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Preface

The radar detection environment is notably complex due to the multitude of civil and military

electronic devices within it, as well as the intricate and non-uniformly time-varying geographic

clutter. This complexity significantly undermines the detection performance of traditional radar

systems. In contrast, multiple-input multiple-output (MIMO) radars emerge as solutions which

possess the capacity to transmit multiple signals through their array of antennas. They adeptly

allocate energy tailored to diverse detection scenarios and mission mandates, granting flexibility in

designing transmit beampatterns. These potential characteristics lead to pronounced enhancements

in target detection precision and superior suppression capabilities against clutter and jamming. As a

result, MIMO radars have captured the attention of both researchers and practitioners alike.

This Special Issue assembles the latest advancements in the domain of MIMO radars, with the

primary goal of stimulating innovative ideas and fostering enhanced avenues for communication and

collaboration among students and researchers engaged in the area of MIMO radars.

Comprising eight papers, this Special Issue places particular emphasis on MIMO radar

waveform design, utilizing the potential of waveform diversity to elevate radar performance.

Additionally, three papers leverage this diversity to improve target detection and parameter

estimation. The remaining papers tackle other important MIMO radar issues, including but not

limited to clutter suppression, imaging, and antenna distribution.

We extend our gratitude to the authors who have contributed their insightful content to this

Special Issue, acknowledging their exceptional work. Furthermore, we express our appreciation to

the individuals and organizations involved in the editorial process of this Special Issue.

Guolong Cui , Bin Liao , Yong Yang, and Xianxiang Yu

Editors
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Abstract: In this paper, we study the multiple-input multiple-output (MIMO) radar transmit wave-
form design method for beampattern matching. The purpose is to design the beampattern to
approximate the actual one and minimize the cross-correlation sidelobes under the constant modulus
constraint (CMC). Due to the CMC, the problem is non-convex, and the existing methods solve it
with relaxation, resulting in performance degradation. Different from these methods, we notice
that the CMC is the product of complex circles (CC). Based on this physical characteristic, the direct
beampattern matching without relaxation (DBMWR) method is proposed. To be specific, we first
formulate the original problem as an unconstrained quartic problem over the CC and then solve it
by the proposed method without relaxation. Simulation results show that the proposed method can
achieve a balance in terms of accuracy and computation complexity compared with other methods.

Keywords: waveform design; beampattern matching; MIMO radar; constant modulus constraint;
complex circle; DBMWR method

1. Introduction

The multiple-input multiple-output (MIMO) radar waveform design for beampat-
tern matching with the constant modulus constraint (CMC) is a key technology [1–3].
With proper design, the designed beampattern can approximate the desired one, which
is essential to enhance the spatial resolution and the target detection capability [4,5].
Besides, the CMC is important to consider since nonlinear amplifiers should operate
in saturation mode [6–8]. Therefore, the beampattern matching through waveform design
has received wide attention.

The direct solution is difficult to obtain in the problem since both the quartic objective
term and the CMC are non-convex. The existing methods mainly solved it with relax-
ation, which can be divided into two categories: the indirect beampattern matching with
relaxation methods and the direct beampattern matching with relaxation methods.

The indirect beampattern matching with relaxation methods first construct the wave-
form covariance matrix (WCM), then decompose the WCM with relaxation to obtain the
waveform. Typically, the problem was relaxed into the semidefinite quadratic program-
ming (SQP) by relaxing the CMC in [9], and then the interior point method (IPM) was
utilized to solve the SQP. However, such methods degrade the accuracy of the design
due to the CMC relaxation. To improve the accuracy of the design, the cyclic algorithm
(CA) was developed by utilizing the matrix singular value decomposition (SVD) in [10].
Nevertheless, the mainlobe fluctuates greatly since only the main eigenvalues are consid-
ered and other feature information is ignored. To overcome this shortcoming, the discrete

Remote Sens. 2023, 15, 633. https://doi.org/10.3390/rs15030633 https://www.mdpi.com/journal/remotesensing
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Fourier transform (DFT)-based method was proposed in [11], which utilizes DFT coef-
ficients and Toeplitz matrices. However, it is not suitable under the condition that the
number of antennas is small.

The direct beampattern matching with relaxation methods directly design the wave-
form with relaxation. Typically, the majorization-minimization (MM)-based method was
proposed through generating a tractable surrogate function in [12]. Nevertheless, the perfor-
mance degrades since it is hard to construct the tractable function, which follows the shape
of the original one. To improve the performance, the alternating direction method of multi-
pliers (ADMM)-based method was proposed in [13] by converting the original problem into
a bi-convex one with slightly relaxing the CMC. However, only the approximate constant
modulus solution is obtained due to the relaxation. To overcome the drawbacks, the phase
optimization method based on residual neural network (RNN) method was proposed
in [14] by training lots of weight coefficients, which needs huge computational cost.

Due to the relaxation of the above methods, their performance will be degraded.
In this paper, we focus on developing a method without relaxation to design the MIMO
radar transmit waveform for beampattern matching. To this focus, by noting that the
CMC is the product of complex circles (CC), the direct beampattern matching without
relaxation (DBMWR) method is proposed. Specifically, we first transform the problem into
an unconstrained quartic function over the CC. After that, the DBMWR is used to solve
the problem by deriving the actual gradient, the gradient over the CC, the direction of
descent, and the step size while assuring non-increase in the objective function. The main
contributions are:

• Different from the existing methods, which address the challenge by relaxation, we
propose the DBMWR method without relaxation to solve it.

• To reduce the power consumption and improve the accuracy, we further propose the
sparse beampattern matching design method based on the DBMWR method.

• Compared with the methods [10,12–14], the proposed method achieves a balance both
in terms of computational complexity and accuracy.

Related Works

Several works related to beampattern matching are worth mentioning.
Beampattern matching for the MIMO radar system was considered in [9] under an ideal
hardware setting; i.e., without CMC. To achieve the CMC, several related works [10,11]
considered constructing the WCM to achieve the CMC. However, there is a huge computa-
tion complexity to decompose the WCM with relaxation to obtain the waveform. In this
situation, works in [12–14] considered optimizing the waveform directly. Nevertheless,
these works solve the problem with relaxation which result in performance degradation.
For example, in [12,15], the authors proposed the majorization-minimization (MM) method
and the block successive upper bound minimization (BSUM) method, respectively, to solve
the problem by relaxing the objective function. To avoid the relaxation, the work in [16]
also noticed the characteristic of the CC. Nevertheless, it focuses on wideband signals,
whereas our work focuses on narrowband signals. Besides, its update strategy is different,
especially in deriving the descent direction and the step size.

We arrange the remainder paper as follows. The technical background is introduced
in Section 2. The MIMO radar system model and the problem description are estab-
lished in Section 3. The beampattern matching based on the DBMWR method is de-
scribed in Section 4. The sparse beampattern matching design is considered in Section 5.
Some numerical results shown by figures and tables are obtained in Section 6 The summary
of this paper is in Section 7.

In this paper, we use bold-face upper-case and lower-case letters to represent matrices
and column vectors, respectively. CM×M is the M × M complex numbers domains. ⊗ is the
Kronecker product, and � is the Hadamard product. Re{·} and Im{·} are the element-wise
real and imaginary part of the complex argument, respectively. (·)T , (·)H , and (·)∗ are
the transpose, the complex conjugate transpose, and the complex conjugate operators. |·|
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and ‖·‖2 are the absolute value and the 2-norm of the complex argument, respectively.
∇s( f (s)) is the gradient. 1M is the all-one vector of length M and B

N
M is the binary vectors

set with N non-zero elements and total M elements.

2. Technical Background

This section briefly introduces MIMO radar systems, MIMO radar waveform design,
and CMC.

2.1. MIMO Radar Systems

MIMO radar systems have revolutionized many research areas with their unique
abilities. In this subsection, we briefly review MIMO radar systems and their advantages.

MIMO is originally a technology widely used in communication systems. It is a
wireless transmission technology that can transmit more data simultaneously by using
multiple antennas at the transmitter side and receiver side [17]. MIMO technology has
made obvious achievements in communication systems, which has greatly aroused the
research interest of experts and scholars in other fields around the world. Considering the
similarities between the radar systems and the communication system, MIMO is naturally
introduced into the radar systems.

Different from the traditional phased array radar systems that transmit a single wave-
form, the MIMO radar systems transmit independent waveforms simultaneously through
multiple transmitting antennas and centrally process the echo signals through multiple
antennas at the receiving end. This waveform diversity enables MIMO radar systems
to achieve superior functionality compared to standard phased array radars in several
basic aspects, including: (1) greatly enhancing the flexibility of the transmit beampattern
design [18], (2) being directly applicable to parameter estimation and target detection [19],
and (3) significantly improving parameter identifiability [20,21].

According to the location distribution of the antennas (i.e., the distance between the
antennas), the MIMO radar systems are divided into two categories:

• The colocated MIMO radar systems. In the colocated MIMO radar systems, the dis-
tance between the different transmit and receive antennas is very small, so there are
approximately equal observation angles with respect to the target. Besides, the colo-
cated MIMO radar systems are easier to implement because their antenna structure
is consistent with the traditional phased array radar. In the paper, we focus on the
colocated MIMO radar systems.

• The distributed MIMO radar systems. In the distributed MIMO radar systems,
the transmitting and receiving antennas are distributed independently over long
distances. Since each transmitting and receiving path is approximately indepen-
dent of the target, it is difficult to realize in practice when performing space and
time synchronization.

2.2. MIMO Radar Waveform Design

Waveform design is a unique capability for MIMO radar systems. With proper design,
the target detection capability and parameter estimation accuracy can be improved [22].
In this subsection, we will briefly introduce the general classification of the MIMO radar
waveform design.

The methods for the MIMO radar waveform design are mainly concluded into three
categories. The first category focuses on designing the waveform of the MIMO radar
systems by maximizing the mutual information (MI) between the target response and the
received echo [23,24].

The second category addresses the design task under signal-dependent clutter.
They focus on maximizing the output signal-to-interference-plus-noise ratio (SINR) by
optimizing the receive filter and the transmitting waveform jointly [3,25,26].

The third category is the design task we focus on, which solves the MIMO radar
beampattern matching problem. The core issue in the problem is to control the transmit

3
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power distribution in the spacial and design the beampattern to approximate the actual
one and minimize the cross-correlation sidelobes.

2.3. Constant Modulus Constraint

CMC is an essential constraint in MIMO radar systems. In practice, the non-linear
power amplifiers in the systems are supposed to operate in saturation mode to maximize
their efficiency [27,28]. In this case, the generated waveforms in the MIMO radar transmit-
ters must have a constant modulus. Suppose that xi is one of the generated waveforms by
the MIMO radar systems, then under CMC, it can be expressed as |xi| = ξ, where ξ > 0 is
the modulus of the waveform xi.

3. System Model and Problem Description

Consider a colocated MIMO radar system, with M transmit antennas in a uniform
linear array (ULA). Let sl = [s1(l), s2(l), . . . , sM(l)]T ∈ CM×1, l = 1, . . . , L denote the
transmit waveform at the l-th snapshot with total L snapshots. Then, the transmit waveform
matrix is denoted as [29]:

S =

⎡⎢⎢⎢⎣
s1(1) · · · s1(l) · · · s1(L)
s2(1) · · · s2(l) · · · s2(L)

...
...

...
...

...
sM(1) · · · sM(l) · · · sM(L)

⎤⎥⎥⎥⎦ (1)

Assuming narrowband signals and non-dispersive propagation, the L snapshots
synthesis signal at the direction of θ is denoted as:

y = [IL ⊗ aT(θ)]s (2)

where

• s = vec(S) ∈ CML×1 is the column vector of matrix S in (1).
• a(θ) = [1, e−jπsinθ , ..., e−jπ(M−1)sinθ ]T ∈ CM×1 denotes the steering vector.
• IL denotes the N × N dimensional identity matrix.

In most cases, a set of angles is used to cover the entire spatial region, and the power
received at direction θr is denoted as:

p(θr, s) = yHy = |[IL ⊗ aT(θr)]s|2 = sHΠrs (3)

where

• y is the synthesis signal in (2)
• r = 1,..., K, K is the total number of points to cover the spatial region.
• Πr = IL ⊗ [a∗(θr)aT(θr)].

Usually, we define (1) as the transmit beampattern. In addition to considering the
beampattern, suppose that there are K̃ (K̃ � K) targets of interests within the whole space,
then the cross-correlation sidelobes term is denoted as [13]:

pc(θ̃a, θ̃b, s) = ([IL ⊗ aT(θ̃a)]s)H([IL ⊗ aT(θ̃b)]s) = sHΠ̃a,bs (4)

where
• a = 1, ..., K̃, b = 1, ..., K̃, a 	= b, θ̃a, θ̃b is one of the targets.
• Π̃ = IL ⊗ [a∗(θ̃a)aT(θ̃b)].

The target of the transmit waveform design for beampattern matching is to approx-
imate the desired beampattern through the designed beampattern and minimize the

4
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cross-correlation sidelobe term at multiple targets. Considering the joint optimization,
the objective function model is given as [13]:

J(s, δ) =
1
K

K

∑
r=1

ωr|δdr − p(θr, s)|2 + 2ωc

K̃(K̃ − 1)

K̃−1

∑
a=1

K̃

∑
b=a+1

|pc(θ̃a, θ̃b, s)|2 (5)

where

• p(θr, s) is the power received at direction θr in (5) and pc(θ̃a, θ̃b, s) is the cross-correlation
sidelobe terms in (6).

• d = [d1,...,dr]T denotes the desired beampattern.
• ωr ≥ 0(r = 1,...,K) and ωc ≥ 0 denote the weighted coefficients.
• δ is a joint optimization parameter to constrain the beampattern to the desired one.

In practice, the CMC maximize the transmitter efficiency by keeping the power am-
plifier operating in saturation mode. Hence, by considering the CMC, the optimization
problems are denoted as:

min
s,δ

J(s, δ)

s.t. |s(n)| = 1 n = 1, ..., ML
(6)

Compactly speaking, the problem in (6) is a bivariate function, which can be alternately
optimized by a cyclic optimization algorithm denoted as:

δ(l+1) = arg min
δ

J(s(l), δ) (7a)

s(l+1) = arg min
s

J(s, δ(l+1)) (7b)

|s(n)| = 1 n = 1, ..., ML

where l is the l-th cyclic optimization.
When s(l) is fixed, the closed form solution for problem (7a) is directly denoted as:

δ(l+1) = ΔldT/‖d‖2
2 (8)

where Δl = [s(l)
H

Π1s(l), ..., s(l)
H

Πls
(l)]T .

When δ(l+1) is fixed, the objective function in (7b) is denoted as:

J(s) =
1
K

K

∑
r=1

ωr{|sHΠrs|2 − 2δ(l+1)dr(s
HΠrs)}+ 2ωc

K̃(K̃ − 1)

K̃−1

∑
a=1

K̃

∑
b=a+1

|sHΠ̃a,bs|2 (9)

After the cyclic optimization, the problem in (9) becomes a single variable function.
However, the constraint in the problem remains unchanged (i.e., the CMC), and the problem
is finally formulated as:

min
s

J(s)

s.t. |s(n)| = 1 n = 1, ..., ML
(10)

Generally speaking, the problem in (10) is solved by most methods with relaxation,
leading to performance degradation. In the following, the DBMWR method is developed
without relaxation to solve the objective function.

4. The Beampattern Matching Based on the DBMWR Method

In this section, we propose the DBMWR method to optimize the problem (10) without
relaxation. To be specific, we first convert the problem into an unconstrained function over
the CC, and then we obtain its solution by the proposed DBMWR method.

5
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Generally speaking, for each optimization variable s(n), it lives in a continuous con-
strained search area given by the CC expressed as:

Ξ =
{

s ∈ C

∣∣∣Re{s}2 + Im{s}2 = 1
}

(11)

The feasible set of the CMC is the ML times of CC in (11), denoted as:

Ξ × Ξ · · · × Ξ︸ ︷︷ ︸
ML times

(12)

Finally, this product of the CC in (12) is formally defined as:

M = ΞML = {s ∈ CML||s(n)| = 1 n = 1, . . . , ML} (13)

Hence, the problem in (10) is reformulated as an unconstrained problem over M in
(13), denoted as:

min
s∈M

J(s) =
1
K

K

∑
r=1

ωr{|sHΠrs|2 − 2δ(l+1)dr(s
HΠrs)}+ 2ωc

K̃(K̃ − 1)

K̃−1

∑
a=1

K̃

∑
b=a+1

|sHΠ̃a,bs|2 (14)

The problem in (14) is unconstrained and can be conveniently minimized by the
DBMWR method. In the method, the Euclidean gradient is obtained first, then the gradient
over CC is obtained, and, after that, the direction of descent and the step size is calculated,
and, finally, the solution is updated by the retract operation. Repeat the above steps until
convergence, and the final result is obtained. At i-th inner iteration for updating s(l+1),
the detailed derivation is given as follows:

4.1. Generation of the Euclidean Gradient

The objective functions in (14) can be reformulated as follows:

J(si) =
1
K

K

∑
r=1

ωr{ fr(si) f ∗r (si)− g(si)}+
2ωc

K̃(K̃ − 1)

K̃−1

∑
a=1

K̃

∑
b=a+1

{ fc(si) f ∗c (si)} (15)

where

fr(si) = si
TΠr

Tsi
∗ = si

HΠrsi (16a)

f ∗r (si) = si
TΠ∗

r si
∗ = si

HΠH
r si (16b)

g(si) = 2δ(l+1)dr(si
HΠrsi) (16c)

fc(si) = sH
i Π̃a,bsi = sT

i Π̃T
a,bs∗i (16d)

f ∗c (si) = sH
i Π̃H

a,bsi = sT
i Π̃∗

a,bs∗i (16e)

To derive the Euclidean gradient, the following definition could be utilized [30]:

∇(J(si)) = 2∇si
∗ J(si) (17)

where ∇si
∗ J(si) is the gradient of J(si) is terms of si

∗.
Based on the definition in (17), the gradient of fr(si) f ∗r (si) and fc(si) f ∗c (si) in objective

function (15) can be calculated through the following product rules:

∇( f (si) f ∗(si)) = 2∇s∗i
( f (si) f ∗(si))

= 2(∇s∗i
f (si)) f ∗(si) + 2(∇s∗i

f ∗(si)) f (si)
(18)

6
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The gradients in (18) are denoted as:

∇s∗i
fr(si) = sT

i ΠT
r = Πrsi (19a)

∇s∗i
f ∗r (si) = sT

i Π∗
r = ΠH

r si (19b)

∇s∗i
fc(si) = sT

i Π̃T
a,b = Π̃a,bsi (19c)

∇s∗i
f ∗c (si) = sT

i Π̃∗
a,b = Π̃H

a,bsi (19d)

Replacing the identities (19) in (18), the overall Euclidean gradient is denoted as:

∇(J(si)) =
1
K

K

∑
r=1

ωr{Ψr − 4δ(l+1)drΠrsi}+
2ωc

K̃(K̃ − 1)

K̃−1

∑
a=1

K̃

∑
b=a+1

Ψc (20)

where

Ψr =2Πr
Hsisi

HΠrsi + 2Πrsisi
HΠH

r si (21a)

Ψc =2Π̃H
a,bsisi

HΠ̃a,bsi + 2Π̃a,bsisi
HΠ̃H

a,bsi (21b)

4.2. Generation of the Gradient Over CC

Since M is embedded in a Euclidean space, the gradient over CC, namely, ∇M(J(s)),
is the orthogonal projection from the Euclidean gradient to the tangent space TsM, de-
noted as:

∇M(J(si)) = Pr ojTsiM
(∇J(si))

= ∇J(si)− Re{∇J(si)
∗ � si} � si

(22)

where

• TsiM denotes the tangent space composed of all tangent vectors at point si of M,
which is formulated as:

TsiM = {s̄ ∈ CML|Re{s̄ � si
∗} = 0} (23)

• Pr ojTsiM
(∇J(si)) denotes the orthogonal projection from ∇J(si) to TsiM in (23),

which is denoted as:

Pr ojTsiM
(∇J(si)) = ∇J(si)− Re(∇J(si)� si

∗)� si
∗. (24)

• ∇J(si) is the Euclidean gradient in (20).

4.3. Derivation of the Descent Direction

In most cases, the Euclidean gradient of J(s) is used as the descent direction, but the
speed of this approach is slow in practice [31]. Therefore, we introduce the Polak-Ribiére
conjugate gradient algorithm in [32], which contains the second order information and has
a faster convergence speed. The descent direction is given by:

ηi = −∇M(J(si)) + βPR
i Tsi−1→siM(ηi−1) (25)

where

• βPR
i is the conjugate parameter in Polak-Ribiére algorithm. For the CC, it is denoted as:

βPR
i = [∇M(J(si))]

H ∇M(J(si))− Tsi−1→siM(∇M(J(si)))

‖∇M(J(si−1))‖2 (26)

7
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• Tsi−1→siM(·) in (25) and (26) is a vector transport operation, denoted as:

Tsi−1→siM(ηi−1) = ηi−1 − Re{ηi−1 � si
∗} � si (27)

• ∇M(J(si)) is the gradient over CC in (22)

4.4. Derivation of the Step Size

Here, we introduce the Armijo line search in [33,34] to obtain the step size and ensure
non-increase in each iteration of the objective function conveniently. In the algorithm,
the smallest integer m ≥ 0 is found, such that:

J(si)− J(si + τi−1βmηi) ≥ στi−1βm‖∇M J(si)‖2 (28)

where τi−1 > 0, σ, β ∈ (0, 1) and ηi is the descent direction in (25).
τi is the i-th iteration step, denoted as:

τi = τi−1βm (29)

4.5. Updating the Solution

The operation of updating si on tangent space TsM is denoted as:

s̃i = si + τiηi (30)

However, the solution can not be simply updated via (30), that is, because the solution
lies on the tangent space TsM instead of the CC. Therefore, a mapping operation is needed
to retract s̃i in Equation (30) from the tangent space to the CC:

si+1 = s̃i �
1
|s̃i|

(31)

According to the above discussion, the DBMWR method for solving (6) is concluded
in Algorithm 1.

Algorithm 1 : The DBMWR method for solving (6)

Input: s0 ∈ M, δ0, d, ωr, ωc, Πr.
1: Reapeat:

• Updating δl+1 with sl

2: Calculate δl+1 according to (8).
• Updating sl+1 with δl+1

3: i = 0, sl+1
i = sl .

4: Reapeat:
5: Calculate Euclidean gradient by (20).
6: Calculate gradient over CC by (22).
7: Calculate descent direction by (25).
8: Calculate step size by (28).
9: Obtain sl+1

i+1 by (31).
10: i = i + 1.
11: Until converge

12: sl+1 = sl+1
i .

13: l = l + 1.
14: Until converge
Output: s∗ = sl , δ∗ = δl

8
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4.6. Analysis of the Computation Complexity

The computation complexity is mainly built upon the update of sl+1. For i-th iteration,
the complexity for Algorithm 1 is listed as follows:

• Euclidean gradient and gradient over CC: O(5K(M2L2 + ML) + 2ML).
• Descent direction: O(4ML).
• Step size: O((m + 1)(2K(M2L2 + ML))).
• Update the solution: O(2ML).

Hence, for each iteration, the computational complexity is denoted as:
O((2m + 7)K(M2L2 + ML) + 8ML).

4.7. Analysis of the Convergence

Generally speaking, finding a proper condition for the step size to ensure the mono-
tonic decrease is difficult for the quartic objective function in (14). In this paper, we
introduce the Armijo line search method with variable step size to guarantee a monotonic
decrease on the tangent space of the CC at si. In [35], Proposition 1.2.1 states that for the
gradient based methods, every limit generated point is a stationary point when the step
size is chosen by the Armijo line search method. In our setup, we can use the proposition
to ensure the reduction of the tangent space and generate a solution s̃i on the tangent
space of the CC with a reduction on the value of the objective function (i.e., J(si) ≥ J(s̃i)).
Besides, since the mapping operation to retract s̃i from the tangent space to obtain si+1 on
the CC is a linear projection, the convergence property on the CC is approximately same
as that on the tangent space. Then, the objective function J(si) is monotonic decrease and
converges to a finite value.

5. The Sparse Beampattern Matching Design

The selection of the sparse antenna positions is a key technology widely used in
MIMO radar systems [36,37]. Since the available antennas are placed in a wider transmit
field, an additional DOF is introduced to the system. With the increased DOF, the MIMO
radar beampattern can achieve better accuracy by using the same number of antennas.
In this case, the power consumption is reduced, since fewer antennas can achieve a similar
beampattern. Because of the above merits, to further obtain a better performance, we
propose a method to jointly optimize the beampattern and the sparse antenna positions.

More specifically, the problem is first formulated as a multi-variables function and then
solved by a cyclic optimization through optimizing the beampattern and the sparse antenna
positions separately. In each iteration, the beampattern is optimized by the DBMWR
method, and the sparse antenna positions are selected by a greedy search method.

5.1. The Problem Formation

Let p ∈ B
N
M denote the sparse antenna positions. Suppose we need to select M anten-

nas in total N grid points. The corresponding signal at the direction of θ is now denoted as:

yp = [IL ⊗ (p � a(θ))T ]s (32)

Hence, by considering p, the objective function is now denoted as:

Jp(p, s, δ) =
1
K

K

∑
r=1

ωr|δdr − pp(θr, p, s)|2 + 2ωc

K̃(K̃ − 1)

K̃−1

∑
a=1

K̃

∑
b=a+1

|ppc(θ̃a, θ̃b, p, s)|2 (33)

where
pp(θr, p, s) = |[IL ⊗ (p � a(θ))T ]s|2 (34)

and
ppc(θ̃a, θ̃b, p, s) = ([IL ⊗ (p � a(θ̃a))T ]s)H([IL ⊗ (p � a(θ̃b))T ]s) (35)

9
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To minimize the objective function in (33), the cyclic optimization is generated to
optimize (s, δ) and p separately. For the fixed p, the problem becomes the same in (10),
which can be optimized by the DBMWR method. For a fixed (s, δ), the optimization
problem is denoted as:

min
p

Jp(p)

s.t. p ∈ B
N
M

(36)

5.2. The Proposed Greedy Search Framework

A greedy search method is developed in this subsection to optimize the problem in
(36) efficiently. In the method, we first generate the feasible solutions set, and then we
select the fittest solution. Repeat the above steps until p obtains stopping criteria. At k-th
iteration for updating, the steps are listed as follows:

5.2.1. Generation of Possible Solutions Set

Based on the solution at (k− 1)-th iteration, the set of possible solutions pk
S is generated

as follows:
pk

S =
{

p|H(p, pk−1) = 1, ‖p‖1 < ‖pk−1‖1

}
(37)

where H(a, b) is the Hamming distance between a and b.
More specifically, the generated set pk

S composed of the solution that only differs from
pk−1 in one bit, which is one less nonzero element.

5.2.2. Updating the Solution

With the current set of vectors pk
S, we select the fittest solution pk based on:

pk = arg min
p∈pk

S

J(p) (38)

According to the above discussion, the developed method for solving (36) is concluded
in Algorithm 2.

Algorithm 2 : The greedy search method for solving (36)

Input: p0 = 1N , N, M.
1: Reapeat:
2: Generate the possible solutions set by (37).
3: Updating the solution by (38).
4: Until

∥∥∥pk
∥∥∥

1
= M.

Output: p∗ = pk

Finally, the proposed sparse beampattern matching design method to jointly optimize
the beampattern and the sparse antenna positions is summarized in Algorithm 3.

10
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Algorithm 3 : The proposed sparse beampattern matching design method for solving (33)

Input: s0 ∈ M, δ0, d, ωr, ωc, Πr, p0 = 1M, N, M.
1: Reapeat:

• Updating (st+1, δt+1) with pt

2: Solve problem (36) and obtain (st+1, δt+1) based on Algorithm 1.
• Updating pt+1 with (st+1, δt+1)

3: Solve problem (6) and obtain pt+1 based on Algorithm 2.
4: Until converge.

Output: s∗ = st+1, δ∗ = δt+1, p∗ = pt+1

6. Numerical Results

In this section, simulation results are shown in the following aspects: (1) analysis of con-
vergence; (2) the comparison of beampattern matching performance between the proposed
method and other methods; (3) the capability of the cross-correlation sidelobes controlling;
and (4) the performance of the sparse beampattern matching design. The simulation results
are run under MATLAB R2019a, CPU Core i7, RAM of 16GB, and GPU GTX2060.

We consider the simulation parameters the same as [13,14] with M = 10 transmit
antennas, half-wavelength inter-element interval, and L = 32 snapshots. The angle is set in
the range of (90◦, 90◦) with 1◦ space. The weighted coefficients are ωr = 1 for r = 1, . . . , K,
and ωc = 0.

We further consider two cases of desired beampatterns, Case 1 and Case 2, which are
the same as [13,14]:

• Case 1 considers the desired beampattern with one mainlobe at the direction of θ = 0◦,
and the width of it is Δ = 60◦, denoted as:

d1(θ) =

{
1, θ ∈ (−30, 30), m = 1, 2, 3
0, otherwise

(39)

• Case 2 considers the desired beampattern with three mainlobes at the direction of
θ1 = −40◦, θ2 = 0◦, and θ3 = 40◦, and each of them has a width of Δ = 20◦,
denoted as:

d2(θ) =

{
1, θ ∈ (θm − Δ

2 , θm + Δ
2 ), m = 1, 2, 3

0, otherwise
(40)

6.1. Analysis of Convergence

Figure 1 shows normalized objective function versus the iteration numbers with
different desired beampatterns. As shown in the figure, when we consider Case 1 as the
desired beampattern, the objective function decreases sharply in the first 40 iterations and
starts convergence after 150 iterations. When we consider Case 2 as the desired beampattern,
the objective function decreases sharply in the first 40 iterations and starts convergence
after 110 iterations. Besides, the total computation time when considering Case 1 is 30.2 s,
and the total computation time when considering Case 2 is 38.0 s.

11
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Figure 1. The normalized objective function versus iteration numbers with different desired beam-
patterns Case 1 and Case 2.

6.2. The Comparison of Beampattern Matching Performance between the Proposed Method and
Other Methods

In this subsection, we consider the MM-based method in [12], the CA method in [10],
the ADMM-based method in [13], and the RNN method in [14] for comparison. We further
consider Case 1 as the desired beampattern with one mainlobe in Figure 2 and Case 2 as
the desired beampattern with three mainlobes in Figure 3, respectively.
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Figure 2. The beampattern matching comparison between different methods when considering Case
1 as the desired beampattern.
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Figure 3. The beampattern matching comparison between different methods when considering Case
2 as the desired beampattern.

As can be seen in Figures 2 and 3, the beampattern generated by the proposed method
has the lowest sidelobe value in whole angle space, meaning that the proposed method has
the best sidelobe suppression ability and the highest beampattern matching accuracy.

We further introduce the mean square error (MSE) in (41) to show the beampattern
matching performance between different methods more clearly. The MSE is the square error
between the designed beampattern and the desired one. Hence the lower MSE value means
better matching performance. Tables 1 and 2 show the MSE, σ, computation complexity,
and convergence time for different methods when considering Case 1 and Case 2 as the
desired beampattern, respectively. As can be seen from the tables, the proposed method
has the lowest MSE values and reasonable computation time. Although the MSE values
are similar between the ADMM-based method and the proposed method, the ADMM-
based method is not strictly CMC. Hence, with relaxation, the method may have a better
performance where we introduce σ in (42) to demonstrate it. As can be seen from the tables,
the σ in the ADMM-based method has a small value (i.e., not strictly CMC), while the value
of it is zero (i.e., strictly CMC) in other methods.

Table 1. The MSE, σ, computation complexity, and convergence time (seconds) for different methods
when considering Case 1 as the desired beampattern.

Methods MSE σ
Computation
Complexity

Convergence Time (s)

RNN in [14] 0.0098 0 - 430
CA in [10] 0.0102 0 O(M3.5 + M3) 182
MM in [12] 0.0095 0 O(M2L) 6.25

ADMM in [13] 0.0089 0.0018 O(M3L3) 444
Proposed method 0.0086 0 O(M2L2) 30.2
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Table 2. The MSE, σ, computation complexity, and convergence time (seconds) for different methods
when considering Case 2 as the desired beampattern.

Methods MSE σ
Computation
Complexity

Convergence Time (s)

RNN in [14] 0.0390 0 - 450
CA in [10] 0.0391 0 O(M3.5 + M3) 176
MM in [12] 0.0442 0 O(M2L) 6.18

ADMM in [13] 0.0382 0.0015 O(M3L3) 440
Proposed method 0.0381 0 O(M2L2) 38.0

The mean square error (MSE) is defined based on [38]:

MSE =
1
K

K

∑
r=1

(
dr − p(θr, s)/δ2

)2
(41)

where dr is the desired waveform and p(θr, s)/δ2 is the normalized waveform.
The σ is defined based on:

σ = max(s)− min(s) (42)

where min(s) is the minimum amplitude in the designed waveform, and max(s) is the
maximum amplitude in the designed waveform.

6.3. The Capability of the Cross-Correlation Sidelobes Controlling

We consider that ωc is not zero and Case 2 as the desired beampattern in the following
simulations while other simulation parameters keep the same. Table 3 shows the results

of the cross-correlation sidelobes term (i.e., 2ωc
K̃(K̃−1)

K̃−1
∑

a=1

K̃
∑

b=a+1
|pc(θ̃a, θ̃b, ands)|2 in (5)) under

different values of ωc). As shown in the table, the cross-correlation sidelobes term is
minimized when ωc is not zero. Besides, the optimal performance is obtained when ωc = 1.

Table 3. The cross-correlation sidelobes term under different values of ωc by the proposed method.

ωc = 0 ωc = 0.001 ωc = 0.01 ωc = 0.1 ωc = 1 ωc = 10

The values of
the cross-

correlation
sidelobes term

3.012 × 104 538.0 23.03 0.2541 2.577 × 10−4 1.313 × 10−3

Next, the beampattern matching performance comparison with ωc = 1 and ωc = 0
is illustrated in Figure 4. The designed beampattern generated considering the cross-
correlation sidelobes term (i.e., MSE = 0.0380) is similar to the beampattern obtained
without considering the cross-correlation sidelobes term (i.e., MSE = 0.0381), which is
because the cross-correlation sidelobes term is quite small compared with the beampattern
matching term. Nevertheless, the cross-correlation behavior is much better when using
ωc = 1 than that of using ωc = 0, which is because the generated waveforms under the
case of ωc = 1 are almost uncorrelated with each other.

As a result, the proposed method has great cross-correlation sidelobes control capabil-
ity and can generate uncorrelated waveforms.

14



Remote Sens. 2023, 15, 633

-100 -80 -60 -40 -20 0 20 40 60 80 100

(°)

0

0.5

1

1.5

P
(

)

Proposed (
c
=0)

Proposed (
c
=1)

Desired

-90 -85 -80
0.06

0.065

0.07

0.075

0.08

Proposed ( c=0)

Proposed ( c=1)

Desired

80 85 90
0.06

0.065

0.07

0.075

0.08

Proposed ( c=0)

Proposed ( c=1)

Desired

Figure 4. The beampattern matching performance comparison with ωc = 0 and ωc = 1.

6.4. The Performance of the Sparse Beampattern Matching Design

In this subsection, we test the performance of the proposed sparse beampattern
matching design method. We consider Case 2 as the desired beampattern with M = 10
antennas and N = 10, 13, 15 and 20 grid points in the following simulations while other
simulation parameters keep the same.

Figure 5 shows beampattern matching performance under different numbers of grid
points. It can be seen that the sidelobes of the beampattern with sparse antenna positions
selection are significantly reduced compared to the beampattern without sparse antenna
positions selection (i.e., N = 10). Besides, as the number of grid points N increases,
the sidelobe values of the designed beampatterns decrease. Table 4 shows the corresponding
MSE values under different numbers of grid points. As can be seen from the table, the MSE
values are lower after sparse antenna positions selection and decrease with the increase
in the grid points N, which is consistent with the results shown in Figure 5. The results
shown in Figure 5 and Table 4 demonstrate that the proposed sparse beampattern matching
design method can greatly enhance the beampattern matching performance by selecting
proper sparse antenna positions. Besides, with the increase in the grid points N, more
DOF is provided to the system for beampattern designing, which is helpful to increase
the beampattern matching performance. Finally, Figure 6 shows the corresponding sparse
antenna positions.

Table 4. The corresponding MSE values with M = 10 antennas and a different number of grid points.

Grid Points N = 10 N = 13 N = 15 N = 20

MSE 0.0381 0.0240 0.0221 0.0191
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Figure 5. The beampattern matching performance comparison with M = 10 antennas and a different
number of grid points.
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Figure 6. The corresponding sparse antenna positions with M = 10 antennas and a different number
of grid points.

We further compare the proposed method with the method in [39], which jointly
optimize the WCM and the sparse antenna positions. However, the method in [39] is
an indirect optimization method that cannot obtain the waveform directly. To obtain the
waveform from the WCM, the CA method in [10] is used. The result of the beampattern
matching comparison between the proposed method and the method in [39] after the sparse
antenna position selection is illustrated in Figure 7. As shown in the figure, the proposed
method has lower sidelobes compared with the method in [39]. Similar to the above,
the comparison in terms of MSE between the two methods is illustrated in Table 5. As can

16



Remote Sens. 2023, 15, 633

be seen from the table, the proposed method has lower MSE values compared with the
method in [39]. Therefore, the proposed method has better accuracy in terms of the sparse
beampattern matching design than the method in [39].
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Figure 7. The beampattern matching performance comparison between the method in [39] and the
proposed method with M = 10 antennas and a different number of grid points.

Table 5. The corresponding MSE values between the proposed method and the method in [39] with
M = 10 antennas and a different number of grid points.

Grid Points/MSE N = 13 N = 15 N = 20

The method in [39] 0.0266 0.0235 0.0249
The proposed method 0.0240 0.0221 0.0191

7. Conclusions

In this paper, we consider the MIMO radar waveform design for beampattern match-
ing problem. Unlike most existing methods, which approach this challenge by relaxation,
the novel optimization method DBMWR is developed without relaxation by noticing the
new intrinsic of CMC. More precisely, the problem is first transformed into an uncon-
straint quartic polynomial over the CC, and, after that, it is solved through the proposed
method. Results show that the DBMWR method obtains a balance in terms of computation
complexity and accuracy compared with the existing methods.
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Abbreviations

The following abbreviations are used in this manuscript:

MIMO Multiple-Input Multiple-Output
CMC Constant Modulus Constraint
DBMWR Direct Beampattern Matching Without Relaxation
CC Complex Circle
DOF Degrees Of Freedom
WCM Waveform Covariance Matrix
IPM Interior Point Method
SQP Semidefinite Quadratic Programming
CA Cyclic Algorithm
SVD Singular Value Decomposition
DFT Discrete-Fourier-Transform
MM Majorization-Minimization
ADMM Alternating Direction Method Of Multipliers
RNN Residual Neural Network
ULA Uniform Linear Array
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Abstract: In modern electronic warfare, cognitive radar with knowledge-aided waveforms would
show significant flexibility in anti-interference. In this paper, a novel method, named particle
swarm-assisted projection optimization (PSAP), is introduced to design phase-coded waveforms with
multi-level low range sidelobes, which mainly considers the stability for randomized initialization
under the unimodular constraint. Firstly, the mathematical problem corresponding to avoid the
range sidelobe masking from multiple non-cooperative targets or interference is formulated by giving
different threat levels. Then, based on the alternating direction decomposition idea, the original
problem is divided into triple-variable ones where these non-linear approximations can be solved
via alternating projections along with FFT. Furthermore, the PSAP method with swarm intelligence,
learning factor, and particle-assisted projection could ensure the optimization convergence in a paral-
lel way, which could relax the non-convex constraint and enhance the global exploiting performance.
Finally, simulations for several typical scenarios and numerical results are all provided to assess the
waveforms generated by PSAP and other prevalent ones.

Keywords: cognitive radar; waveform design; range sidelobe suppression; particle swarm-assisted
projection; FFT

1. Introduction

Waveform diversity aided by high-performance radar hardware has received consid-
erable attention and even made a great step forward to cognitive radar (CR) [1–3]. Most
radars transmit a modulated waveform and then use some type of matched filter (MF) to
enhance the signal-to-noise ratio (SNR) of the return echo. In mathematical sense, the MF
output is usually the convolution between the received signal and the time-reversed replica
of the transmitted signal, which is also regarded as the aperiodic auto-correlation [4–6].
Generally, to suppress range sidelobes which might obscure small targets of interest (espe-
cially, some dot targets or low RCS target) and further improve the anti-interference ability,
the transmitting waveforms with desirable auto-correlation property are imperative by
using some prior information [7–10]. Moreover, in engineering, the constant modulus (CM)
of waveform (in most cases, i.e., unimodular property) could maximize the transmitter’s
efficiency, but also makes the mathematical problem of generating waveform be more
non-convex [11–13].

In the past 10 years, to achieve waveforms with ideal range sidelobes, minimizing
integrated sidelobe level (ISL) and weighted integrated sidelobe level (WISL) have been de-
veloped as the classical metrics [14–16]. Therein, typical methods, such as cyclic algorithm
new (CAN) [4], iterative spectral approximation algorithm (ISAA) [12], coordinate descent
method (CD) [15], majorization minimization (MM) [16], weighted CAN (WeCAN) [17],
alternating direction method of multipliers (ADMM) [18,19], etc., have also been presented
and have received much attention. Note that, for mathematical problems under convex
constraints, CANs could give some asymptotic convergence and make a big difference,
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while for the non-convex case CANs might stagnate into a suboptimum or local area [20,21].
Authors in [22] discussed the successive application of MM and phase gradient algorithm
to synthesize the waveforms with low sidelobes. Additionally, authors adopted the limited
memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) to solve a fourth order
polynomial formula and design unimodular sequences, but their ideas might incur invali-
dation for waveforms with large size [23]. Meanwhile, waveform optimization based on
simulated annealing and stochastic neighborhood searching mechanism have also been
presented, but these heuristic algorithms may be restricted to the modulus intricacy and
large size of the waveforms [24,25].

Note that, when discussing the non-convex optimization with random initialization,
these algorithms above would lead to a different terminus and only guarantee a local
convergence [26]. Especially, to design the random phase-coded waveforms, how to
tackle the random initialization for non-convex case has always been the key issue in
engineering. Parallel optimization based on swarm intelligence maybe a good choice to
improve the robustness. Unlike the optimization methods regarding each phase-coded unit,
the waveform sample-based projection optimization using FFT will make a difference. In
this paper, we use the idea of swarm particle intelligence [27–29] and combine alternating
projection and particle swarm intelligence together to improve the global exploiting. To
this end, our particle swarm-assisted projection optimization (PSAP) method is introduced
to design the waveforms with desirable range sidelobes. Firstly, the mathematical problem
is formulated to tackle the multiple non-cooperative targets or interference. Furthermore,
using the alternating direction idea, the original problem is divided into some triple-variable
ones considering different constraints. Then, the spectrum approximation in the sense of
F-norm can be transformed into multi-variable alternating optimization cases. Finally, with
the help of particle swarm intelligence, phase retrieval, learning factor and accelerated
projections, PSAP method and its accelerated version have been formulated.

The remainder of paper is organized as follows. In Section 2, the system model is
shown, and the formulated optimization problem for minimizing sidelobes is derived. In
Section 3, PSAP as a novel alternative optimization mechanism based on swarm intelligence
and FFT is presented. In Section 4, the performance of the proposed algorithms is evaluated
and a series of numerical examples are also provided. Finally, in Section 5, the concluding
remarks are provided.

2. The Signal Model and Problem Description

In this section, we discuss the range sidelobes masking effect from some strong RCS
scatters which might obscure small targets of interest (such as dot target or low RCS target),
and mainly focus on the waveform design for the static target detection in masking scenario
and ignore the Doppler effect. For general description, the pre-modulated transmitting
waveform in time domain has the discrete form of base band sequence with N code
elements, i.e., s= [s1 s2 . . . sN

]T . The received signal is down converted to base band
and undergoes the MF at the receiver [30]. The vector format of autocorrelation function
which can be regarded as the MF output at the zero Doppler shift, has been listed as follows

α(s) =
[
α−N+1(s) . . . α−1(s) α0(s) α1(s) . . . αN−1(s)

]T (1)

αn(s) =
N−n

∑
ñ=1

sñs∗ñ+n =α∗
−n(s) (2)

As shown in [12], suppose that a strong point scatterer (or the interference) with echo
power σ2

t (q) exists in the q-th range cell, and a weak target of interest with echo power
σ2

t (r) exists in the r-th range cell, the noise plus range sidelobe interference for the r-th
range cell can be represented as

σ2
I (r) = Ω(N − 1 − |q − r|)

∣∣σt(q)αq−r(s)/N
∣∣2 + σ2

n , (3)
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where Ω(n) =

{
1 n ≥ 0
0 n < 0

, σ2
n is the power of the thermal noise, and αq−r(s) denotes

the (q-r)-th lag of the aperiodic autocorrelation of (1). Then the target Signal power to
Interference plus Noise Ratio (i.e., SINR) can be expressed as

SINR =
σ2

t (r)
σ2

I (r)
==

σ2
t (r)

Ω(N − 1 − |q − r|)
∣∣σt(q)αq−r(s)/N

∣∣2 + σ2
n

(4)

here, of all the variables in (4), αq−r(s) is the only one under the control of radar transmitter.
Despite the phase-coded waveform s with arbitrary amplitude, the CM waveform could

maximize the transmitter’s efficiency [13,16,31]. Let x =
[
x1 x2 . . . xN

]T ∈ CN×1 denote
CM phase-coded one with N discrete phase-coded units, i.e., xn = ejψn where ψn denotes the
n-th phase-unit extracted from [0, 2π]. (·)T, (·)∗ means the operation of transpose, complex

conjugate, respectively. Similarly, we use αn(x) =
N−n
∑

ñ=1
xñx∗ñ+n =α∗

−n(x) to denote the range

sidelobes of MF output in lieu of αn(s) in (1) and (2). In modern electronic countermeasures
scenarios, range sidelobes units occupied by some powerful interference or extended-scatters
which mask the interesting target need to be suppressed [8,10,17]. Namely, local low range
sidelobes is more convenient for weak targets detection and anti-masking effect as discussed
in (3) and (4). Suppose that a powerful dot-scatter exists in the q-th range unit and inevitably
impacts the target detection of the r-th one. With the help of some prior information Rr, i.e.,
Rr =

{
±|n − q| : n ∈ Ẑr

}
\{N − 1,−N + 1} where Ẑr denotes the area with a foreseeable

target, we could further describe the range interval Rr to be suppressed. We use an indicating
vector z = [z1, z2 . . . z2N]

T to formulate the area-mapping of these pre-suppressed range
sidelobes interval, i.e., zn = 1 when n ∈ Rr, and zn = 0 when n /∈ Rr. The classical weighted
ISL given some prior information has been discussed in [4,7,17], i.e.,

WISL(x) = min
x

2
N−1

∑
n=1

wn|αn(x)|2, wn ≥ 0 (5)

Borrowed the idea of (5), we denote {�n}2N
n=1 as the weight corresponding to each unit

in z = [z1, z2 . . . z2N ]
T , i.e., �n = δ1 � 1 when zn = 1, and �n = 1 when zn = 0. We further

define x̃ as the desirable waveform with ideal local low sidelobes, i.e., lim
x→x̃

α(x̃) = � � α(x),

� denotes the Hadamard element-wise product. Let v denote the approximation vector
with v → � � α(x) . To design waveform with desirable property, namely, we should make
α(x) and α(x̃) be more approximate. Here we use the norm-metric ‖α(x)− v‖2 to denote
the approximation level of them. Finally, the objective function can be formulated as

min
x

‖α(x)− α(x̃)‖2 = min
x

‖α(x)− v‖2 (6)

According to the “Parseval-type equality” in [17], i.e., ‖FCTx‖2 = ‖x‖2, the objective
function of (6) is equivalent to

min
x

‖FCTα(x)− FCTv‖2
(7)

FCTv = f̃ � f̃
∗ ∈ 2N×1, FCTα(x) = f � f∗ ∈ 2N×1 (8)

where C denotes the extend or cutoff matrix with C =
[
IN×N 0N×N

]
, f̃ and f = FCTx

refers to the frequency spectrum of x̃ and the designing one, respectively. The DFT matrix
F ∈ C2N×2N is constituted by unity exponential factor, i.e., f̂H

k = [e−jwk . . . e−j2N·wk ]
with wk = 2πk/2N. Next, the optimization problem in (6) can be transformed into the
spectrum approximation as following
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min
x

‖(FCTx)� (FCTx)
∗ − f̃ � f̃

∗‖2 � min
x

2N
∑

k=1

∣∣∣∣∣
(∣∣∣(f̂H

k CTx
)∣∣∣2 −(√(

f̂H
k CTv

))2
)∣∣∣∣∣

2

s.t. |xn| = 1, n = 1, 2, . . . , N

(9)

Note that the problem of (9) is a quartic function of {xn}N
n=1, using the auxiliary phase

vector φ = [φ1 φ2 . . . φ2N ]
T , (9) can be justified ‘almost equivalent’ to the following

quadratic function of {xn}N
n=1 [17], i.e.,

min
x,φ

2N

∑
k=1

∣∣∣∣
√(

f̂H
k CTv

)
· ejφk −

(
f̂H
k CTx

)∣∣∣∣2 (10)

and the ideal frequency spectrum vector f̃ can be further expressed as

f̃ =
(

FCTv
)1/2

� exp(jφ) (11)

As v ∈ C2N×1 → � �α(x) , (10) implies that once given x, the ideal v satisfies

min
v

‖v − � � α(x)‖2

s.t. |xn| = 1, n = 1, 2, . . . , N
(12)

namely, v � � �α(x), so that
√(

f̂H
k CTv

)
will be constant once given x, then (10) in the

vector format has

min
φ

‖
(

FCTv
)1/2

� exp(jφ)−
(

FCTx
)
‖

2

s.t.
{

v � � � α(x)
φn ∈ [0, 2π], n = 1, 2, . . . , 2N

(13)

For brevity, defining a novel operator diag(·) which rearranges the column vector to

be a square diagonal matrix, i.e.,
(

FCTv
)1/2

� exp(jφ) = diag(exp(jφ))
(

FCTv
)1/2

, and
the objective function (13) has

min
φ

‖diag(jφ)
(

FCTv
)1/2

− FCTx‖
2

s.t.
{

v � � � α(x)
φn ∈ [0, π], n = 1, 2, . . . , N

(14)

Similarly, given φ and v, the quadratic optimization problem of (10) has

min
x

‖
((

FCTv
)1/2

� exp(jφ)

)
− FCTx‖

2

s.t. |xn| = 1, n = 1, 2, . . . , N
(15)

Let J =
(

FCTv
)1/2

∈ 2N×1, then diag(exp(jφ))J = diag(J) exp(jφ), (14) can be
rewritten as

min
φ

‖diag(J) exp(jφ)− FCTx‖2
(16)

Meanwhile, diag(J) is also an invertible matrix, the estimated φ in (16) could be
given by

φ = ang
((

(diag(J))Hdiag(J)
)−1

(diag(J))HFCTx
)

(17)
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where ang(·)= im(ln(diag(·))) represents the phase extractor from its vector argument,
and im(·) denotes the imaginary component extraction operator. Similarly, recall “Parseval-
type equality” again, the objective function in (15) could be expressed as:

min
x

‖CFH
((

FCTv
)1/2

� exp(jφ)

)
− x‖

2

= ‖CFH
(

diag(exp(jφ))
(

FCTv
)1/2

)
− x‖

2

s.t. |xn| = 1, n = 1, 2, . . . , N

(18)

On account of CM property, we only retain the phase section of the estimated x of (18).
Then the designed waveform by the phase-retrieval operation of [20] has

x = exp
(

j · ang
(

CFH
(

diag(exp(jφ))
(

FCTv
)1/2

)))
(19)

3. The Proposed Particles Swarm Assisted Projection Framework

In recent years, CAN [4], RISAAP [5], PONLP [12], CD [15], WeCAN [17], and
ADMM [18] are all presented to deal with the Non-deterministic Polynomial-time hard
(NP-hard) problem. They have the common trait, i.e., iterative optimization mechanism.
Therein, each iteration of them requires to solve a non-convex problem under unimodular
constraint, no matter by virtue of handling the bisection gradient optimization or FFT-based
one. However, the initialized random phases where each phase unit is distributed in [0, 2π],
would incur a different terminus when using different random initialization. Namely, each
Monte-Carlo trial could obtain different solution and remain some local convergence. To
tackle these, we borrow the idea of parallel optimization to combine the particles swarm
intelligence and projection optimization together, where the novel particles projection
mechanism will avoid the local area in the statistical sense. Next, we present the PSAP
framework in lieu of the traditional evolution mechanism of PSO or DE [28,29], and thus
could enhance the global exploiting for non-convex phase-coded problem. The detailed
descriptions of PSAP have been listed as follows

Step 1. Formulate the waveform set rather than one single sequence, i.e.,
X = [x1. . . xm . . . xM] ∈ CM×N with xm = [xm(1). . . xm(n) xm(N)]

T ∈ CN×1. Note
that each sequence has xm(n) = ejψn , where ψn denotes the independent phase-coded
variables extracted from [0, 2π]. Additionally, the waveform set could also be initialized by
Frank or Barker sequence.

Step 2. Define a novel metric to assess the sidelobe performance of waveform in the
range interval Rl as

f itness(xm) =
1

num_Rr
∑

k∈Rr

αk(xm) (20)

where num_Rr denotes the number of pre-suppressed sidelobes units.
Step 3. Using (20) as the fitness function to evaluate each waveform xm of set X, and

select the best fitness function and its corresponding waveform pt.
Step 4. For the t-th iteration, select M̂ < M waveforms from waveform set X to

formulate the novel subset. Here we should update the subset by some rules that if the best
fitness function and its corresponding waveform have not been incorporated, then use it to
replace the worst one in current subset.

Step 5. For each waveform xm at the t-th iteration, utilize the oversampling FFT to

get xm →
�
f m , and then formulate the relaxing factor δ(xm), relational factor dm, and also

projection vector vm by using (22)~(24) respectively, as follows

�
f m = (F� � α(xm))

(1/2) �
(

exp
(

j · ang
(

FCTxm

)))
(21)
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δ(xm) =

√√√√√√‖(F� � α(xm))
(1/2) �

(
exp

(
j · ang

(
FCTxm

)))
− xm‖

‖
(

exp
(

j · ang
(

CTF
�
f m

)))
− xm‖

(22)

dm = δ(xm) ·
(

exp
(

j · ang
(

CTF
�
f m

))
− xm

)
(23)

vm = w · dm + c1 · rand · (ym − xm) + c2 · rand · (p − xm) (24)

where dm denotes the relational factor of the m-th waveform at the t-th iteration to the
t + 1-th iteration, rand denotes one random value of [0, 1], w ∈ [1, 1.5] represent the inertia
factor, c1 ∈ [0.5, 1] is the learning factor related to the best waveform ym which is selected
from initial iteration to the current iteration

{
x1

m . . . xt
m
}

. c2 ∈ [0, 0.5] represents the
learning factor related to the best waveform pt at the current t-th iteration.

Step 6. Use the multi-particles projection of (25)~(26) to achieve unimodular wave-
forms at the t + 1-th iteration, as follows

�
x m = xm + vm (25)

x̂m =
(

exp
(

j · ang
(
�
x m

)))
(26)

where x̂m with CM property has been obtained by the phase retrieval operation in (26).
Step 7. Consider the remaining subset, update them by

φm = ang

(
diag

(((
FCT(� � α(xm))

)1/2
)−1

)
FCTxm

)
(27)

x̂m = exp
(

j · ang
(

CFH
(

diag(exp(jφm))
(

FCT(� � α(xm))
)1/2

)))
(28)

Step 8. Merge the subset and remaining part, use the following selection rules to get
ym, i.e., ym = x̂m when f itness(x̂m) < f itness(xm), or not ym = xm, and select the best
fitness function and its corresponding waveform pt.

Step 9. Repeat step 3~8 until
∣∣ f itness(pt)− f itness(pt−1)

∣∣ < ε or num > iter_num,
then output pt. Otherwise, update t = t + 1 and continue iterating.

Furthermore, we could incorporate the gradient steepest idea into PSAP. The objective
function of (15) can be expressed as:

min
x

J(x) = ‖FCTx −
√∣∣∣FCTdiag(‡)α(x)

∣∣∣� ang
(̃

f
)
‖

2

(29)

Let
�
ψ = ang(̃f), then the two-variable optimization problem has

min
�
ψ,x

J
(

x,
�
ψ
)
= ‖FCTx −

√∣∣∣FCTdiag(‡)α(x)
∣∣∣��

ψ‖
2

(30)

Given the latest iterative x,
�
ψ can be achieved by the follow gradient optimization,

and its gradient matrix has

∇ψ J(x) =

∂‖abs

(
F

[
x

0N×1

])
�exp(jang(FCTx))−

√
|FCTdiag(‡)α(x)|��

ψ‖
2

∂
�
ψ

= j · diag
(

abs
(

FCTx
))

diag
(√∣∣∣FCTdiag(‡)α(x)

∣∣∣)�ψ)
·(

exp
(

j
(

ang
(

FCTx
)
−

�
ψ
))

− exp
(

j
(�

ψ − ang
(

FCTx
))))

(31)

25



Remote Sens. 2022, 14, 4186

∂2‖abs(FCTx)�exp(jang(FCTx))−
√
|FCTdiag(‡)α(x)|��

ψ‖
2

∂
�
ψ∂

�
ψ

T

= diag
(

aba
(

FCTx
))

diag(v) · diag
(

exp
(

j
(

ang
(

FCTx
)
−

�
ψ
))

+ exp
(

j
(�

ψ − ang
(

FCTx
)))) (32)

Let (32) equal to 0, then
�
ψ has:

�
ψ = ang

(
FCTx

)
+ π · ξ (33)

where ξ ∈ Z, as known, only if ξ is the even value, the hessian matrix of (33) can be positive,

and (30) will get the minimum. Moreover, given
�
ψ, the phase vector of x has:

ang(x) = ang

(
CFH

(√∣∣∣FCTdiag(‡)α(x)
∣∣∣��

ψ

))
+ π · ξ (34)

Finally, the detailed descriptions of particle swarm-assisted projection with optimizing
mechanism (named as PSAPOM) have been listed as follow:

Step 1~Step 3 are similar to PSAP.
Step 4. Define x(1) = pt, then calculate the gradient direction d0 = −g0 = −∇ψ J(x(1)),

then search the best length ϑ which satisfies

J
(

diag(exp(jϑdk))x
(k)
)
≥ J

(
diag(exp(jηdk))x

(k)
)

, ∀η ≥ 0 (35)

define x(k+1) = diag(exp(jϑdk))x(k), then

gk+1 = ∇ψ J
(

x(k+1)
)

(36)

dk+1 = −
(

gk+1 +
(
gk+1 − gk

)Tgk+1dk/‖gk‖
2
)

(37)

if
∣∣∣ f itness(x(k+1))− f itness(x(k))

∣∣∣ < 10−5 or k > 100, output the initiation pt = x(k+1);

Step 5. For the current iteration, select M̂ < M waveforms from set X to formulate
the novel subset. Here we should update the subset by some rules that if the best fitness
function and its corresponding waveform have not been incorporated, then use it to replace
the worst one in current subset.

Step 6. For each waveform xm of subset, utilize the oversampling FFT to get xm →
�
f m ,

and then formulate the relaxing factor δ(xm), relational factor dm, and also projection vector
vm by using (39)~(41) respectively, as follows

�
f m = (F� �α(xm))

(1/2) �
(

exp
(

j · ang
(

FCTxm

)))
(38)

δ(xm) =

√√√√√√‖(F� �α(xm))
(1/2) �

(
exp

(
j · ang

(
FCTxm

)))
− xm‖

‖
(

exp
(

j · ang
(

CFH
�
f m

)))
− xm‖

(39)

dm = δ(xm) ·
((

exp
(

j · ang
(

CFH
�
f m

)))
− xm

)
(40)

vm = w · dm + c1 · rand · (ym − xm) + c2 · rand · (pt − xm) (41)

where dm denotes the relational factor of the m-th waveform at the t-th iteration to the
t + 1-th iteration, rand denotes one random value in [0, 1], w ∈ [1, 1.5] represent the inertia
factor, c1 ∈ [0.5, 1] is the learning factor related to the best waveform ym which is chosen
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from initial iteration to the current iteration
{

x1
m . . . xt

m
}

. c2 ∈ [0, 0.5] represents the
learning factor related to the best waveform pt at the current t-th iteration.

Step 7. Use the multi-particles projection to achieve unimodular waveforms at t + 1-th iteration,

�
x m = xm + vm (42)

x̂m =
(

exp
(

j · ang
(
�
x m

)))
(43)

where x̂m with CM property has been obtained by the phase retrieval operation of (43).
Step 8. For the remaining subset, update them by

φm = ang

(
diag

(((
FCT(� � α(xm))

)1/2
)−1

)
FCTxm

)
(44)

x̂m = exp
(

j · ang
(

CFH
(

diag(exp(jφm))
(

FCT(� � α(xm))
)1/2

)))
(45)

Step 9. Merge the subset and the remaining part, use the following rules to get ym, i.e.,

i f fitness(x̂m) < fitness(xm)
ym = x̂m

else ym = xm

(46)

then select the best fitness function and its corresponding waveform pt.
Step 10. Repeat above-mentioned steps 5~9 until num > iter_num or∣∣ f itness(pt)− f itness(pt−1)

∣∣ < ε, then output pt. Otherwise, update t = t + 1 and con-
tinue iterating.

4. Simulations and Performance Analysis

Note that the non-convex optimization problem under different initialization is usually
providing a different terminus, and hard to obtain the global solution within polynomial
time [5,11,26]. For the phase-coded CM waveform design, selecting an effective technique
has always been the focus [12–14]. In this section, to further assess PSAP’s performance,
we firstly assume code length of waveform N = 150, then the initialized waveform set has

set0 =
[
x0

1 . . . x0
m . . . x0

M
]
∈ CN×M (47)

x0
m = [x0

m(1). . . x0
m(n) x0

m(N)]
T ∈ CN×1 (48)

where M = 20, xm(n) = ejψn . In addition, the inertia weight, individual learning factor as
well as group learning factor are set as w = 1.5, c1 = 0.5, and c2 = 0.5, respectively. The
iterations number iter_num is set as 2000, threshold value of

∣∣ f itness(pt)− f itness(pt−1)
∣∣

is set as ε = 10−10.
Next, we take the scenario of suppressing one single area for comparison, i.e., single

interval Rr= [2 : 30]. PSAP will be compared with WeCAN, ISAA, RISAAP, and PONLP,
by 20 Monte Carlo (MC) trials. Here, we define the averaging autocorrelation sidelobe level
(Aver-ACL) and local PSL (LPSL) in suppressed regions as the metric, as follows

Aver-ACL =
1

num_Rr
∑

k∈Rr

20 · log10
|αk(x)|
|α0(x)|

(dB) (49)

LPSL =20 · log10

(
max

( |αk(x)|
N

))
(dB), k ∈ Rr (50)

for the sake of comparison, all methods or algorithms would be initialized by random
phase-coded sequence. Performance comparisons have been shown in Table 1 and Figure 1.
Simulations are performed on a PC with 3.40 GHz i7 CPU.
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Table 1. Performance comparison for suppressing single area sidelobes of different algorithms.

Algorithms
Single Area

Aver-ACL (dB) LPSL (dB) Time Consumption (s)

RISAAP −228.4560 −216.5490 0.14
ISAA −158.0292 −144.8821 0.35

WeCAN −48.5622 −35.6573 5.11
PONLP −139.6091 −130.2762 0.48
PSAP −333.4510 −321.8462 0.76

Figure 1. ACL comparison for suppressing sidelobes in a single area.

In Table 1 and Figure 1, our proposed PSAP with parallel optimization mechanism has
achieved the best performance, PONLP with stochastic gradient optimization has achieved
only −139 dB of Aver-ACL and −130 dB of LPSL, while WeCAN achieves −48 dB of Aver-
ACL and −35 dB of LPSL. Moreover, ISAA and RISAAP using the mechanism of alternating
projection has obtained −228 dB and −158 dB of Aver-ACL, −216 dB and −144 dB of
LPSL, respectively. We need to declare that, with 20 · log10(·) as the mathematical metric
referring to [4,5,12,17], these methods or algorithms conduct their iterating or optimizing
with the same stop criteria/thresholds (iter_num is set as 2000, threshold value is set as
ε = 10−10). Here, the phenomenon with –228 dB or −333 dB may be unnecessary to have
so low sidelobe levels for practical engineering, but these low values in mathematical sense
would demonstrate some quickly converging or optimizing level of our PSAP framework
even for the future electronic countermeasure scenario.

To further discuss the computation complexity of them, here we mainly demonstrate
the number of iterations in convergence graph (as shown in Figure 2), and the CPU
time consumption in Table 1. In Figure 2, we use log

∣∣ f itness(xt)− f itness(xt−1)
∣∣ as the

convergence metric of the y-coordinate. Figure 2 has shown obvious converging difference.
PSAP uses the idea of particles swarm intelligence, i.e., M = 20, to establish thus cooperative
optimization (in CPU model), also occupies much more time than RISAAP, ISAA and
PONLP. WeCAN has consumed the longest time 5.11 s. By 20 MC trails, we can see
that PSAP has achieved the best robustness performance, which is own to the parallel
cooperative mechanism. In addition, these trails and simulations are all based on CPU;
when given the GPU condition, PSAP will occupy much less time than others. As seen
in Table 1 and Figure 2, WeCAN has slow convergence and PONLP with the steepest
descent gradient might stagnate into the local area. ISAA and RISAAP have oscillations in
Figure 2 which might attribute to the alternating projection between multi-local areas for
the non-convex case.
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Figure 2. Convergence comparison of different methods.

In addition, we also discuss the Aver-ACL and LPSL comparisons with different code
lengths N (i.e., 150, 200, 250, 300) which are shown in Figure 3. No matter N = 150, 200, 250,
and 300, our proposed PSAP could obtain the best Aver-ACL and LPSL in different code
lengths. Meanwhile, the results of these methods in Figure 3 have shown some similarity
that WeCAN might lose the performance for engineering application.

Meanwhile, we also consider the sidelobe suppression in multiple-area case, i.e.,
Rl= [2 : 10] ∪ [30 : 40]. Here, we assign different suppressing levels with δ1 = 0, δ2 = 10−4

where the former corresponds to the range sidelobe area next to the mainlobe, and the
second refers to the farther one. Note that, the interferences near the mainlobe would also
produce more effect than the farther one, and affect the detecting performance. Namely,
we arrange two suppressing areas with different weights to demonstrate the suppressing
levels for different non-cooperative targets. When discussing δ1 = 0, δ2 = 10−4, the former
δ1 = 0 with relative-low weights means more emphasis on the first area. In Table 2 and
Figure 4, we could see that the first area has achieved more excellent performance than the
second one, which is due to the weights of the different non-cooperative targets.

(a) 

Figure 3. Cont.
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(b) 

Figure 3. Aver-ACL and LPSL comparison with different code lengths N. (a) Aver-ACL comparison
of RISAAP, ISAA, WeCAN, PONLP, and PSAP. (b) LPSL comparison of RISAAP, ISAA, WeCAN,
PONLP, and PSAP.

Table 2. Performance comparison for suppressing multiple area sidelobes with different weights.

Algorithms

Multiple Area

Aver-ACL
in 1# Area (dB)

LPSL
in 1# Area (dB)

Aver-ACL
in 2# Area (dB)

LPSL
in 2# Area (dB)

Time
Consumption (s)

RISAAP −233.2183 −220.6892 −163.5196 −163.5110 0.16

ISAA −119.9062 −117.8060 −100.1328 −93.8627 0.34

WeCAN −61.2209 −47.9854 −41.1983 −34.9465 5.94

PONLP −147.6981 −141.6530 −116.1224 −112.5260 0.45

PSAP −336.3241 −329.4050 −169.5424 −169.5420 0.84

Figure 4. ACL comparison for suppressing sidelobes for multiple areas.
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In Table 2 with recorded time-consumption data, obviously, our proposed PSAP with
0.84 s has achieved the best Aver-ACL and LPSL using 20 MC trials, but with more time
than RISAAP (with 0.16 s), ISAA (with 0.34 s) and PONLP (with 0.45 s). Moreover, WeCAN
(with 5.94 s) has lost the performance and cost more time than others.

Moreover, we also consider the multiple-case, i.e., Rl= [2 : 10] ∪ [30 : 40] and arrange
two suppressing areas with same weights δ1 = 0, δ2= 0. In Table 3 and Figure 5, we could
see that these two areas have achieved same excellent performance. Table 3 has shown
same characteristics as shown in Tables 1 and 2. Our proposed PSAP has achieved the best
result by 20 MC trials. WeCAN has lost its performance.

Table 3. Performance comparison for suppressing multiple area sidelobes with same weights.

Algorithms

Multiple Area

Aver-ACL
in 1# Area (dB)

LPSL
in 1# Area (dB)

Aver-ACL
in 2# Area (dB)

LPSL
in 2# Area (dB)

RISAAP −238.1425 −232.5312 −236.9185 −235.2602

ISAA −137.7802 −134.5042 −134.4622 −131.5260

WeCAN −59.4995 −50.2199 −53.3124 −48.0641

PONLP −151.2146 −142.0220 −149.6574 −142.9440

PSAP −340.8439 −326.2900 −336.8021 −323.6540

Figure 5. ACL comparison of suppressing sidelobes for multiple areas.

Note that the initialization of algorithms is indeed significant no matter for cyclic
algorithms or alternating projection. As the Gradient Descent (GD) mechanism could
accelerate the exploiting for local optimization, and we combine the GD and PSAP together
to formulate the PSAPOM and enhance the global robustness. To further assess the perfor-
mance of PSAPOM and PSAP, despite the random phase-coded sequence, here we assume
that these algorithms have been initialized by the Frank-coded or Barker-coded sequence,
respectively. For the length N = Ñ2 (N = 196), the Frank sequence is given by:

x(nÑ + ñ + 1) = ej2πnñ/Ñ ; n, ñ = 0, 1, 2 . . . , Ñ − 1 (51)

we also assume another waveform sequence (N = 169) formulated by the 13 Barker sequence.
As shown in Figure 6 and Table 4, for both the Frank sequence and Barker sequence,
PSAPOM also achieved the same performance as PSAP, but its time consumption, 0.4210 s
and 0.2502 s, was less than PSAP.
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(a) 

(b) 

Figure 6. ACL performance comparison for suppressing multiple sidelobe areas. (a) Description of
PSAPOM and PSAP initialized by Frank-coded sequence; (b) Description of PSAPOM and PSAP
initialized by the 13 Barker-coded sequence.

Table 4. Algorithm (initialized by the Frank or Barker sequence) comparison for suppressing
range sidelobes.

Algorithms

Frank Sequence Barker Sequence

Aver-ACL in 1#
Area (dB)

Aver-ACL in 2#
Area (dB)

Aver-ACL in 1#
Area (dB)

Aver-ACL in 2#
Area (dB)

PSAPOM −321.1162 −320.7214 −326.3520 −323.2342

PSAP −321.4633 −321.2361 −325.7421 −323.1652

In these comparisons, we could draw a basic conclusion that our improved PSAP
algorithms have a remarkable performance compared to WeCAN, PONLP, ISAA, and
RISAAP, which will have a large influence on future practical applications. Moreover, given
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the sophisticated scenarios, i.e., the unimodular constraint and multiple suppressing areas,
our PSAP and PSAPOM have shown a more powerful convergence than these methods.
Meanwhile, our simulations have demonstrated that PSAP and PSAPOM have excellent
robustness and stability. We may attribute these traits to FFT leverage and swarm particle
intelligence due to alternating projection mechanisms.

5. Conclusions

In this paper, a PSAP framework (such as PSAP and PSAPOM) is introduced to
design a unimodular CM phase-coded waveform with local low range sidelobes. Therein,
PSAP with learning factor and particle-assisted projection could improve the convergence
in the non-convex case. Numerical trails and simulations have also provided plenty of
analysis to assess the waveforms generated by PSAP, WeCAN, ISAA, RISAAP, and PONLP.
Regarding statistical performance, PSAP and PSAPOM via swarm intelligence and parallel
optimization idea have achieved outstanding results. Additionally, in this paper, as we
only discussed the masking scenarios of detecting static targets despite the Doppler effect
of moving targets, in our further research, we will continue designing other phase-coded
waveforms considering the non-zero Doppler effect. Moreover, we will also use GPU to
accelerate the distributed parallel optimization.
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Abstract: This paper investigates the design of waveforms for multiple-input multiple-output (MIMO)
radar systems that can exploit multipath returns to enhance target detection performance. By making
reasonable use of multipath information in the waveform design, MIMO radar can effectively improve
the signal-to-interference and noise ratio (SINR) of the receiver under a constant modulus (CM)
constraint. However, optimizing the waveform design under these constraints is a challenging non-
linear and non-convex problem that cannot be easily solved using traditional methods. To overcome
this challenge, we proposed a novel waveform design method for MIMO radar in multipath scenarios
based on deep learning. Specifically, we leveraged the powerful nonlinear fitting ability of neural
networks to solve the non-convex optimization problem. First, we constructed a deep residual
network and transform the CM constraint into a phase sequence optimization problem. Next, we
used the constructed waveform optimization design problem as the loss function of the network.
Finally, we used the adaptive moment estimation (Adam) optimizer to train the network. Simulation
results demonstrated that our proposed method outperformed existing methods by achieving better
SINR values for the receiver.

Keywords: MIMO radar; multipath exploitation; waveform design; deep learning; SINR

1. Introduction

Radar systems often encounter multipath effects when detecting low-altitude targets.
In such scenarios, the received returns consist not only of the backscattered line-of-sight
(LOS) component, but also of the multipath returns component [1–3]. However, the
presence of multipath returns can cause the received echo signal to fluctuate and even
cancel, which will reduce the performance of target detection and parameter estimation.
The early research has been devoted to suppressing the multipath returns [4–7]. In [4],
multipath returns are regarded as clutter and suppressed.

However, the principle of multipath generation suggests that both the direct and
multipath returns are coherent and contain target energy [8]. If the energy of the multipath
returns can be accurately estimated and accumulated, it can improve the detection and
tracking performance of the target [9–11].

Multiple-input multiple-output (MIMO) radar is a new type of radar system in which
the transmitting antennas can transmit mutually independent signals [12–16]. By adaptively
adjusting the MIMO radar transmission waveform for different tactical needs, the radar
detection performance can be significantly improved in complex environments [17,18].

MIMO channel models can be broadly categorized into two types based on the meth-
ods used for their establishment. The first type is deterministic channel models [19–21],
where precise information about the channel is obtained, and the wireless propagation is
deemed as a deterministic process. This enables the determination of the spatio-temporal
characteristics of any point in space. One study [19] employed a multilayer artificial neural
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network method to predict channel characteristics, thereby overcoming the low compu-
tational efficacy of traditional deterministic channel models. In contrast, the other type is
statistical channel models [22–25], wherein the channel is regarded as a stochastic process,
and a probability distribution is used to describe its temporal and spatial changes.

Depending on the specific application requirements of the radar, the waveform
optimization design criteria for MIMO radar can be divided into four types. The first
type of optimization criterion aims to maximize the signal-to-interference and noise ratio
(SINR) [26–29]. Through appropriate waveform design, MIMO radar can maximize the
SINR to improve target detection performance. In [29], an optimization design problem
for maximizing the SINR based on constant modulus, similarity, and spectrum constraints
was presented, and a semi-definite programming method was used to solve the problem.
The second type of optimization criterion aims to maximize mutual information [30,31].
By maximizing the amount of mutual information between the corresponding target and
the received waveform, the echo can exhibit more target characteristics. The third type
of optimization criterion is the pattern matching problem [32,33]. The goal of this type of
problem is to concentrate the transmitted beam energy of the MIMO radar in a specified
airspace while minimizing the transmitted energy of the side lobes. The last type of opti-
mization criterion is the orthogonal waveform design problem [34–36]. By reducing the
correlation between the transmitted waveforms, the performance of matched filtering can
be improved.

Combining high degrees of freedom in the MIMO radar waveform design with multi-
path exploitation [37–39] has shown great potential for further improving target detection
performance. Most existing waveform design methods using multipath returns focus on
slow time domain weight optimization for fixed waveform. In [37], the authors proposed to
improve the detection performance of moving targets in multipath scenarios by optimizing
the weights between different coherent processing intervals (CPIs), which they performed
by using the orthogonal frequency division multiplexing (OFDM) waveform. On the other
hand, in [38], the authors proposed an OFDM MIMO adaptive waveform design algorithm
based on the mutual information criteria, thus aiming to select the best OFDM waveform
by maximizing the mutual information between the state and measurement vectors. This
particular type of slow time domain MIMO radar waveform can present challenges in
scenarios that demand low range domain sidelobes, due to its high range domain sidelobes.
Additionally, complex signal processing algorithms are required for slow time domain
waveforms, which can increase system cost and overall complexity.

In recent years, there has been an increasing interest among radar technicians in explor-
ing fast time domain waveform design methods that make use of multipath information.
In [40], the transmit waveform and receive filter of a MIMO radar system were jointly de-
signed to maximize the SINR of the receiver for multipath exploitation. In [41], the robust
joint design of MIMO radar transmit waveform and receive filter banks was considered un-
der the uncertainty of multipath returns information. This method addressed the limitation
of requiring accurate prior knowledge of the multipath returns information in the method
presented in [40]. The optimization problem discussed in the literature is non-convex and,
therefore, cannot be solved directly. Existing research primarily relies on algorithms such
as semi-definite relaxation algorithms to solve non-convex problems indirectly by relaxing
the objective function or the constraint to a more tractable form. Oftentimes, these methods
experience degradation in performance due to the relaxation process.

The constant modulus (CM) constraint is a common requirement for MIMO radar
waveform design to avoid distortion of the transmit signal in near-saturated operating
modes of the high frequency amplifier [42]. The objective of MIMO radar waveform design
for multipath exploitation is to maximize the SINR of the receiver while adhering to the CM
constraint of the transmit waveform. However, this problem is non-linear and non-convex,
thereby making it difficult to solve with traditional optimization algorithms.

Deep learning, as a natural non-linear system [43], can effectively solve such problems.
In this paper, we proposed a method to design MIMO radar fast time domain waveforms for
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multipath exploitation using deep learning. We used a residual neural network to directly
solve the non-convex optimization problem, rather than indirectly solving it by relaxing
the CM constraint or SINR function. Firstly, we transformed the CM constraint problem
into an unconstrained phase optimization problem and took a random phase sequence as
the input of the network. Next, the reciprocal of the SINR function of the received signal
model in the multipath scenario was used as the loss function of the network. After training
the network using an adaptive moment estimation (Adam) optimizer, the output of the
network became the phase sequence of the designed waveform.

The simulation results demonstrated that the proposed algorithm made full use of
the multipath energy, thus resulting in the waveform with higher SINR performance and
detection probability compared to existing methods.

In summary, the main contributions of this article can be summarized as follows:

1. A MIMO radar signal model was constructed for multipath scenarios;
2. The MIMO radar waveform design problem for multipath exploitation was mod-

eled as a maximizing SINR problem with the constant modulus constraint on the
transmit waveform;

3. Our proposed MIMO radar waveform design algorithm employed deep learning
that utilized the non-linear fitting ability of neural networks to directly solve the
non-convex waveform optimization problem.

The remainder of this paper is organized as follows. In Section 2, the multipath
signal model for the MIMO radar is established. In Section 3, the MIMO radar waveform
optimization design problem is formulated, and the waveform design algorithm based
on deep learning is presented. Section 4 provides the simulation results to demonstrate
the effectiveness of the proposed algorithm and the superiority of the designed waveform.
Finally, Section 5 draws the conclusions.

Notations: In this paper, we use italic letters for scalars, bold italic lowercase letters
for vectors, and bold italic uppercase letters for matrices. The superscripts (·)T , (·)H and
(·)∗ denote the transpose, conjugate transpose, and conjugate, respectively. CN×N denotes
the sets of N × N complex matrices. vec(·) denotes stacking the matrix by column. The
symbol ⊗ denotes the Kronecker product. E(·) represents the calculation expectation, and
tr(·) denotes the trace of a square matrix. ‖·‖ denotes the Frobeneous norm. Re{a} and
Im{a} denote the real part and imaginary part of the vector a, respectively.

2. Signal Model

A colocated MIMO radar consisting of NT transmitting antennas and NR receiving
antennas was considered in the multipath scenario. The transmit waveform of the lth
snapshot can be expressed as

sl = [sl(1), sl(2), . . . , sl(NT)]
T , (1)

where l = 1, 2, . . . , L, L denotes the number of samples in the fast time domain. The
transmit signal matrix can be represented by

S = [s1, s2, . . . , sL] ∈ CNT×L. (2)

It is assumed that the unit spacing in the transmitting antenna array and the receiving
antenna array is set at half wavelength, that is, d = λ/2. The synthetic signal of the lth
snapshot at the azimuth θ can be expressed as

yl = aT
t (θ)sl , l = 1, 2, . . . , L, (3)
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where at(θ) =

[
1, e−

j2πd sin θ
λ , . . . , e−

j2π(NT−1)d sin θ

λ

]T
denotes the transmit steering vector.

The signal received by the MIMO radar receiver of the lth snapshot can be modeled as

zl = αA(θ)sl = αar(θ)aT
t (θ)sl , l = 1, 2, . . . , L, (4)

where α is the complex reflection coefficient, and ar(θ) =

[
1, e−

j2πd sin θ
λ , . . . , e−

j2π(NR−1)d sin θ

λ

]T

denotes the receive steering vector A(θ) = ar(θ)aT
t (θ).

As shown in Figure 1, it is assumed that there is a reflective surface in the scenario that
results in multipath returns. When the radar system transmits signals to detect a target,
the returns received by the radar array include not only direct returns, but also multipath
returns from the reflector. The transmit–receive path of direct returns is A → D → A.
Multipath returns include the multipath of the transmission process and the multipath of
the reception process, namely, A → B → D → A and A → D → B → A. In addition, there
are returns from the clutter area, namely A → C → A. The received signal model is given
by

y = yd + ym + yc + yn, (5)

where yd, ym, yc, and yn represent the direct returns, multipath returns, clutter returns, and
noise, respectively.

Transmit array

Receive array

��

��

��

��
��

(A)

Target

(D)Building

Reflection surface

(B)

Wood

Clutter area

(C)

Figure 1. Multipath scenario diagram.

2.1. Direct Returns Model

Assuming that the target velocity and the angle between the target motion direction
and LOS are v and θv, respectively, the Doppler frequency of the direct returns can be
expressed as

Fd =
2v cos θv

λ
, (6)

where λ is the wavelength of the transmit waveform. The shift matrix is defined as Gl ,
which is represented as

Gl(m, n) =
{

1, if m − n + l = 0
0, if m − n + l 	= 0

. (7)

38



Remote Sens. 2023, 15, 2747

The direct returns model of the pth pulse can be expressed as

Yd,p = αar(θd)aT
t (θd)SG0ej2πFd(p−1) ∈ CNR×2L, (8)

where α is the complex scattering coefficient of the target, and at(θd) and ar(θd) denote the
transmit steering vector and receive steering vector in the target azimuth θd, respectively.

Assuming that the radar transmits P pulses in a CPI, we have

yd =
[
yd,1

T , yd,2
T , . . . , yd,P

T
]T

, (9)

where yd,p = vec(Yd,p). The direct return model vector can be expressed as

yd = α
(

f ⊗ GT
0 ⊗

(
ar(θd)aT

t (θd)
))

s, (10)

where s = vec(S), f =
[
1, ej2πFd , . . . , ej2πFd(P−1)

]T
.

2.2. Multipath Returns Model

The Doppler frequency of the multipath returns can be given by

Fm =
Fd
2

+
cos(θi − θv)Fd

2 cos θv
, (11)

where θi is the angle between DB and DA.
For the multipath returns, the transmit steering vector and the receive steering vector

will point in different azimuths due to the reflective surface. Taking into account both the
receiving and transmitting multipath, the received signal model of the pth pulse can be
represented as

Ym,p = ρα
(

ar(θm)aT
t (θd) + ar(θd)aT

t (θm)
)

SGlm ej2πFm(p−1) ∈ CNR×2L, (12)

where ρ and θm are the complex reflection coefficient of the surface and the arrival azimuth
of multipath returns, respectively, and lm is the relative fast time delay of the multipath
path with respect to the direct path.

Considering the CPI, the multipath returns model can finally be expressed as

ym = ρα
(

f ′ ⊗ GT
lm ⊗

(
ar(θd)aT

t (θm) + ar(θm)aT
t (θd)

))
s, (13)

where f ′ =
[
1, ej2πFm , . . . , ej2πFm(P−1)

]T
.

2.3. Clutter

In radar operations, there will inevitably be reflections from other objects in the scene
that are not desired, which will have a noticeable effect on the received returns. The clutter
returns of the pth pulse can be expressed as

Y c,p = βar(θc)aT
t (θc)SGlc ∈ CNR×2L, (14)

where β is the complex backscattering coefficient of the clutter area, θc is the azimuth of
the clutter area, and lc is the relative fast time delay of the clutter path with respect to the
direct path. The clutter signal model can be further expressed as

yc = β
(

1P ⊗ GT
lc ⊗

(
ar(θc)aT

t (θc)
))

s, (15)

where 1P denotes a row unit vector of length P.
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2.4. Noise

There is also signal-independent interference in the received data, which is caused by
system noise. Typically, signal-independent noise is modeled as a Gaussian distribution.

3. Methods

3.1. Problem Formulation

The SINR is a commonly used optimization criterion that is closely related to target
detection and parameter estimation performance. In our approach, we maximized the
SINR in multipath scenarios to optimize the waveform design. Unlike common methods
that treat multipath returns as clutter and suppress them, we leveraged the information
from the multipath returns to improve the SINR of the output.

In order to calculate the SINR, the signal power of the received direct returns, multipath
returns, clutter, and noise should be calculated separately and expressed as Pd, Pm, Pc,
and Pn.

Based on the direct returns model, the signal power of the direct returns can be
expressed as

Pd =
1
L

P

∑
p=1

L

∑
l=1

E
[∥∥∥αej2πFd(p−1)A(θd)sl

∥∥∥2
]

=
P

∑
p=1

E
[∥∥∥ej2πFd(p−1)

∥∥∥2
]

E
[
‖α‖2

] 1
L

L

∑
l=1

sH
l at(θd)aT

r (θd)a∗
r (θd)aH

t (θd)sl

=
P

∑
p=1

E
[∥∥∥ej2πFd(p−1)

∥∥∥2
]

E
[
‖α‖2

]
tr

(
aH

t (θd)
L

∑
l=1

sls
H
l at(θd)

)

=
P

∑
p=1

E
[∥∥∥ej2πFd(p−1)

∥∥∥2
]E

[
‖α‖2

]
L

∥∥∥aH
t (θd)S

∥∥∥2
,

(16)

where A(θd) = ar(θd)aT
t (θd).

The signal power of the multipath returns consists of two parts, namely, the signal
power of the transmitting multipath returns and the signal power of the receiving multipath
returns, which can be expressed as

Pm =
1
L

P

∑
p=1

L

∑
l=1

E
[∥∥∥ραej2πFm(p−1)B(θmd)sl

∥∥∥2
]
+

1
L

P

∑
p=1

L

∑
l=1

E
[∥∥∥ραej2πFm(p−1)B(θdm)sl

∥∥∥2
]

=
P

∑
p=1

E
[
‖α‖2

]
E
[
‖ρ‖2

]
E
[∥∥∥ej2πFm(p−1)

∥∥∥2
]

1
L

L

∑
l=1

sH
l at(θd)aT

r (θm)a∗
r (θm)aH

t (θd)sl

+
P

∑
p=1

E
[
‖α‖2

]
E
[
‖ρ‖2

]
E
[∥∥∥ej2πFm(p−1)

∥∥∥2
]

1
L

L

∑
l=1

sH
l at(θm)aT

r (θd)a∗
r (θd)aH

t (θm)sl

=
P

∑
p=1

η tr

(
aH

t (θd)
L

∑
l=1

sls
H
l at(θd)

)
+

P

∑
p=1

η tr

(
aH

t (θm)
L

∑
l=1

sls
H
l at(θm)

)

=
P

∑
p=1

η

L

(∥∥∥aH
t (θd)S

∥∥∥2
+
∥∥∥aH

t (θm)S
∥∥∥2
)

,

(17)

where η = E
[
‖α‖2

]
E
[
‖ρ‖2

]
E
[∥∥∥ej2πFm(p−1)

∥∥∥2
]

, B(θmd) = ar(θm)aT
t (θd), and

B(θdm) = ar(θd)aT
t (θm).
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The signal power of the clutter is given by

Pc =
1
L

P

∑
p=1

L

∑
l=1

E
[
‖βA(θc)sl‖2

]

=
P

∑
p=1

E
[
‖β‖2

] 1
L

L

∑
l=1

sH
l at(θc)aT

r (θc)a∗
r (θc)aH

t (θc)sl

=
P

∑
p=1

E
[
‖β‖2

]
tr

(
aH

t (θc)
L

∑
l=1

sls
H
l at(θc)

)

=
P

∑
p=1

E
[
‖β‖2

]
L

∥∥∥aH
t (θc)S

∥∥∥2
,

(18)

where A(θc) = ar(θc)aT
t (θc).

The noise power can be expressed as

Pn = PNT Lσ2
n , (19)

where σ2
n represents the variance of Gaussian white noise.

To sum up, the output SINR can be expressed as

SINR =
Pd + Pm

Pc + Pn

=
∑P

p=1 μ1
∥∥aH

t (θd)S
∥∥2

+ ∑P
p=1 μ2

∥∥aH
t (θm)S

∥∥2

∑P
p=1 μ3

∥∥aH
t (θc)S

∥∥2
+ PNT Lσ2

n

,
(20)

where μ1 =
E[‖α‖2]

(
E
[∥∥∥ej2πFd(p−1)

∥∥∥2
]
+E

[
‖ej2πFm(p−1)‖2]

E[‖ρ‖2]
)

L , μ2 =
E
[
‖ej2πFm(p−1)‖2]

E[‖ρα‖2]
L ,

and μ3 =
E[‖β‖2]

L .
The aim of this paper was to optimize the waveform design by maximizing the output

SINR with the constant modulus constraint. Therefore, the waveform optimization problem
in this paper can be summarized as

max
S

∑P
p=1 μ1

∥∥aH
t (θd)S

∥∥2
+ ∑P

p=1 μ2
∥∥aH

t (θm)S
∥∥2

∑P
p=1 μ3

∥∥aH
t (θc)S

∥∥2
+ PNT Lσ2

n

s.t. |s(l)| = 1, l = 1, . . . , MNT .

(21)

3.2. The Proposed Design Method

The problem of optimizing MIMO radar waveform to maximize SINR with a CM
constraint is challenging due to the non-convex nature of both the SINR function and the
CM constraint. This is a high-dimensional and non-convex problem that cannot be solved
optimally using conventional methods. However, deep learning models are highly suitable
for solving this problem, since they are high-dimensional and non-linear systems.

As the residual network can effectively tackle the issues of gradient disappearance
and explosion while increasing the number of network layers [44], we constructed a deep
residual network to use its non-linear fitting ability to solve the nonconvex problem of
maximizing SINR with the CM constraint. The optimized training network designed in this
paper is displayed in Figure 2 and comprises five modules: input, forward propagation,
output, loss function, and Adam optimizer.
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Figure 2. Constructed residual network.

3.2.1. Input and Output

A randomly generated normalized phase sequence of length NT L was used as the
input of the network and can be represented as

xI = [xI(1), . . . , xI(i), . . . , xI(NT L)] ∈ CNT L×1, (22)

where xI(i) ∈ [0, 1], i = 1, 2, . . . , NT L.
The output of the network is a normalized phase sequence and can be represented as

xO = [xO(1), . . . , xO(i), . . . , xO(NT L)] ∈ CNT L×1, (23)

where xO(i) ∈ [0, 1], i = 1, 2, . . . , NT L.

3.2.2. Forward Propagation Module

The constructed residual network consists of 10 residual blocks, each comprising two
fully connected neural network layers. The first layer of the first residual block is a neural
network with weight matrix dimension of NT L × J, where the number of neurons is J. The
second layer is a neural network with weight matrix dimension of J × J and J neurons.

The first layer of the last residual block is a neural network with weight matrix
dimension of J × J, with J neurons. The second layer is a neural network with weight
matrix dimension of J × NT L, with J neurons.

To achieve dimension matching of the residual network, there is a network with
weight matrix dimension of NT L × J and J neurons between the input and output of the
first residual block, and there is a network with weight matrix dimension of J × NT L and J
neurons between the input and output of the last residual block.

The other residual blocks in between consist of two layers of neural networks with
weight matrix dimension of J × J and J neurons.

3.2.3. Loss Function

The output of forward propagation is a normalized phase sequence x̂O ∈ CNT L×1.
Assuming ϕ̂ = 2π × x̂O, the original signal from one forward propagation output can
be expressed as ŝ = ejϕ̂ ∈ CNT L×1. By the inverse process of vectorizing the waveform
columns, an output signal matrix of dimension NT × L can be obtained, where the lth
column is the signal of the lth snapshot.

As the residual network cannot directly handle complex problems, an algebraic trans-
formation of the original objective function is necessary. Assuming ŝ = cosϕ̂+ j sinϕ̂ and
aT

t (θ) = Re
{

aT
t (θ)

}
+ j ∗ Im

{
aT

t (θ)
}

, the synthetic signal of the lth snapshot of MIMO
radar in azimuth θ can be expressed as
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yθ(l) = aT
t (θ)ŝl

=
(

Re{aT
t (θ)}+ j ∗ Im{aT

t (θ)}
)
(cosϕ̂l + j ∗ sinϕ̂l)

= Re{aT
t (θ)} cosϕ̂l − Im{aT

t (θ)} sinϕ̂l + j ∗
[
Re{aT

t (θ)} sinϕ̂l + Im{aT
t (θ)} cosϕ̂l

]
.

(24)

According to (24), we have

Re{yθ(l)} = Re
{

aT
t (θ)

}
cosϕ̂l − Im

{
aT

t (θ)
}

sinϕ̂l , (25)

Im{yθ(l)} = Re
{

aT
t (θ)

}
sinϕ̂l + Im

{
aT

t (θ)
}

cosϕ̂l . (26)

The direct returns, multipath returns, and clutter of the lth snapshot of the pth pulse
can be expressed as

yd,p(l) =αej2πFd(p−1)
(

Re{aT
t (θd)} cosϕ̂l − Im{aT

t (θd)} sinϕ̂l

+ j ∗
[
Re{aT

t (θd)} sinϕ̂l + Im{aT
t (θd)} cosϕ̂l

])
,

(27)

ym,p(l) = ραej2πFm(p−1)
(

Re{aT
t (θd)} cosϕ̂l − Im{aT

t (θd)} sinϕ̂l

+ j ∗
[
Re{aT

t (θd)} sinϕ̂l + Im{aT
t (θd)} cosϕ̂l

]
+ Re{aT

t (θm)} cosϕ̂l − Im{aT
t (θm)} sinϕ̂l

+ j ∗
[
Re{aT

t (θm)} sinϕ̂l + Im{aT
t (θm)} cosϕ̂l

])
,

(28)

yc,p(l) =β
(

Re{aT
t (θc)} cosϕ̂l − Im{aT

t (θc)} sinϕ̂l

+ j ∗
[
Re{aT

t (θc)} sinϕ̂l + Im{aT
t (θc)} cosϕ̂l

])
.

(29)

Considering the delay of multipath returns and clutter relative to direct returns, the
direct returns, multipath returns, and clutter of the pth pulse can be expressed as

yd,p =

⎡⎢⎢⎢⎢⎢⎣
yd,p(1)
yd,p(2)

...
yd,p(L)

0L

⎤⎥⎥⎥⎥⎥⎦, (30)

ym,p =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0lm
ym,p(1)
ym,p(2)

...
ym,p(L)
0L−lm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (31)
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yc,p =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0lc
yc,p(1)
yc,p(2)

...
yc,p(L)
0L−lc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (32)

where 0L denotes a column zero vector of length L. Taking into account the coherent pulse
interval P, the direct returns, multipath returns, and clutter can be finally expressed as

yd =
[
yd,1

T , yd,2
T , . . . , yd,P

T
]T

, (33)

ym =
[
ym,1

T , ym,2
T , . . . , ym,P

T
]T

, (34)

yc =
[
yc,1

T , yc,2
T , . . . , yc,P

T
]T

. (35)

The signal power of the direct returns, multipath returns, clutter, and noise can be
given by

Pd =
1
L

yd
Hyd

=
1
L
(Re{yd}2 + Im{yd}2), (36)

Pm =
1
L

ym
Hym

=
1
L
(Re{ym}2 + Im{ym}2), (37)

Pc =
1
L

yc
Hyc

=
1
L
(Re{yc}2 + Im{yc}2), (38)

Pn = PNT Lσ2
n . (39)

The loss function of the network is set to be the inverse of the objective function in the
above optimization problem and can be expressed as

loss =
1

SINR
=

Pc + Pn

Pd + Pm
. (40)

3.2.4. Adam Optimizer

The optimizer is a tool to guide the neural network for parameter updates. After the
neural network achieves forward propagation once and calculates the loss function, the
optimizer is needed to perform backward propagation to achieve the update of the network
parameters. Adam optimizer is a classical deep learning optimizer based on gradient
descent algorithm, combining the ideas of momentum method and adaptive learning rate,
with the advantage of adaptively adjusting the learning rate to adapt to different data
and models.

The Adam optimizer computes first-order moment estimates and second-order mo-
ment estimates of the gradient in each iteration, thus updating the learning rate and
network parameters.
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The gradient parameter of the loss function at the tth iteration with respect to the
network weights w can be expressed as

gt = ∇loss =
∂loss
∂wt

. (41)

The first-order moments and second-order moments of the network weights in the tth
iteration can be expressed as

mt = β1 · mt−1 + (1 − β1) · gt, (42)

rt = β2 · rt−1 + (1 − β2) · gt � gt, (43)

where β1 and β2 are two hyperparameters of the Adam optimizer, usually set to β1 = 0.9
and β2 = 0.999.

At the beginning of the iteration, there is a deviation of mt and rt to the initial value, so
it is necessary to correct the deviation of the first-order moments and second-order moments.
The corrected first-order moments and second-order moments can be expressed as

m̂t =
mt

1 − βt
1

, (44)

r̂t =
rt

1 − βt
2

. (45)

We iterate over the network weights, and the network weight parameters can be
updated and represented as follows

wt+1 = wt −
m̂t√
r̂t + δ

, (46)

where δ refers to a small constant used for numerical stabilization, usually set to δ = 10−8.
We summarize the proposed algorithm in Algorithm 1.

Algorithm 1: Proposed algorithm.
Input: Random normalized phase sequence xI , learning rate of Adam γ, number

of iterations E.
Output: Desired waveform phase sequence xO.

Set e = 0, Adam learning rate set to γ > 0;
1: Construct forward propagation module according to Figure 2;
2: Input xI to the forward propagation module to obtain output xO;
3: Compute yd, ym and yc according to (27)–(35);
4: Compute Pd, Pm, Pc and Pn according to (36)–(39), and the loss function is
constructed by (40);

5: Optimizing loss function with Adam optimizer;
6: If e = E, stop and output the result. Otherwise, update e, i.e., e = e + 1, and
back to the step 2.

3.2.5. Complexity Analysis

To evaluate the complexity of our proposed model, we measured its time complexity
using floating-point arithmetic, FLOPs, and its spatial complexity using parameter quanti-
ties, Params. Assuming that the input of the network is a sequence with a length of 320, the
complexity of the proposed model is shown in Table 1.
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Table 1. The complexity of the proposed model.

Model FLOPs Params

The proposed model 786,432.0 396,416

4. Results and Discussion

In this section, a series of simulations were conducted to verify the effectiveness of the
proposed algorithm and the superiority of the designed waveform. All simulations were
analyzed on a PC with a i7-12700H CPU and a GTX3080 GPU and 16 GB RAM. The neural
network in this article was processed with Python 3.7 and pytorch 1.12 and ran on GPU.

The MIMO radar employed a transceiver co-array that consisted of a uniform line
array with half-wavelength spacing and a wavelength of λ. The simulation parameters
shown in Table 2 were used in the subsequent simulations.

Table 2. Simulation Parameters.

Parameters Value

Number of transmitting antennas NT 20
Number of receiving antennas NR 20

Number of snapshot L 16
Number of neurons J 128

CPI P 16
Carrier frequency fc 3 GHz

Target azimuth θd 20◦

Multipath azimuth θm −10◦

Clutter azimuth θc −5◦

θi 45◦

θv 10◦

Target velocity v 45 m/s
Relative delay for multipath returns lm 5

Relative delay for clutter lc 2
Specular reflection coefficient ρ 0.8ejπ/4

Signal-to-noise ratio SNR 20 dB
Interference-to-noise ratio INR 20 dB

4.1. Convergence

This section analyzes the convergence of the proposed algorithm. The learning rate
of the network was γ = 0.01, and the number of iterations was E = 1000. The number of
optimized signals was NT = 20, and the number of snapshots for each signal was L = 16.

As illustrated in Figure 3, the curve of the loss function gradually decreased as the
number of training iterations increased. Particularly, during the first 10 training sessions,
the loss function decreased rapidly. After 20 training sessions, the loss function started to
converge and eventually approached zero, thus indicating that the proposed algorithm can
converge to the global optimal solution.
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Figure 3. Loss function curve.

4.2. SINR Performance

In this section, the learning rate of the network and the number of iterations were
γ = 0.01 and E = 1000. The number of optimized signals was NT = 20, and the number
of snapshots for each signal was L = 16. The interference-to-noise ratio was INR = 20 dB.
The set of SNR were [−20 dB, −15 dB, −10 dB, −5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB].

To evaluate the SINR performance of the waveform designed by the proposed al-
gorithm, we compared it with the SINR performance of the waveforms designed using
the multipath suppression algorithm [4] and the CAN algorithm [34] at different SNR
conditions, as shown in Figure 4. It can be seen that the proposed algorithm achieved
a higher SINR at both low SNR and high SNR. The SINR performance of the proposed
algorithm was more than 2 dB higher than that of the multipath suppression algorithm
at different SNR conditions. Because the purpose of the CAN algorithm is to generate
orthogonal waveforms, the SINR performance of the generated waveform was much worse
than that of the proposed algorithm and the multipath suppression algorithm.
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Figure 4. Output SINR versus the SNR.
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To further highlight the superiority of the SINR performance of the waveform gener-
ated by the proposed algorithm, we conducted a comparative analysis assuming
SNR = 20 dB and NT = 4. Specifically, we compared the SINR performance of the pro-
posed algorithm against an existing multipath exploitation algorithm [40] and a multipath
suppression algorithm under these conditions. As shown in Table 3, the SINR performance
of the proposed algorithm was higher than that of the multipath exploitation algorithm
and multipath suppression algorithm.

Table 3. SINR performance of the proposed algorithm, existing multipath exploitation algorithm,
and multipath suppression algorithm.

Methods Proposed Algorithm Multipath Exploitation Multipath Suppression

SINR/dB 25.64 23.18 20.64

4.3. Transmit Beampattern

In this section, we set the learning rate of the network to γ = 0.01, and we set the
number of iterations to E = 1000. The number of optimized signals was NT = 20, and the
number of snapshots for each signal was L = 16. The signal-to-noise ratio was SNR = 20 dB,
and the interference-to-noise ratio was INR = 20 dB. The azimuth ofthe target, multipath,
and clutter were θd = 20◦, θm = −10◦, and θc = −5◦. The azimuth ranged from −90◦ to
90◦ with a grid point spacing of 1◦.

Figure 5 shows a comparison between the transmit beampattern generated by the
proposed algorithm and the multipath suppression algorithm. As can be observed from
the figure, the transmit beampattern generated by the proposed algorithm forms peaked in
the target and multipath azimuths, while creating a deep notch in the clutter azimuth. In
contrast, the multipath suppression algorithm treated the multipath returns as clutter, thus
resulting in deep notches in both the multipath azimuth and clutter azimuth. It is evident
from the transmit beampattern generated by the proposed algorithm and the multipath
suppression algorithm that the multipath suppression algorithm achieved a suppression
level of approximately −40 dB for both multipath returns and clutter. On the other hand,
the proposed algorithm achieved a significantly superior suppression level of −70 dB for
clutter energy.

Figure 5. The transmit beampattern.
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4.4. Detection Probability

In this section, we compared the detection performance of the waveforms generated
by the proposed algorithm and multipath suppression algorithm under different specular
reflection coefficients. The learning rate of the network was γ = 0.01, and the number of
iterations was E = 1000. The number of optimized signals was NT = 20, and the number
of snapshots for each signal was L = 16. The set of SNR were [−20 dB, −15 dB, −10 dB,
−5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB], and the interference-to-noise ratio was INR = 20 dB.
The set of specular reflection coefficients included the values of 0.7ejπ/4, 0.8ejπ/4, and
0.9ejπ/4.

The corresponding detection probabilities can be calculated by

Pd = MarcQ

(
√

2SINR,
√
−2 log

(
Pf a

))
, (47)

where MarcQ(·) denotes the Marcum-Q function [45], and Pf a denotes the false alarm
probability.

Assuming the false alarm probability Pf a = 10−6, the simulation results are shown in
Figure 6. The proposed algorithm exhibited superior detection probability performance
compared to the multipath suppression algorithm under the same input of SNR, as is
evidenced by its higher Pd value.

Regarding the proposed algorithm for multipath exploitation, the detection probability
increased with the increase in multipath reflection intensity. In contrast, for the multipath
suppression algorithm, the detection probability was not significantly affected by the
multipath reflection intensity, as the multipath returns were treated as clutter and were
suppressed by the algorithm.

Figure 6. Comparisons of the detection probability.

To confirm the impact of the false alarm probability on the detection probability per-
formance of the proposed algorithm, we evaluated and compared the detection probability
performance of the proposed algorithm with existing and multipath exploitation algorithm
and a multipath suppression algorithm under different false alarm probabilities. We set
the signal-to-noise ratio to SNR = 20dB and the number of optimized signals to NT = 4.
As shown in Table 4, the detection probability of the proposed algorithm was higher than
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that of the multipath exploitation algorithm and multipath suppression algorithm under
different false alarm probabilities.

Table 4. The detection probability performance under different false alarm probabilities.

Methods Proposed Algorithm Multipath Exploitation Multipath Suppression

Pf a = 10−7 0.9408 0.8872 0.7968

Pf a = 10−6 0.9765 0.9491 0.8952

Pf a = 10−5 0.9928 0.9820 0.9570

4.5. Effect of Initial Input

In this section, we set the learning rate of the network to γ = 0.01 and the number of
iterations to E = 1000. The number of optimized signals was NT = 20, and the number of
snapshots for each signal was L = 16. The signal-to-noise ratio was SNR = 20 dB, and the
interference-to-noise ratio was INR = 20 dB.

We compared the SINR performance of the proposed algorithm using two different
initial inputs: a random normalized phase sequence and a sequence optimized by the CAN
algorithm. As shown in Figure 7, the proposed algorithm was insensitive to the initial input.
For both cases, where the initial input was a random normalized sequence and a sequence
optimized by the CAN algorithm, the SINR performance of the proposed algorithm had
an acceptable error at the beginning of training and tended to become consistent with the
increase in training iterations.

Figure 7. SINR of different initial inputs.

4.6. Effect of Number of Transmitting Antennas

In this section, we compared the SINR performance of the proposed algorithm with
different numbers of transmit antennas. We set the learning rate of the network to γ = 0.01,
and the number of iterations to E = 1000. The number of snapshots for each signal was
L = 16. The signal-to-noise ratio was SNR = 20 dB, and the interference-to-noise ratio was
INR = 20 dB. The set of the number of transmit antennas were [4, 8, 12, 16, 20, 24, 28].

As shown in Figure 8, the SINR performance of the proposed algorithm increased
with the number of transmit array antennas NT . This is because the increase in the number
of transmit antennas provided higher degrees of freedom (DOFs), which enabled the
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algorithm to exploit the multipath reflections better and achieve a higher SINR. This
implies that augmenting the number of transmit antennas in the proposed algorithm leads
to a better detection performance of the MIMO radar. Nonetheless, the increase in the
number of transmit antennas may also escalate the cost and computational complexity of
MIMO radar systems, thereby necessitating a comprehensive consideration in choosing an
appropriate number of transmit antennas for practical applications.

Figure 8. SINR with different numbers of transmitting antennas.

4.7. The Phase of the Waveform

In this section, we plotted the phase of the waveform optimized by the proposed
algorithm under different numbers of transmit antennas. We set the learning rate of the
network to γ = 0.01 and the number of iterations to E = 1000. The number of snapshots for
each signal was L = 16. The signal-to-noise ratio was SNR = 20 dB, and the interference-
to-noise ratio was INR = 20 dB.

As shown in Figure 9, the phase of the waveform optimized by the proposed algo-
rithm varied between 0 and 2π for different numbers of transmit antennas. This result
demonstrates the effectiveness of the algorithm in optimizing the transmission waveform.
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Figure 9. Phase of the optimized waveform with different numbers of transmit antennas. (a) NT = 4,
(b) NT = 8, (c) NT = 12, (d) NT = 16.

5. Conclusions

In conclusion, this paper presents a novel approach for designing transmit waveforms
for multipath exploitation using deep learning. We established the MIMO radar signal
model for scenarios where a multipath exists and proposes an optimization objective that
maximizes the receiver’s SINR with a CM constraint. To solve this non-convex problem,
we developed a deep residual optimization training network that directly and optimally
solved the problem without relaxation.

Our simulation results demonstrate that the proposed algorithm effectively utilized
the energy of multipath reflections, thus outperforming existing methods in terms of SINR
performance and detection probability. We also showed that the proposed algorithm was
robust to different initial inputs and benefited from the increased degrees of freedom
provided by additional transmit antennas.

Overall, our research has important implications for MIMO radar applications, where
optimizing waveform design can significantly impact the accuracy and reliability of target
detection. Future work could explore the generalization of our approach to more complex
scenarios, such as those with unknown multipath information or multi-target situations.
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Abstract: Assuming uncertain multipath return, this paper considers the robust joint transmit
waveform and the receiving filter bank design of a multiple-input–multiple-output (MIMO) radar for
multipath exploitation. The actual multipath return is considered to belong to an uncertain set, and we
focus on the worst-case optimization of the signal-to-interference-plus-noise ratio (SINR) in the output
of the filter bank. The design is cast as a non-convex max–min problem, which is very hard to solve.
To tackle it, an equivalent reformulation is utilized and a cyclic optimization paradigm is devised. At
each iteration, the filter’s optimization problem is equal to a set of separate solvable problems, the
closed-form solution to which can be given directly. Moreover, we have shown that the max–min
problem for the waveform optimization belongs to the area of generalized fractional programming,
and it can be globally solved by resorting to Dinkelbach’s algorithm. Through simulations, the
superiority of the proposed algorithm is demonstrated via a number of examples.

Keywords: robust waveform design; multipath return; MIMO; max–min; worst-case SINR

1. Introduction

1.1. Background

Recent advances in radar waveform design have shown that, by transmitting flexible
waveforms according to an operation scenario, a radar system can achieve significantly en-
hanced target detection abilities, improved resolution, and increased parameter estimation
accuracy [1–7]. As a result, jointly designing the transmit waveform and receive filter of a
radar system leveraging on the apriori knowledge about the operating environment has
received considerable attention in the research field.

1.2. Related Work

Among the various types of new radar systems, the multiple-input–multiple-output
(MIMO) radar has attracted significant interest from researchers in the field of wave-
form design. Compared with traditional phased-array radars that transmit single wave-
forms, MIMO radar is able to transmit totally different waveforms from its multiple
channels [8–13]. In this context, its great potential in achieving better target detection,
identification, and tracking performance via the design of suitable waveforms has been
further explored. In the last decade, a number of studies on MIMO radar waveform opti-
mization have been carried out with different objectives and constraints [14–20]. In [14],
the MIMO radar waveform design problem under a constant modulus and similarity
constraints was investigated, and two constrained sequential optimization algorithms
were developed. In [15], the design of the transmitted waveforms and receiving filters
was extended to an airborne MIMO radar for space-time processing. Unlike most studies,
which constrained the waveform to have a constant modulus [14,16], in [17], the peak-
to-average-power ratio (PAPR) constraint and similarity constraint were simultaneously
imposed on the transmitted waveforms. While the aforementioned works optimized the
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waveforms and filters from the perspective of the signal-to-interference-plus-noise ratio
(SINR), an information-theoretic approach was applied in [18], where information-theoretic
criteria were employed as design metrics. Considering possible steering matrix mismatches,
the worst-case SINR optimization was studied in [19] with the constant modulus constraint
imposed on the waveform, where both the continuous and discrete probing waveform
phase cases were considered. While most works have focused on the waveform design that
maximizes the SINR for a single target, the waveform design for a multiple-target scenario
was considered in [20].

In a practical radar operation, when there is a rough or glistening surface existing in a
scene, the signal backscattered from the target will be received at the radar array through
different propagation paths aside from the direct path [21,22]. In this case, the returns
contain not only the line-of-sight (LOS) return, but also a multipath component [23,24].
Though there have been some studies devoted to the suppression of the multipath return,
research has shown that the target detection performance can be further improved via
proper multipath exploitation.

In this context, the radar waveform design technique offers a great potential advantage
for the enhancement of the target detection performance for multipath exploitation. There
have been some studies that have used the radar waveform design technique to improve
the target detection performance in the presence of multipath effect. In [25], the constant-
modulus orthogonal frequency division multiplexing (OFDM) waveform was applied
in order to improve the moving-target detection performance to overcome the PAPR
problem. In [26], based on the mutual information criterion, weighted OFDM waveforms
were transmitted by an MIMO array to track the target for the exploitation of multipath
reflections. In a nutshell, the radar for multipath exploitation in the existing researches
is assumed to transmit fixed waveform which lacks the ability to adjust the waveform
at different environment. The main exploration direction is to optimize the receive end
for enhanced performance and the transmit waveform design in fast time domain for
multipath exploitation, especially with MIMO radar, still remains an open issue in the
current literature.

1.3. Motivation and Contributions of This Paper

In our previous work [27], an MIMO jointly transmitted waveform and receiving
filter design for multipath exploitation was investigated. Therein, the propagation path
of the multipath return that was treated was known in advance, and the transmitted
waveform and receiving filter could be optimized by leveraging the semi-definite relaxation,
followed by a randomization procedure. Nevertheless, it is worth pointing out that the
algorithm proposed in [27] is relatively limited in terms of its capability in more practical
cases when the knowledge of the environment is incomplete or imprecise, i.e., the exact
a priori knowledge on the multipath configuration (reflective coefficient of the surface,
arrival direction, fast time delay) is unavailable. In this sense, signal model mismatches
may happen, and the performance of the waveform designed in [27] is not guaranteed.
Therefore, the design of a waveform that works against potential model mismatches to
ensure robust performance is of great significance, and this remains an open issue.

Aiming at filling this gap, in this paper, we consider a robust MIMO waveform
design to account for a more practical situation in which the prior knowledge about the
multipath return is imperfect. Specifically, we assume that there are several possible
expressions for the multipath return, depending on the position and reflective coefficient of
the reflective surface. In this context, we consider the worst-case SINR at the outputs of
the filter banks, with each tuned to a specific multipath return case, as the figure of merit
in order to guarantee a robust target detection ability regardless of the actual multipath
return. It is shown that the resultant robust design is hard to solve, since it belongs to a
class of non-convex max–min optimization problems. We reformulated the design into an
equivalent form that is easier to tackle and showed that the worst-case SINR can, thereby,
be sequentially optimized based on a cyclic optimization procedure. At each iteration,
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when the signal is fixed, each element of the filter bank can be globally optimized, and the
closed-form solution can be given directly; for a given filter bank, the waveform can be
optimized by resorting to the generalized Dinkelbach algorithm [28,29]. At the analysis
stage, the effectiveness of the proposed algorithm and its superiority over the non-robust
design are illustrated through a series of developed case studies.

The remaining content of this paper is organized as follows. In Section 2, the signal
model for the robust MIMO waveform design under unknown multipath return is intro-
duced. In Section 3, the non-convex max–min problem for the joint robust design of the
MIMO waveform and receiving filter bank is formulated, and a sequential optimization-
based algorithm is proposed to obtain the optimized waveform and filters. Section 4
provides several numerical experiments to demonstrate the effectiveness and superiority
of the proposed algorithm. Finally, Section 5 draws the conclusions and outlines some
possible future research tracks.

Notations: Throughout this paper, scalars are denoted by italic letters; vectors and
matrices are denoted by bold italic lowercase and capital letters, respectively. The operator
tr(·) obtains the trace of a square matrix, and the operator vec(·) performs the column-wise
stacking of a matrix. CN stands for the N-dimensional complex space. (x) and arg(x)
obtain the the real part and phase angle of the argument x, respectively. ⊗ denotes the
Kronecker product, and E(·) represents the expectation operator. The superscripts (·)T and
(·)H denote the transpose and conjugate transpose, respectively. For a matrix A, A � 0
means that A is positive definite and A � 0 means that A is semi-definite.

2. Signal Model

Consider a colocated MIMO radar array consisting of NT transmitters and NR receivers
that is deployed in a scene to detect a target in direction θt. We denote its signal-transmitting
matrix by S = [s1, s2, ..., sNT ]

T ∈ CNT×L, where sn ∈ CL is the waveform transmitted at
the nth channel, with L being the number of samples in fast time domain. As depicted
in Figure 1, suppose that there is a reflective surface causing multipath return in the sce-
nario. As a consequence, when the radar system transmits signals to illuminate the target,
the echoes received by the array include not only the direct return, but also the backscat-
tered target signal reflected from the reflective surface, which is defined as multipath
return. There are also undesired returns from a cluttered area and other signal-independent
disturbances. The echoes received by the radar are down-converted to the baseband, which
can be expressed as

Y = Yd + Ym + Yc + n ∈ CNR×2L, (1)

where Yd, Ym, Yc, and n represent the direct return, multipath return, clutter, and noise,
respectively. It is worth stressing that we focus on the received data, which consist of 2L-
length range cells based on the model derived in [27], since longer propagation distances of
the multipath return will lead to a longer fast time delay compared with the direct return.
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Figure 1. The considered scenario in the presence of multipath return.

2.1. Direct Return Model

The direct return signal from the target can be expressed as

Yd = α0ar(θd)a
T
t (θd)SJ0 ∈ CNR×2L, (2)

where α0 is a complex parameter accounting for the two-way direct propagation and
backscattering effects from the target, and at(θd) ∈ CNT and ar(θd) ∈ CNR represent,
respectively, the transmitting and receiving steering vector in the target direction θd. Jl is
the L × 2L shift matrix, with its (m, n)th element given as

Jl(m, n) =
{

1, if m − n + l = 0
0, if m − n + l 	= 0

. (3)

It is worth pointing out that the notation Jl is applied as a shift matrix for the rest of this
paper. By utilizing the vectorization operator, we can obtain a 2NRL × 1-dimensional direct
return target vector that can be expressed as

yd = vec(Yd) = α0

(
JT

0 ⊗
(

ar(θd)a
T
t (θd)

))
︸ ︷︷ ︸

Hd

s ∈ C2NR L×1

= α0Hds,

(4)

where s = vec(S) ∈ CNT L×1.

2.2. Multipath Return Model

In practice, accurate knowledge about a reflective surface (including its position and
reflective coefficient) is not reasonable, and accordingly, it is more rational to assume that
the actual multipath return has many possible expressions. To be specific, we assume that
we know that the physical set of the reflective surface belongs to an uncertain set consisting
of K possible cases, as shown in Figure 1. Accordingly, there are K possible formulations
for the multipath return from the target in the direction θd. Based on above analysis, we
can get the baseband signal of the kth possible target multipath target return expression
through slight modification of (2), which is expressed as

Ym,k = ρkα0ar(θm,k)a
T
t (θd)SJrm,k ∈ CNR×2L, (5)

where ρk and θm,k are, respectively, the corresponding reflective coefficient of the surface
and the arrival direction of the multipath return. rm,k is the relative fast time delay of the
kth possible path compared with the direct return.
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Similarly to the derivation in (4), we can rewrite Ym,k as a 2NRL × 1 vector by resorting
to the vectorization operator:

ym,k = vec(Ym,k) = ρkα0

(
JT

rm,k
⊗ ar(θm,k)a

T
t (θd)

)
︸ ︷︷ ︸

Hm,k

s ∈ C2NR L×1

= ρkα0Hm,ks.

(6)

2.3. Disturbance Model

In a radar operation, there are inevitable undesired reflections from other objects in
the scene, e.g., the ground, water, and trees, which will have an obvious impact on the
received echo. Herein, aside from the clutter within the same range cell as the target signal,
we also take into consideration the impact of the clutter from the neighboring range cells.
Therefore, the signal-dependent clutter is modeled as the superposition of signals from
different directions and range cells. Suppose that there are P scatters in the scene interfering
with the received echoes; then, based on the previous analysis, the clutter caused by the
pth considered scatter can be expressed as

Yc,p = βpar(θp)a
T
t (θp)SJlc,p ∈ CNR×2L, (7)

where βp represents the complex backscattering coefficient of the pth interfering object,
θp is its relative direction with respect to (w.r.t) the radar, and lc,p is the relative fast time
delay compared with the direct return. It should be pointed out that, here, we assume that
no multipath return is involved in the clutter item. Hence, the total clutter item can be
expressed as

Yc =
P

∑
p=1

βpar(θp)a
T
t (θp)SJlc,p ∈ CNR×2L. (8)

Similarly to the derivations in the previous subsections, we write Yc in vector form
through column-wise stacking as follows:

yc = vec(Yc) =
P

∑
p=1

βp

(
JT

lc,p
⊗
(

ar(θp)a
T
t (θp)

))
︸ ︷︷ ︸

Hc,p

s

=
P

∑
p=1

βpHc,ps ∈ C2NR L×1.

(9)

On the other hand, there are also signal-independent disturbances in the received data,
which result from the system noise. Without loss of generality, we consider the signal-
independent noise to be Gaussian, with its covariance matrix given as Rn.

3. Problem Formulation and Proposed Algorithm

In addition to the various waveform design criteria, which include mutual infor-
mation (MI) maximization [18,30,31], ambiguity function shaping [32–35], and Cramer–
Rao-bound (CRB) minimization [36,37], the SINR is widely utilized as the optimization
criterion due to its close relationship with the target detection and parameter estimation
performance [38–40]. In this context, we deal with the joint design of the transmitted wave-
form and the corresponding receiving filter bank by optimizing the worst-case SINR over
the unknown multipath return for enhanced target detection performance. Unlike in the
single-filter case, herein, our goal is to enhance the worst-case SINR, namely, the minimum
SINR among the available branches, at the output of the filter bank. By doing this, we are
able to improve the output SINR performance of the radar system in comparison with that
of the conventional design regardless of the actual multipath return expression. Specifi-
cally, we propose the processing of the received data through a filter array consisting of K
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filters, with each filter being tuned to a specific multipath return case. As for the constraint
imposed on the transmitted waveform, we restrict the waveform to have finite energy,
i.e., ‖s‖2

2 = 1. We denote by wk the kth filter; its output SINR under the kth multipath
return case can be calculated with

SINRk =
|α0|2

∣∣wk(Hd + ρkHm,k)s
∣∣2

wH
k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn

)
wk

. (10)

where σ2
c,p = E

[
|βp|2

]
is the interfering power of the pth scatter. Herein, the numerator

of SINRk denotes the useful energy at the output of the filter, and the denominator of
SINRk represents the remaining energy of the clutter and signal-independent noise. The
worst-case SINR at the output of the filter bank is defined as

S̃INR = min
k=1,...,K

SINRk . (11)

Based on the above analysis, the robust joint transmitted waveform and receiving
filter bank design problem can be cast as

P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
max

s,{wk}K
k=1

min
k=1,...,K

|α0|2
∣∣wH

k (Hd + ρkHm,k)s
∣∣2

wH
k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn

)
wk

s.t. ‖s‖2
2 = 1

. (12)

It is seen that P is a non-convex problem (max–min objective and the energy constraint)
and it NP-hard, which is difficult to solve. Nevertheless, as will be shown in the remainder
of this part, a novel algorithm can be devised in order to effectively obtain a sub-optimal
solution to P . To begin with, the following proposition provides an equivalent formulation
of P , which lays the foundation for the subsequent derivations.

Proposition 1. In terms of the optimal solution, Problem P is equal to the following problem:

P̃

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max
s,{wk}K

k=1

min
k=1,...,K

|α0|
(
wH

k (Hd + ρkHm,k)s
)√√√√wH

k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn‖s‖2

2

)
wk

s.t. 
(

wH
k (Hd + ρkHm,k)s

)
≥ 0, k = 1, 2, ...K

. (13)

This means that, once an optimal solution to P̃ is obtained, it is possible to build an optimal solution
to P , and vice versa.

Proof. To begin with, it is obvious that the problem P shares the same optimal objective
value with the following unconstrained max–min problem:

max
s,{wk}K

k=1

min
k=1,...,K

|α0|2
∣∣∣wH

k (Hd + ρkHm,k)
s

‖s‖2

∣∣∣2
wH

k

(
P
∑

p=1
σ2

c,pHc,p
ssH

‖s‖2
2
HH

c,p + Rn

)
wk

. (14)
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Moreover, since the value of the objective function in (14) is invariant by multiplying a
scalar for the numerator and denominator at the same time, we can further recast (14) as

max
s,{wk}K

k=1

min
k=1,...,K

|α0|2
∣∣wH

k (Hd + ρkHm,k)s
∣∣2

wH
k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn‖s‖2

2

)
wk

. (15)

It is immediately ascertainable that (15) is equivalent to the following problem in the sense
of optimal solutions:

max
s,{wk}K

k=1

min
k=1,...,K

|α0|
∣∣wH

k (Hd + ρkHm,k)s
∣∣√√√√wH

k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn‖s‖2

2

)
wk

. (16)

We denote the feasible points of (13) and (16) by Ω1 and Ω2, respectively. Then, it is
obvious that Ω1 ⊆ Ω2. Moreover, we note that, for any given point in Ω1, the objective
value of (16) is larger than that of (13), which leads to the result that the optimal value of (16)
is higher than that of (13). On the other hand, ∀x̄ = (s̄, {w̄k}K

k=1) ∈ Ω2, so one can verify

that ˆ̄x = (s̄,
{

w̄k · ej arg{w̄H
k (Hd+ρkHm,k)s̄}}K

k=1
) is in Ω1, and the objective in (13) achieves

the same value at ˆ̄x as the objective in (16) attains at x̄. That is to say, the optimal value of
(13) is not lower than that of (16). In conclusion, (13) and (16) share the same optimal value,
and any optimal solution for (13) is also optimal for (16). It is sufficient for us to deal with
(13). Therefore, the proof is completed.

Based on Proposition 1, we can focus on dealing with P̃ in the following content.
Though the reformulated form P̃ is still non-convex and NP-hard due to the max–min
fractional objective function, in what follows, we develop an effective algorithm based on
alternative optimization to obtain a sub-optimal solution to P̃ . In particular, at the nth
iteration, we focus on tackling the problems of P̃ (n)

1 and P̃ (n)
2 w.r.t. the waveform and

filters, respectively:

P̃ (n)
1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
{wk}K

k=1

min
k=1,...,K

|α0|
(

wH
k (Hd + ρkHm,k)s

(n−1)
)

√√√√wH
k

(
P
∑

p=1
σ2

c,pHc,ps(n−1)s(n−1)HHH
c,p + Rn‖s‖2

2

)
wk

s.t. 
(

wH
k (Hd + ρkHm,k)s

(n−1)
)
≥ 0, k = 1, 2, ...K

(17)

and

P̃ (n)
2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
s

min
k=1,...,K

|α0|
(

w
(n)H
k (Hd + ρkHm,k)s

)
√√√√w

(n)H
k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn‖s‖2

2

)
w

(n)
k

s.t. 
(

w
(n)H
k (Hd + ρkHm,k)s

)
≥ 0, k = 1, 2, ...K

, (18)

where s(n) and
{

w
(n)
k

}K

k=1
denote the optimized waveform and filters at the nth itera-

tion, respectively.
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3.1. Optimizing Filters with a Fixed Waveform

Since P̃ (n)
1 consists of K objective functions that are separable, we can proceed to

dealing with the problem w.r.t. wk, which is formulated as

P̃ (n)
1,k

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
wk

|α0|
(

wH
k (Hd + ρkHm,k)s

(n−1)
)

√√√√wH
k

(
P
∑

p=1
σ2

c,pHc,ps(n−1)s(n−1)HHH
c,p + Rn‖s(n−1)‖2

2

)
wk

s.t. 
(

wH
k (Hd + ρkHm,k)s

(n−1)
)
≥ 0

. (19)

We denote by⎧⎪⎪⎨⎪⎪⎩
dk(s

(n−1)) = |α0|(Hd + ρkHm,k)s
(n−1)

Q(s(n−1)) =
P

∑
p=1

σ2
c,pHH

c,ps(n−1)s(n−1)HHc,p + Rn‖s(n−1)‖2
2

(20)

and recast the filter design problem as

P̃ (n)
1,k

⎧⎪⎨⎪⎩max
wk

(wH
k dk(s

(n−1)))

wH
k Q(s(n−1))wk

s.t. (wH
k dk(s

(n−1))) ≥ 0

. (21)

One can easily verify that P̃ (n)
1,k is equivalent to the following problem:

P̃ (n)′

1,k

⎧⎨⎩max
wk

wH
k Q(s(n−1))wk

s.t. (wH
k dk(s

(n−1))) = 1
. (22)

The optimal solution of the kth filter at the nth iteration can be immediately ob-
tained [41], and it is given as

w
(n)
k = Q−1(s(n−1)) · dk(s

(n−1)). (23)

3.2. Optimizing the Waveform with Fixed Filters

For fixed filters
{

w
(n)
k

}K

k=1
, the optimization problem of s(n) is cast as

P̃ (n)
2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
s

min
k=1,...,K

|α0|
(

w
(n)H
k (Hd + ρkHm,k)s

)
√√√√w

(n)H
k

(
P
∑

p=1
σ2

c,pHc,pssHHH
c,p + Rn‖s‖2

2

)
w

(n)
k

s.t. 
(

w
(n)H
k (Hd + ρkHm,k)s

)
≥ 0, k = 1, 2, ...K

. (24)

Note that the denominator of the objective in P̃ (n)
2 can be equivalently formulated as√√√√w

(n)H
k

(
P

∑
p=1

σ2
c,pHc,pssHHH

c,p + Rn‖s‖2
2

)
w

(n)
k =

√√√√sH

(
P

∑
p=1

σ2
c,pHH

c,pw
(n)
k w

(n)H
k Hc,p + w

(n)H
k Rnw

(n)
k

)
s

= ‖
(

P

∑
p=1

σ2
c,pHH

c,pw
(n)
k w

(n)H
k Hc,p + w

(n)H
k Rnw

(n)
k

) 1
2

s‖2

. (25)
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Therefore, we can reformulate P̃ (n)
2 as

P̃ (n)′
2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
s

min
k=1,...,K

|α0|
(

w
(n)H
k (Hd + ρkHm,k)s

)
‖
(

P
∑

p=1
σ2

c,pHH
c,pw

(n)
k w

(n)H
k Hc,p + w

(n)H
k Rnw

(n)
k

) 1
2

s‖2

s.t. 
(

w
(n)H
k (Hd + ρkHm,k)s

)
≥ 0, k = 1, 2, ...K

. (26)

It is obvious that P̃ (n)′
2 is non-convex. By defining the functions⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(n)
k (s) = |α0|

(
w

(n)H
k (Hd + ρkHm,k)s

)
v(n)k (s) = ‖

(
P

∑
p=1

σ2
c,pHH

c,pw
(n)
k w

(n)H
k Hc,p + w

(n)H
k Rnw

(n)
k

) 1
2

s‖2

, k = 1, 2, ..., K, (27)

we can re-express P̃ (n)′
2 as

P̃ (n)′
2

⎧⎪⎪⎨⎪⎪⎩
max

s
min

k=1,...,K

u(n)
k (s)

v(n)k (s)

s.t. u(n)
k (s) ≥ 0, k = 1, 2, ...K

. (28)

It is worth noting that P̃ (n)′
2 is a typical generalized fractional programming prob-

lem
{

u(n)
k (s)

}K

k=1
—are all non-negative concave functions;

{
v(n)k (s)

}K

k=1
—are all positive

convex). Therefore, we propose that we tackle P̃ (n)′
2 by exploiting the idea of generalized

Dinkelbach fractional programming. In detail, the approach involves an iteration process.
At the qth iteration, the following problem is considered:

P (n,q)
2

⎧⎨⎩max
s

min
k=1,...,K

u(n)
k (s)− ε(n,q−1)v(n)k (s)

s.t. u(n)
k (s) ≥ 0, k = 1, 2, ...K

. (29)

where ε(n,q−1) = min
1≤k≤K

u(n)
k (s(n,q−1))

v(n)k (s)(n,q−1)
, with s(n,q−1) being the optimized waveform at the

(q − 1)th iteration. Subsequently, we will show that, by resorting to the epigraph form,
P(n,q)

2 can be recast into a maximization as

P (n,q)′
2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max
s,t

t

s.t. u(n)
k (s) ≥ 0,

u(n)
k (s)− ε(n,q−1)v(n)k (s) ≥ t,

k = 1, 2, ..., K

. (30)

where t is an auxiliary variable. It is seen that P (n,q)′
2 is actually a second-order cone

programming (SOCP) problem that can be solved in polynomial time via the interior point
method. Based on the generalized Dinkelbach fractional programming paradigm, we

can obtain a global optimal solution to P̃ (n)
2 by solving a series of problems

{
P (n,q)′

2

}∞

q=1
.

For clearer illustration, we summarize the developed approach in Algorithm 1. It is worth
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stressing that Hd,
{

Hm,k
}K

k=1, {ρk}K
k=1,

{
Hc,p

}P
p=1,

{
σ2

c,p

}P

p=1
, and Rn are assumed to be

known in advance.

Algorithm 1 Developed approach.

Input : Hd,
{

Hm,k
}K

k=1, {ρk}K
k=1,

{
Hc,p

}P
p=1,

{
σ2

c,p

}P

p=1
, Rn

Step 1. n = 0, initialize the waveform s(0).
Step 2. n = n + 1. Compute Q(s(n−1)) and get the optimized kth filter as w

(n)
k =

Q−1(s(n−1)) · dk(s
(n−1)).

Step 3. Obtain the optimized waveform s(n) by solving a series of SOCP problems{
P (n,q)′

2

}∞

q=1
Step 4. Repeat steps 2 and 3 until convergence.

Output Optimized waveform s� = s(n) and filters
{

w�
k
}K

k=1 =
{

w
(n)
k

}K

k=1
.

3.3. Complexity Analysis

As to the computational complexity of the proposed algorithm, it is dependent on the
number of iterations and the complexity in each inner iteration. In particular, the overall
complexity is linear w.r.t. the number of iterations, and it includes the computation of the
matrix inversion and the solution of a series of SOCP problems in each iteration. While
the optimization of the filters involves O((2NRL)3) floating-point operations, the opti-
mization of the waveform is related to the number of inner iterations, and O((2NT L)3.5)

floating-point operations are required for solving the SOCP problem P (n,q)′
2 in each inner

iteration [42].

4. Simulation Results

In this section, a series of examples are given to demonstrate the effectiveness of the
proposed design. Specifically, we consider an MIMO radar with an inter-element spacing of
2d for both the transmitting and receiving array, where d is a half-wavelength. Throughout
this part, the considered elements for the MIMO radar are fixed at NR = 4. The carrier
frequency of the probing signals is set to 1 GHz, and the length of the code to be designed
in each channel is set to L = 20. As for the target, it is placed in the direction θd = −20◦.
With reference to the two-way direct propagation and backscattering effects from the target,
α0 = 1 is set. We assume that there are K = 20 possible reflective surface configurations
in the scenario, accordingly resulting in 20 possible multipath return parameter pairs.
Specifically, for the kth multipath return, θm,k, |ρk|, and arg(ρk) are randomly drawn from
the sectors [−30◦, 0◦], [0.92, 0.94], and [−π

4 ,− π
12 ], and rm,k is drawn as a random integer

from the region [L − 5, L]. We consider the signal-independent disturbance to be white
Gaussian noise with a uniting power of σ2

n = 1. For the signal-dependent item, we assume
that there are P = 30 scatters in the clutter area with azimuth directions {θp}30

p=1 that are
uniformly drawn from the region [−90◦, 90◦]. The relative delay {lc,p}30

p=1 is uniformly
drawn from integers in the region [0, 2L]. The scatters are set to have the same mean
interfering power σ2

c,p = σ2, which is defined by the interference-to-noise ratio (INR),

which is calculated as INR = 10 log σ2

σ2
n

. Throughout this part, the INR is set to 20 dB.

4.1. Convergence and Computation Time Analysis

In this example, we check the effectiveness of the developed algorithm on the se-
quentially improvement of the output worst-case SINR, as well as its convergence and
computation time. As depicted in Figure 2, the worst-case SINR curves are plotted against
the number of iterations for different transmitting array sizes NT . As expected, the devel-
oped algorithm monotonically enhances the worst-case SINR, which significantly improves
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the target detection ability w.r.t. unknown multipath return. Furthermore, it is observed
that a higher transmitting array size leads to a higher worst-case SINR due to the higher
number of degrees of freedom (DOFs) that it introduces. Finally, the results shed light on
the effectiveness of the developed algorithm in ensuring an optimized worst-case (w.r.t.
unknown multipath return) target detectability. Indeed, significant performance gains
through iterations can be explicitly observed. The corresponding computation times are
reported in Table 1. One can clearly observe that, though higher worst-case SINR values
can be achieved as the transmitting array size becomes larger, the computational burden
accordingly becomes heavier, which coincides with the complexity analysis in Section 3.3.
Moreover, to illustrate the effectiveness of the proposed algorithm in optimizing the trans-
mitted waveform more directly, we draw the modulus and the phase of the optimized
waveform with different transmitting array sizes. As depicted in Figure 3, the waveforms
optimized under different NT values exhibit different behaviors in the fast time domain,
but all are constrained by the energy constraint.

Figure 2. Worst-case SINR values of the waveform and filter with the proposed design versus the
iteration number.

Table 1. Computational times of the proposed algorithm with different transmitting array sizes.

NT 4 6 8 10

Computational time/s 627.077466 770.360833 1007.908756 1303.744407

4.2. Robustness of the Developed Design against Different Multipath Returns

In this example, we further check the robustness of the waveforms and filters designed
with the developed algorithm against the uncertainty of multipath return. In particular, we
compute the actual achieved output SINR over various multipath returns with different
transmitting array sizes. Moreover, for better illustration of the superiority of the proposed
design, a non-robust design is added for comparison [27], which is defined as the solution
to the following problem:⎧⎪⎪⎨⎪⎪⎩

max
s,w

|α0|2|w(Hd + ρ5Hm,5)s|2

wH
(

∑P
p=1 σ2

c,pHc,pssHHH
c,p + Rn

)
w

s.t. ‖s‖2
2 = 1

(31)

This means that we utilize the fifth multipath return case for the non-robust design.
As shown in Figure 4, the worst-case output SINR provided by the proposed design
significantly outperforms that of the non-robust design. Moreover, in these four situations,
it can be observed that the proposed design provides a robust output SINR over various
multipath propagation scenarios. The superiority of the proposed design is highlighted by
observing that, in almost all multipath return cases, the SINR provided by the proposed
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design stayed around 3.5 dB higher than that of the non-robust design, except in the fifth
multipath propagation case. This can be explained by the proposed design’s improvement
of the worst-case SINR by averaging the performance over all possible cases, while the
non-robust design was only effective in the fifth case. In practices, if there are mismatches
between the models of the assumed and the actual scenarios, the performance of the non-
robust design will be significantly degraded, but our design enjoys quite stable performance
as the scenario changes. The results also show that a larger transmitting array size leads to
a higher SINR value.

(a)

(b)

(c)

(d)

Figure 3. Modulus and phase of the optimized waveform with different transmitting array sizes.
(a) NT = 4, (b) NT = 6, (c) NT = 8, and (d) NT = 10.

4.3. The Impact of the Transmitting Array Size on the Worst-Case SINR

In the final example, we check the impact of the transmitting array size NT on the
worst-case SINR provided by the proposed algorithm. In particular, we plot the worst-case
SINR curve with NT values varying from 4 to 10 in Figure 5, with the other parameters
fixed. Unsurprisingly, the result clearly shows an increasing SINR trend w.r.t NT , as a larger
number of antennas can bring more DOFs in the waveform design process for disturbance
suppression; consequently, higher worst-case SINR values can be obtained.
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Figure 4. SINR values achieved with the proposed design and the non-robust design over different
multipath propagation cases with various transmitting array sizes. (a) NT = 4, (b) NT = 6, (c) NT = 8,
and (d) NT = 10.

Figure 5. The worst-case output SINR provided by the proposed design versus the transmitting
array size.

67



Remote Sens. 2022, 14, 4356

5. Conclusions

In this paper, a robust joint MIMO design for a transmitted waveform and receiving
filter bank under uncertain multipath return was investigated. The goal of the robust
design was to make the designed waveform and filters provide relatively stable output
SINR values regardless of the actual multipath return expression, which was cast as a
max–min problem and was hard to solve. A corresponding algorithm was developed based
on a cyclic optimization paradigm. The simulation results show that the proposed design
can achieve robustness against different multipath scenarios; this is of great significance
in real applications, since actual information about an operating scene may be imprecise.
Future research may include this robust design under more complex constraints on the
transmitted waveform, such as spectral compatibility constraints.
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Abstract: This paper deals with the Dual-Function Radar and Communication (DFRC) signal design
for a Multiple-Input–Multiple-Output (MIMO) system, considering the presence of signal-dependent
clutter. A modulation methodology called Spectral Position Index and Amplitude (SPIA) modulation
is proposed, which involves selecting passband and stopband positions and applying amplitude
modulation. Signal to Interference plus Noise Ratio (SINR) is maximized to enhance radar detectabil-
ity. Meanwhile, variable modulus and communication modulation constraints are enforced to ensure
compatibility with the current hardware techniques and communication demand, respectively. In
addition, the mainlobe width and sidelobe level constraints used to concentrate energy in a specific
area of space are enforced. To tackle the resulting nonconvex and NP-hard optimization problem, an
Iterative Block Enhancement (IBE) framework that alternately updates each signal in each emitting
antenna is exploited to monotonically increase SINR. Each block involves the Dinkelbach’s Iterative
Procedure (DIP), Sequential Convex Approximation (SCA) and Alternating Direction Method of
Multipliers (ADMM) to obtain a single signal. The computational complexity and convergence of
the algorithm are analyzed. Finally, the numerical results highlight the effectiveness of the proposed
dual-function scheme in sidelobe signal-dependent clutter.

Keywords: dual-function radar and communication system; DFRC signal design; clutter suppression

1. Introduction

The Dual-Function Radar and Communication (DFRC) system has attracted signif-
icant attention due to its advantages of a small size, low cost, and strong mobility. This
system can be classified into two categories: communication-centric and radar-centric.
The radar-centric DFRC system primarily focuses on detection and emits a dual-function
signal for both detection and communication using the radar system’s available resources.
However, designing a dual-function signal poses a considerable challenge. Existing works
primarily concentrate on utilizing Degrees of Freedom (DoFs) of different dimensions to
achieve this dual function.

Earlier studies explored the combination of a Linear Frequency Modulation (LFM)
signal and Phase Shift Keying (PSK) modulation [1,2]. However, LFM-PSK signals often
exhibit higher autocorrelation sidelobe levels compared to standard LFM. Another ap-
proach involves embedding information in the transform domain of the dual-function
signal. Various modulation methods have been proposed, such as frequency nulling
modulation [3], Ambiguity Function (AF) sidelobe nulling modulation [4], and water-
marking demodulation [5]. The data rates of the mentioned methods [1–5] are limited as
they only consider modulation in the time and frequency domains.

The Multiple-Input–Multiple-Output (MIMO) system has garnered attention due to its
potential for spatial domain modulation. In [6–8], researchers have embedded information
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in an orthogonal frequency-hopping signal cluster, capitalizing on the increased possibilities
offered by MIMO systems. Alternatively, [9–11] form different sidelobe levels or/and
different phases for the communication users by designing the weight vector and exploiting
signal diversity. In [12], a spatio-spectral method is proposed by shaping the energy
spectral density of synthetic signals in users’ directions. Ref. [13] maximizes the Signal
to Interference plus Noise Ratio (SINR) under power and communication modulation
constraints. To improve the data rate, related studies [14–19] have introduced the concept
of index modulation in dual-function signal design by drawing inspiration from index
modulation techniques employed in the communication literature [20–22]. It is important
to note that the distinction between these studies lies in the specific application scenario.
The former focuses on DFRC systems, while the latter primarily pertains to communication
systems. For instance, the communication scheme of the DFRC system in [17] exploits
the agile profile of the radar signals to convey its message via frequency and spatial
index modulation.

However, the radar-centric DFRC system always operates in a complex electromag-
netic countermeasure environment. The existing non-uniform, changeable and strong
independent clutter degrades the radar detection performance. Many works have been em-
ployed in MIMO radar signal design with uniform or non-uniform clutter [23–31]. Recently,
a radar-centric dual-function signal design in a signal-dependent clutter environment ias
pursued to maximize the SINR [32–34]. In [32], a constant-envelope DFRC signal was de-
signed with constraints regarding the synthesis error associated with each communication
user, which is different from using an indirect method to control the overall synthesis error
in [33]. Ref. [34] proposes a novel Spacetime-Adaptive Processing (STAP)-Symbol-level
Precoding (SLP)-based DFRC signal design method that enjoys the advantages of both
techniques. In general, the works in [32–34] complete the dual-function signal design
based on a conventional communication sequence (e.g., PSK) in which communication
information is priori embedded.

In this paper, we still focus on the dual-function signal design in signal-dependent
clutter. Different from the existing approaches [32–34], a new Spectral Position Index and
Amplitude (SPIA) modulation methodology is proposed instead of using a conventional
communication sequence. The main contributions of this paper are as follows:

(1) DFRC Signal Design Scheme via SPIA Modulation: A novel information modulation
method, namely Spectral Position Index and Amplitude (SPIA) modulation via spectral
passband and stopband position selection and amplitude modulation, is proposed. To
realize radar detection and multi-user communication simultaneously, a nonconvex and
NP-hard optimization problem is formed. More specifically, SINR is maximized to enhance
radar detectability. Variable modulus and communication modulation constraints are
enforced to ensure compatibility with the current hardware techniques and communication
demand, respectively and the mainlobe width and sidelobe level constraints used to
concentrate energy in a specific area of space are enforced.

(2) Convergence and Computational Complexity: With the help of the Iterative Block
Enhancement (IBE) framework, we split the original nonconvex NP-hard problem into
smaller subproblems. Dinkelbach’s Iterative Procedure, Sequential Convex Approximation
and the Alternating Direction Method Of Multipliers (DSADMM) were used to solve the
subproblems. Finally, DSADMM is incorporated into the IBE framework to form the IBE-
DSADMM algorithm for implementing the dual-function signal design. The IBE-DSADMM
algorithm guarantees that the SINR value monotonically increases and converges to a finite
value. Furthermore, the computational complexity is also analyzed.

Note that numerous studies have extensively addressed the optimization of
beampatterns [35–38]. For instance, in [35], the perturbation of the zeros in the radia-
tion pattern enabled the achievement of individually adjustable sidelobe levels for linear
and planar antenna arrays. Another interesting study [38] employed the Coordinate De-
scent (CD) framework for bi-objective Pareto optimization, focusing on minimizing the
Integrated Sidelobe Level Ratio (ISLR) both spatially and across the range while considering

71



Remote Sens. 2023, 15, 3256

various practical constraints. It is important to highlight that there are notable distinctions
between our work and the aforementioned studies. (1) Dual-Function Background: Our
work emphasizes the dual-function background, wherein the optimized beampattern in
this paper facilitates simultaneous multi-user communication and detection by designing
a dual-function signal. (2) Novel modulation method: In this paper, the proposed SPIA
modulation focuses on index modulation via inter-pulse modulation, where the baseband
signal is modified. (3) Novel Optimization Problem: Using SINR as the optimization
criterion, a new optimization problem is formed by considering the mainlobe width and
sidelobe level constraints, variable modulus and communication modulation constraints.

Notation:
We use boldface for vectors a (lower case), and matrices A (upper case). The transpose,

the complex conjugate, the conjugate transpose and the factorial operators are denoted by
the symbols (·)T , (·)∗, (·)H and (·)!, respectively. CN×M and CN are, respectively, the sets
of N × M-dimensional matrices and N-dimensional vectors of complex numbers. The letter
j represents the imaginary unit (i.e., j =

√
−1). {} means the real part of a complex valued

scalar. We use | · | for the magnitude or cardinality of a scalar value or a set, respectively.
In addition, �� denotes the floor function. ‖ · ‖2 and ⊗ refer to the Euclidean norm of a
vector and the Kronecker product.

2. Methods

2.1. System Model

Assume that a colocated narrow band MIMO-DFRC system with Nt transmitting NR
receiving antennas is detecting targets while transmitting information to C communication
users in signal-dependent clutter, as shown in Figure 1. The discrete baseband signal
transmitted by the n-th antenna is sn = [sn(1), · · · , sn(M)]T , where n = 1, · · · ; Nt, M
denotes fast time sampling number. Thus, the m-th signal sample received by the NR
antennas is

xm = a0A(θ0)s̄m + dm + vm, (1)

where s̄m = [s1(m), · · · , sNt(m)]T denotes the m-th sample of Nt transmitted signals. a0 and
θ0 are the complex amplitude and direction of the target, respectively. A(θ) = a∗r (θ)a

H
t (θ)

is the spacial steering matrix in direction of θ, therein ar(θ) and at(θ), which represent
the normalized receiving and transmitting spacial steering vectors, respectively. Uniform
Linear Arrays (ULAs), are given by

ar(θ) =
1√
NR

[1, ej2πdr sin θ/λ, · · · , ej2πdr(NR−1) sin θ/λ]T , (2)

at(θ) =
1√
Nt

[1, ej2πdt sin θ/λ, · · · , ej2πdt(Nt−1) sin θ/λ]T , (3)

where dt and dr are the array element spacings of the transmitting and receiving arrays,
respectively. λ is the wavelength.

dm denotes the signal-dependent clutter. Specifically, considering p, uncorrelated
interfering sources from the same range bin with the target, each located at a specific
azimuth ϕp, dm are written as

dm =
P

∑
p=1

apA(ϕp)s̄m, (4)

therein, ap denotes the the complex amplitude of the p-th clutter. For the P-interfering
sources, ap, p = 1, · · · , P are independent complex Gaussian variables with zero mean and
variance δ2

p = E[|ap|2].
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vm denotes the additive noise matrix, whose entries modelled as zero mean indepen-
dent random complex Gaussian variables with variance σ2

v .

Figure 1. DFRC work scenario for detection and communication in signal-dependent clutter.

According to Equation (1), the power of the target echo is given by

1
M

M

∑
m=1

E

[
‖a0A(θ0)s̄m‖2

]
= E[‖a0‖2]

1
M

M

∑
m=1

s̄H
mat(θ0)a

T
r (θ0)a

∗
r (θ0)a

H
t (θ0)s̄m

= E[‖a0‖2]tr

(
aH

t (θ0)
1
M

M

∑
m=1

s̄ms̄H
mat(θ0)

)
= δ2

0aH
t (θ0)Rat(θ0), (5)

where δ2
0 = E[‖a0‖2], and R represents the covariance matrix of the signal, expressed as

R =
1
M

M

∑
m=1

s̄ms̄H
m , (6)

Similarly, the power of the clutter is given by

1
M

M

∑
m=1

E

⎡⎣∥∥∥∥∥ P

∑
p=1

apA(ϕp)s̄m

∥∥∥∥∥
2
⎤⎦ =

P

∑
p=1

δ2
paH

t (ϕp)Rat(ϕp). (7)

2.1.1. Spectral Position Index and Amplitude Modulation

In this subsection, a modulation method is proposed by spectral passband and stop-
band position selection and amplitude modulation to embed information. Specifically, we
shaped the Energy Spectral Densities (ESDs) of the spatially synthetic signal arriving at
the users’ directions to form the passbands and stopbands. Assume that the C users are
located at azimuths θc, c = 1, · · · , C. The spatially synthetic signal xc ∈ CM in the direction
θc is given by [12]

xc = Sa∗(θc), (8)

where S=[s1, s2, · · · , sNt ] ∈ CM×Nt .
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The normalized frequency band of xc, c = 1, · · · , C is Ωc ∈ [0, 1) with Lc frequency
subbands Ωlc = ( flc ,1, flc ,2) ∈ Ω, lc = 1c, 2c, · · · , Lc where flc ,1 and flc ,2 denote the lower
and upper normalized frequencies associated with Ωlc , respectively. Lc is the set with Lc
available frequency subbands elements, given by

Lc := {Ω1c , Ω2c , · · · , ΩLc}. (9)

Spectral position index modulation selects different subband positions to embed
information. As for user c, according to the communication requirements, Qc subbands are
chosen from Lc for embedding information. The set of possible subband position selections
is denoted by

Tc := {L(k)
c ||L(k)

c | = Qc,L(k)
c ⊂ Lc}, (10)

where (k) stands for the k-th selection pattern in the set Tc. The number of possible position
selections is

|Tc| = CQc
Lc
=

(Lc)!
(Qc)!(Lc − Qc)!

. (11)

According to Equation (11), the maximum number of bits transmitted via spectral
position index modulation is

Dc,1 =
⌊

log2

(
CQc

Lc

)⌋
. (12)

Furthermore, the amplitudes of selected subbands can also be used to embed informa-
tion. Therein, a stopband that corresponds to data is “1” and a passband that corresponds
to data is “0”. Therefore, the number of bits transmitted by amplitude modulation is
Dc,2 = Qc. As a result, the data rate towards the user c is

Dc = (Dc,1 + Dc,2)/Tr, (13)

where Tr is Pulse Repetition Time (PRT).
An example is given in the following. Suppose that the MIMO-DFRC system transmits

information to two users located in θ1, θ2. According to Equation (8), the spatially synthetic
far-field baseband discrete signals can be obtained as x1 = Sa∗(θ1), x2 = Sa∗(θ2). Then,
frequency subband sets used to transmit information are (Without loss of generality, we
assume L1 = L2)

L1 := {Ω11 , Ω21 , · · · , ΩL1} = {(0.1, 0.13), (0.3, 0.33), (0.6, 0.63), (0.8, 0.83)}
L2 := {Ω12 , Ω22 , · · · , ΩL2} = {(0.1, 0.13), (0.3, 0.33), (0.6, 0.63), (0.8, 0.83)} (14)

Assuming Q1 = 2 positions are selected from L1 to deliver information to user 1, six
possible selection patterns are

L(1)
1 = {(0.1, 0.13), (0.3, 0.33)},L(2)

1 = {(0.1, 0.13), (0.6, 0.63)},L(3)
1 = {(0.1, 0.13), (0.8, 0.83)},

L(4)
1 = {(0.3, 0.33), (0.6, 0.63)},L(5)

1 = {(0.3, 0.33), (0.8, 0.83)},L(6)
1 = {(0.6, 0.63), (0.8, 0.83)}. (15)

According to Equation (12), the maximum number of transmitted bits is D1,1 = 2.

Without losing generality, L(1)
1 ,L(2)

1 ,L(3)
1 ,L(6)

1 are selected to convey binary sequence “00”,
“01”, “10” and “11”, respectively. Furthermore, the amplitudes of selected subbands can
also be used to embed information. Specifically, the conveyed binary data are “1” when
the subband is a stopband; otherwise, the data are “0" for a passband. Figure 2 shows the
subband selection and the energy control of selected subbands when the binary sequence
“0101” is transmitted to user 1. In more detail, L(2)

1 = {(0.1, 0.13), (0.6, 0.63)} is used to

74



Remote Sens. 2023, 15, 3256

transmit the first two bits of “0101”. Ω11 = (0.1, 0.13) is enforced as a passband to transmit
the third bit “0” and Ω11 = (0.6, 0.63) is enforced as a stopband to transmit the third bit “1”.

Similarly, assuming Q2 = 1 position is selected from L2 to deliver information to user
2, four possible selection patterns are

L(1)
2 = {(0.1, 0.13)},L(2)

2 = {(0.3, 0.33)},L(3)
2 = {(0.6, 0.63)},L(4)

2 = {(0.8, 0.83)}. (16)

Generally, L(1)
2 ,L(2)

2 ,L(3)
2 ,L(4)

2 represent binary sequence “00”, “01”, “10” and “11”,
respectively. Figure 2 also shows the subband selection and the energy control of se-
lected subbands when the binary sequence “010” is transmitted to user 2. Specifically,
L(2)

2 = {(0.3, 0.33)} is used to transmit the first two bits of “010”. Ω22 = (0.3, 0.33) is
enforced as a passband to transmit the third bit “0”.

Figure 2. An example of SPIA modulation.

2.1.2. Spectral Position Index and Amplitude Demodulation

The communication demodulation method is discussed in this subsection. Assuming
that the channel state information is known, the baseband signal received by the user c
located in θc is

x̃c = βcSa∗(θc) + nc, (17)

where βc is the channel coefficient. nc ∈ CM×1 denotes the additive Gaussian white noise
vector with zero mean and variance δ2

c .
The frequency subband energy of the received signal x̃c is utilized to demodulate the

information. In more detail, we performed K points Discrete Fourier Transformation (DFT)
of the signal x̃c and then calculated the energy elc (in dB) corresponding to each subband
Ωlc = ( flc ,1, flc ,2), lc = 1, · · · , Lc, given by [12]

elc = 10 lg(x̂H
c Flc FH

lc x̂c/Nlc), (18)

where x̂c = [x̂T
c , 0T

K−M]T ∈ CK. Flc ∈ CK×(Nlc+1) represents the DFT matrix, the nlc -th

column of Flc is [1, ej2π f
nl
lc , · · · , ej2π f

nl
lc
(K−1)]T , f nl

lc
= flc ,1 + (nlc − 1)2π/K, nlc = 1, . . . , Nlc +

1, Nlc =
⌊

flc ,2− flc ,1
2π/K

⌋
.
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The average energy of all selected sub-bands is

ēc =
Lc

∑
l=1

elc /Lc. (19)

Then, the double threshold is set as ēc + γ and ēc − γ, where γ is a small positive constant.
If elc > ēc + γ, the subband is detected as a passband. Similarly, if elc < ēc − γ, the subband
is detected as a stopband. As a result, the positions and amplitudes of subbands used to
embed information are detected. The information demodulation procedure is shown in
Figure 3.

Figure 3. Information demodulation procedure.

2.2. Problem Formulation

In this section, we formalize the dual-function signal design optimization problem via
the maximization of the SINR with communication modulation, mainlobe level, sidelobe
level and variable modulus constraints.

2.2.1. Waveform Design Metric

Since a higher SINR provides a better radar detection performance, the DFRC signal
design is pursued to maximize SINR in this paper. According to Equations (5) and (7),
SINR at the output of the receiver is written as

SINR =
δ2

0aH
t (θ0)Rat(θ0)

P
∑

p=1
δ2

paH
t (ϕp)Rat(ϕp) + δ2

, (20)

where δ2 = MNtδ
2
v is the noise power. It can clearly be seen that the calculation of SINR

needs the priori information of target location, target echo power, clutter location, clutter
power, and noise power. These parameters can be acquired by exploiting a cognitive
paradigm [39,40].
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2.2.2. Waveform Constraints

(1) Communication Modulation Constraint: Assume that Qc subbands are selected to
transmit information to user c. Specifically, let Ωqc = ( fqc ,1, fqc ,2) ∈ Lc, qc = 1, · · · , Qc, the
subband energy for the user c can be expressed as

Ec =
Qc

∑
qc=1

αqc xH
c Rqc xc =

Qc

∑
qc=1

αqc aT(θc)S
HRqc Sa∗(θc), (21)

therein, the (m, n)-th element of Rqc is [40–43]

Rqc(m, n) =

⎧⎨⎩ ej2π fqc ,2(m−n)−ej2π fqc ,1(m−n)

j2π(m−n) , m 	= n(
fqc ,2 − fqc ,1

)
, m = n

, (22)

where αqc ∈ {0, 1} is the weighted factor of the qc-th subband.
As tr[AXBXTC] = vect(X)T(BT ⊗ CA)vect(X) [44], we can obtain

Ec =
Qc

∑
qc=1

αqc sH [RH
qc ⊗ (a(θc)a

H(θc))]s, (23)

where s = vec{[s1, s2, · · · , sNt ]
T} ∈ CNt M.

Further, the total spectral stopband energy of C users is

Es =
C

∑
c=1

Ec = sHRss, (24)

where the value of αqc obeys the following rule if the qc-th subband is stopband, αqc = 1;
otherwise, αqc = 0 and

Rs =
C

∑
c=1

Qc

∑
qc=1

αqc [R
H
qc ⊗ (a(θc)a

H(θc))]. (25)

To communicate effectively, the stopband constraint is enforced, as given by [12]

sHRss ≤ ηs, (26)

where ηs is the upper bound of energy.
Similarly, the spectral passband energy for the user c is

Epc = sHRcs, (27)

where the value of αqc obeys the following rule if the qc-th subband is passband, αqc = 1;
otherwise, αqc = 0 and

Rc =
Qc

∑
qc=1

αqc [R
H
qc ⊗ (a(θc)a

H(θc))]. (28)

For reliable communication, the spectral passband energy constraint for each user is
enforced, as given by [12]

ηpc ≤ sHRcs, c = 1, · · · , C, (29)

where ηpc is the lower bound of transmitting energy for the user c.
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(2) Integrated Sidelobe Level (ISL) Constraint: To reduce the echo intensity in non-target
directions, the beampattern ISL constraint is enforced. ϑk, k = 1, · · · , K̄ and φk, k = 1, · · · , K̃
denote the mainlobe region and the sidelobe region, respectively. Therefore, the beampat-
tern ISL is formulated as [12]

sHAss

sHAms
≤ ε, (30)

where As = 1
M

K̃
∑

k=1
IM ⊗ [a(φk)a

H(φk)], Am = 1
M

K̄
∑

k=1
IM⊗ [a(ϑk)a

H(ϑk)], and ε is the

upper bound.
(3) Mainlobe Width Constraint: We can enforce the mainlobe width constraint to concen-

trate energy in a specific area of space, as [12]

PL − δ ≤ sHAks

sHA0s
≤ PL+δ, k = 1, 2, (31)

where Ak =
(
IM ⊗ [a(θmk)a

H(θmk)]
)
/M. Φ(θm2 ≥ θm0 ≥ θm1) denotes the main-beam

width, PL ∈ (0, 1), and δ is a small positive value.
(4) Variable Modulus Constraint: To mitigate the effects of signal nonlinear distortion,

the variable modulus constraint [45,46] is enforced as follows

1
Nt

− κ ≤ |sn(m)|2 ≤ 1
Nt

+ κ, (32)

where 1
Nt

− κ and 1
Nt

+ κ are the upper and lower bounds, respectively, and κ is a small
positive constant. The above constraint degrades into a constant-envelop constraint when
κ = 0.

2.2.3. Waveform Design Problem

To ensure a good detection performance while enabling multi-user communication,
we constructed the following optimization problem, which maximizes SINR with several
practical constraints,

P1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
s

sHX0s
sHY0s

s.t. 1© sHAss
sHAms

≤ ε,
2©sHRss ≤ ηs,
3©ηpc ≤ sHRcs, c = 1, · · · , C,
4©PL − δ ≤ sHAks

sHA0s
≤ PL + δ, k = 1, 2,

5© 1
Nt

− κ ≤ |sn(m)|2 ≤ 1
Nt

+ κ.

(33)

Therein, A0 =
(
IM ⊗ [a(θ0)a

H(θ0)]
)
/M, Ap =

(
IM ⊗ [a(ϕp)aH(ϕp)]

)
/M, X0 = δ2

0A0,

Y0 =
P
∑

p=1
δ2

pAp + IMNt δ
2
v Nt.

Since both the objective function and the feasible domain are non-convex, P1 is a
non-convex NP-hard problem. Next, we introduce an iterative algorithm.

2.3. Optimization Technique via IBE-DSADMM for Solving P1

To solve the NP-hard optimization problem P1, firstly, we split the original non-convex
NP-hard problem into the smaller subproblems using via the Iterative Block Enhancement
(IBE) framework. Then, the DSADMM algorithm, via jointing Dinkelbach’s Iterative Proce-
dure (DIP), Sequential Convex Approximation (SCA) and Alternating Direction Method Of
Multipliers (ADMM), is used to solve the subproblems. Finally, DSADMM is incorporated
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into the IBE framework to form the IBE-DSADMM algorithm to monotonically increase
SINR. The convergence and computational complexity are analyzed.

2.3.1. IBE-DSADMM Algorithm

This subsection presents the IBE-DSADMM algorithm to solve P1. Firstly, the IBM
framework orderly optimizes f (s1, · · · , sNt) over one block variable (e.g., sn) in (s1, · · · , sNt),

keeping the others fixed. Let s
(i)
n be the i-th optimized signal transmitted via n-th antenna,

n = 1, · · · , Nt. Therefore, in the i-th iteration, the following non-convex subproblems need
to be solved:

P
s
(i)
n

⎧⎨⎩ max
sn

f (s(i)1 , · · · , s
(i)
n−1, sn, s

(i−1)
n+1 , · · · , s

(i−1)
N )

s.t. sn ∈ S (i)
n ,

(34)

where S (i)
n is the feasible set of sn at the i-th iteration.

Then, the DSADMM algorithm is utilized to handle Problem s
(i)
n . Before proceeding,

Problem (34) is equivalently transformed into

P
s
(i)
n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
sn

f (sn; s̄
(i)
−n)

s.t. 1©sH
n Asnsn +

{
aH

snsn
}
+ asn ≤ ε

(
sH

n Amnsn +
{

aH
mnsn

}
+ amn

)
2©sH

n Rsnsn +
{

sH
snsn

}
+ rsn ≤ 0,

3©ηpc ≤ sH
n Rcnsn +

{
rH

cnsn
}
+ rcn, c = 1, · · · , C,

4©(PL−δ)(sH
n A0nsn +

{
aH

0nsn
}
+ a0n)− (sH

n Aknsn+
{

aH
knsn

}
+ akn)≤0, k = 1, 2,

5©(sH
n Aknsn+

{
aH

knsn
}
+ akn)−(PL + δ)× (sH

n A0nsn +
{

aH
0nsn

}
+ a0n) ≤ 0, k = 1, 2,

6©|sn(m)|2 ≤ 1
Nt

+ κ,
7© 1

Nt
− κ ≤ |sn(m)|2,

where f (sn; s
(i)
−n) =

sH
n Xnsn+{xH

n sn}+xn

sH
n Ynsn+{yH

n sn}+yn
.

Proof. See Appendix A for the derivation.

Nevertheless, P
s
(i)
n

is still a non-convex problem. A parameter w is introduced to

transform the objective function f (sn; s
(i)
−n) into the following representation,

χ(y, sn) = f0(sn)− w f1(sn),

where f0(sn) = sH
n Xnsn +

{
xH

n sn
}
+ xn and f1(sn) = sH

n Ynsn +
{

yH
n sn

}
+ yn. Therefore,

the problem is rewritten as {
max
w sn

χ(w, sn)

s.t. {sn} ∈ S (i)
n ,

(35)

w(t) and sn(t) denote the t-th iteration solutions. Invoking DIP method, Problem (35)
is equivalent to

• Given sn(t−1) and w(t) = f0(sn(t−1))/ f1(sn(t−1)).
• Given w(t), sn(t) is updated by solving{

max
sn

χ(w(t), sn)

s.t. {sn} ∈ S (i)
n .

(36)

• Repeat the above steps until convergence.

Unfortunately, Problem (36) is still non-convex. Leveraging the SCA algorithm, we
can approximately recast this to a convex problem
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Psn(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
sn

sH
n Dnsn +

{
dH

n sn
}
+ dn

s.t. sH
n Bnsn +

{
bH

n sn
}
+ bn ≤ 0,

sH
n Rsnsn +

{
rH

snsn
}
+ rsn ≤ 0,

sH
n Āknsn +

{
āH

knsn
}
+ ākn ≤ 0, k = 1, 2,

sH
n Ãknsn +

{
ãH

knsn
}
+ ãkn ≤ 0, k = 1, 2,


{

r̄H
cnsn

}
+ r̄cn ≤ 0, c = 1, . . . , C,

sn(m)Hsn(m)− 1/Nt − κ ≤ 0, m = 1, · · · , M
{ p̄1sn(m)}+ p̄2 ≤ 0, m = 1, · · · , M

(37)

Proof. See Appendix B for the derivation.

Finally, the ADMM algorithm is used to solve Psn(t) . By introducing auxiliary variables
{hc̄}, {vc}, z, the problem Psn(t) is transformed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
h,{hc̄},{vc},z

−hHDnh −
{

dH
n h

}
− dn

s.t. h1 = h, hH
1 Rsnh1 +

{
rH

snh1
}
+ rsn ≤ 0,

h2 = h, hH
2 Bnh2 +

{
bH

n h2
}
+ bn ≤ 0,

hk = h, k = 3, 4, hH
k Āk0nhk+

{
āH

k0nhk

}
+ āk0n ≤ 0

hk̄ = h, k̄ = 5, 6, hH
k̄ Ãk1nhk̄+

{
ãH

k1nhk̄

}
+ ãk1n ≤ 0

vc = h, c = 1, · · · , C,
{

r̄H
cnvc

}
+ r̄cn ≤ 0,

z = h, z(m)Hz(m)− 1/Nt − κ ≤ 0, m = 1, · · · , M
{ p̄1z(m)}+ p̄2 ≤ 0, m = 1, · · · , M

(38)

where k0 = k − 2, k1 = k̄ − 4. The augmented Lagrangian of the above problem is con-
structed as follows [47]:

L�(h, {hc̄}, {vc}, z, {μc̄}, {μc}, μz) =− hHDnh −
{

dH
n h

}
− dn +

6

∑̄
c=1

�/2‖hc̄ − h + μc̄/�‖2

+
C

∑
c=1

�/2‖vc − h + μc/�‖2 + �/2‖z − h + μz/�‖2

where {μc̄}, {μc}, μz are dimensional multiplier vectors and � > 0 is the penalty parameter.
We minimize L�(h, {hc̄}, {vc}, z, {μc̄}, {μc}, μz) via the ADMM algorithm. See Appendix C

for details of the algorithm.
Finally, the procedure of the IBE-DSADMM algorithm is reported in Algorithm 1.

Algorithm 1: IBE-DSADMM for P1

Input: Feasible starting point s0;
Output: An optimized solution s(∗) to P1;

1: For i = 0, initialize s(i) = s0 and calculate f (s(i)1 , · · · , s
(i)
N );

2: i := i + 1, n = 0;
3: n := n + 1;
4: t = 0, sn(t) = s

(i−1)
n ;

5: t = t + 1;
6: Calculate w(t) = f0(sn(t−1))/ f1(sn(t−1)), Dn and dn;
7: Find an optimal solution s∗n(t) to Psn(t) by using ADMM;

8: If |y(t) − y(t−1)| ≤ κ1, s
(i)
n = s∗n(t); Otherwise, go to Step 5;

9: If n < N, go to Step 3;
10: If | f (s(i−1)

1 , · · · , s
(i−1)
N )− f (s(i)1 , · · · , s

(i)
N )| ≤ κ2, output s(�) = s(i); Otherwise,

go to Step 2.
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2.3.2. Algorithm Initialization

An initial feasible point s0 is necessary to start Algorithm 1. Thus, the following
problem is introduced to find s0

Ps

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find s

s.t. 1© sHAss

s
H

Ams
≤ ε,

2©s
H

Rss ≤ ηs,
3©ηpc ≤ s

H
Rcs, c = 1, · · · , C,

4©PL − δ ≤ s
H

Aks
sHA0s

≤ PL + δ, k = 1, 2,
5© 1

Nt
− κ ≤ |s(n)|2 ≤ 1

Nt
+ κ, , n = 1, · · · , MNt.

(39)

Similarly, the non-convex constraints in Problem (39) are replaced with their first-order
conditions. Meanwhile, some slack variables are introduced to ensure the feasibility [48].
Specifically, 1© is a convex constraint if As � εAm. Otherwise, it is approximated as
sHAss − ε

(
s̄HAms̄ + 2

{
s̄HAm(s − s̄)

})
≤ 0, where s̄ is the previous iteration solution.

Follow the same method for the other constraints. Thus, Problem (39) is approximated as a
convex problem as follows

min
s,b̄,{bc},{bc̃}

ρ̄[
C
∑

c=1
bc +

5
∑

c̃=1
bc̃ + b̄]

s.t. sHRss ≤ ηs,

{

r̄H
c s
}
+ r̄c − bc ≤ 0, bc ≥ 0, c = 1, · · · , C,

sHĀss +
{

āH
s s
}
+ ās − bc̃ ≤ 0, bc̃ ≥ 0, c̃ = 1,

sHĀks +
{

āH
k s
}
+ āk − bc̃ ≤ 0, bc̃ ≥ 0, c̃ = 2, 3,

sHÃks +
{

ãH
k s
}
+ ãk − bc̃ ≤ 0, bc̃ ≥ 0, c̃ = 4, 5,

s(n)Hs(n)− 1/Nt − κ ≤ 0, n = 1, · · · , MNt
{q̄1s(n)}+ q̄2 − b̄ ≤ 0, b̄ ≥ 0,

(40)

where b̄, {bc}, {bc̃} are slack variables. ρ̄ is a large enough positive number to penalize slack
variables approaching zero. r̄c = −2Rcs̄, r̄c = ηpc + s̄Rcs̄, q̄1 = −2s̄(n), q̄2 = 1/Nt − κ +

s̄(n)H s̄(n). If constraints 1© and 4© are convex, Ās = As − εAm, Āk = (PL − δ)A0 − Ak,
Ãk = Ak − (PL + δ)A0, ās = 0, āk = 0, ãk = 0, ās = 0, āk = 0, ãk = 0. Otherwise,
Ās = As, Āk = (PL − δ)A0, Ãk = Ak, ās = −2εAms̄ āk = −2Aks̄, ãk = −2(PL + δ)A0s̄,
ās = ε(s̄HAms̄), āk = s̄HAks̄, ãk = (PL + δ)(s̄HA0s̄). We solve the above convex problem
using the CVX toolbox.

2.3.3. Computational Complexity

The computational complexity of IBE-DSADMM mainly depends on two factors. One
is the iteration of variables xn, yn, asn, amn, rsn, rcn, akn, a0n, with a computational complexity
of O((NtM)2). Another is the complexity of ADMM for solving Psn(t) (e.t. O(LATD M2)).
Therein, LA and TD are the iteration times of ADMM and DIP algorithms, respectively.
Thus, the total computational complexity is O(IBN3

t M2) + O(IBLATD NtM2) + O(NtM3)
for IBE-DSADMM, where IB is the iteration time of the whole algorithm. O(NtM3) is the
cost of the matrix inversion of Dn.

2.3.4. Convergence Analysis

We analyze the convergence of the IBE-DSADMM algorithm in this subsection.
(1) The ADMM algorithm decomposes Psn(t) into multiple convex subproblems with

closed-form solutions.
(2) The DSADMM algorithm ensures that the w(t) sequence is monotonically increasing

to convergence [12].

81



Remote Sens. 2023, 15, 3256

(3) According to the IBE framework, it follows that

f (s(i−1)
1 , · · · , s

(i−1)
N ) ≤ f (s(i)1 , s

(i−1)
2 , · · · , s

(i−1)
N ) ≤ · · · ≤

f (s(i)1 , · · · , s
(i)
N−1, s

(i−1)
N ) ≤ f (s(i)1 , · · · , s

(i)
N−1, s

(i)
N ),

(41)

which implies that the objective function value increases monotonically with iterations. In
addition, the upper bound of f (s1, · · · , sN) is the maximum eigenvalue of matrix Y−1

0 X0.
Thus, the objective function increases monotonically to convergence.

3. Results

This section evaluates the performance of the proposed SPIA modulation method
in terms of detection performance and communication performance. To highlight the
superiority of the IBE-DSADMM algorithm, the IBE-DSIPM algorithm [49] is introduced
as a benchmarker, which uses the Interior Point Method (IPM) algorithm instead of the
ADMM algorithm to solve optimization problems.

Unless otherwise stated, Table 1 shows the parameter settings.

Table 1. The setting of simulational parameters.

Variable Name Variable Setting

Transmitting array Uniform linear array
Antenna spacing half-wave
Antenna number Nt = 8

Signal sample number M = 32
Parameters of mainlobe width constraints θ0 = 15◦, θ1 = 5◦, θ2 = 25◦, PL = 0.5 and δ = 0.05

Sidelobe region [−90◦, 5◦]
⋃
[25◦, 90◦]

Upper limit of antenna pattern ISL ε = 1.5
Upper limit of stopband energy ηs = 5 × 10−5 × ns

Number of stopband ns
Exit condition value of IBE κ2 = 10−5

Exit condition value of DIP κ1 = 10−2

The location of communication user −70◦

The location of target θ0 = 15◦

The power of target δ2
0 = 20 dB

The location of two reference sources 30◦ and 60◦

The power of two reference sources 25 dB, 30 dB
Normalized available frequency subbands Ω11 = (0.1, 0.13), Ω21 = (0.2, 0.23), Ω31 = (0.3, 0.33),

Ω41 = (0.4, 0.43), Ω51 = (0.5, 0.53), Ω61 = (0.6, 0.63),
Ω71 = (0.7, 0.73), Ω81 = (0.8, 0.83), Ω91 = (0.9, 0.93)

3.1. Beampattern Performance

We aim to analyze the beampattern performance of the IBE-DSADMM algorithm
considering different ηp1 and κ for communication passband modulation and variable
modulus constraints in this subsection. The influence of information embedding subband
number Q1 is also considered.

Q1 = 4 subbands were selected for information embedding in Figure 4. In moredetail,
the Q1 = 4 subbands were set as Ω51 = (0.5, 0.53), Ω61 = (0.6, 0.63), Ω71 = (0.7, 0.73),
Ω91 = (0.9, 0.93), respectively, and the bit sequence “0101” was transmitted by ampli-
tude modulation. Figure 4a shows SINRs (in dB) versus iteration number for ηp1 = 2,
κ = 0.0001, 0.05. It can be observed that the SINRs (in dB) increase monotonously along
with the iteration for both IBE-DSADMM and IBE-DSIPM algorithms. Moreover, the two
algorithms share a converged SINR value. This is reasonable because the ADMM algorithm
can obtain the optimal solution to the convex problem Psn(t) . The corresponding SINRs
(in dB) versus iteration time are also depicted in Figure 4b. It is worth mentioning that
the IBE-DSADMM algorithm converges faster than the IBE-DSIPM algorithm. Finally, it
is obvious that the larger κ, the larger the obtained converged SINR value owning to the
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enlarged feasible set on P1. Figure 4c reports SINRs’ (in dB) value against iteration number
for ηp1 = 2, 5, κ = 0.05. The results again exhibit that IBE-DSADMM and IBE-DSIPM obtain
near-converged SINR values. Figure 4d also depicts the corresponding SINRs value versus
CPU time. The results again demonstrate the advantage of the IBE-DSADMM algorithm
in terms of convergence speed. Finally, the curves also show that the smaller the ηp1, the
higher the converged SINR value will be owing to there being more DoFs on P1.

In Figure 4e, the beampatterns vesus angle are depicted for ηp1 = 2, κ = 0.0001, 0.05.
The results show all optimized beampatterns have a high sidelobe level around the
communication direction −70◦. The reason for this is that more energy is required to
transmit to communication users, which is located in the sidelobe domain. Furthermore,
the optimized SINR guarantees the maximum radiation power of the target direction
(i.e., θ0 = 15◦) and the minimum radiation energy of clutter directions (i.e., −30◦ and
60◦), which enhances the target detection and clutter suppression capability. The results
in Figure 4e are consistent with the previous Figure 4a,b. Specifically, the larger the κ,
the better the beampattern performance will be. Figure 4f illustrates the normalized
beampatterns obtained for ηp1 = 2, 5, κ = 0.05. it is clearly observed that beampattern
nullings are formed in clutter directions (i.e., −30◦ and 60◦). In addition, these curves
highlight again that IBE-DSADMM and IBE-DSIPM have an almost identical beampattern
and the smaller the ηp1 value, the better the obtained beampattern performance.

The impact of information embedding subbands number Q1 is analyzed in Figure 5.
The parameters are set as ηp1 = 2, κ = 0.05 with Q1 = 2, 3, 4. We chose 250 information
embedding subband position selection patterns. Figure 5a shows the specific converged
SINR values of the aforementioned 250 trails. It is clearly seen that the converged SINR
values fluctuate within a very small range. The normalized beampatterns versus angle with
the maximum converged SINR values are depicted in Figure 5b. The results again exhibit
that different Q1 share closely converged SINR values, which is consistent with Figure 5a.

3.2. Communication Performance

The communication performance of the proposed SPIA modulation method is dis-
cussed in this subsection. Figure 6a illustrates Symbol Error Ratio (SER) versus Power
Noise Ratio (PNR) with ηp1 = 2, 5, κ = 0.05, 0.0001, Q1 = 2, 4. According to the based band
echo x̃c in (17), the PNR received by the c-th user is defined as |βc|2/δ2

c . The curves show
that the larger the ηp1, the smaller the SER will be due to more energy being transmit-
ted to communication users. In addition, a smaller κ leads to a higher sidelobe level in
communication direction, which also results in a lower SER. Nevertheless, an increase in
ηp1 and a decrease in κ raise the sidelobe level, which may degrade the detection perfor-
mance. The results indicate that careful selection of ηp1 and κ is needed to balance radar
detection with SER performance. Figure 6a also reveals that a smaller Q1 leads to a better
SER performance as preciser demodulation is performed. Note that although Figure 5
shows that a different Q1 almost cannot affect SINR performance, a trade-off between
data rate and SER performance also exists. Figure 6b–d shows the optimized frequency
band energy (in dB) towards communication users with selected Q = 2, 3, 4 subbands
for information embedding, respectively. The curves highlight that the passbands and
stopbands are formed in the accurate position corresponding to the delivered bit sequence.

3.3. Performance Analysis for Different Application Scenarios

This subsection evaluates the performance of the proposed SPIA modulation method
for different application scenarios. Specifically, we consider different numbers of communi-
cation users and interfering sources. The signal-dependent interfering sources are assumed
to be in the same range bin with the target. Figure 7a,b show optimized beampatterns
with two users and three interfering sources and one user and four interfering sources,
respectively. It can be seen that the energy could be focused near the target direction and
beampattern nullings are formed in clutter directions. In addition, a higher sidelobe level
is achieved with increasing ηp1.
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Figure 4. Beampattern performance under different parameters (a) SINR versus iteration number
for ηp1 = 2, κ = 0.0001, 0.05, (b) SINR versus iteration time (in seconds) ηp1 = 2, κ = 0.0001, 0.05,
(c) SINR versus iteration number for ηp1 = 2, 5, κ = 0.05, (d) SINR versus iteration time (in seconds)
ηp1 = 2, 5, κ = 0.05, (e) beampattern versus angle for ηp1 = 2, κ = 0.0001, 0.05, (f) beampattern versus
angle for ηp1 = 2, 5, κ = 0.05.
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Figure 5. Beampattern performance for Q1 = 2, 3, 4 (a) the histogram of converged SINR values,
(b) beampattern versus angle with the maximum converged SINR values.

Figure 6. Communication performance (a) SER versus PNR for ηp = 2, 5, κ = 0.0001, 0.05, Q1 = 2, 4,
(b) optimized frequency band energy for communication user assuming Q1 = 4, (c) optimized
frequency band energy for communication user assuming Q1 = 3, (d) optimized frequency band
energy for communication user assuming Q1 = 2.
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Figure 7. Beampattern performance for different application scenarios (a) beampattern versus angle
(two users and three interfering sources), (b) beampattern versus angle (one user FL and four
interfering sources).

3.4. Comparison with Related Information Embedding Methods

In this section, we compare the proposed SPIA modulation method with the sidelobe
modulation [9] and our previous work, named spatio-spectral modulation [12].

In [9], the focus is on the design of joint transmit weight vectors and the utilization of
signal diversity to introduce variations in the sidelobe levels (SLLs) for communication. The
number of orthogonal signals used is equal to the number of bits being transmitted. By con-
trolling the sidelobes in the communication directions, two distinct levels can be achieved,
requiring the use of two transmit beamforming weight vectors. The communication SLLs
are enforced to be either 0.1 (−20 dB) or 0.01 (−40 dB). Parameters such as array type,
antenna spacing, antenna number, communication user direction, mainlobe region, and
sidelobe region are the same as specified in Table 1. Figure 8a,b illustrate the beampatterns
achieved through sidelobe modulation [9] and the proposed SPIA modulation method,
respectively. The number of information embedding subbands in the SPIA modulation
method, denoted as Q1, is set to 4. The results indicate that the beampattern performance of
the proposed SPIA modulation method is superior to the sidelobe modulation method. The
former method achieves its beampattern by matching it with an ideal mask pattern, while
the latter maximizes the SINR. It is important to note that the proposed SPIA modulation
method creates nullings in the direction of interference sources, which aids in clutter sup-
pression. However, the former method does not take into account the presence of clutter.
Additionally, the former method requires designing a specific orthogonal signal set size to
meet the data rate requirements.

To highlight the superiority of the proposed SPIA modulation method, the spatio-
spectral modulation [12] is taken as a benchmarker. The parameter settings are shown in
Table 2. Figure 9a depicts the optimized beampatterns obtained by the proposed SPIA
modulation method and spatio-spectral modulation [12], which delineates that the pro-
posed SPIA modulation method can form the beampattern nullings in clutter directions.
Figure 9b presents the number of bits transmitted in a PRT versus the number of selected
information embedding subbands. Since the spatio-spectral modulation in [12] uses the
energy of subbands to embed information. Thereby, the data rate is fixed in 20 bits per PRT
when the available frequency subband number is 20. According to Equation(13), the data
rate in the proposed SPIA method increases along with the number of selected information
embedding subbands. Note that the proposed SPIA method provides a higher data rate
than the spatio-spectral modulation in [12] when more than six subbands are selected.
Figure 9c shows the optimized frequency band energy (in dB) towards communication
user 1 using the proposed SPIA modulation method. Ten information subbands selected to
embed information are formed by the corresponding passbands and stopbands. Figure 9d
shows the optimized frequency band energy (in dB) towards communication user 1 via
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spatio-spectral modulation [12]. The curve highlights that all 20 available subbands are
used to embed information.

Figure 8. The comparison with sidelobe modulation in [9] (a) beampatterns versus angle using
sidelobe modulation [9], (b) beampatterns versus angle using proposed SPIA modulation.

Figure 9. The comparison with spatio-spectral modulation scheme in [12] (a) beampatterns versus
angle, (b) data rate versus selected subband number, (c) optimized frequency band energy using
proposed SPIA method (d) optimized frequency band energy using spatio-spectral modulation
method [12].
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Table 2. The setting of simulational parameters.

Number SPIA Method Number Spatio-Spectral Method [12]

1 Two users positions −70◦, 60◦ 1 Two users positions −70◦, 60◦

2 Lower bound of passband energies
ηp1 = ηp2 = 2

2 Lower bound of passband energies ηp1 = ηp2 = 2

3 Upper bound of stopband energy
ηs = 5 × 10−5 × ns

3 Upper bound of stopband energy ηs = 2.5 × 10−5 × ns

4 Two interference sources’ positions
−30◦,−50◦

4 Without this parameter

5 Power of two interference sources
25 dB, 30 dB

5 Without this parameter

6 Power of target δ2
0 = 0 dB 6 Without this parameter

7 Ten frequency subbands are se-
lected from the available frequency
subbands using the spatio-spectral
method [12] for information em-
bedding

7 Frequency subbands for information embedding Ω1 =
(0.02, 0.04), Ω2 = (0.07, 0.09), Ω3 = (0.12, 0.14), Ω4 =
(0.17, 0.19), Ω5 = (0.22, 0.24), Ω6 = (0.27, 0.29), Ω7 =
(0.32, 0.34), Ω8 = (0.37, 0.39), Ω9 = (0.42, 0.44), Ω10 =
(0.47, 0.49), Ω11 = (0.52, 0.54), Ω12 = (0.57, 0.59), Ω13 =
(0.62, 0.64), Ω14 = (0.67, 0.69), Ω15 = (0.72, 0.74), Ω16 =
(0.77, 0.79), Ω17 = (0.82, 0.84), Ω18 = (0.87, 0.89), Ω19 =
(0.92, 0.94), Ω20 = (0.97, 0.99)

4. Discussion

(1) A method for designing an MIMO DFRC signal is proposed to enhance signal
detection and communication in the presence of signal-dependent clutter. The proposed
method optimizes the beampattern to create nullings in clutter directions, effectively
suppressing clutter based on prior knowledge of clutter locations. Additionally, the beam
direction is optimized to precisely detect the target location, obtained through a cognitive
paradigm. This ensures good detection performance.

(2) A novel modulation technique called SPIA modulation, which combines spectral
passband and stop-band selection with amplitude modulation, is proposed to achieve
simultaneous detection and communication. Unlike the existing approaches [32–34], the
SPIA modulation methodology is proposed instead of using a conventional communication
sequence. Additionally, previous works on DFRC signal design have focused on index
modulation [14–19], primarily utilizing intra-pulse modulation without altering the con-
ventional radar baseband signal. However, in this paper, we focus on index modulation
via inter-pulse modulation, where the baseband signal is modified as an alternative to
intra-pulse modulation. However, it is worth mentioning that, in future work, we plan
to explore the combination of intra- and inter-pulse modulation techniques to design a
dual-function signal.

(3) The IBE-DSADMM is exploited to solve the original nonconvex NP-hard problem.
The algorithm guarantees that the SINR value monotonically increases and converges to a
finite value.

5. Conclusions

In this paper, an MIMO DFRC signal design method resorting to SPIA modulation
was proposed to realize radar detection and communication in signal-dependent clutter.
To effectively suppress signal-dependent clutter and improve radar detection perfor-
mance, SINR was used as the criterion to construct an optimization problem with practical
constraints. We also exploited an IBE-DSADMM algorithm to monotonically increase
the SINR. The numerical results verified that the designed integrated signal ensures the
detection performance in the signal-dependent clutter and simultaneously implements
multi-user communication.
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Appendix A

Given s = vec([s1, · · · , sN ]
T) ∈ CNM, A ∈ NM , the quadratic function g(s) = sHAs

can be recast as a function of the specific block sn, i.e.,

g(sn; s̄−n) =(s̄−n + Λnsn)
HA(s̄−n + Λnsn)

=sH
n ΛH

n AΛnsn + 2
{

s̄H
−nAΛnsn

}
+ s̄H

−nAs̄−n,

(A1)

where s̄−n = s − Λnsn ∈ CNM, and Λn ∈ CNM×M is defined as

Λn(i, j̄) =

{
1, if i = n + ( j̄ − 1)N
0, otherwise

with i ∈ {1, · · · , NM}, j̄ ∈ {1, · · · , M}, s−n = vec([s1, . . . , sn−1, sn+1, . . . , sN ]
T) ∈ C(N−1)M.

Let s(ni) = vect([s(i)1 , · · · , s
(i)
n−1, sn, s

(i−1)
n+1 , · · · , s

(i−1)
Nt

]T) ∈ CNt M, the objective function

f (s(i)1 , · · · , s
(i)
n−1, sn, s

(i−1)
n+1 , · · · , s

(i−1)
Nt

) can be rewritten as

f (sn; s̄
(i)
−n) =

sH
n Xnsn +

{
xH

n sn
}
+ xn

sH
n Ynsn +{yH

n sn}+ yn
, (A2)

where Xn = ΛH
n X0Λn, xn = 2ΛH

n XH
0 s̄

(i)
−n and xn = s̄

(i)H
−n X0s̄

(i)
−n. Yn = ΛH

n Y0Λn, yn =

2ΛH
n YH

0 s̄
(i)
−n and yn = s̄

(i)H
−n Y0s̄

(i)
−n. s

(i)
−n = vect([s(i)1 , . . . , s

(i)
n−1, s

(i−1)
n+1 , . . . , s

(i−1)
Nt

]T) ∈ C(Nt−1)M,

s̄
(i)
−n = s(ni) − Λnsn ∈ CNt M.

Constraint 1© in Problem P1 can be recast

sH
n Asnsn +

{
aH

snsn

}
+ asn ≤ ε

(
sH

n Amnsn +
{

aH
mnsn

}
+ amn

)
(A3)

where Asn = ΛH
n AsΛn, asn = 2ΛH

n AH
s s̄

(i)
−n and asn = s̄

(i)H
−n Ass̄

(i)
−n, Amn = ΛH

n AmΛn, amn =

2ΛH
n AH

m s̄
(i)
−n and amn = s̄

(i)H
−n Ams̄

(i)
−n.

Constraint 2© can be written to

sH
n Rsnsn +

{
rH

snsn

}
+ rsn ≤ 0, (A4)

where Rsn = ΛH
n RsΛn, rsn = 2ΛH

n RH
s s̄

(i)
−n, rsn = s̄

(i)H
−n Rss̄

(i)
−n − ηs.

Constraint 3© can be rewritten to

ηpc ≤ sH
n Rcnsn +

{
rH

cnsn

}
+ rcn, c = 1, · · · , C, (A5)
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where Rcn = ΛH
n RcΛn, rcn = 2ΛH

n RH
c s̄

(i)
−n, rcn = s̄

(i)H
−n Rcs̄

(i)
−n.

Constraint 4© can be converted to

(PL − δ)
(

sH
n A0nsn +

{
aH

0nsn

}
+ a0n

)
≤ sH

n Aknsn +
{

aH
knsn

}
+ akn, k = 1, 2, (A6)

sH
n Aknsn +

{
aH

knsn

}
+ akn ≤ (PL + δ)

(
sH

n A0nsn +
{

aH
0nsn

}
+ a0n

)
, k = 1, 2, (A7)

where Akn = ΛH
n AkΛn, akn = 2ΛH

n AH
k s̄

(i)
−n, akn = s̄

(i)H
−n Aks̄

(i)
−n, A0n = ΛH

n A0Λn, a0n =

2ΛH
n AH

0 s̄
(i)
−n, a0n = s̄

(i)H
−n A0s̄

(i)
−n.

Appendix B

Next, we are going to find an approximation solution to Problem (36) by solving
its approximation version. Interestingly, we observe the objective function χ(w(t), sn) is
the difference between two convex functions. To this end, the objective function can be
approximated by a lower bound function. Specifically,

χ(w(t), sn) ≥ sH
n(t−1)Xnsn(t−1) + 2

{
sH

n(t−1)Xn(sn − sn(t−1))
}
+


{

xH
n sn

}
+ xn − w(t)(s

H
n Ynsn +

{
yH

n sn

}
+ yn) = sH

n Dnsn +
{

dH
n sn

}
+ dn, (A8)

where Dn = −w(t)Yn, dn = −w(t)yn + 2Xnsn(t−1) + xn, dn = −w(t)yn − sH
n(t−1)Xnsn(t−1)

+xn.
Similarly, constraints 1©, 4©, 5© are also the difference between two convex quadratic

functions. Specifically, if Asn � εAmn, constraint 1© is convex. Otherwise, it is approximated
to [50,51]

(sH
n Asnsn +

{
aH

snsn

}
+ asn)−

ε
(

sH
n(t−1)Amnsn(t−1) + 2

{
sH

n(t−1)Amn(sn − sn(t−1))
}
+

{
aH

mnsn

}
+ amn

)
≤ 0. (A9)

A similar operation can be implemented on constraints 4© and 5©.
As to constraint 3©, it can be approximated to

ηpc −
(

sH
n(t−1)Rcnsn(t−1) + 2

{
sH

n(t−1)Rcn(sn − sn(t−1))
}
+

{
rH

cnsn

}
+ rcn

)
≤ 0. (A10)

And constraint 7© is treated in the same way.
In this respect, we can approximately tackle the maximization of χ(w(t), sn) through

solving the following convex problem

Psn(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
sn

sH
n Dnsn +

{
dH

n sn
}
+ dn

s.t. sH
n Bnsn +

{
bH

n sn
}
+ bn ≤ 0,

sH
n Rsnsn +

{
rH

snsn
}
+ rsn ≤ 0,

sH
n Āknsn +

{
āH

knsn
}
+ ākn ≤ 0, k = 1, 2,

sH
n Aknsn +

{
ãH

knsn
}
+ ãkn ≤ 0, k = 1, 2,


{

r̄H
cnsn

}
+ r̄cn ≤ 0, c = 1, . . . , C,

sn(m)Hsn(m)− 1/Nt − κ ≤ 0, m = 1, · · · , M
{ p̄1sn(m)}+ p̄2 ≤ 0, m = 1, · · · , M,

(A11)

where r̄cn = −2Rcnsn(t−1) − rcn, r̄cn = sH
n(t−1)Rcnsn(t−1) + ηpc − rcn, p̄1 = −2sn(t−1)(m),

p̄2 = 1/Nt − κ + sn(t−1)(m)Hsn(t−1)(m). If constraints 4© and 5© are convex, Bn = Asn −
εAmn, Ākn = (PL − δ)A0n − Akn, Ãkn = Akn − (PL + δ)A0n, bn = asn − εamn, ākn = (PL −
δ)a0n − akn, ãkn = akn − (PL + δ)a0n, bn = asn − εamn, ākn = (PL − δ)a0n − akn, ãkn = akn −
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(PL + δ)a0n. Otherwise, if constraints 4© and 5© are non-convex, Bn = Asn, Ākn = (PL −
δ)A0n, Ãkn = Akn, bn = asn − εamn − 2εAmnsn(t−1), ãkn = (PL − δ)a0n − akn − 2Aknsn(t−1),
ãkn = akn − (PL + δ)(2A0nsn(t−1) + a0n), bn = asn − εamn + εsH

n(t−1)Amnsn(t−1), ākn = (PL −
δ)a0n − akn + sH

n(t−1)Aknsn(t−1), ãkn = akn − (PL + δ)(a0n − sH
n(t−1)A0nsn(t−1)).

Appendix C

Assume that the l-th iteration results of h, z, {hc̄}, {vc}, {μc̄}, {μc}, μz are respectively
h(l), z(l), {h

(l)
c̄ }, {v

(l)
c }, {μ

(l)
c̄ }, {μ

(l)
c }, μ

(l)
z . The ADMM [52,53] procedure can be reported in

Algorithm A1.

Algorithm A1: ADMM for solving Psn(t)

Input: h(0), z(0), {h
(0)
c̄ }, {v

(0)
c }, {μ

(0)
c̄ }, {μ

(0)
c }, μ

(0)
z ;

Output: An optimized solution s∗n(t) to Psn(t) ;
1: l = 0;
2: l := l + 1;
3: Update h(l), z(l), {h

(l)
c̄ }, {v

(l)
c }, {μ

(l)
c̄ }, {μ

(l)
c }, μ

(l)
z by solving the following problems:

h
(l)
1 := arg min

h1

‖h1 − h(l−1) + μ
(l−1)
1 /�‖2

s.t. hH
1 Rsnh1 +

{
rH

snh1

}
+ rsn ≤ 0,

h
(l)
2 := arg min

h2
‖h2 − h(l−1) + μ

(l−1)
2 /�‖2

s.t. hH
2 Bnh2 +

{
bH

n h2

}
+ bn ≤ 0,

{h
(l)
k } := arg min

{hk}

4

∑
k=3

‖hk − h(l−1) + μ
(l−1)
k /�‖2

s.t. hH
k Ān,k0 hk +

{
āH

n,k0
hk

}
+ ān,k0 ≤ 0, k = 3, 4, k0 = k − 2,

{h
(l)
k̄ } := arg min

{hk̄}

6

∑
k̄=5

‖hk̄ − h(l−1) + μ
(l−1)
k̄ /�‖2

s.t. hH
k̄ Ãn,k1

hk̄ +
{

ãH
n,k1

hk̄

}
+ ãn,k1

≤ 0, k̄ = 5, 6, k1 = k̄ − 4,

{v
(l)
c } := arg min

{vc}

C

∑
c=1

‖vc − h(l−1) + μ
(l−1)
c /�‖2

s.t. 
{

r̄H
cnvc

}
+ r̄cn ≤ 0, c = 1, · · · , C,

z(l) := arg min
z

‖z − h(l−1) + μ
(l−1)
z /�‖2

s.t. z(m)Hz(m)− 1/Nt − κ ≤ 0, m = 1, · · · , M

{ p̄1z(m)}+ p̄2 ≤ 0, m = 1, · · · , M

h(l) := arg min
h

L�(h, z(l), {h
(l)
c̄ }, {v

(l)
c }, {μ

(l−1)
c̄ }, {μ

(l−1)
c }, {μ

(l−1)
z })

4: Update {μ
(l)
c̄ }, {μ

(l)
c }μ

(l)
z by: μ

(l)
c̄ = μ

(l−1)
c̄ + �(h

(l)
c̄ − h(l)),

μ
(l)
c = μ

(l−1)
c + �(v

(l)
c − h(l)), μ

(l)
z = μ

(l−1)
z + �(h

(l)
z − h(l));

5: If a pre-set exit condition is met, output s∗n(t) = h(l). Otherwise, go to Step 2.

91



Remote Sens. 2023, 15, 3256

Obviously, we can parallelly update z, hc̄, c̄ = 1, · · · , 6, vc, c = 1, · · · , C. In particular,
the optimization problems concerning hc̄, c̄ = 1, · · · , 6 can split into 6 subproblems falling
into the convex QCQP with only one constraint (QCQP-1) whose closed-form solution has
been derived using KKT conditions in [54]. As to the optimization problem with respect to
z, vc, c = 1, · · · , C can be solved via the KKT technique in [46]. Finally, the problem for h is
equivalent to

min
h

hHDh +{dHh}, (A12)

where D = −Dn + 8�/2IM and d = −dn −
6
∑

c̄=1
�(h

(l)
c̄ +μ

(l−1)
c̄ /�)−

C
∑

c=1
�(v

(l)
c +μ

(l−1)
c /�)−

�(z(l) + μ
(l−1)
z /�). By letting its first derivative be zero, the closed-form solution to Prob-

lem (38) is −D−1d/2.
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Abstract: Recently, the problem of target detection in noisy environments for the Dual-Functional
Radar Communication (DFRC) integration system has been a hot topic. In this paper, to suppress
the noise and further enhance the target detection performance, a novel manifold Riemannian
Improved Armijo Search Conjugate Gradient algorithm (RIASCG) framework has been proposed
which jointly optimizes the integrated transmitting waveform and receiving filter. Therein, the
reference waveform is first designed to achieve excellent pattern matching of radar beamforming.
Furthermore, to ensure the quality of system information transmission, the energy of multi-user
interference (MUI) of communication signals is incorporated as the constraint. Additionally, the
typical similarity constraint is introduced to ensure the transmitting waveform with a good ambiguity
function. Finally, simulation results demonstrate that the designed waveform not only enhances
the system’s target detection performance in noisy environments but also achieves a relatively good
multi-user communication ability when compared with other prevalent waveforms.

Keywords: radar communication integration system; waveform design; manifold optimization;
target detection

1. Introduction

In the past decades, with the rapid development of commercial wireless communica-
tion and remote sensing image processing [1–3], the demand for available frequency bands
has also increased dramatically where most of the frequency resources are allocated to
radar requirements and also limit the communication throughput. Therein, the integration
of sensing and communication to improve spectrum utilization has become a research
hotspot [4–6].

At present, the radar communication integration system can be divided into two
categories according to whether the spectrum is shared: radar communication coexistence
(RCC) [6] and dual functional radar communication (DFRC) [7]. For RCC, it means that
radar and communication work independently on the same platform through some re-
source diversity, including frequency division multiplexing, power multiplexing and time
division multiplexing [8]. Authors in [9] presented the power allocation and subcarrier se-
lection scheme to minimize the transmission power while ensuring the presence of mutual
information between radar and communication. Authors in [10] discussed the integration
of radar communication by orthogonalizing radar and communication signals. Unlike RCC,
DFRC integrates radar and communication functions through a single integrated waveform
and allocates its power to a specific spatial area to detect targets while transmitting the
user communication signals. Early research focused on the integrated waveform design
where the digital information was embedded into the radar waveform by modifying the
traditional radar waveform and controlling its sidelobe in the direction of the objective
user [11,12]. Typically, when the communication user is in the mainlobe of the radar wave-
form, the communication rate would drop greatly, and the communication function would
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fail. Moreover, the communication symbols can also modulate the radar waveform to
achieve coexistence for dual functions [13–15]. Authors in [16,17] tried to use the existing
communication waveforms to achieve radar’s tasks. From the communication view, DFRC
signals need high-quality communication performance, such as a high communication rate,
which can be improved by minimizing multi-user interference (MUI).

Considering the scenarios involving multiple communication users and multiple
radar sensing targets, the DFRC waveform has faced more challenges [18]. For communica-
tion, the signal-to-interference-plus-noise ratio (SINR) of each user should be considered.
For radar, the SINR should also be considered. For DFRC systems, the performance of
communication and sensing is coupled together, which means that any improvement of
communication may deteriorate the radar performance, and vice versa. Therefore, in fact,
when DFRC systems work in multi-user and multi-target scenarios, they inevitably face
multiple performance tradeoffs between multi-users, multi-targets and also communication
and perception. To solve this problem, authors in [19] designed the transmitting waveform
by minimizing the joint least squares of weighted squared error and total MUI, where
the weighting factor is used to balance two systems. Moreover, in this integration, most
communication signals are modulated by multiple carriers, which will inevitably lead to a
high peak average power ratio (PAPR) and incur distortion at the RF end. To improve the
power efficiency of transmitters, PAPR constraints or constant modulus (CM) are widely
used. Authors in [20] tried to jointly optimize the MUI and radar SINR by alternating the
minimization and gradient projection frameworks. Authors in [21,22] designed the radar
transmitting waveform under a given PAPR and similarity constraints. Note that radar
waveforms as well as DFRC waveforms with constant modulus are also in need [23,24].
Authors in [25] designed a CM-integrated waveform by synthesizing different signals in
the direction of communication and radar and also proposed an iterative optimization
amplitude weighting method. No matter the PAPR/CM constraint or similarity constraint,
these prior works would have to tackle the non-convex optimization problem with a heavy
computation burden. How to design DFRC waveforms within the non-convex framework
has been a hot topic. Furthermore, authors in [26] designed the CM DFRC waveform
to minimize MUI and maximize the similarity between integrated signals and reference
radar waveforms. Authors in [27] considered the joint design of the receiving filter and
transmitting waveform with the maximum signal-to-noise ratio (SNR) and proposed a
novel algorithm based on manifold ideas which give us lots of inspiration.

In this paper, to improve the detection performance of the integration system in noisy
environments, the joint design of the system’s transmitting waveform and receiving filter
has been proposed to enhance the output SNR, which is based on the Riemannian Improved
Armijo Search Conjugate Gradient algorithm (RIASCG) framework. This framework could
transform the non-convex optimization problem into a novel convex one within Rieman-
nian manifold space. Firstly, the MIMO radar waveform, with the constant modulus and
similarity (CM&S) constraint as well as good directivity, was designed. Furthermore, the
waveform with the minimum MUI was also considered. By using the manifold principle,
the CM&S constraint was transformed into an unconstrained Riemannian space. Partic-
ularly in the Riemannian space, the final solution can be obtained through the iterative
closed-form. Finally, we compare their performance with several existing ones.

The organization of this paper is as follows. The system model and problem formula-
tion are presented in Sections 2 and 3. The DFRC waveform design by the novel algorithm
is proposed in Section 4. Section 5 presents the numerical results. Finally, conclusions are
drawn in Section 6.

Notation: Lower-case letters x and upper-case letters X denote vectors and matrices,
respectively. The symbols (·)T, (·)H and (·)∗ stand for the transpose, the conjugate trans-
pose and the conjugate operators, respectively. The set of N × N complex matrices and the
set of n-dimensional complex numbers vectors are denoted by CN×N and Cn, respectively.
The l2 norm is denoted by the symbol ||·||2, and the Frobenius norm is represented by the
symbol ||·||F. IN stands for the identity matrix of size N × N. Finally, the notations Re{x}
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and Im{x} are denoted as the real and imaginary part of x, E(·) represents the expectation
operator, the symbol ⊗ denotes the Kronecker product and the symbol � represents the
Hadamard product.

2. System Model

Cognitive radar adjusts its waveforms via artificial intelligence or machine learning as
shown in Figure 1, which is regarded as a closed-loop feedback cycle. This adaptive system
makes it more intelligent and offers higher robustness in waveform optimization compared
with the traditional one. This paper focuses on the design of transmitting waveforms and
receiving filters in DFRC systems where the integrated waveform is suitable for both target
detection and information transmission. Namely, to achieve this, the optimization problem
should satisfy the transmitted beampattern favorable for target detection while generating
minimal MUI to multiple users in the downlink. The DFRC system needs to perform
the following two tasks simultaneously: (i) target detection and (ii) communication with
single-antenna users in the downlink.

1     2      

SIGNAL 
PROCESSING

DYNAMIC 
DATABASE

INFORMATION 
EXTRACTION

WAVEFORM 
DESIGN

1     2      

Target Interference
1 2                                               

TransmitterReceiver

Feedback

User

( )t θa( )r θa

1     2      

1

2

M

 

Figure 1. MIMO DFRC system based on cognitive radar idea.

2.1. Communication Model

Assume that the channel between the bifunctional base-station and the communication
user is flat Rayleigh fading and the channel characteristics remain unchanged for a certain
period of time. The integrated MIMO radar-antenna system has Nt transmitting antennas
and Nr receiving antennas, and the frame length of the dual-functional waveform is as-
sumed to be N. Suppose that there are M communication users subjected to the interference
from K irrelevant signals when detecting the target. Specifically, the signals received by M
communication users can be represented as

Y = HX + W (1)

where H = [h1, h2, . . . , hM]T ∈ CM×Nt is the channel matrix. The transmission signal
matrix is X = [x1, x2, . . . , xN ] ∈ CNt×N , where xi ∈ CNt×1 denotes the i-th transmitted
symbol vector, and W = [w1, w2, . . . , wN ] ∈ CM×N is the white Gaussian noise matrix of
the receiver.
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Furthermore, as the integrated system would transmit a signal matrix S ∈ CM×N to
M users, (1) can be rewritten as

Y = S + (HX − S)︸ ︷︷ ︸
MUI

+ W (2)

where the second term in (2) represents the multi-user interference [19], and its energy can

be expressed as ϕ(X) = ‖HX − S‖2
F with separable property ‖HX − S‖2

F =
N
∑

i=1
‖Hxi − si‖2.

According to [20], the achievable sum-rate of the users can be defined as

ϑ �
M

∑
m=1

log2(1 + γm) (3)

where γm represents the SINRt of per-frame received by the m-th user, i.e.,

γm =
E

(
|sm,i|2

)
E

(∣∣∣hT
mxi − sm,i

∣∣∣2)+ N0

(4)

where sm,i represents the i-th code-unit for the m-th user, N0 is the power of the received

noise, and the energy of the (m, i) term of MUI can be expressed as E(
∣∣∣hT

mxi − sm,i

∣∣∣) . By
minimizing the energy of MUI, the achievable rate of the system can be maximized, which
is equivalent to minimizing ϕ(X).

2.2. Detection Model

This section primarily aims to synthesize waveforms to achieve beampattern matching
while maximizing SINRr. The SINRr of the MIMO system is determined by the transmitted
waveform and its covariance matrix R. By optimizing the transmitting waveform vector,
the quality of the radar-output signal can also be enhanced, which in turn improves the
SNR and anti-interference ability of radar and also improves the sensitivity and accuracy of
target detection. Assuming that a point target exists in the direction θ0, and K independent
interference sources are located at θk(θk 	= θ0, k = 1, 2, · · · , K), then the received signals at
the i-th frame (i = 1, 2, . . . , N) is formulated by

yi = α0ar(θ0)a
T
t (θ0)xi +

K

∑
k=1

αkar(θk)a
T
t (θk)xi + vi (5)

where α0, α1, . . . , αK are the amplitudes of target and interference sources, and vi de-
notes the receiver noise. The ar(θ) ∈ CNr and at(θ) ∈ CNt are the propagation vector
and steering vector for the direction θ where the transmit and receive arrays are as-

sumed to be linear uniform ones with at(θ) = 1√
Nt

[
e−jπ0 sin θ , . . . , e−jπ(Nt−1) sin θ

]T
and

ar(θ) = 1√
Nr

[
e−jπ0 sin θ , . . . , e−jπ(Nr−1) sin θ

]T
. To simplify the expression, the N vectors

corresponding to yi in Equation (5) can be represented as

~
y = α0A0x̃ +

K

∑
k=1

αkAkx̃ +
~
v (6)

where Ak = IN ⊗
(
ar(θk)a

T
t (θk)

)
, ỹ = [yT

1 , . . . , yT
N ]

T, x̃ = [xT
1 , . . . , xT

N ]
T,

~
v = [vT

1 , . . . , vT
N ]

T.
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To improve the detection performance, it is required to process the received signal.
Regarding the receiving filter w, the resulting output can be expressed as

r = wHỹ = α0wHA0x̃︸ ︷︷ ︸
Target

+ wH
K

∑
k=1

αkAkx̃︸ ︷︷ ︸
Interference

+ wHṽ︸︷︷︸
Noise

(7)

In Equation (7), the first term represents the desired signal, the second term represents
the interference signal, and the third term represents the noise. Thus, the SINRr of the filter
output can be expressed as

SINRr =
σ2

0

∣∣wHA0x̃
∣∣2

wH
[

K
∑

k=1
σ2

k Akx̃x̃HAH
k

]
w + σ2

v wHw
(8)

where E[|αk|2] = σ2
k represents the complex amplitude of αk. Generally, in a Gaussian

noise environment, the larger the SINRr, the better the detection performance would be.
Equation (8) can be transformed into a convex problem for a fixed x̃.

min
w

wH
[

K
∑

k=1

..
σkAkx̃x̃HAH

k + I

]
w

s.t.wHA0x̃ = 1
(9)

where
..
σk = σ2

k /σ2
0 . Furthermore, to accurately obtain some information of target or

interference in the environment, waveforms in all directions should be equipped with some
low sidelobes so as to reduce mutual interference. The beampattern power located at θ can
be expressed as

P(θ) = aH
t (θ)Rat(θ) (10)

Considering that each array has the same emission energy, i.e., unitary power, the
covariance matrix R can be designed as

Rbb =
1

Nt
, b = 1, · · · , Nt (11)

where Rbb represents the (b, b)-th element of covariance matrix R. φ(θ) denotes an expected
transmit beampattern where {θk}K

k=1 is a fine grid covering the points of interest. Assuming
that there are K̃ expected target locations, the objective is to detect the target at locations{

θ̃k

}K̃

k=1
, which can be confirmed by calculating the Capon spatial spectrum or generalized

likelihood ratio test (GLRT) [28]. Here, the dominant peak position has been calculated by

the GLRT pseudo-spectrum so as to form the desired beampattern
{

θ̃k

}�
K

k=1
, and

�
K is the

resulting estimate of K̃, i.e.,

φ(θ) =

⎧⎨⎩1, θ ∈
[
θ̃k − Δ

2 , θ̃k +
Δ
2

]
, k ∈

{
1, · · · ,

�
K
}

0, others
(12)

where Δ is the beamwidth selected by each target.
Based on the aforementioned discussions, it is necessary to design a matrix R that

minimizes the least squares error between the transmitted beampattern P(θ) and the ex-
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pected beampattern φ(θ), while also minimizing the cross-correlation terms from different
backscattered signals. Consequently, the corresponding problem could be expressed as

min
R,α

J(R, α) = 1
K

K
∑

k=1
ωk

∣∣aH
t (θk)Rat(θk)− αφ(θk)

∣∣2
+ 2ωc

K̃(K̃−1)

K̃−1
∑

p=1

K̃
∑

q=p+1

∣∣∣aH
t

(
θ̃p

)
Rat

(
θ̃q

)∣∣∣2 (13)

where ωk represents the weight factor of the k-th source, ωc represents the weight factor of
the cross-correlation term, and α is a scaling factor that needs to be optimized.

Moreover, some appropriate constraints are further imposed on the covariance matrix
R, which also considers the need of the low cross-correlation beampattern. The designed
R must be positive semidefinite, and all diagonal elements of R must be equal to the uni-
form antenna power while satisfying the uniform basic-power constraint. The covariance
optimization problem can be formulated as

min
R,α

J(R, α)

s.t.R � 0
Rbb = 1

Nt
, b = 1, · · · , Nt

α > 0

(14)

To solve the optimization problem of variables (R, α), the convex optimization toolbox
CVX can be employed [29]. Note that when designing MIMO radar systems with low
cross-correlation beampatterns, it is crucial to make a balance between detection and
communication performance. It is necessary to define the optimization objectives and
constraints based on the specific application requirements. This ensures that the design
effectively meets the desired performance criteria.

3. Optimization Modeling of Radar and Communication Integrated System

In this section, the optimization objective is to maximize SINRr while considering
the signal-dependent interference. The design of the covariance matrix and transmitting
waveform of MIMO radar will be addressed simultaneously. In practical radar applications,
to improve the detection performance while maintaining the ability of multi-user commu-
nication, good ambiguity function and range resolution characteristics, it is necessary to
introduce similarity constraints, such as

1√
NNt

‖x̃ − x̃0‖∞ ≤ ξ (15)

where x̃0 is the reference waveform and ξ is the similarity coefficient. To enhance detection
performance and facilitate multi-user communication, the permissible range of ξ is usually
set as 0 ≤ ξ ≤ 2cm, where cm = 1/

√
NNt. It should be noted that the communication

performance may be severely degraded under the above constraints. Once the output
result is obtained as the integrated referenced waveform X0, then it is equivalent to add the
communication information into the integrated signal. Therefore, the optimization problem
for the design of directional beamforming can be formulated as

min
X0

‖HX0 − S‖2
F

s.t. 1
N X0XH

0 = R
(16)

According to [19], the problem described in (16) can be characterized as an Orthogo-

nal Procrustes problem (OPP) with a closed-form solution X0 =
√

NFUINt×N
�
V

H
, where

R=FFH represents the Cholesky decomposition or other valid square-root decomposition,
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while UΣ
�
V

H
= FHHHS represents the singular value decomposition (SVD). Consequently,

the benchmark radar waveform X0 is uncorrelated with the power of the desired constella-
tion S.

Next, a compromise constraint, i.e., ρ‖HX − S‖2
F +(1 − ρ)‖X − X0‖2

F ≤ Y, is proposed,
where Y defines the maximum permissible level for the communication performance metric
and radar waveform similarity error. By taking the limited transmission energy into
account, the optimization problem can be formulated as

min
x̃

wH
[

K
∑

k=1

..
σkAkx̃x̃HAH

k + I

]
w

s.t.ρ‖HX − S‖2
F + (1 − ρ)‖X − X0‖2

F ≤ Y
1√

NNt
‖x̃ − x̃0‖∞ ≤ ξ

1
N ‖X‖2

F = PT

(17)

where 0 ≤ ρ ≤ 1 denote the weight factor, and PT represents the total power of all Nt
antennas per symbol. The constraint conditions can be transformed into the following
composite form [19], i.e.,

ρ‖HX − S‖2
F + (1 − ρ)‖X − X0‖2

F

=
∥∥∥[√ρHT,

√
1 − ρINt ]

T
X − [

√
ρST,

√
1 − ρXT

0 ]
T
∥∥∥2

F

(18)

Denoting C = [
√

ρHT,
√

1 − ρINt ]
T and D = [

√
ρST,

√
1 − ρXT

0 ]
T

, Equation (18) can
be rewritten and extended to

‖CX − D‖2
F = tr

(
(CX − D)H(CX − D)

)
= tr

(
XHCHCX

)
− tr

(
XHCHD

)
− tr

(
DHCX

)
+ tr

(
DHD

) (19)

Further defining Q = CHC and G = CHD, Equation (19) can be rewritten as

tr
(

XHQX
)
− 2Re

(
tr
(

XHG
))

(20)

where Q is a Hermitian matrix, Equation (20) can be written in the form of a Lagrange
multiplier with respect to the total power as follows

L(X, λ) = tr
(

XHQX
)
− 2Re

(
tr
(

XHG
))

+ λ
(
‖X‖2

F − NPT

)
(21)

where λ is the dual variable of the equality constraint. Defining
.
X and

.
λ as the optimal point

and the dual optimal point with zero duality gap, according to the trust-region subproblem
(TRS) optimality conditions [30], the following conclusions show

.
X =

(
Q +

.
λINt

)†
G∥∥∥∥(Q +

.
λINt

)†
G

∥∥∥∥2

F

=

∥∥∥∥V
(

Λ +
.
λINt

)−1
VHG

∥∥∥∥2

F
= NPT.
λ ≥ −λmin

(22)
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where the notation (·)† refers to the Moore–Penrose pseudoinverse of the matrix. Further-
more, the matrix Q can be decomposed into Q = VΛVH where λmin denotes the minimum
eigenvalue of Q. It can be further proved that formula (22) has a unique solution, i.e.,

P(λ) =
∥∥∥V(Λ + λINt)

−1VHG
∥∥∥2

F

=
Nt
∑

n=1

N
∑

j=1

(
[VHG]n,j

)2

(λ+λn)
2

(23)

From deduction of (23), it is noted that when
.
λ ≥ −λmin, the function P(λ) is strictly

decreasing and convex. Therefore, the golden-section search method can be employed to
determine the optimal solution for

.
λ.

4. Waveform Optimization Algorithm

In this section, a novel RIASCG algorithm is proposed to optimize the objective
function. The Riemann gradient of function h(x̃) is defined as gradh(x̃), which can be
obtained by projecting the gradient on the Euclidean space. Here, Gradh(x̃) represents the
Euclidean gradient of h(x̃), and the contraction operator Retr(·) maps the vector on the
tangent space Tx̃Ms at the vicinity of manifold x̃ ∈ Ms. The next iteration point x̃(l+1) is
considered when the objective value satisfies the descent condition. In each descent process,
a more accurate step size d(l) needs to be selected to ensure faster convergence. To achieve
this, an improved Riemannian manifold conjugate gradient algorithm based on the Armijo
back-tracking line-search idea is proposed, offering several advantages over the first-order
conjugate gradient algorithm [27]:

(1) Faster convergence speed: The second-order conjugate gradient algorithm, utilizing
second-order derivative information, could more accurately determine the search
direction and step size compared with the first-order conjugate gradient one, resulting
in better results in the same number of iterations.

(2) More effective optimization for high-dimensional data: The first-order conjugate gradi-
ent algorithm may have a slow convergence speed when optimizing high-dimensional
data, while the second-order conjugate gradient algorithm can better overcome this
problem.

(3) Stronger numerical stability: The second-order conjugate gradient algorithm can
better avoid numerical instability, which is particularly prominent in optimizing
high-dimensional data.

(4) Fewer iterations: Due to faster convergence, the second-order conjugate gradient
algorithm typically requires fewer iterations to achieve the same optimization effect,
which is particularly important for optimizing large-scale data.

Suppose that the above constraints can be denoted as Ms. For any z ∈ CNNt , its
projection operator of the sequence x̃(l) ∈ Ms can be expressed as

ProjMs

x̃(l)
(z) = z − Re

{
z∗ � x̃(l)

}
� x̃(l) (24)

Once the input z ∈ CNNt is given, it is possible to apply a universal compression
function to effectively address common constraints, i.e.,

Retr(z) = arg min
x̃∈Ms

‖x̃ − z‖2 (25)

102



Remote Sens. 2023, 15, 3548

The closed-form solution of w in Equation (17) can be derived, i.e.,

w =

[
K
∑

k=1

..
σkAkx̃x̃HAH

k + I

]−1

A0x̃

x̃HAH
0

[
K
∑

k=1

..
σkAkx̃x̃HAH

k + I

]−1

A0x̃

(26)

As a result, a subproblem of the optimization problem has been obtained, i.e.,

min
x̃

− x̃HAH
0

[
K
∑

k=1

..
σkAkx̃x̃HAH

k + I

]−1

A0x̃

s.t.x̃εMs

(27)

The subproblem can be further expressed as

h(x̃) = −x̃H

⎛⎝AH
0

[
K

∑
k=1

..
σkAkx̃x̃HAH

k + I

]−1

A0

⎞⎠x̃ (28)

The Euclidean gradient of the smooth extension
.
h(x̃) can be denoted as Grad

.
h(x̃), i.e.,

Grad
.
h(x̃) = −2

(
AH

0

(
K
∑

k=1

..
σkAk x̃x̃HAH

k + I

)−1

A0x̃

)
−
(

x̃H ∂
∂x̃

(
AH

0

(
K
∑

k=1

..
σkAk x̃x̃HAH

k + I

)−1

A0

))
x̃

= −2

(
AH

0

(
K
∑

k=1

..
σkAk x̃x̃HAH

k + I

)−1

A0x̃

)
−
(

1NNt ⊗ x̃HAH
0

(
K
∑

k=1

..
σkAk x̃x̃HAH

k + I

)−1
)

×
K
∑

k=1

(
..
σkINNt ⊗ Ak

[
∂x̃x̃H

∂x̃1
· · · ∂x̃x̃H

∂x̃NNt

]T
AH

k

)
×
(

K
∑

k=1

..
σkAk x̃x̃HAH

k + I

)−1

A0x̃

(29)

The steps of manifold RIASCG for DFRC waveform design can be summarized in
Algorithm 1.

Algorithm 1: The Manifold RIASCG for DFRC Waveform Design.

Input: l = 0, x̃(0), β, d, �, η, X0, H, S, PT , σ1 ∈ (0, 1), σ2 ∈ (0, 1), weight factor 0 ≤ ρ ≤ 1.
Output: x̃(l), w.

While
∣∣∣h(x̃(i+1)

)
− h

(
x̃(i)

)∣∣∣ ≥ J do

1. Compute C = [
√

ρHT,
√

1 − ρINt ]
T, D = [

√
ρST,

√
1 − ρXT

0 ]
T

, Q = CHC and G = CHD.
2. Compute the eigenvalue decomposition Q = VΛVH of Q, set the searching interval as

[−λmin,b], where b ≥ 0 is a searching upper-bound.
3. Find the optimal solution

.
λ to (22) using golden-section search.

4. Compute X =
(

Q +
.
λIN

)†
G.

5. Once the global minimizer X is obtained, given its separability property, it can be
employed as the reference waveform for the similarity constraint, denoted as x̃0.

6. Compute Grad
.
h
(

x̃(i)
)

according to (29).

7. Compute Projx̃(i)
(

Gradh
(

x̃(i)
))

according to (24).

8. Compute the improved Armijo back-tracking line-search parameter d(i) = �ηβ, β is the
smallest non-negative integer satisfying

h
(

x̃(l)
)
− h

(
x̃(l) − �ηβGradh

(
x̃(l)

))
≥ σ1d(l)

∥∥∥Projx̃(l)
(

Gradh
(

x̃(l)
))∥∥∥2

2

+σ2

(
d(l)

)2∥∥∥Projx̃(l)
(

Gradh
(

x̃(l)
))∥∥∥2

2

9. Perform the projection step
.
x̃
(l+1)

= x̃(l) − d(l)Projx̃(l)
(

Gradh
(

x̃(l)
))

.

10. Obtain x̃(l+1) = Retr
(

x̃(l)
)

according to (25).

11. l = l + 1.
End while

Compute w according to (26).
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5. Numerical Result

To evaluate the performance of the designed waveforms, we first formulated the simu-
lation scenarios. A uniform linear array configuration is assumed for both the transmitting
and receiving arrays. Units in these arrays have an element spacing of half a wavelength.
The number of transmitting antennas is Nt = 10, the number of receiving antennas is
Nr = 10, and the target echo power is 10 dB. Additionally, the interference power is set to
20 dB, the noise power is 0 dB and the code-length of the waveform is N = 8, while � and
η are drawn from [0, 0.5] and [0, 1], respectively. For convenience, PT = 1 and assume that
each entry of the channel matrix H is modeled as flat fading one and also is independently
and identically distributed with a standard complex Gaussian distribution hi,j ∼ CN (0, 1).
The constellation selected for the communication users is the unit-power QPSK alphabet,
and the threshold value of

∣∣∣h(x̃(i+1)
)
− h

(
x̃(i)

)∣∣∣ is set as 10−4.
By employing Equation (14), the objective is to construct the covariance matrix R for

problem (16), and then its performance would be compared with the omni-directional
waveform. Assume that there are four users, and the direction of arrival (DoA) information
for K̃ = 3 targets with unit complex amplitude is approximately {−50◦, 0◦, 50◦}, which can
be obtained by the Capon or GLRT method. Three symmetrical beampatterns of interest are
denoted as θ̃1 = −50◦, θ̃2 = 0◦, θ̃3 = 50◦, with a beampattern width of Δ = 20◦. Next, the
performance of the omni-directional and directional beampattern would be discussed, and
a radar-communication compromise waveform would be designed to achieve some flexible
trade-off between radar and communication for practical needs. Considering the trade-off
design for radar communication, the Pareto weight factor ρ = 0.2 is introduced, and ‘Omni’
and ‘Directional’ are denoted as the omnidirectional and directional beam-patterns. Further,
the waveforms with strict equality constraints are denoted as ‘Strict’, while the trade-off
designs are denoted as ‘Tradeoff’. In Figure 2, it is evident that the proposed method
exhibits significantly lower sidelobe levels compared to the method of [19].

Figure 2. Comparison of radar beampattern corresponding to different cases.

Moreover, to further assess the robustness of different algorithms, the proposed RI-
ASCG would be compared with RCG [31], MM [32], MM-SQUAREM [33] and RCG-Armijo
algorithms. To enhance the comparability, two additional constraints are also incorporated:
the constant modulus constraint [34] and the e-uncertainty constant modulus constraint [35].
As shown in Figure 3, in comparison to the first-order RCG-Armijo algorithm, the second-
order conjugate RIASCG algorithm used in this paper demonstrates faster convergence.
The first-order conjugate gradient algorithm needs some precise line searching, which
could increase computational costs and lead to some direction inconsistency in certain
cases. Particularly in ill-conditioned problems, this algorithm might encounter direction
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loss within iterations and fail to converge to the minimum value. In such scenarios, the
second-order conjugate gradient algorithm appears to be more advantageous than the
first-order one, as it utilizes more information to determine the search direction and reduces
the direction inconsistency. The RIASCG algorithm has demonstrated fewer iterations and
a faster convergence rate compared with other algorithms.

 

 

Figure 3. Comparison of convergence rates under different constraints. (a) Unconstrained; (b) Similarity
constraints; (c) Constant modulus constraint; (d) e-uncertainty constant modulus constraint.

To evaluate the scalability and robustness of algorithms, the computation runtime
comparisons were also conducted for different N in Table 1 considering the CM&S con-
straint. Obviously, the practicality and scalability of RIASCG has effectively demonstrated
that the comparative runtime performance has outperformed other prior works, such as
RCG, RCG-Armijo, MM and MM-SQUAREM, especially for larger N. These comparisons
could underscore the effectiveness and applicability of RIASCG.

Next, the effect of the similarity constraint has been discussed. As shown in Figure 4,
when the similarity coefficient between two users is lower, it indicates a lower similarity
between their signals, which can result in a greater degree of interference between them.
When multiple users transmit signals simultaneously, the interference will affect the quality
of the received signal and also result in a lower SINRr. In Figure 5, waveforms optimized
by RIASCG algorithm as ξ decreasing have shown different shapes of ambiguity function.
The similarity between the designed waveform and the reference waveform would be
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gradually increased, which would result in a better-formed ambiguity function. However,
this also leads to a reduction in the degrees of freedom for waveform design.

Table 1. Runtime comparisons of different methods under CM&S constraint.

Algorithm N=4 N=8 N=16 N=32

RIASCG 0.6875 s 2.7031 s 14.1719 s 100.0785 s
RCG 4.3751 s 9.9843 s 188.2811 s 709.3284 s

RCG-Armijo 0.8281 s 3.6718 s 40.1406 s 232.0167 s
MM 6.7968 s 14.4375 s 328.3755 s 2562.1734 s

MM-SQUAREM 1.5937 s 5.5156 s 113.8751 s 630.3911 s

Figure 4. SINRr vs. iteration number for different ξ.

Figure 5. Ambiguity functions of the presented waveforms as ξ decreasing.
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Furthermore, given a specified radar beampattern, the design of dual-function wave-
forms is further analyzed. As demonstrated in Figure 6, we define the transmit SNR
as SNR = PT/N0, and then examine the relationship between the transmit SNR of the
communication signal and the average achievable sum-rate. Here, ε represents the stop-
ping criterion for the golden-section search iteration. As the transmit SNR increases,
the effect of the signal synthesis error on the average achievable sum-rate increases.
Therefore, the sum-rate of the synthesized signal is slightly lower than that of a single
communication signal.

Figure 6. SNR comparison of different stop conditions for golden-section search iterations.

Moreover, in Figure 7, the relationship between the average achievable rate per-user
vs. the detection probability is illustrated when the receive SNR has −6 dB and the false-
alarm probability has PFA = 10−7. With an increase in the number of users, the detection
probability would be decreased for a fixed average achievable rate per-user, which suggests
that the increasing degrees of freedom could further minimize MUI energy. In Figure 8,
the relationship between the average achievable rate per-user vs. the number of iterations
has been demonstrated. Once the number of communication users increases, the feasible
solution space decreases, which leads to a decline in the average achievable rate.

Figure 7. The average achievable rate per-user vs. radar detection probability.
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Figure 8. The average achievable rate per-user vs. number of iterations.

6. Conclusions

In this paper, we aimed to design an integrated waveform for DFRC using an RI-
ASCG framework, which offers a flexible trade-off between radar and communication
performance. To accomplish this, the manifold principle was leveraged to transform the
constrained CM&S problem into unconstrained Riemann spaces, ensuring radar beam-
pattern constraints and their trade-offs. Simulations have demonstrated the convergence
performance and superiority of RIASCG when compared with other existing algorithms.
Moreover, by adjusting the similarity coefficient, the designed waveform exhibited de-
sirable properties in terms of the ambiguity function. As this paper demonstrated, we
mainly focused on presenting a novel optimizing idea to tackle the joint optimization of
integrated transmitting waveforms and receiving filters, which ignores the relative motion
or Doppler shift. Next, in our future research, we will investigate the influence of relative
motion and the Doppler shift and try to assess the robustness and adaptability of the
proposed techniques in realistic scenarios. Additionally, we will also investigate the impact
of varying channel conditions and different fading models, such as frequency-selective
fading or multipath fading.
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Abstract: Simultaneously polarimetric radar (SPR) realizes the rapid measurement of a target’s po-
larimetric scattering matrix by transmitting orthogonal radar waveforms of good ambiguity function
(AF) properties and receiving their echoes via two orthogonal polarimetric channels at the same
time, e.g., horizontal (H) and vertical (V) channels (antennas) sharing the same phase center. The
orthogonality of the transmitted waveforms can be realized using low-correlated phase-coded se-
quences in the H and V channels. However, the Doppler tolerances of the waveforms composed
by such coded sequences are usually quite low, and it is hard to meet the requirement of accurate
measurement regarding moving targets. In this paper, a joint design approach for unimodular or-
thogonal complementary sequences along with the optimal receiving filter is proposed based on the
majorization–minimization (MM) method via alternate iteration for obtaining simultaneously polari-
metric waveforms (SPWs) of good orthogonality and of the desired AF. During design, the objective
function used for minimizing the sum of the complementary integration sidelobe level (CISL) and
the complementary integration isolation level (CIIL) is constructed under the mismatch constraint of
signal-to-noise ratio (SNR) loss. Different SPW examples are given to show the superior performance
of our design in comparison with other designs. Finally, practical experiments implemented with
different SPWs are conducted to show our advantages more realistically.

Keywords: simultaneously polarimetric radar (SPR); orthogonal waveforms; complementary
sequences; Doppler tolerance; majorization–minimization (MM); mismatch filter

1. Introduction

Developments in radar technology have promoted the application of the polarimetric
scattering information of targets, which can be characterized by the polarimetric scattering
matrix (PSM) that connects the Jones vector of the incident wave with that of the scattering
wave. The performance of radar on imaging, detection, and classification can be greatly
improved by making full use of PSM in many fields, such as terrain observation, battlefield
investigation, and disaster monitoring [1–4].

To accurately measure the PSM of moving targets, two typical fully polarimetric
measurement schemes have been extensively investigated, i.e., the alternate polarimetric
scheme and the simultaneously polarimetric scheme [5–7]. For the first scheme, the polar-
ization state of the transmitted waveform is alternately switched between the vertical (V)
and horizontal (H) polarizations, while both polarization states are received simultaneously.
For high-speed targets, the two columns of the measured PSM can be decorrelated in the
time domain and therefore the accuracy of the measurement results may be influenced. By
contrast, for the second scheme, a pair of different waveforms of H and V polarization states
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are transmitted within one pulse simultaneously. As a result, the decorrelation impact can
be avoided, but a stringent orthogonality requirement is put forward for the transmitted
waveforms [6–9].

In addition to the orthogonality, low sidelobes of pulse compression in co-polarization
channels are often required for weak target detection [10], i.e., good pulse compression char-
acteristics of the waveforms are also desired for simultaneously polarimetric radar (SPR),
as well as good orthogonality. Meanwhile, in the consideration of moving targets, the radar
waveform should have good Doppler tolerance, i.e., it should be Doppler resilient [7,11].
These waveform properties can usually be evaluated by utilizing the ambiguity function
(AF) [12,13]. Therefore, the AFs of ideal SPR waveforms must be of a two-dimensional
“thumbtack” shape in co-polarization and an all-zero “plane” in cross-polarization channels,
respectively [10,14].

Considering the nonlinear effects in practical hardware, it is preferable to make the
waveform be of unimodular property, i.e., constant modulus [15–17]. In the early stage, a
pair of linear frequency modulation (LFM) waveforms with opposite slopes are used to
realize the simultaneously polarimetric measurement [5,18]. However, the peak sidelobe
level (PSL) is just −13.26 dB after matched filtering. According to the principle of stationary
phase, the orthogonality between the positive and negative slope LFM waveform is limited
by the time–bandwidth product [19]. In recent years, phase-coded waveforms (PCWs)
with good orthogonality are attractive for multichannel radar, such as SPR and MIMO
(multiple-input–multiple-output) radar [7,20–22]. In [15,23], Stoica et al. proposed a
series of cyclic algorithms for minimizing the integral sidelobe level (ISL) of unimodular
waveforms, including cyclic algorithm-pruned (CAP), CA new (CAN), weighted CAN
(We CAN), and CA direct (CAD). It is worth noting that Palomar et al. developed the
majorization–minimization (MM) method to solve the nonconvex problem in unimodular
sequence design by fast Fourier transform (FFT) [24,25]. This method is computationally
attractive in the optimization of phase-coded sequences. Although many efforts have been
put into the design of orthogonal PCWs with both low PSL and ISL. Nonetheless, it is
impossible to obtain ideal correlation properties (ICPs), i.e., impulse-like autocorrelation
and all-zero cross-correlation, for all the time delays using single pulse phase code, let
alone the situation of various Doppler shifts [26–28].

The aforementioned difficulties motivate researchers to use the complete complemen-
tary sequence (CCS) in waveform design by taking advantage of the complementarity
between CCS, which is a generalization of the well-known Golay code having been widely
applied in the MIMO and CDMA communication systems because of its ICPs [29,30].
However, the ICPs will be seriously degraded even if a slight Doppler shift exists. This is
the main obstacle to the wide application of CCS waveforms in radar [31]. In contrast to the
waveform design suppressing the sidelobes of correlation functions, the waveform design
minimizing the sidelobes of AFs can achieve the desired Doppler tolerance [12,32]. In [33], a
construction method was proposed based on the Generalized Prouhet–Thue–Morse (GPTM)
sequence by reordering the expanded version of an existing complementary sequence. The
complementary properties can be kept over a modest Doppler frequency range (DFR).
Nevertheless, the construction method has a strict limitation on the pulse number and code
length of the complementary sequence. In [34], a set of almost complementary sequences
was designed using the MM method. In their work, the pulse number and code length
of CCS are no longer restricted, but there still is room to improve the Doppler tolerance.
Recently, the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm
was used to optimize the AF of CCS [35–37]; however, the efficiency and the obtained
optimal result still can be further improved.

The above studies mainly aim at the waveform design based on the matched filter
scheme. It has been demonstrated that the pulse compression sidelobes can be suppressed
effectively via mismatched filtering with a caveat of inducing an appropriate signal-to-noise
ratio (SNR) loss [38–40]. In recent work, particularly [41,42], the joint design algorithm
of the waveform and the receiving filter under the SNR loss constraint based on the MM
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method was reported with the purpose of minimizing the pulse compression sidelobes.
However, for the SPR waveform, not only the low sidelobe of co-polarization channels but
also the good orthogonality between cross-polarization channels and the Doppler tolerance
should be considered simultaneously. Therefore, the applicability of these algorithms in
the waveform design of SPR is limited.

In this paper, we focus on the joint design of orthogonal CCSs and receiving filters
with desired Doppler tolerance for SPR waveforms. In addition, the main contributions
can be summarized as follows:

(1) Based on the AF, the joint design of unimodular orthogonal CCS (UOCCS) and receiv-
ing filter is proposed for SPR waveforms. Specifically, the complementary integrated
sidelobe level (CISL) of Auto-AFs, the complementary integrated isolation level (CIIL)
of Cross-AFs, and the mismatch constraint with controllable SNR loss are all con-
sidered simultaneously in the objective function formulated for optimization. By
setting the predefined SNR loss, a trade-off between the suppression of CISL/CIIL
and actual SNR loss can be achieved. In other words, the work in [41,42] was ex-
tended, i.e., the proposed scheme not only considers the low sidelobe of the pulse
compression of CCS but also takes into account the orthogonality for all time delays
within appropriate DFR.

(2) The joint design problem is decomposed into subproblems of waveform design and
receiving filter design via theoretical derivation, which is solved via an alternatively
iterative approach. Concretely, the two subproblems are transformed into nonconvex
quadratic terms containing the Hermitian matrix. The MM method is then applied to
transforming these two nonconvex quadratic terms into linear programming prob-
lems with closed solutions. By utilizing the characteristics of Toeplitz matrix-vector
multiplication, the main computation step can be completed via FFT. For further
improvement, the convergence speed of the algorithm, an acceleration scheme of
the squared iterative method (SQUAREM) is introduced. Compared with the rep-
resentative and latest MM-CCS method [34] and the L-BFGS algorithm [35], better
performance is achieved by the proposed algorithm, benefiting from both the joint
design and the application of the MM framework.

The remainder of the paper is organized as follows. In Section 2, the problem of joint design
CCSs and filters is formulated for the optimization of both the Auto-AFs and the Cross-AFs. In
Section 3, the algorithm is developed with an acceleration scheme incorporated. In Section 4,
several design examples are presented to show superior performance, and in Section 5, the
designed waveforms using our method and that using the MM-CCS and the L-BFGS algorithm
are implemented using an experimental hardware system, and extensive tests are conducted to
demonstrate the actual performance. Finally, conclusions are drawn in Section 6.

Table 1 lists all used operators with explanations, and the bold lowercase and uppercase
letters are used to denote the column vector of a matrix and a matrix throughout the paper.

Table 1. Mathematical Notations.

Notation Meaning

(·)T the transposition of a vector/matrix
(·)∗ the conjugate of a complex number/vector/matrix
(·)† the conjugate transpose of a vector/matrix
|·| the modulus of a complex number
‖·‖ the l2-norm of a vector

Re(·) the real part of a complex number
Tr(·) the trace of a matrix
vec(·) the stacking vectorization of a matrix

Diag(x) a diagonalized matrix of x
� Hadamard product
0N an all-zero column vector with dimension N
1N an all-one column vector with dimension N

0L×L an all-zero matrix with dimension L × L
IL the identity matrix with dimension L × L
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2. Problem Statement

As we know, the unimodular constraint can avoid the nonlinear effect [43]. In the
following, we first introduce two metrics, i.e., CISL and CIIL, for measuring the perfor-
mance of the AFs of the unimodular waveforms. Then, the design problem is formulated
as the objective function used for minimizing these two metrics under the constraint of
controllable SNR loss.

Let us consider an SPR that transmits two orthogonal CCSs with H and V polarization,
as shown in Figure 1a, and the signal-processing procedure at the radar receiver is shown
in Figure 1b. In the transmitted signals of length N, each coherent processing interval (CPI)
contains K pulses. In this case, the waveforms are diverse not only in different polarization
states but also in different pulse-repetition intervals (PRIs).
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Figure 1. (a) Transmitting and receiving radar signal by simultaneously polarimetric radar. (b) Signal-
processing procedure [28].

Let us denote a pair of UOCCSs containing K pulses with length N in each pulse
as [33]:

XH =
[
x1

H x2
H · · · xK

H
]

N×K (1)

and
XV =

[
x1

V x2
V · · · xK

V
]

N×K (2)

where

xk
i =

[
xk

i (1) xk
i (2) · · · xk

i (N)
]T , xk

i (n) = ej∅k
i (n), k = 1, . . . , K, i = H, V. (3)

Let HH =
[
h1

H h2
H · · · hK

H
]

N×K, HV =
[
h1

V h2
V · · · hK

V
]

N×K denote the re-
ceiving filters, so, the discrete AF of sequence Xi after filtered by H∼

i
can be expressed

as [33]:

AXi ,H∼
i
(n, f ) =

K

∑
k=1

hk∼
i

†
Jnxk

i ej2πk f (4)

where

Jn[p, q] =
{

1, q − p = n
0, q − p 	= n

p, q = 1, . . . , N, n = −N + 1, . . . , N − 1, (5)
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and f = fdTr is the normalized Doppler frequency, where fd and Tr represent the nominal

Doppler shift and PRI, respectively. When i =
∼
i , (4) is the Auto-AF of Xi; otherwise, it

is the Cross-AF. The key to designing high-Doppler-tolerance waveforms for SPR is to
synthesize a pair of orthogonal CCS XH and XV with the desired AF properties within a
certain DFR. In other words, our goal is to obtain the waveforms whose AFs are of low
sidelobe and good orthogonality over a certain DFR.

The metrics CISL and CIIL should be considered when designing UOCCS for SPR
waveforms, which are used to assess the performance of the Auto- and Cross-AF, respec-
tively. The CISL and CIIL for a pair of orthogonal CCSs are defined by

CISL(Xi, Hi) =
N−1

∑
n=1−N,n 	=0

∫ f2

f1

∣∣∣∣∣ K

∑
k=1

hk
i

†
Jnxk

i ej2πk f

∣∣∣∣∣
2

d f (6)

and

CIIL
(

Xi, H∼
i

)
=

N−1

∑
n=1−N

∫ f2

f1

∣∣∣∣∣ K

∑
k=1

hk∼
i

†
Jnxk

i ej2πk f

∣∣∣∣∣
2

d f , i 	=
∼
i (7)

where [ f1, f2] denotes the interested DFR.
Compared with the matched filtering, the receiving filter in the mismatched scheme

is no longer the conjugated and reversed transmitted waveform. In this case, the SNR
loss caused by mismatch filtering is inevitable, and the SNR loss of two co-polarization
channels of the SPR can be written as [44]

SNRLi = 10log10

∑K
k=1

∥∥∥xk
i

∥∥∥2
∑K

k=1

∥∥∥hk
i

∥∥∥2

∣∣∣∑K
k=1 hk

i
†
xk

i

∣∣∣2 (8)

As shown in (8), the SNR loss is related to the peak values of pulse compression, the
energy of the sequences, and the receiving filters. According to (3), the sequences satisfy

unimodular constraint, so ∑K
k=1

∥∥∥xk
i

∥∥∥2
= KN. For the purpose of normalization, we assume

the receiving filters have a constraint of ∑K
k=1

∥∥∥hk
i

∥∥∥2
= KN, the SNRLi can be constrained

by a cost function

g(Xi, Hi) =

∣∣∣∣∣ K

∑
k=1

hk
i

†
xk

i − amax

∣∣∣∣∣
2

(9)

where amax is the predefined peak value of pulse compression. To guarantee an expected
SNR loss μ (in dB), the predefined amax can be formulated as amax = KN10−μ/20.

Thus, based on the Pareto weighting [45], the joint design problem under the mismatch
constraint can be formulated as

min
X,H∈CN×K

Γ(X, H) = ε[CISL(XH , HH) + CIIL(XH , HV)+CIIL(XV , HH) + CISL(XV , HV)]

+(1 − ε)[g(XH , HH) + g(XV , HV)]

s. t. ∑K
k=1

∥∥∥hk
i

∥∥∥2
= KN,

∣∣∣ xk
i (n)

∣∣∣ = 1, n = 1, . . . , N, k = 1, . . . , K, i = H, V
(10)

where ε is the Pareto weight used to balance the metrics and the cost functions.

3. Joint Design of UOCCS and Receiving Filters via MM Method

3.1. Reformulation of the Problem

In this section, we shall reformulate the design problem in (10) for ease of solution.
Let us define auxiliary sequences u and v of length 2L (L = K(2N − 1)) as follows:
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u =
[
x1

H
T

0T
N−1 . . . xK

H
T

0T
N−1 x1

V
T

0T
N−1 . . . xK

V
T

0T
N−1

]T
(11)

and
v =

[
h1

H
T

0T
N−1 . . . hK

H
T

0T
N−1 h1

V
T

0T
N−1 . . . hK

V
T

0T
N−1

]T
(12)

where u and v denote the transmitted CCSs and receiving filters, respectively. Then we
have

um = Smu, v∼
m
= S∼

m
v, m,

∼
m = 1, 2 (13)

where 1 and 2 represent H and V polarization, respectively, and Sm is an L × 2L block
selection matrix defined as

S1 = [IL 0L], S2 = [0L IL] (14)

Equation (6) can be rewritten as

CISL(um, vm) =
L−1

∑
n=1−L

∫ f2

f1

w1(n, f )
∣∣∣vm

†TnDiag(a( f ))um

∣∣∣2d f (15)

where Tn, n = 1 − L, . . . , L − 1 denotes L × L Toeplitz shift matrix similar to Equation (5),

a( f ) =
[
ej2π f 1T

N 0T
N−1 . . . ej2πK f 1T

N 0T
N−1

]T
(16)

and

w1(n, f ) =
{

1, 1 ≤ |n| ≤ N − 1, f1 ≤ f ≤ f2
0, else.

(17)

Similarly, (7) can be rewritten as

CIIL
(

um, v∼
m

)
=

L−1

∑
n=1−L

∫ f2

f1

w2(n, f )
∣∣∣v∼

m
†TnDiag(a( f ))um

∣∣∣2d f , m 	= ∼
m (18)

where

w2(n, f ) =
{

1, |n| ≤ N − 1, f1 ≤ f ≤ f2
0, else.

(19)

The objective function in (10) can then be rewritten as

Γ(u, v) = ε
2
∑

m=1

L−1
∑

n=1−L

∫ f2
f1

w1(n, f )
∣∣vm

†TnDiag(a( f ))um
∣∣2d f+

ε
2
∑

m=1

2
∑

∼
m=1∼
m 	=m

L−1
∑

n=1−L

∫ f2
f1

w2(n, f )
∣∣∣v∼

m
†TnDiag(a( f ))um

∣∣∣2d f+

(1 − ε)
[∣∣v†

1u1 − amax
∣∣2 + ∣∣v†

2u2 − amax
∣∣2]

(20)

In (20), the first term contains the Auto-AF integrated sidelobes of two sequences for
H and V polarizations. The second term denotes the integration of the Cross-AFs. The
third term accounts for the differences in the peak values by mismatch filtering and the
predefined peak values. For the convenience of discussion, we discretize the Doppler
interval [ f1, f2] into Q bins evenly with the grid size Δ f = ( f2 − f1)/(Q − 1), and ignore
the constant terms. Equation (20) can then be reformulated as

Γ(u, v) =
2
∑

m=1

2
∑

∼
m=1

L−1
∑

n=1−L

Q
∑

q=1
w

m,
∼
m

(
n, fq

)∣∣∣v∼
m

†TnDiag
(
a
(

fq
))

um

∣∣∣2−
2amaxλ

(
Re
(
v†

2u2
)
+ Re

(
v†

1u1
)) (21)
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where fq = f1 + (q − 1)Δ f , 1 ≤ q ≤ Q and λ = (1 − ε)/ε, and the weighting factor
changes to

w
m,

∼
m(n, f ) =

⎧⎪⎨⎪⎩
w1(n, f ) + λ, m =

∼
m, n = 0, and f = 0

w2(n, f ), m 	= ∼
m

w1(n, f ), else
(22)

and
v∼

m
†TnDiag

(
a
(

fq
))

um = Tr
(

TnP
m

∼
mq

)
(23)

where P
m

∼
mq

= umqv†∼
m

and umq = Diag
(
a
(

fq
))

um.

Since Tr
(

TnP
m

∼
mq

)
= vec

(
P†

m
∼
mq

)†
vec(Tn), so the problem (10) can be finally formu-

lated as

min
u,v∈C2L×1

Γ(u, v) =
2
∑

m=1

2
∑

∼
m=1

Q
∑

q=1
vec

(
P†

m
∼
mq

)†
Q

m
∼
mq

vec
(

P†
m

∼
mq

)
− 2amaxλ

(
Re
(
v†

2u2
)
+ Re

(
v†

1u1
))

s. t. vm
†vm = KN, |xk(n)| = 1, n = 1, . . . , N, k = 1, . . . , 2K, m,

∼
m = 1, 2

(24)

where

Q
m

∼
mq

=
L−1

∑
n=1−L

w
m,

∼
m

(
n, fq

)
vec(Tn)vec(Tn)

† (25)

3.2. Joint Optimization via the MM Method

Due to the unimodular constraint, the optimization problem in (24) is nonconvex,
so it cannot be straightforwardly used to solve for the transmitted sequence u and the
receiving filter v at the same time. Thus, the alternately iterative scheme is introduced to
transfer this complex problem (24) into two sub-optimization problems. In addition, for
each subproblem, one variable is optimized while keeping the other variable fixed, which
can be formulated as

v(l) = argmin
v

Γ
(

u(l−1), v
)

(26a)

u(l) = argmin
u

Γ
(

u, v(l)
)

(26b)

where v(l) and u(l) are the solutions to the two sub-optimization problems of (26a) and
(26b) at the lth iteration, respectively.

Lemma 1 [24]. Let both L and M denote an n× n Hermitian matrix such that M � L. Then for any
point x0 ∈ Cn, the quadratic function x†Lx can be majorized by x†Mx + 2Re

(
x† (L − M)x0

)
+

x0
†(M − L)x0 at x0.

The proof of Lemma 1 was given in [24], and it is omitted here. One can see from (24)

that the objective function is composed of a quadratic term of vec
(

P†
m

∼
mq

)
, and a Hermitian

matrix Q
m

∼
mq

. Thus, by applying Lemma 1 and selecting M = γmax

(
Q

m
∼
mq

)
IL2 , we have

vec
(

P†
m

∼
mq

)†
Q

m
∼
mq

vec
(

P†
m

∼
mq

)
≤ vec

(
P†

m
∼
mq

)†
γmax

(
Q

m
∼
mq

)
vec

(
P†

m
∼
mq

)
+

2Re

(
vec

(
P†

m
∼
mq

)†(
Q

m
∼
mq

− γmax

(
Q

m
∼
mq

)
IL2

)
vec

(
P
(l)†
m

∼
mq

))
+

vec
(

P
(l)†
m

∼
mq

)†(
γmax

(
Q

m
∼
mq

)
IL2 − Q

m
∼
mq

)
vec

(
P
(l)†
m

∼
mq

) (27)
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where γmax

(
Q

m
∼
mq

)
is the maximum eigenvalue of Q

m
∼
mq

, which has been deduced in detail
in [24], and can be written as

γmax

(
Q

m
∼
mq

)
= max

n∈{−N,...,N}

{
w

m,
∼
m

(
n, fq

)
(L − |n|)

}
(28)

Since the elements of u are of unimodular or zero and v†v = KN, the first term of
the right side of (27) is just a constant and it is true for the last term. After ignoring the
constants, the optimization of (24) can be written as

min
u,v∈C2L×1

Γ(u, v) =
2
∑

m=1

2
∑

∼
m=1

Q
∑

q=1
2Re

(
vec

(
P†

m
∼
mq

)†(
Q

m
∼
mq

− γmax

(
Q

m
∼
mq

)
IL2

)
vec

(
P
(l)†
m

∼
mq

))
−

2amaxλ
(
Re
(
v†

2u2
)
+ Re

(
v†

1u1
))

s. t. vm
†vm = KN, |xk(n)| = 1, n = 1, . . . , N, k = 1, . . . , 2K, m,

∼
m = 1, 2

(29)

For subproblem (26a), it optimizes the receiving filter v under the condition of fixing
CCS u. By substituting Q

m
∼
mq

of (25) and P
(l)
m

∼
mq

= umqv∼
m
(l)† back into (29), we have (detailed

derivation is provided in Appendix A)

Re

(
vec

(
P†

m
∼
mq

)†
Q

m
∼
mq

vec
(

P
(l)†
m

∼
mq

))
= Re

(
v†∼

m
R

m
∼
m
(l)

q
umq

)
(30)

where

R
m

∼
m
(l)

q
=

L−1

∑
n=1−L

w
m,

∼
m

(
n, fq

)(
Aum,v∼

m
(l)

(
n, fq

))∗
Tn (31)

and we have

Re

(
vec

(
P†

m
∼
mq

)†
γmax

(
Q

m
∼
mq

)
vec

(
P
(l)†
m

∼
mq

))
= Re

(
γmax

(
Q

m
∼
mq

)
v†∼

m
v∼

m
(l)u†

mqumq

)
(32)

The optimization in (29) is a linear program problem that is quadratically constrained,
which can be readily solved using the Lagrange multiplier [46]. Therefore, the problem
(26a) can be simplified as

min
v∈C2L×1

2
∑

∼
m=1

(
2Re

(
v†∼

m
y∼

m

))
s. t. v†∼

m
v∼

m
= KN, |xk(n)| = 1, n = 1, . . . , N, k = 1, . . . , 2K,

(33)

where

y∼
m
=

2

∑
m=1

Q

∑
q=1

(
R

m
∼
m
(l)

q
umq − γmax

(
Q

m
∼
mq

)
(NK)v∼

m
(l)
)
− amaxλu∼

m
(34)

According to the constraint of ∑K
k=1

∥∥∥hk
i

∥∥∥2
= KN on receiving filters, the update of the

optimal solution to receiving filter is given by

v∼
m
(l+1) = −

√√√√ KN∥∥∥y∼
m

∥∥∥2 y∼
m

(35)

Then, for subproblem (26b), it optimizes the CCS u under the condition of fixing receiving

filter v. By substituting Q
m

∼
mq

of (25) and P
(l)
m

∼
mq

= u
(l)
mqv

†
∼
m back into (29) again, we obtain
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Re

(
vec

(
P†

m
∼
mq

)†
Q

m
∼
mq

vec
(

P
(l)†
m

∼
mq

))
= Re

(
u†

mDiag
(
a
(

fq
))†

R
m(l)∼mq

v∼
m

)
(36)

where

R
m(l)∼mq

=
L−1

∑
n=1−L

w
m,

∼
m

(
n, fq

)(
A

u
(l)
m ,v∼

m

(
n, fq

))
Tn (37)

and obtain

Re

(
vec

(
P†

m
∼
mq

)†
γmax

(
Q

m
∼
mq

)
vec

(
P
(l)†
m

∼
mq

))
= Re

(
u†

mDiag
(
a
(

fq
))†

γmax

(
Q

m
∼
mq

)
NKu

(l)
mq

)
(38)

Similarly, problem (26b) can be simplified as

min
u∈C2L×1

2
∑

m=1

(
2Re

(
u†

mzm
))

s. t. v†
mvm = KN, |xk(n)| = 1, n = 1, . . . , N, k = 1, . . . , 2K

(39)

where

zm =
2

∑
∼
m=1

Q

∑
q=1

Diag
(
a
(

fq
))†

(
R

m(l)∼mq
v∼

m
− γmax

(
Q

m
∼
mq

)
NKu

(l)
mq

)
− amaxλvm (40)

According to the unimodular constraint, the closed-form solution to CCS can be
expressed as

um
(l+1) = −ejarg(zm) � c (41)

and
c =

[
1T

N 0T
N−1 . . . 1T

N 0T
N−1

]T
(42)

However, it should be noted that the matrices R
m

∼
m
(l)

q
and R

m(l)∼mq
are Hermitian

Toeplitz, so the matrix-vector multiplication terms of R
m

∼
m
(l)

q
umq and R

m(l)∼mq
v∼

m
in (34) and

(40) can be computed more efficiently via FFT. In the following, we introduce a simple
conclusion regarding the Toeplitz matrices T.

Lemma 2 [34]. Let T denote an n × n Toeplitz matrix defined as follows:

T =

⎡⎢⎢⎢⎢⎣
t0 t1 · · · tN−1

t−1 t0
. . .

...
...

. . . . . . t1
t1−N · · · t−1 t0

⎤⎥⎥⎥⎥⎦
and F is another 2N × 2N FFT matrix with Fm,n = e−j 2mnπ

2N , 0 ≤ m, n ≤ 2N. Then T can be
decomposed as T = 1

2N F†
:,1:NDiag(Fc)F:,1:N, where c = [t0, t−1, . . . , t1−N , 0, tN−1, . . . , t1]

T.

The detailed proof of Lemma 2 can be viewed in Appendix B of Reference [34]. By
defining the first N columns of the 2N × 2N FFT matrix as an 2N × N matrix H, according
to Lemma 2, we have

R
m

∼
m
(l)

q
=

1
2N

H†Diag
(

Fc
m

∼
m
(l)

q

)
H (43)
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where

c
m

∼
m
(l)

q
=

[
w

m,
∼
m

(
0, fq

)
Aum ,v∼

m
(l)

(
0, fq

)∗, w
m,

∼
m

(
−1, fq

)
Aum ,v∼

m
(l)

(
−1, fq

)∗, . . . ,

w
m,

∼
m

(
1 − L, fq

)
Aum ,v∼

m
(l)

(
1 − L, fq

)∗, 0, w
m,

∼
m

(
L − 1, fq

)
Aum ,v∼

m
(l)

(
L − 1, fq

)∗, . . . ,

w
m,

∼
m

(
1, fq

)
Aum ,v∼

m
(l) ,

(
1, fq

)∗]T
(44)

Thus, the matrix-vector multiplication R
m

∼
m
(l)

q
umq in (34) can be efficiently calculated

by

R
m

∼
m
(l)

q
umq =

1
2N

H†Diag
(

Fc
m

∼
m
(l)

q

)
Humq (45)

Similarly, R
m(l)∼mq

v∼
m

in (40) can be calculated in the same fashion. Now, we are ready
to summarize the algorithm for the joint design of the orthogonal CCSs and the receiving
filters with a desired AF shape as Algorithm 1. Its computational complexity is of order
O(4QKNlogKN) per iteration.

Algorithm 1. Joint Design CCSs and Receiving Filters with Expected AFs Shape Based on the MM Method via
Alternately Iteration

Initialize: l = 0, pulse number K, sequence and filter length N, a predefine SNR loss μ, the DFR as [ f1, f2].
1: Compute the predefined amax
2: Initialize u(0), v(0) of length 2L as (11) and (12)

3: compute γmax

(
Q

m
∼
mq

)
by (28)

4: repeat

5: Compute y∼
m

by (34) with the designated u(l)

6: Update the receiving filters v1
(l+1) and v2

(l+1) by (35)
7: Compute zm by (40) with the designated v(l+1)

8: Update the CCSs u1
(l+1) and u2

(l+1) by (41)
9: l = l + 1;
10: untilconvergence

Output: CCS u and receiving filter v with expected AFs.

3.3. Acceleration Scheme Using SQUAREM

The monotonicity of the optimization problem can be guaranteed by the MM method,
but the convergence speed of which depends on the property of the majorization func-
tion. Generally speaking, the speed of the proposed algorithms is quite slow. Here, the
SQUAREM is adopted to accelerate the optimization, which is based on the idea of the
Cauchy–Barzilai–Borwein (CBB) [47], and it was originally applied to accelerating the
Expectation-Maximization (EM) method [48]. For SQUAREM, it only requires the update
rule of the optimization algorithm to be the same as the EM algorithm. Since the MM
method is the generalization of the EM method, the update rules are all based on fixed-point
iteration, so the SQUAREM scheme can be conveniently used to accelerate the convergence
of the proposed algorithm after some minor modifications.

Based on the proposed Algorithm 1, let us denote the nonlinear fixed-point iteration
map FMM(·) for minimizing Γ(u, v) as

x(l+1) = FMM

(
x(l)

)
(46)

where x represents optimization variable u or v during using alternately iterative.
The iteration map FMM(·) of the proposed algorithm is given by (35) and (41). Then

the SQUAREM scheme can be implemented as Algorithm 2. For the general SQUAREM, it
should be pointed out that it may break the nonlinear constraints. Therefore, a projection
transformation Px(·) is needed to project wayward points into the feasible domain in
Algorithm 2. Considering two kinds of different constraints, i.e., the unimodular con-
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straint on the sequences and the constraint of ∑K
k=1

∥∥∥hk
i

∥∥∥2
= KN on the receiving filter,

the projection can be simply represented as Px(·) = ejarg(·) for the first constraint, and
as Px(·) =

√
KN

‖(·)‖2 (·) for the second constraint. Another problem is that the general

SQUAREM may break the monotonicity of the initial MM method. Thus, a strategy has
been taken in Algorithm 2 based on backtracking: repeatedly halves the distance between
α and −1, i.e., α ← (α − 1)/2 until the monotonicity is maintained, and in practice the
monotonicity of the algorithm can be maintained by taking only a few backtracking steps.

Algorithm 2. The Acceleration Scheme for Algorithm 1 using SQUAREM.

1: Initialize: l = 0, x(0)

2: repeat

3: x1 = FMM

(
x(l)

)
4: x2 = FMM(x1)
5: y = x1 − x(l)

6: z = x2 − x1 − y
7: Compute the step-length α = −‖y‖/‖z‖
8: x = Px

(
x(l) − 2αy + α2z

)
9: while f (x) > f

(
x(l)

)
do

10: α ← (α − 1)/2

11: x = Px

(
x(l) − 2αy + α2z

)
12: endwhile

13: x(l+1) = x

14: l ← l + 1
15: until convergence.

4. Simulations and Performance Analysis

In this section, simulations are carried out to show the effectiveness of the proposed
algorithm and at the same time to investigate the effects of key parameters on the perfor-
mance. The sequences and filters are initialized with randomly generated phase-coded
sequences

{
ej∅(n)

}
uniformly distributed within [0, 2π]. Meanwhile, since we try to opti-

mize nonconvex problems, although the local minima of the objectives are approximately
global [49], the difference in initial sequences has a slight effect on the performance of the
algorithm. To guarantee the optimized result with the best performance, 100 Monte Carlo
trials are carried out for all cases and the optimal solutions are obtained. For clarity, the
accelerated algorithm for optimization problem (10), i.e., Algorithm 2, is denoted as MM-
CSRF (MM-Complementary Sequence and Receiving Filter). All simulations are conducted
using a PC equipped with a 3.0-GHz Intel Core i7-9700 CPU and 16-GB RAM along with
MATLAB R2020a.

4.1. Performance of the Proposed Method

In this subsection, we define the metric complementary integrated AF level (CIAL)
as the sum of CISL(X, H) and CIIL(X, H), and measure the performance of our algorithm
and that of the L-BFGS algorithm [35] in minimizing the CIAL. For all cases, the transmitted
CCS u(0) and receiving filter v(0) are initialized by independent random variables. The
metric normalized CIAL (NCIAL) (in dB) at the ith iteration is defined as:

NCIAL(i) = 10log10

⎛⎝CISL
(

u(i), v(i)
)
+ CIIL

(
u(i), v(i)

)
CISL

(
u(0), v(0)

)
+ CIIL

(
u(0), v(0)

)
⎞⎠ (47)

The bandwidth of the phase-codes waveform is approximately equal to 1/tP, where
tP is the subcode time duration [50]. If the code length is N, the pulse duration is then
NtP. Therefore, the time–bandwidth product of a single pulse of the designed waveforms
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is equal to N. Hereafter, we assume that the code length of a single pulse in the designed
waveforms and the filter are both N.

Example 1: In this example, we show the convergence performances of the MM-CSRF
algorithm and that of the L-BFGS algorithm. Suppose N = 64, K = 16, and the normalized
DFR is f ∈ [−0.2, 0.2], which are the same as those in [35]. For the MM-CSRF algorithm, the
weight factor is λ = 10, and the predefined SNR loss is μ = 0.5 dB. For both algorithms, the
iteration stops when the NCIAL in (47) is less than −35 dB or after 10,000 s of processing.

The evolutions of the NCIAL along with the running time are presented in Figure 2, from
which we can observe that our algorithm exhibits significant superiority in the running time
compared to the L-BFGS algorithm. More specifically, it takes only 27.62 s to drive the NCIAL
close to −35 dB for our algorithm, while for the L-BFGS algorithm, it is still greater than −30 dB
after 1700 s of runtime, and finally drives NCIAL to −35 dB after 4000 s. This is because the
main steps are the computation of matrix-vector multiplication in the proposed algorithm,
which can be completed via FFT using the characteristic of the Toeplitz matrix.

Figure 2. Evolutions of the NCIAL along with the running time.

Example 2: In this example, the CCSs and receiving filters for zero-Doppler shift are
designed by the MM-CSRF algorithm with N = 64 and without the SNR loss, i.e., μ = 0 dB,
and the weight factor is λ = 10. The processing stops after 10,000 iterations. A group of
zero-Doppler cuts of the AF of CCS sets with K = 2, 4, 5, 6 is given in Figure 3.

As we can see from Figure 3 that the zero-Doppler AF performance of the sequence is
remarkably improved as K increases. This is because the larger K, the greater the degrees
of freedom for the CSS design. For guaranteeing the complementarity property between
multiple pulses, the CPI should not be too long, i.e., the pulse number K should be as small
as possible to avoid the scattering fluctuation from the target. In this example particularly,
when K = 5, the sidelobe levels have already been smaller than −130 dB, the sequences can
be viewed as completely complementary in practice.

Example 3: In this example, the influence of the weighting factor λ on the NCIAL of
the designed CCS is investigated with the predefined SNR loss μ = 0.5 dB. Same as before,
N = 64, K = 5, and the normalized DFR f ∈ [−0.2, 0.2] are used. The waveform is optimized
via 10,000 iterations. Here, λ = [0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000 2000 5000].

The influence of the weighting factor λ on the statistical mean of actual SNR loss and
NCIAL is shown in Figure 4a, as can be seen, the actual SNR loss decreases as the weight λ
increases and gradually approaches the predefined SNRL. Specifically, when λ = 10, the
SNR loss is −0.53 dB, and when λ = 5000, it is −0.5003 dB. To precisely control the SNR
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loss, the weight factor λ should be chosen to be large enough. However, an excessively
large weight factor limits the suppression performance of CIAL on the contrary. Therefore,
the choice of weight factor λ should balance the control accuracy of SNR loss and CIAL
suppression. Fortunately, for this example, the weight factor λ can be chosen between 1
and 1000.

Figure 3. Zero-Doppler cuts of the Auto- and Cross-AF of CCSs with N = 64 and K = 2, 4, 5, 6.

 
(a) (b) (c) 

Figure 4. Influences of the weight λ and the SNR loss μ on the NCIAL suppression. (a) Influence
of the weighting factor λ; (b) Influence of the SNR loss μ; (c) NCIAL evolution curves with respect
to time.

The NCIAL versus the SNRL is further analyzed in the following by setting λ = 100
and μ = [0.0 0.1 0.2 0.4 0.6 0.8 1 1.5 2 3 4 5 6 7 8 9 10]. Figure 4b demonstrates the optimiza-
tion results of the NCIAL and NCIAL ratio (NCIALR, the sum of NCIAL (dB) and SNRL
(dB) representing the suppression of NCIAL relative to the peak value of pulse compres-
sion) versus SNRL. It is not difficult to find that the NCIAL can be further suppressed as
the SNRL increases. However, the NCIALR cannot be further suppressed when the SNRL
is greater than 1.5 dB. This is because although the NCIAL suppression performance is
improved as the SNRL increases, the peak value of pulse compression decreases faster than
the NCIAL decreases when the SNRL exceeds a certain level. Thus, some conclusions can
be drawn according to the simulations for improving the practical application significance
of our algorithm, e.g., in high SNR situations, SNRL can reach its minimum point (it rep-
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resents the SNRL value corresponding to the lowest NCIALR) to improve orthogonality
and reduce the pulse compression sidelobe of the waveforms. When in low-SNR situations,
SNRL should be less than the minimum point.

The corresponding NCIAL evolution curves with respect to time under different μ
are presented in Figure 4c, as can be noted that even a slight SNR loss can also make our
algorithm achieve good performance in a short time.

4.2. Doppler Effect Analysis

Example 4: In this subsection, we compare the performance of UOCCSs designed by
different algorithms on Doppler resilience. Figure 5 shows the AFs of CCS designed by the
MM-CCS algorithm [34], the L-BFGS algorithm [35], and our algorithm. The subfigures
in Figure 5a–f shows the zero-Doppler cuts of the AFs. For all algorithms, the waveforms
are optimized by 10,000 iterations or 600 s. Here, N = 64, K = 16, the normalized DFR
f ∈ [−0.2, 0.2], μ = 0.5, and λ = 10 are used.

  
(a)  (b) (c) 

  
(d) (e) (f) 

Figure 5. AFs of waveforms obtained by different algorithms. (a) Auto-AF by [34]; (b) Auto-AF
by [35]; (c) Auto-AF by ours; (d) Cross-AF by [34]; (e) Cross-AF by [35]; (f) Cross-AF by ours.

It can be observed that the UOCCS along with the receiving filter designed by our
algorithm realizes a stable low PSL for both the Auto-AF and the Cross-AF within the
given normalized DFR, but this is not the case for both the MM-CCS algorithm and the
L-BFGS algorithm. Specifically, the mean normalized sidelobes are about −47.53 dB for
the MM-CCS, −56.52 dB for the L-BFGS, and −81.07 dB for our algorithm. The MM-CCS
sequence has good ambiguity function properties only in a narrow DFR range. Meanwhile,
the actual SNR loss of 0.504 dB of the designed CCS using our algorithm is almost equal
to the predefined value (0.5 dB), and the sidelobes and orthogonality of the CCS do not
fluctuate significantly in the normalized DFR f ∈ [−0.2, 0.2]. The reason for this is that
the objective function in (21) is an integration sum of AFs with different discrete Doppler
frequency shift fq, the sidelobes, and the orthogonality for each discrete frequency shift fq
are optimized equally.
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5. Experimental Validation

To verify the performance of the UOCCS waveforms and receiving filters designed by
the proposed algorithm more rigorously, practical experiments are carried out using the
hardware system as shown in Figure 6a, and the performance of our algorithm is compared
with that of the MM-CCS [34] and the L-BFGS algorithm [35]. The block diagram of the
experimental system is shown in Figure 6b. The hardware parameters are listed in Table 2.
Specifically, in the transmitted part, the designed H and V polarization waveforms are
obtained by first generating the base-band waveforms using two 14-bit digital-to-analog
converter (DAC) with 2.5 GHz sampling rate, which are then up-converted to Ku band
and amplified. Then, the transmitted signals are directly fed into the H and V polarization
ports of the orthogonal mode transducer (OMT) of polarization isolation below −50 dB,
respectively, to form the simultaneously polarized radar signal. Another OMT is connected
to the former OMT through a section of circular waveguide and its two output ports are
connected to a two-channel receiver of 200 MHz bandwidth before a 60 dB attenuator is
applied. In the two-channel receiver, the attenuated signal is down-converted to in-phase
and quadrature-phase (IQ) base-band signals and finally digitized by a 12-bit two-channel
analog-to-digital converter (ADC) of 500 MHz sampling rate. We should point out that
different Doppler shifts have been modulated into the originally transmitted H and V
signals for evaluating the performances of different waveforms on the Doppler tolerance.
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Figure 6. Experiment hardware system, (a) Photograph; (b) Block diagram.

Table 2. Parameters of the experimental system.

Parameter Quantity

Carrier Frequency fc 13.58 GHz
Waveform bandwidth B 40 MHz

Pulse duration Tp 1.6 μs
Pulse PRI Tr 2.1 μs

CPI 10 μs
Code length N 64

Pulse number K 5
A/D sampling rate 500 MHz

ADC resolution 12 bit

In the practical experiment, another set of UOCCS waveforms and receiving filters
with N = 64 and K = 5 by the MM-CCS algorithm [34], the L-BFGS algorithm [35] and
our algorithm are implemented into the hardware, whose bandwidth B, pulse duration
Tp(N/B), PRI (Tr) as well as the CPI are, respectively, set as 40 MHz, 1.6 μs, 2.1 μs, and10 μs.
The SNR loss μ = 0.5 dB is considered for our algorithm. Figure 7 shows the simulated
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AFs before implementation. Figure 8 presents the in-phase components of the sampled
waveforms from our waveforms at the receiver end and the corresponding spectrums.
Figure 9 presents the AFs of practically implemented waveforms through the transmitter–
receiver chain.

  
(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

  
(i) (j) (k) (l) 

Figure 7. AFs of simulated waveforms from different polarimetric channels before implementation.
(a) HH by [34]; (b) HV by [34]; (c) VH for [34]; (d) VV by [34]; (e) HH by [35]; (f) HV by [35]; (g) VH
by [35]; (h) VV by [35]; (i) HH by ours; (j) HV by ours; (k) VH by ours; (l) VV by ours.

 

 
(a) (b) 

Figure 8. Sampled waveforms by A/D convertor from our waveforms. (a) In-phase components in
the time domain; (b) Spectrums of the sampled signals.
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(a) (b) (c) (d) 

   
(e) (f) (g) (h) 

(i) (j) (k) (l) 

Figure 9. AFs of practically implemented waveforms through the transmitter–receiver chain. (a) HH
by [34]; (b) HV by [34]; (c) VH for [34]; (d) VV by [34]; (e) HH by [35]; (f) HV by [35]; (g) VH by [35];
(h) VV by [35]; (i) HH by ours; (j) HV by ours; (k) VH by ours; (l) VV by ours.

Both Figures 7 and 9 demonstrate that the waveforms designed by our method outper-
form others when the Doppler frequencies are considered although the waveform of [34]
performs the best when the Doppler frequency is zero. If we compare Figures 7 and 9, it is
easy to note that the real implemented results of all waveforms are obviously not as good
as the simulated, and this is mainly due to the following factors: (1) the filter (combination
of several filters both in the transmitter channel and in the receiver channel) is applied in
hardware but not in the simulation. (2) the IQ imbalance of the transmitter–receiver chain,
and the nonlinear effect. To manifest the first factor, another simulation experiment is
conducted with a filter applied, which is derived from measurements. To compare the per-
formances, we list the maximum normalized sidelobes (MNSLs) of all waveforms in Table 3,
where Simulated 1 denotes the results without filter, while Simulated 2 denotes the results
with the filter applied. One can observe the following facts from Table 3: (1) Although the
waveform of [34] performs the best when fq = 0, its MNSL is affected by the filter mostly,
and when fq > 0.07, the performances of HH, HV, VH, and VV degrade dramatically.
(2) Let us take the HH case for example, for the waveform of [34], the measured MNSL
of HH increases from −39.41 to −25.7 as fq increases from 0 to 0.28. For the waveform
of [35], the measured MNSL increases from −31.81 to −29.28, while the measured MNSL
of our waveform increases from −37.54 to just −36.88. (3) The same trend is observed for
HV, VH, and VV polarizations. (4) The degradation of performances by imperfect factors
of hardware is less than 2 dB for all waveforms. All in all, our waveforms have the best
Doppler tolerance performance.
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Table 3. Comparison of the MNSLs (in dB) versus fq.

Waveform of [34] Waveform of [35] Our Waveform

HH HV VH VV HH HV VH VV HH HV VH VV

fq = 0
Simulated 1 −61.23 −60.19 −60.19 −60.65 −34.10 −33.56 −33.56 −34.20 −42.91 −42.29 −41.56 −42.87
Simulated 2 −40.81 −39.85 −41.02 −40.96 −32.17 −33.20 −32.28 −32.98 −38.11 −38.46 −39.29 −38.68
Measured −39.41 −39.32 −38.41 −39.17 −31.81 −31.71 −31.44 −31.96 −37.54 −37.13 −38.17 −37.76

fq = 0.07
Simulated 1 −38.83 −37.74 −38.06 −38.31 −32.66 −32.70 −32.78 −32.73 −42.04 −41.72 −40.10 −43.17
Simulated 2 −35.80 −35.36 −34.02 −37.27 −32.01 −32.45 −32.03 −32.66 −38.41 −39.45 −38.84 −39.62
Measured −34.17 −35.55 −33.78 −36.34 −31.01 −30.88 −31.76 −32.05 −37.90 −38.13 −36.88 −38.73

fq = 0.14
Simulated 1 −32.89 −31.70 −31.10 −32.60 −31.18 −30.93 −31.32 −32.45 −41.65 −41.34 −39.16 −42.55
Simulated 2 −32.19 −30.56 −29.72 −33.04 −30.90 −30.47 −30.36 −32.29 −38.61 −38.73 −37.59 −37.53
Measured −30.04 −30.64 −30.39 −32.47 −30.64 −30.35 −30.02 −30.19 −38.29 −37.82 −36.53 −37.16

fq = 0.21
Simulated 1 −29.58 −28.37 −27.80 −29.25 −30.00 −30.11 −30.2 −33.25 −41.27 −40.39 −38.28 −41.13
Simulated 2 −29.18 −28.06 −27.26 −29.51 −29.13 −29.74 −29.18 −32.73 −38.42 −38.97 −38.42 −37.96
Measured −27.90 −28.0 −27.19 −29.47 −29.54 −29.33 −29.42 −30.43 −37.36 −36.73 −37.33 −36.81

fq = 0.28
Simulated 1 −27.05 −26.19 −26.85 −26.96 −29.93 −29.83 −29.13 −31.06 −40.62 −39.51 −38.96 −39.87
Simulated 2 −26.84 −26.30 −25.56 −27.12 −28.98 −29.56 −28.65 −30.91 −38.35 −38.54 −38.59 −37.49
Measured −25.70 −26.00 −25.57 −26.25 −29.28 −29.87 −28.19 −29.22 −36.88 −37.08 −37.89 −36.30

We must emphasize that the digitization errors of DAC and ADC have been considered
in the simulation. We also need to further explain the two effects of the filter on the AFs:
(1) the signal band is reduced; however the large signal bandwidth is very helpful for
obtaining low PSL and ISL. (2) the phase of the waveform can be influenced by the filter
resulting in waveform distortion [51,52].

6. Conclusions

The problem for the joint design of a pair of UOCCSs and receiving filters with high
Doppler tolerance for SPR is focused on under the mismatch constraint. A nonconvex
objective function is constructed based on AF, which is optimized with respect both to the
CIAL and the orthogonality within the defined DFR by adopting an alternatively iterative
scheme implemented via the MM method. The main steps, i.e., the computation of Toeplitz
matrix-vector multiplication terms in the proposed algorithms, are implemented via the
FFT with high computational efficiency. Moreover, SQUAREM is adopted to accelerate the
algorithm. Compared with the representative MM-CCS and L-BFGS algorithms, the pro-
posed algorithm achieves a significant improvement in the optimized performance and the
convergence speed. Simulations are carried out to demonstrate that the CIAL can be signif-
icantly suppressed at the cost of appropriate SNR loss by jointly designing the waveforms
and the receiving filters. Moreover, a practical experiment based on the transmitter–receiver
hardware chain is conducted to validate the design, and the same superior performance of
our design has been demonstrated when compared with other designs.

The unimodular constraint on the transmitted CCS is currently considered in this
work. Some more general constraints (such as the discrete phase constraint [53], or peak-
to-average ratio [54]) may also be applicable. We plan to try some other reformulations
on the joint problem with more general constraints applied and more suitable algorithms
developed to incorporate into the optimization framework in the future. At last, we
should point out that the proposed framework can be extended to design other waveforms
for MIMO radar and multichannel communication systems as well, where orthogonal
sequences are highly desired.
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1. Derivation of Equation (30):
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2. Derivation of Equation (36):
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Abstract: Radar target echoes undergo fading in the presence of specular reflection, which is adverse
to radar detection. To address this problem, this paper proposes a radar detection method that uses a
single transmitting antenna and three receiving antennas. The proposed method uses the maximum
absolute value of the difference in the radar received signal power among the three receiving antennas
as the test statistic. First, the target echo in the presence of specular reflection is analyzed. Then,
selection of the required number of radar antennas and the heights at which they must be situated are
discussed. Subsequently, analytical expressions of the radar detection probability and the false alarm
probability are derived. Finally, simulation results are presented, which show that the proposed
method improves radar detection performance in the presence of specular reflection.

Keywords: radar detection; specular reflection; multiple antennas; detection probability

1. Introduction

Multipath interference affects the radar detection of low altitude targets over the sea. In
multipaths, the directly arriving target echo and the sea surface-reflected target echo overlap
with each other. The resulting combined multipath returns combine either constructively
or destructively with the direct-path signal, which produces a stronger or weaker total
received signal at random. In most cases, multipath attenuates the radar received signal
intensity. It is disadvantageous to radar detection [1–5]. Therefore, overcoming the negative
effect of multipath is a key issue for radar detection of low altitude targets over the sea.

Multipath scattering from a rough surface involves two components: specular reflec-
tion and diffuse reflection. In most cases, specular reflection dominates multipath scattering,
so many scholars only consider specular reflection for multipath scattering [6,7]. In the
specular reflection case, the radar detection performance can be improved if prior knowl-
edge of the radar-target environment is known [8]. However, the target position usually
varies with time, and such prior knowledge is difficult to obtain. Without prior knowledge,
radar systems often employ frequency diversity to overcome multipath interference [9–11].
For example, [10] developed adaptive orthogonal frequency-division multiplexing (OFDM)
signals for moving target detection in multipaths. In [11], an order statistics-based detection
method was proposed to improve the radar target detection performance in multipaths
based on frequency diversity. In fact, multipath returns have different propagation ways.
This implies that the amplitude or the phase of the multipath returns are different at some
fixed location in the space. Thus, spatial diversity can be used to overcome the negative
effect the multipath [12,13]. For example, MIMO radar is proposed to detect the target
in the presence of multipath [14]. However, MIMO radar is difficult to be implemented
in reality. In addition, array antennas and multiple subapertures (which are collectively
referred to as multiple antennas) are widely used for radar tracking in multipaths [15–18].
Since multiple antennas can be used for radar tracking in this way, it is likely that they can
also be used for radar detection in multipaths. However, to our knowledge, there has been
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little previous work on radar detection in multipaths using multiple antennas. Whether
radar detection performance in multipaths can be enhanced by using multiple antennas is
an interesting question. There are some problems that need to be addressed when using
multiple antennas for radar detection in multipaths:

(1) How many antennas should be used in the system?
(2) Where should the antenna heights be set?
(3) What test statistic should be used?

In this paper, we propose using a single transmitting antenna and three receiving
antennas to improve radar detection performance in the presence of specular reflection.
The maximum absolute value of the difference in the radar-received signal power among
the three antennas is used as the test statistic. The advantages of using three receiving
antennas are demonstrated, and the requirements for setting the radar antenna heights are
discussed. Mathematical expressions for the radar detection probability and the false alarm
probability are derived. Simulation results are given to validate the proposed method.

The rest of this paper is organized as follows. Radar target echoes in the presence of
specular reflection are analyzed in Section 2. In Section 3, the selection of the number of
antennas and the antenna heights are discussed. Mathematical derivations of the radar
detection probability and the false alarm probability are presented in Section 4. The
simulation results that demonstrate the validity of the proposed method are given in
Section 5. Finally, Section 6 concludes the paper.

2. Radar Target Echo in the Presence of Specular Reflection

Assuming that radar transmits and receives signals using the same single antenna, a
schematic diagram of the radar specular reflection is shown in Figure 1. In the presence of
specular reflection, four different paths contribute to the radar-received target echoes: direct-
direct (ABA), direct-reflected (ABOA), reflected-direct (AOBA) and reflected-reflected
(AOBOA) paths [19]. Then, the received target echoes can be expressed by

st = A exp(jϕ)
[
1 +

√
Gr(θr)
Gr(θd)

ρs exp(jφ)+√
Gt(θr)
Gt(θd)

ρs exp(jφ) +
√

Gt(θr)Gr(θr)
Gt(θd)Gr(θd)

ρ2
s exp(j2φ)

] , (1)

where A and ϕ are the amplitude and phase of the directly arriving target echo, respectively;
Gt(θ) and Gr(θ) are the radar transmitting and receiving antenna gains at an angle θ,
respectively; θd and θr are the elevation angles of the direct and reflected paths, respectively;
ρs is the amplitude of the specular reflection coefficient; φ = φl + φρ, where φρ is the phase
of the specular reflection coefficient, which is a constant; φl =

2π
λ (lr + lt − R), where λ is

the wavelength; and R, lr, and lt are the lengths of paths AB, AO, and BO, respectively, as
shown in Figure 1. Clearly, φ and φl are both sensitive to the radar height hr and to the
target height ht.

Figure 1. Schematic diagram of radar specular reflection.
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In the case when the radar operates at low grazing angles, θr ≈ θd, Gt(θr) ≈ Gt(θd),
and Gr(θr) ≈ Gr(θd). Thus, Equation (1) can be simplified to

st = A exp(jϕ)[1 + ρs exp(jφ)]2, (2)

From (2), it can be seen that the target echo power varies as the φ varies. The φ varies
with changes in the radar antenna height, target height and target distance. Therefore, the
target echo power varies with changes in the radar antenna height and the target location.
To demonstrate this conclusion indirectly, Figure 2 presents φl under various radar antenna
heights and target locations, where the radar wavelength is 0.03 m.

(a) Target height of 100 m 

(b) Target distance of 45 km 

Figure 2. φl versus radar antenna height and target location.

In Figure 2, φl varies with changes in the radar antenna height, target height and target
distance. Therefore, φ also varies with the radar antenna height, target height and target
distance, which induces the target echo power to vary in the same manner. Thus, we can
conclude that the target echo powers that are received by antennas at different heights are
also likely different. However, the clutter mean powers that are received by the antennas
at the different heights are almost identical if the height difference between antennas is
within several meters. Because the ground surface or sea surface represents an area target,
the clutter mean power is mainly related to the distance between the radar antenna and the
reflected surface. The height differences between the multiple antennas are much smaller
than the distance between the radar and the reflected surface, which will not induce the
clutter mean power difference in antennas. Overall, the target echo powers received by
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each of the multiple antennas may be different, whereas the clutter mean powers received
by the same multiple antennas are almost identical. Thus, we can use multipath antennas
at different heights and use the differences in the signal powers received by the multiple
antennas as test statistics to decide whether a target exists or not. In the following section,
we first discuss how to select the antenna number and their heights.

3. Selection of Antenna Numbers and Heights

Assuming that the radar uses a single transmitting antenna and multiple receiving
antennas and that these antennas are set at different heights. To better detect the target,
the differences among the target echo powers received by the multiple antennas needs
to be obvious at all times. However, the target location is unknown beforehand, and this
location changes with time, which may cause the differences among the target echo powers
received by the multiple antennas to be obvious when the target is at certain locations and
small when the target is at other locations. Therefore, selection of the number of antennas
and their heights is vital to ensure that there is at least a difference among the target echo
powers received by the multiple antennas, which is always obvious for any target location.

3.1. Selection of Antenna Number

Assuming that the radar uses a single transmitting antenna and two receiving antennas.
Antenna one both transmits and receives signals, while antenna two only receives signals.
The simulated target echo powers that are received by the two antennas are shown in
Figure 3, where “ant 1” and “ant 2” denote antenna one and antenna two, respectively. In
the simulations, the two antenna heights are randomly set at 200 m and 210 m. The radar
transmitted power is 50 kW, the radar wavelength is 0.03 m, the maximum antenna gain is
43 dB, the half power beam width is 4◦, and the target height is 50 m. The target maneuver
is not considered in this paper. Please refer to [20] for maneuvering target detection.

Figure 3. Received target echo powers received by two antennas with different heights.

Figure 3 shows that the target echo powers that are received by the two antennas are
obviously different in most cases. However, regardless of the height difference between
the two antennas, there are always some target locations at which the difference between
the received target echo powers of the two antennas is small, such as the locations that
are labeled with circles in Figure 3. The radar detection probability will be low at these
locations if we use the difference between the received target echo powers of the two
antennas as the test statistic. To address this problem, we attempt to add one receiving
antenna and use a single transmitting antenna and three receiving antennas.

Denoting the target echo powers received by the three antennas as z1, z2 and z3. The
differences between the target echo powers are |z1 − z2|, |z1 − z3| and |z2 − z3|. Then,
we choose the maximum value of the above differences as the test statistic. Thus, while
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|z1 − z2| may be small at certain locations, either |z1 − z3| or |z2 − z3| may be apparent at
these locations. To demonstrate this prediction, Figure 4 presents the simulated target echo
powers that were received by three antennas set at different heights, where “ant 3” denotes
antenna three, which only receives signals, and the heights of the three antennas are set at
200 m, 206 m and 212 m. The other parameters are the same as those used in Figure 3.

Figure 4. Target echo powers received by three antennas with different heights.

Figure 4 shows that the differences among the target echo powers that are received by
the three antennas are apparent in most cases. Despite the fact that |z1 − z2| is small in the
locations labeled by circles, |z1 − z3| or |z2 − z3| is apparent at these locations. This finding
verifies our prediction above and illustrates the value of using the third antenna. Next, we
will discuss how to set the heights of the three antennas.

3.2. Setting of Antenna Heights

From Figure 2, it can be seen that the target echo power is sensitive to the radar antenna
height. In addition, Figures 3 and 4 show that the differences among the target echo powers
of the multiple antennas are related to the antenna heights. Therefore, setting the antenna
height carefully is important to ensure that there is always an apparent difference in the
target echo powers of multiple antennas for any target location. In general, there are four
antenna height setting requirements:

(1) The antenna height must be set high enough to ensure that the target is within the
radar line of sight region when considering the earth’s curvature.

(2) The distance between the transmitting and receiving antennas should be sufficient to
maintain a fixed antenna isolation degree.

(3) The clutter mean powers received by the three antennas are approximately equal to
each other.

(4) There is always an apparent difference value for the target echo powers of the multiple
antennas for any target location.

To meet the first requirement, the minimum radar antenna height can be calculated by
referring to the work of [21]. The second and third requirements are also both easily satisfied
if the distances between the three antenna heights are moderate. The fourth requirement is
the most important and is the most difficult to satisfy. As Figures 2 and 3 indicate, the target
echo power varies with changes in the target height and the target distance, regardless
of the antenna height. Thus, the maximum target echo power difference for the three
antennas varies with changes in target location, and it may be small or apparent as the
target location changes. For this reason, there is no optimal height setting available for
the three antennas that will satisfy the fourth requirement. Without loss of generality, we
set the three antenna heights to 200 m, 206 m and 212 m. A schematic diagram of the
configuration of the three antennas is shown in Figure 5. Because the three antennas are

136



Remote Sens. 2023, 15, 3204

identical, it can be assumed that antenna 1 randomly transmits and receives signals, while
antenna 2 and antenna 3 receive signals only. In the next step, the detection probability and
the false alarm probability for the radar using the three antennas will be derived.

200m
6m

6m

Antenna 1
transmit/receive

Antenna 2
receive

Antenna 3
receive

Figure 5. Schematic diagram of the configuration of the three antennas.

4. Detection and False Alarm Probabilities

In the presence of specular reflection, the signal received by the ith antenna can be
written as

xi =

{
ci + ni , H0

si[1 + ρs exp(jφi)]
2 + ci + ni , H1

i = 1, 2, 3, (3)

where H0 and H1 denote that the target is absent and present, respectively, the subscript
i denotes the ith antenna, si denotes the directly arriving target echo, ci represents the
complex Gaussian distributed clutter with zero mean and variance σ2

c , ni is the complex
Gaussian distributed thermal noise with zero mean and variance σ2

n , and the clutter and
the thermal noise are independent of each other.

Expanding (3) gives the received signal of the ith antenna under H1 as

xi = si[1 + ρs exp(jφi)]
2 + ci + ni

= sxax − aysy + cx + nx + j
(
aysx + axsy + cy + ny

) , (4)

where ax = 1 + 2ρs cos φ + ρ2
s cos 2φ, ay = ρ2

s sin 2φ + 2ρs sin φ, si = sx + jsy, ci = cx + jcy,
and ni = nx + jny.

For the Swerling I fluctuation target, its mean power is denoted by Ps. Then, based
on (4), the real and imaginary parts of xi can be derived, and both are found to have
Gaussian distributions with zero means and variances in

(
a2

x + a2
y

)
Ps/2+ σ2

c + σ2
n . Because

zi = |xi|2, the probability density function (PDF) of zi under H1 can be obtained as

f ( zi|H1) =
1

(a2
x+a2

y)Ps+Pn+Pc
·

exp
[
− zi
(a2

x+a2
y)Ps+Pn+Pc

]
, i = 1, 2, 3

, (5)

where Pn = 2σ2
n and Pc = 2σ2

c .

137



Remote Sens. 2023, 15, 3204

From (5), the PDF of z12 = |z1 − z2| under H1 can be derived by [22]

f ( z12|H1) =
∫ ∞

0 fz1( z12 + z2|H1) f ( z2|H1)dz2+∫ ∞
z12

fz1( z2 − z12|H1) f ( z2|H1)dz2

= 1
(a2

x+a2
y)Ps+Pn+Pc

·

exp
[
− z12
(a2

x+a2
y)Ps+Pn+Pc

] , (6)

where fz1( z12 + z2|H1) means the PDF of z1 under H1 with independent variable z1 substi-
tuted by z12 + z2.

Similarly, the probability density functions of z13 and z23 are the same as that of z12.
Choosing the test statistic as

L = max(z12, z13, z23), (7)

The radar detection probability can be calculated by [see the Appendix A]

Pd = Pr[max(z12, z13, z23) > η|H1]
= 1 − Pr[|z1 − z2| < η ∩ |z1 − z3| < η ∩ |z2 − z3| < η]

= 1 − exp
(
− 3η

χ

)[
exp

(
η
χ

)
− 1

]3
, (8)

where η is the detection threshold, and χ =
(

a2
x + a2

y

)
Ps + Pn + Pc.

Setting Ps = 0 in (8) then yields the radar false alarm probability as

Pf = 1 − exp
(
− 3η

Pn + Pc

)[
exp

(
η

Pn + Pc

)
− 1

]3
, (9)

5. Simulation Results and Analysis

In this section, the detection performance of the radar using a single transmitting
antenna and three receiving antennas in the presence of specular reflection is presented
by simulation. We compare the detection performance with that of the radar employing
a single antenna and that of the radar employing a single transmitting antenna and two
receiving antennas.

For the radar employing a single transmitting antenna and two receiving antennas,
the test statistic is z12, and the radar detection probability is given by

Pd =
∫ ∞

η
f (z12)dz12 = exp

⎡⎣− η(
a2

x + a2
y

)
Ps + Pn + Pc

⎤⎦, (10)

By letting Ps = 0 in (10), we acquire the false alarm probability for the radar employing
a single transmitting antenna and two receiving antennas as

Pf = exp
(
− η

Pn + Pc

)
, (11)

The detection probability and the false alarm probability for the radar using a single
antenna are the same as (10) and (11), respectively. Therefore, in the presence of specular
reflection, the detection performance of the radar using a single transmitting antenna and
two receiving antennas is the same as that of the single antenna radar.

In the simulations, the clutter mean power Pc = 10, the thermal noise mean power
Pn = 1, and ρs = 0.9. Figure 6 shows the false alarm probability versus detection thresh-
old, where the notation “three antennas” means radar employing a single transmitting
antenna and three receiving antennas, and the notation “single antenna” denotes the single
antenna radar.
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Figure 6. False alarm probability versus detection threshold.

The detection threshold can be obtained by interpretation according to Figure 6 when
the false alarm probability is fixed. Figure 6 illustrates that the detection threshold for the
radar with the single transmitting antenna and three receiving antennas is higher than that
for the single antenna radar to maintain a constant false alarm probability.

The theoretical and simulated detection probabilities for the radar employing a single
transmitting antenna and three receiving antennas in the presence of specular reflection
are shown in Figure 7, where the Monte Carlo simulation times are 10,000, Pf = 10−3,
and φl = π. In addition, the corresponding detection probabilities of the radar using a
single antenna in the presence and absence of specular reflection are also presented for
comparison. In Figure 7, the notations “with” and “without” denote the presence and
absence of specular reflection, respectively.

Figure 7. Theoretical and simulated detection probabilities for radar using a single transmitting
antenna and three receiving antennas.

Figure 7 shows that the simulated radar detection probability agrees well with the
theoretical radar detection probability, which demonstrates the correctness of the theoretical
derivation in Section 4. In addition, Figure 7 illustrates that the detection performance of
the radar using a single transmitting antenna and three receiving antennas is better than
that of the radar with a single antenna.

Because the target echo power is sensitive to φl and φl varies with changes in the target
location, we present the radar detection probabilities under various φl of the first antenna
in Figure 8. The corresponding detection probabilities of the single antenna radar under
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the same φl values are presented in Figure 8 for comparison. Figure 8 shows that radar
detection performance in the presence of specular reflection varies with respect to changes
in φl . However, the detection probability for the radar with a single transmitting antenna
and three receiving antennas is always higher than that for the single antenna radar, which
verifies the effectiveness of the proposed method.

Figure 8. Radar detection probabilities under various φl .

6. Conclusions

In this paper, radar utilizing a single transmitting antenna and three receiving antennas
is proposed for target detection in the presence of specular reflection. This method takes
advantage of space diversity to overcome the passive effects of specular reflection on radar
detection performance. Based on the characteristic that the target echo powers for antennas
set at different heights in the presence of specular reflection are different, the method takes
the maximum absolute value of the differences in the received signal powers among the
three receiving antennas as the test statistic. Analytical expressions of the radar detection
probability and the false alarm probability are obtained. Simulation results show that radar
detection performance in the presence of specular reflection is enhanced when using the
proposed method.

The impact of the number of receiving antenna is not analyzed concretely in this paper.
How to choose the number of the receiving antenna and how to set their height need
further investigation. In addition, validation of the proposed method using experimental
data is also needed to be studied in the future.
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Appendix A

Because z12, z13 and z23 are similar to each other, we have

Pr [max(z12, z13, z23) < η]
= Pr[z12 < η, z12 > z13, z12 > z23]+

Pr[z13 < η, z13 > z12, z13 > z23]+
Pr[z23 < η, z23 > z12, z23 > z13]

= 3·Pr[z12 < η, z12 > z13, z12 > z23]
= 3·Pr[z12 < η, z12 > max(z13, z23)]

, (A1)

Using the notation t = max(z13, z23), (A1) can then be given by

Pr[max(z12, z13, z23) < η] = 3
∫ η

0

∫ η

t
f (z12)dz12· f (t)dt, (A2)

where η is the detection threshold, and

f (t) = Fz13(t) fz23(t) + fz13(t)Fz23(t), (A3)

where fz23(t) = fz13(t) = 1
χ exp

[
− t

χ

]
, χ =

(
a2

x + a2
y

)
Ps + Pn + Pc, and

Fz13(t) = Fz23(t) = Pr[z23 < t] =
∫ t

0 f (z23)dz23 = 1 − exp
[
− t

χ

]
. Then, f (t) can be fur-

ther simplified to

f (t) = 2Fz13(t) fz23(t) =
2
χ

exp
(
− t

χ

)
− 2

χ
exp

(
−2t

χ

)
, (A4)

Substituting (A4) and (6) into (A2) yields

Pr[max(z12, z13, z23) < η] = exp
(
−3η

χ

)[
exp

(
η

χ

)
− 1

]3
, (A5)
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Abstract: Since there is a frequency offset between each adjacent antenna of FDA radar, there exists
angle-range two-dimensional dependence in the transmitter. For bistatic FDA-multiple input multiple
output (MIMO) radar, range-direction of departure (DOD)-direction of arrival (DOA) information is
coupled in transmitting the steering vector. How to decouple the three information has become the
focus of research. Aiming at the issue of target parameter estimation of bistatic FDA-MIMO radar,
a real-valued parameter estimation algorithm based on high-order-singular value decomposition
(HOSVD) is developed. Firstly, for decoupling DOD and range in transmitter, it is necessary to divide
the transmitter into subarrays. Then, the forward–backward averaging and unitary transformation
techniques are utilized to convert complex-valued data into real-valued data. The signal subspace
is obtained by HOSVD, and the two-dimensional spatial spectral function is constructed. Secondly,
the dimension of spatial spectrum is reduced by the Lagrange algorithm, so that it is only related to
DOA, and the DOA estimation is obtained. Then the frequency increment between subarrays is used
to decouple the DOD and range information, and eliminate the phase ambiguity at the same time.
Finally, the DOD and range estimation automatically matched with DOA estimation are obtained.
The proposed algorithm uses the multidimensional structure of high-dimensional data to promote
performance. Meanwhile, the proposed real-valued tensor-based method can effectively cut down
the computing time. Simulation results verify the high efficiency of the developed method.

Keywords: bistatic FDA-MIMO radar; unitary transformation technique; HOSVD; DOA-DOD-
range estimation

1. Introduction

Multiple input multiple output (MIMO) radar was developed in 2004, which can make
up for the drawbacks of phased array (PA) [1–3]. Different from PA radar, the transmitted
waveforms of MIMO radar are orthogonal to each other [4–6]. When the receiver completes
the matched filtering, it can produce a large number of virtual array elements, which can
dramatically promote radar performance [7–9]. However, the advantages of MIMO radar in
range estimation are not prominent. Therefore, in 2006, Antonik et al. proposed frequency
diversity array (FDA) [10,11]. With the development of array signal processing, some
scholars developed FDA-MIMO radar [12,13]. There are two categories of FDA-MIMO:
statistical radar [14,15] and collocated radar [16,17]. In this paper, the bistatic FDA-MIMO
in collocated radar is taken as the research object.

FDA-MIMO radar adds frequency increment in transmitter antennas, the transmitter
waveform is affected by both range and angle [18,19]. The transmitting waveform has
two-dimensional dependence on range and angle [20,21]. Therefore, FDA-MIMO can
estimate angle and range concurrently [22,23]. Moreover, since FDA-MIMO radar adds
the information of range dimension, the degree of freedom (DOF) is increased [24,25].
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Thus, FDA-MIMO radar can achieve more tasks in different environments [26]. Therefore,
FDA-MIMO radar can be applied to achieve parameter estimation.

Since FDA-MIMO can provide more DOFs of the system, it can provide more target
parameter information. Therefore, many parameter estimation studies for FDA-MIMO have
been performed. In [27], an algorithm based on the multiple signal classification (MUSIC)
method to achieve target angle-range is proposed. Since the estimation method requires
two spectral peak searches to obtain angle and range, the estimation method has a lot of
operational redundancy. In order to cut down the operation time, a two-stage algorithm via
rotation invariance technique (ESPRIT) approach is developed to obtain the angle-range
estimation [28]. The angle and range estimated by this algorithm are automatically matched.
In [29], in order to cut down more operation time. Liu et al. constructed the unitary matrix to
transform the subspace into real-valued data, further reducing the operational redundancy.
However, the precision of this approach will be declined in low signal-to-noise ratio (SNR).
Therefore, a tensor-based FDA-MIMO radar algorithm is proposed [30], this algorithm
realizes spatial spectrum dimensionality reduction through Lagrange multiplier method,
thus reducing the computational complexity of spectral peak search part, and achieving
decoupling of angle and range. Xu et al. proposed an algorithm based on high-order-
singular value decomposition (HOSVD), which retains the multi-dimensional structure
of data and can obtain superior result. Although the above algorithms can realize the
estimation of FDA-MIMO, the accuracy of estimation will sharply decline in low SNR and
snapshot. However, in bistatic FDA-MIMO radar, these algorithms will fail because of the
coupling problem between the DOD and the range of the target. At present, the research
of target parameter estimation for bistatic FDA-MIMO radar is still insufficient, and the
existing algorithms are mostly carried out for monostatic FDA-MIMO radar.

In this paper, a real-valued parameter estimation approach based on HOSVD is de-
veloped. This algorithm solves the problem of three-dimensional direction of arrival
(DOA)-direction of departure (DOD)-range estimation in bistatic FDA-MIMO radar. Firstly,
for eliminating the coupling between DOD and range, the transmitter is divided into
several subarrays. Then a three-dimensional tensor data model is constructed. The orig-
inal tensor is converted into a real-valued tensor by unitary transformation technique.
The HOSVD algorithm is employed to obtain signal subspace. The spatial spectrum func-
tion is constructed through obtained subspace. Then the one-dimensional spatial spectrum
only related to DOA information is obtained by Lagrange algorithm. The DOA is esti-
mated by one-dimensional spatial spectral. Utilizing the constructed transmitting subarray,
the DOD and range information are decoupled and the periodic ambiguity of phase is
eliminated. Finally, the automatically matched DOD and range are estimated. The de-
veloped approach preserves the multidimensional structure. Furthermore, the matched
DOA, DOD and range estimation can be obtained through the reduced-dimension MUSIC
algorithm. The presented method not only has high precision, but also cut down the
computational complexity.

In summary, the contributions of the developed algorithm are summarized as:

(1) The developed approach can achieve joint DOA-DOD-range estimation for bistatic FDA-
MIMO. The tensor signal subspace is obtained by HOSVD method. The original structure
of the received data is preserved, which can greatly improve the estimation accuracy;

(2) The proposed approach is a real-valued operation, and it utilizes the reduced-dimension
MUSIC algorithm, which estimates DOA by utilizing one-dimensional spatial spectrum.
It greatly reduces operational redundancy while ensuring the performance advantages;

(3) The presented method eliminates the coupling of DOD information and range infor-
mation by subarray division of transmitter. Accurate DOD and range estimations
are achieved.

The notations are presented in Table 1.
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Table 1. Notations.

Notation Definition

(·)∗ conjugate
(·)T transpose
(·)H conjugate-transpose
(·)−1 inverse
(·)† pseudo-inverse
⊗ Kronecker product
� Khatri–Rao product
◦ outer product
�n the concatenation along the n-th mode
IQ Q × Q identity matrix
0Q Q × Q zero matrix
�·� floor operator
(·)! factorial

diag(·) diagonalization of matrix
angle(·) the phase of array elements

2. Signal Model

The bistatic FDA-MIMO radar is taken as the research object. From Figure 1, we can
know that there are M transmitting antennas and N receiving antennas, all of which are
uniform linear arrays (ULA) with half wavelength spacing. dt and dr are antenna spacing.
On the basis of the definition of FDA-MIMO radar, there is a frequency increment between
antennas at transmitter. The carrier frequency of the m-th antenna is given by [31]

fm = f0 + (m − 1)Δ f , m = 1, 2, · · · , M, (1)

where f0 represents carrier frequency. Δ f stands for frequency increment. The signal
transmitted by m-th transmitting antenna can be defined as

sm(t) =

√
E
M

ψm(t)ej2π fmt,

0 ≤ t ≤ T, m = 1, 2, · · · , M,
(2)

where E stands for energy, ψm(t) represents transmitting waveform. T stands for delay.
Since transmitting waveforms are orthogonal to each other, the following expression
is given ∫

T
ψm(t)ψ∗

n(t − τ)ej2π(m−n)Δ f tdt =
{

0, m 	= n, ∀τ
1, m = n, ∀τ.

(3)

Figure 1. Bistatic FDA-MIMO radar.
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Assume K targets in the far-field. DOA, DOD, and range of k-th target are written as
θk, ϕk, and rk. The data of the k-th target received by n-th receiving antenna can be defined
as [19,32]

yn(t) = ρk

M

∑
m=1

ψm

(
t − τt

m,k − τr
n,k

)
ej2π fm(t−τt

m,k−τr
n,k), (4)

where ρk is complex-valued reflection coefficient of the k-th target. τt
m,k and τr

n,k stand for
the time delay, which can be given by

τt
m,k =

(
rt

1,k − (m − 1)dt sin(θk)
)

/c,

τr
n,k =

(
rr

1,k − (n − 1)dr sin(ϕk)
)

/c,
(5)

where c = 3 × 108 m/s.
The received snapshot is given by [33]

X =
K

∑
k=1

ξkaR(θk)aT
T(rk, ϕk) + F, (6)

ξk = ρkej2π f0rk/c, (7)

where F represents noise vector.
Then aT(rk, ϕk) is defined as [34]

aT(rk, ϕk) = r(rk)� d(ϕk) ∈ CM×1, (8)

r(rk) =
[
1, e−j2πΔ f rk/c, . . . , e−j2πΔ f (M−1)rk/c

]T
∈ CM×1, (9)

d(ϕk) =
[
1, ej2πdt f0 sin ϕk/c, . . . , ej2πdt f0(M−1) sin ϕk/c

]T
∈ CM×1. (10)

From Equation (8), we can know that the range and DOD information are coupled
with each other. However, the DOA information of target is only related to aR(θk), which
is given by

aR(θk) =
[
1, ej2πdr f0 sin θk/c, . . . , ej2πdr f0(N−1) sin θk/c

]T
∈ CN×1. (11)

Therefore, the DOA estimation can be obtained from aR(θk). However, to obtain
DOD and range estimation, aT(rk, ϕk) needs to be decoupled. Therefore, the transmitter is
converted to P subarrays. Since each subarray is independent, the frequency increment of
subarrays is unequal. The subarray aTS(rk, ϕk) can be written as

aTS(rk, ϕk) =

⎡⎢⎢⎢⎣
a1

TS(rk, ϕk)
a2

TS(rk, ϕk)
...

aP
TS(rk, ϕk)

⎤⎥⎥⎥⎦. (12)

The frequency of mth element in pth (p = 1, 2, · · · , P) subarray is defined as f m,p
TS ,

which can be given by

f m,p
TS = f 1,p

TS + (m − 1)Δ fp, m = 1, 2, · · · , Mp
TS, (13)

where Δ fp stands for frequency increment of pth subarray.

146



Remote Sens. 2023, 15, 1192

Figure 2 is subarray model. It can be seen that the transmitter is converted to P
subarrays. Therefore, the steering vector of the pth subarray is given by

ap
TS(rk, ϕk) = e

j 2π
c

((
p−1
∑

q=1
Mq

TS

)
dt f1 sin(ϕk)+( f1− f 1,p

TS rk)

)
×

⎡⎢⎢⎢⎢⎣
1

ej 2π
c (dt f1 sin(ϕk)−Δ fprk)

...

ej(Mp
TS−1) 2π

c (dt f1 sin(ϕk)−Δ fprk)

⎤⎥⎥⎥⎥⎦. (14)

Figure 2. Subarray model.

In this paper, the number of antennas in each subarray is equal, that is, Mp
TS =

M/P, (p = 1, 2, · · · , P). In addition, the frequency of the last antenna in the former subarray

is identical to that of first element in latter subarray. In other words, f
Mp

TS ,p
TS = f 1,p+1

TS , where
f 1,1
TS = f1, Δ f1 < Δ f2 · · · < Δ fP.

Equation (6) can be converted to tensor form, which can be given by

X (n, m, l) =
K

∑
k=1

AR(n, k) ◦ ATS(m, k) ◦ S(l, k) + Fn,m,l , (15)

where AT(m, k) is (m, k)-th element of AT , AR(n, k) denotes (n, k)-th element of AR, S(l, k)
represents (l, k)-th element of S. S = [ξ1, ξ2, . . . , ξk]

T . Fn,m,l stands for noise tensor, while l
denotes number of snapshots.

3. The Proposed Method

3.1. Real-Valued Signal Subspace Estimation

For changing X into a centro-Hermitian tensor, forward–backward averaging tech-
nique is used

Z = [X �3(X ∗ × 1ΓN × 2ΓM × 3ΓL)]. (16)

where the element on the anti-diagonal of Γn is 1, and the other elements are 0. Through
the unitary transformation, a new real-valued tensor is obtained

Z real = Z × 1EH
N × 2EH

M × 3EH
2L (17)

where the unitary matrices are defined as

EK =
1√
2

[
IK jIK
ΓK −jΓK

]
(18)

E2K+1 =
1√
2

⎡⎣ IK 0 jIK
01×K

√
2 01×K

ΓK 0 −jΓK

⎤⎦ (19)

Firstly, HOSVD algorithm is employed for Z real , which can be written as

Z real = Greal ×1 U1 ×2 U2 ×3 U3, (20)
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where Greal ∈ CM×N×L is core tensor, U1 ∈ CM×M, U2 ∈ CN×N and U3 ∈ CL×L are
composed of left singular of the mode-n tensor unfolding of Z real , respectively. In other
words, [Z real ](n) = UnΛnVH

n (n = 1, 2, 3). Then the truncated HOSVD is employed to
obtain signal subspace estimation, which is given by

Z s = Gs ×1 Us1 ×2 Us2, (21)

where Gs = Z real ×1 UH
s1 ×2 UH

s2 ×3 UH
s3 is the truncated core tensor. Usn(n = 1, 2, 3) is

composed of the column vector of Un.
Substituting Gs into Equation (21), Equation (21) is given by

Z s = Z real ×1 (Us1UH
s1)×2 (Us2UH

s2)×3 UH
s3. (22)

According to [35,36], the properties of the mode product is given by{ J × iW × jG = J ×j W ×i G, j 	= i
J × iW × iG = J ×i (WG), j = i

(23)

[J × 1W1 ×2 W2 × · · · ×I WI ](i) =

Wi · [J ](i) · [WI ⊗ . . . ⊗ Wi+1 ⊗ Wi−1 ⊗ . . . ⊗ W2 ⊗ W1]
T (24)

where J is a tensor, W and G are matrices.
According to Equations (23) and (24), the signal subspace Us is obtained by mode-3

unfolding of Z s.

Us = [Z s]
T
(3) = (Us2UH

s2 ⊗ Us1UH
s1)[Z real ]

T
(3)U

∗
s3, (25)

where [Z real ](3) = U3Λ3VH
3 . In addition, [Z real ]

T
(3) ≈ V∗

s3Λs3UT
s3. Therefore, Equation (25)

can be rewritten as
Us = (Us2UH

s2 ⊗ Us1UH
s1)V

∗
s3Λs3. (26)

Therefore, the tensor-based signal subspace estimation has been obtained.

3.2. DOA Estimation

According to MUSIC algorithm [37], the noise subspace is achieved by orthogonal
projection, which can be expressed as [38]

UnoiseUH
noise = INM − UoUo

H, (27)

where Uo is the orthogonal basis of Us.
The spectrum function is given by

f (θ, ϕ, r) = 1
[EH

N aR(θ)⊗EH
MaTS(rk ,ϕk)]H[INM−UoUo

H][EH
N aR(θ)⊗EH

MaTS(rk ,ϕk)]
. (28)

From Equation (28), we can know that parameter estimation can be obtained by three-
dimensional spectral peak searching. In order to cut down the computing redundancy,
the Lagrange multiplier approach is employed to cut down the dimension of the spectrum
function [39].

On the basis of the Kronecker product [40], the expression of EH
N aR(θ)⊗ EH

MaTS(r, ϕ)
can be simplified, which is given by

EH
N aR(θ)⊗ EH

MaTS(r, ϕ) = [EH
N aR(θ)I1]⊗ [EH

MaTS(r, ϕ)]

= [âR(θ)I1]⊗ [EH
MaTS(r, ϕ)]

= [âR(θ)⊗ EH
M][I1aTS(r, ϕ)]

= [âR(θ)⊗ EH
M]aTS(r, ϕ).

(29)
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where âR(θ) = EH
N aR(θ). Then according to Equation (28), F(θ, ϕ, r) is defined as

F(θ, ϕ, r) = [EH
N aR(θ)⊗ EH

MaTS(r, ϕ)]HUorth[E
H
N aR(θ)⊗ EH

MaTS(r, ϕ)]

= aTS(r, ϕ)H[âR(θ)⊗ EH
M]HUorth[âR(θ)⊗ EH

M]aTS(r, ϕ)

= aTS(r, ϕ)HF(θ)aTS(r, ϕ),

(30)

where F(θ) = [âR(θ)⊗ EH
M]HUorth[âR(θ)⊗ EH

M], Uorth = UnoiseUH
noise.

The quadratic optimization problem needs to be considered in Equation (30). That is,
the following constraints are considered [39], it is given by

eH
o aTS(r, ϕ) = 1

⇒aTS(r, ϕ) = (eH
o )

−1,
(31)

where eH
o = [1, 0, · · · , 0]T ∈ CM×1.

For solving the extreme value issue in Equation (30), Lagrange multiplier approach is
employed. The Lagrange function of Equation (30) is given by

L(θ, ϕ, r) = aTS(r, ϕ)HF(θ)aTS(r, ϕ) + λ(eH
o aTS(r, ϕ)− 1), (32)

where λ is Lagrangian multiplier.
The partial derivative of Equation (32) is given by

∂L(θ, ϕ, r)
∂aTS(r, ϕ)

= 2F(θ)aTS(r, ϕ)− λeo = 0

⇒ aTS(r, ϕ) =
λ

2
F(θ)−1eo.

(33)

Substituting Equation (31) into Equation (33), we can obtain

λ

2
F(θ)−1eo = aTS(r, ϕ) = (eH

o )
−1

⇒λ =
2

eH
o F(θ)−1eo

.
(34)

Therefore, aTS(r, ϕ) is given by

aTS(r, ϕ) =
F(θ)−1eo

eH
o F(θ)−1eo

. (35)

Finally, the DOA estimation can be obtained through Equations (28) and (35).

θ̂ = arg max f (θ, ϕ, r)

= arg min aTS(r, ϕ)HF(θ)aTS(r, ϕ)

= arg min e−1
o F(θ)e−H

o

= arg max eH
o F(θ)−1eo.

(36)

The result of DOA estimation is to search the reduced dimension MUSIC spectral peak.
The first K largest peaks obtained are the DOAs of corresponding K targets.
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3.3. DOD and Range Estimation

By using the DOA estimation and combining with Equation (35), the estimation of the
transmit steering vector âT(rk, ϕk) is achieved. The scale ambiguity of âT(rk, ϕk) should be
eliminated by normalization process. Therefore, the phase of âT(rk, ϕk) is expressed as

Φ
p
T = diag

⎡⎢⎢⎢⎢⎣
ej 2π

c [dt f1 sin ϕ1−Δ f1r1]

ej 2π
c [dt f1 sin ϕ2−Δ f2r2]

...
ej 2π

c [dt f1 sin ϕk−Δ fKrk ]

⎤⎥⎥⎥⎥⎦. (37)

The phase of the kth diagonal element in Φ
p
T corresponds to kth target, which is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2π
c dt f1 sin(ϕk)− 2π

c Δ f1rk = angle(φk,1
TS)− 2z1π

2π
c dt f1 sin(ϕk)− 2π

c Δ f2rk = angle(φk,2
TS)− 2z2π

...
2π
c dt f1 sin(ϕk)− 2π

c Δ fKrk = angle(φk,P
TS )− 2zPπ,

(38)

where φ
k,p
TS corresponds to the phase of the kth target in pth subarray, zi ∈ Z, i = 1, 2, · · · , P.

The value of zi cannot be determined due to the phase period ambiguity of angle(φk,p
TS ).

Since Δ f1 < Δ f2 < · · · < Δ fP, subtract the subformula in Equation (38), which is given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2π
c (Δ f2 − Δ f1)rk =angle(φk,1

TS)− angle(φk,2
TS) + 2π(z2 − z1)

2π
c (Δ f3 − Δ f2)rk =angle(φk,2

TS)− angle(φk,3
TS) + 2π(z3 − z2)

...
2π
c (Δ fP − Δ fP−1)rk =angle(φk,P−1

TS )− angle(φk,P
TS ) + 2π(zP − zP−1).

(39)

It can be seen from Equation (39) that only range information is included in
Equation (39). However, there is still phase period ambiguity in Equation (39). In or-
der to eliminate phase period ambiguity, we define

hk =

⎡⎢⎢⎢⎣
hk,1
hk,2

...
hk,P−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Δ f2−Δ f1

c
Δ f3−Δ f2

c
...

Δ fP−Δ fP−1
c

⎤⎥⎥⎥⎥⎦, (40)

ζk,i = angle(φk,i
TS)− angle(φk,i+1

TS ) + (zi+1 − zi), (i = 1, 2, ..., P − 1). (41)

Then Equation (39) can be rewritten as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

hk,1∗rk = ζk,1

hk,2∗rk = ζk,2

...

hk,P−1∗rk = ζk,P−1

⇒ hkrk = ζk, (42)

where ζk = [ζk,1, ζk,2, · · · , ζk,P−1]
T.
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Equation (42) can be simplified as

2π
Δ f i+1

TS −Δ f i
TS

c rk

=angle(φk,i
TS)− angle(φk,i+1

TS ) + 2π(zi+1 − zi).
(43)

For determining the range parameter, the following conditions need to be met

0 < 2π
Δ f i+1

TS − Δ f i
TS

c
rk � 2π. (44)

Since the range rk is positive and Δ f 1
TS < Δ f 2

TS · · · < Δ f P
TS, 2π

Δ f i+1
TS −Δ f i

TS
c rk > 0. When

2π
Δ f i+1

TS −Δ f i
TS

c rk � 2π, (zi+1 − zi) has a unique solution, which can be expressed as

zi+1 − zi =

{
1, angle(φk,i

TS) < angle(φk,i+1
TS )

0, angle(φk,i
TS) > angle(φk,i+1

TS ).
(45)

According to Equation (44), the range rk can be written as

rk �
c

Δ f i+1
TS − Δ f i

TS

. (46)

Combining Equations (42) and (46), the range rk can be expressed as

rk �
c

max(Δ f i+1
TS − Δ f i

TS)
. (47)

Therefore, the effective range of radar estimation is affected by radar frequency.
By substituting Equation (45) into Equation (42) and employing the least square (LS)

approach, the range estimation r̂k can be obtained, which is given by

r̂k = h†
k ζk, (48)

where the r̂k is the range estimation of kth target.
By substituting r̂k into Equation (39), we can obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2π
c dt f1 sin(ϕk) =angle(φk,1

TS)− 2z1π + 2π
c Δ f 1

TSrk

2π
c dt f1 sin(ϕk) =angle(φk,2

TS)− 2z2π + 2π
c Δ f 2

TSrk

...
2π
c dt f1 sin(ϕk) =angle(φk,P

TS )− 2zPπ + 2π
c Δ f P

TSrk.

(49)

Since 2dt f1/c � 1, the parameter zi(i = 1, 2, · · · , P) can be obtained, which is
expressed as

zi =

⌊
angle(φk,i

TS)− 2π
c Δ f i

TSr̂k + π

2π

⌋
, i = 1, 2, · · · , P. (50)

To simplify Equation (49), we define

hϕ =

⎡⎢⎢⎢⎣
2π
c f1dt

2π
c f1dt

...
2π
c f1dt

⎤⎥⎥⎥⎦ ∈ CP×1, (51)
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ψϕ =

⎡⎢⎢⎢⎢⎣
angle(φk,1

TS)− 2z1π + 2π
c Δ f 1

TSrk
angle(φk,2

TS)− 2z2π + 2π
c Δ f 2

TSrk
...

angle(φk,P
TS )− 2zPπ + 2π

c Δ f P
TSrk

⎤⎥⎥⎥⎥⎦ ∈ CP×1. (52)

Then Equation (49) can be rewritten as

hϕ sin ϕk = ψϕ. (53)

Utilizing the total LS approach, the DOD ϕ̂k of kth target can be estimated, which is
given by

ϕ̂k = arcsin
[(

hT
ϕhϕ

)−1
hT

ϕψϕ

]
. (54)

The DOA, DOD, and range obtained by the proposed approach are automatically
matched without additional matching process.

4. Algorithm Analysis

4.1. Algorithm Summary

The developed method for bistatic FDA-MIMO radar can be simplified in Algorithm 1.

Algorithm 1 Target parameter estimation algorithm based on real-valued HOSVD for
bistatic FDA-MIMO radar.

1: aT(rk, ϕk) is converted to subarray by Equation (12),
2: Signal can be converted to tensor form X ,
3: Construct the real-valued tensor Z real by Equation (17),
4: Calculate Us by Equation (26),
5: Construct reduced dimensional spatial spectrum function by Equation (30),
6: θ̂ is achieved by Equation (36),
7: Decouple DOD and range information by Equation (39),
8: Eliminate phase period ambiguity by Equation (40),
9: r̂k is obtained by Equation (48),

10: ϕ̂k is estimated by Equation (54).

4.2. Computational Complexity

In order to highlight the advantages of the developed approach, the computational
complexity of our method is given by

(1) The computational complexity of HOSVD for X ∈ CM×N×L is O( 1/4MNL(M + N +
L) ) in Equation (20);

(2) The computational complexity of signal subspace estimation is O(KLMN) in Equation (26);
(3) The computational complexity of dimensionality reduction for three-dimensional

spatial spectrum in Equation (30) is O(M2N2K2(MN + K2));
(4) The computational complexity of spatial spectrum search for DOA estimation in

Equation (36) is O(dθ(MK)!(MK − 1)), where dθ is the DOA search time;

(5) Computing DOD and range requires O(
P
∑

i=1
(N(MTS − 1)(2MTSNK + 4K2) + K3)).

The computational complexity of this process is relatively small, so it can be ignored.

In brief, the computational complexity of the developed approach is O{KMNL +
M2N2K2(MN + K2) + dθ(MK)!(MK − 1) + 1/4MNL(M + N + L)}.
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For proving the superiority of our method, the computational complexity of the devel-
oped approach is compared with that of ESPRIT [28], Tensor-ESPRIT [30], RD-MUSIC [20],
and MUSIC [27]. Table 2 shows the computational complexity comparison.

Table 2. Computational complexity comparison.

Method Computational Complexity

Proposed O{KMNL + M2N2K2(MN + K2) + dθ(MK)!(MK − 1)
+1/4MNL(M + N + L)}

ESPRIT O{(2MN)2L + (2MN)3 + 4(5MN − 2M − 2N)K2

+K3(L + M) + MNK2 + 31K3}

Tensor-ESPRIT O{2(MNL)3 + MNL(M + N + L) + MLK(N + K)
+K3(L + M) + MNK2 + 31K3}

RD-MUSIC O{4KMNL + M2N2K2(MN + K2) + dθ(MK)!(MK − 1)
+MNL(M + N + L)}

MUSIC O
{

LM2N2 + 4(MN)3 + 4dθdϕdr MN(MN + 1)
}

5. Simulation Results

Several numerical simulations are developed to prove the superiority of our method
in parameter estimation. ESPRIT [28], tensor ESPRIT [30], and RD-MUSIC [20] are em-
ployed for performance comparison. In addition, Cramér–Rao bound (CRB) [41,42] is
employed to evaluate the precision of the developed algorithm. In this part, bistatic
FDA-MIMO radar with M = 18 transmitter antennas and N = 18 receiver antennas is
considered. In the simulation, it is supposed that there are three uncorrelated targets at
(θ1, ϕ1, r1) = (−50◦,−15◦, 30, 000 m), (θ2, ϕ2, r2) = (0◦, 20◦, 60, 000 m), and (θ3, ϕ3, r3) =
(30◦,−10◦, 0 m). To assess the precision of our method, the root mean square error (RMSE)
is employed, where the RMSEs of angle and range estimation can be given by

RMSEθ,ϕ =
1
K

K

∑
k=1

√√√√1
ζ

ζ

∑
i=1

{(
θ̃k,i − θk

)2
+ (ϕ̃k,i − ϕk)

2
}

, (55)

RMSEr =
1
K

K

∑
k=1

√√√√1
ζ

ζ

∑
i=1

(r̃k,i − rk)
2, (56)

where the results of the i-th Monte Carlo of θk, ϕk and rk are θ̃k,i, ϕ̃k,i and r̃k,i. ζ is the total
Monte Carlo times, ζ = 500.

Figures 3 and 4 prove the effectiveness of the developed algorithm, where SNR = 20 dB
and L = 200. Figure 3 demonstrates the spatial spectrum of DOA. It can be seen that DOA
estimation is accurately achieved through spatial spectrum searching. The spatial spectrum
of the proposed algorithm is clearer and more accurate than that of MUSIC algorithm,
and has more sharp peaks. We can know from Figure 4 that our method can accurately
obtain the DOA, DOD, and range information of three targets. It can testify the availability
of our method.
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Figure 3. The spatial spectrum, SNR = 20 dB, and L = 200.

Figure 4. Estimation results, SNR = 20 dB, L = 200.

Figures 5 and 6 show the comparisons of the computational complexity with the
number of array elements and the number of snapshots, respectively. It is known from
Figure 5 that the computational complexity of all algorithms increases with the increase in
the number of array elements. The computational complexity of our algorithm is close to
that of Tensor-ESPRIT and RD-MUSIC, and far lower than that of MUSIC. Figure 6 shows
that the computational complexity of our method is lower than that of RD-MUSIC and
slightly higher than that of Tensor-ESPRIT. In general, since our method is a real-valued
operation, the computational complexity of our method is lower than that of RD-MUSIC,
which is close to that of Tensor-ESPRIT algorithm.
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Figure 5. Computational complexity comparison versus the number of array elements.
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Figure 6. Computational complexity comparison versus the number of snapshots.

For exploring the impact of different SNR on the precision of the algorithm, the first
group of comparative tests is proposed, where L = 50. Figures 7–9 show the comparison of
DOA-DOD-range estimations of different methods. From this set of comparative experi-
ments, we can see that our method has superior precision than other algorithms in DOA,
DOD, and range estimation, and nearer to the CRB. This is because the developed algorithm
takes advantage of the multi-dimensional structure of data, and can obtain accurate esti-
mations through spectral peak searching. On the one hand, the accuracy of our method in
DOA and DOD estimation is very close to that of the RD-MUSIC, but the computational
redundancy is reduced. On the other hand, in terms of range estimation, since the subarray
division can more accurately decouple the range information and DOD information, more
accurate range estimation can be obtained. Moreover, the accuracy of tensor ESPRIT is more
accurate than that of ESPRIT due to the use of multi-dimensional structure characteristics.
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Figure 7. DOA estimation comparison versus SNR, L = 50.
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Figure 8. DOD estimation comparison versus SNR, L = 50.
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Figure 9. Range estimation comparison versus SNR, L = 50.
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The second group of experiments confirms the advantage of our algorithm under
different snapshots, where SNR = 5 dB. From Figures 10–12 we can know that DOA-DOD-
range estimation accuracy of the developed algorithm are higher to the other algorithms.
Moreover, the estimation accuracy of the developed algorithm is more stable in the case
of low snapshots. It is because our algorithm utilizes high-dimensional data to improve
the performance under small snapshots. In terms of DOA and DOD estimation, the per-
formance of our method is slightly better than that of the RD-MUSIC. However, in range
estimation, the accuracy of our method is higher to the RD-MUSIC because the subarray
division solves the coupling problem of the transmitter. Moreover, the precision of tensor
ESPRIT algorithm is obviously higher than ESPRIT algorithm in small snapshots. With the
increase in snapshot, the precision gap between the two methods will gradually decrease.
That is to say, the accuracy of the two algorithms is very close in high snapshots. Only
the precision of our method is nearer to CRB curve. This demonstrates the superiority of
our method.
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Figure 10. DOA estimation comparison versus the number of snapshots, SNR = 5 dB.
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Figure 11. DOD estimation comparison versus the number of snapshots, SNR = 5 dB.
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Figure 12. Range estimation comparison versus the number of snapshots, SNR = 5 dB.

Another criterion utilized to access the precision of the developed algorithm is proba-
bility of the successful detection (PSD), where PSD is given by

PSD =
D
ζ
× 100%, (57)

where D is the number of times of obtaining the correct estimation result. If the angle error
is lower than 0.1◦ and the range error is lower than 0.1 km, it is the correct estimation result.

For further exploring the estimation accuracy of our method, the concept of PSD is
introduced to design the third group of experiments, where L = 50. It can be seen from
Figures 13–15 that in DOA estimation, DOD estimation and range estimation, the PSD
of the developed method is higher than the other methods at the same SNR. This means
that the estimation accuracy of the developed algorithm is the highest at the same SNR.
In addition, when SNR = 0 dB, PSD of our algorithm can reach 100% in DOA estimation.
It shows that our method can obtain more accurate results at low SNR. It is worth noting
that the proposed method has less advantages than the RD-MUSIC algorithm in angle
estimation, but has greater advantages in range estimation. In conclusion, the estimation
accuracy of the developed approach is higher than the other methods.
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Figure 13. PSD of DOA estimation versus SNR, L = 50.
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Figure 14. PSD of DOD estimation versus SNR, L = 50.
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Figure 15. PSD of range estimation versus SNR, L = 50.

6. Conclusions

In this paper, a joint DOA-DOD-range estimation algorithm with low computational
complexity based on real-valued HOSVD is developed for bistatic FDA-MIMO radar.
The developed algorithm can realize high-precision DOA-DOD-range estimation with low
computational complexity. By employing unitary transformation technique, our method
converts data into real-valued data. Then our algorithm utilizes HOSVD to estimate the
signal subspace and construct a two-dimensional spatial spectral function. Then, the spatial
spectral function is transformed into one-dimension by Lagrange algorithm, and the DOA
estimation is obtained. The proposed approach divides the transmitting array into several
subarrays, which decouples the DOD and range information. Finally, the decoupled phase
is employed to achieve DOD and range estimations. Our method preserves the original
multidimensional structure of the data and effectively improves the estimation precision.
Numerical simulations demonstrate the preponderance of our method.
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Abstract: In recent years, sparse direction-of-arrival (DOA) estimation for multiple-input multiple-
output (MIMO) radar has attracted extensive attention and been extensively studied, especially
the method based on the classic least absolute shrinkage and selection operator (LASSO) estimator.
The alternating-direction method of multipliers (ADMM) is an effective method for solving this
problem at the cost of introducing an additional user parameter. To avoid introducing an additional
user parameter, this paper adopts an equivalent transformation in the form of the generalized SParse
Iterative Covariance-based Estimation (qSPICE) cost function to obtain a mean squared minimized
form of the cost function. Then, the problem is transformed into a sparse optimization problem in
the form of a weighted LASSO. Next, this unconstrained optimization problem is decomposed into
three subproblems, which are solved separately to reduce the dimension of each problem and thus
reduce the overall computational complexity based on ADMM. Simulation results and measured
data indicate that the proposed method significantly outperforms the traditional super-resolution
DOA estimation method and ADMM-LASSO method and slightly outperforms qSPICE in terms of
resolution and sidelobe suppression capability. In addition, the proposed method has a much lower
computational complexity and substantially fewer iterations than qSPICE.

Keywords: multiple-input multiple-output radar; direction-of-arrival estimation; sparse signal
processing

1. Introduction

In recent years, a new type of antenna system, multiple-input multiple-output (MIMO),
has been introduced [1,2]. A MIMO antenna system is generally defined as a system
that has multiple transmitted linearly independent waveforms and is capable of jointly
processing multiple received antenna signals. MIMO radar draws on the idea of MIMO
communication [3]. Its mechanism is to adopt transmit waveform diversity technology to
improve the angular (spatial) resolution of the radar system while reducing the number of
physical channels and antenna aperture, compared with traditional array antennas.

Estimation of the direction-of-arrival (DOA) of multiple targets in noise-polluted
received data is the most important task in the practical application of centralized MIMO
radar. The most fundamental DOA estimation method is the delay-and-sum (DAS) method,
which can be implemented efficiently by fast Fourier transform (FFT) due to the Fourier
structure of the orientation matrix. However, the resolution of this method is poor; to
improve the positioning accuracy of the target source, many high-precision DOA estima-
tion methods have been developed for traditional single-input multiple-output (SIMO)
radar [4–7]. More recently, DOA estimation methods have been introduced into the field
of centralized MIMO radar DOA estimation [8–10]. Among these methods, estimation

Remote Sens. 2023, 15, 446. https://doi.org/10.3390/rs15020446 https://www.mdpi.com/journal/remotesensing
162



Remote Sens. 2023, 15, 446

of signal parameters via rotational invariance techniques (ESPRIT) and multiple signal
classification (MUSIC) are relatively classic because of their simplicity and high-resolution
performance [8,9]. Based on the orthogonality characteristics of the signal subspace and
noise subspace, the multiple signal classification (MUSIC) method can lead to better DOA
estimation performance than the DAS method with higher resolution. Taking advantage of
the rotational invariance of the spatial correlation matrix signal subspace, the (ESPRIT) algo-
rithm was proposed with excellent resolution and search-free advantages. In reference [10],
the parallel factor analysis (PARAFAC) algorithm was proposed for a colocated MIMO
radar with imperfect waveforms. ESPRIT is a low-dimensional and high-efficiency version
of PARAFAC [11], and they have similar resolution performance. However, the resolution
of these methods is limited, and noticeable performance degradation occurs when there are
a few snapshots or a single snapshot. Recently, deep-learning techniques have been applied
to DOA estimation for massive MIMO systems and achieved good system performance [12].
However, this method requires many training samples and the training phase is complex.

To further improve the resolution performance of MIMO radar DOA estimation,
refs. [13,14] proposed the iterative adaptive method (IAA) for MIMO radar imaging; tests
have demonstrated that the IAA method can function stably with a small number of
snapshots or a single snapshot and has better angular resolution and target positioning
accuracy. However, due to its high computational complexity, this method is difficult
to apply in practical engineering [6]. Taking advantage of the sparsity of the source
distribution, sparse learning via iterative minimization (SLIM) was proposed [15] for
MIMO radar imaging. The method follows an Lq-norm constraint and thus offers a more
accurate estimate. In addition, SLIM has been demonstrated to have a higher angular
resolution and lower computational complexity than IAA. Furthermore, a sparse spectrum
estimation method with a higher resolution, called SParse Iterative Covariance-based
Estimation (SPICE), was proposed based on weighted covariance fitting criteria [16,17]. This
method is a semiparametric method, which converges globally and requires no selection
of user parameters. In the case of a small number of snapshots, its frequency estimation
performance is better than those of IAA and SLIM. However, the method has an L1-norm
penalty (sparse constraint) for both signal and noise, which may result in a singular
covariance matrix or many conditions. To avoid this problem, an improved algorithm,
named qSPICE, was developed by introducing a Lq-norm constraint on noise changes,
where q ≥ 1 [18]. This method offers better estimation performance than SPICE. However,
this method requires solving for the covariance matrix and its inverse, as well as performing
the associated matrix multiplication operations to estimate each sampling grid point, which
may result in a large computational burden, especially in massive MIMO (m-MIMO)
signal processing.

With the increasing demand for higher reliability and higher data rates, novel MIMO
antenna technologies are booming. In [19], an optimized algorithm based on semidefinite
programming (SDP) and minimum mean squared error (MMSE) is proposed for s cogni-
tive radio (CR) MIMO system. This method is proven to perform better in terms of total
transmitted power and signal-to-interference plus noise ratio (SINR). To alleviate the large
channel state information (CSI) feedback in m-MIMO system, a robust channel estima-
tion scheme is proposed based on the separation mechanism of the channel matrix [20].
Moreover, some MIMO antenna design strategies and beamforming methods have also
been well developed, such as m-MIMO antenna technology for 5G communication base
stations [21,22], 10-element MIMO antenna design for new 5G smartphones [23,24], ultra-
massive MIMO radar technology for terahertz antenna beamforming [25], etc. However,
m-MIMO antenna arrangement requires the integration of a huge number of antennas at the
base station and a large number of antennas at the user terminal, which will undoubtedly
cause hardware implementation challenges and extremely high signal-processing com-
plexity: whether it is for the spatial diversity and beamforming of MIMO communication
systems [26], or directions of arrival (DOA) estimation of MIMO radar systems [17].

163



Remote Sens. 2023, 15, 446

To reduce the high signal-processing complexity for m-MIMO systems, various ad-
vanced matrix inversion acceleration algorithms, such as the Neumann series (NS) algo-
rithm [27] and the Jacobi algorithm [28], may be used to reduce the computational burden
of qSPICE or IAA methods. In [29], the NS algorithm was used for matrix inversion approx-
imation (MIA) for m-MIMO signal processing. This method transforms the matrix inverse
problem into a matrix multiplication problem, which is suitable for hardware platforms,
but its computational complexity is the same or even higher than those of direct inverse
methods (e.g., QR-based methods [30]). Although the Jacobi method reduces the com-
plexity from O

(
N3) to O

(
LN2), where L represents the number of iterations, it converges

slowly [31].
The alternating-direction method of multipliers (ADMM) is a powerful technique

for solving massive optimization problems. This method is widely used in various fields,
such as compressed sensing (CS) [32], regularization estimation [33], image processing [34],
and machine learning [35]. In [36], the least absolute shrinkage and selection operator
(LASSO)-ADMM algorithm was proposed for solving L1-norm constrained optimization
problems for m-MIMO signal detection. In [37], ADMM was used to reduce the computa-
tional complexity of CS-DOA compared with the traditional interior point method (IPM);
this method reduces the computational complexity by dividing the problem into multiple
subproblems during the iteration process to reduce the dimension of each problem. In [38],
an imprecise augmented Lagrange multiplier (ALM)-ADMM algorithm was proposed for
solving a weighted mixed L2,1-norm penalty minimization problem to improve the DOA
estimation performance for MIMO radar signals with missing elements.

Although the ADMM-based methods discussed above can efficiently solve the array
DOA estimation problem, the application of an ADMM method introduces two additional
user parameters, i.e., a Lagrangian parameter and a sparse regularization parameter [39];
the simultaneous adjustment of these two parameters is very tricky. To avoid this problem,
in the present paper, the basic form of qSPICE is expanded, weighted covariance fitting
is performed, and a mean square minimized form of the cost function is obtained by an
equivalent transformation of the qSPICE cost function. Then, through the optimization
properties, the problem is transformed into a sparse optimization problem in the form of
a weighted LASSO. Then, this unconstrained optimization problem is decomposed into
three subproblems to reduce the dimension of each problem and thus reduce the compu-
tational complexity based on ADMM. Due to the absence of user parameters in qSPICE,
the proposed method can eliminate one sparse regularization parameter compared with
the traditional ADMM-LASSO method, therefore significantly alleviating the difficulty of
parameter selection. Meanwhile, the theoretical computational complexity of the proposed
method is one order of magnitude lower than that of the traditional qSPICE method. Simu-
lation results and measured data indicate that the estimation performance of the proposed
method is not lower than those of qSPICE and ADMM-LASSO, and it incorporates the
advantages of both methods, i.e., low complexity and a single user parameter.

The remainder of this paper is organized as follows. Section 2 reviews the MIMO radar
signal model and the generalized SPICE and ADMM-LASSO methods. Then, the proposed
ADMM-qSPICE DOA estimation method for MIMO radar is derived in detail. In Section 3,
simulation and test results are presented, which demonstrate the effectiveness of the
proposed method. In Section 4, the limitations of the proposed method are discussed.
Section 5 presents the conclusions of this study.

2. Materials and Methods

2.1. MIMO Signal Model

We consider a centralized MIMO radar system equipped with M transmitting antennas
and N receiving antennas. The transmitting and receiving antennas are assumed to be very
close to each other such that the targets can be considered to be in the same orientation
relative to them in the far field. It is assumed that the transmitting and receiving antennas
of MIMO radar incorporate uniform linear arrays (ULAs) and that the MIMO radar system
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uses M transmitting antennas to transmit M mutually orthogonal waveforms with the
same bandwidth and center frequency. Suppose there are K target sources. The DOA of
the k-th target source is expressed as θk(k = 1, 2, · · · , K). Based on the orthogonality of
the transmitted signal waveform, the receiving array matches the filtered output; that is,
the received data vector y(t) ∈ CMN×1 can be expressed as [17,40,41]

y(t) = As(t) + e(t) (1)

where s(t) = [s1(t), s2(t), · · · , sK(t)]
T ∈ CK×1 represents the target source signal, in which

sk(t) = αk · exp(jωkt), with αk and ωk representing the reflection coefficient and Doppler
angular frequency, respectively, of the k-th azimuth target; t denotes the distance-time
variable; A = At � Ar = [a1, a2, · · · , aK] ∈ CMN×K is the orientation matrix; � represents
the Khatri-Rao product; and e(t) denotes the covariance matrix of zero-mean white Gaus-
sian noise σ2IMN , with IMN denoting the MN × MN-dimensional unit matrix. At and Ar
represent the transmitting and receiving orientation matrices, respectively, which can be
expressed as

At = [at(θ1), at(θ2), · · · , at(θK)] ∈ CM×K (2)

Ar = [ar(θ1), ar(θ2), · · · , ar(θK)] ∈ CN×K (3)

where at(θk) and ar(θk) represent the transmitting and receiving orientation vectors, re-
spectively, which are expressed as

at(θk) = [1, exp(j2πdt sin θk/λ), · · · , exp(j2πdt(M − 1) sin θk/λ)]T (4)

ar(θk) = [1, exp(j2πdr sin θk/λ), · · · , exp(j2πdr(N − 1) sin θk/λ)]T (5)

where dt and dr represent the transmitting and receiving element spacings, respectively.
The receiving element spacing is dr = λ/2, where λ represents the carrier wavelength.
The transmitting element spacing is dt = Mt · dr. According to MIMO theory, the equivalent
virtual array of a MIMO system can be regarded as a SIMO ULA antenna with MN elements.
Assuming there are L snapshots in total, the received data can be discretized as

y(l) = As(l) + e(l) (6)

where s(l) ∈ CK×1 is the target signal source to be estimated and e(l) ∈ CMN×1 denotes
noise, for l = 1, 2 · · · , L. To simplify the model, it is assumed that the Doppler frequency of
the target ωk = 0; at this point, the only target information to be estimated is the azimuth
angle θk and scattering intensity αk.

For many MIMO radar detection applications, such as airspace surveillance radar,
the number of targets is considerably smaller than the number of potential source locations.
In such a case, more accurate DOAs with higher resolution can be obtained using the
sparsity of s. Below, two sparse signal recovery methods are considered, and the proposed
method is derived in detail.

2.2. qSPICE

A classic sparse recovery method for solving model (6) is LASSO, whose cost function
can be expressed as [42]

minimize
s

1
2
‖y − As‖2

2 + μ‖s‖1 (7)

where μ represents a user-adjustable regularization parameter, which balances the sparsity
of the solution with the fitting degree of the signal. To avoid tricky parameter selection
problems, an interesting alternative, namely the SPICE algorithm, was proposed in [16].
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This method is based on the sparse covariance fitting criterion, and the minimization of the
cost function can be expressed as

minimize
p

∥∥∥R−1/2
(

yyH − R
)∥∥∥2

F
(8)

where

R = FPFH (9)

F = [ A IMN ]

Δ
= [a1, a2, · · · , aMN+K]

(10)

P = diag(p) (11)

p =
[
|s1|2, |s2|2, · · · , |sK|2, σ2

1 , σ2
2 , · · · , σ2

MN

]
Δ
= [p1, p2, · · · , pK+MN ]

(12)

in which R−1/2 represents the Hermitian positive-definite root mean square of R−1; ‖·‖F
denotes the Frobenius matrix norm; (·)H is the conjugate transpose; diag(·) denotes a
diagonal matrix composed of a specified vector; and σi denotes the noise variance of MIMO
channel i(i = 1, 2, · · · , MN). The minimization of (8) is equivalent to

minimize
pk≥0

yHR−1y + ‖Wp‖1 (13)

where

W = diag([w1, w2, · · · , wK+MN ]) (14)

wj =
‖ak‖2

‖y‖2 , j = 1, 2, · · · , K + MN (15)

The constraint of (13) is a weighted L1 norm; this constraint tends to make its solution
sparse. As expressed in (12), the SPICE algorithm simultaneously penalizes signal and noise.
However, the penalty does not distinguish between signal and noise terms. Therefore,
the minimized solution (13) will also cause the solution for the noise variance to tend to be
sparse; that is, some values will be 0. In such a case, the covariance matrix R is not of full
rank, which leads to two problems: unsatisfactory sparsity and an estimated increase in
the model order [18]. To address these problems, a generalized SPICE algorithm, namely
the qSPICE algorithm, was proposed based on the second constraint in the improved
expression (13):

minimize
pk≥0

yHR−1y + ‖Wsps‖1 + ‖Wnpn‖q (16)

where

ps = [p1, p2, . . . , pK]
T (17)

pn = [pK+1, pK+2, . . . , pK+MN ]
T (18)

Ws = diag([w1, w2, . . . , wK]) (19)

Wn = diag([wK+1, wK+2, . . . , wK+MN ]) (20)
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in which ‖·‖q represents the vector q norm (q > 0). The sparsity of the noise variance can
be directly controlled by selecting a suitable value for q. When q = 1, qSPICE degenerates
into the classic SPICE algorithm. Therefore, the robustness of the estimation results can
be improved by increasing the noise variance constraint term in Equation (16). However,
the computational complexity of this method is too high, and it requires multiple matrix
multiplication operations and one MN × MN matrix inversion operation in each iteration.
Its computational complexity is O

{
J
[
K(MN)2 + (MN)3

]}
, where J represents the number

of iterations, which may generally be several hundred according to the authors’ experi-
ence [16]. Such high complexity is not conducive to practical engineering applications.

2.3. ADMM

There is also an effective divide-and-conquer approach for solving the optimization
problem (7), namely the ADMM algorithm [43]. It has both the strong convergence char-
acteristics of the multiplier method and the decomposability of the dual maximization
problem. The LASSO problem is rewritten as a separable convex optimization problem
with linear constraints (ADMM standard form) as follows:

minimize
s,z

1
2
‖y − As‖2

2 + μ‖z‖1 (21)

subject to

s = z (22)

where z ∈ CK×1 is an intermediate variable. The constrained optimization problem (21) is
equivalent to the unconstrained optimization problem (22).

According to the multiplier method, the augmented Lagrangian function is con-
structed as

Lρ(s, z, u) =
1
2
‖y − As‖2

2 + μ‖z‖1 + uT(s − z) +
ρ

2
‖s − z‖2

2 (23)

where u ∈ CK×1 is an intermediate variable and ρ is an introduced penalty parameter
related to the constraint condition that satisfies ρ > 0. According to the ADMM algo-
rithm [36], only one variable is updated at a time, while the other two variables are fixed,
and the updating process is repeated alternately. For iterations j = 1, 2, · · · , J, the following
equations are applied:

sj+1 = argmin
s

Lρ

(
s, zj, uj

)
zj+1 = argmin

z
Lρ

(
sj+1, z, uj

)
uj+1 =u +

(
sj+1 − zj+1

) (24)

According to the equations above, each variable is updated successively through the
following three steps:

• s update:

sj+1 =
(

ATA + ρI
)−1(

ATy + ρ
(

zj − uj
))

(25)

• z update:

zj+1 = So f t
(

uj + sj+1,
μ

ρ

)
(26)
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where Sλ/ρ(·) is the soft threshold function, which satisfies

So f t
(

uj + sj+1,
μ

ρ

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x − μ

ρ
x >

μ

ρ

0 |x| ≤ μ

ρ

x +
μ

ρ
x < −μ

ρ

(27)

• u update:

uj+1 = uj + sj+1 − zj+1 (28)

According to our experience, the ADMM algorithm can lead to a satisfactory value of
(25) after dozens of iterations by iteratively alternating among (25)–(28). Since the original
problem is decomposed into three subproblems for solution, the variable dimension of
each step of the alternating update is low, and the updating steps of z and u only involve
vector addition and subtraction operations, resulting in low computational complexity.
Notably, the computational complexity of this problem is mainly due to the calculation of
the first matrix inverse in Equation (25). This matrix is constant in each iteration, so the
matrix inverse must only be computed once in the algorithmic process. The computational
complexity of this algorithm is O

(
K3).

Compared with the qSPICE algorithm, this method has great advantages in terms of
computational complexity, but it introduces a new user parameter, namely the Lagrangian
parameter μ, on the basis of the sparse regularization parameter ρ of the original LASSO
problem. Adjusting both μ and ρ at the same time is highly unpreferrable, which makes
the method difficult to apply in practice.

2.4. Proposed Method

To avoid the above problem, we derive a new DOA estimation method with high
resolution, high speed, and a single user parameter using the generalized SPICE problem
model through the ADMM solution method.

2.4.1. ADMM-qSPICE

Similar to the derivation in [44,45], and assuming that the variances of the noise terms
are consistent, i.e., ∀i, σi = σ, the optimization problem (16) can be equivalent to a weighted
mean square LASSO problem [7,18]

minimize
s

‖y − As‖2 + ‖Ds‖1 (29)

where the weight matrix D satisfies

D = diag

⎛⎝⎡⎣
√√√√ ‖a1‖2

2

(MN)q · ‖y‖2
2

,

√√√√ ‖a2‖2
2

(MN)q · ‖y‖2
2

, · · · ,

√√√√ ‖aK‖2
2

(MN)q · ‖y‖2
2

⎤⎦⎞⎠ (30)

in which q is the control constraint parameter for noise in the generalized SPICE. We
note that minimize

s
‖y − As‖2 + ‖Ds‖1 is a Lagrangian form of an optimization prob-

lem that is similar to minimize
s

‖y − As‖2s.t. ‖Ds‖1 ≤ ε. This problem is equivalent to

minimize
s

‖y − As‖2
2s.t. ‖D′s‖1 ≤ ε, where there is a bidirectional mapping relationship in

D  → D′ [44]. In the simulation and processing of the measured data, we find that it is

168



Remote Sens. 2023, 15, 446

possible that D ≈ D′, which can lead to excellent DOA results. Therefore, we solve the
following weighted LASSO problem instead:

minimize
s

‖y − As‖2
2 + ‖D′s‖1 (31)

We rewrite the above equation as

minimize
s

‖y − As‖2
2 + ‖z‖1 (32)

subject to

D′s − z = 0 (33)

and construct the augmented Lagrange function

L̃ρ(s, z, u) =
1
2
‖y − As‖2

2 + ‖z‖1 + uT(D′s − z
)
+

ρ

2

∥∥D′s − z
∥∥2

2 (34)

According to the ADMM algorithm [36], only one variable is updated at a time, while
the other two variables are fixed, and the update is repeated alternately. For iterations
j = 1, 2, · · · , J, we apply

sj+1 = argmin
s

L̃ρ

(
s, zj, uj

)
zj+1 = argmin

z
L̃ρ

(
sj+1, z, uj

)
uj+1 =uj + ρ

(
D′sj+1 − zj+1

) (35)

According to the equations above, each variable can be updated successively through
the following three steps: To simplify the form, we let ξ = u

ρ and express (34) in scaled form:

L̃ρ(s, z, ξ) =
1
2
‖y − As‖2

2 + ‖z‖1 +
ρ

2

∥∥D′s − z + ξ
∥∥2

2 −
ρ

2
‖ξ‖2

2 (36)

• s update:
Taking the derivative of (36) with respect to s and setting it to 0 yields

∂L̃ρ

∂s
= −AT(y − As) +

ρ

2
· 2 · D′T(D′s − z + ξ) = 0 (37)

Therefore, the iteration formula for the variable s can be written as

sj+1 = (ATA + ρD′TD′)−1(ATy + ρD′T(zj − ξ j)) (38)

• z update:
Taking the derivative of (36) with respect to z yields

∂L̃ρ

∂z
=

∂(‖z‖1 +
ρ

2
‖D′s − z + ξ‖2

2 −
ρ

2
‖ξ‖2

2)

∂z

=
∂(

ρ

2
‖z‖1 + ‖z − (D′s + ξ)‖2

2)

∂z

(39)
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The solution to the above problem can be represented by the soft threshold [46] and
expressed as

zj+1 = So f t
(

ξ j + D′sj+1,
1
ρ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
ξ j + D′sj+1

)
+

1
ρ

, ξ j + D′sj+1 >
1
ρ

0,
∣∣∣ξ j + D′sj+1

∣∣∣ ≤ 1
ρ(

ξ j + D′sj+1
)
− 1

ρ
, ξ j + D′sj+1 < −1

ρ

(40)

• u update:
The iterative formula for variable u can be written as

uj+1 = uj + ρ(D′sj+1 − zj+1), uj = ρξ j (41)

By alternating iteration of Equations (38)–(41), the DOA result s of the proposed
method can be obtained. Algorithm 1 presents the pseudocode of this method. The matrix Δ

and vectors Φ and c represent intermediate variables. The iteration termination criterion is∥∥sj+1 − sj
∥∥ ≤ ε, where ε is a small positive number. sign(·) represents the sign function, �

denotes the Hadamard matrix product, and max(·) denotes the maximum of two numbers.

Algorithm 1 ADMM-qSPICE

1: D′ is initialized from (30), and Δ = (ATA + ρD′TD′)−1 is calculated. We set Φ = ATy,
j = 1, u = 0, z = 0, and s = 0.

2: While the termination criterion is not satisfied, do

3: sj+1 = Δ ·
(

Φ + ρD′T
(

zj − ξ j
))

is updated.

4: We let c = ξ j + D′sj+1.
5: zj+1 = sign(c)� max(0, |c| − 1/ρ) is updated.
6: uj+1 = uj + ρ(D′sj+1 − zj+1) is updated.
7: ξ j+1 = uj+1/ρ is updated.
8: We set j = j + 1.
9: End while

2.4.2. Computational Complexity Analysis

As presented in Algorithm 1, the proposed ADMM-qSPICE method can be imple-
mented by iterating (39)–(41) and performing some initialization calculations. We update
s using Equation (38); because its left term is a fixed matrix in each iteration of the loop,
it can be calculated beforehand for backup. Similarly, Φ is calculated in advance during
initialization for backup, which can significantly reduce the computational complexity of
the algorithm. The following is a complexity analysis of the initialization and iteration
processes. In Step 1 of Algorithm 1, initializing D′ requires (K + 2)MN multiplication oper-
ations. Calculating ATA requires (MN)2K multiplication operations. Since D′ is a diagonal
matrix, calculating D′TD′ only requires K multiplication operations, and inversion of the
matrix K × K has a computational complexity of K3. Therefore, Δ is required to initialize
(MN)2K + K3 + K. Initializing Φ requires KMN multiplication operations. Thus, the com-
putational complexity of the initialization portion is (MN)2K + K3 + (2K + 2)MN + K.
In the iterative process of Algorithm 1, updating s requires 2K2 + K multiplication oper-
ations, while updating z requires K2 + K multiplication operations. Updating u requires
K2 + 2K multiplication operations. We suppose J iterations are required; then, the compu-
tational complexity of the iterative process is J

(
4K2 + 4K

)
. In summary, the complexity

of the algorithm is K3 + (MN)2K + 2KMN + 4JK2 + (4J + 1)K + 2MN. The computa-
tional complexity of the iterative process of the proposed method is not high, and its main
computational load corresponds to the initialization of Δ.
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A comparison of the DAS method, IAA method, ADMM-LASSO method, qSPICE
method and proposed method in terms of computational complexity is shown in Table 1,
where J1∼J4 represent the numbers of iterations for IAA, ADMM-LASSO, qSPICE and
proposed method, respectively. Notably, the number of iterations J1 for IAA is set to a
fixed value of 12; J2, J3 and J4 depend on the termination criteria of the corresponding
algorithms.

Table 1. Complexity comparison.

Method Number of Multiplication and Division Operations
Computational

Complexity

Computational
Time

(MN = 512, K = 256)

DAS (FFT) Klog2K O(Klog2K) 4.43 × 10−4 s
IAA [13] J1

[
(MN)3 + 2(MN)2K + MNK

]
O
(

J1(MN)3
)

4.88 s

ADMM-LASSO [36] K3 + (MN + J2)K2 + KMN O
(
K3) 0.03 s

qSPICE [18] J3

[
(MN)3 + (K + 1)(MN)2 +

(
K2 + K + 1

)
MN + 12K

]
O
(

J3(MN)3
)

11.41 s

Proposed method K3 + (MN)2K + 2KMN + 4J4K2 + (4J4 + 1)K + 2MN O
(
K3) 0.13 s

3. Results

In this section, the performance of the proposed ADMM-qSPICE method is demon-
strated by simulation and testing. First, we conduct simulation tests to verify the DOA
estimation accuracy and super-resolution ability of the proposed method. Then, we fur-
ther evaluate the estimation accuracy and calculation time of the proposed method using
two sets of measured data. The methods that are compared in this paper are DAS, IAA,
ADMM-LASSO and qSPICE. Since only the angle estimation performance of each method
is considered in this study, the target is set to be static and located at different azimuth
angles of the same distance element. All our simulations and measurements are performed
on a PC workstation equipped with 64-bit MATLAB R2018a, an Intel Core i5-9500 CPU
(3.0 GHz) and 16 GB RAM. The root mean square error of angle estimation is used to
evaluate the simulation performance of the proposed method, which is defined as

RMSE = 10log10

√√√√ 1
P

P

∑
p=1

∣∣θ̂p − θp
∣∣2 (42)

where θp represents the true value of the target angle of the p-th target grid and θ̂p denotes
the corresponding estimated value. The signal-to-noise ratio (SNR) is defined as

SNR = 10log10

(
Ps

δ2

)
(43)

where Ps represents the signal power and σ2 is the variance of the additive white Gaus-
sian noise.

3.1. Simulation Results

It is assumed that there are two independent sources with the same radiation power,
which are located at azimuth −5◦ and 0◦, respectively. The azimuth scanning range is
[−90◦, 90◦], and the number of target points is K = 512. The SNR is set to SNR = 10 dB.
We consider a 2-T 4-R MIMO radar system with a carrier frequency of fc = 77 GHz,
a receiving element spacing of dr = λ/2 = 1.9 mm, and a transmitting element spacing of
dt = Mt · dr = 7.6 mm.

Figure 1a shows the results of 10 Monte Carlo tests with the traditional DAS method.
This method can be implemented quickly by FFT, but the azimuth resolution of the DOA
results is very low, resulting in an inability to resolve two adjacent targets effectively.
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Figure 1b shows the results of 10 Monte Carlo tests with the IAA method. This method
significantly outperforms the traditional DAS method in terms of sidelobe suppression,
resolution and positioning accuracy, and the two targets are distinguished successfully in
all 10 tests. However, this method still has various problems, i.e., unsatisfactory resolution,
high sidelobes, and high computational complexity. Figure 1c shows the results of 10
Monte Carlo tests with the LASSO-ADMM method in [36], where the user parameters
λ = 1 and ρ = 10. We manually adjust these two parameters based on the quality of the
DOA result. This quality specifically expressed as target resolution, 3 dB width, and DOA
accuracy. The values of λ = 1 and ρ = 10 were obtained by extensive experiments
and are the parameters that we believe are good for the ADMM-LASSO method under
the simulation conditions in this paper. This method can distinguish the two adjacent
targets well in most cases, and the sidelobe suppression effect is better than that of IAA.
However, the method requires the adjustment of two user parameters at the same time
in the process of implementation. When any of these parameters change, the target’s
resolution, 3 dB width, and DOA accuracy decrease. Hence, this is a very tricky problem
in engineering applications. Figure 1d shows the results of 10 Monte Carlo tests with the
qSPICE method, where q = 1.5. This method can better recover the amplitude and position
information of the target, and the DOA result is more sparse than that in Figure 1c. However,
the computational complexity of this method is quite high, especially for m-MIMO array
problems. Figure 1e shows the results of 10 Monte Carlo tests with the proposed method,
where q = 1.5 and ρ = 1.2. The DOA results of the proposed method are better than those
of DAS, IAA and LASSO-ADMM and are similar to those of qSPICE. In one of the Monte
Carlo tests, qSPICE shows a spike with an amplitude of approximately 0.3 at −26◦, but the
proposed method only has a small peak with an amplitude of less than 0.05. The noise
suppression ability of the proposed method clearly may be better than that of qSPICE when
ρ = 1.2 is reasonably adjusted.

Figure 2 shows the root mean square error (RMSE) and Cramer-Rao bound (CRB)
for the angle estimation results of the five methods over the SNR range of −5 dB to
30 dB. The RMSE of the proposed method is considerably lower than those of DAS and
LASSO-ADMM, slightly lower than that of IAA, and similar to that of SPICE. In addition,
as presented in Table 2, the target width of 3 dB when SNR = 10 dB quantitatively verifies
the resolution performance of the proposed method. Moreover, the corresponding RMSE is
presented. The proposed method clearly outperforms all the comparison methods above in
terms of resolution, and its 3 dB width is the narrowest.

(a) (b)
Figure 1. Cont.
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(c) (d)

(e)

Figure 1. Simulated DOA results. (a) DAS method, (b) IAA method, (c) ADMM−LASSO method
(λ = 1 and ρ = 10), (d) qSPICE method, and (e) proposed method (ρ = 1.2).

Figure 2. RMSE and CRB of each method.

Table 2. Performance Comparison of Various Methods (SNR = 10 dB).

Method 3 dB Width (Degrees) RMSE (dB)

DAS 16.80 12.79
IAA 2.26 0.15

ADMM-LASSO 3.22 3.791
qSPICE 1.32 −2.269

ADMM-SPICE 0.98 −1.791
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3.2. Measured Results

In this section, a set of MIMO radar measurements are used to verify the performance
of the proposed method. An optical image of the original scene captured by an unmanned
aerial vehicle (UAV) is shown in Figure 3, where the imaging area contains six vehicles.
The MIMO radar parameters used in the test are shown in Table 3. There is a relationship
among the carrier frequency, number of array elements and beam width, which jointly
affect the azimuth resolution. The pulse width and pulse repetition interval affect the SNR.
The bandwidth determines the range resolution.

Table 3. Parameters of the Measured Data.

Parameter Value

Carrier frequency 77 GHz
Bandwidth 3.75 GHz
Beam width 1.4◦

Pulse width 1 ms
Pulse recurrence interval 512 μs

Number of transmitting array elements 12
Number of receiving array elements 16

Range sampling points 261

Figure 3. Optical scene.

Figure 4a shows the two-dimensional results of the DAS method, with a processing
time of 0.02 s. The echo energy of the middle car is strong; there is a clear front contour,
but the sidelobe is quite high. The echo energies of the five vehicles on the right overlap
and are blurred because DAS is based on traditional matching filtering, which suffers from
low resolution and high sidelobes. Moreover, as can be seen from the Figure 4a, there are
strip-shaped strongly scattered objects above the vehicles, which are actually caused by
the stone edge of the flower bed. Figure 4b shows the two-dimensional results of the IAA
method, for which the processing time is 115.13 s. The IAA method effectively improves
the azimuth resolution of the image compared with DAS. The echo sidelobe of the middle
car is significantly suppressed, and the vehicles in the dense group on the right can be
better distinguished. Figure 4c shows the two-dimensional results of the ADMM-LASSO
method, and its processing time is 2.40 s. This method can further improve the azimuth
resolution of the target and better suppress the sidelobes compared with IAA. However,
the method has two user parameters that must be adjusted, i.e., the sparse regularization
parameter μ and Lagrangian parameter ρ. It is difficult to adjust both parameters at the
same time in practical applications.
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(a)

(b)

(c)

(d)
Figure 4. Cont.
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(e)

Figure 4. Measured Data. (a) Two−dimensional result of the DAS method, (b) Two−dimensional
results of the IAA method, (c) Two−dimensional results of the ADMM−LASSO method,
(d) Two−dimensional results of the qSPICE method, and (e) Two−dimensional results of the
ADMM−SPICE method.

Figure 4d shows the two-dimensional results of the qSPICE method, with a processing
time of 2704.81 s. As shown in the figure, this method further improves the azimuth resolu-
tion of the image compared with ADMM-LASSO. The sidelobes of the car in the center of
the scene are significantly suppressed, and the car is more clearly defined. Unfortunately,
the computational complexity of this method is too high, and the processing time is too
long to be applied to real-time imaging applications with automotive radar, a consequence
of the qSPICE method requiring high-dimensional matrix multiplication and inversion
operations during the iteration process and requiring thousands of iterations per range
element on average. Figure 4e shows the two-dimensional results of the ADMM-qSPICE
method, with a processing time of 9.52 s. Compared with ADMM-LASSO, this method not
only significantly improves the target resolution but also contains only one user parameter;
thus, it is easier to apply in practice. Compared with the qSPICE method, the proposed
method further suppresses the vehicle sidelobes. Sparser imaging results and more pro-
nounced vehicle contours enable vehicles to be better detected and positioned. In addition,
the computational complexity of this method is much lower than that of qSPICE method,
because there is no need to calculate the matrix inverse in the iterations of the method,
and the average number of iterations of each range element of the proposed method, i.e., 76,
is considerably lower than that of the qSPICE method.

Image entropy (IE) was introduced to quantitatively analyze the two-dimensional
target test results of the proposed method, where the lower the image entropy is, the better
the image restoration effect [7]. The IE can be explicitly expressed by

IE =
I

∑
i=1

pilog2 pi (44)

where I denotes histogram counts of the two-dimensional image, and pi represents the
probability of each gray level occurring. The image entropy of the processing results above
is shown in Table 4 below. DAS clearly has the highest image entropy, which indicates poor
image quality. The image entropy of IAA is lower than that of DAS, but the reduction is
limited. ADMM-LASSO and qSPICE show significantly reduced image entropy compared
with DAS and IAA, indicating that the image quality obtained by these two methods is
better. As presented in the last row of Table 4, the image entropy of the proposed method is
lower than those of other methods, which indicates that the proposed method has a stronger
ability to suppress noise and sidelobes, therefore making the two-dimensional imaging
performance on vehicles better and more conducive to vehicle detection and recognition.

176



Remote Sens. 2023, 15, 446

Table 4. Image Entropy.

Methods IE

DAS 4.03
IAA 3.70

ADMM-LASSO 1.55
qSPICE 1.08

ADMM-SPICE 0.97

4. Discussion

4.1. Results Analysis and Limitations

In this paper, an ADMM-qSPICE-based sparse DOA estimation method for MIMO
radar was proposed. The proposed method was compared and verified in detail based
on complexity analysis results, simulation results, and measured data for point and area
targets. As shown in Figures 1 and 4, the ADMM-qSPICE method achieved similar or
even better resolution performance than traditional qSPICE. Moreover, the computational
complexity of the ADMM-qSPICE method is considerably lower than that of the traditional
qSPICE method. However, although the proposed method has the above two advantages,
it also has various limitations.

As the ADMM algorithm was used to solve the problem, μ was introduced in the con-
struction of the augmented Lagrangian function, which led to an additional user parameter
that needed to be adjusted manually compared with the qSPICE method. Although one
parameter is less complex than the two parameters of ADMM-LASSO, it is still difficult for
practical applications. we always hope to obtain a user-parameter free method, which can
adapt to different SNRs and sparsities. In follow-up efforts, we will study the variation rule
of the Lagrangian parameter μ in different scenarios and seek an improved ADMM-SPICE
method without user parameters.

Another limitation is that the computational complexity of the method is still large.
Its computational complexity mainly comes from the matrix inversion in Equation (38).
In the future work, we will further accelerate the calculation of high-dimensional matrix
inversion for the proposed method.

4.2. Extended Applications

The proposed method can not only be used for the high accuracy DOA estimation of
MIMO radar, but also can be applied to other radar imaging techniques, such as MIMO
radar imaging, synthetic aperture radar (SAR) imaging [47] and real aperture radar (RAR)
super-resolution imaging processing [6]. This is because, on the one hand, the signal models
of the above problems are similar, and they can all be expressed as y = As + e. On the
other hand, it is because the proposed method has good adaptability, few user parameters,
low complexity, and easy implementation under various platforms.

In addition, the proposed method can also be employed to spatial diversity, beam-
forming, terminal locating and other techniques for m-MIMO antenna communication
systems [48]. These techniques may apply to some equipment such as base stations with
m-MIMO antennas and smartphones with new 5G MIMO antennas mentioned in [23,24].

For 5G communications and high accuracy MIMO radar, m-MIMO antenna systems
are required to achieve high data rates and high angular resolution. Taking MIMO radar
as an example, the higher the number of equivalent channels, the higher the angular
resolution of the system, and the better the performance of the corresponding DOA esti-
mation method. Therefore, theoretically, the proposed method can be applied to MIMO
systems with infinite array elements. However, limited by the complexity of hardware
implementation, the number of array elements in the actual MIMO radar is often limited.
For the measured data of this paper, we use a 12T × 16R MIMO antenna system. We also
made some simulations for m-MIMO antennas system. Due to the memory limitation of
the simulation platform, the maximum number of MIMO elements in our simulation is
64T × 64R. The results show that the proposed method can still achieve good performance.
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5. Conclusions

In this paper, a super-resolution DOA estimation method for MIMO radar based
on ADMM-qSPICE was proposed. This approach has two significant advantages. First,
compared with the ADMM-LASSO, the proposed method employs the weight matrix of the
qSPICE to eliminate a user parameter and yield a higher resolution and stronger sidelobe
suppression ability. Second, compared with qSPICE, the computational complexity of
the proposed method is reduced from O

(
J3(MN)3

)
to O

(
K3) without performance loss.

Furthermore, the proposed method can also be applied to MIMO radar imaging, SAR
imaging and massive MIMO systems in 5G communication. In future work, we will further
improve the proposed method to achieve completely parameter adaptation.
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Abbreviations

The following abbreviations are used in this manuscript:

DOA directions of arrival
MIMO multiple-input multiple-output
LASSO least absolute shrinkage and selection operator
ADMM alternating-direction method of multipliers
qSPICE generalized SParse Iterative Covariance-based Estimation
DAS delay-and-sum
FFT fast Fourier transform
SIMO single-input multiple-output
ESPRIT estimation of signal parameters via rotational invariance techniques
MUSIC multiple signal classification
PARAFAC parallel factor analysis
MVDR Minimum variance distortionless response
IAA iterative adaptive method
SLIM sparse learning via iterative minimization
SPICE sparse Iterative Covariance-based Estimation
NS Neumann series
MIA matrix inversion approximation
CS compressed sensing
IPM interior point method
ALM augmented Lagrange multiplier
ULA uniform linear array
RMSE root mean square error
CRB Cramer-Rao bound
UAV unmanned aerial vehicle
SNR signal-to-noise ratio
IE Image entropy
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Abstract: The detection of low, slow and small (LSS) targets, such as small drones, is a developing
area of research in radar, wherein the presence of ground clutter can be quite challenging. LSS targets,
because of their unusual flying mode, can be easily shadowed by ground clutter, leading to poor
radar detection performance. In this study, we investigated the feasibility and performance of a
ground clutter mitigation method combining slow-time multiple-input multiple-output (st-MIMO)
waveforms and independent component analysis (ICA) in a ground-based MIMO radar focusing
on LSS target detection. The modeling of ground clutter under the framework of st-MIMO was first
defined. Combining the spatial and temporal steering vector of st-MIMO, a universal signal model
including the target, ground clutter, and noise was established. The compliance of the signal model
for conducting ICA to separate the target was analyzed. Based on this, a st-MIMO-ICA processing
scheme was proposed to mitigate ground clutter. The effectiveness of the proposed method was
verified with simulation and experimental data collected from an S-band st-MIMO radar system with
a desirable target output signal-to-clutter-plus-noise ratio (SCNR). This work can shed light on the
use of ground clutter mitigation techniques for MIMO radar to tackle LSS targets.

Keywords: ground clutter mitigation; independent component analysis; slow-time MIMO radar

1. Introduction

Small drone detection using radar has attracted enormous attention in recent years [1–3].
With the rapid growth of the consumer drone market, unmanned aerial vehicles (UAVs)
have become a significant threat to civil aviation, anti-terrorism, and private security.
As a powerful sensor that can operate regardless the time and weather, radar plays an
important role in tackling these low, slow and small (LSS) targets. Many systems [4–13]
and techniques [14–19] focusing on LSS target detection in the field of radar have been
researched and developed.

The early LSS target surveillance radar systems were modified from the maritime radar
systems such as the MerlinTM Radar System from DeTect Inc. [20] and the initial product
of Robin Radar Systems Inc. [21]. They consist of two maritime radar antennas that rotate
along the azimuth and elevation to achieve quasi-3D detection. With the development of
phased array radar, more LSS target detection systems have turned to utilize antenna array
and digital beamforming technology to obtain better target detection performance [4,5].
In recent years, some relatively new radar concepts, such as multiple-input multiple-
output (MIMO) radar [6–8], multistatic radar [9,10], and ubiquitous radar (which is also
named holographic or staring radar) [11–13], have also been introduced to the field of LSS
target detection.

There are two main challenges in detecting LSS targets. The first challenge is the
poor target signal-to-clutter-plus-noise ratio (SCNR). Due to the low flying altitude of the
small drones, the radar beam must have a rather small grazing angle. This significantly

Remote Sens. 2022, 14, 6098. https://doi.org/10.3390/rs14236098 https://www.mdpi.com/journal/remotesensing
181



Remote Sens. 2022, 14, 6098

raises the ground clutter energy in the received signal. Considering the small radar cross-
section (RCS) of LSS targets, the target SCNR is significantly reduced. Secondly, the slow
flying, or hovering, velocity of the target renders the detection of LSS in slow-moving
ground clutter via conventional techniques such as moving target indication (MTI) or
moving target detector (MTD) ineffective. This is because ground clutter mainly consists of
buildings, trees, cars, etc. The velocity spectrum spread of this clutter ranges from zero to
tens of meters per second, which overshadows the speed of LSS targets. Thus, it is worth
investigating clutter mitigation methods for LSS target detection.

Independent component analysis (ICA) [22–24] has aroused worldwide research
interest in the field of signal processing since the 1990s. It has extensive applications in many
fields such as communication, radar, image processing, acoustic processing, biomedical
signal processing, and even financial data analysis [25]. Based on a MIMO system, the
purpose of ICA is to simultaneously separate independent non-Gaussian components from
observed multi-channel signals. This process can be used to help solve the ground clutter
mitigation problem.

MIMO radar, as a typical multi-channel system, utilizes omnidirectional antennas and
an orthogonal waveform in the transmitting stage, and then it forms a synthesized MIMO
beam in the receiving stage. MIMO radar leverages waveform diversity to further increase
the scale of the virtual array and spatial diversity [25–27]. A slow-time MIMO (st-MIMO)
waveform [28–30] expands a conventional radar waveform by phase-coding the pulses
of different channels to achieve orthogonal transmission and MIMO demodulation after
pulse-Doppler (PD) processing. Although the unambiguous Doppler speed is divided by
the number of Doppler sub-bands [31], st-MIMO is still feasible for slow-moving target
detection with acceptable orthogonality and bandwidth efficiency.

Over the last few years, various techniques have been developed to tackle LSS targets
from the radar detection stage to the parameter estimation stage and the target classification
stage. Regarding methods used to enhance LSS target detection performance at the range-
Doppler (r-D) level, one study [14] used the stationary point concentration technique
to reduce the noise floor caused by transmitter leakage and increase the signal-to-noise
ratio (SNR) of a UAV. Another study [15] adopted an iterative adaptive approach to
enhance the Doppler resolution in an r-D map, which led to improved target detectability.
For the parameter estimation stage, the authors of [16] proposed a long-time coherent
integration method for maneuvering LSS targets to improve target estimation accuracy.
Regarding the target classification stage, many works [2,17,18] focused on the micro-
Doppler signature (m-DS) of UAVs. The numbers of m-DSs have been thoroughly analyzed
among different types of UAVs and utilized to conduct target classification via multiple
classifiers or neural networks.

There have been many studies in the field of clutter mitigation involving the afore-
mentioned st-MIMO or ICA methods separately. Nevertheless, the combination of these
two techniques while focusing on ground clutter mitigation in detecting LSS targets has
been limited. For clutter mitigation involving st-MIMO, the authors of [28] developed
spatial-time adaptive processing (STAP) in st-MIMO radar to mitigate multipath clutter.
The spatial-time structure of st-MIMO was established, and a data covariance model,
including target, direct path clutter, multipath clutter, jamming, and white noise, was
defined. In [32], the beamspace st-MIMO, which can form virtual transmit nulls in direc-
tions that would result in multipath clutter returns in the main lobe of a radar system,
was investigated. In [33], ground clutter was removed via principal components analysis
(PCA) to enhance micro-Doppler feature extraction. For clutter mitigation involving the
ICA or BSS methods, many works have focused on the multi-mode clutter suppression of
over-the-horizon (OTH) radar. In [34,35], the spread-Doppler clutter caused by multi-mode
propagation in OTH radar was suppressed via the second-order blind identification (SOBI)
method. In addition, some works applied the BSS method in the field of main lobe jamming
suppression [36].
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In this study, we investigated the feasibility and performance of a ground clutter
mitigation method combining the st-MIMO and ICA techniques in a ground-based MIMO
radar focusing on LSS target detection. The main contributions of this work are as follows.
Firstly, we propose a way to modulate ground clutter under the framework of st-MIMO.
The ground clutter covariance was derived based on a Gaussian-shaped power spectrum.
Combining the spatial and temporal steering vector of st-MIMO, a universal signal mod-
elling including the target, ground clutter, and noise is provided. Secondly, we propose
a st-MIMO-ICA processing scheme to separate the target signal from the received data
including ground clutter plus noise. Mathematical proof that the signal model fits the
framework of the ICA problem is provided. The multi-targets can be simultaneously
separated via the proposed method. Finally, we validated our proposed st-MIMO-ICA
method and evaluated its performance with both simulations and experiments using an
S-band st-MIMO radar system developed in our previous work [6]. Comparisons with the
PCA and adaptive techniques were performed, and the st-MIMO-ICA method showed the
highest target output SCNR of the tested approaches.

The remainder of this paper is organized as follows. Section 2 describes the sig-
nal modeling of the st-MIMO radar and the ground clutter modulation in st-MIMO.
Section 3 describes the signal modeling for conducting ICA and proposes the st-MIMO-ICA
method. Section 4 presents the simulation and experimental results for the performance
of the st-MIMO-ICA method. Finally, Section 5 concludes the paper and outlines possible
future work.

2. Signal Modeling of St-MIMO Radar

In this section, the signal modeling of st-MIMO is described. Furthermore, the modu-
lation of ground clutter under the framework of st-MIMO is derived.

2.1. St-MIMO Waveform Modeling and Processing

Consider a co-located 1D linear antenna array with M transmitting elements and N
receiving elements that are omnidirectional. The element distance to the reference antenna
of the mth, m = 0, · · · , M − 1 element in the transmitting array is dm. Likewise, the element
distance to the reference antenna of the nth, n = 0, · · · , N − 1 element in the receiving array
is dn. Note that this definition of the array is general regardless of whether the array is
uniform or not. Figure 1 shows the geometry of the signal modeling setup. The operating
frequency is f0 and the operating wavelength is λ0. There are K pulses in one coherent
processing interval (CPI) and the pulse repetition frequency (PRF) fr = 1/Tr, where Tr
refers to pulse repetition interval (PRI).

Figure 1. The geometry of signal modeling.
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The slow-time MIMO approach split the whole Doppler PRF into M orthogonal
Doppler sub-bands with a bandwidth of Δ fsub = fr/M via slow-time phase coding. Here,
we set the number of the Doppler sub-bands as the same as the number of transmitting
antennas to simplify the modeling. Furthermore, the Doppler sub-bands can be redundant,
leading to some empty Doppler sub-bands that can be utilized to enlarge the velocity
measurement range. The baseband pulse waveform up(t) of each transmitting element
is an identical linear frequency modulated (LFM) signal but with varying starting phases
ϕ(m, k), which is a function of the transmitting element index m and the pulse index
(slow-time) k. Let ρt represent the constant transmit amplitude in each antenna without
beamforming transmission. Then, the transmitting waveform of the mth element is:

sm(t) = ρt

K−1

∑
k=0

up(t − kTr)ej2π( f0t+ϕ(m,k)) (1)

Herein, let ϕ(m, k) have a linear form:

ϕ(m, k) = αmkTr (2)

In this way, the Doppler domain is divided into M identical sub-bands. The instanta-
neous Doppler frequency f m

d of the mth transmitting antenna is the derivative of the slow
time variable kTr:

f m
d =

∂ϕ(m, k)
∂kTr

= αm (3)

Let the Doppler frequency of each transmitting antenna be evenly distributed in the
Doppler domain and consider that the sign of the Doppler, αm, has the form of:

αm =
m
M

· fr (4)

One of the advantages of the slow-time MIMO approach is the good hardware com-
patibility to traditional phased array radar systems. Orthogonal transmission is realized in
the Doppler domain via time-varying starting phases, while the carrier frequency remains
f0 for each channel. This makes it easy to implement to existing array radar systems. Note
that the time-varying starting phases between antennas also presumably steer the beam
as a function of the slow-time pulse k, which means that the main lobe direction of the
transmitted beampattern sweeps the angle domain with a period of M pulses [30]. The
ratio fr/Δ fsub, i.e., the number of the Doppler sub-bands, can be modified to adjust the
sweep rate of the main lobe.

Next, consider a far-field moving target with target speed vt and corresponding
Doppler shift ft= 2vt/λ0. The target is located at an angle φt related to the array boresight.
The amplitude of the echo is ρr. Thus, the backscattered signal of the nth receiving element
via the mth transmitting element is shown in (5).

smn(t) = ρr

K−1

∑
k=0

up(t − τmn − kTr)ej2π( f0+ ft)(t−τmn)ej2παmkTr (5)

The round-trip delay τmn in (5) takes the form of (6), which consists of the time delay
from the mth transmitting element TXm to the target and the time delay from the target to
the nth receiving element TXn [37]:

τmn = τtm + τrn

=
(

Rt
c − dm sin φt

c

)
+
(

Rt
c − dn sin φt

c

)
= 2Rt

c − dm sin φt
c − dn sin φt

c

(6)
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where Rt is the target range based on the first element of the array. Under the conditions of
a narrow band and slow target velocity, the following assumptions can be made:

τmn ≈ τc =
2Rt

c
(7)

and ej2π ftτmn ≈ 1.
Then, smn(t) can be approximated as:

smn(t) ≈ ρr

K−1

∑
k=0

up(t − τc − kTr)ej2π( f0+ ft)te−j2π f0τmn ej2παmkTr (8)

The output of the nth receiving element is the sum of the M transmit waveforms and
can be expressed as:

sn(t) =
M−1
∑

m=0
smn(t)

= ρr
M−1
∑

m=0

K−1
∑

k=0
up(t − τc − kTr)ej2π f0tej2π ftte−j2π f0τmn ej2παmkTr

(9)

After down-converting by multiplying the echo with e−j2π f0t, the baseband receiving
signal can be expressed as:

s′n(t) = sn(t) · e−j2π f0t

= ρr
M−1
∑

m=0

K−1
∑

k=0
up(t − τc − kTr) ej2π ftte−j2π f0

2Rt
c ej2π dm

λ0
sin φt ej2π dn

λ0
sin φt ej2παmkTr

(10)

Next, conduct matched filtering on s′n(t) using a baseband matched filter h(t) = u∗
p(−t),

where the superscript * represents the conjugate operation. The output signal after matched
filtering can be derived as:

Xn(t) =
∫ ∞

∞ s′n(x)h(t − x)dx

= ρre−j2π f0
2Rt

c ej2π dn
λ0

sin φt
M−1
∑

m=0

K−1
∑

k=0
ej2π dm

λ0
sin φt ej2παmkTr · · ·∫ ∞

∞ up(x − τc − kTr)ej2π ftxu∗
p(−(t − x))dx

(11)

After conducting variable substitution and assuming ej2π ftτc ≈ 1, (11) can be derived as:

Xn(t) ≈ ρre−j2π f0
2Rt

c ej2π dn
λ0

sin φt
M−1
∑

m=0

K−1
∑

k=0
ej2π dm

λ0
sin φt ej2παmkTr · · ·∫ ∞

∞ up(β)ej2π ft βej2π ftkTr u∗
p(β + τc + kTr − t)dβ

= ρre−j2π f0
2Rt

c ej2π dn
λ0

sin φt
M−1
∑

m=0

K−1
∑

k=0
ej2π dm

λ0
sin φt · · ·

ej2π(αm+ ft)kTr χ(t − τc − kTr, ft)

(12)

where
χ(τ, ft) =

∫ ∞

∞
up(β)u∗

p(β − τ)ej2π ft βdβ (13)

is the ambiguity function of up(t) with the time lag being τ and the Doppler frequency
being ft.

Next, we focus on the fast time of tk = τc + kTr in each pulse, which corresponds to the
time lag of the target. Then, the ambiguity function in (12) is χ(0, ft). Assume χ(0, ft) ≈ 1;
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because of the high Doppler tolerance of the LFM signal, the response of each tk in (12) can
be expressed as:

Xnk = Xn(tk)

= ξte
j2π dn

λ0
sin φt

M−1
∑

m′=0
ej2π dm′

λ0
sin φt ej2π(αm′+ ft)kTr (14)

where ξt = ρre−j2π f0
2Rt

c .
In order to separate the response of the mth transmitting element and achieve MIMO

demodulation, we first shift the central Doppler frequency of the mth Doppler sub-band to
zero-Doppler by multiplying e−j2παmkTr to (14) which yields:

Xnk,m = Xnk · e−j2παmkTr

= ξte
j2π dn

λ0
sin φt ej2π ftkTr ej2π dm

λ0
sin φt

+ξte
j2π dn

λ0
sin φt ej2π ftkTr

M−1
∑

m=0,m′	=m
ej2π dm′

λ0
sin φt ej2π(αm′−αm)kTr

(15)

For certain n and m, Xnk,m is only related to the slow-time index k. Next, conduct a
discrete Fourier transform (DFT) of Xnk,m to obtain the Doppler spectrum, which yields:

Xn,k′,m =
K−1

∑
k=0

Xnk,me−j 2πk
K k′ (16)

where k′ represents the index in the Doppler domain. Then, apply a low-pass Doppler filter
to remove all the other M − 1 Doppler sub-bands in Xnk,m, i.e., the second term in (15) [38].
Thus, the low-pass Doppler filter HLP has a pass-band from − fr/2M to fr/2M. Conduct
an inverse discrete Fourier transform (IDFT) to obtain the temporal output after Doppler
filtering, which yields:

X′n,k,m =
K−1
∑

k′=0
Xn,k′,m HLP(k′)ej 2πk′

K k

≈ ξte
j2π dn

λ0
sin φt ej2π ftkTr ej2π dm

λ0
sin φt

(17)

Note that X′n,k,m can be expressed as the Kronecker product of separable vectors:

Xt(φt, ft) = ar(φt)⊗ b( ft)⊗ at(φt) (18)

where ar(φt) and at(φt) are the receiving and transmitting spatial steering vectors, respec-
tively, of the target as the function of φt and b( ft) is the temporal steering vector of the
target as the function of ft:

ar(φt) =

[
1, ej 2π

λ0
d1 sin φt , · · · , ej 2π

λ0
dn sin φt , · · · , ej 2π

λ0
dN−1 sin φt

]T
(19)

b( ft) =
[
1, ej2π ftTr , · · · , ej2π ftkTr , · · · , ej2π ft(K−1)Tr

]T
(20)

at(φt) =

[
1, ej 2π

λ0
d1 sin φt , · · · , ej 2π

λ0
dm sin φt , · · · , ej 2π

λ0
dM−1 sin φt

]T
(21)

Because the Doppler bandwidth of b( ft) is narrowed to fr/M after the low-pass
filtering rather than the entire fr, M-times decimation can be conducted on b( ft) to reduce
the dimension of the vector, which yields:

bdeci( ft) =
[
1, ej2π·M· ftTr , · · · , ej2π·(K/M−1)M· ftTr

]T
(22)
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At this point, all the responses of the M transmitting elements are extracted from the
N receiving elements. The final data cube of the target signal for one snapshot has the
dimensions of N × (K/M)× M and can be expressed as:

ζs = ar(φt)⊗ bdeci( ft)⊗ at(φt) (23)

Furthermore, the radar return from a target-plus-clutter-plus-noise environment for one
snapshot can then be expressed as:

ζx = ζs + ζc + ζn (24)

where ζc and ζn are the clutter vector and noise vector with dimensions of N × (K/M)× M,
respectively.

2.2. Ground Clutter Modeling under St-MIMO Framework

In this section, the modeling of the clutter matrix ζc based on the Doppler distributed
clutter (DDC) model [39] is introduced. The fundamental principle of DDC modelling is to
first decide the power spectrum Sddc( f ) of the ground clutter. Then, the autocorrelation
rddc(τ) and the covariance matrix Rddc of the clutter can be derived using an inverse Fourier
transform (IFT).

The power spectrum Sddc( f ) of the ground clutter caused by the internal motion of
the clutter itself is commonly assumed to be Gaussian-shaped [19] with the form of:

Sddc( f ) =
Pc√
2πσ2

c
exp

[
− ( f − fd)

2

2σ2
c

]
(25)

where Pc is the power of the clutter, σc is the standard deviation, and fd is the central
frequency of the clutter spectrum. We chose fd = 0 for the ground clutter, and the 3 dB
velocity spectrum width σv has the following relationship with the standard deviation σc:

σc =
2σv
λ0

(26)

By conducting an IFT of Equation (25), the autocorrelation function rddc(τ) of the
clutter can be derived as:

rddc(τ) = Pc exp(j2π fdτ) exp
(
−2π2σ2

c τ2
)

(27)

Accordingly, the covariance matrix of the clutter can be represented as:

Rddc(k, l) = P2
c ej2π fdTr(k−l)e−2π2σ2

c Tr
2(k−l)2

k = 1, · · · , K/M, l = 1, · · · , K/M
(28)

The temporal sequence of the clutter xc can be generated using the following equation:

xc = R
1
2
ddcxn (29)

where xn is the K/M white Gaussian noise vector with a variance of 1.
For the ground clutter at the target’s range bin, assume that there are NC clutter

directions of arrival (DOA) in the received data. Then, the clutter snapshot ζc can be
expressed as:

ζc =
NC

∑
i=1

ar(φci)⊗ xci ⊗ at(φci) (30)
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where i = 1, · · · , NC represents the ith clutter patch with the DOA of φci and xci represents
the temporal vector of the ith clutter patch. At this point, ground clutter modeling in
st-MIMO is achieved.

3. St-MIMO-ICA Processing

In this section, the proposed st-MIMO-ICA processing method is illustrated. Firstly,
the feasibility of using the ICA method to mitigate ground clutter with a st-MIMO system
is demonstrated. Then, the proposed st-MIMO-ICA processing method is illustrated based
on a complex fixed-point algorithm.

3.1. Signal Modeling under ICA Compliance

The previous sections illustrated the signal and clutter model under the st-MIMO
framework. Now, rewrite the sequence of the terms in (23) as:

ζs = bdeci( ft)⊗ a(φt) (31)

where a(φt) = ar(φt)⊗ at(φt) is the N × M two-way spatial vector of the st-MIMO wave-
form. From this point, the virtual array of the MIMO radar is established to achieve
narrower beamwidth and realize more degrees of freedom along the spatial dimension
compared with a conventional phased array radar. Generally, in multiple target situations,
Equation (31) can be expressed as:

ζs =
NT

∑
j=1

bdeci
(

ftj
)
⊗ a

(
φtj

)
(32)

where j = 1, · · · , NT represents the jth target with an associated Doppler frequency of ftj
and target DOAs of φtj.

Regarding ground clutter, the same reasoning can be used and the clutter snapshot ζc
can be expressed as:

ζc =
NC

∑
i=1

xci ⊗ a(φci) (33)

Further exploiting the structures of Equations (32) and (33) leads to a universal signal
model, including the target and clutter in a matrix form:

X = ASDop (34)

In Equation (34), the columns of matrix A represent the spatial vector of the target
together with the clutter:

A =
[
at1, at2, · · · atNT , ac1, ac2, · · · acNC

]
(35)

and the rows of matrix SDop represent the frequency vectors in the Doppler domain of the
target and the clutter:

SDop =
[
dH

t1, · · · , dH
tj , · · ·dH

tNT
, dH

c1, · · · , dH
ci , · · ·dH

cNC

]T
(36)

where dtj and dci are the DFT of the temporal vectors bdeci
(

ftj
)

and xci, respectively.
Equation (34) shows that the signal model of the st-MIMO waveform in a ground

clutter environment enables the use of the ICA method to extract targets from clutter, that
is: (1) multi-channel observations of the mixed signal are obtained, (2) sources are linearly
mixed and statistically independent from each other, and (3) sources have non-Gaussian
distributions [40]. By exploiting the structure of Equation (34), the received signal X can be
regarded as multi-channel inputs for ICA. Meanwhile, the number of the input channels
is enlarged from N to M × N via st-MIMO demodulation. The spatial matrix A can be
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regarded as the mixing matrix that linearly combines all the sources in the frequency matrix
SDop, of which the vectors are non-Gaussian in the Doppler domain. Thus, using the ICA
method for ground clutter mitigation with a st-MIMO system is feasible.

3.2. St-MIMO-ICA Processing

ICA can be illustrated in a general framework that consists two major parts, the
separation criteria and the optimization method [22]. In the application of array radar
signal processing, a number of ICA methods have been proposed based on variable cri-
teria such as maximum likelihood (ML), information-maximization (Infomax), and the
maximization of non-Gaussianity (MN). In the branch of MN, kurtosis and negentropy are
two commonly used criteria used in some popular ICA methods such as JADE [24] and
FastICA [40], respectively.

The famous FastICA method utilizes negentropy as the cost function and the fixed-
point algorithm for optimization. Furthermore, the FastICA method has been derived from
complex domains. However, the complex FastICA (c-FastICA) method does not perform
well with noncircular sources [41]. In this study, we adopted the noncircular FastICA
(nc-FastICA) method to separate the target signal from clutter and noise. By adding second-
order information in a fixed-point update, the nc-FastICA method can provide an improved
separation performance with noncircular sources.

Based on (34), the linear signal mixture model of the MIMO array with Q = M × N
sensors (channels) and Ns = NT + NC sources can be expressed as:

ζx = ζs + ζc + ζn

= ASDop + ζn
(37)

where ζx can be considered to be the observation matrix, which contains the aforementioned
signal matrix ASDop and the Gaussian white noise with zero-mean ζn. Then, the nc-FastICA
method can be conducted via the following steps.

1. Whitening:
The covariance matrix of the observed signal can be expressed as:

RY = E
{
ζxζx

H
}

(38)

By applying eigenvalue decomposition to the covariance matrix, one can obtain:

RY = UΛUH (39)

Then, the whitening matrix can be denoted as:

V = Λ− 1
2 UH (40)

and the whitened matrix Z = Vζx can be achieved.
2. Formulating the optimization problem

A cost function based on maximizing the negentropy can be express as:

J(w) = E
{

G
(∣∣∣wHZ

∣∣∣2)} (41)

where G : R → R is a smooth even function and w ∈ CQ is the Q × Q weight matrix
used to de-mix the observed signal and obtain the estimated source matrix e = wHZ.
Then, the optimization problem is formulated as:

wopt = arg max
‖w‖2=1

E
{

G
(∣∣∣wHZ

∣∣∣2)} (42)
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Here, we chose G(u) = u2/2 as the function motivated by kurtosis.
3. Fixed-point updating process

The fixed-point algorithm is utilized to update the weight matrix w in each iteration
and can be expressed as:

wn+1 = −E
{

g
(
|e|2

)
e∗Z

}
+ E

{
g′
(
|e|2

)
|e|2 + g

(
|e|2

)}
wn

+E
{

eeT}E
{

g′
(
|e|2

)
e∗2

}
w∗

n

(43)

where g(u) = dG(u)/du and g′(u) = dg(u)/du. The third term of Equation (43)
includes the second-order information in terms of the pseudo-covariance matrix E

{
eeT},

which is non-zero if the sources are noncircular. This modification ensures that the
nc-FastICA method has an improved separation performance with noncircular sources.

4. Obtain the weight matrix and estimated source matrix
The estimation of the observation matrix ζx can be expressed as:

e = wHZ = wHVζx (44)

where e =
[
e1, e2, . . . , eQ

]
is the estimated source matrix with Q source vectors and

w =
[
w1, w2, . . . , wQ

]T is the weight matrix with Q corresponding weight vectors.
It is worth noting that the number of sources separated by the ICA method is no
more than the channel number Q. When the number of sources in the mixed signal
is less than the number of the channels, those redundant channels will contain noise
signals [22]. In this case, the PCA method can be utilized to decrease the dimensions
of the data for the following ICA processing. However, this part is beyond the scope
of this paper.

4. Experimental Results

For this section, simulation and field experiment were conducted based on the MIMO
radar system developed by the Beijing Institute of Technology (BIT) [6,7], which is shown
in Figure 2. The ground-based radar operates at the S-band and has a co-located MIMO
architecture. The antenna array is organized along the elevation axis with six elements
transmitting st-MIMO waveforms. Each antenna has a wide beam of 90◦ in elevation, where
the MIMO is formed, and a narrow beam of 3◦ in azimuth. For the azimuth, mechanical
scanning is utilized to achieve full airspace coverage. The system is mainly focused on
LSS target detection and tracking, such as that of small drones or birds. The st-MIMO-
ICA method for ground clutter mitigation is first demonstrated with simulation results
using parameters corresponding to a real radar system. Then, the field experiment results
are presented.

 
Figure 2. The ground-based MIMO radar system for LSS target detection.
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4.1. Simulation Results

The simulations were conducted in MATLAB. They were employed to verify the
performance of the proposed method. To reflect the performance of a real radar system
used in the field, consider a co-located MIMO antenna array with M = N = 6 linear
displaced elements along the elevation axis. Each element transmits a st-MIMO waveform.
The simulated radar parameters are shown in Table 1.

Table 1. Radar parameters.

Parameter Value

Operating frequency 3 GHz
Bandwidth 40 MHz

Pulse repetition interval 56 us
Number of pulses in one CPI 900
Number of Doppler sub-band 6

Maximum detect range 8.4 km
Velocity measurement range ±72 m/s

Furthermore, the antenna array was chosen to be a non-uniform sparse array to
make it cost-effective with a larger aperture and fewer elements. The element location
was optimized via a genetic algorithm (GA) to suppress the grating lobes of the antenna
beampattern caused by the sparse arrangement. A detailed illustration and analysis of this
non-uniform and sparse arrangement can be found in [6]. The array parameters are shown
in Table 2, and the beam pattern of the array after GA optimization is shown in Figure 3.

Table 2. Array parameters.

Parameter Value

Number of antenna 6
Number of channels 36

Array aperture 0.5 m
Virtual array aperture 1 m

Element position [0 0.1821 0.2681 0.3555 0.4206 0.5] m
Peak sidelobe level −20 dB

3 dB beamwidth 6.2◦

Figure 3. Array beam pattern after GA optimization. The 3 dB beamwidth is 6.2◦ and the side lobes
are all below −20 dB without a gating lobe.

The simulation experiment setup is shown in Figure 4. The radar was ground-based,
and the MIMO was achieved in elevation. The ground clutter came from the horizontal
direction and Target 1 to Target NT had the target DOA 1 to DOA NT . A typical LSS
target could be a small drone such as a DJI Phantom series drone. This type of target has a
relatively slow speed and low flying altitude, which means the radar detection performance
is affected by strong ground clutter. To simplify the simulation without losing generality,
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assume that there are three targets in the same range bin with different SNRs, speed, and
DOAs. Regarding the ground clutter, we used the clutter model in Section 1 with four
closely distributed DOAs to simulate a real ground environment containing trees and
buildings of different heights. We set proper target SNRs to keep the target SCNRs of all the
targets at −20 dB. Detailed parameters of the target and clutter setup are given in Table 3.

Figure 4. The experimental setup for the simulation.

Table 3. Target and clutter parameters.

Type Parameter Value

Target 1

Range 500 m
Speed 2 m/s

Elevation 4◦

SNR 40 dB
SCNR −20 dB

Target 2

Range 500 m
Speed −4 m/s

Elevation 20◦

SNR 30 dB
SCNR −20 dB

Target 3

Range 500 m
Speed 6 m/s

Elevation 10◦

SNR 20 dB
SCNR −20 dB

Ground clutter

Spectrum center 0 m/s
3 dB Spectrum width ±2 m/s

DOAs [0◦ 0.1◦ 0.2◦ 0.3◦]
CNR 60 dB

The results of signal modeling are shown in Figure 5. The range-velocity map of the
received signal in antenna 1 after pulse-compression and PD processing is displayed in
Figure 5a, from where the waveform diversity of st-MIMO has formed and the echoes
from the six transmitting antenna, TX1 to TX6, have been shifted into different Doppler
sub-bands. Moreover, the velocity spectrum at targets’ range bin is displayed in Figure 5b.
where the black boxes indicate six Doppler sub-bands, DS1 to DS6. Together with the
received signals in the other five antennas, all the Q = M × N = 36 transmitting-receiving
paths, named as Channel 1 to Channel 36, can be established. The velocity spectrum of
Channel 1 after MIMO demodulation is displayed in blue line in Figure 5c, and the red
line represent the targets plus noise in order to indicate the targets information clearly. The
CNR is 60 dB after pulse-compression and PD processing, and different target SNRs are set
to keep the target SCNR as −20 dB.

The st-MIMO-ICA output of the mixed signal is shown in Figure 6. Some represen-
tative results among all the 36 output channels are displayed. Excluding the uncertainty

192



Remote Sens. 2022, 14, 6098

of the sequence of the output signals [22], the three targets are separated from the mixed
targets plus clutter and noise signal and located in Channel 32, 33, and 35 respectively.
Channel 34 contains the combination of the ground clutter. Because the clutter DOAs
are closely distributed, the method fails to separate those clutter components. Lastly, the
remaining channels are noise signals. Figure 7 shows the detailed information of the three
separated targets after st-MIMO-ICA processing. All the three targets are precisely sep-
arated with correct velocity and desirable output SCNR of 29.8 dB, 23.4 dB, and 33.2 dB,
respectively. We compare the results of st-MIMO-ICA with two other approaches which
are also frequently utilized to mitigate the ground clutter, that is PCA and adaptive digital
beamforming (ADBF). Among the ADBF approaches, the sample matrix inversion (SMI)
technique is chosen. The results of these two approaches are also displayed in Figure 7, and
it can be seen that the ICA method enjoys the highest target output SCNR. The exact target
SCNR values of the three approaches are listed in Table 4.

(a) (b) (c) 

Figure 5. Results of signal modeling: (a) Range–velocity map of the received signal in antenna 1 after
PD processing, where waveform diversity was formed via st-MIMO; (b) velocity spectrum at targets’
range bin in antenna 1, where six Doppler sub-bands (DS1-DS6) were established and echoes from
the six transmitting antenna (Tx1–Tx6) can be seen; (c) velocity spectrum of Channel 1 after MIMO
demodulation, where three targets can be seen in the red line of targets plus noise.

Blind beamforming could be achieved using the weight matrix generated by the st-
MIMO-ICA method. Figure 8 displays the beampatterns corresponding to the three targets,
with w32, w33, and w35 as the weight vectors. All the beampatterns could form a deep
null in the clutter DOA, which effectively mitigated the strong ground clutter. Meanwhile,
when the target DOA was close to the clutter DOA, the blind beamforming also suffered
from distortion in the main beam and the loss of the target SCNR, which is shown in
Figure 8a. Figure 8 also displays the equivalent beampatterns of PCA that were generated
from the eigenvectors corresponding to the three targets and the adaptive beampatterns
of SMI with the pre-known steering vectors pointing at the three targets. The st-MIMO-
ICA method showed the deepest null level at the clutter’s DOA compared with the other
two approaches, which illustrates the outplayed performance of the proposed method in
ground clutter mitigation. The detailed null levels of the three approaches are also listed in
Table 4.

To investigate the performance boundary of the proposed st-MIMO-ICA method, a
simulation of the output target SCNR under each target DOA was conducted, which is
shown in Figure 9. We still focused on the three aforementioned targets: Target 1, Target 2,
and Target 3. We let the DOA of the targets change from −10◦ to 10◦ while other parameters
remained the same. To simplify the simulation, we also let the clutter DOA be 0◦. The
number of Monte Carlo simulations was chosen to be 100 for each target DOA. The output
target SCNR well-corresponded to the input target SNR plus the coherent processing gain
of the MIMO array, which was 15.5 dB (Q = 36). However, when the target’s DOA was
close to the clutter’s DOA, the output target SCNR was decreased due to the increase in the
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cross-correlation of the two components in the spatial domain. The black dashed line in the
zoomed-out figure of Figure 9 indicates the sufficient detection threshold of 13 dB, and the
corresponding target DOA was 0.4◦, which was 6.5% of the MIMO beamwidth.

Figure 6. The st−MIMO−ICA output of the mixed signal, where the three targets were separated
and were located in Channels 32, 33, and 35; Channel 34 was the ground clutter combination, and the
other channels contained noise signals.

(a) (b) (c) 

Figure 7. The three separated targets after st−MIMO−ICA processing together with the results of
the other two approaches: (a) Target 1′s velocity spectrum; (b) Target 2′s velocity spectrum; (c) Target
3′s velocity spectrum.

194



Remote Sens. 2022, 14, 6098

Table 4. Comparison of simulation results.

Results (dB) Target 1 Target 2 Target 3

PCA
SCNR 2.78 5.68 15.17

Null level −28.10 −34.82 −53.20

SMI
SCNR 11.79 13.24 23.82

Null level −34.27 −44.87 −59.90

ICA
SCNR 29.77 23.42 33.20

Null level −52.97 −49.97 −75.46

(a) (b) (c) 

Figure 8. The ICA beampatterns corresponding to the three targets together with the equivalent
beampatterns of PCA and the adaptive beampatterns of SMI; the DOAs of the targets and clutter are
displayed with black dashed lines, Dc, D1, D2, and D3 represent the DOAs of the clutter, Target 1,
Target 2, and Target 3, respectively: (a) Target 1′s beampattern; (b) Target 2′s beampattern; (c) Target
3′s beampattern.

Figure 9. The output target SCNR as a function of DOA with Target 1, Target 2, and Target 3; the
black dashed line indicates the normal detection threshold of 13 dB.

4.2. Field Experimental Results

Field experiments were conducted in a complex urban environment to verify the
performance of the proposed method. The radar system is deployed in an industrial city
in southeast China where factory buildings, trees, moving cars constitute the sources of
the ground clutter. The satellite image of the radar location and surroundings courtesy of
Google Maps is shown in Figure 10a, and the radar field of view is shown in Figure 10b.
The parameters of the radar system were given in Tables 1 and 2. The target information
is listed in Table 5. A small drone of DJI Phantom IV is used as a real flying target in this
section. The diagonal size of the small drone is 350mm and can be treated as a point target
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compared to the range resolution of the radar system. There are two range bins chosen
as the field experiment location, which are 3041 m and 5585 m. The small drone has a
flying altitude of 200 m at both locations, resulting in different target elevations of 3.8◦ and
2◦, respectively.

  
(a) (b) 

Figure 10. Field experiment scene: (a) the satellite image of the radar location and surroundings
(courtesy of Google Maps); (b) the actual view from the radar.

Table 5. Target parameters in field test.

Type Parameter Value

Target 4

Range 3041 m
Speed 2 m/s
Height 200 m

Elevation 3.8◦

Target 5

Range 5585 m
Speed 4 m/s
Height 200 m

Elevation 2◦

In the first experiment of 3041 m, the small drone has the speed of 2 m/s. The
range-velocity map in Channel 1 after pulse-compression and PD processing is shown in
Figure 11, where the data label indicates the target location, speed, and amplitude. The
target is submerged in the spectrum of strong ground clutter and cannot be detected. The
result of the st-MIMO-ICA processing of Target 4 is shown in Figure 12. The velocity
spectrum at Target 4’s range bin before st-MIMO-ICA processing is shown in Figure 12a.
The black dashed line indicates the target location in the mixed signal. The target is
shadowed by strong ground clutter and cannot be detected via conventional method such
as CFAR. The velocity spectrum after st-MIMO-ICA processing is shown in Figure 12b,
where the target can be effectively extracted from the strong ground clutter with the highest
output target SCNR of 33.9 dB. The other two approaches, PCA and SMI, are also conducted
as a comparison with output target SCNR of 14.5 dB and 17.8dB, respectively. The output
of the PCA approach also has a false alarm located at −1 m/s.

In the second experiment of 5585 m, the small drone has the speed of 4 m/s and can
be seen in the range-velocity map together with some competing ground clutters which
belong to the buildings and moving cars. The range-velocity map in Channel 1 after pulse-
compression and PD processing is shown in Figure 13, where the data label indicates the
target location, speed, and amplitude. The result of the st-MIMO-ICA processing of Target
5 is shown in Figure 14. The velocity spectrum at Target 5’s range bin before st-MIMO-ICA
processing is shown in Figure 14a. The target had a SCNR of -10dB compared to the ground
clutter located at 0 m/s and -6.5 m/s. The velocity spectrum after st-MIMO-ICA processing
is shown in Figure 14b, where the target can be effectively extracted from the competing
clutters with output target SCNR of 37.8 dB, and the other two remarkable ground clutters
have been successfully suppressed. The results of PCA and SMI are also displayed with
output target SCNR of 26.6 dB and 15.1dB, respectively. The output of the PCA approach
also has a false alarm in the clutter location of −6.5 m/s.
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Figure 11. The range−velocity map in Channel 1 for the first field experiment. Target 4′s information
is indicated via a data label; the target was submerged in strong ground clutter.

(a) (b) 

Figure 12. The st−MIMO−ICA result of Target 4: (a) velocity spectrum at Target 4′s range bin before
st−MIMO−ICA processing, where the target was submerged in strong ground clutter; (b) velocity
spectrum comparison.

Figure 13. The range−velocity map in Channel 1 for the second field experiment. Target 5′s information
is indicated via a data label, and the target can be seen together with some competing ground clutter.
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(a) (b) 

Figure 14. The st−MIMO−ICA result of Target 5: (a) velocity spectrum at Target 5′s range bin
before st−MIMO−ICA processing, where some competing ground clutter can be seen; (b) velocity
spectrum comparison.

5. Discussion

A ground clutter mitigation method for slow-time MIMO radar using independent
component analysis was researched in this study. Firstly, a ground clutter model under a
st-MIMO scheme was provided. The clutter covariance was derived based on a Gaussian-
shaped power spectrum, and a universal signal modelling including the target, ground
clutter, and noise was provided. Secondly, the compliance for conducting ICA was dis-
cussed, and the st-MIMO-ICA processing scheme was proposed. Lastly, the performance
of the proposed method was verified with simulation and field experiments via an S-band
MIMO radar system.

The simulation results indicated the feasibility of the proposed st-MIMO-ICA method,
as the st-MIMO-ICA output showed the highest target SCNR compared with two other
conventional clutter mitigation approaches of PCA and SMI. The three test targets with
an input SCNR of −20 dB were precisely separated with the correct velocity and desirable
output SCNRs of 29.8 dB, 23.4 dB, and 33.2 dB. The st-MIMO-ICA method also showed
the deepest null level at the clutter’s DOA compared with the other two approaches. The
performance boundary of the method as validated with a separable DOA difference of 6.5%
of the MIMO beamwidth. The field experimental results further proved the effectiveness of
the proposed method in LSS target detection with strong ground clutter compared with
conventional methods.

It is worth noting that the PCA approach only utilizes the eigenvectors of the signal
covariance matrix after conducting eigenvalue decomposition. As is noted in Section 1,
PCA is often utilized as a preliminary step of ICA to decrease the dimensions of the data.
Regarding the SMI technique, we chose to use target-plus-clutter-plus-noise signals in this
study as the training data to calculate the adaptive weight vector, which limited the perfor-
mance of the SMI technique. Generally, it is not feasible to obtain independent and identical
distributed clutter samples in real scenes. The ICA method, however, utilizes negentropy
as the cost function and the fixed-point algorithm for optimization to achieve better source
separation results, which corresponds to desirable ground clutter mitigation performance.

There is still work to be conducted. It is worth further investigating the character of
ground clutter, especially regarding the number of the sources of clutter. In this paper,
we assumed that the DOAs of ground clutter for a certain snapshot were limited even
though actual clutter characteristics are more complex. Another work will focus on the
adaption of the detection threshold to further improve the detection performance for LSS
targets [42,43].
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Abstract: The multiple-input multiple-output (MIMO) radar imaging technology has attracted many
scholars due to its many inherent advantages, such as avoiding complex motion compensation and
imaging a quickly maneuvering target, compared to inverse synthetic aperture radar (ISAR) imaging.
Although some imaging algorithms, such as the 2D fast iterative shrinkage thresholding algorithm
(2D-FISTA), can meet the demand for super-resolution, they are not directly suited to MIMO radar
imaging, for which the MIMO manifold needs to be considered. In this paper, based on the above
questions, we propose the MIMO radar imaging algorithm, utilizing the sparsity of the scattering
map in space and the MIMO array manifold, even achieving a good performance in the presence of
MIMO channel error. The sparse reconstruction algorithm is developed with the alternative direction
method of multipliers (ADMM) with the help of 2D-FISTA and the lp-norm. Then, two algorithms
are derived: one is the exact sparse recovery algorithm, and the other is the inexact sparse recovery
algorithm. Although the exact sparse recovery algorithm can converge to a more accurate precision
than the inexact algorithm, the latter can converge at a faster speed. Finally, the results on simulation
data validated the effectiveness of the algorithm.

Keywords: alternative direction method of multipliers (ADMM); multiple-input multiple-output
(MIMO) radar; lp-norm; low-rank matrix completion; Schatten p-norm

1. Introduction

The inverse synthetic aperture radar (ISAR) technology is an important method to
estimate the distribution of moving targets in space, which utilizes the signal bandwidth
and the coherent accumulation time to improve the range resolution and the cross-range
resolution [1–3]. Interferometric ISAR (InISAR) can achieve three-dimensional (3D) imaging
now, but complex image registration, motion compensation, and other algorithms need
to be considered seriously in practice [4]. Compared to the imaging technology based
on relative motion, real aperture radar imaging can achieve fast imaging, avoid complex
motion compensation, and image a quickly maneuvering target, but real radar imaging
achieves a high resolution by increasing the array aperture, which increases the hardware
complexity of the system [5].

Multiple-input multiple-output (MIMO) radar imaging is one of the real aperture
imaging methods. MIMO radar can achieve a higher degree of freedom by transmitting
several orthogonal waveforms, these being the time-division multiplexing (TDM) signal,
frequency-division multiplexing (FDM) signal, and code-division multiplexing (CDM)
signal [6–9]. It can also achieve a larger array aperture compared to the traditional phased
array radar (PAR). Especially, MIMO radar imaging can directly be used to image with
one snapshot to avoid the complex motion compensation compared to ISAR technology,
and it has attracted many scholars because of its inherent advantages with respect to
ISAR imaging technology. In this paper, we researched collocated MIMO radar imaging,
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improving the performance by the virtual array aperture technology according to the
equivalent phase center principle (PCA). Two-dimensional (2D) imaging with MIMO radar
has been studied by many researchers [10–12]. Recently, 3D MIMO imaging methods have
drawn the attention of many scholars [13–15]. One of the core questions is how to achieve
a better resolution along with the finite array elements in MIMO radar. As the number
of array elements increases, on the one hand, the resolution along with the cross-range
dimension can be improved, but on the other hand, the hardware cost and the calculation
amount of signal processing will simultaneously increase rapidly. The authors especially
point out that compressive sensing (CS) is utilized to achieve the super-resolution of both
cross-range dimensions with a finite number of array elements [15,16].

The 2D fast Fourier transform (2D-FFT) is commonly used to finish focusing along both
cross-range dimensions, but the imaging resolution is poor, especially under the limited
virtual aperture in MIMO radar. CS can recover a sparse signal from far fewer observed
samples, which has drawn many researchers’ attention during the last decade [17]. Many
sparse recovery algorithms have been derived, such as greedy iterative algorithms [18],
sparse Bayesian learning (SBL) [19], convex optimization algorithms, iterative thresholding
algorithms [20,21], etc. The threshold iteration algorithm is widely used in the field of
signal processing because of its fast convergence and sufficient theoretical guarantee.
The radar super-resolution imaging algorithm based on CS has been widely studied in
synthetic aperture radar (SAR) imaging [22], ISAR imaging [23,24], and MIMO radar
imaging [12,25,26] due to the sparsity of the imaging scene. However, it is essential for
these imaging algorithms to make the observed matrix and grid matrix vectorized [27],
which leads to the consequence that the dimension of the measurement matrix of CS is
tremendously large and the computational complexity increases sharply. The 2D fast
iterative shrinkage thresholding algorithm (2D-FISTA) and sequential smoothed L0 (SL0)
can quickly converge, and they can achieve super-resolution withoutthe computational
complexity of converting the 2D observed matrix and grid map into vectors [28–30]. We
utilized some prior conditions, the sparsity of scattering points in space and the MIMO
array manifold, to establish a new sparse imaging method in this paper. Besides, there is
limited research on MIMO radar imaging in the presence of outliers, and in practice, this
can be caused by radio interference, miscalibrated sensors, and other aspects of the MIMO
radar system [31–34].

In this paper, we research a MIMO radar super-resolution imaging method, consider-
ing the array manifold and the outliers. We firstly reformulated the question as minimizing
the l1-norm and lp-norm and subjecting themto the signal model. On the one hand, there
is a guarantee that the targets’ location in space can be obtained by the l1-norm; on the
other hand, the lp-norm is robust to outliers with 0 < p < 1. However, the lp-norm is a
non-convex question, and to solve this, a complex generalized iterated shrinkage algorithm
(CGISA) is developed to resist outliers in the snapshot matrix. To the best of our knowledge,
we are the first to consider sparse imaging exploiting the array manifold and outlier noise
in transreceivers in MIMO imaging. Comparisons with state-of-the-art algorithms show
that our methods are superior in terms of robustness and resolution, and the proposed
algorithm is validated on a public dataset.

This paper is organized as follows. Section 2 gives a brief introduction to the MIMO
imaging model, and a detailed description of the proposed sparse recovery algorithm is
given in Section 3. Section 4 gives the simulation experiments and the imaging result of
the ISAR simulated data. Finally, Section 5 presents the conclusion and introduces the
future work.

In this paper, we use the following notation. We use ‖ · ‖F, ‖ · ‖1 and ‖ · ‖p to denote
the Frobenius norm, the l1-norm, and the lp-norm of a matrix, respectively. The notations
(·)T , (·)H , and (·)−1 represent the transpose, the Hermitian transpose, and the inverse
operation, respectively. The symbols ∇ and tr(·) stand for the gradient and trace of a
matrix, respectively. Boldface lower-case and upper-case letters represent vectors and
matrices, respectively. K(·) and I(·) represent the real and imaginary parts of a complex
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number vector or matrix, respectively. max(a, b) indicates the maximum between a and b.
Finally, R and C are used to denote the set of real and complex numbers, respectively.

2. Methods

2.1. MIMO Imaging Model

Consider the MIMO radar with a 2D planar antenna array; an imaging model of it
is given in Figure 1, where there are M2

t transmitted elements and N2
r received elements.

The interval spaces between adjacent transmitters and receivers are Nrd and d, respectively.
The central frequency is fc, and the bandwidth is B. Suppose that M2 orthogonal mutu-
ally phase code modulation signals with the same center frequency and bandwidth are
transmitted, and the m-th transmitted signal can be expressed by

Sm(t) = Aϕm(t) exp(j2π fct) (1)

where ϕm(t) denotes the phase code function, A is the amplitude of the transmit signal, and
m ∈ {1, 2, · · · , M2}. Assume that there are K scatterers in the imaging scene and O is the
imaging center. The distance between the m-th transmitted element and the k-th scattering
points is Rk

m; the distance between the n-th received element and the k-th scattering points
is Rk

n; then, the radar echo can be shown as

Sn(t) =
K

∑
k=1

M2

∑
m=1

σk ϕm

(
t − τk

mn

)
exp

(
−j2π fcτk

mn

)
(n ∈ {1, 2, · · · , N2})

(2)

where σk is the backscattering coefficient and time delay τk
mn =

(
Rk

m + Rk
n

)
/c.

Figure 1. The MIMO radar 3D imaging model.

The echo signal can be separated into M2 by a group of matched filter banks for signal
Sn(t), and then, the signal that the m-th transmitted element transmits and the n-th received
element can be denoted as
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Smn(t) =
K

∑
k=1

σk pm

(
t −

(
Rk

m + Rk
n

)
/c
)

× exp
(
−j2π

(
Rk

m + Rk
n

)
/λ

) (3)

where p(·) is the autocorrelation function of the m-th transmitted signal, c is the propagation
velocity of the electromagnetic wave in space, and λ = c/ fc is the wavelength of the
electromagnetic wave in space.

Suppose that target scattering points in the far field are considered. The approximation

conditions meet that Rk
m + Rk

n − Ro
m − Ro

n = 2 �OK
T

n0, where Ro
m and Ro

n are the distance
between the m-th transmitted element and imaging center O and the distance between the
n-th received element and imaging center O, respectively. n0 is a unit vector between the
imaging geometry center and the array center, and it can be understood as the coordinate
originof the virtual array. Then, the radar echo can be updated as

Sn(t) ≈
K

∑
k=1

M2

∑
m=1

σk ϕm

(
t − 2qTn0/c

)
× exp

(
−j2π

(
Rk

m + Rk
n

)
/λ

) (4)

Based on the description in the paper [13,15], the radar echo can be rewritten as

ymn(t) =
K

∑
k=1

σk p
(

t − 2qTn0

c

)
exp

(
j2πΔR

λ

)
× exp

(
j4πd
λr

(axk + byk)

) (5)

where ΔR = T0O + R0O − T0Q − R0Q is a constant and q = �OK. r is the distance from
the imaging center O to the reference virtual element. Assume that the signal of the k-th
scattering point location (xk, yk, zk) in space can be shown as

ymn(t) =
K

∑
k=1

δ(t − zk) exp
(

j4πdaxk
λr

)
exp

(
j4πdbyk

λr

)
(6)

where δ(t − zk) = σk p
(

t − 2zk
c

)
, a, b ∈ {1, 2, · · · , MN} is the row and column of the virtual

array, and r is the distance from the imaging center O to the reference virtual element.
The 2D-FFT is employed along the cross-range of the MIMO virtual array, and the

MIMO imaging model about two cross-range dimensions can be rewritten as

Y = AΣBT (7)

where A and B are the overcomplete Fourier matrix, which is related to the MIMO virtual
array manifold, Σ ∈ CP×Q is the 2D scattering coefficients map in space, and Y is the
snapshot matrix corresponding to the virtual array. A = [a1, a2, · · · , aP] ∈ CMt Nr×P, and
B =

[
b1, b2, · · · , bQ

]
∈ CMt Nr×Q, which are given by

ap =

[
0, exp

(
j
4πdxp

λr

)
, · · · , exp

(
j
4π(MtNr − 1)dxp

λr

)]T

bq =

[
0, exp

(
j
4πdyq

λr

)
, · · · , exp

(
j
4π(MtNr − 1)dyq

λr

)]T

.

(8)
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2.2. The Composite Optimization

Many signal processing approaches can be established as a composite optimization
model, which is given by

min
x

f (x) := g(x) + h(x) (9)

where g(x) is a convex, continuously differentiable function and h(x) is a convex, con-
tinuous, but not differentiable penalty function [20,35]. The FISTA algorithm is one of
the important methods to solve optimization, and the most notable feature of this algo-
rithm is the fast convergence speed. The FISAT algorithm is also used in low-rank matrix
completion (MC), sparse recovery, and other signal processing approaches [36].

2.3. The Proposed Imaging Method

In this subsection, we clarify the signal model in the presence of outliers and provide
the detailed pseudo-code of the two proposed algorithms.

Based on the above description, we exploited some prior conditions, such as the
sparsity of scattering points in space, to establish the 2D sparse recovery model, in order to
reduce the computational complexity and improve the effectiveness of sparse recovery. We
used the fast composite optimization algorithm and threshold iteration algorithm to obtain
the sparse location of scattering points. The signal model can be seen as

min
Σ

‖Σ‖0

s. t. Y = AΣBT
(10)

(10) is a non-convex optimization problem and an NP-hard problem. In [29], the authors
proposed that the above (10) can be relaxed to a convex optimization problem by the
l1-norm. When the impulsive signal is considered in MIMO virtual channels, the observed
snapshot matrix contains some outliers. In [37], the authors pointed out that the lp-norm is
robust to outliers, and thereby, the lp regularization terms can be added in (10) to minimize
the outliers’ error. (10) can be updated as

min
Σ

λ‖Σ‖1 + ‖E‖p
p

s. t. E = Y − AΣBT
(11)

where λ is the regularization parameter and p ∈ (0, 1). The entries of E are expressed as

Ei,j =

{
ρi,je

jφi,j , (i, j) ∈ Ω
0, (i, j) /∈ Ω

(12)

where Ω denotes the entries of the outliers in the snapshot matrix and ρ and φ represent
the amplitude and phase of the outliers, respectively. ‖E‖p

p can be defined as

‖E‖p
p =

(
∑
i,j

|Ei,j|p
)1/p

(13)

The optimization problem in (11) can be solved with the help of the alternative direc-
tion method of multipliers (ADMM), and the augmented Lagrangian function associated
with Problem (11) is given by

L(Σ, E, R, μ) = λ‖Σ‖1 + ‖E‖p
p +

μ

2
‖Y − AΣBT − E‖2

F

+
〈

R, Y − AΣBT − E
〉 (14)
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where R is the Lagrange constant and μ is a penalty coefficient. Then, the ADMM algorithm
is employed to estimate the optimal variable Σ, E, R, and μ alternately, until the convergence
criterion is satisfied. Every sub-optimization problem can be formulated as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Σk+1 = arg minΣ

{
L
(

Σ, Ek, Rk, μk
)}

Ek+1 = arg minE

{
L
(

Σk+1, E, Rk, μk
)}

Rk+1 = arg minR

{
L
(

Σk+1, Ek+1, R, μk
)}

μk+1 = ρμk

(15)

where ρ is a constant to ensure the penalty coefficient μ is increasing gradually. In the
next algorithmic step, we give a detailed introduction to updating every optimal variable
according to the ADMM algorithm.

Updating Σ

The updating of Σ can be written as

Σk+1 = arg min
Σ

λ‖Σ‖1 +
μ

2
‖Y − AΣBT − Ek‖2

F

+
〈

Rk, Y − AΣBT − Ek
〉 (16)

With some constant items omitted, the optimal variable Σk+1 can be updated as

Σk+1 = arg min
Σ

λ‖Σ‖1 +
μ

2
‖Y − AΣBT − Ek +

1
μ

Rk‖2
F (17)

Let Dk = Y − Ek + 1
μ1

Rk, and then, (17) can be shown in a more concise form (18).

Σk+1 = arg min
Σ

λ‖Σ‖1 +
μ

2
‖Dk − AΣBT‖2

F

= arg min
Σ

λ‖Σ‖1 +
μ

2
tr
{(

AΣBT − Dk
)H(

AΣBT − Dk
)} (18)

The classical problem of the nonsmooth convex optimization model can be solved by
FISTA [20]. According to the description of the composite optimization, let nonsmooth
function h(Σ) = λ‖Σ‖1 and smooth function g(Σ) = μ

2 ‖D − AΣBT‖2
F. The gradient of

g(Σ) can be written as (19).

∇g(Σ) = ∇Σ
μ1

2

{
tr
(

AΣBTB∗ΣHAH
)
− 2tr

(
AΣBH((Dk)H)

)}
=

μ

2

(
2AHAΣBTB∗ − 2ADkB∗

)
= μAH

(
AΣBT − Dk

)
B∗

(19)

To obtain the accurate target location, the temporary variable X is brought in, and the
relationship among Σ, X, and ∇ f (X) can be shown as

Σ = argmin
Σ

{
h(Σ) +

L
2

∥∥∥∥Σ −
(

X − 1
L
∇g(X)

)∥∥∥∥2

F

}
(20)

where L is the Lipschitz constant, enabling ∇ f (X) to meet the Lipschitz continuity. The
pseudo-code of this algorithm to obtain the sparse solution at the j-th iteration is shown in
Algorithm 1, The algorithm can converge quickly with O( 1

j2 ), and this was demonstrated
in [20]. The soft in Algorithm 1 is the soft thresholding function, which is defined as
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soft(X, η) = max
(

1 − η

|X| , 0
)

X. (21)

Algorithm 1 Two-dimensional sparse solution of imaging results.
Input:Convergence accuracy ε; the maximum number of iterations K;
Dk = Yk − Ek + 1

μk Rk

Output: Σk+1 .
1: Initialization:
2: Initiate algorithm parameters X0 = 0; t0 = 0;
3: while (1) do
4: Fj+1 = Xj − 1

L∇g(Xj)

5: Σk
j+1 = soft(Fj+1, λ

L )

6: tj+1 =

√
1+4t2

j +1

2

7: Xj+1 = Σk
j+1 +

tj−1
tj+1

(
Σk

j+1 − Σk
j

)
8: if

∥∥∥Σk
j+1−Σk

j

∥∥∥2

F∥∥∥Σk
j+1

∥∥∥2

F

< ε or j ≥ K then

9: Σk+1 = Σk
j+1;

10: break;
11: end if
12: j = j + 1
13: end while

Updating E

The updating of E can be shown as

E = arg min
E

‖E‖p
p +

μ

2
‖Y − AΣk+1BT − E‖2

F

+
〈

Rk, Y − AΣk+1BT − E
〉

= arg min
E

‖E‖p
p +

μ

2
‖E − Y + AΣk+1BT − 1

μ
Rk‖2

F

(22)

Like (18), let Hk = Y − AΣk+1BT + 1
μ Rk, and then, (22) can be defined as

E = arg min
E

‖E‖p
p +

μ

2
‖E − Hk‖2

F (23)

This is a non-convex optimization question, but fortunately, the authors proposed a
generalized iterated shrinkage algorithm (GISA) for non-convex sparse coding algorithm
in the paper [38], which is used to solve the lp-norm optimization question. The method
is easily implemented and has a good performance. However, the GISA algorithm is
often used for real signals, and the radar data used for imaging are the complex signal.
In this article, taking into account the characteristics of radar data, the GISA algorithm
is separately performed on the real part and the imaginary part of the radar echo signal,
respectively. The concrete algorithmic processing of GISTA is shown in Algorithm 2.

Then, E is written as ⎧⎨⎩ Hk = Y − AΣk+1BT + 1
μ

k
Rk

Ek+1 = CGISA
(

Hk, μk, p, J
) (24)
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Empirically, we set J = 3, in order to balance the gap between the computational
complexity and the convergence precision.

Algorithm 2 Signal processing of CGISA.

Input signal: x ∈ CM×N , λ, p, J
Output signal: y ∈ CM×N .
1: Initialization:
2: x1 = R(x); x2 = I(x); y1 = zeros(M, N); y2 = zeros(M, N)

3: τp = (2λ(1 − p))
1

2−p + λp(2λ(1 − p))
p−1
2−p

4: for i = 1 to J do
5: if |xi| < τp then
6: Ωi = find(|xi| ≤ τp); yi(Ωi) = 0;
7: else
8: k = 0, xk

i = |yi|
9: while (1) do

10: xk+1
i = |yi| − λp(xk

i )
p−1;

11: k = k + 1
12: if k ≥ J then
13: break;
14: end if
15: end while
16: end if
17: Ωi = find(|xi| > τp); yi(Ωi) = sgn(xk

i (Ωi))x
k
i (Ωi)

18: end for

Updating Lagrange multiplier R and penalty coefficient μ
Lagrange multiplier R and Lagrange penalty parameter μ can be updated as follows:{

Rk+1 = Y − AΣk+1BT − Ek+1

μk+1 = ρμk (25)

The pseudo-code of the proposed super-resolution imaging algorithm is shown in
Algorithm 3, called the exact sparse recovery algorithm. It will consume much times,
and we extended the algorithm in Algorithm 3 to the algorithm in Algorithm 4, which
is dubbed the inexact sparse recovery algorithm. Compared to the exact sparse recovery
algorithm, the inexact algorithm reduces the iterative process of Σ. The algorithm was
omitted in the iterative process of Σ inside the algorithm, and thereby, it can reduce the
algorithm’s runtime.
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Algorithm 3 The exact sparse algorithm.
Input: Y, A, and B
Output: Σ.
1: Initialization:
2: Initiate some parameters, Σ0 = X0 = 0P×Q, R0 = 0P×Q, L > 0,

ε = 1 × 10−6, λ > 0, μ0 > 0 ρ > 0, and the maximum iteration K.
3: while (1) do
4: Update Σk+1 using Algorithm 1 until it converges
5: Update Ek+1 with (24)
6: Update Rk+1 and μ with (25), respectively

7: if

∥∥∥Σk
j+1−Σk

j

∥∥∥2

F∥∥∥Σk
j+1

∥∥∥2

F

< ε or j ≥ K then

8: Σk+1 = Σk
j+1;

9: break;
10: end if
11: k = k + 1
12: end while
13: Σ = Σk

Algorithm 4 The inexact sparse algorithm.
Input: Y, A, and B
Output: Σ.
1: Initialization:
2: Initiate some parameters, Σ0 = X0 = 0P×Q, R0 = 0P×Q, L > 0,

ε = 1 × 10−6, λ > 0, μ0 > 0 ρ > 0, and the maximum iteration K.
3: while (1) do
4: Update Dk = Yk − Ek + 1

μk Rk

5: Update Fk = Xk − 1
L∇ f

(
Xk
)

6: Update Σk+1 = soft
(

Fk, λ
L

)
7: Update tk+1 =

√
1+4tk2

+1
2

8: Update Xk+1 = Xk + tk−1
tk+1

(
Σk+1 − Xk

)
9: Update Ek+1 with (24)

10: Update Rk+1 and μ with (25), respectively

11: if

∥∥∥Σk
j+1−Σk

j

∥∥∥2

F∥∥∥Σk
j+1

∥∥∥2

F

< ε or j ≥ K then

12: Σk+1 = Σk
j+1; break;

13: end if
14: k = k + 1
15: end while
16: Σ = Σk

3. Results

In this section, we perform a detailed simulation of MIMO radar imaging, present the
imaging result, and analyze the difference between the algorithm we propose and the other
existing algorithms.

4. Simulation Experiments

We used the phase-coded signal as the transmitted signal, and the number of trans-
mitted arrays was 2 × 2, while the number of the received arrays was 20 × 20. The carrier
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frequency of the radar was 12 GHz; the bandwidth was 500 MHz; the sampling frequency
was 1 GHz. The simulation parameters of the MIMO radar can be seen in Table 1.

Table 1. MIMO radar simulation parameters.

Parameters Symbol Value

Center frequency fc 12 GHz
Bandwidth B 500 MHz

Sampling frequency fs 1 GHz
The number of transmitters Mt × Mt 2 × 2

The number of receivers Nr × Nr 20 × 20

Suppose that the location coordinate of the center of the scatterers is O(4000, 3000, 5000).
The targets’ locations in the Cartesian coordinate system with respect to O are (6, 0, 5),
(4, 0, 4), (0, 0, 0), (−3,−3, 1), (−3, 3, 1), (−6,−7,−1), (−6, 7,−1), (−4, 0,−3), (−8, 3,−6),
(−6, 0,−6), and (−8,−3,−6). The target distribution in space and the top view of the
target distribution are shown as Figure 2a,b, respectively.

(a)

-10 -5 0 5 10
cross range

-10

-5

0

5

10

cr
os

s 
ra

ng
e

Top view of the target model

(b)

Figure 2. (a) is the space distribution of the target scattering points; (b) is the distribution along the
cross-range.

Here, we made the assumption that the signal can be separated by the matched filter
for convenience. We extracted the observed snapshot matrix from the virtual array in the
MIMO radar, which contains impulsive signals caused by the array channels. Assume
that the target location in space Σ recovered by the algorithms can be denoted by Σ́. Two
parameters were defined to evaluate the performance of the proposed algorithm. One is
the normal mean-squared error (NMSE) to measure the performance of the algorithms with
its definition as follows:

NMSE =

∥∥Σ − Σ̂
∥∥2

F

‖Σ‖2
F

(26)

where Σ and Σ̂ are the original sparse signal and the reconstructed sparse signal, re-
spectively. The other is the correlation (Corr) coefficient used to evaluate the imaging
performance and to measure the influence of false targets on the imaging quality. The
mathematical expression of the Corr can be defined as follows:

Corr
(
Σ, Σ̂

)
=

〈
vec(Σ), vec

(
Σ̂
)〉

‖Σ‖F‖Σ̂‖F
(27)

where vec(Σ) and vec(Σ̂) denote the vector form of Σ and Σ̂, respectively.
All experiments were performed with MATLAB and run on a computer with an

Inter(R) Core(TM) i7-8565U at @1.80 GHz, 1.99 GHz, and RAM 16 GB.
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In this section, the inexact recovery algorithm was chosen to validate the algorithms’
performance, and the difference between the exact recovery algorithm and the inexact
recovery algorithm is discussed in the next section. The impulsive signal is generated
based on (12), for which ρ > 0 and φ are randomly produced. MIMO imaging results
with these recovery algorithms along the cross-range are shown in Figure 3, in which the
signal-to-noise ratio (SNR) is 10 dB and the percentage of outliers in the array is about 33%.
Moreover, in order to ensure the algorithms’ convergence, we set L =

∥∥AAH
∥∥2

F

∥∥BTB∗∥∥2
F,

the algorithm parameters P = Q = 201, the regularization constant λ = 0.5, and
p = 0.1, 0.3, 0.5, 0.7, 0.9. The snapshot matrix Y contains some impulsive signals, which
makes the the imaging results very poor when the traditional imaging algorithms are used,
such as 2D-FFT, 2D-FISTA, and 2D-SL0. What we can see in Figure 3 is that there is dense
background noise for 2D-FFT, 2D-FISTA, and 2D-SL0; however, the algorithm we propose
can well inhibit the background noise and outliers. The concrete imaging indicator of
Figure 3 can be seen in Table 2, which shows that the proposed algorithm is obviously
superior to the other algorithms.
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Figure 3. MIMO imaging results with 2D-FFT, 2D-FISTA, 2D-SL0, and the proposed algorithm with
p = 0.1, p = 0.3, p = 0.5, p = 0.7, and p = 0.9.

Table 2. Imaging performance.

Algorithm 2D-FFT 2D-FISTA 2D-SL0 p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

NMSE 4.048 2.0923 2.4894 0.4836 0.5100 0.5443 0.5629 0.8544
Corr 0.0450 0.1868 0.1703 0.8177 0.8025 0.7827 0.7788 0.6771

Both Figures 4 and 5 illustrate the variation curve of the SNR with the NMSE and Corr,
respectively, where the performance of the proposed algorithm is obviously better than the
2D-FFT, 2D-FISTA, and 2D-SL0 algorithms, especially under low SNRs. Meanwhile, the
NMSE gradually decreases and the Corr ascends for all algorithms contained in Figure 4
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and Figure 5, respectively, with the increase of the SNR. The result implies that the algo-
rithm is more robust compared to the other algorithms. In our algorithm, we added the
augmented Lagrange multiplier and lp penalty function to inhibit the outliers and improve
the robustness of the algorithm.

Next, the influence of the percentage of outliers in the array on imaging performance
was studied, and we set the percentage from 10% to 60%. Their relationship can be seen in
Figures 6 and 7, which show that our algorithm is more robust than 2D-FISTA, 2D-SL0, and
2D-FISTA. The results also imply that the proposed algorithm is more robust to outliers.
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Figure 4. The relationship between the SNR and NMSE.
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Figure 5. The relationship between the SNR and Corr.
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Figure 6. The relationship between the percentage of outliers and the NMSE.
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Figure 7. The relationship between the percentage of outliers and the Corr.

Public Dataset Experiment

Finally, we used a public dataset, the Boeing-727 dataset, to validate the performance
of the proposed algorithm, which demonstrated that the dataset is consistent with the
signal model for MIMO imaging. Suppose that every point in the radar echo matrix can
be seen as the snapshot of the MIMO virtual array. The dataset is generated by an X-band
(9.0 GHz) stepped frequency radar. The radar parameters are shown in the Table 3.

In this experiment, we chose the number of transmitted frequencies and the num-
ber of weeps as 64 and 256, respectively, and the algorithm parameters were p = 0.1,
λ = 0.4, SNR = 10 dB, and P = 1024, Q = 256. The radar imaging result can be seen in
Figures 8 and 9, whose percentage of outliers were set as 12% and 39%, respectively. Our
algorithm can well inhibit background noise and outliers compared to the existing algorithms.

Figure 8. Imaging result with the percentage of outliers being 12%.
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Table 3. The parameters of the step radar.

Parameters Value

Center frequency 9 GHz
Bandwidth 150 MHz

Sampling points 64
Pulse number 256

SNR 10 dB

Figure 9. Imaging result with the the percentage of outliers being 39%.

5. Discussion

5.1. Algorithm Convergence Analysis

To evaluate the converge of both algorithms, the experiment conditions were p = 0.5,
L = 1 × 106, λ = 0.5, and SNR = 10 dB. In Figure 10, although the exact algorithm can
converge to a more concise result compared to the inexact algorithm, it can converge at
a higher speed. The runtime and convergence error of both algorithms are presented in
Table 4.

In Table 4, the result shows that the exact algorithm will speed up the time until
the convergence condition is met, and the inexact recovery algorithm reduces the time
complexity at the expense of the convergence accuracy.

Table 4. Runtime and convergence error of both algorithms.

Algorithm Items p = 0.1 p = 0.3 p = 0.5 p = 0.7

Exact recovery
Time (s) 179.1385 179.1395 179.1375 179.1363

Error 0.0032 0.0041 0.0042 0.0042

Inexact recovery
Time (s) 3.3559 3.342 3.341 3.358

Error 0.0088 0.0088 0.0086 0.0088
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Figure 10. Convergence error curve of both algorithms.

5.2. Algorithm Complexity Analysis

On the one hand, we successfully recovered the uniform snapshot matrix from the
contaminated snapshot matrix by the array outliers. On the other hand, the two algorithms,
the exact recovery algorithm and the inexact recovery algorithm, were proposed to present
the sparse imaging result, and Σ reflected the sparse position of the scattering points in
space. In addition, the proposed algorithm was dominant in computational complexity.

Assume that the size of a contaminated snapshot matrix is M × N, and the Fourier
matrices are M × P and N × Q. Generally, the computational complexity of SVD is around
O(NM2) +O(M3). The proposed algorithm in this paper was divided into three steps,
and the computational complexity of every step can be seen below:

(1) Updating Σ: O(P2M) +O(P2Q) +O(Q2N);
(2) Updating E: O(MPQ) +O(MNQ) +O(JPQ);
(3) Updating R: O(MPQ) +O(MNQ).

For the exact recovery algorithm, the inner algorithm in Table 1 converges when it
iterates K times. Thereby, the exact recovery algorithm will speed up the time more than
the inexact recovery algorithm.

6. Conclusions

For MIMO radar 3D imaging, we achieved super-resolution imaging along the cross-
range. The algorithm we proposed does not convert the grid matrix into the larger matrix
and the observed matrix into the 1D vector and is more robust to noise than the existing
algorithms, 2D-FISTA and 2D-SL0. We proposed two sparse recovery algorithms, the exact
recovery algorithm and the inexact recovery algorithm, to inhibit the impact of outliers
on the imaging performance. The simulation experiments and public dataset experiment
validated the effectiveness of the algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

MIMO multiple-input multiple-output
PAR phased array radar
ADMM alternative direction method of multipliers
ISAR inverse synthetic aperture radar
SAR synthetic aperture radar
MC matrix completion
InISAR interferometric ISAR
FDM frequency-division multiplexing
TDM time-division multiplexing
CDM code-division multiplexing
PCA phase center principle
BP back projection
FRI finite rate of innovation
SVT singular-value thresholding
SBL sparse Bayesian learning
GISA generalized iterated shrinkage algorithm
CGISA complex generalized iterated shrinkage algorithm
SL0 smoothed L0
ALM augmented Lagrange multiplier method
SNR signal-to-noise ratio
CS compressive sensing
FFT fast Fourier transform
FISTA fast iterative shrinkage thresholding algorithm
SVD singular-value decomposition
IALM inexact augmented Lagrange multiplier
RAM random access memory
NMSE normal mean-squared error
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Abstract: Multiple-input multiple-output (MIMO) technology has recently attracted attention with
regard to improving the angular resolution of small antennas such as automotive radars. If appro-
priately placed, the co-located transmit and receive arrays can make a large virtual aperture. This
paper proposes a new method for designing arrays by adopting a structure with minimum redun-
dancy. The proposed structure can significantly increase the virtual array aperture while keeping
the transmit and receive antennas at the same size. We describe the application of the proposed
method to subarray-type antennas using multi-channel transceivers, which is essential for arranging
RF hardware in a small antenna operating at high frequency. Further, we present an analysis of the
final beam pattern and discuss its benefits and limitations.

Keywords: MIMO array; minimum redundancy array; virtual array antenna; subarray

1. Introduction

An essential requirement for a radar system is its angular resolution. As the angular
resolution depends on the aperture size, a small antenna system, such as an automo-
tive radar, is challenging to achieve. Subspace-based algorithms, such as multiple signal
classification (MUSIC) and estimation of signal parameters via rational invariance tech-
niques (ESPRIT), and parameter estimation algorithms based on the maximum likelihood
(ML) function have been used to achieve the high-resolution angle estimation [1,2]. How-
ever, the multiple-input multiple-output (MIMO) technology has recently attracted the
most attention.

A MIMO radar, which synthesizes a virtual antenna array (VAA) using co-located
transmit and receive antennas, is typically used in automotive systems [3–6]. If appro-
priately placed, co-located transmit and receive arrays can create a large virtual aperture
with a small number of arrays. The arrangement of the VAA is determined by the spatial
convolution of the transmit and receive array positions, and its aperture is the sum of
each antenna aperture [7]. In the case of a uniform linear array (ULA), if the receive array
has Mr elements and the transmit array has Mt elements, the VAA can become a filled
ULA with Mt × Mr elements when the interelement spacing is d and Mr × d, respectively.
Furthermore, if the total number of arrays is 2K, the maximum aperture is obtained when
Mr = Mt = K. However, in this case, the sizes of the receive and transmit arrays are
considerably different, i.e., Mr × d and (Mt − 1) × Mr × d. For example, if K = 8, the
maximum VAA aperture can be 16d when Mr = Mt = 4. The apertures of receive and
transmit arrays are 4d and 12d, respectively. Thus, the two antennas have a three-fold
size difference, and the long antenna will ultimately determine the physical dimensions of
the entire antenna. Therefore, this arrangement is insufficient for the miniaturization of
the antenna when considering the physical dimensions and the VAA aperture. A simple
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design to make the size of the transmit and receive arrays the same is to use Mt = 2.
Then, although the aperture of the VAA is reduced to 12d in this example, the physical size
becomes half.

Most automotive radars employ this type of transmit-and-receive array spacing, and it
is difficult to find other arrangements. This paper suggests a new spacing method for VAA
that provides the largest VAA aperture and makes the physical size of the transmit and
receive array antennas the same by employing the co-array property of the non-uniform,
minimum redundancy array.

Another trend driving module size reduction is to move to higher operating frequen-
cies. A higher operating frequency in radar systems is preferred because of its increased
bandwidth, high range resolution, and accuracy. The unlicensed industrial, scientific, and
medical (ISM) frequency above 100 GHz is particularly interesting for mass-volume com-
mercial radar-sensor applications [8]. However, when the frequency increases, arranging
the RF hardware becomes challenging due to the compact antenna. Research on integrat-
ing antennas into packages or chips is ongoing to find a cost-effective solution without
requiring RF signals on the printed circuit board (PCB) [9]. Several studies on D band
(110~170 GHz) transceivers have been published [10–13]. The multi-channel transceiver is
a single-chip solution that integrates multiple transmit and receive channels. It includes
amplifiers and a phase shifter in each channel supporting analog beamforming in both
transmit and receive directions. Transmission beamforming can increase the power and
extend the detection range. Receive beamforming decreases the number of analog-to-digital
converters (ADCs) and all subsequent digital hardware, effectively reducing size and cost
of the system. However, this front-end beamforming, or subarray structure, is disadvan-
tageous for adaptive beamforming or multiple beamforming compared with full digital
arrays and affects the MIMO VAA configuration as well [14].

In this paper, we propose a design approach for MIMO VAA considering the transmit
and receive subarray structure using multi-channel transceivers. We herein present an
analysis of the final beam pattern using subarray structure and MIMO VAA and the
application of the proposed MIMO arrangement method. The benefits and limitations
are discussed.

The remainder of this paper is organized as follows. The next section derives the
fundamental formula of a MIMO antenna with subarrays. Section 3 describes the non-
uniform arrays, including the non-redundant array and minimum redundancy array
(MRA), and proposes a new MIMO configuration. Section 4 suggests a subarray-type
MIMO antenna using non-uniform spacing and, finally, Section 5 presents the conclusion.

2. MIMO with Subarrays

2.1. Basic Principle

A MIMO, in which the transmit arrays are configured using subarrays, is called phased
MIMO, and the beam pattern, SNR, and SINR are discussed in [15–17]. Based on this, the
following formula is derived for M transmission subarrays with L arrays shown in Figure 1.

 

Tx Subarray 1
(Waveform 1)

Tx Subarray m
(Waveform m)

Tx Subarray M
(Waveform M)

Figure 1. Configuration of the transmit antenna with subarrays.
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We assume that each subarray transmits a different waveform φm(t), and the wave-
forms are orthogonal to one another.

φ(t) =
[
φ1(t) φ2(t) . . . φM(t)

]T (1)∫
T0

φ(t)φH(t)dt = IM (2)

where IM is the M × M identity matrix. If the beamforming weight of each subarray is wml ,
the transmission signal in the θ direction by the m-th subarray can be expressed as follows:

sm(t, θ) =
[
w∗

m1 w∗
m2, · · ·w∗

mL
][

1 e−jkdt1 sin θ · · · e−jkdt(L−1) sin θ
]T

e−jkDt(m−1) sin θφm(t)

= wH
m a(θ)e−jkDt(m−1) sin θφm(t) (m = 1, 2, . . . M)

(3)

where wm = [wm1 wm2, · · ·wmL]
T ∈ CL×1, a(θ) =

[
1 e−jkdt1 sin θ · · · e−jkdt(L−1) sin θ

]T
, k is

the wave number, 2π/λ (λ : wavelength), and * and H stand for the complex conjugate
and conjugate transpose, respectively.

Then, the transmit signal becomes the sum of them.

s(t, θ) =
M
∑

m=1
sm(t, θ) =

M
∑

m=1
wH

m a(θ)e−jkDt(m−1) sin θφm(t)

=
[
wH

1 a(θ)wH
2 a(θ) · · · wH

M a(θ)
]
�
[
1e(−jkDt1 sin θ) · · · e−jkDt(M−1) sin θ

]
⎡⎢⎢⎢⎢⎢⎣

φ1(t)
φ2(t)

...
φM(t)

⎤⎥⎥⎥⎥⎥⎦
=

¯
a

T
(θ)� dT(θ)φ(t)

(4)

where
¯
a (θ) =

[
wH

1 a(θ) · · · wH
M a(θ)

]T ∈ CM×1, d(θ) =
[
1 e−jkDt1 sin θ · · · e−jkDt(M−1) sin θ

]T
,

and � stands for the Hadamard product. Moreover, if the weights for the subarrays are
identical, i.e., w1 = w2 = · · · = wM = w, it is simplified to

s(t, θ) = wTa(θ)dT(θ)φ(t) = gt(θ)d
T(θ)φ(t), (5)

where gt(θ) = wTa(θ).
The target reflection signal in the θ direction can be expressed by

r(t, θ) = β
¯
a

T
(θ)� dT(θ)φ(t − τ) + n(t) = βgt(θ)d

T(θ)φ(t − τ) + n(t) (6)

where β is the complex reflection coefficient, τ is the delay by the target distance, and n(t)
is the white Gaussian noise.

Suppose the receiver, like the transmit arrays, has a structure that performs analog
beamforming in subarray units and then performs digital beamforming, as shown in
Figure 2. Then the output of the nth subarray can be written as follows:

rn(t, θ) = cH
n b(θ)e−jkDr(n−1) sin θ r(t, θ) (n = 1, . . . N) (7)

where cn = [cn1 cn2 . . . cnP]
T are the analog beamforming weights within each subarray,

and b(θ) =
[
1 e−jkdr1 sin θ . . . e−jkdr(P−1) sin θ

]T
is the phase difference in the θ direction.
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Again, if c1 = c2 = · · · = cN = c, then we can simplify to cH
1 b(θ) = cH

2 b(θ) = · · · cH
Nb(θ) =

gr(θ) and the receive signal vector from all subarray is expressed by

r(r, θ) = [r1(t, θ) r2(t, θ) . . . rN(t, θ)]T

= gr(θ)
[
1 e−jkDr1 sin θ . . . e−jkDr(N−1) sin θ

]T
r(t, θ) = gr(θ)h(θ)r(t, θ)

(8)

where h(θ) =
[
1 e−jkDr1 sin θ . . . e−jkDr(N−1) sin θ

]T
.

 
Rx Subarray 1 Rx Subarray n Rx Subarray N

Figure 2. Configuration of the receive antenna with subarrays.

Each transmit waveform is recovered by matched filtering with {φ(t)}M
m=1. The m-th

signal after matched filtering is

xm(θ) =
∫

T0

r(t, θ)φ∗
m(t)dt = βgt(θ)gr(θ)dmh(θ) + ñm(t), m = 1 . . . , M (9)

where dm is the m-th element of the vector d(θ) in (4). Thus, the final MIMO received signal
of NM × 1 is represented as follows:

y =
[
xT

1 (θ) xT
2 (θ) . . . xT

M(θ)
]T

= βgt(θ)gr(θ) d(θ)⊗ h(θ) + Ñ (10)

The above equation is the same as the typical MIMO formula except for the subarray
gains of gt(θ) and gr(θ). After MIMO VAA beamforming with the weight vector wMIMO ∈
CNM×1, the final beam pattern is expressed by

G(θ) =
∣∣∣wHa(θ)

∣∣∣2∣∣∣cHb(θ)
∣∣∣2∣∣∣wH

MIMO[d(θ)⊗ h(θ)]
∣∣∣2 = |gt(θ)|2|gr(θ)|2|gMIMO(θ)|2 (11)

The final pattern revealed is the multiplication of the transmitter subarray pattern, the
receiver subarray pattern, and the MIMO VAA beampattern.

Here, we can summarize three design factors of the subarray MIMO antenna:

• the orthogonal waveforms {φm}, which are not a subject of this manuscript, but are an
important issue. Conventionally, the orthogonality is obtained by time-domain multi-
plexing (TDM), frequency domain multiplexing (FDM), or code domain multiplexing
(CDM) [18–21]. Beat-frequency multiplexing or Doppler-domain multiplexing (DDM)
is also proposed in automotive radars [3,5];

• the antenna structure, including the subarrays and MIMO configuration; and
• the beamforming weights.

The antenna structure is represented by a(θ), b(θ), and d(θ), while h(θ). a(θ) and
b(θ) are the subarray configuration, and d(θ) and h(θ) are the MIMO configuration which
results from the structure among subarrays. The beamforming weights are w and c, and
wMIMO. w and c are the transmit and receive subarray weights, respectively, designed for
suppressing the sidelobe level as well as steering the subarray beam direction. wMIMO is
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the beamforming weight of MIMO VAA for multiple beamforming, adaptive beamforming,
or any purpose.

2.2. MIMO Configuration

A MIMO antenna is typically defined as having transmit arrays with L = 1 in Figure 1
and receive arrays with p = 1 in Figure 2, implying that it does not have subarrays. The
VAA beam pattern is determined in this case by the array spacing Dt, Dr and the MIMO
beamforming weight. From Equation (10), the input is written as follows:

y =
[
xT

1 (θ) xT
1 (θ) . . . xT

1 (θ)
]T

= βd(θ)⊗ h(θ) + Ñ = β v(θ) + Ñ (12)

where v(θ) = d(θ)⊗ h(θ) = [v1(θ), v2(θ), · · · , vNM(θ)]T and the element is

v[n+(m−1)N](θ) = e−jk sin θ[Dt(m−1)+Dr(n−1)], m = 1, . . . M and n = 1, . . . , N (13)

This equation is more commonly referred to as the spatial convolution of transmit and
receive array positions. If the transmit and receive antenna has a uniform interval, then
we can write that Dt(m−1) = (m − 1)Dt and Dr(n−1) = (n − 1)Dr. The maximum length of
the VAA that can be implemented with (M + N) arrays is MN × Dr, when Dt = NDr (or
Dr = MDt). In addition, the maximum length is achieved when the number of transmit
arrays is the same as the number of receive arrays, i.e., M = N = K if M + N = 2K.
However, in this case, the physical lengths of the antennas are (M − 1)× NDr, and NDr,
respectively, so the transmit antenna is (M − 1) times longer than the receive antenna.
For example, if M + N = 8, the maximum length of the VAA is 16Dr when M = N = 4.
The length of the transmit antenna is 12Dr, which is three times longer than that of the
receive antenna, 4Dr. A similar physical size of the two antennas can be obtained using
two transmit arrays and six receive arrays, but the length of the virtual antenna is reduced
to 12Dr. Figure 3 shows VAAs for two cases.

  
(a) (b) 

TX

RX

VAA

TX

RX

VAA

Figure 3. VAA configuration with eight arrays: (a) four Tx and four Rx (left) (b) two Tx and six
Rx (right).

Although the beam pattern of the VAA varies depending on the selection of weights,
if we choose wMIMO = d(θs)⊗ h(θs), which is the conventional beamforming weight for a
uniform array, the resulting beam pattern becomes the product of the transmit pattern and
the receive pattern is as follows:

(θ) =
∣∣wH

MIMO[d(θ)⊗ h(θ)]
∣∣2 =

∣∣∣[d(θs)⊗ h(θs)]
H [d(θ)⊗ h(θ)]

∣∣∣2
=
∣∣∣dH(θs)d(θ)

∣∣∣2∣∣∣hH(θs)h(θ)
∣∣∣2 = |gtx(θ)|2|grx(θ)|2

(14)

where θs is the steering direction. If the beam direction is fixed to only one angle, it is
theoretically the same pattern as performing transmit beamforming by d(θ) and receive
beamforming by h(θ) separately. However, in the MIMO approach, the beamforming is
performed only in the receiver, and the number of weights increases MN. Thus, it has more
degree of freedom to make multiple beams simultaneously in several directions or perform
adaptive beamforming, which is usually performed digitally.
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2.3. Transmit and Receive Subarray

In the case of a MIMO antenna with transmit and receive subarrays, the final pattern is
the product of the subarray pattern and the MIMO pattern, as written in Equation (11). If w
or c steers the subarray pattern at a specific angle, MIMO beamforming to a different angle
is bound by the subarray pattern and suffers a loss. The loss increases as the beamwidth of
the subarray gets smaller, i.e., as the size of the subarray becomes larger. The idea is the
same as how a single array pattern constrains the array antenna pattern.

Figure 4 shows a case where each transmit array of Figure 3b is replaced by subarrays
with four arrays. The space of all the arrays is set to 0.5 wavelengths. The resulting
beam patterns are shown in Figure 5. The MIMO pattern is obtained by the Figure 3b
configuration, and four arrays make the subarray pattern. The final pattern becomes a
product of these two patterns, which has the good effect of suppressing the sidelobe but
shows a loss of gain when steering at 10◦ compared with the gain at 0◦.

Figure 4. The final beampattern with TX subarrays and RX arrays shown on the left is the product of
the beampattern of a TX subarray, and that of MIMO made by a single TX array is shown on the right.
One TX subarray transmits the identical waveform.

Figure 5. The final beampattern with TX subarrays in the case of steering to 0◦ (upper) and
15◦ (lower).

The adoption of the transmit subarray can improve the SNR by increasing the output
power and has the effect of suppressing the sidelobe. However, because it restricts the
angle of multi-beams, it is recommended to use a window to increase the beamwidth.
Figure 6 shows the beampattern created by applying a Taylor window to the transmit
subarray. It demonstrates that the sidelobe is still suppressed while the loss in the 10◦ beam
is decreased.
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Figure 6. The final beampattern when a Taylor window is applied to subarray beamforming.

On the other hand, when the receive array is composed of an analog beamforming
subarray without overlap, another consequence appears in addition to the pattern con-
straint. Figure 7 shows the receive antenna configured in the form of a subarray. In this
case, the spacing of the MIMO receiver is no longer half a wavelength and thus results in
the grating lobe of the MIMO pattern, as shown in Figure 8. The final pattern is the same
as the uniform array pattern if both the subarray beamforming on an analog receiver and
the MIMO beamforming are performed in the same direction. However, if the angle of the
MIMO beamforming is changed in a different direction, the grating lobe and the subarray
pattern modify the final pattern at the same time.

Figure 7. The final beampattern with TX arrays and RX subarrays shown on the left is the product of
the beampattern of the RX subarray, and that of MIMO made by a single RX array is shown on the
right. Two TX arrays transmit different waveforms.

Figure 8. The final beampattern with RX subarrays in the case of steering to 0◦ (upper) and
15◦ (lower).
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Although the receiver subarray is unavoidable due to the space constraint of hardware
as frequency increases, the performance is somewhat limited compared with the full
digital array.

3. Design of MIMO Array

3.1. Minimum Redundancy Array

The MRA is a class of non-uniform linear array designed to minimize the number of
sensor pairs with the same spatial correlation lag. If this number of sensor pairs is 1, it is
called a perfect array. If we assume that the arrays are located on an underlying grid with
unit spacing and that w is a vector having 1 at the array position and 0 at the other location,
then the number of times each spatial correlation lag is computed by the autocorrelation of
the position vector with itself, which is called the co-array [22].

c(γ) =
Ne

∑
k=1

w(k)w(k − γ) (15)

where Ne is the size of w, w(k) is k-th element of w, and w(k) = 0 if k < 1 or k > Ne. For
example, a vector w = [1 1 0 0 1 0 1] has 4 arrays (N) and the size (Ne) is 7. As illustrated
in Figure 9, in this case, all co-arrays have one except when γ = 0, indicating that the
sensor pair with the same spatial correlation lag is 1. This type of co-array is called a perfect
array. However, because there is no perfect array for N > 4, it should be chosen between
non-redundant arrays that partially permit holes and MRA with no holes. A hole is a
position where the co-array value is 0, and redundancy is a position where the co-array
value is greater than 1, where γ is not 0. The following equation determines the final size:

Ne =
N(N − 1)

2
− NR + NH + 1 (16)

where NR is the number of redundancies and NH is the number of holes.

Figure 9. Co-array for the MRA when N = 4.

The MRA is designed to make the largest possible aperture without holes. There has
been a significant amount of research on element spacing to achieve as low a redundancy
as possible for arrays of up to 30 elements [23–25].

3.2. Non-Uniform MIMO Array Configuration

The co-array property is applied to a bistatic MIMO VAA. Because the location of the
MIMO virtual arrays consists of the spatial convolution of the transmit and receive arrays,
if we choose the receive array as the reverse of the transmit arrays, the resulting VAA is the
co-array structure with a length approximately twice that of the transmit array. When the
size of a single antenna is Ne, the size of the resulting VAA is as follows:

NVAA = 2Ne − 1 (17)

In other words, a VAA composed of an MRA generates uniform arrays, and one made
up of non-redundant arrays results in sparse arrays. For example, suppose the transmit
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arrays and receive arrays are configured with a perfect array of N = 4 and Ne = 7 in the
previous section. In that case, the VAA can have the same beam pattern as that of uniform
arrays with 13 elements, as shown in Figure 10.

 
Figure 10. TX and RX antenna with an MRA structure and the resulting VAA.

For each N, the size of non-redundant arrays, Ne,nr, and the size of the MRA, Ne,mr, are
summarized in Table 1. The size of the MIMO VAA for each is also listed. In addition, the
VAA size for the case of using two transmit arrays and (2N − 2) receive arrays is written,
in which the transmit antenna and the receive antenna have the same size. Table 1 shows
that when N is greater than 3, VAA apertures using non-uniform arrays are longer than
the aperture using conventional two-transmit array structures. The VAA aperture ratio
increases with N; when N = 8, the ratio is up to 2.46 and 1.68, respectively.

Table 1. List of VAA sizes for the non-uniform array configurations and number.

N
Non-Redundant Array

Minimum Redundancy
Array

2-Transmit Arrays

Ne,nr NVAA Ne,mr NVAA Nrx NVAA

3 4 7 4 7 6 4
4 7 13 7 13 6 12
5 12 23 10 19 8 16
6 18 35 14 27 10 20
7 26 51 18 35 12 24
8 35 69 24 47 14 28

When using five transmit and receive arrays, it is possible to make a VAA with 23
sizes using non-redundant arrays with an interval of (1,3,5,2) and a VAA with 19 sizes
using an MRA with an interval of (1,3,3,2). Both are larger than a VAA with 16 sizes,
which is composed of 10 arrays of two transmit arrays and eight receive arrays as shown in
Figure 11.

 

 

Figure 11. Non-redundant array with an interval of (1,3,5,2) can make a 23-sized VAA (up) and the
MRA with an interval of (1,3,3,2) can make a 19-sized VAA (down).

Figure 12 shows the beampattern for each case. The beamforming is performed by
adjusting the weight to make it the same as for uniform arrays, although the hole cannot
be filled out. The non-redundant array has less beamwidth than the MRA because of the
larger aperture size. However, due to the two holes, it has different positions and higher
sidelobe than 23 uniform arrays. Both the MRA and non-redundant arrays have small
beamwidth compared with 16 uniform arrays with two transmit arrays.
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Figure 12. Comparison of beam patterns at N = 5. VAA’s beampattern by the non-redundant array
shows the smallest beamwidth, but the sidelobe is similar to that by the MRA.

4. Proposed MRA MIMO with Subarrays

The minimum redundancy configuration can be applied to Dt in Figure 1 and Dr
in Figure 2 to build a subarray MIMO structure using a multi-channel transceiver. The
number of arrays that comprise the subarray, L and P, depends on the hardware structure
of the transceiver, which are four in this paper.

Assume five transmission waveforms and five receive antennas, as shown in Figure 13.
The spacing of the arrays is 0.5 wavelength and the minimum spacing of the subarrays is
2 wavelengths. The ratio of the spacing between subarrays is 1:3:3:2. The aperture of the
transmit and the receive antenna is 20 wavelengths, and the final aperture is doubled to
40 wavelengths.

Figure 13. MRA MIMO Configuration. The ratios of the spacing among subarrays are 1:3:3:2 and
2:3:3:1. Each TX and RX subarray is comprised of 4 uniform arrays.

According to Equation (11), the final beam pattern is the product of the transmit
subarray beampattern, the receive subarray beampattern, and the MIMO beampattern.
Again, MIMO beamforming is performed by adjusting the weight to make it the same as
for uniform arrays.

When the transmit subarray beamforming, the receive subarray beamforming, and
the MIMO beamforming are performed at the same boresight angle, say 0◦, we can get the
same result as the uniform array, as shown in the upper graph of Figure 14. However, if
we control the MIMO digital beam at 5◦, it suffers a loss by the subarray beampattern, and
the grating lobe also occurs, as shown in the lower graph of Figure 14. In other words, the
subarray beamwidth limits the MIMO beamforming angle. The transmit subarray pattern
in the figure employs the Taylor window to broaden the beamwidth, whereas the receive
subarray pattern does not.

Next, Figure 15 shows the configuration in which the non-redundant structure is
applied to MIMO. Likewise, the spacing of the arrays is 0.5 wavelengths, the spacing of the
subarrays has two wavelengths as the minimum spacing, and the spacing ratio is 1:3:5:2.
The total aperture is 48 wavelengths longer than the minimum redundancy configuration,
so the beam width is improved. However, the sidelobe characteristics deteriorate due to
holes in the MIMO structure. The upper graph in Figure 16 shows the beampattern formed
when the steering angle of the subarrays and the steering angle of the MIMO beam are
equal to 0◦, and the lower graph shows the beampattern when only the MIMO steering
angle is changed to 5◦.
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Figure 14. Final beampatterns by minimum redundant MIMO steered to 0◦ (up) and 5◦ (down).

Figure 15. Non-redundant MIMO configuration. The ratios of the spacing among subarrays are
1:3:5:2 and 2:5:3:1. Each TX and RX subarray is comprised of 4 uniform arrays.

Figure 16. Final beampatterns by non-redundant MIMO steered to 0◦ (up) and 5◦ (down).

Finally, if two transmitters and eight receivers with about 18 wavelengths are config-
ured as shown in Figure 17, the final aperture becomes a uniform array of 36 wavelengths.
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Figure 17. Two transmit waveforms and eight receive subarrays.

Figure 18 compares beampatterns for three configurations steered to 5◦. As expected
from the aperture length, the non-redundant array has the smallest beamwidth and the
worst sidelobe characteristic. Grating lobes due to the minimum interval of the subarray
are common.

Figure 18. Comparison of beampatterns steered to 5◦. The non-redundant MIMO has the smallest
beamwidth but the worst sidelobe characteristic. Grating lobes are common.

5. Conclusions

We devised a new method for placing transmit and receive arrays for MIMO VAA
with non-redundant or minimum redundant structures. In contrast to the conventional
arrangement, wherein one of the antennas has a relatively long physical size, the proposed
design can increase the VAA aperture while keeping the transmit and receive antennas at
the same size.

In addition, we applied the proposed method to the MIMO antenna with subarrays
and analyzed the beampatterns. Subarrays restrict the direction of multiple beamforming,
and produce grating lobes if the subarrays do not overlap and the interval is substantially
greater than a half waveform. However, the subarray structure is expected to be essential
for small antennas with multi-channel transceivers, which are necessary for moving to a
high operating frequency to improve the range resolution and miniaturize antennas. The
goal of this study was to develop a D-band radar; the results will be implemented using
multi-channel transceivers currently under development.
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Abstract: The transmitted beam of frequency diversity array (FDA) has the range–angle–time cou-
pling property, which has essential applicative potential in angle deception and active anti-jamming.
In this paper, the concept of time index within pulse is introduced. Firstly, the phase characteristics
of FDA-transmitted signals based on the time index within pulse concept are studied. Then, the
deceptive angle performance of FDA-transmitted signals is discussed. The theoretical analysis and
simulation results show that the phase characteristics of the FDA signal are not related to the range,
but to the time index within pulse. With the phase center as the reference point, the phase is equal as
long as the time index within the pulse is the same. Angle deception and active anti-jamming can be
achieved using the optimized frequency increment of each FDA.

Keywords: frequency diversity array (FDA); time index within pulse; phase center; angle deception;
active anti-jamming

1. Introduction

Frequency diversity array (FDA) has attracted wide attention since it was first pro-
posed [1]. Unlike phased array (PA), which transmits signals with the same carrier fre-
quency, FDA introduces different frequency increments in each array element so that the
transmitted beam is range–angle–time-dependent [2–4]. When the frequency increment
is zero, FDA simplifies to PA so that PA is a particular case for FDA. Due to the increased
freedom of range dimension and improved capacity for information processing, FDA
has potential application value in many areas, such as radar detection, positioning, and
anti-jamming [5,6].

When the frequency increment of FDA increases linearly, its transmitted beam is cou-
pled in range, angle, and time [7]. Regarding de-coupling, many scholars pay attention to
the transmitted beam with a non-uniform increase in the frequency increment of FDA. For
example, Log frequency offset [8], cubic frequency offset [9], multi-carrier frequency [10],
random frequency offset [11], time-dependent frequency offset [12,13], and genetic algo-
rithm optimization frequency increment [14] are used to achieve beam focusing. However,
these methods ignore the influence of the time factor and lead to an instantaneous beam.
The literature [15] points out that these methods ignore the signal propagation process, and
that the beam cannot only focus on a specific position in space and last for a particular time.
The literature [16] emphasizes that the propagation process of the electromagnetic wave
cannot be ignored. The literature [17–19] has obtained the corrected pulse FDA expression
by analyzing the frequency–phase and time–range relationships. Furthermore, the litera-
ture [20] points out that the FDA beam is time–angle-dependent, not range-dependent, and
that a reasonable signal processing scheme at the receiving end is necessary for activating
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FDA distance correlation [21,22]. Ref. [23] further explains the relationship between the
time index within pulse and real-time, which is similar to the relationship between radar
fast time and slow time. However, ref. [20] does not give the relationship between the time
index within pulse and the phase.

Radar needs not only a good detection performance, but also a good capacity for
anti-jamming. With the development of digital radio frequency memory (DRFM), active
jammers can produce complex and flexible jamming signals, which seriously threaten the
performance of radar systems. Therefore, radar anti-jamming technology is essential. FDA
radar beam can activate range correlation. Based on this, many scholars have researched
the suppression of deceptive interference [24–30]. However, these methods are targeted at
specific interference scenes. The literature [31] discusses the low interception performance
of FDA-transmitted signals, indicating that FDA-transmitted signals are less likely to be
intercepted by jammers than PA-transmitted signals, thus making it difficult for jammers
to target jamming signals in arrays. The literature [32] has preliminarily discussed the
possibility of FDA’s resistance to interferometer-based direction of arrival (DOA) recon-
naissance. On this basis, the literature [33–37] has studied the phase characteristics of
FDA’s transmitted signals and their cheating effect on the interferometer. However, all
such studied have taken the spatial phase and range into one-to-one correspondence, have
not considered the influence of wave propagation, and have ignored the time index within
pulse. At the same time, it has also been ignored that interferometer direction finding is
based on its measurement and the estimation of the incident signal frequency, and that it
then estimates the direction of the phase center of the received signal. Inspired by the study
of uniform linear PA phase centers in the literature [38], based on the time index within
pulse, this paper discusses the phase characteristics of FDA-transmitted signals and the
calculation method of the phase center, and uses the adjustable phase center to achieve
FDA active anti-jamming.

Finally, for the jammer based on the interferometer to determine the position of the
array radar, this paper proposes an active anti-jamming method so that the jammer signal
cannot be aligned with the array, even by setting multiple phase center flashing so that
the jammer completes the direction finding with difficulty. The main contributions of this
paper are as follows:

1. The phase characteristics of the FDA-transmitted signal based on the time index
within pulse are analyzed.

2. The phase center of the FDA-transmitted signal is calculated, and the theoretical basis
of FDA angle deception is analyzed by adjusting the phase center.

3. An active anti-jamming algorithm based on the FDA phase center is proposed by
optimizing each element’s frequency increment.

The rest of this paper is arranged as follows. Sections 2 and 3 derive and analyze the
phase characteristics of PA and FDA, respectively. Next, Section 4 presents the calculation
method of the phase center of the array-transmitted signal and discusses how FDA imple-
ments angle deception. Finally, the theoretical analysis is verified through simulation in
Section 5, and the conclusion is given in Section 6.

Notation: We use boldface for vectors a and matrices A. Scalar a is denoted by italics.
The transpose, conjugate and conjugate transpose are denoted by the symbols (·)T , (·)∗
and (·)H , respectively. The letter j represents the imaginary unit (i.e., j =

√
−1).

2. Phase Characteristics of PA

In this section, we first analyze the propagation characteristics of electromagnetic
waves to fully understand the relationship between real-time and the time index within
pulse, and determine the real-time–phase relationship. Then, the time–angle–phase rela-
tionship of the transmitted signal is determined by analyzing the phase of the PA signal
based on the time index within pulse.
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2.1. Phase Propagation Analysis

Set the time index within pulse as t′ and the real-time as t. The pulse signal with the
carrier frequency f0 can be expressed as follows:

s(t) = rect(
t

Tp
) ej2π f0t (1)

rect(
t

Tp
) =

{
1 , 0 ≤ t ≤ Tp
0 , else

(2)

where Tp stands for the pulse duration when the pulse signal propagates to r1 and r2; the
phase changes in the propagation process are shown in Figure 1.

Figure 1. Phase-change process of pulse signal.

The pulse signals of the two moments can be expressed as follows:

s(t − r1/c) = rect(
t − r1/c

Tp
) ej2π f0(t−r1/c),

r1

c
≤ t ≤ r1

c
+ Tp (3)

s(t − r2/c) = rect(
t − r2/c

Tp
) ej2π f0(t−r2/c),

r2

c
≤ t ≤ r2

c
+ Tp (4)

Figure 1 shows that the pulse signal phase is related to its real-time spatial propagation,
which can be divided into two parts: propagation delay τ and the time index within pulse
t′. Further, when the time index within pulse is equal, the phases of the pulse signals are
also equal. In order to highlight the vital parameter of the time index within pulse, we let
t′ = t − τ; then, (3) and (4) can be unified into (5).

s(t′) = rect(
t′

Tp
) ej2π f0t′ , 0 ≤ t′ ≤ Tp (5)

Equation (5) can uniformly represent the pulse signals transmitted to different ranges,
which means that the phase of the pulse signal is only related to the time index within
pulse but has nothing to do with the propagation delay. Therefore, the time index within
pulse can be used to replace the real-time when analyzing the phase of the pulse signal.

The continuous wave signal can be regarded as the pulse signal with an infinite pulse
time, and its phase is only related to the time index within pulse. In a word, the phase
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of both the pulse signal and continuous-wave (CW) signal is only related to the time
index within pulse and has nothing to do with the propagation delay. The propagation
delay is related to the range, which means that the electromagnetic wave signal constantly
propagates forward.

2.2. PA Signal Analysis

Through the above analysis, it is clear that the signal phase is related to the time index
within pulse. In this section, we will analyze the phase characteristics of PA emission signals
so that we can accurately understand the phase characteristics of FDA emission signals.

Consider a uniform linear PA with M isotropic antennas, as shown in Figure 2.

Figure 2. Uniform linear phased array.

The carrier frequency is f0 and the array spacing is d. When it propagates to the far
field with range r and angle θ, the signal can be expressed as follows:

yPA(t) =
M−1

∑
m=0

sm(t) =
M−1

∑
m=0

rect(
t − rm/c

Tp
)ej(2π f0(t−rm/c)) (6)

where rm = r0 − md sin θ. Under the far-field narrow-band condition, the envelope is
approximately invariant, as follows:

rect(
t − rm/c

Tp
) ≈ rect(

t − r0/c
Tp

) (7)

Meanwhile, we replace the real-time t with the time index within pulse t′, and Equation (6)
can be further expressed as follows:

yPA(t) = rect( t−r0/c
Tp

)ej2π f0(t−r2/c)
M−1
∑

m=0
ej(2π f0(m−1)d sin θ/c)

= rect( t′
Tp
)ej2π f0t′

M−1
∑

m=0
ej2π f0md sin θ/c

= rect( t′
Tp
)ej(2π f0t′+π(M−1) f0d sin θ/c) sin(πM f0d sin θ/c)

sin(π f0d sin θ/c)

(8)

According to (8), the amplitude and phase of the PA-transmitted signal in the far field
can be expressed as follows:

PPA(t′, θ) = rect(
t′

Tp
)

∣∣∣∣ sin(πM f0d sin θ/c)
sin(π f0d sin θ/c)

∣∣∣∣ (9)

ϕPA(t′, θ) = rect(
t′

Tp
)(2π f0t′ + π(M − 1) f0d sin θ/c) (10)
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According to (10), the far-field phase of the PA-transmitted signal is related to the time
index within pulse, angle, and array spacing, but not to the range; in addition, the phase of
each point in the far field changes with the change in the time index within pulse. During
the reconnaissance phase, the phase measured by the jammer is as follows:

ϕPA_n(t′, θ) = rect(
t′

Tp
)arctan(

sin(2π f0t′ + π(M − 1) f0d sin θ/c)
cos(2π f0t′ + π(M − 1) f0d sin θ/c)

) (11)

3. FDA Phase Characteristics

Consider a uniformly linear FDA with M isotropic antennas, as shown in Figure 3.

Figure 3. Uniform linear frequency diversity array.

The carrier frequency of each array is fM = f0 + Δ f (m), and the array spacing is d.
When it propagates to the far field with range r and angle θ, the signal can be expressed
as follows:

yFDA(t) =
M

∑
m=1

sm(t) =
M

∑
m=1

rect(
t − rm/c

Tp
)ej(2π fm(t−rm/c)) (12)

where rm = r0 − (m − 1)d sin θ. First, consider the FDA with linearly increasing frequency
offset (LIFDA), namely Δ f (m) = (m − 1)Δ f . Assuming that the envelope of the far-field
condition is approximately unchanged and that the real-time t is replaced by the time index
within pulse t′, Equation (12) can be further expressed as follows:

yLIFDA(t) = rect( t−r0/c
Tp

)ej2π f0(t−r0)/c
M
∑

m=1
ej2π(m−1)(Δ f (t−r0/c)+ f0d sin θ/c)

= rect( t′
Tp
)ej2π f0t′

M
∑

m=1
ej2π(m−1)(Δ f t′+ f0d sin θ/c)

= rect( t′
Tp
)ej(2π f0t′+π(M−1)(Δ f t′+ f0d sin θ/c)) sin(πM(Δ f t′+ f0d sin θ/c))

sin(π(Δ f t′+ f0d sin θ/c))

(13)

It can be concluded from (13) that the amplitude and phase of the LIFDA in the far
field are, respectively, expressed as follows:

PLIFDA(t
′, θ) = rect(

t′

Tp
)

∣∣∣∣ sin(πM(Δ f t′ + f0d sin θ/c))
sin(π(Δ f t′ + f0d sin θ/c))

∣∣∣∣ (14)

ϕLIFDA(t′, θ) = rect( t′
Tp
)(2π f0t′ + π(M − 1)(Δ f t′ + f0d sin θ/c))

= rect( t′
Tp
)(2π fct′ + π(M − 1) f0d sin θ/c)

(15)

fc = f0 +
M − 1

2
Δ f =

1
M

M

∑
m=1

fM (16)
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According to (15), the far-field phase characteristics of the LIFDA are similar to those
of PA, which is related to the time index within pulse, angle, and array spacing, but not
to the range. The phase of each point in the far field changes with the change in the time
index within pulse. The different phase of PA and FDA in the same far-field location is due
to their different carrier frequencies. The PA carrier frequency is f0, while the equivalent
carrier frequency of the LIFDA is fc, which is the average of each array carrier frequency.
During the reconnaissance phase, the phase measured by the jammer is as follows:

ϕLIFDA_n(t′, θ) = rect(
t′

Tp
)arctan(

sin(2π fct′ + π(M − 1) f0d sin θ/c)
cos(2π fct′ + π(M − 1) f0d sin θ/c)

) (17)

Further, consider an FDA with an arbitrary frequency offset (AIFDA), assuming that
the frequency offset Δ f (m) can be any value. By replacing the real-time t with the time
index within pulse t′, (12) can be further expressed as follows:

yAIFDA(t) = rect( t−r0/c
Tp

)ej2π f0(t−r0)/c
M
∑

m=1
ej2π(Δ f (m)(t−r0/c)+ f0(m−1)d sin θ/c)

= rect( t′
Tp
)ej2π f0t′

M
∑

m=1
ej2π(Δ f (m)t′+ f0(m−1)d sin θ/c)

(18)

For observation (18), we found it challenging to adjust yAIFDA(t) to a form similar to
yPA(t). Therefore, we used Matlab function “angle” to extract the phase of (18), which can
be expressed as follows:

ϕAIFDA(t′, θ) = angle(yAIFDA(t)) (19)

The phase of the AFFDA in the far field can be obtained using (19). By observing (18)
and (19), it can be seen that the far-field phase of the FDA-transmitted signal is related to
the time index within pulse, angle, array spacing, and frequency increment, but has nothing
to do with the range. The phase changes with the change in the time index within pulse.
Furthermore, the phase of the far-field point can be modulated by setting an appropriate
frequency increment, which is also the theoretical basis for implementing FDA angle
deception and active anti-jamming.

4. Phase Center and Angle Deception

4.1. Phase Center

As shown in Figure 4, a single-baseline phase interferometer was considered to mea-
sure the phase of FDA-transmitted signals to obtain the DOA. It is worth noting that the
DOA points to the phase center of the array signal.

The single-baseline phase interferometer consists of two channels. The line formed by
antenna 1 and antenna 2 is called the interferometer baseline. If the array-equivalent phase
center is far enough from the receiver, the electromagnetic wave received is approximately
a plane wave, and the angle between the incoming wave direction and the antenna is θ.
Then, the time of the plane wave arriving at antenna 1 and antenna 2 is different, and there
is a phase difference ϕΔ, which is related to the carrier equivalent frequency fe. This can be
expressed as follows:

ϕΔ =
2π fel

c
sin θ (20)

If the gains of the two channels are entirely consistent, then the DOA of the array
radiation signal can be written as follows after angle transformation:

θ = arcsin(
cϕΔ

2π fel
) (21)
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θ

Figure 4. Principle of single-baseline phase interferometer.

Phase ambiguity is discussed in ref. [27]. This paper does not consider phase ambiguity,
and the DOA points to the phase center of the array. The measurement of phase difference
ϕΔ depends on the equivalent frequency fe of the incident array signal. Therefore, the FDA
has the potential to mislead the interferometer’s measurement of the DOA by optimizing
the phase difference in the frequency increment modulation of each array element, meaning
that ultimately the jammer cannot align the array in space.

The phase center of the array plays a vital role in the direction-finding process of the
jammer, so we need to analyze the phase center of the array. According to IEEE standards,
the phase center is defined as the position of the point associated with the antenna. If
the phase center is used as the reference point, the phase of the radiant sphere surface is
constant. We can conclude that if the phase center is taken as the reference point, its phase
is only related to the time index within pulse and not to the angle. If the time index within
pulse is the same, the phase of the signals is equal regardless of the angle.

Let the range between the phase center and the first antenna be dc. Firstly, PA is
considered. With the phase center as the reference point, the PA-transmitted signal can be
expressed as follows:

yPA(t) =
M−1

∑
m=0

sm(t) =
M−1

∑
m=0

rect(
t − rm+dc sin θ

c
Tp

)ej(2π f0(t− rm+dc sin θ
c )) (22)

By replacing the real-time t with the time index within pulse t′, (22) can be expressed
as follows:

yPA_c(t) = rect( t′
Tp
)ej2π f0t′

M−1
∑

m=0
ej 2π f0(md−dc) sin θ

c

= rect( t′
Tp
)ej(2π f0t′+ π(M−1) f0d sin θ

c − 2π f0dc sin θ
c ) sin(πM f0d sin θ/c)

sin(π f0d sin θ/c)

(23)

In this case, the far-field phase characteristics can be expressed as follows:

ϕPA_c(t′, θ) = rect(
t′

Tp
)(2π f0t′ +

π(M − 1) f0d sin θ

c
− 2π f0dc sin θ

c
) (24)

Because the reference point is the phase center, ϕPA_c(t′, θ) = ϕPA_c(t′) is required; the
phase has nothing to do with the angle. In this case, the coefficient sum of the angle should
be zero, so the phase center can be expressed as follows:
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dc =
M − 1

2
d (25)

Equation (25) indicates that the phase center of the PA-transmitted signal is located
in the geometric center of PA, which the phase interferometer can accurately measure.
Therefore, PA has no capacity for angle deception according to the phase interferometer.

Then, considering the FDA, with the phase center as the reference point, its transmitted
signal can be expressed as follows:

yFDA_c(t) =
M

∑
m=1

rect(
t − rm+dc sin θ

c
Tp

)ej(2π fm(t− rm+dc sin θ
c )) (26)

For the FDA, the LIFDA is first analyzed. By replacing the real-time t with the time
index within pulse t′, (26) can be expressed as follows:

yLIFDA_c(t) = rect(
t′

Tp
)ej2π f0(t′− dc sin θ

c )
M

∑
m=1

ej2π(m−1)(Δ f t′+ f0d sin θ
c − Δ f dc sin θ

c ) (27)

According to (27), the far-field phase characteristics of the LIFDA-transmitted signals
can be expressed as follows:

ϕLIFDA_c(t′, θ) = rect( t′
Tp
)(2π f0(t′ − dc sin θ

c ) + π(M − 1)(Δ f t′ + f0d sin θ
c − Δ f dc sin θ

c ))

= rect( t′
Tp
)2π( fct′ + ( (M−1) f0d

2 − (M−1)Δ f dc
2 − f0dc)

sin θ
c )

(28)

where fc = f0 +
M−1

2 Δ f = 1
M

M
∑

m=1
fM. Because the reference point is the phase center, the

phase has nothing to do with the angle, that is, ϕLIFDA_c(t′, θ) = ϕLIFDA_c(t′). Therefore,
the phase center can be expressed as follows:

(M − 1) f0d
2

− (M − 1)Δ f dc

2
− f0dc = 0 (29)

Through further simplification, (29) can be expressed as follows:

dc =
(M − 1) f0d

2 f0 + (M − 1)Δ f
=

(M − 1)d
2

· f0

fc
=

(M − 1)d
2

· f0
M
∑

m=1
fM/M

(30)

Equation (30) shows that when the frequency increment is zero, the phase center of
the FDA-transmitted signal is equal to that of the PA, both located in the geometric center
of the array. When Δ f 	= 0, the phase center of the FDA-transmitted signal is related to
the ratio of the base carrier frequency and to the center carrier frequency that treats the
FDA-transmitted signal as a whole signal. The angle deception of the FDA according to the
phase interferometer can be realized by taking the appropriate value of Δ f .

Finally, the phase center of the AIFDA-transmitted signal is analyzed. By replacing
the real-time t with the time index within pulse t′, (26) can be expressed as follows:

yAIFDA_c(t) = rect(
t′

Tp
)ej2π f0(t′− dc sin θ

c )
M

∑
m=1

ej2π(Δ f (m)t′+ f0(m−1)d sin θ
c − Δ f (m)dc sin θ

c ) (31)

By observing (31), it can be found that it is not easy to extract the phase expression
due to the arbitrariness of frequency increment, but it can be found that the phase is related
to t′, θ, dc, and f = [Δ f (1), . . . , Δ f (M)]. The phase of (31) is extracted by using the function
“angle”, which can be expressed as follows:

ϕAIFDA(t′, θ, dc, f) = angle(yAIFDA_c(t)) (32)
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According to the definition of phase center, the phase of the array signal in space has
nothing to do with the angle. When the time index within pulse t′ = t′1 and frequency
increment f = f1 are determined, the phase at each angle is equal; this can be expressed
as following:

ϕAIFDA(t′1, θ1, dc, f1) = ϕAIFDA(t′1, θ2, dc, f1) = C (33)

Equation (33) shows that after t′, θ and f are determined, dc can be calculated.

4.2. Angle Deception

Before analyzing the angle deception, we first discuss obtaining dc through the use
of (33). Then, on this basis, we set the phase center of the virtual radiation source as dc

′.
Finally, by optimizing the frequency increment f, the phase center is located at dc

′. At
this time, the direction measured using the phase interferometer points to the center of
the virtual radiation source, and the FDA angle deception and active anti-interference
are realized.

As the parameters in (33) are coupled with each other, it is difficult to derive the phase
center directly, so the particle swarm optimization (PSO) algorithm is adopted in this paper.
PSO is derived from the well-developed laws of bird population activities, and it uses
swarm intelligence to establish a simplified model, comparing the search space of solving
problems to the flight space of birds. Each particle represents a possible solution and then
solves complex optimization problems through the evolution of population particles. Its
operation flow chart is shown in Figure 5.

The parameters of PSO include the particle position, particle velocity, individual
optimal position, and optimal global position. Suppose that each particle has a D dimension
and N particles form a population, then the position of the i-th particle can be expressed
as follows:

xi = [xi1, xi2, . . . , xiD], i = 1, 2, . . . N (34)

The velocity of the i-th particle is expressed as follows:

vi = [vi1, vi2, . . . , viD], i = 1, 2, . . . N (35)

The optimal position searched by the i-th particle so far is the extreme individual
value, which can be expressed as follows:

pbest = [pi1, pi2, . . . , piD], i = 1, 2, . . . N (36)

The optimal position searched by the whole population so far is the extreme global
value, expressed as follows:

gbest = [g1, g2, . . . , gD] (37)

The process of particle evolution can be expressed as follows:

vij(t + 1) = wvij(t) + l1r1(t)(pij(t)− xij(t)) + l2r2(t)(pg(t)− xij(t)) (38)

xij(t + 1) = xij(t) + vij(t + 1) (39)

where l1 and l2 are learning factors. r1 and r2 are uniform random numbers in the range
of [0, 1]. pg stands for the globally optimal particle. w is the inertial weight related to the
capacity for global convergence, and weighs the capacity for global search and local search.
The dynamic inertial weight is used in this paper, and is expressed as follows:

w = wmax −
(wmax − wmin)·T

Tmax
(40)

where wmax and wmin represent the maximum and minimum inertial weights, respectively.
T and Tmax represent the current and maximum iterations, respectively.
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Figure 5. Particle swarm optimization flow.

The optimization problem used to obtain dc can be expressed as follows:

Find dl
s.t. |ϕAIFDA(t′1, θ1, dc, f1)− ϕAIFDA(t′1, θ2, dc, f1)| < b

dc_min ≤ dc ≤ dc_max

(41)

where dc_min and dc_max represent the minimum and maximum search values, respectively. b
is a minimal value, which means that the phases at different angles are approximately equal.

Because dc is a one-dimensional variable, this paper adopts the discrete PSO algorithm
proposed in the literature [39] to solve it. At this time, the value of the particle state space
can only be 0 or 1, and the D-dimensional binary particle corresponds to the value of dc,
one by one. The velocity update formula is still (36), and the position update formula is
as follows:

s(vij) =
1

1 + e−vij
(42)

xij =

{
1 q < s(vij)
0 else

(43)

where q is a random number in [0, 1]. Finally, the expression of the fitness function f it_1(dc)
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is determined as (44), according to (41):

f it_1(dc) =
∣∣ϕAIFDA(t′1, θ1, dc, f1)− ϕAIFDA(t′1, θ2, dc, f1)

∣∣ (44)

When the frequency increment f is determined, the phase center dc can be obtained.
Similarly, f can be optimized to make the direction finding of the phase interferometer
point to the phase center of the virtual radiation source dc

′. The optimization problem for
obtaining f can be expressed as follows:

Find f

s.t. |ϕAIFDA(t′1, θ1, dc
′, f)− ϕAIFDA(t′1, θ2, dc

′, f)| < b
fmin ≤ f(m) ≤ fmax, 1 ≤ m ≤ M

(45)

where fmin and fmax represent the minimum and maximum frequency offset search, re-
spectively. Because f is a multidimensional variable, the PSO algorithm proposed in the
literature [40] can be adopted. According to (45), the fitness function can be expressed
as follows:

f it_2(f) =
∣∣ϕAIFDA(t′1, θ1, dc

′, f)− ϕAIFDA(t′1, θ2, dc
′, f)

∣∣ (46)

Finally, when the frequency increment of the FDA is f, it can realize angle deception
and active anti-jamming.

5. Simulation Results

The numerical simulation results will be presented in this section. Unless otherwise
stated, base carrier frequency f0 = 1 GHz, the total number of transmitting array elements
is M = 8, and the interval is half wavelength d = 0.15 m. The pulse duration Tp = 20 us,
and the pulse repetition interval T = 1 ms.

5.1. PA Phase Characteristics

In order to understand the propagation law of the signal phase in space, we simulate
the time–angle–phase diagram. When the signal propagates to 6 km, the propagation delay
is τ = 20 us. In this case, the real-time t = 20 us can be expressed as the propagation delay
τ = 20 us plus the time index within pulse t′ = 0 us, and the real-time t = 40 us can be
expressed as the propagation delay τ = 20 us plus the time index within pulse t′ = 20 us.
When the signal propagates to 120 km, the propagation delay is τ = 400 us. In this case,
the real-time t = 400 us can be expressed as the propagation delay τ = 400 us plus the
time index within pulse t′ = 0 us, and the real-time t = 420 us can be expressed as the
propagation delay τ = 400 us plus the time index within pulse t′ = 20 us. The simulation
results of the two cases are shown in Figure 6.

(a) 

Figure 6. Cont.
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(b) 

Figure 6. Time–angle–phase relationship of PA-transmitted signal: (a) r = 6 km; (b) r = 120 km.

As seen from Figure 6, the phase of the PA-transmitted signal propagates to the far end
along with the electromagnetic wave, and each point in space traverses the phase value,
independent of the propagation range. In order to understand this problem more clearly,
the simulation results of the time index within pulse–angle–phase diagram are given, as
shown in Figure 7.

Figure 7. Time index within pulse–angle–phase relationship of the PA-transmitted signal.

It can be seen from Figure 7 that the value of the phase is related to the angle and
the time index within pulse, but not to the range. The phase value of each point in space
changes with the time index within pulse. The direction finding of the phase interferometer
points to the phase center of the array. According to (23), the phase center of the PA-
transmitted signal is dc = 0.525 m. The time index within the pulse–angle–phase diagram
of the PA-transmitted signal with dc as the reference point is shown in Figure 8.

As shown in Figure 8, with the phase center as the reference point, the phase value in
space has nothing to do with the angle and is only related to the time index within pulse.
For the interferometer, the baseline is constant, so the time difference within the pulse of the
receiving antenna is constant and the phase difference is a constant value, which ultimately
enables the phase interferometer to measure the phase center of the PA signal accurately.
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Figure 8. Time index within pulse–angle–phase relationship of the PA-transmitted signal with the
phase center as the reference point.

5.2. FDA Phase Characteristics

Considering the LIFDA, its frequency increment is set as shown in (47):

Δ f LI
m = (m − 1)Δ f (47)

where Δ f = 0.3 MHz. After the parameters are determined, similar to the previous section,
considering the signal propagation to 6 km and 120 km, the simulation results of the
time–angle–phase relationship are shown in Figure 9.

(a) 

(b) 

Figure 9. Time–angle–phase relationship of the LIFDA-transmitted signal: (a) r = 6 km; (b) r = 120 km.
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As seen in Figure 9, the phase of the LIFDA-transmitted signal is the same as that of
the PA-transmitted signal, which propagates to the far end along with the electromagnetic
wave, and each point in space traverses the phase value, which is independent of the
propagation range. In order to have a clearer understanding, the simulation results of the
time index within the pulse–angle–phase diagram are given, as shown in Figure 10.

Figure 10. Time index within the pulse–angle–phase relationship of the LIFDA-transmitted signal.

It can be seen from Figure 10 that when the first element is taken as the reference point,
the value of the phase is related to the angle and the time index within pulse, but not to
the range, and that the phase value of each point in the space changes with the change in
the time index within pulse. This paper pays attention to the location of the phase center.
According to (28), the phase center of the LIFDA is dc = 0.5244 m. The time index within
the pulse–angle–phase diagram of the LIFDA-transmitted signal with dc as the reference
point is shown in Figure 11.

Figure 11. Time index within pulse–angle–phase relationship of the LIFDA-transmitted signal with
the phase center as the reference point.

As shown in Figure 11, with the phase center as the reference point, the phase value
in space is only related to the time index within the pulse, which is consistent with the
theoretical analysis above. At this time, the phase interferometer direction finding is no
longer pointed at the center of the array geometry, but slightly offset.

5.3. FDA Angle Deceptive

This section first calculates the phase center of the LIFDA-transmitted signal through
the discrete PSO algorithm and verifies the correctness of the algorithm by comparing it
with the theoretical analysis above. Then, the phase center of the virtual radiation source is
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set, and the PSO algorithm obtains the frequency offset of the FDA angle deception. The
simulation parameters are set as follows: N = 100, Tmax = 100, D = 20, l1 = l2 = 1.5,
t′1 = 0 us, θ1 = 50◦, θ2 = 20◦, wmax = 0.8, and wmin = 0.4.

The frequency increment is Δ f LI
m = (m − 1)Δ f ; according to (28), phase center

dc = 0.5244 m. Therefore, the search space is set to dc_min = 0 m, dc_max = 1 m. The
fitness function is (42). The simulation results are shown in Figure 12.

(a) 

(b) 

Figure 12. Relation between the LIFDA optimization results and iteration times: (a) fitness function
value; (b) phase center.

It can be seen from Figure 12 that with the increase in the number of iterations, the
fitness function approaches 0, indicating that the angles are different, the phases of each
point with the same time index within pulse are equal, and the final phase center converges
to 0.5244 m, which is consistent with the theory mentioned above.

The main lobe of the jammer is large. In order to prevent the array from being affected
by the interference signals of the jammer’s main lobe, the phase center of the virtual
radiation source should be set as far away from the array as possible. The simulation
parameters were set as follows: dc

′ = 100 km, fmin = −2 MHz, and fmax = 2 MHz. The
fitness function is (44), and the simulation results are shown in Figure 13. The frequency
offsets of each element are shown in Table 1.

As can be seen from Figure 13, as the number of iterations increases, the fitness function
approaches 0, and each array of the FDA adopts the frequency increment, as shown in
Figure 12b, to make the phase center far away from the transmitting array, thus realizing
the active angle deception of the phase interferometer.
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(a) 

(b) 

Figure 13. FDA frequency increment optimization results: (a) fitness function value; (b) frequency
increment of each element.

Table 1. The frequency offsets of each element.

Number of
Element

1 2 3 4 5 6 7 8

frequency offsets
(MHz) −1.83 −0.5818 1.722 1.801 −0.6737 −0.7543 −1.84 −0.7185

6. Conclusions

This paper studied the phase characteristics of FDA-transmitted signals based on the
time index within pulse. In order to fully understand the phase characteristics of the array,
the relationship between the time index within pulse and the phase was first analyzed, and
the time index within pulse was further understood by discussing the phase characteristics
and the phase center of the PA. Secondly, the phase characteristics and phase centers of the
FDA-transmitted signals with linearly increasing frequency offset and arbitrary frequency
offset were analyzed, and it was concluded that the phase of FDA-transmitted signals is
independent of range but related to the time index within pulse, and that its phase center
can deviate from the array. The potential of the FDA to cheat the phase interferometer was
theoretically elaborated. Furthermore, the PSO algorithm obtained the phase center of the
LIFDA, and the algorithm’s effectiveness was verified. Finally, based on this algorithm, the
phase center of the virtual radiation source was set, and the frequency increment of the
FDA was obtained. The theoretical analysis and simulation experiments have proved that
the FDA can realize angle deception and achieve active anti-interference.
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