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1. Introduction

Point clouds are considered one of the fundamental pillars for representing the 3D
digital landscape [1], despite the irregular topology between discrete data points. Recent
advances in sensor technology [2] that acquire point cloud data to enable flexible and
scalable geometric representations have paved the way for the development of new ideas,
methodologies, and solutions in ubiquitous sensing and understanding applications. Exist-
ing sensor technologies, such as LiDAR, stereo cameras, and laser scanners [3], can be used
from a variety of platforms (e.g., satellites, aerial, drones, vehicle-mounted, backpacks,
handheld, and static terrestrial) [4,5], viewpoints (e.g., nadir, oblique, and side view) [6],
spectra (e.g., multispectral) [7], and granularities (e.g., point density and completeness) [8].
Meanwhile, many promising methods have been developed based on computer vision
and deep learning to process the point cloud data [9,10]. However, the expanding applica-
tions of point clouds in complex and diverse scenarios, such as autonomous driving [11],
robotics [12], augmented reality [13], and urban planning [14], pose new challenges [15] to
existing intelligent point cloud approaches.

Recently, artificial intelligence has greatly facilitated the extraction of valuable infor-
mation from complex point cloud data [16]. Deep learning-based models [16] have shown
impressive performance in various point cloud tasks, such as completion [17], compres-
sion [18], 3D reconstruction [19], semantic segmentation [19], and object detection [20].
However, as we face increasingly complex and dynamic 3D application scenarios, more
accurate, efficient, and effective methods are becoming more and more urgent [21]. There-
fore, further investigation on improving intelligent point cloud processing, sensing, and
understanding capabilities is of great significance.

This Special Issue collects promising approaches that develop innovative technologies
for generating, processing, and analyzing various formats of point cloud data. A total of ten
contributions (nine regular articles and one survey) from China, Turkey, Romania, Portugal,
the USA, Italy, and the Republic of Korea have been ultimately accepted for publication.
These contributions delve into diverse aspects of point clouds, including structural analysis,
instance segmentation, registration, texture mapping of 3D meshes, model acceleration and
deployment, 3D modeling, up-sampling, plant part segmentation, image-to-point-cloud
reconstruction, and LiDAR point cloud (LPC) object detection. The next section provides a
concise introduction to each contribution collected in this Special Issue.

2. Overview of Contributions

Contribution 1 explored the application of graph kernels in the structural analysis
of point clouds, emphasizing their effectiveness in preserving topological structures and

Sensors 2024, 24, 283. https://doi.org/10.3390/s24010283 https://www.mdpi.com/journal/sensors
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enabling machine learning methods on evolving vector data represented as graphs. Specifi-
cally, a unique kernel function was introduced to tailor for similarity determination in the
point cloud data. To reflect the underlying discrete geometry, the kernel was further formu-
lated based on the proximity of geodesic route distributions in graphs. By demonstrating
the effectiveness of the kernel function in supervised classification using a convolutional
neural network (CNN), experimental results validated the efficiency of the proposed kernel
function for understanding the geometric and topological aspects of 3D point clouds.

Contribution 2 presented a weakly supervised instance segmentation approach for
point clouds, addressing the challenge of inaccurate bounding box annotations. To avoid
labor-intensive point-level annotations, they first developed a self-distillation architecture
that leveraged the consistency regularization, and then utilized data perturbation and
historical predictions to enhance generalization, as well as prevent over-fitting to noisy
labels. Later, they selected reliable samples and corrected labels based on historical consis-
tency. Experimental results on the benchmark dataset demonstrated the effectiveness and
robustness of their approach, achieving comparable performance to existing supervised
methods and outperforming recent weakly supervised methods.

Contribution 3 proposed a robust alignment scheme for point clouds, where the
rotation and translation coefficients were calculated using the angle of the normal vector
of the building facade and the distance between outer endpoints. Experimental results
demonstrated the feasibility and robustness of their alignment method on homologous
and cross-source point clouds. In addition, they also pointed out that the future work can
further optimize the efficiency of parameter-dependent building facade point extraction
and explore applications to point cloud registration with varying sensor qualities.

Contribution 4 developed a novel sequential pairwise color-correction approach to
mitigate texture seams generated from multiple images. By selecting a reference image
and computing the color correction paths through a weighted graph, this approach could
effectively enhance the color similarities among different images, resulting in high-quality
textured meshes. Experimental results show that the proposed method outperforms exist-
ing schemes in both qualitative and quantitative evaluations on an indoor dataset, especially
in scenarios with high triangle transitions.

Contribution 5 designed a light-weight CNN model for moving object segmentation
in LPCs, addressing the challenge of real-time processing on embedded platforms. The pro-
posed network achieved a reduction in parameters compared to the state of the art, demon-
strating efficient processing on the RTX 3090 GPU. In addition, it has been also successfully
implemented on an FPGA platform, achieving 32 fps for moving-object segmentation,
meeting the real-time requirements in autonomous driving. Despite its comparable error
performance with significantly fewer parameters, this light-weight model faced potential
challenges, such as simplifying the network structure without compromising performance
and addressing the sacrifice of low-level details for computational acceleration.

Contribution 6 addressed the challenge of accurately representing cultural heritage
objects for finite element analysis (FEA) to understand their mechanical behavior. Unlike
the use of traditional CAD 3D models and non-uniform rational B-spline surfaces (NURBS),
they employed an alternative method utilizing the re-topology procedure to create simpli-
fied yet accurate 3D models for FEA. This study emphasized the importance of retaining the
formal definition compatible with FEA software, demonstrating its effectiveness for mor-
phologically complex objects. Experimental results demonstrate that the proposed method
can reduce the mesh size, while maintaining high accuracy compared to high-resolution
reality-based models. Future work can be developed to improve interoperability, material
segmentation, and detailed parameterization for a more comprehensive understanding of
the structural behavior of cultural heritage objects.

Contribution 7 proposed a point cloud up-sampling via multi-scale features attention
(PU-MFA) method, leveraging the U-Net structure to combine multi-scale features and
cross-attention mechanism. PU-MFA was developed to adaptively and effectively use multi-
scale features, demonstrating superior performance in generating high-quality dense points.
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Experimental validations on synthetic and real-scanned datasets show the effectiveness of
PU-MFA. It is worth noting that PU-MFA currently has limitations in addressing arbitrary
up-sampling ratios.

Contribution 8 introduced the MASPC_Transform, a segmentation network for plant
point clouds designed to address the challenges posed by the intricate and small-scale
nature of plant organs. Leveraging a multi-head attention separation and a spatially
grounded attention separation loss, MASPC_Transform established connections for similar
point clouds scattered across different areas in the point cloud space. Additionally, a
position-coding method was proposed to enhance the feature extraction in the presence
of disordering point clouds. Experimental results demonstrated that MASPC_Transform
outperformed existing approaches on the plant segmentation. Finally, they also emphasized
the need for further testing on new open-source datasets to validate the generalizability of
the MASPC_Transform.

Contribution 9 presented a novel 3D-SSRecNet network for efficient 3D point cloud
reconstruction from a single image. 3D-SSRecNet was composed of a 2D image feature
extraction network based on a backbone network for object detection, and a point cloud
prediction network for minimizing the reconstruction loss. The specially chosen activation
function was then employed for better shape prediction and lower reconstructed error.
Experimental results on two datasets demonstrated the promising performance of 3D-
SSRecNet. Although 3D-SSRecNet can be considered as a computationally effective solution
for point cloud reconstruction, future work can be investigated to further improve local
reconstruction effects while maintaining computational efficiency.

Contribution 10 provided a comprehensive survey on deep learning-based LiDAR
3D object detection for autonomous driving. It summarized the commonly used feature
extraction and processing techniques for LPCs, the coordinate systems in LiDAR object
detection, and the stages of autonomous driving. Furthermore, a deep learning-based LPC
object detection methods were classified into three categories: projection, voxel, and raw
point clouds. They have also conducted in-depth analyses, comparisons, and summaries of
the advantages and disadvantages of existing LPC object detection methods. Finally, they
pointed out that there are still many open issues in improving model speed and accuracy
to achieve real-time processing for level-4 to level-5 autonomous driving.

3. Conclusions

This Special Issue serves as a portfolio, bringing together a wide range of contributions
that address crucial challenges and advancements in the region of point cloud processing,
sensing, and understanding. The selected papers represent a collective endeavor to push the
boundaries of point cloud knowledge, offering intelligent solutions to existing challenges,
while also unlocking new applications for 3D point clouds. We believe that the above papers
will provide valuable insights for researchers and practitioners in this field, stimulating
ongoing evolution towards academic and industrial solutions that are not only more
accurate, but also more efficient and effective.

Author Contributions: Original draft preparation, M.W.; review and editing, G.Y., J.X. and S.T. All
authors have read and agreed to the published version of the manuscript.

Data Availability Statement: The related datasets can be referred to each contribution in this Edito-
rial.
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Discrete Geodesic Distribution-Based Graph Kernel for 3D
Point Clouds
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Abstract: In the structural analysis of discrete geometric data, graph kernels have a great track record
of performance. Using graph kernel functions provides two significant advantages. First, a graph
kernel is capable of preserving the graph’s topological structures by describing graph properties in a
high-dimensional space. Second, graph kernels allow the application of machine learning methods
to vector data that are rapidly evolving into graphs. In this paper, the unique kernel function for
similarity determination procedures of point cloud data structures, which are crucial for several
applications, is formulated. This function is determined by the proximity of the geodesic route
distributions in graphs reflecting the discrete geometry underlying the point cloud. This research
demonstrates the efficiency of this unique kernel for similarity measures and the categorization of
point clouds.

Keywords: simplicial complex; Wasserstein distance; Kullback–Leibler information; point cloud processing

1. Introduction

Point clouds are one of the most direct representations of geometric datasets. One of
the sources for obtaining point clouds is 3D shape acquisition devices such as laser range
scanners, which also have applications in many disciplines. These scanners provide gener-
ally noisy raw data in the form of disorganized point clouds representing surface samples.
Given the growing popularity and very wide applications of this data source, it is essential
to work directly with this representation without having to go through an intermediate
step that can add computational complexity and fitting errors. Another important area
where point clouds are frequently used is the representation of high-dimensional manifolds.
Such high-dimensional and general isodimensional data are found in nearly all disciplines,
from computational biology to image analysis and financial data [1–5]. In this case, due
to the high dimensionality, manifold reconstruction is challenging from a technological
standpoint, and the relevant calculations have to be performed directly on the raw data,
i.e., the point cloud.

Graph structures are important tools for representing discrete geometric data and
the discrete manifold underlying the data, as they can reflect the structural and relational
arrangements of objects [6–9]. In the classification of discrete graph-based geometric
structures, the problem of accurately and effectively calculating the similarity of these data
sets arises. Graph kernel functions are widely used to solve this type of problem [10–14].
Graph kernels have proven to be powerful tools for the structural analysis of discrete
geometric data. There are two main advantages to using graph kernel functions. First,
graph kernels can characterize graph properties in a high-dimensional space and therefore
have the capacity to preserve the topological structures of the graph. Second, graph kernels
make rapidly evolving machine-learning methods for vector data applicable to graphs.

The goal of this study was to construct a kernel function that generalizes across the
topology and geometry of a 3D point cloud. A geodesic is a curve in differential geometry

Sensors 2023, 23, 2398. https://doi.org/10.3390/s23052398 https://www.mdpi.com/journal/sensors
6



Sensors 2023, 23, 2398

that depicts the shortest route between two points on a surface, or more broadly, the shortest
path on a Riemannian manifold. In addition, it is intended to expand the idea of a ”straight
line” on any differentiable manifold coupled to a more generic medium. Geodesics on
piecewise linear manifolds, the foundation of discrete differential geometry, were first
defined by [15] and then extended to polyhedral surfaces by [16]. In discrete differential
geometric techniques, the underlying geometry of the point cloud is assumed to be known,
and triangulation is used to include the locations between points into the geometry. Thus,
noise reduction and subdivision techniques may also be implemented while using a raw 3D
point collection. In the graph structure to be constructed from the 3D point cloud, the idea
of a geodesic becomes the problem of the shortest path [17,18].

In general, point clouds should intensively sample the border of a smooth surface
rebuilt using moving least squares [19–21], implicit [22], or Voronoi/Delaunay [23,24]
methods. Since point clouds may describe 3D forms using graphs without the requirement
for the explicit storing of the manifold connection, they have become a popular alternative
surface representation to polygonal meshes [25–28]. Despite the fact that numerous partic-
ular graph types, such as the k-nearest neighbor graph [29], the Reeb graph [30], and the
Gabriel graph [31], give methods to the geometry and topology of point clouds, higher-
order topologies and submanifold topologies disregard topological characteristics. Graph
representations of simplicial complex skeletons that preserve the submanifold topologies
of point clouds and may potentially integrate higher-order topological information are
used in this study. In general, skeleton-based representations provide a compact and ex-
pressive form abstraction that aims to imitate human intuition. Using concise, informative,
and easily computable skeletal representations as opposed to full models may facilitate the
comparison process. In practice, it may be hard to locate a query-like item in a database by
comparing point clouds or stacks of hundreds of triangles.

This work presents an approach to the geodesic curves of the manifold by calculating
the shortest paths on the graph structures defined by the simplicial complex skeleton
of the submanifold from which the point cloud is taken. If the graph structures created
by the simplicial complex skeleton are altered by noise, the approaches to the geodesic
distributions of the submanifold are not significantly impacted. Consequently, a kernel
function to be defined by the Wasserstein similarity of the distributions of discrete geodesics
in the skeletons of 3D point clouds has shown to be an excellent assessment tool for point
cloud similarity. In a variety of 3D applications, such as 3D object retrieval and inverse
procedural modeling, measuring the similarity between 3D geometric objects is crucial.
This study aimed to find and demonstrate the effectiveness of a kernel function that
calculates the similarity of 3D point clouds while taking into consideration the discrete
geometry and topology of the point cloud. The effective kernel function is obtained using
the Wasserstein-1 distance by comparing the geodesic distributions in the graphs to those
that are isomorphic to the skeleton of the simplicial complexes on the point cloud.

Direct comparison and classification are utilized to compare this newly constructed kernel
function to graph models. Using the values of the kernel function, the intra-class and inter-class
similarity matrices of the point clouds were constructed during the direct comparison procedure.
Considering the geometric and topological aspects of the studied models, it has been noted
that the Alpha complex skeletons are the networks on which the kernel function operates most
effectively. Using the kernel function, the similarity of a point cloud to itself was stored in the
matrices used in the classification procedures. At this, the graph communities acquired for each
point are used. Using a convolutional neural network, supervised classification is performed
according to the airplane, car, person, plant, and vase classes.

Related Works

As a collection of large points in three dimensions, point clouds may stand in for an
object’s spatial distribution and surface properties. Model reconstruction [32,33], terrain
monitoring [34,35], and resource monitoring and exploitation [36,37] are just a few exam-
ples of the various research and application sectors that rely on 3D point clouds obtained
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by stationary laser scanning. Accurate and efficient registration is crucial for obtaining
a full scene or object from a collection of point clouds obtained via stationary laser scan-
ning [34,38], and this has a knock-on effect on subsequent processing and applications such
as segmenting and classifying the cloud as well as detecting and tracking objects within it.
Moreover, semantic segmentation using point cloud data has made significant strides in
recent years [39–43], thanks in large part to innovations such as point-cloud compression
techniques [44,45]. When separating moving objects from LiDAR point clouds, semantic
segmentation is essential. Existing semantic segmentation convolutional neural networks
are good at predicting the semantic labels of point clouds such as automobiles, buildings,
and people. Hence, new computational techniques on point clouds are needed because of
their widespread use in many disciplines.

The kernel function of a pair of graphs may be described by decomposing the graphs
and comparing the specified pairings of isomorphic substructures. Commonly used sub-
structures are walks, paths, and spanning trees [46–48]. In [49], the authors evaluated
the complex motions as decomposed spatio-temporal parts for each video using kernel
functions defined with subtrees and created the corresponding binary trees. The resulting
kernel function is defined by calculating the number of isomorphic subtree patterns. A ker-
nel family to compare point clouds is proposed by [50]. These kernels are based on a newly
developed local tree-walk kernel between subtrees, which is defined by factoring in the
properly defined graph models of subtrees. The authors in [51] defined a graph kernel for
motion recognition in videos. First, they describe actions in videos using directed acyclic
graphs (DAGs). The resulting kernel is defined as an expanding random walking kernel
by counting the number of isomorphic walks of the DAGs. [52] proposed a segmentation
graph kernel for image classification. In this method, each image is represented by a seg-
mentation graph; each vertex corresponds to a segmented region, and each edge connects
a pair of neighboring regions. The resulting kernel function is calculated by counting the
imprecise isomorphic subtree patterns between the segmentation graphs. Furthermore,
some kernel functions are also effectively used for computer vision applications, such as
the shortest path graph kernel [53], non-backward walking kernel [54], Lovas kernel [55],
Weisfeiler–Lehman subtree kernel [56].

Although each of the kernel functions mentioned above gives effective results for
different problems, they are very sensitive to noise and outliers in empirically obtained 3D
point clouds. Furthermore, they do not generate reliable comparison information between
isomorphic substructures. In other words, for graphs abstracted from 3D shapes, most of
the available kernels cannot determine whether isomorphic substructures are located in the
same regions based on the visual background. To overcome these shortcomings, [57] pro-
posed an aligned subtree kernel. The proposed kernel function is calculated by counting the
number of isomorphic subtrees rooted in aligned vertices, thus overcoming the shortcoming
of neglecting positional or structural correspondences between isomorphic substructures
that arise in most graph kernels. Although an aligned subtree kernel is effective on 3D
shape classification problems, it cannot guarantee transitivity between aligned vertices.
More specifically, given the vertices u, v, and w, if v and u and u and w align, the kernel
function cannot guarantee that v and w are also aligned. On the other hand, [58] shows
that the cascading alignment step is necessary to guarantee the positive precision of the
vertex alignment kernel. Therefore, the aligned subtree kernel cannot be guaranteed as a
positive-definite kernel. Furthermore, all the specified kernels reflect only graph properties
for each graph pair under comparison and therefore ignore information from other graphs.
These disadvantages limit the precision of kernel-based similarity measures.

This paper is organized as follows: In Section 2, we first present the basics of simplicial
complexes and graph data obtained from their 1-skeleton. The method of obtaining the
graph defined in this way is very important for the kernel function presented, since it
will most effectively use the topological and geometric properties of point clouds. Then,
the distributions of discrete geodesic curves on these graph structures are determined
using Kullback–Leibler information and then a kernel function using the Wassertein-1
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distance is introduced. In Section 3, we give basic computational results for this novel
kernel function on the Princeton ModelNet-40 benchmark. The computational results
measure the similarity of point clouds with each other and show the classification of point
clouds. Finally, in Section 4, we present detailed conclusions.

2. Methodology

2.1. Simplicial Complexes

The convex body of the points with v0, v1, . . . , vd ∈ Rn being d + 1-affine independent
points is called a d-symplex. The details about simplicial topology can be found in [59].
In this study, a d-simplex is denoted by σ = conv{v0, . . . , vn} = [v0, . . . , vn]. The convex
body is simply a polyhedron with d + 1-affine independent points as vertices. The face of a
σ is defined by conv{S} as S ⊂ [v0, . . . , vn]. The finite family of simplexes that provide the
following properties is called a K complex:

• For σ ∈ K and τ is face of σ, τ ∈ K;
• When σ, σ′ ∈ K, σ ∩ σ′ is empty or is simultaneously a face of σ and σ′.

A collection {σ ∈ K | dim(σ) ≤ j} of a simplicial complex K is called the j-skeleton of K
and is denoted by K(j). In this definition, dim(σ) denotes the dimension of σ. The 1-skeleton
of any K complex is K(1) = {σ ∈ K | dim(σ) ≤ 1}, that is, the set of vertices and edges of
the simplex that form the complex. Hence, for V = {v0, . . . , vn} and E = {[vi, vk] | [vi, vk] ∈
K} ⊆ V × V, there exists a simple graph G = (V, E) with K(1) ≡ G. An example of a
2-dimensional K complex and the corresponding K(1) skeleton is given in Figure 1. It is
straightforward to see that K(1) ≡ G = (V, E) with V = {v1, . . . , v10}.

Figure 1. A 2-dimensional complex (left) and its 1-skeleton (right), where the numbers denote the
vertex index.

With a K complex to be formed on a 3D point cloud, it is possible to capture the topolog-
ical features of the underlying manifold of the point cloud, such as connectivity and holes.
Moreover, it is possible to apply various graph algorithms to the simple graph which the
skeleton K(1) is isomorphic. Let us consider the shortest graph paths �1 = v7, v8, v3, v9 and
�2 = v7, v2, v1, v9 between the vertices v7 and v9 on the K(1) skeleton in Figure 1. It is obvi-
ous that the �1 and �2 are homotopic on K(1) ≡ G. Thus, when comparing two skeletons
K(1)

1 ≡ G1 and K(1)
2 ≡ G2 in terms of topological similarity, examining the approximation

distributions of discrete geodesics corresponding to the shortest paths yields effective results.
Let us now consider the methods of obtaining various geometric or abstract complexes,

which are widely used in practice. In particular, the input is often a series of points from
which some hidden field is sampled or approximated. This set of points is called a point
cloud. Point clouds have no topology other than a discrete topology, and some connections
and some topologies are applied to them. Let a point cloud be P = {p1, . . . , pn} and the
Euclidean ball be B(p, r) with pi ∈ P at the center and r is the radius. We introduce the
simplicial complex forming algorithms that we discussed in this study as follows:

Definition 1. For a point cloud P ⊂ R3, a simplex σ = [pi0 , . . . , pid ] is in the Delaunay complex
Del(P) if and only if there is a ball B whose boundary contains the vertices of σ and does not include
the other points of the point cloud.
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As an indicative for the simplicial complexes employed in the research, Figure 2
provides a point cloud and an example of the Delaunay complex derived from it.

Figure 2. A point cloud example (left) and its Delaunay complex (right).

Delaunay complexes have very rich geometric features in 2D and 3D [60,61]. Only
computing first-dimensional Delaunay complexes does not seem to be asymptotically faster
than the computation of the full Delaunay complex. This makes the complex less attractive
for high-dimensional data analysis. In this situation, Delaunay complexes’ subcomplex
Alpha complexes become a key tool for topological data processing. The Delaunay triangu-
lation of a point cloud includes a subset of the faces, which together make up the Alpha
complex Ar(P), a d-dimensional simplicial complex [62].

Definition 2. For a point cloud P ⊂ R3 and the given real number r > 0, a simplex
σ = [pi0 , . . . , pid ] is in the Alpha complex Ar(P) if and only if

⋂
p∈Q⊂P

Vorr(p, P) 	= ∅, where

Vorr(p, P) is the Voronoi ball of p defined by the intersection of the open ball centered at p with
radius r and the Voronoi cell of p ∈ P.

Definition 3. For a point cloud P ⊂ R3 and the given real number r > 0, a simplex
σ = [pi0 , . . . , pid ] is in the C̆ech complex Cr(P) if and only if

⋂
0≤j≤d

B(pij , r) 	= ∅.

It should be noted that the definition of the C̆ech complex includes a parameter r,
which may be useful in practice. Specifically, we can think of creating a sphere at each pi in
the point cloud and looking at the convergence of the spheres on the r scale.

Definition 4. For a point cloud P ⊂ R3 and the given real number r > 0, a simplex
σ = [pi0 , . . . , pid ] is in the Vietoris Rips complex VRr(P) if and only if ∀j, j′ ∈ [0, d], B(pij , r) ∩
B(pi′j

, r) 	= ∅.

In other words, the points pi0 , . . . , pik span a d-simplex if and only if the Euclidean
balls with radius r centered at these points have a pairwise intersection.

Definition 5. Let ∀i ∈ [0, d] and q ∈ Q = P \ {q0, . . . , qd}. If d(qi, x) ≤ d(q, x), then it is said
that the simplex σ = [q0, . . . , qd] is weakly witnessed by point x and if d(qi, x) = d(q, x), then it
is said that the simplex σ = [q0, . . . , qd] is strongly witnessed by the point x. For a point cloud
P ⊂ R3 and Q ⊂ P, the witness complex W(Q, P) is the simplicial complex whose vertices are
from the set Q and all faces are weakly witnessed by a point in P.
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Detailed information for these complexes, which are frequently used in the literature,
can be found in [63–65]. Moreover, the following features can be given from the same studies:

W(Q, P) ⊆ Del(P) (1)

and
Cr(P) ⊆ VRr(P) ⊆ C2c(P). (2)

A comparison for the complexes used in this study is given in Table 1.

Table 1. Comparison for the complex-forming methods.

K Dimension Time Complexity Guarantee

Del(P) 2O(|P|) O(|P|+ |P| log |P|) Approx. Geometry
Cr(P) 2O(|P|) O(|P|d+1) Nerve Theorem

VRr(P) 2O(|P|) O(M(|P|)) Approx. Cr(P)

W(Q, P) 2O(|Q|) O
( |P|

μd2

)
Approx. Geometry

In this study, temporal modified methods introduced by [66,67] are used for Vietoris
Rips and Witness complexes, respectively. The time complexities of these methods are
given in Table 1. M(|P|) represents the complexity of the product of a matrix of type
|P| × |P| and μ represents the time complexity of the sparsity function of the marker of the
subset Q.

2.2. Kernel Function

Modeling and computing object similarity is one of the most difficult tasks in machine
learning. When it comes to graphs, graph kernels have gotten a lot of press in recent years
and have emerged as the most popular method for learning from graph-structured data. A
graph kernel is a symmetric, positive semi-definite function defined on the space of graphs.
This function can be expressed as an inner product in some Hilbert spaces. In particular,
given a kernel κ, there exists a transformation ϕ : G → H mapping a graph space G to a
Hilbert space H such that for each G1, G2 ∈ G, κ(G1, G2) =< ϕ(G1), ϕ(G2) >.

Graph kernels handle the challenge of graph comparison by attempting to efficiently
capture as much of the graph’s topology as possible. One of the primary reasons for the
widespread adoption of graph kernel methods is that they enable a vast array of techniques
to operate directly on graphs. Thus, graph kernels enable the application of machine
learning methods to real-world situations using graph-structured data.

First, information on the distributions will be presented before the definition of a
kernel function κ defined by the distribution of the geodesics of the graphs K(1)

1 ≡ G1 and

K(1)
2 ≡ G2.

Kullback–Leibler information is a measure of how far apart two pieces of information
are in terms of probability [68]. Let P and Q be two probability measures with densities of
p and q, respectively. Then, the Kullback–Leibler information is defined by

LX(P,Q) =
∫

log
(

p(x)
q(x)

)
p(x)dμ(x) = Ep

[
log

(
p(x)
q(x)

)]
. (3)

Since Kullback–Leibler information is not symmetric, it is not a metric. However LX(P,Q)+
LX(Q,P) is symmetric and is called the Kullback–Leibler divergence [69].

Let us consider a random variable X with a mean μX and a metric function defined by
d(x; μX) = f (x−μX). For μX , μ′

X ∈ R, a function defined by g(x; μX) = d(x; μ′
X)− d(x; μX)

is Jensen equal; that is, E[g(x)] = g(E[x]). Let c ∈ R and (ν, ω) ∈ R×R−. For a function
f (x; μX) with E[X] = c, with the density function

f (x; μX) = ν exp(ωd(x; μX)) = g(d(x; μX)) (4)
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LX((P,Q) becomes a metric [70].
Let us look at how to use Kullback–Leibler information to explain geodesic distri-

butions on graphs. The geodesic distance between two vertices u and v in a graph G is
defined as the number of edges of the shortest path linking u and v and denoted as dG(u, v).
For example, in Figure 1, dK(1) (2, 5) = 2. The greatest geodesic distance between u and
any other vertex is called the eccentricity of u and denoted by ε. It can be thought of as
a measure of how far a vertex is from the furthest vertex in the graph. The eccentricity
property allows the radius and diameter of a graph to be defined. The radius of a graph is
the minimum eccentricity between the vertices of the graph. The diameter of a graph is
the maximum eccentricity of any vertex of the graph. Hence, the diameter is the greatest
distance between any pair of vertices. In order to find the diameter of a graph, we first
find the shortest path between each pair of vertices using the landmark-based method
presented in [71]. The greatest distance of any path is the diameter of the graph. Using the
eccentricity of a graph, it is possible to define its two subgraphs. A central subgraph of
K(1) is the graph with n vertices of degree α and the smallest eccentricity, and is denoted
by K(1),C

n,α . An orbital subgraph of K(1) is the graph with n vertices of degree β and with n
vertices and is denoted by K(1),O

n,β .
Considering the Kullback–Leibler divergence, we can define two types of geodetic

distributions for Jensen equal functions:

Definition 6. Central geodesic density function of K(1) is

fC(u, α, ν) = ν exp
(
−dG

(
u, K(1),C

n,α

))
, (5)

and the orbital geodesic density function of K(1) is

fO(u, β, ν) = ν exp
(
−dG

(
u, K(1),O

n,β

))
, (6)

where ν ≥ 1 is a normalization factor.

On a space of probability measures, the Wasserstein distances give a natural metric.
They intuitively assess the least amount of effort necessary to change one distribution into
another. The Wasserstein distances, in general, do not permit closed-form formulations;
however, for R, we have the explicit form as

W1(ρ1, ρ2) =
∫
R
|Fρ1(t)− Fρ2(t)| dt, (7)

where Fρ1(t) and Fρ2(t) are the cumulative distribution functions of ρ1 and ρ2 [72]. It is
feasible to compare the geodesic distributions with the kernel function below using the
Wasserstein-1 distance function:

Definition 7. Let K(1)
1 = (V1, E1) and K(1)

2 = (V2, E2). Then, we have a kernel function

κJ

(
K(1)

1 , K(1)
2

)
=

W1

(
∪|V1|

i=1 , fC(ui, α1, ν1),∪|V2|
j=1, fC(uj, α2, ν2)

)
W1

(
∪|V1|

i=1 , fO(ui, β1, ν1),∪|V2|
j=1, fO(uj, β2, ν2)

) , (8)

where W1 is Wassterstein-1 distance.

We shall note that the kernel function defined in Equation (8) is symmetric and
positive definite.
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3. Results

3.1. Data Set

Princeton ModelNet (Internet Access: https://modelnet.cs.princeton.edu/, accessed
on 10 January 2023) seeks to give researchers in computer vision, computer graphics,
robotics, and cognitive science a thorough and organized library of 3D CAD models.
The researchers used information from the SUN database to create a list of the most
widespread object types on the globe, which served as the foundation of the dataset.
After developing an object vocabulary, the 3D CAD models of each item category were
gathered by searching web search engines for each category phrase. Then, using custom-
made tools with quality control, human employees were hired at Amazon Mechanical Turk
to manually determine whether each CAD model fits into the designated categories [73].

Two methods are used to assess the effectiveness of the graph kernel function given in
this paper. The first strategy is to assess the extent to which the topologies of the underlying
point cloud geometries have an impact on the kernel function. In this study, the kernel
function is used to determine the extent to which point clouds are similar or dissimilar.
Point cloud samples containing 10,000 points are taken from the ModelNet-40 dataset for
the first method. These point cloud examples belong to the airplane, car, person, plant,
and vase classes as they have different inter- and intra-class topologies. Ten sample point
clouds are taken from each class, and the kernel function presented in this study is run
between these samples.

The second strategy involves using the provided kernel function to create a classifi-
cation that is based on machine learning. On the ModelNet-40 dataset, this classification
methodology is used, and it is compared to other approaches.

3.2. Point Cloud Comparison

To produce graphs from point clouds, each of the simplicial complex derivation
techniques described in Section 2.1 are applied to the sample set, and the 1-skeletons of
the complexes were selected as the representation graph. Equation (8) was used in this
part to generate the graphs for each data group as well as the kernel matrices of the data
subgroups. The point clouds used in this approach are presented in Figures A1–A5.

The relevant parameters are selected in the formation of simplicial complexes as the
minimum values that connect the 1-skeletons derived from the point cloud. Using a step
size of h = 0.001 and beginning at 0, the least parameter is found. It is anticipated that
different parameters will be found for each sample, both inter- and intra-classes. In addition
to this, no discernible variation in the computational time complexity of the simplicial
complexes’ generation procedures was found. Moreover, better computational times could
result from differentiating the approach taken when determining the lowest parameter.

Figures 3–7 contain similarity matrices obtained by using the kernel function to com-
pare point clouds with each other. The samples from each class are complexed using the
previously discussed simplex techniques, and the kernel function is applied to the graph
structures that were built using the 1-skeletons of the samples.

Similarity matrices generated using the kernel function encode the measurements
of the similarity between the point clouds. In the context of the distribution of discrete
geodesics, the near-zero values of the kernel function provided by Equation (8), whose
inputs are two graphs produced from point clouds, indicate that the two graphs are
highly similar. Likewise, the graphs diverge in terms of similarity within the same context
for large numbers. This study used four of the most fundamental simplicial complex
approaches to determine the similarity metrics within each class. The analysis of the
similarity matrices reveals that the common points of the point clouds in the discrete
geometry environment within each class are most evident in the graphs produced with
Alpha complexes. The geometries underlying the point clouds of the Airplane models
are most comparable in the case of the Airplane 5 model. The matrix given in Figure 3
clearly demonstrates that the similarity value derived from the graph of Alpha complexes
for this model is close to zero. When a comparable course is followed, the Airplane 4 and 8
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models entirely diverge in terms of similarity, as shown by the matrix’s high values. In the
similarity matrices provided in Figures 4–7, the models most geometrically comparable to
other models for the circumstance produced with the Alpha complex have very low values.

�

Figure 3. Similarity Matrices for Airplane Models.

�

Figure 4. Similarity Matrices for Car Models.
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�

Figure 5. Similarity Matrices for Plant Models.

�

Figure 6. Similarity Matrices for Person Models.
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�

Figure 7. Similarity Matrices for Vase Models.

The graphs generated using the Vietoris Rips and C̆ech complexes reveal that the
kernel function values are quite similar. The graphs formed by the Witness complex have
the most inconsistent similarity values among these four techniques. When examining the
underlying geometries of each point cloud, the kernel function assigns large values to very
comparable geometries. Even if the Vase 2 model is physically comparable to models 1 and
3, the inputs of the Witness complex’s similarity matrix are relatively high. The observation
that the kernel function computed on the graphs produced with the Vietoris Rips and C̆ech
complexes has a large value when it is low is another result of the calculations performed
on the graphs acquired with the Alpha complexes.

Considering all of these circumstances, it is feasible to conclude that the 1-skeleton of
Alpha complexes are the graphs in which the kernel function developed in this research
performs the best. Additionally, it indicates that these values vary when the underlying
geometries have sharp edges. Since geodesics become geometrically singular at sharp
endpoints, it is said that the presented kernel function provides better geometrically correct
results when the Alpha complex is utilized to generate graphs.

In order to apply this kernel function to assess the similarities between distinct model
classes, the similarities between the classes are analyzed in our research using the graphs
derived from the Alpha complexes. Within the scope of this precision, Figure 8 depicts
the inter-class similarity matrix constructed by applying the kernel function to the graphs
generated using the Alpha complexes of five distinct models. This matrix also displays
graphs with comparable discrete geodesy distributions whose values are close to zero.
There are two remarkable commonalities between the two courses. The Car and Vase
models, as well as the Airplane and Person models, are among the most different models.
In other words, the kernel function in these models has high values.
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Figure 8. Interclass similarity matrix for graphs obtained by the Alpha complex.

3.3. Classification

Figure 8 illustrates how useful similarity matrices between classes are when they are
produced using the graph kernel function discussed in this study. This part describes how
to use this kernel function to infer the class to which a given point cloud belongs. The goal
is to create a model that learns from the input graphs K(1)

1 , K(1)
2 , . . . , K(1)

N and predicts the
label of new, unobserved graphs using this dataset of input graphs.

With the usage of graph kernel functions in convolution processes, particularly with
the advancements in GCN networks, several deep learning architectures have been built
in recent years [74–78]. However, these systems often utilize vectors between graph
vertices or edges that correlate with different physical qualities. Additionally, kernel-based
classification techniques use kernel functions created across different subgraphs to quantify
the similarities between two vertices. It is important to build a matrix between the vertex
clusters, namely graph communities, and not between vertex pairs, in the classification
process since the kernel function taken into account in this study takes into account the
discrete geometries underlying the 3D point clouds.

It is known that the matrices of kernel functions created between two graph classes
include the structures utilized to embed graphs in Hilbert space. Therefore, it is inappro-
priate to apply the in-class kernel function directly to solve the graph classification issue.
In this study, communities of graphs that are specific to each point cloud were identified,
and matrices with the kernel function were produced among the subgraphs generated by
the communities. The Fluid Communities [79] approach was used in this study to find the
communities of each graph. The propagation mechanism on which Fluid Communities
is based is state of the art in terms of computing cost and scalability. Despite being very
effective, Fluid Communities can locate communities in artificial graphs with a degree of
accuracy that is competitive with the best options. The first propagation-based method that
can recognize a changeable number of communities in the network is Fluid Communities.
Figure 9 depicts the 10 graph communities found in the 1-skeleton of the Alpha complex
using the Fluid Communities approach.
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Figure 9. The 1-skeleton of an Alpha complex emerging from plant point cloud and 10 communities
obtained using the Fluid Communities approach.

Each initial point cloud sample contains the communities of graphs derived from
Alpha complexes for the classification process. The number of communities is deter-
mined to be 10, as the community discovery technique utilized in this study needs that
number to be predetermined. The kernel function created in the research among the
subgraphs discovered by the communities is then used to realize the commonalities be-
tween these communities. In order to represent the inherent geometry of each point cloud,
a 10 × 10 matrix is produced. Then, a CNN network with three convolution layers is used.
After the first convolution layer, Max Pooling was performed, followed by Average Pooling
for the second and third layers. While ReLU activation functions were used for the first
two Fully Connected layers, softmax was utilized for classification after the second layer.
The ModelNet-40 dataset’s whole sample pool was used in the classification procedure.
The ModelNet-40 dataset includes 2468 test models and 9843 training models divided into
40 classes. We uniformly choose 1024 points from each model and normalize them to a
unit sphere in order to compare our results with those of other approaches in the literature.
We give accurate data from the classification procedure and comparisons to alternative
approaches in Table 2.

Table 2. Classification results on ModelNet-40 benchmark.

Method Input No. Points Accuracy

[80] xyz 1024 % 86.1
[81] xyz 1024 % 87.1
[82] xyz 1024 % 87.4
[83] xyz 1024 % 89.2
[84] xyz 1024 % 90.0
[85] xyz 1024 % 90.2
[86] xyz 1024 % 90.6
[87] xyz 1024 % 90.7
[88] xyz 1024 % 91.0
[89] xyz 1024 % 92.2
[90] xyz 1024 % 92.3
[91] xyz 1024 % 93.6

Ours xyz 1024 % 93.7

4. Discussion and Conclusions

Graphs are maybe one of the most comprehensive data structures used in machine
learning. Complex objects may be represented using graphs as a collection of items and their
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connections, each of which can be annotated with information such as category or vectorial
vertex and edge properties. As graph states, both unstructured vector data and structured
data types such as time series, images, volumetric data, point clouds, and asset bags may
be understood. Most importantly, the extra flexibility that graph-based representations
provide is helpful for a variety of applications.

Kernel approaches are being increasingly used as a method for determining how
comparably organized items are. In general, kernel approaches compare two objects using
a kernel function that corresponds to an inner product in a kernel Hilbert space. Finding
an appropriate kernel function that can be traced computationally while capturing the
structure’s semantics is challenging for kernel approaches. In this paper, a kernel function
based on the distribution of discrete geodesics on graphs is used to solve the point cloud
comparison problem, one of the most important topics in computer vision. Creating
this kernel function requires the description of a technique sensitive to isometries and
topological transformations.

The dataset was chosen based on the Princeton ModelNet-40 benchmark. Similarity
matrices were generated by applying the kernel function to 10 point clouds across five
distinct categories. When the similarity matrices are assessed, it is discovered that the
graphs of the 1-skeletons of the Alpha complexes provide the highest internal similarity of
the categories. Among the point clouds within each category, the similarity value (lower
kernel value) between models that are more topologically connected, i.e., structural holes
and bottleneck structures, is rather high. The kernel value distributions of the Airplane,
Car, Person, Plant, and Vase models attain lower values (more similarity), notably in the
Car and Vase models. When the point clouds of both models are analyzed, it becomes
evident that these two groups have several topological similarities. Therefore, we may
conclude that the kernel function discussed in this research performs well when applied to
topological similarities, particularly when the Alpha complex is considered.

The classification of graphs is an issue that regularly arises in machine learning re-
search. Kernel functions that are defined by structural measurements between the related
subgraphs of a graph are commonly used for graph classification problems. In this study,
the kernel function suggested for graph classification is studied. Within the graphs of each
point cloud, the input matrices for a simple convolution neural network model are gener-
ated. Utilizing the aggregates of graphs with vertex clusters, the category to which a graph
in vector form belongs was determined. For each network model, the Fluid Community
approach was utilized to integrate a fixed cluster size while identifying the communities.
The kernel function was used to generate inherent similarity matrices between the sub-
graphs generated by graph communities. This method yielded classification results with
an accuracy rating of 91.1%. Even though this percentage is not the greatest reported in the
literature, the results were quite effective in comparison to other approaches.

This kernel function, which was designed to compare point clouds with their geome-
tries and topologies, is independent of the dimension of the point cloud, and therefore may
be utilized in future research with 2D or higher dimensional point clouds. In addition, it is
anticipated that the deep learning architecture used in the classification method provided
in this paper will be refined, resulting in improved classification outcomes.
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Figure A1. Airplane Models.
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Figure A2. Car Models.
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Figure A3. Plant Models.
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Figure A4. Person Models.
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Figure A5. Vase Models.
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Abstract: Most existing point cloud instance segmentation methods require accurate and dense point-
level annotations, which are extremely laborious to collect. While incomplete and inexact supervision
has been exploited to reduce labeling efforts, inaccurate supervision remains under-explored. This
kind of supervision is almost inevitable in practice, especially in complex 3D point clouds, and it
severely degrades the generalization performance of deep networks. To this end, we propose the first
weakly supervised point cloud instance segmentation framework with inaccurate box-level labels. A
novel self-distillation architecture is presented to boost the generalization ability while leveraging the
cheap but noisy bounding-box annotations. Specifically, we employ consistency regularization to
distill self-knowledge from data perturbation and historical predictions, which prevents the deep
network from overfitting the noisy labels. Moreover, we progressively select reliable samples and
correct their labels based on the historical consistency. Extensive experiments on the ScanNet-v2
dataset were used to validate the effectiveness and robustness of our method in dealing with inexact
and inaccurate annotations.

Keywords: point cloud instance segmentation; learning with noisy labels; weakly supervised learning;
self-distillation

1. Introduction

The rapid development of 3D sensors, such as LiDARs and RGB-D cameras, has
brought about an increasing amount of 3D data, thus promoting a wide range of applica-
tions, including autonomous driving [1], robotics [2], and medical treatment [3]. With the
benefit of rich geometric information and the challenge of intrinsic irregularity, more and
more attention has been paid to deep learning on 3D point clouds [4–7].

As one of the fundamental tasks in 3D scene understanding, point cloud instance
segmentation aims to predict the semantic label of each point and simultaneously distin-
guish points within the same class but in different instances. Numerous deep learning
methods have been proposed to achieve progressively better performance [8–14]. However,
the success of most existing segmentation methods depends heavily on accurately and
densely annotated training data, which are time-consuming to collect. For example, it takes
about 22.3 min to annotate all of the points of one scene in ScanNet [15]. To alleviate the
point-level annotation burden of full supervision, a handful of methods have recently taken
weak supervision into consideration; they mainly included incomplete [16–18] and inexact
supervision [19–22]. The different kinds of weak supervision are illustrated in Figure 1.

For incomplete supervision, current research works perform semi-supervised learn-
ing through self-training, self-supervision, label propagation, etc. However, the way of
choosing the small fraction of points to annotate is crucial for the segmentation perfor-
mance. To represent the location of an instance, SegGroup [18] picks the largest segment,
and CSC [23] finds exemplary points through active sampling. In other words, addi-
tional labeling efforts are required to implement point cloud instance segmentation with
incomplete supervision.
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For inexact supervision, there exist two leading types, i.e., scene-level (subcloud-level)
and box-level supervision. Since it is difficult to extract object localization information
from scene-level or subcloud-level tags [19], we focus on box-level supervision, which is of
medium granularity and widely available. The key is to identify the foreground points in
each bounding box without point-level instance labels. Box2Seg [21] uses attention map
modulation and entropy minimization to generate pseudo-labels. SPIB [22] first conducts
object detection with partial bounding-box labels and fulfills instance segmentation with
three in-box refinement modules. Both of them need multi-stage training, and the box-level
annotations are not fully exploited for instance segmentation. Box2Mask [20] allows each
point to predict the box in which it belongs and trains the instance segmentation network
from end to end with bounding-box annotations.

(a) Incomplete Point-Level Labels (b) Scene-Level Labels

(c) Box-Level Labels (d) Inaccurate Box-level Labels

Figure 1. Illustration of various weak supervision methods for point cloud segmenta-
tion. (a) Incomplete point-level labels denote the classes to which a small fraction of points
belong. (b) Scene-level (subcloud-level) labels indicate all of the classes appearing in the scene (sub-
cloud). (c) Box-level labels indicate the class and location of each object. (d) Inaccurate box-level labels
indicate the portion of boxes that are mislabeled. For example, a “chair” is mislabelled as a “sofa”.

Nonetheless, the methods presented above implicitly assume that the labels are highly
accurate, which may not be guaranteed in practice. Regardless of the granularity at which
data are labeled, label noise exists due to the carelessness of annotators and the difficulty of
annotating itself. When it comes to box-level label noise, Hu et al. [24] designed a noise-
resistant focal loss for 2D object detection. With NLTE [25], it was found that it was essential
for domain adaptive objective detection to address noisy box annotations, including miss-
annotated boxes and class-corrupted ones. In 3D point cloud instance segmentation,
the rough location information of most points is unaffected by slight fluctuations in box
coordinates, while mislabeling the box semantics can lead to serious confusion of all of
the in-box points. Therefore, we took the semantic label noise of each box into account
while leaving the geometric coordinate noise for future work. The inaccurate box-level
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annotations are shown in Figure 1d. Since deep neural networks are highly capable
of learning any complex function, it is easy to overfit inaccurate labels and reduce the
generalization performance [26]. Thus, it is necessary to develop a noise-robust point
cloud instance segmentation method. A recent work used PNAL [27] to study point noise
in semantic segmentation, but it heavily relied on the early memorization effect, which
increased the risk of discarding hard samples or those in the minor class. Furthermore,
point cloud instance segmentation with inaccurate bounding-box annotations is even more
challenging due to the granularity mismatch of given annotations and the target task. There
is an urgent need to combat realistic label noise and sufficiently release the potential of
box-level supervision in point cloud instance segmentation.

Extensive research has empirically demonstrated the success of knowledge distilla-
tion [28] in boosting the generalization ability, which is in great demand when learning
with noisy labels. Traditional knowledge distillation transfers knowledge from a large
teacher model, while self-distillation efficiently utilizes knowledge from itself and, thus,
attracts more and more attention. As for theoretical analysis, there are various opinions
that include label smoothing regularization [29], the multi-view hypothesis [30], and loss
landscape flattening [31]. Similarly to our method, PS-KD [32] trained a model with soft
targets, which were a weighted summation of the hard targets and the last-epoch predic-
tions, and DLB [33] used predictions from the last iteration as soft targets. However, we
considered the entire prediction history and maintained an exponential moving average of
the predictions.

In this paper, we present a novel self-distillation framework based on perturbation
and history (SDPH) to handle the challenge of point cloud instance segmentation with only
inaccurate box annotations. Rather than distilling knowledge from a cumbersome teacher
model or an extra clean dataset [34], we perform self-distillation by taking full advantage
of self-supervision in the data and the learning process. To be specific, we assume that
the predictions over the input point cloud are perturbation-invariant. Both geometric and
semantic consistency regularization terms are included to provide additional supervision
signals. Furthermore, by investigating the consistency of historical predictions, the model
is able to locate and correct refurbishable samples with high precision. Finally, we apply
temporal consistency regularization to fully utilize the history information and reduce the
unstable prediction fluctuations that may hinder the label refurbishment. In a word, we
utilize two kinds of consistency regularization to prevent the network from overfitting
inaccurate labels and progressively correct the labels during the training process.

Overall, the main contributions of our paper are summarized as follows:

• To the best of our knowledge, this is the first work to simultaneously explore inexact
and inaccurate annotations in the point cloud instance segmentation task.

• We propose a novel self-distillation framework for applying consistency regularization
and label refurbishment by using data perturbation and history information.

• Extensive experiments were conducted to demonstrate the effectiveness of our method.
The results on ScanNet-v2 show that our SDPH achieved comparable performance to
that of densely and accurately supervised methods.

The rest of this paper is organized as follows. First, related research is described in
Section 2. Next, we present our self-distillation framework in Section 3. Thereafter, the
experimental results and analysis are provided in Section 4. Finally, Section 5 concludes the
paper and points out future work.
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2. Related Works

2.1. Point Cloud Instance Segmentation

Point cloud instance segmentation methods can be roughly divided into two categories:
proposal-based methods and proposal-free methods.

2.1.1. Proposal-Based Methods

Proposal-based methods first conduct object detection to generate region proposals and
then perform binary classification to separate all of the foreground points in each proposal.
GSPN [8] used an analysis-by-synthesis strategy to enforce geometric understanding in
generating proposals with high objectness. These object proposals were further processed
by Region-Based PointNet (R-PointNet) to obtain the final segmentation results. The
method of 3D-SIS [35] first extracted 2D features from multi-view high-resolution RGB
images and then projected them back to the associated 3D voxel grids. The geometry
and color features were concatenated and fed into a fully convolutional 3D architecture.
The method of 3D-BoNet [36] is a single-stage, anchor-free, and end-to-end trainable
network. This method directly predicts a fixed number of bounding boxes and fuses
the global information into a point mask prediction branch. The method of 3D-MPA [9]
generates proposals through center voting, refines them by using a graph convolutional
network, and obtains the final instances through proposal aggregation instead of non-
maximum suppression.

2.1.2. Proposal-Free Methods

Proposal-free methods focus on discriminative point feature learning and distinguish
instances with the same semantic meaning through clustering. SGPN [11] first embeds all
of the input points into feature space and then groups the points into instances based on
the pairwise feature similarity, which is not scalable. JSIS3D [12] utilizes a multi-value con-
ditional random field model to jointly optimize semantic labels and instance embeddings
predicted by a multi-task point-wise network. ASIS [37] utilizes discriminative loss to pull
embeddings of the same instance to its center and push those of different instances apart.
Moreover, the association of instance segmentation and semantic segmentation further
benefits each. PointGroup [38] predicts point offsets towards their respective instance
centers and considers both the original point coordinates and the offset-shifted ones in the
clustering stage. OccuSeg [13] introduces the occupancy signal to take part in multi-task
learning and guide graph-based clustering. PE [14] encodes each point as a tri-variate
normal distribution in the probabilistic embedding space, and a novel loss function that
benefits both semantic segmentation and subsequent clustering was proposed. HAIS [10]
performs point aggregation and set aggregation to progressively generate instance propos-
als. SoftGroup [39] groups points based on soft semantic scores to avoid error propagation
and suppresses false positive instances by learning to categorize them as the background.

We follow the proposal-free approach because of its superior performance and flexible
architecture. Nevertheless, we utilize inaccurate box-level supervision to learn point-level
instance segmentation, which greatly alleviates the labeling cost.

2.2. Weakly Supervised Point Cloud Segmentation

Generally speaking, there are three typical types of weak supervision in machine
learning: incomplete supervision, inexact supervision, and inaccurate supervision [40].

Most point cloud segmentation methods are concerned with incomplete supervision,
where only a small subset of training data are given with labels [16,17,41–43]. This setting
is also known as semi-supervised learning. Xu et al. [16] combined multi-instance learn-
ing, self-supervision, and smoothness constraints to achieve semantic segmentation with
only 10 times fewer labels. Zhang et al. [41] constructed a self-supervised pre-training
task through point cloud colorization and proposed an efficient sparse label propagation
mechanism to improve the effectiveness of the weakly supervised semantic segmentation
task. PSD [42] enforced the prediction consistency between the perturbed branch and the
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original branch, and a context-aware module for regularizing the affinity correlation of
labeled points was presented. Liu et al. [17] adopted a self-training approach with a super-
voxel graph propagation module. Similarly, SSPC-Net [43] built super-point graphs for
dynamic label propagation and the coupled attention mechanism to extract discriminative
contextual features.

Inexact supervision means that the training data are given with only coarse-grained
labels, such as scene-level tags [19,44] and box-level annotations [20–22] in the segmen-
tation context. MPRM [19] applied various attention mechanisms to acquire point class
activation maps (PCAMs). After generating pseudo-point-level labels from PCAMs, a seg-
mentation network could be trained in a fully supervised manner. WyPR [44] jointly
performed semantic segmentation and object detection through a series of self- and cross-
task consistency losses with multi-instance learning objectives. SPIB [22] first leveraged
partially labeled bounding boxes to train a proposal generation network with perturba-
tion consistency regularization and then predicted the instance mask inside each target
box with three smoothness regularization and refinement modules. Box2Seg [21] learned
pseudo-labels from bounding-box-level foreground annotations and subcloud-level back-
ground tags, and it achieved semantic segmentation through fully supervised retraining.
Box2Mask [20] directly voted for bounding boxes and obtained instance masks via non-
maximum clustering.

Inaccurate supervision means that the given labels are not always the ground truth.
Although learning from noisy labels with deep neural networks has been explored very
much, especially in image classification [45], few researchers have investigated noisy labels
with increasing amounts of point cloud data. As the pioneering work in noise-robust point
cloud semantic segmentation, PNAL [27] selected reliable points based on their consistency
among historical predictions, and it corrected locally similar points with the most likely
label, which was voted on in each cluster.

Most of the above weakly supervised methods focused merely on one type of weak
supervision. However, the circumstances are usually more complicated in reality, where
the label noise in particular is almost inevitable but often ignored. Thus, we consider both
inexact and inaccurate supervision and develop a robust point cloud instance segmentation
framework with inaccurate box annotations.

3. Our Method

3.1. Overview

The pipeline of our SDPH is depicted in Figure 2. Given a point cloud P with
inaccurate bounding-box annotations, we first assign point-level pseudo-labels based on
the spatial inclusion relations between points and boxes. This simple association process
allows for a fully supervised training manner. After the label preparation, the backbone
network takes a voxelized point cloud as input and produces embeddings for each voxel.
To lessen the computational cost, we perform over-segmentation to group voxels into super-
voxels. This basic training process will be introduced in Section 3.3. The final instances are
obtained through super-voxel-level non-maximum clustering and backward projection.

Apart from the whole forward inference procedure, our self-distillation training frame-
work consists of two main parts that leverage data perturbation and historical information.
First, we construct a perturbed branch and keep the prediction consistency between the
original branch and the perturbed one. Furthermore, the past predictions are fully exploited
to select refurbishable samples and provide soft targets.
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Figure 2. The training framework of self-distillation based on perturbation and history. We first
generate pseudo-labels according to the point–box association (c.f. Section 3.2) and train a 3D sparse
convolutional network with two types of consistency regularization, namely, PCR (c.f. Section 3.4.1)
and TCR (c.f. Section 3.4.3). With the help of regularization, the model is able to perform label
refurbishment (HLR, c.f. Section 3.4.2) with higher precision. Note that the noisy loss is used only in
the warm-up stage, and afterward, it is replaced by the clean loss, since the cleaned (i.e., refurbished)
labels are available.

3.2. Pseudo-Label Generation

Since ground-truth point-level labels are not available, directly training a segmentation
network with only box-level labels is infeasible. Therefore, we need to establish the box–
point association first. Specifically, we categorize points according to the numbers of boxes
containing them. If a point is contained in only one box, it is simply labeled as the unique
box, which is represented by both the geometric coordinates and the semantic category. If a
point is inside more than one box, the smallest one is associated with it. A point is treated
as background if it is outside all of the boxes.

Let B denote a set of box annotations, with each box b ∈ R7 representing its three-
dimensional center, three-dimensional size, and one-dimensional semantic label. For clarity,
we use pi ∈ bj (pi /∈ bj) to show that the i-th point is (not) contained by the j-th box. The
pseudo-labels are generated through the following mapping function.

φ(pi) =

⎧⎨
⎩

bj, j = arg min
j∈{k|pi∈bk}

sizeof(bj),

background, ∀j, pi /∈ bj.
(1)

Although this mapping function seems plausible, the generated point-level pseudo-
labels inevitably suffer from inaccurate associations, as do the super-voxel-level pseudo-
labels. The label quality will further degrade due to inaccurate box annotations, which
motivated us to design a noise-robust self-distillation training framework.

3.3. Point Cloud Instance Segmentation Network

Before self-distillation, we introduce the basic point cloud instance segmentation
network, where the labels are regarded noise-free. As a common choice, we adopted a
UNet-like sparse convolutional network as the backbone [10,46,47]. The input point cloud
is converted into volumetric grids and then fed into the backbone to extract voxel features,
which are pooled into super-voxel features by using the over-segmentation results. Next,
multiple output heads are applied to predict the semantic label, the associated box coor-
dinates (offset and size), and the intersection-over-union (IoU) score of the predicted box
with the ground-truth box. The basic network is trained with the following multi-task loss.

Lbasic = Lsem + Lo f f set + Lsize + Lscore. (2)
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Here, Lsem is a normal cross-entropy loss for learning the semantics, which are formu-
lated as

Lsem = − 1
N

N

∑
i=1

C

∑
c=1

yic log pic, (3)

where yic represents the one-hot semantic label of the i-th super-voxel, pic =
exp(zic)

∑C
k=1 exp(zik)

denotes the probability of being predicted as the c-th category, N is the number of super-
voxels, and C represents the number of semantic categories. Note that the background is
also included in the categories concerned with Lsem.

As for the box regression, we use the L1 loss.

Lo f f set =
1
M

M

∑
i=1

‖di − d̂i‖1,

Lsize =
1
M

M

∑
i=1

‖si − ŝi‖1,

(4)

where M is the number of foreground super-voxels. di and d̂i represent the ground-truth
and predicted offsets of the i-th super-voxel with respect to the associated box center,
respectively. si and ŝi represent the corresponding box sizes.

To assist in the later non-maximum clustering and average precision calculation,
the IoU score loss is defined as

Lscore = − 1
M

M

∑
i=1

[ui log vi + (1 − ui) log(1 − vi)], (5)

where ui and vi represent the true and predicted IoUs between the predicted box and the
associated ground-truth box, respectively.

At the inference stage, we follow Box2Mask [20] in performing non-maximum cluster-
ing (NMC), which follows exactly the same procedure of non-maximum suppression (NMS)
in object detection. Instead of dropping redundant boxes, in NMC, they are collected to
form clusters with the corresponding representative boxes. The semantic category of each
cluster is assigned through a majority vote. Finally, the clustering structure of super-voxels
is projected back to points, which completes the instance segmentation.

3.4. Self-Distillation Based on Perturbation and History
3.4.1. Perturbation-Based Consistency Regularization

Since the original supervision method is inaccurate and untrustworthy, we turn to
self-supervision, which has shown great power in deep learning. To provide additional
supervision, we construct a perturbed branch and constrain the predictions of the perturbed
and original branches to be consistent.

We adopt three kinds of perturbation strategies: scaling, flipping, and rotation. For scal-
ing, we sample a scaling factor ξ from a uniform distribution U (0.8, 1.2). The origin-
centered scaling process is represented as P̃ = ξ · P, where P ∈ RNp×3 is the coordinate
matrix of the input point cloud and P̃ is the transformed one. For flipping, we randomly
sample the flipping indicators fx, fy from {−1, 1}, where −1 means flipping over the corre-
sponding axis. Thus, the flipping can be expressed as P̃ = P · diag( fx, fy, 1). For rotation,
the rotation angle θ around z-axis is denoted as θz and sampled from the uniform distribu-
tion U (0, 2π). Rotating the point cloud means multiplying its coordinates with a rotation
matrix as follows:

P̃ = P · R(θz) = P ·
⎡
⎣ cos θz sin θz 0
− sin θz cos θz 0

0 0 1

⎤
⎦. (6)
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Obviously, both semantic and geometric predictions should be consistent between the
two branches, i.e., the perturbation-based consistency regularization loss (“PCR loss” in
Figure 3) is defined as

Lpcr = Lsem
pcr + Lgeo

pcr . (7)

The KL-divergence and MSE losses are used as consistency regularization terms. To be
specific, we formulate the semantic consistency loss as

Lsem
pcr =

1
N

N

∑
i=1

DKL(pi‖p̃i)

=
1
N

N

∑
i=1

C

∑
c=1

pic log
pic
p̃ic

.

(8)

The geometric consistency loss is defined as

Lgeo
pcr =

1
N

N

∑
i=1

[
‖ ˜̂oi − ˆ̃oi‖2

2 + ‖ ˜̂si − ˆ̃si‖2
2

]
, (9)

where oi represents the center of the i-th super-voxel’s associated box. In addition, ·̂ in-
dicates the predicted value, and ·̃ means perturbation. To ensure valid consistency reg-
ularization, the same perturbation should be applied to the geometric predictions of the
original branch.

Figure 3. Illustration of the perturbation-based consistency regularization (PCR) module. We
construct a parallel branch through data perturbation and force the output predictions of the two
branches to be consistent. Note that the predictions include both semantics and geometry.

3.4.2. History-Guided Label Refurbishment

In light of the memorization effect, in which deep networks first learn simple patterns
in clean data before memorizing noise by brute force [48], the model is able to identify
and correct inaccurate labels by itself during training. Specifically, the consistency of
predictions is widely used as a confidence criterion [27,49–51]. Along this line, we consider
samples with consistent historical predictions as refurbishable. The refurbishment process
is illustrated in Figure 4.

Let Ψ(q) = {ŷt1 , ŷt2 , · · · , ŷtq} denote the label prediction history of a super-voxel
sample, where q is the length of the historical queue. The frequency of the super-voxel
being predicted as the c-th category is calculated as

F(c|q) =
q

∑
i=1

[ŷti = c]
q

, (10)
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where [·] is the Iverson bracket. With the frequency–probability approximation, we apply
the following normalized information entropy as the consistency metric:

H(q) =
1
Z

C

∑
c=1

−F(c|q) log F(c|q), (11)

where Z = ∑C
c=1 − 1

C log( 1
C ) = log(C) is the normalization term representing the maximum

entropy. A smaller entropy indicates more consistent predictions. To be concrete, we
treat the super-voxel that satisfies H(q) ≤ ε (0 ≤ ε ≤ 1) as the refurbishable sample.
The refurbished label is defined as

y∗ = argmax
1≤c≤C

F(c|q). (12)

Apparently, the refurbishment will be applied after an appropriate number of warm-up
epochs, which is longer than the historical queue. The refurbishable samples are relocated
at each new epoch to avoid the accumulation of correction errors. Instead of dropping the
remaining samples, we leave them unaffected to enable full exploration of the dataset. In
addition, it is noteworthy that we do not impose any restrictions on the label noise, which
makes our refurbishment robust to different noise types and different noise rates.

Figure 4. Illustration of the history-guided label refurbishment (HLR) module. We use a historical
queue to store the past predictions and correct the previously generated pseudo-labels with consis-
tently predicted classes while keeping the unreliable samples unchanged instead of directly dropping
them. Compared with other methods, we take a more conservative strategy, as regularization
decreases the overfitting risk.

3.4.3. Temporal Consistency Regularization

The label refurbishment in Section 3.4.2 only utilizes discrete hard labels, overlooking
the rich information in the continuous soft distributions. Here, we record the exponential
moving average (EMA) of historical logits to impose temporal consistency regulariza-
tion [32,33].

Let ze be the model’s output logits at epoch e. After the first trivial epoch, the moving-
average logits can be normally updated as

z̄e = (1 − α)z̄e−1 + αze, (13)

where α is the weight of the current epoch. In accordance with the conventional practice,
we add the temperature τ to further soften the distribution:

pτ
ic =

exp(zic/τ)

∑C
k=1 exp(zik/τ)

. (14)

The temporal consistency regularization term (“TCR loss” in Figure 5) is then defined as

Ltcr =
1
N

N

∑
i=1

τ2DKL(p̄
τ
i ‖pτ

i ), (15)
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where ·̄ denotes the corresponding EMA version.
With the temporal consistency regularization, the network tries to learn from itself

and make comparatively stable predictions, which is important for correcting mislabeled
hard samples and promoting the generalization performance.

Figure 5. Illustration of the temporal consistency regularization (TCR) module. We record the
exponential moving average of the past predicted distributions (logits), which serve as the soft targets
for the current prediction.

3.5. Total Loss

Our SDPH can be trained in an end-to-end manner with the total loss L, which
contains three parts: the basic loss Lbasic, the perturbation-based consistency regularization
loss Lpcr, and the temporal consistency regularization loss Ltcr.

L = Lbasic + Lpcr + Ltcr, (16)

where Lbasic is given in Equation (2), Lpcr is given in Equation (7), and Ltcr is given in
Equation (15). As we mentioned before, the label refurbishment needs a warm-up stage in
which the noisy labels are unchanged in Lbasic. That is why we call it the “noisy loss” in
Figure 2. After the warm-up stage, Lbasic is referred to as the “clean loss”, since the labels
have been cleaned.

4. Experiments

4.1. Experimental Settings
4.1.1. Dataset

We conducted experiments on the widely used ScanNet-v2 [15] dataset. This challeng-
ing large-scale indoor point cloud dataset consists of 1201 training scenes, 312 validation
scenes, and 100 hidden testing scenes. Each scene of the training and validation sets is
richly annotated with point-level semantic-instance labels that are used in the densely su-
pervised methods. However, we created axis-aligned bounding boxes from the point-level
annotations to validate our weakly supervised learning framework. To simulate inaccurate
annotations, we artificially injected symmetric noise into the training set. Specifically,
the semantic labels of the corrupted instance boxes were changed to other labels with
equal probability. We used the noise rate, i.e., the probability of each box being mislabeled,
to represent the severity of inaccurate supervision. The effects of different noise rates are
visualized in Figure 6.

4.1.2. Evaluation Metrics

As with existing methods, we used the mean average precision over 18 foreground
object categories as our evaluation metric. To be specific, AP25 and AP50 denote the scores
with IoU thresholds set to 0.25 and 0.5, respectively. In addition, we also report the AP,
which averages scores with thresholds varying from 0.5 to 0.95, with a step size of 0.05.
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Figure 6. Visualization of different noise rates affecting the semantic labels. From left to right are the
input scene, the ground-truth semantics, and the pseudo-labels of noise rates of 20%, 40%, and 60%.
The higher the noise rate, the more chaotic the semantics.

4.1.3. Implementation Details

All experiments were performed on a PC with two NVIDIA GeForce RTX 3090 Ti
GPUs and an Intel Core i7-12700K CPU. We used two GPUs for distributed training and
one for inference. The main software configuration included Python 3.8.13, Pytorch 1.10.2,
CUDA 11.3, and MinkowskiEngine 0.5.4. Following the pioneering work of Box2Mask [20],
we adopted a six-layer UNet-like sparse convolutional network as our backbone, and the
multi-head MLPs were implemented with three layers and 96 hidden units. We set the
voxel size to 0.02 m. For history-guided label refurbishment, we set the number of warm-
up epochs, the length of the historical queue, and the threshold ε to 40, 10, and 0.001,
respectively. For temporal consistency regularization, the temperature τ and the EMA
coefficient α were empirically set to 3 and 0.9. We trained our network from scratch with
a batch size of 4 for 200 epochs in total while using the Adam optimizer with an initial
learning rate of 0.001. A cosine annealing scheduler was applied after 100 epochs.

4.2. Instance Segmentation Results

First of all, we conducted comparative experiments with different noise rates to
demonstrate the effectiveness of our noise-tolerant learning framework, SDPH. As listed
in Table 1, our SDPH achieved consistently better performance than that of Box2Mask
(the baseline) under all of the noise rate settings with respect to all of the evaluation
metrics. From the overall trend, we observed that higher noise rates were related to larger
improvements. When the noise rate is set to 40%, our SDPH still outperformed noise-free
Box2Mask in terms of AP. The performance was comparable or even better in terms of
AP25 and AP50 when the noise rate was 20%. These results demonstrate our method’s
robustness to label noise. Qualitative comparisons of instance and semantic segmentation
are shown in Figures 7 and 8, respectively. When training with a noise rate of 40%, our
SDPH predicted the semantics more accurately than Box2Mask did, which usually led to
better instance segmentation performance.
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Table 1. Quantitative comparison of different noise rates on ScanNet-v2.

Method Metric 0% 10% 20% 30% 40% 50% 60%

Box2Mask [20]
AP 39.1 37.5 36.3 36.3 35.2 33.6 32.0
AP50 59.7 57.5 55.8 55.4 53.3 50.4 46.7
AP25 71.8 69.8 68.8 67.3 65.8 62.6 58.2

SDPH
AP 40.1 41.2 40.8 40.0 40.4 37.6 36.5
AP50 60.4 60.4 60.3 58.7 58.6 55.1 52.5
AP25 73.0 72.1 71.7 70.7 69.0 65.4 61.9

Improvements
AP 1.0 3.7 4.5 3.7 5.2 4.0 4.5
AP50 0.7 2.9 4.5 3.3 5.3 4.7 5.8
AP25 1.2 2.3 2.9 3.4 3.2 2.8 3.7

Even though our method was designed especially for learning with label noise, we
acquired a little performance gain in the “noise-free” setting. The possible reasons are
two-fold. Firstly, Box2Mask trained the network with associated super-voxel-level pseudo-
labels that were not inaccurate. Hence, the label refurbishment worked even without
additional noise injection. Secondly, our SDPH benefited from the regularization terms that
distilled knowledge from the data and the model itself.

In Table 2, we provide a detailed comparison with state-of-the-art methods that do
not explicitly consider label noise. It can be seen that our method performed well in the
noise-free setting, which demonstrated the effectiveness of our SDPH. However, instead
of attaining consistent performance boosts over different categories, there were some
significant declines and increases, especially between SDPH and 3D-MPA [9]. This was
probably because 3D-MPA and SDPH adopted different supervision types and instance
segmentation routines. The former is a proposal-based method with point-level supervision,
while our SDPH is proposal-free and uses the more challenging box-level supervision.
As proposal-free methods, PointGroup [38], Box2Mask [20], and SDPH exhibited similar
trends when compared with 3D-MPA. For example, their performance greatly declined for
refrigerators and shower curtains, and it increases for chairs, desks, sinks, sofas, and other
furniture. As shown in Figure 9, the refrigerators had various shapes and sizes and were
sometimes surrounded by cabinets. Moreover, curtains were usually beside windows.
Even in the case of full point-level supervision—let alone weak box-level supervision—it
was difficult to segment them clearly. Furthermore, compared with chairs and desks, there
were fewer instances of these categories, which could lead to SDPH’s false refurbishment
and lower performance.

Table 2. Quantitative comparison with state-of-the-art methods on ScanNet-v2. The highest perfor-
mance in each column is marked in bold.
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SegCluster [35] 13.4 16.4 13.5 11.7 11.8 18.9 13.7 12.4 12.2 11.1 12.0 0.0 11.2 18.0 18.9 14.6 13.8 19.5 11.5
SGPN [11] 22.2 0.0 31.5 13.6 20.7 31.6 17.4 22.2 14.1 16.6 18.6 0.0 0.0 0.0 52.4 40.6 31.9 72.9 15.3
3D-SIS [35] 35.7 57.6 66.3 16.9 32.0 65.3 22.1 22.6 35.1 26.7 21.1 0.0 28.6 37.2 39.6 56.4 29.4 74.9 10.1
MTML [52] 55.4 79.4 80.6 45.3 34.6 87.7 9.7 54.2 49.9 45.8 33.5 19.8 44.1 74.9 44.5 80.3 67.4 98.0 47.2
PointGroup [38] 71.3 86.5 79.5 74.4 67.3 92.5 64.8 61.6 74.1 54.8 65.4 48.2 38.3 71.1 82.8 85.1 74.2 100 63.6
3D-MPA [9] 72.4 90.3 83.4 78.3 69.9 87.6 62.5 66.0 69.2 56.6 48.6 48.0 61.4 93.1 75.2 76.1 74.8 99.2 62.2

Weak
SPIB [22] 61.4 87.4 86.8 48.8 45.4 89.0 49.6 47.8 52.3 49.2 45.5 9.9 48.3 82.6 63.2 88.1 66.2 95.9 41.9
Box2Mask [20] 71.8 87.1 83.8 68.2 59.5 94.5 58.5 65.1 78.6 59.8 67.1 45.6 46.9 77.4 79.5 87.0 75.5 96.9 61.4
SDPH 73.0 87.1 82.6 73.6 62.1 95.2 63.0 61.5 85.5 61.1 63.1 43.5 46.7 82.0 85.4 86.3 78.2 98.3 59.3
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Figure 7. Qualitative comparison at a noise rate of 40% on ScanNet-v2. The legend is employed to
distinguish among different semantic meanings, while the individual instances are randomly colored.
The key differences are marked out with red dashed rectangles.
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Figure 8. Qualitative comparison at a noise rate of 40% on ScanNet-v2. The legend is employed to
distinguish among different semantic meanings, and the key differences are marked out with red
dashed rectangles.

4.3. Ablation Study

We analyzed the contribution of each component in our learning framework, including
perturbation-based consistency regularization (PCR), history-based label refurbishment
(HLR), and temporal consistency regularization (TCR). It should be noted that the models
in the ablation study were all trained with a noise rate of 40%. The complete ablation
results are shown in Table 3. We found that every single component was able to improve
the performance by itself. In particular, TCR alone obtained 2.6, 3.4, and 2.0 percent
improvements in terms of AP, AP50, and AP25, respectively. The performance could be
further boosted through their combination, and the largest increases in AP, AP50, and AP25
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reached 5.2, 5.3, and 3.2 by combining all three components. This thorough ablation study
demonstrated that each module plays an important role in our framework.

Table 3. Ablation study on ScanNet-v2. The highest performance in each column is marked in bold.

PCR HLR TCR AP AP50 AP25

35.2 53.3 65.8
� 37.1 53.7 65.1

� 37.6 55.4 66.6
� 37.8 56.7 67.8

� � 39.5 58.1 67.9
� � 37.1 54.8 65.6

� � 39.5 57.4 68.8
� � � 40.4 58.6 69.0

Figure 9. Bad cases on ScanNet-v2 in the noise-free setting. The first two rows show that refrigerators
could be misclassified as cabinets, doors, and other furniture. We use “?” to represent this complicated
situation. The last two rows show that windows could be misclassified as curtains, which lowered
both categories’ performance. The legend is employed to distinguish among different semantic
meanings, and the key differences are marked out with red dashed rectangles.
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4.4. Analysis of Label Refurbishment

To demonstrate the process of label refurbishment, we further recorded two related
statistics, as shown in Figure 10. The first was the ratio of refurbishable super-voxel samples,
which was defined as

η =
number o f re f urbishable samples

number o f total samples
. (17)

The second was the correction error, which could be computed as

δ =
number o f mistakenly corrected samples

number o f re f urbishable samples
. (18)

Note that both statistics took the entire training set into account. We set the noise rate
to 40%.

Figure 10. Trend of statistics in history-guided label refurbishment.

The ratio of refurbishable super-voxel samples gradually increased from 61.8% to
92.6%, finally covering the majority of the whole training set. Moreover, the correction
error stayed relatively low throughout the training process because we adopted a conser-
vative refurbishment strategy. On the one hand, the refurbishable threshold was quite
strict to reduce false correction. On the other hand, we kept the unrefurbishable samples
instead of dropping them, which lowered the risk of error accumulation. Therefore,
the label quality was steadily improved as the training proceeded, as shown in Figure 11.
However, we observed that it was easier to correct the labels of isolated objects with
clear boundaries, such as chairs, sofas, and tables. On the contrary, flat objects that were
often attached to walls, such as pictures and curtains, were harder to distinguish from
the background.
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Figure 11. Qualitative demonstration of history-guided label refurbishment. From left to right are
the input point clouds, the corresponding noisy pseudo-labels, the refurbished labels in epochs 40,
80, and 200, and the ground-truth semantic labels.

4.5. Complexity Analysis

Apart from the mean average precision, we also compared the time costs to give a
full picture of the performance. As shown in Table 4, the inference time of our SDPH
was comparable to that of the state-of-the-art weakly supervised method Box2Mask [20],
though SDPH required a longer time for training. In fact, our approach mainly focused
on the design of loss functions that only affected the training cost. Without extra network
parameters, the majority of the additional cost came from perturbation-based consistency
regularization (PCR), since it constructed a perturbed network branch. PCR did not affect
the inference time, as only the main branch was used in inference.

Table 4. Comparison of the average computation time in milliseconds per scan on ScanNet-v2.
The running time was measured in the same environment. Note that a post-processing step was
implemented to cluster points into instances in inference.

Method Training Time (ms) Inference Time (ms)

Box2Mask [20] 444 1044
SDPH 722 1026

5. Conclusions

In this work, we proposed a novel self-distillation architecture for weakly supervised
point cloud instance segmentation with inaccurate bounding boxes as annotations. We
employed consistency regularization based on data perturbation and historical records
to prevent the network from overfitting noisy labels. Moreover, the noisy labels were
refurbished according to the predictions’ temporal consistency without knowing the noise
rate. An extensive ablation study and analysis verified the importance of each module in
SDPH. Our method achieved comparable performance to that of fully supervised methods,
and it outperformed recent weakly supervised methods by at least 1.2 percentage points in
terms of AP25, which demonstrated the effectiveness and robustness of our framework.

In the future, we plan to extend the noise types to asymmetric semantic noise and geo-
metric coordinate noise, which may require a new confidence criterion. In addition, inspired
by the mutual promotion between semantic segmentation and instance segmentation, se-
mantic classification and geometric regression could be associated through smoothness
regularization to reduce discontinuity and messy “over-segmentation”.
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Abstract: Building reconstruction using high-resolution satellite-based synthetic SAR tomography
(TomoSAR) is of great importance in urban planning and city modeling applications. However, since
the imaging mode of SAR is side-by-side, the TomoSAR point cloud of a single orbit cannot achieve a
complete observation of buildings. It is difficult for existing methods to extract the same features, as
well as to use the overlap rate to achieve the alignment of the homologous TomoSAR point cloud and
the cross-source TomoSAR point cloud. Therefore, this paper proposes a robust alignment method for
TomoSAR point clouds in urban areas. First, noise points and outlier points are filtered by statistical
filtering, and density of projection point (DoPP)-based projection is used to extract TomoSAR building
point clouds and obtain the facade points for subsequent calculations based on density clustering.
Subsequently, coarse alignment of source and target point clouds was performed using principal
component analysis (PCA). Lastly, the rotation and translation coefficients were calculated using the
angle of the normal vector of the opposite facade of the building and the distance of the outer end of
the facade projection. The experimental results verify the feasibility and robustness of the proposed
method. For the homologous TomoSAR point cloud, the experimental results show that the average
rotation error of the proposed method was less than 0.1◦, and the average translation error was less
than 0.25 m. The alignment accuracy of the cross-source TomoSAR point cloud was evaluated for the
defined angle and distance, whose values were less than 0.2◦ and 0.25 m.

Keywords: homologous TomoSAR point cloud; cross-source TomoSAR point cloud; the normal
vector of the opposite facade; the facade projection

1. Introduction

As an extension of the interferometric synthetic aperture radar (InSAR) technology,
the synthetic aperture principle is extended to the elevation direction, solving the overlay
mask problem caused by the SAR imaging geometry, and realizing the three-dimensional
imaging of the distance direction, azimuth direction, and elevation direction [1,2]. In recent
years, with the improvement of airborne SAR and satellite-based SAR systems and the
advancement of technology, the resolution, signal-to-noise ratio, and other indices have
been improved, and high-precision 3D building point clouds in the observation area can
now be generated using airborne or satellite-based SAR tomography technology, while
even higher-dimensional information such as building deformation can be obtained using
differential tomography technology [3–5].

The three-dimensional visualization of urban buildings plays an extremely important
role in the process of urban digital construction. Since the synthetic aperture radar is side-
imaging, the TomoSAR point cloud generated by a single track only shows the structure
of one side of the building, and the TomoSAR point cloud generated by SAR images of
at least two tracks is needed to show the complete structure of the building in the target
area. The team of Zhu Xiaoxiang [6] fused the TomoSAR point cloud of the ascending
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and descending orbit of the Berlin urban area for the first time, and the fused TomoSAR
point cloud could realize the construction of urban dynamic models and 3D visualization.
However, in the environment of urban expansion, the low coherence and noise of buildings
in the observation area lead to a reduction in the total amount of SAR images and the
quality of TomoSAR point clouds, thus limiting the application of spaceborne SAR 3D
imaging. Due to the different number of SAR images in different orbits and the error of
geocoding, there are some rotation and translation errors in multi-view TomoSAR point
clouds. The 3D visualization of a complete building structure based on the TomoSAR point
cloud can not only rely on the TomoSAR point cloud generated by the SAR image of rising
and falling tracks but also be realized by combining TomoSAR and LiDAR point clouds.
The backpack mobile 3D laser scanner uses the laser SLAM principle, and the operation
is very simple [7,8]. It restores the spatial 3D data through the algorithm as a function of
its attitude data and laser point cloud. The detection distance of the backpack mobile 3D
laser scanner is 50–120 m. Scanning a high-rise building of more than 100 m can easily
cause the loss of the facade and top point cloud of the high-rise building; in contrast, SAR
is prone to missing point clouds at the bottom of buildings in complex environments, but it
can detect the upper floors and top areas of buildings. Compared with TomoSAR point
clouds, mobile laser scanning (MLS) point clouds have higher density and a very low
overlap rate. However, how to extract the same features to fuse ascending and descending
TomoSAR point clouds with single-track TomoSAR and MLS point clouds is the main
research problem addressed in this paper.

Point cloud automatic registration mainly adopts the registration strategy from coarse
to fine. Firstly, the rough point cloud registration algorithm is used to roughly estimate
the altitude conversion parameters between the two-point cloud data, i.e., the initial
rotation and translation parameters. Then, the initial conversion parameters are used as the
input parameters of the point cloud precision registration algorithm to further accurately
register the two-point clouds, and a higher precision point cloud registration result is
obtained [9–11]. The main features used for point cloud automatic coarse configuration are
point [12,13], line [10,14], and face [15,16]. Point features such as SIFT [17,18], Harris [19,20],
and FPFH [21,22] are extracted for automatic registration of airborne laser scanned (ALS)
and terrestrial laser scanned(TLS) building point cloud data [10,23]. Extracting line and
surface features for automatic registration leads to higher robustness than point features,
and it can effectively reduce the interference of point cloud noise [11]. The 2-D contours of
buildings were extracted to automatically register ground and airborne point clouds in [24].
A parameterization based on complex numbers was used to determine the corresponding
relationship between planes, which was effectively applied to the ground laser scanning
data with a certain degree of overlap.

At present, the commonly used methods of point cloud precise registration are the
iterative nearest neighbor algorithm (ICP), random sampling consistency (RANSAC), nor-
mal distribution transformation algorithm (NDT), etc. Among them, the ICP algorithm [25]
iteratively corrects the rigid body transformation (translation and rotation) of two original
point clouds to minimize the distance between all point sets. The RANSAC algorithm [26]
achieves this goal by iteratively selecting a set of random subsets of point cloud data with
a certain probability to get a reasonable alignment result, and the number of iterations
must be increased to improve the probability. The NDT algorithm [27] uses the statistical
information of the point cloud data, whereby the probability density of the transformed
points is maximized if the transformed parameters are the best alignment result of the two
point clouds.

The above methods are commonly used in the coalignment of LiDAR point clouds
and point clouds derived from optical images, but they are not applicable to point clouds
derived from SAR images because the overlap rate of TomoSAR point clouds generated
from cross-directional orbits is extremely low, and the density and accuracy of point clouds
are low compared with LiDAR point clouds; hence, the automatic alignment of TomoSAR
point clouds faces greater difficulties. Gernhardt et al. [28] used the fused PSI for detailed
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monitoring of individual buildings. In [6], the automatic alignment of the TomoSAR
point clouds of ascending and descending orbits was achieved by extracting the L-shaped
endpoints of the TomoSAR building facade point clouds, and the L-shaped endpoints of
the TomoSAR point clouds of the two orbits could not be accurately corresponded when
there were fewer point clouds of one of the building L-shaped facades. Hence, this method
was limited to buildings with L-shaped facades. A robust alignment method for urban
area array InSAR point clouds was proposed in [29], using the concave and convex facades
of buildings for rotation correction and fine displacement. The TomoSAR and MLS point
clouds in urban areas also have rich facade information. In this paper, the geometric
features of the TomoSAR and MLS facade point clouds were used to derive the optimal
alignment parameters, i.e., rotation matrix and translation matrix, to achieve automatic
alignment between homologous and cross-source TomoSAR point clouds. Thus, the main
contributions of the work in this paper are as follows:

• A method is proposed for aligning TomoSAR point clouds for both ascending and
descending orbits, and TomoSAR point clouds with MLS point clouds;

• Rotation correction is performed using the normal vector angle of the opposing facades
of the building;

• Fine translation correction of the spatial position of the opposing facades of the build-
ing is achieved using previous information.

2. Materials and Methods

Three-dimensional point clouds were acquired from two different views of the urban
area, as shown in Figure 1. For the ascending and descending TomoSAR point clouds, the
homologous TomoSAR point clouds had offset and rotation errors perpendicular to the
line of sight due to the satellite platform position and geocoding errors, and the overlap
rate of the two point clouds was extremely low. For TomoSAR point clouds and MLS point
clouds, the point cloud densities were different, and the two point clouds obtained from
different viewpoints belonged to the opposite facades of buildings; therefore, the overlap
information could not be used for alignment fusion. Accordingly, we propose an alignment
method using the point cloud characteristics of building facades.

Figure 1. Schematic map of multi-view urban building point cloud acquisition (tomographic synthetic
aperture radar system and backpack mobile 3D laser scanner).

Our method was implemented in C++ based on the existing functions of PCL. All
the experiments are conducted on a computer with an Intel i7-11700 and 32-GB RAM. The
flow chart of the method is shown in Figure 2. The source and target point clouds were
composed of the TomoSAR point clouds of the ascending and descending orbits, or the
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source and target point clouds were composed of the single-orbit TomoSAR point cloud
and the MLS point cloud, and the two point clouds provided the front and reverse sides of
the building. Firstly, statistical filtering was used for filtering, and most of the noise and
outlier points were eliminated. The filtered point cloud still had some of the denser outlier
block point clouds. According to the DoPP algorithm, to extract the building facade points,
the extracted building facade points were clustered by density to obtain the building facade
blocks, thus further eliminating the outlier points. To ensure that the source and target
point clouds had good initial positions, the PCA-based initial coarse alignment method
was used, which mainly used the principal axis direction of the point cloud data to align
the two sets of point clouds with good initial positions after alignment. Using RANSAC
to fit the building facade points to get the plane of the building facade, the normal vector
of the plane, angle of the normal vector according to the topological relationship with the
building facade, and rotation coefficient were sequentially calculated. After projecting
the fitted plane point cloud onto the xy-axis, the least squares method was used to fit a
two-dimensional straight line, and the translation coefficient was calculated according to
the spatial position of the building facade.

 

Figure 2. Flowchart of the proposed method. The rectangular box in the upper half represents the
preprocessing of the data: filtering and extraction of building elevation points. The rectangular box
in the lower half represents the step of data alignment: coarse alignment followed by rotation and
fine translation correction.
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The method of data pre-processing described above involves several artificially given
parameters, including statistical filtering, building point extraction, and RANSAC-based
façade extraction. We set these parameters in combination with building spacing, number
of building storys and point cloud density:

• Statistical filtering: the number of close points analyzed for each point is set to 50 and
the multiple of the standard deviation is set to 1. This means that a point is marked as
an outlier if it exceeds the mean distance by more than one standard deviation;

• Building elevation point extraction: Set the grid size of the DoPP projection to
0.5 m × 0.5 m, and set the number of points of a single grid to 15 for TomoSAR
facade point cloud estimation;

• Facade extraction based on RANSAC: As the remaining thickness of the building
facade points is about 1~2 m, the facade plane fitting tolerance is set to 0.5 m, resulting
in an average facade thickness of 1.5 m.

2.1. TomoSAR System Model

TomoSAR, which originated from medical CT imaging technology, extends the two-
dimensional imaging principle of SAR to three dimensions. TomoSAR uses multiple aligned
two-dimensional SAR images obtained from observations of the same target feature to
invert its scattering values at different heights in the oblique distance direction, thus
restoring the real three-dimensional scene [30,31]. The geometric model of the TomoSAR
imaging principle is shown in Figure 3. One of the M + 1 view aerial pass SAR single-view
complex images of the same target area was selected as the main image, and the complex
value gm of each resolution unit in the m-th aerial pass image except the main image could
be regarded as the superposition of N scattered target signals in the same orientation at the
same oblique distance in the laminar direction s. This can be expressed as follows:

gn =
∫

Δs
γ(s)exp(−j2πξns)ds, n = 1, 2, 3, . . . , N, (1)

where γ(s) is the backward reflectivity function along the elevation direction of the imaging
area, and the spatial sampling interval ξn can be calculated as ξn = −2b⊥n/(λr), b⊥n is
the vertical baseline distance, λ is the incident wavelength, Δs is the range of elevation
angles depending on the width of the antenna diffraction pattern, and r is the central slope
distance. After discretization, Equation (1) can be simply approximated as follows:

g = Rγ + ε (2)

where g is the measurement vector of length N, R is the dictionary matrix with size N × L,
L is the number of grid cells divided on the s-axis, Aik = exp(−j2πξksk) is the element of
the i-th row and k-th column of the matrix, and ε is the noise vector.

According to linear algebra theory, Equation (2) becomes an underdetermined equation
with a nonunique solution space when the number of samples in the elevation direction is
much larger than the actual number of coherent trajectories. A common solution is to use
compressed sensing methods [32]. The objective function with a sparse constraint term is
as follows:

γ̂ = arg min
x

{
‖ Rγ − g ‖2

2 +λ‖ γ ‖1

}
(3)

where λ denotes the sparsity factor. A larger value indicates a sparser solution. ‖ γ ‖1 is
the sparsity constraint term that limits the solution space.
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Figure 3. The imaging mode of TomoSAR.

2.2. Filtering and Facade Point Extraction

The TomoSAR point cloud of urban scenes had more outliers; in order to extract the
building facade points effectively, statistical filtering was first used to remove obvious
outliers. The outliers were sparsely distributed, and the distances of all points in the point
cloud formed a Gaussian distribution. The average distance of each point to its nearest k
points was calculated, and the mean and variance were designed to eliminate the outliers
smaller than the set value.

For both TomoSAR and MLS point clouds, the building facade points could be ex-
tracted on the basis of the density of the projection point, whereby the point cloud is
divided using a horizontal grid, and the number of projection points falling on each grid
cell is counted. For the characteristics of TomoSAR point clouds, the DoPP values were
much larger in the building facade than in other areas. The DoPP values of noise points
caused by multiple scattering and noise points on the ground were uniform and small; for
the point clouds on top of buildings and ground features, the DoPP values were locally
larger. Using the above characteristics, a reasonable threshold value could be selected to
classify the TomoSAR point clouds, with DoPP greater than T1 for the building facade
point clouds, DoPP less than T2 for the noise points, and the remaining DoPP for the point
clouds of the top of buildings and ground features [33].

Figure 4b shows the statistically filtered point cloud with most of the outlier points
removed. Figure 4c shows the results of extracting the elevation points according to the
DoPP projection point density, where the blue point cloud is the building elevation point
and the green point cloud is composed of the small-scale building points and the top
point cloud. In Figure 4d, the observations in the n × p data matrix X are divided into
clusters according to the DBSCAN algorithm, and the extracted building facade points are
partitioned into point cloud blocks by clusters.
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(a) (b) 

 
(c) (d) 

Figure 4. Results of filtering and façade point extraction: (a) original point cloud; (b) point cloud
based on statistical filtering; (c) building points extracted according to DoPP projection, with blue
indicating building façade points and green indicating building planes or other structural points;
(d) results of density clustering.

2.3. Coarse Alignment

Point cloud alignment was divided into two steps: coarse alignment and fine align-
ment. Coarse alignment referred to when the transformation between two point clouds was
unknown, aimed at providing a better initial value of transformation for the fine alignment;
the fine alignment criterion was given an initial transformation and further optimized to
obtain a more accurate transformation.

For rigidly transformed point cloud alignment, the transformation factor T can be
expressed as follows [34]:

T =

∣∣∣∣∣∣∣∣
R11 R12
R21 R22

R13 x′
R23 y′

R31 R32
0 0

R33 z′
0 1

∣∣∣∣∣∣∣∣, R∗ =

∣∣∣∣∣∣
R11 R12 R13
R21 R22 R23
R31 R32 R33

∣∣∣∣∣∣, t∗ =

∣∣∣∣∣∣
x′
y′
z′

∣∣∣∣∣∣ (4)

where R∗ and t∗ are the rotation and translation coefficients.
The PCA-based initial alignment method mainly uses the principal axis direction of

the extracted façade point cloud data for alignment [35]. Firstly, the covariance matrix
of the two sets of point clouds is calculated, and the main feature components, i.e., the
principal axis directions of the point cloud data, are calculated according to the covariance
matrix. Then, the rotation matrix is derived from the principal axis direction, and the
translation vector is directly derived by calculating the translational shift of the center
coordinates of the two sets of point clouds. As shown in Figure 5a, the source and target
point clouds were not parallel and had rotation and translation errors. Figure 5b shows the
results after coarse alignment based on PCA, where the two point clouds had good initial
spatial positions after coarse alignment but still have some rotation and translation errors.
Therefore, a rotation and translation correction using the characteristics of the point cloud
of the building façade is proposed below in order to recover the correct spatial position
between the building facades.
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(a) (b) 

Figure 5. (a) The initial positions of the source and target point clouds. (b) The two point clouds after
coarse alignment based on PCA.

2.4. Rotation Correction

The easiest way to fit the plane is least squares fitting, but the accuracy of least squares
fitting is easily affected by noise, while the random sample consensus (RANSAC) algorithm
is a method to calculate mathematical model parameters from a series of data containing
outliers. By fitting the plane with RANSAC, the effect of noise can be excluded, and the
fitting accuracy can be greatly improved [36]. As shown in Figure 6a, the facades of the
same color were the opposite facades of the same building, and the point clouds of the
opposite facades were fitted using RANSAC after coarse alignment.

Figure 6. Schematic diagram of the spatially positioned fusion point cloud process using pairs of
building elevations. (a) Ideal paired target and source facades with the same color facade spatial
positions parallel. (b) The arrows indicate the corresponding normal vectors of the facades, and the
normal vectors are not parallel with obvious pinch angles. (c) The normal vectors of the opposing
elevations are parallel after rotation correction of the facade positions. (d) Exact translation correction
of the facade position.

When the height or width of the fitted elevation is close to that of its opposite elevation,
the normal vector of the plane should be calculated to perform the rotation correction. The
eigenvector corresponding to the minimum eigenvalue of the covariance matrix calculated
by PCA is the normal vector of the plane. Since the eigenvectors calculated by PCA are
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dualistic, the normal vectors of the opposing facades of the building are oriented such
that the normal vectors of the two planes are oriented in the same direction. The angle
between the normal vectors of the opposing faces of the building should be 0◦. As shown
in Figure 6b, the normal vectors of the opposing facades were not parallel and had a
certain angle; thus, the angle between the vectors and the rotation axis could be found
according to the two normal vectors. The formula for the rotation matrix was derived as
described below.

It is known that the vector before rotation is
→
a (a1, a2, a3) and the vector after rotation

is
→
b (b1, b2, b3); hence, the vector inner product is

→
a ·

→
b =

∣∣∣→a ∣∣∣∣∣∣∣→b
∣∣∣∣cosθ (5)

The angle between the vectors
→
a and

→
b is

θ = arccos

⎛
⎜⎜⎝

→
a ·

→
b∣∣∣→a ∣∣∣∣∣∣∣→b
∣∣∣∣

⎞
⎟⎟⎠ (6)

Following cross-multiplication,

a × b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k (7)

Then, the rotation axis
→
c is⎛

⎝ c1
c2
c3

⎞
⎠ =

⎛
⎝ a2b3 − a3b2

a3b1 − a1b3
a1b2 − a2b1

⎞
⎠ (8)

The rotation matrix R∗ is obtained from the Rodrigues rotation formula [37,38]:

R∗ = Ecosθ + (1 − cosθ)

⎛
⎝ a1

a2
a3

⎞
⎠(a1, a2, a3) + sinθ

⎛
⎝ 0

a3
−a2

−a3
0
a1

a2
−a1

0

⎞
⎠ (9)

R∗ is reduced to

R∗ =

∣∣∣∣∣∣
cosθ + a1

2(1 − cosθ) a1a2(1 − cosθ) − a3sinθ a1a3(1 − cosθ) + a2sinθ
a1a2(1 − cosθ) + a3sinθ cosθ + a2

2(1 − cosθ) a2a3(1 − cosθ) − a1sinθ
a1a3(1 − cosθ) − a2sinθ a2a3(1 − cosθ) + a1sinθ cosθ + a3

2(1 − cosθ)

∣∣∣∣∣∣ (10)

where E is the third-order unit matrix, and the second term of the formula is a tensor
product. The result is a matrix of three rows and three columns, and the rotation matrix R
of 3 × 3 order is obtained by operation.

The ICP algorithm can theoretically find the optimal rotation matrix R* from the
nearest point correspondence of the points; however, due to the low overlap between the
source and target point clouds and the lack of noise immunity, it is easy to get the local
optimal solution, leading to a mismatch. Therefore, we calculated the angle of the normal
vector of the opposite face of the building to obtain the rotation matrix R* for rotation
correction. The diagram of the result after rotation correction is shown in Figure 6c. After
rotation correction, the normal vector of the opposite facade was parallel, but the translation
needed to be further refined to get the result of Figure 6d. Therefore, for the next process,
the aim was to determine the translation vector t*.
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2.5. Final Shift Correction

The point clouds after PCA-based coarse alignment and rotation correction are shown
in Figure 7a. The rotation errors of the two point clouds were accurately corrected, while
the final displacement vector t* still needed to be accurately calculated. Figure 7b,c show
the height difference between the two point clouds, and the z′ value of displacement vector
t* could be calculated by calculating the height difference between the target and source
point clouds of the building facade.

Figure 7. The source and target point clouds after coarse alignment and rotation correction are shown
in green and blue: (a) point cloud of the top view; (b) point cloud of the side view; (c) point cloud of
the front view.

For the two-dimensional displacement vectors x′ and y′, the point cloud of the building
facade needed to be projected onto the two-dimensional plane for calculation. Using a priori
information about the building to determine the vertical distance between the opposing
facades of the building, we could determine d by measuring on Google Earth or in the field.
As shown in Figure 8, we selected a set of building opposing facades of the experimental
data to calculate the 2D displacement vectors, with the source and target point clouds
corresponding to the two facades of the building. The point clouds of the building facades
were projected to the xy plane, and the projected facade point clouds were fitted with
RANSAC.

Figure 8. Schematic diagram of 2D displacement vector calculation for fine displacement of a pair of
opposing facades of a building as an example.
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3. Results and Discussion

In this section, three sets of experimental data with different scenes are used to evaluate
the performance of the proposed method in this paper. The TomoSAR point clouds in the
experiments were generated by 3D imaging of the ascending and descending orbits of
TerraSAR-X spotlight data in Baoan District, Shenzhen, with 18 images of the ascending
orbit and 37 images of the descending orbit, both of which had a time span greater than
800 days. Three urban scenes with different complexity were selected for experiments,
as shown in Figure 9. Experiment 1 and Experiment 2 verified the robustness of this
paper’s method to align the ascending- and descending-orbit TomoSAR point clouds,
while Experiment 3 verified the robustness of this paper’s method to align the single-orbit
TomoSAR and MLS point clouds.

Figure 9. SAR images and optical images of three experimental scenes. The experimental area is red
wireframe building 1 and building 2.

The alignment accuracy evaluation measured the angular rotation deviation and
translation deviation between the aligned point cloud and the true point cloud. Due to
the lack of real point clouds, we selected the TomoSAR point clouds generated when the
geocoded distance direction and azimuth direction fitting error were less than 1 as the
validation data for Experiments 1 and 2. The low sparse density of the TomoSAR point
cloud and the small amount of information for extracting conjugate features did not allow
the introduction of line, surface, and body-based feature elements for accuracy evaluation.
Therefore, the alignment accuracy was evaluated by the difference between the calculated
transformation parameters Er and Et and the validation data, according to the RMSE. In
addition, for Experiment 3, which lacked validation data, we evaluated the difference
between the angle θ of the two normal vectors between each facade shown in Figure 6, as
well as the difference between the vertical distance of the outer endpoints of the aligned
facade shown in Figure 8 and the true value d.

3.1. Homologous TomoSAR Point Cloud Alignment Experiment 1

In Experiment 1, an open urban area with no high-rise buildings around was selected;
the main building in the area had 10 floors, and the building height was about 50 m. The
descending-orbit TomoSAR and ascending-orbit TomoSAR point clouds were selected as
the source and target point clouds, respectively. The two point clouds were extracted by
statistical filtering and DoPP-based building points, and then, PCA-based coarse alignment
was used; the coarse-aligned point clouds had good initial positions. Then, the point clouds
were finely aligned using the method of this paper, ICP algorithm and FPFH algorithm,
after which the results of the alignment were compared and evaluated in terms of accuracy.

In our experiments, the elevation information of the source and target point clouds
were used for the fine alignment of the whole building point clouds; therefore, in the data
preprocessing step, we extracted and filtered out the available elevation information and
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showed it with red point clouds in Figure 10a.The ICP algorithm was more sensitive to the
initial position and rotation error of the point clouds, and the algorithm combined the two
point clouds through the nearest neighbor search; The FPFH algorithm aligned two point
clouds together by calculating the neighborhood features of the points. Since the TomoSAR
point cloud is a sparse point cloud with an uneven distribution, the algorithm is limited
by the process of feature extraction; however, due to the overlap of the two point clouds
being extremely low, the ICP algorithm tended to obtain a local optimal solution, which
led to unstable results of the alignment. Table 1 presents the quantitative evaluation results,
revealing that the two point clouds still had large rotation and translation errors after coarse
alignment. Although the ICP algorithm reduced the translation error, the rotation error
increased due to its instability. The FPFH algorithm reduced the translation error and
rotation error, but their values are still large. Our method could achieve a rotation error of
0.019◦ and a translation error of 0.1242 m, which achieved a good alignment.

 

Figure 10. Alignment results of homologous TomoSAR point cloud of Experiment 1: (a) raw data
and preprocessing of experimental data, including statistical filtering, extraction of DoPP-based
facade points, density clustering, and PCA-based coarse alignment; (b) top and oblique views of the
alignment results of the method in this paper and top view of the aligned facade points; (c) top and
oblique views of the alignment results of ICP algorithm and top view of the aligned facade points;
(d) top and oblique views of the alignment results of FPFH algorithm and top view of the aligned
facade points.
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Table 1. Alignment accuracy parameters of Experiment 1.

Method Rotation Error Er (◦) Translation Error Et (m) RMSE (m)

PCA 15.0321 9.2350 8.9866
ICP 16.1078 6.7562 6.9740

FPFH 9.2041 2.4132 4.5473
Proposed method 0.0189 0.1242 0.1913

For the alignment of the ascending and descending TomoSAR point clouds, we also
calculated the root-mean-square error to evaluate the alignment results, and the RMSE
was used to measure the deviation between the observed and real values. The distance
between the aligned point cloud and the real value was greater than 6 m. Although the
FPFH algorithm reduced the registration error, its RMSE is still 4.5473 m. As shown in
Figure 10c,d, the aligned point cloud of the building facade still had a large deviation from
the real building. The ICP algorithm was weakly applicable to the lift-track TomoSAR
point cloud. The FPFH algorithm has some applicability to the homogenous TomoSAR
point cloud, but it was limited by the quality of the point cloud itself, and its applicability
was reduced for TomoSAR point cloud with fractures and uneven distribution. The main
reason for its non-applicability was that the TomoSAR point cloud was not homogeneous,
and the overlap rate of the two points was too low. The method in this paper does not use
the overlap information for alignment but uses the elevation information for alignment;
the results of the alignment are shown in Figure 10b. From the top and oblique views,
the aligned point cloud and the target point cloud showed the structure of the building
accurately, and the elevation point cloud also had a precise position. Since the TomoSAR
point cloud contains many noise points and the TerraSAR-X image has a 3D resolution of
0.25 m, the alignment error of about 0.25 m is within the controllable range because the
method in this paper has a high alignment accuracy and strong robustness for aligning the
ascending and descending TomoSAR point clouds.

3.2. Homologous TomoSAR Point Cloud Alignment Experiment 2

A denser building complex was selected for Experiment 2. The main building in
this area had 18 floors and was about 65 m high. The descending-orbit TomoSAR and
ascending-orbit TomoSAR point clouds were selected as the source and target point clouds,
respectively. Since the region was more complex compared with the scene of Experiment 1,
the filtered point cloud still had a small number of dense outliers. Due to the limitation
of the onboard TerraSAR-X incidence angle, the two TomoSAR elevation point clouds
extracted using DoPP could not represent the facades of the six buildings in the scene, and
the point cloud on the facade of the rightmost rectangular building in the scene has been
removed because they were too sparse, but this did not affect the calculation of the method
in this paper; accordingly, the extracted building facades were sufficient to complete the
calculation of the rotation matrix and translation matrix.

The coarse alignment based on PCA roughly aligned the two point clouds together
according to their principal axes, and the two point clouds after the coarse alignment also
had certain rotation and translation errors. As in Experiment 1, we used the method of this
paper, ICP and FPFH, to finely align them. From the top and oblique views in Figure 11b–d,
our method achieved more accurate alignment results than the ICP and FPFH algorithm,
and the purple building elevation points were parallel to the source building facade points
and had precise spatial positions after alignment. As shown in Table 2, the alignment
results of the ICP and FPFH algorithm also had large rotation and translation errors, while
the errors of the methods in this paper were less than 0.25 m, demonstrating the high
accuracy and robustness of the TomoSAR point cloud alignment.
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Figure 11. Alignment results of homologous TomoSAR point cloud in Experiment 2: (a) preprocessing
of raw and experimental data, including statistical filtering, DoPP-based extraction of elevation points,
density clustering, and PCA-based coarse alignment; (b) top and oblique views of the alignment
results of the method in this paper and top view of the aligned facade points; (c) top and oblique
views of the alignment results of ICP algorithm and top view of the aligned facade points; (d) top and
oblique views of the alignment results of FPFH algorithm and top view of the aligned facade points.
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Table 2. Alignment accuracy parameters of Experiment 2.

Method Rotation Error Er (◦) Translation Error Et (m) RMSE (m)

PCA 12.0547 8.9407 8.6295
ICP 8.1752 6.8431 7.0945

FPFH 6.0982 9.8456 8.7361
Proposed method 0.0107 0.1584 0.1802

The results of Experiments 1 and 2 demonstrate the high accuracy and strong adapt-
ability of the method in this paper for aligning homologous TomoSAR point clouds, as well
as the good robustness of the alignment using the characteristics of the building facade for
the very low overlap rate of the two point clouds. The limitations of the image data and
building environment led to the point cloud of a particular track not being able to support
it for alignment. Our experimental solution was to align the TomoSAR point cloud on one
side with the point cloud on one side scanned by other sensors.

3.3. Cross-Source TomoSAR Point Cloud Alignment Experiment

Experiment 3 selected the TomoSAR point cloud obtained from 38-view downlinked
TerraSAR-X data after 3D imaging and the point cloud of one side of the building scanned
by a ZEB-REVO RTT portable laser scanner of CHC NAVIGATION. The experimental area
was a high-rise building with a complex building environment, and the main building had
32 floors and was about 100 m high. The downlinked TomoSAR and MLS point clouds
were selected as the source and target point clouds, respectively. Since the density of the
MLS point cloud was denser than that of TomoSAR point cloud, the threshold value for
setting filtering and building facade point extraction needed to be increased.

The results based on PCA coarse alignment are shown in Figure 12b. From the
top and oblique views, the two point clouds after aggregation had obvious rotation and
translation errors, and the top view of the building facade points showed the spatial position
relationship between the aligned facade point cloud and the target point cloud facade point
cloud, whereas the coarsely aligned facade points did not show their spatial position
correctly and could not express the building structure in the top view. In Experiments 1
and 2, the method of this paper and the ICP algorithm were used to finely align the point
clouds. The alignment results of the ICP and FPFH algorithm are shown in Figure 12d,e,
where the two point clouds showed visually obvious rotation errors, and the two facade
points did not have correct spatial positions. The alignment results of the method in this
paper are shown in Figure 12c. From the top and oblique views of the two points, the
two point clouds correctly represented visually the buildings for which the accuracy was
evaluated, and the facade points also had the correct spatial positions.

In the absence of real validation data, we evaluated the alignment results by the
angular difference θ of the designed facade normal vectors and the outer endpoint Δd
of the facade. We calculated θ and Δd for planar buildings 1 and 2 within the scene in
Figure 9c after alignment by the ICP algorithm, FPFH algorithm and the method in this
paper, and the results are shown in Table 3. The ICP method could not correctly rotate the
two point clouds, and the angle between the opposite elevations of buildings 1 and 2 after
alignment was about 24◦, while the value of Δd was greater than 1.5 m. The FPFH method
also could not rotate the two point clouds correctly, after registration, the relative elevation
angle of building 1 and 2 is about-19◦, and the Δd value is more than 3.0 m. From the
experimental results and accuracy analysis, the ICP and FPFH algorithm could not calculate
the exact correspondence between the TomoSAR point cloud and the MLS point cloud, and
although the translation error was close to the meter level, it had a more obvious rotation
error. However, our proposed method had significantly improved accuracy compared
with the ICP and FPFH algorithm; the translation error reached 0.25 m, and the normal
vectors of the rotated building facade point clouds were parallel with minimal rotation
error. Since the TomoSAR and MLS point clouds contained many noise points and the
difference between the two point clouds was too large, we believe that the error after
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alignment is within the acceptable range, but the accuracy and efficiency of the alignment
still have room for improvement; in particular, the efficiency of the algorithm needs to be
further optimized.

 

Figure 12. Experiment 3 alignment results of cross-source TomoSAR point cloud with MLS point
cloud: (a) top, front, and left views of the original data; (b) top and oblique views of the coarse
alignment results based on PCA and top view of the aligned facade points; (c) top and oblique views
of the alignment results of this paper and top view of the aligned facade points; (d) top and oblique
views of the alignment result of ICP algorithm and top view of the facade point after alignment;
(e) top and oblique views of the alignment results of FPFH algorithm and top view of the aligned
facade points.
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Table 3. Alignment accuracy parameters of Experiment 3. Processing times are obtained by a regular
desktop PC (Intel i7-11700).

Building Method Θ (◦) Δd (m) Time (s)

Building one
ICP 24.5624 1.5898 4.1847

FPFH −19.4571 3.2489 64.4830
Proposed 0.1681 0.2259 24.4830

Building two
ICP 24.2873 1.5788 3.7857

FPFH −19.6317 3.3115 47.6954
Proposed 0.1487 0.2314 22.8704

3.4. Discussion

In this paper, we proposed an alignment method to align homologous and cross-
source TomoSAR point clouds using the normal vectors and outer endpoints of building
facades. The above experimental results verified the effectiveness of the proposed method.
Compared with the famous PCA, ICP, and FPFH algorithms, the proposed method has the
following advantages and disadvantages:

(1) The most important significance of our method is that it could be applied to both
homologous and cross-source TomoSAR point cloud registration, helps to accurately correct
rotation and translation errors, and could realize the complete observation of 3D buildings
based on TomoSAR point clouds. In contrast, PCA algorithm could only achieve rough
registration of two point clouds, and subsequent fine alignment was required to obtain
more accurate alignment results. Although ICP algorithm can reduce the translation error,
the registration result had a large rotation error and could not correctly display the building
structure. The FPFH algorithm was applicable to homologous TomoSAR point clouds in
simple environments, but it was not used in homologous TomoSAR point clouds with
complex environments and cross-source TomoSAR point clouds.

(2) Our method does not depend on the overlap between the two point clouds but
obtains the architectural points in the experimental scene and extracts the facade points
through statistical filtering and DoPP projection filtering and calculates the rotation matrix
by using the angle of the normal vector of the opposite side of the building and then uses
the outer endpoint of the building facade projection to estimate the fine translation. The
experimental results and actual data show that the method proposed in this paper had
higher accuracy than other algorithms.

(3) However, the engineering process of this paper is more complex complicated and
less time-efficient, especially in the extraction of building facade information. Furthermore,
the calculation of facade information consumes most of the time. In addition, we need to
measure the vertical distance between opposite building elevations from high-precision
remote sensing images, cadastral information, or in the field.

In summary, for satellite-based synthetic SAR tomography point clouds, the method in
this paper can achieve the alignment of their homologous or cross-source urban multi-view
point clouds using building facade information. Moreover, we will continue to refine
the method and apply it to the alignment of point clouds acquired by other sensors of
different quality.

4. Conclusions

The TomoSAR point cloud of a single track cannot show the complete building struc-
ture. In order to solve this problem, this paper proposed a robust homologous and cross-
source TomoSAR point cloud registration method. Under the condition of many noise
points and a low overlap rate, a complete TomoSAR point cloud registration process was
designed and implemented. The experimental process includes statistical filtering, building
facade point extraction based on DoPP, density clustering, and rough registration based
on PCA. The final rotation and translation coefficients are calculated from the angle of
the normal vector of the building facade and the distance between the outer endpoints.
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Experimental results showed that, compared with the ICP algorithm, the proposed method
is more robust in registering homologous and cross-source TomoSAR point clouds.

However, there are several aspects of our work that can be improved. First of all, for
the facade of building facade points, the method of this paper depends on the selection of
parameters, which greatly reduces the efficiency of registration. When there are enough
spaceborne TomoSAR point cloud data, we can use some deep learning methods to classify
and segment them. Secondly, the method in this paper can be applied to urban point cloud
registration collected by sensors of different quality. In future work, we will optimize the
efficiency of this method and further analyze and evaluate its performance of this method.
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Abstract: Texture mapping can be defined as the colorization of a 3D mesh using one or multiple
images. In the case of multiple images, this process often results in textured meshes with unappealing
visual artifacts, known as texture seams, caused by the lack of color similarity between the images.
The main goal of this work is to create textured meshes free of texture seams by color correcting all
the images used. We propose a novel color-correction approach, called sequential pairwise color
correction, capable of color correcting multiple images from the same scene, using a pairwise-based
method. This approach consists of sequentially color correcting each image of the set with respect
to a reference image, following color-correction paths computed from a weighted graph. The color-
correction algorithm is integrated with a texture-mapping pipeline that receives uncorrected images,
a 3D mesh, and point clouds as inputs, producing color-corrected images and a textured mesh
as outputs. Results show that the proposed approach outperforms several state-of-the-art color-
correction algorithms, both in qualitative and quantitative evaluations. The approach eliminates most
texture seams, significantly increasing the visual quality of the textured meshes.

Keywords: pairwise-based color correction; texture mapping; joint image histogram; color mapping
function; weighted graphs

1. Introduction

Three-dimensional reconstruction can be summarized as the creation of digital 3D mod-
els from the acquisition of real-world objects. It is an extensively researched topic in areas
such as robotics, autonomous driving, cultural heritage, agriculture and medical imaging.
In robotics and autonomous driving, 3D reconstruction can be used to obtain a 3D per-
ception of the car’s surroundings and is crucial to accomplish tasks such as localization
and navigation in a fully autonomous approach [1–3]. In cultural heritage, 3D recon-
struction aids in the restoration of historical constructions that have deteriorated over
time [4]. In agriculture, 3D reconstruction facilitates the improvement of vehicle navigation,
crop, and animal husbandry [5]. In medical imaging, reconstruction produces enhanced
visualizations which are used to assist diagnostics [6].

The technologies used to reconstruct a 3D model are typically based on RGB cam-
eras [7], RGB-D cameras [8,9], and light detection and ranging (LiDAR) [10,11]. Point
clouds from LiDAR sensors contain quite precise depth information, but suffer from prob-
lems such as occlusions, sparsity, and noise, and images from RGB cameras provide color
and high-resolution data, but no depth information [12]. Nonetheless, the fusion of LiDAR
point clouds and RGB images can achieve better 3D reconstruction results than a single
data modality [13] and, for this reason, is often used to create textured 3D models.

Texture mapping is the colorization of a 3D mesh using one or more images [14–17].
In the latest applications, usually several overlapping images are available to texture the
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3D mesh, and a technique to manage the redundant photometric information is required.
Those techniques are often referred to as multiview texture mapping [18–21]. The winner-
take-all approach is usually the technique used to handle the redundant photometric
information. For each face of the 3D mesh, this approach selects a single image from the
set of available images to colorize it. The selection of the image raises the problem of how
to select the most suitable one from the set of available images and how to consistently
select the images for all faces of the 3D mesh. To address those problems, [22] employ a
Markov random field to select the images. The authors of [23] use graph optimization
mechanisms. Others use optimization procedures to minimize the discontinuities between
adjacent faces [24]. Another approach that is commonly used is the average-based approach,
which fuses the texture from all available images to color each face. The authors of [25,26]
propose the fusion of the textures based on different forms of weighted average of the
contributions of textures in the image space. However, these approaches are highly affected
by the geometric registration error between the images, causing blurring and ghost artifacts,
which are not visually appealing [27]. The winner-take-all approach has the advantage of
solving the problem of blurring and ghost artifacts. However, particularly in the transitions
between selected images, texture seams are often perceptible. These texture seams are
caused by the color dissimilarities between the images. To tackle this additional problem,
robust color correction techniques are often used to color correct all images, in an attempt
to create the most seamless textured 3D meshes possible. Color correction can be defined as
the general problem of compensating the photometrical disparities between two coarsely
geometrically registered images. In other words, color correction consists of transferring
the color palette of a source image S to a target image T [28].

There are several color-correction approaches in the literature; however, the majority
of them focus on correcting a single pair of images, whereas our objective is to increase
the level of similarity between multiple images from a 3D model. Nonetheless, in the
past few years, the color correction across image sets from the same scene has become
a widely researched subject [29–31]. Apart from the different techniques to ensure the
color consistency between multi-view images, color correction for both image pairs and
for image sets can be defined as the same problem of adjusting the color of two or more
images in order to obtain photometric consistency [31]. The methods of color correction
across image sets are usually formulated as a global optimization problem to minimize
the color discrepancy between all images [30]. On the other hand, the methods of color
correction for image pairs are usually designed to transfer the color palette of a source
image S to a target image T and are only used to color correct a single pair of images [28].
Nevertheless, we believe that pairwise-based methods can be extended to address the
problem of color correcting multiple images of a scene, which is usually the case for texture
mapping applications. Pairwise-based methods are naturally less complex and easier to
implement than optimization methods. However, the extension of these methods to color
correct several overlapping images is not straightforward.

In this light, we propose a novel pairwise-based approach that uses a clever sequence
of steps, allowing for a pairwise method that was originally designed to color correct
a single pair of images, to color correct multiple images from a scene. The manner in
which we carry out the sequence of pairwise steps is the key to achieving an accurate color
correction of multiple images, as will be detailed in Section 3.

The remainder of the paper is structured as follows: Section 2 presents the related
work, concerning the main color correction approaches available in the literature and how
we can contribute to the state-of-the-art; Section 3 describes the details of the proposed color
correction approach; Section 4 discusses the results achieved by the proposed approach,
and provides a comparison with other state-of-the-art approaches; and finally, Section 5
presents the conclusions and future work.
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2. Related Work

There are two main color correction approaches: based on image pairs, or using a
larger set of images. In this section, we start by reviewing image pairs color-correction
techniques. Then we present techniques of color correction for image sets. At the end,
a critical analysis of the state-of-the-art and a contextualization of our work is presented.
Regarding color correction based on image pairs, existing techniques are divided in two
classes: model-based parametric and model-less non-parametric. Model-based uses the
statistical distribution of the images to guide the correction process. The authors of [32]
were the pioneers with a linear transformation to model the global color distribution from a
source image S to a target image T. They used Gaussian distributions (mean and standard)
to correct the source image color space according to the target image. This approach is
commonly used as a baseline for comparison [33–35]. Another approach [34] used the
mean and covariance matrix to model the global color distribution of the images in the
RGB color space. To estimate the color distribution more accurately, the authors of [36]
proposed the usage of Gaussian mixture models (GMMs) and expectation maximization
(EM) rather than simple Gaussian. They also proposed a local approach by modeling the
color distribution of matched regions of the images. This local correction is also used in [37],
where the mean shift algorithm was used to create spatially connected regions modeled
as a collection of truncated Gaussians using a maximum likelihood estimation procedure.
Local color correction approaches can better handle several reasons for differences between
images: different color clusters in the same image, differing optics, sensor characteristics,
among others [38]. A problem that may appear when correcting the three image channels
independently are cross-channel artifacts. To avoid these artifacts, 3D GMMs can be used
to model the color distribution in all three channels [35] or multichannel blending [39,40]
since they model the three color channels simultaneously.

Model-less non-parametric approaches are usually based on joint image histogram
(JIH) from the overlapped regions of a pair of images. A JIH is a 2D histogram that shows
the relationship of color intensities at the exact position between a target image T, and a
source image S. Then, a JIH is used to estimate a color mapping function (CMF): a function
that maps the colors of a source image S to a target image T [28]. However, CMFs are highly
affected by outliers that may appear due to camera exposure variation [41], vignetting
effect [42], different illumination, occlusions, reflection properties of certain objects, and
capturing angles, among others [28]. The radiometric response function of the camera
may also affect the effectiveness of the CMF in color correcting a pair of images. To reduce
this problem, the monotonicity of the CMF has to be ensured using, for example, dynamic
programming [43]. In [44,45], the CMF estimation is performed with a 2D tensor voting
approach followed by a heuristic local adjustment method to force monotonicity. The same
authors estimated the CMF using a Bayesian framework in [46]. Other possibilities for CMF
estimation are energy minimization methods [47], high-dimensional Bezier patches [48]
or the use of a Vandermonde matrix to model the CMF as a polynomial [49]. A root-
polynomial regression, invariant to scene irradiance and to camera exposure, was proposed
in [41]. A different approach corrects images in the RGB color space with a moving least
squares framework with spatial constraints [50]. Color-correction approaches for image
pairs are not straightforward to extend to image set that uses three or more images for
the correction.

Most color-correction approaches for image sets are based on global optimization
algorithms that minimize the color difference of the overlapping regions to obtain a set
of transformation parameters for each image. These approaches are common to several
applications, such as image stitching, and 3D reconstruction, among others. The authors
of [39] addressed the problem with a global gain compensation to minimize the color
difference in the overlapped regions. This approach was proposed for image stitching
and has is implemented in the OpenCV stitching model https://docs.opencv.org/4.x/d1
/d46/group__stitching.html (accessed on 19 November 2022) and in the panorama soft-
ware Autostitch http://matthewalunbrown.com/autostitch/autostitch.html (accessed on
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19 November 2022). In [51], a linear model was used to estimate independently three
global transformations for each color channel, minimizing the color difference through
histogram matching. The overlapped regions were computed using image-matching tech-
niques, such as scale-invariant feature transform (SIFT) key points [52]. This method
was implemented in OpenMVG https://github.com/openMVG/openMVG (accessed on
19 November 2022) [53]. Linear models might not be flexible enough to minimize high
color differences between regions of the images. In this context, the authors of [54] proposed
a gamma model rather than a linear model to avoid the oversaturation of luminance by
applying it in the luminance channel in the YCrCb color space. In the other two chromatic
channels, the authors maintained the linear model through gain compensation.

The approaches described in the previous paragraph apply the least-square loss
function as the optimization solver, but this method is very sensitive to outliers and missing
data. An alternative proposed in [29] estimated the gamma model parameters through
low-rank matrix factorization [55]. Although the linear and gamma models achieved
good results, they present some limitations with challenging datasets with high color
differences, resulting in the use of other models. A quadratic spline curve, more flexible
to correct significant color differences, was proposed in [56]. The same quadratic spline
curves were used in [30] with additional constraints concerning image properties, such as
gradient, contrast, and dynamic range. In [31], the authors estimated a global quadratic
spline curve by minimizing the color variance of all points generated by the structure
from motion (SfM) technique [57]. The robustness of this method was improved with the
adoption of strong geometric constraints across multiview images. Moreover, to improve
efficiency through large-scale image sets, the authors proposed a parallelizable hierarchical
image color correction strategy based on the m-ray tree structure.

The previous paragraphs have detailed several approaches to deal with the problem
of color correcting a pair of images or multi-view image sets. Many approaches have
been proposed that aim to color correct image sets through global optimization processes.
However, only a few of them are directed to the problems of texture mapping applications.
For the case of indoor scenarios, these problems include the following: (i) overlapped
regions with a very different size because of the varying distance from the cameras to
the captured objects; (ii) considerable amounts of occlusions; and (iii) lack of overlapped
regions. In recent papers for color correction in texture mapping applications, [31,58] tackle
the problem of texture mapping for outdoor scenarios, which do not have many of the
issues discussed above, such as overlapped regions with very different sizes and occlusions.
On the other hand, color-correction approaches for image pairs are simpler methods, but are
designed to color correct only a single pair of images, making it difficult to generalize these
approaches to color correct multiple images of a scene. However, we believe that color-
correction algorithms for image pairs can be adapted to color correct multiple images for
two reasons: (i) these algorithms are simpler and more efficient methods because only two
images at each step are handled by the algorithm, and in contrast, the optimization-based
algorithms try to deal with the color inconsistencies of all images at the same time; and
(ii) these algorithms could be executed in an intelligent sequence of steps across the set of
images in order to increase the color consistency between all images. By using a pairwise
method, we take advantage of all the years of research and all the approaches developed to
color correct an image pair.

Our previous work [59] has focused on the usage of 3D information from the scene,
namely point clouds and 3D mesh, to improve the effectiveness of the color correction
procedure, by filtering incorrect correspondences between images from an indoor scenario.
These incorrect correspondences are usually due to occlusions and different sizes of the
overlapped regions and may lead to poor performance of the color correction algorithm.

In this paper, we propose a novel pairwise-based color correction approach adapted to
solve the problem of color correcting multiple images from the same scene. Our approach
aims to use color-correction algorithms for image pairs since we believe that, in some
aspects, optimization-based methods may become overly complicated to color correct
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several images from large and complex scenes. The proposed approach uses a robust
pairwise-based method in a clever sequence of steps, taking into consideration the amount
of photometric information shared between the pairs of images. This sequential approach
color corrects each image with respect to a selected reference image increasing the color
consistency across the entire set of images.

3. Proposed Approach

The architecture of the proposed approach is depicted in Figure 1. As input, the system
receives RGB images, point clouds from different scans, and a 3D mesh reconstructed from
those point clouds. All these are geometrically registered with respect to each other. Our
approach consists of 8 steps. In the first step, the faces of the 3D mesh are projected onto
the images, to compute the pairwise mappings. Pairwise mappings are corresponding
pixel coordinates from the same projected face vertices, in a pair of images. Then, several
techniques are applied to filter incorrect pairwise mappings that would undermine both
color-correction and texture-mapping processes. Once the incorrect pairwise mappings
have been removed, a color correction weighted graph is created, containing all the pairs
of images available to use in the color correction procedure. A color correction path is

computed for each image using a path selection algorithm between each of those images
and a reference image that must be selected by the user. Subsequently, we compute a

joint image histogram (JIH) for each pair of images within the color correction paths
and estimate a color mapping function (CMF) that best fits each JIH data. To finish the
color correction procedure, we perform what we call sequential pairwise color correction,
by using the color correction paths and the CMFs, to effectively color correct all images
with respect to the reference image. At the end of this stage, the corrected RGB images
are produced and then used in the last step to colorize each face of the 3D mesh through
a texture mapping image selection algorithm, resulting in the textured 3D mesh. The in-
formation from the pairwise mappings filter is also used to increase the robustness of the
image selection technique.

This paper focuses on three components of the pipeline: color correction weighted
graph creation (Section 3.3), color correction paths computation (Section 3.4), and sequential
pairwise color correction (Section 3.7). Other components, such as pairwise mappings
computation and pairwise mappings filtering, have been addressed in detail in our previous
work [59]. In this context, we consider it important for the reader to have an overview
of the complete framework, which is why we offer a less detailed explanation of these
procedures in Sections 3.1 and 3.2. Sections 3.3, 3.4 and 3.7 describe the core contributions
of this paper in detail.

To produce the results and show the entire pipeline, we used a dataset from a labora-
tory at IEETA — Institute of Electronics and Informatics Engineering of Aveiro in University
of Aveiro. This dataset represents an entire room and contains 24 images from different
viewpoints, 9 point clouds from different scans, and a 3D mesh reconstructed from those
point clouds with 41,044 faces and 21,530 vertices representing the entire room.
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Figure 1. Architecture of the proposed approach. As input, our system receives RGB images,
a 3D mesh, and point clouds from different scans, all geometrically registered to each other. In the
first part, seven steps are performed to produce the corrected RGB images. Subsequently, we execute
one last step to produce the textured 3D mesh. The core contributions of this paper are highlighted in
blue. The non-squared elements represent data. The squared elements represent processes.

3.1. Computation of Pairwise Mappings

The geometric registration between a pair of images is usually determined based on
overlapping areas, which contain photometrical information between regions of pixels
that may or may not correspond to the same object. The usage of 3D information, namely
3D meshes and point clouds, to compute the correspondences between images, can be
more accurate and reliable than image-based techniques, especially in indoor scenarios,
which are more cluttered and contain more occlusions.

As discussed above, our previous work [59] initially proposed to use 3D meshes to
compute correspondences between image pairs. For this reason, the proposed approach
starts with the computation of the pairwise mappings that takes as input the RGB images
and the 3D mesh. Firstly, the faces of the 3D mesh are projected onto the images. We make
use of the pinhole camera model [60] to compute the projections of all vertices of the faces,
resulting in pixel coordinates of the image for each projected vertex. The projection of a
face onto an image is valid when two conditions are met: (i) all vertices of the face must
be projected inside the width and the height of the image; and (ii) the z component of
the 3D coordinates of the face vertices, transformed to the camera’s coordinate reference
system, must be greater than 0 to avoid the projection of vertices that are behind the camera.

After the computation of the valid projections onto all images, we compute the pair-
wise mappings. Pairwise mappings are pixel coordinates from a pair of images that
correspond to the same projected vertices. For every pair of images, we evaluate, for each
face, if the projection of that face is valid in both images. For each valid face in those condi-

72



Sensors 2023, 23, 607

tions, we create a pairwise mapping for each vertex of that face. One pairwise mapping is
represented by the pixel coordinates of the vertex projection onto the first image and onto
the second image. In Figure 2, the pairwise mappings are illustrated using the same color
to showcase corresponding mappings between a pair of images.

(a) (b)

Figure 2. Pairwise mappings between images (a,b). The projections of the vertices are colored to
identify the pairwise mappings between images. For example, in both images, the projections in
orange represent the entrance door of the room.

3.2. Filtering of Pairwise Mappings

It is noticeable that the pairwise mappings at this stage of the pipeline contain noisy
data (see Figure 2) caused by the problems mentioned in Section 2: occlusions, reflection
properties of certain objects, and capturing angles, among others. For example, in Figure 2a,
there are mappings represented in blue and green colors that represent the ground at
the center of the room. In Figure 2b, the same mappings represent the center table. This
example demonstrates inaccurate pairwise mappings between two different 3D objects.
These inaccurate associations introduce incorrect photometrical correspondences between
a pair of images, which would disrupt the color-correction procedure. Occluded faces
and registration errors are normally the cause of inaccurate pairwise mappings, especially
in indoor scenarios. A face is considered occluded from a camera point of view in the
following cases: (a) the occluding face intersects the line of sight between the camera
and the occluded face; and (b) the occluding face is closer to the camera. Regarding
registration errors, we used a high-precision laser scanner that guarantees a very low
average registration error. However, in situations where the angle between the camera
viewpoint (focal axis of the camera) and the normal vector of the face is excessively oblique,
or in other words, close to 90◦, the impact of the registration error on the accuracy of the
pairwise mappings is amplified, increasing the possibility of inaccurate pairwise mappings.
In this paper, we leverage previous work [59], which uses a filtering procedure composed
of a combination of 3 filters: z-buffering filtering, depth consistency filtering and camera
viewpoint filtering. Each pairwise mapping is only considered valid if it passes the three
filtering steps.

The z-buffering filtering is used to discard the occluded faces from an image point
of view. This filter evaluates all faces to assess if they are occluded or not by other faces,
considering that point of view. A face is not occluded by another face when considering
an image point of view, when one of two conditions are satisfied: (i) the projection of the
vertices of the evaluated face does not intersect the projection of the vertices of the other
face, i.e., the faces do not overlap each other; (ii) or, in case that there is an intersection
between the faces, the maximum Euclidean distance of the three vertices of the evaluated
face must be less than the minimum Euclidean distance of the three vertices of the other
face, i.e., the evaluated face is in front of the other face and, therefore, is not occluded.
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This filter is computed for each viewpoint, i.e., for each image. Figure 3 depicts the entire
filtering procedure applied in the same images shown in Figure 2 from the original pairwise
mappings to the filtered pairwise mappings, illustrating the impact of each filter to eliminate
the noisy data. Figure 3c,d show the pairwise mappings with only the z-buffering filter
applied. It is possible to observe that in Figure 3c, the mappings on the ground at the center
of the room were discarded because in Figure 3d, they are occluded by the center table.

The depth consistency filtering aims to discard the remaining occlusions due to dis-
crepancies between the mesh and the point cloud. These discrepancies can have multiple
sources, such as mesh irregularities, non-defined mesh, and registration issues, among oth-
ers. This filter estimates the distance from the camera pose to the center of the face, or in
other words, the depth of the face, with two different methods. The first method computes
the depth of the face based on the 3D mesh. This is done by computing the L2 norm of the
vertices coordinates with respect to the camera, and then selecting the minimum value.
The second method computes the depth of the face based on the point cloud. This is done
by using the partial point clouds from the setups where the images were taken to project
the depth information and then create depth images. However, pixels without information
occur due to the sparse points of the point cloud. An image inpainting process based on
the Navier–Stokes equations for fluid dynamics is used to fill the missing parts of each
depth image using information from the surrounding area [61]. The depth can be directly
extracted from the depth images using the coordinates obtained from the vertex projection.
Finally, the algorithm compares the difference between those depth values to find depth
inconsistencies and discard the inaccurate pairwise mappings. This is computed for all
faces from each camera viewpoint. Figure 3e,f show the pairwise mappings with both
the z-buffering filter and the depth consistency filter applied. By comparing them with
Figure 3c,d, this filter discarded the mappings on the legs of the tables with respect to the
wall under the table. The reason for this is that the legs of the tables are not defined on the
mesh due to their reduced thickness, and yet the filter was able to discard those incorrect
pairwise mappings. Additionally, the pairwise mappings on the table against the wall were
discarded since the tables are not well-defined on the mesh due to difficulties in correctly
acquiring both the top and bottom surfaces of the table.

The last filter is the camera viewpoint filtering that aims to remove pairwise mappings
in which the angle between the camera viewpoint (focal axis of the camera) and the normal
vector of the face is excessively oblique. When this occurs, the impact of the registration
error on the accuracy of those pairwise mappings is amplified. For this reason, these
pairwise mappings are more likely to be incorrect, and therefore should be discarded.
Figure 3g,h show the pairwise mappings with all the three filtering methods applied.
Regarding the camera viewpoint filtering, we can observe that the remaining pairwise
mappings on the center table were discarded due to its excessive oblique angle relative to
the camera viewpoint in Figure 3g. Additionally, the discarded mappings on the ground
have an excessive oblique angle relative to the camera viewpoint in Figure 3h. Figure 3h
clearly shows the extensive amount of noise in the dataset used. This reinforces the
importance of using 3D information not only to compute the correspondences between
images, but to discard the incorrect ones.

74



Sensors 2023, 23, 607

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Pairwise mappings filtering procedure: (a,b) pairwise mappings with no filter applied;
(c,d) pairwise mappings with z-buffering applied; (e,f) pairwise mappings with z-buffering filter and
depth consistency applied; and (g,h) pairwise mappings with the entire filtering procedure applied.
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3.3. Creation of Color-Correction Weighted Graph

For texture mapping applications, especially in indoor scenarios, there are many
pairs of images that do not overlap or have minimal overlap, as described in Section 2.
Those pairs share none or insufficient photometrical information, to support an accurate
color correction. Whenever possible, these pairs should be avoided, and not used in
the color-correction procedure. The number of pairwise mappings computed previously
can be used as an indicator of this shared photometrical information between each pair
of images, as detailed in Sections 3.1 and 3.2. Therefore, a threshold using the number
of pairwise mappings tnpm can be used to discard the unfavorable pairs from the color
correction procedure. By discarding these, the algorithm only carries out color correction
between pairs that share enough photometrical information, leading to a more accurate
color correction procedure. Furthermore, the higher the number of pairwise mappings,
the higher the amount of shared photometrical information between a pair of images.

The color-correction procedure in this paper is pairwise-based. Hence, the information
about all the pairs of images available to carry out the color-correction procedure, according
to the criterion described above, should be represented in a data structure that supports the
creation of color-correction paths between images. In this light, we propose the creation of
a color correction graph G, where the nodes represent the individual images, and the edges
represent all the pairs of images, which were not filtered, according to the threshold tnpm.
G is represented as follows:

G = {V, E, w} , (1)

where V = {I1, I2, ..., In} are the graph nodes representing the individual images, E ⊆
{{i, k} | i, k ∈ V and i 	= k and n(M〈i,k〉) ≥ tnpm} are the graph undirected edges repre-
senting the pairs of images available to the color-correction procedure and w : E → Q are
the edge weight functions. n(M〈i,k〉) is the cardinality of the set that contains the pairwise
mappings associated with the i-th and k-th images. It would be helpful that each pair of
images contains a color-correction quality indicator that represents how suitable that pair
is to contribute to a successful color-correction procedure. For example, a path-selection
algorithm can use this color correction quality indicator, to decide the sequence of images
to transverse, in order to produce an accurate color correction. The number of pairwise
mappings seems to be an appropriate indicator of an accurate color correction for each pair
of images. As such, we use it as the weights of the graph. The weights are normalized
according to the total number of pairwise mappings as follows:

wik = 1 − n(M〈i,k〉)
∑ n(M〈i,k〉)

, (2)

where wik is the edge weight associated with the i-th and k-th images, and ∑ n(M〈i,k〉) is
the sum of the cardinality of all sets of pairwise mappings.

Figure 4 shows an example of the color correction weighted graph for a subset con-
taining six images as the nodes of the graph. The arrows represent the edges of the graph
and the thickness of the edge lines represents their cost, which means that a better path will
transverse thinner arrows. For example, the edge that connects the pair of images (F, B)
has a low cost (thinnest arrow), and it is possible to observe that this pair contains a high
amount of pairwise mappings, because most of the objects are visible in both images, such
as the posters, the wall, and the table. On the other hand, between the pair of images (B, A)
there are only small common regions, resulting in a high cost (thickest arrow).
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Figure 4. Example of a color-correction weighted graph. The nodes are represented by the indi-
vidual images, the edges are represented by the arrows, and the thickness of the edges represents
their weight.

3.4. Computation of Color-Correction Paths

We propose to select one image from the set of images as the reference image. This
reference image is used as the color palette model to guide the color-correction procedure.
The selection is arbitrary and is left to the user. Section 3.7 will provide details on how
this selection is carried out and the advantages of this approach. With the color-correction
weighted graph created in the previous section, the information about all the pairs of
images available to carry out the color-correction procedure is structured in a graph.
In the graph, there are images that have a direct connection (edge in the graph) with the
selected reference image. In these cases, the algorithm can perform a direct color correction.
On the other hand, in most cases, there are images in the graph that do not have a direct
connection to the reference image. In these cases, it is not possible to perform a direct color
correction. To overcome this, we propose to compute color-correction paths from each
image in the set to the reference image. These paths are automatically computed from the
color-correction weighted graph, described in Section 3.3. We chose the Dijkstra’s shortest
path algorithm [62] to find the path with the minimum cost. For this reason, the computed
color-correction path for each image will have the highest sum of pairwise mappings, thus
increasing the accuracy of the pairwise color correction.

We use the color-correction paths to color correct all images with reference to this
reference image, resulting in images more similar in color to the reference image and also
with higher color consistency between each other. Section 3.7 will provide details on how
the color correction of each image of the dataset is performed through the computed color
correction paths. It is noteworthy that every image from the dataset should have at least
one edge in the graph, otherwise the path selection algorithm will not be able to compute.
Figure 5 shows the path computed by the algorithm from image E (in green) to the reference
image F (in red). Image E has no connection (edge) with the reference image F. However,
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the path selection algorithm selects an adequate path that goes through image pairs with
high overlap.

Figure 5. Example of the shortest path from image E to the reference image F, represented by the
unidirectional black arrows. The nodes are represented by the individual images, the edges are
represented by the arrows, and the thickness of the edges represents their cost. The bidirectional gray
arrows are the edges of the graph that were not selected for this path.

3.5. Computation of Joint Image Histograms

A joint image histogram (JIH) is a 2D histogram created from the color observations of
the pairwise mappings between a target image T, and a source image S. An entry in this
histogram is a particular combination of color intensities for a given pairwise mapping. In
this section, a JIH is computed for each channel of each pair of images in the computed
color correction paths, using the pairwise mappings. A JIH is represented by JIH(x, y),
where x and y represent all possible values of colors in T and S, being defined in the discrete
interval [0, 2n − 1], where n is the bit depth of the images.

Figure 6 shows an example of a JIH of the red channel from a given pair of images.
The red dots represent the observations according to the pairwise mappings, and the
observation count is represented by the color intensity of each point, which means that the
higher the color intensity, the higher the number of observations in that cell. To visualize
the amount of noise coming from the pairwise mappings, gray dots are drawn to represent
discarded pairwise mappings, but obviously are not used to estimate the CMFs. The JIHs
are used to estimate the CMFs, which will then be used to transform the colors of each
image from the dataset, thus producing the color-corrected images.
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Figure 6. Example of a JIH of the red channel from a pair of images. The red dots represent the
observations of the pairwise mappings in the red channel, and the color intensity represents the
histogram count. The gray dots represent the discarded pairwise mappings.

3.6. Estimation of Color Mapping Functions

A color mapping function (CMF) is a function that maps the colors of a source image S

to a target image T. Using this function, the colors of the target image T are transformed,
resulting in a color corrected image T̂, which is more similar in color to the source image S.
Each JIH created before is used as the input data to estimate a CMF. Since there are three
JIHs for every pair of images combined from the color-correction paths, one for each
channel of the RGB color space, there are also three CMFs.

The set of three CMFs, one for each color channel, is used to color correct all pixels of
the input image. The RGB channels of the input image are color corrected independently
by each one of the CMFs. In each step of the pairwise color correction, the CMF receives
as input the color value x of each pixel of the target image T and then returns the color-
corrected value x̂. The original color value x of the pixel is transformed to the color-corrected
value x̂. After performing the color correction for all pixels of the target image and for each
channel independently, the channels are merged to generate the corrected image T̂. In this
context, the CMF can be formulated as

x̂ = f̂ (x), ∀ x ∈ [0, 2n − 1] , (3)

where f̂ is the estimated CMF for each JIH given as input data, and x̂ is the resultant color
of the color-corrected image T̂ for a given color x of the target image T.

Since the CMF is a function, it cannot map a single element of its domain to multiple
elements of its codomain. For the entire range of values, there is one and only one resulting
corrected value x̂ for each color of the target image x. However, for each of the values in
x for a typical JIH, there are several observations of y. For this reason, it must be assumed
that there is a considerable amount of noisy observations in a JIH.

This work proposes to estimate the CMF using a regression analysis to fit the color
observations from the JIH. We created a composed model of the support vector regressor
(SVR) [63] called composed support vector regressor (CSVR), which combines the linear
kernel and the radius basis function kernel. This composed model was created because the
radius basis function kernel is not able to extrapolate in the columns of the JIH where there
are only a few or no observations, thus becoming very unpredictable in those columns and,
most of the time, ruining the color-correction procedure. We estimate one SVR with the
linear kernel and another SVR with the radius basis function kernel. Then, we discover the
first intersection x0 and the last intersection xn between the two functions. Subsequently, we
apply the linear function for the intervals x < x0 and x > xn, and the radius basis function
for the interval x0 ≤ x ≤ xn. Figure 7 presents an example of the CMF estimation using
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the CSVR regression model for the given JIHs of a pair of images. The red, green, and blue
curves represent the CMFs estimated for the red, green, and blue channels, respectively.
For each channel, the CMF appears to fit the data of the JIH quite well, following the greater
peaks of observations. The amount of noisy mappings (gray dots) eliminated by the filtering
procedure is significant (see Figures 6 and 7). Without the filtering procedure, the JIHs
would be more dispersed, which would cause a negative impact on the effectiveness of the
regression analysis.

(a) (b) (c)

Figure 7. Example of the estimation of three CSVR Functions. (a) CMF estimation for the red channel
represented by the red curve, (b) CMF estimation for the green channel represented by the green
curve and (c) CMF estimation for the blue channel represented by the blue curve. The gray dots
represent the discarded pairwise mappings.

We compute only the JIHs and the CMFs that will be used in the color-correction
procedure, according to the computed color correction paths. As the number of images in a
dataset increases, the combinations of pairs of images increase exponentially. For this reason,
the computation burden is limited by not computing the JIHs and the CMFs for every pair
of images in the dataset, as many of them are not used in the color-correction procedure.

3.7. Sequential Pairwise Color Correction

The objective of the color correction in an image pair, also called pairwise color
correction, is to transform the colors of the target image, effectively making them more
similar to the colors of the source image. In Section 3.4, we computed the color-correction
paths between each image in the set and the reference image. We propose a sequential
pairwise color correction. We use the CMFs estimated between the pairs of images formed
sequentially along each color-correction path. Each path contains a list of images that
must be crossed in order. The first image in the list is the image to be color corrected
(target image), and the last image in the list is the reference image. We travel across the list,
carrying out a color-correction step in the target image, using the CMFs of each consecutive
pair of images. For each color-correction path, this approach performs n steps of pairwise
color correction in a path with a depth of n. For example, let [E, C, B, F] be the path shown
in Figure 5 from the target image E to reference image F, passing through images C and
B. For this path, (E, C), (C, B) and (B, F) are the pairs of images that were sequentially
formed along it. In this context, let f̂C→E be the CMF from source image C to target image
E, let f̂B→C be the CMF from source image B to target image C and finally, let f̂F→B be the
CMF from source image F to target image B. The source and target image symbolization of
each CMF is only to demonstrate the color-correction order between each pair of images.
Since the path of this example has a depth of 3, the color-correction procedure will perform
3 pairwise steps using the CMFs presented above. In the first step, we color correct image E

using the CMF f̂C→E(E), generating the first corrected image E’, which is similar in color to
image C. In the second step, we color correct image E’ using the CMF f̂B→C(E’), resulting
in the second-corrected image E”. Since the first corrected image E’ already has the color
similar to image C, in this step, the second corrected image E” became similar in color to
image B. For the third and final step for this example, we apply the CMF f̂F→B(E”) to color
correct the image E”, producing the third and final corrected image E”’. After the three
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color-correction steps performed in image E, finally the final corrected image E”’ is similar
in color to the reference image F. To summarize the sequential pairwise color-correction
process in this example, the sequential use of the three CMFs to produce the final corrected
image E”’ can be expressed as

E”’ = f̂F→B

(
f̂B→C

(
f̂C→E(E)

))
. (4)

Figure 8 depicts the three steps performed in this example by the sequential pairwise
color correction to produce the final corrected image E”’. On the first row are the four
images that composed the color correction path from target image E (in green) to reference
image F (in red), from left to right. On the second row are the color-corrected images E’, E”

and E”’, after each step of the sequential pairwise color correction.

Figure 8. Example of the sequential pairwise color correction for a color correction path from a target
image (in green) to a reference image (in red). On the first row are the four images that compose
the color-correction path. On the second row are the color-corrected images, after each step of the
sequential pairwise color correction. Each box (solid, dashed and dotted) represents a step of the
sequential pairwise color correction, showing the CMF used and its input image. To explain our
point, we drastically changed the brightness of the images on purpose, because some changes in the
color of the images along the steps of the color correction procedure are not always easy to notice.

In short, for each one of the computed paths, we perform the sequential pairwise
color correction described above, producing the final corrected images, which are more
similar in color to the reference image. If the target image has no color-correction path
to the reference image, no color correction is performed and the image remains the same.
Note that if the graph is fully connected and all the computed color-correction paths have a
depth of 1, the problem is reduced to a simple pairwise color correction, meaning that each
image is color corrected directly with the selected reference image. This special case occurs
when all the images share a sufficient amount of photometrical information with each other,
meaning that all pairs of images can be reliably used in the color-correction procedure.

The assumption behind the selection of the reference image is to have a model image
that is selected using any arbitrary criterion to transform the colors of all images to be more
similar to the reference one. With this arbitrary selection, the user can have control over the
overall appearance of the color corrected mesh, and for that reason, we understand this
approach as an advantage rather than a shortcoming of the proposed approach.

3.8. Image Selection for Texture Mapping

The main goal of this paper is not only to produce color-corrected images, but also to
improve the visual quality of a textured mesh. To produce the textured meshes using the
color-corrected images, we implemented two image selection methods: random selection
and largest projection area selection. Both methods select, based on a specific criterion, one
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image among all available to colorize each face. This process is based on cropping, from the
selected image, the projection of the face. Regarding the criterion used for each method,
the random selection picks a random image among all available to colorize that face. As for
the largest projection area selection, its criterion consists of selecting the image where the
area of the face projection is the largest from the available ones. Furthermore, the usage
of the information associated with the filtering of pairwise mappings (Section 3.2) is also
important to produce high-quality textured meshes, because it assists the image-selection
algorithm to avoid coloring a face with an image in which that face is occluded or with
an excessively oblique viewpoint. In this context, this information is incorporated in the
image-selection algorithms.

Figure 9 shows the textured meshes produced by both image-selection methods,
using the original images and the color-corrected images. Figure 9a,d illustrate the image-
selection methods by coloring each face with a representative color for each selected image,
meaning that faces with the same color have the same selected image. The random selection
method, shown in Figure 9a, uses several images to colorize the faces that represent the
same surface, resulting in several texture seams artifacts. This method clearly is not the
smartest approach in order to produce high-quality textured meshes; however, it facilitates
the analysis of the impact of the color-corrected images in the textured mesh because it
amplifies the perception of the color dissimilarities between the images. Figure 9b,c
present the textured mesh produced by the random selection algorithm, using the original
images and the color-corrected images, respectively. Comparing both images, the proposed
approach increased considerably the visual quality of the textured mesh, eliminating most
of the texture seams. As for the largest projection area selection, shown in Figure 9d, this
method uses a clever criterion, producing higher-quality textured meshes with fewer image
transitions throughout a surface. Figure 9e,f show the textured mesh produced by the
largest projection area algorithm in the same viewpoint as for the previous algorithm,
using the original images and the color-corrected images, respectively. The color-correction
images combined with a better image selection algorithm clearly produced a high-quality
textured mesh. Note that since the 3D mesh is a closed room, we used the back face culling
method [64] to hide the faces of the mesh which are facing away from the point of view. It
is possible to observe that our proposed color-correction approach produces higher-quality
textured meshes, reducing significantly the number of unappealing texture seam artifacts.

(a) (b) (c)

(d) (e) (f)

Figure 9. Textured meshes produced by each image selection method. (a,d) The result of the random
selection and the largest projection area selection methods, respectively. (b,c) The resultant textured
meshes produced by the random selection criterion using the original images and the color corrected
images, respectively. (e,f) The resultant textured meshes produced by the largest projection area
criterion using the original images and the color corrected images, respectively.
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4. Results

In this section, we analyze the influence of the proposed approach on the visual quality
of the textured 3D meshes. We also compare the proposed approach with state-of-the-art
approaches in quantitative and qualitative evaluations. Section 4.1 presents an image-based
qualitative evaluation. Section 4.2 presents an image-based quantitative evaluation. Finally,
Section 4.3 presents a mesh-based qualitative evaluation.

There are no metrics that evaluate the overall visual quality of textured meshes.
As such, we base our quantitative evaluation on the assessment of how similar in color the
images that are used to produce the textured meshes are. To do this, we use two image-
similarity metrics to evaluate the color similarity: peak signal-to-noise ratio (PSNR) and
CIEDE2000. We compute the color similarity, not between the images, but instead between
pairs of associated pixels of both images. This is done using the pairwise mappings
discussed in Section 3.1. To carry out a robust evaluation, the metrics use the filtered
pairwise mappings, to avoid incorrect associations (see Section 3.2). The PSNR metric [28]
measures color similarity, meaning that the higher the score values, the more similar the
images. The PSNR metric between image A and image B can be formulated as

PSNR(A, B) = 20 ∗ log10(L/RMS) , (5)

where L is the largest possible value in the dynamic range of an image, and RMS is the
root mean square difference between the two images. The CIEDE2000 metric [65] was
adopted as the most recent color difference metric from the International Commission on
Illumination (CIE). This metric measures color dissimilarity, meaning that the lower the
score values, the more similar the images. The CIEDE2000 metric between image A and
image B can be formulated as

CIEDE2000(A, B) =

√(
ΔL′
kLSL

)2
+

(
ΔC′

kCSC

)2
+

(
ΔH′

kHSH

)2
+ RT

(
ΔC′

kCSC

)(
ΔH′

kHSH

)
, (6)

where ΔL′, ΔC′ and ΔH′ are the lightness, chroma and hue differences, respectively. SL, SC
and SH are compensations for the lightness, chroma and hue channels, respectively. kL, kC
and kH are constants for the lightness, chroma and hue channels, respectively. Finally, RT is
a hue rotation term. Since that both PSNR and CIEDE2000 are pairwise image metrics, we
carry out the evaluation over all image pairs in the dataset. The displayed score values are
the simple mean and the standard deviation for all image pairs. Additionally, we present a
weighted mean based on the number of pairwise mappings of each pair of images. In this
weighted mean, image pairs with higher number of mappings are more important to the
final score value.

The qualitative evaluation of each color-correction algorithm is performed on both the
images and the textured meshes. For the image-based assessment, we compare the images
with respect to each other. For the mesh-based evaluation, the visual quality of the textured
meshes produced by the approaches is analyzed, from different viewpoints, using both
image-selection criteria discussed in Section 3.8.

Table 1 lists all the evaluated algorithms in this paper. Algorithm #1 is the baseline
approach: the original images without any color correction. Algorithms #2 through #4 are
pairwise color correction approaches, designed to color correct single pairs of images.
As discussed in Section 2, pairwise approaches are not able to tackle the problem of the
color correction of image sets. However, we presented a graph-based approach that is
able to convert a multi-image color correction problem into a set of simple pairwise color
correction problems. In this way, we can use classic pairwise color-correction approaches
for comparison purposes. Algorithm #2 uses simple Gaussians to model the global color
distribution from a source image onto a target image, in the lαβ color space [32]. Algorithm
#3 estimates the CMFs using a root-polynomial regression [41]. Algorithm #4 uses the Van-
dermonde matrix to compute the coefficients of a polynomial that is applied as a CMF [49].
Algorithms #5 and #6 are color-correction approaches for image sets (three or more images)

83



Sensors 2023, 23, 607

and are based on global optimization methods. These are both often used as baseline meth-
ods for evaluating color correction approaches for image sets [30,31,54,58,66,67]. Algorithm
#5 employs an optimization method to determine a global gain compensation to minimize
the color difference in the overlapped regions of the images [39]. Algorithm #6 estimates
three global transformations per image, one for each color channel, by minimizing the
color difference between overlapped regions through histogram matching [51]. Finally,
Algorithm #7 is the proposed approach—sequential pairwise color correction approach. As
described in Section 3, the threshold using the number of pairwise mappings tnpm is the
only tunable parameter for the experiments conducted in this section. We used tnpm = 400,
a value obtained by experimenting several possibilities and evaluating the result.

Table 1. State-of-the-art algorithms compared with the proposed approach.

Algorithm # Reference Description

#1 - Baseline (original images)
#2 Reinhard et al. [32] Global Color Transfer—Pairwise Approach
#3 Finlayson et al. [41] Root-Polynomial Regression—Pairwise Approach
#4 De Marchi et al. [49] Vandermonde Matrices—Pairwise Approach
#5 Brown and Lowe [39] Gain Compensation—Optimization Approach
#6 Moulon et al. [51] Histogram Matching—Optimization Approach
#7 This paper Sequential Pairwise Color Correction

4.1. Image-Based Qualitative Evaluation

A qualitative evaluation of the approaches (Table 1) is presented to analyze the color
similarity between the images, once the color-correction procedure is completed. After the
color-correction procedure performed by each approach, it is expected that the color
similarity between all images of the set has increased. Figure 10 shows the corrected images
produced by each approach. Image A was selected as the reference image. We selected three
other images (B, C, and D) of the 23 images available, for visualization purposes. Algorithm
#1 is the baseline approach, and thus the target images B, C, and D are the original ones
without any color correction. Algorithm #2 increased the contrast of the images, but did not
increase the color similarity with respect to the reference image. Algorithms #3 and #4 did
not produce satisfactory results since the images have degenerate colors. We believe that
this is due to occlusions in the scene, which result in incorrect image correspondences. Note
that these two approaches have internal image correspondence procedures, and therefore,
they are not taking advantage of the filtering procedure detailed in Section 3.2. In algorithms
#5 and #6, which are multi-image global optimization approaches, changes are hardly
noticeable in the color corrected images, compared with the original images. The probable
cause is the different sizes of the overlapped regions and the occlusions that usually occur in
indoor scenarios, which produce incorrect correspondences and do not allow the optimizer
to significantly reduce the color differences between all images. Another probable cause
is because these algorithms use linear models, which in most of the cases are not flexible
enough to deal with high color discrepancies. The proposed approach #7 produced the
images with higher color similarity with respect to the reference image. Note that some
images have no overlapping region with the reference image (image D), or only a small
overlapping region (images B and C).
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Reference Image (A)

Corrected Images
B C D

#1

#2

#3

#4

#5

#6

#7

Figure 10. Image-based qualitative evaluation: corrected images B–D (columns) produced by each
algorithm (rows), using image A as reference image.
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The complexity of this dataset shows that the sequential pairwise color correction,
alongside a reliable pairwise mappings computation and a robust CMF estimation, played
a major role to increase the color similarity between the images and the reference image.
Note that this complexity is due to several images from the same scene with no overlapping
regions, and several occlusions in the scene.

4.2. Image-Based Quantitative Evaluation

Table 2 presents the results of the image-based quantitative evaluation, for each
approach. Algorithm #1 is the baseline approach, i.e., shows the level of similarity between
the original images. Pairwise approaches (algorithms #2 through #4) worsened the color
similarity between the images in both metrics. Those algorithms are designed to color
correct only single pairs of images and, therefore, did not produce accurate results across
the image set. Multi-image optimization-based algorithms #5 and #6 achieved good results
and increased the color similarity between the images. However, the linear models used
in these two algorithms are not flexible, and this is a probable reason why they did not
achieve better results. The proposed approach #7 outperformed all other approaches.
In the PSNR metric, we observe an improvement in the similarity between the images
of around 16% (simple mean) and 13% (weighted mean) relative to the original images.
In the CIEDE2000 metric, the color similarity is improved by around 29% in the simple
mean and by around 26% in the weighted mean. These results prove that the proposed
pairwise-based method is able to color correct several images from a same scene, and to
achieve better results than state-of-the-art multi-image global optimization approaches.

Table 2. Image-based quantitative evaluation: simple mean, weighted mean, and standard deviations
of the PSNR and CIEDE2000 scores of all images for each algorithm (rows). The best results are
highlighted in bold.

PSNR CIEDE2000
Alg. μ μw σ μ μw σ

#1 24.72 24.28 3.22 6.02 5.83 1.48
#2 21.28 21.51 4.69 9.09 8.16 4.64
#3 17.33 16.74 4.46 16.28 17.30 7.18
#4 17.14 16.94 3.71 17.04 17.22 6.28
#5 26.22 25.45 3.10 5.23 5.14 1.09
#6 26.91 26.40 3.21 5.27 5.05 1.18
#7 28.69 27.45 3.51 4.29 4.33 0.83

4.3. Mesh-Based Qualitative Evaluation

In this section, we evaluate and compare the visual quality of the textured meshes
produced by each algorithm (Table 1). As described in Section 3.8, we use two different
image selection criteria to carry out the texture mapping process: random image selection
and largest projection area image selection. Figure 11 points out with the red arrows the
parts of the 3D mesh where the viewpoints were taken. The first viewpoint (Figure 11a)
observes a corner of the room, with a high range of colors due to the posters. The second
viewpoint (Figure 11b) sees a part of the room with a variety of objects (and color palettes),
such as a cabinet, a whiteboard, and a few posters. Finally, the last viewpoint (Figure 11c)
shows a wall that has a high luminosity from the lights of the room. The white regions of
each viewpoint are holes (no triangles) in the geometry of the 3D meshes. These viewpoints
show the highest difficulties of this dataset in terms of color differences. This dataset
contains 24 images, and thus, the amount of transitions between images is very high,
especially using the random image selection criterion. For that reason, the textured meshes
using the original images contain a high number of texture seams. Figure 9a,d show where
the transitions occur in the mesh, using representative colors. Figures 12 and 13 show
three different viewpoints using the random and largest projection area image selection
criteria, respectively.
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(a) (b) (c)

Figure 11. The three viewpoints analyzed in the mesh-based qualitative evaluation. The viewpoints
are exemplified in the textured mesh produced by the baseline algorithm (#1) using the random
image selection criterion. (a–c) Red arrows point out the parts of the 3D mesh where the viewpoints
1, 2, and 3 were taken, respectively.

Analyzing the original images—algorithm #1 (see Figure 12, first row, and Figure 13,
first row), we can see a high number of texture seams due to the color inconsistency between
the images. Even with the largest projection area image selection criterion, the texture
presents many visual artifacts, especially in viewpoint 3. Algorithm #2 increased the
color difference between the images, resulting in even more noticeable texture seams,
especially in views 1 and 3. Furthermore, as was expected, the textured meshes produced
by algorithms #3 and #4 are very degenerated due to the unsuccessful color correction of the
images. Algorithms #5 and #6 were also ineffective and reduced the texture seams in some
specific regions, while aggravating others. For example, in Figure 12, at the top-left part of
the front wall in viewpoint 3, algorithm #6 reduced the texture seams. However, on the
right side, the same algorithm aggravated even more the texture seams. The proposed
approach #7 outperformed all other algorithms and produced the highest-quality textured
meshes with almost no texture seams, even using the random image selection criterion.
These results are consistent with the image-based evaluation (see Sections 4.1 and 4.2),
that showed the proposed approach obtaining images with more similar color. These
results also prove the robustness of the proposed approach, and show it is able to produce
high-quality textured meshes, from datasets with many challenges, such as high amount of
occlusions, high color range complexity, overlapped regions with varied sizes, and lack of
overlapped regions between several pairs of images, among others.
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Random Image Selection
View 1 View 2 View 3

#1

#2

#3

#4

#5

#6

#7

Figure 12. Mesh-based qualitative evaluation: textured meshes produced by each approach (rows)
from three different viewpoints, and using the random image selection technique.
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Largest Projection Area Image Selection
View 1 View 2 View 3

#1

#2

#3

#4

#5

#6

#7

Figure 13. Mesh-based qualitative evaluation: textured meshes produced by each approach (rows)
from three different viewpoints, and using the largest projection area image selection technique.

5. Conclusions

The key contribution of this paper is a novel sequential pairwise color-correction
approach capable of color correcting multiple images from the same scene. The sequential
pairwise color-correction approach consists of selecting one image as the reference color
palette model and computing a color correction path, from each image to the reference
image, through a weighted graph. The color-correction weighted graph is based on the
number of pairwise mappings between image pairs. Each image is color corrected by
sequentially applying the CMFs of each consecutive pair of images along a color-correction
path. CMFs are computed using a regression analysis called composed support vector
regressor (CSVR). This procedure increases not only the color similarities of all images with
respect to the reference image, but also the color similarities across all images in the set.
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Results demonstrate that the proposed approach outperforms other methods in an
indoor dataset using both qualitative and quantitative evaluations. More importantly,
results show that the color-corrected images improved the visual quality of the textured
meshes. The approach is able to correct the color differences between all images of the
dataset; this is even more noticeable when using a random image selection criterion for
texture mapping, a method that creates a high number of transitions between adjacent
triangles. Even in this condition, the color correction results in high-quality textured meshes
with little and hardly noticeable texture.

For future work, we plan to explore different metrics for the color-correction weighted
graph, such as the standard deviation of a 2D Gaussian that fits the JIH data. We also intend
to explore different path-selection algorithms for the color-correction paths. Furthermore,
we plan to acquire larger and more complex datasets, for example, several rooms of a
building, to further investigate the impact of the sequential pairwise color-correction
approach, and better assess its robustness.
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Abbreviations

The following abbreviations are used in this manuscript:

BTF Brightness Transfer Function
CMF Color Mapping Function
CSVR Composed Support Vector Regressor
EM Expectation Maximization
GMMs Gaussian Mixture Models
CIE International Commission on Illumination
JIH Joint Image Histogram
LiDAR Light Detection and Ranging
PSNR Peak Signal-to-Noise Ratio
S-CIELAB Spatial CIELAB
SfM Structure from Motion
SIFT Scale-Invariant Feature Transform
SVR Support Vector Regressor
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Abstract: The key to autonomous navigation in unmanned systems is the ability to recognize static
and moving objects in the environment and to support the task of predicting the future state of
the environment, avoiding collisions, and planning. However, because the existing 3D LiDAR
point-cloud moving object segmentation (MOS) convolutional neural network (CNN) models are
very complex and have large computation burden, it is difficult to perform real-time processing on
embedded platforms. In this paper, we propose a lightweight MOS network structure based on
LiDAR point-cloud sequence range images with only 2.3 M parameters, which is 66% less than the
state-of-the-art network. When running on RTX 3090 GPU, the processing time is 35.82 ms per frame
and it achieves an intersection-over-union(IoU) score of 51.3% on the SemanticKITTI dataset. In
addition, the proposed CNN successfully runs the FPGA platform using an NVDLA-like hardware
architecture, and the system achieves efficient and accurate moving-object segmentation of LiDAR
point clouds at a speed of 32 fps, meeting the real-time requirements of autonomous vehicles.

Keywords: moving object segmentation; LiDAR; CNN; FPGA

1. Introduction

Presently, the key to autonomous navigation in autonomous driving systems is the
ability to recognize static and moving objects in the environment, and to support predicting
the future state of the environment, avoiding collisions, and planning tasks. Moving object
segmentation (MOS) algorithms improve environment perception [1], localization [2],
and future state prediction [3] by distinguishing between moving and static objects in 3D
LiDAR point cloud data. However, the MOS task is computationally intensive and the
network model is complex [4,5], so it is very important to meet the real-time processing
requirements of autonomous driving applications.

Most of the existing LiDAR-based point-cloud semantic segmentation networks pre-
dict the semantic labels of point clouds, such as vehicles, buildings or roads from a single
frame. However, comparing to images, LiDAR provides better object location information
via consecutive frames, so that we can also use LiDAR to distinguish moving objects.
Recently proposed point-based [6] or voxel-based [1] segmentation networks, although su-
perior in performance, are structurally complicated and computationally expensive. In the
recent work [4], a segmentation network based on range images was adopted, the 3D LiDAR
point cloud was projected onto a 2D plane, the range images of consecutive frames were
used as the intermediate representation, and a 2D convolutional neural network (CNN)
was used. This network performs the moving segmentation task. Furthermore, almost all
state-of-the-art point-cloud moving object segmentation networks target GPUs that may
not suitable for edge computing. From a computation point of view, edge deep learning
accelerators (such as NVIDIA Deep Learning Accelerator (NVDLA) [7] and Xilinx DPU [8])
do not accelerate all common operations. Therefore, designing neural networks compatible
with edge deep learning accelerators is critical for real-time embedded applications.

Sensors 2023, 23, 547. https://doi.org/10.3390/s23010547 https://www.mdpi.com/journal/sensors
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In this paper, we propose a lightweight multi-branch network structure to solve the
problem of 3D LiDAR point-cloud moving object segmentation, which can run in real time
on GPU. Figure 1 shows an example scene of our segmentation, red boxes are moving cars,
the yellow box is a parked car, and moving objects are represented by red masks, which
also verifies the feasibility of our method. Furthermore, the MOS computing system is
built for autonomous vehicles, which can perform point-cloud pre-processing and neural
network segmentation. Since only post-processing steps are left to the automotive electronic
Control Unit ECU, this solution significantly alleviates the computation burden of ECU,
thereby reducing the decision making and vehicle reaction latency. Our moving object
segmentation network achieved 32 frames per second (fps) on FPGA. The contributions of
this paper are summarized below:

(1) To our knowledge, this is one of the first end-to-end FPGA implementations for a
real time LiDAR point-cloud moving-object segmentation deep learning platform,
a LiDAR is directly connected to the processing system (PS) side. After pre-processing,
the point cloud is stored in the DDR memory, which is accessible by the hardware
accelerator on the programmable logic (PL) side.

(2) A light-weight and real-time moving-object segmentation network is proposed, tar-
geting to NVDLA. Hardware-friendly layers are used (i.e., by replacement of decon-
volution with bi-linear interpolation) to greatly reduce the complexity of computation.
Its IoU score on the SemanticKITTI test set is 51.3%. The inference time on NVIDIA
RTX 3090TI is about 35.82 ms.

(3) An efficient moving-object segmentation network architecture is implemented on the
ZCU104 MPSoC FPGA platform, which enables real-time processing at 32 frames per
second (fps).

(a) (b)

Figure 1. Moving object segmentation using our approach. (a) Raw Point Cloud ; (b) Segmented
Point Cloud.

The rest of this paper is organized as follows: Section 2 summarizes the existing
research results of moving-object segmentation in LiDAR point clouds and the FPGA
implementation of the segmentation network. In Section 3, the proposed moving-object
segmentation network model of LiDAR point cloud and its training details are described.
The FPGA implementation and its results are discussed in Sections 4 and 5, respectively.
Finally, Section 6 summarizes the whole paper.

2. Related Work

2.1. LiDAR Point-Cloud Moving Object Segmentation

Existing LiDAR point cloud moving object segmentation networks can be categorized
into two groups: computer-vision-based [9–13] and LiDAR-sensor-based [14–16]. However,
the processing of LiDAR data remains challenging due to the uneven distribution and
sparsity of LiDAR point clouds. Here, we mainly study the MOS problem of 3D LiDAR
point cloud data.

In recent years, great progress has been made in semantic segmentation based on
LiDAR sensor point cloud data [17–24], such as the point-cloud compression methods
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in [23,24] and so on. Semantic segmentation is a key step in the segmentation of moving
objects in LiDAR point clouds. However, most of the existing semantic segmentation
convolutional neural networks can only predict the semantic labels of point clouds, such as
vehicles, buildings, and people, but cannot distinguish between actual moving objects and
static objects, such as moving cars and parked ones.

The state-of-the-art scene flow method, FlowNet3D [25], is designed based on Point-
Net [6] and PointNet++ [26], which directly processes the original irregular 3D points
without any pre-processing, and estimates each LiDAR point for two consecutive frames.
The translational flow vectors include moving vehicles and pedestrians. Although these
methods perform well on small point clouds, processing power becomes inefficient on larger
point cloud datasets, requiring longer runtime. In addition, there are various 3D point-
cloud-based semantic segmentation methods, such as SpSequencenet [27], KPConv [28],
and SPVConv [29], which are also able to achieve state-of-the-art performance in semantic
segmentation tasks. Among them, SpSequencenet [27] uses changes in sequence point
clouds to predict moving objects. However, one problem with all networks based on
operating directly on the point cloud is the dramatic increase in processing power and
memory requirements, causing the point cloud to become larger. Therefore, training is
difficult and cannot meet the real-time requirements of the automatic driving system.

Chen et al. [4] developed LMNet, which utilizes the residual between the current
frame and the previous frame to be used as an additional input to the semantic segmen-
tation network to achieve class-independent moving object segmentation, as well as in
RangeNet++ [17] and SalsaNext [18] for performance evaluation. These networks are
capable of real-time moving object segmentation running faster than the frame rate of
the LiDAR sensor used. Mohapatra et al. [30] introduced a computationally efficient
moving object segmentation framework based on LiDAR bird’s eye view (BEV) space.
The work in [31] utilizes a dual-branch structure to fuse the spatio-temporal information
of LiDAR scans to improve the performance of MOS. In contrast, Kim et al. [32] proposed
a network architecture that fuses motion features and semantic features, achieving im-
provements in computational speed and performance metrics. In the recent work of [33],
the autoregressive system identification (AR-SI) theory was used to significantly improve
the segmentation effect of the traditional encoder–decoder structure, and the model was
deployed in embedded devices for actual measurement.

2.2. FPGA Implementations of Segmentation Networks

Advanced driver-assistance systems (ADAS) are rapidly being integrated into almost
all new vehicles. The LiDAR point cloud segmentation algorithm must meet the real-time
requirements, which may not be well met by standard CPUs or GPUs. FPGA has the ad-
vantages of high energy efficiency ratio and flexible reconfiguration, which can realize the
high energy efficiency deployment of semantic segmentation networks in ADAS. Current
researchers [5,34–39] mainly study and analyze the lightweight semantic segmentation
network algorithm and the accelerated computation combined with the resource character-
istics of customized hardware platform. Xilinx will support Continental’s new advanced
LiDAR sensor ARS 540 through the Zynq UltraScale+ MPSoC platform, partnering to create
the automotive industry’s first mass-produced 4D imaging sensor, paving the way for
L5-level autonomous driving systems. In Ref. [16], a LiDAR sensor is directly connected
to FPGA through an Ethernet interface, realizing a deep learning platform of end-to-end
3D point cloud semantic segmentation based on FPGA, which can process point-cloud
segmentation in real time.

3. Proposed Network

The design method of the moving object segmentation network is mainly inspired
by [4]. The residual image is used as an additional input to the designed semantic segmen-
tation network to achieve moving object segmentation. In the following, we will describe
our method in detail.
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3.1. Spherical Projection of LiDAR Point Cloud

Following previous work [16,17], we use a 2D neural network convolution to extract
features from the range view (RV) of LiDAR. Specifically, we project the LiDAR point
(x, y, z) onto a sphere and finally convert it to image coordinates (u, v), defined as:(

u
v

)
=

( 1
2
[
1 − arctan(y, x)π−1]w[

1 − (
arcsin

(
zr−1)+ fup

)
f−1]h

)
(1)

where (u, v) are the image coordinates, (h, w) are the desired range image according to
the height and width, r represents the range of each point as r =

√
x2 + y2 + z2, and

f = | fdown |+
∣∣ fup

∣∣ for the sensor’s vertical field of view.
We use Equation (1) to extract the range index r, 3D point coordinates (x, y, z) and inten-

sity value i for each point projected to (u, v), and take them as features to be superimposed
along the channel dimension. Therefore, we can directly input these features into the network,
and then transform point-cloud moving segmentation into image moving segmentation.

3.2. Residual Images

As in ref. [4], the residual image and range view based on LiDAR point cloud are used
as the input of the segmentation network, and the temporal information in the residual
image is used to distinguish the static object and the pixels on the moving object, so the
actual moving object and the static object can be distinguished.

Assuming that there are N time series of LiDAR scans in the SLAM history,
Sj =

{
pi ∈ R4} and M points are represented as homogeneous coordinates, i.e., pi =

(x, y, z, 1). T N−1
N , . . . , T0

1 is denoted as the transformation matrix between N + 1 scan poses,
i.e., T l

k ∈ R4×4. Equation (2) represents the coordinate system in which the kth scan
transformed into the lth scan

Sk→l =

{
l+1

∏
j=k

Tj−1
j pi | pi ∈ Sk

}
(2)

In Ref. [4], in order to generate the residual image and fuse it into the current range
image, transformation and re-projection are required. First, the transformation estimate
defined in the ego-motion is compensated according to Equation (2) by transforming
the previous scan to the current given local coordinate system, and next, the Sk→l of the
past scans are re-projected to the current range image view using Equation (1). In order to
calculate the residual dl

k,i for each pixel i, we use the normalized absolute difference between
the range of the current frame and the transformed frame to calculate, as defined by

dl
k,i =

∣∣∣ri − rk→l
i

∣∣∣
ri

(3)

where ri is the range value from pi to the current frame at the image coordinates (ui, vi),
and rk→l

i is the range value from the transformed scan to the pixel in the same image. In the
scene of moving objects, the displacement of the moving car is relatively large compared
to the static background, and the residual image is obvious, while the residual image of
the slowly moving object is blurred and the residual pattern is not obvious. Therefore,
direct use of residual images for moving object segmentation cannot achieve good perfor-
mance. Finally, we concatenate the residual image and the range view as the input of the
segmentation network, and each pixel fuses the spatial and temporal information.

3.3. Network Architecture

In this paper, our proposed network is mainly divided into two branches: context
path and spatial path, which respectively extract feature information and then fuse these
feature information. The architecture of our proposed CNN for point-cloud moving object
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segmentation is shown in Figure 2. The backbone module utilized in the context path
branch is ResNet-18 [40] for eight times fast down-sampling. Subsequently, the extracted
features are fed into the Atrous Spatial Pyramid Pooling (ASPP) [41] module in order to
connect features from different perceptual domains. ASPP builds convolution kernels with
different receptive fields through different dilated rates to increase the receptive fields
of the network and enhance the ability of the network to obtain multi-scale context, so
as to obtain good performance. However, from the perspective of hardware (GPU or
FPGA), dilated convolution has low efficiency and slow inference speed, and the larger
the dilated rate, the longer the convolution processing time. Therefore, our network keeps
the dilated rate as 2, and this method can simulate the function of ASPP without reducing
the computational efficiency of GPU and NVDLA. Next, a global context module (GCM) is
introduced to extract contextual information and guide feature learning of the current path.
GCM consists of a global average pooling layer and a 1 × 1 convolution layer that extracts
global context features.

Figure 2. Architecture of the proposed CNN for point-cloud moving object segmentation.

The spatial path mainly retains rich spatial information to generate high-resolution
feature maps, which only contains four convolutional layers. The first three convolutional
layers are stride = 2, and 1/8 feature maps are extracted. The feature fusion module
(FFM) [42] is used to fuse the features of context branch and spatial branch at different scales.
Therefore, the features of the two channels cannot be simply weighted, but superimposed
by concatenation method. FFM combines the attention mechanism for feature fusion,
mainly including global pooling layer, 1 × 1 convolution layer, ReLU activation layer and
Sigmoid layer. At the end of the network, in order to output the moving object segmentation
results of the original image size, the mainstream high-performance segmentation networks,
U-NET [43] and FCN [44], use layer skip connection for up-sampling. This requires a GPU
or FPGA for more computation and data movement. Therefore, we up-sample the FFM
output eight times using a bi-linear interpolation algorithm.

3.4. Training Details

We implemented a 3D LiDAR point-cloud moving-object segmentation network using
PyTorch and trained on a single NVIDIA RTX 3090TI GPU. We use the method of [4] to train
the network, process all point clouds according to Equations (1)–(3), and generate 64× 2048
range views and residual images respectively. The residual images are then concatenated
with the current range image and used as input to a 2D convolutional neural network.
Trained with the new binary masks, the proposed method can separate moving and static
objects label maps. During training, the network is trained with an initial learning rate of
0.01 and a weight decay of 1 × 10−4.
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3.5. Dataset and Evaluation

SemanticKITTI [45] is a large-scale dataset for semantic scene understanding of 3D
LiDAR point cloud sequences, including semantic segmentation and semantic scene com-
pletion. The dataset contains 28 annotated categories such as pedestrians, vehicles, parking
lots, roads, buildings, etc., which further distinguishes static objects from moving objects.
The raw odometry data consists of 22 sequences of point cloud data. We follow the same
protocol in [17], where the sequences 00–10 are used for training and the sequence 08 is
used for validation. The remaining sequences 11–21 are used as the test set. All classes
are reorganized into two types: moving and non-moving/static objects according to [4].
The former one contains actually moving vehicles and pedestrians, all other classes are
non-moving/static objects.

In order to evaluate the MOS performance, we follow the official guidance, using the
Jaccard index or IoU [46], which is:

IoU =
TP

TP + FP + FN
(4)

where TP, FP, and FN correspond to the number of true-positive, false-positive, and false-
negative predictions for the moving classes.

Referring to the evaluation method proposed in [4], we use IoU to evaluate the
accuracy of moving object segmentation in LiDAR point clouds. Table 1 shows the MOS
performance compared to the state-of-the-art on the SemanticKITTI test set. Table 2 shows
the results of the validation set. Since all operations of our network are supported by
NVDLA, the network complexity is reduced and no semantic information is added. Thus,
when our proposed model uses N = 8 residual images, the best performance IoU score
(51.3%) is obtained, but slightly lower than the baseline LMNet [4] on the test benchmark.

For qualitative evaluation, Figure 3 shows the qualitative results of different methods
on the SemanticKITTI test set. Meanwhile, the qualitative results of the point clouds are
shown in Figure 4. In the intersection in the figure below, there are a large number of
moving objects and non-moving/stationary objects such as moving vehicles and walking
people; our method can distinguish between actual moving vehicles and pedestrians, while
other methods cannot detect slow-moving objects.

Table 1. MOS performance compared to the state-of-the-art on the SemanticKITTI test set.

Methods IoU (%)

SceneFlow [25] 28.7
SpSequenceNet [27] 43.2

SalsaNext [18] 46.6
LMNet [4] 62.5

BiSeNet [42] 45.1
Ours 51.3

Table 2. MOS performance compared to the state-of-the-art on the SemanticKITTI validation set.

Methods IoU (%)

SalsaNext [18] 48.6
LMNet [4] 65.3

BiSeNet [42] 46.1
Ours 52.4
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Qualitative results of different methods on the SemanticKITTI test set, where red pixels
correspond to moving objects (range view images). (a) Range Image; (b) Ground Truth Labels;
(c) BiSeNet (retrained); (d) SalsaNext (retrained); (e) LMNet; (f) ours.

(a) (b)

(c) (d)

Figure 4. Qualitative results shown as point clouds. (a) Raw Point Cloud; (b) Ground Truth Labels,
and (c,d) prediction results, where red points correspond to the class moving (c) LMNet; (d) Ours.

3.6. Ablation Studies

In this section, some ablation experiments on the validation set (sequence 08) of the
SemanticKITTI dataset are conducted to analyze the effect of each component’s performance
shown in Table 3. As shown in Table 3, it can be observed that the IoU of the dual-branch
architecture can be increased by 9.6% compared to that of the single-branch architecture.
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On this basis, FFM, GCM, ASPP, and their combination are added. It is worth noting that
the IoU of our proposed final setup can achieve 52.4%.

Table 3. Ablation study of components on the validation set. CP: Context Path; SP: Spatial Path;
GCM: Global Context Module; FFM: Feature Fusion Module.

Methods IoU (%)

CP 33.6
CP + SP + Sum 43.2
CP + SP + FFM 45.1

CP + SP + FFM + GCM 47.4
CP + SP + FFM + GCM+ASPP 52.4

In our design, the K-Nearest Neighbor (KNN) post-processing is used to back-project
the 2D prediction result to the 3D point cloud. In order to verify the attractive performance
of the KNN post-processing in our proposed design, the comparison with regard to the
back-projection between the Conditional Random Field (CRF) post-processing and the
KNN post-processing is provided in Table 4. As shown in Table 4, compared to CRF
post-processing, KNN post-processing results in better IoU performance. Figure 5 shows
the qualitative results of different post-processing methods for MOS on the validation
set. The qualitative results prove that the KNN can handle the blurred boundary of
moving objects in a better way. This also obeys our expectation. Due to the fact that,
during dimension reduction, different 3D points belonging to different categories might
project into the same pixel in the 2D range image. Considering the principle of CRF, it
contributes little to solve this issue if it is applied to a 2D range image. While KNN counts
nearest points in 3D space rather than 2D.

Table 4. Comparison of the post-processing between the KNN and the CRF on the validation set.

Methods IoU (%)

(1) KNN 52.4
(2) CRF 49.1

(a) (b)

(c) (d)

Figure 5. Qualitative results of different post-processing methods for MOS on the validation set,
where red pixels correspond to moving objects (range view images). (a) Range Image; (b) Ground
Truth Labels; (c) CRF; (d) KNN.

3.7. Run-Time Evaluation on GPU

In autonomous driving systems, the processing speed of the moving object segmen-
tation network must meet real-time requirements. To get a fair performance evaluation,
all measurements are evaluated on the SemanticKITTI dataset 08 sequence using a sin-
gle NVIDIA RTX 3090TI-24GB card and the network performances are shown in Table 5.
Compared to the state-of-the-art network LMNet [4], our model clearly shows better per-
formance, the running time is 35.82 ms, and the amount of network parameters is about
2.3 M, which is reduced to 1/3 of that in LMNet [4].
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Table 5. Run-time performance on the SemanticKITTI validation set.

Processing Time Speed Parameters

BiSeNet [42] 56.3 ms 18 fps 13.76 M
LMNet [4] 42.21 ms 23 fps 6.71 M

MotionSeg3D [31] 116.71 ms 8 fps 6.73 M
Ours (GPU) 35.82 ms 28 fps 2.3 M

Ours (FPGA) 31.69 ms 32 fps 2.3 M

Figure 6 shows the inference speed vs. IoU on the validation set. For practical use in
embedded systems on autonomous vehicles, the IoU of our design in GPU and FPGA is
sacrificed to achieving the higher inference speed compared to the other methods. Note that
our implementation runs significantly faster than the 10 Hz sampling rate of mainstream
LiDAR sensors [47].

Figure 6. Inference speed vs. IoU on the SemanticKITTI validation set. Red star indicates our method
in FPGA, the blue star indicates our method in GPU, and colored dots represent other methods.

4. Hardware Architecture

The hardware architecture of the point cloud moving object segmentation network is
shown in Figure 7. It consists of processing system (ARM core) and programmable logic
(FPGA) parts. ARM core is used to complete pre-processing and post-processing, such as
point cloud reading, image resizing [48], result showing, etc. On the FPGA side, an NVIDIA
Deep Learning Accelerator (NVDLA) like system is implemented. We tailor it and adopt it
into FPGA.

The core of the convolutional engine is the MAC array. In this work, the size of the
MAC array is chosen to be 32 × 32. To improve the processing speed and alleviate the
bandwidth requirement between FPGA and DDR memory, NVDLA adopts a Ping-Pong
buffer. Different from a micro-controller in NVDLA, we implement a finite state machine
(FSM) to control the running order of CNN operations. In this study, we quantize the
neural network to INT8 for high computation efficiency.

Figure 7. Hardware architecture of the CNN accelerator on the FPGA.
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5. Results and Discussion

The target hardware platform is the Zynq UltraScale+ MPSoC ZCU104 development
board. Figure 8 exhibits the overall system setup with LiDAR connected to the FPGA board
directly, which demonstrates our experiment setup. The LiDAR driver is implanted in
the ARM processor on ZCU104 board and connected to LiDAR via UDP protocol on the
Ethernet port. The ARM processor receives each set of point cloud data from LiDAR and
stores it into DDR memory for NVDLA fetching.

Figure 8. Overall system setup with LiDAR connected to the FPGA board directly.

The hardware resource usage of our proposed neural network is shown in Table 6. This
design has used 91.84% of the DSP resources, if the parallelism is increased, a larger FPGA
needs to be used. Table 7 shows the run-time performance of the proposed approach on
SemanticKITTI Dataset. It can be observed that when running at 250 MHz, this accelerator’s
processing speed is 32 fps. The estimated power consumption of the FPGA implementation
is 12.8 W. The only real-time solution currently available, SalsaNext [18], runs on Nvidia
Quadro P6000 GPUs and requires 600–650 W PC power support. Therefore, our solution
provides a balanced and practical approach for running LiDAR point cloud moving object
segmentation tasks on embedded devices. Since there are few 3D point-cloud moving
object segmentation implementations on FPGA, the performance and hardware resource
utilization comparison with similar works is not yet available.

Table 6. FPGA Resource utilization for the CNN accelerator.

FPGA Resource Used Available Utilization

LUT 102,707 230,400 44.58%
FF 114,221 460,800 24.79%

DSP 1587 1728 91.84%
BRAM 162 312 51.92%

Table 7. Run-time Performance of the Proposed Approach on SemanticKITTI Dataset.

Device Precision Processing time Speed

GPU FP32 35.82 ms 28 fps
FPGA INT8 31.69 ms 32 fps

6. Conclusions

In this study, we proposed a lightweight CNN architecture for LiDAR point-cloud
moving object segmentation. Edge deep learning accelerators are designed with their
limitations and computational efficiency in mind, and our proposed network structure
fully supports all operations of NVDLA. On SemanticKITTI dataset, the processing time of
the network on RTX 3090TI GPU is 35.82 ms and the IoU score of 51.3% is achieved. When
compared to the state-of-the-art network, the network achieves a similar error performance,
but using only 34% of the parameters. In addition, the proposed network successfully
targets the MPSoC FPGA platform using NVDLA hardware architecture. The system
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successfully achieves efficient and accurate moving-object segmentation of LiDAR point
clouds at 32 fps, which meets the real-time requirements of autonomous vehicles.

However, some potential problems need to be solved in the future. First of all, in order
to reduce the computational complexity of our proposed network, we plan to simplify the
original structure and remove the time-consuming cross-layer connections while ensuring
its high performance. Secondly, due to acceleration of the model inference, the low-level
details mostly sacrificed, which leads to a considerable decrease in accuracy. In view of this,
the spatial path would be improved by capturing the low-level details with wide channels
and shallow layers in our future works.
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Abstract: Cultural heritage’s structural changes and damages can influence the mechanical behaviour
of artefacts and buildings. The use of finite element methods (FEM) for mechanical analysis is largely
used in modelling stress behaviour. The workflow involves the use of CAD 3D models and the
use of non-uniform rational B-spline (NURBS) surfaces. For cultural heritage objects, altered by the
time elapsed since their creation, the representation created with the CAD model may introduce
an extreme level of approximation, leading to wrong simulation results. The focus of this work is
to present an alternative method intending to generate the most accurate 3D representation of a
real artefact from highly accurate 3D reality-based models, simplifying the original models to make
them suitable for finite element analysis (FEA) software. The approach proposed, and tested on
three different case studies, was based on the intelligent use of retopology procedures to create a
simplified model to be converted to a mathematical one made by NURBS surfaces, which is also
suitable for being processed by volumetric meshes typically embedded in standard FEM packages.
This allowed us to obtain FEA results that were closer to the actual mechanical behaviour of the
analysed heritage asset.

Keywords: 3D modelling; 3D survey; retopology; NURBS; FEA; convergence analysis

1. Introduction

Accurate 3D reality-based documentation is a must have for proper preservation and
conservation in the cultural heritage field, as it is a prerequisite for more analyses. This
documentation and these analyses are of more importance in contemporary times because
of atmospheric agents, the growing of the cities and of the density of constructions, care-
lessness over the centuries, and the present political instability in certain areas that have
all affected and strongly influenced the solidity of our heritage. It is hence fundamental
to complete diagnostic studies aimed at valuing the level of decay of cultural heritage for
selecting the appropriate preservation methods. However, it is challenging to calculate how
a historical artefact suffers for environmental agents (e.g., earthquakes, pollution, wind,
and rain) or human factors (e.g., construction in the environments, vehicular traffic, dense
tourism). Hence, it is mandatory to find the best pipeline to obtain results as close as possi-
ble to reality. Finite element analysis (FEA) is a recognised technique used in engineering
for various purposes (e.g., for modelling stress behaviour under mechanical and thermal
loads), starting from a CAD 3D model made by non-uniform rational B-spline (NURBS)
surfaces. Once imported in an FEA software, these 3D closed models can be meshed using
modules capable of transforming a surface model to a volumetric one, which has nodes
allocated in both the exterior and the interior volume, joined by simple volumes such as
tetrahedron, pyramids, prisms, or hexahedral. In the mechanical area, this workflow is
applicable because the 3D digital object to be simulated is close to the reality, within strict
tolerances. Contrarywise, when applied to 3D models of cultural heritage (CH) objects or
structures, the representation with a CAD model introduces a disproportionate level of ap-
proximation that can lead to incorrect simulation outcomes. Today, the 3D documentation
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of CH has been extensively matured through active sensors or passive approaches such
as photogrammetry. The model obtained through these techniques is a surface formed
by millions of triangles and is not suitable for direct use in FEA because the software is
not able to manage so many polygons, and the computational complexity of FEA grows
exponentially with the number of nodes representing the simulated object. Hence, a simpli-
fication is needed, and then a transformation of the superficial 3D meshes in volumetric
models is needed to be meshed in the FEA software accordingly. Preliminary experiments
were carried out on real CH artefacts surveyed with active or passive methods [1,2] for
simulating stress behaviour and predicting critical damages. Analysing the results, few
issues were made evident: (a) the creation of a volumetric model to be used in the FEA
software from the raw 3D data is not yet clearly defined and may greatly affect the result,
(b) the balance between geometric resolution and the accuracy and precision level of the
simulated results is often not compatible with the shape of a 3D reality-based model.

The approaches used to generate the volumetric model from the acquired 3D point
cloud are different: (a) using CAD software for the drawing of a new surface model
following the superficial mesh originated by the acquired 3D cloud [3]; (b) using the
triangular mesh generated by the 3D survey [4]; (c) generating a volumetric model from
the 3D point cloud without preliminary surface meshing; (d) using the 3D reality-based
model as the basis for a BIM/HBIM for FEA [5–7]; (e) creating new tools (Figure 1).

 

Figure 1. Pros and cons of the different processes used for the generation of volumetric models of
cultural heritage for FEA.

The first methodology was used, for example, to simulate the structural behaviour of
the Trajan’s Markets [3] and in many other applications [8–11]. In some cases, the mathe-
matical model was improved with the insertion of patches of reality-based meshes [12,13]
that also used a strong discretization of the model using both a 3D CAD model and a
3D composite beam one [14,15]. Some projects used a joined system to obtain the 3D
model, starting from the use of reality-based techniques, GPR, and radar [15]. Extracting or
drawing cross-sections and profiles from the 3D reality-based model are ways to produce
the CAD model extrapolated from a reality-based one, as in [16–18]. This procedure has
its limitation related to the re-draw of the model in a CAD environment, but it can be
applied to CH buildings for which the structure and the geometric details can be replicated
through a CAD drawing using profiles. On the contrary, it cannot be used for statues,
whose geometry is more complex and cannot be reduced through elements such as beam,
truss, or shell, which are used for modelling in FEA.

The second approach has a variety of different methods: (i) plain simplification of
the triangular mesh before converting it to a volumetric one, which may have important
differences between the real shape and the simulated one [19]; (ii) simplified depiction of
the shape as discretized profiles offering a low-resolution representation of the interior and
the exterior of the structure, from which generate a volumetric model can be created [5,7];
the fitting of the acquired 3D model with a parametric one suitable to be transformed to
volume [20].
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The use of the triangular mesh for the structural analysis to assess the stability of
a marble statue is highlighted in [21], analysing the mechanical stresses generated on
the statue and the pedestal materials. The procedure begins with the subtraction of the
mesh from a prismatic block shape and is called FEA in situ (the algorithm performs the
analysis directly on the mesh without passing through the volumetric model). Some tests
on mechanical objects were presented to corroborate this method.

The third strategy does not even take into consideration the mesh because it creates a
volumetric approximation of the shape of the original 3D model from the raw 3D cloud
of points [22], later compared by the same authors to other approaches [6,23]. The fourth
methodology uses a 3D reality-based model to produce HBIM models to be used in FEA,
implying two levels of approximation: (i) the first one related to the drawing of a BIM
model from 3D reality-based mesh; (ii) creating the volumes for FEA starting from the
BIM models. In [24], the authors investigated the use of BIM models to assist sites with
monitoring and management, extrapolating thematic information for structural analysis,
even if the authors did not provide a finite element analysis on the structure. Another
example is the creation of the HBIM from both archival data and a laser scan survey. The
model created was then segmented and utilised for structural analysis [25]. The Masegra
Castle, located near the city of Sondrio in Italy, served as a test object for an original
procedure called Cloud-to-BIM-to-FEM [26]. In this case, the basis for the HBIM was an
accurate survey combining geometrical features, diagnostic analysis based on destructive
and non-destructive inspections, material data, element interconnections, and architectural
and structural considerations. This model was then converted into a finite element model
with a geometric rationalization, considering irregularities and anomalies (e.g., verticality
deviation and variable thickness).

Directly using the 3D reality-based models in FEA has its advantages because it over-
comes all the approximations seen in the previous works. It is necessary to simplify the
3D meshes originated by this type of survey to make them suitable for FEA software. The
best procedure for this, maintaining the accuracy of the 3D reality-based model, is using
retopology, which implies a strong simplification of the mesh connected to the topolog-
ical rearrangement of it, hence the creation of a new topology for the 3D model [27,28].
The retopologised mesh is normally based on quadrangular element (quads). Its main
advantage is the reorganization of the polygonal superficial elements of the meshes for
their better distribution on the surface. This procedure allows for the application of a huge
simplification of the meshes without losing the initial accuracy of the models. The more
organised structure of the elements on the mesh helps also in the conversion of it in NURBS,
while maintaining a better coherence with the digitized artefact. This is valuable when
working with reality-based 3D models of cultural heritage, usually accurate and precise
but with a complex geometry.

The method proposed is based on the simplification of 3D meshes and their export
into mathematical ones, close as much as possible to the real shape of the object surveyed
but suitable to be converted into rationally complex volumetric 3D models. This permits us
to obtain volumetric models of cultural heritage artefacts, increasing the closeness of the
resultant NURBS model with the acquired one and, in the meantime, reducing the number
of NURBS patches necessary for describing it. This methodology can be useful for experts
such as archaeologists, architects, restores, and structural engineers, given that the lack of
funding usually affects the restoration’s interventions. An accurate pipeline can help in
locating probable causes for future problems, allowing a more effective conservation of
the artefact.

Three different case studies are discussed, showing the accuracy of the methods and
the application on real cultural heritage objects.

2. Materials and Methods

The most complex part of executing structural analysis on cultural heritage artefacts is
related to the geometrical complexity of the object analysed and the fact that they, especially
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buildings, are built with different construction techniques and different materials. This
circumstance leads to the consideration of different points when dealing with structural
analysis in the field of cultural heritage. The intrinsic characteristics of the different elements
involved in the pipeline and the non-linear and non-symmetric geometry of the structures
influence the choice of the procedure. Therefore, the methodology proposed took into
consideration the use of retopology for the decimation of the reality-based 3D models.

3. 3D Modelling, Post-Processing, and Orientation of the Model

The test objects were surveyed with photogrammetry and laser scanning, considering
the final aim of the modelling. The GSD (ground sample distance) and the accuracy of
the scanner used were taken into consideration to obtain precise and accurate models
and to obtain a value to compare the following stages of the pipeline proposed. For the
validation of the methodology, a lab steel specimen for mechanical testing and a violin were
used. Then, the methodology was applied to a statue of the Uffizi Museum of Florence
(Figure 2a–c). The differences in these test objects were that, for the lab specimen, the
analytical results of the mechanical tests were known, and for the violin, the results of
FEA were compared to direct tests in the laboratory. Once the procedure was tested and
validated, it was applied to a statue for which no analytical comparison was available.

The lab specimen has a cylindrical shape with a groove and is 148.28 mm long, with
the larger diameter of 20 mm and the smaller of 7.4 mm. The choice of this object was
made considering (i) its shape that originated from the revolution of a profile defined by an
analytical function. This allowed us to calculate the stresses in critical points relatively easily,
thus permitting the assessment of the results of an FE run with respect to the analytical
solution. The results obtained can be used as theoretical reference; (ii) the physical object
can be used for laboratory tests in different stress conditions, experimentally measuring its
mechanical behaviour, which can be used as an experimental reference; (iii) the 3D model
of the object can be generated with 3D digitization, and the FEA can be applied to different
instances of the 3D model created with different 3D simplification methods, allowing us to
prove the value of the proposed method. The specimen was surveyed with a structured
light Solutionix Rexcan CS device (Table 1).

  
(a) (b) 

Figure 2. Cont.
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(c) 

Figure 2. The three tested objects: (a) the lab specimen, (b) the contemporary violin, and (c) the statue
of the Gladiator in the Uffizi Gallery.

Table 1. Specification of the active 3D device used in the experiments.

Element Description

Camera resolution 2.0 Mega/5.0 Mega pixel

Distance among points 0.0035~0.2 mm

Lenses 12, 25 and 50 mm

Working distance 570 mm

Principle of scan Optical Triangulation

Dimensions 400 × 110 × 210 mm

Weight 40 N

Light Blue LED

Unit mm

The blue-light sensor for the pattern projection is suitable for digitizing small and
medium not-totally Lambertian objects and is considered the most precise type of sensor
for 3D digitization in mechanical engineering. The survey was carried out by locating the
optical head on a base connected to a rotating plate (TA-300) composed of two axes, one for
rotation around the vertical direction and one for the oscillation. The rotation allows for
movement of ± 180◦, and the axis of oscillation allows the inclination of the plane, where
the specimen is located, up to 45◦ with respect to the vertical direction. With this scanning
range, it is possible to limit to the minimum blind spots by reducing the scanning time up
to 40%. The range device can mount three different lenses, for which the specifications are
summarized in Table 2. Given the size of the test object, wide-angle lenses (12 mm) that
were calibrated using the appropriate calibration table fixed on the turntable were chosen.
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Table 2. Identification of the different lenses available.

Lens FOV/Diagonal Distance among Points Estimated Uncertainty

50 mm 85 (S) mm 0.044 mm 0.010 mm

25 mm 185 (S) mm 0.097 mm 0.020 mm

12 mm 370 (S) mm 0.200 mm 0.030 mm

The 3D device works with proprietary software for the acquisition and alignment
phases. For the survey, the Multiscan setting was used with an oscillation of ±30◦ and
±150◦ rotations for a total of 36 scans for each position of the object on the turntable
(12 scans, one for each rotation for the three different oscillations, −30◦, 0◦, and 30◦). For
the survey of the steel specimen, two groups of 36 scans were performed, automatically
aligned by the Solutionix software, with a final RMS error of 18 μm.

The contemporary violin was surveyed with a six-axis arm laser scanner with a
tolerance of 0.03 mm by the company that provided the mesh model. The violin was used
because it was possible to conduct some acoustic test in the laboratory on the two separate
sides of the artefact, which were then compared to the FEA on the retopologised models.

The statue was surveyed through photogrammetry using a Mirrorless APS-C SONY
ILCE 6000 camera coupled with a 16 mm lens, which acquired the images even when the
distance between the object and the camera was short. The distortion parameters of the
lenses were corrected through the automatic calibration of the camera and the lens during
the alignment phase in Agisoft Metashape, the software used to create the 3D model. The
setting of the camera was ISO equal to 1000 and the focal length at 5.6. The GSD obtained
was 1 mm (The survey was performed by Dott. Umair Shafquat Malik of Politecnico di
Milano during a joint project with the Indiana University (coordinator Prof. Bernie Frisher).
In 2019, the Uffizi Gallery in Florence with an agreement with Indiana University (IU-USA),
started 3D digitization of its complete Roman and Greek sculptural collection in which the
Reverse Engineering and Computer Vision group of Politecnico di Milano was involved as
a technical partner, under the coordination of Prof. Gabriele Guidi [Virtual World Heritage
Lab 2019].).

After the survey, the models were post-processed with the correction of the topological
errors and of their orientation on a suitable reference system, with the XY plane corre-
sponding to the base of the model and the z-axis passing from the centre of gravity of the
artefact. The post-processed meshes were then simplified with retopology, converted in
closed NURBS and then into volumetric models. The use of retopology is also valuable
when converting the superficial meshes in NURBS because the process tends to generate a
higher number of patches when the original mesh is topologically unorganized. Hence, the
rearrangement of the initial topology of the mesh can be seen as a preliminary condition
for minimizing the number of NURBS patches of the converted model. In this way, the
mesh embedded in FEA software works better. After all these passages, the 3D models
were finally prepared for the finite element analysis.

3.1. Simplification of the Models: Triangular and Retopology Method

3D models can be simplified with different strategies. The first approach is based on
triangular simplification, and the second one involves the transformation of the original
triangular mesh into a quadrangular one, its retopology and projection of the nodes on
the original triangular mesh (Figure 3), according to the method described in [29]. The
geometrical complexity of the models was exemplified in terms of nodes of the mesh (or
vertexes) rather than in terms of polygons because the counting of polygons on a mesh is
different if the shape is triangular or quadrangular. For the latter, the number of nodes and
polygons is approximately the same, while for triangular meshes the number of polygons
is approximately double that of the nodes (This is obvious since a squared element, once
divided in two parts on one of its diagonals, produce two triangles.). It must be borne
in mind that the number of vertexes of a mesh is what defines the surface sampling;
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therefore, it was used as an indicator for the level of detail of each mesh, independently of
its triangular or quadrangular arrangement.

 

Figure 3. Comparison between the triangular and the retopology simplification.

3.1.1. Triangular Simplification

The triangular mesh is a set of vertexes V = (v1, v2, . . . , vk) and faces F = (f1, f2, . . . ,
fn). The simplification process obtains a surface M’ as similar as possible to the initial
high resolution mesh M by lessening the number of the element on the surface. The
simplification process is usually controlled by a set of user-defined quality criteria that
can preserve specific properties of the original mesh as much as possible (e.g., geometric
distance, visual appearance, etc.).

There are different approaches, the majority of which involves the degradation of the
mesh to reduce the number of polygons [30,31]:

• Vertex decimation: it iteratively removes vertices and the adjacent faces. It preserves
the mesh topology. The sequential optimization process manages the removal of points
from the triangulation, leading to a gradual increase of its overall approximation
error [32].

• Energy function optimization: the algorithm assigns an energy function to the number
of nodes, the approximation error, and the length of the edges that regulate the
regularity of the mesh. It produces higher results, minimizing the energy and solving
the mesh optimization problems but increasing the computational cost.

• The agglomeration of vertices or vertex clustering: it partitions the mesh vertices into
clusters and merges all the vertices in a cluster into one single vertex.

• Region merging–face clustering: it works on coplanarity. As a planarity threshold
is set, the neighbourhood of each triangle is evaluated, and all the triangles that are
inside the threshold are merged.

In this work, the first algorithm, implemented in the Polyworks software package
(IMCompress), was used.

3.1.2. Retopology

For the retopology process, this feature is available both in open-source packages,
such as InstantMeshes [33] or Blender, or in commercial software packages, such as ZBrush
by Pixologic, used in this work because this software is built specifically for rebuilding
the topology of the models. Blender showed some problems in managing big files, while
InstantMeshes, even if powerful, gave sometimes inadequate meshes as results, with holes
and missing parts, especially when strongly decreasing the number of nodes. Moreover,
ZBrush has the option of projecting the retopologised model onto the high resolution one,
increasing the adherence of the two models.

The tool used for retopology was the ZRemesher, which is optimized to work on all
kinds of structures and shapes but will by default produce better results with organic shapes,
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since Zbrush is specifically for the creation of video game characters. In the ZRemesher
palette, there is the possibility to select the number of polygons desired for the retopology
and the choice of increasing the coherence of the two models. This can be performed by
selecting the “adapt” button and increasing the value of the “adapt size” slider. This is
an important parameter for ZRemesher because it defines the polygon distribution on the
model, and it can drastically increase the quality of the topology by giving more flexibility
to the algorithm (Figure 4a,b).

  
(a) (b) 

Figure 4. Difference between the triangular simplification (a) 9A and retopology simplification (b) on
the lab specimen.

This function defines a vertex ratio based on the curvature of the mesh. A low setting
provides polygons that are as square as possible and almost the same size, a number of
final polygons closer to the number set in the selection tool, but it can introduce topology
irregularities where the geometry is more complex. A high adaptive size means obtaining
polygons that are rectangular in shape to best fit the mesh’s curvature and for which density
can vary along the mesh surface even if the program creates smaller polygons where the
geometry requires. With a higher value of this parameter, there is less control on the final
number of desired polygons after retopology. The adaptive size quantity goes from 0 to
100; it is not a unit, but it is a number that is only referred to for the different quantities and
different settings of the quadrangular elements on the retopologised mesh.

Thus, by increasing the value of the adaptive size, the quality of the retopology
increases but the program is more elastic regarding the target number of final polygons.
This happens because, when the desired number of polygons is set, the software distributes
them equally on the surface and then analyses the curvature, deforming the shape of the
polygons or changing their density to be more adherent to the initial mesh.

3.2. NURBS Conversion

A mesh represents 3D surfaces with a series of discreet faces, similar to how pixels
form an image. NURBS, on the contrary, are mathematical surfaces that can represent
complex shapes with no granularity that is in mesh. The conversion from mesh to NURBS
is implemented in CAD software or similar software (e.g., 3DMax, Blender, Rhinoceros,
Maya, Grasshopper, etc.), and it transforms a mesh composed by polygons or faces to a
faceted NURBS surface. In detail, it creates one NURBS surface for each face of the mesh
and then merges everything into a single polysurface.

Depending on the mesh, the conversion works in different ways:

• If the starting point is a triangular mesh, and while, by definition, triangles are plane,
the conversion creates trimmed or untrimmed planar patches. The degree of the
patches is a 1 × 1 surface trimmed in the middle to form a triangle.

• If the starting point is a quadrangular mesh, the conversion creates four-sided untrimmed
degree 1 NURBS patches, meaning that the edges of the mesh are the same as the outer
boundaries of the patches.
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• Considering the theory, a quadrangular mesh is more suitable to be converted into
NURBS (Figure 5a,b). For this work, the MeshToNurb tool implemented in Rhinoceros
was used.

 
(a) 

 
(b) 

Figure 5. The comparison between a simplified triangular mesh and its corresponding NURBS (a)
and the retopologised mesh with its corresponding NURBS (b). The meshes are represented in red
(left side of the images) and the NURBS in green (right side of the images).

3.3. Finite Element Analysis

The analysis was carried out on the models meshed using given elements, and they
were different if a 2D or a 3D problem was evaluated. The 2D elements are the triangular
and the quadrangular, while the 3D elements are the tetrahedral and the hexahedral; the
hexahedral ones are more accurate (e.g., deform in a lower strain energy state) but it is
more difficult to mesh a 3D volume with this kind of element if it is not segmented [34].
The 3D elements can be linear or quadratic; the difference is that the quadratic ones have
nodes also on the mid side, varying in number from four nodes (linear tetrahedron) to
20 nodes (quadratic hexahedron), and the shape functions vary from linear to quadratic,
allowing a more accurate description of the geometry and the displacement of the nodes.
In the present study, the linear elements were chosen to simplify FE modelling from the
geometrical model and to consider the convergence of the results by increasing the mesh
density to assess the accuracy of the results.

4. Results

To validate the proposed method, some tests were conducted both on a case with a
known analytical solution, using this one as a term of comparison, and on a case with
experimental measurements conducted, also in this case to use the latter as a term of

115



Sensors 2022, 22, 9593

comparison to check the goodness of the developed finite element model and to check if
the mesh size is adequate to obtain reliable results.

In fact, the best way to assess if a finite element model has the proper mesh size is to
perform convergence studies by increasing the element count in the model and assuring
that the result of interest graphically converges to a stable value. Mesh convergence in
finite element analysis is related to the smallest dimension of the element of the mesh (how
many elements are required in a model) to ensure that the results of the analysis are not
influenced by the changing size of the mesh. At least three element dimensions are required
to compute a convergence test, which happens when an asymptotic behaviour of the
solution shows up, meaning that the difference among the results becomes smaller or equal.
To determine mesh convergence, a curve of a stress parameter is required, plotted against
different sizing in mesh density. The laboratory steel specimen was chosen as the test object
because of its simple geometry and because it is possible to calculate the analytical result for
the stress analysis; a simple traction analysis was carried out. Three different simplifications
were used, triangular, retopology with the adaptive size parameter of 30 (low value), and
retopology with the adaptive size parameter of 100 (highest value). It was decided to opt
for these values to compare the results of a retopology with a distribution of the elements
that was more rigid. Hence, less adaptation to the geometry of the object surveyed was
performed, and a retopology with a final number of elements was more erratic (the control
on the target number set in the software was less accurate) but with more adaptation to
the geometry of the object. The high-resolution model was composed by 345,026 polygons
and was simplified starting from the lower number of polygons accepted by the software,
500 polygons. Then, the number was doubled until the highest possible number in the
retopology software, 95 K polygons, with a final number of nine models for the triangular
and the adaptive size of 30 for retopology simplification and eight for the adaptive size of
100 for retopology, because, with this parameter, a simplification of 500 polygons did not
give a proper result. All the models obtained were then compared with the high-resolution
model (Tables 3 and 4; Figures 6 and 7).

Table 3. The mean in mm of the simplified models for each simplification method compared to the
high-resolution one.

500 1000 2000 4000 8000 16,000 32,000 64,000 95,000

adapt_30 0.1914 0.1063 0.0568 0.0246 0.0138 0.0078 0.0043 0.0024 0.0019

adapt_100 0.2707 0.1337 0.0457 0.0164 0.0078 0.0038 0.0022 0.0017

triangular 0.1678 0.0631 0.0269 0.0131 0.0091 0.0037 0.0011 0.0005 0.0003

Table 4. The standard deviation in mm of the simplified models for each simplification method
compared to the high-resolution one.

500 1000 2000 4000 8000 16,000 32,000 64,000 95,000

adapt_30 0.145 0.087 0.056 0.033 0.003 0.024 0.017 0.011 0.009

adapt_100 0.162 0.084 0.036 0.023 0.021 0.015 0.01 0.008

triangular 0.15 0.07 0.038 0.03 0.024 0.014 0.009 0.005 0.002
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Figure 6. The mean in mm of the simplified models for each simplification method compared to the
high-resolution one. Expressed in a graph.

Figure 7. The standard deviation in mm of the simplified models for each simplification method
compared to the high-resolution one. Expressed in a graph.

The metric comparison reported in the tables shows that both the mean value and the
standard deviation of the point distance between the vertexes of the reference model and
the mesh of each simplified model were, as expected, higher for the retopologised model
than for the triangular mesh because, with retopology, a smoothness is added to the models
(The mean of the distribution gives the average position of the cloud along the normal
direction, i1 and i2, and the standard deviation gives a local estimate of the point cloud
roughness σ1(d) and σ2(d) along the normal direction. If outliers are expected in the data,
i1 and i2 can be defined as the median of the distance distribution and the roughness is
measured by the inter-quartile range. The local distance between the two clouds LM3C2(i)
is then given by the distance between i1 and i2. Hence, the mean or median is the estimate
of the local average position of each cloud [35], p. 8).

Given the fact that the σ of the range device is equal to 0.015 mm, the simplifica-
tion aimed at creating a situation of strong difference in the final number between the
different models; however, it maintained a deviation between the simplified model and
high-resolution mesh not exceeding 0.2 mm, which was equal to the graphic error on paper.
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Another important parameter that was considered was the number of final patches
created during the automatic process of conversion from meshes to NURBS. As shown in
Table 3, the number of patches in the triangular models was higher than in the other models.
This can be easily explained by the fact that the patches in the NURBS had a quadrangular
shape and converting a triangular mesh to NURBS involves the subdivision of each patch
in two. Comparing the models derived from the two different retopology processes, it is
interesting to note that the adaptive size 100 implies a number of patches slightly higher
than the other process for the models with 1 K and 2 K nodes, while, by increasing the
number of nodes, the result is reversed (except for the 95 K model, singularity explained
with the fact that with these settings this model has a number of nodes higher than 95
K, in detail, more than 3 K nodes more than the adapt 30 model). This can be explained
in a better coherence of these models on the high resolution one. The reprojection of the
retopologised models on the target one permits a better geometry and a better arrangement
of the elements than the patches on the surface.

The NURBS were then exported in *. step extension to create a volumetric model.
The analysis carried on was a traction analysis. The first step was to calculate the

analytical result for traction on this specific object:

σ = Kt ∗ σn

where

Kt = 1.66 − theoretical stress concentration f actor under tensile axial load N.

σn = N/A = 7MPa = nominal stress (= load/cross sec tion area)

with
A = area o f the cross section (smaller diameter 7.4mm)

N = 300N − applied tensile f orce

Thus, the analytical result is

σ = Kt ∗ σn = 1.66 ∗ 7 = 11.62 MPa

The tensile test analysis was performed on each simplified model, imposing the
following parameters:

- Young’s Modulus for steel 200,000 MPa;
- Poisson Ratio 0.3;
- Tensile load on Z axis 300 N;
- Displacement as boundary conditions on the other plane face, components X = 0, Y =

0 and Z = 0;
- Meshing element: 10-nodes tetrahedrons (quadratic shape functions);
- Element size: from 0.1 to 2.5 mm;
- Size function adaptive;
- Fast transition in filling the volume.

The results are summarized in Table 5.
To better understand and read the results and to easier analyse the convergence

for each model in the three simplifications processes, it was decided to convert them in
percentage, giving the maximum rate of ±3% of the analytical result, as shown in Tables 6–8
and Figures 8–10.
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Table 5. The results expressed in MPa of the FEA analysis on traction on the different models of the
laboratory specimen. The different colours highlight the values that were recurrent in the analysis
even with different element dimensions.

0.1 mm size mesh Ansys
500 1000 2000 4000 8000 16,000 32,000 64,000 95,000

triangular 36,784 26,421 18,862 17,555 17,927 16,192 14,874 / /
adapt_30 32,464 29,033 24,009 19,641 17,293 16,056 15,317 14,328 13,974
adapt_100 15,895 15,252 14.5 15,715 15,424 14,583 13,945 13,785
0.5 mm size mesh Ansys

500 1000 2000 4000 8000 16,000 32,000 64,000 95,000
triangular 17,835 14,506 14,269 13,312 13,521 13,303 12,711 12,201 /
adapt_30 16,171 16,803 14,395 14,243 14,079 12,584 12.66 12,067 12,304
adapt_100 / 13,704 13,718 12,912 12,686 12,525 12,527 11,983 12,305
1 mm size
mesh Ansys

500 1000 2000 4000 8000 16,000 32,000 64,000 95,000
triangular 15,478 13,401 12.9 12.05 12,459 12,707 11,943 12.04 /
adapt_30 13,522 12.27 13,282 12,034 12,916 11,584 11,855 12,084 12,304
adapt_100 / 12,415 12,187 11,809 15,575 11,714 11,792 12,026 12,305
1.5 mm size mesh Ansys

500 1000 2000 4000 8000 16,000 32,000 64,000 95,000
triangular 13,985 13,722 11,935 12,102 11,986 11,499 11,634 12,037 /
adapt_30 12,954 11,493 10,486 11,502 11,299 11,616 11,855 12,084 12,304
adapt_100 / 12,503 12,253 11.63 11,546 11,695 11,792 12,026 12,305
2 mm size mesh Ansys

500 1000 2000 4000 8000 16,000 32,000 64,000 95,000
triangular 12,792 11,119 11,338 11,388 12,375 11,714 12,358 12.12 /
adapt_30 12,286 9,4354 10.75 10,885 11,299 11,616 11,855 12,084 12,304
adapt_100 / 12,467 11,385 11,826 11,567 11,695 11,792 12,026 21,305
2.5 mm size mesh Ansys

500 1000 2000 4000 8000 16,000 32,000 64,000 95,000
triangular 12,838 10,759 11.08 11.18 11,734 11,505 12,383 12.12 /

adapt_30 94,614 10,324 95,181 10,629 11,299 11,616 11,855 12,084 12,304
adapt_100 / 12,418 11,347 11,489 11,479 11,695 11,792 12,026 12,305

Table 6. Convergence analysis for the triangular simplified models. In yellow, the results gone
to convergence are expressed in percentage in relation to the result given by the analysis and the
analytical result calculated for the specimen.

500 1000 2000 4000 8000 16,000 32,000 64,000

0.1 2.17 1.27 0.62 0.51 0.54 0.39 0.28 −1.00
0 0.53 0.25 0.23 0.15 0.16 0.14 0.09 0.05
1 0.33 0.15 0.11 0.04 0.07 0.09 0.03 0.04

1.5 0.20 0.18 0.03 0.04 0.03 −0.01 0.00 0.04
2 0.10 −0.04 −0.02 −0.02 0.06 0.01 0.06 0.04

2.5 0.10 −0.07 −0.05 −0.04 0.01 −0.01 0.07 0.04
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Figure 8. Convergence analysis for the triangular simplified models. In yellow, the results gone
to convergence are expressed in percentage in relation to the result given by the analysis and the
analytical result calculated for the specimen. Expressed in a graph. (Left is ERROR PERCENT).

Table 7. Convergence analysis for the models simplified using retopology with the adaptive size
fixed at 30. Highlighted in yellow are the results on convergence expressed in percentage in relation
to the result given by the analysis and the analytical result calculated for the specimen.

500 1000 2000 4000 8000 16,000 32,000 64,000 95,000

0.1 1.79 1.50 1.07 0.69 0.49 0.38 0.32 0.23 0.20
0.5 0.39 0.45 0.24 0.23 0.21 0.08 0.09 0.04 0.06

1 0.16 0.06 0.14 0.04 0.11 0.00 0.02 0.04 0.06
1.5 0.11 −0.01 −0.10 −0.01 −0.03 0.00 0.02 0.04 0.06

2 0.06 −0.19 −0.07 −0.06 −0.03 0.00 0.02 0.04 0.06
2.5 −0.19 −0.11 −0.18 −0.09 −0.03 0.00 0.02 0.04 0.06
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Figure 9. Convergence analysis for the models simplified using retopology with the adaptive size
fixed at 30. Highlighted in yellow are the results on convergence expressed in percentage in relation
to the result given by the analysis and the analytical result calculated for the specimen. Expressed in
a graph.

Table 8. Convergence analysis for the models simplified with retopology and the adaptive size
parameter fixed at 100. In yellow, the results gone to convergence are expressed in percentage in
relation to the result given by the analysis and the analytical result calculated for the specimen.

1000 2000 4000 8000 16,000 32,000 64,000 95,000

0.1 0.37 0.31 0.25 0.35 0.33 0.23 0.20 0.19
0.5 0.18 0.18 0.11 0.09 0.08 0.08 0.03 0.06

1 0.07 0.05 0.02 0.00 0.01 0.01 0.03 0.06
1.5 0.08 0.05 0.00 −0.01 0.01 0.01 0.03 0.06

2 0.07 −0.02 0.02 0.00 0.01 0.01 0.03 0.06
2.5 0.07 −0.02 −0.01 −0.01 0.01 0.01 0.03 0.06

The results gave important information regarding the best solution to be adopted when
using a reality-based mesh as a starting point of FEA analysis. The triangular simplified
models provided the worst results regarding both the analysis itself and the convergence;
the results were not homogenous, and only the 16 K model showed a real convergence,
starting from the 1.5 mm volumetric mesh. The retopology method showed much better
results. The models produced using the low adaptive size parameter converged from the
8 K model meshed with 1.5 mm element size to the 32 K models, meshed from 1 to 2.5 mm
element size. These results are much better than the ones obtained with the triangular
superficial mesh.
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Figure 10. Convergence analysis for the models simplified with retopology and the adaptive size
parameter fixed at 100. In yellow, the results gone to convergence are expressed in percentage in
relation to the result given by the analysis and the analytical result calculated for the specimen.
Expressed in a graph.

Finally, setting the adaptive size parameter at its higher value gave the best results.
The convergence test was positive from the 2 K model meshed with 2 and 2.5 mm to the 64
K model, meshed from 0.5 to 2.5 mm element size. Compared to the other outcomes, the
ones from this method were the most complete and homogeneous, even considering the
results that did not go to convergence.

Another important parameter that came out from this test was that the analysis started
to converge when the size of the volumetric model in the FEA software was close to
the size of the superficial mesh. This information was fundamental to set the proper
methodology for the tests on cultural heritage objects. For the triangular simplified models,
given the inhomogeneous arrangement and dimension of the superficial elements, the
comparison was conducted considering the mean value of the dimension of the elements.
The convergence was reached when the models were meshed with the dimension of the
tetrahedrons close to this value (Tables 9–11).

Table 9. The comparison between the dimension of the element of the superficial meshes and the
volumetric element in FEA for the triangular simplified models. The column represents the dimension
of the superficial mesh element, and the rows represent the dimension of the volumetric elements in
the FEA software.

Element Dim 3–10 1.3–6 1–5 0.6–4 0.4–3 0.4–2 0.3–1.2 0.2–1.2

0.1 2.17 1.27 0.62 0.51 0.54 0.39 0.28 −1.00
0.5 0.53 0.25 0.23 0.15 0.16 0.14 0.09 0.05

1 0.33 0.15 0.11 0.04 0.07 0.09 0.03 0.04
1.5 0.20 0.18 0.03 0.04 0.03 −0.01 0.00 0.04

2 0.10 −0.04 −0.02 −0.02 0.06 0.01 0.06 0.04
2.5 0.10 −0.07 −0.05 −0.04 0.01 −0.01 0.07 0.04

For the retopologised models, as said, the models produced with the low adaptive
size parameter showed a homogeneous dimension of the elements that are perfectly square.
Additionally, in this case, the convergence analysis started when the two different element
sizes were almost the same (Table 10).
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Table 10. The comparison between the dimension of the superficial and the volumetric element for
the retopologised models with the adaptive size parameter set to 30. The columns represent the size
of the quadrangular mesh elements, while the rows represent the size of the volumetric ones.

Element Dim 5 3.7 2.7 1.8 1.2 0.9 0.6 0.4 0.3

0.1 1.79 1.50 1.07 0.69 0.49 0.38 0.32 0.23 0.20
0.5 0.39 0.45 0.24 0.23 0.21 0.08 0.09 0.04 0.06

1 0.16 0.06 0.14 0.04 0.11 0.00 0.02 0.04 0.06
1.5 0.11 −0.01 −0.10 −0.01 −0.03 0.00 0.02 0.04 0.06

2 0.06 −0.19 −0.07 −0.06 −0.03 0.00 0.02 0.04 0.06
2.5 −0.19 −0.11 −0.18 −0.09 −0.03 0.00 0.02 0.04 0.06

Finally, with the retopology method and the adaptive size parameter set at its maxi-
mum value, given the fact that especially with a lower number of nodes the shape of the
elements was rectangular, the comparison was performed with the mean value. Also in
this case, the convergence started when the two element sizes were similar (Table 11).

Table 11. The comparison between the two element sizes in the retopologised models with an
adaptive size parameter of 100. The columns represent the size of the superficial element, and the
rows represent sizes of the volumetric ones.

Element Dim 6 × 1.8 4 × 1.8 2.5 × 1.7 1.4 1 × 0.8 0.7 0.4 0.3

0.1 0.37 0.31 0.25 0.35 0.33 0.23 0.20 0.19
0.5 0.18 0.18 0.11 0.09 0.08 0.08 0.03 0.06

1 0.07 0.05 0.02 0.00 0.01 0.01 0.03 0.06
1.5 0.08 0.05 0.00 −0.01 0.01 0.01 0.03 0.06

2 0.07 −0.02 0.02 0.00 0.01 0.01 0.03 0.06
2.5 0.07 −0.02 −0.01 −0.01 0.01 0.01 0.03 0.06

Summarizing, the models derived from a simplification with triangular superficial
elements showed the worst results both in the order of processing time and, more important,
structural analysis results. The two retopology methods were equivalent regarding the
processing time, but when dealing with the structural results, the method adopted with
the high adaptive size parameter gave the best accordance both regarding the convergence
analysis and the closeness to the analytical result. This can be explained with the higher
adherence of these models to the high-resolution one, even if, with a strong simplification,
the models are smoother than the others. The advantage of the rectangular elements and
the adaptability of the models with this process make this the best method to be used for the
structural analysis of heritage directly using the reality-based meshes. This is clear looking
at the highlighted values in the tables above that indicate the percentage of the convergence
value of the FE analysis. The highlighted values are the ones that went to convergence;
thus, the results expressed in Tables 9–11 related to different types of simplification of the
mesh indicate that using a higher adaptive size parameter in the retopology process helps
to reach convergence in a more distributed and coherent way.

5. Discussion

Before using this methodology on objects and structures that cannot be tested in the
laboratory, to corroborate the results, another validation test was performed on a handmade
contemporary violin, the closest to the objects to which the methodology was set for.

The process was applied to evaluate a vibroacoustic numerical model of the violin,
based on accurate structural modelling [36]. The violin was surveyed with a six-axis arm
laser scanner with a tolerance of 0.03 mm. The post processing started from the correction of
the alignment of the different meshes acquired (Figure 11). It was not possible to perfectly
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correct the misalignment on one side of the model, but the mesh was cleaned and completed
where the missing parts or holes were visible.

 

 

(a) (b) 

Figure 11. The initial mesh of the violin: (a) the misalignment of the different meshes on one side of
the object; (b) holes on the surface.

After this step, the superficial mesh was simplified using retopology with the adaptive
size parameter set to 100 to obtain a 22 K model for each part of the violin. From this
superficial mesh, two NURBS were created and exported in *.iges format (Figure 12a,b).

 
(a) 

(b) 

Figure 12. The retopologised model of the of the soundboard of the violin (a) and the NURBS
obtained of both the soundboard and the back of the violin (b).
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The volumetric models were then meshed in the FEA software, and some modal
analyses were provided and then compared to the experimental ones (Figure 13). The
results gave good accuracy compared to the laboratory ones. The slight difference between
the results must be attributed to the error in the alignment of the initial mesh that caused a
reduction of the thickness of one side of the violin of 0.4 mm. This test represents a solid
validation of the process presented in this work because it was applied to an object with a
complex geometry and for which it was possible to evaluate the results of the FE analysis
with a test directly performed on the physical object. Furthermore, the modal analysis
results depended on the mass and stiffness distribution along the entire model, and this
evidenced the accuracy of the proposed method in respect to the actual mass and geometry
of the analysed object.

Figure 13. First, second, fifth and tenth vibration modes of the free soundboard from the experimental
data (upper part of the image, (a–d)); same mode evaluated through the FEA (lower part of the image,
(e–h)).

After these validation tests, the methodology was applied to the statue of the Gladiator,
in the Uffizi Gallery in Florence. The high-resolution model had 1,141,268 faces and was
simplified to 30 K nodes. The comparison of the triangular high-resolution model and the
retopologised one gave a mean of 0.0001 m and a standard deviation of 0.0004 m (Figure 14).
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(a) 

 
(b) 

Figure 14. The comparison between the high resolution and the simplified retopologised model of
the gladiator, where (a) is the graphical and visual comparison of the two meshes, and (b) is the
gaussian distribution of the mean and the standard deviation calculated during the mesh-to-mesh
comparison.
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The simplified model was converted in NURBS, exported in *.step format and then
imported in the FEA software for two different analyses: a static one imposing the grav-
itational load (self-weight) and a modal one, fixing 10 analyses to determine the natural
mode shapes and frequencies of the object during free vibration (Figure 15). The following
conditions were imposed in the structural analysis with a dimension of the volumetric
element of 16 mm:

- Density: 2500 kg/m3;
- Young’s Modulus for marble 78,000 MPa;
- Poisson Ratio 0.3;
- Gravity on -Z axis;
- Fixed support under the basement of the statue as boundary condition;
- Meshing element: 10-nodes tetrahedrons;
- Element size: 50 mm.

  
(a) (b) 

Figure 15. The static structural analysis imposing (a) the max principal stress under gravity on the
–Z axis and (b) the modal analysis for the statue of the gladiator.

Having validated the method with the previous analyses, its application to a cultural
heritage object indicates one of the most attractive applications of the method, which
is to accurately determine the stress state of geometrical details (where the notch effect
could case unexpected failures) with the static analysis and the global dynamic behaviour
(depending upon the global schematization of the object) by means of an affordable model,
both in terms of modelling and regarding the computational time.

The results show that the static analysis of the statue under its self-weight evidenced
that there are not local details with severe stress concentration and that the stress is in
each single point moderate and not dangerous. Further development could include occa-
sional load due to some movement to check the proper way to move it without causing a
dangerous situation.

Regarding the modal analysis, the dynamic behaviour was identified, and this can be
an important aid for the evaluation of the behaviour of the statue under seismic loads, to

127



Sensors 2022, 22, 9593

address the proper way to protect the statue from this exceptional event. The results can
be used as a term of comparison for simplified models, which respect the global mass and
geometric properties of the statue, allowing a faster analysis without losing accuracy. From
this point, this model can be considered itself a term of comparison for other models.

6. Conclusions

The use of retopology and the method proposed showed great performances using a
model derived from a reality-based survey for finite element analysis. The use of the 3D
measurement uncertainty as a simplification criterion allowed a considerable reduction
in mesh size, maintaining a high accuracy of the simplified model compared to the high
resolution one.

The main purpose of this work was benefit from the high-resolution reality-based
models, considering their details, and use them for the structural analysis. The need to
retain a high level of formal definition was acquired with the survey and was compatible
with FEA software was the most important result.

The laboratory specimen demonstrated that the FEA results always give solutions
closer to the analytical reference using volumetric models originated by the proposed
method with retopology instead of a model created by a generic simplification of triangular
meshes that showed not only a more arbitrary performance in the analysis but also lower
accuracy.

Another important result obtained, because of the convergence analysis, was the
detection of the best element size to be put in the FEA software to complete the analysis.
The statement that using a size of the volumetric element close to the size of the elements
of the meshes from which the volumetric model was created provided an important
parameter to be set, especially when dealing with models of objects that cannot be tested
in the laboratory. More information that can be acquired testing the process on a simple
object and comparing the results with the analytical one more the pipeline can be robust.
In this way, every single part of the process is verified, and the uncertainty of the process is
minimized to the standard approximation of finite element analysis.

The tests on the violin confirmed the process on a more morphologically complex
object, with the possibility to compare the results with the one performed in the laboratory.

Thanks to the tests conducted, it was also evident that the transformation of the
meshes into NURBS, given the same number of point-nodes, since meshes interpolate
points while NURBs approximate internal points constrained at the beginning and the end,
worked better in the retopologised models, meaning a smaller number of patches. This is a
fundamental point when transforming the superficial meshes into volumetric ones, both in
the reduction of the processing time and, most important, in the accuracy of the results.

Applying the methodology to cultural heritage objects confirmed that it is possible
to obtain an accurate FE analysis starting with an accurate simplified reality-based model,
keeping the level of details and the geometric complexity of the initial high-resolution
model.

The research is not closed with this work; some parts must be more deeply analysed.
the first is imagining new paths of experimentation, where digital construction acquires the
value of a descriptive language of exchange on several levels and is a diriment objective
for critical survey and representation. Sharing and making models interoperable therefore
directs the subsequent developments of the presented study. Ongoing efforts are focused
on the opportunity to consider the properties of the different materials used in constructed
artefacts in parallel with a more accurate segmentation analysis of the models. Having the
possibility to subdivide the model in its main part (structural or decorative) and giving
them the proper parameters (density, Young Modulus, Poisson’s ration, element of the
mesh) gains a higher accuracy in the analysis, especially when dealing with buildings. This
type of test object is more interesting considering FEA because of their structural behaviour
and the higher complexity of geometry.
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Abstract: Recently, research using point clouds has been increasing with the development of 3D
scanner technology. According to this trend, the demand for high-quality point clouds is increasing,
but there is still a problem with the high cost of obtaining high-quality point clouds. Therefore,
with the recent remarkable development of deep learning, point cloud up-sampling research, which
uses deep learning to generate high-quality point clouds from low-quality point clouds, is one of
the fields attracting considerable attention. This paper proposes a new point cloud up-sampling
method called Point cloud Up-sampling via Multi-scale Features Attention (PU-MFA). Inspired by
prior studies that reported good performance at generating high-quality dense point set using the
multi-scale features or attention mechanisms, PU-MFA merges the two through a U-Net structure. In
addition, PU-MFA adaptively uses multi-scale features to refine the global features effectively. The
PU-MFA was compared with other state-of-the-art methods in various evaluation metrics through
various experiments using the PU-GAN dataset, which is a synthetic point cloud dataset, and
the KITTI dataset, which is the real-scanned point cloud dataset. In various experimental results,
PU-MFA showed superior performance of generating high-quality dense point set in quantitative
and qualitative evaluation compared to other state-of-the-art methods, proving the effectiveness
of the proposed method. The attention map of PU-MFA was also visualized to show the effect of
multi-scale features.

Keywords: 3D vision; deep-learning; point cloud; attention mechanism; point cloud up-sampling

1. Introduction

A point cloud is one of the most popular formats for accurately representing 3D
geometric information in robotics and autonomous vehicles. Recently, the number of
studies using point clouds has been increasing with the development of 3D scanners, such
as LiDAR [1,2]. Along with this trend, there is an increasing demand for high-quality
point clouds that are low-noise, uniform, and dense. However, the high cost of collecting
high-quality point clouds remains problematic. Therefore, point cloud up-sampling, which
generates a low-noise, uniform, and dense point set from noisy, non-uniform, and sparse
point sets, is an interesting study.

Similar to learning-based image super-resolution studies [3,4], various learning-based
point cloud up-sampling studies [5–7] show better performance of generating high-quality
dense point set than traditional point cloud up-sampling studies [8,9]. Intuitively, the image
super-resolution tasks and the point cloud up-sampling tasks are similar. Unlike the image
super-resolution tasks, which process regular format images, the point cloud up-sampling
tasks, which process irregular formats, require additional consideration. First, the up-
sampled point set should have a uniform distribution and a dense set of points. Next,
the up-sampled point set should represent the details of the target 3D mesh surface well [10].
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A traditional learning-based point cloud up-sampling study usually consists of a
feature extractor and an up-sampler. In addition, most studies use multi-scale features or
attention mechanisms. PU-Net [11], 3PU [12], and PU-GCN [7] extract multi-scale features
from sparse point sets. These studies have reported that they are excellent for generating
dense point sets, but the last feature extracted by the feature extractor has a limitation in
that the details of the sparse point set are diluted features because the output of each layer
is used as the input of the next layer. Dis-PU [13], PU-EVA [6], and PU-Transformer [5]
showed successful performance of generating high-quality dense point set using the self-
attention mechanism to learn long-range dependencies between points. However, there
is a limit to applying the attention mechanism with limited information because the key,
query, and value of the self-attention mechanism are generated from the same input.

Focusing on these limitations, this paper proposes PU-MFA, a novel method to fuse
multi-scale features and attention mechanisms. PU-MFA solves point cloud up-sampling
through an attention mechanism that uses an adaptive feature for each layer. The contribu-
tions of this research are as follows:

• This paper proposes a point cloud up-sampling method of U-Net structure using
Multi-scale Features (MFs) adaptively to Global Features (GFs).

• Global Context Refining Attention (GCRA), a structure for effectively combining
MFs and attention mechanisms, is proposed. To the best of the authors’ knowledge,
this is the first MultiHead Cross-Attention (MCA) mechanism proposed in point
cloud up-sampling.

• This study demonstrates the effect of MFs by visualizing the attention map of GCRA
in ablation studies.

This method was compared with various state-of-the-art methods using the Chamfer
Distance (CD), Hausdorff Distance (HD), and Point-to-Surface (P2F) evaluation metrics for
the PU-GAN [10] and the KITTI [14] dataset. As a result, the effectiveness of this method
was confirmed by showing better performace at generating dense point set.

2. Related Work

2.1. Optimization-Based Point Cloud Up-Sampling

Various optimization-based studies have been performed to generate a dense set of
points from a sparse set. Alexa et al. solved up-sampling by inserting new points into
the Voronoi diagram of the local tangential space computed based on the moving-least-
squares error [8]. Lipman et al. explained the up-sampling using the Locally Optimal
Projection (LOP) operator [9]. In this study, the points were re-sampled by using L1 norm.
Huang et al. up-sampled a noisy and non-uniform set of points using an improved LOP
that is a weighted LOP [15]. Later, Huang et al. proposed an advanced method called
Edge-Aware Re-sampling of a set of points (EAR). The EAR first re-samples the edges and
then uses edge-aware up-sampling to resolve the up-sampling [16].

2.2. Learning-Based Point Cloud Up-Sampling

With the successful performance of learning-based image super-resolution, many
studies have proposed a learning-based point cloud up-sampling method.

As with image analysis, many studies have used MFs in point cloud up-sampling.
PU-Net [11], the first attempt at deep learning for point cloud up-sampling, showed good
performance at generating high-quality point set by extracting MFs through hierarchical
feature learning and interpolation based on the framework of PointNet++ [17]. 3PU [12]
performed well using MFs via an Intra-Level Dense connection and Inter-Level Skip con-
nection. PU-GCN [7] uses MFs extracted by Inception DenseGCN. In this study, Inception
DenseGCN could effectively extract MFs with an InceptionNet-inspired structure [18].
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Because of the advantages of learning the long-range dependency of the self-attention
mechanism, it is used in various point cloud up-sampling studies. In PU-GAN [10],
generators are trained using discriminators that apply a self-attention mechanism. Pugeo-
Net [19] showed good performance at generating high-quality dense point set by using it
in Feature Recalibration. PU-EVA [6] showed successfully generating up-sampled point
set using an EVA Expansion Unit with the mechanism. Dis-PU [13] performed well using
the Local Refinement Unit with self-attention applied to the generated point set. PU-
Transformer [5], which applied the transformer structure for the first time in point cloud
up-sampling, uses Shifted Channel MultiHead Self-Attention to show the state-of-the-art
performance of generating high-quality point set.

3. Problem Description

Given an unordered sparse point set S = {si}N
i=1 of N samples, we aim to generate

low-noise, uniform, and dense point set Q = {qi}rN
i=1 using D = {di}rN

i=1 as Ground Truth (GT),
where N is the input patch size and r is the up-sampling ratio. Figure 1 shows the problem
description of this study. Also, Table 1 summarizes the definitions of symbols to be used.

Table 1. Description of symbols.

Symbol Description

S Sparse point set

si Element of S

S′Δ Offset of S

s′Δi Element of S′Δ

D Ground truth point set

di Element of D

Q′ Coarse point set

q′i Element of Q′

Q′Δ Offset of Q′

q′Δi Element of Q′Δ

Q Dense point set

qi Element if Q

N Input patch size

r Up-sampling ratio

H Depth of layer

Fh Set of point wise feature extracted from hth Point Transformer

f h
i Point-wise feature extracted from hth Point Transformer

C Channel

K, K′ Expansion rate

patchi Patch created through KNN based on si

patch_size Neighbor size of KNN
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Figure 1. Illustration of an overview of the proposed method.

4. Method

This method consists of a Multi-scale Feature Extractor (MFE), Global Context Refiner
(GCR), Coarse Point Generator (CPG), and Self-Attention Block (SAB). As shown in Figure 2,
MFE extracts MFs, an adaptive feature for use in GCR. GCR uses MFs to refine GFs
adaptively and finally produce Q′Δ, where Q′Δ is defined as Q′Δ =

{
q′Δi

}rN
i=1. CPG generates

Q′ from S and SAB extracts GFs from Q′, where Q′ is defined as Q′ = {q′ i}rN
i=1. Based on the

definitions of Q′ and Q′Δ, Q is formulated as Equation (1), where ⊕ is an element-wise sum.

Q = Q′ ⊕ Q′Δ(⊕ : element-wise sum) (1)

Figure 2. Illustration of the proposed framework. Here, 3 is the coordinate dimension, and H is the
depth of the layer. In Multi-scale Feature Extractor (MFE) and Global Context Refiner (GCR), C is
the channel, and K is the expansion ratio. In Coarse Point Generator (CPG) and Self-Attention Block
(SAB), C′ is the channel and K′ is the expansion ratio.
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4.1. Multi-Scale Feature Extractor

Because the GFs extracted from Q′ via SAB is a feature extracted from a set of points
in which geometric information about the original input S is diluted, MFE using Point
Transformer (PT) [20], an advanced point cloud analysis technique, extracts MFs from S.
As shown in Figure 2, the MFE consists of H PT, and the set of point-wise features extracted
from the hth PT is Fh ∈ RN×Kh−1C. MFs are the set of Fh extracted from all layers of the
MFE. The extracted MFs and Fh are formulated as in Equation (2), where f h

i is a point-wise
feature extracted from the hth PT.

Fh =
{

f h
i

}N

i=1
, MFs = {Fh}H

h=1 (2)

Point Transformer

PT consists of two elements. The first is the K-Nearest Neighbor (KNN), and the
second is the Vector Self-Attention (VSA) mechanism. At the hth PT, the point-wise feature
f h−1
i of point si ∈ S is updated to f h

i through VSA, which uses si and patchi as the inputs.
The patchi is generated through KNN using si as the input. This operation works on
all points in S, updating the point-wise feature of all points [20]. This is formulated in
Equation (3), where patch_size is the size of KNN’s neighbor size.

patchi = KNN(si, patch_size)

f h
i = ∑

pk∈patchi

VectorSel f Attention(si, pk)

(si ∈ S, i ∈ {1, 2, ..., N})
(3)

Inspired by this operation, this considered patchi is equivalent to the CNN’s kernel.
In CNN, even if the kernel of the CNN is fixed, a deeper layer, means a wider receptive
field. Therefore, even if the patch size of the KNN in PT is fixed, the deeper the layer,
the more si can interact with a wider range of points. Figure 3 is an example with a KNN
patch size of four. In Figure 3a, when the hth PT updates f h−1

i to f h
i , VSA is performed

on patchi, which is composed of si and incidental points, to update f h−1
i . In Figure 3b,

the hth PT updates each feature by performing a VSA for each patch in all incidental points.
In Figure 3c, the (h + 1)th PT updates f h

i to f h+1
i by performing VSA using patchi similar to

the hth PT. However, the (h + 1)th PT updates f h
i to f h+1

i using a wider receptive field than
the receptive field of the hth PT because the features of the incidental points of the (h + 1)th

PT are updated by the hth PT. This operation allows the MFE to extract the MFs effectively.

(a) (b)

(c)

Figure 3. Illustration of KNN and VSA in PT. (a) hth Point Transformer layer with si. (b) hth Point
Transformer layer with incidental points. (c) (h + 1)th Point Transformer layer with si.
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4.2. Global Context Refiner

Because GCR and MFE are U-Net [21] structures, they are composed of H GCRA.
GCRA effectively refines GFs by querying MFs, which is adaptive geometric informa-
tion applied to each layer. As shown in Figure 2, the (H − h + 1)th GCRA generates
RGCH−h+1 ∈ RN×Kh−2C by using Fh ∈ RN×Kh−1C as a query and RGCH−h as a pool. How-
ever, RN×r3 was used instead to prevent RGCH from becoming RN× C

K . After refining the
GFs, the linear layer was used to perform the transformation. PixelShuffle was then used
to generate the Q′Δ ∈ RrN×3.

Global Context Refining Attention

Inspired by Skip-Attention [22], which acts as a communicator between the encoder
and decoder, GCRA uses MFs and GFs to apply the MCA mechanism. In various studies,
self-attention mechanisms are used to extract the features of point sets or to generate up-
sampling point sets [5,10]. However, the self-attention mechanism is limited because it uses
only limited information due to the structure in which key, query, and value are generated
from the same input. With these limitations in mind, GCRA in the H hierarchy uses
GFs∈ RN× K′C′

as the pool (key, values) and MFs as the queries, progressively refining the
GFs through MCA. GCRA consists of MCA [23], Batch Normalization (BN) [24], and Feed
Forward. As shown in Figure 4, the output shape of applying MCA using the query and
pool is RN×Fp . The pool was then refined by adding the pool and the MCA output. The BN
was used for stable training after addition. Feed Forward transforms the output of the BN
and produces a Refined Global Context (RGC)∈ RN×Fo .

Figure 4. Illustration of Global Context Refining Attention (GCRA). Fp is the pool input channel, Fq

is the query input channel, and Fo is the output channel.

4.3. Coarse Point Generator

CPG generates Q′. In CPG, PT [20] and PixelShuffle [5,25] generate S′Δ from S,
where, S′Δ is defined as S′Δ =

{
s′Δi

}rN
i=1. The structure of CPG consists of four layers,

such as the structure of the 3PU’s Feature Extraction Unit [12]. As shown in Figure 2,
to make the final output into 3D coordinates, first, PT was first used to expand the features,
and then gradually reduce them. Subsequently, PixelShuffle generates 3D coordinates
using those features. Q′ is generated through the element-wise sum of the generated S′Δ
and duplicate(S, r) ∈ RrN×3. This process is formulated as Equation (4).

duplicate(S, r) =

⎧⎨
⎩

r times︷ ︸︸ ︷
si, ..., si

⎫⎬
⎭

N

i=1

Q′ = duplicate(S, r)⊕ S′Δ

(4)

4.4. Self-Attention Block

Inspired by self-attention, which learns long-range dependency [23], we use Multi-
Head Self-Attention (MSA) was used to extract the GFs from Q′. As shown in Figure 2,
the shape of Q′ was changed from RrN×3 to RN×3r, and the coordinates of Q′ were used
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as features of the original point set S. The GFs∈ RN×K′C′
was then extracted using the

changed shape Q′ as the input to the MSA.

5. Experimental Settings

5.1. Datasets

All methods were trained using the most popular PU-GAN [10] dataset in these
experiments and evaluated using the PU-GAN dataset and the KITTI [14] dataset. The PU-
GAN dataset was a synthetic point cloud dataset produced from 147 3D meshes, and the
KITTI dataset was a real-scanned point cloud dataset collected using real LiDAR.

The training phase used 120 3D meshes from the PU-GAN dataset. All patches were
generated via the Poisson disk sampling after converting the original mesh to a point cloud, just
like the patch-based up-sampling approach. The sampling resulted in 24,000 input-output pairs.

In the evaluation phase, 27 3D meshes from the PU-GAN dataset were converted
into point clouds to test the synthetic point up-sampling, and the real-scanned point up-
sampling test was performed using the KITTI dataset. The generated patches should
cover all point sets when evaluating the synthetic point cloud and real-scanned point
cloud up-sampling. After merging each up-sampled patch, the up-sampled point set
was reconstructed by farthest point sampling. More details can be found at study in PU-
GAN [10]. This dataset was downloaded and used from https://github.com/liruihui/PU-
GAN (accessed date: 12 July 2022).

5.2. Loss Function

In most point cloud reconstruction methods, CD is used as the loss function [22,26,27].
However, it was confirmed empirically that the Using Density-Aware Chamfer Distance
as loss function showed good performance at point cloud reconstruction, considering the
uniformity of the points set on the CD [28]. Therefore, the total loss was formulated as
Equation (5), where α is linearly interpolated from 0.1 to 1 during training and ‖·‖2 is
L2 norm.

Loss(Q′, Q, D) = LCD(Q′, D) + α × LDCD(Q, D)

LCD(Q′, D) =
1

|Q′| ∑
x∈Q′

min
y∈D

‖x − y‖2 +
1
|D| ∑

y∈D
min
x∈Q′‖y − x‖2

LDCD(Q, D) =
1
|Q| ∑

x∈Q
min
y∈D

(1 − e−‖x−y‖2) +
1
|D| ∑

y∈D
min
x∈Q

(1 − e−‖y−x‖2)

(5)

5.3. Metric

This study evaluated the method using CD, HD, and P2F metrics, as in prior
studies [5,6,13]. CD is a metric that measures the similarity between a set of GT points
and a set of predicted points for each point, and HD is an evaluation metric that measures
the outliers in a set of predicted points based on a set of GT points. P2F is an index that
measures the similarity between the original mesh and the predicted point set and mea-
sures the quality of the predicted point set. The parameter complexity was also measured
by measuring the number of parameters. For all metrics, a lower the number, meant
better performance.

5.4. Comparison Methods

The proposed method was compared with three state-of-the-art methods: Dis-pu [13],
PU-EVA [6], and PU-Transformer [5] to validate the method. For an exact comparison, all
methods were implemented using pytorch [29] version 1.7.0 on Ubuntu 20.04 and trained
on the same Intel i9-10980XE CPU and NVIDIA TITAN RTX environment.
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5.5. Implementation Details

All methods for the experiment were trained with a batch size of 64 for 100 epochs,
and the Adam [30] optimizer with a learning rate of 0.0001 was used. The patch size of KNN
used in PT is set to 20 as in PU-Transformer [5]. Rotation, scaling, random perturbation,
and regularization were applied to the training dataset. as in prior studies [10,11]. The up-
sampling ratio r was four and the input patch size N was 256. The CPG’s C′ and K′ were
32 and 8, respectively. For MFE and GCR, C and K were 16 and 4, respectively. The layer
depth of MFE and GCR, H, was four. The head number of MCA and MSA was set to
eight, as in the prior study [23]. Here, the head is used to learn different perspectives in
Multihead Attention.

6. Experimental Results

Dis-PU [13], PU-EVA [6], and PU-Transformer [5], and the present method were
compared using the PU-GAN [10] and the KITTI [14] datasets.

6.1. Results on 3D Synthetic Datasets

Table 2 lists the quantitative performance comparisons for ×4 and ×16 up-sampling.
×4 up-sampling sampled 2048 points to 8192 points. ×16 up-sampling sampled 512 points
to 8192 points by repeating the ×4 up-sampling twice. As shown in Table 2, the present
method showed good performance of generating high-quality point set compared to the
other state-of-the-art methods. Presented method has the best value in the evaluation
metric compared to other methods with similar parameter complexity. As shown in Table 3,
the time complexity of the proposed method is similar to that of other methods.

Figures 5 and 6 present the visualization result of ×4 up-sampling, and Figure 7 is the
visualization result of ×16 up-sampling. Figures 5b–d, show a set of points representing a
tubular object, such as a bird’s leg, the space between the kitten’s body and tail, a statue’s
leg, and a camel’s hoof with unclear boundaries. However, Figure 5e shows low-noise
and clear boundaries. Also, Figures 6b–d, show the set of points representing non-tubular
objects with noise the LP rear control cover and star. However, Figure 6e shows low noise
in non-tubular objects.

In Figure 7b,d, the chair back does not represent the original shape well, and Figure 7c
maintains the shape to some extent, but there is considerable noise. On the other hand,
Figure 7e has relatively little noise and represents the original shape well.

Table 2. Comparing the quantitative evaluation of ×4 and ×16 up-sampling with the state-of-the-
art methods.

Method
×4 (2048 → 8192) ×16 (512 → 8192)

CD (10−3) HD (10−3) P2F (10−3) #Params (M) CD (10−3) HD (10−3) P2F (10−3) #Params (M)

Dis-PU 0.2703 5.501 4.346 2.115 1.341 28.47 20.68 2.115
PU-EVA 0.2969 4.839 5.103 2.198 0.8662 14.54 15.54 2.198

PU-Transformer 0.2671 3.112 4.202 2.202 1.034 21.61 17.56 2.202

PU-MFA (Ours) 0.2326 1.094 2.545 2.172 0.5010 5.414 9.111 2.172

Table 3. Measure average time complexity after 50 measurements on ×4 up-sampling.

Method Time per Batch (sec/batch)

Dis-PU 0.02659
PU-EVA 0.02360

PU-Transformer 0.02244

PU-MFA (Ours) 0.02331
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(a) Input (b) Dis-PU (c) PU-EVA

(d) PU-Transformer (e) PU-MFA(Ours) (f) GT

Figure 5. Visualization result of ×4 up-sampling on PU-GAN dataset (tubular objects).
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(a) Input (b) Dis-PU (c) PU-EVA

(d) PU-Transformer (e) PU-MFA(Ours) (f) GT

Figure 6. Visualization result of ×4 up-sampling on PU-GAN dataset (non-tubular objects).

(a) Input (b) Dis-PU (c) PU-EVA (d) PU-Transformer (e) PU-MFA(Ours) (f) GT

Figure 7. Visualization result of ×16 up-sampling of PU-GAN dataset.

6.2. Results on Real-Scanned Datasets

Dis-PU, PU-EVA, PU-Transformer, and the present method were evaluated using
the KITTI dataset for ×4 up-sampling. Figure 8 shows ×4 up-sampling. In Figure 8b–d,
the boundary between the window and the door of the vehicle was unclear. However,
Figure 8e generated by the present method, showed that the boundary was clearer.
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(a) Input (b) Dis-PU (c) PU-EVA

(d) PU-Transformer (e) PU-MFA(Ours) (f) GT

Figure 8. Visualization result of ×4 up-sampling of the KITTI dataset.

6.3. Ablation Study

This method, was evaluated by performing various ablation studies using the PU-
GAN dataset.

6.3.1. Effect of Components

To demonstrate the effectiveness of the contribution, four cases were divided into
ablation studies. The cases were as follows: Case 1 was a structure using GCR, CPG,
and SAB, with the MultiHead Attention (MHA) of GCR and SAB consisting of self-attention
with one head. Case 2 was a structure changed from Case 1 to eight heads. Case 3 was a
structure using GCRA composed of MCA by adding MFE to Case 2, where the query of all
GCRA becomes F4, the final output of MFE. Case 4 was PU-MFA. As shown in Table 4, all
contributions affected the method performance of generating point set.

Table 4. Ablation study results to analyze the effect of the present contribution.

Case
Contribution Metric

MHA MFE MFs CD (10−3) HD (10−3) P2F (10−3)

1 0.3349 4.461 4.926
2

√
0.2473 1.101 2.829

3
√ √

0.2500 2.735 2.737

4
√ √ √

0.2362 1.094 2.545

6.3.2. Multi-Scale Features Attention Analysis

By visualizing the attention maps of all GCRAs, it was confirmed that the GCRAs of
GCR with H = 4 refined the GFs by adaptively using the MFs extracted from receptive
fields of various sizes. Figure 9 shows the results visualized by choosing three attention
heads in the GCRA and selecting 30 points, which had the highest attention score in S,
from each head. The attention map was visualized using Case 3 in Table 4 without MFs in
Figure 9b to compare that MFs operated adaptively. As shown in Figure 9a, in the low-layer
GCRA, an attention map was formed for a wide range of points in a point set, and in
high-layer GCRA, an attention map was formed for a relatively narrow range of points.
On the other hand, in Figure 9b, a wide range of attention maps was formed regardless of
the high and low levels of the hierarchy. This phenomenon confirmed that PU-MFA uses
the adaptive point feature for each layer of the GCRA.
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(a) Using the MFs GCRA attention map

(b) Not Using the MFs GCRA attention map

Figure 9. Visualization of attention map generated using MFs as a query in GCR with H = 4.

Figure 10. Visualization result of the effect of noise.

6.3.3. Effect of Noise

Table 5 lists the ×4 up-sampling results of Dis-PU [13], PU-EVA [6], PU-Transformer [5],
and the present method using the PU-GAN dataset with various noises added. The noise
effect evaluated the result obtained by adding different levels of Gaussian noise N (0,noise
level) to a set of input points. As shown in Table 5, the proposed method showed the most
robustness to various noise levels. As shown in Figure 10, it can be seen that the boundary
between the fingers blurred in the dense set of points generated by the state-of-the-art
methods as the noise level was increased. On the other hand, the proposed method showed
that the boundary between the fingers was maintained in the dense set of points generated
by the present method.
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Table 5. Quantitative evaluation results of the noise effects using the PU-GAN dataset.

Method
Various Noise Levels Test at ×4 Up-Sampling (CD with 10−3)

0 0.001 0.005 0.01 0.015 0.02

Dis-PU 0.2703 0.2751 0.2975 0.3257 0.3466 0.3706
PU-EVA 0.2969 0.2991 0.3084 0.3167 0.3203 0.3268

PU-Transformer 0.2671 0.2717 0.2905 0.3134 0.3331 0.3585

PU-MFA (Ours) 0.2326 0.2376 0.2547 0.2764 0.2989 0.3195

7. Conclusions

In this paper, we proposed PU-MFA, a point cloud up-sampling method of U-Net
structure that combines multi-scale features and attention mechanism. One of the most
significant differences from the prior point cloud up-sampling methods was that PU-MFA
used multi-scale features adaptively and effectively through fusion with the cross-attention
mechanism. Also, the PU-MFA is the first method to apply the cross-attention mechanism
to point cloud up-sampling to the best of the authors’ knowledge. Various experiments
were performed on PU-MFA and other state-of-the-art methods using the PU-GAN and the
KITTI dataset. As a result, PU-MFA showed better performance of generating high-quality
dense point set than other state-of-the-art methods in various experiments. In addition,
ablation study showed that multi-scale features are very useful in PU-MFA for generating
high-quality point sets by choosing receptive field size adaptively for each layer.

Despite the successful performance at generating high-quality dense point set of PU-
MFA, PU-MFA cannot cope with an arbitrary up-sampling ratio. Because PU-MFA is a
patch-based up-sampling of ×4, up-sampling is only possible for 4 to the M power. A
method that can respond to an arbitrary up-sampling ratio is planned in the future to
overcome this limitation.
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Abstract: Plant point cloud segmentation is an important step in 3D plant phenotype research.
Because the stems, leaves, flowers, and other organs of plants are often intertwined and small in
size, this makes plant point cloud segmentation more challenging than other segmentation tasks. In
this paper, we propose MASPC_Transform, a novel plant point cloud segmentation network base
on multi-head attention separation and position code. The proposed MASPC_Transform establishes
connections for similar point clouds scattered in different areas of the point cloud space through
multiple attention heads. In order to avoid the aggregation of multiple attention heads, we propose
a multi-head attention separation loss based on spatial similarity, so that the attention positions of
different attention heads can be dispersed as much as possible. In order to reduce the impact of point
cloud disorder and irregularity on feature extraction, we propose a new point cloud position coding
method, and use the position coding network based on this method in the local and global feature
extraction modules of MASPC_Transform. We evaluate our MASPC_Transform on the ROSE_X
dataset. Compared with the state-of-the-art approaches, the proposed MASPC_Transform achieved
better segmentation results.

Keywords: point cloud; plant phenotyping; point cloud segmentation; multi-head attention; attention
separation; position code

1. Introduction

Plant phenotype is to study how to measure the shape characteristics of plants, such
as plant height, leaf organ size, root distribution, fruit weight, etc. These traits are closely
related to the yield, quality, and stress resistance of plants. The study of plant phenotype
has important value for agricultural modernization breeding [1], water and fertilizer
managements of crop [2], and pest control [3].

In the process of plant phenotypic feature extraction, accurate segmentation of plant
data according to different organs (stems, leaves, flowers, etc.,) is the premise of high-
precision plant phenotype [4]. Plant organ segmentation technology based on 2D images
has been very mature [5–8]. In recent years, with the development of LiDAR technology,
more and more 3D spatial information of plants has been collected [9]. The plant point cloud
contains the 3D spatial position, RGB color, normal vector, and other information of the
collected object. Compared with 2D images, plant point cloud retains more spatial details
and is not easily affected by occlusion, and can extract the plant structure more accurately.

By summarizing the existing segmentation methods of plant point clouds, we find
that the existing methods have poor segmentation effect at the junction of different plant
organs. For example, in the segmentation result in the fifth row and the first column
in Figure 7, some stems are erroneously recognized as leaves. And this phenomenon is
more obvious when the stem contacts the leaves. In the segmentation result in row 6 and
column 2 of Figure 7, the part of the small calyx in the point cloud is erroneously divided
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into leaves. The reasons for the above segmentation errors are as follows: (1) for the plant
segmentation task, the points belonging to the same plant organ are far from each other and
are interwoven with the point clouds of other organs. For example, in Figures 5 and 6 the
stems of the plants are almost distributed in the whole point cloud space and interweaved
with other organs. The segmentation network often extracts the point cloud features of
the whole plant without distinction, and does not mine the relationship of point clouds
belonging to the same organ in the point cloud space. (2) Plant point clouds have the
characteristics of disorder and irregularity, which will affect feature extraction.

To further improve the segmentation accuracy of plant point clouds, we use the Point
Transformer [10] as the backbone of the proposed MASPC_Transform. The Point Transform
uses the multi-head attentional mechanism in the process of local and global feature
extraction. The multi-head attention mechanism can form associations between points of
the same organ. And the multi-head attention mechanism is composed of multiple parallel
self-attention mechanisms, which makes the whole feature generate multiple sub feature
spaces and can extract feature information from multiple dimensions. However, the features
of multi-head attention extraction may tend to be similar [11], that is, multiple attention
heads establish connections for similar semantic point clouds at different positions in the
point cloud space, but these point clouds may be located in the same area (for example,
these point clouds may all be located on the same leaf of a plant). Therefore, we propose
a multi-head attention separation loss based on spatial similarity, so that the attention
positions of different attention heads can be separated from each other as much as possible,
so as to establish a connection for point clouds that are distant in the point cloud space
but belong to the same organ. In order to suppress the influence of point cloud disorder
and irregularity on feature extraction, we added position coding network in the local and
global feature extraction modules of MASPC_Transform.

The main contributions of this paper are summarized as follows:

1. We propose a plant point cloud segmentation network named MASPC_Transform,
and evaluate its segmentation performance on the ROSE_X dataset.

2. We propose a loss function of multi-head attention separation based on spatial sim-
ilarity. This loss can make the attention positions of different attention heads as
dispersed as possible, and establish a connection for the point clouds that are far
away but belong to the same organ, thus providing more semantic information for
accurate segmentation.

3. In order to reduce the impact of point cloud disorder and irregularity on feature
extraction, we propose a position coding method that can reflect the relative position
of points, and use the position coding network in the local and global feature extraction
modules of MASPC_Transform.

The rest of this paper is organized as follows. Section 2 introduces the related work of plant
point cloud segmentation. Section 3 describes the detailed structure of MASPC_Transform. In
Section 4, we evaluated the segmentation performance of MASPC_Transform on the ROSE_X
dataset and analyzed the experimental results. The last part is the conclusion of this paper.

2. Related Work

Traditional methods achieve the segmentation of plant point clouds through geometric
features [12]. These methods use geometric information such as point cloud edge points,
smoothness, plane fitting residual [13], curvature gradient [14] to classify and aggregate
each point. On this basis, the method of clustering and model fitting [15] is further applied
to complete the segmentation of point cloud data. Lee et al. [16] developed an adaptive
clustering method, which can segment the point cloud data of pine forest to manage
individual pine trees. This method is suitable for different sizes of canopy, but it needs a lot
of data for pre training. Tao et al. [17] completed the segmentation task of single tree by
setting a reasonable spacing threshold by using the characteristics of different trees and
combining the “growth” algorithm. Xu et al. [18] applied the traditional Dijkstra shortest
path algorithm to the spatial point cloud to complete the separation of tree branches
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and leaves. Matheus et al. [19] fused a variety of algorithms to realize the recognition
of geometric characteristics in tree point cloud, and combined with the shortest path
algorithm to complete the segmentation of point cloud structure, which greatly improved
the robustness of the algorithm. Li et al. [20] designed a new algorithm to more accurately
estimate the inclination and azimuth of the blades in the point cloud, and constructed a
new projection coefficient model. In the follow-up study, Li et al. [21] developed a new
path discrimination method by improving Laplace’s shrinkage skeletonization algorithm
to obtain the relevant parameters of the branch architecture. Traditional algorithms are
easily affected by outliers and noise, which reduces the segmentation accuracy. The design
of such algorithms often depends on the empirical design of geometric features, which are
only effective for specific segmentation tasks.

Compared with traditional algorithms, deep learning methods are data-driven, do not
need too many artificial design features, and have better performance. Currently, the deep
learning methods that have been applied to point cloud segmentation include methods
based on multi-view [22], voxel [23], and point cloud [24–26]. The method based on point
cloud has the characteristics of directly processing point cloud and greatly retaining data
information, so it has gradually become the mainstream research direction. Qi et al. [24]
first proposed the network structure pointnet for directly processing point cloud data. This
network proposed to use multilayer perceptron (MLP) with shared parameters to learn
features and use symmetric functions to obtain global features. However, it has the problem
that it cannot make full use of local information of points to extract fine-grained features.
In order to solve this problem, an improved pointnet++ network [25] is proposed, which
performs hierarchical and progressive learning on points from a large local area to obtain
accurate geometric features near each point. In order to better extract the features of point
clouds, Lee et al. [27] proposed an attention network, which can deal with disordered
sets by adjusting the internal parameters of the network and can be used to extract the
features of point clouds. Engel et al. [10] designed the Point Transformer network for point
cloud segmentation, used multi-head attention in the network, and designed the SortNet
structure to ensure the permutation invariance of extracted features.

Although great progress has been made in the research of deep learning segmentation
algorithms for point cloud data, there are still few research on the segmentation of plant
point cloud using deep learning methods. Wu et al. [28] adjusted the pointnet architecture
to make the framework more suitable for processing the segmentation task of branches
and leaves, and proposed a contribution score evaluation method. Jin et al. [29] made
corn point cloud voxelized and applied convolutional neural network to voxelized data
to complete a series of research work such as corn population segmentation and individ-
ual segmentation. Dutagaci et al. [30] provided valuable rosette data sets and provided
benchmarks. Turgut et al. [31] verified the segmentation accuracy of various point based
deep learning methods based on the work of Dutagaci [30], and studied the feasibility of
three-dimensional synthesis model for training networks. Compared with other field point
cloud segmentation tasks, plant point cloud segmentation is more challenging. This is
because the stems, leaves, flowers, and other parts of plants are intertwined, resulting in
the segmentation effect of existing segmentation methods is not ideal. The particularity of
plant point cloud is that each part (organ) of the plant is very small and interwoven. This
study proposes MASPC_Transform for segmentation of complex point clouds such as plant
point clouds. In addition to the plant point cloud segmentation task, it is also applicable to
the segmentation task of other point clouds with complex interwoven structures, such as
forest point clouds [32].

3. Approach

3.1. Architecture of MASPC_Transform

The architecture of MASPC_Transform is shown in Figure 1. We use Point Trans-
former [10] as the network framework of MASPC_Transform. The difference between
the proposed MASPC_Transform and the Point Transformer is that the proposed position
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coding network is used in the PC_MSG and PC_SortNet modules, and the proposed multi-
head attention separation loss based on spatial similarity is added to the loss function of
the entire network. MASPC_Transform includes feature extraction part and detection head.
The feature extraction network has two branches: location feature generation and global
feature generation. These two branches are responsible for extracting local and global
features of plant point clouds. The global features (FGlobel) and local features (FLocation) are
aggregated in the detection head and the segmentation results are obtained.

Figure 1. Architecture of MASPC_Transform.

First, the plant point cloud is input to the location feature generation and global feature
generation branches for processing. Both branches first extract the feature of point cloud.
In the location feature generation, the PC-SortNet module can evaluate the importance
of the features of different areas of the point cloud, and select the important features as
the local features of the plant point cloud. In the global feature generation branch, the
multi-scale grouped (MSG) feature extraction network can obtain the point cloud features
of three scales to adapt to different sizes of plant organs. The features of the three scales
are fused as the global features of the whole plant point cloud. We use the position coding
proposed in this paper in PC_MSG and PC_SortNet modules. Position coding is discussed
in detail in Section 3.1. In detection head, the global feature FGlobel and the local feature
FLocation are associated and fused by the multi-head attention module. The multi-layer
perceptron (MLP) in the detection head obtains the final segmentation result based on the
fused features.

Multi-head attention [10] in MASPC_Transform is defined as follows:

Multihead(Q, K, V) =
(

F1
sa

⊕
. . .

⊕
Fi

sa

)
WO (1)

AMH(X, Y) = LayerNorm(S + Φ(S)) (2)

In Equation (1), Q, K, and V respectively represent the query matrix, key matrix, and value
matrix of attention, and their matrix dimensions are dk, dk, and dv. Fi

sa = A
(

QWQ
i , KWK

i , VWV
i

)
represents the features output by the ith attention head, WQ

i , WK
i ∈ Rdm×dk , WV

i ∈ Rdm×dv ,
and WO ∈ Rhdv×dm are the learnable parameters. The symbol

⊕
indicates that the features
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outputted by different attention heads are concatenated together. In Equation (2), LayerNorm
is layer normalization [33]. S is defined as S = LayerNorm(X + Multihead(X, Y, Y)), Φ is a
network module with multiple MLPs, which is responsible for further feature extraction of
S. AMH(X, Y) is the prototype of all multi-head attention in the network.

Asel f (P) = AMH(P, P) (3)

ALG(P, Q) = Across(P, Q) = AMH(P, Q) (4)

In Equations (3) and (4), Aself, ALG, and Across are derived from AMH. Aself can perform
the calculation of multi-head attention among all elements of P, while ALG and Across can
handle different sets P and Q, and perform the calculation of multi-head attention between
the two sets.

We proposed a multi-head attention separation loss based on spatial similarity (loss
in Figure 1). This loss acts on all the multi-head attention modules in MASPC_Transform.
Therefore, we call the three attention modules that are affected by the proposed loss
as Div_Asel f , Div_ALG, and Div_Across. These three multi-head attention modules are
responsible for establishing connections for similar features at different positions in the
point cloud space. We will discuss the loss function of multi-head attention separation
based on spatial similarity in Section 3.3.

3.2. Position Code

Plant point cloud data are a collection of a series of points in space. Point sets have
the characteristics of disordered and irregular distribution, so we propose a unique point
cloud position coding method. The position code contains the relative position information
of each point and its adjacent points, so as to avoid the interference of the disorder of the
point cloud on the feature extraction. Position code function δ is defined as follows:

δ = θ

(
n⋃

i=1

(
Pi, (Pi − Pi1), . . . . . . , (Pi − Pij)

))⊕
θ
(

Pi, Pi1, . . . . . . , Pij
)

(5)

Suppose there are n points in the whole point cloud space. In Equation (5), Pi is a point
in a subspace after the ball query, Pi, Pi1, Pi2, Pi3, . . . , Pij ∈ P, P is the set of all points in the
subspace. Pi, (Pi − Pi1), . . . . . . , (Pi − Pij) are the relative position codes of point Pi,

⋃n
i=1()

represents the relative position code of all points in the space. Function θ is a multi-layer
perceptron (MLP) used for feature extraction of position code. The symbol

⊕
indicates

that the obtained two features are concatenated. Equation (5) indicates that the position
coding δ of the point cloud space is composed of the relative position code (RPC) and the
absolute position code (APC) of each point in the space. The absolute position code of
a point is the coordinates of the point cloud. The relative position code of a point is the
difference between the coordinates of the point and all points in its subspace. The relative
position code keeps a certain invariance to the disorder of the point cloud, and it reflects the
relationship between a point and its adjacent points, which can make the feature contain
more local information. The position code network is shown in Figure 2.

3.3. MSG and SortNet Based on Position Code Network

In MASPC_Transform, we improved the MSG [10] in Point Transformer, and used the
Position code-MSG(PC-MSG) module to extract global features. The structure of PC-MSG is
shown in Figure 3. PC-MSG first takes the farthest point sampling (FPS), then the sampling
point is taken as the center point, and three different radius are selected for ball query.
According to the method in 3.1, the RPC of points is calculated in the subspace of each scale
in PC-MSG. After that, the RPC features of each scale were extracted using MLP. In Figure 3,
the orange rectangle represents the extracted RPC features of each scale, the blue rectangle
represents the extracted APC features of each scale, and the high D features are the features
extracted by the high-dimensional feature extraction network before the PC-MSG network.
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Finally, the RPC features, APC features, and high D features are concatenated together.
Because the network structures of different scales in the MSG are the same, the feature
extraction process of the second scale of the network is omitted in Figure 3.

 

Figure 2. Position code network.

Figure 3. Position code in MSG.

We also improved SortNet in Point Transformer network [10], replacing SortNet with
PC-SortNet with position code. As shown in Figure 4, in the PC-SortNet, the input features
first pass through multiple MLPs, and its feature dimension is reduced to 1 dimension.
This feature calculates a learnable importance score for each point in the point cloud space.
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After that, k points with the highest score are selected through the Top-k module. We take
k points as the center of the ball query and extract the features of the region within the ball.
We use a method similar to skip connect to concatenate the features of different stages. As
shown by the Red PC in Figure 4, we use the position code proposed in Section 3.1 when
querying the ball and extracting features.

 

Figure 4. Position code in PC_SortNet.

3.4. Multi-Head Attention Separation Loss Based on Spatial Similarity

When multi-head attention is used for feature extraction, there is a possibility that the
generated multiple attention spaces are similar [11], which will cause multiple attention
spaces to overlap each other, resulting in repeated extraction in some areas and insufficient
feature extraction in other areas. Therefore, we propose a multi-head attention separation
loss based on spatial similarity, which makes each attention positions of the segmented
network tend to be separated. Its definition is as follows:

Separation_Loss = − 1
n2 ∑

Fi
sa ,Fj

sa∈F ,i 	=j

∣∣∣∑ Fi
saFj

sa

∣∣∣
‖Fi

sa‖2‖Fj
sa‖2

(6)

In Equation (6), Fi
sa and Fj

sa are the different attention feature spaces of multi-head
attention output, and F is the set of feature spaces output by the attention mechanism. The
symbol | . | represents the module of the matrix, ‖ . ‖2 denotes the 2-norm of the matrix.
Equation (6) can calculate the average cosine distance of all output feature spaces. Cosine
distance is an index to measure the difference of feature space in direction, so it can be used
to evaluate the similarity of feature space. By dividing by n2, we can make the calculated
value tend to a reasonable range and avoid the difficulty of network training. Using a
negative sign to indicate Separation_Loss penalizes network parameters that make Fi

sa

and Fj
sa tend to be similar. We take the Separation_Loss as a part of the loss function and

train the network, so that the attention features tend to be diverse. The loss function of
MASPC_Transform is as follows:

Loss_CrossEntropy = −∑
x
(p(x)logq(x) + (1 − p(x)) log(1 − q(x))) (7)

Loss = LossCrossEntropy + Lossscal × Separation_Loss (8)

In Equation (7), p(x) is the real classification probability distribution of the input point
cloud, and q(x) is the prediction probability distribution actually given by the network.
Equation (7) depicts the difference between the classification result and the real value.
The smaller the value of Loss_CrossEntropy, the more realistic the prediction given by the
network. As shown in Equation (8), we used the Loss_CrossEntropy and Separation_Loss as
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MASPC_Transform’s loss function. Where Loss_scal is the weight of Separation_Loss in the
loss function. Using the new loss function to train MASPC_Transform can make multiple
attention feature spaces specific.

4. Experiment

4.1. Data Set

We evaluated the performance of MASPC_Transform on the ROSE_X dataset [30]. The
ROSE_X dataset contains a total of 11 rose point cloud data. The rose point cloud data
contain three semantic tags, namely, flower, leaf, and stem. The petals, calyx, and bud of
rose are all marked as “flower” label, and the stem and petiole are all marked as “stem”
label. We use nine rose point clouds to train the network, and the other two rose point
clouds to test the segmentation performance of the network after training. We denoted
the two roses used for the test as test_R1 and test_R2. Because the volume of a single rose
point cloud is large and the number of points is large, and the amount of data that can be
processed at a single time is limited, it is necessary to divide the point cloud into smaller
blocks. We adopt the same blocking method as in [30], that is, the size and number of points
of each block are as consistent as possible, and the structure within the block is as complete
as possible. With this method, we divided the nine rose point clouds used for training into
596 point clouds and the two point clouds used for testing into 143 point clouds.

4.2. Implementation Details

For the model training, the Adam optimizer is used to update and optimize the
network parameters. The initial learning rate is set to 0.001 and the batch size is 16. The
GPU model is NVIDIA GeForce RTX 2080Ti, operating system is Ubuntu 18.04 LTS, CUDA
version is 11.0. The proposed model is implemented in PyTorch with Python version
3.6. When training MASPC_Transform network, the input point cloud only contains
three-dimensional X-Y-Z coordinates, and the number of input points is 2048.

4.3. Evaluation Methodology

We use the Intersection over Union (IoU) and Mean Intersection over Union (MIoU)
to evaluate the performance of all networks. Where IoU is equal to the ratio of intersection
and union between the predicted point set and the real point set, and MIoU represents the
average value of IOU of all categories. The higher the values of these two indicators, the
better the segmentation effect of the point cloud. The mathematical definition is as follows:

IoUc =
TPc

TPc + FPc − FNc
(9)

MIoU =
∑c IoUc

k
(10)

where TPc, FPc, and FNc are the number of positive samples of category C that have been
correctly identified, the number of negative samples that have been misreported. and
the number of positive samples that have been missed, C ∈ {Flower, stem, lea f }, k is the
number of all categories.

4.4. Segmentation Results

In Table 1, we show the segmentation results of different segmentation networks on
ROSE_X dataset, including PointNet [24], PointNet++ [25], DGCNN [34], PointCNN [35],
ShellNet [36], RIConv [37], and the proposed MASPC_Transform.
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Table 1. Comparison of network segmentation effect indicators (%).

Evaluation Category Pointnet Pointnet++ DGCNN PointCNN ShellNet RIConv
Point

Transformer
Ours

IoU

Flower 15.83 74.12 8.34 53.56 49.36 54.12 80.93 83.32

Leaf 82.56 95.36 84.17 91.76 89.69 88.96 91.76 94.36

Stem 5.27 77.69 24.97 70.89 54.78 35.79 74.99 78.96

MIoU MIou 34.55 82.39 39.16 72.14 64.61 60.79 82.56 85.52

In Table 1, we can see MASPC_Transform has the highest MIoU, and MASPC_Transform
achieves the best segmentation results on both the flower and stem classes. As an im-
proved version of PointNet, PointNet++ can flexibly extract local features by adjusting
the neighborhood radius, and has the ability to extract the features of small organs of
plants. So, it achieves the best segmentation results in leaf class. The IoU value of
MASPC_Transform on the leaf class is slightly lower than that of PointNet++, but the
MIoU value of MASPC_Transform is higher than that of PointNet++.

4.5. Visual Effects

Figures 5 and 6 respectively show the segmentation results of different segmentation
networks on test_R1 and test_R2. Figures 5a and 6a are the ground truth of test_R1 and
test_R2. In Figures 5a and 6a, we can see that the stems, leaves, and flowers of the two plants
are interlaced and occluded each other, which creates great difficulties for the segmentation
algorithm. In Figure 5d,f and Figure 6d,f, we can see that PointNet and DGCNN hardly
segment different plant organs. It can be seen from the area within the dotted circle in
Figures 5 and 6 that the segmentation ability of the comparison network (Point Transformer,
PointNet++, DGCNN, PointCNN, ShellNet and RIConv) for details is inferior to that of
MASPC_Transform. As shown in Figure 5c, Point Transformer mistakenly divides some
petals into leaves. As shown in Figure 5e, PointNet++ mistakenly divided part of the calyx
at the top into leaves and stems. As shown in Figure 5g, PointCNN mistakenly divided
part of the calyx at the top into stems, and mistakenly divided the stems in the lowest red
circle into leaves. As shown in Figure 5h, ShellNet mistakenly divided the calyx in the
red circle into leaves. As shown in Figure 5i, RICov mistakenly divided some flowers in
the top red circle into leaves. In Figure 6, there is also a case of false segmentation in the
comparison network. The proposed MASPC_Transform has the best segmentation effect
for the interlaced parts of different plant organs.

In order to show the segmentation effect of each method more clearly, we extracted
some regions from the segmented plant point cloud and showed them more clearly in
Figure 7. As can be seen from the first column in Figure 7, the objects to be segmented are
leaves and stems. Among the segmentation results of all methods, the results corresponding
to MASPC_Transform proposed by us are the most similar to ground truth. PointNet was
failed to segment stems and leaves. DGCNN and PointCNN hardly segment the stem and
leaf correctly. The stems segmented by PointNet++, ShellNet, and RIConv were shorter than
those separated by MASPC_Transform, and they mistakenly divided the stems between
two leaves into leaves. Point Transformer also mistakenly divides some stems into leaves
at the intersection of leaves. In the segmentation results of the second and third columns of
Figure 7, the MASPC_Transform also achieves the best segmentation effect.
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(a) (b) (c) 

  
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5. Segmentation result of each network on test_R1. (a) Ground Truth; (b) MASPC_Transform;
(c) Point Transformer; (d) PointNet; (e) PointNet++; (f) DGCNN; (g) PointCNN; (h) ShellNet;
(i) RICov.

It can be seen from the segmentation effect shown in Figures 5–7 that the MASPC_Transform
has the best segmentation effect. This is because the multi-head attention and the multi-
head attention separation loss based on spatial similarity in MASPC_Transform establish
a connection for the same kind of point clouds (point clouds with similar semantics)
scattered in different regions of the point cloud space. In areas where multiple categories
are interlaced, this association can help MASPC_Transform achieve better segmentation
effect in detail.
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 6. Segmentation result of each network on test_R2. (a) Ground Truth; (b) MASPC_Transform;
(c) Point Transformer; (d) PointNet; (e) PointNet++; (f) DGCNN; (g) PointCNN; (h) ShellNet;
(i) RICov.

4.6. Ablation Studies

Table 2 shows the results of our ablation studies on the ROSE_X dataset. In the ablation
studies, we used the original Point Transformer [10] as the baseline. In Table 2, Without
RPC represents a network that does not use RPC, but still uses our Equation (8) to train
the network. Without Separation_Loss means that the proposed multi-head attention
Separation_Loss is not used in the network, and only CrossEntropy is used to train the
network. Note that RPC is used in the Without Separation_Loss network. The last column
presents the experimental results of MASPC_Transform proposed by us. From the results
shown in Table 2, we can see that the values of IoU and MIoU of MASPC_Transform are
the highest. The IoU and MIoU of each category of MASPC_Transform without multi-head
attention separation loss function and MASPC_Transform without relative position code
are lower than those of MASPC_Transform, but better than the Point Transformer.

According to the experimental results in Section 4.4, the proposed MASPC_Transform
outperforms the state-of-the-art approaches. The visualization results shown in Figures 6 and 7
confirm the experimental results in Section 4.4. The visualization results of these compar-
ison approaches for rose point clouds with interlaced stems, leaves, and flowers is not
as good as MASPC_Transform. This shows that our multi-head attention separation loss
can distract the attention positions of different attention heads as much as possible, and
establish connections for point clouds that are far away but belong to the same organ.
However, these comparison approaches do not have this ability, so that these segmentation
networks believe that two flowers (stems or leaves) far away belong to different categories.
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The results of ablation studies verify the effectiveness of the multi-head attention separation
loss (Separation_Loss) and position code (PC).

 
Figure 7. Segmentation rendering of different networks.
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Table 2. Ablation study on ROSE_X dataset.

Evaluation Category
Point

Transformer
Without

RPC
Without

Separation_Loss
Ours

IoU

Flower 80.93 83.10 82.28 83.32

Leaf 91.76 93.03 92.89 94.36

Stem 74.99 77.64 76.71 78.96

MIoU MIou 82.56 84.29 83.96 85.52

5. Conclusions

We propose a plant point cloud segmentation network named MASPC_Transform. In
order to make the attention positions of different attention heads of MASPC_Transform as
dispersed as possible, we propose a multi-head attention separation loss based on spatial
similarity. In order to reduce the impact of point cloud disorder and irregularity on feature
extraction, we use position coding in the local and global feature extraction modules of
MARP_Transform. We evaluated the proposed MASPC_Transform on the ROSE_X dataset.
The results of segmentation experiments show that MASPC_Transform network performs
better than the state-of-the-art approaches. The results of ablation experiments demonstrate
the effectiveness of the proposed position code and attention separation loss. Due to
ROSE_X dataset is the only open source benchmark plant point cloud segmentation dataset,
so the MASPC_Transform has only been tested on this dataset. If a new open source plant
point cloud segmentation dataset appears, the MASPC_Transform should accept more tests.
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Abstract: It is a challenging problem to infer objects with reasonable shapes and appearance from
a single picture. Existing research often pays more attention to the structure of the point cloud
generation network, while ignoring the feature extraction of 2D images and reducing the loss in
the process of feature propagation in the network. In this paper, a single-stage and single-view 3D
point cloud reconstruction network, 3D-SSRecNet, is proposed. The proposed 3D-SSRecNet is a
simple single-stage network composed of a 2D image feature extraction network and a point cloud
prediction network. The single-stage network structure can reduce the loss of the extracted 2D image
features. The 2D image feature extraction network takes DetNet as the backbone. DetNet can extract
more details from 2D images. In order to generate point clouds with better shape and appearance,
in the point cloud prediction network, the exponential linear unit (ELU) is used as the activation
function, and the joint function of chamfer distance (CD) and Earth mover’s distance (EMD) is used
as the loss function of 3DSSRecNet. In order to verify the effectiveness of 3D-SSRecNet, we conducted
a series of experiments on ShapeNet and Pix3D datasets. The experimental results measured by CD
and EMD have shown that 3D-SSRecNet outperforms the state-of-the-art reconstruction methods.

Keywords: 3D reconstruction; single view; single stage; point cloud

1. Introduction

In many tasks, such as virtual reality [1], experimental assistance [2], and robot
navigation [3], a detailed 3D model is required, however, the facilities required to sample
3D models from the real world are costly. Moreover, it is uneconomical to manually
reconstruct 3D models from 2D maps on a large scale. Many researchers proposed methods
to reconstruct 3D models from a single image [4–6].

There are mainly two structures to represent a 3D model, voxel and point cloud. The
former is just like 2D pixels but fits 3D objects into grids, sometimes containing other
information such as features. It is also a regular data structure so many successful 2D
methods can be easily applied. Many approaches [7,8] have focused on the voxel grid as
output. However, the computational cost increases cubically to perform better geometric
information or apply convolution methods.

Point cloud represents geometric information by a set of data points, each point
represented by (x, y, z). Fan et al. [4] firstly applied deep learning methods to generate
point clouds and proposed the chamfer distance and Earth mover’s distance, but there are
many methods to improve its evaluation results. 3D-LMNet [5] used an autoencoder to
design a two-stage point cloud construction network. Most of the existing works are similar
to 3D-LMNet, which are multi-stage point cloud generation networks. These multi-stage
networks inevitably suffered feature loss and were considered a waste of time. At the
same time, the existing work often pays more attention to the structure of the point cloud
generation network, while ignoring the feature extraction of 2D images.

The main tasks of point cloud reconstruction are: (1) To retain more details or small
targets in the image when extracting 2D image features in order to obtain a better recon-
struction effect. (2) To generate a point cloud through a simple network structure to reduce

Sensors 2022, 22, 8235. https://doi.org/10.3390/s22218235 https://www.mdpi.com/journal/sensors
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the loss of features in the process of transmission in different network stages. We propose
an end-to-end point cloud reconstruction network called 3D-SSRecNet, which applies
DetNet [9] as an image feature extractor and gains detailed features.

The key contributions of our work are as follows:

1. We propose a one-stage neural network for 3D reconstruction from a single image,
namely, 3D-SSRecNet. 3D-SSRecNet takes an image as input and directly outputs the
predicted point cloud without further processing.

2. 3D-SSRecNet includes feature extraction and 3D point cloud generation. The feature
extraction network is better at extracting the detailed features of the 2D input. The
point cloud generation network has a plain structure and uses a suitable activation
function in its multi-layer perceptron, which reduces the loss of features during
forwarding propagation to obtain an elaborate output.

3. Experiments on ShapeNet and pix3D dataset have shown that 3D-SSRecNet outper-
forms the state-of-art reconstruction methods for the task of single-view reconstruction.
At the same time, we also proved the validity of the activation function of the point
cloud generation network through experiments.

2. Related Work

The technology of reconstructing 3D models from 2D images has many practical
applications. Therefore, 2D to 3D reconstruction technologies applicable to different ap-
plication scenarios will be quite different. For example, in [2], a method is proposed to
predict the liquid or solid in transparent vessels to XYZ maps. This method can be applied,
for example, to the task of a robot arm taking containers and pouring liquid. Therefore,
this study proposed a scale-invariant loss so that the predicted scale of XYZ map can
conform to the original 2D input scale. Part-Wise AtlasNet proposed in [10] can output 3D
reconstruction with a fine local structure. This is because each neural network of Part-Wise
AtlasNet is only responsible for reconstructing a specific part of the 3D object. Part-Wise
AtlasNet has achieved a very refined reconstruction effect, but the reconstruction process
is very time consuming. Part-Wise AtlasNet is obviously more suitable for tasks such as
high-precision reconstruction and the display of cultural relics. In order to obtain 3D data
in real time and accurately, hardware assistance is required in addition to consideration of
the camera parameters. For example, SLAM [11] constructs a 3D map by positioning the
camera in real time. In virtual reality or game modeling tasks, a point cloud reconstruction
network may be required to reconstruct point clouds with reasonable contour and shape
without considering hardware parameters. The 3D-SSRecNet proposed in this paper is
more suitable for virtual reality or game modeling scenarios. Here, we summarize the
references similar to the application scenarios of 3D-SSRecNet. Due to the development
of deep learning [12] and big data [13], great progress has been made in this field, and
numerous valuable research has emerged. These studies can be roughly divided into 2D
images to voxels and 2D images to point clouds.

From 2D images to voxels. Several approaches focus on generating voxelized out-
put representations. V3DOR [14] applied autoencoders and variational autoencoders to
generate a smoother and high-resolution 3D model. The encoder aims to learn latent
representation from the image and the decoder tries to obtain corresponding 3D voxels.
Xie et al. [15] applied ResNet [16] as a part of the autoencoder and proposed a multi-scale
context-aware fusion module to gain better results with more views of the object. Han
et al. [17] proposed a novel shape representation that enabled a tube-by-tube manner via
discriminative neural networks. Based on the network, they proposed an RNN-based
model to gain the 3D corresponding representation from the input image. TMVNet [18]
applied the transformers to the encoder and proposed a 3D feature fusion layer to refine the
predictions. Kniaz et al. [19] proposed an image-to-voxel translation model which applied
a generative adversarial network. Sym3DNet [20] applied a symmetry fusion step and per-
ceptual loss to apply symmetry prior. Yang et al. [21] designed a memory-based framework
to obtain a heavily occluded 3D model to handle challenging situations. However, voxel
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reconstruction gains sparse space information and has a high costs. It is difficult to both
predict higher resolution 3D models and process them efficiently.

From 2D images to point clouds. Fan et al. [1] designed a framework called PSGN,
which firstly applied deep learning methods to the point sets generation problem. They
proposed chamfer distance and Earth mover’s distance to judge the distance between
point sets. 3D-LMNet [2] trained a point cloud autoencoder, then try to map images to
corresponding learned embedding and they proposed diversity loss for uncertain recon-
struction. 3D-ARNet [22] combined an autoencoder and a point prediction network. After
the image is input into the image encoder, a simple point cloud is obtained. Pumarola
et al. [23] proposed a conditional flow-based generative model to generate a map from
image to point cloud, which is different from other generative models such as VAEs or
GAN. Hafiz et al. [24] proposed the SE-MD network. SE-MD uses an autoencoder net-
work as the feature extraction network and multiple decoding networks as point cloud
generation networks. The final result can be obtained by fusing all the outputs of all the
point cloud generation networks. However, these multi-stage models may suffer more
cost of computational resources and feature loss when the feature maps propagate across
networks. 3D-ReConstnet [6] applied the residual network to extract the features from the
input image and used MLPs to predict point sets and, meanwhile, learned Gaussian prob-
ability distribution to refine the self-occluded part of an object and then directly applied
MLPs to predict the point cloud. Ping et al. [25] projected the predicted point cloud and
tried to fit edge details with ground truth. In order to enhance the features of 2D images,
3D-FEGNet [26] adds an edge extraction module to the feature extraction network. After
comparing the reconstruction results of the above networks, we found that the key to a
better reconstruction network are: (1) the feature extraction part of the network reflects
more detailed 2D image features; (2) the loss of the extracted two-dimensional image
features in the network transmission is minimized. This paper designs a single-stage point
cloud reconstruction network and uses DetNet, which can retain more detailed features, as
the feature extraction network.

3. Approach

3.1. Architecture of 3D-SSRecNet

The architecture of 3D-SSRecNet is shown in Figure 1. 3D-SSRecNet has two main
parts: a 2D image feature extraction network and a point cloud prediction network. These
two parts constitute a simple single-stage point cloud reconstruction network. The single-
stage network structure only transfers the features of 2D pictures within the network of
3D-SSRecNet. Compared with the two-stage reconstruction network that needs to transmit
features across the network, this network structure reduces the loss of features.

Figure 1. Architecture of 3D-SSRecNet.
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Given a 2D image, firstly, we obtain a latent representation V by DetNet. Then, we
map V to a low dimensionality feature V’ by a full connection (FC) layer. A multi-layer
perceptron (MLP) is directly applied to predict a point set afterward. During training,
chamfer distance and Earth mover’s distance loss function are computed, and the update
of trainable parameters is supervised.

3.2. 2D Image Feature Extraction

Many image feature networks applied downsampling, which brought a higher recep-
tive field, but unavoidably caused the loss of image details. However, for reconstruction,
image details are crucial for the recovery of geometric shape. This kind of network is more
suitable for image classification tasks, but not for reconstruction tasks that require more
detailed features.

DetNet [9] not only retains more details but also retains a large receptive field. Al-
though DetNet was designed for object detection, its novel dilated bottleneck structure
provides high-resolution feature maps and a large receptive field. We use DetNet as the
backbone of image feature extraction. DetNet follows the same structure as ResNet-50 [16]
until state 4, so DetNet also has the advantage of being easy to train and will not fall into
gradient disappearance. Table 1 shows the parameters of the last two stages of DetNet,
that is, the differences between DetNet and ResNet-50. After stage 4, DetNet keeps the
size of the feature map at 16 × 16, which enables more details to be retained. The fifth and
sixth stages of DetNet are composed of bottlenecks with dilated convolution, and some
bottlenecks have 1 × 1 convolutions on their shortcut connections. Dilated convolution in-
creases the receptive field. However, considering the amount of computation and memory,
stage 5 and stage 6 set the same channel number of 256. At the end of the baseline, a fully
connected layer is applied.

Table 1. The parameters of last two stages DetNet.

Stage
Feature

Map Size
Parameters

(Convolution Kernel Size, Number of Output Channels)

Stage 5 16 × 16

⎡
⎣ 1 × 1kernel 256chanels

3 × 3kernel, dilate 2 256chanels
1 × 1kernel 256chanels

⎤
⎦+ 1 × 1conv

⎡
⎣ 1 × 1kernel 256chanels

3 × 3kernel, dilate 2 256chanels
1 × 1kernel 256chanels

⎤
⎦× 2

Stage 6 16 × 16

⎡
⎣ 1 × 1kernel 256chanels

3 × 3kernel, dilate 2 256chanels
1 × 1kernel 256chanels

⎤
⎦+ 1 × 1conv

⎡
⎣ 1 × 1kernel 256chanels

3 × 3kernel, dilate 2 256chanels
1 × 1kernel 256chanels

⎤
⎦× 2

1 × 1 16 × 16 average pool, 1000-d fully connected layer

As shown in Figure 1, after feature extraction of the input image, we obtain a 1000-
dimensional latent feature V of the input image. After that, the full connection (FC) layer
compresses the dimension of vector V from 1000 to 100 and obtains vector V’.

3.3. Point Could Prediction

We use three-layer MLP to predict the point sets directly. The dimensions of the
outputs of the three MLP layers are 512, 1024, and N × 3, respectively. The output of
the feature extraction network: vector V’ is fed into MLPs of the point cloud prediction
network. On the first two layers, ELU [27] is introduced as an activation function which is
defined as:

y = elu(x) =
{

x, x ≥ 0
α(ex − 1), x < 0

(1)
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where parameter α is set to 1. The curves of ELU activation function and its derivative
are shown in Figure 2a,b, respectively. For common activation functions, such as ReLU,
the value corresponding to the negative axis is 0. However, the normalized point cloud
coordinate interval is [−1, 1], which indicates that the point cloud coordinates will have
negative values. As shown in Figure 2a, the value corresponding to the negative axis of
the ELU activation function is non-zero. Therefore, using ELU as the activation function,
the negative value information in the reconstructed network will not be lost in the forward
propagation process. As shown in Figure 3b, the derivative of ELU is also non-zero on the
negative axis. In the backpropagation process of the network, the negative gradient will
not be lost, and it can help update the network weight.

 
(a) Curve of activation function ELU (b) Curve of derivative of ELU 

Figure 2. ELU activation function and its derivative.

  
(a) (b) 

Figure 3. Different reconstructions with the same CD loss value.

In the experimental part, we prove that the reconstruction effect of using ELU as the
activation function is better than that of using other activation functions. We directly output
the predicted point sets after the last activation layer. It is actualized by the tanh function,
whose outputs belong to [−1, 1], which is the same as the required point set data.

3.4. Loss Function

To define the loss function of reconstruction of point clouds. We have to consider two
important properties. (1) Point cloud is an unordered point set so we shall obtain the same
data despite how we change the order of points. (2) The geometric feature of a real object
shall not change significantly regardless of any rotation transformations. However, for
instance, the point coordinates seem different as we take a rotation transformation. Fan
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et al. [4] proposed the use of the chamfer distance (CD) and Earth mover’s distance (EMD)
which satisfied the requirement. The chamfer distance is defined below.

LCD(X∗
P, XP) = ∑x∈X∗

P
min
y∈XP

||x − y||22 + ∑y∈X∗
P

min
x∈XP

||x − y||22 (2)

It is a differentiable function with respect to point locations which are respectively
calculated for each point, and it obtains the distance between it and its nearest point in the
ground truth.

The Earth mover’s distance is defined below.

LEMD(X∗
P, XP) = min

ϕ:X∗
P→XP

∑x∈X∗
P
||x − ϕ(x)||2 (3)

It is a measure between two distributions, so it can be considered as a “distance”
between two point sets, and it constitutes the mapping between two point sets to guarantee
the unique output.

Many research on point cloud reconstruction [5,17] point out the characteristics of CD
and EMD: CD is related to the contour of the reconstructed point cloud. Lower CD values
result in better point cloud contours. The 3D reconstruction network trained by CD can
more easily capture the rough contour of objects in 2D images. However, the reconstructed
network trained by CD can easily produce splash point clouds, but the visual effect is
not good.

We use Figure 3 to explain the cause of point clouds. In Figure 3, the blue dot represents
the ground truth, and the green dot and red dot represent two different reconstruction
point clouds, respectively. D1~D6 respectively represent the distance between the six
points obtained from the first reconstruction and their corresponding ground truth points.
D1’~D6’ respectively represent the distance between the six points obtained from the
second reconstruction and their corresponding ground truth points. We can see that
the reconstruction result represented by the green point in Figure 3a is better than the
reconstruction result represented by the red point in Figure 3a because the distance D1’
between one of the red points and its corresponding ground truth point is obviously greater
than D2’~D6‘. From Formula (2), if the sum of D1~D6 is equal to the sum of D1’~D6’,
the network trained with CD as the loss function cannot distinguish between the two
reconstructions. Therefore, we can say that CD may confuse different reconstructions with
similar chamfer distances. However, in the EMD loss function, ϕ represents the bijection
relationship between the ground truth and the reconstructed point cloud, so EMD loss will
not cause the above confusion.

EMD is related to the visual quality of the reconstructed point cloud. Lower EMD
value always presumes higher visual quality. However, it is inclined to obtain a bad contour
of the object. Synthesizing the pros and cons of CD and EMD, the loss function of our
network is defined as:

Loss = LCD + LEMD (4)

4. Experiment

We evaluated the proposed 3D-SSRecNet on ShapeNet [28] and Pix3D [29] datasets,
respectively. ShapeNet is a big collection of textured CAD models which consists of
13 classes and 43,809 point cloud models for both training and testing. We used the 80–20%
train/test split to perform our experiment. We performed the same experiment on the
Pix3D database. The Pix3D database consists of three classes and 7595 point cloud models.
This dataset is a CAD model of the real scene. Experiments on Pix3D can better evaluate
the practicability of a point cloud reconstruction algorithm.

We used the gradient optimization algorithm Adam to optimize the proposed 3D-
SSRecNet. In training, we set the learning rate to 0.0005 and the epoch to 50. The training
environment is as follows: Ubuntu 18.04.6, CUDA 10.1, and the model of GPU is NVIDIA
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Tesla T4 × 4. We used the CD and EMD values calculated on 1024 sampling points to
evaluate the quality of the reconstructed point cloud.

4.1. Experiment on ShapeNet

To verify the advantage of ELU activation function, we fixed the structure of 3D-
SSRecNet and replaced ELU with other activation functions such as Leaky ReLU, softsign,
and softplus. Table 2 shows the reconstruction results using different activation functions.
Among all the 13 classes, ELU performed better in 12 categories.

Table 2. Reconstruction results of different activation functions on ShapeNet dataset.

Class
Softsign Softplus Leaky ReLU ELU Softsign Softplus Leaky ReLU ELU

CD × 10−2 EMD × 10−2

Airplane 2.60 2.38 2.37 2.38 3.05 2.72 2.68 2.72
Bench 3.69 3.58 3.55 3.51 3.34 3.27 3.18 3.15

Cabinet 5.19 5.09 4.9 4.77 4.28 4.21 4.03 3.91
Car 3.58 3.57 3.57 3.56 2.85 2.85 2.85 2.84

Chair 4.45 4.48 4.40 4.35 4.30 4.36 4.23 4.17
Lamp 5.04 5.21 4.97 4.99 6.36 6.75 6.23 6.19

Monitor 5.00 4.84 4.73 4.72 4.96 4.77 4.50 4.49
Rifle 2.52 2.58 2.49 2.45 3.69 3.98 3.48 3.48
Sofa 4.57 4.62 4.52 4.44 3.82 3.89 3.73 3.71

Speaker 6.26 6.26 5.99 5.94 5.58 5.65 5.27 5.23
Table 4.86 4.83 4.40 4.35 4.75 4.74 4.21 4.16

Telephone 3.75 3.71 3.57 3.52 3.41 3.52 3.06 3.05
Vessel 3.85 3.77 3.77 3.72 4.20 4.26 3.98 3.96

Figure 4 shows the point cloud reconstruction results obtained using different acti-
vation functions on the ShapeNet dataset. We can see that the network trained by ELU
considers details better and preserves finer geometric information.

Figure 4. Visualization of 3D-SSRecNet’s output with different activation functions on ShapeNet.

We compared our 3D-SSRecNet with PSGN [4], 3D-LMNet [5], SE-MD [24], 3D-
VENet [25], 3D-ARNet [22], 3D-ReConstnet [6], and 3D-FEGNet [26]. All the experi-
ments followed the same train/test split and used the same loss functions, CD and EMD.
Tables 3 and 4 show the reconstruction results of different reconstruction methods on the
ShapeNet dataset. The smaller the values of CD and EMD of a method, the better the
reconstruction quality of the method. From the results shown in Table 3, the CD values of
3D-SSRecNet are slightly lower than that of 3D-Renstnet in the two categories of cabinet
and monitor. In other categories, the reconstruction effect of 3D-SSRecNet is the best. In
Table 3, PSGN, 3D-LMNet, SE-MD, and 3D-ARNet are two-stage networks, while other
networks are single-stage networks. It can be seen from the CD values shown in Table 3
that the performance of single-stage networks in most categories is better than that of
two-stage networks. This shows that the propagation of features between different stages
of the network will cause feature loss. It can be seen from the EMD values shown in Table 4
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that the reconstruction results of SSRecNet in most categories are better than those of other
networks.

Table 3. Reconstruction results on ShapeNet evaluated by CD.

Class
PSGN 3D-LMNet SE-MD 3D-VENet 3D-ARNet 3D-Reconstnet 3D-FEGNet Ours

CD × 10−2

Airplane 3.74 3.34 3.11 3.09 2.98 2.42 2.36 2.38
Bench 4.63 4.55 4.34 4.26 4.44 3.57 3.60 3.51

Cabinet 6.98 6.09 5.89 5.49 6.01 4.66 4.84 4.77
Car 5.2 4.55 4.52 4.30 4.27 3.59 3.57 3.56

Chair 6.39 6.41 6.47 5.76 5.94 4.41 4.35 4.35
Lamp 6.33 7.10 7.08 6.07 6.47 5.03 5.13 4.99

Monitor 6.15 6.40 6.36 5.76 6.08 4.61 4.67 4.72
Rifle 2.91 2.75 2.81 2.67 2.65 2.51 2.45 2.45
Sofa 6.98 5.85 5.69 5.34 5.54 4.58 4.56 4.44

Speaker 8.75 8.10 7.92 7.28 7.65 5.94 6.00 5.94
Table 6.00 6.05 5.62 5.46 5.68 4.41 4.42 4.35

Telephone 4.56 4.63 4.51 4.20 4.10 3.59 3.50 3.52
Vessel 4.38 4.37 4.24 4.22 4.15 3.81 3.75 3.72
Mean 5.62 5.4 5.27 4.92 5.07 4.09 4.09 4.05

Table 4. Reconstruction results on ShapeNet evaluated by EMD.

Class
PSGN 3D-LMNet SE-MD 3D-VENet 3D-ARNet 3D-Reconstnet 3D-FEGNet Ours

EMD × 10−2

Airplane 6.38 4.77 4.78 3.56 3.12 2.80 2.67 2.72
Bench 5.88 4.99 4.61 4.09 3.93 3.22 3.75 3.15

Cabinet 6.04 6.35 6.37 4.69 4.81 3.84 4.75 3.91
Car 4.87 4.10 4.11 3.57 3.38 2.87 3.40 2.84

Chair 9.63 8.02 6.53 6.11 5.45 4.24 4.52 4.17
Lamp 16.17 15.80 12.11 9.97 7.60 6.40 6.11 6.19

Monitor 7.59 7.13 6.74 5.63 5.58 4.38 4.88 4.49
Rifle 8.48 6.08 5.89 4.06 3.39 3.63 2.91 3.48
Sofa 7.42 5.65 5.21 4.80 4.49 3.83 4.56 3.71

Speaker 8.70 9.15 7.86 6.78 6.59 5.26 6.24 5.23
Table 8.40 7.82 6.14 6.10 5.23 4.26 4.62 4.16

Telephone 5.07 5.43 5.11 3.61 3.25 3.06 3.39 3.05
Vessel 6.18 5.68 5.25 4.59 4.05 3.99 4.09 3.96
Mean 7.75 7.00 6.21 5.20 4.68 3.98 4.30 3.93

Figure 5 shows the reconstruction effect of 13 categories of 3D-SSRecNet on the
ShapeNet dataset. The reconstructed point cloud resolution shown in Figure 5 is 2048.

4.2. Experiment on Pix3D

The Pix3D dataset consists of a large number of real indoor 2D images and their
corresponding metadata (such as masks, ground truth CAD models, and attitudes). It
can be seen from Figure 6 that the background of 2D images in Pix3D dataset is very
complex, which poses a greater challenge to the feature extraction part of the reconstruction
network. Therefore, the Pix3D dataset can be used to evaluate the generalization ability of
the reconstructed network to real scenes.
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Figure 5. Visualization of our predictions on ShapeNet.
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Figure 6. Visualization of 3D-SSRecNet’s predictions with different activation functions on Pix3D.

Table 5 shows that ELU also provides better evaluation values on Pix3D. We exhibit
the prediction outputs with different activation functions in Figure 6 to visualize how the
activation function affects the prediction. Figure 6 shows that ELU also generates better
qualitative results.

Table 5. Reconstruction results of different activation functions on Pix3D dataset.

Class
Softsign Softplus Leaky ReLU ELU Softsign Softplus Leaky ReLU ELU

CD × 10−2 EMD × 10−2

Chair 5.70 5.57 5.58 5.52 6.32 6.13 6.08 6.05
Sofa 6.22 6.26 6.09 6.04 5.12 5.24 4.92 4.90
Table 7.73 7.32 7.03 6.88 8.66 8.20 7.60 7.59

We also compared our network with PSGN [4], 3D-LMNet [5], 3D-ARNet [22], 3D-
Reconstnet [6], and 3D-FEGNet [26]. Tables 6 and 7 show the reconstruction results of
different reconstruction methods on the Pix3D dataset. In all three categories, we can see
that our 3D-SSRecNet has the lowest evaluation value (except the EMD value on chair
category), which indicates that 3D-SSRecNet has a strong generalization ability for real
scenes.

Table 6. Reconstruction results on Pix3D evaluated by CD.

Class
PSGN 3D-LMNet 3D-ARNet 3D-ReconstNet 3D-FEGNet Ours

CD × 10−2

Chair 8.05 7.35 7.22 5.59 5.66 5.52
Sofa 8.45 8.18 8.13 6.14 6.23 6.04
Table 10.85 11.2 10.31 7.04 7.58 6.88
Mean 9.12 8.91 8.55 6.26 6.49 6.15

Table 7. Reconstruction results on Pix3D evaluated by EMD.

Class
PSGN 3D-LMNet 3D-ARNet 3D-ReconstNet 3D-FEGNet Ours

EMD × 10−2

Chair 12.55 9.14 7.94 5.99 8.24 6.05
Sofa 9.16 7.22 6.69 5.02 6.77 4.90
Table 15.16 12.73 10.42 7.60 11.40 7.59
Mean 12.29 9.70 8.35 6.20 8.80 6.18
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Figure 7 shows the reconstruction effect of 13 categories of 3D-SSRecNet on the Pix3D
dataset. The reconstructed point cloud resolution shown in Figure 7 is 2048.

Figure 7. Visualization of our predictions on Pix3D.

5. Conclusions

In this paper, we proposed an efficient 3D point cloud reconstruction called 3D-
SSRecNet. Given an image, it learns the latent representation and after dimensionality
reduction we apply MLPs to predict the correspondent point cloud directly. We conducted
several experiments on ShapeNet and Pix3D data sets. We proved that the reconstruction
effect of using activation function ELU in the generation network is better than that of
using other activation functions. That is, the CD and EMD values of the point cloud
generated using the ELU are lower than those of the point cloud generated using other
activation functions. Figures 4 and 6 also show that the shape and contour of the point
cloud generated using ELU are better than those of the point cloud generated using other
activation functions. By comparing CD and EMD values, it is proved that 3D-SSRecNet
can outperform the state-of-the-art methods. The proposed 3D-SSRecNet is more suitable
for tasks that need to obtain the contour and shape of a point cloud at a low cost. In future
work, we will try to improve the local effect of the output point cloud with the Part-Wise
AtlasNet on the premise of maintaining the existing low cost.
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Abstract: LiDAR is a commonly used sensor for autonomous driving to make accurate, robust, and
fast decision-making when driving. The sensor is used in the perception system, especially object
detection, to understand the driving environment. Although 2D object detection has succeeded during
the deep-learning era, the lack of depth information limits understanding of the driving environment
and object location. Three-dimensional sensors, such as LiDAR, give 3D information about the
surrounding environment, which is essential for a 3D perception system. Despite the attention of
the computer vision community to 3D object detection due to multiple applications in robotics and
autonomous driving, there are challenges, such as scale change, sparsity, uneven distribution of
LiDAR data, and occlusions. Different representations of LiDAR data and methods to minimize
the effect of the sparsity of LiDAR data have been proposed. This survey presents the LiDAR-
based 3D object detection and feature-extraction techniques for LiDAR data. The 3D coordinate
systems differ in camera and LiDAR-based datasets and methods. Therefore, the commonly used
3D coordinate systems are summarized. Then, state-of-the-art LiDAR-based 3D object-detection
methods are reviewed with a selected comparison among methods.

Keywords: autonomous vehicles; classification; deep learning; deep learning for point cloud processing;
LiDAR; sparsity; 3D object detection

1. Introduction

Autonomous driving has succeeded since the 2007 DARPA urban challenge [1]. It has
a high potential for decreasing traffic congestion, improving overall driving and road safety,
fast and effective decision-making, and reducing carbon emission [2]. Autonomous vehicles
need to perceive, predict, plan, decide, and execute decisions in an uncontrolled complex
real world to achieve these goals, which is challenging. A small mistake in understanding
the environment, plan, or decision causes fatal effects. A robust autonomous system is
needed to avoid such mistakes. One branch of an autonomous system, the perception
system, especially 3D object detection, helps to understand the driving environments, such
as other vehicles and pedestrians. For the robust operation of the next branches in the
autonomous system, the perception system should give precise information about the
driving environment. It should also be robust enough to work in bad weather such as rain,
snow, and fog and make fast and effective decisions to match high-speed driving [2,3].

The 3D sensors, such as Light Detection and Ranging (LiDAR) and Radio Detection and
Ranging (radar), provide 3D information about the environment, including distance and
speed estimation. Other sensors, such as depth sensors (RGB-D cameras), can also provide
3D information [4]. However, environmental variations, such as inclement weather, sensor
limitations, and resolution differences, limit sensor performance. The LiDAR sensor is more
robust to adverse weather than the camera but poorer in color and texture information.
A solid-state LiDAR called flash LiDAR [5] uses optical flash operation to give texture
information such as a standard camera. The major limitation of LiDAR sensors are the
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high price and struggle to detect close- or far-distance objects [5]. LiDAR data are sparse
and unstructured, which makes processing LiDAR data challenging. On the other hand, a
radar sensor is more robust in bad weather, better for long-range detection, and relatively
cheaper. However, it has a lower resolution.

Due to the sparsity and unstructured nature, it is challenging to process LiDAR data.
Different methods have been developed to process LiDAR point cloud data: projecting to
2D space, such as [6] MV3D [7] and AVOD [8], voxels, such as VoxelNet [9], F-PointNet [10],
MVFP [11], and raw point clouds, such as PointNet [12], PointNet++ [13], and PointR-
CNN [14]. The projection method converts the 3D LiDAR point cloud into a 2D plane
representation, such as a range view or bird’s-eye view (BEV). The projected data can be
processed using the standard 2D detection models and reduces the computational burden
due to 3D convolution; however, there is an information loss converting the LiDAR point
cloud into 2D space representations. The voxel method discretizes the sparse point cloud
data into a volumetric 3D grid of voxels and uses a series of voxels to represent the 3D
point cloud. This representation avoids the unstructured nature of point clouds, but the
3D convolution is still the bottleneck and causes information loss from converting one
representation to another [3]. On the other hand, the raw point cloud representation directly
processes point cloud data to keep the information. However, the sparsity of the point
cloud data and the high computational cost because of 3D convolution are challenges to this
method (see Section 4 for details). Different compression techniques have been developed
to remove spatial and temporal redundancies of point cloud data, to reduce the large
volume, such as [15–17]. Although these compression techniques reduce redundancies,
they can affect the performance of models (Details of compression techniques are out of the
scope of this survey).

The major contributions of the paper can be summarized as follows:

1. An in-depth analysis of LiDAR-based 3D object detection, state-of-the-art (SOTA)
methods, and a comparison of SOTA methods are presented.

2. The LiDAR processing and feature-extraction techniques are summarized.
3. The 3D coordinate systems commonly used in 3D detection are presented.
4. We categorize deep-learning-based LiDAR 3D detection methods based on LiDAR

data processing techniques as projection, voxel, and raw point cloud.

The rest of the paper is organized as follows. Section 2 presents related work. Feature-
extraction methods, stages of autonomous driving, and 3D coordinate systems representa-
tion are provided in Section 3. Section 4 summarizes the LiDAR 3D detection methods and
compares the selected ones. The summary of the survey paper is presented in Section 5.

2. Related Work

Due to the rapid growth of deep learning (DL) in computer vision, object detection
has become an extensively studied application. Three-dimensional detection draws much
attention in robotics applications, such as autonomous driving, because the intention to
know object driving environment and location has increased. Most review papers present
general detection in 2D and 3D and for multiple sensors, mostly cameras and LiDARs. This
work comprehensively reviews LiDAR 3D object-detection models for autonomous driving.

General object detection and semantic segmentation in 2D and 3D were presented in [2].
The available datasets and methods for autonomous driving were reviewed. Jiao et al. [18]
presented DL-based methods, sensors, and datasets. However, this work focused mostly
on 2D detection. Arnold et al. [4] reviewed 3D detection methods for autonomous driv-
ing. Rahman et al. [19] also reviewed 3D methods, datasets, and open challenges in 3D
detections. Similarly, Li et al. [20] and Fernandes et al. [21] presented detection and seg-
mentation in autonomous driving using LiDAR. DL-based 3D detection and segmentation
methods in autonomous driving were also presented in [22]. Qian et al. [23] published
a 3D detection method for autonomous driving. Alaba et al. [3] presented multisensor
fusion-based 3D object-detection methods, 3D datasets, sensors, 3D detection challenges,
and possible research directions for autonomous driving. Recently, Alaba and Ball [24] also
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reviewed an image 3D object detection for autonomous driving. The 3D object-detection
evaluation techniques, 3D bounding box encoding techniques, and image-based (RGB and
stereo) object detection works for autonomous driving were reviewed.

This survey presents point cloud encoding techniques, 3D coordinate systems in 3D
object detection, and others not covered in the previous survey papers, including recently
published works (For 3D bounding box encoding techniques, 3D detection evaluation
methods, sensors in autonomous driving, radar-related 3D object-detection methods, 3D
object-detection challenges, possible research directions, and datasets refer [3,24]). Most of
the existing 3D object-detection methods reviewed general 2D and 3D detection methods
and/or LiDAR and camera-based detections. This survey focuses on a detailed analysis of
LiDAR-only methods. Few works reviewed LiDAR-only methods. However, we have in-
cluded recently published works in addition to unique contributions, such as 3D coordinate
systems in 3D object detection and stages of autonomous driving.

3. Background

This section presents feature-extraction techniques for point clouds, 3D coordinate
systems for 3D object detection, and levels of autonomous driving.

3.1. Feature-Extraction Methods

Feature extraction plays a crucial role in detection and classification tasks. Before the
DL era, image features were usually extracted using handcrafted feature extractors based
on aspects such as texture, color, and shape. On the other hand, DL networks can extract
features from images without prior engineered data. Optimal feature learning is important
to achieve optimal performance. The Harris interest point detector [25], Shi-Tomasi corner
detector [26], Scale Invariant Feature Transform (SIFT) [27], and Speed-Up Robust Features
(SURF) [28] methods are commonly used handcrafted feature extractors. In different
computer vision applications [29–31], convolutional neural networks can replace these
traditional feature extractors because of their ability to extract complex features and learn
features efficiently. The image feature-extraction networks use different backbone networks
such as AlexNet [32], VGGNet [33], GoogleNet [34], ResNet [35] Inception-ResNet-V2 [36],
MobileNet [37], and DarkNet-19 [38]. The point cloud representations differ from images
because of the unstructured nature and sparsity of points, which makes their feature-
extraction networks different from image feature extractors. We can categorize feature
extractors of LiDAR point clouds as point-wise, segment-wise, object-wise, and CNN-based
networks [21] (see the details in Section 4).

Point-wise feature extractors take the whole point cloud as an input and then process,
analyze, and label each point individually, such as PointNet [12] and PointNet++ [13].
Segment-wise feature extractors segment point clouds into volumetric representations and
stack the volumetric representations to form LiDAR point clouds such as voxels [9,39,40],
pillars [41], and frustums [12]. The point-wise and segment-wise feature extractors extract
features without prior knowledge of whether the point or voxel belongs to an object. The
object-wise feature extractors project LiDAR point clouds into 2D representations and
generate the object proposals using 2D networks. Then, they regress the region proposals to
predict the 3D bounding boxes. MV3D [7] uses the object-wise feature extractor to generate
object proposals from LiDAR point cloud and fuse multiview features. On the other hand,
CNN-based feature extractors use CNN to learn features from LiDAR data, such as images.
These CNN-based feature extractors can be 2D backbone [32–36], 3D backbone sparse
convolutional networks [42,43], CNN networks based on voting scheme [44], and graph
convolution network [45].

The 3D backbone feature extractors are directly applied to 3D space using 3D con-
volutions. However, these networks consume large amounts of memory and take a long
time to process the points. The LiDAR point cloud data are sparse and unstructured.
Applying a standard convolution to these data points is inefficient because most areas are
empty, and time is wasted on areas that do not have relevant information. The sparse

174



Sensors 2022, 22, 9577

convolution solves this problem by reducing the number of points to be processed and
exploiting the areas with point cloud data only, which facilitates feature extraction and
saves memory. Graham [42,43] developed sparse convolution by processing only areas
with relevant information to save computational power. Each hidden value with zero input
is considered a ground state, but the ground state is nonzero because of the biased terms.
Then, when the inputs are sparse, the hidden variables that differ from their ground state
are considered for calculation. Sub-manifold sparse convolutional networks (SS-CNs) [46]
developed as an efficient sparse convolution for sparse 3D operation. The work considers
feature vectors active if the ground state is nonzero, which is similar to [42,43].

Wang et al. [44] proposed a voting-based sliding window feature-extraction technique.
First, the 3D point clouds are discretized into a grid at a fixed resolution. Then, the feature
vectors are extracted from occupied cells. This method applies filters only on the occupied
grid rather than the entire grid. The 3D detection window of fixed size is placed on the
feature grid and passed into the classifier, such as SVM. Finally, the classifier decides
the presence of an object by returning the detection score. Then, Vote3deep [47] further
improves voting-based feature extractions by proposing a feature-based feature extraction
and L1 penalty on filter activation intermediate feature representations.

Similarly, the graph convolution network (GCN) operates similarly to CNN but en-
codes points as nodes and nodes connected through edges. Applying GCN operation to a
set of neighborhood nodes extracts features. EdgeConv [45] applies dynamically updated
graph convolutions on the edges of local geometric structure points of K-nearest neigh-
boring pairs. Then, they apply a multilayer perceptron to extract edge features from each
point. DeepMRGCN [48] proposed a memory-efficient GCN model for feature extraction
of non-Euclidean data.

3.2. Coordinate Systems

Due to the variety of sensors used in 3D detection, there are different coordinate
systems. Therefore, different 3D datasets follow different data formats. Although there
are a variety of datasets and sensors, coordinate systems in 3D object detection can be
categorized into three [49].

1. Camera coordinate system: In this coordinate system, the positive direction of
the x-axis points to the right, the positive direction of the y-axis points to the ground,
and the positive direction of the z-axis points to the front. Figure 1a shows a camera
coordinate system.

2. LiDAR coordinate system: In the LiDAR coordinate system, the positive direction
of the x-axis points to the front, the positive direction of the y-axis points to the left, and the
negative direction of the z-axis points to the ground as shown in Figure 1b.

3. Depth coordinate system: In the depth coordinate system, the positive direction of
the x-axis points to the right, the positive direction of the y-axis points to the front and the
negative direction of the z-axis points to the ground. Three-dimensional object-detection
networks, such as VoteNet [50], H3DNet [51], etc., used the depth coordinate system. The
depth coordinate system is shown in Figure 1c.

The commonly used dataset, for example, KITTI [52] camera and LiDAR coordinate,
are shown in Figure 1a,d, respectively. In multisensor fusion-based or point cloud-based
methods, the coordinate transformation is necessary from the beginning for data prepro-
cessing, such as data augmentation. We do not cover the detailed mathematical derivation
of coordinate transformation, but we give the intuitions and basic concepts of coordinate
transformations between LiDAR and the camera. For example, for a homogeneous 3D point,
p = (x, y, z, 1)T in rectified (rotated) camera coordinates, the ith camera image corresponding
point y = (u, v, 1)T can be expressed as:

y = p(i)rect p, (1)
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where i ε 0, 1, 2, 3 is the camera index (four cameras with centers aligned to the same
x/y-plane in the KITTI dataset), and camera 0 is a reference camera.

(a) Camera coordinate system (b) LiDAR coordinate system

(c) Depth coordinate system (d) KITTI LiDAR coordinate system

Figure 1. 3D object-detection coordinate systems. The KITTI camera coordinate system is similar to
the camera coordinate system (a). However, its LiDAR coordinate system x-coordinate differs from
the commonly used LiDAR x- coordinate system (compare (b,d)).

p(i)rectεR3×4 is ith the projection matrix after rectification, which can be given as:

p(i)rect =

⎛
⎜⎝ f (i)u 0 c(i)u − f (i)u b(i)x

0 f (i)u c(i)u 0
0 0 1 0

⎞
⎟⎠, (2)

where b(i)x is the baseline (in meters) with respect to a reference camera 0. To project the
reference camera coordinates 3D points in p to the ith image plane in point y, the rectifying
matrix of the reference camera R (0) should be considered. Thus:

y = p(i)rectR
(0)
rect p, (3)

For 3D point, p in LiDAR coordinates the corresponding point y in the ith camera image
can be given as:

y = p(i)rectR
(0)
rectT

cam
velo p, (4)

Tcam
velo εR3×4 is the rigid body transformation from Velodyne LiDAR to camera coordinates

and R(0)
rectεR3×3 is the rectifying rotation matrix (Ref [52,53] for more details).
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3.3. Stages of Autonomous Driving

Automated vehicles should have a safety-critical control function, such as steering,
throttle, or braking, that can occur without direct driver intervention [54]. Vehicles that
give safety warnings to drivers, such as forward crash warnings, are not considered
automated unless they perform control functions even though the necessary data are
received, processed, and the warning is given without driver intervention. When we
think of autonomous driving, most people think of fully autonomous driving; however,
autonomous driving has different stages. The vehicle automation levels range from level
zero (no automation) to level five (fully autonomous). We present levels of autonomous
driving for general understanding and to give insight into what should be needed for
achieving fully autonomous driving. Vehicles should be equipped with multiple sensors to
achieve robust driving, especially for levels four and five. However, this survey presents
only LiDAR-related works (Refer [3] for different sensors used in autonomous driving).
Therefore, the main goal of autonomous driving should be achieving level four and level
five driving.

Level zero–No Automation: The driver is in complete control of driving and is respon-
sible for monitoring the roadway. The vehicles with some driver support, such as steering,
braking, etc., do not take action or do not have control authority over the vehicle. Therefore,
it is considered no automation. Forward collision warning, lane departure warning, and
blind spot monitoring driver support systems are considered level zero automation.

Level one–Function-specific Automation/Driver Assistance: In this level of automa-
tion, the driver has complete control and is solely responsible for the vehicle’s safe operation.
The system can perform a single automated system, such as steering or acceleration (as
in adaptive cruise control), but not both. Drivers can take off their feet from the ped-
als so that it is sometimes called feet off level. Each system operates independently if
a vehicle is equipped with multiple automated systems, such as lane keeping, steering,
and acceleration. The automated system only supports the driver and does not replace
the driver.

Level two–Partial Driving Automation: The driver is responsible for controlling
the vehicle and monitoring the roadway. However, the system can perform two control
functions: steering and acceleration. In this level of automation, the driver can be free
from operating the steering wheel and pedal simultaneously. The driver engages whenever
necessary to control both or one of the control functions. The driver can take off both feet
and hands, called hand off level.

Level three–Conditional Automation: At this level of automation, vehicles can per-
form most of the tasks under specific traffic or environmental conditions (usually in urban
areas with low-speed driving, such as 25 mph). The driver can override the system anytime.
Therefore, the driver remains ready to take control when the system occasionally signals the
driver to reengage in the driving task. The driver has sufficient transition time to control
the vehicle. The driver can disengage from driving. Therefore, it is called eyes off level.

Level four–High Automation: At this level of automation, the vehicle can perform
all the control functions under specific conditions. The driver does not engage in driving
the vehicle but can override it. It is called mind off level. These technologies are not
commercially available yet.

Level five–Full Automation: The vehicle performs all control operations and monitors
roadway conditions without human intervention. The driver may provide navigation
input, but all the controlling operations, including safe operation and roadway safety,
rest on the vehicle. This level is also called mind off because vehicles can be without
humans, or humans can do other activities. The diagrammatic representation of the levels
of autonomous driving is shown in Figure 2.
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Figure 2. The levels of autonomous driving. In the first three levels (level zero to level two), the
humans monitor the driving environment, whereas the system monitors the driving environment for
the last three levels of driving.

The full automation level of autonomy replaces a human driver. The following four
areas are vital to replacing human drivers in autonomous driving [55]:

1. Vehicle Location and Environment: For fully autonomous driving without human
intervention, precise and accurate information about the driving environment must
know the road signs, pedestrians, traffic, and others.

2. Prediction and Decision Algorithms: An efficient deep or machine learning algo-
rithm is needed to detect, predict, and decide when interacting with other vehicles,
pedestrians, and situations.

3. High Accuracy and Real-time Maps: Detailed, precise, and complete maps are
needed to obtain information about the driving environment for path and trajec-
tory planning.

4. Vehicle Driver Interface: Smooth and self-adaptive transition to/from the driver
and an effective way to keep the driver alert and ready is needed, which increases
customer satisfaction and confidence, especially at the beginning of the technology.

To replace human drivers, we need efficient sensors that can do a human eye’s task,
maps to do the human memory, ML algorithms to make the human brain decision, and
vehicles to x communication such as human ears.

4. LiDAR 3D Object-Detection Methods

Although cameras are inexpensive, they lack the ability to create precise depth infor-
mation for accurate 3D object detection. Additionally, cameras are vulnerable to adverse
weather, such as snow, fog, and rain [3,24]. Point cloud-based methods provide solutions for
such problems to improve performance significantly because sensors, such as LiDARs and
radars, provide depth information, which is essential for accurate object size and precise
location estimation. However, point cloud data are sparse, unordered, unstructured, and
unevenly distributed. Therefore, they cannot fit directly into image-based deep-learning
methods and need a different processing method for image-processing techniques. Differ-
ent techniques have been proposed to reduce the sparsity of point cloud data, including
dilated convolution [56] and flex convolution [57]. Yu et al. [56] put forth dilated convo-
lution for dense prediction and enlarging receptive field. Although dilated convolution
enlarges the receptive field and improves performance, it suffers from a gridding effect [58],
which causes information discontinuity because of combination pixels from different neigh-
bors [59]. Groh et al. [57] also developed flex-convolution to process irregular data, such as
point clouds. We divide the point cloud representation methods into projection, voxel, and
raw point cloud.
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4.1. Projection Methods

The projection method transforms the 3D data points into a 2D space using plane
(image) [60], spherical [61], cylindrical [62], or bird’s-eye view (BEV) [7] projection tech-
niques. The projected data can be processed using the standard 2D methods and regressed
to obtain the 3D bounding boxes. It is hard to detect occluded objects in 2D plane rep-
resentations. Additionally, the 2D plane representations cannot keep object length and
width. Tian et al. [6] presented a range image-based 3D detection model. The network
uses the projected range image to generate multilevel FPN features and feed the output to
the detection head for classification and regression of 3D boxes. The model was trained
and tested on the nuScenes [63] dataset. When a point cloud is projected to a range image,
occlusion and scale change may reduce the detection performance, which is not the case
when projected to BEV representation. Therefore, solving the occlusion and scale change
problems would improve the model as with other representations, such as BEV.

The BEV representation, mostly encoded by height, intensity (reflectance value), and
density, solves these problems because, in BEV (top view) representation, objects occupy
separate spaces on the map. Therefore, it avoids occlusion and scale problems [7]. The BEV
lies on the ground plane so that the variance in the vertical direction is small, which helps
to obtain accurate 3D bounding boxes compared to other projection methods. Because of
these reasons, BEV is mostly used as a LiDAR 2D representation for 3D detection. However,
the BEV representation causes height compression at each position, which may cause
semantic ambiguity.

Yu et al. [64] transformed point cloud data into BEV elevation images by encoding
each pixel using maximal, median, and minimal height values as shown in Figure 3.

Figure 3. BEV image construction [64].

The BEV pixel of the image represents the ground coordinates so that it simultaneously
detects and localizes vehicles in the ground coordinates. The classification of vehicle and
localization is shown in Figure 4. Wirges et al. [65] encoded BEV using intensity, height,
detections, observation, and decay rate. Similarly, BirdNet [66] and BirdNet+ [67] encoded
BEV using height, intensity, and density information. The proposed density normalization
map normalizes the number of points collected by different LiDAR sensors. BirdNet+
adds an improvised regression method to avoid the post-processing task in BirdNet to
obtain the 3D boxes. Barrera et al. [68] modified BirdNet+ [67] and proposed a two-stage
model using a Faster R-CNN [69] model. The LIDAR point cloud data are projected into
BEV and normalized using the proposed density encoding method. The ResNet-50 [35]
with FPN [70] is used as a backbone network and RPN as candidate proposals generation
network. An ad-hoc set of nine anchors are employed to avoid the size constraints of
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objects in BEV. The category classification, 2D BEV rotated box regression, and 3D box
regression is performed by the detection head’s next stage. Even though the model shows
a good performance on the KITTI [52] and nuScences [63] datasets, it is far from the real-
time implementation due to slow speed detection. V and Pankaj proposed YOLO3D [71]
model, an extension of YOLOv4 [72] 2D model. The point cloud data are projected onto the
BEV domain before feeding to YOLOv4. Then, Euler-Region-Proposal Network is used to
predict the 3D bounding box information.

Figure 4. Two-stage vehicle detector [64].

Chen et al. [73] put forth a real-time multiclass 3D scene understanding two-stage
model called MVLidarNet using multiple views. In the first stage, the point cloud data
are projected into a perspective view to extract semantic information. In the second stage,
the processed point cloud data are projected into BEV representation, which is important
for classifying and detecting objects. An FPN-like encoder-decoder architecture is used
in both stages. To detect individual object instances, DBSCAN [74] clustering algorithm
is used. The model trained on the SemanticKITTI [75] dataset for semantic segmentation
and KITTI [52] dataset for detection. The model detects objects and simultaneously deter-
mines the derivable space. Lu et al. [76] proposed the Range-Aware Attention Network
(RAANet), which extracts more powerful BEV features and improves a 3D detection. Even
though far-away objects have sparser LiDAR points, they do not appear smaller in the BEV
representation. This weakens BEV feature extraction using shared-weight convolutional
neural networks. The authors proposed RAANET to solve this challenge and extract more
powerful features to enhance the overall 3D detection. They proposed the RAAConv layer
instead of the Conv2D layer to extract more representative BEV features. They also devel-
oped an auxiliary loss of density estimation to enhance the detection of occlusion-related
features. Even though the authors claimed the model is lightweight, the lite version runs
a maximum of 22 Hz, which is far from the real-time implementation. We expect more
lightweight models that can run at a higher frequency (Hz) for real-time implementation.

Du et al. [77] developed a detection network to provide an accurate 3D detection
result. A two-stage CNN is presented for the final 3D box regression and classification
based on the inputs fit into the 3D bounding box. PIXOR [78] is a proposal-free single-stage
detector that balances high accuracy and real-time efficiency using a BEV representation
of the point cloud. The network outputs a pixel-wise prediction of region proposals.
Yang et al. put forth PIXOR++ [79], a single-stage 3D object-detection model. The model
extracts geometric and semantic features from HD maps. A map prediction module is also
proposed to estimate the map from raw LiDAR data. The model was trained and tested
on the KITTI [52] dataset. Wenjie et al. [80] also proposed a deep NN model that jointly
learns 3D detection, tracking, and motion forecasting by exploiting the BEV representation.
The model is robust to occlusion and sparse data. Similarly, Complex-YOLO [81] extended
the YOLOv2 [38] 2D image-based detection model for 3D object detection using a complex
angle regression strategy for multiclass 3D box estimation. The introduced specific Euler-
Region-Proposal Network (E-RPN) estimates the orientation of objects accurately by adding
an imaginary and a real fraction for each bounding box. The model runs over 50 frames
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per second (fps), which is convenient for real-time operation. YOLO3D [82] also extended
the loss function of YOLOv2 [38] using the yaw angle, 3D object bounding box center
coordinates, and height of the box as a direct regression method.

4.2. Volumetric (Voxel) Methods

The volumetric method discretizes the unstructured and sparse 3D point clouds
into a volumetric 3D grid of voxels (volume elements) and uses a series of voxels to
represent a 3D point cloud. Voxels are similar to image pixels, but in 3D representation
that explicitly provides depth information. Because of the 3D point clouds’ sparsity nature,
most volumes are empty. Consequently, processing the empty cells reduces performance.
Another limitation of the voxel representation is that it uses 3D convolution for CNN
models, increasing the computational cost and involving a trade-off between resolution
and memory. In this section, we reviewed voxel- and pillar-based methods. Wang et al. [44]
proposed a voting scheme-based sliding window approach, vote3D, for 3D detection to
minimize the effect of the sparsity of point clouds.

Similarly, Sedaghat et al. [83] introduced a category-level classification network that
estimates both the orientation and the class label. The orientation estimation during
training improves the classification results during test time. Vote3Deep [47] presented the
first sparse convolutional layers based on a feature-centric voting scheme [44] to leverage
the sparsity point cloud. The computational cost is proportional to the number of occupied
cells rather than the total number of cells in a 3D grid.

Likewise, Li put forth a 3DFCN [84] model for 3D object detection. They extended the
2DFCN [85] into a 3D operation on voxelized 3D data. The point clouds are discretized on
a square grid with a 4D array representation using dimensions of length, width, height,
and channels. Zhou and Tuzel created a VoxelNet [9] network for 3D object detection. The
introduced voxel feature-encoding (VFE) layer learns a unified representation for each
group of points within voxels instead of using handcrafted features as shown in Figure 5.
Then, the region proposal network (RPN) takes the output of the volumetric representation
and VFE layer output convolved with 3D convolutions to generate detections. Converting
point clouds into a dense tensor structure help to implement stacked VFE operations in
parallel across points efficiently. Processing only the nonempty voxels rather than the
whole voxels in a grid improves the performance.

Figure 5. VoxelNet Architecture [9]. The raw point cloud is partitioned into voxels and transformed
into vector representation by the feature learning network. The convolutional middle layers process
the 4D tensor vector before the region proposal network generates 3D detection.
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Furthermore, SECOND [39], a spatially sparse convolution network to extract informa-
tion from LiDAR data, is introduced. The sparse convolution network uses a GPU-based
rule-generation algorithm to increase the speed of operation. The work outperforms the
previous results, such as VoxelNet. HVNet [86] is a hybrid single-stage LiDAR-based 3D
detection network. The network fuses a multiscale VFE at a point-wise level using FPN [70].
Then, the result is projected into multiple pseudo-image feature maps using attentive VFE
(AVFE) to solve the performance issues because of the size of the voxels. A small voxel
improves performance, but the detection speed is slow. Large voxel sizes cannot capture
the features of small objects. It uses a multiscale fusion network to solve these problems.
The performance result shows a state-of-the-art mAP performance on the KITTI dataset.

Du et al. put forth Associate-3Ddet [87] model to learn the association between
perceptual features extracted from real scenes using a perceptual voxel feature extractor
(PFE) and conceptual features generated from augmented scenes using a conceptual feature
generator (CFG) based on domain adaptation. First, CFG is separately trained on the
conceptual scene and integrated with complete object models. The perceptual-to-conceptual
module (P2C) uses an incompletion-aware re-weighting map to build associations between
perceptual and conceptual features. Once the perceptual and conceptual domains are well
aligned after training, the network can adaptively generate the conceptual features without
CFG. The models show promising results on the benchmarks of the KITTI [52] dataset.
Liu et al. proposed TANet [88], a robust network comprised of Stacked Triple Attention
(STA) and Coarse-to-Fine Regression (CFA) modules. The STA module obtains multilevel
feature attention by performing a stack operation on channel-wise, point-wise, and voxel-
wise attention. The CFA module helps to achieve more accurate detection boxes without
more outrageous computational costs. Then, the pyramid sampling aggregation (PSA)
module takes the output of CFA and provides cross-layer feature maps. The cross-layer
feature maps capture multilevel information, which has larger receptive fields with richer
semantic information from the high-level features and larger resolution from low-level
features. This helps to obtain more robust representative features for objects and enhances
the detection capability.

Deng et al. put forth Voxel R-CNN [89], a voxel-based 3D detection model comprising
a 3D backbone network, a 2D BEV RPN, and a detection head. The point cloud data are
voxelized and fed into the 3D backbone network for feature extraction. Then, the features
are converted into BEV representation before applying the 2D backbone and RPN for
region proposal generation. ROI features are extracted from the 3D features by applying
voxel RoI pooling. Finally, the detection head uses RoI features for box refinement. The
experiments are conducted on the KITTI [52] and Waymo Open [90] datasets. Li et al.
proposed SIENet [91], a two-stage spatial information enhancement network for 3D object
detection. The authors designed a hybrid-paradigm region proposal network (HP-RPN),
which includes the SPConv branch, the auxiliary branch, and the key-point branch, to
learn discriminative features and generate accurate proposals for the spatial information
enhancement (SIE) module. The SPConv branch learns more abstract voxel features from
the voxelized point cloud. Concurrently, the corresponding voxel features are dynamically
encoded by the key-point branch. The auxiliary branch is used to learn object structures.
The spatial shapes of the foreground points in the candidate boxes are predicted using the
proposed SIE module. The SIE module learns structure information to enhance the features
for box refinement. The model was trained and tested on the KITTI [52] dataset.

Liu et al. [92] put forth a single-stage sparse multiscale voxel feature aggregation
network (SMS-Net). The model comprises sparse multiscale-fusion (SMSF) and shallow-
to-deep regression (SDR) modules. The SMSF module fuses point-wise and multiscale
features at the 3D sparse feature-map level to achieve more fine-grained shape information.
The SDR improves the localization and 3D box estimation accuracy through multiple
aggregations at the feature-map level with less computational overhead. The model shows
the comparable result on the KITTI [52] dataset. Sun et al. [93] proposed a semantic-aware
3D object-detection model. The proposed voxel-wise class-aware segmentation module
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learns the fine-grained semantic features. Additionally, the semantic-aware refinement
module generates coarse proposals. The model shows a competitive result on the KITTI [52]
dataset, especially for small objects.

Liu et al. proposed MA-MFFC [94], attention and multiscale feature fusion network
with ConvNeXt module for 3D detection network. The multi-attention module comprises
point-channel and voxel attention to enhance key point information in voxels and obtain
more robust and discriminative voxel features in the 3D backbone. The convolutional
layer is replaced with a ConvNeXt module to extract richer features more accurately. The
experimental result on the KITTI [52] dataset shows an improvement over Voxel R-CNN [89]
baseline network. Wang et al. put forth a self-attention graph convolutional network (SAT-
GCN) [95] for 3D object detection. The proposed model consists of three modules. The first
vertex feature-extraction (VFE) module with GCN decodes point cloud data and extracts
local relationships between features. The second module, self-attention with dimension
reduction, uses self-attention to further enhance the neighboring relationship between
features. The final module, far-distance feature suppression, generates global features by
suppressing far-away features. The experimental result on the KITTI [52] and nuScenes [63]
datasets show the effectiveness of the proposed model. Fan et al. [96] proposed voxel-based
fully sparse 3D object detector. The sparse instance recognition module generates instance
features by grouping points before the prediction is employed. Grouping points into
instances reduces the missing center feature, such as center-based detection and neighbor
queries. The model shows competitive performance on the Waymo [90] dataset.

Li et al. [91] presented a two-stage model with a spatial information enhancement
network. The first stage of the hybrid-paradigm RPN consists of the SPConv branch, the
auxiliary branch, and the key-point branch to extract features and generate proposals. The
second stage predicts the 3D bounding boxes via the spatial information enhancement
module. The number of LiDAR points of an object decreases with distance. The spatial
information enhancement module helps predict the spatial shapes of objects. It extracts
the structure information and the representative features for further box refinement, which
increases the detection accuracy of far-away objects. Hu et al. [97] proposed a two-stage
point density-aware voxel (PDV) network to account the point density variations. The
PDV with voxel point centroids localizes voxel features from the 3D sparse convolution
backbone. The density-aware ROI-grid pooling module using kernel density estimation
(KDE) and self-attention with point density positional encoding aggregates the localized
features. The model was trained and tested on the Waymo [90] and KITTI [52] datasets.

Another work, Frustum PointNets (F-PointNet) [10], is a cascaded fusion network
for 3D detection and semantic segmentation. The 2D region proposals are generated from
RGB images using CNN and extruded to 3D region proposals called Frustum point clouds.
Then, the Frustum PointNet performs 3D object instance segmentation and amodal 3D
bounding box regression. Although the network shows incredible performance, there are
failures because of inaccurate pose and size estimation in the sparse point cloud. The
network also has a limitation when there are multiple instances from the same category and
dark lighting or strong occlusion. Cao et al. [11] proposed multiview Frustum PointNet
(MVFP), which is an extension of the F-PointNet [10] to reduce the rate of miss detection.
F-PointNet [10] misses detection when the RGB feature detector does not capture all the
information. MVFP added an auxiliary BEV detection to handle the miss detection. The
authors use an IOU [98] to match the F-PointNet [10] 3D and BEV 2D bounding box. If
there is a matching for the BEV box in the F-PointNet box, the object is detected successfully
by F-PointNet [10]. Therefore, the F-PointNet result is the output. On the other hand, if
there is no match for the BEV box, the object is possibly miss-detected. Thus, the 2D box
in BEV will be fed back to the raw point cloud. The experimental result on the KITTI [52]
dataset shows the model outperforms the F-PointNet [10].

Wang and Jia put forth Frustum-ConvNet [99], an amodal 3D model by sliding frus-
tums to aggregate local point-wise features. The authors proposed a method to obtain
a sequence of frustums by sliding a pair of planes along the Frustum axis. The pair of
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planes are perpendicular to the Frustum axis as well as the optical axis of the camera
is perpendicular to the 2D region proposal. For each 2D region proposal, a sequence of
frustums is generated, and all points inside the Frustum are grouped. Point-wise features
inside each Frustum are aggregated as a Frustum-level feature vector. Then, Frustum-level
feature extraction is undertaken using PointNet [12]. The Frustum-level feature vectors
array as a 2D feature map and feed into a fully convolutional network before feeding to
the detection head, which estimates oriented 3D bounding boxes. Finally, the proposed
refinement network applies to ensure the predicted box precisely bounds object instances.
The network was trained on the KITTI [52] and indoor SUN-RGBD [100] datasets.

Some works discretize point clouds into vertical columns called pillars instead of
voxels. Unlike voxels, pillars are suitable for 2D convolutions. Pointpillars [41] is a single-
stage 3D object-detection method by learning the features on pillars (vertical columns) to
predict 3D oriented boxes for objects. It is a point cloud encoding technique by learning the
features rather than using fixed encoders. It can run at 105 Hz and outperform previous
detectors, such as SECOND [39], in BEV and 3D KITTI detection benchmarks. McCrae and
Zakhor [101] modified PointPillars [41] as a recurrent network using fewer LiDAR frames
per forward pass. The ConvLSTM layer is inserted between PointPillars [41] backbone
and detection head to propagate information through time. The network takes fewer
LiDAR frames than PointPillars [41], which reduces complexity by processing fewer data.
The model outperforms the PointPillars [41] network, which uses 10 LiDAR frames per
forwarding pass, with only three LiDAR frames per forwarding pass. However, there
was a performance decline in the vehicle class. Detecting small objects is one of the
main challenges in autonomous driving, and decreasing the LiDAR frames will further
hurt performance.

Wang et al. [102] proposed an anchor-free pillar-based model for autonomous driving.
As in other methods, the network predicts bounding box parameters per pillar. The authors
also include an interpolation method in pillar-to-point projection to improve the final
prediction. The model is evaluated on the Waymo [90] dataset. Fan et al. [103] proposed
a single-stride sparse transformer network to avoid information loss because of multiple
strides using PointPillars as a base network. The model was trained and tested on the
Waymo [90] dataset. Tong et al. put forth ASCNet [104], a two-stage network. Pillar-wise
spatial-context feature-encoding and length-adaptive RNN-based modules are proposed
to learn features from point clouds and to solve the inhomogeneity in point clouds, such
as a varying number of points in the pillars, the diverse size of Regions of Interest (RoI),
respectively. The model shows competitive performance on the KITTI [52] dataset.

Zhang et al. [105] put forth a semisupervised pillar-based single-stage model by adopt-
ing a teacher-student framework. The authors used the same loss function as SECOND [39]
and PointPillars [41]. The exponential moving average (EMA) teacher and asymmetric
data augmentation method are used to improve the efficiency of a teacher-student network.
Even though the performance of this model is not good enough for real-time application, it
is a suitable model to start with by developing a semisupervised model to reduce the time
and cost of dataset labeling and annotation. Caine et al. [106] put forth a pseudo-labeling
domain adaptation method using PointPillars [41] as a student network. The teacher net-
work pseudo-labels all unseen source data, and the student network trains with a union of
labeled and pseudo-labeled data. Finally, the student and teacher networks were evaluated
on the Waymo Open Dataset [90] and Kirkland validation split [107].

Bai et al. proposed PillarGrid [108], a cooperative perception model that fuses in-
formation from multiple 3D on-board and roadside 3D LiDARs. The PillarGrid model
consists of four main components: (1) cooperative preprocessing for point cloud data
transformation, (2) pillar-wise voxelization and feature extraction, (3) grid-wise deep fusion
to fuse deep features, and (4) CNN-based augmented 3D object detection. The model was
trained and tested on a dataset collected using CARLA [109]. Lin et al. [110] put forth a
pointpillar-based 3D object-detection module to improve the performance for snow weather
conditions. The proposed double-attention module is used to reweight the input features
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of pillars feature extraction. The feature refinement extraction module captures context
information to reduce the noise of local features. Finally, the proposed maximum mean
discrepancy module is employed to obtain the domain feature representation distribution.
The module is trained and tested on the Canadian Adverse Driving Condition [111] and
KITTI [52] datasets. Recently, Alaba and Ball proposed WCNN3D [59], a wavelet-based
3D object-detection network. The model comprises discrete wavelet transform (DWT)
and inverse wavelet transform (IWT) with skip connection between the contrasting layers,
expanding layers, and the previous layers in the model. The model is designed without
the pooling operation to reduce the information loss during downsampling. The DWT is
used as a downsampling operator, whereas IWT is an upsampling operator. The wavelet’s
lossless property helped recover the lost details during the downsampling operation. The
experimental result on the KITTI [52] dataset shows the model outperforms pillar-based
models, such as PointPillars [41], and PV-RCNN [112], and is more suitable for the detection
of small objects such as pedestrians and cyclists.

4.3. Raw Point Cloud Methods

The LiDAR data projection and volumetric methods cause spatial information loss
during conversion to another domain, so processing point clouds directly are important to
keep this spatial information. However, the raw point cloud methods have high sparsity
and computational costs due to 3D convolutions. PointNet [12] is a unified architecture for
3D object classification, part segmentation, and semantic segmentation that directly uses
raw point cloud data, as shown in Figure 6. The classification network transforms n inputs
into aggregate point features using feature transformation. It outputs k class classification
scores. Then, the segmentation network concatenates the local and global features and
generates per-point scores.

Figure 6. PointNet Architecture [12]. The classification network transforms n inputs into aggregate
point features using feature transformation. It outputs k class classification scores. Then, the seg-
mentation network concatenates the local and global features and generates per-point scores. The
multilayer perceptrons (mlp) with layer size in brackets are also given.

The network applies feature transformation to each input and aggregates point fea-
tures. The process generates classification scores for each class. Then, global features,
local features, and outputs-per-point scores are aggregated for segmentation. Although
the PointNet model is promising, it does not capture local structures, which is crucial for
fine-grain patterns and better generalizability for unseen cases.
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Qi et al. [13] developed PointNet++ to solve the PointNet architecture limitations by
processing a set of points hierarchically sampled in a metric space. Distance metrics are used
to partition the set of points into overlapping local regions by leveraging neighborhoods at
multiple scales and centroid locations using the farthest point sampling (FPS) algorithm
and then learning the local features using PointNet. Finally, multiscale grouping forms
multiscale features by concatenating features at different scales. Multiresolution grouping
adaptively aggregates information based on the distributional properties of points. It
minimizes computational costs more than multiscale grouping.

Likewise, Shi et al. presented PointRCNN [14], a two-stage model using raw point
cloud data. The first stage generates 3D proposals by segmenting the point clouds into
foreground points and background bottom-up. The second stage refines the 3D bounding
box proposals in the canonical coordinates to achieve better detection results. In the second
stage, the authors adopted a pooling operation to pool learned point representations from
proposal generation and transformed them into canonical coordinates. The canonical
coordinates are combined with the pooled point features and the segmentation mask from
the first stage to learn relative coordinate refinement and use all information from the
first stage segmentation and proposal sub-network. They also proposed bin-based loss for
efficient and effective 3D bounding box regression. The model was trained and tested on
the KITTI [52] dataset.

Shi et al. [113] extended the pointRCNN [14] model by proposing a part-aware and
aggregation neural network (Part-A2) as shown in Figure 7. The part-aware network
learns to estimate the intra-object part locations of foreground points and generate 3D
proposals simultaneously by extracting discriminative features from the point cloud. Intra-
object part locations are the relative locations of the 3D foreground points regarding their
corresponding ground-truth boxes.

Figure 7. The part-aware and aggregation proposed 3D object-detection network architecture [113].
The model consists of two parts: (a) The intra-object part locations are predicted by the part-aware
network. Then, 3D proposals are generated before feeding to the encoder-decoder network. (b) ROI-
aware pooling is undertaken in the part-aggregation stage.

The discriminative point-wise features for foreground point segmentation and intra-
object part location estimation are extracted using an encoder-decoder network with sparse
convolution and deconvolution [46,114]. The model acquires the potential to infer the
shape and pose of objects by learning to estimate the foreground segmentation mask and
the intra-object part location of each point. The authors used anchor-free and anchor-based
methods for 3D proposal generation. The anchor-free method is more memory efficient,
whereas the anchor-based method gives better recall with a more GPU memory cost. Once
the intra-object part locations and 3D proposals are generated, box scoring and proposal
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refinement is completed by aggregating the part information and learning point-wise
features of all the points within the same proposal. The canonical transformation reduces
effects due to the rotation and location variations of 3D proposals. Then, the RoI-aware
point cloud feature pooling module removes the ambiguity of the previous point cloud
pooling operation. The box proposal scoring and refinement information is fused for fine
detection results. The model outperforms PointRCNN on the KITTI [52] dataset.

Yang et al. [115] put forth a sparse-to-dense (STD) two-stage 3D object-detection
framework. In the first stage, the bottom-up proposal generation network uses a raw point
cloud as input and seeds each point with a new spherical anchor to generate proposals.
Then a PointNet++ [13] backbone extracts semantic context features for each point and
generates objectness scores to filter anchors. The authors proposed a PointsPool layer to
generate features for each proposal and transform sparse, unstructured, and unordered
point-wise proposals into more compact features. In the second stage, a prediction is made.
To reduce inappropriate removal during post-processing, they introduced augmenting a
3D IOU branch for predicting 3D IOU between predictions and ground-truth bounding
boxes. The result on the KITTI dataset [52] outperforms models, such as PointPillars [41]
and PointRCNN [14].

Yu et al. [116] proposed an equivariant network with a rotation equivariance sus-
pension design to achieve object-level equivariance for 3D detection. This method helps
the bounding box independent of object pose and scene motion. The proposed method
tested on different models, such as VoteNet [117] on the ScanNetV2 [118] dataset and
transfer-based network [119] on the SUN RGB-D [100] dataset for indoor scenes and
PointRCNN [14] on the KITTI [52] dataset for outdoor scenes. Furthermore, 3DSSD [120]
is a lightweight and efficient 3D single-stage framework using point clouds. The feature
propagation upsampling layers and refinement module, mostly common for point cloud-
based models, were removed to reduce the computational cost. A fusion set of abstraction
downsampling layers were proposed to keep important information for regression and
classification tasks. Finally, a box prediction network and anchor-free regression head with
a 3D center label were introduced to enhance the final performance. He et al. [121] devel-
oped a structure-aware single-stage 3D detection (SASSD) network. A detachable auxiliary
network with point-level supervision was designed for better localization performance
through learning the structure information and an efficient feature-map part-sensitive
wrapping operation, PSWarp, to correct the misalignment between the predicted bound-
ing boxes and corresponding confidence maps. This design solves the spatial loss due
to downsampling in a fully convolutional operation. Gustafsson et al. [122] proposed
conditional energy-based models by extending SASSD [121] model. The authors designed
a differentiable pooling operator to regress 3D bounding boxes accurately. They integrated
the differentiable pooling operation into the SASSD model, and the experimental result on
the KITTI dataset [52] shows the model outperforms SASSD [121] model.

Similarly, Zheng et al. [123] proposed a confident IOU-aware single-stage object de-
tector (CIA-SSD) network to solve the localization accuracy and classification confidence
misalignment. The authors proposed a spatial-semantic feature aggregation module to
adaptively fuse high-level abstract semantic and low-level spatial features. This fusion
helps to predict bounding boxes and classification confidence accurately. An IOU-aware
confidence rectification module further rectifies the predicted confidence for more con-
sistent confidence with localization accuracy. The IOU-aware confidence rectification
module solves the complexity of SASSD [121] because of the interpolation operation. A
distance-variant IOU-weighted NMS module uses rectified confidence to obtain smoother
regressions and avoid redundant predictions. The network shows a comparable per-
formance for 3D car detection of the KITTI [52] dataset. Shi and Rajkumar proposed
Point-GNN [124], a graph neural network-based model. A graph was constructed using
vertices and connecting neighboring points within a fixed radius. Voxel downsampling
was used to reduce the point cloud density, but the representation is still a graph. After
the graph is constructed, a graph neural network is developed to refine the vertex features
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by aggregating features along the edges. An autoregistration mechanism was proposed to
align neighbor coordinates and reduce translation variance. A box merging and scoring
operation were also proposed to combine detection from multiple vertices with confidence
scores. The model outperforms others, such as PointRCNN [14]and STD [115].

Zhou et al. [125] put forth a two-stage joint 3D semantic segmentation and detection
model for autonomous driving. The model consists of two parts: spatial embedding
(SE) learning-based object proposal and the refinement of local bounding boxes (BBoxes).
Point-wise features (local features and global context information) are extracted using
PointNet++ [13] as a backbone network, along with sampling and grouping. A SE method
was proposed to assemble all foreground points into the corresponding object centers.
Based on the SE results, the object proposals, instance segmentation, and BBox can be
generated using a simple clustering strategy (K-means) [126]. Non-maximal suppression
(NMS) is not employed in this model because only one proposal is generated for each
cluster. Finally, the proposed instance-aware ROI pooling outputs refined 3D BBoxes and
instance masks. The model was trained on the KIITI [52] dataset.

Mao et al. [127] put forth a two-stage model, pyramid R-CNN, which is compatible
with voxels, points, and other representations of the LiDAR region of interest (ROI). A pyra-
mid ROI head was proposed, which comprises an ROI-grid pyramid, ROI-grid attention,
and Density-Aware Radius Prediction (DARP), to learn the features adaptively from the
sparse points of interest. An ROI-grid pyramid collects points of interest for each ROI in the
pyramid, which helps to mitigate the sparsity problem. The ROI-grid attention component
incorporates conventional attention-based and graph-based points into a unified form to
encode richer information from sparse points. Finally, the DARP module is dynamically
adjusting the focusing range of ROIs to adapt to different point density levels. This model
is robust to the sparse data and imbalanced classes. Yang et al. presented ST3D [128], a
self-training 3D domain adaptive network. A 3D object augmentation technique, random
object scaling (ROS), was developed to overcome the bias in object size in the labeled source
domain. A quality-aware triplet memory bank (QTMB) was also proposed for pseudo-label
generation and assessing pseudo-boxes’ quality. Finally, a curriculum data augmentation
(CDA) strategy was developed using pseudo-labels by escalating the intensity of augmen-
tation and simulating hard examples during training to overcome overfitting. This network
trained with four datasets, namely KITTI [52], Waymo [90], nuScenes [63], and Lyft [129].

Hegde and Patel [130] proposed a source-free unsupervised domain adaptive model,
which uses class prototypes to mitigate the effect of pseudo-label noise. The model perfor-
mance dropped when tested with a dataset different from what was trained. This model
minimizes the effect of domain change. During self-training, a transformer module was
used to identify incorrect and overconfident annotation outliers and compute an attentive
class prototype. Zheng et al. presented SE-SSD [131], a self-assembling single-stage 3D
object detector. The CIA-SSD [123] model structure was used by removing the confidence
function and DI-NMS. The SE-SSD framework consists of teacher SSD and student SSD.
The teacher SSD receives the point of cloud input and produces a bounding box with confi-
dence predictions. Then, the teacher supervises the student using the soft targets, which
are the predictions after global transformations, with consistency loss to align the student
predictions with soft targets. The teacher also supervises the student with hard targets
using orientation-aware distance-IOU loss, focusing more on the alignment of box centers
and the distance between the 3D centers of the predicted and ground-truth bounding
boxes. The student parameters were updated using consistency loss and orientation-aware
distance-IOU loss. In contrast, the teacher parameters were updated based on the student
parameters with the standard exponential moving average (EMA) method. The model
shows performance improvement on the KITTI [52] dataset over other methods, such as
CIA-SSD [123].

Wang et al. [132] proposed a semisupervised network via temporal graph neural
network. The teacher network takes a single point cloud frame input to generate candi-
date detections, which are input to the graph neural network to generate further refined
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detection scores. The generated pseudo-labels are then combined with the labeled point
clouds to train the student’s model. The teacher network is updated in each step using
the exponential moving average method. This semisupervised method is important to
leverage abundant unlabeled data. The model was trained and tested on the datasets
of the nuScenes [63] and H3D [133] datasets. Zhang et al. proposed PointDistiller [134]
knowledge distillation method for point cloud data. The model includes the local distil-
lation to extract and distills the local geometric structure of point clouds to the student
network using dynamic graph convolution with a reweighted learning strategy to handle
the sparsity and noise in point clouds. Transferring the teacher knowledge to the students
on the point cloud data trained and tested both on voxel and raw point cloud detectors,
such as PointPillars [41], SECOND [39], and PointRCNN [14].

Wang et al. put forth POAT-Net [135], a parallel offset-attention assisted transformer
model. The parallel offset-attention method helps to capture the distinguishing local fea-
tures at different scales. The normalized multiresolution grouping (NMRG) helps the
system to adapt the non-uniform density distribution of the 3D object point cloud from
the input embedding. NMRG fuses features from the downsampling pyramid and upsam-
pling pyramid of different scales and normalizes them. By leveraging the encoder and
decoder structure of the transformer and incorporating T-net, POAT-Net is insensitive to
the permutations of the point cloud and tolerates any initial rigid translation or rotation of
the raw point cloud. The normalized NMRG and parallel offset-attention help POAT-Net
improve the occluded object-detection rate. Ren et al. proposed a dynamic graph trans-
former 3D object-detection network (DGT-Det3D) [136]. The model consists of a dynamic
graph transformer (DGT) and proposal-aware fusion (PAF) modules. The DGT module is
a backbone network to encode long-range features and extracts spatial information. The
proposed PAF module combines and enhances the spatial and point-wise semantic features
for performance improvement. The model was trained and tested on the KITTI [52] and
Waymo [90] datasets.

Theodose et al. [137] proposed a DL-based LiDAR resolution-agnostic model to mini-
mize the effect of point cloud variation /distribution for 3D models. Two methods were
proposed to improve the performance of a model for unknown data. The first one is increas-
ing the data variability. The data variability increased by randomly discarding layers from
the training. Each target was represented as a Gaussian function, and the corresponding
loss function focused on the obstacle occupancy rather than regressing parameters as the
other solution. The model has exclusively trained on the subset of KITTI [52] dataset and
then evaluated on the nuScenes [63] and Pandaset [138] datasets. The model was trained
only for car detection. Nagesh et al. [139] proposed an auxiliary network [121] to improve
the localization accuracy of class imbalance on the nuScenes [63] dataset using the structure
information of the 3D point cloud. The class-balanced grouping and sampling [140] was
proposed to solve the classification loss problem due to class imbalance. The auxiliary
network was combined with class-balanced grouping and sampling to improve the local-
ization loss. The auxiliary network can be detached during the test time to reduce the
computational burden. Wang et al. put forth a single-stage network, LSNet [141], which
comprises a learned sampling (LS) module to sample important points. The LS sampling
outperforms other techniques, such as farthest point sampling on the KITTI [52] dataset.

Hahner et al. [142] put forth a snowfall LiDAR simulation for 3D object detection.
The snow particles were sampled for each LiDAR line in 2D space and used the induced
geometry to modify each LiDAR beam measurement. Partially synthetic snow LiDAR data
are generated and used these data to train several 3D networks, such as PV-RCNN [112],
PointRCNN [14], SECOND [39], and PointPillars [41]. This technique is vital to simulate
models when collecting data in such weather conditions is challenging.

Some methods use more than one LiDAR data representation to improve performance.
Chen et al. developed Fast Point R-CNN [143], a two-stage hybrid 3D detection network
using both voxel representations and raw point cloud data. In the first stage, VoxelRPN
uses the voxel representations to make a few initial predictions. Each predicted bounding
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box in the first stage is projected to BEV. The second stage, RefinerNet, further improves
the output of the first stage detection by directly processing the raw point cloud. The high-
dimensional coordinate feature is fused with the convolutional feature to preserve accurate
localization and context information. Shi et al. also proposed PV-RCNN [112] that uses both
voxel representation and raw point clouds. The voxel-based part of the network encodes a
multiscale representation of the features using sparse convolution. In contrast, the PointNet-
based part of the network set abstraction to learn more discriminative features with small
key-points. Each proposal introduces a multiscale ROI feature abstraction layer for points
to preserve rich context information for accurate box refinement and confidence prediction.
However, 3D convolution is still a bottleneck because of the high computational cost.

Likewise, Xu et al. presented Spg [144], an unsupervised domain adaptation model via
semantic point generation. The model comprises three modules: the Voxel feature-encoding
(VFE) module, the information propagation module, and the point generation module. The
point cloud data are voxelized, and a prediction for each voxel, including occupied and
empty, is generated. The VFE module from VoxelNet [9] aggregates points inside each
voxel, and then the voxel features are stacked into pillars and projected onto a BEV feature
space similar to PointPillars [41] and PV-RCNN [112]. The pillar features feed into the
information propagation module for 2D convolutions operation. Then, the point generation
module maps the pillar features to the corresponding voxels. These features are fed to the
two detectors: Pointpillars [41] and PV-RCNN [112]. The model is evaluated on the Waymo
open [90] and KITTI [52] datasets.

Table 1 gives the selected LiDAR-based 3D object-detection methods for the KITTI [52]
dataset to show the performance improvement over time. The BEV and 3D KITTI eval-
uation benchmarks are commonly used to compare the performance of models in the
KITTI dataset.

Table 1. BEV and 3D performance comparison (%) of selected LiDAR-based 3D object-detection
methods on the KITTI [52] test benchmark. r40 shows the mAP is calculated for 40 recall points
instead of 11. E stands for easy, M for moderate, and H for hard.

Methods APBEV AP3D
Car Pedestrians Cyclists Car Pedestrians Cyclists

E M H E M H E M H E M H E M H E M H

BirdNet [66] 75.5 50.8 50.0 26.1 21.4 20.0 39.0 27.2 25.5 14.8 13.4 12.0 14.3 11.8 10.6 18.4 12.4 11.9
BirdNet+ [67] 84.8 63.3 61.2 45.5 38.3 35.4 72.5 52.2 46.6 70.1 51.9 50.0 38.0 31.5 29.5 67.4 47.7 42.9
VoxelNet [9] 89.4 79.3 77.4 46.1 40.7 38.1 66.7 57.7 50.6 77.5 65.1 57.7 39.5 33.7 31.5 61.2 48.4 44.4
SECOND [39] 88.1 79.4 78.0 55.1 46.3 44.8 73.7 56.0 48.8 83.1 73.7 66.2 51.1 42.6 37.3 70.5 53.9 46.9
Fast point R-CNN [143] 88.0 86.1 78.2 - - - - - - 84.3 75.7 67.4 - - - - - -
PointPillars [41] 88.4 86.1 79.8 58.7 50.2 47.2 79.1 62.3 56.0 79.1 75.0 68.3 52.1 43.5 41.5 75.8 59.1 53.0
3DSSD [120] 88.4 79.6 74.6 - - - - - - - - - - - - - - -
SASSD [121] 88.8 79.8 74.2 - - - - - - - - - - - - - - -
CIA-SSD [123] 89.6 80.3 72.9 - - - - - - - - - - - - - - -
PIXOR++ [79] 89.4 83.7 78.0 - - - - - - - - - - - - - - -
TANet [88,141] 91.6 86.5 81.2 - - - - - - 84.4 75.9 68.8 - - - - - -
LSNet [141] 92.1 85.9 80.8 - - - - - - 86.1 73.6 68.6 - - - - - -
Associate-3Ddet [87] 91.4 88.1 83.0 - - - - - - 86.0 77.4 70.5 - - - - - -
HVNet [86] (r40) 92.8 88.8 83.4 54.8 48.9 46.3 84.0 71.2 63.7 - - - - - - - - -
Part-A2 [113] 91.7 87.8 84.6 - - - - - - 87.81 78.49 73.51 - - - - - -
PV-RCNN [112] (r40) 95.0 90.7 86.1 59.9 50.6 46.7 82.5 68.9 62.1 90.3 81.4 76.8 52.2 43.3 40.3 78.6 63.7 57.7
WCNN3D [59] 90.1 88.0 86.5 68.4 63.2 59.4 82.78 64.3 60.3 87.8 77.6 75.4 62.0 57.7 52.1 82.7 61.0 57.7
Point-GNN [124] 93.1 89.2 83.9 - - - - - - 88.3 79.5 72.3 - - - - - -
SE-SSD [131] (r40) 95.7 91.8 86.7 - - - - - - 91.5 82.5 77.2 - - - - - -

We recently addressed the challenges in 3D object detection, especially challenges
related to processing point cloud data, LiDAR point encoding techniques, robust models,
representative datasets, best fusion techniques, and others. We also indicated the possible
research directions to solve the challenges in 3D object detection (Read [3,24] for more
details). Different methods use different LiDAR encoding techniques and datasets. The
comparison of LiDAR 3D object-detection methods based on the LiDAR encoding tech-
niques, datasets, and publication years are summarized in Table 2 to show the performance
improvement over time.
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Table 2. Comparison of LiDAR-based 3D object-detection methods based on LiDAR encoding
techniques, the dataset used, and year of publication. We categorized pillar representation in the
volumetric encoding. Some methods use multiple datasets, but we report only datasets related to
autonomous driving.

Method LiDAR Encoding Technique Dataset Used Year of Publication

Yu et al. [64] projection KITTI 2017
BirdNet [66] projection KITTI 2017
Wirges et al. [65] projection KITTI 2018
PIXOR [78] projection KITTI 2018
Complex-YOLO [81] projection KITTI 2018
Birdnet+ [67] projection KITTI 2020
MVLidarNet [73] projection KITTI 2020
BirdNet+ [68] projection KITTI & Nuscenes 2021
YOLO3D [71] projection KITTI 2021
RAANet [76] projection KITTI & nuScenes 2021
Tian et al. [6] Projection nuScenes 2022

3DFCN [84] voxel KITTI 2017
VoxelNet [9] voxel KITTI 2018
SECOND [39] voxel KITTI 2018
F-PointNet [10] voxel KITTI & SUN RGB-D 2018
MVFP [11] voxel KITTI 2019
Frustum-ConvNet [99] voxel KITTI & SUN RGB-D 2019
Pointpillars [41] pillar KITTI 2019
McCrae and Zakhor [101] pillar KITTI 2020
Wang et al. [102] pillar Waymo 2020
HVNet [86] voxel KITTI 2020
Associate-3Ddet [87] voxel KITTI 2020
TANet [88] voxel KITTI 2020
Voxel R-CNN [89] voxel KITTI & Waymo 2021
SIENet [91] voxel KITTI 2021
Zhang et al. [105] pillar KITTI 2021
SMS-Net [92] voxel KITTI 2022
Sun et al. [93] voxel KITTI 2022
MA-MFFC [94] voxel KITTI 2022
SAT-GCN [95] voxel KITTI & Nuscenes 2022
Fan et al. [96] voxel Waymo 2022
Li et al. [91] voxel KITTI 2022
PDV [97] voxel KITTI & Waymo 2022
Fan et al. [103] pillar Waymo 2022
ASCNet [104] pillar KITTI 2022
PillarGrid [108] pillar synthetic data 2022
Lin et al. [110] pillar KITTI & CADC 2022
WCNN3D [59] pillar KITTI 2022

PointNet [12] raw point cloud ScanNet 2017
PointNet++ [13] raw point cloud ScanNet 2017
PointRCNN [14] raw point cloud KITTI 2019
STD [115] raw point cloud KITTI 2019
Part-A2 [113] raw point cloud KITTI 2020
3DSSD [120] raw point cloud KITTI & nuScenes 2020
SASSD [121] raw point cloud KITTI 2020
CIA-SSD [123] raw point cloud KITTI 2020
Point-GNN [124] raw point cloud KITTI 2020
Zhou et al. [125] raw point cloud KITTI 2020
Auxiliary network [121] raw point cloud nuScenes 2020
LSNet [141] raw point cloud KITTI 2021
Pyramid R-CNN [127] raw point cloud KITTI & Waymo 2021
ST3D [128] raw point cloud KITTI, Waymo, nuScenes & Lyft 2021
SE-SSD [131] raw point cloud KITTI 2021
Wang et al. [132] raw point cloud nuScenes & H3D 2021
POAT-Net [135] raw point cloud KITTI 2021
Theodose et al. [137] raw point cloud KITTI, nuScenes, & Pandaset 2021
DGT-Det3D [136] raw point cloud KITTI & Waymo 2022
Yu et al. [116] raw point cloud KITTI, ScanNetv2 & SUN RGB-D 2022
Hahner et al. [142] raw point cloud STF 2022
PointDistiller [134] raw point cloud KITTI 2022
Fast Point R-CNN [143] voxel & raw point cloud KITTI 2019
Pv-Rcnn [112] voxel &raw point cloud KITTI &Waymo 2020
Spg [144] voxel & raw point cloud KITTI &Waymo 2021

191



Sensors 2022, 22, 9577

5. Conclusions

This survey presented state-of-the-art LiDAR-based 3D object detection for autonomous
driving. The LiDAR feature-extraction methods and LiDAR encoding techniques were also
summarized. The 3D coordinate systems are different for different sensors and datasets.
Therefore, the commonly used 3D coordinate systems were reviewed. The stages of
autonomous driving were also summarized. We categorized the 3D LiDAR perception
systems methods based on the encoding technique as projection, voxel, and raw point
cloud, with the pros and cons of each method. Generally, 3D object-detection methods
show significant performance improvement for autonomous driving. However, several
open issues exist in improving model speed and accuracy for real-time processing and level
four and five driving. Some works, such as [145], proposed a computationally efficient
algorithm for the quality of training and resource allocation, such as bandwidth and power
allocation in multi-modal systems. We expect more works that efficiently train the complete
system in autonomous driving.
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The following abbreviations are used in this manuscript:

BEV Bird’s-Eye View
CNN Convolutional Neural Network
DL Deep Learning
GCN Graph Convolution Network
IOU Intersection Over Union
LiDAR Light Detection and Ranging
mAP Mean Average Precision
NMS Non-maximal Suppression
RPN Region Proposal Network
SOTA State-of-the-art
VFE Voxel Feature Encoding
WCNN3D Wavelet Convolutional Neural Network for 3D Detection
YOLO You Only Look Once
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