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Abstract: The increasing popularity of lithium-ion battery systems, particularly in electric vehicles
and energy storage systems, has gained broad research interest regarding performance optimization,
thermal stability, and fire safety. To enhance the battery thermal management system, a compre-
hensive investigation of the thermal behaviour and heat exchange process of battery systems is
paramount. In this paper, a three-dimensional electro-thermal model coupled with fluid dynamics
module was developed to comprehensively analyze the temperature distribution of battery packs
and the heat carried away. The computational fluid dynamics (CFD) simulation results of the lumped
battery model were validated and verified by considering natural ventilation speed and ambient
temperature. In the artificial neural networks (ANN) model, the multilayer perceptron was applied
to train the numerical outputs and optimal design of the battery setup, achieving a 1.9% decrease in
maximum temperature and a 4.5% drop in temperature difference. The simulation results provide a
practical compromise in optimizing the battery configuration and cooling efficiency, balancing the
layout of the battery system, and safety performance. The present modelling framework demon-
strates an innovative approach to utilizing high-fidelity electro-thermal/CFD numerical inputs for
ANN optimization, potentially enhancing the state-of-art thermal management and reducing the
risks of thermal runaway and fire outbreaks.

Keywords: thermal management; lithium-ion batteries; CFD modelling; ANN; optimization design

1. Introduction

With recent advancements in electric technology as well as the growing global concern
of energy crisis and environmental pollution, a lot of research interests are devoted to
the search for alternative energy sources, including nuclear, wind, or solar energy. Bat-
tery energy storage systems have caught the public eye due to their many advantages:
fast responsiveness, controllability, structural independence, and widespread application
range [1]. Lithium-ion based battery energy storage systems have become the most com-
petitive choice for various applications [2–5]. Lithium-ion batteries (LIBs) as a source of
alternative energy through renewable energies have been proposed in industries for many
portable consumer electronic devices, including cell phones and laptops. Moreover, LIBs
have begun to enter the automotive market as power packs for hybrid and battery electric
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vehicles (HEVs and EVs) due to their enormous power, efficiency, and durability of a
charge cycle.

Temperature plays a critical role in many aspects of the performance of LIBs, includ-
ing charge acceptance [6], energy capability [7], reliability [8], and so on. In comparison
with other battery technologies, LIB performs relatively poor thermal stability, and many
accidents happened in recent years [9–11]. A typical LIB comprises four main components:
an anode, a cathode, a separator, and an electrolyte. All the parts form a closed system
separated from the air, so there is no explosion or fire danger at the normal working tem-
perature [12]. However, the abuse of LIB will generate the threat of thermal runaway and
overheating. Both positive and negative electrode decomposition are exothermic processes.
Also, oxygen can be generated during the decomposition reactions. The generated heat and
oxygen are the contributions to the combustion triangle. If the battery experiences harsh
working conditions during electric transportation, the generated heat triggers electrodes’
decomposition. As a result, the battery potentially faces thermal issues. Suppose the cell
temperature is rising over a certain threshold. In that case, a thermal runaway may turn up,
leading to a quick temperature rise and potentially other related undesirable consequences
such as the generation of toxic gas and smoke. With the rising battery temperature over a
critical point, the other chain exothermic reactions happen. The temperature and pressure
in the LIB are cumulated until it exceeds the battery endurance. Eventually, the fire and
rupture/explosion are inescapable. Therefore, the thermal management of LIB is essential
during the battery working process or battery application. It is also crucial to investigate
the LIB thermal runaway process by accurately monitoring and predicting temperature
dynamics during thermal propagation and implementing functional methods to improve
the cooling efficiency of the battery itself and the battery system.

There are two key topics of concern in battery thermal management: handling the
charge/discharge cycle and governing the battery heat growth [13,14]. Many pieces of research
focused on the battery thermal management system of EVs have been conducted [15–17]. The
heat produced during the operating process has been established as the major rise in the
working temperature. Computation Fluid Dynamics (CFD) is a practical tool for investigating
thermal properties and simulating multiple physics fields [18]. CFD simulations could provide
detailed information about the electrical and thermal areas inside the battery during the work
process that is often challenging to assess and extract by experimental approaches. Model-
based investigations promote a theoretical and comprehensive understanding of battery
physics beyond what is possible from practical methods only. For example, Kirad and
Chaudhari [19] applied numerical models for studying the selection of the battery module
spacing with an improvement in cooling performance. Due to the development of computing
capability, numerical simulations are gradually applied in battery models, battery components
and materials studies, and battery safety engineering [20–22]. Most numerical studies rely
on the thermal models, which predict the average surface temperature for a LIB cell [23–26],
and lots of experimental investigations on thermal propagation have been carried out [27–30].
Nevertheless, to achieve a proper estimation of the thermal behaviour of a battery, many
aspects, including the shape, layout, and physical and electrochemical properties, should
be illustrated as closely as possible in the simulation. For instance, the asymmetric surface
temperature of a battery cell should be considered in the model. The non-uniform temperature
distribution in the LIBs leads to an electrical imbalance, lower battery performance, and shorter
battery life [31,32]. Regarding the detailed temperature distribution, an electric-thermal model
with the non-uniform feature should be built.

Moreover, battery thermal management systems have been classified in various ways
based on different criteria [33–35]. For example, battery thermal management systems can
be branched into three kinds based on various mediums: air-based, liquid-based, and phase
change materials-based. Several optimization studies on the battery thermal management
system have been previously conducted [36–39]. The air-cooling method is considered the
most traditional approach and is a favoured option for HEVs and EVs. It is clear that the
optimization of battery packs or systems depends on many parameters, such as geometry
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structure, coolant properties, operating conditions, and so force. Still, few researchers focus
on multiple parameters simultaneously.

As a part of artificial intelligence, machine learning focuses on the study of accuracy
improvement by computer algorithms and data to imitate how humans learn [40,41].
The application of machine learning techniques, particularly artificial neural networks
(ANN), can be a potential method to optimize the battery system. Because LIBs are highly
complex, nonlinear systems, applying a probabilistic approach allows for quantification of
uncertainty, which positively impacts making decisions in design and control. ANN model
is a kind of model that characterizes the interrelation between inputs and outputs by using a
collection of interconnected nodes (perceptron). The application of ANN to battery research
is still relatively new. Wu et al. [42] generated a design map that fulfills both specific
energy and specific power requirements using a systematic approach based on ANN.
Qian et al. [43] optimized the battery spacing by neural network model and demonstrated
the interrelationship between layout and temperature of battery packs. Feng et al. [44]
developed an electrochemical-thermal-neural-network method used for the co-estimation
of LIB state of charge (SOC) and state of temperature. Shi et al. [45] applied the fully
connected deep network approach to study air-based cooling LiFePO4 cuboid battery packs
and optimize the U-type structure. However, pioneering studies have highlighted the
possibility of using ANN for battery thermal problems. These studies include modelling
battery spacing, specific format, and some battery performances. The detailed temperature
distribution of LIB and battery pack have not been fully investigated. Besides, the ambient
temperature and natural ventilation should be considered during the battery working
process. Therefore, the combination between ANN analysis and the electro-thermal battery
model is proposed to investigate further the battery system’s cooling efficiency and battery
fire safety performance. Figure 1 shows the schematic figure of the integrated CFD-ANN
model proposed in this study.

 

Figure 1. Schematic of the proposed CFD-ANN model.

To this end, the non-uniform distributions of the battery cell should be investigated
for the thermal analysis, which can be treated as a measurement and prediction at the early
stage of the Li-ion battery thermal runaway fires. Furthermore, with the numerical analysis,
a better understanding of battery pack configuration design can be achieved. In this article,
the contributions are:

3



Batteries 2022, 8, 69

(i) Establishment and development of a three-dimensional electro-thermal model capable
of considering temperature distribution of battery packs and heat exchange with the
ambient environment.

(ii) Utilize the numerical results to comprehensively describe and predict the battery
system’s thermal behaviour to improve battery safety during the designing and
working stages.

(iii) Coupled the electro-thermal model with the ANN model to optimize the battery sys-
tem configuration design and enhance the cooling performance of the battery system.

The outline of this paper is summarized as follows: Section 2 introduces the numerical
models applied in this paper, including electrochemical model, thermal model, and ANN
model. Section 3 demonstrates the numerical results of the proposed model with validation
and verification. Also, the training process and optimization results are listed in this section.
Finally, the author presented some conclusions and proposed the future perspectives on
this field in the conclusion section.

2. Numerical Models Applied in the Battery Pack

2.1. Electrochemical Model

The electrochemical model applied in this study could be seen as a lumped version
of a single particle model [46], simulating the transport of intercalated lithium in one of
the electrodes. The single particle model predicts the temperature distribution and voltage
changes in a single LIB cell during galvanostatic operations. The simplification of this
model can be conducted when the battery is mainly controlled by the diffusion process
in one of the electrodes only. The model is based on a complete model of a LIB working
process cycle [47]. In this model, the lumped battery interfaces are utilized, and the battery
cell voltage Ecell is calculated by applying time-dependent cell current Icell. Additionally,
the battery open circuit voltage data, named EOCV, is estimated from SOC.

The three-dimensional electro-thermal model built in this paper is based on a typical
cylindrical LiFePO4/Carbon power battery, considering the physical and electrical conser-
vations, as well as thermal principles and electrochemical kinetics. The electrochemical
reactions of common LIBs can be described as the following Equations (1)–(3), where M
stands for a metal, which is used as a cathode material such as cobalt or nickel, and C is
recognized as the anode materials.

The reaction at the positive electrode is described as:

LiMO2 ↔ Li1−x MO2 + xLi+ + xe− (1)

The chemical reaction at the negative electrode is expressed as:

C + xLi+ + xe− ↔ LixC (2)

The overall reaction can be presented as:

LiMO2 + C ↔ Li1−x MO2 + LixC (3)

Figure 2 demonstrates the working process of a typical LIB, and the fundamental cell
unit is considered a sandwich structure, including the positive electrode, the separator,
the negative electrode, and the current collectors located at both electrodes. The metal
tab is joined at each correlated current collector and electrode. The separator is located
between cathode and anode, a porous polymer membrane to prevent physical contact of
electrodes. The electrolyte is the medium that enables the ion transport mechanism between
electrodes. It requires specific working conditions, such as significant ion conductivity, low-
set electrical conductivity, extended temperature range of operation, thermo-dynamically
stable at a certain range of voltages, environmentally friendly, etc.

4
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Figure 2. The principle of operation for a typical LIB and its structure.

Each electrode and separator is impregnated with electrolyte, achieving transporta-
tion of lithium ions. The material parameters for the electrolyte refer to a plasticized
ethylene carbonate/dimethyl carbonate (EC/DMC) electrolyte remaining in a polymer
matrix. Therefore, the stated electrolyte volume fraction points to this model’s total liquid
electrolyte and polymer matrix volume fractions. In this model, the potential losses ηIR due
to ohmic and charge transfer processes are given as follows:

ηIR = ηIR,1C
Icell
I1C

(4)

where ηIR,1C represents the potential losses under the 1C current. The 1C current I1C
means that the discharge current will discharge the entire battery in one hour, and it is
calculated as:

I1C =
Qcell,0

3600 s
(5)

The dimensionless charge exchange current J0 is applied for the integrated voltage
dissipation accompanied by the charge delivery reactions on the two electrodes’ surfaces,
shown as:

ηact =
2RT

F
asinh

(
Icell

2J0 I1C

)
(6)

The diffusion processes also lead to potential loss, which is represented by ηact. De-
rived from diffusion in an idealized particle or by applying a resistor-capacitor combination,
concentration overpotential effects can be explained among the lumped battery interfaces.
In this model, particle diffusion is calculated. Fickian diffusion of a dimensionless SOC
parameter is calculated in this case, using spherical symmetry, according to:

τ
∂SOC

∂t
= −∇·(−∇SOC) (7)

The interval stands for a common particle of the electrode controlling the cell, where
X = 0 and X = 1 mean the particle centre and particle surface accordingly.

The operating conditions at the particle boundary are as follows:

∇SOC = 0|X=0 (8)

∇SOC =
τ Icell

NshapeQcell,0

∣∣∣∣∣
X=1

(9)

where Nshape equals three for spherical particles in this model. The SOC of the surface,
SOCsurface, is identified at the particle surface. The average SOC, named SOCaverage, is

5
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prescribed by lumping the particle volume, appropriately considering spherical coordinates,
and is defined as:

SOCaverage =

∫ 1
0 SOC4 ∏ X2dX∫ 1

0 4 ∏ X2dX
= 3

1∫
0

SOCX2dX (10)

The integrated voltage dissipation accompanied by concentration overpotential is
represented by ηconc and defined as:

ηconc = Eocv

(
SOCsur f ace

)
− Eocv

(
SOCaverage

)
(11)

Lastly, the battery cell voltage Ecell is defined as:

Ecell = Eocv
(
SOCaverage

)
+ ηIR + ηact + ηconc (12)

Establishing the explanation of ηconc and Ecell is also calculated as:

Ecell = Eocv

(
SOCsur f ace

)
+ ηIR + ηact (13)

The battery model involves these three steps. At first, a lumped battery model is
set up and run for a time-dependent battery current. Then, parameter estimation of the
parameters ηIR,1C, τ, and J0 is demonstrated using experimental data. This is achieved
using the Global Least-Squares Objective node in the optimization interface, combined with
the optimization study step using a Levenberg-Marquardt optimization solver. Lastly, cell
voltage prediction is performed using the optimized lumped parameter values obtained in
the previous parameter estimation study compared with experimental data.

2.2. Thermal Model

In this study, the thermal model is based on a previous two-dimensional axial symme-
try approach, simulated by the Heat Transfer in Solids module. A spirally wound type of
battery is chosen for this simulation, and the simplification of the heat conduction can be
achieved along the spiral direction. Moreover, instead of simulating the heat conduction
in each layer along the radial direction, the wound sheets are acted as a combination cell
material domain. These approximations are understandable for spiral wound battery cells
cooled under natural convection. The model configuration comprises three connection
sections: (1) Battery outer can; (2) A combination cell material domain; (3) Center axis
(mandrel where the battery cell sheets are wound).

For this model, several equations and parameters are considered. Considering the
anisotropic thermal conductivities in this model and differences among various direc-
tions [48], the thermal conductivities along the radial path, kT,r, and along the cylinder
length direction, kT,ang, are defined separately as follows:

kT,r =
∑ Li

∑ Li/kT,i
(14)

kT,ang =
∑ LikT,i

∑ Li
(15)

The density ρbatt and heat capacity Cp,batt for the combination cell material domain is
defined as stated by the following equations:

ρbatt =
∑ Liρi

∑ Li
(16)

Cp,batt =
∑ LiCp,i

∑ Li
(17)

6
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The heat source produced by the combination cell material domain is identified by
employing the Electrochemical Heating Multiphysics coupling module. However, the heat
source term in the combination cell material domain is scaled to solve the lack of heat
generation in the current collectors and the canister thickness. This mounted heat source
is acquired by multiplying two factors of the volumetric heat source from the 1D Li-ion
battery model. The former factor is the fraction of the total 1D model in which heat is
produced. That is the total length value of electrodes and the separator, divided by the total
battery length, including the measurements of both current collectors. The latter factor is
the fraction of the entire 3D cylindrical battery. The volume in which heat is produced is
the cell’s total volume, including the homogenized wound layers of the cell material, the
centre axis, and the battery case, minus the volume of the outer case and the volume of
the battery centre axis. This heat source is then divided by the total volume of the battery
cell domain, which is the difference between the whole battery volume and the centre axis
volume. Thereby, the following equation for the 3D heat source is demonstrated:

Qh,3D = Qh,1D
Lneg + Lsep + Lpos

Lbatt

((rbatt − dcan)2 − r2
mandrel)(hbatt − 2dcan)

(r2
batt − r2

mandrel)hbatt
(18)

For the lumped battery interface model, Arrhenius expression is applied to model
each battery cylinder, with temperature-dependent ohmic, exchange current, and diffusion
time-constant parameters.

The thermal conductivity in the combination cell material domain is anisotropic due to
the spiral type of the battery. The orthotropic thermal conductivity in the combination cell
material domain is solved by introducing a cylindrical coordinate system in the model. The
zero-Mach-number limit of the compressible conservation equations was applied to depict
the flow movement and heat transfer. Regarding the enthalpy equation and the temperature
equation, the energy conservation for incompressible fluid can be simplified to:

ρCp
∂T
∂t

+ ρCpv·∇T = ∇·(k∇T) + Q (19)

2.3. ANN Model

ANN has rapidly developed in recent decades as a common tool to model a broad
range of engineering systems due to its capability to learn and adapt to find potential
correlations among different properties, mainly to map the nonlinear relationship of inputs
and outputs. A hidden layer is a layer located between the input and output of the ANN
model, in which artificial neurons applies a set of weights to the inputs and directs them
through an activation function as the output. Hidden layers of ANN allow for a neural
network’s function to be taken apart for specific data transformations. For example, images
and documents are treated as initial inputs from external data. The ultimate outcomes
complete the task, such as recognizing objects in a snap.

A typical ANN model compromises five main components: inputs, summation func-
tions, weights, activation functions, and outputs. The artificial neuron in the hidden layer
works as a biological neuron in the brain. To form a directed, weighted graph, the network
is formed by linking the output of specific neurons to the input of other neurons. A learning
process can adapt the activation functions and weights. The learning rule or training
approach controls the certain learning process. The summation function (denoted by E) is
a function that calculates the net inputs, considering adjustable weights wij and bias wbi,
expressed as:

E =
n

∑
j=1

wijxj + wbi (20)

The activation function of a node governs the output of that node, or “neuron,”
provided input or set of inputs. The activation function presents a functional relationship
between the input and output layers. Some frequently applied activation functions are step

7
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activation, threshold function, sigmoid function, and hyperbolic tangent function [49]. The
logistics sigmoid function is adopted in this study and is presented as:

f (E) =
1

1 + e−E (21)

The number of hidden neurons determined by the formulation according to neural
network design [50] is given by:

Nh =
Ns

(α(Ni + No))
(22)

where the subscripts h denotes the number of input neurons, s is the sample amount in the
training dataset, o is the number of outputs, and α is a scaling factor ranging from 2–10. In
this study, α is prescribed as 2 to achieve an optimal solution without overfitting, and ten
hidden neurons were applied in the ANN model.

3. Results and Discussions

3.1. Electro-Thermal Model Simulation Results

In this paper, a corporate software applied finite element, COMSOL Multiphysics 5.5,
was employed to study the three-dimensional electro-thermal coupled model. The default
mesh component was applied for generating the mesh, and mesh independence was exam-
ined as well. The MUMPS time-dependent solver was applied for battery variables, and the
PARDISO solver was chosen for heat transfer variables. The mesh applied for this study
consists of triangular and quadrilateral elements developed by COMSOL Multiphysics 5.5.
In order to obtain the thermal behaviour and boundary layer spread, the refined mesh is
achieved at the connections of the battery boundary. Mesh independence verification was
performed to avoid the grid number and mesh quality impact on the simulation results,
shown in Table 1. According to Table 1, 43,486 elements show reliable and efficient results,
and more elements lead to larger computation time. Therefore, the total number of meshes
is about 43,486 elements chosen for the validation case, considering the efficiency and
accuracy. For the battery pack simulation, the most appropriate grid amount is around
211,907 elements. Subsequently, more simulation results are produced to feed the machine
learning model to training.

Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited.

Grid Resolution Elements Number Calculation Time Maximum Electrolyte Temperature

Finer 114,273 75.6 min 20.250 ◦C
Fine 43,486 30.5 min 19.829 ◦C

Normal 23,986 18.7 min 19.810 ◦C
Coarse 9708 10.6 min 18.910 ◦C

The validation of the electrochemical model and thermal model is established on the
Type 38,120 battery cell, in which the nominal voltage is 3.2 V and capacity is 10 Ah, as
well as the thickness of the cathode, the separator, and the anode are 91 μm, 40 μm and
142 μm, respectively. The type we choose is one of the most commonly used in the current
commercial market. It is developed based on physical and electrical conservations, as
well as thermal principles and electrochemical kinetics. The battery pack investigation
for the three-dimensional electro-thermal model is built by Type 21,700 battery cylinders
with a nominal capacity of 4 Ah and a nominal voltage of 3.6 V. The battery pack is
constructed by coupling two cylindrical batteries in parallel. Then the mated battery pairs
are connected in series. The geometry and battery parameters are listed in Table 2. The
geometry specifications are used to build the battery domain for thermal simulations, while
the battery parameters are applied for the simulation of the electrochemical model.
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Table 2. Geometry dimension and electrochemical parameters of the battery cell.

Geometry Parameters Battery Parameters

d_batt 21 [mm] Battery diameter C_rate 4 C rate
Q_cell 4 [A·h] Battery cell capacity

r_batt d_batt/2 Battery radius I_1C Q_cell/1 [h] 1C current
kT_batt_ang 30 [W m−1 K−1] Thermal conductivity, in plane

h_batt 70 [mm] Battery height kT_batt_r 1 [W m−1 K−1] Thermal conductivity, cross plane
Ea_eta1C 24 [kJ mol−1] Activation energy

h_term 1 [mm] Terminal thickness
Ea_J0 −59 [kJ mol−1] Activation energy

Ea_Tau 24 [kJ mol−1] Activation energy

r_term 3 [mm] Terminal radius
T0 20 [◦C] Reference temperature

J0_0 0.85 J0 at reference temperature

d_sc 2 [mm]
Serial connector

depth
tau_0 1000 [s] tau at reference temperature

eta_1C 4.5 [mV] eta_1C at reference temperature

h_sc 1 [mm]
Serial connector

height
rho_batt 2000 [kg m−3] Battery density
Cp_batt 1400 [J kg−1 K−1)] Battery heat capacity

h_pc 0.5 [mm]
Parallel connector

height
ht 30 [W m−2 K−1] Heat transfer coefficient

T_init 20 [◦C] Initial/external temperature

w_pc 1 [mm] Parallel connector
width

The initial battery state is fully charged. The discharge process at different current
densities is simulated, and the discharge curves during the process are demonstrated.
The battery capacity under various discharge rates is built through the modelling. The
simulation will be stopped when the cell potential decreases under 3 V, which is the
state of end-of discharge. The simulation result of the nominal discharge current density
representing case 1C, is shown in Figure 3a. The numerical result shows a good agreement
with the experiment data. Meanwhile, there are a few deviations in the usual discharge
voltage plateau related to the thermodynamic analytics and battery prototypes. The thermal
model is validated, and the results are shown in Figure 3b. The experimental data is
extracted from the surface of the battery along the axis to track the surface temperature
development. The simulation results in the same location of the testing point have similar
growth trends. The slight difference between the experimental and numerical results is
because of the temperature rise of the experiment due to the local ohmic heat generation,
where the electrical contact resistance among the connectors and terminals of the battery.

Considering the electrochemical performance, the current flows inside the battery cell
and battery pack remain similar due to applying a single particle model. The Single Particle
Battery interface answers for solid diffusion in the electrode particles and the intercalation
reaction kinetics. A lumped solution resistance term is used for covering the ohmic potential
drop inside the electrolyte. The cell capacity is specified through fractional volumes of
both electrodes in the battery. The individual electrode operational state-of-charges are
used to identify the initial charge distribution in the battery. The temperature contour and
heat flux streamline of the proposed battery pack shows the temperature distribution on
the whole battery pack during its working process by the proposed electro-thermal model.
The maximum temperature of the battery’s innermost parts is around 2 ◦C higher than
the outermost parts. It also provides the temperature difference of the whole battery pack.
With the utilization of this lumped model, the broad temperature distribution of battery
cell surfaces can be represented. Besides, the heat flux generated inside the battery cell
can be simulated, as well as the heat exchange between battery surfaces and the ambient
cooling air can be simulated numerically.

9
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Figure 3. Comparison of numerical results of working voltage (a) and temperature (b) with experi-
mental results [23] during 1C galvanostatic discharge under natural convection conditions.

Through the numerical study for the whole battery pack, the configuration setup
of the battery pack is also investigated. The two-dimensional parameters are defined by
different directions with various gaps, which are no gap (0 m), half of a cell (0.01 m) and one
cell (0.02 m). Through permutation and combination, nine sets of collocations are formed.
Figure 4 shows that all the battery cells are constructed together with various gap setups
among the parallel-coupled battery pairs, which are the first nine cases. The gap enhances
the convective and conductive between battery cells and ambient air from the battery safety
perspective, improving battery pack cooling efficiency and fire safety.

To further understand the battery temperature distribution, air velocity and ambient
environment are considered as well. Buoyancy forces cause natural convection as a con-
sequence of density changes ascribed to temperature differences in the fluid. At heating,
the fluid will rise because of the density variation in the boundary layer. Meanwhile, the
cooler fluid, which will heat and increase, will replace the raised fluid. This continuous
phenomenon is named free or natural convection. Thus, this study selected four sets of air
velocity. Moreover, the temperature difference (The difference between the highest and the
lowest temperature of the battery pack) and maximum temperature (The maximum tem-
perature of a battery cell) are also considered. Figure 5 plots the maximum temperature and
temperature difference profiles under various operating conditions, where the geometry
conditions remain the same. From Figure 5a,c, air velocity positively impacts decreasing the
maximum temperature and temperature difference. Under the same ambient temperature,
shown in Figure 5b, increasing the air velocity can enhance the cooling efficiency, but the
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drop in maximum temperature is not much. Figure 5c, cases with air velocity 4 m s−1

achieve 36%, which is the maximum percentage of temperature difference drop compared
to other cases in this configuration. It is demonstrated that when the minimum values of
maximum temperature and temperature difference are reached, the format set up is the
best and optimization results.

 

Figure 4. Temperature contours of different battery pack configurations.

Figure 5. The profile of maximum temperature (a) and temperature difference (b,c) under various
operation conditions.

11
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3.2. Training and Results Analysis

In this study, the multilayer perceptron (MLP) neural network was applied. It is one
of the most competitive types of ANN for regression in various research fields. Because
this approach shows a considerable capability for universal approximation, it is regularly
applied to model quite highly complex and disordered phenomena. As mentioned pre-
viously, the ANN utilizes the battery thermal distribution simulation dataset obtained
through numerical simulations of a typical battery pack configuration on two cylindrical
batteries in parallel and six-coupled battery pairs in series. In summary, it consists of
130 data sets of six parameters (four inputs and two outputs) prepared for the training
and testing of the ANN. The detailed inputs and outputs of each dataset are illustrated
in Table 3. Note that the heat transfer coefficient was replaced with the air velocity more
effectively presentative by the ANN. It is possible to extend the ANN model to predictions
on other heat transfer methods not considered in the datasets by analyzing their coolant
velocity. The heat transfer coefficient of air can be estimated to:

ht = 10.45 − v − 10v1/2 (23)

where ht represents the heat transfer coefficient, and v is the relative speed between the
object exterior and air. This equation is empirical and can be applied to the velocity range
from 2 to 20 m s−1 [51].

Table 3. Details of the inputs and outputs for the ANN model.

Inputs Outputs

Parameters X_Gap Y_Gap Air
velocity

Ambient
temperature

Maximum
temperature

Temperature
difference

Units m m m s−1 ◦C ◦C ◦C

Range 0–0.02 0–0.02 30–39.96 20–30 - -

The proposed ANN model has been trained using the Levenberg-Marquardt (LM)
optimization technique [52]. The LM method based on Levenberg [53] and Marquardt [54]
combines Newton’s method and gradient descent. It is one of the most efficient training
algorithms for neural network modelling [55]. Generally, this algorithm demands more
storage space but less time. The training process will be terminated spontaneously when
generalization ends improving, as represented by a growth of the mean square error of the
validation samples. In the LM method, the Hessian matrix can be approximated as:

H f = J f T J f (24)

The gradient is given by:
∇ f = J f Te (25)

where Jf is the Jacobian matrix and e is the vector of a network error.
The LM working function or the fitness function is based on the mean square error

(MSE) between the network output and the target output:

F = MSE =
1
N

N

∑
i=1

(
Ri,network − Ri,target

)2 (26)

where N is the number of datasets, Ri,network is the network output and Ri,target is the target
output from the simulation data. The number of hidden neurons has been mentioned in
Equation (22).

Figure 6 demonstrates the ANN regression results, and it plots the regression relation
between the physical outputs and the targets, which indicates that this ANN model has
achieved a good fit with the training datasets. From Figure 7, the error histogram plot
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shows that most errors reside in the range of −0.03688 to 0.0292. The majority of the
predictions had a root mean square (RMS) error of approximately 0.088%, with around
10% of the predictions within ±25% RMS error. The ANN was successfully trained with
an overall R (fitness) of 0.999, with most prediction errors within 1% RMS error. In future
works, the ANN model can be further refined to achieve an even higher reliability and
accuracy. This can be done by adding more simulation results considering a wider range of
configurations or applying more advanced ANN training techniques.

Figure 6. Regression results of ANN model.

3.3. Optimization Analysis and Discussions

The optimization configuration was proposed further to investigate the designed
system with various working temperatures to improve the battery system’s fire safety
performance and cooling efficiency. These simulation results investigated the air velocity
and ambient temperature after successfully training the ANN model. A battery pack
comprises many single battery cells, and the operation temperature difference for the
single battery cell inside the battery pack will be sourced by the temperature imbalance
of the battery pack. This will result in the cell’s inconsistency, and over the normal state
during the charge and discharge process, harm the battery pack service life. Consequently,
an appropriate battery thermal management system should simultaneously lower the
maximum temperature and temperature difference of the battery packs to ensure the
reliability and consistency of EVs and HEVs battery performance.

The 6,250,000 groups of structure and operation features were created in MATLAB.
Inputs 1 and 2 are the configuration features, and Inputs 3 and 4 are the operating con-
ditions. The CFD-ANN model calculates the optimal combination to achieve the perfect
battery performance under the existing case arrangement with the current four inputs and
two outputs.

13
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Figure 7. RMS error histogram of the ANN model predictions.

After successful training the ANN model, four inputs were divided into 50 intervals
separately in a specific range. Then, 6,250,000 groups of structure features were processed
in MATLAB, and the optimal result can be selected. According to Figure 8, the batteries’
maximum temperature and temperature difference are greatly affected by the battery
configuration and operating conditions, with a fluctuation as high as about 7 ◦C for the
maximum temperature and 1.5 ◦C for the temperature difference. It can be obtained that
the instability of the maximum temperature shows a different trend with the fluctuation
of the temperature difference under the current range of various inputs. Therefore, the
maximum temperature is chiefly influenced by the battery properties. The temperature
difference can be treated as an indicator to evaluate the battery cooling performance of the
battery pack.

 

Figure 8. (a) Maximum temperature and (b) temperature difference of the battery pack for different
input combinations.

From the CFD-ANN model simulation results, the six million sample results were
sorted in ascending order of the battery spacing. Regarding achieving a battery cooling
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performance, it can be concluded that the optimal case is the 0.02 m X-direction gap and
0.01 m Y-direction gap under 20 ◦C ambient temperature and the air velocity 16 m s−1.
Compared to the original configuration with the same operating conditions, the maximum
temperature decreased by 1.9%, and the temperature difference dropped by 4.5%, which
means the CFD-ANN model optimization improved both the cooling efficiency and battery
performance. The proposed framework demonstrates an efficient way to improve the
thermal performance of the battery pack by optimizing the configuration under different
operating conditions.

4. Conclusions

The optimal design of battery thermal management systems was achieved by apply-
ing a three-dimensional electro-thermal model coupled with the ANN model. Utilizing
numerical simulations via CFD, different battery pack configurations were investigated
in a simulation environment to positively impact cooling efficiency, battery performance,
and battery fire safety. The three-dimensional electro-thermal model was introduced to
calculate the temperature distribution and validated with the previous experimental data.
The numerical case studies were applied to train the proposed ANN model, demonstrating
the relationship among geometric parameters, operating conditions and cooling efficiency.
The CFD-ANN model compared 6,500,000 combinations with various configuration and
boundary conditions. The optimal design for the current battery setup was the case with
a 0.02 m X-direction gap and a 0.01 m Y-direction gap, which lowered the maximum
temperature and temperature difference by 1.9% and 4.5%, respectively.

The results highlighted one significant advantage of numerical simulations. All the
pertinent information such as structural parameters and operation requirements can be
derived from the model. Furthermore, different factors can be simulated and optimized
simultaneously in a simulation environment to deliver a constructive perception of the
battery performance and thermal behaviour. In the future, more parameters can be intro-
duced with the current CFD-ANN model, such as electrode materials, electrolyte materials,
cell numbers, different coolants, and so forth. A universal database of parameters and
repercussions for the battery thermal management system can be prepared, which can then
be processed by foresight models to create outlooks and predictions of the fire risks of the
LIB energy storage system with a set of input variables.
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Abstract: Differential capacity dQ/dU (capacitance) can be used for the instant diagnosis of battery
performance in common constant current applications. A novel criterion allows state-of-charge (SOC)
and state-of-health (SOH) monitoring of lithium-ion batteries during cycling. Peak values indicate
impeding overcharge or deep discharge, while dSOC/dU = dU/dSOC = 1 is close to “full charge” or
“empty” and can be used as a marker for SOC = 1 (and SOC = 0) at the instantaneous SOH of the
aging battery. Instructions for simple state-of-charge control and fault diagnosis are given.

Keywords: capacitance; state-of-charge estimation; state-of-health; aging; lithium-ion battery

1. Introduction

For the safe operation of battery systems in stationary and mobile applications, the
reliable indication of the correct state-of-charge (SOC) and state-of-health (SOH) [1] is a
growing task and challenge for an efficient battery management system (BMS).

The current state-of-the-art in metrology [2–4] does not provide a universal and
rapid method for the diagnosis of a lithium-ion battery without carefully examining the
degradation of hundreds of full charge/discharge cycles. The monitoring of batteries
by Ampere-hour counting over a few cycles has been used as a quality assurance tool
or lithium-ion cells destined for long lifetime applications such as in electric vehicles or
aircraft applications.

However, there is no simple and quick method to determine the actual SOC regardless
of the age of the battery. Apart from accounting for amp-hours and nominal voltages, it is
fundamentally unclear when a battery is sufficiently full during charging without going
into overcharge, and when exhaustion is imminent during discharging. Various internal
and external faults can occur during the battery operation, leading to performance loss and
thermal runaway [5].

1.1. Incremental Data Analysis

Originally, “differential voltage analysis” (DVA) was proposed by Bloom et al. [6],
who observed the change of −Q0 · dU/dQ versus battery capacity Q to gain insight into
the aging processes of lithium-ion batteries during cycling.

The term “differential capacity analysis” appeared around the year 2000 (for history
see [7,8]) for the first derivative of the galvanostatic curve, U(Q). A series of dQ/dU peaks
(as a function of electrode potential or cell voltage U) corresponds to the potential plateaus
(at constant voltage).

“Incremental capacity analysis” (ICA) was described by Dubarry et al. [9] and
Dahn et al. [10] who considered the reciprocal quantity dQ/dU.
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“Differential capacity analysis” [11] using high precision constant current chronopoten-
tiometry and coulometry was employed for a detailed understanding of the aging processes
and capacity degradation of lithium-ion batteries. Using the potential-capacity data of
the positive and negative electrodes of fresh commercial cells, the differential capacity
was calculated as a reference for a theoretical cell. Full LiMn2O4/graphite cells could be
explained by mere relative shifts of the positive and negative potential-capacity curves.

“Delta differential capacity analysis” (Smith et al. [12]) was introduced to study the
degradation of lithium-ion cells. By the help of constant-current chronopotentiometry,
voltage versus charge data were collected as cells were charged and discharged in subse-
quent cycles. These U(Q) values were then differentiated, using finite differences, to create
differential capacity, dQ/dU, for a given measured cycle. For comparison of new and aged
batteries, “Delta differential capacity”, the difference Δ(dQ/dU) between the differential
capacities of the nth and mth cycle was calculated. ΔdQ/dU should be zero for a perfect
battery cell that does not degrade from cycle to cycle.

Both ICA and DVA [13–15] are based on the cell terminal voltage. However, the
voltage axis may be replaced by the state-of-charge [16]. Differential capacity dQ/dU from
charge–discharge curves and pseudo-capacitance [17] at low frequencies from impedance
spectra at the same voltage are equivalent [18].

For SOH estimation, the location interval between two inflection points of the differ-
ential voltage curve can be evaluated and compared to a new battery [19,20]; the distance
between the inflection points is proportional to battery capacity. In recent years, differential
voltage analysis has helped to obtain insights into the degradation of lithium-ion cells by
capacity loss and resistance increase. An inhomogeneous lithium distribution leads to a
flattening of the dU/dQ signals [21]. Metal ions dissolute, migrate and deposit on the
counter electrode [22].

Unfortunately, differential curves are very noisy, so that previous smoothing of the data
is required. Simple data reduction, moving averages, and FFT smoothing [23] have been
described. Fitting of the measured voltage profile with a number of Gaussian curves [24]
has been proposed for differential capacity and differential voltage curves of high quality.

1.2. Scope of This Study

In aviation, the fast charging of a battery is allowed only in case of emergency. The
state-of-charge (SOC) drops due to self-discharge after storing for a long time without power
supply. Capacity determination and the recharging of a 2-Ah battery using the constant
current discharge method and other diagnosis tools take roughly 1.5 to 2 h according to the
regulations in air traffic.

Based on our previous work [25], we measured hundreds of lithium-ion batteries
with different cell chemistries and wondered what might be a simple criterion for “full”
and “empty” without performing a full charge–discharge cycle each time and risking
overcharge or deep discharge of the cell. By the help of differential capacity, we finally
found a diagnostic method that did not waste a complete charge–discharge cycle and a
subsequent recharge to determine just the available charge, i.e., SOC = 1, while the state-
of-health of the battery continuously deteriorates. Differential capacity dQ/dU is the first
derivative of the charge–discharge curve Q(U).

In this study, the performance of a novel evaluation criterion for constant current
charge–discharge curves is demonstrated based on numerous examples and different cell
chemistries. The idea is to characterize the state-of-charge of any lithium-ion battery, whose
history and state-of-health is not known, as “empty” or “full” using a simple calculation
rule. Ideally, an automated process would determine whether the battery is approaching
overcharge or deep discharge based on the small voltage and charge changes during the
charging or discharging process, without knowing the actual charge (capacity Q0 of the
last charge).
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2. Materials and Methods

New and old lithium-ion batteries of different manufactures and cell chemistries were
charged and discharged at a constant current between the upper and lower cutoff voltage.
The batteries investigated in the course of long-time tests under real conditions as in the
airplane are compiled in Table 1.

Table 1. Lithium-ion batteries in this study according to the manufacturers’ data sheets.

Chemistry Cell Rated Max./Min. Capacity Allowed Current (A)
Voltage Voltage U (V) Q (Ah) Charge Discharge

1 LFP LithiumWerks
ANR26650M1B (LiFePO4) 3.3 3.6 . . . 2.0 2.6 10 (4 C) 50 (20 C)

2 NMC LG ICR18650HE2 3.65 4.2 . . . 2.0 2.5 4 20

3 LCO Sanyo/Panasonic
UR18650FK, Li1-xCoO2

3.7 4.2 . . . 2.5 2.3 2.3 4.8

4 NCA SONY US18650VTC6 3.65 4.2 . . . 2.0 3.0 5 20

The proposed calculation methods work with conventional laboratory equipment
and do not require devices from specific manufacturers. In this study, a DC power source
(Elektro-Automatik EA-PS 2342-10B, Viersen, Germany), an electronic load (ET Systems
ELP/DCM 9712C, Altlußheim, Germany), and a data logger (Agilent 34972A, Meilhaus
Electronic, Alling. Germany) were combined in a climatic chamber (Vötsch VT7021, Weiss
Technik AG, Altendorf, Switzerland). At a constant ambient temperature, the battery
operation between overcharge and deep discharge was considered at slow charge–discharge
rates (below 1C). Electric charge (capacity) was determined by coulomb-counting, although
this is not strictly required for the proposed method. Measured data can be evaluated using
EXCEL, MATLAB or similar software.

2.1. Differential Capacity and Resistance

To avoid numerical problems, differential capacity C = dQ/dU (capacitance [17])
is best calculated from charge–discharge curves using the reciprocal of the differential
voltage. According to Equation (1), at constant charge and discharge currents, small voltage
differences ΔU in the time interval Δt do not cause “division by zero” errors.

C =
dQ
dU

=

(
dU
dQ

)−1
=

(
dR
dt

)−1
(1)

The unit of dQ/dU is Farad: F = C/V = As V−1. Therefore, the symbol C is used for an
electrical capacitance, which must not be confused with the electrical charge (capacity Q).

Capacitance C (slope of the Q(U) curve) is small and resistance R (slope of the U(Q)
curve) is great when the battery is depleted or overcharged. Equation (2) qualitatively
explains this relationship between capacitance and resistance as the state-of-charge changes.

∂SOC
∂U

=
d(Q/Q0)

dU
=

d(CU/Q0)

dU
=

C
Q0

=
I

Q0
dU
dt

∼ 1
R I

(2)

where Q0 is the maximum capacity, i.e., the actual available (discharged) electrical charge
of the battery after the previous full charge. According to Ohm’s law, the voltage drop
across the battery cell correlates with the internal resistance R = dU/dI. At a constant
current, dQ = 0, “DV” is insensitive to resistance changes. Nevertheless, dQ/dU implicitly
represents the change in internal conductance and is therefore a measure of aging.

2.2. The Intersection Method: A New Approch

The true state-of-charge SOC(t) = Q(t)/Q0 (related to the last full charge Q0) is not
clearly a simple function of differential capacity. SOC detection using a linear function
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C(SOC) works best for flat U(Q) curves, which is true for LFP batteries. However, we
are looking for a general empirical method suitable for SOC and SOH monitoring of all
battery types.

Indeed, the peaks of differential capacity occur at “almost full” and “almost empty”.
The novel criterion in Equation (3) could serve as an indication that the battery is virtually
fully charged and imminent overcharging is likely. The same is valid for the empty battery
short before an undesirable deep discharge.

dQ
dU

=
dU
dQ

(3)

The criterion also works with dimensionless quantities, if the state-of-charge (SOC) is
used instead of the electric charge Q.

dSOC
dU

=
dU

dSOC
≡ 1 (4)

A descriptive interpretation of the criterion results from the intersection of a straight
line (ascending curve dQ/dU, in short x) and a hyperbola (descending curve dU/dQ, in
short 1/x). The equation x = 1/x has the solution x = ±1, where only +1 is physically
meaningful. The differential capacity could also be approximated by x2 = (1/x)2 or in
general xn = (1/x)n, which leads to the same solution, x = 1.

A more complicated approach employs the maximum curvature of the charge–discharge
curve. The curvature K of a function y(x) is mathematically defined according to Equation (5)
using the first and second derivatives (y′ and y”). However, it is difficult to determine K
with noisy measurement data. The reciprocal of the curvature is the radius of curvature 1/K.

K =
y′′ (x)

[1 + (y′)2]
3
2

(5)

Electric charge Q(t) is calculated by integrating the current I(t) with respect to time t,
for example using the trapezoid rule. It is advisable to smooth the charge–discharge curve
before numerical derivation, for example by a moving average. Charging currents are
positive (I > 0) and discharging currents have negative signs (I < 0). Details are given below.

2.3. Theoretical Background of the Intersection Criterion

Simplified, a lithium-ion battery can be modeled by an equivalent circuit consisting
of a series combination of the electrolyte resistance R1 and the charge transfer impedance
R2||C, which is a parallel combination of the charge transfer resistance R2 and the double
layer capacitance C. For charging and discharging with a constant current, the state-of-
charge as a function of battery voltage is shown in Figure 1.

Differential capacitance dQ/dU (incremental capacity “IC”) and the “incremental
voltage” dU/dQ (differential voltage “DV”) intersect below the upper cut-off voltage at
a point corresponding to the kink point of the charge curve near full charge. A similar
intersection point is obtained for the discharge above the lower cut-off voltage. The distance
between the intersection points defines the voltage window in which the battery can be
operated without long-term damage.

The model does not consider phase changes that cause further steps in the charge–discharge
curve. The idea of the intersection criterion Equation (3) is to detect phase changes in the
charge–discharge curve at an early stage to prevent overcharging and deep discharging
and to switch from a constant current to a constant voltage operation.

Differential capacity turns to a local maximum where the cell voltage reaches a constant
value. dQ/dU peaks occur where the U(Q) curve is flat (or the Q(U) curve is steep), e.g.,
when the battery reaches a phase equilibrium (ΔU → 0).
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Incremental voltage dU/dQ rises abruptly as soon a constant current can no longer be
fed into or drawn from the cell (ΔI → 0). dU/dQ peaks show the steepest decent where
phase changes, overcharge or deep discharge occur.

Peaks in the dQ/dU curve indicate coexisting equilibrium phases with different
lithium concentrations (dU = 0), whereas dU/dQ peaks reflect phase transitions (Bloom [6]).

Figure 1. General model of a lithium-ion battery: (a) Network elements: Uq = 4.2 V, Q0 = 2 Ah,
C = 12500 F, R1 = 0.004 Ω, R2 = 0.02 Ω. (b) Calculated battery voltage U (green), differential capacity
dQ/dU (“IC”, dashed black) and “incremental voltage” dU/dQ (“DV”, V/Ah, dashed blue) versus
state-of-charge for constant current charge and discharge (I = 0.5 A) on a linear scale. (c) Calculated
values on the logarithmic scale. (◦) Intersection points: Charge: 3.70 V and 3.98 V; discharge 3.64 V
and 3.91 V.

3. Results and Discussion

3.1. Battery Monitoring Using the Intersection Method

The suitability of differential capacity dQ/dU (incremental capacity “IC”, first deriva-
tive of the voltage–charge curve U(Q)) as a quality criterion for the state-of-health (SOH)
is now shown for the experimental charge–discharge curves of new and aged lithium-
iron phosphate cells. Figure 2 displays dQ/dU and its reciprocal dU/dQ. The scaling
on the y-axis is Ah/V or V/Ah. However, drawing dSOC instead of dQ gave the same
numerical results.

(a) Differential capacity

Differential capacity indicates small changes in the battery during aging far better than
the U(Q) curve. The dQ/dU signals were sharper on the voltage scale than against SOC.
The voltage positions of the peaks were well reproducible and differed only slightly for
individual new batteries of the same type. For lithium-iron phosphate chemistry, the central
peak of dQ/dU at about 3.25 V indicated roughly the “almost empty” state (SOC → 0).
The third peak showed the “almost full” battery at 3.3 V (SOC → 1).

Due to the internal resistance of the battery, charge and discharge had capacity peaks at
different voltages (see Figure 1b). At a constant temperature, old and new cells almost did
not differ in the voltage positions. Both deep discharge and overcharge did not significantly
shift the dQ/dU peaks on the voltage axis. However, the height of the dQ/dU peak became
smaller with old cells. With aging, the oxidation peaks shifted toward higher voltages (with
charging) and the reduction peaks toward lower voltages (with discharging).

(b) Incremental voltage

This rise of signal can serve as a criterion that the battery is now fully charged and not
yet overcharged. Due to phase transitions, often a sharp rise in temperature was observed
shortly before the overcharge or exhaustion of the battery took place. The dU/dQ peak
(“DV”) was an early warning of upcoming exhaust heat events and thermal runaway.
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Figure 2. LFP batteries of the same type (LithiumWerks). (a) First derivative of the charge curve on
the logarithmic scale: the best and the worst battery of 100 samples. (b) The intersection points (◦) of
differential capacity dQ/dU (“IC” in Ah V−1) and “incremental voltage” dU/dQ (“DV” in V Ah−1)
define the voltage window ΔU between almost full charge and almost full discharge. The cross ×
indicates the intersection criterium of a battery after long-term aging (900 cycles, DOD 20, 0.3 A).
Quantitative data see below.

(c) Intersection method

The intersection of dQ/dU and dU/dQ indicated the almost full charge (SOC → 1)
at a high voltage and an almost empty state (SOC → 0) at a low voltage. As the current
increased, the intersection points shifted to higher voltages (charging) or lower voltages
(discharging) because the voltage dropped across the internal resistance of the battery
increases. The voltage window (distance between the upper and lower intersection points)
depended on the applied current (see Section 3.3).

Table 2 compiles the quantitative results of different batteries. The new LFP battery
was 98% fully charged at 3.45 V (2.49 Ah of 2.54 Ah, cut-off voltage 3.61 V). However, only
2.36 Ah could be discharged until the intersection criterion was reached. All experiments
were performed at the same current. The bad battery consumed 2.46 Ah (of 2.51 Ah) until
the overcharge warning was reached; 2.33 Ah could be discharged until the deep discharge
warning. This means that the small additional overcharge capacity (0.05 Ah) and the small

24



Batteries 2022, 8, 86

residual capacity (0.19 Ah) which were lost using the intersection criterion, were negligible
in relation to the risk of repeated overcharge and deep discharge.

We conclude that the intersection method allowed the economical operation of LFP
batteries, with about 10% of the theoretical charge remaining unused.

Table 2. Intersection criterion for lithium-ion batteries at the beginning of life and end of life: Cell
voltage U, state-of-charge (SOC = Q/Q0 in %) and available electric charge Q (Q0 = capacity at full
charge) at the upper and lower intersection: dQ/dU = dU/dQ ≈ 1.

Battery and Cell
Chemistry

State-of-Health: Capacity
Q0 and Electrolyte

Resistance

Charge Window Discharge Window

V SOC mAh V SOC mAh

LFP LithiumWerks New #0 2.5 Ah, 5.3 mΩ 3.45 . . . 3.25 98 . . . 7.6 2493 . . . 192 3.29 . . . 3.10 98 . . . 7.6 2356 . . . 43
See Figure 1 Good #74 2.5 Ah, 5.0 mΩ 3.46 . . . 3.24 98 . . . 7.5 2497 . . . 192 3.30 . . . 3.11 98 . . . 7.6 2365 . . . 40

Bad #32 2.5 Ah, 6.4 mΩ 3.45 . . . 3.25 98 . . . 7.7 2463 . . . 192 3.30 . . . 3.10 98 . . . 7.7 2329 . . . 45
Aged #3 2.0 Ah 3.47 . . . 3.28 98 . . . 8.9 2088 . . . 189 3.25 . . . 3.06 98 . . . 9.2 1957 . . . 42

NCM LGSee
Figure 2

New 2.2 Ah 4.2 . . . 3.46 100 . . . 7.5 2170 . . . 164 4.11 . . . 3.35 99.6 . . . 14 1871 . . . 9
DoD 20 1.9 Ah (0.3 A) 4.2 . . . 3.49 100 . . . 7.6 1908 . . . 145 4.07 . . . 3.36 99.4 . . . 12 1674 . . . 11

DoD 100 1.6 Ah (0.3 A) 4.2 . . . 3.55 100 . . . 11 1590 . . . 176 4.00 . . . 3.35 98.5 . . . 15 1365 . . . 24

NCA Sony New 3.1 Ah, 31 mΩ – – – 4.15 . . . 3.05 99.9 . . . 7.0 2850 . . . 0
See Figure 3 DoD 20 2.3 Ah, 74 mΩ 4.21 . . . 3.43 100 . . . 6.5 2268 . . . 148 4.04 . . . 3.31 99.5 . . . 16 1921 . . . 10
See Figure 4 DoD 100 1.7 Ah, 70 mΩ 4.13 . . . 3.47 92 . . . 8.1 1607 . . . 142 3.97 . . . 3.36 98.7 . . . 19 1415 . . . 23

LCO Panasonic New #8 2.26 Ah 4.09 . . . 3.73 86 . . . 5.3 1942 . . . 120 4.09 . . . 3.58 99.2 . . . 5.3 2128 . . . 18
DoD 20 #4 2.21 Ah 4.21 . . . 3.70 100 . . . 4.8 2200 . . . 106 4.11 . . . 3.56 99.5 . . . 9.2 1702 . . . 9

DoD 100 #6 2.26 Ah 4.21 . . . 3.73 99 . . . 5.2 2237 . . . 118 4.09 . . . 3.75 94.8 . . . 1.3 2152 . . . 29

3.2. The Intersection Method Indicates the Degree of Aging

Figure 3 shows the first derivative of the discharge–voltage curve of NMC batteries
that reached their end-of-lives after extended long-term cycle tests. Again, differential
capacity and its reciprocal intersected at 1. The distance between the intersection points at
low and high voltage defined the useful working range. It can be clearly seen that the new
battery covered 0.76 V between “almost full” (1.9 Ah) and “almost empty” (0.009 Ah). The
old battery offered only 0.65 V between 1.4 Ah and 0.024 Ah.

Figure 3. NMC batteries of the same type (LG ICR18650HE): Intersection method for brand new
condition and end-of-life after flat and deep cycling test at constant current (900 cycles, 0.3 A = C/10).
The usable voltage range = distance between the intersections (◦) becomes smaller with forced aging.
Differential capacity dQ/dU (“IC”, in Ah V−1), incremental voltage dU/dQ (“DV”, in V Ah−1).
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Figure 4. Calculation recipe for the intersection method. Example data from this work. The
criterion S =

∣∣x − x−1
∣∣ → 0 , or S′ = −lg(10 · S) > 1 shows the cell voltage at the intersection

point, dQ/dU = dU/dQ ≈ 1, in the charge–discharge curve (below in green). Electric charge Q,
available capacity Q0 (in bold), and state-of-charge (SOC = Q/Q0) are given for information only.

In Figure 5, the intersection method was applied to lithium NCA batteries. Qualita-
tively the same results were obtained as with the other cell chemistries. For NMC and NCA
chemistries, the upper intercept around 4 V reflected “virtually full” (SOC > 99%).

Figure 5. NCA batteries of the same type (SONY): First derivative of the constant current discharge
characteristics for new samples and end-of-life parts after constant current cycling test (900 cycles,
0.3 A). The usable voltage range and SOC window between the intersection points (◦) becomes
smaller with forced aging. For comparison: SOC curve (blue) of the new battery.

Table 2 adds an LCO battery; the discharge profiles (not shown here) were not qualita-
tively different from the examples discussed.
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3.3. The Intersection Criterion Reflects Kinetic Inhibitions

As a mathematical tool, the intersection method is nothing more than a mirror of
the charge–discharge curve. It is designed to provide a timely indication of impending
overcharge or deep discharge. Figure 6 shows exemplary measurements at different
currents and temperatures.

Figure 6. Application of the intersection method to measurements on a lithium iron phosphate
battery: (a) Variation of current: discharge characteristics (above) and change of voltage window
based on differential capacity and its reciprocal (below). ΔU is the ‘safe’ voltage window and a
measure of the battery’s internal resistance. (b) Variation of temperature during charging (above)
and discharging (below) the battery. The scatter at small currents is a consequence of the used
measurement technique.

For different currents, the intersection points reliably indicated the “safe” voltage
window. As the discharge current increased, the intersection points moved to a lower
cell voltage, as expected, because the voltage drop across the internal resistance of the
battery increased, U(I) = U0 – I R. As the temperature increased and the kinetic inhibitions
decreased, the intersection points shifted to lower cell voltages.

3.4. Practical Implementation

The voltage values in a common charge–discharge curve are not equidistant; there-
fore, the usual formulas for numerical differentiation including smoothing over mul-
tiple data points are not applicable. Small differences between adjacent values cause
outliers and spikes. Therefore, for noisy signals, we successfully used derivatives with
central differences.

dy
dx

≈ yi+1 − yi−1
xi+1 − xi−1

(6)

The intersection method can be easily carried out by machine according to the calcula-
tion recipe in Figure 4.

In Section 3.5, the method was applied to synthetic data without prior smoothing
of the measurement values. However, the method worked reliably even with slightly
noisy data.

When the current signal was very noisy and the voltage changes were very small,
outliers (spikes) occurred in the derivative which, in case of doubt, may be deleted point by
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point. If noisy measurement data are available, the voltage signal is smoothed by a moving
average. With millivolt resolution, 8 or 13 data points are helpful. Then the quotient,
S = ΔU/ΔQ, and its reciprocal are formed. Comparing how dQ/dU and dU/dQ approach
each other and ideally reach the value of one, the operating range of the battery between
“almost empty” and “almost full” was found.

For acceptable results with highly noisy measurement data, as shown in the figures
above and below, the step-by-step calculation scheme is as follows:

1. Measurement of voltage U and electric current I during charging and discharging,
e.g., every 10 s;

2. Calculation of the differences ΔU = Ui+1 − Ui for all voltage values (i = 1, . . . , n);
3. Calculation of charge differences ΔQ = I · Δt using the average value of constant

current I and time interval Δt. Informatively, SOC = Q/Qmax can be added for each
voltage point;

4. Smoothing of voltage differences by averaging over 15 data points (total curve has
3000 data points);

5. Calculation of incremental voltage (“DV”), dU/dQ ≈ ΔU/ΔQ, using the smoothed
voltage vector;

6. Calculation of the reciprocal dQ/dU ≈ (ΔU/ΔQ)−1;
7. Smoothing of dQ/dU by averaging over 17 data points.

3.5. Limitations of the Method: Application to Different Cell Chemistries

Figure 7 shows the constant current charge–discharge curves of various lithium-ion
batteries and the application of the intersection method. The latter worked best when the
Q(U) curve was S-shaped and steep.

(a) Lithium–iron phosphate (LFP)

Curvatures that are easy to read by eye cause considerable difficulties in computer-
aided analysis of data curves. The derivative dQ/dU gave the steepest slope. In contrast
to that, the intercept criterion Equation (3) provided the voltage at the greatest curvature
of the curve, i.e., close to the kink point, before a constant voltage prevails. The S-shaped
charge curve exhibited the lower and upper kink point at about 3.27 V (SOC 0.1) and 3.45 V
(SOC 0.98); the discharge curve had kink points at 3.14 V (SOC 0.1) and 3.28 V (SOC 0.9).
The LFP discharge curve reached the radius of curvature one at 3.1 V and 3.4 V. The voltage
range where the radius of curvature was less than 1 again marked the operating range
between “almost full” and “almost empty”. At the end of discharge, the radius of the
curvature increased steeply. The benefit of curvature and radius of curvature was small,
because one could also observe the almost constant voltage. However, it was not clear from
the voltage when overcharging and when deep discharging began. This is the advantage of
the intersection criterion as demonstrated above.

(b) Lithium–cobalt oxide (LCO)

This battery reached the “radius of curvature one” at 4.0 V and 3.5 V. Due to the
small change in voltage, the radius of curvature increased at the beginning and end of the
discharge. From the first derivative of the discharge curve, the values dSOC/dU = 1 were
basically evident, but the noise of the measured values was disturbing.

(c) Lithium–manganese oxide (LMO)

The radius of curvature 1/K = 1 at 4.1 V and 3.4 V again showed the beginning rise
of the discharge curve. The operating range could be read more easily from the voltage
difference between the horizontal at SOC = 1 and SOC = 0.

(d) Lithium nickel manganese cobalt oxide (NMC)

The charge–discharge curve was less steep than that of LFP and LCO. The kink points
at 3.4 V and 4.0 V (discharge) were approximately represented by the intersection of the
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first derivative dSOC/dU = 1 (and the intersection criterion). The maxima of the derivative
indicated the steepest slope of the discharge curve.

(e) Lithium nickel cobalt aluminum oxide (NCA)

Figure 7. Test of the method with highly noisy data. Complete charge –discharge curves of different
lithium-ion cell chemistries. (a,b) State-of-charge (SOC = Q/Q0) versus cell voltage U. (c) Differential
capacity dSOC/dU as measured without smoothing. (d) Differential capacity dSOC/dU with
smoothing by moving average over 13 data points. (e) Intersection method for the charge curves:
differential capacity dQ/dU (“IC”, dashed), incremental voltage (“DV”, solid). (f) Intersection
method for the discharge curves.

The discharge curve was relatively flat and less S-shaped than that of other battery
chemistries. Noisy measurement values led to large scatter and numerical errors. The
derivative dQ/dU showed several passes through one (see Figure 7d). The radius of
curvature was one at the kink point (4.15 V) and at other points; the numerical evaluation
was unsatisfactory despite strong smoothing.

3.6. Verification of the Intersection Criterion Using Synthetic Data

In this section, the proposed method is applied to synthetic data of LFP batteries
provided by Dubarry et al. [26]. The intersection method was applied to the unsmoothed
data set of 705,638 charge-discharge curves, U(SOC). The data were evaluated using
MATLAB (code see Supplementary Materials).
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Figure 8 compares the first derivative of the charge–discharge curves with respect to
the absolute state-of-charge, S = dSOC/dU. Here, normalized capacity refers to the initial
state to compare a “new” and an “aged” system on the same scale.

Figure 8. Application of the intersection method (this paper) to synthetic data from [26] for lithium
iron phosphate chemistry. Here: loss of lithium-ion inventory (LLI) with constant loss of active
material at the positive electrode (LAMPE) and the negative electrode (LAMNE). (a) Example curve
“new” at the beginning of lithium loss, (b) “old” at 50% lithium loss versus the absolute state-of-
charge with respect to the initial system (here: normalized capacity). The unit of S is V−1, the unit
of 1/S is V. (c) Change of voltage window during aging: U1 and U2 are the lower and the upper
intersection points at S = 1/S = 1. (d) Intersection criterion for all states of lithium loss between 0%
and 70%.

The intersection points were found by searching for the smallest value of the difference,
|S – 1/S|2 → min, on the “left” and on the “right” side of the data set.

The intersection points at S = 1/S = 1 occurred reliably, so that the associated voltage
could be determined fairly accurately. Figure 8c clearly shows how the usable voltage
window (distance between die intersection points U1 and U2) became smaller and smaller
during aging. For lithium iron phosphate and other cell chemistries, intermediate peaks
below S = 1/S =1 do not matter. For diagnostic purposes, such peaks would be interpreted
as phase changes.

In the Supplementary Materials, a video shows the method in action for the special
case of increasing the loss of the lithium inventory.

4. Conclusions

For all common lithium-ion chemistries, the empirical intersection criterium proposed
in this work, dSOC/dU = dU/dSOC = 1, allows the operation of a lithium-ion battery to be
monitored between “almost full” and “almost empty leaving some percent of the available
capacity unused to avoid overcharge and deep discharge:

• The intersection points corresponded to the kink points in the charge–voltage curve.
At the upper intersection, the battery was “virtually full” and was considered a
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warning of impending overcharge or phase change. The small deviation to full charge
depended on the cell chemistry;

• At the lower intersection point, the battery was “virtually empty” with a small amount
of residual charge remaining in the battery; this was considered as a warning of
impending deep discharge or phase change. For “completely empty”, including deep
discharge, the criterion diverged from one: dQ/dU → 0 and dU/dQ → −∞;

• With an increasing current, the intersection points shifted to higher voltages (charg-
ing) or lower voltages (discharging); the distance between the intersections slightly
increased with the current due to the voltage drop across the internal resistance of
the cell.

The small deviation of the intersection method compared to ampere-hour counting
contained a useful “reserve” to protect the battery against overcharging and deep discharge.
The intersection method is suitable for simple intelligent battery monitoring without the
need for Ah counting.

Starting from any battery condition, it is sufficient to record the voltage and cur-
rent over time, calculate the charge and voltage differences, and evaluate the quotient
ΔU/ΔQ. The criterion dSOC/dU = dU/dSOC = 1 will stop an automated full charge or
discharge in time and prevent thermal runaway as far as possible. To avoid zero differences
and rounding errors, the calculation rule in Equation (6) is recommended as a practical
implementation of the intersection criterion.

S =

∣∣∣∣∣ΔU
ΔQ

–
(

ΔU
ΔQ

)−1
∣∣∣∣∣
2

→ 0 or − lg(10 · S) 
 1 (7)

For constant current charge and discharge, one current–voltage point per 10 s is
sufficient. The voltage position of the upper intersection can be improved by a shorter
measuring interval.

Relevance to Battery Management Systems

In practice, the intersection method is useful for determining when to switch from
constant current (CC) to constant voltage charging and when to stop CC discharging. The
criterion is not intended as a replacement for monitoring cut-off voltages, but as a tool for
the evaluation of conventional charge–discharge curves.

The benefit of the intersection method is a mathematical one; it does not repeat the
lower and upper cut-off voltage (defined by the manufacturer for a particular battery) but
does provide empirical kink points of the charge–discharge curve just before reaching “full”
and “empty” (for any battery). The physical basis of the criterion is solely the course of the
charge–discharge curve, which changes over time due to aging. Cut-off voltages need not
be known in advance.

The criterion shows a snapshot of the charge–discharge curve. It is irrelevant for the
method at which point of the charge–discharge curve, in which direction or under which
operating conditions (SOC, SOH, current, temperature, load change) it is used. The result
1/S = S = 1 means “Attention, almost full, overcharge is imminent” or “Attention, almost
empty, deep discharge is imminent”. At operating voltages to the left and right of the
intersection points, little additional charge flows into or out of the battery. The intersection
criterion is intended as an early warning of impending heat events and phase changes.

The criterion does not claim to extend battery life. However, the relationship between
shortened service life due to overcharge and deep discharge is known, e.g., [27]. The
voltage range between the upper and lower intersection point becomes smaller during
aging. It is a mirror image of the charge–discharge curve and thus of electrode kinetics. The
intersections shift to lower cell voltages as the internal resistance of the battery increases.
Cut-off voltages listed in data sheets do not depend on the actual state-of-health but are
specifications of the manufacturer. The conventional diagram also shows that the initial
curvature of the upper branch of the curve shifts more and more towards low voltages
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(see Video S3). The intercept criterion makes this visual observation machine-readable (see
Supplementary Video S2).

The proposed mathematical procedure helps a digital machine to find the inflection
points of the charge/discharge curve, which cannot always be detected accurately and
quickly even by the human eye. Such an automated process would determine if the bat-
tery is approaching overcharge or deep discharge without the need to know the actual
state-of-charge or state-of-health. The method is suitable for implementation on microcon-
trollers of battery management systems. It is simple and consumes few resources (memory,
computing power).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/batteries8080086/s1, Video S1: Visualization of the intersection
method using synthetic data (Dubarry [26]) for lithium-iron phosphate chemistry: Loss of lithium
inventory 0% to 70% at constant loss of active material. Narrowing of the usable SOC range; Video S2:
Intersection method on the voltage scale showing the narrowing of the ‘safe’ voltage window
during aging; Video S3: Conventional discharge curves with pre-defined cut-off voltages; Figure S1:
MATLAB CODE: MATHLAB code fragment for evaluating LFP chemistry.

Author Contributions: Writing—Original Draft Preparation, Review and Editing, all authors. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Diehl Aerospace GmbH.

Conflicts of Interest: The authors declare no conflict of interest.

List of Symbols and Abbreviations

C Capacitance, dQ/dU = 1/x (F) LCO lithium cobalt oxide
Q electric charge, battery capacity (Ah) LMO lithium manganese spinel
Q0 capacity of a fully charged battery (Ah) LFP lithium iron phosphate
R ohmic resistance, real part of impedance (Ω) NCA nickel cobalt aluminum
Re electrolyte resistance (Ω) NMC nickel manganese cobalt
U cell voltage (V) SOC state-of-charge
x incremental voltage: dU/dQ (Ω/s) SOH state-of-health
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Abstract: Lithium-ion battery state of health (SOH) accurate prediction is of great significance to
ensure the safe reliable operation of electric vehicles and energy storage systems. However, safety
issues arising from the inaccurate estimation and prediction of battery SOH have caused widespread
concern in academic and industrial communities. In this paper, a method is proposed to build an
accurate SOH prediction model for battery packs based on multi-output Gaussian process regression
(MOGPR) by employing the initial cycle data of the battery pack and the entire life cycling data of
battery cells. Firstly, a battery aging experimental platform is constructed to collect battery aging
data, and health indicators (HIs) that characterize battery aging are extracted. Then, the correlation
between the HIs and the battery capacity is evaluated by the Pearson correlation analysis method,
and the HIs that own a strong correlation to the battery capacity are screened. Finally, two MOGPR
models are constructed to predict the HIs and SOH of the battery pack. Based on the first MOGPR
model and the early HIs of the battery pack, the future cycle HIs can be predicted. In addition, the
predicted HIs and the second MOGPR model are used to predict the SOH of the battery pack. The
experimental results verify that the approach has a competitive performance; the mean and maximum
values of the mean absolute error (MAE) and root mean square error (RMSE) are 1.07% and 1.42%,
and 1.77% and 2.45%, respectively.

Keywords: lithium-ion battery; health indicators; state of health; multi-output Gaussian process
regression; health prediction

1. Introduction

1.1. Literature Review

For numerous advantages, lithium-ion batteries have been widely used in electric
vehicles, consumer electronics devices, and energy storage systems [1,2]. Like many
electrochemical systems, the repeated charging and discharging during the application
of batteries inevitably cause gradual aging, resulting in an increase in internal resistance
and a decrease in capacity. In the later stage of battery aging, it can more easily cause
failure or fire, and the method to enhance the performance and safety of lithium-ion battery
systems is a critical research hotspot [3]. Prognostic and Health Management has been one
of the indispensable functions of the battery management system. Generally, the aging
degree of the battery is characterized by State of health (SOH). SOH is defined as the
ratio of the maximum available capacity to the rated capacity. According to the different
application fields of lithium-ion batteries, the battery is usually considered to approach
its end of life when its capacity reaches 80% of the normal value or its internal resistance
increases to twice the initial value [4]. Existing studies have shown that lithium-ion battery
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35



Batteries 2022, 8, 134

SOH prediction methods can be classified into electrochemical-based methods (EM) [5–7],
equivalent circuit-based methods (ECM) [8,9], and data-driven methods (DDM) [10,11].

The relevant mathematical techniques can simplify the EM, which is established
through the mathematical modeling of the internal mechanism of the battery and can be
used to predict battery SOH. Nonetheless, the aging models based on different side reactions
inside the battery are usually coupled with some partial differential equations [12], leading
to some deficiencies such as high computational costs and hindering their applicability.
Unlike EM, ECM is the most commonly used model that combines voltage sources, resistors,
capacitors, and other components. The computational cost of this model is small, and its
parameters are easy to identify. As a complex, nonlinear time-varying system, it is difficult
to establish a model for the battery to characterize dynamic properties accurately. The data-
driven approach does not consider the battery operating mechanism and aging mechanism
compared with the model-based approach. It does not require a specific physical model,
meaning it is more flexible. In addition, data-driven approaches typically treat the battery as
a “black box” that maps external measurements such as voltage, current, and temperature
to capacity based on machine learning algorithms.

With the continuous progress of computer technology and artificial intelligence tech-
nology, data-driven methods in battery health research receive more attention than physical
methods due to their flexibility and model-free characteristics [13]. The following are data-
driven methods for battery health prognostics: an artificial neural network (ANN) [14],
a support vector machine (SVM) [6,15], a relevance vector machine (RVM) [16], and a
Gaussian process regression (GPR) [17,18]; the advantages and disadvantages of the four
approaches are listed in Table 1 [10].

Table 1. Comparison of the advantages and disadvantages of the four data-driven approaches.

Approach Advantages Disadvantages

ANN
support for multidimensional spaces;
high prediction accuracy;
ability to learn independently;

high computational complexity large-scale samples;
poor uncertainty expression;
complex structure;

SVM
support for multidimensional spaces;
strong generalization ability;
better performance in the nonlinear system;

kernel function satisfying the Mercer criterion;
more computing resources are required;
sensitive to missing data;

RVM high sparsity;
not subject to Mercer restrictions;

depends on kernel function selection;
susceptibility to falling into a local optimum;

GPR availability of uncertainty expressions;
applicable to high-dimensional and small sample data;

poor long-term forecasting;
high cost of computing large samples of data;

Compared with ANN, RVM, and SVM, the GPR model has better adaptability to
deal with complex issues such as high-dimensional data, small samples, non-parameters,
uncertainty expression, and nonlinearity. At the same time, the GPR model has received
widespread attention in battery SOH research. Liu et al. [19] successfully prognosticated
the cycle capacity of lithium-ion batteries based on the improved single-output Gaussian
process regression (SOGPR) model. Li et al. [20] used the SOGPR to prognosticate the SOH
of a battery with satisfactory accuracy. However, the SOGPR model cannot fully utilize
the information of other batteries as prior knowledge to accurately predict the SOH of
the target battery. To cope with this shortcoming, Zheng et al. [21] proposed a multiple
SOGPR model to achieve the prediction of battery SOH based on different weights, but
this method requires a large amount of computation. In order to further overcome the
shortcomings of SOGPR, Boyle et al. [22] regarded the Gaussian process as a convolution
between a smoothing kernel and Gaussian white noise.

Multi-output Gaussian process regression (MOGPR) [23,24] utilizes a covariance
matrix for each channel to model their possible dependencies and each channel can use the
information of other channels to enhance performance. Richardson et al. [25] employed the
SOGPR to predict battery SOH directly and predicted the capacity based on the MOGPR and
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the correlation between different battery cells. However, research on the SOH prediction
of battery packs is still rare. In addition, most of the above studies mainly use the NASA
public data set to conduct the battery SOH estimation, but the data set was collected in
2008, and the cycle life of batteries is less than 200 cycles. Due to the rapid development of
battery technology, this dataset is not suitable for the current commercial batteries, which
usually have a larger capacity and a longer cycling life.

1.2. The Thought of This Paper

It is still challenging to achieve an accurate SOH prediction of battery packs only
using early aging data of the pack. To this end, this paper proposes a method to build
an accurate SOH prediction model for battery packs based on the MOGPR by employing
the entire life cycling data of battery cells and the initial cycle data of the battery pack.
Firstly, a battery aging experimental platform is constructed to collect battery aging data,
and health indicators (HIs) that characterize battery aging are extracted. Then, we use
correlation coefficients to evaluate the correlation between the HIs and the capacity, and
the HIs that have a strong correlation to the battery capacity are screened. Finally, two
MOGPR prediction models are constructed, namely, an MOGPR HIs prediction model
and an MOGPR SOH prediction model. The MOGPR HIs prediction model is trained by
employing the first 20% cycle HIs of the battery pack and the entire life cycle HIs of the
battery cell. Based on this model, the future cycle HIs of the battery pack can be obtained.
The MOGPR SOH prediction model is established by using the early HIs and SOH data
of the battery pack as a training sample. Based on this model and the predicted HIs, the
future SOH of the battery pack can be predicted.

The method consists of three main parts: data acquisition, model construction, and
health prognostics, as shown in Figure 1. First, the battery aging experiment platform is
built to collect the battery aging data such as voltage, current, capacity, and temperature.
Secondly, the HIs are extracted from the charge/discharge aging experimental data and
filtered by using the correlation analysis method. Additionally, they are combined with the
MOGPR to construct the battery SOH prediction model. Finally, the SOH-predicted results
of the battery cells and packs are evaluated by three metrics.

 

Figure 1. The composition and implementation principle of the battery SOH prediction method.

The contributions of this paper are as follows:

(1) Two HIs, namely, cycle number and standard deviation of discharge capacity (stdQ)
are combined to achieve a highly accurate SOH prediction for battery packs.

(2) The proposed MOGPR model can maintain a high-precision SOH prediction of battery
cells and battery packs under different working conditions.

(3) Only 20% early aging data of battery packs are employed to achieve an accurate SOH
trajectory prediction for the battery pack, which saves lots of time and energy in
whole-life aging tests of battery packs.
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The remaining sections of this paper are as follows: Section 2 analyzes the results;
Section 3 is the experimental testing; Section 4 extracts and evaluates the HIs from the
experimental aging data; the methodology is described in Section 5; the conclusions of this
paper are given in the end.

2. Results and Discussion

In this section, the HIs prediction model and the SOH prediction model based on the
MOGPR are validated by using the aging experimental data of battery cells and battery
packs. The battery pack stdQ prediction results based on the MOGPR model are presented
in Section 2.1. In Section 2.2, the SOH prediction results of battery cells under different
models and working conditions are presented, while the SOH prediction results of the
battery pack under different models are illustrated in Section 2.3.

2.1. The HIs Prediction of Battery Pack

Under the working condition of 35 ◦C_0.5C0.5C (35 ◦C: ambient temperature, 0.5C0.5C:
charge–discharge rate), based on the MOGPR model, the future cycle stdQ (stdQ_pre) of the
battery pack can be obtained by learning the entire life data of the battery cell stdQ and the
initial 20% life data of the battery pack stdQ_mean, and the results are presented in Figure 2.
As shown in Figure 2a, the vertical dashed line represents the 20% cycle data of the battery
pack, with the left side representing the observed value and the right side representing
the predicted value. The predicted HIs not only have the same trend as the observed HIs,
but also have a small error, and their MAE and RMSE are 0.36% and 0.496%, respectively.
Figure 2b illustrates the correlation between the stdQ and the capacity in the battery pack,
where the stdQ_mean represents the observed value of the stdQ1–15 of the battery pack. The
results show that the stdQ_pre still has a strong correlation with the capacity, and thus the
above stdQ can be used for the health prediction of the battery pack. Although the stdQ
has a good correlation with capacity, there is still a certain degree of deviation. In order
to improve prediction accuracy, the next section will fuse the two HIs, namely the cycle
number and the stdQ, for the SOH prediction of the battery pack.

 
(a) (b) 

Figure 2. The prediction results of the stdQ for the battery pack: (a) the predicted future stdQ of the
battery pack; (b) the correlation coefficient between observed and predicted HIs and the capacity.

2.2. SOH Prediction of Battery Cells
2.2.1. Prediction Results of Two Different Models

The SOH prediction results of the battery cell based on the SOGPR model and the
MOGPR model are compared in this section. Under the working condition of 35 ◦C_0.5C0.5C,
the SOGPR prediction model is trained by using the first 20% aging data of the 1# cell and
the entire life aging data of the 2# cell, and the results are shown in Figure 3a. The bold
solid line represents the observed value used to train the SOGPR model, the dotted line is
the future SOH of the battery cell, and the solid blue line is the predicted SOH. The light
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blue area displays the 95% confidence interval (CI), which is used to assess the prediction
results. The narrower the 95% CI, the more reliable. It can be seen from the picture that the
SOGPR prediction model cannot achieve accurate SOH prediction of the battery cell.

 
(a) (b) 

Figure 3. SOH prediction results for battery cell (35 ◦C_0.5C0.5C): (a) SOH prediction result based on
the SOGPR; (b) SOH prediction result based on the MOGPR.

Compared with the SOGPR model, the MOGPR model accounts for the disadvantage
of the SOGPR model and can take use of the prior SOH information of the 2# cell to obtain
higher prediction accuracy. Under the working condition of 35 ◦C_0.5C0.5C, the MOGPR
prediction model is trained by employing the entire life cycling data of the 2# cell and the
first 20% aging data of the 1# cell, and the prediction result is shown in Figure 3b. Their
MAE and RMSE are 0.278% and 0.337%, respectively.

2.2.2. Prediction Results for Two Different Conditions

In order to analyze the influence of temperature and the charge–discharge rate on the
MOGPR model, the future SOH of battery cell under 35 ◦C_0.5C0.5C is predicted based
on the battery cell aging data of two different operating conditions: 25 ◦C_0.5C0.5C and
35 ◦C_0.3C1C, and the predicted results are shown in Figure 4.

 
(a) (b) 

Figure 4. SOH prediction results of battery cell based on the MOGPR under different conditions:
(a) results of MOGPR-based battery cell SOH prediction (25 ◦C_0.5C0.5C); (b) results of MOGPR-
based battery cell SOH prediction (35 ◦C_0.3C1C).

At first, in order to analyze the influence of temperature on the prediction accuracy
of the SOH of the battery cell, the entire life aging data of the 3# cell under the working
condition of 25 ◦C_0.5C0.5C and the first 20% cycle data of the 1# cell under 35 ◦C_0.5C0.5C
working conditions are employed to train the MOGPR model. The SOH prediction results
are shown in Figure 4a, the MAE and RMSE are 0.31%, and 0.99%, respectively. The result
shows that temperature has little effect on the SOH prediction of the battery cell. The model
can obtain satisfactory SOH prediction accuracy under different working temperatures by
using the aging data in other working temperatures.
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Then, to analyze the influence of the charge–discharge rate on the prediction accuracy
of battery cell SOH, the entire life aging data of the 5# cell under 35 ◦C_0.3C1C operating
conditions and the first 20% cycle data of the 1# cell under 35 ◦C_0.5C0.5C working condi-
tions are utilized to train the MOGPR model. The deviation of the predicted value from the
true value gradually increases with the increasing number of cycles; the SOH prediction
result is shown in Figure 4b. Their MAE and RMSE are 1.71% and 1.89%, respectively.

By verifying the MOGPR model based on two different working conditions, it can
be seen that, compared with temperature, the impact of the charge–discharge rate on the
prediction accuracy of the battery cell SOH is more obvious.

2.3. SOH Prediction of Battery Pack

In this section, firstly, the prediction results of two different HIs are validated separately
based on the SOGPR model. Secondly, based on the MOGPR model, the prediction results
of two different HIs are verified separately. The black dotted line is the actual value
of the SOH. the solid colorful line represents the predicted value of the SOH, and the
corresponding area is the 95% CI.

2.3.1. Prediction Results Based on the SOGPR Model

Under 35 ◦C_0.5C0.5C operating conditions, the first 20% of a battery pack is used to
train the SOGPR model. The prediction result is shown in Figure 5. The battery used in the
experiments in this paper is affected by polarization, and the SOH of the first 100 cycles
of the pack shows a rapid decline. In Figure 5a, the SOGPR model is trained using only
the cycle number as the HI, and the SOH prediction error of the battery pack is large. The
MAE and RMSE are 2.554% and 3.64%, respectively. While in Figure 5b, the cycle number
and stdQ_pre are used as the input HIs. Although the future cycling SOH prediction of
the battery pack can be achieved by training two sets of HIs, the predicted values deviate
significantly from the actual values and are located in the unreliable region, and its MAE
and RMSE are 2.79% and 3.74%, respectively. The results show the SOGPR model cannot
obtain accurate SOH predictions of the battery pack.

 
(a) (b) 

Figure 5. SOH prediction of the battery pack based on the SOGPR with different HIs: (a) only using
the cycle number as the HI; (b) using the cycle number and stdQ as the HIs.

2.3.2. Prediction Results Based on the MOGPR Model

In this section, the MOGPR prediction model is trained by the data of a single HI (cycle
number) and two HIs (cycle number and stdQ_pre), and the SOH prediction results of the
battery pack are analyzed. Under the working condition of 35 ◦C_0.5C0.5C, the whole life
aging data of the 1# cell and the first 20% of the battery pack are used to train the MOGPR
prediction model of the battery pack. In Figure 6a, only the cycle number is used as the
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HI to train the model. The results show that the capacity drops rapidly in the early cycle.
In the first 400 cycles, it still has high prediction accuracy and can effectively capture the
overall trend of battery decline, with an MAE and RMSE of 1.87% and 2.69%, respectively.
Compared with SOGPR, the prediction accuracy of SOH has been significantly improved.
Although the deviation of the predicted future SOH of the battery pack from the actual
value is small, its 95% CI is still much larger than the normal threshold. The results show
that, based on the MOGPR SOH prediction model, satisfactory reliability prediction results
cannot be obtained by training using only the cycle number.

 
(a) (b) 

Figure 6. SOH prediction of the battery pack based on the MOGPR with different HIs: (a) only using
the cycle number as the HI; (b) using the cycle number and stdQ as the HIs.

The SOH prediction results of the battery pack based on two HIs (cycle number and
stdQ_pre) are shown in Figure 6b. It can be observed that the model can not only capture
the general trend of battery aging but also has better results, with an MAE and RMSE of
0.91% and 1.18%, respectively. Based on the fusion feature to account for the deficiency of a
single feature, the prediction accuracy has been significantly improved.

3. Experiment

As an electrochemical system, the battery inevitably leads to the gradual degradation
of its performance during constant use and long-term storage. To study its aging character-
istics, an aging experiment platform is set up to conduct different charging and discharging
tests. The battery aging test platform mainly includes a battery tester, a thermal chamber, a
computer, a data logger, etc., as shown in Figure 7. First, set the experimental steps and
parameters through the computer. Then, use the battery tester to run the battery cells and
pack in the thermal chamber according to the preset steps. Finally, save the experimental
data to the computer through the data logger.

Figure 7. The platform for the battery aging experiment.
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The battery used in this aging test is a prismatic battery cell with a LiFePO4 cathode
and a graphite anode. A batch of batteries with a rated capacity of 110Ah is applied
to the aging experiment. The battery pack is composed of fifteen battery cells in series.
Both battery cells and battery packs are subjected to aging tests at 35 ◦C_0.5C0.5C. In
order to analyze the influence of temperature and the current rate on aging characteristics,
aging experiments are carried out on battery cells under two operating conditions, namely
25 ◦C_0.5C0.5C and 35 ◦C_0.3C1C, respectively. The aging test conditions of battery cells
and battery packs are shown in Table 2.

Table 2. Battery aging test conditions.

Conditions Cell Pack

Temperature (◦C) 35 25 35 35
Charge rate (C) 0.5 0.5 0.3 0.5

Discharge rate (C) 0.5 0.5 1 0.5

In this work, a test battery cell (35 ◦C_0.5C0.5C_cell, 1#) (35 ◦C: ambient temperature,
0.5C0.5C: charge–discharge rate, cell 1#: battery number) is an example for the description.
The battery tester conducts the aging experiment under preset working conditions, where
the ambient temperature is set to 35 ◦C. Consistently use the 0.5 C rate to complete charging
until 3.65 V, and the current becomes 0.05 C. In the discharge process, the discharge rate is
set to 0.5 C to discharge until 2.5 V, and then the discharge step is terminated. The voltage
and current curves in a charge–discharge cycle are shown in Figure 8a, then the above
process is repeated until the capacity reaches a preset value of the initial capacity of the
battery. Compared with the battery cells, the cycling life of the battery pack is usually
much shorter, as shown in Figure 8b. Specifically, since the battery pack is affected by the
inconsistency of the battery cells and multiple factors, the aging rate of the battery pack is
increased, and its cycle life is shortened.

  
(a) (b) 

Figure 8. Battery cycling profile and capacity aging curves: (a) voltage and current curves in a
charge–discharge cycle; (b) capacity decay curves of battery cells and packs.

4. Health Indicators Extraction and Evaluation

4.1. Health Indicators Extraction

As a battery is repeatedly charged and discharged, its active material will gradually
decrease. The gradual thickening of the solid electrolyte interphase (SEI) eventually leads
to its capacity fading and a power drop. Experiments show differences in the charge
and discharge capacity under different cycles, so capacity would usually be used as an
indicator to evaluate battery aging. The discharge capacity of the lithium-ion battery in this
experiment is completed between the lower and upper cut-off voltage. This work chooses
to extract the voltage segment in this voltage interval, then obtains the corresponding
discharge capacity sequence (Q) through the ampere-hour integration. In order to further
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improve the reliability and operability of this indicator, the standard deviation of the Q
is adopted, which is named as stdQ [26]. The specific implementation principle of stdQ is
as follows:

Assuming that the voltage discharge curve is divided into the same N sub-intervals,
the voltage interval ΔV can be calculated by Equation (1):

ΔV =
Vmax − Vmin

N
(1)

Based on the voltage interval ΔV, the i-th voltage interval sequence Vs,i can be obtained
by Equation (2):

Vs,i = [Vmax, Vmax − ΔV, · · · , Vmin] (2)

The accumulated charge sequence Q corresponding to the voltage sequence can be
obtained according to the ampere-hour integration method, as shown in Equation (3):

Qi(V) = [Q1, Q2, · · · , QN ] (3)

The dQ sequence of Equation (4) can be obtained as the difference between the se-
quence of Equation (3) and the element Q1 which corresponds to the first voltage interval.
Then, the variance of the dQ sequence can be obtained to obtain the health indicator of the
i-th cycle and named as stdQ.

dQi(V) =
[

Qi
1 − Qi

1, Qi
2 − Qi

1, · · · , Qi
N − Qi

1

]
(4)

Through the analysis of the experimental data, it can be seen that as the number of
battery cycles increases, the battery capacity decreases continuously, so the cycle number
can also be used as an HI to capture the aging status of the battery.

4.2. Health Indicators Evaluation

The selection of HIs is critical for the prediction of battery SOH based on machine
learning, which can not only effectively eliminate a large number of unimportant and
redundant features but also help to reduce the computational cost and obtain reliable
prediction results. The Pearson correlation analysis method is suitable for the quantitative
analysis of the linear relationship between the extracted HIs and the battery capacity. The
Pearson correlation coefficient can be expressed by Equation (5) [27]:

ρ =
∑ (xi − xi)(y − y)√

∑ (xi − xi)
2∑ (y − y)2

(5)

where xi represents the HIs, and y represents the capacity observations. xi and y represent
their mean values, respectively. ρ represents the correlation coefficient between the HIs and
the capacity.

Based on the above analysis, the features of fifteen battery cells in the battery pack
are extracted. The correlation between the HIs and the battery capacity is calculated by
using Pearson correlation analysis. Figure 9 shows the correlation between the sixteen HIs
(stdQ1–15, stdQ_mean) and capacity, respectively, in the battery pack, where the stdQ_mean
represents the average value of the stdQ for the fifteen battery cells. The Pearson correlation
analysis shows that the correlation coefficients are greater than 0.99, indicating that there is
a strong correlation between the stdQ and the capacity. Therefore, the stdQ_mean can be
used as an HI to represent all changes in the stdQ1–15 of the battery pack.
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Figure 9. The correlation coefficient between stdQ and the capacity of each battery cell.

5. Methodology

The Gaussian process regression model, as a machine learning method based on
Bayesian framework, has the advantages of non-parametric and uncertainty expression.
According to the number of model outputs, the model can be divided into single-output
Gaussian process regression (SOGPR) models and multiple-output Gaussian process re-
gression (MOGPR) models. Since the traditional machine learning methods cannot fit
well for heterogeneous data, we use the MOGPR model to predict battery pack health.
A comparison of the implementation principles of the two different Gaussian process
regression models can be found in the literature [28], and an intuitive illustration is shown
in Figure 10. For the multiple-input multiple-output prediction problem, the traditional
method often uses multiple SOGPR models to build models separately, where the input is
{Xi,yi}, and the output is {fi}. However, this method ignores the correlation during multiple
outputs; in contrast, the MOGPR model accounts for the deficiencies of the SOGPR model.

Figure 10. Basic principles of two GPR models: (a) basic principles of the SOGPR model; (b) basic
principles of the MOGPR model.

5.1. Single-Output Gaussian Process Regression Model

A typical single-output Gaussian process is a collection of any finite number of random
variables with a joint Gaussian distribution, whose properties are completely determined
by their means and covariance functions. The Gaussian process definition is shown in
Equation (6):

f (x) ∼ GP(m(x), k(x, x′)) (6)
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where x and x’ represent two different input samples, m(x) is the mean function, and its
value usually takes zero (the assumption does not affect the generalization and learning
performance of the Gaussian process), and k(x, x’) is the covariance function of the Gaussian
process, which characterizes the correlation between random variables.

According to Bayesian theory, the posterior distribution of the predicted value y* can
be obtained, as shown in Equation (7):

p(y∗|x, y, x∗) = N
(

μ∗, σ2∗
)

(7)

where x and y are the input and output of the training set, respectively. x∗ and y∗ are the
input and prediction output of the testing set, respectively.μ∗ is the prediction mean, and
σ2∗ is the prediction covariance.

5.2. Multi-Output Gaussian Process Regression Model

The MOGPR model is obtained by extending the SOGPR model. Compared with the
SOGPR model, the MOGPR model accounts for the deficiency of the SOGPR model in that
each output needs to be modeled separately and cannot capture the potential correlation
between multiple outputs. The MOGPR establishes a covariance matrix for each output,
so as to learn the correlation between each output. It assumes that the multiple outputs
are related to some extent, and employs the mutual information to obtain more accurate
prediction results than the SOGPR model [28].

The MOGPR assumes that the set containing D functions, {f d(x)}D
d=1, where any

function can be expressed as the convolution of the smooth kernel function {Gd(x)}D
d=1,

with the implicit function μ(x), as shown in Equation (8):

fd(x) =
∫
x

Gd(x − z)μ(z)dz (8)

Similar to the SOGPR, the MOGPR multi-output random variable f(x) is assumed to
obey a Gaussian distribution, as shown in Equation (9):

f (x) ∼ GP(m(x), KMOGP) (9)

where m(x) is the mean function, predicted by the mean of the test aging data series, and
the multi-output covariance KMOGP is defined as Equation (10):

KMOGP(x, x′) = k fd , fd′ (x, x′) =

⎡⎢⎣ k11(x, x′)
...

kD1(x, x′)

· · ·
. . .
· · ·

k1D(x, x′)
...

kDD(x, x′)

⎤⎥⎦ (10)

The multiple output regression problem can be defined in Equation (11):

yd(x) = fd(x) + εd (11)

where f (x) is the multi-output function, εd is a Gaussian noise εd~N(0, σ2
n), and yd is the

multi-output observation.
Based on Bayesian theory, the posterior distribution of MOGP predicted values yd* can

be expressed in Equation (12):

p(yd∗|x, y, x∗) = N
(

μd∗, σ2
d∗
)

(12)

where x and y are the input and output of the training set, x∗ and yd∗ are the input and pre-
dicted output of the test set, μd∗ is the predicted mean, and σ2

d∗ is the predicted covariance.
In this work, for battery SOH prediction, the HIs and capacity data of battery cells

and packs are used as the input of the MOGPR model, and the corresponding SOHs are
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taken as the output, respectively. Firstly, the battery cell entire-life aging data and the pack
early cycle data are selected and loaded into the model for training. Then, the MOGPR
prediction model is used to complete the prediction of the battery pack SOH. We use three
metrics to evaluate the accuracy of the prediction results, namely, MAE, RMSE, and 95%
CI, as shown in Equation (13):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

MAE = 1
N

N
∑

i=1
|yi − y∗i |

RMSE =

√
1
N

N
∑

i=1
(yi − y∗i )

2

95%CI = y∗i ± 1.96 × σ(y∗i )

(13)

where yi and y∗i represent the actual and predicted values of the battery SOH, respectively,
and σ(y∗i ) is the variance of the predicted capacity. The 95% CI represents the confidence
interval of the predicted value of the battery SOH.

6. Conclusions

In this paper, a battery pack SOH prediction method based on the MOGPR model is
proposed with satisfactory accuracy. Firstly, two HIs are proposed from the battery cells
and the battery pack by analyzing the battery aging characteristics. Then, the Pearson
correlation analysis method is used to quantify the correlation between the HIs and the
capacity. At last, the SOH prediction result based on the MOGPR is verified by employing
the entire life cycling data of the battery cell and the initial cycle data of the battery pack.
Based on the stdQ of the battery cell, the prediction of the future stdQ of the battery pack is
realized through the MOGPR model. Then, the cycle number and stdQ_pre are combined to
form the HIs set, and the MOGPR model is employed again to achieve the prediction of the
future SOH of the battery pack. The results show that its MAE and RMSE are 0.91% and
1.18%, respectively. The results of this paper show that the prediction effect based on two
features is better than that of a single feature, and the performance of the MOGPR model
is better than that of the SOGPR model. By comparison, the MOGPR model based on the
two features has better reliability and accuracy. Only the basic RBF kernel function is used
in this model, and the performance of other kernel functions has not been compared. In
addition, this paper only used the LFP battery to verify the MOGPR model, and whether
this method is applicable to other material batteries needs further research. In the future, we
will try to use different kernel functions in our scenario and combine MOGPR with ANN.
Furthermore, our proposed model will be validated on different materials of batteries.
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Abstract: The accurate estimation of state of charge (SOC) under various conditions is critical to the
research and application of batteries, especially at extreme temperatures. However, few studies have
examined the SOC estimation performance of estimation algorithms for several types of batteries
under such conditions. In this study, a new method was derived for SOC estimation and a series of
experiments were conducted covering five types of lithium-ion batteries with three kinds of cathode
materials (i.e., LiFePO4, Li(Ni0.5Co0.2Mn0.3)O2, and LiCoO2), three test temperatures, and four real
driving cycles to verify the proposed method. The test temperatures for battery operation ranges
from −20 to 60 ◦C. Then, an adaptive machine learning (ML) framework based on the deep temporal
convolutional network (TCN) and Coulomb counting method was proposed, and the structure of the
estimation model was designed through the Taguchi method. The accuracy and generalizability of the
proposed method were evaluated by calculating the estimation errors and their standard deviations
(SDs), its average errors showed a decline of at least 49.66%, and its SDs showed a decline of at least
45.88% when compared to four popular ML methods. These traditional ML methods performed poor
accuracy and stability at extreme temperatures (−20 and 60 ◦C) when compared to 25 ◦C, while the
proposed adaptive method exhibited stable and high performances at different temperatures.

Keywords: machine learning; state of charge estimation; temporal convolutional network; extreme
temperature

1. Introduction

Recently, environmental pollution has become increasingly serious, with greenhouse
gas emissions rising rapidly due to large-scale fossil fuel consumption [1,2]. Therefore,
it is important to develop green and clean energy sources, which are efficient and conve-
nient [3,4]. Lithium-ion batteries (LIBs) exhibit high mobility, a long lifespan and high
energy-density, which are widely used in clean transportation systems, smart grids, and
renewable energy sources [1,5,6]. There are two key methods to accelerate the application
of LIBs: (1) Develop new materials with better electrochemical properties, which makes
batteries safer, more efficient, and have longer lifespans [7,8]; (2) Higher-accuracy quan-
tification of the internal electrochemical changes of the LIBs from the macroscopic point
of view, such that the appropriate operations (e.g., charge, discharge, or maintain) can be
decided at any time to ensure that the battery works in a safe and healthy condition [9].
This prompts the real-time estimation of battery health state. The state of charge (SOC)
of LIB, as one of the most important indicators of internal battery health state, can show
the remaining battery energy and help to formulate an appropriate charge and discharge
strategy [10–13].

Since the battery health states including SOC cannot be measured directly through
sensors, there has been a tremendous amount of research to develop estimation algo-
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rithms for higher accuracy [14–17]. The SOC estimation methods can be divided into three
categories: conventional methods, model-based methods, and machine learning (ML) meth-
ods [18–21]. The conventional methods include the open circuit voltage (OCV) method [22],
the Coulomb counting method [23], and the electrochemical impedance spectroscopy (EIS)
method [24,25]. The OCV method estimates the SOC through a one-to-one relationship
between the OCV and the SOC [26]; however, it cannot be used for the LiFePO4 battery
because of a flat plateau in the OCV–SOC curve [27]. In addition, a long rest time is needed
to make the battery reach an equilibrium condition before measuring the OCV, which limits
its online application [28]. The key characteristics of the Coulomb counting method are low
computational costs and poor accuracy [18]. The EIS method utilizes the battery impedance
and internal resistance to describe the electrical characteristic, but it is expensive [29].

For the model-based approaches, the Kalman filter (KF) and the particle filter (PF) are
the most widely used methods [30,31]. Since the KF is more likely to be used for a linear
system, while the LIB is a highly nonlinear system, some extensions were proposed to
address the adaptivity problem [32]. Xiong et al. [33] used an extended Kalman filter (EKF)
to estimate the SOC of the vanadium redox flow battery, and the results showed that the
maximum estimation error was within 5.5%. Wang et al. [34] proposed a robust adaptive
unscented Kalman filter (UKF) method for unbiased SOC estimation. Their method was
applied on a LiNixCoyMnzO2 battery with a rated capacity of 40 Ah under 25 ◦C, and the
maximum absolute error exceeded 5%. Yang et al. [35] applied a novel fuzzy adaptive
cubature Kalman filter (CKF) to estimate the SOC of LIB under 35 ◦C. The results revealed
that this method has a faster convergence speed compared with the traditional CKF method.
Wang et al. [36] utilized the PF method to estimate the SOC of the LiFePO4 battery under a
dynamic temperature condition of −3.5 to 45 ◦C, which showed better performance with
less than 1% error compared to EKF.

In contrast, ML methods have become highly attractive in many fields in recent years.
For example, they have been used for the prediction of material properties and characteris-
tics [37,38], estimation of battery health states [39,40], and energy storage applications [41].
For SOC estimation, the ML methods treat the battery system as a black box and build
the model by fitting the collected data. The commonly used ML methods include support
vector machine for regression (SVR) [42], long-short term memory (LSTM) network [43],
and convolutional neural network (CNN) [44], as well as the combination of CNN and
LSTM. Lu et al. [45] developed a novel deep operator network that has better performance
compared to traditional algorithms. In recent years, the temporal convolutional network
(TCN) has proved to have excellent performance for the estimation of time series data due
to its characteristics of casual convolution, dilation convolution, and residual block [46].
Liu et al. [47] utilized the TCN to estimate the SOC of the LiFePO4 battery and applied it to
the LiPO battery through transfer learning. However, the maximum estimation errors were
large at 4.14% under the constant temperature and 10% under rising ambient temperature.
In addition, the adaptive activations have proved that they are very helpful to train the
neural networks [48]. Jagtap et al. [48–50] have proposed many kinds of adaptive activation
functions for regression problems. They provide excellent learning capacity compared to
the traditional method.

Despite the above advancements, there are two aspects in the research of SOC esti-
mation that need to be further improved: (1) The generalizability of the algorithm to
different types of batteries. This means that improved methods can have a broader
range of applications. Many studies only utilize one type of battery to validate their
algorithms [26,27,29,30,51], which is not sufficient to prove their generalizability; (2) The
adaptability of the algorithm to extreme temperatures. It will be helpful to accelerate the
applications of LIB in special situations or extreme environments with high safety and
reliability, such as ultra-low temperature cold storage, cold area, and high-temperature
workshop. In fact, few studies have validated the estimation performance of the algorithm
with the battery working at extreme temperatures, as the testing temperatures in most
studies are distributed from −10 to 50 ◦C [26,27,29,30].
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In order to further improve the accuracy and generalizability of estimation algorithms
to different types of batteries and extreme temperatures, in this paper, the temporal convo-
lutional network (TCN) is utilized to estimate the SOC of LIBs. Its hyperparameters are
optimized by the Taguchi method, and the Coulomb counting method is used to produce
the input parameter that is highly related to the SOC for the TCN. To sufficiently prove the
generalizability of the proposed method, five types of commonly used batteries are em-
ployed, which have three kinds of cathode materials (i.e., LiFePO4, Li(Ni0.5Co0.2Mn0.3)O2,
and LiCoO2), and they are tested under a constant ambient temperature of 25 ◦C and
two extreme temperatures (−20 and 60 ◦C), as well as four real driving cycles, including
the dynamic stress test (DST), the federal urban driving schedule (FUDS), the urban dy-
namometer driving schedule (UDDS), and a supplemental federal test procedure driving
schedule called US06.

2. Experimental and Methodology

2.1. Experimental Procedure and Dataset

Five types of batteries made from three kinds of cathode materials were utilized to
better prove the generalizability of the proposed method in this paper. The detailed battery
information is shown in Table 1. The recommended operating temperatures for the five
types of batteries were distributed from −20 to 60 ◦C. To verify the performance of the
proposed method under extreme temperatures and its generalizability to different working
temperatures, all batteries were tested separately at −20, 25 and 60 ◦C. To evaluate the
performance of the proposed method in practical applications and its generalizability to
different conditions, tests with four real driving cycles (i.e., DST, FUDS, UDDS, and US06)
were developed. Before performing these tests, peak power tests and OCV tests were
performed under different temperatures, with the test strategy shown in Figure 1. The
parameters used in peak power test are defined as follows [52]:

Pr = I1 × V2 (1)

I2 = 80% × Pr

V1
, (2)

Vlimit = max(V1, V2), (3)

Ihigh = min(I1, I2), (4)

Ibase =

(
12 × Qn − Ihigh

)
35

, (5)

where Pr is the rated peak power, I1 represents the recommended maximum discharge
current, V2 represents the cut-off voltage, I2 represents the calculated maximum discharge
current, V1 is the 2/3 open circuit voltage at 80% depth of discharge, Vlimit is the cut-off
voltage of the peak power test, Ihigh is the maximum current in the peak power test, Qn is
the rated capacity, and Ibase is the minimum current in the peak power test.

The detailed information of peak power tests for five types of batteries under different
temperatures is shown in Tables S1–S3, and the results are depicted in Figure 2. The peak
power declined from 20% to 80% when the battery worked under extreme temperatures
(−20 or 60 ◦C) compared with 25 ◦C. The current, voltage and temperature were collected
every second through the sensors. In summary, the total number of tests reached 90 groups,
including 15 groups of OCV tests, 15 groups of peak power tests, and 60 groups of real
driving cycle tests. The partial test data were depicted in Figure 3. Importantly, while the
temperature increased, the voltage became more stable.
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Table 1. Details of five types of battery information.

Battery
Types

Electrode
Material

Nominal
Capacity

(Ah)

Cut-off
Voltage (V)

Charging
Voltage (V)

Recommended
Operating
Tempera-

tures

LR1865EH LiFePO4/
graphite 1.7 2.0 3.6 0~45 ◦C

(charge);
−20~60 ◦C
(discharge)

LR1865SK LiFePO4/
graphite 2.6 2.75 4.2

LR1865SZ LiFePO4/
graphite 2.5 3.0 4.2

LR2170SA
Li(Ni0.5Co0.2

Mn0.3)O2/
graphite

4.0 2.75 4.2

ICR18650 LiCoO2/
graphite 2.55 2.5 4.2

 

Figure 1. Schematic diagram of the peak power test.
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Figure 2. Peak power of different types of batteries (LR1865SZ, LR1865EH, LR1865SK, ICR18650, and
LR2170SA) under various temperatures (−20, 25 and 60 ◦C).

 

Figure 3. Voltage and current measurement under (a,b) DST, (c,d) FUDS, (e,f) UDDS, and (g,h) US06
experiments for the battery LR2170SA at different temperatures: −20, 25, and 60 ◦C.

2.2. Machine Learning

In this paper, the TCN was utilized to estimate the SOC of batteries. The architectural
elements in a TCN were shown in Figure 4. Causal convolution makes the method suitable
for sequence modeling, which the traditional CNN cannot deal with. Dilated convolution
confers the TCN a larger receptive field size with fewer network layers compared to the
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traditional CNN; thus, more input data can be considered for every step of SOC estimation.
In addition, the utilization of residual blocks can address the vanishing gradient problem
of the deep neural network. MAE and RMSE were used to evaluate the performance of the
estimation algorithm, which are calculated as:

MAE =
1
n ∑n

i=1

∣∣∣∣yi − ˆ
yi

∣∣∣∣ (6)

RMSE =

√√√√ 1
n

n

∑
i=1

(
yi − ˆ

yi

)2
, (7)

where n denotes the total time steps of the real driving cycles, and
ˆ

yi and yi are the estimated
SOC value and the experimental SOC value, respectively, for the i-th time step.

 
Figure 4. Architectural elements in a TCN: (a) causal convolution; (b) dilation convolution; (c) residual
block.
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2.3. Feature Selection Used in the TCN Method

Feature selection is critical to the performance of ML methods. Traditional methods
usually utilize the current, voltage and temperature as the input data [26]. However, the
estimation results fluctuate wildly and need to be further processed by other algorithms.
The reason is that there is a poor correlation between the input data and SOC. In this section,
the correlation between three parameters and SOC was evaluated based on the ICR18650
battery that operates at the FUDS driving cycle under 25 ◦C. In addition, to improve the
estimation performance, a new parameter called observed SOC was introduced based on
the Coulomb counting method. First, the initial state function was simplified to reduce the
calculation amount [26]. Then, a degradation factor f was introduced to reduce the errors
caused by temperature. Since the DST data will be used to train the ML method in this
paper, they could also be utilized to calculate the degradation factor f. Finally, the observed
SOC was defined as:

ˆSOCk = ˆSOCk−1 − Ik−1 ∗ Δt
Qn

∗ f , (8)

where Ik−1 denotes the current at the k−1 time step, Δt is the change of time, and Qn
represents the nominal capacity of the battery.

The results are shown in Figure 5. The R2 was defined through Equation (9). Among
the four parameters, the observed SOC had the best correlation with the SOC. The results
also prove that the temperature and voltage are highly correlated to the SOC value.

R2 = 1 − ∑n
i=1(yi − xi)

2

∑n
i=1(yi − xi)

(9)

where yi represents the SOC, xi represents the input parameter, and xi is the average value
of xi.

 
Figure 5. Correlations between four input parameters and SOC based on the ICR18650 battery
when working in FUDS under 25 ◦C: (a) temperature, (b) voltage, (c) current, and (d) observed SOC
calculated by the optimized state function.

The eight strategies of input features were evaluated by the TCN model based on
the ICR18650 battery when working in the FUDS driving cycle under 25 ◦C (see Figure 6).
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Figure 6a presents the traditional strategy, utilized current, voltage and temperature as
input features, and it shows a poor estimation performance. In addition, the other strategies
that use the current as an input feature also exhibit poor estimation accuracy, as shown in
Figure 6c,d,g. The reason is that the current has a poor correlation to the SOC and affected
the convergence of the model. In Figure 6f,h, the strategies with a single feature perform
the best performance. Finally, the observed SOC was selected as the input feature according
to the results in Figure 6.

 
Figure 6. The SOC estimation results of the TCN model with different input parameters based on the
ICR18650 battery (works at the FUDS condition under 25 ◦C): (a) current, voltage, and temperature;
(b) voltage and temperature; (c) current and temperature; (d) current and voltage; (e) temperature;
(f) voltage; (g) current; (h) observed SOC calculated by the optimized state function.

2.4. Network Structure Optimization Using the Taguchi Method

In this section, we first propose three TCNs with different architectures (see Figure 7).
To find out the best architecture, the three TCNs with the relevant optimal hyperparameters
were compared to each other. The DST data of ICR18650 under 25 ◦C were utilized to
train each TCN, and the estimation performances for FUDS, UDDS and US06 data were
used as the evaluation basis. Traditional methods usually employ the trial-and-error
method to obtain the optimal topology; however, this approach is time-consuming and
inefficient. In this paper, three design factors were settled, each of them with five levels
(see Tables S4 and S5). This means that 375 groups of tests would need to be performed
for all TCNs with the trial-and-error method. In contrast, the Taguchi method has proved
to have a lower cost and higher efficiency for parameter optimization [53,54]; therefore,
it was introduced and the number of total tests declined to 75 groups. The orthogonal
array L25(53) and experimental results for three TCNs can be seen in Tables S6–S8. The
best estimation results of the TCNs are concluded in Table 2. The TCN-v1 model had the
minimum MAE, and the TCN-v2 model had the minimum RMSE. Since the RMSE is more
sensitive to outliers, it is considered more important than the MAE. Therefore, the adopted
TCN-v2 model featured 128 filters, the kernel size of 10, and the list of the dilation of {2, 2,
2, 2, 2, 2} according to the results in Tables S6–S8.
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Table 2. The SOC estimation performance for ICR18650 under 25 ◦C based on the three kinds of TCN
(TCN-v1, TCN-v2, TCN-v3) with the relevant optimal hyperparameters.

Neural
Networks

FUDS UDDS US06

MAE (%) RMSE (%) MAE (%) RMSE (%) MAE (%) RMSE (%)

TCN-v1 0.059 0.102 0.089 0.122 0.116 0.159
TCN-v2 0.062 0.091 0.099 0.119 0.128 0.157
TCN-v3 0.062 0.102 0.099 0.128 0.129 0.167

 

Figure 7. Architectures of TCN for SOC estimation: (a) TCN-v1; (b) TCN-v2; (c) TCN-v3.

2.5. Adaptive SOC Estimation Method

In this section, the adaptive TCN-v2 (ATCN-v2) model is proposed to estimate the
battery SOC. As shown in Figure 8, the ATCN-v2 model can be divided into two parts:
offline training and online estimation. Firstly, the DST data are utilized to train the opti-
mized state function to obtain the degradation factor f. Secondly, the experimental SOC
and the observed SOC calculated by the optimized state function are utilized to train the
TCN model. Thirdly, the structure of the TCN is optimized based on the Taguchi method,
and the TCN-v2 model is established. For the part of the online estimation, the FUDS,
UDDS, and US06 data are utilized to test the model. Since the TCN-v2 has the architectural
element of causal convolution, the estimation results of the first 108 s will not be accurate
due to the padding operation (see Figure S1). In contrast, the optimized state function has
a better performance at the initial stage of real driving cycles. Therefore, the observed SOC
calculated by the optimized state function is utilized to correct the estimation results of
the initial 108 s based on the TCN-v2 model. Finally, the estimated SOC is output by the
ATCN-v2 model. In this study, the proposed model is developed based on the PyCharm
software and TensorFlow package. The detailed training information is given in Table S9.
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Figure 8. Graphical description of the proposed ATCN-v2 model.

3. Results and Discussion

3.1. SOC Estimation Results Based on the ATCN-v2 Model

In order to verify the performance of the ATCN-v2 model, 45 samples were utilized
under different conditions, including three temperatures, three real driving cycles, and
five types of batteries. The SOC estimation results of the ATCN-v2 model are shown in
Figures S2–S6. They have almost no error as compared with the experimental values, which
demonstrates an excellent estimation performance of the proposed method for all samples.
As depicted in Figure 9, the estimation errors for all samples exhibit periodical changes.
They are within ±0.2% for the temperature of −20 ◦C, ±0.6% for the temperature of 25 ◦C,
and ±0.3% for the temperature of 60 ◦C. The results further indicate that the proposed
method has a good estimation performance under extreme temperatures (−20 and 60 ◦C).
Finally, the MAEs and RMSEs of the ATCN-v2 model for different types of batteries under
different real driving cycles and temperatures were calculated (see Table 3). The MAEs
were distributed from 0.021% to 0.185%, and the RMSEs were distributed from 0.026% to
0.277%, indicating that the proposed method has good generalizability.
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Figure 9. The estimation errors of ATCN-v2 model for different types of batteries under different
conditions and temperatures: (a–c) LR1865SZ; (d–f) LR1865EH; (g–i) LR1865SK; (j–l) ICR18650;
(m–o) LR2170SA.
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Table 3. SOC estimation performance of the ATCN-v2 model for different types of batteries under
different real driving cycles and temperatures.

Temperature Cases
FUDS UDDS US06

MAE (%) RMSE (%) MAE (%) RMSE (%) MAE (%) RMSE (%)

−20 ◦C

LR1865EH 0.060 0.080 0.028 0.038 0.055 0.066
LR1865SK 0.027 0.034 0.026 0.033 0.034 0.041
LR1865SZ 0.083 0.097 0.021 0.026 0.041 0.048
LR2170SA 0.049 0.056 0.047 0.058 0.049 0.060
ICR18650 0.022 0.029 0.050 0.056 0.047 0.055

25 ◦C

LR1865EH 0.185 0.226 0.156 0.182 0.237 0.277
LR1865SK 0.099 0.123 0.094 0.109 0.086 0.107
LR1865SZ 0.088 0.113 0.048 0.064 0.107 0.132
LR2170SA 0.094 0.128 0.127 0.154 0.145 0.177
ICR18650 0.061 0.090 0.099 0.118 0.127 0.156

60 ◦C

LR1865EH 0.092 0.105 0.097 0.114 0.083 0.103
LR1865SK 0.114 0.132 0.028 0.034 0.049 0.058
LR1865SZ 0.036 0.051 0.031 0.040 0.052 0.064
LR2170SA 0.034 0.047 0.029 0.037 0.051 0.063
ICR18650 0.106 0.123 0.024 0.029 0.059 0.073

3.2. Performance Evaluation

In this section, the widely used algorithms, including the LSTM, gated recurrent unit
(GRU) neural network, CNN, and CNN-LSTM, were selected for comparison with the
proposed ATCN-v2 model. To make the results credible, all algorithms in this paper were
settled with the same random seed to avoid randomness. In addition, the algorithms used
for comparison were developed with the same structure and hyperparameters as the pro-
posed ATCN-v2 model. The criteria of algorithm evaluation involved the generalizability
to temperature, conditions, battery type, and estimation accuracy. First, the MAEs and
RMSEs of the LSTM, GRU, CNN, and CNN-LSTM for all 45 samples were calculated and
summarized in Tables S9–S12. It can be seen that, for the LSTM, the MAEs were distributed
from 0.077% to 9.020%, and the RMSEs were distributed from 0.101% to 10.483%. For the
GRU, the MAEs were distributed from 0.087% to 9.196%, and the RMSEs were distributed
from 0.104% to 10.599%. For the CNN, the MAEs were distributed from 0.037% to 0.391%,
and the RMSEs were distributed from 0.211% to 0.829%. For the CNN-LSTM, the MAEs
were distributed from 0.062% to 9.006%, and the RMSEs were distributed from 0.068% to
10.475%. When compared with these methods, the proposed method has the best accuracy.
Besides, the average MAEs and average RMSEs of all algorithms were also depicted in
Figure 10 for visual comparison. The LSTM, GRU and CNN-LSTM showed poor adap-
tation to battery type and temperature. For example, they produced abnormally large
errors for the battery LR1865EH working under an extreme temperature of −20 ◦C, for the
battery LR2170SA working under 25 ◦C, and for the battery LR1865SZ working under an
extreme temperature of 60 ◦C. Among them, the proposed method obtained the highest
accuracy and the best adaptation to battery type and temperature. Finally, the average
MAEs and average RMSEs of five algorithms for the total 45 samples were calculated
as shown in Table 4. The performances of LSTM, GRU and CNN-LSTM are very similar.
When compared with these methods, the CNN exhibited better performance. Among them,
the optimal algorithm was still the ATCN-v2, and its average MAE showed a decline of at
least 49.66%, and the average RMSE exhibited a decline of at least 79.95%.
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Figure 10. SOC estimation errors of the different algorithms for five types of batteries (LR1865EH,
LR1865SK, LR1865SZ, LR2170SA, and ICR18650): (a,b) average MAE and average RMSE under
−20 ◦C; (c,d) average MAE and average RMSE under 25 ◦C; (e,f) average MAE and average RMSE
under 60 ◦C.

Table 4. SOC estimation performance of the different algorithms.

Algorithm Average MAE (%) Average RMSE (%)

ATCN-v2 0.073 0.089
LSTM 1.381 1.576
GRU 1.335 1.543
CNN 0.145 0.444

CNN-LSTM 1.320 1.532

In order to further quantify the generalizability of algorithms, the standard deviations
(SDs) of estimation errors (i.e., MAEs and RMSEs) were calculated, that is, to evaluate if the
algorithms performed stably when only one parameter (i.e., temperature, driving cycle, or
battery type) was changed. The standard deviation was defined as:

σ =

√
1
n ∑n

i=1

(
Xi − X

)2
(10)

where Xi represents the SOC estimation error, and Xi represents the average error.

61



Batteries 2022, 8, 145

The final results are summarized in Table 5. The adaptation was evaluated for three
kinds of parameters, namely, temperature, driving cycle, and battery type. Among them,
five algorithms proved to be more adaptable to the different driving cycles, and their
performances for different battery types or different temperatures were highly unstable.
The traditional methods including LSTM, GRU and CNN-LSTM provided the worst gen-
eralizability compared with the proposed method and CNN. The SDs of all the MAEs
and RMSEs were calculated as the comprehensive index to evaluate the generalizability of
algorithms. The SD of MAEs can be utilized to measure the change of entire errors, and
the SD of RMSEs can be utilized to measure the change of the discrete degree of errors.
Hence, the smaller the SD of MAEs and SD of RMSEs, the better the generalizability of the
algorithm. The SDs of MAEs and RMSEs were 0.046 and 0.055 for the ATCN-v2, 1.862 and
2.160 for LSTM, 1.897 and 2.185 for GRU, 0.085 and 0.152 for CNN, and 1.857 and 2.159
for CNN-LSTM, respectively. Thus, the ATCN-v2 model was indicated to have the best
generalizability as compared to other methods.

Table 5. SOC estimation performance of the ATCN-v2 model for different types of batteries under
different real driving cycles and temperatures.

Parameter Algorithm The SD of MAE (%) The SD of RMSE (%)

Temperature

ATCN-v2 0.037 0.044
LSTM 1.245 1.430
GRU 1.237 1.427
CNN 0.064 0.102

CNN-LSTM 1.215 1.413

Driving cycle

ATCN-v2 0.018 0.019
LSTM 0.548 0.630
GRU 0.543 0.627
CNN 0.022 0.048

CNN-LSTM 0.535 0.622

Battery type

ATCN-v2 0.027 0.031
LSTM 1.433 1.640
GRU 1.407 1.620
CNN 0.068 0.131

The effects of temperature on the performance of algorithms were also analyzed. In
Table 6, the stability of algorithms under different temperatures without considering the
battery type and driving cycle was evaluated by the standard deviation of estimation
errors (i.e., MAE and RMSE). The traditional methods, including LSTM, GRU and CNN-
LSTM, obtained the largest standard deviation of MAE and RMSE for the battery working
at an extremely low temperature (−20 ◦C), and also had a larger standard deviation
of MAE and RMSE for the battery working at an extremely high temperature (60 ◦C),
which declined by more than 50% compared to that when working at 25 ◦C. In other
words, these methods result in large errors when used for estimating the SOC of batteries
operating at extreme temperatures (−20 and 60 ◦C). Among the five algorithms, the ATCN-
v2 model had the minimum standard deviation of MAE and RMSE at three temperatures
(−20, 25, 60 ◦C). The results also indicate that the proposed method is suitable for SOC
estimation at extreme temperatures (−20 and 60 ◦C). We also noticed that the ATCN-v2
model had a faster convergence velocity compared to the LSTM, GRU and CNN-LSTM.
In the same computing environment, the ATCN-v2 method needed about 300 epochs
to achieve convergence; meanwhile, the LSTM, GRU and CNN-LSTM required about
500 epochs.
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Table 6. The stability of algorithms under different temperatures.

Algorithms

−20 ◦C 25 ◦C 60 ◦C

The SD of
MAE (%)

The SD of
RMSE (%)

The SD of
MAE (%)

The SD of
RMSE (%)

The SD of
MAE (%)

The SD of
RMSE (%)

ATCN-v2 0.092 0.105 0.097 0.114 0.083 0.103
LSTM 0.114 0.132 0.028 0.034 0.049 0.058
GRU 0.036 0.051 0.031 0.040 0.052 0.064
CNN 0.034 0.047 0.029 0.037 0.051 0.063
CNN-
LSTM 0.106 0.123 0.024 0.029 0.059 0.073

4. Conclusions

This work proposed a new algorithm based on the TCN and Coulomb counting
method for estimating the SOC of five types of LIBs. First, different parameters, including
current, voltage, temperature, and observed SOC, were evaluated for suitability as the
input data of the model. Eight strategies for input data were designed, and the strategies
with a single and highly SOC-related parameter showed the best performance. Therefore,
the observed SOC calculated by optimized state function was selected as the input data.
Then, three TCNs with different structures were compared to find the best scheme, whose
structure was optimized by the Taguchi method. Considering that there are initial errors
caused by the padding operation, the estimation results of the first 108 time steps were
corrected. Finally, the ATCN-v2 model was established.

In order to better verify the accuracy and generalizability of the proposed algorithm,
five types of widely used batteries composed of three kinds of cathode materials (i.e.,
LiFePO4, Li(Ni0.5Co0.2Mn0.3)O2, and LiCoO2) were tested under four real driving cycles
and three temperatures. The real driving cycles included DST, FUDS, UDDS, and US06.
The test temperatures include an extremely low temperature (−20 ◦C), an extremely high
temperature (60 ◦C) for the mentioned batteries above, and a constant temperature of 25 ◦C.
Finally, 60 groups of real driving cycle tests were developed. The DST data were utilized for
model training, and FUDS data, UDDS data and US06 data were utilized for model testing.
The SOC estimation errors of the ATCN-v2 model were within ±0.6%, and the MAEs
and RMSEs were less than 0.185% and 0.277%, respectively. Subsequently, the proposed
method was compared with four popular algorithms, including LSTM, GRU, CNN and
CNN-LSTM. The algorithms adopted the same structure, input data and hyperparameters.
The average MAE of the ATCN-v2 model declined by at least 49.66%, and the average
RMSE declined by at least 79.95% when compared to other methods. The results indicate
that the proposed method has the highest estimation accuracy.

In addition, the SDs of MAEs and RMSEs were calculated to quantify the general-
izability of the algorithms. Three experimental variables could be considered to test the
generalization ability, which comprise battery type, real driving cycle and temperature.
First, the generalization ability to an individual variable of the algorithms was evaluated.
The results show that it is hard to adapt to different types of batteries and different tem-
peratures for the LSTM, GRU and LSTM-CNN. The proposed model exhibited the best
generalization ability to any of these variables with the minimum SDs of MAEs and RMSEs.
The effects of different temperatures on the algorithm performance were also studied in
this way. The results suggest that extremely low temperature (−20 ◦C) and extremely high
temperature (60 ◦C) for the batteries in this paper have a significant impact on the perfor-
mance of LSTM, GRU and CNN-LSTM, while the ATCN-v2 method is highly adaptable
to these two extreme temperatures. Finally, the comprehensive generalization ability to
three experimental variables was obtained by computing the SDs of all of the MAEs and
RMSEs. Compared to other methods, the SDs of MAEs and RMSEs of the ATCN-v2 method
dropped by at least 45.88% and 63.82%, respectively. In summary, the proposed ATCN-v2
method demonstrated excellent SOC estimation accuracy and good generalization ability,
and had better performance and stability of battery operation for all battery types, and
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also real driving cycles under extreme temperatures, as compared with LSTM, GRU, CNN
and CNN-LSTM. In further research, we will consider applying the ATCN-v2 to a larger
dataset. The proposed method can be helpful to accelerate the research and application
process in battery energy storage and green transport.
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Abstract: State-of-Health (SOH) prediction of lithium-ion batteries is crucial in battery management
systems. In order to guarantee the safe operation of lithium-ion batteries, a hybrid model based on
convolutional neural network (CNN)-bidirectional long short-term memory (BiLSTM) and attention
mechanism (AM) is developed to predict the SOH of lithium-ion batteries. By analyzing the charging
and discharging process of batteries, the indirect health indicator (HI), which is highly correlated
with capacity, is extracted in this paper. HI is taken as the input of CNN, and the convolution and
pooling operations of CNN layers are used to extract the features of battery time series data. On this
basis, a BiLSTM depth model is built in this paper to collect the data coming from CNN forward
and reverse dependencies and further emphasize the correlation between the serial data by AM to
obtain an accurate SOH estimate. Experimental results based on NASA PCoE lithium-ion battery
data demonstrate that the proposed hybrid model outperforms other single models, with the root
mean square error (RMSE) of SOH prediction results all less than 0.01, and can accurately predict the
SOH of lithium-ion batteries.

Keywords: lithium-ion battery; state of health; convolutional neural network; bidirectional long- and
short-term memory; attention mechanism

1. Introduction

The lithium-ion battery industry is an essential precursor to the world’s advanced
technology development [1]. With the characteristics of higher energy density, higher
power density, higher conversion rate, longer cycle time, and less pollution, lithium-ion
batteries are extensively applied in electric vehicles and various energy storage systems [2].
Lithium-ion batteries are now being applied more widely in mobile communications,
transportation, electrical energy storage, new energy resources in storage, and aerospace [3].
Considering the widespread application of lithium-ion batteries, the secure operation of
lithium-ion batteries must be given paramount importance, and the state of health (SOH)
is the most critical parameter for evaluating the current state and performance of lithium-
ion batteries [4]. Consequently, optimizing the design and management of lithium-ion
batteries and accurately predicting the SOH of lithium-ion batteries is essential to assessing
degradation and aging mechanisms.

The methods for predicting lithium-ion batteries can be classified into three groups:
model-based methods [5–10], data-driven methods [11–13], and hybrid methods [14,15].
Model-based methods require extensive knowledge in the field of physical chemistry,
understanding the reaction mechanisms internal to the battery, accurately describing the
mathematical equations for the internal reactions, and building efficient simulation models,
which can be difficult in practical applications. Data-driven approaches have been demon-
strated to be one of the most significant methods for modelling battery degradation and
assessing battery SOH due to their flexibility and the lack of need to build models of physi-
cal mechanisms such as artificial neural networks [16–18], relevance vector machine [19,20],
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Gaussian process regression [21,22], etc. Deep learning has been gaining more and more
attention when it comes to SOH prediction for lithium-ion batteries [23–25]. For instance,
Chaoui et al. proposed a simple Recurrent Neural Network (RNN)-based approach to
estimate the SOH of lithium-ion batteries using a dynamically driven RNN [26]. Chen
et al. used constant current discharge time, the charge/discharge cycle number, and charge
capacity to build a long- and short-term memory network (LSTM) model to enable SOH
prediction for lithium-ion batteries [27]. Hybrid methods are combinations of two or several
models that use the same or different types of methods for SOH prediction. Bezha et al.
combined Convolutional Neural Network (CNN) and LSTM for battery SOH prediction,
taking the current–voltage profile as input and SOH as output, and it is demonstrated that
the proposed hybrid method has the advantage of providing accurate estimates in terms of
SOH [28]. Qu et al. developed an LSTM model and combined LSTM with particle swarm
optimization (PSO) and Attention Mechanism (AM) to achieve monitoring and prediction
of SOH for lithium-ion batteries. The results demonstrate a high level of accuracy of the
estimates [29].

In summary, the single data-driven model cannot take into account feature extraction
from lithium-ion batteries and accurate SOH prediction. Therefore, highly accurate models
and methods are needed to achieve the SOH prediction of lithium-ion batteries. It is
considered that the correlation between input data can be enhanced by AM and has
an application to many forecasting tasks, for instance, stock forecasting and electricity
forecasting [30–34]. The CNN-BiLSTM-AM model is presented in this paper to predict
the SOH of lithium-ion batteries, and integrates the merits of CNN and BiLSTM. In the
proposed CNN-BiLSTM-AM model, the convolution and pooling operations of the CNN
layer are utilized to extract the features of the battery time series data, while the BiLSTM
depth model is used to collect the forward and reverse dependencies of the CNN incoming
data, which further emphasizes the correlation of the time series data and capturing long-
term dependencies. In addition, the time series data associated with SOH are weighted by
AM resulting in an accurate SOH prediction for lithium-ion batteries.

The remainder of this paper is organized as follows. The used basic theoretical
knowledge is described in Section 2. Dataset description and data preprocessing for
lithium-ion batteries SOH prediction are presented in Section 3. In Section 4, the proposed
CNN-BiLSTM-AM model is described, while Section 5 presents the experimental settings.
Based on a NASA dataset, the CNN-BiLSTM-AM model is used to predict the SOH of
lithium-ion batteries in Section 6. Lastly, we summarize and discuss briefly possible future
directions for this paper in Section 7.

2. Preliminaries

This section will briefly introduce the basic theoretical knowledge of CNN, BiLSTM,
and AM used in the CNN-BiLSTM-AM model presented in this paper.

2.1. CNN

CNN has an exceptional ability to capture features of spatial data, and it has played
an instrumental role in the recent development of deep learning. It comprises three main
types of layers: the convolutional layer, the pooling layer, and the fully connected layer. Its
output is as follows:

yt = tanh(WtXt + bt) (1)

where Xt and yt are the input and output, respectively; tanh is the activation function; Wt
and bt represent the weight and bias, respectively.

A prototypical CNN unit is shown in Figure 1. The convolutional layer extracts local
features by the size of the filter, and the features extracted by the pooling layer selection,
which reduces the sophistication of the network parameters and structure, while the fully
connected layer is a neural layer with an activation function that maps the relationship
between input and output in a non-linear way. Since the convolution operations use
the same set of weights, this reduces the number of parameters in CNN and solves the

68



Batteries 2022, 8, 155

problem of overfitting. As a consequence, CNN is extensively used to predict the time
series. Nevertheless, the increased sensitivity to sparse data is a drawback of CNN, and
CNN is likely to be restricted to cases where good data are easily available. Thus, this
paper collects the forward and backward dependencies of the data coming from CNN by
building a BiLSTM depth model.

Convolutional 
layer Pooling layer

Fully 
connected 

layer
Input layer Output layer

10×10 3×3 2×2

Figure 1. Prototypical CNN unit.

2.2. BiLSTM

Since lithium-ion battery data are collected during the charging and discharging cycles,
they belong to the time series. RNN is applicable to processing time series, which help
RNN process information in an orderly manner. To address the problem of exploding or
disappearing gradients in RNN, the network structure of LSTM is proposed, substituting
the state unit of classical RNN with the recurrent unit structure of LSTM.

A particular type of RNN model is LSTM. Compared to RNN, LSTM can better handle
long-term continuous data. LSTM has three gate controls, i.e., the forget gate, the input
gate, and the output gate, respectively. Figure 2 shows a prototype LSTM unit.

 

Figure 2. Recurrent unit structure of LSTM network.

The main role of the forgetting gate is to store information about when unit values
ought to be forgotten, given by the following equation:

ft = σ
(

Wf · [yt, ht−1] + b f

)
(2)

where yt represents the input value; ht−1 represents the output value; Wf , b f represents the
weight and bias, respectively, and σ is the activation function.

The input gate stores the values into a memory unit, which operates as follows:

it = σ(Wi · [yt, ht−1] + bi) (3)

C̃t = tanh(Wc · [yt, ht−1] + bc) (4)
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where Wi, Wc are weights; tanh is the activation function, and C̃i is a one-dimensional
matrix with values ranging from 0 to 1.

Combining the output of the forget and input gates, the information as Ct is updated by:

Ct = ft · Ct−1 + it · C̃t (5)

The output gate controls the reading of the value of the memory unit.

ot = σ(Wo · [yt, ht−1] + bo) (6)

where Wo, bo are the weight and bias of the output gate, respectively, and ot is the output of
the LSTM. The hidden state at time step t is updated in the following manner:

ht = ot · tanh(Ct) (7)

A BiLSTM consisting of a two-layer LSTM is shown in Figure 3, where the predicted
system state is referred to a sequence of outputs from the bidirectional incoming LSTM layer.
The predicted results are merged and assigned to the next LSTM layer; after the second
LSTM layer, the ultimate prediction is determined by forward and backward propagation
together. The BiLSTM depth model can better collect the bidirectional dependency of data
from CNN than the LSTM model. Therefore, the model proposed in this paper is chosen as
BiLSTM to enhance the accuracy of SOH prediction for lithium-ion batteries.

 

Figure 3. Recurrent unit structure of BiLSTM networks.

2.3. AM

Recently, scholars have applied AM to neural networks based on the concerns of the
human brain AM and achieved excellent prediction results. In neural networks, each feature
has a different impact on the outcome, but usually only a group of features determines
the output. The main mechanism of AM is to follow the learning based on the attention
level of the individual features in the series, and to integrate the features according to this
attention level. To tackle the problem of attention distraction, this paper introduces AM,
which sets weights for each feature according to its impact on the result. Figure 4 is a
schematic diagram of the structure of the AM.
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z

...
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Figure 4. Structure diagram of AM.

The expressions for the calculation of AM are shown in (8)–(10).

ut = tanh(Wwht + bw) (8)

at = so f tmax
(

uT
t , uw

)
(9)

z = ∑ atht (10)

where Ww is first randomly initialized and then determined through the network train-
ing process; uw is weight; bw represents bias; at represents the weight of each attribute;
z represents the prediction result after weighted summation.

3. Dataset Description and Data Preprocessing

3.1. Dataset Description

To train and test the proposed model, B0005, B0006, and B0018 of the NASA PCoE
battery dataset are selected in this paper [35]. Charge, discharge, and impedance operation
of three lithium-ion batteries is carried out at room temperature (24 ◦C). To start with, there
is a charging process in which each battery at a constant current of 1.5 A until it reaches a
voltage of 4.2 V. This is followed by charging in a constant voltage mode until the charging
current drops to 20 mA. Secondly, there is a discharging process in which each battery
is discharged under a constant current of 2 A until each battery’s voltage drops to 2.7 V,
2.5 V, and 2.5 V, respectively. Finally, there is an impedance process using electrochemical
impedance spectra swept from 0.1 Hz to 5 kHz. The information of batteries B0005, B0006,
and B0018 are displayed in Table 1.

Table 1. NASA dataset lithium-ion battery information.

Battery
Number of

Charges
Number of
Discharges

Number of
Impedances

Actual Life
Expectancy

B0005 170 168 278 124
B0006 170 168 278 108
B0018 134 132 53 96

As can be observed in Figure 5, the three batteries gradually decrease in capacity
through time and are accompanied by rebound in capacity during the degradation process.
All three batteries are subjected to charge and discharge cycles, and once the batteries have
dropped 30% of their nominal capacity, the end-of-life (EOL) point is reached, that is, from
2 Ah to 1.4 Ah.
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Figure 5. Capacity degradation curve of lithium-ion batteries.

3.2. Data Preprocessing

The most intuitive manifestation of battery degradation is the decay in capacity, which
is predominantly related to the SOH of the battery. SOH is defined by capacity and given
by the following equation [36]:

SOH =
Cactual
Cnom

× 100% (11)

where Cactual and Cnom represent the actual and nominal capacities, respectively.
Lithium-ion battery time series data for predicting SOH and the data preprocessing

include data cleaning and normalization.
For better prediction accuracy and performance of deep learning models, experimental

data need to be handled. To begin with, the data are cleaned by removing outliers and
missing values, which are evaluated by moving averages or intermediate values, which
cause the battery data to demonstrate periodic degradation characteristics. The battery
specifications and data collection conditions have been summarized in Table 1. Data pre-
processing assures that there are no erroneous values that could confound the model, as
well as also being periodically averaged to avoid short-term fluctuations.

Data normalization is commonly applied in depth modelling algorithms where it is
appropriate to improve the convergence of the model and the accuracy of the prediction.
Normalization will be performed by the minimum–maximum method, where the data are
scaled between 0 and 1. This is described by the following equation.

xn =
x − xmin

xmax − xmin
(12)

where xn represents the processed data; x represents the original data; xmax, xmin represent
the maximum and minimum values of the original data, respectively.

4. Methods

4.1. CNN-BiLSTM-AM Model

In this paper, the CNN-BiLSTM-AM model is proposed, which combines the charac-
teristics and merits of CNN, BiLSTM, and AM to predict the SOH of lithium-ion batteries.

The model structure of CNN-BiLSTM-AM is presented in Figure 6, which primarily
composed of the input layer, CNN layer, BiLSTM layer, AM layer, and output layer.
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Figure 6. Structure diagram of CNN-BiLSTM-AM.

The model structure of CNN-BiLSTM-AM is described in detail as follows.

(1) Input layer: Firstly, HIs that can characterize the capacity during the charging and
discharging process of the lithium-ion battery dataset are extracted, and those that
are highly correlated with the capacity are selected as indirect HI; the indirect HI
is preprocessed with the data, the processed dataset is divided, and the HI of the
training set is used as the input of CNN.

(2) CNN layer: Including innovative concepts such as shared weight and local perceptual
fields means CNN has unique benefits in processing battery datasets. In this paper,
we use the convolution and pooling operations from the battery time series data to
extract features.

(3) BiLSTM layer: The BiLSTM depth model is built, which is made up of forwarding
and inverse LSTM. In comparison with the LSTM, the BiLSTM can extract time series
in both directions and better collect the forward and reverse dependencies of the data
coming from the CNN.

(4) AM layer: AM has been introduced into the hybrid model with the objective of
enhancing the accuracy of the prediction model. AM assigns that each feature has
a weight, further emphasizing the correlation between the data, which raises the
accuracy of the prediction model.

(5) Output layer: The weighted summed prediction results from the AM layer are output
and then the testing set is fed into the trained model for prediction to generate SOH
prediction results.

4.2. Prediction Procedure Based on CNN-BiLSTM-AM Model

Flow chart of SOH prediction based on CNN-BiLSTM-AM model is in Figure 7, from
which one can see that the prediction procedure of SOH is comprised of the following
five steps.
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Figure 7. Flow chart of SOH prediction based on CNN-BiLSTM-AM model.

• Step 1. Feature Extraction: Initially, indirect HIs that reflect battery capacity degen-
eration are extracted by considering the charge and discharge voltage, current, and
temperature curves of lithium-ion batteries, and those that are highly correlated with
capacity are selected as indirect HIs.

• Step 2. Data Preprocessing: The extracted HI is normalized as well as followed by
segmentation of the dataset.

• Step 3. Build the model and Train: The convolution and pooling operations of the
CNN layer are used to extract features, and the bidirectional dependencies of the data
coming from CNN are collected by the BiLSTM depth model, followed by the time
series data related to SOH weighted by AM, so as to build the CNN-BiLSTM-AM
model, and the hyperparameters of the model are determined using the grid search
method during the model training process to derive the optimal model.

• Step 4. Model Prediction: The testing set is fed into the trained model for prediction,
resulting in SOH prediction results.

• Step 5. Analysis of Results: Lastly, to further verify the validity of the proposed model,
three comparison models of CNN, BiLSTM, and CNN-BiLSTM are designed, and the
SOH prediction model is quantitatively evaluated using error evaluation metrics.

5. Experimental Settings

5.1. Experimental Equipment and Model Parameter Settings

The experimental environment utilized in this paper has been described as follows.
Hardware environment: Intel (R) Core (TM) i5-6300HQ CPU @ 2.30 GHz 2.30 GHz, 8 GB
RAM, 64-bit operating system. The model is implemented in Python 3.7 using Keras.

In this paper, three datasets are used for the SOH prediction of lithium-ion batteries.
The datasets are divided into training set, validation set, and testing set. The training
set serves to train the model, validation set to adjust the parameters, and testing set for
assessing the performance of the model. The details of the division are presented in Table 2.
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Table 2. Dataset segmentation.

Dataset Training Set Validation Set Testing Set

B0005
(70%) 50 37 (30%) 37
(80%) 74 25 (20%) 25
(90%) 99 12 (10%) 13

B0006
(70%) 43 32 (30%) 33
(80%) 65 22 (20%) 21
(90%) 86 11 (10%) 11

B0018
(70%) 38 29 (30%) 29
(80%) 58 19 (20%) 19
(90%) 77 10 (10%) 9

A number of appropriate hyperparameters need to be selected in the model to guar-
antee the accuracy of the model predictions. Model performance is frequently validated
using grid search and cross-validation to obtain optimum parameters. The K values for
cross-validation may impact how sensitive they are to changes in the training set, hence
affecting the hyperparameter results. The grid search method will be applied to determine
the hyperparameters. The parameters are set as in Table 3.

Table 3. Parameter setting.

Parameter Setting Value

Optimizer Adam
Loss function MSE

Activation function RELU
Filter size 10
Batch size 16

Epochs 1000
Dropout rate 0.200
Learning rate 0.001

Number of neurons 160

In CNN convolutional model, too few convolutional and pooling layers will contribute
to the inadequate extraction of critical local information, while too many will result in a
longer run time and extraction of too much invalid information. When the batch size is
too large, the optimization of the loss function and gradient descent is detrimental and
can cause large errors. If the batch size is too small, the time consumption of the neural
network may be greatly extended, and eventually, the dropout layer is inserted to prevent
overfitting and boost the training speed.

5.2. Performance Evaluation Indicators

Three error evaluation metrics are used in this paper, i.e., Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), which
are presented to provide a quantitative assessment of the accuracy of the proposed SOH
prediction model and defined as:

RMSE =

√√√√ 1
N

N

∑
i = 1

(yi − ŷi)
2 (13)

MAE =
1
N

N

∑
i = 1

|yi − ŷi| (14)

MAPE =
1
N

N

∑
i = 1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (15)
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where yi is the real SOH value and ŷi denotes the SOH predicted value. Specifically, for
indicators such as RMSE, MAE, and MAPE, the closer they approached zero, the more
accurate the prediction.

6. Experiment and Result Analysis of SOH Prediction

6.1. HI Extraction

We have successfully extracted the capacity degradation data of a group of three
lithium-ion batteries of the same type from the NASA PCoE public dataset. By analyzing
charge and discharge characteristics of the B0005 battery in the NASA dataset, as an
illustration, it is demonstrated in Figure 8.

(a) (b) 

 
(c) (d) 

Figure 8. B0005 charge and discharge curves at different cycles. (a) Charge voltage curve; (b) Dis-
charge voltage curve; (c) Charge temperature curve; (d) Discharge temperature curve.

In Figure 8a, the charging process is constant voltage charging, so we have analyzed the
discharging process. From Figure 8b, the voltage variation of the B0005 battery at different
cycles in the discharging process, it is clear that there is rich degradation information
in the voltage between 3.4 V and 3.8 V. In order to avoid information redundancy, the
Time Interval of an Equal Discharging Voltage Difference (TIEDVD) is chosen as the time
difference corresponding to 3.4–3.8 V, and the 150th cycle is taken as an illustration.

On this basis, we have extracted four HIs: the time at which the discharge voltage
reaches its minimum point, the maximum gradient of the voltage curve in the initial stage
of the discharge process, the discharge power, and the time it takes for the temperature
to reach the peak value during the discharge process. Table 4 presents the results of the
Pearson correlation analysis of HI and capacity of B0005, from which it can be noticed that
TIEDVD has the highest correlation with the capacity of lithium-ion battery.
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Table 4. Correlation analysis of HI and capacity of B0005.

HI Pearson

TIEDVD 0.9972
Time at which the discharge voltage reaches its minimum point 0.9928

Maximum gradient of the voltage curve in the initial stage of the discharge process 0.8050
Discharge power 0.9132

Time it takes for the temperature to reach the peak value during the discharge process 0.9886

Figure 9 presents a qualitative analysis of SOH and TIEDVD, from which one can see
that TIEDVD follows the same trend as that of SOH, and the rebound part can be followed
better. As a result, TIEDVD works as HI to predict the SOH of lithium-ion batteries.

Figure 9. Qualitative analysis of SOH and TIEDVD.

6.2. Results and Analysis of SOH Prediction

To demonstrate the effectiveness of the proposed CNN-BiLSTM-AM model, three
models, i.e., CNN model, BiLSTM model, CNN-BiLSTM model, are designed to make
a comparison with the CNN-BiLSTM-AM model for different prediction Starting Points
(SPs) in this subsection, and the CNN model, BiLSTM model, CNN-BiLSTM model, and
CNN-BiLSTM-AM model are represented as M1, M2, M3, and M4, respectively.

Firstly, the B0005 battery is selected for prediction at SP = 70%, and the prediction
results of the B0005 battery are presented in Figure 10. It is evident from Figure 10 that
the M1 model for the B0005 battery shows the largest error, of which the M2 and M3
models are the next largest. With the best prediction performance of the M4 model for trend
degradation and capacity rebound, and the predicted values being closest to the real SOH
value, the validity of the CNN-BiLSTM-AM model introduced in this paper is verified.

Figure 10. Different models of SOH prediction results for B0005.
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A setup of SOH predictions for the same battery at different SPs has been carried out
to demonstrate further the accuracy of the presented model (M4). The prediction results of
SOH for the B0005 battery at different SPs are shown in Figure 11. The BiLSTM model in
the M4 model collects the bidirectional dependence of the incoming CNN data, AM further
emphasizes the correlation between the serial data by weighting, and the SP = 90% follows
the same pattern of variation. In addition, the prediction results of M4 are similar to the
real SOH values at different SPs, and more accurate predictions are obtained, especially
for the capacity reversion. As the SPs increase, the prediction results become more and
more accurate. Furthermore, Figure 11 presents that the error of the prediction results for
SP = 70%, SP = 80%, and SP = 90% are smaller, which further proves the high accuracy of
the CNN-BiLSTM-AM model.

 
(a) (b) 

Figure 11. SOH prediction results for B0005 at different SPs. (a) SP = 80%; (b) SP = 90%.

RMSE, MAE, and MAPE have been adopted as error evaluation metrics to quantita-
tively assess the accuracy of the CNN-BiLSTM-AM prediction model. Table 5 illustrates the
prediction results of SOH based on different models for batteries B0005, B0006, and B0018
with different SPs. In Table 5, the smallest RMSE, MAE, and MAPE are 0.00487, 0.00307, and
0.420%, respectively, corresponding to the M4 model for the B0005 battery at SP = 90%; the
largest RMSE, MAE, and MAPE are 0.0153, 0.0121, and 1.60%, respectively, corresponding
to the M1 model for the B0018 battery at SP = 90%. While the magnitude of the capacity
rebound portion of the B0018 battery is larger, the M4 model is also accurately validated. The
error of the M4 model for all three batteries are lower than the comparison models, with
RMSE lower than 0.0120, MAE lower than 0.007, and MAPE lower than 0.9%. According to
the results, the M4 model has the highest accuracy and the lowest prediction error.

Table 5. Prediction results of SOH based on different models for batteries B0005, B0006, and B0018
with different SPs.

Battery Prediction SP Model RMSE MAE MAPE (%)

B0005

87 (70%)

M1 0.00893 0.00565 0.738
M2 0.00867 0.00540 0.702
M3 0.00794 0.00531 0.692
M4 0.00737 0.00382 0.496

99 (80%)

M1 0.00863 0.00661 0.886
M2 0.00620 0.00432 0.582
M3 0.00595 0.00432 0.581
M4 0.00481 0.00316 0.425

111 (90%)

M1 0.00813 0.00633 0.825
M2 0.00600 0.00409 0.558
M3 0.00598 0.00408 0.558
M4 0.00487 0.00307 0.420
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Table 5. Cont.

Battery Prediction SP Model RMSE MAE MAPE (%)

B0006

75 (70%)

M1 0.0151 0.0101 1.49
M2 0.0133 0.00838 1.24
M3 0.0133 0.00846 1.25
M4 0.0114 0.00485 0.709

87 (80%)

M1 0.0134 0.00864 1.28
M2 0.0129 0.00812 1.21
M3 0.0117 0.00779 1.15
M4 0.0105 0.00491 0.727

97 (90%)

M1 0.00914 0.00708 1.11
M2 0.00845 0.00617 0.963
M3 0.00759 0.00567 0.883
M4 0.00572 0.00361 0.561

B0018

67 (70%)

M1 0.0145 0.0110 1.44
M2 0.0139 0.00997 1.30
M3 0.0138 0.0118 1.421
M4 0.0108 0.00612 0.797

77 (80%)

M1 0.0151 0.0119 1.56
M2 0.0133 0.00981 1.29
M3 0.0141 0.0109 1.44
M4 0.0109 0.00623 0.619

87 (90%)

M1 0.0153 0.0121 1.60
M2 0.0141 0.0109 1.45
M3 0.0150 0.0121 1.60
M4 0.0112 0.00627 0.828

To investigate the effect of EOL on prediction error, we take B0005 as an example,
where the EOLs are selected 70%, 75%, and 80% respectively, and the dataset has been
repartitioned. The prediction results are presented in Figure 12 and Table 6, from which
one can see that the largest RMSE, MAE, and MAPE are 0.00737, 0.00382, and 0.496%, re-
spectively, corresponding to the M4 model for B0005 batteries with EOL = 70%; the smallest
RMSE, MAE, and MAPE are 0.00621, 0.00432, and 0.343%, respectively, corresponding to
the M4 model for EOL = 80%. Thus, the prediction error becomes higher when the EOL is
set as the smaller percent of the health indicator, which is particularly evident in MAPE.

Figure 12. Different EOLs of SOH prediction results for B0005.
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Table 6. Prediction results of SOH based on the M4 model for the B0005 battery with different EOLs.

EOL Prediction SP RMSE MAE MAPE (%)

70%
87 (70%) 0.00737 0.00382 0.496
99 (80%) 0.00481 0.00316 0.425

111 (90%) 0.00487 0.00307 0.420

75%
69 (70%) 0.00660 0.00465 0.364
79 (80%) 0.00665 0.00454 0.355
89 (90%) 0.00740 0.00383 0.499

80%
52 (70%) 0.00621 0.00432 0.343
60 (80%) 0.00627 0.00435 0.343
67 (90%) 0.00654 0.00457 0.357

7. Conclusions

Considering the security and dependability of lithium-ion batteries in real-world
applications, a hybrid model based on CNN, BiLSTM, and AM is advanced to predict
the SOH of lithium-ion batteries in this paper. In the CNN-BiLSTM-AM model, CNN is
utilized to extract the features of the battery time series, BiLSTM to collect the bidirectional
relationships, and AM to assign weights to achieve accurate SOH estimation of lithium-ion
batteries. The prediction results of SOH by investigating different batteries with different
SPs demonstrate that the proposed CNN-BiLSTM-AM model outperforms the CNN model,
BiLSTM model, and CNN-BiLSTM model, with RMSE lower than 0.0120, MAE lower than
0.007, and MAPE lower than 0.9%, which can more accurately predict SOH for lithium-
ion batteries.

The further works can be considered as follows: (1) SOH and RUL prediction for
lithium-ion batteries considering practical applications; (2) Application of the latest machine
learning techniques in the prediction of SOH and RUL for lithium-ion battery, such as
various variants and improvements of the transformer; (3) Ways and ideas to combine the
physical–chemical laws of lithium batteries and artificial intelligence technologies.
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Abstract: Applications of lithium-ion batteries are widespread, ranging from electric vehicles to
energy storage systems. In spite of nearly meeting the target in terms of energy density and cost,
enhanced safety, lifetime, and second-life applications, there remain challenges. As a result of the
difference between the electric characteristics of the cells, the degradation process is accelerated
for battery packs containing many cells. The development of new generation battery solutions for
transportation and grid storage with improved performance is the goal of this paper, which introduces
the novel concept of Smart Battery that brings together batteries with advanced power electronics
and artificial intelligence (AI). The key feature is a bypass device attached to each cell that can insert
relaxation time to individual cell operation with minimal effect on the load. An advanced AI-based
performance optimizer is trained to recognize early signs of accelerated degradation modes and to
decide upon the optimal insertion of relaxation time. The resulting pulsed current operation has been
proven to extend lifetime by up to 80% in laboratory aging conditions. The Smart Battery unique
architecture uses a digital twin to accelerate the training of performance optimizers and predict
failures. The Smart Battery technology is a new technology currently at the proof-of-concept stage.

Keywords: Smart Battery; artificial intelligence; pulse current; lifetime extension; second-life
applications

1. Introduction

Due to their high power density (≈1500 W/kg) and energy density (≈250 Wh/kg),
high energy efficiency (>95%), and also relatively long cycle life measured in thousands
of cycles, Li-ion batteries are the accepted solution for electronics, transportation, and
grid storage. Battery packs are composed of a string of series and parallel connected cells
to meet the power requirements of the applications. Cells cannot be manufactured with
identical electrical characteristics, and these differences get amplified during operation,
leading to a large unbalance in state of health (SOH) and premature lifetime termination.
Therefore, it is essential to find a strategy that is able to operate with cells having unequal
characteristics without limitation in performance. For achieving this goal, the concept of
Smart Battery technology is proposed in this paper, using power electronics for the bypass
device and artificial intelligence for performance optimization.

In the first stage, we explored several pulsed current charging strategies and their effect
on battery lifetime. As shown in Figure 1, an up to 80% lifetime extension can be achieved
by charging with a 2C-rate, 50% duty cycle, and 0.05 Hz current in comparison with a 1C-
rate constant current with equivalent average charging power. It is generally believed that
the pulsed current favorable effect is due to the slowing down of the degradation modes
associated with high C rate operation over long periods, such as loss of active material.
In addition, a Smart Battery lifetime prediction framework is proposed, as described in
Section 4. Under the framework, the short-term (daily or weekly) state of health (SOH) can
be accurately estimated based on a partial charging curve. With the help of the short-term
SOH estimates, the established model is updated by transfer learning to track the long-term
degradation behavior of batteries under varied working conditions.
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Figure 1. Lifetime extension using pulsed current charging compared with constant current [1].

The structure of the paper includes the hardware architecture and realization of the
bypass device and cell controller with wireless communication, State of Temperature
(SOT), SOH estimation and prediction, and Digital Twin as tools to improve safety and
performance followed by a conceptual approach of the complex performance optimization
problem definition. In the end, applications of the Smart Battery are identified.

2. The Hardware Architecture

The Smart Battery system aims to develop an integrated battery solution with increased
safety, fault-tolerant operation, improved lifetime, and software reconfiguration for second
life applications. The high-level architecture of a Smart Battery system is shown in Figure 2
and consists of a cell connected to a half-bridge circuit, which is controlled by a digital
controller termed a slave CPU. The cell is connected to the battery string via the output ports
of the half-bridge, as shown in Figure 2. The switching state of the half-bridge determines
if the cell is inserted into the string or bypassed. Figure 3a,b show the state of the output
terminals of the half-bridge when the cell is inserted or bypassed, respectively. By turning
on the top device the cell will be inserted, and by turning on the bottom device, the cell
will be bypassed. Note that the two devices are switched in complimentary PWM and can
be switched at any frequency and duty ratio to realize pulsed charging or discharging of
the cell. The slave controller provides the switching commands to the half-bridge, and
monitors the cell voltage, current, and temperature using the appropriate sensors. Using
the measurements, the slave estimates the state of charge (SOC) and communicates the
measurements to the master controller shown in Figure 2. Note that the master controller
(shown as master CPU/GPU in Figure 2) uses AI-based algorithms to estimate the state
of health (SOH) and remaining useful life (RUL) for the cells and communicates the same
information to respective cells. The master controller performs the functions of SOC and
SOH balancing and lifetime control. The balancing process is done by bypassing one cell at
a time and thus not affecting the load current. In contrast to other active balancing methods,
this balancing method does not use bidirectional DC–DC converters. It has better efficiency
due to the absence of additional inductors/capacitors used in active balancing methods.
The proposed bypass device only needs to order the cells according to their SOC and SOH
states and then decides which cell should be bypassed. The method for balancing control is
simple and effective. This provides a fault-tolerant operation mode, which can improve the
safety and reliability at the system level.
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Figure 2. High-level architecture showing Smart Battery with slave controllers and a master controller.

(a) (b)

Figure 3. The operation mode of the switching device: (a) inserted; (b) bypassed.

2.1. Smart Battery Cell—Hardware Implementation Approach

Individual cells are integrated with a half-bridge circuit to provide the bypass capabil-
ity as described above. The overall control electronics consist of the following subgroups:

1. MOSFETs: Low on-resistance MOSFETs are used in the half-bridge across the cell.
It is important to have low-on resistance to limit the power loss in the MOSFETs,
which acts as an undesirable load on the batteries. Note that MOSFETs with sub-
milliohm on-resistances (rds,on) are available and they introduce negligible losses.
It is also possible to parallel additional MOSFETs to reduce the resistance further
and to provide redundancy for improving the reliability. Table 1 shows some of the
commercially available MOSFETs with sub-milliohm rds,on and conduction loss at 50 A.
It would be good to use automotive-certified MOSFETs (e.g., AUIRF8739L2TR [2]
in Table 1) such as electric vehicles (EVs) is one of the major applications for the
Smart Battery.

2. Sensors: To monitor the cell voltage, current, and temperature, appropriate sensors
are used. Additional electronic circuits are essential to interface the sensors with the
slave controller. The sensors can be interfaced with the analog-to-digital converter
(ADC) channels of the controller or to the appropriate digital communication channels
depending on the output format.

3. Voltage regulators: Switching voltage regulators are necessary to convert the battery
voltage to the required regulated DC voltage to supply the control electronics and
to the gate drivers of the half-bridge circuit. Note that linear regulators cannot
be used because typically they can only step down the cell voltage and they have
poor efficiency.

4. Gate driver: A smart gate driver is necessary to implement the insert/bypass func-
tionality of the Smart Battery. This gate driver receives the commands from the slave
controller, which in turn obtains the commands from the master controller wirelessly.
The gate driver will also prevent any shoot through of the DC voltage, hence avoiding
any short circuit.
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5. Slave controller: The slave controller performs the computation of SOC, provides
commands to the gate driver, implements protection algorithms, and communicates
with the master wirelessly. For wireless communication, protocols such as wifi, Blue-
tooth Low Energy (BLE), and Zigbee are possible. The range required for the wireless
communication for the Smart Battery is in the order of a few meters considering the
application area of electric vehicles, wherein the Smart Battery will be tightly packed
and the master controller will be at close proximity within the vehicle. Considering
these points, BLE communication can be one of the options. However, since the Smart
Battery architecture for EV involves a large number of slaves (>100), custom wireless
protocols such as IEEE TSCH may be a good compromise between performance and
power consumption. Texas Instruments offers a number of wireless controllers suitable
for BMS applications. One popular series is the Simplelink controller CC26 × 2 [3,4].

Table 1. Commercially available MOSFETs with very low on-resistance for minimizing the power
loss in a Smart Battery.

MOSFET Rds,on (mΩ) Rated Current (A) Power Loss at 50 A (W)

IPT004N03L 0.4 300 1
IST006N04NM6 0.6 475 1.5

IRL40SC209 0.8 478 2
AUIRF8739L2TR 0.35 545 0.875

2.2. Layout Design for Low Electromagnetic Interference (EMI)

Figure 4 shows the detailed components of the single cell in the Smart Battery archi-
tecture and its hardware components described above. The electronic circuits in Figure 4
contain EMI sources as well as sensitive electronics whose performance may be impacted
by the EMI. For example, the switching regulators to supply regulated voltage produce
both conducted and radiated noise. As these converters are switched at a high frequency
in the order of a few MHz, the radiated noise may interfere with the BLE communication.
Thus, it is important to protect the communication and the sensing circuits from the noise
generated by the switching regulators. Note that the switching by the MOSFETs of the
half-bridge may not result in any appreciable EMI because these MOSFETs are switched at
a very low frequency in the order of a few hertz or less. As a result, this switching does not
radiate any significant energy at the BLE frequencies of interest and can be ignored as the
source of conducted or radiated EMI.

Figure 4. Hardware components in a Smart Battery cell.

In order to minimize the impact of EMI and ensure high fidelity communication,
a multi-layer routing is followed for the printed circuit board (PCB) to provide good
ground planes and to minimize the loop areas that can cause unwanted radiation [5]. The
components of the switching regulators are physically placed in a predefined area and they
are covered by an EMI shield. This ensures that the BLE communication is not impacted by
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the radiations from the switching regulators. A green border shown around the DC–DC
converter in Figure 4 illustrates the EMI shield across it. As the Smart Battery cells are in
close physical proximity in applications such as EV battery packs, a proper layout design
prevents noise from one PCB from impacting the communication with the neighboring
PCBs and with the master controller.

2.3. Hardware Challenges and Design for High Current

For cells with high Ah capacity such as 50 Ah or more, the design of the slave board is
to be done to minimize the losses and impact of parasitics such as stray inductances. The
current in such cells can be hundreds of amperes for any operation beyond 2C. Thus, the
hardware design needs to provide a low resistance path for the current and low conduction
loss in the MOSFETs. A conceptual diagram illustrating the slave board design for a
prismatic cell is shown in Figure 5. A combination of copper bus bars and copper in-lays
is used, as shown in Figure 5 (shown in orange) to provide a low resistance path for the
high current. The half-bridge is shown with two MOSFETs, Q1 and Q2. Note that a parallel
combination of multiple MOSFETs may be necessary to minimize the losses. The bus bar
design should also ensure that parasitic inductances are very low as they can cause large
voltage spikes on the MOSFETs during insert/bypass operations.

Figure 5. Smart Battery hardware design concept for high Ah prismatic cells.

3. SOT Estimation

Li-ion batteries, due to their high energy/power density, long cycle life, and high
efficiency, have been widely used in electric vehicles, portable electronics, and smart
grid systems. However, thermal-related technological bottlenecks, including thermal
runaway [6], extreme fast charging (XFC) [7,8], reduced performance in cold climates [9,10],
and accelerated aging at high temperatures [11,12], still hinder the large-scale application of
Li-ion batteries. Such bottlenecks stem from the complex effect of temperature on the safety,
performance, and lifespan of Li-ion batteries. For instance, when battery temperature
exceeds the threshold under extreme situations, thermal runaway might be triggered
and accompanied by safety problems such as smoke, fire, and explosion [6]. In cold
climates, the performance of Li-ion batteries is severely reduced due to slow electrochemical
reactions inside the cell [10,13], and thus the available energy and power of Li-ion batteries
decline dramatically [9,10]. Additionally, XFC at relatively lower temperatures is likely to
trigger lithium plating, which leads to accelerated battery degradation [11,12]. At elevated
temperatures, side reactions such as the growth of a solid electrolyte interface become
significant, giving rise to the consumption of cyclable lithium and accelerated battery
capacity fade [8,12].

Battery management systems (BMS) are indispensable for managing the charging/
discharging patterns and regulating battery temperature in a smart way, where temperature
monitoring serves as the basis of the BMS. Typically, battery temperature can be monitored
by temperature sensors placed on the battery surface. However, in real-life battery packs,
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it is impractical to place temperature sensors on the surface of each battery cell due to
cost and complexity considerations. Furthermore, the surface-mounted sensors cannot
track the rapid variation of internal temperatures because of heat transfer delay from
the battery core to the surface caused by the thermal mass of the battery, especially at
high charging/discharging rates. Hence, it is of great significance to estimate the battery
temperature in a battery pack, and accurate SOT estimation benefits battery management
in several ways.

From the perspective of battery safety, accurate monitoring of internal temperature
helps keep the battery within the safety threshold and gives an early warning of potential
hazards that could trigger thermal runaway. In particular, nowadays, Li-ion batteries are
designed to have large capacities and high power/energy densities, which could inevitably
enhance the risk of thermal hazards. From the perspective of fast charging, SOT estimation
helps regulate battery temperature actively to a charging favorable temperature range so
that XFC can be achieved and the lifetime of the battery can also be extended [14]. From
the perspective of battery health management, knowing battery SOT makes it possible to
develop a temperature-independent SOH estimation by decoupling the temperature effect
during the extraction of health indicators, which gives rise to a more accurate and robust
SOH estimation. This will further allow for accurate lifetime prediction and improvement
of the operation of the Smart Battery. All of these features of the Smart Battery enabled by
accurate SOT estimation are illustrated in Figure 6.

Figure 6. Smart Battery functionalities enabled by SOT estimation.

Existing methods for SOT estimation can be classified into three categories: impedance-
based estimation, thermal model-based estimation, and data-driven estimation. Impedance-
based estimation exploits the relationship between battery temperature and impedance
parameters such as phase, real part, and imaginary part, to estimate SOT according to
the measured impedance [15]. By modeling the heat generation and heat transfer models
inside the cell, thermal model-based methods realize the internal temperature estimation
based on battery current, voltage, and possibly a surface-mounted sensor [16]. Data-driven
approaches ignore the thermal dynamics of the cell and explore the data patterns of battery
temperature evolution to realize highly accurate estimation [17]. However, these three
methods have limitations. Impedance-based estimation can only provide information about
the average temperature of the cell but neglect the temperature distribution inside the cell.
Therefore, the maximum internal temperature is likely to be underestimated, especially
for large-format cells with high energy/power density or cells operating at high rates
(e.g., XFC). As for thermal model-based estimation, it is a great challenge to balance the
model complexity and accuracy. In addition, parameterization is sometimes complex due
to many required model parameters. For data-driven approaches, obtaining a considerable
training dataset is sometimes technically challenging and unattainable. For instance, the
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temperature value at random points inside the cell cannot be measured. Generalization is
another problem for many data-driven approaches since the training dataset cannot cover
all of the operation scenarios.

To address the challenges existing SOT estimation methods face, there is a growing
trend to combine model-based approaches with data-driven methods to realize accurate
and robust estimation [18,19]. There are many ways to combine physics-based models
and machine learning models, as discussed in [20]. A competitive candidate, which will
be used in the framework of the Smart Battery, is the physics-informed neural network
(PINN). PINN can rapidly solve the underlying nonlinear heat transfer partial differential
equation (PDE) with small amounts of data and provide insights into battery internal
temperature distribution. Typically, the temperature data used for neural network training
is limited to the surface temperature and possibly the core temperature measured through
sensor intrusion [21,22], making it difficult for conventional neural networks to estimate
the temperature distribution between the core and the surface. PINN can overcome the
limitations traditional neural networks face and mimic the data patterns governed by the
heat transfer PDE so that the temperature distribution inside the cell can be estimated.
The framework of a PINN for estimating the battery temperature distribution is shown in
Figure 7, where a cylindrical cell is used as an example. When collecting the training data,
the current, voltage, surface, and core temperature can be measured (by inserting a sensor
into the battery core). The measured data are treated as training data for the deep neural
network, and the loss is calculated based on the predicted temperature and the measured
temperature. Additionally, the temperature at the core, the surface, and any point inside
the domain should follow the heat transfer PDE and its initial and boundary conditions.
The differentials of temperature with respect to time and location can be calculated through
automatic differentiation so that the physics loss can be obtained accordingly based on heat
transfer PDE. In PINN, the loss function consists of the loss of training data and the loss of
physics. By minimizing the total loss, the weights and biases of the neural networks can be
adjusted, and the unknown coefficient in the PDE can be identified. For a trained PINN,
the predictions can have high accuracy while also following the heat transfer law so that it
can be used to estimate internal temperature distribution under other operating conditions.

Figure 7. Framework of temperature distribution estimation using PINN: Measured temperature
data at the battery surface and core are used for training the data-driven model (e.g., based on deep
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neural networks); then a physics part is added as a regularization term to further train the deep neural
network so that the estimated temperature not only follows the patterns of data in the training set but
also obeys the spatiotemporal physical law in the physics part. The network is trained by minimizing
both the loss of the measured data and the loss of the physics part after 10,000 epochs or more, where
an appropriate λ should be selected to adjust the relative importance between data loss and physics
loss. The training process can adjust the weights and bias in neural networks, as well as identify
unknown parameters in PDE simultaneously (where T represents the temperature, t represents
the time, I represents the current, V represents the voltage, r represents the space distribution, Q
represents the heat generation, cp represents the specific heat capacity, Vb represents the volume of
the battery, MSE represents the mean squared error, MSEdata represents the mean squared error of
the temperature estimation based on the measured data, MSEphysics represents the mean squared
error of the temperature estimation in physics part, kt represents the thermal conductivity of the cell,
and λ represents coefficient between data loss and physics loss).

Accurate SOT estimation using PINN represents the first step toward the goal of
realizing long-term (e.g., 10 min ahead) temperature prediction, which will lead to optimal
operation and reduce safety concerns of the Smart Battery.

4. SOH Estimation and Lifetime Prediction

The degradation of the battery is unavoidable, and it is caused by complex aging
mechanisms that are happening in parallel inside the battery. At the macroscopic scale,
the degradation of the battery is manifested as capacity fade and power fade [23] that
are therefore often used as indicators of a battery’s SOH. Using these two measures of
degradation, a battery is considered at the end-of-life (EOL) when its capacity reaches
70–80% of the initial capacity. Given an EOL criterion, the RUL of the battery can be defined
as the time (or the number of cycles) until the battery reaches its EOL [24]. It follows that to
lower the cost of Li-ion batteries, both environmentally and economically, it is imperative
to control their RUL [25]. Accurately predicting the RUL of the battery will also help
reduce the cost through predictive maintenance, reduce the risk of failure guaranteeing
safer operation, and improve the reliability of the system [25]. However, the degradation
of batteries begins the moment they exit the production line, resulting in reduced lifetime.
Additionally, Li-ion batteries undergo a wide range of aging conditions during real-world
operations, from calendar aging (idling) to cycling aging (charging or discharging), which
is non-deterministic and difficult to predict. These uncertainties create a bottleneck in the
large-scale acceptance and deployment of Li-ion batteries in critical applications, such as
transportation.

4.1. SOH Estimation

After a decade of research on battery SOH estimation, SOH estimation methods
are slowly becoming mature [26–28]. SOH estimation methods typically fall into one of
three categories: (1) Empirical methods, (2) physics-based models, and (3) AI data-driven
methods. While empirical methods such as directly measuring the charge throughput
or indirectly analyzing the incremental capacity have been used to quantify the SOH
mechanisms, their stability severely limits their use in real-life applications. The physics-
based models are designed to estimate the SOH through state-space models typically built
using electrochemical models, or equivalent electrical circuit models [29]. The physics-
based models use filters to effectively update the dynamic characteristics of the system,
but are entirely dependent on the accuracy of the underlying physics-based model, which
introduces an unavoidable and cumbersome parameter identification process requiring
extensive laboratory testing. Lastly, recent years have seen the rise of more data-driven
methods through statistics, machine learning, and artificial intelligence methods. These
methods have the ability to effectively learn any non-linear regression problem, given
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enough of the right data. Among the most popular are methods such as support vector
machine, artificial neural network, deep learning (DL), and random forest [30].

The battery degradation process is accompanied by a series of side reactions involving
various parts of the battery, such as the anode, cathode, electrolyte, and electrode–electrolyte
interface. As a result, the battery will exhibit different aging behaviors as the operating
conditions change. This leads to the biggest challenge of data-driven methods for SOH
estimation: features extracted under laboratory conditions might be invalid in real-life
applications. There are three ways to account for this discrepancy: (1) To define and extract
robust features, (2) to adapt models from the laboratory to the field by transfer learning,
and (3) to use automatic feature extraction through DL. A viable method for creating and
extracting robust features is the fuzzy entropy method as proposed in [31]. It has been
shown that fuzzy entropy-based features are effective in both SOH estimation and SOH
prediction. Additionally, it has been proven to have strong robustness against parameter
selection, data size, working conditions, and noise [31]. Moreover, noise suppression
methods were used to pre-process the SOH data, improving not just the accuracy but also
the speed of the fuzzy entropy-based feature extraction [32,33]. An alternative to creating
robust features is to account for the change in domain by transferring the model [34]. There
are two approaches to adapting models from one domain to another—during the training
of the model the discrepancy between the features in the two domains is accounted for,
or the model is trained in the original domain and then re-trained in the new domain.
The second approach will give better results but requires knowledge of the SOH in both
domains unlike the first approach [35]. Lastly, the feature failure problem may be almost
entirely avoided using DL. Deep neural networks have the ability to extract global features
from raw multi-dimensional data. However, due to the latent nature of SOH, obtaining the
amount of SOH information required to train such a neural network is usually impossible
in real-life applications. In order to improve the estimation accuracy on small data sizes,
a bagging-based ensemble method was proposed in [36]. Bagging creates augmented
samples by resampling from the original dataset, and a series of ELMs are trained based
on these samples. The bagging ELM method has many of the upsides of DL, such as
the automatic feature extraction, while requiring much less data to train and perform
well when estimating SOH. In addition to using fuzzy entropy-based features and the
ensemble ELM method, the Smart Battery framework aims to increase the amount of useful
information extracted from a single partial charge of the battery by data augmentation. The
augmentation will allow for the extraction of not only the charging voltage, but also every
partial charging voltage sequence found within any charge (no matter how large). The
general framework for data cleaning, augmentation of partial charges, feature extraction,
and SOH estimation is outlined in the top panel of Figure 8.
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Figure 8. A flowchart of the Smart Battery SOH and RUL prediction framework. In order to stabilize
the predictions of the SOH, the time dependence of the system is moved from the SOH to the features.
To predict the SOH, the features are predicted forward in time, and a SOH estimation model is then
used to predict the SOH.

4.2. SOH and Lifetime Prediction

The aim of any RUL algorithm is to predict the time to EOL of a battery. However,
before the EOL can be predicted, it is necessary to predict the SOH; given a mission profile
and a short-term SOH prediction method, the long-term behavior of the SOH can be
predicted to the EOL. SOH and RUL prediction methods are usually divided into physics-
based and data-driven AI-based methods. In the physics-based lifetime models, while the
non-linear and time-varying characteristics of the electrochemical system can be explained,
the parameters of these models are very difficult to identify since they rely on destructive
testing methodologies. Consequently, the development of physics-based models is time
and resource-demanding, and thus not necessarily a viable option for use in real-time
prediction. These methods are more suitable to study the aging mechanisms of the battery,
provide a theoretical basis for data-driven methods, and make suggestions on battery
design [36]. The data-driven AI-based methods used for lifetime modeling and prediction
are unlike SOH estimation, and are usually more probabilistic in nature. Among the most
common methods are Gaussian process regression and dynamic Bayesian networks. Their
main advantage is that they do not need access to the mechanical and electrochemical
behavior of the battery [37]. The disadvantage is the need to specify the structure of the
probabilistic structure of these models. Therefore, recent years have seen an increase in the
use of DL methods. A DL lifetime model can be established based on the collected data and
continually updated using gradient optimization [38]. That is, the relationship between
the features (i.e., the health indicators such as voltage, current, and temperature) and the
cycle and calendar life of the battery cell can be established. The main disadvantages of DL
methods are their computational cost, and that they are not probabilistic by nature, making
RUL uncertainty prediction difficult.

However, as cloud computation becomes cheaper and more readily available, many
DNN algorithms have shown promise, such as deep neural networks [39], convolutional
neural networks [40], and recurrent neural networks (RNNs) [41]. RNN will be a suitable
algorithm for RUL prediction because of its intrinsic modeling of time-dependent parame-
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ters. Furthermore, to accommodate the need for probabilistic predictions, the Smart Battery
framework will attempt to combine approximate Bayesian methods, such as approximate
Bayesian computation [42,43], Bayesian synthetic likelihood [44], or variational inference
with RNNs.

The biggest challenge with the SOH and RUL prediction methods mentioned above is
that they need SOH measurements to function. However, in real-life applications, obtaining
SOH measurements means stopping the operation of the battery and running an entire
cycle, i.e., fully charge and discharge the battery. Furthermore, for these prediction methods
to be effective, this needs to be performed on a regular schedule, and as often as possible.
As this is not a possibility in most applications, the predictions created in most applications
would be extremely unreliable (i.e., the uncertainty intervals of their predictions would
be large). Therefore, in the Smart Battery framework, the SOH and RUL prediction will
not operate directly on the SOH, but can instead operate on the SOH estimation model,
which can provide an estimate of the SOH for every partial charge of the battery. Given the
estimated SOH, a post-processing may need to be applied to remove effects of dependencies
such as temperature and C-rate (if this effect cannot be removed through the construction
of invariant features). The use of the estimated SOH when predicting future SOH should
stabilize the uncertainty predictions of SOH and RUL Furthermore, as new measurements
of SOH are made, the differences between the predicted and measured SOH will be used
to update the SOH estimation model, ultimately leading to better SOH prediction. The
general framework of post-processing as well as SOH and RUL prediction can be seen in
the bottom panel of Figure 8.

The methodology described above is both a data- and computationally-intensive
process, which would be very difficult to implement for most battery architectures. How-
ever, as outlined in Section 2, the Smart Battery technology will have the ability to collect
raw signals of current, voltage, and temperature directly. Furthermore, the computa-
tional cost of the Smart Battery SOH prediction methodology will be offset through local
cloud computation.

5. Digital Twin

Digital twins are virtual models of physical objects that reflect them accurately and
can be used to verify if a planned operational change will produce the desired effect. The
concept was first used in the 1960s by NASA, which used an analog twin of the Apollo
spacecraft to test in almost real-time certain changes or reactions to certain faults in a
realistic environment before testing it for real with human safety at stake. The technology
eventually went digital and became very popular in manufacturing, where a virtual product
can be designed and presented to customers virtually, for example in the construction,
mobility, and even wind turbine industries.

5.1. Digital Twin as an Optimization Tool in Smart Battery

In the case of a Smart Battery concept, the Battery Digital Twin (BDT) is defined as an
online digital platform based on an AI core (GPU/TPU) capable of replicating the sensed
signals (voltage, state of temperature) of a real cell in all possible operating conditions in
terms of loading (current), ambient temperature, and aging. A full cell aging model (CAM)
is developed using a sparse laboratory testing dataset (full charging/discharging curves at
relevant temperature) that is further expanded by using AI techniques of domain adaptation
(part of transfer learning) to cover the whole working/aging domain, as depicted in
Figure 9.
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Figure 9. Concept of CAM BDT.

The CAM BDT is first developed in Python and then implemented in an AI-core
platform (Google Coral Edge), and then it can be used as a development tool for the Smart
Battery for:

1. Providing a training dataset for SOH estimation/prediction;
2. Validation of battery performance optimization (BPO);
3. Predictive maintenance.

Training of SOH estimation/prediction using AI using CAM BDT is shown in Figure 10.
The CAM BDT can not only synthetically generate a full aging data set, but as also runs in
a virtual space in which time can be accelerated, and thus the required lab testing time for
the conventional approach can be reduced by several orders of magnitude.

Figure 10. Training of SOH estimation using CAM BDT. SOH* represents the reference value.

5.2. Validation of Battery Performance Optimization

The Smart Battery allows performance optimization due to the unique feature of cell-
level load management enabled by the bypass device. The action of bypassing a cell in the
pack during charging or discharging mode can improve balancing in SOC, SOH, and SOT
and maximize the SOH, both actions leading to lifetime maximization. As the processes are
very complex, AI techniques are used for both training and operational optimization. The
BDT is used to validate the performance optimization in an HIL environment including a
battery cell simulator (BCS), as illustrated in Figure 11.
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Figure 11. SOH maximization as an example of BPO using BDT. SOHmax represents the maximum
value of the optimization objective SOH, and V* is the voltage reference.

5.3. Predictive Diagnostic

The BDT is implemented online in each cell processor as shown in Figure 12. The idea
is that the BDT is fed with the real current measurement and temperature estimation, and
calculates the output voltage, which is compared with the real voltage measurement. Any
large deviation will be interpreted as a potential condition for failure and will be processed
accordingly. With this approach, dangerous events such as thermal runaway events can
be avoided.

Figure 12. BDT used in predictive diagnostics.

6. Performance Optimization of the Smart Battery

The electrochemical performance of a battery is defined in terms of three parameters,
namely the battery capacity, which measures the total charge stored in a battery, the open
circuit voltage or the maximum terminal voltage with no current flow, and the internal
resistance, which represents the degree to which the component materials impede the flow
of ions during battery operation [45]. Battery performance degrades as the battery ages
due to repetitive cycling of lithium ions, which leads to degradation modes such as loss of
lithium ions and loss of lithium inventory to set in. This battery aging phenomenon leads to
increased internal resistance along with capacity and power fade during a battery’s lifetime.
To optimize this threefold battery performance, it is crucial to understand the degradation
phenomenon and correlate it with measurable battery states. Based on the pre-trained
AI-based battery aging models as discussed in previous sections, from measured data,
namely terminal current, voltage, and surface temperature, the battery internal states can
be evaluated, namely SOH, SOP, SOE, and SOT.

Using these states of the battery, which we define as health indicators, a numerical
optimization can be developed that considers operational and power constraints of the
battery with the potential to maximize SOH for example. Here, we use reward-based
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learning to adaptively learn from the battery environment or the balance of the system
such as the EV power train and desired user performance to ensure the states of the battery
are maximized. It must be noted that since the discharging profile is not in our control,
we focus on the charging profile and use the bypass action of Smart Battery slave boards
to charge or bypass a battery cell at any given point in time. A complete representation
of the aforementioned methodology of battery performance optimization is presented
in Figure 13. The goal of this complete optimization as shown in Figure 11 is to extend
the lifetime of the batteries, keep the operational cost minimal and maximize the system
reliability by embedding fault diagnosis within the system architecture.

Figure 13. A flowchart of the BPO framework, showing the use of reward-based learning for
optimizing the charging profile of Li-ion batteries by using measured V, I, and T. The brain of the
system is physics-informed and maps degradation modesto quantifiable health indicators to achieve
an extended lifetime of batteries along with added features of fault diagnosis and cost minimization.
A user interface makes the entire approach more pragmatic for an EV scenario with varying load
profiles and desired performance as per the user’s needs and constraints.

A more detailed overview of how this battery performance optimization works is
shown below with a simplified flow diagram in Figure 14, wherein the performance
optimization, preventive diagnostics, and BDT containing the CAM act together in the local
cloud to achieve the user-desired and constrained available performance metric, which
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is an output of the optimization algorithm. The comparison of these two parameters
determines whether the bypass switches should connect or disconnect a battery cell while
charging. This is in line with the previously discussed results of pulse charging leading to
an extended lifetime of the battery, and bypass switches make it possible.

Figure 14. A detailed overview of the Smart Battery system with various attributes including
optimization of SOX (SOP, SOE, SOT, and SOH). Based on whether the performance is optimized
or not, the bypass switches act to activate or provide rest to a cell. The cell aging model is built on
AI trained neural network blocks that fully emulate a real battery aging mechanism for given user
load profiles and desired performance with a given aging condition of the battery as the initial state
of operation.

7. Applications of the Smart Battery

A natural question that arises regards the contribution of Smart Batteries to the field of
power and energy systems, which spans many directions as shown in Figure 15. Starting
from energy storage in power grids to maximum power point tracking in solar photo-
voltaics, the Smart Battery widely covers the generation, transmission, and distribution
sectors of electrical energy. Vehicle-to-grid is an upcoming industry and is anticipated to be
limited by battery cycling and aging constraints, but with the Smart Battery, this can be
effectively overcome. With green transition as the target of many developing and devel-
oped nations, transportation electrification for rail, road, and airways is being investigated.
This requires electric vehicles to have reliable, high-performing, and long-lasting batteries,
requirements that are the core fundamentals on which the Smart Battery is designed. One
major challenge in the EV industry is the rising fast charging industry, which is known
to degrade batteries and accelerate their aging. With lifetime extension as a key objective
in battery performance optimization, this challenge can be positively overcome using the
Smart Battery. We also argue that with Smart Battery technologies, Li-ion batteries can be
easily reconfigured for residential energy storage due to lower power and capacity fade in
Smart Batteries. Overall, the Smart Battery technology can revolutionize the green energy
transition by making disruptive ideas such as ultra-fast charging, second lifetime, and V2G
a reality.

97



Batteries 2022, 8, 169

Figure 15. The performance-optimized Smart Batteries find applications in energy storage for modern
power grids and green microgrids. They can also be readily applied in maximum power point
tracking in photovoltaic applications by acting as a controlled voltage source. With the fast-growing
EV industry, the role of a high-performing Smart Battery is inevitable for fast charging and lifetime
extension, which is also applicable to the electric aircraft industry. The second lifetime of batteries is
the sustainable way of reusing EV batteries in residential energy storage with reduced capacity fade
using the Smart Battery system.
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Abstract: Remaining-useful-life (RUL) prediction of Li-ion batteries is used to provide an early
indication of the expected lifetime of the battery, thereby reducing the risk of failure and increasing
safety. In this paper, a detailed method is presented to make long-term predictions for the RUL based
on a combination of gated recurrent unit neural network (GRU NN) and soft-sensing method. Firstly,
an indirect health indicator (HI) was extracted from the charging processes using a soft-sensing
method that can accurately describe power degradation instead of capacity. Then, a GRU NN with
a sliding window was applied to learn the long-term performance development. The method also
uses a dropout and early stopping method to prevent overfitting. To build the models and validate
the effectiveness of the proposed method, a real-world NASA battery data set with various battery
measurements was used. The results show that the method can produce a long-term and accurate
RUL prediction at each position of the degradation progression based on several historical battery
data sets.

Keywords: lithium-ion batteries; remaining-useful-life (RUL); gated recurrent unit neural network
(GRU NN); real-world data

1. Introduction

Li-ion batteries have become an essential part of our everyday lives. Due to their low
cost, high energy density and long service life, they are already an essential component of
cell phones, laptops and electric cars [1]. In particular, the current progressive political de-
velopments away from combustion engines in the direction of electric mobility increasingly
support this spread of batteries [2], so that energy-efficient and at the same time safe use of
these energy storage devices is essential for an environmentally friendly, resource-saving
and economic future. The lifetime of these batteries is not unlimited, because conductiv-
ity decreases with repeated charging and discharging processes. As soon as the battery
falls below its end-of-life (EOL) threshold, the risk of battery failure or even battery fire
increases [3]. By monitoring the condition and predicting the expected EOL of the battery,
the risk of battery failure can be reduced, thereby increasing safety [4]. On the other hand,
replacing the battery too early leads to a waste of valuable resources, which contradicts the
claim of efficient use. Therefore, a precise prognosis is of essential importance.

To predict the remaining-useful-life (RUL) of Li-ion batteries, a differentiation is
usually made between model-based and data-driven methods. For the application of model-
based methods, detailed prior knowledge of the respective battery is required [5]. Mainly, an
electrochemical model is used, which is represented by differentiated mathematical models
in order to be able to represent the internal chemical process reactions [6]. Model-internal
variables can be represented precisely with this method, whereby a high accuracy in the
prediction can be achieved [6]. However, these models are highly complex and the battery
has to be disassembled for the parameterization of the electrochemical model [7], which
makes them difficult to integrate into real applications [8]. In contrast, data-driven methods
do not focus on the complex internal electrochemical reactions and failure mechanisms
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of the battery [9]. Rather, the internal behavior of a battery is considered as a black box
to model and simplify electrochemical dynamics. For this purpose, a model is generally
created first and then it is refined and optimized using plenty of historical data [10] so
that the model can learn battery performance degradation behavior directly from the
monitoring data.

In recent years, the data-driven method and in particular the AI-based methods have
attracted much attention in the research area of RUL prediction for Li-ion batteries. These
methods can be divided into the meta-areas of Neural Networks [11–13], Support Vector
Machines [14–16] and Deep Learning. One widely used method for predicting time-series
data is the Recurrent Neural Network (RNN). However, this method tends to explode and
vanish gradients due to its structure. Therefore, the RNN-based and improved variant, the
Long-Short-Term-Memory Neural Network (LSTM NN) is often used. For example, Zhang
et al. presented an LSTM NN that predicts the RUL based on historical capacity data [17].
Park et al. introduced an LSTM model using multi-channel charging profiles. However, the
prediction interval is set to a fixed value [18]. LSTMs are well suited to store and transfer
information from long data sequences, but LSTMs require a large number of parameters
for training.

To overcome this issue, the Gated Recurrent Unit Neural Network (GRU NN) was
developed. This method is similar to the LSTM but has a simplified structure and fewer
parameters, making it especially suitable for online RUL prediction. Previous works with
this approach are mostly based only on using classical performance indicators such as the
capacity to predict the RUL. However, these direct health indicators are difficult to measure
in real applications, because the particular battery must be separated from the original
application [19]. To overcome this challenge, indirect health indicators (HI) were used,
which can be obtained from the monitoring sensor data to represent the direct HIs. The
authors of [20] use the voltage-measured data of the discharge process for this approach.
In real applications, discharges mostly correspond to dynamic behavior that can lead to
large prediction errors. In contrast, the use of charging data is more static and thus more
controllable, which can lead to more reliable results. An open aspect in many of these
works is the detailed design and algorithm for the longer-term RUL prediction.

Therefore, this paper proposes a detailed described RUL method from the combination
of soft sensing and deep learning. To avoid difficulties in measuring HI directly, an indirect
health indicator is extracted from the monitoring data. In addition, a GRU NN is presented
using the sliding window method and detailed procedure. The major contributions of this
paper are listed as follows:

• A specific indirect HI is extracted from the charge monitoring data. A correlation anal-
ysis is used to show that these indirect HIs accurately reflect the capacity. Therefore,
complicated measurements or elaborate calculations are no longer needed.

• The combination of soft-sensing and GRU NN with sliding window produces a
model capable of both accurate state-of-health estimation and reliable long-term RUL
prediction using historical data sets.

• Dropout and early stopping methods were also used to prevent overfitting.
• The effectiveness of the method is validated and verified by the real-world NASA

data set.

The structure of this paper is as follows: Section 2 shows the general structure of GRU
NN. Section 3 presents data preparation and the construction of indirect HI. The algorithm
and the approach of the GRU NN model are proposed in Section 4. Section 5 includes the
results and discussion and Section 6 represents the conclusion.

2. Gated Recurrent Unit Neural Network

A GRU NN is a neural network based on Gated Recurrent Unit and is a further
development of RNN to overcome the exploding and vanishing gradient problem in
long-term dependencies. The structure of the GRU NN is also a simplified version of the
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LSTM since no cell state is needed anymore. The hidden cell state takes over the data
transfer tasks.

The output of the GRU NN depends on the parameters update gate and reset gate.
The update gate decides which new information should be added and which information
should be dropped. The reset gate decides which and how much information from the past
should be forgotten. The general architecture of a GRU NN is shown in Figure 1. Moreover,
it is described by the following equations [21]:

zt = σ(Wz·[ht−1; xt] + bz) (1)

rt = σ(Wr·[ht−1; xt] + br) (2)

h̃t = tanh(Wh·[(rt � ht−1); xt] + bh) (3)

ht = (1 − zt)� ht−1 + zt � h̃t (4)

where zt represents the update gate and rt the reset gate. Both gates depend on the current
state xt and hidden state ht−1 at the previous time. For the output of the hidden state
ht at time t, the candidate state h̃t is also required. Wz, Wr, Wh are weight matrices and
bz, br, bh indicates the biases for the update gate, candidate state and reset gate. The
symbol � shows an element-wise multiplication, σ is the sigmoid function and ; indicates a
vector-concatenation operation.

Figure 1. The architecture of the proposed GRU NN.

3. Data Preparation

3.1. Test Data

The data used here were derived from a battery data set from NASA Ames Research
Center [22]. Four Li-ion batteries (Bat. 5, Bat. 6, Bat. 7, and Bat. 18) were fully charged
cyclically at room temperature (24 ◦C) and then fully discharged. The batteries were
charged with the constant current-constant voltage (CC-CV) mode with a constant current
of 1.5 A until the battery voltage reached 4.2 V. The battery was then charged in a constant
current mode. Then, charging was continued in a constant voltage mode until the charge
current dropped to 20 mA. Discharging was performed at a constant current mode of 2 A
until the discharge voltage dropped to 2.7 V for Bat. 5, 2.5 V for Bat. 6, 2.2 V for Bat. 7, and
2.5 V for Bat. 18. The nominal capacity of the batteries is equal to 2 Ah. EOL is reached
when the capacity value of the respective battery falls below 70% of the nominal capacity
(from 2 Ah to 1.4 Ah).

Another step of data preparation is data cleaning. Since the tests for Bat. 5, Bat. 6, and
Bat. 7 were recorded at the same time, these batteries have the same documented irregular
behavior. To maintain a regular and cyclically ordered sequence, the first measurement
series for both charging and discharging was removed because it was an outlier. Measure-
ment series 12 and 33 were dropped for charging, as the batteries were charged twice here
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without any documented discharge in the meantime. Measurement series 90 was dropped
for discharging, due to a double discharge without documented charging. The charging
process of cycle 170 was an incomplete charge. For Bat. 18, the first charge and discharge
measurement series was also removed because it was also an outlier. In addition, charge
cycles 47 and 58 were dropped because here the batteries were charged twice, without
documented discharge. After data cleaning, the records for Bat. 5, Bat. 6, and Bat. 7 had
166 complete cycles and Bat. 18 had 131 complete charge and discharge cycles.

3.2. Health Indicator Extraction

Capacity and internal resistance are direct health indicators of power degradation, but
they are difficult to measure in real time. Therefore, an effective indirect health indicator is
needed to reflect the performance degradation of the battery. To achieve this, a soft-sensing
method was used. In this method, a directly measured variable that is difficult to measure is
represented by an easily measurable variable or several variables of the existing monitoring
data [23].

The charging process was used for this since it is more stable than the discharging
process. As an example, the voltage and current values for cycles 10, 60, 100, and 160 are
shown for Bat. 5 in Figure 2. The time range of the constant current charge time (CCCT)
decreases as the number of cycles increases. The documented voltages started at different
voltage values. To create the same conditions, the start point of CCCT is the time value
when the voltage value exceeded 3.8 V for the first time. The end point is the time value
when the voltage value of 4.2 V was exceeded for the first time. The respective value for
CCCT was calculated by the difference between the end time value and the start time value.
Figure 3 shows an example of the CC-CV procedure for the 10th cycle of Bat. 5, and CCCT
is also shown. All extracted CCCT values of the 4 batteries are shown in Figure 4.

 
Figure 2. The charge voltage and charge current curves for different cycles.

Figure 3. The charge voltage and charge current curves for Cycle 10.
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Figure 4. The constant current charge time for all cycles for the four batteries.

3.3. Correlation Analysis

The correlation analysis between CCCT and capacity can be used to show the degree
to which the two variables are related. The correlation coefficient indicates the strength of
the correlation in a value range between 0 and 1. A value of 1 indicates a strong correlation
and a value of 0 indicates a low correlation.

Table 1 shows correlation coefficients close to 1 for both the Spearman and the Pearson
analyses for all batteries. This proves that there is a significant linear correlation between
CCCT and capacity. Accordingly, the indirect HI is able to represent the battery performance
degradation instead of the capacity.

Table 1. The Spearman and Pearson correlation analysis.

Correlation between CCCT
and Capacity

Bat. 5 Bat. 6 Bat. 7 Bat. 18

Spearman: 0.993 0.996 0.992 0.975
Pearson: 0.997 0.993 0.990 0.986

4. Algorithm and Approach

4.1. General Algorithm

Figure 5 shows the schematic structure of the RUL prediction model. This process has
three different phases. In the preparation phase, data are imported, data are cleaned, the
indirect HI is extracted, and the linear relationship between HI and capacity is tested using
correlation analysis. In the state-of-health (SOH) estimation phase, the GRU NN is built and
trained using the extracted HI. In this work, the SOH describes the expected performance
capability of the battery to a next cycle. The last phase describes the RUL prediction process.
Here, it is checked whether the initially determined threshold value is reached. If the last
prediction value is higher than this, then the predicted value is fed back into the neural
network. A prediction is then made based on this value. This process is then iteratively
repeated until the system falls below the EOL threshold. The RUL describes the expected
cycles during which the battery is still capable of performing under the current conditions.
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Figure 5. The RUL prediction model.

4.2. SOH Estimation Framework

The SOH estimation can be shown in more detail. Figure 6 shows a flowchart of the
SOH estimation process. After HI extraction, data sets were selected that were later used
for training, validation or testing (cf. Section 4.3.1). These data were normalized between
0 and 1 using the min-max scaler to obtain the same scaling for the different data sets.
Subsequently, the selected data sets were split into the train, test, and validation sets and
prepared for the recurrent neural network. The next step is to transform the different data
sets into the appropriate format for Recurrent Neural Networks. For this purpose, the
sliding window method with a constant window size is used in order to create a temporal
reference. Hyperparameters and network architecture were determined to create the GRU
NN. The detailed approach is explained in Section 4.3.2. Then, the model was trained and
evaluated for SOH prediction. Based on this trained model, the SOH and RUL prediction
was subsequently created.

Figure 6. Flowchart for SOH estimation.

4.3. Approach
4.3.1. Data Set Selection

The training of two data sets is a challenging task. Since we were dealing here with
cyclically ordered data sets and the sequence was accordingly decisive, two data sets were
not simply combined into one large data set because this would not correspond to the actual
sequence of this data structure. Therefore, the training was split. The first training data set
was used to build a base model. Since recursive neural networks have the possibility to
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store and pass weights and settings, this opportunity was used to train the second data set
based on the pretrained model and to update the model with additional data.

The data sets were divided according to the following principle: One battery data
set was used for the test in each case. Two batteries were used for training and the fourth
battery was used as a validation set. This procedure was repeated three times so that each
battery had been used twice as a training set and once as a validation set. The combination
with the best result was used for the final model. Table 2 shows an overview of the
final combinations.

Table 2. Overview of the test, training and validation set combination.

Test Train Val

Bat. 5 Bat. 7 and 18 Bat. 6
Bat. 6 Bat. 5 and 18 Bat. 7
Bat. 7 Bat. 6 and 18 Bat. 5
Bat. 18 Bat. 6 and 7 Bat. 5

4.3.2. Hyperparameter Optimization

The hyperparameters were determined and optimized using the following procedure.
First, the sequence length and batch size were selected. The number of epochs was also
defined, but the training of the epochs was stopped early by the early stopping method.
For the optimizer, the superior Adam optimizer was used. The common Mean Square Error
(MSE) was used to determine the loss function. In addition, the architecture of the neural
network was defined using various tests and experiments. Subsequently, with the help of
the learning rate, the training data set was adjusted so that the evaluation metrics produced
values as good as possible. In addition, a visual comparison of the generated regression
with the real curves of the training and validation set was made. In this context, this means
that the difference between predicted graphs and expected graphs was examined. In the
process of different experiments, it was shown that especially here a small difference is
an essential factor for the quality of the later test results. As soon as suitable values were
shown and the trend was correct, the trained model was used to make predictions for the
SOH and RUL of the test set. Table 3 shows the overview of the hyperparameters used.

Table 3. Hyperparameters for RUL prediction model.

Description Parameter

Sequence length 10
Learning rate 9 × 10−4

Number of Epochs 100
Batch size 16
Optimizer Adam

Loss Mean Square Error

The network architecture has 2 GRU layers with 50 neurons. The tanh function was
used for the activation function. Each GRU layer is followed by a dropout layer with a
dropout rate of 0.2 to prevent overfitting. The output layer has a dense layer with a single
output neuron.

5. Results and Discussion

5.1. Evaluation Parameters

In this paper, the quality measures for evaluating the predictions are root mean square
error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and Actual
Error (AE).

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (5)
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MAE =
1
n ∑n

i=1|yi − ŷi| (6)

R2 = 1 − ∑n
i=1(y − ŷ)2

∑n
i=1(y − y)2 (7)

AE = R − R̂ (8)

where ŷ describes the predicted value and y represents the mean value of y. R and R̂ denote
the real and predicted number of cycles until the EOL threshold is reached.

5.2. SOH Results Analysis

Figure 7 shows the predictions of the four batteries created by the GRU NN. The blue
graph indicates the real values of the extracted health indicator. The prediction is shown in
magenta. In addition, the EOL threshold is shown by a horizontal red line and the starting
point is shown by a black vertical line, from which the training is completed and the test
area begins. The prediction is shown as an example for the starting position from 30% of
the test data set.

For Bat. 5, Bat. 6, and Bat. 7, the results show that the SOH estimations approximate
the real trends. The power regeneration peaks can be partially mapped. The recorded
performance curve of Bat. 18 was significantly different relative to the other three batteries.
The curve also shows several local variations. Therefore, multiple and larger differences
can be seen for the SOH estimation, since the model takes longer to represent the real
values. This can be illustrated using the evaluation parameters. This is shown in Table 4 for
start position 0.3. The denormalized values of RMSE, MAE and R2 refer to the SOH scale.

Table 4. The evaluation metrics for the SOH estimations at starting points 0.3.

Battery RMSE MAE R2

Bat. 5 0.0060 0.0041 0.993

Bat. 6 0.0103 0.0065 0.984

Bat. 7 0.0056 0.0037 0.991

Bat. 18 0.0121 0.0089 0.925

  
(a) (b) 

Figure 7. Cont.
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(c) (d) 

Figure 7. The SOH estimation result at starting point 0.3 for batteries (a) Bat. 5; (b) Bat. 6; (c) Bat. 7;
(d) Bat. 18.

Bat. 5, Bat. 6, and Bat. 7 show comparable results for an R2 score close to 1, which
means that the estimated values are close to the actual values. Bat. 6 shows higher
deviations for RMSE and MAE in relation to the other two batteries. This is due to the
stronger characteristics of the power regeneration peaks. The parameters also show the
outliers of Bat. 18. Overall, the results demonstrate that training for the test data set for a
step forward is successful and the GRU NN produces an accurate state-of-health estimation.
This is significant because the subsequent RUL prediction is based on the trained model.

5.3. RUL Results Analysis

Figure 8 shows the RUL prediction based on two pre-trained battery data sets. The
start position of 0.3 of the total data set is shown in green, in magenta, the start position is
0.5 and in orange, the start position is 0.7. In addition, the EOL threshold is also shown
in red.

The predictions show the descending trend of the individual batteries. Bat. 5 to 7 show
a decent curve progression, which becomes flatter as the number of cycles increases. The
predictions of Bat. 18 each follow an almost linear course. The individual predictions in each
battery data set start at the designated position and each shows a similar curve thereafter.
From this can be derived that the focus of the model is on the wide and longer-term
evolution of performance degradation. Table 5 shows an overview of the RUL prediction
for the four batteries at the three different starting positions.

The table shows precise prediction values for Bat. 5–7. For example, at 75 steps into
the future, Bat. 5 is exactly the real value. With 42 steps ahead, the prediction is off by
only 2 cycles. For Bat. 6, the AE RUL is 4 cycles for start point 0.3. For start point 0.5,
the prediction is short by 5 cycles. The prediction value for battery 7 is also accurate. For
example, at 115 steps into the future, the prediction is 5 cycles off the real value and at
82 steps, it is only 3 steps off. Due to the nature of the data, the experiments of Bat. 18 show
ambivalent results. Since the predicted values are close to the actual values, the proposed
model can produce an accurate and long-term RUL prediction.
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(a) (b) 

 
(c) (d) 

Figure 8. The RUL prediction results at different starting points for batteries (a) Bat. 5; (b) Bat. 6;
(c) Bat. 7; (d) Bat. 18.

Table 5. The RUL prediction results with different starting points.

Battery Starting Point Real RUL Pred. RUL AE RUL

Bat. 5
0.3 75 75 0
0.5 42 40 −2
0.7 8 6 −2

Bat. 6
0.3 50 54 4
0.5
0.7

17
-

12
-

−5
-

Bat. 7
0.3 115 120 5
0.5 82 85 3
0.7 48 56 8

Bat.18
0.3 47 - -
0.5
0.7

14
-

25
-

11
-

6. Conclusions

In this paper, an RUL prediction method for Li-ion batteries based on the combination
of deep learning and soft-sensing is presented and described in detail. For this purpose, an
indirect HI is extracted from the monitoring data of the charging area, which can reflect
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the performance degradation instead of capacity. At the same time, the GRU NN was
trained on the basis of various historical data sets to learn the long-term dependencies. For
verification and validation, several experiments were created and presented using the real
NASA Li-ion battery data set. This leads to precise results for SOH estimation and accurate
results for long-term RUL prediction trends. In reality, the variable loads of actual user
charging on the battery are one of the main challenges. In the future, the presented method
will be validated with more practical measured data and compared with further time-series
methods. In addition, the prediction accuracy will be improved by incorporating more of
the existing historical data from the current battery.
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Abstract: Powertrain electrification is bound to pave the way for the decarbonization process and
pollutant emission reduction of the automotive sector, and strong attention should hence be devoted
to the electrical energy storage system. Within such a framework, the lithium-ion battery plays a key
role in the energy scenario, and the reduction of lifetime due to the cell degradation during its usage
is bound to be a topical challenge. The aim of this work is to estimate the state of health (SOH) of
lithium-ion battery cells with satisfactory accuracy and low computational cost. This would allow
the battery management system (BMS) to guarantee optimal operation and extended cell lifetime.
Artificial intelligence (AI) algorithms proved to be a promising data-driven modelling technique for
the cell SOH prediction due to their great suitability and low computational demand. An accurate
on-board SOH estimation is achieved through the identification of an optimal SOC window within
the cell charging process. Several Bi-LSTM networks have been trained through a random-search
algorithm exploiting constant current constant voltage (CCCV) test protocol data. Different analyses
have been performed and evaluated as a trade-off between prediction performance (in terms of RMSE
and customized accuracy) and computational burden (in terms of memory usage and elapsing time).
Results reveal that the battery state of health can be predicted by a single-layer Bi-LSTM network with
an error of 0.4% while just monitoring 40% of the entire charging process related to 60–100% SOC
window, corresponding to the constant-voltage (CV) phase. Finally, results show that the amount of
memory used for data logging and processing time has been cut by a factor of approximately 2.3.

Keywords: lithium-ion battery; SOH estimation; artificial intelligence; lifetime prediction; neural
networks; supervised learning; LSTM; data mining; battery aging

1. Introduction

The necessity of reducing pollutant emissions caused by internal combustion en-
gines of road vehicles and to increase the efficiency of the energy use in vehicles has led
researchers to find new propulsion solutions. Electric motors have been used for road
vehicle-propulsion systems for a long time (‘La Jamais Contente’ in 1899 was the first
car in history that went beyond 100 km/h, and it was electric [1]; however, it was never
used in production because of the difficulties in storing a large quantity of electric energy
on vehicles). Recent technological advancements in Li-ion batteries partially fixed this
problem and allowed electric motors to be employed for automotive traction. As a matter
of fact, in contrast to many other electrical storage systems such as lead-acid batteries,
Li-ion batteries have quite high energy and power density, a low level of self-discharge, a
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low need for maintenance, and good load characteristics, and they can be partially charged
and discharged without being damaged [2–4]. If appropriately managed by a battery
management system (BMS), Li-ion batteries can ensure an acceptable level of safety and
valid lifespan, as essential requirements for automotive applications.

On the other hand, the Li-ion battery package is definitely the most critical and frag-
ile component of the electric vehicle. In order to preserve battery health, it is extremely
important to monitor and oversee its status while in operation. This is done by the BMS,
which ensures that the battery pack works within its safe range and optimal conditions [5].
Cells must always operate within a specific range of temperature and voltage, and they
cannot deliver excessively high currents. These conditions change from cell to cell de-
pending on many factors, such as chemistry type. For instance, when batteries operate
at excessively high temperatures, they may bloat with gas, causing leakage or explosion,
or a thermal runaway may even occur [6,7]. As a result, the BMS must guarantee vehicle
safety. Thermal management of cells is another key issue: at high temperatures, the battery
degrades faster, leading to degradation of performance over time [8–10], while at low
temperatures, the efficiency is lower due to the higher internal resistance of the cell [11].
Overvoltage and undervoltage conditions can also damage the battery chemistry [12,13].
In general, the more the batteries work far from their optimal temperature range which is
commonly between −20 °C and 60 °C, the faster they degrade. According to the literature,
although safe conditions are respected, batteries degrade at varying rates depending on the
stress cycles. This is referred to as cyclic aging [14].

The BMS is critical to safeguard as much of the health and efficiency of the battery
as possible, but it is also very important to know the battery health condition at any
given time. When the battery degrades, its capacity reduces, producing a decrease in
vehicle range, and its internal resistance increases. Specifically, the decrease in capacity
impacts the amount of energy a battery can store, although the rise in internal resistance
restricts the amount of power that can be generated [15]. For this reason, when battery
capacity reaches 80% of its initial value or internal resistence reached 200% of the initial
value, they are ordinarily not used any longer for automotive applications, and this is
considered the conventional battery’s end of life (EOL). They can then be used for a variety
of stationary applications, such as grid energy distribution, thus giving them a second life
before recycling [16]. The health condition can be described by the state-of-health (SOH)
parameter. In some applications where the power capacity is more significant than the
energy amount, the internal resistance is generally regarded a SOH metric, and the SOH is
therefore defined by the ratio between EOL and real internal resistance and EOL and fresh
state internal resistance. In contrast, the SOH is defined as the ratio between the actual
battery capacity and the capacity at the beginning of its life for applications wherein the
available energy plays a significant role [17].

Therefore, depending on the application, capacity or internal resistance should be
measured. Several techniques are proposed in the literature concerning the battery SOH
estimation on board electric vehicles [18–20]. The battery aging state can be theoretically
evaluated by knowing the history of the battery. A semi-empirical formula for the SOH
identification has been exploited in [21,22], taking inspiration from the Arrenius equation
for ideal gases’ behaviour and considering as the main aging agent the lithium-ion loss.
This describes the dependency of the battery capacity loss on the number of cycles, tem-
perature, charge, and discharge rate and depth of discharge. This formula may be useful
both for estimating battery lifetime and for on-board applications. The equivalent circuit
models (ECMs) are well-known model-based strategies that exhibit simplicity and good
accuracy [23]. This method parameterizes the model variables in relation to the battery
SOH by using experimental data [24]. For the battery aging status analysis, these models
take into account the internal resistance increase. This can be accurately measured by using
the electrochemical impedance spectroscopy (EIS) technology [25–27]. The EIS is a precise
and reliable technique; however, nowadays it is rarely exploited for online applications.
The high cost of the instruments required does not allow a large-scale use. Therefore,
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the internal resistence needs to be estimated on board with a different method. Many
empirical data-driven models were developed to this end [28,29]. Among these, autore-
gressive models [30,31] and state observer models coupled with the extended Kalman
filter [32,33] provided good results. A large number of different algorithms can be found,
such as the particle swarm support vector machine algorithm (PSO-SVM) [34], a particle
filter method [35], or even statistical methods [36]. Moreover, neural networks (NNs) seem
to be a promising solution in giving accurate results [37–41]. In these studies, it is demon-
strated that NNs continue to be research hotspots, exhibiting great potential in estimating
SOH under complex aging conditions, particularly when the data are sufficiently abun-
dant, owing to the advantages of approximation and learning speed. Briefly, ML-based
SOH estimation approaches are research focuses and will have a significant impact on the
future of transportation electrification. In particular, the feed-forward neural networks
(FNNs), the convolutional neural networks (CNNs), and the recurrent long short-term
memory (LSTM) are the best-performing NNs according to the literature. A comparison
between them is given by Sungwoo Jo et al. (2021) [42] which shows the best performance
belonging to LSTM compared with the others two types. However, LSTMs may require
high computational cost and memory use due to the dimension of the memory cell and its
complex structure.

The BMS handles the battery SOH identification task, as well as numerous other
functions, including safety control, failure avoidance, and energy consumption optimiza-
tion. Typically, automotive boards are supplied with ARM processors embedding a 32-bit
architecture (multi-core), which can provide adequate processing power [43,44]. However,
it is expected that more and more data and tasks will need to be stored and fulfilled as a
consequence of technological advancements [43]. Performing some tasks by using external
cloud devices could be a solution for this issue, yet it requires effective and reliable internet
communication [45]. In [46], an LSTM for remaning useful life (RUL) estimation by using
multichannel full charge profiles is presented, with considerable improvements over the
baseline LSTM and a significant reduction in the amount of the parameters considered for
the model. However, entire charge cycle data is employed, resulting in a large amount of
memory and processing space. As a result, [47] develops an RNN-LSTM to estimate the
RUL based on partial charge data in the voltage domain range, setting boundary limits.
However, the complete SOC domain is not explored, and it is unclear how much memory
and computational cost may be saved by varying the different SOC window lengths during
charge for SOH estimation. Hence, the computational and memory use reduction for SOH
estimation through a data-driven model is a current research gap.

To help fill the highlighted research gap, the main contribution of this study relates to
the estimation of the battery SOH from partial charging data and varying the SOC window
length through a bidirectional LSTM (Bi-LSTM) in order to reduce the on-board compu-
tational cost and memory use while maintaining a high degree of precision, consistent
with other research studies in the literature that use the full charge data [48]. In particular,
sensitivity analyses are performed to determine the minimum amount of data required
in a battery charge process to ensure a good SOH estimation. Furthermore, the charge
phase (in terms of SOC range) which is most reliable for the SOH estimation is assessed.
This is done by training several Bi-LSTM NNs with data of charging made up of different
lengths and considering different SOC windows. The Bi-LSTM neural network (NN) is a
wide temporal prediction technique used for SOH estimation, and its predictive powers
are derived from learning the forward and backward temporal correlation information
in the input data [49,50]. As part of the learning process, many model parameters are
automatically tuned based on the user-defined hyperparameters selected from a large
pool of solutions. The best hyperparameter training combination has been determined
separately for each experiment with a random-search algorithm. The final aim is to provide
a light methodology from the computational and memory use points of view for the on-
board estimation of the battery SOH, exploiting a data-logged time series that is as short as
possible. Final results presented in the last part of this activity highlight that the method of
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partial charging data can be taken into account for the SOH on-board estimation to have a
reduction of the computational demand at the control unit level with a saving of memory
usage thanks to shorter data logging.

2. Materials and Methods

The current investigation involved estimating the remaining battery life while per-
forming charge–discharge cycles. Several different cycle aging experimental tests have
been performed in the literature [51] considering different cell chemistries. For our pur-
pose, the selected aging dataset was that of Sandia National Laboratories [52]. This study
has focused on the influence of cell operating conditions on long-term degradation of
18,650 nickel–manganese–cobalt (NMC) cells. Several bidirectional LSTM networks were
created to investigate the accuracy in predicting the SOH prediction during partial charging
phases with variable time lengths. The best SOC range for the SOH estimation during a sin-
gle partial charging was finally evaluated. As a result, by knowing the optimal battery SOC
window for SOH prediction, the battery’s health management system may be improved.

In this section, the proposed method composed by sequential steps is discussed and
shown in Figure 1.

Figure 1. The proposed methodology for battery SOH prediction during partial charging processes.

In the data processing phase, the cell signals acquired from cycle aging tests were
analysed, handled, and cleaned. In the second step related to Bi-LSTM networks training
phase, the data were split in training and validation datasets, and then exploited to perform
the learning process of several Bi-LSTM architectures. The random search algorithm was
used as a powerful hyperparameter tuning technique to find the most accurate network
layout. Grid search and random search are often the most prevalent hyperparameter
optimization approaches utilized for this purpose. From a computational cost standpoint,
the latter enables the analysis of a larger number of neural networks to choose the best,
hence lowering the time required to find the optimal hyperparameters [53]. During the
learning process, the created dataset is randomly divided in training, validation, and test
sets in order to train and validate the selected AI logics. Bi-LSTM NNs were used in
this work due to their excellent capability and performance in time-series forecasting and
learning the key paths in cell cycle aging events [54]. The Bi-LSTM is an extendend form of
the baseline LSTM NN, and it is composed of two LSTM networks which process data in
both forward and backward directions. An LSTM-based model contains a “gate” block that
enables storing longer time sequences of data in the memory. Because Bi-LSTM models
enable additional training by forward and backward data processing, Bi-LSTM-based
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modeling gives better performance and prediction with respect to regular LSTM-based
models [55]. As with any AI model, the Bi-LSTM is defined by a set of hyperparameters
that must be specified in order to tailor the model for the specific application. The random
search optimization technique was used here to tune the hyperparameters [56]. In the final
step, the performance of the identified best Bi-LSTM network was evaluated by considering
a test dataset according to two different metrics, i.e., RMSE and a customized accuracy
parameter. The described method was then exploited to find the best partial charging time
length for the accurate and computationally lightweight estimation of the battery SOH.
Finally, the most suitable SOC window for estimating the battery SOH during a vehicle
charging event was assessed.

2.1. Data Preprocessing Phase

In the present work, the cell under examination was of 18,650 type with NMC chem-
istry on the cathode and graphite on the anode. The cycle aging tests have been performed
by using a multi-channel battery testing system. Moreover, the cycle aging protocol is
reported from Sandia National Laboratories [52]. A summary of test equipment and test
operating conditions are, respectively, reported in Tables 1 and 2.

Table 1. Sandia National Laboratories equipment for cycle aging experiments [52].

Cell Type Cathode Anode Capacity (Ah) Test Equipment

18,650 NMC NMC graphite 3.00 High-
precision Arbin

Table 2. Test operating conditions of cycle aging experiments. N° Cycles is the number of charge and
discharge cycles that a cell can process before it reaches its end-of-life condition (20% of capacity loss).

Charge C Rate Discharge Crate SOC Range
Environmental

Temperature
(°C)

N° Cycles

0.50 2.00 0–100 25 661

The cell has been charged through a constant current constant voltage (CCCV) protocol,
with 0.5 C current during CC phase and current taper to 0.05 A on CV. The NMC cell has
been cycled from 2 to 4.2 V during all cycling tests for the whole SOC domain. A portion of
the experimental test acquisition and the exploited CCCV protocol are reported in Figure 2.

The data acquisition system collected the following signals over time:

• Cycle index, number of charge–discharge cycle;
• Cell current [A];
• Cell voltage [V];
• Charge and discharge capacity [Ah];
• Charge and discharge energy [Wh];
• Cell temperature [°C];
• Environmental temperature [°C].

The SOH parameter was computed after the cell residual capacity has been determined
at the end of each ith cycle by using Equation (1),

SOHi =
Qactual,i

Qrated
, (1)

where Qactual,i is the capacity computed at the ith charge–discharge cycle and Qrated is the
cell nominal capacity.

117



Batteries 2022, 8, 209

Figure 2. Example of constant current constant voltage charge profiles measured by Sandia National
Laboratories during the performed experimental cell aging campaign. The cell operating parameters
measured during the tests are (a) cell voltge (V), (b) current (A), (c) charged and discharged capacity
(Ah), and (d) cell and environmental temperature (°C).

Before being used for training the AI algorithms, the acquired data were preprocessed
by checking their robustness and quality. Examples include the identification and removal
of anomalous traces, identified nans, and outliers of output signals. Additionally, the signals
were cut so that the various case studies under consideration could take into account only
the specific data of interest over time in order to accelerate the neural network training
process. Finally, the acquired data were resempled from varying to constant frequency over
time. Specifically, a sample time of 5 s is used to interpolate the considered data. Finally,
the obtained dataset included a number of charging cycles from new cell conditions up to
their EOL. Each cycle comprised of signals over time for cell temperature, voltage, current,
charged capacity, and the corresponding SOH value.

2.2. AI Neural Networks Learning Process

The developed AI model, Bi-LSTM architectures, and the hyperparameters involved
are shown in Figure 3.

The Bi-LSTM model had an input layer with the dimension of that input data, a batch
normalization layer, a Bi-LSTM layer for learning long-term dependencies between cell
parameters, and the SOH value to be predicted, a dropout layer to prevent overfitting [58],
a fully connected layer for the SOH output forecasting, and the output layer, i.e., a regres-
sion layer that computed the loss function. As far as the training process is concerned,
the training method reported in the box of Figure 3 was the algorithm used to perform opti-
mization and is by far the most common way to optimize neural networks. An overview of
all optimization technique can be seen in [59]. The learning phase lasts a certain number of
epochs, which specifies how many times the whole dataset has been thoroughly processed.
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Figure 3. AI model graph based on Bi-LSTM network and hyperparameters investigated by the
random-search optimization technique. The input layer normalizes data with the z-score method.
A batch normalization layer normalizes a batch of data across all observations. The Bi-LSTM layer is
defined by the number of hidden units (hidden state, correspondent to the number of information
remembered between time steps), the activation function to update the cell and hidden state, and the
weights initialization. The dropout layer randomly drops out input elements. The fully connected
layer performs output of one dimension. The output layer computes the half-mean-squared-error
loss for the regression task [57].

This study focused on the estimation of SOH based on charge cycles, which are
examples of time sequences. The problem is therefore based on sequence-to-one regression
networks and the loss function is the half-mean-squared-error shown in the Equation (2),

Loss =
1
2

N

∑
i=1

(ŷi − yi)
2

N
, (2)

where N is the number of responses, yi is the target output, and ŷi is the network’s
prediction for response i. Finally, an early stopping tecnhique was applied when the
performance of the validation phase started to degrade in order to avoid overfitting on
training dataset [60].

2.3. Model Performance Evaluation

Each model was evaluated and selected by taking into account different performance
metrics for the SOH prediction results. Together with test data, the performance of all
trained Bi-LSTM architectures was analysed based on:

• the RMSE considering the test dataset,
• the coefficient of determination R2, and
• the customized regression accuracy (CRA) coefficient, which compared the predicted

SOH, ˆSOH, with the corresponding measured value, SOH through an identified
threshold thr.

The specific performance evaluation of the neural networks and the selection of
the best hyperparameter values are widely discussed and analysed in the Results and
Discussion section.

2.4. Variable SOC Windows during Partial Charging Events

The time required to fully or partially charge the battery pack of an electric car is a
crucial issue for most drivers. Depending on the charging power available from the grid,
the battery pack charging process may take up to several hours. As a result, the current
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effort focused on determining the appropriate partial charging length as a trade-off in terms
of accuracy and computational cost for on-board SOH estimation. Moreover, restraints
in memory usage and data storage capacity is a widely known issue in modern on-board
control units for passenger cars. Hence, reducing the data logged on the BMS could solve
this problem. In particular, the shorter the length of partial charging data logged over time,
the smaller the memory required and the computational cost for on-board data processing.
Furthermore, the dataset sampling rate is a relevant aspect in memory use reduction. Due
to the low dynamic range of the signal of interest, the sample rate for this activity has been
set at 0.2 Hz.

The approach described in the previous section was developed in order to estimate
the cell SOH by using only a portion of the data related to the overall battery charging
process. In the first test scenario, before running the train–test split process regarding data,
various lengths of partial charging segments over time were considered in the preprocessing
step. In order to consider fixed portions of the 0–100% SOC window, the time lengths
investigated were determined as a percentage. It should be noted that the more aged a cell
is, the shorter the amount of data logged for a certain percentage of the SOC window due
to capacity fading, as seen in Figure 4.

Figure 4. The acquired (a) current (A) and (b) voltage (V) are plotted as time series for each indepen-
dent charging cycle.

Therefore, different data series of partial charging were expressed as a percentage of
the total SOC domain and the retained SOC intervals were:

• 80%
• 60%
• 40%
• 20%.

The partial charge segments were collected for each single cycle over time considering
a random starting point. The cut point was randomly chosen among a certain area of points
to guarantee that the segments were mathcing the whole length data. If nk is the length of
the kth cycle in terms of samples data over the entire SOC domain, L is the selected length
as partial charging size related to the specific SOC window, the cut space S from which the
segment starting point was randomly selected can be defined in Equation (3):

0 ≤ S ≤ nk − L. (3)

Examples of retained partial charging segments, respectively related to SOC ranges of
80%, 60%, 40%, and 20% with respect to the entire SOC window, are highlighted in Figure 5.
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Figure 5. Operating current and voltage of few partial charging segments. (a,b) are operating current
and voltage of the partial charging length equal to 80%. (c,d) are operating current and voltage of the
partial charging length equal to 60%. (e,f) are operating current and voltage of the partial charging
length equal to 40%. (g,h) are operating current and voltage of the partial charging length equal to
20%. In the graphs, the black lines is the full size of data (equal to 100% of length).

In order to proceed with the learning process for the Bi-LSTM neural networks,
the dataset of each partial charge segment was randomly subdivided into training, vali-
dation, and test data [61]. Here, an 80–20% split was retained between the training and
validation dataset on one hand, and the test dataset on the other. The features were the cell
operating parameters, such as voltage (V), current (A), charged capacity in time (Ah), and
cell temperature (°C). The target was the SOH values to be predicted by the model.

2.5. Best Partial Charging Length and Optimal SOC Window Identification for SOH Estimation

In this section, Bi-LSTM networks were trained, and the optimal topologies for each
charging length considered were identified. The purpose of the investigation was to
determine the optimal SOC range for estimating the remaining life of a cell during its
charging process. Before analyzing the best SOC window for the SOH estimation, it was
necessary to determine the optimal partial charging length Lopt. Indeed, a trade-off between
prediction accuracy (RMSE, CRA), computational cost and memory use was analysed for
the on-board SOH estimation by control units of Li-ion battery packs.

A sensitivity analysis was conducted over the best 1, 5, and 10 Bi-LSTM networks
considering RMSE and CRA for each charging length. The computational costs for each
considered charging length were investigated, retaining the time required to run the
numerical models for cell SOH estimation. Moreover, the memory storage capacity was
analysed based on the memory used by the models and the data logged. Finally, the trade-
off-based optimal input length was found and employed for the best SOC window analysis.
A complete explanation of sensitivity and trade-off analysis will be described in the Results
and Discussion section.

Once the optimal partial length Lopt was obtained, a new dataset was generated by
cutting data at different starting points among the full size data of cycles. Particularly,
the cut points were defined at each 10% step in the SOC window until reaching the last
point, which guaranteed the contiguous size of data, i.e., while respecting the 0% and 100%
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SOC limits. Hence, the SOC windows SOCwin among the entire domain are shown in
Equation (4) and expressed as a percentage of size data of a single charging cycle:

SOCLopt = [0; Lopt], [10; Lopt + 10], ..., [100 − Lopt; 100]. (4)

For instance, if the optimal length Lopt was observed to be 40%, then the SOCLopt is
reported in Equation (5):

SOC40 = [0; 40], [10; 50], [20; 60], [30; 70], [40; 80], [50; 90], [60; 100]. (5)

Considering the example of dataset shown in Figure 5 for Lopt equal to 40%, the related
charging data are illustrated in Figure 6.

In this analysis, once Lopt was determined, the same split of data was preserved
between training, validation, and test. This allowed for a careful analysis of the findings
pertaining to the selection of the threshold value thr utilized in the definition of the CRA,
as stated in the Results and Discussion section.

As far as the learning process of the neural networks is concerned, the top 30 Bi-
LSTM-trained networks from the previous section were used for a new learning process.
However, the regression task, the feature definitions, and the target variable were identical.
Finally, the optimal SOC range for capacity degradation estimation during charging events
was determined.

Figure 6. Fixed SOC window equal to 40% moving over the entire domain, for the generation
of datasets. (a.1,a.2) are, respectively, current and voltage of SOC window [0,40]. (b.1,b.2) are,
respectively, current and voltage of SOC window [10,50]. (c.1,c.2) are, respectively, current and
voltage of SOC window [20,60]. (d.1,d.2) are, respectively, current and voltage of SOC window
[30,70]. (e.1,e.2) are, respectively, current and voltage of SOC window [40,80]. (f.1,f.2) are, respectively,
current and voltage of the SOC window [50,90]. (g.1,g.2) are, respectively, current and voltage of SOC
window [60,100]. In the graph, curves for the entire cycles are plotted in black.

3. Results and Discussion

In this work, an AI-based SOH estimator was developed considering partial charging
of a Li-ion cell to reduce the computational cost and memory occupancy for BMS appli-
cations. As already detailed in the Materials and Methods section, cycle aging tests were
exploited for model developing, and through an optimization technique Bi-LSTM network
architectures were established for their high performance in forcasting task and managing
time-dependent data.
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Before delving further into the numerical findings, a broad view of the performance
metrics retained in analyzing the outcomes must be provided. The performance of the
trained models was assessed by taking into account the estimation capabilities over the
test dataset. In general, the model outputs were studied by comparing them with real
targets in terms of the absolute error shown in Equation (6). The main metrics considered in
order to evaluate the quality of the model predictions were RMSE reported in Equation (7).
The coefficient of determination R2 is reported in Equation (8) along with the customized
regression accuracy (CRA). The CRA parameter can be defined by considering the problem
to be similar with a classification task whereby the result was evaluated as correct if the
value of the absolute error was lower then a specific threshold, as shown in Equation (9).
We have

Ei = xi − x̂i (6)

RMSE =

√
∑n

i=1 Ei
2

n
(7)

R2 = 1 − ∑n
i=1 E2

i
∑n

i=1(xi − x̄i)2 (8)

CRA =
∑n

i=1 Ti

n
× 100 with :

{
Ti = 1 i f |Ei| < threshold
Ti = 0 i f |Ei| > threshold

(9)

xi was the target value, x̂i was the model output, x̄i was the mean of the dataset label
considering that each experimental test in the dataset had a number of samples equal to n,
and Ei is the residual between target and predicted values. All the results shown in this
section are derived from the validation of the model on the testing data.

As seen in Figure 7, the threshold value defines the accuracy of the model prediction.

Figure 7. Sensitivity analysis of the neural network’s accuracy depending on the threshold value as
described in Equation (9).

In order to perform the sensitivity analysis, the best NN was determined for each
charging length by minimizing the RMSE metric. Looking at Figure 7, the charging length
equal to 40% is observed to have the most rapid growth and to be the only one reaching
the 100% accuracy among the partial charging lengths. As far as the sensitivity analysis is
concerned, a threshold of about 1% was chosen. Here, the threshold represents the tolerance
of the estimated cell SOH compared with the related measurements. The 1% tolerance
value appears to be consistent with the literature [62] because it has been demonstrated to
limit the error in the cell SOH estimation within 2.2%. With the selected threshold value
and for a partial length of 40%, the CRA reaches almost 80%. The results in Figure 7 are
based on Analysis #1, where the training dataset for Bi-LSTM processing was created by
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randomly choosing several parts along the SOC domain in order to investigate which
is the lower charging length and which still guarantees acceptable accuracy in cell SOH
estimation. However, the overall accuracy of Analysis #1 is much lower than Analysis #3,
where, in order to analyze which is the best SOC charging window for SOH estimation,
each network was trained, respectively, with data from the same SOC window. Hence, in
the latter analysis, the prediction results are far greater, and the threshold value may be
drastically cut.

3.1. Analysis #1: Variable SOC Windows for Partial Charging

After the definition of the metrics involved in the analysis of the SOH estimation
accuracy, the present section focuses on the study of the influence of each partial charging
length over cell SOH forecasting. The trained model’s prediction results, in terms of CRA
and RMSE are shown (after the training process phase was performed by the random-search
technique) in Figure 8.

Specifically, the top one, five, and 10 trained Bi-LSTM networks are presented for each
percentage of charging length analyzed based on the performance standard deviations.
The overall trend of CRA is directly proportional to the length of the partial charging
considered. Increasing the charging length from 20% to 40%, the test CRA of the five best
networks increases by approximately 7%. From the test RMSE point of view, even if the
boundary cases 20% and 100% are, respectively, the worst and the best options, the trend
of the five best networks changes. Being an AI model based on data, a large number of
observations are required to find and recognize some specific patterns, especially when
random approaches are exploited for generalization purposes. However, the objective of
the study is to understand and investigate whether high accuracy can be attained for the cell
SOH estimation with only partial charging events. For instance, looking at Figure 8, it can
be seen that an accuracy level of roughly 77% can be attained by a network setup by using
an input of 40% of the SOC window during a charge phase. The accuracy definition pertains
to the CRA with a threshold parameter value of 1%. Given the customized nature of this
metric and the randomness associated with the selection of hyperparameters and training
data for the Analysis #1, a CRA value of 77% is not optimal (higher values are reached for
the analysis #3). However, the 40% data length achieves very good RMSE and R2 scores
compared to the literature. Moreover, excluding the 100% length case corresponding to
the full SOC domain, the 40% data length case has the lowest RMSE error. This indicates
that an optimal Bi-LSTM configuration is not found for each charging length case by the
random process approach, although it is theoretically possible that this could occur after
several additional iterations. Finally, the significant result of the analysis shows that the
SOH of a cell can be carefully detected by just monitoring 40% of the whole 0–100% SOC
charge process.

In Figure 9, the regression task results for the best Bi-LSTM network per each input
charging length are represented.
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Figure 8. (a) CRA sensitivity analysis of the best one, five and 10 trained networks according to the
RMSE on testing dataset. (b) RMSE sensitivity analysis of the best one, five and 10 trained neural
networks according to the RMSE on testing dataset. For partial charging lengths, the minimum RMSE
is equal to 0.0068 corresponding to 40% data length.

As summary results, Tables 3 and 4 resepectively report the validation performance
of the developed models and the details of trained Bi-LSTM architectures for each SOC
window length.

Table 3. Analysis #1: Best neural network regression statistics.

Data Length
[% of SOC]

100 80 60 40 20

m 2.67 5.82 9.92 8.81 3.68

q 0.97 0.93 0.88 0.89 0.96

Test RMSE
× 1000

5.65 8.04 7.33 6.80 8.93

Test R2 0.99 0.97 0.96 0.96 0.96

Table 4. Analysis #1: Best neural network training and architecture parameters.

Data Length
[% of SOC]

100 80 60 40 20

Hidden
Layers

1 1 1 1 1

Hidden
Neurons

59 30 29 47 52

State
Activation
Function

tanh tanh tanh tanh softsign

DropOut 0.2 0.3 0.2 0.1 0.1

Batch Size 128 32 64 32 64

Learning
Rate

0.0090 0.0089 0.0060 0.0069 0.0044

Optimization
Algorithm

sgdm sgdm adam sgdm adam

Training
Epochs

190 84 108 264 186
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Figure 9. Best neural network regression performance. (a) refers to the full charging length equal to
100%, (b) refers to the partial charging length equal to 80%, (c) refers to the partial charging length
equal to 60%, (d) refers to the partial charging length equal to 40%, (e) refers to the partial charging
length equal to 20%. The black points represents the correlation points between predicted and target
values. The green dashed line is the bisector, and the red dashed line is the fitting regression line. The
regression parameters can be observed in Table 3. The predicted SOH points over the entire cycle
aging test are those of test set for perfomance validation.

3.2. Analysis #2: Computational Cost and Memory Occupancy for Best SOC Charging Window
Length Identification

In the on-board implementation of an SOH estimator, the computational power and
memory occupancy are critical issues in current vehicle control units. In the present work,
a profiling analysis was investigated as a performance metric together with CRA and RMSE
in order to identify the best SOC window length for capacity fade monitoring. Hence,
a profiling approach was developed to quantify the benefits of the proposed method
in terms of computational costs and memory usage. In Figure 10, the computational
performance required by the electronic control unit for the processing phase is shown.

The elapsed time in Figure 10 was computed by considering the average time for 10 runs
among the best 30 neural networks for each charging dataset input length. The elapsed time
seems to be almost linear. The computational time was processed through a laptop with
Intel(R) Core (TM) i7-10510U CPU @ 1.80 GHz and 16 GB of RAM. The memory occupancy
of stored data is plotted against input charging length and the figure clearly shows a linear
behaviour. The longer the time series considered for the processing phase, the higher the
space required by the memory. Finally, the memory used for the Bi-LSTM network size was
computed as the required space to store the top 10 neural networks architectures for each
data length. The main memory reduction factor is due to the dataset size reduction, which is
clearly linear. On the other hand, the Bi-LSTM model sizes vary according to the same range
(20 kB to 230 kB) for each input data length. As a consequence, the choice of the suitable
SOC window length does not depend on the model dimension in this case.
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Figure 10. The plotted values are referred to the results shown in Analysis #1. (a) Time consumption
during neural network prediction and depending on SOC window length. (b) Memory occupancy by
logging data and depending on SOC window length. (c) Memory occupancy by Bi-LSTM networks
and depending on SOC window length.

3.3. Analysis #3: Best SOC Window Identification for Optimal SOH Estimation

Considering the results obtained by Analysis #1 and Analysis #2, it can be assumed
that the configuration with the 40% length of input data is the best SOC window length
Lopt in terms of cell SOH estimation capability and computational lightweighting trade-off.
Therefore, the present section is focused on this charging length value.

In this part, we investigated what specific part of the charge process contains more
information about the battery SOH, allowing a better estimation of the battery’s remaining
lifetime. The analysis results for Lopt = 40% are shown in Figure 11.

As shown in Figure 11, higher performance in terms of CRA and RMSE are obtained
due to an accurate reporting of the partial charging start points.

The presented analyses report that the last charging SOC window (with a range
between 60% and 100%) guarantees the highest CRA and the lowest RMSE on the cell
SOH estimation. Hence, this range is considered to be the optimal SOC window for the cell
SOH estimation. Considering the input data representation in Figure 6, the optimal SOC
charge range of 60% to 100% corresponds to the constant voltage (CV) phase of the charging
process. The CCCV tests are widely employed for the cell SOH estimation and assessing the
battery performance while aging [63]. Specifically, the partial CV charging phase is proven
to be the most suitable for SOH estimation holding more information and robustness about
capacity fade [64]. However, instead of considering a single CV trace, the present work
compared and analysed different partial charging lengths over the entire charging process
domain. In fact, concerning the best Bi-LSTM neural network, it is important to highlight
that the other portions of the domain achieve remarkable results with a CRA accuracy that
consistently approaches 90%. Moreover, it is interesting that the RMSE value for the 0–40%
trace is only slightly higher, i.e., 0.0054, than the best value of 0.0012 for the 60–100% trace.
However, it should be noted that evaluating the top 15 or 25 neural network configurations
displays higher differences between the SOC windows. This confirms the prevalence of the
typical aging pattern in a certain SOC range, i.e., 60–100%.
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Figure 11. Sensitivity analysis of the best 15 and 25 neural networks according to the RMSE on the
testing dataset for Lopt = 40%. (a) CRA trend depending on the input SOC window selected. (b) Test
RMSE ×1000 depending on the input SOC window selected.

In Figure 12, the regression results for the best Bi-LSTM network for each SOC charge
range considered were represented, and we can observe that the 60–100% range case has
the smallest deviation in the regression line by bisector, and it has the predicted points
densely packed on the bisector.

Figure 12. Best neural network regression performance. (a) refers to the SOC window [0,40], (b) refers
to the SOC window [10,50], (c) refers to the SOC window [20,60], (d) refers to the SOC window
[30,70], (e) refers to the SOC window [40,80], (f) refers to the SOC window [50,90], (g) refers to the
SOC window [60,100]. The black points represents the correlation points between predicted and
target values. The green dashed line is the bisector, and the red dashed line is the fitting regression
line. The regression parameters can be observed in Table 5. The predicted SOH points over the entire
cycle aging test are those of test set for perfomance validation.

As summary results, Tables 5 and 6 show, resepectively, the validation performance of
the developed models and the details of the trained Bi-LSTM architectures for each SOC
charge range analysed.
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Table 5. Analysis #3: Best neural network regression statistics.

Charge
Segment
SOC [%]

0–40 10–50 20–60 30–70 40–80 50–90 60–100

m 0.96 0.90 0.96 1.02 0.98 0.98 0.99

q 3.29 7.99 3.82 −1.59 1.34 1.35 0.30

Test
RMSE
×1000

5.45 7.52 5.23 4.09 4.81 3.12 1.27

Test R2 0.98 0.95 0.98 0.99 0.98 0.99 0.99

Table 6. Analysis #3: Best neural network training and architecture parameters.

Charge
Segment
SOC [%]

0–40 10–50 20–60 30–70 40–80 50–90 60–100

Hidden
Layers

1 1 1 1 1 1 1

Hidden
Neurons

15 15 65 54 42 51 51

State
Activation
Function

tanh tanh softsign softsign tanh softsign softsign

DropOut 0.3 0.3 0.3 0.2 0.5 0.5 0.5

Batch Size 16 16 32 64 64 32 32

Learning
Rate

0.0098 0.0098 0.0055 0.0099 0.0086 0.0083 0.0083

Optimization
Algorithm

sgdm sgdm rmsprop sgdm sgdm sgdm sgdm

Training
Epochs

92 30 43 155 103 91 62

3.4. Best SOC Window: Training and Validation Information

In this final section, training and validation performance details about the best Bi-
LSTM network for the best SOC window of approimately 60–100% were discussed. As
already explained, the performance in terms of CRA and RMSE of this trained network
with the homogeneous dataset are much more analytically compared with Figures 8 and 9
from Analysis #1. The statistical metrics and Bi-LSTM architecture details are those shown
in Tables 5 and 6. In Figure 13, the training history along the epochs are reported, comparing
the loss function between the training dataset and validation dataset.

The learning process shows a trend that seems to be in line with good fit results, thus
excluding overfitting and underfitting of a training phase. Finally, Figure 14 plots the SOH
predicted points as those composing the test set among all aging cycles.

The results shown in the figure ensure promising performance in SOH estimation
capability reaching 100% CRA and a low residual error for each cycle prediction, i.e., that
the uncertainty of prediction is within 1%. However, because of the strong forecasting
performance, it is feasible to achieve the same accuracy value of 100% in an area of un-
certainty (threshold) decreased to 0.4% by analyzing the punctual error. For the sake of
clarity, the CRA defines the percentage by which a model estimation may fall within a given
uncertainty range of the target. The amplitude of the range is described by the threshold
parameter value.
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Figure 13. Training process along the epochs of Bi-LSTM related to the best SOC range.

Figure 14. Neural network SOH estimation performance on testing dataset. # Aging Cycles is the
number of cycles that one cell has cycled.

4. Conclusions

This study proposed a computationally lightweight methodology for the cell SOH
estimation on board electric vehicles during partial charging processes. Several Bi-LSTM
neural networks were trained, exploiting different datasets made of battery-charging
data time series with varying lengths and random selection of the start point within
the battery SOC domain. The proposed methodology identified the best SOC window
length as a trade-off between the prediction accuracy and the computational cost for on-
board SOH estimation. Moreover, the optimal SOC charge range which allows higher
performance for the cell SOH estimation is identified. The proposed neural network
considers time series made of the cell current, voltage, temperature, and the capacity
charged while the output is the single regression value of the SOH. The case study retains an
18,650 cell with 3 Ah capacity and nickel–manganese–cobalt chemistry whereas the dataset
is part of a collection of cycle aging tests performed by the Sandia Nation Laboratories.
The results are consistent and show that the battery SOH can be predicted with the highest
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error of ±0.4%, monitoring just the last 40% of the SOC window (CV phase) of the total
CCCV charge process by reducing the memory occupancy in the BMS for charge data
logging and the computational time by a factor of about 2.3. Just a single cell operating
condition has been considered in this study, consisting of charging and discharging at
constant current and environmental temperature. In future work, the methodology could
be extended to a wider range of working conditions, including additional temperatures,
charging and discharging operations. Furthermore, the length of the charge segment to be
monitored has been identified through a process that does not allow us to find the globally
optimal solution. Therefore, additional improvements could be obtained by developing
appropriate fine-tuning methodologies. An additional future development concerns the
study of optimization of Bi-LSTM neural network architectures constrained to having
smaller dimensions.
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SOCwin SOC window
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Abstract: With the widespread use of Lithium-ion (Li-ion) batteries in Electric Vehicles (EVs), Hybrid
EVs and Renewable Energy Systems (RESs), much attention has been given to Battery Management
System (BMSs). By monitoring the terminal voltage, current and temperature, BMS can evaluate the
status of the Li-ion batteries and manage the operation of cells in a battery pack, which is fundamental
for the high efficiency operation of EVs and smart grids. Battery capacity estimation is one of the
key functions in the BMS, and battery capacity indicates the maximum storage capability of a battery
which is essential for the battery State-of-Charge (SOC) estimation and lifespan management. This
paper mainly focusses on a review of capacity estimation methods for BMS in EVs and RES and
provides practical and feasible advice for capacity estimation with onboard BMSs. In this work,
the mechanisms of Li-ion batteries capacity degradation are analyzed first, and then the recent
processes for capacity estimation in BMSs are reviewed, including the direct measurement method,
analysis-based method, SOC-based method and data-driven method. After a comprehensive review
and comparison, the future prospective of onboard capacity estimation is also discussed. This paper
aims to help design and choose a suitable capacity estimation method for BMS application, which
can benefit the lifespan management of Li-ion batteries in EVs and RESs.

Keywords: lithium-ion battery; battery management system; capacity estimation; electric vehicle;
battery degradation

1. Introduction

On the background of energy crisis and global warming, applications such as renew-
able energy systems and new energy vehicles (Electric Vehicles (EVs) and Hybrid EVs) have
become a necessary way of saving energy and decreasing carbon emission [1,2]. As the key
component in the power supply of the EVs and Renewable Energy Systems(RESs) [3–5],
the energy management of the battery pack directly affects its performance in various
operation conditions [6,7]. Due to its high energy density, long service life, no memory
effect, etc. [8,9], the Lithium-ion (Li-ion) battery has become a first choice for EVs and
RESs [10]. For example, lithium iron phosphate (LFP) has a 90~140 Wh/kg energy density
and up to 2000 life cycles, which usually consists of LiFePO4 cathode and graphite anode.
In addition, Li-ion battery chemistries also include lithium Nickel Manganese Cobalt oxide
(NMC) and lithium Nickel Cobalt Aluminum oxide (NCA) with a higher energy density
(140~250 Wh/kg) [11]. Recently, battery manufacturers have also developed new products
with relatively superior performance, such as the blade battery (LFP) from BYD which
has good thermal safety characteristics through nail penetration tests [12]. Thanks to its
excellent properties, the scope of Li-ion batteries has also expanded to various areas like
robots, Automated Guided Vehicles (AGVs) and consumer electronics. Especially, with the
concept of low carbon, Li-ion batteries will play an important role in the future. According
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to Research and Markets research data in Statista [13], the global lithium-ion battery scales
to about 185 GWh in 2020, and the market is expected to grow to 950 GWh in 2026 as shown
in Figure 1.

Figure 1. Global battery demand 2020–2026.

A typical structure of the Battery Energy Storage System (BESS) is illustrated in
Figure 2, which mainly includes battery cells, Battery Management System (BMS), Power
Conversion System (PCS), etc. Among all the components, BMS is responsible for the
safety operation of the cells in the BESS. The functions of BMS include state estimation,
voltage/temperature monitoring and fault diagnosis and warning. One key parameter here
is the battery capacity representing the maximum Ah throughput at present. In essence,
the battery capacity is the number and energy of the electrons inside the electrodes [14,15].
One consensus is that the Li-ion battery capacity will fade with battery degradation, which
could be influenced by numerous external factors in operation conditions. Although the
degradation of Li-ion battery can be briefly divided into two modes: Loss of Active Materi-
als in electrodes (LAM), and Loss of Lithium Inventory (LLI), it is difficult to distinguish the
aging modes in reality. However, the capacity of an Li-ion battery is critical for the energy
management decision marking of BMS. For example, the battery State of Charge (SOC)
represents current energy left, which is a ratio of the present Ah amount to its capacity [16].
It is impossible to obtain an accurate SOC without knowing the battery capacity. Once
a precise SOC is received, BMS can choose when to charge or discharge each cell. In
order to avoid the overuse of the Li-ion battery, its capacity should also be clearly defined.
Otherwise, safety hazards, such as failure and thermal runaway [17,18], may exist when the
Li-ion battery reaches its End-Of-Life (EOL) [19]. Capacity is also a fundamental index for
the secondary use of the Li-ion battery [20,21]. In general, the battery capacity is especially
important for the lifespan management of the cells by BMS [22,23].

Figure 2. Structure of the battery energy storage system.
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Battery capacity is usually regarded as the indicator of its lifespan, and it is believed
to reach its EOL once the battery capacity reaches 80% of its initial value [24]. An accurate
capacity can improve the accuracy of SOC estimation, thus enabling the users to perform
charging operations and battery maintenance prompt. A slightly changed capacity will
gradual deteriorate the battery’s electrical and thermal characteristics and further lead
to other severe safety issues [25]. However, a series of barriers hinder an accurately
measurement of the Li-ion battery’s capacity. One primary fact is the capacity of Li-
ion battery is related to current rate and temperature [26,27] considering the effect of
electrode kinetics. Then, it is easy to understand that the Li-ion battery’s capacity greatly
influences the working conditions of the battery pack, which increase the difficulties of
obtaining an accurate battery capacity. Another critical factor is the limitation from BMS,
the computing power of the microprocessor is limited due to the cost [28]. It can be deduced
that onboard implementable battery capacity estimation algorithms are still needed for
most EV applications [29,30]. One expectation is that the fast development of Internet-of-
Things (IoT) and artificial intelligence can improve the capacity estimation techniques for
BMS [31,32].

Great efforts have been made to obtain an accurate battery capacity in the literature,
as shown in Figure 3. The points shown in the graph are the phrases that appear more
than 20 times. The results of the high-frequency word analysis show a strong correlation
between the battery capacity and the EVs. After analyzing the results, battery capacity is
often used as an additional result for SOC estimation, or as a representation of energy and
working efficiency. With the current market expansion and safety requirements, the battery
capacity has become extremely important for battery health. From the analysis rules that
brighter the node color means a more recent research period, the study of battery capacity
has totally become a hot area with the keywords related to battery health all existing in
brighter color. In the past, most works related to BMS focused on battery SOC [33,34].
With the wide application of EVs and RESs, the battery State-Of-Health (SOH), capacity,
safety and Remaining Useful Life (RUL) are becoming the points of discussion. We have to
mention that more than 500 articles have been investigated from 2016 to 2021; all related to
battery capacity.

However, we also realized that there is a limited number of reviews on capacity
estimation, especially for online implementable capacity estimation in BMS. Ref. [35] covers
almost all the battery states including SOH, SOC, State-Of-Power (SOP), State-Of-Energy
(SOE), etc., and selects the current research hotspots for discussion and evaluation. It is
oriented towards the BMS and summaries the features of various states, but the capacity
estimation methods are not well addressed. Refs. [30,36] provide a discussion of the
classification of existing capacity estimation methods. Although the principles for the
classification are different, they both discuss, in detail, the research methods, but [36] is
more focused on the model-based method for Li-ion battery SOH estimation, and [30]
published in 2015 has not covered any discussions about machine learning based methods.
Most of the existing reviews on battery capacity estimation focus on the generalization of
existing methods and do not distinguish between their application conditions or scenarios.
The current booming market of EVs also requires the practicality of onboard BMS. It is
found that there is a lack of a summary of the existing knowledge for onboard capacity
estimation. Therefore, this work overviews and compares the current battery capacity
estimation methods suitable for onboard BMS. The characteristics of various capacity
estimation are reviewed and discussed in this paper.
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Figure 3. High-frequency keyword co-occurrence network for battery capacity on Scopus from 2016
to 2021.

The rest of this paper will be structured as follows: Section 2 briefly analyzes the battery
degradation mechanisms. Section 3 reviews the existing methods for onboard battery
capacity estimation. Discussion and perspectives are expressed in Section 4. Section 5 is the
conclusion of this work.

2. Li-Ion Battery Degradation Mechanism Analysis

An Li-ion battery mainly contains the lithium metal oxide as the cathode, and graphite
as the anode material at present. A separator exists between the two electrodes for insula-
tion, which only allows the pass of Li-ions, and the electrons can only exchange through
external circuits. Additionally, an electrolyte is also needed to assist the transfer of Li-ion.
Thus, it is clear that the Li-ions exchange from the electrodes during battery charging and
discharging [37]. For EVs, the reduction of the battery capacity results in less energy avail-
able, which directly reflects the performance degradation of the battery pack. The capacity
loss of the battery is a non-linear process containing complex aging mechanism. However,
the aging mechanism of batteries cannot be precisely described, especially for the decay
rules of cycle life. To conveniently analyze the battery degradation, recent research usually
divides the battery aging into two main forms: calendar aging and cycling aging [38–41].

Calendar aging refers to the capacity loss during storage, which is mainly influenced
by high temperature and SOC [42–44]. Five aging cases are set in [43] for the calendar
aging of 15 Li-ion batteries for a period between 24 and 36 months. The test results clearly
prove there is a non-linear battery degradation during calendar aging, and the fading rate
of the Li-ion battery is accelerated by increased storage temperature and SOC. Among all
the influencing factors, high storage temperature is believed to be the most critical factor
for battery calendar degradation [45,46]. LLI is the main reason for calendar aging with
high temperature [15].
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However, cycling aging is always accompanied by calendar aging in an actual applica-
tion, which makes it complicated to clarify the degradation procedure. Cycling aging is the
main reason for battery aging in BESS; Belt et al. [47] have tested 107 commercial cells and
the results show that the charge-depleting by cycling aging is far more than the calendar
one. Cycling aging is closely related to the charging and discharging process of Li-ion
batteries. Chemical reactions are essential for the process of Li-ion movement between
the electrodes [48]. Thus, the investigation of battery cycling aging needs to consider
the current rate, Depth of Discharge (DoD) and SOC, etc. [49]. During cycling aging, the
distribution of the current density, SOC and temperature is not consistent inside the cell as
illustrated in [50]. The inhomogeneities of distribution in the cathode material will further
induce mechanical force to fatigue the electrodes, and thus accelerate the battery cycling
degradation.

It is clear that the Li-ion battery degradation is the coupling of multiple factors, as
shown in Figure 4. The degradation modes of Li-ion battery are also LAM and LLI as
previously described [51]. The thickening of a Solid Electrolyte Interface (SEI) and lithium
plating in the graphite anode will both consume the lithium inventory, and thus results in
the LLI of an Li-ion battery. No chemical reaction is ideal without any losses and generates
some extra products. Thus, the reactions during cycling and storage cause the LAM of
both cathode and anode. Both LAM and LLI are observed by the incremental capacity and
differential voltage curves in LFP, LMO (Lithium Manganese Oxide) and LTO (Lithium
Titanium Oxide) batteries according to the results in [52]. Inappropriate temperature ranges,
overcharging or discharging, and high SOC (>80%) are the external factors which can speed
up the battery aging process [53–55]. Complicated degradation behaviors of the battery
make it difficult to clarify all the details in theory.

 

Figure 4. The effect of factors on the battery capacity degradation.

Here, we also illustrate the degradation measurement results of two commercial Li-
ion batteries under calendar aging and cycling aging in Figure 5. With a higher storage
temperature, the capacity of a battery in T = 45 ◦C decreases faster than 30 ◦C. It is also
clear that the Li-ion battery charged with a larger current (2.7 C) degrades faster than with
a lower charging C-rate (1.3 C). A Neware battery tester is used to cycle the battery, more
details about the cycling aging setting can refer to [56].
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(a) Calendar aging 

 
(b) Cycling aging 

Figure 5. Li-ion battery degradation. (a) 36.9 Ah Li-ion batteries stored at SOC = 100% in thermostat
(T = 35 ◦C, T = 45 ◦C), the capacities are measured every four weeks; (b) 1.5 Ah NMC based 18,650 Li-
ion batteries are charged with 1.3 C and 2.7 C, and discharged by 5 C. The capacities are measured
every 20 cycles.

3. Review of Capacity Estimation Methods

Considering the complexity of battery degradation, it is still challenging for the
BMS to accurately predict the battery capacity onboard. Thus, researchers have made
significant efforts to solve this problem. This section will brief introduces the battery
capacity estimation methods in the literature. We mainly divide the methods into direct
measurement methods, analysis-based methods, SOC-based methods and data-driven
methods, whose principle and current processes will be detailed in the following subsection.

A. Direct Measurement Method

The most straightforward way to receive the battery capacity is to accumulate the
charge during its cycling period [57]. Direct measurement methods need a full charge
or discharge of the battery under a specific condition. Current various standards from
International Electrotechnical Commission (IEC) [58], International Organization for Stan-
dardization (ISO) [59] and Institute of Electrical and Electronics Engineers Standards
Association (IEEE-SA) [60] have been proposed for testing the Li-ion battery capacity in a
standard condition. For example, ref. [58] defines a 1/3 It constant discharging current for
EV and 1 It discharging current for HEV, for the purpose of measuring the battery capacity.
As for the capacity measurement in [59], 1 C current is recommended for discharging the
high power battery and C/3 is used for measuring high energy battery. It is not difficult
to realize that the measured battery capacity may not be the same for different C-rates
and temperature settings in those standards. In addition, the test procedure is rather strict
compared with the working environment of the battery pack in a real application. [58]
needs the battery soaked at a predefined temperature for at least 12 h to ensure thermal
stabilization, which requires the cell temperature changes lower than 1 ◦C in 1 h time
interval. The current and voltage measurement accuracy should be less than +/− 1%, and
the time is measured less than +/− 0.1% in [59]. Thus, it is not practical to always meet the
above requirements in a battery application, which limits these test methods to laboratory
tests as references.
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Another concern is that in reality, the BESS cannot always fully charge or discharge in
various load conditions. Direct measurement methods cannot give a result if the battery is
partially charged or discharged, which often happens in real cases. To clarify this point,
an SOC profile of BESS for primary frequency regulation lasting one week [31] is shown
below in Figure 6. Mostly, the SOC of the BESS varies within 40–60%, which confirms the
unrealistic implement of direct measurement methods in a real application. It is noted that
fully charging or discharging the battery is also quiet time-consuming [61].

 
Figure 6. SOC profile of BESS for the primary frequency regulation of grid.

For convenience, an option is to measure the internal resistance to reflect the battery
capacity. The battery internal resistance can be directly measured by applying a current
pulse to the battery [62] as shown in Figure 7. Usually, the current pulse lasts a few seconds,
and then the internal resistance can be calculated by the following Equation,

Rbat =
ΔU
ΔI

=
UA − UC
IA − IC

=
UB − UD
IB − ID

(1)

Figure 7. The DC internal resistance measurement for Li-ion battery.

Unfortunately, the internal resistance is more related to the power fade of the battery,
which does not always exhibit a linear relationship with capacity fade. The capacity
degradation is related to lithium corrosion at the anode, while the power fade is related
to SEI growth and LAM [63]. Moreover, the internal resistance measurement is also
affected by C-rate, temperature and SOC, and the internal resistance is quite small in the
milliohm range [43,64,65]. Thus, some uncertainties may exist if only internal resistance
is used for calculation. Direct measurement methods are strictly performed by charging
and discharging of the battery in laboratories. As for onboard BMS implementation, the
practical application requires estimation methods that can be done with limited complexity.

Therefore, more advanced methods are needed to estimate the battery capacity by
processing the current, voltage, temperature and mechanical stress. Those existing methods
include analysis-based methods, SOC-based methods and data-driven methods, which will
be introduced in the following subsections.

B. Analysis-Based Methods

For indirect methods, the voltage, current and temperature can be recorded by sensors,
and then used to estimate the capacity. In this work, we mainly introduce five kinds
of analysis-based methods with IC (Incremental curve) curve, DV (Differential voltage)
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curve, DT (Differential thermal) curve, mechanical stress and Electrochemical Impedance
Spectroscopy (EIS) as shown Figure 8. At present, more attention is paid to the Li-ion
battery capacity. The capacity, which limits the available energy, is the key indicator for
State-Of-Health (SOH), which is defined as the ratio of current maximum capacity to its
initial capacity [66].

SOH =
Qpresent

Qinitial
(2)

where Qpresent denotes the current capacity and Qinitial is the nominal capacity. Thus, we
will not distinguish capacity estimation and SOH estimation in the following explanations.

 

Figure 8. Schematic of analysis-based method.

(1) Incremental curve analysis method
IC curve analysis method focuses on the variation of capacity with voltage, which is

expressed as,

IC =
dQ
dV

(3)

In the IC curve, the dQ can be easily obtained by Coulomb counting of the current.
Since noise always exists in current and voltage measurements, a filter is usually needed to
smooth the IC curve [52,67,68]. Usually, a low-pass filter [69], Savitzky–Golay filter [70,71]
and Kalman filter [72] have been used to process the IC curve for reducing the noise
sensitivity. A two dimensional Luenberger–Gaussian-moving-average filter is designed
in [68] to enhance the IC curve extraction. Once a smooth IC curve is obtained, the
mechanisms of the Li-ion battery can be analyzed accordingly. The peaks and valleys in
the IC curve are related to the voltage plateau of the battery. In [52], the degradations
of three peaks in the IC curve are related to LAM and LLI, and the small shift of the IC
curve indicates a slight increasement of the battery internal resistance. Then, the shape
variation of the IC curve, especially, the peak and valley changes can be used for analyzing
the capacity degradation trend and capacity estimation. The analysis procedure of the IC
curve is summarized as Figure 8.

Since the insertion and extraction of Li-ions can change the phase transformation of the
material in the electrodes, the IC curve is an effective tool to reflect the battery degradation.
The LLI and LAM of six LFP batteries are quantitatively analyzed by the IC curve in [73]
for the battery health diagnosis, which utilizes the heigh, area, shape and position of the
five peaks in the IC curve. A regression model can be then easily established by using the
variations of the IC peak. A linear regression model characterized by ordinary least squares
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is used for battery health estimation in [73]. Ref. [74] also uses the IC peak as the feature for
battery capacity estimation, which chooses the grey relational analysis as the estimator and
the maximum error is claimed less than 4%. Utilizing the IC peak and the related area, the
capacity of the retired battery is also evaluated in [75]. A IC curve based mode is proposed
in [76] to describe the phase transition behavior of active material of a Li-ion battery, which
is used for battery capacity estimation and later verified on LFP, NMC, LTO chemistries.
The proposed model has also claimed to reduce noise from sampling and measurements,
which is suitable for onboard BMS.

The IC curve mainly extracts the variation of the voltage with Li-ion battery degra-
dation, and thus can be used for aging mechanism analysis. However, a very low current
rate is needed to obtain the IC curve for battery diagnosis, such as 1/10 C in [45]. Ana-
lyzing the battery degradation with IC curve also requires specialized knowledge of the
electrochemical reactions inside the battery.

(2) Differential voltage curve analysis method
DV curve [77] is quite like IC curve in analysis, which is described as,

DV =
dV
dQ

(4)

From Equation (4), we understand that the DV curve can also be obtained from the
current and voltage measurements during charge or discharge. The basic idea to analyze the
degradation of a battery cathode and anode is based on the variation of the DV curve [78].
The battery capacity can be also deduced from the trend of the variation in DV curves.
Despite the requirement of a smooth filter, some publications also choose DV curve as a tool
for capacity estimation. Ref. [79] measures the DV curve of a half-cell, and investigates the
DV curves of positive and negative electrodes, respectively. Features of DV curve related
to LAM and LLI are used for battery degradation estimation. The DV curve changes of
a LTO battery is discussed in [80] to analyze the aging mechanism during a number of
1080 cycling tests. The aging modes of positive and negative electrodes are expressed
by the peak and valley of DV curves, which can be further used as the reference for the
degradation information extraction from a Li-ion battery. A comparison of IC and DV
curves is studied in [52] for the aging mechanism identification of five commercial Li-ion
batteries, and experimental results prove the good consistency of IC and DV curve in battery
degradation mode analysis. In short, using a DV curve for battery capacity estimation
is similar to an IC curve; both utilize the variation of the curve’s shape to analyze the
aging mechanisms and then extract features as the input of a regression model for capacity
estimation. The characteristics of the DV curve can also refer to the IC curve in the previous
section. We have to mention that one good advantage of those methods is the use of direct
measurements from BMS which is low cost to implement. A common challenge is to deal
with the measurement noise in reality [81].

(3) Differential thermal analysis method
Considering that the general measurements from BMS contain current, voltage and

temperature, the differential thermal voltammetry [82] is chosen to diagnosis the Li-ion
battery degradation as,

DT =
dT
dV

(5)

There always is heat generation during the battery operation, which is divided to re-
versible and irreversible heat. The reversible heat is generated by the entropy change of the
electrochemical reaction in electrodes, while irreversible heat is mainly the ohmic resistance
heat, polarization heat and the side reactions heat [83]. Those thermal characteristics are
also charged with battery degradation. Therefore, it is possible to use the temperature vari-
ation during charge or discharge as the indictor for battery capacity estimation [67,84,85].
Here, we plot the DT curve of the Oxford dataset [86] as shown in Figure 9, which indicates
a variation on the peak and valley with the increase of the cycling number.
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Figure 9. DT curve of the Li-ion battery cell in Oxford dataset.

The DT curve of LCO and NCA batteries are analyzed in [85], and the peak and valley
of the DT curve can be used for capacity estimation. The position of the peak and valley in
the DT curve is selected as the features for a Gaussian Process Regression (GPR)-based data-
driven estimator in [87]. Both IC and DT curves are analyzed and compared, which shows
that the MAE of DT curve is 19.50% less than IC curve on Oxford and NASA dataset [88].
Ref. [89] extracts the temperature variation during a 1 C constant current charge process,
the time interval of two temperature cooling areas are selected as the feature for capacity
estimation on both calendar aging and cycling aging.

Compared with IC and DV curves, the DT curve can be suitable for high current
charge or discharge. However, the DT curve is also sensitive to measurement noise. The DT
curve can be used for aging mechanisms analysis because it is essential the heat generation
during the electrochemical reactions. In addition, the connections of the DT curve to battery
aging still need to be investigated.

(4) Mechanical stress analysis method
The volume of the particle will change during the charge or discharge of an Li-ion

battery. Taking an LFP battery as an example, the LFP particle expands by 6.77% during
lithiation [90], while the intercalation of Li-ion in the anode leads to 12% changes in the
volume of graphite [15]. Thus, it is reasonable to use the mechanical stress for battery
performance analysis [91–93].

It is proved in [94] that the thickness of the Li-ion battery varies by 54.5 μm after
the first discharge and the changes of the thickness is 13.5 μm after ten full cycles for a
60-Ah NMC Li-ion battery. It is clear that the mechanical stress of the Li-ion battery will
change both with SOC and battery aging. The swell of a commercial 5-Ah Li-ion battery is
investigated in [95], where the relationship between the battery swelling and C-rate, SOC
and temperature is analyzed. Especially, the authors claim that the ds/dQ can be used for
identifying the phase transition in the negative electrode, and further acts as the tool for
aging estimation. Ref. [96] proposes a force-based incremental capacity analysis method for
Li-ion battery capacity fading estimation, which detects the expansion force of a MNC cell
from a HEV battery pack. The experimental results have proven that the proposed method
is better than IC curve in signal-to-noise ratio. A high relevance of the second derivative of
strain and IC curve are found in [97], where the strain of the electrode can be used for the
state estimation as IC curve. The results also prove the second derivative of strain is less
sensitive to C-rate compared with IC method, which is expected to be more suitable for
real battery-based applications.

Although mechanical stress is believed to be an effective way for battery detection, the
main limitation is the requirement of a specially designed device for swell measurement
such as displacement sensor, pressure sensor, test fixture, etc. In this way, the cost is
increased and also its implementation to a battery pack must be carefully considered for
not destroying its original design.

(5) EIS analysis method
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EIS is an effective tool with high sensitivity to the electrochemical reactions inside the
Li-ion battery; it has been used for battery modelling [98,99], SOC and temperature estima-
tion [100], and also battery degradation diagnosis [101,102]. Generally, EIS is measured in
the battery equilibrium state with small current or voltage injection in a frequency range
between mHz and kHz [103]. The real and imaginary parts of impedance measurement
is selected as the input of a Gaussian Process Regression (GPR) model for Li-ion battery
capacity and RUL estimation, in which the variation of EIS with battery degradation is
shown in Figure 10. The EIS curve turns from blue to red with battery aging. Ref. [104]
combines EIS with ultrasonic time-of-flight analysis to investigate the electrochemical
characteristics and structure variation inside a Li-ion battery when the cycle number of
a battery increases. Refs. [105,106] extract the parameters of ECM from EIS curve, and
then analyze the connections between the parameters and battery aging for estimating the
battery capacity. [107] uses S transform to a fast calculation of battery impedance, and the
zero-crossing point of real impedance R0 is chosen for battery capacity estimation.

Figure 10. The variation of EIS with Li-ion battery degradation with data from [101].

Battery EIS has a strong potential to reflect the electrochemical reactions in the fre-
quency domain, which is expected to have great potential for onboard BMS application.
However, most EIS related battery degradation analysis are based on the commercial elec-
trochemical workstation which is accurate yet expensive. Considering the volume and
weight of the electrochemical workstations, they are difficult to be directly used in an EV
environment. Therefore, two kinds of solutions have been proposed recently to address
the issue of EIS measurement with BMS and machine drive electronics. One method is
to combine with the onboard chargers [108] or DC–DC converters [109,110]. An onboard
charger is integrated with a Dual Active Bridge (DAB) converter for charging and EIS
measurement of the battery pack in EV [108]. The second method is using low power mea-
surement module in a BMS for small AC signal injection. [111] uses Single-Cell Supervisor
(SCS) designed by NXP Semiconductors injecting the AC current to the battery, and the
battery impedance can be calculated by measuring the voltage response. However, there
are still very limited examples on hardware design of EIS measurement [112] considering
the cost of current BMS. Another concern is that the measurement of EIS is easily affected
by noise which hinders a reliable usage of EIS on battery capacity estimation.

C. SOC-based method

An SOC-based methods can be divided into SOC indirect estimation and the SOC
observer-based method, which is illustrated in Figure 11. SOC indirect estimation calculates
the battery capacity through a period of Coulomb counting and SOC variation, which
usually estimates the battery in a short time scale online. The SOC observer-based method
directly estimates the battery capacity utilizing an observer based on battery Equivalent
Circuit Model (ECM) model, which uses only current and voltage as the input, and SOC
and capacity can be estimated synchronously.
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Figure 11. SOC-based method.

(1) SOC indirect estimation
SOC indirect method is essentially based on the coulomb counting equations, which is

expressed by the following equation,

SOC(t2) = SOC(t1) +
1
Q

∫ t2

t1

ηi(t)
3600

dt (6)

where η is the coulomb efficiency, i(t) is the current, and Q is the capacity. From Equation (5),
the battery capacity can be calculated once the SOC variation is known.

LS is a commonly used method for parameter estimation of a linear model, which
offers a mathematical model to fit the experimental data with a minimum residual sum
of squares errors [113]. According to Equation (6), the capacity can be solved by linear
regression with SOC and current information.

Weighted Least Squares (WLS) is calculated by considering the weights of the data
based on an ordinary LS [114]. Based on the linear function structure y = Qx, where y is
measurement, and x is an independent variable. In this case, the model can be expressed
as Y = y − Δy = Q̃X as shown in Figure 12a, where Y is the measurement vector and X
is the independent variable vector, and the measurement errors Δy is considered as the
weightings. Ref. [115] uses the errors from the observations as the weights to calculate a
fitting equation. Capacity is set as a time-varying parameter and then solved by a recursive
approximation [116].

  
(a) WLS (b) TLS 

Figure 12. Data errors on two LS-based method.

Ref. [117] proposes a capacity estimation algorithm based on LS methods for PHEV
and EVs. With the given current signal, the OCV is calculated by LS and the relationship
between SOC and OCV is mapped. Then capacity is obtained by the iteration process.
Wei et al. [118] propose an SOC and SOH estimation based on two LS estimators. Under
the condition that no pre-determined parameters are necessary, OCV is derived by LS
estimator, and then the capacity is converted to linear fitting problem to solve according to
the mapping relationship between OCV and SOC.

Total Least Squares (TLS): During the calculation of ordinary LS, it assumes that the
input data are accurate, but in actual operation process, the input and output data are both
influenced by measurement noise. Presented in terms of data fitting, WLS only accounts
for Δy, while Total-Least-Squares (TLS) accounts for both Δy and Δx. Therefore, TLS is
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introduced for capacity estimation, considering the disturbances from both input and out-
put [119,120]. In this way, the model can be expressed as Y = y − Δy = Q̃X = Q̃(x − Δx)
in Figure 12b, where Δy is the measurement errors and Δx is the input data errors. The TLS
problem can be solved by a singular value decomposition of the matrix, but the multiplier
of the singular value decomposition of the n × n matrix is 6N3 [121]. After analyzing the
calculation of TLS, Rhode et al. [122] find that it is difficult to derive an analytical solution
to the matrix and therefore they propose a recursive form to solve the TLS problem and
satisfactory estimation results are finally obtained. Ref. [123] uses the constraint Rayleigh
quotient as the cost function in the TLS calculation process, which greatly reduces the
complexity of the TLS.

(2) SOC observer-based method
The SOC observer-based method attempts to estimate the battery capacity according

to the SOC estimation results in a dual time scale framework.
As for the SOC observer-based method, the capacity estimation is developed based

on ECMs. The ECMs describe the external characteristics of the Li-ion battery using
resistance, capacitance, and voltage source as shown in Figure 13 [124]. It is believed
that the complexity of ECMs is suitable for online BMS applications [125]. Depending
on different numbers n of the RC networks, which describe the dynamic characteristic
including the polarization characteristics and diffusion effects [126], the Rint model (n = 0),
Thevenin model (n = 1), and dual-polarization model (n = 2) are proposed, respectively [127].

Figure 13. ECM with n-RC.

In existing studies, capacity is often considered as one of the parameters to be es-
timated in parallel with another battery state such as SOC [128]. This is also known as
joint estimation [129]. Based on the coulomb counting Equation (2), SOC estimation and
capacity estimation are coupled. In the joint estimation of SOC–SOH, capacity as a dynamic
parameter is treated as an extended state of the filter, and then parametric filtering is
performed [130,131]. For filters, there are two core components, prediction, and correction.
Predicting the state from the previous moment and correcting the result based on the
observations, the prediction and correction are continuously recursive to complete the
estimation of the state. Figure 14 is a schematic diagram of the filtering process using the
Kalman filter as an example [132,133]. The equations for a stochastic linear discrete system
are described as:

xk = Axk−1 + Buk + ωk (7)

yk = Hxk + υk (8)

where x is the state vector, A is the state transfer matrix, u is the state control vector, B is the
control variable matrix, y is the measurement vector, H is the transformation matrix from
the state vector to the measurement vector, w and v are both noises obeying a Gaussian
distribution, and P is the covariance matrix.

Extended Kalman Filter (EKF): KF is somehow limited to linear systems [134]. In
ref. [135], the researcher linearizes the non-linear OCV–SOC curves into seven segments to
meet the requirements of KF for a linear system model. However, in the case of long-term
battery capacity decrease, as mentioned in Section 1, the degradation process is of much
nonlinearity. Thus the improved KF-based EKF is a better choice for achieving battery
capacity estimation [136]. Ref. [137] proposes a co-estimation of multiple battery states
using the correlation of parameters in the state space. Based on the EKF for SOC estimation
and cumulative charge, the battery capacity is solved simultaneously. Ref. [138] proposes a
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dual filter of state and parameter based on EKF to achieve a simultaneous estimation of
SOC and SOH. The parametric filtering is used to update the capacity online to improve
the accuracy of SOC estimation.

Figure 14. Filtering process of Kalman filter.

Sigma Point Kalman Filter (SPKF): For those situations where the degree of nonlinear-
ity is higher, SPKF is a better choice. SPKF is an improvement of KF without linearization
steps or computing the derivatives [139]. The mean and covariance are obtained by a set
of weighted points passing through the non-linear function. According to the pattern of
choosing the sigma points, SPKF is divided into Unscented Kalman Filter (UKF) [140]
and Central Difference Kalman Filter (CDKF) [141]. Compared with EKF, SPKF avoids
the necessity of complex differential processes and has a better covariance approximation.
However, under more frequent current fluctuations conditions, its accuracy and stability
still cannot be guaranteed [142]. Ref. [143] proposes a UKF-based dual filtering framework
based on the coupling of SOC and capacity as shown in the coulomb Equation (6). Real-time
capacity is updated as recursive filtering of SOC state and capacity parameter proceeds.
Ref. [144] presents a joint estimation for multiple critical states along with an autoregressive
equivalent circuit model. The state space-coupling model is solved using UKF which has
good dynamic tracking properties for multiple states.

Particle Filter (PF): PF is commonly seen in tracking the capacity in the full lifespan
of a battery [145–147]. By employing the Monte Carlo sampling techniques, PF offers
the possibility of dealing with any type of distribution by a proper group of particles or
samples approximating the respective probability density functions [148]. Ref [149] uses
an optimized dynamic single exponential model to describe the degradation of capacity
and particle filtering to complete the optimal state solution. The performance of single-
step, multi-step and long-term capacity prediction based on particle filtering is analyzed
in detail.

It is noted that the time scales of state and parameters changes are different [150].
Typically, the time scale for SOC changes is much smaller. In [151], the time scale of
SOC is set as 1s, while capacity is 60s. Thus, the two variables are filtered separately by
independent filters. In addition, in the common joint SOC–SOH (denoted by capacity)
estimation, the coupled nature of the state space equations requires a high degree of
accuracy for both estimators. Otherwise, the cross-interference between the two will
become a difficult problem for the joint estimation. i.e., SOC and capacity uncertainties can
interfere with each other in the process of information exchange. Ref. [152] proposed the
decoupling of parameter identification and state estimation. The capacity identification
estimator is fully decoupled from the SOC state estimator. Different time scales are adopted
to further improve the accuracy of the results.

As we can find for the SOC-based method, accurate SOC is the important prerequisite
for capacity estimation. However, SOC itself is not an easy measurable status for the Li-ion
battery, which limits the usage of SOC-based methods in reality.

D. Data-driven method
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With the fast development of IoT and artificial intelligence, the daily operation mea-
surement of the battery system is easy to be recorded to a cloud platform which could be
further used for cloud to edge estimation. The data-driven approach is characterized by
a reliance on a large amount of dataset to make decisions and does not require a specific
battery model. In a data-driven approach, a model can be used to map the data as long
as a sufficiently representative sample is available, without the need to pre-determine a
definitive model in advance. In the case of batteries, the operation measurement that we
can collect may contain aging information. The degree of aging can be reflected by certain
characteristics during the charging and discharging process, and the data-driven approach
constructs an approximate model to match the true aging situation with this information.
Figure 15a is a schematic diagram of the data-driven approach application procedure,
which mainly includes three processes: data collection & preprocessing, offline training and
online estimation. The main purpose of data collection is measuring the voltage, current
and temperature during the operation of the battery pack. Then, the data-driven model
can be trained offline with high computing power processor, and the trained model is later
implemented in a BMS for online estimation. In this type of method, the keys lie in the
processing of the data, the extraction of key features and model training, the main data
stream of those processes is shown in Figure 15b.

The existing data-driven method is introduced in the following subsections.
Neural Network (NN): The basic NN is a three-layer structure network including

an input layer, hidden layer and output layer. The input layer neuron can be regarded
as extracting capacity-related features [153]. It is critical to choose a suitable indicator.
Refs. [154,155] use NN to investigate the battery capacity. From the perspective of feature
extraction, the former uses discharge voltage, while the latter adds also the temperature
effects. The weight coefficients from the input layer to the hidden layer or from the hidden
layer to the output layer need to be obtained after training a large number of samples [105].
Ref. [156] chooses to train a generalized regression NN with the battery’s constant current
charging time to estimate SOH. The instantaneous discharging voltage drop and the amount
of Ah-throughout for a certain depth of discharge are captured as features. Ref. [157] uses
the Broad Learning System (BLS) to process historical capacity data and generate feature
nodes as the input layer of the neural network. This method does not require an in-depth
study of the battery aging mechanism, but it also requires at least 25% of the historical
capacity data.

Support Vector Machine (SVM): Support Vector Machine (SVM) is another technique.
The core is to divide the data set in a hyperplane [158,159] so that the geometric interval
between each data point can be maximized in the hyperplane. It can be transformed into an
objective function under constraints to solve the optimization problem. Ref. [160] studies
the relationship between the electrolyte concentration and voltage with the battery capacity.
The non-linear relationship is then fitted by SVM. A Least Squares Support Vector Machine
(LSSVM) is used in [161], with charging voltage, discharging current, temperature, and
cycle times as inputs, and the residual sum of squares error is selected as the cost function
to calculate the capacity retention rate. Ref. [162] uses Particle Swarm Optimization (PSO)
to find the suitable hyper-parameters for the SVM kernel function and trains the impedance
values as the features to complete the battery SOH estimation.

Bayesian learning method: Bayesian methods solve the posterior information with
assumed prior probabilities to infer the unknown parameters [163]. There are a variety of
data-driven methods that use their associated theory, such as the Relevance Vector Machine
(RVM), which provides an output of posterior probabilities based on a Bayesian approach.
Compared to SVM, it eliminates the need for model selection, but it often requires more
training time. The literature uses empirical modal decomposition for battery capacity
data, and sets up a multi-start prediction matrix to train RVM. It reduces the stochastic
uncertainty associated with the starting point of a single prediction and parameter settings.
GPR is derived from the Bayesian framework [164], and uses the Gaussian process prior
knowledge to perform regression analysis on the data. Ref. [165] uses voltage segments in
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short periods during constant current operation as the input of GPR for capacity estimation.
The non-parametric regression properties of the GPR technique allow the estimation to be
adapted to the complexity of the data.

 
(a) Algorithm application procedure 

(b) Schematic diagram of the calculation process 

Figure 15. The basic process of the data-driven approach.

Deep learning method: Deep learning utilizes multiple hidden layers in the net-
work [32], which can reflect more complex mapping between the features and battery
health. Methods, such as Convolutional Neural Network (CNN) [166,167], Recurrent
Neural Network (RNN) [168,169] and Long Short-Term Memory (LSTM) [170,171] have
been used for battery SOH estimation recently, and have shown promising performance
in estimation accuracy. Ref. [167] takes advantage of CNN and Transformers for accurate
SOH estimation of Li-ion batteries, which utilizes the attention mechanism to extract more
important features from the original measurement. A differential evolution grey wolf
optimizer is used in [171] to tune the hyperparameters of LSTM for an accurate battery
health estimation. A hybrid of gate recurrent unit and CNN is shown to estimate the
Li-ion battery SOH in [172], which utilizes voltage, current and temperature as the input of
the network.
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The implementation of data-driven methods relies on the validity of the data and a
complex training process. The advantage is that the model can be adapted to the data
through training, but this also means that a large sampling and training dataset is required
to achieve an accurate estimation.

4. Discussion

From the previous description, there have been a large number of studies on battery
capacity estimation. We realize that some methods require specific implementation condi-
tions. This paper discusses current battery capacity estimation methods for online BMS
implementation, which are briefly divided into: direct measurement methods, analysis-
based methods, SOC-based methods and data-driven methods. Since direct measurement
methods are mostly limited to laboratory tests as a reference, the other three kinds of
methods are compared with pros and cons in Table 1.

Table 1. A comparison of capacity estimation methods.

Methods
Examples &

Relevant
References

Estimation Error Strength Drawback

Analysis-based
method

IC curve
[67–76]

Max relevant error
[4%]

RMSE
[0.0066–0.0605]

Reflect the
chemical

characteristics of
the battery,

Simple model
structure

Noise sensitivity

DV cure
[77–81]

Max relevant error
[3%]

DT cure
[82–89]

Max relevant error
[5.9%]
RMSE

[0.0027–0.0251]

Mechanical stress
[90–97]

Max relevant error
[12%]

EIS
[98–112]

Max relavant error
[2.2%]
RMSE

[0.0098–0.0116]

SOC-based
method

WLS
[114–118]

Max relevant error
[1%] Less computation,

Easy for online
imply

Difficult to cope
with complex

non-linear
problems

TLS
[119–123]

Max relevant error
[0.15%]

EKF
[134–138]

Max relevant error
[0.5%]
RMSE

[0.0306–0.0599]

Closed-loop error
management,

Real-time dynamic
tracking,

Effective to handle
the noise,

Non-linear
systems applicable

Complex model
and parameter

building process,
High dependency

on models,

SPKF(UKF)
[139–144]

RMSE
[0.002–0.1275]

PF and their
variants

[145–149]

Max relevant error
[0.4%]

RMSE [0.0019]

Data-driven
method

NN [153–157] RMSE
[0.0121–0.0223]

No need to focus
on internal

mechanisms,
simple model

building,
high adaptive

capability,
Powerful

approximating
ability,

Non-linear
systems applicable

High level of data
dependency,

offline training
needed,

Large computation
effort,

Over-fitting

SVM [158–162] RMSE [0.03–0.07]

Bayesian method
[163–165]

Max relevant error
[3%]

RMSE
[0.0041–0.0068]

Deep learning
method

[166–172]

Max relevant error
[5%]

RMSE
[0.0032–0.0653]
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Analysis-based methods utilize the electric, thermal and strain characteristics of an
Li-ion battery during charge or discharge, which always need a high precise sensor for mea-
surement. The relationship between the analyzed physical quantity and battery degradation
is closely related to measurement conditions and the materials of the battery chemistry; such
factors limit the usage of the analysis-based method. In addition, professional knowledge
is required to use curves for degradation mechanism analysis. IC and DV curves need to
measure the voltage and current with high accuracy and low C-rate. All the analysis-based
methods should be processed by a specially designed filter for receiving a smooth curve.
The DT curve and mechanism strain are affected by various factors, such as the thermal
management and structural design of the battery pack. The positions of the thermal and
strain sensors in the battery module are still challenging, which limit their current usage
in BMS products. Further investigations of the DT curve and mechanical stress are still
needed to clarify the variation of the thermal and mechanical characteristics with battery
degradation. EIS can detect the electrochemical kinetics inside the Li-ion battery with a
small AC signal injection, which can reflect the battery degradation degree by the battery
impedances, such as Ohmic resistance, polarization resistance, and SEI film resistance. With
a broadband signal injection, the status of Li-ion battery can be analyzed in the frequency
domain. Recently, some chips (DNB1168 [173]) have been made for EIS measurement of
Li-ion batteries, which push the application of EIS to BMS a promising solution for the next
generation BESS.

SOC-based methods rely on an accurate battery model. Although ECMs have been
proven to have a good balance of accuracy and complexity, they are still far from been
satisfied usage in a BMS. If the battery model is not reliable, the SOC estimation error will
later affect the capacity estimation. In addition, the SOC-based methods usually obtain the
results by iterations, which consumes the computing resources of BMS hardware. Thus,
the application of SOC-based method will increase the cost of BMS. How to improve the
computing efficiency and modeling accuracy still needs more further studies.

Data-driven methods treat the Li-ion battery as a black box without the need to deal
with the complicated degradation mechanisms of the battery. However, quiet few data-
driven models have been used in the current BMS. One reason is that the performance of
the data-driven method is closely related to the feature and quality of the measurement
dataset. There is a lack of open source datasets from a real BESS application for training the
data-driven model. In reality, it is also difficult to obtain a labelled dataset, and measuring
all the needed dataset from experimental testbench is costly. Another point is that the
data-driven method lacks interpretability, and the credibility of the estimation results may
be doubtful for real applications. The training of the data-driven model is closely related to
a proper setting of the training procedure, while the training process is also time consuming.
However, with the fast development of IoT and AI, data-driven methods will probably
play a critical role in the future BMSs.

One key point we have to mention here is the materials of the electrodes might affect
the applications of the capacity estimation methods for an application. For example, the
NMC and LFP based battery characterize by a different OCV–SOC profile. The flat voltage
curve of LFP battery corresponding to SOC may influence the capacity estimation accuracy.
Thus, special attentions have to be paid when extracting features from the flat voltage curve
or using OCV as the input of the method. IC curve can reflect the phase transitions of the
electrodes, and probably can be used for feature extraction instead of a flat voltage curve
for LFP battery.

We believe that the future onboard capacity estimation framework will be a hybrid of
data-driven methods and other techniques as shown in Figure 16. Analysis-based methods
can provide health features for the data-driven model. In this way, using an analysis-
based method only needs a data processing procedure, and professional knowledge from
the Li-ion battery degradation can be ignored. An SOC-based method can also be run-
ning in the BMS terminal, and can later collaborate with data-driven method through a
fusion mechanism.
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Figure 16. The prospective of future onboard capacity estimation framework.

5. Conclusions

This paper discusses a variety of methods for onboard BMS capacity estimation, which
are based on different principles. These methods are divided into four main categories, di-
rect measurement methods, analysis-based methods, SOC-based methods and data-driven
methods. With emphasis on the onboard BMS implementable methods, the characteristics
of each method are reviewed and discussed. Analysis-based methods with IC/DV/DT
curves and mechanical strain are suitable for Li-ion battery degradation mechanism investi-
gation. IC and DV curves are easier to be applied to a BMS application since no more sensor
or measurement devices are needed in the battery packs. EIS is a promising solution for
onboard BMS usage in the near future with an update of the hardware. SOC-based methods
rely on the accuracy of the battery model and the iterative process requires more computing
resources from the microprocessor in a BMS. With the development of the cloud-to-edge
technique, data-driven methods will play an important role in the next-generation BESS.

From the methods discussed in this work, we hope to have summarized the recent
progress in the battery capacity estimation area. In the future, a hybrid of various methods
could be a more practical solution for real BMS applications, especially, a combination of
data-driven and analysis-based methods.
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Abstract: The accurate estimation of the state of charge (SOC) for lithium-ion batteries’ performance
prediction and durability evaluation is of paramount importance, which is significant to ensure
reliability and stability for electric vehicles. The SOC estimation approaches based on big data
collection and offline adjustment could result in imprecision for SOC estimation under various
driving conditions at different temperatures. In the traditional GM(1,1), the initialization condition
and the identifying parameter could not be changed as soon as they are confirmed. Aiming at the
requirements of battery SOC estimation with non-linear characteristics of a dynamic battery system,
the paper presents a method of battery state estimation based on Metabolic Even GM(1,1) to expand
battery state data and introduce temperature factors in the estimation process to make SOC estimation
more accurate. The latest information data used in the optimized rolling model is introduced through
the data cycle updating. The experimental results show that the optimized MEGM(1,1) effectively
considers the influence of initial data, and has higher accuracy than the traditional GM(1,1) model in
the application of data expansion. Furthermore, it could effectively solve the problem of incomplete
battery information and battery capacity fluctuation, and the dynamic performance is satisfactory to
meet the requirements of fast convergence. The SOC estimation based on the presented strategy for
power batteries at different temperatures could reach the goal of the overall error within 1% under
CLTC conditions with well robustness and accuracy.

Keywords: lithium-ion battery; metabolic even grey model; parameter identification; state of charge estimation

1. Introduction

The air pollution and energy shortages caused by automobile exhaust emissions have
become increasingly prominent, along with the rapid development of the automobile
industry. On account of high energy density, long life cycle, environmental protection, and
pollution-free characteristics, lithium-ion batteries are becoming more and more important
as power batteries for electric vehicles (EV) [1–5]. The attenuation of the battery during use
is accompanied by changes in parameters such as capacity and impedance, which directly
affect the reliability of battery operation. In order to ensure power, economy, and safety
operation for EVs, battery state assessment is particularly important. Conventional battery
state prediction methods mainly predict the battery state by detecting parameters such
as battery charge and discharge rate, battery life, and open circuit voltage (OCV). Due
to the complicated relationship between these parameters and the state of charge (SOC),
traditional experimental methods have low prediction accuracy and low reliability [6–13].
Owing to the time-varying and non-linear characteristics of the battery system, the high-
precision prediction of the battery state is undoubtedly an arduous task.
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161



Batteries 2022, 8, 260

The significance of accurate battery modeling is that it could express the internal and
external battery characteristics for different structures and different driving conditions,
which can be of much help in the optimal development of lithium-ion batteries. The
equivalent circuit model (ECM) and electrochemical model (EM) approaches are widely
employed to perform the characteristics of lithium-ion batteries for SOC estimation [14–18].
The EM describes the battery’s dynamic characteristics based on differential iterations,
which could be much more complicated. As a result, the EM method is usually adopted in
battery design applications. In addition, current battery models rarely consider the effect of
temperature on model parameters. With regard to the ECM with electrical components such
as resistance and capacitor, this physical model is widely employed in battery management
systems (BMS), since it could offer trade-off solutions with complexity and accuracy. Much
research has shown the ECM is featured in SOC estimation, and the model is capable
of exactly describing the physical and chemical characteristics of lithium-ion batteries,
and satisfying the BMS requirement with low calculation cost [19–23]. Furthermore, the
Extended Kalman Filter (EKF) algorithm depends on the battery state space model and
employs a recursive iteration method to linearize the battery SOC [24,25]. Its accuracy
is significantly influenced by the model’s preciseness. Although the Unscented Kalman
Filter (UKF) algorithm employs statistical linearization to reduce error and calculation,
the SOC estimation accuracy still fluctuates along with the unit model [26–30]. Model-
based methods could illustrate the physical and chemical characteristics of the battery,
but the correctness of the parameters relies on the accuracy and robustness of the battery
model [31–35]. In recent years, battery forecasting has developed towards non-modeling.
The methods based on data-driven and statistical analysis mainly include the time sequence
method, support vector machine method, and Markov method [36–39]. The sequential
method can describe the periodic law of data changes, but it is unrealistic to record the
data of various working conditions during the entire battery life cycle, and it is difficult
to establish the learning model [40–43]. Although the support vector machine method
has high accuracy, the amount of training data is large and time-consuming. The Markov
method can reflect the periodic change characteristics of data and has strong randomness,
but it is difficult to determine the situational state set.

Grey System Theory is widely used in various fields, and successfully solves the
problem of incomplete information prediction. Grey Model-GM(1,1) is an approach that
employs a small amount of incomplete data samples to establish a grey prediction model
and then describes the development trend in a long-term predictive manner [44,45]. The
advantages of rapid prediction have been widely accepted. With the extension of battery
life, the parameters and performance of the battery also change correspondingly, and
there’re obvious uncertainties in estimating the SOC value with raw data. The traditional
Even Grey Model-EGM(1,1) predicts that the cumulative error is relatively large and cannot
reflect the periodic changes in the data [46–48]. The Metabolic Even Grey Model-MEGM(1,1)
method is based on the latest data generated by the system and adopts the original data
in the rolling deletion system to establish a new data sequence, thereby establishing a
lithium-ion battery state estimation model, which can reflect the characteristics of the latest
data in real time. Especially with the accumulation of system variables, when the battery
system has parameter perturbation or sudden change, the algorithm based on MEGM(1,1)
iterative model can achieve accurate SOC estimation of lithium battery.

In recent years, for the sake of lacking its own driving cycles, China directly cited
the new European driving cycle (NEDC) driving standard, and it has significant influence
in promoting the development of the automotive industry of China [49]. Nevertheless,
along with the change in vehicle ownership, road structure and traffic condition in China,
the endurance range of EVs under NEDC operating conditions has a large deviation from
the actual driving situation in China. Furthermore, since the NEDC does not comply with
the characteristics of the actual driving behavior of vehicles in China, it could not actually
denote the real application effects of energy-saving and emission-reduction technologies,
such as the idle start–stop and brake energy regeneration technology [50].
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In addition, the world-harmonized light-duty vehicle test cycle (WLTC) was developed
employing the actual driving behavior data collected through six regions, including Amer-
ica, Japan, India, Korea, the EU, and Switzerland. However, it is lacking Chinese data
acquisition [49,51]. With different levels of congestion, WLTC driving condition better
reflects the characteristics of fast and slow vehicle speeds, but the idling ratio and average
speed of the two main operating conditions under WLTC condition are quite different from
the actual operating conditions in China [51]. Thus, for China, the WLTC driving condition
could not provide a suitable solution to solve the problem during the NEDC driving cycles
mentioned previously. In order to comply with the real and much more critical driving
conditions, the local test cycle China Light-duty Vehicle Test Cycle (CLTC) for endurance
certification of EVs was announced by the Ministry of Industry and Information Technology
(MIIT) of China.

For the modeling of the battery pack, the data-driven approach based on Gaussian
process regression is proposed to put forward a feasible solution with non-linear approx-
imation, nonparametric modeling, and probabilistic prediction [52]. As the battery pack
includes hundreds of cells in series and parallel, inconsistencies among the cells will be
difficult to build an accurate physical model for their behavior performance. As a result,
the widely employed model-based approaches are unsuitable for SOC estimation of battery
packs [53,54]. In the paper, for the sake of accurate SOC estimation of the lithium-ion battery
cell, the characteristics of the battery with varied ambient temperatures are experimentally
studied. The Thevenin equivalent circuit model with the sixth-order polynomial of OCV–
SOC function relation is derived by exploiting the physical characteristics of the lithium-ion
battery cell. Furthermore, along with the mechanism analysis of the traditional GM(1,1)
approach is analyzed in detail, the optimized MEGM(1,1) algorithm is put forward based
on the presented ECM. The estimation accuracy of the employed approach is explored via
an experimental platform for the lithium-ion battery, which works under the CLTC driving
condition with five different temperatures. All the experimental and theoretical results,
compared with the traditional GM(1,1) estimation method, illustrate that the optimized
MEGM(1,1)-based SOC estimation approach is with fast convergence, good robustness,
and well accuracy for the critical driving condition.

2. Lithium-Ion Batteries’ Modeling

There are various kinds of battery modeling methods, among which the Thevenin
model for a battery has the characteristics of simple operation and it could illustrate the
steady and transient characteristics of batteries. Therefore, this paper employs this model-
ing approach to establish the state space function of the battery. In addition, the Thevenin
topology for lithium-ion battery is displayed in Figure 1, where Vocv is the electromotive
force of the battery, R1 and R2 are defined as ohmic internal resistor and polarization resis-
tor, and C is the polarization capacitor, which is connected in parallel with the polarization
resistance R2.

Figure 1. Thevenin topology for lithium-ion battery.
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By means of the Kirchhoff and Thevenin principles, the expression for batteries’ equiva-
lent topology could be expressed in the following forms:

Vocv = Uo,t + R1 It + Uc,t (1)

It =
Uc,t

R2
+ C

dUc,t

dt
(2)

The notation Vocv denotes the battery’s open circuit voltage, and OCV reflects the
relationship function with respect to SOC as Vocv = F(St). Uo,t is the terminal voltage of
the battery, and Uc,t is the polarization voltage. Thus, SOC could be derived through the
current integration method.

St = St0 −
1

Q0

∫ t

t0

η Itdt (3)

where η is the battery’s discharge efficiency, Q0 is battery capacity, and St is the SOC value
of the battery at the moment t. The state space equation could be represented by means of
integrating and discretizing the formulas consequently, as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
St+Δt

Uc ,t+Δt

]
=

[
1 0
0 exp(− Δt

R2C )

][
St

Uc,t

]
+

[
− ηΔt

Q0

R2(1 − exp(− Δt
R2C ))

]
It +

⎡⎢⎣ w1,t
w2,t

⎤⎥⎦
Uo,t = F(St)− R1 It − Uc,t + vt

(4)

where xt = [St,Uc,t]T is defined as the state variable, Uo,t is the observation variable, It is the
control variable, wt = [w1,t,w2,t]T is systematic noise, vt is observation noise. Consequently,
the coefficient matrix of the battery’s state space model can be represented as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

At =

[
1 0
0 exp(− Δt

R2C )

]

Bt =

[
− ηΔt

Q0

R2(1 − exp(− Δt
R2C ))

]

Ct = [ ∂F(St)
∂St

∣∣∣St=S−
t

,−1]

(5)

The OCV of the battery is not completely equivalent to the electromotive force due
to the hysteresis effect, but when the battery is fully left standing, the two values are very
close, and it is difficult to directly measure the real electromotive force. Therefore, in actual
research, the OCV of the battery is usually used to describe its electromotive force under
the SOC value. The OCV–SOC correspondence is the key performance parameter of the
battery. It is often employed to illustrate the working state of the battery and perform SOC
calibration with the necessary parameters for establishing the battery model.

Before performing simulation and estimation for the battery’s SOC, parameter identi-
fication is performed on the Thevenin equivalent circuit topology, and discharge test along
with pulse power features is also conducted. The CB2P0 type cell of LiFePO4 lithium-ion
battery is employed for an experiment, and the specifications are displayed in Table 1.

Table 1. Specifications of CB2P0 lithium-ion battery.

Parameters Values

Nominal Capacity (Ah) 30
Rated Voltage (V) 3.2

Charge Cutoff Voltage (V) 3.65
Discharge Cutoff Voltage (V) 2.5

Charge Temperature (◦C) 0~55
Discharge Temperature (◦C) −25~55
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The accurate SOC estimation for lithium-ion batteries’ performance prediction and
durability evaluation is of paramount importance, which is critical to ensure the reliability
and stability of electric vehicles. The identification mechanism for the battery’s parameters
is mainly based on its physical behavior under different working temperatures. For the
sake of accurate battery parameter identification, the pulse discharge test is conducted in
this study during the range of −25 ◦C to 55 ◦C. According to the requirement of ISO12405-2:
2012 for lithium-ion traction battery packs and system applications, the battery is discharged
at the current of C/3 to the cutoff voltage of 2.5V. The characteristics curve between the
battery’s SOC and OCV is illustrated in Figure 2.

Figure 2. Characteristics curves on OCV and SOC.

As shown in Figure 2, under the condition of a small rate discharge, the discharge
capacity can basically reach the rated value at room temperature. The performance of
LiFePO4 batteries at low temperatures will decrease significantly. At the same time, as the
discharge rate increases, the impact of temperature on battery performance will become
more and more obvious. The curve fitting method by means of least squares is employed to
identify the non-linear functional relation between OCV and SOC.

For the sake of accurately fitting the experimental result of the lithium-ion battery, the
sixth-order polynomial could be performed by means of the function:

Vocv(SOC) = K6 · SOC6 + K5 · SOC5 + K4 · SOC4 + K3 · SOC3 + K2 · SOC2 + K1 · SOC1 + K0 (6)

where Ki (i = 0, 1, 2, . . . ) is in reference to the specific ambient temperature, it influences the
accuracy of the characteristic polynomial, which could be derived through the experimental
pulse discharge results. The derived values of Ki under the various ambient temperatures
are displayed in Table 2. Based on the sixth-order polynomial, a three-dimensional map of
Temperature-SOC-OCV is illustrated in Figure 3 correspondingly.

Table 2. Coefficient values under different operating temperatures.

Coefficient −25 ◦C −20 ◦C −10 ◦C 0 ◦C +25 ◦C +40 ◦C +55 ◦C

K0 2.5802 2.7285 2.9621 3.0937 3.2595 3.2159 3.2143
K1 1.2526 0.958 0.7823 0.9278 1.0965 2.8663 3.2648
K2 −0.7987 −3.2591 −7.4156 −9.5828 −14.302 −30.61 −34.814
K3 −25.623 4.133 35.141 43.355 65.984 133 151.43
K4 99.131 −9.5266 −91.694 −99.723 −141.04 −277.11 −314.99
K5 −146.39 24.44 116.65 109.91 140.22 273.9 310.24
K6 73.74 −23.711 −57.662 −46.669 −52.579 −103.23 −116.37
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Figure 3. Three-dimensional map of Temperature-SOC-OCV.

The functional relation between OCV and SOC is non-linear, and parameter identifica-
tion in the battery state space model could be achieved through the change characteristics
of the terminal voltage during the pulse discharge experiment. At the ambient condition of
25 ◦C, the power battery is discharged along with the current of 1 C for 5 min, the discharge
is stopped for 10 min, and then the battery is discharged for 5 min at the same current. A
single pulse is selected to perform parameter identification on the battery model, and the
dynamic curve of the battery’s terminal voltage is shown in Figure 4.

Figure 4. Terminal voltage of battery after discharging current pulse.

As to the Thevenin model shown in Figure 1, the terminal voltage changes correspond-
ing to the discharging current pulse. Since the voltage of polarization capacitor C is not
suddenly changed while starting discharging, the ohmic internal resistance R1 and the
polarization resistance R2 are then identified according to the terminal voltage curve. Fur-
thermore, regarding to the transient characteristics of RC topology, the battery’s terminal
voltage increased to 86.5% ΔV needs twice constant Γ (Γ = R2 × C), which is identified
with the terminal voltage curve. Consequently, the model parameters can be performed by
means of the following form:⎧⎨⎩ R1 = |VT(ta)−VT(tb)|+|VT(td)−VT(tc)|

2|I1C |
R2 = |VT(te)−VT(td)|

|I1C |
(7)
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The dynamic battery parameter identification model based on temperature, voltage,
and SOC is established by employing the least squares principle to fit the polarization
effect parameters, and the established battery mathematical model could better adapt to
the lithium battery performed with rich experimental waveforms. However, it can be
seen that at different temperatures, the OCV–SOC curves are different, which indicates
that the electrode characteristics of the battery are influenced by temperature, which will
affect the SOC estimation. During the parameter identification process for the physical
model of a fixed lithium-ion battery, the model parameters are consumed to be constant,
which could affect the practicability of the presented estimation method for the sake of the
variable temperatures. In order to further improve the estimation accuracy, the ongoing
study will be towards the iterative learning-based on-line prediction approach that can
precisely identify the parameters associated with the temperature and SOC.

3. Estimation Mechanism Based on Optimized MEGM(1,1)

3.1. General Principle of GM(1,1)

The traditional GM(1,1) is an approach that employs a small amount of incomplete data
samples to establish a grey prediction model, and then describes the development trend in
a long-term predictive period. GM(1,1) approach is to take the data sequence of lithium-
ion batteries which changes with time as the original data sequence [44]. Through the
cumulative calculation of the original data, a new data sequence is obtained. Furthermore,
the relevant whitening differential equation is established with the solution derivation.
Thereby, the grey estimation model for the lithium-ion battery state can be obtained, which
could reflect the real-time features of a battery system. The derivation process of traditional
GM(1,1) for SOC estimation is briefly described as follows [45].

(1) Extraction of battery history data: xSOC, xV , xI and xT. Where xV , xI and xT are
correlation factor series for input parameters, xSOC is target SOC sequence for output parameters.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xV = (V1, V2, · · · , Vn)

xI = (I1, I2, · · · , In)

xT = (T1, T2, · · · , Tn)

xSOC = (SOC1, SOC2, · · · , SOCn)

(8)

(2) Perform 1st-order Accumulated Generating Operation (1-AGO) for the battery’s data.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1
V =

(
V1

1
, V1

2 , · · · , V1
n
)

x1
I =

(
I1

1
, I1

2 , · · · , I1
n
)

x1
T =

(
T1

1
, T1

2 , · · · , T1
n
)

x1
SOC =

(
SOC1

1
, SOC1

2, · · · , SOC1
n
) (9)

(3) Generate the mean values of consecutive neighbor sequences.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ZV = (V1, V2, · · · , Vm)

ZI = (I1, I2, · · · , Im)

ZT = (T1, T2, · · · , Tm)

ZSOC = (SOC1, SOC2, · · · , SOCm)

(10)

(4) Construct the whitening function for GM(1,1):

xSOC(tk) + aΔtkZSOC(tk − τ) = b2x1
V(tk − τ)tγ

k
Δtk+

b3x1
I (tk − τ)tγ

k
Δtk + b4x1

T(tk − τ)tγ
k

Δtk
(11)
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where the time interval Δtk = tk−tk−1, γ and τ are the iteration coefficients. In order to
make the model as accurate as possible and to minimize the average relative error as
the optimization objective of the whitening function, the constructed function related to
parameters γ and τ is as:

f (τ, γ) =
1

n − 1

n

∑
i=2

x1
SOC(i)− xSOC(i)

xSOC(i)
(12)

It could be seen this method could be easily utilized due to the advantage of rapid
prediction. However the coefficients γ and τ are fixed for the conventional GM(1,1), it is
unsuitable for massive data estimation. With the extension of battery life, the parameters and
performance of the battery also change correspondingly, and there’re obvious uncertainties
in estimating the SOC value with raw data. The interference noise with external fluctuation
and various driving conditions should be regarded during practical application. Thus the
cumulative error is relatively large and cannot reflect the periodic changes in the data.

3.2. Principle of Optimized MEGM(1,1)

While the GM(1,1) model is employed for state evaluation of lithium-ion batteries,
the closer the battery data is to the original time, the more accurate the prediction will
be. Therefore, the modeling sequence should follow the change in the battery system by
removing the oldest data sequence to reflect the updated characteristics. The MEGM(1,1)
model is automatically updated and identified with each prediction, so the model has
strong adaptability. After obtaining the closest information by the estimation, the origi-
nal data sequence x(0) is removed from this sequence, and the metabolic data sequence
x(m + 1) is introduced as the original sequence to reconstruct MEGM(1,1) model [44,45,47].
Tracking the test data information as input, and using the current information to establish
the prediction model until the accurate estimation target is reached, the input sequence and
prediction sequence are updated iteratively, as shown in Figure 5.

 

Figure 5. Diagram of rolling optimization strategy for MEGM(1,1).

In order to increase the accuracy of the extended data, the original data sequence is
divided into q sub-sequences with different sample numbers.⎧⎪⎪⎨⎪⎪⎩

X1 = {x1(0), x1(1), · · · , x1(r)}
X2 = {x2(1), x2(2), · · · , x2(r)}
· · ·
Xq =

{
xq(q − 1), xq(q − 2), · · · , xq(r)

} (13)

where
xα(β) = xα+1(β)|α=1,2,···q;β=1,2,···r (14)
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The MEGM(1,1) dynamic equivalent topology could be represented through the first-
order differential function including one single variable, which is fundamental for the grey
estimation. Define the feature data sequence in the form:

X = {x(0), x(1), · · · , x(r)} (15)

The data sequence generated by the means of the first-order accumulation is:⎧⎪⎨⎪⎩
x(1)(m) =

m
∑

i=1
x(i)

X(1) =
{

x(1)(1), x(1)(2), · · · , x(1)(r)
} (16)

where sequence x(1) is defined as 1-AGO. Furthermore, sequence W(1) is assumed as the
information data produced through the average value of consecutive neighbors of X(1),
given by: ⎧⎨⎩ W(1) =

{
w(1)(2), w(1)(3), · · · , w(1)(n)

}
w(1)(ζ)

∣∣
ζ=1,2,··· ,n−1 = 1

2

[
x(1)(ζ + 1) + x(1)(ζ)

] (17)

Then the fundamental form of the MEGM(1,1) estimation model is established as [45]:

x(k) + εx(1)(k) = ϑ (18)

The whitening differential equation for X(1) is performed as:

dx(1)

dt
+ ε · x(1) = ϑ (19)

where ε is the development coefficient, ϑ is grey input. The following discretized expression
can be derived: {

dx(1) = x(1)(ζ + 1)− x(1)(ζ)
dt = ζ + 1 − ζ = 1

(20)

Define the equation x(1)(ζ) = 1
2 (x(1)(ζ + 1)+x(1)(ζ)), hence Equation (19) could be ex-

pressed as follows:

x(ζ + 1) = ε

(
−1

2

(
x(1)(ζ + 1) + x(1)(ζ)

))
+ ϑ (21)

In order to derive the solving solutions of parameters ε and ϑ, Equation (21) can be
transformed as:

⎡⎢⎢⎣
x(2)
x(3)
· · ·
x(l)

⎤⎥⎥⎦ = ε

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2

(
x(1)(1) + x(1)(2)

)
− 1

2

(
x(1)(2) + x(1)(3)

)
· · ·
− 1

2

(
x(1)(l − 1) + x(1)(l)

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ ϑ

⎡⎢⎢⎣
1
1
· · ·
1

⎤⎥⎥⎦ (22)
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In addition, according to Equation (22), the following equations are defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yr =
[

x(2) x(3) · · · x(r)
]T

W(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2

(
x(1)(1) + x(1)(2)

)
− 1

2

(
x(1)(2) + x(1)(3)

)
...

− 1
2

(
x(1)(r − 1) + x(1)(r)

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
V =

[
1 1 · · · 1

]T

(23)

Based on the least squares estimation algorithm, the parameter matrix for MEGM(1,1)
model could be performed by the form [55]:

∧
a =

[
ε ϑ

]T
=

([
W(1) V

][
W(1) V

]T
)−1[

W(1) V
]T

Yr (24)

Thereby, the following expression can be written to compute solutions of parameters ε
and ϑ, considering Equations (23) and (24), as:

Yr = εW(1) + ϑV =
[
W(1) V

][ ε
ϑ

]
(25)

Define x(1)(1) = x(1), the solution of the whitening differential equation can be calcu-
lated as follows:

x̂(1)(ζ + 1) =
[

x(1)− ϑ

ε

]
e−εζ +

ϑ

ε
(26)

In order to extend the original data sequence of the lithium-ion battery, the restore
sequence is derived by reductive generation, as:

x(ζ + 1)
∣∣
ζ=r+1,r+2,... = x̂(1)(ζ + 1)− x̂(1)(ζ)

= (1 − e−ε)
[

x(1)− ϑ
ε

]
e−εζ

(27)

According to Equation (27), the fitting calculation of q sub-sequences in Equation (15)
is carried out, and the result of fitting calculation X̂i

∣∣i=1,2,···q is:⎧⎪⎪⎨⎪⎪⎩
X̂1 = {x̂1(0), x̂1(1), · · · , x̂1(r), x̂1(r + 1)}
X̂2 = {x̂2(1), x̂2(2), · · · , x̂2(r), x̂2(r + 1)}
· · ·
X̂q =

{
x̂q(q − 1), x̂q(q − 2), · · · , x̂q(r), x̂q(r + 1)

} (28)

The Grey Relation Function (GRF) (Xα, X̂β) is derived by calculating the original
sequence and metabolic fitting sequence, as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
Xα, X̂α

)
= 1

r−α

r
∑

β=α
α(xα(β), x̂α(β))

α(xα(β), x̂α(β)) =
MIN+ρMAX

|xα(β)−x̂α(β)|+ρMAX

MIN = min|xα(β)− x̂α(β)|
MAX = max|xα(β)− x̂α(β)|

(29)
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As a result, the whitening equation with –N − 1 input parameters and one output
parameter is established as follows [47]:

dX(1)
1

dt
+ a0X(1)

1 = b1X(1)
2 + b2X(1)

3 + · · ·+ bN−1X(1)
N (30)

where a0, b1, b2, . . . , bN−1 are function coefficients, X(1)
1 is the output parameter, X(1)

2 , X(1)
3 ,

. . . , X(1)
N−1 are the input parameters. Furthermore, the parameters are with strong coupling.

Accordingly, the estimation result of the output parameter could be expressed as:

Λ

X(1)
1 (t) =

(
X(1)

1 (1)− b1
a0

X(1)
2 (t)− b2

a0
X(1)

3 (t)− · · · − bN−1
a0

X(1)
N (t)

)
e−a0t+

b1
a0

X(1)
2 (t) + b2

a0
X(1)

3 (t) + · · ·+ bN−1
a0

X(1)
N (t)

(31)

In this research, parameters xV , xI and xT are input data sequence, xSOC is SOC
sequence for output parameters. So the expression can be transformed as:

Λ

X(1)
SOC(t) =

(
X(1)

SOC(1)− b1
a0

X(1)
V (t)− b2

a0
X(1)

I (t)− b3
a0

X(1)
T (t)

)
e−a0t+

b1
a0

X(1)
V (t) + b2

a0
X(1)

I (t) + b3
a0

X(1)
T (t)

(32)

Define:
D =

b1

a0
X(1)

V (t) +
b2

a0
X(1)

I (t) +
b3

a0
X(1)

T (t) (33)

Correspondingly, the SOC estimation value for lithium-ion batteries could be derived
by means of the following equation.

Λ

X(1)
SOC(t) =

{[
X(1)

SOC(1)− D
]
− X(1)

SOC(1) · 1
1+e−a0t +

2D · 1
1+e−a0t

}
· (1 + e−a0t) (34)

On the basis of the original data of lithium-ion batteries, the initial mathematical model
and parameter identification are established. Furthermore, the Grey Relation Analysis
(GRA) is introduced to figure out the new data by employing the original data, and then a
new model is established instead of the original data. With the continuous use of metabolic
update-data modeling, the state estimation of lithium-ion batteries is accurately established.
Aiming at the requirements of SOC estimation and the non-linear characteristics of the
dynamic battery system, an optimized MEGM(1,1) model is proposed to expand battery
state data and introduce temperature factors into the prediction process to make SOC
estimation much more accurate.

4. Experimental Verification and Analysis

In order to verify the effectiveness and accuracy of the presented estimation algorithm,
an experimental platform for the battery system is established. The block diagram of the
battery system’s test bench includes a High-Low temperature incubator (LJGDP-20R-E, LIK
Industry Co., Ltd., Dongguan, China), a heavy-duty dual channel cycling station (AV-900,
AeroVironment Inc., Simi Valley, CA, USA), a set of the measurement tool and control
software, such as CANoe (VN1630A, Vector Co., Ltd., Stuttgart, Germany) and Labview,
and a computer, as shown in Figure 6.
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Figure 6. Block diagram of battery system test bench.

Under the CLTC driving condition, there is both driving discharge and regenerative
charge, which fully considers the complexity of the road situations. For the single static
charging of Li-ion battery, the charging station usually adopts constant current for charge
and the SOC estimation is much more simplified. With regard to this research, we mainly
discuss the SOC estimation performance of CB2P0 LiFePO4 lithium-ion battery cells under
CLTC driving conditions. This study focuses on characterizing the battery in dynamic
real-time operation during vehicle CLTC driving conditions to optimize EV drivelines
and accurate state estimation for EV manufacturers. In the experimental research, the
battery cell is placed in an LJGDP-20R-E High-Low temperature incubator and stands for
16 h to achieve thermal balance. The AV-900 cycling station is utilized to simulate the
demanded power sequence of CLTC working conditions, the driving cycles are performed,
and one cycle period is 1800 s with a total of 36,000 s until the discharge cutoff voltage is
achieved. In this research, the time interval of 10 Hz is employed for the battery system’s
data acquisition.

In the battery experiment system, the adopted CB2P0 cells are from the same batch
with good consistency, so that random lithium cell is selected for experimental analysis, and
the feasibility and effectiveness of the analysis principle are validated through numerical
calculation and measurement results. Verification results under the CLTC driving condition
at various temperature conditions of −10 ◦C, 0 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C are obtained with
estimation curves of the GM(1,1) and the optimized MEGM(1,1) approach, respectively.
Furthermore, the enlarged view of discharging terminal voltage in one cycle for the time
range of 16.8 ks–18.6 ks is also displayed in the following figures.

Figure 7 is the comparison results among the experimentally measured voltage,
GM(1,1), and MEGM(1,1) estimation voltage with the enlarged view of discharging termi-
nal cell voltage in one cycle for the time range of 16.8 ks–18.6 ks at the different ambient
temperatures. On the basis of the measured big data, the battery’s electrical characteris-
tics are temperature-dependent with a three-dimensional map of Temperature-SOC-OCV,
as the estimation of the terminal voltage performs much more accurately at 25 ◦C and
35 ◦C, compared with the performance at −10 ◦C, 0 ◦C and 10 ◦C under the CLTC driving
condition. This is mainly because the conductivity of the electrolyte varies at different
temperatures, and the migration speed of the lithium ions fluctuates with hysteretic charac-
teristics regarding the OCV–SOC relation, which leads to the accumulation error for the
model’s parameter estimation. It can be seen that the estimated errors of terminal voltage
are within 15 mV with rapid convergence characteristics.

Additionally, the initial SOC value would affect the convergence performance and
the estimation accuracy. In order to demonstrate the performance of the proposed SOC

172



Batteries 2022, 8, 260

estimation approach and the characteristics of convergence, the initial SOC value is set to be
60% in the dynamic experiment. Figure 8 is the SOC comparison among the experimentally
measured data, GM(1,1) and MEGM(1,1) estimation values with the enlarged view in one
cycle for the time range of 16.8 ks–18.6 ks at the different ambient temperatures. In the
research, the quantitative analysis approaches for SOC error evaluation after convergence
are Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), as are employed to
illustrate the performance of the proposed SOC prediction model shown in Table 3. As can
be displayed from the experimental results, regardless of the difference between the initial
value and the real value of SOC, as the number of iterations increases, the SOC estimation
value approximates the real value rapidly and the steady state error is within 1.00% after
convergence by the optimized MEGM(1,1).

Table 3. Estimation analysis for GM(1,1) and MEGM(1,1) after convergence under CLTC.

Temperature Model RMSE MAE

−10 ◦C
GM(1,1) 0.0175 0.0142

MEGM(1,1) 0.0099 0.0079

0 ◦C
GM(1,1) 0.0174 0.0140

MEGM(1,1) 0.0089 0.0061

+15 ◦C
GM(1,1) 0.0163 0.0129

MEGM(1,1) 0.0072 0.0051

+25 ◦C
GM(1,1) 0.0144 0.0115

MEGM(1,1) 0.0059 0.0046

+35 ◦C
GM(1,1) 0.0157 0.0122

MEGM(1,1) 0.0069 0.0048

Generally, the optimized algorithm presents well robustness against initial SOC deviation
and temperature variation, and the initial SOC value only affects the time taken for the SOC
estimate to approach the real value, which does not affect the accuracy of the steady state
SOC estimation even if the initial SOC has a large deviation. The close agreement between
simulation results and experimental data on Li-ion batteries indicates that the presented
MEGM(1,1) approach is capable of real-time updating battery model parameters, restraining
system variation via self-adaption, and achieving accurate SOC prediction with less estimation
error under the critical CLTC driving condition at the various ambient temperatures.
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173



Batteries 2022, 8, 260

 
(b) 

 
(c) 

 
(d) 

Figure 7. Cont.

174



Batteries 2022, 8, 260

 
(e) 

 
(f) 

 
(g) 

Figure 7. Cont.

175



Batteries 2022, 8, 260

 
(h) 

 
(i) 
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Figure 7. Verification results under the CLTC driving condition at the various temperatures:
(a) voltage comparison among the measured data, GM(1,1) and MEGM(1,1) estimation at −10 ◦C;
(b) the enlarged view of discharging terminal voltage in one cycle for the time range of 16.8 ks–18.6 ks
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at −10 ◦C; (c) voltage comparison at 0 ◦C; (d) the enlarged view at 0 ◦C; (e) voltage comparison at
15 ◦C; (f) the enlarged view at 15 ◦C; (g) voltage comparison at 25 ◦C; (h) the enlarged view at 25 ◦C;
(i) voltage comparison at 35 ◦C; (j) the enlarged view at 35 ◦C.
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(j) 

Figure 8. Verification results under the CLTC driving condition with initial SOC errors at the various
temperatures: (a) SOC comparison among the experimental data, GM(1,1) and MEGM(1,1) estimation
at −10 ◦C; (b) the enlarged view of SOC in one cycle for the time range of 16.8 ks–18.6 ks at −10 ◦C;
(c) SOC comparison at 0 ◦C; (d) the enlarged view at 0 ◦C; (e) SOC comparison at 15 ◦C; (f) the
enlarged view at 15 ◦C; (g) SOC comparison at 25 ◦C; (h) the enlarged view at 25 ◦C; (i) SOC
comparison at 35 ◦C; (j) the enlarged view at 35 ◦C.

5. Conclusions

Through the statistical analysis of the experimental data obtained by charging and
discharging stations and temperature control boxes to carry out battery test experiments
at different temperatures, the battery capacity, ohmic resistance, and open circuit voltage
for the parameter model are calibrated. The dynamic battery parameter identification
model based on temperature, voltage, and SOC is established by employing the least
squares principle to fit the polarization effect parameters, and the established battery
mathematical model can better adapt to the lithium battery under the experiment. Aiming
at the requirements of battery SOC estimation and the non-linear characteristics of dynamic
battery systems, an optimized MEGM(1,1) model is proposed to expand battery state
data and introduce temperature factors in the estimation process to make SOC estimation
more accurate. The simulation results show that, compared with the traditional GM(1,1)
algorithm, the SOC estimation based on the MEGM(1,1) strategy converges faster and the
overall error is reduced. Therefore, the proposed optimization algorithm can make the
estimated value meet the requirements of fast convergence and small error, which presents
well robustness against initial SOC deviation and temperature variation. Experimental
results also illustrate that the SOC estimation based on the proposed strategy for power
lithium batteries at different temperatures could achieve the goal of an overall error within
1% under CLTC conditions with well robustness and accuracy.
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Abstract: The lithium-ion battery state of health (SOH) estimation is critical for maintaining reliable
and safe working conditions for electric vehicles (EVs). However, accurate and robust SOH estimation
remains a significant challenge. This paper proposes a multi-feature extraction strategy and particle
swarm optimization-nonlinear autoregressive with exogenous input neural network (PSO-NARXNN)
for accurate and robust SOH estimation. First, eight health features (HFs) are extracted from partial
voltage, capacity, differential temperature (DT), and incremental capacity (IC) curves. Then, qualita-
tive and quantitative analyses are used to evaluate the selected HFs. Second, the PSO algorithm is
adopted to optimize the hyperparameters of NARXNN, including input delays, feedback delays, and
the number of hidden neurons. Third, to verify the effectiveness of the multi-feature extraction strat-
egy, the SOH estimators based on a single feature and fusion feature are comprehensively compared.
To verify the effectiveness of the proposed PSO-NARXNN, a simple three-layer backpropagation
neural network (BPNN) and a conventional NARXNN are built for comparison based on the Oxford
aging dataset. The experimental results demonstrate that the proposed method has higher accuracy
and stronger robustness for SOH estimation, where the average mean absolute error (MAE) and root
mean square error (RMSE) are 0.47% and 0.56%, respectively.

Keywords: state of health; lithium-ion battery; machine learning; battery management system

1. Introduction

Vehicle electrification has been proven to be one of the most promising directions
to reduce carbon dioxide emissions and solve the energy crisis. With the advantages of
high power and energy density, high energy efficiency, and relatively long cycles of life,
Lithium-ion batteries (LiBs) have become the primary power source of electric vehicles
(EVs) [1]. However, during long-term cycling or storage, it is inevitable for LiBs to degrade,
resulting in performance degradation or safety problems. Therefore, an accurate estimation
of the state of health (SOH) is essential for the energy management system to maintain
safe and high-efficient working conditions for EVs. Generally, the degradation of LiBs is
an integrated consequence of internal and external factors. The internal factors mainly
include the loss of active material (LAM), the loss of lithium inventory (LLI), resistance
increase (RI), and solid electrolyte interface (SEI) growth [2,3]. Moreover, the external
factors include operating temperature, charge and discharge rate, discharge depth, and
cut-off voltage [4]. From the perspective of onboard applications, the loss of capacity and
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the increase of internal resistance are two widely used indicators to reflect the battery SOH,
expressed as follows:

SOHc =
Ct
C0

× 100%,

SOHr =
∣∣∣ REOL−Ract

REOL−RNEW

∣∣∣× 100%
(1)

where SOHc and SOHr represent the capacity-based SOH and resistance-based SOH,
respectively; Ct and C0 are the actual and nominal capacity, respectively; Ract denotes the
current resistance, and REOL and RNEW are resistances of the end-of-life (EOL) and new
battery, respectively. Compared to resistance-based SOH estimation methods, capacity-
based SOH estimation methods draw more attention because capacity directly decides the
driving range for EVs [5].

Generally, the existing SOH estimation methods can be divided into two categories,
as shown in Figure 1 [6]: the direct measurement methods, like the capacity measurement
method, internal resistance measurement test, and impedance measurement method, are
suitable for laboratory condition but not practical in actual operations. Indirect analytical
methods mainly include model-based, data-driven, and hybrid methods. According to
the modeling mechanism, the model-based method can be divided into equivalent circuit
model (ECM)-based method and electrochemical model (EM)-based method. The ECM
employs lumped components, such as resistors, capacitors, and voltage sources, to describe
the battery’s dynamic behavior [7]. It is one of the most promising approaches for online
battery parameter identification and state estimation, owing to its ease of implementation
and acceptable accuracy for EV applications. Based on the principle of ECM, a state
equation and an observe equation are established. Then, filter-based methods, such as
extended Kalman filter (EKF) [8] and unscented Kalam filter (UKF) [9], are used for online
SOH prediction. The EM aims to describe the thermodynamics, Li-ion diffusion process,
SEI film thickness, and side reaction kinetics inside the battery to realize the most accurate
battery modeling and state estimation theoretically. However, with many parameters to be
identified and partial differential equations, the onboard application of the EM-based SOH
estimation remains a significant challenge. The trade-off between model complexity and
accuracy still needs further research.
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Capacity 
measurement

Internal 
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measurement
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measurement

Model-based
methods
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Figure 1. Classification of SOH estimation methods.

With the development of artificial intelligence, the machine learning (ML)-based data-
driven method has gradually become the most popular method for SOH estimation [10].
The data-driven method can estimate battery states based on measured data. It does not
require pre-knowledge about the battery aging mechanism or the battery models mentioned
above, making it suitable and easily implementable for different LiBs. Typical procedures
for developing data-driven SOH estimation methods are shown in Figure 2. In short, the
first step is to conduct battery aging tests and collect raw data, such as voltage, current, and
temperature. Since the raw data cannot provide sufficient information to reflect SOH, it
cannot guarantee an accurate and robust SOH estimation either. The second step is hence to
extract high-related health features (HFs) from the raw data using different techniques, such
as model-based analysis, incremental curve analysis (ICA), and differential voltage analysis
(DVA). In addition, correlation analysis is applied to analyze the correlation of the HFs.
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After that, the HFs and the reference SOH constitute the training dataset. Subsequently,
different ML methods are used to learn and validate the nonlinear relationship between
the input features and output based on the training dataset. Finally, the established ML
algorithms can be used to estimate SOH for new data.
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…
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Figure 2. Procedures for developing data-driven SOH estimation algorithms.

In summary, two key processes for building an accurate data-driven SOH estimation
method are health feature extraction and ML algorithm implementation. How to extract
high-related and easy-obtained features is the basis for developing a data-driven SOH
estimation method and has become a current research hotspot. The current selection of
aging features can be divided into three categories:

(1) Features extracted from voltage and temperature curves during the charging and
discharging process, especially the constant–current constant–voltage (CCCV) charg-
ing and constant–current (CC) discharging processes. For example, Cui et al. [11]
extracted eight HFs from the voltage and temperature curves during CC discharging
process and built a SOH estimation method. Liu et al. [12] used the discharging volt-
age difference of equal time intervals as an HF. However, the CC discharging mode
rarely occurs in practical applications, making these HFs unusable for EV operations.
Cao et al. [13] first analyzed the CC charging and constant–voltage (CV) charging
phases, respectively, and then extracted seventeen HFs. The results of Grey relational
analysis concluded that the HFs extracted from the CV phase were less closely related
to battery degradation. According to the geometrical analysis of the complete CCCV
charging profile, Yang et al. [14] extracted four HFs, such as the time of CC mode, the
time of CV mode, the slope of the curve at the end of CC charging mode, and the
vertical slope at the corner of the CC charging curve. Undeniably, the HFs extracted
from the complete CCCV charging profile can reflect the battery degradation, but for
the actual charging condition of EVs, the initial charging SOC is not necessarily 0%,
and the terminal charging SOC is not 100%.

(2) Features extracted from constructed curves, such as incremental capacity (IC) curve [15],
differential voltage (DV) curve [16], and differential temperature (DT) curve [17]. Take
the IC curve as an example. Because the IC curve has prominent peaks, many studies
have selected relevant features as the HFs to build data-driven SOH estimation meth-
ods. For example, Li et al. [18] extracted eleven HFs in the voltage range from 3.8 V
to 4.1 V at the voltage interval of 30 mV. Zhao et al. [19] selected the peak and valley
values as HFs to construct the SOH prediction method. Moreover, other geometrical
characteristics, such as the width of the peak [20], the area under the peak [21], and
the slope of the peak [22] are considered HFs. Although valuable features can be
extracted from these constructed curves, these curves are easily disturbed by noise
in actual operations. Additionally, an appropriate filtering algorithm is required to
smooth the original curve, and then accurate HFs can be identified.
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(3) Features obtained from electrochemical impedance, or parameters of the ECM, such as
polarization capacitance, polarization resistance, and ohmic resistance. For example,
Lyu et al. [23] utilized the recursive least squares (RLS) method to identify the param-
eters of the Thevenin model. The identified ohmic and polarization resistance were
used as HFs to train a linear regression model. Similarly, Yang et al. [24] chose ohmic
resistance, polarization resistance, polarization capacitance, and state of charge (SOC)
as the inputs of the particle swam optimization-least square support vector regression
(PSO-LSSVR) method to estimate SOH. Generally, these features need to be identified
using additional algorithms, which increases its difficulty in practical applications.

In addition, other HFs, such as sample entropy [25], and Kullback–Leibler distance [26],
are employed to reflect the aging states of LiBs. Based on the above review, there are some
principles to bear in mind when choosing HFs [27]: (1) suitability for practical working
conditions; (2) easy access to acquire; (3) strong adaptability and robustness; (4) considering
thermal factor; and (4) high relevant degree. Therefore, this paper employs a multi-feature
extraction strategy to extract HFs from partial charging voltage, capacity, and temperature
curves to match these principles.

After selecting HFs and constituting the training dataset, different data-driven meth-
ods are used to train the SOH estimation model. Widely used ML methods include:

(1) Shallow neural networks (NNs), such as backpropagation neural network (BPNN) [28],
extreme learning machine (ELM) [29], radial basis function neural network (RBFNN) [30],
are employed owing to their simple implementation.

(2) Deep learning (DL) methods, such as long-short term memory (LSTM) [31], gated
recurrent unit (GRU) [32], and convolutional neural network (CNN) [33], are utilized
owing to their superior accuracy, adaptation ability, and good generalization.

(3) Probabilistic-based methods, such as Gaussian process regression (GPR) [34], and
deep brief network (DBN) [13], are applied owing to their capability to provide the
uncertainty of the estimated value.

(4) Ensemble learning methods, such as random forest (RF) [17], AdaBoost [35], and
gradient boosting decision tree (GBDT) [36], are used because they do not easily fall
into over-fitting.

(5) Support vector machine (SVM)-based methods [37,38] are utilized owing to their
simple implementation and high accuracy.

Nonlinear autoregressive with exogenous input neural network (NARXNN) is a
subclass of the recurrent neural network (RNN), which is suitable for predicting complex
and nonlinear systems [39]. Compared to other RNNs, such as the LSTM and GRU,
the NARXNN has a more straightforward structure, fewer parameters, and reasonable
accuracy. Although many researchers employed the NARXNN for state of charge (SOC)
estimation [40–42], only a few researchers applied it for SOH estimation. For example,
Khaleghi et al. [43] utilized the open-mode NARXNN to capture the dependency between
the HFs and battery SOH. In another work, Cui et al. [11] built the closed-mode NARXNN
to estimate the battery SOH. Moreover, the existing methods have used a time-consuming
trial-and-error approach for finding the appropriate hyperparameters, which is inefficient.
Recently, an effective strategy for hyperparameter tuning has been to combine data-driven
algorithms and heuristic optimization techniques. For example, Ren et al. [44] utilized the
particle swarm optimization (PSO) algorithm to optimize the number of hidden neurons,
the learning rate, and the maximum epochs of the LSTM. Zhang et al. [45] employed the
PSO algorithm to optimize the kernel parameters (w and σ) of the RBFNN. Hossain et al. [46]
used the gravitational search algorithm (GSA) to find the best number of hidden neurons
of the ELM. Compared with other heuristic optimization techniques, the PSO algorithm
has the advantages of easy implementation, strong robustness, and global exploration.
Therefore, this paper attempts to use the PSO algorithm to find the best values of input
delays, feedback delays, and the number of hidden neurons of the NARXNN. Then the
NARXNN is employed to build a multi-feature-based SOH estimation model. In summary,
the main contributions of this paper are as follows:
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• To comprehensively describe the battery aging characteristics, a multi-feature extrac-
tion strategy is employed to extract HFs from partial voltage, capacity, and temperature
curves. Qualitative and quantitative analysis is used to evaluate the selected HFs.

• The performance of the NARXNN is highly dependent on the number of input delays,
feedback delays, and neurons in the hidden layer. Hence, the PSO algorithm is applied
to improve the training efficiency of NARXNN by searching for the optimal values of
input delays, feedback delays, and the number of hidden neurons.

• The SOH estimators based on a single feature and fusion feature are comprehensively
compared to verify the validity of the muti-feature extraction strategy. Moreover, to
verify the effectiveness of the proposed PSO-NARXNN, a simple three-layer BPNN
and a conventional NARXNN are built for comparison.

The remainder of the paper is organized as follows: Section 2 gives data analysis
and feature extraction. The related algorithms are introduced in Section 3. Results and
discussion are given in Section 4. Finally, Section 5 summarizes the conclusions.

2. Data Analysis and Feature Extraction

2.1. Oxford Battery Degradation Dataset

In this paper, a public dataset from the University of Oxford is utilized for LiBs aging
analysis and SOH estimation algorithm development. As introduced in Ref. [47], the
Oxford aging dataset contains measurements of battery aging data from eight Kokam
pouch batteries with a nominal capacity of 740 mAh, noted as cell 1 to cell 8. The negative
electrode material is graphite, and the positive electrode material is LiMO2 (where M means
a combination of Ni, Co, and Mn, commercially known as NMC) [48]. The cells were all
tested in a thermal chamber at 40 ◦C. The cells were exposed to a CCCV charging profile,
followed by a drive cycle discharging profile obtained from the urban Artemis profile.
Characterization measurements were taken every 100 cycles. The whole test procedure is
summarized in Table 1. The voltage, current, and temperature data is recorded at a sampling
interval of 1 s. More details can be found in Ref. [47]. The typical EOL threshold for LiBs is
when the SOH decreases to 80%, and the LiBs are suggested to be retired. Hence, only the
data with SOH higher than 80% are selected for LiBs aging analysis and SOH estimation
algorithm development, as depicted in Figure 3. It is worth noting that even though these
8 LiBs with the same cathode material use the same aging experimental settings, the aging
paths are significantly different. One possible reason for this phenomenon is internal
variations in material properties from cell manufacturing. Another reason could be the
effects of non-uniform environmental temperatures in the thermal chamber.

Table 1. Test schedule of the Oxford dataset [49].

Step 1: Characterization test

(1) 1 C cycles: Charge and discharge the battery with 1 C (740 mA) current.
(2) Pseudo-OCV: Charge and discharge the battery with C/18.5 (40 mA) current.

Step 2: Drive cycle test (repeat 100 times)

(1) Charge the battery with 2 C (1480 mA) current
(2) Discharge the battery with Artemis Urban driving profile (average current = 1.36 A).

Step 3: EOL judgment

(1) Repeat steps 1 and 2 until the cell loses at least 20% of its rated capacity.
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Figure 3. SOH curves of cell 1 to cell 8.

2.2. Health Feature Extraction

The proposed multi-feature extraction strategy will be explained in detail in this section.

2.2.1. Voltage Feature Extraction

The terminal voltage and capacity curves of cell 1 under different aging states are
shown in Figure 4. Note that only the CC charging phase is recorded in the Oxford dataset.
Additionally, as concluded in Ref. [13], the HFs extracted from CC charging phase are more
related to the battery SOH. Therefore, we only extract features from CC charging phase.
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Figure 4. (a) Terminal voltage curves of cell 1; (b) Charging capacity curves of cell 1.

As shown in Figure 4a, the time for LiBs to reach 4.2 V gradually decreases as the
number of cycles increases, which directly reflects the reduction in usable capacity. This
phenomenon can also be demonstrated in Figure 4b, where the charged capacity gradually
decreases with the battery SOH decreases. Thus, the charged time and charged capacity
of the CC phase can be selected as HFs. However, considering the practical operations of
EVs, LiBs are rarely charged from 0% to 100% SOC but in a specific SOC range (e.g., 40% to
80%). Therefore, the charged time and charged capacity from partial CC curves of voltage
varying from 3.8 V to 4.0 V (about 35% to 80% SOC) are selected as HFs to reflect the battery
degradation, denoted as T1 and Q1, respectively.

2.2.2. Temperature Feature Extraction

As shown in Figure 5a, the raw temperature curves under different aging states are
vulnerable to the impact of temperature sensor noise, resulting in difficulty in extracting
temperature-related features. Therefore, a finite difference method is utilized in this paper
to pre-process the raw temperature curves and then obtain the differential temperature
(DT) curves [17]. The expression is as follows:

DT(t) ≈ T(t + Δ)− T(t)
Δ

(2)
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where Δ is the pre-determined sample interval. Generally, when Δ chooses a larger value,
the DT curves cannot present subtle temperature changes. However, if Δ takes a smaller
value, the finite difference method cannot eliminate the influence of temperature sensor
noise and produce errors. After parameter tuning, the interval sampling Δ = 40 s is selected
in this paper. In addition, a Gaussian filter is used to smooth the original DT curves to
eliminate the impact of noise further.

Figure 5. (a) Raw temperature curves of cell 1; (b) Smoothed DT curves of cell 1.

Figure 5b shows the DT curve of cell 1 under different aging states. Overall, the
DT curve can be divided into three parts: (1) The DT curve first undergoes a period of
rapid ascent, reaching its first peak value (denoted as F1); (2) After that, it undergoes a
sharp decline and reaches its first valley value (denoted as F2); (3) Then, it experiences
a rapid increase. Note that the DT curve represents the temperature change rate during
the charging process. Thus, the entire DT curve shows a particular trend with the SOH
decreases. Specifically, the first peak value, F1, gradually decreases, and the voltage
corresponding to F1 (denoted as V1) increases with the SOH decreases. Moreover, the
voltage corresponding to the valley value F2 (denoted as V2) gradually declines with the
SOH decreases, but the valley value F2 does not show a clear upward or downward trend.
In addition, the voltage difference between F1 and F2 (denoted as ΔV) shows a decreasing
trend. As for the third part, although the DT curve shows an overall increasing trend and
then declines, health features are not noticeable. Overall, the first and second parts of the
DT curve present an obvious change with the SOH decreases. Therefore, the peak value F1,
the voltage corresponding to F1, the voltage corresponding to F2, and the voltage difference
ΔV between them, are chosen as HFs to describe the battery degradation.

2.2.3. IC Feature Extraction

The ICA is a widely used method to analyze the aging mechanism of LiBs from
the electrochemical level. The IC curve is an effective tool for analyzing capacity loss
and extracting HFs. The most important function of ICA is translating the flat capacity
curve into the IC curve with clearly identifiable peaks, which can reflect the phase change
characteristics of LiBs during active material insertion and delamination. Usually, the
IC curve is obtained from the charging process under the CC charging phase by using a
differential equation:

IC =
dQ
dV

= I· dt
dV

(3)

where Q represents the capacity, V denotes the voltage, and t is the sampling time.
As shown in Figure 6b, there are two peaks in the IC curve’s middle range (e.g.,

3.4–4.0 V), and each peak can reflect the phase change inside the LiBs during the charging
process with a 1-C charging rate. It can be found that the area under the peaks decreases
with the cycle increases, indicating LAM and LLI [21]. In addition, the peak values decrease
with a clear trend. Note that compared with the first peak (between 3.5 V and 3.7 V), the
second peak (between 3.7 V and 4.0 V) shows a more noticeable trend during the aging
process. Therefore, the value of the second peak (denoted as P1) and the area under the
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second peak between 3.7 V and 4.0 V (denoted as A1) are chosen as HFs to describe the
degradation of battery capacity.
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Figure 6. (a) Charged capacity curves of cell 1; (b) Smoothed IC curves of cell 1.

2.2.4. Correlation Analysis

In summary, eight HFs are extracted from partial voltage, capacity, DT, and IC curves,
respectively, which can match the feature-selecting principles mentioned in the Introduction.
First, the voltage-related features are extracted from partial charging curves, which are
suitable for practical conditions and easy to obtain. Second, the temperature-related
features consider the thermodynamic factor. Third, the multi-feature extraction strategy
can improve adaptability and robustness. Figure 7 shows the tendencies of the eight HFs
of cell 1 with the increase of cycle numbers, which can reflect the qualitative relationship
between HFs and battery SOH. It can be seen that only the V1 shows an upward trend,
while other HFs all show a downward trend with the SOH decreases. In addition, HFs of
other cells show a similar change trend as in Figure 7.
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Figure 7. Relationship between HFs and battery degradation.

To further evaluate the correlation of the selected HFs quantitatively, the Pearson
correlation analysis is employed to calculate the correlation coefficient between the HFs
and battery SOH. The equation is as follows:

ρ =
∑n

i=1
(

Fi − F
)(

Ci − C
)√

∑n
i=1

(
Fi − F

)2
∑n

i=1
(
Ci − C

)2
(4)

where Fi is the sequence of HF, Ci is the sequence of battery SOH, F and C are their
average values.
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Table 2 summarizes the Pearson correlation coefficients between the HFs and battery
SOH of eight cells. Generally, the absolute value of the correlation coefficient is closer to 1,
indicating that the relational degree is greater. According to the correlation analysis results
in Table 2, the absolute Pearson correlation coefficients of the HFs of eight cells are all
greater than 0.9, indicating a high relational grade with the battery SOH. Therefore, using
these HFs to build a data-driven method for SOH estimation is reasonable.

Table 2. Correlation analysis results.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell8 Average

T1 0.9994 0.9977 0.9993 0.9978 0.9985 0.9973 0.9990 0.9979 0.9984

Q1 0.9992 0.9976 0.9994 0.9975 0.9985 0.9973 0.9990 0.09978 0.9983

F1 0.9080 0.9169 0.8520 0.8919 0.8476 0.8836 0.9084 0.9120 0.9010

V1 −0.9916 −0.9796 −0.9597 −0.9795 −0.9609 −0.9779 −0.9671 −0.9828 −0.9749

V2 0.9147 0.9185 0.8702 0.9149 0.9324 0.9162 0.9211 0.9447 0.9166

ΔV 0.9538 0.9546 0.9334 0.9557 0.9538 0.9571 0.9695 0.9686 0.9558

P1 0.9647 0.9742 0.9682 0.9669 0.9719 0.9715 0.9658 0.9684 0.9690

A1 0.9890 0.9923 0.9894 0.9932 0.9926 0.9929 0.9908 0.9910 0.9914

3. Related Algorithms

3.1. Nonlinear Autoregressive with Exogenous Input Neural Network

NARXNN is a sort of RNN that can learn to predict one time series by means of giving
past values of the same time series and another time series called the external or exogenous
time series. The structure of NARXNN is depicted in Figure 8, where TDL represents the
time–delay line. According to the feedback mechanism of NARXNN, it can be regarded as
a variant of the Jordan NN [50]. The expression of NARXNN is as follows:

y(n) = fo[bo +
l

∑
h=1

who fh(bh +
du

∑
i=0

wihx(n − i) +
dy

∑
j=0

wjhy(n − j))) (5)

where fo(·) and fh(·) are activation functions of the output layer and hidden layer re-
spectively,

[
wih, wjh, who

]
and [bh, bo] are weights and biases between the corresponding

layers, du and dy represent the input and feedback delays, respectively, and l is the number
of hidden neurons.

 

TDL1

TDL2

Input layer Hidden layer Output layer

Input delay

Feedback delay

Figure 8. Structure of NARXNN [43].

The most important hyperparameters of NARXNN are the input delays, feedback
delays, number of hidden neurons, feedback mode, and training methods. In this paper, the
input delays, feedback delays, and the number of hidden neurons are optimized using the
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PSO algorithm (introduced in the next section). Regarding the training methods, Levenberg–
Marquardt (LM) and Bayesian regularization (BR) methods are the most convenient and
common functions. Referring to [11], BR is chosen as the training function in this study.
Regarding the feedback mode, there are two types: close and open. The former feeds
back the predicted output to the input, while the latter feeds back the target output to
the input. Although the open-mode NARXNN has a higher estimation theoretically, the
close-mode NARXNN is adopted in this work because of the unavailability of the actual
target in practical operations. In addition, the sigmoid transfer function and a linear transfer
function are used at the hidden layer and output layer, respectively [51].

3.2. Particle Swarm Optimization

PSO was first proposed by Kennedy and Eberhart in 1995 [52]. Owing to its advantages
of easy implementation and strong robustness, PSO has been employed in numerous
applications. The basic idea of PSO is to search for the best results of particles with optimal
values through an iterative process. Two locations are used for searching for the best
solutions in PSO. The first is obtained through the current iteration, denoted as local
best, pbest. The second is achieved in earlier iterations, denoted as global best, gbest. By
calculating the objective function of each particle, the best pbest can be found in every
iteration. Moreover, the best gbest can be found through a continuous update of particles.
The position and velocity of every particle are updated as follows:

vk+1
i = wvk

i + c1r1

(
pbest k

i − xk
i

)
+ c2r2

(
gbest k − xk

i

)
(6)

xk+1
i = xk

i + vk+1
i (7)

where vk
i and xk

i represent the velocity and position of ith particle at kth iteration, respec-
tively, pbest k

i is the optimal solution of ith particle at kth iteration, gbest k is the global
optimal solution of all particles until kth iteration, w represents weigh factor, r1 and r2 are
random numbers between 0 and 1, and c1 and c2 are positive learning factor.

3.3. Flowchart of the PSO-NARXNN

It is well-known that building a high-performance neural network requires appropriate
hyperparameter settings. As for the NARXNN, input delays, feedback delays, and the
number of hidden neurons are the three most essential hyperparameters determining its
overall performance. Hence, in this paper, the PSO algorithm is applied to improve the
performance of NARXNN by searching for the optimal value of input delays, feedback
delays, and the number of hidden neurons. The flowchart of the PSO-NARXNN is depicted
in Figure 9, and the specific steps are as follows:

Step 1: Data processing. Feature extraction and data normalization are the basis for
model training. In this paper, the eight HFs mentioned in Section 2.2 are first extracted,
then the Z-score normalization method is utilized to transform the original data to no-
dimensional forms.

Step 2: PSO algorithm is used to optimize the hyperparameters of NARXNN.

1. The main parameters of the PSO algorithm are assigned as follows: the particle
dimension D is 3, population size N is 10, maximum iteration M is 100, the boundary
limit of input and feedback delays is set between ‘1′ and ‘5′, and the boundary limit
of hidden neurons is set between ‘1′ and ‘20′. Then, the initial position is generated
randomly within the boundary.

2. According to the initial position, which contains the values of input delays, feedback
delays, and the number of hidden neurons, the NARXNN is trained based on BR
algorithm. The mean square error (MSE) is taken as the objective function to calculate
the fitness value, and the lowest value is considered ‘gbest’.
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3. The particle velocity and position are updated according to Equations (6) and (7), and
then the fitness value is calculated to update the ‘pbest’ and ‘gbest’. In addition, the
position of particles is verified by whether they are situated in the boundary.

4. If the termination conditions are met, the algorithm ends and outputs the optimization
results; otherwise, return to 3 in Step 2.

Step 3: The optimized hyperparameters are used to train the NARXNN. Then, the
trained NARXNN is tested based on the testing datasets. Moreover, several statistical
metrics are used to evaluate the model error. The experimental results will be discussed in
the next section.

Start

Step 1

Data acquisition (U(t), Temp(t), Capacity(t))

Feature extraction

Data preprocessing and normalization

Step 2

Initialize the PSO algorithm

Calculate the fitness value of the objective function

Update particle velocity and position

Termination condition

No

Step 3

Train the NARXNN based on the optimized
hyperparameters

Test the model using different datasets

End

Yes

Figure 9. Flowchart of the PSO-NARXNN.

Note that MATLAB version 2022b (MathWorks, Natick, MA, USA) is used to develop
all related algorithms proposed in this paper.

4. Results and Discussion

This section discusses the experimental results of the proposed muti-feature extraction
strategy and PSO-NARXNN for SOH estimation. It should be noted that the reference SOH
is calculated based on the CC charging characteristic test, as summarized in Table 1. Several
statistical metrics, such as the mean absolute error (MAE), the root mean square error
(RMSE), and the maximum error (MaxE), are employed to evaluate the estimation results
quantitatively. The MAE can measure the average error size, while the RMSE describes the
dispersion and convergence performance. The expressions are as follows:

MAE =
1
N

N

∑
i=1

∣∣∣ŜOHi − SOHi

∣∣∣ (8)
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RMSE =

√√√√ 1
N

N

∑
i=1

(
ŜOHi − SOHi

)2
(9)

where ŜOHi represents the predicted value, SOHi represents the reference value, and N is
the number of samples.

To fully use the Oxford aging dataset and verify the generalization of the proposed
SOH estimation method, the aging datasets of eight cells are constructed into eight groups
for experiments. For example, experimental group 1 represents that the aging dataset
of cell 1 is used as a training dataset for model training. Then, the aging datasets of the
other seven cells are used as testing datasets. In this way, the feasibility of the selected
HFs and the generalization of the proposed SOH method can be evaluated comprehen-
sively.Sections 4.1.1–4.1.3 explain the results of group 1, and Section 4.1.4 gives the results
of the other seven experimental groups.

4.1. Results
4.1.1. Optimal Parameters

Firstly, the optimal values of input delays, output delays, and the number of hidden
neurons are optimized by the PSO algorithm. The convergence curve is shown in Figure 10.
It can be seen that the minimum value of the objective function is achieved after 32 iterations
when the relative change in the objective function value over the last iteration is less than
the tolerance. Moreover, the optimal values of input delays, output delays, and the number
of hidden neurons are attained as 1, 2, and 15, respectively. Then, the NARXNN is trained
using the optimal values and compared with other algorithms in the following sections.

×10 6

M
SE

4

6

8

10

12

14

16

Iterations
0 5 10 15 20 25 30

Best Function Value: 4.41016 × 10 6

Figure 10. Convergence curve of PSO algorithm.

4.1.2. Comparison with Different Feature Extraction Strategies

As mentioned in the Introduction, health feature extraction is essential for building a
high-performance SOH estimation model. To verify the effectiveness of the proposed multi-
feature extraction strategy, the voltage, temperature, IC, and fusion features are separately
used to train the PSO-NARXNN and compared in this section. The SOH estimation results
based on different feature extraction strategies are shown in Figure 11, and the statistical
metrics are given in Table 3.
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Figure 11. SOH estimation results of different feature extraction strategies.

Table 3. Summary of MAE and RMSE of different feature extraction strategies.

Cell
Voltage Temperature IC Fusion

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

1 0.29 0.36 0.16 0.20 0.18 0.26 0.09 0.116

2 0.51 0.57 0.29 0.39 0.90 1.06 0.84 0.95

3 0.79 0.87 1.24 1.35 0.43 0.49 0.17 0.22

4 1.21 1.34 1.96 2.27 0.47 0.59 0.28 0.36

5 0.51 0.59 0.24 0.31 1.03 1.16 0.85 1.01

6 0.17 0.22 0.67 0.81 0.71 0.83 0.65 0.74

7 1.40 1.60 2.82 3.04 0.73 0.94 0.55 0.66

8 0.98 1.10 1.56 1.80 0.43 0.56 0.32 0.41

Average 0.73 0.83 1.12 1.27 0.61 0.73 0.47 0.56

Overall, the fusion feature-based method can obtain accurate and robust estimation
results under all testing datasets. In contrast, single feature-based methods can only achieve
acceptable estimation results on specific testing datasets. For example, the temperature
feature-based method can obtain great estimation accuracy for cell 2 and cell 5 with the
MAEs less than 0.3% and RMSEs less than 0.4%. However, the estimation results of other
cells are the worst, where the MAEs of cell 3, cell 4, cell 7, and cell 8 are 1.24%, 1.96%, 2.82%,
and 1.56%, respectively, while the RMSEs are 1.35%, 2.27%, 3.04%, and 1.80%, respectively.
Moreover, the MaxE of cell 7 exceeds 4%, which is unacceptable. The DT curve can reflect
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the thermodynamic characteristics of LiBs during the degradation process. However, the
differential operation may magnify the noise in measurement, and the filtering algorithm
may influence the feature extraction process. Thus, only using the temperature feature
cannot obtain accurate and robust estimation results for all testing datasets. Regarding the
voltage feature, the overall estimation performance is better than the temperature feature,
according to the error curves in Figure 11. However, only using the voltage feature cannot
guarantee the estimation robustness under different testing datasets. It can be seen that the
MAE of cell 6 achieves the lowest value, while the MAEs of cell 4 and cell 7 exceed 1%. The
MaxEs of cell 4 and cell 7 exceed 2%. Regarding the IC feature, the IC curve can describe
the electrochemical characteristics of LiBs during the aging process. It can be seen that the
overall SOH estimation results based on the IC feature are better than the temperature and
voltage features, especially for cell 3, cell 4, cell 7, and cell 8. However, compared with the
fusion feature-based method, the error curves of the IC feature-based method show more
fluctuations, resulting in larger RMSEs and MaxEs, where the MaxEs of cell 2, cell 5, and
cell 7 exceed 2%. Finally, the multi-feature extraction strategy can fully use the advantages
of different kinds of features and avoid their disadvantages, resulting in more accurate
and robust estimation results. It can be seen from Figure 12 that although the MAEs of the
fusion feature-based method for cell 2 and cell 5 are not the lowest, it remains within 1%.
Moreover, the fusion feature-based method can obtain the best estimation performance for
other cells. The average MAE of the fusion feature-based method is 0.47%, which is 57.79%,
35.63%, and 22.73% lower than the temperature, voltage, and IC feature-based methods,
respectively. As such, the effectiveness of the proposed multi-feature extraction strategy is
verified based on the above analysis.
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Figure 12. (a) MAE of different feature extraction strategies; (b) RMSE of different feature extrac-
tion strategies.

4.1.3. Comparison with Different Algorithms

As concluded in Section 4.1.1, the optimal values of input delays, feedback delays,
and the number of hidden neurons are optimized by the PSO algorithm. To verify the
effectiveness of the optimal hyperparameters, a conventional NARXNN whose input delays,
feedback delays, and the number of hidden neurons are randomly assigned is built for
comparison. Additionally, to further verify the validity of the selected HFs, a simple three-
layer BPNN is trained for comparison, too. For a fair comparison, the hyperparameters
and training settings of the above two methods, including the number of hidden neurons,
activation function, and training method, are entirely consistent with the PSO-NARXNN
method. Figure 13 shows the SOH estimation results, and Figure 14 visually compares the
MAE and RMSE of the above three methods. The statistical metrics are given in Table 4.
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Figure 13. SOH estimation results of different algorithms.
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Figure 14. (a) MAE of different algorithms; (b) RMSE of different algorithms.

According to the SOH estimation curves shown in Figure 13, the estimated SOH of the
three methods can generally follow the aging path. However, the SOH curves estimated
based on the PSO-NARXNN method have better consistency and smoothness with the real
SOH trajectory. In contrast, the estimated curves based on the BPNN and conventional
NARXNN methods show different degrees of fluctuations. Specifically, regarding the BPNN
method, the MAEs of all cells are less than 1%, and only the RMSE of cell 2 exceeds 1%,
indicating 1.10%. Moreover, the MAEs of cell 4 and cell 5 achieve the lowest values among
the three methods. Therefore, the effectiveness of the proposed multi-feature extraction
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strategy is further verified because a simple BPNN can obtain a relatively satisfactory
estimation performance. However, the MaxEs of the BPNN method are all larger than 2%,
and the estimated SOH curves show significant fluctuations, especially during the EOL of
LiBs, according to the error curves in Figure 13. As a result of the fluctuation, the BPNN
method has an average MAE and RMSE of 0.64% and 0.84%, which are larger than the other
two methods. Regarding the conventional NARXNN method, it can achieve an overall
better performance in comparison to the BPNN method. Especially, the estimation errors
of cell 3 and cell 7 are reduced to a larger extent. The average MAE is 0.60%, 6.7% lower
than the BPNN method. Moreover, the average RMSE is 0.70%, which is 16.7% lower than
the BPNN method. In addition, according to the error curves in Figure 13, the MaxEs of the
conventional NARXNN method are all less than those of the BPNN method, showing a
more robust estimation result. This is because the feedback mechanism of the NARXNN
can learn information from the past values of output and previous values of exogenous
input data. Regarding the PSO-NARXNN, it can be seen from Figure 14 that all MAEs
and RMSEs are reduced in comparison to the conventional NARXNN. The error curves
in Figure 13 also demonstrate that the PSO-NARXNN has an overall better estimation
performance than the conventional NARXNN. The MAE of cell 3 reaches the lowest value,
0.17%. The average MAE and RMSE are 0.47% and 0.56%, which are 21.67% and 20% lower
than the conventional NARXNN method and 26.56% and 33.33% lower than the BPNN
method. Therefore, the effectiveness of the PSO algorithm is verified.

Table 4. Summary of MAE and RMSE of different algorithms.

Cell
BPNN NARXNN PSO-NARXNN

MAE RMSE MAE RMSE MAE RMSE

1 0.06 0.33 0.14 0.19 0.09 0.116

2 0.95 1.10 0.88 1.00 0.84 0.95

3 0.45 0.88 0.27 0.32 0.17 0.22

4 0.23 0.44 0.39 0.45 0.28 0.36

5 0.71 0.88 0.93 1.09 0.85 1.01

6 0.76 0.95 0.69 0.80 0.65 0.74

7 0.84 0.98 0.66 0.76 0.55 0.66

8 0.52 0.64 0.43 0.51 0.32 0.41

Average 0.64 0.84 0.60 0.70 0.47 0.56

In summary, by comparing the BPNN and conventional NARXNN methods, the
effectiveness of the multi-feature extraction strategy is further demonstrated. Moreover, by
comparing the conventional NARXNN and PSO-NARXNN methods, the effectiveness of
the optimal values by the PSO algorithm is verified.

4.1.4. Results of Other Experimental Groups

As explained at the beginning of Section 4, there are eight experimental groups to
comprehensively evaluate the effectiveness of the proposed multi-feature extraction strat-
egy and PSO-NARXNN model. Section 4.1.2 and 4.1.3 has discussed the experimental
results of group 1, which uses the aging dataset of cell 1 to train the model, and then
the aging datasets of the other seven cells to test it. In this section, the results of other
experimental groups are explained. Owing to space limitation, the average MAE and RMSE
of 7 experimental groups are given in Table 5, and Figure 15 intuitively compares them.
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Table 5. Summary of MAE and RMSE of other experimental groups.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Average

MAE 0.47 0.71 0.49 0.55 0.69 0.57 0.74 0.48 0.59

RMSE 0.56 0.77 0.58 0.65 0.79 0.63 0.80 0.54 0.66

MAE
RMSE

0

0.2
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0.6

0.8

Group number
1 2 3 4 5 6 7 8 Average

Figure 15. Comparison of MAE and RMSE of other experimental groups.

As shown in Figure 15, it can be seen that average MAE and RMSE are all less
than 1%, which means that no matter which cell aging dataset is used to train the PSO-
NARXNN SOH estimation model, it can achieve excellent estimation accuracy for other
aging datasets. This result demonstrates the generalization of the proposed PSO-NARXNN
SOH estimation method and proves that the multi-feature extraction strategy is valid
for different cells. This conclusion also coincides with the observation in the above two
sections. To further validate the superior performance of the proposed PSO-NARXNN
method, similar methods, especially those with SOH estimation works based on the Oxford
dataset, are compared in Table 6. It is evident from Table 6 that the proposed method has
higher or at least comparable accuracy than those of other existing approaches. In addition,
as explained in the Introduction, the NARXNN has a more straightforward structure and
fewer parameters than the GRU, CNN, and RF regressor.

Table 6. Comparison with other similar works.

Method Ref. MAE RMSE MaxE

GRU-CNN [53] 0.62 - 1.62

GRU [49] 0.73 0.86 1.75

GPR [54] 0.83 1.13 -

RF regressor [17] 0.64 0.70 -

SRU-decoder3 [55] 0.46 0.51 1.02

PSO-NARXNN - 0.47 0.56 1.48

Overall, the analysis above comprehensively verifies the effectiveness of the multi-
feature extraction strategy and the proposed PSO-NARXNN SOH estimation method on
the Oxford aging dataset.

4.2. Discussion

The above results demonstrate the validity of the multi-feature extraction strategy
and the performance of the PSO-NARXNN for SOH estimation, but there are still some
limitations and shortcomings. First, the selected HFs and the proposed method are verified
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on one type of LiB. The feasibility on other types of LiBs needs to be further validated.
Second, it can be concluded from Section 4.1.3 that a simple three-layer BPNN can obtain
a relatively satisfactory estimation accuracy when the HFs are reasonable. Therefore,
how to further optimize the HFs and then achieve high-precision estimation using only a
simple algorithm deserves further investigation. Third, this research only focuses on SOH
estimation methods for cell, while SOH estimation methods for the battery pack are not
covered. More studies need to determine whether the selected HFs are suitable for battery
pack SOH estimation. Additionally, the computation requirements would become larger
when applying the cell estimation method to pack estimation. How to maintain a trade-off
between model accuracy and complexity deserves further investigation. Therefore, our
future work will employ other aging datasets, such as the NASA dataset [56] and CALCE
(Center Advanced Life Cycle Engineering) dataset [57], to validate the feasibility of the
proposed multi-feature extraction strategy as well as the PSO-NARXNN. In addition, SOH
estimation methods for the battery pack will be investigated based on the research in
this paper.

5. Conclusions

To improve the SOH estimation performance, this paper proposes a multi-feature
extraction strategy and PSO-NARXNN for accurate SOH estimation of LiBs. Firstly, eight
HFs are extracted from partial voltage, capacity, DT, and IC curves to reflect the battery
aging process comprehensively. Then, qualitative and quantitative analyses are used to
evaluate the effectiveness of the selected HFs. Second, owing to the advantages of simple
structure, easy implementation, and high estimation accuracy, the NARXNN is adopted
to build an accurate SOH estimation model. To improve the training efficiency, the PSO
algorithm is applied to optimize the hyperparameters of NARXNN, including input delays,
feedback delays, and the number of hidden neurons. Finally, the proposed multi-feature
extraction strategy and PSO-NARXNN are systematically validated using the Oxford
aging dataset. The results show that in comparison to a simple three-layer BPNN and a
conventional NARXNN, the proposed PSO-NARXNN can achieve higher accuracy and
stronger robustness, where the average MAE and RMSE of eight experimental groups are
0.59% and 0.66%, respectively.

Our future work will use other types of LiBs to validate the proposed multi-feature
extraction strategy and PSO-NARXNN method. Moreover, the multi-feature extraction
strategy will be further optimized, and a simpler algorithm will be used for accurate SOH
estimation. Then, the optimized algorithm will be used for battery pack SOH estimation.
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Abstract: Accurate state of health (SOH) estimation is critical to the operation, maintenance, and
replacement of lithium-ion batteries (LIBs), which have penetrated almost every aspect of our life.
This paper introduces a new approach to accurately estimate the SOH for rechargeable lithium-ion
batteries based on the corresponding charging process and long short-term memory recurrent neural
network (LSTM-RNN). In order to learn the mapping function without employing battery models
and filtering techniques, the LSTM-RNN is initially fed into the health indicators (HIs) extracted
from the charging process and trained to encode the dependencies of the related data sequence.
Subsequently, the trained LSTM-RNN can properly estimate online SOHs of LIBs using extracted
HIs. We experiment on two public datasets for model construction, validation, and comparison.
Conclusively, the trained LSTM-RNN achieves an overall root mean square error (RMSE) lower than
1% on the cases with the same discharging current rate and an RMSE of 1.1198% above 80% SOH on
another testing case that underwent a different discharging current rate.

Keywords: state of health (SOH); lithium-ion batteries (LIBs); long short-term memory recurrent
neural network (LSTM-RNN); health indicators (HIs)

1. Introduction

Lithium-ion batteries are deployed in many fields, such as consumer electronics,
electric vehicles (EV), and aerospace technologies, due to their high energy density, long
lifetime, environmental friendliness, and low self-discharge rate [1–3]. However, as the
charge/discharge cycle increases, the material inside the lithium-ion battery is irreversibly
consumed [4,5], which means that the cell ages, manifesting in decreasing capacity, de-
clining power, and thermal instability. When the battery ages beyond a certain point, the
battery performance consequently becomes unreliable and is prone to failure. State of
health (SOH) is proposed to represent the battery aging degree and can reflect the total
capacity reduction and resistance increment. Most companies set 80% SOH as the crite-
rion for the decommission of used batteries [6]. Additionally, a reliable SOH estimation
method is crucial for secure and reliable battery operation and is the backbone of the battery
management system (BMS) [7].

This paper utilizes the capacity to indicate the battery state of health (SOH), which
can be defined in terms of battery capacity [8,9], internal resistance [10–12], and peak
power [13]. Technically, battery SOH estimation methods mainly fall into two categories.
In the first category, SOH estimation is based on battery models, including the equivalent
circuit models [14,15], electrochemical models [16–18], and empirical models [19,20], in
combination with advanced filter techniques such as the particle filter (PF) and Kalman
filter (KF) techniques. Bi et al. [15] proposed a second-order equivalent circuit model of an
RC circuit for battery packs and subsequently developed a genetic resampling particle filter
(GPF) technique to cope with the inaccuracy of the equivalent circuit model. In addition,
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Li et al. [17] developed an SP-based degradation model including solid electrolyte interface
(SEI) layer formation. This model can quickly estimate capacity fade and voltage profile
changes with high accuracy. Additionally, Guha et al. [19] obtained a degradation model to
monitor the SOH of a battery by fusing the capacity degradation model and an empirical
model for internal resistance growth. In [21], Ossai et al. estimated the SOH of batteries
using the Weibull distribution function based on a nonlinear mixed effect degradation
model framework. Since lithium-ion batteries have intricate electrochemical properties and
complex aging mechanisms, the model-based approach requires computationally intensive
algorithms to accurately estimate SOH [9]. Moreover, the identified parameters always
need to be modified according to the different working conditions and battery types, which
obstructs the promotion of related model-based approaches [22,23].

The second category of SOH estimating methods is built on data-driven (machine
learning) methodologies. In contrast to model-based approaches, data-driven methods
are dependent on the offline charging/discharging data to learn the mapping function to
estimate the SOH, ignoring the complex aging mechanisms and intricate internal electro-
chemical properties of lithium-ion batteries. Due to significant strides made in the field
of machine learning, these data-driven approaches, mainly including the support vector
machine (SVM) [24,25], Gaussian process regression (GPR) [26–28], and the neural network
(NN) [9,29–32], typically produce more accurate SOH estimates. In [24], Feng et al. built
a predictive diagnosis model based on a support vector machine whose coefficients for
cells are identified by determining the support vectors. Richardson et al. [27] proposed
Gaussian process (GP) regression for estimating the SOH of batteries and highlighted the
advantages of GPs over other SOH forecasting approaches. To obtain more accurate SOH
estimates, the effective health indicators fed into the algorithms are initially extracted from
the charge/discharge data. Zhao et al. [25] employed a relevance vector machine (RVM) to
fit the mapping function between the five types of extracted health indicators and SOH.
Wang et al. [28] initially proposed an accurate SOH prediction model using multi-output
Gaussian process regression (MOGPR) and subsequently performed the SOH estimation
based on extracted health indicators (HIs). Li et al. [9] utilized the convolutional neural net-
work for SOH estimation based on the battery’s charging current, voltage, and temperature.
Based on an incremental capacity curve, Lin et al. [29] utilized a back-propagation neural
network to develop an SOH hybrid estimation method. In [31], Shahriari et al. obtained
SOH estimates based on the relationship between health indicators (HIs) from the state of
charge (SOC) and the battery open-circuit voltage. Additionally, Liu et al. [32] extracted
partial segments of charging and discharging data as health indicators for SOH estimation.

By establishing a non-linear mapping function between the input vectors and SOH,
data-driven methods can accurately estimate battery SOH. Since the cyclic charge/discharge
data can be viewed as a series of time series data, the sequence prediction problem of SOH
estimation can be tackled using RNNs with a “memory” property [33]. To address the
gradient vanishing problem of convolutional recurrent neural networks (RNN) [34], the
LSTM-RNN is designed to learn long-term dependencies by remembering information over
long periods [35]. Due to the suitability of this characteristic for addressing the time series
predicting problem, this paper employs a vanilla LSTM-RNN with one single hidden layer
to estimate the online SOH with the stable and monolithic charging process of lithium-ion
batteries. Specifically, the main advantage of this method is that it can adequately exploit
time series characteristics to learn the long-term dependencies from the historical cyclic
data. With only one single hidden layer on the LSTM-RNN, this method can be achieved
with less model complexity and fewer parameter sets compared with other data-driven
approaches. Another advantage is that it can directly map battery measurement signals
such as voltage and current to the online SOH, avoiding the inference algorithms and
intensively computational filter techniques used in model-based SOH estimators.

After a brief introduction, the second section will introduce the battery cyclic datasets
and the health indicator extraction process. The third section will elaborate on the detailed
LSTM-RNN for online SOH estimation. The fourth section will describe the procedure for
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the LSTM-RNN application and show the online SOH estimation results on the introduced
battery datasets, and this will be followed by the conclusions in Section 5. All abbreviations
are explained in Table A1 of Appendix A.

2. Battery Datasets and Health Indicator Extraction

This paper utilizes two public cyclic aging datasets, one from the data repository
of the NASA Ames Prognostics Center of Excellence (PCoE) [36] and another provided
by the Center for Advanced Life Cycle Engineering (CALCE) [37,38] at the University of
Maryland, to verify the effectiveness and performance of the proposed SOH estimator.
The SOH is defined as the ratio of the present capacity to the nominal capacity and can be
expressed as follows:

SOH =
CP
CN

× 100% (1)

where CN denotes the nominal capacity and CP is the present capacity of the battery.

2.1. Description of NASA Battery Dataset

The NASA battery datasets, regarding several commercially available lithium-ion 18
650-sized rechargeable batteries, was collected from a battery prognostics test bed. The test
bed setup included a power supply, a programmable load, a voltmeter, a thermocouple
sensor, and an environmental chamber to regulate and stabilize the temperature [26].
Among the six battery datasets, the first dataset includes three batteries (labeled B0005,
B0006, and B0007) considered suitable for this battery state of health estimation study. This
set of cells was run through three operational profiles (charge, discharge, and impedance)
at room temperature. As is shown in Figure 1a, the charge was carried out in a constant
current–constant voltage (CC–CV) mode where the constant current was 1.5 A, the voltage
was 4.2 V, and the constant voltage (CV) mode continued until the charging current dropped
to 20 mA. Discharge was carried out at a constant current (CC) level of 2 A until the voltage
fell to 2.7 V, 2.5 V, and 2.2 V for batteries B0005, B0006, and B0007, respectively. The
charge/discharge cycle was repeated to accelerate the aging until the batteries reached
their end-of-life (EOF) criterion of a 30% reduction in rated capacity (from 2 Ah to 1.4 Ah),
and all the SOH degradation curves are shown in Figure 1b.

  
(a) (b) 

Figure 1. (a) Battery terminal voltage and charge/discharge current during one cycle; (b) the curves
of degradation capacity.

2.2. Description of CALCE Battery Dataset

The second battery dataset, from the Center for Advanced Life Cycle Engineering
(CALCE) at the University of Maryland, was obtained from the implementation of cyclic
battery testing on the Arbin200 battery testing system at room temperature. Specifically,
we employ a set of five CS2 cells labeled CS2-33, CS2-35, CS2-36, CS2-37, and CS2-38 to
verify the effectiveness of the LSTM-RNN estimating model. Each cell underwent the same
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CC–CV charging mode in which the constant current rate was 0.5 C (this indicates that
the charging current was 0.55 A), and the constant voltage was sustained at 4.2 V until the
charge current fell below 0.05 A. As for the discharge process, CS2-33 was cycled with a
constant discharge current of 0.55 A, which indicates that the discharge current rate was
0.5 C. The rest of the cells (CS2-35, CS2-36, CS2-37, and CS2-38) were discharged with a
constant current rate of 1 C. The materials of the cells consisted of graphite on the anode
and LiCoO2 on the cathode. Figure 2 represents the SOH degradation curves of all the
batteries whose nominal capacity is 1.1 Ah.

 
Figure 2. The SOH degradation curves during the whole life cycle.

2.3. Health Indicator Extraction

In some articles, health indicators are extracted from the discharging process [39], but
this is not practical due to the complex and inconsistent discharging scenario, especially for
electric vehicles (EVs) [40]. Therefore, in this paper we extract the health indicators from
the controllable and monolithic charging process to estimate the current online SOH.

Figure 3 represents the related terminal voltage and current curves for the NASA
batteries during the CC–CV charging process. Figure 3a shows the terminal voltage
responses extracted from a partial voltage segment of a single cell during different cycles.
The terminal voltage gets higher and reaches the cut-off voltage earlier as the cycle number
increases. Therefore, the voltage integration from the 3.8–4.2 V terminal voltage varies
regularly with the number of cycles. Consequently, this partial voltage integration can
indicate the cell’s health status, which is denoted as HIv and calculated as follows:

HIv =
∫ t=t1

t=t0

v(t)dt (2)

where v(t) represents the terminal voltage function versus time, and t0 and t1 denote the
moments at which the voltage equals 3.8 V and 4.2 V, respectively. The plots of HIv values
versus the cycles for different cells from the NASA repository are represented in Figure 4a.
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(a) 

 
(b) 

Figure 3. (a) Charge voltage curves from 3.8 V to 4.2 V during different cycles; (b) current curves
during the whole charging process during different cycles.

 
(a) 

 
(b) 

Figure 4. (a) The values of the HIv versus the cycle number; (b) the values of the HIi versus the
cycle number.
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Besides the charge terminal voltage, Figure 3b compares the whole current curves
during different cycles and shows that the corresponding current decreases as the number
of cycles increases. Consequently, the integration, calculated from the charging process, can
be viewed as a health indicator and denoted as HIi. This current integration is the charging
capacity and can be calculated as follows:

HIi =
∫ t=t1

t=t0

i(t)dt (3)

where i(t) represents the corresponding charge current, and t0 and t1 denote the charge
start and end moments, respectively. The HIi curves for different cells from the NASA
repository are shown in Figure 4b.

As the partial charge voltage segment is more easily accessible than the whole charging
current, we only employ the HIv as the health indicator for the CALCE batteries to avoid
current sampling interference. Figure 5a illustrates the corresponding terminal voltage
curves during different cycles of battery CS2-35, and the corresponding HIv values versus
the cycle number are represented in Figure 5b. As can be seen in Figure 5b, the HIv
values degrade with more noise than the corresponding SOH values compared with those
in Figure 2.

  
(a) (b) 

Figure 5. (a) Charge voltage curves from 3.8 V to 4.2 V during three different cycles for the CS2-35
battery; (b) the curves of the values of the health indicator (HIv) versus the cycle number for the
CALCE battery dataset.

3. LSTM-RNN Algorithm

Due to their “memory” characteristics, RNNs are suitable for this type of time-series
data estimation [33]. However, conventional RNNs have issues in learning long-term de-
pendencies where the gradients may either vanish or explode during backpropagation [34].
To address this problem, an LSTM-RNN was proposed to capture long-term dependencies
within the sequence by remembering information over long periods [35]. Therefore, this
paper utilizes an LSTM-RNN to estimate the SOH of lithium-ion batteries.

Figure 6 schematically illustrates the network architecture of LSTM-RNN, which can
work as a nonlinear dynamic system by mapping input vectors to output sequences. The
LSTM cell is equipped with a memory cell ck, which is the key part of the structure and
stores the long-term dependencies. In addition, the input, output, and forget gates are
distinctive features of the LSTM-RNN and can regulate the information flow. Each gate
is a sigmoid unit (σ) that is activated from the hidden layer at the last time step hk−1 and
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from the present input layer ψk. The constructed LSTM-RNN can be represented by the
composite function below:

ik = σ(Wψiψk + Whihk−1 + bi)
fk = σ(Wψ fψk + Wh f hk−1 + b f )
ck = fkck−1 + iktanh(Wψcψk + Whchk−1 + bc)
ok = σ(Wψoψk + Whohk−1 + bo)
hk = oktanh(ck)

(4)

where h0 is the initial hidden state, σ denotes the sigmoid function, and i, f, c, and o are the
input gate, forget gate, memory cell, and output gate, respectively. These gates can inhibit
the flow of information by setting the value of the sigmoid unit as 0 from the current input
layer ψk and the hidden layer at the last time step hk−1. The W and b values are the network
weights and biases, respectively. The subscripts of W describe the interaction occurring
between the two corresponding components, e.g., Wψi denotes the input–input gate matrix
and Whi denotes the hidden–input gate matrix. At each gate, a bias b is added to the matrix
multiplication to increase the computing flexibility.

 
Figure 6. Network architecture of the LSTM-RNN.

When we exploit the LSTM-RNN to estimate online SOH, the network initially needs
to be trained with a series of sequences from the dataset. In order to take full advantage of
the LSTM’s ability to capture long-term dependencies, this work utilizes n-step (n equals
10) input vectors to estimate one SOH value. Therefore, a typical dataset used to train
the network is given by D = ((ψ1, ψ2, . . . , ψn, SOHn*), (ψ2, ψ3, . . . , ψn+1, SOHn+1*), . . .
(ψk−n+1, ψk−n+2, . . . , ψk, SOHk*), . . . , (ψN−n+1, ψN−n+2, . . . , ψN, SOHN*)), where SOHk*
denotes the ground-true value at cycle k and ψk is the vector of inputs at cycle k. After
the LSTM-RNN, a fully connected layer linearly transforms the hidden state tensor hk to
obtain a single estimated SOH value. The fully connected layer achieving the regression is
given by:

SOHk = Vouthk + b f (5)

where Vout and bf are the weight matrix and biases of the fully connected layer, respectively.
The whole training and SOH estimating process structure is shown in Figure 7. Conse-
quently, we can estimate the online SOH using the trained LSTM-RNN with the testing
input vectors.
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Figure 7. SOH estimating process structure.

4. SOH Estimation Results and Analysis

This section implements the proposed LSTM-RNN to estimate the online SOH of
batteries as they age using the two public datasets introduced above. Considering the
stable and monolithic charging scenario, we can extract the health indicators from the
partial charging voltage segment and the charging current, respectively, to estimate the
corresponding SOH. The kth vector of inputs, consisting of the health indicators fed into
LSTM-RNN, is described as ψk, where k denotes the kth charging cycle. The following
two subsections investigate and verify the performance of the proposed SOH estimation
technique using the NASA and CALCE battery datasets, respectively.

4.1. SOH Estimation Based on the NASA Battery Dataset

Section 2 introduced the cyclic experiment with the battery datasets. Considering
the varying information in the whole life cycle of the batteries, we train the LSTM-RNN
using the entire battery samples rather than partial data from the whole cycling life, since
this is more compatible with the intended practical application. Specifically, the initial
training uses 80% of the battery B0005 and B0006 datasets, whereas cross-validation uses
the remaining 20%. The dataset from cell B0007 is for testing. The validation serves the
hyper-parameters adjustment, and the testing achieves the performance assessment. After
completing the parameter configuration, we retrain the model with the datasets from
batteries B0005 and B0006. As mentioned above, the vector of inputs ψk fed into the LSTM
in the experiment using the NASA dataset is defined as ψk = (HIv, HIi), where HIv denotes
the voltage integration from the partial voltage segment and HIi represents the charging
capacity in the charging process. All the experiments were implemented using Python
3.9.12 on a laptop equipped with an Intel Core i5-8300H processor.

To perform the online SOH estimation, we explore a vanilla LSTM with one single
hidden layer to reduce the model complexity and parameter settings. In the training
process, the LSTM network can reach higher predicting accuracy when its layer owns
more computational nodes. However, the network is prone to overfitting when the layer
is equipped with large computational nodes. Combining with the cross-validation, we
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set 128 computational nodes in the layer and select the mean square error (MSE) as the
optimization goal, which can be calculated as:

MSE =
1
m

m

∑
i=1

(SOHi − SOH∗
i ) (6)

where m is the number of examples in one batch, SOHi* is the predicted SOH for the ith
example, and SOHi is the ith actual value.

For the evaluation of the performance of the algorithms in the testing stage, the error
metrics are given in terms of the root mean square error (RMSE) and mean absolute error
(MAE) in the following equations:

RMSE =

√
1
m

m

∑
i=1

(SOHi − SOH∗
i )

2 (7)

MAE =
1
m

m

∑
i=1

|SOHi − SOH∗
i | (8)

where the root mean square error (RMSE) is sensitive to the large errors, and the mean
absolute error reflects how close the estimated SOH is to the real SOH, regardless of the sign.

Having features on a similar scale helps the gradient descent converge more smoothly
and quickly toward the minima. We standardize the features by removing the mean and
scaling to unit variance to transform the health indicators into a similar scale. The stand
score of a sample x is calculated as:

z =
(x − u)

s
(9)

where u is the mean of the training samples and s is the deviation of the training samples.
The testing samples are transformed based on the mean and deviation of the training samples.

To minimize the MSE loss, the network weights W and biases b are updated through
every training epoch ε, which includes one forward and one backward pass. Based on the
gradient of the MSE loss function, the Adam optimization algorithm [41] was utilized to
update the parameters and is given by the following:

mε = β1mε−1∇L(Wε−1)

rε = β2rε−1∇L(Wε−1)
2

m̃ε = mε/(1 − βε
1)

r̃ε = rε/(1 − βε
2)

Wε = Wε−1 − α m̃ε
r̃ε−k

(10)

where β1 and β2 are decay rates set to 0.9 and 0.999, respectively, L denotes the loss
function, α is the learning rate, and constant term k is set to 10−8. Wε represents the
matrix of network parameters at the current training epoch. More details about the Adam
optimization method can be found in [41].

We routinely use cross-validation to evaluate model performance to obtain adequate
hyper-parameters. In combination with the cross-validation technique, we set the training
epochs as 15,000. Figure 8 displays a plot of the RMSE as a function versus the training
epoch. As can be observed, the RMSE drops fast in the first 5000 epochs and almost
reaches 0 after 12,000 epochs. Due to the decreasing tendency after 12,000 epochs, 15,000 is
considered a reasonable number of training epochs. We choose a batch size of 64 to train
the network as a compromise between the large and small batches. All the parameters of
the LSTM-RNN are listed in Table 1.
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Figure 8. RMSEs of the training performance versus the training epochs.

Table 1. Parameter settings for the LSTM-RNN.

Parameter Value Setting

Optimizer Adam
Loss function MSE

Activation function RELU
Computational nodes in one layer 128

Batch size 64
Learning rate 0.00005

Epochs 15,000

In the online SOH estimation, we compare the LSTM-RNN with the gated recurrent
unit recurrent neural network (GRU-RNN) and simple recurrent neural network (Sim-RNN)
to demonstrate its effectiveness and performance. In order to carry out a fair comparison,
the RNN and GRU algorithms are provided with the same structure and parameters as the
LSTM, except for the main RNN and GRU working layers. The Sim-RNN and GRU-RNN
are given 15,000 and 25,000 epochs, respectively, to achieve converging loss in the training
process. The computational time required to train the LSTM-RNN, Sim-RNN, and GRU-
RNN is around 18.1 min, 13.8 min, and 30.6 min, respectively. Consequently, more training
epochs for the GRU-RNN incur a longer training time.

Figure 9 shows the online SOH estimation results for cell B0007 using the three
networks. As can be seen, the SOH predictions of the three networks generally follow the
actual SOH values. The estimation errors of the LSTM-RNN, Sim-RNN, and GRU-RNN
are plotted in Figure 9d, and all the estimation errors of the three different networks stay
approximately within 2%. The test results from the LSTM-RNN, Sim-RNN, and GRU-RNN
algorithms are listed in Table 2. The overall RMSE and MAE of the LSTM are 0.5623% and
0.5746%, respectively (slighter smaller than those of the GRU and RNN). Therefore, the
proposed SOH estimator can accurately estimate the online SOH with the extracted HIs
based on the charging process in this experiment.

Table 2. The RMSE and MAE results from the testing of battery B0007.

LSTM (%) GRU (%) RNN (%)

RMSE 0.5623 0.6421 0.6345
MAE 0.5746 0.7494 0.6400
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Figure 9. (a) SOH estimation results of the LSTM-RNN; (b) SOH estimation results of the GRU-RNN;
(c) SOH estimation results of the Sim-RNN; (d) estimation errors of the LSTM-RNN, Sim-RNN,
and GRU-RNN.

4.2. SOH Estimation Based on the CALCE Battery Dataset

To validate the generality of the proposed LSTM-RNN, we further employ the CALCE
battery dataset to establish its effectiveness. As mentioned above, the input vector, fed into
the LSTM network, only contains one health indicator HIv in the CALCE battery dataset
experiment. Excluding the HIi optimizes the online SOH estimation process by avoiding
interference from the electric current sampling process.

Similarly, the training and cross-validation are performed on the cyclic data of batteries
CS2-36 and CS2-38, while the testing is achieved using the remaining battery datasets. The
parameters of this LSTM-RNN are virtually the same as those in Table 1, except that the
batch size is 128. Additionally, we continue to train the model using 15,000 training epochs.
The computation time for training the LSTM-RNN based on cells CS2-36 and CS2-38 is
32.0 min.

Figure 10 shows the estimation performance on batteries CS2-35 and CS2-37, which un-
derwent the 1 C discharging rate. Figure 10a,b represent the corresponding SOH estimation
results for batteries CS2-35 and CS2-37. The overall RMSE achieved on the two batteries
is 0.9311% and 0.8288%, respectively. The overall RMSE and MAE performance metrics
for batteries CS2-35 and CS2-37 are listed in Table 3. Moreover, the estimation errors of
each cycle for the two testing cases are plotted in Figure 10c,d, and the errors mainly stay
within 3%. Specifically, the estimation root mean square errors above 80% SOH (safe battery
operating range) generally fall within 2% and are smaller than those estimated in the final
phase. Moreover, the SOH estimation results from the LSTM-RNN eliminate the impact of
the input noise from the HIv extraction process shown in Figure 5b.
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Figure 10. SOH estimation results based on the batteries CS2-35 and CS2-37. (a) SOH estimation for
CS2-35; (b) SOH estimation for CS2-37; (c) SOH estimation errors of each cycle for battery CS2-35;
(d) SOH estimation errors of each cycle for battery CS2-37.

Table 3. The RMSE and MAE results for the batteries under different charging rates.

Testing Battery Discharging Rate RMSE (%) MAE (%)

CS2-33 0.5 C 2.038 1.4952
CS2-35 1 C 0.9311 0.7437
CS2-37 1 C 0.8288 0.6373

To evaluate the robustness of the trained LSTM-RNN model against different discharg-
ing current rates, battery CS2-33, which underwent a 0.5 C discharging rate, was used to
validate the estimator. Figure 11a,b show the estimation results and the estimation errors of
each cycle, respectively. The SOH estimations above 80% SOH are close to the actual values
at different cycles, and the corresponding estimation errors are almost within 3%. However,
the SOH estimation errors of the LSTM-RNN model are relatively large for the cycles in
which the SOH is below 80%. The overall RMSE of the estimation result for battery CS2-33
is 2.0384%, and the MAE is 1.495%, as listed in Table 3. Since lithium-ion batteries generally
operate within a certain range for a safety, evaluating the estimator performance above 80%
SOH is more practical and critical. Table 4 shows that the overall RMSE of the estimation
results above 80% SOH for the battery CS2-33 is 1.1198%, and the MAE 0.9454%, a result
approaching the estimation performance of the developed LSTM-RNN for batteries CS2-35
and CS2-37, which means that the trained LSTM network possesses a certain degree of
robustness against the different discharging current rates.
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Figure 11. SOH estimation results based on the battery CS2-33; (a) SOH estimation for CS2-33;
(b) SOH estimation error for CS2-33.

Table 4. The RMSE and MAE results for the different testing cells above 80% SOH.

Testing Battery Discharging Rate
RMSE (%)

(SOH > 80%)
MAE (%)

(SOH > 80%)

CS2-33 0.5 C 1.1198 0.9454
CS2-35 1 C 0.9062 0.7260
CS2-37 1 C 0.8317 0.6370

From the preceding experiments and analysis, we can conclude that the proposed
LSTM-RNN-based estimator can accurately estimate online SOH with robustness against
different discharging current rates for different battery types.

5. Conclusions

State of health illustrates the aging of lithium-ion batteries and accurate SOH esti-
mation provides a basis for lithium-ion battery maintenance and replacement. As the
characteristics of the LSTM-RNN enable it to address the time series predicting problem,
this paper mainly uses an LSTM-RNN model to estimate the online SOH of lithium-ion
batteries with a stable and monolithic charging process.

In the final analysis, the primary benefit of this approach is that it accurately estimates
SOH by effectively leveraging the properties of time series to infer long dependencies from
offline battery data. Due to the one hidden layer on the LSTM-RNN, this method can be
accomplished with less model complexity and fewer parameter sets than other data-driven
approaches. Additionally, the proposed LSTM-RNN can directly map battery measurement
signals such as voltage and current to the online SOH, avoiding the inference algorithms
and intensively computational filter techniques used in model-based SOH estimators.

Experimental studies using two different battery datasets illustrate the performance
and adaptability of this type of data-driven algorithm in the SOH estimation of lithium-
ion batteries. In summary, the proposed LSTM-RNN achieves good performance in the
NASA battery dataset with an overall RMSE of 0.5623% and shows robustness against
the battery discharging rate when applied to the CALCE battery dataset. In addition, the
experiment results show that the LSTM-RNN produces more accurate lithium-ion battery
SOH estimates than the gated recurrent unit recurrent neural network (GRU-RNN) and
simple recurrent neural network (Sim-RNN). Since the SOH estimator is developed based
on the charging process rather than the complex discharging scenario, we can use this
estimator in many practical applications for online SOH estimation.
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Appendix A

Table A1. Abbreviation comparison table.

Abbreviation Explanation

SOH State of health
LIB Lithium-ion battery

LSTM Long short-term memory
HI Health indicator

SOC State of charge
RMSE Root mean square error
MAE Mean absolute error

EV Electirc vehicle
BMS Battery manangement system
PF Particle filter
KF Kalma filter
SEI Solid electrolyte interface

SVM Support vector machine
GPR Gaussian process regression
NN Neural network

RVM Relevance vector machine
NASA National Aeronautics and Space Administration
PCoE Prognostics Center of Excellence

CALCE Center for Advanced Life Cycle Engineering
CC–CV Constant current–constant voltage

GRU Gated recurrent unit
Sim-RNN Simple recurrent neural network
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Abstract: Battery degradation is a complex nonlinear problem, and it is crucial to accurately predict
the cycle life of lithium-ion batteries to optimize the usage of battery systems. However, diverse
chemistries, designs, and degradation mechanisms, as well as dynamic cycle conditions, have
remained significant challenges. We created 53 features from discharge voltage curves, 18 of which
were newly developed. The maximum relevance minimum redundancy (MRMR) algorithm was
used for feature selection. Robust linear regression (RLR) and Gaussian process regression (GPR)
algorithms were deployed on three different datasets to estimate battery cycle life. The RLR and GPR
algorithms achieved high performance, with a root-mean-square error of 6.90% and 6.33% in the
worst case, respectively. This work highlights the potential of combining feature engineering and
machine learning modeling based only on discharge voltage curves to estimate battery degradation
and could be applied to onboard applications that require efficient estimation of battery cycle life in
real time.

Keywords: data driven; state of health; lithium-ion batteries; linear regression; Gaussian process
regression; machine learning

1. Introduction

Lithium-ion batteries have been widely used in various applications, such as electric
vehicles, battery energy storage systems (BESSs), and portable electronics, due to their high
energy density, low cost, and low self-discharge rate [1]. However, similar to most complex
mechanical, electrical, and chemical systems, the aging of lithium-ion batteries is inevitable
due to side reactions occurring within their electrolyte and electrodes [2]. This aging
process causes a decline in battery performance. Thus, it is essential to accurately predict
the aging of lithium-ion batteries to ensure long-term stability and reliable operation.

Many approaches have been suggested to accurately predict the lifetime of lithium-ion
batteries, including empirical models [3], equivalent circuit models [4–6], physical mod-
els [7], and data-driven models [2,8–12]. Empirical models assume that cells of the same
chemistry age in the same manner [3], which may not always be the case. Equivalent
circuit models are semiempirical and unable to represent various aging patterns [4], and the
parameters are difficult to identify when considering different usage conditions, ambient
temperatures, and load profiles [13–15]. Physical models consist of complex partial differ-
ential equations and require many parameters that are not easily obtainable [16–18]. While
some studies have provided model parameters that accurately explain observed data, the
accuracy of predictions may rapidly decline in the presence of uncertain mechanisms and
aging rates under future usage conditions [8,18].

In contrast, data-driven models have many advantages, such as the ability to capture
battery degradation mechanisms without complex chemical reaction knowledge. Recently,
many studies [10,16,19,20] have used machine learning or deep learning tools for battery life
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estimation. Feature extraction and selection are essential for machine learning approaches.
Various studies have extracted features using charge voltage curves, raw data from battery
cycle tests (i.e., voltage, current, temperature, and state of charge (SOC) data) [17,21,22],
discharge voltage curves [23], and electrochemical impedance spectroscopy (EIS) [12,24].
Charge and discharge voltage curves can be obtained via the battery management system
(BMS) in real time [23,25], while EIS data can only be measured with an electrochemical
impedance analyzer. Extracting features based on the charge voltage curve is feasible
because most charge protocols are typically constant current (CC) and constant voltage
(CV) [10,11,21,23]. It is challenging to derive features through the discharge voltage curve
because load behaviors vary among batteries. Feature selection typically relies on back-
ground knowledge or Pearson correlation analysis, with the aim of reducing the size of the
input matrix and avoiding overfitting [10,21,26,27]. However, these approaches overlook
the redundancy among features.

To achieve an accurate prediction of battery life, different fitting functions with opti-
mizable parameters have been implemented. One such method is support vector regression
(SVR) [28–30], which has been observed to have high accuracy; however, SVR is time-
consuming for model training. In contrast, linear regression (LR) with an elastic net
requires a much quicker training time [31,32], but its accuracy tends to decline for large
datasets. Neural network (NN) models have also been used, with the performance im-
proving as the number of hidden layers and neurons increases [33,34]; however, neural
network models are hard to train, and it is difficult to choose a network structure. Gaussian
process regression (GPR) has demonstrated promising accuracy and faster training speed
than SVR [10,23,35,36]; however, its complexity remains problematic, hindering onboard
deployment.

This paper proposed an innovative data-driven framework for accurately and promptly
predicting battery cycle lives (as in Figure 1). Using pattern recognition and signal pro-
cessing techniques, battery degradation features were extracted from discharge voltage
curves. Next, using the maximum relevance minimum redundancy (MRMR) algorithm, 20
of 53 features were selected as the feature subset. Three different battery datasets were used
to train and test the GPR and robust linear regression (RLR) algorithms. The test results
suggested that GPR outperforms RLR in most cases, while RLR has a faster prediction
speed than GPR. These results illustrate the power of combining feature extraction and
selection with data-driven modeling based on discharge voltage curves to predict the
degradation of lithium-ion batteries.

 
n m

Figure 1. Schematic diagram of battery cycle life prediction based on discharge voltage curves. The
colors of the discharge voltage curves indicate that they belong to different cycles, and the colors of
the curves in the feature extraction and selection box suggest that their values change as the cycle
number increases.

222



Batteries 2023, 9, 413

The main contributions of this article are listed as follows:

1. New features were developed using pattern recognition and signal processing tech-
niques to capture degradation mechanisms using discharge voltage profiles.

2. The MRMR algorithm was proposed for feature selection, reducing the parameter
size of the model and improving the prediction speed.

3. Two algorithms, GPR and RLR, were trained for battery cycle life prediction. GPR was
found to have high accuracy but is time-consuming, making it best suited for battery
pack manufacturing and battery recycling. Conversely, RLR requires less training time,
and its accuracy is suitable for real-time battery management applications, making it
ideal for onboard deployment.

The remainder of this article is organized as follows: Section 2 introduces the details
of three lithium-ion battery datasets, Section 3 describes the machine learning framework,
the results of feature extraction and battery cycle life prediction are presented in Section 4,
and Section 5 discusses the test results. This article is concluded in Section 6.

2. Design of Battery Datasets

We deployed our methods on three different battery datasets due to the varying
degradation mechanisms of lithium-ion batteries. Dataset I [33] incorporates 39 cells, cells
1 to 30 were used as the training set, and cells 31 to 39 served as the test set. The positive
electrode material of the cells is a blend of lithium cobalt oxide (LCO) and ternary nickel
cobalt lithium manganese (NCM), and the negative electrode material is graphite. The
rated capacity is 2.4 Ah, with an upper voltage threshold and a lower voltage threshold
of 4.2 V and 3.0 V, respectively, for all cells in Dataset I. All cells were cycled in two-stage
degradation tests. The first stage included 20 preliminary cycles, with CCCV charging at
a C-rate of 0.5 and CC discharging at a C-rate of 2. The second stage incorporated two
different dynamic cycle profiles. The first profile consisted of a CC charge and discharge
at a rate of 1 C, 2 C, or 3 C. The secondary profile included a CC charge with a random
current of 1 C, 2 C, or 3 C and a CC discharge at a rate of 3 C. Cell 31, cells 33–34, cells
36–37, and cell 39 were cycled with the secondary profile, while cell 32, cell 35, and cell 38
were cycled with the first profile. All tests were conducted at 25 ◦C. The average total cycle
number of the training cells and test cells was 120 cycles.

Dataset II [37] consists of eight commercial cells that were operated in identical dy-
namic cycle tests. The negative electrode material of the cells is graphite, and the positive
electrode material is a blend of lithium cobalt oxide (LCO) and lithium nickel cobalt oxide
(NCO). All cells were cycled using the Artemis urban drive cycle [38] and characterization
cycles, repeated every 100 cycles. The Artemis urban drive cycle consists of dynamic
charging and regenerative charging with a maximum rate of 6.75 C. The charge cycle was
CC at a rate of 2 C. The characterization procedure consisted of low-rate discharge and
charge cycles for OCV. The lower voltage threshold and the upper voltage threshold were
2.7 V and 4.2 V, respectively. All cell tests were conducted in thermal chambers at 40 ◦C.
The average total cycle number of the training cells and test cells was 8100 cycles.

Dataset III [39] incorporates 14 cells under four different discharge profiles. The
positive electrode material of the cells is a blend of lithium cobalt oxide (LCO) and ternary
nickel cobalt lithium aluminate (NCA), and the negative electrode material is graphite. All
cells were charged with the CCCV protocol with an identical rate of 0.75 C during the CC
stage and an identical voltage of 4.2 V, with a cut-off current of 20 mA during the CV stage.
B5, B6, and B7 were discharged at a CC level of 1 C until their cell voltages fell to 2.7 V, 2.5 V,
and 2.2 V, respectively. B33 and B34 were discharged with the CC profile with a rate of 2 C
until their cell voltages fell to 2.0 V and 2.2 V, respectively. B38 and B39 were discharged
under multiple load current rates of 0.5 C, 1 C, and 2 C and stopped at 2.2 V and 2.5 V,
respectively. B41 to B44 used two fixed load current rates of 2 C and 0.5 C, respectively,
and the lower voltage thresholds were 2 V, 2.2 V, 2.5 V, and 2.7 V, respectively. B5-B7 and
B33 and B34 were discharged at a room temperature of 24 ◦C. B38 and B39 were tested at
ambient temperatures of 24 ◦C and 44 ◦C. B41–B44 were cycled at an ambient temperature
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of 4 ◦C. The average total cycle number of the training cells was 119 cycles, and the total
cycle number of the test cells was 131 cycles.

3. Machine Learning Framework

3.1. Feature Development

Lithium-ion battery aging is a complex process that can result in capacity degradation
and reduced power capability. There are many factors that can contribute to battery aging,
such as the formation of a solid electrolyte interphase (SEI) film at the electrode/electrolyte
surface, destruction of the electrode structure, lithium deposition, a phase change of the
electrode material, dissolution of the active material, and electrolyte decomposition [40].
As the cycle number increases, charge/discharge voltage curves, incremental capacity
curves, and electrochemical impedance spectroscopy can all be altered. Many machine
learning algorithms extract features for battery health estimation based on these curves. In
this section, we focus on using signal processing techniques to extract features from the
discharge voltage curves.

For each discharge cycle, we defined the discharge voltage sample values as a signal
x = (v1, v2, . . . , vn)

T . The main equations of the developed features were defined as follows.

3.1.1. Root-Sum-of-Squares Level

The root-sum-of-squares (RSS) level of a vector x is

RSS =

√√√√ N

∑
n=1

|xn|2 (1)

where xn is the element of vector x and the RSS level is also known as the �2 norm. In this
study, we used the discharge voltages as vector x.

3.1.2. Distance between Signals Using Dynamic Time Warping

Two signals were considered:

x = (x1, x2, x3, . . . , xm), y = (y1, y2, y3, . . . , yn) (2)

where x has m samples, y has n samples, and dmn(x, y) is defined as the distance between
the mth sample of x and the nth sample of y. The following equations are four types of
distance definitions.

Here, we define a line as y, and x is the discharge voltage vector per cycle.
The square root of the sum of squared differences is also known as the Euclidean or �2

metric:

dmn(x, y) =

√√√√ K

∑
k=1

(xm − yn) ∗ (xm − yn) (3)

The sum of absolute differences is also known as the Manhattan, city block, taxicab, or
�1 metric:

dmn(x, y) =
K

∑
k=1

|xm − yn| =
K

∑
k=1

√
(xm − yn) ∗ (xm − yn) (4)

The square of the Euclidean metric is composed of the sum of squared differences:

dmn(x, y) =
K

∑
k=1

(xm − yn) ∗ (xm − yn) (5)
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The symmetric Kullback–Leibler metric is only valid for real and positive values of x
and y.

dmn(x, y) =
K

∑
k=1

(xm − yn) ∗ (logxm − logyn) (6)

where xm is the element of x and yn is the element of y, as defined in Equation (2).

3.1.3. Zero-Crossing Rate

The zero-crossing rate refers to the ratio of sign changes in a signal, for instance, a
signal changing from positive to negative or vice versa. This feature has been widely used
in the fields of speech recognition and music information retrieval and is a key feature for
classifying percussion sounds. The ZCR is formally defined as:

zcr =
1

m − 1

m−1

∑
t=1

∏{xtxt−1 < 0} (7)

where x is a signal with a length of M, and the function ∏ {x} is equal to 1 when the
parameter x is true, and 0 otherwise.

3.1.4. Mid-Reference Level

The mid-reference level in a bilevel waveform with a low state level of S1 and a high
state level of S2 is

y50% = S1 +
1
2
(S2 − S1) (8)

Mid-reference level instant:
We let y50% denote the mid-reference level.
We let t50%− and t50%+ denote the two consecutive sampling instances corresponding

to the waveform values nearest in value to y50%.
We let y50%− and y50%+ denote the waveform values at t50%− and t50%+ , respectively.
The mid-reference level instant is

t50% = t50% +

(
t50%+ − t50%−
y50%+ − y50%−

)(
y50%+ − y50%−

)
(9)

3.1.5. Standard Error

For a finite-length vector x consisting of N scalar observations, the standard deviation
is defined as

S =

√√√√ 1
N − 1

N

∑
i=1

|xi − μ|2 (10)

where μ is the mean of x:

μ =
1
N

N

∑
i=1

xi (11)

The standard deviation is the square root of the variance.

3.1.6. Band Power

Band power is a measure of the amount of energy in a particular frequency band of a
signal x and is calculated as:

Pband =
∫ f2

f1

P( f )d f (12)

P( f ) = 2
∫

[R(τ)cos(2π f τ)]dτ (13)
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where P( f ) is the estimated power spectral density estimate at frequency f ; f1 and f2 are
the lower bound and upper bound, respectively, of the frequency band of interest; and R(τ)
is the autocorrelation function at the time lag τ.

3.1.7. Mean Squared Error

The mean squared error is calculated using the following formula:

loss =
1

2N

N

∑
i=1

(xi − ti)
2 (14)

where xi is the ith element of vector x, ti is the ith element of reference vector t, and N is
the total number of observations in x. In this case, x is defined as the discharge voltage of
each cycle and t is defined as the discharge voltage of the first cycle.

3.1.8. Occupied Bandwidth

The occupied bandwidth is defined as:

B = Δ f = fH − fL (15)

where fH and fL are the upper frequency limit and lower frequency limit, respectively, of
the band.

In this study, we calculated the 99% bandwidth:

%BF = 99%
Δ f
fC

(16)

where fC is defined as the arithmetic mean of the upper and lower frequencies:

fC =
fH + fL

2
(17)

3.1.9. Structural Similarity Index for a Vector (SSIM)

The SSIM was originally used to assess image quality, but here, we used it to assess
the similarity of two vectors. The SSIM is defined as:

SSIM(x, y) =

(
2μxμy + C1

)(
2σxy + C2

)(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (18)

where μx and μy, σx and σy, and σxy are the local means, standard deviations, and cross-
covariance, respectively, for vectors x and y. In this case, x is defined as the discharge
voltage of each cycle and y is defined as the discharge voltage of the first cycle.

3.2. MRMR Feature Selection

To reduce the size of the model, eliminate redundant features, and reduce model
complexity, we performed feature selection on all extracted features. We used the MRMR
algorithm to search for a subset of features that minimized redundancy while maximizing
relevancy with the response. This algorithm calculated pairwise mutual information
between features and the response variable to quantify redundancy and relevancy [41,42].

Assuming there are m features in total, the MRMR algorithm provides the importance
of a given feature Xi (i ∈ {1, 2, . . . , m}).

f MRMR(Xi) = I(Y, Xi)− 1
|S| ∑

XS∈S
I(XS, Xi) (19)
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where Y represents the response variable, S is the selected feature set, |S| denotes the size
of the feature set (i.e., number of features), XS ∈ S represents a feature in feature set S, Xi
represents a feature not in S : Xi /∈ S, and I(·, ·) represents the mutual information.

I(Y, X) =
∫

ΩY

∫
ΩX

p(x, y)log
(

p(x, y)
p(x)p(y)

)
(20)

In the MRMR feature selection process, at each step, the feature with the highest
importance score max f MRMR(Xi), which is not already in the selected feature set S, is
added to S. For discrete features, the mutual information difference (MID) is the original
feature importance:

f MID(Xi) = I(Y, Xi)− 1
|S| ∑

XS∈S
I(XS, Xi) (21)

The mutual information quotient (MIQ) is defined as:

f MIQ(Xi) =
I(Y, Xi)

1
|S| ∑XS∈S I(XS, Xi)

(22)

For continuous time features, the F-statistic is used to represent the correlation. The
corresponding correlation difference is represented as:

f FCD(Xi) = F(Y, Xi)− 1
|S| ∑

Xs∈S
ρ(XS, Xi) (23)

where ρ(XS, Xi) represents the Pearson correlation and F(Y, Xi) represents the F-statistic.
The Pearson correlation is represented as:

ρ(XS, Xi) =
cov(Xs, Xi)

σXs σXi

(24)

cov(XS, Xi) = E
[(

XS − μXS

)(
Xi − μXi

)]
(25)

ρ(XS, Xi) =
E
[(

XS − μXS

)(
Xi − μXi

)]
σXs σXi

(26)

where ρ(X, Y) is the Pearson correlation coefficient between X and Y, cov(Xs, Xi) represents
the covariance of Xs and Xi, σXs is the standard error of Xs, σXi is the standard error of Xi,
μXS is the mean of Xs, and μXi is the mean of Xi.

Similarly, the correlation quotient is defined as:

f FCQ(Xi) =
F(Y, Xi)

1
|S| ∑Xs∈S ρ(XS, Xi)

(27)

3.3. Robust Linear Regression

Robust linear regression is designed to handle data that contain outliers, an issue
commonly observed in raw data. This method uses iteratively reweighted least squares
(IRLS) to assign a weight to each data point, allowing the algorithm to weigh the influence
of data points based on their distance from the model’s prediction. This iterative approach
produces more accurate regression coefficients than the typical ordinary least squares (OLS)
approach used in standard linear regression.

The IRLS algorithm includes multiple iterations. First, the algorithm assigns equal
weights to all data points and calculates model coefficients using OLS. Second, in each
iteration, the algorithm recalculates the weights for each data point, with those further from
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the model’s prediction receiving lower weights. Using these new weights, the algorithm
then calculates a new set of coefficients using weighted least squares. This process continues,
with the algorithm iterating until the coefficient estimates converge within a specified
tolerance. This iterative, simultaneous approach of fitting data using least squares methods,
while minimizing the effect of outliers, makes IRLS a powerful algorithm.

A simple linear regression model of the form

yi = xT
i β + εi (28)

was proposed, where yI is the predicted cycle life for a battery i, εi is the bias, xi is a
p-dimensional feature vector for battery i, and β is a p-dimensional model coefficient
vector.

The ordinary least squares residual is

ri = yi − xT
i β (29)

The weighted least squares method using the adjusted residuals is expressed as follows:

radj =
ri√

1 − hi
(30)

where ri is the ordinary least squares residual and hi is the least squares fit leverage value.
The leverage hi is the value of the ith diagonal term of the hat matrix H. The hat

matrix H is defined in terms of the data matrix X:

H = X
(

XTX
)−1

XT (31)

The standardized adjusted residuals are defined as

u =
radj

Ks
=

ri

Ks
√

1 − hi
(32)

where K is a tuning constant and s is an estimate of the standard deviation of the error term
given by s = MAD/0.6745. MAD is the median absolute deviation of the residuals from
their median. The constant 0.6745 ensures that the estimates are unbiased from the normal
distribution.

The robust weights wi are achieved using a bisquare weights function

wi =

{ (
1 − u2

i
)2 , |ui| < 1

0 , |ui| ≥ 1
(33)

Then, the weighted least squares estimate the coefficient β

β =
(

XTWX
)−1

XTWy (34)

where W = diag(w1, · · · , wn), X = (x1, · · · , xn)
T , and y = (y1, · · · , yn)

′
.

The estimated weighted least squares error is

e =
n

∑
1

wi

(
yi − xT

i β
)2

=
n

∑
1

wir2
i (35)

where wi are the weights, yi are the observed responses, and ri are the residuals.
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3.4. Gaussian Process Regression

GPR is a nonparametric and Bayesian approach to regression that defines a probability
distribution over functions rather than random variables. Using GPR, the regression
problem is defined as

f (x) = k(x)T(K + λIN)
−1t (36)

where K is the Gram matrix with elements Knm and k(x) is a vector with elements kn(x) =
k(xn, x). Knm is defined by

Knm = k(xn, xm) (37)

and k(x, x′) is the kernel function.
Gaussian process regression methods use kernel functions to determine the covariance.

In this case, we used the Matern covariance functions.
The Matern class of covariance functions is defined as follows:

kMatern(r) =
21−v

Γ(v)

(√
2vr
�

)v

Kv

(√
2vr
�

)
(38)

where v and � are positive and Kv is the modified Bessel function. The frequency density of
the covariance function is

S(s) =
2Dπ

D
2 Γ

(
v + D

2

)
(2v)v

Γ(v)�2v

(
2v
�2 + 4π2s2

)−(v+ D
2 )

(39)

where D is the dimension.
When v is a half integer, the Matern covariance function is:

kv=p+ 1
2
(r) = exp

(
−
√

2vr
�

)
Γ(p + 1)

Γ(2p + 1)

p

∑
i=0

(p + i)!
i!(p − i)!

(√
8vr
�

)p−i

(40)

Most machine learning methods commonly use v = 3/2 and v = 5/2:

kv= 3
2
(r) =

(
1 +

√
3r
�

)
exp

(
−
√

3r
�

)
(41)

kv= 5
2
(r) =

(
1 +

√
5r
�

+
5r2

3�2

)
exp

(
−
√

5r
�

)
(42)

In this study, we used v = 5/2.
Figure 2 illustrates the main workflow of the proposed method. Figure 2a describes the

feature extraction and selection, as explained in Sections 3.1 and 3.2. Figure 2b,c explain the
main equations of Gaussian process regression (Equation (36)) and robust linear regression
(Equation (34)) algorithms, respectively.

Considering the battery’s early aging process before capacity degradation, we used the
cycle life indicator to describe the battery’s health state. The cycle life indicator is defined as

CI =
C
C0

(43)

where C is the current cycle number and C0 is the total cycle number of the cycle test or the
cycle number given by the battery manufacturers. The range of C0 is from several hundred
cycles to several thousand cycles due to various material and operation conditions.
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Figure 2. The main framework of the proposed method. (a) Schematic of feature extraction and
selection from cycle data consisting of time (t), voltage (v), current (I), and temperature (T). First, each
cycle data matrix is condensed into a vector through feature extraction. Next, a subset is selected out
of the original features using the MRMR algorithm. Finally, the raw cycle data matrix is transformed
into a feature matrix, which is used as the input of the machine learning models. (b) Linear expression
of Gaussian process regression. (c) Visualization of robust linear regression.

As the cycle life of various cells is distinct, we defined the root-mean-square error
(RMSE) and the mean absolute error (MAE) to metric the performance of the RLR and GPR
models. The RMSE and MAE are defined as

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2

C0
× 100% (44)

MAE =
1
n ∑n

i=1|yi − ŷi|
C0

× 100% (45)

where yi is the observed cycle number, ŷi is the predicted cycle number, n is the total
number of samples, and C0 is the total cycle number of the cycle test or the cycle number
given by the battery manufacturers.

4. Results

In this study, we explored two algorithms, robust linear regression (RLR) and Gaussian
process regression (GPR), with three different datasets of lithium-ion batteries. First, we
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extracted 53 features based on raw discharge voltage curves. Second, we used the MRMR
algorithm to select the top 20 features with the highest median scores as the feature subset
to compare with the full feature set (53 features). The GPR algorithm and the RLR algorithm
were deployed on the subset of features and on the full set of features, respectively. The
results showed that all algorithms could accurately predict the battery cycle life with a low
error. Specifically, RLR achieved a maximum average RMSE of 6.90% and a maximum
average MAE of 4.77% for the selected feature subset, whereas the GPR model achieved a
maximum average RMSE of 6.33% and a maximum average MAE of 3.91% for the same
feature subset. The GPR algorithm exhibited greater prediction accuracy than the RLR
algorithm, while the RLR algorithm demonstrated faster prediction speed than the GPR
algorithm for both the full features and the feature subset.

4.1. Feature Extraction and Selection

Features were created on Datasets I through III. Figure 3 illustrates the typical features
that were created on Dataset II. To the best of our knowledge, all features in Figure 3, except
for skewness and kurtosis coefficients, were developed by us for the first time to predict the
battery cycle life using machine learning methods. Most features in Figure 3 show some
correlation with the cycle number. For instance, certain features, such as the zero-crossing
rate, standard error, and mean frequency, increased as the cycle life increased. Conversely,
features such as the root-sum-of-squares (RSS) level, Euclidean metric, absolute metric, and
peak signal-to-noise ratio (PSNR) decreased as the cycle number increased. Furthermore,
specific features, including the coefficient of skewness, root-mean-square (RMS) level, and
band power, fluctuated over cycles during the first 100 cycles. However, despite most of the
proposed features exhibiting a correlation with the cycle number, their values can greatly
differ, varying by orders of magnitude, as illustrated in Figure 3.

Feature selection simplifies machine learning models, reduces overfitting, and im-
proves model interpretability. The MRMR algorithm was selected to search for the optimal
feature subset among the 53 pre-extracted features. The ranking of the features, arranged
in descending order based on their median scores computed with the MRMR algorithm, is
shown in Figure 4. Some of the new features from Figure 3, such as the mean frequency of
the discharge voltage curve (dsgMeanFreq), the squared metric, and the Euclidean metric
between the discharge voltage curve and the reference line (dsgDistSqr and dsgDistEucl),
were among the top 20 features in the correlation ranking (as shown in Figure 4), indicating
that the proposed features in Section 3 can serve as optimal inputs for machine learning
models. Traditional features, such as total discharge capacity (dsgTotalAh), discharge
voltage at the start (dsgVbegin), total discharge energy (dsgTotalWh), and discharge time
(dsgTime), also had high scores, which is not unexpected, given their physical meaning
associated with battery degradation. Additionally, numerical partial derivatives of voltage
concerning the SOC (dsgDeltaV_dSOC80, dsgDeltaV_dSOC50, and dsgDeltaV_dSOC90 in
Figure 4) were also found to be significant, confirming prior studies.

The remaining features in Figure 4 are the kurtosis coefficient of the discharge voltage
(dsgKurt), the discharge capacity (dsgQ), the occupied bandwidth of the discharge voltage
curve (dsgOccupiedband), the symmetric Kullback–Leibler metric between the discharge
voltage curve of cycle i and the reference line (dsgDistSym), the structural similarity index
for the discharge voltage (dsgSsim), the mean square error between the discharge voltage
of cycle i and the discharge voltage of the first cycle (dsgMse), the zero-crossing rate of
the discharge voltage of cycle i (dsgZerorate), the band power of the discharge voltage
of cycle i (dsgPowerband), the middle reference level for the discharge voltage of cycle i
(dsgMidcross), the standard error between the discharge voltage of cycle i and the discharge
voltage of the first cycle (dsgStd), and the Euclidean metric between the discharge voltage
curve of cycle i and the reference line (dsgDistEucl).
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Figure 3. Typical features of Dataset II.

 

Figure 4. Top 20 features ranked by the median of their scores according to the MRMR algorithm.
The mark of “+” indicates an outlier.

The MRMR algorithm computes relevance scores for all features, while attempting
to reduce redundancy. This study presented the use of the first 20 features as an example.
However, determining the optimal number of features to use in practice depends on the
requirements of accuracy in prediction and efficiency in computation for a particular field.
Notably, the features based on discharge voltage proposed in this study are statistical
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analyses of the variations in the battery discharge voltage curve and may not have any
practical physical significance.

4.2. Performance of Models Based on Full Features

To further evaluate the performance of our proposed method, we conducted a 5-fold
cross-validation using two algorithms: Gaussian process regression (GPR) and robust
linear regression (RLR). To validate the models’ performance on various load profiles and
operating conditions, we assigned secondary test sets for all datasets. The training/testing
partitions for Datasets I to III are summarized in Table 1. We tested the models using two
feature sets: 53 features, which we named the full features, and a subset of the top 20 features
selected using the maximum relevance minimum redundancy (MRMR) algorithm, which
we referred to as the feature subset. The results demonstrated that both algorithms can
accurately predict the battery cycle life with an error margin that is small compared to the
actual cycle life, indicating that our proposed approach can yield reliable results and be
used in applications that require accurate predictions of battery cycle life.

Table 1. Selection and allocation of training and test datasets, including the charge protocols and
discharge profiles.

Dataset
Number of

Cells
Charge Discharge

Positive
Electrode

Negative
Electrode

Training Set Test Set

I 72 CC CC with 3C rate or
random NCM Graphite Cells 1–30 Cells 31–39

II 8 CCCV
ARTEMIS dynamic

driving profile or CC
with 1 C rate

NCO Graphite Cells 1–2 Cells 3–8

III 11 CCCV CC or random NCA Graphite
B5, B6, B33,

B34, B38, B39,
B41, B42, B43

B7, B40, B36,
B18, B44

The performance of the GPR and RLR algorithms on the full features of Datasets
I-III is summarized in Tables 2–4. Both algorithms demonstrated promising performance
across all datasets. The RLR algorithm achieved an average RMSE (ARMSE) of 6.90% and
an average MAE (AMAE) of 4.77% on the test set of Dataset III, which was the model’s
worst-case scenario. The GPR model’s worst performance was also observed on the test set
of Dataset III, with an average RMSE and an average MAE of 6.33% and 3.91%, respectively.
Figures 5–7 provide a comparison between the predicted cycle life and the actual cycle life
for the test batteries from Datasets I-III on the GPR and RLR algorithms.

Table 2. Test results for the RLR and GPR models trained on the full feature set of Dataset I.

Model Metric
Battery ID Average

RMSE/MAE#31 #32 #33 #33 #34 #35 #36 #37 #38 #39

RLR
RMSE 2.06% 6.65% 1.62% 1.47% 6.56% 1.97% 2.92% 6.70% 2.42% 1.48% 3.60%
MAE 1.31% 5.36% 1.24% 1.20% 5.28% 1.37% 1.48% 5.50% 1.74% 1.21% 2.57%

GPR
RMSE 0.82% 5.78% 0.89% 1.03% 5.94% 0.78% 3.24% 6.91% 1.14% 0.85% 2.95%
MAE 0.59% 4.04% 0.63% 0.80% 4.25% 0.54% 0.98% 4.92% 0.78% 0.70% 1.82%

233



Batteries 2023, 9, 413

Table 3. Test results for the RLR and GPR models trained on the full feature set of Dataset II.

Model Metric
Battery ID Average

RMSE/MAE#3 #4 #5 #6 #7 #8

RLR
RMSE 1.31% 0.71% 0.47% 0.79% 1.26% 1.44% 1.00%
MAE 1.25% 0.61% 0.35% 0.68% 1.16% 1.36% 0.90%

GPR
RMSE 0.50% 2.22% 0.47% 1.19% 0.96% 0.86% 1.03%
MAE 0.44% 1.98% 0.34% 1.03% 0.76% 0.74% 0.88%

Table 4. Test results for the RLR and GPR models trained on the full feature set of Dataset III.

Model Metric
Battery ID Average

RMSE/MAE#7 #18 #36 #40 #44

RLR
RMSE 2.34% 3.52% 5.06% 8.45% 17.06% 7.29%
MAE 1.76% 3.13% 4.51% 7.75% 10.63% 4.76%

GPR
RMSE 3.82% 2.64% 13.52% 6.80% 4.23% 6.20%
MAE 3.01% 2.51% 11.90% 5.79% 2.78% 4.45%

 

Figure 5. Test results of the full feature models of Dataset I. The left plot shows the predictions of the
GPR algorithm, and the right plot shows the predictions of the RLR algorithm. Cell 31 is the primary
test set, and cell 32 is the secondary test set.

 

Figure 6. Test results of the full feature models of Dataset II. The left plot shows the predictions of the
GPR algorithm, and the right plot shows the predictions of the RLR algorithm. Cell 3 is the primary
test set, and cell 4 is the secondary test set.
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Figure 7. Test results of the full feature models of Dataset III. The left plot shows the predictions
of the GPR algorithm, and the right plot shows the predictions of the RLR algorithm. Cell 7 is the
primary test set, and cell 44 is the secondary test set.

An interesting observation in the test set of Dataset I, as depicted in Figure 5, is
the sudden fluctuation of predictions at approximately cycle 20. This notable rise can
be attributed to the finding that the initial 20 cycles were characterized by a constant
current discharge, whereas subsequent cycles were characterized by a random current
discharge, resulting in considerable fluctuations in the prediction. Nevertheless, the GPR
algorithm showed a gradual decrease in the residuals, eventually confining them to a small
range. In contrast, RLR’s prediction diverged from the real cycle life after reaching a point
of convergence, due to its limited ability to capture the nonlinearity of the degradation
mechanisms. The predictions of cell 31 in Dataset I did not show any fluctuations near
cycle 20, regardless of the analyzed GPR or RLR model, as cell 31 was cycled using the
same constant current discharge profile.

It was evident that the RLR and GPR models achieved the best predictions in Dataset
II, which contains cycle data from multiple batteries across all datasets. The average RMSE
was 1.00% for the RLR algorithm and 1.03% for the GPR algorithm. Figure 6 illustrates
that most predictions were near the diagonal, indicating a perfect match between the
actual value and the predicted value. This result can largely be attributed to the finding
that cells in Dataset II were cycled using the identical discharge profile. However, the
distributions of residuals for GPR and RLR were distinct. As illustrated by the residual
histograms in Figure 6, RLR exhibited a multimodal distribution, with all errors being
negative, indicating that there may be several underlying sources of errors contributing
to its overall performance. GPR had a moderately skewed distribution with a long rail to
the right, and the largest peak was centered at zero, indicating that it was more prone to
making large positive errors.

The predictions of the GPR and RLR models had a few outliers after cycle 50 during
secondary testing in Dataset III, while the errors at primary testing were lower and did not
present any outliers, as depicted in Figure 7.

The residual histograms of RLR in the secondary tests showed a few instances of large
residuals at the tails of the distributions, suggesting that the model has difficulty handling
certain extreme cases. The GPR model had a roughly bell-shaped distribution with a high
peak at approximately zero, indicating that the model is better at capturing than RLR.

Overall, the GPR algorithm trained on Datasets I, II, and III is suggested to be more
accurate in the tests, as it achieved lower relative MAE values and, in most cases, lower
RMSE values compared to those of the RLR algorithm. However, there was an exception in
the primary test of Dataset II, where RLR achieved an average RMSE of 1.00%, which was
lower than GPR’s RMSE of 1.03%. This result may be attributed to the discharge profile of
cells in Dataset II being the same during the cycle test.
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4.3. Performance of Models Based on Feature Subsets

We also explored GPR and RLR algorithms using 20 selected features (as shown
in Figure 4). Tables 5–7 summarize the test results of the GPR and RLR algorithms.
Figures 8–10 illustrate the battery cycle life predictions versus observations and the residual
histograms based on 20 features from Datasets I-III. Both GPR and RLR exhibited lower pre-
diction errors on all datasets. Specifically, RLR achieved an average RMSE of 0.75% and an
average MAE of 0.52% on Dataset II. In contrast, GPR achieved an average RMSE and MAE
of 0.67% and 0.54%, respectively, on the same dataset, indicating that GPR outperforms
RLR on Dataset II. GPR also performed better than RLR on the other two datasets.

Table 5. Test results for the RLR and GPR models trained on the feature subset of Dataset I.

Model Metric
Battery ID Average

RMSE/MAE#31 #32 #33 #33 #34 #35 #36 #37 #38 #39

RLR
RMSE 2.01% 6.25% 1.69% 1.44% 6.69% 1.55% 2.25% 6.26% 1.69% 0.80% 3.31%
MAE 1.25% 4.58% 1.28% 1.21% 4.92% 1.18% 1.13% 4.55% 1.28% 0.65% 2.20%

GPR
RMSE 0.57% 2.96% 0.86% 1.56% 1.93% 0.97% 0.70% 2.66% 1.51% 0.82% 1.52%
MAE 0.38% 1.95% 0.53% 0.98% 1.29% 0.64% 0.48% 1.87% 0.93% 0.56% 0.96%

Table 6. Test results for the RLR and GPR models trained on the feature subset of Dataset II.

Model Metric
Battery ID Average

RMSE/MAE#3 #4 #5 #6 #7 #8

RLR
RMSE 0.38% 0.65% 0.89% 0.31% 0.56% 0.64% 0.75%
MAE 0.32% 0.87% 0.56% 0.40% 0.42% 0.55% 0.52%

GPR
RMSE 0.45% 0.67% 0.20% 0.35% 0.76% 0.89% 0.67%
MAE 0.39% 0.81% 0.27% 0.43% 0.63% 0.75% 0.54%

Table 7. Test results for the RLR and GPR models trained on the feature subset of Dataset III.

Model Metric
Battery ID Average

RMSE/MAE#7 #18 #36 #40 #44

RLR RMSE 4.04% 2.37% 4.14% 2.87% 20.98% 6.90%
MAE 3.45% 1.85% 4.08% 2.03% 16.45% 4.77%

GPR RMSE 3.40% 1.29% 8.40% 5.32% 13.17% 6.33%
MAE 2.69% 1.08% 6.03% 4.80% 8.21% 3.91%

 

Figure 8. Test results of the feature subset models of Dataset I. The left plot shows the predictions
of the GPR algorithm, and the right plot shows the predictions of the RLR algorithm. Cell 31 is the
primary test set, and cell 32 is the secondary test set.
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Figure 9. Test results of the feature subset models of Dataset II. The left plot shows the predictions
of the GPR algorithm, and the right plot shows the predictions of the RLR algorithm. Cell 3 is the
primary test set, and cell 7 is the secondary test set.

 

Figure 10. Test results of the full feature models of Dataset III. The left plot shows the predictions
of the GPR algorithm, and the right plot shows the predictions of the RLR algorithm. Cell 7 is the
primary test set, and cell 44 is the secondary test set.

Both GPR and RLR achieved an average RMSE and MAE of less than 3.4%. Comparing
the residual histograms of the two algorithms on feature subsets of Dataset I, we discovered
that GPR has a more negatively skewed distribution with a right tail, indicating that
GPR is more likely to have positive errors. Conversely, the residual histogram of RLR
showed a positively skewed distribution with a left tail, indicating that RLR is prone to
having negative errors. Comparing the test results of the full features on the same dataset,
we discovered that both GPR and RLR based on feature subsets output more accurate
predictions than those based on full features (Table 2).

Cells in Dataset II were cycled with the ARTEMIS dynamic driving profile, followed
by characterization cycles. It is evident from Figures 6 and 9 that the performance of tests
in Dataset II was dominated by RLR, according to both RMSE and MAE. The largest RMSE
achieved by both models was 0.89%, which is less than that of Dataset I. The cells in Dataset
II had been cycled up to 8000 cycles, and both GPR and RLR achieved an average RMSE
and MAE of less than 0.75% of the entire cycle life. Tables 3 and 6 show that both models
based on feature subsets outperformed the models based on the full features of Dataset II,
indicating that feature selection by MRMR could improve the prediction accuracy on the
dataset. The high performance achieved by GPR and RLR in Dataset II may be attributed
to the low variability in the charge and discharge conditions.

Both GPR and RLR based on feature subsets of Dataset III achieved the highest RMSE
and MAE across all datasets. Both histograms of the residuals of GPR in Figures 7 and 10
show skewed distributions. Specifically, GPR on full features showed a negatively skewed
distribution with a long tail to the right, and the peak center was approximately zero,
indicating that it is prone to outputting positive errors. Conversely, GPR on feature subsets
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exhibited a positively skewed distribution with a long tail to the left, and the peak center
was also approximately zero, indicating that it is prone to having negative errors. The
residuals of RLR exhibited a multimodal distribution on the feature subset, indicating that
there may be several underlying sources of errors contributing to its overall performance.
The residual histogram of RLR on full features also showed two peaks, but the second
peak was lower than that of RLR on the feature subset. GPR and RLR on the feature subset
achieved a lower average RMSE and MAE than those on full features, suggesting that the
feature selection could avoid overfitting.

The prediction speed of the two algorithms on both full features and feature subsets
of Datasets I to III are summarized in Table 8. All models were trained and tested on a
computer with two Intel Xeon 2666 V3 CPUs and an Nvidia 2080Ti GPU.

Table 8. Training time and prediction speed of the full feature models and feature subset models.

Algorithms

Full Feature Models Feature Subset Models

Training Time (s) Prediction Speed (obs/s) Training Time (s) Prediction Speed (obs/s)

I II III I II III I II III I II III

Robust linear 1.905 1.640 1.365 58,075 3782 27,870 1.400 1.161 1.738 78,441 6939 44,937
Matern 5/2

GPR 372.840 1.313 20.478 22,750 5575 26,299 160.290 2.390 20.834 31,785 4022 31,797

As expected, the feature subset models showed a significantly higher prediction speed
than the full feature models, primarily due to a reduction of more than half of the variables.
RLR particularly emphasized this point, demonstrating a minimum of twice the prediction
speed of the full feature set models, except for Dataset I, which showed an almost 50%
faster prediction speed. For GPR, all three datasets showed an increase in the prediction
speed of less than 50%, except for Dataset II. This discrepancy is attributed to the complex
random process of the GPR algorithm, which impacts the overall prediction speed.

The results of using feature subsets, instead of full features, in GPR for Dataset I
yielded considerable reductions in training time. Conversely, for Datasets II and III, the
difference in training time between the models using feature subsets and full features was
limited to 2 s. As Table 1 describes, Dataset I consists of most cells of the three datasets, so
the training time of GPR was the largest, with a maximum of 372.840 s. The training time
of GPR for Datasets II and III was smaller than that of GPR for Dataset I, and the training
speed of the two algorithms did was not significantly improve.

5. Discussion

The proposed battery cycle life prediction approach promises to enhance battery
management systems, allowing for highly accurate estimation of battery degradation.
This proposed method is distinct in that it can estimate cycle life using only discharge
voltage curves and can accommodate various operational conditions, such as random or
high discharge rates. Future work could be extended to random partial discharge/charge
scenarios and batteries with different designs and chemistries.

The algorithms based on full features had strong performance, as they achieved a low
RMSE and MAE, but the large feature set was too complicated for onboard application
and likely contained some redundancies. To address this issue, we used the MRMR
algorithm for feature selection. The score distribution of each feature indicated that the
importance of features is not consistent across the different datasets. This lack of consistency
could be attributed to the various aging mechanisms and modes present in the different
battery datasets, which were caused by the varying cycle conditions and charge/discharge
protocols. Therefore, it is essential to select features using the MRMR algorithm for each
respective battery dataset prior to model training to achieve a satisfactory trade-off between
accuracy and computational efficiency.
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To meet real-time requirements, a subset of 20 features was selected from 53 features as
a paradigm of feature selection; these features could be extracted from every cycle discharge
profile. The aim of the proposed method was to optimize a process suitable for on-board
applications that emphasize computation efficiency and real-time accuracy over precision.
Therefore, multicycle features were excluded, as they require the extraction of multiple
cycle data, and we used only features that can be calculated for each cycle.

Our investigation of two algorithms, GPR and RLR, for three datasets revealed that
feature selection has a positive effect on the performance of both algorithms for Datasets I
and III, except for Dataset II. Specifically, both algorithms achieved relatively low average
RMSEs and MAEs for all datasets, and GPR outperformed RLR in terms of RMSE and MAE
for both feature subsets and full features of Datasets I and III, indicating that GPR is the
optimal algorithm for large battery datasets with complex discharge profiles. Conversely,
RLR output accurate predictions with a lower RMSE and MAE for Dataset II compared to
GPR, owing to identical discharge profiles. As discussed in Section 3, lithium-ion battery
aging is a nonlinear process with a multitude of potential factors. It can be seen from
Figure 4 that almost all features demonstrate nonlinear correlations with the cycle number.
The GPR model incorporates a nonlinear kernel function, which is used to fit the correlation
between input and target. This kernel function makes GPR perform better than RLR for
battery cycle life prediction, especially under dynamic load profiles.

Table 9 compared the proposed method and 10 different data-driven methods for
battery degradation estimation. Compared to previous methods, we developed some
new features, such as the warp distance of discharge voltages, which makes it possible
to extract useful information from dynamic discharge profiles. The main reason for the
discrepancy in results between our methods and those of other literature can be attributed
to the difference in targets of machine learning models. As seen in Table 9, our model
uses the cycle life index (CI) as the target, the denominator of which is the total cycle
number of the cycle tests. In contrast, the equation of the remaining useful life (RUL)
reported by other literature has a different denominator, namely the cycle life given by
the manufacturer. For instance, in Dataset III, the total cycle number of tests averages
131 cycles, while the cycle life given by the manufacturer ranges between 300 and 500
cycles. The difference in denominators of the targets thus affects the RMSE of the two
methods. Another reason for the discrepancy in the results between our methods and other
methods is the use of a linear regression model, which is less accurate than other machine
learning algorithms in dynamic load profiles. Training linear regression models requires less
computational resources than most machine learning models, and it is simple to implement
linear regression models, which makes it possible to apply machine learning algorithms
to onboard battery management systems in electric vehicles. Many studies [1,8,31,32]
have demonstrated that linear regression is good at fitting simple battery degradation
with minimal variance in charge and discharge conditions. After considering both the
prediction speed and the training cost, we determined that the RLR algorithm is optimal
for battery life estimation in onboard applications with inadequate computing resources
and high real-time requirements, whereas the GPR algorithm is better suited for battery
pack manufacturing and recycling, due to the high prediction accuracy requirements and
sufficient computational power.

Table 9. Comparison of various data-driven methods for battery degradation estimation.

Method
Positive
Electrode

Target Main Features Precision

RNN [33] NMC, LFP RUL Capacity–voltage matrix RMSE ≤ 2.4%

BRR, GPR, RF, dNNe [1] LCO, NCA SOH
Energy ratio, entropy, skewness,
kurtosis, Hausdorff distance of
the CCCV curve

dNNe: RMSPE ≤ 4.26%
RF: RMSPE ≤ 2.70%
GPR: RMSPE ≤ 3.70%
BRR: RMSPE ≤ 5.54%
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Table 9. Cont.

Method
Positive
Electrode

Target Main Features Precision

Linear regression with
lasso and elastic net
regularization [8]

LFP Cycle life dV/dQ, dQ/dV, ΔQ(V)
‘Full’ model: mean
percentage error: 9.1%

RBF [43] NCA SOH

KL distance based on the hidden
Markov model, KL distance
based on kernel density
estimation

RMSE ≤ 1.13%
MAE ≤ 1.05%

Deep transfer
learning [34] LFP Capacity, RUL

Difference in the charge voltage
curve between each cycle and
the 10th cycle, difference in the
charge capacity curve between
each cycle and the 10th cycle

Capacity: RMSE ≤ 0.328%
RUL: RMSE ≤ 9.90%

Elastic net, SVR, transfer
learning model [11] NCM, NCA Capacity Variance, skewness, excess

kurtosis of relaxation voltage RMSE ≤ 1.7%

SVM, GPR [23] LFP SOH Discharge capacity differences of
two cycles

MAE ≤ 1%
RMSE ≤ 1.3%

AdaBoost–PSO–SVM [30] NCA SOH SOC, time, voltage RMSE ≤ 2.316%

Multivariate regularized
linear regression [44] NMC Lifetime

Low-SOC resistance, capacity
variance between each cycle and
the 10th cycle

Mean standard deviations:
≤15.2 cycles

Extratrees, NuSVR [26] NMC Cycle life OCV, dQ/dV, dV/dQ, resistance MAE ≤ 102 cycles

Proposed method NMC, NCA,
NCO CI

Distance between discharge
voltage curve and reference
curve using time warping,
entropy, SSIM

RMSE ≤ 6.33%
MAE ≤ 3.91%

RNN, recurrent neural network; BRR, Bayesian ridge regression; RF, random forest; dNNe, deep neural network;
RBF, radiant-based function; PSO, particle swarm optimization; NuSVR, Nu support vector regression.

6. Conclusions

Data-driven models are widely adopted for diagnosing and prognosticating the be-
havior of lithium-ion batteries. In this study, we proposed a data-driven framework to
accurately predict battery cycle life using various discharge profiles. This method offers
several advantages over conventional methods, including adaptability to random and high
discharge rates, robustness to changes in discharge mode, and prediction based solely on
discharge profiles.

We extracted 53 features from battery discharge profiles, 18 of which were newly
proposed for battery cycle life prediction models. The MRMR algorithm was used for
feature selection. We explored two machine learning models: GPR and RLR. All models
were evaluated using the error metrics RMSE and MAE. GPR achieved a maximum RMSE
of 6.33% and a maximum MAE of 3.91%, while RLR attained a maximum RMSE of 6.90%
and a maximum MAE of 4.77%. GPR was preferred for battery pack manufacturing and
recycling, while RLR was preferred for on-board battery cycle life prediction.

Overall, our work highlights the value of combining machine learning techniques
with discharge profiles for battery cycle life estimation. Moreover, although the estimation
accuracy is not always improved, the algorithm should be subjected to feature selection
before being deployed in the field. We demonstrate that feature selection can improve
the prediction accuracy and reduce the computational cost. We infer that this framework
should also be effective with charge profiles. In future work, it would be beneficial to
combine features extracted from both charge profiles and discharge profiles and to use this
method to prognosticate batteries with different materials.
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