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Editorial

Emerging Applications and Translational Challenges for AI
in Healthcare

Sidong Liu 1,*, Cristián Castillo-Olea 2,3 and Shlomo Berkovsky 1
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The past decade has witnessed an explosive growth in the development and use of
artificial intelligence (AI) across diverse fields. While the precise trajectory of AI’s evolution
is complex and multi-faceted, it is discernible that it has been shaped by several key,
interconnected technological trends, including the paradigm shift to generative AI [1,2],
the emergence of foundation models [3], and the rise of human-centred AI approaches [4],
along with incremental improvements in AI generalisability and explainability [5], data
transparency and privacy [6], automated AI [7], and edge AI [8], among others.

Healthcare is no exception. In fact, AI is at the forefront of driving pivotal changes
in the healthcare sector, opening up innovative and enhanced methods of care delivery.
It holds the potential to have profound impacts on contemporary healthcare challenges.
By leveraging AI, we can uncover patterns within vast clinical datasets and develop
sophisticated computational reasoning methods that support human decision making.

This editorial accompanies the Special Issue titled “Advances in AI for Health and
Medical Applications”, which endeavours to spotlight the cutting-edge developments of AI
in the healthcare and medical fields. This Special Issue proudly features twelve manuscripts
that have been meticulously selected for publication, encompassing a diverse array of origi-
nal research and review articles. Detailed below are the contributions (contributions 1–12),
which span from theoretical frameworks to practical applications, addressing everything
from diagnosis and treatment to healthcare management and public health.

The advancements in AI from a technical perspective have been noteworthy. For
instance, Roychowdhury introduced an innovative Nested-U Multi-Class Segmentation
Network (NUMSnet) model for the semantic segmentation of 3D medical image stacks,
and it outperformed the state-of-the-art U-Net models. In contrast, Taj et al. made an
important contribution to the theorical framework by demonstrating how to generate and
maintain motivation. Their work advances the personalisation and adaptivity of digital
interventions through behaviour change techniques, thereby assisting designers in making
their mechanism of action more explicit.

Several studies have highlighted novel uses of AI methods to improve disease screen-
ing and diagnosis. For instance, Qu and Xiao incorporated the attention mechanism into a
multimodal Convolution Neural Network (CNN) model to predict the O6-methylguanine
DNA methyltransferase (MGMT) promoter methylation status, a crucial biomarker for
predicting chemotherapy response in brain tumour patients. Bardihi et al. reviewed the
latest research on the use of deep learning to enhance colorectal polyp detection, providing
a comparative analysis of various algorithms across multiple datasets. Furthermore, Uddin
et al. conducted an extensive comparison of machine learning algorithms for the detection
of type 2 diabetes, pinpointing specific features indicative of the disease. This work holds
potential for the effective identification of individuals at risk of diabetes, ensuring timely
intervention and patient care.
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In recent years, COVID-19 has precipitated a profound shift in the digital landscape,
revolutionising numerous facets of daily life, with healthcare being the most significantly
impacted. To assist the care management of COVID-19 patients, Feng et al. utilised deep
learning to detect and segment lung lesions from chest CT scans, thereby automating the
assessment and prediction of patient severity and assisting in patient triage. Conversely,
Castillo-Olea et al. applied machine learning to pinpoint the significant early-stage variables
in COVID-19 patients. The pandemic has made it clear that hospital resources are finite
and face substantial challenges in crisis situations such as COVID-19. This underscores the
difficulties in the healthcare management of vulnerable patients due to their risk of infection.
For example, managing patients infected with HIV during the pandemic was particularly
challenging. To address such challenges, Cingolani et al. introduced an innovative e-
Clinical platform, driven by a machine learning system capable of predicting HIV-related
alerts. This platform facilitates remote patient management, carefully considering the real
needs of patients and ensuring vigilant monitoring of the crucial aspects of care for people
living with HIV/AIDS (PLWH) to maintain an adequate standard of care.

The work by Zhou et al. is particularly noteworthy for its exploration into the correla-
tion between temperature fluctuations and emergency department (ED) visitations. They
innovatively employed a machine learning model to predict daily ED attendance rates.
The development of AI-based analytics tools also opens up new avenues for public health
research, facilitating a more nuanced comprehension of public health issues and fostering
the design of targeted prevention strategies, enhanced models of healthcare delivery, and
community engagement initiatives. Building upon this foundation, Putri et al. utilised
various data analytics methods, including machine learning, to discern patterns, trends,
and associations within health data.

Encouraging results have been reported, suggesting that AI has become so powerful
that it outreasons human experts in areas such as radiology [9] and ophthalmology [10].
Although clinical specialties such as radiology might not disappear, they will certainly be
heavily transformed, and clinicians will play a major new role in the time of AI [11]. Pham
et al. illustrated a novel application by integrating fuzzy inference techniques based on
knowledge graph pairs with clinicians’ preferences in decision making. This integration
has proven to be effective in the detection of preeclampsia signs, showcasing the potential
of augmented AI in clinical diagnosis.

Advancements in sensor technology have been a catalyst for the widespread inte-
gration of AI into a plethora of everyday activities. Within the healthcare sector, smart
Activities of Daily Living (ADL) monitoring systems and wearable sensor devices that are
equipped with AI microchips can effectively assist patients with chronic conditions and
disabilities in self-management. Ahmed et al. explored the feasibility of accessing depres-
sion severity and valence arousal with wearable sensors, revealing that machine learning
combined with a multimodal analysis of signals from wearable devices can effectively
identify and forecast individual patterns of depression.

We have also seen emerging applications of generative AI and multimodal models
within the healthcare domain. A prime example is Med-PaLM M [12], a proof-of-concept
multimodal generalist biomedical AI system conceptualised by Google Research and
Google DeepMind. This system boasts remarkable flexibility in encoding and interpreting a
wide range of biomedical data, encompassing clinical language, imaging, and genomics. To
probe its capabilities and limitations, Med-PaLM M was benchmarked against radiologists
in the creation of chest X-ray reports. When reviewing 246 retrospective chest X-rays,
clinicians showed a preference for the reports generated by Med-PaLM M in approximately
40.50% of cases when compared directly with those produced by human radiologists,
indicating significant progress towards its application in clinical settings.

The integration of AI into every facet of healthcare and medicine is poised to become
commonplace. However, the path to embedding clinical AI into daily practice is complex
and filled with unique challenges. There is growing recognition that translating clinical AI
into routine practice is not straightforward. Common obstacles, such as little to no effort
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spent replicating trials or reporting harm to patients from AI trials, persist across appli-
cations. Furthermore, AI built using machine learning often struggle with generalisation,
potentially underperforming in various clinical environments. These hurdles highlight a
critical issue in the effective deployment of clinical AI, and they could introduce new types
of patient risks and obstruct the translation of research and investment into tangible clinical
benefits [13]. The successful implementation of healthcare AI tools hinges on recognising
and overcoming these challenges to ensure their reliability and efficacy in enhancing patient
care. The journey towards mitigating these issues is as much about understanding and
adjusting to the complexities of healthcare systems as it is about advancing AI technology.
Ultimately, by cutting through the hype and unravelling the mysteries and challenges of
AI in healthcare, we anticipate that this field of research will grow increasingly dynamic.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: Colorectal cancer is one of the main causes of cancer incident cases and cancer deaths
worldwide. Undetected colon polyps, be them benign or malignant, lead to late diagnosis of colorectal
cancer. Computer aided devices have helped to decrease the polyp miss rate. The application of
deep learning algorithms and techniques has escalated during this last decade. Many scientific
studies are published to detect, localize, and classify colon polyps. We present here a brief review
of the latest published studies. We compare the accuracy of these studies with our results obtained
from training and testing three independent datasets using a convolutional neural network and
autoencoder model. A train, validate and test split was performed for each dataset, 75%, 15%, and
15%, respectively. An accuracy of 0.937 was achieved for CVC-ColonDB, 0.951 for CVC-ClinicDB, and
0.967 for ETIS-LaribPolypDB. Our results suggest slight improvements compared to the algorithms
used to date.

Keywords: colon cancer; deep learning; detection; classification; localization; CNN; autoencoders

1. Introduction

Medical imaging has gained immense importance in healthcare throughout history. It
has been used in diagnosing diseases, planning treatments, and assessing results. Further-
more, medical imaging is currently used in preventing illness, usually through screening
programs. Aggregating it with demographic and other healthcare data can bring novel
insights and help scientists discover breakthrough treatments [1].

A lot of research has been done in automating the delivery of medical imaging results.
These results still rely on professional radiologists being present when finalizing them.
However, automation can help radiologists be more efficient in their job and deliver
results quicker.

A review of deep learning (DL) applications in medical imaging [2] shows that AI
algorithms will have a significant impact in the healthcare field. The application areas
span from digital pathology and microscopy to brain, eye, chest, breast, cardiac, abdomen,
etc. These algorithms are for all types of imaging machines used nowadays: computed to-
mography (CT), ultrasound, MRI, X-ray, microscope, cervigram, photographs, endoscopy/
colonoscopy, tomosynthesis (TS), mammography, etc. Most of these applications deal with
classification, segmentation, or detection problems and convolutional neural networks
(CNNs), auto-encoders (AE) or stacked auto-encoders (SAE), recurrent neural networks
(RNNs), deep belief networks, and restricted Boltzmann machines (RBM) are the most
used architectures for these settings. The architecture of some of the most used algorithms
is depicted in Figure 1.

Information 2021, 12, 245. https://doi.org/10.3390/info12060245 https://www.mdpi.com/journal/information
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Figure 1. Graph representation of some of the commonly used architectures in medical imaging.
(a) AE, (b) RBM, (c) RNN, (d) CNN, (e) MS-CNN.

In this paper, we focus on colorectal cancer (CRC) and how deep learning algorithms
can help detect colon polyps. The World Health Organization, through the International
Agency for Research on Cancer, has recognized colorectal cancer as responsible for around
881 thousand deaths, or 9.2% of the total cancer deaths [3]. The main concern is that the
incidence rates have been rising, more than 1.85 million cases [3]. This increase could be
prevented by conducting effective screening test [4]. However, a 2020 European study on
colorectal cancer shows that total cancer mortality rates are predicted to decline, and these
numbers for colorectal cancer are 4.2% in men and 8.3% in women [5]. These declines are
expected in all age groups [6]. Another study done in the USA shows declining numbers in
the USA as well [7]. The implementation of screening programs is an essential factor in the
declining numbers various countries have seen. Colonoscopy is the preferred technique
among the used screening tests to diagnose CRC. It is also used as a prevention procedure
for CRC. CRC starts as growth in the lining of the colon or rectum. These growths are
called polyps. Polyps are benign neoplasms; some types can transform into CRC over
the years. Within the latter are adenomatous polyps and serrated polyps. Not all polyps
develop into CRC. The adenomatous colon polyps (adenomas) and polyps larger than 1 cm
have a higher risk of malignancy. Sometimes polyps are flat or hide between the folds of
the colon, which makes their detection difficult.

One of the procedures to screen for colon polyps is the colonoscopy, which examines
the large bowel and the distal part of the small bowel with a camera. The advantages of this
procedure include visualization of the polyps and their removal before they grow bigger
and, for biopsy purposes, if the medical personnel suspect a cancerous polyp. According
to [7], colonoscopy is very well established as a procedure to prevent the development of
CRC playing a significant role in rapid declines in incidence cases during the 2000s but not
so much during the recent years. Another study on the impact of CRC screening mortality
found that using colonoscopy indicates a more than 50% decline for CRC mortality [6].
Although colonoscopy has shown meaningful improvements, the colon polyp miss rate
continues the same. A 2017 retrospective study done with 659 patients indicates that among
these patients, the colon polyp miss rate was 17% (372 out of 2158 polyps), and 39% of
patients (255 out of 659 patients) had at least one missed polyp [8]. As mentioned before,
an undetected polyp, be it benign or malignant, may lead to a late CRC diagnosis, which is
associated with a less than 10% survival rate for metastatic CRC. Many elements contribute
to missed polyps during a colonoscopy. Two of them are the quality of bowel preparation
and the experience of the colonoscopists [9]. While the first problem cannot be fixed by
technology, the second one can, and computer-aided tools can assist colonoscopists in
detecting polyps and reducing polyp miss rates.
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The aims of this study are to give an overview of the recent deep learning algorithms
used in colorectal images and videos and introduce a new model for colon polyp de-
tection in images. The rest of the paper is organized as follows. Section 2 presents the
recent techniques explicitly used in colon polyp detection, classification and localization
in colonoscopy images and videos. Section 3 describes the databases we used to train,
validate, and test our proposed model. Section 4 presents the results. We close the paper
with Section 5, discussions and conclusions, where we also present the limitations and
future work.

The key contributions of this paper are: (i) presenting the state-of-the-art in deep
learning techniques to detect, classify, and localize colon polyps; and (ii) introducing the
convolutional neural network with autoencoders (CNN-AE) algorithm for detection of
polyps with no previous image pre-processing.

2. Background

Researchers have been applying deep learning techniques and algorithms in various
healthcare applications. Considerable progress is seen in detecting colon polyps [10,11].
Having a public database of colon polyp images played a big role. Examples of such
contributions include using a pre-trained deep convolutional neural network to detect
colon polyps [10], dividing images into small patches or in sub-images to increase the
database′s size, and then classifying different regions of the same image [12]. Other
works include exploring deep learning to automatically classify polyps using various
configurations, such as training the CNN model from scratch or modifying different CNN
architectures pre-trained in other databases and testing them in an 8-HD-endoscopic image
database [13]. Authors in [14] take advantage of transfer learning, a technique where
a model is trained on a task and later re-purposed and used for another task similar
to the previous one. [14] uses CNN as a feature descriptor and to generate features for
the classification of colon polyps. Another CNN was developed to detect hyperplastic
and adenomatous polyps and classify them by modifying different low-level CNN layer
features learned from non-medical datasets [15].

The authors in [16] use a deep CNN model as a transfer learning scheme. Besides
image augmentation strategies for training deep networks, they propose two post-learning
methods, automatic false-positive learning and offline learning. Shin & Balasingham
(2017) [17] compare a handcraft feature method with a CNN method to classify colorectal
images. For the handcraft feature approach, they use the shape and color features together
with a support vector machine (SVM) for classification. On the other hand, the CNN
approach uses three convolutional layers with pooling to do the same. They compare the
strategies by testing them in three public polyp databases. Results show the CNN-based
deep learning framework leads better classification performance by achieving an accuracy,
sensitivity, specificity, and precision of over 90%. Authors in Korbar et al. [18] build an
automatic image analysis method that classifies different types of colorectal polyps on
whole-slide images with an accuracy of about 93%. Mahmood & Durr (2018) [19] use a deep
CNN together with a conditional random field (CRF) called (CNN-CRF), a framework for
estimating the depth of a monocular endoscopy. Estimated depth is used to reconstruct the
topography of the surface of the colon from a single image. They train the framework on
over 200,000 synthetic images of an anatomically realistic colon, which they generated by
developing an endoscope camera model. The validation is done using endoscopy images
from a porcine colon, transferred to a synthetic-like domain via adversarial training. The
relative error of the CNN-CRF approach is 0.152 for synthetic endoscopy images and 0.242
for real endoscopy images. They show that the depth map can be used to reconstruct the
mucosa topography.

Three 2020 studies focus more on polyp classification by approaching the problem
in different ways. Carneiro et al. [20] studies the roles of confidence and classification
uncertainty in deep learning models and proposes and tests a new Bayesian deep learning
method to improve classification accuracy and model interpretability on a privately owned
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polyp image dataset. Gao et al. [21] use DL methods to establish colorectal lesion detection,
positioning, and classification based on white light endoscopic images. The CNN model is
used to detect whether the image contains lesions (CRC, colorectal adenoma, and other
types of polyps), and the instance segmentation model is used to locate and classify the
lesions on the images. They compare some of the most used CNN models to do so, such
as ResNet50, AlexNet, VGG19, ResNet18, and GoogleNet. Song et al. [22] developed a
computer-aided diagnostic system (CAD) for predicting colorectal polyp histology using
deep-learning technology with near-focus narrow-band imaging (NBI) pictures of the
privately-owned colorectal polyps image dataset. The performance of the CAD is validated
with two test datasets. Polyps were classified into three histological groups. The CAD
accuracy (81.3–82.4%) shows to be higher than that of trainee colonoscopists (63.8–71.8%)
but comparable with that of expert colonoscopists (82.4–87.3%).

There are other works that are focused on colon polyp detection on colonoscopy videos
besides images. Such work includes [23], where authors explore the idea of applying
a deep CNN model to a large set of images taken from 20 videos approximately 5 h
long (~500,000 frames). In [24], authors develop a three-dimensional (3D) CNN model
and train it on 155 short videos. In [25] deep learning method called Y-Net is proposed
that consists of two encoder networks with a decoder network that relies on efficient
use of pre-trained and un-trained models with novel sum-skip-concatenation operations.
The encoders are trained with a learning rate specific to encoders and the same for the
decoder. Yu et al. (2017) [26] proposes an offline and online framework by leveraging
the 3D fully convolutional network (3D-FCN). Their 3D-FCN framework is able to learn
more representative spatial-temporal features from colonoscopy videos by showing more
powerful discrimination capability. Their proposed online learning scheme deals with
limited training data by harnessing the specific information of an input video in the
learning process. They integrate offline learning to the online one to reduce the number
of false positives, which brings detection performance improvements. Another work [27]
includes using a deep CNN model based on inception network architecture trained in
colonoscopy videos. They use only unaltered NBI video frames to train and validate the
model. A test dataset of 125 videos of consecutively encountered diminutive polyps was
used to test the model. However, the confidence mechanism of the model did not generate
sufficient confidence to predict the detection of 19 polyps in the test set, which represented
15% of the polyps. In a more recent study, Poon et al. (2020) [11], the authors design an
Artificial Intelligent Endoscopist (AI-doscopist) to localize polyps during colonoscopy with
the purpose of evaluating the agreement between endoscopists and AI-doscopist for set
localization. Another recent study that deals with colorectal videos is Wang et al. [28],
which is the first double-blind, randomized controlled trial to assess the effectiveness of
automatic polyp detection using the computer-aided detection (CADe) system during
colonoscopy. To the best of our knowledge, this is also the only clinical trial that deals
with the use of artificial intelligence (AI) in colorectal image/video detection, localization
and/ or classification.

There are studies that train and test models in both images and videos. One of them is
Yamada et al. [29], where they develop an AI system that detects early signs of colorectal
cancer during colonoscopy by decomposing tensor metrics in the trained model. Their AI
system consists of a Faster R-CNN and the VGG16 model. Table 1 summarizes the articles
included in this minireview, together with some characteristics of these studies.
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Our model is a combination of CNN and autoencoders. This model was trained
on three different colon polyp databases, CVC-ColonDB [30], CVC-ClinicDB [31], and
ETIS-LaribPolypDB [32]. All these datasets are open source and can be used for research
purposes to develop techniques to detect colon and rectal polyps making them in a way
the standard datasets in the field.

3. Materials and Methods

3.1. Databases

In this study, we utilize 3 colorectal polyp image datasets, namely CVC-ColonDB,
CVC-ClinicDB, and ETIS-LaribPolypDB. The first colorectal polyp image dataset to be
made available for researchers is CVC-ColonDB, and it contains 380 images. All the
images are part of 15 colonoscopy videos, and each sequence has various numbers of polyp
pictures. The same group that published CVC-ColonDB later made available the CVC-
ClinicDB dataset, which has 612 images taken from 29 sequences. The third dataset is ETIS-
LaribPolypDB which has 196 images, Table 2. Each dataset consists of 2 main folders, the
raw original images, and the masked images, the ground truths, of the corresponding one
in the original image. Figure 2 shows images of polyps taken during several colonoscopies.
As seen from the figure, polyps come in various shapes and sizes, and some of them are
not significantly distinguishable from the mucosa of the colon.

Table 2. Databases used to train and test the CNN-AE model.

Datasets Nr of Images

CVC-ColonDB [30] 380
CVC-ClinicDB [31] 612

ETIS-LaribPolypDB [32] 196

Figure 2. Different shapes and textures of colon polyps taken from colonoscopy videos.

3.2. The Proposed Model

There are some deep learning libraries that can be used to build a neural network
model. One of them is TensorFlow [33], an open-source library created by Google and
community contributors, currently on its 2.0 version. We used this library to train and test
our convolutional encoder-decoder model. The model uses the same architecture as the
SegNet architecture [34], an algorithm programmed using Caffe, another deep learning
library created by Berkeley AI Research and community contributors. The training and
testing were performed on a computer with NVIDIA Titan X GPU.
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Figure 3 shows the architecture of the CNN-Autoencoder model. The model has two
parts, the encoder and the decoder. The structure of the encoder is similar to some image
classification neural networks such as the convolutional layer, which includes the batch
normalization, the rectified linear unit (the ReLu) activation function, and the pooling layer.
The decoder part has the inversed layers used in the encoder, such as deconvolution layers
and de-max_pool layers.

Figure 3. Convolutional encoder-decoder architecture.

The encoder part has 13 convolutional layers and 5 max_pooling layers, where the
first 3 layers of the model have these characteristics: the first convolution layer is with
stride 2, followed by the second convolution layer with stride 1, and a non-overlapping
2 × 2 window max_pooling layer with stride 2. As mentioned above, each decoder layer
contains the corresponding layer of the encoder, which means the decoder network has
13 layers. The output of the last decoder is fed to the Softmax classifier, which produces
for each pixel the probabilities if it is a polyp or a normal colon tissue. The network
input-output dimensions are equal:

• use the same layer for the non-shrinking convolution layer.
• use transposed deconvolution for the shrinking convolution layer adjusted with the

same parameters.
• use the nearest neighbor upsampling for the max_pooling layer.

Open source medical image datasets lack the number of images in them, often only
a couple of hundred images. However, for deep learning algorithms to work, a large
amount of data is needed. In the case of image databases, researchers have used image
augmentation techniques to increase the number of training images. In our case, we used
an image augmentation library in Python called Imgaug Library [35]. Figure 4 shows the
results after applying some image augmentations that we used in our model, which include:

• Crop—parameter: px = (0, 16) which crops images from each side by 0 to 16 pixels
chosen randomly.

• Fliplr—parameter: 0.5 which flips horizontally 50% of all images.
• Flipud—parameter: 0.5 which flips vertically 50% of all images.
• GaussianBlur—parameter: (0, 3.0), blurs each image with varying strength using

gaussian blur (sigma between 0 and 3.0).
• Dropout—parameter: (0.02, 0.1), drop randomly 2 to 10% of all pixels (i.e., set them

to black).
• AdditiveGaussianNoise—parameter: scale = 0.01*255, adds white noise pixel by pixel

to images.
• Affine—parameter: translate_px = {“x”: (-network.IMAGE_HEIGHT // 3, network.

IMAGE_WIDTH // 3)}, applies translate/move of images (affine transformation).

12



Information 2021, 12, 245

Figure 4. One image of colon polyp after applying different image augmentations.

By using image augmentation, we not only increased the number of images to train
the model but also increased the robustness and reduced overfitting of our model. Another
technique to deal with the overfitting problem was the Dropout technique with a rate of 0.2.
Each dataset was divided into train set, validation set. Majority of the data in each dataset
was used for training, 75%, 15% was used to validate and the other 15% to test the model.

4. Results

We trained the model on the selected databases using only the training sets and then
we validated and tested with the validate and test sets. As each database has a different
number of images, the time to train the model varied. The same batch size of 100 was used
for all datasets. The accuracy and the total training time for each database are depicted in
Table 3. The best accuracy was achieved on ETIS-LaribPolypDB’s last batch with a score
of 0.967.

Table 3. The accuracy and the total training time for each dataset.

Datasets Best Accuracy Batch Total Time

ETIS-LaribPolypDB 0.967 1300 1120.48
CVC-ClinicDB 0.951 2200 2186.97
CVC-ColonDB 0.937 2000 3659.52

Apart from the accuracy results from each batch and the final test accuracy, we
obtained the images that the algorithm predicted. The test input, test targets, and test
predictions were set to gray scale before all the results were drawn. Figure 5 depicts one
example from each dataset. The three columns represent the three datasets (left to right:
ETIS-LaribPolypDB, CVC-ClinicDB, and CVC-ColonDB) and the three rows, from top to
bottom, the test image, the test ground truth (target), and the result of the segment obtained
from our model.

13



Information 2021, 12, 245

Figure 5. Images showing the results after training the convolutional encoder -decoder model on
(a) ETIS-LaribPolypDB, (b) CVC-ClinicDB, and (c) CVC-ColonDB database.

As we presented in Figure 2, polyps have various shapes and characteristics, ranging
from big and recognizable polyps to barely distinguishable circular shapes. In Figure 5, we
can see that the polyp in the first column is not easily detectable by the human eye, while the
polyp in the last is recognizable. This wide variation induces errors in polyp recognition.

5. Discussion and Conclusions

In the background section we presented many techniques and algorithms used these
recent years. A quick glance at summary Tab 1 depicts how diverse these techniques are,
but also how diverse the metrics to evaluate them are. Accuracy was one of the most used
metrics followed by the other metrics such as precision, recall etc. Although the main topic
is the same, colorectal polyps, comparing results is difficult. The first reason is the one
we explained above, different metrics. The others are related to the objectives, for what
purpose are these algorithms used (classification, segmentation, detection, or classification),
and the databases these algorithms are trained.

Among the cited papers we find two other similar studies to ours, meaning they
are focused on detection problem and use the same metric and database/s. By using the
CNN-Autoencoder model, we obtained the highest accuracy of 96.7, which is slightly better
than the current state-of-the-art models that calculated the accuracy, Table 4.

Table 4. Accuracy comparison for the proposed model and previously published studies on colon
polyp detection.

Model Accuracy (%)

CNN-Autoencoder (ours) 96.7
DLL [23] 96.4

AI-APD [24] 76.5

14



Information 2021, 12, 245

The main challenges with colonoscopy images seem to fall on the shape and texture of
the polyps [18,22,26], and the quality of the images [21,22,26,27]. The quality of the images
depends on the colonoscopy device itself [21,26] or on the expertise of the endoscopist [18,22,27].
Furthermore, in the case of polyp classification, class imbalance poses another problem [20].
Considering these challenges, we checked the image results and verified that indeed some
of the segments the model predicted are not as expected. The unexpected bad masks are
shown in Figure 6, and again this shows the implications that shape, and texture of the
polyp has, but also the conditions the colonoscopy image was taken. The lighting used
during the examination plays a negative role when it comes to colon polyp detection as the
models misrecognize the normal tissue as a polyp. This phenomenon happens because the
inner surface of the colon is smooth, and the light attached to the colonoscopy used by the
endoscopists to exam the colon reflects, confusing the models to consider healthy colon
tissues as polyps. We have to mention that the patient needs to prepare well and follow the
doctor’s instructions as per the normal colonoscopy session.

Figure 6. False detection of a polyp due to lighting conditions.

Technology has helped progress the medical field enormously, especially when it
comes to medical imaging. Colorectal cancer has been one of the diseases which has gained
attention, and many researchers have worked towards detecting and preventing such
disease. CAD systems have shown that the polyp miss rate has gone down. However,
research shows deep learning has shown even more progress aiding colonoscopists/
endoscopists to perform better.

In this work, we presented the current state of the art of deep learning techniques in
colon polyp detection, classification, segmentation and localization. We contributed by
applying a novel algorithm CNN-AE for detection of polyps, which appears promising
considering that no image preprocessing was performed prior to training the model. Our
model shows better results than the current state of the art, although not very significant.
We believe better results may be achieved if we increase the number of images in the
dataset. Moreover, having a diverse range of polyp images may improve the algorithms
performance. We tested the same model on other medical image databases, namely iris
and pressure ulcer datasets, and the results obtained were better than with the colon polyp
images. In future work we want to address these issues by making changes to the model
and we will add other image augmentations currently not implemented in the Imgaug
library. Besides the technical aspect, we want to address the lack of polyp image datasets.
We are in the process of creating a bigger and more diverse dataset of colon polyp images.
We will test the model as soon as we prepare the dataset which will be made available to
researchers for academic purposes as well.
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Abstract: Automatic severity assessment and progression prediction can facilitate admission, triage,
and referral of COVID-19 patients. This study aims to explore the potential use of lung lesion
features in the management of COVID-19, based on the assumption that lesion features may carry
important diagnostic and prognostic information for quantifying infection severity and forecasting
disease progression. A novel LesionEncoder framework is proposed to detect lesions in chest CT
scans and to encode lesion features for automatic severity assessment and progression prediction.
The LesionEncoder framework consists of a U-Net module for detecting lesions and extracting
features from individual CT slices, and a recurrent neural network (RNN) module for learning the
relationship between feature vectors and collectively classifying the sequence of feature vectors.
Chest CT scans of two cohorts of COVID-19 patients from two hospitals in China were used for
training and testing the proposed framework. When applied to assessing severity, this framework
outperformed baseline methods achieving a sensitivity of 0.818, specificity of 0.952, accuracy of 0.940,
and AUC of 0.903. It also outperformed the other tested methods in disease progression prediction
with a sensitivity of 0.667, specificity of 0.838, accuracy of 0.829, and AUC of 0.736. The LesionEncoder
framework demonstrates a strong potential for clinical application in current COVID-19 management,
particularly in automatic severity assessment of COVID-19 patients. This framework also has a
potential for other lesion-focused medical image analyses.

Keywords: chest CT; COVID-19; severity assessment; progression prediction; U-Net; RNN

1. Introduction

The rapid escalation in the number of COVID-19 infections exceeded the capacity
of healthcare systems to respond in many nations, and consequently reduced patient
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outcomes [1]. In such circumstances, it is of paramount importance to develop efficient
diagnostic and prognostic models for COVID-19, so that the patients’ care can be optimized.

Chest CT scans have been found to provide important diagnostic and prognostic
information for COVID-19 [2–7]. Although there is still debate on the use of chest CT
in screening and diagnosing COVID-19 cases [8], a surge of computational methods for
chest CT have been developed to support medical decision making during the current
pandemic [9–15]. Study population, model performance, and reporting quality vary
substantially between studies. An in-depth comparison of these studies can be found in a
recent systematic review [16].

In addition to diagnostic and screening models, several prediction models have been
proposed based on an assessment of lung lesions. There are three typical classes of lesions
that can be detected in COVID-19 chest CT scans: ground glass opacity (GGO), consolida-
tion, and pleural effusion [3,4]. Imaging features of the lesions including shape, location,
extent and distribution of involvement of each abnormality have been found to have good
predictive power for mortality [17] or hospital stay [18]. These features, however, are
mostly derived from the delineated lesions, and so depend heavily on lesion segmentation.
Manual delineation of lesions often takes one to five hours, which substantially undermines
clinical applicability of these methods.

Automatic lung lesion segmentation for COVID-19 has been actively investigated
in recent studies [19,20]. A VB-Net model based on a neural network was proposed to
segment the infection regions in CT scans [19]. This model, when trained using CT scans
of 249 COVID-19 patients, achieved a Dice score of 0.92 between automatic and manual
segmentations, and successfully reduced the delineation time to less than 4 min. In another
recent study [20], a lesion segmentation model based on the 3D-Dense U-Net architecture
was proposed and trained on CT scans of a combination of 160 COVID-19, 172 viral
pneumonia, and 296 interstitial lung disease patients. Although the lesion masks were
not compared voxel-to-voxel, the volumetric measures of lesions, such as percentage of
opacity and consolidation, showed a high correlation (0.97–0.98) between automatic and
manual segmentations.

Previous studies [19,20] have suggested that lesion features might be a useful biomarker
for COVID-19 patient severity assessment, but the effectiveness of lesion features is yet
to be verified. Lesion features may have additional applications in the management of
COVID-19, which need to be investigated further. In this study, we aim to test the effective-
ness of using lesion features in COVID-19 patients for disease severity assessment, and to
explore the potential use of lesion features in predicting disease progression.

Automatic severity assessment and progression prediction will substantially facilitate
admission, triage, and referral of patients. The first goal of this study is to develop a method
for assessing severity of COVID-19 patients based on their baseline chest CT scans. Four
severity types: mild, ordinary, severe, and critical, can be defined based on a core outcome
set (COS) encapsulating clinical symptoms, physical and chemical detection, viral nuclei
aid detection, disease process, etc. [21]. Supportive treatments, such as supplementary
oxygen and mechanical ventilation, are usually required for severe and critical cases [22].
We represent the assessment severity task as a binary classification problem (i.e., to classify
a patient as a mild/ordinary case (mild class) or a severe/critical case (severe class)).

The second goal of this study is to predict disease progression for the mild/ordinary
cases based on their baseline CT scans. In other words, we aim to predict which of
the mild/ordinary severity patients are likely to progress to the severe/critical category
(converter class) in the short term (within seven days), and which patients would remain
stable or recover (non-converter class), based on the assumption that lesion features may
carry important prognostic information for forecasting disease progression. We again
consider the task as a binary classification problem (i.e., to classify the non-converter
cases and converter cases). Figure 1a presents an example of a COVID-19 case with
mild symptoms. In less than seven days, the patient’s symptoms rapidly worsened and
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progressed to severe. Figure 1b is an example of a non-converter case whose symptoms
progressed slowly and remained mild seven days after the baseline CT scan.

Figure 1. Examples of converter and non-converter cases. (a) A mild case progressed to severe within
seven days; (b) a mild case did not progress to severe within seven days.

To achieve the above two goals, a novel LesionEncoder framework is proposed to
detect lesions in CT scans and encode lesion features for automatic severity assessment
and progression prediction. The LesionEncoder framework consists of two modules: (1) A
U-Net module which detects lesions and extracts features from CT slices, and (2) a recurrent
neural network (RNN) module for learning the relationship between feature vectors and
classifying the sequence of feature vectors as a whole.

We applied the LesionEncoder framework for both severity assessment and progres-
sion prediction. With access to data of two COVID-19 confirmed patient cohorts from
two hospitals, we trained our proposed model with CT scans of a cohort of patients from
one hospital and tested it on an independent cohort from the other hospital. The models
built on the LesionEncoder framework outperformed the baseline models that used lesion
volumetric features and general imaging features, demonstrating a high potential for clini-
cal applications in the current COVID-19 management, particularly in automatic severity
assessment of COVID-19 patients. This framework may also have a strong potential in sim-
ilar lesion-focused analyses, such as neuroimaging based diagnosis of brain tumors [23,24]
and neurological disorders [25,26], CT-based lung nodule classification [27], and retinal
imaging based ophthalmic disease detection [28].
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2. Datasets

A total of 346 COVID patients confirmed by reverse transcription polymerase chain
reaction (RT-PCR) were retrospectively selected from two local hospitals in the Hubei
Province, China, namely Huang Shi Central Hospital (HSCH) and Xiang Yang Central
Hospital (XYCH). Severity types of all patients at baseline and follow-up (in seven days)
were assessed and confirmed by clinicians according to the COS for COVID-19 [21]. More
details of the demographics and baseline characteristics of patients can be found in our
previous study [29]. This analysis was approved by the Institutional Review Board of both
hospitals, and written informed consent was obtained from all the participants.

Tables 1 and 2 illustrate, respectively, the demographics of patients for the develop-
ment of a severity assessment model (Task 1—mild vs. severe) and a progression prediction
model (Task 2—converter vs. non-converter). For both tasks, CT scans of the HSCH cohort
were used for training the models, and CT scans of the XYCH cohort were used as an
independent dataset to test the trained models. Patients may have either a lung-window
scan, a mediastinal-window scan, or both in their baseline CT examination. All scans were
included in the analysis. The total number of CT scans for Task 1 was 639, and that for
Task 2 was 601. An internal validation set (20% of the training samples) was split from the
training set and used to evaluate the model’s performance during training.

Table 1. Demographics of the patients in Task 1 dataset.

Category HSCH—Training Set XYCH—Test Set Total

Mild 7 1 8
Ordinary 212 104 316

Severe 7 6 13
Critical 4 5 9

Total patients 230 116 346

Total CT scans 433 206 639

Age (mean ± SD) 49.00 ± 14.4 47.5 ± 17.2 48.5 ± 15.4
Gender (female/male) 120/110 57/59 177/169

Table 2. Demographics of the patients in Task 2 dataset.

Category HSCH—Training Set XYCH—Test Set Total

Non-converter 201 99 300
Converter 18 6 24

Total patients 219 105 324

Total CT scans 412 189 601

Age (mean ± SD) 48.4 ± 14.0 46.1 ± 16.6 47.7 ± 14.9
Gender (female/male) 113/106 55/50 168/156

Note that there is a highly imbalanced distribution of samples in the datasets (i.e., 324
(93.6%) patients in mild class for Task 1, and 300 (92.6%) patients in non-converter class for
Task 2). A weighting strategy was used to address the imbalanced distribution in datasets,
and the details are presented in Section 3.3.

3. Methods

Figure 2 gives an overview of the LesionEncoder framework, which consists of two
modules: (1) A lesion encoder module for lesion detection and feature encoding, and (2) a
RNN module for sequence classification. The lesion encoder module extracts features from
individual CT slices; therefore, a CT scan with multiple CT slices can be represented as
a sequence of feature vectors. The sequence classification module takes the sequence of
feature vectors as input and then classifies the entire sequence collectively.
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Figure 2. An overview of the proposed LesionEncoder framework.

3.1. Image Pre-Processing

All CT scans were pre-processed with intensity normalization, contrast limited adap-
tive histogram equalization, and gamma adjustment, using the same pre-processing
pipeline as in our previous study [30]. We further performed lung segmentation on
the CT slices using an established model—R231CovidWeb [31]. This model (The bi-
nary executable software for the lung segmentation model is available online (https:
//github.com/JoHof/lungmask (accessed on 11 February 2021))) was trained on a large
and diverse dataset of non-COVID-19 CT scans and further fine-tuned with an additional
COVID-19 dataset [32]. The CT slices with less than 3 mm2 lung tissue were removed from
our datasets, since they bear little or no information of the lung.

3.2. Lesion Encoder

The U-Net architecture [33] is adopted for the lesion encoder module. It consists of
an encoder and a decoder, where the encoder captures the lesion features and the decoder
maps lesion features back to the original image space. In other words, the encoder is
responsible for extracting features from the input images (i.e., CT slices), whereas the
decoder generates the segmentation maps (i.e., lesion masks). Figure 3 illustrates the
encoder-decoder architecture of the lesion encoder module.
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Figure 3. The U-Net architecture for lesion detection and feature encoding.

We used the EfficientNetB7 model [34] as the backbone to build the lesion encoder
module, as it represents the state-of-the-art in object detection while being 8.4 times smaller
and 6.1 times faster on inference than the best existing models in the ImageNet Chal-
lenge [35]. The ImageNet pre-trained weights were used to initialize the EfficientNetB7
model. There are 7 blocks in the EfficientNetB7 model, as shown in Figure 3. The skip
connections were built between the expand activation layers in Blocks 2, 3, 4, and 6 and
their corresponding up-sampling layers in our model. The output of the bottom layer is
the final output feature vector representing the lesion features of the input slice.

A publicly available dataset was used to train the EfficientNetB7 U-Net, which con-
sisted of 100 axial CT slices from 60 COVID-19 patients [32]. All the CT slices were anno-
tated by an experienced radiologist with 3 different lesion classes, including GGO, consoli-
dation, and pleural effusion. Since this dataset is very small, we applied different augmenta-
tions, including horizontal flip, affine transforms, perspective transforms, contrast manipu-
lation, image blurring and sharpening, Gaussian noise, and random crops, to the dataset us-
ing the Albumentations library [36]. The model (The Tensorflow implementation of the Ef-
ficientNetB7 U-Net is available online (https://github.com/qubvel/segmentation_models
(accessed on 11 February 2021))) was trained using Adam optimizer [37] with a learning
rate of 0.0001 and 300 epochs.

The lesion encoder module was applied to process individual slices in a CT scan. For
each CT slice, a high-dimensional feature vector (d = 2560) was derived. Independent
component analysis (ICA) was performed on the training samples to reduce dimensionality
(d = 64). The ICA model was then applied to the test samples, so that they have the same
feature dimension as the training samples. The output of the lesion encoder is a sequence
of feature vectors, which are then classified using a sequence classifier, as explained in the
next section.
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3.3. Sequence Classification

A RNN model was built for sequence classification. Its input is a sequence of feature
vectors generated by the lesion encoder. The structure of the RNN model is illustrated in
Table 3—two bidirectional long short-term memory (LSTM) layers, followed by a dense
layer with a dropout rate of 0.5, and an output dense layer. For comparison purposes,
another pooling model was created (Table 3)—using max pooling and average pooling to
combine the slice-based feature vectors, as inspired by a previous study [9]. The difference
between these two models is that the RNN model captures the relationship between feature
vectors in a sequence, whereas the pooling model ignores such relationships.

Table 3. The architectures of the RNN model and the pooling model.

RNN Model Pooling Model

BiLSTM (64, return-sequences) Global_Max_Pooling Global_Average_Pooling

BiLSTM (32) Concatenation

Dense (64, ReLu, dropout = 0.5) Dense (64, ReLu, dropout = 0.5)

Dense (1, Sigmoid) Dense (1, Sigmoid)

Adam optimizer [37] with a learning rate of 0.001 was used for training the models
in 100 epochs. A validation set (20%) was split from the training set for monitoring the
training process. Every 20 epochs, the validation set was reselected from the training set,
so that the model will be internally validated by all training samples during training. To
address the imbalanced distribution in the datasets, we assigned different weights to the
two classes (mild/non-converter class: 0.2, severe/converter class: 1.8) when training the
models. In addition, if a patient has multiple CT scans, the scan with a higher probability
of a positive prediction overrules the others when applying the models for inference.

3.4. Performance Evaluation

We tested the LesionEncoder framework with two configurations: (1) Using the
pooling model as the classifier (LE_Pooling) and (2) using the RNN model as the classifier
(LE_RNN). These methods were compared to 3 baseline methods. The first baseline
method (BS_Volumetric) was inspired by a previous study [20], which was based on a
Logistic Regression model using 4 lesion volumetric features as input: GGO percentage,
consolidation percentage, pleural effusion percentage, and total lesion percentage. The
second (BS_Pooling) and third (BS_RNN) baseline methods were based on the same
classification models as in LE_Pooling and LE_RNN; however, the features were extracted
from an EfficientNetB7 model without a lesion encoder module. The purpose of the second
and third baseline models was to estimate the contribution of the lesion encoder. Following
previous studies [38,39], sensitivity, specificity, accuracy, and area under curve (AUC) were
used to evaluate the methods’ performance. Receiver operating characteristic (ROC) curves
were also compared between methods.

3.5. Development Environment

All the neural network models, including the EfficientNetB7 U-Net, the Pooling model
and the RNN model, were implemented in Python (v3.6.9) and Tensorflow (v2.0.0). The
models were trained using a Fujitsu server with Intel Xeon Gold 5218 GPU, 128 G memory,
and NVidia V100 32 G GPU. The same server was used for image pre-processing, feature
extraction, and classification.

4. Results

4.1. Lung and Lesion Segmentation

The lung masks generated using the R231CovidWeb model [31] and the lesion masks
generated by the lesion encoder module were visually inspected by an experienced image
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analyst (S.L.). Overall, the lung segmentation results were visually reliable with few severe
and critical cases having infection areas missed out in their lung masks. The lesion encoder
achieved a Dice of 0.92 on the COVID-19 CT segmentation dataset [32]. Figure 4 presents
four examples of the lung and lesion segmentation results (reconstructed using 3D Slicer
(v4.6.2) [40]) of the COVID-19 patients, one for each severity class. It shows that higher
severity of COVID-19 is reflected in CT scans as increasing number and volume of lesions.

Figure 4. Examples of the patients in different severity groups: (a–d). The upper row presents the axial CT slices with the
lung (red) and lesion (green: GGO; yellow: consolidation; brown: pleural effusion) boundaries overlaid on the CT slices.
The lower row illustrates the 3D models of the lung and lesions.

4.2. Severity Assessment

Five different methods were compared in the automatic severity assessment of COVID-19
patients, including three baseline methods and two proposed methods, as described in
Section 3.4. Table 4 illustrates the performance metrics of different methods on the sever-
ity assessment task, and Figure 5a shows the ROC curves of these methods. The three
methods using lesion features (BS_Volumetric, LE_Pooling, and LE_RNN) consistently
outperformed the models that did not use lesion features by a marked difference in sensi-
tivity (>9.1%), specificity (>15.3%), accuracy (>14.7%), and AUC (>15.1%). In particular,
BS_Volumetric achieved the highest AUC of 0.931, indicating that the lesion volumetric
features were highly effective in distinguishing between severe and mild cases.

Table 4. Performance of different methods in baseline severity assessment. Bold font indicates best
result in each performance metric achieved by the methods.

Method Sensitivity Specificity Accuracy AUC

BS_Volumetric 0.818 0.933 0.922 0.931

BS_Pooling 0.727 0.752 0.750 0.732
BS_RNN 0.727 0.771 0.767 0.749

LE_Pooling 0.818 0.924 0.914 0.900
LE_RNN 0.818 0.952 0.940 0.903

The proposed LE_RNN method achieved higher specificity (0.952) than the BS_Volumetric
method (0.933), showing that the features captured by the lesion encoder might be useful
in reducing the false positive rate compared with the volumetric features. When com-
paring the pooling models and RNN models, we found that the RNN models performed
slightly better than the pooling models; and the impact of the sequence classifier on the
classification performance was much lower than that of the lesion features.
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Figure 5. ROC curves of different models in (a,b) .

4.3. Progression Prediction

The results of different methods in the prediction of disease progression task are
presented in Table 5 and Figure 5b presents the ROC curves of these methods. The
BS_Volumetric method performed poorly (sensitivity = 0.5, specificity = 0.465, accu-
racy = 0.467, AUC = 0.51), indicating that lesion volumetric features were not predictive
of COVID-19 disease progression. This finding was not surprising, since the converter
and non-converter cases both showed mild symptoms at baseline and presented a small
quantity of lesions in the lungs. The BS_Pooling and BS_RNN methods achieved slightly
better performance than BS_Volumetric, although they did not use any lesion features.

Table 5. Performance of different methods in prediction of disease progression. Bold font indicates
best result in each performance metric achieved by the methods.

Method Sensitivity Specificity Accuracy AUC

BS_Volumetric 0.500 0.465 0.467 0.510

BS_Pooling 0.667 0.535 0.543 0.569
BS_RNN 0.667 0.535 0.543 0.662

LE_Pooling 0.667 0.737 0.733 0.724
LE_RNN 0.667 0.838 0.829 0.736

The LE_Pooling and LE_RNN methods outperformed the baseline methods with
a substantial increase of 20–30% in specificity. LE_RNN was the best method in all the
evaluation metrics (sensitivity = 0.667, specificity = 0.838, accuracy = 0.829, AUC = 0.736).
The results indicate that the lesion features extracted by the lesion encoder may bear useful
diagnostic information for predicting disease progression. However, it is still challenging
to predict disease progression using the lesion features, and the low sensitivity (0.667) may
restrict clinical applicability of the proposed methods.

5. Discussion

Clinical value in the management of COVID-19. The rapid spread of COVID-19 has
put a strain on healthcare systems, necessitating efficient and automatic diagnosis and
prognosis to facilitate the admission, triage, and referral of COVID-19 patients. Chest
CT plays a key role in COVID-19 management by providing important diagnostic and
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prognostic information of patients. Several computational models have been developed
to support automatic screening and diagnosis of COVID-19 [9–15]. There are also a few
studies [19,20] using CT to quantify infection severity with a focus on development of
lesion segmentation models. A few measures based on the lesion volumes have been
proposed to quantify infection severity [19]; however, the intricate patterns of the lesion
shape, texture, location, extent, and distribution were less investigated.

To capture the complex features in the lesions, we proposed a novel LesionEncoder
framework. Two specific applications of this framework (i.e., assessment of severity and
prediction of disease progression for COVID-19 patients) were explored in this study. To the
best of our knowledge, this work represents the first attempt to predict COVID-19 patient
disease progression using chest CT scans. Models built on this framework are able to take
CT scans as input, detect, and extract features from the lesions, and quantify the severity
or predict progression in a fully automated manner. The analysis of a high-resolution CT
scan of 512 × 12 × 430 voxels takes less than 1 min, which is substantially faster than
radiologists’ reading time. This can also save the burden of manual delineation of the
lesions. The quantitative measures based on the features are of high clinical relevance, and
can be used to support medical decision making or to track changes in patients.

We should note that this framework is not designed to analyze the COVID-19 suspects
who are not confirmed by RT-PCR, or the covert/asymptomatic cases that are not docu-
mented [41–43]. The community-acquired pneumonia cases, such as viral pneumonia and
interstitial lung disease patients, were also not considered in this study. As pointed out
in a systematic review [44], normal controls and diseased controls will be needed for the
development of screening or diagnostic models, thus the selection bias in the cohort may
lead to a risk of overestimated performance. Since our model focuses on the confirmed and
hospitalized COVID-19 cases; therefore, will not be exposed to such risk.

Models based on lesion features outperformed the baseline models without lesion
features in both severity assessment and progression prediction. An interesting finding in
severity assessment is that the lesion volumetric features are highly effective in distinguish-
ing the severe cases from the mild cases. The features extracted by the lesion encoder did
not improve the sensitivity of detecting the severe cases, but only reduced false positive
predictions. This finding indicates that lesion volumetric features, such as GGO percentage
and consolidation percentage, are prominent biomarkers in identifying the severe cases.
The lesion encoder makes marginal contribution to severity assessment. In contrast, in
progression prediction the models with the lesion encoder performed much better than
those with volumetric features, indicating that the intricate pattern captured by the lesion
encoder provide useful prognostic information for identifying the COVID-19 patients at
higher risk of converting to the severe type. The LesionEncoder framework demonstrates
a clinical applicability in COVID-19 management, particularly in the automatic severity
assessment of COVID-19 patients (sensitivity = 0.818, specificity = 0.952, AUC = 0.931).
However, it is still challenging to predict disease progression using lesion features, and the
low sensitivity (0.667) may restrict clinical applicability of the proposed methods.

Technical contributions of the LesionEncoder framework. The technical contributions
of this work are two-fold. Most importantly, this framework extends the use of lesion
features beyond conventional lesion segmentation and volumetric analysis. There is
a wealth of information in the lesions including shape, texture, location, extent, and
distribution of involvement of the abnormality, that can be extracted by the lesion encoder.
We demonstrated two novel applications of the lesion features in severity assessment and
progression prediction. However, they also have a strong potential in a wide range of
other clinical and research applications, such as supporting clinical decision making and
providing insights of the pathological mechanism.

In addition, the proposed LesionEncoder framework attempts to address a common
challenge in medical image analysis: how to reconcile local information and global in-
formation to improve medical image perception [45]. In this study, the slices from a CT
scan were used as input for classification, but not every slice in the scan carries the same
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diagnostic/prognostic information. That is, the ground truth label of the entire scan cannot
be propagated to label individual slices. For example, a CT slice with no lesion from a
severe case might appear more ‘normal’ compared to a slice with some lesions from a
mild case. Our proposed framework is a feasible approach to infer the holistic prediction
with a focus on the analysis of region of interest. The RNN module in the framework is
also a more sophisticated approach than the conventional feature fusion methods that use
average pooling or max pooling to combine the local features. There are many analyses of
the same nature, e.g., neuroradiologists may use features such as tumoral infiltration of
surrounding tissues in MRI for tumor grading [46]; ophthalmologists may focus on lesions,
such as hemorrhages and microaneurysms, hard exudates, and cotton-wool spots, when
grading diabetic retinopathy [47]; and pathologists are more likely fixate on regions of
highest diagnostic relevance when interpreting the biopsy whole slide images (WSI) [48].
The LesionEncoder framework may be generalizable to these lesion-focused medical
image analyses.

Limitations. A limitation of this study is that we only had access to a retrospective
cohort. Although it includes 639 CT scans of 346 patients, it is still a relatively small dataset
compared to other datasets for development of deep learning models. It also refuted the
idea of developing 3D deep learning models for scan-based classification. Since 3D models
are usually more complicated than 2D models and have substantially more parameters,
the small sample size will lead to undertrained models. In addition, there is a highly
imbalanced distribution in the datasets. Among the 346 samples for the development of
the severity assessment model, 324 (93.6%) patients were in the mild class. For the disease
progression model, there are 300 (92.6%) patients in the non-converter class. Although this
reflects the real distribution, it will be ideal to have more severe/converter class samples
for training. To address this imbalance distribution problem, we used a class weighting
strategy to give the positive class higher weight during training, and used a prediction
weighting strategy during inference to enhance the prediction of the positive class if that
patient has multiple scans. A larger sample size with more severe and converter cases in
the datasets would help train more accurate and robust models as well as produce reliable
performance estimates. Other techniques, such as synthetic minority oversampling [29],
spherical coordinates transformation [49], and generative adversarial network [50], will be
investigated in further study.

The lung masks generated using the R231CovidWeb model [31] and the lesion masks
generated by the lesion encoder module were visually inspected by an experienced image
analyst. The segmentation results were visually reliable, but the missed-out lung or lesion
regions in the segmentation masks were noted in a few severe and critical cases. Since there
were no lesion masks for our datasets, no quantitative analyses were performed to evaluate
the automatic segmentation results. Further improvements can be made if the ground
truth annotation of the lung and lesion can be provided to optimize the performance of the
current lung segmentation model and lesion encoder module on our datasets.

Furthermore, it is still challenging for LesionEncoder alone to predict disease pro-
gression using lesion features. However, combining the proposed method with other
biomarkers, such as short-time changes in neutrophil-to-lymphocyte ratio and urea-to-
creatinine ratio [51] might further help stratify patients’ severity.

There are a few recent studies that used explainable AI in chest CT segmentation
and classification of COVID-19 patients, such as these based on class activation map [52],
few-shot learning [53], and the shapely addictive explanations framework [29]. Another
potential future extension of this work is to use explainable AI frameworks to explain the
model’s logics and decision-making processes, thereby unlocking the black box of deep
learning and helping the end users to understand the models better.

6. Conclusions

In this study, a novel LesionEncoder framework was proposed to encode the enriched
lesion features in chest CT scans for automatic severity assessment and progression predic-
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tion of COVID-19 patients. Models built on this framework outperformed the evaluated
baseline models with a marked improvement. The lesion volumetric features were promi-
nent biomarkers in identifying severe/critical cases, but intricate features captured by
the lesion encoder were found effective in identifying the COVID-19 patients who have
higher risks of converting to the severe or critical type. Overall, the LesionEncoder frame-
work demonstrates a high clinical applicability in the current COVID-19 management,
particularly in automatic severity assessment of COVID-19 patients.

An important future direction of this framework lies in the combination of clinical
data and imaging data for better prediction performance, especially for the progression
prediction, since clinical data may provide essential indicators of the clinical risks of the
patients. Furthermore, the applications of the LesionEncoder framework to other types of
lesion-focused analyses will be further investigated.
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Abstract: Background: The current pandemic caused by SARS-CoV-2 is an acute illness of global
concern. SARS-CoV-2 is an infectious disease caused by a recently discovered coronavirus. Most
people who get sick from COVID-19 experience either mild, moderate, or severe symptoms. In
order to help make quick decisions regarding treatment and isolation needs, it is useful to determine
which significant variables indicate infection cases in the population served by the Tijuana General
Hospital (Hospital General de Tijuana). An Artificial Intelligence (Machine Learning) mathematical
model was developed in order to identify early-stage significant variables in COVID-19 patients.
Methods: The individual characteristics of the study subjects included age, gender, age group,
symptoms, comorbidities, diagnosis, and outcomes. A mathematical model that uses supervised
learning algorithms, allowing the identification of the significant variables that predict the diagnosis
of COVID-19 with high precision, was developed. Results: Automatic algorithms were used to
analyze the data: for Systolic Arterial Hypertension (SAH), the Logistic Regression algorithm showed
results of 91.0% in area under ROC (AUC), 80% accuracy (CA), 80% F1 and 80% Recall, and 80.1%
precision for the selected variables, while for Diabetes Mellitus (DM) with the Logistic Regression
algorithm it obtained 91.2% AUC, 89.2% accuracy, 88.8% F1, 89.7% precision, and 89.2% recall for the
selected variables. The neural network algorithm showed better results for patients with Obesity,
obtaining 83.4% AUC, 91.4% accuracy, 89.9% F1, 90.6% precision, and 91.4% recall. Conclusions:
Statistical analyses revealed that the significant predictive symptoms in patients with SAH, DM, and
Obesity were more substantial in fatigue and myalgias/arthralgias. In contrast, the third dominant
symptom in people with SAH and DM was odynophagia.

Keywords: machine learning; COVID-19; identification

1. Introduction

A novel coronavirus, known as Severe Acute Respiratory Syndrome (SARS-CoV-2),
was identified in December 2019 as the cause of a respiratory illness called Coronavirus
Disease 2019, or COVID-19 [1]. The origin of this virus is not yet confirmed, but an analysis
of its genetic sequence suggests it is phylogenetically related to bat viruses similar to SARS
(severe acute respiratory syndrome), making bats a possible key reservoir [2]. Symptoms
of COVID-19 infection appear after an incubation period of approximately 5.2 days [3].
The period from the onset of COVID-19 symptoms to death ranges from 6 to 41 days with a
median of 14 days [4]. This period depends largely on the age and the state of the patient’s
immune system [4].
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The infection is transmitted through droplets generated by symptomatic patients
when coughing or sneezing, but it can also occur through asymptomatic patients and even
before the onset of symptoms [5].

The clinical features of COVID-19 are diverse, from an asymptomatic state to acute res-
piratory distress syndrome and multiorgan failure [5]. The most common early symptoms
of COVID-19 illness are fever, cough, and fatigue, while other symptoms include headache,
sputum production, hemoptysis, dyspnea, diarrhea, and lymphopenia [6]. Advanced age,
cardiovascular disease, diabetes, chronic respiratory disease, hypertension, and cancer are
said to increase the risk of death for people diagnosed with COVID-19.

Regarding COVID-19, as of 15 August 2021, there were 207,784,507 confirmed cases
(410,464 new cases) and 4,370,424 deaths, while 4,462,336,040 vaccine doses have been
reported worldwide [7,8]. Most estimates of fatality ratios have been based on cases
detected through surveillance and calculated using crude methods, giving rise to widely
variable estimates of CFR depending on the country—from less than 0.1% to over 25% [9].

Currently, in Mexico (August 2021), there are 3,310,989 estimated positives, with 261,384
estimated deaths, and 133,866 estimated actives. However, there are 3,108,438 confirmed
cases, 5,527,343 negative, 477,811 suspected and 248,652 accumulated deaths. Of the
confirmed cases, 53.56% have been women and 46.44% men. A total 5.6% of patients
have been hospitalized, and 94.4% have been outpatients. Among the main comorbidities
are hypertension (10.34%), Obesity (8.989%), diabetes (7.31%) and smoking (8.03%), with
information updated on 16 August 2021. On the same date, the state of Baja California
had 913 active cases, with 54,453 accumulated cases, and 8979 deaths. The state’s capital,
Mexicali, is the city with the highest number of cases in the state, with 21,778 accumulated
cases, followed by Tijuana, our case study [10].

2. Background

Several authors have addressed the issue of SARS-CoV-2 from a technological point of
view, with the development of artificial intelligence algorithms. There are models to predict
the mortality rate [11]. Some studies present the detection of severely ill patients with
COVID-19 from those with mild symptoms using clinical information and data from blood
and urine tests [12]. Several artificial intelligence models have been used with Machine
Learning and Deep Learning methods which have been used intensively for COVID-19.
Although Machine Learning and Deep Learning methods show successful results in the
COVID-19 cases tested, there are accounting challenges that can be considered to improve
the quality of the research in that direction [13].

Table 1 summarizes the articles included in this minireview, together with some
characteristics of these studies.

Table 1. Minireview of papers.

Authors. Year Objective Learners Metrics Novelties

Li WT et al. [14]. 2020 Classification XGBoost sensitivity of 92.5% and a
specificity of 97.9%

Novel associations between
clinical variables, including
correlations between being

male and having higher levels
of serum lymphocytes and
neutrophils. We found that

COVID-19 patients could be
clustered into subtypes based

on serum levels of immune
cells, gender, and reported

symptoms.

Guan X et al. [15] 2020 Prediction XGBoost
>90% precision and >85%
sensitivity, as well as F1

scores >0.90

Proposed disease severity, age,
serum levels of hs-CRP, LDH,

ferritin, and IL-10 as significant
predictors for death risk of

COVID-19, which may help to
identify the high-risk

COVID-19 cases.
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Table 1. Cont.

Authors. Year Objective Learners Metrics Novelties

Delafiori J et al. [16] 2021 Diagnosis and risk
assesment

gradient tree
boosting (GDB)

ADA tree boosting

96.0% of specificity and
83.1% of sensitivity

80.3% of specificity and
85.4% of sensitivity

Propose machine learning
techniques to determine from

databases the five main
challenges in responding

COVID-19 and how to
overcome these challenges to

save lives.

Allam M et al. [17] 2020 Diagnosis and
prediction Neural Networks 100% sensitivity and

99.9% specificity

The Abbott antibody test
(SARS-CoV-2 IgG assay) has
shown 100% sensitivity and

99.9% specificity thus far. The
Abbott test finds whether the
patient has IgG antibodies for
COVID-19, which can stay for
months to years after a person

has recovered.

Assaf D et al. [18] 2020 Prediction
Classification and
Regression Tree

(CRT) model

Sensitivity, specificity,
PPV, NPV and accuracy
of 88.0%, 92.7%, 68.8%,

97.7% and 92.0%,
respectively, with ROC

AUC of 0.90.

The analysis of the database in
this study found that most

contributory variables to the
models were APACHE II score,

white blood cell count, time
from symptoms to admission,
oxygen saturation and blood

lymphocytes count.
Machine-learning models

demonstrated high efficacy in
predicting critical COVID-19

compared to the most
efficacious tools available.

Naseem M et al. [19] 2020 Detection Neural Networks
sensitivity of 90% and

specificity of 96%
respectively

Results were synthesized and
reported under 4 themes. (a)
The need of AI during this
pandemic: AI can assist to

increase the speed and accuracy
of identification of cases and
through data mining to deal

with the health crisis efficiently,
(b) Utility of AI in COVID-19

screening, contact tracing, and
diagnosis: Efficacy for virus

detection can a be increased by
deploying the smart city data

network using terminal
tracking system along-with

prediction of future outbreaks,
(c) Use of AI in COVID-19

patient monitoring and drug
development:

Arga KY [20] 2020 Prediction and
diagnosis

Apache, Gleason
and PASI -

Machine learning is considered
to help reduce diagnostic errors

and unnecessary use of
diagnostic tools through the

development of rational
algorithms. Indeed, the

COVID-19 pandemic showed
that digital health is invaluable,

feasible, and not too far.

Majhi R et al. [21] 2020 Prediction

Nonlinear
Regression (NLR),
Decision Tree (DT)
based regression,

and random forest
(RF) models

Evaluation metrics
obtained using the Mean

Absolute Percentage
Error (MAPE).
NLR = 0.24%
DT = 0.18%
RF = 0.02%

The algorithm predict the
number of positive cases in
India. In essence, the paper

proposes a machine learning
model that can predict the

number of cases well in
advance very effectively and
also suggest some key inputs.
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Table 1. Cont.

Authors. Year Objective Learners Metrics Novelties

van der Schaar M
et al. [22] 2020 Prediction - .

This paper summarizes the use
of machine learning techniques
in different studies to manage

limited healthcare results,
developing personalized

treatment, informing policies
and able effective collaboration

and expediting clinical trials.

Das AK et al. [23] 2020 Prediction Linear Regression

For liner regression (area
under ROC curve =
0.830), calibration

(Matthews Correlation
Coefficient = 0.433; Brier

Score = 0.036).

In this study, according to the
random forest algorithm, age

was the most important
predictor followed by exposure,
sex and province, whereas this

order was sex, age, province
and exposure as per logistic

regression

Swapnarekha H et al.
[24] 2020 Prognosis

Support Vector
Machine (SVM),

Rannom Forest RF,
K-Means, XGBoost

and linear
regression

0.933 true positive rate,
0.74 true negative rate

and 0.875 accuracy.

This article obtained good
metrics for COVID-19

prediction. On the other hand,
mentioned machined learning

techniques used for
classification and prediction to

reduce the spread of
coronavirus and understand the
limitation of machine learning

analysis, being: lack of
information, accuracy of

predictions, usage of advanced
approaches, providing feasible

solutions for developing
countries and necessity of

advance intelligent systems on
symptom based identification

of COVID-19.

3. Materials and Methods

This article is based on a study of COVID-19 patients at the Tijuana General Hospital, a
public hospital that serves a very particular low-income population. Tijuana is a border city
in northern Mexico next to San Diego, California, in the United States. Including neighbor-
ing Rosarito, the greater Tijuana region has a population of around 1,900,000 inhabitants,
the majority Mexican nationals. However, there are also many migrants from other Central
American, South American, and Caribbean countries living in unaccounted shantytowns,
seeking to enter the United States in any way, either legal or illegally. While doing so, they
temporarily live in Tijuana without a permanent job, a fixed salary, a steady place of work,
or a regular postal address, and therefore, do not have access to social security or health
services, and eventually fall ill, often due to a myriad of causes. The range of pathologies
and diseases found in the city of Tijuana is much broader than those found in other cities
with more homogeneous or steady populations, which further complicates medical and
healthcare services for this specific segment of people. Tijuana General Hospital is one
of the few public health institutions that serve this marginalized segment of the Tijuana
population, hence the size and complexity of the challenges faced by its medical staff every
day, as well as the diversity of pathologies met by the health professionals who treat them.
In this article, we evaluate a group of COVID-19-diagnosed patients, who were treated at
this Tijuana hospital during 2020.

3.1. Sample Size

The required sample size for this study was estimated considering the expected
prevalence in studies carried out using bioimpedance analysis, 17% [25], assuming a
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margin of error of 5% and a confidence interval of 95%. According to these criteria, a total
of 185 patients were needed in order to obtain the desired results. The average age of the
studied population was 55 years, while the average hospital length of stay duration was
six days.

Patients arrived mainly from the Tijuana and Rosarito urban and suburban areas. This
research included patient medical history, pharmacology, PCR testing and biochemical data.

3.2. Database

Information on 185 patients with 99 variables was collected for each of them to create
the database, the description of the variables can be found in Appendix A. Table 1 shows
the gender criteria for evaluating patients at the Tijuana General Hospital, which serves a
low-income population in the Tijuana and Rosarito areas of Baja California, with a higher
percentage of men than women as seen from the Table 2.

Table 2. Evaluation Criteria.

Gender % Kg-m2 SpO

Women 39.46% <6.1 kg/m2 >95%
Men 60.54% <8.5 kg/m2 >95%

3.3. Bedford’s Law

Benford’s Law validation method was used in order to make sure the data was
consistent, in order to develop an efficient study. Benford’s Law, or the Law of First Digits,
is a tool used in different fields of science, with a method to suggest a mathematical pattern
in the distribution of the first digits in a dataset that does not display a uniform distribution,
but rather are arranged in such a way that the digit “1” is the most frequent, followed by
“2”, then “3”, and so on, down to “9”. This model suggests that, within a random set of
data, the first digit of approximately 30.10% of the numbers will be “1”. Several studies
have used this technique to validate and evaluate veracity in databases with information
about COVID-19 [26,27].

By using Benford’s Law as a validation method, it was demonstrated that there
is consistency in the data collected from the Tijuana General Hospital, as the curve of
our current information is close to the curve generated by the percentages established
by Benford’s Law. For this comparison, “length of stay” data were used, as within the
database that was used, most information is described by binary numbers (0 and 1), while
the variable “length of stay” is a defined variable. For this, in addition to the graph function,
two Excel functions were used:

Left: This function allowed the first digit to be taken to the left of the number within the
“length of stay” column.
Countif : This function allows to count the frequency of each of the digit numbers without
considering 0.

Figure 1 shows the comparison results between Bedford’s Law and “length of stay”
which suggest that the data is consistent.
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Figure 1. Benford’s Law curve comparison with the curve generated by the actual data from “length of stay”.

The distribution by first digit numbers in the data can be seen in Table 3. Invalidating
the data, the comparison suggests that according to Benford’s law, the results obtained
from this analysis for the Tijuana Hospital database are accurate.

Table 3. Data compared with Bedford’s Law.

Benford’s Law Actual R.E. *

Tijuana cases 1

30.10% 25.57% −15.01%
17.61% 14.20% −19.30%
12.49% 14.00% 9.12%
9.69% 12.50% 22.89%
7.92% 10.23% 29.16%
6.69% 7.95% 18.83%
5.80% 6.25% 7.75%
5.12% 6.82% 33.20%
4.58% 2.84% 1.73%

1 Considering “length of stay” for validation. * Relative Error.

3.4. Machine Learning Analysis

For the evaluation of each dataset, the following classifiers were used: Decision Tree
(DT), Support Vector Machine (SVM), Random Forest (RF), Multi-Layer Perceptron Neural
Network (MLPNN), Naive Bayes (NB), Logistic Regression (LR) and AdaBoost (AB). The
configuration for each algorithm were suggested by Orange. These configurations are
shown in Table 4. The algorithms were evaluated by stratified k-fold cross-validation,
where the data was iteratively examined by ten folds, using nine folds for training and
1-fold for testing; with this method, the data can be divided into equal parts, which gives
better results, avoiding generalization which means possible errors when new data is used
for predictions with the trained models.
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Table 4. Configurations used for each learner in the analysis.

Learner Configuration for Learners

RF A number of trees: 10, minimum subsets split: 5, maximum tree
depth: unlimited.

kNN Number of neighbors: 3, metric: Euclidean, weight: uniform

SVM Type: SVM Regression, C = 1, ε = 0.1, Kernel= Radial Basis
Function (RBF), exp (−auto|x − y|2), numerical tolerance: 0.001

MLPNN Hidden layers: 100, activation: ReLu, solver: Adam, alpha: 0.0001,
maximum iterations: 200, replicable training: True.

NB

AB Base estimator: tree, number of estimators: 50, algorithm
(classification): Samme. r, loss (regression): Linear

DT Type: binary tree, internal nodes < 5, maximum depth: 100,
splitting: 95%.

The datasets for each analysis were created by feature selection; for this, HAS, DM, and
Obesity were selected as targets due to their importance in the development of COVID-19.
After selecting the targets, the complete database was analyzed iteratively with each of the
chosen targets. The process of selecting the most relevant features was done by using the
DT and comparing the results with the rank, using the following scoring methods: gain
ratio, Gini, X2, ReliefF and Fast Correlation Based Filter (FCBF). The algorithm followed
for the scoring techniques is shown in Table 5.

Table 5. Rank Scoring Algorithms.

Method Algorithm

Gain Ratio IG(Ex, a) = H(Ex)− ∑
v ∈ values (a)

( |{x∈Ex|value(x,a)=v}|
|Ex| ∗ H({x ∈ Ex|value(x, a) = v})

)
Gini G =

∑n
i=1 ∗∑n

j=1 ∗|xi−xj|
2 ∑n

i=1 ∗∑n
j=1 ∗xj

X2 X = m−Np√
Npq

ReliefF Wi = Wi − (xi − nearHiti)
2 + (xi − nearMissi)

2

FCBF H(X) = −∑
i

P(xi)log2(P(xi))

4. Results

Given that the comorbidities prevalent in patients of the analyzed database are SAH
with 49% of patients, DM with 34% of patients, and Obesity with 11% of patients, it was
decided to take these three diseases independently as a target to find the variables that were
most related to these diseases present in patients with COVID-19, determining the factors
involved where the information had to be pre-processed. The Decision Tree and ranking
methods were used to determine the variables with the most significant impact. Tables 6–8
show the resulting datasets after the analysis. Dataset 1 in each table was determined by
using all of the existing variables in the database; then, for dataset 2, the selection of features
was determined by choosing the ones closer to the root within the first ten levels; finally, to
assess dataset 3, ranking results were considered, regardless of the variables “Tos” (cough),
“Fiebre” (fever), “Disnea” (dyspnea), and “Dolor de cabeza/Cefalea (headache)” as these
were established by the World Health Organization as official COVID-19 symptoms, and by
using them for analysis they performed better obtaining an increase in the dataset scores,
therefore by dismissing them the research found other significant variables.
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Table 6. Datasets for HAS as a target (variable names in Spanish).

Dataset Target HAS

Dataset 1

Edad, género, grupo etario, DM, ECV, Hepáticas, SNC, Neumopatía,
Cáncer, Inmunosupresión, Obesidad, Otros (1), Comorbilidades, Fiebre,

Mialgias/artralgias, Fatiga, Odinogafia/ardor faringeo, Tos, Disnea, Dolor
Toracico, Congestión Nasal, Rinorrea, Expectoración Diarrea, Náusea,

Anorexia, Vómito, Cefalea, Mareo, Hispomia/Anosmia, Ageusia,
Conjuntivitis, Saturación >90, Saturación 80–90%, Saturación < 80%,

Leucopenia, Leucocitosis, Neutropenia, Neutrofilia, Linfopenia,
Linfocitosis, Eosinopenia, Trombocitopenia, Trombocitosis, TP normal, TP
alargado, INR normal, INR Alto, TTPa normal, TTPa alargado, Creatinina
normal, Creatinina alta, Ferritina normal, Ferritina alta, Dímero D normal,
Dímero D Alto, Fibrinógeno normal, Fibrinógeno Alto, PCR normal, PCR

alta, Procalcitonina normal, Procalcitonina alta, Troponina normal,
Troponina alta, CPK normal, CPK alta, CK-MB normal, CK-MB alta,

Albúmina baja, Albúmina normal, Bilirrubina total normal, Bilirrubina
total alta, ALT/TGP normal, ALT/TGP alta, AST/TGO normal, AST/TGO

alta, DHL normal, DHL alta, DHL > 1000, Fosfatasa alcalina normal,
Fosfatasa alcalina alta, Muestra, POSITIVA, Mayor 50%, Moderado, Grave,

Oseltamivir, Ceftriaxona, Claritromicina, Azitromicina, Levofloxacino,
Otros (2), Hidroxicloroquina/Cloroquina, Tocilizumab, Esteroides,

Pronación, Respondedor, Respondedor parcial, No respondedor, Alta por
mejoría, Defunción, Días de estancia hospitalaria.

Dataset 2
Comorbilidades, Edad, Tos, CK-MB Normal, INR Alto, DM, Cefalea,

Neutrofilia, Dímero, Leucocitos, Neumopatía, Obesidad, Días de estancia,
CPK alta, Saturación 90, Eosinopenia, TP Alargado y Odinofagia

Dataset 3
Comorbilidades, Edad, CK-MB Normal, CK-MB Alto, DM, Neutrofilia,
Dímero D Alto, Leucocitosis, Neumopatía, Obesidad, Dias de estancia,

Otros (1)

Table 7. Datasets for DM as a target (variable names in Spanish).

Dataset Target DM

Dataset 1

Edad, género, grupo etario, HAS, ECV, Hepáticas, SNC, Neumopatía,
Cáncer, Inmunosupresión, Obesidad, Otros (1), Comorbilidades, Fiebre,

Mialgias/artralgias, Fatiga, Odinogafia/ardor faringeo, Tos, Disnea, Dolor
Toracico, Congestión Nasal, Rinorrea, Expectoración Diarrea, Náusea,

Anorexia, Vómito, Cefalea, Mareo, Hispomia/Anosmia, Ageusia,
Conjuntivitis, Saturación > 90, Saturación 80–90%, Saturación < 80%,

Leucopenia, Leucocitosis, Neutropenia, Neutrofilia, Linfopenia,
Linfocitosis, Eosinopenia, Trombocitopenia, Trombocitosis, TP normal, TP
alargado, INR normal, INR Alto, TTPa normal, TTPa alargado, Creatinina
normal, Creatinina alta, Ferritina normal, Ferritina alta, Dímero D normal,
Dímero D Alto, Fibrinógeno normal, Fibrinógeno Alto, PCR normal, PCR

alta, Procalcitonina normal, Procalcitonina alta, Troponina normal,
Troponina alta, CPK normal, CPK alta, CK-MB normal, CK-MB alta,

Albúmina baja, Albúmina normal, Bilirrubina total normal, Bilirrubina
total alta, ALT/TGP normal, ALT/TGP alta, AST/TGO normal, AST/TGO

alta, DHL normal, DHL alta, DHL > 1000, Fosfatasa alcalina normal,
Fosfatasa alcalina alta, Muestra, POSITIVA, Mayor 50%, Moderado, Grave,

Oseltamivir, Ceftriaxona, Claritromicina, Azitromicina, Levofloxacino,
Otros (2), Hidroxicloroquina/Cloroquina, Tocilizumab, Esteroides,

Pronación, Respondedor, Respondedor parcial, No respondedor, Alta por
mejoría, Defunción, Días de estancia hospitalaria.
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Table 7. Cont.

Dataset Target DM

Dataset 2

Edad, Neutropenia, Comorbilidades, Cáncer, Claritromicina, HAS,
linfocitosis, Ferritina normal, Hepáticas, SNC, Leucopenia,

Inmunosupresión, eosinofilia, ferritina alta, Troponina normal, vómito,
INR alto, CM-KB alta, Disnea, TTP alargado, Levofloxacino, Fatiga,

AST/TGO alta, bilirrubina total alta, fiebre, creatinina alta, INR normal,
Diarrea, Augesia.

Dataset 3
Edad, Género, HAS, Obesidad, Otros (1), Comorbilidades, Leucocitosis,
Creatinina normal, Creatinina alta, Procalcitonina alta, Levofloxacino,

Hidroxicloroquina

Table 8. Datasets for Obesity as a target (variable names in Spanish).

Dataset Target Obesity

Dataset 1

Edad, género, grupo etario, HAS, DM, ECV, Hepáticas, SNC,
Neumopatía, Cáncer, Inmunosupresión, Otros (1), Comorbilidades,
Fiebre, Mialgias/artralgias, Fatiga, Odinogafia/ardor faringeo, Tos,
Disnea, Dolor Toracico, Congestión Nasal, Rinorrea, Expectoración

Diarrea, Náusea, Anorexia, Vómito, Cefalea, Mareo,
Hispomia/Anosmia, Ageusia, Conjuntivitis, Saturación > 90,

Saturación 80–90%, Saturación < 80%, Leucopenia, Leucocitosis,
Neutropenia, Neutrofilia, Linfopenia, Linfocitosis, Eosinopenia,
Trombocitopenia, Trombocitosis, TP normal, TP alargado, INR

normal, INR Alto, TTPa normal, TTPa alargado, Creatinina normal,
Creatinina alta, Ferritina normal, Ferritina alta, Dimero D normal,

Dimero D Alto, Fibrinogeno normal, Fibrinogeno Alto, PCR normal,
PCR alta, Procalcitonina normal, Procalcitonina alta, Troponina
normal, Troponina alta, CPK normal, CPK alta, CK-MB normal,
CK-MB alta, Albumina baja, Albumina normal, Bilirrubina total
normal, Bilirrubina total alta, ALT/TGP normal, ALT/TGP alta,

AST/TGO normal, AST/TGO alta, DHL normal, DHL alta,
DHL > 1000, Fosfatasa alcalina normal, Fosfatasa alcalina alta,

Muestra, POSITIVA, Mayor 50%, Moderado, Grave, Oseltamivir,
Ceftriaxona, Claritromicina, Azitromicina, Levofloxacino, Otros (2),
Hidroxicloroquina/Cloroquina, Tocilizumab, Esteroides, Pronación,

Respondedor, Respondedor parcial, No respondedor, Alta por
mejoría, Defunción, Días de estancia hospitalaria

Dataset 2
Saturación 80–90, Edad, Cefalea, Género, Levoflaxina, GRAVE,

Hisponia/asmonia, Linfopeni, a Neumopatía, Fosfatasa alcalina
normal, Creatinina normal, días de estancia, PCR alta

Dataset 3
Saturación 80–90, Edad, Género, Levoflaxina, GRAVE,

Hisponia/asmonia,
Linfopenia Neumopatía, Fosfatasa alcalina normal

After the analysis of each dataset, the obtained results are shown in Tables 9–11; where
the best scores are shown in bold font for each method.
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Table 9. Highest scores from a dataset with HAS as a target.

Model AUC CA F1 Precision Recall

Tree Decision 0.814 0.784 0.784 0.784 0.784

SVM 0.867 0.762 0.762 0.762 0.762

Random
Forest 0.866 0.784 0.784 0.784 0.784

Neural
Network 0.876 0.773 0.773 0.773 0.773

Naive Bayes 0.832 0.757 0.755 0.761 0.757

Logistic
Regression 0.910 0.800 0.800 0.801 0.800

AdaBoost 0.860 0.811 0.811 0.811 0.811

Table 10. Highest scores from a dataset with DM as a target.

Model AUC CA F1 Precision Recall

Tree 0.867 0.881 0.878 0.882 0.881

SVM 0.934 0.886 0.885 0.886 0.886

Random
Forest 0.877 0.849 0.847 0.847 0.849

Neural
Network 0.871 0.816 0.812 0.813 0.816

Naive Bayes 0.849 0.838 0.838 0.838 0.838

Logistic
Regression 0.912 0.892 0.888 0.897 0.892

AdaBoost 0.827 0.843 0.844 0.844 0.843
Best model: Logistic Regression with 0.934 of AUC, 0.886 of CA, 0.885 of F1, 0.886 of Precision, and 0.886 of Recall.

Table 11. Highest scores from a dataset with Obesity as a target.

Model AUC CA F1 Precision Recall

Tree 0.700 0.876 0.869 0.864 0.876

SVM 0.643 0.838 0.831 0.824 0.838

Random
Forest 0.807 0.903 0.872 0.912 0.903

Neural
Network

0.834 0.914 0.899 0.906 0.914

Naive Bayes 0.793 0.865 0.845 0.833 0.865

Logistic
Regression 0.778 0.881 0.856 0.851 0.881

AdaBoost 0.697 0.881 0.879 0.876 0.881
Best model: Neural Network with 0.834 of AUC, 0.914 of CA, 0.899 of F1, 0.906 of Precision and 0.914 of Recall.

As shown in Table 8, the highest score using as target HAS was obtained with the
Logistic Regression algorithm, using the default parameters with a cost strength of 1.00
(C-1) and Ridge-type regularization (L2), which shows 91.0% Area under ROC (AUC),
80% Classification Accuracy (CA), 80% F1, and 80.1%, Precision and Recall for selected
variables in Dataset 3 in Table 6 as possible variables essential to consider for a more
accurate determination of vulnerability in people with HAS.

On the other hand, when targeting DM patients, the best-functioning model using
the default parameters already mentioned above was found to be Logistic Regression,
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obtaining 91.2% AUC, 89.2% CA, 88.8% F1, 89.7% precision, and recall 89.2% for selected
variables from dataset 3 in Table 7.

While the Neural Network algorithm showed better results for patients with Obesity,
obtaining 83.4% AUC, 91.4% CA, 89.9% F1, 90.6% Accuracy, and 91.4% Recall (See Table 11).

The prevalent symptoms present in people with different comorbidities, and statistical
analysis was performed without considering cough, fever, dyspnea, and headache as part
of the symptoms for the same reason mentioned above. In people with HAS, DM, and
Obesity, the presence of fatigue and myalgias/arthralgias was greater; while the third
dominant symptom in people with HAS and DM was odynophagia, instead of people with
Obesity, this symptom was positioned with the eighth, occupied the third position with
chest pain (See Figures 2–4).

Figure 2. Frequency of symptoms in patients with DM.

Figure 3. Frequency of symptoms in patients with HAS.
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Figure 4. Frequency of symptoms in patients with Obesity.

5. Discussion

Obesity, diabetes, and hypertension are high-prevalence comorbidities in the Mexican
population. In 2018, approximately 1/4 of the Mexican people had high blood pressure,
while 71.2% of people over the age of 20 had a prevalence of obesity and overweight. These
two conditions are considered to be significant risk factors for developing other diseases
such as diabetes since 90% of people with diabetes in Mexico are overweight and obese [28].

In processing the information in this study, the prevalence of these three diseases
considered as risk factors for COVID-19 infection could be noted. For this reason, it was
decided to carry out an analysis using Artificial Intelligence (Machine Learning) techniques,
aiming for each of these diseases, looking for any relationship between the symptoms and
conditions of people suffering from these comorbidities.

After reviewing the medical literature, it was found that COVID-19 causes chronic
inflammation in patients with obesity, along with other diseases considered as risk factors,
such as lack of vitamin D and intestinal dysbiosis, which result in deficiencies in the
functioning of the immune system in the face of infections. On the other hand, Obesity has
a negative impact on respiratory mechanics as it is affected due to the resistance generated
by lack of elasticity in the chest box [29,30]. Both diabetes and high blood pressure are
diseases more present in the elderly, one of the reasons why these diseases are thought to
be closely related to COVID-19, due to the fact that people with advanced age are highly
vulnerable to COVID-19. The reason diabetes could have a high impact on the condition
of patients with COVID-19 may be due to a disruption generated in the endocrine system
where the COVID-19 virus affects angiotensin-converting Enzyme 2 (ECA2), which is
responsible for anti-inflammatory regulation, vasodilators, and the process of releasing
sodium into the urine. Another function of ECA2 is to offer protection to different organs,
including those that are part of the pulmonary and cardiovascular systems, which is why
the absence of this enzyme is related to the involvement of the lungs and the development
of hypertension [31,32].

Different authors mentioned in a report of the analysis carried out with a database of
3894 patients in Italy [33], obtaining values for a death risk target with an accuracy rating
of 83.4%, F1 value of 90.4%, specificity of 30.8%, and Recall of 95.2% when using Random
Forest over a dataset with variables such as Glomerular Filtration Rate (eGFR), C- Reactive
Protein (CRP), Age, Diabetes, Sex, Hypertension, Smoking, Lung Disease, Myocardial
Infection, Obesity, Heart Failure, and Cancer, demonstrating this as vulnerable to those
who exhibit the above-mentioned comorbidities. To achieve a comparison between the
variables established with the results of this analysis, the scores of the three targets used
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(HAS, Diabetes, and Obesity) were taken into account and the average was calculated,
obtaining values of 84.50% for CA, 83.43% of F1, 84.76% Precision, and 84.53% of Recall.

On the other hand, a study of Brazilian patients shows their scores at 86% for CA,
92% for AUC, 28% of Precision, 86% of Recall, and 42% of F1 for the Logistic Regression
model, where the results show that there is a high relationship between patients over
60 years of age with breathing difficulties, fever, cough, rhinorrhea, odynophagia, diarrhea,
headache, heart disease, pneumopathies, kidney disease, diabetes, smoking, Obesity, and
hospitalization with those who come down with COVID-19 [34].

This analysis provides a complete and accurate perspective of the current situation
in Tijuana since having information from a single source allows us to know the current
situation of those served at the Tijuana General Hospital, who are mostly part of low-income
or economically disadvantaged family groups. Since 41.9% of the Mexican population
is economically disadvantaged [35], it is important to understand the comorbidities and
symptoms present in this group, which results in more vulnerable people and increases
expenditures in public sector hospitals regarding space and medical equipment, which
often is extremely limited. Since the study was done considering typical human patients,
regardless of their geographical and ethnic origin, a similar genomic situation can be
assumed with migrant patients from both parts of Mexico and regions such as Central
America, South America, and the Caribbean.

6. Conclusions

The values of the prevalent comorbidity found in this study were as follows: 49% in
patients with HAS; 34% in patients with DM; and 11% in patients with Obesity, correspond-
ing to the population segment that was served at the General Hospital of Tijuana during
the aforementioned dates.

The deaths reported during the evaluated period of the total number of patients
evaluated in this study were 42 subjects, from a population universe of 185 patients
evaluated, with a fatality rate of 22%, a non-representative sample but within the data that
places Mexico with a fatality rate (Case fatality) of 8.8% compared to other fatality rates in
Latin America, such as Peru (3.5%), Colombia (2.6%), Chile (2.5%), Brazil (2.4%), and 2–3%
globally [36].

A total of 52 different medicines were prescribed, where Steroids (16.1%), azithromycin
(10.9%), enoxaparin (8.2%), levofloxacin (7.3%), hydroxyquinone (6.6%), omeprazole (6.2%),
and acetaminophen (6.2%) were most commonly used. The rest, presenting themselves
with a <6.0% per drug, correspond as a whole to 38.5% and are classified as “other”.

The values obtained for each dataset evaluating Obesity, DM, and HAS in this study
using Artificial Intelligence, specifically with various Machine Learning techniques, have
been compared with values presented in other similar academic/medical publications,
particularly those for HAS were obtained with the Logistic Regression algorithm obtaining
91.0% AUC, CA, F1 and Recall 80%, and accuracy 80.1%. For Diabetes, the Logistic
Regression algorithm obtained 91.2% AUC, 89.2% CA, 88.8% F1, 89.7% accuracy, and recall
89.2%, obtaining similar results for Hypertension and Diabetes, while improved results
were obtained in the case of Obesity using the Neural Network algorithm, obtaining 83.4%
AUC, 91.4% CA, 89.9% F1, 90.6% Accuracy and 91.4% Recall.

The results presented here confirm the convenience of using Logistic Regression
algorithms in the dataset presented when evaluating HAS as a target; Similarly, Logistic
Regression’s algorithms were the most successful in evaluating DM as a target; while
finally, Neural Network algorithms showed the best results for the case of Obesity as a
target, in the specific sample case of 185 patients with limited or non-existing financial
resources, who suffered these medical conditions, and who were served at the Tijuana
General Hospital during the year 2020.

With these results, we can conclude that the use of Artificial Intelligence using Machine
Learning techniques has been effectively used to identify the early stages of COVID-19 in
patients in Baja California.
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Appendix A

Table A1. Description of variables.

Variable Description

Edad Age

Género Gender (Female/Male)

Grupo etario Grupo etario

HAS

Defined by two levels according to the 2017 American College of
Cardiology/American Heart Association (ACC/AHA) guidelines:
(1) Elevated blood pressure, with a systolic pressure (SBP) between
120—129 mm Hg and diastolic pressure (DBP) less than 80 mm Hg,
and (2) stage 1 hypertension, with a SBP of 130 to 139 mm Hg or a

DBP of 80 to 89 mm Hg

DM

Diagnosis by meeting any of the criteria: Fasting glucose
≥126 mg/dL (7.0 mmol/L). Fasting is defined as the absence of

caloric intake for at least 8 h
OR

2 h postprandial glucose ≥200 mg/dL (11.1 mmol/L). The test
should be performed as described by the WHO, using a glucose load
containing the equivalent of 75 g of anhydrous glucose dissolved in

water.
OR

Glycated hemoglobin ≥6.5% (48 mmol/mol). The test must be
performed in a laboratory using a method that is certified by NGSP

and standardized for the DCCT assay.
OR

In a patient with classic symptoms of hyperglycemia or
hyperglycemic crisis, a random plasma glucose ≥ 200 mg/dL

(11.1 mmol/L).

ECV
Neurological alteration is characterized by its sudden onset, generally

without warning, with symptoms lasting 24 h or more, causing
sequelae and death.

Hepaticas Primary or secondary diseases that affect liver tissue.

SNC Central Nervous System.
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Table A1. Cont.

Variable Description

Neumopatía
Lung disease is a generic term to describe diseases that affect the

lungs. It should not be confused with the term pneumonia, which
specifically refers to infection of the lung by a virus or bacteria.

Cancer
Any of a large number of diseases characterized by the development
of abnormal cells that divide uncontrollably and have the ability to

infiltrate and destroy normal body tissue.

Inmunosupresión

Suppression or reduction of immune reactions.
It may be due to the deliberate administration of immunosuppressive
drugs used in the treatment of autoimmune diseases or in recipients
of transplanted organs to avoid rejection. It can also be secondary to

pathological processes such as immunodeficiencies, tumors, or
malnutrition.

Obesidad
A condition characterized by the excessive accumulation and storage

of fat in the body and which in an adult is typically indicated by a
body mass index of 30 or more.

Otros Other types are of diseases not classifiable in the previous variables.

Comorbilidades
A concomitant but unrelated disease process or disease; is commonly

used in epidemiology to indicate the coexistence of two or more
disease processes.

Otros Especificar Other types are of diseases not classifiable in the previous variables,
where the type is specified.

Fiber

Temperature above the normal range due to an increase in the body
temperature set point. There is no agreed upper limit for normal

temperature with sources using values between 37.2 and 38.3 ◦C (99.0
and 100.9 ◦F) in humans.

Mialgias/arthralgias Muscle or joint pain.

Fatigue Difficulty starting or maintaining physical or mental activity
voluntarily.

Odinofagia/ardor
faringeo Feeling of pain when swallowing.

Tos
Sudden and acute expulsion of air from the lungs that acts as a
protective mechanism to clear the airways or as a symptom of a

pulmonary disorder.

Disnea Difficulty breathing.

Dolor toracico Localized chest pain, regardless of its etiology.

Congestión nasal A feeling of blockage or obstruction in the nasal cavity and/or
sinuses due to inflammation of the mucous lining of the nose.

Rinorrea Flow or abundant emission of fluid from the nose.

Expectoración Expulsion through coughing or sputum or other secretions formed in
the respiratory tract.

Diarrhea
It consists of the expulsion of three or more liquid stools, with or

without blood, in 24 h, which adopt the shape of the container that
contains them.

Nausea Feeling sick or sick in the stomach that may appear with an urgent
need to vomit.

Anorexia It is used to denote lack of appetite or lack of appetite that can occur
in very different circumstances.

Vómito Violent expulsion through the mouth of what is contained in the
stomach.
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Table A1. Cont.

Variable Description

Cefalea They are painful and disabling primary disorders such as migraine,
tension headache, and cluster headache.

Mareo Feeling of vertigo and instability in the head and discomfort in the
stomach that can lead to the urge to vomit and loss of balance.

Hyposmia/Anosmia Decreased or absent sense of smell.

Ageusia Decreased or absent sense of taste.

Conjunctivitis Inflammation or irritation of the conjunctiva.

Saturación >90 Oxygen saturation in ambient air >90%.

Saturación 80–90% Oxygen saturation in ambient air of 80–90%.

Saturación <80% Oxygen saturation in ambient air <80%.

Leucopenia Reduction in circulating white blood cell count <4000/mcL.

Leukocytosis A white blood cell count greater than 11,000/mm3,

Neutropenia When the neutrophil numbers are below 1500–1800 per mm3.

Neutrophilia Neutrophil blood values equal to or less than 7700/microL.

Linfopenia Total lymphocyte count <1000/mcL.

Linfocitosis When the lymphocyte count is greater than 4000 per microliter.

Eosinopenia Reduction in circulating eosinophils <0.01 × 109/L.

Eosinophilia A count of more than 500 eosinophils per microliter of blood.

Thrombocytopenia Decrease in the absolute number of platelets in the peripheral blood
below 150,000 per μL.

Trombocitosis Platelet count greater than 600,000 per μL.

TP normal TP in blood with a range of 11 to 13.5 s.

TP alargado TP in blood >13.5 s.

INR normal INR with a value between 0.9 to 1.3.

INR Alto INR with a value >1.3.

TTP normal APTT in blood in a range of 25 to 35 s.

TTP alrgado APTT in blood >35 s.

Creatinine normal
The normal range for creatinine is 0.7 to 1.3 mg/dL (61.9 to 114.9

μmol/L) for men and
0.6 to 1.1 mg/dL (53 to 97.2 μmol/L) for women.

Creatinine alta Values >1.3 mg/dL for men and >1.1 mg/dL for women.

Ferritin normal The range of normal values for ferritin are: Men: 12 to 300 nanograms
per milliliter (ng/mL) Women: 12 to 150 ng/mL.

ferritin alta Ferritin values in Men of >300 nanograms per
milliliter (ng/mL), in women >150 ng/mL.

Dimero D normal The normal range for D-dimer is less than 0.5 micrograms per
milliliter.

Dimero D Alto D-dimer >0.5 micrograms per milliliter.

Fibrinogen normal The normal range for fibrinogen is 200 to 400 mg/dL (2.0 to 4.0 g/L).

Fibrinogeno Alto Fibrinogen value >400 mg/dL.

PCR normal 0 y 5 mg/dl

PCR alta above 5 mg/dl

Procalcitonina normal Normal blood procalcitonin values are less than 0.5 ng/mL

47



Information 2021, 12, 490

Table A1. Cont.

Variable Description

Procalcitonina alta Procalcitonin values in blood >0.5 ng/mL

Troponina normal Troponin in blood, within the reference limit up to 0.04 ng/mL.

Tropoonina alta Troponin in blood >0.04 ng/mL.

CPK normal
Normal values for creatine phosphokinase

(CPK) are between 32 and 294 U/L for men and 33 to 211 U/L for
women.

CPK alta CPK values greater than 294 U/L for men and
greater than 211 U/L for women

CK-MB normal CK-MB blood values within a range of 5 to 25 IU/L.

CK-MB alta CK-MB blood values >25 IU/L.

Albumina baja Albumin in blood <3.4 g/dL.

Albumina normal Albumin in blood with a range of 3.4 to 5.4 g/dL.

Bilirrubina total normal Total blood bilirubin values of 3–1.9 mg/dL

Bilirrubina total alta Total blood bilirubin values >1.9 mg/dL

ALT/TGP normal ALT blood values in a range of 10–40 IU/L.

ALT/TGP alta ALT blood values >40 IU/L.

AST/TGO normal AST blood values in a range of 10–34 IU/L.

AST/TGO alta AST blood values >34 IU/L.

DHL normal DHL blood value in a range of 105–333 IU/L

DHL alta DHL blood value >333 IU/L.

DHL > 1000 DHL > 1000

Fostasa alcalina normal Alkaline phosphatase blood value in a range of 44–147 IU/L

Fosfatasa alcalina alta Alkaline phosphatase blood value >147 IU/L.

POSITIVA PCR sample for COVID-19 positive.

MODERADO
Clinical or radiographic evidence of lower respiratory tract disease,

with an oxygen
saturation greater than or equal to 94%.

GRAVE Oxygen saturation <94%, respiratory rate > or equal to 30
breaths/minute, pulmonary infiltrates >50%.

Oseltamivir
A drug that selectively inhibits the neuraminidase enzyme found in
influenza A and B viruses, preventing infected cells from releasing

viral particles. Its action is greater against influenza A viruses.

Ceftriaxone
Antibiotic of the third generation cephalosporin

class, which has broad-spectrum actions against Gram-negative and
Gram-positive bacteria.

Claritromicina
Macrolide antibiotic active against gram

positives, gram negatives, it is also active against spirochetes,
Chlamydophila and several intracellular pathogens.

Azitromicina
Broad-spectrum antibiotic from the group of

Macrolides that act against various gram-positive and gram-negative
bacteria.

Levofloxacin Antibacterial fluoroquinolone, used to treat
infections caused by sensitive germs.

Otros Other medications

Especificar Specify
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Table A1. Cont.

Variable Description

Hidroxicloroquina/
Cloroquina

Commonly prescribed aminoquinoline for the treatment of
uncomplicated malaria, rheumatoid arthritis, chronic discoid lupus

erythematosus, and systemic lupus
erythematosus.

Tocilizumab Humanized monoclonal antibody that inhibits
interleukin 6 receptors.

Esteroides
A group of chemicals classified by a specific carbon structure.

Steroids include drugs used to
relieve inflammation, such as prednisone and cortisone.

Pronación Anatomical position of the human body
characterized by: Body position lying face down and head on its side.

Responder That responds to a stimulus.

Responder parcial That responds little to a stimulus.

No respondedor Non responder

Alta por mejoría Discharge for improvement

Defunción Death

Días de estancia
hospitalaria Days of hospital stay.
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Abstract: The health emergency linked to the SARS-CoV-2 pandemic has highlighted problems in
the health management of chronic patients due to their risk of infection, suggesting the need of
new methods to monitor patients. People living with HIV/AIDS (PLWHA) represent a paradigm
of chronic patients where an e-health-based remote monitoring could have a significant impact
in maintaining an adequate standard of care. The key objective of the study is to provide both
an efficient operating model to “follow” the patient, capture the evolution of their disease, and
establish proximity and relief through a remote collaborative model. These dimensions are collected
through a dedicated mobile application that triggers questionnaires on the basis of decision-making
algorithms, tagging patients and sending alerts to staff in order to tailor interventions. All outcomes
and alerts are monitored and processed through an innovative e-Clinical platform. The processing of
the collected data aims into learning and evaluating predictive models for the possible upcoming
alerts on the basis of past data, using machine learning algorithms. The models will be clinically
validated as the study collects more data, and, if successful, the resulting multidimensional vector
of past attributes will act as a digital composite biomarker capable of predicting HIV-related alerts.
Design: All PLWH > 18 sears old and stable disease followed at the outpatient services of a university
hospital (n = 1500) will be enrolled in the interventional study. The study is ongoing, and patients
are currently being recruited. Preliminary results are yielding monthly data to facilitate learning
of predictive models for the alerts of interest. Such models are learnt for one or two months of
history of the questionnaire data. In this manuscript, the protocol—including the rationale, detailed
technical aspects underlying the study, and some preliminary results—are described. Conclusions:
The management of HIV-infected patients in the pandemic era represents a challenge for future
patient management beyond the pandemic period. The application of artificial intelligence and
machine learning systems as described in this study could enable remote patient management that
takes into account the real needs of the patient and the monitoring of the most relevant aspects of
PLWH management today.

Keywords: HIV; COVID-19; e-Clinical assistance; outcome prediction
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1. Background

People living with HIV infection (PLWH), particularly those with immunodeficiency
and immune dysregulation, may be at increased risk of morbidity and mortality during
SARS-CoV-2 infection [1]. Although the literature data do not appear to be in complete
agreement, several papers have documented an increased risk of severe disease and death
associated with HIV cofactor during COVID-19 infection [2–5].

In Italy, the impact of the COVID-19 pandemic on National Health Service facilities
has primarily involved infectious disease facilities, with potential consequences on HIV
diagnosis, treatment, and prevention. The model for the management and control of HIV
infection in Italy has been based, since the development of Law No. 135/90, on the central
role of the infectious diseases’ structures, through an articulation of care services in acute
inpatient wards, day hospital structures, dedicated outpatient clinics for the taking charge
and treatment, and integrated home care structures.

The results obtained by the entire care system dedicated to the treatment of PLWH
risk being compromised by the impact of COVID-19 on the National Health Service, and
in particular on the infectious diseases structures, which are central to the strategy of
intervention and control of the new pandemic. The negative impact may involve both
the provision of care in acute wards, in particular for people with newly diagnosed HIV
and late presentation (AIDS presenters), as well as outpatient facilities for the care and
management of chronic patients with stable HIV infection, with possible losses in follow-up
and reduced continuum of care.

This scenario could persist in the continuation of the COVID-19 pandemic, resulting
in serious harm to people living with HIV, as reported by global health agencies (WHO,
UNAIDS) [6,7], the European Parliament, and the European Commission, which already
pointed out a step back from the WHO 90-90-90 target and fear a strong risk of failure to
meet the 2030 SDG targets, reminding governments of the importance of ensuring HIV care
and prevention services even in these times of COVID-19 emergencies.

The “Istituto Superiore di Sanità” has drawn up a plan that foresees and encourages
the use of telemedicine to allow hospital structures to use tele-consultation and remote
management of chronic patients [8]. Tele-consultation and telemedicine in general are
applications that allow, in these moments when travel is by definition limited, to monitor
patients suffering from chronic pathologies, who need regular and constant care and
control. This concept has been stressed also by international guidelines on the management
of PLWH [9–12].

People living with HIV/AIDS (PLWHA) represent a typology of patients for whom
telemedicine could, particularly in pandemic times, represent an extremely useful tool
of support and clinical management [13–16]. People living with HIV today are people
who have a life expectancy very similar to that of the general population, due to the
extraordinary effect that antiretroviral therapies have produced on survival and on the
reduction of HIV-related morbidity [17]. Nowadays, PLWHA patients face a chronic
condition with all the consequences that this situation entails (symptoms, side effects of
the drugs, management of adherence and quality of life, periodic supply of drugs, blood
samples to check the tolerability of the drugs, any new clinical events that may occur,
needing advice from other specialists, etc.).

Since the end of February 2020, the Fondazione Policlinico Gemelli continues to
represent a reference center for the care of patients affected by COVID-19. For this reason,
during these months the outpatients’ clinics of the FPG that take care of patients with
chronic pathologies have been able to provide services and visits only if mandatory, with
inevitable repercussions on the management of chronicity in all its aspects.

With the persisting of pandemic restrictions, it is essential to find ways of managing
these patients remotely to allow continuity of care that will inevitably not reflect what
happened in pre-epidemic periods. Moreover, it seems to be crucial in this period, to quickly
identify potential sources for spreading of SARS-CoV-2 diffusion and transmission among
potentially high-risk population such as PLWHA. In addition, the pandemic experience has
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provided insight into how the pressure on the healthcare system from carefully selected
patients affected by chronic diseases can be mitigated through the use of remote care
systems without losing a proper doctor-patient interaction.

For these reasons, we designed a pilot study for PLWH with stable chronic disease,
with the objective of creating an “integrated clinical assistance” through an efficient op-
erating model to “follow” the patient, capture the evolution of his/her disease, provide
assistance and care, and interact also to establish proximity and relief through a remote
collaborative model. Here, we describe the entire protocol including rationale and design
of the study, with particular regard to the technical description of the innovative aspects of
integrated care inherent in the study itself. Moreover, some very preliminary results on the
learning of models to predict alerts of interest are shown.

2. Methods

2.1. Study Design, Duration, and Setting

This is an interventional monocentric study. The first phase of the study has been based
on the set up of a mobile application for both Android and iOS that can be downloaded
on the patient smartphone. This app is set up with functionalities to support and achieve
objectives such as health and quality of life monitoring, antiretroviral treatment adherence,
and assessment of SARS-CoV-2 infection risk.

In a future phase, it is foreseen to connect data self-reported by using the application
and the clinical data from the electronic reporting system of the hospital to provide the
clinicians with an overview as complete as possible.

The different monitoring aspects of the system are shown in Figure 1 and include:

(1) Self-reported prescreening on symptoms and signs compatible with SARS-CoV-2
infection, possible access to healthcare facilities, possible results of swabs/serologies,
and evaluation of hospitalization risk due to COVID-19, on the basis of selected
self-reported stress tests.

(2) Specific self-reported aspects to monitor patients’ life (quality of life, anxiety, depres-
sion, HIV-related symptoms, adherence to treatments) through triggered standardized
questionnaires, to be filled in by patients at specific timepoints. Additional question-
naires will be then triggered according to patients’ answers to the first generic ques-
tionnaire (EQ 5D-3L) identifying specific unmet needs, with a sequential approach
based on a predefined algorithm. All reported outcomes, triggered or self-reported,
will be always accessible on the app in a dedicated area, the “health diary”, for pa-
tients and on a dedicated dashboard for physicians. Patients’ self-reported data also
generate tailored alerts on the basis of their actual needs and predefined scores in
order to provide physicians with useful information for patient management.

(3) Important parameters for drug management (BMI, MDRD). These data will be calcu-
lated periodically on the basis of individual lab results and they will be used to adjust
dose of drugs.

(4) Drug adherence is monitored through linkage of self-reported information on adher-
ence with hospital pharmacy’s refill data and laboratory results (plasma HIV/RNA).

(5) Periodic blood sample control through an alerting system of laboratory results that, in
the case of abnormal values, will warn physicians via tailored alerts.

(6) Any new onset of symptoms/side effects: patients can report any symptoms/side
effects on a specific area of the app, and this report will appear as an alert to the
physician.

(7) Support tools for patients such as FAQs, User Guide, and disease-specific information.
(8) Notifications containing different kind of information and/or recommendations are

automatically sent to patients on the basis of their answers to questionnaires, lab
results, or drugs refill.

(9) An automated feedback system to the treating physician to highlight those situations
that need attention. This includes self-reported symptoms (i.e., bothersome symp-
toms), any self-reported mental health issues, any changes in periodic laboratory tests,
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any problems with adherence to antiretroviral therapy, and any symptoms or signs
consistent with a risk of SARS-CoV-2 infection.

Figure 1. Questionnaires triggering system. The patient is sent a monthly notification to answer the
EQ-5D-3L [18] questionnaire. If an alteration in any of the domains of the questionnaire is reported,
the patient is automatically notified of a more specific questionnaire to which the altered domain refers:
HIVSRQ [19], GAD-7 [20], PHQ9 [21]. If the EQ5D VAS is <70%, then all the above questionnaires
are notified, including the treatment adherence questionnaire [22]. With regard to HIVSRQ, if
symptoms compatible with SARS-CoV-2 infection are reported, the patient is asked for an in-depth
investigation of COVID and risk of hospitalization (chair stress test, CST). In case of alteration to
each questionnaire, a report of need for intervention is sent to the attending physician (psychological
support, psychiatric support, intervention on symptoms, intervention on low adherence to ART,
intervention on COVID-19 risk).

2.2. Study Population

All PLWHA, on antiretroviral therapy treated in Fondazione Policlinico Universitario
“A. Gemelli” IRCCS (FPUAG IRCCS) of Rome, Italy, who will be considered eligible, will
be enrolled and asked to install the app on their smartphone.

2.2.1. Inclusion Criteria

• Patients’ age >18 years.
• Patients able to use apps and smartphone devices without any caregivers or, in the case

of patient unable to use them, patients with caregiver able to use apps and smartphone
devices.

• Patients able to provide informed consent.
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2.2.2. Exclusion Criteria

• Patients not able to use smartphone devices and applications without the presence of
caregivers.

• Recent diagnosis of HIV infection (<3 months).
• Any unstable clinical condition requiring hospitalization.

2.3. Data Collection

The study is based on standardized data collection procedures able to efficiently
process large amounts of data and provide the physicians with a panel of useful information
to evaluate patients’ health conditions, quality of life, mental health, how HIV impacts their
QoL, and to monitor eventual worsening.

Five different data sources were used for data collection: 4 internal to the electronic
data reporting system of the hospital and 1 external (Healthentia app).

From the electronic data reporting system of the hospital, we defined eight structured
variables (laboratory exams, drugs refill from pharmacy, weight, height, gender, study
degree, civil status).

A standard ETL procedure was developed for the extraction of such data using SAS
Institute software analytics tool and SAS® Vyia® (Cary, NC 27513, USA), which refreshes on
daily basis in order to continuously include both new enrolled patients and new data from
patients already registered to the app (new laboratory exams, drugs refill for pharmacy, etc.).

Hospital data are integrated with real-world data coming from the Healthentia app
(Innovation Sprint Sprl, Brussels, Belgium), through which will be collected symptoms
potentially related to SARS-CoV-2 infection, symptoms related to HIV, adherence to treat-
ments, quality of life, anxiety, and depression. The collected data are already outlined in
Figure 1. They are collected via questionnaires (validated and custom ones) and during a
functional test.

We employ validated questionnaires for HIV-related symptoms through the ques-
tionnaire “HIV Symptom Rating Questionnaire (HIVSRQ)”, health-related quality of
life through the questionnaires “EQ-5D-3L” (comprising the following five dimensions:
mobility, self-care, usual activities, pain/discomfort, and anxiety/depression), anxiety
through “General Anxiety Disorder-7 (GAD-7)”, and depression through “Patient Health
Questionnaire-9 (PHQ-9)”.

We employ custom (non-validated) questionnaires to collect adherence to antiretroviral
therapy, SARS-CoV-2 infection assessment (tracking of symptoms related to SARS-CoV2
infection for its early detection), the result of a swab test, and the SARS-CoV-2 vaccine.

Finally, we employ the chair stand test (functional test), during which the oxygen
saturation (one of the most important parameters to assess the risk of hospitalization for
patients with SARS-CoV-2) is monitored.

Each questionnaire mentioned above has many questions, i.e., results to many at-
tributes of the data. The question of which of the attributes is of high importance in
predicting the outcomes of interest is addressed by analyzing the decisions of the learnt
models in Section 4.3.

Data will be collected for a duration of 2 years starting from 1 January 2021. About
1500 patients currently followed up at the Infectious Diseases Clinic met the inclusion
criteria. These patients represent the share of patients without urgent clinical needs or
whose periodic medical examination can be carried out every 4–6 months.

On the basis of previous experiences on such a kind of studies, we found that up
to 30% of the patients could be interested in being enrolled in such a study and using
Healthentia. As such, with expected recruited population of 450 patients, we aimed at
analyzing at least 220 patients who actively used the app in order to accurately describe
our recruited population with a confidence interval of 95% and margin of error of 5%.

Unfortunately, the pandemic has only allowed us to recruit 61 patients at this point,
since the beginning of the study in January 2021. Recruitment is still active though, with
the latest patients being enrolled in November 2021 in an ongoing process. The enrolment
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process across time and some demographic information about the study population is
given in Figure 2.

 

Figure 2. Enrolment of patients in the first year of the study and their age and body mass index
distribution.

2.4. Workflow Structure

INTERFACE is an interventional study with a purpose of collecting, as previously
described, real-world data (RWD) regarding patient outcomes and parameters. In order to
be enrolled to the study, patients have to sign an informed consent form declaring their
awareness about data sharing for research purpose or use the eConsent process available
on the app. Patients are enrolled on the study by downloading the application for free
from the AppStore or Google Play, installing it on their own smartphone and registering.
Patients can retire themselves from the study by uninstalling the application without any
formal communication, and they can obtain the definitive elimination of collected data at
any moment.

Data flow from the Healthentia app to a protected Microsoft Azure Server cloud
environment where Healthentia SaaS Solution is hosted by Innovation Sprint, and there
is a point-to-point cryptographic encryption of the data that makes it impossible for third
parties to read the information in transit in clear text. FPUAG IRCCS, as the data controller
with the right of access, use, and management of data for research purposes, has access to
Innovation Sprint’s servers.

The study is conducted in the framework of Gemelli Generator Real-World Data facility
(G2 RWD), the innovative research center of FPUAG IRCSS. Within the Gemelli Generator
Real-World Data (G2 RWD) architecture, INTERFACE data collected using Healthentia
will be integrated with clinical data and stored in a dedicated research Data Mart (i.e.,
organized subsets of data on a specific area of knowledge) in FPUAG IRCCS servers. In
coherence with G2 RWD roles, if necessary, selected supervisors will be authorized to access
the pseudo-anonymized data and identify patients for eventual clinical needs according to
the collected data.

2.5. Efficacy Indicators

In order to evaluate the effectiveness of this project, after 2 years, we will consider the
following indicators:

1. Proportion, characteristics, and cofactors of self-reported outcomes and changes in
them according to the epidemic situation and during the time of the study.

2. Proportion of clinical intervention provided following alert messages received.
3. Proportion of unmet needs as generated by patients’ reported outcomes.
4. Proportion of intervention on drug regimen modification according to parameters

recorded.
5. Number of PLWHA with self-reported symptoms/signs of COVID-19 who can be

correctly and timely allocated to different in-hospital access.
6. Prevalence of PLWHA regularly followed as outpatients with confirmed COVID-19.
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3. Healthentia e-Clinical Environment

For the purposes of INTERFACE, a very comprehensive and adaptive e-Clinical
environment, provided by the partner company Innovation Sprint, has been customized to
meet the needs of INTERFACE protocol. The e-Clinical environment is based on Healthentia
solution, which facilitates clinical trial optimization, accelerates trial processes, reduces
failure rates, and validates drug/intervention efficacy and effectiveness with RWD insights.
Healthentia is a Class I Medical Device with CE mark, a medical decision support software
intended for monitoring of non-vital parameters to support decision making during clinical
trials, according to RWD gathered from patients taking part in the clinical investigation.

Healthentia extends the use of traditional electronic patient-reported outcomes (ePRO)/
electronic clinical outcomes assessment (eCOA) applications by adding lifestyle, behavioral,
and health-related data collected from smartphones and internet of things (IoT) devices.
Applying artificial intelligence (AI) and machine learning techniques on these data, one
can discover behavioral biomarkers and cluster patients into behavioral phenotypes, which
allows the activation of smart services for the prediction of clinical outcomes, the generation
of prevention alarms, and the linking of phenotypes with intervention efficacy. Furthermore,
on the basis of reported outcomes, the AI module is able to generate automatic alerts in the
case of adverse events. These automatic and prevention alarms support decision making
by the investigator during clinical trial for the benefit of the individual patient’s health. The
main components that are utilized for the purposes of the INTERFACE study are:

ePRO/eCOA—The ePRO/eCOA component is responsible for the communication
with the mobile application that runs in iOS and Android devices. The component has all
functionalities and services that are consumed by the smartphone app via Healthentia API.
The Healthentia app interacts with the ePRO/eCOA component to allow the patient from
the comfort of their home to:

• fill in health-related and quality of life questionnaires from their device;
• log events for symptoms, school/work absence, treatment, or hospitalization, etc.;
• receive ad hoc messages from the system or the investigator of a study;
• receive automatic messages from the system or the investigator of a study;
• receive notification for filling in questionnaires or medication reminders;
• find protocol/treatment or device-related information;
• contact the investigator;
• use the chatbot functionality for questions and virtual coaching.

The ePRO/eCOA component also includes the questionnaire editor and scheduler.
The questionnaire editor allows the investigator to create or edit questionnaires that will
be delivered to the patients. The editor provides the functionality to create complicated
questionnaires with advanced routing between questions, and even between questionnaires
as well as multiple types of questions and user interfaces, e.g., single, multiple, image
selection, location-based, etc. The questionnaire scheduler is the functionality that is used
by the investigators to create rules for the automatic submission of questionnaires to specific
recipients. These rules may include the registration date, or even the answers from the
subject and the auto-tagging of a subject into a certain category.

Smart services—Further to the currently supported features of Healthentia, i.e., col-
lecting data from patients, the wealth of information collected is used in real time by the
Healthentia machine learning (ML) services to provide useful insights for clinical endpoints.
On the basis of the patients’ data, models are learned both for predictive and generative
purposes. Predictive models can estimate future clinical outcomes from current and past
data. Once such predictors of outcomes are validated, they are considered biomarkers
for the particular outcomes at hand. Unlike traditional biomarkers, these models form
composite digital biomarkers by non-linearly combining various information attributes
to predict the wanted outcome. Such predictive models are shown in Section 4.3, but the
results there are considered preliminary, and the models are not yet validated into biomark-
ers. Generative models are built by modelling patient clusters and can be used to generate
synthetic data. Different clustering algorithms can be used to derive the clusters, which can
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then be validated by verifying that all patients in a cluster exhibit some common outcome.
When this is verified, the cluster models are validated into phenotypes. In Figure 3, the
lifecycle of RWD in Healthentia is described.

Figure 3. The lifecycle of RWD in Healthentia.

The lifecycle of RWD in Healthentia can be described in six steps. In step 1, data are
captured and visualized at real-time basis. In step 2, digital composite biomarkers are
discovered, and patients are clustered using ML algorithms. For this purpose, physiological,
psychological, and sociological data are used. In step 3, training of the selected patient
model is performed by means of observational sequences from the trial in order to allow
smart services to be applied, such as prediction of clinical outcomes and alarms (see step 4).
At the end of a study, the investigator can further use the derived patients’ models to run
in silico trials (see step 5), while the enriched models can be utilized for digital therapeutic
(DTx) services, such as the orchestration of virtual coaching messages.

In the case of the INTERFACE study, patients will be grouped in phenotypes on the
basis of ML processing of the RWD, and a digital composite biomarker will be derived,
consisting of several dimensions, for each of the data points captured, e.g., questionnaire
scores and scales. This digital composite biomarker will then be optimized by identifying
which of the dimensions will have significant impact to the endpoints, and when an
AI training process is followed, it will be used to predict future outcomes. The digital
composite biomarker can then be used for future in silico studies and/or driving DTx
decisions for HIV patients.

4. Data Analysis

The sample will be described using a descriptive analysis with the aim of analyz-
ing how health conditions, mental health, and quality of life changes during the use of
Healthentia.

Qualitative variables will be summarized with percentage frequency tables by analyz-
ing questionnaires filled in by patients.

Quantitative variables will be described using the minimum, maximum, mean, median,
standard deviation, and interquartile range; then, through histogram and box plot, we will
see the shape of the data distribution. Normality of continuous variables will be checked
using the Kolmogorov–Smirnov test.

Inferential techniques, defined after a data exploration phase, will be then used with
the aim of implementing a Guardian Bot, a software able to automatically detect earlier
predictors of a worsening trend of the main disease or of SARS-CoV-2 infection occurrence.
In this manuscript, we only present preliminary results regarding the construction of a
machine learning model for predicting the alerts shown in Figure 1.
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4.1. Interface Integration with Generator Real World Data

INTERFACE will leverage on the overall architecture and capabilities of Gemelli
GENERATOR Real-World Data facility (G2 RWD), the innovative research center of FPUAG
IRCCS, with the principal aim to transform data and information into actionable knowledge
while fully respecting the privacy, data integrity, and intellectual property for the benefit
of all.

Indeed, if the main purpose of INTERFACE is totally in line with G2 RWD objectives:
the exploitation of G2 RWD framework represents a quality guarantee for INTERFACE
both in terms of data collection, quality, and analysis and of data privacy and protection.
Actually, G2 RWD architecture has been approved by the Local Ethical Committee and
widely used in FPUAG IRCCS with good results [23].

The architecture and methods that G2 RWD will contribute for INTERFACE are
based on:

• the creation and update of a dedicated Data Mart (organized subsets of data on a
specific area of knowledge) in which all data collected both for the app and from the
electronic data reporting system of the hospital are correctly stored and organized, in
order to be easily accessible and understandable for physicians;

• Mathematical and statistical tools available, ranging from the traditional qualitative-
quantitative analysis techniques to the more advanced artificial intelligence algorithms,
to provide new modeling hypotheses to be tested and validated with clinicians for
research purposes;

• The data architecture, defined to provide the highest degree of protection, in accor-
dance with all GDPR and security requirements.

4.2. Data Privacy and Data Protection

All privacy matters are analyzed with the Policlinico Gemelli Data Protection Officer
(DPO) so that every G2 RWD study will be compliant with GDPR Italian and European
directives and regulation (EU Directive 2016/679 and under Italian Laws: Decreto Leg-
islativo 196/2003, Decreto Legislativo 101 2018, Autorizzazione Generale Garante 9/2016).
The data architecture that supports RWD studies has been designed to provide the highest
degree of protection, in accordance with all GDPR and security requirements. In this
respect, RWD provides “protection by design” in each step of the process.

4.3. Learning Models to Predict Alerts

The questionnaire pipeline of Figure 1 is triggered once per month, and depending
on the answers of the patients, the maximum number of questions answered is 255. When
there is no need to answer some questions, they are assigned to the default “no problem”
state. As a result of the answers given, four types of alerts might be issued:

• Frailty alert, binary (OK, alert);
• HIV symptoms alert, binary (OK, alert);
• Adherence alert, binary (OK, alert); and,
• Psychological/psychiatric support alert, tristate (OK, psychological, psychiatric).

Given the current state of the patient, i.e., the answers to the questionnaires of the
current month, the alerts are fully determined. The machine learning (ML) goal of INTER-
FACE is to predict the alarms given the patient history. The history is determined as the
questionnaire answers of part months, and it can span one month (predict the alarms in
the current month given the questionnaire answers of the previous month) or more. The
input vectors comprise the individual answers in a history window of n months, i.e., of
255·n attributes, n = 1, 2, . . ., while the output vectors comprise of the four attributes for
the four alerts.

The patients answer the questionnaires on a monthly basis. Thus, a patient being n
months in the INTERFACE study provides N − n pairs of input and output vectors. Since
there are not a lot of patients in the study, especially for long durations, large values of the
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history window drastically reduce the number of available vectors, albeit they increase the
actual information each vector caries. The lack of adequate vectors to learn ML models is a
typical situation where vectors are contributed on a monthly or even weekly basis.

Although the alerts are not really rare, raising them is not the common state. Hence,
the state of the output attributes is far from balanced, with the majority of the vectors
indicating “no problem” and only few of them resulting to alerts. Thus, the ML problem at
hand is a heavily imbalanced one, and therefore the accuracy is not a good performance
metric for the predictors. We employ balanced accuracy [24] instead.

The lack of data and the imbalance nature of the model learning task make it a
particularly hard to tackle. The situation is depicted in Table 1. The number of available
vectors (198 for n = 1 or 149 for n = 2) forbids the use of neural network [25] predictors of
any usable depth. Training of random forests [26] though a few estimators is possible, and
this is the selected ML algorithm training our INTERFACE predictive models.

Table 1. Volume of data per history depth and outcome state.

Attribute History (Months)
Counts per State

#1 #2 #3

Frailty 1 186 13 N/A
2 143 6 N/A

HIV symptoms 1 139 60 N/A
2 100 49 N/A

Adherence
1 190 9 N/A
2 141 8 N/A

Psychological, psychiatric 1 163 25 11
2 124 18 7

N/A: not applicable.

For the same reason, the split of the available vectors in training, validation, and
testing sets is not practical. Instead, we train and validate the models using k-fold cross-
validation [27]. We split the data in k folds of size 5 each (39 for n = 1 or 29 for n = 2) and
use k − 1 of them for training and 1 for validation. We repeat the training 30 times for each
fold selection and select the highest balanced accuracy of the 10 as the balanced accuracy
of the fold. We average the balanced accuracies of the k − 1 folds to obtain the balanced
accuracy for one configuration of the random forest. We vary the number of estimators as
different configurations and select the best of them all.

The number of estimators (trees) of the random forest are varied in the training. The
tree creation parameters are as follows: bootstrap samples are used instead of the complete
dataset when building trees, randomly selected at consecutive training sessions. The quality
of tree node splits is measured using Gini impurity and best split is sought for considering
the square root of the total number of features. Tree nodes are expanded until they contain
a single sample, with the number of leaf nodes being unlimited. Even though the different
class population is not balanced, no attempt has been made to assign different weights to
the different classes.

The average training balanced accuracy for one month is 92%, while for two months
it is the perfect 100%. Such a training gives us no generalization confidence however,
and therefore we proceed with the k-fold cross-validation scheme discussed above. The
resulting average balance accuracy across all four outcomes as a function of the number of
random forest estimators is shown in Figure 4. Note that the maximum performance for
two months of history generally increased for a larger number of estimators, while for one
month, the algorithm found an optimum point at a small number of estimators. The reason
that the cross-validation did not result in better results for two months of history is because
of the fewer vectors available, with the problem at hand having double the features.
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Figure 4. Balanced accuracy for the RF classifiers averaged over all four outcomes as a function of the
number of estimators for one (left) and two months (right) memory.

The decisions of the classifier are analyzed using Shapley Additive explanations
(SHAP) analysis [28]. SHAP analysis is applied on every decision, yielding the effect
of each attribute in the feature vector towards a positive or negative prediction. These
attributes are questions in the different questionnaires, and thus the SHAP analysis actually
yields the on average most important questions to ask for each outcome. This is shown in
Figure 5.

Two notes are in order. Firstly, the ranking of the questions shown in Figure 5 is
averaged across all the population. It is interesting to discover how this ranking varies
when considering the different individuals. Unfortunately, there are too few different
patients with many decisions (many months in the study) to conduct this analysis just
yet. This brings us to the second note: Since the data we currently have at hand are
limited, we cannot actually claim that the most important factors from a clinical viewpoint
are found. Instead, at this point the analysis is more of a machine learning rather than
of clinical importance. That being said, we observe that the overall health question of
the ED-5D questionnaire is always high in importance. The frailty and adherence alerts
seem to have a very large dependency on their most important attribute, the rest being
quite lower, while the rest of the alarms have a more even dependency on the different
attributes. Most of the important factors for the psychological/psychiatric alarm fall in the
anxiety/pessimism categories.

Finally, the most important factors for the decisions based on one month history are
compared to those based on two months in Figure 6. The attributes whose names finished
with a “-1” were those of the oldest month. Note that many of the most important attributes
were from the oldest month, with the current one not ranking high, such as the PHQ sleep,
preference to die or lack of interest, or the GAD ability to control worries or to sit up. On
the other hand, in some cases, the attributes of the two months of history appeared in pairs,
such as the most important pair of EQ_5D health of the previous and this month or the
EQ_5D pain.
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Figure 5. SHAP analysis of the classifier decisions to obtain the most important attributes affecting
the decisions of either positive or negative outcomes.
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Figure 6. Comparison of the most important factors of the prediction (across all outcomes) for one
month history (top) and two months history (bottom).

5. Ethical Aspects

The protocol has been approved by Local Ethical Committee (Protocol n 3436).

6. Discussion

During the COVID-19 pandemic, medical care for PLWHA is at risk of being com-
promised, calling into question the excellent results achieved in this field. The main
scientific societies have produced guidelines suggesting how to ensure an adequate stan-
dard of care during this phase, promoting different models of care involving tools such as
telemedicine [29,30].

Moreover, during the COVID-19 pandemic, machine learning and artificial intelli-
gence systems are being used increasingly more accurately to optimize the care of people,
identify predictive factors for the diagnosis and prognosis of the disease itself, and for the
monitoring of mental health [31–34].

In the protocol described here, we propose a study based on the integration of
telemedicine and telemonitoring with a standardized approach translating the huge amount
of data collected on the day-to-day experience, integrating with historical health data, into
useful insight and medical practices based on patients’ experience and lessons learned
by the artificial intelligence approach. In more detail, the system is expected to improve
clinical decision making by providing physicians with additional data about patient needs
and behaviors. For example, it may help clinicians to detect mood disturbances that do not
impair patient daily activities, such as persistent depressive disorder. The system is indeed
presenting to every recruited patient validated questionnaires for depression screening. In
turn, in our system, these questionnaires are designed to trigger specific alerts that are then
displayed directly to the attention of the clinician, enabling them, eventually, to refer the
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target patient to mental health services. We thus believe that our system will help clinicians
to assess mental health issues in people living with HIV during the COVID-19 pandemic.
Alternatively, when clinical data from the electronic reporting system of the hospital will
be integrated, the system is designed to draw to the physician attention altered lab results
directly on his/her smartphone, empowering the clinician, even in the outpatient setting, to
act promptly in case of major disturbances. A final example of how we expect our system to
improve clinical care is adherence to ARV therapy, which is, in our view, a substantial chal-
lenge during the present pandemic. This will be possible by selected questionnaires (able
to trigger specific “low adherence” alerts to the doctor’s attention), along with drawing to
the clinician’s attention the latest results of patient’s viral load. Moreover, what has been
demonstrated, even if only preliminarily, in the predictive model on future alert detection,
suggests that such a model may be of fundamental importance in optimizing the clinical
management of PLWH. The possibility of detecting problems related to mental health or
adherence to treatment, for example, may allow the prediction of a tailored management
of the patient with consequent optimization of resources. For instance, we have already
observed that several mental health issues have been identified among the enrolled patients
and we believe that this evidence could be a useful tool to draw attention to the need to
provide patients with a more effective support at this regard.

It has been reported that telemedicine is variably accepted by patients, precisely
because of the risk of “depersonalization” that such a tool may carry [35]. Moreover, in
recent years, the attention of research and the HIV patient community is increasingly
focused on what is called the “fourth 90”, i.e., everything that concerns the global health
status of patients, their quality of life, and their feeling [35]. For these reasons, developing
an e-health tool that complements but does not replace care, and that focuses on what is
defined as “patients reported outcomes”, could address multiple unmet needs that remote
care of HIV patients has not yet solved.

It has been reported that the adoption of remote healthcare has exposed critical gaps in
access, such as socioeconomic disparities that may prevent many vulnerable persons from
benefiting from telehealth innovations, namely, defined as “digital divide” [36]. In order to
mitigate this problem, the present study will make use of strategies both inherent in the
product (easy access modes, user guide, explanatory videos, etc.) and strategies to involve
the community of patients for the support of people with different social or educational
frailties.

The difficulties potentially encountered by PLWHA during the pandemic are also
shared with patients suffering from other chronic diseases. In our opinion, this study could
represent a model of integrated management also for other chronic pathologies such as
oncological pathologies for two fundamental reasons: Firstly, because oncology has long
paid relevant attention to the aspects reported directly by patients in terms of quality of
life, symptoms, experience with the care system, etc., leading to consider PROs as potential
hard outcomes in the design of clinical trials [37]. Secondly, because the oncological patient
presents many aspects of linkage to the care center that are very similar to what is reported
for PLWHA in terms of continuity of care and “personalization” of care. Finally, the study
is beginning to yield enough monthly data to facilitate learning of predictive models for
the alerts of interest. Such models are learnt for one or two months of history of the
questionnaire data. No attempt has yet been carried out to integrate with the hospital data.

7. Conclusions

The development of such an e-health system may respond to clinical care needs for a
specific type of chronicity such as HIV infection. In particular, in this COVID-19 pandemic
period, such a system can be an important tool for managing the quality of life of the
HIV patient. The COVID-19 pandemic is having a deleterious impact on the physical
and, above all, mental health of the chronic population and also on the HIV-infected
population [38], and the identification of tools capable of identifying physical and mental
health problems and producing interventions tailored to the specific needs of the patient
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represents a significant improvement in the standard of care for people with HIV, even
in the absence of physical access to the reference healthcare facilities. Moreover, it can
represent a simple and widely useful system to perform a prescreening for chronic patients
during the COVID-19 epidemic in order to prevent potential transmission clusters within
the hospital as much as possible.

Early evidence that the prediction of the alerts of interest can be made is given. As on
the one side, the study yields more data points, facilitating more training and the inclusion
of more months of history, and on the other side, the hospital data augment the data
attributes at hand, we expect the prediction to become more accurate. Upon reaching this
point, the SHAP analysis of the decisions will yield clinically significant results for the
importance of the different attributes. Subsequent development of the study involves the
effect of applying such a machine learning system on the health indicators shown in the
methods, in order to assess how far such a system can be applied in increasingly advanced
chronicity management.
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Abstract: Medical images of brain tumors are critical for characterizing the pathology of tumors
and early diagnosis. There are multiple modalities for medical images of brain tumors. Fusing the
unique features of each modality of the magnetic resonance imaging (MRI) scans can accurately
determine the nature of brain tumors. The current genetic analysis approach is time-consuming
and requires surgical extraction of brain tissue samples. Accurate classification of multi-modal
brain tumor images can speed up the detection process and alleviate patient suffering. Medical
image fusion refers to effectively merging the significant information of multiple source images of
the same tissue into one image, which will carry abundant information for diagnosis. This paper
proposes a novel attentive deep-learning-based classification model that integrates multi-modal
feature aggregation, lite attention mechanism, separable embedding, and modal-wise shortcuts for
performance improvement. We evaluate our model on the RSNA-MICCAI dataset, a scenario-specific
medical image dataset, and demonstrate that the proposed method outperforms the state-of-the-art
(SOTA) by around 3%.

Keywords: multi-modal medical image; image classification; brain tumor

1. Introduction

GLOBOCAN recently conducted a survey in 185 countries, reporting an estimation
of over 300 K new brain cancer cases and above 250 K new deaths in 2020 [1]. Among
the various types of malignant brain tumors, glioblastoma multiforme (GBM) is one of
the most deadly types, with a low survival rate and limited treatment options. In the
United States, the estimated number of GBM diagnoses is over 13 K, and the number
of deaths resulting from GBM is over 10 K per year [2]. GBM has been classified as the
highest-grade brain cancer (a grade five) by the World Health Organization. A combination
of chemotherapy and radiotherapy is a typical treatment following the removal of the
tumor by surgery. Radiotherapy can cause severe side effects since radiation could kill both
normal and cancer cells. Chemotherapy, on the other hand, works by placing a chemical
on the guanine DNA, preventing the replicating of new DNA and leading to cancer cell
apoptosis. However, it is known that chemotherapy can be ineffective due to an enzyme
named O6-methylguanine DNA methyltransferase (MGMT). The function of MGMT is
determined by its promoter methylation status. If the promoter region is methylated, the
enzyme transcription is affected, leading to potentially effective chemotherapy treatment.
Therefore, the MGMT promoter methylation status has become a prognostic factor, and a
predictor of chemotherapy response [3].

Invasive surgeries can be utilized to determine the status of the MGMT promoter
methylation. However, this approach, based on genetic analysis, is an iterative and time-
consuming process that requires surgical extraction of brain tissue samples and several
weeks of genetic characterization. In addition, the surgery itself may lead to side effects.
An alternative that does not involve surgery is to apply computer vision techniques to
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analyze the magnetic resonance imaging (MRI) data. Recent advances in deep learning
have achieved extensive success in a broad spectrum of domains [4]. With the continuous
efforts of MRI data collection and annotation, deep learning shows its potential in MGMT
promoter methylation detection by learning and extracting biomarkers and patterns from
MIR scans that are highly indicative of the methylation status. Thus, deep-learning-based
approaches have the potential to offer a non-invasive, efficient, and accurate alternative
with less patient suffering and more effective treatment for GBM.

MRI scans contain abundant data with a characteristic of multi-modality, which can
be and should be better exploited by deep learning algorithms. However, our investigation
of the literature shows that prior studies have not fully explored the usage of multi-modal
MRI data to detect MGMT methylation. Among the several studies [5–8] that considered
multi-modality, only a basic fusion strategy has been adopted, and there is a lack of in-depth
investigation for utilizing the multi-modality feature of MRI data for brain tumor detection.
Our study aims to fill this gap.

In this paper, we propose a novel deep neural network (DNN) architecture that
integrates three performance boosters, including a lite attention mechanism, a separable
embedding module, and a model-wise shortcut strategy. The three boosters are designed
to better mine multi-modal features and capture informative patterns to make a final
prediction. Our proposed model is lightweight and can effectively improve the model
performance. The main contributions of this study are as follows.

• We propose an attentive multi-modal DNN to predict the status of the MGMT pro-
moter methylation. In addition to a multi-modal feature aggregation strategy, our
proposed model integrates three performance boosters, including a lite attention mech-
anism to control the model size and speed up training, a separable embedding module
to improve the feature representation of MRI data, and a modal-wise shortcut strategy
to ensure the modal specificity. These joint efforts have improved the detection accu-
racy of our model by 3%, compared to the SOTA method. Experiments and results are
obtained on the RSNA-MICCAI 2021 dataset [9], which is a recently released dataset
with the most patients and MRI scans compared to existing datasets.

• We have made the project source code publicly available at https://github.com/ruyiq/
An-Attentive-Multi-modal-CNN-for-Brain-Tumor-Radiogenomic-Classification (ac-
cessed at 26 February 2020), offering a credible benchmark for future studies.

The rest of this paper is organized as follows. Section 2 reviews research work related
to fusion of multi-modal medical images. Section 3 explains our proposed model and
dataset. In Section 4, several experiments are conducted to evaluate the effectiveness of the
proposed model. Finally, in Section 5 we conclude the paper and provide future work.

2. Related Work

2.1. Detection of MGMT Methylation Status Based on MRI Data

Table 1 lists a collection of learning-based methods trained with brain MRI scans for
the classification of methylation status, which is usually treated as a binary classification
problem; namely, methylation vs. non-methylation. It is observed that both traditional
feature-based learning methods [5,10,11], such as SVM, RF, KNN, RF, J48, NB, and XGBoost,
and deep learning models [6–8,12,13], such as CNN and RNN, have been extensively
adopted to build classifiers. It is also noted that a lack of sufficient training data has been
a long-lasting challenge, limiting the power of deep-learning-based models. Most prior
studies have used data from the Cancer Genome Atlas (TCGA) database, which contains
MRI scans from fewer than 250 patients. The recent 2021 RSNA-MICCAI dataset [9] has
doubled the number of patients with data collected from multiple centers. This enhance-
ment can boost the quantity and diversity of data used for training deep neural network
(DNN) models in the area of methylation detection and potentially benefit the model per-
formance. Meanwhile, it is essential to utilize MRI scans with different modalities, which
provide more abundant image features and patterns to be learned by a model. It is found
that only half of the studies [5–8] have considered the multi-modality characteristic of the
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data. We argue that the multi-modal image features play a crucial role in building a more
accurate and robust model for MGMT methylation detection, which drives us to integrate
a multi-modal feature fusion strategy into the learning pipeline. Moreover, we propose
to adopt three performance boosters, including a lite attention mechanism, a modal-wise
shortcut, and a separable embedding strategy, which have not been seen in prior studies.

Table 1. A review of MRI-based learning models for the detection of MGMT methylation status.
The table includes the following abbreviations: dataset size (D.S.), multi-modality (M.M.), attention
mechanism (A.M.), modal-wise shortcut (M.W.S.), separable embedding (S.E.), support vector ma-
chine (SVM), random forest (RF), k-nearest neighbor (KNN), naive Bayes (NB), convolutional neural
network (CNN), and deep neural network (DNN).

Reference Year Model D.S. M.M. A.M. M.W.S. S.E.

[10] 2016 SVM, RF 155 � � � �
[11] 2017 KNN, RF, J48, NB 86 � � � �
[6] 2017 ResNet 155 � � � �
[7] 2018 CNN+RF 133 � � � �
[8] 2018 CRNN 262 � � � �
[5] 2020 XGBoost 53 � � � �
[12] 2020 Custom CNN 153 � � � �
[13] 2021 MGMT-Net 247 � � � �
Our work 2022 Custom DNN 585 � � � �

2.2. Multi-Modal Learning on MRI Data

It has been shown both theoretically [14] and empirically [15,16] that models aggre-
gating data from multiple modalities outperform their uni-modal counterparts due to the
enriched features and patterns to be learned from the multi-modal data. The usage of
multi-modal learning has seen success in a wide range of learning tasks such as object
detection [17], semantic segmentation [18], video action recognition [19], and detection of
disease [20,21].

MRI data also present multiple modalities that can be extensively utilized for train-
ing DNN models. Several studies have developed various techniques to pursue better
predictive performance. Myronenko et al. applied AutoEncoder, which fuses the inputs
from different modalities [15] to achieve a better performance in 3D MRI brain tumor
segmentation. Tseng et al. proposed a deep encoder–decoder structure with cross-modality
convolution layers for 3D image segmentation [16]. Shachor et al. proposed an ensemble
network architecture to address the classification task by fusing several data sources [22].
The designed network consists of three different modality-specific encoders to capture
features of different levels. The proposed method focuses on two-view mammography,
which could be extended to multiple views and/or multiple scans. Nie et al. proposed
the use of fully convolutional networks (FCNs) for the segmentation of isointense phase
brain MR images. They trained one network for each modality image and then fused
their high-layer features for final segmentation, which uses different modality paths to
obtain the modality-specific features and then fuses the features to make final decisions [23].
Kamnitsas et al. fused the input modality-wise information directly [24]. They proposed a
dual pathway, 11-layer deep, 3-dimensional convolutional neural network for brain lesion
segmentation. They also devised an efficient and effective dense training scheme, which
joins the processing of adjacent image patches into one pass.

The aforementioned studies mainly use multi-modal MRI data to build DNN models
for the segmentation task. To the best of our knowledge, the usage of multi-modal MRI data
for the detection of MGMT methylation has not been seen. Moreover, the proposed learning
pipeline integrates three performance boosters to utilize better the extracted multi-modal
MRI features, which have not appeared in any prior studies we have investigated.
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3. Materials and Methods

3.1. Dataset

In this research, we focus on the RSNA-MICCAI dataset [9], a multi-center brain tumor
MRI dataset that comes with two tasks; namely, tumor segmentation and MGMT detection.
In this study, we only tackle the second one. In the dataset, each patient’s data is stored
in a dedicated folder with a five-digit identification number. Each sample folder consists
of four sub-folders corresponding to the four modalities of the MRI scans, including fluid
attenuated inversion recovery (FLAIR), T1-weighted pre-contrast (T1w), T1-weighted post-
contrast (T1Gd), and T2-weighted (T2), obtained from the video cut frames acquired by
imaging. Each modality (i.e., scan type) specifies a focus during imaging. For instance,
FLAIR captures the effect after cerebrospinal fluid (CSF) suppression, where liquid signals
such as water are suppressed to highlight other parts. T2-weighted, on the other hand,
highlights the difference in lateral tissue relaxation, and the combination of different effects
provides a comprehensive description of the lesion from multiple perspectives. Each
sample in the dataset is described by a quadruple of these four different imaging modalities.
Figure 1 shows the four modalities of a positive sample (Figure 1a–d) and a negative sample
(Figure 1e–h).

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 1. Samples of MRI scans: (a–d) represent the FLAIR, T1w, T1Gd, and T2 modalities of a
positive sample, and (e–h) represent the FLAIR, T1w, T1Gd, and T2 modalities of a negative sample.

RSNA-MICCAI has 585 annotated samples, each corresponding to four modalities
containing samples ranging from a few tens to a few hundred. Each modality of a patient
consists of a sequence of MRI scans within a period of time. Figure 2 shows such an MRI
sequence of FLAIR scans (74 in total) for patient ten in the dataset. Compared with other
datasets used in prior studies in Table 1, RSNA-MICCAI contains a larger amount of data
and is a clearly labeled dichotomous dataset, which can better characterize the patient in
different imaging modalities and have better generalization. The number of positive MRI
scans is 3070, or 57.5%, and the number of negative samples is 2780, or 52.5%. The classes of
the dataset are relatively balanced. Table 2 reports the statistics of the number of MRI scans
for each modality. It is observed that the average number of scans for modality per patient
is in the range 127 and 171, which provides abundant information for pattern learning.
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Figure 2. A sequence of FLAIR scans for patient 10 in the dataset.

Table 2. Number of files for each scan type.

Scan Type FLAIR T1w T1wCE T2w

# files 74,248 77,627 96,766 100,000
Avg. # files per case 127 133 165 171

Figure 3 shows an intensity visualization of MRI scans for three random patients. The
charts are grouped by the four modalities. For each sub-chart, the x-axis represents the time
step, and the y-axis denotes an intensity score, which reflects the amount of information
expressed by the MRI scan at a time step. The intensity defines the shade of gray of tissues
or fluid, and different levels of intensity are encoded by different colors in the MRI scan.
The higher the intensity, the more white area in the scan; the lower the intensity, the more
black in the scan. Thus, gray encodes intermediate signal intensity. Intuitively, images with
higher intensity carry more expressive patterns that can be learned, and these images often
appear in the middle of the MRI sequence, as shown in Figure 2. It is also observed that
even for the same patient, the times of peak intensity for the four modalities vary. This
finding allows us to better pre-process the data by selecting the most informative scans
(namely, the ones with the highest intensity scores) for each modality to train our model.
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Figure 3. Intensity visualization. Subfigures (a–c) represent the intensity charts of the four modalities
for three randomly selected samples.

3.2. Learning Framework

Figure 4 illustrates the learning framework. To ensure the model effect and retain
the original input details, the output of attention is fused with the input through shortcut
connection and weighted summation, and the fused features are mapped to a more divisible
space by a smaller DNN module. Finally, the classification results are obtained by using
the LSTM structure. In this paper, four sub-structures, including multi-modal feature
aggregation, lite attention mechanism, separable embedding, and modal-wise shortcut, are
applied together to enhance the overall performance of classification.

Figure 4. The learning framework.

3.3. Multi-Modal Feature Fusion

The data of each modality are considered for modality-by-modality feature extraction
due to the significant differences in imaging principles. Each sample corresponds to four
images, namely fluid attenuated inversion recovery (FLAIR), T1-weighted pre-contrast
(T1w), T1-weighted post-contrast (T1Gd), and T2-weighted (T2), corresponding to modal1,
modal2, modal3, and modal4 inputs in the above figure.
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The feature maps F1, F2, F3, and F4, obtained through feature extraction from each
modality, are fused by the attention module to obtain the attentions that can fully describe
the overall information across the modalities.

Here, the specific form of feature extractor needs to be selected. Since the images of
each modality are 256*256 single-channel images with small scales, an overly complex
feature extraction process will greatly destroy the original information and make the
subsequent operation difficult. It is found that a simple single-layer convolution can be used
to obtain a balance between extracting features and preserving the original information.
Since the data of each modality have a different distribution, the feature extractor of each
branch does not share the weights.

To extract information from multiple perspectives, the subsequent attention module
still adopts the multi-head model. The number of heads is chosen to be 4, which is explained
below in Section 3.5.

3.4. Lite Attention Mechanism

Since each sample has four modalities, the data of each modality have a different
emphasis due to their different methods of acquisition. It is necessary to analyze each data
characteristic to decide how to fuse features from different modalities. The two commonly
used methods are as follows:

1. Fuse multi-modal data in the form of sequences and use recurrent neural network
(RNN) models for feature extraction. This operation requires traversing the input
from the first time-step to the last one, which is computationally expensive [25]. Even
though improved RNN variants such as LSTM [26] and GRU [27] can effectively
reduce the difficulty of parameter updates in training, the sequential arrangement of
different modal data introduces unnecessary sequential priors, which can force the
model to learn an unreasonable one-way information flow while understanding the
inter-modal relationships to fit the main features, affecting the effectiveness of feature
extraction [28,29].

2. Use the attention mechanism to fuse the features extracted from different modalities.
Attention can easily obtain global feature information compared to the sequential
models such as LSTM and GRU mentioned above, which can better obtain contextual
relationships and obtain an overall understanding of the input.

The attention mechanism was first proposed by the Google machine translation team
in 2017. It completely breaks away from the previous framework based on a recurrent
neural network and dynamically extracts the feature part that it cares most for from each
current input and fuses it to control the impact of all time-step features on the current
output through different weights [30]. A brief description of the attention mechanism is
given as follows. In each time step, the input obtained by the model consists of three parts:
the current query, different feature values, and the corresponding keys of the features.
The query is the object that the model needs for the current time-step, which may be a
concrete input or an abstract representation of the features extracted in the previous step.
To fully determine the important differences of features, an attention mechanism uses the
dot product of the query and key to calculate the weights of corresponding features. At this
point, the similarity between the query and key is measured by the dot product [31]. This
way of calculating attention weights is called dot-product attention. As such, we obtain the
following Equation (1) for calculation, where ki and vi are the input key and values. The
query at this point is denoted as q.

Attention(q, k, v) =
N

∑
i=1

qTkivi (1)

When the length of the vector becomes longer, the scale of its dot product result
also becomes larger. After the calculation through softmax, it reaches the saturation zone,
making the gradient smaller, which is not conducive to the model optimization. Therefore,
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before performing softmax, the inner product value is divided by the square root of the
length d, as shown in Equation (2).

Attention(Q, K, V) = So f tmax
(

QKT
√

d

)
V (2)

After a further examination of the equations above, it can be found that to perform the
dot product operation, the key used by the model, i.e., ki, and the query, i.e., q, need to have
the same dimensionality. The additive attention method is proposed to perform the weight
calculation on different occasions adequately. This method concatenates the input query of
length u and the key of length k. The resulting (query, key) pair is fed into a feedforward
neural network with a single hidden layer, and the value describing the degree of similarity
between the two is obtained by the sigmoid function and used as the weight [32].

In the above dot-product attention process, to calculate the weight corresponding
to the i-th input, two vectors of length d, query and ki, for the case of N time steps or N
different modalities, the number of parameters to be retained and trained is (N + 1)d. To
fully guarantee the relative importance of different inputs, the specific value of d cannot be
too small since it is challenging to train the model effectively in the case of insufficient data.

In this study, we propose a lite attention mechanism, which is a light weighted
improvement of the original attention mechanism, by directly modeling the weights of
different modalities, i.e., rewriting the attention formula to the following:

Attention(v) =
N

∑
i=1

wivi (3)

For the training process of wi, the number of parameters is reduced from (N + 1)d to
N, which significantly improves the training speed and generalization performance [33,34].
It does not cost much to train wi. We do not use a softmax function for normalization
and nonlinear processing before the weighted summation but achieve better results. Our
conjecture is that the simple scale variation corresponding to normalization can be adjusted
by the subsequent DNN embedding, while the parameters corresponding to formally
relative simpler binary classification problems can be directly derived by incorporating the
relationship of nonlinear mapping into the model structure.

3.5. Modal-Wise Shortcut

The features of each modal, after feature extraction and processing by the attention
modules, are represented with a highly task-relevant tensor, but the following fusion
process leads to a loss of image details that may be informative to the task, which may
further result in severe performance degradation for the prediction. Our solution is to
add a shortcut between the original input and the output of the attention module; namely,
a residual connection [4] for each modal. Bypassing all the convolution and weighted
summation, we keep and pass all the original detailed features in the network without any
loss, which significantly reduces the possibility of model degradation.

The feature map that is finally fed into the DNN embedding di can be represented as
follows:

di = Attentioni + modali (4)

where Attentioni is the ith feature map generated by the lite attention mechanism module,
while modali is the original input for the ith modal. Fusing these two, we obtain di, the
new feature representation of the ith modal. To ensure the feasibility of the operation,
the number of feature maps output by multi-head attention is set to be the same as the
number of modals; namely, four. This step is processed separately for each modal to avoid
cross-modal information interference, and the final improvement fully demonstrates the
effectiveness of this operation.
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3.6. Separable Embedding

A prior study named CLDNN [35] shows that mapping and projecting the extracted
features into a new separable space before feeding them into the detection head can
effectively boost the model’s accuracy. Inspired by this empirical finding, we adopt a
separable embedding strategy in our study. Specifically, a separate CNN is utilized again
to fuse the tensor produced from the previous module. We have evaluated two CNN
backbones to fill this role and report their effects in the next section. The output of this
module is given as follows.

fi = CNNSE(di) (5)

where CNNSE refers to the CNN that performs separable embedding; di and fi refer to the
input and output tensors of this module.

3.7. LSTM and Detection Head

The output of the separable embedding for each time step is then collected to form
a collection of sequential tensors ordered by the time step of the MRI scans. The tensor
sequence is then fed into a long short-term memory (LSTM) network, followed by a fully
connected layer and a sigmoid function layer as the detection head that outputs a value in
[0,1], indicating the probability of MGMT promoter methylation.

4. Experiments and Results

All experiments were implemented using Python. The adopted deep learning frame-
work is Pytorch 1.8.0. Experiments were run on a Windows workstation with an i7-10875h
CPU and a GTX2080TI GPU. Ten quartets were extracted from each original sample in the
RSNA-MICCAI dataset as a new dataset, and a total of 5850 samples were obtained. The
training and test sets were randomly divided according to the ratio of 8:2.

4.1. Evaluation Metrics

The primary metric of RSNA-MICCAI is the accuracy of the classification. We need
to accurately determine whether the input image is obtained from malignant brain tumor
imaging. Under the current scenario, the model should enhance the classification of positive
samples that threaten the lives of patients. At the same time, misclassifying a true negative
sample as a positive sample can lead to unnecessary surgery and post-operative torment
for the patient. We need to improve the accuracy of both situations. To optimize both
objectives simultaneously, the accuracy rate is used as the evaluation metric. The model
with minor misclassification and omission is chosen.

Acc =
TP + TN

TP + TN + FP + FN
(6)

in which TP (true positive) is the number of true positive samples; TN (true negative) is the
number of true negative samples; FP (false positive) represents the number of false positive
samples; and FN (false negative) is the number of false negative samples.

4.2. Baseline

We consider the following baselines in this study.

• ResNet by He et al. [4] is an effort to understand how deepening a neural network
can increase the expressiveness and the complexity of the network. It is found that
for DNN, if a newly added layer can be treated as an identity function, the deepened
network is as effective as the original one. This finding drives the development of
the residual block, which adds a shortcut connection to the layer output before the
activation function. The simple design allows a DNN to be trained more easily and
efficiently. ResNet was the winning solution for the ImageNet Large-Scale Visual
Recognition Challenge in 2015 and has been applied to numerous computer vision
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tasks with SOTA performance. Therefore, we consider ResNet a decent baseline. Our
empirical result shows that ResNet34 presents the highest accuracy. We thus use
ResNet34 to represent the baseline result.

• The EfficientNet [36] paper makes two major contributions. First, a simple and mobile-
size neural architecture was proposed. Second, a compound-scaling method was
proposed to increase the network size to achieve maximum performance gains. It is
suggested that to pursue better performance, the key is to balance all three dimensions,
including network depth, width, and resolution, during ConvNet scaling. Thus, the
authors of EfficientNet adopted a global scaling factor to uniformly scale the depth,
width, and resolution of the network. The scaling factor makes it possible to apply
grid searching to find the parameters that lead to the best performance. EfficientNet
offers a generic neural architecture optimization technique applied to existing CNNs
such as ResNet. It has shown superior performance in numerous tasks with SOTA
results, which is why we chose it as a strong baseline.

• The gold-medal-winning strategy was developed by Firas Baba, who open-sourced the
code at https://github.com/FirasBaba/rsna-resnet10 (accessed at 24 January 2020).
The final model of the winning team is a 3D CNN using the ResNet10 backbone with
the following design choices: BCE Loss, Adam optimizer, 15 epochs, a learning rate of
0.00001 (from epoch 1 to 10) and 0.000005 (from epoch 10–15), image size 256 by 256,
batch size 8. Each epoch took around 80 s on an RTX 3090. The author also reported
the best central image trick, which is a strategy to select the biggest MRI scan that
contains the largest brain cutaway view for training. In this study, we refer to the
model developed by Firas Baba as the SOTA since it was in first place on the contest
leader board.

4.3. Training Setting

The 3 × 3 convolution is used as the feature extractor for each modality, and each
modality uses its own feature extractor to obtain different features without sharing weights.
We choose Adam as the optimizer with a learning rate of 0.0001, and beta1 and beta2
values of 0.9 and 0.999, respectively. We set eps=1 × 10−8 to prevent the denominator from
being 0. Other parameter configurations are weight decay to be 0, batch size to be 8, and
binary cross-entropy with logits to be the loss function of the binary classification problem.
Several hyperparameters, including the learning rate, the batch size, and eps are tuned via
a five-fold cross validation to obtain the optimal values given a list of value choices for
each hyperparameter.

We also choose albumentation for data augmentation for the training dataset, with the
following configurations:

1. Horizontal flip with a probability of 0.5;
2. Random affine transformation configured as shift-limit = 0.0625, scale_limit = 0.1,

rotate_limit = 10 with a probability of 0.5;
3. Random contrast transformation with 0.5 probability.

4.4. Performance Evaluation

The accuracy of the evaluated models on the training set and the validation set is
demonstrated in Figure 5. Under all configurations in this experiment, after 50 epochs of
training, the models converge, and accuracy becomes stable.
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(a) (b)

(c) (d)
Figure 5. Training and validation accuracy to show an ablation study. Subfigures (a–d) represent the
four evaluated models with a booster added incrementally to the previous model.

Figure 5b shows the performance of adding the attention module only. The accuracy is
only improved to 56.74%. However, the accuracy curve converges slower and a noticeable
scale of oscillation appears in 20–30 epochs, which indicates that without adding other
modules to the fusion of the extracted features the model is not able to obtain effective
information. The training effect is poor, and the accuracy is not particularly satisfactory.

After adding two different separable embedding modules to the model, ResNet34
and EfficientNet [36], it can be observed that both accuracy and the convergence speed are
greatly optimized, which fully illustrates the necessity of separable embedding. Specifi-
cally, the improvement of the performance by adding ResNet34 is more obvious and the
convergence speed is also faster. The accuracy is improved by 4.35%, which is 61.09%. We
chose ResNet34 as the separable embedding module for further experiments.

Finally, we added the shortcut model to the multi-modality + attention + Resnet34 em-
bedding model, using weighted summation to fuse the original information and extracted
features. It can be observed that adding the shortcut model further improves the metrics
by more than 2%, reflecting the effect of direct-concatenation for training the model. The
performance of different models and training plans is provided in Table 3. Overall, the strat-
egy of multi-modality + attention + Resnet34 Embedding + shortcut largely outperforms
the baseline. Combining the above four submodules substantially improves the accuracy
by more than 10%, but the absence of any one of them brings about a significant metric
degradation. We also replicated the SOTA model, which utilized a 3D CNN + ResNet10
neural architecture. The SOTA had an accuracy of 60.74%, which is 3-point worse than
our model.
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Table 3. Performance of different models. Abbreviations: separable embedding (S.E.), training
duration per epoch (T.D.P.E).

Method S.E Acc T.D.P.E (s)

ResNet34 NA 53.12% 65.4
EfficientNet NA 54.80% 52.3

3D CNN + ResNet10 (SOTA) NA 60.74% 73.1
multi-modality + attention NA 56.74% 67.3
multi-modality + attention EfficientNet 59.03% 72.2
multi-modality + attention Resnet34 61.09% 78.8

multi-modality + attention + shortcut Resnet34 63.71% 79.3

We also report the average training duration per epoch (T.D.P.E.) in the last column of
Table 3. It is observed that the average T.D.P.E. for all models ranges from 52.3 to 79.3 s on
our deep learning workstation. The training has been relatively efficient mainly due to the
following: (1) the MRI scans have been down-scaled to 256 by 256 pixels and (2) the fast
processing speed offered by the RTX 3090. It is also noted that the best performing model
only added a reasonable amount of time compared to the SOTA (79.3 vs. 73.1), which
validates the efficient design of the lightweight attention module.

It is observed in Figure 5a–d that overfitting occurs in all evaluated models. Our
observation is aligned with other contest participants (see a post at https://www.kaggle.
com/c/rsna-miccai-brain-tumor-radiogenomic-classification/discussion/281347 accessed
at 20 February 2022). It is mentioned that many teams obtained higher training scores
than validation scores. In machine learning, overfitting is mainly caused by the nature
of data [37]. Specifically, the data points of training and test sets do not follow the same
distribution. As such, the models trained on the training set have learned knowledge
and patterns that do not apply well to the samples on the test set. For this study, the
quantity of MRI scans is increased compared to prior datasets. However, most scans only
contain a partial area of the brain, which does not offer many expressive patterns to be
learned by a model. We adopted the following strategies to handle overfitting. First, we
applied several data augmentation strategies to enhance the diversity of the dataset (see
Section 4.3). Second, we conducted cross-validation to examine the robustness of model
performance. Despite these efforts, a performance gap in the range 10–15% still exists
between the training and validation accuracy scores, even for our best-performing model.

5. Conclusions

Malignancy analysis of brain tumors is crucial for the lives of patients and early
prevention. For early screening and reducing patients’ suffering, accurate classification
is needed. However, the effectiveness of existing models cannot be guaranteed. In this
paper, we proposed a new classification model based on multi-modal feature aggregation,
lite attention mechanism, separable embedding, and modal-wise shortcut. The combined
effects of these boosters increased the prediction accuracy to 63.71% on the RSNA-MICCAI
dataset, outperforming the SOTA by 3%.

This work has the following limitations, which also suggest future directions. First,
our proposed method only considers the temporal association between same-modality data,
while the relationship between different modality data is not examined. This inter-modality
relation is worthy of further investigation. Second, in addition to the modal-wise attention
used in this study, image-wise attention can also be considered since some critical areas
of an MRI scan could carry informative patterns that should be learned and used to make
a better prediction. Lastly, a joint model that handles tumor segmentation and MGMT
detection is expected.
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Abstract: The pathway through which behavior change techniques have an effect on the behavior of
an individual is referred to as the Mechanism of Action (MoA). Digitally enabled behavior change
interventions could potentially benefit from explicitly modelling the MoA to achieve more effective,
adaptive, and personalized interventions. For example, if ‘motivation’ is proposed as the targeted
construct in any behavior change intervention, how can a model of this construct be used to act as a
mechanism of action, mediating the intervention effect using various behavior change techniques?
This article discusses a computational model for motivation based on the neural reward pathway with
the aim to make it act as a mediator between behavior change techniques and target behavior. This
model’s formal description and parametrization are described from a neurocomputational sciences
prospect and elaborated with the help of a sub-question, i.e., what parameters/processes of the
model are crucial for the generation and maintenance of motivation. An intervention scenario is
simulated to show how an explicit model of ‘motivation’ and its parameters can be used to achieve
personalization and adaptivity. A computational representation of motivation as a mechanism
of action may also further advance the design, evaluation, and effectiveness of personalized and
adaptive digital behavior change interventions.

Keywords: AI-powered behavioral change support systems; motivation; computational modeling;
behavior change techniques; AI in health; pervasive health system

1. Introduction

In medical sciences, the mechanism of action of a particular medicine enables physi-
cians to understand the correct dosing better. It helps identify which patients are likely
to respond to that medicine. There are also different models and evidence-based theories
available for health behavior change. These theories/models identify the key constructs
and processes of behavior change. However, serious discussion and research are still going
on about these constructs and their mechanism of action. The fundamental disagreement
is on the causality of Behavior Change Techniques (BCTs) for various theoretical psycho-
logical constructs. For example, one might argue that BCT “information about health
consequences” changes behavior by changing one’s belief about health consequences. The
most common term used for this connection between BCTs and the modifiable factors is a
Mechanism of Action (MoA), defined broadly as ‘the processes through which a behavior
change technique affects behavior. In comparison, others call it the process of operational
manipulation of psychological constructs [1].

One of the challenges identified in the international workshop on developing and
evaluating digital interventions is that digital behavior change interventions often lack
clarity around the mechanism through which they have their effect [2]. It is recommended
to develop and specify the circumstances in which the proposed mechanism of action would

Information 2022, 13, 258. https://doi.org/10.3390/info13050258 https://www.mdpi.com/journal/information
82



Information 2022, 13, 258

generate a targeted effect and represent the resulting knowledge as a behavior change
ontology [2]. Moreover, the limited collaboration between technology designers and health
behavior experts typically leads to poorly developed technologies or applications in which
the choice of health behavior theories is not suitable. The theory and models chosen are
not sufficiently versatile to cover all aspects of the target behavior [3]. We consider digital
health change intervention as the interventions that use digital technologies to promote
and facilitate behavior change through specific context and information, for example,
mobile apps, web-based, etc. Due to the latest advancement in digital technologies and
their capacity to collect extensive user data, these interventions consider variations in an
individual’s characteristics, contexts, and changes over time [4].

To account for the knowledge of health psychology, recently, the Human Behavior
Change Project established a link between the BCTs and their mechanism of action [5,6]. For
example, the BCTs goal-setting, feedback and reward, work by manipulating the motivation
of the target. So, if motivation is chosen as the theoretical construct to be targeted in any
intervention development phase, the effective and agreed BCTs can be selected from this
project [6]. To effectively use BCTs in digital interventions, the parameters of the BCTs
and the mediating factors need to be explicitly defined. The ‘motivation’ cannot work as a
black box (every human is different). By creating an explicit model of the underlying MoA,
in this case ‘motivation’, we can accommodate individual characteristics and provide the
mediating feedback loop to both BCTs and the targeted behavior.

Therefore, in this paper, we present an extended version of the temporal causal
network model of motivation [7] that will describe how the high-level BCTs can be made
adaptive and personalized via a lower-level process of ‘motivation.’ The temporal causal
network modeling technique gives us the flexibility to represent any complex problem
having time and causality dimensions between states more efficiently and easily. The low-
level process (motivation) and its components are modeled based on the observations from
the neuro-reward system and represented through the temporal causal network modeling
technique. More detail about the temporal modeling technique and the representation
of ‘motivation’ is provided in Section 3.1. Furthermore, Figure 1 depicts how the model
will be used in the intervention and how different BCTs can be used to affect various
components of the model. So, rather than studying the manipulating effect of psychological
constructs, we are modeling the mediating role of motivation and its core components for
BCTs and the targeted behavior. This model will serve different purposes and illustrates
the work’s novelty. Firstly, using this model allows digital intervention designers to report
the mechanism of action in their interventions properly. Secondly, the intervention can
be made more adaptive and personalized. For example, goal-setting and feedback can
be customized based on the model outputs for different personalities like introversion,
extraversion, neuroticism, conscientiousness, etc.

To summarize, the objectives of this article are:

• To propose a formal description of the dynamics of motivation and a computational
implementation to show its working as a ‘mechanism of action’ component in digital
behavior change intervention.

• To illustrate the relevance of the model for the study of digital behavior change
interventions, specifically for generating and maintaining motivation, and how this
can be used for personalization and adaption of interventions.

The paper is organized as follows: Section 2 shows the role of motivation in health
behavior change and, more specifically, how we can generate and maintain motivation.
Section 3 explains the term ‘mechanism of action’ and explains different possible ways
that can be used to define/present a psychological construct as a mechanism of action.
Section 4 describes the extended version of the motivation model for digital health behavior
change based on the neuro reward pathway. Motivation is a mechanism of action with
its mathematical formulation for health behavior change. Section 5 further represents an
example intervention with simulation for increasing physical activity behavior in office
employees. The paper concludes with remarks and future work.

83



Information 2022, 13, 258

Figure 1. The model postulates the ‘motivation’ as the mechanism of action for a behavior change
intervention.

2. Health Behavior Change and Motivation

This section of the article aims to understand the motivation construct from a neuro-
sciences perspective and its possible role in health behavior change. Most cognitive health
theories describe the potential relationships between psycho-social factors and healthy
behaviors. For example, the Social Cognitive Theory, Health Belief model, and Theory
of Planned Behavior are examples of theories that describe the role of individual beliefs,
experiences, social factors, and environmental factors on individual health behaviors. Con-
versely, the widely used Transtheoretical model (TTM) and Health Action Process (HAPA)
define the stages through which individuals go through to change their behavior [8,9].
Similarly, self-determination theory (SDT) explains the process of intrinsic motivation with
three basic psychological needs: autonomy, competence, and relatedness [10].

Motivation in the neurosciences refers to neurotransmitters, or brain networks, which
are collectively involved in different processes like releasing a chemical named dopamine,
reward/punishment anticipation processing, reinforcement (learning), storing and updat-
ing a reward value, and decision-making drive human behavior. Together, these processes
and chemical reactions control motivational behavior that leads to achieving a specific goal
or reward. The details of all these brain networks and processes are discussed in Section 4
below. Here the mechanism of motivation concerning health behavior change is explained
as two separate processes, i.e., motivation generation; how value-based anticipation of
stimulus can generate ‘motivation’, and what can be the possible techniques for it? Simi-
larly, to sustain a healthy behavior, how is motivation maintained or regulated, and what
are the possible techniques?

2.1. Motivation Generation

Humans do or refrain from doing particular behaviors based on the calculated value
of reward or punishment. To elicit approach behavior (motivation), the first step is to make
the anticipation of reward from that behavior or actions. Anticipating reward means any
object, event, or activity can be a reward if it motivates us, causes us to learn, or elicits
pleasurable feelings. Humans are pre-programmed with certain behaviors like food or sex
because they are naturally rewarding and necessary for the survival of a species. In the
case of secondary reward, a specific brain area first registers the stimulus as a reward or
punishment, then stores its relative value for future decision making. Before exploring
different techniques that can make the stimulus rewarding and elicit pleasure feelings,
there are two essential aspects of the reward mechanism in neurosciences, i.e., liking vs.
wanting, and action control systems that need to be understood. The reason for presenting
the differentiation between these two aspects is to be able to select an appropriate technique
that can either activate liking or wanting sub-systems. Moreover, both ‘wanting’ and ‘liking’
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are interchangeably used for rewards, whereas the brain circuity for both mechanisms is
dissociable [11].

2.1.1. Liking vs. Wanting

It is now a widely accepted fact in neurosciences that ‘wanting’ is a dissociable factor
from ‘liking’ for the same reward [11]. The more extensive brain network of the ‘wanting’
and the smaller one of the ‘liking’ systems are described in Section 4 below. Initially, it
was hypothesized that brain dopamine depletion would reduce ‘liking’ for rewards. Still,
it is experimentally proven that a lack of dopamine demolishes all motivation (wanting)
while the liking remains the same [11]. This difference is vital in behavior change because
the stimulus or any intervention components may influence one or another system. For
example, maybe you are hungry, and your wanting-system wants to eat something, but
there is broccoli available that you do not like. It is also important to mention that ‘wanting’
does not mean the cognitively processed desire; instead, it is a particular form of desire
triggered by reward-related cues [11]. That is why recovering addicts have a genuine
desire to quit drugs, but the nonconscious ‘wanting’ triggers when exposed to drug cues.
That is why usually the best motivation is the one which is through activation of the
wanting-system (either cognitively processed or subconsciously by reward cues) and
pleasurable enjoying.

2.1.2. Action Control Systems

After intercepting a reward, the human brain reward system uses three different
action control systems. First, (i) the innate actions system, which is the evolutionary
response to a stimulus. Conversely, (ii) habitual actions develop over time through learning
via interaction with different stimuli, and (iii) goal-directed actions are more cognitively
processed actions toward achieving desired outcomes [12]. Generating motivation for
healthy behavior change usually utilizes a goal-direction action system to achieve the
desired behavior and possibly triggers other action systems that may be more effective for
changing specific behaviors. The effectiveness of behavior change intervention through
any action system depends on choosing the right targeted action system in the right
circumstances [12]. For example, the relative effectiveness of triggering the habitual action
system for smoking cessation (behavior) in a personalized intervention (population) would
be greater using the social influence-based intervention.

2.2. Motivation Maintenance

This section will discuss if motivation is generated, then why it fades out and how we
can maintain it. Another essential process in the neuroscientific explanation of ‘motivation’,
i.e., reward prediction error (RPE), can be used to keep the level of motivation. RPE is
the difference between received and expected rewards. This error helps humans learn
about the stimulus and use it for future decision-making. Continuous interaction with the
stimulus will cause learning of the reward/punishment outcome of the stimuli via reward
prediction error. RPE can be used to regulate and maintain motivation, e.g., positive reward
prediction means more learning of the stimulus outcome and more chances of performing
the behavior often, whereas the negative reward prediction error means less learning of the
stimulus-outcome association.

As mentioned earlier, the expected value of a reward is obtained through the attributes
of the incentive, such as amount, type, and delay [13]. So, different techniques can be used
to regulate motivation by manipulating the attribute of the reward itself. For example,
increasing the incentive on a particular behavior will generate a surprise factor and cause
a positive reward prediction error. Similarly, humans like instant gratification; if the
unexpected reward is given before the expected time it will also cause a surprise factor
and release enough dopamine to fasten the learning process. Moreover, the same type or
always-expected reward will eventually be learned and will not be effective in the long
term, the value of the behavior will decrease, and the frustration will grow.
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2.3. Behavior Change Techniques for Motivation Generation and Maintenance

Based on Bandura’s self-efficacy theory, BCTs are usually selected based on the targeted
theoretical constructs; for example, instructions on the problem or increasing problem-solving
skills are often used to increase self-efficacy. In this section, we will discuss some of the
techniques mentioned in Table 1, taken from behavior change taxonomy [14], that can
change behavior through ‘motivation’. Furthermore, the techniques are discussed in the
context of the two sub-processes discussed above, and the possible roles of these techniques
in manipulating any of the sub-process. For example, for motivation generation, whether
specific techniques would increase the reward value (or) increase pleasure feelings, etc. In
the BCT taxonomy [14], the technique “10.8. incentive (outcome)”, besides the effect on
other psychological processes like intention and beliefs, it also has an impact on motivation.
It is argued that if an external reward is promised to be delivered after achieving a specific
behavior outcome, it will generate motivation by influencing the values of the outcome of
the action, e.g., the monetary incentive for the employee who comes to the office by bike
can ultimately have better health [15]. The motivation for cycling may be low due to the
cost (fatigue) of cycling to the office and the low rewarding value. The achievement of
incentive does have rewarding value itself. Still, the pleasure anticipation (expectation) in
reaction to the stimulus will increase the value of cycling and ultimately give feelings of
higher reward due to health improvement.

Table 1. List of the Behavior Change Techniques (BCTs) and their respective mediating purpose in
our model. These BCTs are supposed to change behavior through motivation [6].

(Code). Behavior Change Techniques Purpose Reward System Components

1.3. Goal setting (outcome) For planning, reduce gratification,
frustration Maintain reward prediction error

9.2. Pros and Cons Increase wanting (pros) and not wanting
(cons) Wanting

10.8. Incentive (outcome) Increase outcome value Liking
10.10. Reward (outcome) Increase outcome value Liking

Similarly, the BCT “9.2 pros and cons” can increase motivation by reducing the cost of
ignoring unhealthy behavior consequences. Likewise, with the negative reward prediction
error due to the same type or always-expected reward, the motivation will decrease, and
the frustration will grow. The best strategy could be to use “1.3 goal setting (outcome)”.
This strategy can activate cognitive control for self-regulation by providing reasonable
goals and plans to overcome immediate impulses and low execution process capacity.

3. Why and How to Model ‘Mechanism of Actions’

This section aims to show the number of possible methods for representing different
psychological constructs or processes that usually or possibly can act as mechanisms of
action between behavior change techniques and targeted behavior. The term ‘MoA’ evolved
with the increasing need to improve the effectiveness of behavior change interventions. The
major problem is that the MoAs are not mentioned for the active ingredient, i.e., BCT, in any
intervention [3]. So, a clear understanding of the processes through which individual BCTs
have their effects (i.e., their Mechanisms of Action) will allow us to make more effective
interventions by making intervention personalized and making replicable components
in any intervention. These mechanisms of actions are defined as a range of theoretical
constructs that represent the processes through which a BCT affects behavior, and these
constructs specified in theories of behavior and behavior change that can be seen to ‘mediate’
intervention effects, such as ‘beliefs about capabilities’, ‘knowledge’, and ‘behavioral
regulation’. They can be characteristics of the individual (i.e., intrapersonal psychological
processes) and characteristics of the social and physical environment (e.g., social support).
Moreover, another challenge for digital intervention is to represent these MoAs as an
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explicit model and the acquired knowledge as behavior change taxonomy of that construct.
Below, we discuss some possibilities to model these constructs as MoA when the respective
effective BCTs are chosen in any behavior change intervention.

3.1. Temporal Causal Network Models

The mechanism of a particular construct at the psychological or neural level could be
defined as a temporal causal network model. Each node on the network represents the
behavioral constructs, and the arrow shows the causal impact of one construct on another.
For example, in [7], a temporal causal network model for the motivation generation and
maintenance process is presented based on the dopaminergic reward pathway. The model
shows the casual relationship between external incentives and internal body feeling for
change in a targeted behavior. The external incentive state has a causal impact on the feeling
state, and feeling better about the action increases motivation. Using this type of model to
change sedentary behavior is given in [16]. Similarly, emotion regulation techniques are
modeled as a temporal causal network, which shows how and when specific strategies
can be activated for more effective behavior change intervention [17]. So, according to our
agent-based framework, any causal model for any theoretical construct that explains the
causality among the behavior change components and its parameters can be plugged in
as a mechanism of action [18]. This paper considers our previously published temporal
causal network model for motivation [7], extending it and integrating it as the mechanism
of action for digital health behavior change intervention.

3.2. Multidimensional Generalization Space

Based on [4], a state-space representation is another important way to represent when,
where, for whom, and in what state intervention will produce a targeted effect for that
person. The “state” is the social-psychological or environmental constructs defined based
on the target populations represented as multiple variables that determine the “space”
when a MoA may produce the effect [4]. For example, feedback on behavior (e.g., showing
daily average steps taken) could only inspire a physical activity if the state space of the
person is appropriately receptive to this intervention. The probability of a person taking
10,000 daily steps increases if the motivation is high (motivation high = yes) and if their
outcome expectation is high.

3.3. Computational Agent/System Models

Computational models are often represented and validated using different statistical
and mathematical models, which means the explicit specification of constructs and how
constructs interact with one another. For example, in [19], the author presented a compu-
tational model based on social cognitive theory for influences on physical activity. Social
cognitive theory is also modeled as dynamical systems using fluid analogies and control
systems principles drawn from engineering [20]. Similarly, in [21], a computational model
of behavior change, based on existing psychological theories (the transtheoretical model,
social cognitive theory, the theory of planned behavior, and attitude formation theory), is
proposed that describes formal relations between the psychological constructs and their
role in different stages of behavior change.

4. Model Description and Formalization

This section provides an extended version of the temporal-causal network model
of motivation [7], with a complete description and formalization. The earlier published
model is based on the underlying neuroscientific processes (dopamine pathway and its sub-
systems: mesolimbic dopamine system and mesocortical dopamine system) of motivation
and explains how reward is anticipated and how the brain’s relative valuation system
processes it. The model represents processes and psychological constructs with several
different states. For example, one state represents the sensory representation of the stimulus,
and the other represents its rewarding value (positive feelings). This positive feeling state
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influences the action state, which means the human would approach or act toward attaining
the reward (called motivation generated). Furthermore, the model encoded the process
of motivation maintenance through reward prediction error (RPE). RPE means the certain
amount of dopamine released on either received reward is better or worse than expected.
RPE plays an important role in learning (action-outcome) and provides a basis for an
explanation for decreasing/increasing motivation.

Dopamine not only plays a role as the mechanism of action in motivation but also in
other different human cognitive processes like movement, attention, sleep, etc. Similarly, we
want to use this model as a MoA for effective, adaptive, and personalized behavior change
techniques in health behavior change intervention. We now understand how motivation is
generated and maintained from the neurological level, and how this mechanism needs to
be exploited for healthy behavior. We aim to use to model to determine what can be done
so that the user does or refrains from target behavior by value-based reward anticipation and
how we can maintain their motivation for target behavior by reward prediction error. These
two motivation processes need to be optimized for an effective health behavior change
intervention. Before we can introduce the formal description of the model, the following
questions need to be answered:

1. What strategies can be used to increase the rewarding value of a stimulus? Increasing
the anticipated value of the stimulus (any behavior, goal, etc.) will be assumed that
motivation is generated, and the behavior will be performed more often because of
the enriching value.

2. What strategies can be used to keep the RPE as positive as possible, as the association
between stimulus-reward will be learned when the RPE is positive. In the case of
negative RPE, the learning would get slow or stop, and eventually, the chances are
that an agent will switch to perform other behavior for greater reward.

Different behavior science, health psychology, and neuroscience literature are ap-
proached to find answers to the above questions. The collected literature helped us define
a simple motivation framework, given below, which structures our understanding of the
phenomena associated with reward-seeking and motivation. The proposed formalization
describes the computation of the valuation system (costs and benefits), and outcome values
are formulated to define a human’s current motivation state. We will use this process of
value-based reward anticipation to generate motivation. This will be described in the next
Section 4.1. Section 4.2 will look into the reward prediction error process for maintaining or
improving the current motivation level.

4.1. Value-Based Reward Anticipation for Motivation Generation

To answer the first question, the net expected reward is calculated according to the
utility function, taken from neurocomputational science literature [22], see Equation (1).
The equation will determine the rewarding value for the action to be taken at a certain point
in time (t). The net rewarding value is the subtraction of the expected reward (pleasure,
health, food, etc.) from the costs (negative consequences, fatigue, etc.) associated with
that action. The cost and expected values are subjective, and it means everyone would
have different reward expectations for the same behavior. The calculated expectations of
rewards (or punishment) during value-based decisions are updated based on experiences
in the surrounding world.

Net expected reward(t) = ∑reward(t) − ∑costs(t) (1)

In the original temporal causal network model, we considered this expected reward
(∑reward) in Equation (1) as the expectation of pleasure associated with the action, called
“liking” or the positive feelings. Let us assume that we are only measuring liking or positive
feelings as an expected reward, and the total costs are a weighted sum of all different
subjective costs. Then Equation (1) can be expanded as given below:
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Net expected reward(t) = liking(t) − (costs1(t) + costs2(t) + costs3(t) . . . ) (2)

As mentioned earlier in Section 2.1.1, this net reward value determines the motiva-
tion or the “wanting”. So, motivation is directly proportional (∝) to the outcome of net
reward [22]. We can rewrite the Equation (2) as follows:

Motivation(t) ∝ liking(t) − γ1 × costs1(t) − γ2 × costs2(t) − γ3 × costs3(t) . . . (3)

A new term is introduced in Equation (3); the term temporal discounting (γ) is the
inclination for a person to see a desired outcome in the future as less important than one
in the present. It is considered a good characteristic in prediction for the maintenance of
healthy behavior. For example, the temporal discounting rate is strongly associated with
body mass [23]. Despite the potentially high cost of different behavior, they develop over
a more extended period and are thus not immediately noticed, for example, weight gain.
This type of cost is usually discounted and sometimes to a negligible level. As the cost
and expected reward are subjective matters, similarly, every cost variable has different
discounting rates.

This formalization of motivation and the different involved factors can be used to
generate motivation.

4.2. Reward Prediction Error for Motivation Maintenance

To maintain motivation, we exploit the reward prediction error. The association
between behavior and the outcome is learned over time. The strength of this connection is
dependent on the reward prediction error and is represented as follows:

RPE(t) = β (Received Reward(t) − Net expected reward(t)) (4)

where Received Reward(t) denotes a received reward at time t for a certain action or
behavior, and net expected reward shows the predicted/expected reward at time t. This
error value is responsible for dopamine release, and it determines the learning of the
action-outcome connection, whereas β is a learning rate parameter that determines how
much weight of the error is registered or, in simple words, it shows the neuron’s firing rate.
Every human is different; that is why with the same trail of the experiment, some learn
more quickly than others.

To summarize, we will use Equation (2) to generate motivation and Equation (4)
to regulate or maintain the motivation. Figure 2 shows the schematic representation of
the whole motivation process and the links of its components with other components in
behavior change intervention.

Figure 2. The schematic representation whole process of ‘motivation’ and its links with reward
components.
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5. Motivation-Based Intervention Example and Simulations

This section will illustrate integrating the above motivation model in digital health
behavior change intervention. Different scenarios are simulated to show the two processes,
i.e., motivation generation and motivation maintenance, with the help of the formalization
of the respective process introduced above. The assumption is that chosen behavior change
techniques will influence personal and environmental factors. The target population’s
likelihood of regularly achieving their goals means that the relevant individual changed
their behavior if all plans were completed.

An intervention scenario is created for an office environment. The intervention com-
ponents, i.e., target behavior, BCTs, MOA, and environment, are defined according to an
agent-based framework [18], shown in Table 2. The framework is based on ontology for
behavior change interventions (BCIO) [24], which defines the intervention components and
explains their connection.

Table 2. Our model defines the intervention components and their relations to specific motivation
processes.

Motivation
Processes

Targeted
Behavior

Sub-Processes in the
Motivation Model

BCTs MoA
Environmental
Observations

Motivation
Generation Physical

Activity

Value-Based Reward
Anticipation

10.8 Incentive
(outcome)

5.1 Information
about health

consequences

Motivation Step count,
feelings (hedonic

pleasure)

Motivation
Maintenance

Reward-Prediction
Error

1.3 Goal setting
(outcome)

Let’s suppose a scenario given below:

“The office management announced a 3-month program for employees to make them
physically active. The organization targeted motivation as a core psychological construct
for changing behavior. The employees are asked to subscribe, and they are provided digital
wearable devices that can count their daily physical activities. The program is designed
to use performance-based incentives to activate the dopamine reward pathway. When
the stimuli (physical activity) are cognitively processed, it becomes a goal. The first
technique to generate motivation is to give incentives for goal achievement. For this
reason, after every 15 days, the incentive will be given according to the choices toward
the goal. The goal is to increase the rewarding value of physical activity and overcome its
costs. Furthermore, the reward prediction error will be calculated to maintain motivation
to change strategies and determine the motivation level. Every component and process of
the intervention is described in the concerned sector below.”

Table 2 shows all the components of an intervention scenario and how specific motiva-
tion processes correspond to the different computations and relevant, effective behavior
change techniques. For example, to generate motivation, an incentive will be given. The
observation would be to check whether the activity for the participant is rewarding (plea-
surable) or not. Similarly, in the case of motivation regulation, the reward prediction error
would be observed, and strategies will be changed accordingly.

According to our model of motivation, there is some further explanation of the scenario.
Participants will be given a daily goal (steps to be taken). They will have to achieve the
goal and be awarded daily points based on the performance (goal achievement). On every
15th day of the intervention, the participants will get a badge based on their points in the
past 15 days. We assumed two costs associated with the target behavior (physical activity),
i.e., health consequences and fatigue, for demonstration purposes.

Different personalities will take this cost differently because it is a subjective matter,
and everybody has a different discounting rate. Moreover, the values of each variable
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are determined between 0 and 0.9 (0 being the smallest and 0.9 being the highest). Based
on those parameters, motivation generation and maintenance are simulated below. Each
section demonstrates what parameters are observed and how these parameters can be
tuned with different behavior change techniques for effectiveness and personalization of
the intervention.

5.1. Motivation Generation

The hypothesis that motivation is generated through value-based reward anticipation
can be observed by the intensity of the behavior for which an incentive is given. According
to Equation (2), motivation is directly proportional to the difference between the expected
reward and the cost of getting this reward. So this means that there could be several
reasons that cause the difference in motivation level, and different techniques can be
used to overcome these reasons. Firstly, let us consider how incentives can change the
behavior, as the technique “10.8 incentive (outcome)” is the promise of external reward for
performing a specific behavior. We keep the delay discounting and cost associated with
the behavior constant (delay discounting 0.9, cost1 0.9, cost2 0.6), because we are giving
them an incentive to increase the pleasure feeling; in other words, we are making the
behavior rewarding for them. According to Equation (3), if the participant starts liking the
incentive, it will increase their motivation to perform the behavior more often and achieve
the reward again and again. Figure 3a shows how giving incentives during the intervention
program increases the pleasure feeling (liking) and how motivation started building. This
simulation gives us two insights; first, we can use incentives or other techniques to increase
the pleasant feeling. Second, we can make these techniques adaptive according to different
personalities. Next comes the subjectivity issue; maybe some employees will not consider
points and badges as rewarding compared to the cost associated with them. We will show it
with a difference in delay discounting value to simulate variability in different personalities.
The health consequences of not living an active life are high (0.9), and doing daily physical
activity has a moderate level of fatigue cost (0.6). Using the technique “5.1 information
about health consequences,” we can target the delay discounting of the associated costs.
In Figure 3b, suppose all of them like it equally, but the difference in their discount rate
for the related costs would make a difference in their motivation level. The employee with
the highest discount rate does not know or care about the health consequences and fatigue
associated with actions. So, giving awareness or information about health consequences
can target the delay discounting parameter.

5.2. Motivation Maintenance

The process of motivation maintenance means maintaining the level of motivation
generated earlier. This is done by calculating reward prediction error on different intervals
in the model. The RPE value in the model represents the difference between received
and expected rewards for performing some actions. If their expectation is met, a certain
amount of dopamine gets released. The dopamine release shows the learning of the reward
anticipation from that action. When this association is learned enough, the dopamine is
released with stimulus cues only, not the reward itself. By performing this action more
often because of the reward, it is assumed that the behavior gets habituated.

Positive Reward Prediction Error

The scenario to understand RPE calculation is depicted in Figure 4. In our design, RPE
is calculated using Equation (4). The expected reward on the fifteenth day was 150 points;
the positive reward prediction arose because it was the first time. Later, on the 30th day,
the expected and received reward were the same and did not cause any dopamine spike
because the participant learned the behavior and its outcome. The participants will wish
for a bronze medal again on day 45th, and surprisingly, getting a gold badge will produce
high dopamine spikes. On the 75th day, the participant expected a gold medal again
(worth 300 points), but surprisingly he got no reward which means he does not meet the
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actual reward expectation; according to Equation (4), 0 − 100 = −100. This negative reward
prediction error would cause the update of the reward value of the action to 0 and would
be less likely to perform again.

Figure 3. Motivation concerning different model parameters/processes through different BCTs
(a) shows the effect of increasing liking for the activity by triggering a value-based reward system,
and; (b) shows the effect of targeting the delay discounting characteristic of the participants.
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Figure 4. The timeline for incentive and the corresponding reward prediction errors.

For this reason, goal-setting techniques are primarily used to regulate motivation in
different types of behavior change interventions [3]. The goal-setting helps develop a plan
for maximizing the reward [12]. In addition to long-term goals (desired outcomes), it is also
essential to generate short-term goals that are vivid and detectable, which allow people
to monitor their progress. For this reason, small adaptive goals for daily step count and
feedback based on their performance would help them monitor their progress and increase
the rewards of the actions. Due to faster communication and efficient and ubiquitous
seniors, these operations are pretty straightforward and precise in digital interventions.

6. Conclusions

Digital behavior change interventions usually do not report the explicit action of
their techniques. If the techniques are mentioned, the mechanism of action through which
these techniques have achieved their effects is not explicit. With recent consensus among
health and social science researchers about the behavior change constructs and their effect
pathways, we can develop theories and models that can easily be integrated into digital
interventions. In this article, it has been shown how motivation can be explicitly modeled
and integrated within an intervention as a mechanism of action for different behavior
change techniques. Various parameters and aspects of the neuro-reward system formulated
the model and presented it for motivation generation and maintenance.

An example intervention is defined and simulated to show how we can generate and
maintain motivation and how the model’s integration can help us achieve personalization
and adaptivity through behavior change techniques. This type of research is novel and
emerging. In addition to the personalization, models such as the ones presented in this
paper could help digital intervention designers to properly report and use behavior change
techniques by making their mechanism of action explicit.

7. Limitations and Future Work

The model proposed in this study is based on neurological observations. These
observations are validated in the neurosciences to show the working of the release of
different neuro-chemicals. In our work, we used these observations to propose a model of
health behavior change. This type of usage requires additional validation. Preferably, a
long-term experiment is performed in which data is collected about all the factors discussed
in the model. In the future, we are working on designing an experiment where we can
collect the relevant data to validate this model and report the result.

Another limitation is that we did not evaluate the use of this model as part of an
actual intervention. We are currently working on developing such an intervention and
its evaluation in a feasibility study. This intervention will use the model presented in
this paper as a reasoning engine, continuously evaluating the user’s current behavior and
factors and using this to apply the best behavior change technique. The system will operate
on mobile, web, or both. It collects real-time data from the user and uses this as input for
the model, determining which necessary behavior change can be applied.
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Finally, this paper only uses “Motivation” as a mechanism of action. It would also be
helpful to develop models of other mechanisms of action, to evaluate the generalizability
of the approach that we have presented.
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Abstract: Depression is one of the most common mental health disorders, affecting approximately
280 million people worldwide. This condition is defined as emotional dysregulation resulting in
persistent feelings of sadness, loss of interest and inability to experience pleasure. Early detection
can facilitate timely intervention in the form of psychological therapy and/or medication. With
the widespread public adoption of wearable devices such as smartwatches and fitness trackers, it
is becoming increasingly possible to gain insights relating the mental states of individuals in an
unobtrusive manner within free-living conditions. This work presents a machine learning (ML)
approach that utilizes retrospectively collected data-derived consumer-grade wearables for passive
detection of depression severity. The experiments conducted in this work reveal that multimodal
analysis of physiological signals in terms of their discrete wavelet transform (DWT) features exhibit
considerably better performance than unimodal scenarios. Additionally, we conduct experiments to
view the impact of severity on emotional valence-arousal detection. We believe that our work has
implications towards guiding development in the domain of multimodal wearable-based screening
of mental health disorders and necessitates appropriate treatment interventions.

Keywords: affective; depression screening; digital phenotype; emotion; machine learning; passive
sensing; wavelet transforms; wearable devices

1. Introduction

Depression is one of the prevailing mental health disorders, affecting approximately
280 million people worldwide [1,2]. In the wake of the crippling effects of the pandemic,
the global burden of depression continued to worsen, by at least 27.6% on average. This de-
bilitating disorder differs from general mood fluctuations and fleeting emotional reactions
along the aspects of intensity, recurrence, and anhedonia [1,2]. Depression often manifests
owing to a complex interaction between socioeconomic, psychological and biological fac-
tors, and is exacerbated by comorbid physical conditions in an adverse feedback loop. Early
screening is critical for timely intervention and the delivery of effective treatment methods
such as cognitive behavioral therapy and/or antidepressant medications. However, the
social stigma associated with mental health, the scarcity of trained health-care providers,
relatively high rates of misdiagnoses and exorbitant service costs discourage individuals
from seeking assistance [3].

To improve diagnoses fidelity, it is vital to develop universal screening approaches
which reveal useful information without being intrusive or biased, as is the case with the
currently adopted surveys [4]. With the proliferation of machine learning (ML) methods

Information 2022, 13, 406. https://doi.org/10.3390/info13090406 https://www.mdpi.com/journal/information
96



Information 2022, 13, 406

in the healthcare domain, where the automatic identification of relevant patterns and
relationships among data without specification of a priori hypotheses holds considerable
prognostic utility, there is the potential for detecting the presence of elusive disorders
such as depression. In parallel, the ubiquity of smartphones and wearable devices such
as smartwatches and fitness trackers offer the much sought-after capabilities of long-term
unobtrusive monitoring in free-living conditions. Recent studies have employed ML while
leveraging passive, non-intrusive modalities such as smartphone call/text logs [4], social
media posts [5], gyroscope readings [6] GPS [7] and heart rate [8] for detecting states of
depression and mental health distress.

These worthwhile approaches show the potential for depression screening using
passive smartphone data while maintaining a fair degree of user privacy. Out of the different
parameters measured, those acquired through wearable devices enable continuous and
objective monitoring of patients [9]. Moreover, physiological signals, or a combination of
them in tandem with ML, can predict symptoms of depression and anxiety [10,11]. This fact,
coupled with the increasing ownership of wearables, estimated at 1 billion in 2022, suggest
that personalized screening be introduced without revealing any user-specific information
as opposed to partial alternatives such as location data or personal message history.

Noticeably, in the most recent literature, the sample population typically consists of
depressed and completely healthy participants, and physiological signals are compounded
with smartphone-derived biomarkers such as device usage, step count, sleep measures
and location. In this work, we aim to quantify the effects of using only unimodal and
multimodal signals from wearable sensors in terms of heart rate (HR), galvanic skin
response (GSR) and accelerometry (ACC) among a predominantly depressed population.

Another facet of emotional state assessment which can benefit from wearable monitor-
ing is affective experience quantification. As purported by [12], the interplay between the
severity of depression and affective emotional activation in terms of valence and arousal
can have implications for individual behavior and response to daily stimuli [13]. This
manifests a strong influence on processes such as attention, perception, decision-making,
learning and mental well-being [14]. Valence captures the extent to which an emotion is
positive/negative, while arousal captures the intensity of the experienced emotion. Thus,
we also explore this domain as an additional aspect of our central work.

The primary contributions of this work are the following:

• Validating the potential of implementing ML algorithms with retrospectively collected
wearable-derived physiological data for classifying between moderately and severely
depressed individuals.

• Assessing the quality of low frequency, general signal features extracted using discrete
wavelet transforms (DWT) for developing ML algorithms.

• Examining the relative efficacies of heart rate, galvanic skin response and accelerome-
try readings in distinguishing between depression severity and emotional states.

• Investigating the role of depression severity in emotional valence and arousal detection.

This paper is organized such that Section 2 introduces the dataset and outlines the
methodology and Section 3 presents the results and its discussion, with Section 4 concluding
the work.

2. Methodology

2.1. Dataset

The DAPPER dataset [15] is an aggregation of ambulatory physiological and psycho-
logical data reported over a period of five days by 142 participants. It is segregated into
sections as displayed in Table 1.

97



Information 2022, 13, 406

Table 1. DAPPER Contents.

Physiological Data Psychological Data

Heart Rate (HR) ESM (Experience Sampling Method)

Galvanic Skin Response (GSR) DRM (Daily Reconstruction Method)

ACC Data -

The volunteers were asked to engage in a pre-test (a data collection procedure pre-
ceding the start of the experiment) where they submitted their BDI-II measures amongst
other details. During the main experiment, the psychological details were reported by the
participants through answering questionnaires on their smartphones. They received six
ESM questionnaires per day over 9 a.m.–11 p.m. with a minimum 3-h gap between each
questionnaire. The DRM questionnaires were sent at 11 p.m. each day. Nonetheless, our
research aimed to utilize the physiological recordings and focus on heart rate, which was
collected using photoplethysmography, galvanic skin response, collected using surface
electrodes from the wrist, and triaxial accelerometer data to assess depression severity. All
the physiological data was recorded using Psychorus, a customized wristband, during
Monday–Friday, 9 a.m.–11 p.m. Out of 142 total patients, 87 patients had valid physiological
readings. The data was originally recorded with the following sampling rates (HR:20 Hz,
GSR:40 Hz, ACC:20 Hz) but later downsampled to 1 Hz by the original authors to reduce
complexity for future use by the research community. DAPPER followed the Helsinki
standard and all the participants submitted their written permission.

At first, the raw data comprised 2249 signals. However, any signals of duration of less
than 30 min were rejected, since the goal was to follow the 30-min ESM event periods. The
concluding number of signals were 2034, each over a span of 1800 s for 87 patients. The
distinguishing factor of DAPPER is the environment in which the data was collected in.
Instead of the more popular laboratory-based controlled experiments, this dataset aimed to
provide data gathered during natural day-to-day activities. Furthermore, this approach
replicates accurate everyday situations, thus providing a resource with reliable data that
can be used in further applications.

The distribution of the BDI-II scores had a mean with standard deviation of 29.73± 7.0,
with a minimum of 21 and a maximum of 60. Discretizing the data for binary classification,
the following four cut-offs are applied to generate four depression severity ranges: minimal
severity (≤13), mild severity (≥14 and ≤19), moderate severity (≥20 and ≤28) and severe
severity (≥29). Out of the 2034 available data instances, 960 belong to the moderate class
and 1074 belong to the severe class. This suggests that all 87 patients in the original study
suffered from clinical depression to some degree.

With a pure focus on studying depressed populations, we opt to consider the cases
exhibiting minimal depression severity as our experimental control group. In accordance
with [16], employing a control group of such close proximity to other experimental cases
(in terms of depressive mental state) alleviates the control group’s inherent selection bias,
and potentially enhances the study’s validity.

For binary segregation of arousal and valences, the Likert scale-reported scores of
1 and 2 are treated as low, whereas 3, 4 and 5 are considered as high. For valence, this
resulted in 1003 and 1031 for low and high categories, respectively. For arousal, this resulted
in 1361 and 673 for low and high categories, respectively. It is observable from Figure 1
that the emotional states stratified across the depressed population congregate towards the
higher intensity values.

98



Information 2022, 13, 406

Figure 1. Valence and Arousal frequency grouped by depression severity.

2.2. Feature Extraction

Our complete approach is outlined in Figure 2, consisting of data processing, feature
extraction and ML implementation. Discrete wavelet transform (DWT) can be implemented
on-devices directly for real-time signal monitoring with relatively lower battery consump-
tion. We derive generic statistical features for all three modalities after DWT analysis
with the goals of minimizing computational overhead and preserving the same processing
pipeline and introducing a notion of translation invariance to noise or other motion artifacts.
Furthermore, a secondary goal is to view the differences in emotional state activation in
terms of valence and arousal across the two depressed populations, and the learnable
differences with machine learning.

Figure 2. End-to-end model pipeline.

DWT can be considered as the projection of a sum vectored and zero mean signal S into
a set of basis functions called wavelets φi,k(n) and ψi,k(n), which localize the time–frequency
domain characteristics of the signal. These wavelets Ψa,b(t) are generated from a single-
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base wavelet Ψ called the mother wavelet, through a series of dilations and translations of
a scaling function as defined in.

φi,k(n) = 2−
i
2 φ

(
2−in − k

)
ψi,k(n) = 2−

i
2 ψ

(
2−in − k

) (1)

In Equation (1), n is the length of the signal S, k is the discrete translations and 2i are
the dyadic dilations.

More specifically, each series is a decomposed time series of coefficients describing
the evolution the temporal component within a corresponding frequency band. This is
performed using a pair of finite impulse response filters, taken as low-pass and high-pass
respectively. With this, the DWT on a signal results in the approximation Ai(k) and detailed
coefficients Di(k) formulated by:

Ai(k) = ∑
n

S(n)φi,k(n)

Di(k) = ∑
n

S(n)ψi,k(n)
(2)

In Equation (2), the approximation coefficients Ai(k) are the low-pass elements, and
the detailed coefficients Di(k) are high-pass elements for a signal S, at a decomposition
level i. In the case of multi-level decomposition, numerous stages of decomposition occurs,
beginning within the original signal. The former is analyzed further in the same manner to
a certain decomposition level, while the latter is not. The decomposition level is determined
by the mother wavelet, sampling frequency, and signal length and is generally treated as
the optimal decomposition level.

After experimenting with candidate discrete mother wavelets across the families of
coiflets, biorthogonal, daubechies, reverse biorthogonal, symlet and haar, the following
are selected based on their high performances and accordance with prior physiological
signal analysis in literature. For HR, we use the symlet-9 (sym9) which has the properties
of near symmetry, orthogonality and biorthogonality. For GSR, we use the daubechies-
4 (db4) which has the properties of asymmetry, orthogonality and biorthogonality. For
ACC, we use the reverse biorthogonal-3.9 (rbio3.9) which has the properties of symmetry,
no orthogonality and biorthogonality. Empirically, we find that the optimal levels of
decomposition are 1, 3 and 2 for PPG, GSR and ACC signals, respectively.

The final features pertaining to the coefficients of the signals are Shannon Entropy, Zero
Crossing Rate, Mean Crossing Rate, Mean, Standard Deviation, Median, Variance, Root
Mean Square, 5th Percentile, 25th Percentile, 75th Percentile, and 95th Percentile values.

2.3. Data Augmentation

While the disparity between the majority and minority classes (0 and 1, no and yes,
respectively) were not as extreme, augmentation was applied to observe any quantifiable
improvement in overall model performance. Five techniques for augmentation were used,
and their breakdown by type is as follows: oversampling: Synthetic Minority Oversam-
pling Technique (SMOTE) and Adaptive Synthetic Sampling (ADASYN), oversampling
+ undersampling: SMOTE + Tomek links (SMOTEK), SMOTE + Edited Nearest Neigh-
bours (SMOTEEN), and undersampling: Random Under sampling and Edited Nearest
Neighbours (ENN).

• SMOTE is an oversampling technique that increases the number of minority samples
in the dataset, by generating new samples from existing minority class samples. The
approach generates new samples that are not duplicates, but convex combinations of
two or more randomly chosen neighboring data samples in the feature space.

• ADASYN is an adaptive data generation method which creates synthetic samples to
reduce class imbalances in a dataset. The approach uses weighted distribution for
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different minority class samples as per relative difficulty in learning, and generates
more samples similar to the harder-to-learn samples. This therefore reduces overall
bias present in the dataset, and should improve learning performance of models
trained on this data as well.

• SMOTEK and SMOTENN are hybrid techniques that consist of both undersampling
and oversampling. Initially, SMOTE performs the over-sampling, then the resulting
clusters that overlap on nearby points causing overfitting are removed using Tomek
Links, or Nearest Neighbors, respectively, in the methods. The idea here is to clean
distributions and lead to a distinct class separation.

• Random under sampling involves randomly discarding samples from the majority
class until a balanced class distribution is attained.

• Condensed nearest neighbor undersampling involves the selection of prototypes from
the training data, in order to essentially reduce the dataset size for instance-based
classification. During this process, the the prototypical instances of the majority class
are retained, while likely redundant instances are eliminated from the dataset.

2.4. Machine Learning

We utilized a wide range of standard ML algorithms such as Logistic Regression (LR),
Support Vector Classifier (SVC), K-Nearest Neighbors (KNN), Light Gradient Boosting
Machines (LGB), and Random Forest (RF) and eXtreme Gradient Boosting (XGB), and Cat-
Boost (CB) to cover both traditional and ensemble techniques. These supervised algorithms
span a variety of strategies in learning complexity, and their implementations generally
elicit good bias-variance trade-off when data is not particularly voluminous (few hundred
to a few thousand unique samples) as shown in [17–19]. Stratified sampling was used to
divided 80% training set and 20% testing set through a five-fold cross-validation approach.
Random search yielded the final hyperparameters for all algorithms.

3. Results

This section presents the results for (i) depression severity classification, and (ii)
valence-arousal detection for each depression category. The performance measures are
quantified with the metrics of accuracy, sensitivity, specificity, F1-score and, where pertinent,
the Area Under the ROC (receiver operating characteristic) Curve (AUC).

3.1. Detecting Depression Severity

To evaluate the efficacy of the proposed multi-modal inference model, we test a variety
of candidate machine learning models and tabulate their performance in Table 2. Despite
most of the models scoring similarly (in terms of accuracy, sensitivity, specificity, F1-score,
and AUC), we decided on using CatBoost (CB) Classifier in our trails for performing
most reliably with an accuracy, sensitivity, and F1-score values of 64 ± 2.0, 68.7 ± 3.0,
and 66.8 ± 2.0, respectively. It was observed that data augmentation did not yield any
statistically significant increase in performance with this scenario.

Table 2. Quantitative model performance metrics for the multimodal cases.

Model Accuracy Sensitivity Specificity F1-Score AUC

LGBM 64.0 ± 3.0 68.2 ± 2.0 59.4 ± 5.0 66.7 ± 2.0 63.8 ± 3.0

RF 64.0 ± 2.0 67.3 ± 2.0 60.2 ± 5.0 66.4 ± 2.0 63.8 ± 2.0

XGB 60.7 ± 2.0 64.8 ± 2.0 56.1 ± 5.0 63.5 ± 1.0 60.5 ± 2.0

CB 64.0 ± 2.0 68.7 ± 3.0 58.8 ± 4.0 66.8 ± 2.0 63.7 ± 2.0

KNN 58.2 ± 2.0 61.0 ± 3.0 55.0 ± 4.0 60.6 ± 2.0 58.0 ± 2.0

SVC 60.2 ± 2.0 63.0 ± 2.0 57.1 ± 5.0 62.6 ± 1.0 60.1 ± 2.0

LR 55.8 ± 2.0 60.2 ± 1.0 50.8 ± 4.0 59.1 ± 1.0 55.5 ± 2.0
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In Table 3 we evaluate the performance of uni-modal inference and contrast it against
bi- and tri- modal inference to evaluate the added value of multiple-modality and quantify
its effectiveness in improving inference quality. Derived from the marginal inference quality
increase (in comparison to the tri-modal model) based on the highlighted performance
criteria, a holistic score of each permutation’s performance is given in the last column of
Table 3.

Table 3. Quantitative model performance metrics for exhaustive unimodal and multimodal cases
with CB.

Model Accuracy Sensitivity Specificity F1-Score AUC Delta δavg

PPG 54.0 ± 2.0 62.5 ± 3.0 44.5 ± 2.0 58.9 ± 2.0 53.5 ± 2.0 +9.7

GSR 56.2 ± 1.0 70.7 ± 3.0 40.1 ± 1.0 63.0 ± 2.0 55.4 ± 1.0 +6.8

ACC 59.0 ± 2.0 65.1 ± 6.0 52.3 ± 6.0 62.6 ± 3.0 58.7 ± 2.0 +4.9

PPG + GSR 57.5 ± 2.0 67.9 ± 2.0 45.8 ± 5.0 62.8 ± 1.0 56.9 ± 2.0 +6.2

PPG + ACC 62.1 ± 1.0 65.8 ± 4.0 57.9 ± 4.0 64.7 ± 2.0 61.9 ± 1.0 +1.9

GSR + ACC 62.5 ± 1.0 68.9 ± 2.0 55.4 ± 1.0 66.0 ± 1.0 62.2 ± 1.0 +1.4

PPG + GSR + ACC 64.0 ± 2.0 68.7 ± 3.0 58.8 ± 4.0 66.8 ± 2.0 63.7 ± 2.0 -

For the DAPPER dataset, all possible single-modal models—using either PPG, GSR,
or ACC, result in similarly performing models with an average accuracy of 56.4% and
average F1-score of 61.5%. When observing combinations of any two modalities, however,
we observe an average accuracy and F1-score values of both 60.7% and 64.5%, respectively.
Finally, when all three modalities are combined, the resulting model has an accuracy of
64.0% and an F1-score of 66.8%.

Merely looking at the average performance for the learned models of varying number
of modalities, we observe a performance increasing trend with each added modality. The
move from uni- to bi-modal inference increases accuracy by 7.62%, and F1-score by 4.88%.
Analogously, going from bi-modal to tri-modal inference improves the accuracy and F1-
score by 5.44% and 3.57%, respectively. This upward trend validates the variability of the
proposed multi-modal paradigm for depression severity inference.

3.2. Detecting Emotional Arousal and Valence

Much of performance measures across the metrics range from ∼55 to ∼60, which
belies that only an average level of separability can be obtained between high and low
states. In contrast to the depression severity classification case, Tables 4 and 5 exhibit
results where one modality fares better than multi-modality. To detect high- and low-
valence/arousal states in a moderately depressed population, GSR and ACC proved
feasible, with contribution from SMOTE augmentation. The specificity being higher than
sensitivity indicates a better recall of the low-valence/arousal states. To detect high- and
low-valence/arousal states in the severely depressed population, HR and GSR proved
feasible, with contribution from SMOTE and SMOTEEN. The sensitivity for valence is
better, while the specificity for arousal is marginally better, indicating that high-valence and
low-arousal states are more discernible in the severely depressed population. However,
there appears to be no common modality for each kind of emotional state activation, and
the results appear to be characteristic of this dataset population with varying degrees of
applicability to a general population.

Table 4. Quantitative performance metrics for the moderately depressed population.

State Modality Approach Accuracy Sensitivity Specificity F1-Score

Valence GSR SVC + SMOTE 62.9 62.8 66.7 76.6

Arousal ACC LR + SMOTE 63.9 48.8 75.9 54.5
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Table 5. Quantitative performance metrics for the severely depressed population.

State Modality Approach Accuracy Sensitivity Specificity F1-Score

Valence HR KNN + SMOTE 61.2 64.0 53.3 71.0

Arousal GSR SVC + SMOTEEN 56.9 56.3 57.8 61.5

4. Discussion

The goal was to separate behaviors of people suffering from depression based on
emotional stimuli and possibly identifying affective emotional triggers in response to expe-
rienced events. As mentioned previously, there is a prevalence of depression among all
surveyed individuals in this dataset who also experience higher-intensity emotional states.
This warrants an investigation of the impact of depression in dampening/exacerbating
emotional responses to various stimuli or events. As reported by [20], states of depression in-
duce marked dysfunctional regulations of affective experience and affective quality percep-
tion. Generally, the neutral arousal/valence state is the most commonly experienced [21],
because of the impaired emotional modulation to affective stimuli [22].

The achieved performance measures are in line with a recent study conducted with
a similar demographic (race, age and education levels) asserting the potentially useful
yet limited predictability of depression severity with wearable devices [23]. It appeared
that greater severity of depressive symptoms showed associations with larger variation of
night-time heart rate between the hours of 4 a.m. and 6 a.m. Additionally, this led to the
findings (adjusted for covariates) that severity was also correlated robustly with weekday
circadian activity rhythms. Thereby, our work focusing on individuals during conscious
ESM activities serves as a complementary study to the general continuous diurnal and
nocturnal biomarkers evaluated in [23].

According to [24], low-arousal states being associated with low-valence fine-grained
states such as sadness, lethargy or fatigue is correlated with stronger levels of depression.
This is because high arousal occurs when the cortical circuits in the brain are engaged and
allocates attention in response to a particular stimuli [25]. However, our results do not
agree with these findings, leading to our hypothesis that either the self-reported BDI-II
scores were not reflective of the true underlying mental state, or that the self-reported
valence and arousal is overly positive by choice of omission. A potential psychological
link unifying our results in light of the previous studies is the theory of ambivalence over
emotional expression. This is a condition wherein individuals have the propensity to avoid
expression of emotions [26], owing to the effects of depression. In [27], it is rationalized
that inciting high-arousal states in people with heightened depression thorough memory
recalling tests increases help-seeking intentions. It could very well be that the stimuli or
events experienced by the participants of the DAPPER dataset creation were involved in
positive or familiar environments during the course of study.

Although the heterogeneous nature of different consumer-grade wearables occasion-
ally leads to likely noise saturation, inaccurate values and uncalibrated errors [28], it is
rationalized that the characteristic patterns associated with certain mental/physical dis-
eases can indeed be reflected [29]. Additionally, it is not known if the individuals were on
prescribed anti-depressants, engaged in psychological counselling or under any treatment
which may introduce confounding variables that cannot be adjusted for.

While Deep Learning has demonstrated exemplary results in several fields and recent
studies, there are still few limitations and challenges in the biomedical domain pertaining to
class imbalance and data complexity, which discouraged its use in our work. As put forward
in [30], Deep Learning models tend to capture spurious relations in the training data within
clinical studies involving biomedical signals. This occurs, in context of this work, due to the
implicit nature of some emotional states such as valence/arousal and depression, which do
not manifest across all subjects with the same intensity or magnitude [31]. Thus, it appears
that higher volumes of data readings from wearables are necessary to combat the relative
sparsity of the wearable measurements, i.e, the ratio of the duration of normal physiological
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behavior to the duration of context-specific instantaneous responses to certain stimuli, and
achieve higher performance scores.

Ref. [32] also indicates that with skewed data, the models prioritize the majority
group due to higher prior probability. Unlike with summarized measures such as wavelet
decomposed features, augmenting continuous raw signals and the rectification of class
imbalance requires more complex techniques to account for the profound understanding of
the morphology and patterns [33]. We believe the lightweight approaches (DWT + standard
ML) are relatively more conducive towards power-efficient deployment on wearable or
edge devices, as shown in [34].

We envision this research as an initial baseline for performance benchmarking on the
DAPPER dataset, as well as an assessment of the relationship between depression and
ephemeral emotional states.

5. Conclusions

In this paper we presented multi-modal depression detection machine learning models
while juxtaposing its performance to that of single and double modality models. More
specifically, we leverage low-frequency HR, GSR and ACC signals belonging to 87 patients
from the Daily Ambulatory Psychological and Physiological recording for Emotional
Research (DAPPER) dataset to train multiple ML algorithms to classify between moderate
and severe states, as defined by the categorized Beck’s Depression Inventory (BDI-II)
score. After listing the top performing depression detection models on our dataset’s
mobile/wearable device-based biomedical signals, we make a case for the introduction of
additional modality, with respect to the DAPPER dataset.

In comparison to attempts present in the literature, using a variety of datasets for
the detection and prediction of depression trends of individuals using mobile and power-
constrained devices, there is a case to be made for the use of multiple-modality devices.
One contemporary work [35], describes a smartphone activity monitoring model for the
collection of medically relevant metrics and tracking of user activities for the detection of
PHQ-9 levels, achieving detection performance metrics of 59.1–60% accuracy, 62.3–72%
sensitivity and 47.3–60.8% specificity. In contrast, the metrics of our proposed approach are
64 ± 2.0% accuracy, 68.7 ± 3.0% sensitivity and 58.8 ± 4.0% specificity, which consistently
surpass the results in [35]. Therefore, we ultimately conclude that additional modality
incorporation could potentially improve the detection accuracy of depression by accounting
for different aspects of latent or conscious physiological responses to psychological events.
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Abbreviations

The following abbreviations are used in this manuscript:

ACC Accelerometry
BDI-II Beck’s Depression Inventory
CB CatBoost
DAPPER Daily Ambulatory Psychological and Physiological recording for Emotional Research
DWT Discrete Wavelet Transforms
GSR Galvanic Skin Response
HR Heart Rate
KNN K-Nearest Neighbors
LGB Light Gradient Boosting
ML Machine Learning
RF Random Forest
SVC Support Vector Classifier
XGB eXtreme Gradient Boosting
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Abstract: Previous evidence suggests that temperature is associated with the number of emergency
department (ED) visits. A predictive system for ED visits, which takes local temperature into account,
is therefore needed. This study aimed to compare the predictive performance of various machine
learning methods with traditional statistical methods based on temperature variables and develop a
daily ED attendance rate predictive model for Hong Kong. We analyzed ED utilization among Hong
Kong older adults in May to September from 2000 to 2016. A total of 103 potential predictors were
derived from 1- to 14-day lag of ED attendance rate and meteorological and air quality indicators
and 0-day lag of holiday indicator and month and day of week indicators. LASSO regression was
used to identify the most predictive temperature variables. Decision tree regressor, support vector
machine (SVM) regressor, and random forest regressor were trained on the selected optimal predictor
combination. Deep neural network (DNN) and gated recurrent unit (GRU) models were performed on
the extended predictor combination for the previous 14-day horizon. Maximum ambient temperature
was identified as a better predictor in its own value than as an indicator defined by the cutoff.
GRU achieved the best predictive accuracy. Deep learning methods, especially the GRU model,
outperformed conventional machine learning methods and traditional statistical methods.

Keywords: emergency department; machine learning; temperature; older adult; Hong Kong

1. Introduction

Global warming is becoming an increasingly important concern worldwide. The
global surface temperature rose by 1.09 ◦C in 2011–2020 as compared to 1850–1900 and
the continuous rise was projected to exceed 2 ◦C during this century [1]. In metropolitan
areas, the air temperature, especially at nighttime, is amplified by urban heat island (UHI)
effect [2]. The older population is vulnerable to extreme heat due to their impaired physi-
ological ability to regulate heat [3]. Previous studies have demonstrated the association
between heat exposure and increased Emergency Department (ED) attendance risk. A
United Kingdom (UK) study demonstrated a 0.6% increase in daily ED attendance risk in
people aged 65–74 with 1 ◦C increase in mean ambient temperature [4]. In Asia, increased
risk of ED visits due to cardiovascular diseases and respiratory diseases among older adults
was also shown to be associated with high indoor temperatures (such as 31 ◦C lasting over
one hour) during the hot season in Taiwan [5,6]. While temperature had been used as
predictor for ED visits in many studies, its prediction performance varied. A previous study
found that meteorological information, including daily mean temperature, improved the
predictive performance of a hierarchical Bayesian model on daily ED visits [7]. In contrast,
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there were evidence showed that incorporating climatic factors (including mean, maximum,
and minimum ambient temperature) did not improve the predictive performance [8,9]. A
recent study using linear regression reported association between ED visits and heat stress
defined by Universal Thermal Climate Index, which incorporated ambient temperature,
humidity, wind speed, and radiant temperature into an index [10].

Globally, EDs face increasing emergency care demand, especially with an aging popu-
lation. Older adults are reported as frequent users of EDs [11,12]. In the United States (US),
the ED usage of older people aged 65 or over increased by 25% from 2001 to 2009 [13]. The
growing demand accompanied by the shortage of healthcare resources might increase the
workload of healthcare providers and adversely affect care quality, which may in turn de-
crease patients’ satisfaction and prognosis outcomes, or even increase the mortality rate [13].
Service providers have taken actions to address those issues by adopting strategies on
regulating patient flow and improving the capacity of EDs. However, the effectiveness of
these strategies relies heavily on reliable forecasts of ED visits and an early warning of the
peaks of future patient flow. Therefore, there is a need to have an accurate prediction of
healthcare utilization to help healthcare providers facilitate medical resources in advance,
in case of summer surges.

Most previous studies have used conventional statistical models, such as time series
models or regression models, to predict ED demand based on records of previous ED
visits. Autoregressive integrated moving average (ARIMA) and its variations were a class
of widely applied time-series data prediction models. The model eliminated the non-
stationarity of data by initial differencing and made the prediction based on the history
of time-series data. However, it was difficult to incorporate covariates and unstable to
changes in observations and model specification [14]. Generalized linear models (GLMs)
were simpler to implement compared to ARIMA. Previous studies demonstrated that
GLMs outperformed ARIMA in predicting ED visits [8,15]. However, GLM were usually
inefficient for big data volumes and prone to noise and overfitting. While conventional
statistical models are more useful in inferring associations between variables, machine
learning methods are superior in predictive tasks with capability of handling non-stationary
data and robustness to outliers [16].

Machine learning methods have been applied to healthcare utilization prediction tasks
since the last decade. For example, a previous study predicted hospital bed demand in
ED attendances by support vector machine (SVM) and demonstrated 80% accuracy, which
was comparable with experienced physicians [17]. Besides, ensemble learning methods,
such as random forest (RF) and gradient boosting classifier (GBC), were also demonstrated
as effective models for ED prediction [18]. Artificial neural network (ANN) was the most
popular machine learning method used to predict ED visits. A US study applied an ANN
classifier to forecast the peaks of ED demand due to respiratory diseases and achieved high
classification accuracy [19]. A study from Hong Kong identified that ANN was superior
to regression models in modelling the association between contributing predictors and
daily non-critical patient arrivals at a local emergency department [20]. The ARIMA-ANN
hybrid model, a variation of ANN, was demonstrated to outperform both linear regression
and ARIMA in predicting the ED demand [21]. Advanced deep learning methods, such as
deep neural network (DNN) and recurrent neural network (RNN), have been increasingly
used to model massive electronic health records (EHRs). However, their application in
prediction of healthcare utilization is scarce. Initial evidence showed that convolutional
neural network (CNN), an advanced ANN with convolutional cells, and long short-term
memory (LSTM), an efficient recurrent unit based on RNN architecture achieved better
predictive performance than conventional machine learning models [16].

Over the past decade, there has been a significant increase in ED service demand
accompanied by population growth and aging in Hong Kong. Meanwhile, global warming
has taken its toll in the subtropical city Hong Kong. There was an average rise of 0.13 ◦C
per decade from 1885 to 2021, with an accelerated growing trend reaching 0.31 ◦C per
decade from 1992 to 2021 [22]. In addition, the urban heat island effect is prominent
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in Hong Kong, resulting from the high-density compact urban setting. The frequency,
magnitude, and duration of extreme hot weather have been estimated to keep increasing
during this century [23]. The extreme weather conditions have a noticeable negative
effect on the residents’ health. Literature demonstrated that females and members of the
older population were the most affected populations in Hong Kong during extremely hot
weather [23]. Prior evidence also suggested that the help-seeking behavior of the older
Hong Kong population significantly increased when they were exposed to hot weather,
and females were even more sensitive to elevated temperature [24]. The public-funded
healthcare providers in Hong Kong also encountered summer surges in recent years in
addition to winter surges. It was reported that hospitalizations increased by 4.5% for every
1 ◦C increase in mean daily temperature above 29 ◦C [25]. There were always long queues
in EDs of Hong Kong; the average waiting time ranged from 1 h to over 8 h. A reliable
prediction model of ED attendance in Hong Kong remains lacking. Existing predictive
models developed from other populations are specifically trained to serve the forecast
needs in countries with different physical environments from Hong Kong and thus cannot
be directly applied to Hong Kong. Hence, it is essential to develop a local model for
application purpose in Hong Kong. Even though temperature was demonstrated to be
associated with ED visits, its predictive ability and relative importance in the predictive
model remains ambiguous. Besides, the choice of predictors is still a challenge in training
predictive models especially when there are various measures of temperature. For instance,
the predictor can be the daily minimum, maximum, or mean temperature at their own
values, while the other option is to transfer these variables into indicators by a threshold.
For own values, it is direct, but a possible U-shape may occur if the choice of the period
under study is not starting with the tip of the U-shape. For the use of indicators, it can
reduce the redundancy with the categorization, but the determination of the threshold is
critical, and the information entropy decreases.

This study aimed to: (i) comprehensively compare the predictive performance of
traditional statistical method, conventional machine learning approach, and advanced deep
learning approach in predicting ED attendance rate; and (ii) identify the optimal predictive
model that can be applied to Hong Kong. The findings of this study were of practical value.
First, researchers around the world could repeat the algorithm with their local data and
develop prediction models for their own settings. Second, service providers in Hong Kong
could apply the prediction algorithm to better plan for ED resources. Third, the public
could also be alerted with the high-risk period and initiate preventive measures.

2. Materials and Methods

2.1. Data Sources

Daily healthcare utilization data of ED admission for older people aged 65 and above
from 1 January 2000 to 31 December 2016 were obtained from the Hong Kong Hospital
Authority. Since the Hong Kong Hospital Authority manages all Accident and Emergency
Departments under the public hospitals in Hong Kong, these data reflect all Hong Kong
ED utilization at public hospitals. Population statistics were obtained from the Census
and Statistics Department of Hong Kong. Daily maximum/mean/minimum ambient
temperature data from the Hong Kong Observatory (HKO) Headquarter station were
extracted from the HKO. Air quality data in terms of general Air Quality Health Index
(AQHI) were obtained from the Environmental Protection Department of Hong Kong
government [26].

2.2. Outcomes

The primary outcome of this study was the gender-specific daily ED attendance rate,
which was measured as the daily ED attendance per 100,000 population.
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2.3. Predictors

Previous works in the literature have reported predictors of ED utilization, includ-
ing maximum, mean, and minimum ambient temperature [25,27,28]. We included the
maximum, mean, and minimum ambient temperature from 1 to 14 days lag, resulting in
42 continuous variables. The lag of 1 to 14 days was chosen since the maximum number
of lag studied in the literature was 13 [29], although shorter lags were considered else-
where [23]. According to the HKO’s extreme hot weather warning system, Very Hot Day
(VHD) was defined as daily maximum ambient temperature ≥ 33 ◦C and Hot Nights (HN)
was defined as daily minimum ambient temperature ≥ 28 ◦C). We further included VHD
and HN from 1 to 14 days lag, resulting in 28 binary indicators of extreme hot weather.

Apart from ambient temperature, we have a base variable set comprising 33 variables.
We included ED attendance rates of lags 1 to 14 days, as there was evidence about au-
toregressive nature of the ED attendance [30]. AQHI was also included, since previous
literature suggested that air pollution (ozone, nitrogen dioxide, sulfur dioxide, and par-
ticulate matter) was associated with short-term health risk, which may lead to hospital
admissions [26]. We included lags 1 to 14 days of the daily general AQHI. A binary variable
indicating whether the day was a holiday (including Sunday) was included to control the
holiday effect. Finally, we exploited four sine- and cosine-transformed variables, two in a
pair, to describe the cyclical patterns of month and day in the week across years [31]. An
example of sine- and cosine-transformed month variables is visualized in Figure S1.

A total of 103 potential predictors, including the base set (33 variables), the ambient
temperature set (42 variables), and the extreme hot weather indicator set (28 variables)
were included (Table S1).

2.4. Statistical Analysis

We excluded data in 2003 to avoid the impact of the SARS outbreak in Hong Kong.
A training data set comprising 10-years’ data (2000 to 2010, excluding 2003) was used to
develop the models. A validation data set comprising three-years’ data (2011 to 2013) was
used to select the optimal model. A testing data set comprising three-years’ data (2014 to
2016) was used to evaluate the performance of the model. Since the ED data is time-series
data, we split the data in this way instead of random splitting.

We adopted typical models covering all of the three classes of predictive models
(i.e., traditional statistics models, conventional machine learning models, advanced deep
learning models). We applied linear regression (i.e., GLM with Gaussian distribution
assumption) from traditional statistical models; decision tree, SVM and random forest from
conventional machine learning models, and DNN and GRU from advanced deep learning
models, based on their relative superior performance from literatures [16,17,32]. A detailed
process of the analysis is presented in Figure 1.

We applied the least absolute shrinkage and selection operator (LASSO) regression
to select significant predictors from the candidate ambient temperature variable set and
the candidate extreme hot weather indicator set separately to identify the significant
predictors within each set. In each gender subgroup, we applied 10-fold cross validation
on the standardized data to find the optimal hyperparameter and substituted it back to the
regression formula to shrink the scale of candidate variables. We removed variables with
zero coefficient and kept the rest as selected variables. We then fit a linear regression model
(Model 1) by including the base variable set (i.e., ED attendance rates and general AHQI at
lags 1–14, the current holiday indicator, and paired month and week indicating variables).
Then, Model 2 was built on Model 1 plus the selected ambient temperature variables; and
Model 3 was built on Model 1 plus the selected extreme hot weather indicators. We applied
linear regression to evaluate the performance of the three models on the test data set in
terms of evaluation metrics (see Formula (2) and (3)). The model with the best performance
was named as the baseline model. The variables in the baseline model were chosen to be
used in the machine learning algorithm. Based on the variables in the baseline model, we
applied 10-fold cross validation to decide the hyperparameters of conventional machine
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learning models: decision tree, support vector machine (SVM), and random forest. Then,
we tested the predictive ability of each model from conventional machine learning and
the baseline model from linear regression. This would inform us if conventional machine
learning could have better prediction performance than the linear regression given the
same set of predictors. On the other hand, deep learning methods could do the feature
selection automatically without the need to go through the feature selection step, although
the shortcoming is that the selected feature was not visualized. We tested the performance
of deep learning models based on two methods, namely deep neural network (DNN) and
gated recurrent unit (GRU), and compared with those from conventional machine learning
models. For deep learning, an extended feature set had to be used as all of the features had
to be on the same 14-day horizon (1–14 lags).

Figure 1. Process of the statistical analysis. Note: LASSO denotes least absolute shrinkage and
selection operator, LR denotes linear regression, SVM denotes support vector machine, DNN denotes
deep neural network, and GRU denotes gated recurrent unit.
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Decision trees and SVM are two conventional machine learning methods in regression
and classification tasks. The decision tree generates the optimal tree structure by deciding
the feature and the split at each node [33]. In contrast, SVM aims at optimizing a maximum-
margin hyperplane to achieve the best prediction performance [33]. Compared with the
ordinary least squares (OLS) method, decision trees and SVM support non-linear solutions.
Random forest is an efficient ensemble learning method that operates by constructing many
base learners (decision tree). It follows the bagging method and bootstrap sampling and is
less prone to overfitting than the decision tree and gives a more generalized solution [34].
A deep neural network (DNN) is an extension of artificial neural network (ANN) with a
minimum of three stacked hidden layers followed by a non-linear activation function [35].
Figure 2 describes the structure of DNN in our study. The blue circles denote the input
vector containing previous 14-day ED attendance rate, general AQHI, calendar information
(i.e., holiday, month, and week indicators), and extended chosen ambient temperature
variables and extreme hot weather indicators from Model 1–3 comparison. Each orange
circle is a neuron within the hidden layers (layers between the input layer and the output
layer), which assigns weights to inputs and passes on the values through an activation
function as outputs. We used a rectified liner unit (ReLU) activation function [36]. We
fine-tuned the hyperparameters (including the hidden layer structure, learning rate, and
batch size) based on the predictive performance on the validation data set. The red circle is
the output where we generate the predicted ED attendance rate in our study.

Figure 2. Proposed DNN structure.

A GRU model is a transformed recurrent neural network (RNN) with a gating mecha-
nism. Figure 3 shows the inner implementation of GRU, which is constructed by a reset
gate (rt), an update gate (zt), and a candidate status (ht) to decide what information can
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be passed to the output [37]. xt denotes the input vector, which was composed by ED
attendance rate, general AQHI, calendar information, ambient temperature variables, and
extreme hot weather indicators at time t. ht is the output vector of current unit and it passes
the kept information to another stacked GRU. The orange bricks denote a fully connected
layer with activation function. The formula is presented as follows.

zt = σ(Wxzxt + Whzht−1 + bz)
rt = σ(Wxrxt + Whrht−1 + br)

ht = tanh(Wxhxt + rt 
 ht−1 + bh)
ht = (1 − zt)
 ht−1 + zt 
 ht

(1)

where W denotes weight parameters, 
 denotes elementwise product (Hadamard prod-
uct) operator.

Figure 3. Proposed GRU structure.

For model evaluations, we adopted two widely adopted evaluation metrics to compare
the predictive performance of each model: root mean square error (RMSE) and normalized
root mean square error (NMSE). The corresponding formulae are

RMSE =

√
∑n

i=1(yi−ŷi)
2

n
(2)

and
NRMSE = RMSE

ymax−ymin
(3)

where yi and ŷi denote the observed and predicted current ED attendance rate in the test
set, respectively; n denotes the number of observations; ymax and ymin denote the maximum
and minimum values of observations separately.

The optimal value of RMSE is zero, with lower values indicating better predictive
performance. NRMSE normalizes RMSE by the scale of observation and makes the result
comparable across datasets and scales. It also indicates better fitting with minor value. In
the public health area, a predictive model with a NRMSE less than 30% is regarded as an
effective model [38].

All analyses were conducted in Python version 3.8.5 [39]. Linear regression, decision
tree, SVM, random forest, and DNN were implemented using the Sklearn package [40].
GRU was developed using the PyTorch package [41].
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3. Results

3.1. Data Descriptions

From May to September 2000 to 2016 (except 2003), the daily ED attendance rate
varied, in general, between 140 to 200 per 100,000 population. A higher attendance rate
was consistently observed in males (Figure 4).

Figure 4. Distribution of daily ED attendance rate across year. Distributions are presented in form of
box plots.

In the hot seasons, the mean temperature generally varied between 25 ◦C and 35 ◦C.
Substantially higher frequencies of VHD and HN were observed in 2009 and the most
recent three years (2014–2016) than in previous years (see Figure S1). Hong Kong remained
a low level of air pollution with the health risk straying moderate and lower (AQHI ≤ 6)
most of the years (see Figure S2). After 2009, few days with very high health risk of air
pollution (AQHI > 8) were observed (see Figure S3).

3.2. Selection of Predictors by LASSO

After LASSO selection, we identified 11 out of 42 ambient temperature variables
(previous 14-day maximum/mean/minimum daily temperature) and 19 out of 28 extreme
hot weather indicators (previous 14-day VHD and HN) for the female group. The num-
bers of selected ambient temperature variables and extreme hot weather indicators for
the male group were 10 and 17, respectively. These selected variables are presented in
Table 1. Among the ambient temperature variables, maximum daily temperature was most
commonly selected. Among the extreme hot weather indicators, VHD was slightly more
commonly selected than HN.

In Model 1 (ED attendance on previous 14-day ED attendance and general AQHI, with
current calendar information), the predictive performance for the female group (RMSE:
8.53 × 10−5, NRMSE: 12.05%) and the male group (RMSE: 9.04 × 10−5, NRMSE: 12.47%)
were both good. Model 2 (ED attendance on the same predictors as Model 1 plus those
LASSO-selected ambient temperature variables) achieved better performance than Model 1
for both female (RMSE: 8.44 × 10−5, NRMSE: 11.93%) and male groups (RMSE: 8.87 × 10−5,
NRMSE: 12.23%). Model 3 (ED attendance on the same predictors as Model 1 plus those
LASSO-selected extreme hot weather indicators) had the worst performance among the
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three models for both female (RMSE: 8.68 × 10−5, NRMSE: 12.27%) and male groups (RMSE:
9.20 × 10−5, NRMSE: 12.69%). Detailed information is listed in Table 2. Hence, Model 2
was chosen as the baseline model, with the optimal variables composed by previous 14-day
ED attendance and general AQHI, current calendar information, and the LASSO-selected
ambient temperature variables presented in Table 1.

Table 1. LASSO selected ambient temperature variables for each group.

Female Male

Ambient
Temperature

Variables

Extreme Hot
Weather Indicators

Ambient
Temperature

Variables

Extreme Hot
Weather Indicators

Max 2 VHD 1 Max 1 VHD 1
Max 8 VHD 2 Max 4 VHD 3
Max 10 VHD 3 Max 6 VHD 4
Max 11 VHD 4 Max 7 VHD 5
Max 12 VHD 5 Max 9 VHD 6
Max 13 VHD 6 Mean 2 VHD 7
Max 14 VHD 7 Min 6 VHD 9
Mean 6 VHD 9 Min 7 VHD 11
Min 1 VHD 12 Min 10 VHD 13
Min 12 VHD 13 Min 12 HN 3
Min 13 VHD 14 HN 4

HN 1 HN 5
HN 2 HN 6
HN 3 HN 7
HN 6 HN 8
HN 7 HN 12
HN 11 HN 14
HN 13
HN 14

Count 11 19 10 17

Note. Max denotes maximum temperature; Mean denotes mean temperature; Min denotes minimum. Tempera-
ture; VHD denotes very hot day; HN denotes hot night, and the numbers denote lags.

Table 2. Predictive performance of three linear regression models with different predictor combinations.

Methods

Groups Metric Model 1 Model 2 Model 3

Female RMSE (10−5) 8.53 8.44 8.68
NRMSE 12.05% 11.93% 12.27%

Male RMSE (10−5) 9.04 8.87 9.20
NRMSE 12.47% 12.23% 12.69%

Note. Model 1 denotes base set; Model 2 denotes base set plus candidate ambient temperature variables; Model
3 denotes base set plus candidate extreme hot weather indicators. RMSE denotes root mean square error and
NMSE denotes normalized root mean square error.

3.3. Predictive Performance of Machine Learning Methods

On the optimal variable combination, the performance of the conventional machine
learning methods were tested on the same test dataset. The results show that random
forest (Female: RMSE: 9.18 × 10−5, NRMSE: 12.97%; Male: RMSE: 10.23 × 10−5, NRMSE:
14.10%) achieved better performance than decision tree (Female: RMSE: 11.24 × 10−5,
NRMSE: 15.88%; Male: RMSE: 11.66 × 10−5, NRMSE: 16.01%) and SVM (Female: RMSE:
21.62 × 10−5, NRMSE: 30.5%; Male: RMSE: 20.41 × 10−5, NRMSE: 28.15%) for both sexes
(Table 3). However, none of these methods improved the predictive accuracy of the baseline
model on this task. Then, deep learning methods DNN and GRU models were tested
on the extended variable combination. The GRU model achieved the best performance
in both female (RMSE: 7.98 × 10−5, NRMSE: 11.28%) and male (RMSE: 8.52 × 10−5,
NRMSE: 11.75%) groups. DNN (Female: RMSE: 8.30 × 10−5, NRMSE: 11.73%; Male: RMSE:
8.75 × 10−5, NRMSE: 12.08%) also obtained slightly improved predictive accuracy than
baseline but not better than the GRU model. (Table 3). The ground-truth observations, the
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linear regression (baseline), and the GRU predictions are shown in Figure 5. Compared
with the baseline model, GRU showed a better ability in capturing the peaks.

Table 3. Predictive performance of model comparison among baseline model, conventional machine
learning methods and deep learning methods.

Methods

Groups Metric Linear Regression (Baseline) Decision Tree Random Forest SVM DNN GRU

Female RMSE (10−5) 8.44 11.24 9.18 21.62 8.30 7.98
NRMSE 11.93% 15.88% 12.97% 30.5% 11.73% 11.28%

Male RMSE (10−5) 8.87 11.66 10.23 20.41 8.75 8.52
NRMSE 12.23% 16.01% 14.10% 28.15% 12.08% 11.75%

Note. RMSE denotes root mean square error and NMSE denotes normalized root mean square error.

 
(a) 

(b) 

Figure 5. Visualization of ground truth and predictions from linear regression model (baseline) and
GRU. (a) Female group; (b) male group.
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4. Discussion

With the development of machine learning methods, many advanced methods have
been developed and have achieved better performance than previous methods. This
study compared the predictive performance of ambient temperature variables at their
own value and those using these variables as indicators, as well as the predictive power
among various models, including traditional statistical method (i.e., linear regression),
three typical conventional machine learning approaches (i.e., decision tree, SVM, and RF),
and two widely-adopted deep learning approaches (i.e., DNN and GRU) in predicting daily
ED attendance rate, using Hong Kong as an example. Also, we were the first to compare the
ability and shrink the candidate pool to a reasonable size by use of LASSO. We also applied
state-of-the art deep learning methods in the ED prediction task and suggested how to
apply the model in practice. It was found that ambient temperatures at their own values
had better predictive power than those indicators defined by cutoffs, and the advanced
deep learning approaches had better predictive performance than traditional statistical
models and conventional machine learning with acceptable computational complexity.

Literature using ambient temperature at its own value or as an indicator defined by
thresholds for prediction purpose were mixed. Some researchers reported that heat waves
defined by VHD and HN were associated with excess mortality [42]. On the other hand,
some researchers reported hospital admissions as a function of ambient temperature [25].
Another local study used thresholds of various meteorological variables to define extreme
weather in the prediction of mortality among older adults [43]. In a local study using time
series approach to study suicide death among older adults in summer, it was reported that
minimum temperature at its own value had the best predictive power for violent method
suicides, but maximum ambient temperature exceeding a threshold of 32.7◦C was better at
predicting non-violent method suicides [44]. In clinical studies, categorization of continu-
ous variables is common and it also helps simplify analyses and leads to more interpretable
results [45]. Moreover, binarization potentially conceals any non-linearity between the
variable and the outcome [45]. However, dichotomizing a variable leads to excessive infor-
mation loss, thus reducing its statistical power. The considerable within-group variability
after categorization may be suppressed. Our results supported these conclusions with
evidence that temperature variables at their own values had better predictive performance
than extreme hot weather indicators. This implies that temperature variables at their own
values are more effective predictors, as they contain essential information in predicting
ED attendance rates. The data-driven predictor selection approach also showed that daily
maximum ambient temperatures were more important than mean and minimum ambient
temperatures in predicting ED attendance rates, which might be due to their ability to
reflect the more extreme hot weather.

Most previous studies were limited to application of one kind of machine learning
model and had mixed conclusions when comparing the predictive performance among
different models [20,32]. Our study included state-of-the-art machine learning models,
including base learner (i.e., decision tree and SVM), ensemble learning model (i.e., random
forest) and deep learning models (i.e., DNN and GRU). We found that random forest
outperformed decision tree and SVM with a maximum of 2.91% and 14.62% improvement
regarding NRMSE, which was consistent with the previous literature that ensemble learning
methods had better performance than base learners and supported the effectiveness of the
dragging mechanism and the bootstrap sampling [34]. However, these three conventional
machine learning methods did not outperform the linear regression model with a minimum
of 1.04% lower regarding NRMSE. This is in agreement with a previous study [32], which
also found that simple methods such as penalized linear regression models were better or
at least comparable with ensemble learning methods such as GBC and random forest to
predict ED demand in England. Decision tree, SVM and random forest were conventional
machine learning models that were not designed for time-series predictive tasks, which
did not fit well for the increasing or decreasing trends of time-series data. Besides, the
increased algorithm complexity might decrease the performance when the number of
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variables was prominent, and when the data size was relatively small. A review also
indicated that machine learning models were more suitable to pioneering fields with large
data volume, such as radio diagnostics, precision medicine and omics [46]. Meanwhile,
deep machine learning approaches, namely DNN and GRU, outperformed linear regression
and conventional machine learning models studied in both female and male groups. Up to
date, GRU is one of the state-of-the-art machine learning algorithms, in the way that the
gating mechanism effectively handles data with timestamps by repeatedly updating gates
and resetting gates to keep important information and remove irrelevant information [47].
LSTM has been applied to ED predictive tasks in a previous study and achieved better
predictive accuracy for moderate-term prediction compared to CNN and random forest,
with a 1.49% improvement of current day prediction than CNN and 2.06% improvement
than random forest regarding mean absolute percentage error (MAPE) [16]. While the
mechanism of LSTM indicates it can remember longer sequences theoretically, GRU usually
had better performance than LSTM with faster training speed and lower memory cost on
low complexity sequences in practice [48]. Still the application of GRU in predicting ED
visits is in the nascent stage. Our study showed GRU achieved the best performance among
all models with 0.71%, 1.69%, and 4.3% improvement over linear regression, random forest,
and decision tree separately regarding NRMSE in the female group and similar results in
the male group, supporting GRU as a suitable method for predicting ED visits regardless
of gender. Even though the performance improvement of GRU was not considerable in
value, its ability in capturing the peaks of ED visits revealed its potential application as an
early signal of ED unit utilization.

As older people are vulnerable to hot weather, it is essential to develop a targeted
predictive model for the older Hong Kong population. Although there are both winter and
summer surges in ED visits, the summer surge was not given enough attention. Hence, our
study filled a knowledge gap by focusing on the prediction of ED visits by older adults in
the hot season in Hong Kong. As GRU showed the optimal prediction power, we attempt
to apply GRU to build an ED visit forecast system, so that the healthcare providers can
rely on the sequential predictions to allocate resources for the coming period. We first
pre-train a GRU model, store it in a reliable server, and build portal links from the web or
mobile devices. The healthcare providers can get access to the precise prediction of ED
attendance rates in the coming period through the website, mobile app, or messages, and
thus be able to plan for the potential surge. Although the prediction for the coming day is
validated, based on the feature of GRU that the predictive period is extensible, we can also
provide longer-term predictions (say, for one to two weeks in advance) for the healthcare
providers. Although 9-day weather forecasts are available in Hong Kong, the sequential
prediction does not require such input since the GRU can internally model the temperature
pattern based on the data with 1–14 days lag and predict future ED visits. Thus, no extra
information is needed to do the prolonged sequential prediction compared to traditional
methods. Nevertheless, it is admitted that the predictive performance will decline as the
prediction period gets longer and longer. Meanwhile, this study is a proof-of-concept
study to demonstrate the feasibility of real-time predictions. Firstly, the dataset we used
for training and testing spans more than a decade, whereas the predictive accuracy is still
demonstrated competitive on the testing dataset. Thus, our model will likely be applicable
for the future data. Secondly, the variables we selected are strictly based on previous
literatures and robust selection algorithms, which are practical for real-time predictions.
Lastly, the deep learning method, GRU we used to build our model, is of superior gen-
eralization ability, which extracts effective features and identifying patterns adaptively
by approximating complex non-linear functions, and thus is robust for unobserved data
over the time. Nevertheless, the COVID pandemic might affect the current pattern of ED
admission. However, our model is convenient to adapt to the changes by retraining at low
memory cost and fast speed. Therefore, for future studies, we may retrain the prediction
rule regularly using the most updated data. Other variables such as the hospitalization of
COVID confirmed cases and the trend of COVID need to be included in future model. A
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real time training and prediction model should also be explored to enhance the timeliness
and thus the usefulness of the predictions. With the advancement in the machine learning
techniques, more advanced models may perform more accurate predictions. Researchers
should keep on investigating better models.

Apart from the ED healthcare providers, the general public and other health and
social services providers should also get access to the forecast system and be informed of
the sequential prediction results. A high predicted ED visit rate implies a higher health
risk. Although we cannot claim causation with an observational study, the population,
particularly the older adults, would still be well-advised to take preventive measures, such
as staying in cool places and maintaining adequate fluid intake, to ameliorate adverse
health risk from extreme hot weather. Future studies with more vigorous experimental
designs should be conducted to facilitate health and social services providers to develop
heat action plans to protect vulnerable populations.

The strength of our study includes the long-time data series used. We used a 10-
year data for training and three-year data for validation and testing, respectively, which
significantly increased the reliability of our predictive model. Although we achieved high
predictive performance of ED attendance rate prediction, there was limitation related
to the lack of the cause-specific or hospital-specific ED attendance information, limiting
more efficient application to Eds. Further works are needed to develop cause-specific
and hospital-specific prediction models for more targeted warnings. Secondly, we did
not decide the optimal lag time, although we covered a moderate interval to balance
the short-term and long-term effect. Prolonged lag effect or dynamic lag effect will be
assessed in future studies. Further work will also include more meteorological variables
such as relative humidity, wind speed, and sunshine duration as potential predictors.
The data used in this study were only collected up to 2016. Future studies are needed to
revisit the situation using the most updated, or even real time data. In this study, we only
compared the machine learning methods with one type of traditional statistical methods,
namely linear regression. Moreover, not all available machine learning methods were
attempted in this study. Comparisons with other traditional statistical methods and other
machine learning methods should be performed in future studies in order to complete
the comparisons.

5. Conclusions

To our knowledge, this was the first study to comprehensively compare the predictive
ability of linear regression, conventional machine learning methods, and advanced deep
learning methods, with prediction of the ED attendance rates in Hong Kong as illustra-
tion. We found that deep learning methods, especially the GRU model, outperformed
conventional machine learning methods and traditional statistical methods. Future ro-
bust predictive system for ED attendance could be developed based on GRU model with
ambient temperatures at their own values as predictors. Such predictions could provide
healthcare providers and the older Hong Kong population timely ED crowding forecasts.
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Frequency of general AQHI in hot season from 2000 to 2016. Table S1: A summary of potential
predictors used in developing the prediction models.
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Abstract: Problems of preeclampsia sign diagnosis are mostly based on symptom data with the
characteristics of data collected periodically in uncertain, ambiguous, and obstetrician opinions. To
reduce the effects of preeclampsia, many studies have investigated the disease, prevention, and
complication. Conventional fuzzy inference techniques can solve several diagnosis problems in
health such as fuzzy inference systems (FIS), and Mamdani complex fuzzy inference systems with
rule reduction (M-CFIS-R), however, the computation time is quite high. Recently, the research
direction of approximate inference based on fuzzy knowledge graph (FKG) has been proposed in
the M-CFIS-FKG model with the combination of regimens in traditional medicine and subclinical
data gathered from medical records. The paper has presented a proposed model of FKG-Pairs3
to support patients’ disease diagnosis, together with doctors’ preferences in decision-making. The
proposed model has been implemented in real-world applications for disease diagnosis in traditional
medicine based on input data sets with vague information, quantified by doctor’s preferences. To
validate the proposed model, it has been tested in a real-world case study of preeclampsia signs
in a hospital for disease diagnosis with the traditional medicine approach. Experimental results
show that the proposed model has demonstrated the model’s effectiveness in the decision-making of
preeclampsia signs.

Keywords: fuzzy knowledge graph; FKG-Pairs; disease diagnosis; preeclampsia; decision making

1. Introduction

Recently, preeclampsia signs have several typical clinical symptoms such as high blood
pressure, proteinuria, and edema. Severe cases may be accompanied by convulsions and
narcotisms [1–3]. Preeclampsia is a sort of multi-organ dysfunction related to pregnancy,
accounting for about 2–10% during the entire pregnancy [1,3,4]. Over the past two decades,
the preeclampsia rate has increased by about 25%, especially in the early preeclampsia
group. In Asia, a statistic from 2001 to 2014 shows that preeclampsia increased quickly, from
0.5% to 0.8% during the entire pregnancy [1]. In Viet Nam, the preeclampsia rate before
34 weeks is 0.43%, the preeclampsia rate from 34 to 37 weeks is 0.7%, and the preeclampsia
rate after 37 weeks is 1.68% compared to the entire pregnancy. A series of studies from 2012
to 2016 in Hue showed the preeclampsia rate is about 2.8–5.5% [2]. In applied AI healthcare
applications, many studies of preeclampsia pathology in recent years have focused on
the field of disease occurrence prediction, disease progression prediction, and pregnancy
outcomes diagnosis as well as preeclampsia prophylaxis.

Preeclampsia is a pathology with multi-variable evidence for both mother and fetus.
This causes of death maternal and perinatal mortality worldwide. Maternal mortality
associated with hypertension in general pregnancy and preeclampsia accounts for about
14%. Death rate maternal mortality is associated with an increase in hypertension during
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pregnancy in the range of 12.9–16.1% [1,4]. Besides, the effects of preeclampsia are given
after birth, in relation to subsequent births, and are a risk factor for later cardiovascular
diseases [5]. Despite efforts in the management of the prenatal phase, preeclampsia is
still one of the disease burdens in maternal and child healthcare. To reduce the effects
of preeclampsia, many investigations have been given to aim disease forecasting and
prophylaxis, optimally export prophylaxis presents the disease, prevents severe progression,
and prevents complications. Since 2011, WHO has issued recommendations for forecasting
and prophylaxis of preeclampsia pathology [1]. Many organizations (Federation Obstetrics
and Gynecology International (FIGO), American Society of Obstetricians and Gynecologists
(ACOG), Healthcare Institute British National and Clinical Health (NICE), Canadian Society
of Obstetricians and Gynecologists (SOGC)) and other specialized associations have also
provided guidance on forecasting and redundancy preeclampsia [6–9]. With the motivation
to apply information technology in early disease diagnosis, the authors have endeavored
to deploy an application based on regimes in traditional medicine to solve the problem of
preeclampsia sign diagnosis in pregnant women.

To handle problems in disease diagnosis, a knowledge graph-based approach is con-
sidered to support doctors in disease diagnosis [10–12]. KG is considered a powerful
technique to support decision support systems, predictive analysis systems, and recom-
mendation systems. It can be combined with other techniques to find the output labels of
new samples. However, knowledge graphs face difficulties in representing knowledge and
making approximate inferences based on input data sets with unclear information (such as
subclinical symptom data with amplitude factor in the medical sector).

To solve the limitations of the knowledge graph, several techniques based on fuzzy
inference systems are applied to build real-world applications. It has received much
attention from many researchers all over the world, such as fuzzy inference systems
(FIS) [13–18], complex fuzzy inference systems (CFIS) [19–21], and Mamdani-type complex
fuzzy inference systems (M-CFIS) [22], M-CFIS-R [23]. These techniques cannot generate
the output labels when new samples are not in the fuzzy rule base. Furthermore, these
techniques can also show that the computation time is still quite high. Nevertheless, the
M-CFIS-FKG still has low accuracy with incomplete information input data sets. Recently,
the research direction of approximate inference based on fuzzy knowledge graph (FKG)
has been proposed in the M-CFIS-FKG model [24] with the combination of regimens in
traditional medicine and subclinical data gathered from electric medical records. This helps
FKG to overcome the previous works’ drawbacks.

From the above limitations of the M-CFIS-FKG, a new model (so-called FKG-Pairs)
was proposed in [25]. It is considered an extension of FKG in the M-CFIS-FKG model [24].
It improved the single-pairs FKG (FKG-Pairs1) by using combinations of attribute pairs
to compute the weights and inference of the output label (e.g., double-pairs FKG (FKG-
Pairs2), triple-pairs FKG (FKG-Pairs3), quadruple-pairs FKG (FKG-Pairs4), and quintuple-
pairs FKG (FKG-Pairs5)). These methods have been applied to improve the inference
performance of decision-making systems in terms of accuracy. In related works [26–28], the
investigations have proposed Decision Support System to apply ontology-based for diabetic
patients [26], Fuzzy Knowledge applied to give decision-making in diagnosis Decision
Support System [27]. Further investigations have focused on human hearing abilities
classification [28], applied U-Net with Deep Learning of glaucoma [29], and multiple
Machine Learning techniques for decision making of chronic kidney disease [30], Prediction
and analysis using dynamic neural network, genetic algorithm [31], and medical system has
been applied to use deep learning techniques for clinic diagnosis [32]. In clinical decision
support systems, knowledge reasoning and linguistics can be used in decision-making [33],
multi-attribute decision-making [34,35], and group decision-making [36] for significant
contributions to medical diagnosis. As mentioned in the related works, with incomplete
information input data sets, conventional methods or fuzzy inference techniques have
not been considered fully effective solutions. Studying to deploy easy and convenient
FKG-Pairs-based applications is to meet the requirements for real-world problems.
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The paper has presented a proposed model of FKG-Pairs3 to support patients’ disease
diagnosis, together with doctors’ preferences in decision-making. The proposed model
has been tested in a real-world case study of preeclampsia signs in a hospital for disease
diagnosis with the traditional medicine approach. The main contributions of this study
are as follows:

• Proposing the FKG-Pairs3-based preeclampsia sign diagnosis model. This proposed
model is used to quantify incomplete and vague information input data sets including
qualitative and quantitative factors, quantified from doctor’s preferences.

• Applying FKG-Pairs3 for consideration of patient’s symptom pairs to approximate rea-
soning to find the output labels of new samples, matched with the class of classification
in decision-making problems with incomplete information input data sets.

• Implementing the proposed model for the development of real-world applications
using datasets collected from medical records in accordance with the preferences of
doctors through a case study of preeclampsia sign diagnosis for support of traditional
medicine inpatient medical records.

The rest of this paper is organized as follows. Part 2 presents the background knowl-
edge of the research process. Part 3 describes the detailed proposed model in medical
diagnosis including the problem statement and the process of building and applying
the FKG-Pairs to solve the problem. Experimental results and performance evaluation
of the application are shown in Part 4. The final part is to give conclusions and future
investigations.

2. Research Background

2.1. Fuzzy Sets

Fuzzy sets were first introduced by Zadeh in 1965 [37], introduced as a new mathe-
matical tool for solving problems with ambiguous, uncertain information. Unlike normal
sets, which evaluate the membership of the set according to the binary logic “an element
belongs or not to the set”, fuzzy logic [38,39] evaluates the membership of a part element
through a membership function μ→ [0, 1], which represents the membership of an element
to a set.

2.2. Fuzzy Inference System

A fuzzy inference system (FIS) is a popular computational framework based on the
concept of fuzzy set theory, often applied when building decision support systems in case
the input information is not clear [16]. The general framework of the FIS as shown in
Figure 1 can be summarized with three main parts: fuzzification, knowledge base, and
defuzzification. The FIS has the basic structure as follows:

• Fuzzification: It is responsible for converting input values into language values.
• The knowledge base consists of two parts: The database (definition of fuzzy set

membership functions used in fuzzy rules) and the set of rules (including IF-THEN
structural fuzzy rules).

• Engine: Perform inference operations in the fuzzy rule base.

Defuzzification: It is responsible for converting the fuzzy result values of the fuzzy
inference system into clear values.

Fuzzy inference is the process of finding a conclusion for a set of input values, based
on the synthesized fuzzy rule system. Fuzzy inference methods are regularly referred to as
FIS, CFIS, and M-CFIS. These inference systems, also known as classical inference methods,
have been widely used in automatic control systems and decision support systems. The
FKG [24] is known as a new, efficient, and more accurate inference method than previous
fuzzy inference methods. Fuzzy inference systems are classified into three main methods:
Mamdani fuzzy inference systems, Takagi-Sugeno fuzzy inference systems, and Tsukamoto
fuzzy inference systems.

124



Information 2023, 14, 104

Figure 1. The general framework of the FIS.

2.3. Knowledge Graph

Knowledge graph (KG) was first introduced by Google in 2012 [40]. The main purpose
of KG is to analyze to maximize the value of knowledge, detect and avoid errors, and to be
able to infer new conclusions from existing data. The selection of new entity representations
and their relationships through the KG model can gain a lot of useful information and can
be more supportive for practical applications. It is for this reason that KG is researched,
proposed, and applied by the community of researchers in many practical problems,
especially in models with approximate reasoning. It is considered a powerful technique
to support decision support systems, predictive analysis systems, and recommendation
systems [41–43].

2.4. Fuzzy Knowledge Graph

The FKG was first proposed in 2020 [24] to solve the limitations of KG in representing
knowledge and making approximate inferences based on input data sets with unclear
or incomplete information by using linguistic labels for the attributes in the training set
connected to the output labels. It represents inference through natural law where the impact
of language labels is capable of generating corresponding output labels. By accumulating
single events (or single pairs in the FKG), it can determine the final output of a new sample.
The FKG has two main phases including representation and approximate reasoning.

In the representation phase, the weights of edges are calculated and are briefly sum-
marized as follows. Firstly, for edges connecting among vertices or input attributes’ labels
on FKG, the weight At

ij of these edges is calculated by using Equation (1):

At
ij =

∣∣Xi is related to Xj in rule t
∣∣

|R| (1)

where: Xi, Xj are input attribute vertices, 1 ≤ i ≤ j ≤ m, Rt is the tth rule, t = 1, k .
Secondly, for edges connecting the input attribute label and the output label on FKG,

the weight Bt
ij of these edges is calculated by using Equation (2):

Bt
il =

(
∑ At

ij

)
× |Xi is related to the label l in rule t|

|R| (2)

where: Xi is input attribute vertex, 1 ≤ i < j < m, Rt is the tth rule, t = 1, k , l is output
label vertex and l = 1, C.

The results of the two sets of weights are stored in an adjacency matrix, which can be
used in the FISA algorithm in the next phase.

In the approximate reasoning phase, the FISA algorithm [24] is applied to approximate
reasoning and find the output labels of the new records.
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2.5. Approximate Reasoning and Decision Making

Approximate reasoning is defined as a tool for inferences from propositions of unspec-
ified meaning through fuzzy logic [43]. Usually, the approximate inference method has
a lower accuracy than the conventional inference techniques based on clear data, but the
advantage of approximation reasoning unclear data with language variables. In [24], it is
applied in the FISA algorithm to find the output labels of the new records.

Decision-making is considered the core of decision-support systems. It supports
leaders and managers make accurate, timely, and effective decisions. It is applied in many
sectors in the real world, such as healthcare, finance, stock, transportation, environment,
agriculture, business, and other studies [31,42–46].

3. The Proposed Model for Preeclampsia Sign Diagnosis in Decision Making

This section describes the preeclampsia sign diagnosis proposed model in detail. The
main contents are presented in this section including the problem statement, the proposed
model, and a numerical example to elucidate the solving problem.

3.1. Problem Statement

Input: Suppose that we have an original database after extracting from pregnancy
patients’ medical records. By supporting of doctors and obstetricians, the subclinical
features are selected to construct the FKG-Pairs (such as Blood Pressure, HGB, PLT, Urea,
Creatinine, Acid Uric, ALT, AST, Total Protein, Albumin, LDH, Proteinuria and so on). The
training and testing data sets, with splitting 70% and 30% respectively, are obtained after
applying the data preprocessing method and the rule-generated mechanism.

A fuzzy rule base of the training data set is described in detail in Table 1. It includes
n rules (P1, P2, P3, . . . , Pn−1, Pn) representing patients’ medical records, m input features
(S1, S2, S3, . . . , Sm−1, Sm) representing the symptoms of the preeclampsia, and C output
labels (1, 2, 3, . . . , C) representing the doctor’s diagnosis results.

In addition, the testing data set includes samples after applying the rule-generated
mechanism with the IF-THEN structure similar to the rules in Table 1. For instance:

IF S1 is “L1” and S2 is “L2” and S3 is “H2” and S4 is “VH4” and . . . and Sm−1 is “Hm−1”
and Sm is “Lm” THEN Output label = 3.

Table 1. The fuzzy rule bases.

Pi

Sj S1 S2 . . . Sm−1 Sm
Output

Labels

P1 H1 H2 . . . VHm−1 Hm 2

P2 M1 M2 . . . Mm−1 Lm 1

. . . . . . . . . . . . . . . . . . . . .

Pn−1 M1 M2 . . . Mm−1 Mm 1

Pn L1 M2 . . . Lm−1 Lm 3

Patients’
symptoms {H1 , M1, L1} {H2 , M2} . . . {VHm−1 , Hm−1, Mm−1, Lm−1} {Hm , Mm, Lm} {1, 2, 3, . . . , C}

Output: Find the output label of the new records with subclinical data inputted by
doctors or patients based on the preeclampsia sign diagnosis module.

3.2. Proposed Model

In this subsection, we have presented the main contents related to the construction
of triple-pairs FKG (FKG-Pairs3) for the problem of disease diagnosis based on symptom
data, namely: Giving a model for the problem of preeclampsia sign diagnosis in gestational
women; Describing steps to follow the proposed model; and give numerical examples to
illustrate the proposed model.
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3.2.1. The Preeclampsia Sign Diagnosis Proposed Model

The preeclampsia sign diagnosis proposed model consists of two phases (preparation
phase; diagnosis phase) as shown in Figure 2. In the problem statement, assuming we have
a fuzzy rule base of the preeclampsia sign diagnosis problem after applying several steps
(including the pre-processing, the rule-generated mechanism, and the training). Then, the
preeclampsia sign diagnosis module (based on FKG-Pairs3) is constructed by using the
training data set and is validated by using the testing data set. Finally, obstetricians and
gestational women can use this module to check the preeclampsia signs by inputting the
subclinical data.

3.2.2. The Steps to Implement the Application

To implement the preeclampsia sign diagnosis application based on FKG-Pairs3,
several steps are obligated strictly as follows:

Step 1. Gather data sets to establish the original database.
From the medical records of the patients, the features related to the preeclampsia signs

are extracted. Then, the clinical and subclinical signs data are gathered with the doctor’s
support. The data are stored in a database (considered the original database).

Step 2. Prepare the fuzzy rule base.
In this step, we conduct some tasks before constructing the FKG-Pairs3 as follows:

• Conducting the data preprocessing.
• Applying the rule-generated mechanism (herein FIS or M-CFIS).
• Applying the cluster sampling method and splitting the dataset into two parts includ-

ing the training set and testing set with rates of 70% and 30% respectively.

Step 3. Construct the FKG-Pairs3 based on the training data set.
This step is considered the most important step to implement the preeclampsia sign

diagnosis application in the proposed model as shown in Figure 2. There are three main
tasks in this step as follows:

Firstly, for the edges connecting among vertices (input features’ labels) on FKG, the
weight Ãt

ijhk of these edges is calculated by using Equation (3):

Ãt
ijhk =

∣∣Si → Sj → Sh → Sk in rule t
∣∣

|R| (3)

in which t = 1, n, 1 ≤ i ≤ j < h < k < m − 1, |R| is the number of rules in the training data
set.

Secondly, for edges connecting the input feature label and the output label on FKG,
the weight Bt

ijhl of these edges is calculated by using Equation (4):

B̃t
ijhl =

(
∑ Ãt

ijhk

)
× MIN

( |Si → l in rule t|
|R| ,

∣∣Sj → l in rule t
∣∣

|R| ,
|Sh → l in rule t|

|R|

)
(4)

in which t = 1, n; 1 ≤ i < j < h ≤ m; l = 1, C, |R| is the number of rules in the training
data set.

Finally, the FKG-Pairs algorithm in [37] (with k = 3 or FKG-Pairs3) is applied to
approximate reasoning and find the output labels of the new records. The algorithm is
described briefly below.

Calculating the sum of the weights of the edges
(

C̃
)

connecting from the super-nodes
(i.e., each node is the combination among three features’ labels) is given to the output label
by using Equation (5).

C̃ijhl = ∑
t

B̃t
ijhl (5)

in which t = 1, n; 1 ≤ i < j < h ≤ m; l = 1, C.
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Figure 2. The proposed model of preeclampsia sign diagnosis.

Calculating the membership value (D̃l) by using the Max − Min operator, given by
Equation (6).

D̃l = Max1≤i<j<h≤m

(
C̃ijhl

)
+ Min1≤i<j<h≤m

(
C̃ijhl

)
(6)

in which t = 1, n; 1 ≤ i < j < h ≤ m; l = 1, C.
Finding the labels of the new records by using the Max operator, given by Equation (7).

Label = p i f D̃p = Maxl=1,C

(
D̃l

)
(7)

Step 4. Validate the testing data set.
Before applying the preeclampsia sign diagnosis module for new records validated

on the testing data set, which supports the application becoming more reliable. In case,
the confidence of the diagnosis module cannot meet the doctors‘ requirements, we have to
return to step 1 to get more data from new medical records to enrich the fuzzy rule base.

Step 5. Input the subclinical data of a gestational woman.
This step permits the patients (or users) to input the subclinical data to check the

preeclampsia signs. Note that the data entered into the program has to meet the system’s
requirements (i.e., in the valued range).

Step 6. Get the diagnosis results.
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After processing and approximate reasoning based on the subclinical data entered by
patients or users, the application calculates and finds the output label corresponding to the
diagnosis result (users can recheck it from obstetricians if possible).

3.2.3. A numerical Example to Illustrate the Proposed Model

To deeply understand the proposed model, a numerical example is given in this sub-
section.

Input: Suppose that we have six rules {R1, R2, R3, R4, R5, R6} representing six gesta-
tional women. Each gestational woman has five features {S1, S2, S3, S4, S5} representing
the preeclampsia signs test results. The above cases of gestational women were examined
and diagnosed based on the test results by the doctor. The output labels are 0, 1, and 2
corresponding to the doctor’s diagnosis conclusions “Normal”, “Preeclampsia” and “Severe
Preeclampsia” respectively. After going through the data preprocessing step as well as
applying the fuzzification of the input value by using the linguistic variables, a fuzzy rule
base system is obtained as shown in Table 2.

Table 2. The fuzzy rule base assumes that the medical examination results of six gestational women
have been concluded to be diagnosed by doctors.

S1 S2 S3 S4 S5 S6
Output
Label

R1 H1 M2 M3 M4 H5 H6 2

R2 H1 M2 M3 M4 M5 M6 1

R3 VH1 M2 M3 M4 H5 H6 2

R4 M1 M2 M3 M4 M5 M6 0

R5 H1 M2 M3 M4 M5 M6 1

R6 VH1 L2 L3 M4 M5 M6 2

In addition, we have also a new gestational woman after applying the rule-generated
mechanism with the IF-THEN structure similar to the rules in Table 2. For instance: IF S1 is
“H1” and S2 is “H2” and S3 is “M3” and S4 is “M4” and S5 is “H5” and S6 is “H6” THEN

the output label = ?
Output: Find the output label of several new gestational women based on the fuzzy

rule base in Table 2.
To solve the requirements given in the output, two steps are performed as follows:
Step 1: Constructing the FKG-Pairs3 based on the fuzzy rule base as shown in Table 2.
Firstly, we calculate the set of weights Ãt

ijhk by applying Equation (3). With the rule
R1, we have:

Ã1
1234 = |H1→M2→M3→M4|

|R| = 1
6 = 0.17, Ã1

1235 = |H1→M2→M3→H5|
|R| = 1

6 = 0.17,

Ã1
1236 = |H1→M2→M3→H6|

|R| = 1
6 = 0.17, Ã1

1245 = |H1→M2→M4→H5|
|R| = 1

6 = 0.17,

Ã1
1246 = |H1→M2→M4→H6|

|R| = 1
6 = 0.17, Ã1

1256 = |H1→M2→H5→H6|
|R| = 1

6 = 0.17,

Ã1
1345 = |H1→M3→M4→H5|

|R| = 1
6 = 0.17, Ã1

1346 = |H1→M3→M4→H6|
|R| = 1

6 = 0.17,

Ã1
1356 = |H1→M3→H5→H6|

|R| = 1
6 = 0.17, Ã1

1456 = |H1→M4→H5→H6|
|R| = 1

6 = 0.17,

Ã1
2345 = |M2→M3→M4→H5|

|R| = 1
3 = 0.33, Ã1

2346 = |M2→M3→M4→H6|
|R| = 1

3 = 0.33,

Ã1
2356 = |M2→M3→H5→H6|

|R| = 1
3 = 0.33, Ã1

2456 = |M2→M4→H5→H6|
|R| = 1

3 = 0.33,

Ã1
3456 = |M3→M4→H5→H6|

|R| = 1
3 = 0.33

By the same calculation, we obtain the weights Ãt
ijhk for six rules in Table 3 as follows.
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Table 3. Results of weight matrix calculation Ã.

~
A R1 R2 R3 R4 R5 R6

Ãt
1234 0.17 0.33 0.17 0.17 0.33 0.17

Ãt
1235 0.17 0.33 0.17 0.17 0.33 0.17

Ãt
1236 0.17 0.33 0.17 0.17 0.33 0.17

Ãt
1245 0.17 0.33 0.17 0.17 0.33 0.17

Ãt
1246 0.17 0.33 0.17 0.17 0.33 0.17

Ãt
1256 0.17 0.33 0.17 0.17 0.33 0.17

Ãt
1345 0.17 0.33 0.17 0.17 0.33 0.17

Ãt
1346 0.17 0.33 0.17 0.17 0.33 0.17

Ãt
1356 0.17 0.33 0.17 0.17 0.33 0.17

Ãt
1456 0.17 0.33 0.17 0.17 0.33 0.17

Ãt
2345 0.33 0.33 0.33 0.17 0.33 0.17

Ãt
2346 0.33 0.33 0.33 0.17 0.33 0.17

Ãt
2356 0.33 0.33 0.33 0.17 0.33 0.17

Ãt
2456 0.33 0.33 0.33 0.17 0.33 0.17

Ãt
3456 0.33 0.33 0.33 0.17 0.33 0.17

Secondly, after calculating the set of weights Ãt
ijhk, we calculate the set of weights B̃t

ijhl
by applying the Equation (4). With the rule R1, it is expressed by:

B̃1
1231 =

(
Ã1

1234+ Ã1
1235 + Ã1

1236 + Ã1
1245 + Ã1

1246 + Ã1
1256 + Ã1

1345 + Ã1
1346 + Ã1

1356

+Ã1
1456 + Ã1

2345 + Ã1
2346 + Ã1

2356 + Ã1
2456 + Ã1

3456

)
×MIN

( |H1 → 1|
|R| ,

|M2 → 1|
|R| ,

|M3 → 1|
|R|

)
= 3.33 × MIN

(
1
3

,
1
3

,
1
3

)
= 3.33 × 1

3
= 1.11

By similar calculation, we find B̃1
1241 = B̃1

1251 = B̃1
1261 = B̃1

1341 = B̃1
1351 = B̃1

1361 =

B̃1
1451 = B̃1

1461 = B̃1
1561 = B̃1

2341 = B̃1
2351 = B̃1

2361 = B̃1
2451 = B̃1

2461 = B̃1
3451 = B̃1

3461 = B̃1
3561 =

B̃1
4561 = 1.11.

After applying Equation (4) for six rules, we obtain results of the entire weighted
matrix B̃t

ijhl , given in Table 4.

Table 4. Results of weight matrix calculation B̃.

~
B R1 R2 R3 R4 R5 R6

B̃123l 1.11 1.67 0.56 0.42 1.67 0.42

B̃124l 1.11 1.67 0.56 0.42 1.67 0.42

B̃125l 1.11 1.67 0.56 0.42 1.67 0.42

B̃126l 1.11 1.67 0.56 0.42 1.67 0.42

B̃134l 1.11 1.67 0.56 0.42 1.67 0.42

B̃135l 1.11 1.67 0.56 0.42 1.67 0.42

B̃136l 1.11 1.67 0.56 0.42 1.67 0.42
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Table 4. Cont.

~
B R1 R2 R3 R4 R5 R6

B̃145l 1.11 1.67 0.56 0.42 1.67 0.42

B̃146l 1.11 1.67 0.56 0.42 1.67 0.42

B̃156l 1.11 1.67 0.56 0.42 1.67 0.42

B̃234l 1.11 1.67 1.11 0.42 1.67 0.42

B̃235l 1.11 1.67 1.11 0.42 1.67 0.42

B̃236l 1.11 1.67 1.11 0.42 1.67 0.42

B̃245l 1.11 1.67 1.11 0.42 1.67 0.42

B̃246l 1.11 1.67 1.11 0.42 1.67 0.42

B̃256l 1.11 1.67 1.11 0.42 1.67 0.42

B̃345l 1.11 1.67 1.11 0.42 1.67 0.42

B̃346l 1.11 1.67 1.11 0.42 1.67 0.42

B̃356l 1.11 1.67 1.11 0.42 1.67 0.42

B̃456l 1.11 1.67 1.11 0.42 1.67 0.42

Finally, the FKG-Pairs3 module is built by applying the FKG-Pairs algorithm in [37]
(with k = 3 or FKG-Pairs3) to approximate reasoning and find the output labels.

After calculating the weights Ãt
ijhk and B̃t

ijhl for six rules in the fuzzy rule base, we

calculate the sum of the weights of the edges
(

C̃
)

connecting from the super-nodes (i.e.,
each node is the combination among three feature labels) to the output label by using
Equation (5). Let’s consider the rule R1:

• With label l = 0, we have:

C̃1230 = C̃1240 = C̃1250 = C̃1260 = C̃1340 = C̃1350 = C̃1360 = C̃1450 = C̃1460 = C̃1560 = C̃2340

= C̃2350 = C̃2360 = C̃2450 = C̃2460 = C̃2560 = C̃3450 = C̃3460 = C̃3560

= C̃4560 = 0

• With label l = 1, we have:

C̃1231 = C̃1241 = C̃1251 = C̃1261 = C̃1341 = C̃1351 = C̃1361 = C̃1451 = C̃1461 = C̃1561 = C̃2341

= C̃2351 = C̃2361 = C̃2450 = C̃2461 = C̃2561 = C̃3451 = C̃3461 = C̃3561

= C̃4561 = 0

• With label l = 2, we have:

C̃1232 = C̃1252 = C̃1262 = C̃1342 = C̃1352 = C̃1362 = C̃1452 = C̃1462 = C̃1562 = C̃2352 = C̃2362

= C̃2452 = C̃2462 = C̃2562 = C̃3450 = C̃3452 = C̃3462 = C̃3562 = C̃4562

= B̃1232(Rule R1) = 1.11

C̃2342 = B̃2342(Rule R1) + B̃2342(Rule R3) = 2.22

By the same calculation with the rules R2, R3, R4, R5, R6, we obtain results of the set
of weights

(
C̃
)

, given in Table 5.

From the values (C̃ijhl) in Table 5, we continue to compute the membership value (D̃l)
for each label (l = 0, 1, 2) by using the Max − Min operator, given by Equation (6). For
instance, in rule R1 we have:
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D̃0 = Max(C̃1230, C̃1240, C̃1250, C̃1260, C̃1340, C̃1350, C̃1360, C̃1450, C̃1460, C̃1560, C̃2340,
C̃2350, C̃2360, C̃2450, C̃2460, C̃2560, C̃3450, C̃3460, C̃3560, C̃4560

)
+ Min (C̃1230, C̃1240,

C̃1250, C̃1260, C̃1340, C̃1350, C̃1360, C̃1450, C̃1460, C̃1560, C̃2340, C̃2350, C̃2360, C̃2450, C̃2460,
C̃2560, C̃3450, C̃3460, C̃3560, C̃4560

)
= 0

D̃1 = Max(C̃1231, C̃1241, C̃1251, C̃1261, C̃1341, C̃1351, C̃1361, C̃1451, C̃1461, C̃1561, C̃2341,
C̃2351, C̃2361, C̃2451, C̃2461, C̃2561, C̃3451, C̃3461, C̃3561, C̃4561

)
+ Min (C̃1231, C̃1241,

C̃1251, C̃1261, C̃1341, C̃1351, C̃1361, C̃1451, C̃1461, C̃1561, C̃2341, C̃2351, C̃2361, C̃2451, C̃2461,
C̃2561, C̃3451, C̃3461, C̃3561, C̃4561

)
= 0

D̃2 = Max(C̃1232, C̃1242, C̃1252, C̃1262, C̃1342, C̃1352, C̃1362, C̃1452, C̃1462, C̃1562, C̃2342,
C̃2352, C̃2362, C̃2452, C̃2462, C̃2562, C̃3452, C̃3462, C̃3562, C̃4562

)
+ Min (C̃1232, C̃1242,

C̃1252, C̃1262, C̃1342, C̃1352, C̃1362, C̃1452, C̃1462, C̃1562, C̃2342, C̃2352, C̃2362, C̃2452, C̃2462,
C̃2562, C̃3452, C̃3462, C̃3562, C̃4562

)
= 2.22 + 1.11 = 3.33

Table 5. Results of calculating the set of weights C̃.

~
C R1 R2 R3 R4 R5 R6

La
be

l0

C̃1230 0.00 0.00 0.00 0.42 0.00 0.00

C̃1240 0.00 0.00 0.00 0.42 0.00 0.00

C̃1250 0.00 0.00 0.00 0.42 0.00 0.00

C̃1260 0.00 0.00 0.00 0.42 0.00 0.00

C̃1340 0.00 0.00 0.00 0.42 0.00 0.00

C̃1350 0.00 0.00 0.00 0.42 0.00 0.00

C̃1360 0.00 0.00 0.00 0.42 0.00 0.00

C̃1450 0.00 0.00 0.00 0.42 0.00 0.00

C̃1460 0.00 0.00 0.00 0.42 0.00 0.00

C̃1560 0.00 0.00 0.00 0.42 0.00 0.00

C̃2340 0.00 0.00 0.00 0.42 0.00 0.00

C̃2350 0.00 0.00 0.00 0.42 0.00 0.00

C̃2360 0.00 0.00 0.00 0.42 0.00 0.00

C̃2450 0.00 0.00 0.00 0.42 0.00 0.00

C̃2460 0.00 0.00 0.00 0.42 0.00 0.00

C̃2560 0.00 0.00 0.00 0.42 0.00 0.00

C̃3450 0.00 0.00 0.00 0.42 0.00 0.00

C̃3460 0.00 0.00 0.00 0.42 0.00 0.00

C̃3560 0.00 0.00 0.00 0.42 0.00 0.00

C̃4560 0.00 0.00 0.00 0.42 0.00 0.00

C̃1231 0.00 3.33 0.00 0.00 3.33 0.00

C̃1241 0.00 3.33 0.00 0.00 3.33 0.00

C̃1251 0.00 3.33 0.00 0.00 3.33 0.00
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Table 5. Cont.

~
C R1 R2 R3 R4 R5 R6

La
be

l1

C̃1261 0.00 3.33 0.00 0.00 3.33 0.00

C̃1341 0.00 3.33 0.00 0.00 3.33 0.00

C̃1351 0.00 3.33 0.00 0.00 3.33 0.00

C̃1361 0.00 3.33 0.00 0.00 3.33 0.00

C̃1451 0.00 3.33 0.00 0.00 3.33 0.00

C̃1461 0.00 3.33 0.00 0.00 3.33 0.00

C̃1561 0.00 3.33 0.00 0.00 3.33 0.00

C̃2341 0.00 3.33 0.00 0.00 3.33 0.00

C̃2351 0.00 3.33 0.00 0.00 3.33 0.00

C̃2361 0.00 3.33 0.00 0.00 3.33 0.00

C̃2451 0.00 3.33 0.00 0.00 3.33 0.00

C̃2461 0.00 3.33 0.00 0.00 3.33 0.00

C̃2561 0.00 3.33 0.00 0.00 3.33 0.00

C̃3451 0.00 3.33 0.00 0.00 3.33 0.00

C̃3461 0.00 3.33 0.00 0.00 3.33 0.00

C̃3561 0.00 3.33 0.00 0.00 3.33 0.00

C̃4561 0.00 3.33 0.00 0.00 3.33 0.00

La
be

l2

C̃1232 1.11 0.00 0.56 0.00 0.00 0.42

C̃1242 1.11 0.00 0.56 0.00 0.00 0.42

C̃1252 1.11 0.00 0.56 0.00 0.00 0.42

C̃1262 1.11 0.00 0.56 0.00 0.00 0.42

C̃1342 1.11 0.00 0.56 0.00 0.00 0.42

C̃1352 1.11 0.00 0.56 0.00 0.00 0.42

C̃1362 1.11 0.00 0.56 0.00 0.00 0.42

C̃1452 1.11 0.00 0.56 0.00 0.00 0.42

C̃1462 1.11 0.00 0.56 0.00 0.00 0.42

C̃1562 1.11 0.00 0.56 0.00 0.00 0.42

C̃2342 2.22 0.00 2.22 0.00 0.00 0.42

C̃2352 1.11 0.00 1.11 0.00 0.00 0.42

C̃2362 1.11 0.00 1.11 0.00 0.00 0.42

C̃2452 1.11 0.00 1.11 0.00 0.00 0.42

C̃2462 1.11 0.00 1.11 0.00 0.00 0.42

C̃2562 1.11 0.00 1.11 0.00 0.00 0.42

C̃3452 1.11 0.00 1.11 0.00 0.00 0.42

C̃3462 1.11 0.00 1.11 0.00 0.00 0.42

C̃3562 1.11 0.00 1.11 0.00 0.00 0.42

C̃4562 1.11 0.00 1.11 0.00 0.00 0.42
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By using the Max operator, given by Equation (7), the label of rule R1 is 2 because of
D̃2 = Max

(
D̃0, D̃1, D̃2

)
. Similarly, we obtain the labels of rules R2, R3, R4, R5, R6 being 1,

2, 0, 1, 2 respectively.
Step 2: Validating with the new records.
Case 1: The new record is in the fuzzy rule base system in Table 1, the output label is

the same as the result of one of the six rules.
Case 2: The new record is not in the fuzzy rule base system in Table 1. For instance,

IF S1 is “H1” and S2 is “H2” and S3 is “M3” and S4 is “M4” and S5 is “H5” and S6 is “H6”
THEN the output label = ?. The output label of this new record is found by applying
Equations (5)–(7). We have:

• With label l = 0,

C̃1230 = C̃1240 = C̃1250 = C̃1260 = C̃1340 = C̃1350 = C̃1360 = C̃1450 = C̃1460 = C̃1560 = C̃2340

= C̃2350 = C̃2360 = C̃2450 = C̃2460 = C̃2560 = C̃3450 = C̃3460 = C̃3560

= C̃4560 = 0

• With label l = 1,

C̃1231 = C̃1241 = C̃1251 = C̃1261 = C̃1341 = C̃1351 = C̃1361 = C̃1451 = C̃1461 = C̃1561 = C̃2341

= C̃2351 = C̃2361 = C̃2450 = C̃2461 = C̃2561 = C̃3451 = C̃3461 = C̃3561

= C̃4561 = 0

• With label l = 2,

C̃1232 = C̃1252 = C̃1262 = C̃2342 = C̃2352 = C̃2362 = C̃2452 = C̃2462 = C̃2562 = C̃3450 = 0
C̃1342 = C̃1352 = C̃1362 = C̃1452 = C̃1462 = C̃1562 = 0.56
C̃3452 = C̃3462 = C̃3562 = C̃4562 = 1.11

Therefore, D̃0 = D̃1 = 0, D̃2 = 1.11. The result of the new record: IF S1 is “H1” and
S2 is “H2” and S3 is “M3” and S4 is “M4” and S5 is “H5” and S6 is “H6” THEN the output
label = 2. The output label is 2 corresponding to the doctor’s diagnosis conclusion “Severe
Preeclampsia”.

4. Experimental Results

4.1. Experiments

To simulate the proposed model in real-world applications, the data set was gathered
from pregnant women who came for regular check-ups to monitor the fetus at the National
Hospital of Obstetrics and Gynecology in Vietnam. After receiving expert comments from
the obstetrician, the preeclampsia data set includes 210 samples with 19 test parameters,
such as Blood Pressure, Hemoglobin (HGB), Platelet Count (PLT), Urea, Creatinine, Acid
Uric, Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), Total Protein,
Albumin, Lactate Dehydrogenase (LDH), Proteinuria and so on (in detail given in Table 6).
In this data set, according to the diagnostic conclusion (in which 118 women with signs of
normal pregnancy, 60 preeclampsia women, and 32 severe preeclampsia women).

Table 6. List of features in the preeclampsia dataset.

No. Feature’s Name Domain

1 Pregnant Woman’s Age 18–66 years old

2 Fetus’s Age 15–40 weeks

3 Occupation Officer, Teacher, Doctor, Worker,
Farmer, Freelancer, and so on.

4 Number of Pregnancies 0–9 times

5 Pregnant Woman’s Height 1.40–1.90 m
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Table 6. Cont.

No. Feature’s Name Domain

6 Pregnant Woman’s Weight 45–95 kg

7 Upper Blood Pressure 90–129 mmHg

8 Lower Blood Pressure 60–84 mmHg

9 Hemoglobin (HGB) 120–160 g/L

10 Platelet Count (PLT) 150–450 g/L

11 Urea 2.5–6.7 mmol/L

12 Creatinine 50.4–98.1 μmol/L

13 Acid Uric 150–350 μmol/L

14 Alanine Aminotransferase (ALT) <31/37 Ul/L

15 Aspartate Aminotransferase
(AST) <31/37 Ul/L

16 Total Protein 64–83 g/L

17 Albumin 35–52 g/L

18 Lactate Dehydrogenase (LDH) <247 U/L

19 Proteinuria 0.1–0.25 g/L

Output Output labels (Diagnostic results)
0: Normal
1: Preeclampsia
2: Severe preeclampsia

The preeclampsia application is built using Python 3.10 language installed on a laptop
(ASUS Intel(R) Core (TM) i5-8300H CPU @ 2.30 GHz).

4.2. Evaluation Method

To evaluate the proposed model-based system’s performance, the parameters are used
including the accuracy and calculation time, specifically as follows:

Accuracy is evaluated by the ratio of the number of correctly classified samples over
the total number of performed samples, estimated by Formula (8).

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

where:

• TP: True Positive
• TN: True Negative
• FP: False Positive
• FN: False Negative

Time is estimated by the total execution time of the classification system (unit: seconds).

4.3. Test Results in Simulations

After implementing the application based on the above data set, the authors estab-
lished three different scenarios, namely:

• Scenario 1: the systematic random sampling method and the splitting method with
training set (70%) and testing set (30%).

• Scenario 2: the systematic random sampling method and the splitting method with
training set (10%) and testing set (90%).

• Scenario 3: the systematic random sampling method and the splitting method with
training set (5%) and testing set (95%).
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The comparison criteria include accuracy and computation time as given in Section 4.2.
The experimental results are shown in Figures 3 and 4.

 

Figure 3. Comparison in terms of accuracy among scenarios.

 

Figure 4. Comparison in terms of computation time among scenarios.

As shown in the results of Figure 3, it is clear to see that the accuracy of scenario 1
is significantly higher than that of the other two scenarios. For example, the accuracy of
scenario 1 is 15.44% higher than scenario 2 and 18.31% higher than scenario 3. It proves
that the accuracy depends on the number of samples in the training data set.

However, the data in Figure 4 shows that the computation time of scenario 1 is also
much higher than that of the other scenarios. Specifically, the computation time of scenario
1 is approximately 20 times higher than that of scenario 2, and nearly 50 times that of
scenario 3. This demonstrated that the data set splitting method contributed significantly
to improving the application’s performance in terms of time consumption.
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After building and evaluating the model’s confidence, the authors proceed to build a
simple application to diagnose the preeclampsia signs of the built model. Several illustrated
images of the preeclampsia sign diagnosis application have been shown in Figures 5–8.

 

Figure 5. The main screen of the application.

 

Figure 6. Screen for entering demographic information.

137



Information 2023, 14, 104

 

Figure 7. Screen for entering subclinical test results.

 
Figure 8. Diagnostic results screen and recommendations.
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5. Conclusions

This paper has proposed the FKG-Pairs3-based preeclampsia signs in the diagnosis by
combining regimens in traditional medicine and the information in medical records. The
proposed model has been performed as a case study on the diagnosis of preeclampsia signs
in gestational women based on the clinical and subclinical data collected from pregnant
women attending routine antenatal care. The proposed model has been tested for an
accuracy performance of 89.74% with the implementation designed scenario, in which the
systematic random sampling method and the splitting method with training set (70%) and
testing set (30%).

With complete information input data sets, the accuracy of the preeclampsia sign
diagnosis system will continue to improve. However, the limitation of the proposed model
is identified with two drawbacks in extreme cases as follows:

• Firstly, with large input data sets, the computation time is high based on the traditional
data set splitting method (e.g., in scenario 1).

• Secondly, with too-small training data sets, the accuracy is low (e.g., in scenario 2 and
scenario 3).

To expand this research work, the investigation will continue to study the approach of
using the FKG-Pairs3 proposed model combined with Q-learning techniques in reinforce-
ment learning to improve the accuracy of a system in extreme cases in which the training
data set is much smaller than the testing data set (e.g., in cases scenarios 2 and 3 where the
training sets only 10% and 5%, respectively).

6. Patents

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.
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Abstract: The semantic segmentation of 3D medical image stacks enables accurate volumetric
reconstructions, computer-aided diagnostics and follow-up treatment planning. In this work, we
present a novel variant of the Unet model, called the NUMSnet, that transmits pixel neighborhood
features across scans through nested layers to achieve accurate multi-class semantic segmentation
with minimal training data. We analyzed the semantic segmentation performance of the NUMSnet
model in comparison with several Unet model variants in the segmentation of 3–7 regions of interest
using only 5–10% of images for training per Lung-CT and Heart-CT volumetric image stack. The
proposed NUMSnet model achieves up to 20% improvement in segmentation recall, with 2–9%
improvement in Dice scores for Lung-CT stacks and 2.5–16% improvement in Dice scores for Heart-
CT stacks when compared to the Unet++ model. The NUMSnet model needs to be trained with
ordered images around the central scan of each volumetric stack. The propagation of image feature
information from the six nested layers of the Unet++ model are found to have better computation and
segmentation performance than the propagation of fewer hidden layers or all ten up-sampling layers
in a Unet++ model. The NUMSnet model achieves comparable segmentation performance to previous
works while being trained on as few as 5–10% of the images from 3D stacks. In addition, transfer
learning allows faster convergence of the NUMSnet model for multi-class semantic segmentation
from pathology in Lung-CT images to cardiac segmentation in Heart-CT stacks. Thus, the proposed
model can standardize multi-class semantic segmentation for a variety of volumetric image stacks
with a minimal training dataset. This can significantly reduce the cost, time and inter-observer
variability associated with computer-aided detection and treatment.

Keywords: semantic segmentation; multi-class; 3D image stacks; region of interest; Dice score; Unet;
CT images; overfitting

1. Introduction

Deep learning approaches for vision-based detection have seen significant break-
throughs over the past five years [1]. From autonomous driving to virtual reality and
from facial detection for phone unlocking to home security camera systems, several deep-
learning-based object detection and segmentation models have been developed to date to
keep up with speed, precision and hardware requirements [2]. For semantic segmentation
tasks, where objects or regions of interest (ROIs) are enclosed within a closed polygon,
the Unet model [3] and its variants have been a widely preferred method owing to the
relatively low computational complexity and high adaptability across use cases due to
short- and long-range skip connections. This allows the Unet and variant models to be well
trained from only a few hundred images, as opposed to requiring thousands of annotated
images for deep learning models with dense connections, which are preferred in the real-
time use cases of autonomous driving and augmented reality [4,5]. However, segmenting
multiple ROIs with varying sizes and shapes in continuous image stacks or videos can be
challenging due to the biases introduced by foreground regions with varying sizes and
can result in jittery detection across subsequent frames. In this work, we present a novel
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Unet model variant, called the NUMSnet, that is capable of accurately segmenting multiple
shapes and sizes of ROIs and transferring information across subsequent images in a stack
to provide superior segmentation performance while training with only a fraction of the
training images when compared to state-of-the art approaches.

Deep learning approaches for medical imaging use cases have a unique requirement
to maintain high recall for pathological detection: i.e., the over-detection of pathology
is acceptable since a specialist will always look at the report and confirm, but detection
failures must be minimized. To enhance the quality of detection and enable explainability,
semantic segmentation and explainable classification models are preferred across medical
domain use cases to identify pathology in patients and also localize the pathological
sites. For example, the recent work in [6] demonstrated the significance of segmentation
for detecting Leukemia using bloodstream images. A review of several deep learning
approaches/models developed to detect pathology is presented in [7] for the use case of
detecting monkeypox from RGB images. Another work in [8] reviewed recent advances in
deep learning models for chest disease detection using X-ray images. Unet and its variant
models continue to be the preferred method in the medical imaging domain owing to the
fewer parameters involved when compared to dense-connection models. The Unet and
variant models have thus far been applied to a variety of medical imaging use cases, from
dental segmentation in [9] and human skin classification in [10] to polyp segmentation
tasks in colonoscopy images in [11]. This demonstrates the versatility of the Unet and
variant models in the medical imaging domain, thereby necessitating the development of
advanced Unet model versions.

The medical imaging domain often requires the semantic segmentation of multiple
ROIs, also known as multi-class segmentation, from 3D medical image stacks of CT or MRI
images for diagnostics and pre-procedural planning tasks. Performing such segmentation
manually can be both costly and time-intensive [12]. Additionally, the manual segmenta-
tion process suffers from inter-observer variability, where two medical practitioners may
disagree on the exact locations of the ROIs [12]. The challenge associated with training
deep learning models using annotated images isolated across patient stacks is that 3D
medical image stacks often have variable pixel resolutions and vary in additive image noise
owing to imaging and storage conditions. This can impede the scalability of automated
deep learning solutions to other patient image stacks acquired under different imaging
settings [13]. Several previous works on medical image semantic segmentation performed
binary segmentation for each image [3,14] or two-stage multi-class segmentation for image
stacks [15] to overcome such image-level variations. In this work, we present a novel single-
stage variant of the Unet model, as shown in Figure 1, that propagates image features
across scans, which results in faster network convergence with few training images for
volumetric medical image stacks. The proposed NUMSnet model requires training images
to be in order, but not necessarily subsequent images in a sequence. The training set is
shown in Figure 1 for the image stack [T0 to Tn]. Once trained, the test set of images can be
ordered or randomized per stack, as represented by sets Sm and Sm′ in Figure 1.

The novel multi-class semantic segmentation NUMSnet model presented in this paper
achieves multi-class semantic segmentation with only 10% of frames per 3D image stack. It
is noteworthy that the proposed model has significantly less computational complexity than
the 3D Unet model and its variants that perform 3D convolutions across image stacks but
has a comparable volumetric segmentation performance [16]. We investigated three main
analytical questions regarding the multi-class semantic segmentation of 3D medical image
stacks. (1) Does the transmission of image features from some of the layers of a Unet variant
model enhance the semantic segmentation performance for multi-class segmentation tasks?
(2) Is the order of training and test frames significant to segmentation tasks for 3D volumes?
(3) How many layers should be optimally propagated to ensure model optimality while
working with sparse training data? The key contributions of this work are as follows:
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1. A novel multi-scan semantic segmentation model that propagates feature-level infor-
mation from a few nested layers across ordered scans to enable feature learning from
as few as 10% of annotated images per 3D medical image stack.

2. The transfer learning performance analysis of the proposed model compared to
existing Unet variants on multiple CT image stacks from Lung-CT (thoracic region)
scans to Heart-CT regions. The NUMSnet model achieves up to 20% improvement in
segmentation recall and 2–16% improvement in Dice scores for multi-class semantic
segmentation across image stacks.

3. The identification of a minimal number of optimally located training images per
volumetric stack for multi-class semantic segmentation.

4. The identification of the optimal number of layers that can be transmitted across scans
to prevent model over- or underfitting for the segmentation of up to seven ROIs with
variables shapes and sizes.

Figure 1. An example of the proposed NUMSnet system on a Lung-CT image stack. The training
images (T) are selected in order or in sequence, while test images (S) can be random or in sequence.

This paper is organized as follows. The existing literature and related works are
reviewed in Section 2. The datasets under analysis and the NUMSnet model are explained
in Section 3. The experiments and results are shown in Section 4. A discussion regarding
the limiting conditions is presented in Section 5, and the final conclusions are presented in
Section 6.

2. Related Work

Deep learning models have been highly popular for computer-aided detection in the
past decade and preferred over the signal processing methods in [17,18]. This is primarily
due to the ability of deep learning models to automatically learn features that are indicative
of an ROI if a significant volume of annotated data is provided. Signal processing models,
on the other hand, rely on hand-generated features that may lead to faulty detections due
to the high variability across imaging modalities and storage and transmission formats.
The prior work in [19] demonstrates a two-path CNN model that can take filtered Lung-CT
images followed by fuzzy c-means clustering to segment the opacity in each Lung-CT
image. While such feature-based works have low data dependence, the models often do
not scale across datasets.

Unet models with the default 2D architecture have been used extensively for medical
image segmentation applications since 2015 [3]. While other deep learning models, such as
MaskRCNN [20] and fully convolutional neural networks (FCNs) [21], are more popular
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in non-medical domains, Unet and its variants have continued to be the preferred deep
learning model for medical image segmentation tasks. The 2D Unet model and its variants
apply long and short skip connections that ensure that the number of trainable parameters
is low, thereby leading to quicker training with fewer images. Over the last few years,
several Unet model variants have been applied for dense volumetric scan segmentation. In
instances where high volumes of annotated data are readily available, such as anatomical
regions in Heart-CT scans in [15], multi-stage Unet variants have been introduced. The
works in [15,22] trained two separate Unet models with separate loss functions, with
the objective of zooming into the foreground regions in the first network, followed by
separating the foreground into various ROIs. Other variants of multi-2D-Unet models, such
as the work in [23], implement trained Unet models at different resolutions, i.e., one Unet
model trained on images with dimensions of [256 × 256], another trained at a resolution of
[512 × 512] and so on for lung segmentation. However, these methods require significantly
high volumes of annotated data to train multiple Unet models.

Other recent works in [13,24] applied variations to the 2D Unet model to achieve the
segmentation of opacity and lung regions in chest CT scans to aid in COVID-19 detection.
Additionally, in [25], Inf-net and Semi-Inf net models are presented that can perform binary
segmentation for lung opacity detection with Dice scores in the range of 0.74–0.76. Most
of these existing methods require several hundred annotated training images across scans
and patients and can efficiently be trained for binary semantic segmentation tasks.

Some of the well-known 2D Unet model variants used in the medical imaging domain
are the wide Unet (wU-net) and Nested Unet (Unet++) [14]. While a typical Unet model
with a depth of 5 will have filter kernel widths of [32, 64, 128, 256, 512] at model depths
of 1 through 5, the wUnet model has filter kernel widths of [35, 70, 140, 280, 560] at
model depths of 1 through 5. Thus, wUnet has more parameters and thus can enhance
segmentation performance when compared to Unet. The Unet++ model, on the other
hand, generates dense connections with nested up-sampling layers to further enhance the
performance of semantic segmentation, as presented in [26,27]. In this work, we propose
an enhanced Unet++ architecture called the NUMSnet, where the features from the nested
up-sampling layers are transmitted across scans for increased attention to smaller regions
of interest (such as opacity in Lung-CT images). This layer propagation across scans enables
multi-class semantic segmentation with only 10% of annotated images per 3D volume stack.

Another major family of Unet models that have been applied to volumetric image
segmentation tasks in the medical imaging domain is the 3D Unet model variants, as
shown in [16]. These models have significantly higher computational complexity when
compared to the 2D Unet model and its variants due to the 3D convolutions in each layer,
but they achieve superior segmentation performance for pathological sites in 3D image
stacks. Another work in [28] combined the Resnet backbone with the 3D Unet model to
improve the resolution of segmentation for small ROIs in Lung-CT images. As additional
variants of the 3D Unet model, the encoder architecture can be modified with the VGG19,
3D ResNet152 or DenseNet201 backbone to achieve 80–98% Dice scores for multi-class
semantic segmentation tasks [16]. However, these 3D Unet models are difficult to train
and may need around 1700 epochs and 1.8 h to train on single-GPU systems. Besides 3D
Unets, another recent work that implemented a 3D fully convolutional neural network
model for volumetric segmentation is shown in [29], where MRI stacks are segmented
with about an 86% Dice score with over 48 h of training time. It is noteworthy that 3D
Unet models have been preferred for cardiac CT segmentation so far, with the work in [15]
applying a two-stage 3D Unet model for voxel-level segmentation of the heart. Another
work in [30] implemented a deeply supervised 3D Unet model with a multi-branch residual
network and deep feature fusion along with focal loss to achieve 86–96% Dice scores for the
semantic segmentation of small and large ROIs. Our work aimed to perform 2D semantic
segmentation and achieve a comparable segmentation performance to 3D model variants
with under 10 min of training time on a single GPU system.
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3. Materials and Methods

3.1. Data: Lung-CT and Heart-CT Stacks

In this work, we analyze two kinds of single-plane volumetric CT image stacks. In the
first category, Lung-CT image stacks were collected from the Italian Society of Medical and
Interventional Radiology. The first Lung-CT (Lung-med) volumetric stack [31] contains
829 images from a single 3D image stack with [512 × 512]-dimension images. Out of these
829 scans, 373 are annotated. The second dataset (Lung-rad) contains 9 axial volume chest
CT scans with 39–418 images per stack. All Lung-CT images are annotated for 3 ROIs,
namely, ground-glass opacity (GGO), consolidations and the lung region as the foreground
and can be downloaded from [32].

In the second category, the Heart-CT image dataset is from the MICCAI 2017 Multi-
Modality Whole Heart Segmentation (MM-WHS) challenge [15,30], from which we selected
the first 10 training CT image stacks of the heart region for analysis. This dataset contains
coronal volumetric stacks with 116–358 images per volume and multi-class semantic seg-
mentation annotations for up to 7 heart-specific ROIs represented by label-pixel values of
[205, 420, 500, 550, 600, 820, 850], respectively. These pixel regions represent the left ventri-
cle blood cavity (LV), myocardium of the left ventricle (Myo), right ventricle blood cavity
(RV), left atrium blood cavity (LA), right atrium blood cavity (RA), ascending aorta (AA)
and pulmonary artery (PA), respectively. It is noteworthy that for the Heart-CT dataset,
only 10–15% of the images per stack contain annotated ROIs. Thus, when selecting the
ordered training dataset, it was ensured that at least 50% of the training samples contained
annotations. Some examples of the Lung-CT and Heart-CT images and their respective
annotations are shown in Figure 2.

Figure 2. Examples of multi-class segmentation datasets used in this work. Row 1: Lung-med dataset.
Row 2: Lung-rad dataset. For Row 1 and Row 2 the regional color coding is as follows. Blue: lung
region; Red: GGO; Green: consolidation regions. Row 3: Heart-CT dataset. The ROIs are color-coded
as follows. Red plane: label pixels 205 and 420. Blue plane: label pixels 500 and 550. Green plane:
label pixels 600, 820 and 850.
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3.2. Image Data Pre-Processing

Each image from the data stacks under analysis here was pre-processed for the Unet
and variant models. First, each input image was resized to [256 × 256 × 1] for ease of
processing. Next, the resized image I was re-scaled to the range [0,1], thereby resulting
in image I′, using min–max normalization, as shown in (1), where minI and maxI refer
to the minimum and maximum pixel values in I. This is followed by the generation of
multi-dimensional label vectors [256 × 256 × d] per image, where d represents the number
of classes that each pixel can be classified into. These label vectors are generated as binary
images for each class. For example, the Heart-CT stack images contain up to 7 different
annotated regions depicted by a certain pixel value pixi, ∀i = [1:7]. Thus, the ground-truth
label vector (G′) generated per image contains 7 planes, where each plane G′

i is generated
as a binary mask from the label masks (G), as shown in (2). This process defines the ground-
truth G’ such that the Unet decision-making function ( fi) proceeds to analyze whether each
pixel belongs to a particular class i or not. Finally, the output is a d-dimensional binary
image (P), where each image plane (Pi) is thresholded at a pixel value τ = 0.5, as shown
in (3).

I′ = I − minI
maxI − minI

. (1)

∀i ∈ [1 : d], G′
i = [G == pixi], (2)

and, Pi = [ fi(I′) > τ]. (3)

Once the datasets are pre-processed, the next step is to separate the data stacks into
training, validation and test sets. There are two ways in which the training/validation/test
datasets are sampled for each volume stack. The first is the random sampling method,
where 10% of the scans per volume are randomly selected in ascending order for training,
1% of the remaining images are randomly selected for validation, and all remaining images
are used for testing. The second is the sequential sampling method, which starts from a
reference scan in the volumetric stack. This reference scan can either be the first or middle
scan in the stack. We sample 10% of the total number of images in the stack starting from
the reference scan in sequence, and these become the training set of images. From the
remaining images, 1% can be randomly selected for validation, while all remaining scans
are test set images in sequence. Using these methods, we generated training sets with the
sizes [82 × 256 × 256 × 1], [84 × 256 × 256 × 1] and [363 × 256 × 256 × 1] for the Lung-med,
Lung-rad and Heart-CT stacks, respectively.

3.3. Unet Model Variant Model Implementation

To date, Unet and its variants, such as wUnet and Unet++ models, have been applied to
improve foreground segmentation precision for small ROIs, as shown in [14,30]. One major
difference between the Unet++ and Unet models [3] is the presence of nested layers that
combine the convolved and pooled layers with the up-sampling (transposed convolutional)
layers at the same level. Thus, for a Unet with a depth of 4, a Unet++ model results in 6
additional nested layers, shown as [X(1,2), X(1,3) X(1,4), X(2,2), X(2,3), X(3,2)] in Figure 3.
These additional layers increase the signal strength at each depth level and amplify the
segmentation decisions around boundary regions of ROIs [14]. We selected an optimal
depth of 4 for our analysis of Unet and variant models based on the prior work in [33], which
showed superior semantic segmentation at a depth of 4 when compared to shallower Unet
models. Additionally, depth-4 Unet and variant models are preferred for an appropriate
comparative analysis with previous works.
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Figure 3. Example of a Unet++ model with a depth of 4. The global feature layer is X(5,1), and the
depth is associated with the distance of each layer from the global feature layer. The blue layers
correspond to convolved and pooled layers. The green layers correspond to merged transposed
convolutions, followed by convolution outcomes from the same depth layers. The 6 additional nested
color-coded layers (purple, cyan, red, gray, orange, dark and blue, corresponding to [X(1,2), X(1,3),
X(1,4), X(2,2), X(2,3), X(3,2)], respectively) contain spatial pixel neighborhood information, that can be
transmitted temporally across images/scans for an increased accuracy of semantic segmentation.

A Unet model comprises encoder and decoder layers, where the encoder layers
perform convolution followed by a max-pooling operation, while the decoder layers
perform concatenation followed by up-sampling and convolution operations. Starting with
the input image I′, the encoder layers are [X(1,1), X(2,1), X(3,1), X(4,1)], respectively. The
output of each encoder layer results in an image with half the input dimensions but with
additional feature planes. For example, the input to layer X(1,1) is an image with the size
[256 × 256 × 1], while the output has dimensions of [128 × 128 × 32] due to convolution
with a [3 × 3] kernel with a width of 32 and max-pooling with a [2 × 2] kernel. Thus, at
the final level (X(5,1)), a global feature vector with the size [16 × 16 × 512] is generated. At
this point, the decoder layers [X(4,2), X(3,3), X(2,4), X(1,5)] convert the dense features back
to the segmented image planes. The decoder layers concatenate the up-sampled features
with the encoder layer outputs from the same level to promote a better distinction between
foreground pixels (scaled value of 1) versus background pixels (scaled value of 0). For
example, at depth level 1 from the global feature layer, the output from layer X(4,1) is
concatenated with the up-sampled image from layer (5,1), resulting in image features with
dimensions of [32 × 32 × 512] that are then subjected to convolutions in layer (4,2), thereby
resulting in image features with dimensions of [32 × 32 × 256].

The Unet++ model, on the other hand, was developed to enhance the boundary
regions for relatively small ROIs by introducing nested decoder layers at each depth level,
as shown in Figure 3. The 6 additional nested/hidden decoder layers that are introduced in
the skip connection pathway are [X(1,2), X(1,3), X(1,4), X(2,2), X(2,3), X(3,2)] in Figure 3. The
2D weights for each decoder layer X in image n with encoder layer index i′ and decoder
layer index j′ (i.e., xn(i′, j′)) are generated using Equation (4), as shown in [14]. Here, ζ(.)
refers to the convolution operation, υ(.) refers to the up-sampling operation and [.] refers
to concatenation.

xn(i′, j′) =
{

ζ(xn(i′ − 1, j′)) j′ = 1

ζ([[xn(i′, k′)j′−1
k′=1], υ(xn(i′ + 1, j′ − 1)]) j′ > 1.

(4)
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For example, the decoder layer outcome xn(4, 2) = ζ[[xn(4, 1), υ(5, 1)]] using Equa-
tion (4). This ensures additional skip connections that lead to improved region boundary
detection.

The primary parameters that need to be tuned to ensure the optimal training of the
Unet or variant model are the following: data augmentation methods, batch size, loss
function, learning rate and reported metric per epoch. In this work, we applied image
data augmentation using the tensorflow keras library by augmenting images randomly
to ensure a rotation range, width shift range, height shift range and shear range of 0.2
and a zoom range of [0.8, 1] per image. Since the training dataset has few samples, we
implemented a training batch size of 5 for the Lung-CT images and a batch size of 10 for
Heart-CT images. It is noteworthy that the batch size should scale with the number of
detection classes; thus, we used additional images per batch for the Heart-CT stack. For all
Unet and variant models, we used the Adam optimizer with a learning rate of 10−4. Finally,
the metrics under analysis are shown in (5)–(8) based on the work in [34]. For each image
with l pixels and d image planes for the ground-truth (G′

i ), the intersection over union (IoU)
or Jaccard metric in (5) represents the average fraction of correctly identified ROI pixels.
Precision (Pr) in (6) and recall (Re) in (7) denote the average fraction of correctly detected
ROI pixels per predicted image and per ground-truth image plane, respectively. The Dice
coefficient in (8) further amplifies the fraction of correctly classified foreground pixels. The
Dice coefficient can also be derived from the precision (Pri) and recall (Rei) metrics per
image plane, as shown in (8).

IoU =
d

∑
i=1

l

∑
j=1

|Pi(j) ∩ G′
i(j)|

Pi ∪ G′
i

, (5)

Pr =
d

∑
i=1

l

∑
j=1

Pi(j) ∩ G′
i(j)

Pi(j)
, (6)

Re =
d

∑
i=1

l

∑
j=1

Pi(j) ∩ G′
i(j)

G′
i(j)

, (7)

Dice =
d

∑
i=1

l

∑
j=1

2 ∗ |Pi(j) ∩ G′
i(j) + 1|

Pi(j) + G′
i(j) + 1

=
d

∑
i=1

2 ∗ Pri ∗ Rei
Pri + Rei

. (8)

The loss functions under analysis are shown in (9)–(11). The Dice coefficient loss
(DL) in (9) is the inverse of the Dice coefficient, so it ensures that the average fraction of
correctly detected foreground regions increases for each epoch. The binary cross-entropy
loss (BCL) in (10) is a standard entropy-based measure that decreases as the predictions
and ground-truth become more alike. Finally, the binary cross-entropy-Dice loss (BDL) in
(11) is a combination of BCL and DL based on the work in [14].

DL = −D, (9)

BCL = −
d

∑
i=1

l

∑
j=1

[Pi(j)log(G′
i(j))], (10)

BDL =
BCL

2
+ DL. (11)

Finally, we analyze the loss function curves per epoch using the deep-supervision
feature from the Unet++ model [14] in Figure 4. Here, we assessed convergence rates for
outputs at each depth level. In Figure 4, we observe that the curves for the convergence of
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outputs from depths 4 and 3 (i.e., layers X(1,5) and the resized output of X(2,4)) are relatively
similar and better than the loss curves at depth 1 (resized output of layer X(4,2)). This
implies that as the transposed convolutions move farther away from the global feature layer
X(5,1), additional local feature-level information gets added to the semantic segmentation
output. Thus, for a well-trained Unet++ model, the initial transposed convolution layers
closer to the global feature layer X(5,1) add less value to the semantic segmentation task
when compared to the layers farther away from it. This variation in loss curves at the
different depth levels, based on the work in [35], demonstrates the importance of the
additional nested up-sampling layers to the final multi-class segmented image.

Figure 4. Example of loss functions per depth layer in Unet++ model using the deep-supervision
feature on the Lung-med training dataset. The resized image outcome from X(4,2) achieves lower
segmentation resolution when compared to the outcome from X(1,5). Thus, nested layers enhance
local boundary-region-specific features for segmentation.

3.4. The NUMSnet Model

While the Unet and variant models are efficient in the 2D segmentation of each
scan, segmenting volume stacks requires further intervention wherein pixel neighborhood
information can be transmitted to the next ordered scan, thereby allowing better resolution
of semantic segmentation while training on few images. The NUMSnet model is a 3D
extension of the Unet++ model, wherein the outcomes of the nested Unet++ layers are
transmitted to subsequent scans. As a first step for an image n, the 2D weights for the
decoder layers are computed using Equation (4). Next, the 2D weights of the nested
layers are transmitted using Equation (12), where the final 3D weight for each hidden
layer (Xn(i′, j′)) is computed by concatenating the weights of the same layer (i′, j′) from
the previous scan, followed by the convolution operation. For the first image in each stack,
the hidden layers are concatenated with themselves, followed by convolution, as shown in
Equation (12).

Xn(i′, j′) =
{

ζ([xn(i′, j′), xn(i′, j′)]) n = 1
ζ([xn−1(i′, j′), xn(i′, j′)]) n > 1, ∀i <= j.

(12)

From the implementation perspective, for the NUMSnet model, we applied batch
normalization to encoder layers only and dropout at layers X(4,1) and X(5,1) only (GitHub
code available at https://github.com/sohiniroych/NUMSnet, accessed on 12 June 2023).
In addition, the widths of kernels per depth layer for the NUMSnet model are [5, 70,
140, 280, 560], similar to those of the wUnet model. This process of transmitting and
concatenating layer-specific features with those of the subsequent ordered images generates
finer boundaries for ROIs. This variation in the Unet++ model to generate the NUMSnet
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model is shown in Figure 5. The additional layers generated in this process are shown in
the model diagrams in Appendix A Figure A1.

Figure 5. The proposed NUMSnet, which propagates the image features from the 6 nested layers
across scans. The outcome of each nested layer is concatenated and convolved with the equivalent
layer of the subsequent ordered image in the 3D stack.

The NUMSnet model has two key hyper-parameters. First, the relative location of the
training scans in the 3D volume stack impacts the training phase. Since layer information
is transmitted to the subsequent ordered scans, selecting training scans that contain ROIs
in several subsequent scans is important. We analyze this sensitivity to the training data
location in a 3D stack by varying the location of the reference training frame from the
beginning to the middle of the stack, followed by selecting the subsequent or randomly
selected frames in order. For example, this ensures that in the Heart-CT stacks, if an aortic
region is detected for the first time in a scan, the ROI first increases and then decreases in
size as training progresses. The second hyper-parameter for the NUMSnet model is the
number of decoder layers that can be transmitted across scans. If all 10 decoder layers
[X(1,2), X(1,3), X(1,4), X(1,5), X(2,2), X(2,3), X(2,4), X(3,2), X(3,3), X(4,2)] in Figure 3 are
transmitted to the subsequent scans, this would incur high computational complexity
(14.5 million trainable parameters). Thus, we analyze the segmentation performance using
this NUMSnet variant (called NUMS-all), where features from all 10 up-sampling layers
are transmitted. The primary reason for transmitting only up-sampling layers is that up-
sampling generates image feature expansion based on pixel neighborhood estimates. Thus,
information added during the up-sampling process further aids in the foreground versus
background decision-making process per image plane.

4. Experiments and Results

In this work, we analyze the performance of the Unet model and its variants for the
multi-class semantic segmentation of volumetric scans using only 10% of the annotated
data for training. To analyze the importance of nested layer propagation across subsequent
images, we performed five sets of experiments. First, we comparatively analyze the
segmentation performance per ROI for the NUMSnet when compared to the Unet [3] model
and its variants [14] for the Lung-CT image stacks. Second, we analyze the sensitivity of the
NUMSnet model to the relative position and selection of training data for randomly ordered
sampling versus sequential sampling from the beginning or middle of the volumetric stack.
Third, we analyze the semantic segmentation performance of the NUMSnet model when
only nested layer features are transmitted versus when all up-sampling layer features are
transmitted (NUMS-all). Fourth, we assessed the semantic segmentation capability of the
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NUMSnet in comparison with Unet variants for the transfer learning of weights and biases
from segmenting three ROIs (in Lung-CT stacks) to segmenting seven ROIs (in Heart-CT
stacks). Finally, we performed an ablation study, in which we assessed the importance of
each hidden layer to the superior semantic segmentation performance of the NUMSnet
model. We compared the segmentation performance when the selected hidden layers per
level are propagated. We also comparatively analyze the performance of the NUMSnet
with respect to state-of-the-art models that were trained on higher volumes of data.

It is noteworthy that while the training samples are ordered, the test samples may
be out of order, starting at the other end of the stack or starting at a new volumetric
stack. In the testing phase, the nested layer outputs and model layer weights and biases
are collected per test image and passed to the next image. Once the NUMSnet model is
optimally trained, the out-of-order scans in the test stacks do not significantly impact the
segmentation outcomes. All other parameters, including data augmentation, loss functions,
batch size, compiler, learning rate and reported metrics, are kept similar to those of the
Unet model and variants to realize the segmentation enhancements per epoch.

An additional consideration for segmenting medical images is that relative variations in
pixel neighborhoods are significantly less than those in regular camera-acquired images, such
as those used for autonomous driving or satellite imagery [4]. Thus, feature-level propagation
across scans through the NUMSnet model enhances the decision making around boundary
regions, especially for smaller ROIs. However, the additional nested layer transmission
introduces a higher number of parameters in the Unet variant models, which leads to a slower
training time and higher GPU memory requirements for model training. In this work, we
used Nvidia RTX 3070 with 8GB of GPU RAM on an Ubuntu Laptop and tensorflow/keras
libraries to train and test the volume segmentation performance. In instances where models
have a high number of parameters, keeping a small batch size of 5–10 ensures optimal
model training. We collectively analyzed the segmentation performance along with the
computational complexities incurred by each model to demonstrate the ease of use and
generalization to new datasets and use cases.

4.1. Multi-Class Segmentation Performance of Unet Variants

For any multi-class semantic segmentation model, it is important to assess the com-
putational complexity introduced by additional layers in terms of the number of trainable
parameters jointly with the semantic segmentation performance. Table 1 shows the vari-
ations in the number of trainable and non-trainable parameters for all 2D Unet variants
analyzed in this work. Here, we found that Unet is the fastest model, while NUMS-all has
almost twice the number of trainable parameters when compared to Unet. In addition, the
NUMSnet model is preferable to NUMS-all with regard to computational complexity, as it
has less of a chance of overfitting [36]. Since the NUMSnet model performs 2D operations
in encoder and decoder layers, we comparatively analyzed its performance with the 2D
model variants only.

Table 1. Variations in the number of parameters in Unet model variants.

Model Total Params Trainable Params Non-Trainable Params

Unet 7,767,523 7,763,555 3968
wUnet 9,290,998 9,286,658 4340
Unet++ 9,045,507 9,043,587 1920

NUMSnet 11,713,943 11,711,843 2100
NUMS-all 14,526,368 14,524,268 2100

It is noteworthy that the base 3D Unet model, as shown in [16,28], has 19,069,955
total parameters, which increases rapidly with modifications to the encoder–decoder block
backbones. Next, we analyze the multi-class semantic segmentation performance of the
NUMSnet and Unet model variants. In Table 2, the average semantic segmentation across
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five randomly ordered training dataset selections of the three ROIs in the Lung-med dataset
is presented. Here, we observe that the performance of lung segmentation is the best and
similar across all Unet variants, with a Dice score ranging between 92 and 96%. This is
intuitive since the lung is the largest region that is annotated in most images. The Unet and
variant models preferentially extract this ROI with minimal training data. We also observe
that for the segmentation of opacity (GGO) and consolidation (Con) regions, the NUMSnet
model has the best combination of Pr and Re, thereby resulting in 2–8% higher Dice scores
than all Unet variants. The Unet++ model, on the other hand, achieves superior overall
Pr metrics but low Re metrics, which leads to lower Dice and IoU scores. Some examples
of Unet and variant model segmentation are shown in Figure 6. Here, we observe that
for small as well as large ROIs, the NUMSnet has better segmentation resolution when
compared to all other Unet variants.

Figure 6. Example of Lung-CT segmentation by the Unet variant models. Row 1 represents poor
segmentation results. Row 2 represent good segmentation results since the major ROI is the lung.
The color coding is as follows. Blue: lung regions; Red: GGO regions; Green: consolidation regions;
Magenta: over-detection of consolidation regions.

For all Unet variants under analysis, the number of epochs is 60, and the optimal
loss function is the BDL with the Dice coefficient as the reported metric. We observe poor
convergence with the DL loss function since the large lung regions are weighted more by
the DL, thereby resulting in the high accuracy of lung segmentation but poor performance
for GGO and consolidation segmentation.

Next, we analyze the segmentation performance on smaller Lung-CT stacks from ra-
diopedia (Lung-rad), and the results are shown in Table 3. For the lung region segmentation,
we have similar observations on this dataset to those on the Lung-med dataset. All Unet
variants models achieve 95–96% Dice scores for the segmentation of the large lung region.
However, for segmenting GGO and Con regions, the NUMSnet model achieves higher
Re and up to 10% improvement in Dice coefficients over the other Unet variant models.
Examples of good and bad selected segmentation on this dataset are shown in Figure 7.
Here, we observe that the lung region is well detected by all Unet model variants, but Unet
misclassifies the GGO as consol (in row 2, red regions are predicted as green), while the
NUMSnet under-predicts the GGO regions. The reason for the lower performance for the
Lung-rad stacks when compared to the Lung-med stack is that the number of frames in the
sequence for training per stack is lower when compared to the Lung-med stack. Thus, for
denser volumetric stacks, the NUMSnet has better multi-class segmentation performance
when compared to shorter stacks with few images.
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Table 2. Comparative performance of Unet and variant models on the Lung-med stack averaged over
5 runs. The best values for each metric are highlighted.

Task Pr Re IoU Dice

NUMSnet, Con 82.06 65.86 57.43 61.25
NUMSnet, GGO 89.86 85.87 78.76 81.29
NUMSnet, Lung 97.35 94.96 92.94 95.9

Unet, Con 91.91 32.48 30.43 33.84
Unet, GGO 90.56 73.69 68.26 70.92
Unet, Lung 91.66 94.31 86.59 92.2

wUnet, Con 64.02 77.85 53.42 53.66
wUnet, GGO 81.92 95.29 78.33 80.43
wUnet, Lung 99.27 91.47 90.94 94.35

Unet++, Con 71.67 57.14 42.21 45.36
Unet++, GGO 92.87 71.54 68.06 71.18
Unet++, Lung 99.61 90.41 90.17 93.89

Table 3. Averaged performance of Unet and variant models on 10 Lung-rad CT stacks across 5 runs.
The best values for each metric are highlighted.

Task Pr Re IoU Dice

NUMSnet, Con 68.22 79.1 57.08 59.42
NUMSnet, GGO 85.1 91.86 80.31 83.0
NUMSnet, Lung 99.36 93.29 92.76 95.22

Unet, Con 64.2 49.93 31.2 31.28
Unet, GGO 92.33 79.11 75.06 77.99
Unet, Lung 98.52 93.75 92.41 95.11

wUnet, Con 83.31 47.68 42.18 46.26
wUnet, GGO 89.41 86.61 79.4 81.99
wUnet, Lung 97.15 95.71 93.22 95.8

Unet++, Con 71.51 62.08 47.27 50.48
Unet++, GGO 94.14 71.92 69.83 73.03
Unet++, Lung 98.36 94.3 92.84 95.4

Figure 7. Example of Lung-CT segmentation by Unet variant models. Row 1: Best-case detection.
Row 2: Worst-case detection. The color coding is as follows. Blue: lung regions; Red: GGO regions;
Green: consolidation regions.

154



Information 2023, 14, 333

4.2. Sensitivity to Training Data

In this experiment, we modified the training dataset sequence and observed the seg-
mentation performance variations. We comparatively analyze the performance for three sets
of variations in training and test sequences. The first set comprised a training dataset that
started with the first scan in the image stack as the reference image, followed by 10% of
sequential images extracted per stack for training. All remaining images in the sequence were
considered test samples, while 1% of the images from the test samples were withheld for
hyper-parameterization as a validation dataset. This is called the [Initial, Seq] set. The second
set comprised training images that started with the middle scan per 3D stack. Then, 10%
of the subsequent scans were randomly selected while maintaining the order of images to
generate the training sequence. All remaining images were used as test data, with 1% of the
images randomly removed as the validation dataset. This is called the [Mid, Rand] set. The
third set started with training images from the middle scan per stack, and 10% of the frames
in a sequence were selected as training data. All remaining images were test data, with 1%
of the images separated for validation tasks. This is called the [Mid, Seq] set. The variations
in the multi-class semantic segmentation of the Lung-med and Lung-rad scans for all three
training/test stacks are shown in Table 4.

Table 4. Comparative performance of NUMSnet on Lung-CT stacks when varying the training
dataset, averaged over 5 runs. The best values for each metric are highlighted.

Task Pr Re IoU Dice

Data: Lung-med

Initial, Seq, Con 82.5 35.05 26.1 29.34
Initial, Seq, GGO 85.78 69.13 59.30 62.21
Initial, Seq, Lung 88.85 93.45 82.98 89.90

Mid, Rand, Con 60.38 96.52 57.97 57.97
Mid, Rand, GGO 70.15 99.46 69.75 69.75
Mid Rand, Lung 99.27 89.19 88.62 92.94

Mid, Seq, Con 60.37 97.32 58.91 58.91
Mid, Seq, GGO 70.15 93.17 68.01 68.01
Mid, Seq, Lung 98.73 89.28 88.27 92.59

Data: 10 Lung-rad Stacks

Initial, Seq, Con 87.74 44.24 38.94 43.13
Initial, Seq, GGO 92.23 75.69 72.46 75.19
Initial, Seq, Lung 95.44 96.74 92.87 95.79

Mid, Rand, Con 62.05 99.1 60.91 60.91
Mid, Rand, GGO 72.22 99.0 70.22 70.22
Mid Rand, Lung 99.79 91.74 91.6 94.57

Mid, Seq, Con 59.15 98.51 59.49 59.76
Mid, Seq, GGO 82.22 99.0 80.22 80.22
Mid, Seq, Lung 99.0 90.74 90.6 93.8

Here, we observe that the IoU and Dice scores for segmentation using the [Initial, Seq]
training/test stack are consistently worse than those obtained using training sets that begin
in the middle of each volume stack. This is intuitive since the initial layers often contain
no annotations or minimal ROIs, being a precursor to the intended ROIs. Thus, using the
[Initial, Seq] training dataset, the NUMSnet model does not learn enough to discern the
small ROIs in this stack. We also observe that the performance of the [Mid, Rand] and
[Mid, Seq] training stacks are similar to that of the Lung-med stack. In addition, we observe
a 10% improvement in Pr and D for [Mid, Seq] over [Mid, Rand] for GGO segmentation
only. Thus, selecting training images in the middle of 3D stacks with randomly ordered
selection is important for training the multi-class NUMSnet model.
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4.3. Performance Analysis for NUMSnet Variants

In the third experiment, we analyze the number of up-sampling layers that should
be propagated to subsequent training scans for optimal multi-class segmentation tasks
per volume. In Table 5, we report the segmentation performance of NUMS-all for Lung-
CT stacks, where all 10 up-sampling layers are transmitted. Comparing the Dice scores
for the Lung-med stack for NUMS-all with those of NUMSnet in Table 2, we observe
that NUMS-all improves segmentation Re for the smaller ROIs of GGO and Con, but the
overall segmentation performance across all ROIs remains comparable. We make similar
observations for the 10 Lung-rad stacks when comparing Table 5 and Table 3. Thus, given
that NUMS-all has higher computational complexity without a significant improvement in
the overall segmentation performance, the NUMSnet model can be considered superior to
NUMS-all while training with limited images.

Table 5. Performance of Lung-CT segmentation with NUMS-all model averaged across 5 runs.

Data Lung-Med

Task Pr Re IoU Dice

NUMS-all, Con 66.81 72.63 53.08 54.86
NUMS-all, GGO 83.11 91.06 78.09 81.02
NUMS-all, Lung 99.67 90.93 90.74 94.64

Data 10 Lung-rad Stacks

NUMS-all, Con 64.14 96.04 63.05 63.06
NUMS-all, GGO 86.97 92.34 81.82 84.34
NUMS-all, Lung 99.63 92.89 92.56 95.1

4.4. Transfer Learning for Heart-CT Images

In this experiment, we analyze the transfer learning capabilities of pre-trained Unet
and variant models from the Lung-CT stack to the Heart-CT stack. The trained models
from the Lung-med image stack were saved, all layers before the final layer were unfrozen,
and the final layer dimensions were altered to be retrained on the Heart-CT dataset. The
only difference in the Unet and variant models between the Lung-CT and the Heart-CT
image sets is the final number of classes in the last layer X(1,5). Re-using the weights
and biases of all other layers provides a warm start to the model and aids in faster con-
vergence while training with randomly selected ordered images. For this experiment,
the performance of each Unet variant in segmenting regions with the label pixel values
[205, 420, 500, 550, 600, 820, 850] are represented by the model name and [pix205, pix420,
pix500, pix550, pix600, pix820, pix850], respectively, in Table 6. Here, we observe that the
NUMSnet has superior segmentation performance for the smaller ROIs with the pixel
values [500, 550, 600, 820, 850], respectively, with 2–16% improvements in Dice scores for
these regions over the Unet++ model. Thus, the NUMSnet model aids in transfer learning
across anatomical image stacks and across label types and yields higher precision when
segmenting smaller ROIs.

Table 6. Averaged performance of the Unet and variant models on 10 Heart-CT stacks across 5 runs.
The best values for each metric are highlighted.

Task Pr Re IoU Dice

NUMSnet, pix205 96.2 78.83 75.53 78.01
NUMSnet, pix420 96.89 86.2 83.42 85.04
NUMSnet, pix500 94.84 98.16 93.29 95
NUMSnet, pix550 96.61 86.23 83.4 85.8
NUMSnet, pix600 94.95 80.26 76.03 79.28
NUMSnet, pix820 98.42 96.84 95.55 96.88
NUMSnet, pix850 90.41 81.55 73.03 75.05
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Table 6. Cont.

Task Pr Re IoU Dice

Unet, pix205 95.01 79.17 75.48 79.3
Unet, pix420 95.54 88.39 85.31 87.78
Unet, pix500 94.8 95.08 91.06 93.34
Unet, pix550 92.27 82.5 76.44 80.49
Unet, pix600 90.09 83.1 74.84 79.23
Unet, pix820 97.53 80.95 79.43 81.93
Unet, pix850 88.1 46.81 44.01 46.81

wUnet, pix205 95.93 75.18 72.37 76.02
wUnet, pix420 94.64 91.75 87.37 89.96
wUnet, pix500 94.42 95.05 90.73 93.11
wUnet, pix550 89.27 64.52 57.46 61.54
wUnet, pix600 90.93 80.84 72.93 77.22
wUnet, pix820 95.3 88.77 84.91 87.99
wUnet, pix850 84.37 69.65 60.09 62.74

Unet++, pix205 96.11 67.93 65.01 68.82
Unet++, pix420 94.69 88.92 84.59 86.91
Unet++, pix500 97.06 92.21 89.93 92.46
Unet++, pix550 88.46 73.42 63.44 67.36
Unet++, pix600 94.21 73.17 69.7 73.09
Unet++, pix820 96.07 88.15 85.06 86.96
Unet++, pix850 65.06 99.95 65.07 65.07

Some examples of good and average segmentation using the Unet model variants
on the Heart-CT stack are shown in Figure 8. Here, we observe significant variations for
smaller ROIs across the Unet model variants.

Figure 8. Examples of Heart-CT segmentation by the Unet variant models. Row 1: Good segmenta-
tion. Row 2: Average segmentation. In Row 2, we observe variations in the small ROI across Unet
variants shown by the white arrow.

4.5. Ablation Study and Comparative Assessment

Finally, we analyze the importance of each hidden layer to the superior performance
of the NUMSnet model when compared to the other Unet variant models. In this ablation
study, we compared the performance of NUMSnet, with 11,713,943 total parameters, with
its versions when only one hidden layer from the first level from the global feature layer
(i.e., layer X(3,2) in Figure 3) is transmitted. This NUMSnet version is called NUMSnetl1,
and it has 11,349,628 parameters, of which 11,347,528 are trainable. Next, we generated
a NUMSnet version in which the first two levels from the global feature level, i.e., layers
(X(2,2), X(2,3) and X(3,2) from Figure 3), are transmitted. This is called NUMSnetl12,
and it has 11,614,508 parameters, of which 11,612,408 are trainable. The comparative
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performance of NUMSnetl1 and NUMSnetl12 on the Lung-CT and Heart-CT datasets is
shown in Table 7. Here, we observe that for the Lung-med stack, Re improves as more
hidden layers are transmitted. However, for the shorter Lung-rad stacks, there is a small
significant improvement in segmentation performance when increasing the number of
transmitted layers from NUMSnetl1 to NUMSnetl12. We also observe that for the Heart-
CT stacks, transmitting more hidden layers significantly enhances Re and the overall
segmentation performance. Thus, by comparing NUMSnetl1 and NUMSnetl12 in Table 7
with the NUMSnet performance in Table 2, Table 3 and Table 6 for the Lung-CT and Heart-
CT stacks, respectively, we conclude that the transmission of all six hidden layers in the
NUMSnet model ensures superior segmentation performance across datasets.

Table 7. Comparative multi-class segmentation performance of the NUMSnet model variants.

Data Lung-Med

Task Pr Re IoU Dice

NUMSnetl1, Con 70.48 71.34 51.14 53.1
NUMSnetl1, GGO 91.11 80.6 75.62 78.48
NUMSnetl1, Lung 99.61 90.55 90.24 93.99

NUMSnetl12, Con 66.82 86.12 58.86 60.3
NUMSnetl12, GGO 78.56 97.75 77.56 79.8
NUMSnetl12, Lung 98.5 92.61 91.38 94.61

Data 10 Lung-rad Stacks

NUMSnetl1, Con 67.66 75.28 51.86 53.67
NUMSnetl1, GGO 89.67 88.22 80.63 83.38
NUMSnetl1, Lung 99.51 93.16 92.72 95.2

NUMSnetl12, Con 68.42 75.53 53.51 55.35
NUMSnetl12, GGO 88.76 88.95 80.14 82.88
NUMSnetl12, Lung 99.52 93.42 93.0 95.36

Data Heart-CT

NUMSnetl1, pix205 97.38 67.21 65.51 68.85
NUMSnetl1, pix420 94.92 88.71 84.42 86.03
NUMSnetl1, pix500 97.29 94.56 92.34 94.31
NUMSnetl1, pix550 90.03 87.87 78.95 82.43
NUMSnetl1, pix600 90.9 75.95 68.3 71.9
NUMSnetl1, pix820 97.91 87.58 85.82 87.43
NUMSnetl1, pix850 89.96 75.67 68.12 70.17

NUMSnetl12, pix205 96.63 78.18 75.65 78.36
NUMSnetl12, pix420 95.9 83.1 80.24 81.93
NUMSnetl12, pix500 97.44 90.48 88.44 90.33
NUMSnetl12, pix550 94.49 78.9 74.98 77.97
NUMSnetl12, pix600 93.76 76.93 71.15 74.16
NUMSnetl12, pix820 98.52 90.13 88.84 90.19
NUMSnetl12, pix850 89.07 86.02 76.42 78.34

Finally, the comparative performance of the NUMSnet model and previous works that
trained deep learning models on larger training datasets is shown in Table 8. Here, we
assessed the number of training images and training time on standalone GPU machines
as an indicator of computational complexity, along with the segmentation performance or
Dice scores for each output class category i. In addition, the previous works are identified
as 2D vs. 3D based on the nature of convolutions in the implementations.

We observe that the proposed NUMSnet model achieves comparable or improved
semantic segmentation performance across a variety of anatomical CT image stacks with
only a fraction of the training images. This demonstrates the importance of nested layer
transmission for enhanced boundary segmentation, especially for relatively small ROIs.
For the Lung-CT stacks, the work by Voulodimos et al. [21] introduced a few-shot method
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using a Unet backbone for GGO segmentation only, and while this method achieved high
precision and accuracy, it had low recall and Dice scores. In addition, for the same dataset,
the work by Saood et al. [13] used a small fraction of the images for training and achieved
better binary segmentation performance than multi-class segmentation performance. It
is noteworthy that no prior works have bench-marked the segmentation performance for
the Lung-rad image stacks. For the Heart-CT stacks, most works have trained 3D Unet or
3D-segmentation models for voxel-level convolutions and trained on 20 CT stacks while
testing on another 20 stacks for the high precision of segmentation per ROI. Our work is
one of the few implementations of 2D convolutions on dense Heart-CT scans and the only
work that evaluates the Heart-CT stacks in [30].

Table 8. Comparative performance of NUMSnet with respect to previous works.

Method Data
#Training
Images

Metrics Epochs/Training Time

Saood et al. (2D) [13] Lung-med 72 Di = [22.5–60]% 160/25 min
Voulodimos (2D) [21] Lung-med 418 Di = [65–85] %(GGO) ∼210 s

Roychowdhury (2D) [35] Lung-med 40 Di = 64% (GGO) 40/∼70 s
NUMSnet (2D) Lung-med 82 Di = [61–96%] 40/224 s

Payer et al. (3D) [22] Heart-CT 7831 Di = [84–93%] 30,000/3–4 h
Wang et al. (3D) [15] Heart-CT 7831 Di = [64.82–90.44%] 12,800/(Azure cloud)

Ye et al. (3D) [30] Heart-CT 7831 Di = [86–96%] 60,000/∼2–4 h
NUMSnet (Ours) (2D) Heart-CT 363 Di = [75–97%] 60/362 s

In Table 8, it is noteworthy that for Heart-CT segmentation, we applied a pre-trained
model on Lung-CT and fine-tuned it on 4.6% of all hHeart-CT images to obtain similar
segmentation performance. Additionally, we observe that the 3D-segmentation models
yield stable Dice scores in a narrower range of 84–96% for Heart-CT data while taking
several thousand epochs and several hours to train when compared to our work, which has
a wider range of Dice scores but comparable performance for smaller ROIs to that in [15,22]
and a training time of seconds. In addition, the work in [15] implemented 3D convolutions
in a virtual machine in Azure cloud, so the training time is not comparable to those of
standalone systems.

5. Discussion

The proposed NUMSnet model aims to reproduce the segmentation performance of
3D encoder–decoder models with 2D encoder–decoder equivalents, with the intention to
scale the method across medical imaging modalities and scan densities. The current imple-
mentation is a NUMSnet model with a depth of 4, based on all the previous comparative
works in Table 8, but the depth can be increased in future works based on the growing
complexity, overlap and number of ROIs in medical image use cases. Additionally, the
NUMSnet only uses 2D concatenations and convolution operations to ensure low addi-
tional computational complexity. However, for future works and specific complex use cases
where the training time and computational complexity are not bottlenecks, some of the
following three enhancements can be made. First, additional skip connections between
scans can be added to combine up-sampled outcomes from previous scans to the current
scans based on the underlying complexities of segmentation. Such skip connections will
still have less training time and complexity when compared to 3D operations. Second, the
encoder and decoder layers can be further enhanced with Resnet, Densenet and Retinanet
backbones for segmentation enhancements in future works. Third, a combination of loss
functions can be used at the block and scan levels for optimal parameterization.

Most existing deep learning models for multi-class semantic segmentation tasks have
been developed at the image level to scale across imaging modalities [37]. However, for
3D medical image stacks, segmentation at a stack level minimizes irregularities related to
varying imaging conditions, thereby resulting in superior region boundaries for small and
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large ROIs. It is noteworthy that one key limiting condition for all semantic segmentation
models is when the medical scans include written text on them. These irregularities can
interfere with the segmentation of the outermost ROIs. In such situations, an overall mask
can be generated and centered around all ROI regions and superimposed on the original
image before passing it to the Unet and variant models, thus eliminating the written text
region. Another alternative for reliable end-to-end segmentation in these cases, if enough
annotated images are available, is to train two Unet or variant models to first detect the
foreground region in the first Unet variant model, followed by segmenting the ROIs in the
second Unet model, as shown in [15].

It is noteworthy that the single-stage Unet model and its variants are easily trainable
with few annotated images, and they typically do not overfit. However, for high-resolution
images, such as whole-slide images (WSI), where the dimensions of the medical images
are a few thousand pixels per side, resizing such images to smaller dimensions to fit a
Unet model or its variants may result in poor segmentation results [38]. In such scenarios,
splitting the images into smaller patches, followed by training the Unet model and its
variants, can improve the segmentation performance, as shown in [21].

A key consideration for multi-class segmentation using Unet variant models is the disparity
between the ROI sizes, which can significantly impact the training stages when only a few
annotated training images are available. For example, in the Lung-CT image stacks, the lung
regions are larger than the GGO and consolidation areas, and because of this, using few training
images and Dice coefficient loss over hundreds of epochs can bias the model to segment the
lung region only. This occurs because the relative variation in pixel neighborhoods for larger
ROIs is smaller than in pixel neighborhoods for smaller ROIs. In such situations, it is crucial to
ensure that more training images are selected that have the smaller ROIs annotated and that the
Unet variant models are run for about 40–60 epochs with region-sensitive loss functions.

Finally, for transfer learning applications, full image network weights transfer better
when compared to Unet model variants trained on image patches, such as in [21]. This aligns
with the works in [39,40], which demonstrate the ability of pre-trained models from one
medical image modality to scale to other medical image stacks. Future efforts can be directed
toward the transfer learning capabilities of the proposed NUMSnet model on WSI and patch
image sets.

6. Conclusions

In this work, we present a novel NUMSnet model, which is a variation of the Unet++
model specifically for the multi-class semantic segmentation of 3D medical image stacks
using only 10% of the images per stack, selected randomly in an ordered manner around
the central scan of the 3D stacks. The novelty of this model lies in the temporal transmission
of spatial pixel and neighborhood feature information across scans through nested layers.
The proposed model enhances Dice scores over Unet++ and other Unet model variants
by 2–9% in Lung-CT stacks and 2–16% in Heart-CT stacks. In addition, the NUMSnet is
the only model that applies 2D convolutions for Heart-CT stack segmentation for the [30]
dataset.

Additionally, in this work, we analyzed a variety of sampling methods to optimally
select the minimal 10% training set. We conclude that the random selection of ordered
scans is the optimal mechanism to select a minimal training set. Further, we analyzed the
optimal number of up-sampling layers that should be transmitted for the best semantic
segmentation performance. Here, we conclude that all six nested layers of a Unet++ model
are significant for transmission, while adding additional up-sampling layers for transmis-
sion increases the overall computational complexity of the NUMSnet model while not
significantly contributing to the segmentation performance for sparse training image sets.

Finally, we assessed the transfer learning capabilities of the NUMSnet model after it was
pre-trained on Lung-CT stacks and fine-tuned on only 5% of available annotated Heart-CT
images. We conclude that the NUMSnet model aids in transfer learning for similar medical
image modalities, even if the number of classes and ROIs change significantly. Future work
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can be directed toward extending the NUMSnet model to additional medical image modalities,
such as X-rays, OCT, MRI stacks and RGB videos from dental to colonoscopy use cases.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Model Graphs

The proposed NUMSnet model layers and interconnections are shown in Figure A1.
The layer interconnections from the NUMS-all model are shown in Figure A2.

Figure A1. The proposed NUMSnet model. The layers highlighted in yellow are the new concatena-
tion layers introduced by NUMSnet. All other layers are from the Unet++ model.
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Figure A2. The NUMS-all model with all up-sampled layer features transmitted. The layers high-
lighted in yellow are the new NUMSnet concatenation layers. The layers highlighted in blue are the ad-
ditional up-sampling layers in the NUMS-all model. All remaining layers are from the Unet++ model.
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Abstract: Diabetes is a chronic disease caused by a persistently high blood sugar level, causing
other chronic diseases, including cardiovascular, kidney, eye, and nerve damage. Prompt detection
plays a vital role in reducing the risk and severity associated with diabetes, and identifying key risk
factors can help individuals become more mindful of their lifestyles. In this study, we conducted
a questionnaire-based survey utilizing standard diabetes risk variables to examine the prevalence
of diabetes in Bangladesh. To enable prompt detection of diabetes, we compared different machine
learning techniques and proposed an ensemble-based machine learning framework that incorporated
algorithms such as decision tree, random forest, and extreme gradient boost algorithms. In order to
address class imbalance within the dataset, we initially applied the synthetic minority oversampling
technique (SMOTE) and random oversampling (ROS) techniques. We evaluated the performance
of various classifiers, including decision tree (DT), logistic regression (LR), support vector machine
(SVM), gradient boost (GB), extreme gradient boost (XGBoost), random forest (RF), and ensemble
technique (ET), on our diabetes datasets. Our experimental results showed that the ET outperformed
other classifiers; to further enhance its effectiveness, we fine-tuned and evaluated the hyperparameters
of the ET. Using statistical and machine learning techniques, we also ranked features and identified
that age, extreme thirst, and diabetes in the family are significant features that prove instrumental in
the detection of diabetes patients. This method has great potential for clinicians to effectively identify
individuals at risk of diabetes, facilitating timely intervention and care.

Keywords: diabetes mellitus; machine learning; survey; feature selection; feature importance

1. Introduction

Diabetes is a lifelong disease that prevents the body from obtaining energy from food
sources due to a deficiency insulin, an influential factor in enhancing the cells’ ability to
absorb glucose and produce energy [1]. There are three primary types of diabetes: type
1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and gestational diabetes
mellitus (GDM). In this study, we focused on T2DM, as it accounts for approximately 90%
of all occurrences of diabetes [2]: insulin resistance, in which the body does not respond
adequately to insulin, is a defining characteristic. T2DM is diagnosed most frequently in
elderly adults; however, it is becoming increasingly prevalent in children, teenagers, and
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young people due to rising rates of poor diet, physical inactivity, and obesity. Several risk
factors, including diabetes in the family, excess weight, an unhealthy diet, a lack of exercise,
increasing age, and higher blood pressure, are associated with T2DM.

Diabetes is the underlying cause of several associated diseases, including kidney
disease, tuberculosis, cardiovascular disease, and eye management [3]. Patients with
diabetes are susceptible to amputation, blindness, stroke, heart disease, kidney failure,
and premature death [4]. According to the International Diabetes Federation (IDF), there
were approximately 537 million diabetic patients worldwide—1 in 10 people—of whom
81% resided in low- and middle-income nations in 2021 [5]. In 2021, the IDF counted
6.7 million diabetes-related fatalities worldwide. In addition, the global cost of diabetes-
related medical expenses in 2019 was USD 760 billion; this amount is set to grow to USD
825 billion by 2030 and to USD 845 billion by 2045 [6]. Chronic diseases induced by diabetes
have imposed a financial burden on every nation [7].

The IDF estimates that in Bangladesh there are 7.1 million diabetics and approximately
the same number of undiagnosed cases; this number is anticipated to double by 2025. In
addition, the cost of diabetes imposes a significant burden on natural expenditures in low-
and middle-income countries [8].

Our research focused on T2DM-type diabetes. Although this type of diabetes cannot be
cured, most people can still avoid developing it. Early identification and lifestyle changes
can minimize the chance of developing diabetes. T2DM risk can be accurately identified
by doctors when treating an individual patient; however, clinicians encounter significant
obstacles when screening thousands of patients with high-risk illnesses. In this situation,
analytical methods are required for T2DM screening in the population.

Machine learning (ML) methods have been used to solve several problems recently,
such as diagnosing cancer [9], COVID-19 [10], autism [11,12], meningitis, diabetes, and
heart disease. Recent research suggests that ML can summarize patient characteristics
and predict T2DM risk [13–17]. The authors of Haque and Alharbi [18] investigated
18 features of T2DM in Bangladesh. The principal contribution of this study was that the
authors considered demographic and clinical data together and achieved the best output of
83.8% accuracy and 70% F1-score, using the LR model; however, the performance could
be enhanced by including more features related to people’s eating habits, lifestyle, and
clinical diagnosis. In another work, Tasin et al. [19] specifically investigated females in
Bangladesh. They developed a diabetes detection system with 81% accuracy using the
XGBoost model with the ADASYN oversampling technique. They used an explainable AI
approach with the LIME and Shapley additive explanations (SHAP) frameworks to provide
feature weights relating to diabetes. They also deployed a website and an Android mobile
application to detect diabetes in females. The authors only considered eight features in their
detection system; therefore, the question of reliability arose. Nipa et al. [8] examined three
datasets: the Sylhet Diabetes Hospital dataset (SDHD) of 520 samples; the pre-diagnosis
diabetes dataset (PDD) of 558 samples; and the combined SDHD and PDD dataset (MDD).
They tested 32 classifiers, where extra tree (ET), light gradient boosting machine (LGBM),
stacking, multi-layer perceptron (MLP), histogram gradient boosting classifier (HGBC),
RF, bagging, and gradient boosting classifier (GBC) presented more stable outputs. ET
provided the best result of 97.11% accuracy for the SDHD dataset; MLP yielded the highest
accuracy of 96.42%; and LGBM and HGBC showed the maximum output of 94.9% accuracy,
separately. They applied the SHAP framework to find the features more responsible for
diabetes. The authors of Kaur and Kumari [20] employed five ML models to identify a
patient as diabetic or non-diabetic: linear SVM, radial bias SVM, k-NN, artificial neural
network (ANN), and multi-factor dimensionality reduction (MDR). They obtained superior
results with linear SVM and k-NN, where linear SVM displayed an accuracy of 89% and
an F1-score of 87%, and k-NN exhibited an accuracy of 88% and an F1-score of 88%.
Before applying the ML models, they filtered significant features using the Boruta wrapper
feature selection method. In this research, the authors investigated the error analysis of the
detection system. Zheng et al. [21] analysed the T2DM-related features and experimented
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with various ML models to identify diabetic patients. The authors observed that SVM,
J48, and RF presented a more stable output than the other ML models such as LR, NB,
and k-NN.

We found many research works on the Pima Indians Diabetes Database (PIDD)
dataset [22–31]. The dataset comprises 768 female patients, of whom 268 have diabetes,
and 500 do not. The dataset has eight input features and one target variable. Here,
Yahyaoui et al. [27], Abdulhadi and Al-Mousa [28], Tigga and Garg [30], Pranto et al. [31],
and Ali et al. [23] proposed RF classifiers, while Saha et al. [22] and Wei et al. [25] pre-
ferred neural network-based models to obtain the best performance. On the other hand,
Birjais et al. [26], Battineni et al. [29], and Howlader et al. [24] achieved the maximum
output by utilizing gradient boosting (GB), LR, and the generalized additive model using
LOESS (GAMLOESS) models, respectively.

The authors of Sneha and Gangil [32] attempted to employ a predictive analysis in
the early detection of diabetes mellitus, ensuring that all significant features were utilized.
With an accuracy of 82.03%, naive Bayes (NB) was the most accurate of the five ML
algorithms utilized in the study. The highest specificities of RF and DT were 98% and
98.2%, respectively. The authors of [33] utilized LR, classification [34], and regression trees
(CART), ANN, SVM, RF, and gradient boosting machine (GBM) classifiers to determine
the likelihood an individual would develop T2DM. The GBM model achieved the best
among those considered. In addition, they identified the significance of factors based
on each classifier and the Shapley additive explanations approach and demonstrated the
relevant features such as sweet affinity, urine glucose, age, heart rate, creatinine, waist
circumference, uric acid, pulse pressure, insulin, and hypertension.

Le et al. [35] presented a ML model to predict early onset diabetes in patients and
employed grey wolf optimization (GWO) and adaptive particle swam optimization (APSO)
to optimize the number of significant input attributes. Using their proposed strategy, their
computational results indicated a higher degree of accuracy (96% for GWO-MLP and 97%
for APGWO-MLP). Next, Islam et al. [36] utilized two statistical analyses to determine the
diabetes risk factors. They used diabetes information from the 2011 Bangladesh Demo-
graphic and Health Survey. Six ML-based classifiers were used to predict and categorize
diabetes. Eleven of the fifteen examined factors were found to be associated with diabetes,
and the bagged CART model had the highest accuracy and area under the curve at 94.3%
and 0.6, respectively. Using ML techniques, Haq et al. [37] developed a diagnostic system
for diabetes. Furthermore, a filtering approach based on the DT algorithm was used to se-
lect the most critical features. Experiments showed that the proposed method for choosing
features improved the accuracy of the classifying predictive models.

Shuja et al. [38] created a model for diabetes prognosis based on data mining cate-
gorization approaches using a dataset from the Kashmir Valley Clinical Institute. After
performing SMOTE for data oversampling, the balanced dataset was fed to five ML algo-
rithms: bagging, SVM, MLP, simple logistic, and DT. DT had the best accuracy of 94.7%,
precision of 0.947, and sensitivity of 0.947. Then, Chatrati et al. [39] suggested developing
a smart domestic system using five different supervised ML approaches to monitor a pa-
tient’s glucose and blood pressure. The accuracy of all algorithms from SVM was 75%, from
k-NN was 74%, from DT was 66.1%, LR was 74.5%, and DA was 74.7%. In another work,
Islam et al. [40] identified risk variables for T2DM and offered an ML method to predict
it. Next, five ML methods predicted T2DM. For 2009–2010, these researchers indicated
six potential risks: age, learning, marital status, SBP, smoking, and BMI. For 2011–2012,
they identified nine threat issues: age, race, martial status, SBP, DBP, direct cholesterol,
bodily activity, smoking, and BMI. The RF-based classifier achieved a correctness of 95.9%,
a sensitivity of 95.7%, an F-score of 95.3%, and an AUC of 0.946.

A significant number of diabetic patients in Bangladesh have gone undetected. Fur-
thermore, inadequate healthcare equipment is incapable of accommodating for or treating
an extensive number of diabetic patients, and the expense of diabetes carries an immense
strain on the citizens of the country. Unfortunately, we have discovered very little research

167



Information 2023, 14, 376

on the inhabitants of Bangladesh. Therefore, we must establish an automated system for
the early diagnosis of T2DM. We have made the following contributions in this regard:

• We created a dataset of 508 study populations for diabetes.
• We applied and compared state-of-the-art clinically applicable ML models to conduct

a benchmark analysis, aiming to contribute to further research in the field.
• We proposed a framework that utilizes ML techniques to detect diabetic patients.
• We ranked and identified significant features associated with diabetes mellitus.

2. Materials and Methods

The workflow of this study is depicted in Figure 1.

Survey Data Preprocessing

Missing value handling

Scaling

Feature engineering

Learning
phase

Applying
machine
learning

Statistical
Analysis

DT

LR

SVM

XGB

GB

RF

ET

Significant
Features

Diabetic positive

Diabetic negative

Feature ranking

Figure 1. Workflow of this study.

The main dataset was gathered through surveys with closed-ended questions and
direct interviews, also called in-person interviews. All respondents were from Bangladesh.
In our study, we used the most commonly used variables (for preparing questionnaires)
from recent articles on diabetes prediction models [33,35,41]. The primary dataset was
converted into a secondary dataset in order to perform several mathematical operations.
We performed an exploratory data analysis on our proposed Bangladeshi T2DM dataset to
find out previously unknown information. Moreover, the dataset was processed through
various stages, including missing value handling, data encoding, feature scaling, feature
engineering, etc. Symmetrical analysis checked the amount of skewness in the target class.
Next, the dataset was segmented into training and testing sets based on the target class
ratio, and the training set exhibited the same level of skewness as before. Initially, seven
ML models were trained and evaluated with this preliminary training set. SMOTE and
ROS were applied to the training set to resolve the skewness property in the target class
and improve the results of the ML model. Furthermore, seven ML models were applied
to the datasets, balanced using SMOTE and ROS techniques. A statistical method known
as the chi-squared test was also applied in order to identify any associative features, and
several ML models were employed to detect any significant feature sets.

2.1. Data Collection and Description

In order to perform this research, we constructed a dataset from the perspective of the
Bangladeshi population. Based on an analysis of the relevant studies, 33 questionnaires
were made to obtain first-hand information. There were 508 respondents. The primary
dataset was acquired by means of both online surveys and in-person interviews. Fur-
thermore, we also collected the respective information about the participants’ locations.
Therefore, it is seen that the study covered all 64 districts of Bangladesh with no selection
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bias. This dataset was turned into secondary data so that it could be used to build a model
for ML. Each property is organized and briefly explained in Table 1, displaying the possible
values for each attribute.

Table 1. Dataset description.

ID Attribute Name Feature Description
Count (N = 508), n (%) or
Avg., Min, Max, Median

1 Age Identifying age groups

1–18: 244 (48.03%)
19–40: 95 (18.7%)
40–65: 99 (19.49%)
65 or more: 70 (13.78%)

2 Gender Gender of the respondent Male: 249 (49.01%)
Female: 259 (50.99 %)

3 Education Level Level of education can be no education,
primary, secondary or higher

Primary: 52 (10.36%)
Secondary: 95 (18.7%)
Higher: 305 (60.03%)
No education: 51 (10.03%)

4 Diabetes in the family Respondent’s ancestors or parents suffered
from the disease or not

Yes: 298 (58.66%)
No: 210 (41.34%)

5 Occupation Respondent can be unemployed, employed or
find job

Looking work: 56 (11.02%)
Not working: 189 (37.20%)
Working: 260 (51.18%)

6 Household monthly income Household monthly income of the respondent

Avg.: 30,477
Max: 300,000
Min: 1000
Median: 30,000

7 Wealth index Wealth index can be low, middle or upper class
Poor: 46 (0.09%)
Middle: 406 (79.91%)
Rich: 58 (11%)

8 Place of residence Place of residence indicates in which area the
respondent usually lives

Urban: 233 (45.86%)
Rural: 276 (54.14%)

9 Walk/ Run/ Physical exercise How much jogging or walking the
respondent did

None: 43 (8.46%)
Less half: 90 (17.71%)
More half: 151 (29.72%)
One hour or More: 224 (44.09%)

10 BMI Calculated from Height and Weight

Avg.: 23.2
Max: 58.44
Min: 12
Median: 23.12

11 Smoking Whether the respondent smokes or not Yes: 53 (10.44%)
No: 455 (89.56%)

12 Alcohol consumption Whether or not the respondent drinks alcohol Yes: 22 (4.33%)
No: 486 (95.67%)

13 Hours of sleep Total hour of sleep each day

Avg.: 7.77
Max: 12
Min: 1
Median: 8

14 Regular intake of medicine
(Except insulin) Regular medication use, excluding insulin Yes: 233 (45.86%)

No: 275 (54.14%)

15 Junk food consumption Prevalence of junk food consumption Yes: 194 (38.18%)
No: 314 (61.82%)
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Table 1. Cont.

ID Attribute Name Feature Description
Count (N = 508), n (%) or
Avg., Min, Max, Median

16 Stress Stress level of respondent

Not at all: 66 (13%)
Sometimes: 329 (64.76%)
Often: 60 (11.8%)
Always: 55 (10.82%)

17 Blood pressure level Average level of blood pressure
High: 83 (16.33%)
Normal: 383 (75.4%)
Low: 43 (8.26%)

18 Hypertension Whether or not the respondent has
hypertension

Yes: 269 (52.95%)
No: 239 (47.05%)

19 Frequency of urination Frequency of urination each day Not much: 360 (70.86%)
Quite much: 148 (29.14%)

20 Extreme thirst Whether or not the respondent is
extremely thirsty

Yes: 253 (49.8%)
No: 255 (50.2%)

21 Sudden weight loss Whether the respondent ever noticed sudden
weight loss

Yes: 110 (21.65%)
No: 334 (65.74%)
May be: 64 (12.6%)

22 Weakness Whether the respondent feels more vulnerable
Yes: 225 (44.29%)
No: 187 (36.81%)
May be: 96 (18.9%)

23 More appetite Whether the respondent feels more hungry
Yes: 151 (29.72%)
No: 250 (49.21%)
May be: 106 (20.86%)

24 Irritability Whether the respondent feels irritability Yes: 250 (49.2%)
No: 258 (50.8%)

25 Delayed healing Whether the respondent notices delayed
healing of the wound

Yes: 213 (41.92%)
No: 295 (58.08%)

26 Muscle stiffness Whether the respondent notices muscle
stiffness of their body

Yes: 234 (46.06%)
No: 274 (53.94%)

27 Partial paralysis. Partial paralysis of any part of the body is
noticed or not

Yes: 69 (13.58%)
No: 396 (77.95%)
May be: 33 (8.46%)

28 Hair loss Whether the respondent notices gradually
losing hair or not

Yes: 231 (45.47%)
No: 203 (39.76%)
May be: 70 (14.76%)

29 Other diseases Whether the respondent has other
serious diseases

Yes: 260 (51.18%)
No: 248 (48.82%)

30 Number of dependent
family members Total number of dependent family members

Avg.: 3.43
Max: 15
Min: 0
Median: 3

31 Living house type Respondent home can be rental or owned Owned: 409 (80.51%)
Rented: 99 (19.49%)

32 Anxiety Whether the respondent has extreme anxiety
or not

Yes: 293 (57.67%)
No: 215 (42.33%)

33 Diabetes (output factor) Diabetes, non-diabetes Yes: 275 (54.14%)
No: 233 (45.86%)
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2.2. Explanatory Data Analysis

Exploratory data analysis was conducted on our dataset in an attempt to reveal buried
information. This dataset comprised 508 samples, and the output variable contained two
distinct categories: Diabetes (affected with diabetes) and non-diabetes (not affected with
diabetes). A property of imbalance was observed by analysing the distribution of output
classes. There were 275 (54.14%) observations belonging to the majority class named
diabetes, and the rest belonged to the minority class, non-diabetes. The maximum age of
the individuals was 78 years, with a minimum of 18 years, and a median of 41 years. A total
of 49.01% were men and 50.99% were women in our dataset. Two hundred and fifty-three
individuals suffered from extreme thirst, while 148 had a high frequency of urination.
A total of 576.7% of the population suffered from anxiety, whereas 51.8% suffered from
other diseases.

The number of people with diabetes who had a family history of the disease was
significantly higher than the number of those without a family history of diabetes. Diabetes
affected 223 individuals whose ancestors or parents had the condition, but only 52 individu-
als whose ancestors or parents did not have the disease. Figure 2 represents the correlation
between the features. We found no significant correlation between the features. Therefore,
we did not remove any characteristics from the dataset. Figure 3 depicts the association be-
tween the category of the output variable non-diabetes and the walk/run/physical exercise
variable, indicating that a person has a higher likelihood of falling into the category of non-
diabetes if they are physically active for at least one hour. We also saw that most diabetic
observations involved higher blood pressure levels compared to non-diabetic observations.

Figure 2. Heatmap between each of the features, representing the correlations between them.
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Figure 3. Relation between the output variable (non-diabetes) and the walk/run/physically ac-
tive variable.

2.3. Data Preprocessing

We used the mean instead of the missing values for age and monthly household
income found in our dataset. The BMI attribute was derived from the height and weight
attributes. To scale the dataset, we also employed the standard scalar technique. The most
important characteristic was determined using the recursive feature elimination technique.
We rectified the class disparity using the SMOTE and ROS techniques.

2.4. Data Balancing Technique

In particular, when working with medical datasets, class imbalance is a prominent
issue. This issue arises when instances are not distributed uniformly throughout the classes.
As a result, the classifications of the classifiers become skewed, and the minority class is
ignored. This problem can be resolved through either oversampling or undersampling. We
utilized two oversampling techniques: the SMOTE and the ROS technique.

SMOTE is a method of oversampling in which the data points of minority classes are
oversampled in order to balance the dataset [42]. It generates synthetic samples from minor-
ity classes and prevents duplication of samples, unlike standard oversampling algorithms.
It randomly selects examples of the minority class, identifies their k nearest minority class
neighbours, and then selects one of the neighbours [43].

On the other hand, ROS is a technique for balancing an unbalanced dataset prior to
feeding it to ML classifiers in order to improve the performance and eliminate bias towards
the majority class of the classifiers. Typically, it substantially increases the size of the dataset.
It is a non-heuristic strategy that achieves data balancing by duplicating or replicating
minority class samples at random [44].

2.5. Feature Transformation

The standard scalar is a process for scaling characteristics that removes the mean
of every feature and normalizes its variance to one. It offers many benefits, including
being smooth, bidirectional, swift, and highly scalable. The standard scalar’s equation is
presented below:
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X̂i =
Xi − X̄

σ
(1)

where the standard scalar is represented as X̂i, each observation as Xi, the mean as X̄, and
the standard deviation as σ [45].

2.6. Feature Selection

Feature selection is the primary data dimension reduction procedure. It increases the
accuracy of the classifier’s predictions by identifying a collection of attributes that strongly
contribute to the target class. It shortens the procedure and reduces the cost of computation.
We used the recursive feature elimination (RFE) technique in our work. It is an iterative
method for selecting features based on the model’s accuracy. In each iteration, it calculates
the ranking score metric and eliminates low-ranking characteristics. Until the required
number of attributes has been reached, the recursive operation continues [46].

2.7. Statistical Methods Identifying the Most Significant and Associative Diabetes Features

The chi-square test employs the p value to determine the significance of a dependent
variable-related characteristic. H0 is a “null hypothesis”, denoting that the target variable
and categorical feature have nothing in common. H1 is an alternative hypothesis that says
there is a strong link between the categorical feature and target variable. If the p value is
greater than 0.05, the null hypothesis cannot be rejected because there is no connection
between the target variable and categorical features. If the p value is less than 0.05, the
null hypothesis is rejected as there is evidence of a connection between the categorical
characteristics and the target variable. All of these features are then used in the next step of
the ML pipeline [47]. The equation for χ̃2 is given below:

χ2 =
n

∑
k=1

(Ok − Ek)
2

Ek
(2)

where the observed frequencies is denoted as Ok, the expected frequencies as Ek, and the
number of samples as n [46].

2.8. Machine Learning Model

In our work, we applied multiple ML algorithms to predict diabetes, including DT,
LR, SVM, GBs, XGBs, RF, and our custom ETs.

• DT is a white box concept that has an effective learning component. Numerous leaf
nodes, multiple internal nodes, and a central root node constitute DT. Each leaf node
is labelled according to its class and linked to the root of the tree via internal nodes. A
DT’s root node serves as its beginning point, and the route from this node to its leaf
nodes produces the classification rules [48].

• LR is an excellent method for predicting the probability of a result in a variety of
classification situations. Commonly, the LR model is used when people can make
predictions about health or illness. The LR algorithm predicts the probability of the
target category dependent variable by applying the training examples to a logistic
sigmoid activation function. In LR, the target attribute’s calculated probability ranges
from 0 to 1. Additionally, a threshold is established to classify an event into a certain
target class. The predicted probability is input into a certain target category based on
the threshold value [49,50].

• The SVM [51,52] is a type of linear generalized classifier that sorts binary data using
supervised learning. It is appropriate for small data collections with minimal outliers.
The goal is to identify a hyperplane that can be used to connect data points. This
hyperplane divides the space into separate domains, each of which holding different
kinds of data. There are numerous hyperplanes from which to choose to split the
two groups of data. Our objective was to find the plane with the largest margin. The
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margin is the distance between the hyperplane and two data points that are closest
to it that represent two subclasses. The SVM attempts to optimize the algorithm by
increasing this margin value, thereby determining the optimal superplane to divide
the dataset into two layers. The nearest data points to the hyperplane are referred to
as support vectors.

• GB is a prominent supervised ML method for disease forecasting since it creates an
ensemble forecasting model using weak classifiers based on a DT. It constructs DTs
using a gradient decent iterative optimization technique to discover the best parameter
values, unlike RF. Then, we use the weighted majority votes from each DT to forecast
the predicted value [53,54].

• XGBoost [55,56] constructs multiple new algorithms and merges them into a single
ensemble model. First, the inaccuracy the of residuals for every observation is deter-
mined based on an established model. Based on previous errors, a revised model is
developed to predict the residuals. The predictions of this model are then incorporated
into the ensemble models. XGBoost is superior to GB algorithms because it finds a
balance between bias and variation.

• RF is an ML algorithm that uses a random subspace approach and bagging ensemble
learning. In the training stage, RF builds several DTs for arbitrarily partitioning data.
For each node in the root DT, a subset of K attributes is chosen at random from
the node’s attribute set. From this subset, an effective attribute is then chosen for
partitioning. Each tree submits a classification as a vote for the other trees, and the RF
selects the classification with the most votes [29,57].

• ET is a procedure for data mining that combines multiple methods into a single
optimal predictive model to improve predictions. This technique provides superior
predictive performance when compared to a single model. We combined DT, XGB, and
RF to benefits from all the algorithms to improve the overall predictive performance.
By uniting the strengths of multiple models, ETs can provide enhanced generalization,
increased robustness, and enhanced precision. It can help reduce individual model
biases and improve model performance overall [58].

2.9. Model Evaluation

Employing accuracy, precision, recall, ROC-AUC, F1-score, geometric mean (GM), and
log-loss, we assessed the ML classifiers. The entire dataset was divided into 10 parts using a
10-fold cross-validation technique. One part was utilized for model testing, while the other
parts were employed for training the model in each fold. The evaluation procedure was
performed 10 times [59]. Accuracy provides an accurate rating of the categorization. It is
calculated as the ratio of the summation of the true positive (TPS) and true negative (TNG)
in the whole population [60]. Precision is the percentage of predicted positives that are
real [61]. Recall measures the models ability to categorize samples inside a class [62]. The
F1-score maintains a balance between the classifier’s precision and recall [63]. The log-loss
computes the ambiguity of the method’s probability by evaluating its exact labels [64].
A lower log-loss number suggests a more accurate forecast. ROC-AUC demonstrates
the link between sensitivity and specificity as well as reflecting the model’s capacity for
discrimination. TPSs are those in which the model correctly recognizes the positive class.
A TNG is a result which the model forecasts the negative class properly. When the model
wrongly predicts the positive class, a false positive (FPS) is generated. False negatives
(FNG) occur when models incorrectly predict the negative class.

Accuracy =
TPS + TNG

TPS + TNG + FPS + FNG
(3)

Precision =
TPS

TPS + FPS
(4)
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Recall =
TPS

FNG + TPS
(5)

FS = 2 ∗ Precision ∗ Recall
Precision + Recall

(6)

Log − loss = − 1
N

N

∑
i=1

(yi, log(p(yi)) + (1 − yi) log(1 − log(p(yi))) (7)

GM =

√
TPS

TPS + FNG
∗ TNG

TNG + FPS
(8)

3. Results and Discussion

We implemented seven ML models: DT, LR, SVM, GB, XGBoost, RF, and custom-
built ET on the diabetes dataset. First, we discuss the experimental setup and hardware
configuration. After this, we present the implementation output of each model with a
comparative analysis. Finally, we provide a detailed discussion of our detection system.

3.1. Experimental Setup

We used the Google Co-laboratory platform, which provides the Jupyter Notebook
Python language editor (version 3.7.13) and offers many built-in Python modules and
packages through which we applied every ML model. In addition, we generated every
plot and figure using ‘matplotlib’ in Python and ‘ggplot2’ within the R language. To
determine the significance of a variable for the DT, GB, XGB, RF, and ET methods, we
used the ‘feature_importance_’ approach; for SVM and LR, we used the ‘coef_’ technique.
Various evaluation indicators were employed to assess their performance. We used a
10-fold cross-validation method on the dataset to produce a more reliable detection system.

3.2. Result Analysis

The experiment outcome for the primary dataset is displayed in Table 2. All classi-
fiers had an accuracy between 80 and 90%. However, ET provided the best results with
an accuracy of 87.60%. Then, GB, XGB, SVM, LR, and DT successively delivered the
best results.

Table 2. Performance analysis of the various classifiers using the main diabetes dataset.

Classifier DT LR SVM XGB GB RF ET

Accuracy 0.813 0.8386 0.8602 0.8661 0.8681 0.874 0.876
Precision 0.8409 0.8459 0.8864 0.8791 0.8741 0.8809 0.8926
Recall 0.8073 0.8582 0.8509 0.8727 0.8836 0.8873 0.8764
ROC-AUC 0.8135 0.8368 0.8611 0.8655 0.8667 0.8728 0.8760
F1-Score 0.8237 0.852 0.8683 0.8759 0.8788 0.8841 0.8844
Geometric Mean 0.8135 0.8365 0.861 0.8655 0.8665 0.8727 0.8759
Log-Loss 6.7404 5.8181 5.0376 4.8247 4.7538 4.5409 4.47

The classification results for the balanced dataset using SMOTE are subsequently
displayed in Table 3. ET had the highest accuracy of 87.45%, precision of 87.05%, recall
of 88%, ROC-AUC of 0.8745, F1-score of 87.52%, GM of 87.45%, and the lowest log-loss
of 4.5218 in this scenario. DT, on the other hand, yielded the lowest results across all
evaluation metrics. Therefore, the results demonstrate that GB, XGB, and SVM produce are
clearly better than DT and LR.

175



Information 2023, 14, 376

Table 3. Performance analysis of the different classifiers using SMOTE.

Classifier DT LR SVM XGB GB RF ET

Accuracy 0.8018 0.8509 0.8655 0.8691 0.8673 0.8636 0.8745
Precision 0.8029 0.8561 0.8708 0.8664 0.8686 0.8676 0.8705
Recall 0.8 0.8436 0.8582 0.8727 0.8655 0.8582 0.88
ROC-AUC 0.8018 0.8509 0.8655 0.8691 0.8673 0.8636 0.8745
F1-Score 0.8015 0.8498 0.8645 0.8696 0.867 0.8629 0.8752
Geometric Mean 0.8018 0.8509 0.8654 0.8691 0.8673 0.8636 0.8745
Log-Loss 7.1432 5.3738 4.8495 4.7184 4.784 4.915 4.5218

Table 4 shows the results of different classifiers in the balanced dataset using the ROS
technique. In this scenario, ET had the best accuracy of 89.27%, precision of 89.71%, recall of
88.73%, ROC-AUC of 0.8927, F1-score of 89.21%, GM of 89.27%, and the lowest log-loss of
3.8665. DT, on the other hand, produced the worst results across all the evaluation metrics.
XGB and RF all produced results that were very close for all evaluation metrics.

Table 4. Performance analysis of the different classifiers using the ROS technique.

Classifier DT LR SVM XGB GB RF ET

Accuracy 0.8473 0.8527 0.8691 0.8873 0.8764 0.8891 0.8927
Precision 0.8577 0.8514 0.883 0.8959 0.8906 0.8934 0.8971
Recall 0.8327 0.8545 0.8509 0.8764 0.8582 0.8836 0.8873
ROC-AUC 0.8473 0.8527 0.8691 0.8873 0.8764 0.8891 0.8927
F1-Score 0.845 0.853 0.8667 0.886 0.8741 0.8885 0.8921
Geometric Mean 0.8471 0.8527 0.8689 0.8872 0.8762 0.8891 0.8927
Log Loss 5.5048 5.3082 4.7184 4.0631 4.4563 3.9976 3.8665

Table 5 depicts the outcomes of several classifiers using 20 significant features. All of
them had an accuracy greater than 80%. ET displayed a maximum accuracy of 88.18%, pre-
cision of 89.77%, ROC-AUC of 0.8818, F1-score of 87.94%, GM of 88.16%, and a minimum
log-loss of 3.8665. On the other hand, SVM generated the highest recall of 87.27% in compar-
ison with other classifiers. However, XGB produced the second-best outcome. Furthermore,
the other classifiers, such as SVM, GB, and RF, also produced excellent outcomes.

Table 5. Classification results (evaluation metrics) with 20 important features.

Classifier DT LR SVM XGB GB RF ET ET (Tuning)

Accuracy 0.8364 0.8545 0.8673 0.8782 0.8655 0.8764 0.8818 0.9927
Precision 0.8627 0.847 0.8633 0.891 0.8764 0.8848 0.8977 1
Recall 0.8 0.8655 0.8727 0.8618 0.8509 0.8655 0.8618 0.9855
ROC-AUC 0.8364 0.8545 0.8673 0.8782 0.8655 0.8764 0.8818 0.9927
F1-Score 0.8302 0.8561 0.868 0.8762 0.8635 0.875 0.8794 0.9927
Geometric Mean 0.8356 0.8545 0.8673 0.878 0.8653 0.8763 0.8816 0.9927
Log-Loss 5.8981 5.2427 4.784 4.3908 4.8495 4.4563 4.2597 0.2621

In addition, we optimized the hypeparameters of the ET algorithm for the highest
performance. ET exhibited 99.27% accuracy, 100% precision, 98.55% recall, 0.9927 ROC-
AUC, 99.27% F1-score, 99.27% GM, and 0.2621 log-loss.

Figure 4 illustrates the associative features with T2DM using −log10(P). The −log10(P)
function changes the p value into a range of positive numbers that can be used to make
good decisions for each feature. If the value of −log10(P) is greater than 1.301, then the
feature is considered significant. Furthermore, a high −log10(P) value indicates a highly
significant feature. The results show that age is the most significant element, whereas
smoking is the least significant component. Other significant factors include extreme thirst,
gender, regular intake of medicine, and having diabetes in the family; while stress and
living house type are less significant.
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Figure 4. Significance of the features, p values with negative 10 base logarithm. The lighter and larger
bubbles represent more significance.

Our research also revealed the significance of features, estimated based on the mean
coefficient value of every classifier employed. We calculated feature significance values for
every method and then normalized them by applying the min–max technique to ensure that
they ranged between 0 and 1. Next, we determined the mean scores for every characteristic.
In Table 6, we examined the significance of the diabetic features and found that age was the
most significant attribute (average coefficient value 0.99). Other crucial elements included
having diabetes in the family, regular intake of medicine, extreme thirst, etc. The least
important characteristics included muscle stiffness, living house type, stress, wealth index,
etc. The ROC curves [65] for each classification method are shown in Figure 5. We observed
that the ET classifier performed better than the rest of the classifiers in the ROC curves.

Table 6. Feature ranking using ML techniques based on coefficient values.

Feature Name DT SVM LR RF XGB GB ET Avg. Rank

Age 1 0.95 1 1 1 1 1 0.99 1

Having diabetes in family 0.26 1 0.94 0.45 0.34 0.23 0.23 0.49 2

Regular intake of medicine 0.08 0.89 0.79 0.48 0.13 0.2 0.19 0.39 3

Extreme thirst 0.08 0.82 0.75 0.39 0.15 0.13 0.19 0.36 4

Occupation 0.06 0.77 0.67 0.17 0.03 0.04 0.06 0.26 5

Frequency of urination 0.04 0.66 0.57 0.06 0.05 0.04 0.04 0.21 6

Walk/ Run/ Physically exercise 0.06 0.62 0.56 0.13 0.01 0.02 0.03 0.21 6
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Table 6. Cont.

Feature Name DT SVM LR RF XGB GB ET Avg. Rank

Weakness 0.06 0.57 0.58 0.11 0.01 0.02 0.05 0.2 7

Smoking 0.05 0.67 0.66 0 0.01 0 0.01 0.2 7

Junk food consumption 0.05 0.64 0.6 0.02 0.03 0 0.01 0.19 8

Partial paralysis 0 0.6 0.58 0.06 0.05 0.02 0.03 0.19 8

Education level 0.08 0.36 0.37 0.22 0.02 0.04 0.09 0.17 9

Hypertension 0.01 0.51 0.53 0.09 0 0.01 0.02 0.17 9

Gender 0.18 0 0 0.48 0.21 0.14 0.21 0.17 9

Hair loss 0.05 0.43 0.38 0.12 0.01 0.01 0.04 0.15 10

Anxiety 0.02 0.43 0.37 0.05 0.01 0 0.02 0.13 11

Wealth index 0.01 0.34 0.33 0.04 0.02 0 0.02 0.11 12

Stress 0.04 0.25 0.25 0.1 0.03 0.02 0.04 0.11 12

Living house type 0.02 0.38 0.34 0 0 0 0 0.11 12

Muscle stiffness 0.04 0.26 0.27 0.06 0.01 0.01 0.05 0.1 13

Figure 5. Comparison of the ROC curves obtained by using the seven ML classifiers.

3.3. Discussion

The detection of diabetes may play a crucial role in the management of this disease.
Initially, we preprocessed the dataset and then normalized the entire dataset using scaling
techniques. We independently applied statistical and ML algorithms to the dataset. In the
statistical study, the most relevant characteristics were found, but in the ML classification
approaches, the patients were divided into diabetic and non-diabetic. We ordered the
characteristics of diabetes according to their significance.

ML techniques are widely accepted as a way to display disease-related characteristics
as distinguishing indicators in predicting disease diagnoses such as diabetes [66–68]. The
potential of ML methods to uncover hidden trends in data by analysing a set of attributes
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might result in a deeper comprehension. The classification results with a high degree
of precision imply a reliable prognosis and ensure practical applicability. The majority
of models studied here are capable of making correct predictions since their accuracy,
precision, recall, ROC-AUC, F1-score, and GM were all greater than 80%. Excellent model
performance was shown by a small log-loss value in binary classification. In comparison to
other models, the ET model reached the highest degree of accuracy.

Our findings imply a number of crucial and relevant characteristics. Depending on
the log-based association, the most significant characteristics include age, extreme thirst,
and gender. In the ML models, the most essential features are age, having diabetes in the
family, regular intake of medicine, and extreme thirst. Our analysis reveals that significant
features are adequate for detecting diabetes, and this will aid in the implementation of
diagnosing diabetes.

We also compared our findings to prior research based on ML techniques, represented
in Table 7. Pranto et al. [31] utilized female diabetic patients from Bangladesh to predict an
accuracy of 81.2%, precision of 80%, and an F1-score of 88%. In another study, Syed and
Khan [69] developed a data-driven predictive model to screen for T2DM in the western
region of Saudi Arabia, achieving 82.1% accuracy, 77.6% precision, 89% recall, 0.867 ROC-
AUC, and 82.9% F1-score. Next, Chou et al. [70] predicted the onset of diabetes using
ML methods, achieving 95.3% accuracy, 92.7% precision, 93.1% recall, 0.991 ROC-AUC,
and 92.9% F1-score. Then, Laila et al. [71] used an ensemble-based ML model to predict
diabetes with an accuracy of 97.11%, precision of 97.1%, recall of 97.1%, and an F1-score of
97.1%. In contrast, our proposed framework outperformed the previous studies, achieving
an accuracy of 99.27%, precision of 100%, ROC-AUC of 0.9927, and an F1-score of 99.27%.
Additionally, we computed a GM of 99.27% and a log-loss of 0.2621. We also determined
the most significant characteristic using both log-based correlations and ML models. It
is important to note that this study was conducted with a limited sample size, restricting
the generalizability of the findings. Nevertheless, this approach shows promise as a
predictive method for real-world applications and could greatly assist practitioners in
prompt diabetes diagnosis.

Table 7. Comparing the performance of the proposed model with existing studies.

Reference Dataset Accuracy Precision Recall
ROC-
AUC

F1-Score
Geometric

Mean
Log-Loss

Pranto et al. [31] PIMA, Kurmitola Hospital, Dhaka 0.8120 0.8 1 0.84 0.88 – –
Syed and Khan [69] Western Region of Saudi Arabia 0.821 0.776 0.89 0.867 0.829 – –
Chou et al. [70] Taipei Municipal Medical Center 0.953 0.927 0.931 0.991 0.929 – –
Laila et al. [71] UCI Repository 0.9711 0.971 0.971 – 0.971 – –
This study Bangladesh, 2022 0.9927 1 0.9855 0.9927 0.9927 0.9927 0.2621

The proposed framework for diabetes detection, utilizing an ensemble-based ML
approach, offers several advantages compared to the existing gold standard methods. This
is particularly crucial in Bangladesh, where there is a shortage of diabetologists relative to
the country’s population. While the gold standard relies on costly and time-consuming
lab-based diagnostics and manual interpretation of clinical data by diabetologists, our
automated approach can help alleviate the burden on healthcare providers, allowing
them to efficiently screen a larger number of individuals for diabetes risk. Through the
application of statistical and ML techniques, this study identified age, extreme thirst, and
family history of diabetes as key features that play instrumental roles in diabetes detection.
By implementing the proposed framework in clinical settings, healthcare providers can
proactively identify individuals at risk of diabetes based on their risk factors. This prompt
identification enables timely intervention and personalized care, helping to mitigate the
risks and severity associated with diabetes.
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4. Conclusions

Our proposed ET with hyperparameter tuning outperformed the other ML models to
identify T2DM patients in this region. We obtained an outstanding accuracy of 99.27% and
an F1-score of 99.27%. In addition, using various statistical and ML models we determined
four key factors: age, having diabetes in the family, regular intake of medicine, and extreme
thirst, highly associated with diabetes. Since our proposed diabetes detection system has a
high degree of precision, physicians and clinicians may use our proposed framework to
assess diabetes risk. In Bangladesh, the ratio of diabetic patients to physicians is insufficient,
and there are less detection instruments available across the country. Therefore, a fast
diagnosis system based on ML is effective for patients and diabetologists. In this study, we
found that a number of lifestyle factors are associated with the development of diabetes;
therefore, sustaining a lifestyle that includes the observance of these factors could reduce
the rate of diabetes progression. The quantity of data was a primary limitation in our study.
In the future, we will use additional data to investigate diabetes as well as other medical
conditions such as kidney disease, heart disease, and breast cancer. We will also incorporate
our proposed system into intuitive web and mobile application platforms. Finally, we will
concentrate on diabetes mellitus disease prevention and recovery strategies.
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Abstract: Public health is an important aspect of community activities, making research on health
necessary because it is a crucial field in maintaining and improving the quality of life in society as a
whole. Research on public health allows for a deeper understanding of the health problems faced by
a population, including disease prevalence, risk factors, and other determinants of health. This work
aims to explore the potential of hospital patient data analysis as a valuable tool for understanding
community implications and deriving insights for effective community health interventions. The
study recognises the significance of harnessing the vast amount of data generated within hospital
settings to inform population-level health strategies. The methodology employed in this study
involves the collection and analysis of deidentified patient data from a representative sample of a
hospital in Indonesia. Various data analysis techniques, such as statistical modelling, data mining,
and machine learning algorithms, are utilised to identify patterns, trends, and associations within the
data. A program written in Python is used to analyse patient data in a hospital for five years, from
2018 to 2022. These findings are then interpreted within the context of public health implications, con-
sidering factors such as disease prevalence, socioeconomic determinants, and healthcare utilisation
patterns. The results of the data analysis provide valuable insights into the public health implications
of hospital patient data. The research also covers predictions for the patient data to the hospital based
on disease, age, and geographical residence. The research prediction shows that, in the year 2023,
the number of patients will not be considerably affected by the infection, but in March to April 2024
the number will increase significantly up to 10,000 patients due to the trend in the previous year
at the end of 2022. These recommendations encompass targeted prevention strategies, improved
healthcare delivery models, and community engagement initiatives. The research emphasises the im-
portance of collaboration between healthcare providers, policymakers, and community stakeholders
in implementing and evaluating these interventions.

Keywords: public health; hospital; patient; community; artificial intelligence

1. Introduction

Public health is an important field in optimising the quality of life and overall well-
being of a community. The approach is to prevent diseases, improve health, and reduce
health disparities in society through various well-planned interventions, policies, and
programmes. In the effort to achieve these goals, health data become a crucial element
in identifying health challenges, measuring the impacts of interventions and informing
policy decision making. One promising source of data is hospital patient data. These
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data include detailed information about patients, including medical diagnoses, treatments
provided, length of hospital stay, and treatment outcomes. With a deep understanding
of these data, we can analyse health trends, identify pressing health issues, evaluate
treatment effectiveness, and identify high-risk population groups. During the 2018–2022
period, hospital patient data became more affordable and easily accessible due to the
advances in information technology and health information systems [1]. These data are
now documented electronically and available in large and heterogeneous amounts. The
utilisation of hospital patient data to inform public health policies and interventions has
great potential to enhance the effectiveness and efficiency of health efforts.

Several studies have explored the benefits of hospital patient data in the context of
public health; however, challenges need to be overcome to maximise their potential. First,
hospital patient data from 2018 to 2022 may encompass various medical record systems that
are not always standardised, leading to complexity and difficulties in data integration and
analysis due to the COVID-19 pandemic, which during the years 2020 to 2022 saw human
movement control. Second, previous research has not fully optimised the utilisation of
advanced data analysis techniques, such as cluster analysis and machine learning, to gain
deeper insights from the available patient data in hospitals. Third, hospital patient data
may only reflect populations seeking medical care, limiting information about populations
not accessible to the formal healthcare system. Therefore, this research aims to address
these challenges by conducting a comprehensive and in-depth analysis of hospital patient
data from 2018 to 2022, with a focus on implications for public health and more effective
interventions. The objective of the research analysing hospital patient data related to
public health is to identify patterns, trends, and risk factors related to specific health issues
within the patient population. In analysing patient data, this research aims to understand
the geographic distribution of health problems, disease prevalence, and characteristics of
populations more vulnerable to certain health conditions. The information generated from
this research is expected to provide in-depth insights into existing public health challenges,
thus aiding in formulating and designing more effective and targeted health interventions.
The objectives of this research also include the use of data to support better clinical decision
making and a more holistic understanding of public health in specific regions. By extracting
information from hospital patient data, this research is expected to contribute positively to
disease prevention efforts, improve the quality of healthcare, and develop more effective
health policies for the overall community.

The overall aim of the research analysing hospital patient data related to public health
is to gain in-depth insights into various aspects of public health based on existing data in
electronic medical records. This work analyses patient data collected from different regions
and populations to identify patterns, trends, and risk factors related to the health issues
under investigation. Through data analysis, this research is expected to yield important
information about the disease prevalence, geographic distribution of health problems,
and characteristics of populations vulnerable to specific health conditions. The results
of this research can contribute to a better understanding of public health challenges, aid
in designing more effective health interventions, and support improved clinical decision
making. The research analysing hospital patient data is also directed towards supporting
disease prevention efforts, evidence-based health policy development, and the overall
improvement of healthcare service quality, with the ultimate goal of enhancing the health
and well-being of a community at large. The general objective of research analysing hospital
patient data related to public health is to gain in-depth insights into various aspects of
public health based on existing data in electronic medical records. This analyses patient
data collected from different regions and populations to identify patterns, trends, and risk
factors related to the health issues being investigated. In conducting data analysis, this
research is expected to produce important information regarding the disease prevalence,
geographic distribution of health problems, and characteristics of populations vulnerable
to specific health conditions. The findings can contribute to an enhanced understanding
of public health challenges, aid in designing more effective health interventions, and
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support improved clinical decision making. Additionally, the research analysing hospital
patient data is also directed towards supporting disease prevention efforts, evidence-based
health policy development, and overall improvement of healthcare service quality, with
the ultimate goal of enhancing the health and well-being of a community at large. Figure 1
shows how the relationship of public health to several segments that have an impact on the
community and individual or family support structures [1].

Figure 1. A sample model relationship of public health.

In achieving these objectives, this research is expected to provide valuable contribu-
tions to evidence-based health policy development and enhance the effectiveness of public
health interventions. With a deeper understanding of public health and its implications for
interventions, we hope that public health efforts can be more targeted and have a positive
impact on improving the overall quality of life and well-being of a community.

2. Literature Review

The study of public health includes the analysis of factors influencing the health of
populations, disease prevention efforts and health promotion, as well as the development
and evaluation of evidence-based health interventions. The work is an essential aspect
in achieving the goals of sustainable development, which are centred around improving
global health and well-being [2]. The study of public health faces complex and varied
challenges. Global health issues, such as infectious diseases, non-communicable diseases,
reproductive health, and health inequalities, require holistic and evidence-based inter-
ventions. Efforts in public health research include improving the access to and quality
of healthcare services, health promotion and prevention, research and development of
innovations, community-based interventions, and global collaboration. To address these
challenges, the study of public health plays a crucial role in improving the health and
well-being of communities worldwide [3,4]. Public health in Indonesia is an essential
aspect of national development and the well-being of society. The research and efforts
of community health in Indonesia involve various aspects, including disease prevention
efforts, health promotion, improving access to healthcare services, and the management of
healthcare resources. As an archipelagic country with cultural and geographical diversity,
Indonesia faces diverse and unique health challenges [5].

Mapping the patterns of the geographic distribution of diseases using hospital patient
data, as discussed, can be performed through spatial approaches in public health [6]. This
work highlights the importance of spatial analysis in mapping the patterns of the geographic
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distribution of diseases using hospital patient data. This study conducted research with a
spatial analysis approach to identify specific disease hotspots within geographical areas.
The study utilised hospital patient data from several hospitals in a metropolitan city to
map the spatial distribution of infectious and noncommunicable diseases. The research
findings indicate that spatial analysis approaches can help identify areas with high health
risks and guide public health policies in effectively allocating resources. The contributing
factors to health disparities among population groups have been analysed using data
from hospitals [7,8]; in other words, an analysis using hospital patient data to identify
socioeconomic factors contributing to variations in health outcomes among population
groups was conducted. The study includes patient data from various demographic and
economic groups. The research findings indicate that income level, educational attainment,
and healthcare accessibility are some of the significant factors influencing public health
outcomes. The work provides important insights into the socioeconomic aspects that need
to be considered in designing public health interventions focusing on high-risk groups.

Evaluating the effectiveness of public health interventions based on patient data
available in hospitals [9–11]: In this article, the effectiveness of several public health
interventions conducted based on hospital patient data was evaluated. The study also
compares treatment outcomes between the intervention group and the control group for
some critical diseases. The research shows that some interventions have a significant
impact on reducing readmission rates to the hospital and improving health outcomes. The
results of this evaluation provide valuable guidance for healthcare decision makers in
designing and implementing more effective interventions that have a positive impact on
public health. Advanced data analysis techniques have been used in analysing data from
available hospital patient records [12,13]. The utilisation of advanced analysis techniques,
particularly machine learning, in analysing hospital patient data is explored. The team
has reviewed various studies that apply machine learning methods to identify patterns
and trends in hospital patient data. These studies include disease classification, health risk
prediction, and the identification of high-risk population groups. This work guides the
potential use of advanced analysis techniques in conducting more in-depth research on
public health using hospital patient data. Hospital patient data have been used in public
health research in developing countries [14–16]. The study conducted presents an overview
of the utilisation of hospital patient data in public health in developing countries. The
other articles present several studies conducted in developing countries, including the
analysis of disease patterns, social and economic factors contributing to public health, and
the effectiveness of public health interventions based on hospital patient data. The work
provides a different perspective on understanding the potential of hospital patient data in
developing countries and their relevance to health policies and interventions.

Spatial analysis has been used to enhance the quality of public health interven-
tions [17–19]. This work discusses the role of spatial analysis in improving the quality of
public health interventions. The article explores various studies that use spatial analysis to
identify areas with high health risks, link disease patterns to environmental factors, and
design more targeted interventions. The research provides insights into the benefits of
spatial analysis in public health and its potential to enhance intervention effectiveness.
Hospital patient data have been used to design disease prevention programmes [20,21].
The results also explore various hospital patient data to identify disease risk factors and
develop more effective prevention strategies. This highlights the importance of involving
hospital patient data in comprehensive and evidence-based disease prevention planning.
Hospital patient data have been integrated with public health data to support integrated
health policies [22–24]. They showed that hospital patient data should be integrated with
public health data to provide a more comprehensive understanding of public health issues
and aid in designing integrated, holistic, and effective health policies. The analysis of hos-
pital patient data supports policy decision making [24,25]. Several discussions also present
various examples of how hospital patient data can be utilised to identify pressing health
issues, monitor the effectiveness of health policies, and inform health programme planning.
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The literature provides valuable insights into how the use of hospital patient data can
contribute to the development of effective and positively impactful health policies [26,27].

Machine learning has been used in analysing hospital patient data to enhance early
disease detection and treatment [28], for which various examples of research are given
that utilise machine learning algorithms to identify complex disease patterns, predict
individual health risks, and assist in making more accurate clinical decisions. This work
guides the potential of machine learning in enhancing healthcare diagnosis and treatment.
Information technology has been applied in processing hospital patient data for public
health [29–31]. This article highlights the application of information technology in the
processing of hospital patient data for public health purposes. This study illustrates how
integrated health information systems can be utilised to efficiently collect, store, and analyse
hospital patient data. This work guides how the implementation of information technology
can enhance the accessibility and quality of health data to support public health policies
and interventions. The benefits of hospital patient data in supporting epidemiological
research have been discussed in the literature [32,33]. The benefits of hospital patient data
in supporting epidemiological research are discussed. The research team presents examples
of studies that utilise hospital patient data to identify epidemiological trends, track the
spread of infectious diseases, and inform public health interventions. The article provides
insights into the potential of hospital patient data in supporting epidemiological research
and overall public health.

Considering the diversity of the literature, the present study can strengthen the founda-
tion of the knowledge and analysis methods used in understanding public health patterns,
identifying factors contributing to health outcome variations and evaluating the effective-
ness of public health interventions based on hospital patient data. This study can delve
deeper into the use of hospital patient data, the role of information technology, and the
application of machine learning techniques in supporting public health research. This
research can provide a strong basis for optimising the utilisation of hospital patient data.

3. Methodology

The research methodology in public health serves as a strong foundation for data
collection, information analysis, and decision making related to public health and well-
being. One of the approaches used is a public health research plan (PHRP). This approach
allows researchers to plan and conduct systematic, comprehensive research focused on
relevant public health issues, especially during pandemics or major disease cases, after
which preventive action has a guide for being enacted.

• Planning phase: In the planning phase of a PHRP, researchers will determine specific,
relevant, and significant research topics in the context of public health. Here, research
objectives must be clearly defined, and the research questions to be answered through
the study must be formulated.

• Identifying scope and target population: Researchers must thoroughly understand
the research scope and the population to be studied. In this regard, a PHRP requires
identifying the health issues to be investigated and determining the relevant tar-
get population. Understanding the characteristics of this population is essential in
designing data collection and analysis strategies.

• Data collection and measurement methods: After identifying the scope and target
population, researchers need to plan appropriate data collection methods to gather
the necessary information. Data collection methods may include surveys, interviews,
observations, or the use of secondary data. Researchers also need to design valid and
reliable measurement instruments with which to consistently collect data.

• Data analysis: Once data are collected, the data analysis phase becomes crucial in a
PHRP. The collected data need to be analysed using appropriate statistical techniques
to answer research questions. Data analysis helps identify patterns, relationships, and
public health trends relevant to the research topic.
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• Interpretation of results and implications for public health: After completing data
analysis, researchers must interpret the research results carefully. Research findings
should be connected back to the research objectives and research questions to draw
valid and meaningful conclusions. Furthermore, the implications of research results
for public health need to be clarified to make a real contribution to addressing existing
health issues.

• Development of health interventions and policies: Based on research findings, a PHRP
allows researchers to design evidence-based health interventions and policies. Conse-
quently, research results can contribute to improving the quality and effectiveness of
public health programmes.

The PHRP approach is a systematic research methodology for examining various rele-
vant public health issues. Through this method, researchers can plan and conduct research
with clear objectives, identify public health problems and formulate research questions
that can be answered with appropriate methods. The research results can contribute to
informing evidence-based public health policies and interventions, thereby enhancing
overall public health and well-being.

3.1. Data Collection

The use of electronic systems or computers in patient data collection at hospitals, also
known as electronic health records (EHRs), has become a common practice in healthcare.
This system allows hospitals to store and access patient information digitally, improving
data efficiency, accuracy, and interoperability. The process of patient data collection at
hospitals using electronic systems or computers is as follows:

• Patient registration: The data collection process begins when patients come to the
hospital for registration. Registration staff enter patient identification data, such as
name, address, date of birth, and contact number, into the electronic system. This
information serves as the starting point for creating a patient’s electronic health record.

• Medical history: Next, doctors or nurses will conduct a medical history interview to
gather a patient’s health history. This includes complaints, past medical conditions,
family history, allergies, and other relevant information. The collected data will be
input into a patient’s EHR.

• Test results: When patients undergo physical examinations or diagnostic tests, the
results will be uploaded onto the electronic system; for example, laboratory test results,
radiology results, and other diagnostic test results will be recorded in a patient’s
EHR digitally.

• Treatment notes: During a patient’s hospitalisation, daily treatment notes will be input
into the electronic system. These notes include information about a patient’s condi-
tion, medical procedures performed, medications administered, and health progress
during treatment.

• Specialist consultations: If necessary, patients may have consultations with specific
specialists. The results of these consultations will also be uploaded onto a patient’s
EHR, allowing the attending doctor to access this information.

• Electronic health record: All collected data, including medical history, test results,
treatment notes, and specialist consultations, will be stored in a patient’s EHR. The
EHR is integrated, enabling doctors and other medical staff to easily access and update
the patient’s medical information.

• Data security: EHR systems must be secured to protect patient medical information.
Only authorised medical personnel have access to patient data, and the data must be
encrypted to prevent unauthorised access.

Table 1 shows that using EHRs makes patient data collection at hospitals more effi-
cient and accurate. Electronically collected data can be easily accessed by medical teams,
facilitating precise clinical decision making and providing better as well as safer patient
care. This system also allows hospitals to integrate data and track patients’ complete health
history, which are crucial for providing continuous and holistic care. The total number

189



Information 2024, 15, 41

of patients was recorded within four years, resulting in more than 80,000 patients with
complete data for analysis.

Table 1. Patient indicator data from hospital records (1).

Number Patient Indicator in Hospital

1 Registration identity
2 Registration date
3 Patient name
4 Address
5 Identity card number
6 Date of birth
7 Gender
8 Clinic
9 Doctor

10 Ward room (if applicable)

In this patient data collection, the classified ranges of patient age, from infant to senior,
were as follows:

• Toddlers → (0–4 years).
• Children → (5–10 years).
• Teenagers → (11–19 years).
• Adults → (20–39 years).
• Elderly → (40–65 years).
• Seniors → (66 years and above).

3.2. Data Analysis Technique

The method of analysing patient data at hospitals using electronic data involves
the utilisation of information technology, particularly the EHR system. Electronic data
allow hospitals to collect, store, and access patient information digitally, replacing manual
processes that are time-consuming and prone to errors. With the EHR system, data analysis
can be carried out efficiently and accurately. Patient data, such as medical history, test
results, prescriptions, and treatment notes, can be easily analysed using various statistical
techniques and data visualisation. The integration of data from various hospital systems
also enables more accurate as well as holistic clinical decision making and facilitates more
in-depth public health research; however, patient data security and privacy must be the top
priority in the use of electronic data, and appropriate data security measures must always
be followed to protect patients’ personal information. The process of analysing patient data
at hospitals using computer software applications involves several similar steps using the
programming language Python. We will elaborate on the process of patient data analysis
using computer programming, which is commonly used for data analysis and numerical
processing. The steps in the process of analysing patient data at hospitals using Python
programming are shown as follows (and in Figure 2):

• Data collection: Patient data are collected from an EHR system or other data sources
and entered into a hospital information system. Data may include clinical data such as
test results, diagnoses, treatment history, and other patient information.

• Data pre-processing: Data pre-processing involves data cleaning, handling missing or
invalid data, and converting the data format into a suitable form for analysis.

• Statistical analysis: All datasets provide various built-in information functions that
can be used for data analysis. These functions include average, median, standard
deviation, and others.
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Figure 2. The process of analysing patient data from a hospital.

The following functions facilitate the calculation of basic statistics from numerical data:

• Data visualisation: Python also offers various types of charts and graphs that can be
used to create data visualisations. Bar charts, line graphs, pie charts, and others can be
used to visualise data interactively.

• Pivot table and chart: Pivots are highly useful features in Python for analysing and
summarising data quickly. A pivot table allows us to arrange data in a dynamic table,
while a pivot chart enables us to create charts based on the pivot table.

• Data filtering and sorting: Python programming provides filtering and sorting features
that allow us to easily filter and sort data. These features help us quickly identify
patterns and trends in the data.

• Data validation: To ensure valid data, we can use data validation features in the
computer program. This feature allows us to set validation rules for specific data
columns, ensuring that the entered data comply with these rules.

• Interpretation of results: After conducting data analysis and obtaining findings, the
results must be interpreted carefully. The results of data analysis should be used to
provide useful insights for clinical decision making and hospital management.

• Data security: In the data analysis process, the security of patient data must be ensured.
Patient data must be kept confidential and accessed only by authorised parties.

Computer software applications are versatile and capable of analysing data from
various sources, including hospital data analysis. They are simple and user-friendly while
still allowing for complex data analysis; however, in inpatient data analysis, we must
adhere to ethical principles and comply with privacy as well as data security regulations.
In this research, referring to a hospital with many sections according to patient disease,
the data and information kept in the hospital management system are supported with
digital data.

3.3. Python Programming and Deep Learning Algorithms

Python is one of the most popular programming languages and has a simple syntax,
developed by Guido van Rossum in 1991 [34]. Python is also equipped with several
powerful libraries and frameworks, such as NumPy, Pandas, Matplotlib, and TensorFlow,
which make it convenient for developers to build complex solutions and applications
quickly and efficiently. Extensive Python community support also makes it a valuable
resource for developers, providing numerous tutorials, documentation, and discussion
forums that can help them understand and solve various programming challenges. In the
era of information technology and computers, many techniques and algorithms have been
developed, with good results and faster processing times.

Deep learning algorithms are a method in artificial intelligence. One of the popular
examples is long short-term memory (LSTM), which is an evolution of deep learning
known as a recurrent neural network (RNN), first introduced by Sherstinsky [35]. The
LSTM algorithm can analyse time series datasets to address problems. This algorithm is
also capable of learning long-term dependencies in datasets and retaining information
for extended periods by default. Figure 3 shows the basic architecture of a RNN–LSTM
model, consisting of several main blocks called cells, such as the input gate, output gate,
and forget gate. Figure 3 shows a sample of the RNN–LSTM algorithm structure in the
Python programming application for this patient data in a hospital case.
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Figure 3. Sample of RNN–LSTM algorithm structure.

An LSTM model can be elaborate as short-term memory, which acts when the infor-
mation is being acquired, retains that information for a few seconds, and then destines it to
be kept for longer periods or discards it. Long-term memory, which permanently retains
information, allows its recovery or recall. It contains all of our autobiographical data and all
of our knowledge. Referring to the architecture of the LSTM model, which consists of three
major cells, the calculation of each cell and the process can be written as Equations (1)–(6),
as referred to in this research and publication [32]:

ft = σ
(

Wf · [ht−1 , xt] + b f

)
(1)

it = σ (Wi · [ht−1 , xt] + bi) (2)
�Ct = tanh (Wc · [ht−1 , xt] + bc) (3)

Ct = ft ∗ Ct−1 + it ∗ �Ct (4)

ot = σ (Wo [ht−1 , xt] + bo) (5)

ht = ot ∗ tanh (Ct) (6)

The deep learning LSTM algorithm model has the ability to handle problems with long-
term RNN dependencies, while some other algorithms fail to achieve accurate results due to
long histories and data variations. With a large amount of data and variations, conventional
algorithms cannot accurately process information stored in long-term memory, but LSTM
can provide more accurate predictions based on historical information. LSTM can be
applied as a default to store data in the long term. It is commonly used for predicting,
processing, and classifying time series data. A prediction model is used to calculate the
number of future fire points using the LSTM algorithm, and the errors need to be justified.
Several models can be used for forecasting, such as mean square error (MSE) to calculate
the error squared and mean average error (MAE) to calculate the average error in a dataset.
An additional method is R2, which indicates the proportion of variance in a dataset. This
method can be expressed as Equations (7)–(9) for MSE, MAE, and R2, respectively [33]:

MSE =
∑N

1
(
yi − y′i

)2

N
(7)

MAE =
∑N

1
∣∣yi − y′i

∣∣
N

(8)
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R2 = 1 − ∑N
1
(
yi − y′i

)2

∑N
1
(
yi − yavg

)2 (9)

where yi is the actual number of fire points at time i, y′i is the predicted number of hotspots
at time ith, and yavg is the total number of samples in the dataset as training data, while
error figures are used as regression model metrics. All of the models used to calculate
errors are used to check the forecasting performance of the dataset and can be utilised for
future predictions, as well as calculating the average error in the simulation.

The LSTM algorithm model has a sigmoid function from Wf and b f , presenting the
weight matrix and bias, respectively, for the forget gate. This process is a step to determine
and decide the input dataset, which is the new information, Xt, in the cell state, as well as
to update the cell state. The next process of the sigmoid layer then determines whether the
new dataset should be updated or ignored (0 or 1). The Tanh function gives weight to the
values that passed by deciding their level of importance (1 to 1). Figure 4 shows the neuron
process of the LSTM model [34].

Figure 4. LSTM algorithm for internal cells in modern neurons.

The final step is to calculate the error from the available dataset for the forecasting
results to examine the percentage of error. Many techniques can be used to calculate the
error. For example, root mean square error (RMSE) is one statistical-based technique that
is commonly used to compare forecasts with actual data values. RMSE is often used to
evaluate how accurately forecasting results fit historical data values based on the relative
range of a dataset. Equation (10) explains that Xi and X′

i present the actual hotspot dataset
compared with the forecasted data at time t, Xi is the mean actual value of the hotspot
dataset, and N is the total number of data points. When the RMSE value changes from a
small number to zero, it implies that the LSTM algorithm produces reliable results:

RMSE =

√
1
N ∑N

i=1(Xi − X′
i)

2 (10)

Among all of the methods for evaluating predictions or forecasting errors, RMSE and
MAE evaluate based on short-term, hourly forecasts. The process of analysing patient data
in a hospital using the Python computer program involves several important steps. The
following are the steps in the process of patient data analysis in a hospital using Python.
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3.4. Prediction Mathematical Modelling

The integration of LSTM with deep learning capability has the potential for the analysis
of patient data by the permutation method, and the complex data on the hospital informa-
tion system can be solved by numerical or approximate methods [36,37]. Once calculated,
data simplification, calculation, and substitution can be obtained as in Equation (11):

L(t)

In( L(t)
A )

= C − e−Bt (11)

where C and B are constants. In both sides of Equation (12), as an exponential function,
L can be used to calculate the number of patient distribution data, as shown in Equation (6):

L(t) = A · ee−Bt+C (12)

The differential equation refers to the Gompertz model of calculating human growth
and development; it can be applied as a similar model to the growth of patient number
visits and treatment in a hospital or medical centre, which describes the gradual contiguous
rate of height with an increasing number of patients over time. Another model is the
Bertalanffy model, which was proposed by the Austrian biologist and scientist Ludwig von
Bertalanffy. It is a differential equation based on the growth model designed to describe the
growth of a process in an institution that can comprise organisms or humans. This model
assumes that the growth rate of patients with various backgrounds at different stages is
influenced by several diseases during treatment. The specific differential equation of the
Bertalanffy model is as follows:

dN
dt

= r(N∞ − N) (13)

where N denotes the number of patients registered in a medical centre or volumes of
patients, t is the time, r is the growth rate constant, and N∞ is the final number of patients in
a medical centre or hospital. This model is commonly used to describe the growth process
of the number of objects in calculating the growth that has been widely used in medical
data analysis or medicine, environmental science, agriculture, and other fields.

The basic concept of artificial intelligence to calculate human or patients’ data growth
models takes into consideration many aspects, such as genetics, environments, clusters, and
pandemics, of physical growth. These aspects can be modelled into sets to build differential
equations with which to analyse and predict for the future indicators of mass pandemics
and proportions of different kinds of disease. The models can also be applied to the studying
of the changes in patient number development by the time points in medical centres and
disease development, helping medical staff better analyse and diagnose diseases. The
model has a significant impact on studying the development and prediction of disease
infections in a community in an area. The mathematical models are very useful as a tool for
predicting the growth and development of different types of environments and provide
important reference information for medical scientists. Figure 5 shows a neural network
model of artificial intelligence with a subset process to analyse patient data.

The k-th input sample, x(k) = (x1(k), . . . , xn(k)), is randomly selected, and the corre-
sponding expected outputs are d0(k) =

(
d1(k), d2(k), . . . , dq(k)

)
. The input and output of

each neuron in the hidden layer are calculated, and the output is calculated as Equation (14):

hih(k) =
n
∑

i=1
𝓌ihxi(k)− bh, h = 1, 2, . . . , p

hoh(k) = f (hih(k)), h = 1, 2, . . . , p

yi0(k) =
p
∑

i=1
𝓌hohoh(k)− bo, o = 1, 2, . . . , q

yoo(k) = f (yio(k)), o = 1, 2, . . . , p

(14)
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Then, the total error is computed as in Equation (9):

E =
1

2m∑m
k=1 ∑q

o=1 (do(k)− yo(k ))2 (15)

The partial derivatives of the error function to each neuron in the output layer are
calculated by using the expected output of the network, δo(k); then, the partial derivative of
the error function to each neuron in the hidden layer is calculated by using the connection
weights from the hidden layer to the output layer, δo(k), the output of the output layer, and
δo(k), the output of the hidden layer [35]:

∂E
∂𝓌ho

= ∂E
∂yi0

∂yio
∂𝓌ho

= −hoh(k)(do(k)− yoo(k)) f ′ (yi0(k)) = −hohδo(k)

Δ𝓌ho(k) = −μ ∂E
∂who

= μδo(k)hoh(k)

𝓌N+1
ho = 𝓌N

ho + ηδo(k)hoh(k)

Δ𝓌ih(k) = −μ ∂E
∂hih(k)

∂hih(k)
∂𝓌ih

= δh(k)xi(k)

𝓌N+1
ih = 𝓌N

ih + ηδh(k)xi(k)

(16)

The algorithm terminates when the error reaches the present accuracy or the number
of learning is greater than the pre-specified set maximum number of times as set out in
Equation (10). Otherwise, we select the next learning sample as well as the corresponding
expected output and return to enter the next round of learning.

The process of retrieving electronic medical records (EMRs) from a hospital patient
database involves a systematic flowchart that ensures efficient and secure access to patient
information. The first step in this process is patient identification, where authorized person-
nel enter the system using secure login credentials. Once logged in, the system navigates
to a central database where patient records are stored. The flowchart then branches into
sections based on the type of information required, such as medical history, diagnostic
reports, or treatment plans. Subsequently, the system validates the access rights of the
user, ensuring that only authorized individuals can retrieve sensitive medical data. The
flowchart includes encryption and security measures to safeguard patient confidentiality.
Following this, the system retrieves the requested information and presents it to the autho-
rized user in a comprehensible format. This comprehensive flowchart for EMR retrieval
optimizes the efficiency of healthcare professionals while prioritizing the security and
privacy of patient information. Figure 6 shows the flowchart of patient data retrieval, with
the first step including the normalization that only valid and complete datasets transfer to
the patient data analysis cloud system.

Figure 5. The architecture of the neural network for data analysis.
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Figure 6. Process flow of patient data retrieval with a normalization dataset.

3.5. Ethics in Health Research

Ethical considerations play a central role in public health research. When conducting
health research, researchers must always prioritise the rights and well-being of research
participants. First and foremost, clear and voluntary informed consent from participants
should be emphasised, ensuring that they have a full understanding of the risks and
benefits involved in their participation. Additionally, the confidentiality and privacy of
patient data must be strictly maintained to protect the identities and personal information of
participants. Special protection is also necessary for vulnerable groups, such as children and
pregnant women, to minimise potential risks and ensure that the benefits outweigh them.
Ethical involvement in public health research also involves the obligation to report findings
with integrity and transparency, ensuring clear social benefits for the community. Public
health research that adheres to these ethical considerations can significantly contribute to
improving the overall health and quality of life of society.

In public health research, several important ethical considerations should be observed
and respected. Examples are as follows:

• Informed consent: Research participants should be provided with clear and compre-
hensive information about the research’s purpose, procedures, potential benefits and
risks, as well as their rights as participants. Participants should give voluntary consent
after fully understanding the implications of their participation.
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• Confidentiality and privacy: Participants’ personal data and information must be kept
confidential. Participant identities should be securely protected, and data should be
processed in a way that prevents individual identification if possible.

• Protection of children and vulnerable groups: If research involves children, pregnant
women or other vulnerable groups, special measures are needed to protect them. The
potential risks should be minimised and the benefits should outweigh them.

• Non-maleficence: Public health research should prioritise the principle of non-
maleficence, meaning not causing harm or endangering research participants. Risks
should be carefully considered and efforts made to avoid them.

• Social benefits: Public health research should provide benefits to the community as a
whole. Research findings should be used to improve public health and well-being.

• Transparency and integrity: Research should be conducted with transparency and
integrity. All data and findings should be disclosed honestly, without manipulation
or misrepresentation.

• Commitment to safety: The safety and health of research participants should be a top
priority in public health research. Preventive measures should be taken to reduce the
risk of injury or illness to participants.

• Ethical approval: Before commencing research, ethical approval must be obtained
from relevant ethics committees or institutions. Ethical approval ensures that the
research complies with applicable ethical standards and safeguards the rights as well
as well-being of research participants.

Respecting these ethical considerations in public health research is essential to maintain
research integrity, public trust, and participant protection. By adhering to ethical principles,
public health research can produce meaningful and beneficial results for the health and
well-being of society as a whole.

4. Results and Discussion

Health data from a hospital in Indonesia reveal important information about the health
profiles of patients treated at the hospital facility. These data include various variables
such as a patient’s age, gender, diagnosed diseases, laboratory test results, and treatment
history. The data description results show a diverse age distribution of patients, ranging
from infants to the elderly, highlighting the importance of age-appropriate care for specific
population groups. The health data also depict a comparison of the number of male
and female patients, potentially providing insights into health conditions that may affect
these gender groups differently. The most common diagnosed diseases recorded in the
health data provide an overview of the disease burden faced by the hospital and the
prevalent health conditions in the community in that area. The laboratory test results
indicate the monitoring and in-depth evaluation of the patient’s health conditions, aiding
the medical team in accurate diagnoses and appropriate treatments. Furthermore, patients’
treatment histories record medical procedures performed, medications given, and health
developments during treatment.

The results of this health data description hold significant value in enhancing the
understanding of the public health profile in the North Sumatra region. These data can
be used to plan more effective health interventions, identify emerging health trends, and
support deeper public health research. Moreover, the data contribute to making informed
clinical decisions and provide a strong foundation for evidence-based health policy formu-
lation. Through analysing and understanding the results of this health data description,
the hospital and relevant stakeholders can improve the quality of healthcare services and
the well-being of the community in the North Sumatra region. Figure 7 shows the results
of a hospital patient data analysis based on disease or clinic room visit for 2018. The results
of the patient data analysis based on disease types in a hospital provide a comprehensive
overview of the most common disease patterns in the area. Through this analysis, the most
dominant types of diseases, their prevalence rates, and the age distribution of affected
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patients can be identified. Additionally, the data analysis can reveal disease trends over
time, enabling the identification of changes in disease patterns in the past and future.

Information about the most common diseases and their prevalence is crucial for
healthcare service planning and management. Hospitals and relevant stakeholders can use
these data to allocate resources more efficiently and optimise patient care. The analysis
results can also help formulate more effective prevention programmes and direct efforts to
reduce the burden of specific diseases on the community. Figure 8 shows the data from
the hospital’s analysis of patients based on the most frequently treated disease types in
2019. The 2018 data show a significant increase in patient visits to the hospital in the early
months, from January to September.

Figure 7. Results of the patient data in an analysis for 2018.

Figure 8. Results of the patient data in an analysis for 2019.

198



Information 2024, 15, 41

Furthermore, a patient data analysis based on disease types can serve as a foundation
for further research on health. These data can be a valuable source of information for
researchers to identify disease risk factors, test the effectiveness of therapies and interven-
tions, and gain a deeper understanding of health determinants. Leveraging the results of a
patient data analysis based on disease types, hospitals and other relevant stakeholders can
take strategic steps to improve the quality of healthcare services, implement more targeted
prevention efforts, and enhance their overall understanding of public health. The more
accurate and detailed the data analysis conducted, the greater the benefits for decision
making and overall public health improvement.

The data shown in Figure 9 indicate the number of patients who visited for disease
analysis and consultation, which generally was not high and slightly decreased compared
with the 2019 data, with an average of 20–30 people per day. This condition was influenced
by the impact of the COVID-19 pandemic, which imposed travel restrictions and limitations
on mobility, unlike the previous year. Figure 10 shows results in a graph of patient data in
the hospital for 2021.

Overall, a patient data analysis based on disease types is an essential tool in managing
and improving healthcare services at the hospital. Using these data, hospitals can provide
more effective and targeted healthcare services to meet the needs of the community. Further
research based on the results of this data analysis can provide deeper insights into the
risk factors and determinants of health that influence disease patterns, thereby aiding in
the development of more comprehensive and effective public health strategies. Figure 11
shows the data analysis results from 2022; however, the collected data of the patients in
2022 were limited to June because of a hospital system change and upgrade to another
new computerisation system, as indicated by the six months of patient data increasing
compared with the previous year.

Figure 12 shows the data analysis results from 2018 to 2022. The conditions were still
those of the COVID-19 pandemic in 2019–2022, resulting in minimal changes compared
with 2018, when human mobility was freer.

Figure 9. Results of the patient data in an analysis for 2020.
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Figure 10. Results of the patient data in an analysis for 2021.

Figure 11. Results of the patient data in an analysis for 2022.

An analysis based on regional residence also provides information about variations in
public health across different areas. Graphs and images have illustrated different disease
patterns among specific regions (Figure 13). These results help identify areas with higher
disease burdens and vulnerability, enabling relevant stakeholders to prioritise healthcare
resources and interventions for these regions. An analysis based on gender also sheds
light on differences in disease patterns between males and females. These results aid in
designing gender-specific health programmes that align with the unique characteristics of
each gender. For example, if certain diseases are more common in one gender, screening
and health promotion programmes can be specifically directed towards preventing and
managing these diseases in the vulnerable gender group.
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Figure 12. Results of the patient data disease analysis for 2018–2022.

Figure 13. Results of patients based on a region of living analysis for 2018–2022.

An analysis based on age provides an understanding of variations in disease patterns at
different stages of life, as shown in Figure 12 for 2018–2022, which was used in the prediction
for 2023 for the rate based on the residents of stay-in districts. Graphs have identified
specific age groups that are more vulnerable to certain types of diseases. These findings
can be utilised to develop more responsive and age-specific public health programmes that
cater to the health needs of various age groups. Overall, the data analysis from the graphs
has a positive impact on public health. These findings serve as a foundation for formulating
effective prevention strategies, health promotion efforts, and targeted healthcare for various
population groups. The results of this research also serve as a reference for hospitals and
relevant stakeholders to improve the quality of healthcare services and design more holistic
as well as inclusive policies to enhance the overall well-being of the community. Figure 14
shows the patient data referring to age for the 2018–2022 results, with 2018 having a high
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number of patients. This decreased in the intervening years and returned in 2022 due to
human mobility being free in many locations.

Figure 14. Results of patient data based on an age analysis for 2018–2022.

The hospital health prediction data from 2018 to 2022 for the forecast years 2022 to
2024 have been processed and presented in terms of disease classified and, in particular,
medical treatment centre, as shown in Figure 15, to provide an overview of potential health
trends in the future. These graphs utilise historical data from previous years to identify
patterns and trends emerging in the number of disease cases and disease distribution based
on age, gender, and regional residence. The predictive data offer valuable insights for the
hospital and stakeholders in planning and allocating healthcare resources more efficiently
and effectively. By understanding the projected number of patients and types of diseases
that may be encountered in the upcoming period, the hospital can anticipate the need for
more targeted healthcare services. Overall, no significant increase in patients occurred in
2022–2024.

Figure 15. Prediction of patients up to 2024 as plotted.
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Images such as the prediction graphs also aid in identifying changes in epidemiology
that may occur from year to year. An increase or decrease in the number of specific disease
cases can serve as an indicator of specific health issues that need to be addressed more
seriously and continuously. Furthermore, these health prediction data provide a foundation
for formulating prevention programmes and health promotion initiatives that focus on
high-risk groups and vulnerable regions. When specific age groups or genders that may
be more susceptible to a particular disease are identified, preventive measures and health
education can be targeted specifically towards them. In the overall patient prediction
data, an increasing trend is observed towards the end of 2023, particularly from August to
September 2023 well into 2024. The highest number of patients is in March, as shown in
Figure 16 for the overall patient data in a hospital.

Figure 16. Prediction of overall patient data up to 2024.

In an analysis that involves predicting from a dataset, there is a level of uncertainty that
needs to be acknowledged. Health prediction data are estimations based on historical data
and certain assumptions. Factors such as lifestyle changes, environmental influences, or
unforeseen events can impact actual outcomes in the future. Therefore, predictions should
be used as a reference, and precautionary measures in decision making and management
need to be carefully considered. As a result, prediction graphs should be interpreted
cautiously and supplemented with more in-depth data analysis and ongoing monitoring to
update and correct predictions over time. Ultimately, all data and analyses are essential for
providing an overview, and some results indicate a relatively low level of error, making
them useful as references for more effective decision making in organisational management.
The full collected and analysis data can refer to the supplementary materials attached.

The work of patient data analyses with real cases at a hospital in Indonesia, predicting
the number of potential cases of disease for future years, is presented as results. The method
used, deep learning with the LSTM algorithm, has limitations due to the small amount
of data collected and then the amount of data affected by the result, because the method
refers to the data learning for the previous years. High numbers and longer spans of data
collected for previous time periods contribute to the accuracy in decision making. Data
analyses use machine learning, and test datasets require a large number of patient data
followed by good decisions for predictions with high accuracy. In some cases, the small
amount of data collected from the direct analysis to plot the graph and check the trend may
assist in the decision. The results may be a good recommendation and plotted into a similar
trend to the previous data collected from the hospital.
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5. Conclusions

The final patient data analysis in a hospital in the city of Medan, Indonesia, provides a
deeper understanding of the public health situation in the North Sumatra region, Indonesia.
Gaining insights from these data, we hope that public health efforts can be more targeted,
effective, and sustainable in improving the overall quality of life and well-being of the
community. Through collaboration between healthcare professionals, hospital management,
and local government, the implications and conclusions from this data analysis can serve
as a strong foundation for achieving better public health goals in the North Sumatra region.
Despite some weaknesses, a patient data analysis in hospitals still provides valuable
contributions to understanding public health and helps in formulating more targeted
policies and interventions. Acknowledging these weaknesses allows for the improvement
and enhancement of health studies in the future to make a more optimal contribution to
the health and well-being of a community.

Based on the results of a patient data analysis in hospitals in the city of Medan, we
make several recommendations to be considered for the future in an attempt to improve
healthcare services in the region. First, health data sources must be enhanced and diver-
sified. By integrating data from various hospitals and healthcare facilities in the region,
we can have a more comprehensive and representative picture of public health. Addition-
ally, the second recommendation is to involve healthcare professionals and researchers
from various disciplines in the process of data analysis and interpretation. Collaboration
across disciplines will bring together different perspectives and enrich the understanding
of public health conditions, providing insights for more holistic healthcare system improve-
ments. Furthermore, efforts are needed to improve the accuracy and quality of collected
data. Training for healthcare personnel in proper documentation and data collection will
minimise errors and potential biases. Future work advises integration not only in North
Sumatra but also in larger areas covering all hospitals in Sumatra or Indonesia to obtain
high-accuracy data analyses. The method proposed and used in this work can be used with
any patient data from other hospitals or health centres, either in Indonesia or other coun-
tries. Analyses and scenarios with which to visualise results with abnormality concerns
and make predictions for future years are the main objectives in checking disease trends
before, during, and after the COVD-19 pandemic.
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www.mdpi.com/article/10.3390/info15010041/s1.

Author Contributions: Idea concept and writing—original draft preparation, L.D.P.; supervising,
administration, funding, and conceptual, E.G.; facilities of project administration and funding,
I.N.E.L.; methodology and review as well as software, H.T.K.; formal analysis, methodology, and
software, E.A.K.; data collection and analysis, S.L.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research and work were funded internally by the Universitas Prima Indonesia for the
2023 fiscal year, and were supported by collaborators for the facilities and labour.

Informed Consent Statement: In this research, there is no direct interaction or conflict of interest to
the patient in hospital.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This work was supported by Universitas Prima Indonesia in collaboration with
the Universitas Islam Riau of Indonesia and Harvard University under university collaboration
programmes.

Conflicts of Interest: All of the authors declare no conflicts of interest for this manuscript.

References

1. Hospital PI. Hospital Patient Data in South Sumatra; Hospital PI: Medan, India, 2022.
2. Stoto, M.A. Population Health Measurement: Applying Performance Measurement Concepts in Population Health Settings.

Public Health Syst. Serv. Res. 2014, 2, 1–27. [CrossRef] [PubMed]

204



Information 2024, 15, 41

3. Hirani, R.; Noruzi, K.; Iqbal, A.; Hussaini, A.S.; Khan, R.A.; Harutyunyan, A.; Etienne, M.; Tiwari, R.K. A Review of the Past,
Present, and Future of the Monkeypox Virus: Challenges, Opportunities, and Lessons from COVID-19 for Global Health Security.
Microorganisms 2023, 11, 2713. [CrossRef] [PubMed]

4. Connerton, P.; Vicente de Assunção, J.; Maura de Miranda, R.; Dorothée Slovic, A.; José Pérez-Martínez, P.; Ribeiro, H. Air Quality
during COVID-19 in Four Megacities: Lessons and Challenges for Public Health. Int. J. Environ. Res. Public Health 2020, 17, 5067.
[CrossRef] [PubMed]

5. Zhou, Y.; Chen, T.; Wang, J.; Xu, X. Analyzing the Factors Driving the Changes of Ecosystem Service Value in the Liangzi Lake
Basin—A GeoDetector-Based Application. Sustainability 2023, 15, 15763. [CrossRef]

6. Salamah, Y.; Asyifa, R.D.; Afifah, T.Y.; Maulana, F.; Asfarian, A. Thymun: Smart Mobile Health Platform for the Autoimmune
Community to Improve the Health and Well-Being of Autoimmune Sufferers in Indonesia. In Proceedings of the 2020 8th
International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 24–26 June 2020;
pp. 1–6.

7. Bernasconi, A.; Grandi, S. A Conceptual Model for Geo-Online Exploratory Data Visualization: The Case of the COVID-19
Pandemic. Information 2021, 12, 69. [CrossRef]

8. Monlezun, D.J. Percutaneous Coronary Intervention Mortality, Cost, Complications, and Disparities after Radiation Therapy:
Artificial Intelligence-Augmented, Cost Effectiveness, and Computational Ethical Analysis. J. Cardiovasc. Dev. Dis. 2023, 10, 445.
[CrossRef]

9. Vazanic, D.; Kurtovic, B.; Balija, S.; Milosevic, M.; Brborovic, O. Predictors, Prevalence, and Clinical Outcomes of Out-of-Hospital
Cardiac Arrests in Croatia: A Nationwide Study. Healthcare 2023, 11, 2729. [CrossRef]

10. Montuori, P.; Gentile, I.; Fiorilla, C.; Sorrentino, M.; Schiavone, B.; Fattore, V.; Coscetta, F.; Riccardi, A.; Villani, A.; Trama, U.; et al.
Understanding Factors Contributing to Vaccine Hesitancy in a Large Metropolitan Area. Vaccines 2023, 11, 1558. [CrossRef]

11. Dalapati, T.; Nick, S.E.; Chari, T.A.; George, I.A.; Hunter Aitchison, A.; MacEachern, M.P.; O’Sullivan, A.N.; Taber, K.A.; Muzyk, A.
Interprofessional Climate Change Curriculum in Health Professional Programs: A Scoping Review. Educ. Sci. 2023, 13, 945.
[CrossRef]

12. De Vito, A.; Moi, G.; Saderi, L.; Puci, M.V.; Colpani, A.; Firino, L.; Puggioni, A.; Uzzau, S.; Babudieri, S.; Sotgiu, G.; et al.
Vaccination and Antiviral Treatment Reduce the Time to Negative SARS-CoV-2 Swab: A Real-Life Study. Viruses 2023, 15, 2180.
[CrossRef]

13. Tanumihardjo, J.P.; Davis, H.; Zhu, M.; On, H.; Guillory, K.K.; Christensen, J. Enhancing Chronic-Disease Education through
Integrated Medical and Social Care: Exploring the Beneficial Role of a Community Teaching Kitchen in Oregon. Nutrients 2023,
15, 4368. [CrossRef] [PubMed]

14. Swaney, R.; Jokomo-Nyakabau, R.; Nguyen, A.A.N.; Kenny, D.; Millner, P.G.; Selim, M.; Destache, C.J.; Velagapudi, M. Diagnosis
and Outcomes of Fungal Co-Infections in COVID-19 Infections: A Retrospective Study. Microorganisms 2023, 11, 2326. [CrossRef]
[PubMed]

15. Khatri, S.; al-Sulbi, K.; Attaallah, A.; Ansari, M.T.; Agrawal, A.; Kumar, R. Enhancing Healthcare Management during COVID-19:
A Patient-Centric Architectural Framework Enabled by Hyperledger Fabric Blockchain. Information 2023, 14, 425. [CrossRef]

16. Sekiyama, M.; Roosita, K.; Ohtsuka, R. Locally Sustainable School Lunch Intervention Improves Hemoglobin andHematocrit
Levels andBody Mass Index among Elementary Schoolchildren in Rural West Java, Indonesia. Nutrients 2017, 9, 868. [CrossRef]
[PubMed]

17. Abdul Kadir, E.; Listia Rosa, S.; Syukur, A.; Othman, M.; Daud, H. Forest fire spreading and carbon concentration identification in
tropical region Indonesia. Alex. Eng. J. 2022, 61, 1551–1561. [CrossRef]

18. Huang, L. Developing Place-Based Health during the COVID-19 Pandemic: A Case Study of Taipei City’s Jiuzhuang Community
Garden. Sustainability 2023, 15, 12422. [CrossRef]

19. Gan, D.R.Y.; Cheng, G.H.-L.; Ng, T.P.; Gwee, X.; Soh, C.Y.; Fung, J.C.; Cho, I.S. Neighborhood Makes or Breaks Active Ageing?
Findings from Cross-Sectional Path Analysis. Int. J. Environ. Res. Public Health 2022, 19, 3695. [CrossRef]

20. Gunawan, H.; Abdul Kadir, E. Integration protocol student academic information to campus RFID gate pass system. In
Proceedings of the International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta,
Indonesia, 19–21 September 2017.

21. Kadir, E.A.; Shamsuddin, S.M.; Rahman, T.A.; Samad Ismail, A. Big Data Network Architecture and Monitoring Use Wireless 5G
Technology. Int. J. Adv. Soft Comput. Appl. 2015, 7, 1–14.

22. Chae, K.; Kim, M.; Kim, B.O.; Jung, C.Y.; Kang, H.-J.; Oh, D.-J.; Jeon, D.W.; Chung, W.Y.; Choi, C.U.; Han, K.R.; et al. Public
Reporting on the Quality of Care in Patients with Acute Myocardial Infarction: The Korean Experience. Int. J. Environ. Res. Public
Health 2022, 19, 3169. [CrossRef]

23. Ramirez-Alcocer, U.M.; Tello-Leal, E.; Romero, G.; Macías-Hernández, B.A. A Deep Learning Approach for Predictive Healthcare
Process Monitoring. Information 2023, 14, 508. [CrossRef]

24. Kadir, E.A.; Siswanto, A.; Yulian, A. Home Monitoring System Based on Cloud Computing Technology and Object Sensor. In
Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017, Kangar, Malaysia, 15–16 August 2017;
Volume 2.

25. Zeng, H.; Deng, S.; Zhou, Z.; Qiu, X.; Jia, X.; Li, Z.; Wang, J.; Duan, H.; Tu, L. Diagnostic value of combined nucleic acid and
antibody detection in suspected COVID-19 cases. Public Health 2020, 186, 1–5. [CrossRef] [PubMed]

205



Information 2024, 15, 41

26. Kadir, E.A. Development of information and communication technology (ICT) in container terminal for speed up clearance
process. J. Commun. 2017, 12, 207–213. [CrossRef]

27. Kadir, E.A.; Kung, H.T.; AlMansour, A.A.; Irie, H.; Rosa, S.L.; Fauzi, S.S. Wildfire Hotspots Forecasting and Mapping for
Environmental Monitoring Based on the Long Short-Term Memory Networks Deep Learning Algorithm. Environments 2023,
10, 124. [CrossRef]

28. Shaikh, M.A. Prevalence and Correlates of Intimate Partner Violence against Women in Liberia: Findings from 2019–2020
Demographic and Health Survey. Int. J. Environ. Res. Public Health 2022, 19, 3519. [CrossRef]

29. Taniguchi, Y.; Yamazaki, S.; Nakayama, S.F.; Sekiyama, M.; Michikawa, T.; Isobe, T.; Iwai-Shimada, M.; Kobayashi, Y.; Takagi, M.;
Kamijima, M.; et al. Baseline Complete Blood Count and Chemistry Panel Profile from the Japan Environment and Children’s
Study (JECS). Int. J. Environ. Res. Public Health 2022, 19, 3277. [CrossRef]

30. Dierbach, C. Python as a First Programming Language. J. Comput. Sci. Coll. 2014, 29, 73.
31. Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D

Nonlinear Phenom. 2020, 404, 132306. [CrossRef]
32. Kadir, E.A.; Kung, H.T.; Rosa, S.L.; Sabot, A.; Othman, M.; Ting, M. Forecasting of Fires Hotspot in Tropical Region Using LSTM

Algorithm Based on Satellite Data. In Proceedings of the 2022 IEEE Region 10 Symposium (TENSYMP), Mumbai, India, 1–3 July
2022; pp. 1–7.

33. Wang, K.; Niu, D.; Sun, L.; Zhen, H.; Liu, J.; De, G.; Xu, X. Wind Power Short-Term Forecasting Hybrid Model Based on
CEEMD-SE Method. Processes 2019, 7, 843. [CrossRef]

34. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
35. Ding, W.; Qie, X. Prediction of Air Pollutant Concentrations via RANDOM Forest Regressor Coupled with Uncertainty

Analysis—A Case Study in Ningxia. Atmosphere 2022, 13, 960. [CrossRef]
36. Liu, Y.; Wu, R.; Yang, A. Research on Medical Problems Based on Mathematical Models. Mathematics 2023, 11, 2842. [CrossRef]
37. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: New York, NY, USA, 1995; 504p.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

206



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Information Editorial Office
E-mail: information@mdpi.com

www.mdpi.com/journal/information

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI

and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any

ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-0368-2


