomes infinite at TC. It is possible that these weaker interactions, which,
as noted earlier, are still significant in size, might be competing to produce the three-
dimensional ordered state in zero-field, thereby resulting in a helical component to the
ordered state, albeit with a strong ferromagnetic component. If these weaker interactions
were temperature dependent, then the balance of competition could shift, resulting in
changes to the pitch of the helix and, therefore, altering the field measured at the two
different muon sites. Anisotropic (Dzyaloshinskii–Moriya) exchange could be another
possible source of this effect, which can favour spin canting (and, hence, a ferromagnetic
component) in an otherwise antiferromagnetic system. However, in a material that is
composed of only carbon, hydrogen, oxygen, and nitrogen atoms, one would not normally
expect anisotropic exchange (which is mainly due to the spin-orbit interaction) to be
particularly strong. It is also possible that the chiral packing of the molecular units in
crystals of DNPNN may result in noncollinear order. We speculate that it is the finely
balanced competition between these different interchain interactions that results in a strong
temperature sensitivity of the detailed magnetic structure, which results in the differing
temperature dependences being measured at the two distinct muon sites.

4. Conclusions

The µSR results that are presented in this paper confirm the magnetic transition
previously observed [21] in DNPNN, a nitronyl nitroxide magnet with a chiral crystal
structure, to be a bulk effect, a transition to three-dimensional order below 1.10 K. Our
results reveal a two-component precession signal that develops below TC, and only spin
relaxation is observed above the transition. The temperature dependence of the precession
frequencies is unusual and the two frequencies follow markedly different temperature
dependences. Although many nitronyl nitroxide magnets have been studied since the
discovery of ferromagnetism in p-NPNN [4], these results highlight the special nature of
DNPNN that appears to be a particularly interesting example of this family and deserving
of further study.
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Abstract: A new two-dimensional (2D) coordination polymer of the formula {Cu(ox)(4-Hmpz)·1/3H2O}n

(1) (ox = oxalate and 4-Hmpz = 4-methyl-1H-pyrazole) has been prepared, and its structure has been
determined by single-crystal X-ray diffraction. It consists of corrugated oxalato-bridged copper(II)
neutral layers featuring two alternating bridging modes of the oxalate group within each layer,
the symmetric bis-bidentate (µ-κ2O1,O2:κ2O2′ ,O1′ ) and the asymmetric bis(bidentate/monodentate)
(µ4-κO1:κ2O1,O2:κO2′ :κ2O2′ ,O1′ ) coordination modes. The three crystallographically independent
six-coordinate copper(II) ions that occur in 1 have tetragonally elongated surroundings with three
oxygen atoms from two oxalate ligands, a methylpyrazole-nitrogen defining the equatorial plane, and
two other oxalate-oxygen atoms occupying the axial positions. The monodentate 4-Hmpz ligands
alternatively extrude above and below each oxalate-bridged copper(II) layer, and the water molecules
of crystallization are located between the layers. Compound 1 exhibits a fast and selective adsorption
of methylamine vapors to afford the adsorbate of formula {Cu(ox)(4-Hmpz)·3MeNH2·1/3H2O}n (2),
which is accompanied by a concomitant color change from cyan to deep blue. Compound 2 transforms
into {Cu(ox)(4-Hmpz)·MeNH2·1/3H2O}n (3) under vacuum for three hours. The cryomagnetic study
of 1–3 revealed a unique switching from strong (1) to weak (2 and 3) antiferromagnetic interactions.
The external control of the optical and magnetic properties along this series of compounds might
make them suitable candidates for switching optical and magnetic devices for chemical sensing.

Keywords: copper; oxalate; pyrazole; crystal structure; 2D coordination polymers; magnetic proper-
ties; sorption properties; amine sensing

1. Introduction

The design and synthesis of molecule-based multifunctional magnetic materials has
opened new possibilities in the field of molecular magnetism [1,2]. The goal of this re-
search is to explore new classes of compounds that combine two (or more) chemical and
physical properties, besides the magnetic ones, which are of fundamental importance for
industrial and technological applications [3–11]. New magnetic phenomena would arise
from the synergy between these coexisting properties (magnetic second harmonic gener-
ation, magneto-chiral dichroism, or multiferroicity), which could eventually be further
modified by the application of external stimuli (temperature, pressure, light, or chemical an-
alytes) [10]. Such a fruitful avenue of molecular magnetism was initiated half a decade ago
by Peter Day’s pioneering work on polyhalide metal salts with inorganic and organic (TTF
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and BEDT-TTF derivatives) cations as examples of purely inorganic and inorganic–organic
hybrid molecular magnetic materials that led to a unique class of magnetic molecular con-
ductors [3,4,7]. Several research groups are currently exploring this method of acquiring
new types of potentially switchable, molecule-based, multifunctional magnetic materials.
Chiral and luminescent magnets; non-linear optics (NLO) magnets and multiferroics; pro-
tonic and electronic magnetic conductors; spin crossover or valence tautomeric magnets;
and thermo-, piezo-, photo-, or chemoswitchable porous magnets constitute some illus-
trative examples. The addressing of these multifunctional molecular magnetic materials
on thin films and surfaces, or their shaping as nanoparticles or nanocrystals, is mandatory
for their use in nanoscience and nanotechnology in the near future. In fact, they should be
integrated into devices to realize their potential applications, crossing the bridge between
fundamental science and cutting-edge technological products [10].

Magnetic coordination polymers have become one of the most challenging issues
among this diverse class of multifunctional molecule-based magnetic materials due to
their structural tunability and potentially switchable chemical (sorption, sensing, redox,
or catalytic) and physical (optical, thermal, magnetic, or conducting) properties [12–22].
This particular class of inorganic–organic hybrid porous materials, also referred to as
metal–organic frameworks (MOFs), have emerged as suitable sensory materials for the
detection and monitoring of gases and vapors from volatile organic compounds (VOCs) of
industrial, medical, or environmental interest [23–34]. A major goal in the area of magnetic
MOFs is to tune their optical, electronic, and/or magnetic properties by the inclusion of
selected guests that are adsorbed through simple chemi- or physisorption processes [35–47].
Among the target molecules, ammonia, or its biogenic amine (BA) derivatives, from the
simple methyl- and trimethylamine to the more complex tetramethylene- (putrescine) and
pentamethylenediamine (cadaverine), are of particular interest for the future applications
of magnetic coordination polymers in the chemical sensing of VOCs resulting from in-
dustrial procedures or food degradation [48–60]. Due to their unique multiresponsive
and multifunctional character, magnetic MOFs are good alternatives to organic polymeric
materials and their metal composites, envisaging the substitution of metal- and metal
oxide-based commercial chemiresistive BA sensors, which are currently used in industrial
process management and food quality control [54].

Our strategy in this field is based on the use of oxalate and pyrazole derivatives as
bridging and terminal ligands, respectively, toward copper(II) ions for the preparation
of heteroleptic copper(II) coordination polymers [61–63]. In fact, oxalate is a versatile
polyatomic ligand because of the great number of coordination modes that it can adopt in
its heteroleptic copper(II) complexes with pyrazole derivatives, depending on the steric
and/or electronic effects of the pyrazole substituents [61]. Moreover, it is an efficient
mediator of magnetic interactions between copper(II) ions when acting as a bridge, with
the strength and nature of these interactions, either ferro- or antiferromagnetic, depending
on the coordination mode of the oxalate bridge and on the geometry at the copper(II)
ions [62,63]. Herein we focus on the synthesis and spectroscopic and magneto-structural
characterization of a novel oxalato-bridged two-dimensional (2D) copper(II) coordination
polymer of formula {Cu(ox)(4-Hmpz)·1/3H2O}n (1) (4-Hmpz = 4-methyl-1H-pyrazole),
together with a preliminary study on its sorption properties toward polymethyl-substituted
amines with different steric and/or electronic effects. Our goal is to investigate the influence
of the number of methyl substituents on the adsorption behavior and eventually on the
optical and magnetic properties of the resulting methylamine adsorbates of the formulae
{Cu(ox)(4-Hmpz)·3MeNH2·1/3H2O}n (2) and {Cu(ox)(4-Hmpz)·MeNH2·1/3H2O}n (3). The
color change and modification of the magnetic properties that 1 exhibits upon the selective
adsorption of methylamine makes it a new prototype for a bimodal optical (colorimetric)
and magnetic sensor for the selective vapor detection of biogenic amines.
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2. Materials and Methods
2.1. Materials

Oxalic acid (H2ox), sodium oxalate (Na2ox), 4-Hmpz, copper(II) perchlorate hexahy-
drate, 33% methylamine, dimethylamine, and trimethylamine solutions in absolute ethanol,
and triethylamine were of laboratory grade and were used as received.

2.2. Preparations of 1 and Its Methylamine Adsorbates 2 and 3
2.2.1. {Cu(ox)(4-Hmpz)·1/3H2O}n (1)

An aqueous solution (15 mL) of 4-Hmpz (0.123 g, 1.5 mmol) was added dropwise to
an aqueous solution (20 mL) of copper(II) perchlorate hexahydrate (0.370 g, 1.0 mmol).
Na2ox (0.134 g, 1.0 mmol) dissolved in a hot aqueous solution (10 mL) was added dropwise
to the above solution. The resulting sky blue mixture was stirred for 30 min under gentle
warming. A pale blue polycrystalline solid of 1 that separated was filtered off and air-dried
(0.151 g, 65% yield). Anal. calcd for C6H6N2CuO4·1/3H2O (MW = 239.7 g mol−1): C,
30.07; H, 2.80; N, 11.69%. Found: C, 29.27; H, 2.75; N, 11.65%. IR (KBr/cm−1): 3496w
[υ(O–H) from water], 3404m [υ(N–H) from 4-Hmpz], 3189w and 2926w [υ(C–H) from
4-Hmpz], 1706s, 1651s and 1599vs [υas(CO) from ox], 1358m, 1317w and 1297s [υs(CO)
from ox] and 820m and 803m [δ(OCO) from ox]. When using an aqueous solution (10 mL)
of H2ox (0.045 g, 0.5 mmol) and Et3N (0.14 mL, 1.0 mmol) instead of sodium oxalate, a small
amount of tiny pale greenish blue platelets of 1, suitable for X-ray analysis, were grown by
slow evaporation of the filtered aqueous solutions upon standing at room temperature for
several days.

2.2.2. {Cu(ox)(4-Hmpz)·3MeNH2·1/3H2O}n (2)

A polycrystalline sample of 1 (0.120 g, 0.5 mmol) was placed in a Schlenk flask
connected to an argon current that had previously flowed through a bubbler filled with a
33% MeNH2 solution in absolute ethanol (25 mL), and transformed into a deep blue powder
of 2 after 3 h of exposure at room temperature. Anal. calcd for C9H21N5CuO4·1/3H2O
(MW = 332.7 g mol−1): C, 32.48; H, 6.56; N, 21.04%. Found: C, 32.79; H, 6.59; N, 20.99%;
IR (KBr/cm−1): 3497w [(υ(O–H) from water] 3405m [υ(N–H) from 4-Hmpz and MeNH2],
3101w and 2971w [υ(C–H) from 4-Hpmz and MeNH2], 1674vs, 1652s and 1637s [υas(CO)
from ox], 1418s [υ(C–H)bending from MeNH2], 1370m and 1289s [υs(CO) from ox], 928m
[υ(C–N)stretching from MeNH2], and 829m and 807m [δ(OCO) from ox].

2.2.3. {Cu(ox)(4-Hmpz)·MeNH2·1/3H2O}n (3)

Treatment of 2 (0.166 g, 0.5 mmol) under vacuum for 3 h gave a grayish deep blue
powder of 3. Anal. calcd for C7H11N3CuO4·1/3H2O (MW = 270.7 g mol−1): C, 31.05; H,
4.34; N, 15.52%. Found: C, 31.03; H, 4.40; N, 15.37%; IR (KBr/cm−1): 3497w [(υ(O–H) from
water], 3407m [υ(N–H) from 4-Hmpz and MeNH2], 3103w and 2950w [υ(C–H) from Hpmz
and MeNH2], 1675vs, 1652s and 1637s [υas(CO) from ox], 1418s cm−1 [υ(C–H)bending from
MeNH2], 1372m and 1289s [υs(CO) from ox], 927m [υ(C–N)stretching from MeNH2], and
830m and 806m [δ(OCO) from ox].

2.3. Vapor Adsorption Studies

The vapor adsorption kinetic measurements were carried out on different aliquots
containing powdered polycrystalline samples of 1 (0.024 g, 0.1 mmol) at room temperature
in a Schlenk flask connected to an argon current that had previously flowed through a
bubbler filled with either 33% MeNH2, Me2NH, or Me3N solutions in absolute ethanol.
The amine contents were determined by elemental analysis of the corresponding samples
after 1, 6, 20, 60, and 180 min of exposure to the amine-saturated argon flow.

2.4. Physical Techniques

Elemental analyses (C, H, N) were performed by the Servei Central de Suport a la
Investigació Experimental de la Universitat de València. FT-IR spectra were recorded
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on a Nicolet-5700 spectrophotometer as KBr pellets. X-ray powder diffraction (XRPD)
patterns of powdered polycrystalline samples were collected at room temperature on a D8
Avance A25 Bruker diffractometer by using graphite-monochromated Cu-Kα radiation
(λ = 1.54056 Å). Variable-temperature (2.0–300 K) magnetic susceptibility measurements
were carried out with a SQUID magnetometer under applied fields of 5.0 kOe (T > 20
K) and 250 Oe (T < 20 K) to prevent any saturation effect at low temperature. The pow-
dered polycrystalline samples were embedded on n-eicosane and placed in small sealed
plastic bags to prevent any solvent loss during the magnetic measurements. The experi-
mental magnetic susceptibility data were corrected for the diamagnetic contributions of
the constituent atoms and the sample holder, as well as for the temperature-independent
paramagnetism (tip) of the CuII ion (60 × 10−6 cm3 mol−1).

2.5. X-ray Crystallographic Data Collection and Structure Refinement

X-ray crystallographic data for 1 were collected with a Bruker-AXS SMART CCD
diffractometer at 98 K using graphite monochromated Cu-Kα radiation (λ = 1.54178 Å).
The crystal selected for data collection, a tiny single-laminar fragment with approximate
dimensions of 0.005 × 0.050 × 0.110 mm, was coated with Paraton oil to prevent any poten-
tial solvent loss, attached to a glass fiber, and quickly transferred under the cold nitrogen
stream of the diffractometer. The Bruker SMART and SAINT softwares were employed
for data collection and integration, respectively. Empirical absorption corrections were
calculated using SADABS [64–66]. The structures were solved by direct methods and sub-
sequently completed by Fourier recycling using the SHELXTL software packages [67,68]
and refined by the full-matrix least-squares refinements based on F2 with all observed
reflections. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms of
the 4-Hmpz ligands were set in calculated positions and refined using a riding model. The
hydrogen atoms on the water molecule of crystallization were located on the ∆F map and
refined with restraints on the O–H and H···H distances, with the thermal factors fixed to
0.05 Å2. The final geometrical calculations and graphical manipulations were performed
using the XP utility within SHELX and the Diamond program [69]. Crystal data for 1 are
summarized in Table 1. Selected bond distances and angles and hydrogen bonds for 1 are
listed in Tables 2 and 3, respectively. The value of Z reported in Table 1 (Z = 12) refers to
the formula {Cu(ox)(4-Hmpz)·1/3H2O}n; the asymmetric unit for 1 comprises three crystal-
lographically independent copper(II) ions with analogous coordination environments, and
one water molecule of crystallization [Z = 4 for {[Cu(ox)(4-Hmpz)]3·H2O}n]. The CCDC
reference number is 2079936.

Table 1. Summary of crystal data and structure refinement for 1.

Formula C6H6.67CuN2O4.33
Fw 239.66

Crystal system Monoclinic
Space group P21/c

a/Å 9.9554(5)
b/Å 9.3037(4)
c/Å 25.2695(12)
β/◦ 94.670(3)

V/Å3 2332.74(19)
Z 12

Dc/g cm−3 2.047
T/K 90(2)

µ/mm−1 3.949
F(000) 1444

Refl. Collected 22,317
Refl. indep. [Rint] 3947 [0.0592]

Refl. obs. [I > 2σ(I)] 2956
Goodness-of-fit on F2 1.079
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Table 1. Cont.

R1
a [I > 2σ(I)] (all) 0.0497 (0.0690)

wR2
b [I > 2σ(I)] (all) 0.1309 (0.1422)

∆ρmax, min/e Å−3 0.973 and −0.432
a R1 = ∑||Fo| − |Fc||/∑|Fo|. b wR2 = {∑w(Fo

2 − Fc
2)2/∑[w(Fo

2)2}1/2 and w = 1/[ σ 2(Fo)2 + (mP)2 + nP] with
P = (Fo

2 + 2Fc
2)/3, m = 0.0633 and n = 7.8872.

Table 2. Selected bond distances (Å) and angles (◦), and intra- and inter-chain Cu· · ·Cu distances (Å) for 1 1.
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Overall, the corrugated 2D array noted in 1 is analogous to that earlier reported for 
the parent anhydrous compounds with either the unsubstituted 1H-pyrazole (Hpz) or 
ammonia of formula {Cu(ox)(Hpz)}n (4) [61] or {Cu(ox)(NH3)}n (5) [71], respectively. 
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The close zipper-type packing of parallel disposed corrugated layers in the crystal 
lattice of 1 shows an interlayer separation (d) of 9.9575(4) Å, corresponding to the length 
of the crystallographic a axis (Figure 1c). This value is somewhat greater than that ob-
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the bulkier 4-Hmpz ligand in 1 vs. Hpz in 4; the interlayer separation is as small as 4.19 Å 
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be less than 2.05 g cm−3); moreover, the structure of 1 is capable of accommodating one 
water molecule of crystallization every three copper(II) ions. With respect to 4, the bulk-

Cu(2) environment

Magnetochemistry 2021, 7, x FOR PEER REVIEW 7 of 17 
 

 

Table 2. Selected bond distances (Å) and angles (°), and intra- and inter-chain Cu···Cu distances (Å) for 1 1. 

Cu(1) environment 

 

Cu(2) environment 

 

Cu(3) environment 

 
Cu(1)-N(1)  1.985(4) Cu(2)-N(3)  1.983(4) Cu(3)-N(5)  1.982(4) 
Cu(1)-O(1) 1.969(3) Cu(2)-O(6)   1.961(3) Cu(3)-O(8d)  1.968(3) 
Cu(1)-O(3) 1.984(3) Cu(2)-O(10)  1.998(3) Cu(3)-O(11)  1.993(3) 

Cu(1)-O(4b) 2.010(3) Cu(2)-O(9)  1.978(3) Cu(3)-O(12)  1.991(3) 
Cu(1)-O(5)  2.388(3) Cu(2)-O(7c)   2.561(3) Cu(3)-O(2) 2.527(3) 
Cu(1)-O(2a) 2.428(3) Cu(2)-O(5)   2.317(3) Cu(3)-O(7d)  2.287(3) 

O(1)-Cu(1)-N(1) 97.70(15) O(6)-Cu(2)-N(3) 93.96(15) O(8d)-Cu(3)-N(5) 95.18(15) 
O(1)-Cu(1)-O(2a) 75.08(12) O(6)-Cu(2)-O(5) 78.54(12) O(8d)-Cu(3)-O(7d) 79.09(12) 
O(1)-Cu(1)-O(5) 94.19(12) O(6)-Cu(2)-O(7c) 88.96(12) O(8d)-Cu(3)-O(2) 91.07(12) 
O(1)-Cu(1)-O(3) 90.90(13) O(6)-Cu(2)-O(9) 91.76(13) O(8d)-Cu(3)-O(12) 89.94(13) 

O(1)-Cu(1)-O(4b) 172.64(13) O(6)-Cu(2)-O(10) 176.00(13) O(8d)-Cu(3)-O(11) 173.95(13) 
O(3)-Cu(1)-N(1) 170.77(15) O(9)-Cu(2)-N(3) 173.60(14) O(12)-Cu(3)-N(5) 174.88(14) 
O(3)-Cu(1)-O(5) 88.91(12) O(9)-Cu(2)-O(7c) 83.13(11) O(12)-Cu(3)-O(2) 87.89(11) 

O(3)-Cu(1)-O(2a) 86.76(12) O(9)-Cu(2)-O(5) 86.99(12) O(12)-Cu(3)-O(7d) 91.32(12) 
O(3)-Cu(1)-O(4b) 83.28(13) O(9)-Cu(2)-O(10) 84.32(13) O(11)-Cu(3)-O(12) 84.10(13) 
N(1)-Cu(1)-O(5) 93.76(14) N(3)-Cu(2)-O(7c) 94.10(13) N(5)-Cu(3)-O(2) 91.81(14) 

N(1)-Cu(1)-O(2a) 92.22(14) N(3)-Cu(2)-O(5) 96.95(14) N(5)-Cu(3)-O(7d) 89.84(14) 
N(1)-Cu(1)-O(4b) 87.87(15) N(3)-Cu(2)-O(10) 90.00(14) N(5)-Cu(3)-O(11) 90.78(15) 
O(4b)-Cu(1)-O(2a) 100.00(12) O(10)-Cu(2)-O(5) 100.36(12) O(11)-Cu(3)-O(7d) 102.05(12) 
O(4b)-Cu(1)-O(5) 90.22(12) O(10)-Cu(2)-O(7c) 91.39(12) O(11)-Cu(3)-O(2) 87.66(11) 
O(5)-Cu(1)-O(2a) 168.34(11) O(7c)-Cu(2)-O(5) 163.82(11) O(2)-Cu(3)-O(7d) 170.13(11) 

Intrachain Cu-(μ-ox)-Cu Intrachain Cu-(μ4-ox)-Cu Interchain shortest Cu···Cu 
Cu(1)···Cu(1b)  5.2216(13) Cu(1)···Cu(1a)  5.6913(13) Cu(1)···Cu(2)  4.1148(9) 
Cu(2)···Cu(3)  5.1824(9) Cu(2)···Cu(3e)  5.5166(9) Cu(1a)···Cu(3)  4.3324(9) 

1 Symmetry code: (a) = −x + 1, −y + 1, −z + 1; (b) = −x + 1, −y, −z + 1; (c) = −x + 1, y + 1/2, −z + 1/2; (d) = x, y + 1, z; (e) = x, y − 1, z. 

Overall, the corrugated 2D array noted in 1 is analogous to that earlier reported for 
the parent anhydrous compounds with either the unsubstituted 1H-pyrazole (Hpz) or 
ammonia of formula {Cu(ox)(Hpz)}n (4) [61] or {Cu(ox)(NH3)}n (5) [71], respectively. 
Within each layer of 1, the average intrachain copper–copper distances (r) through the 
μ-ox and μ4-ox type bridges are ~5.20 and 5.60 Å, respectively, while the average inter-
chain copper–copper separation (r’) across μ4-ox is ~4.22 Å (see Table 2). These values 
agree with those noted in the crystal structures of 4 (r ~ 5.52 and 5.55 Å; r’ ~ 4.24 Å) [7] 
and 5 (r ~ 5.22 and 5.63 Å; r’ ~ 4.19 Å) [71]. 

The close zipper-type packing of parallel disposed corrugated layers in the crystal 
lattice of 1 shows an interlayer separation (d) of 9.9575(4) Å, corresponding to the length 
of the crystallographic a axis (Figure 1c). This value is somewhat greater than that ob-
served in 4 [d = 8.5694(6) Å] [61], a feature which is as expected because of the presence of 
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Intrachain Cu-(µ-ox)-Cu Intrachain Cu-(µ4-ox)-Cu Interchain shortest Cu· · ·Cu
Cu(1)· · ·Cu(1b) 5.2216(13) Cu(1)· · ·Cu(1a) 5.6913(13) Cu(1)· · ·Cu(2) 4.1148(9)
Cu(2)· · ·Cu(3) 5.1824(9) Cu(2)· · ·Cu(3e) 5.5166(9) Cu(1a)· · ·Cu(3) 4.3324(9)
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Table 3. Hydrogen bond distances (Å) and angles (◦) for 1 1,2.

D-H· · ·A d(D-H) d(H· · ·A) d(D· · ·A) <(DHA)

N(2)-H(2)· · ·O(1w) 0.88 1.8 2.662(5) 166.1
O(1w)-H(1w1)· · ·O(12) 0.956(10) 1.923(19) 2.828(5) 157(4)
O(1w)-H(1w2)· · ·O(3a) 0.958(10) 1.796(12) 2.752(5) 176(4)

N(4)-H(4)· · ·O(11f) 0.88 1.99 2.800(5) 152.1
N(6)-H(6)· · ·N(1a) 0.88 2.46 3.296(6) 158.2

1 D = donor and A = acceptor. 2 Symmetry code: (a) = −x + 1, −y + 1, −z + 1; (f) = −x + 1, y − 1/2, −z + 1/2.

3. Results and Discussion
3.1. Synthesis and General Physicochemical Characterization of 1–3

1 was prepared by the straightforward reaction of sodium oxalate with copper(II)
perchlorate and 4-Hmpz in a 1:1:1.5 ox:Cu(II):4-Hmpz molar ratio at room temperature. It
was isolated as a pale blue-greenish polycrystalline powder in a reasonable yield. A few
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X-ray quality crystals of 1 as thin light blue plates were grown by the slow evaporation
of aqueous solutions where a mixture of oxalic acid and triethylamine in a 1:2 molar ratio
was used instead of sodium oxalate. When a polycrystalline sample of 1 was reacted with
MeNH2 vapor, it transformed into 2, which, in turn, became 3 after placing 2 under a
vacuum (see Experimental Section). The chemical identity of 1 was determined by X-ray
diffraction on single crystals, and the purity of the bulk was confirmed by XRPD (Figure S1
in the Supplementary Material). Unfortunately, all our attempts to solve the X-ray crystal
structure of 2 were unsuccessful because the crystallinity retention upon methylamine
adsorption was very poor (see discussion below). The methylamine adsorbates were then
characterized by elemental analysis and IR spectroscopy. In fact, the IR spectra of 2 and
3 are quasi-identical, suggesting a very close structure for both methylamine adsorbates
(Figure S2 in the Supplementary Material).

Absorptions at 3496m [υ(O–H)], 3404m [υ(N–H)], 3190w, and 2926w cm−1 [υ(C–H)]
in the IR spectrum of 1 indicated the presence of water and 4-Hpmz in this compound
(Figure S2a). The set of peaks assigned to the oxalate group at 1705s, 1651s, and 1599vs
[υas(CO)]; 1358m, 1317w, and 1297s [υs(CO)]; and 820m and 803m cm−1 [δ(OCO)] pointed
out the coexistence of different bridging modes of this ligand in 1, as confirmed by the
X-ray structure (see below). The occurrence of a strong absorption peak at 1418 cm−1 and a
medium intensity peak at 927 cm−1 [υ(C–H)bending and υ(C–N)stretching modes] in the IR
spectra of 2 and 3 were indicative of the presence of MeNH2 in them (Figure S2b,c) [70].
Finally, the set of quasi-identical absorptions peaks attributed to the oxalate group in 2
[υas(CO) = 1674vs, 1652s and 1637s cm-1, υs(CO) = 1370m and 1289s cm-1, and δ(OCO)
= 829m and 807m cm-1] and 3 [υas(CO) = 1675vs, 1652s and 1637s cm-1, υs(CO) = 1372m
and 1289s cm-1, and δ(OCO) = 839m and 806m cm−1] in their IR spectra suggests that this
ligand exhibits the same bridging modes in them.

3.2. Description of the Structure of 1

1 crystallizes in the monoclinic space group P2(1)/c, with three crystallographically
independent copper(II) ions bound to a 4-Hmpz ligand of each one, two complete and
two half-oxalato bridges, and one water molecule of crystallization in the asymmetric
unit (Figure 1a). Its structure consists of corrugated oxalato-bridged copper(II) layers
growing in the crystallographic bc plane (Figure 1b). The monodentate 4-Hmpz ligands
alternatively extrude above and below each oxalato-bridged copper(II) layer (Figure 1c);
the water molecules of crystallization are anchored to the layers via quite strong H-bonds
and confined into small hydrophobic cavities arising from the peculiar relative orientation
of the three crystallographically independent 4-Hmpz moieties (Figures 1–3).

Each layer is made up by zig-zag chains of six-coordinate, axially elongated oc-
tahedral copper(II) ions, bridged by regularly alternated symmetric bis-bidentate (µ-ox-
κ2O1,O2:κ2O2′ ,O1′ ) and asymmetric bis-(bidentate/monodentate) (µ4-ox-κO1:κ2O1,O2:κO2′ :
κ2O2′ ,O1′ ) oxalate anions, featuring four short and two short/four long copper–oxygen
bond distances, respectively (see Figure 1a,b and Table 2). The four short [with the µ-ox, val-
ues in the range 1.978(3)–2.010(3) Å] and two short/two long [with the µ4-ox, values in the
ranges 1.968(3)–1.969(3) and 2.287(3)–2.428(3) Å, respectively] copper-to-oxygen distances
regularly alternate along the chain growing direction of the chain (the crystallographic
b axis), while the two remaining long Cu–O bonds [with the µ4-ox, values in the range
2.388(3)–2.561(3) Å] interconnect neighboring chains along the crystallographic c axis, fol-
lowing an ABBABB sequence (Figure 1b). A type chains only contain Cu(1) ions and the two
centrosymmetric oxalate ions [µ4-O(1,2)C(1/1a)O(1a,2a), symmetry code: (a) = −x + 1, −y
+ 1, −z + 1] and [µ-O(3,4)C(2/2b)O(3b,4b); (b) = −x + 1, −y, −z + 1], while those of B type
feature regularly alternating Cu(2) and Cu(3) ions, bridged by the non-centrosymmetric
oxalate groups, [µ4-O(5,8)C(7/8)O(6,7)] and [µ-O(9,11)C(13/14)O(10,12)].
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Figure 1. (a) Perspective view of a fragment of the neutral copper(II) layer of 1 with selected
atom numbering. Thermal ellipsoids are drawn at the 30% probability level. (b) Projection of one
corrugated oxalato-bridged copper(II) layer of 1 along the crystallographic a axis (terminal pyrazole
ligands are omitted for clarity). The thinner solid lines represent the long Cu–O bond distances. (c)
Perspective view of the crystal packing of 1 along the crystallographic c axis showing the zipper-
type interpenetration of two parallel disposed layers. Hydrogen bonds are shown as dashed lines.
Symmetry code: (a) = −x + 1, −y + 1, −z + 1; (b) = −x + 1, −y, −z + 1; (c) = −x + 1, y + 1/2, −z + 1/2;
(d) = x, y + 1, z; (e) = x, y − 1, z.

Figure 2. (a) Projection of a fragment of the crystal packing of 1 along the crystallographic c axis,
showing two interdigitated layers in different colors. N-H· · ·Ow, N-H· · ·Oox and Ow· · ·Oox type
H-bonds are depicted as dashed lines. (b) Projection of the hydrophobic interlayer region [orange box
in (a)] along the crystallographic a axis, with the weak inter-pyrazole intralayer N-H· · ·N H-bond
in evidence. (c) Same as (b), space-filling representation. (d) Detailed side view of a fragment of
the interlayer region [sky blue box in (a)] showing the existence of very small hydrophobic cavities
arising from the peculiar relative orientation of the three crystallographically independent 4-Hmpz
moieties in 1. (e) Another zoomed-in view of the interlayer region along the crystallographic c (left)
and b (right) axes, evidencing the well-defined position of the water molecules of crystallization;
space-filling representation.
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Figure 3. (a) A view of the three-fold H-bonding motif involving the water molecule of crystallization
in 1. (b) A view of the H-bonds established between the water molecules of crystallization and each A
type chain in 1. (c) Projection along the crystallographic a axis of a fragment of one oxalate-copper(II)
layer, with A and B type chain fragments shown in different colors for clarity, aiming at illustrating
both intra- and inter-chain (intralayer) H-bonding interactions that involve the water molecule of
crystallization. H-bonds are depicted as dashed lines.

The tetragonally elongated surroundings of each six-coordinate copper(II) ion in 1
comprise three oxygen atoms from two oxalate ligands and a methylpyrazole-nitrogen
atom, defining the equatorial plane and two other oxalate-oxygen atoms occupying the
axial positions (Figure 1a). The two axial positions at each copper(II) center correspond,
thus, to either an intra- or an inter-chain Cu–O bond (Figure 1b and Table 2).

Overall, the corrugated 2D array noted in 1 is analogous to that earlier reported
for the parent anhydrous compounds with either the unsubstituted 1H-pyrazole (Hpz)
or ammonia of formula {Cu(ox)(Hpz)}n (4) [61] or {Cu(ox)(NH3)}n (5) [71], respectively.
Within each layer of 1, the average intrachain copper–copper distances (r) through the µ-ox
and µ4-ox type bridges are ~5.20 and 5.60 Å, respectively, while the average interchain
copper–copper separation (r’) across µ4-ox is ~4.22 Å (see Table 2). These values agree with
those noted in the crystal structures of 4 (r ~ 5.52 and 5.55 Å; r’ ~ 4.24 Å) [7] and 5 (r ~ 5.22
and 5.63 Å; r’ ~ 4.19 Å) [71].

The close zipper-type packing of parallel disposed corrugated layers in the crystal
lattice of 1 shows an interlayer separation (d) of 9.9575(4) Å, corresponding to the length of
the crystallographic a axis (Figure 1c). This value is somewhat greater than that observed
in 4 [d = 8.5694(6) Å] [61], a feature which is as expected because of the presence of the
bulkier 4-Hmpz ligand in 1 vs. Hpz in 4; the interlayer separation is as small as 4.19 Å in
5, where ammonia is the terminal ligand [71]. Indeed, the value of the calculated density
for 1 is slightly lower (~2.05 g cm−3) than that reported for 4 (~2.16 g cm−3), in spite of
the fact that the X-ray data collection of 1 was done at 98 K (its density at RT would likely
be less than 2.05 g cm−3); moreover, the structure of 1 is capable of accommodating one
water molecule of crystallization every three copper(II) ions. With respect to 4, the bulkier
4-Hmpz moiety in 1 would induce some sort of improvement on the porosity of this family
of structures, although to a quasi-negligible extent.

The closely packed 4-Hmpz ligands extruding above and below each oxalato-bridged
copper(II) layer form a thick hydrophobic interlayer region (Figure 2). One of the three
acidic N–H groups is tightly hydrogen bonded to the water molecule of crystallization;
the remaining two are involved in moderate to very weak intralayer N–H· · ·Oox and
N–H· · ·N type interactions, respectively (Figure 2 and Table 3). No interlayer H-bonds
involving the acidic N–H moieties are noted, the close zipper-type packing of the parallel
disposed neighboring layers being due only to hydrophobic interactions (Figure 2b,c).

The location and crystallographic occupation of the water molecules in the structure
deserve particular attention. A projection of the crystal packing of 1 along the crystal-
lographic c axis (Figures 1c and 2a) appears to indicate the possible existence of tiny
channels running along the same axis, suitable for hosting the solvent of crystallization.
A deeper look at those supposed channels, however, confirms the non-porous character
of the structure (Figure 2d). Only one of the three independent 4-Hmpz orientations is
compatible with the co-existence of the terminal pyrazole ligand and the water molecules
of crystallization within the hydrophobic interlayer region. As evidenced in Figure 2d,e,
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there are no channels along the c axis, but only small cavities where one water molecule
every three copper atoms would (and do) fit just perfectly.

The well-defined location of these tiny cavities coincides with the alternating up
and down sites very close to each oxalato-copper(II) layer. Indeed, the confined water
molecules of crystallization in 1 are bound to the hydrophilic layers via three strictly
intralayer hydrogen bonds (Table 3 and Figure 3a,c). Two of such interactions, involving
the water oxygen atom as either a donor [O1w–H1w2· · ·O3a = 2.752(5) Å; (a) = −x + 1,
−y + 1, −z + 1] or acceptor [N2–H2· · ·O1w = 2.662(5) Å] toward a bis-bidentate oxalate
or an acidic N-H moiety, respectively, are specifically associated to only A type chains
(Figure 3b). However, the third interaction involving the water oxygen atom as a donor
toward a bis-(bidentate/monodentate) oxalate group [O1w–H1w1· · ·O12 = 2.828(5) Å] is
established between the adjacent A and B chains.

3.3. Sorption Properties

The sorption properties of 1 toward methylamine (MA), dimethylamine (DMA),
and trimethylamine (TMA) have been investigated (see the Experimental Section). The
total loading after 3 h of exposure to an argon flow saturated with amine vapor at room
temperature, expressed as the amine-to-copper molar ratio, decreased from three (MA) to
one (DMA), and then to 0.1 (TMA) (Figure 4a). A remarkable color change under amine
vapor was noted for both MA and DMA, being basically imperceptible for TMA (even
after days of exposure), a feature which is consistent with the calculated amine loading.
The kinetics of the methylamine adsorption is rather rapid for MA, and slightly slower
for DMA (Figure 4a). In the case of MA, a fast loading occurs within the first minutes of
exposure, with the saturation almost being reached after ~20 min.

Figure 4. (a) Time profiles for the adsorption of MA (•), DMA (�), and TMA ( �) vapors by 1 at room
temperature. The solid lines are only eye-guides. (b) XRPD of 1 (red line) and the MA adsorbates
2 (green line) and 3 (blue line). The bold black line represents the calculated XRPD of 1 from the
single-crystal X-ray analysis.

The variation in the adsorption thermodynamics and kinetics along this series con-
trasts with those of the basicity and volatility of each amine, as expressed by the values
of the basicity constant [pKb = 3.35 (MA), 3.27 (DMA), and 4.20 (TMA) at 25 ◦C] and
vapor pressure [vp = 2650 (MA), 1520 (DMA), and 1610 mm Hg (TMA) at 25 ◦C] [72]. The
observed trend in the adsorption efficiencies (TMA < DMA < MA) does not coincide with
the reported ones for either the basicity (TMA < MA < DMA) or the volatility (DMA < TMA
< MA). This selective amine adsorption behavior, depending on the number of methyl
substituents, would likely reflect both the steric constraints and the different coordination
properties of the different polymethyl-substituted amines.
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Focusing on the MA adsorbates, a dramatic color change of 1 from sky to deep blue
rapidly occurs upon methylamine adsorption (see Figure 5) to finally give the methylamine
adsorbate 2 after 3 h of exposure to an argon flow saturated with MA vapor at room
temperature. This transformation is accompanied by an important change in their XRPD
patterns, which suggests the occurrence of a major structural rearrangement upon the
adsorption of methylamine (Figure 4b). Otherwise, 2 easily loses two of the three MA
molecules under vacuum for 3 h at room temperature to give the grayish deep blue MA
adsorbate 3, the process being accompanied by no significant change in the XRPD pattern
of 3 vs. 2 (Figure 4b).

Figure 5. Sequential snapshots showing the color change of 1 under MA vapors.

Overall, these features suggest that one up from three methylamine molecules in 2
would coordinate each copper(II) ion, triggering a rearrangement of its original coordina-
tion environment, while the remaining two would possibly interact with the acidic N–H
pyrazole moieties through hydrogen bonding and/or with the 4-Hmpz ligands as a whole
via hydrophobic interactions.

According to this analysis, 2 would be alternatively formulated as {Cu(ox)(4-Hmpz)
(MeNH2)·2MeNH2·1/3H2O}n. The uptake capability of 1 toward MA is quite astonishing,
considering the non-porous nature of the compound. The adsorption process is irreversible
and semi-disruptive, meaning that 2 and 3 are not as crystalline as the precursor 1. This is
not surprising, given that the coordination of one MA molecule would be incompatible
with the original oxalato-copper(II) layered network, while the fairly stable incorporation
of two extra MA molecules would contribute to the unsettling of the original zipper-type
close packing. On the other hand, the fact that the water molecule of crystallization is kept
would indicate the persistence of relatively strong hydrogen bonds with the oxalate oxygen
atoms and/or the 4-Hmpz acidic N-H moieties, even after structural rearrangement.

3.4. Magnetic Properties of 1–3

The χM and χMT vs. T plots for 1–3 [χM being the molar magnetic susceptibility per
copper(II) ion] show a concomitant change of the magnetic properties from strong (1) to
weak (2 and 3) antiferromagnetic coupling (Figure 6). Therefore, the χMT values at room
temperature increased from 0.21 cm3 mol−1 K (1) to 0.40 (2) and 0.39 cm3 mol−1 K (3). They
were well or slightly below than that expected for a magnetically isolated spin doublet
(χMT = 0.41 cm3 mol−1 K with g = 2.1). Upon cooling, χMT decreased continuously for 1,
and it vanished around 50 K. In the case of 2 and 3, the values of χMT remained constant
down to 50 (2) and 25 K (3), and then decreased smoothly to reach 0.15 (2) and 0.34 cm3

mol−1 K (3) at 2.0 K (Figure 6a). Besides, χM showed a broad maximum around room

252



Magnetochemistry 2021, 7, 65

temperature for 1, whereas no maximum of the magnetic susceptibility occured for 2 and
3 down to 2.0 K (Figure 6b). Overall, these features support the occurrence of a fast and
complete, irreversible solid-state transformation during the methylamine sorption process.

Figure 6. Temperature dependence of χMT (a) and χM (b) of 1 (#) and the MA adsorbates 2 (�) and
3 (♦). The inset in (b) aims to show how the maximum of χM of 1 (#) occured in the vicinity of 300 K.
The solid lines are the best-fit curves (see text).

Bearing in mind the above results, the analysis of the magnetic susceptibility data for
1–3 was carried out by means of the Hatfield expression derived from the spin Hamiltonian
for an alternating copper(II) chain, H = −J∑(SCu2i·SCu2i-1 + αSCu2i·SCu2i+1) + gβH∑Si
(SCu2i = SCu = 1

2 ) (see Scheme 1), where J and αJ are the two different antiferromagnetic
intrachain coupling parameters (α being the alternation parameter) and g is the average
Landé factor of the copper(II) ions (g = g2i = gCu) [73]. Least-squares fits of the experimental
data gave −J = 322(2) (1), 3.20(2) (2), and 0.56(4) cm−1 (3), with α = 0.02(1) (1), 0.92(1) (2)
and 0.90(1) (3), and g = 2.07(1) (1), 2.06(1) (2) and 2.05(1) (3). The theoretical curves match
very well the experimental ones for all three compounds (solid lines in Figure 6).

The calculated −J value for 1 is comparable to those found for the aforementioned
pyrazole and ammonia analogues 4 and 5 (−J = 312 and 265 cm−1), which possess similar
structural parameters [61,71]. Otherwise, the large decrease of the −J value for 2 and 3
relative to 1 indicates the occurrence of a magnetic orbital reversal upon methylamine
adsorption [74–76], as illustrated in Scheme 1. Hence, the overlap between the d(x2 − y2)-
type magnetic orbitals of the axially elongated octahedral CuII ions varies from very strong
(1) to weak but non-negligible (2 and 3) for a coplanar and a perpendicular disposition of
the metal equatorial planes with respect to the mean plane of the symmetric or asymmetric
bridging oxalate, respectively (Scheme 1a,b). This magnetic switching behavior can likely
be attributed to methylamine coordination to the metal ion in both adsorbates 2 and
3, as earlier found in the related pair of regular µ-oxalatocopper(II) chains of formulae
{Cu(ox)·1/3H2O}n (6) (J =−291 cm−1) and {Cu(ox)(NH3)2·2H2O}n (7) (J =−15.4 cm−1) [74].
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Scheme 1. Illustration of the magnetic coupling model for an alternating copper(II) chain showing
the relative orientation of the magnetic orbitals centered on each copper(II) ion for 1 (a), relative to 2
and 3 (b). The solid and dashed lines represent short and long metal-ligand bonds, respectively.

4. Conclusions

In summary, a new oxalato-bridged copper(II)-pyrazole coordination polymer has
been obtained from the copper(II)-mediated self-assembly of oxalate and 4-Hmpz in water
under mild conditions. This new heteroleptic 2D copper(II) coordination polymer features
a non-porous, interdigitated, zipper-type layered structure with acidic N–H sites from
the terminal 4-methyl substituted pyrazole ligands within the interlayer space, in close
proximity to the main hydrophilic oxalate-copper(II) region. In spite of its very dense
crystal packing, 1 exhibits a fast and selective adsorption for polymethyl-substituted
amines, which is accompanied by a dynamic switching behavior with dramatic changes
in both the color and magnetic coupling following a structural rearrangement upon the
adsorption of methylamine. Such features (structural modulation together with external
control of the optical and magnetic properties), combined with the easy self-assembling
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and potential addressing as thin films over a variety of surfaces, make this novel class of
2D multifunctional magnetic materials suitable candidates for obtaining switching optical
and magnetic devices for chemical sensing. This might allow for system optimization
with a special focus on improving the porosity of the supramolecular 3D network and/or
expanding the coordination capabilities of the metal ion.

Supplementary Materials: The following figures are available online at https://www.mdpi.com/
article/10.3390/magnetochemistry7050065/s1, Figure S1: XRPD pattern from a bulk sample of 1 and
the generated pattern from its X-ray single-crystal diffraction data; Figure S2: IR spectra of 1 (a), 2 (b),
and 3 (c).
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Abstract: In this article, we apply the two-mode vibronic model to the study of the dimeric molecular
mixed-valence cell for quantum cellular automata. As such, we consider a multielectron mixed
valence binuclear d2 − d1–type cluster, in which the double exchange, as well as the Heisenberg-
Dirac-Van Vleck exchange interactions are operative, and also the local (“breathing”) and intercenter
vibrational modes are taken into account. The calculations of spin-vibronic energy spectra and
the “cell-cell”-response function are carried out using quantum-mechanical two-mode vibronic
approach based on the numerical solution of the dynamic vibronic problem. The obtained results
demonstrate a possibility of combining the function of molecular QCA with that of spin switching in
one electronic device and are expected to be useful from the point of view of the rational design of
such multifunctional molecular electronic devices.

Keywords: quantum cellular automata; molecular cell; mixed-valence; electron transfer; double
exchange; magnetic exchange; dimeric mixed valence clusters

1. Introduction

This article is dedicated to the memory of Professor Peter Day with the question posed
to him in 1998 ([1], see image below): “Molecular information processing: Will it happen?”
This question and subsequent discussions in his inimitable manner was focused on the
fundamental issues of the “design and manufacture artificial structures using molecules
that will carry out” the function of storing and processing memory in living organisms.
In his general arguments, Peter Day appealed to common problems of information (see
highlights in the excerpt from the article by Peter Day published in Proc. Royal Inst. Great
Britain) interconnected with the switching processes in a binary systems and discussed the
fundamental limits of computing speed and power dissipation. These ideas presented in
detail along with the discussion of the molecular aspects are in focus of the contemporary
issues in the topic of Quantum Cellular Automata (QCA) and search for the new molecular
materials for the nanoscale devices. In this regard, it is pertinent to note that the Robin and
Day assignment [2] of mixed-valence compounds according to the degree of localization
plays a guiding role in the search of the relevant molecules.

In accordance with the general ideas proposed in the pioneering study by Lent et al. [3],
the electronic QCA devices are based on the square planar cells composed of quantum
dots [3–5]. Two excess electrons captured by a square-planar four-dot cell provide a possi-
bility to encode binary information (0 and 1) in the two antipodal (diagonal) distributions
of the charges. To illustrate encoding and operating with binary information underlying
the actions of electronic devices, a dimeric system can be used, as illustrated in Figure 1.
The dimeric unit can be considered as a “half-cell” from which the “full-cell” (tetrameric
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unit) can be constructed. Figure 1 illustrates a dimeric cell in which the delocalized pair
the mobile electron is evenly distributed between two sites and the two predominantly
localized configurations corresponding to the binary 0 and 1.

Excerpt from the article by Peter Day published in Proc. Royal Inst. Great Britain, v.69. pp.
85–106 (1998).
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Figure 1. Two charge distributions in a two-dot cell or in a dimeric (mixed-valence) MV molecule
with one mobile electron corresponding to the delocalized (unpolarized) configuration and localized
configurations corresponding to binary and 1. The red balls indicate the populated sites and their
sizes symbolize the degree of localization of the mobile electrons.

The functional properties of devices are based on the concept of the action of the
Coulomb forces that can control and transmit the binary information encoded in a cell.
Let us consider the two dimeric cells 2 and 1 in a certain geometry (shown in Figure 2),
one of which has a definite charge configuration (binary 1 in Figure 2), while the second
one is unpolarized. Let us assume that the polarized state of the cell 2 can be induced and
controlled so that this cell can be termed as the “driver cell”. The electrostatic effect of
the driver cell 2 with a given polarization affects the neighboring cell 1 forcing this cell to
acquire polarization 0. The polarization of the cell 1 obeys the action driver cell and in this
way the driver cell can transmit the binary information to the surrounding cells. Thus the
cell 1 can be referred to as the “working cell”.

Figure 2. Scheme of the elementary process of the control of the binary information through the action
of the dimeric driver cell 2 to the working cell 1. Left part shows the initial step of the information
processing: unpolarized driver and unpolarized working cell. Then at the next step the driver gets
polarization corresponding to the binary 1. Finally, the polarized driver cell acts on the unpolarized
working cell and gives rise to its polarization corresponding to binary 0.

By combining such cells, one can obtain different QCA-based devices such as wires,
majority logical gates, etc. QCA can be regarded as alternative to the traditional element
base obtained with the aid of complementary metal–oxide–semiconductor (CMOS) tech-
nology for creating nanoscale devices capable of performing computations at very high
switching rates. The advantages of the QCA devices as compared with CMOS ones are the
smaller size of the devices and lower power consumption, which is a consequence of the
current-less nature of the QCA devices.

As a further development of the concept of QCA based on quantum dots, a new
fruitful idea of usage molecules as cells was proposed (see discussion in Reference [6]
and a short overview in [7]). As natural candidates act as molecular cells, the dimeric
MV molecules with one mobile excess electron and tetrameric MV molecules with two
excess electrons have been proposed, as these bistable systems can encode the binary
information [6]. The scope of this article does not allow to review a wealth of information
on the results of molecular QCA, including the synthesis and study molecular systems,
which are able to act as molecular cells. The reader can find it in references [8–25] and
references thein.

In the systems considered until recently as tetrameric or dimeric cells (in both molec-
ular and quantum dot-based implementations), the excess electrons were assumed to
migrate over the diamagnetic centers (which can be alternatively referred to as “spinless
cores”). The search for molecules that would be suitable for the design of molecular cells
represents a problem whose complexity is caused by the requirements to such cells implied
by their functional purposes, such as ability to encode the binary information and to easily
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control it by varying external field of the driver-cell. In terms of physical concepts, this
can be formulated as the requirement of clearly pronounced property of bistability of the
charge distribution in the working cell, which would ensure binary information is encoded.
Moreover the high polarizability allows operations to be performed with the encoded
information in the working cell by means of variable electric field created by the driver-cell.

To-date, the reported molecules possessing all properties required for the design
of QCA are relatively scarce given that the search and synthesis of suitable molecules
represents a very non-trivial task. At the same, this task lays the core of the design of the
molecular QCA. In this regard, recently we have proposed [26], in order to expand the
class of systems suitable as cells by including MV clusters, by which the excess electrons
move over the network of localized spins (spin cores).

The presence of spin cores in such kind of systems (which here will be conventionally
referred to as magnetic clusters) leads to the appearance of a specific kind of magnetic
interaction, known as double exchange (DE). The DE is a spin-polarization mechanism
resulting in the ferromagnetic spin alignment that occurs in MV clusters, containing
mobile excess electrons, which produce polarization of the localized spins hat, to explain
the ferromagnetic properties of some perovskites (see classical paper [27]. As far as the
magnetic ions are involved, the Heisenberg-Dirac-Van Vleck (HDVV) exchange interaction
between these ions is considered as well. As distinguishable from the traditional cells in
which only charges are employed, the magnetic clusters considered here the spin degrees
of freedom can be involved. Therefore, along with the QCA function proper, an additional
useful functionality can be expected, such as spin switching in the working cell under the
action of the electrostatic field induced by the driver-cell. Actually, the magnetic working
cell has a ground state with a definite full spin that can be changed under the action of the
purely electrostatic field of the magnetic driver cell. This phenomenon has been referred to
as “spin switching” effect.

In the recent short communication [26], only a general idea of using magnetic MV
clusters as cells for QCA devices and spin switchers has been proposed and theoretically
supported in the framework of a simplified model, which takes into account only relevant
spin-spin interactions and electron delocalization. At the same time, a number of topical
issues, related to the theory of cells in which the DE involved has not been discussed, is pro-
vided in reference [26]. In particular, the previously developed two-mode vibronic model of
an one-electron dimeric cell [28] should be generalized to the case of magnetic dimeric cells
exhibiting DE and HDVV exchange forms. The model takes into account the interaction of
an excess electron with both “breathing” local vibrations and the intercenter vibration.

In this article, we consider this problem for the case of the magnetic dimeric cells of
the d2 − d1–type based on the transition metal ions (system in which the electron transfer
occurs over the paramagnetic spin cores d1). Although, the results born much wider
frameworks of applicability. The aim of the present study is to develop the vibronic model
for a free magnetic cell and the cell influenced by the driver cell. We attempted to reveal
the conditions for spin switching under the action of the Coulomb field induced in the
working cell by a neighboring driver-cell. On the basis of the developed model, we discuss
both the spin switching effect and its influence on the cell-cell response function.

2. Magnetic Interactions in a d2 − d1–type Cell

We consider a d2 − d1–type MV dimer A-B (Figure 3), containing two equivalent
paramagnetic centers playing a role of spin cores and an excess electron, migrating between
these cores. We denote the spin of the core (d1 ion) by S0 (S0 = 1/2 in the present case). It
is assumed that we are dealing with the high-spin metal ions so that the spin of d2 ion is
S0 + 1/2 = 1. These two spins are combined to give the total spin S of the dimer, which
takes the values 1/2 and 3/2.
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Figure 3. Mutual disposition of the driver-cell and the working cell, and the two possible electronic
distributions in a pair of interacting dimeric cells shown to explain the physical meaning of the
intercell Coulomb energy u. The sites belonging to the driver-cell and the working cell are primed
and unprimed correspondingly, the site comprising (in a definite electronic distribution) the excess
electron is shown as a red ball.

The electronic Hamiltonian of the dimer is represented as the following matrix defined
for each value of the total spin:

ψA(S, MS) ψB(S, MS)Ĥ(S) =
( −JS(S + 1) + uP2 tS

tS −JS(S + 1)− uP2

)
. (1)

In Equation (1) the basis ψA(S, MS) and ψB(S, MS) defining the 2 × 2-matrix includes
the localized states (symbols A and B), which are characterized by the total spin S and
quantum number of spin projection MS. The off-diagonal matrix elements in Equation (1)
are defined as follows:

tS =
t(S + 1/2)

2S0 + 1
(2)

The value tS can be considered as the spin-dependent electron transfer parameter,
or alternatively, DE parameter (deduced by Anderson and Hasegawa [27]), while t is
the one-electron (bi-orbital) transfer parameter. Linear spin dependence of the transfer
matrix element in Equation (2) is known as the main manifestation of the DE, and just this
linear dependence predetermines ferromagnetic effect caused by this interaction. Diagonal
matrix elements, include two types of contributions, namely, the exchange contribution of
HDVV type, where J is the exchange parameter describing the interaction of centers with
spins S0 and S0 + 1/2 (within each localized configuration of the dimer). In order to take
into account the effect of the driver cell, we consider also the contribution describing the
Coulomb interaction between the cells (terms (terms ±uP2), where P2 is the polarization
of the driver- cell A′ − B′ (cell 2). The value P2 = +1 corresponds to localization of the
mobile charge on site A, while providing P2 = −1 the charges localized on site B, as shown
in Figure 3. Usually, in the theory of QCA, it is assumed that the driver-cell is a source of
a Coulomb field acting on the working cell (cell 1), which causes its polarization. Finally,
u is the characteristic energy of the Coulomb interaction between the cells. The physical
meaning of this parameter is clear from Figure 3 showing the relative disposition of the
working cell and the driver-cell, and the two possible electronic distributions in a pair
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of interacting cells. As observable, the energy 2u is the difference between the Coulomb
repulsion energies of the excess electrons occupying neighboring and distant (energetically
favorable) positions in the two interacting dimers.

3. Polarization of a Cell

The polarization of the driver-cell is determined by the following expression [3,4]:

P2 =
ρA′ − ρB′

ρA′ + ρB′
(3)

where ρA′ and ρB′ are the probabilities (electronic densities) of the two localizations of
the excess electron (ρA′ + ρB′ = 1). The electronic densities on the centers have standard
quantum-chemical definition through the eigenvectors of the system. It is assumed that
polarization of the driver cell (in conformity with the definition of the driver cell) can be
varied in a controllable manner from the value P2 = −1 to value P2 = +1, i.e., between the
two fully polarized states. When the driver cell 2 is polarized, it induces polarization of
the working cell 1. The latter polarization is also determined by Equation (3) in which the
replacement ρA′ →ρA, ρB′ →ρB is to be made.

While, the DE in dimers are known to always involve a ferromagnetic interaction [27],
the HDVV exchange can, either be ferro- or antiferro-magnetic, depending on the physical
conditions which determine the sign of the parameter J. We consider the most common
situation when the HDVV exchange is antiferromagnetic (J < 0). In this case, the ground
spin-state of the free cell (case of P2 = 0) is determined by the competition between the
ferromagnetic DE and antiferromagnetic HDVV exchange interactions. In most cases, DE
dominates over the HDVV exchange and so the ground state proves to be ferromagnetic
(Sgr = 2S0 + 1/2 = 3/2). When P2 6= 0 the working cell is subjected to the action of an
electrostatic field created by the driver-cell, which tends to localize the excess electron in the
working cell. Since this field restricts the mobility of the excess electron it leads to a partial
suppression of the ferromagnetic DE. As a result of such suppression, the antiferromagnetic
HDVV exchange (that acts within localized configurations and hence is not affected by
the field) can become the dominant interaction, which can lead to a stabilization of the
spin-state with lower total spin value or, in other words, to cause a spin switching effect.

Effective control of the spin-state of the working cell by the Coulomb field of the
driver-cell can be significantly complicated by the fact that, in strongly delocalized MV
systems the ground ferromagnetic state is separated from the excited state, with a lower
spin by a quite large energy gap and so spin switching is only possible is the Coulomb
field is so strong that its effective energy exceeds this gap. However, the last condition is
difficult to fulfill since the distances between the neighboring cells must be much longer
than the distances between centers inside the cell, in order to prevent the electron transfer
and the HDVV exchange between the cells. At the same time, the situation may be not
so hopeless if we are dealing with the MV molecular systems, in which along with the
electronic interactions, an essential role is played by the interaction of excess electrons with
molecular vibrations of the cell. Therefore, we arrive at the conclusion regarding the crucial
role of the vibronic coupling in MV molecules, in the context of discussion of the feasibility
of spin switching effect.

4. Two-Mode Vibronic Model

In the vibronic model of a MV unit, we employ the interactions of the excess electron
with the two types of vibrations that are taken into account. The first type is the active
molecular vibration, which is composed of the totally symmetric “breathing” local modes
spanning non-magnetic atoms of the redox sites. In inorganic metal clusters, the local
vibrations are related to the displacements of the nearest ligand environments of the metal
ions, while in organic compounds the redox sites have more complex structure and can
involve several C-C bonds. In a particular case of the octahedrally coordinated metal sites in
inorganic compounds, the local modes can be assigned to the full-symmetric vibrations (A1g
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symmetry). The vibronic interaction in MV compounds (particularly, in molecular cells) can
be described in the framework of generally accepted Piepho-Kraus-Schatz (PKS) vibronic
model [28–30]. Although this model is rather simplified, it successfully describes the key
features of MV systems, such as the occurrence of a potential barrier between localized
configurations. In particular, this model underlies the Robin and Day classification of MV
compounds according to the degree of localization.

Within the conventional PKS vibronic model, the following symmetric and anti-
symmetric (with respect to inversion in the dimer resulting in the interchange A↔ B )
molecular coordinates can be composed of the local dimensionless coordinates qA and qB
des cribing the “breathing” displacements [29,30]:

q± =
1√
2
(qA ± qB) (4)

It can be shown that the totally symmetric (even) vibration q+ can be excluded
from the consideration since the corresponding contribution to the vibronic coupling is
proportional to the unit matrix. From the physical point of view, this means that in course
of this vibration, both sites are compressing and expanding in phase. This is obviously
irrelevant to the charge transfer processes. On the contrary, the antisymmetric coordinate is
interconnected with the vibration in course of which the expansion and compression of the
sites occurs in the out-of-phase manner. The expanded site traps the mobile charge, while
the compressed site tends to push it out. and thus, the PKS coupling is closely related to
the electron transfer processes. The frequency of the vibration q− will be denoted by ω and
the parameter of vibronic coupling with this mode by υ.

The second type of molecular vibrations involved in the model we use here is interre-
lated with the change of mutual disposition of the redox sites without changing their sizes.
The corresponding part of the vibronic coupling describes the interaction of the excess
electron with an intercenter vibration, which changes the distance between the sites [30].
Such kind of coupling arises from the modulation of the transfer parameter caused by the
change of distance between the redox sites. To deduce this part of the vibronic coupling
one should represent the transfer integral as a following series expansion:

t(R) = t(R0) − ζ (R− R0) + · · · (5)

where ζ = −(∂t/∂R)R=R0
is the parameter of vibronic interaction, and t(R0) ≡ t is the

value of the transfer parameter evaluated at the equilibrium distance R0 between the ions
(below we will simply term it “transfer parameter”). The quantity R− R0 plays a role
of the vibrational coordinate associated with the inter-center vibration. We denote the
frequency of this vibration as Ω and introduce the corresponding dimensionless normal
coordinate as Q = (R− R0)/

√
}/MΩ2, where M is the effective mass. In contrast to

local vibrations, which change the sizes of interacting mononuclear fragments, A and B as
assumed in the PKS model, the inter-center vibration leaves the sizes of the coordination
spheres unchanged. Therefore, we arrive at the two-mode vibronic problem, which takes
into account the totally symmetric vibration Q with a frequency Ω and the antisymmetric
(odd) vibration q− with the frequency ω.

Then, the total Hamiltonian of a dimeric working cell subjected to action of the
Coulomb field created by the adjacent driver-cell with polarization P2 is obtained in the
following matrix form (see Refs. [26,28]):

Ĥ =

[
}ω

2

(
q2 − ∂2

∂q2

)
+

}Ω
2

(
Q2 − ∂2

∂Q2

)](
1 0
0 1

)
+

(
υq + uP2 tS − ζSQ
tS − ζSQ −υq− uP2

)
. (6)

In Equation (6) the following short notation is used:

ζS =
ζ
(

S + 1
2

)

2S0 + 1
(7)

265



Magnetochemistry 2021, 7, 66

The value ζS can be referred to as the spin-dependent coupling parameter with the
intercenter vibration, which has the same spin dependence as the DE contribution in
Equation (2). The matrices involved in Equation (6) are defined in the same bi-dimensional
basis ψA(S, MS) ,ψB(S, MS) as the matrix of the electronic Hamiltonian, Equation (1).
Equation (7) represents a block of the full Hamiltonian matrix with a definite set of spin
quantum numbers S, MS.

5. Dynamic Vibronic Problem

The commonly accepted tool in considering the energy pattern and electron localiza-
tion in MV cluster is the adiabatic approximation, based on the assumption that the kinetic
energy of the heavy ions can be neglected, or alternatively, that the nuclear motion is much
slower than the electronic one. In this approach, the energy levels of the system are associ-
ated with the adiabatic potentials or potential curves. The applicability of the adiabatic
approximation is invalid for the vibronic levels in the vicinity of the avoided crossing of
the potential curves. This area is relevant to the process occurring when the localization
in the working cell changes under the action of the driver cell. That is the reason why
the subsequent analysis is based on the solution of the dynamic vibronic problem for full
electron-vibrational Hamiltonian including kinetic energy of the ions. The importance of
the non-adiabatic approach in the problem of mixed valency (for a free MV dimer) was
realized long time ago (see reference [29] dealing with the quantum-mechanical evaluation
of the profiles of the intervalence absorption) and applied to the study of a molecular cell
for QCA in reference [28].

To solve the quantum-mechanical problem the matrix of the Hamiltonian, Equation (6),
is to be presented in the basis composed of the products ψA(SM)|nN〉 and ψB(SMS)|nN〉,
where |nN〉 are the wave functions of the two-dimensional harmonic oscillator (first term
in Equation (6)), n and N are vibrational quantum numbers related to the two types
(PKS and inter-center) of vibrational modes under consideration. These functions are the
eigen-functions of the unperturbed Hamiltonian that is the Hamiltonian from which the
vibronic coupling is eliminated. To obtain a solution to the dynamic vibronic problem,
diagonalization of this infinite matrix is required. The numerical solution in the truncated
basis gives a set of spin-vibronic energy levels εs

k of the working cell and the corresponding
spin-vibronic wave functions, which have the form of the following superpositions:

|k, S, MS〉 = ∑
n,N

[
ck, S

A,n,N ψA(S, MS)|n, N〉+ ck,S
B,n,N ψB(S, MS)|n, N〉] . (8)

The truncation procedure restricts the size of the matrices to be diagonalized in such a
way that it ensures a required accuracy (i.e., good convergence) in the evaluation of the low
lying vibronic levels. Knowledge of the coefficients in the eigen-functions in Equation (8)
means we can assess the electronic densities on the sites that are required for the evaluation
of the polarization of the cell and consequently the cell-cell response function.

The dependences of the spin-vibronic wave functions on the polarization P2 of the
driver cell are then calculated for various sets of parameters and used to evaluate the key
characteristics of the QCA cell (and QCA gate), known as the cell-cell response function,
that is the dependence of the polarization P1 of the working cell on the polarization P2 of
the driver-cell.

6. Spin-Vbronic Levels and Cell-Cell Response Function

Figure 4 shows the dependences of the spin-vibronic energy levels of the working
cell represented by a MV dimer of d2 − d1–type on the polarization P2 of the driver-cell
calculated for fixed values of the parameters t, J and u and various ratios between the
values of the vibronic parameters ζ and υ. Figure 5 shows a family of the cell-cell response
functions calculated with the same sets of parameters. To simplify the discussion the
frequencies of the two modes are assumed to be equal (Ω = ω).
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Figure 4. Spin-vibronic energy levels of the working cell d2 − d1 calculated as a function of polarization of the driver cell P2

at u = 600 cm−1, }ω = }Ω = 200 cm−1, t = 1000 cm−1, J = −125 cm−1 and the following sets of the vibronic coupling
parameters: υ = 0, ζ = 0 (a); υ = 300 cm−1, ζ = 0 (b); υ = 400 cm−1, ζ = 0 (c); υ = 500 cm−1, ζ = 0 (d);
υ = 500 cm−1, ζ = 200 cm−1(e); υ = 500 cm−1, ζ = 300 cm−1(f); υ = 500 cm−1, ζ = 400 cm−1(g);
υ = 500 cm−1, ζ = 450 cm−1(h). The ground spin-vibronic level is chosen as a reference point for the energy.

267



Magnetochemistry 2021, 7, 66

Figure 5. Cell-cell response functions evaluated for the d2 − d1–type cells at u = 600 cm−1, }ω = }Ω = 200 cm−1,
t = 1000 cm−1, J = −125 cm−1 and following sets of the vibronic coupling parameters: υ = 0, ζ = 0 (a); υ = 300 cm−1,
ζ = 0 (b); υ = 400 cm−1, ζ = 0 (c); υ = 500 cm−1, ζ = 0 (d); υ = 500 cm−1, ζ = 200 cm−1(e); υ = 500 cm−1,
ζ = 300 cm−1(f); υ = 500 cm−1, ζ = 400 cm−1(g) and υ = 500 cm−1, ζ = 450 cm−1(h).
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Figure 4a shows the limiting case of a negligibly weak coupling with both types of the
vibrational modes (υ = ζ = 0). The selected sample values t = 1000 cm−1, J = −125 cm−1

of the electronic parameters correspond to the indicated above-typical situation when the
ferromagnetic contribution of DE significantly exceeds the antiferromagnetic contribution
of the HDVV exchange. In this case, the ground state of an isolated cell P2 = 0 has a
maximum spin value S = 3/2 and it is separated from the first excited state with S = 1/2
by the energy gap of around 130 cm−1. Figure 4a shows that the Coulomb field of the
driver-cell tends to decrease the gap between these states due to suppression of the DE,
but the ground state, in this case, remains at S = 3/2, even at the maximum polarization
(|P2| = 1) of the driver-cell.

The energy spectra in Figure 4b–d illustrate the influence of the PKS-type vibronic
interaction on the field dependences of the energy levels. Since the PKS-type vibronic
interaction tends to localize the excess electron, it weakens the ferromagnetic effect of the
DE so that at a certain value of |P2| the spin switching S = 3/2→ S = 1/2 occurs. It
is notable that the larger the value of v, the lower the value of |P2|, by which such spin
switching occurs. This can be seen from the comparison of Figure 4b,c. Finally, for a
sufficiently strong PKS-type vibronic coupling (the case shown in Figure 4d) the DE turns
out to be almost completely suppressed and the ground spin-vibronic state is the low-spin
one even provided that P2 = 0.

Figure 4e–h demonstrate the effect of coupling of the excess electron with the inter-
center vibration while the coupling with the PKS mode is assumed to be strong (the same
as in the case shown in Figure 4d). As it follows from Figure 4e–h, the interaction with
the inter-center vibration produces an effect that is in some sense opposite to the effect of
the PKS interaction. Indeed, the PKS-type vibronic coupling tends to localize the electron
at one of the redox sites, while the vibronic coupling with the intercenter mode promotes
delocalization. In turn, an increase in the degree of delocalization leads to the enhancement
of the ferromagnetic effect of the DE. As a result, the high-spin ground state of the working
cell is restored, and at the same time the conditions required for the manifestation of spin
switching become valid. Consequently, with an increase of the parameter ζ, the critical
field (i.e., the value |P2|) at which spin switching occurs also increases, which can be clearly
seen through the comparison of the energy patterns, as shown in Figure 4e,f,g. Finally, in
the case of a sufficiently strong interaction with the intercenter vibration, the self-trapping
effect of the PKS-interaction proves to be fully compensated (Figure 4h), and consequently,
the ground state remains the high-spin one regardless of the magnitude of |P2| exactly as
in the case of a vanishingly weak vibronic coupling shown in Figure 4a.

The above effects of the two types of vibrations on the spin-vibronic energy levels
of the cell manifest themselves also in the shapes of the cell-cell response function P1(P2)
(Figure 5). First, from Figure 5a,h, in the case of negligibly, we see weak vibronic PKS
coupling. In the case of strong coupling with the inter-center vibration, the cell exhibits
weak monotonic and almost linear response to the Coulomb field of the driver-cell. This
feature of the cell-cell response function indicates that the cases mentioned so far are the
least favorable ones from the point of view of functioning of the system, as both QCA cell
and spin switcher.

In contrast, in the case of a strong PKS interaction and vanishingly weak interaction
with the inter-center mode (case shown in Figure 5d), the cell-cell response function
demonstrates a sharp nonlinear behavior, even at a very weak change in the polarization
of the driver cell. This strongly non-linear behavior is indicative of the case for strong
localization, which occurs when PKS coupling is strong. This case is the most favorable
one for the functioning of the QCA devices.

Finally, in the intermediate cases (Figure 5b,c,e–g) the response function behaves
non-monotonically demonstrating an abrupt change at critical values |P2| at which the
spin switching in the cell occurs. This behavior is due to the fact that the states with lower
values of the total spin are characterized by a higher polarizability as compared to the
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states for which the spin is higher. These cases are of practical interest from the point of
view of the prospects in designing spin switching devices based on magnetic MV dimers.

7. Conclusions

This study was devoted to the problem of molecular implementation of QCA, a
perspective technology with promising applications. Here, we attempted to proceed in
studying the molecular cells as the central ingredient in the design of the QCA logical
gates. We consider a cell represented by the multi-electron mixed valence binuclear d2− d1–
type cluster in which the double exchange, as well as the Heisenberg-Dirac-Van Vleck
exchange interactions are operative. The dimeric unit can be considered also as a part of
the bi-dimeric cell encoding binary information in the antipodal charge distributions.

Since the information is encoded in the charge distribution, an important issue we
studied is interrelated with the vibronic coupling is known as a factor determining the
charge localization in MV systems. We propose the two-mode vibronic model involving
interactions with the local and intercenter modes and involves also the DE and HDVV
exchange interactions have been applied to analyze the functional properties of MV dimer
as the QCA cell.

It is demonstrated that the magnetic cell can encode the binary information and for-
mulated the favorable conditions under which this functionality is efficient. An essentially
new functionality closely interrelated with the spin degrees of freedom is the feature of
spin switching in the working cell that was shown to occur under the electrostatic field of
the driver cell. Therefore, it was shown that the magnetic cell can exhibit the property of
multi-functionality being a reservoir for the binary information, and at the same time, act
as a spin switcher.

The influence of both kind of vibrations on the dependences of the spin-vibronic
levels of the working cell on the polarization of the driver-cell has been studied. The local
“breathing” vibrations produce the trapping effect and increase the non-linearity of the
cell-cell response function, while the inter-center vibrations tend to delocalize the system
and therefore have destructive influence for the cell-response. Based on the developed
vibronic model, the new features of the cell-cell response functions interrelated with the
DE and HDVV exchange interactions in the magnetic molecular cell based on binuclear
MV clusters of the d2 − d1–type have been revealed:

(1) in the case of the dominating DE, the character of the ground spin-state of a free and
polarized cells has been shown to be strongly influenced by the interactions of the
electronic subsystem with both types of vibrational modes included in the model.
Therefore, in the case of vanishingly weak vibronic interaction, as well as in the case
of strong coupling with the intercenter vibration, the ferromagnetic effect produced
by the DE proves to be the dominating interaction;

(2) in this case of strong DE the P1(P2) dependence (cell-cell response function) demon-
strates weak and almost linear cell-cell response that is an unfavorable case for the
QCA function. Moreover, the spin-switching is not possible in this case;

(3) in contrast, at strong vibronic PKS coupling, the ferromagnetic DE is largely sup-
pressed, which leads to the stabilization of the state with a minimum total spin, along
with the appearance of a strong nonlinear cell-cell response. This case is definitely
favorable for the design of QCA-based devices.

(4) finally, when the contributions of both types of vibrations are comparable, the mag-
netic cell has been shown to exhibit properties of a spin-switcher, i.e., the electrostatic
field of the driver change spin of the working cell along with the charge distribution.
In relation to the QCA application, this feature manifests itself in the specific shape of
the cell-cell response function exhibiting sharp steps. More precisely, the polarizability
of the working cell is efficiently increased that is favorable for the QCA action.

The results, mentioned so far, create hope on their practical feasibility and relevance
to the rational design of multifunctional molecular electronic devices that combine the
function of the charge carriers of information in QCA with that of the spin-switchers.
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Abstract: Magnetic properties of organic radicals based on thienyl- and furyl-substituted nitronyl
nitroxide (NN) and iminonitroxide (IN) were investigated by measuring the temperature dependence
of the magnetization. The magnetic behavior of 2-benzo[b]thienyl NN (2-BTHNN) is interpreted
in terms of the two-magnetic-dimer model, in which one dimer exhibits ferromagnetic (FM) inter-
molecular interaction and the other dimer shows antiferromagnetic (AFM) interaction. The existence
of two dimers in 2-BTHNN is supported by crystal structure analysis. The magnetic behaviors of
2-bithienyl NN, 4-(2′-thienyl)phenyl NN (2-THPNN), 2- and 3-furyl NN, 2-benzo[b]furyl NN, and
3-benzo[b]thienyl IN are also reported. The one-dimensional alternating AFM nature observed in
2-THPNN is consistent with its crystal structure.

Keywords: nitronyl nitroxide; iminonitroxide; magnetism; organic crystals

1. Introduction

Magnetism in neutral organic radicals based on nitronyl nitroxide (NN) (2-substituted
4,4,5,5-tetramethyl-4,5-dihydro-3-oxido-1H-imidazol-3-ium-2-yl-1-oxyl) and iminonitrox-
ide (IN) (2-substituted 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-2-yl-1-oxyl) has long
been studied to find new magnetically interesting molecular crystals, since these radicals
are usually stable in the solid state [1] and have been components of many molecule-based
magnets [2–10].

Introducing sulfur atoms into the NN and IN derivatives would result in an increase
in magnetic interactions between neighboring molecules in molecular crystals, since the
sulfur atoms can make larger molecular orbital overlaps as observed in conducting organic
materials [11]. We have, therefore, been preparing thienyl-substituted NN and IN, which
include a sulfur atom, and investigating their magnetic properties [12–14]. We report here
magnetic properties of three thienyl-substituted NN derivatives, 2-benzo[b]thienyl NN
(2-BTHNN), 2-bithienyl NN (2-BiTHNN), and 4-(2′-thenyl)phenyl NN (2-THPNN) and two
thienyl-substituted IN derivatives, 2- and 3-benzo[b]thienyl IN (2-BTHIN and 3-BTHIN).
We also report here crystal structures of 2-BTHNN and 2-THPNN to discuss magneto-
structural correlations in these radicals. To discuss the effects of sulfur substitution on
magnetic interactions, magnetic properties of three furyl-substituted NN derivatives, 2- and
3-furyl NN (2-FNN and 3-FNN), and 2-benzo[b]furyl NN (2-BFNN), and a furyl-substituted
IN derivative, 2-furyl IN (2-FIN), are also described, because the furyl ring is the oxygen
analogue of the thienyl ring. The molecular structures of organic radicals reported here are
listed in Figure 1.
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Figure 1. Molecular structures of organic radicals reported here. (a) 2-BTHNN, (b) 2-BTHIN, (c) 
3-BTHNN, (d) 3-BTHIN, (e) 2-BFNN, (f) 3-FNN, (g) 2-FNN, (h) 2-FIN, (i) 2-BiTHNN, and (j) 
2-THPNN (see the text for the abbreviated names). 
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opportunities to carry out our studies of magnetochemistry. 

2. Results and Discussion 
2.1. Magnetic Properties 

Figure 2 shows the temperature dependence of the product of paramagnetic sus-
ceptibility χp and temperature T of 2-BTHNN and 2-BTHIN. Upon lowering the temper-
ature, the product, χpT, of 2-BTHNN decreases monotonically from 0.374 emu·K·mol−1 at 
300 K to 0.198 emu·K·mol−1 at around 10 K. Below about 10 K, however, χpT of 2-BTHNN 
increases slowly to 0.204 emu·K·mol−1 at 1.8 K, suggesting the existence of ferromagnetic 
(FM) interactions in 2-BTHNN. 

Figure 1. Molecular structures of organic radicals reported here. (a) 2-BTHNN, (b) 2-BTHIN, (c) 3-
BTHNN, (d) 3-BTHIN, (e) 2-BFNN, (f) 3-FNN, (g) 2-FNN, (h) 2-FIN, (i) 2-BiTHNN, and (j) 2-THPNN
(see the text for the abbreviated names).

This paper is a tribute to Professor Peter Day who gave us many suggestions and
opportunities to carry out our studies of magnetochemistry.

2. Results and Discussion
2.1. Magnetic Properties

Figure 2 shows the temperature dependence of the product of paramagnetic suscepti-
bility χp and temperature T of 2-BTHNN and 2-BTHIN. Upon lowering the temperature,
the product, χpT, of 2-BTHNN decreases monotonically from 0.374 emu·K·mol−1 at 300 K
to 0.198 emu·K·mol−1 at around 10 K. Below about 10 K, however, χpT of 2-BTHNN
increases slowly to 0.204 emu·K·mol−1 at 1.8 K, suggesting the existence of ferromagnetic
(FM) interactions in 2-BTHNN.
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Figure 2. Temperature dependences of χpT of 2-BTHNN (open circles) and 2-BTHIN (open triangles).
The solid line for 2-BTHNN indicates a fit using the two-magnetic-dimer model (see the text).

Since the temperature dependence of χpT of 2-BTHNN shown above appears not
to be simple, we examined several models to fit the data and then found that the two-
magnetic-dimer model, in which one molecular dimer (which we denote as the FM dimer
hereafter) exhibits FM intermolecular interactions and the other dimer (which we denote as
the AFM dimer) shows antiferromagnetic (AFM) intermolecular interactions, can explain
the temperature dependence of χpT of 2-BTHNN, as represented by the solid line in
Figure 2. At temperatures lower than about 10 K, the moderately strong AFM interaction
operating in the AFM dimer, mentioned below, leads to an almost complete vanishing of
the contribution of the AFM dimer to χp. This AFM interaction is interpreted in terms of the
two-spin dimer model [15] with the exchange coupling constant J/k = −55 K and the Curie
constant C = 0.197 emu·K·mol−1. This magnitude of C is about a half of 0.376 emu·K·mol−1

for the uncorrelated S = 1/2 spins in 2-BTHNN
As a result, the temperature dependence of χpT of 2-BTHNN below about 10 K would

come from only the contribution of the FM dimer. This contribution is modeled in terms of
the Curie–Weiss law with the Weiss temperature θ = +0.06 K and C = 0.197 emu·K·mol−1.
The positive Weiss temperature obtained here clearly indicates the existence of the FM
intermolecular interactions in the FM dimer. In addition, we observed further evidence
for the FM interactions by measuring the magnetization isotherms at low temperatures
below 10 K. Upon lowering temperature, magnetization isotherms deviate from the S = 1/2
Brillouin function curve onto the S = 1 curve as shown in Figure 3. Since the Curie constant
for the FM dimer is the same as that of the AFM dimer and it is just a half of the Curie
constant for the uncorrelated S = 1/2 spins of 2-BTHNN, it is concluded that the half of the
molecular spins exhibit the FM intermolecular interactions and the other half of spins show
the AFM interactions in 2-BTHNN. This conclusion is supported further by analyzing the
crystal structure of 2-BTHNN as mentioned below.
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In contrast, the temperature dependences of χpT of 2-BTHIN can be fitted simply to
the Curie–Weiss law with C = 0.378 emu·K·mol−1 and θ = −1.23 K. In this case, our results
show that the elimination of an oxygen atom gives a drastic change of magnetic behavior.

Figure 4 shows the temperature dependences of χpT of 2-BiTHNN (open circles) and
2-THPNN (open triangles). These two radicals also have thienyl-including moieties that are
longer than those of other radicals reported in this paper, as shown in Figure 1. These two
radicals exhibit weak AFM intermolecular interactions, because the temperature depen-
dences of χpT of 2-BiTHNN and 2-THPNN are interpreted in terms of the one-dimensional
(1D) alternating Heisenberg model [16] with J/k = −2.34 K, alternating parameter α = 0.8
and C = 0.380 emu·K·mol−1, and with J/k = −0.77 K, α = 0.8, and C = 0.370 emu·K·mol−1,
respectively, as represented by the solid lines in Figure 4. The origin of the alternating
magnetic interactions in 2-THPNN is discussed below by referring to the crystal structure.
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Figure 4. Temperature dependences of χpT of 2-BiTHNN (open circles) and 2-THPNN (open tri-
angles). Solid lines represent theoretical fitting on the basis of the 1D alternating AFM Heisenberg
model (see the text).

The magnetic properties of 4-(3′-thienyl)phenyl NN (3-THPNN), which is a structural
isomer of 2-THPNN shown here, was previously reported by Coronado et al. about two
decades ago [17]. The radical 3-THPNN shows weak AFM intermolecular interactions
with θ = −1.5 K and C = 0.31 emu·K·mol−1 similar to those found in 2-THPNN.

The temperature dependences of χpT of the three furyl-substituted nitronyl nitroxide
radicals, 2-FNN (open circles), 3-FNN (open triangles), and 2-BFNN (open squares), are
shown in Figure 5 together with those of furyl-substituted iminonitroxide radical, 2-FIN.
The magnetic behaviors of 3-FNN, 2-BFNN, and 2-FIN are similar to each other, although
the magnitude of the magnetic interaction is significantly different as mentioned below,
while those of 2-FNN are quite different at temperatures lower than about 10 K. The values
of χpT do not decrease steeply with lowering temperature but show a plateau between 4
and 10 K. Although this behavior appears to be reminiscent of that observed in 2-BTHNN,
a similar kind of behavior is also characteristic of the four-spin linear tetramer model [18],
because any upturn of χpT values at low temperatures is not observed. As represented
by the solid line in Figure 5, we successfully reproduced the temperature dependence
of χpT of 2-FNN in terms of the four-spin linear tetramer model with J1/k = −3.5 K and
J2/k = −13 K, where J1/k represents the intradimer interaction and J2/k represents the inter-
dimer interaction in the linear tetramer, having S = 1/2 spin on each molecule within the
tetramer. The Curie constant used to fit the experimental data was C = 0.340 emu·K·mol−1.
This value is slightly lower than the value C = 0.376 emu·K·mol−1 that is expected for
uncorrelated S = 1/2 spins. This difference comes from the contribution of impurity spins
with Ci = 0.038 emu·K·mol−1 and θi =−0.1 K used to obtain the best fit to the experimental
data. The overall Curie constant is 0.378 emu·K·mol−1 and close to that expected for
uncorrelated S = 1/2 spins. The origin of spin interactions within the tetramer is not clear,
since we have no crystal information for 2-FNN at present.
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Figure 5. Temperature dependences of χpT of 2-FNN (open circles), 3-FNN (open triangles), 2-BFNN
(open squares), and 2-FIN (closed circles). The solid lines represent fits using the four-spin linear
tetramer model for 2-FNN, the 1D alternating AFM Heisenberg model for 3-FNN and 2-BFNN, and
the Curie–Weiss law for 2-FIN (see the text).

The temperature dependences of χpT of 3-FNN and 2-BFNN can be fitted to the
1D alternating Heisenberg model [16] with J/k = −7.5 K, α = 0.6, C = 0.346 emu·K·mol−1,
Ci = 0.025 emu·K·mol−1 andθi =−0.0Kfor3-FNN,andwith J/k=−33K,α=0.2,C = 0.369 emu·K·mol−1,
Ci = 0.022 emu·K·mol−1, θi = −1.0 K for 2-BFNN. On the other hand, the tempera-
ture dependence of χpT of 2-FIN interpreted in terms of the Curie–Weiss law yields
C = 0.376 emu·K·mol−1 and θ = −1.0 K.

The sulfur analogues of 2- and 3-FNN, 2- and 3-THNN, show 1D alternating Heisen-
berg behavior with J/k = −6.6 K, α = 0.5, C = 0.359 emu·K·mol−1, Ci = 0.009 emu·K·mol−1,
θi = 0.0 Kfor2-THNN,andwith J/k =−5.3K, α =0.6,C=0.360emu·K·mol−1, Ci = 0.016 emu·K·mol−1,
θi = 0.0 K for 3-THNN [14]. The magnetic behavior of 2-FNN mentioned above is very
different from that of 2-THNN. That is to say, 2-FNN shows the four-spin linear tetramer
behavior and 2-THNN exhibits 1D alternating Heisenberg behavior. It is, therefore, difficult
to compare magnetic interactions directly in both radicals. However, the magnetic behav-
iors of 3-FNN and 3-THNN are both interpreted in terms of the 1D alternating Heisenberg
model with J/k =−7.5 K (α = 0.6) and J/k =−5.3 K (α = 0.6), respectively. This result suggests
that the substitution of the oxygen atom in the furyl ring by the sulfur atom does not yield
stronger magnetic interactions in this case.

The magnetic interactions in 2-BTHNN, which is the sulfur analogue of 2-BFNN,
seem to become stronger. The magnetic behavior of 2-BFNN can also be explained by
using the two-spin dimer model with J/k = −35 K, although the 1D alternating Heisenberg
model with J/k = −34 K (α = 0.2) gives slightly better fit as mentioned above. The value
of J/k = −35 K is smaller than J/k = −55 K as observed in 2-BTHNN. This result indicates
that the substitution of the oxygen atom in the furyl ring by the sulfur atom yields stronger
magnetic interactions in this case.

The temperature dependences of χpT of 3-BTHIN is shown in Figure 6 together with
that of 3-BTHNN [14]. The magnetic behavior of 3-BTHIN is reproduced in terms of the 1D
AFM Heisenberg model with J/k =−1.78 K, C = 0.348 emu·K·mol−1, Ci = 0.032 emu·K·mol−1

and θi = 0.0 K, whereas that of 3-BTHNN is interpreted in terms of quasi-two-dimensional
FM intermolecular interactions with J/k = +0.16 K within the layer and J’/k = +0.02 K for the
interlayer and C = 0.384 emu·K·mol−1 [14]. Elimination of an oxygen atom from one of the
NO groups of the nitronyl nitroxide moiety of 3-BTHNN results in a remarkable change in
magnetic behavior due possibly to a change in molecular arrangements in the solid. To
discuss further, it is indispensable to determine the crystal structures of 3-BTHIN.
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2.2. Crystal Structures

The radical 2-BTHNN crystallizes in the monoclinic space group C2/c. The crys-
tallographic data of 2-BTHNN are listed in Table 1. Figure 7a shows an ORTEP view
of the crystal structure along the b axis. The 2-BTHNN molecules form two different
types of molecular dimers as denoted by A and B shown in Figure 7a. In dimer A, the
2-BTHNN molecules stack face-to-face and their molecular long axes make an angle of
73◦, as shown in Figure 7b. The shortest intermolecular atomic distance between N and O
atoms is 3.499(3) Å. In dimer B, the 2-BTHNN molecules stack face-to-face in a head-to-tail
manner as shown in Figure 7c. The benzothienyl rings are close to each other to avoid steric
hindrances due to bulky methyl groups on the nitronyl nitroxide moieties. The shortest
intermolecular atomic distance is 3.267(5) Å between the C atom of the benzene ring and
the C atom of the thiophene ring. Quite different molecular arrangements in these two
dimers A and B mentioned above would yield very distinctive magnetic behaviors, i.e.,
FM and AFM interactions in 2-BTHNN. Although it is not easy to attribute the origin of
FM and AFM interactions onto these different dimers, the nearly orthogonally arranged
molecules in the dimer A seems to give the FM interactions, and the face-to-face stacking
of benzothienyl groups appears to result in the AFM interactions in 2-BTHNN.

Table 1. Crystallographic data for the organic radicals 2-BTHNN and 2-THPNN.

2-BTHNN 2-THPNN

Chemical formula C15H17N2O2S C17H19N2O2S
Formula weight 289.37 315.41
Crystal system Monoclinic Monoclinic

Space group C2/c P21/n
a (Å) 17.636 (6) 13.30 (7)
b (Å) 11.400 (4) 9.57 (4)
c (Å) 29.886 (9) 14.51 (7)
β (◦) 95.442 (4) 117.28 (7)

V (Å3) 5982 (3) 1642 (14)
Z value 16 4

Dcalc (Mg·m−3) 1.285 1.276
Reflections independent 6259 3631

R, Rw [I > 2σ(I)] 0.0808, 0.1002 0.0808, 0.0967
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stacks, there are two types of atomic contacts between neighboring molecules. One type 
of atomic contact is formed between the O atom on the NO group and the two C atoms 
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of atomic contact is formed between the O atom and the C atom on the phenyl ring with 
the atomic distance of 3.309(3) Å and the C atom on the thienyl ring with the atomic dis-
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Figure 8. An ORTEP view of the crystal structure of 2-THPNN along the vertical direction to the 
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The radicals were prepared according to the procedures reported in [1] and purified 

through column chromatography followed by a recrystallization. Commercially availa-
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molecular dimers. Molecular conformations of two neighboring 2-BTHNN in dimer A (b) and dimer B (c).

The radical 2-THPNN crystallizes in the monoclinic space group P21/n. The crys-
tallographic data of 2-THPNN are also listed in Table 1. Figure 8 shows an ORTEP view
of the crystal structure along the direction perpendicular to the molecular planes of the
2-THPNN within one of the molecular stacks. The 2-THPNN molecules stack side-by-side
in a head-to-tail manner along the a axis. The molecular planes of the molecules belong
to the neighboring stacks are arranged perpendicularly. In the molecular stacks, there are
two types of atomic contacts between neighboring molecules. One type of atomic contact
is formed between the O atom on the NO group and the two C atoms on the phenyl ring
with the atomic distances of 3.404(2) Å and 3.449(3) Å. The other type of atomic contact is
formed between the O atom and the C atom on the phenyl ring with the atomic distance of
3.309(3) Å and the C atom on the thienyl ring with the atomic distance of 3.462(3) Å. These
two types of atomic contacts existing in the molecular stacks along the a axis probably
result in the 1D alternating magnetic interactions observed in 2-THPNN.
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Figure 8. An ORTEP view of the crystal structure of 2-THPNN along the vertical direction to the
molecular planes. The 2-THPNN molecules form side-by-side molecular stacks along the a axis in a
head-to-tail manner.

3. Materials and Methods

The radicals were prepared according to the procedures reported in [1] and purified
through column chromatography followed by a recrystallization. Commercially available
(Aldrich) benzo[b]thiophene-2-carboxyaldehyde, benzo[b]thiophene-3-carboxyaldehyde,
2-benzofurancarboxyaldehyde, 2-furanaldehyde, 3-furanaldehyde, 2,2′-bithio-phene-5-
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carboxyaldehyde, and 4-(2′-thienyl)benzaldehyde were used without further purification.
N,N′-Dihydroxy-2,3-diamino-2,3-dimethylbutane was obtained according to the litera-
ture [1]. Other reagents and solvents were used as purchased.

2-BTHNN and 2-BTHIN. Benzo[b]thiophene-2-carboxyaldehyde (2.56 g, 15.8 mmol)
and N,N′-dihydroxy-2,3-diamino-2,3-dimethylbutane (2.14 g, 14.4 mmol) were mixed in
15 mL of benzene at 40 ◦C. The reaction mixture was stirred for 24 h, after which the re-
sulting white solid of 1,3-dihydroxy-2-(2-bebzo[b]thienyl)-4,4,5,5-tetramethylimidazolidine
was filtered off and washed with 5 mL benzene twice and dried under vacuum. Yield: 98%.
A solution of sodium periodate (2.42 g, 11.3 mmol) in 25 mL of water was added dropwise
to a suspension of 1,3-dihydroxy-2-(2-bebzo[b]thienyl)-4,4,5,5-tetramethylimidazolidine
(2.18 g, 7.47 mmol) in 100 mL dichloromethane at room temperature. The dark-green
organic phase was separated and concentrated under vacuum. The crude product was
separated and purified by column chromatography (eluent: ethyl acetate, alumina) to
obtain 2-BTHNN (dark-green solid) and 2-BTHIN (red solid).

3-BTHNN and 3-BTHIN. A similar experimental procedure was used to obtain 3-
BTHNN (dark-green/blue solid) and 3-BTHIN (red solid) by using benzo[b]thiophene-3-
carboxyaldehyde.

2-BFNN. 2-Benzofurancarboxyaldehyde (2.58 g, 17.7 mmol) and N,N′-dihydroxy-
2,3-diamino-2,3-dimethylbutane (2.39 g, 16.1 mmol) were mixed in 15 mL of benzene at
40 ◦C. The reaction mixture was stirred for 2 h, after which the resulting white solid of
1,3-dihydroxy-2-(2-bebzo[b]furyl)-4,4,5,5-tetramethylimidazolidine was filtered off and
washed with 5 mL of benzene twice and dried under vacuum. Yield: 95%. A solution
of sodium periodate (2.74 g, 12.8 mmol) in 25 mL of water was added dropwise to a
suspension of 1,3-dihydroxy-2-(2-bebzo[b]furyl)-4,4,5,5-tetramethylimidazolidine (2.30 g,
8.33 mmol) in 100 mL of dichloromethane at room temperature. The dark-green organic
phase was separated and concentrated under vacuum. The crude product was separated
and purified by column chromatography (eluent: ethyl acetate, alumina) to obtain 2-BFNN
(dark-green solid).

3-FNN. 3-Furanaldehyde (1.20 g, 12.4 mmol) and N,N′-dihydroxy-2,3-diamino-2,3-
dimethylbutane (1.71 g, 11.5 mmol) were mixed in 10 mL of benzene at 40 ◦C. The reaction
mixture was stirred for 24 h, after which the resulting light-brown solid of 1,3-dihydroxy-
2-(3-furyl)-4,4,5,5-tetramethylimidazolidine was filtered off and washed with 5 mL of
benzene twice and dried under vacuum. Yield: 75%. A solution of sodium periodate (2.80 g,
13.1 mmol) in 25 mL of water was added dropwise to a suspension of 1,3-dihydroxy-2-(3-
furyl)-4,4,5,5-tetramethylimidazolidine (1.95 g, 8.63 mmol) in 100 mL of dichloromethane
at room temperature. The dark-blue organic phase was separated and concentrated under
vacuum. The crude product was separated and purified by column chromatography
(eluent: ethyl acetate, alumina) to obtain 3-FNN (dark-blue solid). In this case, enough
amount of 3-FIN was not obtained as a byproduct.

2-FNN and 2-FIN. 2-Furanaldehyde (1.93 g, 20.1 mmol) and N,N′-dihydroxy-2,3-
diamino-2,3-imethylbutane (2.71 g, 18.3 mmol) were mixed in 10 mL of benzene at 40 ◦C.
The reaction mixture was stirred for 20 h after which the resulting light-brown solid of
1,3-dihydroxy-2-(2-furyl)-4,4,5,5-tetramethylimidazolidine was filtered off and washed
with 5 mL benzene twice and dried under vacuum. Yield: 74%. A solution of sodium
periodate (2.14 g, 10.0 mmol) in 20 mL of water was added dropwise to a suspension of
1,3-dihydroxy-2-(2-furyl)-4,4,5,5-tetramethylimidazolidine (1.50 g, 6.64 mmol) in 100 mL of
dichloromethane at room temperature. The dark-blue organic phase was separated and
concentrated under vacuum. The crude product was separated and purified by column
chromatography (eluent: ethyl acetate, alumina) to obtain 2-FNN (dark-blue solid) and
2-FIN (red solid).

2-BiTHNN. 2,2′-bithiophene-5-carboxyaldehyde (1.56 g, 7.98 mmol) and N,N′-dihydroxy-
2,3-diamino-2,3-imethylbutane (1.10 g, 7.39 mmol) were mixed in 10 mL of benzene at 40 ◦C.
The reaction mixture was stirred for 20 h, after which the resulting light-yellow/brown
solid of 1,3-dihydroxy-2-(2′-bithienyl)-4,4,5,5-tetramethylimidazolidine was filtered off and
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washed with 3 mL of benzene five times and dried under vacuum. Yield: 63%. A solution
of sodium periodate (1.50 g, 6.98 mmol) in 15 mL of water was added dropwise to a suspen-
sion of 1,3-dihydroxy-2-(2′-bithienyl)-4,4,5,5-tetramethylimidazolidine (1.50 g, 4.62 mmol)
in 100 mL of dichloromethane at room temperature. The dark-green organic phase was sep-
arated and concentrated under vacuum. The crude product was separated and purified by
column chromatography (eluent: ethyl acetate, alumina) to obtain 2-BiTHNN (dark-green
solid).

2-THPNN. 4-(2′-thienyl)benzaldehyde (1.00 g, 5.32 mmol) and N,N′-dihydroxy-2,3-
diamino-2,3-imethylbutane (0.726 g, 4.90 mmol) were mixed in 10 mL of benzene at 40 ◦C.
The reaction mixture was stirred for 24 h, after which the resulting light-brown solid of
1,3-dihydroxy-2-[4-(2′-thienyl)phenyl]-4,4,5,5-tetramethylimidazolidine was filtered off
and washed with 5 mL of benzene three times and dried under vacuum. Yield: 88%. A
solution of sodium periodate (1.39 g, 6.51 mmol) in 15 mL of water was added dropwise to
a suspension of 1,3-dihydroxy-2-[4-(2′-thienyl)phenyl]-4,4,5,5-tetramethylimidazolidine
(1.38 g, 4.32 mmol) in 80 mL of dichloromethane at room temperature. The dark-green
organic phase was separated and concentrated under vacuum. The crude product was
separated and purified by column chromatography (eluent: ethyl acetate, alumina) to
obtain 2-THPNN (dark-green solid).

Crystals suitable for X-ray diffraction studies were grown by slow evaporation from
concentrated solutions of 2-BTHNN and 2-THPNN in toluene in the dark and cold room.

The magnetization isotherms up to 7 T and the magnetic susceptibility over the tem-
perature range from 1.8 K to 300 K were measured using Quantum Design MPMSXL7
SQUID (superconducting quantum interference device) magnetometers. The contribution
of the diamagnetism to the susceptibility was subtracted by extrapolating the tempera-
ture dependence of the susceptibility to high temperatures where the Curie–Weiss law is
applicable.

X-ray diffraction intensities were recorded on a Rigaku AFC10 automatic four-circle
diffractometer with graphite monochromated Mo-Kα (λ = 71.075 pm). Intensity data were
corrected for Lorentz and polarization effects but not for absorption. The crystal structures
were solved by the direct methods and the positions of hydrogen atoms were calculated. A
full-matrix least-square refinement was carried out, in which non-hydrogen atoms were
treated with anisotropic thermal parameters and those of hydrogen atoms were treated
isotropic parameters. The X-ray crystallographic CIF files for 2-BTHNN and 2-TPHNN are
available as CCDC2079877 and CCDC2079881, respectively.

4. Conclusions

We showed magneto-structural correlations in the radicals 2-BTHNN and 2-THPNN
by considering the results of magnetic measurements and X-ray crystallographic analyses.
The coexistence of the FM and AFM intermolecular interactions in 2-BTHNN arises from
the formation of two different types of radical molecular dimers. The 1D alternating AFM
intermolecular interactions in 2-THPNN come from the molecular arrangements of chain-
like side-by-side and head-to-tail stacking. We discussed the atomic substitution effects on
magnetism by comparing the magnetic behaviors of thienyl- and furyl-substituted nitronyl
nitroxide. We also investigated the effects of O atom elimination from the NO group on
magnetism by comparing the magnetic behaviors of nitronyl nitroxide and iminonitroxide
having the same attached moieties.
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Abstract: Three new 1D cyanido-bridged 3d-4f coordination polymers, {[Gd(L)(H2O)2Fe(CN)6]·H2O}n

(1GdFe), {[Dy(L)(H2O)2Fe(CN)6]·3H2O}n (2DyFe), and {[Dy(L)(H2O)2Co(CN)6]·H2O}n (3DyCo), were
assembled following the building-block approach (L = pentadentate bis-semicarbazone ligand result-
ing from the condensation reaction between 2,6-diacetyl-pyridine and semicarbazide). The crystal
structures consist of crenel-like LnIII-MIII alternate chains, with the LnIII ions connected by the
hexacyanido metalloligands through two cis cyanido groups. The magnetic properties of the three
complexes have been investigated. Field-induced slow relaxation of the magnetization was observed
for compounds 2DyFe and 3DyCo. Compound 3DyCo is a new example of chain of Single Ion Magnets.

Keywords: heterometallic complexes; cyanido-bridged complexes; coordination polymers; single
molecule magnets; lanthanides

1. Introduction

The discovery of slow relaxation of the magnetization phenomena for discrete metal
complexes (Single Molecule Magnets, SMMs) and 1D coordination polymers (Single Chain
Magnets, SCMs) has stimulated the development of an intensive interdisciplinary research
field. Beyond their relevance in fundamental Physics and Chemistry, spectacular applica-
tions in quantum computing and high-density information storage from these molecules
are expected [1]. Although the field of SMMs was initially dominated by transition metal-
based-systems, the focus of research shifted to lanthanides, which increase the energy
barriers of SMMs [2,3]. The lanthanide ions (especially TbIII, DyIII, and HoIII), bring large
magnetic moments and high uniaxial magnetic anisotropy, which are essential prerequisites
for the observation of slow relaxation of the magnetization. While SMMs can be mono- and
oligonuclear (homo- and heteronuclear) complexes, most of the SCMs are constructed from
two different spin carriers (e.g., 3d-3d′, 3d-4f, 2p-3d, and 2p-4f) [4]. Homospin SCMs are
rare and rather serendipitously obtained [5,6]. Examples of lanthanide-based Single-Chain
Magnets are also limited, and most of them result from the association of lanthanide ions
with nitronyl-nitroxide (paramagnetic) ligands [7,8]. Lanthanide ions can be linked to other
paramagnetic metal ions through small bridging ligands, which facilitate the exchange
interactions. The building-block approach, relying on the employment of metalloligands,
represents an excellent strategy to generate heterometallic coordination compounds [9].
Anionic cyanido complexes are very popular in this respect. The self-assembly processes
between [M(CN)6]3− metalloligands and cationic LnIII complexes led to a rich variety of
structural architectures. The assembling complex cations are either solvated LnIII species
or heteroleptic complexes, containing chelating ligands and weakly coordinated anions or
solvent molecules, which can be easily replaced by the cyanido bridge. The dimensionality
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of the resulting coordination polymers is dependent on the number of accessible positions
at the lanthanide ions. For example, nitrogen donor blocking ligands attached to LnIII ions,
such as 1,10-phenanthroline, 2,2′-bipyridine, 2,2′:6′,2′ ′—terpyridine, 2,4,6-tri(2-pyridyl)-
1,3,5-triazine, favor the aggregation of 1D coordination polymers, employing [M(CN)6]3−

as metalloligands [10–18]. When the reactions between the lanthanide salts and the hexa-
cyanido building block occur in dimethylformamide (DMF) or dimethyl sulfoxide (DMSO),
depending on the experimental conditions, discrete species, 1D, 2D, or even 3D coordina-
tion polymers have been obtained [19–24]. By decreasing the number of cyanido groups
within the metalloligand, the formation of low-dimensionality coordination polymers is
favored [25]. Most of these 3d-4f cyanido-bridged complexes show interesting physical
properties, mainly magnetic [26–28] and optical [29–31], and in some cases combined slow
magnetic relaxation and light emission were revealed [32,33].

In this paper, we report on a new family of 1D coordination polymers, which are as-
sembled from [LnL]3+ and [M(CN)6]3− ions (L = bis-semicarbazone ligand, M = Fe, Co). The
pentadentate bis-semicarbazone ligand, L (Scheme 1), was previously used for the synthesis
of both 3d-3d/3d-4d cyanido-bridged discrete [34] and polymeric structures [35–41].
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Scheme 1. The structure of bis-semicarbazone ligand, L.

The new compounds have been characterized by single-crystal X-ray diffraction, and
their magnetic properties have been investigated.

2. Experimental Section
2.1. Materials and Physical Measurements

All reagents and solvents for synthesis were commercially purchased and used with-
out any further purification. The bis-semicarbazone ligand L was synthesized according to
the method reported in the literature [42].

IR spectra were recorded on a FTIR Bruker Tensor V-37 spectrophotometer (KBr pellets)
in the range of 4000–400 cm−1. Elemental analysis was performed on a EuroEA Elemental
Analyzer.

Magnetic Studies: DC magnetic susceptibility data (2–300 K) were collected on pow-
dered samples using a SQUID magnetometer (Quantum Design MPMS-XL), applying a
magnetic field of 0.1 T. All data were corrected for the contribution of the sample holder
and the diamagnetism of the samples estimated from Pascal’s constants [43,44]. The field
dependence of the magnetization (up to 5 T) was measured between 2.0 and 5.0 K. AC
magnetic susceptibility was measured between 2 and 7 K with an oscillating field magni-
tude of Hac = 3.0 Oe and frequency ranging between 1 and 1488 Hz in presence of a dc
field up to Hdc = 4000 Oe. Fitting of the variable parameters and estimation of errors was
performed with lsqcurvefit solver in MATLAB, and jacobian matrix was used to generate
95% confidence intervals on the fitted parameters. Typical examples of this analysis are
presented in Figures S3–S6.

X-ray powder diffraction data were measured on a Proto AXRD benchtop using
Cu-Kα radiation with a wavelength of 1.54059 Å in the range of 5–35º (2θ).
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2.2. Single Crystal X-ray Crystallography

X-ray diffraction data were collected at 293 K on a Rigaku XtaLAB Synergy-S diffrac-
tometer operating with Mo-Kα (λ = 0.71073 Å) micro-focus sealed X-ray tube. The struc-
tures were solved by direct methods and refined by full-matrix least squares techniques
based on F2. The non-H atoms were refined with anisotropic displacement parameters.
Calculations were performed using SHELX-2014 or SHELX-2018 crystallographic software
package [45,46]. Supplementary X-ray crystallographic data in CIF format have been de-
posited with the CCDC with the following reference numbers: 2069217 (1GdFe), 2069215
(2DyFe), and 2069216 (3DyCo). A summary of the crystallographic data and the structure
refinement for crystals 1–3 are given in Table S1.

2.3. Synthesis of Complexes

The three compounds are synthesized following the same general procedure: LnCl3·6H2O
(0.06 mmol) and L (0.06 mmol) in 10 mL H2O were stirred at 80 ◦C for 30 min. The above-
cooled solution was filtered and transferred to a 30 mL test tube. Additional 5 mL of water
was layered over the aqueous solution of the mononuclear complexes, and finally, a 10 mL
H2O solution containing 0.06 mmol K3[Fe(CN)6] or K3[Co(CN)6] was then slowly layered
on top. The whole set up was kept undisturbed and slow diffusion of these two solutions
led, after 2 weeks, to single crystals. The reaction mixture was mechanically stirred and was
filtered off through frit followed by drying under vacuum to obtain a polycrystalline solid.
Single crystals required for the X-ray data collections were picked up from the crystalline
mixtures prior to mechanical stirring.

{[Gd(L)(H2O)2Fe(CN)6]·H2O}n, 1GdFe: Orange crystalline solid, mass (yield): 22 mg
(51 %). Selected IR data (KBr, cm−1): 3457 (m), 3349 (m), 3189 (m), 2147 (mw), 2121 (vs),
1677 (vs), 1629 (m), 1614 (m), 1542 (s), 1461 (mw), 1367 (mw), 1307 (mw), 1266 (mw), 1196
(s), 1174 (mw), 1138 (mw), 1106 (mw), 1004 (w), 815 (mw), 769 (mw), 705 (mw), 656 (mw),
563 (mw), 485 (mw), 417 (mw). Elemental analysis. Calcd. for C17H21N13O5FeGd: C, 29.15;
H, 3.02; N, 25.99%; found C, 29.09; H, 2.96; N, 26.01%.

{[Dy(L)(H2O)2Fe(CN)6]·3H2O}n, 2DyFe: Orange crystalline solid, mass (yield): 27 mg
(60 %). Selected IR data (KBr, cm−1): 3457 (m), 3348 (w), 3236 (mw), 1676 (m), 1631 (m),
1609 (m), 1542 (m), 1461 (m), 1371 (m), 1309 (s), 1267 (s), 1196 (s), 1136 (vs), 1105 (m), 816
(m), 769 (mw), 704 (m), 654 (mw), 570 (mw), 507 (mw), 487 (mw). Elemental analysis. Calcd.
for C17H25N13O7DyFe: C, 27.53; H, 3.40; N, 24.55%; found C, 27.25; H, 3.37; N, 24.69%.

{[Dy(L)(H2O)2Co(CN)6]·H2O}n, 3DyCo: White crystalline solid, mass (yield): 22 mg
(51 %). Selected IR data (KBr, cm−1): 3458 (s), 3349 (s), 3238 (s), 3189 (mw), 2917 (mw),
2849 (w), 2362 (mw), 2165 (mw), 2148 (mw), 2132 (vs), 2091 (w), 1677 (vs), 1631 (m), 1614
(m), 1542 (vs), 1464 (m), 1368 (m), 1309 (mw), 1268 (mw), 1199 (ms), 1174 (mw), 1138 (m),
1107 (m), 1005 (w), 816 (mw), 770 (m), 708 (mw), 656 (mw), 556 (mw), 495 (m), 478 (m),
459 (mw), 422 (m). Elemental analysis. Calcd. for C17H21N13O5CoDy: C, 28.80; H, 2.99; N,
25.69%; found C, 28.64; H, 2.98; N, 25.45%.

3. Results and Discussion
3.1. Synthesis and Structures of the Complexes

The three compounds, {[Gd(L)(H2O)2Fe(CN)6]·H2O}n, 1GdFe, {[Dy(L)(H2O)2Fe(CN)6]·
3H2O}n, 2DyFe, and {[Dy(L)(H2O)2Co(CN)6]·H2O}n, 3DyCo, have been obtained via slow
diffusion of water solutions containing [Ln(L)(H2O)4]Cl3-K3[M(CN)6] in 1:1 molar ratio.
All complexes show C=O and C=N IR absorption peaks in the range of 1654–1657 cm−1,
which indicate the presence of the semicarbazone ligand. The split bands at 2200–2100 cm−1

are assigned to both the monodentate and bridging cyanido groups [47]. The crystalline
phase purity of the samples was confirmed by the good agreement between the PXRD
patterns and the ones simulated using single-crystal data (Figure S1). The FTIR spectra are
displayed in Figure S2.

Complexes 1GdFe and 3DyCo are isostructural, and they crystallize in the orthorhom-
bic space group Pbca with one crystallization water molecule/formula unit. Complex
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2DyFe crystallizes in the monoclinic system, space group P21/c, with three lattice water
molecules/formula unit. In all complexes, the metal ions have similar coordination environ-
ments, and the topology of the heterometallic chains is identical.

Compounds 1GdFe and 3DyCo consist of heterometallic chains with alternating distri-
butions of the 3d and 4f metal ions. Since the two compounds are isostructural, we will
describe only the crystal structure of the compound 1GdFe. The general appearance of the
chains is crenel-like, due to the fact that the [Fe(CN)6]3− metalloligand acts as a bridge
trough two cis cyanido groups and the two neighboring connecting [Fe(CN)6]3− moieties are
placed on the same side of the organic ligand coordinated to the lanthanide ion (Figure 1).
One of the two water molecules coordinated to the lanthanide ion is involved in intra-chain
hydrogen interaction with a cyanido group from a [Fe(CN)6]3− metalloligand coordinated
to a neighboring lanthanide ion. The chains are running along the crystallographic a axis.
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Figure 1. Perspective view of the 1D coordination polymer in compound 1GdFe (symmetry codes: ′ =
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The lanthanide ions are nine-coordinated by the pentadentate organic ligand (O1,
O2, N3, N4, and N5), two nitrogen atoms arising from the cyanido bridges (N8, N13′;
symmetry code: ′ = −0.5 + x, 0.5 − y, 1 − z), and two aqua ligands (O3, O4). The Ln-N
bond lengths with the organic ligand are in the range of 2.584(6) − 2.598(6) Å for 1GdFe
and 2.562(2) − 2.574(2) for 3DyCo, respectively, while for the cyanido groups are Gd1-N8 =
2.534(6), Gd1-N13′ = 2.566(6), respectively, Dy1-N8 = 2.519(3) and Dy1-N13′ = 2.544(3). The
Ln-O bond lengths are slightly longer with the organic ligand than aqua ligands: Gd1-O1
= 2.423(5), Gd1-O2 = 2.406(5), Gd1-O3 = 2.330(5), Gd1-O4 = 2.375(5), Dy1-O1 = 2.398(2),
Dy1-O2 = 2.382(2), Dy1-O3 = 2.308(2), Dy1-O4 = 2.3518(19) Å. The coordination geometry
of the gadolinium ion can be described as spherical capped square antiprism, according to
the calculations made with SHAPE software (Table S2) [48].

The O3 aqua ligands are further connected by hydrogen bonding to neighboring chains
generating a 2D supramolecular architecture in the crystallographic ac plane (Figure 2). The
distances for the hydrogen interactions are: (O3)H1O···N9′ ′ = 1.85 and (O3)H2O···N11′ ′ ′ =
1.93 Å, while the corresponding angles are: O3-H1O···N9′ ′ = 173.4 and O3-H2O···N11′ ′ ′ =
170.6º (symmetry codes: ′ ′ = 0.5 + x, 0.5 − y, 1 − z; ′ ′ ′ = x, 0.5 − y, −0.5 + z).

The extension of the supramolecular architecture to 3D is also mediated by hydrogen
bond interactions involving the second aqua ligand, the crystallization water molecules
and cyanido groups of the anionic metalloligand (Figure 3). Each O4 coordinated water
molecule is involved as donor in hydrogen interactions with two crystallization water
molecules. Each crystallization water molecule is acceptor for two hydrogen interac-
tions with two coordinated water molecules from neighboring layers and donor for two
cyan groups also from the two neighboring layers. The distances for these hydrogen
interactions are: (O4)H4O···O5 = 1.95, (O4)H3O···O5i = 1.92, (O5)H5O···N10 = 2.18 and
(O5)H6O···N12ii = 2.14 Å, while the corresponding angles are: O4-H4O···O5 = 166.7, O4-
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H3O···O5i = 161.8, O5-H5O···N10 = 158.7 and O5-H6O···N12ii = 169.7º (symmetry codes:
i = 1 − x, −y, 1 − z; ii = 1.5 − x, −0.5 + y, z).

Magnetochemistry 2021, 7, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. View along the crystallographic b axis of the packing diagram of compound 1GdFe show-
ing a supramolecular layer (symmetry codes: ’ = −0.5 + x, 0.5 − y, 1 − z; ” = 0.5 + x, 0.5 − y, 1 − z; ”’ = 
x, 0.5 − y, −0.5 + z). 

The extension of the supramolecular architecture to 3D is also mediated by hydrogen 
bond interactions involving the second aqua ligand, the crystallization water molecules 
and cyanido groups of the anionic metalloligand (Figure 3). Each O4 coordinated water 
molecule is involved as donor in hydrogen interactions with two crystallization water 
molecules. Each crystallization water molecule is acceptor for two hydrogen interactions 
with two coordinated water molecules from neighboring layers and donor for two cyan 
groups also from the two neighboring layers. The distances for these hydrogen interac-
tions are: (O4)H4O···O5 = 1.95, (O4)H3O···O5i = 1.92, (O5)H5O···N10 = 2.18 and 
(O5)H6O···N12ii = 2.14 Å, while the corresponding angles are: O4-H4O···O5 = 166.7, O4-
H3O···O5i = 161.8, O5-H5O···N10 = 158.7 and O5-H6O···N12ii = 169.7º (symmetry codes: i = 
1 − x, −y, 1 − z; ii = 1.5 − x, −0.5 + y, z). 

 

Figure 2. View along the crystallographic b axis of the packing diagram of compound 1GdFe showing
a supramolecular layer (symmetry codes: ′ = −0.5 + x, 0.5 − y, 1 − z; ′ ′ = 0.5 + x, 0.5 − y, 1 − z; ′ ′ ′ =
x, 0.5 − y, −0.5 + z).

Magnetochemistry 2021, 7, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. View along the crystallographic b axis of the packing diagram of compound 1GdFe show-
ing a supramolecular layer (symmetry codes: ’ = −0.5 + x, 0.5 − y, 1 − z; ” = 0.5 + x, 0.5 − y, 1 − z; ”’ = 
x, 0.5 − y, −0.5 + z). 

The extension of the supramolecular architecture to 3D is also mediated by hydrogen 
bond interactions involving the second aqua ligand, the crystallization water molecules 
and cyanido groups of the anionic metalloligand (Figure 3). Each O4 coordinated water 
molecule is involved as donor in hydrogen interactions with two crystallization water 
molecules. Each crystallization water molecule is acceptor for two hydrogen interactions 
with two coordinated water molecules from neighboring layers and donor for two cyan 
groups also from the two neighboring layers. The distances for these hydrogen interac-
tions are: (O4)H4O···O5 = 1.95, (O4)H3O···O5i = 1.92, (O5)H5O···N10 = 2.18 and 
(O5)H6O···N12ii = 2.14 Å, while the corresponding angles are: O4-H4O···O5 = 166.7, O4-
H3O···O5i = 161.8, O5-H5O···N10 = 158.7 and O5-H6O···N12ii = 169.7º (symmetry codes: i = 
1 − x, −y, 1 − z; ii = 1.5 − x, −0.5 + y, z). 

 
Figure 3. Detail of the packing diagram with the hydrogen interactions established between chains
from neighboring supramolecular layers and crystallization water molecules in crystal 1GdFe (sym-
metry codes: i = 1 − x, −y, 1 − z; ii = 1.5 − x, −0.5 + y, z).

Compound 2DyFe consists also of heterometallic chains running in this case along the
crystallographic b axis, and crystallization water molecules. The 1D chains are formed
in a similar manner by connecting [Dy(L)(H2O)2]3+ complex cations by the [Fe(CN)6]3−

metalloligands, which employ two cis cyanido groups for bridging (Figure 4). The DyIII

ion is nine-coordinated by the pentadentate ligand (O1, O2, N3, N4, and N5), two nitrogen
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atoms arising from the cyanido bridges (N8, N13), and two aqua ligands (O3, O4). The
coordination geometry of the dysprosium ion is also spherical capped square antiprism
(Table S2). The Dy-N and Dy-O bond lengths are in the range of 2.503(2)–2.553(2) and
2.3298(18)–2.3783(13) Å, respectively. The two Dy-N bond distances (nitrogen atoms arising
from the bridging cyanido groups) are Dy1-N8 = 2.556(2) and Dy1-N13′ = 2.533(2) Å
(symmetry code: ′ = 1 − x, −0.5 + y, 1.5 − z). The FeIII ions show a slightly distorted
octahedral geometry with Fe1-C bond lengths ranging from 1.929(3) to 1.957(3) Å. Each
{Dy(L)(H2O)2} module links two {Fe(CN)6} fragments in cis positions (the Dy···Fe···Dy
angle is 95.78◦), and each {Fe(CN)6} metalloligand connects two DyIII ions, resulting in a
crenel-like chain structure.
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Figure 4. Perspective view of the 1D coordination polymer in compound 2DyFe. The inset shows a detail of the coordination
environment of the DyIII ion (symmetry codes: ′ = 1 − x, −0.5 + y, 1.5 − z; ′ ′ = x, −1 + y, z).

The O3 aqua ligand is also involved in intra- and interchain hydrogen bonding gen-
erating an analogous 2D supramolecular architecture in the ab crystallographic plane
(Figure 5). The distances for the hydrogen interactions are: (O3)H1O···N12′ ′ = 1.88 and
(O3)H2O···N10′ ′ ′ = 2.05 Å, while the corresponding angles are: O3-H1O···N12′ ′ = 172.4 and
O3-H2O···N10′ ′ ′ = 167.9º (symmetry codes: ′ ′ = x, −1 + y, z; ′ ′ ′ = 2 − x, −0.5 + y, 1.5 − z).
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The main differences between crystals 1GdFe and 2DyFe appear in hydrogen interactions
established between the supramolecular layers. Compound 2DyFe has two more crystal-
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lization water molecules per unit comparing with the crystals 1GdFe and 3DyCo. The O4
coordinated water molecule is also involved as donor in hydrogen interactions with two
crystallization water molecules, O5 and O5i, (Figure 6). Each of these crystallization water
molecules is acceptor for two hydrogen interactions with two coordinated water molecules
from neighboring layers and acts as donor for only one cyanido group (O5 is donor for N11i

atom). The other two crystallization water molecules are involved in hydrogen bonding
with one NH2 group and one cyanido group (O6), respectively, and two cyanido groups
(O7). The distances for the hydrogen interactions are: (O4)H4O···O5 = 1.91, (O4)H3O···O5i =
2.02, (O5)H5O···N11i = 2.28, (N7)H5N···O6 = 2.16, (O6)H8O···N12iii = 2.28, (O7)H9O···N9ii

= 2.15, and (O7)H10O···N10i = 2.20 Å, while the corresponding angles are: O4-H4O···O5 =
174.4, O4-H3O···O5i = 171.4, O5-H5O···N11i = 146.7, N7-H5N···O6 = 162.3, O6-H8O···N12iii

= 166.1, O7-H9O···N9ii = 153.9, and O7-H10O···N10i = 148.8 º (symmetry codes: i = 1 − x, 1
− y, 1 − z; ii = 1 − x, −0.5 + y, 1.5 − z; iii = x, 1.5 − y, −0.5 + z).
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The shortest intramolecular Fe···Gd distances in 1GdFe are 5.513 and 5.557 Å, while the
intramolecular Dy···Fe distances in 2DyFe are 5.542 and 5.494 Å. Selected bond distances
and angles for compounds 1–3 are listed in Table S3.

3.2. Magnetic Properties of the Complexes

Static magnetic characterizations. The magnetic susceptibility data for compounds 1–
3 were measured on polycrystalline samples in the temperature range of 2–300 K as shown
in Figure 7, in the form of χMT vs. T curves. The observed χMT values at 300 K for 1GdFe,
3DyCo, and 2DyFe are of 8.265, 15.454, and 16.305 cm3 mol−1K, which are slightly higher
than the expected values for a non-interacting spin system of one GdIII (7.88 cm3 mol−1 K,
S = 7/2, 8S7/5, g = 2.00), DyIII (14.17 cm3 mol−1 K, S = 5/2, 6H15/2, g = 4/3) [49], and one
low-spin S = 1

2 FeIII ion or one diamagnetic CoIII ion [44]. Upon cooling, the χMT values
stay almost constant in the high temperature region, while at low temperatures, the χMT
values show a rapid decrease and reach the values of 6.833, 12.722, and 11.210 cm3 mol−1 K,
respectively, at 2.0 K. In the case of 1GdFe, the decrease in χMT with temperature may be
associated with FeIII-GdIII antiferromagnetic interactions along the heterometallic alter-
nating chain. The possible presence of intermolecular interactions can also contribute to
this decrease. The expected ferrimagnetic behavior (i.e., the characteristic minimum on the
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χMT vs. T curve) is not observed, probably due to the small magnitude of the exchange
interactions along the chain. The evolution of the temperature dependence of the magnetic
susceptibility for 3DyCo is exclusively defined by the presence of strongly anisotropic DyIII

ions, which are isolated by diamagnetic low spin CoIII ions. The decrease in χMT with
the temperature is due to the depopulation of MJ (Stark) sublevels of the DyIII centers in
3DyCo [50]. This effect is certainly present in the case of compound 2DyFe. Additionally, a
FeIII-DyIII magnetic coupling along the chain can be expected. In the case of 2DyFe, the evo-
lution of χMT shows a more important slope compared to compound 3DyCo (Figure 7), with
a lower value of susceptibility at 2.0 K (11.210 cm3 mol−1 K). This indicates the presence of
some antiferromagnetic impact, which contributes to the observed decreasing χMT values.
For 2DyFe, the existence of magnetic interactions similar to those in 1GdFe also suggests the
formation of a ferrimagnetic chain, which, associated with strong magnetic anisotropy,
could lead to a Single Chain Magnet. Unfortunately, as in the case of 1GdFe, the increase
in χMT at low temperatures and the characteristic minimum were not detected for 2DyFe
(Figure 7). This behavior is probably due to the very small antiferromagnetic interactions
along the chain. The magnetization measurements (Figure S3) support the presence of an
important magnetic anisotropy in 2DyFe and 3DyCo.
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Figure 7. Temperature dependence of χMT vs. T for complexes 1GdFe, 2DyFe, and 3DyCo.

Dynamic magnetic characterizations. Dynamic magnetic properties of the compounds
1GdFe, 2DyFe, and 3DyCo were studied by measuring the temperature and field dependence
ac (alternative current) magnetic susceptibility. Compound 1GdFe does not have any mani-
festation of the out-of-phase component (χ′ ′ac) of the ac magnetic susceptibility at 2 K and
zero dc (direct current) field. After applying small dc field (2000 Oe) no modification was
observed in χ′ ′ac component of ac susceptibility.

For 3DyCo, no signal was observed under zero dc field at 2.0 K, in χ′ ′ac component of ac
susceptibility. After applying of small dc fields (up to 4000 Oe), a frequency dependent out-
of-phase signal appears (Figure 8b) and has a rich evolution in function of the field. Such
behavior is consistent with presence of strongly anisotropic paramagnetic centers DyIII

and indicates the presence of field-induced slow magnetic relaxation. The intensity of the
out-of-phase signals gradually increases till about 2000 Oe, and then, it slightly decreases.
To investigate the nature of slow magnetic relaxation, additional ac susceptibility data were
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collected under fixed dc field (2000 Oe) and stable temperatures between 2.0 and 5.0 K (with
a 0.2 K increment)—Figure 8d–f. The temperature sweeping of the ac susceptibility shows
the important evolution of the χ′ ′ac component and supports the presence of field-induced
slow magnetic relaxation in 3DyCo. Since the CoIII ion is diamagnetic, compound 3DyCo can
be described as being a chain of Single Ion Magnets.
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Figure 8. Field dependence (left, a,b) and temperature dependence (right, d,e) of ac susceptibility (Hac = 3.0 Oe) and
Cole–Cole plots, (c,f), for 3DyCo at the indicated temperatures and fields. The solid lines represent the best fits according to
the generalized Debye model for two relaxations processes (Equations (S1) and (S2)).

A similar strategy of measurements was used in the dynamic analysis of 2DyFe. As
in the case of 3DyCo, at T = 2.0 K and zero dc field, no signal was detected in the out-of-
phase component of the ac susceptibility. The signals appear when a small magnetic dc
field was applied and has similar evolutions as in the case of 3DyCo (Figure S8a–c). A dc
field of 3000 Oe was used to perform the temperature sweeping measurements of the ac
susceptibility in the case of 2DyFe (Figure S8d–f).

For both compounds (2DyFe and 3DyCo), the visual analysis of the out-of-phase suscep-
tibilities, as well of the χ′ ′ac vs. χ′ac plots (Cole–Cole plots), suggests the presence of at least
two distinct relaxation processes. In consequence, the ac susceptibility data (field sweeping
and temperature sweeping measurements) for 3DyCo and 2DyFe were evaluated with gener-
alized (extended) Debye equations combining two-relaxation processes [51–53]. The two
relaxation times (τ1, and τ2,) and two distribution parameters (α1, and α2) occur along with
two isothermal susceptibilities (χT1 and χT2) and one common adiabatic susceptibility (χs)
(see Equations (S1) and (S2)). The deconvolution of two relaxations process is presented in
Figures S4–S7. Variable parameters derived from the best fits of the ac susceptibility are
shown in Figures S9–S12.

In both compounds, the first relaxation process LF (Low Frequency) is well defined,
while the second HF (High Frequency) process has large errors on the variable parameters.
The distributions of relaxation times for the LF process are rather broad (α1 = 0.3 ÷ 0.5). The

291



Magnetochemistry 2021, 7, 57

extracted temperature and field dependence of relaxation times for 2DyFe and 3DyCo can be
modulated based on four relaxation mechanisms according to the following equation [54–58]:

τ−1
T/H(T, H) =

Q1

1 + Q2H2 + τ−1
0 exp

(
−

Ue f f

kT

)
+ AH4T + CTn. (1)

The first term represents the Quantum Tunneling of Magnetization (QTM), the sec-
ond term corresponds to Orbach, the third to Direct, and the last one to Raman process;
moreover, H = applied dc magnetic field and T = temperature. In order to constrain the
variable parameters and avoid the overparameterization problem, temperature and field
dependence of relaxation times were fitted simultaneously [56] (vector of data: τ−1 in s−1,
T in Kelvin, and H in kOe). Only LF signals will be discussed below, as the second process
(HF) is poorly defined. Different combinations of the four mechanisms of relaxation have
been used in order to simulate the evolution of the relaxation times. For the LF signals,
with both compounds, the contribution of Quantum Tunneling of Magnetization (QTM)
is indispensable to simulate the relaxation data. The continuous decreasing trend of τ−1

vs. applied field (H) excludes the presence of significant contribution of Direct relaxation
mechanism. The other contributions in relaxation times can be Raman and/or Orbach,
which have the same increasing evolutions with temperature variation [57]. In this re-
stricted range of temperature, it is difficult to separate these two components. In order to
have some information regarding the manifestation of these mechanisms, the comparative
fits on the temperature dependence of relaxation time for 2DyFe and 3DyCo have been done
(Figures S13–S15). Both mechanisms can reproduce the time of evolution. The quality of
the Orbach mechanism is slightly better. It should be mention here that the distribution
parameters (α) have important impact on uncertainties relaxation time [59] and can also
be an argument in favor of one or another mechanism. The analysis presented in Figures
S13–S15 shows the similarity in uncertainties of relaxation times for both mechanisms.
Based on this argument and a low temperature range (2–4 K) of relaxation data for 3DyCo
and 2DyFe, as well the traditional representation of relaxation phenomena in SMM, our
analysis of LF relaxation process is limited to two contributions: QTM and Orbach. The
best fit for LF relaxation processes based on the two mechanisms has been obtained for the
following sets of parameters:

3DyCo: Ueff/k = 7.1 K; τ0 = 7.5 × 10−5 s; Q1 = 121 s−1; Q2 = 1.05 kOe−2

2DyFe: Ueff/k = 10.8 K; τ0 = 5.9 × 10−4 s; Q1 = 200 s−1; Q2 = 0.05 kOe−2.

The obtained relaxation parameters are similar for compounds 2DyFe and 3DyCo. Due
to the diamagnetic CoIII ions in 3DyCo, the slow magnetic relaxation is solely associated with
the anisotropic DyIII ions. The existence of intrachain magnetic interaction in 2DyFe does
not change significantly the energy barrier of slow relaxation of the magnetization (see the
temperature dependence in Figure 9), but affects more the field dependence, which becomes
much more redistributed. This probably can be associated to redistribution/mixing the
different energy levels in the 2DyFe as a result of the small antiferromagnetic interaction
along the chain and of intermolecular (interchain) interaction. The splitting of MJ (Stark)
sublevels of the DyIII centers under variation of the magnetic field also contributes to
this redistribution. As in the case of static magnetic measurements, these competitive
interactions cannot be quantified at the reported range of temperatures.

In a recent paper, Ma et al. report on a family of discrete, tetranuclear 3d-4f com-
plexes assembled from a cationic lanthanide complexes and [M(CN)6]3− metalloligands
(M = Fe, Co), the ligand attached to the lanthanide(III) ions (Tb, Dy, and Ho) being also
pentadentate [60]. The field-induced slow relaxation of the magnetization, with a low
energy barrier (11.17 K), was observed only with the [Dy2Co2] derivative. The presence of
the paramagnetic FeIII ion does not improve the SMM behavior: for the [Dy2Fe2] derivative,
the slow relaxation is not observed even by applying dc fields.
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4. Conclusions

In this paper, we have shown that the pentadentate bis-semicarbazone ligand, L, gener-
ates robust cationic LnIII complexes, which are useful modules for constructing heterometal-
lic coordination polymers. The metalloligands, [M(CN)6]3−, employ two cis cyanido groups
as bridges against the LnIII ions, resulting in a wave-like chain topology for the three com-
pounds. The investigation of the magnetic properties reveals that the two DyIII-containing
coordination polymers exhibit slow relaxation of the magnetization, with rather low energy
barriers. From the magnetic point of view, compound 3DyCo behaves like a chain of Single
Ion Magnets. These results open interesting perspectives for the synthesis of new cyanido-
bridged 3d-4f complexes, using not only homoleptic but also heteroleptic cyanido tectons,
as well as other types of metalloligands. Further work is in progress in our laboratory.
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Abstract: Three radical cation salts of BDH-TTP with the paramagnetic [ReF6]2− and diamagnetic
[ReO4]− anions have been synthesized: κ-(BDH-TTP)4ReF6 (1), κ-(BDH-TTP)4ReF6·4.8H2O (2) and
pseudo-κ”-(BDH-TTP)3(ReO4)2 (3). The crystal and band structures, as well as the conducting prop-
erties of the salts, have been studied. The structures of the three salts are layered and characterized by
alternating κ-(1, 2) and κ”-(3) type organic radical cation layers with inorganic anion sheets. Similar
to other κ-salts, the conducting layers in the crystals of 1 and 2 are formed by BDH-TTP dimers.
The partial population of positions of Re atoms and disorder in the anionic layers of 1–3 are their
distinctive features. Compounds 1 and 2 show the metallic character of conductivity down to low
temperatures, while 3 is a semiconductor. The ac susceptibility of crystals 1 was investigated in order
to test the possible slow relaxation of magnetization associated with the [ReF6]2− anion.

Keywords: organic conductors; metal complex anions; molecular magnets; electrocrystallization;
crystal and band structures; conductivity; magnetic properties

1. Introduction

Multifunctionality is one of the most attractive trends in the chemistry of modern
materials. Among multifunctional materials, compounds combining electrical conductivity
and magnetism in the same crystal lattice have been the object of intense study in recent
decades [1–6]. This interest is associated with the search for synergy of these properties,
which can lead to new phenomena and the tuning of one of the properties as a response
to an external factor affecting the other. Research in this area is focused mainly on the
family of quasi-two-dimensional (super)conductors based on the radical cation salts of
bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, Scheme 1) and its derivatives with vari-
ous paramagnetic metal complex anions. In such compounds, the electrical conductivity
is associated with mobile electrons of the organic layers, and transition metal ions in the
insulating anion layers are responsible for magnetism. Among the possible magnetic coun-
terions for conducting radical cation salts, molecular nanomagnets—the so-called single
molecular magnets (SMMs)—attract much attention. SMMs exhibit unique magnetic prop-
erties at liquid helium temperatures such as slow magnetization relaxation, blocking and
quantum magnetization tunneling and, due to these properties, the SMMs are promising
compounds [7–11]. The creation of multifunctional compounds combining conductivity
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and single molecule magnetism could open new directions in terms of further studying the
fundamental properties and practical applications of molecular nanomagnets. In partic-
ular, the study of the relationship between relaxing local spins and conducting electrons
in superparamagnetic/conducting hybrid materials is important for the development of
quantum spintronic systems.
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There are already several publications in the literature devoted to the design and
synthesis of conducting radical anion salts based on the M(dmit)2 complexes and tetra-
cyanoquinodimethane containing cationic metal complexes as counterions, showing slow
magnetic relaxation [6,12,13]. Recently, a radical cation salt of BEDT-TTF has also been syn-
thesized with a single-molecule magnet as a counterion, namely, an anionic trifluoroacetate
dysprosium complex [14]. However, in all these compounds, conductivity and single-
molecule magnetism occur in different temperature ranges: the single-molecule magnetic
properties appear at very low helium temperatures (usually below 20 K), while the conduc-
tivity is at best maintained up to the liquid nitrogen (77.2 K). In 2018, we used the oxygen
analog of BEDT-TTF, bis(ethylenedioxo)tetrathiafulvalene (BEDO), Scheme 1, as an organic
π-donor and investigated its electrochemical oxidation in the presence of the Re(IV) hex-
afluoride complex, [ReF6]2−, which in the composition of (PPh4)2[ReF6]·2H2O salt displays
SMM properties below 5 K under application of a low permanent magnetic field [15]. As a
result, the first conductive field-induced SMM was synthesized—(BEDO)4[ReF6]·6H2O—
in which conductivity and single-molecule magnetism coexist in the same temperature
range [16]. More recently, another BEDO salt has been synthesized with a monomolecular
magnet [Co(pdms)]2− as a counterion, which also shows the coexistence of conductivity
and monomolecular magnetism up to 11 K [17].

In the present work, we investigated the electrochemical oxidation of 2,5-bis (1,3-
dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene donor, C10S8H8, (BDH-TTP, Scheme 1) in the
presence of (PPh4)2[ReF6] 2H2O, electrolyte. Our choice of the BDH-TTP donor, as in the
case of BEDO, is determined by the fact that it forms radical cation salts with counterions of
a different nature, size and shape, which retain metallic conductivity up to the temperature
of liquid helium (4.2 K) [18,19].

Unlike BEDT-TTF and its derivatives, in the case of BDH-TTP and BEDO, the crys-
talline packing of the conducting layers is determined primarily by the nature of these
donors themselves, and the counterions have almost no effect on the packing of the radical
cation layers. Herein, we report the synthesis and the crystalline and band structures, as
well as the transport properties under the normal and high pressure of new organic metals
based on BDH-TTP, κ-(BDH-TTP)4ReF6 (1) and κ-(BDH-TTP)4ReF6·4.8H2O (2), containing
κ-type organic layers as well as the new semiconductor, pseudo-κ”-(BDH-TTP)3(ReO4)2
(3). To probe the magnetization dynamics of 1, the ac susceptibility was studied.

2. Results and Discussion
2.1. Synthesis

Electrochemical oxidation of the BDH-TTP donor has been studied in a medium
chlorobenzene (CB) + 10% abs. ethanol, (CB) + (5 ÷ 15%) rectified (96%) ethanol containing
4% water and (CB) + 10% trifluoroethanol. Different types of alcohol have been used
as additives to the main solvent CB. The (Ph4P)2[ReF6]·2H2O salt has been used as an
electrolyte. Crystals of 1 grow when trifluoroethanol is used as an additive. In a mixture of
CB with the addition of 96% ethanol, the crystals of 2 and 3 formed simultaneously at the
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anode while electrocrystallization was not observed in the presence of the absolute alcohol
due to the inability to set the desired current. Thus, it can be stated that alcohol additives
have a decisive influence on the formation of these BDH-TTP salts. Moreover, the formation
of salt 3 indicates that, in the process of electrocrystallization, Re4+ is oxidized to Re7+. The
synthetic procedure for the preparation of salts 1–3 is given in the experimental section.

2.2. Crystal Structure

The prepared radical cation salts were characterized by the layered structures with
alternating conductive radical cation layers and insulating anionic sheets formed with
[ReF6]2− octahedra in salt 1, [ReF6]2− octahedra and water molecules in 2 or [ReO4]−

tetrahedra in 3. Crystallographic data and refined structural parameters for the crystals
1–3 are given in Table S1, Supplementary Materials.

2.2.1. Crystal Structure of the Salts κ-(BDH-TTP)4ReF6 (1) and
κ-(BDH-TTP)4ReF6·4.8H2O (2)

The compound 1 crystallizes in a monoclinic system (P21/C space group). The asym-
metric part of the crystal structure consists of one molecule of BDH-TTP and one anion in
the general position with a population of 0.25 (see Figure S1, ESI). Thus, there is one anion
and four radical cations per unit cell. Figure 1 shows the layered structure of the crystals of
1, in which conductive and insulating layers alternate along the a-axis. The radical cationic
layers in 1 are packed in a typical κ-type arrangement formed by BDH-TTP equivalent
dimers (Figure 2a), which are located at an angle of 83.78◦ relative to each other.

The donor molecules are arranged into “face-to-face” dimers by a “ring-over-bond”
type (Figure S2, Supplementary Materials) [19]. This configuration, in which two neighbor-
ing donor molecules are shifted in relation to each other along the long molecular axis by
approximately a length of the C=C double bond (~1.4 Å), is typical for the BEDT-TTF and
BDH-TTP κ-salts [18–20]. The terminal ethylene groups in 1 are disordered. The central
C=C bond length of the radical cation, as well as two terminal C=C bond lengths in the
TTP fragments, have almost the same values (1,353–1.357 Å), which correspond well to
the charge +0.5 [18–21]. The anionic layer, formed by isolated anions with the incomplete
population of Re (Figure 2b), is highly disordered. Since it has been impossible to accurately
determine the position of fluoride ions in the octahedra, they have therefore been refined
with restrictions on bond lengths and thermal parameters.
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Figure 2. Projections of: (a) the radical cation layer, where the different intermolecular interactions are labeled and (b) the
anionic layer along the a axis in the κ-(BDH-TTP)4ReF6 (1) salt.

Between the dimers there are four short S . . . S contacts and one short S . . . C contact,
and the contacts involving hydrogen atoms (Table 1), while inside the dimers in the
conducting layers, are only intermolecular contacts of the types S . . . HC (S5 . . . H9A) and
C . . . HC (C6 . . . H9A).

Table 1. Short intermolecular contacts in the structure of the salt 1.

Short Contact Contact Length, Å Symmetry Operation for the 1st Atom in Contact

S1 . . . S2 3.584 x, y, z
S3 . . . S1 3.531 x, y, z
S8 . . . S3 3.549 x, y, z
S7 . . . S5 3.516 x, y, z
S8 . . . C5 3.434 x, y, z

S4 . . . H10A 2.977 x, y, z
S6 . . . H10A 2.942 x, y, z
S5 . . . H9A 2.858 x, y, z
C6 . . . H9A 2.822 x, y, z

Salt 2 crystallizes in a monoclinic system and, in contrast to 1, was refined in the
space group C2/c. The asymmetric part of the crystal structure comprises the [ReF6]2−

anion in a general position with a population of 0.25 disordered by the two-fold axis, a
radical cation in a general position and three water molecules with a population of 0.72,
0.24, 0.24, respectively. Thus, there are two anions and eight radical cations per unit cell
or, formally, one Re atom for four BDH-TTP molecules (see Figure S3, Supplementary
Materials). Consequently, the composition of salt 2 differs from 1 by the presence of
water molecules in its structure. The crystal structure of 2 is shown in Figure 3, in which
conductive and insulating anionic layers alternate along the a- axis. The radical cation
layers consist of BDH-TTP dimers built from two identical donor molecules with an average
charge of +0.5 per molecule (κ-type packing) (Figure 4a). Terminal ethylene groups in the
BDH-TTP radical cations are disordered.
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κ-(BDH-TTP)4ReF6·4.8H2O (2) salt.

As in salt 1, the BDH-TTP dimers in 2 have a “ring-over-bond” configuration (Figure S4,
Supplementary Materials). Inside the dimers, the central parts of the donor molecules are
almost parallel. The dihedral angle between the neighboring dimers is 83.45◦. As in salt 1,
this angle in 2 is smaller by ≈16◦ than those characteristic of classical BEDT-TTF and BETS
κ-type salts [3,4,20].

The conducting layers are characterized by the presence of several short S . . . S
contacts, some of which are shorter than the sum of the Van der Waals radii by 0.007–
0.110 Å. In addition to these contacts there are also intermolecular contacts of the S . . . H-C
and C . . . H-C types (Table 2). Between the dimers there are six short S . . . S- and one S . . .
C contact and also intermolecular contacts S2 . . . HC7 and S7 . . . HC7. In the dimer, only
intermolecular contacts S8 . . . H8B and C6 . . . H8B are present (Table 2).

The anionic layers of salt 2 consist of the isolated octahedral [ReF6]2− anions and
water molecules localized near them. Figure 4b shows a fragment of the anionic layer. The
octahedral anions in 2 are more distorted, compared with those in 1. As a result of signifi-
cant disorder in the anionic layer, the atomic population of the [ReF6]2−anion and water
molecules have been refined with restrictions on bond lengths and thermal parameters and
then fixed, as in salt 1. As a consequence, it has not been possible to accurately analyze the
different interactions leading to the actual crystal package in both salts.

2.2.2. Crystal Structure of the Pseudo-κ”-(BDH-TTP)3(ReO4)2 (3) Salt

Radical cation salt 3 crystallizes in the triclinic system. The asymmetric unit includes
the [ReO4]− anion in the general position and two radical cations in the general position
(Figure S5, Supplementary Materials). In the anion, oxygen atoms are disordered over two
positions with occupancies 0.63 and 0.37. The radical cation and anion layers alternate
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along the c axis of the unit cell (Figure 5). The radical cations in the conducting layers form
a two-dimensional network connected by several short contacts S...S and intermolecular
contacts CH...S, Figure 6a. Values of short contacts and intermolecular CH...S contacts in
the structure of 3 are listed in Table 3.

Table 2. Short intermolecular contacts in the structure of the salt 2.

Short Contact Contact Length, Å Symmetry Operation for the 1st Atom in Contact

S3 . . . S1 3.569 x, y, z
S2 . . . S5 3.581 x, y, z
S4 . . . S6 3.537 x, y, z
S4 . . . S1 3.531 x, y, z
S3 . . . S6 3.593 x, y, z
S5 . . . S8 3.490 x, y, z
C5 . . . S6 3.416 x, y, z

C7H . . . S2 2.057 x, y, z
C7H . . . S7 2.878 x, y, z
S8 . . . H8B 2.957 x, y, z
C6 . . . H8B 2.782 x, y, z
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Table 3. The short intermolecular contact values and hydrogen bonds in the structure of salt 3.

Short Cotact Length, Å
Sym. Operation
for the 1st Atom Short Contact Length, Å

Sym. Operation
for the 1st Atom

O3 . . . S10 3.045 x, y, z S12 . . . 3 3.498 x, y, z
O4 . . . S5 3.045 x, y, z S12 . . . S2 3.260 x, y, z
O1 . . . C5 3.126 x, y, z S10 . . . S4 3.579 x, y, z

O3 . . . C14 3.160 x, y, z C15 . . . S3 3.466 x, y, z
O3 . . . C6 3.204 x, y, z S9 . . . S6 3.482 x, y, z

O4 . . . C10 3.160 x, y, z S9 . . . C7 3.296 x, y, z
O3 . . . C6 3.204 x, y, z S6 . . . S2 3.423 x, y, z
O2 . . . C6 3.059 x, y, z S11 . . . S7 3.244 x, y, z

O2 . . . H6A 2.246 x, y, z S11 . . . S6 3.531 x, y, z
O1 . . . H6A 2.707 x, y, z C15 . . . S7 3.383 x, y, z
O4 . . . H14B 2.533 x, y, z S9 . . . S8 3.457 x, y, z
O2 . . . H13A 2.496 x, y, z S3 . . . S7 3.466 x, y, z
O1 . . . H5B 2.559 x, y, z S10 . . . H6B 2.943 −1 + x, 1 + y, z
O1 . . . H9A 2.612 x, y, z S4 . . . H6B 2.873 x, y, z

The conducting layers in 3 are built from dimers and single donor molecules (so called
pseudo-κ-type packing) [5,22]. In the dimers, the radical cations are located “face-to-face”
with a longitudinal shift larger than the shifts in salts 1 and 2 (Figure S6, Supplementary
Materials). The pseudo-κ′-type packing, where four single molecules surround one dimer,
is described in BEDT-TTF salts [5,22]. Unlike the known BEDT-TTF salts with pseudo-κ′-
type packing [5,22], we have observed four dimers surrounding a donor molecule (new
pseudo-κ”-type packing) in 3 (Figure 6a). This type of packing of conducting organic layers
has not been previously observed in radical cation salts. The dihedral angle between the
single BDH-TTP molecule and dimer is 84.45◦. The distances between the radical cations
in dimer and between single molecules are equal to 3.289 Å and 5.374 Å, respectively. The
distances along the a and b axes between the radical cations in the dimer and a single BDH-
TTP molecule are 3.456 and 3.651 Å, respectively. The lengths of C=C bonds in the single
radical cation and dimer are shown in Table 4. By the value of C=C bonds, one can estimate
the charge state of the BDH-TTP molecule [18,21]. From the analysis of the values of these
bonds, it can be assumed that the charge state of a single BDH-TTP molecule is close to
0, and that of dimer molecules is close to +2. However, the presence of short contacts
between dimers and single ET molecules (Figure S7, Supplementary Materials) indicates
the existence of some charge transfer between them. In order to clarify this situation, the
electronic band structure of 3 was calculated (see the electronic structures section).

Table 4. The lengths of C=C bonds in the dimer and single radical cation of salt 3.

C=C Bond in the Dimer
Radical Cation Length of C=C Bond, Å

C=C Bond in the Single
Radical Cation Length of C=C Bond, Å

central C1=C2 1.374 central C15=C15 1.362
terminal C3=C4 1.358 terminal C11=C12 1.345
terminal C7=C8 1.365 terminal C11=C12 1.345

Anionic layers are formed by isolated anions [ReO4]−. Each Re atom has a tetrahedral
environment and is bonded to four oxygen atoms (Figure 6b). Between the BDH-TTP
molecules and [ReO4]− tetrahedra there are short C...O and S...O contacts as well as
intermolecular C-H . . . O contacts (see Table 4). The Re-O bond lengths in the tetrahedra
are within the interval 1.700–1.786 Å range, Table S2, Supplementary Materials

303



Magnetochemistry 2021, 7, 54

2.3. Electronic Structure of the BDH-TTP Salts
2.3.1. Electronic Structure of κ-(BDH-TTP)4ReF6 (1) and κ-(BDH-TTP)4ReF6·4.8H2O (2)

The donor layers of 1 contain only one type of BDH-TTP dimer built from two identical
donors and there are four different types of HOMO . . . HOMO (highest occupied molecular
orbital) intermolecular interactions (see Section 2, Figure 2a): (i) the intra-dimer interaction
(I); (ii) two interactions between donors in different dimers almost orthogonal (II and III);
and (iii) one interaction between donors in different dimers forming a chain along the b-
direction (IV). The strength of these interactions can be qualified from the so-called HOMO
. . . HOMO interaction energies [23]. Those calculated for the present salt are 0.3567 (I),
0.0826 (II) 0.1372 (III) and 0.2326 (IV) eV. These values implicate very similar inter-dimer
interactions along the two main directions of the lattice. Thus, as far as the HOMO . . .
HOMO interactions are concerned, this salt must be very isotropic within the layers plane.
This was also the case with other BDH-TTP κ-type salts such as κ-(BDH-TTP)2X with
X = [FeNO(CN)5], PF6, FeCl4, and [Hg(SCN)4].C6H5NO2 [18,21,24,25]. For instance, the
HOMO . . . HOMO interaction energies calculated for the first of these salts are: 0.3613 (I),
0.0742 (II) 0.1476 (III) and 0.2420 (IV) eV, which are remarkably similar to those of κ-(BDH-
TTP)4ReF6. Since the shape of the anions in these salts is quite different, it is clear that the
inner structure of many BDH-TTP κ-salts is mostly determined by the intra-layer hydrogen
bonding and S . . . S interactions with only a minor influence of the anions, which tend to
adapt to it. The calculated band structure of 1 is shown in Figure 7a. Since the repeat unit
of the donor layer contains four donors, Figure 7a contains four HOMO-based bands. With
one-quarter occupation of the anion positions, the HOMO bands must contain two holes
so that the Fermi level cuts the two upper HOMO bands and the system should exhibit
metallic behavior, in agreement with our transport measurements.
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The calculated Fermi surface is shown in Figure 7b: it is made of a series of superposed
cylinders with a practically circular cross section. The area of the large circles of Figure 7b
amounts to 100% of the cross-sectional area of the Brillouin zone, whereas that of the closed
circuit around Z amounts to 16.6%.

Despite the fact that the 3D crystal structure of κ-(BDH-TTP)4ReF6·4.8H2O is different
from that of κ-(BDH-TTP)4[ReF6], the donor layers are structurally very similar. In particu-
lar, they contain only one type of BDH-TTP dimer built from two identical donors. The
calculated β|HOMO-HOMO| interactions energies for this salt are: 0.3536 (I), 0.0797(II) 0.1363
(III) and 0.2392 (IV) eV. These values are almost identical to those for κ-(BDH-TTP)4ReF6,
thus confirming the small influence of the anion shape over the internal structure of the
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BDH-TTP κ-type layers. This is in contrast to the situation for the κ- phases of BEDT-TTF
and may be a useful guiding principle in the search for multifunctional materials. As
expected from the strong similarity in HOMO . . . HOMO interactions, the electronic struc-
ture of the two salts is completely equivalent. For instance, the Fermi surface calculated
for the donor layers of κ-(BDH-TTP)4ReF6·4.8H2O is shown in Figure 7c. The area of
the large circles of Figure 7c amounts to 100% of the cross sectional area of the Brillouin
zone, whereas that of the closed circuit around Z amounts to 17% (to be compared with
16.6% for κ-(BDH-TTP)4ReF6). Thus, our study suggests that both salts could exhibit
Shubnikov-de Haas oscillations of the magnetoresistance with a frequency corresponding
approximately to 17% of the cross-section area of the Brillouin zone. In short, despite the
different crystal structures, κ-(BDH-TTP)4ReF6 and κ-(BDH-TTP)4ReF6·4.8H2O are almost
indistinguishable.

2.3.2. Electronic Structure of the Pseudo-κ”-(BDH-TTP)3(ReO4)2 (3) Salt

The donor layers of this salt (see Figure 8) contain both dimeric units and single donors
with an orthogonal orientation.
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Figure 8. Donor layer of pseudo-κ”-(BDH-TTP)3(ReO4)2 (3) where the different intermolecular
interactions are labelled.

The dimeric units form an oblique lattice in the holes of which the single donors reside.
The layer contains six different HOMO . . . HOMO interactions of three different types:
(i) an intradimer interaction (I), (ii) three different interactions between one donor of the
dimer and the single donors (II-IV), and (iii) two different interactions between donors
of the dimeric units (V-VI). The calculated HOMO . . . HOMO interaction energies are:
0.7480 eV (I), 0.1190 eV (II), 0.1992 eV (III), 0.0585 eV (IV), 0.1260 eV (V) and 0.2431 eV (VI).
The intra-dimer interaction is thus very strong and it will lead to bonding and antibonding
combinations of the two HOMOs separated by a large energy gap. Because of the 3:2
stoichiometry, only one of the two levels will be filled since the HOMO of the single donor
will be located within this energy gap. Thus, the single donor must be considered as neutral
and the two donors of the dimer as positively charged despite the apparent similarity in
C=C bond lengths. Note, however, that the C=C distances are shorter in the single donor
(1.345/1.362/1.345 Å in the single donor versus 1.365/1.374/1.365 Å in the dimers), and
this fact is consistent with the presence of both neutral and singly charge donor molecules.

The interactions between the two different types of molecule (interactions II to IV)
are smaller but quite substantial because several S . . . S contacts are relatively short.
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Finally, the HOMO . . . HOMO interactions between donors of the dimers (V-VI) are
calculated to be very substantial, especially for the interactions approximately along the
a direction. The calculated band structure is shown in Figure 9. As expected, the upper
and lower bands are built from the antibonding and bonding combinations of the two
HOMOs of the dimeric units. In between the two bands there is a third band based on the
HOMO of the single molecule. This is the highest occupied band of the system which is
considerably less dispersive. Note that the upper, empty band in Figure 9 exhibits a quite
substantial energy dispersion of ~0.4 eV, although the dispersion along the a-direction is
approximately twice as large as that along the b-direction, in agreement with the analysis
of the different interactions.
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Figure 9. Calculated band structure for the donor layers of pseudo-κ”-(BDH-TTP)3(ReO4)2 (3)
crystals. The dashed line refers to highest occupied level and Γ = (0, 0), X = (a*/2, 0), Y = (0, b*/2),
M = (a*/2, b*/2) and S = (−a*/2, b*/2).

Thus, this salt must be an anisotropic semiconductor with an indirect gap from X to
M and better conductivity along a direction between a and a + b, since both holes and
electrons have smaller effective masses along these directions. The calculated activation
energy is 105 meV.

2.4. Conductivity and Magnetic Properties
2.4.1. Conducting Properties of the κ-(BDH-TTP)4ReF6 (1) and κ-(BDH-TTP)4ReF6·4.8H2O
(2) Crystals

Crystals of 1 and 2 were first characterized by resistance measurements at ambient
pressure and pressure up to 10 kbar. At room temperature, the ambient pressure con-
ductivity of crystals of 1 and 2 is 3–5 and 8–10 Ohm−1 cm−1, respectively. Figure 10a,b
shows the temperature dependences of the resistivity of the crystal of 1 measured both
in the conducting plane of the BDH-TTP radical cation layers and in the perpendicular
direction. As one can see from Figure 10, in both directions at ambient pressure and, under
the pressure, the sample shows a metallic behavior of the resistivity with a significant drop
at 300–50 ◦C and a weak growth of the resistivity at lower temperatures, probably due to
the localization of carriers resulting from the disorder in the crystal structure of the salt.
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Figure 10. (a) Temperature dependence of the resistivity of the κ-(BDH-TTP)4ReF6 sample (1) measured in the conducting
plane and (b) perpendicular to it at different pressures; (c)The temperature dependence of the resistivity anisotropy of (1).

Under external pressures of 3 and 5 kbar, the crystal’s resistivity also exhibits a metallic
behavior but no transition toward a superconducting state was observed. Interestingly,
the growth of the conductivity with decreasing temperature is stronger in the direction
perpendicular to the conducting layers. The dependence of the resistivity anisotropy with
temperature and pressure is presented in Figure 10c. The room-temperature anisotropy
of the resistivity at ambient pressure is approximately 3300. When the temperature drops
to 4.2 K, it falls about 3.5 times. When external pressure is applied (in the range from 3 to
5.4 kbar), the anisotropy decreases but depends weakly on the pressure, while a decrease
in the temperature from 300 to 4.2 K contributes to its decrease by about 2.3 times.

The crystal of 2 shows a metallic behavior in the 300–4.2 K temperature range at ambient
pressure as well as under 1 kbar along the conducting plane (see Figure 11). At ambient
pressure, the sample resistance is significantly reduced with the temperature. Under the
pressure P = 1 kbar a monotonous and considerable drop in the resistance is observed in
the 300–50 K temperature range. However, with a further decrease in the temperature, the
drop of the resistance flattens. The metallic character of the conductivity of salts 1 and 2
correlates well with the calculations of their electronic structures (see Section 2.3).
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2.4.2. Conductivity of the Pseudo-κ”-(BDH-TTP)3(ReO4)2 (3) Crystals

The room temperature conductivity of crystals of 3 measured in the plane of the
conducting layers is ≈1–1.5 Ohm−1 cm−1. With the temperature decrease (Figure 12), the
sample shows an exponential dependence of the resistivity with an activation energy equal
to 0.11 eV, which correlates well with the value of the activation energy obtained from
calculations of the electronic band structure of this salt. It should be noted that the sample
conductivity value is quite high in comparison with that of typical organic semiconductors.
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Looking at the band structure of 3 (Figure 9), it is clear that both the top of the middle band
(occupied and centered on the single molecules) and, especially, the bottom of the upper
band (empty and centered on the dimers), exhibit a significant energy variation, that is, a
relatively low effective mass. Thus, both the electron and hole carriers have small effective
masses due to the strong intermolecular interactions and are likely responsible for the high
conductivity even if the salt exhibits an activated conductivity.
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2.4.3. ac- Magnetic Properties of the κ-(BDH-TTP)4[ReF6] Salt (1)

In order to test whether the anion of [ReF6]2− as a counterion in the radical cation salt
κ-(BDH-TTP)4[ReF6] retains the properties of single ion magnet (SIM), we have investigated
the ac magnetic susceptibility of 1 at 2 K under zero applied dc field and different dc fields
(0–0.6 Tesla). Within the frequency range 10–10,000 Hz, compound 1 does not show a signal
for out-of-phase magnetic susceptibility (χ”) under zero applied dc field. The maximum
of χ” is not observed on either the field dependence of χ” at a frequency of 100 Hz or
on the frequency dependence of χ” in a field of 0.4 Tesla; the χ” signal hovers around 0
(Figure S8, Supplementary Materials). The presence of maxima in the frequency or field
dependences of χ” indicates a slow relaxation of the magnetization, which is one of the
distinctive features of SMMs [7–11]. Thus, the study of the ac susceptibility of salt 1 shows
that this compound is not an SMM, unlike the parent complex (PPh4)2[ReF6]·2H2O [15]
and the organic metal (BEDO)4[ReF6]·6H2O [16]. The loss of SIM properties by the anion
[ReF6]2− in the composition of salt 1 is possibly associated with the presence of greater
disorder in the structure of the anionic layers in crystals of 1.

3. Materials and Methods

All solvents were obtained, chemically clean or extremely clean, from Merk-Sigma-
Aldrich and have been used without further purification. The donor BDH-TTP was
synthesized according to the method described in [21] and was recrystallized from CS2
(carbon disulfide). The electrolyte (PPh4)2[ReF6]·2H2O was prepared according to the
procedure described in [15].

3.1. Synthesis of the Salts
3.1.1. Synthesis of the Crystals κ-(BDH-TTP)4ReF6 (1)

The rhombus-shaped crystals of 1 were prepared under argon atmosphere by elec-
trochemical oxidation of BDH-TTP (C1 = 8 mg, 0.021·10−3 mmol) in the presence of the
supporting electrolyte (PPh4)2[ReF6]·2H2O (C2 = 21 mg, 0.028 mmol) in a chlorobenzene
(CB, 18 mL)–trifluoroethanol (2 mL) mixture. The reaction was performed at constant
current, I = 1.25 µA, at 25 K. The synthesis was carried out in an H-shaped two-electrode
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glass cell with cathodic and anodic chambers separated by a porous glass membrane. The
electrodes were 1 mm diameter platinum wires, electrochemically purified in a 0.1 N sulfu-
ric acid solution. The crystals of 1 formed on the anode within 7–10 days. Electron-probe
X-ray microanalysis (EPMA) showed a ratio of S: Re: F atoms to be ∼= 33.1:1:6.2.

3.1.2. Synthesis of the Crystals κ-(BDH-TTP)4ReF6·4.8H2O (2) and
Pseudo-κ”-(BDH-TTP)3(ReO4)2 (3)

The rhombic crystals of 2 and plate-like crystals of 3 were prepared under argon
atmosphere by electrochemical oxidation of BDH-TTP. Unlike the synthesis procedure for
crystals 1, a mixture of chlorobenzene (CB, 18 mL)–96% alcohol (2 mL) was used as the
reaction medium. The crystals of 2 and 3 were formed simultaneously on the anode within
three weeks.

A preliminary analysis of the crystal compositions determined by electron-probe
X-ray microanalysis (EPMA) showed a ratio of S:Re:F and S:Re:O atoms ∼= 33.9:1:6.7 and
∼= 23.5:1:3.7 for rhombic and plate-like crystals, respectively. The final composition of
crystals of 2 and 3 was established from complete X-ray diffraction analysis.

3.2. Electron-Probe X-ray Microanalysis

Preliminary composition of the salts was determined with the electron-probe X-ray
microanalysis (EPMA) on a JEOL JSM-5800L scanning electron microscope (SEM) at 100-
fold magnification and 20 keV electron beam density. The depth of beam penetration into
the sample was 1–3 µm.

3.3. Single Crystal X-ray Analysis

X-ray diffraction analyses of the salts 1–3 were carried out on a CCD Agilent XCalibur
diffractometer with an EOS detector (Agilent Technologies UK Ltd., Yarnton, Oxfordshire,
England). Data collection, determination and refinement of unit cell parameters were carried
out using the CrysAlis PRO program suite [26]. X-ray diffraction data at 150(1) K or 100(1)
K for the salts 1–2 and 3, respectively, were collected using MoKα (λ = 0.71073 Å) radiation.

The structure (1) was solved by the direct methods. The positions and thermal
parameters of non-hydrogen atoms were refined isotropically and then anisotropically
by the full-matrix least-squares method. At the first stages, the atomic population of the
[ReF6]2− anion was refined; at latter stages it was fixed. The positions of the hydrogen
atoms were calculated geometrically.

The structure (2) was solved with the direct methods. The positions and thermal
parameters of non-hydrogen atoms were refined isotropically and then anisotropically
by the full-matrix least-squares method. The anion was found to be disordered over
two positions; the refinement was carried out, imposing restrictions on bond lengths and
thermal parameters. In difference syntheses of the electron density near the Re positions,
peaks of the electron density were revealed; they were taken as disordered water atoms.
Taking these peaks into account made it possible to improve the refinement of the structure
by about 3%. In the first stages, the population of the anion and water molecules was
refined and during the final refinement it was fixed. The positions of the hydrogen atoms
were calculated geometrically.

The structure of 3 was solved by the direct methods. The positions and thermal
parameters of non-hydrogen atoms were refined isotropically and then anisotropically
by the full-matrix least-squares method. Oxygen atoms in the tetrahedron, disordered
over two positions, were refined with restrictions imposed on bond lengths, position
populations and thermal parameters.

The X-ray crystal structures data have been deposited with the Cambridge Crystal-
lographic Data Center, with reference codes CCDC 2069204–2069206. Selected crystallo-
graphic parameters and the data collection and refinement statistics are given in Table S1.
All calculations were performed with the SHELX-97 program package [27].

309



Magnetochemistry 2021, 7, 54

3.4. Band Structure Analysis

The tight-binding band structure calculations were of the extended Hückel type [28].
A modified Wolfsberg-Helmholtz formula was used to calculate the non-diagonal Hµν

values [29]. All valence electrons were taken into account in the calculations and the basis
set consisted of Slater-type orbitals of double-ζ quality for C 2s and 2p, S 3s and 3p, and
of single-ζ quality for H. The ionization potentials, contraction coefficients and exponents
were taken from previous work [30]. The possible role of the disorder of the terminal
ethylene groups was checked by carrying out calculations with different combinations of
the major and minor configurations. As it is generally found, there was no effect on the
results because the HOMO does not exhibit a noticeable contribution of these terminal
ethylene groups.

3.5. Conducting Properties

Resistivity measurements were carried out using a four-probe technique and a lock-in
amplifier at 20 Hz alternating current. The samples were thin plates with a characteristic
lateral size of about 0.4–1 mm and the thickness was in the range 15–50 µm. The surface
of the plate was oriented along the conducting layers, that is, parallel to the (bc) plane.
Depending on the size and the shape of the samples, we could measure either in-plane
resistance or resistances in both in-plane and out-of-plane directions. The first case concerns
the samples of crystals of 2 and 3, which were thin and comparatively long plates, so we
could make four contacts along one of the sample’s surfaces and measure the in-plane
resistance. As for the samples of crystals of 1, we could make two contacts, attached to
each of two opposite sample surfaces and measured both in-plane R|| and out-of-plane
R⊥ resistances and calculated the resistivity using the modified Montgomery method [31].
The contacts were made using the conducting graphite paste. The measurements in the
1.3–300 K temperature range were carried out in a 4He cryostat with a variable temperature
insert. To create an external pressure of up to 5.4 kbar, the samples were subjected to
quasi-hydrostatic pressure using a Cu-Be clamp-cell with silicone oil as a pressurized
medium and a manganin sensor for pressure control.

3.6. Magnetic Properties

Alternating-current (ac) magnetic susceptibility measurements were performed on the
polycrystalline sample of salt 1 using a PPMS magnetometer (Quantum Design) under an
ac field of 3 Oe. The data were collected in a zero dc field and different applied dc fields.

4. Conclusions

Three new radical cation salts: κ-(BDH-TTP)4ReF6 (1), κ-(BDH-TTP)4ReF6·4.8H2O (2)
and pseudo-κ”-(BDH-TTP)3[ReO4]2 (3) have been obtained with original electrocrystal-
lization methods using various mixtures of solvents and electrolyte (PPh)2[ReF6]·2H2O
that is field-induced SIM. The addition of rectified (96%) ethanol and trifluoroethanol to
chlorobenzene as the main solvent is critical for the formation of these salts. Crystals of salt
1 are formed if trifluoroethanol is used, while the addition of 96% ethanol leads to partial
oxidation of paramagnetic Re(IV) to diamagnetic Re(VII) during the electrocrystallization,
resulting in the formation of salts 2 and 3.

The radical cation salts are characterized by the alternation of layers of organic radical
cations with layers composed of isolated anions [ReF6]2−, [ReF6]2−·4.8H2O and [ReO4]−

for salts 1, 2 and 3, respectively. In compounds 1 and 2, the radical cation layers have the
κ-type of molecular packing formed by BDH-TTP equivalent dimers, while in 3, the organic
layers consist of radical cation dimers (BDH-TTP)2+

2 and single molecules BDH-TTP (a new
type of pseudo-κ”-packing). A distinctive feature of these salts is the occurrence of disorder
in the anionic layers and incomplete population of the Re anions in the crystalline lattice.

The study of the temperature dependences of the conductivity for salts 1–3 shows that
1 and 2 are stable molecular metals, and 3 is a semiconductor with a conductivity activation
energy of 110 meV. Calculations of the electronic band structures of the salts correlate well
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with the data on conductivity measurements. The Fermi surface of 1 and 2 contains closed
circuits with areas of 100% and approximately 17% of the cross section of the Brillouin
zone. The band structure of 3 clearly shows that this salt should be a semiconductor with
high enough conductivity and that in the salt crystal structure the single donors must be
considered as neutral molecules and the dimers as (BDH-TTP)2+

2 .
Analysis of the ac magnetic susceptibility of salt 1 shows that this compound does

not exhibits the properties of SMMs, which could be expected from the presence of the
[ReF6]2− anion in the composition of salt. Perhaps this is due to the presence of significant
disorder in the structure of the anionic layers in crystals 1.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/magnetochemistry7040054/s1, Figure S1: Asymmetric unit and the designations of the radical
cation and anion in the crystals κ-(BDH-TTP)4ReF6 salt (1); Figure S2. Mutual arrangement of the
radical cations in the dimer and the designations of central C=C bond in the molecules κ-(BDH-
TTP)4ReF6 salt (1); Figure S3. Asymmetric unit and the designations of the radical cation and anion in
the crystals κ-(BDH-TTP)4ReF6·4.8H2O (2); Figure S4. Mutual arrangement of the radical cations in
the dimer and the designations of central C=C bond in the molecules κ-(BDH-TTP)4ReF6·4.8H2O salt
(2); Figure S5. Asymmetric unit and the designations of the radical cations and anion in the crystals
pseudo-κ”-(BDH-TTP)3(ReO4)2 (3); Figure S6. Mutual arrangement of the radical cations in the dimer
and the designations of central C=C bond in the molecules of the pseudo-κ”-(BDH-TTP)3([ReO4)2
salt (3). Dashed lines show shortened contacts designated as S2 . . . S6 and S3 . . . S7 between the
radical cation in the dimer; Figure S7. The short contacts between the radical cation inside the dimer
and between the dimer and single BDH-TTP molecules; Figure S8. Frequency dependences of the
out-of-phase (χ”) ac susceptibility for κ -(BDH-TTP)4ReF6 salt (1) at temperature of 2.0 K in a dc field
of 0.4 Tesla; Table S1. Crystallographic data and refined structural parameters for the crystals 1–3;
Table S2. Bond length of Re=O in a tetrahedron [ReO4]−.
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