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The past decade has witnessed an explosive growth in the development and use of
artificial intelligence (Al) across diverse fields. While the precise trajectory of Al’s evolution
is complex and multi-faceted, it is discernible that it has been shaped by several key,
interconnected technological trends, including the paradigm shift to generative AI [1,2],
the emergence of foundation models [3], and the rise of human-centred AI approaches [4],
along with incremental improvements in Al generalisability and explainability [5], data
transparency and privacy [6], automated Al [7], and edge AI [8], among others.

Healthcare is no exception. In fact, Al is at the forefront of driving pivotal changes
in the healthcare sector, opening up innovative and enhanced methods of care delivery.
It holds the potential to have profound impacts on contemporary healthcare challenges.
By leveraging Al, we can uncover patterns within vast clinical datasets and develop
sophisticated computational reasoning methods that support human decision making.

This editorial accompanies the Special Issue titled “Advances in Al for Health and
Medical Applications”, which endeavours to spotlight the cutting-edge developments of Al
in the healthcare and medical fields. This Special Issue proudly features twelve manuscripts
that have been meticulously selected for publication, encompassing a diverse array of origi-
nal research and review articles. Detailed below are the contributions (contributions 1-12),
which span from theoretical frameworks to practical applications, addressing everything
from diagnosis and treatment to healthcare management and public health.

The advancements in Al from a technical perspective have been noteworthy. For
instance, Roychowdhury introduced an innovative Nested-U Multi-Class Segmentation
Network (NUMSnet) model for the semantic segmentation of 3D medical image stacks,
and it outperformed the state-of-the-art U-Net models. In contrast, Taj et al. made an
important contribution to the theorical framework by demonstrating how to generate and
maintain motivation. Their work advances the personalisation and adaptivity of digital
interventions through behaviour change techniques, thereby assisting designers in making
their mechanism of action more explicit.

Several studies have highlighted novel uses of Al methods to improve disease screen-
ing and diagnosis. For instance, Qu and Xiao incorporated the attention mechanism into a
multimodal Convolution Neural Network (CNN) model to predict the Oé—methylguanine
DNA methyltransferase (MGMT) promoter methylation status, a crucial biomarker for
predicting chemotherapy response in brain tumour patients. Bardihi et al. reviewed the
latest research on the use of deep learning to enhance colorectal polyp detection, providing
a comparative analysis of various algorithms across multiple datasets. Furthermore, Uddin
et al. conducted an extensive comparison of machine learning algorithms for the detection
of type 2 diabetes, pinpointing specific features indicative of the disease. This work holds
potential for the effective identification of individuals at risk of diabetes, ensuring timely
intervention and patient care.
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In recent years, COVID-19 has precipitated a profound shift in the digital landscape,
revolutionising numerous facets of daily life, with healthcare being the most significantly
impacted. To assist the care management of COVID-19 patients, Feng et al. utilised deep
learning to detect and segment lung lesions from chest CT scans, thereby automating the
assessment and prediction of patient severity and assisting in patient triage. Conversely,
Castillo-Olea et al. applied machine learning to pinpoint the significant early-stage variables
in COVID-19 patients. The pandemic has made it clear that hospital resources are finite
and face substantial challenges in crisis situations such as COVID-19. This underscores the
difficulties in the healthcare management of vulnerable patients due to their risk of infection.
For example, managing patients infected with HIV during the pandemic was particularly
challenging. To address such challenges, Cingolani et al. introduced an innovative e-
Clinical platform, driven by a machine learning system capable of predicting HIV-related
alerts. This platform facilitates remote patient management, carefully considering the real
needs of patients and ensuring vigilant monitoring of the crucial aspects of care for people
living with HIV/AIDS (PLWH) to maintain an adequate standard of care.

The work by Zhou et al. is particularly noteworthy for its exploration into the correla-
tion between temperature fluctuations and emergency department (ED) visitations. They
innovatively employed a machine learning model to predict daily ED attendance rates.
The development of Al-based analytics tools also opens up new avenues for public health
research, facilitating a more nuanced comprehension of public health issues and fostering
the design of targeted prevention strategies, enhanced models of healthcare delivery, and
community engagement initiatives. Building upon this foundation, Putri et al. utilised
various data analytics methods, including machine learning, to discern patterns, trends,
and associations within health data.

Encouraging results have been reported, suggesting that Al has become so powerful
that it outreasons human experts in areas such as radiology [9] and ophthalmology [10].
Although clinical specialties such as radiology might not disappear, they will certainly be
heavily transformed, and clinicians will play a major new role in the time of AI[11]. Pham
et al. illustrated a novel application by integrating fuzzy inference techniques based on
knowledge graph pairs with clinicians’ preferences in decision making. This integration
has proven to be effective in the detection of preeclampsia signs, showcasing the potential
of augmented Al in clinical diagnosis.

Advancements in sensor technology have been a catalyst for the widespread inte-
gration of Al into a plethora of everyday activities. Within the healthcare sector, smart
Activities of Daily Living (ADL) monitoring systems and wearable sensor devices that are
equipped with Al microchips can effectively assist patients with chronic conditions and
disabilities in self-management. Ahmed et al. explored the feasibility of accessing depres-
sion severity and valence arousal with wearable sensors, revealing that machine learning
combined with a multimodal analysis of signals from wearable devices can effectively
identify and forecast individual patterns of depression.

We have also seen emerging applications of generative Al and multimodal models
within the healthcare domain. A prime example is Med-PaLM M [12], a proof-of-concept
multimodal generalist biomedical Al system conceptualised by Google Research and
Google DeepMind. This system boasts remarkable flexibility in encoding and interpreting a
wide range of biomedical data, encompassing clinical language, imaging, and genomics. To
probe its capabilities and limitations, Med-PaLM M was benchmarked against radiologists
in the creation of chest X-ray reports. When reviewing 246 retrospective chest X-rays,
clinicians showed a preference for the reports generated by Med-PaLM M in approximately
40.50% of cases when compared directly with those produced by human radiologists,
indicating significant progress towards its application in clinical settings.

The integration of Al into every facet of healthcare and medicine is poised to become
commonplace. However, the path to embedding clinical Al into daily practice is complex
and filled with unique challenges. There is growing recognition that translating clinical Al
into routine practice is not straightforward. Common obstacles, such as little to no effort
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spent replicating trials or reporting harm to patients from Al trials, persist across appli-
cations. Furthermore, Al built using machine learning often struggle with generalisation,
potentially underperforming in various clinical environments. These hurdles highlight a
critical issue in the effective deployment of clinical Al, and they could introduce new types
of patient risks and obstruct the translation of research and investment into tangible clinical
benefits [13]. The successful implementation of healthcare Al tools hinges on recognising
and overcoming these challenges to ensure their reliability and efficacy in enhancing patient
care. The journey towards mitigating these issues is as much about understanding and
adjusting to the complexities of healthcare systems as it is about advancing Al technology.
Ultimately, by cutting through the hype and unravelling the mysteries and challenges of
Al in healthcare, we anticipate that this field of research will grow increasingly dynamic.
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Abstract: Colorectal cancer is one of the main causes of cancer incident cases and cancer deaths
worldwide. Undetected colon polyps, be them benign or malignant, lead to late diagnosis of colorectal
cancer. Computer aided devices have helped to decrease the polyp miss rate. The application of
deep learning algorithms and techniques has escalated during this last decade. Many scientific
studies are published to detect, localize, and classify colon polyps. We present here a brief review
of the latest published studies. We compare the accuracy of these studies with our results obtained
from training and testing three independent datasets using a convolutional neural network and
autoencoder model. A train, validate and test split was performed for each dataset, 75%, 15%, and
15%, respectively. An accuracy of 0.937 was achieved for CVC-ColonDB, 0.951 for CVC-ClinicDB, and
0.967 for ETIS-LaribPolypDB. Our results suggest slight improvements compared to the algorithms
used to date.

Keywords: colon cancer; deep learning; detection; classification; localization; CNN; autoencoders

1. Introduction

Medical imaging has gained immense importance in healthcare throughout history. It
has been used in diagnosing diseases, planning treatments, and assessing results. Further-
more, medical imaging is currently used in preventing illness, usually through screening
programs. Aggregating it with demographic and other healthcare data can bring novel
insights and help scientists discover breakthrough treatments [1].

A lot of research has been done in automating the delivery of medical imaging results.
These results still rely on professional radiologists being present when finalizing them.
However, automation can help radiologists be more efficient in their job and deliver
results quicker.

A review of deep learning (DL) applications in medical imaging [2] shows that Al
algorithms will have a significant impact in the healthcare field. The application areas
span from digital pathology and microscopy to brain, eye, chest, breast, cardiac, abdomen,
etc. These algorithms are for all types of imaging machines used nowadays: computed to-
mography (CT), ultrasound, MRI, X-ray, microscope, cervigram, photographs, endoscopy/
colonoscopy, tomosynthesis (TS), mammography, etc. Most of these applications deal with
classification, segmentation, or detection problems and convolutional neural networks
(CNNs), auto-encoders (AE) or stacked auto-encoders (SAE), recurrent neural networks
(RNNS), deep belief networks, and restricted Boltzmann machines (RBM) are the most
used architectures for these settings. The architecture of some of the most used algorithms
is depicted in Figure 1.

Information 2021, 12, 245. https://doi.org/10.3390/info12060245
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Figure 1. Graph representation of some of the commonly used architectures in medical imaging.
(a) AE, (b) RBM, (c) RNN, (d) CNN, (e) MS-CNN.

In this paper, we focus on colorectal cancer (CRC) and how deep learning algorithms
can help detect colon polyps. The World Health Organization, through the International
Agency for Research on Cancer, has recognized colorectal cancer as responsible for around
881 thousand deaths, or 9.2% of the total cancer deaths [3]. The main concern is that the
incidence rates have been rising, more than 1.85 million cases [3]. This increase could be
prevented by conducting effective screening test [4]. However, a 2020 European study on
colorectal cancer shows that total cancer mortality rates are predicted to decline, and these
numbers for colorectal cancer are 4.2% in men and 8.3% in women [5]. These declines are
expected in all age groups [6]. Another study done in the USA shows declining numbers in
the USA as well [7]. The implementation of screening programs is an essential factor in the
declining numbers various countries have seen. Colonoscopy is the preferred technique
among the used screening tests to diagnose CRC. It is also used as a prevention procedure
for CRC. CRC starts as growth in the lining of the colon or rectum. These growths are
called polyps. Polyps are benign neoplasms; some types can transform into CRC over
the years. Within the latter are adenomatous polyps and serrated polyps. Not all polyps
develop into CRC. The adenomatous colon polyps (adenomas) and polyps larger than 1 cm
have a higher risk of malignancy. Sometimes polyps are flat or hide between the folds of
the colon, which makes their detection difficult.

One of the procedures to screen for colon polyps is the colonoscopy, which examines
the large bowel and the distal part of the small bowel with a camera. The advantages of this
procedure include visualization of the polyps and their removal before they grow bigger
and, for biopsy purposes, if the medical personnel suspect a cancerous polyp. According
to [7], colonoscopy is very well established as a procedure to prevent the development of
CRC playing a significant role in rapid declines in incidence cases during the 2000s but not
so much during the recent years. Another study on the impact of CRC screening mortality
found that using colonoscopy indicates a more than 50% decline for CRC mortality [6].
Although colonoscopy has shown meaningful improvements, the colon polyp miss rate
continues the same. A 2017 retrospective study done with 659 patients indicates that among
these patients, the colon polyp miss rate was 17% (372 out of 2158 polyps), and 39% of
patients (255 out of 659 patients) had at least one missed polyp [8]. As mentioned before,
an undetected polyp, be it benign or malignant, may lead to a late CRC diagnosis, which is
associated with a less than 10% survival rate for metastatic CRC. Many elements contribute
to missed polyps during a colonoscopy. Two of them are the quality of bowel preparation
and the experience of the colonoscopists [9]. While the first problem cannot be fixed by
technology, the second one can, and computer-aided tools can assist colonoscopists in
detecting polyps and reducing polyp miss rates.
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The aims of this study are to give an overview of the recent deep learning algorithms
used in colorectal images and videos and introduce a new model for colon polyp de-
tection in images. The rest of the paper is organized as follows. Section 2 presents the
recent techniques explicitly used in colon polyp detection, classification and localization
in colonoscopy images and videos. Section 3 describes the databases we used to train,
validate, and test our proposed model. Section 4 presents the results. We close the paper
with Section 5, discussions and conclusions, where we also present the limitations and
future work.

The key contributions of this paper are: (i) presenting the state-of-the-art in deep
learning techniques to detect, classify, and localize colon polyps; and (ii) introducing the
convolutional neural network with autoencoders (CNN-AE) algorithm for detection of
polyps with no previous image pre-processing.

2. Background

Researchers have been applying deep learning techniques and algorithms in various
healthcare applications. Considerable progress is seen in detecting colon polyps [10,11].
Having a public database of colon polyp images played a big role. Examples of such
contributions include using a pre-trained deep convolutional neural network to detect
colon polyps [10], dividing images into small patches or in sub-images to increase the
database’s size, and then classifying different regions of the same image [12]. Other
works include exploring deep learning to automatically classify polyps using various
configurations, such as training the CNN model from scratch or modifying different CNN
architectures pre-trained in other databases and testing them in an 8-HD-endoscopic image
database [13]. Authors in [14] take advantage of transfer learning, a technique where
a model is trained on a task and later re-purposed and used for another task similar
to the previous one. [14] uses CNN as a feature descriptor and to generate features for
the classification of colon polyps. Another CNN was developed to detect hyperplastic
and adenomatous polyps and classify them by modifying different low-level CNN layer
features learned from non-medical datasets [15].

The authors in [16] use a deep CNN model as a transfer learning scheme. Besides
image augmentation strategies for training deep networks, they propose two post-learning
methods, automatic false-positive learning and offline learning. Shin & Balasingham
(2017) [17] compare a handcraft feature method with a CNN method to classify colorectal
images. For the handcraft feature approach, they use the shape and color features together
with a support vector machine (SVM) for classification. On the other hand, the CNN
approach uses three convolutional layers with pooling to do the same. They compare the
strategies by testing them in three public polyp databases. Results show the CNN-based
deep learning framework leads better classification performance by achieving an accuracy,
sensitivity, specificity, and precision of over 90%. Authors in Korbar et al. [18] build an
automatic image analysis method that classifies different types of colorectal polyps on
whole-slide images with an accuracy of about 93%. Mahmood & Durr (2018) [19] use a deep
CNN together with a conditional random field (CRF) called (CNN-CRF), a framework for
estimating the depth of a monocular endoscopy. Estimated depth is used to reconstruct the
topography of the surface of the colon from a single image. They train the framework on
over 200,000 synthetic images of an anatomically realistic colon, which they generated by
developing an endoscope camera model. The validation is done using endoscopy images
from a porcine colon, transferred to a synthetic-like domain via adversarial training. The
relative error of the CNN-CRF approach is 0.152 for synthetic endoscopy images and 0.242
for real endoscopy images. They show that the depth map can be used to reconstruct the
mucosa topography.

Three 2020 studies focus more on polyp classification by approaching the problem
in different ways. Carneiro et al. [20] studies the roles of confidence and classification
uncertainty in deep learning models and proposes and tests a new Bayesian deep learning
method to improve classification accuracy and model interpretability on a privately owned
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polyp image dataset. Gao et al. [21] use DL methods to establish colorectal lesion detection,
positioning, and classification based on white light endoscopic images. The CNN model is
used to detect whether the image contains lesions (CRC, colorectal adenoma, and other
types of polyps), and the instance segmentation model is used to locate and classify the
lesions on the images. They compare some of the most used CNN models to do so, such
as ResNet50, AlexNet, VGG19, ResNet18, and GoogleNet. Song et al. [22] developed a
computer-aided diagnostic system (CAD) for predicting colorectal polyp histology using
deep-learning technology with near-focus narrow-band imaging (NBI) pictures of the
privately-owned colorectal polyps image dataset. The performance of the CAD is validated
with two test datasets. Polyps were classified into three histological groups. The CAD
accuracy (81.3-82.4%) shows to be higher than that of trainee colonoscopists (63.8-71.8%)
but comparable with that of expert colonoscopists (82.4-87.3%).

There are other works that are focused on colon polyp detection on colonoscopy videos
besides images. Such work includes [23], where authors explore the idea of applying
a deep CNN model to a large set of images taken from 20 videos approximately 5 h
long (~500,000 frames). In [24], authors develop a three-dimensional (3D) CNN model
and train it on 155 short videos. In [25] deep learning method called Y-Net is proposed
that consists of two encoder networks with a decoder network that relies on efficient
use of pre-trained and un-trained models with novel sum-skip-concatenation operations.
The encoders are trained with a learning rate specific to encoders and the same for the
decoder. Yu et al. (2017) [26] proposes an offline and online framework by leveraging
the 3D fully convolutional network (3D-FCN). Their 3D-FCN framework is able to learn
more representative spatial-temporal features from colonoscopy videos by showing more
powerful discrimination capability. Their proposed online learning scheme deals with
limited training data by harnessing the specific information of an input video in the
learning process. They integrate offline learning to the online one to reduce the number
of false positives, which brings detection performance improvements. Another work [27]
includes using a deep CNN model based on inception network architecture trained in
colonoscopy videos. They use only unaltered NBI video frames to train and validate the
model. A test dataset of 125 videos of consecutively encountered diminutive polyps was
used to test the model. However, the confidence mechanism of the model did not generate
sufficient confidence to predict the detection of 19 polyps in the test set, which represented
15% of the polyps. In a more recent study, Poon et al. (2020) [11], the authors design an
Artificial Intelligent Endoscopist (Al-doscopist) to localize polyps during colonoscopy with
the purpose of evaluating the agreement between endoscopists and Al-doscopist for set
localization. Another recent study that deals with colorectal videos is Wang et al. [28],
which is the first double-blind, randomized controlled trial to assess the effectiveness of
automatic polyp detection using the computer-aided detection (CADe) system during
colonoscopy. To the best of our knowledge, this is also the only clinical trial that deals
with the use of artificial intelligence (AI) in colorectal image/video detection, localization
and/ or classification.

There are studies that train and test models in both images and videos. One of them is
Yamada et al. [29], where they develop an Al system that detects early signs of colorectal
cancer during colonoscopy by decomposing tensor metrics in the trained model. Their Al
system consists of a Faster R-CNN and the VGG16 model. Table 1 summarizes the articles
included in this minireview, together with some characteristics of these studies.
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Our model is a combination of CNN and autoencoders. This model was trained
on three different colon polyp databases, CVC-ColonDB [30], CVC-ClinicDB [31], and
ETIS-LaribPolypDB [32]. All these datasets are open source and can be used for research
purposes to develop techniques to detect colon and rectal polyps making them in a way
the standard datasets in the field.

3. Materials and Methods
3.1. Databases

In this study, we utilize 3 colorectal polyp image datasets, namely CVC-ColonDB,
CVC-ClinicDB, and ETIS-LaribPolypDB. The first colorectal polyp image dataset to be
made available for researchers is CVC-ColonDB, and it contains 380 images. All the
images are part of 15 colonoscopy videos, and each sequence has various numbers of polyp
pictures. The same group that published CVC-ColonDB later made available the CVC-
ClinicDB dataset, which has 612 images taken from 29 sequences. The third dataset is ETIS-
LaribPolypDB which has 196 images, Table 2. Each dataset consists of 2 main folders, the
raw original images, and the masked images, the ground truths, of the corresponding one
in the original image. Figure 2 shows images of polyps taken during several colonoscopies.
As seen from the figure, polyps come in various shapes and sizes, and some of them are
not significantly distinguishable from the mucosa of the colon.

Table 2. Databases used to train and test the CNN-AE model.

Datasets Nr of Images
CVC-ColonDB [30] 380
CVC-ClinicDB [31] 612

ETIS-LaribPolypDB [32] 196

Figure 2. Different shapes and textures of colon polyps taken from colonoscopy videos.

3.2. The Proposed Model

There are some deep learning libraries that can be used to build a neural network
model. One of them is TensorFlow [33], an open-source library created by Google and
community contributors, currently on its 2.0 version. We used this library to train and test
our convolutional encoder-decoder model. The model uses the same architecture as the
SegNet architecture [34], an algorithm programmed using Caffe, another deep learning
library created by Berkeley AI Research and community contributors. The training and
testing were performed on a computer with NVIDIA Titan X GPU.

11
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Figure 3 shows the architecture of the CNN-Autoencoder model. The model has two
parts, the encoder and the decoder. The structure of the encoder is similar to some image
classification neural networks such as the convolutional layer, which includes the batch
normalization, the rectified linear unit (the ReLu) activation function, and the pooling layer.
The decoder part has the inversed layers used in the encoder, such as deconvolution layers
and de-max_pool layers.

Input Convolutional Encoder-Decoder Output

Pooling Indices

I Conv + Batch Normalisation + ReLU
[ Pooling [ Upsampling Softmax

Figure 3. Convolutional encoder-decoder architecture.

The encoder part has 13 convolutional layers and 5 max_pooling layers, where the
first 3 layers of the model have these characteristics: the first convolution layer is with
stride 2, followed by the second convolution layer with stride 1, and a non-overlapping
2 x 2 window max_pooling layer with stride 2. As mentioned above, each decoder layer
contains the corresponding layer of the encoder, which means the decoder network has
13 layers. The output of the last decoder is fed to the Softmax classifier, which produces
for each pixel the probabilities if it is a polyp or a normal colon tissue. The network
input-output dimensions are equal:

e use the same layer for the non-shrinking convolution layer.

e use transposed deconvolution for the shrinking convolution layer adjusted with the
same parameters.

e  use the nearest neighbor upsampling for the max_pooling layer.

Open source medical image datasets lack the number of images in them, often only
a couple of hundred images. However, for deep learning algorithms to work, a large
amount of data is needed. In the case of image databases, researchers have used image
augmentation techniques to increase the number of training images. In our case, we used
an image augmentation library in Python called Imgaug Library [35]. Figure 4 shows the
results after applying some image augmentations that we used in our model, which include:

e  Crop—parameter: px = (0, 16) which crops images from each side by 0 to 16 pixels
chosen randomly.

e  Fliplr—parameter: 0.5 which flips horizontally 50% of all images.

e  Flipud—parameter: 0.5 which flips vertically 50% of all images.

o GaussianBlur—parameter: (0, 3.0), blurs each image with varying strength using
gaussian blur (sigma between 0 and 3.0).

e  Dropout—parameter: (0.02, 0.1), drop randomly 2 to 10% of all pixels (i.e., set them
to black).

e AdditiveGaussianNoise—parameter: scale = 0.01*255, adds white noise pixel by pixel
to images.

e  Affine—parameter: translate_px = {“x”: (-network.IMAGE_HEIGHT // 3, network.
IMAGE_WIDTH // 3)}, applies translate/ move of images (affine transformation).

12
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Figure 4. One image of colon polyp after applying different image augmentations.

By using image augmentation, we not only increased the number of images to train
the model but also increased the robustness and reduced overfitting of our model. Another
technique to deal with the overfitting problem was the Dropout technique with a rate of 0.2.
Each dataset was divided into train set, validation set. Majority of the data in each dataset
was used for training, 75%, 15% was used to validate and the other 15% to test the model.

4. Results

We trained the model on the selected databases using only the training sets and then
we validated and tested with the validate and test sets. As each database has a different
number of images, the time to train the model varied. The same batch size of 100 was used
for all datasets. The accuracy and the total training time for each database are depicted in
Table 3. The best accuracy was achieved on ETIS-LaribPolypDB’s last batch with a score
of 0.967.

Table 3. The accuracy and the total training time for each dataset.

Datasets Best Accuracy Batch Total Time
ETIS-LaribPolypDB 0.967 1300 1120.48
CVC-ClinicDB 0.951 2200 2186.97
CVC-ColonDB 0.937 2000 3659.52

Apart from the accuracy results from each batch and the final test accuracy, we
obtained the images that the algorithm predicted. The test input, test targets, and test
predictions were set to gray scale before all the results were drawn. Figure 5 depicts one
example from each dataset. The three columns represent the three datasets (left to right:
ETIS-LaribPolypDB, CVC-ClinicDB, and CVC-ColonDB) and the three rows, from top to
bottom, the test image, the test ground truth (target), and the result of the segment obtained
from our model.

13
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Figure 5. Images showing the results after training the convolutional encoder -decoder model on
(a) ETIS-LaribPolypDB, (b) CVC-ClinicDB, and (c) CVC-ColonDB database.

As we presented in Figure 2, polyps have various shapes and characteristics, ranging
from big and recognizable polyps to barely distinguishable circular shapes. In Figure 5, we
can see that the polyp in the first column is not easily detectable by the human eye, while the
polyp in the last is recognizable. This wide variation induces errors in polyp recognition.

5. Discussion and Conclusions

In the background section we presented many techniques and algorithms used these
recent years. A quick glance at summary Tab 1 depicts how diverse these techniques are,
but also how diverse the metrics to evaluate them are. Accuracy was one of the most used
metrics followed by the other metrics such as precision, recall etc. Although the main topic
is the same, colorectal polyps, comparing results is difficult. The first reason is the one
we explained above, different metrics. The others are related to the objectives, for what
purpose are these algorithms used (classification, segmentation, detection, or classification),
and the databases these algorithms are trained.

Among the cited papers we find two other similar studies to ours, meaning they
are focused on detection problem and use the same metric and database/s. By using the
CNN-Autoencoder model, we obtained the highest accuracy of 96.7, which is slightly better
than the current state-of-the-art models that calculated the accuracy, Table 4.

Table 4. Accuracy comparison for the proposed model and previously published studies on colon
polyp detection.

Model Accuracy (%)
CNN-Autoencoder (ours) 96.7
DLL [23] 96.4
AI-APD [24] 76.5
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The main challenges with colonoscopy images seem to fall on the shape and texture of
the polyps [18,22,26], and the quality of the images [21,22,26,27]. The quality of the images
depends on the colonoscopy device itself [21,26] or on the expertise of the endoscopist [18,22,27].
Furthermore, in the case of polyp classification, class imbalance poses another problem [20].
Considering these challenges, we checked the image results and verified that indeed some
of the segments the model predicted are not as expected. The unexpected bad masks are
shown in Figure 6, and again this shows the implications that shape, and texture of the
polyp has, but also the conditions the colonoscopy image was taken. The lighting used
during the examination plays a negative role when it comes to colon polyp detection as the
models misrecognize the normal tissue as a polyp. This phenomenon happens because the
inner surface of the colon is smooth, and the light attached to the colonoscopy used by the
endoscopists to exam the colon reflects, confusing the models to consider healthy colon
tissues as polyps. We have to mention that the patient needs to prepare well and follow the
doctor’s instructions as per the normal colonoscopy session.

Figure 6. False detection of a polyp due to lighting conditions.

Technology has helped progress the medical field enormously, especially when it
comes to medical imaging. Colorectal cancer has been one of the diseases which has gained
attention, and many researchers have worked towards detecting and preventing such
disease. CAD systems have shown that the polyp miss rate has gone down. However,
research shows deep learning has shown even more progress aiding colonoscopists/
endoscopists to perform better.

In this work, we presented the current state of the art of deep learning techniques in
colon polyp detection, classification, segmentation and localization. We contributed by
applying a novel algorithm CNN-AE for detection of polyps, which appears promising
considering that no image preprocessing was performed prior to training the model. Our
model shows better results than the current state of the art, although not very significant.
We believe better results may be achieved if we increase the number of images in the
dataset. Moreover, having a diverse range of polyp images may improve the algorithms
performance. We tested the same model on other medical image databases, namely iris
and pressure ulcer datasets, and the results obtained were better than with the colon polyp
images. In future work we want to address these issues by making changes to the model
and we will add other image augmentations currently not implemented in the Imgaug
library. Besides the technical aspect, we want to address the lack of polyp image datasets.
We are in the process of creating a bigger and more diverse dataset of colon polyp images.
We will test the model as soon as we prepare the dataset which will be made available to
researchers for academic purposes as well.

Author Contributions: Conceptualization, O.B., B.G.-Z. and L.B.; methodology, O.B., D.S.-S., B.G.-Z.

and L.B.; software, O.B. and D.S.-S; validation, D.S.-S. and O.B.; formal analysis, O.B. and D.S.-S.;
investigation, O.B. and D.S.-S.; resources, B.G.-Z.; writing—original draft preparation, O.B.; writing—

15



Information 2021, 12, 245

review and editing, O.B., B.G.-Z., D.S.-S. and L.B,; visualization, O.B.; supervision, B.G.-Z.; project
administration, B.G.-Z. and O.B.; funding acquisition, B.G.-Z. All authors have read and agreed to
the published version of the manuscript.

Funding: O.B. received funding from the European Union’s Horizon 2020 CATCH ITN project under
the Marie Sklodowska-Curie grant agreement no. 722012.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C. A guide to deep learning in healthcare.
Nat. Med. 2019, 25, 24-29. [CrossRef]

2. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sanchez, C.I.
A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60-88. [CrossRef]

3. World Health Organization and International Agency for Research on Cancer. Cancer Today. 2020. Available online:
https:/ /bit.ly /37]XYER (accessed on 17 November 2020).

4. Lieberman, D. Quality and colonoscopy: A new imperative. Gastrointest. Endosc. 2005, 61, 392-394. [CrossRef]

5. Carioli, G,; Bertuccio, P; Boffetta, P; Levi, F,; La Vecchia, C.; Negri, E.; Malvezzi, M. European cancer mortality predictions for the
year 2020 with a focus on prostate cancer. Ann. Oncol. 2020, 31, 650-658. [CrossRef]

6.  Zauber, A.G. The Impact of Screening on Colorectal Cancer Mortality and Incidence: Has It Really Made a Difference? Dig. Dis.
Sci. 2015, 60, 681-691. [CrossRef]

7. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7-30. [CrossRef]

8.  Lee, J.; Park, SSW.; Kim, Y.S.; Lee, K.J.; Sung, H.; Song, P.H.; Yoon, W.J.; Moon, ].S. Risk factors of missed colorectal lesions after
colonoscopy. Medicine 2017, 96, e7468. [CrossRef]

9.  Bonnington, S.N.; Rutter, M.D. Surveillance of colonic polyps: Are we getting it right? World ]. Gastroenterol. 2016,
22,1925-1934. [CrossRef]

10.  Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional Neural Networks for
Medical Image Analysis: Full Training or Fine Tuning? IEEE Trans. Med. Imaging 2016, 35, 1299-1312. [CrossRef] [PubMed]

11.  Poon, C.C,; Jiang, Y.; Zhang, R.; Lo, W.W.; Cheung, M.S.; Yu, R.; Zheng, Y.; Wong, ].C.; Liu, Q.; Wong, S.H.; et al. Al-doscopist: A
real-time deep-learning-based algorithm for localising polyps in colonoscopy videos with edge computing devices. NPJ Digit.
Med. 2020, 3, 73.

12.  Ribeiro, E.; Uhl, A.; Hafner, M. Colonic polyp classification with convolutional neural networks. In Proceedings of the IEEE 29th
International Symposium on Computer-Based Medical Systems (CBMS), Dublin, Ireland, 20-24 June 2016.

13. Ribeiro, E.; Hafner, M.; Wimmer, G.; Tamaki, T.; Tischendorf, J.J.; Yoshida, S.; Tanaka, S.; Uhl, A. Exploring texture transfer
learning for colonic polyp classification via convolutional neural networks. In Proceedings of the 2017 IEEE 14th International
Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18-21 April 2017.

14. Ribeiro, E.; Uhl, A.; Wimmer, G.; Hafner, M. Exploring Deep Learning and Transfer Learning for Colonic Polyp Classification.
Comput. Math. Methods Med. 2016, 2016, 6584725. [CrossRef]

15.  Zhang, R.; Zheng, Y.; Mak, TW.C.; Yu, R,; Wong, S.H.; Lau, ].Y.; Poon, C.C. Automatic Detection and Classification of Col-
orectal Polyps by Transferring Low-Level CNN Features from Nonmedical Domain. IEEE ]. Biomed. Health Inform. 2017,
21, 41-47. [CrossRef]

16.  Shin, Y;; Qadir, H.A.; Aabakken, L.; Bergsland, J.; Balasingham, I. Automatic Colon Polyp Detection Using Region Based Deep
CNN and Post Learning Approaches. IEEE Access 2018, 6, 40950-40962. [CrossRef]

17.  Shin, Y.; Balasingham, I. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic
polyp classification. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Jeju Island, Korea, 11-15 July 2017.

18. Korbar, B.; Olofson, A.M.; Miraflor, A.P.; Nicka, C.M.; Suriawinata, M.A.; Torresani, L.; Suriawinata, A.A.; Hassanpour, S. Deep
Learning for Classification of Colorectal Polyps on Whole-slide Images. J. Pathol. Inform. 2017, 8, 30. [PubMed]

19.  Mahmood, F; Durr, N.J. Deep learning and conditional random fields-based depth estimation and topographical reconstruction
from conventional endoscopy. Med. Image Anal. 2018, 48, 230-243. [CrossRef]

20. Carneiro, G.; Pu, L.Z.C.T,; Singh, R.; Burt, A. Deep learning uncertainty and confidence calibration for the five-class polyp
classification from colonoscopy. Med. Image Anal. 2020, 62, 101653. [CrossRef]

21. Gao,].; Guo, Y,; Sun, Y,; Qu, G. Application of Deep Learning for Early Screening of Colorectal Precancerous Lesions under White

Light Endoscopy. Comput. Math. Methods Med. 2020, 2020, 8374317. [CrossRef]

16



Information 2021, 12, 245

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Song, EIM.; Park, B.; Ha, C.A.; Hwang, S.W.; Park, S.H.; Yang, D.H.; Ye, B.D.; Myung, S.J.; Yang, S.K.; Kim, N.; et al. Endoscopic
diagnosis and treatment planning for colorectal polyps using a deep-learning model. Sci. Rep. 2020, 10, 30. [CrossRef] [PubMed]
Urban, G.; Tripathi, P.; Alkayali, T.; Mittal, M.; Jalali, F.; Karnes, W.; Baldi, P. Deep Learning Localizes and Identifies Polyps in
Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology 2018, 155, 1069-1078.e8. [CrossRef] [PubMed]
Misawa, M.; Kudo, S.E.; Mori, Y.; Cho, T.; Kataoka, S.; Yamauchi, A.; Ogawa, Y.; Maeda, Y.; Takeda, K.; Ichimasa,
K.; et al. Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience. Gastroenterology 2018,
154,2027-2029.e3. [CrossRef] [PubMed]

Mohammed, A.K,; Yildirim, S.; Farup, I.; Pederse, M.; Hovde, O. Y-Net: A deep Convolutional Neural Network for Polyp
Detection. 2018. Available online: http://arxiv.org/abs/1806.01907 (accessed on 10 June 2020).

Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A. Integrating Online and Offline Three-Dimensional Deep Learning for Automated
Polyp Detection in Colonoscopy Videos. IEEE |. Biomed. Health Inform. 2017, 21, 65-75. [CrossRef]

Byrne, M.E; Chapados, N.; Soudan, E; Oertel, C.; Pérez, M.L.; Kelly, R.; Igbal, N.; Chandelier, F.; Rex, D.K. Real-time differentiation
of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy
using a deep learning model. Gut 2019, 68, 94. [CrossRef] [PubMed]

Wang, P; Liu, X; Berzin, TM.; Brown, J.R.G.; Liu, P; Zhou, C.; Lei, L.; Li, L.; Guo, Z.; Lei, S.; et al. Effect of a deep-learning
computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): A double-blind randomised study.
Lancet Gastroenterol. Hepatol. 2020, 5, 343-351. [CrossRef]

Yamada, M.; Saito, Y.; Imaoka, H.; Saiko, M.; Yamada, S.; Kondo, H.; Takamaru, H.; Sakamoto, T.; Sese, J.; Kuchiba, A.; et al.
Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci. Rep.
2019, 9, 1-9. [CrossRef] [PubMed]

Bernal, J.; Sanchez, J.; Vilarifio, F. Towards automatic polyp detection with a polyp appearance model. Pattern Recognit. 2012,
45,3166-3182. [CrossRef]

Bernal, J.; Sanchez, E]J.; Fernandez-Esparrach, G.; Gil, D.; Rodriguez, C.; Vilarifio, . WM-DOVA maps for accurate
polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med Imaging Graph. 2015,
43,99-111. [CrossRef] [PubMed]

Silva, J.; Histace, A.; Romain, O.; Dray, X.; Granado, B. Toward embedded detection of polyps in WCE images for early diagnosis
of colorectal cancer. Int. ]. Comput. Assist. Radiol. Surg. 2014, 9, 283-293. [CrossRef]

Abadi, M.; Barham, P.; Chen, J.; Chen, Z; Davis, A; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:
A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, Savannah, GA, USA, 2-4 November 2016; pp. 265-283.

Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481-2495. [CrossRef]

Jung, A. imgaug 0.2.5 [Internet]. 2017. Available online: http://imgaug.readthedocs.io/en/latest (accessed on 10 June 2020).

17



W information

Article

Severity Assessment and Progression Prediction of COVID-19
Patients Based on the LesionEncoder Framework and Chest CT

You-Zhen Feng '*, Sidong Liu >*, Zhong-Yuan Cheng !, Juan C. Quiroz 3, Dana Rezazadegan 4,
Ping-Kang Chen !, Qi-Ting Lin !, Long Qian 5, Xiao-Fang Liu ¢, Shlomo Berkovsky 2, Enrico Coiera ?, Lei Song 7%,
Xiao-Ming Qiu %* and Xiang-Ran Cai 1/*

Citation: Feng, Y.-Z,; Liu, S.; Cheng,
Z.-Y,; Quiroz, ].C.; Rezazadegan, D.;
Chen, P-K,; Lin, Q.-T.; Qian, L.; Liu,
X.-F,; Berkovsky, S.; et al. Severity
Assessment and Progression
Prediction of COVID-19 Patients
Based on the LesionEncoder
Framework and Chest CT. Information
2021, 12, 471. https://doi.org/
10.3390/info12110471

Academic Editors:
Gholamreza Anbarjafari (Shahab) and

Luis Martinez Lopez

Received: 29 September 2021
Accepted: 11 November 2021
Published: 15 November 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affili-

ations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
40/).

Medical Imaging Centre, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China;

fengyouzhen@jnu.edu.cn (Y.-Z.F.); chengzy@jnu.edu.cn (Z.-Y.C.); cpk1993@stu2019.jnu.edu.cn (P-K.C.);

lingiting@stu2018 jnu.edu.cn (Q.-T.L.)

Centre for Health Informatics, Australian Institute of Health Innovation, Faculty of Medicine, Health and

Human Sciences, Macquarie University, Sydney 2113, Australia; sidong.liu@mgq.edu.au (S.L.);

shlomo.berkovsky@mg.edu.au (S.B.); enrico.coiera@mgq.edu.au (E.C.)

3 Centre for Big Data Research in Health, University of New South Wales, Sydney 1466, Australia;

juan.quiroz@unsw.edu.au

Department of Computer Science and Software Engineering, Swinburne University of Technology,

Melbourne 3000, Australia; drezazadegan@swin.edu.au

Department of Biomedical Engineering, Peking University, Beijing 100871, China; longgianad@pku.edu.cn

Tianjin Key Laboratory of Intelligent Robotics, Institute of Robotics and Automatic Information System,

College of Artificial Intelligence, Nankai University, Tianjin 300350, China; liuxiaofang@nankai.edu.cn

Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and

Science, Xiangyang 441003, China

Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University,

Edong Healthcare Group, Huangshi 435002, China

*  Correspondence: song580lei@gmail.com (L.S.); xXiaomingqiu0714@gmail.com (X.-M.Q.);
caixran@jnu.edu.cn (X.-R.C.)

1t  These authors contributed equally.

Abstract: Automatic severity assessment and progression prediction can facilitate admission, triage,
and referral of COVID-19 patients. This study aims to explore the potential use of lung lesion
features in the management of COVID-19, based on the assumption that lesion features may carry
important diagnostic and prognostic information for quantifying infection severity and forecasting
disease progression. A novel LesionEncoder framework is proposed to detect lesions in chest CT
scans and to encode lesion features for automatic severity assessment and progression prediction.
The LesionEncoder framework consists of a U-Net module for detecting lesions and extracting
features from individual CT slices, and a recurrent neural network (RNN) module for learning the
relationship between feature vectors and collectively classifying the sequence of feature vectors.
Chest CT scans of two cohorts of COVID-19 patients from two hospitals in China were used for
training and testing the proposed framework. When applied to assessing severity, this framework
outperformed baseline methods achieving a sensitivity of 0.818, specificity of 0.952, accuracy of 0.940,
and AUC of 0.903. It also outperformed the other tested methods in disease progression prediction
with a sensitivity of 0.667, specificity of 0.838, accuracy of 0.829, and AUC of 0.736. The LesionEncoder
framework demonstrates a strong potential for clinical application in current COVID-19 management,
particularly in automatic severity assessment of COVID-19 patients. This framework also has a
potential for other lesion-focused medical image analyses.

Keywords: chest CT; COVID-19; severity assessment; progression prediction; U-Net; RNN

1. Introduction

The rapid escalation in the number of COVID-19 infections exceeded the capacity
of healthcare systems to respond in many nations, and consequently reduced patient
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outcomes [1]. In such circumstances, it is of paramount importance to develop efficient
diagnostic and prognostic models for COVID-19, so that the patients’ care can be optimized.

Chest CT scans have been found to provide important diagnostic and prognostic
information for COVID-19 [2-7]. Although there is still debate on the use of chest CT
in screening and diagnosing COVID-19 cases [8], a surge of computational methods for
chest CT have been developed to support medical decision making during the current
pandemic [9-15]. Study population, model performance, and reporting quality vary
substantially between studies. An in-depth comparison of these studies can be found in a
recent systematic review [16].

In addition to diagnostic and screening models, several prediction models have been
proposed based on an assessment of lung lesions. There are three typical classes of lesions
that can be detected in COVID-19 chest CT scans: ground glass opacity (GGO), consolida-
tion, and pleural effusion [3,4]. Imaging features of the lesions including shape, location,
extent and distribution of involvement of each abnormality have been found to have good
predictive power for mortality [17] or hospital stay [18]. These features, however, are
mostly derived from the delineated lesions, and so depend heavily on lesion segmentation.
Manual delineation of lesions often takes one to five hours, which substantially undermines
clinical applicability of these methods.

Automatic lung lesion segmentation for COVID-19 has been actively investigated
in recent studies [19,20]. A VB-Net model based on a neural network was proposed to
segment the infection regions in CT scans [19]. This model, when trained using CT scans
of 249 COVID-19 patients, achieved a Dice score of 0.92 between automatic and manual
segmentations, and successfully reduced the delineation time to less than 4 min. In another
recent study [20], a lesion segmentation model based on the 3D-Dense U-Net architecture
was proposed and trained on CT scans of a combination of 160 COVID-19, 172 viral
pneumonia, and 296 interstitial lung disease patients. Although the lesion masks were
not compared voxel-to-voxel, the volumetric measures of lesions, such as percentage of
opacity and consolidation, showed a high correlation (0.97-0.98) between automatic and
manual segmentations.

Previous studies [19,20] have suggested that lesion features might be a useful biomarker
for COVID-19 patient severity assessment, but the effectiveness of lesion features is yet
to be verified. Lesion features may have additional applications in the management of
COVID-19, which need to be investigated further. In this study, we aim to test the effective-
ness of using lesion features in COVID-19 patients for disease severity assessment, and to
explore the potential use of lesion features in predicting disease progression.

Automatic severity assessment and progression prediction will substantially facilitate
admission, triage, and referral of patients. The first goal of this study is to develop a method
for assessing severity of COVID-19 patients based on their baseline chest CT scans. Four
severity types: mild, ordinary, severe, and critical, can be defined based on a core outcome
set (COS) encapsulating clinical symptoms, physical and chemical detection, viral nuclei
aid detection, disease process, etc. [21]. Supportive treatments, such as supplementary
oxygen and mechanical ventilation, are usually required for severe and critical cases [22].
We represent the assessment severity task as a binary classification problem (i.e., to classify
a patient as a mild /ordinary case (mild class) or a severe/critical case (severe class)).

The second goal of this study is to predict disease progression for the mild/ordinary
cases based on their baseline CT scans. In other words, we aim to predict which of
the mild/ordinary severity patients are likely to progress to the severe/critical category
(converter class) in the short term (within seven days), and which patients would remain
stable or recover (non-converter class), based on the assumption that lesion features may
carry important prognostic information for forecasting disease progression. We again
consider the task as a binary classification problem (i.e., to classify the non-converter
cases and converter cases). Figure la presents an example of a COVID-19 case with
mild symptoms. In less than seven days, the patient’s symptoms rapidly worsened and
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progressed to severe. Figure 1b is an example of a non-converter case whose symptoms
progressed slowly and remained mild seven days after the baseline CT scan.

(b) Non-converter

Figure 1. Examples of converter and non-converter cases. (a) A mild case progressed to severe within
seven days; (b) a mild case did not progress to severe within seven days.

To achieve the above two goals, a novel LesionEncoder framework is proposed to
detect lesions in CT scans and encode lesion features for automatic severity assessment
and progression prediction. The LesionEncoder framework consists of two modules: (1) A
U-Net module which detects lesions and extracts features from CT slices, and (2) a recurrent
neural network (RNN) module for learning the relationship between feature vectors and
classifying the sequence of feature vectors as a whole.

We applied the LesionEncoder framework for both severity assessment and progres-
sion prediction. With access to data of two COVID-19 confirmed patient cohorts from
two hospitals, we trained our proposed model with CT scans of a cohort of patients from
one hospital and tested it on an independent cohort from the other hospital. The models
built on the LesionEncoder framework outperformed the baseline models that used lesion
volumetric features and general imaging features, demonstrating a high potential for clini-
cal applications in the current COVID-19 management, particularly in automatic severity
assessment of COVID-19 patients. This framework may also have a strong potential in sim-
ilar lesion-focused analyses, such as neuroimaging based diagnosis of brain tumors [23,24]
and neurological disorders [25,26], CT-based lung nodule classification [27], and retinal
imaging based ophthalmic disease detection [28].
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2. Datasets

A total of 346 COVID patients confirmed by reverse transcription polymerase chain
reaction (RT-PCR) were retrospectively selected from two local hospitals in the Hubei
Province, China, namely Huang Shi Central Hospital (HSCH) and Xiang Yang Central
Hospital (XYCH). Severity types of all patients at baseline and follow-up (in seven days)
were assessed and confirmed by clinicians according to the COS for COVID-19 [21]. More
details of the demographics and baseline characteristics of patients can be found in our
previous study [29]. This analysis was approved by the Institutional Review Board of both
hospitals, and written informed consent was obtained from all the participants.

Tables 1 and 2 illustrate, respectively, the demographics of patients for the develop-
ment of a severity assessment model (Task 1—mild vs. severe) and a progression prediction
model (Task 2—converter vs. non-converter). For both tasks, CT scans of the HSCH cohort
were used for training the models, and CT scans of the XYCH cohort were used as an
independent dataset to test the trained models. Patients may have either a lung-window
scan, a mediastinal-window scan, or both in their baseline CT examination. All scans were
included in the analysis. The total number of CT scans for Task 1 was 639, and that for
Task 2 was 601. An internal validation set (20% of the training samples) was split from the
training set and used to evaluate the model’s performance during training.

Table 1. Demographics of the patients in Task 1 dataset.

Category HSCH—Training Set XYCH—Test Set Total
Mild 7 1 8
Ordinary 212 104 316
Severe 7 6 13
Critical 4 5 9
Total patients 230 116 346
Total CT scans 433 206 639
Age (mean = SD) 49.00 + 14.4 475+17.2 485+ 154
Gender (female/male) 120/110 57/59 177/169

Table 2. Demographics of the patients in Task 2 dataset.

Category HSCH—Training Set XYCH—Test Set Total
Non-converter 201 99 300
Converter 18 6 24
Total patients 219 105 324
Total CT scans 412 189 601
Age (mean + SD) 48.4 +14.0 46.1 +16.6 47.7 £ 149
Gender (female/male) 113/106 55/50 168/156

Note that there is a highly imbalanced distribution of samples in the datasets (i.e., 324
(93.6%) patients in mild class for Task 1, and 300 (92.6%) patients in non-converter class for
Task 2). A weighting strategy was used to address the imbalanced distribution in datasets,
and the details are presented in Section 3.3.

3. Methods

Figure 2 gives an overview of the LesionEncoder framework, which consists of two
modules: (1) A lesion encoder module for lesion detection and feature encoding, and (2) a
RNN module for sequence classification. The lesion encoder module extracts features from
individual CT slices; therefore, a CT scan with multiple CT slices can be represented as
a sequence of feature vectors. The sequence classification module takes the sequence of
feature vectors as input and then classifies the entire sequence collectively.
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Figure 2. An overview of the proposed LesionEncoder framework.

3.1. Image Pre-Processing

All CT scans were pre-processed with intensity normalization, contrast limited adap-
tive histogram equalization, and gamma adjustment, using the same pre-processing
pipeline as in our previous study [30]. We further performed lung segmentation on
the CT slices using an established model—R231CovidWeb [31]. This model (The bi-
nary executable software for the lung segmentation model is available online (https:
//github.com/JoHof/lungmask (accessed on 11 February 2021))) was trained on a large
and diverse dataset of non-COVID-19 CT scans and further fine-tuned with an additional
COVID-19 dataset [32]. The CT slices with less than 3 mm? lung tissue were removed from
our datasets, since they bear little or no information of the lung.

3.2. Lesion Encoder

The U-Net architecture [33] is adopted for the lesion encoder module. It consists of
an encoder and a decoder, where the encoder captures the lesion features and the decoder
maps lesion features back to the original image space. In other words, the encoder is
responsible for extracting features from the input images (i.e., CT slices), whereas the
decoder generates the segmentation maps (i.e., lesion masks). Figure 3 illustrates the
encoder-decoder architecture of the lesion encoder module.
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Figure 3. The U-Net architecture for lesion detection and feature encoding.

We used the EfficientNetB7 model [34] as the backbone to build the lesion encoder
module, as it represents the state-of-the-art in object detection while being 8.4 times smaller
and 6.1 times faster on inference than the best existing models in the ImageNet Chal-
lenge [35]. The ImageNet pre-trained weights were used to initialize the EfficientNetB7
model. There are 7 blocks in the EfficientNetB7 model, as shown in Figure 3. The skip
connections were built between the expand activation layers in Blocks 2, 3, 4, and 6 and
their corresponding up-sampling layers in our model. The output of the bottom layer is
the final output feature vector representing the lesion features of the input slice.

A publicly available dataset was used to train the EfficientNetB7 U-Net, which con-
sisted of 100 axial CT slices from 60 COVID-19 patients [32]. All the CT slices were anno-
tated by an experienced radiologist with 3 different lesion classes, including GGO, consoli-
dation, and pleural effusion. Since this dataset is very small, we applied different augmenta-
tions, including horizontal flip, affine transforms, perspective transforms, contrast manipu-
lation, image blurring and sharpening, Gaussian noise, and random crops, to the dataset us-
ing the Albumentations library [36]. The model (The Tensorflow implementation of the Ef-
ficientNetB7 U-Net is available online (https://github.com/qubvel/segmentation_models
(accessed on 11 February 2021))) was trained using Adam optimizer [37] with a learning
rate of 0.0001 and 300 epochs.

The lesion encoder module was applied to process individual slices in a CT scan. For
each CT slice, a high-dimensional feature vector (d = 2560) was derived. Independent
component analysis (ICA) was performed on the training samples to reduce dimensionality
(d = 64). The ICA model was then applied to the test samples, so that they have the same
feature dimension as the training samples. The output of the lesion encoder is a sequence
of feature vectors, which are then classified using a sequence classifier, as explained in the
next section.
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3.3. Sequence Classification

A RNN model was built for sequence classification. Its input is a sequence of feature
vectors generated by the lesion encoder. The structure of the RNN model is illustrated in
Table 3—two bidirectional long short-term memory (LSTM) layers, followed by a dense
layer with a dropout rate of 0.5, and an output dense layer. For comparison purposes,
another pooling model was created (Table 3)—using max pooling and average pooling to
combine the slice-based feature vectors, as inspired by a previous study [9]. The difference
between these two models is that the RNN model captures the relationship between feature
vectors in a sequence, whereas the pooling model ignores such relationships.

Table 3. The architectures of the RNN model and the pooling model.

RNN Model Pooling Model
BiLSTM (64, return-sequences) Global_Max_Pooling Global_Average_Pooling
BiLSTM (32) Concatenation
Dense (64, ReLu, dropout = 0.5) Dense (64, ReLu, dropout = 0.5)
Dense (1, Sigmoid) Dense (1, Sigmoid)

Adam optimizer [37] with a learning rate of 0.001 was used for training the models
in 100 epochs. A validation set (20%) was split from the training set for monitoring the
training process. Every 20 epochs, the validation set was reselected from the training set,
so that the model will be internally validated by all training samples during training. To
address the imbalanced distribution in the datasets, we assigned different weights to the
two classes (mild /non-converter class: 0.2, severe/converter class: 1.8) when training the
models. In addition, if a patient has multiple CT scans, the scan with a higher probability
of a positive prediction overrules the others when applying the models for inference.

3.4. Performance Evaluation

We tested the LesionEncoder framework with two configurations: (1) Using the
pooling model as the classifier (LE_Pooling) and (2) using the RNN model as the classifier
(LE_RNN). These methods were compared to 3 baseline methods. The first baseline
method (BS_Volumetric) was inspired by a previous study [20], which was based on a
Logistic Regression model using 4 lesion volumetric features as input: GGO percentage,
consolidation percentage, pleural effusion percentage, and total lesion percentage. The
second (BS_Pooling) and third (BS_RNN) baseline methods were based on the same
classification models as in LE_Pooling and LE_RNN; however, the features were extracted
from an EfficientNetB7 model without a lesion encoder module. The purpose of the second
and third baseline models was to estimate the contribution of the lesion encoder. Following
previous studies [38,39], sensitivity, specificity, accuracy, and area under curve (AUC) were
used to evaluate the methods’ performance. Receiver operating characteristic (ROC) curves
were also compared between methods.

3.5. Development Environment

All the neural network models, including the EfficientNetB7 U-Net, the Pooling model
and the RNN model, were implemented in Python (v3.6.9) and Tensorflow (v2.0.0). The
models were trained using a Fujitsu server with Intel Xeon Gold 5218 GPU, 128 G memory,
and NVidia V100 32 G GPU. The same server was used for image pre-processing, feature
extraction, and classification.

4. Results
4.1. Lung and Lesion Segmentation

The lung masks generated using the R231CovidWeb model [31] and the lesion masks
generated by the lesion encoder module were visually inspected by an experienced image
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analyst (S.L.). Overall, the lung segmentation results were visually reliable with few severe
and critical cases having infection areas missed out in their lung masks. The lesion encoder
achieved a Dice of 0.92 on the COVID-19 CT segmentation dataset [32]. Figure 4 presents
four examples of the lung and lesion segmentation results (reconstructed using 3D Slicer
(v4.6.2) [40]) of the COVID-19 patients, one for each severity class. It shows that higher
severity of COVID-19 is reflected in CT scans as increasing number and volume of lesions.

(a) Mild

(b) Ordinary (c) Severe (d) Critical

Figure 4. Examples of the patients in different severity groups: (a-d). The upper row presents the axial CT slices with the

lung (red) and lesion (green: GGO; yellow: consolidation; brown: pleural effusion) boundaries overlaid on the CT slices.
The lower row illustrates the 3D models of the lung and lesions.

4.2. Severity Assessment

Five different methods were compared in the automatic severity assessment of COVID-19
patients, including three baseline methods and two proposed methods, as described in
Section 3.4. Table 4 illustrates the performance metrics of different methods on the sever-
ity assessment task, and Figure 5a shows the ROC curves of these methods. The three
methods using lesion features (BS_Volumetric, LE_Pooling, and LE_RNN) consistently
outperformed the models that did not use lesion features by a marked difference in sensi-
tivity (>9.1%), specificity (>15.3%), accuracy (>14.7%), and AUC (>15.1%). In particular,
BS_Volumetric achieved the highest AUC of 0.931, indicating that the lesion volumetric
features were highly effective in distinguishing between severe and mild cases.

Table 4. Performance of different methods in baseline severity assessment. Bold font indicates best
result in each performance metric achieved by the methods.

Method Sensitivity Specificity Accuracy AUC
BS_Volumetric 0.818 0.933 0.922 0.931
BS_Pooling 0.727 0.752 0.750 0.732
BS_RNN 0.727 0.771 0.767 0.749
LE_Pooling 0.818 0.924 0.914 0.900
LE_RNN 0.818 0.952 0.940 0.903

The proposed LE_RNN method achieved higher specificity (0.952) than the BS_Volumetric
method (0.933), showing that the features captured by the lesion encoder might be useful
in reducing the false positive rate compared with the volumetric features. When com-
paring the pooling models and RNN models, we found that the RNN models performed
slightly better than the pooling models; and the impact of the sequence classifier on the
classification performance was much lower than that of the lesion features.
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Figure 5. ROC curves of different models in (a,b) .

4.3. Progression Prediction

The results of different methods in the prediction of disease progression task are
presented in Table 5 and Figure 5b presents the ROC curves of these methods. The
BS_Volumetric method performed poorly (sensitivity = 0.5, specificity = 0.465, accu-
racy = 0.467, AUC = 0.51), indicating that lesion volumetric features were not predictive
of COVID-19 disease progression. This finding was not surprising, since the converter
and non-converter cases both showed mild symptoms at baseline and presented a small
quantity of lesions in the lungs. The BS_Pooling and BS_RNN methods achieved slightly
better performance than BS_Volumetric, although they did not use any lesion features.

Table 5. Performance of different methods in prediction of disease progression. Bold font indicates
best result in each performance metric achieved by the methods.

Method Sensitivity Specificity Accuracy AUC
BS_Volumetric 0.500 0.465 0.467 0.510
BS_Pooling 0.667 0.535 0.543 0.569
BS_RNN 0.667 0.535 0.543 0.662
LE_Pooling 0.667 0.737 0.733 0.724
LE_RNN 0.667 0.838 0.829 0.736

The LE_Pooling and LE_RNN methods outperformed the baseline methods with
a substantial increase of 20-30% in specificity. LE_RNN was the best method in all the
evaluation metrics (sensitivity = 0.667, specificity = 0.838, accuracy = 0.829, AUC = 0.736).
The results indicate that the lesion features extracted by the lesion encoder may bear useful
diagnostic information for predicting disease progression. However, it is still challenging
to predict disease progression using the lesion features, and the low sensitivity (0.667) may
restrict clinical applicability of the proposed methods.

5. Discussion

Clinical value in the management of COVID-19. The rapid spread of COVID-19 has
put a strain on healthcare systems, necessitating efficient and automatic diagnosis and
prognosis to facilitate the admission, triage, and referral of COVID-19 patients. Chest
CT plays a key role in COVID-19 management by providing important diagnostic and
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prognostic information of patients. Several computational models have been developed
to support automatic screening and diagnosis of COVID-19 [9-15]. There are also a few
studies [19,20] using CT to quantify infection severity with a focus on development of
lesion segmentation models. A few measures based on the lesion volumes have been
proposed to quantify infection severity [19]; however, the intricate patterns of the lesion
shape, texture, location, extent, and distribution were less investigated.

To capture the complex features in the lesions, we proposed a novel LesionEncoder
framework. Two specific applications of this framework (i.e., assessment of severity and
prediction of disease progression for COVID-19 patients) were explored in this study. To the
best of our knowledge, this work represents the first attempt to predict COVID-19 patient
disease progression using chest CT scans. Models built on this framework are able to take
CT scans as input, detect, and extract features from the lesions, and quantify the severity
or predict progression in a fully automated manner. The analysis of a high-resolution CT
scan of 512 x 12 x 430 voxels takes less than 1 min, which is substantially faster than
radiologists’ reading time. This can also save the burden of manual delineation of the
lesions. The quantitative measures based on the features are of high clinical relevance, and
can be used to support medical decision making or to track changes in patients.

We should note that this framework is not designed to analyze the COVID-19 suspects
who are not confirmed by RT-PCR, or the covert/asymptomatic cases that are not docu-
mented [41-43]. The community-acquired pneumonia cases, such as viral pneumonia and
interstitial lung disease patients, were also not considered in this study. As pointed out
in a systematic review [44], normal controls and diseased controls will be needed for the
development of screening or diagnostic models, thus the selection bias in the cohort may
lead to a risk of overestimated performance. Since our model focuses on the confirmed and
hospitalized COVID-19 cases; therefore, will not be exposed to such risk.

Models based on lesion features outperformed the baseline models without lesion
features in both severity assessment and progression prediction. An interesting finding in
severity assessment is that the lesion volumetric features are highly effective in distinguish-
ing the severe cases from the mild cases. The features extracted by the lesion encoder did
not improve the sensitivity of detecting the severe cases, but only reduced false positive
predictions. This finding indicates that lesion volumetric features, such as GGO percentage
and consolidation percentage, are prominent biomarkers in identifying the severe cases.
The lesion encoder makes marginal contribution to severity assessment. In contrast, in
progression prediction the models with the lesion encoder performed much better than
those with volumetric features, indicating that the intricate pattern captured by the lesion
encoder provide useful prognostic information for identifying the COVID-19 patients at
higher risk of converting to the severe type. The LesionEncoder framework demonstrates
a clinical applicability in COVID-19 management, particularly in the automatic severity
assessment of COVID-19 patients (sensitivity = 0.818, specificity = 0.952, AUC = 0.931).
However, it is still challenging to predict disease progression using lesion features, and the
low sensitivity (0.667) may restrict clinical applicability of the proposed methods.

Technical contributions of the LesionEncoder framework. The technical contributions
of this work are two-fold. Most importantly, this framework extends the use of lesion
features beyond conventional lesion segmentation and volumetric analysis. There is
a wealth of information in the lesions including shape, texture, location, extent, and
distribution of involvement of the abnormality, that can be extracted by the lesion encoder.
We demonstrated two novel applications of the lesion features in severity assessment and
progression prediction. However, they also have a strong potential in a wide range of
other clinical and research applications, such as supporting clinical decision making and
providing insights of the pathological mechanism.

In addition, the proposed LesionEncoder framework attempts to address a common
challenge in medical image analysis: how to reconcile local information and global in-
formation to improve medical image perception [45]. In this study, the slices from a CT
scan were used as input for classification, but not every slice in the scan carries the same
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diagnostic/prognostic information. That is, the ground truth label of the entire scan cannot
be propagated to label individual slices. For example, a CT slice with no lesion from a
severe case might appear more ‘normal” compared to a slice with some lesions from a
mild case. Our proposed framework is a feasible approach to infer the holistic prediction
with a focus on the analysis of region of interest. The RNN module in the framework is
also a more sophisticated approach than the conventional feature fusion methods that use
average pooling or max pooling to combine the local features. There are many analyses of
the same nature, e.g., neuroradiologists may use features such as tumoral infiltration of
surrounding tissues in MRI for tumor grading [46]; ophthalmologists may focus on lesions,
such as hemorrhages and microaneurysms, hard exudates, and cotton-wool spots, when
grading diabetic retinopathy [47]; and pathologists are more likely fixate on regions of
highest diagnostic relevance when interpreting the biopsy whole slide images (WSI) [48].
The LesionEncoder framework may be generalizable to these lesion-focused medical
image analyses.

Limitations. A limitation of this study is that we only had access to a retrospective
cohort. Although it includes 639 CT scans of 346 patients, it is still a relatively small dataset
compared to other datasets for development of deep learning models. It also refuted the
idea of developing 3D deep learning models for scan-based classification. Since 3D models
are usually more complicated than 2D models and have substantially more parameters,
the small sample size will lead to undertrained models. In addition, there is a highly
imbalanced distribution in the datasets. Among the 346 samples for the development of
the severity assessment model, 324 (93.6%) patients were in the mild class. For the disease
progression model, there are 300 (92.6%) patients in the non-converter class. Although this
reflects the real distribution, it will be ideal to have more severe/converter class samples
for training. To address this imbalance distribution problem, we used a class weighting
strategy to give the positive class higher weight during training, and used a prediction
weighting strategy during inference to enhance the prediction of the positive class if that
patient has multiple scans. A larger sample size with more severe and converter cases in
the datasets would help train more accurate and robust models as well as produce reliable
performance estimates. Other techniques, such as synthetic minority oversampling [29],
spherical coordinates transformation [49], and generative adversarial network [50], will be
investigated in further study.

The lung masks generated using the R231CovidWeb model [31] and the lesion masks
generated by the lesion encoder module were visually inspected by an experienced image
analyst. The segmentation results were visually reliable, but the missed-out lung or lesion
regions in the segmentation masks were noted in a few severe and critical cases. Since there
were no lesion masks for our datasets, no quantitative analyses were performed to evaluate
the automatic segmentation results. Further improvements can be made if the ground
truth annotation of the lung and lesion can be provided to optimize the performance of the
current lung segmentation model and lesion encoder module on our datasets.

Furthermore, it is still challenging for LesionEncoder alone to predict disease pro-
gression using lesion features. However, combining the proposed method with other
biomarkers, such as short-time changes in neutrophil-to-lymphocyte ratio and urea-to-
creatinine ratio [51] might further help stratify patients’ severity.

There are a few recent studies that used explainable Al in chest CT segmentation
and classification of COVID-19 patients, such as these based on class activation map [52],
few-shot learning [53], and the shapely addictive explanations framework [29]. Another
potential future extension of this work is to use explainable Al frameworks to explain the
model’s logics and decision-making processes, thereby unlocking the black box of deep
learning and helping the end users to understand the models better.

6. Conclusions

In this study, a novel LesionEncoder framework was proposed to encode the enriched
lesion features in chest CT scans for automatic severity assessment and progression predic-
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tion of COVID-19 patients. Models built on this framework outperformed the evaluated
baseline models with a marked improvement. The lesion volumetric features were promi-
nent biomarkers in identifying severe/critical cases, but intricate features captured by
the lesion encoder were found effective in identifying the COVID-19 patients who have
higher risks of converting to the severe or critical type. Overall, the LesionEncoder frame-
work demonstrates a high clinical applicability in the current COVID-19 management,
particularly in automatic severity assessment of COVID-19 patients.

An important future direction of this framework lies in the combination of clinical
data and imaging data for better prediction performance, especially for the progression
prediction, since clinical data may provide essential indicators of the clinical risks of the
patients. Furthermore, the applications of the LesionEncoder framework to other types of
lesion-focused analyses will be further investigated.
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Abstract: Background: The current pandemic caused by SARS-CoV-2 is an acute illness of global
concern. SARS-CoV-2 is an infectious disease caused by a recently discovered coronavirus. Most
people who get sick from COVID-19 experience either mild, moderate, or severe symptoms. In
order to help make quick decisions regarding treatment and isolation needs, it is useful to determine
which significant variables indicate infection cases in the population served by the Tijuana General
Hospital (Hospital General de Tijuana). An Artificial Intelligence (Machine Learning) mathematical
model was developed in order to identify early-stage significant variables in COVID-19 patients.
Methods: The individual characteristics of the study subjects included age, gender, age group,
symptoms, comorbidities, diagnosis, and outcomes. A mathematical model that uses supervised
learning algorithms, allowing the identification of the significant variables that predict the diagnosis
of COVID-19 with high precision, was developed. Results: Automatic algorithms were used to
analyze the data: for Systolic Arterial Hypertension (SAH), the Logistic Regression algorithm showed
results of 91.0% in area under ROC (AUC), 80% accuracy (CA), 80% F1 and 80% Recall, and 80.1%
precision for the selected variables, while for Diabetes Mellitus (DM) with the Logistic Regression
algorithm it obtained 91.2% AUC, 89.2% accuracy, 88.8% F1, 89.7% precision, and 89.2% recall for the
selected variables. The neural network algorithm showed better results for patients with Obesity,
obtaining 83.4% AUC, 91.4% accuracy, 89.9% F1, 90.6% precision, and 91.4% recall. Conclusions:
Statistical analyses revealed that the significant predictive symptoms in patients with SAH, DM, and
Obesity were more substantial in fatigue and myalgias/arthralgias. In contrast, the third dominant
symptom in people with SAH and DM was odynophagia.

Keywords: machine learning; COVID-19; identification

1. Introduction

A novel coronavirus, known as Severe Acute Respiratory Syndrome (SARS-CoV-2),
was identified in December 2019 as the cause of a respiratory illness called Coronavirus
Disease 2019, or COVID-19 [1]. The origin of this virus is not yet confirmed, but an analysis
of its genetic sequence suggests it is phylogenetically related to bat viruses similar to SARS
(severe acute respiratory syndrome), making bats a possible key reservoir [2]. Symptoms
of COVID-19 infection appear after an incubation period of approximately 5.2 days [3].
The period from the onset of COVID-19 symptoms to death ranges from 6 to 41 days with a
median of 14 days [4]. This period depends largely on the age and the state of the patient’s
immune system [4].
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The infection is transmitted through droplets generated by symptomatic patients
when coughing or sneezing, but it can also occur through asymptomatic patients and even
before the onset of symptoms [5].

The clinical features of COVID-19 are diverse, from an asymptomatic state to acute res-
piratory distress syndrome and multiorgan failure [5]. The most common early symptoms
of COVID-19 illness are fever, cough, and fatigue, while other symptoms include headache,
sputum production, hemoptysis, dyspnea, diarrhea, and lymphopenia [6]. Advanced age,
cardiovascular disease, diabetes, chronic respiratory disease, hypertension, and cancer are
said to increase the risk of death for people diagnosed with COVID-19.

Regarding COVID-19, as of 15 August 2021, there were 207,784,507 confirmed cases
(410,464 new cases) and 4,370,424 deaths, while 4,462,336,040 vaccine doses have been
reported worldwide [7,8]. Most estimates of fatality ratios have been based on cases
detected through surveillance and calculated using crude methods, giving rise to widely
variable estimates of CFR depending on the country—from less than 0.1% to over 25% [9].

Currently, in Mexico (August 2021), there are 3,310,989 estimated positives, with 261,384
estimated deaths, and 133,866 estimated actives. However, there are 3,108,438 confirmed
cases, 5,527,343 negative, 477,811 suspected and 248,652 accumulated deaths. Of the
confirmed cases, 53.56% have been women and 46.44% men. A total 5.6% of patients
have been hospitalized, and 94.4% have been outpatients. Among the main comorbidities
are hypertension (10.34%), Obesity (8.989%), diabetes (7.31%) and smoking (8.03%), with
information updated on 16 August 2021. On the same date, the state of Baja California
had 913 active cases, with 54,453 accumulated cases, and 8979 deaths. The state’s capital,
Mexicali, is the city with the highest number of cases in the state, with 21,778 accumulated
cases, followed by Tijuana, our case study [10].

2. Background

Several authors have addressed the issue of SARS-CoV-2 from a technological point of
view, with the development of artificial intelligence algorithms. There are models to predict
the mortality rate [11]. Some studies present the detection of severely ill patients with
COVID-19 from those with mild symptoms using clinical information and data from blood
and urine tests [12]. Several artificial intelligence models have been used with Machine
Learning and Deep Learning methods which have been used intensively for COVID-19.
Although Machine Learning and Deep Learning methods show successful results in the
COVID-19 cases tested, there are accounting challenges that can be considered to improve
the quality of the research in that direction [13].

Table 1 summarizes the articles included in this minireview, together with some
characteristics of these studies.

Table 1. Minireview of papers.

Authors.

Year

Objective Learners Metrics Novelties

Li WT et al. [14].

2020

Novel associations between
clinical variables, including
correlations between being
male and having higher levels
of serum lymphocytes and
neutrophils. We found that
COVID-19 patients could be
clustered into subtypes based
on serum levels of immune
cells, gender, and reported
symptoms.

sensitivity of 92.5% and a

Classification XGBoost specificity of 97.9%

Guan X et al. [15]

2020

Proposed disease severity, age,
serum levels of hs-CRP, LDH,
>90% precision and >85%  ferritin, and IL-10 as significant
Prediction XGBoost sensitivity, as well as F1 predictors for death risk of
scores >0.90 COVID-19, which may help to
identify the high-risk
COVID-19 cases.
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Table 1. Cont.

Authors.

Year

Objective

Learners

Metrics

Novelties

Delafiori J et al. [16]

2021

Diagnosis and risk
assesment

gradient tree
boosting (GDB)
ADA tree boosting

96.0% of specificity and
83.1% of sensitivity
80.3% of specificity and
85.4% of sensitivity

Propose machine learning
techniques to determine from
databases the five main
challenges in responding
COVID-19 and how to
overcome these challenges to
save lives.

Allam M et al. [17]

2020

Diagnosis and
prediction

Neural Networks

100% sensitivity and
99.9% specificity

The Abbott antibody test
(SARS-CoV-2 IgG assay) has
shown 100% sensitivity and

99.9% specificity thus far. The

Abbott test finds whether the

patient has IgG antibodies for

COVID-19, which can stay for

months to years after a person
has recovered.

Assaf D et al. [18]

2020

Prediction

Classification and
Regression Tree
(CRT) model

Sensitivity, specificity,
PPV, NPV and accuracy
of 88.0%, 92.7%, 68.8%,
97.7% and 92.0%,
respectively, with ROC
AUC of 0.90.

The analysis of the database in
this study found that most
contributory variables to the
models were APACHE 1II score,
white blood cell count, time
from symptoms to admission,
oxygen saturation and blood
lymphocytes count.
Machine-learning models
demonstrated high efficacy in
predicting critical COVID-19
compared to the most
efficacious tools available.

Naseem M et al. [19]

2020

Detection

Neural Networks

sensitivity of 90% and
specificity of 96%
respectively

Results were synthesized and
reported under 4 themes. (a)
The need of AI during this
pandemic: Al can assist to
increase the speed and accuracy
of identification of cases and
through data mining to deal
with the health crisis efficiently,
(b) Utility of ATin COVID-19
screening, contact tracing, and
diagnosis: Efficacy for virus
detection can a be increased by
deploying the smart city data
network using terminal
tracking system along-with
prediction of future outbreaks,
(c) Use of Al in COVID-19
patient monitoring and drug
development:

Arga KY [20]

2020

Prediction and
diagnosis

Apache, Gleason
and PASI

Machine learning is considered
to help reduce diagnostic errors
and unnecessary use of
diagnostic tools through the
development of rational
algorithms. Indeed, the
COVID-19 pandemic showed
that digital health is invaluable,
feasible, and not too far.

Majhi R et al. [21]

2020

Prediction

Nonlinear
Regression (NLR),
Decision Tree (DT)

based regression,
and random forest
(RF) models

Evaluation metrics
obtained using the Mean
Absolute Percentage
Error (MAPE).
NLR = 0.24%

DT =0.18%

RF = 0.02%

The algorithm predict the
number of positive cases in
India. In essence, the paper

proposes a machine learning
model that can predict the
number of cases well in
advance very effectively and
also suggest some key inputs.
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Table 1. Cont.

Authors.

Year

Objective Learners Metrics Novelties

van der Schaar M
etal. [22]

2020

This paper summarizes the use
of machine learning techniques
in different studies to manage
limited healthcare results,
developing personalized
treatment, informing policies
and able effective collaboration
and expediting clinical trials.

Prediction -

Das AK et al. [23]

2020

In this study, according to the
For liner regression (area random forest algorithm, age
under ROC curve = was the most important
0.830), calibration predictor followed by exposure,

(Matthews Correlation sex and province, whereas this
Coefficient = 0.433; Brier order was sex, age, province
Score = 0.036). and exposure as per logistic

regression

Prediction Linear Regression

Swapnarekha H et al.
[24]

2020

This article obtained good
metrics for COVID-19
prediction. On the other hand,
mentioned machined learning
techniques used for
classification and prediction to
Support Vector reduce the spread of

Machine (SVM), " coronavirus and understand the

0.933 true positive rate, . . .
Rannom Forest RF, . limitation of machine learning

0.74 true negative rate . .
K-Means, XGBoost analysis, being: lack of
. and 0.875 accuracy. . !
and linear information, accuracy of
regression predictions, usage of advanced
approaches, providing feasible
solutions for developing

countries and necessity of
advance intelligent systems on
symptom based identification

of COVID-19.

Prognosis

3. Materials and Methods

This article is based on a study of COVID-19 patients at the Tijuana General Hospital, a
public hospital that serves a very particular low-income population. Tijuana is a border city
in northern Mexico next to San Diego, California, in the United States. Including neighbor-
ing Rosarito, the greater Tijuana region has a population of around 1,900,000 inhabitants,
the majority Mexican nationals. However, there are also many migrants from other Central
American, South American, and Caribbean countries living in unaccounted shantytowns,
seeking to enter the United States in any way, either legal or illegally. While doing so, they
temporarily live in Tijuana without a permanent job, a fixed salary, a steady place of work,
or a regular postal address, and therefore, do not have access to social security or health
services, and eventually fall ill, often due to a myriad of causes. The range of pathologies
and diseases found in the city of Tijuana is much broader than those found in other cities
with more homogeneous or steady populations, which further complicates medical and
healthcare services for this specific segment of people. Tijuana General Hospital is one
of the few public health institutions that serve this marginalized segment of the Tijuana
population, hence the size and complexity of the challenges faced by its medical staff every
day, as well as the diversity of pathologies met by the health professionals who treat them.
In this article, we evaluate a group of COVID-19-diagnosed patients, who were treated at
this Tijuana hospital during 2020.

3.1. Sample Size

The required sample size for this study was estimated considering the expected
prevalence in studies carried out using bioimpedance analysis, 17% [25], assuming a
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margin of error of 5% and a confidence interval of 95%. According to these criteria, a total
of 185 patients were needed in order to obtain the desired results. The average age of the
studied population was 55 years, while the average hospital length of stay duration was
six days.

Patients arrived mainly from the Tijuana and Rosarito urban and suburban areas. This
research included patient medical history, pharmacology, PCR testing and biochemical data.

3.2. Database

Information on 185 patients with 99 variables was collected for each of them to create
the database, the description of the variables can be found in Appendix A. Table 1 shows
the gender criteria for evaluating patients at the Tijuana General Hospital, which serves a
low-income population in the Tijuana and Rosarito areas of Baja California, with a higher
percentage of men than women as seen from the Table 2.

Table 2. Evaluation Criteria.

Gender % Kg-m? SpO
Women 39.46% <6.1kg/ m? >95%
Men 60.54% <8.5 kg/m? >95%

3.3. Bedford's Law

Benford’s Law validation method was used in order to make sure the data was
consistent, in order to develop an efficient study. Benford’s Law, or the Law of First Digits,
is a tool used in different fields of science, with a method to suggest a mathematical pattern
in the distribution of the first digits in a dataset that does not display a uniform distribution,
but rather are arranged in such a way that the digit “1” is the most frequent, followed by
“2”, then “3”, and so on, down to “9”. This model suggests that, within a random set of
data, the first digit of approximately 30.10% of the numbers will be “1”. Several studies
have used this technique to validate and evaluate veracity in databases with information
about COVID-19 [26,27].

By using Benford’s Law as a validation method, it was demonstrated that there
is consistency in the data collected from the Tijuana General Hospital, as the curve of
our current information is close to the curve generated by the percentages established
by Benford’s Law. For this comparison, “length of stay” data were used, as within the
database that was used, most information is described by binary numbers (0 and 1), while
the variable “length of stay” is a defined variable. For this, in addition to the graph function,
two Excel functions were used:

Left: This function allowed the first digit to be taken to the left of the number within the
“length of stay” column.

Countif: This function allows to count the frequency of each of the digit numbers without
considering 0.

Figure 1 shows the comparison results between Bedford’s Law and “length of stay”
which suggest that the data is consistent.
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Figure 1. Benford’s Law curve comparison with the curve generated by the actual data from “length of stay”.

The distribution by first digit numbers in the data can be seen in Table 3. Invalidating
the data, the comparison suggests that according to Benford’s law, the results obtained
from this analysis for the Tijuana Hospital database are accurate.

Table 3. Data compared with Bedford’s Law.

Benford’s Law Actual R.E. *
Tijuana cases !

30.10% 25.57% —15.01%
17.61% 14.20% —19.30%
12.49% 14.00% 9.12%
9.69% 12.50% 22.89%
7.92% 10.23% 29.16%
6.69% 7.95% 18.83%
5.80% 6.25% 7.75%
5.12% 6.82% 33.20%
4.58% 2.84% 1.73%

1 Considering “length of stay” for validation. * Relative Error.

3.4. Machine Learning Analysis

For the evaluation of each dataset, the following classifiers were used: Decision Tree
(DT), Support Vector Machine (SVM), Random Forest (RF), Multi-Layer Perceptron Neural
Network (MLPNN), Naive Bayes (NB), Logistic Regression (LR) and AdaBoost (AB). The
configuration for each algorithm were suggested by Orange. These configurations are
shown in Table 4. The algorithms were evaluated by stratified k-fold cross-validation,
where the data was iteratively examined by ten folds, using nine folds for training and
1-fold for testing; with this method, the data can be divided into equal parts, which gives
better results, avoiding generalization which means possible errors when new data is used
for predictions with the trained models.
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Table 4. Configurations used for each learner in the analysis.

Learner Configuration for Learners

A number of trees: 10, minimum subsets split: 5, maximum tree
depth: unlimited.

kNN Number of neighbors: 3, metric: Euclidean, weight: uniform

Type: SVM Regression, C = 1, e = 0.1, Kernel= Radial Basis

RF

SVM Function (RBF), exp (—auto|x — y|2), numerical tolerance: 0.001
Hidden layers: 100, activation: ReLu, solver: Adam, alpha: 0.0001,
MLPNN . . . . ..
maximum iterations: 200, replicable training: True.
NB
Base estimator: tree, number of estimators: 50, algorithm
AB e . )
(classification): Samme. 1, loss (regression): Linear
DT Type: binary tree, internal nodes < 5, maximum depth: 100,

splitting: 95%.

The datasets for each analysis were created by feature selection; for this, HAS, DM, and
Obesity were selected as targets due to their importance in the development of COVID-19.
After selecting the targets, the complete database was analyzed iteratively with each of the
chosen targets. The process of selecting the most relevant features was done by using the
DT and comparing the results with the rank, using the following scoring methods: gain
ratio, Gini, X2, ReliefF and Fast Correlation Based Filter (FCBF). The algorithm followed
for the scoring techniques is shown in Table 5.

Table 5. Rank Scoring Algorithms.

Method Algorithm
Gain Ratio IG(Ex,a) = H(Ex) — v (% « H({x € Ex|value(x,a) = v}))
v € values (a)
Gini RS < xi—x|
G= P VRS s
X2 X="1r
VNpq
ReliefF W; = W; — (x; — nearHit;)* + (x; — nearMiss;)?
FCBF H(X) = = L P(xi)loga(P(xi))
1
4. Results

Given that the comorbidities prevalent in patients of the analyzed database are SAH
with 49% of patients, DM with 34% of patients, and Obesity with 11% of patients, it was
decided to take these three diseases independently as a target to find the variables that were
most related to these diseases present in patients with COVID-19, determining the factors
involved where the information had to be pre-processed. The Decision Tree and ranking
methods were used to determine the variables with the most significant impact. Tables 6-8
show the resulting datasets after the analysis. Dataset 1 in each table was determined by
using all of the existing variables in the database; then, for dataset 2, the selection of features
was determined by choosing the ones closer to the root within the first ten levels; finally, to
assess dataset 3, ranking results were considered, regardless of the variables “Tos” (cough),
“Fiebre” (fever), “Disnea” (dyspnea), and “Dolor de cabeza/Cefalea (headache)” as these
were established by the World Health Organization as official COVID-19 symptoms, and by
using them for analysis they performed better obtaining an increase in the dataset scores,
therefore by dismissing them the research found other significant variables.
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Table 6. Datasets for HAS as a target (variable names in Spanish).

Dataset

Target HAS

Dataset 1

Edad, género, grupo etario, DM, ECV, Hepaticas, SNC, Neumopatia,
Cancer, Inmunosupresion, Obesidad, Otros (1), Comorbilidades, Fiebre,
Mialgias/artralgias, Fatiga, Odinogafia/ardor faringeo, Tos, Disnea, Dolor
Toracico, Congestion Nasal, Rinorrea, Expectoracion Diarrea, Nausea,
Anorexia, Vomito, Cefalea, Mareo, Hispomia/Anosmia, Ageusia,
Conjuntivitis, Saturacién >90, Saturacién 80-90%, Saturacién < 80%,
Leucopenia, Leucocitosis, Neutropenia, Neutrofilia, Linfopenia,
Linfocitosis, Eosinopenia, Trombocitopenia, Trombocitosis, TP normal, TP
alargado, INR normal, INR Alto, TTPa normal, TTPa alargado, Creatinina
normal, Creatinina alta, Ferritina normal, Ferritina alta, Dimero D normal,
Dimero D Alto, Fibrinégeno normal, Fibrinégeno Alto, PCR normal, PCR
alta, Procalcitonina normal, Procalcitonina alta, Troponina normal,
Troponina alta, CPK normal, CPK alta, CK-MB normal, CK-MB alta,
Albumina baja, Albumina normal, Bilirrubina total normal, Bilirrubina
total alta, ALT /TGP normal, ALT/TGP alta, AST/TGO normal, AST/TGO
alta, DHL normal, DHL alta, DHL > 1000, Fosfatasa alcalina normal,
Fosfatasa alcalina alta, Muestra, POSITIVA, Mayor 50%, Moderado, Grave,
Oseltamivir, Ceftriaxona, Claritromicina, Azitromicina, Levofloxacino,
Otros (2), Hidroxicloroquina/Cloroquina, Tocilizumab, Esteroides,
Pronacién, Respondedor, Respondedor parcial, No respondedor, Alta por
mejoria, Defuncion, Dias de estancia hospitalaria.

Dataset 2

Comorbilidades, Edad, Tos, CK-MB Normal, INR Alto, DM, Cefalea,
Neutrofilia, Dimero, Leucocitos, Neumopatia, Obesidad, Dias de estancia,
CPK alta, Saturacion 90, Eosinopenia, TP Alargado y Odinofagia

Dataset 3

Comorbilidades, Edad, CK-MB Normal, CK-MB Alto, DM, Neutrofilia,
Dimero D Alto, Leucocitosis, Neumopatia, Obesidad, Dias de estancia,
Otros (1)

Table 7. Datasets for DM as a target (variable names in Spanish).

Dataset

Target DM

Dataset 1

Edad, género, grupo etario, HAS, ECV, Hepaticas, SNC, Neumopatia,
Cancer, Inmunosupresion, Obesidad, Otros (1), Comorbilidades, Fiebre,
Mialgias/artralgias, Fatiga, Odinogafia/ardor faringeo, Tos, Disnea, Dolor
Toracico, Congestion Nasal, Rinorrea, Expectoracion Diarrea, Nausea,
Anorexia, Vomito, Cefalea, Mareo, Hispomia/Anosmia, Ageusia,
Conjuntivitis, Saturacién > 90, Saturacion 80-90%, Saturacion < 80%,
Leucopenia, Leucocitosis, Neutropenia, Neutrofilia, Linfopenia,
Linfocitosis, Eosinopenia, Trombocitopenia, Trombocitosis, TP normal, TP
alargado, INR normal, INR Alto, TTPa normal, TTPa alargado, Creatinina
normal, Creatinina alta, Ferritina normal, Ferritina alta, Dimero D normal,
Dimero D Alto, Fibrinégeno normal, Fibrinégeno Alto, PCR normal, PCR
alta, Procalcitonina normal, Procalcitonina alta, Troponina normal,
Troponina alta, CPK normal, CPK alta, CK-MB normal, CK-MB alta,
Albtmina baja, Albumina normal, Bilirrubina total normal, Bilirrubina
total alta, ALT /TGP normal, ALT /TGP alta, AST/TGO normal, AST/TGO
alta, DHL normal, DHL alta, DHL > 1000, Fosfatasa alcalina normal,
Fosfatasa alcalina alta, Muestra, POSITIVA, Mayor 50%, Moderado, Grave,
Oseltamivir, Ceftriaxona, Claritromicina, Azitromicina, Levofloxacino,
Otros (2), Hidroxicloroquina/Cloroquina, Tocilizumab, Esteroides,
Pronacion, Respondedor, Respondedor parcial, No respondedor, Alta por
mejoria, Defuncion, Dias de estancia hospitalaria.
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Table 7. Cont.

Dataset Target DM

Edad, Neutropenia, Comorbilidades, Cancer, Claritromicina, HAS,
linfocitosis, Ferritina normal, Hepaticas, SNC, Leucopenia,
Inmunosupresion, eosinofilia, ferritina alta, Troponina normal, vomito,

Dataset 2 INR alto, CM-KB alta, Disnea, TTP alargado, Levofloxacino, Fatiga,
AST /TGO alta, bilirrubina total alta, fiebre, creatinina alta, INR normal,
Diarrea, Augesia.
Edad, Género, HAS, Obesidad, Otros (1), Comorbilidades, Leucocitosis,
Dataset 3 Creatinina normal, Creatinina alta, Procalcitonina alta, Levofloxacino,

Hidroxicloroquina

Table 8. Datasets for Obesity as a target (variable names in Spanish).

Dataset Target Obesity

Edad, género, grupo etario, HAS, DM, ECV, Hepaticas, SNC,
Neumopatia, Cancer, Inmunosupresion, Otros (1), Comorbilidades,
Fiebre, Mialgias/artralgias, Fatiga, Odinogafia/ardor faringeo, Tos,
Disnea, Dolor Toracico, Congestion Nasal, Rinorrea, Expectoracién

Diarrea, Nausea, Anorexia, Vémito, Cefalea, Mareo,
Hispomia/Anosmia, Ageusia, Conjuntivitis, Saturacion > 90,
Saturacion 80-90%, Saturacion < 80%, Leucopenia, Leucocitosis,
Neutropenia, Neutrofilia, Linfopenia, Linfocitosis, Eosinopenia,
Trombocitopenia, Trombocitosis, TP normal, TP alargado, INR
normal, INR Alto, TTPa normal, TTPa alargado, Creatinina normal,
Creatinina alta, Ferritina normal, Ferritina alta, Dimero D normal,

Dataset 1 Dimero D Alto, Fibrinogeno normal, Fibrinogeno Alto, PCR normal,
PCR alta, Procalcitonina normal, Procalcitonina alta, Troponina
normal, Troponina alta, CPK normal, CPK alta, CK-MB normal,
CK-MB alta, Albumina baja, Albumina normal, Bilirrubina total
normal, Bilirrubina total alta, ALT /TGP normal, ALT /TGP alta,
AST /TGO normal, AST /TGO alta, DHL normal, DHL alta,
DHL > 1000, Fosfatasa alcalina normal, Fosfatasa alcalina alta,
Muestra, POSITIVA, Mayor 50%, Moderado, Grave, Oseltamivir,
Ceftriaxona, Claritromicina, Azitromicina, Levofloxacino, Otros (2),
Hidroxicloroquina/Cloroquina, Tocilizumab, Esteroides, Pronacion,

Respondedor, Respondedor parcial, No respondedor, Alta por

mejoria, Defuncién, Dias de estancia hospitalaria

Saturacion 80-90, Edad, Cefalea, Género, Levoflaxina, GRAVE,
Dataset 2 Hisponia/asmonia, Linfopeni, a Neumopatia, Fosfatasa alcalina
normal, Creatinina normal, dias de estancia, PCR alta

Saturacion 80-90, Edad, Género, Levoflaxina, GRAVE,
Dataset 3 Hisponia/asmonia,
Linfopenia Neumopatia, Fosfatasa alcalina normal

After the analysis of each dataset, the obtained results are shown in Tables 9-11; where
the best scores are shown in bold font for each method.
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Table 9. Highest scores from a dataset with HAS as a target.

Model AUC CA F1 Precision Recall
Tree Decision 0.814 0.784 0.784 0.784 0.784
SVM 0.867 0.762 0.762 0.762 0.762
Random 0.866 0.784 0.784 0.784 0.784
Forest
Neural
0.876 0.773 0.773 0.773 0.773
Network
Naive Bayes 0.832 0.757 0.755 0.761 0.757
Logistic 0.910 0.800 0.800 0.801 0.800
Regression
AdaBoost 0.860 0.811 0.811 0.811 0.811

Table 10. Highest scores from a dataset with DM as a target.

Model AUC CA F1 Precision Recall
Tree 0.867 0.881 0.878 0.882 0.881
SVM 0.934 0.886 0.885 0.886 0.886

Random 0.877 0.849 0.847 0.847 0.849

Forest

Neural 0.871 0.816 0.812 0.813 0.816

Network ’ ’ ’ ’ ’
Naive Bayes 0.849 0.838 0.838 0.838 0.838
Logistic 0912 0.892 0.888 0.897 0.892
Regression
AdaBoost 0.827 0.843 0.844 0.844 0.843

Best model: Logistic Regression with 0.934 of AUC, 0.886 of CA, 0.885 of F1, 0.886 of Precision, and 0.886 of Recall.

Table 11. Highest scores from a dataset with Obesity as a target.

Model AUC CA F1 Precision Recall
Tree 0.700 0.876 0.869 0.864 0.876
SVM 0.643 0.838 0.831 0.824 0.838

Random 0.807 0.903 0.872 0.912 0.903

Forest

Neural 0.834 0.914 0.899 0.906 0.914

Network
Naive Bayes 0.793 0.865 0.845 0.833 0.865
Logistic 0.778 0.881 0.856 0.851 0.881
Regression
AdaBoost 0.697 0.881 0.879 0.876 0.881

Best model: Neural Network with 0.834 of AUC, 0.914 of CA, 0.899 of F1, 0.906 of Precision and 0.914 of Recall.

As shown in Table 8, the highest score using as target HAS was obtained with the
Logistic Regression algorithm, using the default parameters with a cost strength of 1.00
(C-1) and Ridge-type regularization (L2), which shows 91.0% Area under ROC (AUC),
80% Classification Accuracy (CA), 80% F1, and 80.1%, Precision and Recall for selected
variables in Dataset 3 in Table 6 as possible variables essential to consider for a more
accurate determination of vulnerability in people with HAS.

On the other hand, when targeting DM patients, the best-functioning model using
the default parameters already mentioned above was found to be Logistic Regression,
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obtaining 91.2% AUC, 89.2% CA, 88.8% F1, 89.7% precision, and recall 89.2% for selected
variables from dataset 3 in Table 7.

While the Neural Network algorithm showed better results for patients with Obesity,
obtaining 83.4% AUC, 91.4% CA, 89.9% F1, 90.6% Accuracy, and 91.4% Recall (See Table 11).

The prevalent symptoms present in people with different comorbidities, and statistical
analysis was performed without considering cough, fever, dyspnea, and headache as part
of the symptoms for the same reason mentioned above. In people with HAS, DM, and
Obesity, the presence of fatigue and myalgias/arthralgias was greater; while the third
dominant symptom in people with HAS and DM was odynophagia, instead of people with
Obesity, this symptom was positioned with the eighth, occupied the third position with
chest pain (See Figures 2—4).
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Figure 2. Frequency of symptoms in patients with DM.
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Figure 3. Frequency of symptoms in patients with HAS.
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Figure 4. Frequency of symptoms in patients with Obesity.

5. Discussion

Obesity, diabetes, and hypertension are high-prevalence comorbidities in the Mexican
population. In 2018, approximately 1/4 of the Mexican people had high blood pressure,
while 71.2% of people over the age of 20 had a prevalence of obesity and overweight. These
two conditions are considered to be significant risk factors for developing other diseases
such as diabetes since 90% of people with diabetes in Mexico are overweight and obese [28].

In processing the information in this study, the prevalence of these three diseases
considered as risk factors for COVID-19 infection could be noted. For this reason, it was
decided to carry out an analysis using Artificial Intelligence (Machine Learning) techniques,
aiming for each of these diseases, looking for any relationship between the symptoms and
conditions of people suffering from these comorbidities.

After reviewing the medical literature, it was found that COVID-19 causes chronic
inflammation in patients with obesity, along with other diseases considered as risk factors,
such as lack of vitamin D and intestinal dysbiosis, which result in deficiencies in the
functioning of the immune system in the face of infections. On the other hand, Obesity has
a negative impact on respiratory mechanics as it is affected due to the resistance generated
by lack of elasticity in the chest box [29,30]. Both diabetes and high blood pressure are
diseases more present in the elderly, one of the reasons why these diseases are thought to
be closely related to COVID-19, due to the fact that people with advanced age are highly
vulnerable to COVID-19. The reason diabetes could have a high impact on the condition
of patients with COVID-19 may be due to a disruption generated in the endocrine system
where the COVID-19 virus affects angiotensin-converting Enzyme 2 (ECA2), which is
responsible for anti-inflammatory regulation, vasodilators, and the process of releasing
sodium into the urine. Another function of ECA2 is to offer protection to different organs,
including those that are part of the pulmonary and cardiovascular systems, which is why
the absence of this enzyme is related to the involvement of the lungs and the development
of hypertension [31,32].

Different authors mentioned in a report of the analysis carried out with a database of
3894 patients in Italy [33], obtaining values for a death risk target with an accuracy rating
of 83.4%, F1 value of 90.4%, specificity of 30.8%, and Recall of 95.2% when using Random
Forest over a dataset with variables such as Glomerular Filtration Rate (eGFR), C- Reactive
Protein (CRP), Age, Diabetes, Sex, Hypertension, Smoking, Lung Disease, Myocardial
Infection, Obesity, Heart Failure, and Cancer, demonstrating this as vulnerable to those
who exhibit the above-mentioned comorbidities. To achieve a comparison between the
variables established with the results of this analysis, the scores of the three targets used
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(HAS, Diabetes, and Obesity) were taken into account and the average was calculated,
obtaining values of 84.50% for CA, 83.43% of F1, 84.76% Precision, and 84.53% of Recall.

On the other hand, a study of Brazilian patients shows their scores at 86% for CA,
92% for AUC, 28% of Precision, 86% of Recall, and 42% of F1 for the Logistic Regression
model, where the results show that there is a high relationship between patients over
60 years of age with breathing difficulties, fever, cough, rhinorrhea, odynophagia, diarrhea,
headache, heart disease, pneumopathies, kidney disease, diabetes, smoking, Obesity, and
hospitalization with those who come down with COVID-19 [34].

This analysis provides a complete and accurate perspective of the current situation
in Tijuana since having information from a single source allows us to know the current
situation of those served at the Tijuana General Hospital, who are mostly part of low-income
or economically disadvantaged family groups. Since 41.9% of the Mexican population
is economically disadvantaged [35], it is important to understand the comorbidities and
symptoms present in this group, which results in more vulnerable people and increases
expenditures in public sector hospitals regarding space and medical equipment, which
often is extremely limited. Since the study was done considering typical human patients,
regardless of their geographical and ethnic origin, a similar genomic situation can be
assumed with migrant patients from both parts of Mexico and regions such as Central
America, South America, and the Caribbean.

6. Conclusions

The values of the prevalent comorbidity found in this study were as follows: 49% in
patients with HAS; 34% in patients with DM; and 11% in patients with Obesity, correspond-
ing to the population segment that was served at the General Hospital of Tijuana during
the aforementioned dates.

The deaths reported during the evaluated period of the total number of patients
evaluated in this study were 42 subjects, from a population universe of 185 patients
evaluated, with a fatality rate of 22%, a non-representative sample but within the data that
places Mexico with a fatality rate (Case fatality) of 8.8% compared to other fatality rates in
Latin America, such as Peru (3.5%), Colombia (2.6%), Chile (2.5%), Brazil (2.4%), and 2-3%
globally [36].

A total of 52 different medicines were prescribed, where Steroids (16.1%), azithromycin
(10.9%), enoxaparin (8.2%), levofloxacin (7.3%), hydroxyquinone (6.6%), omeprazole (6.2%),
and acetaminophen (6.2%) were most commonly used. The rest, presenting themselves
with a <6.0% per drug, correspond as a whole to 38.5% and are classified as “other”.

The values obtained for each dataset evaluating Obesity, DM, and HAS in this study
using Artificial Intelligence, specifically with various Machine Learning techniques, have
been compared with values presented in other similar academic/medical publications,
particularly those for HAS were obtained with the Logistic Regression algorithm obtaining
91.0% AUC, CA, F1 and Recall 80%, and accuracy 80.1%. For Diabetes, the Logistic
Regression algorithm obtained 91.2% AUC, 89.2% CA, 88.8% F1, 89.7% accuracy, and recall
89.2%, obtaining similar results for Hypertension and Diabetes, while improved results
were obtained in the case of Obesity using the Neural Network algorithm, obtaining 83.4%
AUC, 91.4% CA, 89.9% F1, 90.6% Accuracy and 91.4% Recall.

The results presented here confirm the convenience of using Logistic Regression
algorithms in the dataset presented when evaluating HAS as a target; Similarly, Logistic
Regression’s algorithms were the most successful in evaluating DM as a target; while
finally, Neural Network algorithms showed the best results for the case of Obesity as a
target, in the specific sample case of 185 patients with limited or non-existing financial
resources, who suffered these medical conditions, and who were served at the Tijuana
General Hospital during the year 2020.

With these results, we can conclude that the use of Artificial Intelligence using Machine
Learning techniques has been effectively used to identify the early stages of COVID-19 in
patients in Baja California.
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Appendix A

Table A1. Description of variables.

Variable Description
Edad Age
Género Gender (Female/Male)
Grupo etario Grupo etario

Defined by two levels according to the 2017 American College of
Cardiology/American Heart Association (ACC/AHA) guidelines:
(1) Elevated blood pressure, with a systolic pressure (SBP) between

HAS 120—129 mm Hg and diastolic pressure (DBP) less than 80 mm Hg,
and (2) stage 1 hypertension, with a SBP of 130 to 139 mm Hg or a
DBP of 80 to 89 mm Hg
Diagnosis by meeting any of the criteria: Fasting glucose
>126 mg/dL (7.0 mmol/L). Fasting is defined as the absence of
caloric intake for at least 8 h
OR
2 h postprandial glucose >200 mg/dL (11.1 mmol/L). The test
should be performed as described by the WHO, using a glucose load
containing the equivalent of 75 g of anhydrous glucose dissolved in
water.
DM OR

Glycated hemoglobin >6.5% (48 mmol/mol). The test must be
performed in a laboratory using a method that is certified by NGSP
and standardized for the DCCT assay.

OR
In a patient with classic symptoms of hyperglycemia or
hyperglycemic crisis, a random plasma glucose > 200 mg/dL
(11.1 mmol/L).

Neurological alteration is characterized by its sudden onset, generally
ECV without warning, with symptoms lasting 24 h or more, causing
sequelae and death.

Hepaticas Primary or secondary diseases that affect liver tissue.

SNC Central Nervous System.
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Table A1. Cont.

Variable

Description

Neumopatia

Lung disease is a generic term to describe diseases that affect the
lungs. It should not be confused with the term pneumonia, which
specifically refers to infection of the lung by a virus or bacteria.

Cancer

Any of a large number of diseases characterized by the development
of abnormal cells that divide uncontrollably and have the ability to
infiltrate and destroy normal body tissue.

Inmunosupresion

Suppression or reduction of immune reactions.
It may be due to the deliberate administration of immunosuppressive
drugs used in the treatment of autoimmune diseases or in recipients
of transplanted organs to avoid rejection. It can also be secondary to
pathological processes such as immunodeficiencies, tumors, or
malnutrition.

Obesidad

A condition characterized by the excessive accumulation and storage
of fat in the body and which in an adult is typically indicated by a
body mass index of 30 or more.

Otros

Other types are of diseases not classifiable in the previous variables.

Comorbilidades

A concomitant but unrelated disease process or disease; is commonly
used in epidemiology to indicate the coexistence of two or more
disease processes.

Otros Especificar

Other types are of diseases not classifiable in the previous variables,
where the type is specified.

Fiber

Temperature above the normal range due to an increase in the body
temperature set point. There is no agreed upper limit for normal
temperature with sources using values between 37.2 and 38.3 °C (99.0
and 100.9 °F) in humans.

Mialgias/arthralgias

Muscle or joint pain.

Fatigue

Difficulty starting or maintaining physical or mental activity
voluntarily.

Odinofagia/ardor
faringeo

Feeling of pain when swallowing.

Tos

Sudden and acute expulsion of air from the lungs that acts as a
protective mechanism to clear the airways or as a symptom of a
pulmonary disorder.

Disnea

Difficulty breathing.

Dolor toracico

Localized chest pain, regardless of its etiology.

Congestion nasal

A feeling of blockage or obstruction in the nasal cavity and/or
sinuses due to inflammation of the mucous lining of the nose.

Rinorrea

Flow or abundant emission of fluid from the nose.

Expectoracion

Expulsion through coughing or sputum or other secretions formed in
the respiratory tract.

Diarrhea

It consists of the expulsion of three or more liquid stools, with or
without blood, in 24 h, which adopt the shape of the container that
contains them.

Nausea

Feeling sick or sick in the stomach that may appear with an urgent
need to vomit.

Anorexia

It is used to denote lack of appetite or lack of appetite that can occur
in very different circumstances.

Voémito

Violent expulsion through the mouth of what is contained in the
stomach.
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Table A1. Cont.

Variable

Description

Cefalea

They are painful and disabling primary disorders such as migraine,
tension headache, and cluster headache.

Mareo

Feeling of vertigo and instability in the head and discomfort in the
stomach that can lead to the urge to vomit and loss of balance.

Hyposmia/Anosmia

Decreased or absent sense of smell.

Ageusia

Decreased or absent sense of taste.

Conjunctivitis

Inflammation or irritation of the conjunctiva.

Saturacién >90

Oxygen saturation in ambient air >90%.

Saturacion 80-90%

Oxygen saturation in ambient air of 80-90%.

Saturacion <80%

Oxygen saturation in ambient air <80%.

Leucopenia Reduction in circulating white blood cell count <4000/mcL.
Leukocytosis A white blood cell count greater than 11,000/mm?,
Neutropenia When the neutrophil numbers are below 1500-1800 per mma3.
Neutrophilia Neutrophil blood values equal to or less than 7700/microL.

Linfopenia Total lymphocyte count <1000/mcL.

Linfocitosis When the lymphocyte count is greater than 4000 per microliter.
Eosinopenia Reduction in circulating eosinophils <0.01 x 10°/L.
Eosinophilia A count of more than 500 eosinophils per microliter of blood.

Thrombocytopenia Decrease in the absolutg number of platelets in the peripheral blood
elow 150,000 per puL.
Trombocitosis Platelet count greater than 600,000 per uL.
TP normal TP in blood with a range of 11 to 13.5s.
TP alargado TP in blood >13.5 s.
INR normal INR with a value between 0.9 to 1.3.
INR Alto INR with a value >1.3.
TTP normal APTT in blood in a range of 25 to 35 s.
TTP alrgado APTT in blood >35 s.

Creatinine normal

The normal range for creatinine is 0.7 to 1.3 mg/dL (61.9 to 114.9
pmol/L) for men and
0.6 to 1.1 mg/dL (53 to 97.2 umol/L) for women.

Creatinine alta

Values >1.3 mg/dL for men and >1.1 mg/dL for women.

Ferritin normal

The range of normal values for ferritin are: Men: 12 to 300 nanograms
per milliliter (ng/mL) Women: 12 to 150 ng/mL.

ferritin alta

Ferritin values in Men of >300 nanograms per
milliliter (ng/mL), in women >150 ng/mL.

Dimero D normal

The normal range for D-dimer is less than 0.5 micrograms per
milliliter.

Dimero D Alto

D-dimer >0.5 micrograms per milliliter.

Fibrinogen normal

The normal range for fibrinogen is 200 to 400 mg/dL (2.0 to 4.0 g/L).

Fibrinogeno Alto

Fibrinogen value >400 mg/dL.

PCR normal

0y5mg/dl

PCR alta

above 5 mg/dl

Procalcitonina normal

Normal blood procalcitonin values are less than 0.5 ng/mL
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Table A1. Cont.

Variable

Description

Procalcitonina alta

Procalcitonin values in blood >0.5 ng/mL

Troponina normal

Troponin in blood, within the reference limit up to 0.04 ng/mL.

Tropoonina alta

Troponin in blood >0.04 ng/mL.

CPK normal

Normal values for creatine phosphokinase
(CPK) are between 32 and 294 U/L for men and 33 to 211 U/L for
women.

CPK alta

CPK values greater than 294 U/L for men and
greater than 211 U/L for women

CK-MB normal

CK-MB blood values within a range of 5 to 25 IU/L.

CK-MB alta

CK-MB blood values >25 U /L.

Albumina baja

Albumin in blood <3.4 g/dL.

Albumina normal

Albumin in blood with a range of 3.4 to 5.4 g/dL.

Bilirrubina total normal

Total blood bilirubin values of 3-1.9 mg/dL

Bilirrubina total alta

Total blood bilirubin values >1.9 mg/dL

ALT /TGP normal

ALT blood values in a range of 10-40 IU/L.

ALT/TGP alta

ALT blood values >40 TU /L.

AST /TGO normal

AST blood values in a range of 10-34 IU/L.

AST/TGO alta

AST blood values >34 TU/L.

DHL normal

DHL blood value in a range of 105-333 IU/L

DHL alta

DHL blood value >333 IU/L.

DHL > 1000

DHL > 1000

Fostasa alcalina normal

Alkaline phosphatase blood value in a range of 44-147 IU/L

Fosfatasa alcalina alta

Alkaline phosphatase blood value >147 IU/L.

POSITIVA

PCR sample for COVID-19 positive.

MODERADO

Clinical or radiographic evidence of lower respiratory tract disease,
with an oxygen
saturation greater than or equal to 94%.

GRAVE

Oxygen saturation <94%, respiratory rate > or equal to 30
breaths/minute, pulmonary infiltrates >50%.

Oseltamivir

A drug that selectively inhibits the neuraminidase enzyme found in
influenza A and B viruses, preventing infected cells from releasing
viral particles. Its action is greater against influenza A viruses.

Ceftriaxone

Antibiotic of the third generation cephalosporin
class, which has broad-spectrum actions against Gram-negative and
Gram-positive bacteria.

Claritromicina

Macrolide antibiotic active against gram
positives, gram negatives, it is also active against spirochetes,
Chlamydophila and several intracellular pathogens.

Azitromicina

Broad-spectrum antibiotic from the group of
Macrolides that act against various gram-positive and gram-negative
bacteria.

Levofloxacin

Antibacterial fluoroquinolone, used to treat
infections caused by sensitive germs.

Otros

Other medications

Especificar

Specify
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Table A1. Cont.

Variable Description
Commonly prescribed aminoquinoline for the treatment of
Hidroxicloroquina/ uncomplicated malaria, rheumatoid arthritis, chronic discoid lupus
Cloroquina erythematosus, and systemic lupus
erythematosus.

Humanized monoclonal antibody that inhibits

Tocilizumab . .
interleukin 6 receptors.

A group of chemicals classified by a specific carbon structure.
Esteroides Steroids include drugs used to
relieve inflammation, such as prednisone and cortisone.

Anatomical position of the human body

Pronacion characterized by: Body position lying face down and head on its side.
Responder That responds to a stimulus.

Responder parcial That responds little to a stimulus.

No respondedor Non responder

Alta por mejoria Discharge for improvement
Defuncién Death

Dl]iijpitzsl;i?:la Days of hospital stay.
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Abstract: The health emergency linked to the SARS-CoV-2 pandemic has highlighted problems in
the health management of chronic patients due to their risk of infection, suggesting the need of
new methods to monitor patients. People living with HIV/AIDS (PLWHA) represent a paradigm
of chronic patients where an e-health-based remote monitoring could have a significant impact
in maintaining an adequate standard of care. The key objective of the study is to provide both
an efficient operating model to “follow” the patient, capture the evolution of their disease, and
establish proximity and relief through a remote collaborative model. These dimensions are collected
through a dedicated mobile application that triggers questionnaires on the basis of decision-making
algorithms, tagging patients and sending alerts to staff in order to tailor interventions. All outcomes
and alerts are monitored and processed through an innovative e-Clinical platform. The processing of
the collected data aims into learning and evaluating predictive models for the possible upcoming
alerts on the basis of past data, using machine learning algorithms. The models will be clinically
validated as the study collects more data, and, if successful, the resulting multidimensional vector
of past attributes will act as a digital composite biomarker capable of predicting HIV-related alerts.
Design: All PLWH > 18 sears old and stable disease followed at the outpatient services of a university
hospital (1 = 1500) will be enrolled in the interventional study. The study is ongoing, and patients
are currently being recruited. Preliminary results are yielding monthly data to facilitate learning
of predictive models for the alerts of interest. Such models are learnt for one or two months of
history of the questionnaire data. In this manuscript, the protocol—including the rationale, detailed
technical aspects underlying the study, and some preliminary results—are described. Conclusions:
The management of HIV-infected patients in the pandemic era represents a challenge for future
patient management beyond the pandemic period. The application of artificial intelligence and
machine learning systems as described in this study could enable remote patient management that
takes into account the real needs of the patient and the monitoring of the most relevant aspects of
PLWH management today.
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1. Background

People living with HIV infection (PLWH), particularly those with immunodeficiency
and immune dysregulation, may be at increased risk of morbidity and mortality during
SARS-CoV-2 infection [1]. Although the literature data do not appear to be in complete
agreement, several papers have documented an increased risk of severe disease and death
associated with HIV cofactor during COVID-19 infection [2-5].

In Italy, the impact of the COVID-19 pandemic on National Health Service facilities
has primarily involved infectious disease facilities, with potential consequences on HIV
diagnosis, treatment, and prevention. The model for the management and control of HIV
infection in Italy has been based, since the development of Law No. 135/90, on the central
role of the infectious diseases’ structures, through an articulation of care services in acute
inpatient wards, day hospital structures, dedicated outpatient clinics for the taking charge
and treatment, and integrated home care structures.

The results obtained by the entire care system dedicated to the treatment of PLWH
risk being compromised by the impact of COVID-19 on the National Health Service, and
in particular on the infectious diseases structures, which are central to the strategy of
intervention and control of the new pandemic. The negative impact may involve both
the provision of care in acute wards, in particular for people with newly diagnosed HIV
and late presentation (AIDS presenters), as well as outpatient facilities for the care and
management of chronic patients with stable HIV infection, with possible losses in follow-up
and reduced continuum of care.

This scenario could persist in the continuation of the COVID-19 pandemic, resulting
in serious harm to people living with HIV, as reported by global health agencies (WHO,
UNAIDS) [6,7], the European Parliament, and the European Commission, which already
pointed out a step back from the WHO 90-90-90 target and fear a strong risk of failure to
meet the 2030 SDG targets, reminding governments of the importance of ensuring HIV care
and prevention services even in these times of COVID-19 emergencies.

The “Istituto Superiore di Sanita” has drawn up a plan that foresees and encourages
the use of telemedicine to allow hospital structures to use tele-consultation and remote
management of chronic patients [8]. Tele-consultation and telemedicine in general are
applications that allow, in these moments when travel is by definition limited, to monitor
patients suffering from chronic pathologies, who need regular and constant care and
control. This concept has been stressed also by international guidelines on the management
of PLWH [9-12].

People living with HIV/AIDS (PLWHA) represent a typology of patients for whom
telemedicine could, particularly in pandemic times, represent an extremely useful tool
of support and clinical management [13-16]. People living with HIV today are people
who have a life expectancy very similar to that of the general population, due to the
extraordinary effect that antiretroviral therapies have produced on survival and on the
reduction of HIV-related morbidity [17]. Nowadays, PLWHA patients face a chronic
condition with all the consequences that this situation entails (symptoms, side effects of
the drugs, management of adherence and quality of life, periodic supply of drugs, blood
samples to check the tolerability of the drugs, any new clinical events that may occur,
needing advice from other specialists, etc.).

Since the end of February 2020, the Fondazione Policlinico Gemelli continues to
represent a reference center for the care of patients affected by COVID-19. For this reason,
during these months the outpatients” clinics of the FPG that take care of patients with
chronic pathologies have been able to provide services and visits only if mandatory, with
inevitable repercussions on the management of chronicity in all its aspects.

With the persisting of pandemic restrictions, it is essential to find ways of managing
these patients remotely to allow continuity of care that will inevitably not reflect what
happened in pre-epidemic periods. Moreover, it seems to be crucial in this period, to quickly
identify potential sources for spreading of SARS-CoV-2 diffusion and transmission among
potentially high-risk population such as PLWHA. In addition, the pandemic experience has
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provided insight into how the pressure on the healthcare system from carefully selected
patients affected by chronic diseases can be mitigated through the use of remote care
systems without losing a proper doctor-patient interaction.

For these reasons, we designed a pilot study for PLWH with stable chronic disease,
with the objective of creating an “integrated clinical assistance” through an efficient op-
erating model to “follow” the patient, capture the evolution of his/her disease, provide
assistance and care, and interact also to establish proximity and relief through a remote
collaborative model. Here, we describe the entire protocol including rationale and design
of the study, with particular regard to the technical description of the innovative aspects of
integrated care inherent in the study itself. Moreover, some very preliminary results on the
learning of models to predict alerts of interest are shown.

2. Methods
2.1. Study Design, Duration, and Setting

This is an interventional monocentric study. The first phase of the study has been based
on the set up of a mobile application for both Android and iOS that can be downloaded
on the patient smartphone. This app is set up with functionalities to support and achieve
objectives such as health and quality of life monitoring, antiretroviral treatment adherence,
and assessment of SARS-CoV-2 infection risk.

In a future phase, it is foreseen to connect data self-reported by using the application
and the clinical data from the electronic reporting system of the hospital to provide the
clinicians with an overview as complete as possible.

The different monitoring aspects of the system are shown in Figure 1 and include:

(1) Self-reported prescreening on symptoms and signs compatible with SARS-CoV-2
infection, possible access to healthcare facilities, possible results of swabs/serologies,
and evaluation of hospitalization risk due to COVID-19, on the basis of selected
self-reported stress tests.

(2)  Specific self-reported aspects to monitor patients’ life (quality of life, anxiety, depres-
sion, HIV-related symptoms, adherence to treatments) through triggered standardized
questionnaires, to be filled in by patients at specific timepoints. Additional question-
naires will be then triggered according to patients” answers to the first generic ques-
tionnaire (EQ 5D-3L) identifying specific unmet needs, with a sequential approach
based on a predefined algorithm. All reported outcomes, triggered or self-reported,
will be always accessible on the app in a dedicated area, the “health diary”, for pa-
tients and on a dedicated dashboard for physicians. Patients’ self-reported data also
generate tailored alerts on the basis of their actual needs and predefined scores in
order to provide physicians with useful information for patient management.

(3) Important parameters for drug management (BMI, MDRD). These data will be calcu-
lated periodically on the basis of individual lab results and they will be used to adjust
dose of drugs.

(4) Drug adherence is monitored through linkage of self-reported information on adher-
ence with hospital pharmacy’s refill data and laboratory results (plasma HIV/RNA).

(5) Periodic blood sample control through an alerting system of laboratory results that, in
the case of abnormal values, will warn physicians via tailored alerts.

(6) Any new onset of symptoms/side effects: patients can report any symptoms/side
effects on a specific area of the app, and this report will appear as an alert to the
physician.

(7)  Support tools for patients such as FAQs, User Guide, and disease-specific information.

(8) Notifications containing different kind of information and/or recommendations are
automatically sent to patients on the basis of their answers to questionnaires, lab
results, or drugs refill.

(9)  An automated feedback system to the treating physician to highlight those situations
that need attention. This includes self-reported symptoms (i.e., bothersome symp-
toms), any self-reported mental health issues, any changes in periodic laboratory tests,
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Figure 1. Questionnaires triggering system. The patient is sent a monthly notification to answer the
EQ-5D-3L [18] questionnaire. If an alteration in any of the domains of the questionnaire is reported,

the patient is automatically notified of a more specific questionnaire to which the altered domain refers:
HIVSRQ [19], GAD-7 [20], PHQO [21]. If the EQ5D VAS is <70%, then all the above questionnaires
are notified, including the treatment adherence questionnaire [22]. With regard to HIVSRQ, if
symptoms compatible with SARS-CoV-2 infection are reported, the patient is asked for an in-depth
investigation of COVID and risk of hospitalization (chair stress test, CST). In case of alteration to
each questionnaire, a report of need for intervention is sent to the attending physician (psychological
support, psychiatric support, intervention on symptoms, intervention on low adherence to ART,
intervention on COVID-19 risk).

2.2. Study Population
All PLWHA, on antiretroviral therapy treated in Fondazione Policlinico Universitario

“A. Gemelli” IRCCS (FPUAG IRCCS) of Rome, Italy, who will be considered eligible, will
be enrolled and asked to install the app on their smartphone.

2.2.1. Inclusion Criteria

e  DPatients’ age >18 years.

e  Patients able to use apps and smartphone devices without any caregivers or, in the case
of patient unable to use them, patients with caregiver able to use apps and smartphone
devices.

e  Patients able to provide informed consent.
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2.2.2. Exclusion Criteria

e  Patients not able to use smartphone devices and applications without the presence of
caregivers.

e Recent diagnosis of HIV infection (<3 months).

e  Any unstable clinical condition requiring hospitalization.

2.3. Data Collection

The study is based on standardized data collection procedures able to efficiently
process large amounts of data and provide the physicians with a panel of useful information
to evaluate patients” health conditions, quality of life, mental health, how HIV impacts their
QoL, and to monitor eventual worsening.

Five different data sources were used for data collection: 4 internal to the electronic
data reporting system of the hospital and 1 external (Healthentia app).

From the electronic data reporting system of the hospital, we defined eight structured
variables (laboratory exams, drugs refill from pharmacy, weight, height, gender, study
degree, civil status).

A standard ETL procedure was developed for the extraction of such data using SAS
Institute software analytics tool and SAS® Vyia® (Cary, NC 27513, USA), which refreshes on
daily basis in order to continuously include both new enrolled patients and new data from
patients already registered to the app (new laboratory exams, drugs refill for pharmacy, etc.).

Hospital data are integrated with real-world data coming from the Healthentia app
(Innovation Sprint Sprl, Brussels, Belgium), through which will be collected symptoms
potentially related to SARS-CoV-2 infection, symptoms related to HIV, adherence to treat-
ments, quality of life, anxiety, and depression. The collected data are already outlined in
Figure 1. They are collected via questionnaires (validated and custom ones) and during a
functional test.

We employ validated questionnaires for HIV-related symptoms through the ques-
tionnaire “HIV Symptom Rating Questionnaire (HIVSRQ)”, health-related quality of
life through the questionnaires “EQ-5D-3L" (comprising the following five dimensions:
mobility, self-care, usual activities, pain/discomfort, and anxiety/depression), anxiety
through “General Anxiety Disorder-7 (GAD-7)”, and depression through “Patient Health
Questionnaire-9 (PHQ-9)”.

We employ custom (non-validated) questionnaires to collect adherence to antiretroviral
therapy, SARS-CoV-2 infection assessment (tracking of symptoms related to SARS-CoV2
infection for its early detection), the result of a swab test, and the SARS-CoV-2 vaccine.

Finally, we employ the chair stand test (functional test), during which the oxygen
saturation (one of the most important parameters to assess the risk of hospitalization for
patients with SARS-CoV-2) is monitored.

Each questionnaire mentioned above has many questions, i.e., results to many at-
tributes of the data. The question of which of the attributes is of high importance in
predicting the outcomes of interest is addressed by analyzing the decisions of the learnt
models in Section 4.3.

Data will be collected for a duration of 2 years starting from 1 January 2021. About
1500 patients currently followed up at the Infectious Diseases Clinic met the inclusion
criteria. These patients represent the share of patients without urgent clinical needs or
whose periodic medical examination can be carried out every 4-6 months.

On the basis of previous experiences on such a kind of studies, we found that up
to 30% of the patients could be interested in being enrolled in such a study and using
Healthentia. As such, with expected recruited population of 450 patients, we aimed at
analyzing at least 220 patients who actively used the app in order to accurately describe
our recruited population with a confidence interval of 95% and margin of error of 5%.

Unfortunately, the pandemic has only allowed us to recruit 61 patients at this point,
since the beginning of the study in January 2021. Recruitment is still active though, with
the latest patients being enrolled in November 2021 in an ongoing process. The enrolment
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process across time and some demographic information about the study population is
given in Figure 2.

Enrolment Age

Figure 2. Enrolment of patients in the first year of the study and their age and body mass index
distribution.

2.4. Workflow Structure

INTERFACE is an interventional study with a purpose of collecting, as previously
described, real-world data (RWD) regarding patient outcomes and parameters. In order to
be enrolled to the study, patients have to sign an informed consent form declaring their
awareness about data sharing for research purpose or use the eConsent process available
on the app. Patients are enrolled on the study by downloading the application for free
from the AppStore or Google Play, installing it on their own smartphone and registering.
Patients can retire themselves from the study by uninstalling the application without any
formal communication, and they can obtain the definitive elimination of collected data at
any moment.

Data flow from the Healthentia app to a protected Microsoft Azure Server cloud
environment where Healthentia SaaS Solution is hosted by Innovation Sprint, and there
is a point-to-point cryptographic encryption of the data that makes it impossible for third
parties to read the information in transit in clear text. FPUAG IRCCS, as the data controller
with the right of access, use, and management of data for research purposes, has access to
Innovation Sprint’s servers.

The study is conducted in the framework of Gemelli Generator Real-World Data facility
(G2 RWD), the innovative research center of FPUAG IRCSS. Within the Gemelli Generator
Real-World Data (G2 RWD) architecture, INTERFACE data collected using Healthentia
will be integrated with clinical data and stored in a dedicated research Data Mart (i.e.,
organized subsets of data on a specific area of knowledge) in FPUAG IRCCS servers. In
coherence with G2 RWD roles, if necessary, selected supervisors will be authorized to access
the pseudo-anonymized data and identify patients for eventual clinical needs according to
the collected data.

2.5. Efficacy Indicators

In order to evaluate the effectiveness of this project, after 2 years, we will consider the
following indicators:

1.  Proportion, characteristics, and cofactors of self-reported outcomes and changes in
them according to the epidemic situation and during the time of the study.

2. Proportion of clinical intervention provided following alert messages received.

Proportion of unmet needs as generated by patients’ reported outcomes.

4. Proportion of intervention on drug regimen modification according to parameters
recorded.

5. Number of PLWHA with self-reported symptoms/signs of COVID-19 who can be
correctly and timely allocated to different in-hospital access.

6.  Prevalence of PLWHA regularly followed as outpatients with confirmed COVID-19.

S
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3. Healthentia e-Clinical Environment

For the purposes of INTERFACE, a very comprehensive and adaptive e-Clinical
environment, provided by the partner company Innovation Sprint, has been customized to
meet the needs of INTERFACE protocol. The e-Clinical environment is based on Healthentia
solution, which facilitates clinical trial optimization, accelerates trial processes, reduces
failure rates, and validates drug/intervention efficacy and effectiveness with RWD insights.
Healthentia is a Class I Medical Device with CE mark, a medical decision support software
intended for monitoring of non-vital parameters to support decision making during clinical
trials, according to RWD gathered from patients taking part in the clinical investigation.

Healthentia extends the use of traditional electronic patient-reported outcomes (ePRO)/
electronic clinical outcomes assessment (eCOA) applications by adding lifestyle, behavioral,
and health-related data collected from smartphones and internet of things (IoT) devices.
Applying artificial intelligence (AI) and machine learning techniques on these data, one
can discover behavioral biomarkers and cluster patients into behavioral phenotypes, which
allows the activation of smart services for the prediction of clinical outcomes, the generation
of prevention alarms, and the linking of phenotypes with intervention efficacy. Furthermore,
on the basis of reported outcomes, the AT module is able to generate automatic alerts in the
case of adverse events. These automatic and prevention alarms support decision making
by the investigator during clinical trial for the benefit of the individual patient’s health. The
main components that are utilized for the purposes of the INTERFACE study are:

ePRO/eCOA—The ePRO/eCOA component is responsible for the communication
with the mobile application that runs in iOS and Android devices. The component has all
functionalities and services that are consumed by the smartphone app via Healthentia API.
The Healthentia app interacts with the ePRO/eCOA component to allow the patient from
the comfort of their home to:

fill in health-related and quality of life questionnaires from their device;

log events for symptoms, school/work absence, treatment, or hospitalization, etc.;
receive ad hoc messages from the system or the investigator of a study;

receive automatic messages from the system or the investigator of a study;
receive notification for filling in questionnaires or medication reminders;

find protocol/treatment or device-related information;

contact the investigator;

use the chatbot functionality for questions and virtual coaching.

The ePRO/eCOA component also includes the questionnaire editor and scheduler.
The questionnaire editor allows the investigator to create or edit questionnaires that will
be delivered to the patients. The editor provides the functionality to create complicated
questionnaires with advanced routing between questions, and even between questionnaires
as well as multiple types of questions and user interfaces, e.g., single, multiple, image
selection, location-based, etc. The questionnaire scheduler is the functionality that is used
by the investigators to create rules for the automatic submission of questionnaires to specific
recipients. These rules may include the registration date, or even the answers from the
subject and the auto-tagging of a subject into a certain category.

Smart services—Further to the currently supported features of Healthentia, i.e., col-
lecting data from patients, the wealth of information collected is used in real time by the
Healthentia machine learning (ML) services to provide useful insights for clinical endpoints.
On the basis of the patients” data, models are learned both for predictive and generative
purposes. Predictive models can estimate future clinical outcomes from current and past
data. Once such predictors of outcomes are validated, they are considered biomarkers
for the particular outcomes at hand. Unlike traditional biomarkers, these models form
composite digital biomarkers by non-linearly combining various information attributes
to predict the wanted outcome. Such predictive models are shown in Section 4.3, but the
results there are considered preliminary, and the models are not yet validated into biomark-
ers. Generative models are built by modelling patient clusters and can be used to generate
synthetic data. Different clustering algorithms can be used to derive the clusters, which can
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then be validated by verifying that all patients in a cluster exhibit some common outcome.
When this is verified, the cluster models are validated into phenotypes. In Figure 3, the
lifecycle of RWD in Healthentia is described.

2/ Discover novel contextual 3/ Training with observation 4/ smart Services during trial

e fromthe trial  —— v Prediction of Clinical Outcomes

through
Machine Learning n v Alerting of Adverse Events

101010101010
1010101001 RWD enriched

B n n n E = v Support of adaptive clinical trials
| ] S =¥
+ 4 s - L] "
Y| 1 L ]

models from previous
positive/negative
studies
other
8 .8 sources
- Q o

-

6/ Evidence-based interventions (DTx) 5/ Post-trial Simulations
v Virtual coaching v Digital trial simulation environment for synthetic
B ; arm & design of new studies
rediction of outcomes
v Correlating Behavioral phenotypes with drug
Risk assessment efficacy

AN

Teleconsultation services

Figure 3. The lifecycle of RWD in Healthentia.

The lifecycle of RWD in Healthentia can be described in six steps. In step 1, data are
captured and visualized at real-time basis. In step 2, digital composite biomarkers are
discovered, and patients are clustered using ML algorithms. For this purpose, physiological,
psychological, and sociological data are used. In step 3, training of the selected patient
model is performed by means of observational sequences from the trial in order to allow
smart services to be applied, such as prediction of clinical outcomes and alarms (see step 4).
At the end of a study, the investigator can further use the derived patients’ models to run
in silico trials (see step 5), while the enriched models can be utilized for digital therapeutic
(DTx) services, such as the orchestration of virtual coaching messages.

In the case of the INTERFACE study, patients will be grouped in phenotypes on the
basis of ML processing of the RWD, and a digital composite biomarker will be derived,
consisting of several dimensions, for each of the data points captured, e.g., questionnaire
scores and scales. This digital composite biomarker will then be optimized by identifying
which of the dimensions will have significant impact to the endpoints, and when an
Al training process is followed, it will be used to predict future outcomes. The digital
composite biomarker can then be used for future in silico studies and/or driving DTx
decisions for HIV patients.

4. Data Analysis

The sample will be described using a descriptive analysis with the aim of analyz-
ing how health conditions, mental health, and quality of life changes during the use of
Healthentia.

Qualitative variables will be summarized with percentage frequency tables by analyz-
ing questionnaires filled in by patients.

Quantitative variables will be described using the minimum, maximum, mean, median,
standard deviation, and interquartile range; then, through histogram and box plot, we will
see the shape of the data distribution. Normality of continuous variables will be checked
using the Kolmogorov-Smirnov test.

Inferential techniques, defined after a data exploration phase, will be then used with
the aim of implementing a Guardian Bot, a software able to automatically detect earlier
predictors of a worsening trend of the main disease or of SARS-CoV-2 infection occurrence.
In this manuscript, we only present preliminary results regarding the construction of a
machine learning model for predicting the alerts shown in Figure 1.
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4.1. Interface Integration with Generator Real World Data

INTERFACE will leverage on the overall architecture and capabilities of Gemelli
GENERATOR Real-World Data facility (G2 RWD), the innovative research center of FPUAG
IRCCS, with the principal aim to transform data and information into actionable knowledge
while fully respecting the privacy, data integrity, and intellectual property for the benefit
of all.

Indeed, if the main purpose of INTERFACE is totally in line with G2 RWD objectives:
the exploitation of G2 RWD framework represents a quality guarantee for INTERFACE
both in terms of data collection, quality, and analysis and of data privacy and protection.
Actually, G2 RWD architecture has been approved by the Local Ethical Committee and
widely used in FPUAG IRCCS with good results [23].

The architecture and methods that G2 RWD will contribute for INTERFACE are
based on:

e the creation and update of a dedicated Data Mart (organized subsets of data on a
specific area of knowledge) in which all data collected both for the app and from the
electronic data reporting system of the hospital are correctly stored and organized, in
order to be easily accessible and understandable for physicians;

e  Mathematical and statistical tools available, ranging from the traditional qualitative-
quantitative analysis techniques to the more advanced artificial intelligence algorithms,
to provide new modeling hypotheses to be tested and validated with clinicians for
research purposes;

e  The data architecture, defined to provide the highest degree of protection, in accor-
dance with all GDPR and security requirements.

4.2. Data Privacy and Data Protection

All privacy matters are analyzed with the Policlinico Gemelli Data Protection Officer
(DPO) so that every G2 RWD study will be compliant with GDPR Italian and European
directives and regulation (EU Directive 2016/679 and under Italian Laws: Decreto Leg-
islativo 196/2003, Decreto Legislativo 101 2018, Autorizzazione Generale Garante 9/2016).
The data architecture that supports RWD studies has been designed to provide the highest
degree of protection, in accordance with all GDPR and security requirements. In this
respect, RWD provides “protection by design” in each step of the process.

4.3. Learning Models to Predict Alerts

The questionnaire pipeline of Figure 1 is triggered once per month, and depending
on the answers of the patients, the maximum number of questions answered is 255. When
there is no need to answer some questions, they are assigned to the default “no problem”
state. As a result of the answers given, four types of alerts might be issued:

Frailty alert, binary (OK, alert);

HIV symptoms alert, binary (OK, alert);

Adherence alert, binary (OK, alert); and,

Psychological /psychiatric support alert, tristate (OK, psychological, psychiatric).

Given the current state of the patient, i.e., the answers to the questionnaires of the
current month, the alerts are fully determined. The machine learning (ML) goal of INTER-
FACE is to predict the alarms given the patient history. The history is determined as the
questionnaire answers of part months, and it can span one month (predict the alarms in
the current month given the questionnaire answers of the previous month) or more. The
input vectors comprise the individual answers in a history window of n months, i.e., of
255-n attributes, n = 1,2, ..., while the output vectors comprise of the four attributes for
the four alerts.

The patients answer the questionnaires on a monthly basis. Thus, a patient being n
months in the INTERFACE study provides N — n pairs of input and output vectors. Since
there are not a lot of patients in the study, especially for long durations, large values of the
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history window drastically reduce the number of available vectors, albeit they increase the
actual information each vector caries. The lack of adequate vectors to learn ML models is a
typical situation where vectors are contributed on a monthly or even weekly basis.

Although the alerts are not really rare, raising them is not the common state. Hence,
the state of the output attributes is far from balanced, with the majority of the vectors
indicating “no problem” and only few of them resulting to alerts. Thus, the ML problem at
hand is a heavily imbalanced one, and therefore the accuracy is not a good performance
metric for the predictors. We employ balanced accuracy [24] instead.

The lack of data and the imbalance nature of the model learning task make it a
particularly hard to tackle. The situation is depicted in Table 1. The number of available
vectors (198 for n = 1 or 149 for n = 2) forbids the use of neural network [25] predictors of
any usable depth. Training of random forests [26] though a few estimators is possible, and
this is the selected ML algorithm training our INTERFACE predictive models.

Table 1. Volume of data per history depth and outcome state.

Counts per State

Attribute History (Months)
#1 #2 #3
Frailty ; ﬁg 163 E ; 2
HIV symptoms ; }gg 2(9) E ; 2
Adherence ; }Z(l) z E; 2
Psychological, psychiatric ; igi ‘}Z 171

N/A: not applicable.

For the same reason, the split of the available vectors in training, validation, and
testing sets is not practical. Instead, we train and validate the models using k-fold cross-
validation [27]. We split the data in k folds of size 5 each (39 for n = 1 or 29 for n = 2) and
use k — 1 of them for training and 1 for validation. We repeat the training 30 times for each
fold selection and select the highest balanced accuracy of the 10 as the balanced accuracy
of the fold. We average the balanced accuracies of the k — 1 folds to obtain the balanced
accuracy for one configuration of the random forest. We vary the number of estimators as
different configurations and select the best of them all.

The number of estimators (trees) of the random forest are varied in the training. The
tree creation parameters are as follows: bootstrap samples are used instead of the complete
dataset when building trees, randomly selected at consecutive training sessions. The quality
of tree node splits is measured using Gini impurity and best split is sought for considering
the square root of the total number of features. Tree nodes are expanded until they contain
a single sample, with the number of leaf nodes being unlimited. Even though the different
class population is not balanced, no attempt has been made to assign different weights to
the different classes.

The average training balanced accuracy for one month is 92%, while for two months
it is the perfect 100%. Such a training gives us no generalization confidence however,
and therefore we proceed with the k-fold cross-validation scheme discussed above. The
resulting average balance accuracy across all four outcomes as a function of the number of
random forest estimators is shown in Figure 4. Note that the maximum performance for
two months of history generally increased for a larger number of estimators, while for one
month, the algorithm found an optimum point at a small number of estimators. The reason
that the cross-validation did not result in better results for two months of history is because
of the fewer vectors available, with the problem at hand having double the features.
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Figure 4. Balanced accuracy for the RF classifiers averaged over all four outcomes as a function of the
number of estimators for one (left) and two months (right) memory.

The decisions of the classifier are analyzed using Shapley Additive explanations
(SHAP) analysis [28]. SHAP analysis is applied on every decision, yielding the effect
of each attribute in the feature vector towards a positive or negative prediction. These
attributes are questions in the different questionnaires, and thus the SHAP analysis actually
yields the on average most important questions to ask for each outcome. This is shown in
Figure 5.

Two notes are in order. Firstly, the ranking of the questions shown in Figure 5 is
averaged across all the population. It is interesting to discover how this ranking varies
when considering the different individuals. Unfortunately, there are too few different
patients with many decisions (many months in the study) to conduct this analysis just
yet. This brings us to the second note: Since the data we currently have at hand are
limited, we cannot actually claim that the most important factors from a clinical viewpoint
are found. Instead, at this point the analysis is more of a machine learning rather than
of clinical importance. That being said, we observe that the overall health question of
the ED-5D questionnaire is always high in importance. The frailty and adherence alerts
seem to have a very large dependency on their most important attribute, the rest being
quite lower, while the rest of the alarms have a more even dependency on the different
attributes. Most of the important factors for the psychological/psychiatric alarm fall in the
anxiety /pessimism categories.

Finally, the most important factors for the decisions based on one month history are
compared to those based on two months in Figure 6. The attributes whose names finished
with a “-1” were those of the oldest month. Note that many of the most important attributes
were from the oldest month, with the current one not ranking high, such as the PHQ sleep,
preference to die or lack of interest, or the GAD ability to control worries or to sit up. On
the other hand, in some cases, the attributes of the two months of history appeared in pairs,
such as the most important pair of EQ_5D health of the previous and this month or the
EQ_5D pain.
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Figure 5. SHAP analysis of the classifier decisions to obtain the most important attributes affecting

the decisions of either positive or negative outcomes.
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5. Ethical Aspects
The protocol has been approved by Local Ethical Committee (Protocol n 3436).

6. Discussion

During the COVID-19 pandemic, medical care for PLWHA is at risk of being com-
promised, calling into question the excellent results achieved in this field. The main
scientific societies have produced guidelines suggesting how to ensure an adequate stan-
dard of care during this phase, promoting different models of care involving tools such as
telemedicine [29,30].

Moreover, during the COVID-19 pandemic, machine learning and artificial intelli-
gence systems are being used increasingly more accurately to optimize the care of people,
identify predictive factors for the diagnosis and prognosis of the disease itself, and for the
monitoring of mental health [31-34].

In the protocol described here, we propose a study based on the integration of
telemedicine and telemonitoring with a standardized approach translating the huge amount
of data collected on the day-to-day experience, integrating with historical health data, into
useful insight and medical practices based on patients” experience and lessons learned
by the artificial intelligence approach. In more detail, the system is expected to improve
clinical decision making by providing physicians with additional data about patient needs
and behaviors. For example, it may help clinicians to detect mood disturbances that do not
impair patient daily activities, such as persistent depressive disorder. The system is indeed
presenting to every recruited patient validated questionnaires for depression screening. In
turn, in our system, these questionnaires are designed to trigger specific alerts that are then
displayed directly to the attention of the clinician, enabling them, eventually, to refer the
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target patient to mental health services. We thus believe that our system will help clinicians
to assess mental health issues in people living with HIV during the COVID-19 pandemic.
Alternatively, when clinical data from the electronic reporting system of the hospital will
be integrated, the system is designed to draw to the physician attention altered lab results
directly on his/her smartphone, empowering the clinician, even in the outpatient setting, to
act promptly in case of major disturbances. A final example of how we expect our system to
improve clinical care is adherence to ARV therapy, which is, in our view, a substantial chal-
lenge during the present pandemic. This will be possible by selected questionnaires (able
to trigger specific “low adherence” alerts to the doctor’s attention), along with drawing to
the clinician’s attention the latest results of patient’s viral load. Moreover, what has been
demonstrated, even if only preliminarily, in the predictive model on future alert detection,
suggests that such a model may be of fundamental importance in optimizing the clinical
management of PLWH. The possibility of detecting problems related to mental health or
adherence to treatment, for example, may allow the prediction of a tailored management
of the patient with consequent optimization of resources. For instance, we have already
observed that several mental health issues have been identified among the enrolled patients
and we believe that this evidence could be a useful tool to draw attention to the need to
provide patients with a more effective support at this regard.

It has been reported that telemedicine is variably accepted by patients, precisely
because of the risk of “depersonalization” that such a tool may carry [35]. Moreover, in
recent years, the attention of research and the HIV patient community is increasingly
focused on what is called the “fourth 90”, i.e., everything that concerns the global health
status of patients, their quality of life, and their feeling [35]. For these reasons, developing
an e-health tool that complements but does not replace care, and that focuses on what is
defined as “patients reported outcomes”, could address multiple unmet needs that remote
care of HIV patients has not yet solved.

It has been reported that the adoption of remote healthcare has exposed critical gaps in
access, such as socioeconomic disparities that may prevent many vulnerable persons from
benefiting from telehealth innovations, namely, defined as “digital divide” [36]. In order to
mitigate this problem, the present study will make use of strategies both inherent in the
product (easy access modes, user guide, explanatory videos, etc.) and strategies to involve
the community of patients for the support of people with different social or educational
frailties.

The difficulties potentially encountered by PLWHA during the pandemic are also
shared with patients suffering from other chronic diseases. In our opinion, this study could
represent a model of integrated management also for other chronic pathologies such as
oncological pathologies for two fundamental reasons: Firstly, because oncology has long
paid relevant attention to the aspects reported directly by patients in terms of quality of
life, symptoms, experience with the care system, etc., leading to consider PROs as potential
hard outcomes in the design of clinical trials [37]. Secondly, because the oncological patient
presents many aspects of linkage to the care center that are very similar to what is reported
for PLWHA in terms of continuity of care and “personalization” of care. Finally, the study
is beginning to yield enough monthly data to facilitate learning of predictive models for
the alerts of interest. Such models are learnt for one or two months of history of the
questionnaire data. No attempt has yet been carried out to integrate with the hospital data.

7. Conclusions

The development of such an e-health system may respond to clinical care needs for a
specific type of chronicity such as HIV infection. In particular, in this COVID-19 pandemic
period, such a system can be an important tool for managing the quality of life of the
HIV patient. The COVID-19 pandemic is having a deleterious impact on the physical
and, above all, mental health of the chronic population and also on the HIV-infected
population [38], and the identification of tools capable of identifying physical and mental
health problems and producing interventions tailored to the specific needs of the patient
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represents a significant improvement in the standard of care for people with HIV, even
in the absence of physical access to the reference healthcare facilities. Moreover, it can
represent a simple and widely useful system to perform a prescreening for chronic patients
during the COVID-19 epidemic in order to prevent potential transmission clusters within
the hospital as much as possible.

Early evidence that the prediction of the alerts of interest can be made is given. As on
the one side, the study yields more data points, facilitating more training and the inclusion
of more months of history, and on the other side, the hospital data augment the data
attributes at hand, we expect the prediction to become more accurate. Upon reaching this
point, the SHAP analysis of the decisions will yield clinically significant results for the
importance of the different attributes. Subsequent development of the study involves the
effect of applying such a machine learning system on the health indicators shown in the
methods, in order to assess how far such a system can be applied in increasingly advanced
chronicity management.
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Abstract: Medical images of brain tumors are critical for characterizing the pathology of tumors
and early diagnosis. There are multiple modalities for medical images of brain tumors. Fusing the
unique features of each modality of the magnetic resonance imaging (MRI) scans can accurately
determine the nature of brain tumors. The current genetic analysis approach is time-consuming
and requires surgical extraction of brain tissue samples. Accurate classification of multi-modal
brain tumor images can speed up the detection process and alleviate patient suffering. Medical
image fusion refers to effectively merging the significant information of multiple source images of
the same tissue into one image, which will carry abundant information for diagnosis. This paper
proposes a novel attentive deep-learning-based classification model that integrates multi-modal
feature aggregation, lite attention mechanism, separable embedding, and modal-wise shortcuts for
performance improvement. We evaluate our model on the RSNA-MICCAI dataset, a scenario-specific
medical image dataset, and demonstrate that the proposed method outperforms the state-of-the-art
(SOTA) by around 3%.

Keywords: multi-modal medical image; image classification; brain tumor

1. Introduction

GLOBOCAN recently conducted a survey in 185 countries, reporting an estimation
of over 300 K new brain cancer cases and above 250 K new deaths in 2020 [1]. Among
the various types of malignant brain tumors, glioblastoma multiforme (GBM) is one of
the most deadly types, with a low survival rate and limited treatment options. In the
United States, the estimated number of GBM diagnoses is over 13 K, and the number
of deaths resulting from GBM is over 10 K per year [2]. GBM has been classified as the
highest-grade brain cancer (a grade five) by the World Health Organization. A combination
of chemotherapy and radiotherapy is a typical treatment following the removal of the
tumor by surgery. Radiotherapy can cause severe side effects since radiation could kill both
normal and cancer cells. Chemotherapy, on the other hand, works by placing a chemical
on the guanine DNA, preventing the replicating of new DNA and leading to cancer cell
apoptosis. However, it is known that chemotherapy can be ineffective due to an enzyme
named O°-methylguanine DNA methyltransferase (MGMT). The function of MGMT is
determined by its promoter methylation status. If the promoter region is methylated, the
enzyme transcription is affected, leading to potentially effective chemotherapy treatment.
Therefore, the MGMT promoter methylation status has become a prognostic factor, and a
predictor of chemotherapy response [3].

Invasive surgeries can be utilized to determine the status of the MGMT promoter
methylation. However, this approach, based on genetic analysis, is an iterative and time-
consuming process that requires surgical extraction of brain tissue samples and several
weeks of genetic characterization. In addition, the surgery itself may lead to side effects.
An alternative that does not involve surgery is to apply computer vision techniques to
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analyze the magnetic resonance imaging (MRI) data. Recent advances in deep learning
have achieved extensive success in a broad spectrum of domains [4]. With the continuous
efforts of MRI data collection and annotation, deep learning shows its potential in MGMT
promoter methylation detection by learning and extracting biomarkers and patterns from
MIR scans that are highly indicative of the methylation status. Thus, deep-learning-based
approaches have the potential to offer a non-invasive, efficient, and accurate alternative
with less patient suffering and more effective treatment for GBM.

MRI scans contain abundant data with a characteristic of multi-modality, which can
be and should be better exploited by deep learning algorithms. However, our investigation
of the literature shows that prior studies have not fully explored the usage of multi-modal
MRI data to detect MGMT methylation. Among the several studies [5-8] that considered
multi-modality, only a basic fusion strategy has been adopted, and there is a lack of in-depth
investigation for utilizing the multi-modality feature of MRI data for brain tumor detection.
Our study aims to fill this gap.

In this paper, we propose a novel deep neural network (DNN) architecture that
integrates three performance boosters, including a lite attention mechanism, a separable
embedding module, and a model-wise shortcut strategy. The three boosters are designed
to better mine multi-modal features and capture informative patterns to make a final
prediction. Our proposed model is lightweight and can effectively improve the model
performance. The main contributions of this study are as follows.

*  We propose an attentive multi-modal DNN to predict the status of the MGMT pro-
moter methylation. In addition to a multi-modal feature aggregation strategy, our
proposed model integrates three performance boosters, including a lite attention mech-
anism to control the model size and speed up training, a separable embedding module
to improve the feature representation of MRI data, and a modal-wise shortcut strategy
to ensure the modal specificity. These joint efforts have improved the detection accu-
racy of our model by 3%, compared to the SOTA method. Experiments and results are
obtained on the RSNA-MICCAI 2021 dataset [9], which is a recently released dataset
with the most patients and MRI scans compared to existing datasets.

e We have made the project source code publicly available at https:/ /github.com/ruyiq/
An-Attentive-Multi-modal-CNN-for-Brain-Tumor-Radiogenomic-Classification (ac-
cessed at 26 February 2020), offering a credible benchmark for future studies.

The rest of this paper is organized as follows. Section 2 reviews research work related
to fusion of multi-modal medical images. Section 3 explains our proposed model and
dataset. In Section 4, several experiments are conducted to evaluate the effectiveness of the
proposed model. Finally, in Section 5 we conclude the paper and provide future work.

2. Related Work
2.1. Detection of MGMT Methylation Status Based on MRI Data

Table 1 lists a collection of learning-based methods trained with brain MRI scans for
the classification of methylation status, which is usually treated as a binary classification
problem; namely, methylation vs. non-methylation. It is observed that both traditional
feature-based learning methods [5,10,11], such as SVM, RF, KNN, RF, 48, NB, and XGBoost,
and deep learning models [6-8,12,13], such as CNN and RNN, have been extensively
adopted to build classifiers. It is also noted that a lack of sufficient training data has been
a long-lasting challenge, limiting the power of deep-learning-based models. Most prior
studies have used data from the Cancer Genome Atlas (TCGA) database, which contains
MRI scans from fewer than 250 patients. The recent 2021 RSNA-MICCAI dataset [9] has
doubled the number of patients with data collected from multiple centers. This enhance-
ment can boost the quantity and diversity of data used for training deep neural network
(DNN) models in the area of methylation detection and potentially benefit the model per-
formance. Meanwhile, it is essential to utilize MRI scans with different modalities, which
provide more abundant image features and patterns to be learned by a model. It is found
that only half of the studies [5-8] have considered the multi-modality characteristic of the
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data. We argue that the multi-modal image features play a crucial role in building a more
accurate and robust model for MGMT methylation detection, which drives us to integrate
a multi-modal feature fusion strategy into the learning pipeline. Moreover, we propose
to adopt three performance boosters, including a lite attention mechanism, a modal-wise
shortcut, and a separable embedding strategy, which have not been seen in prior studies.

Table 1. A review of MRI-based learning models for the detection of MGMT methylation status.
The table includes the following abbreviations: dataset size (D.S.), multi-modality (M.M.), attention
mechanism (A.M.), modal-wise shortcut (M.W.S.), separable embedding (S.E.), support vector ma-
chine (SVM), random forest (RF), k-nearest neighbor (KNN), naive Bayes (NB), convolutional neural
network (CNN), and deep neural network (DNN).

Reference  Year Model DS. MM. AM. MWS. S.E
[10] 2016  SVM, RF 155 X X X X
[11] 2017 KNN, RF J48,NB 86 X X X X
[6] 2017  ResNet 155 v X X X
[7] 2018 CNN+RF 133 v X X X
[8] 2018 CRNN 262 v X X X
[5] 2020  XGBoost 53 v X X X
[12] 2020  Custom CNN 153 X X X X
[13] 2021  MGMT-Net 247 X X X X
Our work 2022  Custom DNN 585 v v v v

2.2. Multi-Modal Learning on MRI Data

It has been shown both theoretically [14] and empirically [15,16] that models aggre-
gating data from multiple modalities outperform their uni-modal counterparts due to the
enriched features and patterns to be learned from the multi-modal data. The usage of
multi-modal learning has seen success in a wide range of learning tasks such as object
detection [17], semantic segmentation [18], video action recognition [19], and detection of
disease [20,21].

MRI data also present multiple modalities that can be extensively utilized for train-
ing DNN models. Several studies have developed various techniques to pursue better
predictive performance. Myronenko et al. applied AutoEncoder, which fuses the inputs
from different modalities [15] to achieve a better performance in 3D MRI brain tumor
segmentation. Tseng et al. proposed a deep encoder—decoder structure with cross-modality
convolution layers for 3D image segmentation [16]. Shachor et al. proposed an ensemble
network architecture to address the classification task by fusing several data sources [22].
The designed network consists of three different modality-specific encoders to capture
features of different levels. The proposed method focuses on two-view mammography,
which could be extended to multiple views and/or multiple scans. Nie et al. proposed
the use of fully convolutional networks (FCNs) for the segmentation of isointense phase
brain MR images. They trained one network for each modality image and then fused
their high-layer features for final segmentation, which uses different modality paths to
obtain the modality-specific features and then fuses the features to make final decisions [23].
Kamnitsas et al. fused the input modality-wise information directly [24]. They proposed a
dual pathway, 11-layer deep, 3-dimensional convolutional neural network for brain lesion
segmentation. They also devised an efficient and effective dense training scheme, which
joins the processing of adjacent image patches into one pass.

The aforementioned studies mainly use multi-modal MRI data to build DNN models
for the segmentation task. To the best of our knowledge, the usage of multi-modal MRI data
for the detection of MGMT methylation has not been seen. Moreover, the proposed learning
pipeline integrates three performance boosters to utilize better the extracted multi-modal
MRI features, which have not appeared in any prior studies we have investigated.
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3. Materials and Methods
3.1. Dataset

In this research, we focus on the RSNA-MICCAI dataset [9], a multi-center brain tumor
MRI dataset that comes with two tasks; namely, tumor segmentation and MGMT detection.
In this study, we only tackle the second one. In the dataset, each patient’s data is stored
in a dedicated folder with a five-digit identification number. Each sample folder consists
of four sub-folders corresponding to the four modalities of the MRI scans, including fluid
attenuated inversion recovery (FLAIR), T1-weighted pre-contrast (T1w), T1-weighted post-
contrast (T1Gd), and T2-weighted (T2), obtained from the video cut frames acquired by
imaging. Each modality (i.e., scan type) specifies a focus during imaging. For instance,
FLAIR captures the effect after cerebrospinal fluid (CSF) suppression, where liquid signals
such as water are suppressed to highlight other parts. T2-weighted, on the other hand,
highlights the difference in lateral tissue relaxation, and the combination of different effects
provides a comprehensive description of the lesion from multiple perspectives. Each
sample in the dataset is described by a quadruple of these four different imaging modalities.
Figure 1 shows the four modalities of a positive sample (Figure 1a-d) and a negative sample
(Figure 1e-h).

(b) (d)

) (8) (h)
Figure 1. Samples of MRI scans: (a-d) represent the FLAIR, T1w, T1Gd, and T2 modalities of a
positive sample, and (e-h) represent the FLAIR, T1w, T1Gd, and T2 modalities of a negative sample.

RSNA-MICCALI has 585 annotated samples, each corresponding to four modalities
containing samples ranging from a few tens to a few hundred. Each modality of a patient
consists of a sequence of MRI scans within a period of time. Figure 2 shows such an MRI
sequence of FLAIR scans (74 in total) for patient ten in the dataset. Compared with other
datasets used in prior studies in Table 1, RSNA-MICCAI contains a larger amount of data
and is a clearly labeled dichotomous dataset, which can better characterize the patient in
different imaging modalities and have better generalization. The number of positive MRI
scans is 3070, or 57.5%, and the number of negative samples is 2780, or 52.5%. The classes of
the dataset are relatively balanced. Table 2 reports the statistics of the number of MRI scans
for each modality. It is observed that the average number of scans for modality per patient
is in the range 127 and 171, which provides abundant information for pattern learning.
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Figure 2. A sequence of FLAIR scans for patient 10 in the dataset.

Table 2. Number of files for each scan type.

Scan Type FLAIR Tiw T1wCE T2w
# files 74,248 77,627 96,766 100,000
Avg. #files per case 127 133 165 171

Figure 3 shows an intensity visualization of MRI scans for three random patients. The
charts are grouped by the four modalities. For each sub-chart, the x-axis represents the time
step, and the y-axis denotes an intensity score, which reflects the amount of information
expressed by the MRI scan at a time step. The intensity defines the shade of gray of tissues
or fluid, and different levels of intensity are encoded by different colors in the MRI scan.
The higher the intensity, the more white area in the scan; the lower the intensity, the more
black in the scan. Thus, gray encodes intermediate signal intensity. Intuitively, images with
higher intensity carry more expressive patterns that can be learned, and these images often
appear in the middle of the MRI sequence, as shown in Figure 2. It is also observed that
even for the same patient, the times of peak intensity for the four modalities vary. This
finding allows us to better pre-process the data by selecting the most informative scans
(namely, the ones with the highest intensity scores) for each modality to train our model.
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Figure 3. Intensity visualization. Subfigures (a—c) represent the intensity charts of the four modalities
for three randomly selected samples.

3.2. Learning Framework

Figure 4 illustrates the learning framework. To ensure the model effect and retain
the original input details, the output of attention is fused with the input through shortcut
connection and weighted summation, and the fused features are mapped to a more divisible
space by a smaller DNN module. Finally, the classification results are obtained by using
the LSTM structure. In this paper, four sub-structures, including multi-modal feature
aggregation, lite attention mechanism, separable embedding, and modal-wise shortcut, are
applied together to enhance the overall performance of classification.

Separable —
Embedding ':> LST™ |:>
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Lite Attention Mechanism
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Figure 4. The learning framework.

3.3. Multi-Modal Feature Fusion

The data of each modality are considered for modality-by-modality feature extraction
due to the significant differences in imaging principles. Each sample corresponds to four
images, namely fluid attenuated inversion recovery (FLAIR), T1-weighted pre-contrast
(T1lw), T1-weighted post-contrast (T1Gd), and T2-weighted (T2), corresponding to modall,
modal2, modal3, and modal4 inputs in the above figure.
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The feature maps F1, F2, F3, and F4, obtained through feature extraction from each
modality, are fused by the attention module to obtain the attentions that can fully describe
the overall information across the modalities.

Here, the specific form of feature extractor needs to be selected. Since the images of
each modality are 256*256 single-channel images with small scales, an overly complex
feature extraction process will greatly destroy the original information and make the
subsequent operation difficult. It is found that a simple single-layer convolution can be used
to obtain a balance between extracting features and preserving the original information.
Since the data of each modality have a different distribution, the feature extractor of each
branch does not share the weights.

To extract information from multiple perspectives, the subsequent attention module
still adopts the multi-head model. The number of heads is chosen to be 4, which is explained
below in Section 3.5.

3.4. Lite Attention Mechanism

Since each sample has four modalities, the data of each modality have a different
emphasis due to their different methods of acquisition. It is necessary to analyze each data
characteristic to decide how to fuse features from different modalities. The two commonly
used methods are as follows:

1. Fuse multi-modal data in the form of sequences and use recurrent neural network
(RNN) models for feature extraction. This operation requires traversing the input
from the first time-step to the last one, which is computationally expensive [25]. Even
though improved RNN variants such as LSTM [26] and GRU [27] can effectively
reduce the difficulty of parameter updates in training, the sequential arrangement of
different modal data introduces unnecessary sequential priors, which can force the
model to learn an unreasonable one-way information flow while understanding the
inter-modal relationships to fit the main features, affecting the effectiveness of feature
extraction [28,29].

2. Use the attention mechanism to fuse the features extracted from different modalities.
Attention can easily obtain global feature information compared to the sequential
models such as LSTM and GRU mentioned above, which can better obtain contextual
relationships and obtain an overall understanding of the input.

The attention mechanism was first proposed by the Google machine translation team
in 2017. It completely breaks away from the previous framework based on a recurrent
neural network and dynamically extracts the feature part that it cares most for from each
current input and fuses it to control the impact of all time-step features on the current
output through different weights [30]. A brief description of the attention mechanism is
given as follows. In each time step, the input obtained by the model consists of three parts:
the current query, different feature values, and the corresponding keys of the features.
The query is the object that the model needs for the current time-step, which may be a
concrete input or an abstract representation of the features extracted in the previous step.
To fully determine the important differences of features, an attention mechanism uses the
dot product of the query and key to calculate the weights of corresponding features. At this
point, the similarity between the query and key is measured by the dot product [31]. This
way of calculating attention weights is called dot-product attention. As such, we obtain the
following Equation (1) for calculation, where k; and v; are the input key and values. The
query at this point is denoted as 4.

N
Attention(q,k,v) = Zqu,-vi 1)
i=1

When the length of the vector becomes longer, the scale of its dot product result
also becomes larger. After the calculation through softmax, it reaches the saturation zone,
making the gradient smaller, which is not conducive to the model optimization. Therefore,
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before performing softmax, the inner product value is divided by the square root of the
length d, as shown in Equation (2).

Attention(Q,K, V) = Softmax(Q—KT> 1% )
o Vd
After a further examination of the equations above, it can be found that to perform the
dot product operation, the key used by the model, i.e., k;, and the query, i.e., g, need to have
the same dimensionality. The additive attention method is proposed to perform the weight
calculation on different occasions adequately. This method concatenates the input query of
length u and the key of length k. The resulting (query, key) pair is fed into a feedforward
neural network with a single hidden layer, and the value describing the degree of similarity
between the two is obtained by the sigmoid function and used as the weight [32].
In the above dot-product attention process, to calculate the weight corresponding
to the i-th input, two vectors of length d, query and k;, for the case of N time steps or N
different modalities, the number of parameters to be retained and trained is (N + 1)d. To
fully guarantee the relative importance of different inputs, the specific value of d cannot be
too small since it is challenging to train the model effectively in the case of insufficient data.
In this study, we propose a lite attention mechanism, which is a light weighted
improvement of the original attention mechanism, by directly modeling the weights of
different modalities, i.e., rewriting the attention formula to the following:

N
Attention(v) = Zwiv,v 3)
i=1

For the training process of w;, the number of parameters is reduced from (N + 1)d to
N, which significantly improves the training speed and generalization performance [33,34].
It does not cost much to train w;. We do not use a softmax function for normalization
and nonlinear processing before the weighted summation but achieve better results. Our
conjecture is that the simple scale variation corresponding to normalization can be adjusted
by the subsequent DNN embedding, while the parameters corresponding to formally
relative simpler binary classification problems can be directly derived by incorporating the
relationship of nonlinear mapping into the model structure.

3.5. Modal-Wise Shortcut

The features of each modal, after feature extraction and processing by the attention
modules, are represented with a highly task-relevant tensor, but the following fusion
process leads to a loss of image details that may be informative to the task, which may
further result in severe performance degradation for the prediction. Our solution is to
add a shortcut between the original input and the output of the attention module; namely,
a residual connection [4] for each modal. Bypassing all the convolution and weighted
summation, we keep and pass all the original detailed features in the network without any
loss, which significantly reduces the possibility of model degradation.

The feature map that is finally fed into the DNN embedding d; can be represented as
follows:

d; = Attention; + modal; 4)

where Attention; is the ith feature map generated by the lite attention mechanism module,
while modal; is the original input for the ith modal. Fusing these two, we obtain d;, the
new feature representation of the ith modal. To ensure the feasibility of the operation,
the number of feature maps output by multi-head attention is set to be the same as the
number of modals; namely, four. This step is processed separately for each modal to avoid
cross-modal information interference, and the final improvement fully demonstrates the
effectiveness of this operation.
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3.6. Separable Embedding

A prior study named CLDNN [35] shows that mapping and projecting the extracted
features into a new separable space before feeding them into the detection head can
effectively boost the model’s accuracy. Inspired by this empirical finding, we adopt a
separable embedding strategy in our study. Specifically, a separate CNN is utilized again
to fuse the tensor produced from the previous module. We have evaluated two CNN
backbones to fill this role and report their effects in the next section. The output of this
module is given as follows.

fi = CNNge(d;) 5)

where CNNGE refers to the CNN that performs separable embedding; d; and f; refer to the
input and output tensors of this module.

3.7. LSTM and Detection Head

The output of the separable embedding for each time step is then collected to form
a collection of sequential tensors ordered by the time step of the MRI scans. The tensor
sequence is then fed into a long short-term memory (LSTM) network, followed by a fully
connected layer and a sigmoid function layer as the detection head that outputs a value in
[0,1], indicating the probability of MGMT promoter methylation.

4. Experiments and Results

All experiments were implemented using Python. The adopted deep learning frame-
work is Pytorch 1.8.0. Experiments were run on a Windows workstation with an i7-10875h
CPU and a GTX2080TI GPU. Ten quartets were extracted from each original sample in the
RSNA-MICCAI dataset as a new dataset, and a total of 5850 samples were obtained. The
training and test sets were randomly divided according to the ratio of 8:2.

4.1. Evaluation Metrics

The primary metric of RSNA-MICCALI is the accuracy of the classification. We need
to accurately determine whether the input image is obtained from malignant brain tumor
imaging. Under the current scenario, the model should enhance the classification of positive
samples that threaten the lives of patients. At the same time, misclassifying a true negative
sample as a positive sample can lead to unnecessary surgery and post-operative torment
for the patient. We need to improve the accuracy of both situations. To optimize both
objectives simultaneously, the accuracy rate is used as the evaluation metric. The model
with minor misclassification and omission is chosen.

TP+ TN

Acc =
T TPFTN+FP+EN ©)

in which TP (true positive) is the number of true positive samples; TN (true negative) is the
number of true negative samples; FP (false positive) represents the number of false positive
samples; and FN (false negative) is the number of false negative samples.

4.2. Baseline
We consider the following baselines in this study.

*  ResNet by He et al. [4] is an effort to understand how deepening a neural network
can increase the expressiveness and the complexity of the network. It is found that
for DNN, if a newly added layer can be treated as an identity function, the deepened
network is as effective as the original one. This finding drives the development of
the residual block, which adds a shortcut connection to the layer output before the
activation function. The simple design allows a DNN to be trained more easily and
efficiently. ResNet was the winning solution for the ImageNet Large-Scale Visual
Recognition Challenge in 2015 and has been applied to numerous computer vision
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tasks with SOTA performance. Therefore, we consider ResNet a decent baseline. Our
empirical result shows that ResNet34 presents the highest accuracy. We thus use
ResNet34 to represent the baseline result.

e The EfficientNet [36] paper makes two major contributions. First, a simple and mobile-
size neural architecture was proposed. Second, a compound-scaling method was
proposed to increase the network size to achieve maximum performance gains. It is
suggested that to pursue better performance, the key is to balance all three dimensions,
including network depth, width, and resolution, during ConvNet scaling. Thus, the
authors of EfficientNet adopted a global scaling factor to uniformly scale the depth,
width, and resolution of the network. The scaling factor makes it possible to apply
grid searching to find the parameters that lead to the best performance. EfficientNet
offers a generic neural architecture optimization technique applied to existing CNNs
such as ResNet. It has shown superior performance in numerous tasks with SOTA
results, which is why we chose it as a strong baseline.

e The gold-medal-winning strategy was developed by Firas Baba, who open-sourced the
code at https://github.com/FirasBaba/rsna-resnet10 (accessed at 24 January 2020).
The final model of the winning team is a 3D CNN using the ResNet10 backbone with
the following design choices: BCE Loss, Adam optimizer, 15 epochs, a learning rate of
0.00001 (from epoch 1 to 10) and 0.000005 (from epoch 10-15), image size 256 by 256,
batch size 8. Each epoch took around 80 s on an RTX 3090. The author also reported
the best central image trick, which is a strategy to select the biggest MRI scan that
contains the largest brain cutaway view for training. In this study, we refer to the
model developed by Firas Baba as the SOTA since it was in first place on the contest
leader board.

4.3. Training Setting

The 3 x 3 convolution is used as the feature extractor for each modality, and each
modality uses its own feature extractor to obtain different features without sharing weights.
We choose Adam as the optimizer with a learning rate of 0.0001, and betal and beta2
values of 0.9 and 0.999, respectively. We set eps=1 x 1078 to prevent the denominator from
being 0. Other parameter configurations are weight decay to be 0, batch size to be 8, and
binary cross-entropy with logits to be the loss function of the binary classification problem.
Several hyperparameters, including the learning rate, the batch size, and eps are tuned via
a five-fold cross validation to obtain the optimal values given a list of value choices for
each hyperparameter.

We also choose albumentation for data augmentation for the training dataset, with the
following configurations:

1.  Horizontal flip with a probability of 0.5;
2. Random affine transformation configured as shift-limit = 0.0625, scale_limit = 0.1,

rotate_limit = 10 with a probability of 0.5;

3.  Random contrast transformation with 0.5 probability.

4.4. Performance Evaluation

The accuracy of the evaluated models on the training set and the validation set is
demonstrated in Figure 5. Under all configurations in this experiment, after 50 epochs of
training, the models converge, and accuracy becomes stable.
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Figure 5. Training and validation accuracy to show an ablation study. Subfigures (a—d) represent the
four evaluated models with a booster added incrementally to the previous model.

Figure 5b shows the performance of adding the attention module only. The accuracy is
only improved to 56.74%. However, the accuracy curve converges slower and a noticeable
scale of oscillation appears in 20-30 epochs, which indicates that without adding other
modules to the fusion of the extracted features the model is not able to obtain effective
information. The training effect is poor, and the accuracy is not particularly satisfactory.

After adding two different separable embedding modules to the model, ResNet34
and EfficientNet [36], it can be observed that both accuracy and the convergence speed are
greatly optimized, which fully illustrates the necessity of separable embedding. Specifi-
cally, the improvement of the performance by adding ResNet34 is more obvious and the
convergence speed is also faster. The accuracy is improved by 4.35%, which is 61.09%. We
chose ResNet34 as the separable embedding module for further experiments.

Finally, we added the shortcut model to the multi-modality + attention + Resnet34 em-
bedding model, using weighted summation to fuse the original information and extracted
features. It can be observed that adding the shortcut model further improves the metrics
by more than 2%, reflecting the effect of direct-concatenation for training the model. The
performance of different models and training plans is provided in Table 3. Overall, the strat-
egy of multi-modality + attention + Resnet34 Embedding + shortcut largely outperforms
the baseline. Combining the above four submodules substantially improves the accuracy
by more than 10%, but the absence of any one of them brings about a significant metric
degradation. We also replicated the SOTA model, which utilized a 3D CNN + ResNet10
neural architecture. The SOTA had an accuracy of 60.74%, which is 3-point worse than
our model.
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Table 3. Performance of different models. Abbreviations: separable embedding (S.E.), training
duration per epoch (T.D.P.E).

Method S.E Acc T.D.PE (s)
ResNet34 NA 53.12% 65.4
EfficientNet NA 54.80% 52.3
3D CNN + ResNet10 (SOTA) NA 60.74% 73.1
multi-modality + attention NA 56.74% 67.3
multi-modality + attention EfficientNet 59.03% 72.2
multi-modality + attention Resnet34 61.09% 78.8
multi-modality + attention + shortcut Resnet34 63.71% 79.3

We also report the average training duration per epoch (T.D.P.E.) in the last column of
Table 3. It is observed that the average T.D.P.E. for all models ranges from 52.3 to 79.3 s on
our deep learning workstation. The training has been relatively efficient mainly due to the
following: (1) the MRI scans have been down-scaled to 256 by 256 pixels and (2) the fast
processing speed offered by the RTX 3090. It is also noted that the best performing model
only added a reasonable amount of time compared to the SOTA (79.3 vs. 73.1), which
validates the efficient design of the lightweight attention module.

It is observed in Figure 5a—d that overfitting occurs in all evaluated models. Our
observation is aligned with other contest participants (see a post at https://www.kaggle.
com/c/rsna-miccai-brain-tumor-radiogenomic-classification/discussion /281347 accessed
at 20 February 2022). It is mentioned that many teams obtained higher training scores
than validation scores. In machine learning, overfitting is mainly caused by the nature
of data [37]. Specifically, the data points of training and test sets do not follow the same
distribution. As such, the models trained on the training set have learned knowledge
and patterns that do not apply well to the samples on the test set. For this study, the
quantity of MRI scans is increased compared to prior datasets. However, most scans only
contain a partial area of the brain, which does not offer many expressive patterns to be
learned by a model. We adopted the following strategies to handle overfitting. First, we
applied several data augmentation strategies to enhance the diversity of the dataset (see
Section 4.3). Second, we conducted cross-validation to examine the robustness of model
performance. Despite these efforts, a performance gap in the range 10-15% still exists
between the training and validation accuracy scores, even for our best-performing model.

5. Conclusions

Malignancy analysis of brain tumors is crucial for the lives of patients and early
prevention. For early screening and reducing patients” suffering, accurate classification
is needed. However, the effectiveness of existing models cannot be guaranteed. In this
paper, we proposed a new classification model based on multi-modal feature aggregation,
lite attention mechanism, separable embedding, and modal-wise shortcut. The combined
effects of these boosters increased the prediction accuracy to 63.71% on the RSNA-MICCAI
dataset, outperforming the SOTA by 3%.

This work has the following limitations, which also suggest future directions. First,
our proposed method only considers the temporal association between same-modality data,
while the relationship between different modality data is not examined. This inter-modality
relation is worthy of further investigation. Second, in addition to the modal-wise attention
used in this study, image-wise attention can also be considered since some critical areas
of an MRI scan could carry informative patterns that should be learned and used to make
a better prediction. Lastly, a joint model that handles tumor segmentation and MGMT
detection is expected.
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Abstract: The pathway through which behavior change techniques have an effect on the behavior of
an individual is referred to as the Mechanism of Action (MoA). Digitally enabled behavior change
interventions could potentially benefit from explicitly modelling the MoA to achieve more effective,
adaptive, and personalized interventions. For example, if ‘motivation’ is proposed as the targeted
construct in any behavior change intervention, how can a model of this construct be used to act as a
mechanism of action, mediating the intervention effect using various behavior change techniques?
This article discusses a computational model for motivation based on the neural reward pathway with
the aim to make it act as a mediator between behavior change techniques and target behavior. This
model’s formal description and parametrization are described from a neurocomputational sciences
prospect and elaborated with the help of a sub-question, i.e., what parameters/processes of the
model are crucial for the generation and maintenance of motivation. An intervention scenario is
simulated to show how an explicit model of ‘motivation” and its parameters can be used to achieve
personalization and adaptivity. A computational representation of motivation as a mechanism
of action may also further advance the design, evaluation, and effectiveness of personalized and
adaptive digital behavior change interventions.

Keywords: Al-powered behavioral change support systems; motivation; computational modeling;
behavior change techniques; Al in health; pervasive health system

1. Introduction

In medical sciences, the mechanism of action of a particular medicine enables physi-
cians to understand the correct dosing better. It helps identify which patients are likely
to respond to that medicine. There are also different models and evidence-based theories
available for health behavior change. These theories/models identify the key constructs
and processes of behavior change. However, serious discussion and research are still going
on about these constructs and their mechanism of action. The fundamental disagreement
is on the causality of Behavior Change Techniques (BCTs) for various theoretical psycho-
logical constructs. For example, one might argue that BCT “information about health
consequences” changes behavior by changing one’s belief about health consequences. The
most common term used for this connection between BCTs and the modifiable factors is a
Mechanism of Action (MoA), defined broadly as ‘the processes through which a behavior
change technique affects behavior. In comparison, others call it the process of operational
manipulation of psychological constructs [1].

One of the challenges identified in the international workshop on developing and
evaluating digital interventions is that digital behavior change interventions often lack
clarity around the mechanism through which they have their effect [2]. It is recommended
to develop and specify the circumstances in which the proposed mechanism of action would
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generate a targeted effect and represent the resulting knowledge as a behavior change
ontology [2]. Moreover, the limited collaboration between technology designers and health
behavior experts typically leads to poorly developed technologies or applications in which
the choice of health behavior theories is not suitable. The theory and models chosen are
not sufficiently versatile to cover all aspects of the target behavior [3]. We consider digital
health change intervention as the interventions that use digital technologies to promote
and facilitate behavior change through specific context and information, for example,
mobile apps, web-based, etc. Due to the latest advancement in digital technologies and
their capacity to collect extensive user data, these interventions consider variations in an
individual’s characteristics, contexts, and changes over time [4].

To account for the knowledge of health psychology, recently, the Human Behavior
Change Project established a link between the BCTs and their mechanism of action [5,6]. For
example, the BCTs goal-setting, feedback and reward, work by manipulating the motivation
of the target. So, if motivation is chosen as the theoretical construct to be targeted in any
intervention development phase, the effective and agreed BCTs can be selected from this
project [6]. To effectively use BCTs in digital interventions, the parameters of the BCTs
and the mediating factors need to be explicitly defined. The ‘motivation” cannot work as a
black box (every human is different). By creating an explicit model of the underlying MoA,
in this case ‘motivation’, we can accommodate individual characteristics and provide the
mediating feedback loop to both BCTs and the targeted behavior.

Therefore, in this paper, we present an extended version of the temporal causal
network model of motivation [7] that will describe how the high-level BCTs can be made
adaptive and personalized via a lower-level process of ‘motivation.” The temporal causal
network modeling technique gives us the flexibility to represent any complex problem
having time and causality dimensions between states more efficiently and easily. The low-
level process (motivation) and its components are modeled based on the observations from
the neuro-reward system and represented through the temporal causal network modeling
technique. More detail about the temporal modeling technique and the representation
of ‘motivation’ is provided in Section 3.1. Furthermore, Figure 1 depicts how the model
will be used in the intervention and how different BCTs can be used to affect various
components of the model. So, rather than studying the manipulating effect of psychological
constructs, we are modeling the mediating role of motivation and its core components for
BCTs and the targeted behavior. This model will serve different purposes and illustrates
the work’s novelty. Firstly, using this model allows digital intervention designers to report
the mechanism of action in their interventions properly. Secondly, the intervention can
be made more adaptive and personalized. For example, goal-setting and feedback can
be customized based on the model outputs for different personalities like introversion,
extraversion, neuroticism, conscientiousness, etc.

To summarize, the objectives of this article are:

e To propose a formal description of the dynamics of motivation and a computational
implementation to show its working as a ‘mechanism of action” component in digital
behavior change intervention.

o To illustrate the relevance of the model for the study of digital behavior change
interventions, specifically for generating and maintaining motivation, and how this
can be used for personalization and adaption of interventions.

The paper is organized as follows: Section 2 shows the role of motivation in health
behavior change and, more specifically, how we can generate and maintain motivation.
Section 3 explains the term ‘mechanism of action” and explains different possible ways
that can be used to define/present a psychological construct as a mechanism of action.
Section 4 describes the extended version of the motivation model for digital health behavior
change based on the neuro reward pathway. Motivation is a mechanism of action with
its mathematical formulation for health behavior change. Section 5 further represents an
example intervention with simulation for increasing physical activity behavior in office
employees. The paper concludes with remarks and future work.
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Figure 1. The model postulates the ‘motivation” as the mechanism of action for a behavior change
intervention.

2. Health Behavior Change and Motivation

This section of the article aims to understand the motivation construct from a neuro-
sciences perspective and its possible role in health behavior change. Most cognitive health
theories describe the potential relationships between psycho-social factors and healthy
behaviors. For example, the Social Cognitive Theory, Health Belief model, and Theory
of Planned Behavior are examples of theories that describe the role of individual beliefs,
experiences, social factors, and environmental factors on individual health behaviors. Con-
versely, the widely used Transtheoretical model (TTM) and Health Action Process (HAPA)
define the stages through which individuals go through to change their behavior [8,9].
Similarly, self-determination theory (SDT) explains the process of intrinsic motivation with
three basic psychological needs: autonomy, competence, and relatedness [10].

Motivation in the neurosciences refers to neurotransmitters, or brain networks, which
are collectively involved in different processes like releasing a chemical named dopamine,
reward/punishment anticipation processing, reinforcement (learning), storing and updat-
ing a reward value, and decision-making drive human behavior. Together, these processes
and chemical reactions control motivational behavior that leads to achieving a specific goal
or reward. The details of all these brain networks and processes are discussed in Section 4
below. Here the mechanism of motivation concerning health behavior change is explained
as two separate processes, i.e., motivation generation; how value-based anticipation of
stimulus can generate ‘motivation’, and what can be the possible techniques for it? Simi-
larly, to sustain a healthy behavior, how is motivation maintained or regulated, and what
are the possible techniques?

2.1. Motivation Generation

Humans do or refrain from doing particular behaviors based on the calculated value
of reward or punishment. To elicit approach behavior (motivation), the first step is to make
the anticipation of reward from that behavior or actions. Anticipating reward means any
object, event, or activity can be a reward if it motivates us, causes us to learn, or elicits
pleasurable feelings. Humans are pre-programmed with certain behaviors like food or sex
because they are naturally rewarding and necessary for the survival of a species. In the
case of secondary reward, a specific brain area first registers the stimulus as a reward or
punishment, then stores its relative value for future decision making. Before exploring
different techniques that can make the stimulus rewarding and elicit pleasure feelings,
there are two essential aspects of the reward mechanism in neurosciences, i.e., liking vs.
wanting, and action control systems that need to be understood. The reason for presenting
the differentiation between these two aspects is to be able to select an appropriate technique
that can either activate liking or wanting sub-systems. Moreover, both ‘wanting” and ‘liking’
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are interchangeably used for rewards, whereas the brain circuity for both mechanisms is
dissociable [11].

2.1.1. Liking vs. Wanting

It is now a widely accepted fact in neurosciences that ‘wanting’ is a dissociable factor
from ‘liking’ for the same reward [11]. The more extensive brain network of the ‘wanting’
and the smaller one of the ‘liking’ systems are described in Section 4 below. Initially, it
was hypothesized that brain dopamine depletion would reduce ‘liking’ for rewards. Still,
it is experimentally proven that a lack of dopamine demolishes all motivation (wanting)
while the liking remains the same [11]. This difference is vital in behavior change because
the stimulus or any intervention components may influence one or another system. For
example, maybe you are hungry, and your wanting-system wants to eat something, but
there is broccoli available that you do not like. It is also important to mention that ‘wanting’
does not mean the cognitively processed desire; instead, it is a particular form of desire
triggered by reward-related cues [11]. That is why recovering addicts have a genuine
desire to quit drugs, but the nonconscious ‘wanting’ triggers when exposed to drug cues.
That is why usually the best motivation is the one which is through activation of the
wanting-system (either cognitively processed or subconsciously by reward cues) and
pleasurable enjoying.

2.1.2. Action Control Systems

After intercepting a reward, the human brain reward system uses three different
action control systems. First, (i) the innate actions system, which is the evolutionary
response to a stimulus. Conversely, (ii) habitual actions develop over time through learning
via interaction with different stimuli, and (iii) goal-directed actions are more cognitively
processed actions toward achieving desired outcomes [12]. Generating motivation for
healthy behavior change usually utilizes a goal-direction action system to achieve the
desired behavior and possibly triggers other action systems that may be more effective for
changing specific behaviors. The effectiveness of behavior change intervention through
any action system depends on choosing the right targeted action system in the right
circumstances [12]. For example, the relative effectiveness of triggering the habitual action
system for smoking cessation (behavior) in a personalized intervention (population) would
be greater using the social influence-based intervention.

2.2. Motivation Maintenance

This section will discuss if motivation is generated, then why it fades out and how we
can maintain it. Another essential process in the neuroscientific explanation of ‘motivation’,
i.e., reward prediction error (RPE), can be used to keep the level of motivation. RPE is
the difference between received and expected rewards. This error helps humans learn
about the stimulus and use it for future decision-making. Continuous interaction with the
stimulus will cause learning of the reward/punishment outcome of the stimuli via reward
prediction error. RPE can be used to regulate and maintain motivation, e.g., positive reward
prediction means more learning of the stimulus outcome and more chances of performing
the behavior often, whereas the negative reward prediction error means less learning of the
stimulus-outcome association.

As mentioned earlier, the expected value of a reward is obtained through the attributes
of the incentive, such as amount, type, and delay [13]. So, different techniques can be used
to regulate motivation by manipulating the attribute of the reward itself. For example,
increasing the incentive on a particular behavior will generate a surprise factor and cause
a positive reward prediction error. Similarly, humans like instant gratification; if the
unexpected reward is given before the expected time it will also cause a surprise factor
and release enough dopamine to fasten the learning process. Moreover, the same type or
always-expected reward will eventually be learned and will not be effective in the long
term, the value of the behavior will decrease, and the frustration will grow.
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2.3. Behavior Change Techniques for Motivation Generation and Maintenance

Based on Bandura’s self-efficacy theory, BCTs are usually selected based on the targeted
theoretical constructs; for example, instrictions on the problem or increasing problem-solving
skills are often used to increase self-efficacy. In this section, we will discuss some of the
techniques mentioned in Table 1, taken from behavior change taxonomy [14], that can
change behavior through ‘motivation’. Furthermore, the techniques are discussed in the
context of the two sub-processes discussed above, and the possible roles of these techniques
in manipulating any of the sub-process. For example, for motivation generation, whether
specific techniques would increase the reward value (or) increase pleasure feelings, etc. In
the BCT taxonomy [14], the technique “10.8. incentive (outcome)”, besides the effect on
other psychological processes like intention and beliefs, it also has an impact on motivation.
It is argued that if an external reward is promised to be delivered after achieving a specific
behavior outcome, it will generate motivation by influencing the values of the outcome of
the action, e.g., the monetary incentive for the employee who comes to the office by bike
can ultimately have better health [15]. The motivation for cycling may be low due to the
cost (fatigue) of cycling to the office and the low rewarding value. The achievement of
incentive does have rewarding value itself. Still, the pleasure anticipation (expectation) in
reaction to the stimulus will increase the value of cycling and ultimately give feelings of
higher reward due to health improvement.

Table 1. List of the Behavior Change Techniques (BCTs) and their respective mediating purpose in
our model. These BCTs are supposed to change behavior through motivation [6].

(Code). Behavior Change Techniques Purpose Reward System Components

For planning, reduce gratification,

1.3. Goal setting (outcome) Maintain reward prediction error

frustration
92. Pros and Cons Increase wanting (pros) and not wanting Wanting
(cons)
10.8. Incentive (outcome) Increase outcome value Liking
10.10. Reward (outcome) Increase outcome value Liking

Similarly, the BCT “9.2 pros and cons” can increase motivation by reducing the cost of
ignoring unhealthy behavior consequences. Likewise, with the negative reward prediction
error due to the same type or always-expected reward, the motivation will decrease, and
the frustration will grow. The best strategy could be to use “1.3 