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Julio Cesar Rodrı́guez-Quiñonez received his B.S. degree at CETYS, Mexico, in 2007 and his Ph.D.

degree from Baja California Autonomous University, México, in 2013. He is currently a full-time
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1. Introduction

Our perception of the world is the product of the human visual system’s complex
optical and physical process. When we open our eyes, light stimuli enter our pupils, which
are the gateway to our visual experience.

These incoming rays of light then pass through the various structures of the eye, such
as the cornea and lens, which help the light to focus onto the retina. The retina, located
at the back of the eye, is a crucial component in the process of perceiving the world. It
is composed of specialized cells called photoreceptors, namely rods and cones. Rods are
responsible for vision in low-light conditions and help us perceive shades of gray, while
cones enable us to see colors and function best in bright light.

As light reaches the retina, the photoreceptors initiate a remarkable transformation.
They convert the incoming light into electrochemical signals that can be transmitted to
the brain through the optic nerve. This process involves the absorption of light by pig-
ments in the photoreceptor cells, triggering a cascade of chemical reactions that generate
electrical impulses.

The transmitted electrical signals, laden with visual information, travel along the optic
nerve to the visual cortex in the brain. Here, the incoming data undergo a complex process
that allows us to organize, interpret, and analyze the information received. The brain
seamlessly integrates this visual input with other sensory cues, such as auditory and tactile
information, to create a coherent and multi-dimensional perceived reality. It is important to
note that perception is not a direct replication of the external world but rather a constructed
representation based on the available sensory input. Factors like individual differences
in perception, attention, and previous experiences can shape how we interpret and make
sense of the visual information received.

The process underlying humans’ perception of the world involves intricate interplay
between the eye’s optical components, the retina’s photoreceptors, and the brain’s com-
plex neural networks. Together, they transform light into meaningful visual experiences,
allowing us to navigate and interact with the world around us.

In a similar way to the intricate optical and physical processes of human vision, ma-
chine vision serves as the “eyes” of cybernetic systems. Machine vision refers to technology
that enables machines to process and interpret visual information, much like how human
eyes perceive and understand their surroundings, facilitating the coexistence of the virtual
and real world in our daily lives. Cybernetic systems are involved in multiple disciplines,
and they address the emerging challenges of managing the information provided from the
virtual and physical world to offer solutions that adhere to human needs and demands [1].
Machine vision, as a part of cybernetic systems, is vital for enabling these systems to
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navigate and interact within both virtual and real-world environments in diverse appli-
cations, including in smart cities, factories, and homes, via monitoring, analyzing, and
controlling machinery, devices, and objects based on end-to-end data collected by smart
sensors connected to the internet and a cloud network [2].

Machine vision systems are based on technologies that strive for seamless integration
into our lives, are driven by creativity and a global perspective, are enabled by the power
of the intelligent interconnectivity of several surrounding environments related to an
application [3], and are continuously evolving due to ongoing research and technological
innovations, including improvements in efficiency, accuracy, and the development of
novel information theories for computer vision and image processing models [4–6] and
applications like those based on collaborative multi-agent approaches applied mainly in
swarm robotics [7].

This remarkable collaboration between agents and the fusion of their information has
been made possible through the advancement of sensor technologies and sophisticated
systems that acquire and process vast amounts of information through the Internet of
Things [8–10]. Machine vision relies on a harmonious amalgamation of optoelectronics
devices, sensors, cameras, and technical vision systems. These components work together to
capture visual data, which form the foundation for subsequent analysis and interpretation.
In this era of big data, the main technological challenges are related to handling high-
throughput tasks that are both complex and efficient, which requires the development
of new materials, new operational principles, and new designs to fulfil the requirements.
These developments require the mimicking of the relationship between the structures
and functions found in the human visual system, demonstrating significant potential for
efficiently processing optical information while consuming minimal power [11].

The field of machine vision encompasses a diverse range of technologies and method-
ologies, including artificial intelligence algorithms like deep learning algorithms and neural
networks for recognizing [12] and classifying objects in images or videos [13], enhancing
image quality and reducing noise in images [14], and 3D vision and depth sensing [15].
These algorithms are robust and adaptable, and they are used in embedded systems [16],
robust control mechanisms [17], inertial navigation systems, robotics, interconnectivity,
big data applications, and cloud computing applications [18]. These elements are at the
core of machine vision advancements, enabling cyber–physical systems to collaborate with
humans in both their real and virtual environments and activities [19].

Sensors play a pivotal role in machine vision, acting as the first point of contact for
acquiring data from the environment. These carefully designed and calibrated sensors are
capable of detecting and measuring various physical properties, such as light, tempera-
ture, pressure, and motion. The acquired data are then processed through sophisticated
algorithms and computer vision techniques, which extract meaningful information and
patterns from the raw sensory input [20].

Artificial intelligence (AI) algorithms, a driving force behind machine vision, allow
systems to understand, interpret, and make decisions based on the captured data. These
algorithms leverage deep learning, neural networks, and pattern recognition to discern
objects, recognize faces, analyze scenes, and even predict future events. The integration of
AI algorithms empowers machine vision systems to adapt and learn from their interactions
with the environment, continuously improving their performance and enhancing their
ability to assist humans in diverse tasks [21].

Embedded systems and robust control mechanisms ensure the seamless integration
and synchronization of various components within machine vision systems. These systems
coordinate the operation of sensors, cameras, actuators, and other peripherals, ensuring precise
data acquisition and processing. By tightly controlling the system’s behavior, machine vision
can deliver accurate and reliable results, even in challenging and dynamic environments.

Interconnectivity, big data, and cloud computing further augment the capabilities
of machine vision systems. The ability to connect to the internet and share data allows
for real-time collaboration, remote monitoring, and the analysis of visual information.
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With the integration of cloud computing, machine vision systems can access vast com-
puting resources and leverage sophisticated algorithms for complex tasks such as object
recognition, scene understanding, and predictive analytics. This interconnected ecosystem
facilitates seamless communication between cyber–physical systems, enabling humans to
simultaneously interact with the virtual and real worlds [22].

2. An Overview of Published Articles

This Special Issue collates articles on information theory, measurement methods,
data processing tools, and techniques for the design of machine vision systems and the
instrumentation used in machine vision systems via the application of computer vision
and image processing. Short summaries for each of the articles included within this Special
Issue are provided below.

In the article by Garcia-Gonzalez et al. (contribution 1), a novel signal processing
method is proposed for a technical vision system in order to deal with random fluctuations
in electrical voltages during data acquisition, specifically the acquisition of an optoelec-
trical signal. An information theory-based method centering around the use of Shannon
Entropy for extracting the features of optical patterns is presented to deal with the random
processes presented in the acquisition of the signal. It is implemented in structural health
monitoring to augment the accuracy of optoelectronic signal classifiers for a metrology
subsystem of the technical vision system in order to enhance the system’s spatial coordinate
measurement performance under real operation conditions in noisy electrical and optical
environments, as well as to better estimate structural displacement and for an improved
estimation of its health. In this study, five different machine learning (ML) techniques
were used to classify the optical patterns captured. Linear predictive coding (LPC) and
the autocorrelation function (ACC) were used for the extraction of optical patterns. The
Shannon entropy segmentation (SH) method was used to extract relevant information from
optical patterns, and the model’s performance was shown to be improved. The results
reveal that segmentation with Shannon entropy achieved over 95.33% accuracy. Without
Shannon entropy, the worst accuracy was 33.33%.

Wei et al. (contribution 2) propose a low-illumination image enhancement method
based on structural and detail layer images to improve an image’s brightness while effec-
tively maintaining the texture and details of the image, guaranteeing a high-quality image.
A network called the SRetinex-Net model was designed and subsequently divided into two
parts: a decomposition module and an enhancement module. The decomposition module
mainly adopts the SU-Net structure, which is an unsupervised network that decomposes
the input image into a structural layer image and detail layer image. The enhancement
module mainly adopts the SDE-Net structure, which is divided into two branches: the
SDE-S branch and the SDE-D branch. The SDE-S branch mainly enhances and adjusts the
brightness of the structural layer image through Ehnet and Adnet to prevent insufficient or
excessive enhancements of the brightness of the image. The SDE-D branch was denoised
and enhanced with textural details through the use of a denoising module. The results of
numerous experiments show that the proposed structure has a more significant impact on
the brightness and detail preservation of restored images.

Stasenko et al. (contribution 3) present a promising approach for food quality control
during the postharvest stage that leverages the power of Generative Adversarial Network
(GAN) and Convolutional Neural Network (CNN) techniques to use synthesized and
segmented Visible Near-infrared (VNIR) imaging data (“400–1100 nm”) collected under
various environmental conditions (temperature and humidity) for early postharvest decay
and fungal zone predictions, as well as for assessing the quality of stored food. Synthesized
images were obtained via the pairing of Visible (V) “380–700 nm” images and Near-infrared
(NIR) “780–2500 nm” images. By achieving accurate predictions and segmenting the decay
and fungal zones, this approach offers significant advantages over traditional methods.
NIR imagery provides detailed information about the diseased areas in stored fruits, which
is why the hyperspectral cameras containing thousands of bands are used for food quality
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monitoring at postharvest stages. However, hyperspectral devices are expensive and are not
suitable for use among farmers and sellers. Future research directions may include further
comparisons with existing methodologies, exploring its applicability to different crops
and storage conditions, and evaluating scalability for larger and more diverse datasets.
The authors concluded that by harnessing deep learning (DL) and computer vision (CV)
techniques in precision agriculture, significant strides forward in reducing food losses and
ensuring a sustainable and secure food supply chain can be made.

Haipeng et al. (contribution 4) asserted that infrared and visible image fusion meth-
ods can be used to address the challenges of low-light scenes. This paper addresses the
challenges of weak textural details, low-contrast infrared targets, and poor visual percep-
tion in existing deep learning fusion algorithms for low-light visible images to generate
high-quality fused images under the conditions for such scenes. The authors propose
a novel fusion method that exploits the characteristics of infrared and visible images to
generate high-quality fused images under such conditions. The methodology followed
consisted of the design of a Multi-Scale Edge Gradient Module (MEGB), which extracts
texture information from both infrared and visible images. Additionally, they employed the
Salient Dense Residual Module (SRDB) to extract salient features through pre-training with
salient loss. The saliency map obtained from the SRDB was incorporated into the overall
network training process. To fuse global and local information, the authors proposed the
Spatial Bias Module (SBM). Extensive comparison experiments with existing methods
were conducted to validate the effectiveness of the proposed approach in describing target
features and global scenes. The results of the ablation experiments demonstrate the efficacy
of the proposed modules. Furthermore, the authors evaluated the method’s facilitation
for high-level vision tasks, specifically semantic segmentation in diverse low-light scene
images. The proposed method was evaluated qualitatively and quantitatively on three
datasets: TNO, MSRS, and M3FD. The authors compared their method with seven other
fusion algorithms to demonstrate its superiority. The evaluation metrics used include
Standard Deviation (SD), Visual Information Fidelity (VIF), Average Gradient (AG), Dif-
ference Correlation Sum (DCS), Entropy (EN), and Structure Fidelity (SF). However, the
authors acknowledge that their method has limitations, including its inability to remove the
overexposure effect caused by strong light interference. The results of the comprehensive
evaluation and comparison experiments validate the proposed method’s superiority over
existing algorithms.

Yichun et al. (contribution 5) aimed to reconstruct high-frequency details in the
images of a scene by applying the thermal infrared image super-resolution method. They
proposed an improved thermal infrared image super-resolution reconstruction method
to solve the problem of poor image quality caused by the imaging mechanisms related
to imaging sensors, such as motion blur, optical blur, and electronic noise, which lead to
degradation in the quality of infrared images. The proposed method is based on multi-
modal sensor fusion; as inputs, it uses low-resolution (LR) versions of infrared images,
visible light images as the reference images, and high-resolution (HR) versions of infrared
images to obtain a super-resolution (SR) image. Primary feature encoding, super-resolution
reconstruction, and high-frequency detail fusion subnetworks were also included in this
study. The network incorporates hierarchical dilated distillation modules and a cross-
attention transformation module to extract and transmit image features effectively. A
hybrid loss function was introduced to guide the network in extracting salient features
from both thermal infrared and reference images while maintaining accurate thermal
information. Additionally, a learning strategy is proposed to ensure high-quality super-
resolution reconstruction performance, even in the absence of reference images.

The identification of text clusters under the sparsity of feature points derived from char-
acters was achieved by Huei-Yung Lin and Chin-Yu Hsu in contribution 6. The proposed
method was applied to invoices and banknotes for text region detection. The proposed
approach involves the distillation of local image features combined with clustering analysis
to identify meaningful regions of interest. This approach incorporates application-specific
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reference images for feature learning and extraction, enabling the identification of text
clusters even in the presence of sparse character features. The method involves calculating
clusters with high feature density and iteratively expanding the regions of interest for
complete text coverage (feature extraction, clustering analysis, and region selection), en-
abling the detection of text clusters despite sparse feature points in real-world applications
(adaptability to various application scenarios, including regions with different orientations,
size changes, or perspective distortions), as it can achieve fast detection using limited
computational resources. Unlike deep neural network approaches, it does not require
extensive model training or high computational power, making it easily implementable
with hardware-oriented acceleration. Additionally, a multi-stage algorithm with a robust
receptor descriptor is presented for character recognition. The technique offers fast region
detection and can be implemented with hardware acceleration. However, one limitation of
the proposed approach is that its detection capability is limited to man-made structures.
The authors state that their future work will center around investigating structural patterns
in natural scenes, specifically for agriculture applications.

In contribution 7, Zheng, Siming, Mingyu Zhu, and Mingliang Chen propose a method
called the hybrid multi-dimensional attention U-Net (HMDAU-Net) for reconstructing
hyperspectral images from a single-shot 2D measurement in the context of spectral snap-
shot compressive imaging (SCI). The traditional methods for capturing spatial–spectral
information involve scanning-based techniques, while SCI utilizes compressive sensing
to capture 3D spatial–spectral data efficiently in a single measurement. However, the
reconstruction process of retrieving the 3D cube from the 2D measurement is a challenging
problem. The HMDAU-Net addresses this challenge by integrating 3D and 2D convolu-
tions in an encoder–decoder structure, striking a balance between computational cost and
performance. The network incorporates attention gates to highlight important features and
suppress noise from skip connections. The authors observe that, for SCI reconstruction
tasks, the depth of the backbone network (e.g., U-Net) is not as crucial as its width (number
of kernels in each layer) in achieving good results. This observation is attributed to the
difference in tasks between image reconstruction and image classification. Additionally,
the attention gate is employed to extract essential correlations in the spectral data cube and
improve the reconstruction performance of the network. Furthermore, the authors sug-
gest that the HMDAU-Net could potentially be applied in tasks related to other domains,
such as medical imaging, image compression, temporal compressive coherent diffraction
imaging, and video compressive sensing.

As described by Pang, Xiyu, Yilong Yin, and Yanli Zheng in contribution 8, vehicle
re-identification across multiple cameras is one of the main problems of intelligent trans-
portation systems (ITSs) due to the small differences in appearance between vehicles of
the same model and the significant changes in appearance that arise when viewing from
different viewpoints. In this study, a model called multi-receptive field soft attention part
learning (MRF-SAPL) was established by learning semantically diverse vehicle part-level
features under different receptive fields through multiple local branches. In this model,
soft attention is used to adaptively locate the positions of the vehicle parts on the final
feature map, ensuring alignment and maintaining internal semantics. In particular, the
soft-attention part learning module (SAPL) in this model does not require any part-related
labels and can adaptively learn to localize the locations of the parts on the feature map to
suppress severe spatial misalignments in vehicle Re-ID. A new loss function is proposed
to obtain parts with different semantic patterns by penalizing overlapping regions. The
main contributions of MRF-SAPL are flexible part-level feature learning, adaptive part
localization using soft attention, and the use of multiple local branches with different
receptive fields. The authors show that the model outperforms previous methods on
vehicle re-identification datasets, demonstrating its effectiveness in learning fine-grained
local features at multiple semantic levels to effectively distinguish different vehicles with
similar appearances.
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Junqing et al. (contribution 9) introduced an encryption scheme designed specifically
for high-pixel-density images for ensuring the security of data transmission. The proposed
scheme leverages the quantum random walk algorithm in combination with the long
short-term memory (LSTM) model to address the efficiency- and statistical property-based
challenges of generating large-scale pseudorandom matrices. The LSTM was divided into
columns and utilized for training purposes. However, due to the random nature of the
input matrix, effective training of the LSTM was not possible. To overcome this, the output
matrix was predicted to possess a high level of randomness. This LSTM prediction matrix,
matching the size of the key matrix, was generated based on the pixel density of the en-
crypted image, effectively facilitating image encryption. In terms of statistical performance,
the proposed encryption scheme demonstrates an average information entropy of 7.9992,
an average number of pixels changed rate (NPCR) of 99.6231%, an average uniform average
change intensity (UACI) of 33.6029%, and an average correlation of 0.0032. Additionally,
various noise simulation tests were conducted to evaluate the scheme’s robustness against
common noise and attack interference in real-world applications. This approach harnesses
the nearly infinite key space provided by the quantum random walk algorithm while
addressing its low generation efficiency. Furthermore, the permutation and obfuscation
processes in the proposed scheme make use of the key space of the quantum random walk,
avoiding limitations related to the key space in a specific process.

Lei et al. (contribution 10) propose a novel method named NMYOLO for detecting
infusion containers using the You Only Look Once version 4 (YOLOv4) approach to support
medical staff in complex clinical environment by alleviating the pressure they face. The
proposed method introduces several improvements to enhance the detection of infusion
containers. First, a coordinate attention module was added after establishing YOLOv4 as the
backbone to improve the model’s perception of direction and location of information. Next,
the spatial pyramid pooling (SPP) module was replaced with the cross-stage partial spatial
pyramid pooling (CSP-SPP) module, allowing for the reuse of input information features.
Additionally, an adaptively spatial feature fusion (ASFF) module was added after the path
aggregation network (PANet) to facilitate the fusion of feature maps at different scales.
The method also utilizes the EIoU (Enhanced Intersection over Union) as a loss function
to address the anchor frame aspect ratio problem, resulting in more stable and accurate
detection. The experimental results reported in this article demonstrate the advantages of
the proposed method in terms of recall, timeliness, and mean average precision (mAP).
Although the proposed NMYOLO method achieved the desired detection performance,
it has the drawback of reduced frame rate compared to YOLOv4. The authors suggest
possible future improvements, such as using a lightweight backbone or removing the
non-essential convolution modules to reduce the model’s parameters. They also mention
the possibility of replacing modules or modifying the architecture to reduce the model’s
size while maintaining its detection accuracy.

Shengping et al. (contribution 11) discuss the limitations of the Magnetic Flux Leak-
age (MFL) visualization technique used in the surface defect inspection of ferromagnetic
materials when detecting complex defects, particularly cracks, and the loss of information
during unidirectional magnetization. To address this problem, they propose a novel image
registration method for MFL visualization that aligns images captured under different
magnetization orientations. The method utilizes mutual information and Particle Swarm
Optimization (PSO) to optimize the registration process. In this study, the design of a
new registration method for MFL images under different magnetization orientations was
achieved, a solenoid model was utilized in MFL image registration, and higher accuracy
compared to traditional methods was demonstrated through comparative experiments,
suggesting that the proposed method has the potential to enhance crack detection in
MFL testing.

Jian et al. (contribution 12) introduce a one-stage scale enhancement pyramid network
(SEPNet) to address the challenges of object detection in large-scale images captured by
unmanned aerial vehicles (UAVs), particularly when detecting small objects with signif-
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icant scale variation. The proposed SEPNet consists of two core modules: the context
enhancement module (CEM) and the feature alignment module (FAM). The CEM module
produces more salient context information by combining multi-scale atrous convolution
and multi-branch grouped convolution to model global relationships and enhance object
feature representation at different scales. It prevents the flow of features with lost spa-
tial information into the feature pyramid network (FPN). The FAM module learns the
transformation offsets of pixels to preserve aggregate feature space translation invariance,
addressing feature inconsistency issues in the FPN. It also adaptively adjusts the location
of sampling points in the convolutional kernel to preserve feature consistency and alleviate
information conflict caused by the fusion of adjacent features. This module ensures that
small objects are not drowned in feature conflicts. Additionally, this paper introduces
channel attention to refine pre-aggregated features, allowing the network to focus on the
target area rather than the background. Looking ahead, the authors of this paper suggest
that designing lightweight structures for deployment on embedded devices could be a
valuable topic to explore in future research. This implies a focus on optimizing the model’s
efficiency without compromising its performance.

In conclusion, the application of information theory to computer vision and image
processing represents a convergence of advanced technologies that bridge the gap between
the virtual and real world. Through the integration of optoelectronic devices, sensors,
artificial intelligence algorithms, embedded systems, robust control mechanisms, inter-
connectivity, big data, and cloud computing, machine vision empowers cyber–physical
systems to collaborate with humans in their daily activities. As this field continues to
evolve, we can anticipate a future where machine vision seamlessly integrates into our
lives, unlocking new possibilities and transforming the way we perceive, interact with,
and navigate both the physical and digital realms. The Guest Editors hope that after ex-
ploring the articles published in this Special Issue, entitled “Application of Information

Theory to Computer Vision and Image Processing” (https://www.mdpi.com/journal/
entropy/special_issues/MWI13854O7)—from the Information Theory, Probability and
Statistics section of the Entropy journal—readers can take inspiration for their future
research and publications.
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Abstract: A novelty signal processing method is proposed for a technical vision system (TVS).
During data acquisition of an optoelectrical signal, part of this is random electrical fluctuation of
voltages. Information theory (IT) is a well-known field that deals with random processes. A method
based on using of the Shannon Entropy for feature extractions of optical patterns is presented. IT
is implemented in structural health monitoring (SHM) to augment the accuracy of optoelectronic
signal classifiers for a metrology subsystem of the TVS. To enhance the TVS spatial coordinate
measurement performance at real operation conditions with electrical and optical noisy environments
to estimate structural displacement better and evaluate its health for a better estimation of structural
displacement and the evaluation of its health. Five different machine learning (ML) techniques are
used in this work to classify optical patterns captured with the TVS. Linear predictive coding (LPC)
and Autocorrelation function (ACC) are for extraction of optical patterns. The Shannon entropy
segmentation (SH) method extracts relevant information from optical patterns, and the model’s
performance can be improved. The results reveal that segmentation with Shannon’s entropy can
achieve over 95.33%. Without Shannon’s entropy, the worst accuracy was 33.33%.

Keywords: machine learning; data augmentation; sensor data processing; technical vision system;
optical patterns; random process; entropy

1. Introduction

Modern society requires infrastructure to perform indispensable activities such as
transportation, communication, power grid, and water supply systems. These urban
infrastructures (UI) are necessary to sustain a city’s economy. The rapid urban growth
allows testing the strengths of the civil infrastructure (CI). Traffic loads and natural hazards
are factors that can cause deterioration of the UI. To pursue sustainable development goals,
it is necessary to consider the monitoring and control of current infrastructure. Urban
sensing deals with collecting relevant information about the urban environment to develop
early warning systems to make sustainable urban systems through technology. Different
types of data sets of large amounts of information can be gathered, like air quality [1], traffic
patterns [2], and CI [3], just to mention a few examples.

The most common variables studied in CI that need adequate maintenance are related
to energy, transportation, and building. The datasets taken from CI are urban area, popula-
tion density, energy utilization by each consumer, etc. All this information is collected and
used to understand complex problems that are hard to solve, like the challenge of aging
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infrastructure. To face this challenge, a TVS is proposed to capture optical signals to create
datasets from particular behaviors of the laser beam reflected from a CI.

Optimizing maintenance activities of a key UI is an important task that should be
adopted to ensure good performance under challenging conditions. Sustaining key in-
frastructures requires constant monitoring for the safety of citizens. These elements must
follow strict safety requirements to avoid stopping the economy. Adequate maintenance
of these infrastructures can save lives. For these reasons, preserving civil and industrial
infrastructures through programmed maintenance is important. The field of structural
health monitoring (SHM) is a convenient and organized way to address the current chal-
lenges. The methodologies addressed by SHM are designed to develop technologies for
monitoring and analyzing data to prevent damage to infrastructure. SHM can help us to
evaluate the risks and manage assets better.

Nowadays, many engineers have implemented technologies to solve problems related
to damage detection. The current technology improved diagnostic accuracy by identifying
problems to make decisions objectively. On the other hand, sensor information is one
of the most important elements in quantifying risk. This allows for defining strategies
to minimize the likelihood of critical damage. To collect the information from structures
there are different technologies based on materials such as fiber Bragg grating (FBG) for
strain sensor applications in road [4], piezoelectric nanofiber membranes sensor based
on PAN/BaTiO3 (polyacrylonitrile and flexible barium titanate) [5], Carbon nanotubes
(CNTs) [6]. FBG is a technology based on optical fiber that reflects certain wavelengths and
transmits others. This material also be used for sensing applications. PAN/BaTiO3 is a
novel nanomaterial proposed for electromechanical conversion in SHM tasks due to its
strong piezoelectricity capacity. A CNT is a tiny hollow tube made of cylindrical molecules
of carbon that is widely used in many fields of science due to its electromechanical and
thermal properties. In the field of SHM, the CNT is used for measuring the strain, stress,
load, temperature, displacement, and pressure.

Recent literature based on numerical and experimental models to address classification
problems can be solved using supervised and unsupervised machine learning techniques.
These can be described as follows. The following authors [7] proposed a methodology
based on the acceleration and shear time histories evaluated on the rails. The work is treated
as a binary classification. The methodology proposed could automatically distinguish a
defective wheel from a healthy one. The development of an easy-to-implement, low-cost
monitoring system is a relevant contribution. The continuous wavelet transform (CWT)
model was used as a feature extractor from acquired responses.

A general ML framework to deal with the railway wheel flats identification can be
consulted in [8]. They deal with damage identification based on the acceleration mea-
surements on the rails. A numerical approach was performed to evaluate whether the
number of sensors used to detect and classify wheel flats. An autoregressive (AR) model
was performed as a feature extractor to take meaningful information from measurements.

The following research [9] studies the different vibration-based damage detection meth-
ods, such as fundamental modal examination, local diagnostic method, non-probabilistic
methodology, and the time series method.

A Singular spectrum analysis (SSA) is a nonparametric method for analyzing time
series. This tool can enhance the sensitivity of the acceleration signals. SSA uses time history
data obtained from each sensor separately, and the singular value decomposition (SVD) is
performed on the Hankel matrix formed [10]. The work [11] was focused on detecting and
identifying damage in a structure in an online framework. They proposed a methodology
for real-time based on recursive singular spectrum analysis (RSSA). According to the
findings, RSSA facilitates the monitoring of structural systems and real-time data processing
through acceleration data using single and multiple sensors. The exact damage instant can
be identified by extracting damage-sensitive features from measurements.

The authors [12] give a broader discussion of first-order perturbation (FOP) techniques
that solve SHM problems in online real-time structural damage detection for vibrating
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systems. The following authors performed a novel framework by applying Recursive
Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive
Modeling (TVAR) for an online damage detection method for real time processes [13].

A literature review of next-generation smart sensing technology in SHM, such as
smartphones, unmanned aerial vehicles (UAVs), cameras, and robotic sensors, are used in
acquiring and analyzing the vibration data [14]. A LiDAR (Light Detection and Ranging)
device is an instrument that has significant potential for damage detection based on laser
scanning providing geometric information about the structures [15].

Although a Light Detection and Ranging (LiDAR) system is highly precise and reliable,
the cost of its implementation for SHM tasks can be expensive in the case of a 64-beam
model that can cost around $75,000 (USD) [16]. Despite their high cost, LiDAR is mainly
used for perception and localization tasks at most high level [17]. The advantage of these
systems is that the performance of the system can be determined by using non-destructive
techniques (NDT).

This work is focused on a TVS system for displacement measurements. The current
TVS has the patent number MX2014000647, which uses a dynamical triangulation method
to get angular position and 3D coordinates from objects or surfaces. This system can also
perform the same tasks as cameras and LiDAR for SHM tasks. But with advantages like high
accuracy, low computational cost, and low volume of data requirement for measurements.

A laser source obtains the geometrical coordinates of a surface under study. A photo-
sensor detects the laser beam reflected. However, in a real operation, interferences of other
radiation sources can affect the information collected with a TVS. For example, sunlight is
the main interference that should be filtered. For this reason, the reflected laser beam is
mixed up with undesired signals.

A novelty signal processing method is proposed for a technical vision system (TVS).
A method based on the use of the Shannon entropy for feature extractions of optical
patterns in the context of SHM to augment the accuracy of optoelectronic signal classifiers
implemented in the metrology subsystem of the TVS. To enhance the TVS spatial coordinate
measurement performance at real operation conditions with electrical and optical noisy
environments to estimate structural displacement better and evaluate its health.

The following research faces the same problem in reconstructing the real returning
signal shape, and its problem is exacerbated by the presence of strong solar background
illumination [18]. Using optical filters and higher-power lasers would be a solution. How-
ever, these increase the cost of manufacturing a TVS and increase larger usage risks and
augment energy consumption. An alternative solution is to apply Artificial intelligence
(AI) to detect what signal corresponds to the laser beam. ML can solve the interference
issue as a recognition pattern problem. To enhance the accuracy of ML models, Shannon’s
entropy is proposed to remove parts that contain random signals and isolate them from the
optical patterns.

In this work the following novelty signal processing method is proposed to enhance
the TVS accuracy.

A method based on the use of the Shannon entropy for feature extractions of optical
patterns in the context of SHM to augment the accuracy of optoelectrical signal classifi-
cations implemented in the metrology subsystem of the TVS. To enhance the TVS spatial
coordinate measurement performance at real operation conditions with electrical and
optical noisy environments to estimate structural displacement better and evaluate its
health.

Relevant procedures in the method are:

1. Using a phototransistor with black daylight filter as a photosensor of a TVS to reduce
the influence of solar radiation as much as possible.

2. Calibrating the TVS with a turned-off laser and obtaining raw signals (Class 1).
3. Calibrating the TVS with a turned-on laser and obtaining raw signals (Class 2).
4. Creating a Class 3 with data augmentation to create robust ML models.
5. Comparing the performance of five different ML models with LPC and ACC.
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6. Comparing the performance of five different ML models with LPC and ACC and
Shannon’s entropy as a segmentation process.

This work aims to find the configuration that enhances the performance of ML models
to discriminate against sunlight interference. One of the main goals is to implement a
pipeline that can recognize the reflected laser beam pattern. For that reason, this research
compares the accuracy of five different ML techniques with LPC, ACC, and Shannon’s
entropy. The following classifiers such as Naïve Bayes (NB), support vector machines (SVM),
linear discriminant analysis (LDA), K-Nearest Neighbors (KNN), and neural network
(NN), were used. Data augmentation was implemented to enhance the accuracy of these
classifiers.

This paper is organized as follows. Section 2 gives details about the problem state-
ment. Section 3 describes the operational principle of a TVS and the latest improvements.
Section 4 provides a brief overview of the feature extractions used. Section 5 summarizes
the ML methods used in this work. Section 6 presents the proposed ML pipeline to solve
the problem of interference. Section 7 discusses the results and highlights of the experi-
ments carried out in this work. Finally, some conclusions and recommendations from the
experiments are shared in Section 8.

2. Problem Statement

Recent studies were conducted outdoors and compared with experimentation under
indoor (Laboratory) conditions, from which the results showed that undesired signals
affected the performance of the TVS. This was primarily due to the conditions of intense
radiation [19–21]. Consequently, a laser beam cannot be captured by a TVS system. The
solar radiation spectrum shows that infrared light is reflected more than ultraviolet (UV) or
visible light due to its longer wavelength. This is important to consider because several
devices can work with these wavelengths, such as phototransistors (PT) and photodiodes
(PD).

PT is more sensitive to light than PD due to high gain. Another advantage of PT over
PD is that it can be obtained at low-cost. The PT used in this work minimizes outside
interference thanks to its daylight filter. Although PT was chosen, TVS is still detecting low
interference outdoors. The interference can be discriminated against using ML models to
address this issue. Particular optical patterns only can appear in three different scenarios.
The first scenario corresponds to when TVS is turned off. The second scenario appears
when TVS is turned on. Finally, the third scenario represents a saturation of a signal
captured.

Figure 1, shows raw signals detected with the PT. Figure 1a corresponds to the back-
ground or possible interferences found outdoors; at that moment, TVS is turned off. This
optical pattern has a peak voltage of 2.5 Volts, labeled class 1. The reason is to create an ML
model that can discriminate between the interferences and laser scanning of the TVS system.
Figure 1b shows a particular pattern at the moment the TVS is turned on. Thanks to laser
power, this signal can be captured by the PT. This signal has a peak voltage of 4.5 Volts and
is labeled class 2. Note that the peak of voltage of class 1 and class 2 is different. Figure 1c
is class 3 created by a data augmentation stage (synthetic signal). This signal represents a
random signal created by external factors.

The three classes contain low voltages, captured when radiation is not detected. These
are a part of the optical patterns that can be regarded as a problem because there is no
relevant information. Random voltage variations are redundant information that needs to
be addressed.
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Figure 1. Raw signals mixed up with interference are used for pattern recognition. (a) The solid red
line represents TVS is turned off. (b) Blue color shows the signal captured when TVS is turned on.
(c) The solid green line signal represents an unknown pattern (this signal was created as a synthetic
pattern). Note that an important part of the signal is random electrical information.

3. Operational Principle of TVS

In this section, a brief overview of evolution and operational principles of TVS are
given.

TVS system is a device that can solve real-time tasks to measure three-dimensional
(3D) coordinates. These tasks are needed in many contexts of SHM, such as displacement
measurements or surface estimation. This system has two main parts to realize depth
measurements. The first component of a TVS is the positioning laser (PL) that uses an
active laser in conjunction with mechanical elements, such as a step/servo motor and
gears, whereby the space of interest can be radiated. The second component is the scanning
aperture (SA), which contains photosensors to receive the radiation reflected from objects
under study.

The distance between PL and SA is known, and can be identified as a which is
illustrated in Figure 2. Angular position of the PL can be controlled by a step motor or
servo motor. PL is an angle known by the user that corresponds to Ci,j. The angular position
of SA is measured by knowing the peak time of the Gaussian signal and period of the DC
motor with a speed constant, this is denoted by Bi,j.

Figure 2 explains how to determine the angular position of SA when a Gaussian signal
appears. This signal has the shape of a normal distribution bell (Gaussian). A rotational
mirror at an angle of 45° reflects the radiation of an object to the photosensor placed on
SA. As a consequence, the Gaussian shape of a signal is formed. The capacitance of a
photosensor and signal processing can smooth the Gaussian signal.

Since TVS is scanning at a constant angular velocity, the time elapsed between the start
of the first pulse and the second pulse can be used to estimate the angular position. For
instance, the angular position β of the PT can be calculated as follows with Equation (1).

β = 2π
tα

T2π
(1)

where the time tα is defined as the interval between the signal m1 and the position of the
energy center is m2.
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Figure 2. Graphical aid to visualize the main parts of TVS in operation. Bi,j is the angular position
according to a frame reference. The oscilloscope shows the pulse and a laser beam (Gaussian Signal)
without interference.

The local maximum of the Gaussian signal is related to the energetic center of the
radiation reflected on the surface studied. A complete revolution of a motor is the period of
time used to know the angular position of a local maximum of a Gaussian signal, and this
is called Bi,j. Opto-interrupters or Hall sensors are usually used to calculate the pulses per
revolution of a DC motor. In this paper, ITR8102 (Everlight Electronics, New Taipei City,
Taiwan) was implemented to know the position of the motor on SA. This opto-interrupter
sends pulses for every revolution of the rotational mirror. For each revolution of a DC
motor, a Gaussian shape will appear during the scanning, as illustrated in Figure 2.

Knowing the scanning frequency makes it possible to calculate Bi,j. With this infor-
mation, the object position is estimated at two different times. If Bi,j moves, di,j can be
determined in real-time. Note that distance di,j corresponds to depth. According to sine
theorems and the values of the angles Bi,j and Ci,j depth information di,j is estimated with
Equation (2).

di,j = a
sin(Bi,j)sin(Ci,j)

sin[180◦ − (Bi,j + Ci,j)]
(2)

Figure 3, details relevant information about different TVS prototypes.
To extend the information of a TVS, the following work [22] shows typical laser scanner

constructions and their constraints.
The following researchers [23–25] worked with the first version of the TVS prototype

number one. They used the TVS for remote sensing and obstacle detection in an unknown
environment. This prototype presented simplicity, versatility, and economic accessibility to
realize 3D coordinates measurements. An inconvenience of this prototype is that it could
only scan in a discontinuous way. In other words, point clouds give shape to the object
studied. The next work [26] involved the substitution of the previous (prototype No. 2)
and changed the stepper-motor by servo-motors to achieve a continuous laser scan (newly
developed prototype No. 3).

A complete mathematical apparatus for processing digital information inside the
system and for determining the distances and angle measurements in the system proposed
is developed [27].
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Figure 3. Comparison of different TVS systems developed for measuring 3D coordinates.

4. Feature Extraction Methods

Feature extractors are mathematical algorithms that recover relevant information
(attributes) from a phenomenon like our raw signals captured with a PT. This process is
known as feature engineering, and the main purpose is to use representative data with less
information. These features enhance the ML models, and redundant data are minimized.
There are several methods, such as Autoregressive (AR) Modelling, Linear Predictive
Coding (LPC), Autocorrelation coefficients (ACC), Mel Frequency Cepstral Coefficients
(MFCC), Fast Fourier transform (FFT), Hilbert transform, just to mention a few. Trends and
a zoomed-in perspective of feature extraction methodologies can be consulted in [28].

This work implements ACC and LPC as feature extractors. However, Shannon’s
entropy is used to segment only the optical pattern from the electrical signal and remove
the rest of the signal.

The description of these techniques are detailed as follows.

4.1. Autocorrelation Function

The autocorrelation function (ACF) vector can be used for extract the features (ACC)
of the TVS system by measuring the correlation between yt and yt+k where x = 0, . . . , k
and yt is a stochastic process.

The correlation for lag k can be estimated by applying Equation (3). For more details,
see the following work [29].

rk =
ck
c0

(3)

where c0 represents the sample variance of the time series and ck can be estimated by
Equation (4).

ck =
1
T

T−k

∑
t=1

(yt − ȳ)(yt+k − ȳ) (4)

Figure 4 shows the feature space of ACC as a feature extractor from a raw signal.
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Figure 4. Feature space of ACC as a feature extractor of a raw signal.

Figure 5 shows the feature space of ACC with the Shannon entropy. Note that the
segmentation with the Shannon entropy separates each class in comparison with Figure 4.
The coefficients 1,2,3 represent the first three features of ACC or LPC. For this study, we
extracted 11 features for each optical pattern. These figures differences rely on the useful
features extracted with the Shannon entropy as a segmentation process. The ideal case is
when the feature extraction process can separate all classes.

Figure 5. Feature space of ACC and the Shannon entropy as a segmentation process.

4.2. Linear Predictor Coefficients

The procedure to calculate the LPC coefficients can be described as follows. First,
Equation (5) was applied to calculate the FFT of a desired signal to compute the autocorre-
lation vector.

xk =
N

∑
n=1

xne−j2π(k−1)(n−1)/N (5)

After obtaining FFT Xk, the inverse discrete Fourier transform of the absolute value of
Xk value is taken and squared to compute the autocorrelation vector R by Equation (6).

Xj =
1
n

n

∑
k=1

Yke2iπ(j−1)(k−1)/n (6)

17



Entropy 2023, 25, 1207

A scaling is applied to the output and the bias of the autocorrelation is estimated
B = R./m, where m represents the number of the length of the vector or signal segment
under study.

The Hermitian Toeplitz system of equations is built as follows:

⎡
⎢⎢⎢⎣

B(1) B(2)∗ . . . B(n)∗
B(2) B(1) . . . B(n− 1))∗

...
. . . . . .

...
B(n) . . . B(2)) B(1))

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

A(2)
A(3)

...
A(n + 1)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
−B(2)
B(3)

...
−B(n + 1)

⎤
⎥⎥⎥⎦

(7)

This system of equations Equation (7) can be solved by Levinson-Durbin, recursion
and the real coefficients A for the predictor are taken.

Figure 6 illustrates the feature space of LPC as a feature extractor from a raw signal.
Figure 7 shows how the classes were separated with Shannon’s entropy segmentation
process.

Figure 6. Feature space of LPC as a feature extractor of a raw signal.

Figure 7. Feature space of LPC and the Shannon entropy as a segmentation process.
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4.3. Entropy as an Optical Feature

Entropy is a broad concept that measures the disorder in a random system. According
to Shannon, a non-linear measurement in dynamic signals, measures the average informa-
tion contents associated with the data randomness encountered in a signal or event [30].
The relevance of SHM is that SE is a useful tool to show changes in the measured signals
associated with the structure condition.

Given a source of random events from the discrete set of possible events a1, a2, . . . , an,
with associated probability distribution P(a1), P(a2), . . . , P(an), the average information
per source output can be called as the entropy of the source, see Equation (8)

H = −
N

∑
n=1

P(an)logP(an) (8)

H may alternatively be understood as a measure of unpredictability of information
content [31].

In the case of this work, Shannon’s entropy is used as a segmentation process. As
mentioned before, part of the optical patterns are random electrical signals that increase the
size of the dataset. It measures the entropy of a signal divided into frames with 80 samples
of window length and with 30 samples of overlap.

5. Machine Learning Classifiers

The power of ML techniques is based on the algorithm chosen to solve a complex
problem. The following ML classifiers, such as NB, SVM, LDA, KNN, and NN, were
selected to discriminate between the reflected laser beam and sunlight or other radiation
sources. These techniques are described below.

5.1. Naives Bayes

NB is a probabilistic classifier that works well as most distributions of related features
follow probabilistic nature [32]. This classifier assumes that the properties of the features
on a given class are independent of the values of the other features. By knowing our class
labels and training data set as T = (x1, y1), . . . (xN , yN). Each instance from the data set is
represented by n-dimensional feature vector, X = x1, x2, . . . , xn. Each label is represented
by y ∈ {1, . . . , K}, where K is the number of a class. In this work there are three classes,
C1, C2 and C3.

According to [33], given a sample X, NB will predict that X belongs to the class having
the highest a posteriori probability, which is conditioned on X. X is predicted to belong to
the class Ci if and only if.

P(Ci
∣∣ X
)
> P(Cj

∣∣ X
)

f or 1 ≤ j ≤ m, j �= i (9)

Based on Bayes’ theorem,

P(Ci
∣∣ X
)
=

P(X
∣∣ Ci
)

P(Ci)

P(X
) (10)

where P(Ci
∣∣ X
)

is the class prior probability and posteriori probability. P(X
∣∣ Ci
)

is the
likelihood, which is the probability of the predictor given class.

5.2. Support Vector Machines

A SVM classifier starts with a construction of a decision function f (x, ω) = sign(h(x, ω))
with outputs {±1}, where h(x, ω)) is a separating hyperplane that can be expressed as
follows:

h(x, ω) = 〈ω + φ(x)〉+ b (11)

where ω defines a direction perpendicular to the hyperplane.
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Although SVM was initially designed for binary classification, several methods have
been proposed to create a multiclass classifier. One-versus-rest (1VR) and one-versus-one
(1V1) are representative ensemble schemes for discrimination for more than two categories.
This approach’s main issue is constructing a good Error Correcting Output Codes (ECOC)
matrix [34]. This work is based on 1V1 that fits K(K− 1)/2 by individual binary classifiers
SVM models.

One of the main problems of applying multi-class classification is usually solved
by a decomposing and reconstruction procedure when two-class decision machines are
implied [35].

5.3. Linear Discriminant Analysis

An extension of Fisher’s linear discriminant for n classes can be represented as an
intra-class matrix according to [36].

Σ̂w = S1 + · · ·+ Sn =
n

∑
i=1

∑
x∈ci

(x− x̄i)(x− x̄i)
′

(12)

where x̄ is the mean value and x̄i corresponds to the mean for each class.
The inter-class matrix can be represented as follows:

Σ̂b =
n

∑
i=1

mi(x̄i − x̄)(x̄i − x̄)
′

(13)

where mi represents the number of training samples for each class.

5.4. K-Nearest Neighbors

KNN is one of the most popular algorithms to be used as a multi-class ML technique.
This technique is a non-probabilistic classifier as well as SVM. It is well known as lazy
learning because it does not carry out a training phase [37]. The latest trends and applica-
tions of KNN in Big Data [38] are used in the context of smart cities [39]. This algorithm
compares the k nearest neighbors to be used as a decision rule to classify a new distance
as belonging to a class. Furthermore, KNN can be applied for regression problems. KNN
algorithm is a distance-based classifier, and the main functions employed by this algorithm
are Euclidean, Mahalanobis, Hamming, and Citiblock. The Euclidean distance is used in
this work. This metric can be expressed as follows.

d(x, y) =
N

∑
i=1

√
x2

i − y2
i (14)

where, N is the total number of samples.

5.5. Neural Network

Learning and memory are complex processes that AI tries to imitate or understand.
An artificial NN is a computational tool inspired by human brain behavior to perform these
tasks. Recent development in neural networks profoundly showed incredible results in
object classification, pattern recognition, and natural language processing [40].

A NN can be classified into two categories such as feed-forward (FNN) and feed-
backward or recurrent (RNN), according to their interconnection between the neuron
layers.

Convolutional neural networks (CNN) are another type of NN well-known by machine
vision designers. The NN classifier used in this work is based on FNN.

Weight matrix and activation functions are important parts of designing a NN. The
activation function transforms an input signal into an output signal. The functions such
as Rectified Linear Unit (RELU), SoftMax, Binary Step Function, Linear, Sigmoid, Tanh,
Exponential Linear Unit, and Swish are commonly used.
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A RELU function has the main goal of establishing a threshold operation for input,
and this can be expressed as follows:

f (x) =
{

0 i f x < 0
x i f x ≥ 0

(15)

The SoftMax activation function regularly is applied to the final fully connected layer.
This function can be implemented as follows:

so f tmax(zi) =
exp(zi)

∑K
j=1 exp(zi)

(16)

where z are the real values of the output layer and K is the number of classes. SoftMax
functions convert these values into probabilities (classification scores).

The parameters of activation functions applied in this work are to create a NN classifier
using two fully connected layers, each with three outputs. The RELU activation function
was implemented for every fully connected layer of the NN model. As an output layer of
the NN classifier, a SoftMax activation function was used.

The following authors [41], implemented an FNN application to evaluate sustainable
urban environmental quality to deal with air pollution. Ref. [42] reviews on the basic
theories and recent algorithms for optimizing NN.

6. Proposed Classification Schemes

This section gives an overview of a practical implementation of ML with different
techniques. Figure 8, shows the complete procedure for classifying the laser beam. This
procedure starts with inputting of raw signal captured with a phototransistor (peak wave-
length 940 nm). A data augmentation process was used to enhance the performance of the
ML models. In that stage, time scale modification (TSM) is applied on the input raw signals
by applying different speedup factors. In the literature, this is known as alpha. Then, a
white Gaussian noise is added to a raw signal. Finally, the signal is filtered a mean filter
by using 14 coefficients. Different signals were created with this procedure to make more
robust predictions. The normalization process is realized to work with uniform data with
values between 0 and 1. The main goal of the segmentation process is to divide the input
signal into several windows, and each segment should also be meaningful. Particular fea-
tures of each window are evident thanks to this process. As shown in Figure 8, a Hamming
window of a 240-point is created to convolve with each segment. The following process
shows that ACC or LPC are estimated and stored in a feature matrix. This matrix is split
into two data sets. Training and test data sets are used in the learning process. Finally, the
classification process gives the accuracy of the feature vectors tested. Figure 9, shows the
procedure of how the optical patterns were collected. Each frame has an entropy value
representing the optical pattern’s randomness level. Smaller values of total entropy are
removed. Note that in Figure 9 the size of the feature matrix with Shannon’s entropy is
reduced in comparison with Figure 8. Appendix A shows the pseudocode of two proposed
classification schemes, as described previously.
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Figure 8. Flow chart of the reflected laser beam classification without Shannon’s entropy for removing
frames.

Figure 9. Flow chart of the laser beam classification based on Shannon’s entropy segmentation.

7. Results and Discussion

This section explains how the results of this study were obtained to classify the optical
patterns into class 1, class 2 and class 3 (see Figure 1 as reference for each kind of class).

7.1. Results without Entropy Segmentation

Table 1 shows the percentages of correctly and incorrectly classified instances for each
true class carried out in this experiment. True positives of class 1, class 2, and class 3 were
1386, 1970 and 1495, respectively. The confusion matrix shows that 1746 measurements were
misclassified. The class precision reached for class 1, class 2, and class 3 was 63%, 89.6%,
and 68%, respectively. The accuracy of correct classifications overall test optoelectrical
signals was 73.53% while the test error was 26.47%. In the case of NB-ACC the accuracy of
correct classifications overall test optoelectrical signals was 57.48% while the test error was
42.52%. The confusion matrix shows that 2805 measurements were misclassified.
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Table 1. Performance of NB-LPC and NB-ACC.

Predicted Class NB-LPC Predicted Class NB-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 1386 0 813

Tr
ue

Class1 1253 894 52
Class2 0 1970 229 Class2 17 2182 0
Class3 704 0 1495 Class3 730 1112 357

Table 2 indicates the percentages of correctly and incorrectly classified instances for
each true class in this experiment. True positives of class 1, class 2, and class 3 were
2199, 2199, and 2172, respectively. All the measurements belonging to classes 1 and 2 are
classified correctly. The confusion matrix shows that 27 measurements were misclassified.
The classification accuracy reached for class 1, class 2, and class 3 was 100%, 100%, and
98.8%, respectively. The accuracy of correct classifications overall test optoelectrical signals
was 99.59% while the test error was 0.41%. In the case of NB-ACC, the accuracy of correct
classifications overall test optoelectrical signals was 74.40% while the test error was 25.60%.
The confusion matrix shows that 1689 measurements were misclassified.

Table 2. Performance of SVM-LPC and SVM-ACC.

Predicted Class SVM-LPC Predicted Class SVM-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 2199 0 0
Tr

ue
Class1 1212 987 0

Class2 0 2199 0 Class2 23 2176 0
Class3 27 0 2172 Class3 228 451 1520

Table 3 shares the percentages of correctly and incorrectly classified instances for each
true class and predicted class in this experiment. True positives of class 1, class 2, and class
3 were 2198, 2199, and 2181, respectively. All the measurements belonging to class 2 are
classified correctly. The confusion matrix shows that 19 measurements were misclassified.
The class precision reached for class 1, class 2, and class 3 was 99.99%, 100%, and 99.2%,
respectively. The accuracy of correct classifications overall test optoelectrical signals was
99.71% while the test error was 0.29%. In the case of NB-ACC, the accuracy of correct
classifications overall test optoelectrical signals was 99.51% while the test error was 0.49%.
The confusion matrix shows that 32 measurements were misclassified.

Table 3. Performance of LDA-LPC and LDA-ACC.

Predicted Class LDA-LPC Predicted Class LDA-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 2198 1 0

Tr
ue

Class1 2197 2 0
Class2 0 2199 0 Class2 9 2190 0
Class3 18 0 2181 Class3 1 20 2178

Table 4 indicates the percentages of correctly and incorrectly classified instances for
each true class and predicted class carried out in this experiment. The configurations
KNN-LPC and KNN-ACC achieved the same results. True positives of class 1, class 2,
and class 3 were 2199, 2199, and 2199, respectively. The classification accuracy reached for
class 1, class 2, and class 3 was 100%, 100%, and 100%, respectively. All the measurements
belonging to each class were classified correctly. The accuracy of correct classifications
overall test optoelectrical signals was 100% while the test error was 0%.
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Table 4. Performance of KNN-LPC and KNN-ACC.

Predicted Class KNN-LPC Predicted Class KNN-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 2199 0 0

Tr
ue

Class1 2199 0 0
Class2 0 2199 0 Class2 0 2199 0
Class3 0 0 2199 Class3 0 0 2199

Table 5 shows the percentages of correctly and incorrectly classified instances for each
true class and predicted class carried out in this experiment. The configuration NN-LPC
achieved the following results. True positives of class 1, class 2, and class 3 were 2199,
0, and 0, respectively. The classification accuracy reached for class 1, class 2, and class
3 was 100%, 0%, and 0%, respectively. All the measurements belonging to classes 2 and
3 were classified incorrectly. The confusion matrix shows that 4398 measurements were
misclassified. The accuracy of correct classifications overall test optoelectrical signals was
33.33% while the test error was 66.67%.

Table 5. Performance of NN-LPC and NN-ACC.

Predicted Class NN-LPC Predicted Class NN-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 2199 0 0
Tr

ue
Class1 2199 0 0

Class2 2199 0 0 Class2 0 2199 0
Class3 2199 0 0 Class3 0 0 2199

In the case of NN-ACC the accuracy of correct classifications overall test optoelectrical
signals was 100% while the test error was 0%. All the measurements belonging to each
class were classified correctly.

7.2. Results Entropy Segmentation

Table 6 shows the percentages of correctly and incorrectly classified instances with NB-
SH-LPC model. The accuracy of correct classifications overall test optoelectrical signals was
95.33%, while the test error was 4.67%. The confusion matrix shows that 21 measurements
were misclassified.

Table 6. Performance of NB-SH-LPC and NB-SH-ACC.

Predicted Class NB-SH-LPC Predicted Class NB-SH-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 143 7 0

Tr
ue

Class1 144 6 0
Class2 0 150 0 Class2 0 150 0
Class3 12 2 136 Class3 3 2 145

In the case of SHH-NB-ACC, the accuracy of correct classifications overall test opto-
electrical signals was 97.56% while the test error was 2.44%. The confusion matrix shows
that 11 measurements were misclassified.

Table 7 shows the percentages of correctly and incorrectly classified instances with
the SVM-SH-LPC model. All the measurements belonging to each class were classified
correctly. The accuracy of correct classifications overall test optoelectrical signals was 100%
while the test error was 0%.
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Table 7. Performance of SVM-SH-LPC and SVM-SH-ACC.

Predicted Class SVM-SH-LPC Predicted Class SVM-SH-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 150 0 0

Tr
ue

Class1 148 0 2
Class2 0 150 0 Class2 0 150 0
Class3 0 0 150 Class3 0 0 150

In the case of SVM-SH-ACC, the accuracy of correct classifications overall test opto-
electrical signals was 99.56% while the test error was 0.44%. The confusion matrix shows
that two measurements were misclassified.

Tables 8 and 9 show the percentages of correctly and incorrectly classified instances
with LDA-SH-LPC, LDA-SH-ACC models, KNN-SH-LPC, KNN-SH-ACC models. All the
measurements belonging to each class were classified correctly. The accuracy of correct
classifications overall test optoelectrical signals was 100% while the test error was 0%.

Table 8. Performance of LDA-SH-LPC and LDA-SH-ACC.

Predicted Class LDA-SH-LPC Predicted Class LDA-SH-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 150 0 0

Tr
ue

Class1 150 0 0
Class2 0 150 0 Class2 0 150 0
Class3 0 0 150 Class3 0 0 150

Table 9. Performance of KNN-SH-LPC and KNN-SH-ACC.

Predicted Class KNN-SH-LPC Predicted Class KNN-SH-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 150 0 0

Tr
ue

Class1 150 0 0
Class2 0 150 0 Class2 0 150 0
Class3 0 0 150 Class3 0 0 150

Table 10 shows the percentages of correctly and incorrectly classified instances with the
NN-SH-LPC model. All the measurements belonging to each class were classified correctly.
The accuracy of correct classifications overall test optoelectrical signals was 100% while the
test error was 0%. In the case of NN-SH-ACC, the accuracy of correct classifications overall
test optoelectrical signals was 99.33% while the test error was 0.67%. The confusion matrix
shows that three measurements were misclassified.

Table 10. Performance of NN-SH-LPC and NN-SH-ACC.

Predicted Class NN-SH-LPC Predicted Class NN-SH-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 150 0 0

Tr
ue

Class1 147 1 2
Class2 0 150 0 Class2 0 150 0
Class3 0 0 150 Class3 0 0 150

Figure 10, summarizes the performance of the ML models with ACC, LPC, and
Shannon’s entropy. Without Shannon’s entropy segmentation, the overall misclassification
reached was 10710. This pipeline needed better results in terms of accuracy for NB-LPC,
NB-ACC, SVM-ACC, and NN-LPC. The worst accuracy was 33.33%.

With Shannon’s entropy as a segmentation process, the overall misclassification was
37. The accuracy of the ML classifiers was superior to the previous pipeline.
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Figure 10. A summary of machine learning model’s performance. The first results do not include the
Shannon entropy (SH) as a segmentation process. The second results show the performance of ML
models with the SH segmentation method.

8. Conclusions

Optical sensors can be viewed as an effective transducer to collect data without
physically contacting the object under study. Significant value added for remote sensing,
such as quantitative or qualitative information, can be gathered. Accessing this information
enables us to study the optimal UI parameters, measure many variables, and design early
warning systems. Using a phototransistor as a transducer leads to reasonable results in
detecting laser beams. The advantage of using this sensor is the internal daylight-blocking
filter, which can be bought at low-cost. The main contribution of this study is related to the
electronic and physical aspects of sensors in urban sensing systems for SHM tasks and the
application of ML methods for its enhancement.

In this paper, we have shown how a TVS can be enhanced using an IT approach. The
proposed approach of using an ML framework was implemented to solve the problem
related to interference in a real environment. Feature extraction methods were used as
a preprocessing stage, and various classifiers were reviewed. The windowing process
was integrated into the ML pipeline to split the input signal into temporal segments. The
Shannon entropy was used to remove and extract meaningful information from optical
patterns.

Results showed significantly better accuracy using Shannon’s entropy as a segmen-
tation process. Relevant information was extracted from signals, and ML models were
created. Accuracy reached using SVM, LDA, KNN, and NN was over 99%. The accuracy of
NB-SH was 95.33% and 97.56% with LPC and ACC, respectively. These results demonstrate
Shannon entropy superiority in extracting the optical patterns over frames of complete
segments. Without Shannon’s entropy segmentation, the worst accuracy was 33.33%.

Practical implementation of this frame can avoid outdoor interferences. In addition,
these findings provide additional information about the type of ML techniques that can
be used in outdoors environments. This work can be extended to other applications.
Three different ECG signals were classified to validate these configurations with Shannon’s
entropy and LPC-ACC, showing satisfactory results. This indicates that the ML framework
with LPC-ACC and the Shannon entropy can solve pattern recognition problems.
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Appendix A. Pseudocode for the Important Parts of the Experimental Design

Figures A1–A4 show a general framework for classifying optical patterns. These
procedures were adopted to conduct the experiments.

Appendix A.1. Feature Extraction Pseudocodes

Figure A1. Example of pseudocode to extract features with the Shannon Entropy method. This code
is for one-dimensional digital signal processing.

Figure A2. Example of pseudocode to extract features with a Hamming Window applied to each
frame. This is for one-dimensional signals. This code is for one-dimensional digital signal processing.
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Appendix A.2. Pseudocodes for Machine Learning Classifiers

Figure A3. This code shows the procedures to build the ML models. ML designers should select LPC
or ACC to conduct the experiments. Note that this pseudo code needs the function of SHf eat.

Figure A4. This code shows the procedures to build the ML models. ML designers should select LPC
or ACC to conduct the experiments. Note that this pseudo code needs the function of Seg f eat.
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Abstract: Low-illumination image enhancement technology is a topic of interest in the field of image
processing. However, while improving image brightness, it is difficult to effectively maintain the
texture and details of the image, and the quality of the image cannot be guaranteed. In order to solve
this problem, this paper proposed a low-illumination enhancement method based on structural and
detail layers. Firstly, we designed an SRetinex-Net model. The network is mainly divided into two
parts: a decomposition module and an enhancement module. Second, the decomposition module
mainly adopts the SU-Net structure, which is an unsupervised network that decomposes the input
image into a structural layer image and detail layer image. Afterward, the enhancement module
mainly adopts the SDE-Net structure, which is divided into two branches: the SDE-S branch and
the SDE-D branch. The SDE-S branch mainly enhances and adjusts the brightness of the structural
layer image through Ehnet and Adnet to prevent insufficient or overexposed brightness enhancement
in the image. The SDE-D branch is mainly denoised and enhanced with textural details through a
denoising module. This network structure can greatly reduce computational costs. Moreover, we
also improved the total variation optimization model as a mixed loss function and added structural
metrics and textural metrics as variables on the basis of the original loss function, which can well
separate the structure edge and texture edge. Numerous experiments have shown that our structure
has a more significant impact on the brightness and detail preservation of image restoration.

Keywords: low-illumination image enhancement; image decomposition; U-Net; Retinex-Net

1. Introduction

With the development of electronic devices, digital images have played an important
role in our lives. They are widely used in fields such as traffic management, medicine [1],
satellite remote sensing, and target recognition and tracking. However, the complexity of
the shooting environment often leads to low-quality phenomena, such as low recognition,
color distortion, and loss of details. Due to the low quality of images, subsequent computer
vision tasks become difficult. Because image enhancement can improve the visibility and
practicality of low-illumination images, it has important research value.

At present, image enhancement is mainly divided into traditional methods and deep-
learning-based methods. Retinex theory, a model for brightness and color perception
in human vision and a commonly used low-illumination image enhancement method,
was proposed by Land [2] in the 1970s. Afterward, many scholars continued to build on
this basis, from the single-scale Retinex (SSR) algorithm to the multi-scale Retinex (MSR)
algorithm [3] and then to MSR with color recovery (MSRCR) [4]. However, both SSR and
MSR generally exhibit color distortion. Compared with other algorithms, the MSRCR
algorithm has a better color restoration ability, but it has high computational complexity
and many adjustable parameters that are difficult to adaptively select. In addition, on
the basis of Retinex theory, some simple and efficient image enhancement methods based
on the Retinex model have been proposed for low-illumination image enhancement [5],
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such as LIME [6], RobustRetinex [7], and JED [8]. Reference [9] also proposed a convex
variational model, which could effectively decompose the gradient field of an image into
prominent edges and a relatively smoother illumination field through first- and second-
order total change regularization. In summary, although these traditional methods can
effectively enhance image brightness and preserve high-frequency information such as
edges and corners, they cannot effectively avoid problems such as uneven contrast and
color distortion.

In recent years, enhancement methods based on deep learning have gradually devel-
oped. The first network based on deep learning to solve low-light image enhancement
was LLNet [10]. Paired images, including low-light images and normal images, were
input into the network model and trained through automatic encoders to learn the basic
signal features in low-light images and adaptively improve the brightness and denoising
ability. This method loses details during image reconstruction, resulting in a slightly blurry
enhancement of the final image. Afterward, the Retinex-Net network model was proposed
by combining Retinex theory with divine-level convolutional networks [11]. Firstly, an
image was decomposed into illumination maps and reflection maps through the decompo-
sition network. Secondly, the illumination image was enhanced through an enhancement
network, and finally, the enhanced illumination image was multiplied by the decomposed
reflection image to obtain the final enhanced image. After Retinex-Net, an author proposed
a method to improve the quality of low-light images by analyzing the histogram of the
images and utilizing deep learning techniques. For example, the MBLLEN [12] algorithm
is a low-light image enhancement algorithm based on a multi-branch network. This algo-
rithm extracts rich image features from different levels, enhances images through multiple
sub-networks, and finally generates output images through multi-branch fusion. Another
algorithm is the EnlightenGAN [13] algorithm, which improves the quality of low-light
images through local discriminators and attention modules. This algorithm has shown
good enhancement effects in real scenes, but there are still some shadow areas in some
images. Kind [14] used a trainable denoising module for reflectivity recovery. In addition,
a learnable mapping function was designed in the lighting adjustment module, where
images could be flexibly restored at user-specific lighting levels. Sci [15] adopted a new self-
adjustment lighting framework and established a cascaded lighting learning process with
weight sharing to achieve fast and flexible image enhancement. These methods all have
good enhancement performance. In real-world scenes, unclear details and inappropriate
exposure are common. However, the existing methods fail to solve the above problems.

The proposed method draws inspiration from the Retinex theory [16]. The Retinex
model can divide an image into two parts: the incident component and the irradiation
component. Specifically, the irradiation component reflects the distribution of light in the
shooting environment. The reflection component represents the essential properties of
an image. In this paper, the image is decomposed into two parts: a structural layer and
a detail layer. The structural layer mainly refers to the main contour or global geometric
structure information of the image, and the clear boundaries and connected regions are
the main reasons for light decay. The detail layer refers to the image containing small
scales and details, which are usually periodic and oscillatory. Based on the above ideas, a
low-illumination image enhancement method based on a structural layer and a detail layer
is proposed. The main contributions of this article include:

(1) This proposed SRetinex-Net model is mainly divided into two parts: a decomposition
module and an enhancement module. The decomposition module mainly adopts the
SU-Net structure, which decomposes the input image into a structural layer image and
a detail layer image. The enhancement module mainly adopts the SDE-Net structure,
which is divided into two branches: the SDE-S branch and the SDE-D branch. The
SDE-S branch mainly enhances the brightness of the structural layer, while the SDE-D
branch enhances the textural detail of the detail layer.

(2) The SU-Net structure is an unsupervised network, which mainly extracts and merges
the structural features of input images through a sampling layer and skip connection.
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A brightness calibration module was added to the SDE-S branch. After the brightness
enhancement of the structural layer image through the Ehnet module, the feature
extraction and reconstruction of the enhanced image should be completed through
the Adnet module to adjust the image brightness, making the image brightness
more balanced and accurate. The SDE-D branch is mainly denoised and enhanced
with detailed textures through a denoising module. This network structure greatly
improves computational efficiency.

(3) The total variation optimization model was improved as a mixed loss function, and
the structure component and texture component were added as variables on the basis
of the original loss function, which can make the edge and texture better separated so
that the edge of the structural layer image is clear and the details of the detail layer
image are more abundant.

(4) Compared with previous methods, the structural layer image structure obtained by
decomposing the image is more complete in preservation, and the detail layer image
contains more abundant details. In image enhancement, our method does not refer
to normal light images. We can adaptively adjust image brightness to better match
human visual effects and have conducted extensive experimental comparisons to
demonstrate the superiority of our method. Compared with all other methods, we can
self-calibrate image brightness, enhance image contrast, and improve image details
and visibility.

2. Methods

The low-illumination image enhancement method based on convolutional neural
networks makes it difficult to generate complete details during image reconstruction, which
can easily lead to slightly blurry enhancement results. To solve this problem, this paper
proposes a low-illuminance enhancement method based on decomposing the image into a
structural layer and a detail layer. First, the color space of the source image is transformed
from RGB to HSV. Then, the V image component is decomposed into a structural layer and
a detail layer. Furthermore, the structural layer image’s brightness is enhanced through
structural branching, while the detail layer image’s textural details are enhanced through
detail branching. Finally, the enhanced structural layer and detail layer are multiplied to
obtain the enhanced V-component image. The enhanced V-component image is combined
with the H- and S-component images and transformed into a color space to obtain the final
low-illumination-enhanced image.

2.1. Framework of the Proposed Method

Firstly, the color space of the source image is transformed from RGB to HSV. Secondly,
the source image is decomposed into the H-, S-, and V-channel components, which can
be referred to as Ih, Is, and IV, respectively. Finally, the H and S image channels remain
unchanged, and the V image channel is extracted as the input to the network. Afterward, the
input image IV can be decomposed into the structural layer IVs and detail layer IVk via the
decomposition module, which is the input of the enhancement module. Next, the structural
layer IVs is fed into the SDE-S branch to enhance the brightness. The detail layer IVk is fed
into the SDE-D branch to enhance the details. Then, the brightness enhancement image
IVs

′ and the detail enhancement image IVk
′, which are the outputs of the two branches, are

multiplied to obtain the enhanced image IV
′ of the V-channel component. Finally, the final

enhanced image I′ is obtained by fusing the components of the Ih, Is, and IV
′ channels and

converting it from the HSV space to the RGB space.
As shown in Figure 1, the proposed method can enhance and maintain the detail

information of an image while enhancing the brightness and contrast of the image, ensuring
the visual quality of the enhanced image.

33



Entropy 2023, 25, 1201

 

Figure 1. Framework of the proposed method.

2.2. Structure of the Network
2.2.1. Decomposition Module

Compared with the Retinex-based method, the decomposition model decomposes
the input image into structural layer images IVs and detail layer images IVk, rather than
illumination and reflection images. Therefore, we do not need to label images with normal
brightness to constrain the network training.

The original U-net structure [17] consumes considerable training time and has the
problem of repeated training. Because there are no labels for the structural layers and
detail layers of the trained images, we need to retrain each image during training. In
order to satisfy this condition, a SU-Net structure is proposed, which mainly uses multiple
convolution layers and a nonlinear activation function connection, including an upper
sampling layer, lower sampling layer, and skip connection. Because we input a single-
channel image, the first layer of convolution has 1 input channel and 64 output channels,
the last layer of convolution has 64 input channels and 1 output channel, and the remaining
convolution has 64 input and output channels. The entire network completes the feature
extraction and reconstruction of images.

2.2.2. Enhancement Module

The enhancement module adopts an SDE-Net structure. The network is divided
into two branches: the SDE-S branch and the SDE-D branch. The SDE-S branch mainly
enhances the brightness of the structural layer Ivs to obtain the enhanced structural layer
image IVs

′, while the SDE-D branch enhances the textural details of the detail layer Ivk to
obtain the enhanced detail layer image IVk

′. Ehnet in the SDE-S branch is mainly composed
of multiple convolution layers and an activation function, and the size of the convolution
kernel is 3 × 3. The input channel number of the first convolutional layer is 1, and the
output channel number of the last convolutional layer is 1. It mainly performs feature
extraction and reconstruction on the input image to enhance image brightness. Adnet is a
brightness adjustment network that receives a preliminary brightness-enhanced images
output via Ehnet, performs feature extraction and reconstruction on the input image to
adjust the brightness of the image, prevents image brightness overexposure or insufficient
brightness, and makes the brightness of the image more balanced and accurate. Adnet
mainly consists of blocks composed of multiple convolutional layers, each with two 3 × 3,
a reduction layer, and an activation function. The number of input channels of the first
convolution layer is 1, and the number of output channels of the last convolution layer is
1. The SDE-D branch enhances the texture details of the detail layer Ivk through a noise
reduction module. This approach can greatly improve computational efficiency, as shown
in Figure 2.
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Figure 2. Brightness enhancement network and brightness adjustment network.

2.3. Loss Function
2.3.1. Fully Variational Loss Function

The image can be divided into different image layers based on various methods.
For example, the image can be divided into high-frequency and low-frequency signals
based on frequency domain methods, and the original image can be decomposed into
illumination images and reflection images based on the Retinex algorithm. The image can
be decomposed into structural layers and detail layers. The structural layer mainly refers
to the main contour or global geometric structural information of the image, with clear
boundaries and connected regions. The detail layer refers to a layer that contains small
scales and details, which are typically periodic and oscillatory. There are many methods
for image decomposition, and image filters can be used for filtering, such as the rolling
filter algorithm [18]. A Gaussian filter is used to remove texture, while bilateral filters are
used to restore edges, which also causes ringing and artifacts around the edges. Image
decomposition can also be achieved using methods such as the TV (total variation) full
variation model [19] and the relative total variation (RTV) model [20].

Herein, we use the total variation model as the basis for the optimization framework,
and the common total variation objective formula is as follows:

S = argmin
s

∑i(‖ u(i)− I(i) ‖m+ ‖ β∇u(i) ‖n) (1)

We represent the intensity of the input image, its structural layer components, and
its detail layer components as I, S, and K, respectively. Our goal is to obtain unknown
structural layer images S and detail layer images K from known input images I. Because I =
S + K, we only need to estimate one of S and K. In the variational framework, the structural
component S is generally obtained by changing the feature metric of the fully variational
model, such as in references [21–23], where i represents the pixel intensity at the point and
is a balance coefficient, and the subscripts m and n represent the function space of the two
terms. In Formula (1), the first term is the fidelity term, which mainly makes the structural
layer S infinitely close to the input image I. The second term is the regularization term,
which is mainly used to remove the edges in the structural layer diagram.

In order to better decompose the image structural layer and detail layer, considering
the anisotropy of image gradients, structural metrics [24] and textural metrics [24] are used
to optimize the total variational function.
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The structural measurement formula is as follows:

Gs(i) = AJ(i)
‖ ∇f(i) ‖1

R
, (2)

where AJ(i) represents the degree of anisotropy in the local area of point i, j represents the
positive definite matrix, and a larger value of A indicates that the degree of anisotropy and
structural strength at that point is stronger. On the contrary, a smaller value of A indicates a
smaller degree of anisotropy and stronger texture details at that point. ‖ ∇f(i) ‖1 represents
the L1 norm of the gradient of the image at point i, and R represents the maximum value.

The texture measurement formula is as follows:

Gt(i) =
1

{C(i)} ∗∑j∈{C(i)}cos θij ∗ e(−Φ(hj,hi)), (3)

where {C(i)} represents the set of domain pixels of point i, j represents the domain position
of pixel point i, and −Φ

(
hj, hi

)
represents the cross-entropy. cos θij represents the edge

direction positions of pixel points i and j. When i and j are on the same edge, the included
angle is 90 degrees. Conversely, when the included angle is 0, it has no effect on the texture
measurement. The range of values for Gt is [0, 1].

Therefore, the objective function we utilized is as follows:

S = argmin
s

∑i

(
‖ u(i)− I(i) ‖2

1 + D(i) ‖ ∇u(i) ‖1

)
, (4)

D(i) = [βs(1−Gs(i)) + βtGt(i)], (5)

where S represents the decomposed structural layer, I represents the original input image,
‖ u(i)− I(i) ‖2

1 refers to the difference between the input image and the output structural
layer image, D(i) refers to the i-point structural and textural metrics, ∇u(i) is the gradient
of the structural components at the i-point, and ‖‖2

1 is the Lp norm. Gs is a structural metric
responsible for filtering out structural edges. When the structural metric value of point
i is large, that is, Gs approaches 1, and 1- Gs approaches 0, the gradient regularization
term also approaches 0. Therefore, the structural edges of point i can be retained. In this
case, the influence of the second term should be reduced; on the contrary, when the texture
measurement value of point i is large, that is, Gt tends to 1, and the gradient regularization
term is large, the texture edge at point i can be separated from the structure component. At
this point, the second main function is to effectively remove textural edges. βs and βt are
the equilibrium coefficients of Gs and Gt.

We defined the loss function as the objective function (4) and (5) and trained the neural
network. The fully variational loss function Formula (6) is as follows:

loss = ∑i

(
‖ u(i)− I(i) ‖2

1 + D(i) ‖ ∇u(i) ‖1

)
, (6)

Because we do not have the label of the structural layer image, the unknown parame-
ters in the loss function are adjusted with the input image.

The structural layer images and detail layer images obtained using the decomposition
module are shown in Figure 3.
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Figure 3. Structural layer images and detail layer images.

2.3.2. Unsupervised Loss Function

This enhancement method can avoid the uncertainty of paired data sets, and we used
the unsupervised loss function [15] to achieve this purpose.

Lun = γ1Lf + γ2Ls, (7)

where Lf and Ls represent the fidelity loss and smoothing loss. γ1 and γ2 are two positive
equilibrium parameters.

The fidelity loss function ensures that the estimated illumination is consistent with the
pixel level between the inputs of each stage. The specific formula is as follows:

Lf = ∑T
t=1‖ xt −

(
y + st−1

)
‖2

, (8)

where T represents the total number of stages. In fact, the fidelity loss function uses the
redefined input to constrain the output lighting rather than the live scene or normal low-
light input photographed artificially. X represents the generated illumination estimation, y
represents the low-illumination image to be processed, and s represents the adjustment
parameters.

The formula of the illumination smoothing loss function is as follows:

Ls = ∑N
i=1 ∑

j∈N(i)
wi,j

∣∣∣xt
i − xt

j

∣∣∣ (9)

where N represents the total number of pixels. I is the i-th pixel. N (i) represents point 5 of
i × adjacent pixels in the range of 5. X represents the generated illumination estimation
image, and Wi,j represents the weight between pixels i and j, which is used to measure the
similarity between pixels i and j.

3. Experimental Results and Analysis

To verify the effectiveness of the proposed method, our low-illumination image en-
hancement method based on structural and detail layers was compared with existing
classic algorithms as a comparative experiment, and validation analysis was conducted
based on two aspects: subjective visual effects and objective evaluation indicators. In
order to verify the generalization of the network, this article used the publicly available
LOL dataset and MEF dataset as training datasets. The LOL dataset contains 485 pairs
of low-light/normal-light training images and 15 low-light test images. The MEF dataset
contains 84 low-light test images.
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In the pre-training process of the decomposition module, data preprocessing is per-
formed first. The color space of the source image is transformed from RGB to HSV, and
the V-component image is extracted. Then, structural and textural metrics are calculated
separately for each V-component image, and the experimental results are saved. Afterward,
the network is used for pre-training. The structural metric and detail metric of each training
image remain unchanged, and the balance coefficient in the loss function formula is 3.0. A
total of 30 iterations are conducted in the pre-training stage. At this time, the network is
considered to converge, and the pre-training is complete.

There are two parts to the enhancement module: pre-training and fine-tuning. The
structural layers obtained from the decomposition module are pre-trained with 1000 it-
erations and a learning rate of 0.0003. After approximately 396 iterations, the network
converges, and the pre-training ends.

3.1. Subjective Evaluation

In terms of subjective visual effects, as shown in Figure 4, six groups of images are
selected, including indoor scenes and natural landscapes. From left to right, there are
enhancement images of low-illumination images, the Retinex-Net algorithm, URetinex-Net
algorithm, LIME algorithm, Zero DCE++ algorithm, Kind++ algorithm, and the algorithm
presented in this article.

(a) (b) (c) (d) (e) (f) (g) 

Figure 4. Comparison of low-illumination image enhancement effects of different algorithms.
(a) Origin images, (b) RetinexNet results, (c) UretinexNet results, (d) LIME results, (e) Zero-Dce++
results, (f) KinD++ results, and (g) our results.
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As shown in Figures 4 and 5, it can be seen that the enhanced images of the Retinex-
Net algorithm exhibit significant color distortion, with some images exhibiting a noticeable
ink sensation. The URetinex-Net algorithm [25] enhances the overall image and has certain
defects in image color retention. Many objects tend to have obvious fading phenomena.
The LIME algorithm has an excessive enhancement effect on local regions. Zero DCE++ [26]
has a poor noise suppression effect and is prone to detail loss. The KinD++ algorithm [27]
significantly improves the brightness, but the brightness of the enhanced image cannot
maintain the same brightness distribution characteristics as the original image, and there is
obvious color distortion. The proposed method in this article has a more reliable enhance-
ment effect, which can work well under different types of lighting conditions, effectively
avoiding situations where the overall vision is too high or the enhancement is insufficient.
The final enhancement effect is also more natural and realistic.

(a) (b) (c) (d) (e) 

Figure 5. Comparison of low-illumination image enhancement effects of different algorithms.
(a) Origin images, (b) Kind results, (c) Sci results, (d) RUAS results, and (e) our results.

The details of Figures 4 and 5 are enlarged in Figures 6 and 7. In the figures, it can be
seen that the results obtained with the Retinex-Net algorithm show color distortion and
excessive detail enhancement in some areas, such as the bookcase area and cliff area in the
image, which are biased toward ink and have artifacts. The URetinex-Net algorithm shows
a significant color bias toward white in the enlarged area of the flowerpot and clothing. The
LIME algorithm clearly shows the presence of a large amount of noise in the enlarged area
of streetlights and swimming pools. The Zero-DCE++ algorithm shows that the contrast
enhancement is not sufficient in the enlarged area, resulting in a dim overall color sense in
the image and an obvious problem of detail loss. The KinD++ algorithm has the problem
of overexposure in the magnified area of the natural landscape. The magnified area of the
indoor scene recovers the color distortion, and the brightness recovery is unstable. The
proposed method in this article utilizes the advantages of the HSV color space compared
with the other methods. While maintaining the structure, it preserves most of the original
information of the images and enriches the details of the objects, avoiding color distortion
to the greatest extent. At the same time, it can effectively suppress the generation of noise
and avoid the presence of artifacts.
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(a) (b) (c) (d) (e) (f) (g) 

Figure 6. Comparison of local enlargement details of low-illuminance images using different algo-
rithms. (a) Origin images, (b) RetinexNet results, (c) UretinexNet results, (d) LIME results, (e) Zero-
Dce++ results, (f) KinD++ results, and (g) our results.

(a) (b) (c) (d) (e) 

  

Figure 7. Comparison of local enlargement details of low-illuminance images using different algo-
rithms. (a) Origin images, (b) Kind results, (c) Sci results, (d) RUAS results, and (e) our results.
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3.2. Objective Evaluation Indicators

In order to better evaluate image quality, this article used the natural image quality
evaluator (NIQE) [28], structural similarity index (SSIM), peak signal-to-noise ratio (PSNR),
and learned perceptual image patch similarity [29] (LPIPS) to evaluate the resulting images.
As an evaluation indicator, the higher the values of the SSIM and PSNR, the better the
image quality we will obtain; on the contrary, smaller NIQE and LPIPS values indicate
better image quality. BIQI is an image evaluation index without reference images, with
values ranging from zero to one. The closer the value is to one, the better the image quality.
The EMEE evaluation indicator is used to measure image edge information, especially for
images with clear edges. The EMEE value is small, and vice versa. SDME is an image
evaluation indicator used to measure the degree of edge change in images. A larger value
indicates a more significant edge change in the image. BRISQUE is a five-reference image
quality evaluation indicator, with values typically ranging from 50 to 100. The larger the
value, the better the image quality. The AME evaluation indicator is suitable for measuring
the quality of image edges, and the value is usually positive. Images with clear edges have
a higher AME value, while the opposite is true. Visibility is an indicator of image visibility,
with larger values indicating clearer targets or details in the image, and vice versa.

The enhanced results of the test datasets are shown in Table 1. ↑ the larger the value,
the better the enhancement effect. On the contrary, ↓ the smaller the numerical value, the
better the enhancement effect. As shown in the table, our method is better than the other
methods in the NIQE, SSIM, PSNR, BIQI, EMEE, BRISQUE, AME, and visibility metrics,
except that it performs slightly worse than URetinexNet and LIME in LPIPS and SDME. In
summary, we have achieved an effective solution to the existing problems, and the results
are excellent.

Table 1. Objective evaluation indicators of different algorithms.

Comparison
Algorithm

NIQE
↓

SSIM
↑

PSNR
↑

LPIPS
↓

BIQI
↑

EMEE
↑

SDME
↑

BRISQUE
↓

AME
↑

Visibility
↑

Retinex-Net 7.1888 0.6449 13.7448 2.3146 0.4075 9.1803 89.1120 93.0386 78.9014 1.4980

URetinex-Net 4.7599 0.8238 21.3282 1.3234 0.2692 8.8664 72.2450 94.4427 43.9180 1.3153

SIRE 6.2109 0.4937 10.9447 1.8563 0.3428 8.4146 52.3258 93.3717 37.7913 1.5000

LIME 6.4282 0.7410 16.2744 2.0601 0.3436 7.9899 114.8789 94.8650 83.0246 1.3913

Zero-DCE++ 4.3693 0.5479 14.3098 1.8905 0.3604 7.8689 69.8208 94.3531 52.4144 1.4879

KinD++ 4.8106 0.7962 15.2666 1.4899 0.3652 8.5482 97.2805 93.3560 73.7956 1.4440

SNR-Aware [30] 5.7982 0.7834 17.3118 1.6384 0.3073 8.6534 68.6665 96.2248 58.0088 1.2607

RUAS [31] 6.2769 0.6075 12.9109 1.9274 0.2815 9.8992 65.1625 95.7833 50.9025 1.4222

OURS 4.3195 0.8321 21.4243 1.3882 0.4394 10.9775 110.7982 92.1687 83.1254 1.5169

3.3. Ablation Experiment

The loss function variable in the decomposition module, the brightness enhancement
module, and the adjustment module in the enhancement module of the network model in
this paper were ablated. The specific experimental results are shown in the following figure.

As shown in Figure 8, in the ablation experiment for the loss function variables,
which was mainly to verify the importance of structural metrics and textural metrics for
the generation of structural layers, clarity was used as the key to measure the effects of
the variables. Clarity refers to the details and boundaries in an image, and higher values
represent more detailed information contained in the image. For the structural layer, the less
detailed information we have, the better our final enhancement effect. Therefore, we need
to choose variables with smaller clarity values. The red color in the histogram indicates
that the loss function variables include both structural metrics and textural metrics; yellow
indicates that the loss function variable only contains textural metrics; blue indicates that
the loss function variable contains only structural measures. As can be seen in Figure 8,
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only the loss function containing structural metrics and textural metrics obtains the best
structural layer effect.

 
Figure 8. Ablation experiment for loss function variable.

Figure 9 shows the module ablation experiment for the second part of the network
structure enhancement module, mainly comparing the basic module, the removed adjust-
ment module, and the removed enhancement module. The peak signal-to-noise ratio is
used as the key to measuring the experimental structure. The higher the peak signal-to-
noise ratio, the stronger the enhancement effect. Therefore, we need to choose a module
with a higher peak signal-to-noise ratio value. As shown in Figure 6, red represents the
basic module, yellow represents the removal of the brightness adjustment module, and
blue represents the removal of the enhancement module. It can be clearly seen that only
the enhancement module and brightness adjustment module coexist, and the network has
the best enhancement effect.

Figure 9. Ablation experiment based on enhancement module.

4. Conclusions

This paper proposed a low-illumination enhancement method based on structural
and detail layers. Firstly, we designed an SRetinnex-Net model. The network is mainly
divided into two parts: a decomposition module and an enhancement module. Second, the
decomposition module mainly adopts the SU-Net structure, and the network decomposes
the input image into a structural layer image and detail layer image. Afterward, the
enhancement module mainly adopts the SDE-Net structure, which is divided into two
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branches: the SDE-S branch and the SDE-D branch. The SDE-S branch mainly enhances
and adjusts the brightness of the structural layer image through the Ehnet module and
the Adnet module, to prevent insufficient or overexposed brightness enhancement in
the image. The SDE-D branch is mainly denoised and enhanced with textural details
through a denoising module. This network structure can greatly reduce computational
costs. Moreover, we also improved the total variation optimization model as a mixed loss
function and added structural metrics and textural metrics as variables on the basis of
the original loss function, which can well separate the structure edge and texture edge.
Numerous experiments have shown that the algorithm proposed in this paper outperforms
Retinex-Net, SIRE, LIME, Zero-DCE++, Kind++, RUAS, and other algorithms in evaluation
metrics such as the SSIM, PSNR, and NIQE. The algorithm proposed in this article not only
improves the brightness of low-illumination images but also has significant advantages
in enhancing textural details and color restoration. In the future, the decomposition and
enhancement of the entire network play an important role in enhancing low-illumination
images, and optimizing the network structure is also a focus of our future research direction.
And for low-illumination images without a control group, how to ensure image brightness
enhancement without losing image details is a major challenge for us to continue studying
low-illumination image enhancement.
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Abstract: Food quality control is an important task in the agricultural domain at the postharvest stage
for avoiding food losses. The latest achievements in image processing with deep learning (DL) and
computer vision (CV) approaches provide a number of effective tools based on the image colorization
and image-to-image translation for plant quality control at the postharvest stage. In this article,
we propose the approach based on Generative Adversarial Network (GAN) and Convolutional
Neural Network (CNN) techniques to use synthesized and segmented VNIR imaging data for early
postharvest decay and fungal zone predictions as well as the quality assessment of stored apples.
The Pix2PixHD model achieved higher results in terms of VNIR images translation from RGB
(SSIM = 0.972). Mask R-CNN model was selected as a CNN technique for VNIR images segmentation
and achieved 58.861 for postharvest decay zones, 40.968 for fungal zones and 94.800 for both the
decayed and fungal zones detection and prediction in stored apples in terms of F1-score metric. In
order to verify the effectiveness of this approach, a unique paired dataset containing 1305 RGB and
VNIR images of apples of four varieties was obtained. It is further utilized for a GAN model selection.
Additionally, we acquired 1029 VNIR images of apples for training and testing a CNN model. We
conducted validation on an embedded system equipped with a graphical processing unit. Using
Pix2PixHD, 100 VNIR images from RGB images were generated at a rate of 17 frames per second
(FPS). Subsequently, these images were segmented using Mask R-CNN at a rate of 0.42 FPS. The
achieved results are promising for enhancing the food study and control during the postharvest stage.

Keywords: GAN; CNN; precision agriculture; postharvest decay; fungi; image processing

1. Introduction

According to the data provided by United Nations, the human population has grown
to 8 billion people [1], and it is expected to increase up to 9.8 billion by 2050 [2]. The
growing population will need more sustainable and affordable food sources. It increases
the importance of agriculture in the light of sustainable development. In terms of food
producing and quality control, agricultural challenges can be divided into preharvesting,
harvesting and postharvesting stages [3]. Each stage includes various factors that should be
taken into account in order to minimize food losses. During the postharvest stage, farmers
primarily concentrate on factors that impact the shelf-life of harvested products during
storage and transportation. These factors include temperature [4], humidity [5], as well
as the use of gases and chemicals in food containers [6,7]. Each crop has its own number
of factors affecting the shelf-life during the postharvest stage, and these factors should
be also taken into account [8]. Disparagement of one of these factors or violation during
the storage or transportation may result in postharvest losses of food products. Examples
of postharvest losses in stored fruits and vegetables include decayed and spoiled areas,
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often attributed to mishandling, hygiene issues, inadequate humidity control, improper
temperature management, and mechanical damages [9]. These factors contribute to the
deterioration and loss of quality of stored subjects.

Apple is one of the most popular harvested and cultivated crops. Its global production
achieved 93 millions tonnes in 2021 [10]. It is one of the major reasons to monitor apple
fruits quality during all the above-mentioned stages to prevent postharvest losses and to
avoid potential economic losses. However, there are special factors affecting apple quality
during the postharvest stage, e.g., water as loss in apple fruits [11], residual pesticides [12],
or concentration of carbon dioxide, ethylene, ethanol or ammonia surrounding apples due
to insufficient ventilation in the storage facility [13]. The most common non-destructive
methods for preventing postharvest losses include the control of objects using RGB video
cameras and sensors [14], near infrared (NIR) data [15], gas sensing spectroscopy [13],
fluorescence spectroscopy [16], magnetic resonance imaging (MRI) [17], and even electronic
nose [18]. Nevertheless, postharvest losses are still estimated in the range of 40–50% [9]. It
should be noted that the control of apple fruits at the postharvest stage is quite comprehen-
sive, making it difficult to monitor each fruit at each step, while any damage may lead to a
fungi infection [19] in the stored fruits and also to the formation (and even a rapid growth)
of rotten areas which are also known as decayed areas [20]. Moreover, these areas are not
well seen visually at early stages, and the decay growth process can be quite dynamic [21].

Artificial intelligence (AI) and its domains, including machine learning (ML) and deep
learning (DL), in conjunction with the latest achievements in computer vision (CV), remote
sensing, wireless sensing technologies, and Internet of Things (IoT), have provided the
added value in a number of application including the space domain [22], medicine [23],
power engineering [24], agriculture [25] and food supply [26]. For example, farmers rely
on CV for crop quality management, e.g., plant growth monitoring [27], fruit detection [28],
disease detection [29] and weed detection [30]. It is necessary for improving the food quality
of each plant at preharvest, harvest, and postharvest stages, respectively. Also, there is a
set of CV-based approaches for postharvest losses estimation and the evaluation in stored
crops [31–33]. However, some postharvest losses, e.g., fungi or postharvest decay zones,
should be detected immediately, since the visible decayed or fungi zones (acquired visually
or with RGB cameras and sensors) in stored plants may indicate their serious spoilage if
we use other types of imaging data, e.g., NIR or thermal imaging, to monitor their quality.
This monitoring process requires a special device and equipment, e.g., multispectral or
hyperspectral cameras, which are expensive and often not easy to use, given fast detection
of defects is still extremely challenging.

In this article, we present an approach based on the application of generative ad-
versarial network (GAN) and convolutional neural network (CNN) for early detection
and segmentation of decayed and fungi areas in stored apples at the postharvest stage
using visible near-infrared (vis-NIR, or just VNIR) imaging data. We show how artificially
generated VNIR imaging data can be used for early postharvest decay detection in stored
apples and examine whether GAN- and CNN-based approaches can achieve promising
results for image segmentation tasks. The idea of the proposed approach can be divided
into two parts:

• Generation of VNIR imaging data containing the stored apples with postharvest decay
and fungi zones using the GAN technique.

• Segmentation of generated VNIR images using the CNN technique in order to detect
the decayed and fungi zones in the stored apples.

In this research, we study the original and generated VNIR images containing apples
of four varieties with several treatments in order to simulate various occasions with ap-
ples during the storage. The aim is to present an approach based on the DL techniques
combining the GAN and CNN models, for instance, with segmentation of postharvest
decay zones and fungi areas. The GAN model will provide the procedure of NIR images
synthesis from the input RGB data, while the CNN model is supposed to be used for the
instance segmentation of generated images. This is important for the proposed approach,
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as we aim to train and validate our models to detect the postharvest decay zones and
fungi areas separately from each other. For realizing this idea into practice, we propose the
following stages.

First, we need to select a GAN based model for the NIR images generation from the
input RGB data. There are many available networks, but for the image-to-image translation
tasks the following architectures Pix2Pix [34], CycleGAN [35], and Pix2PixHD [36] are
mostly applied in agricultural domain [37–43]. We compare Pix2Pix, CycleGAN, and
Pix2PixHD models using the dataset containing the paired RGB and NIR images. We are
going to work with the images acquired in VNIR range since it includes the full visible
spectrum with an abutting portion of the infrared spectrum [44]. The paired images
collected in the visible (380–700 nm) and VNIR (400–1100 nm) ranges are required to make
sure that the decayed and fungal traits in stored apples are the same for these two ranges.
Section 3.1.1, Section 3.1.2, and Section 3.1.3 provide detailed information about the Pix2Pix,
CycleGAN, and Pix2PixHD models, respectively.

Second, it is necessary to choose the CNN model for the decayed and fungal areas
segmentation in the synthesized VNIR images. In this work, we implement a Mask R-CNN
model due to the Feature Pyramid Network (FPN) and ResNet101 backbone, which allow
for generating the bounding boxes (object detection) and segmentation masks (instance
segmentation). In [45], we have compared the Mask R-CNN to such applied CNN-based
models as U-Net [46] and Deeplab [47] for early postharvest decay detection, and Mask R-
CNN achieved the highest performance in terms of average precision, namely 67.1% against
59.7% and 56.5%, respectively. Moreover, the Mask R-CNN model generates the bounding
boxes and segmentation masks of the postharvest decay and fungal zones separately from
each other. This is a so-called ‘a tried and tested’ method, and that is why we use Mask
R-CNN as a CNN-based segmentation model. We discuss the Mask R-CNN model in more
detail in Section 3.1.4.

Finally, our plan is to implement the proposed approach and execute it on a Single
Board Computer (SBC) with the AI capabilities. This implementation will serve as an
evaluation platform for generating segmented VNIR images that highlight any postharvest
decay and fungal zones on apples. These zones may be imperceptible to the human eye,
but can be detected and selected through our system. We use NVIDIA Jetson Nano as
an embedded system with AI capabilities for evaluation. It is a compact and powerful
SBC supplied with the accelerated libraries for computer vision and deep learning applica-
tions, and is widely used for different real-time problems in agriculture including weed
control [48], soil mapping in greenhouse [49], and harvest product detection [50–54]. That
is why the presented research is supposed to be an alternative solution for the high-cost
NIR hyperspectral devices used for the early postharvest decay detection and prediction
for stored food. Figure 1 illustrates the proposed approach.

The contribution of this work is as follows:

• Two experimental testbeds for paired RGB and VNIR imaging data collection under
various environmental (temperature and humidity) conditions.

• Application of CNN models, for instance, on the segmentation of decayed and fungi
areas in apples at the postharvest stage.

• Separate segmentation of fungi zones and postharvest decay areas in stored apples
using the CNN model.

• Application of the trained CNN-based model for the instance segmentation of posthar-
vest decay zones and fungi areas in VNIR images generated by the GAN-based model.

• Implementation of the proposed approach based on the GAN and CNN techniques
for postharvest decay detection, segmentation and prediction using generated VNIR
imaging data on a low-cost embedded system with the AI capabilities.
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Figure 1. Diagram summarizing the proposed approach for the application of segmented VNIR
imagery data via deep learning for early postharvest decay prediction in apples.

This article is organized as follows: Section 2 provides an introduction to relevant
research works aimed at early postharvest decay detection and prediction in apples using
RGB and VNIR imaging data with the CV and ML methods. Section 3 presents the methods
used in this work. Section 3.3 demonstrates the experimental testbeds used for RGB and
VNIR imaging data collection and describes the procedure of data annotation. Section 4
shows the results of the comparison of the GAN techniques applied to VNIR images
generation from the RGB ones (see Section 4.1). It also presents the application of the
CNN technique, for instance, on the segmentation on the generated VNIR images (see
Section 4.2), and describes the embedded system running the proposed GAN and CNN (see
Section 4.3). Conclusions and discussion of the future work are summarized in Section 5.

2. Related Works

2.1. CV Approaches Based on CNN Models Using RGB Imaging Data

CV techniques with the implementation of ML and DL methods are becoming one of
the most useful tools for fruit quality estimation and evaluation at the postharvest stage.

The majority of approaches are based on the collection and analysis of visible mor-
phological traits, such as changes in fruit shape, size, or color during the storage, from
stored fruits with CNN models using RGB images as the most acceptable and user-friendly
type of data. RGB imagery is closely similar to human vision because red, green and
blue are the primary colors in these color models, which makes the process of visible non-
destructive quality monitoring and defect detection of stored food production easy and
understandable [55]. The majority of cameras and devices for RGB imaging data collection
contain a patterned Bayer filter mosaic consisting of squares of four pixels with one red,
one blue and two green filters [56]. Usually, the Bayer filter is located on the camera chip.

Generally, a CNN model contains convolutional and pooling layers (added one by
one), flatten, fully connected layer and softmax classifier. The convolutional and pooling
layers are used in the features extraction part, while the classification part involves the
flatten, fully connected layers and softmax classifier. When the image reaches the input
layer, a filter in the convolution layer allows it for the selection of feature neurons. An
activation function (Sigmoid, Rectified Linear Unit (ReLU), or Softplus) is added to obtain
nonlinear results by passing feature neurons through it, and the resulting feature map
size is reduced by the pooling layer functions. The flatten layer is the first input layer for
the classifier model as it keeps the feature map from the convolution layers. The fully
connected layer transforms the obtained feature neurons into a matrix, which performs the
classification function with a classification method.

In this way, the CNN structure showed its efficiency in classification, and then in
detection and segmentation tasks using RGB imaging data. For example, the automated
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banana grading system was reported in [57] where a fine-tuned VGG-16 Deep CNN model
was applied for banana classification using such traits as skin quality, size, and maturity
with the acquired RGB imagery data. A similar approach was proposed in [58] where the
VGG-16 model was trained to predict the date of the fruit ripening stage using RGB images
with an overall classification of 96.98%.

In [59], the authors developed an automated online carrot grading system, where a
lightweight carrot defect detection network (CDDNet) based on ShuffleNet [60] and transfer
learning was implemented for carrot quality inspection using RGB and grayscale images.
The CDDNet was compared to other CNN models including AlexNet, ResNet50, MobileNet
v2, and ShuffleNet, and it demonstrated good performance in terms of detection accuracy
and time consuming for binary classification of normal and defective carrots (99.82%),
and for classification of normal, bad spots, abnormal, and fibrous root carrots (93.01%).
However, the images of carrots contained the carrots of different size and appearance, and
the idea of the presented approach was to detect the carrots with visible defects without
taking into account the spoilage stage of the defective carrots. Moreover, there was no
mention of a possible situation when the carrots are infected, but still there are no visible
traits of spoilage.

In [61], the authors report on the implementation of the DeeplabV3+ model [62] with
a classical image processing algorithm, e.g., threshold binary segmentation, morphological
processing and mask extraction for banana bunches segmentation during sterile bud
removal (SBD) on the total of 1500 RGB images. Moreover, YOLOv5-Banana model [63]
for the banana fingers segmentation and centroid points extraction, while edge detection
and centroid extraction of banana fingers included binarization, morphological opening
operation, canny edge detection, and extracting centroid point set. DeeplabV3 was reported
to achieve a detection accuracy rate of 86%, mean intersection over union (MIoU) of 0.878
during the debudding period for target segmentation, and the mean pixel precision of 0.936.
YOLOv5-Banana achieved 76% detection accuracy rates for the banana bunches during
the harvest period. The authors also designed and presented the software to estimate the
banana fruit weight during the harvest period.

In [64], several CNN-based models including VGG-16, VGG-19, ResNet50, ResNet101,
and ResNet152 were compared to each other for such physiological disorders classification
in stored apples as bitter pit, shriveling, and superficial scald. The authors acquired a
dataset containing 1080 RGB images (dataset-1) of apples and 4320 augmented images
(dataset-2) with the aim to improve data representation during model training and to
consider apple position under the monitoring camera and lighting conditions during the
storage. The CNN-based models were used and compared for feature extraction, while such
classical ML methods as support vector machines (SVM), random forest (RF), k-nearest
neighbors algorithm (kNN), and XGBoost were used for the extracted features classification.
The highest average accuracy was reported for the VGG-19 model in conjunction with the
SVM method in the dataset-1 and dataset-2 with 96.11 and 96.09%.

2.2. Machine Learning and Deep Learning Methods for NIR Data Analysis

NIR spectroscopy covers spectral regions from 780 to 2500 nm that cannot be seen
with human eyes, but it allows for obtaining spectral information from ten (generally,
referred to as multispectral data [65]) and to more than a hundred wavebands (referred to
as hyperspectral data [65]). Measurements performed in the visible (380–700 nm), visible
near-infrared (vis-NIR, or just VNIR, 400–1100 nm), and NIR (780–2500 nm) ranges provide
the user with more detailed information on the chemical composition of scanned samples.
In our case, by samples we mean stored plants, crops and fruits. The state-of-the-art cameras
and devices for the hyperspectral data acquisition provide not only spectral information
about the scanned samples, but also allow the users to obtain the images of scanned zones
in the range of device bands. Spectral information on chemical composition from a wide
range of wavebands has simplified the procedure of food quality monitoring and defect
detection at the postharvest stage. Moreover, not only the decay zones may occur in stored
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fruits, but also some fungi like Sclerotinia sclerotiorum [66], Penicillium expansum [67], Botrytis
cinerea [68], Botryosphaeria dothidea [69] and many others, which should be immediately
detected at the early stage. Otherwise, the appearance and growth of decayed and fungi
zones may lead to the loss of all stored fruits. It is vital to distinguish various types of
postharvest losses, e.g., postharvest decay, and diseases, e.g., various fungi varieties, since
each type of loss requires a special type of treatment or removal of spoiled samples from
the storage. It should be noted here that the formation of fungal areas may not always lead
to the formation of decayed areas. That is why we should detect and identify the fungi and
postharvest decay zones separately from each other [70–72].

Both classical ML methods and the DL techniques based on the CNN models are
widely used for postharvest losses evaluation in stored plants using VNIR and NIR imaging
and spectral data.

In [73], the authors compared several ML methods including linear discriminant
analysis (LDA), random forest (RF), support vector machines (SVM), kNN, gradient tree
boosting (GTB), and partial least squares-discriminant analysis (PLS-DA) for early Codling
Moth zones detection in “Gala”, “Granny Smith”, and “Fuji” stored apples. The research
was carried out at the pixel level using NIR hyperspectral reflectance imaging data in the
range of 900–1700 nm with an optimal selection of wavelengths. GTB was reported to obtain
better results at a pixel level classification with 97.4% of total accuracy for validation dataset.

In [74], the authors implemented the AlexNet model for detecting pesticide residues in
postharvest apples using hyperspectral imaging data. There were 12,288 hyperspectral ac-
quired images for the training set and 6144 images for the test set in the 865.11–1711.71 nm
range (the camera included 256 bands) and with 3.32 nm spectral resolution. Otsu segmen-
tation algorithm [75] was used for the apples and pesticide residue positioning (they were
the regions of interests, or just ROIs), while deep AlexNet [76] provided pesticide category
detection. AlexNet was reported to show better results in terms of detection accuracy and
time consumption in comparison to the SVM and kNN algorithms (99.09% and 0.0846 s
against 74.34% and 11.2301 s, and 43.75% and 0.7645 s, respectively).

As we can see, NIR hyperspectral and multispectral imaging data ensures early disease
detection with more details than RGB imaging, but also requires sophisticated equipment,
which usually includes a camera with wavebands, imaging spectrograph (or spectrometer),
sample stage, illumination lamps and lightning system, as well as supplementary software
and devices for processing and capturing NIR data and images [77–79]. However, this
is the reason why hyperspectral imaging devices are so expensive and may cost from
thousands to ten thousand USD [80]. These high prices reduce the availability and usage of
hyperspectral cameras for farmers and food selling companies to perform food quality con-
trol at postharvest stages. This issue has raised a demand for developing new approaches
for NIR imaging data generation without using high cost hyperspectral systems.

2.3. GAN-Based Models for RGB and NIR Data Analysis

Generative Adversarial Networks (GANs) and, in particular, conditional GAN
(cGAN) [81] have demonstrated their effectiveness in a variety of tasks in the agricul-
tural domain including remote sensing [82], image augmentation [83], animal farming [84],
and plant phenotyping [85]. The general idea of GAN is based on the usage of two neural
network models, where the first network is called generator (generative part, G) and its
goal is to create plausible samples, while the second network is called discriminator (ad-
versarial part, D), and it learns to verify whether the created plausible sample is real or
fake. GANs are also applied for the so-called image-to-image translation tasks, i.e., where
there is a need for high-quality image synthesis from one domain to another. For example,
GAN-based models were successfully applied for the multi-channel attention selection in
the RGB imagery considering an external semantic guidance in [86,87], MRI data estimation
in [88], diffusion models evaluation [89], and NIR imaging generation from the input RGB
images in [82,90,91].
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Therefore, the approaches based on GAN models allow synthesizing high-quality NIR
images from the input RGB images while saving detailed spectral information. At the same
time, it is crucial not only to transform the image together with all the relevant information,
but also to segment various types of postharvest diseases and defects separately from
each other in stored food production in order to choose the specific processing strategy
for defected or spoiled food samples. At present, most GAN models provide only the
images transformation from one domain to another, but not object detection or instance
segmentation operations in the synthesized images. However, as shown in Section 2.1,
CNN models demonstrate reasonably good results for the object detection and instance
segmentation both for the RGB and the NIR images.

3. Materials and Methods

3.1. DL Techniques
3.1.1. Pix2Pix

The Pix2Pix model [34] is a type of cGAN that has been demonstrated on a range of
image-to-image translation tasks, such as converting a satellite image to corresponding
maps, or black and white photos to color images. In conditional GANs, the generation of
the output image is conditional on the input image. In the case of the Pix2Pix model, the
generation process is conditional on the source image. The discriminator covers both the
observed source image (domain A) and the target image (domain B) and must determine
whether the target is a plausible transformation of the source image. The generator is
trained via the adversarial loss which encourages the generator to make plausible images
in the target domain. The generator is also updated via L1 loss measured between the
generated image and the expected output image. This additional loss encourages the
generator model to create the plausible translations of the source image. Mathematically,
the whole process in Pix2Pix can be defined as:

LcGAN(G, D) = Ex,y∼pdata(x,y) [logD(x, y)] +Ex,z∼pdata(x,z) [log(1− D(x, G(x, z))] (1)

where G is the generator, D is the discriminator, x is the observed image, y is the target
image, z is the random noise vector, and λ controls the relative importance of the two objec-
tives between domain A and domain B. The following objective function is used to train the
model:

G = arg min
G

max
D

LcGAN(G, D) + λLL1(G) (2)

Pix2Pix requires perfectly aligned paired images for the training procedure. In this
research, the CNN-based architecture is used both as the generator and the discriminator.
Generally, the U-Net model [46] is applied in Pix2Pix as a generator. U-Net trains to generate
the images from the images in domain A similar to the images in domain B. The discriminator
is usually a PatchGAN (which is also known as Markovian discriminator [92]), and it trains
simultaneously to distinguish the generated images from the real images in domain B. The
reconstruction loss measures the similarity between the real images and the generated
images. Figure 2 shows the block diagram of Pix2Pix.
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Figure 2. Pix2Pix block diagram.

3.1.2. CycleGAN

The goal of the CycleGAN model [35] is to learn the mapping G : X → Y such that
the distribution of images from G(X) is indistinguishable from the distribution Y using an
unpaired set of image pairs. This mapping is coupled with an inverse mapping F : Y → X
and a cycle consistency loss introduced to enforce F(G(X)) ≈ X and vice versa due to the
reason that it is highly underconstrained. For the mapping function G : X → Y and its
discriminator DY

LGAN(G, DY, X, Y) = Ey[logDY(y)] +Ex[log(1− DY(G(x)] (3)

and the objective is as follows:

G, F = arg min
G,F

max
DX ,DY

L(G, F, DX , DY) (4)

CycleGAN learns a translation mapping in the absence of aligned paired images. The
image generated from domain A to domain B by the CNN-based generator (G1) is converted
back to domain A by another CNN-based generator (G2), and vice versa, in the attempt to
optimize the cycle-consistency loss in addition to the adversarial loss. The block diagram
of CycleGAN is shown in Figure 3.

Figure 3. CycleGAN block diagram.
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3.1.3. Pix2PixHD

The Pix2PixHD model [36] is a modification of the solution realized in the Pix2Pix
model, which includes several improvements including the Coarse-to-Fine generator, multi-
scale discriminators, and improved adversarial loss. Pix2PixHD generally consists of global
generator G1 and local enhancer G2 (see Figure 4, where *** are referred to the residual
blocks). Throughout the training process, the global generator is initially trained, followed
by the training of the local enhancer in a progressive manner based on their respective
resolutions. Subsequently, all the networks are fine-tuned jointly. The purpose of this
generator is to efficiently combine global and local information for the task of image
synthesis. Three discriminators are used for effective detail capturing on multiple scales.

Figure 4. Pix2PixHD generator block diagram.

A significant performance boost was provided by the loss modification and two extra
terms, LFM-feature matching loss and perceptual loss, were added LVGG [93] as objective
functions. The feature matching loss performs the stabilization of the training. It happens
due the point that the generator has to produce natural statistics at multiple scales:

LFM(G, Dk) = λFMEy,x ∑
i=1

1
Ni

[||D(i)
k (y, x)− D(i)

k (y, G(y))||1] (5)

where D(i)
k denotes the output of the i-th layer of the Dk discriminator.

LVGG = λVGGEy,x ∑
i=1

1
Mi

[||F(i)(x)− F(i)(G(y))||1] (6)

where F(i) denotes the i-th layer with Mi elements of the VGG network.

3.1.4. Mask R-CNN

Mask R-CNN [94] is a CNN-based architecture that provides the instance segmentation
of various objects in the images. These objects in images are usually called the Regions of
Interest (ROIs). This is the latest version of the R-CNN model [95], where R-CNN stands
for Regions detected with CNN. Firstly, R-CNN has been improved to Fast R-CNN [96],
then to Faster R-CNN [97], and, finally, to Mask R-CNN. As it was mentioned earlier, in
R-CNN based models the ROIs are detected with the CNN feature’s selective search. In
Mask R-CNN, this selective search was improved to Mask R-CNN by adding the Region
Proposal Network (RPN) in order to initiate and identify the ROIs and by adding a new
branch for the prediction of the mask that covers the found region, i.e., an object in the
image. The RPN and ResNet101 backbone allow for making the object detection (bounding
boxes generation) and instance segmentation if there are several ROIs in one image and
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they have different sizes and partially overlap each other. Figure 5 presents a block diagram
of Mask R-CNN architecture.

Figure 5. Mask R-CNN block diagram.

3.2. Performance Metrics

In this study, we compare the original VNIR images with the VNIR images generated
by the Pix2PixHD model. To perform this, we considered the Mean Average Error (MAE),
Mean Average Percentage Error (MAPE), Mean Squared Error (MSE), Root Mean Square
Error (RMSE), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM), and Feature Similarity Index Measure (FSIM) as follows:

MAE =
1
n

n

∑
i=1
|(yi − xi)| (7)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ (yi − xi)

yi

∣∣∣∣ (8)

MSE =
1
n

n

∑
i=1

(yi − xi)
2 (9)

RMSE =

√
1
n

n

∑
i=1

(yi − xi)2 (10)

PSNR = 10 log10

(
R2

1
n ∑n

i=1(yi − xi)2

)
(11)

SSIM =

[
l(xi, yi)

α · c(xi, yi)
β · s(xi, yi)

γ
]

(12)

FSIM =

[
SPC(xi, yi)

α · SGM(xi, yi)
β
]

(13)

where yi is the generated or synthesized image, xi is the original image, n is the number
of observations, R is the image maximum possible pixel value, l is the luminance, c is the
contrast, s is the structure, α, β, and γ are the weights, SPC is the invariant to light variation
in images, and SGM is the computation of image gradient.

We used precision, recall, mean Intersection over Union (IoU), mean Average Precision
(mAP), and F1-score to verify the efficiency of the Mask R-CNN model on the synthesized
VNIR pictures during the training and validation stages, which are defined as follows:
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Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

IoU =
Area o f Overlap
Area o f Union

(16)

AP = ∑
n
(Recalln − Recalln−1)Precisionn (17)

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(18)

Precision and recall are based on True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). TP denotes instances in which the model correctly
predicts a specific object from a given class in images, TN denotes the instances in which
the model correctly predicts an object that does not belong to a given class, and FP denotes
the instances in which the model predicts a specific class, but the object does not actually
belong to that class. In contrast, FN are the cases in which the model makes no prediction
of a particular class, but the object actually belongs to one of the classes. The object classes
are described in Section 3.4.

The AP is a region that lies beneath the precision–recall curve. The weighted mean of
precisions at each IoU threshold, with the increase in recall from the preceding threshold
as the weight, is how AP summarizes a precision–recall curve. It is calculated using (17),
where Precisionn and Recalln are the Precision and Recall at the n-th IoU threshold.

The mAP over all classes or overall IoU thresholds is calculated with the mAP score.
AP is averaged over all the classes. There is no distinction between AP and mAP in this case.
In our scenario, since AP is averaged across all the classes, there is no difference between
AP and mAP. We calculated AP values for IoU = 0.50 (AP50), for IoU = 0.75 (AP75), for the
objects with an area less than 32 squared pixels (APS), for the objects with an area ranging
from 32 to 96 squared pixels (APM), and for the objects with an area higher 96 squared
pixels (APL).

3.3. Experimental Testbeds and Data Acquisition

In this section, we describe the apple fruits used for the experiments and present
experimental testbeds for data collection:

(i) The experimental testbed for acquiring the dataset containing paired RGB and
VNIR images of stored apples;

(ii) The experimental testbed for stored apple VNIR images collection containing VNIR
images acquired by a multispectral camera.

The first testbed is designed for paired RGB and VNIR images collection in order
to train and validate the GAN-based DL models for VNIR images translation from RGB
images (see Section 3.3.1). The second testbed is used for the stored apples VNIR images
collection as well as for the CNN-based model training and validation of postharvest decay
zones detection and segmentation in the generated VNIR images (see Section 3.3.2).

3.3.1. Experimental Testbed for Paired RGB and VNIR Imaging Data Collection

We selected 16 apples of four kinds (“Delicious”, “Fuji”, “Gala”, “Reinette Simirenko”)
and divided them into four rows according to their kind (each row corresponds to each
apple kind). Each row contained four apples of different types, where every apple has
different treatment from left to right: an apple with no treatment, a thoroughly washed
and wiped apple, a mechanically damaged apple, and a shock-frozen apple supercooled
under −20◦, respectively. The apple without treatment serves as a reference for each kind.
A thoroughly washed apple indicates the removal of the natural protective wax layer
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from an apple. A mechanically damaged apple imitates the wrong storing conditions. A
shock-frozen apple simulates the wrong storing conditions. Figure 6 shows these apples.

Figure 6. Apples selected for data collection.

The first testbed is used for data collection under the recommended room storage
conditions. The temperature ranges from 25 ◦C to 32 ◦C and Relative Humidity (RH) of
34% [98]. The testbed contains aluminum frames and is 1 m in length, 1 m wide, and 1.7 m
high. Apples lie on a table with a white tray at the height of 1.3 m above the floor level.
We also use SLR camera Canon M50 and the multispectral camera CMS-V1 CMS18100073
(CMS-V) attached at the middle top of the frame and connected to a PC laptop via the USB
hub. The distance between the table with the apples on top and the camera is 500 mm.
The lamps allowed us to simulate real storage conditions for apples as well as perform the
collection of images under full and partial illumination. Detailed information about the
acquired dataset and the first experimental testbed is described in [99]. Figure 7 shows the
first testbed.

Figure 7. Experimental testbed for paired RGB and VNIR image capturing.

The multispectral camera CMS-V allows acquiring images in the range of 561–838 nm,
including the visible and NIR ranges. This camera imager is characterized by the modified
Bayer matrix made of a group of 3 × 3 pixels, called macro-pixel, filtering 3 × 3 (9) spectral
bands. The raw image delivered by the camera is built of 9 interleaved spectral sub-images
(8 colors + 1 Panchromatic) with the 1280 × 1024 pixels resolution. Each RGB image re-
lates to 9 images from the following spectral bands channel0 = 561 nm, channel1 = 597 nm,
channel2 = 635 nm, channel3 = 673 nm, channel4 = 724 nm, channel5 = 762 nm,
channel6 = 802 nm, channel7 = 838 nm, and channel8 (panchromatic channel) = 0 nm. The
resolution of the nine sub-images is 426 × 339 pixels.

We acquired 1305 sequential RGB images and 1305 corresponding VNIR images in
838 nm range to see the decay dynamics in presented apples. The examples of images are
shown in Figure 8.
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Figure 8. Types of images obtained during the experiments: (A)—RGB image of apples acquired
under the full illumination; (B)—VNIR image of apples acquired under the full illumination (838 nm);
(C)—VNIR image of apples acquired under the partial illumination (838 nm).

3.3.2. Experimental Testbed for VNIR Imaging Data Collection

In this experiment, we selected 22 apples of the “Alesya”, “Fuji”, “Golden” and
“Reinette Simirenko” seasonal types for data acquisition. The apples were between 8 and
10 cm in diameter, and most of them were multicolor with red and yellow sections. There
were also some apples containing fungi zones, i.e., grey-brown moldy areas in apples, as
the examples of apples stored under violated storage conditions. These apples were used
in order to increase the data representation for early postharvest decay detection tasks in
the stored apples using VNIR imaging data. These apples are demonstrated in Figure 9.

Figure 9. VNIR image of apples selected for data collection.

The second testbed presented in Figure 10 is a greenhouse that includes silicon frames
and five shelves, a plastic wrap, a multispectral camera, 10 LED strip lights with red/blue
diodes, a power supply (total power is 150 Watt) for controlling the LEDs, a logger, and
a pallet with apples. It can be used for the simulation of different processes related to
plant breeding in various environmental conditions including extremely dry or wet modes.
Temperature and humidity regulation in the testbed is provided with the LED strip lights,
the plastic wrap, and several water pallets located on three lower bottom separate shelves.

The silica frames are the basic elements of a presented greenhouse characterized by
the following dimensions 170 cm in height, 48 cm in length, and 67 cm in width. Two strip
lights were fixed on each shelf while the multispectral camera and the pallet with the apples
were fixed on the separate shelves (see Figure 10). Each selected strip has 60 LEDs with the
wavelength of 650–660 nm (red light LEDs) and 455–465 nm (blue light LEDs) for highest
chlorophyll concentration in plants to provide the most effective photosynthesis processes.
This is also fair for crops and plants at the postharvest stages [100]. It is necessary to keep
the quality of plant production which is another reason why these LED strip lights are
used in the greenhouse. We rely on the power supply (12 V DC, 150 W, IP33) as the energy
source for the SMD 5050 LED strip lights, and GL100-N/GL100-WL logger by Graphtech
Corporation, supplied with the GS-TH sensor module, for temperature and humidity
values registration during the data collection process.

For the VNIR image capturing, the multispectral camera CMS-V described in Section 3.3.1
was also chosen. The camera was connected via USB-A wire to the HP EliteBook 820 G3
Laptop with IntelCore i3-6100 CPU 2.30 GHz, where all the images were acquired and
saved as JPG-files with 426 × 339 pixels.
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Figure 10. Experimental greenhouse for data acquisition.

We obtained 1029 sequential VNIR images in the 838 nm range collected from CMS-V
camera’s channel7. These images were acquired under the temperature range from 35 ◦C
to 40 ◦C and RH equal to 70% with the goal to simulate potential violation of the storage
process of selected apples. This violation is necessary to speed up the decay processes in
apples. We also collected 100 sequential RGB images (see the example in Figure 11) for
the CNN-based model training and validation with the aim to demonstrate the up-to-date
approach based on the combination of pre-trained GAN-based and CNN-based models.
RGB sequential images had the dimensions of 339 pixels × 426 pixels × 3 channels (or
simply 339 × 426 × 3).

Figure 11. RGB image of apples selected for data collection.

3.4. Data Annotation

In order to apply a CNN-based deep learning model for the image instance segmenta-
tion, we used the Supervisely Ecosystem [101] for annotation and labeling of VNIR imaging
data. It is worth reiterating here that we provide this labeling only for the VNIR images
acquired with the testbed, described in Section 3.3.2 as these images were specially collected
as the sequential VNIR imaging dataset for the DL model training and validation on early
postharvest decay detection and segmentation of apples.

Four classes of objects in the images are defined as: Healthy apple, Decay, Fungi, and
Spoiled apple. By the Healthy apple we understand the apples without any visible damages
or spoiled zones in the images. The dark gray colored areas with the postharvest decay in
apples were indicated as Decay. By Fungi we indicate white colored moldy zones in apples.
Here we distinguish the postharvest decay zones marked as the Decay class, and moldy
zones marked as the Fungi class. If an apple has objects of the Fungi class, it means that this
apple is supposed to have been stored under the violated storage conditions, e.g., extreme
temperature or humidity, which resulted in the apple’s full spoilage. The apples with only
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the postharvest decay zones (Decay) can be sent for recycling, while apples with moldy
zones (Fungi) must be removed from others in order to prevent the spoilage of all samples.
We also defined the Spoiled apples class: there are stored apples with more than 50 percent of
spoiled areas (Decay objects) or moldy zones (Fungi objects) coverage. Figure 12 illustrates
the procedure of image annotation.

Figure 12. The example of image annotation and objects classes in Supervisely.

4. Results and Discussion

4.1. Image-to-Image Models Comparison for VNIR Images Generation from RGB

In this section, we show the results of deep learning models based on generative
adversarial networks comparison for VNIR images translation from RGB images. We
provide this comparison on the dataset sequential RGB images and corresponding VNIR
images in the 838 nm range presented in Section 3.3.1. To estimate the performance, we
split the data into the train set (80%) and the validation set (20%). The augmentation
techniques as Random Rotations, Shifts, Zoom, and Flips are implemented to increase the
data representativity and to keep the model’s efficiency during the training and validation
stages. We do not use the transformations such as Contrast/Brightness adjustments because
they may lead to the information loss from the acquired VNIR imaging data. Taking into
account that the image-to-image translation is also known as the translation from the
domain B to domain A (or just BtoA), it was necessary to label domain B and domain A images
from our acquired paired dataset. We identified the RGB images as domain B and domain A
as the VNIR images. All models were evaluated by 200 epochs where the first 100 were
implemented with the constant learning rate and the remaining 100 with linearly decreasing
to zero. The models training and validation were realized via the Python scripts launched
in Google Colab.

For the CycleGAN model, we use ResNet encoder–decoder architecture consisting of
two downsampling layers, six ResNet bottleneck blocks and two upsampling layers. We
also employ an Adam optimizer with the learning rate of 0.0002 and momentum parameters
β1 = 0.5 and β2 = 0.999.

For the Pix2Pix model training, we fixed the same parameters: batch size = 1, β1 = 0.5,
β2 = 0.999, and learning rate = 0.0002. The U-Net generator had 4 downsampling blocks.
Optimization included the generator loss optimization step and the discriminator loss opti-
mization step, respectively. Regularization parameters are as follows: λVGG = λFeat = 10,
λL1 = 100.

For the Pix2PixHD model, we also implement the same parameters: Adam optimizer,
batch size = 1, β1 = 0.5, β2 = 0.999, and learning rate = 0.0002.

Figure 13 shows the discriminator values of CycleGAN (Figure 13a), Pix2Pix (Figure 13b),
and Pix2PixHD (Figure 13c) models during the training stage. We show the model’s
discriminator losses because they show the ability of GAN-based models to identify the
quality of synthesized VNIR images by generator in comparison to original VNIR images.
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(a)

(b)

(c)

Figure 13. GAN-based models evaluation: (a) CycleGAN discriminator loss values during the
training; (b) Pix2Pix discriminator loss values during the training; and (c) Pix2PixHD discriminator
loss values during the training.

For selected GAN-based models we see that the training stage is unstable, but the
discriminator losses tend to decrease over time. Pix2PixHD shows the lowest loss value in
comparison to CycleGAN and Pix2Pix. For the models validation, we reconstructed the
VNIR images using model weights acquired during the training. We used MAE, MAPE,

60



Entropy 2023, 25, 987

MSE, PSNR and SSIM metrics to estimate the quality of VNIR reconstructed images in
comparison with original VNIR images. Figure 14 shows these images (with ‘cyclegan’,
‘pix2pix’, ‘pix2pixHD’ labels, respectively) in comparison to the original VNIR image
(‘reference’ label) via Python visualization tools.

(a)

(b)

Figure 14. Examples of VNIR generated images in comparison to original VNIR image: (a) obtained
under full illumination; and (b) obtained under partial illumination.
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Table 1 summarizes the results of considered models performance, where the results
for Pix2PixHD model are highlighted with the black blod. Considering both the pixel-
based and the image metrics, one can conclude on the promising results. The generated
images look more or less similar to the original ones. The images containing apples, overall
light intensity similar to the ground truth and the decay region are mainly preserved.
However, all the models have particular artifacts. The CycleGAN model has the big
stamp-like artifacts and there are a lot of missed decayed zones in the apples. In terms of
metrics mentioned in Section 3.2, Pix2Pix and Pix2PixHD models perform the comparable
and much better than others, and decay regions preserved relatively well, although the
intensity level mismatch can be seen. Pix2PixHD models produce perceptually good
images preserving importance for task features and the mean error level is equal to 0.6%.
In terms of important metrics for the image quality estimation, such as PSNR and SSIM, the
Pix2PixHD model showed higher values in comparison to Pix2Pix (46.859 against 46.433,
and 0.972 against 0.955, respectively). Taking into account the results of this comparison,
we decided to use the Pix2PixHD model for VNIR images generation from RGB during the
next stages.

Table 1. Image-to-image models comparison for RGB to VNIR images generation.

Models MAE MAPE MSE PSNR SSIM

CycleGAN 0.067 0.105 0.01127 27.375 0.856

Pix2Pix 0.004 0.006 0.00003 46.433 0.955

Pix2PixHD 0.004 0.006 0.00003 46.859 0.972

4.2. Segmentation of Generated VNIR Images for Early Postharvest Decay Detection in Apples

In this section, we apply the CNN-based models for instance segmentation of gen-
erated VNIR images. Based on the results reported in Section 4.1, we use the Pix2PixHD
model for the VNIR image generation. The dataset containing 456 images of stored apples
(see Section 3.3.2) was used as the input for trained weights of the Pix2PixHD model to
generate VNIR images. The examples of synthesized VNIR images from corresponding
input RGB images are presented in Figure 15. Comparing the quality of new images with
the images that were synthesizing during Pix2PixHD training stage (see Section 4.1), PSNR
and SSIM values increased from 46.859 to 52.876 and from 0.972 to 0.994, respectively.

Mask R-CNN is used as the CNN-based model for the images instance segmentation.
However, before applying Mask R-CNN to images, synthesized with Pix2PixHD, it was
necessary to train Mask R-CNN on real VNIR images to detect and segment the fungi and
decayed areas in stored apples. We used the labeled dataset containing 1029 VNIR images
(see Section 3.3.2) for Mask R-CNN model training and validation. We report on the object
classes used for data labeling in Section 3.4.

In this work, we implemented Mask R-CNN with the L1 as a loss function, ResNet50
as the backbone, Stochastic gradient descent (SGD) as an optimizer, and COCO weights
to use Detectron2 library [102]. GaussianNoise, RandomGamma, RandomBrightness, and
HorizontalFlip were applied as the data augmentation function to keep the efficiency of the
proposed model during the training and validation stages. The model was developed in
Python, and all calculations were realized in Google Colab.

In our experiment, we apply the cross-validation for Mask R-CNN model training on
the dataset containing VNIR images. Cross-validation is a widespread technique helping
avoid the overfitting during the model training on big data. In our case, we deal with
the sequential images, i.e., one apple can be located in many images without any changes
in position, which may resulted in improving the loss value after decreasing during the
training procedure. During cross-validation, the data is usually split into several groups,
called folds, where each group is used for the training and validation one by one. For
example, if the dataset is separated into three folds, the pipeline is the following: (i) the first
fold is a validation set, the second and third folds form the train set; (ii) the first and the
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third folds are train set, the second fold is a validation set; and (iii) the first and the second
folds are training set, the third fold is a validation set. This pipeline is also fair for the
cross-validation with four and higher folds distribution. By default, the number of folds,
which is also called k-folds, is usually set equal to five or ten, but the k-folds may be different.
In this work, we set the number of folds equal to two, three, six, and nine. We show the
mean Average Precision values for each k-fold during Mask R-CNN models in Table 2.

Figure 15. Examples of synthesized VNIR images with Pix2PixHD model weights.
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Table 2. Comparison of Average Precision for Mask R-CNN model.

k-Folds mAP mAP50 mAP75 mAPS mAPM mAPL

2 64.251 90.205 65.606 37.202 75.980 97.412

3 67.652 90.354 65.348 35.400 75.290 96.290

6 67.026 90.950 67.055 38.188 74.609 98.871

9 67.993 91.120 64.871 31.575 75.181 97.257

The results for each object class segmentation (or per-category segmentation) during
Mask R-CNN model during all folds are given in Tables 3 and 4). We also used mAP
and F1-score metrics to evaluate the segmentation quality during model training for folds
distribution. Tables 3 and 4 present the mean mAP and F1-score values for each fold,
respectively. As can be seen, the number of folds leads to increasing of the metrics values
and segmentation accuracy. This is a demonstration of a cross-validation technique in
comparison to ordinary data splitting on the training and validation sets. Figure 16 shows
the examples of VNIR images with predicted annotations of object classes (see Section 3.4)
acquired during the Mask R-CNN model validation. Here we show the examples of
synthesized and annotated images from k-folds = 9, as the distribution with the better mAP
and F1-score values (see the column for k-folds = 9 with black bold in the Tables 3 and 4).
Even though the postharvest decay zones (Decay object class in Tables 3 and 4) and the
fungal areas (Fungi object class in Tables 3 and 4) are detected with small values of an F1-
score metric (58.861 and 40.968, respectively), a trained Mask R-CNN model allows for the
detection and segmentation of spoiled apples (Spoiled apple object class), containing either
decayed zones or fungal areas, or both, with an F1-score of 94.800, which is promising.

Table 3. Results on per-category segmentation by Mask R-CNN using mAP metric.

Category
mAP

k-Folds = 2 k-Folds = 3 k-Folds = 6 k-Folds = 9

Healthy apple 94.785 95.154 93.951 98.350

Spoiled apple 87.839 92.567 93.678 93.997

Decay 53.509 53.408 54.620 57.562

Fungi 31.581 30.609 34.285 39.967

Table 4. Results on per-category segmentation by Mask R-CNN using F1-score metric.

Category
F1-Score

k-Folds = 2 k-Folds = 3 k-Folds = 6 k-Folds = 9

Healthy apple 95.640 95.589 94.799 98.375

Spoiled apple 88.120 93.134 94.689 94.800

Decay 53.309 53.213 54.850 58.861

Fungi 31.686 37.247 35.126 40.968
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(a)

(b)

Figure 16. Comparison of object classes annotation in real VNIR images (a,b, on the left with
‘Annotated image’ label) to predicted object annotations (a,b, on the right with ‘Predicted annotations’
label) during Mask R-CNN model training.

Taking into account the results of Mask R-CNN evaluation on real VNIR imaging data
and the results of the Pix2PixHD evaluation in comparison to other GAN-based models
(see Section 4.1), we provide the proposed pipeline for segmentation of generated VNIR
images. To estimate it we acquired the dataset containing only 456 sequential RGB images
without the corresponded VNIR images (see Section 3.4). The images were acquired in
the greenhouse (see Section 3.3.2) under the same environmental conditions (temperature
range is from 35 ◦C to 40 ◦C, and RH is 70%, respectively). In order to simulate possible
occasion during the real storage, spoiled apples with the decayed and fungi zones were
added to healthy (non-damaged) apples. The concept is as follows: (i) we utilize a set
of RGB images as input data; (ii) these RGB images are passed through a GAN-based
model (specifically, Pix2PixHD with pre-trained weights in our case); (iii) VNIR images
are generated from the input RGB images using Pix2PixHD; and (iv) the generated VNIR
images are fed into a CNN-based model (specifically, Mask R-CNN with pre-trained
weights) to obtain these images with predicted annotation masks. Figure 17 shows the
examples of images which were synthesized and segmented with the proposed pipeline.
As it can be seen in Figure 17b,c, the proposed approach helps detect and segment the
decayed zones separately from the fungi zones in the stored apples. All computations were
also provided in Google Colab.
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(a)

(b)

(c)

Figure 17. Synthesized VNIR images (a–c) segmentation with Mask R-CNN model.

4.3. Early Postharvest Decay Detection in Stored Apples Using Generated VNIR Imaging Data on
an Embedded System

To evaluate the applicability of a GAN- and CNN-based models in real-life scenarios
we conduct an experiment using the NVIDIA Jetson Nano embedded system [103]. The
goal of the experiment is to validate the model’s ability to handle video streams with
varying frames per second (FPS).
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We used 100 RGB images. Input RGB images are characterized by the size of 256 pixels.
A GAN model was used to generate VNIR images from input images and processed over
100 images at an average rate of 17 FPS. The generated images were then tested with
Mask R-CNN, resulting in an average rate of 0.420 FPS. Low FPS in Mask R-CNN can be
attributed to its complexity compared to Pix2PixHD. As the two-stage detection model that
performs instance segmentation by detecting objects and generating pixel-level masks for
each object, it requires more computational resources. Figure 18 shows the examples of
VNIR images generated and segmented using the NVIDIA Jetson Nano based on the input
RGB data.

(a)

(b)

(c)

Figure 18. Generated and segmented VNIR images (a–c) using Jetson Nano.

4.4. Discussion

In this section, we compare our results with other relevant research works in the field
of application of NIR imaging data and deep learning techniques for early postharvest
decay and fungal zones prediction in stored apples. The proposed approach is based on
the joint application of GAN and CNN techniques for artificial generation and subsequent
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segmentation of VNIR images. However, in order to segment the decayed and fungal zones
in artificially generated VNIR images, we had to train and validate a CNN technique on the
real VNIR images containing these zones in stored apples. To perform this, we acquired the
dataset of VNIR images (see Section 3.3) and then trained and validated the Mask R-CNN
model (see Section 4.2).

Taking into the account the ability of Mask R-CNN to provide the multi-class instance
and semantic segmentation (see Section 3.1.4), we trained the model not only to detect
and identify the quality of apple (Healthy apple or Spoiled apple, see Section 3.4), but also to
detect and predict the decayed and fungal zones separately from each other. Novelty is that
the model is trained and validated to identify the quality of stored apples by taking into
account the presence of decayed and fungal areas in the apples themselves. In this context,
an apple is classified as Spoiled apple if it contains the decayed or fungal zones, whether
they are separate or combined. Conversely, if an apple does not exhibit any decayed or
fungal zones prior to storage stage, i.e., during the VNIR image collection, it is classified as
a Healthy apple. However, if the decayed and/or fungal zones emerge in the apple during
the storage stage, its classification transitions from a Healthy apple to Spoiled apple.

Relevant works in this area can be classified into three main groups according to main
tasks: (i) defective apples detection based on the internal quality parameters [104,105];
(ii) early defect detection in apples [104,106]; and (iii) early fungi detection in apples [73,107,108].
Table 5 presents a comparative study of these works.

Table 5. Comparative table of relevant research works.

References Task
NIR Images
Range, nm

Technique Metric Value

[104] Real-time apple defect inspection 850 YOLO v4 F1 92.000

[105] Apples surface defect segmentation 460–842 U-Net F1-score 87.000

[105] Apples surface defect segmentation 460–842 the improved U-Net F1-score 91.000

[106] Early bruise detection in apples 900–2350 Faster R-CNN mAP 96.900

[106] Early bruise detection in apples 900–2350 YOLO v3-Tiny mAP 99.100

[106] Early bruise detection in apples 900–2350 YOLO 5s mAP 99.600

[107] Moldy core detection in apples 400–850 CARS-PLS-DA model Accuracy 87.880

[73] Codling Moth detection in apples 900–1700 Gradient tree boosting F1-score 97.000

[108] Moldy core detection in apples 200–1100 BP-ANN Accuracy 95.000

The authors applied various tools and methods based on machine learning for de-
tecting the defected and diseased zones in wide NIR ranges (400–2350 nm, globally) with
detailed spectral information on the diseased zones. The most relevant and similar ap-
proach to the current research is reported in [104], where a YOLO v4 model in sorting
machine for real-time detection of defects in “Red Fuji”, “Golden Delicious”, and “Granny
Smith” apples is implemented. The authors used the RGB and corresponded NIR images
in the range of 850 nm of the apples in the machine’s sorting line. Moreover, the ability of
trained YOLO v4 models to detect with bounding box ‘calyx’ and ‘stem’ zones separately
from ‘defect’ zones was demonstrated. In this work, we applied the Mask R-CNN not
only to detect (with bounding box) and segment (with mask) the decayed and the fungal
areas in stored apples, but also to identify the quality of apples as diseased (Spoiled apple)
if such zones are detected by the model. F1-score and mAP values for Decay and Fungi
zones are not that high. These problems can be fixed in our future work by obtaining more
VNIR images containing the fungal and the decayed areas in order to increase the data
representation during the model validation. On the other hand, the results for Spoiled apple
(apple contains Fungi and/or Decay zones) segmentation are 98.350 and 98.375, respectively,
which is promising. Finally, the proposed approach is for an apple quality control during
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the storage stage, i.e., before sending the stored apples to the fruit sorting machine. The
system, which could generate VNIR images without a multispectral or hyperspectral cam-
era based only on the input RGB images with segmented fungal and decayed zones, if they
occur in stored apples, can be applied as an additional stage for the fruit and vegetable
control before sending them to a sorting machine.

In [106], the authors compared several Faster R-CNN, YOLO v3-Tiny, and YOLO 5s
models for early decay (or bruise) detection in apples. The approach proposed in this work
showed promising results in terms of the mAP metric (98.350 for Mask R-CNN validation,
in our case, against 96.900 for Faster R-CNN, 99.100 for YOLO v3-Tiny, and 96.600 for
YOLO 5s), and the selected model was trained to segment the decayed and fungal zones in
apples, while authors in [106] trained the models to identify and predict the apples without
(‘No bruise’), with a small (‘Mild bruise’) and significant (‘Severe bruise’) decayed areas
in apples. The authors also acquired the NIR images in spectral range of 900–2350 nm,
while in this work the images from 838 nm range were used in order to make sure that the
diseased zones in VNIR images are visible in the RGB images as well.

In [105], the authors trained and validated U-Net and the improved U-Net model for
the defect segmentation in VNIR images of apples. In this work, we have demonstrated
the semantic segmentation of decayed and fungal areas with an advanced experimental
methodology. We simulated ordinary and extreme storage conditions during the paired
RGB and VNIR images collection procedures. Taking this into account, we achieved a
relevant value for the diseased apples segmentation in terms of the F1-score metric.

We have demonstrated the potential for the postharvest decay and fungi prediction
for stored apples. However, it can be scaled to other crops that are widely used in food
production, e.g., carrots, tomatoes, cucumber, fruits or bananas. For example, the system
that allows the generation and segmentation of VNIR images can be applied for segmenta-
tion and prediction of such fungi as Sclerotinia sclerotiorum or Botrytis cinerea. ’Sclerotinia’
and ’Botrytis’ fungal zones have similar morphology and, if they occur in plants, it is a
nontrivial task to identify one fungi variety from another one using only RGB imagery or
visual estimation of the internal fungal traits with human eyes [109]. The system supplied
with the trained and validated DL technique based on the GAN and CNN models can
assist the user with the additional spectral information about each fungi acquired from the
generated VNIR images. It is useful for more precise antifungal activities during the food
quality control.

Another potential scenario is the application of the proposed research for the prehar-
vest diseases and the defect detection for the plants both growing in natural environments
and in artificially controlled systems. For example, it can be a robot moving platform or
unmanned aerial vehicle without a hyperspectral camera, but with an embedded system
that may generate and segment the NIR imaging data from the input RGB one. However,
DL technique should be trained, tested and validated precisely, as the proposed system has
to detect and segment not only the diseased plants from the healthy ones, but also to detect
the kind of defect (damage, decay, fungi variety) with the following suggestion of spoiled
fruit processing.

5. Conclusions

NIR imagery provides detailed information about the diseased areas in stored fruits,
which is why the hyperspectral cameras containing thousands of bands are used for food
quality monitoring at postharvest stages. However, hyperspectral devices are expensive
and are not friendly for the farmers and sellers’ usage. In this article, we have presented the
approach based on the GAN and CNN DL techniques for early postharvest decay zones
and fungi areas detection and prediction in stored apples using synthesized and segmented
VNIR images.
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The conclusions of this work are as follows:

• The analysis of Pix2Pix, CycleGAN, and Pix2PixHD models, which are widely used
GAN techniques, and their application to a dataset containing paired 1305 sequential
RGB images and 1305 sequential VNIR images of stored apples of different varieties
and various pre-treatments. The images were acquired under the full and partial
illumination with the goal to simulate real storage conditions.

• Comparison of the real VNIR images with the VNIR images synthesized by selected
GAN based models. The VNIR images generated via Pix2PixHD a 0.972 score for the
SSIM metric.

• The training and test of Mask R-CNN on another dataset containing only 1029 sequen-
tial VNIR images of apples under violated storage conditions. Within this test, an
F1-score of 58.861 is achieved for the postharvest decay zones and F1-score 40.968 for
the fungal zones detection. The spoiled apples with the decayed and fungal zones are
detected and segmented with F1-score 94.800.

• Testing of the proposed solution on an embedded system with AI capabilities. We
used 100 RGB images of stored apples as an input data for NVIDIA Jetson Nano, and
the time processing of VNIR images generation by Pix2PixHD showed 17 FPS. The
detection and segmentation by Mask R-CNN achieved 0.42 FPS.

The proposed approach is a promising solution able to substitute expensive hyper-
spectral imaging devices for early postharvest decay prediction tasks in postharvest food
quality control.
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Abbreviations

The following abbreviations are used in this manuscript:

NIR Near Infrared Image
VNIR Visible Near Infrared Image
AI Artificial Intelligence
CV Computer Vision
ML Machine Learning
SVM Support Vector Machines
RF Random Forest
kNN K-Nearest Neighbors Algorithm
GTB Gradient Tree Boosting
DL Deep Learning
CNN Convolutional Neural Network
GAN Generative Adversarial Network
ROI Regions of Interests
SBC Single Board Computer
RH Relative Humidity
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Abstract: The aim of infrared and visible image fusion is to integrate the complementary information
of the two modalities for high-quality fused images. However, many deep learning fusion algorithms
have not considered the characteristics of infrared images in low-light scenes, leading to the problems
of weak texture details, low contrast of infrared targets and poor visual perception in the existing
methods. Therefore, in this paper, we propose a salient compensation-based fusion method that
makes sufficient use of the characteristics of infrared and visible images to generate high-quality fused
images under low-light conditions. First, we design a multi-scale edge gradient module (MEGB) in
the texture mainstream to adequately extract the texture information of the dual input of infrared
and visible images; on the other hand, the salient tributary is pre-trained by salient loss to obtain the
saliency map based on the salient dense residual module (SRDB) to extract salient features, which is
supplemented in the process of overall network training. We propose the spatial bias module (SBM)
to fuse global information with local information. Finally, extensive comparison experiments with
existing methods show that our method has significant advantages in describing target features and
global scenes, the effectiveness of the proposed module is demonstrated by ablation experiments. In
addition, we also verify the facilitation of this paper’s method for high-level vision on a semantic
segmentation task.

Keywords: image fusion; salient compensation; infrared and visible images; deep learning

1. Introduction

It is difficult to obtain high quality images during image acquisition due to weather,
environment, etc. [1,2]. To improve image quality, researchers have proposed various
image processing technology methods [3,4], and image fusion, as an image enhancement
technique, can synthesize the complementary information between images to maximize
the details of the imaged scene [5]. Among them, infrared and visible image fusion has
become a hot research topic in the field of image processing due to its applications in the
military and other fields [6]. Visible images usually contain a large number of texture de-
tails, but they are susceptible to environmental effects; in contrast, infrared images have the
feature of highlighting thermal targets, but infrared images have problems such as a lack of
background information, noise, and low resolution [7]. Therefore, the complementary char-
acteristics of infrared and visible images enable their fusion to comprehensively describe
the imaging scene, thus providing more feature information for subsequent advanced
vision tasks such as pedestrian detection [8], image segmentation [9], etc.

Most of the existing methods for infrared and visible image fusion include some tradi-
tional methods and deep learning methods. The traditional methods mainly include multi-
scale-decomposition-based methods [10,11], sparse representation-based methods [12,13],
subspace-based methods [14], saliency-based methods [15], and hybrid methods [16].
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However, most traditional methods achieve image fusion by complex mathematical trans-
formations and hand-designed fusion rules; therefore, they cannot adapt to increasingly
complex fusion scenarios. Additionally, due to the powerful deep feature extraction ability
of deep learning, it has received more and more attention from scholars in the field of
image fusion. Deep learning-based fusion methods are divided into three main categories:
auto-encoder(AE)-based methods [17–20], convolutional neural network (CNN)-based
methods [21–24], and generative adversarial network (GAN)-based methods [25–28].

Although deep-learning-based image fusion methods have been able to generate
satisfactory fused images in recent years, there are still some pressing challenges in the field
of image fusion. On the one hand, existing fusion algorithms [22,23,27] have a prerequisite:
the assumption that infrared images provide salient target information and visible images
provide background texture information, which holds under certain conditions (when
visible images contain more information), but when conditions such as poor lighting of
the visible image imaging scene are poor, this assumption leads to loss of background
information in the fused image and the problem of target contrast degradation. On the other
hand, there are some self-encoder-based methods [17–20] that use hand-designed fusion
strategies to fuse depth features; however, the depth features tend to be uninterpretable,
and the hand-designed fusion strategies are not able to assign appropriate weights to the
depth features so that they are not better able to fuse the features. In contrast, some end-
to-end methods [22,23,29] use feature fusion by simply cascading the feature information
at the end of the feature extraction network, which is susceptible to the loss of shallow
detailed texture feature information. In addition, existing methods do not pay attention to
the infrared region at the target level when constructing the loss function, which cannot
target the saliency of the infrared target in the fused image, resulting in the inevitable
weakening of the infrared target in the fused image.

To solve the above problems, we propose a salient-compensation-based fusion frame-
work for infrared, and visible images, called SCFusion. We will describe our approach in
detail in Section 3. Overall, our main contributions are four-fold:

• It is presented a saliency-compensated infrared and visible image fusion framework
consisting of a multi-scale edge gradient block (MEGB), a salient dense residual
module (SRDB), and a spatial bias module (SBM). The fused images have significantly
enhanced target information and rich scene descriptions.

• A scene texture mainstream consisting of multi-scale edge gradient blocks (MEGB) is
designed to effectively extract the scene texture features of the source image, and the
visible and infrared images can complement each other as scene texture information in
different scenes, effectively solving the limitation of visible images by low-light scenes.

• A salient tributary trained individually by salient loss is designed, which uses the
salient dense residual module (SRDB) to extract saliency targets, improving the target
capture capability of the fusion network and eliminating the problem of low contrast
in target regions of existing methods.

• A spatial bias module (SBM) is designed to compensate infrared features into texture
features at different stages, where information extraction and fusion compensation are
performed simultaneously, without the need to design additional fusion strategies.

The remainder of this paper is organized as follows. Section 2 briefly describes the
related works of image fusion. In Section 3, we introduce our proposed SCFusion in
detail, including network architecture and loss function. Section 4 illustrates the impressive
performance of our method in comparison with other alternatives, followed by some
concluding remarks in Section 5.
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2. Related Work

2.1. Infrared and Visible Fusion

Deep learning has been sufficiently applied in computer vision tasks including im-
age fusion due to its powerful capability of adaptation, numerous methods based on
deep learning have been proposed, which are broadly classified into the following three
main categories:

AE-based image fusion: Most of the self-encoder-based methods pre-train on large
datasets to obtain encoders and decoders to implement the process of feature extraction
and reconstruction, followed by feature fusion using manually designed fusion rules.
DenseFuse [17] consists of a convolutional layer, a fusion layer, and a dense block, while the
fusion layer is implemented by simple addition and parametrization. To further improve
the feature extraction, NestFuse [18] and RFN-Nest [30] introduced nested connections and
residual dense blocks in the network. Later, in order to make the network pay attention to
specific regions of the source image, Jian et al. [31] employed an attention mechanism to
focus on salient targets and texture details of the source image. Xu [20] et al., applied disso-
ciative representation learning to a self-encoder approach considering the interpretability
of feature extraction.

GAN-based image fusion: Generative adversarial networks (GANs) are able to effec-
tively model data distribution even without supervised information, making the network
remarkably compatible with infrared and visible image fusion tasks. FusionGAN [25]
is the first approach to implement GANs into infrared and visible image fusion tasks,
which defines the fusion task as an adversarial game between generators and discrimina-
tors. However, with a single discriminator, it is susceptible to a break in the balance of
the data distribution between infrared and visible images; therefore, Ma et al., proposed
DDcGAN [26], which proposes a dual-discriminator adversarial generative network. At-
tentionGAN [32] incorporates an attention mechanism based on DDcGAN [26], which
intends to have the network retain the target information of infrared images and back-
ground information. Additionally, later, Zhou et al. [27] proposed an approach to generate
adversarial networks with gradient and intensity discriminators as multi-task fusion, which
imported gradient and intensity into the GAN to make the network pay more attention to
the gradient and intensity of infrared and visible images.

CNN-based image fusion: Infrared and visible image fusion methods based on con-
volutional neural networks (CNN) achieve end-to-end feature extraction, fusion, and
reconstruction by designing network structures and loss functions. RXDNFuse [33] com-
bines the advantages of DenseNet [17] and ResNet [34] to propose residual dense networks
for a more comprehensive extraction of features at different scales. SeAFusion [29] pro-
posed an approach to drive the fusion task with semantic loss to better integrate the fusion
task with subsequent advanced vision tasks. Li et al. [35] proposed a dual-attention-based
feature fusion module based on the theory of meta-learning, in which the network accepts
source image inputs of different resolutions. STDFusionNet [22] proposed the use of target
masks to assist in extracting the target of the visible image and the background of the
visible image as a way to improve the fusion effect, but the labeling of the mask is manually
labeled, which results in a large preliminary workload. PIAFusion [7] considers the lighting
conditions, although it embeds the lighting probability into the loss function, which is
prone to the problem of overexposure to the background of the daytime scene.

2.2. The High-Level Vision Tasks

As one of the important methods in the field of computer vision, semantic segmenta-
tion aims to predict the semantic category of each pixel in an image; it has crucial importance
in the field of autonomous driving [36]. However, many semantic segmentation methods
are designed based on the conditions of good illumination, while the performance of
these methods decreases when the image has poor illumination conditions or is occluded.
Therefore, it has become a new problem in the field of semantic segmentation to improve
the accuracy of segmentation networks when the visible images are contaminated. Some
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researchers have started to experiment with semantic segmentation methods that combine
infrared images with visible images, and most of these methods also involve the process
of infrared and visible image fusion. RTFNet [37] employs ResNet to extract the features
of two source images separately as an encoder; multimodal fusion is implemented by
accumulating the feature blocks of RGB and Thermal encoder paths over the elements, with
an upception block designed to recover the feature map resolution. AFNet [38] computes
the infrared image and visible image by designing the attention fusion module to the
spatial correlation between feature maps while guiding the fusion of features from different
modalities in the process. AMFuse [39] was designed specifically for multimodal fusion
with an add–multiply fusion block fusing common and complementary features of infrared
and visible images, with an attention module and a spatial pyramid pool module added to
the module to enhance the information in multi-scale contexts.

However, infrared and visible image fusion methods ignore the variation in comple-
mentary information of infrared and visible images in normal light and low-light environ-
ments. Therefore, we propose a new fusion method that is able to sufficiently exploit the
features of infrared and visible images under different lighting conditions, so as to retain
more meaningful information.

3. Methods

3.1. Network Architecture

In order to balance the background texture details of the infrared and visible images
without limiting the light conditions of the input image and to enhance the contrast
between the infrared target and the scene, we designed the saliency-compensated fusion
network, whose overall network is shown in Figure 1. The framework mainly consists
of the multiscale edge gradient block (MEGB), the salient dense residual module (SRDB)
and the spatial bias module (SBM). The visible and infrared images are integrated into
the texture mainstream together to obtain enhanced texture features, while the infrared
images are integrated into the salient mainstream to obtain enhanced salient features, both
of which are effectively fused with global and local information by the spatial bias module
(SBM). The relevant modules will be described in detail below.

Figure 1. Overall framework for SCFusion. It consists of multiscale edge gradient block
(MEGB),salient dense residual block (SRDB), and spatial bias block (SBM). The saliency map gener-
ated by the saliency tributary is pre-trained by saliency loss, which is then sent to the main network
to generate the fused image with the texture features obtained by MEGB under the joint training of
structural similarity loss and content loss.

3.1.1. Multiscale Edge Gradient Block (MEGB)

The specific structure is shown in Figure 2, which consists of multiscale mainstream
and residual gradient streams. Most networks use convolutional layers of the same size
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convolutional kernel to extract features, which is difficult to perceive the information
comprehensively. So, the multiscale mainstream is added with branches of convolutional
layers of different sizes of convolutional kernels to increase the perceptual field. To reduce
the information loss in the multi-scale features, different convolutional computations are
not added with pooling layers, while the residual gradient flow is combined with the Sobel
operator to maintain the strong texture rationality of the features. The multiscale output
is then combined with the output of the residual gradient flow to complete the texture
detail enhancement.

Figure 2. Multiscale edge gradient block (MEGB). It accomplishes texture detail enhancement by
combining the output of the multi-scale with the output of the residual gradient flow.

Specifically, in the feature mainstream, we are given a pair of strictly aligned infrared
images Iir and visible images Ivi, which are approximated by a shallow convolutional
layer for modal differences and then joined in the channel dimension to obtain ΦH In the
tributary stream, the infrared images Iir are passed through a shallow convolutional layer
to obtain ΦC ΦH is directly input to MEGB, and MSB uses different convolutional kernels to
extend the perceptual field of the network, and multi-scale features ΦD cascade to enhance
the feature description. The module MSB output feature ΦM can be expressed as:

ΦM = Conv(C(ΦD)), n ∈ {1, 3, 5, 7} (1)

The texture extraction of the hybrid features is also performed using the Sobel operator
to enhance the features’ fine-grained representation, and the above process can be expressed
as follows:

ΦT1 = Conv(Conv(∇SobelΦH)⊕ΦM) (2)

where Conv(·) denotes the convolution operation, C(·) denotes the cascade on the channel
dimension, ∇Sobel denotes the Sobel operator, and ⊕ denotes element-wise summation.

In summary, MEGB breaks the limitation of texture extraction from lighting conditions
by combining multi-scale features and Sobel texture features in parallel to maximize texture
details in infrared and visible images.
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3.1.2. Salient Dense Residual Block (SRDB)

The specific structure is shown in Figure 3, which integrates dense connectivity [17],
residual streams [35], and channel attention (CAB). To obtain comprehensive feature
information, we introduce dense connectivity in the mainstream, but to address the high
memory cost and energy consumption due to feature reuse, it is replaced by aggregating
the features of all previous layers in the last layer of dense connectivity. Densely connected
features are input to attention in order to make the network more focused on the attention
region. It is remarkable that we generate salient target images in the training phase, while
the infrared salient target features are input directly into the subsequent network in the
inference phase.

Figure 3. Salient dense residual block (SRDB). It achieves contrast enhancement by combining
attentional features with residual flow features.

Specifically, we send ΦC into the SRDB, and after feature reuse, feature ΦE can be
represented as:

ΦE = C
(

ΦC, Conv(ΦC), Conv2(ΦC), Conv(ΦC)
)

(3)

The attention first passes through a 3 × 3 convolutional layer, followed by a global
average pooling to obtain the global feature vector, a fully connected layer to learn the
importance of each channel, and then a sigmoid activation function to obtain the weights
and assign higher weights to the features with higher contrast, and multiply the weights
with the original input features to obtain the attention feature VC.

Finally, the contrast enhancement is achieved by adding the attention features with
the residual stream features to highlight the salient targets, and the above process can be
defined as:

VC = Sigmoid(FC(GAP(Conv(ΦE)))) ·ΦE (4)

ΦS1 = Conv(ΦC)⊕VC (5)

where GAP(·) denotes the global average pooling, FC(·) denotes the fully connected layer,
Sigmoid(·) denotes the activation function, and ΦS1 is the final output feature of SRDB.

In a nutshell, SRDB calculates the contrast of features on the basis of channel at-
tention to achieve contrast enhancement, which further preserves the high contrast of
infrared targets.
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3.1.3. Spatial Bias Block (SBM)

The specific structure of the module is shown in Figure 4. The module has two inputs,
a texture feature from the mainstream and a salient feature from the tributary. In the
salient tributary we focus on the infrared target; meanwhile, we also need to learn the
relationship between different distant targets, i.e., the global information to enhance the
semantic information of the image, but the simple convolutional layer has the problem of
not being able to learn the long-range dependencies due to the limited perceptual field, so
we learn the global information by adding a spatial bias channel to the texture tributary.
This module is lightweight, unlike the self-attention operation which is too burdensome.
The spatial bias term B can be expressed as:

B = Relu
(

BN
(
ΦS1 , SB

))
(6)

where B(·) denotes the output of the significant features after adding the spatial bias term,
SB denotes the spatial bias, and BN and Relu denote the batch normalization and nonlinear
activation layers, respectively.

Figure 4. Spatial bias block (SBM). It allows the network to learn both local and global information
by connecting spatially biased features with texture features in channel cascades.

Instead, textures are represented by the grayscale distribution of pixels and their sur-
rounding spatial domains, i.e., local information. By cascading spatial bias features with tex-
ture features in the channel direction, the network can learn both local and global informa-
tion. In order to aggregate global knowledge in the feature map, we use 1 × 1 convolution
in the passband dimension. Finally, texture feature ΦT1 is spliced with saliency feature ΦS1
to complete the process of asymptotic fusion, which can be expressed as

Φ′T1
= Conv

(
C
(
ΦT1 , B

(
ΦS1

)))
(7)

In conclusion, a simple and efficient fusion rule is the key to image fusion, and
SBM utilizes lightweight spatial bias terms to fuse local and global information without
increasing the complexity of the network.

3.2. Loss Function

We know that under different lighting conditions, image texture information may
exist in either visible or infrared images; the salient targets are more prominent in infrared
images. Therefore, our method aims to fully extract texture details in both infrared and
visible images from the texture mainstream while enhancing the salient targets weakened
by the mainstream from the saliency tributaries. Therefore, our method is a two-stage
model trained by the mainstream loss function and the tributary loss function, and its
training process is shown in Algorithm 1.
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Algorithm 1: Training procedure

Input: Infrared images irI and visible images
viI

Output: Fused images fI

1 For 1M epoch do

2 For 1p step do

3 Select n infrared images { 11 2, ,..., n
ir ir irI I I };

4 Use the salient branch to extract salient feature maps s ;

5 Calculate the salient loss salientL according to Eq.(16);

6 Update the parameters by Adam Optimizer;

7 end
8 Save weights of the salient branch for the 1M epoch;

9 end
10 For 2M epoch do

11 For 2p step do

12 Select n infrared images { 21 2, ,..., n
ir ir irI I I };

13 Select n Visible images { 21 2, ,..., n
vi vi viI I I };

14 Generate n fused images { 21 2, ,..., n
f f fI I I } by our fusion network;

15 Calculate the total loss totalL according to Eq.(10);

16 Update the parameters by Adam Optimizer;

17 end
18 Save weights of the network model for the 2M epoch;

19 end

3.2.1. Mainstream Loss

The mainstream branch aims to make the fused image retain rich texture details and
improve the visual quality and evaluation index, so we design the structural similarity loss
and content loss to guide the network to generate the fused image; the formula of fusion
loss is as follows:

LF = λ1LSSIM + λ2LContent (8)

where λ1, λ2 are the weighting factors to balance the two losses. The two loss functions are
described in detail below.

Structural Similarity Loss

For the fusion task, we want to close the similarity between the fused image and the
source image to improve its fusion performance so that the visual effect of the image is
more in line with the visual effect perceived by human eyes. Structural similarity (SSIM)
can effectively evaluate the similarity between the source and fused images, which consists
of three components: luminance similarity, contrast similarity, and structural similarity.
The loss of structural similarity is formulated as follows:

LSSIM = 1−
SSIM

(
I f , IVI

)
+ SSIM

(
I f .Iir

)
2

(9)

LSSIM(x, y) =

(
2μxμy + C1

)(
2σxy + C2

)(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (10)
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where I f denotes the fused image, Iir, and Ivi denote the infrared image and visible image,
respectively; SSIM(x, y) indicates the calculation of the structural similarity between two
images; μx and μy are the averages of all pixels in the two source images; σx and σy are
the variances of the pixel values of the two source images; and C1 and C2 are constants to
ensure the stability of the function.

Content Loss

In addition, our texture mainstream expects the fused image to retain abundant texture
details while maintaining the best intensity distribution, so the content loss is introduced,
which consists of two parts: intensity loss and texture loss. The content loss is defined
as follows:

LContent = LInt + αLGrad (11)

where LInt denotes the intensity loss, LGrad denotes the gradient loss, and ∂ is used to obtain
a balance between the strength loss and texture loss.

The intensity loss measures the intensity distribution between the fused image and
the source image at the pixel level, so the intensity loss is defined as follows:

LInt =
1

HW
||I f −Max (Iir, Ivi) ||1 (12)

where H and W are the height and width of the input image, respectively, and ||· ||1
represents l1 − norm.

In addition, to encourage clearer texture details, we expect the gradient of the fused
image to be close to the gradient maximum of the visible and infrared images, so the texture
loss is defined as follows:

LGrad =
1

HW
||
∣∣∣∇Sobel I f

∣∣∣−Max (|∇Sobel Iir|, |∇Sobel Ivi|) ||1 (13)

where ∇Sobel denotes the Sobel gradient operator, which measures the gradient texture of
the image; |·| denotes the absolute operation.

3.2.2. Salient Loss

The purpose of the fusion task is to serve the subsequent advanced vision task, and
the salient target is crucial for the subsequent task, so in order to preserve the salient target
of the fused image, we use the target mask to construct the intermediate salient loss, which
is defined as follows:

LSalient =
1

HW
||Im · Iir − CA (Φir) ||1 (14)

where Im denotes the target mask, and CA denotes the channel average.
In summary, our network of significant target compensation is able to obtain ideal

texture details with significant targets guided by structural similarity loss, content loss, and
salient loss, and can round-the-clock fuse the meaningful information of source images.

4. Experimental Validation

4.1. Experimental Configurations

In this paper, we conducted extensive qualitative and quantitative experiments on
three datasets, including TNO [40], MSRS [7], and M3FD [28], to comprehensively evaluate
our approach and validate the generalization of our method. In addition, we selected seven
methods such as DenseFuse [17], RFN-Nest [30], Fusiongan [25], SDNet [41], U2Fusion [23],
FLFuse [24], and PIAFusion [7] for comparison with our method.

The experimental results of visualization are subjective, in this paper, we introduce
the standard deviation (SD), visual information fidelity (VIF), and the average gradient
(AG). The difference correlation sum of SD is based on statistical concepts to evaluate the
distribution and contrast of fused images, and VIF is based on the human visual system
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designed to measure the fidelity of information from the perspective of human visual
perception. SCD measures the correlation between the information of the fused image and
the corresponding source image, EN evaluates the amount of information contained in the
fused image from an information-theoretic perspective, and SF evaluates the texture details
contained in the fused image by calculating the row frequency and column frequency. All
the above evaluation metrics are of higher values, indicating better image quality.

This paper presents a two-stage model, so we train the textured main stream and
the salient tributary in turn. In the first stage, we train the salient tributaries: epoch = 10.
After that, the output features of SRDB are supplemented as mainstream saliency features.
Then train the fusion network: epoch = 8. In the training phase of the experiments, a
data augmentation method was used to address the problem of small existing visible and
infrared image fusion datasets, and a common dataset of aligned visible and infrared
images, MSRS was used as the training set. For the hyper-parameter setting: λ1 = 1,
λ2 = 15, α = 3. Additionally, we leverage the Adam optimizer with a batch size of 64. The
learning rate is 1× 10−4. The test set was selected from the public datasets TNO, RoadScene,
MSRS and M3FD for infrared and visible image fusion, and 42, 20, 361 and 300 pairs of
images each were selected for algorithm comparison experiments. The experiments in this
paper were conducted on a GeForce RTX 2080Ti 11GB with PyTorch as the deep learning
framework. All comparison algorithms in the experiments were experimented with in the
original thesis setup.

4.2. Comparison Experiments
4.2.1. Qualitative Results

The visualization results for eight image pairs in the three datasets are given in
Figures 5–7.

Figure 5. Vision quality comparison on the MSRS dataset. Areas with large differences are highlighted
by RED and GREEN boxes, and enlarged images of RED boxes are in the lower right or left corner.
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Figure 6. Vision quality comparison on the TNO dataset. Areas with large differences are highlighted
by RED and GREEN boxes, and enlarged images of RED boxes are in the lower right or left corner.

Figure 7. Vision quality comparison on the M3FD dataset. Areas with large differences are highlighted
by RED and GREEN boxes, and enlarged images of RED boxes are in the lower right or left corner.

In the daytime scene, as shown in Figure 5, DenseFuse and RFN-Nest weaken the
infrared target, and FusionGAN causes the problem of blurred edge texture, while SDNet
and FLFuse weaken the background texture detail of the image, as seen in the green box;
only PIAFusion and the method in this paper can integrate the effective information.

In the night scene as shown in Figure 6, the visible image contains only a small
amount of texture information, while the infrared image has background texture detail
information in addition to the prominent target. Many methods focus excessively on
the information of one of the modal images, and it is difficult to achieve good results in
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different scenes. Among them, the infrared targets in DenseFuse, RFN-Nest, U2Fusion and
FLFuse are weakened, and the fused images of FusionGAN and SDNet are more towards
the infrared images, resulting in blurred background information. Since PIAFusion adds
light perception coefficients to the loss function, the method in this paper fully extracts the
details contained in both images in the texture mainstream and uses saliency tributaries
to supplement the weakened salient targets, so it can effectively fuse the complementary
information in low-light scenes.

In the scenes where the visible image targets are obscured as shown in Figure 7, the
method in this paper can mine the salient targets hidden in smoke because the method in
this paper uses intermediate salient loss to guide the tributaries to enhance their strong con-
trast. Among the seven comparison algorithms, DenseFuse can retain texture information
but ignores the salient contrast of the target, while background information is smoothed
to different levels in RFN-Nest, FusionGAN, SDNet, U2Fusion, and FLFuse. In contrast,
although PIAFusion can better preserve the high contrast of salient targets, it is easy to lose
the IR modal information of obscured objects such as sky and smoke due to the smoothness
of light perception loss.

In summary, our method has both comprehensive scene information and retains rich
contrast information and texture details of the target region.

4.2.2. Quantitative Results

We performed a quantitative evaluation on three datasets, TNO, MARS, and M3FD.The
comparison of the metrics of different methods is shown in Table 1 below. The best values of
AG and SF indicate that our fusion method has richer contrast information and also contains
richer texture details; the best value of EN indicates that our method retains sufficient
edge information; and the best value of SCD indicates that our fusion results contain more
realistic information. SD and VIF perform optimal or suboptimal on the three datasets,
indicating that our method has richer contrast information and generates fused images
that are more consistent with the human visual system. In addition, six metrics are optimal
or suboptimal on three datasets indicating that our method has superior generalization
performance and can be applied to different types of datasets. In conclusion, our method
is able to mine effective information in low-light and occluded scenes and integrate the
information into the fused images with the help of spatially paranoid blocks. Therefore, our
method has a greater advantage over other methods to obtain high-quality fused images.

Table 1. Quantitative results of six metrics on TNO, MSRS and M3FD datasets. Bold: best. Underline
and italic: second best.

Dataset Algorithm
Evaluation Methods

SD VIF AG SCD EN SF

TNO

DenseFuse 8.5765 0.6704 2.4895 1.5916 6.3422 0.0248
RFN-Nest 9.3153 0.8103 2.6109 1.7711 6.9285 0.0226

FusionGAN 8.6058 0.6457 2.3636 1.3688 6.5199 0.0240
SDNet 9.0398 0.7523 4.5252 1.5488 6.6670 0.0448

U2Fusion 8.8553 0.6787 3.4891 1.5862 6.4230 0.0327
FLFuse 9.2156 0.7986 3.2772 1.7172 6.6307 0.0329

PIAFusion 9.1093 0.8835 4.4265 1.6540 6.8937 0.0447
Ours 9.7039 0.8121 5.5097 1.8117 7.0620 0.0502

MSRS

DenseFuse 7.0692 0.6752 2.0412 1.3296 5.8397 0.0235
RFN-Nest 6.9939 0.5364 1.5376 1.2881 5.7514 0.0181

FusionGAN 5.4307 0.4234 1.2258 0.7948 5.2179 0.0146
SDNet 5.3143 0.3745 2.1439 0.8298 4.8852 0.0270

U2Fusion 5.6231 0.3967 2.0100 1.0034 4.7525 0.0256
FLFuse 6.4837 0.4837 1.7743 1.1090 5.5079 0.0193

PIAFusion 7.9268 0.9072 3.6801 1.7395 6.4304 0.0444
Ours 7.7783 0.7354 3.3791 1.8057 6.4044 0.0421
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Table 1. Cont.

Dataset Algorithm
Evaluation Methods

SD VIF AG SCD EN SF

M3FD

DenseFuse 8.6130 0.6694 2.6528 1.5051 6.4264 0.0298
RFN-Nest 9.0712 0.7338 2.5848 1.6352 6.7151 0.0274

FusionGAN 8.8489 0.5154 2.3610 1.1257 6.4690 0.0274
SDNet 8.8867 0.6321 4.0228 1.3912 6.6134 0.0454

U2Fusion 9.0141 0.7061 3.8500 1.5488 6.6285 0.0408
FLFuse 8.7556 0.6969 2.1329 1.4934 6.5734 0.0233

PIAFusion 10.1639 0.9300 4.9702 1.3363 6.8036 0.0575
Ours 9.4840 0.7894 5.4374 1.7589 6.9482 0.0606

4.3. Application of Semantic Segmentation

In this section we validate the facilitation of this paper’s approach for advanced vision
on a semantic segmentation task [29]. Specifically, we train the semantic segmentation
algorithm [42] on the source and fused images, respectively. We selected 1000 images as the
training set and tested the segmentation performance of different models on 360 images,
and the qualitative and quantitative results are shown in Figure 8 and Table 2.

Figure 8. Vision quality comparison of the segmentation results.
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Table 2. Segmentation performance (mIoU) of visible, infrared, and fused images at different times
in the same scene. (Bold: best.).

Label Class Background Car Person Bike Curve Car Stop Guardrail Color Cone Bump Mean

Day
VIS 0.9800 0.8906 0.5556 0.7260 0.5798 0.4824 0.8090 0.6508 0.5669 0.6934
IR 0.9482 0.5470 0.6564 0.0847 0.1032 0.1268 0.0368 0.0087 0.1304 0.2936

Ours 0.9834 0.9074 0.7332 0.7347 0.5469 0.5395 0.7588 0.6335 0.5534 0.7101

Night
VIS 0.9652 0.6960 0.1305 0.5889 0.2750 0.1762 0.3666 0.3792 0.1943 0.4191
IR 0.9593 0.4680 0.7103 0.0873 0.2599 0.0292 0.0000 0.0223 0.1945 0.3034

Ours 0.9763 0.7902 0.7205 0.6057 0.4419 0.2881 0.3390 0.4354 0.2233 0.5356

All
VIS 0.9726 0.7933 0.3431 0.6575 0.4274 0.3293 0.5878 0.5150 0.3806 0.5563
IR 0.9538 0.5075 0.6834 0.0860 0.1816 0.0780 0.0184 0.0155 0.1625 0.2985

Ours 0.9799 0.8488 0.7269 0.6702 0.4944 0.4138 0.5489 0.5345 0.3884 0.6229

In the daytime scene as shown in columns one and two of Figure 8, the visible images
contain a large amount of information, so the segmentation accuracy for visible images is
high as shown in the second row of Table 2. However, some detection of people is lost due to
the lack of guidance of infrared targets in the visible image. Additionally, the infrared image
lacks the complement of the visible image background, and the segmentation accuracy of
the bicycle is low as shown in the sixth column of the third row of Table 2.

In the night scene, as shown in Figure 8, columns three and four, the visible image
cannot capture enough information due to the lack of light, so the segmentation network
has a low segmentation accuracy for people in the scene, as shown in Table 2, fifth row, fifth
column. While the infrared image captures the thermal target so the segmentation accuracy
for people is higher as shown in the fifth column of the sixth row of Table 2; however, the
infrared image reduces the segmentation accuracy of the bicycle.

Our method is shown in row three of Figure 8. Since the inclusion of the spatial bias
term enables the network to perceive long-distance information and enhances the semantic
information of the images, our method fully integrates the useful information of both
source images, so our method outperforms the segmentation accuracy of pedestrians and
bicycles than unimodal images in both daytime and nighttime scenes.

4.4. Ablation Experiment

In this section, we qualitatively and quantitatively analyze the effectiveness of the loss
functions and modules in the method of this paper through ablation studies. The results
are shown in Table 3 and Figure 9.

Table 3. Quantitative evaluation results of ablation study. (Bold: best).

Experiment
Evaluation Methods

SD VIF AG SCD EN SF

Ls + SRDB + SBM + MEGB 7.7783 0.7354 3.3791 1.8057 6.4044 0.0421
W/O LSalient 7.7368 0.7765 3.2551 1.6536 6.1237 0.0420
W/O LContent 5.9613 0.6719 1.9179 0.9957 5.4447 0.0239
W/O LSSIM 6.9871 0.6764 3.1844 1.4672 5.9284 0.0400
W/O SRDB 7.6180 0.7489 3.3681 1.5740 6.1327 0.0414
W/O SBM 7.4222 0.5957 3.3583 1.2744 5.9838 0.0403

W/O MEGB 7.8551 0.4782 3.1330 0.7154 6.0242 0.0385
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Figure 9. Vision quality comparison of the ablation study on important loss functions and modules.

4.4.1. Loss of Salience

The salient loss guides the tributary network to retain the high contrast of the in-
frared targets, aiming to compensate for the salient target features towards the feature
mainstream. As shown in Figure 9d, the contrast of the targets marked in the red boxes
significantly decreases after removing the salient loss, and the SD values (evaluated con-
trast) in Table 3 decrease, indicating that there is no salient loss, and the network’s infrared
targets are weakened.

4.4.2. Loss of Content

Content loss uses intensity loss and gradient loss jointly to constrain the network to
maintain the optimal intensity distribution while retaining abundant texture detail. As
shown in Figure 9e, after removing the content loss, it is obvious that a significant decrease
in background texture detail and a significant decrease in various metrics can be seen in
the fused image biased toward the infrared image, which shows that the content loss has
an important role in the overall network to synthesize the characteristics of the infrared
and visible images.

4.4.3. Structural Similarity Loss

The structural similarity loss aims to measure the similarity of the fused image to
the source image. As shown in Figure 9f, when the structural similarity loss is removed,
over-exposure is perpetuated in the visible image overexposure region for the fused image.
On the other hand, the values of SD and EN vary greatly, indicating that the fused image
contains less information with lower image contrast.

4.4.4. Salient Dense Residual Block

SRDB utilizes attention to enable network features to extract a strong pixel distribution
in the attention channel. As shown in Figure 9g, after removing the saliency-dense residual
blocks, we can notice a significant decrease in the saliency of the fused image targets. The
value of SD in Table 3 significantly decreases, indicating that the attention block is critical
to the strong pixel distribution.

4.4.5. Spatial Bias Block

The SBM effectively completes the progressive fusion process by adding information
from the salient tributaries to the main stream. In Figure 9h and Table 3, it can be seen that
the overall brightness of the fused image becomes darker and the target contrast decreases

89



Entropy 2023, 25, 985

after removing the spatial bias block (SBM). On the other hand, the values of VIF, SCD
and SD decrease significantly, which shows that adding spatial bias terms to the tributary
can both effectively enhance the IR target and fused image more in line with the human
visual system.

4.4.6. Multiscale Edge Gradient Block

MEGB can fully extract the texture information of the image by using multiscale
feature extraction with gradient operator embedding. As shown in Figure 9i, when we
exclude the multiscale edge gradient block, the overall scene is relatively smoother with
less gradient variation. Additionally, the values of AG and SF in Table 3 drop significantly,
indicating that the module does enhance the representation of network texture details.

In summary, our designed module not only facilitates the fusion image visually, but
also improves significantly in terms of metrics, so our designed module facilitates the
maintenance of both texture and salient targets.

5. Summary

This paper proposed a saliency-compensated infrared and visible image fusion method,
SCFusion. On the one hand, MEGB helps the extraction and retention of texture gradients
of the overall network, which enhances the ability of the fused image to describe the global
scene information. On the other hand, SRDB is designed to extract salient targets of infrared
images and generate salient maps guided by salient loss. Finally, the information fusion is
completed by compensating the saliency features of the tributaries into the main stream us-
ing SBM blocks. The experiments comparing the qualitative and quantitative aspects of this
paper’s method with existing methods show the effectiveness of this paper’s method, and
the fusion experiments with different lighting scenes also show that this paper’s method
can effectively help to fully fuse the information of infrared and visible images in low-light
scenes. Moreover, experiments on our semantic segmentation task validate the facilitation
of our approach for subsequent high-level vision tasks. However, there are limitations to
our method. Although our method can mitigate the loss of fused image scene information
when the visible image is obscured by smoke to some extent, our method cannot remove
the overexposure effect caused by strong light interference. We will further investigate
the combination of low-light enhancement and image fusion tasks to solve the problem of
strong light interference in the future.
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Abstract: When traditional super-resolution reconstruction methods are applied to infrared thermal
images, they often ignore the problem of poor image quality caused by the imaging mechanism,
which makes it difficult to obtain high-quality reconstruction results even with the training of
simulated degraded inverse processes. To address these issues, we proposed a thermal infrared image
super-resolution reconstruction method based on multimodal sensor fusion, aiming to enhance the
resolution of thermal infrared images and rely on multimodal sensor information to reconstruct high-
frequency details in the images, thereby overcoming the limitations of imaging mechanisms. First,
we designed a novel super-resolution reconstruction network, which consisted of primary feature
encoding, super-resolution reconstruction, and high-frequency detail fusion subnetwork, to enhance
the resolution of thermal infrared images and rely on multimodal sensor information to reconstruct
high-frequency details in the images, thereby overcoming limitations of imaging mechanisms. We
designed hierarchical dilated distillation modules and a cross-attention transformation module to
extract and transmit image features, enhancing the network’s ability to express complex patterns.
Then, we proposed a hybrid loss function to guide the network in extracting salient features from
thermal infrared images and reference images while maintaining accurate thermal information.
Finally, we proposed a learning strategy to ensure the high-quality super-resolution reconstruction
performance of the network, even in the absence of reference images. Extensive experimental results
show that the proposed method exhibits superior reconstruction image quality compared to other
contrastive methods, demonstrating its effectiveness.

Keywords: thermal infrared imaging; super-resolution reconstruction; multimodal sensors;
information fusion

1. Introduction

Thermal infrared imaging is a passive imaging technology that detects the thermal
radiation passively emitted by objects to form an image [1]. It has the advantages of strong
anti-interference ability and the capability to distinguish between targets and backgrounds.
Therefore, super-resolution reconstruction (SR) has been widely applied in fields such as
remote sensing imaging [2–4], target tracking [5–7], and autonomous driving [8,9], etc.
However, compared with visible light imaging, infrared imaging equipment usually has
limited spatial resolution, resulting in lower imaging quality. Therefore, to overcome
this limitation, super-resolution reconstruction technology has become an important re-
search field. The super-resolution technology can restore high-frequency information from
low-resolution images, which can improve the resolution of infrared images and enrich
image details.
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Currently, due to the continuous improvement of computational device performance
and the increasing maturity of deep learning technology, deep learning-based SR methods
have become the mainstream solution to SR problems. Compared with interpolation-
based [10], reconstruction-based [11], and sparse representation-based methods [12], they
have significant performance advantages. The focus of the single image super-resolution
reconstruction (SISR) network is mainly on the reasonable allocation of network resources
to high- and low-frequency information reconstruction. SISR relies on the mapping rela-
tionship between high- and low-resolution information (HR&LR) images solidified in the
weight parameters through training and does not introduce effective external information.

Compared with collecting infrared images, high-quality visible light images are more
easily obtained and possess higher spatial resolution. Although they operate in differ-
ent spectral bands, a significant amount of complementary information exists, making
it feasible and effective to guide infrared image super-resolution using complementary
information from visible light images. Some research has made progress, but several key
issues remain:

(1) In the case of multimodal super-resolution, the large resolution difference between
infrared and visible images leads to a significant decrease in the accuracy of reconstructed
infrared images. High-performance super-resolution reconstruction networks, especially their
feature extraction and information transformation mechanisms, still require further research.

(2) Due to the imaging mechanism of thermal infrared sensors, the quality of infrared
images remains poor despite high pixel resolution. Existing methods that use simulated
degradation and train their inverse process are limited by the quality of the infrared
images used as labels, making it difficult to effectively enhance high-frequency details in
infrared images.

(3) The existing multimodal super-resolution reconstruction methods have not fully
considered the cases where the reference image is missing or of poor quality, which leads
to a sharp degradation in the performance of the network and poor quality of the recon-
structed images.

To address these issues, we proposed a thermal infrared image super-resolution
reconstruction method based on multimodal sensor fusion. The method consists of a
novel neural network architecture, a new hybrid loss function, and corresponding training
strategies. The input infrared image is reconstructed through the network, during which
multimodal features are continuously extracted and fused to obtain a high-quality, high-
resolution thermal infrared image. The proposed loss function is used to constrain the
network to ensure that the thermal infrared information in the image is not erroneously
altered. Moreover, the proposed training strategy ensures that the network can still correctly
reconstruct thermal infrared images even when the reference images are missing or of
poor quality.

Our main contributions are as follows:
(1) We proposed a super-resolution reconstruction network that continuously fuses in-

formation from different scales of visible light images in the iterative process to reconstruct
low-frequency and high-frequency information in infrared images, solving the problem
of accuracy decline caused by large resolution difference between infrared and visible
light images.

(2) We proposed a hierarchical dilated distillation module that can adaptively extract
features of different scales, with strong representation ability and fewer learnable parameters.

(3) We proposed an information transformation module based on attention mechanism,
which calculates pixel-level correlation between infrared and visible light features to reduce
the interference of redundant and unrelated information on reconstructed images, improve
information fusion efficiency, and suppress the blurring phenomenon in the infrared image
reconstruction process.

(4) We designed a hybrid loss function for multimodal super-resolution to supervise
the network to obtain more high-frequency features from visible light images and ensure
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the style of infrared images does not deviate by adversarial loss, retaining richer details
and more thermal infrared information.

(5) We proposed a modal switching training strategy to solve the problem of degraded
performance in reference-based super-resolution reconstruction of thermal infrared images
when the reference image is missing, improving the network’s robustness.

2. Related work

2.1. Image Super-Resolution Reconstruction Based on Neural Networks

As an ill-posed problem, super-resolution reconstruction is limited in its reconstruction
and generalization capabilities if relying solely on manually designed prior methods. As a
result, neural networks, which are powerful implicit function fitters, have been employed
due to their effectiveness in fitting complex mappings in image processing. Since the intro-
duction of the first convolutional neural network for image super-resolution, SRCNN [13],
the use of neural networks in this field has grown exponentially, with a primary focus on
optimizing network structures. Early research works such as VDSR [14], SRResNet [15], and
EDSR [16] have significantly improved network feature expression ability and reconstruc-
tion quality by deepening the network and incorporating the residual structure concept.
However, increasing network depth and width to a certain extent becomes inefficient,
resulting in diminishing performance gains. To further enhance reconstruction quality and
efficiency, new model structures have been designed specifically for SR tasks, optimizing
reconstruction while maintaining low complexity. These improvements include multi-scale
feature extraction [17,18], feature reuse [19–21], and attention mechanisms [22,23]. Such
modifications introduce prior knowledge into the network structure, enhancing the model’s
adaptability to SR tasks while reducing the network’s dependence on learnable parameters
and training data.

In addition to improving network structure, efforts have been made to better train
neural networks to generate realistic and detailed texture details. References [24,25] investi-
gated several commonly-used loss functions in image restoration and provided guidance
for loss function design in super-resolution reconstruction. Although these loss functions
calculate the difference between predicted and real data, they may produce significant blur
or aliasing artifacts due to the diversity of mappings. Consequently, the use of generative
adversarial learning is being explored to obtain the implicit distribution of real images
from the dataset [13,26,27], guiding the network to generate clearer reconstruction results.
However, this technique often results in apparent reconstruction errors that are difficult to
avoid. Despite the current advancements in network structure, loss functions, and training
methods for SR, there remains substantial room for further improvement.

2.2. Multimodal Reference-Based Super-Resolution Reconstruction

Compared to SISR, reference-based SR is a technique that uses additional guiding im-
ages to transfer relevant structural information to the target image in order to achieve high-
quality super-resolution reconstruction [28,29]. In early research, multimodal reference-
based super-resolution (multimodal SR) reconstruction mainly used filtering-based [30,31],
optimization-based [32], and sparse representation-based [33] methods. However, these
methods faced difficulties in reconstructing HR images, especially when there were large
differences in image structure or resolution between modalities. Currently, the main method
used is learning-based. By utilizing the powerful fitting ability of deep learning, texture
conversion and transmission between modalities can be achieved.

However, in recent research, impressive reconstruction quality has been achieved
by studying the correlation between the source image and the reference image. Despite
this progress, these methods still adhere to the traditional SR training method, which
simulates the downsampling process and then learns its inverse process, producing images
similar to the original collected data [34–36]. The method suffers from the limitations of
the low resolution and imaging mechanism of the thermal infrared sensor. Compared to
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reconstructing high-quality visible light or near-infrared images, it is difficult to reconstruct
high-quality infrared images using this method and many texture details may be lost.

In order to solve this problem, some studies have designed fusion strategies to synthe-
size visible light and infrared image information, and introduce visible light texture while
performing SR of infrared images [37]. However, although this method supplements some
details, the generated image not only produces incorrect texture but also does not conform
to the thermal information distribution in the infrared source image due to its imperfect
network structure, loss function, and supervision design. Therefore, further research and
improvement are still needed to develop effective fusion strategies that can better preserve
the thermal information distribution and generate high-quality HR images. Additionally,
the use of appropriate evaluation metrics is essential to ensure that the generated images
meet the requirements of practical applications.

3. Proposed Method

Thermal infrared radiation can be affected by various factors when reaching imaging
sensors, such as motion blur, optical blur, and electronic noise, leading to degradation
in the quality of infrared images. Super-resolution reconstruction techniques for thermal
infrared images are often considered the inverse process to address these issues. However,
the pixel size of thermal infrared sensors is larger, and diffraction and scattering effects
are more pronounced. As a result, even when the resolution is the same, thermal infrared
images appear blurrier. Traditional super-resolution reconstruction methods obtain HR and
LR infrared image pairs through simulated downsampling and training the SR mapping
in reverse is not effective in reconstructing ideal HR infrared images. We believe that
preserving the original infrared thermal information is necessary, while predicting some
high-frequency information reasonably can make the reconstructed image more visually
appealing. Therefore, our research focused not only on restoring the information in the
original infrared image but also on using visible light images to guide neural networks to
predict and reconstruct high-frequency information in thermal infrared images to improve
the overall quality of reconstructed images. To achieve our goal, we designed specific
network structures, loss functions, and training strategies.

3.1. Network Architecture

The network structure is shown in Figure 1. Our proposed network consists of three parts:
the primary feature encoding subnetwork, the super-resolution reconstruction subnetwork, and
the high-frequency detail fusion subnetwork. Subsequently, we will explicate the operational
principles, design concepts, and particular implementations of each component.

3.1.1. Primary Feature Encoding Subnetwork

The Primary Feature Encoding Subnetwork is used to map the input image to a feature
space for further processing. It primarily consists of an infrared feature encoder and
multiple visible light feature encoders. The infrared feature encoder is only used before
the first stage of super-resolution reconstruction subnetwork to encode the input infrared
image ITIR

LR into primary feature f TIR
b using a straightforward convolutional layer, which

can be represented by the following equation:

f TIR
b,1 = σ(WTIR

enc ∗ ITIR
LR + Benc)

f TIR
b,n = fo,n−1(n = 2, 3 . . . N)

(1)

where WTIR
enc represents the filter for encoding thermal infrared images, Benc represents the

bias value, fo,n represents the output feature map for the n-th stage of super-resolution
reconstruction subnetwork, σ(x) = max(x, 0) represents the rectified linear unit, and ∗
represents the convolution operation. The visible light feature encoder uses multiple
convolutional layers with varying specifications, depending on the super-resolution recon-
struction multipliers, to encode visible light images IVIS at different scales. These layers
construct a feature pyramid to generate visible light image features f VIS

b,n (n = 1, 2, . . . , N)
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corresponding to the various stages of the reconstruction process. Mathematically, the
process can be expressed as follows:

f VIS
b,n = σ(WVIS

n ∗ IVIS + B)(n = 1, 2 . . . N) (2)

where WVIS
n represents the encoding filter for visible light images used in the n-th stage and

N represents the total number of stages. Unlike the infrared encoding filter, the visible light
encoding filter is used in each stage, and the corresponding filter uses different convolution
kernel sizes and strides. Specifically, for the filter WVIS

b,n in the n-th stage, the stride is set to

2N−(n−1) to output the current infrared feature map size, and the convolution kernel size is
designed as 2N−(n−1) + 1 to prevent the loss of pixel information in the image. By using
this method, we can mainly introduce the low-frequency features of visible light images in
the early stage of reconstruction, and focus more on the high-frequency details of visible
light images in the later stage of reconstruction and fusion of details.

Figure 1. The target of our method.

3.1.2. Super-Resolution Reconstruction Subnetwork

As shown in Figure 2a, the Super-Resolution Reconstruction Subnetwork is the core
component of our network, which aims to restore and enhance the resolution and texture
details of thermal infrared images. Note that for different stages of super-resolution (SR),
we use the same subnetwork for super-resolution reconstruction, with shared weights
and identical structure. For this subnetwork, we designed the Feature Extraction Module
(FEM), Cross-Attention Transformation Module (CATM), and Upsampling Module (UM)
for efficient extraction of structural information from different modal images. By measuring
the degree of correlation between multimodal images, we achieved effective texture transfer
and super-resolution reconstruction.

97



Entropy 2023, 25, 914

Figure 2. The architecture of our proposed network.

• Feature Extraction Module (FEM): We employed the same structure for the FEM used
to process both infrared images and visible light features. This approach is based on
the fact that visible light features have been previously adjusted to a feature space that
matches the infrared features during the primary feature encoding process. Batch nor-
malization layers in the network can destroy the original contrast of images in image
reconstruction tasks according to some existing research. Therefore, we specifically
removed all batch normalization layers in the network to improve reconstruction per-
formance, reduce redundancy operations, and increase training and inference speed.
Our FEM consisted of a series of improved Hierarchical Dilated Distillation Modules
(HDDM) as presented in Figure 3a. We designed a multi-scale distillation fusion
mechanism for visible or infrared input feature maps f FEM

in , which sequentially passes
through filters with different dilation rates to separate different frequency components
of different image features. This process enhances the representational capacity of
the network. After each filter output, the feature map is split into two equal parts
along the channel dimension. One part f FEM

s1 is directly passed on to the subsequent
steps for feature fusion, while the other part f FEM

s2 continues to extract features. This
operation can be represented as

f FEM
MS,1 = σ(WMS,1 ∗ f FEM

in + BMS,1)[
f FEM
s1,n−1, f FEM

s2,n−1

]
= f FEM

MS,n−1

f FEM
MS,n = σ(WMS,n ∗ f FEM

n−1 + BMS,n), n = (2, 3, 4)

(3)

where WFEM
MS,n represents the n-th filter in HDDM. Then, we concatenated all the

f FEM
s1 in HDDM into one vector for subsequent operations. This operation can be

represented as

f FEM
c = Fcat( f FEM

s1,1 , f FEM
s1,2 , . . . , f FEM

s1,M−1, f FEM
MS,M)

f FEM
a = Fca( f FEM

c )
(4)

where Fca(·) represents our improved Channel Enhanced Attention Module (CEAM),
as shown in Figure 3b. Firstly, in low-level visual tasks such as super-resolution,
it is more important to focus on the image structure information. Directly using
global average pooling to extract information is not appropriate. Therefore, we first
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introduced a depthwise separable convolution at the front end of CEAM to process the
features of each channel. Then we performed the operation of global average pooling.
We also utilized a 1-D convolution to process the compressed channel information,
inspired by previous literature [38]. This approach reduces the computational and
parameter complexity. We not only avoided the dimensionality reduction operation in
channel attention, but also elevated the channel dimension to form multiple subspaces
for different aspects of information. By combining different dimension features, we
achieved more flexible information interaction between channels.
Inspired by previous research, such as EDSR, we introduced local residual learning
into the feature extraction module. This approach can effectively alleviate the potential
problem of gradient disappearance in the parameter optimization process, making it
possible to construct a deeper super-resolution reconstruction network. To perform
point-wise add operation between the output feature map and the input feature map,
we set a filter with a convolution kernel size of 1 × 1 at the end. This filter fuses the
multi-scale information previously extracted and matches the number of channels
with the input feature map. This operation can be represented as follows:

f FEM
out = σ(WFEM

out ∗ f FEM
2 + BFEM

out ) + f FEM
in (5)

• Cross-Attention Transformation Module (CATM): In order to guide the process of
infrared image SR with visible features, we constructed a Cross-Attention Transfor-
mation Module to obtain the attention map of relevant information from the input
visible light features and transfer the useful information. The structure of the CATM
are shown in Figure 4.
Given the input of infrared and visible feature maps f TIR

in and f VIS
in , which are obtained

by the feature extraction module processing the primary features of infrared and
visible light, respectively. After f TIR

in and f VIS
in were concatenated into a tensor f CATM

in ,
they were input into the attention branch. Unlike previous attention mechanisms,
we did not limit the estimation of attention maps to channel or spatial dimensions,
but constructed a pixel-level attention mechanism. Firstly, f CATM

in was filtered by a
3 × 3 convolutional kernel to extract effective features in the feature map, and the
channel number of the feature map was compressed to 1

/
β (β was the compression

ratio, set to 4 due to performance limitations of server) to improve the computational
efficiency of attention map estimation. Then, the number of channels was restored
through a 3 × 3 convolutional kernel, and the attention map was reconstructed based
on the effective features. This operation can be represented as:

f CATM
in = Fcat( f TIR

in , f VIS
in )

f CATM
PA1 = σ(WPA1 ∗ f CATM

in + BPA1)
f CATM
PA2 = δ(WPA2 ∗ f CATM

PA1 + BPA2)
(6)

where Fcat(·) represents the concatenation operation along the channel dimension.
δ(x) = (1 + e−x)−1 is the Sigmoid function, which is used to restrict the range of the
output attention map values to (0,1), ensuring that no error occured during testing
and training. Meanwhile, we apply the feature sub-module to the input tensor f CATM

in ,
and obtain the feature map f CATM

f eat that stores texture information. This operation can
be represented as:

f CATM
f eat = σ(Wf eat ∗ f CATM

in + Bf eat) (7)

Finally, the feature map f CATM
f eat and attention map f CATM

PA2 were multiplied point by

point, and added to the infrared feature map f TIR
in to introduce the structural features

of visible light images and obtain the updated infrared features f TIR
out . This operation

can be represented by the following formula:
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f CATM
out = f TIR

in + f CATM
PA2 · f TIR

f eat (8)

• Global Residual Connection and Hierarchical Feature Fusion: In this task, there is
a strong correlation between input features and the output image. Shallow features
typically retain a significant amount of low-frequency information. Additionally, as
the network goes deeper, an optimization challenge called gradient vanishing occurs.
Global residual connection serves as a simple yet effective solution for addressing
these issues. It enables the network to concentrate on reconstructing the image’s
high-frequency information, reduces resource waste, and simultaneously resolves the
gradient vanishing problem. However, relying solely on global residual connections
during the network inference process cannot fully utilize the abundant image features
generated, resulting in information redundancy. As the network depth increases, the
spatial representation capacity gradually decreases, while the semantic representation
capacity increases. Therefore, fully exploiting these features can enhance the quality
of the reconstructed image. To address this issue, we adopted a hierarchical feature
fusion mechanism that sent the output of each CATM to the endpoint before up-
sampling for processing. Considering the significant amount of redundancy in these
features, we added a feature fusion layer, which acts as a bottleneck layer to selectively
extract relevant information from the hierarchical features. This layer is crucial for
improving network efficiency and performance. The operation can be represented by
the following formula:

fc = f TIR
b,n + [Wc ∗ Fcat( f CATM,1

out , f CATM,2
out , . . . , f CATM,M

out ) + Bc] (9)

where f CATM,m
out (m = 1, 2, . . . , M) represents the output of the m-th CATM in the

reconstructed network, M represents the total number of CATMs. f TIR
b,n represents

the input infrared feature map of the super-resolution reconstruction network for the
n-th stage.

• Upsamle Module (UM): Upsampling methods have been extensively studied in super-
resolution networks. Some studies process feature maps at low resolutions, and then
directly upsample and reconstruct the features to the target scale, which can reduce
some computational cost. However, these methods are not conducive to achieving
high magnification ratios and convenient interaction of multimodal information. Our
proposed network gradually performs feature extraction and information fusion while
the feature map is being constantly upsampled by a factor of 2 in each stage, in order
to introduce rich texture details of visible light images at different scales. The feature
fc was input into UM and upsampled by 2× through bilinear interpolation. Then, the
updated features were filtered using a 3 × 3 convolution kernel to reduce the block
effect in the feature maps. This process can be formalized as follows:

fo = Wu ∗ Fup↑( fc) + Bu (10)

where Fup↑ represents the operation of bilinear interpolation.

3.1.3. High-Frequency Detail Fusion Subnetwork

In order to maximize the utilization of visible light image information, we specially
set up a high-frequency detail fusion network to further refine the infrared reconstruction
images at the target scale. As it is difficult to control the computational complexity and
spatial complexity of the network when operating on HR images, which is not conducive
to training and inference, we designed a simple network structure consisting of three pairs
of convolutional layers, three CATMs, and one reconstruction layer. The specific structure
is shown in Figure 2b.
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Figure 3. The basic unit of Feature Extraction Module.

Figure 4. Cross-Attention Transformation Module.

3.2. Loss Function

To train the network proposed in this study, it was necessary to measure the similarity
between the network output and Ground Truth(GT) of the infrared image, and restore the
thermal information as much as possible. At the start of the third section, we emphasized
the need to recover not only the known details in the infrared image, but also texture
features that had been lost due to the imaging mechanism with the assistance of visible
light images. Therefore, we designed a hybrid loss function, including intensity loss,
structure loss, adversarial loss, and perceptual loss, to ensure the real thermal information
while retaining valuable multimodal feature. The training process of neural network is
shown in Figure 5.

The intensity loss is designed to retain low-frequency information of infrared images,
and the main schemes include L1 and L2 loss functions. Many studies have shown that
the L1 loss function is superior to the L2 loss function in terms of optimizability and
reconstruction quality [24,39], so we adopted the L1 loss as the intensity loss. For the given
input training samples {x, y, z}, in which x, y, and z are, respectively, the LR versions of
infrared images, visible light images (Ref) as the reference image, and the HR version of
infrared images. The intensity loss can be represented by the following formula:
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Li(θ) =
1
N

N

∑
n=1

|G(x, y|θ)− z| (11)

where G(·, ·) represents the proposed network model in this article, and θ represents the
weight parameters of the network model.

Figure 5. Training Process of the Neural Network. The architecture of the generator is shown in
Figure 2. In order to achieve better supervision, we adopted a Markovian discriminator (Patch-
GAN) [40] as the discriminator to preserve high-resolution details.

The role of the structural loss is to guide the network in obtaining sufficient com-
plementary features from visible light images, which will result in the preservation of
high-frequency details of both infrared and visible light images in the reconstructed image.
We proposed a gradient-based structural loss to train the network to acquire this ability,
employing salient features present in the infrared and reference images as a training target.
The following equation represents the loss:

Ls(θ) =
1
N

N

∑
n=1

||∇G(x, y|θ)| −max(|∇y|, |∇z|)| (12)

where ∇ represents the gradient operator; we used the Laplace operator. Although the
utilization of structural loss has the benefit of preserving rich high-frequency details,
the ablation study conducted in Section 4.3 indicated that its implementation may lead
to serious image distortion. This ultimately results in inaccurate thermal information,
especially at the edges and texture details of the image. To address this issue, we added both
adversarial loss and perceptual loss into the hybrid loss. These constraints facilitated the
generation process of the network and ensured that thermal information in the image was
preserved. Furthermore, these additions improved the overall quality of the reconstructed
image. Specifically, adversarial and perceptual losses can be represented as follows:
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Ladv(θ) =
1
N

N
∑

i=1
‖1− D(G(xi, yi|θ))‖2

Lp(θ) =
1
N

N
∑

i=1
∑

j∈Ω

∥∥ϕj(G(xi, yi|θ))− ϕj(zi)
∥∥2

(13)

where D(·) represents the discriminator network and ϕj(·) represents the feature map of
j-th layer in the VGG19 network. The hybrid loss we proposed can be represented by the
following equation:

Ltotal(θ) = Li(θ) + Ls(θ) + λLadv(θ) + Lp(θ) (14)

where λ is the weight factor of the adversarial loss, which is used to balance the magnitude
of other loss function values and adversarial loss. It was set to 0.1 based on experimental
settings. Our ultimate goal was to minimize the value of the hybrid loss and obtain the
corresponding network parameter weights, as shown in the following equation:

θ̂ = arg min
θ

Ltotal(θ) (15)

3.3. Training Strategies

Although introducing the information of visible light images in reconstruction image
can greatly enrich the texture details in the reconstructed image, high-quality visible light
images cannot always be obtained under all conditions, often being affected by conditions
such as lighting and smoke. In practical application scenarios, infrared images have the
characteristics of all-weather and strong anti-interference abilities; the imaging quality is
also more stable. Therefore, we hoped that low-resolution infrared images could be used as
the main information source in the reconstruction process, with visible light information as
supplementary information. To improve the robustness of the proposed method, based on
the network structure and loss function we designed, a modal switching training strategy
was proposed.

During each single training epoch, we initially input multimodal data of infrared
and visible light images to train all weight parameters in the network, which enabled
the network to learn the ability to obtain information from input infrared images and
visible light images as reference, and reconstruct high-quality images. Subsequently, to
prevent significant performance deterioration of the network when no reference images are
present, we input infrared images and a black image (filled with zeros) to remove the input
visible light images used as references. In this process, only those structure of the network
associated with infrared images were updated during training and inference, which enabled
the network to attain capabilities similar to single image super-resolution. Therefore, while
the reference input was being removeded, we temporarily froze all CATM that were
involved in fusion parts of high frequency details and super-resolution reconstruction, as
well as the encoder used to process visible light features. During this process, we set their
convolutional kernels and biases to zero for a temporary period, so that no updates would
be made to these parameters and thereby not impact the infrared branch’s training. Finally,
The loss function could be trained as normal, without modification in this stage, as the
structural loss adropts the maximum value strategy to introduce visible light information.

By using this method, we trained the network proposed by them to reconstruct high-
resolution infrared images while reducing reliance on reference images in subsequent trials.
During a single round of training, the discriminator was updated only once to prevent
mode collapse.

4. Experiment

4.1. Experimental Environment and Dataset Settings

Our proposed network was trained and on a hardware environment with an Intel
(R) Core (TM) i9-13900KF CPU, 64.0 GB of RAM and a NVIDIA GeForce RTX 4090 GPU.

103



Entropy 2023, 25, 914

We used the PyCharm 2021.3.2 software platform on the Windows 11 operating system,
alongside the PyTorch 1.10.1 deep learning framework. The training process took 44.3 h
overall, while for each image, the testing speed was 0.62 s.

Deep learning, as a data-driven technology, necessitates a significant amount of well-
registered thermal infrared-visible light images for training data. To achieve this objective,
we combined three popular multimodal datasets: M3FD [41], FLIR ADAS, and TISR [42].
Sample images from the dataset are exemplified in Figure 6. We partitioned the dataset into
three sets, namely, training set, testing set and validation set with the ratio of 8:1:1. This
step was conducted to evaluate the generalization capability of our proposed algorithm.
Additionally, we trained and tested all other comparative methods using the same dataset.

Figure 6. Visualization of samples from the trainging dataset.

The dataset consisted of a total of 1394 infrared and visible light images of complex
scenes, including urban, road, and forest environments, with all images completed at
the pixel-level alignment. To achieve data augmentation, all images in the training set
were flipped and rotated, and then cropped into image blocks with a size of 256 × 256.
Furthermore, we simulated degradation by downsampling the infrared images via bicubic
interpolation to obtain the corresponding LR input images.

We trained our model using the ADAM optimizer and set β1 = 0.9, β2 = 0.999, and
ε = 10−8. We set the minibatch size to 16, initial learning rate to 5 × 10−4, and trained
the model for a total of 200 epochs. We reduced the learning rate to 0.1 at the 100-th and
150-th epochs.

4.2. Comparative Experiments

In order to demonstrate the effectiveness and superiority of our proposed method,
we conducted comparative experiments on multiple classical or state-of-the-art (SOTA)
methods in the same test environment. Firstly, we removed the visible light images and
information conversion mechanism in the network to test the ability of our proposed
method to perform single image super-resolution (SISR) without reference image guidance.
In this experiment, we compared RCAN [22], EDSR [16], s-LWSR64 [19], Zou et al. [43] and
Wang et al. [37]’s methods. The qualitative analysis, as shown in Figure 7, demonstrates
the infrared super-resolution reconstruction results (4×) of three scenarios. Meanwhile, we
present the quantitative analysis results of each method on the 8× and 4× test datasets in
Table 1, mainly using the peak signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM) as the metrics.

In the SISR at the 4× scale, our proposed method performs comparably to EDSR
in terms of performance and outperforms all other comparison methods, with slightly
lower PSNR but better SSIM. It is worth noting that EDSR, as a rather large model, has
about 43M parameters, while our network has only around 700 K trainable parameters
(excluding frozen weight parameters), with significant advantages in both computational
efficiency and memory usage. At 8× super-resolution reconstruction, our proposed method
outperforms other methods, and is more suitable for high-resolution reconstruction than
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other methods. In terms of visual imaging performance, our proposed method effectively
restores the original low-frequency information in infrared images, and is more prominent
in reconstructing texture details. Wang et al.’s method, compared to the method proposed
in this paper, shows a serious degradation of image quality both in objective metrics and
visual perception after masking the reference image, and this is because their training
strategy and information transmission mechanism cannot adapt to this situation, while our
method effectively avoids this problem.

Table 1. Benchmark test results for SISR.

Methods Prameters
4× 8×

PNSR SSIM PNSR SSIM

RCAN 16 M 31.66 0.8724 28.20 0.7107
s-LWSR64 2.27 M 31.67 0.8894 28.18 0.7098
Zou et al. 3.73 M 31.84 0.8863 28.40 0.7121

EDSR 43.09 M 32.21 0.8913 28.38 0.7166
Wang et al. 573.6 K 21.33 0.6042 - -

Ours 698.2 K 32.15 0.8921 28.41 0.7283

Overall, in the task of SISR, without introducing external information, the restoration
performance of using only single image super-resolution methods to restore high-frequency
information was limited, which may be affected by the amount of data and the difficulty of
the task. From another perspective, the experiment also verifies that in the super-resolution
reconstruction of multimodal information fusion, it is feasible to achieve high-quality single
image super-resolution without reference images by using a modal switching strategy
for training.

After verifying the infrared super-resolution reconstruction ability of the network, we
studied the effect of image super-resolution through multimodal fusion with a reference
image. As discussed in Section 3, unlike SISR tasks, we no longer considered the original
high-resolution infrared image as the Ground Truth, but rather aimed to restore ideal
and high-quality infrared images using multimodal sensor fusion. We selected Real-
ESRGAN [27], CMSR [44], and Wang et al. [37] as comparative methods to consider the
network’s ability to enhance the details of infrared super-resolution reconstructed images
with a reference input. The qualitative analysis is shown in Figure 8. From a visual
perspective, our method not only obtained clear, high-contrast, and detail-rich infrared
images but also avoided generating false textures. There were no visible artifacts or blurs
compared to other contrast methods, which benefited from the neural network’s feature
extraction and information transmission capabilities. To further verify, we used a reference
index to analyze the correlation between the reconstructed image and thermal information
(i.e., the intensity of the infrared image), including Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity (SSIM), Learning-based Image Perceptual Similarity (LPIPS) [45], and
Mutual Information (MI). To compare the image quality generated by different methods,
we also added non-reference evaluation metrics to evaluate the enhanced-detail infrared
images, including Entropy (EN), Average Gradient (AG), Edge Intensity (EI), and Spatial
Frequency (SF). The quantitative comparison results are shown in Table 2, where the best
and second-best values for each indicator are marked in red and blue, respectively.

In general, our proposed method outperformed other reference-based comparison
methods, which indicates that our images have richer details, better contrast, and preserve
more infrared thermal information. Although Real-ESRGAN is superior to our algorithm in
reference-based metrics, this is due to the fact that our algorithm introduces more additional
information to reasonably predict some high-frequency details that are not present in the
original infrared image, which would result in a certain degree of decline in reference-
based metrics. However, the actual image quality can be significantly improved. The
result is consistent with the qualitative analysis results of generated image quality, fully
demonstrating the effectiveness of our proposed method.
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Figure 7. Comparison of SISR results of thermal infrared images under multimodal fusion using
different methods. Zoom in for best view.

106



Entropy 2023, 25, 914

Figure 8. Comparison of multimodal SR results of thermal infrared images under multimodal fusion
using different methods. Zoom in for best view.
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Table 2. Benchmark test results for multimodal SR.

Methods Ref. PSNR SSIM LPIPS MI EN AG EI SF

Origin TIR - - - - - 7.1152 2.3342 30.6074 14.1549
Real-ESRGAN × 30.23 0.7130 0.1728 3.0812 7.1295 1.6568 20.8512 6.3397

CMSR � 29.52 0.6623 0.2213 1.7308 6.8232 3.4218 32.1385 12.2585
Wang et al. � 29.38 0.6570 0.2513 1.7603 6.9754 3.0916 37.8797 13.0632

Ours � 30.04 0.7041 0.1869 2.8672 7.6473 4.2393 49.9074 18.9905

4.3. Ablation Study

Our approach has been proven superior through the comparative experiments we
conducted. Subsequently, to determine the effectiveness of our proposed improvements,
we conducted a series of ablation studies.

4.3.1. Ablation Studies of Network Structure

Firstly, we investigated the impact of three mechanisms, Multi-Scale (MS), Information
Distillation (ID), and CEAM, in the primary unit HDDM of the FEM on the network
reconstruction performance. We observed their performance changes in the SISR task to
test their ability to extract features and reconstruct images from infrared images. Table 3
shows the quantitative results. It can be seen that the main improvements, including
multi-scale branch, feature distillation, and channel attention, significantly improved the
network performance, with all metrics showing improvement. We display the feature maps
of different scales in our multi-scale module in Figure 9. It can be seen that this structure
can adaptively divide the features into different-frequency components and extract them.
Our structure has achieved a good balance between performance and efficiency and can
efficiently and effectively extract information from input images.

Figure 9. Visualization of feature maps at different scales in the HDDM.

Table 3. Results of ablation study on the composition of HDDM structure.

MS ID CEAM Param PSNR SSIM

� × × 14.5 K 31.84 0.6997
� � × 14.5 K 32.02 0.7002
� � � 15.4 K 32.15 0.7041

We replaced the self-attention module with three different modes: point-wise addi-
tion, channel attention, and spatial attention. We conducted experiments to evaluate their
impact on performance. This primarily evaluated the performance of visible light image
information when generating images using different information fusion mechanisms. The
quantitative results are presented in Table 4. The attention mechanism outperforms the
point-wise addition calculation mode, as evidenced by the results, which proves the impor-
tance of the learnability of information transmission. Compared to the other two attention
mechanisms, our proposed CATM generated images with finer details, and had an overall
better quality, which was supported by several performance metrics. This validates the
effectiveness and rationale of the proposed CATM, which has the ability to extract more
relevant information from the reference image.
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Table 4. Results of ablation experiments on information transformation methods.

Transformation Type PSNR SSIM EN AG EI SF

point-wise add 23.2113 0.6377 4.6732 2.9369 21.1218 9.5865
Channel Attention 25.8466 0.6902 6.6181 3.6187 31.7487 12.3742
Spatial Attention 28.7214 0.6911 7.2657 4.1258 42.0281 15.8656

Ours 30.0418 0.7041 7.6473 4.2393 49.9074 18.9905

4.3.2. Ablation Study of Loss Function

We conducted ablation experiments to analyze the composition of the loss function and
to evaluate the effect of different combinations of loss functions on the quality of reconstructed
images. The focus of our research was on gradient loss and adversarial loss as they are the
primary approaches for achieving image reconstruction and detail enhancement. We compared
the reconstruction effects of the network under three conditions, including only pixel loss,
with gradient loss, and complete hyibrid loss. Figure 10 and Table 5 display the specific
subjective effects and indicators discerned. After adding the loss functions, the image quality
was significantly improved subjectively, with improved details and enhanced contrast and
sharpness. The reference metrics showed a significant decrease with the addition of gradient
and adversarial loss while the non-reference metrics displayed a significant improvement.

Figure 10. Comparison of reconstruction results using different loss functions. Zoom in for best view.

Table 5. Benchmark test results for multimodal SR of thermal infrared images.

Li(θ) Ls(θ) Ladv(θ) + Lp(θ) PSNR SSIM EN AG EI SF

� × × 33.6149 0.9012 7.0281 2.2627 30.6074 14.1833
� � × 28.8282 0.6702 7.6657 4.4251 52.0372 16.7221
� � � 30.0418 0.7041 7.2657 4.1258 42.0281 15.8656

The purpose of using reference metrics is to measure the difference between the gener-
ated images and the GT. However, the thermal images as GT are limited by the imaging
mechanism and affected by various factors, resulting in changes to the original signal,
such as blurring or noise interference. Therefore, it is necessary to comprehensively judge
the reconstruction ability of the network through non-reference metrics and qualitative
analysis results. Obviously, the network trained with perfect hybrid loss has the best image
reconstruction quality. In contrast, although the non-reference metrics have improved
without introducing adversarial loss, a lot of infrared thermal information has been lost.
The addition of adversarial loss can effectively solve this problem because the discriminator
can prompt the generator to learn the implicit infrared image features. The lack of gradient
loss makes it difficult to obtain enough texture details from the reference image, resulting
in blurred reconstructed images. Therefore, our proposed hybrid loss can effectively re-
store the infrared thermal information in the image and obtain enough features from the
reference image to enhance the texture details in the SR image.

4.3.3. Ablation Study of Training Strategy

Finally, we examined the effectiveness and necessity of the proposed training strategy
through experiments. Figure 11 and Table 6, respectively, show the qualitative and quanti-
tative analysis results of using and not using this training strategy in image reconstruction.
Under SISR, if this learning strategy is not used, the quality of the reconstructed infrared
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images is poor, after masking the reference image and the corresponding network structure.
This is mainly because the reconstruction process overly relies on the image information in
visible light images. Although some of this information exists in infrared images, ineffective
constraints during the training process still lead to serious network performance degrada-
tion, as demonstrated by the performance of Wang et al.’s method in the SISR comparative
experiment. The network trained using this training strategy performs well in the SISR
task and can reconstruct high-quality images without relying on visible light images. In the
reference super-resolution task, both methods show quite similar reconstruction quality
and achieve good performance, indicating that parallel training or inference of SISR and
reference super-resolution tasks is feasible.

Figure 11. Comparison of reconstruction results of w/ and w/o training strategy.

Table 6. Results of ablation study on the training strategy.

Training Strategy
SISR Multimodal SR

PSNR SSIM EN AG EI SF

× 25.64 0.6130 7.1545 4.2258 40.8564 14.9313
� 32.15 0.7041 7.2657 4.1258 42.0281 15.8656

This experiment proves that the training strategy proposed in this paper can effectively
optimize the network, enabling it to maximize the use of effective information in the input
infrared image. It is possible to rely solely on the infrared image for reconstruction in situa-
tions where visible light reference images are missing or of poor quality, which improves
the robustness of our method and provides more options for practical applications.

5. Conclusions

In this paper, we proposed a thermal infrared image super-resolution reconstruction
method based on multimodal sensor fusion, which included a multimodal super-resolution
reconstruction network, a novel hybrid loss function, and a corresponding training strat-
egy. Our multimodal super-resolution reconstruction network adopted an iterative super-
resolution approach to gradually incorporate visible light features of different scales, which
could better adapt to large-scale thermal infrared image super-resolution. We designed a
hierarchical expansion distillation module to extract features from thermal infrared and
visible light images, which was lightweight and high-performance, contributing to gener-
ating better reconstruction results. Additionally, we proposed a cross-modal information
transformation module with pixel-level attention to achieve more efficient and accurate
information fusion between the two modalities. To reasonably supplement lost texture
details, a hybrid loss function is proposed, which could fuse and enhance salient details in
different modalities while maintaining correct thermal information, improving the imaging
quality of generated images. Moreover, we proposed a training strategy for multimodal
sensor fusion super-resolution to reduce the network performance degradation caused by
missing or low-quality reference images, improve the network’s robustness and expand
the scope of application in practical scenarios. Through extensive experimentation and
comparison with various state-of-the-art methods, our method has demonstrated good per-
formance in both visual quality and quantitative metrics, and improved the reconstruction
quality of the images to some extent, validating the potential of our method.
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Abstract: The detection of regions of interest is commonly considered as an early stage of information
extraction from images. It is used to provide the contents meaningful to human perception for
machine vision applications. In this work, a new technique for structured region detection based
on the distillation of local image features with clustering analysis is proposed. Different from the
existing methods, our approach takes the application-specific reference images for feature learning
and extraction. It is able to identify text clusters under the sparsity of feature points derived from
the characters. For the localization of structured regions, the cluster with high feature density is
calculated and serves as a candidate for region expansion. An iterative adjustment is then performed
to enlarge the ROI for complete text coverage. The experiments carried out for text region detection
of invoice and banknote demonstrate the effectiveness of the proposed technique.

Keywords: machine vision; structure pattern analysis; text region detection

1. Introduction

Due to the prevalence and availability of imaging devices, the use of computer vision
techniques is becoming popular in our daily lives. Many objects of image recognition, such
as human face, fingerprint and traffic sign, have been extensively investigated as research
topics over the past few decades. The detection of regions of interest (ROIs) in images is
thus a very important preprocessing stage [1,2]. It is commonly adopted to identify the
image region that is meaningful to human perception. Since further analysis can then
be carried out for scene-understanding tasks, ROI detection is usually considered as an
early stage for extraction of information from acquired images [3]. In general, the overall
performance of a machine perception system is highly reliant on the correctness of the ROI
detection results.

From the perspective of visual perception, ROI is a fairly general term, and the
definition is rather diverse depending on the application scenario [4]. It could represent
a variety of pattern classes ranging from natural beings to man-made structures. As an
example, the characteristics of images features utilized for the detection of human face
and traffic symbols are very different [5,6]. Thus, the methodologies for the extraction of
ROIs usually take the identification of some specific pattern structures into consideration.
The features for pattern analysis might be manually extracted, using low-level image
properties, or derived from learning-based techniques. However, depending on the amount
of available training data, encoding high-level features via learning is generally not a
simple task. In addition, more computational resources will be required for model training
and testing.

To identify the regions of interest based on low-level image properties, local feature
analysis is commonly used to obtain the correspondences between the reference and
target images [7]. The histogram of oriented gradients (HOG) is a common feature to
compute the gradient distributions of the objects. The features can then be adopted by a
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linear support vector machine (SVM) classifier for pedestrian detection [8]. To deal with
the different scales of the targets, Marques et al. adopted size-invariant local features
for marine vessel detection [9]. Based on saliency analysis, Achanta et al. presented a
frequency-tuned approach to compute salient regions in images using low-level features
of color and luminance [10]. It was capable of deriving full-resolution saliency maps
with meaningful boundaries. However, the proposed method was mainly utilized to
analyze natural scene images. Some good detection results can be obtained using the above
approaches, and they have implicitly assumed that the target region is continuous and
smooth in the image. The algorithms have not been directly adopted for general cases,
where regions contain isolated internal structures.

In this work, we are interested in the detection of structured regions with isolated
internal patterns. More specifically, this could be a text region with arbitrary orientation
in different scenarios. Due to the wide availability of text descriptions in our living
environment, text detection is usually the first step toward scene understanding. In early
works, Epshtein et al. [11] converted edge gradients to the width of handwriting texts
and used the distribution to localize the text region. A visual attention model was adopted
to investigated the feasibility to video applications for salient object detection [12]. The
strong signals associated with texts can then be accordingly extracted. To detect the texts in
natural scenes, Yin et al. proposed a technique to extract maximally stable extremal regions
as the character candidates for grouping [13]. The text classification is performed based
on the posterior probability of the text candidates estimated by a character classifier. Most
current developments consider the text region as an integrated part for detection, and the
algorithms focus on extracting the regional features while minimizing the text localization
error for identification.

This paper presents a structured region detection approach based on the distillation of
local image features with clustering analysis. We are focused on the extraction of structured
clusters from local feature learning. Thus, the objective is not for a general character
recognition task. Figure 1 depicts the system flow of the proposed technique. The features
in the target image corresponding to the similar structures in the reference images are first
extracted, followed by region detection from analysis of the clustering characteristics of the
ordered feature points. In our proposed method, the images with multiple characters in
the database are used for feature matching. It is able to detect the text clusters under the
sparsity of feature points derived from some characters. The location with high feature
density is selected as a candidate, and an iterative process is carried out to increase the ROIs
for the derivation of some suitable region with structured content. Since fast detection using
limited computational resources is the key to the success of real-world applications, it is
desirable to reduce the costs of model training and online inference. Different from existing
deep neural network approaches, our technique can be easily implemented with hardware-
oriented acceleration [14,15]. In the experiments, the text detection and recognition of
invoice and banknote have demonstrated the effectiveness of the proposed technique.

The main contributions of this paper are as follows.

• A new approach based on correspondence extraction and clustering analysis of local
features is proposed for structured region detection.

• A multi-stage algorithm with robust receptor descriptor is presented for
character recognition.

• The proposed technique is capable of fast region detection with limited computational
resources and can be easily implemented with hardware acceleration.
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Feature Extraction  
and Matching

Feature Clustering  
with OPTICS

Initial Candidate  
Region Selection

Core Structured  
Region Expansion

The SIFT features are extracted based on
the correspondence matching.

The OPTICS algorithm based on feature
densities is used for feature clustering.

Initial ROI candidates are identified based
on cluster orientation and density.

Iterative adjustments are used to enlarge
the core region for text region extraction.

Figure 1. The four stages of our proposed structured region detection technique. It consists of
feature extraction and matching, feature clustering, initial region selection and core structured
region extraction.

2. Related Works

The investigation of text detection and recognition has been conducted over the
decades. It is important due to the necessity of visual communication in the human-
centered environment. The techniques are commonly developed based on the application
scenarios and can be divided into text region extraction for documents (such as banknotes
and invoices) and general scenes. For outdoor environments, the regions of interest usually
cover a variety of scene texts, which includes signboards, license plates and digital traffic
boards, etc. There also exist some other issues such as language and orientation. These
might require the detection of more general structured patterns instead of performing
template matching using prior knowledge. Recently, subspace clustering has been devel-
oped for various image analysis tasks, including sparse clustering applied to hyperspectral
images [16]. It is also used to deal with multi-view data clustering [17] and multivariate
time series data [18], and promising results have been reported.

The proper extraction of texts and numbers is the key to automatic document pro-
cessing and analysis. Different from text detection in general scenes or handwritten docu-
ments [19], the pattern structures are usually more constrained in terms of size and format.
For banknote recognition applications, Dittimi et al. presented a technique based on multi-
class SVM [20]. The classification is carried out via the principal component analysis of
HOG features. In [21], Pham et al. proposed a method based on discriminative region
selection using the masks derived from a similarity map. The genetic algorithm was then
applied out to optimize the banknote regions. More recently, a machine learning-based
approach for simultaneous ROI extraction and character classification was presented [22].
Based on the use of knowledge distillation, the complexity can be reduced with a simple
model for fast computation.

The technical process for identification of invoice information shares similarities with
that of banknote recognition in pattern structure detection. However, the extraction of
invoice numbers is usually more complicated due to the variation of background texture.
To identify invoice information, Sun et al. proposed a template-based method for region de-
tection [23]. Optical character recognition is then carried out to retrieve the text information.
Tian et al. developed an iterative self-learning framework for intelligent financial ticket
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recognition [24]. A network model was constructed based on Faster R-CNN to recognize
multiple ticket formats. In their work [25], Jiang et al. proposed a unified framework to pro-
cess and recognize VAT invoices. The end-to-end model was trained to handle challenging
cases with multi-oriented texts.

Among the text detection and recognition application scenarios, extracting the in-
formation for general outdoor scenes is the most challenging task. They contain a wide
variety of text arrangements, sizes, styles, etc. In their early works, Coates et al. devel-
oped a text detection and recognition system based on a scalable learning algorithm [26].
A band of image features is learned from unlabeled data, followed by a linear classifier
used for scene text extraction. Wang et al. [27] presented a texture-based approach for
text detection, where a scale-insensitive adaptive region proposal network is first used to
create text proposals, followed by a local orthogonal texture-aware method to represent
the text. Zhang et al. [28] emphasized application in urban scenes and proposed a deep
neural network approach for intelligent transportation systems. A keyword search tool was
combined with a GIS system for street scene textual indexing. In [29], Yao et al. presented
a unified framework for detecting multi-oriented scene text. A dictionary search-based
method was proposed to correct character recognition errors. To deal with multi-lingual
scene texts, the ICDAR reading challenge was conducted on the image datasets containing
10 languages [30]. The text structure feature extractor was used to simulate the Chinese
text human cognition model [31]. In the recent adversarial learning method, Zhan et al.
proposed a geometry aware domain adaption network [32]. It is able to synthesize multiple
adapted images with different viewpoints for scene text detection.

In the existing literature, there are not many works focused on the detection of general
structured patterns. Compared to the semantic information used for specific applications,
low-level features are better suited for structured region detection. Based on the idea
of saliency detection, Li et al. proposed a method to measure the ‘characterness’ of a
region [33]. It was constructed using a Bayesian framework to integrate the text region by
exploiting the dependencies among the characters. Zhu et al. presented a low-level detector
based on MSER and region proposal for text detection [34]. The heuristic features are then
used to group the characters into text lines. To ensure that structured pattern detection can
be adopted to different high-level image-understanding tasks, it should be able to provide
local clustering with a globally consistent scale.

3. Feature Selection and OPTICS Clustering

In the proposed structured region detection pipeline, the first step is to extract the
feature points in the target image. These points should possess properties similar to those of
the reference images in the database. As in the examples illustrated in Figure 2, the objective
is to find the candidate feature locations based on pre-established structures of interest. To
perform correspondence matching, the commonly used SIFT descriptor is adopted in this
work for feature extraction. In most applications, it is used for object detection or scene
matching from different viewpoints. The correspondences between the reference and target
image features are established to derive the homography transformation. For our use of
structured pattern extraction, the text regions for detection in the images are relatively
small. The number of feature points for correspondence matching is very limited. Thus, it
is not feasible to use to the distribution of feature points for region extraction, because a
large amount of data is generally needed to increase the features for pattern identification.

One important property of the structured region of interest is the spatial proximity
of individual building elements. Thus, our idea is to aggregate the few matching corre-
spondences of each element to form the rough region clusters for detection. To maintain
the stability of region detection via the aggregation of feature points, it is expected that
as many feature correspondences as possible are extracted for each element. However,
the increasing number of images for feature matching implies a higher computational
cost, which is usually not preferable for the development o real-time systems. Therefore,
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in addition to the mismatching rate and the storage for reference images, one also needs to
consider the computation time when performing the feature matching task.

(a)

(b)

Figure 2. The results of feature correspondence matching between the target image and a database
template. Our objective is to find the candidate feature locations based on the pre-established
structures of interest. (a) An invoice correspondence matching result. (b) A banknote correspondence
matching result.

To achieve robust feature matching between the target image and reference data, inter-
nal feature correspondence extraction among the training images is first conducted. This
serves as a training stage for the application-specific feature selection. A correspondence
matching is carried out for the SIFT features in all reference images, and the points with
good pairing are considered as important features. To be more specific, suppose there are
N images in the training dataset, and pi is a feature point which belongs to the ROI of the
ith image. Let

Si = {(pi, pj) | 1 ≤ j ≤ N, j �= i} (1)

for 1 ≤ i ≤ N, where (pi, pj) denotes the correspondence between image i and j if it exists.
Then the point pi is defined as a prominent feature if the number of correspondence pairs is
greater than a preset threshold, or |Si| ≥ T.

It should be noted that, depending on the feature extraction criteria, there could be
zero to many prominent feature points for a reference image in the training data. The
images without any prominent features can then be removed from the dataset. Only the
prominent features in the reference images are used to match the features in the target
images for region detection. To improve the matching efficiency, one-to-many feature
correspondences between the target and reference images are also allowed. This strategy to
increase the number of feature points is not applicable to most applications utilizing feature
correspondence matching. The feasibility of one-to-many mapping is built upon the use
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of the certified features derived from the database images. Figure 3a,b show the feature
extraction results using the conventional method and the proposed technique, respectively.
It can be seen that our method is able to reject the undesired points while allowing the
important features for region detection to remain intact.

(a) Conventional method. (b) Our technique.

Figure 3. The feature extraction results using (a) the conventional method and (b) our technique.
The algorithm can reject undesired points while keeping the important features for region detection.
It can be seen that our method is able to reject the undesired points while allowing the important
features for region detection to remain intact.

After feature extraction and matching, the next stage is to identify the feature points
scattered within the structured image region. It is necessary to analyze the spatial relation-
ship among these feature points, and generate dense clusters as candidate regions for ROI
detection. However, due to the possible outliers in the set of image features, it is mandatory
to perform effective clustering to localize the core feature points to form an initial detection
region. The development of a robust clustering method is very important, since the results
of candidate detection will be significantly affected by outlier features.

In general, it is required that good parameter settings be provided for clustering
analysis algorithms [35]. However, it is not generally the case that there is an internal
data structure that can be described clearly using a set of global parameters. The proper
parameters are not only difficult to derive but also sensitive to the clustering results. In
this work, we present a hierarchical clustering technique for feature aggregation based on
the OPTICS (ordering points to identify the clustering structure) algorithm [36]. It does
not directly perform the clustering but provides a feature sorting scheme to represent the
data. Based on the ordering of reachability distances associated with the feature density,
a reachability plot is generated and used for cluster identification. Through the analysis
of cluster densities, it is possible to maintain stable feature structures using a wide range
of parameters. Figure 4 illustrates a typical example of OPTICS clustering. Two sets of
dense feature points located on the corners are shown in Figure 4a. The reachability plot as
depicted in Figure 4b indicates the two flat regions in the intervals (1, 30) and (31, 70) are
associated with two clusters in Figure 4a. In other words, the peak at around 31 indicates
the density-based distance is large and can be adopted for the cluster derivation.

When clustering is performed using a large amount of data, the loss of clusters due
to improper parameter settings is less likely. In case there are only a small number of
features in the target images for correspondence searching, the final results will be more
sensitive to the clustering approaches. Therefore, the OPTICS algorithm is further modified
to accommodate extra constraints on the feature distribution to make it more robust under
the image scale change. If the density of feature points is less than a preset threshold,
the image will be normalized for further hierarchical clustering. The clustering results
with two different scales are illustrated in Figure 5, where the core detection regions are
indicated by the connected segments in red.
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(a) The feature clustering results based on OPTICS.

(b) The reachability plot analyzed by OPTICS.

Figure 4. An illustration of the hierarchical feature clustering technique based on the OPTICS
algorithm. (a) Two sets of dense feature points are located on the corners. (b) The two flat regions in
the intervals (1, 30) and (31, 70) associated with two clusters are indicated.
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(a) (b)

Figure 5. The OPTICS feature clustering results of the input images with two different scales. The core
detection regions are indicated by the connected segments in red for (a) small-scale image input;
(b) large-scale image input.

4. Structured Region Extraction

Given the results of feature extraction and clustering, a rough candidate region can
be obtained. The next stage is to identify the precise ROI for a specific application, in-
cluding translation, rotation and scaling, according to its pattern structure. To detect a
structured region with certain characteristics, it is necessary to use the known templates
for learning and pattern analysis. The bounding box with the best structural fitting is then
derived by adjusting the candidate region from matching and validation iteratively. Thus,
the application-specific ROI templates are extracted from the training images, followed
by analyzing the structural characteristics for region identification and validation on the
testing data.

In scene text detection, the ROI to be identified usually possesses a similar type of
structure in the image. Therefore, it is possible to perform the region extraction using the
strong relations among the elements. As an example, a serial number of an invoice or a
banknote is composed of several digits and characters. The fixed structural properties
include the number of elements in the ROI, the space between the elements, and the aspect
ratio of ROI and individual elements. This provides the important information for the
extraction of proper regions of interest. Figure 6 illustrates a typical example of an invoice
containing 8 digits. In addition to the structural properties, the alternation of character
and letter-spacing is also adopted for pattern identification. Since the width ratio between
character and letter-spacing is both scale- and space-invariant, it can be used as a stable
feature for matching.

In the implementation, the vertical projection of the region of interest is used to derive
the histogram of character pixels as shown in Figure 6. Let the widths of character and
letter-spacing be denoted by c2i−1 and s2j, for i = 1, 2, · · · , N and j = 1, 2, · · · , N − 1,
respectively. N is the total number of characters. To increase the robustness of pattern
matching, a series of width ratios derived from the neighboring character and letter-spacing
is used. That is, a feature vector coded by

(
c1

s2
,

c3

s4
, · · · ,

c2N−3

s2N−2
,

c2N−1

s2N−2

)�

is used for the template matching. Since the degree of letter-spacing is one less than
character, the denominator of the last entry is repeated.

The feature selection and clustering analysis have allowed the identification of a cluster
in a specific region. This is required to extract the candidate region as close to the true
location as possible based on the clustering result. This will facilitate the adjustment of
region estimation in the next stage. In serial number extraction, a series of elements are
arranged along a straight line, and the feature point should be found in the fixed orientation.
Consequently, applying a line-fitting algorithm carried to the feature cluster will allow
identifying the features scattered along the text direction. An initial ROI derived from the
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rectangular region containing the image features can then be constructed. This will serve as
the core region for enlargement along the text direction to include all characters in a later
stage. An example of core region detection is illustrated in Figure 7a, where the bounding
box might contain some outliers and the orientation is not correctly obtained.

Figure 6. A typical case of an invoice containing eight digits. The structural properties, includ-
ing the alternation of character and letter-spacing, are adopted for pattern identification. In addi-
tion to the structural properties, the alternation of character and letter-spacing is also adopted for
pattern identification.

To make the core region extraction more robust, two constraints are adopted to re-
move the outliers of a cluster. First, the feature points further away from the initial ROI
obtained based on the line model are eliminated using RANSAC. Figure 7b depicts the
outlier removal results for Figure 7a. Nevertheless, the outlier features along the text
direction will still be preserved under this condition, as in the example shown in Figure 8a.
Another criterion for outlier rejection is based on the density correlation of ordered feature
points obtained from the OPTICS algorithm. Due to the way in which the ordered feature
strings are constructed, the outliers commonly appear at the two endpoints. Furthermore,
the distances to the connecting feature points are significantly larger than the rest. Thus,
a thresholding process is performed on the distance distribution of feature points to reject
the outliers based on the variation. Figure 8b shows the filtering result of the outliers in the
text direction of Figure 8a.
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(a) Line fitting only. (b) With RANSAC.

Figure 7. The core region detection based on the clustering results with (a) only line fitting and
(b) additional RANSAC for outlier removal.

(a) (b)

Figure 8. Due to the way in which the ordered feature strings are constructed, the outliers commonly
appear at the two endpoints. The outlier rejection for the feature points along the text direction
based on the distance distribution obtained from OPTICS clustering: (a) OPTICS clustering; (b) with
outlier rejection.

The next stage is to adjust the region candidate to correctly match the text region of
interest. Our objective is to make the adjustment feasible whenever the candidate location
is inside the text region, regardless of the orientation accuracy and the size difference.
The procedure will be iteratively carried out, until the extracted region is satisfactory for
text detection. First, the image is rotated with respect to the image scanline according to
the orientation obtained from the feature point distribution of the region candidate. The
purpose of this step is to initialize a rectangular bounding box to enclose the candidate
region and use it as the core for expansion. Based on prior knowledge of the specific
structures of interest, it is possible to enlarge or shift the bounding box if the projections
of connected components in the horizontal or vertical direction are substantially different
from the expected region specification. If the border of the current candidate region
comes across some characters, this implies that the text is not completely covered by the
ROI. Consequently, a region expansion process will be iteratively performed until the
characteristics of the text region are satisfied.

To determine the shift direction, we consider the distribution of connected components
and the regions formed by the horizontal and vertical projections of the ROI. The direc-
tion involves less blank areas and indicates a high possibility of more components to be
identified. Since there could be erroneous results due to an inaccurate initial region assess-
ment, timely adjustment is required to avoid the accumulation of improper expansions of
the detected region. The rotation for the ROI is determined according to the accumulation
error derived from the connected components and refer to an element in the region with an
average size. Due to the presence of noise, the height difference between the reference and
the remaining elements is used for the assessment of the accumulation error. The ROI will
be rotated using the angle derived based on the error if it exceeds the threshold. In addition,
the selected reference element is also used for severe noise filtering, since the object sizes
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are generally similar in the text region. The algorithm for ROI extraction, including the
iterative process and region rotation, is depicted in Algorithm 1.

Algorithm 1 ROI Extraction Algorithm

Require: The initial region candidate.
Ensure: The text region of interest.

1: ROI← RotateByFirstOrientation(candidate ROI)
2: iterative← True
3: WHILE iterative
4: iterative← False
5: Binarization(ROI)
6: (midAreaCC, quantity)←
7: ConnectedComponentAnalysis(ROI)
8: IF heightAccError > heightRatio
9: Rotate(ROI)

10: Truncate(ROI)
11: iterative← True
12: continue
13: IF quantity < totalAmount
14: IF margin is confused
15: trend← ComputePointDistributed()
16: ExpandByTrend(ROI) or
17: ShiftByTrend(ROI)
18: ELSE
19: ExpandByMargin(ROI) or
20: ShiftByMargin(ROI)
21: iterative← True
22: END WHILE
23: return ROI

5. Character Recognition

In this work, we propose a multi-stage approach for character recognition using a
neural network. Most of current algorithms require significant training time to iteratively
optimize the performance. However, the training time generally grows exponentially in
proportion to the amount of training data. One simple method to cope with this problem
is to divide the training dataset to a number of smaller subsets. Consequently, the overall
training time can be derived by the largest training subset. Based on a similar concept,
a preprocessing stage is applied to group characters with the same properties. A fast
training network is then developed for the recognition of diverse characters.

The training data are divided into groups in our recognition framework based on the
character symmetry properties and the Euler number. Multiple neural networks are used for
fast learning and inference. When performing the recognition, no preprocessing is carried
out on the input characters. It is not required that a specific network be used according to
the associated group. Each character is taken as an input to all networks for processing,
and the best three recognition results are selected as the candidates for verification in the
second stage.

In the proposed multi-stage character recognition scheme, a similarity evaluation
is performed in the second stage using pixelwise comparison. The input characters are
compared with the first-stage results from all groups. Let si denote the similarity metric
defined by the pixelwise region intersection with the ith group. The final result is then
determined by the score αisi, where αi is a weight factor. If the input character possesses
the same Euler number with the ith group, then set αi > 1 to provide a high similarity
weight. Otherwise, we let αi = 1. The first-stage output that has the highest weighted score
is taken as the final recognition result.
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The character recognition system using conventional neural networks generally takes
the pixel values of the images for processing. It is sensitive to character deformation and
image noise due to the spatial relations among the characters in the input layer. In this
paper, we present a method to extract more robust descriptors from the character using
random receptors. This is designed to reduce the influence of image normalization for the
neural network. The basic idea is to drop some random line segments generated with
various orientations and lengths on the images and record the status of intersection between
the character and different receptors. Figure 9 illustrates two examples of the descriptors
derived with 10 receptors applied on the characters. The values 1 and 0 in the table indicate
the presence of intersection with the character.
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Receptor 1 2 3 4 5 6 7 8 9 10
Descriptor (D) 0 1 0 1 0 1 1 1 1 0
Descriptor (&) 0 1 1 1 1 1 1 0 0 0

Figure 9. Two examples of the descriptors derived with 10 receptors applied on the characters ‘D’
and ‘&’. The values 1 and 0 in the table indicate the presence of intersection with the character.

Although the receptors can be manually constructed using a set of parameters, they
are usually randomly generated with only the number specified. Since it is not possible to
guarantee the uniqueness of feature descriptors derived from characters, they are treated as
as additional nodes in the input layer of the network for recognition. This network structure
design is able to improve the stability of character recognition results under the influence of
image deformation between the training and testing data. In our current implementation,
the receptors are adopted for the first-stage recognition network. The same idea might be
applied to the second-stage network to transform the character recognition problem to the
similarity evaluation of binary codes. This approach can be further investigated, albeit its
advantage to the recognition system is not clear.

6. Experiments and Evaluation

In the experiments, the proposed method is carried out on real-world images for struc-
tured region detection. Three application scenarios, including text detection for invoices
and serial number identification for banknotes, are adopted for performance evaluation.
Investigated in the tests are feature matching, feature clustering, region selection, and char-
acter recognition. Since all of these stages are highly correlated, we also tabulate the
intermediate results for analysis. Compared to the region extraction algorithms based
on deep neural networks, the implementation of our technique is simple and easy to
use. It does not require a large image dataset for training or high computational power.
To ensure the approach is suitable for practical applications, the testing samples are col-
lected in a cluttered environment. The number of images and the contained regions of
interest for the different applications are shown in the first and second rows of Table 1.

124



Entropy 2023, 25, 658

Since the number of regions for detection is not constrained, there might exist multiple
regions of interest, as indicated in the table. The region detection results are then used for
performance evaluation.

Table 1. The statistics of experimental results for invoice and banknote applications. The first
and second rows indicate the total numbers of testing images and regions of interest, respectively.
The numbers of correctly identified clusters and correct regions are shown in the third and fourth
rows, respectively.

Invoice Banknote

Number of images 113 109
Number of ROIs 116 114
Number of detected clusters 107 106
Number of correct regions 100 102
Accuracy of detection 93% 76%

The regions of interest in the testing images are recorded with different scales, orien-
tations, illuminations and backgrounds. In the first stage, the SIFT features are extracted
based on the correspondence matching with the reference dataset images. The green circles
marked in Figure 10a,b illustrate the feature extraction results of the invoice and banknote,
respectively. It can be seen that the majority of feature points aggregate around the text
regions and with only a small number of outliers. This greatly facilitates feature clustering
in the following stage. Figure 11 shows the results of OPTICS clustering based on the
feature densities, with each individual cluster represented using connected line segments.
From the experiment, the clustering efficiency is demonstrated by the perfect match be-
tween the features and text region of interest. In the third stage, the initial ROI candidate is
identified based on the orientation and density of the cluster. As illustrated in Figure 12,
the detected bounding box serves as a core region for further expansion. The text region
detection results in the last stage using iterative adjustments are shown in Figure 13. Since
the proposed technique does not take the text boundary into consideration, the enclosing
region is set as a rectangular bounding box. Consequently, the image captured with severe
perspective distortion might result in a slightly larger region.

(a)

(b)

Figure 10. In the first-stage results, the SIFT features are extracted based on the correspondence
matching with the reference dataset images. The green circles marked in the images indicate the
feature point extraction for (a) an invoice and (b) a banknote.
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(a)

(b)

Figure 11. The second-stage results of the OPTICS clustering based on the feature densities, with each
individual cluster represented using connected line segments for (a) an invoice and (b) a banknote.

 

 

 

 

 

 

 

 

(a)
    

(b)

Figure 12. In the third stage, the initial ROI candidate is identified based on the orientation and
density of the cluster. The detected bounding box serves as a core region for further expansion in
(a) an invoice and (b) a banknote.

(a)

(b)

Figure 13. The text region detection results in the last stage, the iterative adjustments are carried out
to enlarge the bounding box for the final ROI extraction in (a) an invoice and (b) a banknote.

Table 2 tabulates the important parameters used in the text region detection. The
clustering results for invoice and banknote are tabulated in the third row of Table 1. This
indicates that some good results are achieved for invoice and banknote. The evaluation
of structured region detection is based on the derivation of regions of interest. Only the
detected ROIs that fully cover the text content are considered as a correct result. Since
our primary objective is the identification of text regions rather than intermediate feature
clustering, we are more interested in the success rates of the ROI detection results. The last
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two rows of Table 1 tabulate the number of correctly detected regions and the detection
accuracy. This shows over 90% of ROI detection rates in the indoor scenes (invoice and
banknote). Finally, optical character recognition using the receptors is carried out on the
text regions. The performance evaluation for different applications is depicted in Table 3.
In general, it takes 2 ms for character recognition using the fast training network.

Table 2. The important parameters used for text region detection in our experiments.

Parameter Description Value

SIFT distance The threshold for feature correspondence matching. 0.8

MinPts1 The minimum number of points to form a cluster in
OPTICS. (invoice) #pt/10

MinPts2 The minimum number of points to form a cluster in OPTICS.
(banknote and plate) #pt/6

ε The control parameter for clustering analysis in OPTICS. 0.05

NoRefFeat The number of reference feature points for
corresponding matching. 300

NoHidNode The number of hidden nodes in the neural network. 100

NoReceptor The dimension of receptors for the neural network input. 300

Table 3. The statistics of character recognition results for the experiments on invoice and banknote.

Invoice Banknote

Number of characters 808 949
Correct recognition 673 722
Recognition rate 83 % 76 %

7. Conclusions

In this work, we present a new approach for structured region detection based on
correspondence extraction and clustering analysis of local features. The proposed technique
is designed for diverse application scenarios. It is capable of dealing with the cases where
the target region in different orientations, with size changes, or under perspective distortion.
The OPTICS algorithm with clustering density analysis is utilized to derive the characteris-
tics of feature correspondences. Based on the initial ROI candidates identified with cluster
orientations, the iterative adjustments are performed to enlarge for text region extraction.
The experiments carried out on invoice and banknote have demonstrated the feasibility of
the proposed method. Nevertheless, one major limitation of the proposed approach is the
detection capability of man-made structures as illustrated in the implementation. In future
work, the investigation will be conducted for natural scenes to reveal structural patterns for
agriculture applications. The code is available at https://github.com/faketifosi/SCFlow.
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Abstract: In order to capture the spatial-spectral (x, y, λ) information of the scene, various techniques
have been proposed. Different from the widely used scanning-based methods, spectral snapshot
compressive imaging (SCI) utilizes the idea of compressive sensing to compressively capture the
3D spatial-spectral data-cube in a single-shot 2D measurement and thus it is efficient, enjoying the
advantages of high-speed and low bandwidth. However, the reconstruction process, i.e., to retrieve the
3D cube from the 2D measurement, is an ill-posed problem and it is challenging to reconstruct high
quality images. Previous works usually use 2D convolutions and preliminary attention to address
this challenge. However, these networks and attention do not exactly extract spectral features. On
the other hand, 3D convolutions can extract more features in a 3D cube, but increase computational
cost significantly. To balance this trade-off, in this paper, we propose a hybrid multi-dimensional
attention U-Net (HMDAU-Net) to reconstruct hyperspectral images from the 2D measurement in
an end-to-end manner. HMDAU-Net integrates 3D and 2D convolutions in an encoder–decoder
structure to fully utilize the abundant spectral information of hyperspectral images with a trade-off
between performance and computational cost. Furthermore, attention gates are employed to highlight
salient features and suppress the noise carried by the skip connections. Our proposed HMDAU-Net
achieves superior performance over previous state-of-the-art reconstruction algorithms.

Keywords: hyperspectral; snapshot compressive imaging; CASSI; compressive sensing

1. Introduction

Hyperspectral images contain richer information than common RGB images and
are thus widely used in various types of equipment like endoscopic system and remote
sensing. To capture the rich spectral information, widely used spectrometers are mostly
based on scanning to capture the three-dimensional (3D) spatial-spectral data-cube, i.e.,
to capture one 2D spatial frame at one wavelength in one shot and then move the next
wavelength. The information captured in a 3D data-cube differs from conventional spatial
coordinates [1,2], as it includes spectral information in the third dimension. Though high
quality hyperspectral images can be obtained, scanning-based techniques are inefficient
with respect to capturing dynamic scenes because of accuracy limitations imposed by
moving objects or moving devices [3]. Thanks to compressive sensing (CS) [4,5], instead
of sampling the spectral data-cube directly, the snapshot compressive-spectral imaging
(SCI) [6] system samples the high dimensional data in an indirect manner. In particular,
the first designed spectral SCI system, named coded aperture snapshot spectral imaging
(CASSI) [7], uses a physical mask (coded aperture) and a disperser to modulate different
channels (each channel corresponding to one wavelength) of the hyperspectral image and
then captures the modulated data-cube in a snapshot 2D measurement by integrating
across the wavelengths.
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In this way, a 3D hyperspectral image can be compressed as a 2D measurement (please
refer to the left part of Figure 1) and captured by an optical sensor in a short time, thus
paving the way for high-speed hyperspectral image sampling [8]. With this high-speed
imaging, the data storage and transmission efficiency will be extremely prompted and thus
SCI has its promising prospect. After a 2D measurement is acquired, the reconstruction
algorithms are employed to recover the 3D spectral data-cube (please refer to the right part
of Figure 1).

Figure 1. (a) The RGB references and reconstructed spectral images of a real measurement captured
by [9] with 28 spectral bands (14 are shown here) using our HMDAU-Net. (b) One simulated data
result (scene 9 in Table 1). The RGB images are shown as a reference.

Table 1. PSNR in dB (left entry in each cell) and SSIM [10] (right entry in each cell) by different
algorithms on 10 scenes in simulation. Best results are shown in bold.

Algorithm TwIST GAP-TV DeSCI AE U-Net HSSP λ-Net TSA-Net Ours

Scene1 24.81, 0.730 25.13, 0.724 27.15, 0.794 27.45, 0.813 28.28, 0.822 31.07, 0.852 30.82, 0.880 31.26, 0.887 32.00, 0.898

Scene2 19.99, 0.632 20.67, 0.630 22.26, 0.694 22.40, 0.709 24.06, 0.777 26.30, 0.798 26.30, 0.846 26.88, 0.855 28.00, 0.889

Scene3 21.14, 0.764 23.19, 0.757 26.56, 0.877 26.47, 0.861 26.02, 0.857 29.00, 0.875 29.42, 0.916 30.03, 0.921 31.37, 0.939

Scene4 30.30, 0.874 35.13, 0.870 39.00, 0.965 36.96, 0.950 36.33, 0.877 38.24, 0.926 37.37, 0.962 39.90, 0.964 40.75, 0.971

Scene5 21.68, 0.688 22.31, 0.674 24.80, 0.778 24.37, 0.797 25.51, 0.795 27.98, 0.827 27.84, 0.866 28.89, 0.878 29.08, 0.893

Scene6 22.16, 0.660 22.90, 0.635 23.55, 0.753 24.64, 0.776 27.97, 0.794 29.16, 0.823 30.69, 0.886 31.30, 0.895 31.41, 0.919

Scene7 17.71, 0.694 17.98, 0.670 20.03, 0.772 20.04, 0.786 21.15, 0.799 24.11, 0.851 24.20, 0.875 25.16, 0.887 25.71, 0.901

Scene8 22.39, 0.682 23.00, 0.624 20.29, 0.740 24.33, 0.783 26.83, 0.796 27.94, 0.831 28.86, 0.880 29.69, 0.887 29.49, 0.900

Scene9 21.43, 0.729 23.36, 0.717 23.98, 0.818 25.10, 0.793 26.13, 0.804 29.14, 0.822 29.32, 0.902 30.03, 0.903 31.38, 0.920

Scene10 22.87, 0.595 23.70, 0.551 25.94, 0.666 24.55, 0.701 25.07, 0.710 26.44, 0.740 27.66, 0.843 28.32, 0.848 28.31, 0.859

Average 22.44, 0.703 23.73, 0.683 25.86, 0.785 25.63, 0.797 26.80, 0.803 28.93, 0.834 29.25, 0.886 30.15, 0.893 30.75, 0.909

It has been over 14 years since the first CASSI was built; though different variants
of the hardware have been developed [11–13], the reconstruction algorithm has been the
long-term bottleneck that precludes the wide applications of spectral SCI. Convention-
ally, the iterative algorithms developed for CS have been used [14–17], but have been
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limited by the speed [18] or performance. Fortunately, recent advances in deep learning
(DL) open a new window for the inverse problem in imaging [19]. Motivated by this,
different DL-based algorithms have been proposed for spectral SCI [9,20–25]. However,
most existing DL methods borrow the idea from other image restoration problems; for
example, both λ-Net [20] and TSA-Net [9] are based on U-Net [26]. These networks usually
use 2D convolutional neural networks (CNNs) that ignore the strong correlation among
different spectral channels in the data-cube, though some preliminary attention modules
are employed. On the other hand, the 3D CNN is able to extract high-dimensional features
but suffers from low speed during training and testing.

Bearing these in mind, in this paper, we propose a hybrid multi-dimensional attention
U-Net (HMDAU-Net) to reconstruct hyperspectral images from the 2D measurement in
an end-to-end manner. HMDAU-Net integrates 3D and 2D convolutions in an encoder–
decoder structure to fully utilize the abundant spectral information of hyperspectral images
with a trade-off between performance and computational cost. Furthermore, attention
gates [27] are employed to highlight salient features and suppress the noise carried through
the skip connections.

Note that while reconstructing hyperspectral images, we not only need to focus
on the spatial resolution but also need to take the spectral resolution into consideration.
Though 2D convolutions can capture spatial features well, they lack the ability to effectively
investigate the spectral correlation across the third dimension. Hence, we introduce 3D
CNN for reconstruction. Due to the greater computational cost of 3D CNN which will
increase the inference time, we integrate 3D and 2D CNN for the trade-off of reconstruction
fidelity and speed. The utilization of attention gates helps the model to suppress irrelevant
regions during training which makes the model pay more attention to the reconstruction
details.

1.1. Review of the CASSI System

As mentioned above, the key idea of CASSI is to modulate different wavelengths
in the spectral data-cube by different weights and then integrate the light to the sensor.
The first version of CASSI used a fixed mask and two dispersers to modulate the spatial
information over all wavelengths in the spectral cube, termed DD-CASSI [28]; here DD
means dual disperser. Following this, the single-disperser (SD) CASSI [7] was developed,
which achieves modulation by removing a disperser. Below, we mathematically model the
SD-CASSI sensing process.

Let X ∈ R
W×H×B denote the to-be-captured spectral data-cube at the top-left of

Figure 2 and M ∈ R
W×H denote the fixed physical mask, where W, H and B denote

the width, height and number of spectral channels, respectively. The spectral data-cube
modulated by the coded aperture is X′(:, :, b) = X(:, :, b)�M, where X′ is the same size as X,
b = 1, 2, . . . , B and� represents the element-wise multiplication. After propagation through
the disperser, each channel of X′ is shifted along the H-axis according to a liner dispersion
d and the respective wavelength. We then use X′′ ∈ R

W×H̃×B, where H̃ = H + d× (B− 1),
to denote the shifted cube and assume λc to be the center wavelength which is not shifted
when passing through the disperser. We can obtain X′′(i, j, b) = X′(i, j + d× (λb − λc), b),
where (i, j) represents the coordinate system on the plane of the sensor and λb is the
wavelength at the b-th channel; d × (λb − λc) indicates the spatial shifting of the b-th
channel. Thus, the 2D SCI measurement Y ∈ R

W×H̃ we obtain on the detector is a sum
over the wavelength dimension of a mask-modulated and later shifted data-cube. It can be
modeled as

Y =
B

∑
b=1

X′′(:, :, b) + N, (1)

where N ∈ R
W×H̃ denotes the measurement noise. To facilitate the description of the model,

the coding process could be considered as modulating with a shifted mask M̃ ∈ R
W×H̃×B
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corresponding to different wavelengths and the liner dispersion d, i.e., M̃(i, j, b) = M(w, h+
d× (λb− λc)). Correspondingly, the shifted version X ∈ R

W×H̃×B of the original data-cube
is X̃(i, j, b) = X(w, h + d× (λb − λc), b). According to this, the 2D measurement Y can be
modeled as

Y =
B

∑
b=1

X̃(:, :, b)� M̃(:, :, b) + N. (2)

By vectorizing the spectral data-cube and measurement, that is x = vec(X̃) ∈ R
WH̃B and

y = vec(Y) ∈ R
WH̃ , this model can be rewritten as

y = Ax + n, (3)

where A ∈ R
WH̃×WH̃B denotes the sensing matrix (coded aperture) which is a concatenation

of diagonal matrices, that is A = [D1, . . . , DB], where Db = Diag(vec(M̃(:, :, b))) is the
diagonal matrix with vec(M̃(:, :, b)) as the diagonal elements. Note that A is a very sparse
matrix and the theoretical bounds have been developed in [29,30].

Figure 2. The proposed Hybrid Multi-dimensional Attention U-Net (HMDAU-Net) for CASSI
reconstruction. The upper part is an SD-CASSI forward process and the measurement and mask are
used as inputs of HMDAU-Net. The network structure shown in the lower part uses the backbone of
a two layer U-net, composed of an encoder and a decoder including 3D CNN, 3D Res2Net [31] and
3D maxpooling/transpose 3D CNN. Attention gates [32] and SE (Squeeze-and-Excitation) blocks [33]
are employed to extract important correlation information.

After obtaining the measurement y, we will focus on recovering 3D or multi-dimensional
information from the 2D measurements, specifically using a novel deep learning network.

1.2. Contributions of This Work

In this paper, we propose a new end-to-end deep learning algorithm to reconstruct high
quality images for the SD-CASSI system. Our contributions are summarized as follows:

• Hybrid 3D/2D CNN network: To balance the performance and computational cost,
a hybrid 3D/2D block is employed to reduce parameters. Higher performance is
achieved than existing 2D CNN-based algorithms; In addition, the proposed hybrid
3D/2D network shows superiority compared to the pure 3D and 2D counterparts.

• Wider rather than deeper: We evaluate that a two layer U-Net has similar performance
to a four layer one in CASSI reconstructions.
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• Effects of attention gate and SE (Squeeze-and-Excitation) block [33] in CASSI are
evaluated. Attention gate is implemented to filter the noisy information from U-
Net bottleneck and former layers. A simple 2D-CNN SE block is used to focus on
important channels.

1.3. Related Work

After the first CASSI system [28] was designed, many revised CASSI were pro-
posed. A single disperser CASSI (SD-CASSI) system was designed [7] the following
year. Wang et al. [12] designed a Dual-camera CASSI system. Zhang et al. [34] proposed a
novel snapshot spectral imaging system that can dynamically capture the spectral images
with low computational burden and high light efficiency.

For CASSI reconstruction, the early algorithms are based on iterative optimization
algorithms like TwIST [14], GAP-based [15,35] and other algorithms [16–18,36–39]. To
promote these iterative algorithms, a deep neural network is inserted into an iteration step
as a deep denoiser prior named deep plug-and-play algorithm [40]. Deep unfolding and
deep unrolling methods [23,41–45] unfold an iterative algorithm and insert a deep learning
network with better performance than common iterative algorithms and maintain their
interpretation. The recent work [43] introduced a data-driven prior to exploit both the local
and non-local correlations among the spectral image adaptively.

On the other hand, end-to-end deep learning-based algorithms enjoy its high recon-
struction speed and excellent performance [46–49]. Researchers [22,50] proposed a CNN-
based method to learn the deep prior externally (dataset) and internally (spatial-spectral
constraint of inputs). Meng et al. proposed a TSA-Net [9] to exploit the self-attention
mechanism to reconstruct the HSI images by capturing the information across dimensions.
A generative adversarial network (GAN) [20] was also introduced in reconstruction.

Real CASSI systems always include noise and thus influence the reconstruction.
Zhang et al. [51] modeled the real noise with non-zero mean that generalizes the traditional
zero mean noise to characterize the optical imaging principle and boost the reconstruction
quality of CASSI. The work [9] found that the shot noise is more suitable for real data
training than Gaussian noise as well.

2. Proposed Network for CASSI Reconstruction

In this section, we first overview the hybrid multi-dimensional attention U-Net
(HMDAU-Net). Following this, different modules of the proposed network are described
in detail.

2.1. Overall Network Structure

As shown in Figure 2 (lower part), our network consists of a two layer U-Net [26]
backbone, 3D–2D hybrid blocks, SE blocks and attention gates. The backbone is a two layer
U-Net which is a trimmed version of TSA-Net backbone but without the attention mod-
ule [9]. The encoder includes 3D CNN, 3D Res2Net and 3D maxpooling and the decoder
includes 3D transpose CNN, 3D Res2Net and 3D CNN. The ReLU follows each CNN oper-
ation without batch normalization. We remove two layers from the original TSA backbone
and change it into a 3D CNN with one initial 3D CNN and one end 3D CNN to match
channels. A 2D SE block is employed to set the weight of the feature map and enhance the
weight of important ones. Due to the large increase in parameters using cascade 3D CNN
like DenseNet [52], we employ a hybrid 2D/3D CNN block named E-HCM [53] to solve
our CASSI reconstruction problem. Furthermore, Attention gates [27,32] are implemented
in our network to reduce inessential information among each layer.

2.2. Hybrid 2D/3D CNNs

Hyperspectral images contain abundant information across spectral channels; thus,
the reconstruction needs to fully explore this information. Two-dimensional CNN extracts
feature maps in each channel but lacks the content and relationship among spectral channels.
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To address this challenge, 3D CNN for hypterspecral image reconstruction is employed in
our network. It has been observed in previous work [54] that a 3D full CNN (3D-FCNN)
exploring both spatial context and spectral correlation can achieve excellent results on other
applications. Different from 2D convolution, a regular 3D convolution is implemented
via 3D kernels and feature maps and thus is capable of investigating correlations across
spectral channels. However, 3D CNN generates a large amount of parameters during
computing. Some methods use split 3D convolution to reduce parameters (i.e., splitting
the filter k× k× k as k× 1× 1 and 1× k× k) [55] to mitigate this shortcoming. However,
redundant information along the spectral dimension will be generated due to the high
spatial similarity among spectral channels. This also reduces the learning ability of the
model in space, which is extremely important for the reconstruction purpose as considered
in our work.

To address this challenge, MCNet [56] was proposed to share the context among 3D
and 2D units. A split adjacent spatial and spectral convolution (SAEC) was proposed in [53]
to tackle this difficulty. It implements 3D convolution along height–width, spectral-height
and spectral-width (i.e., filters are 1× k × k , k × 1× k and k × k × 1). After reshaping,
feature maps go through a few 2D convolution units. This hybrid 3D/2D CNN module is
dubbed E-HCM. In detail, the 3D unit is employed to analyze the relationship of spectra and
either horizontal or vertical direction in space. Since the spectral information is acquired,
the feature maps after the 3D unit are reshaped into four dimensions to implement 2D
convolution to further extract the spatial information in the desired image. Based on the
consideration of efficiency and computational cost, we employ this module at the end of
encoders and decoders in our HDMAU-Net.

2.3. Attention Gate

Attention Gates (AGs) [32] are initially proposed to capture a sufficiently large receptive
field or semantic contextual information in medical images. The AGs are incorporated into the
standard U-Net architecture to highlight salient features that are passed through the skip
connections. Information extracted from the coarse scales is used in gating to disambiguate
irrelevant and noisy responses in the skip connections.

As shown in Figure 2, the gating signal g ∈ R
Fg×Ng is generated via a 3D CNN

block, including batch normalization and ReLU. The input feature in the l-th layer is
xl ∈ R

Fl×Nl . Ng and Nl are the sizes of a feature map (i.e., channel × width × height),
Ng < Nl , Fg and Fl correspond to the number of feature maps. g and xl are inputs of the
attention gate in each layer, which can be represented by:

φg = upsample(Ωg(g)), φx = Ωx(xl), (4)

ql
att = ψ(ReLU(φx + φg)), αl

att = sigmoid(ql
att), (5)

where Ω(·) and ψ(·) denote linear transformation (e.g., Ω(u) = WT
u u + bu, bu ∈ R

Fint×M,
WT

u ∈ R
(Fl×Nl)×(Fint×M)) conducted by 1× 1× 1 3D convolutions. φg, φx and ql

att ∈ R
Fint×M,

where Fint and M are intermediate numbers of a feature map and sizes of a feature map,
respectively. Attention coefficient αl

att ∈ [0, 1]. When the attention is generated, we multiply
it with xl from skip connection and then input into decoder.

Motivated by the attention U-Net [27], the same-scale features from the encoder and
decoder can be augmented and combined by attention gates. We firstly use attention gates
to boost reconstruction of subtle texture in hyperspectral images and enhance the content
of each layer during scale transformation in our HMDAU-Net. The output of AGs is then
produced by the decoder with scaling conducted by Res2net and upsampling.

3. Experimental Results

We now verify the performance of our proposed HMDAU-Net for CASSI reconstruc-
tion, firstly on simulation data and then real data captured via the CASSI system [9]. More
results are shown in Appendix A.
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3.1. Simulated Data

We train our model for simulated data (256× 256 measurement on the CAVE [57],
31 spectral images of 256× 256× 31) and test it on 10 scenes cropped from the KAIST [58]
dataset provided by the TSA-Net [9], which adopts spectral interpolation on the simulation
data to acquire an image of the 28 channels (ranging from 450 nm to 650 nm) as ground
truth. Similar to TSA-Net, we randomly crop the hyperspectral data-cube into a spacial
size of 256× 256 with 28 channels and then use real mask and shift the data-cube via a
2 pixel step to generate a 256× 310 measurement. After shifting it back to a 256× 256× 28
data-cube, we put it into our network. Three-dimensional CNN need five dimensions to
input and thus we unsqueeze it into a batchsize× 1× 28× 256× 256 data. The number of
3D feature maps after the first 3D CNN is 32 (the second dimension). After it leaves the last
block, we squeeze the data into four dimensions.

3.1.1. Comparison with State-of-the-Art Methods

We compare our proposed reconstruction method with several state-of-the-art (SOTA)
methods, including three optimization methods (TwIST [14], GAP-TV [15] and DeSCI [18]),
a convolutional autoencoder-based method (AE [58]), a deep unfolding method (HSSP [23]),
a GAN-based method (λ-Net [20]) and two end-to-end deep learning methods (U-Net [26]
and TSA-Net [9]). AE does not perform as well as in the DD-CASSI system shown in
Ref [58] because we use their pre-trained model which differs from our SD-CASSI data
scenes, wavelenth distributions and spacial sizes. Other experimental results are from [9].
We use the same training dataset in TSA-Net and 10 scenes for test. We can see that the deep
learning-based methods achieve better results and our proposed method is better than the
past SOTA algorithm TSA-Net. Specifically, as shown in Table 1, our method outperforms
the second best method TSA-Net by 0.6dB in average PSNR and 0.016 in average SSIM.

Figure 3 plots selected channels (4 out of 28) and spectral curves of the reconstructed
images using the methods above. We can obverse that the images reconstructed via the
proposed method have clearer texts and stripes. Please notice the letters on the cup and
the sharp edges of the color checker. In addition, our method has more accurate spectral
density than the other methods.

As depicted in Figure 3, the top-left panel showcases two designated boxes labeled
“a” and “b”, accompanied by corresponding reconstructed outcomes and numerical assess-
ments. The assessment procedure involved computing the mean values of boxes “a” and “b”
across all wavelengths (each red dot represents an average value of a specific wavelength),
followed by correlation analysis of the spectra based on the reference parameter. Our
spectral-wise quantitative metrics are shown in the figure and clearly higher than other
methods.

3.1.2. Ablation Study

We design several ablation studies to evaluate the effect of different modules in
the proposed network. The comparison includes numbers of layers of U-Net backbone,
attention gates and hybrid dimensional convolution modules.

To save training time, the experiments in this subsection in simulated data are trained
with 16 channels when input into encoder. As shown in Table 2 left, we can observe that a
two layer 3D U-Net (using the backbone in TSA-Net and replacing all convolutions by 3D-
CNN) has performance similar to a four layer one in CASSI reconstruction. It even achieves
0.22 dB higher PSNR. However, by doubling the feature maps initially input into the
encoder, we can see a raise of 0.44 dB. This shows that the assistance of a deeper network is
not so distinct and even not beneficial to our SCI reconstruction. Instead, the wider one has
much more influence. We find that this may due to the fact that too many downsamplings
and upsamplings in spatial and spectral dimensions will cause information loss.

136



Entropy 2023, 25, 649

Figure 3. Two reconstructed scenes with four spectral channels using seven methods. We compare
the recovered spectra of the selected region (shown with a, b on the RGB images) and spatial details.
box “a” and box “b” have been chosen to perform correlation analysis.

Table 2. Left: The comparisons of using different numbers of layers in the 3D U-net backbone
showing average PSNR in dB, SSIM on the 10 scenes. Right: The comparisons of using different
modules in our proposed algorithm.

Method PSNR SSIM

4 layers-16 29.38 0.892
2 layers-16 29.51 0.886
2 layers-32 29.95 0.898

Our Backbone 29.77 0.888

+SE Block 30.02 0.893

+AGs 29.82 0.887

+AGs and SE Block 30.14 0.899

In Table 2 right, we evaluate different modules in our proposed method. Both SE block
and attention gates improved our reconstruction results. In particular, SE Block can improve
them more (0.25 dB in PSNR) while AGs just edge up a little bit (0.05 dB in PSNR). As we
put them together, the promotion is expanded, leading to a 0.27 dB gain in PSNR. This
presents the consistency of the two attentions in our reconstruction, without excessively
filtering necessary spatial-spectral information.

In Table 3, we implemented different types of convolution in our U-net backbone. Our
hybrid backbone uses E-HCM on the second encoder and the first decoder is a two layer U-
Net backbone. E-HCM includes three 3D convolution operations and four 2D convolution
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operations. For the full 3D convolution, we replace the E-HCM by the same number of
layer residual blocks (seven layers per module). For full 2D convolution, we replace all
3D convolution operations by 2D and keep the number of layers unchanged. For instance,
taking a 2D convolution layer with kernel size K, input and output channels Cin, Cout as an
example, the number of MACs is K× K× Cin × Hout ×Wout × Cout, where Hout and Wout
denote the height and width of the output feature map, respectively. Compared to 2D, 3D
improves the PSNR value but significantly increases the computational workload as well.
By using our hybrid backbone, we can decrease parameters and computational load to a
large extent (40%) in contrast to 3D and even have achieved higher performance than pure
3D and 2D ones. This observation suggests that the pure 3D CNN is not as practical as 2D
ones because of the soaring of computational load. However, we can mix it with 2D CNN
to make a balance.

Table 3. The comparisons of using 2D, 3D and hybrid convolution as U-net backbone in our proposed
algorithm showing average PSNR, SSIM, model parameters and computational loads on the 10 scenes.

Method PSNR SSIM Parameters MACs

Our backbone 29.77 0.888 0.446 M 114.9 G

Full 3D Convolution 29.55 0.885 0.700 M 152.9 G

Full 2D Convolution 29.09 0.884 0.270 M 4.6 G

3.2. Real Data

For the real data captured by the system built in [9], we again borrow the experimental
results of other methods. The real data is a 660× 714 measurement with 28 wavelengths
ranging from 450 nm to 650 nm. It was shifted 54 pixels with respect to dispersion in the
column. We train our model again using the real data mask, i.e., 660× 660 coded mask
and cropped training set. This model is much larger than the simulated one and it takes a
huge increase in GPU memory usage (even more than 45 GB for batch size = 1 per batch)
and time cost. Thus, we take the advantages of the Automatic Mixed Precision (AMP)
module provided by Pytorch to train our model by mixed precision (half precision and
single precision real numbers).

The reconstruction results of two scenes, Lego and Strawberry are shown in Figure 4,
where we plot four reconstructed frames at different wavelengths and spectral density
curves to demonstrate the performance of our proposed method. We observe that our result
contains more detail in Legoman’s face area because our model produces sharper edges
than other models. In the Strawberry testcase, our result has higher spatial resolution in all
selected wavelengths. Similar to Figure 3, we attached a visualization of numerical assess-
ment in Figure 4 and the method to obtain such assessment is the same as described above.
We observe that our curve (red) is closest to the reference curve (blue) among all other
curves.wo more real data results of Plants and Legoplants are shown in Figures 1 and 5
with 14 and 7 selected reconstructed channels, respectively. We selected 7 spectral channels
out of 28 as shown in Figure 5. Our model achieves superior reconstruction results in
terms of clarity and aesthetics compared to TSA-net. Specifically, our model produces
more pointed edges that elevate the overall reconstruction quality.s shown in the plots, our
method provides sharper edges and more spacial details such as the hands and clothes of
the Lego man. The spectral density curves reveal our method is closer to the ground truth
as well.
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Figure 4. Real data: the reconstructed images of Lego man (left) and Strawberry (right) for 4 out of
28 spectral channels. area “a” and “b” have been chosen to perform correlation analysis. The spectral
curves are shown at the lower part of the figure, the reference curves and RGB images are from [9].

Figure 5. Real data: The RGB references and result images of a real measurement for 7 out of
28 spectral channels reconstructed via TSA and our proposed method.

4. Conclusions

We proposed an end-to-end hybrid multi-dimensional attention U-net for hyperspec-
tral snapshot compressive imaging reconstruction. The algorithm employed hybrid 3D/2D
convolutions instead of using one of them alone to balance the trade-off of computational
cost and performance. Our proposed network achieved superior results over previous
end-to-end CNN based algorithms.

One important observation from our experiments is that for SCI reconstruction tasks,
it is not necessary that the backbone network (e.g., U-Net) be deep, but it needs to be
wider (more kernels in each layer) to provide good results. This may due to the task
difference between image reconstruction (to recover details) and image classification (to
extract features). We further used the attention gate to extract essential correlations in the
spectral data-cube to improve the reconstruction performance in our network.

In addition to spectral SCI reconstruction as shown in this work, we do believe our
network can be used in medical images [59], image compression [60], temporal compressive
coherent diffraction imaging [61], and video compressive sensing [62–66].
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Appendix A. Experimental Results

Appendix A.1. Simulated Data Results

Figures A1–A10 show the simulation results with 28 spectral channels for 10 scenes
from KAIST. Truth, measurements and RGB images are shown for reference. We compare
our proposed method with the TSA-net and λ-net algorithms and list the corresponding
PSNR and SSIM.

Figure A1. Simulation: RGB image, measurement, ground truth and reconstructed results by Tour
proposed method with the TSA-net and λ-net Scene 1. The PSNR in dB and SSIM for the result
images are shown in the parenthesis.
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Figure A2. Simulation: RGB image, measurement, ground truth and reconstructed results by Tour
proposed method with the TSA-net and λ-net Scene 2. The PSNR in dB and SSIM for the result
images are shown in the parenthesis.
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Figure A3. Simulation: RGB image, measurement, ground truth and reconstructed results by Tour
proposed method with the TSA-net and λ-net Scene 3. The PSNR in dB and SSIM for the result
images are shown in the parenthesis.
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Figure A4. Simulation: RGB image, measurement, ground truth and reconstructed results by Tour
proposed method with the TSA-net and λ-net Scene 4. The PSNR in dB and SSIM for the result
images are shown in the parenthesis.

143



Entropy 2023, 25, 649

Figure A5. Simulation: RGB image, measurement, ground truth and reconstructed results by Tour
proposed method with the TSA-net and λ-net Scene 5. The PSNR in dB and SSIM for the result
images are shown in the parenthesis.
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Figure A6. Simulation: RGB image, measurement, ground truth and reconstructed results by Tour
proposed method with the TSA-net and λ-net Scene 6. The PSNR in dB and SSIM for the result
images are shown in the parenthesis.
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Figure A7. Simulation: RGB image, measurement, ground truth and reconstructed results by Tour
proposed method with the TSA-net and λ-net Scene 7. The PSNR in dB and SSIM for the result
images are shown in the parenthesis.
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Figure A8. Simulation: RGB image, measurement, ground truth and reconstructed results by Tour
proposed method with the TSA-net and λ-net Scene 8. The PSNR in dB and SSIM for the result
images are shown in the parenthesis.
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Figure A9. Simulation: RGB image, measurement, ground truth and reconstructed results by Tour
proposed method with the TSA-net and λ-net Scene 9. The PSNR in dB and SSIM for the result
images are shown in the parenthesis.
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Figure A10. Simulation: RGB image, measurement, ground truth and reconstructed results by Tour
proposed method with the TSA-net and λ-net Scene 10. The PSNR in dB and SSIM for the result
images are shown in the parenthesis.
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Appendix A.2. Real Data Results

Figures A11–A14 show the RGB images, measurements and the reconstructed 28 spectral
channels for four real scenes with a size of 660 × 660 pixels captured by real CASSI system.

Figure A11. Real data: RGB image, measurement and reconstructed results by our proposed method
for scene 1.

Figure A12. Real data: RGB image, measurement and reconstructed results by our proposed method
for scene 2.

Figure A13. Real data: RGB image, measurement and reconstructed results by our proposed method
for scene 3.

Figure A14. Real data: RGB image, measurement and reconstructed results by our proposed method
for scene 4.
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Abstract: Vehicle re-identification across multiple cameras is one of the main problems of intelligent
transportation systems (ITSs). Since the differences in the appearance between different vehicles
of the same model are small and the appearance of the same vehicle changes drastically from
different viewpoints, vehicle re-identification is a challenging task. In this paper, we propose a model
called multi-receptive field soft attention part learning (MRF-SAPL). The MRF-SAPL model learns
semantically diverse vehicle part-level features under different receptive fields through multiple
local branches, alleviating the problem of small differences in vehicle appearance. To align vehicle
parts from different images, this study uses soft attention to adaptively locate the positions of the
parts on the final feature map generated by a local branch and maintain the continuity of the internal
semantics of the parts. In addition, to obtain parts with different semantic patterns, we propose a
new loss function that punishes overlapping regions, forcing the positions of different parts on the
same feature map to not overlap each other as much as possible. Extensive ablation experiments
demonstrate the effectiveness of our part-level feature learning method MRF-SAPL, and our model
achieves state-of-the-art performance on two benchmark datasets.

Keywords: vehicle re-identification; multi-receptive field; part-level features

1. Introduction

The vehicle re-identification (Re-ID) task identifies the same vehicle from multiple
nonoverlapping cameras in surveillance systems. This task is particularly useful when
a car’s license plate is occluded or cannot be seen clearly. In these scenarios, the vehicle
Re-ID method can effectively locate the vehicle of interest from the monitoring database,
which has important applications in intelligent transportation, public safety, smart cities,
and other fields. In recent years, vehicle Re-ID has received increasing attention from the
computer vision community.

Due to drastic changes in illumination, occlusion, resolution, viewing angle, and
background, vehicle Re-ID is still a very challenging task, particularly when the vehicle
images are obtained from a large number of different cameras. To address this Re-ID
task, many deep learning models [1–3] for extracting global vehicle information have
been proposed in recent years. Although these works have achieved remarkable success
in vehicle Re-ID tasks, since global feature learning only captures the most important
information representing different identities, the identification ability of global features
tends to decline severely when the differences in vehicle appearance are not significant. As
shown in Figure 1, different vehicles belonging to the same model may look quite similar.
We can distinguish these challenging vehicle image samples by subtle clues, such as the
annual inspection signs and decorations marked by the circle shown in Figure 1. Therefore,
learning rich fine-grained local features is crucial for vehicle Re-ID tasks.
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Figure 1. The four cars are divided into two groups: the silver-white cars at the top and the red
cabs at the bottom. Each group is comprised by different vehicles of the same model. The detailed
information distinguishing each vehicle is marked with red circles; for example, the car in the lower
left has rows of stickers including annual inspection signs and a small red screen, while the car in the
lower right has three stickers and a yellow item. These details can completely distinguish the two
red cars.

Recently, part-based models [4–7] have made great progress in learning effective local
feature representations for pedestrian Re-ID and have obtained highly promising results.
By horizontally dividing one feature map into multiple parts in space, these models can
mine fine-grained discriminative features on each part. Aggregating all part-level features
can effectively identify pedestrians. Since person and vehicle Re-ID tasks are conceptually
similar and both of them belong to the image retrieval problem, techniques from one task
can usually be adapted to the other. To solve the problem of high similarity in Figure 1,
Ref. [8] divided the feature maps of vehicle images along various directions to extract
rich fine-grained local features. They applied the most advanced methods of pedestrian
Re-ID to vehicle Re-ID. However, on the one hand, the change in vehicle appearance from
different perspectives is much larger than that of pedestrians. As shown in Figure 2, the
texture or color of the clothes worn by a person does not change drastically under different
viewing angles, meaning that the images of the same person from different cameras will
always have more in common and can be roughly spatially aligned, so that the body can
be vertically segmented into several parts to extract part-level features. By contrast, the
appearance of the same vehicle can change drastically due to the change in viewpoint,
and the misalignment of parts is more severe than that of pedestrians, such that a simple
rigid spatial division cannot align vehicle parts well enough to learn the part-level features
effectively. On the other hand, the simple rigid division of feature maps breaks the semantic
continuity within parts.

To overcome the above-described challenges, some methods [9–12] focus on enabling
the networks to identify the vehicle perspective and learn the fine-grained information
related to the perspective through vehicle key point detection, parsing networks, and
pose estimation. These methods solve the above problems to some extent but increase
complexity and rely on additional annotations. In addition, other methods use attention
mechanisms to effectively mine identity-related salient information. Ref. [13] enhanced the
discriminative power of the features on two branches by using nonlocal spatial attention
and channel attention. Although these methods can effectively discover salient information
globally, they cannot find rich detailed clues. Analytically, we find that an effective part-
level feature learning mechanism for vehicle Re-ID should follow three criteria: (1) the
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detected parts/regions should be aligned and maintain internal consistency; (2) the detected
parts/regions should be semantically diverse to cover as much discriminant information as
possible in vehicle images; (3) The detected part semantics should be multilevel because
receptive fields of different sizes can capture part information with different semantic
levels. To meet these demands, we propose a model called multi-receptive field soft
attention part learning (MRF-SAPL) for part-level feature learning. Without the need for
additional annotations, MRF-SAPL locates parts under multiple receptive fields and learns
rich, multi-semantic-level part-level features associated with vehicle identities.

Figure 2. The two images on the left are of the same pedestrian taken from different viewpoints. It
can be intuitively seen that the color of the clothes worn by the pedestrian does not change drastically
from different viewpoints, and when the pedestrian images are divided vertically into three parts,
there are still many commonalities between the corresponding parts of the two images. The two
images on the right are of the same vehicle taken from different viewpoints, and it can be seen that
the change in viewpoint causes drastic changes in the appearance of the same vehicle, and that the
misalignment between the corresponding parts is more severe.

In the MRF-SAPL model, the backbone network is extended to a series of ordered
branches, one of which is a global branch for learning global features, and the rest are
local branches for learning part-level features. Each local branch mines multiple part-level
features with a specific semantic level under a receptive field, so that multiple local branches
can obtain enough part-level features with different semantic levels from the entirety of
the vehicle image. Within each local branch, we use the soft attention part learning (SAPL)
module to learn to locate part positions and extract part features. Specifically, first, the
final feature map output by a local branch is adaptively divided into several internal
semantically continuous parts/regions using soft attention. The adaptive division of
regions can automatically align the corresponding vehicle parts from different images.
Second, to ensure that the multiple parts extracted by the same branch are semantically
irrelevant, we propose a new loss function called the overlapping region penalty (ORP) to
force the corresponding regions of different parts on the feature map to not overlap each
other as much as possible in order to obtain parts with different semantic patterns. Finally,
after positioning the regions where the parts are located, we use a part feature extractor to
extract the corresponding part features from each part region. Our contributions can be
summarized as follows:

(1) We propose a multi-receptive soft attention part learning (MRF-SAPL) model for
vehicle Re-ID that does not require rigid space partitioning or additional labeling and
can flexibly discover enough part-level features with multiple semantic levels;

(2) To align the vehicle part features from different images, we exploit soft attention to
adaptively divide the space of the feature map to obtain the locations of parts with
internal semantic continuity;

(3) Extensive experimental results show that a higher performance can be obtained
compared to that of other state-of-the-art methods on two large datasets, where a new
loss function, ORP, is proposed to force each local branch of MRF-SAPL to semantically
learn complementary part-level features.
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2. Related Work

2.1. Local-Based Re-ID

The design of existing Re-ID methods is mainly based on handcrafted features [14,15],
metric learning [16–18] and deep learning networks [5,9,19–27]. Some recent approaches
learn features at the part level and achieve state-of-the-art performance in Re-ID tasks.
Existing part-based Re-ID methods can be generalized into two categories: methods with
external cues and partition-based methods.

Refs. [10,12,28] used external cues utilize human parsing, pose estimation, and object
segmentation to precisely align body parts under the supervision of additional semantic
labels. Miao et al. [12] learned the visibility of body parts using pose landmarks and ex-
tracted useful features for pedestrians using the generated attention masks. Gao et al. [10]
learned part features with the help of attention maps guided by pose estimation and trained
the visibility of parts through pseudolabels generated by graph matching. He et al. [28]
introduced an object detection network to generate the ROI (region of interest) for each
vehicle part and then projected the ROIs into the global feature map generated by a global
module to capture local information. However, the required external cues limit the usage
and robustness of their method in practical deployments. By contrast, our model can
align the corresponding parts of different vehicles using only identity labels under the
supervision of the overlapping region penalty (ORP) constraint.

Common segmentation-based models mainly align body parts by rigidly segmenting
images/feature maps. Sun et al. [5] horizontally partitioned the final feature map output
by the network to learn fine-grained part-level features of pedestrians from each region.
Chen et al. [8] divided the feature maps of vehicle images in various directions to fully
mine fine-grained local features. Although these methods match part features by region
partitioning without using external labels and models, they assume that the same part
appears at the same location in different images, making it difficult to overcome the serious
spatial misalignment problem inherent in vehicle Re-ID. Recently, Li et al. [29] adaptively
learned discriminative body part features for occluded person re-identification tasks by
enhancing interpart associations from a global perspective through a transformer encoder-
decoder architecture. Both our method and the method of Ref. [29] can adaptively align
parts to suppress the spatial misalignments. Different from Ref. [29], MRF-SAPL can
generate aligned parts without relying on the complex transformer architecture.

2.2. Multiscale Features

Convolutional neural networks extract the features of the target in a layer-by-layer
abstract manner through the convolution layer and the pooling layer. The design of the
receptive field size has an important impact on the performance of the networks. Small
receptive fields can only observe local information; in contrast, large receptive fields can
only observe global information. Therefore, researchers have designed various multiscale
model architectures to capture features at different semantic levels. He et al. [30] proposed
a spatial pyramid pooling network that can obtain fixed-size feature maps and capture
information at different scales through different downsampling steps. Zhao et al. [31]
proposed the pyramid scene parsing network (PSP Net) that utilizes downsampling and
upsampling operations to extract local and global information, making scene recognition
more reliable. The Inception module proposed by Szegedy et al. [32] consists of four
parallel channels, namely, 1 × 1 convolution, 3 × 3 convolution, 5 × 5 convolution, and
3 × 3 maximum pooling, which are combined to extract the features of the previous
layer of different scales. Tolstikhin et al. [33] proposed a multilayer perceptron Mixer
(MLP-Mixer) architecture for computer vision that uses a depthwise separable filter with
a maximum receptive field and interchannel parameter sharing to mix tokens to capture
global information. Li et al. [34] facilitated visual representation learning via 3 × 3
convolutional static context and contextual self-attention-based dynamic context. In this
paper, we let each local branch focus on capturing discriminative information under a
specific receptive field through a downsampling operation.
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3. Method

3.1. Network Structure

Figure 3 shows the overall network architecture of the MRF-SAPL model, which
includes a ResNet-50-based backbone, a global branch for extracting global information,
and three local branches (LB1, LB2, LB3) for extracting part-level information. For the
backbone network, we use ResNet-50 [35] as the basis for the construction of feature map
extraction. As with previous works [13,36], we further remove the original fully connected
layer for multi-loss training and replicate the res_conv4_2 and subsequent blocks to build
four independent branches. One branch is the global branch, and the others are local
branches.

Figure 3. Network architecture of the MRF-SAPL model. It consists of a ResNet-50-based backbone,
a global branch for extracting global information, and three local branches (LB1, LB2, LB3). The three
local branches extract part features with different semantic levels under different perceptual fields by
the soft attention part learning (SAPL) module that consists of a part locator, an overlapping region
penalty (ORP) constraint, and a part feature extractor.

The global branch learns a compact global feature representation. In this branch, we
use the downsampling convolution layer with a step size of 2 in the res_conv5_1 block and
conduct the global average pool (GAP) [37] operation on the final output feature map to
obtain a 2048-dimensional feature vector. The dimension of the vector is further reduced
to 256 through a dimensionality reduction module that consists of a 1 × 1 convolution
layer, a batch normalization layer and a ReLU layer. We use the subnetwork composed
of the backbone network and the global branch as the baseline network (baseline) in
our experiments.

Intuitively, with the change in the receptive field size, human beings naturally observe
an object from different semantic levels. Integrating discriminative information at different
semantic levels can help people better identify objects. Therefore, in our network, we
introduce three local branches to capture the semantics at different levels to obtain a large
amount of discriminative information related to vehicle identities. To preserve enough
detailed information, in all local branches, we do not use the downsampling operation
in the res_conv5_1 block to provide appropriate space for the change in the receptive
field. For each local branch, we first change the resolution of the final feature map to
obtain the feature map under a specific receptive field. On the obtained feature map, a
part locator uses soft attention to locate the internal semantic continuous parts and uses
the ORP constraint to make the semantic patterns between parts different. Then, a part
feature extractor generates the corresponding part features according to the positions of
the parts on the feature map. Finally, we use the GAP operation on a part feature to obtain
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a 2048-dimensional feature vector, and the dimension of the vector is further reduced to
256 by a similar dimension reduction module in the global branch for cross entropy loss
and triple loss.

The 256-dimensional feature vectors from the global and the three local branches are
combined as the final feature representation for the vehicle Re-ID task. The global branch
learns the overall discriminative information of vehicles, and the local branches learn the
local information at different semantic levels. The global and local branches complement
and cooperate with each other to improve their performance. Combining global features
with local features can construct a more robust feature representation.

3.2. Soft Attention Part Learning Module

Some methods [10,12,38–40] train detection models with part labels to detect part
locations and extract part-level features. However, it is difficult to collect the additional
labels required by these methods. Our proposed SAPL module does not require any labels
related to parts and can adaptively learn the locations of the parts on the feature map
and extract the part features. It consists of a part locator, an overlapping region penalty
constraint and a part feature extractor. After the final feature map of a local branch passes
through the SAPL module, we obtain the position of each part on the feature map and a
constant number of part-level features.

We define the feature map generated by an image via a backbone and a local branch
as a three-dimensional tensor T with the size of h×w× c (h, w, and c represent the channel
height, width, and channel number, respectively). We define the activation vector viewed
along the channel dimension as pixel z, which indicates the semantic information of its
location. The purpose of the part locator is to locate the spatial positions of the parts on
the T and to ensure the continuity and consistency of the internal semantics of the parts.
Therefore, according to the semantic similarity between pixels, we use soft attention to
assign them to each part. Specifically, the part locator is implemented by a fully connected
layer followed by a softmax function, which is given by:

P(Pi | z) = softmax
(

WTz
)
=

exp
(
WT

i z
)

∑
p
j=1 exp

(
WT

j z
) , (1)

where P(Pi | z) is the prediction probability of part Pi at the z of the feature map T and W
is the weight matrix of the fully connected layer. p is the number of vehicle parts.

After applying the part locator on each pixel of T, we obtain a set of attention maps
A = {Ai | i = 1, . . . , p}, where Ai ∈ Rh×w indicates the position of the i-th part on the
feature map T and can be reshaped into a vector with dimension hw. To obtain multiple
parts with different semantic patterns in a branch, rather than just focusing on the main
discriminant area, the corresponding positions of different semantic parts should have
a small overlap in space. Therefore, the overlapping region penalty (ORP) constraint is
proposed to measure the area of the overlapping region of A that is defined as:

Lorp = ∑
i �=j

AT
i Aj

‖Ai‖2 ·
∥∥Aj
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2

, (2)

where ‖·‖2 is the L2 norm. The ORP constraint adaptively softly divides the semantic
space and generates multiple parts with different semantics. The combination of the part
locator and ORP constraint has two beneficial effects for part segmentation. On the one
hand, semantically similar features from a particular part are encouraged to be grouped
together so that a strong part locator can be learned and corresponding parts from different
images can be aligned. On the other hand, different semantic patterns between parts are
encouraged to obtain multiple semantic complementary parts.

After obtaining the attention map of each part on the feature map, the part feature ex-
tractor generates the corresponding features for each part. Given that pixel z on the feature
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map belongs to the prediction probability of part Pi, the part feature extractor generates
feature fi of the part by weighted pooling that is calculated using the following formula:

fi =
∑z∈T P(Pi | z)× z

Ci + ε
, (3)

where divisor Ci is the accumulation of P(Pi | z) on T and represents the salience of each
part on the image. It should be noted that if a vehicle part is not visible in an image, all
values of the attention map generated by the part locator for the part are close to 0. Hence,
to avoid using 0 as a divisor when Ci is 0, ε is a small constant, which is set to 0.05 in
our implementation.

3.3. Multi-Receptive-Field Granularity

Humans can capture different levels of semantics of a vehicle (such as vehicle type,
lamp shape, and annual inspection sign) under different receptive fields (such as viewing
distance or image resolution). Some types of semantics (e.g., with or without annual
inspection) may be easier to capture in small receptive fields, while others (e.g., car door
style) may be easier to capture in large receptive fields. Inspired by this, we propose a multi-
receptive field soft attention part learning (MRF-SAPL) model to capture discriminative
information on different semantic levels.

In MRF-SAPL, each local branch corresponds to a receptive field granularity, and
we distinguish different receptive field granularities through different resolutions of
the final feature maps of the local branches. According to the previous description,
when a vehicle image passes through all local branches, we obtain a set of feature maps
Tall = {Tm | i = 1, 2, 3}, where Ti ∈ Rh×w×c includes h × w pixels (h, w, c represent the
height, width, and number of channels, respectively). For the mth granularity, we per-
form spatial average pooling with a downsampling factor m on the mth feature map
of Tall and obtain the downsampled feature map T

′
m ∈ Rhm×wm×c of hm × wm pixels,

where hm = h − 4(m − 1) and wm = w − 4(m − 1). The factorized feature map set is
T
′
all =

{
T
′
m | i = 1, 2, 3

}
. We apply the SAPL module separately on all feature maps of T

′
all

to obtain multiple part features on different semantic levels.

3.4. Multitask Training

Multitask learning combines several related subtasks for overall learning and has
been shown to be effective in Re-ID problems. We train our network by three types of
supervision, i.e., the cross-entropy loss, the triplet loss, and the ORP loss Lorp in Equation (2).
The cross-entropy loss is expressed as:

Lid = −Ik=y log(h), (4)

where Ik=y returns 1 only when the predicted class k of a sample is equal to its supervised
class y; otherwise, it returns 0. h is the probability that the sample is predicted to be class k.

The triplet loss separates the distance between examples of the same vehicle and the
distance between examples of different vehicles by a certain threshold. We adopt the triplet
loss with hard mining of Ref. [36]. During model training, P vehicles and K images of each
vehicle are randomly sampled for each mini-batch to meet the triplet loss requirement. The
triplet loss can be defined as:

Ltp =
P

∑
i=1
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∑
a=1

[
α + max

p=1,...,K
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− min
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where α is the margin hyperparameter that controls the differences of intra and inter
distances, and ai, pi, and nj are the feature representations extracted from anchor, positive,
and negative samples, receptively.

The cross-entropy loss and the triplet loss are used to supervise the network to learn
identity-related global and local features. The overall training loss is formulated by:

L = Lorp + Lid + Ltp, (6)

where Lorp prefers that the activated regions of different parts are nonoverlapping, and Lid
and Ltp guide the model MRF-SAPL to activate the image discriminative regions rather
than the background.

4. Experiments

4.1. Datasets and Evaluation Metric

We evaluate our proposed model on the VeRi-776 and VehicleID datasets, which are
two mainstream datasets used in vehicle re-identification tasks.

VeRi-776 is the benchmark dataset of the vehicle Re-ID task. It consists of 49,357 images
of 776 different vehicles captured by 20 nonoverlapping cameras in various directions and
lighting conditions. The training and test sets contain 37,781 images of 576 vehicles and
11,579 images of 200 vehicles, respectively. According to the evaluation protocol in Ref.
[2], we employ an image-to-trajectory cross-camera search, that is, using a vehicle image
of a camera to search the trajectory of the same vehicle in other cameras. We measure the
performance of our proposed model using mean average precision (mAP) and the Top-1
and Top-5 accuracies of cumulative matching curves (CMC).

VehicleID is another data-heavy benchmark consisting of 221,567 images from 26,328
different vehicles, of which 113,346 images from 13,164 vehicles are used for training and
the rest are used for testing. The test set is further divided into three subsets of different
sizes (small, medium, and large). In the inference phase, for each subset, one image is
randomly selected from the images of each vehicle to form the gallery set, and the other
images are used as query images. The average result of 10 repeated random samplings is
regarded as the performance of our model on the VehicleID dataset. The evaluation indices
of the VehicleID dataset are the Top-1 and Top-5 accuracies of CMC.

4.2. Implementation Details

Prior to feeding the vehicle images into the MRF-SAPL model, we resize them to
256 × 256 for more detailed information. The weights of the backbone and branches of
MRF-SAPL are initialized with ResNet-50 [35] pretrained on ImageNet. During the training
phases, we only randomly flip the input images horizontally for data augmentation. By
randomly selecting 16 vehicles with 4 images per vehicle, the batch size is set to 64. We
set the margin parameter of the triplet loss to 1.2 in all experiments. We choose stochastic
gradient descent (SGD) as the optimizer. The initial learning rate is set to 0.01 and decays
to 1 × 10−3 after 300 epochs and 1 × 10−4 after 400 epochs. The total training process
lasted for 500 epochs. During testing, we concatenate all dimensionality-reduced feature
vectors as a feature representation for each image in the query and gallery sets. The feature
representations extracted from the original and horizontally flipped images are summed
and normalized as the final vehicle feature embedding for the input image. Our model is
implemented on two NVIDIA RTX 2080Ti GPUs using the PyTorch framework.

4.3. Comparison with State-of-the-Art Methods

We compared the proposed model MRF-SAPL in this paper with the current methods
on the VeRi-776 and VehicleID datasets with the corresponding evaluation indices.

VeRi-776: Table 1 presents the comparison of previous methods and our model on
the VeRi-776 dataset. Among these methods, Siamese+Path [1] relies on the temporal and
spatial information of the vehicle images in the VeRi-776 dataset. TCPM [25] divides the
final feature map from the horizontal and vertical directions and uses an external memory
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module to store partial features to model the global feature vector. Dual+SA [41] uses
self-attention to generate attention maps about the vehicle model and vehicle ID and inputs
the attention map to the part localization module to obtain the fine region features of ROIs.
Relying only on visual information, our proposed model MRF-SAPL achieves 81.5% mAP,
94.7% Top-1 accuracy, and 98.7% Top-5 accuracy. Our model is superior to these advanced
methods in terms of mAP and Top-1 accuracy. A good mAP score shows that MRF-SAPL
has a stronger ability to retrieve all corresponding images with the same identity in the
gallery set, both for different camera attributes and viewpoint changes.

Table 1. The mAP, Top-1, and Top-5 on VeRi-776.

Method mAP Top-1 Top-5

Siames+Path [1] 0.583 0.835 0.900
VAMI [11] 0.501 0.770 0.908
RAM [42] 0.615 0.886 0.940
EALN [43] 0.574 0.844 0.941

AAVER [44] 0.612 0.890 0.947
PRN [28] 0.743 0.943 0.989

VCAM [40] 0.686 0.944 0.969
SPAN [26] 0.689 0.940 0.976
TCPM [25] 0.746 0.940 0.971
VSCR [45] 0.755 0.941 0.979

LCDNet+BRL[46] 0.760 0.946 0.980
Dual+SA [41] 0.786 0.944 0.992

MRF-SAPL (Ours) 0.815 0.947 0.987

VehicleID: We compared the scores of Top-1 and Top-5 on this dataset because each
query vehicle has only one corresponding image in the gallery set. The comparison of the
results on the Vehicle-ID dataset is shown in Table 2. VAMI [11] utilizes an adversarial
training network and vehicle attributes to infer the features of the input vehicle under
different viewpoints. PRN [28] utilizes an object detection network to generate the ROI for
each vehicle part and extract part features. LRPT+TSAM+CP [47] lets a parameter generator
network capable of generating complex image transform regions and a recognizer compete
with each other to enhance images. An examination of the results presented in Table 2
shows that our MRF-SAPL outperforms SOTA TCPM by 2.3%, 0.8%, and 1.7% in Top-1
accuracy on small, medium, and large subsets, respectively. Compared with other models,
our MRF-SAPL model achieves the best performance. Without resorting to additional labels,
object detection, and parsing networks, our proposed model can learn rich fine-grained
local features for vehicle Re-ID.

Table 2. The Top-1 and Top-5 on Vehicle ID.

Method
Small Medium Large

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

DRDL [48] 0.490 0.735 0.428 0.668 0.382 0.616
OIFE [9] - - - - 0.670 0.829

VAMI [11] 0.631 0.833 0.529 0.751 0.473 0.703
RAM [42] 0.752 0.915 0.723 0.870 0.677 0.845

AAVER[44] 0.747 0.938 0.686 0.900 0.635 0.856
EALN [43] 0.751 0.881 0.718 0.839 0.693 0.814
PRN [28] 0.784 0.923 0.750 0.883 0.742 0.864

SAVER[17] 0.799 0.952 0.776 0.911 0.753 0.883
TCPM [25] 0.820 0.964 0.788 0.943 0.746 0.907

Dual+SA[41] - - - - 0.738 0.835
SN++ [49] 0.767 0.870 0.748 0.842 0.739 0.836

LRPT + TSAM + CP[47] 0.779 0.935 0.779 0.907 0.745 0.865
MRF-SAPL (Ours) 0.843 0.977 0.796 0.941 0.763 0.916
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4.4. Ablation Study

We conducted extensive experiments on the VeRi-776 dataset and compared the per-
formance of different structures to determine the optimal structure of the proposed model.

Soft attention part learning module. In Table 3, “+” indicates the combination of
different branches. Baseline+LB1, Baseline+LB2, and Baseline+LB3 outperform Baseline
by 6.9%, 6.8%, and 4.7% in mAP, respectively. Baseline+LB1 (W/O SAPL) means re-
moving the SAPL module from Baseline+LB1 and dividing the final feature map of the
LB1 branch evenly into four parts vertically. We observe a 1.1% decrease in mAP with
Baseline+LB1(W/O SAPL) compared to Baseline+LB1. This demonstrates the effectiveness
of our proposed soft-attention part learning module.

Table 3. Performance comparison of MRF-SAPL with different architecture on VeRi-776.

Method mAP Top-1 Top-5

Baseline 0.726 0.918 0.973
Baseline+LB1 0.795 0.932 0.985

Baseline+LB1(W/O SAPL) 0.784 0.928 0.980
Baseline+LB2 0.794 0.938 0.982
Baseline+LB3 0.773 0.924 0.983

Baseline+LB1+LB2 0.813 0.935 0.983
Baseline+LB1+LB3 0.805 0.935 0.982
Baseline+LB2+LB3 0.795 0.945 0.982

LB1+LB2+LB3 0.802 0.938 0.982
Baseline+Single(LB1+LB2+LB3) 0.771 0.923 0.979

MRF-SAPL (Ours) 0.815 0.947 0.987

Multi-receptive field granularity. Our framework contains three local branches with
different receptive field granularities, namely fine-grained, medium-grained, and coarse-
grained branches, which are responsible for part segmentation and feature extraction under
different receptive fields. We investigate the role of multiple receptive field granularities
in MRF-SAPL by progressively combining local branches based on the baseline. From
Table 3, we can observe that combining two local branches with different receptive field
granularities can further improve the performance, and MRF-SAPL using three receptive
fields of different sizes to learn part-level features achieves the best performance; this shows
that learning part-level features with different semantic-level preferences using different
granularities of receptive fields is effective.

Global branch. In Table 3, LB1+LB2+LB3 means that the global branch is removed
from MRF-SAPL, and only three local branches are used to train the network. At test time,
feature vectors from the three local branches are extracted and concatenated to compute a
similarity score. Compared with MRF-SAPL, the accuracy of LB1+LB2+LB3 decreases by
1.3% in mAP. This is because the global branch with a larger receptive field can learn the
overall discriminant information of vehicles, complementing the local branches that learn
fine-grained local discriminant information.

Multiple local branches. In our method, we use three local branches to learn part
features with different semantic levels from vehicle images; therefore, we would like to
know whether it is possible to learn part features with different semantic levels using a
single branch. To verify this hypothesis, we can perform spatial soft segmentation on the
final feature map of the same local branch under multiple receptive fields and apply the
corresponding constraints of the method proposed in this paper. From Table 3, we can
observe that Baseline+Single(LB1+LB2+LB3) relying on a single local branch has a 4.4%
performance drop in mAP compared to MRF-SAPL. This may because using different
receptive field granularities to softly divide the space of the same feature map will have
different or even the opposite effects on its res_conv5 layer.

Influence of the number of parts. To study the impact of the number of parts on the
Re-ID accuracy, we introduce several divisions with different numbers of parts. Specifically,
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we conduct experiments with the 2, 3, 4, and 5 parts. In each experiment, the feature maps
on the three local branches are divided into the same number of regions. The experimental
results are summarized in Table 4. With an increasing number of parts, mAP first increases,
but does not always increase. When the number of parts is equal to 5, mAP starts to decrease.
This is because when the spatial of a feature map is too finely divided, some semantic
information that is meaningful for vehicle Re-ID will be decomposed into segments that do
not have general discriminative abilities. In our proposed method, the number of parts of
the final feature maps of all local branches is set to 4.

Table 4. Influence of the number of parts on VeRi-776.

The Number of Parts mAP Top-1 Top-5

2 0.801 0.944 0.985
3 0.807 0.939 0.984
4 0.815 0.947 0.987
5 0.802 0.938 0.982

Vehicle sorting and attention map visualization. Figure 4 shows the qualitative
results of our MRF-SAPL model on the vehicleID dataset, where each query image only has
one target image in the gallery set. In Figure 4, the images on the left are the query images,
and the images on the right are the Top-5 nearest neighborhoods from the gallery. Figure 5
shows the attention map visualization of the SAPL module in the LB1 branch when the
number of parts is 4. From Figure 5, we can observe that the four attention maps learned by
the SAPL module focus on four different regions: the main area consisting of the lower part
of the windshield and the hood, the roof area, the annual inspection mark area in the upper
part of the windshield, and the fog lamp area. For the first row in Figure 4, the query image
and the Top-3 image are two different vehicles belonging to the same manufacturer and
model, with extremely similar appearances. The SAPL module accurately distinguishes
them by focusing on the annual inspection mark area. For the third row in Figure 4, Top-4
and Top-5 have large color differences in the main area compared to the query, so they
are ranked lower. Although Top-1 and the query are the same vehicle captured under
different views, and Top-2 and Top-3 are extremely similar to the query, the SAPL module
can distinguish them by focusing on the roof area and the main area, respectively. For the
fourth row in Figure 4, the query and Top-1 are two different vehicles belonging to the
same manufacturer and model, both of which were captured from a rear view. Top-2 and
the query are the same vehicle captured from different perspectives. In this case, the SAPL
module has difficulty distinguishing between Top-1 and Top-2 because there is no obvious
difference in appearance information between Top-1 and the query. This demonstrates that
MRF-SAPL is able to effectively distinguish vehicles with extremely similar appearances in
most cases.
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Figure 4. Visualization of the ranking list on the vehicleID dataset. The images in the first column are
the vehicle images to query. The remaining images in each row are the Top-5 ranking results retrieved
from the gallery that are most similar to the corresponding query image. The retrieved images with
the same ID as the query image are shown with the green border, while the error samples are shown
with the red border. Note: Some vehicle images in the VehicleID dataset contain Chinese characters
for the shooting time and location, such as the characters in the top left corner of the Top-2 image in
the second line, and their impact on vehicle recognition can be negligible.

Figure 5. Visualization of attention maps. Each column displays four attention maps generated by
the LB1 branch of MRF-SAPL for a image. The first and second columns correspond to the attention
maps of the query image and the Top-1 image in the first row of Figure 4, respectively. The third
and fourth columns correspond to the attention maps of the query image and the Top-1 image in the
second row of Figure 4, respectively. The fifth and sixth columns correspond to the attention maps of
the query image and the Top-1 image in the third row of Figure 4.
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5. Conclusions

In this paper, we propose a model for part-level feature learning, the Multi-Receptive
Field Soft Attention Part Learning (MRF-SAPL) model. The model can learn fine-grained
features at multiple semantic levels to effectively distinguish different vehicles with similar
appearances. In particular, the soft-attention part learning module (SAPL) in this model
does not require any part-related labels and can adaptively learn to localize the locations
of the parts on the feature map to suppress severe spatial misalignments in vehicle Re-
ID. Furthermore, we obtain parts with different semantic patterns by forcing the regions
corresponding to the parts on the final feature map of a local branch to be as nonoverlapping
as possible. Our Multi-Receptive Field Soft Attention Part Learning model achieves state-
of-the-art performance on two public datasets.
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Abstract: This paper proposes an encryption scheme for high pixel density images. Based on the ap-
plication of the quantum random walk algorithm, the long short-term memory (LSTM) can effectively
solve the problem of low efficiency of the quantum random walk algorithm in generating large-scale
pseudorandom matrices, and further improve the statistical properties of the pseudorandom matrices
required for encryption. The LSTM is then divided into columns and fed into the LSTM in order for
training. Due to the randomness of the input matrix, the LSTM cannot be trained effectively, so the
output matrix is predicted to be highly random. The LSTM prediction matrix of the same size as the
key matrix is generated based on the pixel density of the image to be encrypted, which can effectively
complete the encryption of the image. In the statistical performance test, the proposed encryption
scheme achieves an average information entropy of 7.9992, an average number of pixels changed
rate (NPCR) of 99.6231%, an average uniform average change intensity (UACI) of 33.6029%, and an
average correlation of 0.0032. Finally, various noise simulation tests are also conducted to verify its
robustness in real-world applications where common noise and attack interference are encountered.

Keywords: image encryption; high pixel density; neural networks; quantum random walk

1. Introduction

With the rapid development of Internet technology, more and more high-value data
and information is being transmitted over the Internet, and therefore the security of data
transmission is becoming more and more important. While ordinary data can be hidden
and protected by classical encryption schemes such as DES [1] and AES [2], the information
contained in an RGB image is represented by the pixel values. Because of the strong correlation
between the neighbouring pixel values of RGB images and the amount of information stored
in images, classical encryption schemes are often unable to achieve good encryption of image
information, so the encryption of image information is separated from classical data encryption
and becomes a separate research direction, focusing on image specific encryption schemes
from the data information characteristics of images [3–8]. One very promising direction is
the application of neural networks to image encryption. This is because cryptography places
particular emphasis on the introduction of nonlinear transformations, which is a distinctive
feature of neural networks, and, in addition to this, neural networks have characteristics such
as ultra-fast parallel processing and operate in matrix form, all of which are extremely well
suited to the field of image encryption, making neural networks increasingly interesting in
the field of image encryption [9–11].

The LSTM [12] is a special type of recurrent neural network (RNN) [13] that uses
the ’inner loop’ of a neural network to preserve the contextual information of a time
series, allowing the use of past signal data to infer an understanding of the current signal.
Theoretically, RNN can retain information from any moment in time. However, in practice,
the transfer of information tends to decay over long time intervals, and the effectiveness of
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the information is greatly reduced after a certain period of time. As a result, RNN is not
well equipped to deal with the problem of long-term information dependence, resulting in
a tendency to rely only on the most recent input information for inference. To overcome
this problem, LSTM is proposed to solve the long-term dependency problem. In contrast to
RNN, remembering the content of earlier moments is its default behaviour. Therefore, it
does not require a significant cost specifically and works better.

Quantum computing is a new computing mode that follows the laws of quantum mechan-
ics to regulate quantum information units for computing [14]. Quantum algorithm [15–18] is
an algorithm based on quantum computation. By using the unique behavior of quantum
mechanics, such as superposition, entanglement, and interference, some algorithms have
achieved exponential acceleration compared with classical algorithms [17,19]. Quantum ran-
dom walk (QW) is a quantum algorithm, which was first proposed by Aharonov et al. [20],
including continuous time QW [21] and discrete time QW [22]. Compared with the classical
random walk, the algorithm has a significant improvement in computational efficiency, and
its time complexity is reduced from O(n2) to O(n). On the basis of one-dimensional QW,
Baryshnikov et al. studied the difference between two-dimensional and one-dimensional co-
ordinate space, and expounded the advantages and unique properties of two-dimensional
QW [23]. Although QW is a quantum algorithm, its probability matrix can be solved by
classical computers, and the algorithm complexity is still O(n), which makes QW be able to
be applied in classical computers in advance.

Both LSTM and QW have applications in image encryption. He et al. [24] proposed an
OF-LSTMS that replaces the matrix operation in LSTM with an XOR operation to obtain an
encrypted image after a single forward propagation. Yang et al. [25] studied the properties
of one-dimensional QW and applied it to quantum image encryption for the first time.
Abd et al. [26] analyzed the statistical properties of the probability distribution matrix
of two-dimensional quantum walks and applied it to image encryption; Ma et al. [27]
combined the discrete cosine transform (DCT) [28] and the probability matrix of alternating
quantum walks (AQW) for image encryption, etc.

Although QW probability matrices have been widely used in the field of image en-
cryption, they still have shortcomings and are too inefficient when dealing with high pixel
images. The time complexity of the one-dimensional AQW probability matrix is O(n), and the
computational complexity of the AQW probability matrix is O(n2), which is still polynomial
in time complexity, but the time consumed to generate the QW probability matrix is unaccept-
able in practical applications to encrypt high pixel value images. At the same time, we also
found that the statistical properties required for the encryption of the QW probability matrix
are not satisfactory, so when QW is used for encryption, other algorithms are often used to
improve the encryption, e.g., Ma used a discrete cosine transform algorithm to perform further
dislocation encryption in the DCT domain after applying QW to confuse the pixel values.
This does not increase the encryption efficiency too much, but the use of separate algorithms
for the scrambling and obfuscation phases nullifies the advantage of having an infinite key
matrix for the QW, as it can only participate in one of the scrambling and obfuscation phases,
and the two phases are independent of each other.

In order to optimize the statistical properties of the QW probability matrix and its
performance on high pixel precision image encryption for better encryption, we propose
an image encryption scheme that combines neural networks with quantum algorithms. By
combining the QW with the LSTM, the initial matrix is generated using the QW probability
matrix, and after training through the LSTM, a suitable prediction matrix is output as
the key matrix for encryption according to the required pixel accuracy of the image to be
encrypted. We show that this combination can improve the efficiency of the key matrix gen-
eration, and at the same time, because the QW probability matrix has strong randomness,
the LSTM can not effectively find its pattern to predict, so the generated prediction matrix
is also disordered, and has better statistical properties than the QW probability matrix
for encryption, which can be better used as a key matrix for encryption. Section 2 of this
paper presents the basics related to encryption schemes, including the study and analysis
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of LSTM and AQW. Section 3 presents specific encryption schemes. Section 4 presents
the simulation and theoretical analysis of this paper for detecting the effectiveness of the
encryption scheme and lists the comparison of similar schemes to the encryption scheme
proposed in this paper. Section 5 concludes the work in this paper and also provides an
outlook on the subsequent work. The most critical module of the LSTM is the cell state,
which is represented by Ct, the current state at the current moment, and is generated by the
state Ct−1 at the previous moment together with the signal input xt at the current moment,
while Ct will continue to be passed to the next moment together with xt+1 to generate Ct+1.

2. Related Work and Background Knowledge

2.1. Long Short-Term Memory

LSTM is a type of Recurrent Neural Network (RNN) that has been widely used in
various applications, such as speech recognition, natural language processing, and time
series prediction. Unlike traditional RNNs, LSTMs have an internal memory cell that
enables them to maintain information over a longer period of time, making them well-
suited for tasks that require modeling sequential data with long-term dependencies.

The core component of an LSTM unit is its memory cell, which is responsible for
maintaining information over a long period of time. The memory cell is controlled by three
types of gates: the input gate, the forget gate, and the output gate. The input gate controls
the flow of new information into the memory cell, the forget gate controls the amount of
information retained from the previous time step, and the output gate controls the flow of
information out of the memory cell and into the hidden state of the LSTM unit.

The LSTM architecture is derived from the equations that govern the behavior of the
gates and the memory cell. At each time step, the input, forget, and output gates are computed
using a sigmoid activation function, while the memory cell is updated using a tanh activation
function. The equations governing the behavior of the LSTM unit are given by:

it = σ(Wixxt + Wihht−1 + bi) (1)

ft = σ(Wf xxt + Wf hht−1 + b f ) (2)

ot = σ(Woxxt + Wohht−1 + bo) (3)

ct = ft � ct−1 + it � tanh(Wcxxt + Wchht−1 + bc) (4)

ht = ot � tanh(ct) (5)

where xt is the input at time step t, ht−1 is the hidden state at the previous time step, it, ft,
and ot are the input, forget, and output gates at time step t, ct is the memory cell at time step t,
and σ and tanh are the sigmoid and hyperbolic tangent activation functions, respectively.

The LSTM architecture has proven to be highly effective in various applications, due
to its ability to capture long-term dependencies and selectively forget or retain information.
The equations presented here provide a foundation for understanding the behavior of
LSTMs and for developing new models that incorporate LSTM units.

The chain structure diagram of the LSTM is shown in Figure 1, which illustrates the
chain relationship between the three adjacent substructures and the composition of each
LSTM substructure.

Figure 1. Chain model for LSTM.
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2.2. Quantum Random Walk

This paper is based on the theory of discrete-time QW. The discrete-time QW consists of
four main elements: the walker, the coins carried by the walker, the coin toss, and the walk rule.

The Hilbert space Ĥ of a one-dimensional discrete-time QW tensor consists of the
walker position space Hw and the coin space HΓ: Ĥ = Hw ⊗ HΓ. In a QW, each step of the
walk is determined by a unique coin flip operator Γ:

Γ =

(
cos β sin β
sin β − cos β

)
(6)

After the coin toss is completed, the movement of the walker is specified by the
conditional displacement operator Si: Si|x̂〉 =

∣∣x̂ + (−1)Γ
∣∣, Γ ∈ 0, 1 The |x̂〉(x̂ ∈ Z) in

the above equation forms the base vector of the walker’s position space; the two base
vectors |0〉, |1〉 form the coin space. We specify: when the coin state is |0〉, the walker is
manipulated to move one unit in the forward direction; when the coin state is |1〉, the
walker is manipulated to move one unit in the reverse direction.

In the AQW used in this paper, the walker controlled by the coin operator alternates
between two arbitrarily chosen vertical directions x̃ and ỹ, and the walking operator Û for
the whole QW process can be described as:

Û = Ŝȳ(I ⊗ HΓ)Ŝx̄(I ⊗ HΓ) (7)

where Ŝỹ, Ŝẋ are the displacement operators of the walker at each point on the x̃ and ỹ axes:

Ŝỹ =
N

∑̃
x,ỹ

(|x̃, (ỹ + 1) mod �, 0〉〈x̃, ỹ, 0|)

+
N

∑̃
x,ỹ

(|x̃, (ỹ− 1) mod �, 1〉〈x̃, ỹ, 1|)

Ŝẋ =
N

∑̃
x,y

(|(x̃ + 1) mod �, ỹ, 0〉〈x̃, ỹ, 0|)

+
N

∑̃
x,ỹ

(|(x̃− 1) mod �, ỹ, 1〉〈x̃, ỹ, 1|)

(8)

where � indicates the prescribed walking boundary.
Suppose the initial moment: The walker’s location is

(
0x̃, 0ỹ

)
, and the coin is in the

superposition state HΓ = cos α|0〉+ sin α|1〉; then, the initial moment system state is:

|ψ0〉 = |ϕ0〉w ⊗ (cos α|0〉+ sin α|1〉)Γ (9)

The system state after a T walk can be expressed as:

|ψT〉 = ÛT |ψ0〉 (10)

3. Algorithm Description

3.1. The Encryption Process
3.1.1. Preparation of Quantum Random Walk Probability Distribution Matrix

The data of the corresponding element in the matrix are the probability P(δ, ϑ, T) of
the walker appearing at the coordinates

(
δx, ϑy

)
of the location, as can be deduced from

the above:
P(δ, ϑ, T) =

∣∣∣〈δ, ϑ, 0
∣∣∣ÛT
∣∣∣ψ0

〉∣∣∣2 + ∣∣∣〈δ, ϑ, 1
∣∣∣ÛT
∣∣∣ψ0

〉∣∣∣2(δx, ϑy
)

(11)
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The resulting probability distribution matrix M and its four sub-matrices M1, M2, M3, M4
after equiproportional partitioning are as follows:

M =

⎛
⎜⎝

P11 . . . P1n
...

. . .
...

P11 · · · Pnn

⎞
⎟⎠

M1 =

⎛
⎜⎜⎝

P11 . . . P1 n
2

...
. . .

...
Pn

2
· · · Pn

2
1
2

⎞
⎟⎟⎠M2 =

⎛
⎜⎜⎝

P1 n
2

. . . P1n
...

. . .
...

Pn
2

n
2
· · · Pn

2 n

⎞
⎟⎟⎠

M3 =

⎛
⎜⎜⎝

Pn
2 1 · · · Pn

2
n
2

...
. . .

...
Pn1 · · · Pn n

2

⎞
⎟⎟⎠M4 =

⎛
⎜⎜⎝

Pn
2

· · · Pn
2

n
2

...
. . .

...
Pn

2 n · · · pnn

⎞
⎟⎟⎠

(12)

We set the walker to be at the center of the Hilbert space Ĥ tensed by Hw and Hc, so
the four submatrices M1, M2, M3, M4 are centrosymmetric about the point Pn

2
in the final

generation. To prevent the LSTM from learning the rule such that the statistical performance
of the final generated key matrix is degraded, in this paper, only M̂ = M1 is chosen as the
required initial pseudo-random number matrix to participate in the encryption.

3.1.2. Preparing the Encryption Key Matrix

Step 1: Ensure the reproducibility of the LSTM across devices. (i) Fix the random
seeds of each dependency library so that each function is called with the same initial value
and random value each time it is trained by the LSTM. (ii) Presetting the dropout function
in the LSTM to 0, i.e., not dropping any nodes of the neural network, to ensure that the
network model is fixed each time. (iii) Fixed platforms as well as devices, taking the current
mainstream pytroch framework as an example, which still cannot guarantee the accuracy
of model reproduction under different CPU and GPU pairings, and also requires CUDA
environment variable configuration, etc. in order to further reduce uncertainty.

Step 2: Generate the LSTM input vector. Divide M̂ by column:⎛
⎜⎜⎝

P11 . . . P1 n
2

...
. . .

...
Pn

2 1 · · · Pn
2

1
2

⎞
⎟⎟⎠→ (

ϕ1, ϕ2, . . . ϕ n
2−1, ϕ n

2

)
(13)

M̂ ′ is obtained by Min-Max normalization of M̂:(
ϕ1, ϕ2, . . . ϕ n

2−1, ϕ n
2

)
−→

(
ξ1, ξ2, . . . ξ j . . . ξ n

2

)
(14)

ξi is the vector to be input.
Step 3: Generate the key matrix required for encryption. Input the vectors ξi in matrix

M̂ ′′ into the LSTM in order for training, and set the LSTM prediction quantity as γ2 to
obtain the prediction matrix M̂ ′′′:

M̂ ′′′
=

⎛
⎜⎝

�11 . . . �1γ
...

. . .
...

�γ1 · · · �γγ

⎞
⎟⎠ (15)
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Inverse normalization of M̂ ′′′ yields ME:

⎛
⎜⎝

�11 . . . �1γ
...

. . .
...

�γ1 · · · �γγ

⎞
⎟⎠ −→

⎛
⎜⎝

∂11 . . . ∂1γ
...

. . .
...

∂γ1 · · · ∂γγ

⎞
⎟⎠ (16)

In Figure 2, we show the comparison between the predicted data and the expected values
formed from the accurate data after training the QW probability matrix as an LSTM training
matrix. Subplot a shows the trend in randomness between predicted and expected values;
subplot b shows the distribution between specific predicted and expected values.

Figure 2. LSTM generation key matrix.

3.1.3. Image Encryption

The R, G and B channels in our proposed encryption scheme are performed sepa-
rately, and our encryption algorithm is described in terms of γ× γ pixels of RGB image I
corresponding to a grey-scale map in the form of matrix M I .

Step 1: Hide the pixel information in M I by obfuscating the pixel values. Here, we
borrow the heteroskedastic algorithm to implement the obfuscation operation:

M ′
I = M I ⊕ME (17)

Step 2: Generate matrix M ′
E = ME, sort the index value matrix Ω of M ′

E in order to
obtain Ω′, reorder the M ′

I after the confusion operation according to the corresponding
position in Ω′, and achieve the dislocation of the image by destroying the relationship
between adjacent pixel values to obtain M ′′

I . The schematic diagram of the dislocation
algorithm is shown in Figure 3.
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Figure 3. Encryption scheme—scrambling algorithm.

3.2. The Decryption Process
3.2.1. Preparing the Decryption Key Matrix

We use the probability distribution of the alternating quantum random walk algorithm
at each grid point as the basis for generating the random number matrix required for
encryption. The probability distribution matrix generated by the alternating quantum
random walk has been shown to possess pseudo-randomness [22], i.e., the random number
matrix M ′ = M generated twice, provided that the initial parameters including α, β, � are
the same. Since we have removed the uncertainty and randomness from the LSTM, the
M ′ is processed once according to the encryption process for M, and finally the prediction
matrix generated by the LSTM is processed to obtain MD = ME.

3.2.2. Decryption of Encrypted Image

Step 1: The encrypted image M ′′
I is obtained using the inverse permutation M ′

I . This
process is the inverse of the permutation operation, and the algorithm is shown in Figure 3:

Step 2: M I
′ for obfuscation reduction to obtain M I .

3.3. Encryption and Decryption Algorithm Flow Chart

We show the key steps of our proposed image encryption scheme by means of a
flowchart, including the generation of the QW probability density matrix, the process of
generating the key matrix by LSTM, and the two key steps (scrambling, confusion) of the
image encryption and decryption process using the key matrix, as shown in Figure 4.
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Figure 4. Encryption and decryption process.

4. Simulation and Analysis

To verify the resistance of the proposed scheme, three RGB images with a pixel size of
2000 × 2000 were encrypted and decrypted according to the proposed encryption scheme,
and various statistical analyses were carried out on the encrypted images and the keys
used, including histogram analysis, correlation analysis and information entropy analysis
for the encrypted images; sensitivity analysis and key space analysis for the key matrix, etc.

4.1. Experimental Parameters and Encryption and Decryption Results

We use � = 240, α = π
23 , β = π

41 as the start parameters of the QW to prepare a QW
probability matrix of size 100× 2000, and set the prediction length of the LSTM to 2000, i.e.,
to generate a key matrix of the same size as the RGB image to be encrypted. The encryption
and decryption results are shown in Figure 5.

Figure 5. Image encryption before and after comparison.
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4.2. The Statistical Analysis
4.2.1. Correlation Analysis

Adjacent pixel correlation RAB is used to measure the degree of correlation of adja-
cent pixel values. Adjacent pixel values in RGB images often have strong correlations in
horizontal, vertical and diagonal directions. Image encryption algorithms will destroy this
correlation, and the degree of destruction can reflect the effect of encryption algorithms.
The closer RAB is to 0, the better the destruction effect is, and the more difficult it is to
obtain image information through the relationship between adjacent pixels [27].

RAB =
cov(A, B)√
D(A)

√
D(B)

(18)

where cov(A, B) is the covariance of A, B, and
√

D(A) and
√

D(B) are the standard de-
viations of A and B, respectively. In this paper, the horizontal, vertical, and diagonal
correlations of the three RGB images of Lena, Lemon, and Sakur are compared before and
after encryption. The correlation values for the three RGB images are shown in Table 1, and
the specific pixel distribution information is shown in Figures 6 and 7.

Table 1. Pixel correlation analysis data.

Image Channel Horizontal Vertical Diagonal

Red 0.8846 0.8924 0.8297
Unencrypted

(img_a) Green 0.9062 0.9146 0.8568

Blue 0.9269 0.9272 0.8905

Red 0.0006 0.0011 0.0032
Encrypted
(img_a) Green 0.0032 0.0027 0.0021

Blue 0.0041 0.0016 0.0022

Red 0.9930 0.9944 0.9869
Unencrypted

(img_b) Green 0.9940 0.9949 0.9897

Blue 0.9927 0.9939 0.9876

Red 0.0022 0.0011 0.0023
Encrypted
(img_b) Green 0.0021 0.0025 0.0014

Blue 0.0009 0.0041 0.0013

Figure 6. Comparison of correlation before and after img_a encryption.
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Figure 7. Comparison of correlation before and after img_b encryption.

4.2.2. Histogram Analysis

The histogram provides a visual representation of the statistical data of the pixel
values in an RGB image. The histogram of a normal image usually has a distinct statistical
pattern, and to resist statistical attacks [25], the histogram of an encrypted image must be
as uniform and smooth as possible. The more such criteria are met, the more uniform the
pixel distribution is, the less statistical information the image displays, the less information
can be accurately predicted, and the more secure the image encryption scheme is [15]. In
this paper, the histograms of the RGB three channels of Lena, Lemon, and Sakura images
are analyzed separately, and the specific histograms are shown in Figures 8 and 9.

Figure 8. Comparison of histogram before and after img_a encryption.
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Figure 9. Comparison of histogram before and after img_b encryption.

4.2.3. Information Entropy Analysis

Information entropy H was proposed by Shannon, the father of information theory, to
describe the uncertainty of the occurrence of each possible event of the information source.
The pixel values of RGB images range from 0 to 255, so the information entropy H ≤ 8.
The closer the entropy value is to 8, the more information it carries and the more resistant it
is to statistical attacks [11]. The formula for this is as follows:

H(m) = −
N−1

∑
i=0

P(mi) log2 P(mi) (19)

where mi is the grey scale value and P(xi) is the probability of mi occurrence. This paper
analyzes the information entropy of the R, G, and B channels of the three different RGB
images of Lena, Lemon, and Sakura. The relevant data are shown in Table 2.

Table 2. Entropy analysis.

Image Channel Image Entropy (bit)

Red 7.9991
Encrypted (img_a) Green 7.9996

Blue 7.9989

Red 7.9992
Encrypted (img_b) Green 7.9992

Blue 7.9994

4.2.4. Key Sensitivity Analysis

An effective key sensitivity means that a slight change in the key information will result
in a significant change in the encrypted image. The ideal values of NPCR and UACI are
99.61% and 33.46%, respectively [29]. Higher calculated values of NPCI and UACI of an
encryption scheme indicate that the encryption scheme is more resistant to differential attacks:

Γ(i, j) = f (x) =

{
1, if C1(i, j) �= C2(i, j)
0, otherwise

(20)

NPCR =
∑i,j Γ(i, j)
J×R

× 100% (21)
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UACI =
1

J×R

[
∑
i,j

C1(i, j)− C2(i, j)
255

]
× 100% (22)

where ,�,R are the length and width of the encrypted image, Γ(i, j) is the above equation,
and C1, C2 are the images after encryption with different keys.

In this paper, the key sensitivity of the R, G and B channels of the RGB images of Lena,
Lemon, and Sakura were analyzed separately, and the relevant data are shown in Table 3.

Table 3. Key sensitivity analysis.

Image Channel NPCR UACI

ine Red 99.6124% 33.4216%
img_a Green 99.6088% 33.3657%

Blue 99.6003% 34.2157%
ine Red 99.6419% 33.6114%

img_b Green 99.5986% 33.4268%
Blue 99.6036% 33.5762%

4.2.5. The Key Space

The key space refers to the set of all possible keys used to generate the key and deter-
mines whether the encryption scheme can resist a brute-force attack. Cryptosystems with a
key space size of 2128 are effective in resisting brute force attacks. The key space calculation
for the scheme proposed in this paper is based on quantum effects. Since in quantum
theory the position of a particle in a defined space is not deterministic, each position has
its probability of existence, only with different probabilities, and this probability can be
changed by specifying the size of the space for a QW and the initial walking direction and
forward direction. As the walk direction takes values from 0 to 2π and the QW is extremely
sensitive to accuracy, the change in probability is infinite as the accuracy of the computer
increases, i.e., the key space established based on the QW is infinite.

4.2.6. Explicit Attack

• Known plaintext attack: The attacker can recover the key by obtaining the decrypted
image and comparing it with the ciphertext image. Since the algorithm in this paper
has a good diffusion effect, the difficulty of obtaining the key by this method is close to
that of a direct brute force attack, so the encryption scheme in this paper can effectively
resist known plaintext attacks.

• Selective plaintext attack: Assuming that the attacker has gained access to the en-
crypted machine, he can select an arbitrary number of plaintexts for the encryption
algorithm under attack to encrypt and obtain the corresponding ciphertexts. The
attacker’s goal is to gain some information about the encryption algorithm through
this process that will allow the attacker to more effectively crack messages encrypted
by the same encryption algorithm (and associated key) in the future. In the worst case,
the attacker can simply obtain the key used for decryption. This scheme is commonly
used against public key encryption schemes. The keys in this scheme are not universal,
i.e., they are changed periodically, even differently each time, making it impossible for
an attacker to obtain valid information.

4.2.7. Time Complexity Analysis

The time complexity analysis of an encryption scheme is an important indicator to
evaluate the excellence of an encryption scheme, which will directly affect the encryption
efficiency. The time consumption of our proposed scheme consists of two parts, one is
the time required to generate the key matrix, and the other is the completion of the image
encryption by the key matrix. Although the efficiency of generating the pseudo-random
number matrix is important, it is not part of the time complexity of the encryption scheme
as it is decoupled from the image encryption process. The encryption time complexity
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of our proposed scheme consists of a combination of pixel obfuscation and scrambling.
The time complexity of this process is O(n2 + nlog n), as the time consumed by matrix
permutation is O(n2). In summary, the encryption time complexity of our proposed scheme
is O(2n2 + nlog n).

4.2.8. Noise Robustness Testing

During the transmission of image information over the network, information may
be lost or misplaced due to packet loss, malicious attacks, and so on. We simulate the
continuous loss of image information due to network fluctuations using Gaussian noise
and pretzel noise. A malicious attack was simulated using partial block replacement of the
encrypted image. Figure 10 shows the decrypted image of the Lena encrypted image with
the addition of Gaussian noise, pretzel noise and a clipping attack.

Figure 10. Comparison of histogram before and after img_b encryption.

4.3. Comparison of Encryption Schemes

In this section, we analyze and compare the use of QW alone, the encryption scheme
proposed in this paper, and similar work in recent years in terms of the important measures
of average relevance, information entropy, average NPCR, average UACI, and key space
size to resist brute-force cracking, the data of which are presented in Table 4.

Table 4. The comparison in this article is for reference only as the images used in the different
solutions are different and have different pixels. As the pixel sizes vary in each scenario, we have
used the largest pixel images from their scenarios for comparison and selected their average values
as a reference.

Scheme NPCR (%) UACI (%) Correlation Entropy (bit) KeySpace

QW 93.14 32.36 0.0149 7.9947 >2128

our 99.6109 33.6024 0.0032 7.9992 >2128

[3] 99.6127 33.4471 0.0013 >2128

[4] 99.6336 33.4636 0.0026 7.9937 >2128

[5] 99.6326 33.4022 0041 7.9973 >2128

5. Conclusions

We propose a more efficient encryption scheme for the current lack of encryption
schemes for high pixel images in the field of image encryption. The probability density
matrix generated by the quantum random walk is trained by exploiting the memory
learning capability of the LSTM and the nonlinear nature of the quantum random walk. It
can take advantage of the nearly infinite key space brought by the quantum random walk
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algorithm, and also solve the shortcomings of the low generation efficiency of the quantum
random walk itself. At the same time, both the permutation and obfuscation processes of
our scheme make use of the key space of the quantum random walk, avoiding the shortage
of key space in a particular process.
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Abstract: The detection of infusion containers is highly conducive to reducing the workload of
medical staff. However, when applied in complex environments, the current detection solutions
cannot satisfy the high demands for clinical requirements. In this paper, we address this problem by
proposing a novel method for the detection of infusion containers that is based on the conventional
method, You Only Look Once version 4 (YOLOv4). First, the coordinate attention module is added
after the backbone to improve the perception of direction and location information by the network.
Then, we build the cross stage partial–spatial pyramid pooling (CSP-SPP) module to replace the
spatial pyramid pooling (SPP) module, which allows the input information features to be reused. In
addition, the adaptively spatial feature fusion (ASFF) module is added after the original feature fusion
module, path aggregation network (PANet), to facilitate the fusion of feature maps at different scales
for more complete feature information. Finally, EIoU is used as a loss function to solve the anchor
frame aspect ratio problem, and this improvement allows for more stable and accurate information
of the anchor aspect when calculating losses. The experimental results demonstrate the advantages
of our method in terms of recall, timeliness, and mean average precision (mAP).

Keywords: object detection; YOLOv4; artificial intelligence; feature information

1. Introduction

Intravenous input is a very important treatment while infusion bottles and infusion
bags are the most common containers for infusion. With the spread of the epidemic in recent
years, many patients requiring infusions have gathered in hospitals, putting increasing
pressure on the healthcare system. Detecting infusion containers can help healthcare
professionals better understand the status of infusion recipients, which makes planning
easier and reduces the stress of medical staff.

The detection of infusion containers plays an important role in reducing the pressure
on medical personnel and is essentially part of the field of object detection [1]. There are
traditional methods and deep learning in the field of object detection. With the development
of deep learning, even in some specific areas traditional methods are as effective as deep
learning, and the scalability and robustness of deep learning is making it increasingly
mainstream. In hospital scenarios, individual infusion containers often overlap and are
not at the same distance from the camera, which makes their detection difficult. In order
to solve this problem here, we modify the neck part of the YOLO architecture by adding
coordinate attention (CA) [2] after the backbone to effectively capture location and channel
information, improve SPP to CSP-SPP to enhance the ability of feature fusion [3], and add
the feature fusion module ASFF [4] after PANet to increase the depth of the network; this
improved model is named NMYOLO. In addition, we adopt EIoU [5] instead of CIoU in the
loss function to solve the problem of the ambiguous aspect ratio of anchor frame, resulting
in more effective detection while maintaining the inference speed.

The main contributions of this paper are summarized as follows:
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(1) The neck part of YOLOv4 [6] is improved by using replacing the original modules
with several more effective modules. We have improved SPP to CSP-SPP, which
enhanced the feature extraction capability of the model. We have also added CA and
ASFF to obtain more image information. These improvements validate the scalability
of the YOLO architecture and also lay the foundation for further research.

(2) The loss function of YOLOv4 is improved by replacing CIOU with EIOU in calculating
the width-to-height ratio of the anchor box. This not only results in more stable and
accurate prediction of boxes but also reduces the training time and calculation cost.

The content in this paper is structured as follows. Presented in Section 2 is the related
work of our study. Section 3 describes the methods of YOLOv4 and Section 4 introduces
the details of NMYOLO. A comparison between the specific parameters of the experiment
and the final results is presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Related Work

Target detection is the main component of computer vision. In this section, we review
the solutions in deep learning for object detection.

Common deep learning object detection algorithms can be roughly divided into
two categories: the first is the two-stage [7] detectors, which are also known as object
detection models based on the candidate region proposal. The process of object detection
involves, first, the generation of candidate regions on the image and extraction of the
corresponding image features, which are then input into the classifier for judgment. Region-
based convolutional neural network (RCNN), as reported by Grishick in 2014 [8], is the first
of its kind in terms of two-stage detectors. On the basis of the original detector, Grishek
proposed fast R-CNN [9] and faster R-CNN [10,11], both of which significantly reduced the
time consumed by algorithmic reasoning with improved accuracy. The second categories
is the one-stage [7] detectors, which began with You Only Look Once (YOLO) [12,13]
proposed by Redmon et al. in 2016 and has gradually become the mainstream object
detection algorithm after several years of development. Common one-stage detectors
include YOLO series and the single shot multi-box detector (SSD) [14] proposed by Liu.
One-stage detectors do not have the step of generating candidate box regions, so are much
faster than two-stage detectors in inference, which allows the computational overhead to
be reduced.

In recent years, the self-attention mechanism has also been widely used in target
detection. In 2017, Vaswani et al. proposed transformer [15], a model that demonstrates
that self-attention is very effective in deep learning. Wang et al. proposed the no-local
network [16], a model that can capture long-range dependencies more easily. Hu et al.
proposed SENet [17] in 2018, a module that can be easily added to other models and
improve accuracy, which triggered the thinking about self-attention in the field of vision.
Immediately after, Woo et al. proposed CBMA [18], a lightweight module that can also be
easily integrated into other CNN architectures, which is divided into channel blocks and
spatial blocks that can be used to regenerate feature maps.

3. The Methods of YOLOv4

3.1. CSP Structure

Cross stage partial network (CSPNet) [19] is characterized by the integration of feature
mapping at the beginning and end of the network stages. Figure 1 shows the application of
CSPNet on the ResNe(X)t [20] network structure.
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Figure 1. The structure of CSPResNe(X)t [19].

BaseLayer is the feature extraction layer in Figure 1, and the extracted feature infor-
mation is divided into two parts, where the output of Part 2 is processed into a Res(X)
module and the output feature map is spliced with the feature map of Part 1 to obtain the
final output. This can reduce the amount of duplicated feature information in the network
through cross-stage connection and, at the same time, improve the learning ability of the
network to enhance the final result. This is the reason why both YOLOv4 and YOLOv5
choose the CSP-structured network as the backbone feature extraction network.

3.2. YOLOv4

YOLOv4 is an object detection model proposed by Bochkovskiy et al. in 2020 contain-
ing many improvements from YOLOv3. It includes the use of the mosaic data enhancement
method, which solves the problem of difficult detection of small targets. The idea of CPSNet
is absorbed to replace the backbone from Darknet53 to CSPDarknet53, and the cross-stage
residual connection structure is used to obtain more effective feature extraction. The activa-
tion function of the backbone is replaced from Leakey_relu to Mish, while SPP [21] and
PANet [22] are used in the feature pyramid module instead of feature pyramid networks
(FPN) [23]. The overall structure for an input image size of 416 × 416 is shown in Figure 2.

Figure 2. The structure of YOLOv4.
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After the input image passes through the backbone feature extraction network, three
different scales of 52 × 52, 26 × 26 and 13 × 13 features are output to the feature fusion
layer, where the 13× 13 scale features are enhanced by SPP module and then fused with the
52 × 52 and 26 × 26 scale features in PANet after upsampling and downsampling feature
fusion concatenation. The features at different scales are extracted several times to obtain a
better fusion effect. Finally, the fused features of different scales are input into three YOLO
heads for prediction. In addition, YOLOv4 uses CIoU loss of bound box, which can be
described as

CIoU = IoU−
ρ2(b, b gt

)
d2 −αν (1)

where ρ(b,bgt) is the distance between the prediction box and the center point of the ground
truth box, d is the diagonal distance of the smallest rectangular box containing both the real
and prediction boxes, and α and v are calculated as follows:

α =
ν

1− IoU + ν
(2)

ν =
4

π2 (arctan
wgt

hgt −arctan
w
h
)

2

(3)

where wgt and hgt represent the width and height of the ground truth box, respectively,
while w and h represent the width and height of the prediction box, respectively.

4. The Detail of NMYOLO

Currently, CSPDarknet53, which is used in the overall structure of YOLOv4 to extract
backbone network features, demonstrates good performance in object detection tasks, so
it is retained in our proposed model. In this study, we have mainly improved the neck
module, as most of the fusion processing for feature information is located in this module.

4.1. ASFF

Feature fusion is a very important component of the target detection task because the
fusion of different-scale features is an important for improving the performance of model
detection. Therefore, we choose to add a feature fusion module after PANet to improve the
depth and detection ability of the model.

The structure of ASFF is shown in Figure 3. In our model, ASFF is added to PANet.
The 52× 52, 26× 26 and 13× 13 scales of feature maps are fused with other scales and then
input to YOLO heads for prediction. In the process of feature fusion, ASFF uses the weight
parameter to control the contribution of different feature maps, which also reflects the idea
of attention, so it can help the network to better fuse the extracted high-level information
and low-level information and thus improve the final detection capability.

 
Figure 3. ASFF structure diagram.
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4.2. Coordinate Attention

In the task of object detection, the effect of the improved attention mechanism on the
final result is obvious. CA can capture the direction and position perception information
while capturing the cross-channel information by embedding the position information in
the picture into the channel attention. Therefore, CA can help the model to locate it more
accurately and identify the target in the picture. At the same time, CA can improve the
effect without occupying excessive computational overhead because it is a lightweight
module. The structure of CA is shown in Figure 4.

Figure 4. The structure of coordinate attention.

In CA, the input information is first passed through a residual structure, and the
attentional feature information is subsequently and separately extracted according to the
horizontal and vertical directions. Thus, the key X-axis and Y-axis position information of
the input feature map is obtained. The formula is as follows:

Zh
c (h) =

1
W ∑

0≤i< W
xc(h, i) (4)

Zw
c (w) =

1
H ∑

0≤j< H
xc(j, w) (5)

where xc(h,c) represents the c-th input channel of height h, which is output Zc
h(h) after

being encoded with a convolutional kernel of size (1,W). xc(j,w) represents the c-th input
channel of width w, which is output as Zc

w(w) after being encoded by a convolutional
kernel of size (1,H). Then, (4) and (5) are stitched together and fed into a convolutional
module of 1 × 1, and the nonlinear data are then obtained through the activation function
and then divided into two different sets of feature plots, which are defined as follows:

f = δ(F 1([z
h, zw])) (6)

In (6), F1 is a convolution of 1 × 1, while δ is a nonlinear activation step. After that, the
output is separately fed into a convolutional module of 1 × 1, and the sigmoid is then used
to gain the weight of attention.

gh= σ(F h( f h)) (7)

gw= σ(F w( f w)) (8)
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In (7) and (8), fh and fw are the outputs of the previous step, Fh and Fw represent the
corresponding 1 × 1 convolution, and σ is the sigmoid activation function. In addition,
gc

h(i) and gc
w(j) are used as attention weights. Finally, the coordinate attention output

features obtained after multiplying the initially input data with the horizontal and vertical
weights are multiplied, and the final result can be written as

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (9)

4.3. Improvements of SPP

Inspired by the CSP structure of the backbone network, the SPP structure after the
backbone network is changed to a CSP-SPP structure in our model to better capture and
fuse the featured information of the images. The SPP structure and the changed structure
are shown in Figure 5.

Figure 5. Improvement from SPP to CSP-SPP. (a) is the structure of SPP, (b) is the structure of CSP-SPP.

As shown in Figure 5, in the CSP-SPP structure, the output of the 1 × 1 convolutional
module is divided into two parts before SPP, one of which enters the SPP structure normally,
and then outputs after the convolutional module of 1 × 1, 3 × 3, and 1 × 1. The other part
conducts concatenation with its output. This method can be used to map and connect the
characteristics of different stages through cross-stage connections, effectively strengthening
the learning ability of the network.

4.4. The Structure of NMYOLO

Based on the above improvements, we proposed NMYOLO. The final overall model
also includes three parts: backbone, neck, and head. The overall network structure of the
model is shown in Figure 6.

In NMYOLO, the size of input image is 416 × 416, and three feature maps of different
sizes are generated after backbone, which first send to CA for processing to obtain posi-
tional attention information in different directions, thereby further improving the feature
extraction ability of the main target of the network. Then, the feature map of 13 × 13 scale
is fed into CSP-SPP for processing, and the 13 × 13 scale feature map is captured and first
fused with feature information.
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Figure 6. The structure of NMYOLO.

Following this, the feature map of three scales is sent to PANet for feature fusion,
and information feature extraction of different scales is realized, and ASFF processing is
then carried out such that a group of features can contain information after the fusion of
other scale feature maps, and the feature maps of different scales finally obtained by the
fusion are input to YOLO head for output. Because the final output scale sizes are 52 × 52,
26 × 26, and 13 × 13, NMYOLO demonstrates good performance in detecting targets of
different scale sizes.

In addition, unlike the prediction box loss function CIoU in YOLOv4, the loss function
used by NMYOLO for prediction box classification is EIoU. With the same consideration of
the overlapping area of the bounding box and the distance of the center point, treatment of
the aspect ratio by EIoU involves calculating the true difference between the individual
width and height and its confidence, while CIoU only calculates the difference between
its overall aspect ratio. EIoU takes a more comprehensive view and is able to obtain more
stable and accurate anchor frame information to speed up training and improve detection
results. EIoU is shown in (10):

LEIoU = LIoU + Ldis + Lasp

= 1− IoU + p2(b,bgt)
d2 + p2(w,wgt)

w2
min

+ p2(h,hgt)

h2
min

(10)

where IoU is the ratio of intersection and union between prediction box and true box.
In addition, ρ(w,wgt) and ρ(h,hgt) represent the distance between the predicted and true
width–height center point, while wmin and hmin are the width and height of the minimum
add-in box that covers both the prediction box and the true box.

4.5. Evaluation Metrics

We divided the model evaluation into subjective and objective evaluation metrics. For
subjective evaluation, the detection effect graph of each model is output, with observation
of its detection effect and whether there is any wrong or missing detection. For objec-
tive evaluation, recall, mean average precision (mAP), giga floating point of operations
(GFLOPs), and frame per second (FPS) of each model are used as evaluation indicators.

Among them, the GFLOPs indicator is used to measure the model complexity, and
recall and mAP calculation are as follows:

Recall =
TP
P

(11)
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mAP =
∑n

q=1 APq

n
(12)

Equation (11) is the recall rate calculation formula, where TP indicates the number of
positive samples that are correctly predicted as positive. P represents the number of samples
in which all predictions are positive. Equation (12) is the formula for mAP calculation, with
n representing the total number of categories, and APq representing the average precision
of class q. The mAP values at IoU thresholds of 0.5 and 0.75 are usually denoted by mAP50
and mAP75, respectively, and mAP0.5:0.95 is used to characterize the statistical average of
mAP IoU thresholds starting from 0.5 and increasing sequentially by 0.05 up to 0.95.

5. Experiments and Results

5.1. Dataset Preparation

There are no datasets on infusion bottles and infusion bags available online, so we
took initiative in establishing such a dataset [24]. In this study, a total of 9959 pictures of
infusion bottles and infusion bags were taken, collected, and sorted. These include images
of single infusion containers and images of multiple infusion containers overlapping each
other, while some of these images were taken by adjusting the camera aperture light and
dark to simulate environmental changes, and distracting factors such as transparent glasses
and common water glasses for drinks were added to some other images. After completing
the basic data acquisition and labeling, we apply random masking to a portion of the
images. This increases the complexity of our dataset and will allow us to more thoroughly
evaluate the effect of the tested models. There are 7661 images for training, 852 images
for validation, and 946 images for testing. After obtaining the dataset images, we used
Labelimg for annotation. There are five classes in our dataset, inf_bot and inf_bag are
infusion bottles and infusion bags, respectively, while bot, sprite, and cola are interference
classes used to enhance robustness. The details are shown in Figures 7 and 8, while some
examples of the dataset images are shown in Figure 9.

For YOLOv4, the anchor box needs to be set in advance, so we adopted the k-
means [25] clustering method for the dataset, producing 9 groups of anchor boxes, namely
[(12,16), (19,36), (40,28)], [(36,75), (76,55), (72,146)], and [(142,110), (192,243), (459,401)].
Among these, the first three sets of anchor boxes correspond to the output of the 13 × 13 scale,
and the middle three and the last three correspond to the output of the 26 × 26 and
52 × 52 scales, respectively. In addition, we conducted some preprocessing of the dataset
before training [26].

Figure 7. Dataset allocation.
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Figure 8. The number of objects per class.

 

Figure 9. Some pictures from the dataset.

5.2. Environment

The training and inference process of all the models in our study is completed on
RTX3060, the deep learning framework used in our models is pytorch1.7, and the CUDA
version is 11.2. The specific hyperparameter settings during model training in this study
are shown in Table 1. In order to ensure the fairness of the experiment, the model involved
in the ablation experiment uses the hyperparameters shown in Table 1.
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Table 1. List of hyperparameters.

Hyperparameters Value

Optimizer SGD
Learning rate 0.02
Momentum 0.937
Input shape 416 × 416
Weight decay 0.0005
Training Epochs 100
Cos_lr True
Mosaic True

5.3. Results and Analysis

In order to verify the effectiveness of the improvements made in this study, the
improvements are gradually added on the basis of YOLOv4, and the final results are
compared one by one for evaluation.

From Table 2, we see that mAP50 is 3.78% higher for our model than for YOLOv4,
precision is improved by 3.55% and recall is improved by 9.91%. Each assessed indicator
shows a corresponding improvement. This fully reflects the ability of NMYOLO to detect
objects in the face of relatively complex situations, such as occlusion and overlap between
infusion sets. Due to the addition of some detection and feature fusion modules, GFLOPs
is increased by 1.88 frames while FPS is decreased by 2.79 frames when compared with
YOLOv4. However, this still meets the frame rate requirements for video transmission.

Table 2. Comparison of the effects of ablation experiments. And � means we will not add such a
module to the baseline, � means we will add it.

CA ASFF CSP-SPP Loss Precision Recall mAP50 GFLOPs FPS

� � � CIoU 92.65 78.59 91.43 29.89 39.08
� � � CIoU 94.76 81.03 92.91 29.90 38.26
� � � CIoU 93.12 88.18 93.57 31.68 36.92
� � � CIoU 94.84 87.18 94.52 31.68 36.89
� � � EIoU 96.20 88.50 95.21 31.77 36.29

In Table 3, the three indicators of recall, precision, and mAP50 of our model are 96.20%,
66.80%, and 95.21%, respectively, which are the best among the commonly used one-stage
models that are compared. Meanwhile, the best value of mAP0.5:0.95 is 73.40%, which gets
by YOLOv8m.The best value of mAP75 is 68.23% of YOLOv5m.

Table 3. The comparison between our model and other related one-stage models.

Methods Input size Precision Recall mAP0.5:0.95 mAP50 mAP75 FPS

SSD 416 × 416 88.76 74.38 42.70 83.58 39.36 /
YOLOv3 416 × 416 91.52 74.87 50.30 85.73 50.54 36.50
YOLOv3-spp 416 × 416 / / 60.10 88.41 65.03 36.07
YOLOv4 416 × 416 92.65 78.59 62.00 91.43 61.03 39.08
YOLOv5m 416 × 416 93.28 81.77 66.10 91.97 68.23 72.03
YOLOv8m 416 × 416 91.60 87.60 73.40 94.40 / 69.04
YOLOX 416 × 416 93.86 85.12 66.50 93.67 68.16 56.03
YOLOv7 416 × 416 95.76 84.80 65.20 94.14 67.10 38.54
NMYOLO 416 × 416 96.20 88.50 66.80 95.21 67.90 36.29

In Figure 10, when the recall is below 0.6, there are four categories with a precision
close to 1, but after the recall is greater than 0.8, the precision decreases rapidly. In addition,
the maximum value of each class recall is hardly close to 1. This shows that it is more

193



Entropy 2023, 25, 275

difficult to detect objects in this dataset than it is to detect them correctly. It also shows that
if we want to continue to improve mAP, we need to improve the recall of the model.

Figure 10. Precision–Recall curve of each class.

In order to facilitate the reader to directly and effectively see the improvements
associated with our model, some of the predicted images of YOLOv4 are selected for
comparison with some of the predicted images of NMYOLO in Figure 11.

The first column in Figure 11 is the original image, the second column is the result
from YOLOv4 detection, and the third column is the result from NMYOLO detection.
Among them, regarding the first line near the overlapping target scene, the original picture
has three infusion bags and one infusion bottle; YOLOv4 detected two of these infusion
bags and the one infusion bottle, thus missing one infusion bag, and NMYOLO detected
all four targets, which shows that the NMYOLO has better detection efficacy in the face
of overlapping occlusion targets. Regarding the second line of the distant target scene,
NMYOLO and YOLOv4 both identify all three targets, but YOLOv4 wrongly identifies one
corner of the box as a bottle, whereas there are no detection errors in the case of NMYOLO,
indicating it has stronger stability in detecting distant targets. The third behavior is a
complex scenario of overlapping multiple infusion bottles, and it is clear that NMYOLO
has a higher detection rate for different placements and overlaps of infusion devices when
faced with particularly complex infusion container scenarios.
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(a) Original images (b) YOLOv4 (c) NMYOLO (ours) 

Figure 11. Original images and examples of detection results.

6. Conclusions

To solve the difficult problem of detecting medical infusion containers under dense
occlusion and in complex environment scenarios, we proposed the novel method NMYOLO.
In this study, we enhance the depth of the neural network in the model by adding ASFF
and CA, and improve the information fusion capability of the model. We also modify SPP
to CSP-SPP to make the model obtain more information features, and use EIOU to make
the model more stable. These improvements make NMYOLO have better detection. In
addition, NMYOLO is shown to have better performance compared with other mainstream
one-stage detection models.
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Although NMYOLO has served our purpose, we still need to discuss what its short-
comings are. The disadvantage of the proposed model is the reduction in the detection
frame rate compared with YOLOv4, so one idea for subsequent improvement is to change
the method of lightweight backbone or reduce some convolution modules that are not very
important to reduce the number of parameters in the model. Moreover, we can replace
some modules or change the architecture of the model to reduce the size of the model and
ensure detection accuracy.
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Abbreviations

YOLO You only look once
CSP Cross stage partial
NMYOLO Neck-modfied YOLO
SENet Squeeze-and-excitation network
CBMA Convolutional block attention module
SPP Spatial pyramid pooling
ASFF Adaptively spatial feature fusion
PANet Path aggregation network
RCNN Region-based convolutional neural network
SSD Shot multi-box detector
CA Coordinate attention
FPN Feature pyramid networks
IOU Intersection of union
EIOU Efficient IOU
CIOU Complete IOU
mAPx mean average precision while confidence at 0.x
SGD Stochastic gradient descent
CNN Convolutional neural networks
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Abstract: The Magnetic Flux Leakage (MFL) visualization technique is widely used in the surface
defect inspection of ferromagnetic materials. However, the information of the images detected
through the MFL method is incomplete when the defect (especially for the cracks) is complex, and
some information would be lost when magnetized unidirectionally. Then, the multidirectional mag-
netization method is proposed to fuse the images detected under different magnetization orientations.
It causes a critical problem: the existing image registration methods cannot be applied to align the
images because the images are different when detected under different magnetization orientations.
This study presents a novel image registration method for MFL visualization to solve this problem.
In order to evaluate the registration, and to fuse the information detected in different directions,
the mutual information between the reference image and the MFL image calculated by the forward
model is designed as a measure. Furthermore, Particle Swarm Optimization (PSO) is used to optimize
the registration process. The comparative experimental results demonstrate that this method has a
higher registration accuracy for the MFL images of complex cracks than the existing methods.

Keywords: nondestructive testing; Magnetic Flux Leakage; solenoid modal; image registration;
mutual imformation; PSO

1. Introduction

Magnetic Flux Leakage (MFL) detection is widely used in the nondestructive testing
of defects in ferromagnetic components [1–4]. The inversion for the profile of a defect is the
most interesting part of the related research. In existing studies of 3D profiles, the effect of
the surface profile of the defect on the defect depth is often not considered [5,6]. However,
the surface profile of the defect severely affects the distribution of the MFL field in space.
Existing profile reconstruction methods mainly use data collected using magnetization in
a single direction [2,7], which is effective when there are no edges that are parallel to the
magnetization direction, or complex corners in the defects. However, cracks are prone to
more complex signal coupling, or they are missing due to their small width and complex
surface profile, which cannot be collected completely from a single direction, and they
must be magnetized from multiple directions to obtain complete information about the
surface profile of the defect [8,9]. (Figure 1 shows the different MFL field distributions of a
V-shaped defect under different orientations of magnetization.) Traditional MFL testing
needs to scan the same area several times in different directions. In order to analyze the
MFL signal characteristics of the acquired defects, a method is required first to align the
acquired MFL images under different orientations of magnetization (DOM).

Image registration is defined as aligning images acquired at different times, distinct
viewpoints, and where valuable information is conveyed in more than one image [10].
The MFL images captured under DOM are difficult to spatially align in actual application
because of the displacement and rotation of sensors. However, no published papers discuss
the MFL image registration of defects captured under DOM, to the authors’ knowledge.

Entropy 2023, 25, 167. https://doi.org/10.3390/e25010167 https://www.mdpi.com/journal/entropy198
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Figure 1. The distribution of MFL field with DOM (Simulated by COMSOL).

The general image registration methods (e.g., medical image registration and remote
sensing image registration) are mainly classified as being intensity-based and feature-
based [11]. Intensity-based methods use optimization methods to find the optimal value
of the alignment. Different pixel intensity-based measures are applied to evaluate the
registration of each iteration of the optimization process [12,13]. However, such methods
cannot consider the inconsistency of the magnetic field distribution under DOM. They can
only match the parts of the image with similar intensity distributions, because such methods
are based on the assumption that the corresponding structures in the registered images
would have similar intensities [10]. Additionally, the MFL field distribution detected under
DOM varies greatly, making the shape alignment methods inapplicable [14].

The feature-based approaches use distance-based measures to match the features
extracted from the input images. The methods require the presence of features: such as
centerlines, outlines, corners, etc. Additionally, the images must possess a relatively clear
corresponding point mapping [13,15,16], which would also be affected by the distortion of
MFL because the distribution of MFL images varies (such as the first and the second image
in Figure 1).

The above analysis shows that the currently used image registration methods do not
apply to the MFL images captured under DOM. This paper proposes an adaptive registra-
tion method to register the multidirectional magnetized MFL images of surface defects (as
in Figure 2). The proposed method combines the MFL forward model and the multi-model
image alignment method. Firstly, the PSO optimization method updates the image trans-
form parameters and generates a new defect shape according to the aligned images. Then,
the MFL field distribution of the new reconstructed shape is generated via the use of the
solenoid model [8,17]. The similarity between the generated MFL field distribution and the
acquired reference image is calculated as the judgment of optimization. Using the above
process, the optimal alignment parameters are achieved, and the registration of the MFL
images under DOM is completed.

There are three contributions to this paper:

1. A new registration method for MFL images detected under DOM is designed.
2. The solenoid model is first used in MFL image registration.
3. The comparative experiment is carried out, and the proposed method shows a higher

accuracy than the traditional methods.

This paper is organized as follows. Section 2: The proposed method is introduced.
Section 3: The experimental setup. Section 4: Presents the results and discussion. Section 5:
The conclusions.
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Figure 2. Registration Schematic of MFL images under DOM.

2. Methodology

Most conventional registration methods can be described as an optimization process.
During each step of the optimization algorithm, a new parameter of the transformation
function is updated, which is applied to the floating image (F) by spatially aligning it
with the reference image (R). Additionally, the registration performance is accessed using
a measure of similarity between the reference and the transformed floating image. The
procession is shown in Figure 2.

Herein, the reference image (R) and floating image (F) are captured by the magneto-
optical image (MOI) system, which is shown in Figure 3. The polarized light passes through
the magneto-optical film (MOF), which rotates due to the Faraday rotation effect, and the
rotation angle θ can be calculated by Equation (1). The rotated light reflected by a mirror
under the MO film would be filtered by the polarizer and captured by the CMOS. The
acquired gray image depicts the normal components of the MFL field.

θ = VBL (1)

where V is the Verdet constant of the MOF, and B is the intensity of the introduced magnetic
field parallel to the direction of the light. L denotes the distance that the light travels through
the MOF.

(a) (b)
Figure 3. Magneto-optical imaging: (a) Schematic of MOI, (b) The MOI system.

The MFL image detection under DOM can be expressed as in Figure 4. The angle
between the MOI system and the magnetic yoke is fixed to keep the direction of the external
magnetic field in the captured images. Additionally, the performance of registration
would be better when the rotation angle comes to the position where the images are
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complementary. (Complete information about defects can be obtained at an angle of about
80◦∼90◦).

Figure 4. Schematic of the procession.

Like the prevailing algorithms, the proposed registration algorithm consists of an
iterative trial-and-error process that attempts to optimize a given transformation function
after a limited number of iterations [16,18]. The process of the proposed registration method
can be described, as shown in Figure 5. The first step is in segmenting the original images
R and F to Rs and Fs. Then, Particle Swarm Optimization (PSO) is used to maximize the
similarity by optimizing the transformation of in-plane parameters. In each iteration of
PSO, five steps are needed:

1. Producing a new registration parameter;
2. Transforming the Fs according to the registration parameter and aligning it to Rs;
3. Fusing the Rs and the transformed Fs, then reconstructing a shape of crack (It);
4. Generating a new distribution (Ig) of the crack (It);
5. Calculating the similarity between R and Ig.

After the iterations, the parameter of the optimal similarity is output as the final result
of registration.

Figure 5. The proposed method.

2.1. Preprocessing

A rough registration to limit the translation is needed to reduce the computation time
and to avoid the registration parameters escaping from the feasible solution space (a high
similarity may occur, even if the images are not correctly registered).
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Because the background of the MO image is clear, it is easy to find the location of the
defect. Firstly, obtain the projection along the row and column direction from the R and the
F. Then, the cosine distance of the projections is minimized by adjusting the displacement
along the row and column. As seen in Figure 6, the projection of the defect in two directions
would partially overlap, and the cosine distance is used to assess the degree of overlap,
which is calculated as

cos(Θ) =
Rp · Fp

||Rp|| · ||Fp|| =

n
∑

i=1
(Rpi · Fpi)√

n
∑

i−1
Rp2

i

√
n
∑

i−1
Fp2

i

(2)

where Rp and Fp are the vectors resulting from the projections of R and F along the row
and column directions, respectively, n is the number of elements in Rp and Fp, and i is
denoted as the traversal of each element.

Figure 6. The comparison of graphs along the row and column directions; (a) Before transformation,
(b) after transformation.

The displacement range in the iteration of the following optimization algorithm de-
pends on the width of the magnetic field distribution in the image. (In the subsequent pro-
cess, only the displacement part of the image will be shown; take Figure 7 as an example).

(a) (b) (c)
Figure 7. The example image images. (a) The original image of the defect. (b) The first direction
of magnetization. (c) The second direction of magnetization (the angle between c and b is about
85◦∼90◦).

2.2. Segmentation

The first step is in segmenting the original images to extract the partial edge of the
defects. The MFL field distribution among the edge of defects is usually sharp because the
magnetic line leaks out from the edge, and the intensity decreases as the distance grows.
Such a distribution could be presented by the gray intensities of the captured images.
The Laplacian of the Gaussian (LoG) filter, which could be approximated by using the
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Difference of Gaussian (DoG), shows a good performance in identifying the edge of the
defect [19,20]. The output image (O) can be calculated by:

O(x, y) = ∇2(I(x, y) ∗ G(x, y)) (3)

where the I is the input image, G is the Gaussian filter, and ∇2 is the Laplacian.
However, it is easy to identify the inner and outer edges of the MFL field while detect-

ing the border. Considering that the intensity of the MFL field is inversely proportional
to the square of the distance between the defects and other parts, there has always been a
peak beside the edge of defects, which can be used as a further judgment. Here, we set a
limit distance that the detected point is to the peaks along the direction of magnetization.
This is retained when the extracted points of LOG are within the set distance from the peak,
and it is discarded if it is outside the set distance. Additionally, the result is presented in
Figure 8.

Figure 8. The segmentation of captured image.

2.3. Particle Swarm Optimization Algorithm

This study uses the PSO algorithm to update the transformation function. In PSO,
each particle represents a possible solution to the optimization task, and the particles tend
to cluster where the optimum solution is.

Here, the rigid geometric transformation is applied. The floating image is registered
to the reference image with a global transformation. The registration parameter is a
three-dimensional vector, which consists of one rotation angle θ (unit: degrees) and
two translation distances tx,ty (unit: millimeters). The transformation matrix of image
coordinates PF to PR from the image F to image R can be shown as:

PR = M× PF (4)

where

M =

⎛
⎝ cos θ − sin θ (1− cos θ)tx + ty × sin θ

sin θ cos θ (1− cos θ)tx − ty × sin θ
0 0 1

⎞
⎠ (5)

Therefore, the search space and the position of each particle of PSO can be repre-
sented by a three-dimensional vector xi = (tx, ty, θ) [21,22]. The task performed in each
particle includes:

• Transforming the image Fs.
• Constructing the shapes of defects.
• Generating the MFL field distribution (Ig) of this defect.
• Calculating the similarity between the image R and Ig.

The new position can be updated according to each iteration’s local and globally
optimal solutions. The own personal best solution so far by the particle pid(t) and the
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global best position of any particle in the swarm Pgd(t) so far are found. They are called the
“individual best position” and the “global best position”. The new velocity and position of
each particle can be updated according to pid(t) and Pgd(t):

vi(t + 1) = w(t)× vi(t) + c1 × Rand×(Pid(t)− xid(t))

+ c2 × Rand ×
(

Pgd(t)− xi(t)
) (6)

xi(t + 1) = xi(t) + vi(t + 1) (7)

where c1 and c2 are two constants parameters. c1 can change the step size of a particle
moving toward its individual optimal position. c2 can change the step size for moving
toward the global optimal position. (Here, for a better global optimum search, c2 is set to
be slightly larger than c1. In this study, c1 used for an image of size 100× 100 is 0.5, and c2
is 0.7, for reference only). Rand is a random value limited by (0, 1). w(t) is called the inertia
weight, which influences the current velocity according to the particle’s previous velocity,
and is updated in the iterations by:

w(t) = (wmax − wmin)× (tmax − t)
tmax

+ wmin (8)

where wmax and wmin denote the maximum and minimum of inertial weight, respectively.
tmax is the maximum iteration number.

The positions of the particles should be restricted in [Xmin, Xmax], [Ymin, Ymax] to avoid
particles escaping from the feasible solution space. Additionally, the domains are calculated
in Section 2.1.

2.4. Opening Shape Reconstruction

After transformation, the Fs would be partially overlaid with Rs, and then they are
fused to construct the shapes of defects, which would be used to generate the distribution of
the MFL field in the later process. First, two images are overlaid (performing OR operations
on the corresponding pixel points) to generate Ftemp, and Closing (morphology) is used
to connect the adjacent connected domains, so that all of the regions in the image are
connected. The Closing can be presented as:

Ftemp • K =
(

Ftemp ⊕ K
)� K (9)

where the K is the structural element, and

Ftemp � K =
{

x, y | (K)xy ⊆ Ftemp
}

(10)

Ftemp ⊕ K =
{

x, y | (K)xy ∩ Ftemp �= ∅
}

(11)

The closed area would then be detected and filled, to generate the shape of the defect.

2.5. Solenoid Modal for the Visualization of MFL

The solenoid modal is adjusted to generate the distribution of the magnetic field of
the constructed shape. It is based on the theory of ampere molecular currents, which are
arranged neatly and closely along the magnetization direction in the specimen. Then, the
molecular currents form a series of solenoids in the specimen, as shown in Figure 9.

When a solenoid is truncated, a semi-infinite solenoid model can be established to
simulate the MFL on the surface of the defect, according to Biot–Savart’s law. The intensity
can be calculated by:

dHls =
Mde
4π

rs

r3
s

ds (12)

204



Entropy 2023, 25, 167

where Mde is the effective component of Md in the normal direction at the defective surface,
and Md is the magnetization. ds is an element size at the surface of the defect, and rs is a
vector from the pole of the solenoid to the point of the field.

Figure 9. The solenoid in specimen.

The above model is constructed on the assumption that the magnetization on the
defect surface is uniform. However, the directions of each solenoid change due to the
interaction force for actual complex defects, which makes the MFL field distribution more
complicated. The magnetization of the specimen is assumed to be quasi-saturated, and the
interaction force among the solenoids should be introduced to improve the model. Since
the force is proportional to the magnetic field intensity, the intensity of the interaction field
can be calculated by:

Hinter =
Mde
4π

a tan(
rsds
r3

s
) (13)

The interaction between the solenoids causes the solenoids to deviate from the direc-
tion of the excitation field, and the deviation angle can be calculated by:

θ = a tan(
Hinter

Hex
) (14)

where Hex is the magnetic field intensity in the specimen, and here, it is set according to the
material of the specimen.

The interaction of the solenoids on the defect boundary is shown in Figure 10. When
the interaction of the solenoids on the defect surface is not considered, the solenoids will be
uniformly arranged, and their generated leakage magnetism will be uniformly distributed
(Figure 10a). When the interaction between the solenoids at the defect surface is considered,
the leakage magnetization generated by the solenoids at the end surface will interact with
each other, resulting in the deflection of the solenoids at the end surface. In Figure 10b,
we can see three solenoids, A, B, and C, at the corner of the defect. Since A and B have
magnetic leakage at the end face, and C is not broken, B will be repelled by A and deflected
toward C, creating a bend in B here. The influence of each solenoid at the end face by the
surrounding solenoids is calculated, and this is how the solenoid model is set up. This
approach has obvious advantages in the calculation of the inhomogeneous distribution of
the leakage of the magnetic field at the corners of complex defects.

(a) (b)
Figure 10. Schematic of solenoid interaction. (a) No interactions; (b) With interactions.
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The applicability to the calculation accuracy of the model for complex defects is
improved by modifying the direction of the solenoids. Then, the angle between the direction
of the excitation field and the image should be fixed to achieve the right distribution of
MFL. The depth of defects was set according to the thickness of the tested specimen and the
maximal intensity of the originally captured images. Therefore, the solenoid distribution
of the defective edges can be calculated. The intensity of image Ig can be derived by the
calculated magnetic field strength, and the formula is determined by:

I = I0sin2(VBL) (15)

where I0 is the maximal intensity of captured images.
The comparison between different methods is shown in Figure 11. Compared with

the widely used magnetic dipole model (MDM), the present model has a more obvious
advantage in considering the signal differences in defect corner coupling and edges (several
places circled in Figure 11c have uneven signal distributions when the defect shape is
complex, which cannot be fitted by MDM, while the solenoid model performs this better).
Therefore, the solenoid model can better approximate the actual MFL image.

(a) (b) (c)
Figure 11. Comparison of magnetic dipole model and solenoid model. (a) Magnetic dipole model,
(b) Solenoid model, (c) The actual MOI image.

2.6. Similarity Measure

Now that the images (R and Ig) for assessing registration are ready, this section should
apply a coefficient to measure the similarity between the images to evaluate the registration.

Mutual-Information (MI) is the most popular and widely studied similarity metric in
intensity-based registration [21,23]. It is developed from information entropy to describe
the relationship between two images. Take two random variables as an example, A and
B, with marginal probability distributions, PA(a) and PB(b); joint probability distribution,
PAB(a, b), are statistically independent if

PAB(a, b) = PA(a) • PB(b) (16)

they are maximally dependent if they are related by a one-to-one mapping T:

PA(a) = PB(T(a)) = PAB(a, T(a)) (17)

MI, I(A, B) measures the degree of dependence of A and B by measuring the distance
between the joint distribution PAB(a, b) and the distribution associated with the case of
complete independence PA(a) • PB(b).

MI(A, B) = ∑a,b p(a, b) log
p(a, b)

p(a)p(b)
(18)

If the images are geometrically aligned, the MI of the image intensity values for the
corresponding pixel pairs should be maximum. This criterion is very general and robust.
It can be applied automatically without prior segmentation, because no assumptions
about the relationship between the two image intensities are made. These properties are

206



Entropy 2023, 25, 167

appropriate for calculating the similarity between the generated and original graphics, so
here, we use MI as a registration criterion.

The whole algorithm of the registration of visualizing MFL testing under DOM is
presented in Algorithm 1.

Algorithm 1 Registration

Input: Captured MFL images R and F
Output: The optimal registration parameters

(
θ, tx, ty

)
;

1: Segmeting the images to Rs and Fs;
2: Setting the particles and iterations number of PSO;
3: repeat
4: Updating a new registration parameter;
5: Transforming the Fs;
6: Reconstructing a shape of crack (It);
7: Generating a new distribution (Ig) of (It);
8: Calculating the similarity between R and Ig;
9: Recording the global and local optimal positions.

10: until The iteration of PSO finishes.

Based on the method designed above, we take the first two simulated images in
Figure 1 with the first two magnetization directions differing by 90° as an example; the
image size is 100× 100, and the relative displacement of the two images in the row and
column directions is 0 pixels. The number of particles in the optimization algorithm is set
to 5, and the number of iterations is set to 100. We can obtain the registration results, as
shown in Figure 12a. The convergence process of the iterations is shown in Figure 12b,
which shows that the similarity reaches its best after 33 iterations, with a similarity of
1.1802. The registration result is a rotation angle of 92.0510°, with a displacement of
0.46805 pixels along the row direction, and −0.64315 pixels along the column direction.
This registration result has some errors with the actual results, but it shows that the
method is iterative convergent.

(a) (b)
Figure 12. Example of operational feasibility. (a) Results of registration, (b) Convergence of iterations.

3. Experiment Setup

3.1. The Settings of the Experimental Equipment

In order to verify the proposed methods, the experimental platform is set up (shown
in Figure 13). The electric magnetic yoke is the magnetizing excitation source to generate a
uniform excitation magnetic field. The MOI system is fixed in the middle of the magnetic
yoke, making the angle between the excitation direction and the captured image constant.
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Figure 13. The platform of MFL image detection.

Additionally, the MO film is a (BiTm)3(GaFe)5O12 single-crystal thin film [24,25]
provided by the State Key Laboratory of Electronic Thin Films and Integrated Devices,
University of Electronic Science and Technology of China, and the maximum Verdet
constant 2.595× 10−4/(Oeμm) · 10μm.

3.2. Experiment Samples

The test samples include two artificial and two natural cracks. The artificial samples
include a z-shaped (Figure 7a) and t-shaped cracks (Figure 14a). The natural sample
includes two fatigue cracks, the first is a crack with one-line (Figure 14b), and the other one
is a crack with three-line coupling (Figure 14c).

(a) (b) (c)
Figure 14. The samples: (a) Manual t-shaped crack, (b) Natural one-line crack, (c) natural
three-line crack.

4. Results and Discussion

4.1. Experiment Results

The images in Figure 7 are used to verify the method, and the result is shown in
Table 1. The variation of the parameter of the transformation matrix leads to different
shapes of defects, therefore generating different distributions of the MFL field. As can
be seen from the last column of Table 1, when the transformation matrix comes to the
correct position, the MI similarity of the generated image (Ig) and the reference image (R)
is optimal. We can also find that the constructed shape is the most similar to the shape
of the actual defect when the similarity is optimal, which can be used to evaluate the
defect. The MI similarity here shows a significant difference between the incorrect and
correct registrations, and the better it is registered, the bigger the similarity coefficient is.
Because of the difference in the shape of the fused defects, the magnetic field distribution
deduced from the defects will also have significant differences. Meanwhile, we can see
that the reconstructed shape is closest to the actual defect morphology when in the correct
alignment state, and the MFL distribution calculated by the solenoid model has the highest
similarity to the original image, which also proves the correctness of the solenoid model
for the defect MFL calculation at the same time. Therefore, the present method can also be
regarded as a reconstruction of the defect surface profile by fusing multiple sources of the
MFL image data.
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However, some significant factors also affect the result of the calculation of similarity
between images.

1. The segmenting method for the original images R and F is significant. The better the
edge of defects is detected, the better the shape of defects is constructed.

2. The fusion of segmented images and the method of shape construction directly affects
the MFL field distribution of Ig.

3. The stability and accuracy of the MFL distribution forward model.

Table 1. The similarity between the Ig and R changes according to the deviation of Fs.

– Angle + 30◦ X + 10 Y + 10 Correct

Rs

Fs

Ftemp

Ig

Similarity 0.6446 0.7503 0.6589 0.9200

4.2. Robustness of the Proposed Method

The robustness of the method can be evaluated through comparisons with the feature-
based, intensity-based, and manual registration methods (shown in Table 2).

The feature-based approach requires the presence of features: such as corners, outlines,
and some particular points. Because of the smooth edge and the distortion, it is challenging
to extract valid corresponding feature points. At the same time, the obtained features
cannot be matched with each other because the magnetic field distribution generated by
different magnetization directions cannot correspond to each other. All these problems
make it impossible to register the images correctly.

The deviations in the magnetic field distribution also affect the intensity-based regis-
tration. The images are only matched according to intensity because the shapes of defects
and magnetic field distortions cannot be considered. In the registration, calculating the
intensity similarity optimum only leads to the match of the regions in two images that are
close in intensity, which does not contribute to the correct registration of the images.

Manual registration shows a good performance because it is based on the existing
knowledge of the shapes of the defects and the relative orientations of the images. However,
manual registration cannot be employed in inspection applications with large data and for
defects of unknown shape and location. This is why a method is needed for the scenarios
described in this paper. In this set of comparisons, manual registration is only used as a
standard group to evaluate the results of the registration of images.
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The last row of Table 2 shows the experimental results of the proposed method, which
can achieve a better result compared to feature-based and intensity-based registration
methods, and it is more consistent with the manual one. For cracks, it can achieve a high
registration accuracy due to the prominent structural characteristics of the magnetic field
distribution, and the error of the crack registration mainly occurs in the translation. The
error in defect reconstruction and the difference between the actual data and the model
derivation make a certain deviation in the registration results, which needs to be enhanced
and solved in the subsequent study.

Table 2. The result of image registration from different methods. (The feature-based and intensity-
based results come from MATLAB 2019b image registration app: the surf and multimodal inten-
sity module).

– T Z OneLine ThreeLine

R

F

Feature-Based

Intensity-Based

Manual

Proposed

Here, we use the correlation coefficient to calculate the registered F for comparison
with the manually registered F to evaluate the registration results of different methods.
Equation (19) is the calculation of the correlation coefficient:

Cor =
∑N

i=1
(

Fmi − Fm
) · (Fai − Fa

)
√

∑N
i=1
(

Fmi − Fm
)2 ·∑N

i=1
(

Fai − Fa
)2
· 100% (19)
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where Fm is the manually registered F and Fa is the F registered using other methods. N
denotes all the pixels in the graph, and i denotes the transversal of each element of it. The
closer the Cor is to 100%, the closer is the result of the registration method used to the
manual registration result.

As shown in Figure 15, by comparing the registration results of different methods with
the manual registration results, it can be seen that the feature-based and intensity-based
methods are less similar to the results of the manual registration methods, and they can
even be considered to be completely unusable. Additionally, the proposed method has a
clear advantage in that it can have better registration results for all of the cracks tested here.

It can be observed from the above results that the proposed method can be used for
the MFL information fusion of cracks under DOM, which helps in the subsequent analysis
of defects.

Figure 15. Comparison of correlation coefficients with manual registration results.

5. Conclusions

This study presented a registration method for MFL field visualization under DOM.
It solved the problem of the mismatch between the distorted images captured under
DOM by considering the 2D shape reconstruction of defects, and the application of the
forward model. The solenoid model for MFL visualization is first applied to analyze and to
generate the MFL field distribution. The experimental results showed that the proposed
method performs better in MFL image registration than do the currently used methods.
The proposed method can be applied in MFL detection engineering applications for crack
detection. Future research could focus on image segmentation, shape reconstruction, and
improving the calculation accuracy of the forward model. Additionally, it could be noticed
that such a registration structure could also be used in multimodel situations, such as
registering images captured using different NDT methods.
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Abstract: Object detection is challenging in large-scale images captured by unmanned aerial vehicles
(UAVs), especially when detecting small objects with significant scale variation. Most solutions
employ the fusion of different scale features by building multi-scale feature pyramids to ensure that
the detail and semantic information are abundant. Although feature fusion benefits object detection,
it still requires the long-range dependencies information necessary for small objects with significant
scale variation detection. We propose a simple yet effective scale enhancement pyramid network
(SEPNet) to address these problems. A SEPNet consists of a context enhancement module (CEM)
and feature alignment module (FAM). Technically, the CEM combines multi-scale atrous convolution
and multi-branch grouped convolution to model global relationships. Additionally, it enhances
object feature representation, preventing features with lost spatial information from flowing into
the feature pyramid network (FPN). The FAM adaptively learns offsets of pixels to preserve feature
consistency. The FAM aims to adjust the location of sampling points in the convolutional kernel,
effectively alleviating information conflict caused by the fusion of adjacent features. Results indicate
that the SEPNet achieves an AP score of 18.9% on VisDrone, which is 7.1% higher than the AP score
of state-of-the-art detectors RetinaNet achieves an AP score of 81.5% on PASCAL VOC.

Keywords: object detection; unmanned aerial vehicles; small objects; feature fusion

1. Introduction

UAVs have the advantages of low operational cost, high mobility, and multiple view-
points, thus promoting the application of drone object detection [1,2] in many fields, such
as power line detection [3], precision agriculture [4], and environmental monitoring [5,6].
Under the positive influence of maturity of hardware devices and the availability of training
datasets, deep learning has achieved unprecedented success because of its impressive ability
to learn representation from data. At present, UAV image detection algorithms are generally
based on convolutional neural networks (CNNs), such as ResNet [7], DenseNet [8], and
ConvNet [9]. Due to CNNs’ strong local perception and inductive biases, a series of break-
throughs have been made in computer vision tasks, such as object detection [10], semantic
segmentation [11,12], human–robot interaction [13], etc. Although deep learning has made
significant progress in natural image detection, aerial image detection of state-of-the-art
object detectors, such as YOLO [14] and RetinaNet [15], still needs to be more satisfactory
in terms of both accuracy and efficiency.

There exist some significant differences between nature images (e.g., PASCAL VOC [16])
and UAV images (e.g., VisDrone [17]), leading to two major challenges of object detec-
tion. The first challenge is that high-resolution UAV images tend to contain small objects
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(area < 322 pixels) and are generally sparsely distributed, as Figure 1a depicts. The features
of small objects are difficult to describe because the small scale of the target is featured
by fewer pixels, which is likely to cause information to gradually disperse or even vanish
when they pass through a deep network. Sparse objects in images with a wide field of view
are easier to be confused with complex backgrounds. Second, extreme object scale variation
and special UAV perspectives can be present, as Figure 1b depicts. The UAV images of
large-scale scenes are affected by the variety of altitudes and perspectives of UAVs. When
UAVs shoot at lower altitudes, objects become more negligible. Objects become smaller
when UAVs shoot at higher altitudes. Lengthening the perspectives also causes distant
objects to become smaller. Even objects of the same class may differ several times in scale.

Figure 1. Compared with natural scene images, UAV images from VisDrone show great challenges.
(a) Object with a small size and sparse distribution in a UAV image. (b) The particular perspective of
the UAV makes the aerial image come in extremely varying scales.

One way to address the challenges above is to use the cutting strategy [18,19]. The
high-resolution image is dealt with as small patches and then fed separately into the
network for prediction. However, such methods may require repeated computation of
features, resulting in higher computation and memory requirements. In addition, multi-
scale feature fusion [20,21] enriches difficulty discerning object feature representations by
integrating deep and shallow features while adding less computational cost. The other
line of effort aims to expand the receptive field using stacking atrous convolutions with
different atrous rates or convolutional filters with different sizes [22,23], which is also an
effective way to improve object detection performance. Some methods use an attention
mechanism [24,25] to highlight helpful information from small targets while suppressing
useless information. The attention mechanism can improve the detection performance of
most existing CNN-based methods while introducing very little computation.

This paper proposes a scale enhancement pyramid network, namely SEPNet, to
improve UAV image detection performance by mitigating the inconsistency in gradient
computation of the adjacent layers. Our algorithm mainly consists of two core modules.
We notice that the deep network is effective in detecting complex scenes. However, the
deep network loses essential details in forward propagation. Although the number of
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network layers deepens, the receptive field becomes more significant. The single receptive
field makes the detector suffer contextual limits. Based on this observation, we designed a
lightweight context enhancement module (CEM) core consisting of a multi-scale dilated
convolution branch and a pyramidal convolution branch. Unlike most existing methods, we
combined multi-scale dilated and pyramidal convolution to model the global relationships
for objects of various scales instead of artificially designed complicated decoder networks.
In addition, to enhance network performance, multi-scale features are generally used to
fuse information at different levels to obtain more powerful representations, and direct
fusion between different levels destroys feature consistency in gradient computation, which
makes features obtained after the CEM module weaken the expressive representation. We
used the feature alignment module (FAM) to automatically learn the correlation between
two feature layers and keep them aligned. Our SEPNet is based on one-stage detectors.

The main contributions of this paper are summarized as follows:

1. We propose a SEPNet to solve small object and multi-scale object detection difficulties
in UAV images.

2. We propose the CEM to produce more salient context information by combining
special groups of atrous convolutions and group convolutions and redistribution to the
top of FPN, thereby improving the feature representation of objects at different scales.

3. We add the FAM that learns transformation offsets of pixels to preserve the aggregate
feature space translation invariance and address the feature inconsistency issue for
FPN, avoiding small objects being drowned in feature conflicts. To continue improve-
ment, we introduce channel attention to refine pre-aggregated features while making
the network focus on the target area rather than the broad background.

4. We validate the proposed two components and SEPNet on two datasets. Compared to
the baseline model, RetinaNet, our component can significantly improve performance,
from 21.3% to 23.5% on the VisDrone dataset. Furthermore, our SEPNet outperforms
the popular detector CornerNet [26] by 1.5%.

2. Related Work

In this section, we briefly review the recent representative work on object detection,
feature fusion architecture design, and the attention mechanism of convolutional networks.

2.1. Object Detection

With the development of deep learning, remarkable progress has been achieved in
object detection. The mainstream object detectors based on deep learning can be divided
into one-stage detectors and two-stage detectors. The significant difference between the two
network architectures is that two-stage detectors first generate region proposals and then
apply a convolutional network to classify and regression each region proposal. In contrast,
one-stage detectors skip the proposal stage and manually set priority boxes. Two-stage
methods, such as Faster RCNN [27], maintain an advantage in precision, but the speed is not
satisfactory due to the need to obtain region proposals before detection. One-stage methods,
such as Single Shot MultiBox Detector (SSD) [28], improve detection speed at the cost of
accuracy drop. Recently, anchor-free methods were proposed. Compared to anchor-based
methods, anchor-free methods replace complex anchor designs by capturing features of
object centers or key points. CenterNet [29] generates heatmaps (distribution of important
information in the feature map) to obtain the target center coordinates and adjust the
center offset. Fully convolutional one-stage object detection (FCOS) [30], feature selective
anchor-free module (FSAF) [31], and FoveaBox [32] drop prior anchor settings and directly
encode and decode the bounding boxes as anchor points. This detects all positive sample
points, and the positive samples point to boundary distances of the bounding box. Anchor-
free methods are not constrained by predefined anchors and reduce hyperparameters
and forward inference time. However, these intensive prediction tasks are prone to noise
interference, resulting in many false positives.
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2.2. Feature Fusion

Object detection in UAV images is a challenging problem due to small objects [33,34]
and extreme scale variation. FPN [35] is an efficient way to alleviate the problem arising
from small objects and object scale variation. In the deep network, low-level features gen-
erally lack semantic information and are rich in geometric details. In contrast, high-level
features are the opposite of low-level features. FPN builds a feature pyramid to extract
and fuse multi-scale features through the top-down pathway and lateral connections. The
path aggregation network (PANet) [36] adds an extra bottom-up path on the top of FPN.
EfficientDet [37] proposes a bidirectional feature pyramid network (BiFPN), which is a
weighted bidirectional FPN used to perform fast feature fusion. Giraffedet [38] enriches
multi-level contextual information through bottom-up skip-layer connection and sufficient
cross-scale connection between different levels. Apart from network structure improve-
ment, some other works [39,40] are devoted to enhancing contextual information. They
generally combine multiple branches with different kernel sizes and dilated convolutions to
effectively capture long-range information without reducing spatial resolution. To solve the
problem of feature misalignment during high-level and low-level fusion, feature-aligned
pyramid networks (FaPN) [41] achieve implicit compensation with deformable revolution
to enhance feature consistency. The above methods effectively fuse different levels of
semantic and location information and achieve great success but ignore the problem of
feature inconsistency when dealing with different input features.

2.3. Attention Mechanism

The attention mechanism is recognized as a potential means to enhance deep CNNs
since it allows the network to selectively focus on the most important regions of an image
while ignoring the ones with irrelevant parts. Currently, attention mechanisms are prevalent
in various tasks, such as machine translation [42], object detection [43], and semantic
segmentation [44]. More recently, multiple attention mechanisms have provided benefits in
visual studies to improve convolutional network expression ability. Squeeze-and-excitation
networks (SENet) [45] are typical channel attention mechanisms. They can adaptively
recalibrate channel-wise response with global contextual information by signals aggregated
from feature maps. Efficient channel attention networks (ECANet) [46] employ the one-
dimensional convolution layer to determine channel interaction and reduce the attention
module parameters. Still, the information captured by the one-dimensional convolutional
is inefficient. Selective kernel networks (SKNet) [47] apply multiple branches with different
kernel sizes to adaptively adjust the receptive field, effectively increasing the flexibility of
the network. Beyond channel attention, non-local neural networks (non-local) [48] deploy
self-attention as a generalized global operator to capture the long-range dependencies.
Non-local can effectively capture global features of spatial sequences and are more friendly
for video detection. Convolutional block attention modules (CBAM) [49] and bottleneck
attention modules (BAM) [50] introduce channel and spatial attention to allow the network
to generate weights of different channels and spatial automatically, highlighting the location
and category information of the network. Furthermore, SANet [51] propose efficient shuffle
attention, which can effectively combine spatial and channel attention through shuffle
units to enrich the network with deep information. In contrast, our work focuses on the
correlation of channels between different levels of features to further integrate information
at different scales of the feature map.

3. Method

The overall architecture of SEPNet is shown in Figure 2. We first use ResNet to build
our backbone network as the feature extractor. Each pyramidal feature map (denoted
C2, C3, C4, C5) extracted by ResNet is followed by an additional 1 × 1 convolution to
compress channels. Then, these feature maps are used to build a feature pyramid for
multi-scale detection. We input C5 into a CEM module and concatenate it with P5 to
obtain rich semantic information. We also use the FAM module to learn the correlation of
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pre-fused features, preventing important information from being destroyed when features
are aggregated. It is worth noting that we use the concatenate operation instead of the sum
operation for bottom-to-top feature fusion. After addressing top-to-bottom (denoted P2,
P3, P4, P5) and bottom-to-top (denoted N2, N3, N4, N5) feature fusion, we will describe
the implementation details of the main modules in the following sections.

Figure 2. The overall architecture of the proposed SEPNet.

3.1. Context Enhancement Module

As we all know, with the deepening of the network layer, the features lose spatial
information, and the ability to express features is weakened. In addition, due to the fixed
convolution operation, the features lack the contextual information necessary for object de-
tection at different scales. To extract high-level information, atrous spatial pyramid pooling
(ASPP) [52] uses atrous convolutions of different dilation rates to capture the context at
multiple scales. Although ASPP can encode multi-scale information and proves effective in
semantic segmentation, we believe that the uniform resolution obtained by atrous convolu-
tion alone is not enough for UAV detection. For this reason, we are inspired by PyConv [53]
and propose a context enhancement module (CEM), which aims at optimizing the deeper
layer features to avoid the propagation of lost information features in FPN. CEM injects
rich context information into the top of the feature pyramid network to enhance object
feature representation, as shown in Figure 3.

The critical components in CEM include atrous spatial pyramid convolutions and
grouped pyramidal convolutions. To better explain our CEM, we use a graph to show
standard convolution, atrous convolution, and grouped convolution, as shown in Figure 4.
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Figure 3. The CEM structure consists of two branches. One branch is processed by dilated convolu-
tions with rates of 1, 3, and 5. The other is processed by grouped convolutions divided into groups 1,
4, and 8, respectively. Finally, two branches are processed by concatenating.

Figure 4. Different convolution visualization results. (a) is standard convolution, kernel size is 3 × 3
with padding 1, and the stride is 1. (b) represents atrous convolution, kernel size is 3× 3 with dilation
rates 3, padding is 3, and stride is 1. (c) is the standard convolution, and the kernel size is 1 × 1.
(d) shows the grouped convolution is split into four groups.

We use a one-dimensional expansion to demonstrate the different convolutions used
in our CEM components. The 3 × 3 convolution allows for the efficient extraction of
local features, and the underlying architecture is optimized for it. The 1 × 1 convolution
mainly serves to integrate information between feature channels. The advantage of atrous
convolution is that it can increase the receptive field without reducing the feature resolution.
The characteristic of grouped convolution is that the computational complexity decreases
with the number of groups increasing.

Having understood the purpose and core components of CEM, we describe it in a
more rigorous mathematical formulation and explain why it is beneficial for the network.
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Specifically, let us first consider an input feature X ∈ R
C×H×W , where C, H, and W

indicate the channel number, spatial height, and width. CEM performs three parallel
convolutions with different atrous rates to enlarge the receptive field without adding extra
kernel parameters. The formula for the three parallel atrous convolutions with different
atrous rates is as follows:

Od = ∑N
k=1 ∑N

a=1 Dk,2a−1(X), (1)

In Equation (1), where X ∈ R
C×H×W is the input feature, Od ∈ R

C×H×W is the output
feature, where Dk,2a−1(·) means the atrous convolution, k, a denotes the filter size and the
dilation rates, respectively, and N represents the number of atrous convolutions. We add
three different sets of Dk,2a−1(·) to obtain the intermediate output Od.

Considering that the atrous convolution loses detailed information, we add different
groups of convolutions to supplement the different levels of detailed information. In
addition, we also apply different sizes of convolution kernels to obtain different spatial
resolutions, effectively alleviating object scale variation in UAV images. Grouped convolu-
tion is lightweight and efficient, adding a small amount of extra computation to improve
performance. We use three levels of different kernel sizes: 3 × 3, 5 × 5, and 7 × 7, and the
corresponding grouping depths are 1, 4, and 8, respectively. It can be formulated as follows:

Og = Concate
([

Gk,g(X), Gk,g(X), Gk,g(X)
])

, (2)

Gk,g(·) ∈ R
C/3×H×W is grouped convolution, k and g correspondingly denote the filter size

and the split into different groups, and Concate(·) means the concatenation operation. Og
is the concatenation of grouped convolution operations of different groups.

Finally, we concatenate Od and Og to obtain semantically rich output features. The
CEM formula is defined as:

O = conv
(
Concate

([
Og, Od

]))
, (3)

conv(·) is 1 × 1 convolution. We apply a 1 × 1 convolution to reduce the feature maps to
the same as the X. Note that in this architecture, when we connect the input and output,
there are multiple branching paths to obtain different levels of receptive fields. Our CEM
uses a sizeable receptive field to capture semantic information and a small receptive field to
capture location information. Therefore, the CEM module can effectively deal with object
scale changes.

3.2. Feature Alignment Module

We noticed that the main reason for the poor detection of small objects in aerial image
detectors is that the location information obtained by the fusion of adjacent feature layers is
inaccurate, and small objects are susceptible to location deviation. To this end, we introduce
the FAM to add modulated deformable convolution and channel attention based on FPN.

First, let us review the FPN structure, as shown in Figure 5. In FPN, high-level features
use up-sampling operations and fuse with the feature maps at low-level features, enabling
the low-level feature to obtain high-level semantic information. The resulting features are
naturally endowed with different levels of contextual information. However, the significant
problem is that merging adjacent layer features without special processing destroys feature
consistency at scale and semantic levels. We introduce the FAM module to solve this
problem. The structure of FAM is shown in Figure 6.
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Figure 5. The structure of FPN.

Figure 6. The structure of FAM.

Next, we introduce the core parts of FAM in detail. Our survey found that traditional
convolution cannot make adaptive changes when adjacent features are fused due to fixed
operation rules. Deformable convolutions [54] learn offsets for the convolution sampling
points with freeform sampling grids, and the aim is to make the receptive field adaptively
zoomed. Due to this characteristic, it is widely used for feature alignment or dealing
with dense spatial transformations and can learn according to the actual scene of the data.
Formally, the deformable convolution operation is defined as follows:

Y(P) = ∑K
n=1 Wn × X(P + Pn + ΔPn), (4)

where X ∈ R
C×H×W is the input feature map, Y(P) ∈ R

C×H×W is the out feature map, and
K and n refer to the size of the kernel and the index, respectively. Wn, P, and Pn are the
nth weight, indices of the center, and the nth prespecified offset, respectively. ΔPn is the
additional learnable offset. Since the learnable offset ΔPn is typically fractional, we use the
bilinear interpolation difference to obtain the position of the ΔPn in the feature map.

To further enhance the feature alignment ability, modulated deformable convolu-
tion [55] adds an adjustment mechanism based on deformable convolution, which can
effectively adjust the offset of the perceptual input features. The modulated deformable
convolution is defined in Equation (5):

Y(P) = ∑K
n=1 Wn × X(P + Pn + ΔPn) · Δmn, (5)

where Δmn is the modulation scalar for the nth location. FAM uses modulated deformable
convolution to learn offsets after the up-sampling of high-level features.

Furthermore, we pass the channel information of high-level features to low-level
features through channel attention to inject the low-level features with semantic information.
SENet pioneered channel attention, with consists of two parts: squeeze and excitation.
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SENet uses global average pooling to recalibrate the channel-wise relationship adaptively.
This operation can then be expressed as:

Yi =
(
sigmoid

(
W2 × ReLU

(
W1Favg(X)

)))× X, (6)

k =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣, (7)

where W1 and W2 represent the fully connected layers, Yi ∈ R
C×H×W is the result of

the channel attention output, Favg(·) is global average pooling, and sigmoid represents
activation function and aim to normalize the data. SENet uses two fully connected layers
to learn channel weights. In order to reduce the complexity of the model, dimensionality
reduction operations are performed, which bring some negative effects. We use one-
dimensional convolution of size k instead of full connection, and k represents the range
of channel learning. The size of k can be obtained by Formula (7), where C is the channel
number, and γ and b are the two adjustable variables in the non-linear mapping. We set γ
and b to 2 and 1, respectively.

Ci1 =
(
sigmoid

(
C1Dk

(
Favg (Pi+1) + Fmax (Pi+1)

)))× Ci, (8)

where C1Dk(·) is the one-dimensional convolution of size k, Ci ∈ R
C×2H×2W is a high-

level feature, Pi+1 ∈ R
C×H×W is a low-level feature, and Fmax is global max pooling.

Ci1 ∈ R
C×2H×2W is the result of the attention output. Different from FPN, our FAM uses

learnable deconvolution to enlarge feature map resolution instead of up-sampling and then
uses modulated deformable convolution adaptively learned feature offset to align spatial
features. FAM method can be written as:

Pi = Y(Deconv(Pi+1)) + conv(Ci1), (9)

where Ci and Pi+1 are the inputs of two adjacent feature layers, Y(·) represents the modu-
lated deformable convolution, Pi ∈ R

C×H×W is the output of FEM, and Deconv(·) means
deconvolution. We perform the Deconv(·) operation on the low resolution Pi+1 to obtain
higher-resolution features. FAM suppresses inconsistencies in gradient computation by
modulating deformable convolution before feature aggregation. In addition, we obtain the
channel attention of high-level semantic features to low-level features.

4. Experiments

In this section, we first introduce the dataset and implementation details. Then, we
conduct ablation studies to prove the effectiveness of each model. In addition, we compare
the proposed SEPNet with other methods and provide detailed and abundant analyses
of the experiments provided to understand our framework better. Finally, we present a
visual analysis of the detection results, which shows that the problems of small objects and
significant scale changes in SEPNet are indeed alleviated.

4.1. The Dataset and Evaluation Metrics

To evaluate the proposed method, we conduct quantitative experiments on aerial
image datasets VisDrone 2019 and PASCAL VOC 2007/12, respectively.

VisDrone2019: The drone platform acquires the dataset and contains different weather
and light conditions representing common scenarios in our daily lives. The image scale of
the dataset is approximately 2000 × 1500 pixels. The VisDrone 2019 has 10 object classes
and consists of 6471 training images, 548 validation images, and 1610 testing images.

PASCAL VOC2007/12: The PASCAL VOC 2007/12 is the standard object detection
dataset with 20 object classes and includes 22,136 training images and 5000 validation
images. We train models on PASCAL VOC2007/12 train-val sets and report results on the
VOC2007 test set with a total of 4952 images.
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For VisDrone, we follow the standard MS COCO [56] protocol where average precision
(AP) is measured by averaging multiple intersection over union (IoU) [57] thresholds
to evaluate the performance. We use AP, AP50, AP75, APs (area < 322 pixels), APm
(322 < area < 962 pixels), and APl (area > 962 pixels) as the metrics to measure precision;
AP50 and AP75 are computed at the single complete intersection over union (CIoU) [58]
threshold 0.5 and 0.75 overall categories. For PASCAL VOC, we use mean of average
precision (mAP) to evaluate our model, and the CIoU threshold is set to 0.5.

4.2. Data Augmentation

Data augmentation only processes the input image without changing the network
structure or adding extra parameters. Therefore, it hardly adds extra computation and can
be applied to various computer vision tasks. In SEPNet, we use a combination of geometric
augmentations (such as horizontal flipping, random cropping of the images, resizing,
etc.) and photometric augmentations (such as brightness adjustment, contrast adjustment,
saturation adjustment, and adding noise to images) in data augmentation. In addition, we
follow the training practices below: Most images are large in VisDrone, resulting in the
disappearance of small target features after down-sampling by the deep network. Therefore,
input images are uniformly divided into four patches without overlapping during training
and inference. Each patch is fed into the network for further precise detection. Meanwhile,
the original images are also forwarded to the network to detect large objects and prevent
the clipped target from being undetectable. Finally, the detection results of each patch and
the original image are combined to obtain the final result. The image is divided into a four
patches strategy, as shown in Figure 7.

Figure 7. In the data augmentation method, input images are uniformly divided into 4 patches
without overlapping.

4.3. Implementation Details

For most experiments, we trained and evaluated the models on a machine with 1
NVIDIA RTX 3090 GPU, CUDA 11.1, and implemented the proposed SEPNet on Pytorch
1.70. Our experiments were conducted on VisDrone and PASCAL VOC datasets, respec-
tively. We selected object detectors RetinaNet as our baseline model, and ResNet pretrained
in ImageNet was used as the backbone.

In the training phase, we applied the stochastic gradient descent (SGD) optimizer with
a batch size of 32 images per GPU. Weight decay and momentum were set to 0.0005 and 0.9.
We trained our models for 150 epochs, with the initial learning rate set to 0.001, decaying
by 10 separately at epochs 90 and 120, and the resolution size of the input image was set to
800 × 800. On PASCAL VOC, the epochs were set to 200, and the learning rate was set to
0.005 and decreased 0.1 times after the 90th and 150th rounds.

The loss function for classification was the focal loss [15], and the smooth L1 [59] was
used for regression. The overall training objective was:

Loss =
1

NPOS
∑i Li

cls +
1

NPOS
∑j Lj

reg, (10)

where N is the number of matched positive samples, Li
cls and Lj

reg stand for the classification
loss and regression loss, respectively, NPOS is the number of positive samples, i are all
positive and negative samples, and j are all positive samples. For data augmentation, we
adopted the same method as that in Section 4.2. During the inference process, bounding
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box regression was the crucial step. IoU measures the positional relationship between
the predicted box and the ground-truth box. However, IoU has the problems of slow
convergence and inaccurate regression when detecting small objects. Therefore, IoU was
replaced by CIoU loss. Unlike IoU, CIoU considers bounding box overlap size, center point
distance, and aspect ratio. IoU is defined as shown in equation:

IoU =
|A ∩ B|
|A ∪ B| , (11)

where A and B are the ground-truth box and predicted box. Penalty term can be repre-
sented as:

RCIoU =
ρ2(b, bgt)

c2 + αυ, (12)

where b and bgt are the central points of the predicted box and ground-truth box, ρ(·)
denotes the Euclidean distance, and c is the diagonal length of the smallest enclosing box
covering the two boxes. v measures the consistency of the aspect ratio as follows:

ν =
4

π2

(
arc tan

wgt

hgt − arc tan
w
h

)2

, (13)

where wgt and hgt are the width and height of the ground-truth box, and w and h denote
the width and height of the predicted box. α is a positive trade-off parameter, as seen in
Equation (14):

α =
υ

(1− IoU) + υ
. (14)

The loss function can be defined as:

CIoU = 1− IoU + RCIoU . (15)

4.4. Ablation Study

In this section, we conducted ablation experiments to analyze the effectiveness of each
component and compared them with the baseline model RetinaNet on the VisDrone dataset.

We gradually applied data augmentation, CEM, and FAM to the baseline model to
verify its effectiveness and compare it with the baseline model. At the same time, we
analyzed why each component can improve network performance.

Ablation study results on the VisDrone test set are shown in Table 1, and the IoU
threshold for non-maximum suppression was set to 0.5. We can observe that our method
significantly improved object detection performance, especially for small objects. Specifi-
cally, data enhancement saw a 1.1% AP increase without introducing additional parameters;
CEM and FAM improved the baseline method by 0.6% AP and 0.5% AP and introduced
2.3M and 2.1M parameters, respectively. Combining three strategies improved baseline
model detection performance from 21.3% to 23.5% AP when using ResNet-50 as the back-
bone. In addition, our strategy significantly improved small object detection by 2.2% AP,
only adding 4.4M parameters. The above experimental results demonstrate that the CEM
component can effectively supplement contextual information of deep networks to improve
scale variation detection performance. It was also verified that the FAM embedded in the
baseline model is helpful for the fusion of adjacent features and effectively improves the
detection results of small objects. At the same time, our data augmentation strategy can
effectively avoid the problem of losing small object information during down-sampling, so
it can improve the detection accuracy of small objects.
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Table 1. Ablation study results on VisDrone. RetinaNet was selected as the baseline, and we gradually
added our components to the baseline to verify the effectiveness of each component. “DA” represents
the data augmentation.

Backbone DA CEM FAM AP APs APm APl Params

ResNet-50

Baseline 21.3 11.2 32.2 47.5 37.8 M√
22.4 12.3 32.9 48.1 37.8 M√
21.9 11.8 32.7 48.3 40.1 M√
21.8 11.9 32.5 47.7 39.9 M√ √ √
23.5 13.5 33.8 48.9 42.2 M

To verify the generalization ability of proposed method, two components were trained
and tested on the PASCAL VOC dataset. We gradually added each component to the
baseline model and analyzed the accuracy and number of parameter relationships using
ResNet-19, ResNet-50, ResNet-101, and ResNet-152 as the backbone network, respectively.
The experimental results are shown in Figure 8.

Figure 8. Analysis of the relationship between accuracy and number of parameters in the PASCAL
VOC test set.

In the PASCAL VOC test set, for ResNet-19 as the backbone network, the detection
accuracy was increased by 1.4% and 0.7% after adding CEM and FAM components, re-
spectively. Combining the use of CEM and FAM components, accuracy was increased by
3.3%, and the number of parameters was increased by 4.4M. For ResNet-50 as the backbone
network, combining two components improved baseline model detection performance
from 75.6% to 77.8%. For ResNet-101 as the backbone network, each component also
improved the model’s accuracy. It is worth noting that when the backbone network was
switched from ResNet-101 to ResNet-152, combining the two components into the baseline
model, the accuracy no longer increased.

These experiments prove that our two components achieve significant improvements
by introducing fewer additional parameters and can adapt to different datasets, indicating
their effectiveness and generality.
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4.5. Comparisons with Other Methods

Regarding VisDrone and PASCAL VOC, we compared the performance of our SEPNet
with other popular one-stage detectors and two-stage detectors. The experimental results
are shown in Table 2.

Table 2. Comparison of our method with other state-of-the-art methods for object detection on the
VisDrone test set.

Method Backbone AP AP50 AP75

One-stage:

RetinaNet [15] Res101 11.8 21.4 11.6
CenterNet [29] ResNext-101-64x4d 14.2 19.3 15.5

RefineDet512 [60] VGG-16 14.9 28.8 14.1
FPN [35] VGG-16 16.5 32.2 14.9

CornerNet [26] Hourglass-104 17.4 34.1 15.8

Two-stage:

Cascade R-CNN [61] ResNet101 16.1 31.9 15.0
Light-RCNN [62] ResNet101 16.5 32.8 15.1

Ours:

SEPNet ResNext-101 18.9 34.8 16.7

In this experiment, we used the training set of VisDrone for training and the test
set for validation. Table 2 shows the comparison of our proposed method with some
current popular methods. Our SEPNet outperformed Cascade R-CNN and Light-RCNN
by 2.8% and 2.4%, respectively. Compared with existing one-stage methods, our SEPNet
outperformed CornerNet by 1.5%, 0.7%, and 0.9% on AP, AP50, and AP75, respectively.

In addition to the contrast experiments on VisDrone2019, we also conducted experi-
ments on PASCAL VOC to verify the generalization of SEPNet. We reported results on the
PASCAL VOC test set. The experimental results are shown in Table 3.

Table 3. Results on the PASCAL VOC test set. Comparison with the other state-of-the-art methods,
ours is better.

Method Backbone Train Test mAP/%

One-stage:

RFBNet [63] VGG16 VOC2007 + 2012 VOC2007 76.8
SSD300 [28] VGG16 VOC2007 + 2012 VOC2007 77.1
SSD512 [28] VGG16 VOC2007 + 2012 VOC2007 78.5
DSSD [64] ResNet-101 VOC2007 + 2012 VOC2007 78.6

CenterNet [29] ResNet-101 VOC2007 + 2012 VOC2007 78.7
YOLO v3 [65] Darknet-53 VOC2007 + 2012 VOC2007 79.4

FCOS [30] ResNet-101 VOC2007 + 2012 VOC2007 80.1
CenterNet [29] DLA VOC2007 + 2012 VOC2007 80.7

Two-stage:

Fast R-CNN [59] VGG16 VOC2007 + 2012 VOC2007 70.0
Faster R-CNN [27] ResNet-101 VOC2007 + 2012 VOC2007 76.4

R-FCN [66] ResNet-101 VOC2007 + 2012 VOC2007 80.5

Ours:

SEPNet ResNet-101 VOC2007 + 2012 VOC2007 81.5

We compared our SEPNet with popular detectors in the PASCAL VOC test set. The
experimental results show that our SEPNet outperforms the advanced one-stage detection
algorithms DSSD and CenterNet by 2.9% and 0.8%, respectively. Compared to the two-
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stage algorithms Faster R-CNN and R-FCN, our SEPNet also increased by 5.1% and 1%,
respectively. The experimental observations on the PASCAL VOC test dataset maintained
a consistent improvement with the experimental results on the VisDrone dataset, which
demonstrates that our method has similar generalization ability to other datasets and can
be applied to different scenes.

To further demonstrate the effectiveness of the proposed SEPNet more intuitively, we
present some visualization results in Figures 9 and 10. We compared our methods with
RetinaNet. RetinaNet can only detect large objects close to the camera and misses small
objects far away. Compared with RetinaNet, we proposed that SEPNet could detect not
only large objects in the image but also small objects far from the camera. This indicates
that our SEPNet can capture objects of different scales more accurately while paying more
attention to the small object region rather than the surrounding background. It can be seen
from the visualization results that SEPNet can solve the problem of missed detection of
small objects well. It can also be seen that SEPNet can adapt well to object scale changes
and improve detection accuracy.

Figure 9. Visualization of detection results on VisDrone. Our SEPNet predicts more refined bound-
aries and learns more detailed information.
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Figure 10. Continuation. Other visualization examples of detection results on PASCAL VOC.

5. Conclusions

This paper proposes a one-stage scale enhancement pyramid network (SEPNet) to
solve small object and extreme scale variation problems in UAV images. The proposed
method consists of two main core components: CEM maintains deep features with rich
contextual information, avoiding the loss of small target information and FAM addresses
the lack of effective communication between adjacent features. Our results show that the
proposed components offer significant improvements. Furthermore, our SEPNet exhibits
good generalization in different datasets. In future work, we will focus on designing
lightweight structures for models to be deployed into embedded devices.
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