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Preface

Today, the development of many branches of science, engineering and technology directly

depends on the level of the mathematical apparatus used. This is due to the rapid adoption

of mathematical modeling, digital twins, machine learning and artificial intelligence algorithms.

Therefore, new achievements in applied mathematics are a driving force in the development of energy

and mechanical engineering.

The purpose of this Special Issue was to publish modern results in the field of applied

mathematics in relation to energy and mechanical engineering. The scientific works of the Special

Issue are devoted to modern and current achievements in mathematics as applied to various

technical areas. Thus, the special issue contains mathematical articles on the following topics:

thermal engineering, gas dynamics, materials science, electrical engineering, 3D printing, mechanical

engineering technology, digital twins, optical measurements, vibration reliability, electric vehicles,

etc. Overall, the authors presented innovative ideas, methodologies and techniques that can

contribute to the development of mathematics, energy and mechanical engineering, covering a large

number of mathematical problems for various technical areas. Moreover, it can be assumed that

these are not all relevant and important problems in applied mathematics, energy and mechanical

engineering. Therefore, future Special Issues of Axioms will undoubtedly be very popular.

High-quality articles were prepared by specialists working at universities from different

countries, including China, Australia, Bangladesh, India, Italy, Palestine, Russia, Taiwan, Turkey and

the UK. This reaffirms the importance and relevance of applied mathematical problems in energy and

mechanical engineering.

It is hoped that this Special Issue will be useful for specialists from various fields of science

and technology, and will inspire scientists and specialists to pursue further research in mathematics,

energy and mechanical engineering.

The statistics of the Special Issue are as follows:

Submissions – 28.

Publications – 15.

Rejections – 13.

Article types: Research Article – 15.

Thanks to all the authors, Assistant Editors, editorial staff and peer reviewers for their valuable

contributions to the Special Issue.

Leonid Plotnikov

Editor
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Article

Nonlinear Tolerancing: Variation Simulation and Assembly
Analysis with Regard to Contact Interaction of Parts
Sergey Lupuleac * , Margarita Petukhova * , Julia Shinder, Maria Titova, Nadezhda Zaitseva
and Maria Churilova

Institute of Physics and Mechanics, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg,
Russia; zajtseva_ni@spbstu.ru (N.Z.); churilova_ma@spbstu.ru (M.C.)
* Correspondence: lupuleac@spbstu.ru (S.L.); margarita@lamm.spbstu.ru (M.P.)

Abstract: The variation analysis is a key tool for ensuring the high quality assembly in the process of
developing the technology for manufacturing of aircraft parts. One of the main factors in variations is
the deviations in the positioning procedure. This paper is devoted to the development of an approach
that allows taking into account the variations during positioning and merging it with the special
algorithm of contact problem solving. The impact of varied boundary conditions is incorporated
into an additional vector of forces that can be interpreted as reactions to the shift of supports. The
obtained results are illustrated with a case of wing-to-fuselage assembly.

Keywords: variation simulation; assembly analysis; contact problem; method of influence coefficients;
mathematical modeling

MSC: 74M15; 65K10

1. Introduction

As it was mentioned in the review by Ceglarek et al. [1], in the aircraft manufacturing
and automotive industries, approximately 70% of all technological changes are carried
out at the production stage, since at the design and implementation stages there is not
yet enough information to accurately predict the results of technological processes. The
development of digital technologies makes it possible to predict the quality of production
and the probability of production defects using mathematical modeling of the assembly
process. The main difficulty in predicting the outcome of a production process is the
inevitable deviation of all real components in practice from the ideal constructions. Hu
et al. [2] admit that the source of these assembly deviations is both manufacturing defects
of individual parts and possible inaccuracies of each step of the assembly process. The
cumulative effect of these deviations can lead to the fact that the assembled structure will
not meet the technical requirements for reliability and functionality, as was noticed by
Söderberg et al. [3]. Therefore, in the mathematical modeling of the assembly process, it
is important to take into account these deviations and analyze their influence on the final
deviations in the assembled structures.

The most common type of part assembly in aircraft manufacturing is riveting, which
ensures the required reliability and durability of the structures. One of the important stages
of riveted assembly is assembly with the use of temporary fasteners. These fasteners are
installed in a specified set of assembly holes and clamp the parts together during further
assembly operations.

In mass production conditions, the arrangement of temporary fasteners cannot be
adjusted to the individual characteristics of incoming parts. Therefore, a single template
for installing temporary fasteners is developed for each joint. Despite possible random
assembly deviations, this template should eliminate the gap between parts. As admitted

1



Axioms 2024, 13, 67

by Weber [4], the development of effective templates for temporary fasteners is one of the
actively used methods for optimizing the assembly process in aircraft manufacturing.

The main approach to handling problems of analyzing the assembly process, taking
into account the deviations, is statistical modeling. The general solution scheme in this
case is based on the Monte Carlo method and consists of cycled modeling of the outcome
of the assembly process for random initial deviations. Based on the data obtained, the
required probabilistic characteristics of the analyzed process are determined using statistical
methods. It is necessary to have a large set of implementations of assembly deviations
to carry out the statistical analysis. Additionally, since most of the parts used in aircraft
manufacturing are compliant structures, it is important to take into account the deformation
of the parts during their contact interaction.

The standard method that allows taking into account assembly deviations is the direct
Monte Carlo method, as described by Gao et al. in [5]. The realizations of the initial
deviations are obtained by generating random numbers from given distributions, and the
modeling of the assembly process is carried out using the classical finite element method.
However, the use of the finite element method in the series of calculations for large and
complex structures is a very labor-intensive approach.

In 1997, Liu and Hu [6] proposed the method of influence coefficients (MIC), which
makes it possible to establish a linear relationship between the initial deviations and the
characteristics of the analyzed assembly process. This method significantly reduces the time
required for statistical modeling. In this case, however, it is assumed that contact between
the assembled structural elements occurs only at predetermined points (for example, at
welding points), which makes MIC a purely linear method of analysis and significantly
reduces the reliability of results in many application areas. However, the simplicity and
speed of calculations have made MIC an extremely popular research method in many fields,
including aircraft manufacturing [7–12].

In 2008, Warmefjord et al. [13] proposed the development of MIC by taking into
account the possibility of contact between assembled structural elements at arbitrary points
in the junction area. In this work, the method of influence coefficients is combined with
methods of direct search for contact points. This approach is quite widely used. For
example, articles [3,14–18] describe MIC application to the analysis of various assembly
processes. However, this approach is difficult to implement and does not allow working
with sufficiently detailed models.

In the approach proposed in 2010 by Lupuleac et al. in [19], the variational formulation
of the contact problem (e.g., see the book of Wriggers [20]) is reduced to a quadratic
programming problem (QPP). The most common methods for QPP were investigated,
and specialized solvers have been developed for handling problem features. The dual
active set method proposed by Goldfarb [21] is proven to be fast and efficient for small to
medium-sized problems (up to ten thousand unknowns, see Burton and Toint [22]). The
problem requires focusing on the modification made by Powell [23] that is preferable for
ill-conditioned problems. The warm start is easy to implement for active set methods,
and one can make use of previously found solutions for subsequent computations. The
next one, the interior-point method, is a polynomial-time algorithm that allows for solving
a wide range of optimization problems, such as linear, convex quadratic programming,
etc. [24]. This method is known to be one of the main methods used for solving large
sparse problems and is implemented in many commercial optimization software packages
(CPLEX, IMSL, MATLAB, and others). The appropriate choice of a starting point and the
advances in the solution of the linear system for determining the Newton direction make
the interior-point method applicable to the types of problems considered. Reformulating
the QPP in a dual and special “relative” form [25] provides the simple box constraints and
leads to the Newton projection method [26], which has a quadratic convergence rate. As
a result, the contact problem for deformable parts is solved quickly and without loss of
accuracy. This methodology was significantly expanded in subsequent works devoted to
modeling the assembly process in the aircraft industry [27–30].

2
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This study attempts to combine the approaches proposed in [9] and [19]. Thus, the
approach presented here combines the simplicity and speed of MIC with the accuracy of
contact analysis.

Note that the methods taking into account the deviations of parts are widely used
for the optimization and development of assembly technology for aircraft structures. In
particular, the optimization of the wing-to-fuselage assembly process for Airbus A350
aircraft is considered in [27]. The optimization of the wing assembly process for Airbus
A320 is discussed in [28]. The procedure for optimizing the S19 splice joint assembly in the
tail section of A350 is described in [29].

The remainder of the article is organized as follows: Section 2 is devoted to the
mathematical approaches used in the work. Sections 2.1 and 2.2 describe a methodology
that allows positioning deviations to be easily taken into account when solving contact
problems in assembly modeling for compliant structures. Section 2.3 describes special
methods that allow one to quickly solve the numerous quadratic programming problems
that arise when modeling assembly processes. Section 2.4 discusses the statistical analysis of
the results. Section 3 describes the results of mathematical modeling. The surrogate model
of the wing-to-fuselage upper joint that is used for the numerical experiments is presented
in Section 3.1. Section 3.2 illustrates the influence of deviations in the positions of support
points on the gap between assembled parts. The choice of the most appropriate numerical
method for the considered problem is discussed in Section 3.3. The main modeling results
on the influence of positioning deviations on the assembly quality and resulting deviations
are provided in Section 3.4. The emulation of positioning deviations by setting the initial
gaps between assembled parts is discussed in Section 3.5. The main conclusions of the
work are contained in Section 4.

2. Methodology Concept
2.1. Problem Statement

This section is devoted to the problem statement and description of the numerical
procedure.

Let us consider the finite element model (FEM) of two panels to be assembled, as
shown in Figure 1a. The parts may come into contact in the area where finite element
nodes are marked by colored balls; further on, this area is referred to as the junction area.
The panels are fixed along the edges (clamps are drawn in Figure 1a). According to the
FEM, it is possible to split the nodes into three groups: nodes that can be brought into
contact—the computational ones; nodes where fixations are set—nodes to be varied and
all the rest. The degrees of freedom (DOF) in computational nodes are referred to as
UC = (UCi)

NC
i=1, the DOF in nodes to be varied—as UV = (UVi)

NV
i=1, the DOF in the rest of

nodes—as UR = (URi)
NR
i=1. All the groups of DOF are represented in Figure 1b.
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Figure 1. (a) FE model of assembled parts; (b) types of FE nodes in the model.

Thus, the vector of unknown displacements in FE nodes U = (Ui)
N
i=1 can be con-

structed:
U = (UC, UV , UR)

T , N = NC + NV + NR (1)
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If the possibility of contact interaction is not taken into account, then the vector U is
the solution of the linear system:

K ·U = F, (2)

where K =
(
kij
)N,N

i=1,j=1 is the global stiffness matrix of the FEM, F = ( fi)
N
i=1 is the vector

of applied loads that includes both forces and moments. One can note that system (2) is
obtained by discretization of the equations of elasticity theory. Since the assembled parts
are mainly flexible panels, shell theory is usually used to describe the stress-strain state of
the parts.

The boundary conditions correspond to the fixations of parts on the assembly stand,
for example, with the help of clamps, as shown in Figure 1a:

UV = UV0, (3)

where UV0 ∈ Rl is the vector of fixed degrees of freedoms.
The contact interaction between the considered parts is modeled using the node-to-

node contact model (see Figure 1b). According to this model, only predefined pairs of
nodes can come into contact. Note that the use of such a model for this kind of problem is
justified since the installed fasteners prevent significant tangential displacements of parts
relative to each other.

Using the node-to-node contact model, the nonpenetration conditions can be formu-
lated as:

A ·U ≤ G, (4)

where A ∈ RM×N is a linear operator that defines nonpenetration between the pairs of
nodes in the junction area, G ∈ RM is the vector of initial gaps between the panels. It can
be mentioned that A = 0 outside the junction area, so it is possible to rewrite (4):

AC ·UC ≤ G, (5)

Summing up the relations (2)–(5), the problem of calculating vector U can be stated in
a variational form as the minimization problem:

min
U∈S

(
1
2 UT · K ·U − FT ·U

)

S = {U|AC ·UC ≤ G, UV = UV0},
(6)

The statement (6) of the contact problem includes all the degrees of freedom of the
structure taken into account in the FEM, which dimension N can reach 106–107 variables for
industrial applications. This factor makes the solution of the contact problem in statement
(6) quite resource-intensive, especially if multiple calculations are required.

On the contrary, the number of DOF in the junction area NC is much smaller than the
dimension N. The static condensation technique [31] can be applied in order to reduce the
problem dimension. This approach is described in the next subsection.

2.2. Problem Reformulation

Let us divide the problem (6) into blocks according to the structure of the displacement
vector U from (1):

K =




KCC KCV KCR
KT

CV KVV KVR
KT

CR KT
VR KRR


, F =




FC
FV
FR


 (7)

4
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The loads are applied only inside the junction area, so FV = FR = 0. The system (2)
providing a global minimum of (6) without accounting for S is rewritten:




KCC KCV KCR
KT

CV KVV KVR
KT

CR KT
VR KRR


 ·




UC
UV
UR


 =




FC
0
0


 (8)

Opening the brackets, (8) transforms into:

KCC ·UC + KCV ·UV + KCR ·UR = FC,
KT

CV ·UC + KVV ·UV + KVR ·UR = 0,
KT

CR ·UC + KT
VR ·UV + KRR ·UR = 0

(9)

Third relation provides the formula for UR:

UR = −K−1
RR ·

(
KT

CR ·UC + KT
VR ·UV

)
(10)

Then, UR from (10) is substituted into the first relation of system (9):

KCC ·UC − KCR · K−1
RR ·

(
KT

CR ·UC + KT
VR ·UV

)
= FC − KCV ·UV (11)

It is recalled that UV = UV0 and (11) is simplified:
(

KCC − KCR · K−1
RR · KT

CR

)
·UC = FC − KCV ·UV0 + KCR · K−1

RR · KT
VR ·UV0 (12)

From (12), it is possible to derive matrix KC = KCC − KCR · K−1
RR · KT

CR that can be
interpreted as the reduced stiffness matrix and the force vector for variations of boundary
conditions:

Fvar =
(
−KCV + KCR · K−1

RR · KT
VR

)
·UV0 = Mvar ·UV0 (13)

Adapting the notations from [6], Mvar =
(
−KCV + KCR · K−1

RR · KT
VR

)
can be called the

matrix of influence coefficients.
Given all the previous transformations the reduced minimization problem equivalent

to (6) can be formulated:

min
UC∈SC

(
1
2 UT

C · KC ·UC −
(

FT
C + (Mvar ·UV0)

T
)
·UC

)

SC = {UC|AC ·UC ≤ G},
(14)

One can see that matrix KC can be computed once, the same is applicable for matrix
Mvar. A series of assembly simulation problems can then be constructed by only using the
input vector of loads FC in the junction area, the vector of initial gaps G and the vector of
boundary values UV0.

In the case of matrix K, its blocks from (7) are not known; the static finite element
analysis (FEA) can be exploited for calculating matrix KC and Mvar.

Let us suppose that UV0 = 0, and (FC)j =

{
1, j = i
0, j 6= i

, j ∈ [1, NC] for i-th DOF in the

junction area. The FEA analysis is performed, and the corresponding UC is computed.
Then, it can be concluded from (12) that:

UC = K−1
C · FC =

{
K−1

Cj

}NC

j=1
(15)

After collecting all the columns of K−1
C the matrix inversion is required to obtain KC

itself.

5
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The columns of the matrix Mvar are obtained by setting
(
UV0

)
j =

{
1, j = i
0, j 6= i

for the i-th

DOF in the nodes to be varied (j ∈ [1, NV ]) and FC = 0. UC is computed by static FEA and
revealing (12):

KC ·UC =
{

Mvarj
}NC

j=1, (16)

So, the i-th column of Mvar equals KC ·UC.

2.3. Algorithms for Quadratic Programming Problems

Obtaining matrices KC and Mvar for the problem (14), the variational analysis comes
down to solving a set of quadratic programming problems with different input data. To
achieve significant performance improvements over standard quadratic programming tools,
the specific features that characterize the considered problem can be used together with:

• reformulating the quadratic programming problem in order to reduce the number of
unknowns and simplify the constraints;

• using specialized optimization algorithms adapted to assembly problems;
• dividing the calculation process into a preprocessing stage (time-consuming one) and

a gap calculation stage (fast one).

2.3.1. Reformulation of the Quadratic Programming Problem

In assembly problems, the formulation of the original quadratic programming problem
in the form most preferable for the optimization method can help reduce computation time.
More specifically, this formulation should have a low dimension with a simple constraint
structure. Let us consider two additional formulations of the minimization problem (14)
that meet the above requirements. The dual formulation of problem (14) is given by:

max
ΛC>0

(
−1

2
ΛT

C ·QC ·ΛC + PT
C ·ΛC + H

)
, (17)

where ΛC ∈ RM is the vector of Lagrange multipliers, QC = AC
TK−1

C AC ∈ RM×M is a symmet-
ric positive definite dense matrix, PC = AT

C · K−1
C · TC − G ∈ RM, H = −1

2 TC ·K−1
C ·TC ∈ R1,

TC = FC + Mvar ·UV0. The physical meaning of the unknown vector ΛC is the reaction
forces arising in the contact nodes.

The relative formulation [25] of problem (14) is written as:

min
DC∈

∼
SC

(
1
2 DT

C ·
∼
KC · DC −

∼
FC · DC

)

∼
SC = {DC|DC ≤ G},

(18)

where DC = AC ·UC ∈ RM is a vector of relative displacements,
∼
KC = Q−1

C ∈ RM×M is a

symmetric positive definite dense matrix,
∼
FC =

∼
KC·AT

C·K−1
C TC ∈ RM.

Solving problem (17) and (18) is equivalent to solving (14). The solution of (14) UC is
expressed from the solutions of (17) ΛC and (18) DC using Formula (19):

UC = K−1
C (TC − AC ·ΛC),

ΛC =
∼
FC −

∼
KC·DC

(19)

The formulations (17) and (18) reduce the dimension of the quadratic programming
problem (14) from N unknowns to M (N ≥ M), the number of constraints remains un-
changed, but the linear constraints SC in general form are replaced by the bound constraints

ΛC > 0 and
∼
SC, respectively.
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2.3.2. Adaptation of Algorithms

Problem (14) itself is a convex quadratic programming problem, the solution of which
exists and is unique. The optimization methods are faced with the challenge of not only
finding a solution with some predetermined accuracy but also finding it quickly since
it is necessary to solve a large number of similar problems. The dual Goldfarb–Idnani
active set method [21,23], a Newton projection method [26], the primal-dual interior-point
method [32], and Lemke’s method [33] from this point of view are discussed further.

Depending on the specifics of the optimization problem, the methods are distinct
because of different basic ideas. Features of assembly problems lead to the formulation of a
quadratic programming problem with a block-diagonal structure of the matrix KC, a sparse
structure of the constraint matrix AC, ill-conditioned, symmetric, and positive-definite

Hessian matrices KC, QC, and
∼
KC. In addition, variation simulation provides a set of

quadratic programming problems where the Hessian matrix and constraint matrix are the
same, but the force and gap vectors are different. These features were used to adapt the
listed methods to effectively solve assembly problems. The Newton projection method and
the primal-dual interior-point method have an iterative structure, where at each iteration,
the system of linear equations is solved. The adaptation (see Table 1) of these methods
includes improving system solving (choice between direct and iterative methods, selection
of preconditioner for iterative approaches) and reducing the number of iterations (choice
of starting point, strategy for choosing a new approximation at each iteration). The dual
Goldfarb–Idnani active set method and Lemke’s method are based on looking over the
set of active constraints. Adaptation was based on finding a strategy for modifying the
working set of constraints. For all optimization methods, the structure of the Hessian and
constraint matrix was taken into account to improve memory management and reduce
the number of actions for matrix-vector operations. All methods presented in Table 1 are
implemented in the computer code and included in the ASRP software package [30].

Table 1. Adaptation of optimization methods to assembly problems.

Newton Projection Method Dual Goldfarb–Idnani Active
Set Method

Primal-Dual Interior-Point
Method

Lemke’s Method

• A method for recalculating
constraints to reduce the
number of iterations of
the method.

• A method for solving a
system of equations based
on a combination of direct
and iterative approaches.

• A modification of direct
methods for solving the
system based on the
Sherman–Morrison formula.

• A method for finding step
length based on the golden
section method.

• Using a warm start.

• Taking into account the
sparse structure of the
constraint matrix AC .

• Taking into account the
block-diagonal structure of
the Hessian matrix KC .

• Improving the procedure for
adding a new constraint to
the working set, based on
the physical meaning of
the problem.

• Using a warm start.

• A method for searching for
a “feasible” starting point,
taking into account the
specifics of assembly
problems. The method
makes it possible to reduce
the number of iterations.

• Proposing a preconditioner
for solving a system of
linear equations reducing
iteration process of the
system solution.

• A modification of direct
methods for solving the
system based on the
Sherman–Morrison formula.

• Taking into account the
sparse structure of the
constraint matrix AC .

• Taking into account the
block-diagonal structure of
the Hessian matrix KC .

Note that the optimization problem under consideration is strictly convex (for all
presented formulations) and therefore has a unique solution, which is found by all the
algorithms presented here. The exit condition for all algorithms is the fulfillment of
optimality conditions with an accuracy of 10−7.

7



Axioms 2024, 13, 67

2.3.3. Preprocessing Stage and a Gap Calculation Stage

Preparing matrices QC,
∼
KC, and vectors PC,

∼
FC for problems (17) and (18) requires

additional computational costs. However, since the matrices KC and AC are the same for
a set of problems formed by variation analysis, the calculation of the necessary auxiliary
matrices can be carried out once for each assembly model at the preprocessing stage of
model preparation. Taking into account the sparse structure of the matrix AC and the
block-diagonal structure of the matrix KC allows one to reduce the computation time of
the preprocessing stage. Preparing the relative formulation (18) is the most labor-intensive.
The ill-conditioning of the stiffness matrix KC does not allow one to obtain the matrices
∼
KC =

(
AC

T · K−1
C · AC

)−1
and

∼
KC · AT

C·K−1
C with sufficient accuracy, when using standard

inversion methods, due to the accumulation of rounding errors, and forces one to use more
accurate methods of matrix inversion and multiplication [25].

Another part of data preparation is directly related to the specifics of optimization
methods. Some operations, such as Hessian inversion, replacement of variables, con-
struction of auxiliary matrices for the formation of systems of equations, and associated
preconditioners necessary for the operation of the methods, can be performed in advance.
The set of necessary auxiliary operations depends on the method used.

By moving all labor-intensive operations beyond the immediate solution of the
quadratic programming problem, it allows one to significantly speed up the solution
process at the gap calculation stage.

2.4. Methodology Application

Given the possibility of making fast multiple computations with the algorithms de-
scribed in the previous section, the methodology of assembly analysis can be derived that
accounts for variations from different sources.

Firstly, varying the force vector FC means that different fastening configurations are
considered. Different vectors G represent the influence of the initial gap on the assem-
bly [34]. Varying UV0 corresponds to changes in the initial positioning of the parts before
the assembly.

All the variations are transferred to the preprocessing stage of the QP problem, where
the most matrix computations are performed (see Figure 2). Then, the set of corresponding
entities is constructed and solved. Then, the results are collected and analyzed.
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In order to compare simulation results, the quality criterion is to be introduced. Let us
denote Ures the solution of problem (8), δ is the threshold gap value. If the resulting gap

8
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Gres = G− Ac ·Ures undergoes δ, it is assumed that the contact is achieved. The defect gap
vector d(δ) ∈ Rk can be defined as follows for each DOF in the junction area:

dj(δ) =

{
1, (Gres)j ≥ δ

0, (Gres)j < δ
(20)

The averaged sum of the d(δ) components shows how the gap is eliminated for the
given data case G, FC, and UV0 . Further on, it is called the probability of defect:

P(δ) =
1
k ∑k

j=1 dj(δ) (21)

The lower the probability of defect P(δ), the better the quality of the assembly.
Using this methodology, it is possible to simulate what-if scenarios when it is necessary

to examine the quality of the assembly under the conditions derived from the data provided
by the assembly line (e.g., the information on initial gaps between parts measured for the
previously manufactured aircrafts).

Another possibility is to check the given assembly against the unknown boundary
conditions a priori. Typical data known for part positioning is tolerance T at each bound-
ary point (it represents how far the actual position can vary from its nominal location):(
UV0

)
j ∈
[
−Tj, Tj

]
for each boundary node to be varied j ∈ [1, l]. The statistical distribu-

tion for the variation of each point
(
UV0

)
j is typically assumed to be normal (Gaussian) with

a zero mean µj = 0 and with a standard deviation σj = Tj/3 [35]. Thus, UV0 is constructed
from randomly generated

(
UV0

)
j by sampling corresponding normal distributions.

It is worth investigating how the variations UV0 affect the resulting displacements after
the contact interaction. In [6], the same research was conducted, and the linear dependence
was obtained. Since the approach presented in this paper is nonlinear, the dependence
between source variations and variations in the points of observation is more complex. At
the same time, using the above-described computation techniques allows for a speed of
calculations that is comparable to that of linear models.

3. Results
3.1. Assembly Model of Wing-to-Fuselage Upper Joint

The described approach is applied to the model of aircraft wing-to-fuselage assembly.
Figure 3a shows the scheme of the upper joint of the wing (gray) to a part of the fuselage
called the cruciform (green). In the top view in Figure 3b, dots show the computational
nodes that form the junction area (the area of possible contact), and gray circles show the
holes where fasteners can be installed. The assembly model is full-scale. The size of the
junction area is approximately 6 m by 0.3 m. There are 3612 computational nodes and
256 holes in the junction area. This model does not correspond to any specific type of
aircraft, but qualitatively reproduces the characteristics of the real assembly process. The
junction area is colored according to the gap between the parts.
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The three edges of the cruciform shown in red in Figure 3a are attached to the central
wing box, which is very rigid. Therefore, in the finite element model presented in Figure 4,
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all displacements and rotations in the nodes located on these edges are restricted. The
wing is fixed at four support points depicted in Figures 3 and 4 with red triangles. At
these four points, all displacements except the vertical ones are restricted, and the vertical
displacements are to be varied. A finite element mesh with these boundary conditions is
used to calculate the reduced stiffness matrix KC and matrix of influence coefficients Mvar
of the assembly, as described in Section 2.2.
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Figure 4. Finite element model of the upper wing-to-fuselage joint.

3.2. Examples of the Influence Deviations in the Positions of Support Points on the Gap between
Assembled Parts

In all further numerical experiments in this section, it is assumed that the parts are
perfectly adjacent to each other: initial gap between parts is equal to zero with no deviations
of support positions. So, the source of the gap deviations in the junction area is concentrated
at the variation of the vertical positions of the support points of the wing.

Note that these variations are nonlinearly reflected in the gap at the junction area. For
example, Figure 5a,b show the results of moving all support points in vertical directions up
and down, respectively. When all the support points deflect 3 mm downwards, the gap is
opened for approximately 3 mm, and when moving support points 3 mm upwards, due to
contact interaction, a gap opens up to approximately 0.5 mm at the edge of the wing.
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It is important to evaluate the impact of random deviations in the positions of the
support points on the quality of the assembly. These random deviations cause various
residual gaps between parts. The initial assembly stage consists of installing approximately
10% of all fasteners. As a rule, these fasteners are installed manually, which takes a relatively
long time and incurs labor costs. The technological requirement is that all residual gaps
with these fasteners installed are less than the specified value. The correct arrangement
of fasteners at the initial assembly stage is a very important task in aircraft assembly. In
this regard, the calculations of residual gaps between parts with 10% installed fasteners are

10
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considered in this work as the benchmarks. Figure 6 shows examples of such gaps without
fasteners (a) and with 26 fasteners installed (that is approximately 10% of all fasteners),
which corresponds to the end of the initial assembly stage (b).
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3.3. Choosing a Method for Solving a Quadratic Programming Problem to Reduce
Computation Time

Statistical analysis involves a lot of calculations, so choosing the fastest method is very
important. Let us consider the computation time using the example of the gaps shown in
Figure 6.

Figure 7 presents the computation time of the gap calculation stage spent by different
optimization methods used to solve (14), (17), and (18). Similar trends are observed for
different types of gaps caused by random deviations in the position of wing support.
The fastest methods are the dual Goldfarb–Idnani active set method and the Newton
projection method, used for the relative formulation (18). The computation time estimate
of the optimization methods depends on the number of active constraints at optimum
points, which is related to the number of installed fasteners (see Figure 8a). In particular,
the dual Goldfarb–Idnani active set method has a proportional and Newton projection
method has an inverse proportional dependence of computation time on the number of
active constraints at optimum for relative problem formulation. Figure 8b helps to choose
between the methods based on the number of fasteners to be installed. That is, with a
small number of fixtures (less than 10%), the dual Goldfarb–Idnani active set method is
preferable to use; otherwise, the Newton projection method is faster.

Note that despite the fact that the gaps for Cases 2 and 4 (see Figure 6) look qualitatively
different, the dependence of the active constraints on the number of installed fasteners for
these cases is almost the same (Figure 8a). This is due to the fact that both of these gaps
are positive throughout the junction area, and contact occurs only after the installation of
fasteners. For Cases 1 and 3, in some areas, contact is achieved before fasteners are installed.
This is illustrated in Figure 9a, where the contact nodes are colored pink. From Figure 9b,
it can be seen that with 10% fasteners installed, the contact nodes for Cases 2 and 4 are
located only near the fasteners, while for Cases 1 and 3, they are also present in the middle
of the junction area.

11
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Further calculations are carried out without fasteners and with 10% fasteners installed;
therefore, the relative formulation of the QP problem is solved by the ASM, since for these
cases it is the fastest (see Figures 7 and 8b).

3.4. The Influence of Random Deviations in the Positions of Support Points on a Assembly Process

Figure 10 shows examples of statistical distributions of support point deviations for
different sample sizes. The column width in the histograms is 0.5 mm. The Gaussian
distribution with a zero mean µj = 0 and standard deviation σj = 3 mm is used.
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Figure 10. Examples of statistical distributions of support point deviation for different sample sizes:
(a) N = 100, (b) N = 200, (c) N = 500, (d) N = 1000, and (e) N = 5000.

Figure 11 shows the statistical curves representing the probability of defect P(δ) for
different δ. The δ values in mm are plotted on the horizontal axis, and the vertical axis shows
the P(δ) as a percentage, calculated from the entire sample of the support point deviations.
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10% fasteners installed.

The statistical curves without fasteners are slightly different (see Figure 11a) for differ-
ent sample sizes, but after the fastener installation, this difference ceases to be noticeable
starting from a sample size of 200 (Figure 11b).

Figure 12 illustrates the influence of random deviations of support points on the
distribution of normal displacements of some nodes in the junction area. No fasteners are
installed, but the wing and cruciform parts experience contact interaction. Figure 12a,b
correspond to the case of deviation of one support point and Figure 12c to the case when
two support points deviate.

As can be seen in Figure 12, despite the fact that the source variations are given by a
Gaussian distribution, the deviations at the observation points have a completely different
behavior. This is due to the fact that contact interactions are taken into account, which leads
to the nonlinearity of the developed tolerance model. The linear model can change the
parameters, but cannot change the structure of distributions (compare to Figures 8 and 9 in
work [6]).
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points deviate.

3.5. Comparison of Gaps Caused by Deviations of Support Points with Generated Initial Gaps

The vector of nonuniform initial gaps between the assembled parts G can be used as
an alternative source of deviations in tolerancing and variational analysis. It is of interest
to compare two approaches to generating deviations during the assembly process. This
comparison is the subject of the present section.

The initial gap between the assembled parts can be modeled as the homogeneous
Gaussian random field G(x, y) with mean µRF, standard deviation σRF, and exponential
correlation function ρ(x, y; αRF) = exp

(
−α2

RF
(
x2 + y2)/2

)
, where (x, y) is the local coor-

dinate in the junction area [27]. The mean µRF represents the constant value of the initial
gap in the junction area and is assumed to be zero. Thus, the modeled initial gap is defined
by two parameters: the standard deviation σRF (which corresponds to the amplitude of the
initial gap) and the correlation coefficient αRF (which corresponds to the curvature of the
initial gap) [28].

The parameters of the modeled initial gaps σRF and α were chosen in order to replicate
the deviations in the vertical positions of support points. Figure 13 shows the result of
statistical analysis for two groups consisting of 5000 samples of residual gaps each. The
first group was obtained by the variation of vertical positions for all four support points
(µj = 0, σj = 3 mm) and the second group was built on the base of the generated initial
gaps (µRF = 0, σRF = 2 mm, αRF = 0.000145). As can be seen from Figure 13, the statistical
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curves for the two groups are quite close to each other, especially in the case of 10% of
installed fasteners.
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Figure 13. Comparison of statistical curves for residual gaps caused by deviations in the position of
wing support points and for generated initial gaps: (a) without fasteners, (b) with 10% of fasteners
installed.

The same conclusion can be drawn from Figure 14, which shows four examples of
the calculated residual gaps (with and without installed fasteners) based on the generated
initial gaps. Comparing it with Figure 6, showing the gaps obtained by the deviation of
support positions, one can see that the resulting distributions are very similar.
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Figure 14. Examples of calculated residual gaps based on the generated initial gaps: (a) without
fasteners, (b) with 10% of fasteners installed.

Figure 15 presents the comparison distributions of maximal and mean values for
the same groups of residual gap samples. As can be seen, the distributions of the mean
and maximum gaps are quite close, both qualitatively and quantitatively. Therefore, the
deviations in the shape of the assembled parts can be emulated with sufficient accuracy by
setting the initial gap with proper settings.
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Figure 16 provides the so-called local statistics, which are the probability of obtaining
a residual gap at a given point in the junction area within the prescribed range. The same
two groups of gap samples are used. The distribution of local statistics provides important
information for the assembly engineer, since it characterizes the quality of contact between
the parts being connected at a given stage of assembly with regard to deviations of parts.
In addition, local statistics make it possible to find weak points in the assembly technology
under study, showing in which places the arrangement of fasteners may need to be changed.
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Figure 16. The probability that the gap is greater than a given number with 10% fasteners installed:
(a) in case of deviations of wing support point positions, (b) for generated initial gaps.

Based on Figures 15 and 16, one can draw similar conclusions about the proximity of
the final gaps obtained by different methods of generating deviations.

The analysis carried out in this section shows that positioning deviations can be ade-
quately emulated by setting the initial gaps between assembled parts. However, selecting
parameters for these initial gaps is a nontrivial task, the solution of which is impossible in
the absence of information about the effect of positioning deviations.

4. Conclusions

The presented work continues the line of research started by the famous work of
Liu and Hu [6], where the method of influence coefficients was proposed. The proposed
generalization makes it possible to quickly and easily evaluate deviations in the resulting
assembly and the quality of contact based on positioning deviations. At the same time,
unlike classical MIC, the proposed method provides a mathematically correct solution to
the contact problem that inevitably arises when modeling the assembly process.

Note that, along with positioning deviations, the quality of the final product is influ-
enced by deviations in the assembled parts that appeared as a result of previous assembly
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operations. Such deviations can be modeled by setting a nonzero initial gap between parts,
in particular according to the methods proposed in [34]. For building the most complete
deviation model, these two approaches can be combined.

The main novelty of the proposed method is the full implementation of deviation
modeling in the process of solving the contact problem. In this context, taking into account
positioning deviations is not fundamentally different from taking into account the action of
forces (for example, from fastening elements). The proposed technique allows for nonlinear
tolerancing with a computation speed that is comparable to the speed of solving linear
tolerancing problems of similar dimensions.

Note that the developed modeling methodology is not limited to the aerospace indus-
try. It can be used in any industry where it is necessary to assemble structures from large,
compliant parts. In particular, this takes place in the automotive industry, the assembly of
cars for high-speed trains, shipbuilding, and other industries.
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Abstract: In this paper, we consider the one-dimensional Ising model (shortly, 1D-MSIM) having
mixed spin-(s, (2t− 1)/2) with the nearest neighbors and the external magnetic field. We establish
the partition function of the model using the transfer matrix. We compute certain thermodynamic
quantities for the 1D-MSIM. We find some precise formulas to determine the model’s free energy,
entropy, magnetization, and susceptibility. By examining the iterative equations associated with
the model, we use the cavity approach to investigate the phase transition problem. We numerically
determine the model’s periodicity.

Keywords: one-dimensional Ising model with mixed spin; free energy; entropy; magnetization;
susceptibility; phase transition

MSC: 37A25; 37A35; 28D05; 28D20; 37A44

1. Introduction

Lenz introduced the one-dimensional (1D) classical spin-1/2 Ising model [1]. Com-
pared to the spin-1/2 model, the spin-1 Ising model, also known as the Blume–Capel model,
is more appropriate; hence, it was employed in the investigation of phase transitions in
systems of three states [2,3]. Then, the spin-3/2 Ising model was used to extend the spin-1
Ising model’s conclusions [4,5].

The magnetic characteristics of mixed-spin systems have recently attracted both the-
oretical and experimental attention [6–8]. These systems are especially well suited for
studying the magnetic properties of a particular class of magnetic materials, in addition
to some technical applications [9]. Therefore, mixed-spin Ising models have been exten-
sively studied in the literature lately [10]. In Ref. [11], we classified the disordered phases
corresponding to the Ising model with spin-1 and spin 1/2 on the semi-finite Cayley tree
(CT). Then, on the second-order CT, we examined the phase transition problem of the Ising
model with spin-2 and spin 1/2. Furthermore, we discussed the chaotic behavior of the
corresponding dynamical system [12]. The main methods for examining the properties of
Ising models with the mixed spin on the square lattice [10], Bethe lattice [13], and CT [11,12]
are Monte Carlo simulations [10], the cavity method [14–16], the Kolmogorov consistency
method [11,12], the iteration method, and transfer matrix method. In [17], the magneto
thermal parameters that characterize the magnetocaloric effect (MCE) behaviors, such as
entropy, entropy change, and adiabatic cooling rate, are precisely calculated using the
transfer matrix approach.

In the literature, there are numerous methods for determining the free energy of a
given model [13,18]. The free energy of the lattice models on the Bethe lattice is calculated
while boundary conditions are taken into consideration [13,18,19]. In-depth research has
been performed on the thermodynamic properties of the 1D Ising model with single spin-s
using the transfer matrix [20–22].
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The author is not aware of any research on the thermodynamic properties of 1D
Ising models with mixed spin. Due to its widespread applications, the matrix transfer
approach is one of the most commonly used methods in statistical mechanics. In [21],
the transfer matrix approach is considered to conduct an analytical study of the 1D Ising
model with spin-s. To grasp physical issues as well as statistical mechanics, it is essential to
compute thermodynamic quantities like free energy, entropy, magnetization, and magnetic
susceptibility [22].

In this paper, to determine the thermodynamic quantities related to 1D-MSIM with
the mixed spin-(s, (2t− 1)/2), we consider the transfer matrix approach. We enlarge a
specific bond and establish the transfer matrix that corresponds to the bond from site j to
site j + 1. By considering the trace of several transfer matrices multiplied simultaneously,
the partition function is reconstructed. Inspired by the results given for the 1D Ising
model with the single spin-s [21], the partition function and the free energy of 1D-MSIM
with mixed spin-(s, (2t−1)

2 ) having the nearest neighbor interactions and external field are
calculated. To calculate the model’s free energy, entropy, magnetization, and susceptibility,
some exact formulas are established via the corresponding transfer matrix. By using the
cavity approach to the corresponding iterative equations of the model, the phase transition
issue is studied. The periodicity of the model is also estimated, numerically.

2. Preliminaries

Here, we review definitions and key findings in the construction of the partition
function for the 1D-MSIM with mixed spin-(s, (2t−1)

2 ) on the one-dimensional lattice Z. We
denote the set of integers by Z and the set of strictly positive integers by N+. Two vertices x
and y, x, y ∈ N+ are called nearest-neighbor (NN) if there exists an edge ` ∈ L connecting
them, which is denoted by ` = 〈x, y〉. For x, y ∈ N+, the distance d(x, y) is the length (the
number of edges) of the shortest path connecting x with y. For any x ∈ N+, the direct
successor of the vertex x is defined by S(x) = {y ∈ N+ : d(x, y) = 1}.

Denote the set of even natural numbers by E = {2n : n ∈ N} and the set of odd
natural numbers by O = {2n− 1 : n ∈ N+}. We consider the mixed spin-state spaces
denoted by Φ = {±s : s ∈ Z+} ∪ {0} and Ψ = {± (2t−1)

2 : t ∈ Z+}. For A ⊂ N+, a spin
configuration ξA on A is defined as a function

x ∈ A→ ξA(x) =
{

ξA(x) = σ(x) ∈ Φ, x ∈ E
ξA(x) = s(x) ∈ Ψ, x ∈ O.

Let us consider finite set N2N+1 = {1, 2, · · · , 2N + 1}. Let ΩE = ΦE and ΩO = ΨO

be the spaces of infinite configurations and Ω+,N = ΦE∩N2N+1 and Ω−,N = ΨO∩N2N+1 be
the spaces of finite configurations. Ξ = ΩE ×ΩO represents the configuration space. An
element of ΩE is denoted by σ(x), for x ∈ E. Similarly, an element of ΩO is denoted by
s(x), for x ∈ O.

In this paper, the spins in Φ and Ψ can be placed on the odd-numbered vertices and
the even-numbered vertices, respectively, when mixed spins are designed on the lattice N+

(see Figure 1).

1 2 4 5
6 73

Σ1

Σ9
Σ7Σ5

Σ3Σ1
s2 s4

s6 s8

8 9

Figure 1. Configurations with a mixed spin on a one-dimensional finite block, where σ2N−1 ∈ Φ and
s2N ∈ Ψ for N ∈ N+.

Construction of the Partition Function Associated with the Model

Let us construct the partition function corresponding to 1D-MSIM with mixed spin
(s, 2t−1

2 ) on the lattice N+.
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Let ξ ∈ Ξ, so that one has

ξ(x) =

{
σ(x); x ∈ E
s(x); x ∈ O,

where σ ∈ Φ and s ∈ Ψ.
Fix a finite volume Λ ⊂ N+. Let E = {` = 〈x, y〉 : d(x, y) = 1, x, y ∈ N+} be the set of

nearest-neighbor edges with at least one endpoint in Λ ⊂ N+. We examine in detail the
1D-MSIM with mixed spin (s, 2t−1

2 ) built on the lattice N+, having the Hamiltonian

H(ξ) = − ∑
〈x,y〉∈E

Jξ(x)ξ(y)− ∑
y∈Λ

hξ(y)ξ(y), (1)

where the energy of each link tying up nearby sites is represented by the first sum, and the
energy of each site is represented by the second sum.

The partial partition functions associated with the Hamiltonian (1) can be found
as follows:

Z(2N+1)
ξ(x(0))

(β, hξ(x(0))) = ∑
ηN∈ΞN2N+1

exp{−βH(ηN)}, (2)

where ξ ∈ σ× s = Ξ, β = 1
kBT and J is the coupling constant.

Given the finite set N2N+1, by considering the boundary spins, or the spins on the
(2N + 1)-th level, we can construct the summation of Equation (2). Consequently, we state
that the density-free energy function is

F(β, hξ(x)) = −kBT lim
N→∞

1
(2N + 1)

ln Z(2N+1)(β, hξ(x)), (3)

where Z(2N+1)(β, hξ(x)) is the total partition function.
As a result of the derivatives of the free energy function with respect to certain

parameters, many authors have studied other thermodynamic properties [21,22]. If the
largest eigenvalue of the transfer matrix corresponding to the given model is λmax, the
thermodynamic quantities of this system are obtained as follows:

Bulk free energy

F(T, βhξ(x)) = −kBT ln λmax. (4)

Entropy

S(T, βhξ(x)) = −
∂F(T, βhξ(x))

∂T
. (5)

Internal energy

U(T, βhξ(x)) = −
∂ ln λmax

∂β
. (6)

3. Construction of the Partition Function for the Model via Transfer Matrices

The Kramers–Wannier transfer technique may be used to construct the partition
function. This method requires building a transfer matrix and determining its eigenvalues.

3.1. The Partition Function and the Boltzmann Weight

It is well known that the total partition function Z(2N+1)(β, hξ(x)) = Tr(−βH2N+1)
depends on the particular realization {Ji, hi} (see [21,22] for details). Also, it is well known
that the total partition function is equal to the Boltzmann weight’s sum over all possible
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states. Here, we consider blocks or configurations with (2N + 1) length, and under zero
boundary conditions, that is, the spins designed for m > 2N + 1 are regarded as ξ(m) = 0.

If we want to rewrite the Hamiltonian (1) for all configurations on the configuration
space Ξ2N+1, we can obtain the Boltzmann weight in the form:

e
−βH(η)+ ∑

x∈N2N+1

η(x)hη(x)

= e−βH(σ) (7)

From (1), for i = 1, 2, · · · , N, we denote the energy of the bond between sequential vertices
2i− 1 and 2i by

E(σ2i−1, s2i) = − ∑
〈2i−1,2i〉∈E

Jσ2i−1s2i − ∑
〈2i−1,2i〉∈E

hs2i s2i. (8)

Similarly, for i = 1, 2, · · · , N we denote the energy of the bond between sequential vertices
2i and 2i + 1 by

Ẽ(σ2i, s2i+1) = − ∑
〈2i,2i+1〉∈E

Js2iσ2i+1 − ∑
〈2i,2i+1〉∈E

h̃σ2i+1 σ2i+1. (9)

Note that, as can be seen in Equations (8) and (9), for i > 1, while the oscillating magnetic
fields hσ2i−1 and h̃s2i fluctuate depending on where the vertex is located, the coupling
constant J, which determines the energy between two successive vertices, remains constant.

It is well known that the partition function is equal to the sum of the Boltzmann weight
e−βH(η) over all possible states in the lattice N [21,22]. Therefore, for the configuration
η ∈ Ξ2N+1, we can write the Boltzmann weight e−βH(σ) in the form

e−βH(η) = e−βH(σ1,s2,σ3,··· ,σ2N−1,s2N−1,σ2N+1) (10)

= e−βE(σ1,s2)−βẼ(s2,σ3)−···−βE(σ2N−1,s2N)−βẼ(s2N ,σ2N+1)

=
(

e−βE(σ1,s2)
)(

e−βẼ(s2,σ3)
)
· · ·
(

e−βE(σ2N−1,s2N)
)(

e−βẼ(s2N ,σ2N+1)
)

.

For this system, the canonical partition function can be written as

Z2N+1 = ∑
η∈Ξ2N+1

e−βH(η) = ∑
η∈Ξ2N+1

e−β(∑N
i=1 E(σ2i−1,s2i)+∑N

i=1 Ẽ(σ2i ,s2i+1)). (11)

The next step is to decompose the bonds using the bond representation and factor the
Boltzmann weights into pairwise factors.

3.2. The Transfer Matrices

Here, we construct the transfer matrices corresponding to 1D-MSIM with the (s, (2t−1)
2 )

mixed spin on the lattice N+. We obtain two different transfer matrices. First, let us place
the spins of the set Φ on the odd-numbered vertices of the lattice N+, and the spins in the
set Ψ on the even-numbered vertices. So, we define the entries of the transfer matrix P
as follows:

Pσ2i−1s2i = exp
(

σ2i−1s2iβJ + βs2i h̃s2i

)
= e−βE(σ2i−1,s2i), (12)

where σ2i−1 ∈ Φ and s2i ∈ Ψ for i = 1, 2, · · · .
Similarly, we can define the entries of the transfer matrix Q by

Qs2iσ2i+1 = exp
(
s2iσ2i+1βJ + βσ2i+1hσ2i+1

)
= e−βẼ(s2i ,σ2i+1), (13)

where s2i ∈ Ψ and σ2i+1 ∈ Φ for i = 1, 2, · · · .

22



Axioms 2023, 12, 880

From (10)–(13), we obtain

e−βH(η) = Pσ1s2 Qs2σ3 Pσ3s4 Qs4σ5 · · · Pσ2N−1s2N Qs2N σ2N+1 . (14)

One can easily see that the matrix P has Card(Φ)×Card(Ψ) dimensions while matrix Q
has Card(Ψ)×Card(Φ) dimensions. Assume that PQ = M. The total partition function
can be written as the trace of the product of 2N + 1 random transfer matrices.

3.3. 1D-MSIM with Mixed Spin-(1, 1/2)

Due to the difficulty of computation of the transfer matrix and its eigenvalues for s > 1
and t > 1, we restrict ourselves to the mixed spin (1, 1/2). In this subsection, we compute
the thermodynamic quantities of 1D-MSIM with mixed spin (1, 1/2). So, we consider the
mixed spins as Φ = {−1, 0, 1} and Ψ = {− 1

2 , 1
2}.

Firstly, let us construct the transfer matrix as P =
(

Pσ2i−1,s2i

)
, for σ2i−1 ∈ {−1, 0, 1} and

s2i ∈ {− 1
2 , 1

2}. So, we have

P =




e
β
2

(
J−h− 1

2

)

e
− β

2

(
J−h 1

2

)

e
− 1

2 βh− 1
2 e

1
2 βh 1

2

e
− β

2

(
J+h− 1

2

)

e
β
2

(
J+h 1

2

)




. (15)

Secondly, let us place the spins of the set {− 1
2 , 1

2} on the even-numbered vertices
of the lattice N+, and the spins in the set {−1, 0, 1} on the odd-numbered vertices (see
Figure 1). We can define the second transfer matrix Q =

(
Qs2i ,σ2i+1

)
, for s2i ∈ {− 1

2 , 1
2} and

σ2i+1 ∈ {−1, 0, 1} as

Q =

(
e

β
2 (J−2h−1) 1 e−

β
2 (J−2h1)

e−
β
2 (J+2h−1) 1 e

β
2 (J+2h1)

)
. (16)

3.4. Investigation of Thermodynamic Quantities in the Translation-Invariant Case

Assume that h = h̃j = hi for all j ∈ {− 1
2 , 1

2} and i ∈ {−1, 0, 1}. This case is called the
translation-invariant property. Thus, the transfer matrices P and Q given in (15) and (16)
are obtained as follows

P =




e
β
2 (J−h) e−

β
2 (J−h)

e−
1
2 βh e

1
2 βh

e−
β
2 (J+h) e

β
2 (J+h)


, (17)

Q =

(
e

β
2 (J−2h) 1 e−

β
2 (J−2h)

e−
β
2 (J+2h) 1 e

β
2 (J+2h)

)
. (18)

Case I

When we multiply the transfer matrices P and Q given in Equations (17) and (18), we
obtain the square matrix:

M = PQ =




e−
1
2 (3h−2J)β + e−

1
2 (h+2J)β e−

1
2 (J−h)β + e

1
2 (J−h)β e

hβ
2

(
1 + ehβ

)

e−
1
2 (3h−J)β + e−

1
2 (h+J)β e−

hβ
2

(
1 + ehβ

)
e

1
2 (h−J)β + e

1
2 (3h+J)β

e−
3hβ

2

(
1 + ehβ

)
e−

1
2 (h+J)β + e

1
2 (h+J)β e

1
2 (h−2J)β + e

1
2 (3h+2J)β


. (19)
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After some tedious and complicated algebraic manipulations, the eigenvalues of the matrix
M are obtained as:





λ1 = 0,

λ2 = 1

2e
β
2 (3h+2J)

(
A(β, h, J)−

√
(A(β, h, J))2 − 4B(β, h, J)

)
,

λ3 = 1

2e
β
2 (3h+2J)

(
A(β, h, J) +

√
(A(β, h, J))2 − 4B(β, h, J)

)
,

where

A(β, h, J) =
(

1 + ehβ
)(

ehβ + e2Jβ + ehβ+Jβ − ehβ+2Jβ + e2hβ+2Jβ
)

,

B(β, h, J) = e2hβ
(

eJβ − 1
)2
(

eJβ
(

1 + e2hβ
)
+ ehβ

(
1 + eJβ

)2
)

.

For the sake of simplicity, substitute the variables θ = e
βJ
2 and v = e

βh
2 to obtain





λ1 = 0,

λ2 =
(1+v2)(θ4+v2(1+θ2−θ4)+v4θ4)−

√
((1+v2)(θ4+v2(1+θ2−θ4)+v4θ4))

2−4v4(θ2−1)2(θ2(1+v4)+v2(1+θ2)2)

2v3θ2 ,

λ3 =
(1+v2)(θ4+v2(1+θ2−θ4)+v4θ4)+

√
((1+v2)(θ4+v2(1+θ2−θ4)+v4θ4))

2−4v4(θ2−1)2(θ2(1+v4)+v2(1+θ2)2)

2v3θ2 .

(20)

By computing the trace of the matrix product M, we can determine the partition function as

Z(2N+1)(β, hξ(x)) = Tr[MN ] =
3

∑
i=1

λN
i , (21)

where λi denotes the eigenvalues of the transfer matrix M for i = 1, 2, 3.
From (11), we obtain

Z(2N+1)(β, hξ(x)) = Tr(MN) =
t

∑
j=1

λN
t,j = λN

max

(
1 +

t−1

∑
j=1

(
λt,j

λmax

)N
)

, (22)

where λt,j denote the eigenvalues of transfer matrix M.
So, one has Z(2N+1)(β, hξ(x)) = λN

max for N → ∞. As it is well known, the model’s
critical behavior manifests itself in the thermodynamic limit as N → ∞; therefore, the
largest eigenvalue λmax = λ3 of the transfer matrix M given in (19) stands as the only
indicator of the bulk free energy:

F(β, h) = − 1
β

lim
N→∞

1
(2N + 1)

ln Z(2N+1)(β, h) (23)

= − 1
β

lim
N→∞

1
(2N + 1)

ln λN
3 = − 1

2β
ln λ3

= − 1
2β

ln


A(β, h, J) +

√
(A(β, h, J))2 − 4B(β, h, J)

2e
β
2 (3h+2J)


.

3.5. Behavior of the Thermodynamic Quantities of 1D-MSIM with Mixed Spin-(s,(2t − 1)/2) in the
Absence of a Magnetic Field

For h = 0, we obtain the transfer matrix M given in (19) as

M̂ =




2 cosh(Jβ) 2 cosh
(

Jβ
2

)
2

2 cosh
(

Jβ
2

)
2 2 cosh

(
Jβ
2

)

2 2 cosh
(

Jβ
2

)
2 cosh(Jβ)


. (24)
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The set of eigenvalues of the matrix M̂ is obtained as follows:

{λ̂1 = 0, λ̂2 = −2 + 2 cosh(Jβ), λ̂3 = 4 + 2 cosh(Jβ)}.

It is clear that λ̂3 = λ̂max. From the formula in (23), we obtain

F(β, 0) = − 1
2β

ln(4 + 2 cosh(Jβ)). (25)

Figure 2 shows the graph of free energy F(β, 0) given in (25) as a function of β for
J = 0.2. From Figure 2, it can be seen that the free energy is approaching zero for T → 0+.
In Figure 2, the oscillating magnetic fields hs2i and h̃σ2i+1 are assumed to be zero. If hs2i and
h̃σ2i+1 are taken to be nonzero, then, by using the parametric representation, the free energy
function can be plotted in the form h→ (β(h), F(h)).

Figure 2. The graph of free energy F(β, 0) given in (25) as a function of β for J = 0.2.

In the absence of an external magnetic field, from (5), the entropy of the model is
obtained as

S(β, 0) = −∂F(β, 0)
∂T

= −
∂F(β,0)

∂β

∂T
∂β

(26)

=
(−2 ln(4 + 2 cosh(Jβ))− cosh(Jβ) ln(4 + 2 cosh(Jβ)) + Jβ sinh(Jβ))kB

2(2 + cosh(Jβ))
.

Similarly, from (6), we obtain the internal energy as

U(β, 0) =
−2 ln(4 + 2 cosh(Jβ))− cosh(Jβ) ln(4 + 2 cosh(Jβ)]) + Jβ sinh(Jβ])

2β2(2 + cosh(Jβ))
. (27)

The changes in entropy of 1D-MSIM with mixed spin (1, 1/2) are given in Figure 3.
Results show that the internal energy converges to zero at the higher temperature values,
while becoming a constant 0 as T → 0. When the temperature increases, the entropy
increases until it reaches ln(

√
6) and goes to zero at low temperature values.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
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Figure 3. (Left) The graph of entropy S(β, 0) given in (26) for J = 0.2 as a function of the temperature
T in the absence of a magnetic field. (Right) The graph of entropy S(β, 0) given in (26) for J = 0.2 as
a function of β in the absence of a magnetic field.
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Case II

Note that while successively placing spins on the vertices of a one-dimensional lattice,
if the elements of Ψ are placed in the first vertex of the lattice N, then a transfer matrix
having 2× 2 dimensions is obtained, and the eigenvalues of the transfer matrix are the
same as those of the previous matrix M.

M̃ = QP =

(
e−

hβ
2 + e−

1
2 (3h−2J)β + e

1
2 (h−2J)β e

hβ
2 + e−

hβ
2 + e

3hβ
2

e−
hβ
2 + e−

3hβ
2 + e

hβ
2 e

hβ
2 + e−

1
2 (h+2J)β + e

1
2 (3h+2J)β

)
. (28)

If we substitute the variables θ = e
βJ
2 and v = e

βh
2 for simplicity, we obtain

M̃ = QP =

(
θ
v2 1 v2

θ
1

θv2 1 θv2

)
.




θ
v

v
θ

1
v vs.
1
θv θv


 (29)

=




(v2−vθ+θ2)(v2+vθ+θ2)
v3θ2

(1−v+v2)(1+v+v2)
v

(1−v+v2)(1+v+v2)
v3

(1−vθ+v2θ2)(1+vθ+v2θ2)
vθ2


.

We obtain the set of eigenvalues of the matrix M̃ given in (29) as




λ̃1 =
(1+v2)(θ4+v2(1+θ2−θ4)+v4θ4)−

√
((1+v2)(θ4+v2(1+θ2−θ4)+v4θ4))

2−4v4(θ2−1)2(θ2(1+v4)+v2(1+θ2)2)

2v3θ2 ,

λ̃2 =
(1+v2)(θ4+v2(1+θ2−θ4)+v4θ4)+

√
((1+v2)(θ4+v2(1+θ2−θ4)+v4θ4))

2−4v4(θ2−1)2(θ2(1+v4)+v2(1+θ2)2)

2v3θ2 .
(30)

It should be noted here that the eigenvalues of the matrices M and M̃ are the same, except
for 0. Therefore, it is obtained that λ3 = λ̃2 (see Equations (20) and (30)). We can choose
any spin on the starting vertex, while mixed spins are placed on consecutive vertices of the
lattice. From (20) and (30), it is clear that λ̃max = λ̃2.

3.6. Magnetization and Magnetic Susceptibility

In this subsection, we construct magnetization and magnetic susceptibility by means
of the eigenvalue λ̃2 in the Formula (30).

Let us consider the reduced nearest neighbor spin–spin coupling interactions K = βJ
2 =

ln(θ) and the reduced magnetic field H =
βhξ(x)

2 = ln(v), we write the magnetization as

m(T, H) = −β
∂F(T, H)

∂aλ̃2
∂H, (31)

and susceptibility

χ(T, H) = −β2 ∂2F(T, H)

∂H2 = β
∂

∂H

(
1

λ̃2

∂λ̃2

∂H

)
. (32)

We do not give the exact expressions of the formulas for the magnetization and sus-
ceptibility here, because the operations are excessively long and complex. We numerically
examine the behavior of these two quantities as functions of h and T.

The Mathematica software (Version 8.0, Wolfram Research, Inc., Champaign, IL,
USA) [23] has been used to perform the calculations and to plot the figures. A three-
dimensional plot of m(T, H) is given in Figure 4. Taking into account the eigenvalue λ̃2 in
the Formula (30), for J = −2, one can easily see that, as the temperature T increases, the
smoothness of the function decreases and exhibits a behavior similar to the step function.
On the other hand, for J = 2, the surface of the function becomes smooth. In contrast to the
single-spin Ising chain’s typical single step [21], in Figure 4 (left), the magnetization graph
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shows three distinct steps at low temperatures. This phenomenon may be explained by
spins adopting distinct states within even and odd sublattices, or by all spins assuming the
same state.

Figure 4. (Left) The graph of magnetization m(T, H) given in (31) for J = −2 as a function of h and
T. (Right) The graph of magnetization m(T, H) given in (31) for J = 2 as a function of h and T.

A three-dimensional plot of χ(T, H) is given in Figure 5. Figure 5 (Left) and (Right)
show the behavior of the susceptibility function given in Equation (32). For J = −2, three
stacks resembling a boot are observed, and a stack appears for J = 2 in the chosen region
T ∈ [0.001, 7], h ∈ [−6, 6]. As seen in Figure 5 (Left), while three different susceptibility
peaks appear for J = −2 at low temperatures, the susceptibility peaks disappear as the
temperature increases. For J = 2, only a single susceptibility peak is observed at low
temperatures (see Figure 5 (Right)).

Figure 5. (Left) The graph of susceptibility χ(T, H) given in (32) for J = −2 as a function of h and T.
(Right) The graph of susceptibility χ(T, H) given in (32) for J = 2 as a function of h and T.

4. Nonexistence Phase Transition in the Absence of the External Magnetic Field

In this section, we study 1D-MSIM with the mixed spin-(1,1/2) employing the ERR.

Suppose that W(n) =
Z̃(n)
− 1

2

Z̃(n)
1
2

, X(n−1) =
Z(n−1)
−1

Z(n−1)
0

and Y(n−1) =
Z(n−1)

1

Z(n−1)
0

, from Equations (43)

and (44), we obtain

W(n) =
θ2X(n−1) + θ + Y(n−1)

X(n−1) + θ + θ2Y(n−1)
, (33)

X(n−1) =
θ2W(n−2) + 1
θ(W(n−2) + 1)

, (34)

Y(n−1) =
W(n−2) + θ2

θ(W(n−2) + 1)
, (35)

where θ = e
βJ
2 .
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If we assume x = lim
n→∞

X(n−1), y = lim
n→∞

Y(n−1) and w = lim
n→∞

W(n), then we obtain a

new three-dimensional rational dynamical system (3D-RDS) as

w =
θ2x + θ + y
x + θ + θ2y

, (36)

x =
θ2w + 1
θ(w + 1)

, (37)

y =
w + θ2

θ(w + 1)
. (38)

If the values of x and y in Equations (37) and (38) are substituted into Equation (36), one
obtains the following rational recursive equation f : R+ → R+:

f (w) :=
3θ2 + w

(
1 + θ2 + θ4)

(1 + θ2 + θ4) + 3wθ2 = w. (39)

From (39), we obtain a second-order equation

3(w− 1)(1 + w)θ2 = 0. (40)

From Equation (40), it is clear that the function f given in (39) has only one positive fixed
point, so there is no phase transition for the given model.

The graphs of the function f for antiferromagnetic (θ = 0.421) and ferromagnetic
(θ = 3.421) values are plotted in Figure 6. The diagrams show that the function in both
cases has just two fixed points. Additionally, there is only one positive fixed point. As a
result, there is just one Gibbs measure and no phase transition in the model. As it is well
known, the classical single spin 1D Ising model’s phase transition issue has attracted the
interest of statistical mechanics researchers for over a century, and it has been established
that there is no phase transition [1]. In this present paper, we demonstrated that the mixed
spin 1D Ising model has no phase transition as an example.
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Figure 6. (Left) The graph of the function f given in (39) for θ = 0.421. (Right) The graph of the
function f given in (39) for θ = 3.421.

Chaoticity of the Model

A dynamical system’s chaotic behavior is determined by how sensitively it depends
on the initial conditions [24,25]. It has long been a challenge to see whether a model’s phase
transition and the chaotic behavior of the corresponding dynamical system are related [26].
In this subsection, we investigate the chaoticity of the 3D-RDS given in (36)–(38). With the
help of the Lyapunov exponent, we numerically study the model’s chaotic behavior.
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From the definition of the Lyapunov exponent, we obtain

λ =
1
n

ln

∣∣∣∣∣
n−1

∏
i=0

f ′θ(wi)

∣∣∣∣∣ =
1
n

n−1

∑
i=0

ln
∣∣ f ′θ(wi)

∣∣ (41)

=
1
n

n−1

∑
i=0

ln

∣∣∣∣∣

(
θ2 − 1

)2(1 + 4θ2 + θ4)

(1 + (1 + 3wi)θ2 + θ4)
2

∣∣∣∣∣.

From (41), we have

λ(θ) : = lim
n→∞

1
n

n−1

∑
i=0

ln

∣∣∣∣∣

(
θ2 − 1

)2(1 + 4θ2 + θ4)

(1 + (1 + 3wi)θ2 + θ4)
2

∣∣∣∣∣. (42)

Figure 7 shows the Lyapunov exponent of the dynamical system corresponding to
the 1D-MSIM with mixed spin-(1,1/2). It is seen that the Lyapunov exponent is always
negative in the ferromagnetic region. Therefore, the rational function f (w) given in (39) is
periodic. The behavior of the Lyapunov exponent λ(θ) in the antiferromagnetic region can
also be examined.
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Figure 7. The graph of the function λ(θ) given in (42) versus θ = e
J

2T in the ferromagnetic region
(J > 0).

5. The Average Magnetization for the Mixed Spin-(1,1/2) Ising Model

In this section, by using the exact recursion relations (ERRs) (see [9]), we obtain the
partial partition functions of the 1D-MSIM with mixed spin-(s, (2t−1)

2 ). Contrary to the
previous sections, here we place the spins of Ψ in the first vertex of the lattice and the spins
of Φ in the second vertex of the lattice, while placing spins at the vertices of the lattice Z+,
so for n = 0, 1, 2, · · · , we obtain s2n−1 ∈ Ψ and σ2n ∈ Φ. With the help of the cavity method
(see [14–16] for details), we obtain the partial partition functions as follows:

Z̃(n)
s1 = ∑

σ2∈Φ
exp(β(Js1σ2 + hσ2))Z(n−1)

σ2 , (43)

Z(n−1)
σ2 = ∑

s3∈Ψ
exp

(
β(Jσ2s3 + h̃s3)

)
Z̃(n−2)

s3 . (44)

The Average Magnetization

In this subsection, assuming there is an external magnetic field, we obtain the magne-
tization equations for spins s and (2t−1)

2 , respectively, as follows.

M(n)
1/2 =

∑
s1∈Ψ

s1 exp(β(Js1σ2 + hσ2))Z̃(n)
s1

∑
s1∈Ψ

exp(β(Js1σ2 + hσ2))Z̃(n)
s1

, (45)
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M(n−1)
1 =

∑
σ2∈Φ

σ2 exp
(

β(Jσ2s3 + h̃s3)
)

Z(n−1)
σ1

∑
σ2∈Φ

exp
(

β(Jσ2s3 + h̃s3)
)

Z(n−1)
σ2

. (46)

We are only concerned with the magnetization for mixed spin-(1,1/2) here, since the
operations for obtaining partition functions are excessively long for s > 1 and t > 1. So,
from (45) and (46), we obtain

M(n)
1/2 =

e
hβ
2

(
e
(
− h

2−
J
2

)
β − e

(
− h

2 +
J
2

)
β
)(

e−hβ −W(n)
)

e−3hβ
(

e
1
2 (4h−J)β + e

1
2 (4h+J)β + e2hβ

)
+ e−

Jβ
2

(
1 + e

Jβ
2 + eJβ

)
W(n)

, (47)

M(n−1)
1 =

(
eJβ − 1

)(
e2hβY(n−1) − X(n−1)

)

2
(

2ehβ+
Jβ
2 +

(
1 + eJβ

)(
X(n−1) + e2hβY(n−1)

)) . (48)

The following equation results from the simple substitutions of the variables θ = e
Jβ
2 and

v = e
hβ
2

M(n)
1/2 =

(
v2W(n) − 1

)
(θ2 − 1)

(
1 + v2W(n)

)
(1 + θ + θ2)

, (49)

M(n−1)
1 = −

(
X(n−1) − v4Y(n−1)

)
(θ2 − 1)

2
(
X(n−1)(1 + θ2) + 2v2θ + v4Y(n−1)(θ2 + 1)

) . (50)

Now, let us assume that the external magnetic field h (v = 1) is zero. In this case, after
some calculations, as in Ref. [14], we can show that the fixed point for the 3D-RDS given
in (36)–(38) is only x = y =

(
1+θ2

2θ

)
and w = 1. So, we obtain zero average magnetization

around this fixed point. That is, we have

M(n)
1/2 = M(n−1)

1 = 0.

6. Conclusions

There are many methods for calculating the free energy of lattice models on the Bethe
lattices or the d-dimensional integer lattice Zd (d ≥ 1). Some of these are the exact recursion
relations [9], the cavity method [18], and vector-valued boundary conditions. One of the
most widely used methods to examine thermodynamic quantities corresponding to a 1D
Ising model is the transfer matrix technique [21,22]. In this present work, we constructed
the partial partition functions associated with 1D-MSIM having mixed spin-(s, (2t−1)

2 )
via the transfer matrix. We have computed some thermodynamic quantities such as the
free energy, entropy, magnetization, and susceptibility of the model. To the best of my
knowledge, the thermodynamic properties of the 1D Ising model with the single spin have
been investigated in several studies to date. Using the transfer matrix method, we evaluated
the thermodynamic features of the 1D-MSIM for the first time. For the single spin-Isign
model, Amin et al. [21] plotted the magnetization and susceptibility in two dimensions.

In our previous studies, we proved that there is a phase transition for the mixed-
spin Ising model on the CT using many methods [11,12,14]. As it is known, there is no
phase transition for a single spin 1D Ising model [1]. In this study, we investigated how
mixed spins affect thermodynamic quantities and the existence of the phase transition.
We demonstrated the uniqueness of limiting Gibbs measures associated with 1D-MSIM
having mixed spin-(1,1/2). We have shown that if the external magnetic field is zero, for
the aforementioned model, there is no phase transition. Our next research will deal with
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other issues in statistical mechanics. By considering the approach given by Albayrak [9],
the isothermal entropy change of the average magnetization for 1D-MSIM will be analyzed.

The findings obtained in our present article exhibit different behaviors from the results
given in previous studies [21,22]. Frankly, we cannot comment on the physical meaning of
such behavior. These topics are covered in introductory courses in statistical mechanics at
the undergraduate level. Therefore, we believe that the results of our present study will be
of interest to a wide readership of statistical mechanics.
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Abstract: This study proposes a closed-form solution for the two-dimensional (2D) transient heat
conduction in a rectangular cross-section of an infinite bar with space–time-dependent Dirichlet
boundary conditions and heat sources. The main purpose of this study is to eliminate the limitations
of the previous study and add heat sources to the heat conduction system. The restriction of the
previous study is that the values of the boundary conditions and initial conditions at the four corners
of the rectangular region should be zero. First, the boundary value problem of 2D heat conduction
system is transformed into a dimensionless form. Second, the dimensionless temperature function is
transformed so that the temperatures at the four endpoints of the boundary of the rectangular region
become zero. Dividing the system into two one-dimensional (1D) subsystems and solving them by
combining the proposed shifting function method with the eigenfunction expansion theorem, the
complete solution in series form is obtained through the superposition of the subsystem solutions.
Three examples are studied to illustrate the efficiency and reliability of the method. For convenience,
the space–time-dependent functions used in the examples are considered separable in the space–time
domain. The linear, parabolic, and sine functions are chosen as the space-dependent functions,
and the sine, cosine, and exponential functions are chosen as the time-dependent functions. The
solutions in the literature are used to verify the correctness of the solutions derived using the
proposed method, and the results are completely consistent. The parameter influence of the time-
dependent function of the boundary conditions and heat sources on the temperature variation is also
investigated. The time-dependent function includes exponential type and harmonic type. For the
exponential time-dependent function, a smaller decay constant of the time-dependent function leads
to a greater temperature drop. For the harmonic time-dependent function, a higher frequency of the
time-dependent function leads to a more frequent fluctuation of the temperature change.

Keywords: analytic solution; 2D heat conduction; space–time-dependent Dirichlet boundary
conditions; space–time-dependent heat sources; rectangular cross-section

MSC: 35K05; 80M99

1. Introduction

Heat conduction problems commonly exist in various modern mechanical equipment
and advanced instruments, and the boundary conditions and the heat sources of these
heat conduction problems are often space–time-dependent. Over the years, much research
has been devoted to these problems. The main methods to solve these problems include

33



Axioms 2023, 12, 708

numerical methods, analytic methods, and experimental methods. The literature review be-
low focuses on the study of heat conduction problems with time- and/or space-dependent
boundary conditions and/or heat sources.

Some advanced books on heat conduction described some classical techniques for
solving heat conduction problems [1–3]. These include Laplace transform, Green’s function,
and Duhamel’s theorem. Different approximation methods have been used to study one-
dimensional (1D) heat conduction problems with space- and/or time-dependent boundary
conditions and heat sources, such as the iterative perturbation method used by Holy [4]
and the eigenfunction expansion method used by Özisik and Murray [5]. Johansson and
Lesnic [6], Chantasiriwan [7], and Young et al. [8] applied the fundamental solutions
method to the time-dependent heat conduction problems. On the basis of the boundary
element method, Zhu, Liu, and Lu [9] used the Laplace transform, and Bulgakov, Sarler,
and Kuhn [10] used the finite difference scheme to find the solution in the time domain.
Lee et al. [11] proposed an integration-free-solution method to derive the analytic closed
solution to the one-dimensional heat conduction problem with time-dependent boundary
conditions. Furthermore, they extended the solution method and successfully applied it to
the inverse analysis of heat conduction problems [12,13].

Several numerical techniques have been proposed for two- and three-dimensional
(2D and 3D) heat conduction problems with space- and/or time-dependent boundary
conditions and/or heat sources. Walker [14] applied the fundamental solution of diffusion
combined with time integration to solve the diffusion equation. Chen, Golberg, and
Hon [15] applied the modified Helmholtz fundamental solution to the diffusion equation.
Zhu [16] and Sutradhar, Paulino, and Gray [17] used the Laplace transform to deal with
the time derivative term in the diffusion equation. Burgess and Mahajerin [18] used the
fundamental collocation method to the problems of arbitrary shapes subjected to mixed
time-dependent boundary conditions and arbitrary initial conditions. Young, Tsai, and
Fan [19] solved the nonhomogeneous diffusion problems using the fundamental solution
method and the dual reciprocity method. Numerical computation using the Padé scheme
was proposed by Siddique [20] to solve two-dimensional diffusion problems. The finite
integral transform method was used by Singh et al. [21] to solve the problem of asymmetric
heat conduction in a multilayer annulus space with time-dependent boundary conditions
and/or heat sources. Hematiyan et al. [22] presented a boundary element method to
analyze the 2D and 3D uncoupled thermoelastic problems with space- and time-dependent
heat sources. An enhanced state-space method considering laminate approximation theory
was introduced by Daneshjou et al. [23] to analyze the non-Fourier heat conduction of an
infinite 2D functionally graded hollow cylinder influenced by a time-dependent heat source.

Gu et al. [24] proposed the generalized finite difference method to recover the time-
dependent heat sources associated with a 3D heat equation. The eigenfunction-based
solutions of various heat conduction models exhibited a mismatch at the boundaries.
Biswas et al. [25] homogenized the generalized time-dependent boundary conditions to
remove this mismatch from the solution. Akbari et al. [26] employed Duhamel’s theorem
to evaluate the non-Fourier heat conduction of the 3D hollow spheres under the space- and
time-dependent boundary conditions. Zhou et al. [27] proposed a polygonal boundary
element method to solve the nonlinear heat conduction problems with space-dependent
heat source and temperature-dependent thermal properties. The authors [28] derived
a closed-form solution to the 2D heat conduction problem with the general Dirichlet
boundary condition using the shifting function method with the eigenfunction expansion
theorem. However, the temperature values of the boundary conditions and initial condition
at the four corners of the rectangular region were restricted to zero, which limited the
applicability of this study. Moreover, no heat source was considered in this document.

In this paper, a closed solution to the transient heat conduction problems in a rectangu-
lar cross-section of an infinite bar with nonhomogeneous space–time-dependent Dirichlet
boundary conditions and heat sources was developed. This study addresses the limitations
of the previous study [28]; that is, the values of the boundary conditions and initial condi-
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tions at the four corners of the rectangular area do not need to be limited to zero and become
functions of time. The space–time-dependent heat sources are also considered in this study.
The scope of application becomes much larger. This solution has a wide range of applica-
tions, such as laser heating, living tissue research, electronic devices, and microstructural
applications [12,25,29,30]. The proposed method can accurately solve the heat conduction
problem modeled as a rectangular cross-section of an infinite bar with Dirichlet boundary
conditions and heat sources. The first step in solving the two-dimensional heat conduction
problem is to change the physic system to be a dimensionless form. Afterward, the temper-
ature function is transformed so that the temperature values at the four endpoints of the
boundary conditions of the rectangular region become zero. Then, the system is divided
into two separate one-dimensional subsystems. The governing differential equations with
nonhomogeneous space- and time-dependent boundary conditions are transformed into
differential equations with homogeneous boundary conditions by applying the shifting
function method which does not require any integral transformation. Under the trans-
formed homogeneous boundary conditions, the closed-form solution of the system can be
further deduced by using the eigenfunction expansion theorem. Combining the solutions
of the two individual subsystems, the analytic solution of the original two-dimensional
heat conduction system can be obtained. Three examples are employed to illustrate the
efficiency and reliability of the method. The solution obtained using the proposed method
is in full agreement with the literature. The influence of the parameters is also investigated.

The contributions of this paper are as follows:

(1) The analytic solution to 2D heat conduction problems with the general Dirichlet
boundary conditions using the shifting function method with the expansion theorem
method was proposed in our previous study [28]. However, there were two restric-
tions, the temperature values at the four corners of the rectangular area should be
zero, and the heat source was also set to zero. The greatest contribution of this work
is that an analytical solution is proposed first for the 2D transient heat conduction in a
rectangular cross-section of an infinite bar with the space–time-dependent Dirichlet
boundary conditions and heat sources. The temperatures at the four corners of the
rectangular region can be functions of time.

(2) The correctness of the solution in this study is verified by comparing the solutions of
some cases using the proposed method with those of Young et al. [8], the previous
work [28], and Siddique [20]. To the best of the authors’ knowledge, the other cases in
this paper have never been presented in past studies. Furthermore, the case studies
show that the proposed method has good convergence to the solution using series
expansion and can quickly reach the converged value. The parameter influence of
the time-dependent function of the boundary conditions and heat sources on the
temperature change is also studied.

2. Mathematical Modeling and Dimensionless Form of Physical System

Consider the transient heat conduction for a rectangular cross-section in an infinite
bar with the space–time-dependent Dirichlet boundary conditions on its four sides and the
heat generation inside the bar. The material of the bar is isotropic and time-independent,
implying that the material properties are constants. Figure 1 shows the geometry, heat
sources, boundary conditions, and initial conditions of a rectangular cross-section in an
infinite bar. Therefore, the governing equation, boundary conditions, and initial conditions
of the physical system are given as follows:

k
[

∂2T(x, y, t)
∂x2 +

∂2T(x, y, t)
∂y2

]
+ g(x, y, t) = ρc

∂T(x, y, t)
∂t

in 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, t > 0, (1)

T(0, y, t) = f1(y, t), at x = 0, 0 ≤ y ≤ Ly, (2)
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T(Lx, y, t) = f2(y, t), at x = Lx, 0 ≤ y ≤ Ly, (3)

T(x, 0, t) = f3(x, t), at y = 0, 0 ≤ x ≤ Lx, (4)

T(x, Ly, t) = f4(x, t), at y = Ly, 0 ≤ x ≤ Lx, (5)

T(x, y, 0) = T0(x, y), at t = 0, 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, (6)

where T(x, y, t) is the temperature function, g(x, y, t) denotes the heat source inside the
rectangular cross-section, x and y are the two-dimensional space variables, Lx and Ly are
the thickness of the rectangular bar in the x- and y-directions, respectively, and t is the
time variable. In addition, k, ρ, and c represent the thermal conductivity, mass density,
and specific heat, respectively. fi(y, t) i = 1, 2 and fi(x, t) i = 3, 4 represent the general
case of space–time-dependent temperatures prescribed along the surfaces at the left and
right sides and at the bottom and top sides, respectively. It is worth noting that the heat
source function g(x, y, t) in Equation (1) is a function of space variables, which means that
there are infinitely many heat sources allowed in this function. If multiple heat source
functions are required to model the heat sources, the function g(x, y, t) in Equation (1) can
be changed to a summation term of these functions. The matching boundary conditions to
initial conditions have the following properties:

f1(y, 0) = T0(0, y), f2(y, 0) = T0(Lx, y), f3(x, 0) = T0(x, 0), f4(x, 0) = T0(x, Ly). (7)

1 

 

 

 

 

 

 

 

 

Figure 1. Cont.
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For ease of discussion, a dimensionless form of the 2D heat conduction system is first
generated. After introducing the dimensionless parameters

ψ(X, Y, τ) = T(x,y,t)
Tr

, G(X, Y, τ) =
L2

y g(x,y,t)
kTr

, τ = α t
L2

y
, X = x

Lx
, Y = y

Ly
, Lr =

Ly
Lx

,

Fi(Y, τ) = fi(y,t)
Tr

, i = 1, 2, Fi(X, τ) = fi(x,t)
Tr

, i = 3, 4, ψ0(X, Y) = T0(x,y)
Tr

,
(8)

the dimensionless form of the boundary value problem becomes
[

L2
r

∂2ψ(X, Y, τ)

∂X2 +
∂2ψ(X, Y, τ)

∂Y2

]
+ G(X, Y, τ) =

∂ψ(X, Y, τ)

∂τ
, in 0 < X < 1, 0 < Y < 1, τ > 0, (9)

ψ(0, Y, τ) = F1(Y, τ), ψ(1, Y, τ) = F2(Y, τ), ψ(X, 0, τ) = F3(X, τ), ψ(X, 1, τ) = F4(X, τ), (10)

ψ(X, Y, 0) = ψ0(X, Y). (11)

The parameter α = k
ρ c in Equation (8) represents the thermal diffusivity, and Tr

represents the reference temperature. The matching conditions of the boundary conditions
and the initial conditions also become

F1(Y, 0) = ψ0(0, Y), F2(Y, 0) = ψ0(1, Y), F3(X, 0) = ψ0(X, 0), F4(X, 0) = ψ0(X, 1). (12)

3. The Solution Method

The previous study [28] presented a method to derive an analytic solution to a 2D
heat conduction problem with general Dirichlet boundary conditions. However, the heat
generation was not considered in the model. Moreover, the values of boundary conditions
and initial conditions at each endpoint of the rectangular area were limited to zero, which
limited the applicability of this method. In this study, the constraint of corner zeros of the
boundary conditions was removed by first variable-transforming the temperature, and
the space–time-dependent heat source was added to the heat conduction system. The
system was then divided into two subsystems, each of which can be solved with a 1D
heat conduction problem. By properly choosing the shifting function, the second-order
governing differential equation with space–time-dependent boundary conditions was
transformed into a differential equation with homogeneous boundary conditions. Due to
the homogeneous boundary conditions, the eigenfunction expansion theorem could be
applied to solve the closed-form solution of the subsystem. Lastly, the solutions of the
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two subsystems were added to obtain the analytic solution for 2D heat conduction in a
rectangular region with space–time Dirichlet boundary conditions and heat sources

3.1. Temperature Variable Transformation

a(τ), b(τ), c(τ), and d(τ) represent the temperature at each endpoint of the rectangular
section (Figure 2a) and can be expressed as follows.

a(τ) = F1(0, τ) = F3(0, τ), b(τ) = F2(0, τ) = F3(1, τ),
c(τ) = F1(1, τ) = F4(0, τ), d(τ) = F2(1, τ) = F4(1, τ).

(13)
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To increase the method applicability of our previous study [28], the nonzero tempera-
tures at the four endpoints can be converted to zero first (Figure 2b). Therefore, variable
transformation to achieve this goal can be expressed as follows:

θ(X, Y, τ) = ψ(X, Y, τ)−
{

a(τ) + X [b(τ)− a(τ)]+
Y [c(τ)− a(τ) + X Y (d(τ)− c(τ)− b(τ) + a(τ))]

}
. (14)

Substituting Equation (14) back into Equation (9) can obtain the following nonhomo-
geneous differential equation:
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[
L2

r
∂2θ(X, Y, τ)

∂X2 +
∂2θ(X, Y, τ)

∂Y2

]
+ G(X, Y, τ) =

∂θ(X, Y, τ)

∂τ
, in 0 < X < 1, 0 < Y < 1, τ > 0, (15)

where the transformed dimensionless heat source G(X, Y, τ) is defined as

G(X, Y, τ) = G(X, Y, τ)− ρc

{ .
a(τ) + X [

.
b(τ)− .

a(τ)]+
Y [

.
c(τ)− .

a(τ) + X Y [
.
d(τ)− .

c(τ)−
.
b(τ) +

.
a(τ)]

}
, (16)

and the dot is used to indicate the differentiation with respect to the dimensionless time τ.
The dimensionless boundary conditions and initial conditions become

θ(0, Y, τ) = F1(Y, τ) = F1(Y, τ)− {a(τ) + Y [c(τ)− a(τ)]}, at X = 0, 0 ≤ Y ≤ 1, (17)

θ(1, Y, τ) = F2(Y, τ) = F2(Y, τ)− {b(τ) + Y [d(τ)− b(τ)]}, at X = 1, 0 ≤ Y ≤ 1, (18)

θ(X, 0, τ) = F3(X, τ) = F3(X, τ)− {a(τ) + X [b(τ)− a(τ)]}, at Y = 0, 0 ≤ X ≤ 1, (19)

θ(X, 1, τ) = F4(X, τ) = F4(X, τ)− {c(τ) + X [d(τ)− c(τ)]}, at Y = 1, 0 ≤ X ≤ 1, (20)

θ(X, Y, τ) = θ0(X, Y) = ψ0(X, Y)−
{

a(0) + X [b(0)− a(0)]+
Y [c(0)− a(0)] + X Y [d(0)− c(0)− b(0) + a(0)]

}
,

atτ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1.
(21)

In addition, considering the compatibility of the boundary conditions and initial
conditions, we have

F1(Y, 0) = θ0(0, Y), F2(Y, 0) = θ0(1, Y), F3(X, 0) = θ0(X, 0), F4(X, 0) = θ0(X, 1). (22)

3.2. Principle of Superposition

Due to the boundary value problem with the linear characteristic, we can divide the
physical system into two subsystems A and B in the X- and Y-directions through the
principle of superposition, as shown in Figure 3.

θ(X, Y, τ) is spilt into two branches as follows:

θ(X, Y, τ) = θa(X, Y, τ) + θb(X, Y, τ). (23)

For subsystem A, the governing equation, and the boundary and initial conditions of
the heat conduction problem are

[
L2

r
∂2θa(X, Y, τ)

∂X2 +
∂2θa(X, Y, τ)

∂Y2

]
+ Ga(X, Y, τ) =

∂θa(X, Y, τ)

∂τ
, in 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, τ > 0, (24)

θa(0, Y, τ) = F1(Y, τ), θa(1, Y, τ) = F2(Y, τ), θa(X, 0, τ) = 0, θa(X, 1, τ) = 0, (25)

θa(X, Y, 0) = θa0(X, Y), atτ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (26)

39



Axioms 2023, 12, 708
Axioms 2023, 12, x FOR PEER REVIEW 8 of 32 
 

 

0  
X  1  

),()0,,( 0 YXYX aa    

 

1  

Y  

),(),,0( 1  YFYa   
),(),,1( 2  YFYa   

0),0,(  Xa  

0),1,(  Xa  

( , , )aG X Y   

 

 
(a) 

 

0  

X  1  

),(

),(),()0,,(

0

00

YX

YXYXYX

b

ab








 

( , , ) ( , , ) ( , , )b aG X Y G X Y G X Y     

 

 

1  

Y  

0),,0(  Yb  

3( , 0, ) ( , )a X F X    

4( , 1, ) ( , )b X F X    

(1, , ) 0b Y    

 
(b) 

Figure 3. The two subsystems of the 2D heat conduction system with space–time-dependent 

Dirichlet boundary conditions and heat source in the medium: (a) for subsystem A; (b) for 

subsystem B. 

),,(  YX  is spilt into two branches as follows: 

( , , ) ( , , ) ( , , )a bX Y X Y X Y       . (23) 

For subsystem A , the governing equation, and the boundary and initial conditions 

of the heat conduction problem are 

2 2

2

2 2

( , , ) ( , , ) ( , , )
( , , )a a a

r a

X Y X Y X Y
L G X Y

X Y

     




   
   

   

, in 0 1X  , 0 1Y  , 0  , (24) 

1(0, , ) ( , )a Y F Y   , 2(1, , ) ( , )a Y F Y   , ( ,0, ) 0a X   , ( ,1, ) 0a X   , (25) 

0( , , 0) ( , )a aX Y X Y  , at 0  , 0 1X  , 0 1Y  .  (26) 

Similarly, for subsystem B , the governing equation, and the boundary and initial 

conditions of the heat conduction problem are 

Figure 3. The two subsystems of the 2D heat conduction system with space–time-dependent Dirichlet
boundary conditions and heat source in the medium: (a) for subsystem A; (b) for subsystem B.

Similarly, for subsystem B, the governing equation, and the boundary and initial
conditions of the heat conduction problem are

[
L2

r
∂2θb(X, Y, τ)

∂X2 +
∂2θb(X, Y, τ)

∂Y2

]
+ Gb(X, Y, τ) =

∂θb(X, Y, τ)

∂τ
, in 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, τ > 0, (27)

θb(0, Y, τ) = 0, θb(1, Y, τ) = 0, θb(X, 0, τ) = F3(X, τ), θb(X, 1, τ) = F4(X, τ), (28)

θb(X, Y, 0) = θ0(X, Y)− θa0(X, Y) = θb0(X, Y). (29)

Considering the similarity of the two subsystems, for the sake of brevity, subsystem A
is solved first, while subsystem B is solved in Appendix A.

3.3. Reduction to One-Dimensional Problem

Considering two homogeneous boundary conditions on opposite sides of a rectan-
gular cross-section, namely, Y = 0 and Y = 1, it is reasonable to assume that the tem-
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perature θa(X, Y, τ), the heat source Ga(X, Y, τ), and the dimensionless boundary values
Fi(Y, τ) (i = 1, 2) defined in Equations (24) and (25) become

θa(X, Y, τ) =
∞

∑
m=1

[θm(X, τ) sin(mπY)], (30)

Ga(X, Y, τ) =
∞

∑
m=1

[Gam(X, τ) sin(mπY)], (31)

Fi(Y, τ) =
∞

∑
m=1

[
Fi,m(τ) sin(mπY)

]
, i = 1, 2, (32)

where Gam(X, τ) and Fi,m(τ) (i = 1, 2), are defined as

Gam(X, τ) = 2
∫ 1

0
[Ga(X, Y, τ) sin(mπY)] dY, (33)

Fi,m(τ) = 2
∫ 1

0
Fi(Y, τ) sin(mπY)dY, i = 1, 2. (34)

θm(X, τ) in Equation (30) is determined by meeting the governing equation and the
boundary conditions on both edges X = 0 and X = 1 (the first two terms in Equation (25)).
Substituting Equations (30)–(32) into Equations (24)–(26) yields the following result:

∂θm(X, τ)

∂τ
− L2

r
∂2θm(X, τ)

∂X2 + m2π2θm(X, τ) = Gam(X, τ), in 0 < X < 1, τ > 0, (35)

θm(0, τ) = F1,m(τ), θm(1, τ) = F2,m(τ), (36)

θm(X, 0) = 2
∫ 1

0
θa0(X, Y) sin(mπY)dY. (37)

3.4. The Shifting Function Method
3.4.1. Change of Variable

To find the solution of the second-order partial differential Equation (35) with nonho-
mogeneous boundary conditions (Equation (36)), the following transformation equation
can be employed to extend the shifting function method [11–13]:

θm(X, τ) = θm(X, τ) +
2

∑
i=1

[gi,m(X)Fi,m(τ)], (38)

where θm(X, τ) is the transformed function, and gi,m(X)(i = 1, 2) are the two shifting
functions to be determined.

Substituting Equation (38) into Equations (35)–(37) yields
.
θm(X, τ) +

2
∑

i=1
[gi,m(X)

.
Fi,m(τ)]− L2

r

{
θ
′′

m(X, τ) +
2
∑

i=1
[g′′ i,m(X)Fi,m(τ)]

}

+m2π2
{

θm(X, τ) +
2
∑

i=1
[gi,m(X)Fi,m(τ)]

}
= Gam(X, τ)

, (39)

where the double primes are used to denote twice differentiation with respect to dimen-
sionless coordinate X. The associated boundary conditions become

θm(0, τ) +
2

∑
i=1

[gi,m(0)Fi,m(τ)] = F1,m(τ), θm(1, τ) +
2

∑
i=1

[gi,m(1)Fi,m(τ)] = F2,m(τ). (40)
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3.4.2. The Shifting Functions

For the convenience of subsequent analysis, the shifting functions can be chosen to
satisfy the following differential equation and boundary conditions:

g′′ i,m(X) = 0, i = 1, 2, 0 < X < 1, (41)

gi,m(0) = δi1, gi,m(1) = δi2, (42)

where δij is the Kronecker delta. Two shifting functions are, thus, easily specified as

g1,m(X) = 1− X, g2,m(X) = X. (43)

Substituting Equations (41)–(43) into Equations (39) and (40), the differential equation
for θm(X, τ) is simplified as follows:

.
θm(X, τ)− L2

r θ
′′

m(X, τ) + m2π2θm(X, τ) = Gm(X, τ), (44)

and the homogeneous boundary conditions are

θm(0, τ) = 0, θm(1, τ) = 0. (45)

Gm(X, τ) in Equation (44) is defined as

Gm(X, τ) = −
2

∑
i=1

{
gi,m(X)[

.
Fi,m(τ) + m2π2Fi,m(τ)]

}
+ Gam(X, τ). (46)

In addition, the initial condition is transformed to be

θm(X, 0) = 2
∫ 1

0
θa0(X, Y) sin(mπY)dY−

2

∑
i=1

[gi,m(X)Fi,m(0)]. (47)

3.4.3. The Series Expansion Theorem

The solution θm(X, τ) of Equations (44) and (45) can be solved by applying the method
of separation variable. In this method, the solution θm(X, τ) is expressed as

θm(X, τ) =
∞

∑
n=1

[θmn(X) Tmna(τ)], (48)

where the space variable θmn(X) is solved by the following Sturm–Liouville eigenvalue problem:

θ
′′

mn(X) + ω2
nθmn(X) = 0, 0 < X < 1, (49)

θmn(0) = 0, θmn(1) = 0. (50)

The eigenfunctions θmn(X) (n = 1, 2, 3, · · · ). and the corresponding eigenvalues are
solved as

θmn(X) = sin ωnX, ωn = nπ, n = 1, 2, 3, · · · (51)

The eigenfunctions constitute an orthogonal set in the interval [0, 1],

∫ 1

0
θmi(X) θmj(X)dX =

{
0 fori 6= j
1
2 fori = j

. (52)
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Substituting Equation (51) into Equation (48), substituting Equation (48) into
Equation (44), multiplying Equation (44) by θmn(X), and integrating from 0 to 1, the
following differential equation can be obtained:

.
Tmna(τ) + λ2

mnaTmna(τ) = γmna(τ), (53)

where λmna and γmna are given as

λmna =
√

m2 + n2L2
r π, (54)

γmna(τ) = 2
∫ 1

0 θmn(X) Gm(X, τ)dX = −2
nπ

[ .
F1,m(τ)− (−1)n

.
F2,m(τ)

]

− 2m2π
n
[
F1,m(τ)− (−1)nF2,m(τ)

]
+ 2
∫ 1

0 θmn(X) Gam(X, τ)dX
. (55)

Tmna(0) is determined from the initial condition of the transformed function defined
in Equation (47) as

Tmna(0) = 4
∫ 1

0
sin(nπX)

∫ 1

0
θa0(X, Y) sin(mπY)dYdX− 2

nπ

[
F1,m(0)− (−1)nF2,m(0)

]
. (56)

Equations (53) and (56) can be solved, and their general solution is as follows:

Tmna(τ) = e−λ2
mnaτTmna(0) +

∫ τ

0
e−λ2

mna(τ−ϕ)γmna(ϕ)dϕ. (57)

3.4.4. The Analytic Solution

After substituting the solutions for the transformation function (Equation (48)) and
shifting function (Equation (43)) back into Equations (38) and (30), the closed-form solution
θa(X, Y, τ) for the subsystem A is derived as follows:

θa(X, Y, τ) =
∞

∑
m=1
{

∞

∑
n=1

[sin(nπX)Tmna(τ)] + (1− X)F1,m(τ) + XF2,m(τ)} sin(mπY). (58)

Thanks to the high symmetry with the subsystem A, the solution form of the subsystem
B can be easily obtained through a similar derivation process (see Appendix A for details):

θb(X, Y, τ) =
∞

∑
m=1
{

∞

∑
n=1

[sin(nπY)Tmnb(τ)] + (1−Y)F3,m(τ) + YF4,m(τ)} sin(mπX). (59)

The summation of the two subsystem solutions leads to an analytic solution for the
heat conduction in the rectangular cross-section with space–time-dependent Dirichlet
boundary conditions and heat sources as follows:

θ(X, Y, τ) =
∞
∑

m=1
{

∞
∑

n=1
[sin(nπX)Tmna(τ)] + (1− X)F1,m(τ) + XF2,m(τ)} sin(mπY)

+
∞
∑

m=1
{

∞
∑

n=1
[sin(nπY)Tmnb(τ)] + (1−Y)F3,m(τ) + YF4,m(τ)} sin(mπX)

. (60)

Using the relationship shown in Equation (14), the dimensionless temperature ψ(X, Y, τ)
before temperature variable transformation can be calculated. In addition, using the first
identity of Equation (8), the exact solution T(x, y, t) with dimension can also be obtained.

3.4.5. The Extreme Case Study

If the heat source value g(x, y, t) is zero, and the temperatures at four corners of the
rectangular region a(τ), b(τ), c(τ), and d(τ), are all zeros, then the parameters G(X, Y, τ),
G(X, Y, τ), Ga(X, Y, τ), Gb(X, Y, τ), Ga m(X, τ), and Gb m(Y, τ) are all zeros. Therefore,
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the obtained exact solution θ(X, Y, τ) will be the same as that obtained in our previous
work [28]. This extreme case is studied in Example 2.

4. Examples and Verification

In order to verify the advantages of the proposed solution method, two cases involving
the presence and absence of a heat source in the medium are explored in detail below. For
simplicity, we take Lx = Ly = Lr = 1 in all examples of the 2D heat conduction problem.

4.1. With Zero Heat Source

In our previous study [28], the boundary condition was restricted such that the tem-
perature values at the four corners of the rectangular area were zero. The method of
this study is not limited to this restriction. In Example 1, we show how to solve it using
the proposed method if there are nonzero temperature values at the four corners of the
rectangular region.

Example 1. Take the heat source in the bar as g(x, y, t) = 0, and assume the space-time-dependent
Dirichlet boundary and initial conditions as follows:

T(0, y, t) = f1(y, t) = [sin(
πy
2
) + cos(

πy
2
) + 1] η(αt), at x = 0, 0 ≤ y ≤ 1, (61)

T(1, y, t) = f2(y, t) = [sin(
πy
2
) + cos(

πy
2
) + 1] η(αt), at x = 1, 0 ≤ y ≤ 1, (62)

T(x, 0, t) = f3(y, t) = [sin(
πx
2
) + cos(

πx
2
) + 1] η(αt), at y = 0, 0 ≤ x ≤ 1, (63)

T(x, 1, t) = f4(y, t) = [sin(
πx
2
) + cos(

πx
2
) + 1] η(αt), at y = 1, 0 ≤ x ≤ 1, (64)

T(x, y, 0) = sin(
πx
2
) + cos(

πx
2
) + sin(

πy
2
) + cos(

πy
2
), at t = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (65)

The dimensionless form of boundary and initial conditions, and the dimensionless
heat source G(X, Y, τ) are written as

ψ(0, Y, τ) = F1(Y, τ) =

[
sin(πY

2 ) + cos(πY
2 ) + 1

]
η(τ)

Tr
, at X = 0, 0 ≤ Y ≤ 1, (66)

ψ(1, Y, τ) = F2(Y, τ) =
[sin(πY

2 ) + cos(πY
2 ) + 1] η(τ)

Tr
, at X = 1, 0 ≤ Y ≤ 1, (67)

ψ(X, 0, τ) = F3(Y, τ) =
[sin(πX

2 ) + cos(πX
2 ) + 1] η(τ)

Tr
, at Y = 0, 0 ≤ X ≤ 1, (68)

ψ(X, 1, τ) = F4(Y, τ) =
[sin(πX

2 ) + cos(πX
2 ) + 1] η(τ)

Tr
, at Y = 1, 0 ≤ X ≤ 1, (69)

ψ(X, Y, 0) = ψ0(X, Y) =
sin(πX

2 ) + cos(πX
2 ) + sin(πY

2 ) + cos(πY
2 )

Tr
, atτ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, (70)

G(X, Y, τ) = 0, at 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (71)

Considering the matching conditions at the four corners of the rectangular section at
the initial moment, we have

η(0) = 1. (72)
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In this case, a(τ), b(τ), c(τ), d(τ), and their differentiations with respect to τ are
derived as

a(τ) = b(τ) = c(τ) = d(τ) =
2η(τ)

Tr
, (73)

.
a(τ) =

.
b(τ) =

.
c(τ) =

.
d(τ) =

2
.
η(τ)

Tr
. (74)

Thus, the transformed temperature θ(X, Y, τ) and heat source G(X, Y, τ) are given as

θ(X, Y, τ) = ψ(X, Y, τ)− 2η(τ)

Tr
, (75)

G(X, Y, τ) = −2
.
η(τ)

Tr
. (76)

It is worth noting that, after transformation, the dimensionless heat source becomes nonzero.
Following the proposed solution procedure, the boundary and initial conditions are

derived as

F1(Y, τ) =

[
sin(πY

2 ) + cos(πY
2 )− 1

]
η(τ)

Tr
, at X = 0, 0 ≤ Y ≤ 1, (77)

F2(Y, τ) =

[
sin(πY

2 ) + cos(πY
2 )− 1

]
η(τ)

Tr
, at X = 1, 0 ≤ Y ≤ 1, (78)

F3(X, τ) =

[
sin(πX

2 ) + cos(πX
2 )− 1

]
η(τ)

Tr
, at Y = 0, 0 ≤ X ≤ 1, (79)

F4(X, τ) =

[
sin(πX

2 ) + cos(πX
2 )− 1

]
η(τ)

Tr
, at Y = 1, 0 ≤ X ≤ 1, (80)

θ0(X, Y) =
sin(πX

2 ) + cos(πX
2 ) + sin(πY

2 ) + cos(πY
2 )− 2

Tr
, atτ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (81)

Next, G(X, Y, τ) and θ(X, Y, τ) are divided into two parts as follows:

Ga(X, Y, τ) = −
.
η(τ)

Tr
, Gb(X, Y, τ) = −

.
η(τ)

Tr
, (82)

θa0(X, Y) =
sin(πX

2 ) + cos(πX
2 )− 1

Tr
, θb0(X, Y) =

sin(πY
2 ) + cos(πY

2 )− 1
Tr

. (83)

The associated dimensionless quantities Gam(X, τ), Gbm(Y, τ), and Fi,m(τ)(i = 1, 2, 3, 4)
are derived as

Gam(X, τ) = Gbm(X, τ) =
−2

.
η(τ)[1− (−1)m]

Trmπ
, (84)

Fi,m(τ) =
2η(τ)[1− (−1)m]

Trmπ(4m2 − 1)
, i = 1, 2, 3, 4. (85)

From Equations (54), (55), (A25), and (A26) one has

λmna = λmnb =
√

m2 + n2 π, (86)

γmna(τ) = γmnb(τ) = −
4m2[1− (−1)m][1− (−1)n]

Trmnπ2(4m2 − 1)
[4

.
η(τ) + π2η(τ)]. (87)
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Likewise, Tmna(0) and Tmnb(0) are determined from the initial conditions of the trans-
formed functions defined in Equations (56) and (A27) as

Tmna(0) = Tmnb(0) =
16(m2 − n2)[1− (−1)m][1− (−1)n]

Trmnπ2(4m2 − 1)(4n2 − 1)
. (88)

Therefore, Tmna(τ) and Tmnb(τ) are determined as follows:

Tmna(τ) = Tmnb(τ) =
2[1−(−1)m ][1−(−1)n ]

Trmnπ2(4m2−1)(4n2−1){8(m2 − n2)e−(m
2+n2) π2

−4m2(4n2 − 1)
∫ τ

0 e−(m
2+n2)π2(τ−φ)[4

.
η(φ) + π2 η(φ)] dφ

. (89)

Considering the time-dependent term of exponential type,

η(τ) = e−π2τ/4, (90)

and substituting Equation (90) back into Equations (85) and (89) yields

Fi,m(τ) =
2e−π2τ/4[1− (−1)m]

Trmπ(4m2 − 1)
, i = 1, 2, 3, 4, (91)

Tmna(τ) = Tmnb(τ) =
16(m2 − n2) [1− (−1)m][1− (−1)n]

Trmnπ2(4m2 − 1)(4n2 − 1)
e−(m

2+n2) π2
. (92)

From Equations (60) and (14), the dimensionless solutions θ(X, Y, τ) and ψ(X, Y, τ)
become

θ(X, Y, τ) =
∞
∑

m=1
{

∞
∑

n=1
[sin(mπX) sin(nπY) + sin(mπY) sin(nπX)]Tmna(τ)}

+
∞
∑

m=1
[sin(mπX) + sin(mπY)] F1,m(τ)

, (93)

ψ(X, Y, τ) = θ(X, Y, τ) +
2e−π2τ/4

Tr
. (94)

ψ(X, Y, τ) is changed back to dimensional form to obtain the exact solution T(x, y, t),
and its series form is expressed as follows:

T(x, y, t) =
∞
∑

m=1
{

∞
∑

n=1
[sin(mπx) sin(nπy) + sin(mπy) sin(nπx)]·

16(m2−n2)[1−(−1)m ][1−(−1)n ]
mnπ2(4m2−1)(4n2−1) e−(m

2+n2)π2}

+
∞
∑

m=1
[sin(mπx) + sin(mπy)] · 2e−α π2t/4[1−(−1)m ]

mπ(4m2−1) + 2e−α π2t/4

. (95)

Another analytic solution in compact form was derived by Young et al. [8] as follows:

T(x, y, t) = [sin(
πx
2
) + cos(

πx
2
) + sin(

πy
2
) + cos(

πy
2
)] e−α π2 t/4. (96)

Since the exact solution of Equation (95) is in the form of series summation, when
the number of expansion terms m and n becomes larger, the numerical result tends to be
more accurate. Table 1 shows the midpoint temperature of the rectangular area of the
bar at different times. It can be seen from Table 1 that the convergence speed is very fast;
moreover, when the number of terms m = n is 5, the maximum error is less than 0.1%. At
0 ≤ τ ≤ 1.2, the temperature using m = n ≥ 10 expansion terms almost converges to the
exact solution in the literature [8].
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Table 1. The temperature of the rectangular region at x = y = 0.5 and at different times [η(t) =

e−π2 t/4 ].

t

T(x = 0.5, y = 0.5, t)

Number of Expansion Terms (m = n)

1 3 5 10 20 Exact
Solution [8]

0 2.849 2.825 2.830 2.829 2.828 2.828

0.1 2.226 2.207 2.211 2.210 2.210 2.210

0.2 1.739 1.724 1.728 1.727 1.727 1.727

0.4 1.062 1.053 1.055 1.054 1.054 1.054

0.6 0.648 0.643 0.644 0.644 0.644 0.644

0.8 0.396 0.392 0.393 0.393 0.393 0.393

1.0 0.242 0.240 0.240 0.240 0.240 0.240

1.2 0.148 0.146 0.146 0.146 0.146 0.146

4.2. With Nonzero Heat Sources

Two examples with the space–time-dependent Dirichlet boundary conditions and heat
sources are used to demonstrate the proposed method.

Example 2. We assume that the space-time-dependent heat source in the medium is given as
g(x, y, t) = −ρc(x + y + 1)e−t, and that the space-time-dependent Dirichlet boundary and initial
conditions are as follows:

T(0, y, t) = f1(y, t) = [sin(πy)] e−α π2t + (y + 1) e−t, at x = 0, 0 ≤ y ≤ 1, (97)

T(1, y, t) = f2(y, t) = [sin(πy)] e−α π2t + (y + 2) e−t, at x = 1, 0 ≤ y ≤ 1, (98)

T(x, 0, t) = f3(x, t) = [sin(πx)] e−α π2t + (x + 1) e−t, at y = 0, 0 ≤ x ≤ 1, (99)

T(x, 1, t) = f4(x, t) = [sin(πx)] e−α π2t + (x + 2) e−t, at y = 1, 0 ≤ x ≤ 1, (100)

T(x, y, 0) = T0(x, y) = sin(πx) + sin(πy) + x + y + 1, at t = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (101)

Therefore, the dimensionless form of boundary and initial conditions can be ex-
pressed as

ψ(0, Y, τ) = F1(Y, τ) =
sin(πY) e−π2τ + (Y + 1) e−τ/α

Tr
, at X = 0, 0 ≤ Y ≤ 1, (102)

ψ(1, Y, τ) = F2(Y, τ) =
sin(πY) e−π2τ + (Y + 2) e−τ/α

Tr
, at X = 1, 0 ≤ Y ≤ 1, (103)

ψ(X, 0, τ) = F3(Y, τ) =
sin(πX) e−π2τ + (X + 1) e−τ/α

Tr
, at Y = 0, 0 ≤ X ≤ 1, (104)

ψ(X, 1, τ) = F4(Y, τ) =
sin(πX) e−π2τ + (X + 2) e−τ/α

Tr
, at Y = 1, 0 ≤ X ≤ 1, (105)

ψ(X, Y, 0) = ψ0(Y, τ) =
sin(πX) + sin(πY) + X + Y + 1

Tr
, atτ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, (106)
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G(X, Y, τ) = − (X + Y + 1) e−τ/α

α Tr
, at 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (107)

In this case, the time-dependent functions at four corners of the rectangular cross-
section and their differentiation with respect to τ are given as follows:

a(τ) =
e−τ/α

Tr
, b(τ) =

2e−τ/α

Tr
, c(τ) =

2e−τ/α

Tr
, d(τ) =

3e−τ/α

Tr
, (108)

.
a(τ) =

−e−τ/α

αTr
,

.
b(τ) =

−2e−τ/α

αTr
,

.
c(τ) =

−2e−τ/α

αTr
,

.
d(τ) =

−3e−τ/α

αTr
. (109)

The transformed variables θ(X, Y, τ) and G(X, Y, τ) using Equations (14) and (16) become

θ(X, Y, τ) = ψ(X, Y, τ)− (X + Y + 1) e−τ/α

Tr
, G(X, Y, τ) = 0. (110)

In addition, the transformed boundary and initial conditions are given as follows:

F1(Y, τ) = F2(Y, τ) =
sin(πY) e−π2τ

Tr
, at 0 ≤ Y ≤ 1, (111)

F3(X, τ) = F4(X, τ) =
sin(πX) e−π2τ

Tr
, at 0 ≤ X ≤ 1, (112)

θ0(X, Y) = sin(πX) + sin(πY), atτ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (113)

G(X, Y, τ) and θ0(X, Y, τ) can be separated into two parts:

Ga(X, Y, τ) = Gb(X, Y, τ) = 0, (114)

θa0(X, Y) =
sin (πY)

Tr
, θb0(X, Y) =

sin (πX)

Tr
. (115)

In the case, using one-term expansion (m = n = 1) in Equation (60), the analytic
solution can be obtained as

θ(X, Y, τ) = [sin(πX)T11a(τ) + (1− X)F1,1(τ) + X F2,1(τ)] sin(πY)
+[sin(πY)T11b(τ) + (1−Y)F3,1(τ) + Y F4,1(τ)] sin(πX)

, (116)

where the quantities Fi,1(τ)(i = 1, 2, 3, 4) are given as

Fi,1(τ) =
e−π2τ

Tr
, i = 1, 2, 3, 4. (117)

From Equations (54), (55), (A25), and (A26), one has

λ11 a = λ11 b =
√

2π, γ11 a(τ) = γ11 b(τ) = 0. (118)

Likewise, T11 a(0) and T11 b(0) are determined from the initial conditions of the
transformed functions defined in Equations (56) and (A27) as

T11 a(0) = T11 b(0) = 0. (119)

Therefore, one obtains
T11 a(τ) = T11 b(τ) = 0. (120)

From Equation (116), the solution in dimensionless form is as follows:

θ(X, Y, τ) =
sin(πX) + sin(πY)

Tr
e−π2τ . (121)
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It is worth noting that the solution θ(X, Y, τ) of the boundary value problem is the
same as the analytical solution for case 1 of Example 1 [28]. After the temperature θ(X, Y, τ)
is transformed from the dimensionless temperature, the heat source and the associated
boundary and initial conditions of the heat conduction system become an extreme case
(case 1 of Example 1 in our previous work [28]). This can verify the correctness of the
proposed method.

Furthermore, the dimensionless temperature before the transformation of this example
can be derived as

ψ(X, Y, τ) =
[sin(πX) + sin(πY)] e−π2τ + (X + Y + 1) e−τ/α

Tr
. (122)

Finally, the analytic solution T(x, y, t) of this example becomes

T(x, y, t) = [sin(πx) + sin(πy)] e−α π2 t + (x + y + 1) e− t. (123)

Example 3. The heat source in the medium is given as g(x, y, t) = −ρ c (x2 + y2 + 4) η0(α t),
where η0(α t) is a time-dependent function. Assume that the space-time-dependent Dirichlet
boundary and initial conditions are as follows:

T(0, y, t) = f1(y, t) = 1 + y2 η(α t), at x = 0, 0 ≤ y ≤ 1, (124)

T(1, y, t) = f2(y, t) = 1 + (1 + y2) η(α t), at x = 1, 0 ≤ y ≤ 1, (125)

T(x, 0, t) = f3(x, t) = 1 + x2η (α t), at y = 0, 0 ≤ x ≤ 1, (126)

T(x, 1, t) = f4(x, t) = 1 + (1 + x2) η(α t), at y = 1, 0 ≤ x ≤ 1, (127)

T(x, y, 0) = T0(x, y) = 1 + x2 + y2, at t = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (128)

The dimensionless form of boundary and initial conditions becomes

ψ(0, Y, τ) = F1(Y, τ) =
1 + Y2 η(τ)

Tr
, at X = 0, 0 ≤ Y ≤ 1, (129)

ψ(1, Y, τ) = F2(Y, τ) =
1 + (1 + Y2) η(τ)

Tr
, at X = 1, 0 ≤ Y ≤ 1, (130)

ψ(X, 0, τ) = F3(Y, τ) =
1 + X2 η(τ)

Tr
, at Y = 0, 0 ≤ X ≤ 1, (131)

ψ(X, 1, τ) = F4(X, τ) =
1 + (1 + X2) η(τ)

Tr
, at Y = 1, 0 ≤ X ≤ 1, (132)

ψ(X, Y, 0) = ψ0(X, Y) =
1 + X2 + Y2

Tr
, atτ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, (133)

G(X, Y, τ) = − (X2 + Y2 + 4) η0(τ)

αTr
, η(0) = 1, at 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (134)

In this case, a(τ), b(τ), c(τ), d(τ), and their differentiation with respect to τ are

a(τ) =
1

Tr
, b(τ) =

1 + η(τ)

Tr
, c(τ) =

1 + η(τ)

Tr
, d(τ) =

1 + 2η(τ)

Tr
, (135)
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.
a(τ) = 0,

.
b(τ) =

.
η(τ)

Tr
,

.
c(τ) =

.
η(τ)

Tr
,

.
d(τ) =

2
.
η(τ)

Tr
. (136)

The transformed θ(X, Y, τ) and G(X, Y, τ) are given as

θ(X, Y, τ) = ψ(X, Y, τ)− 1 + (X + Y) η(τ)

Tr
, (137)

G(X, Y, τ) = − (X2 + Y2 + 4) η0(τ) + α(X + Y)
.
η(τ)

αTr
. (138)

Following the proposed procedure, one has the space–time-dependent boundary and
initial conditions as follows:

F1(Y, τ) =
(Y2 −Y) η(τ)

Tr
, at X = 0, 0 ≤ Y ≤ 1, (139)

F2(Y, τ) =
(Y2 −Y) η(τ)

Tr
, at X = 1, 0 ≤ Y ≤ 1, (140)

F3(X, τ) =
(X2 − X) η(τ)

Tr
, at Y = 0, 0 ≤ X ≤ 1, (141)

F4(X, τ) =
(X2 − X) η(τ)

Tr
, at Y = 1, 0 ≤ X ≤ 1, (142)

θ0(X, Y) =
X2 + Y2 − (X + Y)

Tr
, atτ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (143)

One separates G(X, Y, τ) and θ(X, Y, τ) into two parts as follows:

Ga(X, Y, τ) = − (X2 + 2) η0(τ) + α X
.
η(τ)

α Tr
, Gb(X, Y, τ) = − (Y2 + 2) η0(τ) + α Y

.
η(τ)

α Tr
, (144)

θa0(X, Y) =
X2 − X

Tr
, θb0(X, Y) =

Y2 −Y
Tr

. (145)

The associated dimensionless quantities Gam(X, τ), Gbm(Y, τ), and Fi,m(τ)(i = 1, 2) are

Gam(X, τ) = −2[(X2+2)η0(τ)+αX
.
η(τ)][1−(−1)m ]

αTrmπ ,

Gbm(Y, τ) = −2[(Y2+2)η0(τ)+αY
.
η(τ)][1−(−1)m ]

αTrmπ ,
(146)

Fi,m(τ) =
−4η(τ)

Trm3π3 [1− (−1)m], i = 1, 2, 3, 4. (147)

In addition, one can determine Tmna(0) and Tmnb(0) from the initial conditions of the
transformed functions defined in Equations (56) and (A27) as

Tmna(0) = Tmnb(0) =
−8(m2 − n2)[1− (−1)m][1− (−1)n]

Trm3n3π4 . (148)

Likewise, from Equations (54), (55), (A25), and (A26), one has

λmna = λmnb =
√

m2 + n2 π, (149)

γmna(τ) = γmnb(τ) =
4[1−(−1)m ][2−(2−m2 π2)(−1)n ]

Tr m3 nπ4
.
η(τ)

+ 8[1−(−1)m ][1−(−1)n ]
Trmnπ2 η(τ)− 4[1−(−1)m ][2(n2 π2−1) −(3n2 π2−2)(−1)n ]

αTrmn3π4 η0(τ)
. (150)
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Therefore, one can determine Tmna(τ) and Tmnb(τ) as follows:

Tmna(τ) = Tmnb(τ) =
−8(m2−n2)[1−(−1)m ][1−(−1)n ]

Tr m3 n3π4 e−(m
2+n2) π2

+
∫ τ

0 e−(m
2+n2) π2(τ−φ){ 4[1−(−1)m ][2−(2−m2 π2)(−1)n ]

Tr m3nπ4
.
η(φ)

+ 8[1−(−1)m ][1−(−1)n ]
Tr m nπ2 η(φ)− 4[1−(−1)m ][2(n2π2−1)−(3n2π2−2)(−1)n ]

αTr m n3π4 η0(φ)} dφ

. (151)

(Case 1) Consider the time-dependent functions to be of exponential type as follows:

η0(τ) = e−D0τ , η(τ) = e−Dτ , (152)

where D0 and D represent the decay constants for the heat source and boundary conditions,
respectively. From Equations (147) and (151), one obtains

Fi,m(τ) =
−4e−Dτ

Tr m3 π 3 [1− (−1)m], i = 1, 2, 3, 4. (153)

Tmna(τ) = Tmnb(τ) =
−8(m2−n2)[1−(−1)m ][1−(−1)n ]

Tr m3 n3π4 e−(m
2+n2) π2

− 4D [1−(−1)m ][2−(2−m2 π2)(−1)n ]
Tr m3 nπ4[(m2+n2) π2−D]

[e−Dτ − e−(m
2+n2)π2τ ]

+ 8 [1−(−1)m ][1−(−1)n ]
Tr m nπ2 [(m2+n2) π2−D]

[e−Dτ − e−(m
2+n2)π2τ ]

− 4[1−(−1)m ][2(n2π2−1)−(3n2π2−2)(−1)n ]
αTr m n3π4 [(m2+n2) π2−D0]

[e−D0τ − e−(m
2+n2)π2τ ]

. (154)

Furthermore, from Equations (60) and (14), the solutions θ(X, Y, τ) and ψ(X, Y, τ) in
dimensionless form are obtained as

θ(X, Y, τ) =
∞
∑

m=1
{

∞
∑

n=1
[sin(nπX) sin(mπY) + sin(nπY) sin(mπX)] Tmna(τ)}

+
∞
∑

m=1
[sin(mπY) + sin(mπX)] F1,m(τ)

. (155)

ψ(X, Y, τ) = θ(X, Y, τ) +
1 + (X + Y)e−Dτ

Tr
. (156)

ψ(X, Y, τ) is returned to the dimensional form as

T(x, y, t) = Tr θ + 1 + (x + y) e−αD t. (157)

Considering the case D0 = D = α = 1, it can be verified that the above series solution
is the same as that given by Siddique [20] (shown below).

T(x, y, t) = 1 + (x2 + y2) e− t. (158)

Tmna(τ) and Tmnb(τ) can be re-expressed as

Tmna(τ) = Tmnb(τ) =
−8(m2−n2)[1−(−1)m ][1−(−1)n ]

Tr m3 n3π4 e−(m
2+n2) π2

+ 8(m2−n2) [1−(−1)m ][1−(−1)n ]
Trm3n3π4[(m2+n2)π2−1] [e−τ − e−(m

2+n2)π2τ ]
. (159)

The numerical result for the temperature of the rectangular region of the bar at the
middle point in different times is shown in Table 2. From this table, one can find that the
largest error was less than 0.1% when the number of terms m = n was 5. The calculated
temperature converged when 10-term expansion is applied. The temperature at 0 ≤ τ ≤ 1.2
was also verified with the results of the literature [20]. It turns out that the two results were
identical when applying m = n ≥ 10 expansion terms to obtain the proposed solution.
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Table 2. The temperature of the rectangular region at x = y = 0.5 at different times [η(t) = η0(t) = e− t ].

t

T(x = 0.5, y = 0.5, t)

Number of Expansion Terms (m = n)

1 3 5 10 20 Exact
Solution [20]

0 1.484 1.503 1.499 1.500 1.500 1.500

0.1 1.438 1.455 1.452 1.452 1.452 1.452

0.2 1.396 1.412 1.409 1.409 1.409 1.409

0.4 1.324 1.337 1.335 1.335 1.335 1.335

0.6 1.266 1.276 1.274 1.274 1.274 1.274

0.8 1.218 1.226 1.224 1.225 1.225 1.225

1.0 1.178 1.185 1.184 1.184 1.184 1.184

1.2 1.146 1.152 1.150 1.151 1.151 1.151

To gain insight into the effect of the decay constant for the boundary conditions and
the heat source on the temperature in the middle of the rectangular region, two figures
are established. First, Figure 4a plots the three temperature curves for the three decay
constants of the boundary conditions (D = 1, 1.5, 2 and D0 = 1). All three curves decayed
exponentially and converge to 1. It can be found that, for the smallest decay constant
D = 1 of the boundary conditions, the decrease rate of the temperature curve was largest as
expected. This could mean that a smaller decay constant for the boundary conditions causes
slower heat dissipation at the boundary; thus, the heat dissipation in the middle is faster
and its temperature drops more quickly. Second, the temperature curves for the three cases
of the different decay constants of the heat source are shown in Figure 4b (D0 = 1, 1.5, 2
and D = 1). It can be seen that, for the smallest decay constant D0 = 1 of the boundary
conditions, the decrease rate of the temperature curve was largest. This can be explained
by the fact that a smaller decay constant of the heat source leads to faster heat dissipation
and, therefore, a faster temperature drop.

(Case 2) Consider the time-dependent functions to be of periodic type as follows:

η0(τ) = cos(ω0τ), η(τ) = cos(ωτ), (160)

where ω0 and ω represent the frequency for the heat source and boundary conditions,
respectively. Then, one has

.
η(τ) = −ω sin(ωτ), (161)

and one can obtain Fi,m(τ), γmna(τ) = γmnb(τ), and Tmna(τ) = Tmnb(τ) as follows:

Fi,m(τ) =
−4 cos(ωτ)

Trm3π3 [1− (−1)m], i = 1, 2, 3, 4, (162)

γmna(τ) = γmnb(τ) =
4[1−(−1)m ][2−(2−m2 π2)(−1)n ]

Trm3nπ4 [−ω sin(ωτ)]

+ 8[1−(−1)m ][1−(−1)n ]
Trmnπ2 cos(ωτ)− 4[1−(−1)m ][2(n2 π2−1)−(3n2π2−2)(−1)n ]

αTrmn3π4 cos(ω0τ)
, (163)
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Tmna(τ) = Tmnb(τ) =
−8(m2−n2)[1−(−1)m ][1−(−1)n ]

Tr m3 n3π4 e−(m
2+n2) π2

+ 4[1−(−1)m ][2−(2−m2 π2)(−1)n ]
Tr m3 nπ4 · ω2 [cos(ωτ)−e−(m

2+n2) π2τ ]−ω (m2+n2)π2 sin(ωτ)

(m2+n2)
2
π4+ω2

+ 8[1−(−1)m ][1−(−1)n ]
Tr m nπ2 · (m2+n2)π2 [cos(ωτ)−e−(m

2+n2) π2τ ]+ω sin(ωτ)

(m2+n2)
2
π4+ω2

− 4[1−(−1)m ][2(n2π2−1)−(3n2π2−2)(−1)n ]
αTr m n3π4 · (m2+n2)π2 [cos(ω0τ)−e−(m

2+n2) π2τ ]+ω0 sin(ω0τ)
(m2+n2) 2 π4+ω0

2

. (164)

Therefore, from Equation (60), the solution in dimensional form is derived as

θ(X, Y, τ) =
∞
∑

m=1
{

∞
∑

n=1
[sin(nπX) sin(mπY) + sin(nπY) sin(mπX)] Tmna(τ)}

+
∞
∑

m=1
[sin(mπY) + sin(mπX)] F1,m(τ)

, (165)

ψ(X, Y, τ) = θ(X, Y, τ) +
1 + (X + Y) cos(ωτ)

Tr
. (166)

Recovering it to the dimensional form yields

T(x, y, t) = Tr θ + 1 + (x + y) cos(α ω t). (167)

Temperature variation in the middle of the rectangular region with different decay
constants of harmonic type for the boundary conditions or the heat source was studied
numerically. Figure 5a shows the temperature variation in the middle of the rectangular
region for the three cases, including the frequencies ω = π, 5, 7 and ω0 = π. Likewise, the
results for the frequencies ω0 = π, 5, 7 and ω = π are shown in Figure 5b. These plots
show that all the temperature curves oscillated up and down with the horizontal line T = 1.
When the frequency of the heat source or boundary conditions was higher, the fluctuation
of temperature change was more frequent.
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Figure 5. Temperature variation in the middle of the rectangular region with different decay constants
of harmonic-type time-dependent functions (case 2 of Example 3): (a) for different decay constants of
the boundary conditions; (b) for different decay constants of the heat source.

5. Conclusions

In this paper, the analytical solution of 2D transient heat conduction in a rectangular
cross-section of an infinitely long bar with the space–time-dependent Dirichlet boundary
conditions and heat sources was solved using a new analytical solution method that does
not require any kind of integral transformation. Three examples were studied to illustrate
the efficiency and reliability of the proposed method. Some results were verified to be the
same as those in the literature [8,20,28].

The new findings of the present study are as follows:

(1) The purpose of this study was to complete the future work of our previous study [28],
i.e., to remove the limitations of the previous study and add a heat source to the heat
conduction system. The restriction of the temperatures of the boundary conditions
and initial conditions at the four corners of the rectangular region to zero in the
previous study was successfully eliminated. The zero temperature could be replaced
by a function of time.

(2) From the examples, it was found that the convergence speed was very fast, and the
maximum error was less than 0.1% when only five terms were used in the series
expansion of the solution. Compared with the literature, the temperature could
converge to the exact solution.

(3) The space–time-dependent functions used for the boundary conditions and heat
sources in this study were considered separable in the space–time domain. The
influence of the time-dependent function of the boundary conditions and heat sources
on the temperature variation was investigated. For the exponential time-dependent
function, a smaller decay constant (D0 and D) of the time-dependent function (e−D0τ

and e−Dτ) led to a greater temperature drop. The temperatures with different decay
constants converged to the same value. For the harmonic time-dependent function, a
higher frequency (ω0, and ω) of the time-dependent function (cos(ω0τ) and cos(ωτ))
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led to a more frequent fluctuation of the temperature change. All temperature curves
oscillated above and below a horizontal line.
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Glossary
A, B two subsystems
a(τ) dimensionless time-dependent function at the lower left corner of

the cross-section
b(τ) dimensionless time-dependent function at the lower right corner of

the cross-section
c specific heat (W·S/kg·◦C)
c(τ) dimensionless time-dependent function at the upper left corner of

the cross-section
d(τ) dimensionless time-dependent function at the upper right corner of

the cross-section
D0, D the decay constants for the heat source and boundary conditions,

respectively
fi(y, t), i = 1, 2 temperatures along the surface at the left end and the right end of the

rectangular region
fi(x, t), i = 3, 4 temperatures along the surface at the bottom end and the top end of the

rectangular region
Fi(Y, τ), i = 1, 2 dimensionless quantity defined in Equation (8)
Fi(X, τ), i = 3, 4 dimensionless quantity defined in Equation (8)
Fi(x, t), i = 3, 4 transformed temperatures along the surface at the bottom and top end of

the rectangular region
Fi(y, t), i = 1, 2 transformed temperatures along the surface at the left and right end of

the rectangular region
Fi,m(τ), i = 1, 2 dimensionless quantity defined in Equation (32)
Fi,m(τ), i = 3, 4 dimensionless quantity defined in Equation (A7)
g(x, y, t) the heat source inside the rectangular cross-section
gi,m(X), i = 1, 2 shifting functions
gi,m(Y), i = 3, 4 shifting functions
G(X, Y, τ), G(X, Y, τ) dimensionless heat sources
Ga(X, Y, τ), Gb(X, Y, τ) dimensionless heat sources for subsystems A and B
Gm(X, τ), Gm(Y, τ) nonhomogeneous terms in differential eqauations of the transformed

subsystems A and B
Gam(X, τ), Gbm(Y, τ) series expansion of Ga(X, Y, τ), Gb(X, Y, τ)

k thermal conductivity (W/m ◦C)
Lr aspect ratio Ly/Lx defined in Equation (8)
Lx, Ly thickness of the two-dimensional rectangular region in x- and

y-directions (m)
T(x, y, t) temperature function (◦C)
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Tmna(τ), Tmnb(τ) dimensionless time variable of the transformed function defined
in Equations (48) and (A22)

Tr reference temperature (◦C)
T0(x, y) initial temperature (◦C)
t time variable (s)
x space variable in x-direction of a rectangular region (m)
X dimensionless space variable in x-direction of a rectangular region
y space variable in y-direction of a rectangular region (m)
Y dimensionless space variable in y-direction of a rectangular region
α thermal diffusivity (m2/s)
φ auxiliary integration variable
γmna(τ), γmnb(τ) dimensionless quantity defined in Equations (55) and (A26)
η0(τ), η(τ) dimensionless time-dependent boundary conditions
λmna, λmnb n-th eigenvalues dependent on ωn defined in Equations (54) and (A25)
θ dimensionless temperature
θ0 dimensionless initial temperature
θa, θb dimensionless temperature for subsystems A and B
θm(X, τ) generalized Fourier coefficient defined in Equation (30)
θm(X, τ) transformed function defined in Equation (38)
θmn(X, τ) n-th eigenfunctions of the transformed function defined in Equation (48)
ρ density (kg/m3)
τ dimensionless time
ψ dimensionless temperature function
ω0, ω frequencies for the heat source and boundary conditions, respectively
ωn n-th eigenvalues for Sturm–Liouville problem defined in Equation (51)
Subscripts
0,1, 2, 3, 4, a, b, i, m, n, r

Appendix A. An Analytic Solution of Subsystem B

For subsystem B, the boundary value problem is as follows:

[
L2

r
∂2θb(X, Y, τ)

∂X2 +
∂2θb(X, Y, τ)

∂Y2

]
+ Gb(X, Y, τ) =

∂θb(X, Y, τ)

∂τ
, in 0 < X < 1, 0 < Y < 1, τ > 0, (A1)

θb(0, Y, τ) = 0, θb(1, Y, τ) = 0, (A2)

θb(X, 0, τ) = F3(X, τ), θb(X, 1, τ) = F4(X, τ), (A3)

θb(X, Y, 0) = θb0(X, Y). (A4)

Because the boundary conditions of the bar with a rectangular cross-section at two
opposite edges X = 0 and X = 1 are homogeneous, the temperature θb(X, Y, τ) and the
dimensionless quantities F3(X, τ), F4(X, τ) defined in Equation (A3) can be written as

θb(X, Y, τ) =
∞

∑
m=1

[θm(Y, τ) sin(mπX)], (A5)

Gb(X, Y, τ) =
∞

∑
m=1

[Gbm(Y, τ) sin(mπX)], (A6)

Fi(X, τ) =
∞

∑
m=1

[
Fi,m(τ) sin(mπX)

]
, i = 3, 4, (A7)
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where m denotes a positive integer, and Gb m(Y, τ) and Fi,m(τ)(i = 3, 4) are expressed as

Gbm(Y, τ) = 2
∫ 1

0
[Gb(X, Y, τ) sin(mπX)]dX, (A8)

Fi,m(τ) = 2
∫ 1

0
Fi(X, τ) sin(mπX)dX, i = 3, 4. (A9)

Substituting Equations (A5)–(A7) into Equations (A1)–(A4), one has

∂θm(Y, τ)

∂τ
− ∂2θm(Y, τ)

∂Y2 + m2π2θm(Y, τ) = Gbm(Y, τ), (A10)

θm(0, τ) = F3,m(τ), θm(1, τ) = F4,m(τ), (A11)

θm(Y, 0) = 2
∫ 1

0
θb0(X, Y) sin(mπX)dX. (A12)

To find the solution for the second-order differential Equation (A10) with nonho-
mogeneous boundary conditions (A11), one uses the shifting function method by taking

θm(Y, τ) = θm(Y, τ) +
4

∑
i=3

gi,m(Y)Fi,m(τ), (A13)

where θm(Y, τ) is the transformed function, while gi,m(Y)(i = 3, 4) indicates the shifting
functions to be specified.

Substituting Equation (A13) back into Equations (A10)–(A12), one obtains

.
θm(Y, τ) +

4
∑

i=3
[gi,m(Y)

.
Fi,m(τ)]−

[
θ
′′

m(Y, τ) +
4
∑

i=3
g′′ i,m(Y)Fi,m(τ)

]

+m2π2L2
y

{
θm(Y, τ) +

4
∑

i=3
[gi,m(Y)Fi,m(τ)]

}
= Gbm(Y, τ)

. (A14)

Then, the associated boundary conditions become

θm(0, τ) + g3,m(0)F3,m(τ) + g4,m(0)F4,m(τ) = F3,m(τ), (A15)

θm(1, τ) + g3,m(1)F3,m(τ) + g4,m(1)F4,m(τ) = F4,m(τ). (A16)

Like the derivation procedure, these two shifting functions are determined as

g3,m(Y) = 1−Y, g4,m(Y) = Y. (A17)

After substituting Equation (A17) into Equations (A14)–(A16), one has the differential
equation for θm(Y, τ),

.
θm(Y, τ)− θ

′′
m(Y, τ) + m2π2L2

y θm(Y, τ) = Gm(Y, τ), (A18)

and the associated homogeneous boundary conditions

θm(0, τ) = 0, θm(1, τ) = 0, (A19)

where Gm(Y, τ) is defined as

Gm(Y, τ) = −
4

∑
i=3

[
m2π2L2

y gi,m(Y) Fi,m(τ) + gi,m(Y)
.
Fi,m(τ)

]
+ Gb m(Y, τ). (A20)
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Furthermore, the initial condition is transformed to be

θm(Y, 0) = 2
∫ 1

0
θb0(X, Y) sin(mπX)dX−

4

∑
i=3

[gi,m(Y)Fi,m(0)]. (A21)

The solution θm(Y, τ) specified by Equations (A18)–(A21) can be expressed in the form
of eigenfunctions as

θm(Y, τ) =
∞

∑
n=1

θmn(Y)Tmnb(τ), (A22)

where θmn(Y) are
θmn(Y) = sin(n π Y), n = 1, 2, 3, · · · (A23)

Substituting Equation (A22) into Equation (A18), multiplying it by θmn(Y), and inte-
grating from 0 to 1, one has

.
Tmnb(τ) + λ2

mnbTmnb(τ) = γmnb(τ), (A24)

where λmnb and γmnb(τ) are

λmnb =
√

m2L2
r + n2π, (A25)

γmnb(τ) = 2
∫ 1

0 θmn(Y ) Gm(Y, τ)dY = −2
nπ

[ .
F3,m(τ)− (−1)n

.
F4,m(τ)

]

− 2m2π L2
r

n
[
F3,m(τ)− (−1)nF4,m(τ)

]
+ 2
∫ 1

0 θmn(Y) Gbm(Y, τ)dY
. (A26)

Tmnb(0) can be determined from the initial condition of the transformed function
defined in Equation (A21) as

Tmnb(0) = 4
∫ 1

0
sin(nπY)

∫ 1

0
θb0(X, Y) sin(mπX)dXdY− 2L2

r
nπ

[F3,m(0)− (−1)nF4,m(0)]. (A27)

The general solution of Equation (A24) with the initial condition is obtained as

Tmnb(τ) = e−λ2
mnbτTmnb(0) +

∫ τ

0
e−λ2

mnb(τ−φ)γmnb(φ)dφ. (A28)

References
1. Carslaw, H.; Jaeger, J. Heat in Solids, 2nd ed.; Clarendon Press: Oxford, UK, 1959.
2. Özisik, M.N. Heat Conduction; John Wiley & Sons: New York, NY, USA, 1993.
3. Cole, K.D.; Beck, J.V.; Haji-Sheikh, A.; Litkouhi, B. Heat Conduction Using Green’s Functions; Taylor & Francis: Boca Raton, FL, USA,

2010.
4. Holy, Z. Temperature and stresses in reactor fuel elements due to time-and space-dependent heat-transfer coefficients. Nucl. Eng.

Des. 1972, 18, 145–197. [CrossRef]
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Abstract: The requirements to switching the capacities of SF6 circuit breakers submitted by Russian
Grid companies are difficult to satisfy. The first limitation is related to material and financial costs in
order to create a new requirement-satisfying switching device. The second limitation is dictated by
the necessity of calculating complex physical processes in a circuit braker interrupter during fault–
current making or breaking before creating a prototype. The latter task is reduced to the problem of
simulating the processes of interaction between the switching arc and the SF6 gas flow. This paper
deals with the solution of the problem both analytically by a special method and numerically by a
numerical software package through the creation of a mathematical model of the interaction process.
The switching arc is taken into account as a form of a temperature source, based on experimental data
on measuring the temperature of the arc column. The key feature of the research is to use the finite
element method based on a moving mesh—the Arbitrary Lagrangian Eulerian (ALE) method. Such a
problem statement allows us to take the contact separation curve of the circuit breaker into account
as the input data of the model. The calculations were carried out during fault-current breaking by a
110 kV SF6 dead-tank circuit breaker. The calculations of pressure and mass flow in the under-piston
volume change, gas flow speed, and temperature depending on the contact separation are given.
The proposed model of the switching arc was used to simulate the process of 25 kA symmetrical
fault–current breaking and was compared with an experiment.

Keywords: computational fluid dynamics; SF6 circuit breaker; switching arc; moving mesh; ALE;
arc quenching

MSC: 68T20

1. Introduction

The increase in power consumption in the Unified National Power Grid (UNPG) of
Russia, along with the expansion of the technical and regulatory framework, quantitatively
increases the used equipment or their replacements. One of the most important elements
of the Electric Power System (EPS) ensuring its reliability is a such electrical device as a
power circuit breaker (CB). Its main tasks are to interrupt short-circuit currents and isolate
faulty parts of an EPS. However, conflicting requirements are simultaneously imposed on
the CB. On the one hand, during contingencies—fault–current breaking or making—the CB
must turn them off and provide an infinitely large resistance between the arcing contacts.
On the other hand, under normal conditions, the operating currents through its contact
system and its resistance must be infinitely small in order to avoid unnecessary losses of
the power to be transmitted [1].

Thus, the following requirements are imposed on the CB:

- Low resistance in normal conditions (in the normally closed contact);
- High-voltage proof of external and internal insulation, which makes it possible to

withstand lightning and switching overvoltage, as well as transient recovering voltage
(TRV) after the arc is extinguished;
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- The ability of both making and breaking the short-circuit currents —the CB must
reliably extinguish the arc without its re-ignition;

- Ensuring fast transition from the closed to open position and vice versa, especially in
automatic reclosing cycles.

In addition to the short-circuit currents, the CB must also provide the switching capacity of
capacitive currents of unloaded overhead transmission lines, capacitor banks, and inductive
currents of shunt reactors in accordance with Russian [2] and foreign [3–5] standards.

The principle of operation in most CBs as mechanical switching devices is based
on actuating the operating mechanism—the drive. When the protective relay sends a
command to the opening solenoid, the CB must operate within a very short period of time
(the total opening time of gas CBs with a rated voltage of Unom = 110 kV is 55± 5 ms).

When the contacts open, an electric arc occurs between them. At its core, an electric arc
is an independent arc discharge, which is a low-temperature plasma channel characterized
by a high current density and a low cathode voltage drop [6,7].

In CBs with a rated voltage of 110 kV and above, the electric arc is a burning high-
pressure arc in oil. It can also be compressed air or another gaseous dielectric with good
arc-extinguishing properties, such as SF6 gas. The interruption of the current is carried out
by cooling the arc plasma in such a way that the resulting electric arc disappears at the first
occurring current zero after the contact separation. This process of cooling or extinguishing
can be carried out in various ways, due to which the CBs are classified according to the type
of arc quenching medium and the interrupter type. Currently, most CBs use compressed
SF6 gas as an arc extinguishing medium—it has a high voltage proof (2.5 times higher than
that of air) and a high heat transfer coefficient [8]. The arc extinguishing process itself lies
in the fact that the arc under the high speed is blown by the cold high-pressure gas—puffer
and self-blast technologies [9]. A modern interrupter is designed in such a way that the gas
flow, cooling the arc, is supersonic (Mach numbers > 1) in order to level out the re-ignition
of the arc in the next power frequency half-cycle when the current zero approaches [10].

Internationally, special scientific interest has been shown to SF6 as an arc-quenching
medium in CBs. The main reason is that it is quite difficult to find a worthy alternative
with the same arc-quenching characteristics so that the CB can provide high switching
capacity [11]. Despite the active search for alternatives to SF6, due to its high global
warming potential, an environmentally friendly and dielectrically equivalent medium has
not been found. Thus, the leading manufacturers of high voltage CBs continue to use SF6.

In Russia, the interest in SF6 CBs is supported by the regulatory documents from
the operator of the Russian power grids—the Federal Grid Company (FGC)—Rosseti
(Regulation “On the Unified Technical Policy in the Integrated Power Grids”). It regulates
the preferential use of SF6 CBs for the rated voltages of 110 kV and higher. In addition,
according to the digital policy of the FGC–Rosseti (the concept of “Digital Transformation
2030”), one of the best methods to accurately control the operation of electrical equipment
is to use an effective monitoring system.

Given the growth of short-circuit currents in power grids of 110 kV and above [12,13],
there is a problem in increasing the CBs’ switching capacities. One of the solutions is to
optimize the design of the CBs or create new devices [14]. However, the development
and design of high voltage switching devices is an expensive undertaking, as it requires
numerous experimental tests, both on physical models and prototypes. In addition, there is
a need to take into account the conflicting requirements for the CB interrupter in terms of
its switching capacity, mechanical characteristics, electrical insulation level, etc., which also
requires time and financial costs.

Thus, the calculation and modeling of internal processes occurring in the interrupter
of SF6 CB is of particular scientific interest, both in the field of the operation of switching
equipment and in the field of its design. Therefore, a course should be taken towards the
development of approaches to modeling complex physical (gas-, thermo-, electrodynamic,
and electrophysical) processes that occur in SF6 CB interrupters during fault–current

62



Axioms 2023, 12, 623

making or breaking, with the possibility of verifying the resulting model—creating its
digital twin.

2. Switching of SF6 Circuit Breakers
2.1. Interrupter Types in SF6 Circuit Breakers

Arc extinguishing in modern SF6 CBs occurs in the interrupter or the interruption
chamber. These are special chambers in which the process of cooling the arc should be
intensified, removing heat from it. Such a process is called blast, which is possible on
exposure to the SF6 gas, flowing at the speed of sound, relative to the arc column. It is
possible to organize effective blasting in SF6 CBs of 110 kV and higher in several ways,
according to which the following designs of interrupters are distinguished [10,11,15–17]:

(1) Puffer type, single pressure: the blast is created by the means of a built-in compres-
sion device that creates excess pressure due to the drive’s energy;

(2) Double pressure: equipped with a longitudinal blowing system, in which pre-
compressed gas is supplied from a reservoir with a relatively high pressure of SF6 gas,
which, after the arc is extinguished, undergoes a recompression process;

(3) Self-blast/Auto-puffer: blast occurs during the thermal expansion of SF6 gas using
the energy of the arc itself to (partly) produce the pressure necessary to blast the arc;

(4) Magnetic arc rotation: interrupters with electromagnetic blast;
(4.1) The arc is extinguished by its rapid movement in a stationary SF6 gas under the

influence of a radial magnetic field, created by arc itself;
(4.2) A longitudinal blowing system, in which the increase in pressure in the SF6 gas

occurs when it is heated by an arc, rotating in a special chamber under the influence of a
magnetic field.

Basically, in SF6 CBs with a rated voltage of 110 kV and above, the first two types of
interrupter designs are used, along with the thermal expansion of SF6 gas under the action
of a switching arc. For higher rated voltages (220 kV and above), or for higher switching
capacity requirements for CBs with a voltage of 110 kV (rated breaking current of 50 kA and
above), the operation of the interrupter can be further optimized. For example, by using
the so-called double-motion principle, which consists of moving two arcing contacts in
opposite directions. Another option is using a double-speed mechanism, which consists of
dividing the mass of the moving contacts into two parts (upper and lower) and temporarily
transferring part of the kinetic energy from the lower mass to the upper mass.

Single pressure SF6 circuit breaker operating.
In such designs, the overpressure that provides the gas flow is formed during the

switching. Interrupter types are divided into a puffer type and a self-blast type.
Figure 1 shows a diagram of a double-blast, puffer-type interrupter. Inside the sealed

insulating chamber filled with SF6 gas, the two contacts 1 and 2 are rigidly connected to
each other. They are connected to the power drive mechanism through an insulating rod
(is not shown in Figure 1). First, during the fault–current breaking, practically without
discharges, the main contacts 1 and 3 open, and then the current passes into the arcing
contact zone between contacts 2 and 5, where arc 4 burns. The insulating rod moves
the entire moving system relative to the fixed piston 8, whereas, as it moves, SF6 gas is
compressed in the working capacity of the cylinder cavity B—the under-piston volume.
Thus, the principle of self-blast is implemented. Arc 4, which occurs between the arcing
contacts 2 and 5, is drawn into the nozzles 6 and 7 by the flow of the compressed SF6 gas.
A double-blast principle is provided, which intensively affects the arc shaft, which goes out
in one of the current zeroes.
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coincides with the longitudinal axis of the interrupter and the axis of the switching arc. 
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formed by the nozzle 2. The gas flow is provided by the pressure difference in the upper 
and lower parts of the flow—𝑝  and 𝑝 , respectively. During the arc quenching, this 

Figure 1. Puffer-type interrupter: 1—moving main contact; 2—moving arcing contact; 3—fixed main
contact; 4—arc; 5—fixed arcing contact; 6—PTFE main nozzle; 7—PTFE auxiliary nozzle; 8—piston;
A—above-piston volume; B—under-piston volume.

The improvement of SF6 CBs due to the increased requirements for switching capacity,
on the one hand, is associated with an increase in the rated breaking current per one pole of
the CB [16,17]. On the other hand, the goal is to reduce the power of the drive mechanism.
However, these two methods contradict each other since a decrease in drive power causes
the pressure drop at the moment of arc quenching, which means a decrease in breaking
capacity. A fundamentally different way to increase the efficiency of the arc extinguishing
of SF6 CBs during electric arc burning in the nozzle channel is possible when the nozzle is
made of an insulating material—polytetra-fluoro-ethylene (PTFE). The impact of radiation
energy on the inner surface of the insulating nozzle initiates an additional gas blast due
to the ablation of the insulating walls, accompanied by the release of C2 and CF4. This
leads to an increase in pressure in the contact gap and a consumption effect that limits the
access of the arc-quenching medium to the contact gap at the maximum of the current to be
broken. According to Figure 2a, the ablation of the insulating walls of the PTFE nozzle 2
occurs between the arcing contacts 3 and 4. This effect makes it possible to increase the gas
pressure in chamber K not only due to the high temperature but also due to the additional
mass flow from the gas-generating walls of the chamber [9,10].
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Double-pressure SF6 circuit breakers.
In such designs, a pre-created pressure drop is formed during the shutdown process,

which provides the gas flow. The arc-quenching devices of this type are divided into
single-blast (Figure 2b) and double-blast (Figure 2c).

In the case of a longitudinal blast (Figure 2a), it is possible to obtain a better SF6 flow
and the absence of the so-called “dead zone”. In this case, the direction of gas movement
coincides with the longitudinal axis of the interrupter and the axis of the switching arc. The
arc that occurs between contacts 3 and 4 interacts with the longitudinal gas flow formed by
the nozzle 2. The gas flow is provided by the pressure difference in the upper and lower
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parts of the flow—p0 and pb, respectively. During the arc quenching, this difference is not
constant. However, in the optimal case of arc quenching, it provides the supercritical gas
outflow case (p0 > pb)—the critical gas mass flow rate for the longest possible period of
time [9]. The main parameters of the interrupter that affect the formation of the gas flow
are given in Section 3, according to [15,18].

In case of double blast (Figure 2b), the direction of the gas flow’s movement, blowing
over the arc, was the opposite. The arc 1 burned between the contacts 3 and 4 in the gas
flow, formed by the two nozzles 2. These flows were formed by the channel made up of the
tips of the contacts. The flow was first directed perpendicular to the arc and then rotated
90◦. In this case, on the axis of the nozzle channel, where two radially directed jets met (at
the point where the flow turns), a stagnation area, or a “dead zone”, was formed, where
the effect of the SF6 gas on the arc column was minimal. In this “dead zone”, the residual
arc column had an increased diameter, the decay processes of the residual arc shaft were
slowed down, and a cloud of hot, conductive gas remained there for a long time, which
negatively affected the extinguishing process [15].

CBs with double-pressure interrupter types are structurally complex. Firstly, they
require an automatic compressor to recompress the gas from the low-pressure reservoir to the
high-pressure one; secondly, the heating of the SF6 gas in the high-pressure reservoir [15,16]
is required. The latter is related to the fact that SF6 liquefies at about 10 ◦C and at a pressure
of about 1.6 MPa. Therefore, it is necessary to install heaters in the high-pressure reservoir to
avoid SF6 liquefaction [8,16].

2.2. Models of Switching Arc Interaction with SF6 Gas Flow

All calculations of gas (fluid) dynamics processes are based on three well-known
equations of fluid and gas mechanics:

- Continuity equation (law of conservation of mass);
- Equation of the second law (law of conservation of momentum);
- Energy equation (law of conservation of energy).

In order to describe the processes occurring in the arc within the framework of interac-
tion with the SF6 gas flow, it is necessary to set a qualitative mathematical model.

Analytical models.
One of the first models was proposed by Cassie in 1939 [19]. It describes the process of

arcing at high currents and is based on the assumption that the voltage of the arc column is
constant. The model calculates an arc channel with a constant temperature, current density,
and electric field strength. Changes in the conductivity of the arc are caused by the changes
in the cross-section of the arc. The tension on the arc shaft is constant and does not depend
on the arc current.

Mayer’s model, proposed in 1943 [20], describes the process of arcing at currents, close
to zero, and is based on the assumption that the power removed from the arc is unchanged:

1
g
+

dg
dt

=
dln g

dt
=

1
τ

(
ui
P
− 1
)

(1)

where g is arc conductivity; t is arcing time; u is arc voltage; and i is arc current.
The arc is represented as a non-linear resistance in an equivalent circuit. The main

idea of the model is that only convection causes power losses, i.e., the temperature in the
arc is not constant. This means that the cross-sectional area of the arc is proportional to the
current and that the arc voltage is constant. Furthermore, it is believed that power losses are
caused by thermal conduction at low currents. This means that the conductivity strongly
depends on temperature but does not depend on the cross-sectional area of the arc.

The Cassie and Mayer models have modifications—hybrid models that allow a more
accurate description of the breaking arc, for example, Brown’s model [21], which he subse-
quently applied to analyze the breaking process in the post-zero arcing period, characterized
by energy balance [22]. Undoubtedly, the above models are useful but have limited appli-
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cations, as they are based on ordinary differential equations. In other words, they cannot
be used to study in detail the physical processes during arcing, i.e., evaluate the Interaction
with the SF6 gas flow since it is described by the equations of gas dynamics, which are
differential equations in partial derivatives [23].

Modified arc models.
More promising arc models [24–29] have limitations in their uses, described in [23].

They are based on the continuity, momentum, and energy equations of gas dynamics and
Ohm’s Law.

Continuity equation:

∂ρ

∂t
+

∂(ρϑz)

∂z
+

1
r
·∂(rρϑr)

∂r
= 0 (2)

Axial momentum equation:

ρ
∂ϑz

∂t
+ ρϑz

∂ϑz

∂z
+ ρϑr

∂ϑz

∂r
= −∂p

∂z
+

1
r
· ∂

∂r

[
(η + ηt)·r

∂ϑz

∂r

]
(3)

Energy equation:

ρ
∂h0

∂t
+ ρϑz

∂h0

∂z
+ ρϑr

∂h0

∂r
= σE2 −U +

1
r
· ∂

∂r

[
(k + kt)·r

∂T
∂r

]
(4)

Ohm’s law:

I = E
r1∫

0

2πrσ·dr (5)

In the equations above, ρ is gas density; ϑz is axial velocity; ϑr is radial velocity; p is
gas pressure; η is molecular viscosity; ηt is turbulent viscosity; σ is electrical conductivity;
E is the voltage gradient; U is the net emission coefficient; k is thermal conductivity; kt is
turbulent thermal conductivity; and h0 is total enthalpy.

Generally, the axial symmetric problem statement means that Equations (2)–(5) are
integrated over the radius within limits from a to b, and equations from [23] are obtained.

Based on the above integral equations of the arc, it is possible to adequately describe
the interaction of the arc with the blown SF6 gas flow. In other words, in contrast to
the problems of magnetohydrodynamics, in which the movement of a conducting gas in
an electromagnetic field manifests itself in two effects—the Lorentz force and the Joule
heat release—the calculation of processes in arc extinguishing devices is reduced to a
gas-dynamic problem in the presence of only one electromagnetic effect—Joule heat release.
This principle of arc modeling has been described in studies [14,30–33].

To calculate gas dynamics, you can also use the technique from [15,18], which is based
on the analytical determination of the parameters of the piston device and its speed, in
order to obtain a pressure drop that provides a supercritical gas flow mode. To determine
the expiration mode, the pressure ratio under the piston p0/pi is considered, where i is the
calculation step, and p0 is the initial pressure in the under-piston volume. In addition to
the serious assumptions used, the main disadvantage of this technique is that it does not
take into account the interaction of the gas flow with the arc.

Experimental KEMA model.
The model is based on 79 short-circuit tests of CBs with a rated voltage range of

123–550 kV in test center “KEMA” (now “CESI”) [34–37]. The model accuracy of the
interruption prediction (prediction of post-current-zero events from pre-current-zero infor-
mation). The arc parameters for each arc model are extracted by an optimization approach
in a defined time interval to minimize the difference between the measured and simulated
voltage waveforms.
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At its core, this experimental model is a modified Mayer model, assembled from three
submodels:

dgi
dt = 1

Piτi
·gλi

i ·u2
i − 1

τi
gi,

for i = 1, 2, 3
(6)

By solving each equation:

1
g
=

1
g1

+
1
g2

+
1
g3

(7)

The model has six arc parameters: three time constants (τi) and three cooling power
constants (Pi) [36], λ1 = 1.4, λ2 = 1.9, and λ3 = 2.0. The model consists of three differential
equations of g = i/u, the same ones as the earlier model, each representing different time
intervals of the interruption processes (Figure 3).
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Parameters of the KEMA model are represented in Table 1.

Table 1. KEMA model parameters.

Parameter Description Parameter

Symbol Formula

Arc parameters (varying from test to test)

Time constant τ1
kt

la−lT

Cooling power constants B1 –

B2 –

Parameters related to CB design

Distance between arcing contacts la –

Empirical constant (depends on tested CB
and for conditions of the short-line fault) lt, kt According to [3]

Time constants τ2
τ1
k1

τ3
τ2
k2

Constants representing the breaker design k1 According to [37]

k2 According to [37]

k3 According to [37]

Cooling power P1 B1·g0.6
1

P2 B2·g0.1
2

P3
B2
k3

Magnetohydrodynamic model.
Fluid models describe plasma in terms of smoothed quantities, such as density and

average velocity around each position. The fluid model in the magnetohydrodynamic
approach considers plasma as a single fluid, as described by the systems of the Maxwell
and Navier–Stokes equations [7]. A more general description is a two-fluid plasma, where
ions and electrons are described separately. Fluid models are often accurate when the
collision probability is high enough to keep the plasma velocity distribution close to the
Maxwell–Boltzmann distribution [38]. Fluid models typically describe plasma in terms
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of a single flow at a certain temperature in each spatial location. They cannot capture
high-velocity spatial structures, such as beams or double layers, nor resolve particle wave
effects [39,40].

The gas dynamics and electrodynamics of the electric arc, in addition to the equations
of continuity (2), motion (3), energy (4), and Ohm’s law (5), must be supplemented with
Maxwell’s equations and material relations:

∂Er

∂z
− ∂Ez

∂r
= 0 (8)

1
r

∂rHϕ

∂r
= jz (9)

−∂Hϕ

∂z
= jr (10)

where according to Ohm’s law:

jz = σEz; jr = σEr; (11)

B = µ0H; D = ε0E; (12)

where µ0 is magnetic permeability, and ε0 is dielectric permittivity.
In general, µ0 and ε0 are tensors.
The above equations are supplemented by dependencies:

ρ = ρ(T, p); σ = σ(T, p); λ = λ(T, p); η = η(T, p); cp = cp(T, p);
h = h(T, p); ψ = ψ(T, p)

(13)

Boundary conditions in this case (under axisymmetric conditions—cylindrical coordi-
nates):

r = 0, z > 0; ϑr = 0; Hϕ = 0;
∂ϑz

∂r
= 0;

∂T
∂r

= 0;
∂Ez

∂r
= 0; ω = 0; (14)

where Er and Ez are radial and axial voltage gradients, respectively; Hϕ is azimuthal
magnetic field strength; jr and jz are radial and axial electric current density, respectively; ρ
is the gas density; p is pressure; λ is thermal conductivity; cp is specific heat capacity at
constant pressure; h is specific enthalpy; and ψ is emissivity.

The equations written above can be used to describe an arc discharge in a gas. However,
from the side of low currents, the boundary of the region under study is determined, as
a rule, by the fulfillment of the condition of local thermodynamic equilibrium. When
high currents are turned off, the limitation occurs due to the influence of reabsorption
from radiation.

Hydrokinetic model.
The uniqueness of this model lies in the fact that it has a huge advantage over the

magnetohydrodynamic approach. The reason is that it is possible to calculate the processes
of restoration of the dielectric strength after the extinction of the arc within the framework
of hydrokinetic modeling. The model is characterized by four calculation stages [41,42]:

(1) The arc plasma properties (in insulation media as SF6) for basic input data are
needed, including thermodynamic properties, transport coefficients, and radiation coeffi-
cients, which are being calculated according to the Chapman–Enskog theory under local
thermodynamic equilibrium (LTE) [40];

(2) A 1D hydrokinetic model is being used for the arc decaying process description
(assuming cylindrical symmetry);

(3) Based on the 1D modeling results, the average radial temperature, the arc conduc-
tance, and the average critical electric field strength are calculated the three recovery stages:
thermal recovery rate, the predielectric recovery rate, and the postdielectric;
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(4) The postdielectric recovery stage is being calculated relying on the Boltzmann
equation [43], which describes the electron transport behaviors during the last phase of
extinguishing arcs.

In this model, the arc was assumed to be wall stabilized in a cylinder with 1D geometry.
The governing equations describing this 1D arc were written as follows:

Continuity equation:
∂ρ

∂t
+

1
r
·∂(rρϑr)

∂r
= 0 (15)

Energy equation:

ρcp

(
∂T
∂t

+ ϑr
∂T
∂r

)
= σ

i2

g2 − Erad +
1
r
· ∂

∂r

(
kr

∂T
∂r

)
(16)

where r is radial distance; q is mass density; ϑr is radial component of the velocity; cp
is specific heat at constant pressure; T is temperature; σ is electrical conductivity; j the
thermal conductivity; i is current; g is arc conductance; and Erad is radiation energy loss
(net emission coefficient U in (4)).

One of the significant disadvantages of this model is the huge computing power.
However, if the problem statement is made in 1D, then the calculation time will be signifi-
cantly reduced.

Kinetic model.
Kinetic models describe the particle velocity distribution function at each point in the

plasma and, therefore, should not assume a Maxwell–Boltzmann distribution. A kinetic
description is often necessary for a collision-less plasma [44,45]. Such a plasma can be
considered as the one in which the density is low enough and/or in which the temperature
is high enough so that collisions can be neglected, due to the fact that the characteristic
times are shorter than the particle collision time [39,44].

There are two general approaches to the kinetic description of plasma. One is based
on the representation of the smoothed distribution function on the grid in terms of velocity
and its position (distribution function of particles in coordinates and momenta):

f = f (t, r, p) (17)

where r is particle center of mass coordinates, and p is the impulses of the center of mass
of particles.

Function (17) in the LTE state has the form of a Maxwellian distribution and is generally
found from the Boltzmann equation:

∂ f
∂t

+ ϑ
∂ f
∂r

+ F
∂ f
∂ρ

= C( f ) (18)

wherein:
F = eE +

( e
c

)
[ϑB] (19)

where F—an external force acting on a charged particle; and C( f )—taking into account
mutual collisions of particles.

When considering fast motions of particles, collisions can often be neglected, assuming
C( f ) ≈ 0. Then, the kinetic equation is called the collision-less Vlasov equation with
self-consistent fields E and B (they are themselves determined by the motion of charged
particles).

The Vlasov equation can be used to describe the dynamics of a system of charged particles
interacting with an electromagnetic field. In magnetized plasma, the hydrokinetic approach
can significantly reduce the computational cost of a fully kinetic simulation [40,45,46].

Another method, known as the particle-in-cell method, incorporates kinetic informa-
tion by following the trajectories of a large number of individual particles. In fact, this
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method is used to solve nonstationary problems of magnetohydrodynamics [44]. Kinetic
models tend to be more computationally expensive than fluid models.

Analyzing the works devoted to the modeling of gas-dynamic processes in SF6 CBs during
their switching, the main focus was on solving the following scientific and practical problems:

1. An exploration of the electrophysical impact of the arc energy on the nozzle ablation
process in order to both create advanced systems for monitoring the residual switching
life and to study the effect of an auto-puffer to increase the switching capacity [47–49];

The optimization of the design of elements of the arc quenching device, the nozzle
section in particular, to increase the flow rate of SF6 and the switching capacity of the
CBs [50,51];

An evaluation of the residual conductivity of the arc stem to study its effect on the
power proof of the contact gap after its extinction [52,53];

The main difficulty in the vast majority of studies has been related to the implementa-
tion of a suitable mathematical model of heat and mass transfer of a cold SF6 flow and a
non-isothermal plasma channel. Some generalizations of works devoted to the construction
of mathematical models of the interaction of an SF6 flow with an opening arc in SF6 CBs
are given in Table 2.

Table 2. Studies devoted to interaction of SF6 gas flow with the arc.

№ Ref. Problem under Study The Model of Arc Interaction with
SF6 Flow

Computational
Numerical Model

1 [32] Predicting arc extinction by simulating
outgassing with nozzle ablation

Conservation equations, Joule heating,
and radiation transfer A two-dimensional axisymmetric

2 [33]
Exploration of the arc extinguishing

process, when the capacitive current is
turned off by a self-generating switch

Conservation equations, Joule heating,
radiation transfer A two-dimensional axisymmetric

3 [47] Exploration of the nozzle ablation
process for breaking capacity

Conservation equations, radiation
transfer A two-dimensional planar

4 [54]

Elimination of an impulse wave in
front of a stationary arcing contact

inside the nozzle, causing a decrease in
the flow rate of SF6 gas in the nozzle

Conservation equations A two-dimensional planar

5 [55] Arc re-ignition prediction Conservation equations, Joule heating
and radiation transfer A two-dimensional axisymmetric

6 [56]
Influence of impurities, arising in the

process of nozzle ablation on the
process of arc quenching

Conservation equations A two-dimensional planar

7 [57] The reconstruction of a digital model
of an arc in cylindrical nozzles Conservation equations A two-dimensional planar

8 [58]
Exploration of the influence of the

aperiodic component of the tripping
current on the process of arcing

Magnetohydrodynamic: conservation
equations, Maxwell’s equations A two-dimensional axisymmetric

9 [59] Creation of a software package for
modeling arc extinguishing processes Conservation equations, Joule heating A two-dimensional planar

10 [60]
Exploration of the process of arc

extinguishing by a self-blast CB, taking
into account the ablation of the nozzle

Conservation equations A two-dimensional axisymmetric

11 [61]

Investigation of the process of arc
extinguishing by a self-generated

switch, taking into account the ablation
of the nozzle

Conservation equations, radiation
transfer A two-dimensional axisymmetric

12 [62] Exploration of the arc extinguishing
process in a supersonic nozzle Conservation equations A two-dimensional axisymmetric

13 [63] Improved accuracy at low breaking
currents (wire arc).

Magnetohydrodynamic: conservation
equations, Maxwell’s equations 3D
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2.3. Methods for Calculating the Processes of Interaction between Arc and the SF6 Flow

Analytical methods.
Considering that the flow of SF6 gas is described by the system of Navier–Stokes

equations, it was worth noting that analytical integration was possible only in a limited
number of cases. Furthermore, most methods for calculating the equations of fluid dynam-
ics today are reduced to numerical ones. In magnetohydrodynamics, when the system of
Maxwell equations is added to the Navier–Stokes equations, the situation only worsens in
the framework of precisely finding the analytical solution. The fact is that the significant
multidimensionality of the processes under study, especially in the plasma channel of the
shutdown arc blown by a nonisothermal flow, as well as the presence of various types of
weak and strong discontinuities, made it difficult to use numerical analysis methods [64].
Therefore, analytical studies aimed at describing the features associated with the nonlinear
and multidimensional nature of plasma motions based on exact solutions are topical. A
universal method that allows for analytically solving nonlinear equations that describe
magnetohydrodynamics is the method of group analysis of differential equations [65].
Group theory methods were later applied to problems in fluid mechanics [66].

Numerical methods.
Numerical modeling of the processes occurring in the tripping arc mainly prevailed

over other methods due to the growth of computing power. First of all, this referred to the
calculations of gas-dynamic fields, current density fields, and electromagnetic forces. This,
in turn, led to the so-called pinch effect and plasma acceleration and also to a more correct
description of the radiation transfer in the arc column. The main numerical methods of cal-
culation, as applied to the problems of fluid mechanics, including magnetohydrodynamics,
were the finite element method and the finite volume method [67].

Non-Numerical methods.
For the calculation of physical processes that have uncertainties in the formulation

of the problem or its solution (in particular, only some particular solution is found by
numerically solving the system of Navier–Stokes equations), polynomial chaos methods
are gaining popularity. The essence of the method is to represent random processes on a
stochastic polynomial space in the form of Hermite polynomials [68].

In this study, the solution of the problem of gas dynamics—the determination of
the pressure and flow rate of SF6 gas—was implemented analytically (according to the
method [15,18]) and numerically (by the finite element method, in the numerical simulation
software COMSOL Multiphysics 6.0).

3. Analytical Calculation of SF6 Circuit Breaker Breaking

Analytical calculation was carried out according to the method specified in [15,18].
Based on the methodology, the following main assumptions were made:

(1) There was no supply and removal of heat during the outflow of gas (adiabatic process);
(2) The process of gas outflow had a steady character;
(3) There were no friction losses;
(4) The gas was considered ideal;

All the main ratios necessary for the calculation were taken from [15]. The block
diagram of the analytical calculation could be represented as follows—Figure 4:
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Figure 4. Block diagram of the analytical method: Sp—piston cross section; l—full contact separation;
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the calculation; Y = p0/pi—relative backpressure.

The main purpose of the calculation was to determine the parameters of the piston
device and its speed in order to obtain a pressure drop that provided a supercritical gas
outflow regime.

3.1. SF6 Circuit Breaker under Study

Dead-tank SF6 CB for rated voltage 110 kV(RU)/126 kV(EU)—Figure 5 was chosen
as the research object for the calculation of gas-dynamic processes.
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Figure 5. A 110 kV dead-tank SF6 CB: 1—moving main contact; 2—moving arcing contact; 3—fixed
main contact; 4—arc; 5—fixed arcing contact; 6—PTFE main nozzle; 7—PTFE auxiliary nozzle;
8—piston; 9—tube of fixed main contact; 10—tube of moving main contact; 11—valve in the piston;
12—valve closed when contacts are opened; A—above-piston volume; B—under-piston volume.

The current flow path in the arc extinguisher of the selected CB is conceptually shown
in Figure 1: in the closed state, most of the current flows from the live part of the bushing
through the tulip contact (is not shown) to the tubes of both the fixed and moving main
contacts 9 and 10, passing to the main contacts 1 and 3. When the main contacts open, the
current also flows through the tubes 9 and 10 but passes through the conductive parts into
the arcing contacts 5 and 7.
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Arc extinguishing in the interrupter of this CB is based on combining self-blast and
puffer-type principles. The interrupter had PTFE nozzles, providing an additional gas blast
when the arc is burning.

3.2. Computational Model of the Circuit Breaker under Study

To calculate the gas dynamics, the following data were required: the full contact sepa-
ration, the cross section of the piston, as well as the characteristics of the dependence of the
cross section of the SF6 gas outlet on the contact separation S = f (l). All these parameters
were taken from the approximate geometric dimensions of the tank CB under study:

- Full contact separation Lmax = 120 mm;
- The contact separation before blast start is Lext = 18 mm;
- Piston cross section Sp = 8.953 mm2;
- Ambient medium temperature ϑ = 40 ◦C = 313 K;
- Pressure inside CB p0 = 0.42 Mpa;
- The flow coefficient µ at all stages of the outflow was assumed to be 0.9 (the outflow

coefficient, which took into account the decrease in the actual cross section of the hole
due to the compression of the jet in it);

- Adiabatic exponent for SF6 gas ka = 1.086;
- We set the discretization step of the calculation; for this, we divided the entire piston

stroke into 20 identical sections: n = 20. The contact separation in each section would
be:

∆l =
Lmax

n
=

120
20

= 6 mm (20)

Figure 6a,b shows the dependence of the SF6 outlet cross section on the piston stroke
S = f (l) and the dependence of the piston speed on the contact separation V = f (l) for
the selected research object—110 kV SF6 dead-tank CB. The data were taken from the
instruction manual of the manufacturer of this CB. Figure 7 shows the contact travel curve,
which was taken from [14]. This curve was necessary in numerical implementation when
solving a gas-dynamic problem with a moving grid. The total shutdown time was taken as
equal to 55 ms.
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3.3. Calculation Results

The results of the analytical calculation were the pressure changes in the under-piston
volume and the mass flow rate per second depending on the contact separation. Table 3
presents the results of calculating each step by the analytical method according to the
method [15,18]: pressure in the under-piston volume pi; gas mass flow Gi; mass loss
of SF6 during blast; ∆Mi; mass of SF6 gas in the under-piston volume Mi; and relative
backpressure Yi. The piston speed vav was taken from Figure 6b. Parameter Ψ(Y) =√

2ka
ka−1

(
Y

2
ka −Y

ka+1
ka

)
characterized the outflow of gas from the volume above the piston

for each i calculation step.

Table 3. Gas dynamics parameters obtained analytically.

l, mm Vi, mm3 pi, MPa Yi Ψi vavg.i, m/s Gi, kg/s ∆Mi, kg·103 Mi, kg·103

6 1.209 0.420 1.000 0 0 0 0 29.674

12 1.155 0.441 0.975 0.218 0.40 0 0 29.674

18 1.101 0.465 0.938 0.336 1.15 0 0 29.674

24 1.048 0.491 0.895 0.424 1.80 0.114 0.380 29.294

30 0.994 0.512 0.856 0.482 2.40 0.271 0.676 28.617

36 0.940 0.530 0.823 0.520 3.10 0.455 0.881 27.736

42 0.886 0.547 0.795 0.546 4.15 0.494 0.715 27.022

48 0.833 0.569 0.766 0.569 5.04 0.533 0.635 26.387

54 0.779 0.596 0.734 0.588 5.28 0.574 0.652 25.735

60 0.725 0.627 0.701 0.604 5.28 0.863 0.981 24.755

66 0.671 0.653 0.671 0.614 5.28 1.177 1.337 23.417

72 0.618 0.673 0.646 0.620 5.28 1.231 1.399 22.019

78 0.564 0.695 0.625 0.623 5.28 1.279 1.453 20.565

84 0.510 0.719 0.604 0.625 5.28 1.326 1.507 19.058

90 0.457 0.747 0.582 0.625 5.28 1.374 1.561 17.497

96 0.403 0.780 0.559 0.625 5.28 1.427 1.622 15.875

102 0.349 0.820 0.535 0.625 5.14 1.491 1.740 14.135

108 0.295 0.867 0.508 0.625 4.40 1.564 2.133 12.002

114 0.242 0.902 0.486 0.625 3.30 2.360 4.291 7.711

120 0.188 0.733 0.526 0.625 1.95 2.188 6.732 0.979
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Pressure changes in the under-piston volume and mass flow rates depending on the
contact separation, plotted according to Table 3 data, are shown in the calculation results in
comparison with the numerical calculations.

4. Numerical Calculation of SF6 Gas Circuit Breaker Switching

The analysis was carried out in COMSOL Multiphysics 6.0 software (Academic ver-
sion) using the finite element method with a moving mesh (ALE).

The Navier–Stokes equations describe nonstationary flows and express momentum
balances and mass conservations for a viscid and compressible fluid in the following
form [69,70]:

∂ρ

∂t
+∇·(ρu) = 0 (21)

where ρ—density; u—flow velocity m/s; and t—time, s.

ρ
∂u
∂t

+ ρu·∇u = −∇p +∇·
(

µ
(
∇u + (∇u)T

)
− 2

3
µ(∇·u)I

)
+ F (22)

where p—pressure, Pa; F—volume force vector N/m3; and I—turbulence intensity.
The Reynolds number is one of the important criteria in the analysis. The Reynolds

number (Re) is non-dimensional and describes the ratio between inertial forces and those
of viscous friction in viscid fluids and gases.

When the Reynolds number exceeded a boundary value, the precise analytical solution
for the dimensional flow or flat plate flow became chaotic, which marked the emergence
of the turbulent flow. The Navier–Stokes equations were highly sensitive to changes in
coefficient values in the turbulent flow conditions [69,70].

Values of the Reynolds number varied within (0.4− 10)·106 depending on SF6 gas
pressure in interruption chamber and geometrical properties of SF6 gas concurrent flow,
which blew round the arc [71,72].

There were plenty of various models for turbulent flow analysis. The main idea behind
such a model boiled down to the assumption about the existence of average flow velocity
and the average deviation from flow velocity. The models that are listed below were used
in various engineering applications with different accuracy requirements. Almost all of
them have been implemented in modern software for fluid dynamics analysis.

The main models are listed in the order of increasing complexity [67,70]:

- The Boussinessq model;
- The Spallart–Allmaras model;
- The k− ε model;
- The k−ω model;
- The Reynolds stress model;
- The direct numerical simulation (DNS);
- The large eddy simulation.

The k− ε model was chosen to be used in numerical analysis, with the turbulent flow
of gas being taken into account. This model is mainly used in nozzle arc simulations [73,74].
Furthermore, the k−ω model was used to simulate CB interruption without arc (no-load
mode) due to existence of a boundary layer, which is described below. This model could be
efficiently applied in the wall turbulence analysis without additional special functions.

4.1. The k− ε Model of Turbulent Flow

The turbulence viscosity ratio µT for the k− ε model is:

µT = ρCµ
k2

ε
(23)

where ε is velocity of turbulent dissipation, m2/s3; Cµ is coefficient of the k− ε model; and
k is turbulent kinetic energy, m2/s2.
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The resultant equations of the k− ε model are the following [75]:
The convection–diffusion equation for turbulent kinetic energy k:

ρ
∂k
∂t

+ ρ(u·∇)k = ∇·
[(

µ +
µT
σk

)
∇k
]
+ Pk − ρε (24)

The convection–diffusion equation for the dissipation ε:

ρ
∂ε

∂t
+ ρ(u·∇)ε = ∇·

[(
µ +

µT
σε

)
∇ε
]
+ Cε1

ε

k
Pk − Cε2ρ

ε2

k
(25)

where ε, Cε1, and Cε2 are model parameters, and their values are listed in Table 4.

Table 4. Computational model parameters for numerical calculation.

Description Parameter

Designation Value

Pressure inside the interrupter p 0.42 MPa

Initial gas flow velocity u 0 m/s

Ambient temperature T 313 K

Von Karman constant kv 0.41

Parameters of k-e turbulence model

– Cε1 1.44

– Cε2 1.92

– Cµ 0.09

Turbulent kinetic energy σk 1

Turbulent dissipation rate σε 1.3

Constant parameters of k-w turbulence model

– α 0.12

– β0 0.072

– β∗0 0.09

Turbulent kinetic energy σ∗k 0.5

Specific turbulent dissipation rate σω 0.5

The component of deformation rate Pk is:

Pk = µT

[
∇u :

(
∇u + (∇u)T

)
− 2

3
(∇·u)2

]
− 2

3
ρk∇·u (26)

where «:» means tensor convolution.

4.2. The k−ω Model of Turbulent Flow

The turbulence viscosity ratio µT for the k−ω model is:

µT = ρ
k
ω

(27)

where ω is relative dissipation rate, Hz.
The resultant equations of the k−ω model are the following [75]:
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The convection–diffusion equation for turbulent kinetic energy k:

ρ
∂k
∂t

+ ρ(u·∇)k = ∇·[(µ + σ∗k µT)∇k] + Pk − ρβ∗kω (28)

The equation of relative dissipation rate ω:

ρ
∂ω

∂t
+ ρ(u·∇)ω = ∇·[(µ + σωµT)∇ω] + α

ω

k
Pk − ρβω2 (29)

where α; β = β0 fβ; β∗ = β∗0 fβ; σω; σ∗k ; β0; fβ = 1+70χω
1+80χω

; and χω =

∣∣∣∣
ΩijΩjkSki

(β∗0ω)
3

∣∣∣∣—are model

parameters, and their values are listed in Table 4.

Ωij =
1
2

(
∂
−
ui

∂xj
− ∂

−
u j

∂xi

)
is the tensor of average rotation rate;

Sij =
1
2

(
∂
−
ui

∂xj
− ∂

−
u j

∂xi

)
is the tensor of average deformation rate:

Furthermore, the wall boundary conditions were formed for the k−ω model [75].

4.3. The Computational Model of the Object under Study

The model of interruption chamber of a dead-tank SF6 gas CB. The dimensions of
the model were approximately the same as those of the real CB. Elements of the chamber,
which were not utilized in gas dynamics analysis, were not taken into account (Figure 8).
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Figure 8. Computational model for numerical calculation (axial symmetry): 1—fixed arcing contact;
2—moving arcing contact; 3—auxiliary PTFE nozzle; 4—main PTFE nozzle; A—above-piston volume;
B—under-piston volume.

Parameters of the turbulence models k-e and k-w for numerical analysis can be found
in Table 4.

The grid of the numerical model was triangular (the triangulation method). The
rectangular domain was used at the boundary layer. Grid parameters are shown in Table 5.
The calculation was carried out using the finite element method in combination with the
arbitrary Lagrangian Eulerian method (ALE). The latter was used to solve gas dynamics
equations in the third coordinate system, thus called mesh frame.

Table 5. Mesh and time dependent solver parameters.

Number of
Elements

Vertex
Elements

Edge
Elements

Average
Element
Quality

Automatic
Remeshing

Relative
Tolerance

Tolerance
Factor

Termination
Technique

Max
Iterations

4737 92 1090 0.4474 0.08 0.1 1 Tolerance 20

This study was distinguished by taking into account the movement of the mobile parts
of the object under study in a gas dynamics simulation. The module moving mesh was
used to simulate the movement of a piston and the movable contact.

The k-e model included viscous effects that were considered for the sliding wall;
consequently, there was a boundary layer. No slip was the default boundary condition
to model solid walls. A no-slip wall was a wall where the fluid velocity relative to the
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wall velocity was zero. For a stationary wall, it meant that u = 0. The constraint could be
mathematically formulated for the problem with a moving wall:

urel·n = 0 (30)

urel = u− utr (31)

K− (K·n)n = 0 (32)

K = µ
(
∇urel + (∇urel)

T
)

n (33)

where n—boundary normal, with direction outside the region; urel is relative velocity; and
utr is translation velocity.

Turbulence parameters k and ε were subject to homogenous Neumann boundary
conditions:

∇k·n = 0 (34)

∇ε·n = 0 (35)

During the calculation, due to the movement of the boundaries of the object, the grid
of the computational domain was strongly deformed, which reduced its quality and led to
the appearances of discontinuities, inconvergences of equations, etc. In order to eliminate
possible errors, it was customary to use the Automatic Remeshing function, which rebuilt
the computational mesh when it reached a critically low quality.

4.4. The Proposed Model of Interaction between SF6 Gas Flow and Arc

The model is based on the additional element, which is either the line (axisymmetric)
or cylinder (three-dimensional) in the contact gap. The arc column measured temperature is
assigned to the line. The temperature is obtained from the experiment of 10 kA symmetrical
short-circuit breaking [76].

The temperature change is shown in Figure 9a. The duration of the application of
temperature to the moving line was given with the assumption that the arc burned for two
power frequency half cycles (i.e., 20 ms). In this case, it was decided to neglect the change
in temperature in the vicinity of the zero current. This assumption was very rough because
the problem of skipping current zero was extremely important [77–79]. Studies devoted to
the analysis of the occurrence of thermal and/or electrical breakdowns due to the passage
of zero current gave a complete picture of arcing. However, in this study, the emphasis was
on modeling the processes of arcing until the moment of arc extinction, and the processes
of restoring electrical strength were not studied.

At the line boundaries (Figure 9b), the temperature of the arc stem was set according
to [76] with a current cut of 10 kA. A feature of the model was the fact that the line moved
along with the moving contact until the contacts opened (moving mesh). After opening the
contacts, the upper point of the line was fixed, and it lengthened after the moving contact.
In a three-dimensional picture, this line was represented by a cylindrical arc, on the surface
of which the temperature was experimentally set. Thus, gas heating occurs in the contact
gap as the contacts are being separated.
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Figure 9. (a) Temperature change according to [76]; (b) Arc model with additional line 5 between
arcing contacts for adaptive heat release (along the moving contact system): 1—fixed arcing contact;
2—moving arcing contact; 3—auxiliary PTFE nozzle; 4—main PTFE nozzle; A—above-piston volume;
B—under-piston volume.

When adding heat sources to the model, the heat balance equation was added to the
solution of the above equations for gas dynamics:

ρCp
∂T
∂t

+ ρCpu·∇T +∇·q = Q + Qp + Qvd, (36)

where Cp is the specific heat capacity at constant pressure, J/(kg·K); q—heat flow due to
thermal conductivity, W/m2; Q—heat source other than viscous dissipation, W/m3; Qp is
the work performed by changing the pressure and is the result of heating during adiabatic
compression, as well as some thermoacoustic effects, W/m3; Qvd is viscous dissipation in
liquid, W/m3.

Qp = αpT
(

∂pA
∂t

+ u·∇pA

)
, (37)

where αp is the coefficient of thermal expansion, 1/K:

αp = −1
ρ

(
∂ρ

∂T

)

p
(38)

For heat transport turbulence consideration, the Kays–Crawford model was used (the
default in COMSOL Multiphysics). The viscous dissipation, in this case:

Qvd = τ : ∇u + Qturb (39)

where τ is the viscous stress tensor, Pa.
Heat flux by conduction (RANS turbulence model):

q = −(k + kT)∇T (40)

with the turbulent thermal conductivity defined as:

kT =
µTCp

PrT
(41)

where PrT—Prandtl number, according to [80].
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In this case, the boundary conditions for the first kind of Dirichlet were written in the
form of Equations (41) and (42) on the boundary where there was no heat flux across the
boundary (in general form):

−n·q = 0 (42)

However, taking the wall treatment into account, the boundary condition is rewritten as:

−n·q = qwf = ρCpuτ
Tw − T

T+
(43)

where qwf—the heat flux between the fluid with temperature T and a wall with temperature
Tw; Cp—is the fluid heat capacity; uτ—is the friction velocity given by wall treatment
(Equations (29)–(32)); Tw—wall temperature (on the boundaries which are “temperature
source”); and T+– is the dimensionless temperature and is given by [81].

The temperature on the boundaries that represent the experimental arc temperature
profile (according to [76]):

T = T0 (44)

4.5. Calculation Results

Table 6 presents the results of calculation of two turbulent models (k− ε and k−ω) of
the main gas-dynamic parameters: pressure in the under-piston volume p; gas velocity in
the nozzle u; mass flow rate G. For convenience, all results are given to contact separation,
which are considered in the analytical calculation.

Table 6. Gas dynamic parameters obtained numerically.

l, mm t, ms pk−ε, MPa pk−ω, MPa uk−ε, m/s uk−ω, m/s Gk−ε, kg/s Gk−ω, kg/s

0 0 0.420 0.420 0 0 0 0

6 5.70 0.441 0.441 0 0 0 0

12 8.50 0.462 0.462 0 0 0 0

18 10.80 0.484 0.484 6.0 6.0 0 0

24 12.95 0.507 0.507 31.0 30.0 0.367 0.360
30 15.00 0.523 0.523 59.0 55.5 0.699 0.656

36 16.50 0.533 0.533 83.0 74.5 0.855 0.787

42 17.95 0.552 0.554 105.0 89.5 0.973 0.902

48 19.13 0.572 0.575 121.0 103.0 1.005 0.936

54 20.20 0.590 0.596 121.0 105.0 1.143 1.092

60 21.30 0.607 0.613 123.0 106.0 1.380 1.301

66 22.35 0.626 0.631 105.0 103.0 1.550 1.442

72 23.42 0.644 0.665 119.0 124.0 1.595 1.520

78 24.53 0.659 0.666 126.0 111.0 1.693 1.650

84 25.70 0.673 0.681 119.0 118.0 1.888 1.838

90 27.00 0.682 0.690 145.0 129.0 2.083 2.007

96 28.55 0.676 0.687 98.0 105.0 2.196 2.105

102 30.93 0.645 0.658 105.0 105.0 2.303 2.327

108 33.90 0.590 0.600 83.0 95.0 2.391 2.486

114 37.46 0.511 0.514 65.0 75.0 2.036 2.151

120 45.00 0.383 0.378 20.0 21.0 0.727 0.710
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Furthermore, the results of the calculations are presented in the form of fields of
profiles of speeds, pressures, and temperatures, as the contact system of the arcing device
moved when the short circuit currents were turned off. In the profile field, the gas and the
corresponding changes in dependent variables (gas velocity, pressure, temperature) are
shown in color, and the solid elements of the arc extinguisher involved in the movement
(nozzles, contacts, pre-piston areas) are shown in white.

Figure 10 shows the fields of velocity profiles for different positions of the moving
part without taking into account the arc (turbulence model k− ε). It can be seen that the gas
velocity inside the moving contact cavity exceeded the gas velocity in the nozzle at some
moments. However, even in this case, the main volume of gas flowed out through a large
nozzle because the cross-sectional area of the nozzle was greater than the cross-sectional
area inside the moving contact.

Axioms 2023, 12, x FOR PEER REVIEW 22 of 31 
 

 
Figure 10. Velocity field without taking arc into account for turbulent model 𝑘 − 𝜀 (on the left—the 
contact separation and time). 

 
Figure 11. Pressure field without taking arc into account for turbulent model 𝑘 − 𝜀 (on the left—
the contact separation and time). 

Figure 10. Velocity field without taking arc into account for turbulent model k− ε (on the left—the
contact separation and time).

Figure 11 shows the change in gas pressure at different positions of the moving part
without taking into account the arc (turbulence model k− ε). An increase in the pressure in
the under-piston and above-piston volumes could be noticed (assumption: it was assumed
that there is no valve between them). With a real shutdown of the short-circuit current, the
valve between the areas would begin to close, and the arc extinguishing was mainly carried
out by blowing from the above-piston volume. Furthermore, the figure basically shows that
the pressure in the contact gap was pumped after the opening of the large nozzle (contact
separation is 90 mm).
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Figure 11. Pressure field without taking arc into account for turbulent model k− ε (on the left—the
contact separation and time).

Figure 12 shows the change in pressure in the under-piston volume for both analytical
and the numerical calculations, taking into account the turbulent models k − ε and k −
ω, respectively. According to Figure 12, it can be seen that the pressure in the under-
piston volume changed smoothly—almost linearly almost until the very end of the contact
separation. This happened due to the neglect of both turbulent SF6 gas flows and the
impact of the shutdown arc on this flow. According to the results obtained numerically, it
is seen that the pressure peak occurred at the moment of the deceleration of the contact
separation, which was t = 27 ms. The decrease in pressure could be explained by the fact
that the gas compression rate slowed down, whereas the mass flow continued to increase.
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Figure 12. Pressure change in the under-piston volume obtained analytically (according to [15,18])
and numerically for turbulent models k− ε and k−ω.

Figure 13 shows the gas mass flow change through the section of the under-piston
volume. It can be seen that the flow curve was tied to the cross section of the regions that
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the SF6 gas passed on the way to the contact gap, as in the analytical calculation. The
differences were caused by less linear transitions with an increase in the cross-sectional
area of the SF6 gas movement in the direction of the contact system due to turbulence. This
meant that the analytical method gave only a superficial understanding of gas dynamics
during the CB breaking or making. Considering the turbulent flows (without arc affect)
and turbulent heat transport (with arc affect), even with low relative tolerance, gave a
different nature of the interrupter’s switching process. The proposed numerical model
might have been used for the influence estimation of the thermal effect of the switching arc
on the nozzles, as well as for the estimation of both the thermal and electric breakdowns.
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Figure 13. SF6 gas mass flow through cross section of the under-piston volume for analytical
(according to [15,18]) and numerical calculations.

Figure 14 shows the gas velocity change in the narrowest part of the nozzle (confuser)
versus time and contact separation, respectively.
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Up to a certain point in time (tcrit = 19.13 ms), the gas velocity increased, after which
some constancy could be observed. Therefore, we could assume that the speed had reached
its critical value. This meant that the time tcrit could be considered a critical point, and the
time interval up to this point was a subcritical gas outflow regime. The interval after the
critical point and before the moment of braking was a supercritical regime of gas outflow.
Velocity fluctuations occurred due to additional outflow of gas into the area of the opened
section inside the moving contact.

Figure 15 shows the gas velocity field, taking into account the setting of the arc in
the form of a thermal heating source. It can be seen that the gas velocity during opening
reached supersonic values (the speed of sound in SF6 gas under normal conditions was
130− 135 m/s and increased with increasing pressure of the medium). For the process of
arc extinguishing, this was a favorable factor because there was an intensification in the
cooling of the plasma channel of the cut-off arc. However, one could also notice that a
local area was formed along the stationary arcing contact, where the velocities prevailed.
This fact was due to the assumption made in the calculation model—the main part of the
arc-extinguishing movable contact was cut out. Thus, it was considered that the main blast
was directed through a large nozzle (disconnection of high short-circuit currents).
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Figure 15. Velocity field taking arc into account for turbulent model k− ε (on the left—the contact
separation and time).

Figure 16 shows the gas pressure field, taking into account the setting of the arc in
the form of a thermal heating source. When such a short-circuit current breaking took
place, the pressure increased by about 2.0–2.5 times from the nominal value (0.5 MPa) and
reached approximately 1.0–1.5 MPa for the self-blast-type interrupters [17].

Figure 17 shows a picture of the temperature profile in the arc quencher during
shutdown. In contrast to the arc-free mode, there was a clear change in the SF6 flow in the
contact gap due to the occurrence of flow stagnation areas, where the SF6 gas flow, passing
through a small nozzle, met the SF6 gas flow going through a large nozzle. However, their
directions were opposite to each other. The local heating of the area along the fixed arcing
contact was due to the assumption made above.
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Due to the consideration of the arc action, the pressure in the contact gap changed and
has a less decreasing character, in contrast to the arc-free mode.

5. Conclusions

In the developed model described above, the temperature characteristics of the arc
shaft were obtained from the experiment of switching off the symmetrical short-circuit
current of 10 kA [76]. The proposed model of the switching arc was implemented in
numerical software using the finite element method based on a moving-mesh technique
(ALE method). The ALE method allowed us to take the contact separation curve of the CB
into consideration and to make the developed model adaptive. In order to make a com-
parison with experimental data on breaking higher short-circuit currents, the temperature
change was adapted according to [73] for an arcing time of 20 ms (two half cycles of power

85



Axioms 2023, 12, 623

frequency). The accuracy of the developed model was determined in comparison with
experiments on breaking the symmetrical current of 25 kA by a self-blast interrupter from
the study [82]. The comparison was carried out by the means of calculating the coefficient
of determination R2 by changing the pressure in the under-piston volume (Figure 18). Due
to the consideration of the arc effect, the pressure in the contact gap changed and had a less
decreasing character, in contrast to the arc-free case.

 

2 

 

Figure 18. Pressure change in under-piston volume (comparison with [82]). 

 

Figure 18. Pressure change in under-piston volume (comparison with [82]).

From Figure 18, it can be seen that the developed model in the form of a tempera-
ture heating source had a good quality in comparison with the experiment [82], with a
determination coefficient R2 = 0.997.

According to the results of the calculations, it is advisable to note the assumptions and
critical parameters of the model:

1. The absence of a valve between the under-piston and above-piston volumes, which
clearly affects the velocity profile of the SF6 flow moving into the contact gap.

2. Cut out the main part of the arcing moving contact, leading to a one-way blow
(through a large nozzle). Therefore, the model was suitable for breaking large short-
circuit currents.

3. The construction of the computational grid was performed by the user (user con-
trolled) and not by the built-in tools of the numerical software complex (physics controlled).
As a result, the computational mesh on the boundary layers had the same quality as in the
main computational domain. In other words, the calculation of gas dynamics was carried
out quite roughly.

4. The buoyancy forces were not taken into account in the calculations of gas dynamics.
5. The assumption of Mach numbers <0.3 was used. However, in the peak phases of

the arcing, the SF6 flow velocity exceeded the supersonic flow. Thus, it was more correct to
use models that were used for the sonic and supersonic flows’ descriptions.

6. To increase the convergence, the accuracy parameter of the moving grid (relative
tolerance) was taken as equal to 0.1, which made it possible to consider the physical
processes only in the first approximation.

7. The contact separation curve was taken from the arc-free case (“no-load”) and was
considered unchanged even when the arc was taken into account. However, when the arc
was extinguished, the contact separation curve “collapses” [83], which clearly affected the
entire process of the gas dynamics, including the gas outflow regime.
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8. Despite the fact that the radiation effect was significant within such high tempera-
tures of the switching arc column (>13,000 K), the assumption of the neglecting this effect
was used.

As prospects for further research directions, in addition to considering the above
assumptions, the following can be noted:

1. Taking all the physical processes of interaction the SF6 gas flow and switching arc
(creation of magnetohydrodynamic, hydrokinetic, and kinetic models that make it possible
to trace the movement of the conductive medium—the arc plasma in SF6 gas), with the
aim of their possible syntheses and the creation of universal approaches to the simulation
of the switching arc.

2. Adapt the developed model for “near zero” arc extinguishing processes, taking into
account the processes of restoring the electrical strength of the contact gap, the residual con-
ductivity of the arc, and assessing the likelihood of thermal and electrical breakdowns, etc.

3. An improvement of the methods for calculating the equations of gas dynamics in
order to minimize computational costs.

4. Analyze the occurrence of computational instability in the calculations of gas
dynamics and develop prerequisites for combating this problem without losing the accuracy
of the simulation.
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16. Smeets, R.; Van Der Sluis, L.; Kapetanović, M.; Peelo, D.; Janssen, A. Switching in Electrical Transmission and Distribution Systems,

1st ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2015; 425p.
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Abstract: The aim of this work is to study coal steam gasification with various methods of coal in-core
treatment in FB using a newly developed thermodynamic calculation method. A calculational study
of subbituminous coal steam non-catalytic gasification was carried out using four different methods
of coal in-core treatment in single-vessel multisectional fluidized-bed gasifiers. A semi-empirical
model based on the entropy maximization thermodynamic method and “restricted equilibria” based
on previously obtained experimental data has been developed. Based on thermodynamic calculations,
the effect of the leading thermochemical processes and operating parameters of the fluidized bed
(temperature, fluidization number, steam/coal ratio feed rate) was revealed. New information was
obtained regarding the composition of char and syngas at the gasifier outlet, the syngas heating
value, and the cold gas efficiency of the steam gasification of Borodinskiy subbituminous coal char.
The results indicate the possibility of significantly accelerating and improving non-catalytic steam
gasification in fluidized bed gasifiers through the appropriate organization of in-core coal treatment.
Based on the results obtained, the following recommendation is made—when designing multi-section
and multi-vessel steam-blown gasifiers, the ratio of residence times should be set in favor of increasing
the coal residence time in the steam-blown carbonization zone. Structurally, this can be achieved by
increasing the volume and/or area of the steam-blown carbonization section (vessel).

Keywords: engineering calculations; mathematical modeling; improvement of technical devices;
coal; syngas; steam gasification; bubbling fluidized bed; thermodynamic

MSC: 74A15; 81T80; 62P30

1. Introduction

Steam gasification in a fluidized bed (FB) is, theoretically, an ideal way to produce
high-quality, medium heating value syngas for energy and chemical technologies in a
non-catalytic low-temperature process that ensures the unit’s slag-free operation at a satis-
factory conversion rate [1].

Steam gasification in FB was initially developed in the 1970s with the aim of obtaining
medium heating value syngas from coal (about 10 MJ/m3) for a high-capacity integrated
gasification combined cycle (IGCC) and as a feedstock for large chemical enterprises. The
process, in accordance with technological requirements, was carried out, as a rule, under a
pressure of up to 4 MPa in the low temperature range of 650–1100 ◦C [2]. Recently, steam
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gasification in a bubbling FB (BFB) has gained renewed popularity with the development
of distributed generation on a local raw fuel base (low-grade coals and biomass), which
needs highly efficient energy and chemical sources of low-pressure syngas. Interest in coal
is present both in emerging [3–5] and developed economies [1,6–8].

One direction in the modern transition to alternative energy sources is the use of
hydrogen, which can be obtained in its pure form from solid fuel syngas [5,9]. Syngas with
a high hydrogen content is also used in power plants with solid oxide fuel cells [10].

A characteristic feature of steam gasification gases in FB is, as a rule, an increased
content of CO2, reaching 28.3% for coal and 25–32% for biomass [11–14] and high hydrogen
content (up to 53–66%). Such gases cannot be used for chemical production, but are suitable
for hydrogen production, because they almost do not require a water gas shift reaction
(WGSR), although they need deep purification due to the content of pyrolysis ballast
products. There are data on the production of syngas with relatively close concentrations
of H2 and CO (47 and 38%) at a low content of CO2 (3.3%) [2].

In this work the equilibrium composition of the reaction products was calculated by the
entropy maximization method (EMM) using “restricted equilibria”. However, in its pure
form, the EMM method, as well as its analogue, the Gibbs energy minimization method, is
not suitable for predicting the composition of syngas in a low-temperature FB reactor [15].
This is due to the overly brief gas residence time, which is 2–3 orders of magnitude less
than necessary [16]. As a result of such calculations, the content of CO2, CH4, and C2H4
is usually far from their experimental equivalents [17]. Even in entrained-flow gasifiers at
relatively high temperatures (up to 1200 ◦C), syngas composition can differ markedly from
the equilibrium composition, as determined by the WGSR equilibrium constant [18].

Models with “restricted equilibria” allow for the implementation of user-defined
constraints. A similar approach is commonly used in modeling in Aspen Plus [19]. Bed
gasifiers are also modeled using a multi-zone model based on non-stoichiometric equilib-
rium models and a redistribution coefficient with a bypass of pyrolysis products through
the oxidation zone [20]. According to this approach, only some of the gasification reac-
tions are in equilibrium. At the same time, exact energy balances are achieved only if the
experimental gas composition is used as an input parameter for modeling [19].

The research [21] was completed via a study of the influence on the equilibrium of
additional parameters such as the quantity of steam, the pressure or the kind of biomass
using the Gibbs energy minimization method. In [22], a one-dimensional unsteady state
model is developed for simulation of biomass gasification in a bubbling fluidized bed. The
effect of biomass feeding position is investigated, and the performance of a reactor under
non-isothermal conditions is compared with its performance under isothermal operation.
A comprehensive process model is proposed to simulate the steam gasification of biomass
in a bubbling fluidized bed reactor using the Aspen Plus simulator [23]. In this work, it was
found that the steam-to-biomass ratio is directly proportional to an increase in the content of
hydrogen and carbon monoxide, while gas yield and carbon conversion efficiency enhance
significantly with increasing temperature. In [24] researchers investigate the fluidized bed
gasification of several pure and blended feedstock prepared in the form of pellets: oak bark,
two bark/wheat straw blends (85/15 and 50/50% wt) and lignin residue remaining from
bioethanol production.

The aim of this work is to study coal steam gasification with various methods of coal
in-core treatment in FB using a newly developed thermodynamic calculation method.

The objectives of the research include:
1. Development of a semi-empirical model for calculating steam gasification in FB.
2. Refinement of the steam gasification model based on the experimental results

obtained earlier.
3. Carrying out thermodynamic calculational studies of subbituminous coal char

steam gasification in the field of technologically justified FB parameters.

92



Axioms 2023, 12, 587

2. Methods and Materials

The most common steam gasification technology in FB, combining autothermal and
allothermal modes, is a multi-stage multi-section technology with external circulation
(Figure 1). Such a multi-vessel technology makes it possible to spatially separate the
heating, pyrolysis, and gasification zones by fuel and gas, while maintaining intensive heat
and mass transfer both within the zones and between them [25].
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(b) DFB-II.

In most cases, a double-vessel FB (DFB) technology is used, usually combining a coal
pyrolyzer with BFB or fast FB (FFB) and a gasifier (either an FB char furnace or a circulating
FB (CFB)).

Single-vessel FB (SFB) reactors without internal sectioning for the steam gasification
of coal can be used under special conditions (an allothermic regime, prepared fuel, cat-
alytic packing, etc.) [26]. Exploratory studies of autothermal SFBs with steam–oxygen-
and steam–air-blown processes are ongoing [27,28]. However, the use of single-vessel
gasifiers is more developed in entrained-flow high-temperature steam-oxygen-blown
technologies [29], or in special gasifiers with low-temperature plasma [30–32].

In some cases, gasification is carried out in one vessel via a two-section FB (SDFB)
and a three-section FB (STFB) with internal sectioning and internal circulation (Figure 2).
Single-vessel gasifiers with internal sectioning SDFB and STFB allow, as do multi-vessel
gasifiers, to separate the heating, pyrolysis, and gasification zones and control the operation
of the gasifier in autothermal mode [1,33,34].
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(b) SDFB-II; (c) STFB.

Multi-section gasifiers operate according to one of two schemes. In Group I gasifiers,
syngas is withdrawn from the same gasifier into which all initial reagents (fuel, oxidizer,
etc.) are supplied, as is the case in single-vessel gasifiers without internal sectioning. A
typical example is the DFB-I and TFB-I gasifiers [2,27,28,31,32,35], where raw coal is gasified.
In these, the selection of syngas output from the pyrolysis section, which is supplied with
coal, steam, and heated ash (pos. 4 of Table 1) or heated char and heated gas (pos. 5 of
Table 1), is carried out. In such gasifiers, the syngas consists of the products of fresh coal
and char steam pyrolysis.

Table 1. Steam gasification performance in a fluidized bed and in other systems.

No. Gasifier Fuel
Reagent P,

MPa
T, ◦C

Syngas Composition Qd,
MJ/m3 Ref

Section 1 Section 2 H2 CO CO2 CH4

1

DFB–II,
allothermal,
2 vessels,
lab scale

Brown coal
Pyrolysis
gas
coal

Steam 4 742/790 57.5 19.8 20.8 1.9
12.9
(10.6
(gas 1)

[2]

2
DFB-II,
allothermal,
lab scale

Brown coal Steam
coal

Pyrolysis gas
/steam 4 660/666 67.1 3 28.3 1.6 9.58 [2]

3

“Cogas”,
TFB-II,
5 vessels,
autothermal,
pilot scale

Bituminous
coal
subbitumious
coal

Generator
gas
coal

Steam
(Section 2)
air
(Section 3)

0.1
300–800
800
800–900

49.5 32.5 15.6 0 9.44 [2]
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Table 1. Cont.

No. Gasifier Fuel
Reagent P,

MPa
T, ◦C

Syngas Composition Qd,
MJ/m3 Ref

Section 1 Section 2 H2 CO CO2 CH4

4

Agglomerating,
DFB-I,
autothermal,
2 vessels,
pilot scale

Bituminous
coal

Steam
coal Air 0.8 850–930

1100
47.9–
66.2 0–38.6 3.3–28.2 1.6–1.9 up to 10 [2]

5

“Westinghouse”,
TFB-I,
2 vessels,
3 sections,
autothermal,
pilot scale

Coal

Generator
gas + coal
(Section 1)
generator
gas + char
(Section 2)

Steam/air
(3rd section,
vessel 2)

1.1–1.7

700–900
(vessel1)
1000–1100
(vessel 2)

14.4 19.2 9.4 2.8
5.2
(vessel
1)

[2]

6

DFB-II,
2 vessels,
allothermal,
catalytic
(Na(OH)2),
lab scale

Coal N2, Ar
coal Steam 0.1

700
800
900

57
56
55

8
10
18

32
30
25

3
3
3

- [36]

7

DFB-II,
2 vessels,
allothermal,
lab scale

Coal
D

SS

Steam
coal Steam 0.1

750
850
950

750
850
950

61.2
58.7
57.8

61
62.5
60

14.7
16.2
19

16
15
19.1

15.6
17.1
19.4

12
10.2
12.9

4.7
8.1
2.9

2.1
2.4
3.7

- [5]

8

SFB-I,
1 vessel,
autothermal,
pilot scale

Anthracite Steam/O2
coal 2.5 995 38.49 26.35 23.6 4.89 - [27]

9

SFB-I,
1 vessel,
autothermal,
pilot scale

Coal Steam/air
coal 0.1 950 15–20 15–20 10–12 1–2 - [28]

10

Fixed bed,
2 vessels,
allothermal,
lab scale

Bituminous
coal

Pyrolysis
gas
coal

Steam 0.1
950
1000
1100

59.6
52.5
52.9

22.4
37.6
39.6

16.00
8.18
5.3

1.33
1.19
0.77

- [3]

11
Plasma
gasifier,
lab scale

Brown coal Steam
coal - 2427–3177 46.8–

51 39.3–46 0 0 - [35]

12
Plasma
gasifier,
lab scale

Bituminous
coal

Steam/air
air
coal

-
3077–3577

2417–2577

17.0–
61.2
16.8–
17.9

21.5–45.8

32.4–38.1
0 0 - [30]

13

Microwave,
plasma
gasifier,
pilot scale

Brown coal Steam
coal - 1640 39.8 32 18.2 0 - [31]

14
Microwave
plasma gasifier
lab scale

Brown coal Steam/air
coal - 5727 36–49 19–24 24–46 0 - [32]

15

TFB-II,
1 vessel,
3 sections,
autothermal
lab scale

Bituminous
coal

Steam
coal
(Section 1)

steam/air
κoκc
(Section 2)
steam
char
(Section 3)

0.1 925–950 *
58.9–
75.3

13.2–29.6 6.9–14.7 0–4.5 9.7–11.5 [33]

Semicoke
Steam
semicoke
(Section 1)

steam/air
semicoke
(Section 2)
steam
semicoke
(Section 3)

0.1 925–950 ** 47.5–
48.6 47.1–48.8 1.8–4.7 0.7–0.8 11.7
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Table 1. Cont.

No. Gasifier Fuel
Reagent P,

MPa
T, ◦C

Syngas Composition Qd,
MJ/m3 Ref

Section 1 Section 2 H2 CO CO2 CH4

16

DFB-II,
1 vessel,
2 sections,
autothermal
lab scale

Bituminous
coal

Steam/air
coal
(Section 1)

Steam
char
(Section 2)

0.1 700–
1000 ***

22.2–
42.8

15.9–
36.1 11.9–22.1 0.4–4.1 9.0–

10.4 [34]

17

Fixed bed,
1 vessel,
Allothermal,
lab scale

Bituminous
coal

Steam
coal - ~0.1 900–1200 28–58 19–29 42–17 10–1 220–230

kJ/mol [37]

*—dry gas, in wet gas H2O = 9.1–13.2. **—dry gas, in wet gas H2O = 15.8–18.3. ***—wet gas H2O = 8.5–35.5.

In group II gasifiers (DFB-II, TFB-II), syngas is withdrawn from the section into which
steam, and heated char are fed, while coal is fed into the pyrolyzer for carbonization and
heating. In allothermic processes (pos. 1 and 2 from Table 1), heating in the pyrolyzer is
carried out with steam, syngas, and helium (in a built-in heat exchanger) [2]. In autothermal
schemes, heating is performed with burning volatiles, part of the raw coal and char.

Group I gasifiers produce syngas saturated with hydrocarbons with a higher heating
value (about 12 MJ/m3). Group II gasifiers produce somewhat leaner (9–10 MJ/m3) and
purer syngas (with a lower content of hydrocarbons).

2.1. Experiment

To carry out the planned studies, we used data obtained earlier in two previously
developed [33,34] single-vessel FB gasifiers with two and three sections (SDFB-II and
STFB-II). The sections are interconnected by internal flows through which the inert material
circulates, while heat and fuel particles are transferred throughout the volume of the
reaction space. For modeling, steam gasification modes were selected for four different
cases of thermochemical in-core treatment of coal, carried out at different temperatures and
steam flow rates.

The work of the sections is based on the general properties of FB, of which the main
property is their representation as ideal mixing reactors in the solid phase and ideal
displacement in the gas phase [38].

The fuel used was subbituminous Borodinskiy coal and semicoke from Borodinskiy
coal (Table 2): the particle size distribution was typical for bubble fluidization, with a
particle size of 1–1.5 mm. As an inert layer material, a well-flowing corundum with a density
of 3900 kg/m3 and average particle sizes of 0.32 and 0.5 mm was used. Such materials,
belonging to group B according to the Geldart classification, form a stationary BFB when
blown at relatively low speeds (<2–3 m/s). The high density of inert particles made it
possible to use sufficiently small fractions in operating conditions without entrainment
from the apparatus.

2.1.1. SDFB-II

The SDFB-II plant consists of a vessel and an inner pipe dividing it into combustion
and gasification sections (Figure 3). Raw coal is fed into the oxygen zone of the combustion
section, where it heats up and releases the bulk of the rapidly flammable volatiles matter.
The resulting gases are distilled by an upward flow, and char particles descend into the
oxygen-free zone of the gasifier, fluidized by steam and the products of its interaction with
char: they then flow into the central pipe of the steam gasification section. The problem
of steam overheating to the required temperature of 700–1000 ◦C, which is unattainable
in thermal power plants with indirect/indirect steam heating, is solved in FB by the most
efficient method of direct heating of low-potential steam (~200 ◦C), circulating hot inert
material. The removal of ash, together with some of the inert material, is carried out from
the upper gasification section. The flow diagram of media in SDFB-II is shown in Figure 3.
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Table 2. Ultimate and proximate analysis of Borodinskiy coal, semicoke and ash composition.

Parameter Coal Semicoke Ash

LHV, MJ/kg 22.676 26.857 Slagging start temperature, ◦C 950

Wr, % 7.11 2.51 SiO2, % 46.8

Ar, % 13.39 14.41 Al2O3, % 12.9

Cdaf, % 71.26 90.48 TiO2, % 0.6

Hdaf, % 4.88 1.81 Fe2O3, % 7.9

Ndaf, % 1.21 0.97 CaO, % 25.8

Odaf, % 22.26 6.74 MgO, % 5

Sdaf, % 0.39 - K2O, % 0.5

Vdaf, % 48.89 10.46 Na2O, % 0.5
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Figure 3. SDFB-II plant diagram.

As shown in Figure 3, at the point of air and coal supply into the gasifier, the newly
formed gases are carried away by the upwards gas flow, while the particles of char and
ash move downward towards the gas distribution grate. The temperature at the exit from
the combustion zone approaches the temperature of the FB (700–1000 ◦C). This contributes
to the development of adverse reactions [39]. Part of the resulting products from side
reactions (NOx, SO2, CO2) interact with particles of char and ash according to Equations (1)
and (2), [40,41] with the formation of N2, CO, CaSO4:

NO + C = 0.5N2+ CO (1)
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SO2 + CaO + 0.5O2 = CaSO4 (2)

The ash particles, together with the trapped sulfur, are removed through the gasifi-
cation section. The total gas flow is distributed between the gasification section and the
combustion zone in the proportion: s = (d/D)2 in the gasification section and (1-s) in the
combustion section.

2.1.2. STFB-II

The STFB-II consists of a vessel and two inner tubes arranged concentrically, one inside
the other (Figure 4). The gasifier is divided by these pipes into three sections: central—steam
pyrolysis–carbonization; outdoor—steam–air combustion; and an annular gap between
them—steam gasification. High superheated steam pyrolysis is a well-known technology
widely used to produce activated carbon [42].
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Figure 4. STFB-II gasifier.

The products from each section are removed separately through pipes, while the
heat from the combustion zone is carried throughout the gasifier by circulating particles.
Raw fuel is supplied to the oxygen-free zone through nozzle, where char with a stable
graphite-like carbon structure is formed in the reducing environment. An increase in the
reactivity of such a product is mainly due to an increase in the growth of quantitative
indicators (the reactive surface of particles during the crushing or opening of internal
pores). The char formed in the pyrolysis–carbonization section enters the gasification and
combustion sections.

98



Axioms 2023, 12, 587

The operating conditions of the gasifiers and the experimental syngas compositions
are given in Tables 3–5.

Table 3. Operating conditions for the gasifier.

Parameter SDFB-II STFB-II

Gasifier diameter 0.28 m 0.18 m

Bed height 1.3 m 1.0 m

Bed temperature 7000–1000 ◦C 925–950 ◦C

Gasification section diameter 0.134–0.213 m 0.08/0.03 m

Coal mean particle diameter 1 × 10−3 m 1.2 × 10−3 m

Density of coal 1250 kg/m3 1250 kg/m3

Coke bed concentration 0.6 kg on 1 kg of mixture 0.12 kg on 1 kg of mixture

Alumina average particle diameter 0.5 × 10−3 m 0.32 × 10−3 m

Alumina density 3900 kg/m3 3900 kg/m3

Alumina minimum fluidization velocity 0.294 m/s 0.127 m/s

Air flow rate 30–100 m3/h 20–30 m3/h

Steam flow rate 17 kg/h 4.4 kg/h

Steam velocity 0.4 m/s 0.28 m/s

Table 4. Investigation program.

Parameter Case 1 Case 2 Case 3 Case 4

Gasifier SDFB-II STFB-II

Fuel Coal Semicoke

Temperature. ◦C 700 1000 950

Table 5. Experimental syngas composition.

Component Case 1 Case 2 Case 3 Case 4

H2 22.0 42.3 45 39.9

CO 15.9 35.9 17.3 39.7

CO2 21.9 11.5 10.8 1.4

CH4 3.9 0.5 0.4 0.7

N2 0.3 0.1 0 0

H2O 35.5 8.6 26.5 18.3

O2 - - - -

In the operating mode at bed temperatures of 700–1000 ◦C, the superheated steam
velocities in the bed near the gas distributor grid were 0.4 m/s in the SDFB-II and 0.28 m/s
in the STFB-II. Along the height of the gasifier, the rate of the mixture of steam and
gasification products increases due to an increase in the steam conversion products. With
complete steam conversion, the gas velocity at the exit from the bed increases by a factor of 2,
while the dimensionless velocity W = ug/umf reaches 2.72 and 4.4 for SDFB-II and STFB-II,
respectively. At the same time, for large particles of coal and semicoke, the gas velocity
slightly exceeds the minimum fluidization velocity, due to which there is no accumulation
of large particles on the gas distributor grid. Under such hydrodynamic conditions, fuel
inert particles are intensively mixed by gas bubbles, creating a high temperature uniformity
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over the volume of the gasifier sections and a diffusion flow of non-volatile carbon particles
from the coal loading are to the ash unloading area in the gasification section.

2.2. Modelling

As shown in the previous section, multiple reaction zones are formed in multi-section
gasifiers. Depending on the layout, two to three main zones can be distinguished—the
pyrolysis zone, the gasification zone, and the combustion zone; however, these zones do
not fully correspond to the corresponding sections. Therefore, a multizone thermodynamic
model has been developed to calculate the operation parameters of a multi-sectional gasifier.
Similar models apply for single section gasifiers [19]. However, the multi-section gasifier
has its own specifics in the form of two or three separate gas outlets (char gas, syngas, and
combustion products).

The developed model is based on the following assumptions. The gasifier operates at
a steady state at a pressure of 101.13 kPa. The supply air is dry at 25 ◦C and 101.13 kPa. The
ash reaction was not considered. Syngas is an ideal gas consisting of CO, CO2, H2, CH4,
H2O, and N2. The combustion products consist of CO2, H2O, N2, and O2. Coal and char
contain C, H, N, O, S, H2O, and ash (inert).

The char composition was determined from the following conditions and assumptions:
(1) in the gasification section, only char is gasified, without raw fuel impurities;
(2) there is no moisture and volatile matter in the char;
(3) the main components of char are fixed carbon and ash.
The equilibrium composition of the reaction products was calculated by the entropy

maximization method (EMM) using “restricted equilibria”. A detailed description of the
practical implementation of the EMM method and its validation are presented in [35,43].

It follows from the laws of thermodynamics that, in a state of equilibrium, the entropy
of an isolated system is maximum. Therefore, the problem of calculating the equilibrium
composition can be reduced to finding the coordinates of the conditional maximum entropy.
The principle of maximum entropy is valid for any equilibrium system, regardless of
the path by which the system has reached equilibrium (according to the second law of
thermodynamics):

S = ∑k
i=1 S(pi)

i ·ni + ∑L
l=1 Sl ·nl = ∑k

i=1

(
S0

i − R0ln
R0Tni

v

)
·ni + ∑L

l=1 S0
l ·nl , (3)

where S—entropy (J/(kg K)); S(pi)
i —entropy of the i-th component of the gas phase (J/(mol

K)) at the partial pressure of its equilibrium state pi = R0Tni/v (Pa); ni—content of the
i-th gaseous component in the system (mol/kg); Sl—entropy of the condensed phase l,
which depends only on temperature; v—the specific volume of the system; Si

0—standard
entropy of the i-th component of the gas phase at temperature T and pressure 0.1 MPa; and
R0—universal gas constant (J/(mol K)).

Determining the parameters of the equilibrium state consists in finding the values
of all dependent variables, including the numbers of moles of components and phases at
which entropy reaches its maximum. When finding an extremum, additional connections
are imposed on the values of the unknown unknowns, reflecting the conditions for the
system’s existence: the constancy of the total internal energy (because the system is isolated
by condition), the constancy of the mass of chemical elements for a closed system and the
condition of general electrical neutrality:

−U + ∑k+L
i=1 Ui·ni = 0;bj = ∑k+L

i=1 ajini, j = 1, 2, . . . m;∑k
i=1 ajini = 0, (4)

where U—internal energy (J/(kg K)); Ui—internal energy of the i-th component (J/mol K);
aji—stoichiometric coefficients; m—the number of chemical elements in the system; and
bj—the content of the j-th element in the system.
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As a result, to find the composition and properties of an arbitrary composition cor-
responding to the state of the maximum entropy of a conditionally isolated system, it is
necessary to solve a nonlinear system of equations:

Gi − R0ln
R0T

v
− R0ln ni + ∑m

j=1 ajiλj + aeiλe = 0, (i = 1, 2, . . . k); (5)

(
Gl + ∑m

j=1 ajlλj

)
·nl = 0, (l = 1, 2, . . . L); (6)

∑k+L
i=1 ajini − bj = 0, (j = 1, 2, . . . m); (7)

∑k
i=1 aeini = 0; (8)

R0T∑k
i=1 ni − pv = 0; (9)

∑k+L
i=1 Uini − U = 0, (10)

where Gi—Gibbs energy of the i-th component (J/(mol K)) and λj—the Lagrange multiplier
of the j-th component.

The system of Equations (3)–(10) is solved iteratively. The thermochemical and ther-
modynamic characteristics of individual substances are taken from [44].

However, the reaction of coal with water vapor within the temperature range of
700–1000 ◦C at atmospheric pressure and in the absence of a catalyst proceeds slowly [36].
The acceleration of the process is possible by organizing preliminary chemothermal prepara-
tion (pyrolysis, carbonization), aimed at reducing the content of hydrogen and heteroatoms
(nitrogen, oxygen, sulfur) and the formation of new reaction centers, as well as at increasing
the specific reaction surface and at increasing the carbon concentration in the feed gasifica-
tion material. An important factor influencing the degree of devolumization/degassing
and the volume and structure of pores is the gas medium. Carrying out pyrolysis in an
oxidizing environment is accompanied by a known activation effect, depending on the
type of oxidizing agent.

In an atmosphere of atmospheric oxygen with an equivalent ratio greater than one (in
the combustion zone), the devolumization process will be accompanied by the external
burning of particles without the oxidative study of the opening pores. A system of thin
deep pores will be worked out in the steam, and these can have a positive effect on the
conversion rate in the gasification section and on the degree of approximation of the syngas
parameters to thermodynamic equilibrium.

To consider the kinetic limitations in determining the composition of the syngas, it is
necessary to select the weight coefficient of the reactions taking place from the experimental data.

With a relatively high concentration of fixed carbon in the reactor zone, characteristic
of FB, the process of its gasification is determined by the competitive course of the following
two heterogeneous reactions of water gas:

C + H2O = CO + H2; +117 kJ/mol; (11)

C + 2H2O = CO2 + 2H2; +75 kJ/mol. (12)

Simultaneously with them, the third heterogeneous Boudoard reaction also proceeds:

C + CO2 = 2CO; +159 kJ/mol. (13)
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However, this reaction does not participate in the competition due to its secondary
role: CO2 (the reagent of this reaction) appears in the system only after reaction (12) has
taken place. These reactions are traditionally used to describe steam gasification [16,17,45].

To assess the competition between the rates of reactions (11) and (12), the coefficient
K is used, which shows by how much reaction (12)’s contribution is greater than reaction
(11)’s contribution in the format (12)/(11).

The combustion section (in the DFB-II reactor) or carbonization section (in the TFB-II
reactor) is supplied with fuel with a known composition, however, the gasification section
does not receive raw fuel but the product of its conversion (carbonization)—char, with an
unknown composition that varies depending on carbonization conditions (temperature,
consumption of carbonizing media (steam and/or air), etc.).

The algorithm for carrying out thermodynamic calculations for developing models
and determining the char composition in the gasification section is shown in Figure 5.
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Figure 5. Algorithm for calculating the process of steam gasification in FB.

3. Results and Discussion
3.1. Statistical Evaluation of Results

Based on experimental tests to validate the calculated results obtained, a statistical
processing of the data was carried out to confirm the adequacy of the developed model.
Figure 6 shows the results of the statistical processing of the concentrations of the main
syngas components using the SDFB-II gasifier as an example.
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Figure 6. Statistical evaluation of calculation results using experimental data.

As can be seen from Figure 6, the developed model gives results close to the experi-
mental ones. The minimum and maximum values differ from the average by about 1%. The
statistical evaluation of the calculation results made it possible to validate the developed
model and confirm its satisfactory applicability for solving such problems.

3.2. Dominant Reactions and Their Ratio

The results of multivariate calculations according to the developed algorithm are given
in Table 6. Table 6 shows the calculated syngas compositions in three versions:

Table 6. Estimated compositions of syngas.

r, %
Case 1 Case 2 Case 3 Case 4

A B C Exp. A B C Exp. A B C Exp. A B C Exp.

H2 47 47 23 22.0 51 49 43 42.3 42 43 41.4 45 47 46 39.8 39.9

CO 29 24 17 15.9 38 46 36 35.9 20 24 24.3 17.3 16 32 39.8 39.7

CO2 9 13 23 21.9 4 2 12 11.5 9 9 8.5 10.8 7 7 0 1.4

CH4 3 1 1 3.9 0 0 0 0.49 0 0 0 0.4 0 0 0 0.7

N2 0 0 0 0.3 0 0 0 0.14 0 0 0 0 0 0 0 0

H2O 9 15 7 35.5 7 3 9 8.59 29 24 25.7 26.5 16 15 20.3 18.3

A—original version, without taking into account the char composition and coefficient K;
B—variant taking into account the char composition, but without taking into account

coefficient K;
C—variant taking into account the char composition and coefficient K (Table 7);
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Table 7. Estimated compositions of syngas.

Case 1 Case 2 Case Case 4

K 1/2.45 1/1.18 1/1 1/0

Exp.—experimental version.
The convergence of coefficients K from case 1 to cases 2 and 3 indicates a tendency

to equalize the degree of completion of the reactions (11) and (12), which occurs due to a
change in their rates that occurs with the achievement of parity in case 3 and the subsequent
disparity in case 4.

Figure 7 shows that syngas composition (experiment and modelled, as calculated
according to version C) generally does not coincide with the equilibrium A and B. An
analysis of the ratio of the syngas components found using versions B and C is shown
in Figure 6. The experimental (Exp.) and calculated (C) compositions generally do not
coincide with the compositions of A and B. The coincidence of B unrestricted and C
restricted equilibria is achieved only in case 3, where syngas composition is controlled by
WGSR (14):

CO + H2O = CO2 + H2; −42,9 kJ/mol. (14)
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Figure 7. Comparison of calculated results B and C.

In other cases, kinetic restrictions do not allow for the obtaining of syngas with an
equilibrium composition. In cases 1 and 2, CO2 and H2O are the most abundant in the
nonequilibrium mixture, while in case 4, there is an excess of CO and a deficit of CO2.

In cases 1 (to a greater extent) and 2 (to a lesser extent), the char reactivity is reduced
due to oxidative (air) pyrolysis, which occurs in the combustion section. In case 1, the
reaction speed is also reduced due to the relatively low temperature of 700 ◦C. The low
reaction rate leads to the dominance of reaction (12), an increase in CO2, and a decrease in
CO. In these cases, the syngas composition obtained by the dominant reaction (12) is first
calculated, and then the unreacted carbon reacts with CO2 according to reaction (13). In
case 3, the syngas composition obtained in the experiment and the calculation practically
coincide. This indicates the occurrence of reactions (11) and (12) at the same rate, and the
achievement of thermodynamic equilibrium at a temperature of 950 ◦C due to the high
char reactivity. In case 2, syngas was obtained at almost the same temperature; however,
due to the use of air carbonization, instead of steam, it has an unequal contribution from
reactions (11) and (12), which confirms the advantage of steam as a carbonization medium.
From the experimental data of case 4, we can see that the syngas H2 and CO are almost the
same, while the CO2 is negligible, which indicates that reaction (11) proceeds at a much
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higher rate than reaction (12). This is explained by the greater reactivity of the source fuel
(semicoke). The calculation for this case was carried out without considering reaction (12),
therefore CO2 = 0. In case 4, the situation is the reverse to that of cases 1 and 2, since steam
carbonization char initially has increased reactivity, and additional steam carbonization
in TFB-II further increases it. In this case, reaction (11) dominates so strongly (CO2 ≈ 0,
H2 = CO) that reaction (12) can be neglected. Syngas at the outlet again turns out to be
non-equilibrium.

As can be seen, the syngas composition calculated from the global equilibrium accord-
ing to variant A is close to the experimental composition only in case 3. In the other cases,
the action of kinetic restrictions does not allow one to obtain the composition of the syngas
from the equilibrium of all reactions.

Depending on the competitive course of reactions (11) and (12), the resulting composi-
tion approaches one of three gasses:

Gas 1. In the lower temperature range (600–700 ◦C) with low reaction fuel, reaction (12)
is faster than (11). Syngas composition is mainly determined by equation (12), with the
characteristic ratio H2/CO2 = 2.

Gas 2. In the upper temperature range (900–1000 ◦C) with low-reactivity fuel, reaction (11)
is connected to reaction (12), and they begin to proceed at approximately the same rate. Ad-
ditionally, due to high temperatures, the water gas shift reaction according to reaction (14)
is accelerated.

Gas 3. In the upper temperature range with a highly reactive fuel, reaction (12)
ceases to determine syngas composition, and the main contribution begins to be made by
reaction (11), with the known ratio H2/CO = 1.

The lowest heating value—gas 1—is the most suitable for producing pure hydrogen
and reaches the highest concentration of hydrogen. The lowest concentration of hydrogen
at the equality H2/CO = 1 will reach the highest heating value—gas 3—which is more
suitable for organic syntheses.

Quantitative confirmation of the above explanations can be found in the classical
literature on gasification, starting with [45]; however, this describes the results of experi-
ments under special conditions, far removed from those found in industry. The proposed
method makes it possible to obtain the calculated syngas composition close enough to the
experimental one. The deviation of the calculated data from the experimental data lies in
the allowable range of 5–15%. The presented data show the effectiveness of the method of
“restricted equilibria” for the predictive study of steam gasification in both low-temperature
and high-temperature regimes.

3.3. Char Composition

Char composition was also determined from the above algorithm; however, it does not
affect the ratio of the syngas components as much as coefficient K. The char composition
(along with the temperature and steam flow rate) is needed to calculate syngas composition.
If the temperature and steam flow are determined by the gasifier operating mode, then the
reacted char composition is not directly controlled. In our cases, this can be determined only
by the algorithm described above, the calculation results for which are shown in Figure 8.
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Figure 7 shows that the content of reacted carbon in char increases from case 1 to case
4, and that the ash content decreases without an unambiguous dependence on temperature.

3.4. Temperature Influence

Figure 9 shows the calculation results of the temperature dependences of syngas
composition using models describing cases 1–4. The results were obtained using the
algorithm (Figure 5) and the obtained char composition (Figure 8). The temperature ranges
for cases 1 and 2 were taken from the experiment. For cases 3 and 4, a narrow temperature
range of ±50 ◦C was chosen, since the change in K must be considered over a wide
temperature range.
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Figure 8 shows the results obtained for SDFB-II. A change in temperature from 700 ◦C
(case 1) to 1000 ◦C (case 2), which creates differences in the composition and char reactivity,
causes a change in the contribution of reactions (12) and (11) from 2.45/1 for case 1 to
1.18/1 for case 2. In the interval between 700 and 1000 ◦C, the weighting factors change
in accordance with Table 8. To obtain these, additional experimental data from [34] were
used. Thermodynamic analysis showed that, because of changes to the method of fuel
preparation and to the increase of its reactivity at 950 ◦C, it was possible to achieve an
equilibrium syngas composition of the gas 3 type in case 3. In case 2, however, equilibrium
was not achieved, even at 1000 ◦C.

Table 8. Coefficient K for SDFB-II at different temperatures.

Temperature, ◦C

700 800 900 1000

K 2.45/1 2.02/1 1.61/1 1.18/1

Such a monotonic convergence of coefficients K indicates a tendency to equalize the
degree of completion of reactions (11) and (12), which occurs due to the equalization of
their rates with increasing temperature. However, as noted above, the equalization of the
rates of reactions (11) and (12) in case 2 is not achieved.

Such a redistribution with an increase in temperature by 300 ◦C causes a doubling
of the concentrations of the syngas components: H2 and CO—towards an increase, and
CO2—towards a decrease. A similar nature of the change in the composition of syngas
with temperature is often observed in experimental studies of the steam reforming of coal
and biomass in a fluidized bed [1,34]

With a deeper preparation of fuel for gasification, performed in cases 3 and 4 (STFB-II),
the contribution of reaction (12) continues to decrease to 1 (case 3) and then to zero (case 4).
In this case, the sensitivity of syngas composition to temperature drops sharply (almost to
zero in case 4).

To determine the temperature limits of the low sensitivity of the steam reforming gas
composition to temperatures in the range of 700–1000 ◦C, additional experimental studies
are required.

Most often, the low temperature sensitivity of the steam reforming syngas composition
to temperature is encountered at a higher temperature range—such as in entrained-flow
steam-oxygen reactors, plasma processes, etc.—which seem to occur in case 4 [29,35]. The
presented data show the flexibility and effectiveness of the method for the predictive study
of low-temperature steam reforming in the studied regimes.

3.5. Steam Flow Rate Influence

Figure 10 shows the calculation of the wet (r) and dry (rd) syngas composition, as
well as its heat of combustion depending on the dimensionless steam consumption (gs)
kg of steam/kg of fuel (in our case, char). The lower limit of steam flow rate is selected
based on the minimum steam flow required to gasify all of the char carbon, so that no free
carbon remains in the system. The calculation for determining this steam flow for all cases
was carried out according to equilibrium without restrictions (version C, K = 1/1). The
maximum steam flow rate on the graphs was obtained by doubling the minimum value.
At the same time, it should be considered that char composition and K can vary depending
on steam flow rate. For example, the rate of reaction (12) can increase with an increase in
steam consumption and, vice versa, decrease with its decrease. The syngas heating value
was determined by the formula:

Q =
12.63·rCO + 10.78·rH2 + 35.83·rCH4

100
(15)
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Figure 10. Cont.
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Figure 10. Dependence of wet (r) and dry (rd) syngas composition on the relative steam consumption
in the case of: (a) 1; (b) 2; (c) 3; (d) 4.
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Figure 9 shows that, with increasing steam consumption, the concentrations of CO2
and H2 increase due to reaction (14), while the content of H2O increases due to the dilution
of syngas with steam. This is true in all cases except for case 4, because reaction (14) is
impossible due to the absence of CO2 and reaction (12). The heating value in all cases
has its maximum at a minimum steam flow. With an increase in steam consumption,
the heating value decreases. This is due to the increased concentration of H2 and the
decreased proportion of CO, given that the heating value of CO is greater than that of H2.
Dependencies of the same kind are also observed in experimental studies, such as in [46].
At the minimum steam flow, syngas composition is close to gas 3, and at the maximum
steam flow, to gas 1.

Table 9 compares the obtained results with data from other steam-blown gasifiers.
Rows 4–7 show the calculated data of the experimental and optimized modes obtained on
the SDFB-II and STFB-II. Optimization was carried out according to the heating value of
the syngas. The only parameter that significantly increases the calorific value of syngas in
the cases under study is the steam flow rate, namely its reduction (Section 3.4). Therefore,
the optimized modes are those in which the steam flow rate is reduced to the minimum
required to avoid free carbon in the system.

Table 9. Steam-blown gasifiers.

No. Gasifier Fuel gs, kg/kg
of Fuel

P, MPa T, ◦C
Dry Syngas Composition

Qd, MJ/m3

H2 CO CO2 CH4

1 Entrained-flow [29] Oil palm residues 1–8.4 0.1 1000 42–55 25–12 14–25 6–5 9.9–9.2

2 Fixed bed [8] Palm kernel shells 0.85 0.1 850 48.2 28.2 15.9 7.6 11.5

3 Fluidized bed [46] Wood
0.83–1.2 0.1

840 45.8–48.2 21.1–19.9 19.2–19.4 6.9–5.9 10.1–9.8

750
38.3–44.3 22.2–17.9 20.7–22 8–6.6 9.8–9.4

1.2 0.1–0.25 44.3–45 17.9–11.8 22–26.6 6.6–9 9.4–9.6

4
Case 1 (before

optimization/after
optimization)

Subbituminous coal 0.79/0.61 0.1 700 34/32 25/31 34/32 0.3/3.5 6.9/8.6

5
Case 2 (before

optimization/after
optimization)

Subbituminous coal 0.79/0.73 0.1 1000 46/45 38/43 12/11 0/0 9.7/10.3

6
Case 3 (before

optimization/after
optimization)

Subbituminous coal 1.7/0.9 0.1 950 56/50 33/49 1/0 0/0 10.1/11.6

7
Case 4 (before

optimization/after
optimization)

Semicoke 1.7/1.1 0.1 950 50/50 50/50 0/0 0/0 11.6/11.6

It can be seen from Table 9 that, due to optimization, the heating value of dry syngas
increased by 25, 6, and 15% in cases 1, 2, and 3, respectively. In case 4 the heating value
remained unchanged, because at K = 0/1 the composition of the syngas does not depend
on the steam flow rate. The largest increase in the heating value occurred in case 1 due to
a significant increase in the concentration of CH4, which is undesirable in systems with
cold gas cleaning due to its ability to condense. The heating value in the optimized case 3
and in case 4 exceeds the values obtained in the literature, and at the same time does not
contain CH4, as in [46].

Thus, the proposed model allows one to optimize the gasifiers. Sensitivity analysis
in such systems can be performed using the matrix decomposition technique [47]. The
development of more complex models will require the use of the Statistical and Dynamic
System Criteria [48].

3.6. Pressure Influence

The influence of pressure on syngas composition is shown in Figure 11. The pressure
range is selected as 0.1–4 MPa, based on the range of operating pressures encountered in
the installation with the FB. Pressure can affect the composition of the reacting char and K,
but additional experimental studies are needed to evaluate this effect.
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Figure 11 shows that in cases 1 and 2, at pressures greater than 0.7 and 2.35 MPa, free
carbon begins to be present in the system, which is explained by a shift in the equilibrium
of heterogeneous reactions (11)–(13) to the side with a smaller volume (number of moles)
according to the Le Chatelier–Brown principle. In case 2, the pressure of the appearance
of free carbon in the system is higher, since the temperature is higher; according to the
Le Chatelier–Brown principle, the balance of endothermic reactions shifts towards the
formation of reagents. In cases 3 and 4, free carbon does not appear in the system in the
studied pressure range, as the reactivity of the fuel in these cases is higher. In all cases, the
same trend is observed—the proportion of heavy molecules (CH4, CO2, H2O) increases,
while the proportion of light molecules (CO and H2) decreases, something which is also
explained by the Le Chatelier–Brown principle. In general, this character of the dependence
of syngas composition on pressure in gasifiers with FB is quite characteristic and has been
experimentally confirmed [46].

3.7. Comparison with Literature Data

Table 10 shows a comparison of syngas component ratios from the literature data and
the performed calculation. In some gasifiers CO or CO2≈0, in this case the table shows “-”.

Table 10. Comparison of syngas component ratios.

No. Gasifier H2/CO H2/CO2 CO/CO2
Qd,
MJ/m3

Gas Type (from
Section 3.1)

1

DFB-II,
allothermal,
2 vessels,
lab scale [2]

2.9 2.8 1 10.6 2

2
DFB-II,
allothermal,
lab scale [2]

22.4 2.4 0.1 9.58 1

3

“Cogas”,
TFB–II,
5 vessls,
autothermal,
pilot scale [2]

1.5 3.2 2.1 9.44 3

4

Agglomerating,
DFB-I,
autothermal,
2 vessels,
pilot scale [2]

- 14.5 0 10 2

5

“Westinghouse”,
TFB-I,
2 vessels,
3 sections
autothermal,
pilot scale [2]

0.75 1.5 2.1 5.2 1

6

DFB-II,
2 vessels,
allothermal,
catalytic (Na(OH)2),
lab scale [36]

7.1 1.7 0.25 7.1 2

7

DFB-II,
2 vessels,
allothermal,
lab scale [5]

4.2 3.9 0.9 11.2 2
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Table 10. Cont.

No. Gasifier H2/CO H2/CO2 CO/CO2
Qd,
MJ/m3

Gas Type (from
Section 3.1)

8 Case 1 (before optimization/after optimization) 1.4/1 1/1 0.7/1 6.8/7.3 2/1

9 Case 2 (before optimization/after optimization) 1.2/1 3.8/4 3.2/4 9.8/10.3 2/3

10 Case 3 (before optimization/after optimization) 1.7/1 56/- 33/- 10.2/11.6 2/3

11 Case 4 (before optimization/after optimization) 1/1 -/- -/- 11.7/11.7 3/3

As can be seen from Table 10, most of the gasifiers from the literature review produce
gas 2 and two of them produce gas 1. This is explained by the low char reactivity, which
is prepared from coal in these gasifiers. As a rule, the coal treatment in these gasifiers
takes place in an oxidizing atmosphere of air oxygen or steam, which leads to significant
differences in the carbonized product (char) reactivity and the syngas composition of char
steam-blown gasification. As a result, under the same temperature regime and residence
time in the gasification section in cases 2, 3, and 4, syngas was obtained with different
degrees of approximation to thermodynamic equilibrium. Oxygen reacts relatively quickly
with carbon, so the conversion occurs on the particle surface, reducing its area and reactivity.
Therefore, the char conversion in cases 1 and 2 does not reach thermodynamic equilibrium
(K > 1/1), the syngas tends to gas 2, and in the case of optimization it approaches (but does
not reach) gases 1 and 3. The steam reacts slower than oxygen, therefore, it has time to
penetrate the pores, react in them, and increase their size, particle area and reactive ability.
Therefore, the char conversion in case 3 reaches thermodynamic equilibrium (K = 1/1)
according to the gas 2 already in the non-optimized mode. Additionally, the conversion
of semicoke, which has undergone additional carbonization even before loading into the
gasifier, is ultimately observed, again, to be non-equilibrium, but with the dominance of
reaction (11), K = 1/0, which determines the composition of gas 3.

Based on the results obtained, the following recommendations were made—when
designing multi-section and multi-vessel steam-blown gasifiers, the ratio of residence
times should be set in favor of increasing the coal residence time in the steam-blown
carbonization zone. Structurally, this can be achieved by increasing the volume and/or
area of the steam-blown carbonization section (vessel).

4. Conclusions

(1) A new efficient, reliable, and simple method for calculating syngas composition at
the gasifier outlet using the EMM method with the “restricted equilibria” approach has been
developed. This makes it possible to visually interpret the actual data, clearly determine
the limits of applicability of the reactions and confidently predict the linear development of
the process in the confidence range of the variation of the system parameters.

(2) The effectiveness of in-core thermochemical fuel treatment in improving the syngas
quality by increasing the reactivity of the steam-blown processed fuel was determined.
This makes it possible to significantly guide the fast conversion processes in the FB closer
to thermodynamic equilibrium and achieve, in a controlled process, the syngas compo-
sitions required by the chemical industry, such as gas 3 (H2/CO = 1, CO2 = 0) and gas 1
(H2/CO2 = 2, CO = 0) without resorting to extreme technologies (plasma) or expensive
fillers (catalysts). Such a high quality of syngas is achieved even without the use of steam
gasification in multi-vessel FBs. Oxygen reacts relatively quickly with carbon, so the con-
version occurs on the surface of the particle, reducing its area and reactivity. Steam reacts
more slowly than oxygen, so it has time to penetrate the pores, react in them, and increase
their size, particle area and reactive ability. The char obtained from semicoke (case 4) had
the longest carbonization, which began even before loading into the gasifier, so it has the
maximum reactivity and thus makes it possible to obtain gas 3.
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(3) Thermodynamic studies of the process of the steam-blown gasification of subbitu-
minous coal char were carried out in the field with technologically justified parameters of
a combustion chamber in terms of temperature (700–1000 ◦C), pressure (0.1–4 MPa) and
steam consumption (0.6–1.7 kg/kg of fuel). Increasing the heating value (optimization) is
achieved by reducing the steam flow rate to that which was stoichiometrically necessary for
the absence of free carbon from the system. The maximum increase in the heating value is
achieved in case 1 (10%), and the minimum (no increase) in case 4. Gas 3 is only reached in
case 4 before optimization and in all cases after optimization due to oxygen-free conditions
for CO2 formation.
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Nomenclature

D gasifier diameter, m
d gasification section diameter, m
gs dimensionless steam consumption, kg of steam/kg of fuel
P pressure, Pa
Q heating value, MJ/m3

R0 universal gas constant, J/(mol K)
r volume concentration, %
S entropy J/(kg K)
T temperature, ◦C
ug superficial gas velocity, m/s
umf minimum fluidization gas velocity, m/s
BFB bubbling fluidized bed
CFB circulating fluidized bed
DFB double-vessel fluidized bed
EMM entropy maximization method
FB fluidized bed
FFB fast fluidized bed
IGCC integrated gasification combined cycle
SFB single-vessel fluidized bed
SDFB two-section fluidized bed
STFB three-section fluidized bed
WGSR water gas shift reaction
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Abstract: Advantages of using an external Fabry–Pérot interferometer (EFPI) as a high-speed local
temperature deformation sensor are demonstrated for the fibre-optic circuit combining a powerful
laser beam for surface heating with a low-power probing radiation. The difference in the formation
of the heating and probing radiation provides a simple basis for varying the gap between the fibre
end and the surface in order to change the ratio between the heating and EFPI measuring areas.
Using an example of modelling the laser heating by radiation from a standard single-mode fibre, we
demonstrate the possibility of employing the EFPI to measure the temperature deformation of the
surface on a quasi-isothermal area with the temperature close to the maximum at gap values of more
than 100 µm. With the condition of preliminary calibration, the proposed scheme can be used to
evaluate the heat treatment of the surface with the speed of the applied photodetector. The practical
possibilities of the method are demonstrated on examples of heating some metal and semiconductor
samples by laser pulses of microsecond duration.

Keywords: thermo-optical effects; Fabry–Pérot interferometer; Gaussian beam model; thermal
diffusivity

MSC: 80-05; 78A55

1. Introduction

As a general rule, destructive processes leading to the failure of materials begin from
the surface. Thus, the solution to the problem of improving the quality of machines and
devices largely depends on the technological quality assurance of the surface layer of parts,
including their geometric characteristics and physicochemical properties [1]. When using
concentrated energy flows for the surface treatment of materials, it is necessary to convert
the energy of the source into thermal energy with a certain efficiency. The application of
this energy produces changes in the structural phase state of the surface layer to achieve
the desired quality. The quality of surface heat treatment mainly depends on the rigour
with which the specified heating and cooling modes are applied. Popular pulsed laser
processing methods provide unique opportunities for thermally hardening the surface
layers of parts [2–4]. One of the main advantages of laser processing is the high spatial
resolution of the impact on the material.

This method provides the formation of structures or impact on functional elements
with geometric dimensions characteristic of microtechnology (10−4–10−6 m). Thus, it
becomes necessary to develop a means of measuring fast processes during pulsed heat
treatment of such microelements. The diverse physical processes taking place during laser
processing depend on the power density of the laser radiation on the surface. Pulsed
laser heating begins with rapid thermal expansion of the surface layer of the base material
to induce mechanical stresses in the heated layer [4–6]. Thermal expansion occurs in
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a thin surface layer having a thickness of the order of (aτd)1/2, where a is the thermal
diffusivity of the surface layer material, while τd is the duration of the radiation pulse (for
a microsecond pulse (aτd)1/2 is on the order of units of micrometres). The force arising
from the accelerated displacement of the centre of mass of this layer compresses it during
the action of the leading edge of the pulse and stretches it during the action of the trailing
edge. The radial thermal expansion of the elastic layer leads to the occurrence of thermal
compression stresses and surface deformation. In order to perform the specified heat
treatment modes, it is necessary to monitor the maximum values of temperature, stress and
strain achieved in the centre of the irradiated area. Similar problems arise when using laser
methods in the field of thermal control of the properties of materials and products. For
example, the reaction of a material upon exposure to a short laser pulse is investigated in
the well-known pump–probe method [7–10]. In particular, the thermophysical properties
of the material or defects in its structure are determined by changing the temperature of
its surface [10]. For non-contact measurements of rapidly changing temperatures, optical
sensors are widely used based on a number of thermo-optical effects [11], see below:

– Thermal radiation of a heated body;
– Temperature dependence of the refractive index;
– Temperature change of the absorption coefficient;
– Temperature change of the reflection coefficient as a result of changes in refraction

and absorption, as well as thermal deformation of the surface.

However, for these effects, the thermo-optical coefficients are small, and measurements
are possible either at large temperature differences or in special cases, for example, at the
edge of the material’s own optical absorption. For increasing the sensitivity of optical
circuits for thermo-optical measurements, interferometers can be used. However, the bulky
circuits generally used for this purpose involve large-sized optics and inconvenient settings.

In this connection, the use of fibre optics in laser processing opens up new techno-
logical possibilities, especially when using robots. Accordingly, there is a demand for
the development of methods for the remote control of thermal processes by fibre-optic
means [7–9]. By configuring low-coherence interferometry with fibre optics, sensors can
be miniaturised and placed at some distance from the electronics [7,12]. Chemically inert,
compact and durable optical fibre integrated in the process of production is affordable due
to the relatively inexpensive optical components. The purpose of the present work is to
demonstrate the possibilities of combining low-coherence interferometry with fibre optics
to create compact circuits for the high-speed control of thermal processes during pulsed
laser processing.

2. Materials and Methods
2.1. Thermal Mirror and Interferometry Method

Photothermal methods are based on the various secondary effects that occur following
the absorption of a non-stationary light flux by a sample [13,14]. In the case of photo
reflection from a “thermal mirror”, a spatial resolution of up to 1 µm is provided [15–20].
The method consists of detecting changes in the reflection coefficient of the sample as
a result of heating. The most significant changes occur as a result of thermo-optical
and thermoelastic effects. In order to determine the local thermoelastic properties, an
interferometer is included in the experimental setup. This is used to detect the displacement
of the sample surface due to thermal expansion caused by an increase in temperature. The
main feature of the used optical scheme consists of the difference in the sizes of the heating
and probing rays. In this case, the heating beam has a diameter several times larger than
the probing beam [18]. The narrow probing beam reads information from the central part
of the heating spot at temperature and deformation parameters close to the maximum
values. The scheme of using optical fibre for radiation transmission is shown in Figure 1.
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The change in the optical path due to the thermoelastic deformation of the surface
is determined from the interferometric signal using semi-analytical and numerical tools.
As a result of the influence of both thermo-optical and thermoelastic effects, a signal can
typically contain both contributions. However, by using an interferometer as an amplifier
and detector of the phase of the reflected signal, it becomes possible to isolate the effects of
surface displacement and radiation phase changes during reflection.

Temporal and spatial distributions of temperature and deformations under local
heating are considered elsewhere [6,15–20]. In our case, we apply the model [19,20] with a
Gaussian power distribution in a heating beam having radiusω:

I(r, t) =
E

πω2 exp
(
− r2

ω2

)
f (t) (1)

where r is the radial distance from the heating centre; E is the pulse energy; f (t) is the
normalised dependence of the pulse amplitude on time; and ω is the radius of the Gaussian
light beam.

With a surface absorption of radiation, the size of the heated site is much larger than
the absorption depth; thus, it is possible to proceed from the model of a local surface heat
source using:

W(r, t) =
(1− R)

cpρ0
I(r, t)δ(z) (2)

where R, cp, and ρ0 are the average reflection coefficient, specific heat capacity and density
of the material, respectively, and δ(z) is the delta function.

Temperature change T(r, t) for a thermally insulated surface can be calculated with:

T(r, t) =
2E0

cpρ0

t∫

0
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)
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(
− r2

ω2+4a∆t
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f (t′)dt′ (3)

where E0 = E(1− R); ∆t = t− t′; z = 0—depth from the heating surface.
Associated thermal deformations along the normal to the heated surface:

uz = −u0 exp(−r2/ω2)F(t)− u0
2
π
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0
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where u0 = 2(1 + ν)αT
E

cpρ0πω2 ; F(t) =
t∫

0
f (t′)dt′; u0—quasi-one-dimensional mode ampli-

tude; τ = ω2/4a—characteristic thermal time; αT—coefficient of linear thermal expansion;
and ν—Poisson’s ratio.

As shown in [19], surface displacements due to thermal expansion are retarded with
respect to temperature changes. Figure 2 shows an example of relative temperature T(0, t)
and deformation uz (0, t) changes in the centre of the heating spot. The retardation of
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deformation with respect to temperature depends on the size of the heating spot and the
thermal diffusivity of the sample.
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temperature change.

2.2. Interferometer

When irradiated by means of a light guide, a natural gap is formed between the
end of the light guide and the surface of the sample. If the planes of the end face and
surface are approximately parallel, then a Fabry–Pérot interferometer is generated in the
gap. The Fabry–Pérot interferometric fibre-optic sensor is one of the most commonly used
types of fibre-optic sensors due to its versatility, simplicity, speed, accuracy and immunity
to environmental noise [21]. The extrinsic Fabry–Pérot interferometer (EFPI) is a fibre-
optic modification of the Fabry–Pérot interferometer. The fibre-optic EFPI is formed by
the fibre end face (having a typical reflection coefficient of about 3.5% for a wavelength
range of 1.55 µm) and the outer surface [22]. As a rule, the intensity of the reflected
light registered in the EFPI demonstrates an oscillating relationship to the interferometer
baseline due to interferometric effects [23]. The short base of such an interferometer
makes it very convenient for measuring various physical quantities. Sensors based on
a fibre-optic EFPI have become widely used in science and industry due to their low
cost, small dimensions, electromagnetic protection and high performance over a wide
range of applications [24]. There are two main classes of measurement methods using
EFPI: those that track only the deviations of the interferometer signal and those used
to analyse the spectral function of the interferometer (interferometry in the wavelength
region). Although deviation tracking approaches offer relatively high speed and resolution,
their main disadvantage is the uncertainty of the initial value. The slower method of
recording the transmission spectrum of the interferometer has a high absolute accuracy and
a wide dynamic range of measurement [25]. In our case, we apply the first method to track
the deviations of the interferometer signal from the operating point when the reflecting
thermally deformable surface is displaced.

The operation of EFPI as a displacement sensor of the reflecting surface involves two
mechanisms: interference and intensity.

The interference-based mechanism is described by the Fabry–Pérot interference of
reflected beams between the two surfaces of the gap [26]. A low-coherence version of
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the interferometer is obtained if the average reflection coefficient R = (R1·R2)1/2 << 1 for
reflections from both sides of the gap L. Then, multiple reflections can be disregarded and
the interference equation for the probing beam is expressed in a known form associated
with the harmonic approximation of the Airy function:

Ir(t) = I0·(1− R)2·
[

1 + 2R· cos
(

4πnL(t)
λ

+ ϕ(t)
)]

(5)

where Ir(t)—dependence of the radiation intensity on the time at the EFPI output; I0—the
initial radiation intensity at the EFPI input; n—refractive index of the medium in the
interferometer gap (n ≈ 1); L(t)—dependence of the gap size on time; λ—wavelength of
the probing radiation; ϕ(t)—dependence of the phase shift of the radiation reflected from
the sample on time; and η—attenuation coefficient of the radiation intensity due to beam
divergence in the interferometer gap.

The mechanism of attenuation of the radiation intensity in the EFPI gap is associated
with the expansion of the radiation beam at the output of the fibre in accordance with
its numerical aperture NA. The propagation of radiation behind the fibre occurs within
the framework of the Gaussian beam model with a constriction at the end of the fibre.
The width of the Gaussian beam is characterised by a radius ω, which varies (diverges)
along the beam axis and corresponds to the radius of the constrictionω0 at its minimum
at the end of the fibre. In the case under consideration, ω0 is given by half the diameter
of the mode spot of the light guide. The approach based on the Gaussian beam model
assumes that the beam passes the length of the interferometer gap twice: in the forward
and reverse directions, it remains Gaussian, while at the boundary with the fibre, it has a
radius exceeding ω0. The Rayleigh beam length L0 is determined by the distance at which
the beam expands twice. The relative fraction η of the power of the probing radiation
reflected from the sample, which will be “captured” by the fibre in the form of radiation of
the main mode, will be determined by the integral of the overlap of the mode field and the
radiation incident at the end [27]:

η = 1/(1+(L/L0)2) (6)

For a standard single-mode SMF-28 light guide, the diameter of the mode field is
about 10 µm. At a numerical aperture of 0.12, the divergence of the heating radiation will
increase the diameter of the heating spot by approximately 10 µm for every 42 µm of the
gap (L0 ≈ 42 µm). For a gap value of L ≈ 100 µm, we have: 2ω ≈ 34 µm and η ≈ 0.15.
At the same time, the information platform of the interferometer on the treated surface
corresponds to the field 2ω0 ≈ 10 µm of the main mode of the light guide. In this case,
it follows Formula (1), whereby the heating power on the information platform changes
by less than 8%. Therefore, it is possible to select such a gap value L at which the heating
intensity will be sufficient for processing, and the interferometer readings will correspond
with an acceptable attenuation η to a quasi-isothermal site in the centre of the heating spot.

2.3. Laser Surface Heating Control Unit with Fibre-Optic EFPI

The optical scheme of the installation contains only fibre-optic elements (see Figure 3).
An add-drop multiplexer is used to combine and separate the heating and probing rays.
The separation of the reflections of the probing radiation from the sample and the end of
the light guide in the EFPI interferometer is carried out by a fibre-optic circulator. From the
output of the circulator, interfering rays are fed to a pulsed photodetector. The function
of a lock-in amplifier is performed by a digital oscilloscope with external synchronisation
from the pulse of the heating laser pump source. Semiconductor laser diodes with a fibre-
optic output are used as radiation sources. Pulsed heating of the sample is provided by a
0.1–0.2 W pulse-pumped laser diode operating at a wavelength of 1470 nm. The source of
probing radiation, which is based on a distributed feedback (DFB) laser diode, operates at
a wavelength of 1530 nm with a continuous power of 0.001 W. The use of the DFB laser
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diode fulfils the requirement of a constant wavelength of probing radiation to stabilise the
operating point of the interferometer for a measurement cycle.
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Figure 3. Experimental setup of a laser surface heating with an EFPI fibre-optic interferometer.

Preliminary adjustment of the interferometer operating point is carried out by ad-
justing the gap using a piezoelectric actuator. When installing the operating point in the
middle of the linear section of the interferometer, sensitivity to surface displacements of
about 10 mV/nm was achieved with a noise intensity of no more than 1 mV. The average
value of the recorded signals was 10–30 mV at the length of the characteristic linear section,
at about 3 V [7].

3. Results
Experimental Section

The experiments were carried out on small-sized samples of metals and semiconduc-
tors, having a surface area measured in units to tens of square millimetres. The size of
the heated spot on the sample surface was up to 100 µm, while the measuring area of the
EFPI interferometer in the centre of the heating spot corresponded to the size of a single
light-guide mode of about 10 µm. According to estimates available elsewhere [19,20], the
average values of temperature and deformation differ from the actual values by less than
10% when heated by a Gaussian beam at a site three times larger than that of the measuring
site. The piezoelectric-driven measuring cell was designed in such a way so as to permit
experiments to be conducted across a wide temperature range [7]. After setting the average
temperature of the sample, the interferometer operating point was adjusted. Then, a series
of heating pulses was applied with simultaneous control of the interferometer signal. The
signal observed on the oscilloscope contained heating and cooling sections. The amplitude
and speed of transients depended on the duration of the heating pulse, the properties of the
sample and the size of the heating spot. Figure 4 shows the characteristic dependences of
the recorded signals for the selected samples of metals and semiconductors. Higher values
of the thermal diffusivity of metals contribute to faster processes of heat relaxation and,
accordingly, higher values of the rate of change of the recorded signals.
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response signals to laser heating with EFPI interferometer for samples under investigation.

4. Discussion

The formation of the interferometer signal is possible both when the heated surface is
deformed and when its optical characteristics change with temperature. In both cases, there
is a change in the phase characteristic of reflections in the interferometer. The amplitude at
the level of 1% of the magnitude of the linear section of the interferometer characteristic
of the observed signals suggests the additive influence of both factors. The experimental
data presented in Figure 5 show the relationship between the shape of the recorded signals
and the normalised calculated dependences of temperature change and deformation in the
centre of the heating spot.

Our first hypothesis with regard to the direct dependence of the recorded signal
on temperature changes was not confirmed. On the contrary, the second hypothesis on
the existence of a relationship between the signal change and the heated surface thermal
deformations has been confirmed by the mathematical model of the surface displacement.

Figure 5 shows the better correspondence between experimental data and the model
of the thermal deformation process, with respect to the temperature change.

To obtain a better agreement between the calculation result and the experiment, the
procedure of the iterative fitting of the deformation curve uz to the experimental data
were carried out. The target fitting criterion was to minimise the standard deviation of the
difference between values calculated and revealed in the experiment.

In the used model, the main influence on the signal shape is assumed to be due to
changes in the thermal diffusivity of the sample and the size of the heated area. Deforma-
tions of the sample are delayed relative to temperature changes. Comparing experimental
data with model data, it is possible to estimate the influence of each factor on the formation
of the resulting signal. Figure 6 depicts the corresponding dependences, which demonstrate
the predominance of the mechanism of thermal deformations in the case of metal samples
and the total effect of both factors in the case of semiconductors.
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in the centre of the heating spot with experimental data.

The reflected optical signal is recorded as voltage fluctuations of the photodetector.
However, the results (Figures 4–6) are given in relative units. The signal scale significantly
depends on the heating conditions of the sample, which are also affected by the settings
of the measuring system and the local optical properties of the material. The normalised
signals obtained in a series of successive experiments can be used to study the mechanical
effects of thermal deformation and the dynamics of thermal processes. The results presented
in the graphs were obtained by accumulating and averaging 256 pulsed experiments with
appropriate synchronisation. Deviations in a series of measurements did not exceed a few
percent. An additional advantage of signal averaging and accumulation is the possibility
of improving the quality of the obtained experimental data. Thermo-optical signals have
a small amplitude (appeared to be in the range of 10–50 mV) with a noise level of about
5 mV. Accumulation with averaging allows an increase in the signal-to-noise ratio by over
10 times.

Statistical results for the studied materials are presented in Table 1. The data show
correspondence between the model prediction and the experimental data. To calculate the
standard deviation, a preliminary calculation of the difference between the values of the
strain uz and the normalised reflection signal for each time interval of the experiment was
performed. Then, for the obtained data, the standard deviation, expressed as a percentage,
was calculated. The Pearson criterion was calculated for two discrete datasets for the strain
curves uz and the experimental data.

Table 1. Correlation statistics and fitting parameter data.

Parameter Nb ZnSeNi Steel HgSe Fe

Standard deviation, % 2.192 3.341 1.593 8.935 2.068
Pearson correlation coefficient 0.9945 0.9856 0.9973 0.9062 0.9960

Thermal diffusivity a, m2/s 2.48·10−5 1.05·10−5 4·10−6 1.18·10−6 2.2·10−5
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Experiments carried out with various materials revealed a strong dependence of the
amplitude of the recorded signal on the size of the gap between the light guide and the
sample in accordance with Formulas (5) and (6). Nevertheless, relative changes in the gap
over the linear section of the characteristic are experimentally controlled with respect to the
position of the interferometer baseline. The absolute value of the gap can be determined by
analysing the spectral characteristics of the interferometer at different probing radiation
wavelengths. In this work, relative measurements of the thermo-optical signal were carried
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out at one wavelength. In addition, the amplitude and shape of the signal depended on
the relative position of the studied area on the sample surface. Thus, the thermo-optical
signal carries information on the changes in the optical and thermophysical properties
of the sample surface [13,28]. Prompt receipt and analysis of this information allow the
intensity of the impact (in particular, the thermal one) on the sample to be regulated for
various purposes, including the creation and preservation of selected structures on the
surface, as well as their modification and destruction.

5. Conclusions

In the course of the study, the possibility of assessing the intensity of pulse heat
treatment processes on the microsites of the surface of samples by means of low-coherence
interferometry was revealed. This was implemented in a compact fibre-optic circuit with a
simultaneous supply of heating and probing radiation through a single-mode light guide.
The structure of fibre optics in the pump–probing circuit with an extrinsic Fabry–Pérot
interferometer for a high-speed thermo-optical control of thermal processes during pulsed
laser heating was investigated. By adjusting the EFPI gap, it is possible to increase the size
of the heating area to 50 µm with a constant size of the measuring area in the centre of the
heating spot of about 10 µm. Experiments were carried out on metal and semiconductor
samples. In the case of metal samples, a comparison of experimental data with modelling
calculations showed that the recorded signal corresponds to the temporal dependences
of thermal deformations. In the case of semiconductors, a more complex combination of
thermo-optical effects was identified. The applicability of the proposed scheme for the
characterisation of near-surface properties on microsites of the sample by the relaxation
rate of a pulsed thermal disturbance was demonstrated.

For the presented samples, differences in the rate of signal change are clearly visible
depending on their thermal diffusivity and the size of the heating area. If the gap between
the end of the fibre and the surface of the sample has been fixed, then the size of the heating
area will be close to a constant value. As a result, if we analyse the rate of signal change
in the course of cooling stage, we can draw conclusions on the differences of the thermal
diffusivity of several samples. It is also possible to evaluate the change in the local values
of thermal diffusivity on the surface of an inhomogeneous sample.

The ongoing work will develop in the direction of isolating contributions from surface
displacement and changes in the optical characteristics of semiconductor samples due to
differences in the rate of their manifestation in the interferometer signal.
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List of Symbols and Abbreviations

Definition
Subscripts
A Aperture
p Pressure
d Duration
r Radiation
T Thermal
z z-axis direction
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Variables and functions
αT Coefficient of linear thermal expansion
β Variable of integration
δ Delta function
η Attenuation coefficient of the radiation intensity
λ Wavelength of the probing radiation
ν Poisson’s ratio
π π number
ρ0 Density of the material
τ Characteristic thermal time
τd Duration of the radiation pulse
ϕ Phase shift of the radiation reflected from the sample
ω Radius of the Gaussian light beam
ω0 Half diameter of the mode spot of the light guide
a Thermal diffusivity
cp Specific heat capacity
E Pulse energy
E0 Absorbed pulse energy
F Heating source function
f Normalised dependence of the pulse amplitude on time
I Gaussian power distribution
Ir Radiation intensity in time at the EFPI output
I0 Initial radiation intensity at the EFPI input
L Interferometer gap size
L0 Rayleigh beam length
NA Fibre core numerical aperture
n Refractive index of the medium in the interferometer gap
R Average reflection coefficient
r Radial distance from heating centre
T Temperature change
t Time
t′ Variable of integration
∆t Integration time
u0 Quasi-one-dimensional mode amplitude
uz Normal thermal deformations along heated surface
W Local surface heat source
Abbreviations
DFB Distributed feedback laser diode
EFPI External Fabry–Pérot interferometer
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Abstract: The diagnosis of structural damage usually belongs to a mathematical inverse problem.
This work presents a novel frequency-shift flexibility sensitivity algorithm for structural damage
assessment using only the first-order vibration mode to achieve the goal of successfully identifying
structural damage with fewer modal parameters. The core idea of the proposed method is to make the
first-order vibration mode contribute the most to a structural flexibility matrix through the frequency-
shift operation. A high-precision flexibility matrix can be obtained after the frequency-shift operation,
which only needs the first mode of structural free vibration. Through this special advantage, structural
damage coefficients can be accurately calculated by the frequency-shift flexibility sensitivity equation.
Thus, a reliable identification result can be obtained according to the values of the calculated damage
coefficients. In some engineering applications, another advantage of the proposed method is that
it does not require a complete finite element modeling process, as long as a few lower-frequency
vibration modes of the intact structure are measured. A truss structure and a beam structure are
used as two numerical examples to demonstrate the proposed approach. The results show that the
proposed method has higher calculation accuracy than the ordinary flexibility sensitivity method by
using only the first-order vibration mode. The proposed method can overcome possible misdiagnosis
of the ordinary flexibility sensitivity method. It also has been shown that the proposed method may
have the potential to identify minor damage in a structure. Using the experimental data of a steel
frame structure, the effectiveness and reliability of the proposed method have been further verified.
The proposed method provides a simple way for structural damage identification with only a few
vibration modal data.

Keywords: damage diagnosis; frequency-shift flexibility; sensitivity analysis; vibration mode;
damage parameter

MSC: 65M32

1. Introduction

During the service period, an engineering structure will inevitably be damaged due to
the influence of environmental corrosion or a disaster load. Local damage in a structure may
lead to a sudden collapse of the whole structure, thus causing serious loss of life or property.
In view of this, it is very necessary to conduct timely damage diagnosis for a structure to
avoid catastrophic consequences. Due to the large volume and numerous components of
engineering structures, traditional non-destructive testing techniques such as ultrasound,
radiographic testing, and penetration testing cannot complete defect diagnosis of large
engineering structures. In the past few decades, methods for diagnosing structural damage
using the response parameters of structures under static or dynamic loads have been
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continuously studied in depth. The theoretical basis for this type of method is that faults
in structures can cause changes in structural static and vibration response parameters. In
practice, the response data of structures can be measured through special testing equipment,
and then their changes can be used to diagnose structural fault conditions. In view of this,
many methods based on static or dynamic response parameters have been developed for
structural damage identification [1–3] in recent years. These methods can be mathematically
attributed to an inverse problem.

Among these methods, the flexibility-based approach is favored because of its simple
operation and wide application [4]. It is known that a structural flexibility matrix can be
obtained from both static data and the low-order vibration modes. Pandey and Biswas [5]
used the flexibility matrix change to determine the damage location of the beam structure
without constructing the finite element model (FEM). It was found that the diagonal element
in the flexibility difference matrix can indicate the damage location. Jaishi and Ren [6]
employed the flexibility difference as the objective function to modify the structural FEM
for detecting structural damage. Catbas et al. [7] found that the dynamic test without a
fixed reference measurement position can also be used to generate data for calculating the
modal flexibility. Then, the displacement distribution can be obtained by using the modal
flexibility for damage detection. Duan et al. [8] extended the damage location method
based on flexibility to the case of environmental vibration with incomplete measured
degrees of freedom (DOFs). Tomaszewska [9] discussed the damage detection method
based on the structural dynamic flexibility of the building structure. In order to distinguish
the true and false damage detection results, the absolute damage index was proposed
to constrain the influence of the modal identification errors. Yang [10] proposed a new
damage identification method based on structural flexible disassembly. The scheme has
a unique advantage in that it can accurately calculate the stiffness damage parameters
without any high-order sensitivity analysis or iteration. Maghsoodi et al. [11] proposed a
simple method based on local flexibility to detect, locate, and quantify multiple cracks in
Euler–Bernoulli multi-step beams. The main advantage of their method is that it can detect
a number of unknown cracks.

Weng et al. [12] presented a new substructure method for structural damage detection
by using the substructure dynamic flexibility matrix. The main advantage of their method
is that the substructure characteristic parameters are more sensitive to local damage than
the global characteristic parameters. Using Dempster–Shafer evidence theory, Grande and
Imbimbo [13] proposed a multi-stage flexibility method for damage detection in the case
of multiple damage locations and three-dimensional systems. Hosseinzadeh et al. [14]
developed a damage detection method by introducing an effective objective function based
on modal assurance criteria and modal flexibility. It was found that the proposed method
can only use the data of the first few modes to accurately identify the damage even if the
incomplete noise modal data are taken as the input data. Altunisik et al. [15] used modal
curvature and modal flexibility methods to locate cracks in steel cantilever beams. The
comparison shows that the modal flexibility method is effective in determining the crack
location. Wickramasinghe et al. [16] developed the vertical damage index and transverse
damage index based on the modal flexibility to detect and locate the damage of the main
cable and hanger of a suspension bridge. The results confirm the applicability of the
vertical damage index to accurately detect the damage in the actual suspension bridge by
using only the first few modes. Sarmadi et al. [17] improved the sensitivity function of
modal flexibility and proposed a new iterative regularization method to solve the ill-posed
problem to locate and quantify the damage. It was found that their method is robust enough
to solve the ill-posed problem of damage location and quantification under noise-free and
noisy modal data. Ahmadi-Nedushan and Fathnejat [18] proposed a two-stage structural
damage detection method based on modal flexibility and an improved teaching–learning
optimization algorithm to reduce the influence of measurement noise.

Feng et al. [19] proposed a Bayesian model updating method with modal flexibil-
ity to find the most probable value of the model parameters for damage identification.
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Bernagozzi et al. [20] proposed a data-driven standard for structural type classification,
which can be used in the framework of modal flexibility-based damage identification meth-
ods. Yang and Peng [21] developed a highly efficient model reduction method for structural
damage identification based on the reduced flexibility matrix. Dinh-Cong et al. [22] used
the damage index based on modal flexibility sensitivity to detect damages in functionally
graded beams. The results indicate that when the noise level added to the vibration mode
data is less than 10%, the provided method can correctly locate the position of damaged
components. Darshan et al. [23] developed the damage detection procedure based on strain
energy and a flexibility matrix to detect single and multiple damages in plate structures.
Quqa and Landi [24] proposed a damage identification method based on bridge flexibility
curvature with sparse acceleration measurement. The damage index proposed by them is
particularly sensitive to the damage location and can be successfully applied to the steel
truss bridge with different damage patterns. Nick et al. [25] proposed a damage index
based on modal flexibility and modal strain energy, and a two-stage multi-criteria damage
detection method using an artificial neural network (ANN) to locate and quantify the dam-
age of steel frames. The modal flexibility matrix was obtained by the first three bending
vibration modes. Cuomo et al. [26] proposed a new baseline free method for real-time
structural damage diagnosis during low-speed and high-speed collisions, which is based
on the decomposition of propagation patterns caused by collision events. Aulakh et al. [27]
developed the curvature and coordinated modal assurance criteria based on strain modal
flexibility for structural damage monitoring. They found that strain modal flexibility is
more sensitive to structural damage than displacement mode flexibility.

The limitation of the existing flexibility-based method is that several low-order vi-
bration modes are needed to approximately obtain the dynamic flexibility matrix. This
leads to a large workload of dynamic analysis and a high requirement for analysis accuracy.
To overcome this limitation, this work presents a novel frequency-shift flexibility sensitiv-
ity method for structural damage detection by only using the first-order vibration mode.
Based on the frequency-shift operation, the first-order vibration mode will account for the
majority of the dynamic flexibility of the structure. As a result, the damage coefficients in
structural FEM can be solved accurately through the frequency-shift flexibility sensitivity
equation, which indicates the damage locations and extents. The innovation of this work
mainly lies in two aspects. The first innovation is that the ordinary flexibility sensitivity
method has been improved through the frequency-shift operation for achieving the goal of
identifying structural damage with fewer modal parameters. The second innovation is that
in some engineering applications, the tested modal data can be used to directly compute
the frequency-shift flexibility without the need for a complete finite element modeling
process. Two numerical examples and one experimental example are used to validate the
presented frequency-shift flexibility sensitivity method. It is found that the proportion
of the higher-order vibration modes in the frequency-shift flexibility is greatly reduced.
For this reason, the damage coefficients of the structure can be calculated accurately by
the frequency-shift flexibility sensitivity analysis with only a few modal data. It has been
shown that the proposed method requires fewer modal parameters but has higher calcula-
tion accuracy than the ordinary flexibility sensitivity method. It may be a valuable new
approach to structural damage identification in engineering practice.

2. Theoretical Development

In this section, the ordinary flexibility sensitivity method is first briefly reviewed,
and then a new frequency-shift flexibility sensitivity algorithm is developed for structural
damage detection.

Based on structural FEM, the free vibration eigen-parameters can be computed by
solving the following generalized eigenvalue problem as:

Kφj = λj Mφj (1)
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where K and M are the stiffness and mass matrices of a structure with n DOFs, λj and ϕj are
the j-th eigenvalue and eigenvector (λj and ϕj, also called the j-th eigen-pair), respectively.
Similarly, the eigen-solutions of the damaged structure can be also obtained by

Kdφdj = λdj Mφdj (2)

Kd = K− ∆K (3)

∆K =
N

∑
i=1

εiKi (4)

where Kd is the damaged stiffness matrix, λdj and φdj are the j-th eigenvalue and eigenvector
of the damaged structure, ∆K is the stiffness reduction due to structural damage, εi and
Ki are the damage coefficient and elementary stiffness matrix of the i-th element in FEM,
and N is the total number of the elements in FEM. It is known that the flexibility matrix is
the inverse of the stiffness matrix and can be obtained approximately by several low-order
eigen-pairs as:

F = K−1 ≈
m

∑
j=1

1
λj

φjφ
T
j (5)

Fd = K−1
d ≈

m

∑
j=1

1
λdj

φdjφ
T
dj (6)

where F and Fd are the flexibility matrices of the undamaged and damaged structures, and
m is the number of the measured modes in the vibration testing. Subtracting (5) from (6),
one obtains:

∆F = Fd − F = K−1
d − K−1 (7)

∆F ≈
m

∑
j=1

(
1

λdj
φdjφ

T
dj −

1
λj

φjφ
T
j ) (8)

Equation (8) shows that the flexibility change ∆F can be approximately obtained by the
measured lower eigen-parameters of the structure before and after damage. Substituting
Equation (3) into (7), one obtains:

∆F = (K− ∆K)−1 − K−1 (9)

Using Neumann series expansion, Equation (9) can be further simplified as:

∆F = F · ∆K · F + F · ∆K · F · ∆K · F + · · · (10)

Ignoring the higher-order items in Equation (10) yields:

∆F = F · ∆K · F (11)

Substituting Equation (4) into (11), one obtains:

∆F =
N

∑
i=1

εiΠi (12)

Πi = FKiF (13)

Equation (12) is called the ordinary flexibility sensitivity equation and will be used to
compute the unknown damage coefficients εi ( i = 1 ∼ N) for damage identification. The
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matrix Πi is called the elementary flexibility sensitivity of the i-th element in FEM. The
operation steps of the above flexibility sensitivity method are summarized as follows:

(1) Establish the FEM of the intact structure to obtain the stiffness and mass matrices K
and M.

(2) Conduct dynamic analysis on the structure and measure the lower-order eigen-pairs
of the intact and damaged structures.

(3) Compute the flexibility change ∆F by Equation (8) and compute the elementary
flexibility sensitivity matrix Πi by Equation (13).

(4) Compute the damage coefficients εi ( i = 1 ∼ N) by solving Equation (12). Finally,
the damage locations and extents in the structure can be determined according to the
values of εi ( i = 1 ∼ N).

The advantage of the flexibility sensitivity method is that the calculation formula of
elementary flexibility sensitivity (i.e., Equation (13)) is very simple, especially compared
with the calculation formula of the eigenvector sensitivity [28]. The limitation of the or-
dinary flexibility sensitivity method is that several low-order eigen-pairs are still needed
when applying Equation (8) to calculate the flexibility change ∆F. This leads to a large
workload of dynamic analysis and a high requirement for analysis accuracy. However, only
the first mode of structural vibration, namely the fundamental frequency and mode shape,
is usually measured in practical engineering. This limits the successful application of the
traditional flexibility sensitivity method in actual engineering structural damage identifica-
tion. The method of successfully identifying structural damage using only the fundamental
frequency and mode of structural vibration will be very popular in engineering practice.

To overcome this limitation, a novel frequency-shift flexibility sensitivity method
is proposed in this work to compute the damage coefficients only using the first-order
eigen-pairs. The key idea of the proposed method is to make the first eigenvalue (λ1) of the
new system very close to zero through the frequency-shift operation. This will cause the
reciprocal of the first eigenvalue to be particularly large and far exceed the reciprocals of
other eigenvalues. As a result, the flexibility matrix of the new system can be accurately
calculated by only the first-order eigen-pairs. The specific formulas of the proposed method
are derived as follows. From Equations (1) and (2), the generalized eigenvalue equations of
the intact and damaged systems after frequency shift are expressed as:

Kφj = λj Mφj (14)

Kdφdj = λdj Mφdj (15)

K = K− µM (16)

λj = λj − µ (17)

Kd = Kd − µM (18)

λdj = λdj − µ (19)

where µ denotes the frequency-shift distance, K and Kd denote the stiffness matrices of the
intact and damaged systems after frequency shift, and λj and λdj denote the eigenvalues of
the intact and damaged systems after frequency shift. The frequency-shift operation shown
in Equations (16)–(19) has been shown to be an effective means for quickly calculating the
eigenvalues of large structures. The related content can be referred to in [29,30]. Similar
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to Equations (5) and (6), the intact and damaged flexibility matrices of the systems after
frequency shift can also be obtained approximately by several low-order eigen-pairs as:

F = K−1 ≈
m

∑
j=1

1
λj

φjφ
T
j =

m

∑
j=1

1
λj − µ

φjφ
T
j (20)

Fd = Kd
−1 ≈

m

∑
j=1

1
λdj

φdjφ
T
dj =

m

∑
j=1

1
λdj − µ

φdjφ
T
dj (21)

where F and Fd are the intact and damaged flexibility matrices of the systems after frequency
shift. As can be seen in Equation (20) or (21), the first-order eigen-pairs will contribute
most to the flexibility matrix when the frequency-shift distance µ is close to λ1 or λd1.
The basis for determining the frequency-shift distance µ is that the contribution of the
first mode to the flexibility matrix after the frequency-shift operation exceeds 95% or
more, since the allowable data error level in the engineering field is usually around 5%.
The vibration frequencies of actual engineering structures are all greater than zero and
sorted in ascending order. In view of this, a simple criterion for determining the value
of µ is that the ratio of the first to second frequency after the frequency-shift operation
is less than 5% or more. In most cases, the frequency-shift distance µ can be taken as a
number between 0.90 and 0.99 times the first eigenvalue, which can basically meet the
above requirement. Without loss of generality, taking λ1 = 1, λ2 = 5, and λ3 = 10 as
an example, the reciprocals of these eigenvalues are 1

λ1
= 1, 1

λ2
= 0.2, and 1

λ3
= 0.1.

The ratio of the reciprocal of the first-order eigenvalue to the sum of all reciprocals is
1

1+0.2+0.1 = 76.92%. Letting µ = 0.99 λ1 = 0.99, the eigenvalues of the system after
frequency shift are λ1 = 1− 0.99 = 0.01, λ2 = 5− 0.99 = 4.01, and λ3 = 10− 0.99 = 9.01,
and the corresponding reciprocals are 1

λ1
= 100, 1

λ2
= 0.25, and 1

λ3
= 0.11. The ratio of the

reciprocal of the first-order eigenvalue to the sum of all reciprocals is 100
100+0.25+0.11 = 99.64%.

It is clear that the contribution of the first-order eigen-pairs to the flexibility matrix increased
from 76.92% to 99.64% for the system before and after frequency shift. In other words, the
contribution of the higher-order modes to the flexibility matrix can be greatly reduced by
the frequency-shift operation. As a result, the frequency-shift flexibility change ∆F can be
accurately estimated by only the first-order eigen-pairs as:

∆F =
1

λd1 − µ
φd1φT

d1 −
1

λ1 − µ
φ1φT

1 (22)

On the other hand, the frequency-shift flexibility sensitivity equation can also be
derived by using the similar process from Equation (9) to (13) as:

∆F =
N

∑
i=1

εiΠi (23)

Πi = FKiF (24)

F = K−1
= (K− µM)−1 (25)

Equation (23) is called the frequency-shift flexibility sensitivity equation and will be
used to compute the unknown damage coefficients εi ( i = 1 ∼ N) for damage identification.
The matrix Πi is called the elementary frequency-shift flexibility sensitivity of the i-th
element in FEM.

In the end, the operation steps of the proposed frequency-shift flexibility sensitivity
method are summarized as follows:

(1) Establish the FEM of the intact structure to obtain the stiffness and mass matrices K
and M.
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(2) Conduct dynamic analysis on the structure and measure the first-order eigen-pairs of
the intact and damaged structures.

(3) Compute the frequency-shift flexibility change ∆F by Equation (22) and compute the
elementary frequency-shift flexibility sensitivity matrix Πi by Equation (24).

(4) Compute the damage coefficients εi ( i = 1 ∼ N) by solving Equation (23). Finally,
the damage locations and extents in the structure can be determined according to the
values of εi ( i = 1 ∼ N). To resist the adverse effects of data noise due to measurement
error, the singular-value truncation algorithm [31,32] is used in the process of solving
the linear Equation (23) for achieving stable computational results in engineering
applications. The core idea of the singular-value truncation algorithm is to ignore
small singular values to partially eliminate the impact of data noise on the calculation
results. The main formulas of the singular-value truncation algorithm are briefly
illustrated as follows. Firstly, Equation (23) can be rewritten as a system of linear
equations as:

η = Ω · α (26)

α = (ε1, ε2, · · · , εN)
T (27)

where η is a column vector derived from the matrix ∆F, and Ω is the corresponding
coefficient matrix derived from the matrices Πi ( i = 1 ∼ N). Performing the singular-value
decomposition of Ω yields:

Ω = UΛVT (28)

U = [u1, u2, · · · ] (29)

V = [v1, v2, · · · ] (30)

Λ =

[
Z 0
0 0

]
(31)

Z = diag(σ1, σ2, · · · , σt) (32)

where σ1, σ2, · · · , σt are the nonzero singular values of Ω with σ1 ≥ σ2 ≥ · · · ≥ σt. Based
on Equations (26) and (28), the singular-value truncation solution of the damage coefficient
vector α can be obtained by ignoring a few smaller singular values as:

αsvt = (
z

∑
x=1

σ−1
x vxuT

x )η (33)

where z is the number of remaining singular values. These remaining singular values
σx ( x = 1 ∼ z) all satisfy σx/σmax ≥ ζ (ζ is a predefined threshold value; for example,
ζ = 0.001 is used in the next beam and frame structure examples).

Compared with the ordinary flexibility sensitivity method, the frequency-shift flex-
ibility sensitivity approach greatly reduces the adverse effect of the higher-order modal
truncation on damage identification. Theoretically, the proposed method can accurately
calculate the structural damage parameters only by using the first-order eigen-parameters
of structural free vibration. From Equations (24) and (25), one can find that the system ma-
trices K and M of the undamaged FEM are used in the computation of the frequency-shift
flexibility sensitivity. However, Equation (25) can be approximated by using Equation (20)
with a few lower-frequency vibration modes.

Combining Equations (20) and (24), it can be found that the frequency-shift flexibility
sensitivity equations can also be established by only using the tested vibration modes
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of the intact structure, rather than the system matrices K and M obtained from the FEM
of the intact structure. This advantage makes it possible to conduct structural damage
identification even without finite element modeling. In other words, another advantage
of the proposed method is that it does not require a complete finite element modeling
process, as long as a few lower-frequency vibration modes of the intact structure are
measured. Therefore, the proposed method is simpler in operation compared to other
existing sensitivity methods, as these existing sensitivity methods require the use of the
system matrices K and M of the structural FEM. The case verification of this advantage is
detailed in the following section of the experimental example.

3. Numerical Example
3.1. A Truss Structure

A 23-bar truss structure as shown in Figure 1 is used as the first numerical example to
verify the frequency-shift flexibility sensitivity method. The main parameters of this steel
truss structure are as follows: Young’s modulus is 200 GPa, density is 7800 kg/m3, length
of each bar is 1 m, and cross-sectional area is 1.759 × 10−4 m2. The vibration test data
used were generated through the numerical finite element model of the undamaged and
damaged systems. Note that the data noise was not considered in this example in order to
purely investigate the improvement effect of the frequency-shift process on the solution
accuracy. Three damage scenarios are simulated in this example. The first damage scenario
assumes that the elastic modulus of bar elements 10 and 13 are both reduced by 5%. The
second damage scenario assumes that the elastic modulus of bar elements 9, 10, and 11
are reduced by 10%, 5%, and 5%, respectively. The third damage scenario assumes that
the elastic modulus of bar element 13 is reduced by 2%. Table 1 presents the first natural
frequencies of the undamaged and damage scenarios. In engineering practice, fatigue
and corrosion of materials will lead to a decrease in the elastic modulus. Note that the
proposed method is also applicable to other types of damage such as cracks or notches,
as shown in the next experimental example. Figures 2–4 present the calculation results of
the damage coefficients by the proposed method and the ordinary flexibility sensitivity
method, respectively. Only the first-order eigen-parameters are used in the calculation,
and the frequency-shift distance µ is taken as µ = 0.9λd1, µ = 0.95λd1, and µ = 0.99λd1,
respectively. Tables 2–4 present the comparison between the calculated value and the actual
value of the damage extent for these three damage scenarios. The values in brackets in
these tables represent the relative error between the calculated values and the true values.
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Table 1. The first natural frequencies of the undamaged and damage scenarios.

Case Undamaged Damage
Scenario 1

Damage
Scenario 2

Damage
Scenario 3

Natural
frequencies 56.8522 56.6298 56.6210 56.8516
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Figure 3. Calculation result comparison of the proposed method and the ordinary flexibility sensitiv-
ity method for the second damage scenario.
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Table 2. Comparison between the calculated value and the actual value of the damage coefficient for
the first damage scenario.

Damaged
Element Number

True
Value

Ordinary Flexibility
Method

Frequency-Shift Flexibility Method

µ = 0.9λd1 µ = 0.95λd1 µ = 0.99λd1

10 0.05 0.0524
(4.8%) *

0.0526
(4.9%)

0.0585
(14.5%)

0.0928
(46.1%)

13 0.05 −0.0001
(/)

0.0815
(38.7%)

0.0749
(33.2%)

0.0982
(49.1%)

* The values in brackets represent the relative error.

Table 3. Comparison between the calculated value and the actual value of the damage coefficient for
the second damage scenario.

Damaged
Element Number

True
Value

Ordinary
Flexibility Method

Frequency-Shift Flexibility Method

µ = 0.9λd1 µ = 0.95λd1 µ = 0.99λd1

9 0.1 0.1787
(44.0%) *

0.1278
(21.8%)

0.1323
(24.4%)

0.2026
(50.6%)

10 0.05 0.0333
(33.4%)

0.0527
(5.1%)

0.0589
(15.1%)

0.0943
(46.9%)

11 0.05 0.0007
(98.6%)

0.029
(42%)

0.0419
(16.2%)

0.0901
(44.5%)

* The values in brackets represent the relative error.

Table 4. Comparison between the calculated value and the actual value of the damage coefficient for
the third damage scenario.

Damaged
Element Number

True
Value

Ordinary Flexibility
Method

Frequency-Shift Flexibility Method

µ = 0.9λd1 µ = 0.95λd1 µ = 0.99λd1

13 0.02 0.0003
(98.5%) *

0.0211
(5.5%)

0.0209
(4.3%)

0.0205
(2.4%)

* The values in brackets represent the relative error.

For the first damage scenario, one can find from Figure 2 that the proposed method
can successfully identify elements 10 and 13 as the damaged bars. However, the ordinary
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flexibility sensitivity method can only identify element 10 as the damaged bar, while
element 13 cannot be identified. This indicates that the traditional flexibility sensitivity
method may result in a missed diagnosis, while the proposed frequency-shift flexibility
sensitivity method performs well. When the frequency-shift distance changes, Table 2
shows that the calculation error of the damage coefficient is relatively minimal when
µ = 0.9λd1. However, Figure 2 shows that the accuracy of damage localization is highest
when µ = 0.99λd1, since there is a misjudgment of damage location when µ = 0.9λd1. When
µ = 0.95λd1, a good balance can be achieved between the damage localization and damage
quantification of the frequency-shift flexibility method. For the second damage scenario, it
can be seen from Figure 3 that the proposed method can successfully identify elements 9,
10, and 11 as the damaged bars. Again, the ordinary flexibility sensitivity method failed
since element 11 cannot be identified by it. This once again demonstrates that the proposed
frequency-shift flexibility sensitivity method is more reliable in calculating results than
the traditional flexibility sensitivity method. When the frequency-shift distance changes,
Table 3 shows that the calculation error of the damage coefficient is relatively minimal
when µ = 0.95λd1, and Figure 3 shows that the accuracy of damage localization is highest
when µ = 0.99λd1. For the third damage scenario (minor damage), one can find from
Figure 4 that the proposed method more clearly indicates that element 13 is the damaged
bar than the ordinary flexibility sensitivity method. It has been shown that the proposed
method may have better ability to identify the minor damage than the ordinary flexibility
sensitivity method. When the frequency-shift distance changes, Table 4 and Figure 4 show
that the frequency-shift flexibility algorithm has the best accuracy in damage localization
and quantification when µ = 0.99λd1. Based on the above results, it can be concluded that
the smaller the degree of damage, the larger the frequency-shift distance should be taken.
In summary, the proposed frequency-shift flexibility algorithm is very efficient with only
the first-order modal parameters. This new method can achieve the goal of improving
the accuracy and reliability of the damage identification results through only the simple
frequency-shift operation.

3.2. A Beam Structure

A beam structure with fixed ends (as shown in Figure 5) is used as the second numeri-
cal example to further verify the proposed method. The Young’s modulus and density of
this beam structure are 193 GPa and 7850 kg/m3, respectively. The vibration test data used
were generated through the numerical FEMs of the undamaged and damaged systems. In
this example, a 5% random noise level is added to the first mode shape to simulate the
measurement error as

ϕ′d1 = ϕd1 × [1 + τ · uni f rnd(−1, 1)] (34)

where ϕ′d1 is the contaminated mode shape, τ is the noise level, and uni f rnd(−1, 1) repre-
sents a random number located in the interval of [−1,1].
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Figure 5. A beam structure.

Two fault scenarios are simulated in this example. The first fault scenario assumes
that the elastic modulus of elements 3 and 10 are reduced by 10% and 15%, respectively.
The second fault scenario assumes that the elastic modulus of elements 6, 10, and 14 are
all reduced by 10%. As stated before, the singular-value truncation algorithm is used in
this example to overcome the adverse effects of data noise. Figures 6 and 7 present the
calculation results of the damage coefficients by the proposed method and the ordinary
flexibility sensitivity method, respectively. Note that only the first-order eigen-parameters
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are used in the calculation, and the frequency-shift distance µ is taken as µ = 0.9λd1.
Tables 5 and 6 present the comparison between the calculated value and the actual value
of the damage extent for the two damage scenarios. The values in brackets in these tables
represent the relative error between the calculated values and the true values.
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ity method when elements 3 and 10 are damaged.
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ity method when elements 6, 10, and 14 are damaged.

Table 5. Comparison between the calculated value and the actual value of the damage coefficient
when elements 3 and 10 are damaged.

Damaged
Element Number True Value Ordinary Flexibility

Method
Frequency-Shift Flexibility

Method with µ = 0.9λd1

3 0.1 0.021
(79.0%) *

0.1336
(25.1%)

10 0.15 0.1402
(6.5%)

0.1894
(26.3%)

* The values in brackets represent the relative error.
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Table 6. Comparison between the calculated value and the actual value of the damage coefficient
when elements 6, 10, and 14 are damaged.

Damaged
Element Number True Value Ordinary Flexibility

Method
Frequency-Shift Flexibility

Method with µ = 0.9λd1

6 0.1 0.0122
(87.8%) *

0.0696
(30.4%)

10 0.1 0.0745
(25.5%)

0.1055
(5.2%)

14 0.1 0.0393
(60.7%)

0.0916
(8.4%)

* The values in brackets represent the relative error.

For the first fault scenario, one can find from Figure 6 that the proposed method
can successfully identify elements 3 and 10 as the fault locations. However, the ordinary
flexibility sensitivity method can only identify element 10 as the fault location, while
element 3 cannot be identified. This indicates that the traditional flexibility sensitivity
method may result in misdiagnosis, while the proposed frequency-shift flexibility sensitivity
method performs well. For the second fault scenario, it can be seen from Figure 7 that the
proposed method can successfully identify elements 6, 10, and 14 as the damage locations.
Again, the ordinary flexibility sensitivity method failed since element 6 cannot be identified
by it. From Tables 5 and 6, one can find that the proposed frequency-shift flexibility
method achieves better computational accuracy than the ordinary flexibility method. This
once again demonstrates that the proposed method can achieve the goal of improving
the accuracy and reliability of fault identification through only the simple frequency-shift
operation.

4. Validation by the Experimental Data of a Steel Frame Structure

The presented algorithm is further verified by the experimental data obtained from
a three-story steel frame structure from [33]. As shown in Figure 8a, the experimen-
tal structure consists of three steel plates and four rectangular columns. These steel
plates and columns are welded to form a rigid shear system as shown in Figure 8b. De-
tailed descriptions of material physical parameters and testing processes are provided
in [33]. The fault condition is simulated by cutting from 75 mm to 51.3 mm on the first
floor as shown in Figure 9, with a corresponding damage severity of 11.6%. The first
frequency and vibration mode of the undamaged system measured are f1 = 3.369Hz
and ϕ1 = (0.021108, 0.03922, 0.048427)T. The second frequency and vibration mode of
the undamaged system are f2 = 9.704 and ξ2 = (0.048758, 0.02031,−0.03923)T . The
third frequency and vibration mode of the undamaged system are f3 = 14.282 and
ξ3 = (0.037936,−0.04866, 0.022852)T . For the structure with damage, the measured first fre-
quency and vibration mode are fd1 = 3.259Hz and ϕd1 = (0 .022735, 0.039331, 0 .047594)T.
As stated before, the frequency-shift flexibility sensitivity equations in this example are
established by directly using the tested vibration modes of the intact structure, rather than
the system matrices K and M obtained from the FEM of the intact structure. Therefore, this
example does not require a complete finite element modeling process to perform damage
identification. Figure 10 presents the calculation results of the damage coefficients by the
proposed method with the frequency-shift distance µ = 0.9λd1. From Figure 10, one can
find that the proposed method can accurately identify the first floor as the damage location,
and the calculated value of damage degree is 0.22. It has been shown that the proposed
method can also complete the task of damage identification without the need for a complete
finite element modeling process.
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5. Conclusions

In this work, a new frequency-shift flexibility sensitivity technique was developed
for structural damage evaluation using only the first-order mode of structural free vibra-
tion. With the help of the frequency-shift operation, the first-order vibration mode will
contribute the most to the structural flexibility matrix. This results in a significant reduction
in the adverse effect of the higher-order modal truncation on structural damage identifica-
tion. Theoretically, the proposed method can accurately calculate the structural damage
coefficients by using only the first-order modal parameters. As a result, the reliable identifi-
cation results can be achieved according to the values of the calculated damage coefficients.
Another advantage of the proposed method is that it does not require a complete finite
element modeling process, as long as a few lower-frequency vibration modes of the intact
structure are measured. Based on the calculation results of the numerical and experimental
examples, it can be concluded that the proposed method requires fewer modal parameters
but has higher calculation accuracy than the ordinary flexibility sensitivity method. For
the multiple damages case, this new approach can overcome the possible missed diagnosis
of the ordinary flexibility sensitivity method. For the minor damage case, the numerical
results also showed that the proposed algorithm may have the potential to identify the
minor damage in the structure. The proposed method provides a new way for structural
damage identification with only the first-order modal parameters. Note that the proposed
method is only applicable to linear structures, and research on damage identification of
nonlinear structures will be conducted in the future.
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Abstract: Train operation control is of great importance in reducing train operation energy consump-
tion and improving railway operation efficiency. This paper investigates the design of optimal control
inputs for multiple trains on a single railway line with several stations. Firstly, a distributed optimal
control problem for multiple train operation is formulated to reduce the energy consumption and
improve the punctuality of trains. Then, we propose an efficient algorithm based on the framework
of the symmetric alternating direction method of multipliers to solve this optimization problem.
Finally, numerical simulations show that the method can obtain the optimal train control sequence in
fewer iterative steps compared to the alternating direction multiplier method, thus illustrating the
effectiveness of the algorithm.

Keywords: high-speed train; distributed optimal control; discrete time; symmetric alternating
direction method of multipliers

MSC: 90C30; 49M27

1. Introduction

For a high-speed railway system, it is important to design operation control strategies
for each train such that the trains can operate according to the scheduled timetable. Since
the 1960s, the train operation control problem has received a lot of attention, and various
train control strategies have been proposed [1–9]. In particular, Li et al. [10] investigated
the robust train operation controller design problem using the framework of linear matrix
inequalities. In [11,12], Li et al. extended the single train control problem to the multiple
train movement control problem. By using LaSalle’s invariance principle, a coordinated
control strategy has been proposed for multiple train operations on a railway line [11,12].
The above works on train operation control are based on a feedback control approach.
On the other hand, a large number of optimal control schemes have been proposed by
addressing the train operation control problem as an optimization problem. Optimal control
is a branch of numerical optimization, which deals with finding the control sequence of
a plant in a period of time such that the objective function is optimized. Lin et al. [13]
studied the design of single- and double-integrator operation feedback controllers for
multiple trains operating on a railway line, and employed a convex optimization method
to obtain the optimal control gains. Yan et al. [14] proposed a distributed cooperative
optimal control algorithm for multiple high-speed train trajectory planning. Wang et al. [15]
investigated the optimal trajectory planning problem for trains under operation constraints,
and formulated it as a mixed-integer linear programming (MILP) problem. Since the train
operation control problem is often a large-scale optimization problem, the most important
issue is to find an efficient algorithm to obtain the optimal control inputs.
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As an algorithm developed on the basis of the augmented Lagrange algorithm, the
alternating direction method of multipliers (ADMM) aims to combine the decomposability
of dual ascent with the superior convergence of the method of multipliers, and alternately
minimize the decision variables [16]. A lot of studies have been performed to investigate
the applications of the ADMM. For example, Fu et al. [17] designed optimal feedback
gains via the ADMM, which can obey the sparsity constraints of controllers as well as
optimizing the system performance. Li et al. [18] studied the distributed optimal control of
multiple high-speed train movements by using the algorithm of ADMM with the objective
of tracking the desired speed and position trajectories for each train. As an extension of
ADMM, the symmetric alternating direction method of multipliers (SADMM) has been
studied in 2014 [19–22]. SADMM is often used for the convex optimization problem with
linear constraints and a separable objective function. This method has a better convergence
rate compared with ADMM, though it requires additional assumptions to ensure its conver-
gence [20,23,24]. In fact, SADMM has the potential to be used in various fields, including
the train operation control problem.

In this paper, we consider the optimal control problem of multiple high-speed train
movements on a single railway line with several stations. Different from the problem
considered in [18], we consider a railway line consisting of several stations, and assume
that the departure time of each train from every station is not earlier than the scheduled
time in the timetable. Furthermore, the optimization model in [18] focuses on minimizing
the deviation of the actual train operation from the desired operation, while in this paper,
we treat the actual operation of each train as an optimization variable under the necessary
safety and punctuality constraints. By so doing, the modeling error caused by the mismatch
between the actual and nominal operations could be avoided. Furthermore, we use the
symmetric alternating direction method of multipliers (SADMM) to solve the optimization
problem, which usually outperforms the the alternating direction method of multipliers
(ADMM), as used in [18].

This paper is structured as follows. In Section 2, we present the continuous-time dynamics
of high-speed trains and some operation constraints. In Section 3, the dynamics of high-speed
trains is discretized and the train operation control problem is formulated. In Section 4,
SADMM is introduced to solve the problem. In Section 5, numerical simulations are performed
to illustrate the effectiveness of the proposed method. Section 6 concludes the paper.

2. Problem Statement
2.1. Train Dynamics

The dynamical equation of a high-speed train i is modelled as
{

ẋi(t) = vi(t),
mi v̇i(t) = Fi(t)− f , i = 1, 2, . . . , M,

(1)

where xi(t) and vi(t) represent the position and velocity of train i at time t, respectively.
M is the total number of trains. mi is the mass of train i and Fi(t) is the control force of
train i. f denotes the resistance, which includes ramp resistance, curve resistance, tunnel
resistance and aerodynamic resistance, etc. For simplicity, we assume f is a constant.

2.2. Operation Constraints

In practice, train i cannot depart from station j before the scheduled departure time
ti,j,out. This constraint is expressed as

xi(ti,j,out) ≤ lj, i = 1, 2, . . . , M, j = 1, 2, . . . , J, (2)

where lj denotes the position of station j and xi(ti,j,out) represents the actual position of
train i at time ti,j,out. J is the number of stations.
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The speed constraint of train i is expressed as

0 ≤ vi(t) ≤ vmax, i = 1, 2, . . . , M, (3)

where vmax represents the maximum speed of the trains.
The control force constraint is expressed as

Fmin ≤ Fi(t) ≤ Fmax, i = 1, 2, . . . , M, (4)

where Fmin and Fmax represent the minimum and maximum allowed control force, respectively.
In train operations, a train has to keep a minimum safe distance from the preceding

train, which is determined by the reaction time and the braking performance of the train.
By Newton’s second law, the minimum safe distance constraint is expressed as

xi−1(t)− xi(t) ≥ vi(t)ds +
v2

i (t)
2amax

, i = 2, . . . , M, (5)

where ds is the reaction time to start braking and amax is the maximum deceleration of a
train. Constraint (5) is a nonlinear inequality because of the term v2

i (t). In practice, for
simplicity, we usually replace constraint (5) with a linear inequality constraint

xi−1(t)− xi(t) ≥ vi(t)ds +
vmaxvi(t)

2amax
, i = 2, . . . , M. (6)

2.3. Optimization Objective

The objective is formulated as follows

Ψ = min
M

∑
i=1

J

∑
j=1

(ai(xi(ti,j,in)− lj)
2 + bi(v2

i (ti,j,in))) +
M

∑
i=1

ci

∫ tl

t=t0

F2
i (t)dt, (7)

where t0 denotes the time that the first train begins to operate and tl denotes the time that
the last train finishes operating. ai, bi, and ci are positive penalty factors. xi(ti,j,in) and
vi(ti,j,in) represent the actual position and the actual speed of train i at the scheduled arrival
time ti,j,in to station j, respectively. Note that we assume that the length of each station is
small compared to the segment between stations, such that it can be treated as zero. The
first term in (7) penalizes deviations of xi from station j at the scheduled arrival time ti,j,in.
The second term in (7) penalizes large values of the velocity vi at the scheduled arrival
time ti,j,in, which should be zero in the ideal case. These two terms are used to promote the
punctuality of train i arriving at station j. The third term in (7) is included to generate an
energy-efficient optimal trajectory.

3. Discrete-Time Optimal Control Problem

For numerical calculation purposes, the above continuous-time optimization problem
will be transformed into a discrete-time form. Suppose d is the sampling period. Then,
Equation (1) can be transformed as





xi(k + 1)− xi(k) = vi(k)d + d2

2mi
(Fi(k)− f ),

vi(k + 1)− vi(k) =
d

mi
(Fi(k)− f ), i = 1, 2, . . . , M,

(8)
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and constraints (2)–(6) can be, respectively, transformed as

xi(ki,j,out) ≤ lj, i = 1, 2, . . . , M, j = 1, 2, . . . , J, (9)

0 ≤ vi(k) ≤ vmax, i = 1, 2, . . . , M, (10)

Fmin ≤ Fi(k) ≤ Fmax, i = 1, 2, . . . , M, (11)

xi−1(k)− xi(k) ≥ vi(k)ds +
vmaxvi(k)

2amax
, i = 2, . . . , M. (12)

Furthermore, the objective function (7) can be transformed into a discrete-time form
as follows:

Ψ = min
M

∑
i=1

J

∑
j=1

(ai(xi(ki,j,in)− lj)
2 + bi(v2

i (ki,j,in))) +
M

∑
i=1

N−1

∑
k=0

qiF2
i (k), (13)

where xi(ki,j,in) and vi(ki,j,in) represent the actual position and the actual speed of train
i at the scheduled arrival time ki,j,in to station j, respectively. qi = cid is a positive
penalty factor and N represents the time horizon of the optimal control problem. Let
xi = [xi(1), xi(2), . . . , xi(N)]T denote the position information of train i at all sampling
times. Let yi =

[
yT

i (1), yT
i (2), . . . , yT

i (N)
]T , i = 2, 3, . . . , M, where y1(k) = x1(k) and

yi(k) = [xi−1(k), xi(k)]
T , i = 2, 3, . . . , M. Then, we have

yi = Eiz, (14)

where z = [xT
1 , xT

2 , . . . , xT
M]T and Ei is a 0–1 matrix which can be expressed as

Ei =





[
IN , ON×(M−1)N

]
, i = 1,[

O2N×(i−2)N , H, O2N×(M−i)N

]
, i = 2, 3, . . . , M,

(15)

H =




B1 O · · · O B2 O · · · O
O B1 · · · O O B2 · · · O
...

...
. . .

...
...

...
. . .

...
O O · · · B1 O O · · · B2


, (16)

B1 =

[
1
0

]
, B2 =

[
0
1

]
. (17)

We also have xi(k) = Yiyi(k), where Yi = 1 if i = 1, and Yi = [0, 1] if i = 2, 3, . . . , M.
The problem (13), with the constraints (8)–(12), can be reformulated as

Ψ = min
M

∑
i=1

J

∑
j=1

(ai(Yiyi(ki,j,in)− lj)
2 + bi(v2

i (ki,j,in))) +
M

∑
i=1

N−1

∑
k=0

qiF2
i (k) (18)

subject to
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yi = Eiz, (19)

Yi(yi(k + 1)− yi(k)) = vi(k)d +
d2

2mi
(Fi(k)− f ), (20)

vi(k + 1) = vi(k) +
1

mi
(Fi(k)− f )d, (21)

Yiyi(ki,j,out) ≤ lj, (22)

0 ≤ vi(k) ≤ vmax, (23)

Fmin ≤ Fi(k) ≤ Fmax, (24)
[
1 −1

]
yi(k) ≥ vi(k)ds +

vi(k)vmax

2amax
, i = 2, . . . , M. (25)

To deal with the optimal control problem (18) via a symmetric alternating direction
method of multipliers, we need to transform constraints (19)–(25) to linear matrix con-

straints. Defining ξi(k) =
[

yi(k)
vi(k)

]
, from Equations (20) and (21), we obtain

Ciξi(k + 1) = Giξi(k) + DiFi(k) + Pi, k = 0, 1, . . . , N − 1, (26)

where the matrices of Ci, Gi, Di, Pi, and ξi(k) are given by

Ci =





[
1 0
0 1

]
, i = 1,

[
0 1 0
0 0 1

]
, i = 2, 3, . . . , M,

Gi =





[
1 d
0 1

]
, i = 1,

[
0 1 d
0 0 1

]
, i = 2, 3, . . . , M,

(27)

Di =

[
d2

2mi
d

mi

]
, Pi =

[
− f d2

2mi

− f d
mi

]
, . (28)

Here, Fi(0), . . . , Fi(N − 1) and ξi(1), ξi(2), . . . , ξi(N) are the optimization variables
of the problem, and the initial state ξi(0) is given. Then, we define the overall opti-
mization variable wi as wi =

[
Fi(0), . . . , Fi(N − 1), ξT

i (1), . . . , ξT
i (N)

]T and reformulate
constraint (26) as Aiwi = φi, where

Ai =




−Di O O · · · O Ci O · · · O O
O −Di O · · · O −Gi Ci · · · O O

O O −Di · · · O O −Gi
. . . O O

...
...

...
. . .

...
...

...
. . . . . .

...
O O O · · · −Di O O · · · −Gi Ci




, (29)

φi =




Pi + Giξi(0)
Pi
Pi
...

Pi




. (30)
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It can be seen that A1 ∈ R2N×3N , Ai ∈ R2N×4N , i = 2, 3, . . . , M, φi ∈ R2N . Inequal-
ity (25) can be transformed as Υwi ≥ 0, where

Υ =




O O · · · O Z O · · · O
O O · · · O O Z · · · O
...

...
. . .

...
...

...
. . .

...
O O · · · O O O · · · Z


 ∈ RN×4N , (31)

Z =

[
1,−1,−ds −

vmax

2amax

]
. (32)

Constraints (22) and (23) are, respectively, equivalent to O ≤ ξi(k) ≤ Li,j, where

Li,j =

{ [
lj, vmax

]T , i = 1[
lJ , lj, vmax

]T , i = 2, . . . , M
and (ki,j−1,out + 1) ≤ k ≤ ki,j,out. Next, let Ui,j

and Ui,j denote the lower bound and upper bound of the variable ξi(k) for (ki,j−1,out +

1) ≤ k ≤ ki,j,out, respectively. Here, Ui,j = [Li,j, . . . , Li,j]
T , Ui,j = [Oi, . . . , Oi]

T , U1,j ∈
R2κi,j , U1,j ∈ R2κi,j , Ui,j ∈ R3κi,j , Ui,j ∈ R3κi,j , i = 2, . . . , M, κi,j = ki,j,out − ki,j−1,out,

∑J
j=1 κi,j = N. Then, constraints (22)–(24) can be reformulated into a box constraint of

wi, expressed as Wi ≤ wi ≤ Wi, where Wi =
[
Fmax, . . . , Fmax, Ui,1, Ui,2, . . . , Ui,J

]
, Wi =[

Fmin, . . . , Fmin, Ui,1, Ui,2, . . . , Ui,J
]
.

By using wi instead of the variables (Fi, yi, vi) in the objective function, the optimal
problem (18) is reformulated as

min Ψ =
M

∑
i=1

(wi − pi)
TQi(wi − pi) (33)

subject to Kiwi = Eiz, (34)

Aiwi = φi, (35)

Υwi ≥ 0, i = 2, . . . , M, (36)

Wi ≤ wi ≤Wi, (37)
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where

Qi =




Ri O O · · · O
O Qi1 O · · · O
O O Qi2 · · · O
...

...
...

. . .
...

O O O · · · Qi J



∈
{
R3N×3N , i = 1
R4N×4N , i 6= 1

(38)

Ri =




qi 0 · · · 0
0 qi · · · 0
...

...
. . .

...
0 0 · · · qi


 ∈ RN×N , Qij =




Oαi O O
O Ji O
O O Oβij


, (39)

Ji =





[
ai 0
0 bi

]
, i = 1,




0 0 0
0 ai 0
0 0 bi


, i 6= 1,

βij =

{
2(ki,j,out − ki,j,in), i = 1,
3(ki,j,out − ki,j,in), i 6= 1,

(40)

Ki =




O · · · O Vi O · · · O
O · · · O O Vi · · · O
...

. . .
...

...
...

. . .
...

O · · · O O O · · · Vi


 ∈

{
R2N×3N , i = 1,
R2N×4N , i 6= 1,

(41)

Vi =





[
1 0
0 1

]
, i = 1,

[
1 0 0
0 1 0

]
, i 6= 1,

(42)

pi =

{ [
O1×N , l1, Ok1,out−k1,in

]
, i = 1, . . . , M− 1,

(Kiwk+1
i )2`, i = M,

(43)

The optimization problem (33) could be further formulated as

min
M

∑
i=1

(wi − pi)
TQi(wi − pi) (44)

subject to Kiwi = Eiz, (45)

wi ∈ Di, (46)

where Di denotes constraints (35)–(37).

4. Symmetric Alternating Direction Method of Multipliers
4.1. The Algorithm Framework for the Control Problem

Consider the constrained optimization problem (44)–(46). The augmented Lagrangian
associated with the equation constraint is given by

Lρ(wi, z, λi) =
M

∑
i=1

[
fi(wi) + λT

i (Kiwi − Eiz) +
ρ

2
‖Kiwi − Eiz‖2], (47)
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where fi(wi) = (wi − pi)
TQi(wi − pi). Using the method in [19], the scaled form of

SADMM for this problem is

wk+1
i = arg min

wi
(wk

i )
T(Qi +

ρ

2
KT

i Ki)wk
i − (2pT

i Qi + ρ(zk)TKi − (λk)TKi)wk
i , (48)

λ
k+ 1

2
i = λk

i + ρ(Kiwk+1
i − Eizk), (49)

zk+1 = arg min
z

M

∑
i=1

(−(λk+ 1
2

i )TEizk +
ρ

2
‖Kiwk+1

i − Eizk‖2), (50)

λk+1
i = λ

k+ 1
2

i + ρ(Kiwk+1
i − Eizk+1). (51)

SADMM consists of a wi-minimization step (48), a z-minimization step (50), and dual
variable update steps (49) and (51). The dual variable update step (51) uses a step size
equal to the augmented Lagrangian parameter ρ, which ensures dual feasibility in each
SADMM iteration.

4.1.1. wi-Minimization Step

The wi-minimization step (48) solves a quadratic program subject to linear con-
straints (46). The interior-point approach performs well on this type of problem [25].

4.1.2. z-Minimization Step

A necessary and sufficient condition for zk
opt to be the optimal value of (50) is

∂Lρ

∂zk
opt

= 0, (52)

which can be expressed as

M

∑
i=1

ET
i (λ

k+ 1
2

i + ρ(Kiwk+1
i − Eizk

opt)) = 0. (53)

Let zi,` denote the ((i− 1)N + `)-th component of the vector z, where i = 1, 2, · · · , M
and ` = 1, 2, · · · , N. We have

zk+1
i,` =





(Eizk
opt)` = (Ei+1zk

opt)2`−1, i = 1,
(Eizk

opt)2` = (Ei+1zk
opt)2`−1, i = 2, . . . , M− 1

(Eizk
opt)2`, i = M,

(54)

Combining (50) and (53), we have

zk+1
i,` =





1
2ρ ξ̄

k+ 1
2

i,` + 1
2 ω̄k+1

i,` , i = 1, . . . , M− 1,
1
ρ ξ̄

k+ 1
2

i,` + ω̄k+1
i,` , i = M,

(55)

where

ξ̄
k+ 1

2
i,` =





(λ
k+ 1

2
i )` + (λ

k+ 1
2

i+1 )2`−1, i = 1,

(λ
k+ 1

2
i )2` + (λ

k+ 1
2

i+1 )2`−1, i = 2, . . . , M− 1,

(λ
k+ 1

2
i )2`, i = M,

(56)

ω̄k+1
i,` =





(Kiwk+1
i )` + (Ki+1wk+1

i+1 )2`−1, i = 1,
(Kiwk+1

i )2` + (Ki+1wk+1
i+1 )2`−1, i = 2, . . . , M− 1,

(Kiwk+1
i )2`, i = M.

(57)
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(λ
k+ 1

2
i )2` denotes the 2`-th component of the vector λ

k+ 1
2

i .
Furthermore, the dual variable update step (51), which contains zk+1

i,` , could be ex-
pressed as

(λk+1
i )2` = (λ

k+ 1
2

i )2` + ρ((Kiwk+1
i )2` − zk+1

i,` ). (58)

We also have

(λk+1
i+1 )2`−1 = (λ

k+ 1
2

i+1 )2`−1 + ρ((Ki+1wk+1
i+1 )2`−1 − zk+1

i,` ). (59)

where i = 2, . . . , M− 1. By adding Equations (58) and (59), we have

ξ̄k+1
i,` =





ξ̄
k+ 1

2
i,` + ρω̄k+1

i,` − 2ρzk+1
i,` , i = 1, . . . , M− 1,

ξ̄
k+ 1

2
i,` + ρω̄k+1

i,` − ρzk+1
i,` , i = M,

(60)

where

ξ̄k+1
i,` =





(λk+1
i )` + (λk+1

i+1 )2`−1, i = 1
(λk+1

i )2` + (λk+1
i+1 )2`−1, i = 2, . . . , M− 1,

(λk+1
i )2`, i = M,

(61)

Substituting Equation (55) into Equation (60), we can find ξ̄k+1
i,` = 0, i.e., the sum of

the dual variable entries that correspond to any given global index i, ` of variable z is zero.
Thus, in the next iteration, the dual variable update step could be written as

ξ̄
(k+1)+ 1

2
i,` =

{
ρω̄k+1

i,` − 2ρzk+1
i,` , i = 1, . . . , M− 1,

ρω̄k+1
i,` − ρzk+1

i,` , i = M,
(62)

Substituting (62) into Equation (55) of the next iteration, we have

z(k+1)+1
i,` = ω̄k+1

i,` − zk+1
i,` . (63)

Furthermore, we have

zk+1
i =

{
T1Kiwk+1

i+1 + T2Kiwk+1
i − zk

i , i = 1, 2, . . . , M− 1,
2T2Kiwk+1

M − zk
i , i = M,

(64)

where

zk+1
i =

[
zk+1

i,1 , zk+1
i,2 , . . . , zk+1

i,N

]T
, (65)

T1 =




BT
1 O · · · O

O BT
1 · · · O

...
...

. . .
...

O O · · · BT
1


 ∈ RN×2N , (66)

T2 =




BT
2 O · · · O

O BT
2 · · · O

...
...

. . .
...

O O · · · BT
2


 ∈ RN×2N . (67)
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4.2. Convergence of the SADMM and Stopping Criterion

A necessary and sufficient condition for (w∗i , z∗, λ∗) to be the convergent point of the
solution sequence (wk

i , zk, λk) is

0 ∈ ∂ f (w∗i ) + KT
i λ∗i , (68)

0 ∈ −ET
i λ∗i , (69)

Kiw∗i − Eiz∗ = 0. (70)

If (w∗i , z∗) satisfy the optimal conditions (68)–(70), then the algorithm of SADMM
converges to an optimal point of the problem (18) [20].

A practical termination criterion for SADMM is that the primal and dual residuals
must be smaller than the values εpri and εdual , respectively. That is

‖rk
i ‖2 ≤ εpri and ‖sk‖2 ≤ εdual , (71)

where rk
i is the primal residual and sk is the dual residual at iteration k, defined as follows:

‖rk
i ‖2 =

1
ρ
‖λk

i − λk−1
i ‖2, (72)

‖sk‖2 = MNρ2‖zk−1 − zk‖2, (73)

εpri =
√

MNεabs + εrelmax{‖yk‖2, ‖zk‖2} and εdual =
√

MNεabs + εrel‖λk‖2. The value
εabs is an absolute tolerance and εrel is a relative tolerance. They may be chosen as εrel =
10−3 or 10−4 [16]. The proposed SADMM algorithm for optimal control problem (44) is
given in Algorithm 1. The dual variable λi-updates and the wi-updates can be carried out
for each i. Algorithm 1 decomposes a large optimal control problem into several smaller
optimal control problems that can be computed in parallel, thus could improve the overall
computation performance.

Algorithm 1 Proposed SADMM for Problem (44)–(46)

1: Initialize λ = 0, z = 0 and ρ = 1
2 ;

2: repeat
3: wk+1

i := arg min
wi

wkT
i (Qi +

ρ
2 KT

i Ki)wk
i − (2pT

i Qi + ρzTKi − λkTKi)wk
i ,

4: λ
k+ 1

2
i = λk

i + ρ(Kiwk+1
i − Eizk) .

5: zk+1
i =

{
T1Kiwk+1

i+1 + T2Kiwk+1
i+1 − zk

i , i = 1, 2, . . . , M− 1,
2T2Kiwk+1

M − zk
i , i = M,

6: λk+1
i = λ

k+ 1
2

i + ρ(Kiwk+1
i − Eizk+1) .

7: until ‖rk
i ‖2 ≤ εpri and ‖sk‖2 ≤ εdual .

5. Numerical Simulations

In this section, we give a numerical experiment to illustrate the efficiency of our
proposed algorithm. Our experiments are all executed on a computer with an Intel(R) Core
(TM) i5-11300H processor (Intel Corporation, Santa Clara, CA, USA)CPU 3.10 GHz and
16 GB memory. The source code is available from the GitHub repository on 14 May 2023
(https://github.com/ShanMa1/operation-control-of-trains.git).

The railway line in our experiment includes six stations and five trains. The speed
limit of the trains is 300 km/h (83.3 m/s). The five trains are numbered G1001, G1003,
G1005, G1007, and G1009. We assume that the distance between two adjacent stations is
135 km, the operation time of the trains between two adjacent stations is 30 min, and the
headway buffer between two adjacent trains is 5 min. The planned timetable is shown
in Table 1 and the train parameters are listed in Table 2. The weights ai, bi, and qi in the
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experiment are chosen as 107, 107, and 10, respectively. By using the proposed algorithm,
our aim is to generate the optimal operation trajectories of trains while guaranteeing the
safety and punctuality of trains.

Table 1. Scheduled timetable.

Train
Station State S1 S2 S3 S4 S5 S6

G1001 arrive 8:00 8:28 8:58 9:28 9:58 10:28
depart 8:00 8:30 9:00 9:30 10:00 10:30

G1003 arrive - 8:33 9:03 9:33 10:03 10:33
depart 8:05 8:35 9:05 9:35 10:05 10:35

G1005 arrive - 8:38 9:08 9:38 10:08 10:38
depart 8:10 8:40 9:10 9:40 10:10 10:40

G1007 arrive - 8:43 9:13 9:43 9:13 10:43
depart 8:15 8:45 9:15 9:45 10:15 10:45

G1009 arrive - 8:48 9:18 9:48 10:18 10:48
depart 8:20 8:50 9:20 9:50 10:20 10:50

Table 2. Parameters of high-speed trains [18].

Parameters Value Unit

The weight of trains, mi, i = 1, 2, . . . , 5 450 ton
Maximum acceleration, ai,max 0.56 N/kg
Maximum deceleration, ai,min 0.8 N/kg
Maximum control force, Fmax 500 kN
Minimum control force, Fmin −110 kN
Resistance force, f −110 kN
Sampled time period, d 60 s

By solving the optimal train operation control problem via SADMM, the optimal
operation trajectory of each train can be obtained as shown in Figure 1. Figure 2 shows
the optimal time-distance-speed profiles for 5 trains. Figure 3 shows the accumulated
energy consumptions for the five trains under the optimal trajectory. In this figure, the
blue lines denote the time-speed profiles, and the yellow lines denote the real-time energy
consumption profiles.
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Figure 1. Optimal trajectory for five high-speed trains.
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Figure 2. The optimal time–distance–speed profiles for five high-speed trains.
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Figure 3. Energy consumption for five high-speed trains.

Next, we consider the case that an emergency occurs, such that the first train receives a
sudden speed limitation commend between stations S2 and S3. The speed of the first train
is limited to 30 m/s. The duration of the emergency is assumed to be 15 min. By using our
proposed algorithm, the optimal distance-time profile is obtained, as shown in Figure 4. In
this figure, the dotted line represents the train operation profile without speed limitation,
while the black line and red line denote the actual operation profile of the first train and the
second train under the emergency, respectively. Since the speed of train G1001 is limited
to 30 m/s, train G1003 has to slow down to keep a safe headway between train G1001. In
this case, the minimum headway between train G1001 and train G1003 is 3 km. When the
state of emergency is lifted, the speed of train G1001 will increase to achieve punctuality. In
Figure 4, we can also find that the solution calculated by our proposed algorithm indicates
that the trains could keep at least a minimum safe headway under the emergency.

Finally, we compare the computation effectiveness between SADMM and ADMM.
The convergences of ADMM and SADMM are given as shown in Figure 5. Figure 6 shows
the primal residual versus iterations. In this figure, we can see that SADMM can solve
the optimal problem in 4 iterations, while ADMM can solve the optimal problem in 41
iterations. This means that SADMM converges faster than ADMM in our distributed
control problem.
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6. Conclusions

In this paper, for the dynamics of multiple trains with headway constraints and punc-
tuality constraints, a distributed optimal control problem has been formulated to obtain the
energy-efficient optimal train operation trajectories. The problem has been transformed
into an optimization problem with several constraints. Then, we have proposed an effi-
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cient algorithm based on the framework of the symmetric alternating direction method
of multipliers (SADMM) to solve this optimization problem. SADMM includes solving
two convex optimization problems: the w-minimization problem and the z-minimization
problem. The w-minimization problem could be solved by using the interior-point method,
and the z-minimization problem could be solved via an analytical formula. Numerical
simulations show that SADMM can obtain the optimal train control sequence in fewer
iterative steps compared to the alternating direction multiplier method, thus illustrating
the effectiveness of the algorithm. The results developed in this paper may have potential
applications in the operational control of trains.

In particular, the results may find potential applications in future automatic train
operation systems, where trains operate automatically and no driver is needed. In this case,
the control inputs are generated according to algorithms, to ensure the punctuality and
safety of trains.
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Abstract: This paper proposed a closed-form solution for the 2D transient heat conduction in a
rectangular cross-section of an infinite bar with the general Dirichlet boundary conditions. The
boundary conditions at the four edges of the rectangular region are specified as the general case
of space–time dependence. First, the physical system is decomposed into two one-dimensional
subsystems, each of which can be solved by combining the proposed shifting function method with
the eigenfunction expansion theorem. Therefore, through the superposition of the solutions of the
two subsystems, the complete solution in the form of series can be obtained. Two numerical examples
are used to investigate the analytic solution of the 2D heat conduction problems with space–time-
dependent boundary conditions. The considered space–time-dependent functions are separable in
the space–time domain for convenience. The space-dependent function is specified as a sine function
and/or a parabolic function, and the time-dependent function is specified as an exponential function
and/or a cosine function. In order to verify the correctness of the proposed method, the case of
the space-dependent sinusoidal function and time-dependent exponential function is studied, and
the consistency between the derived solution and the literature solution is verified. The parameter
influence of the time-dependent function of the boundary conditions on the temperature variation is
also investigated, and the time-dependent function includes harmonic type and exponential type.

Keywords: analytic solution; 2D heat conduction; space–time-dependent dependent; Dirichlet
boundary conditions; shifting function method

MSC: 35K05; 80M99

1. Introduction

The application of heat conduction problems with time-dependent boundary condi-
tions can be broadly applied in a wide range of engineering fields, such as time-varying
heating on walls or plate panels, laser heating on solids, and the design of mechanical
parts (such as those in turbines and engines [1,2]). In general, the types of time-dependent
boundary conditions at the boundary surface include (1) the first type: specified tempera-
ture distribution (Dirichlet boundary condition); (2) the second type: specified heat flux
distribution; and (3) the third type: convective heat exchange with the environment at a
specified temperature. There are many methods to solve these three types of problems,
such as pure numerical method, approximate method, and exact method. The literature
review focuses on the study of 1D and 2D transient heat conduction problems with various
time-dependent boundary conditions, as shown below.

For one-dimensional heat conduction problems with different kinds of time-dependent
boundary conditions, these problems cannot be solved directly by the variable separation
method due to the nonhomogeneity of boundary conditions. In the early 1970s, Ivanov and
Salomatov [3,4] and Postol’Nik [5] were the first to transform the governing differential
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equation of the linear one-dimensional system into a nonlinear equation by introducing new
variables. After neglecting the nonlinear terms, they obtained an approximated solution
that they said was valid for the system with the Biot number less than 0.25. At the same
time, Kozlov [6] used the Laplace transformation technique to study the problem with
the Biot function in a rational combination of sine, cosine, polynomial and exponential
functions. Although exact series solutions can be obtained for a given transformation
system, great difficulties arise in the inversion of the transformation function, which
is often not so straightforward. In addition, various approximation methods such as
the iterative perturbation method [7], the eigenfunction expansion method [8], and the
Lie point symmetry analysis method [9] have been used to study such heat conduction
problems. Later in 2010, Lee and colleagues [10–12] proposed an integration-free solution
method, which is an extension of the shifting function method developed in their previous
research [13], to derive an analytic closed solution for the heat conduction with time-
dependent boundary conditions of the second and the third types. Using the same method,
they [14–16] had successfully performed one-dimensional inverse estimation of the heat
treatment problem with unknown time-dependent boundary conditions of various types.

For the two-dimensional heat conduction problems with time-dependent boundary
conditions, a considerable amount of work can be found in the literature on the develop-
ment of exact, approximate, and numerical methods. In some advanced heat conduction
books [17–19], some classical techniques such as Laplace transform, Duhamel’s theorem,
and Green’s function have been proposed to solve them. Applying the Laplace transform
starts with finding the solution of a 2D problem with nonhomogeneous boundary condi-
tions in the transformed domain. Taking the inverse Laplace transform from the complex
domain always has difficulties. The typical surveys included Zhu [20], Zhu et al. [21], and
Sutradhar et al. [22] who dealt with the time derivative term in the diffusion equation by
using the Laplace transform techniques. On the other hand, using Duhamel’s theorem [17],
an auxiliary 2D problem with associated nonhomogeneous boundary conditions must first
be solved. Therefore, the result will be obtained by differentiating under the integration.
Similarly, Green’s function solution method [17] requires the derivation of the associated
Green’s function, which satisfies a differential equation with a delta function and homoge-
neous boundary conditions. To obtain the general solution, the associated Green’s function
must be directionally differentiated and integrated over the space and time domains. In ad-
dition, some numerical techniques, such as finite difference method and boundary element
method, have also been used to solve 2D heat conduction problems with time-dependent
boundary conditions. Bulgakov et al. [23] used the finite difference method to advance the
solution in the time domain with the numerical schemes based on the boundary element
method, while Walker [24] applied the diffusion fundamental solution combined with the
time integration to solve the diffusion equation. Later, Chen et al. [25] applied the method
of fundamental solutions for diffusion equations by using the modified Helmholtz funda-
mental solution. Burgess and Mahajerin [26] used the fundamental collocation method to
solve the problems of arbitrary shapes subjected to arbitrary initial conditions and mixed
time-dependent boundary conditions. The time-dependent fundamental solutions for
diffusion equations were directly used by Young et al. [27] to obtain the solution as a linear
combination of the fundamental solution of the diffusion operator. On the other hand, Cole
and Yen [28] involved the method of Green’s function to obtain fast-converging expressions
for the temperature and heat flux in a rectangular plate. Beck et al. [29] have developed the
transient temperatures of the plates under time-varying heating conditions to an integer
power at a surface. Lei et al. [30] presented a space–time generalized finite difference
method (GFDM) to solve the transient heat conduction problem by integrating direct
space–time discretization techniques into the meshless GFDM. Alam et al. [31] proposed a
novel generalized (G’/G) extension technique for two nonlinear evolution equations: the
(2+1) dimensional Konopelchenko–Dubrovsky (KD) equation and the (2+1) dimensional
Kadomtsev–Petviashvili (KP) equations and obtained some new precise answers. The
secured answers include a particular variety of solitary wave solutions. Islam et al. [32]
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applied a modified (G’/G) expansion method to seek new calculations of the Zakharov–
Kuznetsov (ZK) equations developed in electrical engineering. Illustrated by 3D and
contour plots, the mathematical results clearly demonstrate the complete honesty and high
performance of the proposed algorithm. Krishnan et al. [33] proposed a technique based
on eigenfunction expansion for solving 1D phase change heat transfer problems with time-
dependent temperature or heat flux boundary conditions. By using Duhamel’s theorem,
Belekar et al. [34] derived an analytic solution for the transient axisymmetric temperature
distribution in a cylindrical geometry with time-dependent boundary conditions.

To the best of the authors’ knowledge, there is no literature formulating an analytic
solution for the 2D heat conduction problems with the general Dirichlet boundary condi-
tions specifying space–time-dependent dependent boundary conditions at the four edges
of rectangular region. This paper develops a simplified exact solution method for the
transient heat conduction in a rectangular cross-section of an infinite bar with space–time-
dependent dependent boundary conditions using the shifting function method proposed
by Lee and colleagues [10–16]. The study focuses on the 2D heat conduction problems with
the general Dirichlet boundary conditions. For the two-dimensional problem, the original
two-dimensional system is separated into two independent one-dimensional subsystems.
The boundary conditions of the subsystems can then be changed from nonhomogeneous to
homogeneous using the shifting function method, and an analytic solution can be derived
using the eigenfunction expansion theorem. The solutions obtained from the two separate
subsystems are combined to construct the solution of the original two-dimensional system.
Finally, a numerical example is given, and the correctness of the obtained solution is veri-
fied via comparison with the literature [27]. Other case studies illustrate the feasibility of
this approach.

The contributions of this paper are as follows:

(1) Lee and colleagues [10–16] used the shifting function method to derive an analytic
solution for the heat conduction with time-dependent boundary conditions. They
also performed an inverse estimation of a heat treatment problem with unknown
time-dependent boundary conditions. However, their research is limited to the scope
of one-dimensional heat conduction problems. The greatest contribution of this work
is the first investigation of the analytic solution to 2D heat conduction problems with
the general Dirichlet boundary conditions by using the proposed method, combining
the shifting function method with the expansion theorem method. The applicability of
the present method is in solving the heat conduction problems of a rectangular cross-
section of an infinite rod with specified space–time-dependent dependent boundary
conditions at the four edges of the rectangular region;

(2) Some advanced heat conduction books [17–19] proposed some classical techniques
such as the Laplace transform, Duhamel’s theorem, and Green’s function to solve
the heat conduction problem. However, they are limited to the integration situation
during the solution process. The correctness of the solution in this study is verified by
comparing it with the results of Young et al. [27]. To the best of the authors’ knowledge,
the other cases in this paper have never been presented in past studies. Although the
number of series expansion terms determines the accuracy of the solution, the case
study shows that the proposed method has good convergence to the solution using
series expansion and can quickly reach a convergence value. The influence of the
parameters of the time-dependent boundary function on the temperature variation is
also studied.

2. Mathematical Modeling

Consider the transient heat conduction for a rectangular cross-section in an infinite
bar with the space–time-dependent Dirichlet boundary conditions on its four sides and no
heat generation in the medium. Figure 1 shows the geometry, the boundary conditions and
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initial condition of a rectangular cross-section in an infinite bar. The governing equation,
boundary conditions and initial condition of the problem are as follows:

k
[

∂2T(x, y, t)
∂x2 +

∂2T(x, y, t)
∂y2

]
= ρc

∂T(x, y, t)
∂t

in 0 < x < Lx, 0 < y < Ly, t > 0, (1)

T(0, y, t) = f1(y, t) at x = 0, 0 ≤ y ≤ Ly, (2)

T(Lx, y, t) = f2(y, t) at x = Lx, 0 ≤ y ≤ Ly, (3)

T(x, 0, t) = f3(x, t) at y = 0, 0 ≤ x ≤ Lx, (4)

T(x, Ly, t) = f4(x, t) at y = Ly, 0 ≤ x ≤ Lx, (5)

T(x, y, 0) = T0(x, y) at t = 0, 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly (6)

where T(x, y, t) denotes the temperature function, x and y are the two-dimensional space
variables, Lx and Ly are the thicknesses of the rectangular region at x and y directions,
respectively, and t is the time variable. In addition, k is the thermal conductivity, ρ is the mass
density, and c is the specific heat. It is noted that fi(y, t) i = 1, 2 and fi(x, t) i = 3, 4 denote
the general case of space–time-dependent temperatures prescribed along the surfaces at
the left and right ends and bottom and top ends, respectively. Furthermore, considering
the matching of the boundary conditions with the initial conditions, one has

f1(y, 0) = T0(0, y), f2(y, 0) = T0(Lx, y), f3(x, 0) = T0(x, 0), f4(x, 0) = T0(x, Ly). (7)
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3. The Solution Methodology

A dimensionless form of the 2D heat conduction system is first derived and split
into two subsystems, each of which can be solved as a 1D problem. By properly in-
troducing the shifting functions, the second-order governing differential equation with
space–time-dependent boundary conditions are transformed into the differential equation
with homogeneous boundary conditions.

3.1. The Dimensionless Form of Physical System

The dimensionless parameters are defined as follows:

θ(X, Y, τ) =
T(x, y, t)

Tr
, τ =

αt
L2

y
, X =

x
Lx

, Y =
y
Ly

, Lr =
Ly

Lx
, F1(Y, τ) =

f1(y, t)
Tr

,

F2(Y, τ) =
f2(y, t)

Tr
, F3(X, τ) =

f3(x, t)
Tr

, F4(X, τ) =
f4(x, t)

Tr
, θ0(X, Y) =

T0(x, y)
Tr

. (8)

The dimensionless form of the boundary-initial value problem is derived as follows:

[
L2

r
∂2θ(X, Y, τ)

∂X2 +
∂2θ(X, Y, τ)

∂Y2

]
=

∂θ(X, Y, τ)

∂τ
in 0 < X < 1, 0 < Y < 1, τ > 0, (9)

θ(0, Y, τ) = F1(Y, τ) at X = 0, 0 ≤ Y ≤ 1, (10)

θ(1, Y, τ) = F2(Y, τ) at X = 1, 0 ≤ Y ≤ 1, (11)

θ(X, 0, τ) = F3(X, τ) at Y = 0, 0 ≤ X ≤ 1, (12)

θ(X, 1, τ) = F4(X, τ) at Y = 1, 0 ≤ X ≤ 1, (13)
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θ(X, Y, 0) = θ0(X, Y) at τ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, (14)

F1(Y, 0) = θ0(0, Y), F2(Y, 0) = θ0(1, Y), F3(X, 0) = θ0(X, 0), F4(X, 0) = θ0(X, 1) (15)

where the parameter α = k
ρ c in Equation (8) represents the thermal diffusivity and Tr is the

reference temperature.

3.2. Principle of Superposition

Due to the linear property of the boundary value problem, the physical system can
be divided into two subsystems, A and B along the X and Y directions by using the
superposition principle, as shown in Figure 2; θ(X, Y, τ) is spilt into two parts as follows:

θ(X, Y, τ) = θa(X, Y, τ) + θb(X, Y, τ). (16)
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For the subsystem A, the governing equation, boundary conditions and initial condi-
tion for the heat conduction problem are

[
L2

r
∂2θa(X, Y, τ)

∂X2 +
∂2θa(X, Y, τ)

∂Y2

]
=

∂θa(X, Y, τ)

∂τ
in 0 < X < 1, 0 < Y < 1, τ > 0, (17)

θa(0, Y, τ) = F1(Y, τ) at X = 0, 0 ≤ Y ≤ 1, (18)

θa(1, Y, τ) = F2(Y, τ) at X = 1, 0 ≤ Y ≤ 1, (19)

θa(X, 0, τ) = 0 at Y = 0, 0 ≤ X ≤ 1, (20)

θa(X, 1, τ) = 0 at Y = 1, 0 ≤ X ≤ 1, (21)

θa(X, Y, 0) = θa0(X, Y) at τ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (22)

Likewise, for the subsystem B, the governing equation, boundary conditions and
initial condition for the heat conduction problem are

[
L2

r
∂2θb(X, Y, τ)

∂X2 +
∂2θb(X, Y, τ)

∂Y2

]
=

∂θb(X, Y, τ)

∂τ
in 0 < X < 1, 0 < Y < 1, τ > 0, (23)

θb(0, Y, τ) = 0 at X = 0, 0 ≤ Y ≤ 1, (24)

θb(1, Y, τ) = 0 at X = 1, 0 ≤ Y ≤ 1, (25)

θb(X, 0, τ) = F3(X, τ) at Y = 0, 0 ≤ X ≤ 1, (26)

θb(X, 1, τ) = F4(X, τ) at Y = 1, 0 ≤ X ≤ 1, (27)

θb(X, Y, 0) = θ0(X, Y)− θa0(X, Y) = θb0(X, Y) at τ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (28)

For the two similar subsystems, first solve the subsystem A, and then solve the
subsystem B, listed in the Appendix A for brevity.

3.3. Reduced to One-Dimensional Problem

Considering the two homogeneous boundary conditions at the opposite edges of
the rectangular region, namely, Y = 0 and Y = 1, one can reasonably assume that
the temperature θa(X, Y, τ) and dimensionless quantities Fi(Y, τ) (i = 1, 2) defined in
Equations (18) and (19) are

θa(X, Y, τ) =
∞

∑
m=1

[θm(X, τ) sin(mπY)], (29)

Fi(Y, τ) =
∞

∑
m=1

[
Fi,m(τ) sin(mπY)

]
, (i = 1, 2) (30)

where Fi,m(τ) (i = 1, 2) is defined as

Fi,m(τ) = 2
∫ 1

0
Fi(Y, τ) sin(mπY)dY, (i = 1, 2). (31)
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Thus, θm(X, τ) in Equation (29) is determined by satisfying the boundary conditions
on both sides X = 0 and X = 1 (Equations (18) and (19)) and the governing equation.
After substituting Equations (29) and (30) back into Equations (17)–(19), we can obtain the
following results

∂θm(X, τ)

∂τ
− L2

r
∂2θm(X, τ)

∂X2 + m2π2θm(X, τ) = 0 in 0 < X < 1, τ > 0, (32)

θm(0, τ) = F1,m(τ) at X = 0, (33)

θm(1, τ) = F2,m(τ) at X = 1, (34)

θm(X, 0) = 2
∫ 1

0
θa0(X, Y) sin(mπY)dY at τ = 0. (35)

3.4. The Shifting Function Method
3.4.1. Change of Variable

To solve the second-order partial differential equation (Equation (32)) with nonho-
mogeneous boundary conditions (Equations (33) and (34)), the shifting function method
developed by Lee and colleagues [10] is extended by employing the following transforma-
tion equation

θm(X, τ) = θm(X, τ) +
2

∑
i=1

[gi,m(X)Fi,m(τ)]. (36)

where θm(X, τ) is a transformed function and gi,m(X) (i = 1, 2) represents the two shift
functions that need to be specified.

Substituting Equation (36) into Equations (32)–(34) can obtain

.
θm(X, τ) +

2
∑

i=1
[gi,m(X)

.
Fi,m(τ)]− L2

r{θ′′m(X, τ) +
2
∑

i=1
[g′′i,m(X)Fi,m(τ)]}

+m2π2{θm(X, τ) +
2
∑

i=1
[gi,m(X)Fi,m(τ)]} = 0

(37)

where the double primes are used to represent the twice differentiation with respect to X
and the dots represent the differentiation with respect to τ, respectively.

The associated boundary conditions become

θm(0, τ) +
2

∑
i=1

[gi,m(0)Fi,m(τ)] = F1,m(τ), (38)

θm(1, τ) +
2

∑
i=1

[gi,m(1)Fi,m(τ)] = F2,m(τ). (39)

3.4.2. The Shifting Functions

For the convenience of analysis, the shifting functions are specially selected so that
they satisfy the following differential equations and boundary conditions

g′′i,m(X) = 0, i = 1, 2, 0 < X < 1, (40)

gi,m(0) = δi1, gi,m(1) = δi2 (41)

where δij is the Kronecker delta. Therefore, two shifting functions can be easily determined as

g1,m(X) = 1− X, g2,m(X) = X (42)
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After substituting Equations (40)–(42) back into Equations (37)–(39) yields a differential
equation for θm(X, τ) as below:

.
θm(X, τ)− L2

r θ
′′

m(X, τ) + m2π2θm(X, τ) = Gm(X, τ) (43)

and the homogeneous boundary conditions become

θm(0, τ) = 0, θm(1, τ) = 0 (44)

where Gm(X, τ) in Equation (43) is defined as

Gm(X, τ) = −
2

∑
i=1
{gi,m(X)[

.
Fi,m(τ) + m2π2Fi,m(τ)]}. (45)

Moreover, the initial condition can be transformed as

θm(X, 0) = 2
∫ 1

0
θa0(X, Y) sin(mπY)dY−

2

∑
i=1

[gi,m(X)Fi,m(0)]. (46)

3.4.3. The Eigenfunction Expansion Theorem

The solution θm(X, τ) specified by Equations (43) and (44) can be expressed by apply-
ing the method of separation variable as

θm(X, τ) =
∞

∑
n=1

[θmn(X)Tmna(τ)] (47)

where the space variable θmn(X) satisfies the following Sturm–Liouville eigenvalue problem

θ
′′
mn(X) + ω2

nθmn(X) = 0, 0 < X < 1, (48)

θmn(0) = 0 at X = 0, (49)

θmn(1) = 0 at X = 1. (50)

It is noted that the eigenfunctions θmn(X) (n = 1, 2, 3, · · · ) and the corresponding
eigenvalues are

θmn(X) = sin ωnX, ωn = nπ, (n = 1, 2, 3, · · · ) (51)

In addition, the eigenfunctions form an orthogonal set in the interval [0, 1] as

∫ 1

0
θmi(X) θmj(X)dX =

{
0 for i 6= j,
1
2 for i = j.

(52)

Substituting Equation (47) into Equation (43), multiplying it by θmn(X), and integrating
from 0 to 1, one will obtain the following differential equation

.
Tmna(τ) + λ2

mnaTmna(τ) = γmna(τ) (53)

where λmna and γmna(τ) are given as

λmna =
√

m2 + n2L2
r π, (54)
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γmna(τ) = 2
∫ 1

0 θmn(X)Gm(X, τ)dX

= −2
nπ

{
[

.
F1,m(τ)− (−1)n

.
F2,m(τ)] + m2π2[F1,m(τ)− (−1)nF2,m(τ)]

}
.

(55)

Tmna(0) is determined from the initial condition of the transformed function defined
in Equation (46) as

Tmna(0) = 2
∫ 1

0 θmn(X)θm(X, 0)dX
= 4
∫ 1

0 sin(nπX)
∫ 1

0 θa0(X, Y) sin(mπY)dYdX− 2
nπ [F1,m(0)− (−1)nF2,m(0)].

(56)

Therefore, the general solution to Equation (53) with the above initial conditions is

Tmna(τ) = e−λ2
mnaτTmna(0) +

∫ τ

0
e−λ2

mna(τ−φ)γmna(φ)dφ. (57)

3.5. The Analytic Solution

After substituting the solution of the transformed function in Equation (47), and the
shifting functions in Equation (42), back into Equations (36) and (29), we can derive the
closed-form solution for the θa(X, Y, τ) subsystem as follows:

θa(X, Y, τ) =
∞

∑
m=1
{

∞

∑
n=1

[sin(nπX)Tmna(τ)] + (1− X)F1,m(τ) + XF2,m(τ)} sin(mπY). (58)

Due to the high symmetry with the θa(X, Y, τ) subsystem, the solution form of the
θb(X, Y, τ) subsystem can be easily obtained through a similar derivation process (see
Appendix A for details) as

θb(X, Y, τ) =
∞

∑
m=1
{

∞

∑
n=1

[sin(nπY)Tmnb(τ)] + (1−Y)F3,m(τ) + YF4,m(τ)} sin(mπX). (59)

Finally, adding the solutions of the two subsystems, the analytic solution for the 2D
heat conduction in a rectangular region with the general Dirichlet boundary conditions is
obtained as follows:

θ(X, Y, τ) =
∞
∑

m=1
{

∞
∑

n=1
[sin(nπX)Tmna(τ)] + (1− X)F1,m(τ) + XF2,m(τ)} sin(mπY)

+
∞
∑

m=1

{
∞
∑

n=1
[sin(nπY)Tmnb(τ)] + (1−Y)F3,m(τ) + YF4,m(τ)

}
sin(mπX).

(60)

From the above derivation process, it can be seen that the assumptions in Equations (29)
and (A5) have restrictions on the boundary conditions and initial condition; that is, these
values at the four corners of the rectangular region should be zero. If the values of the
boundary conditions and initial condition at the four corners of the rectangular region are
not zero, they should be zeroed first.

4. Examples and Verification

To illustrate the advantages of the proposed method, two examples with different
types of space-dependent boundary conditions are examined in detail below:

4.1. The Space-Dependent Boundary Conditions of Periodical Type

Example 1: Consider a linear 2D heat conduction problem in a rectangular region (Lx = Ly =
Lr = 1) subject to the space–time-dependent boundary conditions and initial condition as follows:

T(0, y, t) = f1(y, t) = [sin(π y)]η1(αt) at x = 0, 0 ≤ y ≤ 1, (61)
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T(1, y, t) = f2(y, t) = [sin(π y)]η2(αt) at x = 1, 0 ≤ y ≤ 1, (62)

T(x, 0, t) = f3(x, t) = [sin(π x)]η3(αt) at y = 0, 0 ≤ x ≤ 1, (63)

T(x, 1, t) = f4(x, t) = [sin(π x)]η4(αt) at y = 1, 0 ≤ x ≤ 1, (64)

T(x, y, 0) = sin π x + sin π y at t = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (65)

Following the present solution procedure and using the dimensionless parameters
defined in Equation (8), we can change the space–time-dependent boundary and initial
conditions to

θ(0, Y, τ) = F1(Y, τ) =
sin(π Y)

Tr
η1(τ) at X = 0, 0 ≤ Y ≤ 1, (66)

θ(1, Y, τ) = F2(Y, τ) =
sin(π Y)

Tr
η2(τ) at X = 1, 0 ≤ Y ≤ 1, (67)

θ(X, 0, τ) = F3(X, τ) =
sin(π X)

Tr
η3(τ) at Y = 0, 0 ≤ X ≤ 1, (68)

θ(X, 1, τ) = F4(X, τ) =
sin(π X)

Tr
η4(τ) at Y = 1, 0 ≤ X ≤ 1, (69)

θ(X, Y, 0) =
[sin(π X) + sin(π Y)]

Tr
at τ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1. (70)

The temperature θ(X, Y, 0) is divided into two parts as follows:

θa0(X, Y, 0) =
sin(π Y)

Tr
, θb0(X, Y, 0) =

sin(π X)

Tr
. (71)

In this case, using one-term expansion (m = n = 1) in the analytic solution derived
from Equation (60), the solution is derived as

θ(X, Y, τ) = [sin(πX)T11a(τ) + (1− X)F1,1(τ) + XF2,1(τ)] sin(πY)
+[sin(πY)T11b(τ) + (1−Y)F3,1(τ) + YF4,1(τ)] sin(πX)

(72)

where the associated dimensionless quantity Fi,1(τ) (i = 1, 2, 3, 4) is

Fi,1(τ) =
ηi(τ)

Tr
, i = 1, 2, 3, 4 (73)

T11a(0) and T11b(0) are determined from the initial conditions of the transformed
functions defined in Equations (46) and (A25) as

T11a(0) =
4
π
− 2

π
[η1(0) + η2(0)], T11b(0) =

4
π
− 2

π
[η3(0) + η4(0)] (74)

Likewise, from Equations (54) and (55), and Equations (A23) and (A24), one obtains

λ11a = λ11b =
√

2π, (75)

γ11a(τ) = − 2
π
{ .

η1(τ) +
.
η2(τ) + π2[η1(τ) + η2(τ)]}, γ11b(τ) = − 2

π
{ .

η3(τ) +
.
η4(τ) + π2[η3(τ) + η4(τ)]}, (76)
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Therefore, one can obtain

T11a(τ) =
4
π

e−2π2τ − 2
π
[η1(τ) + η2(τ)] + 2π

∫ τ

0
e−2π2(τ−φ)[η1(φ) + η2(φ)]dφ, (77)

T11b(τ) =
4
π

e−2π2τ − 2
π
[η3(τ) + η4(τ)] + 2π

∫ τ

0
e−2π2(τ−φ)[η3(φ) + η4(φ)]dφ. (78)

(Case 1): Consider the time-dependent functions to be of exponential type, as follows:

ηi(τ) = e−π2τ , (i = 1, 2, 3, 4). (79)

From Equations (77) and (78) one obtains

T11a(τ) = T11b(τ) = 0. (80)

The solution from the dimensionless form of Equation (72) becomes

θ(X, Y, τ) =
[sin(πX) + sin(πY)]e−π2τ

Tr
. (81)

Substituting this back into dimensional form would be

T(x, y, t) = [sin(πx) + sin(πy)]e−απ2t. (82)

It can be seen that the solution obtained in Equation (82) is exactly the same form as
that given by Young et al. [25].

(Case 2): Consider the time-dependent functions to be of periodic type, as follows:

ηi(τ) = cos(ωiτ), (i = 1, 2, 3, 4). (83)

One obtains

γ11a(τ) = − 2
π
[−ω1 sin(ω1τ)−ω2 sin(ω2τ) + π2 cos(ω1τ) + π2 cos(ω2τ)], (84)

γ11b(τ) = − 2
π
[−ω3 sin(ω3τ)−ω4 sin(ω4τ) + π2 cos(ω3τ) + π2 cos(ω4τ)] (85)

T11a(τ) =
2
π e−2π2τ(

2π4+ω2
1

4π4+ω2
1
+

2π4+ω2
2

4π4+ω2
2
)− 2

π [
(2π4+ω2

1) cos(ω1π)−π2ω1 sin(ω1π)

4π4+ω2
1

+
(2π4+ω2

2) cos(ω2π)−π2ω2 sin(ω2π)

4π4+ω2
2

],
(86)

T11b(τ) =
2
π e−2π2τ(

2π4+ω2
3

4π4+ω2
3
+

2π4+ω2
4

4π4+ω2
4
)− 2

π [
(2π4+ω2

3) cos(ω3π)−π2ω3 sin(ω3π)

4π4+ω2
3

+
(2π4+ω2

4) cos(ω4π)−π2ω4 sin(ω4π)

4π4+ω2
4

].
(87)

Therefore, the exact solution in dimensionless form becomes

θ(X, Y, τ) = [sin(πX)T11a(τ) + (1− X) cos(ω1τ)
Tr

+ X cos(ω2τ)
Tr

] sin(πY)

+[sin(πY)T11b(τ) + (1−Y) cos(ω3τ)
Tr

+ Y cos(ω4τ)
Tr

] sin(πX).
(88)

Three cases including ωi = π(i = 1, 2, 3, 4), ωi = 5(i = 1, 2, 3, 4), and ωi = 7
(i = 1, 2, 3, 4) will be considered in the numerical analysis. Figure 3 illustrates the
temperature-time variation in the middle of a rectangular region with various param-
eter values of ωi(i = 1, 2, 3, 4), which shows the oscillating behavior, as expected. In
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addition, the larger the parameter value of ωi(i = 1, 2, 3, 4), the more frequent the temper-
ature fluctuation.
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Figure 3. Temperature variation in the middle of the rectangular region with various parameters of
harmonic-type time-dependent boundary conditions (Case 2 of Example 1).

4.2. The Space-Dependent Boundary Conditions of Parabolic Type

Example 2: Consider a 2D transient heat conduction problem in a rectangular region (Lx = Ly =
Lr = 1).

The boundary and initial conditions are listed as follows:

T(0, y, t) = f1(y, t) = (y− y2)η1(αt) at x = 0, 0 ≤ y ≤ 1, (89)

T(1, y, t) = f2(y, t) = (y− y2)η2(αt) at x = 1, 0 ≤ y ≤ 1, (90)

T(x, 0, t) = f3(x, t) = (x− x2)η3(αt) at y = 0, 0 ≤ x ≤ 1, (91)

T(x, 1, t) = f4(x, t) = (x− x2)η4(αt) at y = 1, 0 ≤ x ≤ 1, (92)

T(x, y, 0) = (x− x2) + (y− y2) at t = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (93)

Using the dimensionless parameters generates

θ(0, Y, τ) =
Y−Y2

Tr
η1(τ) ≡ F1(Y, τ) at X = 0, 0 ≤ Y ≤ 1, (94)

θ(1, Y, τ) =
Y−Y2

Tr
η2(τ) ≡ F2(Y, τ) at X = 1, 0 ≤ Y ≤ 1, (95)
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θ(X, 0, τ) =
X− X2

Tr
η3(τ) ≡ F3(X, τ) at Y = 0, 0 ≤ X ≤ 1, (96)

θ(X, 1, τ) =
X− X2

Tr
η4(τ) ≡ F4(X, τ) at Y = 0, 0 ≤ X ≤ 1, (97)

θ(X, Y, 0) =
(X− X2) + (Y−Y2)

Tr
at τ = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, (98)

and separating θ(X, Y, 0) into two parts yields

θa0(X, Y, 0) =
Y−Y2

Tr
, θb0(X, Y, 0) =

X− X2

Tr
. (99)

Following the same solution procedure, the associated dimensionless quantity Fi,m(τ)
(i = 1, 2, 3, 4) becomes

Fi,m(τ) =
4[1− (−1)m]

m3π3Tr
ηi(τ), i = 1, 2, 3, 4. (100)

To determine Tmna(τ) and Tmnb(τ), one derives first

λmna = λmnb =
√

m2 + n2π, (101)

Tmna(0) =
8[1− (−1)m]

m3nπ4Tr
[1− (−1)n − η1(0) + (−1)nη2(0)], (102)

Tmnb(0) =
8[1− (−1)m]

m3nπ4Tr
[1− (−1)n − η3(0) + (−1)nη4(0)], (103)

γmna(τ) =
−8[1− (−1)m]

m3nπ4Tr
{ .

η1(τ)− (−1)n .
η2(τ) + m2π2[η1(τ)− (−1)nη2(τ)]}, (104)

γmnb(τ) =
−8[1− (−1)m]

m3nπ4Tr
{ .

η3(τ)− (−1)n .
η4(τ) + m2π2[η3(τ)− (−1)nη4(τ)]}. (105)

Accordingly, the solutions for Tmna(τ) and Tmnb(τ) are

Tmna(τ) =
8[1−(−1)m ]

m3nπ4Tr
{[1− (−1)n]e−λ2

mnaτ − η1(τ) + (−1)nη2(τ)]

+n2π2
∫ τ

0 e−λ2
mna(τ−φ)[η1(φ)− (−1)nη2(φ)]dφ},

(106)

Tmnb(τ) =
8[1−(−1)m ]

m3nπ4Tr
{[1− (−1)n]e−λ2

mnbτ − η3(τ) + (−1)nη4(τ)]

+n2π2
∫ τ

0 e−λ2
mnb(τ−φ)[η3(φ)− (−1)nη4(φ)]dφ}.

(107)

Therefore, the exact solution in dimensionless form is

θ(X, Y, τ) =
∞
∑

m=1
{

∞
∑

n=1
[sin(nπX)Tmna(τ)] + 4(1− X) [1−(−1)m ]

m3π3Tr
η1(τ) + 4X [1−(−1)m ]

m3π3Tr
η2(τ)} sin(mπY)

+
∞
∑

m=1
{

∞
∑

n=1
[sin(nπY)Tmnb(τ)] + 4(1−Y) [1−(−1)m ]

m3π3Tr
η3(τ) + 4Y [1−(−1)m ]

m3π3Tr
η4(τ)} sin(mπX).

(108)

Considering the time-dependent term of exponential type as

ηi(τ) = e−diτ , (i = 1, 2, 3, 4), (109)

173



Axioms 2023, 12, 416

one has

Tmna(τ) =
8[1−(−1)m ]

m3nπ4Tr
{[1− (−1)n]e−λ2

mnaτ − e−d1τ + (−1)ne−d2τ ]

+n2π2[ e−d1τ−e−λ2
mnaτ

λ2
mna−d1

− (−1)n e−d2τ−e−λ2
mnaτ

λ2
mna−d2

]},
(110)

Tmnb(τ) =
8[1−(−1)m ]

m3nπ4Tr
{[1− (−1)n]e−λ2

mnbτ − e−d3τ + (−1)ne−d4τ ]

+n2π2[ e−d3τ−e−λ2
mnbτ

λ2
mnb−d3

− (−1)n e−d4τ−e−λ2
mnbτ

λ2
mnb−d4

]}
(111)

where di (i = 1, 2, 3, 4).represents four arbitrary constants. Tables 1–3 shows the tempera-
ture variation of the midpoint of the rectangular region under the three kinds of exponential
parameters of di (i = 1, 2, 3, 4). It can be found that the solutions developed converge to
convergence values as the number of series terms (m = n) increases. The temperature at
0 ≤ τ ≤ 1.2 are the same between 10 and 20 terms expansion. The results converge when
10 terms expansion is used. By comparing the temperature at 0 ≤ τ ≤ 1.2 between 5 and
10 terms expansion in each table of Tables 1–3, one can see that when 5 terms expansion
is used, the error of the solution evaluated is less than 1%. Therefore, 5 terms expansion
(m = n) of the series will be taken for the numerical analysis below. Figure 4 illustrates the
temperature variation in the middle of the rectangular region with respect to time τ for
three different kinds of di (i = 1, 2, 3, 4). It is seen from Figure 4 that the temperature curve
of the set of di = 1 (i = 1, 2, 3, 4) decays faster than the other two curves, and the trend of
the temperature curves of three sets is the same.

Table 1. The temperature of the rectangular region at X = Y = 0.5 and at various times [ηi(τ) = e−τ ,
(i = 1, 2, 3, 4)].

τ

θ(X=0.5,Y=0.5,τ)

Number of Expansion Terms (m=n)

1 3 5 10 20

0 0.516 0.497 0.501 0.500 0.500
0.1 0.229 0.246 0.243 0.243 0.243
0.2 0.174 0.189 0.187 0.187 0.187
0.4 0.138 0.150 0.148 0.148 0.148
0.6 0.113 0.123 0.121 0.121 0.121
0.8 0.0921 0.100 0.0989 0.0994 0.0994
1.0 0.0754 0.0823 0.0810 0.0814 0.0814
1.2 0.0618 0.0674 0.0663 0.0666 0.0666

Table 2. The temperature of the rectangular region at X = Y = 0.5 and at various times [ηi(τ) = e−τ ,
(i = 1, 2); ηi(τ) = e−2τ , (i = 3, 4)].

τ

θ(X=0.5,Y=0.5,τ)

Number of Expansion Terms (m=n)

1 3 5 10 20

0 0.516 0.497 0.501 0.500 0.500
0.1 0.249 0.263 0.261 0.261 0.261
0.2 0.203 0.215 0.213 0.213 0.213
0.4 0.176 0.184 0.183 0.183 0.183
0.6 0.154 0.159 0.159 0.159 0.159
0.8 0.133 0.136 0.136 0.136 0.136
1.0 0.113 0.115 0.115 0.115 0.115
1.2 0.0954 0.0969 0.0967 0.0968 0.0968
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Table 3. The temperature of the rectangular region at X = Y = 0.5 and at various times [ηi(τ) = e−iτ ,
(i = 1, 2, 3, 4)].

τ

θ(X=0.5,Y=0.5,τ)

Number of Expansion Terms (m=n)

1 3 5 10 20

0 0.516 0.497 0.501 0.500 0.500
0.1 0.285 0.295 0.293 0.293 0.293
0.2 0.251 0.257 0.256 0.256 0.256
0.4 0.229 0.230 0.230 0.230 0.230
0.6 0.202 0.201 0.202 0.202 0.202
0.8 0.174 0.172 0.172 0.172 0.172
1.0 0.147 0.145 0.146 0.146 0.146
1.2 0.123 0.121 0.122 0.122 0.122
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Figure 4. Temperature variation in the middle of the rectangular region with various parameters of
exponential-type time-dependent boundary conditions (Example 2).

5. Conclusions

A closed form solution of the transient heat conduction in a rectangular cross-section
in an infinite bar with the general space–time-dependent boundary conditions has been
developed in terms of series expansion. The main advantages of the proposed solution
method is that differentiation and/or integration of the Green’s function is not required
and the solution of the auxiliary 2D problem with associated nonhomogeneous bound-
ary conditions is avoided. Two examples are given to illustrate the applicability of the
method and the example of space-dependent boundary for periodic function is shown to
be consistent with results in the literature.

The new findings of the present study are as follows:

(1) The proposed approach combining the shifting function method and the expansion
theorem method can derive an analytic solution for the 2D heat conduction in a
rectangular cross-section of an infinite bar with the general Dirichlet boundary condi-
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tions specifying space–time-dependent boundary conditions at the four edges of the
rectangular region;

(2) The series expansion derived from the proposed method has a good convergence to
reach the convergence values. For space-dependent boundary with the parabolic-type
case, one can take five terms of the series to obtain the series solutions within 1% error;

(3) When considering the time-dependent boundary of harmonic function, the fluctuation
of the temperature variation increases as the frequency of the harmonic function
increases. When considering the time-dependent boundary of exponential function,
e−diτ , a smaller coefficient di will result in a lower and faster drop in temperature.

The analytic solution for the 2D heat conduction problems with general Dirichlet
boundary conditions is obtained using the proposed method. However, the values of the
boundary conditions and initial condition at the four corners of the rectangular region
should be zero, which limits the applicability of this study. Transforming the temperature
function before using the method proposed in this paper may overcome this limitation.
A method that can be applied to the case for non-zero values at the four corners will be
proposed in the near future.
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Nomenclature

A, B two subsystems
c specific heat (W · s/kg·◦C)
di(i = 1, 2, 3, 4) four arbitrary constants
fi(y, t), i = 1, 2 temperatures along the surface at the left end and the right end of the

rectangular region
fi(x, t), i = 3, 4 temperatures along the surface at the bottom end and the top end

of the rectangular region
Fi(Y, τ), i = 1, 2 dimensionless quantity defined in Equation (8)
Fi(X, τ), i = 3, 4 dimensionless quantity defined in Equation (8)
Fi,m(τ), i = 1, 2 dimensionless quantity defined in Equation (31)
Fi,m(τ), i = 3, 4 dimensionless quantity defined in Equation (A7)
gi,m(X), i = 1, 2 shifting function
gi,m(Y), i = 3, 4 shifting function
Gm(X, τ) nonhomogeneous term in the differential equation of the transformed

system defined in Equation (43)
k thermal conductivity (W/m·◦C)
Lr aspect ratio, Ly/Lx defined in Equation (8)
Lx, Ly thickness of the two-dimensional rectangular region at x- and

y- directions (m)
T(x, y, t) temperature function (◦C)
Tmna(τ), Tmnb(τ) dimensionless time variable of the transformed function defined in

Equations (53) and (A22)
Tr reference temperature (◦C)
T0(x, y) initial temperature (◦C)
t time variable (s)
x space variable in x-direction of a rectangular region (m)
X dimensionless space variable in x-direction of a rectangular region
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y space variable in y-direction of a rectangular region (m)
Y dimensionless space variable in y-direction of a rectangular region
α thermal diffusivity (m2/s)
φ auxiliary integration variable
γmna(τ), γmnb(τ) dimensionless quantity defined in Equations (55) and (A24)
ηi(i = 1, 2, 3, 4) time-dependent boundary condition
λmna, λmnb n-th eigenvalues depend on ωn defined in Equations (54) and (A23)
θ dimensionless temperature
θ0 dimensionless initial temperature
θa, θb dimensionless temperatures for subsystems A and B
θm(X, τ) generalized Fourier coefficient defined in Equation (29)
θm(X, τ) transformed function defined in Equation (36)
θmn(X, τ) n-th eigenfunction of the transformed function defined in Equation (47)
ρ density (kg/m3)
τ dimensionless time
ωn n-th eigenvalue for Sturm–Liouville problem defined in Equation (48).
Subscripts
0, 1, 2, 3, 4, a, b, i, m, n, r described in the article

Appendix A. Analytic Solution of the Subsystem B

For the subsystem B, the boundary value problem is as follows:
[

L2
r

∂2θb(X, Y, τ)

∂X2 +
∂2θb(X, Y, τ)

∂Y2

]
=

∂θb(X, Y, τ)

∂τ
in 0 < X < 1, 0 < Y < 1, τ > 0, (A1)

θb(0, Y, τ) = 0, θb(1, Y, τ) = 0, (A2)

θb(X, 0, τ) = F3(X, τ), θb(X, 1, τ) = F4(X, τ), (A3)

θb(X, Y, 0) = θ0(X, Y)− θa0(X, Y) = θb0(X, Y). (A4)

Because the boundary conditions of the rectangular region at two opposite edges
X = 0 and X = 1 are homogeneous, the temperature θb(X, Y, τ) and the dimensionless
quantities F3(X, τ), F4(X, τ) defined in Equation (A3), can be expressed as

θb(X, Y, τ) =
∞

∑
m=1

[θm(Y, τ) sin(mπX)], (A5)

Fi(X, τ) =
∞

∑
m=1

[
Fi,m(τ) sin(mπX)

]
, (i = 3, 4) (A6)

where m denotes a positive integer and Fi,m(τ) (i = 3, 4) is given as

Fi,m(τ) = 2
∫ 1

0
Fi(X, τ) sin(mπX)dX, (i = 3, 4). (A7)

Substituting Equations (A5) and (A6) back into Equations (A1)–(A4), one obtains

∂θm(Y, τ)

∂τ
− ∂2θm(Y, τ)

∂Y2 + m2π2L2
r θm(Y, τ) = 0, (A8)

θm(0, τ) = F3,m(τ), θm(1, τ) = F4,m(τ), (A9)

θm(Y, 0) = 2
∫ 1

0
θb0(X, Y) sin(mπX)dX. (A10)
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To find the solution for the second-order differential Equation (A8) with nonhomoge-
neous boundary conditions (A9), one uses the shifting function method by taking

θm(Y, τ) = θm(Y, τ) +
4

∑
i=3

gi,m(Y)Fi,m(τ) (A11)

where θm(Y, τ) is the transformed function while gi,m(Y) (i = 3, 4) indicates the shifting
function to be specified.

Substituting Equation (A11) back into Equations (A8)–(A10), one obtains

.
θm(Y, τ) +

4
∑

i=3
gi,m(Y)

.
Fi,m(τ)−

[
θ
′′
m(Y, τ) +

4
∑

i=3
g′′i,m(Y)Fi,m(τ)

]

+m2π2L2
r [θm(Y, τ) +

4
∑

i=3
gi,m(Y)Fi,m(τ)] = 0.

(A12)

The associated boundary conditions become

θm(0, τ) + g3,m(0)F3,m(τ) + g4,m(0)F4,m(τ) = F3,m(τ), (A13)

θm(1, τ) + g3,m(1)F3,m(τ) + g4,m(1)F4,m(τ) = F4,m(τ) (A14)

As in the derivation process, the two shifting functions are determined as

g3,m(Y) = 1−Y, g4,m(Y) = Y. (A15)

After substituting Equation (A15) into Equations (A12)–(A14), one has the differential
equation for θm(Y, τ) as

.
θm(Y, τ)− θ

′′
m(Y, τ) + m2π2L2

r θm(Y, τ) = Gm(Y, τ), (A16)

and the associated homogeneous boundary conditions as

θm(0, τ) = 0, θm(1, τ) = 0. (A17)

Gm(Y, τ) is defined as

Gm(Y, τ) = −
4

∑
i=3

[
m2π2L2

r gi,m(Y)Fi,m(τ) + gi,m(Y)
.
Fi,m(τ)

]
. (A18)

Moreover, the initial condition is transformed to be

θm(Y, 0) = 2
∫ 1

0
θb0(X, Y) sin(mπX)dX−

4

∑
i=3

[gi,m(Y)Fi,m(0)]. (A19)

The solution θm(Y, τ) specified by Equations (A16)–(A19) can be expressed in the form
of eigenfunctions as

θm(Y, τ) =
∞

∑
n=1

θmn(Y)Tmnb(τ) (A20)

where θmn(Y) is
θmn(Y) = sin nπY. (A21)

Substituting Equation (A20) into Equation (A16), multiplying it by θmn(Y), and inte-
grating from 0 to 1, one will obtain

.
Tmnb(τ) + λ2

mnbTmnb(τ) = γmnb(τ) (A22)
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where λmnb and γmnb(τ) are

λmnb =
√

m2L2
r + n2π, (A23)

γmnb(τ) = 2
∫ 1

0 θmn(Y)Gm(Y, τ)dY

= −2
nπ

{
[

.
F3,m(τ)− (−1)n

.
F4,m(τ)

]
+ m2π2L2

r
[
F3,m(τ)− (−1)nF4,m(τ)]

}
.

(A24)

Note that Tmnb(0) can be determined from the initial condition of the transformed
function defined in Equation (A19) as

Tmnb(0) = 4
∫ 1

0
sin(nπY)

∫ 1

0
θb0(X, Y) sin(nπX)dXdY− 2

nπ
[F3,m(0)− (−1)nF4,m(0)]. (A25)

The general solution of Equation (A22) with the initial condition above is

Tmnb(τ) = e−λ2
mnbτTmnb(0) +

∫ τ

0
e−λ2

mnb(τ−φ)γmnb(φ)dφ. (A26)
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Abstract: Three-dimensional printing is a layer-by-layer stacking process. It can realize complex
models that cannot be manufactured by traditional manufacturing technology. The most common
model currently used for 3D printing is the STL model. It uses planar triangles to simplify the CAD
model. This approach makes it difficult to fit complex surface shapes with high accuracy. The fitting
result usually suffers from loss of local features of the model, poor fitting accuracy, or redundant data
due to face piece subdivision, which will cause problems such as poor manufacturing accuracy or
difficult data processing. To this end, this paper proposes a method for constructing Hermite surface
models considering high-precision fitting of 3D printing models. The mapping relationship between
different surface triangles and the same base triangle is established by analyzing the characteristics of
Hermite surface triangles in AMF format files and using the radial variation property. By constructing
a cubic surface model with general parameters and combining the vertex and tangent vector infor-
mation, a cubic Hermite curve and surface triangle model are obtained. A sampling mapping point
solution method is proposed, which transforms the volume integration problem between models
into the summation problem of sampling point height difference. Considering the mean deviation
and variance in multiple directions of the sampling points, a method for calculating and evaluating
the model fitting error is constructed. Finally, the effectiveness of the proposed method is verified by
rabbit and turbine.

Keywords: 3D printing; Hermite; surface model; high-precision fitting; error

MSC: 08C05; 14P99; 51P05

1. Introduction

Three-dimensional printing is an advanced manufacturing technology that enables the
“free fabrication” of complex structures quickly and efficiently with a simple device [1,2]. Com-
pared with traditional manufacturing processes, it overcomes the limitations of complex
configurations that are difficult to machine and reduces processing procedures, manufac-
turing cycle time, and manufacturing costs [3]. In recent years, 3D printing technology has
been successfully applied in aerospace, automotive, and other areas [4–8]. Although 3D
printing technology has made breakthroughs, due to its unique manufacturing process, the
manufactured products usually have errors problems, which greatly restrict the widespread
use of the technology [9].

There are three main sources of errors that exist in the 3D printing manufacturing
process. The first error comes from the conversion between model formats, i.e., the pro-
cess of converting a computer-aided design (CAD) model to a model in the format re-
quired for 3D printing; the second error comes from the layered slicing and path planning
algorithm [10]; and the third error comes from the manufacturing accuracy of the device
itself [11]. All of the above errors directly affect the molding accuracy of the final printed
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structure. However, compared to the latter two errors, if the first error cannot be effectively
reduced, it will be difficult to manufacture a high-precision structure even if the subsequent
process is highly accurate.

When performing 3D printing, we first need to build a digital model through mod-
eling software. However, the model formats generated by different modeling software
vary. They are not directly used to drive 3D printers. In order to generate Gcode that can
“communicate” directly with the 3D printer, the model needs to be converted from different
formats to the common STereoLithography (STL) format file for 3D printing. Currently, 3D
printing models usually use planar triangles to form an envelope model to represent the
CAD model, such as the more widely used STL model. It approximates the CAD model
by setting the maximum chord height between the planar triangle and the surface of the
model [12,13]. For this reason, when the CAD model has complex surfaces or high local
accuracy, using planar triangles to simplify it will inevitably result in a loss of features and
accuracy of the model [14]. In order to retain the features and accuracy of the CAD model
as much as possible, the triangular facets of the overall model need to be continuously
subdivided during the format conversion process. This will cause problems such as the too-
large amount of model data or data redundancy, which inevitably increases the difficulty of
model data processing [15]. Compared with the planar triangle model, the surface triangle
model has higher degrees of freedom through parametric shape control. It can fit the
surface and complex features of the model with high accuracy by using a relatively small
number of face pieces, which effectively solves the problems caused by the simplification of
the overall model by planar triangles. Several scholars have investigated the construction
methods of surface triangles. Vlachos et al. [16] proposed a point-normal triangle in order
to improve the visual quality in graphics rendering. Its main idea is to use a Bezier surface
triangle (e.g., PN triangle) surface to replace each triangle in the original mesh. Com-
pared with other Bezier triangles, PN triangles have lower degrees of freedom, and their
shapes are influenced not only by the normal vectors but also by their different methods.
Hamann et al. [17] constructs a C0 continuous surface by using a triangular rational
quadratic Bezier surface to approximate a cubic linear interpolation function profile. The
construction of Bezier surfaces requires control point information, which is harder to obtain
directly when performing model fitting. NURBS and B-sample surfaces using surface
approximation control meshes all have a similar problem to Bezier surfaces in that it is
difficult to construct a direct mathematical relationship between the surface model and the
original model.

Unlike surfaces using control meshes, surface shape control based on boundary con-
ditions is simpler and more intuitive, and easier to achieve stitching between surfaces.
Márta et al. [18] proposed a new definition of a surface that uses three triangular surfaces
instead of the original boundary curves on the triangular parameter domain to generate
a triangular surface. This interpolation scheme has affine transformation invariance [19],
while the connection between the resulting surface and its components is continuous along
a common boundary curve, except for the vertices. This method involves a tremendous
amount of data input and also contains the combined operation of three surfaces, which
greatly increases the computational cost. In addition, Hagen [20] proposes an interpola-
tion method based on the Hermite operator, which implements the interpolation of the
boundary curvature of an arbitrary triangle.

In order to meet the growing demand for model formats for 3D printing, the American
Society for Testing and Materials (ASTM) Special Advisory Panel has creatively proposed
a surface triangle in the additive manufacturing file (AMF) format [21,22]. The surface
triangle consists of cubic Hermite curves [23], but they only define the boundary curves
of the surface triangle and do not define the Hermite surface triangle model completely.
According to the authors’ knowledge, there are few studies on Hermite surface triangles,
but compared with other surface triangles, the definition and input quantity of Hermite
surface triangles are relatively easy. It is not only suitable for 3D printing the required
multi-surface sheet model, but also can make full use of the surface information contained
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in the original design model to achieve high accuracy fitting of the model. Therefore, how
to construct a Hermite surface triangle model and make full use of the existing 3D printing
manufacturing model information to fit the CAD model with high accuracy is a problem
worthy of study.

Based on the above analysis, this paper proposes a Hermite surface triangle model
construction method considering the high-precision fitting of 3D printing models. Affine
transformation is used to establish the mapping relationship between multiple surface
triangles and feature triangles. Then, the cubic surface model with general parameters is
constructed and the cubic Hermite surface model is solved using the vertex and tangent
vector information. Finally, the model fitting error calculation and comprehensive evalua-
tion are realized by using the height difference between the model sampling points and the
mapping points.

2. Hermite Surface Characterization
2.1. Definition of Hermite Curve in AMF

AMF is a format file that supports 3D printing, which contains the multi-color, multi-
material, honeycomb structures and properties, etc. Its structure is similar to the STL file,
which is a collection of several small spatial triangular facets. It is a model shell formed
by combining triangular facets together after the triangular meshing of a 3D solid model.
Each of its triangular face pieces consist of three vertices that obey the right-hand rule
and whose corresponding normal vectors are directed outward. According to the AMF
standard file, each edge of a surface triangle is a cubic Hermite curve, and the construction
of each surface triangle depends on the Hermite curve of the boundary. Each Hermite
curve is then determined by the position information of the triangle vertices recorded in
the AMF file and the normal or tangential vector information. The surface triangles in the
AMF file can be defined by the vertex and endpoint tangent vectors tij of the edges, as
shown in Figure 1a. It can also be defined directly by the normal vectors ni on the vertices,
as shown in Figure 1b.

Figure 1. Definition of AMF surface triangles: (a) tangent vector of the vertex; (b) normal vectors of
the vertices.

In the surface triangle definition of the AMF file, the cubic Hermite curve consists of
two endpoints and their tangent vectors, as shown in Figure 2.
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The mathematical expression of the cubic Hermite curve [24–26] can be described as:

he(s) =
(

2s3 − 3s2 + 1
)

v0 +
(

s3 − 2s2 + s
)

t0 +
(
−2s3 + 3s2

)
v1 +

(
s3 − s2

)
t1 (1)

where v0 and v1 are the two endpoints of the curve. t0 and t1 are the two tangent vectors in
the direction of the Hermite surface. The formula for calculating the tangent vector at any
point on the curve can be formulated as:

t(s) =
(

6s2 − 6s
)

v0 +
(

3s2 − 4s + 1
)

t0 +
(
−6s2 + 6s

)
v1 +

(
3s2 − 2s

)
t1 (2)

when a normal vector is defined at the endpoint, it can be converted to a tangent vector
by Equation (3).

t0 = |d0|
−(n0 × d0)× n0

|(n0 × d0)× n0|
(3)

where d0 = v1−v0. n0 and n1 are the normal vectors of the corresponding endpoints, respectively.

2.2. Determine Feature Triangle and Mapping Relationship

The Hermite surface triangle is constructed by means of cubic Hermite curves based
on the vertices. The triangle is essentially parametric curves and each curve involves a
parameter that takes values in the range [0, 1]. Therefore, its shape is theoretically related
to the three parameters η, ξ and τ, and there is a certain correlation between η, ξ and τ, as
shown in Figure 3.
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of parameter fields.

The shape of the Hermite surface triangle is influenced by the location of its vertices,
the direction of the tangent vectors, and the size of the tangent vectors. Each surface
triangle has a different shape, so the shape of the base triangle formed by the three vertices
of the surface triangle is also different. This would introduce too many parameters and
increase the computational cost. To facilitate the calculation, the affine transformation
is used in this subsection to simplify the calculation of the parameters in the surface
triangle. Affine transformation is the process of transforming to another vector space by
performing one linear transformation (multiplying by one matrix) and one translation
(adding one vector) in the vector space. The basic idea of the proposed method is to use
affine transformation to establish a mapping relationship between surface triangles, base
triangles, and specified feature triangle. It can effectively normalize the complex problem
and reduce the computational cost. More knowledge about affine transformations can be
found in the literature [27].

According to the affine transformation property, all triangles can be obtained by
the affine transformation of feature triangles. As shown in Figure 4, in the right-angle
parameter domain, the feature triangle with right-angle characteristics and two right-angle
sides of unit length is constructed with (0, 0), (1, 0), and (1, 1) as vertices, which satisfies the
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principle of regular shape and simple calculation. It effectively reduces the three parameter
variables of the surface triangle to two. The feature triangle can be described as:

C = {(u, v)|0 ≤ v ≤ u ≤ 1} (4)
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Based on the affine transformation property, any surface triangle and base triangle
have a mapping relationship with the feature triangle C, i.e., their three vertices correspond
to the three vertices of the base triangle, as shown in Figure 5.
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Figure 5. Vertex one-to-one correspondence.

The mapping relationship between the surface triangles and the feature triangles is
described by S(u, v), as shown in Figure 6. S(ui, vi) is the corresponding point of any point
(ui, vi) on the characteristic triangle in the surface triangle.
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The mapping relation is essentially a parametric formulation of surface triangles, as it
satisfies the one-to-one correspondence between surface triangles and characteristic triangle
vertices. Therefore, the mapping relation between them can be described as:

x00 = S(0, 0)
x10 = S(1, 0)
x11 = S(1, 1)

(5)

The model is greatly simplified by Equation (5), which can effectively reduce the
complexity of subsequent calculations. It is worth noting that for different surface triangles,
the corresponding S(u, v) is different.
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3. Hermite Surface Triangle Model

In this subsection, based on the constructed feature triangles and mapping relations,
the general parametric surface model is first established by the two parameters u and v.
Then, the vertex coordinates and normal vectors of the Hermite curve are matched with
the surface model to build the Hermite surface triangle model.

Let S(u, v) be a general two-parameter surface. To ensure the smoothness of the
surface, set it as a cubic equation. Then, its mathematical expression can be described as:

S(u, v) = C00 + C10u + C01v + C20u2 + C11uv + C02v2

+C21u2v + C12uv2 + C30u3 + C03v3 (6)

where Cij is the three-dimensional characteristic coefficient.

Cij =




Cx
ij

Cy
ij

Cz
ij


, i, j ∈ [0, 3] (7)

As shown in Figure 7, from the vertex coordinates and tangent vector information of
the surface triangles, it is known that v = 0, u = 1 and u = v are the three boundary curve
parameters characterized by the vertices x00, x10, and x11 in the counterclockwise direction,
respectively. Let S(u, 0), S(1, v), and S(u, u) be their corresponding curves, respectively.
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The eigencoefficients of the Hermite surface model can be obtained by solving Equa-
tion (10). 

Figure 7. Coordinates and tangent vectors of the vertex of a curved triangle.

Substitute the characteristic parameters v = 0, u = 1, and u = v into Equation (6).
Then, the three boundary curves in the general parametric surface can be expressed as:

S(u, 0) = C00 + C10u + C20u2 + C30u3

S(1, v) = C00 + C10 + C01v + C20 + C11v + C02v2

+C21v + C12v2 + C30 + C03v3

S(u, u) = C00 + C10u + C01u + C20u2 + C11u2

+C02u2 + C21u3 + C12u3 + C30u3 + C03u3

(8)

The Hermite boundary curve corresponding to Equation (8) is obtained by substituting
the vertex and tangent vector information in Figure 8 into Equation (1).

S(u, 0) =
(
2u3 − 3u2 + 1

)
x00 +

(
u3 − 2u2 + u

)
t00 +

(
−2u3 + 3u2)x10 +

(
u3 − u2)t10

S(1, v) =
(
2v3 − 3v2 + 1

)
x10 +

(
v3 − 2v2 + v

)
t10
′ +
(
−2v3 + 3v2)x11 +

(
v3 − v2)t11

S(u, u) =
(
2u3 − 3u2 + 1

)
x00 +

(
u3 − 2u2 + u

)
t00
′ +
(
−2u3 + 3u2)x11 +

(
u3 − u2)t11

′
(9)
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Equations (8) and (9) are combined to obtain Equation (10).





C00 + C10u + C20u2 + C30u3 =
(
2u3 − 3u2 + 1

)
x00 +

(
u3 − 2u2 + u

)
t00

+
(
−2u3 + 3u2)x10 +

(
u3 − u2)t10

C00 + C10 + C01v + C20 + C11v + C02v2 + C21v + C12v2 + C30 + C03v3

=
(
2v3 − 3v2 + 1

)
x10 +

(
v3 − 2v2 + v

)
t10
′ +
(
−2v3 + 3v2)x11 +

(
v3 − v2)t11

C00 + C10u + C01u + C20u2 + C11u2 + C02u2 + C21u3 + C12u3 + C30u3 + C03u3

=
(
2u3 − 3u2 + 1

)
x00 +

(
u3 − 2u2 + u

)
t00
′ +
(
−2u3 + 3u2)x11 +

(
u3 − u2)t11

′

(10)

The eigencoefficients of the Hermite surface model can be obtained by solving Equation (10).

C00=x00
C10=t00
C01=t00

′ − t00
C20=− 3x00 − 2t00 + 3x10 − t10
C11=a
C02=− 2t00

′ + 3x11 − t11
′ + 2t00 − 3x10 + t10 − a

C21=t10
′ − t00

′ + t00 − a
C12=2t00

′ + t11
′ − 2t10

′ − 2t00 − t10 − t11 + a
C30=2x00 + t00 − 2x10 + t10
C03=2x10 + t10

′ − 2x11 + t11

(11)

Then, Equation (6) can be written as Equation (12).

S(u, v) = S′(u, v) + fa(u, v)a (12)

S′(u, v) = C00 + C10u + C01v + C20u2 + C′02v2

+C′21u2v + C′12uv2 + C30u3 + C03v3 (13)

C′21=t10
′ − t00

′ + t00
C′02=− 2t00

′ + 3x11 − t11
′ + 2t00 − 3x10 + t10

C′12=2t00
′ + t11

′ − 2t10
′ − 2t00 − t10 − t11

(14)

where fa(u, v) = v(u− v)(1− u). a = [ax ay az]
T is the set shape vector, which aims to improve the

controllability of the surface model, and thus achieve the adjustment of the accuracy of fitting the
local details of the CAD model. Figure 8 shows the change in the shape of the surface triangle when
a is taken to different values. The focus of this paper is to construct a Hermite surface triangle for 3D
printing with high-precision model fitting. A discussion of a will not be developed in this paper, and
the specific details will be reflected in another paper. In order to verify the validity of the constructed
surface model fit, we set a =

[
0 0 0

]T in the subsequent examples.

4. Error Calculation and Evaluation Method
In order to verify the effectiveness of the proposed method, the error calculation and com-

prehensive evaluation method between the fitted model and the CAD model are presented in this
section. The fitting error is essentially the offset that exists between the fitted model and the original
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model surface. It is theoretically more accurate to use the inter-model volume error as the evaluation
criterion for the offset of the model. However, since the distance H(x, y) between model surfaces is
related to both its location (x, y) and surface data, and the original model shape has uncertainty, this
will make the fitting error difficult to be uniformly expressed by mathematical formulas. To this end,
the fitting error is calculated in this paper by means of model sampling. The main idea is to transform
the problem of integration of the volumes between the two models into a problem of summing the
height differences at the sampling points.

In order to sample the data points of the original model reasonably and comprehensively,
a method of calculating the sampling mapping points is proposed. The sampled data points are
obtained by meshing the CAD model using Hypermesh software, as is shown Figure 9.
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Figure 9. Sampling point acquisition for basketball model: (a) CAD model; (b) grid division;
(c) sampling data points.

Figure 10 shows the schematic diagram of the model fitting error. PO(xO, yO, zO) is any sampling
point in the CAD model, and the fitting error at that point is the height difference between that point
and the corresponding mapping point of the fitted model. The mapping point is the intersection
point between a vertical line LO made along the X/Y/Z direction past the PO(xO, yO, zO) point and
the fitted model, as shown in Figure 10. PH(xO, yO, zH) and PS(xO, yO, zS) are the mapping points of
PO(xO, yO, zO) on the Hermite surface model MH and STL model MS, respectively.
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The coordinates of the mapped point can be calculated from the information of the triangular
surface slice where the vertical line intersects the fitted model. As shown in Figure 11, PO

′ is the

projection of the sampled points.
→

PO
′Pi
′,

→
PO
′Pj
′, and

→
PO
′Pk
′ are the vectors constructed with the

∆Pi
′Pj
′Pk
′ vertices in a counterclockwise direction starting from PO

′, respectively.
→

PO
′Pi
′,

→
PO
′Pj
′, and

→
PO
′Pk
′ can be regarded as vectors rotating counterclockwise with PO

′ as the center. When PO
′ lies

within ∆Pi
′Pj
′Pk
′,

→
PO
′Pi
′ ×

→
PO
′Pj
′,

→
PO
′Pj
′ ×

→
PO
′Pk
′, and

→
PO
′Pk
′ ×

→
PO
′Pi
′ have the same sign, indicating

that the vertical line LO intersects the triangle ∆PiPjPk. Conversely, when PO
′ is outside ∆Pi

′Pj
′Pk
′,

the vertical line LO does not intersect with triangle ∆PiPjPk.
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Figure 11. The vertical line intersects the curved triangle: (a) the projection point (Z-direction); (b)
location of projection point.

Taking a vertical line along the Z-direction as an example, when the triangle in the Hermite
model intersecting the vertical line is determined, the parameter value (uH , vH) of the sampled
mapping point on the Hermite surface triangle can be found by Equation (16). The vertical coordinates
of the sampling mapping points (e.g., Equation (16)) can be obtained by substituting (uH , vH)
into Equation (14).





xO = Cx
00 + Cx

10uH + Cx
01vH + Cx

20uH
2 + Cx

11uHvH

+Cx
02vH

2 + Cx
21uH

2vH + Cx
12uHvH

2 + Cx
30uH

3 + Cx
03vH

3

yO = Cy
00 + Cy

10uH + Cy
01vH + Cy

20uH
2 + Cy

11uHvH

+Cy
02vH

2 + Cy
21uH

2vH + Cy
12uHvH

2 + Cy
30uH

3 + Cy
03vH

3

(15)

zH = Cz
00 + Cz

10uH + Cz
01vH + Cz

20uH
2 + Cz

11uHvH
+Cz

02vH
2 + Cz

21uH
2vH + Cz

12uHvH
2 + Cz

30uH
3 + Cz

03vH
3 (16)

It is worth noting that the procedure calculates all the sampled mapping points on the surface
triangles intersecting the vertical line and takes the point closest to the sampled point as the error
calculation point.

In the Z-direction of the STL fitted model, the triangles with vertices Pi(xi, yi, zi), Pj

(
xj, yj, zj

)

and Pk(xk, yk, zk), where the sampled mapping point PS(xO, yO, zS) is located, should satisfy the
following conditions. ∣∣∣∣∣∣

x− xi y− yi z− zi
xj − xi yj − yi zj − zi
xk − xi yk − yi zk − zi

∣∣∣∣∣∣
= 0 (17)

The vertical coordinate of this sample mapping point can be described as:

zS =
−a(xO − xi)− b(yO − yi)

c
+ zi (18)

where
a = (yj − yi)(zk − zi)− (yk − yi)(zj − zi)

b = (zj − zi)(xk − xi)− (zk − zi)(xj − xi)

c = (xj − xi)(yk − yi)− (xk − xi)(yj − yi)

(19)

After obtaining the sampling mapping points on the fitted model, the error between the fitted
model and the original model can be obtained by calculating the distance between the sampling points
and the mapping points, and the unit of distance is by millimeter. In order to make a comprehensive
evaluation of the error of the fitted model, the evaluation method of calculating the fitting error in
terms of mean deviation and variance is proposed. In the Z-direction, the mean deviation (mm) and
variance (mm2) of the sampled points can be described as:

eZ =

∣∣HZ
1

∣∣+
∣∣HZ

2
∣∣+ . . . +

∣∣HZ
n
∣∣

n
(20)

sz
2 =

(∣∣HZ
1

∣∣− ez
)2

+
(∣∣HZ

2
∣∣− ez

)2
+ . . . +

(∣∣HZ
n
∣∣− ez

)2

n− 1
(21)

where HZ
ij (x, y) = Mi(x, y) − Mj(x, y). Mi and Mj are the original model and the fitted model,

respectively. H is the distance difference between the models at the point (x, y). n is the number
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of sampling point. Similarly, the fitting errors in the X and Y directions can be solved by the
above method.

5. Numerical Cases

Case 1. In this section, we take the Stanford classical rabbit model with high complexity morphology as an
example and compare the fitting error of its Hermite surface model and the 3D printing generic STL model.
As shown in Figure 12, the solid rabbit model in step format was imported into Hypermesh software, and the
sampled data points with 702 located on the model surface were obtained by meshing.

Axioms 2023, 12, x FOR PEER REVIEW 12 of 17 
 

   
(a) (b) (c) 

Figure 12. Sampling point acquisition for rabbit model: (a) solid model; (b) grid division; (c) sam-
pling data points. 

The rabbit model was fitted using the Hermite surface triangles constructed in this 
paper and the planar triangles of the STL, respectively. The number of triangular surface 
slices is controlled by changing the approximation tolerance and mesh density of the fit. 
And finally, five groups of Hermite and STL fitted models were obtained, corresponding 
to the number of triangular facets of 16,862, 18,519, 22,820, 25,323 and 27,239, respectively. 
Table 1 shows the sampling mean deviation and variance of the original model and the 
fitted model in the X, Y, and Z directions. 

Table 1. Results of model fitting errors. 

Number Models Number of Facets 
Z-Direction Y-Direction X-Direction 

Mean Deviation 
(mm)  

Variance (mm2) 
Mean Deviation 

(mm) 
Variance (mm2) 

Mean Deviation 
(mm) 

Variance (mm2) 

1 
Hermite 

16,862 
0.29 4.15 0.89 16.20 0.64 25.06 

STL 13.17 5561 3.47 59.78 2.31 102.10 

2 
Hermite 

18,519 
0.27 3.92 1.77 160.76 0.79 38.81 

STL 22.19 215,450 3.12 53.73 3.50 174.12 

3 
Hermite 

22,820 
0.50 16.88 0.92 23.84 0.43 9.66 

STL 2.06 57.23 3.16 57.51 2.10 112.78 

4 
Hermite 

25,323 
0.26 3.70 0.60 9.13 0.47 10.15 

STL 2.59 306.76 2.64 40.47 1.81 67.52 

5 
Hermite 

27,239 
0.25 3.67 0.84 21.53 0.38 8.80 

STL 2.76 259.87 2.69 45.57 2.84 461.31 

Theoretically, as the number of fitted model facets increases, the accuracy of the fit 
should also improve, i.e., the mean deviation will be reduced. However, as shown in Table 
1, there is no such rule between the obtained data. The main reason for the existence of 
this phenomenon is that when the fitted model is not finely drawn to the local features of 
the original model, the triangle that should be used to calculate the fitting error at its clos-
est distance does not intersect with the vertical line after some of the sampling points make 
a vertical line along the error calculation direction. This will cause an offset in the mapping 
point selection, resulting in a large sampling error. 

Tables 2 and 3 show the distribution of the sampling mean deviation of the data in 
groups 1 and 5, respectively. As shown in Table 2, the maximum fitting error of the Her-
mite surface model in the Z direction is around 50, and then the overall fitting error is 
mostly distributed below 5. In contrast, the maximum fitting error of the STL model 
reaches more than 800, and there is still a large distribution around 50. In the other two 
directions, the maximum fitting errors of the two are similar, but the Hermite surface 
model has a smaller value of sampling error and a relatively concentrated distribution. In 
contrast, the fitting errors of the STL model are relatively discrete in distribution and have 
larger values. Similarly, as shown in Table 3, the maximum fitting error is similar in the Y 
direction, but in the Z and X directions, the maximum fitting error of the STL model is 

Figure 12. Sampling point acquisition for rabbit model: (a) solid model; (b) grid division; (c) sampling
data points.

The rabbit model was fitted using the Hermite surface triangles constructed in this paper and
the planar triangles of the STL, respectively. The number of triangular surface slices is controlled
by changing the approximation tolerance and mesh density of the fit. And finally, five groups of
Hermite and STL fitted models were obtained, corresponding to the number of triangular facets of
16,862, 18,519, 22,820, 25,323 and 27,239, respectively. Table 1 shows the sampling mean deviation
and variance of the original model and the fitted model in the X, Y, and Z directions.

Table 1. Results of model fitting errors.

Number Models Number of Facets

Z-Direction Y-Direction X-Direction

Mean
Deviation

(mm)
Variance

(mm2)
Mean

Deviation
(mm)

Variance
(mm2)

Mean
Deviation

(mm)
Variance

(mm2)

1 Hermite 16,862 0.29 4.15 0.89 16.20 0.64 25.06
STL 13.17 5561 3.47 59.78 2.31 102.10

2 Hermite 18,519 0.27 3.92 1.77 160.76 0.79 38.81
STL 22.19 215,450 3.12 53.73 3.50 174.12

3 Hermite 22,820 0.50 16.88 0.92 23.84 0.43 9.66
STL 2.06 57.23 3.16 57.51 2.10 112.78

4 Hermite 25,323 0.26 3.70 0.60 9.13 0.47 10.15
STL 2.59 306.76 2.64 40.47 1.81 67.52

5 Hermite 27,239 0.25 3.67 0.84 21.53 0.38 8.80
STL 2.76 259.87 2.69 45.57 2.84 461.31

Theoretically, as the number of fitted model facets increases, the accuracy of the fit should also
improve, i.e., the mean deviation will be reduced. However, as shown in Table 1, there is no such rule
between the obtained data. The main reason for the existence of this phenomenon is that when the
fitted model is not finely drawn to the local features of the original model, the triangle that should be
used to calculate the fitting error at its closest distance does not intersect with the vertical line after
some of the sampling points make a vertical line along the error calculation direction. This will cause
an offset in the mapping point selection, resulting in a large sampling error.

Tables 2 and 3 show the distribution of the sampling mean deviation of the data in groups 1
and 5, respectively. As shown in Table 2, the maximum fitting error of the Hermite surface model
in the Z direction is around 50, and then the overall fitting error is mostly distributed below 5. In
contrast, the maximum fitting error of the STL model reaches more than 800, and there is still a large
distribution around 50. In the other two directions, the maximum fitting errors of the two are similar,
but the Hermite surface model has a smaller value of sampling error and a relatively concentrated
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distribution. In contrast, the fitting errors of the STL model are relatively discrete in distribution
and have larger values. Similarly, as shown in Table 3, the maximum fitting error is similar in the Y
direction, but in the Z and X directions, the maximum fitting error of the STL model is much larger
than that of the Hermite surface model, and the overall error distribution is more discrete in all
three directions.

As shown in Tables 1–3, the overall fitting accuracy of the Hermite surface model is higher
compared to the STL model, but the obtained fitting error fluctuates more due to the existence
of mapping point bias, which does not truly reflect the deviation between the fitted model and
the original model. In order to evaluate the fitting ability of the two models more accurately and
objectively, the distance-weighted nearest neighbor algorithm [28] is used to process the data in
Table 1. This method achieves the screening and removal of data with more discrete distribution by
calculating the distance between objects and assigning larger weights to closer distances. Table 4
and Figure 13 show the fitting errors and the variation in mean deviation of mean deviation after
removing the “noise points”, respectively.
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As can be seen from Table 4 and Figure 13, the mean deviation between the Hermite and STL
models in the Z, X, and Y directions gradually decrease as the number of model facets increases, and
gradually stabilize at the 4th and 5th groups. It shows that the accuracy of the fit of the 2 to the model
is gradually improving with the increase in the number of face slices. The fitting error of the STL
model fluctuates in the Y-direction, e.g., the error becomes larger in group 3. The main reason for this
phenomenon is that STL uses planar triangles for fitting, which is more likely to produce an offset in
the mapping points. At the same time, the overall fitting accuracy of the Hermite surface model is
much better than that of the STL planar model, which can preserve the original model characteristics
and accuracy as much as possible with a smaller number of face slices. This not only can effectively
solve the problem of excessive data volume or data redundancy caused by the continuous subdivision
of the face slices in the STL model when improving the fitting accuracy, but also can further improve
the processing efficiency and manufacturing accuracy of complex models in the 3D printing process.
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Table 4. Fitting error results after removing the “noise” from the rabbit model.

Number Models Number of Facets

Z-Direction Y-Direction X-Direction

Mean
Deviation

(mm)
Variance

(mm2)
Mean

Deviation
(mm)

Variance
(mm2)

Mean
Deviation

(mm)
Variance

(mm2)

1 Hermite 16,862 0.18 0.23 0.32 1.43 0.15 0.91
STL 0.40 2.33 1.39 3.21 0.28 1.80

2 Hermite 18,519 0.16 0.22 0.33 1.32 0.13 0.74
STL 0.38 2.15 1.20 2.86 0.27 1.87

3 Hermite 22,820 0.10 0.49 0.23 0.71 0.02 0.04
STL 0.33 2.01 1.44 4.04 0.21 1.32

4 Hermite 25,323 0.09 0.31 0.24 0.65 0.02 0.17
STL 0.29 1.74 1.32 3.81 0.17 1.09

5 Hermite 27,239 0.08 0.29 0.28 1.07 0.03 0.05
STL 0.29 1.73 1.20 3.22 0.16 0.84
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As can be seen from Table 4 and Figure 13, the mean deviation between the Hermite 
and STL models in the Z, X, and Y directions gradually decrease as the number of model 
facets increases, and gradually stabilize at the 4th and 5th groups. It shows that the accu-
racy of the fit of the 2 to the model is gradually improving with the increase in the number 
of face slices. The fitting error of the STL model fluctuates in the Y-direction, e.g., the error 
becomes larger in group 3. The main reason for this phenomenon is that STL uses planar 
triangles for fitting, which is more likely to produce an offset in the mapping points. At 
the same time, the overall fitting accuracy of the Hermite surface model is much better 

Figure 13. Variation in mean deviation: (a) Z-direction; (b) X-direction; (c) Y-direction.
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Case 2. The turbine model is used as another example to verify the effectiveness of the proposed method. A
Hermite surface model and a 3D printing generic STL model are used to fit it, and the fitting error is analyzed.
The solid model of the turbine and the 950 sampled data points extracted based on the grid division are shown
in Figure 14.
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Figure 14. Sampling point acquisition for turbine model: (a) CAD model; (b) grid division;
(c) sampling data points.

Table 5. Fitting error results after removing the “noise” from the turbine model.

Number Models Number of Facets

Z-Direction X-Direction Y-Direction

Mean
Deviation

(mm)
Variance

(mm2)
Mean

Deviation
(mm)

Variance
(mm2)

Mean
Deviation

(mm)
Variance

(mm2)

1 Hermit 18,272 0.25 0.08 0.18 0.07 0.24 0.07
STL 0.35 0.13 0.30 0.19 0.33 0.16

2 Hermit 20,540 0.26 0.08 0.12 0.02 0.25 0.07
STL 0.38 0.13 0.24 0.12 0.36 0.13

3 Hermit 22,752 0.23 0.05 0.13 0.06 0.24 0.07
STL 0.37 0.14 0.26 0.18 0.33 0.16

4 Hermit 24,336 0.20 0.07 0.12 0.08 0.23 0.08
STL 0.35 0.12 0.25 0.12 0.33 0.19

5 Hermit 28,592 0.21 0.07 0.11 0.10 0.20 0.04
STL 0.34 0.12 0.25 0.12 0.32 0.08

The Hermite and STL fitting errors were compared by five groups of models with face piece
numbers of 18,272, 20,540, 22,752, 24,336, and 28,592, respectively. Table 5 shows the mean deviation
and variance of the fitted model in three directions after removing the “noise”. The variation of the
mean deviation is shown in Figure 15.

As is shown in Table 4 and Figure 13, the fitting error is gradually decreasing as the number
of model facets increases in the Z and Y directions. The model fit error was minimized in group 5.
The mean deviation was about 0.2 and 0.35 for Hermite and STL, respectively. In the X-direction, the
fitting error of Hermite ranged from 0.2 to 0.1, and gradually tended to 0.1 as the number of model
facets increased. The fitting error of the STL model showed a gradual decrease with the increase in
the number of model facets, except for a slight fluctuation due to the mapping point offset on group 3.
However, its lowest error among the 5 groups is still around 0.25. The overall fitting accuracy of the
Hermite model for this case is still better than that of the STL model, which verifies the effectiveness
of the proposed method.

Axioms 2023, 12, x FOR PEER REVIEW 15 of 17 
 

than that of the STL planar model, which can preserve the original model characteristics 
and accuracy as much as possible with a smaller number of face slices. This not only can 
effectively solve the problem of excessive data volume or data redundancy caused by the 
continuous subdivision of the face slices in the STL model when improving the fitting 
accuracy, but also can further improve the processing efficiency and manufacturing accu-
racy of complex models in the 3D printing process. 

Case 2. The turbine model is used as another example to verify the effectiveness of the proposed 
method. A Hermite surface model and a 3D printing generic STL model are used to fit it, and the 
fitting error is analyzed. The solid model of the turbine and the 950 sampled data points extracted 
based on the grid division are shown in Figure 14. 

   

(a) (b) (c) 

Figure 14. Sampling point acquisition for turbine model: (a) CAD model; (b) grid division; (c) sam-
pling data points. 

The Hermite and STL fitting errors were compared by five groups of models with 
face piece numbers of 18,272, 20,540, 22,752, 24,336, and 28,592, respectively. Table 5 shows 
the mean deviation and variance of the fitted model in three directions after removing the 
“noise”. The variation of the mean deviation is shown in Figure 15. 

(a) (b) (c) 

Figure 15. Variation in mean deviation: (a) Z-direction; (b) X-direction; (c) Y-direction. 

Table 5. Fitting error results after removing the “noise” from the turbine model. 

Number Models 
Number of Fac-

ets 

Z-Direction X-Direction Y-Direction 

Mean Deviation 
(mm)  

Variance 
(mm2) 

Mean Deviation 
(mm) 

Variance 
(mm2) 

Mean De-
viation 
(mm) 

Variance 
(mm2) 

1 Hermit 18,272 0.25 0.08 0.18 0.07 0.24 0.07 
STL 0.35 0.13 0.30 0.19 0.33 0.16 

2 
Hermit 

20,540 
0.26 0.08 0.12 0.02 0.25 0.07 

STL 0.38 0.13 0.24 0.12 0.36 0.13 

3 
Hermit 

22,752 
0.23 0.05 0.13 0.06 0.24 0.07 

STL 0.37 0.14 0.26 0.18 0.33 0.16 

4 
Hermit 

24,336 
0.20 0.07 0.12 0.08 0.23 0.08 

STL 0.35 0.12 0.25 0.12 0.33 0.19 

5 
Hermit 

28,592 
0.21 0.07 0.11 0.10 0.20 0.04 

STL 0.34 0.12 0.25 0.12 0.32 0.08 

Figure 15. Variation in mean deviation: (a) Z-direction; (b) X-direction; (c) Y-direction.

193



Axioms 2023, 12, 370

6. Conclusions
In this paper, we propose a Hermite surface triangle model construction method considering

the high-precision fitting of 3D printing models. The mapping relationship between different surface
triangles and characteristic triangles is established by radial variation. Using the vertex and tangent
vector information, a cubic Hermite curve model with adjustable accuracy of the model local fitting
is constructed based on the general parametric cubic surface model. The model effectively reduces
the parameter variables, simplifies the complexity of the calculation, and achieves the specification of
the solution problem. A model fitting error calculation and evaluation method based on sampling
mapping points is proposed. It transforms the continuous integration into a discrete summation
problem, effectively solving the problem that is difficult to express uniformly in mathematical
formulas due to the uncertainty of the original model. The effectiveness of the proposed method
in improving the model fitting accuracy was verified by using rabbit and turbine models with five
different sets of face slices. In the future research work, we will carry out a systematic study of a.
Considering the different characteristics of the model, we will study an adaptive control method
of a that can satisfy high-precision fitting. In addition, based on the constructed Hermite surface
model, we will study the adaptive layering technique of the surface model and surface path planning
method considering the layered slicing and path planning errors. This will provide vital support to
further enhance efficient and high-precision manufacturing of 3D printing.
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Abstract: We propose an asymmetric model position dependent mass and study its quantum me-
chanical behaviour on different potentials such as harmonic oscillator potential, double well potential,
Gaussian single well potential and triangular single well model potential. It is observed from our
study that the model asymmetric mass works well for weak coupling preserving the symmetric phase
portrait. However, the dominance of asymmetric feature of the mass in the system clearly visible for
higher values of the constant associated with the mass. Though, both position dependent mass and
potential have significant role in controlling the spectral feature of the system, one may dominate
over other for certain cases.

Keywords: PDM; phase portrait; quantum study; asymmetry; real spectra

PACS: 03.65. Ge

1. Introduction

The study of the problems associated with position dependent mass (PDM) have
continued to attract the attention of scientific community due to their relevance in various
branches of physics and allied areas of science [1,2]. Further, the identification of wave
function in a complex environment could be possible by solving Schrödinger equation
with PDM [3]. The majority of such studies dedicated to the problems relevance to semi-
conductor physics and solid state physics [4–7]. The PDM involved in various problems
can either be symmetric or asymmetric in nature. Further, the asymmetric forms of PDM
have successfully been explained certain features related to semiconductor physics. For
example; the propagation of electron through the abrupt interface of a semiconductor
heterostructure [8] as well as optomechanical features of resonator [9] can be shown to
explain by the PDM of type.

m(x) =
m

(1 + γx)2 (1)

Further, in a recent work, da Costa et al. [10] has investigated the coherent state nature
using the above PDM. El-Nabulsi has studied the system involving the PDM of the type.

m(x) = m(1 + γx)k (2)
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And reported some of its implications to semiconductors, quantum dots, crystalline
solid in the presence of impurity [4,5]. In addition, the transport of electrons in a semicon-
ductor can be tailored by considering the PDM of the form [11].

m(x) = meax+ 1
2 bx2

(3)

Several authors also explained different aspects of the quantum systems considering
asymmetric PDM. For example; Dong et al. [12] obtained the eigenvalues and eigenfunc-
tions of the asymmetric model singular mass oscillator with mass of the type.

m(x) =
1

τα(x + a)α (4)

Asad et al. [1] studied the phase portrait and stability of the harmonic like oscillator
associated with asymmetric PDM of the type.

m(x) =
m

1 + e−x−λx2 (5)

Recently, Dong et al. [3] have used an asymmetric model PDM

m(x) =
αe−αx

(1− e−αx)
(6)

And reported the exact solution of the Schrodinger equation for few typical potentials.
One can extend such asymmetric PDM for understanding the properties of solid state
and semiconductor physics. Further, it is worth mentioning here that the some of the
properties of the semiconductor has also been studied using symmetric PDM [13]. For
example; El-Nabulsi [14] has studied the dynamics of electron with PDM of type.

m(x) = me−ax2
(7)

Silva et al. studied the electronic properties of electrons on a bilayer graphene catenoid
bridge characterized by the PDM of the form [15].

m(x) = m

(
1 +

λR2

(x2 + R2)
2

)
(8)

Further, the vibrational inversion modes of NH3 molecule has been explained by using
the PDM of the form [16]

m(x) = m
(

1− ηa2x2

1− a2x2

)
(9)

In view of the importance of the PDM, several studies [17–23] also report different
features of the systems in which the PDM varies either symmetric or asymmetric. The
sgn(x) unction shows the asymmetry character which can suitably be used in formulating
quantum mechanical problem involving double well [24,25].

In the present study, we designed a new type mass which varies asymmetrically with
position in view of the importance of asymmetric PDM in explaining different features
of semiconductor physics and study the spectral characteristics of the system by varying
model parameter associated with the PDM as well as potentials. Our study thus suggested
that both the PDM and potential have significant role in controlling the spectral feature of
the system. Further, one may dominate over other for certain case.
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2. Characteristic Features of New Asymmetric PDM

The asymmetric PDM used in this work is constructed as

m(x) =
m

1 + λ(sgn(x)) + λ2x2 (10a)

In the above, the sign function, sgn(x) is defined as

sgn(x) =





1, x � 0
0, x = 0
−1, x ≺ 0

(10b)

The above PDM is very sensitive to the parameter, λ and its behaviour changes
dramatically upon the change of λ value. Figures 1 and 2 show the behaviour of the PDM
with distance for λ = 0.01 and 0.1 respectively. The nature of the graph changes dramatically
for higher values of λ.
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3. Quantum Mechanical Study on the New PDM Systems

Here, we solve the eigenvalue relation [26],

H|Ψ〉 = E|Ψ〉 (11a)

where
|Ψ〉 = ∑

n
An|φn〉 (11b)

In the above, |φn〉 satisfies the relation

Ho|φn〉 = (2n + 1)|φn〉 (12a)

and
|φn〉 = Nne−

x2
2 Hn(x) (12b)

where Nn is the normalization constant such that

〈φn|φm〉 = δmn (13)

The Hamiltonian considered here is

H = T + m(x)V(x) (14)

where,

T =
1

[m(x)]
1
4

p
1

[m(x)]
1
2

p
1

[m(x)]
1
4

(15)

The above expression is considered due to the mass and the said kinetic energy is due
to von Roos model operator [27,28].

4. Effect of Potential

Here, we consider different forms of potential in order to study their effect on the en-
ergy eigenvalues of the Hamiltonian (Equation (14)) associated with PDM (Equation (10a)).
We have seen that the change of potential also affect the spectral features of the Hamiltonian.
The details of these studies are discussed in the followings.

4.1. Single Well Potential

We consider the single potential as

V(x) = x2 (16)

And study the behaviour of the PDM Hamiltonian as stated above. On solving the
Hamiltonian with the potential (Equation (16), Figure 3), we obtained the closed phase
portrait for λ = 0.01 (Figure 4) and 0.1 (Figure 5) along with the stable real energy level.
The representative real energy spectra for the studied system with λ = 0.01 is shown in
Figure 6. It should be noted here that the circular symmetric nature of the phase portrait is
evident for λ = 0.01 (Figure 4) and the effect of mass becomes significant at higher values
of λ i.e., λ = 0.1. The effect of asymmetry associated with the PDM is clearly visible in the
asymmetric nature of phase portrait (Figure 5).
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4.2. Double Well Potential

We consider the single potential as [29]

V(x) = x4 − 3x2 (17)
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And study the behaviour of the PDM Hamiltonian as stated above. On solving the
Hamiltonian with the potential (Equation (17), Figure 7), we obtained the closed phase
portrait for λ = 0.01 (Figure 8) and 0.1 (Figure 9) along with the stable real energy level.
The representative real energy spectra for the studied system with λ = 0.01 is shown in
Figure 10. Like the single well case, the asymmetry associated with the PDM is also clearly
visible in the asymmetric nature of phase portrait for λ = 0.1 (Figure 9).
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4.3. Gaussian Single Well Potential

Here, we consider the potential as [30]

V(x) = −100e−x2
(18)

To study the behaviour of the PDM Hamiltonian as stated above. On solving the
Hamiltonian with the potential (Equation (18), Figure 11), we obtained the closed phase
portrait for λ = 0.01 and 0.1 (Figure 12) with the stable real energy level (Figure 13). In
this case, a typical type symmetric phase portrait is seen for λ = 0.01. However, the same
showed distortion with appearance of asymmetry for λ = 0.1 like the previous cases. This
result also indicates the dominance of the potential for low values of λ i.e., for λ = 0.01.
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4.4. Rath Triangular Potential

Here, we consider the potential as [31]

V(x) = 100(1− exp(−0.02|x|)) (19)

To study the behaviour of the PDM Hamiltonian as stated above. On solving the
Hamiltonian with the potential (Equation (19), Figure 14), we obtained the closed phase
portrait for λ = 0.01 and 0.1 (Figure 15) with the stable real energy level (Figure 16). It is
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to be noted here that the phase portrait still shows the symmetric loop in this case as well
as for single well and double well potential cases for very low values of λ i.e., for λ = 0.01
due to the dominating nature of respective potentials (single well, double well and Rath
triangular potentials) at low value of constant (λ = 0.01) associated with the PDM. The
symmetric nature of the phase portrait starts distorting and the asymmetry becomes clearly
visible for λ = 0.1 due to the dominating nature of asymmetric PDM. The present study thus
suggests that both potential and PDM have the significant role in controlling the spectral
feature of the Hamiltonian. However, one may dominate over other for certain case.
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5. Validity of Uncertainty Relation

All the PDM Hamiltonian discussed above would satisfy the uncertainty relation [32].
Here, we consider a typical harmonic oscillator type potential (single well potential (16)) to
calculate the uncertainty relation as follows

∆x =

√
〈x2〉 − 〈x〉2 = 0.7137 (20)

∆p =

√
〈p2〉 − 〈p〉2 = 0.7035 (21)

∆x∆p = 0.5057 (22)

The above analysis indicates that the uncertainty product (∆x∆p) is greater than that
of simple harmonic oscillator.

6. Discussion and Conclusions

We model a new PDM in view of its importance in realizing different features as-
sociated with semiconductor physics. The effect of PDM on the spectral feature of the
associated Hamiltonian was studied by varying potential term and constant parameter of
the PDM using the matrix diagonalization method as started above. It is worth mentioning
here that the method of calculation has also been tested for other systems [1,2,26]. Further,
the result of da Costa et al. [33] have successfully been reproduced and reflected in our
recent work [34]. The present PDM contain a sensitive asymmetric term i.e., sgn(x) function
and a symmetric function (λ2x2). Without the sgn(x) function, the mass function remains
the same as that of Mathew’s Lakshmanan [35] PDM which is quite symmetric about the
origin. However, with the inclusion of sgn(x) function, we noticed that the mass function
shows asymmetric character. In fact the study of sgn(x) function is crucial. The sgn(x) func-
tion has previously been used in supersymmetry [24] where the shape invariant property
cannot be verified. Secondly, the sgn(x) function is also used in double well potential [25].
We therefore introduce sgn(x) function in designing a new mass and study its spectral be-
haviour associated with different potentials. It is worth mentioning here that the triangular
model potential proposed by Rath [31] is an alternative to model scattering potential [36]
for the study of spectral feature. Since the PDM used in the present study is asymmetric
in nature, the phase portrait is expected to preserve the asymmetric feature. The phase
portrait of different systems for different potentials show the symmetric behaviour for weak
coupling limit i.e., for λ = 0.01. The symmetric nature of the phase portrait starts distorting
and the asymmetry becomes clearly visible for λ = 0.1 due to the dominating nature of
asymmetric PDM. However, the closed phase portraits of the studied systems reflect the
unbroken nature of spectra irrespective of symmetric or asymmetric nature. This feature
thus signifies the stability of the system. In order to study the spectral nature, we used
matrix diagonalization method [26] and noticed that the spectral feature (energy levels)
remains invariant for different size of the matrix. We feel that the interested readers will
be motivated by the present investigation. Our study thus suggested that both PDM and
potential have significant role in controlling the spectral feature of the system. Further,
one may dominate over other for certain case. We believe that the results of all the PDM
Hamiltonian discussed above would be within the preview of usual uncertainty relation.
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Abstract: Conical diffusers of various configurations are used in many kinds of technical equipment
and manufacturing processes. Therefore, it is a relevant objective to obtain reliable experimental and
mathematical data on the aerodynamic characteristics of diffusers. This article presents experimental
data on the aerodynamics of stationary flows in a vertical conical diffuser when air is supplied
through tubes with various cross sections (circle, square, and triangle). Instantaneous values of air
flow velocity are measured with a constant-temperature hot-wire anemometer. Data are obtained
on the velocity fields and turbulence intensity along the height and the diameter of the diffuser’s
cylindrical part when air is supplied through tubes of various configurations. It is established that
air supply through profiled tubes has a significant effect on the shape of the velocity field and
turbulence intensity in a vertical conical diffuser. For example, higher values of turbulence intensity
are typical of air supplied through profiled tubes (the differences reach 50%). A mathematical
formulation (linear and exponential equations) of the change in the average speed and intensity of
air flow turbulence along the height of the diffuser’s cylindrical part for various initial conditions
and supply tube configurations is presented. The obtained findings will make it possible to refine
mathematical models and update algorithms for engineering the design of diffusers for various
engineering processes and pieces of technical equipment.

Keywords: vertical cone diffuser; aerodynamics; stationary flow; profiled tubes; velocity field;
turbulence intensity; empirical regularities

MSC: 41A30; 41A45

1. Introduction

In almost all branches of technology, equipment is used in which the main engineer-
ing process is associated with the movement of either liquid or gas. Examples of such
equipment are heat exchangers, gas cleaning units, boilers, chemical equipment, industrial
furnaces, various types of dryers, ventilation devices, and nozzle systems. Almost all
these devices have a working chamber or supply channels with a conical diffuser [1]. The
operation of these devices has shown that their calculated efficiency cannot be always
achieved [2]. In many cases, this is due to the uneven supply of the working medium to the
equipment’s working area and, therefore, the flow’s physical features in the diffuser and
corresponding gas-dynamic losses [3,4]. All this testifies to the importance of studying the
aerodynamics of process units with conical diffusers from the point of view of gas-dynamic
improvement and finding ways to control flow characteristics. Moreover, it is necessary to
obtain reliable experimental data on the features of gas flow dynamics and their mathemat-
ical formulation in order to improve engineering methods for calculating conical diffusers
and to refine mathematical models [5,6].

Presented below is a brief review of classical (fundamental) research and updated
knowledge of aerodynamic characteristics in a conical diffuser.
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There are basic studies on the gas dynamics of flows in conical diffusers for various
designs and at various initial levels of turbulence intensity. For example, A. Klein conducted
experiments and examined experimental data on the influence of inlet conditions on conical
diffuser characteristics [7]. In particular, the article describes the effects of blocking the
thickness of the inlet boundary layer for various forms of inlet flow, turbulence intensity,
and Reynolds numbers. K. Jeyachandran and V. Ganesan studied the effect of various
gas-dynamic conditions at the diffuser inlet with physical and mathematical modelling [8].
The paper presents an analysis of data on the velocity profiles, pulse power, shape factor,
performance, and efficiency of the studied diffusers. P. A. C. Okwuobi and R. S. Azad
experimentally studied the flow structure and turbulence characteristics in a conical diffuser
with a fully developed inlet flow [9]. As a result, the basic physical laws were established,
and recommendations for the design of conical diffusers were formulated [7–9].

There are modern studies of the gas-dynamic characteristics of gas flows in various
diffuser configurations aimed at clarifying calculation methods, supplementing the knowl-
edge base about the relevant physical mechanisms, and creating original mathematical
models [10–13]. A. Ferrari proposed analytical dependencies that complement the Fanno
models relating to viscous adiabatic flow in a pipe with a constant cross section and an
inviscid adiabatic flow in a conical diffuser [10]. These new dependences expand the set of
exact solutions of gas dynamics and improve the quality of mathematical models. J. Lee
and co-authors investigated the features of turbulence and coherent structures in gas flow
through a conical diffuser with various opening angles (2◦, 4◦, and 8◦) based on numerical
simulation [11]. The data obtained made it possible to refine the physical features of the
gas dynamics of stationary flows in diffusers. X. Wu et al. discovered an internal layer
in the gas flow through an asymmetric flat diffuser based on physical and mathematical
modelling [12]. Other research will improve the engineering design methods for diffusers.
Using numerical simulation, F. J. De Souza and co-authors investigated the gas dynamics
of an air flow with various particles in a vertical conical diffuser [13]. It was found that
even a small number of particles significantly affects the flow’s shape in a diffuser; the flow
can stick to the wall under certain conditions.

There is a large amount of applied research on the use of diffusers in various kinds
of technical equipment. For example, diffusers are actively used in the organic Rankine
cycle [14–18]. In this cycle, the key device is a turbo expander equipped with an outlet dif-
fuser to increase pressure recovery and improve turbine efficiency. A. Zou et al. optimised
the diffuser design for a specific turbine based on numerical simulation [14]. B. Dong et al.
evaluated the influence of gas parameters at the diffuser inlet on its gas-dynamic char-
acteristics (in particular, the velocity coefficient) with mathematical modelling [15]. C. S.
From et al. studied the influence of flow turbulence intensity at the diffuser inlet on gas
dynamics and its influence on the performance of a particular turbine [17]. J. A. Keep and
co-authors studied the geometry of a combined (annular–radial) diffuser in relation to the
gas-dynamic characteristics of flows and turbine efficiency in the Rankine cycle [18].

Diffuser channels are actively used and studied in many other technical applications.
For example, it is relevant to optimise the shape and parameters of flows in a diffuser
for a mixing chamber in ejectors [19,20], to fine-tune supersonic diffusers [21], to estimate
parameters in diffusers for aircraft gas turbine engines [22], to introduce a diffuser into
a reactor for ammonia oxidation [23], and to model and improve the aerodynamics of
diffusers in a tubular reactor [24] or an industrial furnace [25].

Thus, the performed review showed that the study of gas-dynamic effects in a conical
diffuser is an urgent task at present. This is due to the wide range of applications of diffusers
in various technical applications such as: the Rankine cycle, gas and steam turbines, mixing
chambers, ammonia oxidation reactors, syngas production plants, industrial furnaces, and
others.

Based on an analysis of the data of other authors, the following conclusions can be
drawn:
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- Gas-dynamic improvement and the development of ways to control the gas dynamics
of flows in a conical diffuser remain urgent tasks for fundamental and applied science;

- Recent research into the gas-dynamic characteristics of flows in conical diffusers is
carried out mainly through numerical simulation;

- There is a lack of reliable experimental data (and their mathematical description) on
the gas-dynamic characteristics of flows in a vertical conical diffuser for mathematical
model verification.

Consequently, this research’s key objectives are as follows:

- To develop an experimental set-up for studying stationary flows in a vertical conical
diffuser when air is supplied through tubes with various cross sections;

- To choose measuring instruments and research methods taking into account the
physical features of the processes under research;

- To obtain data on the instantaneous values of the air flow velocity along the height
and diameter of the diffuser’s cylindrical part for various initial conditions;

- To establish the evolution of the velocity fields along the height of the diffuser’s
cylindrical part for various configurations of the supply tubes;

- To empirically determine the value of the drop in the average velocity along the height
of the diffuser and provide a mathematical description of that process;

- To establish and mathematically describe the patterns of changes in the intensity of
turbulence along the height of the conical diffuser under various initial conditions.

2. Description of the Experimental Measurement Facility

The aerodynamics of stationary flows in a vertical diffuser were studied using a
laboratory set-up, the main elements of which are shown in Figure 1.
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Figure 1. Size dimensions (a) and photograph (b) of the experimental set-up for studying the aero-
dynamic characteristics of flows in a vertical diffuser: 1—cylindrical part of the set-up; 2—hot-wire 
anemometer sensor; 3—diffuser; 4—base with supply tubes; 5—hot-wire anemometer for measur-
ing instantaneous values of flow velocity; 6—analogue-to-digital converter; 7—laptop for collecting 

Figure 1. Size dimensions (a) and photograph (b) of the experimental set-up for studying the
aerodynamic characteristics of flows in a vertical diffuser: 1—cylindrical part of the set-up; 2—
hot-wire anemometer sensor; 3—diffuser; 4—base with supply tubes; 5—hot-wire anemometer for
measuring instantaneous values of flow velocity; 6—analogue-to-digital converter; 7—laptop for
collecting and processing experimental findings; H, H1. . . H4—height of the cylindrical part in the
diffuser; l1. . . l4—linear dimension along the diameter of the cylindrical part of the diffuser.

213



Axioms 2023, 12, 244

The main purpose of the installation was to ensure the gas-dynamic characteristics of
the air flow remained as similar as possible to real processes in such technical devices. The
conical diffuser consisted of three main elements: (1) a base with a diameter of 50 mm, in
which four supply tubes were installed at an angle of 45◦; (2) a tapered section with a ratio
of 1:2 (50 mm by 100 mm); and (3) a cylindrical section with a diameter of 100 mm and a
height of 1000 mm. This configuration of the diffuser is used in installations for synthesis
gas production. There were four control sections along the height of the diffuser at heights
of 100 mm, 300 mm, 500 mm, and 800 mm. In each control section, measurements of the
instantaneous values of the air flow velocity along the diameter of the cylindrical part at
distances of 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm (in the centre of the diffuser) were
made. Measurements of instantaneous velocity values were carried out for 5–10 s for each
location of the hot-wire anemometer sensor (primary data). Further processing was carried
out in a specialized program (final data).

The working medium in the experiments was air with a temperature of t = 20–22 ◦C
and a barometric pressure of po = 0.1013 mPa. The typical measurement in this work was
taken in the control section at a height of 100 mm and the centre of the cylindrical part of
the diffuser (at a distance of 50 mm). During the experiments, the average air flow velocity
in the typical section varied from 4 m/s to 8 m/s (26,500 < Re < 53,500). Therefore, the flow
pattern in this study was developed and turbulent.

The automated measurement system consisted of a hot-wire anemometer with sen-
sors, an analogue-to-digital converter, and a laptop with software. Measurements of the
instantaneous values of the air flow velocity wx with a hot-wire anemometer at a constant
temperature were made. A nichrome filament with a diameter of 5 µm and a length of
4 mm was used as the sensitive element of the hot-wire anemometer sensor. Five sensors
with thread at distances of 10, 20, 30, 40, and 50 mm were made. The data from the hot-wire
anemometer (output signal from 0 to 5 V) were received by an analogue-to-digital converter,
and then they were transferred to a laptop for processing with custom-made software. The
standard relative uncertainty of air flow measurement was 3.6%. The measuring system
and the features of its functioning are described in more detail in articles [26,27].

The average flow velocity w at the measuring point was determined as the mathemat-
ical expectation of the function wx = f (τ). One of the key aerodynamic characteristics of
diffuser flows is the turbulence intensity TI. In this research, TI was calculated as the ratio
of the root–mean–square pulsation velocity component to the average velocity of the flow
under study [27].

The cross-sectional shape of pipelines has a significant effect on the structure of the
flow in them [2,28,29]. Therefore, in this study, air entered the vertical diffuser through
supply tubes with various cross-sectional shapes (Figure 2).
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Figure 2. Plan view and key dimensions of the tubes for supplying air to the vertical diffuser:
(a)—circular tube; (b)—tube with square cross section; (c)—tube with triangular cross section.

The size dimensions of the supply tubes’ cross sections were determined based on
the equality of the equivalent hydraulic diameters. Consequently, the round tubes had a
diameter of d = 5 mm, the side of the square tubes was also 5 mm, and the side of the tubes
with triangular cross sections was 8.6 mm.
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3. Results and Analysis of Experimental Findings

Figure 3 shows the primary data as a function wx = f (τ) for the sensor in the first
section (H1 = 100 mm) in the centre of the diffuser’s cylindrical part (l5 = 50 mm) when air
is supplied through various tube configurations. The data are selected so that the average
speed in the first section is approximately the same for all the data presented and is about
4.5 m/s.
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Figure 3. Dependences of local values of air flow velocity wx on time τ in the first control section
(H1 = 100 mm) for a sensor in the centre of the installation (l5 = 50 mm) for supply tube configurations:
(a)—round tube (average parameters in cross section: w1 = 4.2 m/s, TI = 0.231); (b)—square tube
(w1 = 4.45 m/s, TI = 0.18); (c)—triangular tube (w1 = 4.48 m/s, TI = 0.285).

Figure 3 shows that the function wx = f (τ) is white noise for all supply tube configura-
tions. At the same time, visual observations show that the use of profiled tubes leads to the
creation of small fluctuations in the wx = f (τ) function. This can also be confirmed by the
calculated data: TI for round tubes is 0.231 and 0.285 for triangular tubes (almost a 20%
difference). This is due to the fact that stable and vortex structures are created in the corners
of the profiled tubes, which turbulise the flow in the diffuser. Similar gas-dynamic effects
were discovered in [28,29]. It is inappropriate to describe the presented dependencies
mathematically, as those data are special cases.

Figure 4 also shows the primary data as the wx = f (τ) function, but for the sensor in
the third section (H3 = 300 mm) in the centre of the diffuser’s cylindrical part (l5 = 50 mm)
when air is supplied through tube configurations. Based on a comparison of the functions
wx = f (τ) in Figures 3 and 4, it is found that there is a significant decrease in small
fluctuations in velocity upstream. This indicates a gradual relaxation of the flow along the
height of the diffuser’s cylindrical part.

Next, the data in each control section were averaged over the diffuser’s height and
diameter. As a result, the velocity fields in the diffuser’s cylindrical part were obtained
when air was supplied through tubes with various cross sections (Figures 5–7).

Figure 5 shows that there is a decrease in the average flow velocity along the height of
the diffuser’s cylindrical part (air supply through round tubes). A change in the velocity
field’s shape in the upward flow direction is also observed. Similar results in the case of
air supply through profiled tubes were obtained (Figures 6 and 7). There is also a drop
in velocity with the diffuser’s height. When air is supplied through triangular tubes, the
velocity fields are somewhat different from those in other configurations. This may be due
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to the influence of the vortex structures that are created at the corners of the triangular
tubes.
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tube (w3 = 4.85 m/s, TI = 0.313); (c)—triangular tube (w3 = 4.79 m/s, TI = 0.199).
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supplied to the diffuser through round tubes for the initial average flow velocity in the first section
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The detected gas-dynamic effects are preserved for all initial air supply velocities
under study and for all configurations of supply tubes. Accordingly, it can be assumed that
there is a need for a mathematical formulation of the integral aerodynamic characteristics
of flows for the studied configurations of a vertical conical diffuser. These data will make
it possible to refine mathematical models and algorithms for the design of diffusers for
various pieces of technical equipment.

The velocity fields are a clear illustration of the features of the gas dynamics of flows
for different ways of supplying air to the diffuser. The analysis of the velocity field makes
it possible to determine the gas-dynamic structure of the flow and draw a conclusion about
the behaviour of the working medium in a potential technical device.

Figure 8 shows examples of changes in the turbulence intensity TI along the diameter
of the diffuser’s cylindrical part in the first section when air is supplied through tubes of
various configurations.
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The patterns of speed reduction in the upward flow direction are described with suf-
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the tube cross section does not actually affect the intensity of the drop in the air flow ve-
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Figure 8. Change in turbulence intensity TI (in the first section H1 = 100 mm) along the cylinder
diameter D when air is supplied to the diffuser through tubes of various configurations: (a)—round
tube (w1 ≈ 6.65 m/s, TI1 = 0.213); (b)—square tube (w1 ≈ 6.45 m/s, TI1 = 0.180); (c)—triangular tube
(w1 ≈ 6.65 m/s, TI1 = 0.245).

From Figure 8 and the entire array of data obtained, we can draw the following
conclusions:

- No clear patterns in the change in TI along the diameter of the diffuser’s cylindrical
part were found;

- The influence of the tubes’ cross-sectional shape on the function TI = f (D) has not
been established (according to the author, the changes are random);

- The amplitude of the fluctuations of turbulence intensity values relative to the average
value is ±35%;

- The mathematical formulation of the function TI = f (D) for the cases under study is
inappropriate until the physical laws are established.

Data on the turbulence intensity are important for practical applications, as the TI
determines the efficiency of mixing of various media, the level of pulsation of the working
medium in the flow, the duration of the working medium in the diffuser, and more.

Figure 9 shows the regularities of the drop in the average velocity in the control section
along the height of the diffuser’s cylindrical part when air is supplied through tubes with
various cross sections for various initial flow rates.
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Figure 9. Dependences of the average air flow rate w along the installation height H when air is
supplied through round (1), square (2), and triangular (3) tubes for the initial average flow rate in the
first section: (a)—w1 ≈ 6.5 m/s; (b)—w1 ≈ 8.25 m/s.

The patterns of speed reduction in the upward flow direction are described with
sufficient accuracy by the exponential dependence w = a·e–b·H. At the same time, the shape
of the tube cross section does not actually affect the intensity of the drop in the air flow
velocity along the set-up’s height.

For example, the mathematical description of the change in the average air flow
velocity along the height of the diffuser’s cylindrical part, when air is supplied through
round tubes with an initial velocity w1 ≈ 6.5 m/s, is described by the following equation
(approximation reliability 0.85):

w = 5.7e−0.0001·H . (1)

Similar relationships for air supply through square and triangular tubes are described
by the following equation (w1 ≈ 6.5 m/s, approximation reliability 0.92):

w = 7.1e−0.00015·H . (2)

The mathematical description of the change in the average air flow rate along the
height of the diffuser’s cylindrical part, when air is supplied through round and triangular
tubes in the case of an increase in the initial flow rate to w1 ≈ 8.25 m/s, is described by the
following equation (approximation reliability 0.83):

w = 7.7e−0.00085·H . (3)

Similar dependencies for air supply through square tubes are as follows (w1 ≈ 8.25 m/s,
approximation reliability 0.86):

w = 8.0e−0.001·H . (4)

The proposed Equations (1)–(4) for describing the regularities of the average velocity
drop in the control section along the height of the diffuser’s cylindrical part when air
is supplied through tubes with various configurations are applicable for the indicated
velocities and a set-up height of up to 1000 mm.

Figure 10 shows the dependences of the change in the turbulence intensity TI on the
value of the average air flow velocity w in the control sections at distances of 100 mm
and 800 mm. There is a decrease in TI with an increase in the initial air flow velocity, and
this decrease in TI is well described by linear equations. At the same time, the intensity
of turbulence has higher values when air is supplied through profiled tubes compared
to round tubes. This is also explained by the turbulence of the flow due to the vortex
structures typical of profiled channels.
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The mathematical description of the function TI = f (w) for the first section (H1 = 100 mm)
when air is supplied through round (5), square (6), and triangular (7) tubes has the following
form (approximation reliability not less than 0.89):

TI = −0.125 · w + 0.286. (5)

TI = −0.0038 · w + 0.21. (6)

TI = −0.0188 · w + 0.369. (7)

The similar mathematical descriptions of the function TI = f (w) for the fourth section
(H4 = 800 mm) when air is supplied through round (8), square (9), and triangular (10) tubes
have the forms (approximation reliability not less than 0.92):

TI = −0.0047 · w + 0.105. (8)

TI = −0.0196 · w + 0.219. (9)

TI = −0.017 · w + 0.207. (10)

The proposed equations for describing the patterns of change in the intensity of
turbulence from the average air flow velocity along the height of the diffuser’s cylindrical
part are applicable for an initial velocity range from 1 to 12 m/s and a set-up height of up
to 1000 mm.

The experimental data and proposed description equations can be used to verify
mathematical models for modelling aerodynamic processes in a vertical conical diffuser.

Figure 11 shows the experimental dependences of the intensity of turbulence on
the height of the diffuser’s cylindrical part for various initial flow velocities when air is
supplied through tubes with various cross sections. The distribution of turbulence intensity
along the height of the diffuser is important for the design of mixing chambers, industrial
furnaces, and synthesis gas plants. Engineers need data on the level of pulsations in the
installation to evaluate the efficiency and stability of operation.

Based on the analysis of the TI = f (H) functions, the following conclusions can be
drawn:

- The tubes’ cross-sectional shape has a significant effect on turbulence intensity along
the height of the vertical diffuser’s cylindrical part;

- The dependency TI = f (H) has a pronounced maximum in the region of H = 300 mm,
which is typical of all initial average flow rates and all configurations of the supply
tubes;
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- The turbulence intensity has significantly higher values (up to 50%) when air is
supplied through profiled tubes compared to round tubes, which is especially typical
of a low initial w.
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For the convenience of the mathematical description of the experimental data, it is
advisable to divide the TI = f (H) function into two sections: (1) the first section for a
height from 0 to 300 mm (section of the growth of turbulence intensity) and (2) the second
section for H = 300–1000 mm (TI decline section). For the first section (H = 0–300 mm), the
TI = f (H) function for all tube configurations can be described by a linear equation with an
approximation confidence of 0.94 (Figure 11a):

TI = 0.00085 · H + 0.1. (11)

Consequently, for the second section (H = 300–1000 mm), the TI = f (H) function can be
described by exponential equations for round (12), square (13), and triangular (14) tubes
with an approximation confidence of 0.98 (Figure 11a):

TI = 0.254e−0.001·H . (12)

TI = 0.452e−0.0003·H . (13)

TI = 0.507e−0.001·H . (14)

The proposed equations for describing the patterns of changes in the intensity of
turbulence along the height of the diffuser’s cylindrical part when air is supplied through
tubes with various configurations are applicable for an initial velocity range from 1 to
12 m/s and a set-up height of up to 1000 mm.

It should be noted that all the above formulas are valid only for the studied configu-
ration of the experimental set-up and the initial conditions of air flow. It is necessary to
additionally clarify the regularities of changes in the physical characteristics of the flow in
the case of a change in geometry or gas-dynamic parameters.

Thus, the aerodynamic characteristics of flows in a vertical conical diffuser can be
approximated by relatively simple mathematical expressions that are convenient to use in
engineering design.

4. Conclusions

Based on the conducted experimental studies, the following main conclusions can be
drawn:
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1. Experimental data on the instantaneous values of the stationary flow velocity along
the height and diameter of the diffuser’s cylindrical part for various initial conditions
and when air is supplied through tubes with different configurations are obtained.

2. The velocity fields along the height of the diffuser’s cylindrical part for various initial
conditions when air is supplied through tubes with cross sections in the form of a
circle, a square, and a triangle are determined. The evolution of the velocity fields in
the upward flow direction is shown.

3. The flow’s turbulence intensity TI along the height and diameter of the diffuser is
calculated for various initial conditions and when air is supplied through tubes with
various configurations.

4. A mathematical description (exponential equations) of the change in the average flow
velocity along the height of the diffuser’s cylindrical part for various initial conditions
and configurations of the supply tubes is presented.

5. The regularities of changes in the intensity of turbulence along the height of the
diffuser for various initial conditions and tube configurations are established.

6. The obtained data on the aerodynamic characteristics of flows in a conical diffuser can
be useful for refining and verifying mathematical models and improving engineering
calculations.

7. Further research could be conducted to obtain dimensionless equations for describing
the aerodynamic characteristics of flows in vertical diffusers of various designs, as
well as to refine mathematical models for modelling aerodynamics.
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Nomenclature

wx local air flow velocity, m/s
w average flow velocity, m/s
τ time, s
po barometric pressure, kPa
t temperature, ◦C
(d) diameter, mm
l linear dimension, mm
H height, mm
Re Reynolds number
TI turbulence intensity
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Abstract: This study aims to consider lattice Boltzmann method (LBM)–magnetohydrodynamics
(MHD) data to develop equations to predict the average rate of heat transfer quantitatively. The
present approach considers a 2D rectangular cavity with adiabatic side walls, and the bottom wall
is heated while the top wall is kept cold. Rayleigh–Bénard (RB) convection was considered a heat-
transfer phenomenon within the cavity. The Hartmann (Ha) number, by varying the inclination angle
(θ), was considered in developing the equations by considering the input parameters, namely, the
Rayleigh (Ra) numbers, Darcy (Da) numbers, and porosity (ε) of the cavity in different segments. Each
segment considers a data-driven approach to calibrate the Levenberg–Marquardt (LM) algorithm,
which is highly linked with the artificial neural network (ANN) machine learning method. Separate
validations have been conducted in corresponding sections to showcase the accuracy of the equations.
Overall, coefficients of determination (R2) were found to be within 0.85 to 0.99. The significant
findings of this study present mathematical equations to predict the average Nusselt number (Nu).
The equations can be used to quantitatively predict the heat transfer without directly simulating LBM.
In other words, the equations can be considered validations methods for any LBM-MHD model,
which considers RB convection within the range of the parameters in each equation.

Keywords: lattice Boltzmann; Rayleigh–Bénard convection; magnetohydrodynamics; Levenberg–
Marquardt algorithm; data-driven analysis; Nusselt number; Hartmann number; porosity;
rectangular cavity

MSC: 00A72; 62-07; 76A02; 76M27; 80A20

1. Introduction

The lattice Boltzmann method (LBM) is an efficient approach to investigate fluid flow
through numerical simulations across different geometries at microscopic, mesoscopic,
and macroscopic scales [1–8]. LBM is based on statistical mechanics and has immense
potential to establish a data-driven analysis for scientific progress [9–11]. Therefore, high-
dimensional nonlinear LBM data could be taken into account to calibrate any statistical
model through high-performance computing (HPC). With the increasing demand for HPC,
researchers have shifted their focus to fluid flow simulations by considering LBM across
complicated grids [5,12–15]. LBM has been found to be efficient in flow simulations and
heat transfer applications in hydrology, magnetohydrodynamics, and aerodynamics, to
name a few [16–20]. Magnetohydrodynamics (MHDs) represents electrically conducting
fluids in liquid metals and plasma flows. The applications of MHD have been reported
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in a wide range of applications, such as thermal engineering, geophysics, nuclear and
hydroelectric power plants, astrophysics, and so on [18,21–24]. Therefore, the analysis of
heat transfer in convective flow could be established by utilizing the LBM-MHD scheme.

The study of numerical heat transfer through different media is one of the popular
fields of study among researchers [25–28]. Rayleigh–Bénard (RB) convection is one form of
a phenomenon that takes place in a fluid layer assigned to a vertical temperature gradient
and heated from the base [18,29–31]. The difference between buoyancy and gravity leads
to fluid instabilities and convective electrical currents. This type of instability has been
the subject of extensive research to identify a procedure to stabilize the system. One major
reason could be the lack of understanding of the LBM data and correlations of the output
with the input variables prior to the numerical modeling [32]. Therefore, it is necessary to de-
termine the correlations to predict any upcoming phenomena linked to fluid instability. Several
authors reported successful outcomes in stabilizing a system by applying an external magnetic
field due to the induced electrical currents within the fluid [18,33,34]. However, most of the
works were based on analysis through certain numerical parametric variations. Therefore,
the prospect of establishing an LBM data-driven approach to determine correlations with
the heat transfer prediction remains unnoticed.

Machine learning (ML) and deep learning (DL) are two important sectors of artificial
intelligence (AI) with the ability for accurate data analysis and prediction model develop-
ment [35–39]. With computational resources, ML and DL can build a multivariate model
by taking high-dimensional non-linear data and developing correlations and numerical
prediction models within different sectors. The model needs to be trained with a dataset
to calibrate the model, and validations are performed through internal and independent
datasets. However, the prediction model needs to be optimized through efficient training
methods [40]. An inadequately optimized model will perform below the standard and
yield noise within the model, leading to low correlation to predict the outcome. The
Levenberg–Marquardt (LM) algorithm is one of the training methods for ML models, partic-
ularly for artificial neural networks (ANNs). LM develops the correlations by considering
the input variables to provide a nonlinear least squares minimization (NLSM) solution.
Therefore, it indicates that any numerically simulated data, including those from LBM,
could be fed into the LM algorithm to understand the correlations among the variables
through a quasi-ML approach along with numerical validations with the literature.

There is a shortage of literature on LBM data analysis through any efficient algorithm.
However, some recent studies have reported the utilization of neural networks to optimize
LBM data under the influence of MHD in natural convection. For example, Alqaed et al. [41]
studied natural convection and entropy generation by applying a magnetic field with ANN
and presented an equation based on the correlation development. However, the ML
modeling equation lacks information on whether it can be used to predict total entropy
across all geometries. In addition, the equation was not validated against any published
literature to showcase the accuracy and robustness. Shah et al. [42] followed similar steps
by adding radiation heat transfer. However, the validation methodology and the equations
to predict the entropy remained ambiguous. On the other hand, the study presented by
He et al. [43] was a much-improved one, as the correlation developments of LBM data
were efficiently described through ANN and internal validations. Yet, the independent
validations were still missed, and therefore, the accuracy of the correlations could not be
expanded beyond the internal database.

This study aims to address the shortcomings within the literature by analyzing LBM
data to establish correlations by considering the numerical variables, such as Rayleigh (Ra)
number, Darcy (Da) number, Hartmann (Ha) number, inclination angle (θ), and porosity
(ε), to predict the average rate of heat transfer (Nu) by the LM algorithm. The obtained
equations are presented in each section, including the statistical accuracy indicators, fol-
lowed by validations within the literature in each step under various circumstances. The
correlation coefficients (R2) are found to be between 0.85 and 0.99, which provides more
confidence in the accuracy of the numerical model.
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2. Geometry of the Porous Cavity

The schematic diagram of the porous cavity along with associated coordinates is
illustrated in Figure 1. The rectangular cavity in the 2D configuration includes the effect
of a magnetic field to investigate the RB convection by considering incompressible and
laminar fluid flow. The LBM data were extracted within these specifications. The cavity
was assumed to be filled with electrically conducting fluid. H denotes the vertical height,
and the horizontal length is denoted by L, where L = 2H. Two vertical side walls were
considered adiabatic, i.e., no heat transfer will occur. The top and bottom walls are cold and
heated, represented by Tc and Th, respectively, where Th > Tc. The LBM data were extracted
through different parametric variations, such as the Rayleigh (Ra) number within the
higher buoyancy range (104 and 105). Three different Darcy (Da) numbers were considered,
namely, 10−1, 10−2, 10−3, and Hartmann (Ha) numbers were considered to be between
0 and 100 to investigate the impact of the magnetic field. The impact of the magnetic
field was further studied along with different inclination angles (θ) ranging from 0 to 90.
The porosity (ε) was between 0.4 and 0.9. The gravitational acceleration (gy) was acting
downward. The uniform magnetic field was considered to be B in Figure 1. The study
assumes the Joule heating and viscous dissipation to be negligible to focus entirely on the
impact of the magnetic field [18]. However, through the Boussinesq approximation, this
particular assumption is validated, which ignores the density gradient, except from the
appearance where the former is multiplied by gy.

Figure 1. Considered geometry of the rectangular porous cavity along with the magnetic field.

3. Mathematical Formulations in Computation
3.1. Macroscopic Variables for Natural Convection in RB-MHD Flow in Porous Media

The formulation of LB equations using macroscopic governing equations is required
to study MHD natural convection through porous media. These formulae include the
energy equation, the Navier–Stokes equation with the Brinkman–Forchheimer model,
and the continuity equation. However, these equations need to be converted to their
non-dimensional form before being used to simulate MHD natural convection.

The dimensional equations for continuity, u-momentum, v-momentum, and energy are
as follows:
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∂ῡ

∂t̄
+

1
ε

(
ū
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+ gyερβ(T̄ − Tc) + εσB2(ū sin φ cos φ− ῡ cos2 φ)

]
− εν

K
ῡ

− 1.75√
150εK

|ū|ῡ

(3)

∂T̄
∂t̄

+ ū
∂T̄
∂x̄

+ ῡ
∂T̄
∂ȳ

= α

(
∂2T̄
∂x̄2

+
∂2T̄
∂ȳ2

)
(4)

Meanwhile, the dimensionless governing equations could be written as the following:

∂u
∂x

+
∂υ

∂y
= 0 (5)

∂u
∂t

+
1
ε

(
u

∂u
∂x

+ υ
∂u
∂y

)

= −ε
∂p
∂x

+
Pr√
Ra

(
∂2u
∂x2 +

∂2υ

∂y2

)
+ ε

Pr√
Ra

Ha2(u sin φ cos φ− υ sin2 φ)− ε
Pr√

RaDa
u

(6)

− 1.75√
100εDa

|u|u

∂υ

∂t
+

1
ε

(
u

∂υ

∂x
+ υ

∂υ

∂y

)

= −ε
∂p
∂y

+
Pr√
Ra

(
∂2υ

∂x2 +
∂2υ

∂y2

)
+ εθ Pr+ε

Pr√
Ra

Ha2(u sin φ cos φ− υ cos2 φ)− ε
Pr√

RaDa
υ

− 1.75√
100εDa

|u|υ

(7)

∂T
∂t

+ ū
∂T
∂x

+ υ
∂T
∂y

=
1√
Ra

(
∂2T
∂x2 +

∂2T
∂y2

)
(8)

Here,
ρ is the fluid density,
α is the thermal diffusivity,
ε is the porosity,
Tc is the cold temperature,
Th is the hot temperature,
σ is the electrical conductivity,
µ is the dynamic viscosity,
H is the height of the cavity,
B is the magnetic field strength,
φ is the angle of an applied magnetic field,
β is the thermal expansion coefficient,
gy is the gravity acting downward along the y-axis,
Da is the Darcy number,
Ha is the Hartmann number,
∆T = Th − Tc is the temperature gradient between the top (hot) and bottom (cold) walls
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(Th > Tc),
|u| =

√
u2 + υ2

The relations which are implied to convert the dimensional equations to non-dimensional
form are

x = x̄
H

y = ȳ
H

u = ū
( α

H )
√

Ra

ν = µ
ρ

υ = ῡ
( α

H )
√

Ra

θ = T̄−Tc
Th−Tc

t = t̄(
H2
α

)
√

Ra

p = p̄
p( α

H )2Ra

Ra =
gy β∆TH3

vα

Pr = v
α

Da = K
H2

Ha = BH
√

σ
µ

(9)

3.2. LBEs for Heat Transfer and Fluid Flow

The lattice Boltzmann method is also referred to as thermal LBM or (TLBM) because it
simulates the fluid flow mechanics by solving both the Boltzmann and the energy equations.
TLBM calculates two distribution functions- fi for fluid field, and gi for temperature field.
These distribution functions could be defined by considering the probability of particles in
position x at time t moving toward each lattice direction i with speed ci during time ∆t. It
enables the formulation of macroscopic fluid parameters, such as pressure, temperature,
and velocity. In addition, the fluid domain is discretized into homogeneous lattice nodes.
The inclusion of the BGK approximation into the LB equation results in the following
equations with an external force [18]:

For the flow field:

fi(x̄ + ēi∆t, t + ∆t) = fi(x̄, t)− fi(x̄, t)− f eq
i (x̄, t)

τv
+ ∆tF̄i (10)

For the temperature field:

gi(x̄ + ēi∆t, t + ∆t) = gi(x̄, t)− gi(x̄, t)− geq
i (x̄, t)

τα
(11)

Here, τv = 3ν + 0.5, and τα = 3α + 0.5 are the single-relaxation times (SRTs) that define
the approaching rate to the equilibrium state. Meanwhile, kinematic viscosity ν and thermal
diffusivity α are presented as the following:
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ν =

(
τv −

1
2

)
c2

s ∆t (12)

α =

(
τc −

1
2

)
c2

s ∆t (13)

where cs is the speed of sound, cs = c/
√

3, and c is the spacing among the lattice.
The external force term F̄i consists of three forces: FM

i (for MHD), FP
i (for porous

media, which is the Brinkman–Forcheimer model), and finally, Fb
i (buoyancy term):

Fi = FM
i + FP

i + Fb
i (14)

On the other hand, magnetic force FM
i acts in x and y directions, and is expressed as

the following [44]:

FM
i = Fx + Fy (15)

Fx =
Ha2µ

L2 (v sin φ cos φ− u sin2 φ) (16)

Fy =
Ha2µ

L2 (u sin φ cos φ− v sin2 φ) (17)

The buoyancy force term can be expressed as

Fb
i = ρgyβ(Th − Tc) (18)

The applied magnetic field does affect the force term. The present study considers
the external magnetic field is applied in different directions. The direction is horizontal,
vertical, or in other angles (for example, θ = 0, 45, 90). The external MHD forces acting in x
and y directions are presented as the following:

Fx = 3ωkρεA[(v sin θ cos θ)− (u sin2 θ)] (19)

Fy = 3ωkρε(gyβ(T − Tre f )) + A[(u sin θ cos θ)− (v cos2 θ)] (20)

The magnetic buoyancy force in terms of weighting factor is written as

Fb
i = 3ωkρεgyβ(T − Tm) (21)

Here, Tm = (Th + Tc)/2.
The body force for porous media, FP

i, is expressed through Ergun’s equation [45]:

F̄i = −
εvk
K

ū− εFε√
K
|ū|ū + εḠ (22)

where, Fε represents the geometric function (Fε = 1.75√
150

), K is the permeability (K = Da · H2)

with H symbolizing the domain height, vk represents the kinematic viscosity, and Ḡ represents
the external body force term.

An alternative equation of force term, FP
i, for porous media was proposed by Mo-

hamad [46] to obtain the accurate solution of hydrodynamics, which is the following:

FP
i = −wk

[
9

(
εv
K

)
(uex + vey) +

Fεε√
K
(|ū|uex + |v̄|vey)

]
(23)

The present study considers D2Q9, i.e., two-dimensional nine-velocities, model [47].
Therefore, the equilibrium distribution functions ( f eq

i ) for the D2Q9 model of porous media
is written as the following:
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f eq
i = ωkρ

[
1 +

ēi.ū
c2

s
+

(ēi.ū)2

2εc4
s
− |ū|

2

2εc2
s

]
(24)

Here, ε is denoted as the porosity. The discrete velocities ēi for the D2Q9 model have
different parametric values and are expressed as mentioned by [48]:

ēi =





(0, 0) for i = 0
cos[(i− 1)π/4], sin[(i− 1)π/4] for i = 1– 4√

2(cos[(i− 1)π/4 + π/4], sin[(i− 5)π/2 + π/4]) for i = 5–8
(25)

The values of the weighting factor ωk are the following:

ωk =





4/9 for i = 0
1/9 for i = 1–4
1/36 for i = 5–8

(26)

The thermal equilibrium energy function can be expressed as the following [48]:

geq
i = ωkT

[
1 +

1
c2

s
ēi.ū

]
(27)

3.3. Boundary Conditions

Boundary conditions were defined for the four walls of the rectangular cavity for
the purpose of simulation. Boundary conditions are generally described as distribution
functions (DFs) in LBM. It is required to determine the DFs at the boundary nodes according
to the macroscopic conditions. The procedure is attributed with ensuring the stability and
accuracy of the mathematical model [49].

3.3.1. Boundary Conditions for Fluid Flow

The no-slip (also known as bounce-back) boundary condition was applied on the walls
of the rectangular cavity. As an aftermath of the particles’ collision, the outgoing DF goes
in the reverse direction of the incoming DF at a particular position within the boundary.
The following expressions represent the boundary conditions of this study:

At right wall: f3,m = f1,m, f7,m = f5,m, and f6,m = f8,m
At left wall: f1 = f3, f5 = f7 and f8 = f6
At top wall: f4,n = f2,n, f8,n = f6,n and f7,n = f5,n
At bottom wall: f2 = f4, f5 = f7 and f6 = f8

where m and n represent the domain’s lattice for length and height, respectively.

3.3.2. Thermal Boundary Conditions

As described earlier, the top (Tc) and the bottom walls (Th ) have constant temperatures,
but they have different values. The other walls are adiabatic and, therefore, are not
participating in the mass transfer.

At isothermal cold top wall: g4,n = −g2,n
At isothermal hot bottom wall: g2 = Twall (w2+w4)−g4
Here, Tw is used for the 2nd-order Zou-He boundary conditions
At adiabatic west wall: gi,0 = gi,1, for i = 1–8
At adiabatic east wall: gi,m = gi,m−1, for i = 1–8

where, m and m− 1 are the boundary lattice and the lattice inside the enclosure near the
boundary, respectively.

3.4. Rate of Heat Transfer

In the numerical investigation of the convective heat transfer problem, the Nusselt
number (Nu) is an important parameter. The Nu number describes the heat transfer rate
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due to temperature gradient. The local Nu number at hot walls and the average Nu number
(Nuavg) calculated for the entire domain are formulated as the following [47,50]:

Nu(x) = − H
∆T

∂T
∂y

(28)

Nuavg =
1
H

∫ H

0
Nu(x).dx (29)

where L denotes the length of the cavity.
Clever and Busse [51] defined a modified formulation for the average Nusselt number,

N̄u in their work, and it is written as

Nu = 1 +
< ῡ · T̄ >√
Ra∆Tα/H

(30)

where H represents the distance between the bottom and top walls, ∆T is difference
between temperature of top and bottom walls, < · > shows the average over whole flow
domain, and υ denotes the velocity component of the vertical direction.

For the RB convection, He at al. [52] formulated an equation for the average Nusselt
number Nu in terms of critical Rayleigh Rac and Rayleigh number Ra:

N̄uEM = 1.56× (Ra/Rac)
0.296 (31)

where Rac = 1707.06.

3.5. LM Algorithm

The LBM-MHD-RB data-driven work in this study is analyzed by the LM algorithm. It
is a hybrid method that considers both the Gauss–Newton and steepest descent approaches
for the convergence criteria to reach an optimal solution. There is an inherent trade-
off between Gauss–Newton and the steepest descent based on the requirements of the
problem. For instance, if Gauss–Newton alone cannot solve a problem, the LM algorithm
links the steepest descent approach for traversing the design space and determining the
optimal solution. This technique is most effective in solving non-linear equations. The
correlations to predict the output parameter by considering the influential parameters of
LBM are typically non-linear, and therefore, the LM algorithm was a suitable option for the
surface analyses.

LM develops the trust region for different computational applications. In the LM
method, the difference in the weights (wi) is obtained by determining the following [53]:

α′∆ = −1/2(∇)λ (32)

where α’ is the matrix of the optimization field, and λ is the mean-squared network error.
The term λ is achieved by the following equation [53]:

λ = 1/N
N

∑
k=1

[~q(xk)− ~dk]
2 (33)

where N is the number of examples;~q(xk) is the output of the network aligning with the
example xk; and ~dk is the expected outcome.

Finally, the matrix α’ elements are obtained by the following [53]:

α′ij = (1 + ζδij)
z

∑
r=1

N

∑
k=1

[
∂yr(xk)

∂wi

∂yr(xk)

∂wj

]
(34)

where z is the number of the desired output from the network.
At the commencement of the algorithm, α′ and∇(λ) are a major part of the evaluation,

followed by the obtained solution on wi. The LBM-obtained data were initially analyzed
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in the R programming environment using library packages “dplyr” [54], followed by
“pracma” [55] to optimise the matrix α. The analyzed, clean dataset was fed into OriginPro
to perform the non-linear surface analyses. In each step of iteration, the λ value was
calculated through the model, and the iteration was not terminated unless an optimal
solution was reached. The convergence criteria were set if a coefficient of determination
(R2) was reached above 0.8 for any specific function. A separate function was chosen for
the iteration if the required R2 was not obtained despite adjusting the iteration cycle ζ. It
should be mentioned here that the present study does not aim to perform an AI approach,
such as neural networks, due to the limited data for the analysis, and since the solution
was reached by the LM algorithm by solving the non-linear least squares curve fitting, the
process was terminated once a standard R2 was achieved, subject to further validations.
Therefore, once the solution at wi was reached, the equation was obtained to validate the
accuracy. The obtained equation was initially checked through the interpolated dataset,
which was at least 3000, depending on the percentage of outliers. The fundamental aim was
to always have R2 more than 0.95, and hence the outlier detection test was conducted on the
obtained dataset. The initial process is known as the LM iteration/learning cycle, with each
step destined to reduce the error from the previous one. The ζ parameter is an adjustment
at each cycle. The process keeps on running unless a good correlation coefficient is reached.
Once the iteration was terminated, the equation was obtained and immediately tested for
the accuracy.

3.6. Code Convergence Criteria

In the LBM simulations, all the computations were terminated when the velocity field,
as well as temperature, reached the following convergence criteria:

∑ |ψn+1 − ψn|
∑ |ψn+1| < 10−15 (35)

where ψ is either the velocity u or the temperature T, n represents the iteration index, and
finally, the summation was applied over the whole domain of interest.

Meanwhile, the LM algorithm followed an iterative method unless an accurate corre-
lation coefficient was obtained as described in Figure 2.

Figure 2. Flowchart of LM algorithm using LBM data for the correlation development.
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4. Materials and Methods

LBM simulations for MHD-RB convection were performed in Fortran 90 [56] by using
Microsoft Visual Studio CodeTM. Boundary conditions, collision operators, streaming
functionality, and convergence criteria were all included as subroutines. The base code
considered all those subroutines for the iterations. The iterations continued until the
convergence criteria were obtained. The computations were performed on a Windows
10 computer in an 11th Gen Intel(R) CoreTM i9 2.60 GHz processor with 64 GB RAM.
The streamlines and isotherms were visualized by using Tecplot 360 2022 R1 version
(https://www.tecplot.com).

As mentioned earlier, the LM algorithm was performed through the R programming
language [57] by RStudioTM open source software using library packages pracma [55],
followed by data organising, equations validation, and correlation development in Orig-
inPro [58]. The library package pracma determines a large number of functions from the
numerical analysis for any math function. Prior to that, the popular dplyr [54] package
was used for data manipulation and visualization. It should be mentioned here that the
same computer was utilized for LM algorithm development, which was also used for the
LBM simulations. However, both RStudio and OriginPro were operated with NVIDIA
RTX A3000 GPU power for fast implementation of the model optimization and correlations
development.

5. Results

The primary purpose of the present study is to develop the correlation among the
important variables to quantitatively predict Nu number, which is representative of the
average heat transfer rate. Therefore, the results will discuss the numerical correlations
based on LBM-MHD data interpretation through the LM algorithm. Each segment demon-
strates the obtained outcome from the non-linear surface analysis, followed by validations
with literature to showcase the accuracy of the obtained equations. However, two separate
comprehensive analyses are first conducted to pinpoint some of the significant changes in
the streamlines and isotherms.

5.1. Effect of Numerical Parameters on Streamlines

The impact of Ra and Ha numbers, as well as ε on streamlines, is illustrated in Figure 3
under a constant θ = 0. The combined analysis will depict each variable’s influence on the
streamlines’ pattern.

Figure 3a is assigned with Ra = 105, Da = 10−2, ε = 0.4, and Ha = 0, leaving entirely
no impact of the external magnetic field. As per Figure 3a, three separate circular rolls
distributed within a symmetry within the cavity were observed. However, the circular
rolls in the left and right locations of the cavity exhibited almost similar characteristics
with the maximum contour values at the center. However, the circular roll in the middle
demonstrated the opposite and negative contour values. This behavior could be attributed
to side-heated adiabatic walls and the top and bottom walls being active in the heat transfer
process. Therefore, the circular roll in the middle directly depicted the effect of convective
characteristics instead of conductive ones [18]. However, as the Ha number increased
from 0 to 50, the shape and contour values changed significantly, as seen in Figure 3b.
The Bénard cell reduced from 3 to 1 and started to stretch from the central region. The
maximum contour value also reduced from 8 to 6, which is almost a 25% reduction due to
the 50% augmentation in the Ha number. Therefore, it was expected that increasing Ha
number would keep on reducing the heat conduction. The hypothesis was confirmed from
Figure 3c, where the maximum contour value at the center plummeted to 1. By increasing
the Ha number from 50 to 100, the maximum contour value reduced by approximately
83.33%, indicating the negative influence of the external magnetic field and the existence of
restriction within the cavity to reduce the heat transfer mobility.
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In the second part of this analysis, the influence of Ra numbers and ε was observed.
By comparing Figure 3a and Figure 3d, the impact of the Ra numbers could be observed
by keeping Ha and ε constant. As Ra decreased from 105 to 104, the maximum contour
value decreased from 8 to 0.3, which is a rapid 96.25% reduction. With this observation,
the impact of buoyancy in the RB convection could be understood. In the next part, all
the variables, namely Ra and Ha numbers, and ε were increased concurrently as shown
in Figure 3e. According to Figure 3e, three Bénard cells reduced to one but demonstrated
strong attraction toward the thermal walls by showing similarity with the thermal dipole.
The maximum contour value was 20% reduced from 0.3 to 0.24, and no negative value was
recorded. While the increased Ha number was directly responsible for negative contour
values, the increased ε and Ra numbers enhanced the heat transfer phenomena, leading
to 0 as the lowest contour value within the cavity. The impact of ε was also tested by
keeping Ha and Ra numbers constant. By comparing Figure 3c,e, the influence of ε could
be analyzed, where the maximum contour value decreased from 1 to 0.24. However, in both
Figure 3c,e, the Ha number is 100, which repelled the heat transfer application. Therefore,
the contour value reduced significantly by about 140%.

5.2. Isothermal Changes

The final section of the results focuses on the changes in the isotherms, similar to the
previous section. Figure 4 represents such changes in five different frames.

The impact of Ha can be observed from Figure 4a–c by increasing from 0 to 100 in
three separate frames. The distribution of isotherms is kept within 0 to 1. As per Figure 4a,
the isothermal lines demonstrate an oscillating pattern due to the heat transfer within the
cavity without the influence of Ha number. The pattern within 1 to 1.5 of the horizontal
axis is the opposite of what was observed within 0 to 1 of the same axis. This behavior
could be linked with the conduction and convective rolls observed in Figure 3a, where
the middle convective rolls represent the negative contour values. Therefore, the pattern
of the isotherm from 1 to 1.5 on the horizontal axis is the opposite. As the Ha number
increases from 0 to 50, the isothermal lines exhibit uniformity within the cavity, as the
oscillation disappears and all the lines start to become quasi-linear as seen in Figure 4b.
The presence of the Ha number leads to the presence of a magnetic field which develops
the Lorentz force within the cavity. Therefore, the instability within the thermal walls
is reduced. Further decreasing oscillation could be observed from Figure 4c, where the
isothermal lines edge closer to the linearity. While a wavy pattern could be seen at the
lowest contour, the isothermal lines are quite linear at the maximum contour values, which
are closer to the horizontal axis.

Meanwhile, the effect of plummeting Ra numbers could be observed from Figure 4d,
where decreasing Ra from 105 to 104 significantly impacts the isothermal patterns. It could
be observed that due to the decreased buoyancy, the isothermal lines show minor oscillation
with a minimal peak in each line. The isothermal line close to the horizontal axis show a
linear pattern due to the lack of buoyancy strength within the cavity. However, as Ha is
increased from 0 to 100, Ra is increased from 104 to 105, and finally, ε is also increased from
0.4 to 0.6. The isothermal lines are almost linear throughout the cavity due to the strong
influence of the Ha number in particular as seen in Figure 4e. In fact, keeping Ha = 100
constant and increasing ε from 0.4 to 0.6 does not significantly impact the isothermal lines
either, due to the existence of the Lorentz force. By comparing Figure 4c,e, the impact of
the Ha number in the RB convection could be well understood.
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5.3. Predicting Nu from Ha Number and θ

In this part of this study, individual equations to predict Nu under the influence of
an external magnetic field in an inclined rectangular cavity are developed for Ra = 104

and Ra = 105. The key element of this analysis is the consideration of the electrically
conducting fluid in RB convection. Different simulations were conducted at Ha number
∈ [0, 100] based on the LBM model at θ ∈ [0, 90]. The LM analysis was performed to build
the correlation, followed by the validation with well-cited literature from the past and
the recent. In general, good accuracy was established. The correlation is only valid for
Ra = 104, 105, which are the most preferred ones for laminar flows as per the data from
the literature.

5.3.1. Development of Correlation and Surface Analysis

Non-linear parabolic and power correlations were found to be the best-fitting ones
among different functions for Ra = 104 and Ra = 105, respectively, under the LM algorithm.
The correlation coefficients (R2) were found to be 0.89 and 0.966 for Ra = 104 and Ra = 105,
respectively. Figure 5 depicts the 3D contours for better visualization. It could be observed
that the high density of the points was more aligned with low θ, as most of the important
transition in the heat transfer takes place under low Ha and θ. This behavior could be
attributed to the effect of the magnetic field, which is directly controlled by the Ha number.
At an increasing Ha number, the rate of heat transfer declines due to the existence of both
an electric field and magnetic field, leading to the presence of a Lorentz force. Consequently,
increasing the Ha number lowers the values of Nu. However, as part of the validation, a
wide range of Ha numbers and θ was considered to demonstrate the accuracy of the model
and its ability to predict the heat transfer value outside the calibration zone.

As presented in Figure 5, Nu between 0.1140 and 5.280 was obtained from the surface
analysis. The equation, however, is expected to be valid to predict Nu beyond the obtained
range in the analysis due to the consideration of a broader range of Ha and θ. In order to
obtain the equation from the best-fitting simulated contour from the LM algorithm, the LBM-
simulated data were subject to several surface analyses for the purpose of interpolation
within the user-defined range, and the following equation provided the best R2:

Nu = f + aexp(−Ha/b)exp(−θ/c) (36)

where f, a, b, and c are fitting parameters with assigned values specifically under the
aforementioned condition. Table 1 contains the values of the fitting parameters obtained
through the LM algorithm with the best R2 value.

Table 1. Fitting parameters to predict Nu from Ha number and inclination angle θ at Ra = 104.

Empirical Parameters Fitting Values

f 0.87404
a 1.73303
b 30.0595
c 127.50

Statistical Accuracy Indicators Values

R2 0.966
p < 0.05
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Figure 5. Development of correlation through fitting surfaces for (a) Ra = 104, and (b) Ra = 105 under
the influence of external magnetic field at different inclination angles for electrically conducting fluid.
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As Ra increases from 104 to 105, the impact of buoyancy inside the enclosure augments
significantly. Therefore, Equation (36) is not an appropriate option to predict Nu as a
function of Ha numbers and θ. In fact, different functions were considered to determine
the best-fitting surface to obtain the equation to predict Nu at Ra = 105. The following
equation provided the best coefficient of determination to predict Nu:

Nu = f + aHa + bθ + c(Ha)2 + d(θ2) (37)

Table 2. Fitting parameters to predict Nu from Ha number and inclination angle θ at Ra = 105.

Empirical Parameters Fitting Values

f 5.26782
a −0.07321
b −0.03499
c 3.43333
d 0.000162

Statistical Accuracy Indicators Values

R2 0.897
p <0.05

It should be mentioned here that the p-value outlines the significance of the statistical
study implemented in this section. The lowest p-value indicates that the null hypothesis
was rejected, and the correlation is statistically significant. Overall, p < 0.05 was considered
to be a good indicator to validate the model’s accuracy.

5.3.2. Cross-Validation with Literature

The cross-validation was conducted with the literature with a similar objective. How-
ever, none of the literature provided any clear mathematical correlation among the parame-
ters. The data from the literature were not considered to calibrate the LM model. Hence,
the cross-validation serves as an independent validation to show unbiased agreement with
the LBM and LM data within the considered range of input parameters.

The validation plots presented in Figure 6 demonstrate good agreement between Nu
predicted from LBM and LM simulations. The majority of the points were obtained to be
within the ±5% error lines. To build the model, the validation dataset contained a similar
geometry considered in this study. The separate validation plots represent the agreement for
two different Ra numbers (Ra = 104, 105) considered in developing Equations (36) and (37).
The empirical parameters presented in Tables 1 and 2 were considered to obtain the Nu
as presented in Figure 6a,b, respectively. A separate Table 3 is presented to indicate the
accuracy individually with the literature data considered for the validation. As mentioned
in the caption of Table 3, some outliers were ignored in the individual R2 calculation
since it was already considered for the overall R2 determination. It should be mentioned
that filtering the outlier point is a common practice in statistical analysis, and hence the
influential negative point can be ignored.

Table 3. Obtained R2 in each validation with literature individually. Detected outliers were removed for
the correlation development.

Ra Rudraiah et al. [59] Kefayati [60] Sheikholeslami et al. [61] Sajjadi et al. [62] Ahmed et al. [16]

104 - - 0.9789 0.963 0.9789
105 0.9862 0.9878 0.9662 0.967 0.9858
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Figure 6. Cross validations with LBM data from the literature (a) Ra = 104 [16,61,62], and (b)
Ra = 105 [18,62–64] under the influence of external magnetic field at different inclination angles for
electrically conducting fluid.
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5.4. Correlations among Nu, Ha Numbers, and Da Numbers Under Constant Porosity

The major focus of this section is to predict Nu as a function of the Da number (0.1 ≤
Da ≤ 0.0001) and the Ha number (Ha ≤ 30), at constant variables, such as porosity (ε = 0.4)
and inclination angle (θ = 45). The data were obtained through LBM RB simulation, and
a correlation was developed through the LM algorithm. Two different Ra numbers Ra =
104, 105 were considered in this section of the study.

5.4.1. 3D Fitting Curves and Statistical Parameters

Repeated LM algorithm simulations were performed to obtain the best-fitting results.
As per Figure 7, the fitting curves are presented for Ra = 104 (Figure 7a) and Ra = 105

(Figure 7b), where the distribution of the LBM-obtained data is shown. At higher Ha
numbers, it was anticipated to have the lower Nu; therefore, Ha ≤ 30 was considered
for the model calibration. However, the independent validation was conducted with the
published literature, where the Ha number was expanded up to 50, and still, significant
agreement was established. On the other hand, a wide range of Da numbers was considered
in this part of the simulation. Therefore, the model could still develop a correlation at a
higher Da number.

Figure 7. Independent validation plots by comparing with LBM data: (a) Ra = 104, and (b) Ra = 105,
while ε = 0.4, θ = 45 were constant.
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The obtained equation to predict Nu is the following (for Ra = 104):

Nu = f + aexp(−Da/b)exp(−Ha/c) (38)

The equation to predict Nu at Ra = 105 yielded the best R2 under the power function,
which was found as the following:

Nu = f + abDa + cdHa + ebdDaHa (39)

where f , a, b, c, d, and e are empirical parameters to adjust the fitting surface and build the
correlation. Tables 4 and 5 show the quantitative values of those parameters and statistical
information of the LM model, which were the foundations of obtaining Equations (38)
and (39).

Table 4. Quantitative values of empirical parameters to predict Nu from Ha and Da numbers at
ε = 0.4, θ = 45, and Ra = 104.

Empirical Parameters Fitting Values

f 0.93997
a 0.19833
b −0.06512
c 14.6836

Statistical Accuracy Indicators Values

R2 0.90
p < 0.05

According to Tables 4 and 5, the numerical values obtained from the LM algorithm are
presented. The correlations were obtained to be R2 = 0.9 and R2 = 0.99, for Ra = 104 and
Ra = 105, respectively.

Table 5. Quantitative values of empirical parameters to predict Nu from Ha and Da numbers at
ε = 0.4, θ = 45, and Ra = 105.

Empirical Parameters Fitting Values

f 3.47307
a −0.00128
b −0.75661
c −3.4519× 10−9

d 5.79634
e 8.81812× 10−13

Statistical Accuracy Indicators Values

R2 0.99
p < 0.05

5.4.2. Independent Validation

The independent validation was conducted with the literature to showcase the ability
of the correlation with data. The purpose of such an approach is to validate the present
approach with well-cited data from the past and the recent, collectively.

Figure 8 presents the validation results obtained through the present approach for
Ra = 104 (Figure 8a) and Ra = 105 (Figure 8b), respectively. It was found that the majority
of the points were near the 1:1 line, and the agreement was within the ±5% error lines.
The agreement plot also demonstrated the range of the Nu being as high as 4, which is
mostly observed at a lower or no Ha number. Therefore, the present approach was able to
predict LBM results within multifarious ranges with a low percentage of error. The R2 of
each comparison in the validation is presented in Table 6, where 0.9113 ≤ R2 ≤ 0.9928 was
obtained, which provides more confidence in the accuracy of the present approach. Due to
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the limited data in the literature, the number of points presented in Figure 8a is less than
those of Figure 8b.

Figure 8. Surface fitting curves obtained from LBM data by LM algorithm for (a) Ra = 104 [18,64],
and (b) Ra = 105 [16,44,59,61,62], while ε = 0.4, θ = 45 were constant.
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Table 6. Obtained R2 in each validation segment.

Ra Seta et al. [63] Ghasemi et al. [64] Sajjadi et al. [62] Himika et al. [18]

104 - 0.9946 0.9113 -
105 0.9994 0.9362 0.967 0.9928

5.5. Equation to Predict Nu under Variable Porosity

In this segment of statistical analysis, porosity (ε) is considered as a variable under
the fixed θ, and Ra numbers. The primary focus is to establish a correlation under variable
porosity (ε), which is quite sensitive to other variables concurrently. Therefore, Ra = 105

and Da = 10−1 are considered for the sensitivity analysis.

5.5.1. 3D Fitting over a Planar Surface

It was anticipated that under constant Da and Ra numbers, and θ, the increasing rate
of Nu will be linear as a function of ε and Ha, considering the fact that Ha remains constant
in each step while ε varies. For example, it was pinpointed earlier that the increasing Ha
number significantly plummets the heat transfer rate. However, if Ha remains unchanged,
yet ε increases, the Nu will increase linearly due to the improved convection inside the
cavity since the Da number is also unchanged.

Figure 9 serves as a testimony of the aforementioned statement, where a planar
correlation was obtained through the LM algorithm. The R2 = 0.91 depicts the accuracy of
the correlation, which can be improved further with more relevant data within the plane.
The distribution of the points within the surface implies that a suitable range was taken
into account to predict Nu over the multifarious 0.4 ≤ ε ≤ 1.0 and 0 ≤ Ha ≤ 50.

Figure 9. Fitting parametric development over a planar surface to predict Nu under constant
Ra = 105, θ = 60, and Da = 10−1.

The equation to predict Nu under this circumstance was obtained to be the following:

Nu = f + aε + bHa (40)
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The values of the empirical parameters from Equation (40) are presented in Table 7. The
simplified version of the equation was also found to be effective at elevated Ha numbers;
however, due to the insufficient data in the literature, the validation was not conducted
beyond Ha = 50.

Table 7. Parametric values to predict Nu from Equation (40).

Empirical Parameters Fitting Values

f 2.6105
a 2.13773
b −0.02639

Statistical Accuracy Indicators Values

R2 0.91
p <0.05

5.5.2. Validation Result

The immediate validation was conducted to assess the accuracy of Equation (40). The
independent validation data were obtained from the literature reported by Himika et al. [18]
and Sajjadi et al. [62]. The ±5% error lines were also included in a similar manner for better
visualization of the agreement.

Figure 10 illustrates the agreement between the literature (LBM data) and the present
LM method. In general, most of the points were found within the error lines. The statistical
accuracy indicators presented in Table 7 suggest that the agreement was still acceptable.
The range of Nu was found to be close to 5 (LBM-obtained result), which was, in fact,
obtained at Ha = 0 and the highest porosity considered in this research pipeline, i.e.,
ε = 0.9.

Figure 10. Fitting parametric development over a planar surface to predict Nu under constant
Ra = 105, θ = 60, and Da = 10−1 [18,62] .
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Table 8 shows the R2 values found from the agreement presented in Figure 10. The
values of R2 were found between 0.85 and 0.93 in comparison with the literature data
mentioned earlier. All the relevant points were considered for validation. The specific point
located beyond the +5% error line was still considered, and hence the R2 was found to be
0.85 when comparing with Himika et al. [18]. However, if those specific data were left out,
the R2 increased significantly to 0.92.

Table 8. Coefficient correlations (R2) obtained in comparison with individual literature as presented
in Figure 10.

Sajjadi et al. [62] Himika et al. [18]

0.93 0.85

6. Discussion
6.1. Significance of the Study

The LBM is a powerful and efficient alternative to solving fluid dynamics problems.
LBM simulations can provide an accurate outcome within a shorter time scale compared to
other relevant techniques, such as finite difference, finite element, and finite volume. All of
the methods are accurate and have pros/cons. However, the explanation of the correlation
among the input variables to quantitatively predict heat transfer was hardly reported. The
present study utilizes input variables, such as Ra number, Da number, ε, Ha number, and
θ to predict MHD-RB convection within a porous enclosure. The input parameters in the
relevant study were mostly chosen to showcase the impact of buoyancy or porosity for
the purpose of visualization. Nevertheless, there was always a gap in having equations
numerically predict Nu, which can be further validated with well-cited literature.

LBM data are highly non-linear. The current study considered the LM algorithm as
one of the ML training methods to build non-linear surface analyses to develop three-
dimensional correlation among the variables to predict Nu. In each segment of the correla-
tion development, validations were conducted, and statistical parameters were mentioned
as part of the accuracy indicators. Furthermore, the empirical parametric values are pro-
vided in a tabular form after the statistical analyses, which will allow the researchers to
reproduce the work based on the requirements. The reproducibility of the work by the
LM algorithm could be established in different ways. One of them could be to perform
direct LBM simulations by varying the input parameters to build the dataset, followed by
correlation development to predict Nu. In that case, the process could be time-consuming.
The dataset could be split into 80% for the model development, and the rest 20% for the
validation. However, validations with relevant well-cited literature need to be performed
to understand the efficacy of the approach. It is recommended to consider a sample size of
100 for this approach. Alternatively, the interpolation of a limited dataset could be another
option. However, this part also requires the initial model development and creating a
dataset through simulations. However, the approach should consider the highest and
lowest possible range of each parameter within the geometry to interpolate. The LM algo-
rithm combined with the R library package “dplyr” assists the data manipulation without
any involving any complicated steps. It is possible to establish a dataset with 3000 points
through interpolation without the need to run LBM simulations varying each parameter.
The present study considered both aforementioned approaches.

The current study aims to fulfill such requirements by interpolating datasets for the
purpose of validations. The validations by comparing with identical geometries and
physical properties with relevant literature provide another form of evidence on a high
level of accuracy of the present approach. Some of the similar approaches in fluid dynamics
study are worth mentioning. Recently, Islam et al. [6] presented correlations to predict
Nu by considering input variables, such as Darcy (Da) numbers, Rayleigh (Ra) numbers,
and porosities to predict Nu by the LM algorithm. At the same time, the equation and
associated empirical parameters were utilized to validate the GPU-optimized LBM model.
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However, the work of Islam et al. [6] was fairly restricted to heat-transfer phenomena
of the nanofluid without the influence of an external magnetic field or representative
non-dimensional parameter, such as the Ha number. Meanwhile, the present approach
did not consider any machine learning or deep learning approach for the data-driven
approach, but the inclusion of artificial intelligence in fluid dynamics study has become
widely popular recently and should represent the state-of-the-art approach. It can be stated
that no approach can be considered a direct validation yardstick, as numerical methods
are not 100% correct, but the concept of correlation development as an additional form
of validation has been reported. For example, the ANN modeling of nanofluid under
magnetic field influence by Shah et al. [42], Alqaed et al. [41], and He et al. [43] attest
to the purpose of the data-driven approach being included in LBM simulations of fluid
flow. Nevertheless, this is the first work which has provided validations in each segment
to showcase the potential of the data-driven approach in fluid dynamics by correlations
development through the LM algorithm without the need for implementing machine
learning methods or high computational resources.

Experimental fluid dynamics is time-consuming, delicate, and expensive [65,66]. If
the boundary conditions, simulated data, and final representative contours are not fully
understood numerically, the experimental approaches could cost a fortune. In an industrial
setup, it will always be beneficial if numerical modeling contains correlations that are
repeatable and reproducible. Based on the equations, the researchers will be able to test
and tune the parameters within the domain to obtain the best-performing model to meet
the scientific requirements. Then the final model development can be established through
the original fluid flow simulations with the best-fitting input parameters to save time and
increase productivity as well as profitability. The equations presented in this study had
coefficients of determination (R2) between 0.85 and 0.99, which are within the standard
acceptable range.

6.2. Factors Affecting the Accuracy of the Equations

The present study is based on LBM data. To build a proper correlation, a wide range
of datasets is required. While the present study established the correlations with a large
number of the dataset, those did not cover the whole domain of the input parameters due
to a lack of data for the validation. For example, the Ha number could be as large as 200
or even more, which could reduce the Nu < 0.001. The LM algorithm will not be a viable
option for this approach. A machine learning or deep learning approach should be an
appropriate method for such an option. Figure 5 correlations represented 0 ≤ Ha ≤ 100,
and while model calibration was feasible, there were no relevant data found in the literature
for comparison. Furthermore, the present study considered laminar flow only. The Ra
number could be more than 107, and it can cover a wide range of turbulence through
the increased buoyancy. Nevertheless, a lack of efficient data in the literature within the
considered geometry restricted the present study to explore further options. Since machine
learning or deep learning was not considered in this study, further extension of the input
parameters was not explored. Some of the references had only 3–4 relevant points (for
example, Figure 6a), and therefore, the limited data could have affected the accuracy of the
respective equation. While the surface analyses were conducted based on interpolation
of the dataset with at least 3000 data, more validation data would have improved the
R2 values of independent validations. For instance, Figure 8b contained 31 points for
the independent validation, and R2 = 0.99 was obtained by comparing with three of the
references [18,62,63].

In addition, the LM algorithm is susceptible to noise and may downgrade the efficiency
of the neural network. However, those impacts are most visible for complex geometries.
Since the present study considers a 2D porous cavity, the error percentage was acceptable.
The re-tuning of the parameter would have been more efficient by considering any step
associated with supervised machine learning model development. However, machine
learning models require more data to train and test and cannot provide any equation for the
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direct implementation in the study. The data considered in this study were sufficient for the
LM algorithm and correlations development. The good agreement with the independent
validations attest to such a statement.

6.3. Future Recommendations

The key findings of this study offer a major hint that a machine learning model can
be developed to train LBM data into a well-suited model. Therefore, building correla-
tions to predict an output parameter by considering multiple input parameters to build
multifarious LBM models is highly recommended and is under strong consideration by
the authors. Furthermore, the present study aimed to provide equations under different
input parameters to predict Nu. In most of the fluid dynamics research, entropy gener-
ation is also determined to demonstrate the fluid irreversibility. Both heat transfer and
fluid friction are responsible for fluid irreversibility, particularly for nanofluid study. The
correlation development to predict total entropy will also lead to another highly correlated
parameter, the Bejan number (Be), which is the ratio of the heat transfer irreversibility
to total irreversibility due to heat transfer and fluid friction. Therefore, determining the
total entropy generation is one of the major indices in heat transfer application and should
require involving more input parameters. Considering the multifarious input parameters
involved in affecting entropy generation, machine learning is a suitable method and will
be further explored.

Finally, the present study was validated with the simulated results from CPU-based
computing. Considering the multivariate model development discussed above, CPU-based
computing will be tedious in terms of the machine learning approach. In addition, a 3D
implementation will be required to replace the 2D model, which could also consider more
complicated lattice models, such as D3Q15 and D3Q19, replacing the D2Q9 of the present
study. The possible implications of GPU-based LBM simulations will significantly reduce
the computational time and increase the efficiency of the model. Considering a parallel
computing platform, such as the Compute Unified Device Architecture (CUDA), could be a
better method for implementing the MHD-LBM hybrid machine learning model. Some of
the relevant works minus the machine learning have been published by the authors [14,67].
Therefore, developing a machine learning model through GPU computing for LBM cross-
validations, possibly in a 3D geometry, will be a milestone within LBM research.

7. Conclusions

This study developed an LBM-MHD data-driven method to numerically predict the
average Nu number (Nu) as a non-dimensional representative value of the average rate
of heat transfer by the LM algorithm. The mathematical correlations to predict Nu by
considering Ha numbers, Ra numbers, inclination angles (θ), Da numbers, and ε were
explored, followed by validations with the literature. The coefficients of determinations
were found within 0.85 ≤ R2 ≤ 0.99, and this provides compelling evidence for the
accuracy of the equations. The streamlines and isotherms were also presented to visually
demonstrate the impact of the above-mentioned numerical parameters on the heat transfer
phenomena. The equations presented in this study could be taken into account to validate
any existing LBM-MHD model which considers RB convection within a 2D rectangular
porous cavity. More options could be explored by directly developing a machine learning
model to add extra features within the LBM model to establish benchmark solutions, which
are under strong consideration for future study.
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Abbreviations
The following abbreviations are used in this manuscript, shown in the order that they appear in
the texts:

LBM Lattice Boltzmann method
MHD Magnetohydrodynamics
RB Rayleigh–Bénard
LM Levenberg–Marquardt
2D Two-dimensional
Ha Hartmann
Ra Rayleigh
Darcy Da
ANN Artificial Neural Network
Nu Nusselt
HPC High-performance computing
AI Artificial intelligence
ML Machine learning
NLSM Nonlinear least squares minimization
TLBM Thermal LBM
BGK Bhatnagar–Gross–Krook
SRT Single-relaxation times
DF Distribution functions
Nomenclature
English symbols
a, b, c, d, e, f Fitting parameters for LM-obtained equations
B Magnitude of magnetic field
Ci Lattice speed
Cs Speed of sound
dk Expected outcome
ei Discrete velocities
fi Distribution function for flow fields
f eq
i Equilibrium distribution function

Fi Force terms
FM

i Force term for MHD
FP

i Force term for porous media
Fb

i Buoyancy term
gi Distribution function for temperature fields
gy Gravitational force acting in y-direction
geq

i Thermal equilibrium function
H Height of the cavity
K Permeability
m Lattice on the boundary
N Sample number
n Iteration index

249



Axioms 2023, 12, 199

Nu Nusselt number
Nu Average Nusselt number
t Time
∆t Time interval
T Temperature
∆T Temperature difference
Tc Cold temperature
Th Hot temperature
v Velocity component
wi Solution of the interpolation
xk Random example for the output network
z Number of anticipated outcome from the network
Greek symbols
α Thermal diffusivity
α′ Optimization field matrix
β Thermal expansion coefficient
ε Porosity
λ Mean-squared network error
µ Dynamic viscosity
ν Kinematic viscosity
ω Weighting factor
φ Angle of inclination
ψ Either velocity or temperature in the convergence
ρ Fluid density
σ Electrical conductivity
θ Dimensionless angle of inclination
ζ Adjustment parameter in each iteration cycle
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Abstract: This paper proposes a charging strategy for plug-in electric vehicles (PEVs) in a smart
charging station (SCS) that considers load constraints and time anxieties. Due to the rapidly growing
load demand of PEVs and the load capacity investments in infrastructure, PEV charging needs to
be subject to overload limits, beyond which failures can occur. The time anxiety is presented to
address some of the uncertainties that may arise while charging PEVs. Under an aggregative game
framework, this paper constructs a price-driven charging model to minimize costs by choosing the
optimal charging strategy. Meanwhile, since the driver information is an aggregated item in the PEV
cost function, the drivers’ privacy can be protected. Then, a distributed reflected forward–backward
(RFB) splitting method is developed to search for the generalized Nash equilibria (GNE) of the game.
The convergence of the proposed algorithm and the effectiveness of the charging strategy are verified
by the detailed simulation and results.

Keywords: aggregative game; plug-in electric vehicles; distributed charging strategy; time anxiety;
load constraints

MSC: 9110

1. Introduction

Governments worldwide are promoting plug-in electric vehicles (PEVs) as a clean
alternative to conventional gasoline vehicles due to the depletion of fossil fuel resources
and environmental pollution, both of which are serious issues. Compared with the con-
ventional gasoline vehicle, the PEV reduces carbon dioxide emissions and the overall
operating cost [1]. However, with the rapid growth of PEVs, the total charging load of PEVs
entering the electric grid has increased [2], which leads to an overload of charging stations.
According to [3], uncoordinated PEV charging lowers the electrical grid’s power quality.
However, the demand presented in [4] might actually flatten as a result of the coordinated
charging of PEVs. To increase the electric grid’s operational effectiveness and security,
we must formulate effective charging strategies to coordinate and control the charging
behavior of PEV drivers.

Since PEVs are capable of storing electrical energy, some PEVs can be used as energy
suppliers and transmit power in both directions, to and from a smart charging station (SCS),
which can mitigate the effects of overcharging at SCS at peak times. Meanwhile, in order to
improve the accuracy of the charging strategy, the driver’s time anxiety needs to be taken
into account, in addition to the plug-in electric vehicle factor. The authors of Vatanparvar
et al. [5] introduced the concept of demand–price elasticity to address the demand–response
model based on the drivers’ behavior. A robust-index method was developed in [6] to
resolve driver behavior uncertainties and minimize violations to comfort in household load
scheduling. In [7], a distributed method was proposed and a means of reducing the impact
of some uncertain events under a non-cooperative game was proposed.However, some
of these driver behavior models were homogeneous and lacked theoretical justification.
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In order to improve the validity of the model, four different PEV driver behaviors were
proposed to study the effect of time anxiety on plug-in electric vehicle charging. There are
two main classes of control architecture in this charging strategy, namely the centralized
and distributed approaches.

The authors of Yan et al. [8] proposed a four-stage optimal control method for electric
vehicle charging stations (EVCSs) to reduce operating costs and maintain the supply–
demand power balance. In [9], a centralized control approach based on multistage droop
control was used to operate an island microgrid in the presence of high PEV penetration.
Furthermore, the model in [10] utilized a centralized real-time charging scheme based
on a convex relaxation method to coordinate PEV charging. However, in the centralized
strategy, each driver, as well as the control center, needs to know the complete information,
including cost function, local feasible decision sets and affine sharing constraints, which
can easily compromise the drivers’ privacy. Meanwhile, in many cases, no central node can
communicate with all drivers in both directions, and it is not possible to realize large-scale
driver communication in a real-time manner. Therefore, a distributed strategy is used to
compute the local decisions corresponding to PEVs and generalized Nash equilibria and
communicate with the adjacent local decisions using the drivers’ local data, which reduces
the computational and interaction burden and maintains the privacy of driver information.
Based on a decentralized protocol, Li et al. [11] presented a charge control technique for
large-scale PEVs under the Newton-type algorithm. The authors of Gan et al. [12] studied
a decentralized algorithm to optimize PEV charging during off-peak hours. However, the
distributed algorithm described above rarely considers the strategic interaction between
multiple PEVs in the charging station.

Therefore, to study communication between multiple PEVs, we then focused on game
theory, as this is a powerful tool for analyzing the interactions between multiple decision
makers and can improve the model’s performance. Since the famous Cournot model
was proposed, aggregative games have become an important type of game theory. In
the description for the aggregative game in [13], each driver was not subject to a one-to-
one interaction, but was subject to a number of aggregations across the charging strategy.
Recent studies in [14–17] considered the linear aggregation functions and quadratic cost
functions in such games, as well as their interaction with plug-in electric vehicle charging.
Based on the literature, a distributed reflected forward–backward splitting method was
proposed in [18] to find the generalized Nash equilibria of the aggregative game. Unlike
the distributed algorithm presented above, this algorithm exploits the aggregated coupling
structure in the cost function, meaning that each agent only needs to exchange and maintain
an aggregated estimate, not including the estimate of the even multiplier, reducing the
computational and communication burden of the model. In addition, since each PEV only
shares its estimate of the total, it does not need to share the complete information, further
protecting the privacy of the drivers. The main contributions of this paper are summarized
as follows:

(1) A new price-driven charging model combining time anxiety and load constraints is
constructed to minimize the cost of an individual PEV driver within the framework
of an aggregative game. In particular, as everyone only knows the final summation
result, not the specific information, the aggregation game can better protect the privacy
of drivers.

(2) Load constraints are proposed to protect the safety of SCS. Then, four PEV driver behav-
iors are proposed based on different time anxiety states and load constraints. Meanwhile,
the effects of time anxiety under four different driver behaviors are compared, and the
effects of uncertain occurrence events are reduced by the charging strategy.

(3) A distributed reflected forward–backward algorithm is designed to seek the general-
ized Nash equilibria of the model. The proposed algorithm seeks its optimal response
charging strategy regarding the current load and time anxiety in the electric grid,
thus preventing overload in the smart charging station and mitigating the impact of
uncertain events that may occur at the PEV charging time. The algorithm obtains an
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improvement in significant convergence compared to the numerical values of the FB
algorithm [19].

2. System Model and Problem Formulation

As this paper focuses on charging PEVs, the studied system is named SCS, which is
considered to be part of the electric grid. In [20–22], SCS is composed of PEVs, which are
powered by the electric grid, and the PEV can transmit power in both directions between
the electric grid. Meanwhile, each PEV i (i ∈ I = {1, 2, · · · , N}) is the electric grid user
in Figure 1. We define dt as the basic demand load of the system at time t. Let vector
xi = col(xi,1, . . . , xi,T) denote the charging curve of PEV i over all the time slots and xi,t
define the charging power of PEV i at time t. In the SCS, the driver can query the electrical
grid constraint described in Figure 1 to prevent the required cost from exceeding the load.
Moreover, as different drivers have different needs, they may have a preference for a
particular charging time, as they encounter various forms of uncertainty, i.e., events that
may occur at a later charging time; therefore, they may feel an urge to finish charging the
PEV earlier. Therefore, each PEV in SCS can be charged flexibly based on the available
information, which can meet the demand and reduce the charging cost.

Figure 1. Mechanism of interaction between SCS and PEV combined with the aggregative game.

2.1. Feasible Charging Coordination Constraint Profiles
2.1.1. Battery Capacity Constraint for PEV i

We describe the battery dynamics of PEV i using a linear model (1), in which πt
i

represents the state of charge of PEV i at time t. Meanwhile, πmin
i denotes the lower limit

of battery capacity and πmax
i denotes the upper limit of battery capacity for PEV i:

πt+1
i = πt

i + xi, t, πmin
i ≤ πt

i ≤ πmax
i (1)

2.1.2. Charging Constraint for PEVs

For each PEV i, the total electrical energy that it obtains needs to meet its charging re-
quirement needs. Based on this constraint, let Ri be the required electrical energy. Therefore,
the following equation holds:

T

∑
t=1

xi,t = Ri (2)

Moreover, each PEV i can choose to charge and discharge according to its situation,
which depends on the PEV battery capacity. Note here that PEVs cannot be selected for
charging or discharging at the same time; only one of them can be selected. xi is defined as
the minimum discharging power of a PEV i, and xi is defined as the maximum charging
power of a PEV i:

xi ≤ xi,t ≤ xi (3)
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2.1.3. Overload Constraint for Charging PEVs

To avoid overloading the SCS, the charging demand of all the PEVs cannot exceed
the maximum electrical energy supplied by the SCS. Let Cmax denote the total PEV load,
and the basic demand load at moment t is set to dt, which denotes the basic electrical load
transmitted through the SCS at time t. As the constraint spatially couples the charging
demand of all PEVs using the SCS at time t, constraint (4) is referred to as a joint constraint:

N

∑
i=1

xi,t + dt ≤ Cmax (4)

2.1.4. Feasible Charging Profiles

We assume that the setXi is the feasible charging profile andXi is a nonempty, compact
convex set. Let X = {(x1, x2, . . . , xN) | xi ∈ Xi, ∀i ∈ I} denote the set of charging profiles
of all PEVs. Then, X is also nonempty, compact and convex. Therefore, set Xi can be
written as follows:

Xi = {xi | (1) (2) (3) (4) } (5)

2.2. Cost Function of PEVs

We assume that there are N drivers, in which r (r ≤ N) start at the charging time and
enter a state of anxiety after a period of time. For PEV i, ta

i is denoted as the arrival time to
the SCS and td

i as the departure time at which SCS will be left; the discharge is no longer
considered after anxiety begins. Considering the aggregative game framework, we defined
σ(x) = 1

N ∑N
i=1 xi, and the minimization cost function of PEV i under the corresponding

energy consumption constraint is defined as follows:

min
xi

fi(xi, σ(x)) =
T

∑
t=1

Si,t

∫ xi,t

0
ρt

(
dt + µi,t + ∑

j 6=i
xj,t

)
dµi,t (6)

in which Si,t denotes the driver’s anxiety influence at time t. Next, the pricing function
ρt(Lt) is defined

ρt(Lt) = αtLt + βt

min
xi

fi(xi, σ(x)) =
T

∑
t=1

Si,t

∫ xi,t

0

(
αt

(
dt + µi,t + ∑

j 6=i
xj,t

)
+ βt

)
dµi,t

(7)

where Lt = dt + µi,t + ∑j 6=i xj,t represents the total load at time t. The pricing function is for
a nonlinear form that varies with the increasing charging load of PEV i, while the models
in [23,24] use ρt as a linear function. As a consequence, the linearly decreasing marginal
benefits [12,23,24] correspond to the PEV quadratic pricing function. In the meantime, the
PEV i increases a load of µi,t to the electricity grid at time t; the driver of PEV pays an

amount of ρt

(
dt + µi,t + ∑j 6=i xj,t

)
∆µi,t for charging at the time t. When ∆µi,t tends toward

zero and µi,t changes from zero to xi,t, it then evolves into Formula (8):

min
xi

fi(xi, σ(x)) =
(

d + Nσ(x)− 1
2

xi

)T
Siαxi + 1T

TSiβxi (8)

2.3. Time Anxiety for Drivers

The design of the cost function (8) shows that a higher price leads to lower charging
power. Furthermore, if the driver has time anxiety about charging and discharging the PEV,
the charging power needs to be higher. Based on this conclusion, Si,t must be small to have
a high charging power. Following that, at the time of charging, the value of Si,t gradually
rises. Meanwhile, the local objective function was defined according to the problem of
anxious and non-anxious drivers, so we obtained two different settings.
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The first setting is non-anxious drivers, and we defined S as a constant. This means
that the driver has a constant anxiety factor at the charging time, which does not change
over time. In this model, we denoted AT(i) as the arrival time of PEV i to SCS and denoted
DT(i) as the departure time of PEV i from SCS:

Si,t =

{
S, AT(i) ≤ t < DT(i)
0, otherwise

(9)

and the next setting is anxious drivers. We defined Vi,t as the ratio of the duration of the
anxiety state to the overall anxiety time. Thus, the following equation holds:

Vi,t =
t− ta

i

td
i − ta

i
, ta

i ≤ t < td
i (10)

With the time anxiety studied in this paper, at the time from AT(i) to ta,
i the time anx-

iety is at its lowest value Si,min, and from td
i to DT(i), it is at its highest value Si,max.

This paper will explore the behavior of PEV drivers based on [7] and propose four
different behaviors:

(1) Non-time-anxious driver (NTAD): This type of driver reaches an anxious time directly
after entering a state of peak anxiety (Figure 2).

(2) Less time-anxious driver (LTAD): This type of driver has anxiety values that rise
quickly and then slowly after entering the anxious time. The rise is faster and then
slower (Figure 3).

(3) Mid-time-anxious driver (MTAD): This type of driver enters anxious time with anxiety
values increasing at a uniform rate (Figure 4).

(4) High-time-anxious driver (HTAD): This type of driver has anxiety values that rise
slowly and then quickly after entering anxious time. The rise is slow and then fast
(Figure 5).

Thus, we can obtain the following equation:

Si, t =





Si,max, for NTAD
ln[Vi,t(e− 1) + 1]× (Si,max − Si,min) + Si,min, for LTAD
Vi,t(Si,max − Si,min) + Si,min, for MTAD
eVi,t−1

e−1 (Si,max − Si,min) + Si,min, for HTAD

(11)

In Figures 2–5, the value of Si,max − Si,min indicates the PEV driver’s time anxiety, i.e.,
the depth of time anxiety. This indicates that the smaller the Si,min, the greater the time
anxiety of the PEV driver. Furthermore, a greater time anxiety will increase the willingness
of the PEV driver to meet the charging demand earlier and closer to the departure time,
thus reducing the amount of time anxiety.

Figure 2. The time anxiety impact of NTAD.
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Figure 3. The time anxiety impact of LTAD.

Figure 4. The time anxiety impact of MTAD.

Figure 5. The time anxiety impact of HTAD.

According to the preceding discussions, two factors will influence PEV drivers’ time
anxiety. The intensity of time anxiety is the first, and the curve’s shape is the second.
To represent the effect of curve shape, the curve shapes of the four different behavior
types regarding time anxiety are shown in Figures 2–5. We chose NATD as the reference,
i.e., we chose Si,max as the reference value. The difference between this and the impact
of time anxiety caused by the suggested behavior is referred to as the impact difference.
For example, ∆SLTAD

i,t = SNATD
i,t − SLTAD

i,t is defined as the impact difference of the LTAD
behavior. Therefore, the following inequality (12) holds in Figures 2–5:

∆SNTAD
i,t ≤ ∆SLTAD

i,t ≤ ∆SMTAD
i,t ≤ ∆SHTAD

i,t (12)

3. Distributed Charging Strategy

In this section, we propose a distributed reflected forward–backward splitting method
to find a GNE of the function (8). Then, for the optimal response of each PEV driver, a
distributed charging strategy is proposed. We assume that all PEVs in the SCS are selfish
and each PEV is only allowed information about local problem data. Centralized control
methods are typically unavailable in this situation.
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3.1. Game Model

As the PEV charging and discharging problem is a generalized Nash equilibrium [24],
we consider a group of agents I = {1, . . . , N} that seek a GNE of the aggregative game with
globally shared affine constraints and the gradient condition of KKT necessary optimality
conditions can be then given by (13):

∇xi fi(xi, σ(x)) =(d + Nσ(x) + xi)Siα + 1TSiβ (13)

Assumption 1. For each i ∈ I , the function in (12) is differentiable and convex, and Ω ⊂ Rn is a
closed convex set.

We define Rm as m-dimensional Euclidean space and each agent i chooses its local
decision xi ∈ Ωi ⊂ Rn. We call x = col(x1, · · · , xN) = col(xi)i∈I ∈ Ω ⊂ RNn the
decision profile, i.e., the stacked vector ∏N

i=1 Ωi = Ω. The aim of each agent i is to optimize
its objective function, fi(xi, σ(x)) : Ω → R, within its feasible decision set. Note that
fi(xi, σ(x)) is nonlinearly coupled to the decisions of the other agents, but may not be
explicitly coupled to the decisions of all other agents. We denote

X :=

{
xi ∈ Ωi |

N

∑
i=1

Aixi ≤
N

∑
i=1

bi

}
(14)

where Ai ∈ Rm×n, bi ∈ Rm are local data from agent i. Thus, we can obtain the
following formula:

min
xi

fi(xi, σ(x)) s.t.
N

∑
i=1

Aixi ≤
N

∑
i=1

bi (15)

Furthermore, by considering games with affine sharing constraints Ax ≤ b, and sup-
posing x∗ as a GNE of game (12), the optimal solution to the following convex optimization
problem is defined as

min
xi

fi(x∗i , σ(x∗)) s.t.xi ∈ Ωi, Aixi ≤ b− ∑
j 6=i,j∈I

Ajx∗j (16)

where b = ∑N
i=1 bi ∈ Rm. The set Ωi denotes the local decision set of agent i and the matrix

Ai defines how agent i is involved in the coupling constraint. However, the constraints of
Equation (5) are clearly different from those of Equation (16). Therefore, the matrix Ai and
vector bi are then divided into two submatrices, Hi and Wi, and subvectors, Pi and Qi. We
define these as follows:

Wi =




0(i−1)T×T
−E

0(N−i)T×T
0(i−1)T×T

E
0(N−i)T×T

I




, Pi =




0(i−1)
Ri

0(N−i)


 (17)

Qi =




0(i−1)T(
π1

i − πmin
i
)
1T

0(i−1)T
0(i−1)T(

πmax
i − π1

i
)
1T

0(i−1)T
Cmax

N 1T




, Hi =




0(i−1)×T
11×T

0(N−i)×T


 (18)
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where 0T represents the zero vector of T dimension, I represents the unit matrix and

E =




1
1 1
· · ·
· · ·
· · ·
1 1 · · · 1



∈ RT×T . By definition, the constraints ∑N

i=1 Wixi ≤ ∑N
i=1 Qi,

∑N
i=1 Hixi = ∑N

i=1 Pi are satisfied. Then, the constraints in Equation (5) are satisfied. Note
that ∑N

i=1 Hixi = ∑N
i=1 Pi is an equation constraint, while Equation (16) contains only the

inequality constraint. Therefore, we represent this Equation constraint using two inequality
constraints, satisfying both ∑N

i=1 Hixi ≤ ∑N
i=1 Pi and −∑N

i=1 Hixi ≤ −∑N
i=1 Pi. If using this

approach, we need to rewrite Ai =




Wi
Hi
−Hi


 and bi =




Qi
Pi
−Pi


, and the constraints in

Equation (5) are converted into the constraints in Equation (16).

Assumption 2. For each i ∈ I , and for each ξ ∈ E, the function fi(xi, σ(x), ξ) is Lipschitz
continuous, convex, and continuously differentiable. For σ(x), the Lipschitz constant `(σ(x), ξ) is
integrable in ξ.

Among all possible generalized Nash equilibria, we are concerned with those solution
sets that correspond to the set of solutions to an appropriate variational inequality. For this
purpose, let us define the (pseudo) gradient mapping as

F(x) = col
(
(E[∇xi fi(xi, σ(x), ξi)])i∈I

)
(19)

We define a local Lagrangian function for agent i as L(x, z, λ) = 〈F(x∗, Jx∗), x〉 +
`Ω(x) + λT(Ax− b) + `RNm

+
(λ) + zTLλλ, where λi ∈ Rm

+ is a dual variable associated with
the coupling constraint. When x∗ is an optimal solution to (16), the following Karush–
Kuhn–Tucker (KKT) conditions are satisfied:

∀i ∈ I :





0 ∈ F(x∗, Jx∗) + NΩ(x∗) + ATλ∗

0 = Lλλ∗

0 ∈ Ax∗ − b−NRNm
+

(λ∗) + Lλz∗
(20)

In order to ensure that all the preceding signs are + and facilitate the operation,
the third formula becomes 0 ∈ −Ax∗ + b + Lλλ∗ + NRNm

+
(λ∗)− Lλz∗. Since û = Mu is

orthogonal to Ju, there is no consistent vector in the space of û to make Luû = 0 when, and
only when, û = 0. Meanwhile, we introduce Lu to implement a distributed estimation. If
we use I instead of Lu, we need the central node to pass the average information. Based on
this result, the extended KKT condition is as follows:





0 ∈ F(x∗, J∗ + û∗) + NΩ(x∗) + ATλ∗

0 = cLuû∗

0 = Lλλ∗

0 ∈ −Ax∗ + b + Lλλ∗ + NRNm
+

(λ∗)− Lλz∗
(21)

3.2. Distributed Algorithm

We assume that each driver only knows their local data, i.e., fi(xi, σ(x)), Ωi, Ai and
bi, which contains their own private information. Meanwhile, the shared affine coupling
constraints are decomposed such that each driver knows only one local block of the
constraint matrix. Note that Ai describes how agent i participates in the coupling constraints
(shared global resources), which is also assumed to be privately known by driver i. The
globally shared constraint Ax ≤ b then couples the set of feasible decisions of the agents,
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but is not known to any agent. Next, we describe the preprocessing process leading to the
distributed iteration proposed in the algorithm. In this, xi,k, ui,k, zi,k and λi,k are the state
variables of agent i at iteration k and τi, vi, αi are fixed constant step-sizes for driver i. We
define the weighted adjacency matrix W =

[
wi,j
]

i,j ∈ RN×N . The set of neighbors of PEV i

is N λ
i =

{
j | wi,j > 0

}
. We define the operators as follows:

A :




x
u⊥

z
λ


 7→




F
(
x, Jx + u⊥

)

cLuu⊥

0
b


+




0
0
0

Lλλ


 (22)

B :




x
u⊥

z
λ


 7→




NΩ(x)
0
0
NRNm

+
(λ)


+




0 0 0 AT

0 0 0 0
0 0 0 Lλ

−A 0 −Lλ 0







x
u⊥

z
λ


 (23)

in which c ∈ R+. Meanwhile, the metric matrix Φ is defined as follows. Note that the
matrix Φ is symmetric and positive definite, and the first term of Φ is the antisymmetric
matrix in the operator B:

Φ =




0 0 0 −AT

0 0 0 0
0 0 0 −Lλ

−A 0 −Lλ 0


+




τ−1 0 0 0
0 0 0 0
0 0 v−1 0
0 0 0 α−1


+




−SC −S 0 0
−S κ−1 I 0 0
0 0 0 0
0 0 0 0




=




τ−1 − SC −S 0 −AT

−S κ−1 I 0 0
0 0 v−1 −Lλ

−A 0 −Lλ α−1




(24)

Through the RFB algorithm, we can obtain the following formula Φv̄k+1 + Bv̄k+1 =
Φv̄k −Avk and vk+1 = 2v̄k+1 − v̄k, which is in the form of a distributed reflected forward–
backward splitting method to find zeros of (Φ−1A+Φ−1B). We substitute the operators into
Φv̄k+1 + Bv̄k+1 = Φv̄k −Avk, and then, through calculation, we can obtain the following
equation:





NΩ(xk+1) + xk+1 = xk + τ
(
−ATλk − F

(
xk, Jxk + u⊥k

)
− cLkuk

)

u⊥k+1 = u⊥k − κcLku⊥k + M(xk+1 − xk)
zk+1 = zk − vLλλk
NRNm

+

(
λk+1

)
+ λk+1 = λk + α(A(2xk+1 − xk) + Lλ(2zk+1 − zk)− b− Lλλk)

xk+1 = 2xk+1 − xk
u⊥k+1 = 2u⊥k+1 − u⊥k
zk+1 = 2zk+1 − zk
λk+1 = 2λk+1 − λk

(25)

its initial condition is u0 = x0 and u0 = x0.
Based on the above conclusions, the algorithm can find the GNE of the game, i.e., the

strategy that finds the cost minimization for PEV i. Its convergence was proved in [18].
Meanwhile, by writing the above algorithm in distributed form, we can obtain the following
Algorithm 1:
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Algorithm 1 : Distributed charging strategy with reflected forward-backward algorithm.

1: Initialization: Si,min = Si,max = S, xi ∈ Ωi, ui ∈ Rn, λi ∈ Rm and zi ∈ Rm

2: Task: slove (16)
3: For k = 1 : kmax
4: For i = 1 : N
5: (1)Receives xi,k for j ∈ N f

i , uj,k, zj,k and λj,k for j ∈ N λ
i then updates

6: x̄i,k+1 = projΩi

(
x̄i,k + τi

(
−AT

i λ̄i,k −∇xi fi(xi,k, ui,k)− c ∑N
j=1 ωij

(
ui,k − uj,k

)))

7: ūi,k+1 = ūi,k − cκ ∑N
j=1 ωij

(
ui,k − uj,k

)
+ x̄i,k+1 − x̄i,k

8: z̄i,k+1 = z̄i,k − vi ∑N
j=1 ωij

(
λ̄i,k − λ̄j,k

)

9: λ̄i,k+1 = projRm
+

(
λ̄i,k + ᾱi Ai(2x̄i,k+1 − x̄i,k − ᾱi

(
bi −∑N

j=1 ωij(λi,k − λj,k)
)

10: +ᾱi ∑N
j=1 ωij

(
2
(

z̄i,k+1 − z̄j,k+1

)
−
(

z̄i,k − z̄j,k

)))

11: (2)Receives x̄i,k, ūi,k, z̄i,k, λ̄i,k then updates
12: xi,k+1 = 2x̄i,k+1 − x̄i,k
13: ui,k+1 = 2ūi,k+1 − ūi,k
14: zi,k+1 = 2z̄i,k+1 − z̄i,k
15: λi,k+1 = 2λ̄i,k+1 − λ̄i,k
16: end
17: end
18: if ∑

td
i

t=ta
i

xi,t > pc
i then

19: Si,min = Si,min − ε
20: Go back to step 3
21: else
22: break
23: end if

Step 3 can be explained as follows. We define a step-size ε and set a threshold value pc
i

for time-anxious drivers. Since the initialization Si,min = Si,max = S, i.e., all drivers are not
time-anxious, the algorithm is executed once, and a Nash equilibrium is solved. Then, we

determine whether the sum of charging capacity ∑
td
i

t=ta
i

xi,t for PEV i at the time t ∈ [ta
i , td

i ]

is greater than the threshold value pc
i . If ∑

td
i

t=ta
i

x̄i,t > pc
i , let Si,min = Si,min − ε. Then, the

new Si,min can be substituted to solve the Nash equilibrium once more. Otherwise, it is
straightforward to derive the Nash equilibrium solution.

4. Simulation and Numerical Results

In this section, the performance of the proposed algorithm with load constraints and
time anxiety is evaluated by minimizing the charging cost for PEV i in the SCS. For further
illustration, we consider the SCS with 10 PEVs in the residential area. We also investigated
the charging power distribution under non-time-anxious and time-anxious conditions. The
simulation configuration was set up as follows.

4.1. Overload Control for 10 PEVs

In this scenario, depending on the owner’s preferences and needs, 10 PEVs arrive at
the SCS. The charging needs of each PEV were chosen between 50 and 60 KW, and the
charging power was chosen between 10 and 15 KW/h. Table 1 lists the PEV parameters,
arrival time (AT), and departure time (DT). Usually, the daily peak charging demand occurs
from 12:00 to 17:00, when people go to the SCS to charge their PEVs. Therefore, we define
αt = 0.3$/kWh during peak hours (i.e., from 18:00 to 6:00), αt = 0.2$/kWh during off-peak
hours (i.e., other times), and the initial electricity price is βt = 0.3$/kWh. We assume that
the maximum power supplied by the SCS at time t is 130 KW, which is obtained from the
value of [25].
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Table 1. Constraint-related parameters.

PEV i π1
i Ri πmin

i πmax
i xi xi AT DT

1 7.5 53 5 75 15 −15 12 17
2 6 56 5 80 10 −10 22 14
3 8 52.5 5 75 10 −10 3 12
4 5.6 51.4 5 70 15 −15 2 10
5 6.7 51 5 65 10 −10 15 21
6 6.5 56 5 75 15 −15 2 8
7 6.1 52.4 5 65 10 −10 4 20
8 9 51 5 80 10 −10 13 24
9 9.2 50.8 5 70 15 −15 10 22

10 7.5 53 5 75 15 −15 18 24

As shown in Figure 6, the red dotted line shows the maximum capacity to support PEV
charging at time t, i.e., Lmax =130 KW. The green and purple solid lines denote the base
load and the charging requirement load, respectively, for the 24 h. As shown in Figure 6, the
SCS is severely overloaded at peak hours due to uncoordinated PEV charging, which may
damage the SCS. Therefore, we present the overload control constraint in the framework of
the game (16). After the overload control constraint, the load profile is shown in Figure 7.
Compared with Figure 6, as the SCS in Figure 7 holds the charging capacity fixed at peak
hours, the charging strategy shifts the excess charging capacity to free time, i.e., off-peak
hours. The results show that the charging requirement load is always below the value of
Lmax. Therefore, the strategy ensures the safety of the SCS.

Figure 6. Charging strategies for 10 PEVs without overload control.

Figure 7. Charging strategies for 10 PEVs with overload control.

4.2. Time Anxiety for PEVs

The simulation provides a further charging strategy considering load constraints.
According to the settings in Table 1, the charging and discharging powers of each PEV are
shown in Figure 8.
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Figure 8. Charging capacity of 10 PEVs in a day.

In these four pictures, the blue line indicates a charging strategy that does not consider
time anxiety, while the red-brown line indicates a charging strategy that does consider
time anxiety (note that the two are only different charging strategies; the amount that the
PEV is charged does not change but is simply shifted). Figure 9 shows the NATD driver’s
behavior in our simulation. From the discussion in Section 2.3, it follows that the driver
has no time anxiety; therefore, the blue and red-brown lines overlap, and we use one of the
blue lines to represent the PEV.

Figure 10 shows the LATD driver’s behavior in our simulation. From the previous
discussion in Section 2.3, it follows that this driver will have some time anxiety, i.e., there
may be a delay in the charging of the electric vehicle due to something that occurs during
the time anxiety; therefore, a charging strategy that considers time anxiety will move some
of the charging within the time interval [ta

i , td
i ] of time anxiety in the non-time anxious time

interval, effectively avoiding the situation of missed EV charging due to unpredictable
circumstances. This is represented in the graph by the transfer of the charge from anxious
energy to shifted energy, which can be seen in Figure 10 as a reduction in the charge in the
time anxious interval. The PEV driver is satisfied with the current charging method, as it is
considered robust.

We simulated the behavior of the MATD driver, and, as can be seen in Figure 11, it
shifted more of its charge to the rest of the time interval during the anxiety time interval
than in Figure 10. The HATD driver, as can be seen in Figure 12, shifted more of its charge to
the rest of the time interval during the anxious period than in Figure 11. This is because PEV
drivers of various anxiety levels have a predefined threshold, which is lower if the drivers
want to be more robust in response to uncertain events (e.g., HATD has the strongest
anxiety). If the current anxiety energy exceeds the threshold, the PEV driver is dissatisfied
with the current charge level, which would be insufficient to meet his or her charging needs
in an uncertain event. Our algorithm is implemented in an iterative manner until the PEV
driver succeeds in bringing his/her anxiety energy below its threshold, as indicated by the
red-brown line. Our algorithm is iteratively implemented until the anxiety energy of the
electric vehicle driver falls below a particular threshold.

The simulation of these four different driver behaviors leads to the same conclusion
as discussed in Section 2.3: the greater the driver’s time anxiety, the greater that driver’s
willingness to meet the charging demand earlier, i.e., more charging is transferred within
the interval [ta

i , td
i ] of time anxiety.
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Figure 9. The time anxiety impact of NTAD.

Figure 10. The time anxiety impact of LTAD.

Figure 11. The time anxiety impact of MTAD.

Figure 12. The time anxiety impact of HTAD.

4.3. Convergence Analysis

In this simulation, we provide an iterative process performed by all the PEVs at 18:00.
PEVs do not need a central node to be able to bidirectionally communicate with all other
PEVs. To preserve privacy, each PEV computes the corresponding decision in a distributed
manner using its cost function, feasible set and coupling constraints. At each iteration
k, the PEVs update their decisions and their estimates. The iterative process xk denotes
the decision variable with PEV i; uk denotes the aggregated estimate, which includes the
parameters that affect the electricity price; λk is used to ensure that the constraints hold; zk
is used as an auxiliary variable to ensure that λk is consistent. As shown in Figure 13, the
PEVs all converge to their optimal charging strategies during the iterative process. As a
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result, the proposed distributed RFB algorithm under the aggregative game can solve the
charging problem in SCS proficiently.

Figure 13. Charging trajectories of PEVs at 18:00.

In addition, we simulated the convergence accuracy of the RFB algorithm and the FB
algorithm. Compared to the FB algorithm, the RFB algorithm converged to 10−7.1 and the
FB algorithm converged to 10−3.6 after 9000 iterations under the same conditions shown
in Figure 14. The effectiveness of the algorithm is demonstrated by the fact that it only
takes 3000 iterations to converge to 10−3.6 using the RFB algorithm. The faster convergence
indicates that all PEVs are solved to arrive at the optimal strategy faster.

Figure 14. Convergence accuracy.

5. Conclusions

In this paper, a new distributed charging and discharging strategy for PEVs, based
on time anxiety and load constraints, was proposed in the framework of the aggregative
game. Time anxiety was proposed to mitigate the effects of some uncertain events that
may occur during charging. The load constraint was proposed to make the PEV charging
more coordinated and protect the safety of the SCS. Detailed case studies were presented,
showing that the charging strategy with time anxiety and load constraint considered is
more reasonable and reduces the total cost. The distributed reflected forward–backward
algorithm was designed to seek the generalized Nash equilibria of the game model. The
proposed algorithm achieved optimal driver response in a theoretically fast, distributed
manner and protected the driver’s privacy. The effectiveness of the proposed algorithm
was verified by example simulations. In the future, we will focus on the aggregative game
for charging stations.
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Abstract: The sensitivity reanalysis technique is an important tool for selecting the search direction in
structural optimization design. Based on the decomposition perturbation of the flexibility matrix, a
fast and exact structural displacement sensitivity reanalysis method is proposed in this work. For this
purpose, the direct formulas for computing the first-order and second-order sensitivities of structural
displacements are derived. The algorithm can be applied to a variety of the modifications in optimal
design, including the low-rank modifications, high-rank modifications, small modifications and
large modifications. Two numerical examples are given to verify the effectiveness of the proposed
approach. The results show that the presented algorithm is exact and effective. Compared with the
existing two reanalysis methods, this method has obvious advantages in calculation accuracy and
efficiency. This new algorithm is very useful for calculating displacement sensitivity in engineering
problems such as structure optimization, model correction and defect detection.

Keywords: sensitivity reanalysis; flexibility matrix; disassembly perturbation; structural displace-
ment; exact method

1. Introduction

Sensitivity analysis is often used in structural optimization design, vibration control,
and damage identification. In general, sensitivity refers to the first derivative of structural
response parameters to its physical parameters [1,2]. In engineering design, it is often
necessary to modify the structure repeatedly. As a result, the computational cost for sensi-
tivity analysis will be very expensive. To reduce the computational burden, reanalysis and
sensitivity reanalysis techniques have been studied continuously in the past decades [3–8].
Sensitivity reanalysis uses the original response of the structure and its sensitivity to find
the response sensitivity coefficients of the modified structure, whose calculation cost is
far lower than the cost required for the complete analysis. For a structure under a given
load vector y, the displacement vector x in the initial design can be computed by the static
equilibrium equation as

K · x = y (1)

in which K is the structural stiffness matrix of n× n dimension in the initial finite element
model (FEM). From Equation (1), the displacement x and its sensitivity ∂x

∂pi
of the initial

design can be calculated from the complete analysis as

x = K−1 · y = F · y (2)

∂x
∂pi

= −K−1 ∂K
∂pi
· x = −F

∂K
∂pi

F · y (3)
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where pi is a design variable such as geometry size, elastic modulus, and so on. The matrix
F is called the structural flexibility matrix, that is, F = K−1. Correspondingly, the static
balance equation of the modified structure can be expressed as

Kd · xd = y (4)

Kd = K + ∆K (5)

in which Kd is the modified stiffness matrix, ∆K is the stiffness change caused by the
optimal design, and xd is the modified displacement vector. From Equation (4), xd and its
sensitivity ∂xd

∂pi
can also be computed by the complete analysis as

xd = K−1
d · y = Fd · y (6)

∂xd
∂pi

= −K−1
d

∂Kd
∂pi
· xd = −Fd

∂Kd
∂pi

Fd · y (7)

in which Fd is the modified flexibility matrix, i.e., Fd = K−1
d . As mentioned earlier, when the

half-bandwidth of the stiffness matrix is large, the complete analysis based on Equations (6)
and (7) is very inefficient and time-consuming. For solving this problem, many reanalysis
algorithms have been presented to calculate xd and its sensitivity ∂xd

∂pi
more effectively. The

existing sensitivity reanalysis methods can be divided into two types: finite-difference
method [9–12] and direct (analytic) method [13–16]. Most of the existing reanalysis methods
can only obtain the approximate solution of displacement sensitivity. Moreover, these meth-
ods may be inefficient for large modifications or high-rank modifications. The high-rank
modification refers to the design changes in many components of the structure. In view
of this, an exact sensitivity reanalysis approach using flexibility disassembly perturbation
(FDP) [17–19] is developed in this work for computing the displacement sensitivity. The
presented algorithm is accurate and efficient, and it can be used for many types of modifica-
tions in design, such as the low-rank, high-rank, small and large modifications. Numerical
examples show that the results obtained by the presented sensitivity reanalysis algorithm
are the same as those obtained by the complete analysis. In addition, this approach has
higher computing efficiency than the existing sensitivity reanalysis methods.

2. Sensitivity Reanalysis Using FDP

Reference [19] presented a static reanalysis method using the FDP technique for
quickly and exactly calculating the displacement vector after structural modification. In
addition to the displacement vector, the displacement sensitivity is another quantity that
needs to be repeatedly calculated in structural optimization design, which indicates the
direction of optimization design. So, in this work, FDP is used again to exactly compute the
displacement sensitivity after structural modification. The research content of this work
can be seen as an extension of reference [19]. From Equation (7), the modified displacement
sensitivity ∂xd

∂pi
can be easily calculated by the modified flexibility matrix Fd. Thus, the

reanalysis problem of displacement sensitivity can be transformed into the reanalysis
problem of structural flexibility matrix after modification. According to references [17–19],
the modified flexibility matrix can be fast computed using FDP. The core idea of FDP
is to decompose the flexibility matrix into a connected matrix reflecting the topological
relationship between the degrees of freedom (DOFs) and the diagonal matrix reflecting the
material and geometric information. The formulas of FDP are briefly derived as follows.
According to the FEM theory, structural stiffness matrix K is the sum of all elementary
stiffness matrices Ki ( i = 1 ∼ N), that is

K =
N

∑
i=1

Ki (8)
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in which N is the number of all elements in FEM. Performing the spectral decomposition
on Ki yields

Ki = [c1
i , · · · , cr

i ]




p1
i

. . .
pr

i


[c1

i , · · · , cr
i ]

T
(9)

In Equation (9), the non-zero eigenvalues p1
i , · · · , pr

i are purely functions of the mate-
rial and geometric properties such as elastic modulus E, cross-sectional area A and moment
of inertia I. The eigenvectors c1

i , · · · , cr
i reflect the topological relationship between degrees

of freedom. For instance, the spectral decomposition on a plane beam element gives [20]:

[pi] =




2EA
L 0 0
0 2EI

L 0

0 0 6EI(L2+4)
L3


 (10)

[ci] =




1√
2

0 0

0 0
√

2√
L2+4

0 −1√
2

L√
2
√

L2+4
−1√

2
0 0

0 0 −
√

2√
L2+4

0 1√
2

L√
2
√

L2+4




(11)

in which L denotes the beam element length. Thus, p1
i , · · · , pr

i are also called the elementary
stiffness coefficients and c1

i , · · · , cr
i are called the topological connection vectors. From

Equations (8) and (9), the stiffness disassembly formula can be obtained as

K = CPCT (12)

C = [C1
1 , · · · , cr

1, c1
2, · · · , cr

2, · · · , cr
N ] (13)

P =




p1
1

. . .
pr

1
. . .

pr
N




(14)

in which C is a n × rN dimension matrix, and P is a rN × rN dimension matrix. C is
a full-rank matrix with rank(Cn×rN) = n because of rank(Kn×n) = n. For the statically
determinate system, C is a square matrix of n = rN. For the statically indeterminate system,
C is a rectangular matrix of n < rN. Commonly, structural modifications such as the
section correction or material correction only lead to the change of stiffness coefficients
p1

i , · · · , pr
i . This means that only P is changed in the structural modifications. As a result,

the disassembly of the stiffness matrix Kd after modification can be derived as

Kd = CPdCT (15)

Pd =




p1
1(1 + α1

1)
. . .

pr
1(1 + αr

1)
. . .

pr
N(1 + αr

N)




(16)
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where α
j
i ( i = 1 ∼ N, j = 1 ∼ r) denotes the modification ratio of the stiffness parameter

pj
i . As stated before, C is a full-rank square matrix for the statically determinate system.

Thus, the flexibility matrix Fd can be fast computed from Equation (15) by Fd = K−1
d as

Fd = DQdDT (17)

D = (C−1)
T

(18)

Qd = P−1
d =




1
p1

1(1+α1
1)

. . .
1

pr
1(1+αr

1)

. . .
1

pr
N(1+αr

N)




(19)

It should be pointed out that the computational burden of the flexibility matrix re-
analysis is only focused on the diagonal matrix Qd, which only requires simple division
operation when the modification ratios α

j
i are given. The computation of the matrix D

should be attributed to the initial analysis, since D is unchanged in each modification.
For the statically indeterminate structure, the flexibility disassembly as in Equation (17)
is nonexistent, since C is a rectangular matrix with n < rN. In this case, the flexible disas-
sembly can be realized by converting the statically indeterminate system into a statically
determinate substructure and the redundant constraints. Correspondingly, the stiffness
disassembly of the statically indeterminate system can be expressed from Equation (15) by

Kd = CPdCT = C′P′d(C
′)T

+ C′′P′′d (C
′′)T (20)

where C′ and P′d are associated with the statically determinate substructure, while C′′ and
P′′d are associated with the redundant constraints. The dimensions of C′ and P′d are both
n× n. The dimensions of C′′ and P′′d are n× (rN− n) and (rN− n)× (rN− n), respectively.
From Equation (20), the flexibility disassembly can be derived by Fd = K−1

d with the help
of Sherman–Morrison–Woodbury formulas [21,22] as

Fd = D′Q′d(D′)T − D′Q′d(D′)TC′′P′′d [Ie + (C′′)T D′Q′d(D′)TC′′P′′d ]
−1

(C′′)T D′Q′d(D′)T (21)

D′ = ((C′)−1
)

T
, (22)

Q′d = (P′d)
−1 (23)

where Ie is the identity matrix, while Q′d and P′′d are the corrections corresponding to
the statically determinate subsystem and the redundant constraints. Equation (21) is
the flexibility reanalysis formula for the statically indeterminate system with the given
Q′d and P′′d .

According to the above theory and derivation, the modified displacement sensitivity
∂xd
∂pi

can be fast computed using Equation (7) with Fd determined by Equation (17) or (21). It
is clear that Equation (17) is an exceptional case of Equation (21). The step-by-step summary
for the proposed sensitivity reanalysis approach is as follows. Step 1: Perform the stiffness
disassembly of the initial structure using Equations (8)–(14) to obtain the matrices C, or C′

and C′′ . Step 2: Compute the matrix D or D′ by Equation (18) or (22). Step 3: Calculate
the modified flexibility matrix Fd by Equation (17) or (21) with the given modifications Qd,
or Q′d and P′′d . Step 4: Compute the displacement sensitivity ∂xd

∂pi
of the modified structure

using Equation (7). Note that the calculations in steps 1 and 2 should be attributed to the
initial analysis. The computational burden of the sensitivity reanalysis algorithm is the
focus of steps 3 and 4. Another virtue of this algorithm is that it can be readily extended to
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calculate the second-order sensitivity of static displacement. Differentiating Equation (4)

with respect to pi twice and rearranging gives the second-order sensitivity ∂2xd
∂p2

i
as

∂2xd

∂p2
i
= −Fd

∂2Kd

∂p2
i

Fdy− 2Fd
∂Kd
∂pi
· ∂xd

∂pi
(24)

Apparently, the second-order sensitivity of static displacement can also be fast calcu-
lated by Equation (24) using the proposed method for the modified structure.

3. Numerical Examples
3.1. Statically Determinate Structure

As presented in Figure 1, a statically determinate system of a 23-bar truss is used firstly
to demonstrate the proposed approach. The values of the concentrated loads applied to
the structure shown in Figure 1 are f1 = f2 = f3 = f4 = f5 = 10 kN. Assuming the change rate
of cross-sectional area is the correction factor αi, Table 1 gives several modification cases
including the low-rank, high-rank, small and large corrections. Tables 2 and 3 present the

first-order sensitivity ∂xd
∂p10

and second-order sensitivity ∂2xd
∂p2

10
using the proposed method

and complete analysis for these modification cases. It is found from Tables 2 and 3 that
the reanalysis results of the presented algorithm are the same as the complete analysis
results. This shows that the proposed method is an exact algorithm for displacement
sensitivity reanalysis.
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Figure 1. An initial structure of a 23-bar truss. Material parameters: Elastic modulus is 200 GPa, 

density is 7800 kg/m3, L = 1 m, and initial cross-sectional area of each bar is 175.9 mm2. 

Figure 1. An initial structure of a 23-bar truss. Material parameters: Elastic modulus is 200 GPa,
density is 7800 kg/m3, L = 1 m, and initial cross-sectional area of each bar is 175.9 mm2.

3.2. Statically Indeterminate Structure

As presented in Figure 2, a statically indeterminate system of a 275-bar truss is used
to conduct the comparison study on the computation efficiency between this method
and two existing sensitivity reanalysis approaches. The first existing technique is the
combined approximate (CA) method proposed by Kirsch in reference [10]. The second
existing technique is the method proposed by Zuo et al. in reference [16], which combines
Taylor series expansion and the CA method. Table 4 gives three types of corrections for
this example. As shown in Figure 2, the modified bars of the three types of corrections
are: bars 1~10, bars 1~93 (the first story), and all bars (1~275) of the system, respectively.
For each correction, 200 modifications are performed, and the total calculation times of
displacement sensitivities ∂xd

∂p8
using the complete analysis, the CA method, Zuo’s method,

and the proposed method are given in Table 5. Note that the correction coefficient αi
increases with the modification number z ( z = 1 ∼ 150). This means that the early stage
corresponds to small modifications and the later stage corresponds to large modifications.
Tables 6–11 show the displacement sensitivity data of some DOFs for each correction
scenario with z = 1, z = 2, z = 10 and z = 15, respectively. From Table 5, one can see that
the presented algorithm has the highest calculation efficiency among the four sensitivity
reanalysis methods. For type 1 (10 bars are modified), the calculation times of the four
methods are: t1 = 0.262 s (the complete analysis), t2 = 0.166 s (CA method), t3 = 0.161 s
(Zuo’s method) and t4 = 0.083 s (the presented algorithm), respectively. For type 2 (93 bars
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are modified), the calculation times of the four methods are: t1 = 0.254 s (the complete
analysis), t2 = 0.191 s (CA method), t3 = 0.174 s (Zuo’s method) and t4 = 0.097 s (the
presented algorithm), respectively. For the third type (all bars are modified), the calculation
times of the four methods are: t1 = 0.292 s (the complete analysis), t2 = 0.232 s (CA method),
t3 = 0.217 s (Zuo’s method) and t4 = 0.140 s (the presented algorithm), respectively. Overall,
the calculation time of the presented algorithm is about 30~40% of that of the complete
analysis method, and it is about 50~60% of that of CA or Zuo’s method. This means that
whether the number of correction bars is small or large, the presented algorithm always
has the high computation efficiency. According to Tables 6–11, it can be seen that the results
achieved by the presented approach and the complete analysis method are exactly the
same. One can also find that the results obtained by CA and Zuo’s methods have some
errors compared with the exact results. These results show that the presented approach is
an exact algorithm for displacement sensitivity reanalysis, and the CA and Zuo’s methods
are approximate methods.

Table 1. Different correction cases of a 23-bar truss.

The Correction
Coefficient αi

Scenario 1:
Low-Rank Correction

Scenario 2:
High-Rank

Small Correction

Scenario 3:
High-Rank

Large Correction

α1 0 0.15 4.87

α2 0 0.17 4.07

α3 0 −0.08 −4.22

α4 0 0.15 3.32

α5 0.21 0.19 −1.93

α6 0 −0.09 −1.15

α7 0 −0.10 −0.88

α8 0 0.14 −0.53

α9 0.44 −0.02 −1.40

α10 0 0.19 −4.66

α11 0 −0.18 0.32

α12 0 0.12 1.81

α13 0 0.06 −1.32

α14 −0.32 −0.16 3.08

α15 0 0.17 −0.87

α16 0 −0.08 1.16

α17 0 0.13 0.54

α18 0 0.09 −1.76

α19 0 −0.13 −0.03

α20 0 −0.10 4.27

α21 0 0.05 4.35

α22 0 0.10 −3.18

α23 0 0.08 4.06
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Table 2. The first-order sensitivities of displacements for modified structures (×10−3).

DOF Number

Scenario 1:
Low-Rank Correction

Scenario 2:
High-Rank Small Correction

Scenario 3:
High-Rank Large Correction

The Complete
Analysis

The Proposed
Reanalysis Algorithm

The Complete
Analysis

The Proposed
Reanalysis Algorithm

The Complete
Analysis

The Proposed
Reanalysis Algorithm

1 0.000 0.000 0.000 0.000 0.000 0.000

2 0.940 0.940 0.664 0.664 0.070 0.070

3 0.000 0.000 0.000 0.000 0.000 0.000

4 1.879 1.879 1.327 1.327 0.140 0.140

5 −1.395 −1.395 −0.985 −0.985 −0.104 −0.104

6 2.013 2.013 1.422 1.422 0.150 0.150

7 −1.395 −1.395 −0.985 −0.985 −0.104 −0.104

8 1.342 1.342 0.948 0.948 0.100 0.100

9 −1.395 −1.395 −0.985 −0.985 −0.104 −0.104

10 0.671 0.671 0.474 0.474 0.050 0.050

11 −1.395 −1.395 −0.985 −0.985 −0.104 −0.104

12 −0.814 −0.814 −0.575 −0.575 −0.061 −0.061

13 0.336 0.336 0.237 0.237 0.025 0.025

14 −0.814 −0.814 −0.575 −0.575 −0.061 −0.061

15 1.007 1.007 0.711 0.711 0.075 0.075

16 −0.814 −0.814 −0.575 −0.575 −0.061 −0.061

17 1.678 1.678 1.185 1.185 0.125 0.125

18 −0.814 −0.814 −0.575 −0.575 −0.061 −0.061

19 2.349 2.349 1.659 1.659 0.175 0.175

20 −0.814 −0.814 −0.575 −0.575 −0.061 −0.061

21 1.409 1.409 0.995 0.995 0.105 0.105

22 −0.814 −0.814 −0.575 −0.575 −0.061 −0.061

23 0.470 0.470 0.332 0.332 0.035 0.035

Table 3. The second-order sensitivities of displacements for modified structures (×10−3).

DOF Number

Scenario 1:
Low-Rank Correction

Scenario 2:
High-Rank Small Correction

Scenario 3:
High-Rank Large Correction

The Complete
Analysis

The Proposed
Reanalysis Algorithm

The Complete
Analysis

The Proposed
Reanalysis Algorithm

The Complete
Analysis

The Proposed
Reanalysis Algorithm

1 0.000 0.000 0.000 0.000 0.000 0.000

2 −1.879 −1.879 −1.115 −1.115 0.038 0.038

3 0.000 0.000 0.000 0.000 0.000 0.000

4 −3.758 −3.758 −2.230 −2.230 0.077 0.077

5 2.790 2.790 1.656 1.656 −0.057 −0.057

6 −4.027 −4.027 −2.390 −2.390 0.082 0.082

7 2.790 2.790 1.656 1.656 −0.057 −0.057

8 −2.685 −2.685 −1.593 −1.593 0.055 0.055

9 2.790 2.790 1.656 1.656 −0.057 −0.057

10 −1.342 −1.342 −0.797 −0.797 0.027 0.027

11 2.790 2.790 1.656 1.656 −0.057 −0.057

12 1.627 1.627 0.966 0.966 −0.033 −0.033

13 −0.671 −0.671 −0.398 −0.398 0.014 0.014

14 1.627 1.627 0.966 0.966 −0.033 −0.033

15 −2.013 −2.013 −1.195 −1.195 0.041 0.041

16 1.627 1.627 0.966 0.966 −0.033 −0.033

17 −3.356 −3.356 −1.991 −1.991 0.068 0.068
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Table 3. Cont.

DOF Number

Scenario 1:
Low-Rank Correction

Scenario 2:
High-Rank Small Correction

Scenario 3:
High-Rank Large Correction

The Complete
Analysis

The Proposed
Reanalysis Algorithm

The Complete
Analysis

The Proposed
Reanalysis Algorithm

The Complete
Analysis

The Proposed
Reanalysis Algorithm

18 1.627 1.627 0.966 0.966 −0.033 −0.033

19 −4.698 −4.698 −2.788 −2.788 0.096 0.096

20 1.627 1.627 0.966 0.966 −0.033 −0.033

21 −2.819 −2.819 −1.673 −1.673 0.057 0.057

22 1.627 1.627 0.966 0.966 −0.033 −0.033

23 −0.940 −0.940 −0.558 −0.558 0.019 0.019
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Table 4. Types of corrections in the 275-bar truss system.

Type of Correction Modified Bars
Correction Coefficients αz

i
(i is the Bar Number,

z is the Modification Number, z = 1~150)

Type 1 Bars 1~10 as shown in
Figure 2 αz

i = z
20 , i = 1 ∼ 10

Type 2 Bars 1~93 of the first story
as shown in Figure 2 αz

i =

{ z
40 , i = 1 ∼ 56
z

50 , i = 57 ∼ 93

Type 3 All bars (1~275)
in Figure 2

First story: αz
i =

{ z
40 , i = 1 ∼ 56
z

50 , i = 57 ∼ 93

Second story: αz
i =

{ z
60 , i = 94 ∼ 147
z

75 , i = 148 ∼ 184

Third story: αz
i =

{ z
80 , i = 185 ∼ 238
z

100 , i = 239 ∼ 275

Table 5. Computation times of the four algorithms for the three types of modifications.

Type of Modification The Complete Analysis t1t1t1 CA Method t2t2t2 Zuo’s Method t3t3t3 The Proposed Method t4t4t4

Type 1
(10 elements are revised)

t1 = 0.262 s t2 = 0.166 s t3 = 0.161 s t4 = 0.083 s

(t1 − t2)/t1 = 36.6% (t1 − t3)/t1 = 38.5% (t1 − t4)/t1 = 68.3%

(t2 − t3)/t2 = 3.0% (t2 − t4)/t2 = 50.0%

(t3 − t4)/t3 = 48.4%

Type 2
(93 elements are revised)

t1 = 0.254 s t2 = 0.191 s t3 = 0.174 s t4 = 0.097 s

(t1 − t2)/t1 = 24.8% (t1 − t3)/t1 = 31.5% (t1 − t4)/t1 = 61.8%

(t2 − t3)/t2 = 8.9% (t2 − t4)/t2 = 49.2%

(t3 − t4)/t3 = 44.3%

Type 3
(all elements are revised)

t1 = 0.292 s t2 = 0.232 s t3 = 0.217 s t4 = 0.140 s

(t1 − t2)/t1 = 20.5% (t1 − t3)/t1 = 25.7% (t1 − t4)/t1 = 52.1%

(t2 − t3)/t2 = 6.5% (t2 − t4)/t2 = 39.7%

(t3 − t4)/t3 = 35.5%

Table 6. Displacement sensitivities for modification type 1 when z = 1 and z = 2 (×10−5).

DOF Number
The Complete Analysis CA Method Zuo’s Method The Proposed Method

z = 1 z = 2 z = 1 z = 2 z = 1 z = 2 z = 1 z = 2

10 1.659 1.518 1.657 1.516 1.663 1.531 1.659 1.518

11 −0.551 −0.496 −0.551 −0.495 −0.552 −0.500 −0.551 −0.496

12 −0.187 −0.169 −0.187 −0.169 −0.188 −0.171 −0.187 −0.169

13 −0.551 −0.496 −0.551 −0.495 −0.552 −0.500 −0.551 −0.496

14 0.169 0.154 0.168 0.154 0.169 0.155 0.169 0.154

15 −0.979 −0.908 −0.979 −0.909 −0.981 −0.915 −0.979 −0.908

16 0.344 0.310 0.344 0.309 0.345 0.313 0.344 0.310

17 −0.979 −0.908 −0.979 −0.909 −0.981 −0.915 −0.979 −0.908

18 1.492 1.364 1.491 1.362 1.496 1.376 1.492 1.364

19 −1.047 −0.949 −1.046 −0.948 −1.049 −0.957 −1.047 −0.949

20 −0.260 −0.237 −0.260 −0.237 −0.260 −0.239 −0.260 −0.237

21 −1.047 −0.949 −1.046 −0.948 −1.049 −0.957 −1.047 −0.949
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Table 7. Displacement sensitivities for modification type 1 when z = 10 and z = 15 (×10−5).

DOF Number
The Complete Analysis CA Method Zuo’s Method The Proposed Method

z = 10 z = 15 z = 10 z = 15 z = 10 z = 15 z = 10 z = 15

10 0.837 0.622 0.835 0.619 0.971 0.813 0.837 0.622

11 −0.244 −0.171 −0.240 −0.165 −0.283 −0.224 −0.244 −0.171

12 −0.087 −0.062 −0.086 −0.061 −0.101 −0.081 −0.087 −0.062

13 −0.244 −0.171 −0.240 −0.165 −0.283 −0.224 −0.244 −0.171

14 0.083 0.060 0.084 0.062 0.096 0.079 0.083 0.060

15 −0.540 −0.413 −0.563 −0.447 −0.626 −0.540 −0.540 −0.413

16 0.155 0.110 0.143 0.093 0.180 0.144 0.155 0.110

17 −0.540 −0.413 −0.563 −0.447 −0.626 −0.540 −0.540 −0.413

18 0.747 0.553 0.742 0.547 0.866 0.723 0.747 0.553

19 −0.492 −0.355 −0.490 −0.352 −0.571 −0.464 −0.492 −0.355

20 −0.128 −0.094 −0.129 −0.095 −0.149 −0.123 −0.128 −0.094

21 −0.492 −0.355 −0.490 −0.352 −0.571 −0.464 −0.492 −0.355

Table 8. Displacement sensitivities for modification type 2 when z = 1 and z = 2 (×10−5).

DOF Number
The Complete Analysis CA Method Zuo’s Method The Proposed Method

z = 1 z = 2 z = 1 z = 2 z = 1 z = 2 z = 1 z = 2

10 1.738 1.660 1.736 1.658 1.739 1.664 1.738 1.660

11 −0.587 −0.561 −0.587 −0.560 −0.588 −0.562 −0.587 −0.561

12 −0.198 −0.190 −0.198 −0.189 −0.198 −0.190 −0.198 −0.190

13 −0.587 −0.561 −0.587 −0.560 −0.588 −0.562 −0.587 −0.561

14 0.177 0.170 0.177 0.169 0.177 0.170 0.177 0.170

15 −1.012 −0.967 −1.010 −0.966 −1.012 −0.969 −1.012 −0.967

16 0.366 0.350 0.366 0.349 0.367 0.350 0.366 0.350

17 −1.012 −0.967 −1.010 −0.966 −1.012 −0.969 −1.012 −0.967

18 1.565 1.496 1.563 1.494 1.566 1.498 1.565 1.496

19 −1.107 −1.058 −1.106 −1.056 −1.108 −1.060 −1.107 −1.058

20 −0.273 −0.261 −0.273 −0.261 −0.273 −0.262 −0.273 −0.261

21 −1.107 −1.058 −1.106 −1.056 −1.108 −1.060 −1.107 −1.058

Table 9. Displacement sensitivities for modification type 2 when z = 10 and z = 15 (×10−5).

DOF Number
The Complete Analysis CA Method Zuo’s Method The Proposed Method

z = 10 z = 15 z = 10 z = 15 z = 10 z = 15 z = 10 z = 15

10 1.193 0.996 1.181 0.976 1.242 1.079 1.193 0.996

11 −0.403 −0.336 −0.399 −0.329 −0.420 −0.364 −0.403 −0.336

12 −0.137 −0.114 −0.136 −0.113 −0.142 −0.124 −0.137 −0.114

13 −0.403 −0.336 −0.399 −0.329 −0.420 −0.364 −0.403 −0.336

14 0.122 0.102 0.121 0.100 0.128 0.111 0.122 0.102

15 −0.698 −0.584 −0.692 −0.574 −0.727 −0.633 −0.698 −0.584
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Table 9. Cont.

DOF Number
The Complete Analysis CA Method Zuo’s Method The Proposed Method

z = 10 z = 15 z = 10 z = 15 z = 10 z = 15 z = 10 z = 15

16 0.250 0.208 0.247 0.203 0.260 0.225 0.250 0.208

17 −0.698 −0.584 −0.692 −0.574 −0.727 −0.633 −0.698 −0.584

18 1.075 0.898 1.065 0.880 1.120 0.973 1.075 0.898

19 −0.761 −0.635 −0.753 −0.623 −0.792 −0.688 −0.761 −0.635

20 −0.188 −0.157 −0.187 −0.155 −0.196 −0.171 −0.188 −0.157

21 −0.761 −0.635 −0.753 −0.623 −0.792 −0.688 −0.761 −0.635

Table 10. Displacement sensitivities for modification type 3 when z = 1 and z = 2 (×10−5).

DOF Number
The Complete Analysis CA Method Zuo’s Method The Proposed Method

z = 1z = 1z = 1 z = 2z = 2z = 2 z = 1z = 1z = 1 z = 2z = 2z = 2 z = 1z = 1z = 1 z = 2z = 2z = 2 z = 1z = 1z = 1 z = 2z = 2z = 2

10 1.736 1.656 1.734 1.655 1.737 1.660 1.736 1.656

11 −0.587 −0.560 −0.586 −0.559 −0.587 −0.561 −0.587 −0.560

12 −0.198 −0.189 −0.198 −0.189 −0.198 −0.190 −0.198 −0.189

13 −0.587 −0.560 −0.586 −0.559 −0.587 −0.561 −0.587 −0.560

14 0.177 0.169 0.177 0.169 0.177 0.169 0.177 0.169

15 −1.010 −0.964 −1.009 −0.963 −1.011 −0.966 −1.010 −0.964

16 0.366 0.349 0.366 0.349 0.366 0.350 0.366 0.349

17 −1.010 −0.964 −1.009 −0.963 −1.011 −0.966 −1.010 −0.964

18 1.563 1.492 1.562 1.490 1.564 1.495 1.563 1.492

19 −1.106 −1.055 −1.105 −1.054 −1.106 −1.058 −1.106 −1.055

20 −0.273 −0.260 −0.272 −0.260 −0.273 −0.261 −0.273 −0.260

21 −1.106 −1.055 −1.105 −1.054 −1.106 −1.058 −1.106 −1.055

Table 11. Displacement sensitivities for modification type 3 when z = 10 and z = 15 (×10−5).

DOF Number
The Complete Analysis CA Method Zuo’s Method The Proposed Method

z = 10 z = 15 z = 10 z = 15 z = 10 z = 15 z = 10 z = 15

10 1.181 0.981 1.173 0.969 1.234 1.071 1.181 0.981

11 −0.399 −0.332 −0.397 −0.328 −0.417 −0.362 −0.399 −0.332

12 −0.135 −0.112 −0.134 −0.111 −0.141 −0.123 −0.135 −0.112

13 −0.399 −0.332 −0.397 −0.328 −0.417 −0.362 −0.399 −0.332

14 0.121 0.101 0.120 0.099 0.126 0.110 0.121 0.101

15 −0.689 −0.573 −0.685 −0.567 −0.720 −0.626 −0.689 −0.573

16 0.248 0.206 0.246 0.203 0.259 0.224 0.248 0.206

17 −0.689 −0.573 −0.685 −0.567 −0.720 −0.626 −0.689 −0.573

18 1.064 0.884 1.057 0.874 1.111 0.965 1.064 0.884

19 −0.753 −0.626 −0.749 −0.619 −0.787 −0.683 −0.753 −0.626

20 −0.186 −0.155 −0.185 −0.153 −0.194 −0.169 −0.186 −0.155

21 −0.753 −0.626 −0.749 −0.619 −0.787 −0.683 −0.753 −0.626
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4. Conclusions

In this paper, an exact algorithm for the reanalysis of static displacement sensitivity
based on flexibility disassembly perturbation is proposed. The presented algorithm is exact
and efficient, and it can be used in many types of corrections in structural optimal design,
including the low-rank, high-rank, small and large corrections. Numerical examples show
that the presented approach can achieve the same results as the complete analysis method
with less computational time. Compared with CA and Zuo’s techniques, this algorithm has
obvious advantages in computational efficiency and accuracy. It has been shown that the
proposed algorithm has great application potential in structural optimization design based
on gradient.
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