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Editorial

Special Issue on “Algorithms for Biomedical Image Analysis
and Processing”

Laura Antonelli *,† and Lucia Maddalena †

Institute for High-Performance Computing and Networking, Consiglio Nazionale delle Ricerche, Via P. Castellino
111, 80131 Naples, Italy; lucia.maddalena@cnr.it
* Correspondence: laura.antonelli@cnr.it
† These authors contributed equally to this work.

Biomedical imaging is a broad field concerning image capture for diagnostic and thera-
peutic purposes. Biomedical imaging technologies utilize x-rays (CT scans) [1], magnetism
(MRI) [2], sound (ultrasound) [3], radioactive pharmaceuticals (nuclear medicine: SPECT,
PET) [4], or light (endoscopy, OCT, light microscopy) [5,6]. Algorithms for processing and
analyzing biomedical images are commonly used to visualize anatomical structures or
assess the functionality of human organs, point out pathological regions, analyze biological
and metabolic processes, set therapy plans, and image-guided surgery [7]. At a different
scale, microscopy images are generally produced using light microscopes, which provide
structural and temporal information about biological specimens. In the most widely used
light microscopy techniques, the light is transmitted from a source on the opposite side
of the specimen to the objective lens. On the contrary, fluorescence microscopy uses the
reflected light of the specimen [6]. Microscopy imaging requires methods for quantitative,
unbiased, and reproducible extraction of meaningful measurements to quantify morpho-
logical properties and investigate intra- and inter-cellular dynamics [8]. New technologies
have been developed to address this need, such as microscopy-based screening, sequenc-
ing, and imaging, with automated analysis (including high-throughput screening and
high-content screening) [9], where basic image processing algorithms (e.g., denoising and
segmentation) are fundamental tasks.

The large number of applications that rely on biomedical images increases the demand
for efficient, accurate, and reliable algorithms for biomedical image processing and analysis,
especially with the rising complexity of imaging technologies and the huge amount of
images to be processed. This special issue aimed at bringing together both original research
articles and topical reviews on the wide area algorithms for biomedical image processing
and analysis techniques.

In response to the call for papers, a total of 14 manuscripts were submitted. Out
of them, we selected ten submissions to appear in this Special Issue, coming from seven
countries in three geographical regions: America (Brazil (2), Canada (1)), Asia (Indonesia
(1), Japan (1)), and Europe (Belgium (1), Germany (1), Italy (3)). Two or three experts in
the corresponding area have reviewed each submission. The List of Contributions for
this Special Issue includes first two reviews and then the other eight published papers in
chronological order of publication date, briefly described in the following.

In their review (Contribution 1), Maddalena et al. give an overview of methods,
software, data, and metrics for various tasks related to label-free microscopy images,
including cell segmentation, event detection and classification, and cell tracking and lineage,
providing the reader with a unique source of information, with links for further details.

The review by Conte et al. (Contribution 2) discusses the application of models from
polymer physics to understand the machinery underneath the chromosome architecture
in the nucleus of the cells. Numerical simulations of the reviewed models are validated
against imaging data from multiplexed super-resolution fluorescence in situ hybridization
(FISH) imaging for chromatin conformation tracing, which allows unbiased determination
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of the structural features and their genomic coordinates with high resolution in single cells.
This way, they show that this kind of novel data from microscopy can be complemented
with quantitative models from physics to understand the mechanisms and function of the
genome structure.

Negassi et al. (Contribution 3) afford the problem of automatic data augmentation
for semantic image segmentation. They propose an optimal comprehensive method and
a sub-optimal one that is computationally less demanding. The performance of these
methods is evaluated against four existing annotated datasets for various applications,
including crack detection in bridge images, autonomous driving, anomaly detection in
cystoscopic medical images, and segmentation of brain electron microscopy images.

In Contribution 4, Rodrigues et al. aim to identify potential brain regions as biomarkers
of Autism Spectrum Disorder (ASD) severity. Imaging data come from pre-processing the
brain’s resting-state functional magnetic resonance imaging (rs-fMRI). Classification of
subjects affected by different autism grades is carried out using SVM to select the groups of
atlas ROIs (Regions of Interest) that lead to the highest accuracy.

In Contribution 5, Li et al. consider the problem of classifying low and high risk
of early prostate cancer. Imaging data consists of DWI and T2 sequences from multi-
parametric magnetic resonance imaging (mp-fMRI) aligned and cropped to the prostate
region, producing 3D sequences to be fed to a 3D-CNN. The experiments are carried out
using various combinations of the input data and different 3D-CNN models and analyse
the cancer response maps produced from the last convolution layer of the network.

Contribution 6 by Carvalho et al. affords the problem of classifying healthy and tumor
cases in microphotograph images of rats’ liver tissue. They consider different texture
features and their fusion, combined with three traditional machine learning classifiers.

In Contribution 7, Anam et al. analyze the effect of the iterative application of bilateral
filtering to Computed Tomography images. The experiments are carried out on homoge-
neous phantom images scanned with different tube currents to investigate the impact on
noise texture and spatial resolution and on anthropomorphic phantom images of the head
to simulate clinical scenarios.

Franchini et al. (Contribution 8) propose an adaptive early stopping technique for
optimising the training phase of neural networks for image classification, reducing the
required epochs. Numerical experiments are carried out using different CNN models on
the standard CIFAR-100 database and two biomedical databases obtained by computed
tomography, involving various numbers of classes.

In Contribution 9, Huang et al. present in their work, a derivative-free optimization
(DFO) framework that allows direct and model-based search methods in a single algorithm,
analyzing their optimal combinations. They propose a smart version of the method that
dynamically and adaptively chooses the search strategies. These methods are applied for
the design of a solid-tank fan-beam optical CT scanner.

Contribution 10 by Ghafari et al. proposes a clinical validation of recent stent imaging
methods. The imaging data consists of coronary angiographies post-processed by two
enhanced stent imaging methods, one vendor-specific and the other independent from
the angiographic system. The experiments are devoted to comparing the visualization
obtained by the two methods in terms of image quality as perceived by expert cardiolo-
gists and to quantitatively analyze the stent expansion measurements achieved with the
independent method.

As the editors, it is our pleasure to thank the editorial staff of the journal Algorithms
for their helpful cooperation during the preparation of the Special Issue and of this volume.
We would also like to thank all reviewers for their thorough and timely reports on the
reviewed papers and all the authors for submitting many interesting works from a broad
spectrum in the field of interest of this volume.
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Review

Artificial Intelligence for Cell Segmentation, Event Detection,
and Tracking for Label-Free Microscopy Imaging

Lucia Maddalena 1,†, Laura Antonelli 1,*,†, Alexandra Albu 2, Aroj Hada 2 and Mario Rosario Guarracino 1,2

1 Institute for High-Performance Computing and Networking, National Research Council, 80131 Naples, Italy
2 Department of Economics and Law, University of Cassino and Southern Lazio, 03043 Cassino, Italy
* Correspondence: laura.antonelli@cnr.it
† These authors contributed equally to this work.

Abstract: Background: Time-lapse microscopy imaging is a key approach for an increasing number
of biological and biomedical studies to observe the dynamic behavior of cells over time which helps
quantify important data, such as the number of cells and their sizes, shapes, and dynamic interactions
across time. Label-free imaging is an essential strategy for such studies as it ensures that native
cell behavior remains uninfluenced by the recording process. Computer vision and machine/deep
learning approaches have made significant progress in this area. Methods: In this review, we present
an overview of methods, software, data, and evaluation metrics for the automatic analysis of label-free
microscopy imaging. We aim to provide the interested reader with a unique source of information,
with links for further detailed information. Results: We review the most recent methods for cell
segmentation, event detection, and tracking. Moreover, we provide lists of publicly available software
and datasets. Finally, we summarize the metrics most frequently adopted for evaluating the methods
under exam. Conclusions: We provide hints on open challenges and future research directions.

Keywords: label-free microscopy; cell segmentation; cell classification; cell event detection; cell
tracking; artificial intelligence; machine learning; deep learning

1. Introduction

Microscopy is a fundamental research pillar enabling scientists to discover the struc-
tures and dynamics of cells and subcellular components. Most of these components are
phase objects, which means they are transparent and colorless and cannot be visualized
under a light microscope. To overcome this limit, a solution consists in staining the com-
ponents with dyes, also known as fluorophores or fluorochromes. Such molecules absorb
short-wavelength light, generally UV, and emit fluorescence light at a longer wavelength.
This mechanism represents the basic premise of fluorescence microscopy techniques, and
the fluorescence images show the specimen bright on a dark background. The staining
techniques use different dyes to point out a specific cellular component. Then, the same
specimen can appear with a red, blue, or green color and appearance, as depicted in
Figure 1a,b.

As the molecular genetic methodologies and tools advance, the fluorescence tech-
niques become more specific and can be applied to a larger set of different model
organisms [1,2]. However, to ensure high-quality images, they require laborious and
expensive sample preparation. Furthermore, the dyes reduce their luminance over time
due to a light-induced degradation process called photobleaching [3]. Finally, fluorescent
techniques are invasive and interfere with the biological processes causing phototoxicity.

On the contrary, Label-free Imaging (LI) techniques can visualize many cellular struc-
tures simultaneously with minimal sample preparation, phototoxicity, and no photobleach-
ing, making them particularly suitable for live-cell imaging. Thus, LI provides measure-
ments complementary to fluorescence imaging for several biological studies. Based on

Algorithms 2022, 15, 313. https://doi.org/10.3390/a15090313 https://www.mdpi.com/journal/algorithms
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optical principles, these techniques measure the light phase change (i.e., the refractive in-
dex) passing through the specimen and converting it into intensity modulations producing
qualitative phase contrast images, as exemplified in Figure 1c (the phase change information
contained in LI images is non-linearly coupled with its luminance intensity and cannot
be retrieved quantitatively. An image produced by LI techniques is a map of path-length
shifts associated with the specimen, containing information about both the thickness and
refractive index of its structure; for further details and explanations, see [4]). Among the
traditional techniques to phase change imaging, there are Phase Contrast (PhC) [5] and
Differential Image Contrast (DIC) [6] based on the phase gradient method and differential
interference contrast, respectively, to measure the refractive index. Another LI technique
very similar to DIC is the Hoffman Modulation Contrast (HMC) [7]. Due to intrinsic limi-
tations of the numerical conversion methods, phase contrast images contain artifacts [8]
(i.e., bright halo surrounding cell contours) and the “shade-off effect”, which produces low
contrast inside the cells with an intensity very similar to the background. Although several
methods have been developed to overcome these artifacts, automatic image processing of
label-free images is still challenging, especially the segmentation task for separating cells
from the background.

(a) (b) (c)

Figure 1. Example of differences in appearance of fluorescence and phase contrast microscopy images
(culture of human lymphocyte cells [9]): (a) fluorescence image of nuclear envelope; (b) fluorescence
image of interior nuclei (DNA); (c) phase contrast image of whole cells.

Unlike the previous techniques, quantitative LI provides higher contrast and reduces
artifacts. Among them, Quantitative Phase Imaging (QPI) techniques refer to the microscopes
showing phase quantitative information. Details concerning QPI techniques can be found
in [10].

A further alternative to noninvasive techniques is Bright-Field (BF) microscopy. It
represents the most straightforward configuration for the light microscope, which is not
only cheaper but also does not require sample preparation [11]. BF images provide in-
formation about the cellular organization, and they are preferred to visualize specimens
with low contrast from the background (unlike in fluorescence) or with low resolution and
magnification visualization of thin cellular components (unlike in phase contrast). Several
studies describe the use of the BF channel in cell detection and automated image analysis
of cell populations [12,13].

With the aim of observing the dynamic behavior of living cells over time, LI micro-
scopes are also equipped with a real-time imaging tool named time-lapse. Broadly speaking,
time-lapse is a speed-up technique to observe events changing over time. This is usually
realized by taking images at regular time intervals and merging them into a video. One of
the most significant applications of time-lapse microscopy is cell population monitoring to
study single-cell behavior in response to physiological or external stimuli and understand
the underlying mechanisms. For example, in drug discovery and cancer research [14],
time-lapse microscopy is used to look at cell response to anti-mitotic drugs in terms of cell
division and cell death. To achieve this goal, quantitative information on cell behavior
needs to be obtained and analyzed [15]. Cell proliferation, lineage, and fate are of primary

6
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importance among various cellular events. Image analysis of these biological processes is
usually performed manually with suitable protocols [16]. As manual analysis of a large vol-
ume of light microscopy images is slow, tedious, time-consuming, and subject to observer
subjectivity, biological studies see an increased demand for reliable automatic imaging
tools. As in many scientific disciplines, Artificial Intelligence (AI) has been changing how
imaging data are processed and analyzed and how experiments are carried out. AI refers
to artificial systems aiming to adapt previous knowledge to new situations and recognize
meaning in data patterns. Machine Learning (ML) [17] is a subset of AI methods that
extracts valuable features from large data sets to make predictions or decisions on unseen
data. An ML algorithm is not designed to solve a specific problem but rather to train a
computer to solve problems. The training is data-driven. Deep Learning (DL) is a set of
ML algorithms using a multi-layer “neural networks” to progressively extract higher-level
features from data (the number of layers is the depth of the model, hence the terminology
“deep learning”; for a quick overview on DL key concepts for microscopy image data, the
reader can refer to [18]).

This review mainly focuses on AI methods for the most used traditional LI microscopy
techniques, i.e., PhC, DIC, and BF, to investigate fundamental biological events. A com-
prehensive description of the state-of-the-art methods using QPI data and AI approaches,
which are out of our focus, can be found in [19] and references therein. Few recent surveys
are available in the literature covering methods for these types of microscopy images and
videos. The study presented by Vicar et al. [20] performs a comprehensive comparison of
cell image segmentation methods for the most common label-free microscopy techniques,
including PhC, DIC, HMC, and QPI. The review covers traditional methods, providing
only hints on DL-based segmentation methods. The authors identify an effective image seg-
mentation pipeline composed of four main steps: image reconstruction, foreground-background
segmentation, seed-point extraction, and cell segmentation. They discuss and assess the most
effective combination of the above steps for the specific microscopy techniques based on
software and tools available in the state-of-the-art literature. Furthermore, they compare
the accuracy and efficiency of tools containing all the above four steps (named “all-in-
one” tools) as well as software implementing only one of them. Software and data were
made publicly available (see Sections 3 and 4). In [21], Emami et al. present a review of
methods and tools for cell tracking. Following the traditional object tracking literature,
the methods are subdivided into three groups, according to whether tracking is achieved
by detection, model evaluation, or filtering, with limited space given to DL approaches.
Well-known commercial and open-source cell tracking tools are summarized, and typical
challenges are highlighted. Ulman et al. [22] present a comparison of 21 cell-tracking
algorithms participating in three editions of the Cell Tracking Challenge (CTC), an initiative
promoting the development and objective evaluation of cell segmentation and tracking
algorithms. The compared methods are summarized based on common principles, features,
and methodologies, as well as pre- and post-processing strategies. They are evaluated
for both the segmentation and tracking tasks (see Section 5), and their overall average
performance is used to compile the final ranking. Started in 2013, this challenge is still
ongoing, and since 2019, it has been articulated into two different challenges, the Cell
Tracking Benchmark (CTB) and the Cell Segmentation Benchmark (CSB), sharing the same
dataset (see Section 4).

Although the described surveys provide extremely useful insights on specific tasks
or specific datasets, the landscape of the scientific research on the subject still appears
fragmented. The aim of our review is to provide a broad and up-to-date view of AI methods
for the analysis of label-free images and videos acquired by traditional LI microscopy
techniques and all the ingredients needed to afford it. Thus, it covers the most recent
methods, especially for cellular segmentation, event detection, and tracking over time-lapse
videos, available datasets, software, and evaluation metrics.

The review is organized as follows. In Section 2, we introduce the considered mi-
croscopy analysis tasks and provide brief descriptions of the reviewed literature methods
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for each of them. Sections 3 and 4 provide brief descriptions and links to the publicly
available software and data. Section 5 introduces the most frequently used metrics to eval-
uate the AI algorithms for the considered tasks. Section 6 summarizes the open problems,
providing hints on possible future research directions.

2. Literature

2.1. Cell Segmentation

Image segmentation is the main task for producing numerical data from live-cell
imaging experiments, thus providing direct insight into the living system from the quanti-
tative cell information [23,24]. Cell segmentation is the process of splitting a microscopy
image into “segments”, i.e., Regions Of Interest (ROIs), and produces an image where cells
are separated from the image background by cell contours or cell labels. Accurate cell
segmentations are crucial for many challenges involved in cellular analysis, including but
not limited to cell tracking [25], cellular features quantification, proliferation, morphology,
migration, interactions, and counting [26–29].

Several steps are considered in the literature for achieving cell segmentation. Some
authors [8,20,30] consider crucial to initially perform an image reconstruction step, which
produces images with higher contrast between foreground and background, increasing the
success of the subsequent image processing tasks. The image formation model in phase con-
trast microscopy can be studied to reduce artefacts and solve the inverse problem through
a regularization approach [8]. Some ML-based methods are reviewed by Vicar et al. [20]
for PhC and DIC images, while De Haan et al. [30] present an overview of how DL-based
frameworks solve these inverse problems in optical microscopy.

Cell detection (or identification) is also frequently adopted previous to segmenta-
tion [20,22], with the aim of locating the cells in the image (e.g., via bounding boxes, as
exemplified in Figure 2a).

(a) (b) (c)

Figure 2. Results of different image processing tasks: (a) cell detection; (b) cell semantic segmentation;
(c) cell instance segmentation.

Some specific types of segmentation are frequently considered for cellular
images [20,31–33]. Semantic segmentation identifies the object (i.e., the cell) category
of each pixel for every known object within an image, as exemplified in Figure 2b. Instance
segmentation, instead, identifies the object instance (i.e., the cell with specific features) of
each pixel for every known object within an image [34]; an example is given in Figure 2c. It
should be observed that the problem of cell instance segmentation is sometimes intended
as joint cell detection and segmentation (e.g., see [32]), while other times (e.g., see [20])
instant segmentation is used as a synonym for single cell segmentation.

Some of the most recent segmentation algorithms are described in the following.
In [23], Van Valen et al. in the software named DeepCell adopt deep convolutional neural
networks for cell segmentation for various types of microscopy images (PhC, Fluo, and
PhC coupled with images of a fluorescent nuclear marker), also providing hints on design
rules in training CNNs for this task (image normalization, data augmentation, hyper-
parameter tuning, and segmentation refinement). They also extend the deep convolutional
neural networks to perform semantic segmentation (i.e., not only image segmentation but
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also cell type prediction). The software and the adopted data are publicly available (see
Sections 3 and 4).

Hilsenbeck et al. [25] present fastER, a fast and trainable tool for cell segmentation that
extracts texture and shape features from candidate regions, estimates their likelihood to be
a cell with a support vector machine (SVM) algorithm, and calculates an optimal set of non-
overlapping candidate regions using a divide and conquer approach. Candidate regions are
chosen as the so-called extremal regions (regions with maximal size containing only pixels
whose intensities are no greater than a specific threshold), similarly to CellDetect [35]. For
each candidate region, a feature vector is extracted to train the SVM model, including typical
shape and intensity information (size, major/minor axis lengths, eccentricity, average
intensity inside and in its neighborhood, average and standard deviation gradient, and
average heterogeneity) [36]. Pre-processing of the images consists of denoising with
bilateral filtering, while post-processing of the resulting masks includes hole-filling and
size filtering. The software made publicly available (see Section 3) is shown to be robust
against common cell segmentation challenges but still suffers high cell densities and
blurring. Compared with other state-of-the-art methods (e.g., U-Net [37], ilastik [38],
CellProfiler [39], and CellDetect), it is shown to be more efficient on various types of data
made publicly available (see Section 4) still achieving similarly accurate results.

Yi et al. [32] propose the software ANCIS an Attentive Neural Cell Instance Segmenta-
tion method to predict each cell’s bounding box and its segmentation mask simultaneously.
The method builds on a joint network that combines the single shot multi-box detector
(SSD) one-stage object detector [40] and U-net [37] for cell segmentation. Attention mecha-
nisms are adopted in detection and segmentation modules to focus the model on useful
features while suppressing irrelevant information. The software, tested on DIC images of
neural cells, is publicly available (see Section 3).

In [24], Lux and Matula use a watershed [41] marker-based approach with two con-
volutional neural networks (CNN) of hour-glass architecture shape to segment clustered
cells in images consisting of five datasets, three of which originate from the Cell Tracking
Challenge [22] (DIC-C2DH-HeLa, Fluo-N2DH-SIM+, and PhC-C2DL-PSC). They used
normalization by histogram equalization and median scaling as a pre-processing step.
Afterwards, they augment the data by randomized rigid geometric transformations and
scaling. Then, Lux et al. use one CNN to predict cell marker pixels and the other CNN for
image foreground predictions. They utilize these outputs to compute the marker function
to obtain the segmentation seeds and the segmentation function to define cell regions that
are further used in the marker-controlled watershed segmentation.

Scherr et al. [42] present a method for segmenting touching cells in BF images from
the Cell Tracking Challenge [22] by using a novel representation of cell borders, inspired
by distance maps. The proposed method uses an adapted U-Net with two decoder paths,
one for prediction of cell distance and another for prediction of neighbor distance. These
distances are then used for the watershed-based post-processing to obtain segmentations.
Results are evaluated using the SEG, DET, and CSB metrics (see Section 5) and show
accurate performances, with average SEG and DET scores of 0.726 and 0.975, respectively.

Nishimura et al. [43] propose a weakly supervised cell instance segmentation method
that recognizes each cell region by only using weak labels, i.e., point-level (cell centroid
positions) rather than pixel-level annotations, as training data. This approach strongly
reduces the annotation cost compared with the standard annotation method required
for supervised segmentation. They train a cell detection CNN (U-net) and then use it
to estimate rough cell positions. The rough cell shapes are extracted from the detection
network by backpropagating the activation from output to input, obtaining a relevance
map that shows how each pixel in the input image is relevant to the output. The final cell
shapes are estimated by graph-cut [44] using the estimated relevance map as a seed. Results
on different datasets show that the method works well with different types of microscopy
and different contrasts.
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Stringer and Pachitariu introduce Cellpose [45] a software library for the instance
segmentation of cell images. It implements a CNN using the U-net architecture style.
Cellpose provides the probability of a pixel being inside a cell and the flows of pixels in
xy coordinates towards the cell center. The flows are then used to construct the cell ROIs.
Several results confirm its reliability on a wide range of label-free images without model
retraining or parameter adjustment. The authors also propose a 3D extension of the library
that does not use 3D-labeled data but works on the 2D model. The recent furthest extension
of Cellpose [46] can adapt CNN segmentation models to new microscopy images with very
little training data. Code and data are publicly available (see Sections 3 and 4).

2.2. Event Detection and Classification

Even though segmentation remains the core of the subsequent imaging tasks, au-
tomated analysis of microscopy image sequences often bypasses the segmentation task.
Usually, the detection of cell events under investigation is performed directly from heuristi-
cally generated ROIs. Detecting changes in cellular behavior plays a central role in different
studies, where the focus is on identifying the changes in cellular growth, mitosis, and
death. Such changes may be related to cell shape, division, and movement. They cannot
be detected in a single image but require the analysis of video or time-lapse sequences.
The difficulty primarily relies on the wide spatial-temporal variability of such phenomena,
which requires suitable methods to handle time-varying phenomena. Nevertheless, the
infinite spectrum of possible events faces an inherent shortage of labeled data.

Automatic and robust approaches to detecting the time and location of cell events
from image sequences often make use of the classification task. In microscopy, classification
refers to identifying and distinguishing different cell types or states. Classification between
other cells, types of tumors (benign or malignant), types of cell states (mitosis detection,
alive-dead classification), and types of CIC (Cell-In-Cell) structures [47] are some typical
applications.

Some recent AI approaches for event cell detection are here presented. Su et al. [48]
and Mao and Yin [49] propose a convolutional long short-term memory (CNN-LSTM)
network and a Two stream Bidirectional CNN-LSTM network, respectively, on sequences
of single-cell image patches and utilize both spatial and temporal information to detect
mitosis events. They report an average precision of 0.96 and 0.98, respectively. However,
these models need a large amount of manually annotated data to train on, and both papers
also report a sharp decrease in accuracy when testing the model on other cell datasets.

A CNN-LSTM model that learns spatial and temporal locations of the cells from a
detection map in a semi-supervised manner is proposed by Phan et al. [50] for the detection
of mitosis in PhC videos. The method needs only 1050 annotated frames to achieve an
F1 score of 0.544–0.822, depending on the video. However, it also shows a decrease in
performance with the increase in the input sequence length, which is not ideal for practical
situations where time-lapse experiment’s video sequences may contain thousands of frames.
The method also will only be able to detect a single event at a time, such as mitosis, whereas
these events can randomly occur in multiple places in a single frame.

Nishimura and Bise [51] propose a method for multiple mitosis event detection and
localization by estimating a spatial-temporal likelihood map using the 3D CNN architecture
V-Net [52]. In the likelihood map, a mitosis position is represented as an intensity peak with
a Gaussian distribution, in which multiple mitoses are represented as multiple peaks. The
method has an average precision of 0.862 on a private dataset. While the method does take
into account the spatial and temporal information, it is only limited to detecting mitosis
events and not any other events that may be associated with mitosis. In order to identify
other events as well, multiple models based on this method would be needed. Furthermore,
the use of this method for other datasets or cell lines requires the generation of laborious
manual annotations in the form of Gaussian distributed likelihood maps.

Su et al. [53] present a deep reinforcement learning-based progressive sequence
saliency discovery network (PSSD) for mitosis detection in time-lapse PhC images. The
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discovery of these salient frames is formulated as a Markov Decision Process that progres-
sively adjusts the selection positions of salient frames in the sequence. Then, the pipeline
leverages deep reinforcement learning to learn the policy in the salient frame discovery
process. The method consists of two parts: (1) the saliency discovery module, which
selects the salient frames from the input cell image sequence by progressively adjusting the
selection positions of salient frames; (2) the mitosis identification module, which takes a
sequence of salient frames and performs temporal information fusion for mitotic sequence
classification. The method is evaluated on the C2C12-16 mitosis detection dataset [54] (see
Section 4), and is found to outperform the previous state-of-the-art methods, including
CNN-LSTM and 3D-CNN among the others.

Theagarajan and Bhanu [55] present DeephESC 2.0, an ML method to detect and
classify human embryonic stem cells (hESC) in PhC images. Firstly, they use a mixture of
Gaussians to detect the cells [56], where two Gaussian distributions model the intensity
distributions of the foreground (cells) and the background (substrate). Then, Generative
Multi Adversarial Networks (GMANs) [57] augment data with new synthetic images and
improve the performance of the classification step. To classify the images into six different
classes, they implement a hierarchical classifier consisting of a CNN and two Triplet CNNs.
The software and dataset are publicly available (see Sections 3 and 4).

La Greca et al. [58] use in the celldeath software some classical DL approaches such
as ResNet [59], where they classify cells as dead or alive by using complete frames as
input images. On images containing both alive and dead cells, the model can predict the
dead ones, which are localized by heat map-like visualizations merging the information
provided by the last convolutional layer and the model predictions. These predictions are
compared with human performance and are found to largely outperform human ability.
The software is publicly available (see Sections 3 and 4).

2.3. Cell Tracking

Object tracking consists in locating and monitoring one or more objects of interest
and their behavior over time [21]. The image sequence containing cells can be acquired at
specific time intervals using the time-lapse technique. When discussing cell tracking, it is
generally assumed that segmentation or detection and classification have been performed.

Some recent tracking methods are here reviewed. Magnusson et al. [60] propose
a global track linking algorithm, which links into tracks cell outlines generated by a
segmentation algorithm. It is a batch algorithm that uses the entire image sequence to
decide the links. Starting with the hypothesis that there are no cells in the image sequence,
it adds one cell track at a time, in a greedy way, choosing the one maximizing a suitable
scoring function, using the Viterbi algorithm. The algorithm can handle cell mitosis,
apoptosis, and migration in and out of the imaged area and can also deal with false
positives, missed detections, and clusters of jointly segmented cells. It has been tested on
BF sequences, but in principle, it can be applied to any type of sequences, given a suitable
segmentation algorithm to outline the cells. The algorithm has been implemented in several
cell trackers, see for example the Baxter Algorithms package (see Section 3).

Grah et al. [61] propose MitosisAnalyser, a framework for detecting, classifying, and
tracking mitotic cells in live-cell phase contrast imaging based on mathematical imaging
methods. As pre-processing, denoising by Gaussian filter smoothing is applied, followed by
rescaling. In the workflow, each mitosis is detected by using the circular Hough transform.
The obtained circular contours are used for initializing the tracking algorithm, which is
based on variational methods. Backward tracking is used to establish the beginning of
mitosis by detecting a change in the cell morphology. This step is followed by forward
tracking until the end of mitosis. The output provides the duration of mitosis and informa-
tion on cell fates (e.g., number of daughter cells, cell death). The Matlab code is publicly
available (see Section 3).

In [62], Rea et al. propose a Graphics Processing Unit (GPU)-based algorithm for
tracking yeast cells in PhC microscopy images in real-time. The tracking by detection
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approach determines a minimum cost configuration for each couple of frames, given by
the solution of a linear programming (LP) problem. The GPU-parallel software based on
the simplex method, a common tool for solving LP problems, is obtained by exploiting par-
allelization strategies to maximize the overall throughput and minimize memory transfers
between host and device, thus exploiting data locality. The software is publicly available
(see Section 3).

Tsai et al. [63] introduce Usiigaci, a semi-automated pipeline to segment, track, and
visualize cells in PhC sequences. Segmentation is based on a mask regional convolutional
neural network (Mask R-CNN) [64], while the tracking module relies on the Trackpy
library [65]. A graphical user interface allows the user to verify the results. The software
and annotated data are publicly available (see Sections 3 and 4).

Scherr et al. [42], in the same paper as for segmentation, also propose a graph-based
cell tracking algorithm for touching cells in BF microscopy images (BF-C2DL-HSC and
BF-C2DL-MuSC datasets) from the Cell Tracking Challenge [22]. The adapted tracking
algorithm includes a movement estimation in the cost function to re-link tracks with
missing segmentation masks over a short sequence of frames. Their algorithm can track
all segmented cells in an image sequence and only a subset, e.g., a selection of manually
marked cells. Results for cell tracking are evaluated using the TRA and CTB metrics (see
Section 5) and are shown to perform very well, with TRA scores of 0.929 and 0.967 for the
BF-C2DL-HSC and BF-C2DL-MuSC images, respectively.

3. Software

As also already discovered in Section 2, it is every day more common for newly
proposed methods to make their implementations publicly available, in the light of the
recent trend toward open science. In Table 1, we provide links to existing publicly available
software, subdivided by task. Moreover, we provide links to software platforms, providing
more diverse functionalities for analyzing microscopy images and videos. Besides the
software already described in Section 2, here we briefly summarize the remaining ones.

TWS (Trainable Weka Segmentation) is a Fiji plugin that combines ML algorithms
with a set of selected image features to produce pixel-based segmentations. Weka (Waikato
Environment for Knowledge Analysis) [66] can itself be called from the plugin.

Baxter Algorithms is a software package for tracking and analyzing cells in micro-
scope images, providing an implementation of the global track-linking algorithm in [60].
The software can handle images produced using both 2D transmission microscopy and 2D
or 3D fluorescence microscopy.

CellProfiler is a commonly used program designed for biologists with minimal pro-
gramming knowledge to measure biological phenotypes quantitatively [39]. Algorithms
for image analysis are available as individual modules that can be placed in sequential
order to create a pipeline. Several commonly used pipelines are available for download
and can be used to detect and measure various properties of biological objects.

ilastik [38] is an interactive machine learning tool based on a random forest classifier [67]
for image analysis and is widely used by biologists since it no require specific ML knowledge.
It provides pipelines for segmentation, classification, tracking, and lineage, performing on
multidimensional data (including 3D space, time, and channels). A friendly user interface
enables users to interactively implement their image analysis through a supervised machine
learning workflow. ilastik classifies pixels and objects by learning from annotations to predict
the class of each unannotated pixel and object. It provides an automatic selection of image
features based on a first optimization step. Users can introduce sparse annotations or use
labeled data or even provide training examples, then correct the classifier precisely at the
position where it is wrong. Once a classifier has been trained, new data can be processed in
batch mode.
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Table 1. Software: name (Name); reference ([Ref]); year of publication (Year); url (Link); programming
language or environment (Language). All links were accessed on 28 August 2022.

Name [Ref] Year Link Language

Cell segmentation

DeepCell [23] 2016 https://simtk.org/projects/deepcell Python, C,
Ruby

fastER [25] 2017 https://bsse.ethz.ch/csd/software/faster.html C++
TWS [68] 2017 https://imagej.net/plugins/tws/ Java
ANCIS [32] 2019 https://github.com/yijingru/ANCIS-Pytorch Python
Vicar et al. [20] 2019 https://github.com/tomasvicar/Cell-segmentation-methods-comparis

on
Matlab

Cellpose [45,46] 2022 https://github.com/MouseLand/cellpose Python

Cell classification

DeephESC 2.0 [55] 2019 https://www.vislab.ucr.edu/SOFTWARE/software.php Python
celldeath [58] 2021 https://github.com/miriukaLab/celldeath Python

Cell tracking

Baxter Algorithms [60] 2015 https://github.com/klasma/BaxterAlgorithms Matlab/C
Rea et al. [62] 2019 https://dibernardo.tigem.it/software-data Matlab/C

Software platforms

CellProfiler [39] 2006 http://cellprofiler.org Python
MitosisAnalyser [61] 2017 https://github.com/JoanaGrah/MitosisAnalyser Matlab
ilastik [38] 2019 https://www.ilastik.org/index.html Python
Usiigaci [63] 2019 https://github.com/ElsevierSoftwareX/SOFTX_2018_158 Python
ZeroCostDL4Mic [69] 2020 https://github.com/HenriquesLab/ZeroCostDL4Mic Python
DeepImageJ [70] 2021 https://deepimagej.github.io/deepimagej Python
BioImage Model Zoo [71] 2022 https://bioimage.io Python
LIM Tracker [72] 2022 https://github.com/LIMT34/LIM-Tracker Python/Java
TrackMate 7 [73] 2022 https://imagej.net/plugins/trackmate/trackmate-v7-detectors Java

ZeroCostDL4Mic is a cloud-based platform proposed by von Chamier et al. [69]
aiming to simplify the use of DL architectures for various microscopy tasks. It is a collection
of Jupyter Notebooks that can efficiently and interactively run Python code, leveraging
the free, cloud-based computational resources of Google Colab. Concerning our focus,
the tasks covered by ZeroCostDL4Mic include object detection, for which it implements
YOLOv2, and cell segmentation, where it implements both the U-net and StarDist [74,75]
networks. The outputs generated by StarDist are directly compatible with the TrackMate
tracking software, enabling also automated cell tracking.

DeepImageJ [70] is a plugin for ImageJ and Fiji to facilitate the usage of DL models.
It aims to offer user-friendly access to pre-trained models designed for various image
modalities, including PhC and DIC. Currently, for the two previously mentioned modalities,
the DL models are designed for segmentation.

BioImage Model Zoo [71] is an online repository for AI models to facilitate the usage
of these pre-trained models by the bioimaging community. They provide a standard and
tutorials to upload new models. The users can either download the projects in community
partners’ format or in user-friendly Python notebooks that can be used by anyone with the
user’s own dataset to perform bioimage analysis tasks. The current community partners
are ilastik, ImJoy [76], Fiji [77], deepImageJ, ZeroCostDL4Mic, and HPA [78].

LIM Tracker is a Fiji plugin for cell tracking and analysis expressly aimed at advanced
interactivity, usability, and versatility. Three tracking methods are implemented, suitable
for fluorescence or PhC microscopy sequences. In the link-type tracking (tracking by
detection), cells are first detected based on a Laplacian of Gaussian filter and watershed
segmentation. Their ROIs are then linked by the Linear Assignment Problem algorithm [79].
In the sequential search-type tracking method, based on the particle filter framework,
a user-specified ROI is tracked by sequentially searching for its corresponding ROI in
subsequent frames by pattern matching. The third type of tracking is manual tracking,
which allows users to specify the position of ROIs while moving along sequence frames.
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Several additional functions allow interactive visualization and error correction. A plugin
mechanism is provided for using different segmentation modules, including user-defined
algorithms or DL algorithms (e.g., StarDist, Cellpose [45,46], YOLACT++ [80], Matterport
MaskR-CNN [81], and Detectron2 MaskR-CNN [82]).

TrackMate 7 [73] is an extension of the TrackMate tracking software [83] distributed
as a Fiji plugin. It integrates into tracking pipelines (based on five possible particle-
linking algorithms) ten segmentation algorithms (including ilastik, Weka, StarDist, and
Cellpose), besides any mask or label images computed with any other segmentation
algorithm. It can handle fluorescence or label-free microscopy images, both 2D and 3D. The
additional TrackMate helper facilitates choosing an optimal combination of segmentation
and tracking modules, also allowing a systematic optimization of the tracking parameters
for a whole dataset.

For an extended list of commercial and open source tools for tracking, the interested
reader can also refer to [21]. A list of publicly available executable versions of 19 algorithms
participating in the 2013–2015 CTC challenges is provided in Table 3 of the Supplementary
Material of [22]; further links can also be found through the CTC web pages. Open-
source DL software for bioimage segmentation is nicely surveyed in [84], where tools in
different forms, such as web applications, plug-ins for existing imaging analysis software,
and preconfigured interactive notebooks and pipelines are reviewed. Finally, further
suggestions can come from the review by Smith et al. [85]. Indeed, even though their
survey focuses on phenotypic image analysis, some of the referred software includes cell
segmentation and time-lapse analysis tools.

4. Data

Datasets publicly available can be broadly subdivided into those devoted solely to
segmentation (see Table 2), event detection and classification (and eventually also tracking,
see Table 3), or tracking (and eventually also segmentation, see Table 4). Observe that
the numbers reported in these tables refer solely to traditional label-free images/image
sequences, which is the focus of this review; nonetheless, many of the reported datasets
also have data from other microscopy types. The reported numbers specify only images for
which annotations exist (there could be other images but without annotations).

Table 2. Details of available annotated data for cell segmentation in traditional label-free images:
dataset name (Name); reference ([Ref]); type of microscopy data (Content); url (Link); number of
annotated images (# imgs), annotated cells (# cells), and cell lines (#cell lines). All links were accessed
on 28 August 2022.

Name [Ref] Content Link # Imgs # Cells
# Cell
Lines

Allen Cell Explorer [86] 3D Label-
Free https://www.allencell.org/data-downloading.html/#secti

onLabelFreeTrainingData
~18,000 ~39,000 1

BU-BIL [87] PhC https://www.cs.bu.edu/fac/betke/BiomedicalImageSeg
mentation/

151 151 3

CTC [22] PhC,
DIC, BF http://www.celltrackingchallenge.net 213 1980 5

DeepCell [23] PhC https://doi.org/10.1371/journal.pcbi.1005177.s021, https:
//doi.org/10.1371/journal.pcbi.1005177.s022, https://doi.
org/10.1371/journal.pcbi.1005177.s023

45 ~4300 1

EVICAN [88] PhC, BF https://edmond.mpdl.mpg.de/dataset.xhtml?persistentId=
doi:10.17617/3.AJBV1S

4640 26,428 30

fastER [25] PhC, BF https://bsse.ethz.ch/csd/software/faster.html 39 1653
(+953) 1 2

LIVEcell [26] PhC https://sartorius-research.github.io/LIVECell/ 5239 1,686,352 8
Usiigaci [63] PhC https://github.com/ElsevierSoftwareX/SOFTX_2018_158 37 2641 1

Vicar et al. [20] PhC, DIC,
HMC https://zenodo.org/record/1250729 32 4546 1

1 For other 953 cells, only centroids are provided.
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Allen Cell Explorer [86] includes a massive collection of light microscopy cell images
with manually curated segmentation masks for 12 cellular components, as reported in [88].

BU-BIL (Boston University-Biomedical Image Library) [87] includes six datasets, three
of which consisting of PhC images from different cell lines. The main aim of [87] is to
evaluate and compare the performance of biomedical image segmentation made by trained
experts, non-experts, and automated segmentation algorithms. Therefore, for each image,
only one cell is annotated and provided as binary masks obtained in those three different
ways. The gold standard annotation is obtained by majority voting of annotations created
by the ten trained experts.

CTC (Cell Tracking Challenge) is a time-lapse cell segmentation and tracking bench-
mark on publicly available data, launched in 2012 to objectively compare and evaluate
state-of-the-art whole-cell and nucleus segmentation and tracking methods [22,89]. The
datasets consist of 2D and 3D time-lapse video sequences of fluorescent counterstained
nuclei or cells moving on top or immersed in a substrate, along with 2D PhC and DIC
microscopy videos of cells moving on a flat substrate. The videos cover a wide range of
cell types and quality (spatial and temporal resolution, noise levels, etc.). The ground truth
consists of manually annotated cell masks (for segmentation) and cell markers interlinked
between frames to form cell lineage trees (for tracking).

DeepCell comes from the supporting material of [23]. It consists of a PhC image
sequence of HeLa-S3 cells. Annotations for each image are given in terms of cell and nuclei
segmentation masks.

EVICAN (Expert VIsual Cell ANnotation) [88] includes partially annotated grayscale
images of 30 different cell lines from multiple microscopes, contrast mechanisms, and
magnifications. For each image, a subset of cells and nuclei is annotated and provided
both as json annotation files and as binary masks. An example is shown in Figure 3a,b. To
reduce the influence of unannotated cells on the background class, in their experiments,
the authors pre-processed the dataset by blurring (with a Gaussian filter) the images but
leaving unchanged the annotated instances. The pre-processed images are also provided
with the dataset (see Figure 3c).

(a) (b) (c)

Figure 3. Example data from the EVICAN dataset [88]: (a) original image (ID 92_ACHN); (b) image
with annotated cells (red) and nuclei (blue); (c) image where non-annotated areas have been blurred.

fastER [25] includes PhC, BC, and synthetic Fluo images of three different cell lines.
For each image, the annotations consist of binary masks that enclose the segmentation of
most of the cells and just the centroid for the remaining cells.

LIVEcell [26] is a recently proposed large-scale, manually annotated, and expert-
validated dataset of PhC images for benchmarking cell segmentation. It consists of over
5 thousand images, including over 1.6 million cells of seven cell types (human and mouse)
having different cell morphologies and culture densities. Annotations are provided as
json files.

Usiigaci [63] includes 37 PhC images of T98G cells. Annotations consist of indexed
masks, with an index for each cell, followed in time (see Figure 4). Thus, these can be
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used for both segmentation and tracking. A spreadsheet file is also enclosed, providing
information from tracking and various features for each tracked cell.

(a) (b)

Figure 4. Example data from the Usiigaci dataset [63]: (a) original image (20180101ef002xy01t01.tif);
(b) corresponding indexed mask, where each color indicates a different cell in all sequence images.

Table 3. Details of annotated data for cellular event detection and classification in traditional label-free
sequences: dataset name (Name); reference ([Ref]); application of the data (Task); type of microscopy
data (Content); url (Link); number of annotated images (# imgs), and number of annotated events
(# events). All links were accessed on 28 August 2022.

Name [Ref] Task Content Link # Imgs
#

Events

C2C12-16 [54] Mitosis Detection DIC https://www.iti-tju.org/mitosisdetection/download/ 1 16,208 7159
CTMC [90] Mitosis Detection DIC https://ivc.ischool.utexas.edu/ctmc/ 1 80,389 1616
DeephESC [55] Classification PhC https://www.vislab.ucr.edu/SOFTWARE/software.php 2 785 NA

1 Unavailable at the time of writing. 2 Accessed on 30 August 2022.

C2C12-16 [54] was released as a large-scale time-lapse phase-contrast microscopy
image dataset for the mitosis detection task at the first international contest on mitosis
detection in phase-contrast microscopy image sequences, held with the workshop on
computer vision for microscopy image analysis (CVMI) at CVPR 2019. It is an extension
of the Ker et al. dataset [91] with manual annotations of mitosis. The complete dataset
contains 16 sequences with 1013 frames per sequence and a total of 7159 mitosis events
within the images.

Cell Tracking with Mitosis Detection Challenge (CTMC) is a benchmarked challenge
that provides DIC images for 14 cell lines [90]. The data adds up to 86 live-cell imaging
videos consisting of 152,584 frames in total. In addition to the images, the challenge grants
bounding box-based detection and tracking ground truths for each cell line, in the form of
csv files for each video, including, for each frame and each cell, the cell ID and its bounding
box coordinates. Recently, the dataset has also been adopted for the CTMC-v1 Challenge at
CVPR 2022 (https://motchallenge.net/data/CTMC-v1/, accessed on 30 August 2022).

DeephESC [55] consists of 785 PhC hESC images subdivided according to six classes
(cell clusters, debris, unattached cells, attached cells, dynamically blebbing cells, and
apoptically blebbing cells).
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Table 4. Details of available annotated data for cell tracking in traditional label-free sequences:
dataset name (Name); reference ([Ref]); type of microscopy data (Content); url (Link); number of
annotated images (# imgs), annotated cells/tracks (# cells/tracks), and cell lines (#cell lines). All links
were accessed on 28 August 2022.

Name [Ref] Content Link # Imgs # Cells/Tracks # Cell Lines

CTC [22] PhC, DIC, BF http://www.celltrackingchallenge.net 1 213 1980/2944 5
CTMC [90] DIC https://ivc.ischool.utexas.edu/ctmc/ 2 80,389 1,097,223 3/1616 14
Ker et al. [91] PhC https://osf.io/ysaq2/ 1 19134 NA 4/2011 1
Usiigaci [63] PhC https://github.com/ElsevierSoftwareX/SOFTX_2018_158 1 37 2641/105 1

1 Accessed on 30 August 2022. 2 Unavailable at the time of writing. 3 Only bounding boxes are provided. 4 Only
centroids are provided.

The dataset by Ker et al. [91] includes 48 PhC image sequences of mouse C2C12 cells
under various treatments. Annotations consist of manually tagged centroids and state
(e.g., newborn, divided, or mitotic) for 10% of the cells for all the sequences; only for one
of the sequences, all the cells are manually annotated. The dataset is also provided with
annotations automatically generated for all the cells using in-house software based on
segmentation, mitosis detection, and association.

Other annotated microscopy image sets can be downloaded from the Broad Bioimage
Benchmark Collection (BBBC) [92]. It is a publicly available collection of microscopy images
intended as a resource for testing and validating automated image-analysis algorithms. Be-
ing contributed by many different research groups and for various applications, annotations
are provided in varying forms (e.g., cell counts, masks, outlines, or bounding boxes).

5. Metrics

Below, we present some metrics commonly adopted to evaluate the results quanti-
tatively. Some of these metrics are directly used from the computer vision and ML/DL
domains, while others are more specific to cellular image analysis.

5.1. Metrics for Pixel-Wise Cell Segmentation

Many different metrics are adopted in the literature to evaluate the performance
of (cell) segmentation algorithms. The most frequently used is the one adopted for the
CTC [22], generally denoted as SEG. Given the ground truth cell segmentation GT and the
corresponding segmentation S computed with any segmentation algorithm, the Jaccard
similarity index, also known as Intersection over Union (IoU), evaluates the degree of
overlap between the true and the computed results and is defined as

IoU(GT, S) =
|GT ∩ S|
|GT ∪ S| , (1)

where | · | indicates the cardinality of a set (i.e., the number of pixels) and ∩ and ∪ indicate
the set intersection and union, respectively. This metric [63] is sometimes equivalently
expressed in terms of the number of true positive pixels TP (TP = |GT ∩ S|), false negative
pixels FN (FN = GT − S), and false positive pixels FP (FP = S − GT) as

IoU(GT, S) =
TP

FN + TP + FP
.

The SEG metric adopted in the CTC for a particular video is then computed as the mean
IuO over all the GT cells of the video. It should be observed that, although many authors
refer to this metric as SEG [72,93], others just refer to it as AP [45,46,74,75,88]. Further
metrics frequently adopted [23,25,63] include

• the Recall, also known as Sensitivity or True Positive Rate,

Recall =
TP

TP + FN
, (2)
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that gives the percentage of detected true positive pixels as compared to the total
number of true positive pixels in the ground truth;

• the Precision, also known as Positive Prediction,

Precision =
TP

TP + FP
, (3)

that gives the percentage of detected true positive pixels as compared to the total
number of pixels detected by the algorithm, providing an indication on the degree of
exactness of the algorithm in identifying only relevant pixels;

• the F-score, also known as F-measure or Figure of Merit,

F1 =
2 · Recall · Precision
Recall + Precision

=
2 · TP

2 · TP + FP + FN
, (4)

that is the weighted harmonic mean of Precision and Recall.

All the above metrics assume values in [0,1] and higher values indicate better results.

5.2. Metrics for Object-Wise Cell Detection

Generally, in the case of cell detection, the ground truth is given in terms of bounding
boxes of the cells contained in the images. Here, the IoU metric of Equation (1) can be
adapted to evaluate the degree of overlap between the ground truth bounding boxes (GT)
and the predicted bounding boxes (S). IoU tresholding can then be used to decide if a
detection is correct or not. For a given IoU threshold α, a true positive (TP), i.e., a correct
positive prediction, is a detection for which IoU(GT, S) ≥ α and a false positive (FP), i.e., a
wrong positive detection, is a detection for which IoU(GT, S) < α. A false negative (FN) is
an actual instance that is not detected.

Given these adapted concepts, the Recall, Precision, and F-score metrics defined in
Equations (2)–(4) can be used to evaluate cell detection algorithms. These are also used
to compute the Average Precision at a given IoU threshold α, denoted as AP@α, defined
as the Area Under the Precision-Recall Curve (AUC-PR) evaluated at the IoU threshold α,
given as

AP@α =
∫ 1

0
p(r) dr.

According to the Common Objects in Context (COCO) [94] evaluation protocol
(https://cocodataset.org/#detection-eval, accessed on 28 August 2022), single values for
α can be chosen for thresholding IoU (generally equal to 0.5 or 0.75). Moreover, a set of
thresholds can be chosen and the mean Average Precision mAP over these IoU thresholds
considered for cell detection evaluation. With the usual choice [26,74,75] of values for α
from 0.5 to 0.95 with a step size of 0.05, mAP is thus given by

mAP =
AP@0.5 + AP@0.55 + . . . + AP@0.95

10
.

In the CTC [22], the detection accuracy of the methods, denoted as DET, is adopted to
estimate how accurately each given object has been identified (http://celltrackingchal
lenge.net/evaluation-methodology/, accessed on 28 August 2022). It is based on the
comparison of the nodes of the acyclic oriented graphs representing the objects in both the
ground truth and the computed object detection result. Exploiting the Acyclic Oriented
Graph Matching measure for detection (AOGM-D) [95], that gives the cost of transforming
the set of nodes of the computed objects into the set of ground truth nodes, DET is defined
as

DET = 1 − min(AOGM-D, AOGM-D0)

AOGM-D0
,

where AOGM-D0 is the cost of creating the set of ground truth nodes from scratch. DET
always falls in the [0,1] interval, with higher values corresponding to better detection
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performance. The DET metric is averaged with the SEG metric described in Section 5.1 to
provide the overall performance for the CSB

OPCSB =
1
2
(DET + SEG).

5.3. Metrics for Cell Event Detection

For mitosis detection, Ref. [54] represents each detected mitosis as a triple (x, y, t) of
spatial and temporal position of the event. The detection is considered a true positive
(TP) if its distance from the corresponding ground truth triple is below preset spatial and
temporal thresholds. Otherwise, it is considered a false positive (FP). Undetected ground
truth mitotic events are considered as false negative (FN). Having so defined TP, FP, and
FN, Ref. [54] adopts Precision, Recall, and F-score metrics defined in Equations (2)–(4),
respectively, to evaluate the performance of mitosis detection algorithms. The same metrics
are also adopted in [60], where they are extended also to apoptic events.

In [23], DeepCell is also used to perform semantic segmentation, i.e., to both segment
individual cells and predict their cell type. For evaluating the obtained results, the authors
consider the Cellular Classification Score (CCSc) for each class c, defined as

CCSc =
∑i∈Cells si,c

∑j∈Classes ∑i∈Cells si,j
,

where si,j indicates the classification score of pixel i for class j. The authors showed that the
closer the CCSc is to 1, the more likely the prediction is correct.

5.4. Metrics for Cell Tracking

The metrics most frequently adopted for evaluating cell tracking are those introduced
by the Multiple Object Tracking (MOT) [96]. The Multiple Object Tracking Accuracy
(MOTA) [97] is a MOT tracking metric that represents the object coverage [90], also used
for example in [63]. It can be defined as

MOTA = 1 − FN + FP + IDSW
T

,

where FN is the sum over the entire video of all missed cells (number of ground truth
bounding boxes not covered by any computed bounding box), FP is the sum over the
entire video of all false positives (number of bounding boxes not covering any ground
truth bounding box), IDSW is the number of object identities switched from one frame
to the next (number of bounding boxes covering a ground truth bounding box from a
track different than in the previous frame), and T is the total number of detections in the
ground truth.

Multiple Object Tracking Precision (MOTP) [98] is the average dissimilarity between
all correctly assigned detections (true positives) and their ground-truths, defined as

MOTP =
∑t,i dt,i

∑t ct
,

where ct indicates the number of matches in frame t and dt,i is the bonding bob overlap of
the detection i with its ground truth. This MOT tracking metric shows the ability of the
tracker to estimate precise object positions, independent of its skill at recognizing object
configurations, keeping consistent trajectories, and so forth [97].

More recently, the MOT challenge introduced another tracking metric, named IDF1,
that quantifies the object’s identity across the frames of a sequence [90] and represents the
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ratio of the detections that were properly identified over the average number of ground-
truth and computed detections [99]. It is an F-score as in Equation (4).

IDF1 =
2 ∗ IDTP

2 ∗ IDTP + IDFP + IDFN
,

where IDTP, IDFP, and IDFN indicate the number of true positive, false positive, and
false negative IDs, respectively.

Many other metrics introduced for evaluating MOT challenges could also be applied
to the case of cell tracking, such as the Higher Order Tracking Accuracy (HOTA) [100].
Focusing more specifically on cellular microscopy, the metric adopted in CTC [22] for

evaluating cell tracking results is the Tracking Accuracy, denoted as TRA, used for example
in [72,90,93]. It is a normalized weighted distance between the tracking ground truth and
the result of the algorithm, with weights chosen to reflect the effort it takes a human curator
to manually carry out the edits needed for matching the two. Tracking results are first
represented as acyclic oriented graphs providing the cells lineage. Then the difficulty in
transforming a computed tracking graph into the corresponding ground truth graph is
estimated as

TRA = 1 − min(AOGM, AOGM0)

AOGM0
,

where AOGM is the Acyclic Oriented Graph Matching (AOGM) measure [95] and AOGM0
is the AOGM value required for creating the ground truth graph from scratch. TRA assumes
values in [0, 1], with higher values corresponding to better tracking performance. The
overall performance for the CTB is calculated as the average of the SEG (see Section 5.1)
and TRA metrics:

OPCTB =
1
2
(SEG + TRA).

6. Open Problems and Future Research Directions

Common challenges in microscopy image processing include increasingly high image
sizes, image artifacts, and batch effects, especially in the presence of object crowding and
overlapping. Nevertheless, insufficient, imbalanced, and inconsistent data annotations [101]
prevent the effective usage of data analysis methods. The image size affects computational
and storage time, which might prevent the use of modern image processing techniques on
standard hardware. Nevertheless, the batch acquisition of images poses problems, as small
variations might be present in successive applications of the same technical procedure.
That implies that the hypothesis that all images are independently identically distributed
statistical units sampled from the same population, which means they all describe the
same process independently of its natural variability, might not be true anymore. As a
consequence, the training of AI/ML/DL/methods can be biased and produce results that
are not reflecting the probability distribution of the original phenomena. Despite the results
reviewed here, these problems require further investigation, as the number of images
required for training the parameters of a multi-layer architecture is in the order of tens of
thousands. The performance of AI systems and their generalization capabilities strongly
depend on the quality of annotations from the available datasets. Although many unsu-
pervised algorithms may not require annotated data, these are crucial for understanding
and interpreting such systems. As evident from Tables 2 and 4, which represent available
data collections at the publication time, there is a lack of large-scale curated and anno-
tated datasets of light microscopy images. In particular, this is true for adherent cells or
suspension-cultured counterparts, where the lack of annotated datasets makes the segmen-
tation difficult for different LI techniques [20]. This difficulty is exacerbated by the natural
variability of the observed phenomena, which often show high cell densities, cell-to-cell
variability, complex cellular shapes and texture, cell shape varying over time (e.g., due
to drug treatments [26,93]), varying image illumination, and low signal-to-noise ratios
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(SNRs) [24,25]. These problems are also common in cell detection and tracking, making
them even more challenging, especially when using AI approaches. An extreme example is
neural cell instance segmentation in neuroscience applications [32], which aims at detecting
and segmenting every neural cell in a microscopy image. In these experiments, further
limiting factors include cell distortion, unclear cell contours, low-contrast cell protrusion
structures, and background impurities. However, accurate detection of objects is crucial for
the tracking process, as aberrant object detection leads to missing links and the generation
of tracks that end prematurely, with multiple short tracks representing the same individual
object over time as different entities. Most detection algorithms treat tightly packed objects
(e.g., touching and overlapping cells) as a single entity, resulting in breaks in tracks or single
tracks linking groups of objects. In addition, cell tracking can produce terabyte-scale movies
as experiments often require multi-day monitoring [93]. In such experiments, rapid cell
migrations, high cell density, and multiple rounds of mitoses result in multiple neighboring
cells being mis-tracked. Extensive 3D data present additional challenges due not only to
the size of the image data itself but also to the very high cell densities they show toward
the end of the videos [22].

Other key factors that affect the tracking results [21] include noise, occlusions, difficult
object motion, complex objects structures, and background subtraction. Further work is
also needed for handling scenarios with low SNR or contrast ratio [22]. These challenges
can explain why few cell tracking platforms have been developed for label-free microscopy
images. The benchmarked ranking of the Cell Tracking Challenge [22] confirms the difficul-
ties in processing these images and highlights further related research, particularly for DIC
images [90]. All these current factors limit the possibility of assessing and comparing the
capabilities of different methods used to analyze data. Perspectives and future work in LI
also include handling big data of continuously growing size, improving the quality and
completeness of annotated datasets, continuous modeling of biological processes using
regression rather than classification, and interpretability of ML and DL algorithms.

Finally, investigations should be devoted to the integration of multiple microscopy
techniques on the same sample to overcome the proper limits of each technique and the
lack of training data. We believe that a holistic view of biological processes and functions
might be attained by omics imaging [36], which consists in the integration and analysis
of next-generation sequencing data with images, in order to provide more insight into
available data.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANCIS Attentive Neural Cell Instance Segmentation
AOGM-D Acyclic Oriented Graph Matching measure for Detection
BBBC Broad Bioimage Benchmark Collection
BF Bright-Field
BU-BIL Boston University - Biomedical Image Library
CCS Cellular Classification Score
CIC Cell-In-Cell
CNN Convolutional Neural Network
COCO Common Objects in Context
CSB Cell Segmentation Benchmark
CTB Cell Tracking Benchmark
CTC Cell Tracking Challenge
CTMC Cell Tracking with Mitosis Detection Challenge
CVMI Computer Vision for Microscopy Image Analysis
DIC Differential Interphase Contrast
DL Deep Learning
DNA Deoxyribonucleic Acid
EVICAN Expert VIsual Cell ANnotation
FN False Negative
FNA False Negative Association
FP False Positive
GMAN Generative Multi Adversarial Networks
GPU Graphics Processing Unit
GT Ground Truth
HMC Hoffman Modulation Contrast
HOTA Higher Order Tracking Accuracy
IoU Intersection over Union
LI Label-free Imaging
LP Linear Programming
LSTM Long Short-Term Memory
ML Machine Learning
MOT Multiple Object Tracking
MOTA Multiple Object Tracking Accuracy
MOTP Multiple Object Tracking Precision
PhC Phase Contrast
PSSD Progressive Sequence Saliency Discovery Network
QLI Quantitative Label-free Imaging
QPI Quantitative Phase Imaging
ROI Regions of Interest
SSD Single Shot multi-box Detector
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
TP True Positive
TWS Trainable Weka Segmentation
UV Ultraviolet
Weka Waikato Environment for Knowledge Analysis
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Abstract: Recent super-resolution imaging technologies enable tracing chromatin conformation
with nanometer-scale precision at the single-cell level. They revealed, for example, that human
chromosomes fold into a complex three-dimensional structure within the cell nucleus that is essential
to establish biological activities, such as the regulation of the genes. Yet, to decode from imaging
data the molecular mechanisms that shape the structure of the genome, quantitative methods are
required. In this review, we consider models of polymer physics of chromosome folding that we
benchmark against multiplexed FISH data available in human loci in IMR90 fibroblast cells. By
combining polymer theory, numerical simulations and machine learning strategies, the predictions of
the models are validated at the single-cell level, showing that chromosome structure is controlled
by the interplay of distinct physical processes, such as active loop-extrusion and thermodynamic
phase-separation.

Keywords: chromosome architecture; multiplexed FISH imaging; polymer physics; machine learning;
computer simulations

1. Introduction

Mammalian genomes are folded into a complex three-dimensional (3D) architecture
in the cell nucleus, including a large-scale structure of chromosomal interactions [1–4] that
involves, for instance, DNA loops [5], topologically associated domains (TADs) [6,7] and
higher-order contacts, such as meta-TADs [8] and A/B compartments [9]. Such a nested 3D
organization serves important functional roles, as genes and their distal regulators form
specific physical contacts to control transcriptional regulation [1,2]. Indeed, for example,
disruption of TADs due to genomic structural rearrangements, such as deletions or inver-
sions, has been linked to ectopic gene-regulator contacts, resulting in gene misexpression
and disease [10–13].

In the last decade, powerful technologies based on super-resolution microscopy ap-
proaches enabled to probe the 3D conformation of the genome with nanometer-scale
precision in single nuclei [14–17]. Those techniques revealed, for instance, that TADs exist
at the single-cell level, they broadly vary from cell to cell and correspond to spatially
segregated globular 3D conformations, confining, e.g., the activity of the regulators to their
proper target genes [15].

Those recent experiments triggered questions on the nature of chromatin contacts and
their origin: what are the mechanisms that shape genome 3D structure? What methods can
be developed to identify them? In this review, we discuss the application of models from
polymer physics to understand the machinery that establish chromosome architecture in the
nucleus of the cells. In particular, we focus on two recently proposed models of folding that
rely on two different physical processes, respectively, loop-extrusion and polymer phase-
separation. In the first process, spatial proximity between distal DNA sites is achieved by
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molecular motors that stochastically bind to DNA and extrude a polymer loop in an out-of-
equilibrium, active (e.g., ATP-dependent) physical process [18–24], and in the second, distal
genomic sites are tethered together by interactions mediated, e.g., by diffusing cognate
molecular particles, such as transcription factors, or by direct interactions produced, for
example, by DNA-bound histone molecules [12,25–40]. By taking as a case study a 2 Mb
wide chromatin region in human IMR90 cells where super-resolution multiplexed FISH
data are available [15], we combine those distinct physical mechanisms into polymer
models that we investigate by massive computer simulations (see Methods). We show
that both loop-extrusion and phase-separation significantly recapitulate microscopy data,
hinting that both processes can reliably coexist to determine the structure of chromosomes
at the single-cell level [28].

2. Methods

In the studied models, chromatin is represented as a polymer chain of non-overlapping
beads, subject to standard physical potentials derived from classical studies of polymer
simulations [41,42]. Specifically, adjacent beads along the polymer are tethered by an elastic
FENE potential and their overlap is prevented by a repulsive Weeks–Chandler–Anderson
(WCA) potential. In the loop-extrusion (LE) model, the extruding motors are modelled as
harmonic springs that can extrude loops by a translocation along the polymer chain, i.e.,
at each simulation step the spring is updated from the bead pair (i,j) to (i − 1,j + 1). As
broadly reported in the literature [18–23], those springs cannot pass through each other,
their number is fixed and they halt translocation when they collide with another extruding
motor or anchor sites with opposite orientation, or they stochastically unbind from the
polymer. A typical parameter choice in the simulations is to set the LE spring energy
constant equal to 10 kBT (kB is the Boltzmann constant and T the temperature) and its rest
length to 1.1σ (σ is the bead diameter) [18,19,37]. Additionally, to unveil the roles of the
LE ingredients beyond its minimal implementation, we examined a more refined version
where LE boundaries are chosen to best reproduce population-averaged contact data and
the model anchor sites are present with a specific, finite probability in a single-polymer
molecule to model cell-to-cell variation [28,37]. The average domain structure of the model
is thus reproduced from bulk data, but the ensemble of its single-molecule structures is
validated against independent single-cell microscopy conformations (see below). Another
key parameter controlling LE dynamics is the extruder processivity, i.e., the ratio between
the extrusion velocity and the unbinding rate from the chain, whose values can range, e.g.,
from 80 kb up to 750 kb [19,23,37].

In the class of phase-separation based models, we focused on the strings and binders
(SBS) model [30,39], in which a chromosome region is modeled as a self-avoiding polymer
chain where different specific types of binding sites are located for diffusing cognate molec-
ular particles (called binders). Binders and polymer sites are subject to a Brownian motion
regulated by the Langevin equation with standard parameters (i.e., friction coefficient
ζ = 0.5 [41]). The binders, via specific attractive interactions represented by a truncated
Lennard–Jones potential [34], can bridge their cognate sites on the chain, hence guiding
a micro-phase-separation of the polymer into different globules. As the number of the
binders (or their energy affinity) increases above a given threshold, the system undergoes a
thermodynamic phase-transition from a coil (i.e., randomly folded) to a phase-separated
globule state where the polymer self-assembles into distinct, spatially segregated globules
via a phase-separation mechanism [39]. Critical binder concentrations, for weak biochem-
ical affinities, fall in the fractions of μmol/L range [39], which is consistent with typical
transcription factor concentrations. The genomic locations of the binding sites of the SBS
model are inferred by a machine learning procedure based on the PRISMR algorithm [12].
In brief, PRISMR is a recursive Monte Carlo procedure that identifies the minimal set of
binding sites to best match input bulk (e.g., ensemble-averaged Hi-C or microscopy) data,
as fully detailed in [12,29,39]. Finally, we also discuss a model where the LE and SBS models
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are combined and act simultaneously in a single-polymer molecule (hereafter indicated as
the LE+SBS model).

To generate a statistical ensemble of in silico single-molecule conformations, each
model is investigated by massive molecular dynamics simulations until stationarity is
fully reached (typically up to 108 MD time iteration steps [43]); Langevin dynamics is
integrated via the Velocity–Verlet algorithm by using the free available LAMMPS [44]
and HOOMD [45] software. All the scripts required to perform the simulations of the
models are available at https://github.com/ehsanirani/PhaseSeparation-LoopExtrusion-
MD (accessed on 1 August 2022) [28].

3. Results

In this section, we benchmark our polymer models against single-cell super-resolution
microscopy data [15] available at 30 kb resolution in a 2 Mb wide genomic region (Chr21:
28–30 Mb) in human IMR90 cells. We show that the different models capture the complex
pattern of chromatin contacts at the cell population-averaged level, as well as the observed
3D conformations of the imaged chromatin region in single DNA molecules [28].

3.1. The Models Recapitulate Ensemble-Averaged Microscopy Data

In a first validation of the models, we computed their median distance matrix that we
compared against the corresponding map from multiplexed FISH data [15] (Figure 1).

Figure 1. The median spatial distance matrix of the IMR90 locus (Chr21: 28–30 Mb) from multiplexed
FISH microscopy [15] is compared against the corresponding in silico matrices of the considered
polymer models [28]. Both loop-extrusion (LE) and phase-separation based models (SBS and LE +
SBS) well recapitulate the complex experimental pattern of contacts. Adapted from [28].

The median distance map is the ensemble median of the single-molecule distance
maps, which, by definition, are symmetric square matrices reporting the Euclidean distances
between all pairs of polymer sites. Those matrices are visually represented as a 2D heatmap
with a color bar scheme to highlight contacting regions that are closer in 3D space (e.g.,
TADs or loops, colored in red in Figure 1) or those that have no significant interactions (blue
regions in Figure 1). To efficiently compute the distance matrices, we used built-in functions
within the Python SciPy package [28]. To reduce the noise within imaging data, we applied
a Gaussian filter on single-cell distance maps (standard deviation of the Gaussian kernel = 1)
and excluded single-cell conformations whose 3D coordinates have >80% missing values.
To quantitatively estimate the similarity between microscopy and model distance matrices,
we used the genomic distance-corrected Pearson correlation coefficient, r′, which corrects
the usual Pearson coefficient for genomic distance effects [12]. In brief, r′ is the Pearson
coefficient computed on distance matrices where each entry is subtracted by the mean value
of its diagonal. We found that the different models recapitulate the complex TAD patterns
observed in microscopy data, as well as specific pointwise interactions, as highlighted by
the high r’ correlation values: r′ = 0.49, r′ = 0.77 and r′ = 0.70, respectively, for LE, SBS and
LE+SBS [28]. To substantiate the statistical significance of the r’ correlations of the models,
we considered as null control model a self-avoiding chain with the same number of beads
as the imaged conformations and found that it returns a significantly lower correlation
value (r′ = 0.11, which is, respectively, four and seven times lower than the values found
for LE and SBS/LE+SBS). That indicates that both active processes, like loop-extrusion,
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and passive mechanisms, e.g., thermodynamic polymer phase-separation, are consistent
with the average structure of the considered IMR90 genomic region measured by bulk
imaging data.

Next, we checked whether our models also explain local properties of chromatin
structure. To this aim, we computed the boundary probability genomic function, i.e., the
probability for each genomic position across the studied IMR90 locus to appear as boundary
of a single-cell TAD domain [15] (Figure 2).

Figure 2. The genomic boundary probability function of the IMR90 locus is consistently recapitulated
by the different models. Adapted from [28].

The boundary function has local peaks corresponding to the main TAD boundaries
visible in the median distance map of the IMR90 locus and, interestingly, this function is
non-zero across the entire imaged region, indicating a substantial cell-to-cell variability
in the genomic position of TAD boundaries. We found that the different models return
boundary probabilities with profiles consistent with imaging data, as quantified by the
high Pearson correlations between models and experiment: r = 0.83, r = 0.63 and r = 0.65,
respectively, for LE, SBS and LE + SBS [28].

Taken together, these analyses show that both loop-extrusion and phase-separation
processes can quantitatively explain chromatin structure at the cell population-averaged
level. In particular, loop-extrusion (LE) is the best to capture the boundary probability
function, while phase-separation based models (SBS and LE + SBS) return overall higher
correlation values with ensemble-averaged distance data.

3.2. All-against-All Comparison between Single-Molecule Imaged and Model-Derived
3D Structures

As a further step, we aimed to investigate the structural predictions of our polymer
models at the single-molecule level. In particular, to assess whether our models do provide
a bona-fide representation of the imaged chromatin structures, we used a computational
method based on the root-mean-square deviation (RMSD) criterion [39,46]. In brief, the
algorithm performs a roto-translational alignment of two conformations (e.g., experimen-
tal and model derived) by minimizing the RMSD of their particle positions; in this way,
each experimental 3D structure from imaging is univocally associated to a corresponding
best-matching conformation of the models by searching for the minimum RMSD of their
coordinates. To fairly compare model and imaged 3D conformations, a z-score is performed
on both sets of coordinates. To efficiently run the RMSD comparison, we used the MDAnal-
ysis Python library, which employs the fast quaternion-based characteristic polynomial
(QCP) algorithm to calculate the least RMSD between two structures [47]. In Figure 3 we
report an example of best-matching conformations identified by the RMSD method: in
this case, for instance, the single-cell imaged distance map is characterized by two main
TAD-like structures, corresponding to distinct globules in 3D space, which are consistently
recapitulated by the different models (Figure 3).

To check the statistical significance of the RMSD analysis, we considered as control the
RMSD distribution between random pairs of imaged conformations (Figure 4). For each
type of model, we found that the experiment-model best-match distribution is statistically
distinguishable from the control (Figure 4a, two-sided Mann–Whitney test p-value = 0),
with less than 5% of the entries of the former distribution that fall above the first decile of
control (Figure 4b) [28]. Overall, the all-against-all RMSD analysis show that both loop-
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extrusion and phase-separation single-molecule conformations significantly represent the
ensemble of single-cell imaged 3D structures of the studied IMR90 cell region.

Figure 3. Example of experiment-model best-matching 3D structures, along with their corresponding
single-molecule distance maps, as identified by the RMSD method. Adapted from [28].

  
(a) (b) 

Figure 4. Statistical significance of the RMSD analysis: (a) the RMSD distribution of the experiment-
model best-matches (for each type of model) is statistically distinguishable from a control made
of random pairs of imaged conformations; (b) less than 5% of the entries of the experiment-model
best-match distributions are within the first 10% of the control. Adapted from [28].

4. Discussion

In this work, we discussed the application of polymer physics models to investigate
the mechanisms that establish the complex 3D structure of the genome as observed by
recent single-cell imaging data [15]. We focused on two main, distinct physical processes
that are supported by growing experimental evidence, i.e., loop-extrusion and phase-
separation. In the first mechanism, an active motor (e.g., Cohesin or Condensin) extrudes
DNA loops between specific anchor sites (envisaged as CTCF binding sites with opposite
orientation) in an out-of-equilibrium process; in the second, chromatin contacts between
distal genomic sites are established by diffusing molecular agents (such as transcription
factors) or direct DNA interactions that, sustained by the thermal bath, spontaneously
bridge their cognate sites.

By using as benchmark super-resolution microscopy data available for a 2 Mb wide
chromosome region in human fibroblast cells, we showed that both mechanisms can
quantitatively recapitulate single-cell imaged conformations, indicating that they can
coexist in shaping chromosome folding [28]. By allowing a deeper understanding of the
mechanisms driving the organization of the genome, models from polymer physics can be
used for real-world applications in real experimental contexts [48]. For example, validated
polymer models can be efficiently employed to impute missing values or reduce noise
effects in large imaging datasets. Additionally, and importantly, they can be employed to
predict in silico the structural effects of disease-associated mutations, linked, for instance,
to congenital disorders [11,12] or cancer [13,49].

Overall, those studies show that novel data from microscopy can be complemented
with quantitative models from physics to understand the mechanisms and function of
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genome structure, paving the way for important and useful applications, such as the
prediction of genomic perturbations on chromosome 3D architecture.
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Abstract: Data augmentation methods enrich datasets with augmented data to improve the perfor-
mance of neural networks. Recently, automated data augmentation methods have emerged, which
automatically design augmentation strategies. The existing work focuses on image classification
and object detection, whereas we provide the first study on semantic image segmentation and
introduce two new approaches: SmartAugment and SmartSamplingAugment. SmartAugment uses
Bayesian Optimization to search a rich space of augmentation strategies and achieves new state-
of-the-art performance in all semantic segmentation tasks we consider. SmartSamplingAugment,
a simple parameter-free approach with a fixed augmentation strategy, competes in performance
with the existing resource-intensive approaches and outperforms cheap state-of-the-art data aug-
mentation methods. Furthermore, we analyze the impact, interaction, and importance of data
augmentation hyperparameters and perform ablation studies, which confirm our design choices
behind SmartAugment and SmartSamplingAugment. Lastly, we will provide our source code for
reproducibility and to facilitate further research.

Keywords: data augmentation; hyperparameter optimization; semantic segmentation

1. Introduction

In many real-world applications, only a limited amount of annotated data is available,
which is particularly pronounced in medical imaging applications, where expert know-
ledge is indispensable to annotate data accurately [1,2]. Given insufficient training data,
deep learning methods frequently overfit and fail to learn a discriminative function that
generalizes well to unseen examples [3]. Data augmentation is an established approach that
improves the generalization of neural networks by adjusting the limited available data to
achieve more and diverse samples for the network to train on. In most cases, additional
data are constructed by simply applying label-preserving transformations to the original
data. In image processing, for instance, these can be simple geometric transformations (e.g.,
rotation), color transformations (e.g., contrast adjustments), or more complex approaches
such as CutMix [4], Cutout [5], and Mixup [6]. Data augmentation has been applied to
various areas, such as image classification [6], object detection [7], and semi-supervised
learning [8] and segmentation [9]. This work provides a first and extensive study on
automated data augmentation for semantic segmentation on different and diverse datasets.

Data augmentations used in practice are mostly simple and easy to implement. De-
spite this simplicity, the choice of augmentations is crucial and requires domain knowledge.
Recently, automated data augmentation methods were proposed that learn optimal aug-
mentation policies from data without the need for domain knowledge. These approaches
improve performance over manually designed data augmentation strategies commonly
used across different domains and datasets [10–13].
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The main focus of existing research in automated data augmentation is image classifi-
cation [10,12], with a particular blind spot being dense prediction tasks such as semantic
segmentation. Furthermore, these methods either use complicated proxy tasks to learn
an optimal augmentation strategy [10] or optimize the augmentation operations with-
out taking the type of augmentation applied and the probability of their application into
account [12].

In this work, we introduce two novel data augmentation methods, SmartAugment
and SmartSamplingAugment with key focus on diverse semantic segmentation applications:
medical imaging (RaVeNNa, EM), bridge inspection (ErFASst), and autonomous driving
(KITTI). SmartAugment uses Bayesian Optimization [14,15] to optimize data augmentation
strategies and outperforms the previous state-of-the-art methods (see Table 1) across all
semantic segmentation tasks we consider. In contrast to existing approaches, we define a
separate set of each color and geometric data augmentation operations, search for their
optimal number of operations and magnitudes, and further optimize a probability P of
applying these augmentations.

Table 1. Test mean Intersection over Union (IoU) in percentage for different algorithms on semantic
segmentation datasets. SmartAugment outperforms all other data augmentation strategies across
all datasets. SmartSamplingAugment competes with the previous state-of-the-art approaches and
outperforms TrivialAugment, a comparably cheap method. For DefaultAugment, TrivialAugment,
and SmartSamplingAugment, we evaluated each experiment three times using different seeds to
obtain the mean performance. For RandAugment++ (an extended version of RandAugment) and
SmartAugment, we took the mean test IoU over the three best performing validation configurations.
Please note that DefaultAugment represents the baseline, and the higher the value, the better the
performance. # iterations refers to the number of BO iterations completed to find best configuration.

Dataset Default Rand++ Trivial Smart SmartSampling

KITTI 65.07 67.19 64.82 68.84 66.53
RaVeNNa 88.37 90.71 90.53 91.00 90.72
EM 77.25 78.83 78.15 79.04 78.42
ErfASst 67.01 68.75 66.79 73.72 70.24

# Iterations 1 50 1 50 1

SmartAugment performs well compared to existing approaches in performance and
computational budget. However, it still requires multiple iterations to find the best augmen-
tation strategy, which can be expensive for researchers with computational constraints. With
this in mind, we develop a fast and efficient data augmentation method, SmartSampling-
Augment, that has a competitive performance to current best methods and outperforms
TrivialAugment [16], a previous state-of-the-art simple augmentation method. Smart-
SamplingAugment is a parameter-free approach that samples augmentation operations
according to their weights, and the probability of application is annealed during training.
We summarize our contributions in the following points:

• We provide a first and extensive study of data augmentation on different and diverse
datasets for semantic segmentation.

• We introduce a new state-of-the-art automated data augmentation algorithm for
semantic segmentation that outperforms previous methods with half of the computa-
tional budget. It optimizes the number of applied geometric and color augmentations
and their magnitude separately. Furthermore, it optimizes the probability of augmen-
tation, which is crucial according to our hyperparameter importance analysis.

• We present a novel parameter-free data augmentation approach that weighs the ap-
plied data augmentation operations and anneals their probability of application. Our
method is competitive with the previous automated data augmentation approaches
and outperforms TrivialAugment, a cheap-to-evaluate method.
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We will provide our source code: https://github.com/mvg-inatech/SmartAugment.
(accessed on 1 April 2022).

2. Related Work

Data augmentation has been shown to have a considerable impact, particularly on
computer vision tasks. Simple augmentation methods such as random cropping, horizontal
flipping, random scaling, rotation, and translation have been effective and popular for
image classification datasets [17–20]. Other approaches add noise or erase part of an
image [5,21] or apply a convex combination of pairs of images and their labels [6]. Other
approaches use generative adversarial networks to generate new training data [22,23].

Automated augmentation methods focus on learning an optimal data augmentation
strategy from data [10,12]. Many recent methods define a set of data augmentations
and their magnitude, where the best augmentation strategy is automatically selected.
AutoAugment [10] uses a search algorithm based on reinforcement learning to find the
best data augmentation policy with a validation accuracy as the reward. The search space
consists of policies which in turn, have many sub-policies. Each sub-policy contains two
augmentation operations, their magnitude, and a probability of application. A sub-policy
is selected uniformly at random and applied to an image from a mini-batch. This process
has high computational demands; therefore, it is applied on a proxy task with a smaller
dataset and model. The best-found augmentation policy is then applied to the target task.

Population-Based Augmentation (PBA) [24] uses a population-based training algo-
rithm [13] to learn a schedule of augmentation policies at every epoch during training.
The policies are parameterized to consist of the magnitude and probability values for each
augmentation operation. PBA randomly initializes and trains a model with these different
policies in parallel. The weights of the better-performing models are cloned and perturbed
with noise to make an exploration and exploitation trade-off. The schedule is learned with
a child model and applied to a larger model on the same dataset.

Fast AutoAugment [25] speeds up the search for the best augmentation strategy with
density matching. This method directly learns augmentation policies on inference time and
tries to maximize the match of the distribution between augmented and non-augmented
data without the need for child models. The idea is that if a network trained on real
data generalizes well on augmented validation data, then the policy that produces these
augmented data will be optimal. In other words, the policy preserves the label of the
images, thus the distribution of the real data.

Adversarial AutoAugment [26] optimizes a target network and augmentation policy
network jointly on target task in an adversarial fashion. The augmentation policy network
generates data augmentations policies that produce hard examples, therefore increasing
the target network’s training loss. The hard examples force the target network to learn
more robust features that improve its generalization and overall performance.

RandAugment [12] uses a much reduced search space than AutoAugment and opti-
mizes two hyperparameters: the number of applied augmentations and the magnitude.
RandAugment tunes these parameters with a simple Grid Search [27] on the target task,
therefore, removes the need for a proxy task as is the case in AutoAugment [10]. The
authors argue that this simplification helped the strong performance and efficiency of their
approach.

TrivialAugment [16] samples one augmentation from a given set of augmentations
and its magnitude uniformly at random and applies on a given image. This method is
efficient, parameter-free, and competes with RandAugment [12] in performance for image
classification.

In this work, we introduce two novel (automated) data augmentation methods for
semantic segmentation: SmartAugment and SmartSamplingAugment. With hyperparam-
eter optimization, SmartAugment finds optimal data augmentation strategy and Smart-
SamplingAugment’s efficient and parameter-free approach competes with the previous
state-of-the-art methods.
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3. Methods

In this section, we present our data augmentation algorithms: SmartAugment and
SmartSamplingAugment. Similar to previous methods, namely RandAugment and Trivial-
Augment, we define a set of color and geometric augmentations along with their magni-
tudes as shown in Table 2. We describe our algorithms in detail in the following subsections.

Table 2. Detailed overview of data augmentation operations and their magnitude ranges. We use the
same augmentations as in RandAugment paper [12]. * The Identity operation only belongs to this list
for the RandAugment and TrivialAugment approaches.

Color Ops Range Geometric Ops Range

Sharpness (0.1, 1.9) Rotate (0, 30)
AutoContrast (0, 1) ShearX (0.0, 0.3)
Equalize (0, 1) ShearY (0.0, 0.3)
Solarize (0, 256) TranslateX (0.0, 0.33)
Color (0.1, 1.9) TranslateY (0.0, 0.33)
Contrast (0.1, 1.9) Identity *
Brightness (0.1, 1.9)

3.1. Smartaugment

SmartAugment optimizes the number of sampled color and geometric augmentations
and their magnitude separately (see Figure 1b and Algorithm 1). Having these distinct
sets of augmentations allows control over the type of applied augmentation instead of
optimizing the total number of sampled augmentations and their magnitude collectively.
SmartAugment also optimizes a parameter that determines the probability of applying
data augmentations P instead of having the Identity operation in the augmentation list, as
done by recent approaches.

SmartAugment uses Bayesian Optimization (BO) [15] to search for the best augmen-
tation strategy. The space of augmentation strategies include the following parameters:
number of color augmentations NC, number of geometric augmentations NG, color magni-
tude MC, geometric magnitude MG, and probability of applying augmentations P. These
hyperparameters are optimized with the BO algorithm until a given budget is exhausted.
Once BO chooses the augmentation parameters, the augmentations are sampled randomly
without replacement for each epoch and image from the given list of augmentation op-
erations as listed in Table 2. RandAugment, in contrast, samples with replacement and
therefore allows sampling the same augmentation several times for the same image.

(a) RandAugment (b) SmartAugment

Figure 1. Comparison of RandAugment and SmartAugment.
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Algorithm 1: Pseudocode for SmartAugment.
Input: Data D,

List of color augmentations CLIST ,
List of geometric augmentations GLIST

1 for each configuration do
2 Select 5 hyperparameters via BO:
3 1) # Color augmentations NC to sample,
4 2) # Geometric augmentations NG to sample,
5 3) Color magnitude MC,
6 4) Geometric magnitude MG,
7 5) Probability P of applying augmentations
8 for each epoch do
9 for each image I in D do

10 Sample var uniformly from [0, 1]
11 if var > P then
12 use I ; // do not augment

13 else
14 C := random sample NC ops from CLIST
15 G := random sample NG ops from GLIST
16 IAUG := apply C with MC
17 and G with MG to I
18 use IAUG

3.2. SmartSamplingAugment

The number of sampled augmentations in SmartSamplingAugment, a tuning-free
and computationally efficient algorithm, is fixed to two augmentation operations, and the
magnitude is sampled randomly from the interval [5, 30] (see Figure 2b and Algorithm 2).
These design choices are based on our preliminary experiments and seem to generalize well
to unseen datasets. SmartSamplingAugment samples augmentations with a probability
derived from the weights, which we set based on an ablation study for image classification
on CIFAR10 from RandAugment [12]. In this study [12], the average improvement in perfor-
mance is computed when a particular augmentation operation is added to a random subset
of augmentations. We selected the augmentations with a positive average improvement
and transformed this value into probabilities, by which we define the weights.

In SmartSamplingAugment, we linearly anneal the parameter P, that determines
the probability of applying data augmentations, from 0 to 1, increasing the percentage of
applying augmentation over the whole training epochs. That way, the model first sees the
original data in the early epochs and encounters more variations as the training progresses.

(a) TrivialAugment (b) SmartSamplingAugment

Figure 2. Comparison of TrivialAugment and SmartSamplingAugment.
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Algorithm 2: Pseudocode for SmartSamplingAugment.
Input: Data D,

List of augmentations A := [a1, a2, . . . , a−1],
Weights W := [wa1 , wa2 , . . . , wa−1 ]

1 for each epoch do
2 Update P ; // P is linearly annealed
3 for each image I in D do
4 Sample var from [0, 1]
5 if var > P then
6 use I ; // do not augment

7 else
8 AW := random sample 2 ops ai, aj ∈ A with weights wi, wj ∈ W
9 M := random sample magnitude from [5,28]

10 IAUG := apply AW with M to I
11 use IAUG

4. Experiments and Results

In this section, we empirically evaluate and analyze the performance of SmartAugment
and SmartSamplingAugment on several datasets and compare it to the previous state-of-
the-art approaches. Furthermore, we investigate the impact, interaction, and importance of
the optimized data augmentation hyperparameters.

4.1. Experimental Setup
4.1.1. Default and TrivialAugment

For completeness, we include in our experiments a “standard” augmentation strategy,
a strategy based on augmentations often manually selected by researchers , we dubbed
DefaultAugment and use it as our baseline. This default augmentation strategy is inspired
by semantic segmentation literature [28,29] and uses the following standard augmentations:
horizontal flipping (p f lip = 0.5), random rotation (range = [−45, 45]), random scaling
(range = [−0.35, 0.35]), where p f lip represents the probability of applying this particular
augmentation. Furthermore, we extended another recent method, TrivialAugment (see
Figure 2a), for semantic segmentation and integrated it in our experiments.

4.1.2. RandAugment++

Classical RandAugment [12] uses simple Grid Search [27] to optimize its hyperpa-
rameters. Evaluating the full grid of classical RandAugment would lead to evaluate
nearly 100 iterations (31 × 3 iterations: magnitude in the range of [0, 30] and the number
of operations in the range of [1, 3]) which is computationally very expensive. There-
fore, we decided to implement an updated version of RandAugment, which we call
RandAugment++ (see Figure 1a) that uses the same algorithm but optimizes its hyperpa-
rameters with Random Search. Random Search is known to perform better than Grid
Search [30] and its number of iterations is not limited to the size of the grid in the search
space. Furthermore, using Random Search enabled us to reduce the number of iterations
and increase the search space for RandAugment++ with less computational costs. We
analyzed the performance of RandAugment++ with different operations on the EM dataset
and found out that constraining the number of applied operations to three is not optimal
(see Figure 3). From this observation, we increase the upper limit for the number of applied
operations from 3 to 16, which denotes the total number of augmentations in the list we
sample from. To ensure comparability between RandAugment++ and SmartAugment,
we use the same computational budget of 50 iterations for both methods. We show in an
ablation study (see Section 4.4) that RandAugment++ is a better choice than the classical
RandAugment.
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Figure 3. Performance (mean IoU) analysis for different numbers of operations for RandAugment++
on EM. These results indicate that the number of applied operations should optimally not be limited
to three, as in classical RandAugment.

4.1.3. Training Setup

For all experiments, we use the U-Net architecture [31] to train the models and split the
datasets into training, validation, and test set. To find good fitting training hyperparameters
(e.g., learning rate and weight decay) for our in-house datasets, we performed Random
Search over ten configurations until model convergence. As a preprocessing step, we apply
with 50% probability either random crop or downsize operations before passing the data to
the different augmentation strategies for efficient memory and computing use. For KITTI
and EM datasets, we use a similar training setup as in [28]. To speed up memory intensive
processes, we use mixed precision training with 16 bits. For our experiments, we made use
of four GeForce GTX 1080 GPUs. For better reproducibility, we list the training parameters
for each of the datasets for a detailed view in Table 3.

Table 3. Training parameters for each dataset. Train, val, test denote the data split used during
training.

Dataset Resolution
Batch Learning Epochs

# Data #Train #Val #Test
Size Rate

KITTI 185 × 612 4 0.001 4000 200 140 30 30
RaVeNNa 180 × 180 3 0.001 2000 1684 1107 216 361
EM 512 × 512 2 0.01 500 30 20 5 5
ErfASst 864 × 864 2 0.05 5000 50 30 10 10

Furthermore, we performed early stopping on the validation set. To save computing
and still obtain enough samples on the validation set for early stopping, we evaluate every
10% of the total epochs on the validation set. This ensures that for each dataset, independent
of the number of epochs needed until convergence, the number of epochs evaluated on
the validation set is proportional to the total number of epochs. We run these experiments
three times for the different data augmentation approaches and take the mean of the test
IoU to ensure a fair comparison. In the case of RandAugment and SmartAugment, we
evaluated 50 configurations for each method and report the mean test IoU of the three best
performing configurations on the validation set.

For all our experiments, we use Stochastic Gradient Descent (SGD) optimizer [32] and
Cosine Annealing [33] as our learning rate scheduler, and anneal the learning rate over the
total number of epochs.
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4.1.4. Datasets

We evaluate all approaches on four datasets with pixel-level annotated images from
diverse semantic segmentation applications. ErFASst is a bridge inspection dataset with
50 images and two classes used for crack detection (Figure 4a). We use KITTI [34], a
popular autonomous driving dataset consisting of 200 images with 19 classes (Figure 4b).
RaVeNNa [1], is a cystoscopic medical imaging dataset comprises 1684 images with seven
classes that is used in detecting artifacts such as tumors in human bladder (Figure 5a).
EM [35] is a brain electron microscopy dataset of 30 images derived from a 2D segmentation
challenge dataset and consists of two classes (Figure 5b). To achieve meaningful results,
these datasets differ in size, resolutions, and type of images (RGB natural images, Grayscale,
see Table 3). Since RaVeNNa and ErFASst are highly class-imbalanced datasets, we use a
weighted cross-entropy loss during training. The weights are computed beforehand with
inverse frequency of the number of pixels belonging to a specific class in the training set.

(a) ErFASst (b) KITTI

Figure 4. Infrastructure mapping datasets.

(a) RaVeNNA (b) EM

Figure 5. Biomedical datasets.

4.2. Comparison to the State-of-the-Art

In Table 1, we compare our methods, SmartAugment and SmartSamplingAugment,
to the aforementioned data augmentation methods as well as to our baseline, Default-
Augment, a basic augmentation strategy that is commonly used in semantic segmentation
literature [28,29]. SmartAugment outperforms the previous state-of-the-art methods across
all datasets, while SmartSamplingAugment competes with the previous state-of-the-art
methods and outperforms the comparably cheap augmentation method, TrivialAugment.
Moreover, SmartSamplingAugment outperforms RandAugment++ on half of the datasets,
even though the latter has 50 times more budget.

Approximate Analysis of Compute Costs

We calculate the computing costs for each dataset for all the experiments done with
GeForce GTX 1080. In Table 4 we list our cost estimates that each method requires until
convergence.
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Table 4. Approximate estimate of computing costs (in hours) for each dataset and augmentation
approach. The costs are the time required until the maximum number of epochs is reached. Due to
computational resource constraints, we run Smart, Rand++, Randclassic with four GPUs in parallel.
Randclassic is RandAugment that uses GridSearch for optimization.

Dataset Default Rand++ Trivial Smart
Smart

Sampling Randclassic

KITTI 12 h 150 h 12 h 150 h 12 h 276 h
RaVeNNa 13 h 163 h 13 h 13 h 163 h 302 h
EM 0.5 h 6 h 0.5 h 6 h 0.5 h 11.6 h
ErfASst 23 h 287 h 23 h 287 h 23 h 537 h

# Iterations 1 50 1 50 1 93

4.3. Analysis with fANOVA

We analyze the impact, interaction, and importance of augmentation hyperparameters
across different datasets with fANOVA [36]. Moreover, we quantify and visualize the
effect of different augmentation configurations on the overall model performance on the
validation mean IoU metric.

4.3.1. Impact of Hyperparameters across Different Datasets

The results in Figures 6 and 7 show that the optimal strategy of augmentation hy-
perparameters is dataset-specific and predominantly impacts the overall performance: As
shown in Figure 6, applying many color operations with a high color magnitude to the
data can be good for the EM dataset, but can have a detrimental effect on the performance
of the KITTI dataset. There are areas in the augmentation space where it is sub-optimal to
sample from for a particular dataset but are good for another one. Furthermore, Figure 7
indicates that the probability hyperparameter of applying data augmentations strongly
varies across the datasets.

(a) SmartAugment on EM (b) SmartAugment on KITTI

Figure 6. The impact of hyperparameters on different datasets based on performance metric mean
IoU. This figure shows that the good values for each hyperparameter depend on the dataset. In this
example, higher number of color ops and color magnitude is optimal for EM dataset but detrimental
for KITTI dataset.
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(a) SmartAugment on RaVeNNa (b) SmartAugment on EM

Figure 7. Comparison of the probability hyperparameter of applying data augmentations. These
results indicate that the EM dataset needs much more data augmentation than the RaVeNNa dataset.
MeanIoU is used as performance metric.

4.3.2. Hyperparameter Interaction Analysis

Furthermore, we analyze the interaction of hyperparameters and their effect on the
performance. As mentioned in Section 3, SmartAugment optimizes the color and geometric
augmentations separately. The results in Table 1 and Figure 8 confirm our hypothesis
that this is a good design choice. Looking more closely, the figure shows that for optimal
performance, it does not suffice to optimize the total number of applied augmentations;
rather, it is crucial to sample the right type of augmentation from the augmentation list
carefully. For instance, according to Figure 8b, choosing four operations from the total
number of augmentation seems to be the optimal choice for the KITTI dataset. However,
according to Figure 8a, just sampling “blindly” four augmentation operations from the
entire augmentation list might not always be a good choice. If we would pick four color
augmentation operations and zero geometric augmentation operations, the performance
would be significantly sub-optimal.

(a) SmartAugment on KITTI (b) RandAugment++ on KITTI

Figure 8. Comparison considering the number of applied augmentations: RandAugment++ optimizes
the total number of augmentations, whereas SmartAugment differs between the number of color
augmentations and geometric augmentations. This figure shows that the performance of a total
number of augmentations depends on the types of augmentations. Please note that mean IoU is used
as a performance metric.

4.3.3. Hyperparameter Importance Study

In many algorithms that have a large hyperparameter space, only a few parameters are
usually responsible for most of the performance improvement [36]. In this study, we use
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fANOVA to quantify how much each hyperparameter contributes to the overall variance
in performance. As we observe in Table 5, the importance of a specific hyperparameter
strongly depends on the dataset. For instance, the geometric magnitude has a much higher
impact on the KITTI dataset than other datasets. Moreover, the results from Table 5 show
that optimizing the probability of application is an important design choice since this
parameter is the most important one in half of the datasets studied in these experiments.

Table 5. Hyperparameter importance study for different hyperparameters across different datasets
on SmartAugment experiments. For instance, for the RaVeNNa dataset, the probability of applying a
data augmentation strategy is responsible for 46% of mean IoU’s variability across the configuration
space. The higher the importance value, the more potential it has to improve the performance for a
given dataset.

Dataset p(aug) col_mag geo_mag #col_ops #geo_ops

KITTI 0.13 0.12 0.24 0.14 0.03
RaVeNNa 0.46 0.04 0.06 0.06 0.05
EM 0.25 0.14 0.09 0.04 0.03
ErFASst 0.1 0.12 0.04 0.22 0.04

4.4. Ablation Studies

In addition to comparing our methods to the state-of-the-art approaches and the
baseline, we report some ablation studies that give deeper insights into the impact of our
methods.

4.4.1. RandAugment(++) Ablation Studies

To confirm that the improvement of SmartAugment over RandAugment++ comes
from the method differences, we study RandAugment with different optimization methods.
For this purpose, we compare classical RandAugment with Grid Search, RandAugment++
with Random Search, and RandAugment with Bayesian Optimization as optimization
algorithms. We chose a cheap-to-evaluate dataset (EM) for this ablation study. As the
results in Table 6 confirm, SmartAugment outperforms RandAugment, independent of
the selected hyperparameter optimization algorithm. An interesting observation from
the study is that RandAugment++ improves over the classical RandAugment as shown
in Table 6. It is worthy to note that these improvement gains were achieved with fewer
iterations and less computational costs.

Furthermore, Figure 3 shows that it can be sub-optimal to limit the number of applied
augmentations to three, as is done in classical RandAugment. Therefore, increasing the
search space as in RandAugment++ allows finding a better number of augmentation
operations.

Table 6. Comparison of RandAugment variants with SmartAugment on the EM dataset. For each of
the results, we took the test mean IoU of the best three performing configurations evaluated on the
validation set. The results show that SmartAugment outperforms RandAugment(++), independent
of the hyperparameter optimization algorithm.

Method HPO Algorithm EM Dataset # Iterations

Rand Grid Search (classic approach) 78.54 93
Rand++ Random Search 78.83 50
Rand++ Bayesian Optimization 78.84 50
Smart Bayesian Optimization 79.04 50
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4.4.2. SmartSamplingAugment Ablation Studies

In these ablation studies, we analyze the impact of annealing the probability hyper-
parameter over epochs and weighting the augmentation operations. For the experiments
without annealing, we set the probability of augmentation P to 1.

The results in Table 7 show that for three out of four datasets, annealing as well
as weighting the augmentations are good design choices. Additionally, Table 7 shows
that the combination of annealing the probability of augmentation and weighting the
augmentations for RaVeNNa and ErFASst datasets improves the performance. Overall,
SmartSamplingAugment does comparatively well and outperforms DefaultAugment and
TrivialAugment across all datasets (see Table 1).

In the following, we give some possible explanations as to why annealing the augmen-
tations for the EM dataset and weighting the augmentations for the KITTI dataset might
not perform well. According to the hyperparameter importance study in Table 5, which
quantifies the effect of how the values of these parameters affects the overall performance,
the probability of augmenting data is the most important one for the EM dataset. Figure 7b,
indicates that the EM dataset benefits from a high percentage of data augmentation; and
therefore setting the probability of augmentation to 1 over the whole training yields better
results rather than slowly increasing the probability of applied augmentations over the
total number of epochs can be suboptimal. In contrast to the RaVeNNa dataset, where
the probability of augmenting data is also an important hyperparameter (see Table 5),
always augmenting data (P = 1) hurts performance. Figure 7a shows that annealing or
progressively increasing the probability of augmentation for this particular dataset does
seem to be a better alternative since we do early stopping.

Table 7. SmartSamplingAugment ablation study analyzing the impact of weighting the augmenta-
tions and annealing the probability hyperparameter over the whole epochs for different datasets.
We evaluated each experiment three times using different seeds to obtain the mean IoU. For the
experiments without annealing, we set the probability P of applying augmentations to 1.

Dataset
Weighting Without Weighting

Annealing No-Annealing Annealing No-Annealing

KITTI 66.53 67.15 67.49 67.13
RaVeNNa 90.72 87.07 85.65 85.68
EM 78.52 79.26 77.94 78.47
ErFASst 70.24 68.27 64.99 64.51

Furthermore, for the KITTI dataset, the geometric magnitude is the most important
hyperparameter and Figure 9 shows that sampling a high geometric magnitude can hurt
performance. In SmartSamplingAugment, rotation is strongly weighted, and there is a
considerable probability that a higher magnitude for this operation is sampled. Figure 10
visualizes three KITTI and EM images, each rotated with a different magnitude, and
gives an intuition why augmenting the KITTI dataset with high geometric operations can
have a detrimental effect on performance. We note that we select the weights based on a
study performed on a classification dataset, which probably is sub-optimal for semantic
segmentation. However, this gives insight that studies focusing on optimizing the weights
for augmentation operations can be a next step for further research.
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Figure 9. Results from SmartAugment on the KITTI dataset indicate that the geometric magnitude,
which is the most important hyperparameter for this particular dataset, should be low. Taking this
into account gives a possible explanation for why weighting the data augmentation with weights
that focus on geometric augmentations might hurt performance (mean IoU) for the KITTI dataset.

Rotation with magnitude 10

Rotation with magnitude 30

2× Rotation with magnitude 30

Figure 10. Visualization of three images from the KITTI (left) and EM (right) datasets, each rotated
with a different magnitude.
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5. Conclusions

In this work, we provide a first and extensive study of data augmentation for seg-
mentation and introduce two novel approaches: SmartAugment, a new state-of-the-art
method that finds the best configuration for data augmentation with hyperparameter op-
timization, and SmartSamplingAugment, a parameter-free, resource-efficient approach
that performs competitively with the previous state-of-the-art approaches. Both methods
achieve excellent results on different and diverse datasets.

With SmartAugment, we show that Bayesian Optimization can effectively find an op-
timal augmentation strategy from a search space where the number of color and geometric
augmentations and their magnitudes are optimized separately, along with a probabil-
ity hyperparameter for applying data augmentations. Our results show that the type of
applied augmentation is essential in making good decisions for improved performance.
Furthermore, a hyperparameter importance study indicates that the probability of applying
a data augmentation strategy could have considerable responsibility for the mean IoU’s
variability across the configuration space.

With SmartSamplingAugment, we develop a simple and cheap-to-evaluate algorithm
that weighs the augmentations and anneals augmentations to increase the percentage of
augmented images systematically. The results show that this is a powerful and efficient
approach that is competitive to the more resource-intensive approaches and outperforms
TrivialAugment, a comparably cheap-to-evaluate method. Furthermore, SmartSamplin-
gAugment opens the gate for more research on weighting and annealing data augmentation.
A possible future work will study an extension of our methods to image classification,
detection and 3D segmentation, particularly for biomedical applications.
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The following abbreviations are used in this manuscript:

BO Bayesian Optimization
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NG Number of geometric augmentations
MC Color magnitude
MG Geometric magnitude
P Probability of applying augmentations
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Abstract: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized primarily
by social impairments that manifest in different severity levels. In recent years, many studies have
explored the use of machine learning (ML) and resting-state functional magnetic resonance images
(rs-fMRI) to investigate the disorder. These approaches evaluate brain oxygen levels to indirectly
measure brain activity and compare typical developmental subjects with ASD ones. However,
none of these works have tried to classify the subjects into severity groups using ML exclusively
applied to rs-fMRI data. Information on ASD severity is frequently available since some tools used
to support ASD diagnosis also include a severity measurement as their outcomes. The aforesaid is
the case of the Autism Diagnostic Observation Schedule (ADOS), which splits the diagnosis into
three groups: ‘autism’, ‘autism spectrum’, and ‘non-ASD’. Therefore, this paper aims to use ML and
fMRI to identify potential brain regions as biomarkers of ASD severity. We used the ADOS score
as a severity measurement standard. The experiment used fMRI data of 202 subjects with an ASD
diagnosis and their ADOS scores available at the ABIDE I consortium to determine the correct ASD
sub-class for each one. Our results suggest a functional difference between the ASD sub-classes
by reaching 73.8% accuracy on cingulum regions. The aforementioned shows the feasibility of
classifying and characterizing ASD using rs-fMRI data, indicating potential areas that could lead to
severity biomarkers in further research. However, we highlight the need for more studies to confirm
our findings.

Keywords: ABIDE; ASD; autism spectrum disorder severity classification; fMRI; machine learning

1. Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized
mainly by social impairments, commonly followed by communication challenges or re-
stricted and repetitive patterns of behavior [1]. ASD is a substantially heterogeneous
disorder in which two diagnosed subjects may have a completely different set of symptoms.
Some researchers estimated that approximately one in 44 children aged eight years are in
the spectrum [2]. Despite a possible gender bias regarding diagnosis, ASD seems to be
a sex-related disorder, with a male-to-female ratio close to 3–4:1 [2–4]. Current research
points to ASD as a primarily hereditary disorder. Approximately 80–83% of ASD cases are
due to genetic inheritance. Close to 17–20% are due to environmental risk factors, including
problems during the gestation period and the parents’ age [5–7].

Children and adolescents with an ASD diagnosis have medical expenses up to 6.2 times
greater than those with typical development (TD), with general costs from 8.4 to 9.5 times
greater than the average [8]. In addition to medical expenses, intensive behavioral inter-
ventions needed for ASD treatment have costs from USD 40,000 to USD 60,000 per child
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per year [9]. Moreover, most ASD individuals live in low- or middle-income countries
and receive no proper support from health or social care systems, suffering from the high
costs of (1) proprietary tools for diagnosis; (2) evidence-based intervention techniques, and
(3) training of parents and professionals to conduct the ASD treatment process [10].

Early diagnosis and proper interventions are critical factors in reversing the impair-
ments generated by ASD in children. Unfortunately, there are no low-cost automated
tests to identify the disorder. Instead, the ASD diagnosis is performed through clinical
observation, which is challenging to accomplish in young children, especially in the early
years of life [11]. Early treatments may result in improved cognitive, behavioral, and
social functioning, allowing, for a subset of people, an evolution that may lead to healthy
adult life, as well as significant long-term societal cost reductions [12]. However, most
technological tools proposed to assist the ASD intervention process showed some common
limitations [13].

It is critical to comprehend the severity of each individual with ASD to plan personal-
ized treatments and conduct more effective intervention processes. Nowadays, there are
many protocols used to support diagnosis, such as the Autism Diagnostic Observation
Schedule (ADOS), Autism Diagnostic Interview—Revised (ADI-R), and Social Communi-
cation Questionnaire (SCQ). However, ADOS is currently one of the most used worldwide.
ADOS divides ASD classification between autism—the ones with more severe symptoms—
autism spectrum—the ones with less severe symptoms—and as non-spectrum—those
diagnosed outside of the spectrum [14].

An ADOS diagnosis consists of standard evaluation on three main domains: commu-
nication, social relations, and behavior. Each domain has a set of tasks to be evaluated, with
different total scores. The ADOS diagnosis comprises four modules for a specific range
of ages and language skills, each with different cut-offs for each of the three classes [15].
Furthermore, current ASD diagnosis is performed by trained professionals, with the help
of tools such as ADOS, which has both sensibility and specificity above 80% [16]. It is
important to note that the current ADOS version mainly used is the ADOS-2 [14], but due
to our available samples, we used the ADOS in its classic version.

The last decade was marked by research looking for methods to take advantage of
the recent evolution of machine learning (ML) to build automated ASD diagnosis pro-
cesses [17–20]. The first works in this field date from mid-2010 [21]. Since then, there has
been an increase in the number of papers and improved outcomes. Many of these works
used magnetic resonance imaging (MRI) and ML combined, aiming for a positive or negative
ASD diagnosis by classifying subjects between ASD and TD [21], as in [18–20,22–24].

One of MRI’s advantages is that it is a non-invasive procedure, being a prevalent
method to scan the brain in living human beings [25]. There are two main uses for brain
MRI: (1) the structural scan, which scans brain tissues and assesses their differences; and
(2) the functional scan, which tracks the oxygen flow in the brain. This second method
is usually called functional MRI (fMRI) and allows the indirect measurement of brain
activities in regions of interest (ROIs). From the measured oxygen levels, it is possible to
determine which regions are more activated than others [25,26].

There are many tasks applied to a subject for an fMRI scan; they range from resting
state to very narrow activities, such as watching a video. The resting-state fMRI is usually
called rs-fMRI, which is a means to delimitate the activity for scan acquisition. However,
the other activities, in general, do not have a specific nomination. The rs-fMRI is easiest to
apply and is also easy to compare between multiple studies, as it is easier to reproduce in
the same setup than any other activity.

Additionally, other medical images are also combined with ML to diagnose ASD, as is
the case of electroencephalograms (EEG), which try to measure brain activity by scanning
magnetic signals originating from the brain. There are many different setups, but as in
fMRI, many papers using resting-state scans are available, such as [27–30]. However, some
other setups, such as during the ADOS test [31] or while watching videos [32], are also
available. However, there are few EEG data with ASD diagnosis that are publicly available.
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Meanwhile, on the fMRI side, some universities have worked together and created
the Autism Brain Imaging Data Exchange (ABIDE) [33], an initiative that makes available
more than 2000 brain fMRI scans for research purposes. In addition, all fMRI subjects gave
consent to use their images. This initiative facilitates autism investigation by providing
access to a database that otherwise would not be easily acquired. Moreover, the pre-
processed data available on ABIDE I PREPROCESSED also contribute in this sense.

Therefore, we take into account the following true propositions: (1) early diagnosis
and interventions lead to better outcomes for autism treatment, as well as long-term cost
reduction; (2) ADOS scores allow a rating of the ASD severity; (3) promising results of
ML techniques classifying ASD vs. neurotypical through the use of rs-fMRI; and (4) the
ADOS scores and ASD rs-fMRI data available at ABIDE. This work aims to investigate
the functional differences between autism spectrum and autistic individuals, looking for
potential brain regions that may be associated with autism severity. We used ML applied
to brain segments from rs-fMRI data to classify individuals from the two groups to identify
these regions, selecting the ones with the greatest differences as potential biomarkers that
should be more deeply investigated in future works.

The remainder of this paper is structured as follows: Section 2 presents the methodol-
ogy employed. Sections 3 and 4 present and discuss our results, while Section 5 concludes
this work.

2. Methodology

This section presents this work’s methodology. It starts by describing the materials
used in Section 2.1, followed by a presentation of the ADOS sub-classes for ASD classifica-
tion in Section 2.2 and the region selection process in Section 2.3. Then, we explain both
the ML used to classify the samples in Section 2.4 and the validation process in Section 2.5.
Finally, we present the final data source in Section 2.6 and the accuracy, sensitivity, and
sensibility cut-off points in Section 2.7.

2.1. Materials

In this work, we used the rs-fMRI data provided by ABIDE [33]. The ABIDE I consor-
tium currently offers 1100 rs-fMRI scans from subjects with and without ASD diagnosis.
Since our work was not an ASD vs. TD classification, all rs-fMRI data of neurotypical
subjects were discarded, leaving 505 preprocessed fMRI scans from subjects with ASD
diagnosis. From these ASD data, only 202 had information concerning ADOS scores for
communication, social interaction, and repetitive behavior, which are essential data in our
classification approach. Thus, the final data comprised 202 ASD subjects.

The original data from fMRI are 3D images over time. Therefore, applying an atlas
and a preprocessing pipeline is necessary to transform the 3D images into matrices repre-
senting the brain regions (columns) and their respective activities over time (rows). The
preprocessing pipeline also removes noises and other undesirable artifacts, which allows
better results.

2.1.1. Automated Anatomical Labeling (AAL)

An atlas is a brain mapping that allows us to evaluate brain activity through its
regions. We used the AAL atlas [34] available at ABIDE, as it is the most used atlas in the
literature for ASD classification using fMRI and ML [21], reaching meaningful outcomes
in [18,20,35–37].

In its third version, AAL segments the human brain into 116 ROIs. A detailed explana-
tion of these regions can be seen in [34]. Table 1 presents the AAL’s labels.
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Table 1. Automated anatomical labeling (ID and name).

ID Label Name ID Label Name ID Label Name

0 Precentral.L 39 ParaHippocampal.R 78 Heschl.L

1 Precentral.R 40 Amygdala.L 79 Heschl.R

2 Frontal.S.L 41 Amygdala.R 80 Temporal.S.L

3 Frontal.S.R 42 Calcarine.L 81 Temporal.S.R

4 Frontal.S.Orb.L 43 Calcarine.R 82 Temporal.Pole.S.L

5 Frontal.S.Orb.R 44 Cuneus.L 83 Temporal.Pole.S.R

6 Frontal.Mid.L 45 Cuneus.R 84 Temporal.Mid.L

7 Frontal.Mid.R 46 Lingual.L 85 Temporal.Mid.R

8 Frontal.Mid.Orb.L 47 Lingual.R 86 Temporal.Pole.Mid.L

9 Frontal.Mid.Orb.R 48 Occipital.S.L 87 Temporal.Pole.Mid.R

10 Frontal.Inf.Oper.L 49 Occipital.S.R 88 Temporal.Inf.L

11 Frontal.Inf.Oper.R 50 Occipital.Mid.L 89 Temporal.Inf.R

12 Frontal.Inf.Tri.L 51 Occipital.Mid.R 90 Cerebelum.Crus1.L

13 Frontal.Inf.Tri.R 52 Occipital.Inf.L 91 Cerebelum.Crus1.R

14 Frontal.Inf.Orb.L 53 Occipital.Inf.R 92 Cerebelum.Crus2.L

15 Frontal.Inf.Orb.R 54 Fusiform.L 93 Cerebelum.Crus2.R

16 Rolandic.Oper.L 55 Fusiform.R 94 Cerebelum.3.L

17 Rolandic.Oper.R 56 Postcentral.L 95 Cerebelum.3.R

18 Sp.Motor.Area.L 57 Postcentral.R 96 Cerebelum.4.5.L

19 Sp.Motor.Area.R 58 Parietal.S.L 97 Cerebelum.4.5.R

20 Olfactory.L 59 Parietal.S.R 98 Cerebelum.6.L

21 Olfactory.R 60 Parietal.Inf.L 99 Cerebelum.6.R

22 Frontal.S.Medial.L 61 Parietal.Inf.R 100 Cerebelum.7b.L

23 Frontal.S.Medial.R 62 SraMarginal.L 101 Cerebelum.7b.R

24 Frontal.Med.Orb.L 63 SraMarginal.R 102 Cerebelum.8.L

25 Frontal.Med.Orb.R 64 Angular.L 103 Cerebelum.8.R

26 Rectus.L 65 Angular.R 104 Cerebelum.9.L

27 Rectus.R 66 Precuneus.L 105 Cerebelum.9.R

28 Insula.L 67 Precuneus.R 106 Cerebelum.10.L

29 Insula.R 68 Paracentral.Lobule.L 107 Cerebelum.10.R

30 Cingulum.Ant.L 69 Paracentral.Lobule.R 108 Vermis.1.2

31 Cingulum.Ant.R 70 Caudate.L 109 Vermis.3

32 Cingulum.Mid.L 71 Caudate.R 110 Vermis.4.5

33 Cingulum.Mid.R 72 Putamen.L 111 Vermis.6

34 Cingulum.Post.L 73 Putamen.R 112 Vermis.7

35 Cingulum.Post.R 74 Pallidum.L 113 Vermis.8

36 Hippocampus.L 75 Pallidum.R 114 Vermis.9

37 Hippocampus.R 76 Thalamus.L 115 Vermis.10

38 ParaHippocampal.L 77 Thalamus.R
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2.1.2. Preprocessing Pipeline

Different machines across multiple sites acquired the fMRI data available at ABIDE.
Moreover, some sites used different total time acquisition. Thus, some rs-fMRI scans have
more frames than others.

The ABIDE offers 884 preprocessed rs-fMRI scans in four pipeline options:

• Connectome Computation System (CCS);
• Configurable Pipeline for the Analysis of Connectomes (CPAC);
• Data Processing Assistant for rs-fMRI (DPARSF);
• Neuroimaging Analysis Kit (NIAK).

These pipelines have different methods and sequences to manage fMRI data, removing
noise such as head motion, skull, and magnetic interference. We only used the DPARSF
pipeline in this work [26,38,39]. The criteria used for choosing DPARSF were analogous to
those employed in the atlas definition process. Except for works where the authors create
their preprocessing pipeline, DPARSF is the prevailing pipeline in a number of papers [21],
reaching meaningful outcomes in ASD classification using rs-fMRI and ML [37,40–42].

The DPARSF final product is a matrix (X, Y), where X is the number of columns, and
Y is the number of rows. Each table column represents one ROI, according to the chosen
atlas, and each table row represents the elapsed time during the scan. The number of rows
(Y) could differ for each fMRI, even using the same atlas. However, the X value must be the
same for all fMRI using the same atlas. For example, in a DPARSF matrix, a value (Xi,Yj)
represents the oxygen level of ROI i at time j.

2.2. ADOS Classification

We used the ADOS standard division for ASD diagnosis to investigate any functional
differences in the severity of ASD. The ADOS standard division has previously defined
cut-off points to classify subjects as autistic, ASD, or non-ASD. Table 2 shows the maximum
scores and the ASD and autism cut-off points for each module (ASD score groups according
to the individual’s age) and domain areas. For each ADOS module, the first line indicates
the maximum value; the second line shows the ASD cut-off point, and the third line
indicates the autism cut-off point, according to the domain area.

Table 2. ADOS maximum score and cut off points for ASD [15].

Comm SI IS + Comm RB

Maximum
score 10 14 24 6

Module 1
ASD
cut off 2 4 7 -

Autism
cut off 4 7 12 -

10 14 24 6
Module 2 3 4 8 -

5 6 12 -

8 14 22 8
Module 3 2 4 7 -

3 6 10 -

8 14 22 8
Module 4 2 4 7 -

3 6 10 -

Comm (Communication); SI (Social Interaction); IS + Comm (Communication + Social Interaction); RB (Repetitive
Behavior).
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We adopted the cut-off points from [15] to determine into which class a given subject
should be classified, based on their scores available on ABIDE. This way, if a subject scored
in at least one domain above the “autism cut-off”, they were classified as Class 2 (autism).
If the subject did not score above the “autism cut-off” but had at least one domain scoring
above the “ASD cut-off”, they were classified as Class 1 (ASD). We classified the remaining
subjects as non-ASD, discarding them. Tables 3 and 4 show the ABIDE subjects’ distribution
according to the ADOS class; the complete phenotypes of each subject are available on [33].

Table 3. ASD subjects group.

Subject Index from ABIDE

51457 50145 50995 51470 50152 51007 50803 50056 51011 50499
50960 50182 51019 50976 51211 51026 50983 51229 50142 50991
50993 51461 50146 51001 51471 50025 51008 50958 50057 51034
51018 50967 51210 51021 50981 51224

Table 4. Autistic subjects group.

Subject index from ABIDE

51456 51458 51459 51460 51462 51463 51464 51465 51466 51467
51468 51469 51472 51474 50649 50653 50651 50791 50792 50795
50798 50799 50800 50802 50804 50823 50824 50825 50954 50955
50956 50961 50962 50964 50965 50966 50968 50969 50970 50972
50973 50974 50977 50978 50979 50982 50984 50985 50986 50987
50988 50989 50990 50992 50994 50996 50997 50998 50999 51000
51002 51003 51006 51009 51010 51012 51014 51015 51016 51017
51020 51023 51024 51025 51027 51028 51029 51032 51033 51035
50143 50144 50148 50150 50153 50004 50005 50006 50007 50012
50014 50016 50022 50024 50027 50029 50183 50184 50186 50187
50188 50189 50190 50191 50212 51206 51208 51212 51214 51216
51217 51218 51221 51222 51223 51226 51234 51235 51236 51237
51239 51240 51241 51248 51249 51291 51293 51294 51295 51298
51301 51302 50477 50480 50482 50483 50486 50487 50488 50490
50491 50492 50493 50494 50496 50497 50498 50500 50502 50503
50504 50505 50507 50514 50515 50516 50518 50519 50520 50521
50524 50525 50526 50528 50529 50530

Tables 5–7 present the phenotype information of the selected subjects.

Table 5. Sex distribution.

Group Total Male Female

ASD 36 32 4

Autistic 166 152 14

Table 6. Age distribution.

Group AVG MAX MIN Standard Deviation

ASD 16.47 38.76 8.0 7.90

Autistic 17.63 55.4 7.13 8.91
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Table 7. FIQ distribution.

Group AVG MAX MIN Standard Deviation

ASD 108.35 132.0 76.0 13.66

Autistic 104.81 148.0 65.0 16.76

2.3. Region Selection

We grouped the ROIs from AAL by macro regions, considering the region name. The
result was a set of regions (SoRs) (e.g., precentral left and right as one SoRs, angular left
and right as one SoRs). This process resulted in 35 SoRs containing the ROIs grouped by
brain region. We also included one SoRs with all the ROIs.

Table 8 presents the resulting SoRs, where the set ID is the SoRs’ identification, and
the RoIs IDs match the RoIs used in Table 1.

Table 8. SoRs IDs and their respective RoIs IDs from AAL.

Set ROIs Set ROIs Set ROIs Set ROIs
ID IDs ID IDs ID IDs ID IDs

0 [0, 1] 9 [26, 27] 18 [48, ...,53] 27 [72, 73]

1 [2, ..., 5] 10 [28, 29] 19 [54, 55] 28 [74, 75]

2 [6, ..., 9] 11 [30, ..., 35] 20 [56, 57] 29 [76, 77]

3 [10, ..., 15] 12 [36, 37] 21 [58, ..., 61] 30 [78, 79]

4 [16, 17] 13 [38, 39] 22 [62, 63] 31 [80, ..., 89]

5 [18, 19] 14 [40, 41] 23 [64, 65] 32 [90, ..., 107]

6 [20, 21] 15 [42, 43] 24 [66, 67] 33 [108, ..., 115]

7 [22, 23] 16 [44, 45] 25 [68, 69] 34 ALL

8 [24, 25] 17 [46, 47] 26 [70, 71]
[X, ..., Y] is a one-to-one incremental sequence where X is the lower limit and Y the superior (e.g., [1, ..., 4] is the
same as [1, 2, 3, 4]).

This approach aimed: (1) to simplify the SVC classification; and (2) to give a more
generic location of the functional differences between ASD classes in a manner that would
allow better comparison between existing studies that use different atlases.

2.4. SVC Classifying Algorithm

We used a supervised learning method, support vector machine (SVM), specifically the
C-Support Vector Classification (SVC), to check the differences between ASD sub-classes.
This method has three steps: training, validation, and test [43,44].

Based on an in-depth systematic review and meta-analysis available in [21], we selected
SVM as our ML method. SVM was the most used AI tool for solving ASD classification
problems, showing some reliable results when applied in similar situations [18,20,37,45,46].
The second most used method was the artificial neural network (ANN) [21]. Both approaches
have similar results in the literature, with SVM slightly better in terms of sensitivity [21].
As our goal was to find potential regions of a biomarker, and due to the complexity of
the problem, we decided to adopt SVM given its more direct comparison, facilitating the
interpretability of the results. We used the SVM from the scikit-learn library available at [47].

SVM creates a multidimensional plane, where each object (in our case, each subject)
will be positioned according to the selected features’ value. First, the sample part used
for training will determine a curve to split the plane, as shown in Figure 1, where each
area corresponds to one class. Then, the validation sample part will verify the accuracy
of the curve, and this process will be repeated until the SVM reaches the best angle given
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the features, training sample, and validation sample. After this, the test sample is used to
measure the SVM generalization.

Figure 1. Classification curve generated by SVM with two features.

We hypothesized that higher accuracy would reflect the existence of an interpretative
way to differ each class. In other words, SoRs with higher accuracy potentially contain the
regions where classes are more distinct regarding the features used. These findings can
highlight the areas to consider for further investigations on functional brain activity and
ASD severity.

As the main goal was to find regions where there is a functional brain difference in the
ASD severity level, and there is a lack of data about SVM setups in previews works on fMRI
related to ASD investigations, as observed in [21], we chose a few educated-guess setups in
our experiment. The setup was related to the variables gamma, coef0, kernel, class_weight,
degree, and max_iter.

The gamma delimitates how close the final classification should be regarding the
training sample, with more significant values given to more rigid solutions and lower
values to given more flexible solutions.

The coef0 is an independent value related to the scale of the sample. Meanwhile, the
kernel is the mathematical equation used to solve the problem, and the ones available
from [47] are linear, poly, rbf, sigmoid.

The class_weight option considers the size of each class in the training step, adjusting
the weight accordingly. For example, regarding training, if Class 1 has three subjects and
Class 2 has nine subjects, Class 1 will weigh three while Class 2 will weigh one. This process
is meant to avoid the algorithm taking into account only the dominant class from training,
which can jeopardize the SVM’s generalization capacity.

The degree will define the curve degree of the equation that splits the SVM classification
plane. Finally, max_iter is the total training iterations allowed to be used by the algorithm,
stopping the training when the value is reached, regardless of the gain.

Here, we used the following values for each variable:

• gamma = [2,4],
• coef0 = [1.0],
• kernel= [poly],
• class_weight= [balanced],
• degree = [2,3],
• max_iter = [400000].

2.5. Validation Process

We performed a k-fold cross-validation model to validate our process [48–50]. We
selected k = 10, which is recommended for samples larger than 200 objects. The SVM
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automatically split the sample into training and test; in this case, we used the standard 70%
to training and 30% for test. Therefore, the 9 folds were sent to the SVM and then split into
7/3 for training and test, and then applied in the 10th fold for validation; the process was
repeated until all 10 folds were used as the validation sample.

We adopted the following division criteria to avoid bias noise:

• Amount of subjects of a specific ADOS subclass in each fold, avoiding any fold having
only subjects of the same subclass. For example, a fold without autistic subjects could
bias the SVC always to answer ASD due to the lack of autistic subjects on training or
validation.

We first divided our sample into two groups, ASD and autistic, one for each ADOS
subclass. Then, we ordered them by subject ID, and for each group, we designated one sub-
ject at a time for each fold: {Subject 1 to Fold 1, Subject 2 to Fold 2, Subject n to Fold (n
mod 10)}.

Thus, each fold had a balanced subclass distribution at the end of this process. Given
our sample’s limitations, this process aimed to produce the most adaptive learning for our
SVC.

2.6. Final Data Source

The resultant data were composed of two files for each subject. The first file contained
a matrix where each column represented one of the 116 ROIs from the AAL atlas, and
each row represented a picture of the brain over time. The second file was a vector with
the subject’s phenotype data, including the ADOS score. Since the first row of each fMRI
placed the ROI label, we removed it from the file sent to the SVM.

SVM only accept vectors as its input. Therefore, we converted the resulting matrix
from DPARSF into a vector. We considered two conversion options: (1) construct a vector
from the matrix where the matrix position (Xi, Yj) is placed on the vector position (Zi+i∗j);
and (2) acquire the maximum, minimum, median, and average values for each ROI from
each SoRs and create a vector (Zamax , Zamin , Zamed , Zaavg , ..., Zbmax , Zbmin , Zbmed , Zbavg), where a
and b are, respectively, the first and the last ROI ID of a SoRs.

Both conversion options have advantages and drawbacks. The first option has the
simplest preprocessing but a more significant need for computer power for the SVC to
process all data. On the other hand, the second option has the drawback of a preprocessing
pipeline, which will acquire the data from each subject to transform in the four values
mentioned above, with loss of information due to transformation. However, due to the size
reduction, the SVC requires less computer power to analyze all the data from all subjects.
Thus, aiming for better scalability and facilitating human understanding of the results, we
chose the second option for this paper.

2.7. Accuracy, Sensitivity, and Specificity Restrictions, and Post-Hoc Tests

We imposed restrictions on the minimum accuracy, sensitivity, and sensibility re-
quired to consider a functional difference between the two ASD sub-classes. The cut-off
point was 60%, based on values achieved by other ASD vs. non-ASD classification stud-
ies [22–24,51–53]. Thus, we discarded results with accuracy (ACC), specificity (SPC), or
sensibility (SNS) less than 60%.

Finally, we applied three post-hoc tests on the features from the SoRs that achieved
the cut-off: addition of phenotype data, t-test, and p-value. The addition of phenotype data
aimed to investigate the effect of sex, age, and FIQ on SVM accuracy for each SoRs, while
t-test and p-value aimed to investigate the separability of the sample used, to investigate
how they differed from both groups.

3. Results

This section presents the results of our ASD vs. autism classification experiments. All
SoRs can be seen in Table 8 and each ROI used by these sets can be seen in Table 1. In
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this paper, we used specificity (SPC) related to the ASD classification and sensitivity (SNS)
associated with the autistic classification.

Our experiments worked with a total of 202 subjects, which comprised 36 with ASD
and 166 with autism, according to the ADOS scores. Table 9 shows the SoRs with the ACC,
SNS, and SPC greater than or equal to 60%.

Table 9. SoRs above the required threshold.

SoRs ID ACC SNS SPC

11 73.85% 76.50% 60.83%

23 66.28% 67.38% 60.83%

1 64.88% 65.69% 63.33%

30 63.38% 61.47% 70.83%

27 60.90% 60.84% 60.00%

ACC ranged from 60.9% (SoRs 27) to 73.8% (SoRs 11). SNS ranged from 60.8% (SoRs
27) to 76.5% (SoRs 11). SPC ranged from 60.0% (SoRs 27) to 70.8% (SoRs 30). This shows
the existence of a non-random separation when considering five brain regions.

The t-test of each feature allows us to understand the difference between the ASD and
autistic groups. The t-test results are a statistical difference between any two given groups,
and positive values mean that the group 1 average is larger than group 2, while negative
values mean that the group 2 average is larger than group 1. Table 10 shows the t-test result
for each feature on each SoRs for which SVM had above threshold results, and the positive
values mean that the ASD group average is larger than the autistic group for that feature,
while negative values mean that the autistic group average is higher.

Table 10. The t-test for features on SoRs with values above required threshold.

Feature
SoRs

1 11 23 27 30

1st ROI max −2.2285 −1.7574 −1.3936 −2.0293 −1.9078

1st ROI min 2.0665 1.9254 1.7192 2.2895 1.8749

1st ROI mean −0.2457 −0.3619 −0.1699 0.4010 −0.4500

1st ROI STD 0.2434 0.2758 0.0988 −0.4227 0.4915

2nd ROI max −1.6051 −1.7618 −1.4630 −1.8003 −1.9181

2nd ROI min 1.9787 1.6766 1.4059 2.0074 1.8686

2nd ROI mean 0.3057 −0.4697 −0.0915 −0.8066 0.8104

2nd ROI STD −0.2794 0.4066 0.0596 0.8234 −0.6772

3rd ROI max −1.8155 −1.7295 - - -

3rd ROI min 1.7308 1.6808 - - -

3rd ROI mean 0.0548 0.4520 - - -

3rd ROI STD −0.2010 −0.5442 - - -

4th ROI max −1.6348 −1.7266 - - -

4th ROI min 1.8527 1.9396 - - -

4th ROI mean −0.1745 1.8407 - - -

4th ROI STD 0.1780 −1.9850 - - -
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Table 10. Cont.

Feature
SoRs

1 11 23 27 30

5th ROI max - −1.8367 - - -

5th ROI min - 1.3644 - - -

5th ROI mean - −0.5116 - - -

5th ROI STD - 0.5581 - - -

6th ROI max - −1.5904 - - -

6th ROI min - 1.3676 - - -

6th ROI mean - 0.5552 - - -

6th ROI STD - −0.5744 - - -

Furthermore, reinforcing the t-test result, the p-value (scale [0,1]) of each feature from
SoRs above the required threshold is plotted in Table 11. The higher p-value was 0.96 for
the mean on ROI 4 (Frontal Sup. Orb. Left), the third ROI from SoRs 1, with high values
indicating a risk of not being able to distinguish the two groups from each other. On the
other hand, lower values indicate a high possibility of discerning the two groups using the
feature. The lower p-value was 0.02 from the min on ROI 72 (Putamen Left), the first ROI
from SoRs 27. The SoRs 1 has a mean p-value of 0.45 (0.43 STD), while SoRs 11 has a mean
p-value of 0.32 (0.14 STD); for SoRs 23, 27, and 30, the mean p-value is 0.53 (0.51 STD), 0.30
(0.24 STD), and 0.30 (0.24 STD), respectively. Therefore, SoRs 11 has the lowest p-value STD
and one of the lowest p-value means, which indicates a high probability of containing the
largest set of features to classify ASD severity. It is worth noting that these values reflect
only our sample and should not be used as a diagnostic tool as further research is needed
to either confirm or deny our findings.

Table 11. p-values for features on SoRs with values above required threshold.

Feature
SoRs

1 11 23 27 30

1st ROI max 0.02696 0.08038 0.16498 0.04375 0.05785

1st ROI min 0.04007 0.05560 0.08713 0.02309 0.06227

1st ROI mean 0.80617 0.71784 0.86524 0.68888 0.65319

1st ROI STD 0.80794 0.78296 0.92141 0.67295 0.62359

2nd ROI max 0.11005 0.07963 0.14504 0.07332 0.05652

2nd ROI min 0.04922 0.09519 0.16131 0.04605 0.06314

2nd ROI mean 0.76015 0.63907 0.92717 0.42088 0.41870

2nd ROI STD 0.78026 0.68474 0.95254 0.41129 0.49906

3rd ROI max 0.07095 0.08527 - - -

3rd ROI min 0.08502 0.09437 - - -

3rd ROI mean 0.95639 0.65175 - - -

3rd ROI STD 0.84090 0.58691 - - -

4th ROI max 0.10366 0.08578 - - -
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Table 11. Cont.

Feature
SoRs

1 11 23 27 30

4th ROI min 0.06540 0.05384 - - -

4th ROI mean 0.86167 0.06715 - - -

4th ROI STD 0.85890 0.04852 - - -

5th ROI max - 0.06773 - - -

5th ROI min - 0.17396 - - -

5th ROI mean - 0.60950 - - -

5th ROI STD - 0.57737 - - -

6th ROI max - 0.11332 - - -

6th ROI min - 0.17297 - - -

6th ROI mean - 0.57936 - - -

6th ROI STD - 0.56635 - - -

Moreover, we performed other trials adding phenotype information (age, sex, and full
IQ). We used the same features and added the phenotype data in the vector sent to the ML
algorithm. We executed the test for the three phenotypes together, one at a time, and all
combinations of two phenotypes. We used the same process for the main experiment; the
results that reached the threshold defined in Section 2.7, as well as the ACC gain, using the
phenotype for each SoRs are shown in Table 12. However, as shown by [21], these features
did not show a significant improvement, if any, in the sample.

Table 12. Results adding phenotype data to the SoRs.

SoRS ID + Phenotype Data ACC SNS SPC ACC Gain

23 + Sex 68, 88% 70, 58% 62, 5% 2, 595%

27 + Sex 62, 45% 62, 2% 63, 3% 1, 546%

30 + Age 69, 3% 68, 74% 71, 66% 5, 920%

30 + Age and Sex 66, 28% 65, 69% 69, 16% 2, 900%
The missing combinations did not reach the cut-offs in at least one of ACC, SNS, or SPC.

Finally, we show the mean result for each of the features with high ACC both for ASD
and autistic in Tables 13 and 14, respectively.

Table 13. Mean values for features on SoRs from ASD sample.

Feature
SoRs

1 11 23 27 30

1st ROI max 0.9605 1.6019 2.6961 1.5552 3.0939

1st ROI min −1.0676 −1.5430 −2.5440 −1.4001 −3.0682

1st ROI mean 0.0000 0.0009 −0.0004 0.0005 −0.0019

1st ROI STD −0.0341 −0.4287 0.1747 −0.2329 0.9709

2nd ROI max 1.1802 2.8490 2.5306 1.3805 2.3672
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Table 13. Cont.

Feature
SoRs

1 11 23 27 30

2nd ROI min −1.0081 −2.8490 −2.5677 −1.3228 −2.3113

2nd ROI mean 0.0000 0.0013 0.0001 −0.0002 0.0000

2nd ROI STD −0.0025 −0.6258 −0.0893 0.1171 0.0720

3rd ROI max 1.7238 0.9808 - - -

3rd ROI min −1.8015 −1.0159 - - -

3rd ROI mean 0.0010 0.0005 - - -

3rd ROI STD −0.5470 −0.2449 - - -

4th ROI max 1.7880 1.6496 - - -

4th ROI min −1.6441 −1.5445 - - -

4th ROI mean 0.0003 0.0021 - - -

4th ROI STD −0.1568 −1.0049 - - -

5th ROI max - 1.6627 - - -

5th ROI min - −1.8507 - - -

5th ROI mean - −0.0001 - - -

5th ROI STD - 0.0597 - - -

6th ROI max - 2.9188 - - -

6th ROI min - −3.2137 - - -

6th ROI mean - 0.0013 - - -

6th ROI STD - −0.6678 - - -

Table 14. Mean values for features on SoRs from autistic sample.

Feature
SoRs

1 11 23 27 30

1st ROI max 1.7303 2.7176 4.1538 2.8470 5.9894

1st ROI min −1.7637 −2.7257 −4.4038 −2.7160 −5.8292

1st ROI mean 0.0002 0.0013 −0.0002 0.0001 −0.0008

1st ROI STD −0.1171 −0.5762 0.1041 −0.0193 0.3691

2nd ROI max 1.9003 4.5360 4.1990 2.3653 4.1346

2nd ROI min −1.8646 −4.4891 −4.0994 −2.3611 −3.9732

2nd ROI mean −0.0002 0.0021 0.0003 0.0003 −0.0011

2nd ROI STD 0.0790 −0.9468 −0.1331 −0.1156 0.4724

3rd ROI max 2.8208 1.6436 - - -

3rd ROI min −2.8687 −1.6166 - - -

3rd ROI mean 0.0010 0.0003 - - -
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Table 14. Cont.

Feature
SoRs

1 11 23 27 30

3rd ROI STD −0.4340 −0.1223 - - -

4th ROI max 2.8618 2.8466 - - -

4th ROI min −2.8870 −2.6779 - - -

4th ROI mean 0.0006 0.0001 - - -

4th ROI STD −0.2536 −0.0148 - - -

5th ROI max - 2.6724 - - -

5th ROI min - −2.6525 - - -

5th ROI mean - 0.0003 - - -

5th ROI STD - −0.1597 - - -

6th ROI max - 4.6039 - - -

6th ROI min - −4.9155 - - -

6th ROI mean - 0.0003 - - -

6th ROI STD - −0.1874 - - -

4. Discussion

This paper assessed brain functional differences between ASD and autism using rs-
fMRI and SVM classification (SVC). The measure used to distinguish ASD from autism was
the ADOS score and cut-off points, as seen in Table 2.

Our results highlight some brain regions that potentially can distinguish functional
differences between both groups (ASD vs. autism). The main finding in distinguishing
the two ASD sub-classes reached up to 73.8% accuracy (SoRs 11). These results need to be
taken with caution due to the limitations mentioned and given its Matthews Correlation
Coefficient of 0.31 (scale [−1,1]), which is better than a random selection but still not
ideal. However, our results show a promising path to investigate the functional difference
between both ASD sub-classes.

The best ACC was reached for SoRs 11, consisting of the cingulate gyrus (cingulum),
and both left and right sides of the brain for the anterior, median, and posterior. We can
conjecture that brain regions such as the cingulum (73.8% ACC, 76.5% SNS, 60.8% SPC) and
angular (SoRs 23) (66.3% ACC, 67.4% SNS, 60.8% SPC) have the potential to differentiate
the severity of ASD subjects taking into consideration the ACC reached on this experiment.
These SoRs applied together with methods such as ADOS may in the future allow profes-
sionals to classify individuals. The frontal lobe (SoRs 1) (64.9% ACC, 65.7% SNS, 63.3% SPC)
also should be considered for further investigations as it shows reasonable ACC.

Our results support previous studies [54–56] that point to the cingulum region func-
tions differences between ASD vs. TD. Likewise, [19,40] detected the thalamus as a key
region for classifying ASD vs. TD, and [57–60] pointed to the frontal lobe as a region
where ASD vs. TD can be differentiated from each other. Angular (SoRs 23) [61,62], Heschl
(SoRs 30) [63,64], and putamen (SoRs 27) [65,66] also have consistently been linked to ASD.

Since these brain regions are commonly pointed to as an ASD vs. TD differential, we
can also suppose, based on our results, that such regions have the potential to describe
areas where functional activity may be a biomarker for ASD severity, supporting previous
investigations [64]. Therefore, we can presume the potential functional difference between
subjects from the ASD group and the autism group using these ROIs.
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5. Conclusions

Firstly, and most importantly, the field lacks sample data to strengthen the recent out-
comes. We believe that all published studies have insufficient samples to ensure definitive
conclusions on ML applied to fMRI for ASD diagnoses. For example, the ADOS used hun-
dreds of thousands of subjects to validate its algorithm, while the sum of all subjects from
all published papers regarding ML applied to fMRI (discounting the subjects duplicated
for multiple studies) is not even close to this value. Therefore, any claim to solve the issue
tends to be premature. Nevertheless, it is mandatory to research possible biomarkers while
waiting for more available data to validate the findings.

We investigated the functional brain activity difference between ADOS ASD sub-
classes (autism and ASD) using fMRI data from subjects previously diagnosed and available
at ABIDE. The differences between each ASD sub-class were the ADOS score and cut-off
points. We applied these data to train an ML classification algorithm (SVC) to classify the
disorder severity, investigating the existence of functional brain differences across regions
between both ASD sub-classes.

Our main contribution was the identification of five SoRs that potentially have dis-
criminating patterns for ASD severity. Additionally, the suggested use of SoRs can help
to improve investigations by allowing more clarity in interpreting and comparing the
results, aiming to enable physicians to look up the same markers found by the ML. In this
same aspect, opting to explore approaches using features more easily observed by human
analyses, such as the maximum, minimum, mean, and standard deviation from each ROI,
is also another contribution. These contributions can improve further research to give tools
for physicians to utilize these signals when evaluating a subject, more than simply finding
an ML to aid the ASD evaluation.

Our findings are consistent with previous studies on autism and brain development,
bringing a promising approach to evaluating ASD subtypes. A computational aid system
could improve medical diagnosis by delivering more tools for physicians’ evaluation,
reducing analysis ambiguity. Further research, applied to a younger sample, can allow
a computational system to assess individuals early, before the most severe symptoms
begin. Distinguishing the severity of a subject can help in intervention selection, and earlier
diagnosis can help set proper interventions to improve the individual’s quality of life.

Our study limitations lie mainly in the reduced sample size, which may not generalize
our outcomes for all populations. However, we can speculate about these functional
differences between the ASD subtypes.

Another limitation of the study was the mean age of the subjects (-̃16 years old), which
does not correspond to early diagnosis. Therefore, an additional experiment with younger
subjects will be required to improve the results’ reliability.

For further works, an increase in the available subjects, including younger ones,
would help to raise the accuracy as it would help to clarify how many of our results can be
generalized to all populations. In addition, the research community would benefit from
more available fMRI data with the respective phenotype data (such as ADOS score, age at
scan, sex, FIQ), allowing more accurate investigations.
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Abstract: The role of multi-parametric magnetic resonance imaging (mp-MRI) is becoming increas-
ingly important in the diagnosis of the clinical severity of prostate cancer (PCa). However, mp-MRI
images usually contain several unaligned 3D sequences, such as DWI image sequences and T2-
weighted image sequences, and there are many images among the entirety of 3D sequence images
that do not contain cancerous tissue, which affects the accuracy of large-scale prostate cancer de-
tection. Therefore, there is a great need for a method that uses accurate computer-aided detection
of mp-MRI images and minimizes the influence of useless features. Our proposed PCa detection
method is divided into three stages: (i) multimodal image alignment, (ii) automatic cropping of the
sequence images to the entire prostate region, and, finally, (iii) combining multiple modal images of
each patient into novel 3D sequences and using 3D convolutional neural networks to learn the newly
composed 3D sequences with different modal alignments. We arrange the different modal methods
to make the model fully learn the cancerous tissue features; then, we predict the clinical severity of
PCa and generate a 3D cancer response map for the 3D sequence images from the last convolution
layer of the network. The prediction results and 3D response map help to understand the features
that the model focuses on during the process of 3D-CNN feature learning. We applied our method to
Toho hospital prostate cancer patient data; the AUC (=0.85) results were significantly higher than
those of other methods.

Keywords: prostate cancer; computer-aided detection; magnetic resonance imaging; machine learning

1. Introduction

Prostate cancer [1] is currently one of the deadliest cancers in men, with a very high
incidence and death rate each year. According to the World Health Organization, in
2020, about 1.41 million people suffered from prostate cancer and 380,000 died from it [2].
Early diagnosis and treatment of prostate cancer can be highly effective in preventing the
development of cancerous tissue and metastasis into advanced prostate cancer, effectively
improving the five-year survival rate of prostate cancer patients and reducing patients’
suffering. The diagnosis of PCa is currently made clinically with a prostate-specific antigen
(PSA) [3] blood test and digital rectal examination (DRE) [2], followed by a transrectal
ultrasound (TRUS) biopsy if the PSA test result is positive. However, due to the limited
number of biopsy samples and/or the low ultrasound resolution of TRUS [4], lesions
may be missed or the Gleason score (GS) determined from the biopsy sample may differ
in repeat biopsies and, sometimes, from the score determined by radical prostatectomy.
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Moreover, prostate cancer is classified as clinically severe or clinically non-severe based on
the GS, which is currently ≤7 for clinically non-severe prostate cancer and ≥8 for clinically
severe prostate cancer. According to recent studies [3,5], the diagnosis of prostate cancer
using PSA and biopsy has low sensitivity and specificity, which can lead to underdiagnoses
and overtreatment, thus causing unnecessary suffering to patients. According to a recent
study [6], the positive predictive values of DRE, TRUS, mpMRI, and TPSA levels for PCa
were 39.91%, 39.38%, 64.14%, and 41.57%, respectively; the sensitivity of these parameters
was 37.35%, 51.41%, 74.69%, and 57.43%, respectively; the specificity of these parameters
was 62.26%, 46.90%, 71.97%, and 45.82%, respectively. Recent studies have demonstrated
that multi-parametric magnetic resonance imaging (mp-MRI) [7–9] can provide a simpler,
non-invasive, and more accurate method of detecting prostate cancer. By combining
images different MRI modalities, these previous studies showed that mp-MRI images have
a higher detection rate and better sensitivity and specificity for prostate cancer; because
of the non-invasive and highly detectable nature of MRI, more and more studies are
focusing on the classification of the clinical severity of prostate cancer under multiple
modalities [10]. However, it is very difficult to manually perform operations such as
classification and judgment of mp-MRI because there is a large number of images for each
patient, thus requiring much time and expertise on the part of the radiologist for judging
and interpretation analysis. In addition, due to the subjectiveness of the radiologist, there
will be low sensitivity and specificity in analyzing and judging the images [11], especially in
the articulation of different regions of the prostate. Therefore, there is a need for a computer-
assisted prostate cancer classification method that can reduce the time required to classify
prostate cancer and improve the specificity and sensitivity of prostate cancer diagnosis. In
recent studies [6,12–21], methods were developed for automatic prostate cancer detection,
diagnosis, and classification. Currently, the prostate cancer diagnosis method consists
of three main parts: first, data pre-processing (cropping the overall prostate image to
the prostate region or specific cancer site region); second, inputting the pre-processed
image into a deep learning network for feature learning to obtain a feature map of the
prostate; finally, outputting the results of the cancer grade according to the voxels in
the learned feature map. The first computer-aided diagnosis system for prostate cancer,
which was designed by Chen et al. [22], extracts pixel features from T2-weighted images
(T2) with a matrix and discrete cosine transform, and then uses an SVM classifier to
classify the peripheral regions of the prostate. In addition, Langer et al. [23] classified the
peripheral zone (PZ) of the prostate using a dynamic contrast-enhanced (DCE) map, and
Tiwari et al. [24] designed a classification system using semi-supervised multi-modal data.
However, these studies separated different regions of the prostate, causing cancer at the
junction of different regions to be easily missed and global features of the prostate to be
ignored. Many recent studies focused on improving neural network models, but it is known
that deep learning is still almost a black-box [25] system, and the intermediate learning
process is difficult to understand. Therefore, there is the field of explainable deep learning,
including CAM (class activation mapping) [26] technology, which uses feature visualization
to explore the working mechanisms of deep convolutional neural networks and the basis
of judgment. However, when implementing CAM, it is necessary to change the structure of
the network itself; thus, Grad-cam was investigated on the basis of CAM [27]. Grad-cam
can be implemented without changing the structure of the network itself and can extract
the heat map of features of any layer, and a recent study investigated Grad-cam++ [28] in
order to optimize the results of Grad-cam and make the positioning more accurate.

In this paper, we design a novel method for prostate cancer classification based on
fusing image features under multiple modalities to enable the classification of the clinical
severity of prostate cancer with a single input rather than using a costly multiple-input
method with complex training. Specifically, we align the T2 and DWI images of the same
patient to align the prostate region in space, crop the whole MRI image to the prostate
region, fuse the aligned images with the T2 and DWI images to form a new 3D image
sequence (“sequence” is used in this article to refer to the “input sequence” of a neural

70



Algorithms 2022, 15, 248

network, not to refer to an MRI acquisition sequence), and then input the new 3D sequence
into the 3D-CNN for feature learning. Finally, we output the features for prostate cancer
severity classification and visualize the learning interest points of the network using the
improved 3D-Grad-cam.

In this study, there are three main contributions:

(a) We developed a novel 3D-CNN input method that maintains the advantage of a low
training cost for a single input and the advantage of multi-modal feature fusion of
previous multi-input models, such that the model can fully fuse multi-modal features
and facilitate network prediction with a single input.

(b) We improve the category activation map based on CAM by using the category activa-
tion map in a 3D image sequence to obtain a 3D-Grad-cam to facilitate our visualiza-
tion of the network learning process.

(c) We performed an extensive experimental evaluation and comparison and used differ-
ent 3D-CNN models and different sampling methods for 3D-CNN models, and the
AUC, sensitivity, and specificity of this method on a test dataset were 0.85, 0.88, and
0.88, respectively.

The rest of the paper is structured as follows. The following section focuses on the
proposed method and the dataset used for the experiments, the Section 3 presents the
experimental results and compares the baseline with the latest methods, the discussion is
presented in the Section 4, and, finally, the conclusions are presented.

2. Methods

We predominantly used DWI and T2 image sequences from mp-MRI images in this
study. Our main goal was to classify patients with prostate cancer as clinically severe and
clinically less severe. Figure 1 illustrates the main framework of our proposed method,
which has 3 main parts. First, we rigidly aligned [29,30] the T2 images with the DWI images
in the planar spatial domain to correct the misalignment of the prostate region due to
image sequences and biases with different MRI contrasts in the acquisition process. We
then cropped out each T2 image with the DWI image containing the entire prostate region
using an automatic method used for prostate region boundary detection, and then the
cropped images were pixel-normalized. Third, we used the aligned and cropped T2 and
DWI images to create a new 3D image sequence of the prostate, and we fed the new 3D
image sequence into the 3D-CNN and obtained two outputs. The details of each step are
presented in the following sections.

Figure 1. The framework of the proposed method consists of four key steps: (1) rigid multiparameter
(DWI, T2) image alignment, (2) prostate region cropping, and (3) building a new 3D image sequence
for input into a 3D-CNN.
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2.1. Rigid Alignment of DWI and T2 Images

In previous studies [6,8,13], it was demonstrated that, in prostate mp-MRI, different
MRI sequences are deterministic for prostate cancer detection and classification results, but
the sensitivity of detection results under single-modality images is limited, so there is a
need to use multiple MRI sequences to make judgments and fully utilize the characteristics
of cancerous tissues under different MRI contrasts. Among all mp-MRI sequences, T2
images are more favorable for prostate cancer detection and diagnosis based on previous
studies, but the sensitivity of T2 images is low [4,31]. DWI images show the extent of water
diffusion in the prostate due to the tight accumulation of cancer cells, and any changes
in the prostate cancer can be detected more easily in DWI images; thus, DWI is another
type of image recommended for use in diagnosis. However, DWI does not completely
represent prostate lesions [31,32], so there are many studies combining DWI with T2 images
to achieve better sensitivity and specificity [6,8,33]. As shown in Figure 2, in the present
study, we use DWI and T2 sequences in mp-MRI for prostate cancer classification. One of
the keys to accurately combining the DWI and T2 image features is to align the DWI and T2
sequences, which can effectively eliminate the small variations between different sequences
caused by external factors during mp-MRI acquisition [11]. In this study, no drugs were
used in the MR acquisition protocol to reduce and prevent motion. In order to ensure that
the shape of the cancer lesion in the image is maintained without changing so that the
model can acquire the actual features of the shape of the cancer lesion, we use a rigid 2D
medical image alignment algorithm based on mutual information to maximize the mutual
information between the reference image and the target image without changing the shape
information of the cancerous region, and we use DWI as the target image and T2 as the
reference image. In this study, we use DWI as the target image and T2 as the reference
image. We use the best available medical image alignment algorithm, ANTs SyN [34], to
align the images. The image alignment strategy generally starts with an initial globally
aligned linear transformation, and the linear changes available in ANTs are optimized
for the mean squared deviation and correlated similarity measures, each of which are
optimized for translation and rotation. To ensure the accuracy of the alignment process, we
checked each image after alignment.

Figure 2. Examples of the alignment of DWI and T2 images are shown: (1) original T2 image,
(2) original DWI image, and (3) aligned T2 image after being overlaid with the DWI image.

2.2. Prostate Area Cropping

After alignment, we used a basic regression CNN to crop each image into a square
region containing the prostate region. Figure 3 shows the architecture of our CNN model
for automatically cropping the prostate region. We took the original image for training;
the bounding box of the prostate region was marked manually, and the model output
three parameters: the center coordinates of the square region (x, y) and the length l. The

72



Algorithms 2022, 15, 248

activation functions of all layers were tan h functions, and the corresponding loss function
of our model was:

loss = 1/3(| tan h(o1)− xt| + |tan h(o2)− yt| + |tan h(o3)− lt |) (1)

o1, o2 are the x and y coordinates, respectively, and o3 is the length. In the present
study, though there have been more complex target detection networks, such as R-CNN [35]
or automatic segmentation networks [36], in our experiments, a simple regression CNN
was able to achieve the detection of the square prostate area more accurately, and the
surrounding tissues outside the square prostate area did not have any effects on the
detection of prostate cancer.

Figure 3. The figure shows the prostate detection and cropping procedure used in this paper. In
the step of CNN-based prostate region detection, each rectangular box in the figure represents a
feature map vector and shows the dimensional information of the feature map, the lower left corner
of each feature map shows the length and width of the feature map, and the top shows the number of
channels of the feature map. After this network, three output parameters can be obtained: the center
coordinates (x, y) of the detected square region containing the prostate and the length of the square
region L.

2.3. New Sequence-Based 3D-CNN

In the previous steps, we obtained the newly aligned DWI and T2 images. We arranged
the aligned and cropped T2 and DWI prostate images and overlaid images in order to
form a new 3D image sequence. In the next experiments, we resampled the new 3D image
sequence of each patient 6 times (wince we used 3D convolution, the longer the z-axis
of the input data was, the more z-axis features the model could learn, but considering
that a longer input sequence for the model led to a significant increase in computation
time and no significant improvement in the results, we chose to resample six times after
the experiment); then, we input it into the 3D-CNN model to meet the training needs of
the 3D-CNN model and obtained two outputs: (1) 3D class activation map, where the
values of the pixels in the map represented the importance of having the model focus on
this region; (2) high-dimensional semantic feature vectors, through which the 3D image
sequence was classified.

There are three advantages to our use of this novel 3D-CNN input and training method:
feature fusion, reinforcement features, and influence weight.

(1) Feature fusion: With the 3D convolution kernel process and the operation of the
spatial convolution of the image sequence, the convolution kernel will convolve the
single image adjacent to the z-axis in the sequence image, and the features of the single
image adjacent to the z-axis will be calculated by the convolution kernel and extracted
as high-dimensional vectors. This operation is good for fusing all of the adjacent
image features and can replace the traditional method with a multiple-input multi-
MRI-contrast image method. We formed the images with different MRI contrasts into
a new 3D image sequence so that neighboring images of each image in the sequence
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were images of various MRI contrasts. This method is a very cost-effective way to
fuse image features with various MRI contrasts.

(2) Reinforcement features: In building a new 3D image sequence, we built the images
with several MRI contrasts in a different order to create a new image sequence; thus,
the adjacent image MRI contrasts were often diverse, and the cancerous tissue features
would be different in images with various MRI contrasts. The operation of the 3D
convolution kernel caused the model to remember the features of cancerous tissue
in the images with different MRI contrasts, which could enhance the learning of
cancerous features.

(3) Influence weight: In the learning of 3D convolution, the features of the image sequence
were gradually high-dimensionalized, and the high-dimensional vector contained the
full features of cancerous tissue; the linkage layer was expanded and the proportion
of high-dimensional vectors containing cancerous tissue features to the total vectors
increased, which could increase the accuracy of the prediction output. In the following,
we provide detailed information on each step. In previous studies, the input of the
3D-CNN was usually a sequence of images of a patient with a particular MRI modality,
but we fused images with different MRI contrasts into one sequence to be input into
the network. The features of the image columns were extracted by the 3D-CNN, and
the features of the z-axis were observable in the z-axis direction because each image of
the new sequence had the most evident cancerous tissue. In Section 3, we use the best
available 3D-CNN models for comparative experiments.

2.4. Implementations

All experiments in this study were conducted on a Windows computer using Python
3.6, with an Nvidia TITAN RTX graphics card and 24 GB of RAM, on an Intel(R) Core
(TM) i7-9700K 3.60 GHz CPU. Pytorch [37] was used as the model backend to build the
network architecture in all experiments. We used cross-entropy [38] as the loss function,
trained for 2000 epochs with a batch size of 2, and the model converged at 500 epochs.
We used Adam [39] as the model optimizer and set the learning rate to be automatically
adjusted; the initial learning rate was 1 × 10−5, the learning rate was multiplied by 0.1
every 50 epochs, and the input images were flipped at a random level with a probability of
0.5 during training. The data were normalized, and all data were randomly divided into
training, validation, and test sets with a ratio of 50:30:20; the input size of the model was
128 × 128, and network model was set to the model that preserved the best results.

3. Experiments

3.1. Setup

We collected T2 and DWI images of the prostate, which were used to train the model
and evaluate the performance of the model.

The prostate MRI data used in this paper consisted of 129 samples from Toho Univer-
sity Medical Center, Japan (dataset A) and were acquired with 3T MR scanners (SIEMENS
Skyra; syngo MR E11), as well as 121 samples from the 2017 SPIE-AAPM-NCI PROSTATEx
challenge dataset (dataset B). The PROSTATEx Challenge [40] (“SPIE-AAPM-NCI Prostate
MR Classification Challenge”) was held in conjunction with the 2017 SPIE Medical Imaging
Symposium and focused on quantitative image analysis methods for diagnostic purposes
and clinically meaningful prostate cancer classification. For each patient, the image with
the most significant lesion area was selected.

The two datasets used—with data from different sites—were collected using different
devices. We performed regularization preprocessing on these two datasets, as in the
previous step. The method proposed in this paper was mainly used to predict high and
low risk of early prostate cancer (according to the Gleason score, a score greater than or
equal to 8 is considered clinically severe, and a score less than or equal to 7 is considered
clinically insignificant). We used three main evaluation criteria to assess the performance
of the model: the AUC (area under curve) value, sensitivity, and specificity, with the AUC
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being defined as the area under the ROC curve. Sensitivity (Se), called the true-positive
fraction (TPF; or true-positive rate (TPR)), is the probability that a diagnostic test is correctly
diagnosed as positive in a case group. Specificity (Sp), called the true-negative rate (TNF; or
true-negative rate (TNR)), is the probability that the diagnostic test is correctly diagnosed
as negative in the control group, and the false-negative rate (FNR; or false-negative fraction,
FNF) is the probability that the diagnostic test is negative in the case group, which will lead
to delayed disease and treatment. The false-positive fraction (FPF; or false positive rate
(FPR)) is the probability that a diagnostic test is incorrectly diagnosed as positive in the
control group. A false positive will result in incorrect treatment, and patients sometimes
suffer from risky confirmatory tests.

sensitivity =
TP

TP + FN
(2)

specificity =
TN

FP + TN
(3)

In the above equation, TP, TN, FP, and FN represent the true positive, true negative,
false positive, and false negative, respectively.

In the following sections, experiments are conducted to evaluate the performance of
the proposed method in this paper. Table 1 shows the comparison experiments for the
different 3D-CNN models, Table 2 shows the comparison experiments for the different
newly ordered input sequences, and Table 3 shows the comparison experiments for the
different modalities of the original image sequence; a comparison with the 3 latest methods
is shown in Table 4.

Table 1. Comparison with 3D-CNN methodologies.

Methods Sensitivity Specificity AUC CI 95% Parameters

C3D 0.83 0.79 0.81 0.80–0.83 78 M
3DSqueezeNet 0.73 0.68 0.70 0.72–0.78 2.15 M
3DMobileNet 0.74 0.67 0.69 0.73–0.75 8.22 M
3DShuffleNet 0.74 0.65 0.68 0.74–0.76 6.64 M
ResNext101 0.83 0.75 0.81 0.76–0.82 48.34 M

3DResnet101 0.88 0.88 0.83 0.84–0.85 83.29 M
Our method + 3DResNet50 0.88 0.84 0.85 0.85–0.87 44.24 M

Table 2. Comparison experiments with different sequence orders.

Methods Sensitivity Specificity AUC CI 95% Parameters

Order 1 0.88 0.88 0.85 0.85–0.87 44.24 M
Order 2 0.84 0.84 0.82 0.80–0.83 -
Order 3 0.84 0.84 0.81 0.82–0.84 -
Order 4 0.88 0.84 0.84 0.79–0.84 -

Table 3. Comparison experiments of the original 3D sequence (input sizes were 384 × 384 and
128 × 128, respectively).

Methods Sensitivity Specificity AUC CI 95% Parameters

T2(384) 0.63 0.59 0.68 0.66–0.688 -
T2(128) 0.71 0.63 0.72 0.71–0.74 -

DWI(384) 0.61 0.54 0.71 0.69–0.72 -
DWI(128) 0.65 0.54 0.74 0.73–0.76 -

Our method + 3DResnert50 0.88 0.88 0.85 0.85–0.87 44.24 M
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Table 4. Comparison with the three cited methods used to classify the clinical severity of prostate cancer.

Methods Sensitivity Specificity AUC CI 95% Parameters

Zhong et al., 2019 [18] 0.636 0.80 0.723 0.58–0.88 –
Ajdoj et al., 2020 [19] 0.74 0.70 0.78 – –
Chen et al., 2017 [17] 0.78 0.83 0.83 – –

Our method 0.88 0.88 0.85 0.85–0.87 44.24 M

3.2. Comparison with the Classic 3D CNN

In the first step of the experiment, we input the new 3D image sequences into different
3D-CNN models and uniformly used the pre-training weights of ucf-101 [41]. Table 1
shows the results of all of the 3D-CNN models when processing the new standard sequence
images. All of the models were from [42]. From the comparisons, we found that, although
the model parameters of ShuffNet were very limited, ResNet50 achieved the best AUC
value in the test set. The sensitivity, specificity, and AUC values reached 0.88, 0.88, and
0.85, respectively.

3.3. Comparison of Different Input Orders

In the second step of the experiment, we input the images obtained in the previous
steps into the model in different orders. In the previous step of the experiment (Section 3.2),
the order of the single modal images in our new input image sequence was DWI, T2, and
then overlaps. To find the most appropriate image alignment order for the input sequence,
in this section, we divided the order in the new image sequence into four different orders:

(1) Order one: DWI, T2, and then overlap as a set of re-sampling six times;
(2) Order two: T2 re-sampling six times, DWI re-sampling six times, and then overlap

re-sampling six times;
(3) Order three: DWI re-sampling six times, T2 re-sampling six times, and then overlap

re-sampling six times;
(4) Order four: overlap re-sampling six times, T2 re-sampling six times, and then DWI

re-sampling six times.

In the experiment in Section 3.2, 3DResNet50 achieved the best performance; we input
different input sequences into the 3DResNet50 network, and in Table 2, we can see that the
best results were produced by order 1.

3.4. Comparison Experiments with the Original 3D Sequence

In our study, we propose a new 3D-CNN sequence. In the experiment in this section,
we compared this new sequence with the original image sequence (Table 3). We selected
the integral unprocessed image sequence of each patient (T2 followed by DWI), and then
we cropped the original 512 × 512 size to 384 × 384 and 128 × 128, respectively, for the
input. The processed images were fed into the 3DResnet50 CNN, and Table 3 shows that
the input of the original complete image sequence was not as good as the results of our
proposed method.

3.5. Comparison with State-of-the-Art Methodologies

We also compared our proposed method with state-of-the-art methods, including
the one proposed by Aldoj et al. [43] in 2020 for prostate cancer classification using
multi-channel CNNs on multi-modal MRI images. Their method takes images of three
modalities—ADC, DWI, and T2—as input, and inputs each modality into a different chan-
nel. There are 11 layers of 3D convolution with a convolution kernel of 3 × 3 × 3, an
ensemble step of 2 × 2 × 2, and two fully connected layers. Because the method chooses
data of three modes in the experiment, we only chose the results of two modes from
Aldoj et al. [43] as input in order to balance the comparison of the experimental results.
We can see that the sensitivity, specificity, and AUC values of our method were 0.14, 0.18,
and 0.07 higher than those of the same two-modality image inputs, respectively. A recent
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study by Zhong et al. [44] used deep migration learning for prostate cancer classification
based on multi-modal MRI images. It proposed feeding both T2 and ADC modality images
into a deep migratory learning network for feature extraction and obtaining the prediction
results after a fully connected layer. In the comparison experiments of Zhong et al. [44],
they compared results using uni-modal and bi-modal image inputs. Here, for objectivity in
the comparison experiments, we only selected the results of their comparison experiments
with bi-modal inputs, and we found that the sensitivity, specificity, and AUC values of
our model improved by 0.144, 0.08, and 0.127, respectively. Chen et al. [45] proposed an
approach to classifying the clinical severity of prostate cancer using migration learning on
the basis of multimodal MRI; the authors mainly used migration learning and pre-trained
weights obtained after training on ImageNet, and they conducted their experiments using
InseptionV3. The sensitivity, specificity, and AUC values of our method were 0.1, 0.05, and
0.002 higher than those of Chen et al. [45].

3.6. 3D-CNN Learning Process Visualization

There have been many previous studies [27,28] on deep learning model explanation
and on deep learning visualization, among which the most well known is CAM. CAM
shows the basis of its decision in the form of a heat map when a model is needed to explain
the reason for its classification, such as when informing where there are focal points in
the map. For a deep CNN, after multiple convolutions and pooling, the last convolutional
layer contains the richest spatial and semantic information, and the next layers are the fully
connected layer and softmax layer, which contain information that is difficult for humans
to understand and display in a visual way. Therefore, in order to provide a reasonable
explanation of the classification results of the convolutional neural network, it is necessary
to make full use of the last convolutional layer, and CAM draws on the idea of the well-
known paper on Network in Network [27], which uses GAP (global average pooling) to
replace the fully connected layer. GAP can be considered as a special average pooling layer,
except that its pool size is as large as the whole feature map, which is actually the average
value of all pixels in each feature map. This greatly limits its use. If the model is already
online or the training cost is very high, it is almost impossible to retrain it. The basic idea
of Grad-cam is the same as that of CAM, which is to obtain the weights of each pair of
feature maps and then find a weighted sum. CAM replaces the fully connected layers
with GAP layers and retrains the weights, whereas Grad-cam takes a different approach
and uses the global average of gradients to calculate the weights. Although Grad-cam
and other similar methods are effective, they have limitations, such as the localization
of multiple similar targets at the same time; even for a single object, Grad-cam cannot
localize it completely. Based on Grad-cam, the authors of [28] proposed Grad-cam++,
which improved the previous method, with the main contribution that ++ introduced a
pixel-level weighting of the output gradient for a specific location. This method provides a
measure of the importance of each pixel in the feature map, and more importantly, they
derived closed-form solutions while obtaining exact higher-order representations, including
softmax and exponential activation outputs. Our method requires one back-propagation,
so the computational effort is consistent with the previous gradient-based method, but the
results are more effective. It can be extended in the field of 3D deep learning visualization.
In this paper, we used Grad-cam++ in a 3D image sequence, as shown in Figure 4; we
found that the model accurately focused on the cancerous tissue by using the focus map
and heat map, and it learned the feature details of the cancerous tissue.
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Figure 4. The 3D-CNN model was visualized for learning. The figure shows two cases; the first
column of each case is the original image, the second column is the focus map obtained through
calculation, and the third column is the heat map obtained through the 3D Grad-cam++ calculation.

Figure 4 shows the heat map obtained through 3D visualization, where the red area
represents the area where the network model focused and learned features, and the area
closest to the red indicates the area where the convolutional network focused more of its
attention. From the figure, we can see that the areas on which the network model focused
were the lesion areas.

4. Discussion

Few studies have used 3D-CNN to classify the clinical severity of prostate cancer.
The main reason for this is that the cancerous tissue portion of a patient’s whole prostate
sequence often accounts for only a small part of the entire prostate image sequence. Due
to the very small size of the cancerous tissue, although 3D-CNN can learn the features of
the sequence images better than 2D-CNN, it is also difficult to learn the features of the
cancerous tissue adequately with very small targets, and it is easy for the large number of
useless features in the prostate cancer image sequence to affect the model’s learning results.
So, we proposed the method in this paper, which solves this problem perfectly, but it is
difficult to determine an optimal sequence length when constructing a new image sequence;
the original image sequence length is determined by the original sequence, but the newly
constructed image sequence does not have a perfect graph column length. In this paper, we
explored different alignment methods when constructing the sequence as much as possible,
and in future experiments, the sequence length will be investigated in order to find an
optimal sequence length. Although the method achieves great results in the direction of
deep learning, it is not superior to the results of a simple semen test, so this method is
one of the methods for assisting doctors in diagnosis. We carefully considered the issue
of whether to use fully automatic segmentation of the prostate region when designing
the method, and we also wish to automate the whole method as much as possible and
to reduce the manual part as much as possible, so we will add this step to the CNN in
future work to achieve full automation. However, in the current study, we also used some
bounding boxes for manual animation, so the current method is still semi-automatic, and
we will introduce automatic segmentation methods for medical images, such as U-net, into
our method in future work.
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5. Conclusions

In this paper, we proposed a novel method for constructing 3D-CNN sequences and
used the newly constructed 3D image sequences as input for different 3D-CNN models
in comparison experiments, compared the results after different fine-tuning based on the
basic constructed method, and, finally, compared the results with those of other 3D-CNN
methods. The results showed that our proposed method had the best AUC value of
0.85, and using the improved 3D model visualization method showed the focus of the
model’s learning.
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Abstract: Recent studies have been evaluating the presence of patterns associated with the occurrence
of cancer in different types of tissue present in the individual affected by the disease. In this article,
we describe preliminary results for the automatic detection of cancer (Walker 256 tumor) in laboratory
animals using preclinical microphotograph images of the subject’s liver tissue. In the proposed
approach, two different types of descriptors were explored to capture texture properties from the
images, and we also evaluated the complementarity between them. The first texture descriptor
experimented is the widely known Local Phase Quantization (LPQ), which is a descriptor based
on spectral information. The second one is built by the application of a granulometry given by a
family of morphological filters. For classification, we have evaluated the algorithms Support Vector
Machine (SVM), k-Nearest Neighbor (k-NN) and Logistic Regression. Experiments carried out
on a carefully curated dataset developed by the Enteric Neural Plasticity Laboratory of the State
University of Maringá showed that both texture descriptors provide good results in this scenario.
The accuracy rates obtained using the SVM classifier were 96.67% for the texture operator based on
granulometry and 91.16% for the LPQ operator. The dataset was made available also as a contribution
of this work. In addition, it is important to remark that the best overall result was obtained by
combining classifiers created using both descriptors in a late fusion strategy, achieving an accuracy of
99.16%. The results obtained show that it is possible to automatically perform the identification of
cancer in laboratory animals by exploring texture properties found on the tissue taken from the liver.
Moreover, we observed a high level of complementarity between the classifiers created using LPQ
and granulometry properties in the application addressed here.

Keywords: texture; local phase quantization; granulometry; liver tissue

1. Introduction

Cancer is the second biggest cause of death worldwide, accounting for nearly 10 mil-
lion deaths in 2020 [1]. This disease starts from the transformation of normal cells into
tumor cells, in a multi-stage process that generally progresses from a pre-cancerous lesion
to a malignant tumor. Different parts from the human body may be affected by this trans-
formation. In this vein, several research studies have been developed aiming to investigate
how these lesions happen in different types of tissue.

One of these investigations is under development in the Enteric Neural Plasticity
Laboratory of the State University of Maringá. In that work, the researchers have been
evaluating the transformations provoked by Walker 256 tumor in the cells contained in
samples of tissue taken from the liver of laboratory rats in a preclinical scenario. By visually
inspecting those images, they noticed that different patterns are present when samples
taken from healthy and sick individuals are compared.
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Algorithms 2022, 15, 268

In this work, we describe results obtained in preliminary investigations developed
aiming to accomplish the automatic identification of cancer using the aforementioned im-
ages. For this purpose, we decided to explore the textural properties of the images, inspired
in another biomedical application previously investigated by our research group [2]. In that
work, we evaluated the use of some widely known texture operators for the identification
of chronic degenerative diseases from images taken from other types of tissue.

As far as we know, the automatic identification of cancer, using a spectral texture
descriptor and granulometry-based properties of the tissue taken from the liver, is proposed
for the first time in this work. Furthermore, we also investigate the complementarity
between classifiers created on both scenarios (i.e., the LPQ texture operator [3], and a
granulometry-based descriptor [4–6]). The experimental results demonstrate the existence
of a high level of complementarity between both on the task evaluated here.

Taking it into account, we describe the following Research Questions (RQ) we intend
to answer in this work:

• RQ1: What is the performance of LPQ to support cancer identification in a Walker
256 tumor model on microphotograph of rats liver?

• RQ2: What is the performance of granulometry-based descriptors (GBD) to support
cancer identification in a Walker 256 tumor model on microphotographs of rat liver?

• RQ3: Is it possible to obtain better results for cancer identification in a Walker 256 tu-
mor model by combining classifiers created using LPQ and GBD in this scenario?

The classification was performed using three of the most widely known shallow
classifiers: k-NN, Logistic Regression, and SVM. The choice of shallow classifiers is justified
by the size of the dataset, which is too small to feed deep learning models.

The remaining of this work is organized as follows: In Section 2, we describe some
remarkable related works. Section 3 presents the main facts related to the dataset used in
this work. In Section 4, we describe details about the feature extraction design adopted
here. In Section 5, the methodology used for classification is showed in details. In Section 6,
results and discussions are presented. Finally, we describe our concluding remarks.

2. Related Works

In a more general context, Matos et al. [7] recently described a review on the use of
machine learning methods for histopathological image analysis. In that work, the authors
easily found 2524 scientific works already published in the period between 2008 and 2020,
using five widely known research portal engines (i.e., IEEExplore, ACM Digital Library,
Science Direct, Web of Science and Scopus). In that work, the authors described the system-
atic review according to a taxonomy which takes into account some important aspects of
machine learning methods: the use of segmentation as a preprocessing strategy; the use of
handcrafted or non-handcrafted features; and the use of shallow or deep learning methods.

The choice for works from the literature related to this one is not such a trivial task,
because this relationship may be seen from different perspectives, considering different
arrangements. One of these possibilities is to make the stratification of the works in terms
of the tissue/organ from which the images were obtained. In this vein, the work presented
by Nativ et al. [8] is worth mentioning here. In that work, they proposed a particular
image analysis technique to automatically identify the steatotic state of livers. The proposal
was based on a carefully designed image analysis based on the segmentation of liver
cellular and tissue structures. Following, some metrics were obtained from the segmented
structures and used with a k-means unsupervised clustering algorithm. The authors claim
that the proposed method overcame the performance of the strategies already presented at
that moment.

Shi et al. [9] also performed automated liver fat quantification. For this purpose, they
developed a pipeline in which high-relevant pixel-level features are firstly extracted from
hematoxylin–eosin stained images. Following, the boundaries between nuclei, fat and
other components are found clustering pixels using an unsupervised strategy. Finally,
the fat regions are identified based on the use of morphological operations. The au-
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thors claim that the proposed approach presented a high accuracy and adaptability in fat
droplets quantification.

Deeply analyzing the literature, we still found one more work closely related to this
one. Thiran and Macq [10] performed morphological feature extraction for the Classifi-
cation of Digital Images of Cancerous Tissues. The authors used a dataset composed of
images from lungs and digestive tract obtained by biopsy. The proposal was based on the
use of mathematical morphology to segment the nuclei of the cell, as the shape is an impor-
tant attribute to make it. The sequence of operations used to perform this segmentation
was the following: morphological opening, morphological reconstruction, and lastly, a
threshold. Once the nuclei was segmented, the set of features was extracted using, once
again, morphological operations to capture measures related to Nucleocytoplasmic Ratio,
Anisonucleosis, Nuclear Deformity, and Hyperchromasia. Finally, they proposed a score
obtained from these four values and used it to decide whether a given tissue is cancerous
or not.

3. Dataset

The dataset used in this work was created by researchers of the Enteric Neural Plasticity
Laboratory of the State University of Maringá. For this, male adult rats, of the Wistar
(Rattus norvegicus) lineage were used. All the proceedings involving the animals were
previously approved by the “Standing Committee on Ethics in Animals Experimentation”
of the university.

The animals were randomly separated into a control group (C) and Walker tumor
group (TW). Animals from the TW group were inoculated with Walker 256 tumor cells.
The dataset is composed of 120 microphotographs taken from samples of rat liver tis-
sue. The images are divided in two classes: control (C), containing 60 microphotographs
taken from six healthy rats (10 from each rat) and Walker 256 tumor (TW), containing
60 microphotographs taken from six rats (ten from each rat) with the Walker 256 tumor.

The liver samples were made in a semi-serialized manner with 5 μm cuts; they
were stained with haematoxylin and eosin. The images were obtained using the cam-
era Moticam® 2500 5.0 Mega Pixel (Motic China Group Co, Shanghai, China) coupled to
the microscope Motic BA 400 (Motic China Group Co., Shanghai, China). The images were
collected with magnification of 40× and resolution of 1024 × 768 pixels, which corresponds
to an area of 35,369.85 μm2 per image. Figures 1 and 2 show samples from the classes C and
TW, respectively. Some details about the images are summarized in Table 1, and additional
information about the dataset can be found in [11]. The dataset used in this work was made
freely available (https://github.com/Sersasj/Liver_Dataset, accessed on 1 April 2022) for
research purposes in such a way that other researchers can benefit from it and properly
compare the results obtained using different techniques with those obtained here.

Figure 1. Liver microphotograph from the control group (C).
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Figure 2. Liver microphotograph from the Walker 256 tumor group (TW).

Table 1. Dataset characteristics.

Class Abbreviation Image Dimension Number of Samples

Walker 256 tumor TW 1024 × 768 60
Control C 1024 × 768 60

4. Feature Extraction

This section describes the descriptors used in this work: Local Phase Quantization
(LPQ) and a granulometry-based descriptor. The rationale behind this choice is the follow-
ing. Firstly, we chose LPQ because this operator is supposed to achieve a good performance
when the images may be affected by blur, which is a noise that frequently occurs in this
type of image due to the nature of the collection process, as we can see in the bottom right
corner of Figure 1. Next, we decided to evaluate a granulometry-based descriptor [4,5],
supposing that both could have a high level of complementarity.

4.1. Local Phase Quantization (LPQ)

Blurring in images can limit the analysis of texture information, and such degradation
can happen for a number of reasons. Algorithms that enable image blur removal are
computationally intensive and may introduce new artifacts, so algorithms that can analyze
textures in a robust way are desired.

Ojansivu and Heikkila [3] proposed a texture descriptor insensitive to blur based
on the quantized phase of the discrete Fourier transform, which is called Local Phase
Quantization (LPQ). The information of the local phase of an image of size N × N is given
by the Short-Term Fourier Transform in Equation (1), being Φui defined by the Equation (2),
where r = (m − 1)/2 and ui is a 2D frequency vector

f̂ui (x) = ( f × Φui )x, (1)

Φui = e−j2πuT
i y|y ∈ Z2||y||∞ ≤ r. (2)

Only four complex coefficients are considered in LPQ, which correspond to the 2D
frequency u1 = [a, 0]T , u2 = [0, a]T , u3 = [a, a]T , u4 = [a,−a]T , where a = 1/m. The STFT
(Equation (1)) is expressed using the vector described in Equation (3) with wu being the
STFT basis vector at a frequency u and f (x), a vector of size m2 containing the values of
the image pixels in the m × m neighborhood of x.

f̂ui (x) = wT
ui

f (x) (3)
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Here, F = [ f (x1), f (x2)..., f (xn2)] is denoted as a matrix m2 × N2 containing the neigh-
borhood of all image pixels and w = [wR, wI ]

T , where wR = Re[wu1 , wu2 , wu3 , wu4 ] and
wI = Im[wu1 , wu2 , wu3 , wu4 ]. Re[] and Im[] represent, respectively, the real and imaginary
parts of a complex number, and the (8 × N2) transformation matrix is given by F̂ = wF.

Ojansivu and Heikkila [3] assume that the function f (x) of an image is the result of
the first-order Markov process, where the correlation coefficient between two pixels xi and
xj is exponentially related to their L2 distance. The vector f is defined by a covariance
matrix of size m2 × m2 according to the Equation (4), and the covariance matrix of the
Fourier coefficients can be obtained by D = wCwT . As long as D is not a diagonal matrix,
the coefficients are correlated and may become not correlated through E = VT F̂, where
V is an orthogonal matrix derivative from the singular value decomposition (SVD) of a
matrix D, which is D′ = VT DV.

Ci,j = σ||xi−xj || (4)

The coefficients are quantized using Equation (5), in which eij are components of E.
The coefficients are represented as integer values between 0 and 255 using the binary code
obtained from Equation (6).

At last, a histogram of these integer values from all images positions is used to make a
256-dimensional feature vector used for classification. The pseudocode for LPQ is described
in Algorithm 1.

qi,j =

{
1, if ei,j ≥ 0,
0, otherwise.

(5)

bj =
7

∑
i=0

qi,j2j (6)

Algorithm 1: Pseudocode for LPQ based descriptors.
Input: img: Color image under the RGB color space model,
m: defines a sized m × m neighborhood size of the Short-Term Fourier Transform
Output: H: A 256-dimensional feature vector.
imgr ← img red band
imgg ← img green band
imgb ← img blue band
f ← imgr + imgg + imgb
a ← 1/m
u1 ← [a, 0]T

u2 ← [0, a]T

u3 ← [a, a]T

u4 ← [a,−a]T {compute the four coefficients ui for the STFT}
Compute basis vectors wui

f̂ui (x) ← wT
ui

f (x) {compute the STFT}
Compute the covariance matrix C
D ← wCwT {compute the covariance matrix of the transform}
E ← decorrelated matrix D {E = eij}
Q ← coefficients quantization (see Equation (5))
Quantized coefficients bi are converted to an 8-bits values representation (see
Equation (6))
H ← {histogram of the quantized and converted coefficients}

4.2. Granulometry-Based Descriptors (GBD)

Mathematical Morphology (MM) is an algebraic theory that studies the decomposition
of operators between complete lattices in terms of elementary operators (erosion and
dilation) and operations (union, intersection and negation) [4,12]. It is a field of non-linear
digital image processing tools, and it is widely applied to process and analyze topological
and geometrical structures.
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Two basic and important morphological operators are the openings and closings [4,5].
Openings are morphological filters with the following properties:

• increasingness: f ≤ g ⇒ γ( f ) ≤ γ(g).
• idempotence: γ(γ( f )) = γ( f ).
• anti-extensivity: f ≥ γ( f ).

Closings operators are also morphological filters which are increasing, idempotent
and extensive ( f ≤ ϕ( f )).

Considering images as a surface, an opening operator filters bright smaller peaks
while maintaining the bigger ones. On the other hand, a closing operator sieves smaller
darker valleys while preserving the bigger ones. Such removal depends on the type of the
filter. For instance, structural openings remove peaks where a structuring element can not
be fit [6]. More, the higher the size of the structuring element, the higher the amount of
filtered structures.

This paper uses three types of openings:

Definition 1 (Structural opening). Let f be an image. Let B be a structuring element [12].
The structural opening [4,5] is given by

γB( f ) = δB(εB( f )), (7)

where δB( f ) and εB( f ) are, respectively, the dilation and erosion of f by a structuring element
B [12].

Definition 2 (Opening by reconstruction). Let f be an image. Let B be a structuring element.
Let Bc be a structuring element that denotes connectivity [13]. The opening by reconstruction is
given by

γrec
B,Bc

( f ) = δrecBc
(εB( f ), f ), (8)

where δrecBc
( f , g) is the morphological reconstruction of g from f [5].

Definition 3 (Area opening). Let f be an image. Let λ ≥ 0. The graylevel area opening [14] of
parameter λ is given by

γarea
λ ( f ) = max{h ≤ f (x) : area(γx(Th( f ))) ≥ λ}, (9)

where Th( f ) is the threshold of f with parameter h [14]. In this paper, for simplicity, the graylevel
area opening will be called area opening.

This paper also uses three types of closings:

Definition 4 (Structural closing). Let f be an image. Let B be a structuring element. The struc-
tural closing [4,5,12] is given by

ϕB( f ) = εB(δB( f )). (10)

Definition 5 (Closing by reconstruction). Let f be an image. Let B be a structuring element. Let
Bc be a structuring element denoting connectivity. The closing by reconstruction [13] is given by

ϕrec
B,Bc

( f ) = εrecBc
(δB( f ), f ), (11)

where εrecBc
( f , g) is the morphological dual reconstruction of g from f [13].

Definition 6 (Area closing). Let f be an image. Let λ ≥ 0. The graylevel area closing [14] of
parameter λ is given by

ϕarea
λ ( f ) = (γarea

λ ( f c))c, (12)

where f c is the negation of f [4]. Again, for simplicity, the graylevel area closing will be called
area closing.
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Figure 3 shows a detailed view of the pixels affected by application of two morpho-
logical filters, an opening by reconstruction and a closing by reconstruction. In each case,
the affected pixels are highlighted in green.

Figure 3. Pixels affected by application of a opening by reconstruction and of a closing by reconstruc-
tion, using a disk structuring element with radius one.

Definition 7 (Granulometry). A granulometry [4,5] is a family of openings Γ = {γλ : λ ≥ 0},
which has the following property:

∀μ ≥ 0, γλ(γμ) = γμ(γλ) = γmax{λ,μ}. (13)

Definition 8 (Anti-granulometry). An anti-granulometry is given by a family of closings
Φ = {ϕλ : λ ≥ 0}, such that

∀μ ≥ 0, ϕλ(ϕμ) = ϕμ(ϕλ) = ϕmax{λ,μ}. (14)

(In this paper, for simplicity, all granulometries and anti-granulometries will be called
granulometry.)

Let Ψ = {ψλ : λ ≥ 0} be a granulometry. In the granulometric analysis, the amount
of sieved structures by ψλ is computed for each increment of λ. Let Ω(Ψ) be the size
distribution of Ψ such that ∀λ ≥ 0, Ω(Ψ)(λ) is the amount of sieved structures by ψλ [5].
Note that since Ω(Ψ)(λ) increases as λ is incremented, Ω(Ψ) is an increasing function.

Definition 9 (Opening Top-Hat). Let f be an image. The opening top-hat is given by

th(γ)( f ) = f − γ( f ).

Definition 10 (Closing Top-Hat). Let f be an image. The closing top-hat is given by

th(ϕ)( f ) = ϕ( f )− f .

Note that the opening top-hat and closing top-hat are residual operators, which gives
the sieved structures (the residue) by application of their respective morphological filters.
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Let Ψ = {ψλ : λ ≥ 0} be a granulometry. Let ∑ f = ∑x f (x) be the sum of all
intensities f (x) from an image f . The size distribution of Ψ is given by, ∀λ ≥ 0,

Ω(Ψ)(λ) = ∑ th(ψλ). (15)

In this measurement, Ω(Ψ)(λ) gives the sum of the volumes of all structures sieved
by ψλ.

Let β( f ) be the binarization function, which is given by

β( f )(x) =

{
1 if f (x) > 0
0 otherwise.

Let Ψ = {ψλ : λ ≥ 0} be a granulometry. The binary size distribution Ωβ(Ψ) is given by
∀λ ≥ 0,

Ωβ(Ψ)(λ) = ∑ β(th(ψλ)). (16)

In this measurement, Ωβ(Ψ)(λ) gives the number of pixels of all structures sieved
by ψλ.

Each one of the GBD assessed in this work is built as described in Algorithm 2.

Algorithm 2: Pseudocode for Granulometry-Based Descriptors.
Input: img: Color image under the RGB color space model,
binary: Boolean value: TRUE for binary granulometry; FALSE for gray level
granulometry
Output: Ψ = {ψλ : 1 ≤ λ ≤ 50}: Feature vector with 50 elements.
imgr ← img red band
imgg ← img green band
imgb ← img blue band
f ← imgr + imgg + imgb

if binary then
for each λ ∈ [1, · · · , 50] do

Ω(Ψ)(λ) ← ∑ β(th(ψλ)( f ))

else
for each λ ∈ [1, · · · , 50] do

Ωβ(Ψ)(λ) ← ∑ th(ψλ)( f )

Table 2 summarizes the set of twelve GBD tested in this work. Figure 4 illustrates the
construction of a size distribution Ω(Γ) from a granulometry given by a family of openings
by reconstruction. For each λ, a disk structuring element Bλ of radius λ was used by the
filter γrec

Bλ ,Bc
. The residue of such a filter is summed and taken as the λ-th component of the

feature vector.
Figures 5 and 6 show two sets of binary size distributions computed for each image

from the dataset introduced in Section 3. In this example, 120 binary size distributions were
computed: the blue curves are related to control images; the red ones are related to the
Walker 256 tumor images.
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Table 2. Granulometry-based descriptors.

Descriptor Morphological Filter Size Distribution

SO Structural Opening Ω(Γ)
BinSO Structural Opening (binary) Ωβ(Γ)

RO Opening by Reconstruction Ω(Γrec)

BinRO Opening by Reconstruction
(binary) Ωβ(Γrec)

AO Area Opening Ω(Γarea)
BinAO Area Opening (binary) Ωβ(Γarea)

SC Structural Closing Ω(Φ)
BinSC Structural Closing (binary) Ωβ(Φ)

RC Closing by Reconstruction Ω(Φrec)

BinRC Closing by Reconstruction
(binary) Ωβ(Φrec)

AC Area Closing Ω(Φarea)
BinAC Area Closing (binary) Ωβ(Φarea)

Figure 4. GBD generated by an opening by reconstruction. A disk-structuring element with radius λ

was used for each λ.

Figure 5. Binary size distributions from an area opening granulometry, λ ∈ [1, · · · , 50]. One size
distribution was computed for each image from the dataset introduced in Section 3.
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Figure 6. Binary size distributions from an area closing granulometry, λ ∈ [1, · · · , 50]. One size
distribution was computed for each image from the dataset introduced in Section 3.

5. Methodology Used For Classification

In this work, we have chosen three of the most popular classifiers algorithms frequently
used in different classification scenarios. Figure 7 illustrates the general overview of the
methodology used for classification.

Figure 7. General overview of the methodology used for classification.

As we can see, in phase 1, the extraction of the handcrafted features is performed.
The texture operators used are those already described in Section 4. Next, in phase
2, the classification is carried out using one of the three classifiers described in this
section. In phase 3, the results are evaluated considering each possible combination
f eature × classi f iers in isolation. Finally, in phase 4, the fusions combining the out-
puts of the classifiers with the best individual performances are evaluated, using late
fusion strategies (i.e., max rule, sum rule and product rule) proposed by Kittler et al. [15].
Equations (17)–(19) describe the mathematical details behind the max, product and sum
combinations rules, respectively. In these equations, x is the pattern to be classified, c is the
number of classes involved in the problem, n is the number of classifiers involved in the
combination, ωk represents a class, with k ∈ 1..c, and P(ωk|li(x)) is the probability that x
belongs to the class ωk according to the classifier i.

Max Rule (x) = arg
c

max
k=1

n
max
i=1

P(ωk|li(x)) (17)
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Product Rule (x) = arg
c

max
k=1

n

∏
i=1

P(ωk|li(x)) (18)

Sum Rule (x) = arg
c

max
k=1

n

∑
i=1

P(ωk|li(x)) (19)

Three classifiers’ algorithms were applied in this work: Support Vector Machines
(SVM), K-Nearest Neighbor and Logistic Regression.

SVM: Support Vector Machine (SVM) was first proposed by Vladmir Vapnik [16].
The SVM algorithm is able to perform the classification by determining a hyperplane that
best separates the classes in the training data [17]. In this work, we used the Gaussian
kernel, and cost and gamma parameters were tuned using a grid search.

k-NN: k-NN is an instance-based algorithm widely used for classification. The K-
Nearest Neighbor algorithm for binary classifications is considered simple when compared
to other machine learning algorithms [18]. Despite its simplicity, k-NN is still one of the
top 10 classification algorithms in machine learning [19]. This simplicity lies in the fact that
it assumes all instances as points in the Rn dimensional space and uses a distance metric
(e.g., the Euclidean distance is frequently used in this case) to decide whether the element
belongs to class A or class B [18,20]. In the experiments, various numbers of neighbors
were tested, and k = 5 was chosen as it performed better than the other odd values.

Logistic Regression: Logistic Regression is a special case of Regression [21]. Logistic
Regression uses the following equation:

p(X) =
eβ0+β1 X

1 + eβ0+β1 X
=

1
1 + e−β0 + β1X

,

in which β0 and β1 are associated with every independent variable and are calculated by
the likelihood method based on the dataset. Reglog is a statistical technique that establishes
a relationship between the variable of interest and the probability of the outcome occurring;
this probability has the value of success (1) and failure (0) [21]. The values β0 and β1 assume
the value that maximizes the probability of the observed sample [22].

The choice for shallow learning methods in this work is basically justified by the
following aspects: (i) the number of samples available in the dataset is quite limited, which
makes it not appropriate to be addressed using deep learning methods; (ii) the accuracy
rates achieved using handcrafted features and shallow learning proved to be suitable to
address the problem both in terms of accuracy and computational time.

6. Experimental Results and Discussion

In this section, we describe the results obtained using the LPQ descriptor, the GBD
and the late fusion between them. As there were six animals per class (i.e., control and TW),
we decided to organize the data making cross-validation such a way one subject per class
was taken to compose the test set for each round of training.

Let us call the six control subjects C1, C2, C3, C4, C5 and C6 and the six subjects
affected by Walker tumor TW1, TW2, TW3, TW4, TW5 and TW6. One control subject and
one TW subject were separated to be tested on a model trained using all the remaining
subjects. For example, in the first round, {C1 ∪ TW1} was tested on a model trained
using {C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ TW2 ∪ TW3 ∪ TW4 ∪ TW5 ∪ TW6}. On the second round,
{C2 ∪ TW2} was used for the test, and so on, characterizing a six-fold cross-validation. This
strategy was used to avoid the presence of samples taken from the same subject both on
test and training sets simultaneously, which could introduce a bias on the classifier.

6.1. Results Obtained Using LPQ

Table 3 presents the accuracies found using SVM, k-NN and Logistic Regression
classifiers, fed by the LPQ feature vector. Window sizes 3, 5, 7 and 9 were experimented.
The best results were achieved using the SVM classifier with features vectors built using
window sizes 5, 7 and 9.
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Table 3. Classification accuracy using LPQ descriptor.

SVM (%) 5-NN (%) REG (%)

LPQ3 76.67 65.83 66.67
LPQ5 91.67 84.166 83.33
LPQ7 91.67 80.83 74.16
LPQ9 91.67 78.33 69.16

As we can see, an accuracy of 91.67% was achieved with LPQ5, LPQ7 and LPQ9;
with these results, we can now confirm our first research question (RQ1), that it is pos-
sible to perform cancer identification exploring a spectral-based texture descriptor on
microphotographs of rat liver.

6.2. Results Obtained Using GBD

Tables 4 and 5 present the accuracies obtained using SVM, k-NN and Logistic Re-
gression classifiers, trained with the feature vectors created using the GBD described in
Section 6.2. The tables are divided according to the descriptor obtained by the closing and
opening morphological operations. Table 4 represents, respectively, Area Closing (AC),
Area Closing Binary (BinAC), Structural Closing (SC), Structural Closing Binary (BinSC),
Reconstruction Closing (RC) and Reconstruction Closing Binary (BinRC). Table 5 represents,
respectively, Area Opening (AO), Area Opening Binary (BinAO), Structural Opening (SO),
Structural Opening Binary (BinSO), Reconstruction Opening (RO) and Reconstruction
Opening Binary (BinRO).

Table 4. Classification accuracy using closing vectors.

SVM (%) 5-NN (%) REG (%)

AC 95.00 85.00 92.50
BinAC 96.67 95.83 88.33

SC 67.50 54.16 85.83
BinSC 71.66 75.83 92.50

RC 79.99 65.83 76.66
BinRC 82.50 70.83 75.83

Table 5. Classification accuracy using opening vectors.

SVM (%) 5-NN (%) REG (%)

AO 61.66 53.33 71.66
BinAO 89.16 88.33 86.66

SO 59.16 52.50 70.00
BinSO 70.00 70.83 87.50

RO 57.75 52.50 50.83
BinRO 73.33 69.16 67.50

The accuracies achieved with the vectors extracted using the Closing operation, as
shown in Table 4, in almost all classifiers are superior to the accuracies achieved with the
Opening vectors, as shown in Table 5. It is noticeable that the Area Closing Binary (BinAC)
achieved the best results when compared to other morphological filters, reaching the 96.67%
mark using SVM and 95.83% using k-NN (k = 5) classifier.

The Reconstruction Opening (RO) vector, as shown in Table 5, obtained the lowest
accuracies in all experiments, 50.83%, with the Logistic Regression classifier.

The results obtained using vectors obtained by the granulometry operations were very
divergent; AC, BinAC and BinSC performed even better than LPQ, and others such as SO
and RO obtained very poor results. Concerning our RQ2, we can conclude it is possible to
perform cancer identification exploring some granulometry filters described in Section 4,
but not all of them.
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6.3. Results Obtained Using Late Fusion strategies

Finally, aiming to achieve better results, the sum, max and product combination rules
were employed as a late fusion strategy. In all cases, the sum rule obtained the best results.
Due to this, we decided to describe in Table 6 only the results obtained with this rule.
The results described were obtained combining the three classifiers chosen among those
with the best performance in the experiments described previously.

Table 6. Accuracies obtained with late fusion combinations.

Classifier Individual Results (%) Combination Results (%)

LPQ7–SVM 91.67
BinAC–5-NN 95.83 99.16

BinSC–Reg 92.50

LPQ7–SVM 91.67
AC–SVM 95.00 99.16

BinAC–5-NN 95.83

LPQ7–SVM 91.67
AC–SVM 95.00 98.33

BinSC–SVM 82.50

The best overall results obtained in this work, i.e., 99.16% of accuracy, were obtained
in two different scenarios. The first one occurred in the combination between LPQ7–SVM,
BinAC–5-NN and BinSC–Reg. It is worth mentioning that in isolation, these classifiers
had reached, respectively, 91.67%, 95.83% and 92.50%, as can be seen in the first section of
Table 6.

The second scenario in which the best rate was obtained happened when the classifiers
LPQ7–SVM, AC–SVM and BinAC–5-NN were combined. In isolation, these classifiers had
reached, respectively, 91.67%, 95.00% and 95.83%, as can be seen in the second section of
Table 6.

An accuracy of 98.33% was reached by combining LPQ7–SVM, AC–SVM and BinSC–
SVM. In isolation, these classifiers had reached, respectively, 91.67%, 95.00% and 82.50%,
as can be seen in the third section of Table 6.

6.4. Discussions

Aiming to check whether or not there is a statistical difference between the best results
obtained using LPQ, Opening Vectors, Closing Vectors, and the best late fusion result, we
performed the Friedman statistical test.

The Friedman test was made using the accuracies obtained by the Late Fusion (LPQ7–
SVM, BinAC–5-NN and BinSC–Reg), BinAC–SVM, BinAO–SVM and LPQ7–SVM classifiers.
The accuracies were computed over each folder, as described in the beginning of Section 6.
The test presented a p-value of 0.0299; considering α = 0.05, we can conclude that the
performance of the classifiers are not all equivalent to each other.

Furthermore, the selected classifiers were ranked according to their accuracies, as can
be seen in Table 7. As a result, the superior performance of the Late Fusion technique
is attested.

In respect to RQ3, we can conclude that classifiers built with LPQ and GBD presented
a good level of complementarity to each other. As a consequence of this complementarity,
the late fusion obtained the best overall results reported in this work.

95



Algorithms 2022, 15, 268

Table 7. Classifiers ranking.

Fold Late Fusion BinAC–SVM BinAO–SVM LPQ7–SVM

f1 1 2.5 4 2.5
f2 1.5 1.5 3 4
f3 1.5 1.5 3.5 3.5
f4 1.5 1.5 3 4
f5 1.5 1.5 4 3
f6 1.5 4 1.5 3

Average 1.416 2.083 3.166 3.333

7. Concluding Remarks

We proposed a method for cancer identification exploring texture properties taken
from microphotographs of rat liver. For this, we used the LPQ spectral texture operator,
a widely used descriptor, especially when the images may be affected by blur, a noise that
typically occurs in images such as those used in this work. We also experimented with
GBD, and lastly, we investigated the complementarity between classifiers created in both
scenarios by using late fusion strategies.

Experiments performed on a dataset created by researchers from Enteric Neural Plas-
ticity Laboratory of the State University of Maringá confirm the efficiency of the proposed
strategies in isolation. In addition, we noticed an important level of complementarity be-
tween the classifiers created using both descriptors experimented. The best result obtained
using LPQ was 91.16% of accuracy. In this way, it is possible to state that cancer can be
identified in the Walker 256 tumor model using the LPQ texture operator with reasonably
good rates, answering RQ1. For GBD, the best result obtained was 96.67% of accuracy,
which responds positively to RQ2. Finally, the best overall result was obtained combining
classifiers created using both LPQ and GBD descriptors, achieving 99.16% of accuracy.
Thus, we can state that RQ3 was also positively answered.

Finally, we make a brief comment regarding the main limitation of this work. As hap-
pens in several works that deal with biomedical images, the main difficulty faced here
refers to the limited size of the dataset, which makes it more difficult to create a more
robust model and to make comparisons. Aiming to mitigate this issue, we performed the
Friedman statistical test, and we confirmed that there is a meaningful difference between
the results obtained by combining both strategies investigated here and the results obtained
by each strategy in isolation.

As future work, we intend to expand our investigations using an additional dataset
currently under development. This dataset is also being created by researchers from Enteric
Neural Plasticity Laboratory of the State University of Maringá. In this new version of the
dataset, two new classes will be included: treated control and treated Walker 256 tumor.
Other tests using granulometry, such as pattern spectrum and others, are also planned to
be made.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Area Closing
AO Area Opening
BinAC Area Closing (binary)
BinAO Area Opening (binary)
BinRC Closing by Reconstruction (binary)
BinSC Structural Closing (binary)
BinSO Structural Opening (binary)
BinRO Opening by Reconstruction (binary)
C Control group
GBD Granulometry-Based Descriptors
k-NN k-Nearest Neighbor
LPQ Local Phase Quantization
MM Mathematical Morphology
RGB Red, Green and Blue color space
RC Closing by Reconstruction
RQ Research Question
RO Opening by Reconstruction
SC Structural Closing
SE Structuring Element
SO Structural Opening
STFT Shor-Time Fourier Transform
SVM Support Vector Machine
TW Walker 256 Tumor
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Abstract: A bilateral filter is a non-linear denoising algorithm that can reduce noise while preserving
the edges. This study explores the characteristics of a bilateral filter in changing the noise and texture
within computed tomography (CT) images in an iterative implementation. We collected images of a
homogeneous Neusoft phantom scanned with tube currents of 77, 154, and 231 mAs. The images
for each tube current were filtered five times with a configuration of sigma space (σd) = 2 pixels,
sigma intensity (σr) = noise level, and a kernel of 5 × 5 pixels. To observe the noise texture in each
filter iteration, the noise power spectrum (NPS) was obtained for the five slices of each dataset and
averaged to generate a stable curve. The modulation-transfer function (MTF) was also measured from
the original and the filtered images. Tests on an anthropomorphic phantom image were carried out
to observe their impact on clinical scenarios. Noise measurements and visual observations of edge
sharpness were performed on this image. Our results showed that the bilateral filter was effective in
suppressing noise at high frequencies, which is confirmed by the sloping NPS curve for different tube
currents. The peak frequency was shifted from about 0.2 to about 0.1 mm−1 for all tube currents, and
the noise magnitude was reduced by more than 50% compared to the original images. The spatial
resolution does not change with the number of iterations of the filter, which is confirmed by the
constant values of MTF50 and MTF10. The test results on the anthropomorphic phantom image show
a similar pattern, with noise reduced by up to 60% and object edges remaining sharp.

Keywords: bilateral filter; computed tomography; noise power spectrum

1. Introduction

Despite its popular applications in medical imaging, computed tomography (CT)
provides a relatively high-radiation dose for patients that can increase the probability of
malignancy [1,2] in leukemia and brain cancer [1,3]. Various efforts were made to overcome
this problem by following the “as low as reasonably achievable” (ALARA) principle [4].
The two areas of study that are most frequently explored include reducing patient doses as
effectively as possible [5–7] and improving image quality for diagnostic purposes [8,9].

Image quality can be determined by selecting appropriate input parameters before
scanning, such as tube current, tube voltage, rotation time, pitch, reconstruction type,
reconstruction filter, and so on [10–12], and it can be enhanced at the post-processing
stage. Radiographers or medical physicists select the pre-scanning input parameters and
can perform noise reduction to get an improved image during post-scanning (i.e., after
scanning the patient or phantom). Filtering the image using a noise reduction algorithm
can not only suppress image noise but also allows patients to be exposed to a lower dose.
However, although these filters can suppress noise, they tend to produce blurriness in
the images [13]. Many linear denoising algorithms have been developed, such as the
Wiener [14] and Gaussian filters [15].
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Non-linear filters, such as the bilateral filter, non-local mean filter, total variation
filter, and wavelet filter [16], can be used to overcome the shortcomings of linear filters.
The bilateral filter uses two weights in the process, namely distance weighting (σd) and
intensity weighting (σr) [17]. Its behavior in filtering images based on these weights results
in less-noisy images while preserving edges [18], making it one of the most widely used
noise-reducing filters [19].

There have been many studies of the various aspects of the bilateral filter, including
theoretical studies [20], determination of optimal parameters [21,22], modification [23,24],
and acceleration of the process [25,26]. However, to our knowledge, there are no studies
characterizing the bilateral filter in the context of iterative filtering. Since bilateral filters
can be iterated [27,28], it is necessary to explore the impact of iteration on noise texture,
because noise texture is an important parameter of image quality [29–31]. This study does
not introduce a new perspective on the bilateral filter, but rather it investigated the effects
of iteration on bilateral filtering of CT images and analyzed its impact on the noise texture.
The study aims to provide a better understanding of the nature of bilateral filters and
preferences for implementing them in CT images.

2. Materials and Methods

2.1. Phantom Images

We scanned a Neusoft CT phantom (Neusoft Medical System, Shenyang, China) with
the parameters shown in Table 1. Variations in tube current were used to obtain images
with various noise levels. Other parameters were set to standard values often used for
quality control procedures. For filtering, 5 slices of the homogeneous water phantom body
of each dataset were selected. Figure 1 shows sample images using various tube currents.

Table 1. Scan parameters.

Parameter Value

Scanner Neusoft NeuViz 16 Classic
Tube current (mAs) 77, 154, 231
Tube voltage (kVp) 120

Slice thickness (mm) 5
Scan option Helical

Pitch 1.2
Convolution kernel F20

Image reconstruction Filtered-back projection

 

Figure 1. Sample images of a homogeneous water phantom scanned with tube currents of (a) 77,
(b) 154, and (c) 231 mAs.

2.2. Bilateral Filter

The bilateral filter [16] uses non-linear image denoising. It was developed from the
principle of spatial Gaussian convolution which is linear and only considers one weighting
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factor to apply smoothing to the image. Equation (1) shows the principle of Gaussian
convolution.

g[i, j] =
1

Ws
∑
m

∑
n

f [m, n]Gσd [i − m, j − n] (1)

where g is the result of convolution, Ws is the normalization factor, f is the initial pixel
value, and G is Gaussian spatial convolution. Gaussian convolution weights each pixel
within the kernel according to the weighting of the Gaussian distribution evenly, so that it
is still in the linear smoothing category. The bilateral filter takes this principle and adds an
intensity-weighted factor. Equation (2) shows the principle of the bilateral filter.

g[i, j] =
1

Wsb
∑
m

∑
n

f [m, n]Gσd [i − m, j − n]Gσr ( f [m, n]− f [i, j]) (2)

where Gσd is a Gaussian spatial convolution and Gσr is a Gaussian intensity. In the bilateral
filter, the Gaussian spatial convolution is biased with its intensity weighting taken from
the neighboring pixels inside the kernel. This consideration gives a non-linear nature that
produces an image with reduced noise, while still preserving the edges [27,32].

2.3. Implementation of Bilateral Filter, Measurement of Noise Power Spectrum and
Spatial Resolution

The noise power spectrum (NPS) describes the texture of noise in the frequency
domain [29]. The 2D NPS is estimated as shown in Equation (3) [33].

NPS(u,v) =
dxdy

Nx Ny
.|F [I(x, y)− P(x, y)]|2 (3)

where u and v are spatial frequency in the x and y direction, dx and dy are pixel size in mm,
Nx and Ny are number of pixels in the x and y direction of the region of interest (ROI), F
denotes the 2D Fourier transform, I(x, y) is the pixel value in Hounsfield Units (HU), and
P(x, y) is the second order polynomial fit of I(x, y).

The description of NPS is Summarized as the peak frequency ( fP) and the average
frequency ( fA) shown in Equations (4) and (5) [34].

fP = argmax[NPS( f )] (4)

fA =

∫
f ·NPS( f ) d f∫
NPS( f ) d f

(5)

where f is the radial spatial frequency, and NPS( f ) is the radially averaged 1D NPS.
Before filtering an image, we measured NPS using ImQuest (Duke University, Durham,

NC, USA) [35] with a total ROI of 5, a size of 64 pixels, and a sampling angle of 10. This
was carried out to obtain a description of the noise in the original image before filtering.
The ROIs for measuring NPS is shown in Figure 2.

The edge of the modulation transfer function (MTF) [36] was also measured auto-
matically by IndoQCT [37] to get a more complete picture of the spatial resolution of the
filtered image. The edge MTF was chosen as the spatial resolution parameter because the
phantom used was a homogeneous phantom [36]. The steps to obtain the edge MTF are
shown in Figure 3. A square ROI is placed on the edge of the phantom at the 12 o’clock
position (Figure 3a) and then the pixels were averaged in the x-axis direction to obtain a
curve called the edge spread function (ESF) (Figure 3b). Tail replacement is performed
on this curve to obtain the corrected ESF shape (Figure 3c). The corrected ESF curve is
then differentiated to produce a line spread function (LSF) curve (Figure 3d) which is then
zeroed and normalized. The Fourier transform of the LSF curve gives the MTF curve
(Figure 3e). Bilateral filtering, NPS and MTF measurements were performed sequentially
on 5 selected images of a homogeneous phantom.
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Figure 2. NPS measurement using 5 regions of interest (ROIs).

Figure 3. Edge MTF measurement. (a) ROI placement on the phantom, (b) ESF curve, (c) ESF curve
after tail replacement, (d) LSF curve, and (e) MTF curve.

The bilateral filter was applied to these images with the configuration of sigma space
(σd) = 2, sigma intensity (σr) = noise level, and kernel size 5 × 5 pixels. The noise (σ) was
obtained using an automatic noise measurement algorithm [38] on the first image. After
the images were filtered, the NPS and MTF measurement were performed using the same
configuration as before. Filtering was performed repeatedly on the previously filtered
image 5 times so that 6 NPS and 6 MTF curves were obtained including the original one.
Both NPS and MTF measurement as well as the filtering processes were carried out on
5 slices of a homogeneous water phantom for each variation of tube current to obtain more
stable and comprehensive results. Figure 4 shows an example of the filtered images.
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Figure 4. A homogeneous water phantom image on a tube current of 77 mAs filtered repeatedly.
(a) Original image, filtered image iteratively in (b) 1, (c) 2, (d) 3, (e) 4, and (f) 5 times.

2.4. Implementation of Anthropomorphic Phantom Images

To observe the impact of bilateral filters in clinical scenarios, we obtained anthropo-
morphic images with scan parameters as shown in Table 2. As before, the bilateral filter
was run for 5 iterations on the head anthropomorphic phantom image. The noise was
measured using a circular ROI with a radius of 10 mm in the frontal lobe area (Figure 5a).
In terms of spatial resolution, we used visual observations on the visible areas of soft tissue,
bone, and air (Figure 5b). Comparisons using structural similarity (SSIM) were also carried
out to get a more comprehensive description. SSIM was obtained by comparing the filtered
image with the original image.

Table 2. Scan parameters on anthropomorphic phantoms.

Parameter Value

Scanner Toshiba Alexion
Tube current (mAs) 100
Tube voltage (kVp) 120

Slice thickness (mm) 7
Scan option Helical

Pitch 1.5
Convolution kernel FC13

Image reconstruction Filtered-back projection
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Figure 5. Anthropomorphic phantom image of the head. (a) ROI for measuring noise, (b) ROI for
observing spatial resolution.

3. Results

3.1. Tube Current of 77 mAs

Figure 6 shows the 1D NPS at each filter iteration. The NPS at a frequency of about
0.2 mm−1 decreased significantly with the number of filter iterations. The peak frequency
is shifted to a lower value, and the NPS at very high frequencies (>0.4 mm−1) was almost
completely suppressed by the 5th iteration. This shows the effectiveness of the bilateral
filter in filtering noise at high frequencies.

Figure 6. NPS on repeatedly filtered images at a tube current of 77 mAs.

Figure 7 shows the noise of the original image and the filtered image in five iterations
with a tube current of 77 mAs. The noise magnitude decreased while the percentage of
reduced noise increased with the number of filter iterations. The peak frequency and mean
frequency shifted down gradually from 0.19 mm−1 to 0.11 mm−1 and from 0.24 mm−1 to
0.17 mm−1, respectively. These results indicate a decrease in NPS at a certain frequency as
a result of repeated filtering at low tube currents.
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Figure 7. Noise measurement on homogeneous phantom with tube current of 77 mAs. (a) Noise,
(b) Percentage of reduced noise, (c) Peak frequency, and (d) Mean frequency.

Figure 8 shows the spatial resolution of each filter iteration at a tube current of 77 mAs.
Table 3 shows the MTF50 and MTF10 values. MTF curves that coincide after each filter
iteration indicate that no degradation of the spatial resolution of the image due to iteration.
This was also confirmed by the MTF50 and MTF10 values which did not change significantly.
This shows the ability of bilateral filters to maintain the spatial resolution of the image.

Figure 8. The MTF curve obtained from the edge of the image in 5 filter iterations at a tube current of
77 mAs.
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Table 3. MTF50 and MTF10 value for every filter iteration at tube current of 77 mAs.

Filter Iteration MTF50 (mm−1) MTF10 (mm−1)

Original 0.25 0.42
1 0.25 0.42
2 0.26 0.42
3 0.26 0.42
4 0.26 0.42
5 0.26 0.42

3.2. Tube Current of 154 mAs

Figure 9 shows the impact of iterative filtration on an image using a tube current
of 154 mAs. With increasing filter iterations, the noise at frequencies around >0.2 mm−1

decreases considerably, flattening the tail of the NPS curve

Figure 9. NPS on repeated filtered images at a tube current of 154 mAs.

Figure 10 shows the noise of the original image and the filtered image with up to five
iterations at tube current 154 mAs. The noise was reduced by more than half of its original
values. The peak frequency gradually shifted from 0.2 to 0.09 mm−1 after five iterations,
and the mean frequency decreased from 0.25 to 0.18 mm−1.

Figure 11 shows the spatial resolution of each filter iteration at a tube current of
154 mAs. Table 4 shows the MTF50 and MTF10 values. Similar to Figure 8, the MTF curves
coincide with each other, indicating no change in spatial resolution for each filter iteration.
The MTF values shown in Table 4 also do not show any change.
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Figure 10. Noise measurement on homogeneous phantom with tube current of 154 mAs. (a) Noise,
(b) Percentage of reduced noise, (c) Peak frequency, and (d) Mean frequency.

Figure 11. The MTF curve obtained from the edge of the image in 5 filter iterations at a tube current
of 154 mAs.

Table 4. MTF50 and MTF10 value for every filter iteration at tube current of 154 mAs.

Filter Iteration MTF50 (mm−1) MTF10 (mm−1)

Original 0.25 0.42
1 0.25 0.42
2 0.25 0.42
3 0.25 0.42
4 0.25 0.42
5 0.25 0.42
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3.3. Tube Current of 231 mAs

Figure 12 shows the impact of iterative filtration on an image using a tube current
of 231 mAs. In the original image, the noise peaks at a frequency of about 0.2 mm−1. By
filtering it for many iterations, the noise at high frequencies gradually decreased, leaving
more at a low frequency.

Figure 12. NPS on repeated filtered images at tube current of 231 mAs.

Figure 13 shows the NPS characteristics of the original image and the filtered image at
up to five iterations for at tube current of 231 mAs. For five iterations of filtration, the noise
magnitude decreased by more than 60%. The peak frequency dramatically shifted from
0.22 to 0.06 mm−1 and the average frequency gradually decreased from 0.26 to 0.17 mm−1.

Figure 13. Noise measurement on homogeneous phantom with tube current of 231 mAs. (a) Noise,
(b) Percentage of reduced noise, (c) Peak frequency, and (d) Mean frequency.
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Figure 14 shows the spatial resolution of each filter iteration at a tube current of
154 mAs. Table 5 shows the MTF50 and MTF10 values for a tube current of 231 mAs. In
Figure 14, the MTF curves coincide, indicating that iterative bilateral filtering leads to no
change in spatial resolution. The MTF values shown in Table 5 also do not show any change
for a tube current of 231 mAs, identical to a tube current of 154 mAs (Table 4).

Figure 14. The MTF curve obtained from the edge of the image in 5 filter iterations at a tube current
of 231 mAs.

Table 5. MTF50 and MTF10 value for every filter iteration at tube current of 231 mAs.

Filter Iteration MTF50 (mm−1) MTF10 (mm−1)

Original 0.25 0.42
1 0.25 0.42
2 0.25 0.42
3 0.25 0.42
4 0.25 0.42
5 0.25 0.42

3.4. Impact of Bilateral Filter on Anthropomorphic Images

Figure 15 shows noise measurements in the five iterations of the bilateral filter in
the frontal lobe. It can be seen that, in the frontal lobe area, the bilateral filter can reduce
noise by more than 60%, showing its effectiveness in reducing noise gradually as the filter
iterations. The effects on spatial resolution can be seen in Figure 16. The bilateral filters
did not significantly alter the structure at the edge between bone and soft tissue. There
were no blurred edges or distortions at the edges between networks. Likewise, at the
edge of the phantom with air, no significant changes were observed. This shows that the
bilateral filter can maintain the edges of the object well, even though it is iterated many
times. However, the soft tissue region looks more unnatural in the fifth iteration. These
results are characterized using the SSIM presented in Table 6. SSIM decreases with filter
iteration, but is never less than 0.5. This decrease is due to effective noise reduction and
results in differences in the overall texture of the image.
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Figure 15. Measurement of noise in the head anthropomorphic phantom image. (a) Noise level,
(b) percentage of reduced noise.

 

Figure 16. Anthropomorphic phantom images were filtered using a bilateral filter. (a) Original image,
filtered image in (b) 1, (c) 2, (d) 3, (e) 4, and (f) 5 times iterations.

Table 6. Similarity index (SSIM) for each filter iteration.

Filter Iteration SSIM

1 0.85
2 0.69
3 0.60
4 0.54
5 0.50

4. Discussion

This study aims to describe the characteristics of bilateral filters in filtering noise
at various frequencies and their patterns in iterative filtering. We used the 1D NPS to
characterize image noise. Previous studies that have been carried out have only explored
the implementation of bilateral filters without iteration [21,32,39].

Bilateral filters increasingly suppress noise with each iteration. Figure 7, Figure 10,
and Figure 13 show that with five iterations, the bilateral filter can suppress noise by more
than 50%. This was observed in a homogeneous image with a homogeneous distribution of
noise. Observations on areas with objects of various attenuations still need to be evaluated
in the future. Anam et al. (2020) investigated several filter algorithms, including bilateral
filters, using an in-house point phantom. Their results showed that bilateral filters can
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reduce noise by up to 18% for a single filter iteration, compared to the adaptive mean
filter (AMF) which reduced noise by up to 29%, and the selective mean filter (SMF) which
reduced it by up to 27%. The bilateral filter is not as aggressive as these other filters in
reducing noise, but it maintains better spatial resolution [9].

Apart from the reduced noise magnitude, the texture also changes. The data showed
interesting properties of bilateral filters in changing the noise texture. In the original images
with tube currents of 77, 154, and 231 mAs, the NPS showed the peak frequency was about
0.2 mm−1. When the images were filtered five times, the peak frequency shifted to lower
values (Figures 6, 9 and 12). This phenomenon shows that the bilateral filter suppresses
noise at high frequencies more aggressively than noise at low frequencies. By the fifth
iteration, the NPS curve showed a flattening of its shape at frequencies above 0.2 mm−1.

The loss of high-frequency noise caused the bilateral filters to suppress soft (i.e.,
smooth) textures. In an image with visible gradation, this behavior will give the appearance
of a staircase effect, and make the image less realistic. There are several extensions and
variants of the bilateral filter that have been developed to deal with this effect [13,40].
Notwithstanding, the bilateral filter shows very good results in reducing noise in general,
especially in maintaining object edges when compared to other linear filters such as the
mean filters and Gaussian filters. This was confirmed by the MTF50 and MTF10 obtained
from the phantom edge which did not change significantly with filter iteration for all tube
currents (Tables 3–5). This is an advantage of bilateral filters in clinical practice, where most
filter algorithms tend to limit the spatial resolution to be able to suppress the noise. This
was verified by testing the anthropomorphic phantom images. Behavior similar to that
with the homogeneous phantom was observed, with noise decreasing with filter iteration
(Figure 15). In the fifth iteration, noise is reduced by more than 60% (i.e., from 4.39 to
1.51 HU) in the frontal lobe area. In addition, the bilateral filter did not show aggressive
behavior towards the edges of objects. In Figure 16, the edge between bone and soft tissue
still looks sharp until the fifth iteration. There are no blurred edges or reverse effects.
However, an unnatural appearance can be observed in the homogeneous areas of soft
tissue. This causes the SSIM to decrease with increasing filter iterations. However, even
with five iterations, the similarity does not fall below 0.5.

Knowledge of the noise texture becomes important in determining the most suitable
strategy in the denoising procedure because each filter has different characteristics and
must be adapted to the type of noise and the clinical purpose [41]. In the case of the bilateral
filter, the configuration is more efficient if it is set according to the noise level. Small values
of sigma intensity (σr) will make the edges of an object look sharper, while a higher value
will make it behave more like a Gaussian filter which reduces more noise but blurs the
edges [32]. A study by Peng (2010) [21] recommended σr = 2.5 σ for the best results on
artificial images with Gaussian noise based on the peak signal-to-ratio (PSNR) value. In
the case of medical images, further investigations need to be carried out to determine the
optimal parameters for diagnostic purposes.

This study observes the iterative effect of bilateral filters on homogeneous and anthro-
pomorphic phantom images and was not implemented on patient images. This study is the
first step in investigating the effect of the bilateral filter on noise texture. Our findings are
relevant only within the scope of the QA procedure. Investigations of patient images will
be performed in future studies by an expert radiologist.

The paper only investigates the iterative bilateral filter in improving CT images;
however, this approach can be implemented on other images such as images from mam-
mography, magnetic resonance imaging (MRI), ultrasound (US), and other sources.

In addition to bilateral filters, state-of-the-art filters such as the non-local mean filter
(NLM) [42] are also interesting to explore in terms of changing the image structure with
increasing iterations. Since iterative reconstruction (IR) [43] and deep learning reconstruc-
tion (DLR) [44] produce non-linear properties in terms of noise and spatial resolution, it
would be interesting to examine the impact of the NLM filter on IR and DLR images and to
compare it with the bilateral filter.
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5. Conclusions

The impact of bilateral filters in changing the noise texture and spatial resolution
in CT images has been characterized. After five iterations, the bilateral filter shows its
effectiveness in filtering noise at high frequencies as indicated by the flattening of the NPS
curve on images produced with tube currents of 77, 154, and 231 mAs. The peak frequency
shifts from about 0.2 to about 0.1 mm−1 for these tube currents and the noise magnitude
was reduced by more than 50%. The spatial resolution does not change with increasing
iterations of the filter, which is confirmed by the constant values of MTF50 and MTF10.
The test results on an anthropomorphic phantom image show a similar pattern, with noise
reduced by up to 60% and object edges remaining sharp. The impact of bilateral filters on
clinical images and CT raw data still needs to be investigated in further studies.
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Abstract: It is well known that biomedical imaging analysis plays a crucial role in the healthcare
sector and produces a huge quantity of data. These data can be exploited to study diseases and their
evolution in a deeper way or to predict their onsets. In particular, image classification represents one
of the main problems in the biomedical imaging context. Due to the data complexity, biomedical
image classification can be carried out by trainable mathematical models, such as artificial neural
networks. When employing a neural network, one of the main challenges is to determine the optimal
duration of the training phase to achieve the best performance. This paper introduces a new adaptive
early stopping technique to set the optimal training time based on dynamic selection strategies to fix
the learning rate and the mini-batch size of the stochastic gradient method exploited as the optimizer.
The numerical experiments, carried out on different artificial neural networks for image classification,
show that the developed adaptive early stopping procedure leads to the same literature performance
while finalizing the training in fewer epochs. The numerical examples have been performed on the
CIFAR100 dataset and on two distinct MedMNIST2D datasets which are the large-scale lightweight
benchmark for biomedical image classification.

Keywords: image classification; biomedical imaging; early stopping; artificial neural network;
GreenAI; health care; machine learning in healthcare

1. Introduction

In recent years, the healthcare field has experienced a massive growth in the acquisition
of digital biomedical images due to a pervasive increase in ordinary and preventive medical
exams. In view of this amount of medical data, new methods based on machine learning
(ML) and deep learning (DL) have therefore become necessary. The application of ML
and DL techniques to the biomedical imaging field can promote the development of new
diagnostics and treatments, making it a challenging area of investigation. In particular,
image classification represents one of the main problems in the biomedical imaging context.
Its aim is to arrange medical images into different classes to help physicians in disease
diagnosis. ML and DL methods are employed to predict the class membership of the
unknown data instance, based on the class membership of the training set data, which
is known. If the learning procedure performs a good classification, a proper automatic
diagnosis of a disease can be achieved, starting only from the medical image.

From a mathematical point of view, given a training set of n instances, a learning
approach to the image classification involves the solution of a minimization problem of
the form

min
x∈Rd

F(x) ≡ 1
n

n

∑
i=1

fi(x) (1)
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where F is the so-called loss function and it computes the difference between the actual
ground-truth and predicted values, n is the cardinality of the training set and d is the
number of features. Each fi : Rd → R denotes the loss function related to the i-th instance
of the training set. Because n can be a very large number, it is prohibitively expensive to
compute all the terms of the objective function F(x) or its gradient. Moreover, the whole
dataset may be too large to be completely stored in memory. Finally, in the online learning
setting, where the dataset is not available from the beginning in its completeness but is
acquired during the learning process, it is impossible to work with F(x). In all these cases,
the minimization problem is faced by exploiting stochastic approximations of the gradient
that lead to the use of stochastic gradient (SG) methods [1]. Given at each iteration k a
sample Sk of size nk << n randomly and uniformly chosen from N = {1, . . . , n}, the SG
algorithm to solve problem (1) can be written as

xk+1 = xk − ηkg(xk) (2)

where ηk is a positive parameter called the learning rate (LR) and the stochastic direction
g(xk) is computed as

g(xk) :=
1
nk

∑
i∈Sk

∇ fi(xk).

The sample Sk is the mini-batch at the k-th iteration and its cardinality nk is the mini-
batch size (MBS). In order to accelerate the convergence rate of the SG method, a momentum
term [2] can be added to the iteration (2). In more detail, chosen β ∈ [0, 1) and setting
m0 = 0, the momentum version of the SG scheme has the following form:{

mk+1 = βmk + g(xk)

xk+1 = xk − ηkmk+1
(3)

where ηk is the positive LR.
In general, to design efficient and accurate ML or DL methodologies, it is needed

to properly set the hyperparameters connected to the algorithm chosen for the training
phase, particularly the LR and the MBS. We define the hyperparameters of a learning
method as those parameters which are not trained during the learning process but are set a
priori as the input data. In the literature, there are different philosophies to approach the
problem of setting the hyperparameters. One of these is related to the Neural Architecture
Search (NAS) area [3], which explores the best configurations related to the optimization
hyperparameters before the beginning of the training. However, there also exist techniques
that directly address the search during the training phase, including static rules, i.e., rules
that do not depend on the training phase, and dynamic rules, which only operate under
certain conditions connected to the training phase itself. Regarding the LR and the MBS,
the class of dynamic rules is preferable. Indeed, a variable LR strategy allows starting the
iterative process with higher LR values than those employed close to the local minimum.
As for the MBS, a standard approach is to dynamically increase it along the iterations,
without however reaching the whole dataset in order to comply with the architectural
constraints and control the possible data redundancy. There also exist techniques for
decreasing the LR while the MBS is increasing.

Together with suitable choices of both the LR and the MBS, the training phase can be
optimized by means of an early stopping technique. Given a validation set (VS), namely a
subset of examples held back from training the model, standard early stopping procedures
are based on the so-called patience parameter criterion. In more detail, if, after a number of
epochs equal to the value of the patience, the loss function computed on the VS has not been
reduced, the training is stopped even if the maximum number of epochs is not reached.

The aim of this paper is twofold. First, we combine the previously described strategies
to reduce the training time. Indeed, we suggest a dynamic combined technique to select
the LR and the MBS by modifying classical early stopping procedures. In particular, if a
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decrease in the loss function on the validation set is not achieved after the patience time,
the patience value itself can be reduced, the learning rate is decreased and/or the mini-batch
size is increased and the training is allowed to continue until the values of the learning rate
and the mini-batch are acceptable from a practical point of view. Secondly, we test the SG
algorithm with momentum, equipped with a such developed rule for the selection of the LR
and MBS hyperparameters, in training an artificial neural network (ANN) for biomedical
image classification problems. We remark that the dynamical early stopping procedure we
describe in this paper can be adopted for general image classification problems. Moreover,
it is worth highlighting that the suggested approach does not belong to the class of NAS
hyperparameters procedures. Indeed, unlike the proposed scheme, NAS techniques aim to
set good hyperparameters values at the beginning of the training phase and to keep them
fixed until convergence. On the other hand, the hyperparameters selection rule developed
in this work is adaptive because the hyperparameters connected to the optimizer can
be conveniently changed during the training phase. This can have benefits in terms of
both the performance and computational and energy savings from a GreenAI (Artificial
Intelligence) perspective.

The paper is organized as follows. In Section 2, we present a brief survey about the
state-of-the-art approaches to fix both the LR and the MBS hyperparameters. Section 3 is
devoted to describing a novel technique to dynamically adjust the LR and/or the MBS,
using the VS. Section 4 reports the results of the numerical experiments on standard
and biomedical image classification problems, aimed to evaluate the effectiveness of the
proposed approach. In Section 5, in addition to the conclusions, the current directions of
research that we are pursuing to expand and complete the work carried out are illustrated.

2. Related Works

The aim of this section is to recall the standard techniques to select the LR and the
MBS in stochastic gradient methods typically employed for ML and DL methodologies.

2.1. Standard LR Selection Rules

Properly setting the LR in stochastic gradient algorithms is an important issue and
there exist many attempts in the literature to address it. Indeed, inappropriate values for
the LR can lead to two different scenarios: a too small fixed value often implies a very slow
learning process, while a too high fixed value can make the method divergent. In general,
choosing a fixed LR along the iterative process is not suitable, also because the convergence
of standard first-order stochastic schemes is ensured if the LR is properly bounded by the
Lipschitz constant of the gradient of the objective function [1]. Unfortunately, this constant
is often not known.

As for a variable LR rule, several works in the literature show that, from a practical
point of view, modifying the LR during the learning process can bring benefits for both ML
and DL applications [4,5]. In order to guarantee convergence, the SG schemes require the
LR to be chosen as a value of a diminishing sequence, i.e., αk = O( 1

k ). However, this choice
would practically lead to a too rapid reduction in the LR by giving rise to the interruption of
the learning process in a few iterates. For this reason, in practice, the so-called LR annealing
can be adopted: with this strategy, the LR is decreased along the iterations but with a much
slower speed. The basic idea of the LR annealing is to diminish the LR after some iterations
from the beginning of the learning process, in an automatic and non-adaptive way. This
technique is widely used in the most recent ANN for segmentation and other tasks [6–8].
For example, in [7], the authors use the LR annealing technique, with a YOLO architecture,
for the detection and the localization of lung nodules from low-dose CT scans. Even in
biomedical contexts, where the dataset size is often limited, LR annealing techniques have
been shown to be effective. In [9], the authors demonstrate that the suggested LR annealing
strategy improves the image classifiers performance, in terms of both the accuracy and
training time, on a set of dermatological diagnostic images with an unbalanced nature.
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2.2. Standard MBS Selection Rules

In [10], Masters and Luschi point out that modern DL training is typically based on
mini-batch SG optimization. While the use of large mini-batches increases the available
computational parallelism, small-batch training has been shown to provide a better gener-
alization performance and allows a significantly smaller memory footprint, which might
also be exploited to improve machine throughput. For this reason, the authors stress that,
for the learning process, it is crucial to choose a proper MBS selection technique that allows
the method to achieve a high accuracy while reducing the time spent on the learning phase
as much as possible.

In the context of standard ML, several authors suggest a linear growth of the MBS
to allow the process of reaching the entire dataset, while others (see, e.g., [11]) propose a
hybrid approach. The hybrid approach consists of starting the iterative process with an
SG method (by exploiting its property of decreasing the objective function especially in
the first iterations) and then moving onto a deterministic scheme (by taking advantage of
its stability and avoiding an oscillating behavior around the minimum point). Obviously,
these techniques cannot be applied to every setting, but only to offline learning frameworks
and/or datasets of limited size.

For the DL approaches, the MBS is often selected as powers of 2 (commonly 32, 64
and 128) with the aim of facilitating the use of internal memories of accelerators, such as a
Graphics Processing Unit (GPU) and Field-Programmable Gate Array (FPGA). However,
besides static MBS selection strategies, simply driven by heuristics or hardware constraints,
there exist other adaptive ones driven by the learning process itself [12,13]. For example,
in [12], the authors design a practical SG method capable of learning the optimal batch
size adaptively throughout its iterations for strongly convex and smooth functions. On the
other hand, in [13], the authors propose a method to dynamically use the VS to set the
MBS. The impact of a suitable MBS selection procedure on the effectiveness of DL schemes
has been also analyzed in the field of medical applications. In [14], the authors studied
the effect of the MBS on the performance of CNNs employed to classify histopathology
images. They empirically found that when the LR values are high, a large MBS performs
better than with a small LR. Moreover, lowering the learning rate and decreasing the batch
size allow the network to train better, especially in the case of fine-tuning. About the high
correlation between the LR and the MBS selection rules, there exist different works [15,16]
in the literature. For this reason, effective strategies to set these hyperparameters should
consider their mutual interaction.

The techniques described above could assist other types of application, such as those
reported in [17–19], in addition to those already mentioned.

3. A New Dynamic Early Stopping Technique

The previous section has shown that the LR and the MBS need to be properly selected
in order to have robust and efficient learning methodologies and that many efforts have
been made in the literature in this regard. In this section, we propose a novel adaptive
strategy to fix both these hyperparameters by exploiting and modifying the standard early
stopping procedure. The resulting approach can be seen as a new dynamic early stopping
strategy able to combine the advantages of both the early stopping and the dynamic
strategies to define the LR and the MBS.

In all the methodologies involving learning from examples, it is important to avoid
the phenomenon of overfitting. To this end, it is effective to adopt the early stopping
technique [20] which interrupts the learning process by allowing to possibly use a number
of epochs lower than the prefixed maximum, also from a GreenAI perspective [21]. The
early stopping technique is based on the idea of periodically evaluating, during the mini-
mization process, the error that the network commits on the auxiliary VS by evaluating the
performance obtained on the VS itself. In general, in the first iterations, the error on the
VS decreases with the objective function, while it can increase if the error which occurs on
the training set (TS) (the training set is a set of examples used to fit the parameters of the
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model, e.g., the weights of an ANN) becomes “sufficiently small”. In particular, the training
process ends when the error on the VS starts to increase, because this might correspond
to the point in which the network begins to overfit the information provided by the TS
and loses its ability to generalize to data other than those of the TS. In order to practically
implement the early stopping procedure, it is typical to define a patience parameter, i.e., the
number of epochs to wait before early stopping the training process if no progress on the
VS is achieved. Fixing the value of the patience is not obvious: it really depends on the
dataset and the network. The suggested early stopping strategy aims to also overcome
this difficulty.

3.1. The Proposal

In this section, we detail the new early stopping technique we are proposing. The main
steps of this technique can be summarized as follows.

• We borrow the basic idea of the standard early stopping in order to avoid overfitting
the information related to the TS.

• We introduce a patience parameter which can be adaptively modified along the
training process.

• We dynamically adjust both the LR and the MBS hyperparameters along the iterations,
according to the progress on the VS.

The complete scheme is described in Algorithm 1. The main features are reported below.

3.1.1. Lines 4–9—Update of the Iterates for One Epoch

The iterates are updated by means of a stochastic gradient algorithm (Algorithm 1
line 8) for an entire epoch. In particular, a stochastic estimate of the gradient of the
objective function is computed by means of the current mini-batch Si of cardinality nk
chosen randomly and uniformly from N (lines 6–7). Examples of the stochastic gradient
estimations are provided in (2) and (3).

3.1.2. Line 10—Evaluation of the Model

The model is evaluated on the VS, namely the accuracy is computed on the VS and
saved in the variable AccValk.

3.1.3. Lines 11–15—Check for Accuracy Improvement

The current accuracy computed on the VS is compared to the one computed at the
previous epoch and saved in the variable BestAcc.

3.1.4. Lines 17–29—Dynamic Early Stopping

If the accuracy on the VS is not improved, a counter is increased (line 17). Subsequently
(line 18), the value of the counter is compared to the prefixed value p of the patience.
In standard early stopping strategies, if the counter is greater than the value of p, then
the training phase is stopped. On the contrary, in the suggested dynamic early stopping
technique, the training phase is not immediately stopped, but it is allowed to continue
with different hyperparameters. In particular, the LR is decreased by a factor c1 ∈ (0, 1)
(line 20) and/or the MBS is increased by a proper rule (line 22) depending on c2 ∈ [1, M]
and dim ∈ {0, · · ·, M}, where M is a constant related to hardware or memory limitations,
for example, it can be the maximum number of samples which can be stored in the GPU.
Finally (line 23), the value of the patience is divided by a factor γ > 1. Thanks to a smaller
LR and/or a mini-batch of a larger size, the optimizer employed in the training phase
should stabilize and provide new iterates closer to the minimum point. However, if the
LR becomes too small and the MBS reaches the hardware limitations, then the ending of
the training process is forced. In particular, if the patience is reduced more than a prefixed
value p, then the training is stopped (lines 27–29).

To summarize, different from the standard early stopping, the proposed one avoids a
sharp ending of the training process and the difficult tuning of a fixed value of the patience.
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Moreover, it allows to really exploit the nature of the dynamic selection rules for the LR and
MBS, thus ensuring a more efficient learning phase. Finally, we remark that the possibility
to refine the values for the LR and the MBS along the iterative process allows to make their
initial setting less crucial than in the static approaches where the hyperparameters are kept
fixed during the training.

Algorithm 1: A stochastic gradient method with dynamical early stopping

1 Choose maxepochs, x0, η0, S0 ⊂ N of cardinality n0, c1 ∈ (0, 1), c2 ∈ [1, M],
dim ∈ {0, . . . , M}, γ ≥ 1, p, p ∈ N

2 Initialize BestAcc = 0, pred = 0
3 for k = 0, . . . , maxepochs do

4 while i ≤ n
nk

do

5 i = i + 1
6 Select a mini-batch Si randomly and uniformly from N of cardinality nk
7 Compute a stochastic direction di on the mini-batch Si
8 Compute xi+1 = xi − ηi · di
9 end

10 Save the parameters of the final model: xk = xi+1 and evaluate the model on
the VS: AccValk

11 if AccValk > BestAcc then

12 counter = 0
13 pred = 0
14 BestAcc = AccValk
15 Save the parameters of the best model: xbest = xk
16 else

17 counter = counter + 1
18 if counter > p then

19 counter = 0
20 Learning rate decreasing: ηk+1 = c1ηk
21 and/or
22 Mini-batch size increasing: nk+1 = c2nk + dim or

nk+1 = max{dim, c2nk}
23 p =

p
γ

24 pred = pred + 1
25 end

26 end

27 if pred > p then

28 return
29 end

30 end

4. Numerical Experiments

In this section, we investigate the effectiveness of the developed early stopping pro-
cedure combined with the SG method with momentum on image classification problems.
More in detail, we consider Algorithm 1 where the stochastic direction (line 7) and the
update of the iterates (line 8) are performed by means of the scheme defined in (3) with
β = 0.9. The loss function in (1) is the cross entropy; hence, fi(x) = −ti log(si(x)) where
si(x) is the probability of the Softmax function of the class i and ti is the true label. We
consider both a standard database for image classification tasks as the CIFAR-100 [22]
and two different biomedical databases of 2D images obtained by computed tomography
tools [23–27].
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4.1. Image Classification on CIFAR-100 Dataset

We present the results for three different CNNs for 100-classes classification on the
CIFAR-100 dataset: ResNet18 [28], VGG16 [29] and MobileNet [30]. The numerical ex-
periments have been performed on an Intel i9-9900KF coupled with an NVIDIA RTX
2080Ti. The code has been developed starting from an established framework to train sev-
eral CNNs on the CIFAR-100 dataset (https://github.com/weiaicunzai/pytorch-cifar100,
accessed on 1 October 2022) and has been made public for the sake of reproducibility
(https://github.com/mive93/pytorch-cifar100, accessed on 1 October 2022). In the consid-
ered framework, the CIFAR-100 dataset was divided into training and test sets. We used
10% of the training set to create the validation set. The optimizer employed for the reference
training of the CNNs is the SG with momentum; it uses a starting LR of 0.1 and schedules
its annealing at epochs [60, 120, 160], multiplying it by 0.2 in those so-called milestones.

The performance of the optimization method employed for the CNNs reference train-
ing has been compared with the performance of two different versions of Algorithm 1 (with
an SG with momentum at lines 7–8). In particular, we consider the possibility of either
reducing the LR while the MBS is such that nk+1 = n0 or decreasing the LR and increasing
the MBS. Both versions of Algorithm 1 have been implemented by setting maxepochs = 200,
η0 = 0.1, n0 = 2, c1 = 0.2, nk+1 = max{maxmemory = 1000, c2 ∗ nk}, where maxmemory ∈ N

is the maximum number of samples that can be stored in the GPU, and c2 = 2. Moreover,
in order to understand how the patience values affect the performance, we consider three
different values for p—8, 15 and 20—and two different values for γ—2 and 4. Finally, p has
been fixed either equal to 6 if both the LR is reduced and the MBS is increased or equal to 3
if only the LR is decreased but the MBS is not changed along the iterations. In the results,
the name of the different considered algorithms for the training reports:

• LR if only the LR is changed along the iterative process or LRBS if both the hyperpa-
rameters are variable;

• p followed by its value;
• γ followed by its value.

For example, LRBS_p20_γ2 points out that the selection rules for the LR and the MBS
are both dynamic and the values for p and γ are 20 and 2, respectively.

All the tests have been performed five times, and the average accuracy on the test
set and the number of epochs are reported, knowing that the standard deviation on the
accuracy is at most equal to 0.0145. As usual, the best result obtained with the check on the
VS is verified on the test set.

Figure 1 shows the results of all the experiments carried out on the MobileNet CNN.
In this case, the reference training achieves an accuracy of 65.39% in 200 epochs. From the
chart, it can be seen that all the trainings that follow the methodology proposed in this
paper achieve similar results in terms of accuracy while needing less than half the epochs of
the original one. Moreover, some configurations outperform the original, such as, e.g., the
LRBS version with patience equal to 15 or 20. Table 1 reports all the results for the three
CNNs for the LRBS configurations. From the last two columns of Table 1, it is possible
to conclude that the accuracy results obtained by the proposed method are in line with
those of the original version, sometimes slightly lower and sometimes higher. What is truly
remarkable is the number of epochs required to obtain such a performance, which is at
least halved compared to the original method.
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Figure 1. Performance of the various training for MobileNet on CIFAR-100. The blue bars represent
the accuracy on the test set (left axis), the yellow squares report the number of epochs needed
(right axis) and the red dotted line is the accuracy provided by the reference training.

Table 1. Results obtained on the three CNN models on the CIFAR-100 dataset.

CNN Model Configuration p p Decay Test Accuracy (%) # Epochs

MobileNet Original - - 65.39 200.00
MobileNet LRBS 15 2 65.73 80.60
MobileNet LRBS 15 4 65.14 81.00
MobileNet LRBS 20 2 65.63 91.80
MobileNet LRBS 20 4 65.76 98.20
ResNet18 Original - - 74.86 200.00
ResNet18 LRBS 15 2 73.96 73.00
ResNet18 LRBS 15 4 74.03 67.40
ResNet18 LRBS 20 2 74.30 90.20
ResNet18 LRBS 20 4 74.16 85.00
VGG16 Original - - 71.24 200.00
VGG16 LRBS 15 2 70.37 90.40
VGG16 LRBS 15 4 69.63 72.40
VGG16 LRBS 20 2 70.54 88.40
VGG16 LRBS 20 4 70.55 101.20

4.2. Biomedical Image Classification

The second part of the numerical experiments involved two types of bidimensional
biomedical image datasets for multi-class classification: MedMNIST2D OrganSMNIST
(https://medmnist.com/, accessed on 1 October 2022) and MedMNIST OCTMNIST (https:
//medmnist.com/, accessed on 1 October 2022) [26,27]. The former is composed of
25,221 abdominal CT images (the first panel of Figure 2) with labels from 0 to 10, each one
corresponding to an organ or a bone of the abdomen. Each image is 28 × 28 pixels and the
original dataset is split up into training, validation and test sets whose dimensions corre-
spond to 70%, 9% and 21% of the total number of samples, respectively. The second one is
made up of 109309 optical coherence tomography (OCT) images for retinal diseases (the
second panel of Figure 2) and there are four labels of which three correspond to different
diseases and one is related to normal health conditions. Each image is 28 × 28 pixels and
the original dataset is divided similarly to the previous case.
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Figure 2. Some examples from MedMNIST2D OrganSMNIST (left half) and OCTMNIST (right half).

These two applications have been processed on MSI Sword 15 A11UC-630XIT with
a GPU NVIDIA GeForce RTX 3050 Laptop, CPU i7-11800H, 8 GB of RAM, Windows
11 and Python 3.10.2. We opportunely modified the official code (https://github.com/
MedMNIST/MedMNIST, accessed on 1 October 2022) which implements various artificial
neural networks, from the data splitting point of view. In particular, we divided the dataset
into the following disjointed subsets: the 70% of the total examples gives the TS, the 9%
is employed for the VS and the remaining 21% of the data forms the test set. Our code is
publicly available (https://github.com/AmbraCatozzi/ResNet18_Biomedical.git, accessed
on 1 October 2022) for the sake of reproducibility.

For all the experiments, we compared the performance of the ResNet18 model trained
by means of:

• The SG optimizer (3) with β = 0.9 (hereafter denoted by Original);
• The same optimizer but equipped with a classical early stopping technique (hereafter

denoted by ES);
• Algorithm 1 (hereafter denoted by LRBS).

The hyperparameters setting for all the three optimization techniques are discussed in
the following section.

4.2.1. Hyperparameters Setting

Because the performance of a stochastic gradient method is strictly related to the
configuration of its hyperparameters, this section aims to fix the best hyperparameters
setting for the algorithms employed to train the ResNet18. This preliminary study is carried
out on the MedMNIST2D OrganSMNIST dataset and the best found hyperparameters
configurations will be used for all the other experiments.

Setting p for the ES Method

First of all, we compare the performance of the ES method for different values of
the patience p. In particular, given η0 = 10−3 and n0 = 128, we report in Table 2 the
values of the accuracy reached by ES with p equal to 5, 20 and 30. In the same table, the
results corresponding to the Original optimizer are also reported (for the same setting of η0
and n0).
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Table 2. Results on MedMNIST2D OrganSMNIST dataset in a maximum of 50 epochs. σ is the
standard deviation and each result is the mean of five trials.

Configuration Test Accuracy (%) σ (%) # Epochs

Original 88.14 0.20 50

ES (p = 5) 88.22 0.03 3.4

ES (p = 20) 88.51 0.53 21

ES (p = 30) 87.84 0.51 27.6

The value of p, which ensures the best accuracy on the test set, is 20. In the following,
p is always set to this value for the ES method.

Setting η0 and n0 for the Original and the ES Methods

In order to properly tune the LR and the MBS for both the Original and the ES schemes,
we performed several experiments with different settings, illustrated in Table 3.

Table 3. Hyperparameters analysis on MedMNIST2D OrganSMNIST dataset in a maximum of
50 epochs. σ is the standard deviation and each result is the mean of five trials.

Hyperparameters Configuration Test Accuracy (%) σ (%) # Epochs

η0 = 10−2, n0 = dim = 64
Original 92.80 0.22 50
ES 92.68 0.36 23.2

η0 = 10−2, n0 = dim = 128
Original 92.49 0.31 50
ES 92.58 0.33 16.2

η0 = 10−2, n0 = dim = 256
Original 91.54 0.53 50
ES 91.51 0.42 13.6

η0 = 10−3, n0 = dim = 64
Original 91.05 0.82 50
ES 91.08 0.72 19.8

η0 = 10−3, n0 = dim = 128
Original 88.61 0.60 50
ES 88.62 0.59 18.8

η0 = 10−3, n0 = dim = 256
Original 86.89 0.41 50
ES 86.86 0.37 24.6

η0 = 10−4, n0 = dim = 64
Original 86.06 0.48 50
ES 86.19 0.50 17.8

η0 = 10−4, n0 = dim = 128
Original 84.84 0.89 50
ES 85.48 0.28 38.4

η0 = 10−4, n0 = dim = 256
Original 83.16 0.52 50
ES 84.55 0.67 38

From the results of Table 3, the best hyperparameters setting for both the Original and
the ES approaches is η0 = 10−2 and n0 = 64. We remark that to find this setting was very
demanding in terms of computational costs.

Robustness of the LRBS Method against Hyperparameters

The proposed method aims to get rid of the dependence on its intrinsic hyperparame-
ters while maintaining a high performance. In this section, we investigate the response of
the LRBS method to the variation in the values of the hyperparameters used in Algorithm 1.
In particular, we consider different values for: c1, c2, dim and γ. It is worth highlighting that
we do not need to also properly tune the values for the patience, the LR and the MBS as
performed for the Original and the ES schemes. Indeed, the LRBS algorithm automatically
adjusts the values of these hyperparameters along the epochs. For this reason, we just
consider p = 20, η0 = 10−2 and n0 = 64: we select a quite large value for both the patience
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and the initial LR and a quite small value for the initial MBS by allowing the procedure
to adapt them (by increasing the former ones and decreasing the latter one). To confirm
this thesis, in the next section (see Table 7), we show that the LRBS algorithm is much less
sensitive to the selection of the hyperparameters than the other two methods in training
the ResNet18 for the MedMNIST2D OrganSMNIST dataset. In Table 4, we present the
values of the accuracy for different configurations. We run each experiment five times with
different seeds and we report the means and standard deviations in the table.

Table 4. Mean and std. of the values of the accuracy obtained on MedMNIST2D OrganSMNIST
dataset by the LRBS approach in a maximum of 50 epochs and different values of the hyperparameters.
The initial mini-batch size is n0 = 64 and the initial learning rate is η0 = 10−2.

γ = 2 γ = 4

c1 = 1/4 c1 = 1/2 c1 = 1/4 c1 = 1/2

c2 = 2, dim = 0 92.46% ± 0.43 92.88% ± 0.3 92.46% ± 0.34 93.33% ± 0.24

c2 = 1, dim = 64 93.11% ± 0.35 93.18% ± 0.39 92.78% ± 0.37 92.93% ± 0.37

Table 4 allows to conclude that the LRBS method is very stable with respect to the
reasonable choices of the hyperparameters involved; particularly, both the mean and
variance over the 5 trials are very good in all cases.

A Comparison with the AdaM Optimizer

Finally, for the sake of completeness, we show that to employ the AdaM optimizer [31],
instead of the SG one with momentum, leads to analogous results. Table 5 reports the
values of the accuracy reached by the considered approaches equipped by AdaM with
η0 = 10−3 and n0 = dim = 64. The value of p is 20 for both the ES and LRBS. The LRBS
method improves the accuracy obtained with the Original ResNet18 by one percentage
point, with the lowest number of epochs.

Table 5. Results on MedMNIST2D OrganSMNIST dataset in a maximum number of 50 epochs.
The AdaM optimizer is employed with η0 = 10−3 and n0 = dim = 64.

Configuration Test Accuracy (%) σ (%) # Epochs

Original 91.43 1.03 50
Early Stopping 92.52 0.57 19
LRBS 92.40 0.24 17.8

4.2.2. Numerical Results

In this section, we perform three different experiments. We firstly summarize the
hyperparameters setting for the three compared approaches in view of the considerations
made in the previous section. For the Original, ES and LRBS, we fixed η0 = 10−2 and
n0 = 64. The value of p is 20 for both the ES and LRBS. Moreover, the other hyperparameters
defining the LRBS are set as c1 = 0.5, c2 = 1, dim = 64, γ = 2, p = 20 and p = 6. In the
following paragraphs, we present the results obtained by fixing the maximum number of
epochs, maxepochs, to both 50 and 100.

Results for OrganSMNIST in a Maximum Number of 50 Epochs

In Table 6, we show the numerical results for the abdominal CT dataset: each column
reports the mean accuracy on the test set, the standard deviation and the mean number of
epochs obtained in five runs for the OrganSMNIST. The proposed method outperforms
both the ResNet18 model and the early stopped one in terms of accuracy with the same
number of epochs needed by the classical early stopping implementation.
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Table 6. Results on MedMNIST2D OrganSMNIST dataset in maximum 50 epochs.

Configuration Test Accuracy (%) σ (%) # Epochs

Original 92.80 0.22 50
ES 92.68 0.36 23.2
LRBS 92.81 0.37 23.2

We also observed that if we left fixed the value for the MBS but we increase the initial
learning rate by either one or two orders of magnitude, the LRBS method outperforms
both the standard model and the early stopped version (see Table 7) by confirming the less
dependence on the hyperparameters setting of the LRBS approach.

Table 7. Results on MedMNIST2D OrganSMNIST dataset in a maximum of 50 epochs.

Learning Rate Configuration Test Accuracy (%) σ (%) # Epochs

η0 = 10−1
Original 93.02 0.20 50
ES 93.12 0.17 23.2
LRBS 93.21 0.30 11.8

η0 = 1
Original 89.57 0.73 50
ES 90.73 0.84 31.4
LRBS 91.68 0.42 21.4

Results for OCTMNIST Dataset in a Maximum Number of 50 Epochs

The results related to the MedMNIST2D OCTMNIST dataset are illustrated in the
same vein, but the means are calculated on the best five values of each configuration chosen
from 20 runs; the numerical outcomes are presented in Table 8. It can be seen that the
proposed method slightly improves the accuracy, but it reaches this value in half of the
time with respect to the standard early stopping procedure.

Table 8. Results on MedMNIST2D OCTMNIST dataset in maximum 50 epochs.

Configuration Test Accuracy (%) σ (%) # Epochs

Original 93.72 0.17 50
ES 93.80 0.12 21.8
LRBS 93.89 0.13 11.2

Results for OCTMNIST in a Maximum Number of 100 Epochs

To highlight the effectiveness of Algorithm 1, another experiment has been conducted.
We trained the same models presented in the previous section for a maximum number of
100 epochs by considering the dataset OCTMNIST (see Table 9).

Table 9. Results on MedMNIST2D OCTMNIST dataset in maximum 100 epochs.

Configuration Test Accuracy (%) σ (%) # Epochs

Original 93.65 0.14 100
ES 93.69 0.16 10.4
LRBS 93.68 0.15 17.2

As in the previous experiments, comparable values for the accuracy can be obtained
by all the considered strategies; however, the number of epochs related to the early stopped
models is less than the 20% of the total number of epochs. However, we remark that the
LRBS does not suffer from the computational expensive phase of the hyperparameters tuning.
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5. Conclusions and Future Works

In this paper, we propose a dynamic early stopping technique for the training of a
neural network, based on variable selection strategies to fix both the learning rate and
the mini-batch size in SG methods. The suggested scheme is able to avoid the overfitting
phenomena and reduce the training phase. The numerical experiments carried out on
biomedical image classification problems show the benefits of employing the proposed
dynamic early stopping procedure: performances comparable to those of the reference net-
work can be achieved in a significantly lower number of epochs. Moreover, the suggested
approach avoids the computational expensive setting of the best hyperparameters values
needed by standard training techniques.
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ML Machine Learning
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Abstract: A derivative-free optimization (DFO) method is an optimization method that does not
make use of derivative information in order to find the optimal solution. It is advantageous for
solving real-world problems in which the only information available about the objective function
is the output for a specific input. In this paper, we develop the framework for a DFO method
called the DQL method. It is designed to be a versatile hybrid method capable of performing direct
search, quadratic-model search, and line search all in the same method. We develop and test a series
of different strategies within this framework. The benchmark results indicate that each of these
strategies has distinct advantages and that there is no clear winner in the overall performance among
efficiency and robustness. We develop the SMART DQL method by allowing the method to determine
the optimal search strategies in various circumstances. The SMART DQL method is applied to a
problem of solid-tank design for 3D radiation dosimetry provided by the UBCO (University of British
Columbia—Okanagan) 3D Radiation Dosimetry Research Group. Given the limited evaluation
budget, the SMART DQL method produces high-quality solutions.

Keywords: derivative-free optimization;black-box optimization; local optimization; direct search
method; model-based method; 3D radiation dosimetry

1. Introduction

An optimization problem

min{ f (x) : x ∈ Ω} (1)

is considered a black-box optimization (BBO) problem if the objective function f is provided
by a black box. That is, for a given input, the function returns an output, but provides
no information on how the output was generated. As such, no higher-order information
(gradients, Hessians, etc.) are available. Developing methods to solve BBO problems is a
highly valued field of research, as the methods are used in a wide range of applications [1–8]
(amongst many more).

In many BBO problems, heuristic techniques are used [1–3]. In this paper, we focus on
provably convergent algorithms. The study of provably convergent algorithms that do not
explicitly use high-order information in their execution is often referred to as derivative-free
optimization (DFO). We refer readers to [9,10] for a general overview of DFO and to [11,12]
for recent surveys of applications of DFO.

DFO is often separated into two disjoint strategies: direct search methods and model-
based methods [10]. Direct search methods involve looking for evaluation candidate(s)
directly in the search domain [9,10]. Conversely, model-based methods involve building
a surrogate model from the evaluated points to find the next evaluation candidate [9,10].

Algorithms 2023, 16, 92. https://doi.org/10.3390/a16020092 https://www.mdpi.com/journal/algorithms
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As DFO research has advanced, researchers have proposed that these two strategies should
be merged to create hybrid algorithms that applied both techniques [9,10,13–15]. However,
very few algorithms have been published that hybridize theses two methods.

In this research, we seek to develop a framework that allows for direct search and
model-based methods to be united into a single algorithm. We further seek to develop
dynamic approaches to select and adjust how the direct search and model-based methods
are used. In doing so, we aim to apply both a mathematical analysis that guarantees con-
vergence (under reasonable assumptions) and numerical testing to determine techniques
that work well in practice.

1.1. Overview of DQL and SMART DQL Method

Some efforts have been made to hybridize direct search and model-based methods.
For example, the SID-PSM method involves combining a search step of minimizing the
approximated quadratic model over a trust region with the direct search [13,14]. The RQLIF

method, which we discuss next, provides a more versatile approach [15].
To understand the RQLIF method, we note that there are two common ways to find

the next evaluation candidate during a model-based method [10]. First, methods can find
the candidate at the minima of the surrogate model within some trust region or constraints.
These are referred to as model-based trust-region (MBTR) methods. Second, methods can
use the model to predict the descent direction and perform a line-search on the direction.
These are referred to as model-based descent (MBD) methods.

At each iteration, the RQLIF method searches for an improvement using three distinct
strategies without relying on gradient or higher-order derivative information. These
steps are referred to as the direct step, quadratic step, and linear step. These three steps
correspond to three distinct search strategies from the direct search method, MBTR methods,
and MBD methods.

Inspired by the structure of the RQLIF method, we propose the DQL method frame-
work. The purpose of this framework is to allow a flexible hybrid method that permits a
direct search, quadratic-model search, and line-search all in the same method. Our objective
is to design a framework that allows the development of a variety of search strategies and
to determine the strategies that perform best. The DQL method is a local method for
solving unconstrained BBO problems. We ensure its local convergence by implementing
a two-stage procedure. The first stage focuses on finding an improvement in an efficient
manner. It accepts an improvement whenever the candidate yields a better solution. We
call this stage the exploration stage. The second stage focuses on the convergence to a local
optimum; we call this stage the convergence stage.

In Section 2, we introduce the DQL method’s framework and the search strategies.
In Section 3, we conduct the convergence analysis. Provided that the objective function has
a compact level set L(x0) and the gradient of the objective function is Lipschitz continuous
in an open set containing L(x0), the convergence analysis indicates that there exists a con-
vergent subsequence of iterations with a gradient of zero at its limit. This demonstrates that
when the evaluation budget is large enough, the method will converge to a stationary point.

Using the framework of the DQL method, we obtain a series of combinations of
quadratic and linear step strategies. In order to select the best combination among them,
in Section 3, we perform a numerical benchmark across all the possible combinations.
The quadratic step strategies are capable of improve the overall performance of the method.
However, the linear steps show a mixed performance and there is no clear winner on
efficiency or robustness. This inspires the idea that by employing an appropriate strategy in
certain circumstances, we may be able to achieve an overall improvement in performance.

This idea of allowing the method to make decisions on search strategies in various
circumstances leads to the SMART DQL method, which we discuss in Section 4. By analyz-
ing the search results from various strategies, we develop decision processes that select the
appropriate strategies for the search steps during the optimization. This allows the method
to dynamically decide the appropriate strategies for the given information. In Section 4, we
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perform numerical tests on the SMART DQL method and discover that the SMART DQL
method outperforms the DQL methods in terms of both robustness and performance.

In Section 5, we apply the SMART DQL method to the problem of design of solid tanks
for optical computed tomography scanning of 3D radiation dosimeters described in [16].
The original paper employs a grid-search technique combined with a manual refinement to
solve the problem. This process involves considerable human interaction. Conversely, we
find that the SMART DQL method is capable of producing a high-quality solution without
human interaction.

1.2. Definitions

Throughout this paper, we assume f : Rn → R. Let xk
best denote the best solution

found by the method at iteration k and f k
best denote the corresponding function value.

We present the definitions that are used to approximate gradient and Hessian by the
DQL method as follows. We begin with the Moore–Penrose pseudoinverse.

Definition 1 (Moore–Penrose pseudoinverse). Let A ∈ Rn×m. The Moore–Penrose pseu-
doinverse of A, denoted by A†, is the unique matrix in Rm×n that satisfies the following four equations:

AA† A = A, (2)

A† AA† = A, (3)

(AA†)� = AA†, (4)

(A† A)� = A† A. (5)

The generalized centred simplex gradient and generalized simplex Hessian are studied
in [17,18], respectively.

Definition 2 (Generalized centred simplex gradient [17]). Let f : Rn → R, x0 ∈ Rn be
the point of interest, and D =

[
d1 d2 · · · dk] ∈ Rn×k. The generalized centred simplex

gradient of f at x0 over D is denoted by ∇c f (x0; D) and defined by,

∇c f (x0; D) = (D�)†δc
f (x0; D) ∈ Rn, (6)

where

δc
f (x0; D) =

1
2
[

f (x0 + d1)− f (x0 − d1), · · · , f (x0 + dk)− f (x0 − dk)
]�. (7)

Definition 3 (Generalized simplex Hessian). Let f : Rn → R and x0 be the point of interest.
Let S =

[
s1 s2 · · · sm] ∈ Rn×m and {Di : Di ∈ Rn×k, i = 0, 1, 2, · · · , m} be the set of

direction matrices used to approximate the gradients at x0, x0 + s1, · · · , x0 + sm, respectively.
The generalized simplex Hessian of f at x0 over S and {Di} is denoted by ∇2

s f (x0; S, {Di})
and defined by

∇2
s f (x0; S, {Di}) = (S�)†δ∇c f (x0; S, {Di}), (8)

where

δ∇c f (x0; S, {Di}) =

⎡
⎢⎢⎢⎣
(∇c f (x0 + s1; D1)−∇c f (x0; D0))�
(∇c f (x0 + s2; D2)−∇c f (x0; D0))�

...
(∇c f (x0 + sm; Dm)−∇c f (x0; D0))�

⎤
⎥⎥⎥⎦ ∈ Rm×n. (9)
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In Section 3, in order to prove convergence of our method, we make use of the cosine
measure as defined in [9].

Definition 4 (Cosine measure). Let D =
[
d1 d2, · · · , dm] ∈ Rn×m form a positive basis.We

say D forms a positive basis if {x : x = ∑m
i=1 λdi, λ ≥ 0} = Rn but no proper subset of D has the

same property. The cosine measure of D is defined by,

cm(D) = min
ω∈Rn

{
max
d∈D

{
ω�d

‖ω‖‖d‖

}
: ‖ω‖ = 1

}
. (10)

2. DQL Method

In this section, we introduce the framework of the DQL method. At each iteration,
the method starts from an initial search point xk

0 and a search step length δk. Note that
at the first iteration, the initial search point and the search step length are given by the
inputs x0 and δ0, so x1

0 = x0 and δ1 = δ0. The initial search point and the search step length
are used to initiate three distinct search steps: the direct step, the quadratic step, and the
linear step. A variable xk

best is used to track the current best solution at iteration k. If an
improvement is found in the search step length at iteration k, the method updates xk

best.
Three Boolean values are used to track the results from each search step: DIRECT_FLAG,
QUADRATIC_FLAG, and LINEAR_FLAG. If a search step succeeds at finding an improve-
ment, it sets the corresponding FLAG to TRUE; otherwise, the corresponding FLAG is set
to FALSE. These search steps are then followed by the update step. In the update step,
the search step length is updated according to the search results and the method uses the
current best solution as the starting search point of the next iteration.

As mentioned, the DQL method utilizes two different stages: the exploration stage
and the convergence stage. In the exploration stage, the method enables all the search steps,
and it accepts the improvement whenever the evaluation candidate yields a lower value
than the current best solution. If the iteration counter k reaches the given MAX_SEARCH,
then the method proceeds with the convergence stage, the method disables the quadratic
and the linear step and the solution acceptance implements a sufficient decrease rule.

This framework allows various search strategies to be implemented. We provide some
basic strategies for performing the search steps. The analysis of the convergence and the
performance of these search steps are discussed in the next section.

2.1. Solution Acceptance Rule

In the DQL method, each search step returns a set of candidate(s). Then, these
candidate(s) are evaluated and compared to the current best solution xk

best. If the best
candidate is accepted by the solution acceptance rule, then xk

best is updated. There are
two solution acceptance rules that are used in the DQL method. The first rule is used in
the exploration stage and updates xk

best whenever an improvement is found. The second
rule is used in the convergence stage and updates xk

best only when the candidate makes
sufficient decrease. Specifically, in the convergence stage of the DQL method, a candidate
xcurrent ∈ CANDIDATE_SET is accepted as xk

best only if

f (xcurrent) < f (xk
best)− (δk)

2
, (11)

where δk is the current search step length. We show that this sufficient decrease rule is
crucial for the convergence of the DQL method in the next section. The algorithm of the
solution acceptance is denoted as

IMPROVEMENT_CHECK(CANDIDATE_SET, xk
BEST , δk)

and is shown in Algorithm 1.
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Algorithm 1 IMPROVEMENT_CHECK(CANDIDATE_SET, xk
BEST , δk)

1: Evaluate CANDIDATE_SET
2: xcurrent ← arg min{function evaluations of CANDIDATE_SET}
3: if k ≤ MAX_SEARCH then
4: if f (xcurrent) < f (xk

best) then

5: xk
best ← xcurrent

6: end if
7: else
8: if f (xcurrent) < f (xk

best)− (δk)
2

then

9: xk
best ← xcurrent

10: end if
11: end if

2.2. Direct Step
2.2.1. Framework of the Direct Step

In the direct step, the method searches from the starting search point xk
0 in the positive

and negative coordinate directions or a rotation thereof. We denote the set of search
directions at iteration k as D̄k. The positive and negative coordinate directions can be
written as the columns of an n × 2n matrix

[
In −In

]
. The method applies an n × n

rotation matrix Dk =
[
dk

1 dk
2 · · · dk

n
] ∈ Rn×n, so D̄k can be written as

[
Dk −Dk].

We first need to determine how we want to rotate the search directions. We have
two possible situations. First, if the method predicts a direction for which improvement
is likely to be found, then we call this direction a desired direction. Notice that, since we
search on both positive direction and negative direction, we also search the direction where
an improvement is unlikely to be found. Conversely, if the method predicts a direction
that is highly unlikely to provide improvement, then we call the corresponding direction
an undesired direction. Denoting the predicted direction by rk, we have the following
2 possibilities.

• If rk is a desired direction, then we construct Dk such that it rotates one of the search
directions to align with rk.

• If rk is an undesired direction, then we construct Dk such that it rotates the vector[
1 · · · 1

]
to align with rk. In this way, the coordinate directions are rotated to point

away from rk as much as possible.

Figure 1 shows how the method rotates the search direction matrix D̄k towards a
desired direction or away from an undesired direction for an R2 problem.

(a) (b)

Figure 1. An example of rotating search direction D̄k (black) for (a) a desired direction (red) and (b)
an undesired direction (green). (a) Align D̄k towards the desired direction rk. (b) Align D̄k away from
the undesired direction rk.

For an n-dimensional rotation (n > 3), the rotation is described as rotating by an
angle of α on an n − 1 dimension hyperplane that is spanned by a pair of orthogonal unit
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vectors u and v ∈ Rn. According to Masson, such a rotation matrix D can be defined as
follows [19],

L(α, u, v) = In + (vu� − uv�) sin α + (uu� + vv�)(cos α − 1). (12)

For a desired direction rk, the rotation matrix Dk can be found by rotating the coor-
dinate directions on the hyperplane spanned by one coordinate direction, e.g., e1, and rk

by the angle between e1 and rk. Notice that if e1 and rk are linearly dependent, then rk lies
on the coordinate direction e1, so Dk is the identity matrix. In conclusion, if rk is a desired
direction, the search directions Dk is calculated as follows,

Dk = L(arccos (rk�e1), rk, e1). (13)

For an undesired direction rk, the method needs to keep the search directions as far
from rk as possible. In order to do so, it first constructs a normalized one-vector 1̂, which is
calculated as follows,

1̂ =
Σn

i=1ei∥∥Σn
i=1ei

∥∥ =
Σn

i=1ei√
n

. (14)

Then, the method aligns 1̂ with the undesired direction rk. The rotation matrix Dk for an
undesired direction rk is calculated as follows,

Dk = L(arccos (rk�1̂), rk, 1̂). (15)

After the search directions D̄k are built, the search candidates from the direct step at
iteration k can be determined as

Dk = {xk
0 + δkdk : dk ∈ D̄k}. (16)

We then check if any of the candidates yield improvement by

IMPROVEMENT_CHECK(Dk , xk
BEST , δk).

If an improvement is found, then the DIRECT_FLAG is set to be TRUE. Otherwise, the DI-
RECT_FLAG is set to be FALSE.

The pseudocode of the direct step in the DQL method is shown in Algorithm 2. The di-
rect step is always initiated at every iteration, and it produces

∣∣∣Dk
∣∣∣ = 2n candidates, so

it requires 2n function evaluations to perform. Since these candidates are independent
from each other, the function evaluations proceed in parallel. Although this step is com-
putationally expensive, it is necessary to prove convergence of our method as shown in
Theorem 4. The freedom of choosing the rotation direction is essential to the development
of the SMART DQL method. This allows us to develop a variety of rotation strategies that
are discussed in the next section.

Algorithm 2 DIRECT_STEP(xk
0, δk)

1: Determine the rotation direction rk ∈ Rn

2: if rk is a desired direction then
3: Align Dk towards rk

4: else
5: Align Dk away from rk

6: end if
7: The direct search candidates Dk = {xk

0 + δkdk : dk ∈ D̄k}
8: IMPROVEMENT_CHECK(Dk , xk

0, δk)
9: Update DIRECT_FLAG accordingly
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Direct Step Strategy

The first direct step strategy is inspired by the direct step in the RQLIF method [15].
The rotation directions alternate between two options:

• A coordinate direction being the desired direction;
• A random direction being the desired direction.

At odd iterations, the method searches on the positive and negative coordinate direc-
tions. At even iterations, the method searches on the random rotations of the coordinate
directions. We denote this strategy as direct step strategy 1. In Section 4, when developing
the SMART DQL method, we introduce new rotation strategies.

2.3. Quadratic Step
2.3.1. Framework of Quadratic Step

If the direct step fails to find an improvement, then the method proceeds to the
quadratic step. Note that after a failed direct step, the best point remains at xk

0. In the
quadratic step, the method first selects the points that have been previously evaluated
within some radius qk ≥ βδk of the point of centre xk

0 for some β ≥ 1. These points are used
to construct a quadratic model of the objective function. The radius condition qk ≥ βδk

ensures that all the points from the direct search are taken into account. The method extracts
the quadratic information from these calculated points using a least-squares quadratic
model or Hessian approximation. The pseudocode of the quadratic step is shown in
Algorithm 3. Note that in the third line of Algorithm 3, the methods of extracting and
utilizing the quadratic information varies for different strategies. The idea of the quadratic
step is to use these previously evaluated points {xi} to predict a candidate by using
quadratic approximations.

Algorithm 3 QUADRATIC_STEP(xk
0, β, δk , {xi})

1: qk ← βδk

2: Determine the set of evaluated points within the trust region Qk = {xi :
∥∥∥xi − xk

0

∥∥∥ ≤ qk}
3: Determine the quadratic search candidates Qk using the quadratic information from Qk

4: IMPROVEMENT_CHECK(Qk , xk
0, δk)

5: Update QUADRATIC_FLAG accordingly

Quadratic Step Strategies

Our first option for the quadratic step begins by constructing a least-squares quadratic
model. We use the QUADPROG and TRUST functions from MATLAB [20] to find the least-
squares quadratic model and its optimum within the trust region. We label this quadratic
step strategy as quadratic step strategy 1.

Our second option for the quadratic step is to take one iteration of an approximated
Newton’s method. Approximation techniques are introduced to obtain the required gra-
dient and Hessian. Notice that at the end of the direct step, the centred simplex gradient
approximation is performed, so we take

∇ f (xk
0) ≈ ∇c f (xk

0; δkDk). (17)

To approximate the Hessian at xk
0, we need all the points within radius qk that have

a gradient approximation. Since the gradient approximations are performed in previous
unsuccessful direct steps, we can reuse those approximation. First, the points that have
gradient approximation and are within the radius qk are determined. We denote these by xj

h
(j = 1, 2, · · · , m). The corresponding search directions and search step lengths are denoted
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by Dj
h and δ

j
h (j = 1, 2, · · · , m). We take D0

h and δ0
h as the search direction and search step

length in the direct step of the current iterate. We obtain

S =
[
x1

h − xk
0 x1

h − xk
0 · · · xm

h − xk
0
]
. (18)

The Hessian at xk
0 can be approximated as,

∇2 f (xk
0) ≈ ∇2

s f (xk
0; S, {δ

j
hDj

h}) = (S�)†δ∇c f (xk
0; S, {δ

j
hDj

h}), (19)

where δ∇c f (xk
0; S, {δ

j
hDj

h}) is defined in Definition 3.
If the approximated Hessian is positive definite, then the search candidate is deter-

mined via
xQ = xk

0 − (∇2
s f (xk

0; S, {δ
j
hDj

h}))−1∇c f (xk
0; δkDk). (20)

If the approximate Hessian is not positive definite, we can perform a trust-region search by
building a quadratic model with the approximate gradient and Hessian at xk

0.
We label this quadratic step strategy as quadratic step strategy 2.

Discussion on Quadratic Step Strategies

Both quadratic step strategies try to build a quadratic model and extract the op-
tima from the quadratic model. However, there are some major differences between the
two strategies.

• The points chosen to construct the model are different. In the quadratic step strategy
1, any evaluated points that are within the trust region are chosen. In the quadratic
step strategy 2, the chosen points have an additional requirement that they should
also have a gradient approximation.

• In the quadratic step strategy 1, xQ lies within the trust region. In the quadratic step
strategy 2, if the approximated Hessian is positive definite, then xQ may lie outside of
the trust region.

We demonstrate in the numerical benchmarking that these differences lead to distinct
behaviours and performances.

2.4. Linear Step
2.4.1. Framework of Linear Step

If the quadratic step fails to find an improvement, then the method performs the linear
step. The idea of the linear step is to find evaluation candidate(s) in a desired direction
d ∈ Rn at some step length(s) αj ∈ Rn. The search candidates can be obtained as

xj
l = xk

0 + αjd, (21)

and we denote the set of all candidates as Lk. The idea of the linear step is to perform a
quick search in the direction that is likely to be a descent direction. The pseudocode of the
linear step in the DQL method is shown in Algorithm 4. Note that in order to perform Line
2 of Algorithm 4, there are two components we need to determine: the desired direction
and the step length(s). We discuss this in the next section.

Algorithm 4 LINEAR_STEP (xk
0, δk)

1: Determine the search direction d ∈ Rn

2: Determine the step lengths
{

αj ∈ R
}

3: The linear search candidates Lk = {xk
0 + αjdj}

4: IMPROVEMENT_CHECK(Lk , xk
0, δk)

5: Update LINEAR_FLAG;
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The linear step is an efficient and quick method to quickly search for an improvement.
Not only does it not require as many function calls as the direct step, but it also does
not require as much computational power to determine the candidate as the quadratic
step. However, it is not as robust as the direct step or as precise as the quadratic step.
If a linear step fails, then it indicates that we are either converging to a solution, or the
method to determine the desired direction is not performing well for the current problem.
In either case, the result from the linear step can provide some crucial information for
future iterations, which is discussed in Section 4.

Linear Step Strategies

We propose two methods to find the linear search directions. The first method is to
use the centred-simplex gradient from the direct step. In particular, d = −∇c f (xk

0; δkDk) is
the approximated steepest descent direction.

The second method is to use the last descent direction as the desired direction. If the
method was able to find an improvement in this direction, then it is likely that an improve-
ment can be found again in this direction. This direction can be calculated as d = xk

0 − xs
0,

where the index s is the most recent successful iteration before xk
0.

To determine the step length, the simplest way is to use δk as the search step length,
that is Lk = {xk

0 + δkd}. The other method is to consider (approximately) solving the
following problem

min
α

{F(α) : α ≥ 0}, (22)

where F(α) = f (xk
0 + αd). To solve this problem, we utilize the safeguarded bracketing line

search method [21]. Combining the two ways of determining the search directions and the
two ways of determining the search step, we obtain four linear search strategies, as shown
in Table 1.

Table 1. Linear Search Strategies

Label Search Direction ddd Search Step ααα

Strategy 1 −∇c f (xk
0; δkDk) {δk}

Strategy 2 −∇c f (xk
0; δkDk) {0, 1/2δk, δk} ∪ ABRACKET_SEARCH

Strategy 3 xk
best − xs

best {δk}
Strategy 4 xk

best − xs
best {−δk, 0, δk} ∪ ABRACKET_SEARCH

2.5. Update Step

Depending on the search results from the direct, quadratic and linear steps, the method
updates the search step length for the next iterate δk+1 in different ways. If an improvement
is found in the direct step, then the search step length is increased for the next iteration. If an
improvement is not found in the direct step, then the method proceeds with the quadratic
step. If an improvement is found in the quadratic step, then the search step length remains
the same. If no improvement is found in either quadratic or direct steps, then the method
initiates the linear step. If an improvement is still not found, then the search step length is
decreased. Otherwise, if an improvement is found in the linear step, then the search step
length remains the same. Algorithm 5 shows the pseudocode for the update step of the
DQL method. Notice that an update parameter γ needs to be selected to perform the DQL
method.

2.6. Pseudocode for DQL Method

The input of the DQL method requires the objective function f , the initial point x0,
the initial search step length δ0, and the update parameter γ. In addition, a maximum
iteration threshold for the exploration stage, MAX_SEARCH is required for the convergence
of the method. The method implements a sufficient decrease rule for the search candidates
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and stops searching in the quadratic and direct step after the maximum iteration threshold
MAX_SEARCH. The necessity of this threshold is discussed in the next section.

The stopping condition(s) need to be designed for specific applications. For example,
the method can be stopped when it reaches a certain maximum number of iterations,
maximum number of function calls, or maximum run-time. In addition, a threshold for the
search step length and the norm of the approximate gradient can be set to stop the method.
The pseudocode for the DQL method is shown in Algorithm 6.

Algorithm 5 PARAMETER_UPDATE (δk , 0 < γ < 1, DIRECT_FLAG, QUADRATIC_FLAG,
LINEAR_FLAG)

1: if DIRECT_FLAG == TRUE then
2: set δk+1 = γ−1δk

3: else
4: if QUADRATIC_FLAG == FALSE AND
5: LINEAR_FLAG == FALSE THEN

6: SET δk+1 = γδk

7: ELSE

8: SET δk+1 = δk

9: END IF

10: END IF

11: SET k ← k + 1

Algorithm 6 DQL( f , x0, δ0, 0 < γ < 1, β > 1, MAX_SEARCH)

1: Initiate k ← 1, δ1 ← δ0, STOP_FLAG ← FALSE
2: while STOP_FLAG == FALSE do
3: Initiate DIRECT/QUADRATIC/LINEAR_FLAGS ← FALSE;
4: Initiate xk

0 ← xk−1
best (x1

0 ← x0)
5: DIRECT_STEP(xk

0, δk)
6: if an improvement is found in the direct step then
7: DIRECT_FLAG ← TRUE
8: else
9: DIRECT_FLAG ← FALSE

10: end if
11: if stopping conditions are met then
12: STOP_FLAG ← TRUE
13: Program terminates
14: end if
15: if k ≤ MAX_SEARCH then
16: if DIRECT_FLAG == FALSE then
17: QUADRATIC_STEP(xk

0, β, δk , {xi})
18: if an improvement is found in the quadratic step then
19: QUADRATIC_FLAG ← TRUE
20: else
21: QUADRATIC_FLAG ← FALSE
22: LINEAR_STEP(xk

0, δk)
23: if an improvement is found in the direct step then
24: LINEAR_FLAG ← TRUE
25: else
26: LINEAR_FLAG ← FALSE
27: end if
28: end if
29: end if
30: end if
31: PARAMETER_UPDATE(δk , γ, DIRECT_FLAG, ...
32: QUADRATIC_FLAG, LINEAR_FLAG)
33: end while
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3. Analysis of the DQL Method

3.1. Convergence Analysis

In this section, we show that the DQL method converges to a critical point at the limit
of the iteration and its direct step is crucial for the convergence. To analyze the convergence
of the DQL method, we introduce another well-studied method, the directional direct
search method ([9] p. 115).

3.1.1. Directional Direct Search Method

There are three steps in a directional direct search method. First, in the search step, it
tries to find an improvement by evaluating at a finite number of points. If it fails, then in
the poll step, it chooses a positive basis D̄k from a set D and tries to find an improvement
among Dk =

{
xk

0 + δkd : d ∈ D̄k
}

. Last, the algorithm updates the search step length
depending on the result of the poll step. The pseudocode for the directional direct search
method can be found in ([9] p. 120).

Notice that the linear and the quadratic step of the DQL method can be treated as the
search step of the directional direct search method. In addition, the update step from the
DQL method only decreases the search step length in an unsuccessful iteration, which is
identical to the update step from the directional direct search method. The direct step from
the DQL method can be seen as the poll step from the directional direct search method,
with the set D being an infinite set that consists of all the rotations of the coordinate
directions. As such, the DQL method fits under the framework of the directional direct
search method.

3.1.2. Convergence of the Directional Direct Search Method

The convergence theorem of the directional direct search method is cited from ([9] p. 122).
The convergence of the directional direct search method uses the following assumptions.

Assumption 1. The level set L(x0) = {x ∈ Rn : f (x) ≤ f (x0)} is compact.

Assumption 2. If there exists an α > 0 such that αk > α, for all k, then the algorithm visits only
a finite number of points.

Assumption 3. Let ξ1, ξ2 > 0 be some fixed positive constants. The positive bases Dk used in the
algorithm are chosen from the set

D =
{

D̄ positive basis : cm(D̄) > ξ1,
∥∥d̄

∥∥ ≤ ξ2, d̄ ∈ D̄
}

. (23)

Assumption 4. The gradient ∇ f is Lipschitz continuous in an open set containing L(x0) (with
Lipschitz constant v > 0).

Notice that Assumption 2 holds if the directional direct search method uses a finite set
of positive bases. However, as we desired the ability to use an infinite set of positive basis,
we implemented a sufficient decrease rule to ensure Assumption 2 held.

Theorem 1. Suppose the directional direct search method only accepts new iterates if f (xk+1) <
f (xk)− (δk)2 holds. Let Assumption 1 hold. If there exists an α > 0 such that δk > α, for all k,
then the DQL method visits only a finite number of points, i.e., Assumption 2 holds.

Proof. See Theorem 7.11 of [9].

We have the following convergence theorem.
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Theorem 2. Let Assumptions 1–4 hold. Then,

lim inf
k→+∞

‖∇ f (xk)‖ = 0, (24)

and the sequence of iterates {xk} has a limit point x� for which

∇ f (x�) = 0. (25)

Proof. See Theorem 7.3 of [9].

3.1.3. Convergence of the DQL Method

The DQL method’s approach, as previously stated, is a two-stage procedure. When
k ≤ MAX_SEARCH, all the direct, quadratic and linear steps are enabled, and the method
focuses on the efficiency of finding a better solution. When k > MAX_SEARCH, the method
disables the quadratic and linear steps and switches the solution acceptance rule to the
sufficient decrease rule. This switch allows us to prove the convergence of the method.
In particular, if the objective function f is a function that satisfies Assumptions 1 and 4,
then the method fits under Assumptions 2 and 3. Thus, Theorem 2 applies to the DQL
method.

The following Theorem shows that Assumption 2 holds for the DQL method.

Theorem 3. Let Assumption 1 hold. If there exists an α > 0 such that δk > α, for all k, then the
DQL method visits only a finite number of points.

Proof. Since the number of points evaluated in an iteration is finite and the number of
iterations in the exploration stage is finite, the evaluated points in the exploration stage of
the DQL method is finite.

In the convergence stage, the DQL method accepts an improvement x if f (x) <

f (xk)− (δk)
2
. Therefore, Theorem 1 can be applied to the convergence stage of the DQL

method. Therefore, the DQL method visits only a finite number of points.

Let Dk be the rotation matrix produced by the DQL method at the iteration k. We
denote the set of the columns of

[
Dk −Dk] as D̄k. We have the following proposition.

Proposition 1. Let D̄k be the set of search directions generated by the DQL method at the iteration
k and n be the dimension of the search space. Then,
(a)

∥∥d̄
∥∥ = 1 for any d̄ ∈ D̄k,

(b) cm(D̄k) = 1√
n .

Proof. This is easy to confirm.

Proposition 1 indicates that in the DQL method, the cosine measure of the set of search
directions and the norm of the search directions are constant, so we can find a lower bound
ε1 for the cosine measure of the set of search directions and a upper bound ε2 for the norm
of the search directions. Therefore, Assumption 3 holds for the DQL method.

We present the following convergence theorem for the DQL method.

Theorem 4. Let {xk} be the sequence of iterations produced by the DQL method to a function
f : Rn → Rn with a compact level set L(x0). In addition, let ∇ f be Lipschitz continuous in an
open set containing L(x0). Then, the DQL method results in

lim inf
k→+∞

‖∇ f (xk)‖ = 0, (26)
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and the sequence of iterates {xk} has a limit point x� for which

∇ f (x�) = 0. (27)

Proof. Theorem 2 applies, since Assumptions 1–4 hold for the DQL method.

3.2. Benchmark for Step Strategies

We have two strategies for the quadratic step and four strategies for the linear step.
We denote a combination of strategies using three indexes as strategy ###. The first index is
the index of the strategy used in the direct step. (We currently have only one option for
the direct step, but we introduce more in the next Section. Hence, we use three indices to
identify each strategy.) The second index is used to indicate the quadratic step, and the
last index is used for the linear step. For example, strategy 111 means the combination of
strategies of the direct step strategy 1, quadratic step strategy 1, and linear step strategy 1.
Moreover, we can disable the quadratic or linear steps, and we denote the disabled step
with 0. This gives us 1× 3× 5 = 15 combinations in total. Notice that the direct step cannot
be disabled because it is crucial to the convergence of the method. We would like to select
the best strategy combination among them.

3.2.1. Stopping Conditions

In order to benchmark these strategy combinations, we need to define the stopping
conditions. For our application, we hope to find an approximate solution that is close to an
actual solution and stable enough for us to conclude that it is close to a critical point. We
therefore stop when both the search step length and infinity norm of the centred simplex
gradient are small enough. Three tolerance parameters ε∇, εMAX_STEP, and εMIN_STEP are
used to define the stopping conditions.

The first parameter ε∇ defines the tolerance for the infinity norm of the centred simplex
gradient. If ∥∥∥∇c f (xk

best; δkDk)
∥∥∥

∞
= max

i

{∥∥∥∇c f (xk
best; δkDk)i

∥∥∥} < ε∇, (28)

then the current solution meets our stability requirement. However, if the current search
step length is too large, then the gradient approximation is not accurate enough to stop.
Thus, we use εMAX_STEP to restrict the search step length. When

δk < εMAX_STEP, (29)

the search step length meets our accuracy requirement. When both stability and accuracy
requirements (Equations (28) and (29)) are met, the method stops. The last parameter
εMIN_STEP is a safeguard parameter to stop the method whenever the search step length is
so small that it could lead to floating-point errors. When

δk < εMIN_STEP, (30)

the method terminates immediately. In addition, the methods stop when the number of
function calls reaches MAX_CALL. This safeguard prevents the method from exceeding the
evaluation budget.

In our benchmark, the parameter settings are shown in Table 2. Since the accuracy of
the centred simplex gradient is in O((δk)

2
) [17], we take ε∇ to be ε2

MAX_STEP.
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Table 2. Parameters for the Performance Benchmark

Parameter Value

ε∇ 10−6

εMAX_STEP 10−3

εMIN_STEP 10−12

MAX_SEARCH 10, 000

δ0 10
γ 0.3
β 3

3.2.2. Performance Benchmark

We used the 59 test functions from Section 2 of [22] and [23]. These problems were
transformed to the sum of square problems to fit into our code environment. The dimen-
sions of these problems range from 2 to 20. A large portion (26%) of the problems are in R5,
which is identical to the first solid-tank design problem discussed in Section 5. We note
that Problem 2.13 and 2.17 from [22] were omitted due to scaling problems.

The benchmarking and analysis followed the processes recommend in [24].
We first solved all the problems using the same accuracy and stability requirement by

the FMINCON function from MATLAB. We used these solutions as a reference to the quality
of our solutions. Then, we solved the problems by each strategy combination and recorded
their number of function calls and the STOP_FLAG.

Since the direct step strategy uses a random rotation, we performed each method
multiple times to obtain its average performance. We denoted the function calls used by
strategy combination s for problem p at trial r as ts,p,r and the average performance of
strategy combination s for problem p as ts,p. If a method failed at some trial, we proceeded
with the next trial until a successful trial or until the evaluation budget was exhausted. If the
method found a solution, then we considered the function calls it used as the summation
among all the previously failed trials plus this successful trial. Therefore, the average
performance of strategy combination s for problem p was defined as

ts,p =
∑r ts,p,r

rtotal − rfail
, (31)

where rtotal is the number of total trials and rfail is the number of failed trials.
If ts,p was larger than MAX_SEARCH, then we said that the strategy combination could

not find the target solution within the evaluation budget and reset ts,p = ∞.
We used the performance profile described in [25] to compare the performance among

the strategy combinations. The performance profile first evaluated the performance ratio,

rs,p =
ts,p

min {ts,p : s ∈ S} , (32)

where S is the set of all strategy combinations. This ratio told us how the performance of
strategy s at problem p compared to the best performance of the strategy at the problem.
Then, we plotted the performance profile of strategy s as

ρs(τ) =
1
|P| |{p ∈ P : rs,p ≤ τ}|, (33)

where P is the set of all problems and | · | denotes the number of elements in a set. The perfor-
mance profile told us the portion of the problems solved by strategy s when the performance
ratio was not greater than a factor τ ∈ R. In all results, we validated the performance profile
by also creating profiles with fewer strategies to check if the switching effect occurred [26].
The switching effect never occurred.
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3.2.3. Discussion on the Experiment Results

The performance profile for all the DQL strategies is shown in Figure 2. From Figure 2,
we can see that the performance profile formed three clusters. The best performing strategy
combinations were strategies 123, 122, 121, 120, and 124. The underperforming strategy
combinations were strategies 102, 103, 101, 100, and 104. In addition, this ranking held for
any τ. We therefore drew the following conclusions.

• Quadratic step strategy 2 outperformed quadratic step strategy 1, which outperformed
disabling the quadratic step. This showed that the quadratic step led to a performance
improvement.

• Linear step strategy 4 was the worst strategy in every cluster. This strategy slowed
down the performance. In addition, linear step strategies 1, 2, and 3 and disabling
the linear step showed a mixed performance. Their performance differences were too
small to find a clear winner.

These conclusions above gave us the insight to develop the SMART DQL method. In the
SMART DQL method, we allow the method to choose the appropriate strategy dynamically
and adaptively. First, since both quadratic step strategies were better than disabling the
quadratic step, we decided to include both quadratic step strategies in the SMART DQL
method. For the linear step strategies, we decided to remove linear step strategy 4 and we
allowed the method to choose appropriate linear step strategies. In addition, we developed
a better rotation strategy that selected the rotation direction using the results of previous
iterations. The SMART DQL method is discussed in the next section.

Figure 2. The performance profile for the DQL method with different strategy combinations.

4. SMART DQL METHOD

In this section we introduce the SMART DQL method. The SMART DQL method
fits under the same framework as the DQL method. However, while the DQL method
applies a static strategy, the SMART DQL method chooses the search strategies dynamically
and adaptively.
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4.1. Frameworks of Smart Steps
4.1.1. Smart Quadratic Step

In the smart quadratic step, we aim to combine both quadratic step strategy 1 and
quadratic step strategy 2. We know that quadratic step strategy 2 performs best compared to
other options, so the method should choose to perform quadratic step strategy 2 whenever
the conditions are met. To perform quadratic step strategy 2, we require that both gradient
and Hessian approximation at xk

0 are well-defined. This can be checked by examining
whether ∇2

s f (xk
0; S, {δ

j
hDj

h}) ∈ Rn×n. If this does not hold, then the method should perform
quadratic step strategy 1. To do so, we require that the 2n + 1 evaluated points from
the previous direct step are well-defined. This can be checked by examining whether
∇c f (xk

0; δkDk) ∈ Rn. The pseudocode for the smart quadratic step is shown in Algorithm 7.

Algorithm 7 SMART_QUADRATIC_STEP(∇c f (xk
0; δkDk), ∇2

s f (xk
0; S, {δ

j
hDj

h}))
1: if ∇2

s f (xk
0; S, {δ

j
hDj

h}) ∈ Rn×n then

2: Find Qk using quadratic step strategy 2
3: else
4: if ∇c f (xk

0; δkDk) ∈ Rn then

5: Find Qk using quadratic step strategy 1
6: else
7: Qk ← φ
8: end if
9: end if

10: Return Qk

4.1.2. Smart Linear Step

In the smart linear step, the method should choose among the linear step strategies.
Linear step strategy 4 ranked worse than disabling the linear step. Therefore, we removed
linear step strategy 4 from our strategy pool. Our goal was to design an algorithm that
chose among linear step strategies 1, 2, and 3 to give the method a higher chance to find an
improvement at the current iterate.

We propose that when the last descent distance
∥∥∥xk

0 − xs
0

∥∥∥ is larger than the current
search step length, it is likely that the solution is even further, so the method should
initiate an exploration move. Since linear step strategy 3 had better exploration ability, this
strategy should be initiated under this condition. Notice that linear step strategy 2 had
better exploitation ability, however, it was more computationally expensive than linear
step strategy 1. Thus, linear step strategy 2 should perform better when xk

0 is close to an
approximate solution and linear step strategy 1 should perform better when xk

0 is still far
away from an approximate solution. The comparison between εMAX_STEP and the search
step length is a good indicator for this situation. When the search step length was smaller
than εMAX_STEP, we found that xk

0 was close to an approximate solution, so spending more
effort on local exploitation, i.e., using linear step strategy 2, might give the better result.
In the case when the search step length is larger than εMAX_STEP, the method should spend
less computational power on local exploitation. In some case, such as the first iteration,
the conditions for any of above the linear step strategies do not hold. In this case, the linear
step is disabled. The pseudocode for the smart linear step is shown in Algorithm 8.
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Algorithm 8 SMART_LINEAR_STEP(xk
0, xs

0, ∇c f (xk
0; δkDk))

1: if k ≥ 2 and
∥∥∥xk

0 − xs
0

∥∥∥ ≥ δk then

2: Find Lk using linear step strategy 3
3: else
4: if ∇c f (xk

0; δkDk) ∈ Rn then

5: if δk ≤ εMAX_STEP then
6: Find Lk using linear step strategy 2
7: else
8: Find Lk using linear step strategy 1
9: end if

10: else
11: Lk ← φ
12: end if
13: end if
14: Return Lk

4.1.3. Smart Direct Step

In the smart direct step, we aimed to design a rotation strategy that outperformed
random rotation. Particularly, this smart direct step should be a deterministic strategy
such that the method returns the same result for the same problem setup. To design such
an algorithm, we first studied the results from a successful or failed direct, quadratic, or
linear step.

A successful direct step skips both quadratic and linear step and proceeds with the
direct step in the next iteration. In this case, the same search directions should be used
because these directions have proven to be successful.

If the direct step fails, then the method proceeds with the quadratic step. For both
quadratic step strategies, the method builds a quadratic model. If the quadratic step
succeeds, then it is likely that this quadratic model is accurate. Therefore, the method uses
the gradient of this model as desired rotation direction for the direct step.

If the gradient of the quadratic model was 0, then the quadratic step would fail. If the
quadratic step fails, then the method proceeds with the linear step. For any linear step
strategy, if the linear step succeeds, then the direction used in the linear step is likely to be
a good descent direction. Therefore, the direct step uses the same direction as the previous
linear step as the desired direction. Otherwise, if the linear step fails, then we know that
the linear step direction at xk

0 is a nondecreasing direction. Therefore, at iteration k + 1,
the linear step direction at xk+1

0 is set as an undesired direction.
Algorithm 9 provides the pseudocode of the process to determine rk in the direct step.

Note that since the linear step decision process requires information from the previous iter-
ation, at the first iteration, the method uses the coordinate direction as the desired direction.

4.2. Benchmark for SMART DQL Method
4.2.1. Experiment Result

We marked the smart strategy as strategy S, so the strategy SSS of the DQL method is
the SMART DQL method. We performed the numerical experiment with the same setup as
the benchmark for the step strategies from the previous section. Then, we constructed the
performance profile as shown in Figure 3.

4.2.2. Discussion

As we can see from Figure 3, the SMART DQL method preformed best at any given
τ. The SMART DQL method solved more than 45% of the problems as the fastest method.
In addition, it solved more than 75% of the problems, which was more than any DQL
method. Therefore, we attained a considerable improvement over the original DQL method.
In the next section, we apply the SMART DQL method in a real-world application.
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Algorithm 9 DETERMINE_ROTATION_DIRECTION( Dk−1, mk−1(x), dk−1)

1: if k = 1 then
2: rk = e1 is a desired direction
3: else
4: if the direct step at iteration k − 1 succeeds then
5: rk = rk−1

6: else
7: if the quadratic step at iteration k − 1 succeeds then
8: if ∇mk−1(xk

0) = 0 then

9: rk = e1 is a desired direction
10: else
11: rk = ∇mk−1(xk

0) is a desired direction
12: end if
13: else
14: if the linear step at iteration k − 1 succeeds then
15: rk = dk−1 is a desired direction
16: else
17: rk = dk−1 is an undesired direction
18: end if
19: end if
20: end if
21: end if
22: Returnrk

Figure 3. The performance profile for the SMART DQL method and all the DQL methods.

5. Solid-Tank Design Problem

5.1. Background

The solid-tank design problem [16] aims to create a design for a solid-tank fan-beam
optical CT scanner with minimal matching fluid, while maximizing light collection, min-
imizing image artifacts, and achieving a uniform beam profile, thereby maximizing the
usable dynamic range of the system. For a given geometry, a ray-path simulator designed
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by the UBCO gel dosimetry group is available in MATLAB and outputs tank design qual-
ity scores. The simulator is computationally expensive, so the efficiency of the method is
crucial for solving this problem.

In the original problem, there are five parameters that control the geometry design.
As shown in Figure 4, these are block length xbl , bore position xbc, fan-laser position xlp,
lens block face’s semi-major axis length xma, and the lens block face’s eccentricity xbe.

Figure 4. The geometry of the solid-tank fan-beam optical CT scanner.

These parameters give us an input x ∈ R5. The following bounds are the constraints for
the problem.

x =
[
xbl xbc xlp xma xbe

]� ∈ R5 (34)

xbl ≤ 400 (35)

xbl ≥ 2l + 2|xbc| (36)

xbc ∈ [−30, 30] (37)

xlp ∈ [40, 100] (38)

xma ∈ [40, 80] (39)

xbe ∈ [0, 1], (40)

where l = 52 mm (bore radius) + 5 mm (safeguard distance). The parameters xbl , xbc, xlp,
and xma are in mm and xbe is dimensionless.

An advanced version of the simulation software tool is currently being developed. This
version introduces three new variables (xbe2, xecc2 and xd3), resulting in an eight-variable
problem with the following constraints.

x =
[
xbl xbc xlp xma xbe xbe2 xecc2 xd3

]� ∈ R8 (41)

xbl ∈ [2l + 2|xbc|, 400] (42)

xbc ∈ [−40, 40] (43)

xlp ∈ [40, 100] (44)

xma ∈ [40, 160] (45)

xbe ∈ [0, 1] (46)

xbe2 ∈ [70, 120] (47)

xecc2 ∈ [0, 2.5] (48)

xd3 ∈ [0, 400 − xbl ], (49)

where l = 52 mm (bore radius) + 5 mm (safeguard distance). The parameters xbl , xbc, xlp,
xma, xbe2, and xd3 are in mm and xbe and xecc2 are dimensionless.
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At this time, the five-variable model is ready for public use. The eight-variable model
is still undergoing detailed physics validation, but will be released along with the solid-tank
simulation software tool. (See Data and Software Availability Statement for release details.)

In this section, we optimize the solid-tank design problems using the DQL and SMART

DQL methods.

5.2. Transforming the Optimization Problem

We defined fsimu : Rn → R as the simulating scores at a given geometry, where n = 5
for the original problem and n = 8 for the redesigned problem. The output was normalized
to give a final value between zero and one. Since the DQL and SMART DQL methods were
designed for minimizing unconstrained problems, we transformed the problems as follows,

−min
{− fsimu(ProjC(x)) : x ∈ Rn} (50)

where ProjC(x) is the projection of the input x onto the constraints C. For ease of interpre-
tation, we shall report the optimized results as a value between zero and one with the goal
of maximizing this value.

5.3. Experiment Result and Discussion

The stopping parameters for the solid-tank design problems are shown in Table 3; all
other parameters remained the same as in Table 2. The maximum accepted step length
εMAX_STEP was designed to be the target manufacturing accuracy of the design. The min-
imum accepted step length εMIN_STEP was designed to be the manufacturing error of the
design. ε∇ ensured the accuracy of the stability of the solution to be within 10−3.

Table 3. The Stopping Parameters for the Solid-Tank Design Problems

Parameter Value

ε∇ 2 × 10−3

εMAX_STEP 0.5
εMIN_STEP 0.001

MAX_SEARCH (n = 5) 5000
MAX_SEARCH (n = 8) 8000

For each experiment, the method was assigned a random initial point within the
constraints. Then, if the method was able to find a solution with unused function calls, it
was assigned with a new initial point and began a new search. This process was repeated
until the evaluation budget was exhausted.

Each experiment was performed with three different profile settings: water, Flexy-
Dos3D, and ClearViewTM. These represented three standard dosimeters used in gel dosime-
try and each had unique optical parameters (index of refraction and linear attenuation
coefficient). As such, we had six related but distinct case problems.

To compare the performance of the DQL and SMART DQL methods, we ran the
experiment with both methods. For each individual case, both methods were assigned the
same list of initial points and evaluation budget. The optimum scores found by different
methods for distinct profiles are shown in Table 4. Recall that values were between zero
and one with the goal of maximizing these values.

Among the six individual tests, the SMART DQL method found a solution with a
higher score for five of them under the same evaluation budget and initial points. In two
cases (n = 8 water and n = 8 ClearViewTM), the SMART DQL method found a significant
improvement. For the only case where DQL returned a higher score (n = 8 FlexyDos3D),
the improvement was only 0.003. This showed that the SMART DQL method was more
reliable in this application than the DQL method. The experiment results agreed with our
conclusion from the performance benchmark.

148



Algorithms 2023, 16, 92

Table 4. Optimum Scores for Solid-Tank Design Problem

Dimension Method Water FlexyDos3D ClearViewTM

r 1 = 1.3316 r = 1.4225 r = 1.3447

n = 5 DQL 0.801 0.979 0.952
n = 5 SMART DQL 0.829 0.981 0.956
n = 8 DQL 0.767 0.977 0.686
n = 8 SMART DQL 0.857 0.974 0.831

1 The index of refraction of the corresponding dosimeter.

We show the optima from the SMART DQL method in Tables 5 and 6 for the five- and
eight-variable models, respectively.

Table 5. Optima for Solid-Tank Design Problem (n = 5).

xbl xbc xlp xma xbe
Profile (mm) (mm) (mm) (mm)

Water 252.4 19.2 71.8 70.1 0
FlexyDos3D 282.0 5.8 51.8 67.0 0
ClearViewTM 225.1 21.2 63.1 69.0 0

Table 6. Optima for Solid-Tank Design Problem (n = 8).

xbl xbc xlp xma xbe xbe2 xecc2 xd3

Profile (mm) (mm) (mm) (mm) (mm) (mm)

Water 122.6 −4.3 94.0 79.8 0.8 70.0 0 23.4
FlexyDos3D 114.0 0 100.0 68.3 0.1 70.0 0 0.5
ClearViewTM 114.0 0 100.0 93.3 1.0 70.8 0.3 46.1

We were not able to identify a uniform design that was competitive for all profiles.
The optimal design of the solid tank varied for different models and among different pro-
files. We noticed that in the eight-variable design, the method tried to minimize the block
length xbl and maximize the laser position xlp for both FlexyDos3D and ClearViewTM;
this suggested that further improvement may be gained by extending the range for
these parameters.

6. Conclusions

In this research, we presented a DFO framework that allowed for direct search methods
and model-based methods to be united into a single algorithm.

The DQL framework showed advantages over other methods in the literature. First,
unlike heuristic based methods, convergence was mathematically proven under reasonable
assumptions. Second, unlike more rigid DFO methods, the DQL framework was flexible,
allowing the combination of direct search, quadratic step, and linear step methods into a
single algorithm. This balance of mathematical rigour and algorithmic flexibility created a
framework with a high potential for future use.

The algorithm was further examined numerically. In particular, we benchmarked the
developed DQL method’s strategy combinations to determine the optimal combination.
The benchmark implied that there was no obvious winner. This motivated the development
of the SMART DQL method. We presented the pseudocode for the SMART DQL method
and conducted an additional benchmark. The SMART DQL method outperformed all other
DQL methods in the benchmark. Last, the SMART DQL method was used to solve the
solid-tank design problem. The SMART DQL method was able to produce higher-quality
solutions for this real-world application compared to the DQL method, which verified the
high performance of the decision-making mechanism.

While the DQL and SMART DQL methods both balanced mathematical rigour and
algorithmic flexibility, it is worth noting their drawbacks. The most notable one is that the
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implementations of DQL and SMART DQL are both at the prototype stage. In comparison
to more mature implementations (such as that of SID-PSM [13]), DQL and SMART DQL are
unlikely to compete at this time. Another drawback is the need to asymptotically focus on
direct search to ensure convergence. Further study will work to advance the SMART DQL
method both in the quality of its implementation and the requirements for convergence.
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Abstract: (1) Background: Stent underexpansion is the main cause of stent thrombosis and restenosis.
Coronary angiography has limitations in the assessment of stent expansion. Enhanced stent imaging
(ESI) methods allow a detailed visualization of stent deployment. We qualitatively compare image
results from two ESI system vendors (StentBoost™ (SB) and CAAS StentEnhancer™ (SE)) and report
quantitative results of deployed stents diameters by quantitative coronary angiography (QCA) and
by SE. (2) Methods: The ESI systems from SB and SE were compared and graded by two blinded
observers for different characteristics: 1 visualization of the proximal and distal edges of the stents;
2 visualization of the stent struts; 3 presence of underexpansion and 4 calcifications. Stent diameters
were quantitatively measured using dedicated QCA and SE software and compared to chart diameters
according to the pressure of implantation. (3) Results: A total of 249 ESI sequences were qualitatively
compared. Inter-observer variability was noted for strut visibility and total scores. Inter-observer
agreement was found for the assessment of proximal stent edge and stent underexpansion. The
predicted chart diameters were 0.31 ± 0.30 mm larger than SE diameters (p < 0.05). Stent diameters
by SE after post-dilatation were 0.47 ± 0.31 mm smaller than the post-dilation balloon diameter
(p < 0.05). SE-derived diameters significantly differed from QCA; by Bland–Altman analysis the bias
was −0.37 ± 0.42 mm (p < 0.001). (4) Conclusions: SE provides an enhanced visualization and allows
precise quantitative assessment of stent expansion without the limitations of QCA when overlapping
coronary side branches are present.

Keywords: stent; percutaneous coronary intervention; quantitative coronary angiography

1. Introduction

Coronary angiography is the primary diagnostic imaging modality for the evaluation
and classification of coronary artery lesions as well as for guiding percutaneous coronary
interventions (PCIs). Percutaneous interventions are the most performed coronary revas-
cularization procedure, improving the quality of life of patients along with their clinical
outcomes [1]. Despite major advances in coronary stent technology, acute and late PCI-
related complications still occur [2–4]. Successful PCI results relate directly to proper stent
placement and deployment. Stent underexpansion was shown to be a major predictor of
stent restenosis and thrombosis by quantitative coronary angiography (QCA) [5]. More-
over, insufficient stent expansion and malapposition found by intracoronary imaging were
shown as major predictors of stent thrombosis in several studies [6–10].

Although optimizing stent implantation under intravascular imaging guidance is
widely supported by the current literature [11–17], its routine clinical use remains limited
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due to the added time and cost to the procedure along with the image interpretation
difficulties. Despite conventional angiography often falling behind in the detection of
stent underexpansion and presenting a suboptimal accuracy assessing stent position, it is
still carried out during routine clinical practice especially with newer generation scaffolds
that are implanted at a higher pressure followed by a post-dilatation step and rely on the
radiopaque nature of the material used for visualization.

Thicker stent struts were associated with higher in-stent restenosis rates in the ISAR
STEREO trials [18,19]. On the other hand, thinner strut scaffolds used in new generation
stents have been advocated to significantly reduce the risk of myocardial infarction at the
expense of being more radiolucent on fluoroscopy [3,20–23]. Moreover, the trend towards
the use of lower X-ray power during angiographic procedures presents another challenge
for stent visualization which is further altered due to motion during the angiography
sequence secondary to X-ray scattering.

More recently, several enhanced stent imaging (ESI) methods have been developed.
These angiography-based software improve stent visualization and provide quantitative
as well as qualitative data post-stent deployment but remain dependent on the X-ray
angiographic system of each vendor [24,25]. The StentBoost® system (SB) (Philips Health-
care, Andover, MA, USA) is a motion-corrected X-ray stent visualization software that
allows better assessment of stent expansion without using contrast [25]. It was designed
as an add-on to conventional X-ray angiographic system and was found to be superior
to conventional angiography in detecting stent underexpansion. The algorithm relies on
the motion-compensated noise reduction by using landmarks (balloon markers) on 45 reg-
istered frames acquired over 3–4 s [26]. These images are transferred automatically to a
workstation and corrected by averaging the images from each cine frame in relation to
the two balloon markers. The software enhances stent visibility, fading out anatomical
structures and background noise [25]. SB was found to have good correlation with IVUS re-
garding stent diameter and was found to be superior to quantitative coronary angiography
(QCA) [14,17,24,27–31].

Pie Medical Imaging (Maastricht, The Netherlands) introduced the CAAS StentEnhancer®

(SE), a method similar to SB with the main advantage of being completely independent of the X-
ray angiographic system of the vendor and hence, runs on a side station. SE uses a maximum
of 40 frames from a Digital Imaging and Communications in Medicine (DICOM) file. Its
algorithm automatically detects the markers of the stent balloon or of the balloon used for
post-dilation in order to compute a single image in which the visibility of a deployed stent
is improved. Following background subtraction, all frames are transformed into a common
reference frame. The resulting images are combined into a single image after weighted
averaging. A sharpening filter is then applied. This filter works by first extracting the high-
frequency components from the image. These high-frequency components are then added,
using a predefined amount, to the original image. High-frequency components are extracted
by first creating a blurred version of the image through performing a convolution of a
Gaussian filter at a predefined scale with the original image. Subtracting the blurred version
from the original yields the high-frequency components. An optimally contrasted enhanced
stent image is then generated to improve the visibility using a linear scaling within a
predefined width around the peak pixel value which is established from a histogram
analysis. Furthermore, the SE system allows for a manual contrast adjustment of the
generated images as well as a quantitative assessment of the deployed stent through
manual measurements of different diameters along the stent length.

Quantitative coronary angiography (QCA) is a tool to measure coronary arteries filled
with contrast based on the use of a dedicated software allowing automated measurements
(that can be manually corrected) of vessel diameter, percent stenosis, and minimal lumen
of stent diameters [32]. After image acquisition, a digital quantification on a selected frame
can be easily performed with or without magnification.

The aims of this study was to (1) qualitatively compare image results from the SE sys-
tem to the currently available SB system and (2) report the comparisons between measured
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diameters of deployed stents by the SE system and the expected chart diameters upon
deployment and after post-dilation as well as final QCA measurements.

2. Materials and Methods

2.1. Study Design

Between January 2016 and January 2018, patients in whom an ESI acquisition was
performed after the implantation of a stent at the Centre Hospitalier Universitaire et
Psychiatrique de Mons-Borinage (CHUPMB), Belgium, were retrospectively reviewed. The
acquired ESI images were transferred to the SB and SE workstations (CAAS workstation
software v.8.4) and reconstructed. The patients’ baseline demographic and procedural
characteristics were collected. The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Ethics Committee of CHUPMB and Erasme-
ULB (Université Libre de Bruxelles) (protocol code P2017/462 on 16 October 2017) who
waived the requirement for written consent. Two independent blinded and experienced
interventional cardiologists compared and graded the stent images obtained by each
technique. The images from the same sequence (SB and SE) were blindly compared side to
side (on the left side, it was either a SB or SE image and on the right side the other one).
The images were graded on a scale from 0 to 2 (0 = undetectable; 1 = seen unclearly; and
2 = clearly seen) for different characteristics: (1) visualization of the proximal edge of the
stent; (2) visualization of the distal edge of the stent; (3) clear visualization of the struts of
the stent; and (4) the presence of underexpansion and (5) calcifications. One month later,
50 sequences were randomly selected and re-analyzed a second time by one of the two
observers for the intra-observer variation analysis.

A subset of images was processed using a custom-designed Matlab software (version
R2017a, The MathWorks, Natick, MA, USA) that computed the signal-to-noise ratio (SNR)
of SB and SE images defined as the ratio of the average signal value μsig to the standard
deviation σbg of the background. As shown in Figure 1, a reference noise square of 100 by
100 pixels was manually placed in a region without interventional material (wire, previous
stent, etc.) and without a bone structure such as a rib. Another rectangle was then traced
around the stent, as close as possible to the struts. The same two regions were used in the
SB and SE images for comparison. The standard deviation σbg of the background pixel
values was calculated in the square region of interest (ROI) of noise whereas the average
signal value μsig was calculated as the average of the values of the pixels in the ROI traced
around the enhanced stent.

Furthermore, between January 2021 and July 2022, patients with mildly to moderately
calcified de novo coronary lesions in 4 Belgian centers who were treated by stent implanta-
tion and ESI acquisition in 2 orthogonal views were prospectively included. This protocol
with EudraCT code B7072020000065 was approved by the Ethics Committee Hospitalo-
Facultaire Universitaire de Liège under reference 2020/87 on 13/11/2020, as well as by each
local institution review board. The study was also conducted according to the guidelines
of the Declaration of Helsinki and informed written consent were obtained. The patients’
baseline demographic and procedural characteristics were collected. The ESI images were
transferred to the SE and QCA workstations (CAAS software v.8.4) and reconstructed. Of
note, one center used a Siemens X-ray system with the Clearstent ESI system, the others
used a Philips system with StentBoost. SE and QCA could be measured on the DICOM files
from these two manufacturers. The final QCA analysis was conducted and included maxi-
mal and minimal stent diameters as well as percent stenosis. A quantitative SE analysis of
the 2 orthogonal views acquired including proximal and distal stent edge diameters as well
as minimal stent diameter was conducted. Mean stent diameter as well as percent stenosis
were calculated in both views and compared to the expected stent chart diameter according
to the pressure of deployment of the stent and after post-dilatation when available as well
as to the QCA measurements. A Bland–Altman analysis was performed to compare the SE
and QCA diameters.
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Figure 1. On the top, comparison between the original angiographic image (left), StentBoost (middle)
and StentEnhancer (right) and the region where the noise was computed (red square) and the signal
(blue region of interest around the stent). Bottom, original frame (left) and StentBoost (middle)
and StentEnhancer (right) results where an underexpansion can be detected from the important
calcifications outside of the stent. SNR in original image is 2.8, and, respectively, 5.7 and 7.7 for the
SB and SE images (in area around stent).

2.2. Statistical Analysis

Categorical variables are reported as absolute values and percentages. Continuous
variables are presented as means and standard deviations.

The Wilcoxon test was used to compare the two software and the two observers. After
comparisons of the two methods, Kappa coefficients were calculated for repeatability and
agreement between the reviewers.

The Kendall test was used to compare the two software for the presence of calcifications
and stent underexpansion. Two McNemar tests were used for the evaluation of calcifications
on underexpansion and post-dilatation efficacy. The SNRs of the SB and SE images were
compared using a paired t-test. A p value < 0.05 was considered statistically significant. All
statistical analyses was performed using SPSS software v.23 (IBM, New York, NY, USA).

3. Results

3.1. Patient and Lesion Characteristics
3.1.1. Qualitative Analysis

The qualitative analysis included 157 lesions with a total of 249 ESI sequences from
140 patients. The mean patient age was 64.7 ± 10.8 years, and 72.1% (n = 101) were men.
Calcifications were reported on angiography in 72% (n = 113) of the cases. A total of
170 stents were placed, of which, 140 (82.5%) were drug-eluting stents. Post-dilatation was
performed in 68% of the cases; of these, 92% used a non-compliant balloon. The lesions
were deemed highly calcified for 13 lesions (8%), moderately calcified for 40 (25%), slightly
calcified for 60 (38%), and free of calcifications for 44 (28%). The baseline clinical, lesion, and
stent characteristics of the study population are outlined in Table 1. Out of the 157 treated
lesions, 26 (17%) were ST elevation myocardial infarctions (STEMI) and 46 (29%) non-ST
elevation myocardial infarctions (NSTEMI). The indication to perform PCIs for the other
patients was angina pectoris or arrhythmia, with ischemia proven non-invasively or after
measurement of a fractional flow reserve. There were 18 total occlusions (11%). The lesions
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were localized in 34% of the cases in the right coronary artery (RCA), in 24% in the left
circumflex artery (LCx), in 39% in the left anterior descending artery (LAD), and in 5% in
the left main coronary artery.

Table 1. Qualitative cohort baseline clinical, lesion, and stent characteristics.

N

Number of patients 140
Mean age (years) 64.7 ± 10.7
Male gender 101 (72.1%)
Mean body mass index (kg/m2) 29.1 ± 5.9

Risk factors
Hypertension 91 (65%)
Dyslipidemia 119 (85%)
Diabetes mellitus 54 (38.6%)
Current smoker 37 (26.4%)

Indication for PCI procedure
Stable angina 45 (26.5%)
Unstable angina
Non-ST elevation myocardial infarction 46 (27.1%)
ST elevation myocardial infarction 26 (15.3%)
Other

Medical history
Peripheral artery disease 38 (27.1%)

Treated coronary artery
Number of lesions treated 157
Calcifications 113 (72%)
Left anterior descending artery 62 (39.5%)
Left circumflex artery 24 (15.3%)
Right coronary artery 53 (33.8%)
Left main coronary artery 8 (5.1%)
Other 10 (6.4%)

Stents
Number of stents implanted 170
Coating Scaffold Struts Thickness (μm)
Everolimus

PtCr 81 1 (0.6%)
PtCr 74 67 (39.4%)

Sirolimus
CoCr 60 38 (22.4%)
CoCr 80 29 (17.1%)
316L 100 3 (1.8%)
Mg 150 1 (0.6%)

Paclitaxel PtCr 81 1 (0.6%)
TiNO CoCr 75 5 (2.9%)
BMS

CoCr 80 25 (14.7%)
BMS = bare metal stent; CoCr = cobalt chromium; PtCr = platinum chromium; TiNO = titanium nitric oxide;
316L = 316L stainless steel.

3.1.2. Quantitative Analysis

The quantitative analysis included 93 lesions treated in a total of 76 patients with
a mean age of 69.2 ± 9.1 years, of which, 71.1% (n = 54) were men. The left anterior
descending artery was treated in 63.4% (n = 59) and calcifications burden was moderate
in 46.1% (n = 35) of cases. The baseline clinical, lesion, and stent characteristics of the
study population are outlined in Table 2. A total of 98 stents were implanted with a mean
diameter of 3.16 ± 0.46 mm at a mean inflation pressure of 11 ± 2 atm for which a mean
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chart diameter of 3.25 ± 0.47 mm was expected. Post-dilation was performed in 82.7%
(n = 81) of cases using a non-compliant balloon in 85.5% (n = 71).

Table 2. Quantitative cohort baseline clinical, lesion, and stent characteristics.

N

Number of patients 76
Mean age (years) 69.2 ± 9.1
Male gender 54 (71.1%)
Mean body mass index (kg/m2) 28.1 ± 4.6

Risk factors
Hypertension 56 (73.7%)
Dyslipidemia 57 (75.0%)
Diabetes mellitus 28 (36.8%)
Current smoker 12 (15.8%)
Family history of heart disease 24 (31.6%)
Peripheral vascular disease 8 (10.5%)
Previous myocardial infarction 14 (18.4%)
Previous PTCA 26 (34.2%)
Renal impairment 2 (2.6%)

Indication for PCI procedure
Chronic coronary syndrome 28 (36.8%)
Unstable angina 6 (7.9%)
Non-ST elevation myocardial infarction 5 (6.6%)
Silent ischemia 37 (48.7%)

Treated coronary artery
Number of lesions treated 93
Calcifications burden

Mild 29 (38.2%)
Moderate 35 (46.1%)
Severe 12 (15.8%)

Lesion classification (AHA/ACC)
A 6 (6.5%)
B1 62 (66.7%)
B2 22 (23.7%)
C 3 (3.3%)

Left anterior descending artery 59 (63.4%)
Left circumflex artery 8 (8.6%)
Right coronary artery 25 (26.9%)
Left main coronary artery 1 (1.1%)

Stents
Number of stents implanted 98
Mean stent diameter (mm) 3.16 ± 0.46
Mean stent length (mm) 25 ± 9
Mean deployment pressure (atm) 11 ± 2
Expected chart diameter (mm) 3.25 ± 0.47
Post-dilation performed 81 (82.7%)
Non-compliant balloon 71 (85.5%)
Mean maximal post-dilatation balloon diameter (mm) 3.57 ± 0.54
Mean maximal balloon inflation pressure (atm) 18 ± 3

ACC/AHA = American College of Cardiology and the American Heart Association.

3.2. ESI Image Quality Evaluation

Table 3 shows the evaluation results of the two observers. The proximal and distal edge
visualization grades did not differ between the two observers (1.42 ± 0.77 vs. 1.38 ± 0.62
and 1.46 ± 0.76 vs. 1.44 ± 0.61 for observer 1 and 2, respectively); however, a statistically
significant difference (p < 0.05) was found between the mean total grade from observer 1
vs. observer 2 (4.12 ± 1.73 vs. 3.67 ± 1.49, respectively) for the evaluation of SB images
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(Figure 1). A statistically significant difference (p < 0.05) was also found between the
mean total grade from observer 1 vs. observer 2 (4.10 ± 1.86 vs. 3.76 ± 1.58, respectively)
for the evaluation of SE images with no statistically significant difference noted for the
proximal and distal edge visualization grades (1.46 ± 0.79 vs. 1.42 ± 0.64 and 1.43 ± 0.77
vs. 1.46 ± 0.59 for observer 1 and 2, respectively).

Table 3. Qualitative analysis of SB and SE.

Observer 1 Observer 2 p-Value
SE SB SE SB

Stent strut visibility 1.28 ± 0.73 1.35 ± 0.68 0.98 ± 0.69 0.96 ± 0.61 <0.001
Proximal stent edge visibility 1.46 ± 0.79 1.42 ± 0.77 1.42 ± 0.64 1.38 ± 0.62 NS
Distal stent edge visibility 1.43 ± 0.77 1.46 ± 0.76 1.46 ± 0.59 1.44 ± 0.61 NS
Total score 4.10 ± 1.86 4.12 ± 1.73 3.76 ± 1.58 3.67 ± 1.49 <0.001

Inter-observer Kappa coefficients (n = 249)
SE SB

Stent strut visibility 0.456 0.344
Proximal edge visibility 0.434 0.498
Distal edge visibility 0.416 0.386
Stent underexpansion 0.394 0.480
Calcifications 0.352 0.447

Intra-observer Kappa coefficients (n = 50)
Stent strut visibility 0.760 0.557
Proximal edge visibility 0.629 0.710
Distal edge visibility 0.647 0.783
Stent underexpansion 0.584 0.473
Calcifications 0.674 0.477

NS = non-significant; SB = StentBoost; SE = StentEnhancer. Mean values of parameters graded out of 2 points
and total score graded out of 6 points.

A Wilcoxon test demonstrated a statistically significant difference between the
two observers (p < 0.001) indicating that they assessed the visualization of struts dif-
ferently. This demonstrates the variability in such a qualitative assessment of any
angiographic parameter.

The Kappa coefficients were calculated between the two observers (inter-observer
Kappa) and between two different evaluations by the same observer (intra-observer Kappa).
The evaluation system was simplified to a binary one. Inter-observer agreement be-
tween the two reviewers was observed (coefficient < 50% for the proximal stent edge
with SB). The stent underexpansion and calcification coefficients showed similar results
(coefficient < 48%). The intra-observer Kappa coefficients showed low reproducibility with
perhaps a better reproducibility for the SB.

There was no significant difference between the two methods, SB or SE, according to
the Wilcoxon test for each observer (Table 4). A final Kendall test demonstrated a significant
difference between the two observers for the assessment of underexpansion and calcifi-
cations (Figure 2). While the first reviewer found a correlation of ±60%, the second one
found ±90% (Table 5). This called for a more quantitative assessment of underexpansion
which we validated prospectively in the second part of this research project.
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Table 4. Different mean values of parameters by observer.

SE SB p-Value

O
b

se
rv

e
r

1 Stent strut visibility 1.28 ± 0.73 1.35 ± 0.68 NS
Proximal edge visibility 1.46 ± 0.79 1.42 ± 0.77 NS
Distal edge visibility 1.43 ± 0.77 1.35 ± 0.68 NS
Total score 4.10 ± 01.86 4.12 ± 1.73 NS

O
b

se
rv

e
r

2 Stent strut visibility 0.98 ± 0.69 0.96 ± 0.61 NS
Proximal edge visibility 1.42 ± 0.64 1.38 ± 0.62 NS
Distal edge visibility 1.46 ± 0.59 1.44 ± 0.61 NS
Total score 3.76 ± 1.58 3.67 ± 1.49 NS

NS = non-significant; SB = StentBoost; SE = StentEnhancer. Mean values of parameters graded out of 2 points
and total score graded out of 6 points.

 

Figure 2. Underexpansion images before and after post-dilation (arrows). (A) StentBoost image before
post-dilation; (B) StentEnhancer image before post-dilation; (C) StentBoost image after post-dilation;
(D) StentEnhancer image after post-dilation.
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Table 5. Comparison of rates of calcifications and underexpansion by SE and SB.

SE SB Kendall Coefficient

O
b

se
rv

e
r

1

Stent underexpansion (%) 71.5 73.9 61

Calcifications (%) 64.0 43.8 58

O
b

se
rv

e
r

2
Stent underexpansion (%) 47.0 47.0 92

Calcifications (%) 63.9 62.7 91

3.3. Signal-to-Noise Ratio

The calculated SNR on a random part of the image and around the stent struts for a
selection of 53 original frames was higher for SB and SE compared to the original frames
(3.2 ± 1.0; 4.3 ± 1.5 and 2.2 ± 0.3, respectively). The SNR was statistically significantly
higher for SE compared to SB (p < 0.01), as shown in Figure 3.

Figure 3. Linear regression between SNRs of StentBoost and StentEnhancer on 53 different frames.

3.4. Quantitative Analysis

Out of 93 lesions, reliable QCA analysis could be performed on the final PCI result
in 90 lesions. Foreshortening or the overlap of branches precluded the analysis in five
lesions. The mean stent diameter on QCA after stent implantation was 2.74 ± 0.53 mm
and differed significantly from the predicted chart diameter (p < 0.05). On average, the
predicted chart diameter upon stent implantation was 0.44 ± 0.44 mm larger than the
mean stent diameter on QCA (95% CI; 0.34 to 0.53). This was also found upon comparison
of mean stent diameter by QCA and maximal achieved post-dilation balloon diameter
(p < 0.001). The stents diameters found by QCA tended to be 0.74 ± 0.48 mm smaller than
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the maximal achieved balloon diameter upon post-dilation (95% CI; 0.62 to 0.84). The
remaining stents could not be quantified due to vessel overlapping.

A quantitative SE analysis could be performed in more stents (n = 91) using both
orthogonal views after deployment of the stent and following post-dilation (Figure 4).
The mean stent diameter post-implantation was 2.96 ± 0.45 mm (90% of predicted chart
diameter) which was statistically different from the expected chart diameter (p < 0.001). The
expected chart diameter was on average 0.31 ± 0.30 mm larger than the SE diameter (95% CI;
0.25 to 0.38). There was no statistically significant difference between the measured mean
stent diameters and the measured diameters at the maximal stent underexpansion point
between the two orthogonal views upon implantation (2.95 ± 0.46 mm vs. 2.95 ± 0.49 mm
and 2.39 ± 0.46 mm vs. 2.44 ± 0.47 mm, respectively; p > 0.05). The mean stent diameter
after post-dilatation by SE was 3.13 ± 0.49 mm (84% of predicted balloon diameter) and
was, on average, 0.47 ± 0.31 mm smaller than the balloon diameter (95% CI; 0.39 to 0.56).
The mean maximal stent underexpansion upon deployment was 19 ± 9% and 16 ± 7%
after post-dilation. There was no statistically significant difference in the measured mean
stent diameters between the two orthogonal views after post-dilation (3.11 ± 0.48 mm
vs. 3.18 ± 0.55 mm; p > 0.05); however, a statistically significant difference was noted for
the measured diameter at the site of maximal stent underexpansion point between the
two views after post-dilation (2.58 ± 0.52 mm vs. 2.69 ± 0.52; p = 0.004). The achieved
mean diameter by SE after post-dilation was more in line with the expected chart diameter
upon implantation with a mean difference of 0.13 ± 0.32 mm (95% CI; 0.04 to 0.21). A
statistically significant diameter gain of 0.23 ± 0.23 mm was noted at the site of maximal
stent underexpansion after balloon post-dilation was noted upon comparison of mean
minimal stent diameters upon implantation and after post-dilation (2.41 ± 0.44 mm vs.
2.63 ± 0.49 mm, respectively; p < 0.001). The detailed quantitative analysis results can
be found in Table 6. The mean stent diameters after stent deployment by SE were, on
average, 0.41 ± 0.44 mm [95% CI; 0.06 to 0.23] larger than the mean stent diameters by
QCA (p < 0.05) and were 0.32 ± 0.38 mm [95% CI; 0.05 to 0.22] larger after post-dilation
(p < 0.05).

Table 6. QCA and SE measurements.

QCA Analysis

Post-Stent Implantation n = 14
Mean stent diameter (mm) 2.74 ± 0.53
Minimal in-stent diameter (mm) 2.26 ± 0.48
Percentage stenosis (%) 13.86 ± 9.54

Post-balloon post-dilation n = 75
Mean stent diameter (mm) 2.84 ± 0.53
Minimal in-stent diameter (mm) 2.23 ± 0.46
Percentage stenosis (%) 14.7 ± 11.9

SE analysis
Mean stent diameter at deployment (mm) 2.96 ± 0.47
Minimal in-stent diameter at deployment (mm) 2.41 ± 0.44
Deployment diameter to chart (%) 90 ± 9
Mean stent underexpansion at deployment (%) 19 ± 9
Mean stent diameter after post-dilation (mm) 3.13 ± 0.49
Minimal in-stent diameter after post-dilation (mm) 2.63 ± 0.49
Post-dilation diameter to balloon (%) 13 ± 2
Mean stent underexpansion after post-dilation (%) 16 ± 7

162



Algorithms 2023, 16, 276

 

Figure 4. Quantitative analysis of an implanted proximal left anterior descending stent. Panel
(A): quantitative coronary angiography analysis; Panel (B): StentEnhancer quantitative analysis
post-implantation in two orthogonal views; Panel (C): StentEnhancer quantitative analysis after post-
dilation. Stent expansion could be evaluated visually with clear stent struts and minimal calcifications.
The pixels were transformed into millimeters using the calibration of the image. Note the presence of
a second stent implanted in the ramus intermedius. Panel (D): Intravascular images at the minimal
cross-sectional area in the stent after implantation (left) and after post-dilatation (right).

4. Discussion

The current study qualitatively compared the inter- and intra-observer results of
different image criteria of a novel ESI software (SE) to the market-available one (SB) as well
as a quantitative analysis of SE.

The results of the two ESI algorithms were compared as per each observer and finally
SNRs for the two methods were calculated and compared to the SNR calculated from
the angiographic image. ESI methods have been demonstrated to enhance contrast on
fluoroscopic images, allowing better visualization of stent struts. This study demonstrated
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that SE is not inferior to SB for the criteria evaluated but a clear inter-observer variability
calls for more quantitative methods. Despite this difference, both observers had a preference
towards SE images to study parameters. SE can be easily integrated into procedures,
independent of the X-ray angiography machine vendor, and was found in our study to
provide good stent expansion assessment as well as a better stent strut visualization. The
SNR of SE images was found to be superior compared to SB. We cannot provide a definite
answer why this was the case, since we are unaware of the exact methods of StentBoost.
However, based on the available papers, there are methodological differences. For instance,
SB does not seem to perform background subtraction as can be seen in Figure 1.

Since newer generation scaffolds tend to use thinner struts or bioresobable materials
in order to reduce the risk of stent thrombosis in addition to a trend towards the use of
lower X-ray power during angiographic procedures, proper stent visualization is becoming
challenging [3,20–23]. The use of ESI becomes pivotal for the assessment of proper stent
expansion, a major risk factor for stent thrombosis [6–10].

QCA remains an important, readily available, and easy-to-use tool during PCIs allow-
ing for a more practical and standardized angiography-based approach. QCA is particularly
useful for the evaluation of the minimal lumen diameter, the reference vessel diameter,
the diameter stenosis percentage, the lesion length, the acute gain, and late loss [14]. Our
data failed to show any correlation between the expected stent diameter and the QCA-
derived one. This could be explained by the foreshortening drawback of QCA as well as
the two-dimensional evaluation by QCA of a three-dimensional vessel.

Our data demonstrated the feasibility of an accurate, quantitative, contrast-free assess-
ment of stent expansion by SE. Post-dilatation remains an important step towards stent
optimization. Our results are in-line with the current published literature in regard to the
achieved stent diameter at a given implantation pressure being at least 10% lower than the
given expected chart diameter [33,34]. These results could be attributed to the fact that the
figures provided on the compliance charts are derived from bench tests performed in water
at 37 ◦C while QCA and SE are measured on stents deployed in fibrotic and calcified lesions.
The diameters measured by SE remain 2-dimensional measurements of a 3-dimensional
structure. A second measurement using an orthogonal view would therefore overcome this
limitation. The measured mean stent diameters by SE did not differ when using the two
orthogonal views indicating precise measurements between the two views. However, a
difference was noted for the measurements at the site of maximal stent underexpansion
after post-dilation. This could be attributed to the eccentricity of lesions as well as to the
visual assessment of the minimal diameter compared to adjacent ones.

Despite an era where modern flat-detector technology allows excellent angiographic
images, coronary stent visualization has become a challenge especially with the on-going
reduction in stent strut thickness. Stents are often suboptimally visualized on plain angiog-
raphy hence limiting optimal PCI outcomes. High temporal resolution is needed to qualify
a moving structure.

Adequate stent expansion has important short- and long-term effects after PCIs in
clinical practice. It is crucial, yet challenging, to detect suboptimal stent deployment on
qualitative and quantitative angiography since it is associated with an increased rate of
in-stent restenosis and stent thrombosis [3,20]. Current stent delivery systems are still
suboptimal for stent expansion, requiring, in most cases, a post-dilation using a larger,
higher pressure, non-compliant balloon to improve the in-lumen area. This is particularly
true when increased calcifications are found [24,35] as we demonstrated in our 157 lesions.

Intracoronary imaging, including intravascular ultrasound and optical coherence
tomography, remains more sensitive than angiography and QCA in determining stent
under expansion as illustrated in Figure 4; their use was found to improve stent expansion
results and long term outcome [6,20,36]. However, these techniques are limited by cost,
time, and technical expertise, calling for a simpler, ready-to-use visualization method.
ESI was found very useful in identifying stents under expansion, thereby improving PCI
outcomes [37]. Image processing algorithm softwares based on X-ray angiography images
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offer better stent visualization compared to angiography alone as validated by several
previous studies [24,38]. ESI also shows no risk of complications and adds little additional
time or radiation to the procedure [25,37]. Furthermore, ESI allows accurate measurements
of the dimension of stents [29]. It was found useful in obese patients, long lesions, in-stent
restenosis, and bifurcating lesions. Moreover, ESI was found to be superior to QCA and
angiography and was highly correlated with IVUS [17,28,28,30,38].

We performed a comparison between the final diameters measured by QCA and
by SE. We had 14 paired data available with no post-dilatation and 75 after final post-
dilatation in the other patients. As shown in Figure 5, on average, the mean difference
was −0.37 ± 0.42 mm and this bias for smaller QCA diameters was significant, with the
95% confidence interval not encompassing the 0. Using IVUS as the reference, Goto et al.
also demonstrated that QCA underestimates MLDs in small vessels (<3.8 mm) and over-
estimates MLDs in vessels larger than 3.8 mm [39]. A direct head-to-head comparison of
IVUS and SE might confirm a better agreement between IVUS and SE than with QCA. The
wide agreement window between QCA and SE of ± 0.84 mm reflects the differences in
the two methodologies, with only manual measurements being currently possible with
the SE images, while automated contour calculation and minimal and reference diameters
are available with QCA. However, when there were overlap of side branches or other
vessels, no QCA could be reliably measured in 3 out of the 93 cases. Without contrast, hence
without any overlap, SE could always be measured. Of note, no reliable reconstruction can
be calculated on very long stents and/or with long balloons when the markers are more
than 30 mm apart. Several ESI softwares are currently available on the market but each
one can only be used on the specific vendor’s angiographic system. The StentEnhancer
software computes enhanced fluoroscopy images using the balloon markers as references,
delivering an easily integrated, high-quality image independent of the angiography instru-
ment vendor. Although an increase in radiation was reported during ESI acquisition, no
significant impact on the patient radiation dose was found [40].

Figure 5. Bland-Altman analysis comparing QCA and SE. Red line: mean; green lines: 1.96 × SD; blue
lines: 95%CI; circles: individual measurements. MSD: minimal stent diameter; SE: StentEnhancer;
SD: standard deviation; QCA: quantitative coronary angiography.
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5. Conclusions

StentEnhancer is a novel ESI modality that provides enhanced stent visualization
and allows quantitative assessment of stent underexpansion. It is a simple, cost-effective,
and minimally invasive method. We demonstrate that it is not inferior qualitatively to
the validated StentBoost software on the market providing good stent visualization. The
StentEnhancer workstation also allowed for a quantitative analysis of images to obtain
stent expansion measurement as well as stent underexpansion quantitative assessment. A
comparative study between StentEnhancer images and IVUS is needed in order to further
validate the StentEnhancer measurements.
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