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Preface
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phenomena, etc., can be mathematically formulated and rigorously solved by modeling them in linear

and nonlinear differential and partial differential equations. This Special Issue titled “Differential

Equations and Asymptotic Analysis: Recent Advances and Applications” consists of a collection of

papers written by eminent mathematicians and experts in their fields, covering many different areas
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Article

Fixed Point Theorems for Set-Valued Contractions in
Metric Spaces

Seong-Hoon Cho

Department of Mathematics, Hanseo University, Seosan 356-706, Chungnam, Republic of Korea;
shcho@hanseo.ac.kr; Tel.: +82-41-660-1316

Abstract: In this paper, the concepts of Wardowski-type set-valued contractions and Işik-type set-
valued contractions are introduced and fixed point theorems for such contractions are established. A
positive answer to the open Question is given. Examples to support main theorems and an application
to integral inclusion are given.

Keywords: fixed point; contraction; generalized contraction; set-valued contraction; metric space

MSC: 47H10; 54H25

1. Introduction and Preliminaries

Wardowski [1] introduced the notion of F-contraction mappings and the generalized
Banach contraction principle by proving that every F-contractions on complete metric
spaces have only one fixed point, where F: (0, ∞) → (−∞, ∞) is a function such that

(F1) F is strictly increasing;
(F2) for all sequence {sn} ⊂ (0, ∞),

lim
n→∞

sn = 0 ⇐⇒ lim
n→∞

F(sn) = −∞;

(F3) there exists a point q ∈ (0, 1) : limt→0+ tqF(t) = 0.

Among several results ([2–18]) generalizing Wardowski’s result, Piri and Kumam [19]
introduced the concept of Suzuki-type F-contractions and obtained related fixed point
results in complete metric spaces, where F : (0, ∞) → (−∞, ∞) is a strictly increasing
function such that

(F4) inf F = −∞;
(F5) F is continuous on (0, ∞).

Nazam [20] generalized Wardowski’s result to four maps defined on b-metric spaces
and proved the existence of a common fixed point by using conditions (F2), (F3) and

(F6) τ + F(rsn) ≤ F(sn) =⇒ τ + F(rnsn) ≤ F
(
rn−1sn−1

)
for each r > 0, n ∈ N, where

τ > 0.

Younis et al. [18] generalized Nazam’s result in b-metric spaces using only condition
(F1). That is, they only used the strictly growth of F : (0, ∞) → (−∞, ∞) and distinguished
two cases: s = 1 and s > 1, where s is the coefficient of b-metric spaces. Younis et al. [21]
introduced the notion of Suzuki–Geraghty-type generalized (F, ψ)-contractions and gen-
eralized the result of [14] in partial b-metric spaces along with Geraghty-type contraction
with conditions (F1), (F4) and (F5), and they gave applications to graph the theory and
solution of some integral equations. Younis and Singh [22] extended Wardowski’s result to
b-metric-like spaces and obtained the sufficient conditions for the existence of solutions of
some class of Hammerstein integral equations and fractional differential equations.

Axioms 2024, 13, 86. https://doi.org/10.3390/axioms13020086 https://www.mdpi.com/journal/axioms
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On the other hand, Abbas et al. [23] and Abbas et al. [24] extended and general-
ized Wadorski’s result to two self mappings on partially ordered metric space and fuzzy
mappings on metric spaces, respectively, and proved the existence of a fixed point using
conditions (F1), (F2) and (F3).

Note that for a function F : (0, ∞) → (−∞, ∞), the following are equivalent:

(1) (F2) is satisfied;
(2) (F4) is satisfied;
(3) limt→0+ F(t) = −∞.

Hence, we have that

lim
n→∞

sn = 0 ⇒ lim
n→∞

F(sn) = −∞

whenever (F4) holds.

Very recently, Fabiano et al. [25] gave a generalization of Wardowski’s result [1] by
reducing the condition on function F : (0, ∞) → (−∞, ∞) and by using the right limit of
function F : (0, ∞) → (−∞, ∞). They proved the following Theorem 1.

Theorem 1 ([25]). Let (E, ρ) be a complete metric space. Suppose that T : E → E is a map such
that for all x, y ∈ E with ρ(Tx, Ty) > 0,

τ + F(ρ(Tx, Ty)) ≤ F(ρ(x, y))

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function. If (F1) is satisfied, then T possesses only
one fixed point.

In [25], Fabiano et al. asked the following question:

Question ([25]). Can conditions for the function F be reduced to (F1) and (F2), and can the
proof be made simpler in some results for multivalued mappings in the same way as it was
presented in [25] for single-valued mappings?

In this paper, we give a positive answer to the above question by extending the
above theorem to set-valued maps and obtain a fixed point result for Işik-type set-valued
contractions. We give examples to interpret main results and an application to integral
inclusion.

Let (E, ρ) be a metric space. We denote by CL(E) the family of all nonempty closed
subsets of E, and by CB(E) the set of all nonempty closed and bounded subsets of E.

Let H(·, ·) be the generalized Pompeiu–Hausdorff distance [26] on CL(E), i.e., for all
A, B ∈ CL(E),

H(A, B) =

{
max{supa∈A ρ(a, B), supb∈B ρ(b, A)}, if the maximum exists,
∞, otherwise,

where ρ(a, B) = inf{ρ(a, b) : b ∈ B} is the distance from the point a to the subset B.
Let δ(A, B) = sup{ρ(a, b) : a ∈ A, b ∈ B}. When A = {x}, we denote δ(A, B)

by δ(x, B).

For A, B ∈ CL(E), let D(A, B) = supx∈A d(x, B) = supx∈A infy∈B d(x, y).
Then, we have that for all A, B ∈ CL(E)

D(A, B) ≤ H(A, B) ≤ δ(A, B).
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Note that the following Lemma 1 can be obtained by applying the assumptions of
Lemma 1 to Theorem 4.29 of [27]. In fact, let F : (0, ∞) → (−∞, ∞) be monotonically
increasing (x < y implies F(x) ≤ F(y)) and {pn} be a given sequence of (0, ∞) such that

lim
n→∞

pn = l, where l > 0.

Then, it follows from Theorem 4.28 of [27] that we obtain the conclusion of Lemma 1.
Here, we give another proof of Lemma 1.

Lemma 1. Let l > 0, and let {tn}, {sn} ⊂ (l, ∞) be non-increasing sequences such that

tn < sn, ∀n = 1, 2, 3, · · · and lim
n→∞

tn = lim
n→∞

sn = l.

If F : (0, ∞) → (−∞, ∞) is strictly increasing, then we have

lim
n→∞

F(tn) = lim
n→∞

F(sn) = F
(
l+
) ≥ F(l).

where F(l+) denotes limt→l+ F(t).

Proof. As F is strictly increasing, the function F∗ : (0, ∞) → F((0, ∞)) defined by
F∗(t) = F(t) ∀t ∈ (0, ∞), is bijective and continuous on (0, ∞). We infer that

lim
t→l+

F∗(t) ≥ F∗(l), lim
n→∞

F∗(tn) = lim
t→l+

F∗(t) and lim
n→∞

F∗(sn) = lim
t→l+

F∗(t).

Since {tn} and {sn} are non-increasing, it follows from the strict increasingness of
F that

F∗(tn+1) ≤ F∗(tn) < F∗(sn) ≤ F∗(sn−1).

Hence, we obtain that

lim
t→l+

F∗(t) = lim
n→∞

F∗(tn+1) ≤ lim
n→∞

F∗(tn) ≤ lim
n→∞

F∗(sn) ≤ lim
n→∞

F∗(sn−1) ≤ lim
t→l+

F∗(t),

which implies
lim

n→∞
F∗(tn) = lim

n→∞
F∗(sn) = F∗

(
l+
)
.

Since F∗(t) = F(t) ∀t ∈ (0, ∞), we have the desired result.

Lemma 2 ([28]). Let (E, ρ) be a metric space. If {xn} is not a Cauchy sequence, then there exists
ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} such that m(k) is the
smallest index for which

m(k) > n(k) > k, ρ(xm(k), xn(k)) ≥ ε and ρ(xm(k)−1, xn(k)) < ε. (1)

Further, if
lim

n→∞
ρ(xn, xn+1) = 0,

then we have that

lim
k→∞

ρ(xn(k), xm(k)) = lim
k→∞

ρ(xn(k)+1, xm(k))

= lim
k→∞

ρ(xn(k), xm(k)+1) = lim
k→∞

ρ(xn(k)+1, xm(k)+1) = ε.
(2)

Lemma 3. Let (E, ρ) be a metric space, and let A, B ∈ CL(E). If a ∈ A and ρ(a, B) < c, then
there exists b ∈ B such that ρ(a, b) < c.

Proof. Let ε = c − ρ(a, B). It follows from the definition of infimum that there exists b ∈ B
such that ρ(a, b) < ρ(a, B) + ε. Hence, ρ(a, b) < c.

3
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Lemma 4. Let (E, ρ) be a metric space, and let A, B ∈ CL(E) and φ : [0, ∞) → [0, ∞) be a
strictly increasing function. If a ∈ A and ρ(a, B) + φ(ρ(a, B)) < c, then there exists b ∈ B such
that ρ(a, b) + φ(ρ(a, b)) < c.

Proof. Since φ is strictly increasing,

ρ(a, B) < φ−1(c − ρ(a, B)).

By Lemma 3, there exists b′ ∈ B such that

ρ(a, b′) < φ−1(c − ρ(a, B))

which yields
ρ(a, B) < c − φ

(
ρ(a, b′)

)
.

Again, by applying Lemma 3, there exists b′′ ∈ B such that

ρ(a, b′′) < c − φ
(
ρ(a, b′)

)
.

Let min{ρ(a, b′), ρ(a, b′′)} = ρ(a, b). Then, we have that

ρ(a, b) + φ(ρ(a, b)) < c.

Lemma 5. If (E, ρ) is a metric space, then K(E) ⊂ CL(E), where K(E) is the family of nonempty
compact subsets of E.

2. Fixed Point Results

Let (E, ρ) be a metric space, and let F : (0, ∞) → (−∞, ∞) be a strictly increasing
function. A set-valued map T : E → CL(E) is called a Wardowski-type contraction if the
following condition holds:

There exists a constant τ > 0 such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty)) ≤ F(m(x, y)), (3)

where m(x, y) = max{ρ(x, y), ρ(x, Tx), ρ(y, Ty), 1
2 [ρ(x, Ty) + ρ(y, Tx)]}.

We now prove our main result.

Theorem 2. Let (E, ρ) be a complete metric space. If T : E → CL(E) is a Wardowski-type
set-valued contraction, then T possesses a fixed point.

Proof. Let x0 ∈ E be a point, and let x1 ∈ Tx0.
If x1 ∈ Tx1, then the proof is completed.
Assume that x1 /∈ Tx1. Then, ρ(x1, Tx1) > 0, because Tx1 ∈ CL(X). Hence,

H(Tx0, Tx1) ≥ d(x1, Tx1) > 0. From (3) we have that

τ + F(H(Tx0, Tx1)) ≤ F(m(x0, x1)). (4)

We infer that

m(x0, x1) = max{ρ(x0, x1), ρ(x0, Tx0), ρ(x1, Tx1),
1
2
[ρ(x0, Tx1) + ρ(x1, Tx0)]}

=max{ρ(x0, x1), ρ(x1, Tx1)}, because that ρ(x0, Tx0) ≤ ρ(x0, x1) and
1
2
[ρ(x0, Tx1) + ρ(x1, Tx0)] ≤ 1

2
[ρ(x0, x1) + ρ(x1, Tx1)].

4
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If m(x0, x1) = ρ(x1, Tx1), then from (4) we obtain that

F(ρ(x1, Tx1)) < τ + F(H(Tx0, Tx1)) ≤ F(ρ(x1, Tx1)),

which is a contradiction. Thus, m(x0, x1) = ρ(x0, x1). It follows from (4) that

1
2

τ + F(ρ(x1, Tx1)) < τ + F(H(Tx0, Tx1)) ≤ F(ρ(x0, x1)). (5)

Since (F1) is satisfied, we obtain that

ρ(x1, Tx1) < F−1(
1
2

τ + F(H(Tx0, Tx1))).

Applying Lemma 3, there exists x2 ∈ Tx1 such that

ρ(x1, x2) < F−1(
1
2

τ + F(H(Tx0, Tx1))),

which implies

F(ρ(x1, x2)) <
1
2

τ + F(H(Tx0, Tx1)) ≤ F(ρ(x0, x1))− 1
2

τ. (6)

Again from (3) we have that

1
2

τ + F(ρ(x2, Tx2)) < τ + F(H(Tx1, Tx2)) ≤ F(ρ(x1, x2)) (7)

which implies

ρ(x2, Tx2) < F−1(
1
2

τ + F(H(Tx1, Tx2))).

By Lemma 3, there exists x3 ∈ Tx2 such that

ρ(x2, x3) < F−1(
1
2

τ + F(H(Tx1, Tx2))).

Hence, we obtain that

F(ρ(x2, x3)) <
1
2

τ + F(H(Tx1, Tx2)) ≤ F(ρ(x1, x2))− 1
2

τ. (8)

Inductively, we have that for all n ∈ N,

xn ∈ Txn−1

and
F(ρ(xn, xn+1)) <

1
2

τ + F(H(Txn−1, xn)) ≤ F(ρ(xn−1, xn))− 1
2

τ. (9)

Because F is a strictly increasing function,

ρ(xn, xn+1) < ρ(xn−1, xn), ∀n ∈ N.

Hence, there exists r ≥ 0 such that

lim
n→∞

ρ(xn, xn+1) = r.

Assume that r > 0. By Lemma 1, we have that

lim
n→∞

F(ρ(xn, xn+1)) = lim
n→∞

F(ρ(xn−1, xn)) = lim
t→r+

F(t) = F(r+) ≥ F(r). (10)

5
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Taking limit n → ∞ in (9) and using (10), we obtain that

F(r+) ≤ F(r+)− 1
2

τ,

which is a contradiction, because τ > 0. Thus, we obtain that

lim
n→∞

ρ(xn, xn+1) = 0. (11)

Now, we show that {xn} is a Cauchy sequence. Assume that {xn} is not a Cauchy
sequence. Then, there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)}
of {xn} such that m(k) is the smallest index for which (1) holds. That is, the following
are satisfied:

m(k) > n(k) > k, ρ(xm(k), xn(k)) ≥ ε and ρ(xm(k)−1, xn(k)) < ε.

It follows from (3) that

F(ρ(xn(k)+1, Txm(k)) < τ + F(ρ(xn(k)+1, Txm(k))

≤ τ + F(H(Txn(k), Txm(k)) ≤ F(m(xn(k), xm(k))).
(12)

We infer that

ε ≤ ρ(xn(k), xm(k)) ≤ m(xn(k), xm(k))

=max{ρ(xn(k), xm(k)), ρ(xn(k), Txn(k)), ρ(xm(k), Txm(k)),

1
2
[ρ(xn(k), Txm(k)) + ρ(xm(k), Txn(k))]}

≤max{ρ(xn(k), xm(k)), ρ(xn(k), xn(k)+1), ρ(xm(k), xm(k)+1),

1
2
[ρ(xn(k), xm(k)+1) + ρ(xm(k), xn(k)+1)]}

(13)

Taking limit as k → ∞ on both sides of (13) and using (2), we obtain that

lim
k→∞

m(xn(k), xm(k)) = ε. (14)

Since F is strictly increasing, from (12) we have that

ρ(xn(k)+1, Txm(k)) < F−1(τ + F(ρ(xn(k)+1, Txm(k))).

By applying Lemma 3, there exists ym(k) ∈ Txm(k) such that

ρ(xn(k)+1, ym(k)) < F−1(τ + F(ρ(xn(k)+1, Txm(k))).

Hence,
F(ρ(xn(k)+1, ym(k))) < τ + F(ρ(xn(k)+1, Txm(k)).

Thus, it follows from (12) that

F(ρ(xn(k)+1, ym(k)))

<τ + F(ρ(xn(k)+1, ym(k))) < τ + F(ρ(xn(k)+1, Txm(k))

≤τ + F(H(Txn(k), Txm(k))

≤F(m(xn(k), xm(k)))

(15)

which leads to
ρ(xn(k)+1, ym(k)) < m(xn(k), xm(k)), ∀k = 1, 2, 3, · · · . (16)

6
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By taking lim sup as k → ∞ in (16) and using (14), we have that

lim
k→∞

sup ρ(xn(k)+1, ym(k)) ≤ ε. (17)

Since
ρ(xn(k)+1, Txm(k)) ≤ ρ(xn(k)+1, ym(k)),

ρ(xn(k)+1, xm(k))

≤ρ(xn(k)+1, Txm(k)) + ρ(Txm(k), xm(k))

≤ρ(xn(k)+1, ym(k)) + ρ(xm(k)+1, xm(k)).

(18)

Taking lim inf as k → ∞ in (18) and using (2), we obtain that

ε ≤ lim
k→∞

inf ρ(xn(k)+1, ym(k)). (19)

It follows from (17) and (19) that

lim
k→∞

ρ(xn(k)+1, ym(k)) = ε. (20)

By applying Lemma 1 to (15) with (14), (16) and (20), we obtain that

F(ε+) ≤ τ + F(ε+) ≤ F(ε+)

which leads to a contradiction. Hence, {xn} is a Cauchy sequence. From the completeness
of E, there exists

x∗ = lim
n→∞

xn ∈ E.

It follows from (3) that

F(ρ(xn+1, Tx∗)) < τ + F(ρ(xn+1, Tx∗))
≤τ + F(H(Txn, Tx∗)) ≤ F(m(xn, x∗)),

(21)

where m(xn, x∗) = max{ρ(xn, x∗), ρ(xn, xn+1), ρ(x∗, Tx∗), 1
2 [ρ(x∗, xn+1) + ρ(xn, Tx∗)]}.

Since F is strictly increasing, from (21) we have that

ρ(xn+1, Tx∗) < m(xn, x∗), (22)

and thus
lim

n→∞
ρ(xn+1, Tx∗) = lim

n→∞
m(xn, x∗) = ρ(x∗, Tx∗). (23)

Assume that ρ(x∗, Tx∗) > 0. By Lemma 1, we have that

lim
n→∞

F(ρ(xn+1, Tx∗)) = lim
n→∞

F(m(xn, x∗))

= lim
t→ρ(x∗ ,Tx∗)+

F(t) = F(ρ(x∗, Tx∗)+).
(24)

Applying (24) to (21), we obtain that

F(ρ(x∗, Tx∗)+) ≤ τ + F(ρ(x∗, Tx∗)+) ≤ F(ρ(x∗, Tx∗)+)

which leads to a contradiction. Hence, ρ(x∗, Tx∗) = 0, and x∗ ∈ Tx∗.

The following example interprets Theorem 2.

7
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Example 1. Let E = [0, 1] and ρ(x, y) = |x − y|, ∀x, y ∈ E. Then (E, ρ) is a complete metric
space. Define a set-valued map T : E → CL(E) by

Tx =

{
{1}, (x = 0)
{ 2

5 , 1
2}, (0 < x ≤ 1).

Let τ = ln 2.1
2 and F(t) = ln t, ∀t > 0. We show that T is a Wardowski-type set-valued

contraction. We now consider the following two cases.
First, let x = 0 and 0 < y ≤ 1.
Then, H(Tx.Ty) = 3

5 . We obtain that

τ + F(H(Tx, Ty))− F(ρ(x, Tx))

=τ + F
(

3
5

)
− F(1)

= ln
2.1
2

+ ln
3
5
− ln 1

= ln 6.3 − ln 10 ≈ −0.46 < 0.

Thus,
τ + F(H(Tx, Ty)) < F(ρ(x, Tx)),

which implies
τ + F(H(Tx, Ty)) < F(m(x, y)).

Second, let 0 ≤ x < 1 and y = 1.
Then H(Tx, Ty) = 4

5 . We infer that

τ + F(H(Tx, Ty))− F(ρ(y, Ty))

=τ + F
(

4
5

)
− F(1)

= ln
2.1
2

+ ln
4
5
− ln 1

= ln 8.4 − ln 10 ≈ −0.17 < 0.

Thus,
τ + F(H(Tx, Ty)) < F(ρ(y, Ty))

which leads to
τ + F(H(Tx, Ty)) < F(m(x, y)).

Hence, T is a Wardowski-type set-valued contraction. The assumptions of Theorem 2 are
satisfied. By Theorem 2, T possesses two fixed points, 2

5 and 1
2 .

Remark 1. Theorem 2 is a positive answer to Question 4.3 of [25].

Remark 2. Theorem 2 is an extention of Theorem 2.2 [13] to set-valued maps without conditions
(F2) and (F3).

By Theorem 2, we have the following results.

Corollary 1. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty)) ≤ F(l(x, y)) (25)

8
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where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function, and

l(x, y) =max{ρ(x, y),
1
2
[ρ(x, Tx) + ρ(y, Ty)],

1
2
[ρ(x, Ty) + ρ(y, Tx)]}.

If (F1) is satisfied, then T possesses a fixed point.

Proof. Since l(x, y) ≤ m(x, y), F(l(x, y)) ≤ F(m(x, y)). Thus, (25) implies (2). By Theorem 2,
T possesses a fixed point.

Corollary 2. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty)) ≤ F(ρ(x, y)) (26)

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function. If (F1) is satisfied, then T possesses a
fixed point.

Proof. Since ρ(x, y) ≤ m(x, y) and (F1) holds, (26) implies (2). By Theorem 2, T possesses a
fixed point.

Corollary 3. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty))

≤F(aρ(x, y) + bρ(x, Tx) + cρ(y, Ty) + e[ρ(x, Ty) + ρ(y, Tx)])
(27)

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function, and a, b, c, e ≥ 0 and a + b + c + 2e = 1.
If (F1) is satisfied, then T possesses a fixed point.

Proof. It follows from (27) that

τ + F(H(Tx, Ty))

≤F(aρ(x, y) + bρ(x, Tx) + cρ(y, Ty) + e[ρ(x, Ty) + ρ(y, Tx)])

=F(aρ(x, y) + bρ(x, Tx) + cρ(y, Ty)] + 2e
1
2
[ρ(x, Ty) + ρ(y, Tx)])

≤F((a + b + c + 2e)max{ρ(x, y), ρ(x, Tx), ρ(y, Ty),
1
2
[ρ(x, Ty) + ρ(y, Tx)]})

=F(m(x, y)).

By Theorem 2, T possesses a fixed point.

Corollary 4. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty))

≤F(aρ(x, y) + b[ρ(x, Tx) + ρ(y, Ty)] + c[ρ(x, Ty) + ρ(y, Tx)])
(28)

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function, and a, b, c ≥ 0 and a + 2b + 2c = 1. If
(F1) is satisfied, then T possesses a fixed point.

9
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Proof. It follows from (28) that

τ + F(H(Tx, Ty))

≤F(aρ(x, y) + b[ρ(x, Tx) + ρ(y, Ty)] + c[ρ(x, Ty) + ρ(y, Tx)])

=F(aρ(x, y) + 2b
1
2
[ρ(x, Tx) + ρ(y, Ty)] + 2c

1
2
[ρ(x, Ty) + ρ(y, Tx)])

≤F((a + 2b + 2c)max{ρ(x, y),
1
2
[ρ(x, Tx) + ρ(y, Ty)],

1
2
[ρ(x, Ty) + ρ(y, Tx)]})

=F(l(x, y)).

By Corollary 1, T possesses a fixed point.

Corollary 5. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty)) ≤ F(
1
2
[ρ(x, Tx) + ρ(y, Ty)]) (29)

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function. If (F1) is satisfied, then T possesses a
fixed point.

Proof. Since 1
2 [ρ(x, Tx) + ρ(y, Ty)] ≤ l(x, y) and (F1) holds, (29) implies (25). By Corollary 1,

T possesses a fixed point.

Corollary 6. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty)) ≤ F(
1
2
[ρ(x, Ty) + ρ(y, Tx)]) (30)

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function. If (F1) is satisfied, then T possesses a
fixed point.

Proof. Since 1
2 [ρ(x, Ty) + ρ(y, Tx)] ≤ l(x, y) and (F1) holds, implies (25). By Corollary 1, T

possesses a fixed point.

Remark 3. Corollary 4 is a generalization of the main theorem of [29]. Indeed, if F(t) = ln t, ∀t > 0
and we take T to be the self-mapping of E, then Corollary 4 becomes the main theorem of [29].

Nadler [30] extended Banach’s fixed point theorem to set-valued maps. We are call-
ing it Nadler’s fixed point theorem. We now prove the following theorem, which is a
generalization of Nadler’s fixed point theorem.

Theorem 3. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is an Işik-type
set-valued contraction, i.e., for each x, y ∈ E and each u ∈ Tx, there exists v ∈ Ty such that

ρ(u, v) ≤ φ(ρ(x, y))− φ(ρ(u, v)) (31)

where φ : [0, ∞) → [0, ∞) is a function such that

lim
t→0+

φ(t) = 0. (32)

Then, T possesses a fixed point.

Proof. Let x0 ∈ E, and let x1 ∈ Tx0. Then there exits x2 ∈ Tx1 such that

ρ(x1, x2) ≤ φ(ρ(x0, x1))− φ(ρ(x1, x2)).

10
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Again, there exists x3 ∈ Tx2 such that

ρ(x2, x3) ≤ φ(ρ(x1, x2))− φ(ρ(x2, x3)).

Inductively, we have a sequence {xn} ⊂ E such that for all n = 1, 2, 3, · · · ,

xn ∈ Txn−1 and ρ(xn, xn+1) ≤ φ(ρ(xn−1, xn))− φ(ρ(xn, xn+1)). (33)

It follows from (33) that {φ(ρ(xn−1, xn))} is a non-increasing sequence and bounded
below by 0. Hence, there exists r ≥ 0 such that

lim
n→∞

φ(ρ(xn−1, xn)) = r.

We show that {xn} is a Cauchy sequence.
Let m, n be any positive integers such that m > n. Then we have that

ρ(xn, xm)

≤ρ(xn, xn+1) + ρ(xn+1, xn+2) + · · ·+ ρ(xm−1, xm)

≤φ(ρ(xn−1, xn))− φ(ρ(xm−1, xm))

≤φ(ρ(xn−1, xn))− r.

(34)

Letting m, n → ∞ in (34), we obtain that

lim
n,m→∞

ρ(xn, xm) = 0.

Thus, {xn} is a Cauchy sequence. It follows from the completeness of E that

x∗ = lim
n→∞

xn exists. (35)

Now, we show that x∗ is a fixed point for T.
It follows from (31) that for xn ∈ Txn−1, there exists v ∈ Tx∗ such that

ρ(xn, v) ≤ φ(ρ(xn−1, x∗))− φ(ρ(xn, v)) ≤ φ(ρ(xn−1, x∗)). (36)

Taking limit n → ∞ in Equation (36) and using (32), we infer that

lim
n→∞

ρ(xn, v) = 0

which implies
x∗ = v ∈ Tx∗.

Example 2. Let E = {xn : xn = ∑n
k=1, n ∈ N} and ρ(x, y) = |x − y|, ∀x, y ∈ E. Then (E, ρ) is

a complete metric space.
Define a map T : E → CL(E) by

Tx =

{
{x1}, (x = x1)

{x1, x2, x3, · · · xn−1}, (x = xn).

Let φ(t) = 1
2 t, ∀t ≥ 0.

We show that condition (31) is satisfied.
Consider the following two cases.
First, let x = x1 and y = xn, n = 2, 3, 4, · · · .

11
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Then, for u = x1 ∈ Tx, there exists v = x1 ∈ Ty such that

ρ(u, v) = 0 <
1
2

ρ(x1, xn) = φ(ρ(x1, xn)) = φ(ρ(x1, xn))− φ(ρ(u, v)).

Second, let x = xn and y = xm, m > n, n = 2, 3, 4, · · · .
For u = xk ∈ Tx (k = 1, 2, 3, · · · , n − 1) , there exists v = xk ∈ Ty such that

ρ(u, v) = 0 <
1
2

ρ(xn, xm) = φ(ρ(xn, xm)) = φ(ρ(xn, xm))− φ(ρ(u, v)).

This show that T satisfies condition (31). Thus, all conditions of Theorem 3 hold. From
Theorem 3, T possesses a fixed point, x∗ = x1.

Corollary 7. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for each x, y ∈ E,

H(Tx, Ty) < φ(ρ(x, y))− φ(H(Tx, Ty)),

where φ : [0, ∞) → [0, ∞) is a strictly increasing function such that

lim
t→0+

φ(t) = 0.

Then, T possesses a fixed point.

Proof. Let x, y ∈ E and let u ∈ Tx. As φ is strictly increasing,

ρ(u, Ty) + φ(ρ(u, Ty)) < φ(ρ(x, y)).

Applying Lemma 4, there exists v ∈ Ty such that

ρ(u, v) + φ(ρ(u, v)) < φ(ρ(x, y)).

By Theorem 3, T possesses a fixed point.

From Theorem 3 we have the following result.

Corollary 8 ([31]). Let (E, ρ) be a complete metric space. Suppose that f : E → E is a map such
that for each x, y ∈ E,

ρ( f x, f y) ≤ φ(ρ(x, y))− φ(ρ( f x, f y))

where φ : [0, ∞) → [0, ∞) is a function such that

lim
t→0+

φ(t) = 0.

Then, f possesses a fixed point.

3. Application

In this section, we give an application of our result to integral inclusion. Let [a, b] ⊂
(−∞, ∞) be a closed interval, and let C([a, b], (−∞, ∞)) be the family of continuous mapping
from [a, b] into (−∞, ∞). Let E = C([a, b], (−∞, ∞)) and ρ(x, y) = supt∈[a,b] |x(t)− y(t)| for
all x, y ∈ E. Then, (E, ρ) is a complete metric space.

Consider the Fredholm type integral inclusion:

x(t) ∈
∫ b

a
K(t, s, x(s))ds + f (t), t ∈ [a, b] (37)

12
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where f ∈ E, K : [a, b] × [a, b] × (−∞, ∞) → CB((−∞, ∞)), and x ∈ E is the un-
known function.

Suppose that the following conditions are satisfied:

(1st) For each x ∈ E, K(·, ·, x(s)) = Kx(·, ·) is continuous;
(2nd) There exists a continuous function Z : [a, b] × [a, b] → [0, ∞) such that for all

t, s ∈ [a, b] and all u, v ∈ E,

|ku(t, s)− kv(t, s)| ≤ Z(t, s)ρ(u(s), v(s))

where ku(t, s) ∈ Ku(t, s), kv(t, s) ∈ Kv(t, s);
(3rd) There exists α > 1 such that

sup
t∈[a,b]

∫ b

a
Z(t, s)ds ≤ 1

2 + α
.

We apply the following theorem, known as Michael’s selection theorem, to the proof
of Theorem 5.

Theorem 4 ([32]). Let X be a paracompact space, and let B be a Banach space. Suppose that
F : X → B is a lower semicontinuous set-valued map such that for all x ∈ X, F(x) is a nonempty
closed and convex subset of B. Then F : X → B admits a continuous single valued selection.

Note that (−∞, ∞) with absolute value norm is a Banach space and closed intervals
and singleton of real numbers are a convex subset of (−∞, ∞).

Theorem 5. Let (E, ρ) be a complete metric space. If conditions (1st), (2nd) and (3rd) are satisfied,
then the integral inclusion (37) has a solution.

Proof. Define a set-valued map T : E → CB(E) by

Tx = {y ∈ E : y(t) ∈
∫ b

a
K(t, s, x(s))ds + f (t), t ∈ [a, b]}.

Let x ∈ E be given. For the set-valued map Kx(t, s) : [a, b]× [a, b] → CB((−∞, ∞)),
by applying Michael’s selection theorem, there exists a continuous map kx(t, s) : [a, b]×
[a, b] → (−∞, ∞) such that

kx(t, s) ∈ Kx(t, s), ∀t, s ∈ [a, b].

Thus, ∫ b

a
kx(t, s)ds + f (t) ∈ Tx,

and so Tx 
= ∅.
Since f and kx are continuous, Tx ∈ CB(E) for each x ∈ E.
Let y1 ∈ Tx1. Then,

y1(t) ∈
∫ b

a
K(t, s, x1(s))ds + f (t), t ∈ [a, b].

Hence, there exists kx1(t, s) ∈ Kx1(t, s), ∀t, s ∈ [a, b] such that

y1(t) =
∫ b

a
kx1(t, s)ds + f (t), ∀t, s ∈ [a, b].

13
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It follows from (2nd) that there exists z(t, s) ∈ Kx2(t, s) such that

|kx1(t, s)− z(t, s)| ≤ Z(t, s)ρ(x1(s), x2(s)), ∀t, s ∈ [a, b].

Let U : [a, b]× [a, b] → CB((−∞, ∞)) be defined by

U(t, s) = Kx2(t, s) ∩ {u ∈ (−∞, ∞) : ρ(kx1(t, s), u) ≤ ρ(x1(s), x2(s))}.

From (1st) U is continuous. Hence, it follows that there exists a continuous map
kx2 : [a, b]× [a, b] → (−∞, ∞) such that

kx2(t, s) ∈ U(t, s), ∀t, s ∈ [a, b].

Let

y2(t) =
∫ b

a
kx2(t, s)ds + f (t), ∀t, s ∈ [a, b].

Then,

y2(t) ∈
∫ b

a
Kx2(t, s)ds + f (t) =

∫ b

a
K(t, s, x2(s))ds + f (t), ∀t, s ∈ [a, b],

and so y2 ∈ Tx2.
Thus, we obtain that

ρ(y1, y2) =

∣∣∣∣∫ b

a
kx1(t, s)− kx2(t, s)ds

∣∣∣∣
≤ sup

t∈[a,b]

∫ b

a
|kx1(t, s)− kx2(t, s)|ds

≤ sup
t∈[a,b]

∫ b

a
Z(t, s)dsρ(x1(s), x2(s))

≤ 1
2 + α

ρ(x1(s), x2(s)).

Thus, we have that

(1 +
1
2

α)δ(Tx1, Tx2) ≤ 1
2

ρ(x1, x2)

which implies

(1 +
1
2

α)H(Tx1, Tx2) ≤ 1
2

ρ(x1, x2).

Hence, we obtain that

H(Tx1, Tx2)) ≤ φ(ρ(x1, x2))− φ(αH(Tx1, Tx2))

<φ(ρ(x1, x2))− φ(H(Tx1, Tx2)) where φ(t) =
1
2

t, ∀t ≥ 0.

By Corollary 7, T possesses a fixed point, and hence the integral inclusion (37) has
a solution.

4. Conclusions

Our results are generalizations and extensions of F-contractions and Işik contractions
to set-valued maps on metric spaces. We give a positive answer to Question 4.3 of [25] and
an application to integral inclusion.
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18. Younis, M.; Mirkov, N.; Savić, A.; Pantović, M.; Radenović, S. Some critical remarks on recent results concerning F-contractions in

b-metric spaces. Cubo 2023, 25, 57–66. [CrossRef]
19. Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014,

2014, 210. [CrossRef]
20. Nazam, M.; Arshad, M.; Postolache, M. Coincidence and common fixed point theorems for four mappings satisfying (αs, F)-

contraction. Nonlinear Anal. Model. Control 2018, 23, 664–690. [CrossRef]
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Abstract: The monotonic properties of positive solutions to functional differential equations of the
third order are examined in this paper. It is generally known that by optimizing the relationships
between a solution and its corresponding function, as well as its derivatives, one can improve the
oscillation criterion for neutral differential equations. Based on this, we obtain new relationships
and inequalities and test their effect on the oscillation parameters of the studied equation. To
obtain the oscillation parameters, we used Riccati techniques and comparison with lower-order
equations. Finally, the progress achieved in oscillation theory for third-order equations was measured
by comparing our results with previous relevant results.

Keywords: functional differential equations; third-order; monotonic properties of the positive
solutions; canonical case

MSC: 34C10; 34K11

1. Introduction

Third-order differential equations are used in many models, such as the model for
studying blood entry flows into a “stenosed artery”, an artery partially or totally occluded
due to the thickening of the arterial wall [1]. In addition, in nuclear reactor kinetics [2], by
constructing phase space solutions to third-order systems of equations and considering the
solutions to the equations as explicit functions of the independent variable, which enables
computer-aided phase space analysis, to perform a comprehensive and expeditious study
of the system behavior for any combination of parameter values of interest. Although third-
order differential equations have appeared in many models of life, they have received less
attention from researchers of first- and second-order differential equations. This lethargy
is due to the fact that this type of equation has a greater number of positive solution
classifications than equations of the first and second order, which further complicates its
study. In addition, its characteristic equation must contain a solution or solutions belonging
to the set of real numbers [3].

On the other hand, functional differential equations (FDEs) are one of the classes of
differential equations in which oscillatory behavior is common. The study of FDEs has
attracted the attention of many researchers recently, in terms of the qualitative behavior
of the solutions as well as the numerical solutions of these equations, see [4–8]. This type
of equation deals with the after-effects of life phenomena, which means the presence of

Axioms 2023, 12, 1086. https://doi.org/10.3390/axioms12121086 https://www.mdpi.com/journal/axioms
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deviating arguments that express the previous and current times of a phenomenon, and it is
known that these arguments increase the possibility of the existence of oscillatory solutions.
The retarded functional differential equation, or the delay differential equation (DDE) is
one of the basic subclasses of functional differential equations. This type is based on past
and current values of the time derivatives, which leads to more accurate and effective
future predictions. The deviating arguments, in this case, are called delays or time lags,
see [9,10]. When the highest order derivative appears with and without delay, it creates
another subclass of functional differential equations known as neutral delay differential
equations (NDDEs). This subclass has a wide scope for modeling, as we find many models
of chemistry, electricity, mechanics, and economics represented by NDDEs; see [11–13],
where the study of the asymptotic and monotonic properties, together with the oscillatory
behavior, of solutions to the third-order neutral delay differential equations was used to
model many life phenomena.

The study of the oscillatory behavior of differential equations has received great and
continuous attention from researchers. Philos [14] and Santra et al. [15,16] were interested
in first-order differential equations. While, the works in [17–22] were concerned with
even- and odd-order differential equations, with their various classifications. By reviewing
the previous literature, we can note that it included three basic steps in the conclusion of
oscillation criteria, regardless of the quality. These essential points can be summed up by
first classifying all positive solutions to the studied equation and then developing a new
or updated method to obtain improved relations and inequalities linking the solution, its
derivatives, and its corresponding function; lastly, excluding the positive solutions using
these improved relations and the chosen technique.

Therefore, this paper aimed to study and improve the monotonic properties of positive
solutions and then use them to develop new oscillation criteria for the half-linear third-order
neutral delay differential equation(

r(s)
(
z′′(s)

)α
)′

+ q(s)xα(σ(s)) = 0, (1)

for all s ≥ s0, where z(s) stands for the corresponding function

z(s) = x(s) + p(s)x(τ(s)). (2)

We assume the following assumptions hold:

(A1) α is a quotient of two odd positive integers;
(A2) r(s) ∈ C1([s0, ∞), (0, ∞)) and satisfies

R(a, b) =
∫ b

a

1
r1/α(ν)

dν,

with R(s0, ∞) = ∞;
(A3) q(s) ∈ C([s0, ∞),R+) and does not eventually vanish;
(A4) p(s) ∈ C([s0, ∞),R+) and there exists a constant p0 such that p0 ≥ p;
(A5) τ(s), σ(s) ∈ C1([s0, ∞),R) symbolize the delayed functions, where τ(s) ≤ s,

σ(s) ≤ s, and lims→∞ τ(s) = lims→∞ σ(s) = ∞.

Definition 1. A solution to (1) is defined as a function x ∈ C([s0, ∞),R), which has the properties
z ∈ C2([s0, ∞),R) and r(z′′)α ∈ C1([s0, ∞),R) and satisfies (1) on [s0, ∞).

Our interest is directed to the solutions of (1) that satisfy the condition

sup{|x(s)| : s ≥ s∗} > 0,

for all s∗ ≥ s0.
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Definition 2. A nontrivial solution to (1) is said to be oscillatory if it has arbitrarily large zeros,
and otherwise it is called non-oscillatory.

Definition 3. Equation (1) is said to be oscillatory if all its solutions are oscillatory. Otherwise, it
is called non-oscillatory.

Remark 1. The term half-linear equation refers to the fact that the solution space of (1) has just one
half of the properties that characterize linearity, namely homogeneity (but not additivity).

Finding solutions to differential equations is a rich research topic that has attracted
great interest from researchers in the past decades, and this remains so to this day. This is
because it was and still is one of the most significant tools used to describe and deduce the
ways in which quantities change in systems, as well as to shed light on how and why these
changes occur. However, the problem occurs when nonlinear differential equations are
used to describe systems, because most of these equations are difficult to solve in a closed
form. Therefore, researchers resort to using the qualitative theory of differential equations,
where a topological description of the local and global properties of the solutions to these
equations is developed, regardless of finding their exact form. Oscillation theory is one of
these subfields of qualitative theory and is concerned with analyzing the oscillatory and
non-oscillatory behavior of solutions to differential equations. For more information about
oscillation theory, please see the monographs in [23,24] and the papers in [25,26].

However, the stage of classifying differential equation solutions is the first and most
important step, which precedes the study of the asymptotic and monotonic properties
of positive solutions, which in turn paves the way for determining the behavior of the
oscillatory equation. The positive solutions to Equation (1) can be classified into four
possible classes. However, under the condition (A2), these classifications are reduced to
two, since the probabilities that the z′′(s) derivative of solutions are negative are rejected.
In light of this, we can conclude that the positive solutions to Equation (1) follow one of the
following classes:

C1: z > 0, z′ > 0, z′′ > 0, and z′′′ < 0;
C2: z > 0, z′ < 0, z′′ > 0, and z′′′ < 0.

Studying the properties of solutions to third-order differential equations has many
different applications. In addition to scientific applications, this study often contains many
open and complex analytical problems and issues. Due to these relative difficulties, the
previous works related to Equation (1) are few and appeared over long periods of time. The
first study of the oscillation of third-order differential equations was in 1961 by Hanah [27].
She considered the linear case of (1) with r(s) ≡ 1, p(s) ≡ 0, and α ≡ 1, and established
the following very famous sufficient criterion of oscillation:

lim inf
s→∞

s3q(s) >
2

3
√

3
. (3)

Following that, authors were interested in studying the oscillatory behavior and the
properties of solutions to (1), but in the case of p(s) ≡ 0; that is, in the case that the highest
derivative appears with only a delay argument. For more details, one can see the works of
Grace et al. [28] and Candan and Dahiya [29]. Li et al. [30] and Dzurina et al. [31], studied
the half-linear type for α states for a quotient of two odd positive integers. Meanwhile,
Qaraad et al. [32] considered the mixed type, in which the equation contains both delayed
and advanced functions. On the other hand, Bohner et al. [33] obtained oscillation results
for damped third-order differential equations. Chatzarakis et al. were interested in the
Emden–Flower and quasi-linear type in [34] and [35], respectively, while Grace et al. [36]
investigated oscillation criteria for the superlinear type.

In 2010, Li et al. [37] extended the results given in [27] by considering the neutral delay
type, where p(s) ∈ C([s0, ∞),R+), and relied on comparison theorem to confirm that the
following differential equation
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(x(s)− p(s)x(τ(s)))′′′ + q(s)x(σ(s)) = 0,

is oscillatory or tends to zero if

lim
s→∞

∫ s

s0

(
σ2(ν)q(ν)− 2

3
√

3ν

)
dν = ∞.

In the same year, Baculikova and Dzurina [38], used another methodology based on the
Riccati technique, where for � ∈ (0, 1) and s� that are large enough, then every solution of
the half-linear NDDE (1) oscillates or tends to zero if

lim inf
s→∞

sα

r(s)

∫ ∞

s
�α(1 − p(ν))αq(ν)

(
σ(ν)

ν

)α(σ(ν)− ν�
2

)α

dν >
αα

(α + 1)α+1 , (4)

under the assumption that r′(s) ≥ 0 and

∫ ∞

s0

∫ ∞

ν

[
1

r(u)

∫ ∞

u
q(μ)dμ

]1/α

dudν = ∞

holds. Furthermore, they presented a simplified condition for (4), see Corollary 1 in [38],
as follows:

lim inf
s→∞

sα

r(s)

∫ ∞

s
q(ν)

σ2α(ν)

να
dν >

(2α)α

(α + 1)α+1(1 − po)
α

. (5)

In 2011, Li and Thandapani [39], used the same technique, but by obtaining improved
properties of the solutions, they were able to set the condition

lim sup
s→∞

∫ s

s2

⎡⎣δ(ν)
q(ν)

2α − 1
− 1 + pα

0
τ0

(α + 1)α+1

( (
δ′(ν)+

)α+1

(δ(ν)R(σ(ν), s1)σ′(ν))α

)⎤⎦dν = ∞, s2 ≥ s, (6)

where α ≥ 1, σ′(s) > 0, σ(s) ≤ τ(s), δ(s) ∈ C1([s0, ∞), (0, ∞)), and

δ′(s)+ = max
{

0, δ′(s)
}

.

This criterion is considered simpler and more effective and does not assume the previous
conditions, to ensure that every solution of (1) is either oscillatory or converges to zero
(C1 = ∅). Later, Grace et al. [40], extended the previous condition under the same assump-
tions and α ≥ 2 to

lim sup
s→∞

∫ s

s2

[
δ(ν)q(ν)(p∗(σ(ν)))α

(
τ−1((σ(ν)))

ν

)2α

− δ′+(ν)
(

8
ν2

)α
]

dν = ∞, (7)

where

p∗(s) =
1

p(τ−1(s))

(
1 − 1

p(τ−1(τ−1(s)))
· m

(
τ−1(τ−1(s)

))
m(τ−1(s))

)
and m(s) = s2, m(s) = s3, m(s) = es, or m(s) = sαeεs.

On the other hand, Dzurina et al. [41] proved that case C2 does not happen if

lim inf
s→∞

∫ s

τ−1(�(s))
q∗(ν)

(∫ ρ(ν)

σ(ν)

∫ ρ(ν)

u

1
r(μ)

dμdu
)

dν >
τ0 + p0

τ0e
,

where q∗(s) = min{q(s), q(τ(s))} and � ∈ ([s0, ∞),R) is a positive function that satisfies
τ(s) > �(s) > σ(s). Moaaz et al. [42,43] presented several interesting results on the
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oscillation of solutions to odd-order delay differential equations. Very recently, Moaaz
et al. [44] developed new criteria for the nonexistence of class C2 of (1), under the condition

lim inf
s→∞

∫ s

τ−1(�(s))
q∗(ν)Ψα

n(�(ν), σ(ν))dν >
τ0 + pα

0
δτ0e

,

where �(s) ≤ τ(�(s)) and

Ψα
n+1(h, k) =

∫ k

h

∫ k

u

1
r(μ)

exp
[

δτ0

τ0 + pα
0

∫ k

τ−1(μ)
q∗(ν)Ψα

n(�(ν), σ(ν))dν

]
dμ du.

In this paper, we will derive some new monotonic properties and use them as in
application for

1. Improving the relationships between the solution and its derivatives;
2. Improving the relationships between the solution and its corresponding function;
3. Obtaining improved criteria that ensure that there are no positive solutions;
4. Obtaining oscillation criteria that improve on the criteria mentioned in the previous

literature.

Comparing these criteria mentioned in earlier works with our results revealed that
our results improved them and provided a broader and greater scope of applicability.The
following is a focused summary of what makes the results of this paper distinctive:

1. The criteria require fewer assumptions about the coefficients and the auxiliary func-
tions than their predecessors, which reduces the complexities when applying them;

2. The half-linear property (exponent α of the first and second derivatives) allows for
a larger area when determining where the same results can be applied to the linear
(α = 1) and ordinary (τ(s) = σ(s) = 1) type;

3. Our results consider two cases of the constant p0; i.e., for p0 > 1 and p0 < 1.

The paper structure is divided into five basic sections. The first section is divided into
two introductory parts. In the first part, we give introductions to the important points of
the study, define the equation under our interest, and establish the major assumptions that
have been applied to all of our results. It also contains a summary chronology of the most
important previous works related to the studied equation, which we will use to compare
our results later. In Sections 2 and 3, we study the monotonicity properties of the positive
solutions to (1) and improve these properties, in addition to giving criteria to ensure that
there are no positive solutions for both class C1 and C2. Section 4 relies on the previous
criteria to derive theorems that ensure the oscillation of all solutions of (1). In the last
section, a summary of the paper’s content is given, in terms of the basic theorems and
results, as well as an explanation of the most important points that distinguish our results.

Remark 2. All functional inequalities are assumed to hold for all sufficiently large s in following
sections.

2. Improved Monotonic Properties

In this section, we study and improve the monotonic properties of positive solutions
to (1), which we will rely on later to obtain our basic results. First, let us introduce some
auxiliary lemmas to facilitate the study of the properties of later solutions.

Lemma 1 ([45]). Assume that x is a positive real variable, and

F(x) = b1x − b2x
α+1

α ,

where bi are constants, i = 1, 2, b2 > 0, and α defined as in (A1). Then the following properties
hold:

(P1) F has a maximum value at x∗ =
(

b1α
b2(α+1)

)α
;
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(P2) F(x∗) = max
x∈R

(F) = αα

(α+1)α+1 bα+1
1 b−α

2 ;

(P3) b1x − b2x
α+1

α ≤ αα

(α+1)α+1 bα+1
1 b−α

2 .

The following lemma considers an improvement of the known relationship between
variables x and z

x(s) ≥ (1 − p(s))z(s), (8)

introduced by Moaaz et al. [46]. Based on this lemma, we can obtain results that are superior
to those obtained by employing (8).

Lemma 2. Assume that x is a positive solution of (1). Then

x(s) >
k

∑
�=0

(
2�

∏
m=0

p
(

τ[m](s)
))⎡⎣ z

(
τ[2�](s)

)
p
(
τ[2�](s)

) − z
(

τ[2�+1](s)
)⎤⎦, (9)

eventually holds for any nonnegative integer k.

2.1. Properties for Solutions to Class C1

This subsection concerns studying the monotonic properties of the positive solutions
of (1) that belong to Class C1. To simplify the basic lemmas and main results, let us define
the following notations for sufficiently large s, and j stands for any nonnegative integer,
then τ[0](s) := s,

τ[j](s) = τ
(

τ[j−1](s)
)

, (10)

and
τ[−j](s) = τ−1

(
τ[−j+1](s)

)
. (11)

Moreover,

η(s) :=
∫ s

s0

R(s0, ν)dν, (12)

and

Φk(s) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for p0 = 0;

∑k
�=0

(
2�
∏

m=0
p
(

τ[m](s)
))[

1
p(τ[2�](s))

− 1
]

η(τ[2�](s))
η(s) for p0 < 1;

∑k
�=1

(
2�−1
∏

m=1

1
p(τ[−m](s))

)[
1 − 1

p(τ[−2�](s))
η(τ−2�(s))

η(τ[−2�+1](s))

]
for p0 > η(s)

η(τ)
,

(13)

for any nonnegative integers �, m, and k. Additionally, let’s also define some notations that
we will use for the improved lemmas in this section. So, let

λn(s) := R(s0, s) +
∫ s

s0

R(s0, ν)ρn(ν)η(σ(ν))dν (14)

where
ρn(s) =

1
α

ηα−1(σ(s))Φ̄α
k,n(σ(s))q(s), (15)

and Φ̄k,n(s) is an improved coefficient, to be specified later. In addition, let

λ̃n(s) =
∫ s

s0

λn(ν)dν, (16)

R̃n(s) := exp
[∫ s

s0

dν

λn(ν)r1/α(ν)

]
, (17)
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and
η̃n+1(s) :=

∫ s

s0

R̃n(ν)dν (18)

for any nonnegative integer n.

Lemma 3. Assume that x ∈ C1, then the following properties hold, for sufficiently large s,

(P4) (z′(s)/R(s0, s))′ ≤ 0;
(P5) (z(s)/η(s))′ ≤ 0.

Proof. Assume that x ∈ C1,, then from the nature of r(s)(z′′(s))α, which is an eventually
positive non-increasing function, we obtain

z′(s) ≥
∫ s

s0

r1/α(ν)z′′(ν)
r1/α(ν)

dν ≥ r1/α(s)z′′(s)
∫ s

s0

1
r1/α(ν)

dν = r1/α(s)z′′(s)R(s0, s). (19)

But (
z′(s)

R(s0, s)

)′
=

R(s0, s)z′′(s)− z′(s)r−1/α(s)
R2(s0, s)

=
r−1/α(s)
R2(s0, s)

[
r1/α(s)z′′(s)R(s0, s)− z′(s)

]
≤ 0.

So, (P4)-part holds.

Similarly, we prove (P5)-part but through the increasing monotonicity of z′(s), where

z(s) ≥
∫ s

s0

z′(ν)
R(s0, ν)

R(s0, ν)dν ≥ z′(s)
R(s0, s)

∫ s

s0

R(s0, ν)dν =
z′(s)

R(s0, s)
η(s),

which shows that (
z(s)
η(s)

)′
=

R(s0, s)
η2(s)

[
z′(s)

R(s0, s)
η(s)− z(s)

]
≤ 0.

and this completes the proof.

Lemma 4. Assume that x ∈ C1. Then, for sufficiently large s,

(P6) x(s) > Φk(s)z(s);
(P7)

(
r(s)(z′′(s))α)′ + q(s)(Φk(σ(s))z(σ(s)))

α ≤ 0.

Proof. Assume that x ∈ C1. We can see from the definition of Φk in (13) that its value
depends on the value of p0, where p0 has three possible cases.
In the first case, where p0 = 0, the proof is obvious, so we omit it.
Case two: for p0 < 1, it is obvious from (10) and (A5) that

s ≥ τ[2�](s) ≥ τ[2�+1](s).

Since z(s) is a positive increasing function, then

z
(

τ[2�](s)
)
≥ z

(
τ[2�+1](s)

)
,

but from (P5)-part of Lemma 3 we have that

z
(

τ[2�](s)
)
≥

η
(

τ[2�](s)
)

η(s)
z(s),

23



Axioms 2023, 12, 1086

for � any nonnegative integer. Substituting (9) into Lemma 2, yields

x(s) >
k

∑
�=0

(
2�

∏
m=0

p
(

τ[m](s)
))[ 1

p
(
τ[2�](s)

) − 1

]
z
(

τ[2�](s)
)

>
k

∑
�=0

(
2�

∏
m=0

p
(

τ[m](s)
))[ 1

p
(
τ[2�](s)

) − 1

]
η
(

τ[2�](s)
)

η(s)
z(s),

which in turn with (1), verifies (P7).
Now, for p0 > 1 case. It is obvious from the definition of the corresponding function

in (2) that

z
(

τ−1(s)
)

= x
(

τ−1(s)
)
+ p

(
τ−1(s)

)
x(s)

=

⎡⎣ z
(

τ[−2](s)
)
− x

(
τ[−2](s)

)
p
(
τ[−2](s)

)
⎤⎦+ p

(
τ−1(s)

)
x(s)

=
2

∏
m=2

z
(

τ[−2](s)
)

p
(
τ[−m](s)

) −
3

∏
m=2

[
z
(

τ[−3](s)
)
− x

(
τ[−3](s)

)]
p
(
τ[−m](s)

) + p
(

τ−1(s)
)

x(s).

Substituting (9) into Lemma 2, we obtain

x(s) >
k

∑
�=1

(
2�−1

∏
m=1

1
p
(
τ[−m](s)

))[z
(

τ[−2�+1](s)
)
− 1

p
(
τ[−2�](s)

) z
(

τ[−2�](s)
)]

. (20)

Now, again from (11) and (A5), we have

τ[−2�](s) ≥ τ[−2�+1](s) ≥ s,

using the above inequality in the (P5)-part of Lemma 3 and the monotonicity of z(s) yields

η
(

τ[−2�](s)
)

η
(
τ[−2�+1](s)

) z
(

τ[−2�+1](s)
)
≥ z

(
τ[−2�](s)

)
,

and
z
(

τ[−2�+1](s)
)
≥ z(s).

As a result, inequality (20) turns into

x(s) > z(s)
k

∑
�=1

(
2�−1

∏
m=1

1
p
(
τ[−m](s)

))
⎡⎣1 − 1

p
(
τ[−2�](s)

) η
(

τ[−2�](s)
)

η
(
τ[−2�+1](s)

)
⎤⎦,

which, when combined with (1), yields (P7). And this completes the proof.

Remark 3. By choosing k = 0, then (P6) reduces to obtain the well known classical relation (8) for
p0 < 1.

Lemma 5. Assume that x ∈ C1 and α ≥ 1. Then,(
r1/α(s)z′′(s)

)′
+ ρ(s)z(σ(s)) ≤ 0, (21)

where
ρ(s) =

1
α

ηα−1(σ(s))Φα
k (σ(s))q(s),
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holds eventually.

Proof. Assume that x ∈ C1. Since(
r(s)

(
z′′(s)

)α
)′

=
((

r1/α(s)
(
z′′(s)

))α)′
(22)

= α
(

r1/α(s)z′′(s)
)α−1(

r1/α(s)z′′(s)
)′

.

From the (P4) and (P5)parts of Lemma 3, we have

r1/α(s)z′′(s) ≤ z′(s)
R(s0, s)

≤ z(s)
η(s)

and so

r1/α(σ(s))z′′(σ(s)) ≤ z(σ(s))
η(σ(s))

.

The monotonicity of r1/α(s)z′′(s) implies

r1/α(s)z′′(s) ≤ r1/α(σ(s))z′′(σ(s)),

then

r1/α(s)z′′(s) ≤ r1/α(σ(s))z′′(σ(s)) ≤ z(σ(s))
η(σ(s))

.

By taking power α − 1 for both sided, we obtain(
r1/α(s)z′′(s)

)α−1 ≤
(

1
η(σ(s))

)α−1
zα−1(σ(s)).

Substituting from the last inequality into (22)(
r(s)

(
z′′(s)

)α
)′ ≥ α

(
1

η(σ(s))

)α−1
zα−1(σ(s))

(
r1/α(s)

(
z′′(s)

))′
,

and once again substituting from the last inequality into (1), we obtain

−q(s)xα(σ(s)) =
(

r(s)
(
z′′(s)

)α
)′

≥ α

(
1

η(σ(s))

)α−1
zα−1(σ(s))

(
r1/α(s)

(
z′′(s)

))′
.

But from (A4) and (P6), we obtain

−xα(σ(s)) ≤ −Φα
k (σ(s))z

α(σ(s)),

and the monotonicity of z(s) implies that

−Φα
k (σ(s))q(s)z

α(σ(s)) ≥ −q(s)xα(σ(s))

≥ α

(
1

η(σ(s))

)α−1
zα−1(σ(s))

(
r1/α(s)

(
z′′(s)

))′
.

i.e., (
r1/α(s)

(
z′′(s)

))′
+

1
α

Φα
k (σ(s))q(s)(η(σ(s)))

α−1z(σ(s)) ≤ 0.

which gives (21). And this completes the proof.

Remark 4. The functions ρ(s), ρ0(s) defined in Lemma 5 and (15) are equivalent, i.e.,
ρ(s) = ρ0(s).
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In the following lemma, we use the definition of functional sequences given in (14),
(17) and (18) to obtain improved monotonic properties of class C1 solutions.

Lemma 6. Assume that x ∈ C1 and α ≥ 1. Then, the following improved properties hold for a
sufficiently large s and n any positive integer:

(P8)
(
z′(s)/R̃n−1(s)

)′ ≤ 0;
(P9) (z(s)/η̃n(s))

′ ≤ 0;
(P10)

(
r(s)(z′′(s))α)′ + q(s)(Φ̄k,n(σ(s))z(σ(s)))

α ≤ 0,

where

Φ̄k,n(s) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for p0 = 0;

∑k
�=0

(
2�
∏

m=0
p
(

τ[m](s)
))[

1
p(τ[2�](s))

− 1
]

η̃n(τ[2�](s))
η̃n(s)

for p0 < 1;

∑k
�=1

(
2�−1
∏

m=1

1
p(τ[−m](s))

)[
1 − 1

p(τ[−2�](s))
η̃n(τ−2�(s))

η̃n(τ[−2�+1](s))

]
for p0 > η(s)

η(τ)

(23)

and Φ̄k,0(s) = Φk(s).

Proof. Assume that x ∈ C1. Define the function G(s), where

G(s) = −z′(s) + R(s0, s)r1/α(s)z′′(s).

Then, it is obvious that

G′(s) = −z′′(s) + R(s0, s)r1/α(s)z′′′(s) + R(s0, s)
(

r1/α(s)
)′

z′′(s) + r−1/α(s)r1/α(s)z′′(s)

= R(s0, s)r1/α(s)z′′′(s) + R(s0, s)
(

r1/α(s)
)′

z′′(s)

= R(s0, s)
(

r1/α(s)z′′(s)
)′

.

From (21), we obtain (
r1/α(s)z′′(s)

)′ ≤ −ρ(s)z(σ(s)),

and so
G′(s) ≤ −R(s0, s)ρ(s)z(σ(s)).

Integrating the last inequality from s0 to s, then

z′(s) ≥ R(s0, s)r1/α(s)z′′(s) +
∫ s

s0

R(s0, ν)ρ(ν)z(σ(ν))dν. (24)

Again, by integrating (19) from s0 to s and using (12), we obtain

z(s) ≥
∫ s

s0

r1/α(ν)z′′(ν)R(s0, ν)dν

≥ r1/α(s)z′′(s)
∫ s

s0

R(s0, ν)dν

= r1/α(s)z′′(s)η(s).

But the non-increasing monotonicity of r1/α(s)z′′(s) implies

z(σ(s)) ≥ r1/α(s)z′′(s)η(σ(s)). (25)

Substituting from (25) into (24), we obtain
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z′(s) ≥ R(s0, s)r1/α(s)z′′(s) +
∫ s

s0

R(s0, ν)ρ(ν)r1/α(ν)z′′(ν)η(σ(ν))dν (26)

≥ R(s0, s)r1/α(s)z′′(s) + r1/α(s)z′′(s)
∫ s

s0

R(s0, ν)ρ(ν)η(σ(ν))dν

= r1/α(s)z′′(s)
[

R(s0, s) +
∫ s

s0

R(s0, ν)ρ(ν)η(σ(ν))dν

]
= λ0(s)r1/α(s)z′′(s).

Now, by multiplying the last inequality by R̃−1
0 (s), then

R̃−1
0 (s)

λ0(s)r1/α(s)
z′(s) ≥ R̃−1

0 (s)z′′(s). (27)

From (17), it is clear that

R̃′
0(s) =

R̃0(s)
λ0(s)r1/α(s)

.

So, (
z′(s)
R̃0(s)

)′
=

R̃0(s)z′′(s)− R̃0(s)
λ0(s)r1/α(s)

z′(s)

R̃2
0(s)

=
1

λ0(s)r1/α(s)R̃0(s)

[
λ0(s)r1/α(s)z′′(s)− z′(s)

]
.

which, in view of (27), implies (P8); i.e.,

z′(s)
R̃0(s)

is decreasing.

The monotonicity of z′(s) gives

z(s) ≥
∫ s

s0

z′(ν)
R̃0(s)

R̃0(ν)dν ≥ η̃1(s)
z′(ν)
R̃0(s)

,

therefore,
z(s)
η̃1(s)

is also decreasing.

Now, the (P10) part is clearly proven using the last monotonicity and (23) into (9), which
becomes

x(s) > Φ̄k,1(σ(s))z(s),

and as a result (1) implies (P10) for n = 1, i.e.,(
r(s)

(
z′′(s)

)α
)′

+ q(s)(Φ̄k,1(σ(s))z(σ(s)))
α ≤ 0.

For n = 2, we obtain (P10) by replacing (P7) with the last inequality and concluding the
proof using the same technique as before. For n = 3, 4, . . . , we can similarly follow the
same technique and complete the proof.

2.2. Properties for Solutions of Class C2

This subsection concerns the study of the monotonic properties of the positive solu-
tions to (1) that belong to Class C2. First, let us define auxiliary notations such as

η̆0(h, k) :=
∫ k

h
R(ν, k)dν,

and
q∗(s) = min{q(s), q(τ(s))}.
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Additionally, this section’s proofs need to add another assumption to the basic ones (A1)–(A5)
in the introduction section, in which

(A6) τ(σ(s)) = σ(τ(s)) and τ′(s) ≥ τ0 > 0.

Lemma 7. Assume that x ∈ C2 and there exists � a positive function � ∈ ([s0, ∞),R) such that

τ(s) > �(s) > σ(s).

Then, for τ−1(h) ≤ k,

z(h) ≥ η̆n(h, k)r1/α(k)z′′(k), n = 0, 1, . . . , (28)

where

η̆n+1(h, k) :=
∫ k

h

∫ k

u

1
r1/α(μ)

exp
1
α

[
τ0

τ0 + p0

∫ k

τ−1(μ)
q∗(ν)η̆α

n(σ(ν), �(ν))dν

]
dμ du. (29)

Proof. Assume that x ∈ C2. From the non-increasing monotonicity of r1/α(s)z′′(s), then

−z′(h) ≥
∫ k

h

r1/α(ν)z′′(ν)
r1/α(ν)

dν ≥ r1/α(k)z′′(k)
∫ k

h

1
r1/α(ν)

dν

= r1/α(k)z′′(k)R(h, k),

where h ≤ k. Integrating the last inequality again from h to k, we obtain

z(h) ≥ r1/α(k)z′′(k)
∫ k

h
R(ν, k)dν

= r1/α(k)z′′(k)η̆0(h, k),

also for all h ≤ k. Next, we employ the mathematical induction to prove the rest of the
proof by assuming for every n ∈ N0 and sufficiently large s that

z(h) ≥ η̆n(h, k)r1/α(k)z′′(k). (30)

In the following, we prove that (28) is valid for n + 1. From (1) it is clear that

q(τ(s))xα(σ(τ(s))) = −
(
r(τ(s))(z′′(τ(s)))α)′

τ′(s)
,

but (A6) implies that

p0q(τ(s))xα(τ(σ(s))) = p0q(τ(s))xα(σ(τ(s)))

= − p0

τ′(s)

(
r(τ(s))

(
z′′(τ(s))

)α
)′

≤ − p0

τ0

(
r(τ(s))

(
z′′(τ(s))

)α
)′

.

By adding the above inequality to (1), we obtain

q∗(s)zα(σ(s)) ≤ q(s)xα(σ(s)) + p0q(τ(s))xα(τ(σ(s))) (31)

≤ −
(

r(s)
(
z′′(s)

)α
)′ − p0

τ0

(
r(τ(s))

(
z′′(τ(s))

)α
)′

= −
(

r(s)
(
z′′(s)

)α
+

p0

τ0
r(τ(s))

(
z′′(τ(s))

)α
)′

.

Putting h(s) = σ(s) and k(s) = �(s) in (30), yields

zα(σ(s)) ≥ η̆α
n(σ(s), �(s))r(�(s))

(
z′′(�(s))

)α.

Substituting into (31), then
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q∗(s)η̆α
n(σ(s), �(s))r(�(s))

(
z′′(�(s))

)α ≤ −
(

r(s)
(
z′′(s)

)α
+

p0

τ0
r(τ(s))

(
z′′(τ(s))

)α
)′

. (32)

Now, let us define the auxiliary function

M(s) := r(s)
(
z′′(s)

)α
+

p0

τ0
r(τ(s))

(
z′′(τ(s))

)α.

Using C1 or C2 and (A5), we obtain(
τ0 + p0

τ0

)
r(s)

(
z′′(s)

)α ≤ M(s) ≤
(

τ0 + p0

τ0

)
r(τ(s))

(
z′′(τ(s))

)α, (33)

and so (
τ0

τ0 + p0

)
M
(

τ−1(s)
)
≤ r(s)

(
z′′(s)

)α.

Substituting into (32), we arrive at

M′(s) ≤ −q∗(s)η̆α
n(σ(s), �(s))r(�(s))

(
z′′(�(s))

)α (34)

≤ − τ0

τ0 + p0
q∗(s)η̆α

n(σ(s), �(s))M
(

τ−1(�(s))
)

,

which indicates that M′(s) ≤ 0. So, we conclude that M(s) is a non-increasing function. As
a result, (34) becomes

M′(s) ≤ − τ0

τ0 + p0
q∗(s)η̆α

n(σ(s), �(s))M(s).

Integrating the last inequality again from h to k, we obtain

ln
(

M(h)
M(k)

)
≥ τ0

τ0 + p0

∫ k

h
q∗(ν)η̆α

n(σ(ν), �(ν))dν,

or

M(h) ≥ M(k) exp
[

τ0

τ0 + p0

∫ k

h
q∗(ν)η̆α

n(σ(ν), �(ν))dν

]
.

Using (33), we obtain

M
(

τ−1(h)
)
≥

(
τ0 + p0

τ0

)
r(k)

(
z′′(k)

)α exp
[

τ0

τ0 + p0

∫ k

τ−1(h)
q∗(ν)η̆α

n(σ(ν), �(ν))dν

]
,

i.e.,

z′′(h) ≥ 1
r1/α(h)

r1/α(k)z′′(k) exp
1
α

[
τ0

τ0 + p0

∫ k

τ−1(h)
q∗(ν)η̆α

n(σ(ν), �(ν))dν

]
.

Integrating the last inequality from h to k, we have

−z′(h) ≥ r1/α(k)z′′(k)
∫ k

h

1
r1/α(μ)

exp
1
α

[
τ0

τ0 + p0

∫ k

τ−1(μ)
q∗(ν)η̆α

n(σ(ν), �(ν))dν

]
dμ,

once more, from h to k

z(h) ≥ r1/α(k)z′′(k)
∫ k

h

∫ k

u

1
r1/α(μ)

exp
1
α

[
τ0

τ0 + p0

∫ k

τ−1(μ)
q∗(ν)η̆α

n(σ(ν), �(ν))dν

]
dμ du

= r1/α(k)z′′(k)η̆n+1(h, k),

for every n + 1, n ∈ N0. And this completes the proof.
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3. Nonexistence of Positive Solution Theorems

In this section, we will use the comparison method, the Riccati technique, and the
improved monotonic properties that we obtained in the previous section as an application
to exclude the existence of any positive solutions to (1).

3.1. Nonexistence of Solutions in Class C1

Theorem 1. Assume that there exists a differentiable function δ(s) ∈ C1([s0, ∞), (0, ∞)) satisfies
that

lim sup
s→∞

∫ s

s0

[
δ(ν) · q(ν) · Φα

k (σ(ν)) ·
(

η(σ(ν))

η(ν)

)α

− (δ′(ν))α+1

(α + 1)α+1 · (δ(ν)R(s0, ν))α

]
dν = ∞. (35)

Then, the class C1 is empty.

Proof. Contrarily, assume that x ∈ C1. Let us define the positive function

ω := δ · r(z′′)α

zα
.

Differentiating the last equation implies

ω′ = δ′ · r
(
z′′
)α · z−α + δ ·

(
r
(
z′′
)α
)′ · z−α − αδ · r

(
z′′
)α · z−α−1z′ (36)

=
δ′

δ
ω + δ ·

(
r
(
z′′
)α
)′ · z−α − αδ · r(z′′)α

zα+1 z′.

Substituting from (P7) into (36), we obtain

ω′ ≤ δ′

δ
ω − δ · q · [Φk(σ)z(σ)]

α

zα
− αδ · r(z′′)α

zα+1 z′,

and from (19)

ω′ ≤ δ′

δ
ω − δ · q · [Φk(σ)z(σ)]

α

zα
− αδ · R ·

(
r1/αz′′

z

)α+1

=
δ′

δ
ω − δ · q · Φα

k (σ) ·
(

z(σ)
z

)α

− αδ · R ·
(

r1/αz′′

z

)α+1

=
δ′

δ
ω − δ · q · Φα

k (σ) ·
(

z(σ)
z

)α

− αδ−1/α · R · (ω)1+1/α.

By using the monotonicity of z(s)/η(s) given in (P5)-part of Lemma 3, we have

ω′ ≤ δ′

δ
ω − δ · q · Φα

k (σ) ·
(

η(σ)

η

)α

− αδ−1/α · R · (ω)1+1/α. (37)

Now, for δ′
δ ω − αδ−1/α · R · (ω)1+1/α, by using (P3) in Lemma 1 with b1 =

δ′
δ , b2 = αδ−1/α · R,

and x = ω, then

δ′

δ
ω − α · δ−1/α · R · ω

α+1
α ≤ αα

(α + 1)α+1

(
δ′

δ

)α+1(
α · δ−1/α · R

)−α

≤ (δ′)α+1

(α + 1)α+1 · (δR)α
.

Substituting into (37), we have

ω′ ≤ −δ · q · Φα
k (σ) ·

(
η(σ)

η

)α

+
(δ′)α+1

(α + 1)α+1 · (δR)α
.

Integrating the last inequality from s0 into s, yields
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ω(s0) ≥
∫ s

s0

δ(ν) · q(ν) · Φα
k (σ(ν)) ·

(
η(σ(ν))

η(ν)

)α

− (δ′(ν))α+1

(α + 1)α+1 · (δ(ν)R(s0, ν))α
dν.

A contradicts (35). And this completes the proof.

Example 1. Consider the following half-linear NDDE:((
z′′(s)

)α
)′

+
b0

s2α+1 yα(μs) = 0, s > 0, (38)

where the corresponding function z(s) is defined as

z(s) = y(s) + a0y(γs).

Moreover, we assume that α is a quotient of two odd positive integers, a0 ∈ [0, ∞), b0 ∈ (0, ∞), and
γ, μ ∈ (0, 1). Since τ(s) = γs, σ(s) = μs, and R(0, s) = s, then assumptions (A1)–(A5) are
easily satisfied. With some calculations, we obtain from (10)–(13) that

τ[i](s) := γis, τ[−i](s) := γ−is, η(s) :=
s2

2
,

and

Φk(s) :=

⎧⎪⎨⎪⎩
1 for a0 = 0;
(1 − a0)∑k

i=0 a2i
0 · γ4i for a0 < 1;

∑k
i=1 a−2i

0 · [a0 − γ−2] for a0 > 1
γ2 .

By taking δ(s) = s2α, it follows from Theorem 1 that (38) does not possess a increasing positive
solution (C1 = ∅) if

b0 >

(
2α

α + 1

)α+1
· 1

Rα
0 · μ2α

, (39)

for R0 = Φk(s).

Theorem 2. Assume that α ≥ 1 and there exists a differentiable function δ(s) ∈ C1([s0, ∞), (0, ∞))
satisfies that

lim sup
s→∞

∫ s

s0

[
δ(ν) · q(ν) · Φ̄α

k,n(σ(ν)) ·
(

η̃n(σ(ν))

η̃n(ν)

)α

− (δ′(ν))α+1

(α + 1)α+1 · (δ(ν)R(s0, ν))α

]
dν = ∞, (40)

for any nonnegative integer n, k. Then, the class C1 is empty.

Proof. Contrarily, assume that x ∈ C1. By using (23) and replacing (P4) and (P5) with
(P8) and (P9), the proof of this theorem becomes similar to the proof of Theorem 1, so we
omit it.

Remark 5. Criterion (40) given in the previous theorem is considered an improvement on Criterion
(35) in Theorem 1; i.e., it gives better results when applied.

Example 2. As in the last example, consider the half-linear NDDE (38), where α ≥ 1. To apply
Theorem 2 in (38), we need to first calculate the iterative functions given in (14)–(18); so, let us
define the following auxiliary sequences {Ri} and {Ti} for i = 0, 1, . . . and T0 = 1, as

Ri :=

⎧⎪⎨⎪⎩
1 for a0 = 0;
(1 − a0)∑k

i=0 a2i
0 · γ2(Ti+1)i for a0 < 1;(

a0 − γ−1−Ti
)

∑k
i=1 a−2i

0 for a0 > 1
γ2

(41)

and
Ti+1 :=

1

1 + μ2α ·Rα
i ·b0

α·2α

. (42)
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Using the previous notations and mathematical induction yields

Ri = Φk,i(s).

Hence,

ρi(s) =
μ2(α−1) · Rα

i · b0

α · 2α−1 · 1
s3 ,

λi(s) =

(
1 +

μ2α · Rα
i · b0

α · 2α

)
s =

s
Ti+1

,

R̃i(s) = s
1/

(
1+

μ2α ·Rα
i ·b0

α·2α

)
= sTi+1 ,

and

η̃i(s) =
sTi+1

Ti + 1
.

Now, Theorem 2 implies that (38) does not possess any increasing positive solutions (C1 = ∅), if

b0 · Rα
i ·

(
μTi+1

)α
>

(
2α

α + 1

)α+1
. (43)

Theorem 3. Assume that α ≥ 1 and

lim inf
s→∞

∫ s

σ(s)
q(ν)Φ̄α

k,n(σ(ν))λ̃
α
n(σ(ν))dν >

1
e

, (44)

for any nonnegative integer n, k and λ̃n(s) are defined as in (16). Then, the class C1 is empty.

Proof. Contrarily, assume that x ∈ C1. As in (26), we obtain

z′(s) ≥ λn(s)r1/α(s)z′′(s).

Integrating the above inequality from s0 to s, then

z(s) ≥ r1/α(s)z′′(s)
∫ s

s0

λn(ν)dν (45)

= r1/α(s)z′′(s)λ̃n(s).

Combining (45) and the (P10) part of lemma 6, we arrive at(
r(s)

(
z′′(s)

)α
)′ ≤ −q(s)r(σ(s))

(
Φ̄k,n(σ(s))z′′(σ(s))λ̃n(σ(s))

)α. (46)

Now, let us define the positive function

U(s) := r(s)
(
z′′(s)

)α.

Therefore, (46) becomes

U′(s) + q(s)Φ̄α
k,n(σ(s))λ̃

α
n(σ(s))U(σ(s)) ≤ 0. (47)

But Theorem 2.1.1 in [47] indicates that under (44) every solution of (47) oscillates. A
contradiction, and this completes the proof.

Example 3. Recall the NDDE (38) for α ≥ 1. Exactly as in Example 2, where we used auxiliary
sequences (41), (42), and mathematical induction to obtain that Ri := Φk,i(s) for i = 0, 1, . . . .
Consequently,

λ̃i(s) :=
s2

2Ti+1
.
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Substituting this into (44) in Theorem 3 ensures that (38) does not possess any increasing positive
solution (C1 = ∅) if

b0 · Rα
i · μ2α

2αTα
i+1

ln
1
μ
>

1
e

. (48)

Theorem 4. Assume that α ≥ 1 and

lim inf
s→∞

sα

r(s)

∫ ∞

s
q(ν)

σ2α(ν)

να
d� >

(2α)α

(1 + α)α+1Φ̄α
k,n(s)

, (49)

for any nonnegative integer n, k. Then, the class C1 is empty.

Proof. Contrarily, assume that x ∈ C1. From Corollary 1 in [38] and using (P10) instead of
the inequality (

r(s)
(
z′′(s)

)α
)′ ≤ −q(s)(1 − p(σ(s)))αzα(σ(s)).

The proof becomes similar to the proof of Theorem 1 in [38], so we can omit it.

Example 4. Again, consider the half-linear NDDE (38) where α ≥ 1. As in the previous examples,
Theorem 4 implies that (38) does not possess any increasing positive solutions (C1 = ∅) if

b0 >
2ααα+1

(1 + α)α+1μ2αRα
i

. (50)

Remark 6. Applying criteria (5)–(7) given in the works of Baculikova and Dzurina [38], Li and
Thandapani [39], and Grace et al. [40] to (38), we obtain the following criteria:

b0 >

(
α

α + 1

)α+1
·
(

2
(1 − a0)μ2

)α

, (51)

b0 > (2α − 1) ·
(

2α

α + 1

)α+1
·

1 + aα
0

γ

μ2α
, (52)

and

b0 >
α · 23α+1

(a0 − γ−2)
α

(
a0 · γ

μ

)2α

, (53)

respectively. In the following table, we compare the effectiveness and novelty of our results for
Theorems 3 and 4 with the criteria (51)–(53) in the previous works. In Table 1, we determined the
lower bounds of the coefficient b0 for different values of a0, α, γ, and μ , as follows:

Table 1. Comparison of oscillation criteria using the lower bounds of the value of the coefficient b0.

α γ μ a0 (48) (50) (51) (52) (53)

(a) 1 0.1 0.5 0.4 5.1143 3.3332 3.3333 20 Fail

(b) 3 0.1 0.5 0.4 766.3601 749.9242 750.0043 2656.8000 Fail

(c) 1 0.6 0.3 5 52.6300 53.5450 Fail 103.7037 720

(d) 1 0.9 0.7 2.5 10.3430 4.1661 Fail 7.7097 130.6322

We can notice from the previous table that

1. Criterion (50) produced by applying Theorem 3 provides the best results for Cases a, b, and d;
2. Criterion (48) produced by applying Theorem 4 provides the best results for Case c;
3. Our results improved on the previous results in the literature, which demonstrates the im-

portance of improving the relationships between a solution and its corresponding function
and derivatives.

Figure 1 illustrates this comparison on a larger scale.
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Figure 1. The lower bounds of the q0-values for the Criteria (48), (50), (52), and (53).

3.2. Nonexistance of Solutions in Class C2

Theorem 5. Assume that there exists a positive function � ∈ ([s0, ∞),R), such that

τ(s) > �(s) > σ(s),

and �(s) ≥ τ−1(σ(s)). If

lim inf
s→∞

∫ s

τ−1(�(s))
q∗(ν)η̆α

n(σ(ν), �(ν))dν >
τ0 + p0

eτ0
, (54)

Then, the class C2 is empty.

Proof. Assume that x ∈ C2. From (32) in the proof of Lemma 7, we can define the positive
auxiliary function

F(s) := r(s)
(
z′′(s)

)α
+

p0

τ0
r(τ(s))

(
z′′(τ(s))

)α.

But from C1 or C2 and (32), we have

F′(s) ≤ −q∗(s)η̆α
n(σ(s), �(s))r(�(s))

(
z′′(�(s))

)α

≤ −τ0

τ0 + p0
q∗(s)η̆α

n(σ(s), �(s))F
(

τ−1(�(s))
)

,

then
F′(s) +

τ0

τ0 + p0
q∗(s)η̆α

n(σ(s), �(s))F
(

τ−1(�(s))
)
≤ 0. (55)

This means that F is a positive solution to (55). Now, using (54) and Theorem 2.1.1 in [47],
we arrive at a contradiction with (55). And this completes the proof.

Example 5. Again, recall the half-linear NDDE (38). For 0 < μ < γ2

2−γ and �(s) = �s = γ+μ
2 s,

then it becomes clear that assumptions (A6) and

γs >
γ + μ

2
s > μs

are easily satisfied. In order to apply this example to Theorem 5, we first need to calculate the
iterative function (29), which in turn requires defining some auxiliary sequences, just as we did
previously in Example 2. So, let us define the sequence

{
R̃i

}
and

{
T̃i

}
for i = 0, 1, . . . , as:
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R̃i+1 :=
γT̃i �T̃i

T̃i − 1

[
μ�1−T̃i +

μ2−T̃i

T̃i − 2
− T̃i − 1

T̃i − 2
�2−T̃i

]
,

T̃i :=
γb0

γ + a0
R̃α

i ,

and

R̃0 := η̆0(μ, �) =
(� − μ)2

2
.

Then, by using mathematical induction, we obtain

η̆i(h, k) :=
kT̃i γT̃i(

T̃i − 1
)(

T̃i − 2
)[(T̃i − 2

)
hk1−T̃i + h2−T̃i −

(
T̃i − 1

)
k2−T̃i

]
.

Substituting into (29) in Theorem 5 implies that (38) does not possess any decreasing positive
solutions (C2 = ∅), if

b0 >
γ + a0

eγ
· 1

R̃α
i ln γ

�

. (56)

4. Oscillation Theorems

This section concerns giving oscillation theorems for (1) by combining criteria that
ensure that the class C1 and C2 are both empty.

Theorem 6. Assume that there exists a function δ(s) ∈ C1([s0, ∞), (0, ∞)) and � ∈ ([s0, ∞),R)
such that τ(s) > �(s) > σ(s), �(s) ≥ τ−1(σ(s)). If (35) and (54) hold, then every solution to
(1) is oscillatory.

Theorem 7. Assume that for α ≥ 1 there exists a function δ(s) ∈ C1([s0, ∞), (0, ∞)), and
� ∈ ([s0, ∞),R) such that τ(s) > �(s) > σ(s), �(s) ≥ τ−1(σ(s)). If (40) and (54) hold, for
any nonnegative integer n, k, then every solution to (1) is oscillatory.

Theorem 8. Assume that for α ≥ 1 there exists a function δ(s) ∈ C1([s0, ∞), (0, ∞)), and
� ∈ ([s0, ∞),R) such that τ(s) > �(s) > σ(s), �(s) ≥ τ−1(σ(s)). If (44) and (54) hold, for
any nonnegative integer n, k, then every solution to (1) is oscillatory.

Theorem 9. Assume that for α ≥ 1 there exists a function δ(s) ∈ C1([s0, ∞), (0, ∞)), and
� ∈ ([s0, ∞),R) such that τ(s) > �(s) > σ(s), �(s) ≥ τ−1(σ(s)) If (49) and (54) hold, for any
nonnegative integer n, k, then every solution to (1) is oscillatory.

Example 6. Recall the half-linear NDDE (38). Exactly as we applied in Examples 1 and 5, we can
obtain that (35) in Theorem 1 reduces to (39) to ensure that there are no positive solutions in Class
C1, and (54) in Theorem 5 reduces to (56) to ensure that there are no positive solutions in Class C2.
By combining these two criteria (39) and (56), we determine that all solutions of (1) are oscillatory if

b0 > max

{(
2α

α + 1

)α+1
· 1

Rα
0 · μ2α

,
γ + a0

eγ
· 1

R̃α
i ln γ

�

}
.

5. Conclusions

In this paper, we deduced and improved some monotonic properties of positive
solutions to (1) and their corresponding functions for classes C1 and C2. After that, these
relationships were used to set simple criteria with only one condition, to ensure that there
are no positive solutions for either class, and then used them to ensure that all solutions to
(1) oscillate. The results and criteria obtained in the previous sections were distinguished
by several important points that confirm their originality and novelty. Our results were
applied in Examples 1–6 and compared with previous works in Remarks 5 and 6. Through
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these comparisons, we noted that our results were an improvement on the oscillation
criteria in many previous works. This requires fewer restrictions on coefficients and covers
a larger area when applied. There were nine fundamental theorems provided, and their
applicability and effectiveness were verified by testing the conditions they contained using
more than one example.
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Abstract: The paper introduces a new two-level time-mesh difference scheme for solving the sym-
metric regularized long wave equation. The scheme consists of three steps. A coarse time-mesh and a
fine time-mesh are defined, and the equation is solved using an existing nonlinear scheme on the
coarse time-mesh. Lagrange’s linear interpolation formula is employed to obtain all preliminary
solutions on the fine time-mesh. Based on the preliminary solutions, Taylor’s formula is utilized to
construct a linear system for the equation on the fine time-mesh. The convergence and stability of the
scheme is analyzed, providing the convergence rates of O(τ2

F + τ4
C + h4) in the discrete L∞-norm for

u(x, t) and in the discrete L2-norm for ρ(x, t). Numerical simulation results show that the proposed
scheme achieves equivalent error levels and convergence rates to the nonlinear scheme, while also
reducing CPU time by over half, which indicates that the new method is more efficient. Furthermore,
compared to the earlier time two-mesh method developed by the authors, the proposed scheme
significantly reduces the error between the numerical and exact solutions, which means that the
proposed scheme is more accurate. Additionally, the effectiveness of the new scheme is discussed in
terms of the corresponding conservation laws and long-time simulations.

Keywords: SRLW equation; finite difference; second-order; two-level time-mesh; convergence analysis

MSC: 65M06

1. Introduction

In this paper, the following initial boundary value problem of the symmetric regular-
ized long wave (SRLW) Equation [1] is considered:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut + ρx + uux − uxxt = 0, xL ≤ x ≤ xR, 0 < t ≤ T,

ρt + ux = 0, xL ≤ x ≤ xR, 0 < t ≤ T,

u(xL, t) = u(xR, t) = 0, ρ(xL, t) = ρ(xR, t) = 0, 0 < t ≤ T,

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), xL ≤ x ≤ xR,

(1)

where u(x, t) and ρ(x, t) are the fluid velocity and the density, respectively.
The SRLW equation is a partial differential equation that takes into account the effects of

dispersion and nonlinearity utilized to depict a range of physical phenomena such as nonlinear
optics, fluid dynamics, and quantum mechanics. In nonlinear optics, it is employed to study
the propagation of optical pulses in materials with nonlinear properties. In fluid dynamics,
it is used to model the behavior of shallow water waves and to study wave interactions in
coastal regions. In quantum mechanics, it is applied to describe the dynamics of Bose–Einstein
condensates and other quantum systems. Currently, many researchers have employed various
methods to obtain exact traveling and solitary wave solutions for the SRLW equation, such
as the exp-function method [2], (G′/G)-expansion method [3], Lie symmetry approach [4],
analytical method [5], sine–cosine method [6], etc.
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Significant achievements have also been made in the research of numerical solutions
for the SRLW equation. Guo [7] conducted a study on the existence, uniqueness, and
regularity of numerical solutions for the periodic initial value problem of the generalized
SRLW equation using the spectral method. Zheng et al. [8] proposed a Fourier pseu-
dospectral method with a restraint operator for the SRLW equation that demonstrated
stability and optimal error estimates. Shang et al. [9] analyzed a Chebyshev pseudospectral
scheme for multi-dimensional generalized SRLW equations. Fang et al. [10] studied the
presence of global attractors of the SRLW equation. Wang et al. [11] investigated a coupled
two-level and nonlinear-implicit finite difference method for solving the SRLW equation,
achieving second-order accuracy in both space and time. Bai et al. [12] studied a finite
difference scheme with two layers for the SRLW equation, which is a conservative scheme
and converges with an order of O(τ + h2) in the L∞ norm for u and in the L2 norm for ρ.
Xu et al. [13] solved a dissipative SRLW equation containing a damping term using a mixed
finite element method. Yimnet et al. [14] introduced a novel finite difference method in
which a new average difference technique with four levels is employed to solve the u inde-
pendently from the ρ of the SRLW equation. In order to achieve better solving results, many
researchers have constructed difference schemes with higher convergence orders. Nie [15]
constructed a decoupled finite difference scheme with fourth-order accuracy for solving
the SRLW equation. Hu et al. [16] introduced a novel conservative Crank–Nicolson finite
difference scheme for the SRLW equation. This scheme achieves an accuracy of O(τ2 + h4)
without refined mesh. Kerdboon et al. [17] proposed a three-point compact difference
scheme for the SRLW equation. He et al. [18] presented a compact difference scheme with
four time-levels for the SRLW equation. The scheme is constructed for the SRLW equation
with a sole nonlinear velocity term and exhibits a high accuracy of O(τ2 + h4). However,
most of the high convergence accuracy scheme deal with the points near the boundary
via the use of ghost points or fictitious points. Li et al. [19] proposed a compact scheme
for the SRLW equation that avoids the use of ghost points by utilizing inverse compact
operators. He et al. [20] also proposed a novel conservative three-point linearized compact
difference scheme to handle the challenges posed by discrete boundaries and nonlinear
terms in solving SRLW equations.

The combination of the time two-mesh (TT-M) technique [21–27] with other numerical
methods also can improve the efficiency of solving nonlinear partial differential equations.
Liu et al. [21] investigated a finite element method with the TT-M technique, which was
successfully applied to solve the fractional water wave model and other fractional models.
Afterward, other authors [22–26] used the TT-M method to study the numerical solutions
for the partial differential equations such as the Allen–Cahn model, Sobolev model and the
nonlinear Schrödinger equation. Gao et al. [27] introduced a TT-M finite difference scheme
for the SRLW equation, achieving first-order accuracy in time and second-order accuracy in
space. However, the error in the numerical solutions of the scheme increases rapidly over a
long time period, making it hard to simulate the long-time behavior of Equation (1).

To improve the efficiency and accuracy of numerical schemes for the SRLW equation, in
this paper, we construct a second-order two-level time-mesh finite difference scheme based
on the nonlinear scheme in [16]. As a result, the proposed scheme achieves a convergence
rate of O(τ2

F + τ4
C + h4) in the discrete L∞-norm for u(x, t) and in the discrete L2-norm for

ρ(x, t). The proposed scheme has several advantages: (i) Combined with the two level
time-mesh technique, the scheme utilizes the nonlinear scheme on a coarse time-mesh
and then constructs a linear difference system on a fine time-mesh, which more efficiently
solves the SRLW equation than the nonlinear scheme in [16]; (ii) The new scheme obtains
a high accuracy in solving the SRLW equation. The proposed scheme has a second-order
convergence rate in time and a fourth-order convergence rate in space, which is higher
than that of the scheme in [27]; (iii) The convergence and stability of the scheme have
been verified through detailed proofs. Theoretical analysis of the scheme is more intricate
compared to existing TT-M methods since a function with three variables is used in the
process of the linear system construction.
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The rest of this article is structured as follows: Section 2 introduces the notations and
lemmas. Following that, Section 3 outlines the construction of the two-level time-mesh finite
difference numerical scheme. In Section 4, we delve into the convergence and stability of the
scheme. Next, Section 5 offers numerical results to test the theoretical findings, computational
efficiency, and accuracy of the scheme. Finally, in Section 6, we conclude the paper.

2. Some Notations and Lemmas

For time and space intervals (0, T] and [xL, xR], let tn = nτ, (n = 1, 2, . . . , [T/τ] = N)
be the time-level and xj = xL + jh, (j = 0, 1, 2, . . . , xR−xL

h = J) be the space mesh point,
where τ and h represent time and space step sizes.

Let Z0
h = {un = (un

j ) | un
−1 = un

0 = un
J = un

J+1 = 0, j = −1, 0, 1, . . . , J, J + 1} be the
space of mesh functions, where j = −1 and J + 1 are ghost points. The following notations
will be used in this paper:

(
un

j

)
x
=

un
j+1 − un

j

h
,

(
un

j

)
x̄
=

un
j − un

j−1

h
,

(
un

j

)
x̂
=

un
j+1 − un

j−1

2h
,

(
un

j

)
ẍ
=

un
j+2 − un

j−2

4h
,

(
un

j

)
t
=

un+1
j − un

j

τ
, un+ 1

2
j =

un+1
j + un

j

2
,

M is used to denote a general positive constant, which may have different values in
different locations.

We define the discrete inner product and norms with respect to any pair of mesh
functions un, wn ∈ Z0

h as follows:

(un, wn) = h
J−1

∑
j=1

un
j wn

j , ‖un‖ =
√
(un, un), ‖un‖∞ = max

1≤j≤J−1
|un

j |.

Lemma 1 (See [16]). For a mesh function un ∈ Z0
h, by Cauchy–Schwarz inequality, we have

‖un
ẍ‖2 � ‖un

x̂‖2 � ‖un
x‖2.

Lemma 2 (See [18]). If un, wn ∈ Z0
h are two mesh functions, we have

(un
x , wn) = −(un, wn

x̄) = −(un, wn
x), (un

xx̄, wn) = −(un
x , wn

x), (un
x̂ , wn) = −(un, wn

x̂).

Furthermore,
(un

xx̄, un) = −‖un
x‖2, ‖un

x̂‖ ≤ ‖un
x‖ = ‖un

x̄‖.

Lemma 3 (See [26]). Assume that a sequence of non-negative real numbers
{

aj
}∞

j=0 satisfying

an+1 ≤ α + β
n

∑
j=0

ajτ, n ≥ 0,

has the inequality an+1 ≤ (α + τβa0)eβ(n+1)τ, where α ≥ 0, β and τ are positive constants.

Lemma 4 (See [28]). For a mesh function un ∈ Z0
h, there exists constants C1 and C2, such that

‖un‖∞ ≤ C1‖un‖+ C2‖un
x‖.

3. Construction of Two-Level Time-Mesh Difference Scheme

This article is inspired by the approach presented in [16], which involves a nonlinear
implementation and requires a significant amount of CPU time. To address the problem,
this study constructed a numerical difference scheme by incorporating the two-level time-
mesh technique for the SRLW equation.
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Prior to introducing the proposed scheme, we define the coarse time-mesh and the
fine time-mesh. First, the time interval (0, T] is equally divided into P small time intervals.
This divided time-mesh is called a coarse time-mesh. Secondly, each small time interval is
further partitioned into s(2 ≤ s ∈ Z+) intervals. The mesh after this second segmentation is
called a fine time-mesh. The coarse time-mesh has the time levels tks = kτC(k = 0, 1, . . . , P)
and 0 = t0 < ts < t2s < . . . < tPs = T, and the fine time-mesh has the time levels
tn = nτF(n = 0, 1, 2, . . . , Ps = N) and 0 = t0 < t1 < t2 < . . . < tN = T, where τC = sτF
and τF are the coarse and fine time step size, respectively. The combination of above two
different time-meshes is referred to as a two-level time-mesh.

The two-level time-mesh difference scheme for the SRLW equation is presented as
follows. Let uks

C,j = u(xj, tks), ρks
C,j = ρ(xj, tks) be the numerical solutions on the coarse

time-mesh, then we calculate the uks
C,j and ρks

C,j by the following nonlinear scheme in [16],

(uks
C,j)t − 4

3
(uks

C,j)xx̄t +
1
3
(uks

C,j)x̂x̂t +
4
3
(ρ

ks+ 1
2

C,j )x̂ − 1
3
(ρ

ks+ 1
2

C,j )ẍ

+
4
9
{uks+ 1

2
C,j (uks+ 1

2
C,j )x̂ + [(uks+ 1

2
C,j )2]x̂} − 1

9
{uks+ 1

2
C,j (uks+ 1

2
C,j )ẍ + [(uks+ 1

2
C,j )2]ẍ} = 0,

(2)

(ρks
C,j)t +

4
3
(uks+ 1

2
C,j )x̂ − 1

3
(uks+ 1

2
C,j )ẍ = 0, (3)

uks
C,0 = uks

C,J = 0, ρks
C,0 = ρks

C,J = 0, 1 ≤ k ≤ P,

u0
C,j = u0(xL + jh), ρ0

C,j = ρ0(xL + jh), 1 ≤ j ≤ J − 1,

where uks+ 1
2

C,j = 1
2 (u

(k+1)s
C,j + uks

C,j), ρ
ks+ 1

2
C,j = 1

2 (ρ
(k+1)s
C,j + ρks

C,j).

Then, using the solutions uks
C and ρks

C obtained at time levels tks from the initial step,
we employ Lagrange’s linear interpolation formula to calculate uks−l

C , ρks−l
C at time levels

tks−l(l = s − 1, s − 2, . . . , 2, 1 and k = 1, 2, . . . , P) and have

uks−l
C =

tks−l − tks
t(k−1)s − tks

u(k−1)s
C +

tks−l − t(k−1)s

tks − t(k−1)s
uks

C =
l
s

u(k−1)s
C + (1 − l

s
)uks

C , (4)

ρks−l
C =

tks−1 − tks
t(k−1)s − tks

ρ
(k−1)s
C +

tks−1 − t(k−1)s

tks − t(k−1)s
ρks

C =
l
s

ρ
(k−1)s
C + (1 − l

s
)ρks

C . (5)

By following the previous two steps, we obtain all the numerical solutions un
C,j and ρn

C
(n = 1, 2, . . . , Ps = N, j = 1, 2, . . . , J − 1) on the fine time-mesh. It is important to note that
the numerical solutions un

C,j and ρn
C are only preliminary solutions and not the ultimate

numerical solutions we aim to achieve for the SRLW equation.

Remark 1. The solutions ρn
C are not essential for the subsequent step but are used for convergence

and stability analysis of the proposed scheme.

Next, we design a linear system on the fine time-mesh to obtain the final numerical
solutions for the SRLW equation. Let un

F,j = u(xj, tn), ρn
F,j = ρ(xj, tn) be the numerical

solutions on the fine time-mesh, then similar to Equations (2) and (3), we obtain

(un
F,j)t − 4

3
(un

F,j)xx̄t +
1
3
(un

F,j)x̂x̂t +
4
3
(ρ

n+ 1
2

F,j )x̂ − 1
3
(ρ

n+ 1
2

F,j )ẍ

+
4
9
{un+ 1

2
F,j (un+ 1

2
F,j )x̂ + [(un+ 1

2
F,j )2]x̂} − 1

9
{un+ 1

2
F,j (un+ 1

2
F,j )ẍ + [(un+ 1

2
F,j )2]ẍ} = 0,

(6)

(ρn
F,j)t +

4
3
(un+ 1

2
F,j )x̂ − 1

3
(un+ 1

2
F,j )ẍ = 0, (7)

42



Axioms 2023, 12, 1057

However, as we know, Equation (6) is still a nonlinear scheme. In order to construct
the linear system, we use Taylor’s formula to linearize the nonlinear terms of Equation (6)
as follows. Using the notations in Section 2, we have

4
9
{un+ 1

2
F,j (un+ 1

2
F,j )x̂ + [(un+ 1

2
F,j )2]x̂} − 1

9
{un+ 1

2
F,j (un+ 1

2
F,j )ẍ + [(un+ 1

2
F,j )2]ẍ}

=
2

9h
{un+ 1

2
F,j (un+ 1

2
F,j+1 − un+ 1

2
F,j−1) + (un+ 1

2
F,j+1)

2 − (un+ 1
2

F,j−1)
2}

− 1
36h

{un+ 1
2

F,j (un+ 1
2

F,j+2 − un+ 1
2

F,j−2) + (un+ 1
2

F,j+2)
2 − (un+ 1

2
F,j−2)

2}

=
2

9h
f (un+ 1

2
F,j−1, un+ 1

2
F,j , un+ 1

2
F,j+1)−

1
36h

f (un+ 1
2

F,j−2, un+ 1
2

F,j , un+ 1
2

F,j+2)

(8)

where f (x, y, z) = (z − x)y + z2 − x2. Then, the Taylor’s formula expansion is used to

linearize the first part of Equation (8) at point (un+ 1
2

C,j−1, un+ 1
2

C,j , un+ 1
2

C,j+1) and the second part of

Equation (8) at point (un+ 1
2

C,j−2, un+ 1
2

C,j , un+ 1
2

C,j+2), respectively, to obtain

f (un+ 1
2

F,j−1, un+ 1
2

F,j , un+ 1
2

F,j+1)

≈ f (un+ 1
2

C,j−1, un+ 1
2

C,j , un+ 1
2

C,j+1) + fx(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j−1 − un+ 1
2

C,j−1)

+ fy(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j − un+ 1
2

C,j ) + fz(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j+1 − un+ 1
2

C,j+1)

(9)

and

f (un+ 1
2

F,j−2, un+ 1
2

F,j , un+ 1
2

F,j+2)

≈ f (un+ 1
2

C,j−2, un+ 1
2

C,j , un+ 1
2

C,j+2) + fx(u
n+ 1

2
C,j−2, un+ 1

2
C,j , un+ 1

2
C,j+2)(u

n+ 1
2

F,j−2 − un+ 1
2

C,j−2)

+ fy(u
n+ 1

2
C,j−2, un+ 1

2
C,j , un+ 1

2
C,j+2)(u

n+ 1
2

F,j − un+ 1
2

C,j ) + fz(u
n+ 1

2
C,j−2, un+ 1

2
C,j , un+ 1

2
C,j+2)(u

n+ 1
2

F,j+2 − un+ 1
2

C,j+2)

(10)

Substituting Equations (8)–(10) into Equation (6) and denoting f j = f (un+ 1
2

C,j−1, un+ 1
2

C,j , un+ 1
2

C,j+1),

fx,j = fx(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1), fy,j = fy(u

n+ 1
2

C,j−1, un+ 1
2

C,j , un+ 1
2

C,j+1), fz,j = fz(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1),

f̃ j = f (un+ 1
2

C,j−2, un+ 1
2

C,j , un+ 1
2

C,j+2), f̃x,j = fx(u
n+ 1

2
C,j−2, un+ 1

2
C,j , un+ 1

2
C,j+2), f̃y,j = fy(u

n+ 1
2

C,j−2, un+ 1
2

C,j , un+ 1
2

C,j+2),

f̃z,j = fz(u
n+ 1

2
C,j−2, un+ 1

2
C,j , un+ 1

2
C,j+2), we construct a novel linear difference scheme that achieves

a second-order convergence rate in time and a fourth-order convergence rate in space on
the fine time-mesh as follows:

(un
F,j)t − 4

3
(un

F,j)xx̄t +
1
3
(un

F,j)x̂x̂t +
4
3
(ρ

n+ 1
2

F,j )x̂ − 1
3
(ρ

n+ 1
2

F,j )ẍ

+
2

9h
{ f j + fx,j · (un+ 1

2
F,j−1 − un+ 1

2
C,j−1) + fy,j · (un+ 1

2
F,j − un+ 1

2
C,j )

+ fz,j · (un+ 1
2

F,j+1 − un+ 1
2

C,j+1)} −
1

36h
{ f̃ j + f̃x,j · (un+ 1

2
F,j−2 − un+ 1

2
C,j−2)

+ f̃y,j · (un+ 1
2

F,j − un+ 1
2

C,j ) + f̃z,j · (un+ 1
2

F,j+2 − un+ 1
2

C,j+2)} = 0,

(11)

(ρn
F,j)t +

4
3
(un+ 1

2
F,j )x̂ − 1

3
(un+ 1

2
F,j )ẍ = 0, (12)

un
F,0 = un

F,J = 0, ρn
F,0 = ρn

F,J = 0, 1 ≤ n ≤ N,

u0
F,j = u0(xL + jh), ρ0

F,j = ρ0(xL + jh), 1 ≤ j ≤ J − 1,

43



Axioms 2023, 12, 1057

where
fx(x, y, z) = −y − 2x, fy(x, y, z) = z − x, fz(x, y, z) = y + 2z

are the three partial derivatives of f (x, y, z) with respect to x, y, z. The benefit of our method
is that we avoid having to solve nonlinear equations at many time levels, and that instead,
solve a much less expensive linear system.

Remark 2. From Equation (11), one knows that the values un
F, un

C, un+1
C are utilized to obtain the

un+1
F . However, similar to the Gauss–Seidel method applied to linear systems, our scheme has been

modified by using un
F obtained from the previous time level instead of un

C in the calculation process
to enhance the accuracy of the numerical solutions un+1

F .

Remark 3. The nonlinear system (2)–(3) is solved by Newton’s method and when |un(k+1)
F,j −

un(k)
F,j | < 10−10, iteration stops, where k is the number of iterations. The linear system (11)–(12) is

computed by a direct solver.

4. The Convergence and Stability Analysis of the Scheme

In this section, we focus on conducting a convergence and stability analysis of
scheme (2)–(5) on the coarse time-mesh and scheme (11)–(12) on the fine time-mesh. Let
vn

j = u(xj, tn), ϕn
j = ρ(xj, tn) be the exact solutions of problem (1), then the truncation

errors of the difference scheme (2)–(3) are obtained as follows:

Erks
C,j = (vks

j )t − 4
3
(vks

j )xx̄t +
1
3
(vks

j )x̂x̂t +
4
3
(ϕ

ks+ 1
2

j )x̂ − 1
3
(ϕ

ks+ 1
2

j )ẍ

+
4
9
{vks+ 1

2
j (vks+ 1

2
j )x̂ + [(vks+ 1

2
j )2]x̂} − 1

9
{vks+ 1

2
j (vks+ 1

2
j )ẍ + [(vks+ 1

2
j )2]ẍ},

(13)

Esks
C,j = (ϕks

j )t +
4
3
(vks+ 1

2
j )x̂ − 1

3
(vks+ 1

2
j )ẍ, (14)

vks
0 = vks

J = 0, ϕks
0 = ϕks

J = 0, 1 ≤ k ≤ P,

v0
j = v0(xL + jh), ϕ0

j = ϕ0(xL + jh), 1 ≤ j ≤ J − 1.

By Taylor series expansion, we conclude

Erks
C,j = (ut + ρx + uux − uxxt)(xj ,tks)

+ O(τ2
C + h4),

Esks
C,j = (ρt + ux)(xj ,tks)

+ O(τ2
C + h4).

Theorem 1. Suppose that u0
C ∈ H1

0 [xL, xR], ρ0
C ∈ L2[xL, xR], then the solutions of difference

scheme (2)–(5) converge to the solutions of problem (1) with an order of (τ2
C + h4) by the L∞ norm

for un
C and by the L2 norm for ρn

C.

Proof of Theorem 1. Denote eks
C,j = vks

j − uks
C,j, ηks

C,j = ϕks
j − ρks

C,j, 1 ≤ j ≤ J − 1, 1 ≤ k ≤ P.
Subtracting Equation (2) from Equation (13), we obtain

Erks
C,j = (eks

C,j)t − 4
3
(eks

C,j)xx̄t +
1
3
(eks

C,j)x̂x̂t +
4
3
(η

ks+ 1
2

C,j )x̂ − 1
3
(η

ks+ 1
2

C,j )ẍ

+
4
9
{vks+ 1

2
j (vks+ 1

2
j )x̂ + [(vks+ 1

2
j )2]x̂} − 4

9
{uks+ 1

2
C,j (uks+ 1

2
C,j )x̂ + [(uks+ 1

2
C,j )2]x̂}

− 1
9
{vks+ 1

2
j (vks+ 1

2
j )ẍ + [(vks+ 1

2
j )2]ẍ}+ 1

9
{uks+ 1

2
C,j (uks+ 1

2
C,j )ẍ + [(uks+ 1

2
C,j )2]ẍ}.

(15)

44



Axioms 2023, 12, 1057

Subtracting Equation (3) from Equation (14), we obtain

Esks
C,j = (ηks

C,j)t +
4
3
(eks+ 1

2
C,j )x̂ − 1

3
(eks+ 1

2
C,j )ẍ, (16)

e0
C,j = 0, η0

C,j = 0,

uks
0 = uks

J = 0, ρks
0 = ρks

J = 0.

The following validation of the theorem consists of two situations: (i) We first prove
the situation of n = ks(k = 1, 2, . . . , P); please refer to the references [16,27] for the proof of
this part. In the end, we obtain

‖en
C‖ ≤ O(τ2

C + h4), ‖en
C,x‖ ≤ O(τ2

C + h4), ‖ηn
C‖ ≤ O(τ2

C + h4). (17)

From Lemma 4, we have
‖en

C‖∞ ≤ O(τ2
C + h4); (18)

(ii) Next, we prove the situation of n = ks − l(l = s − 1, s − 2, . . . , 2, 1 and
k = 1, 2, . . . , P). We use Lagrange’s interpolation formula and obtain

vks−l =
tks−l − tks

t(k−1)s − tks
v(k−1)s +

tks−l − t(k−1)s

tks − t(k−1)s
vks

=
l
s

v(k−1)s + (1 − l
s
)vks +

v′′(θ1)

2
(t − t(k−1)s)(t − tks), θ1 ∈ (t(k−1)s, tks),

(19)

ϕks−l =
tks−l − tks

t(k−1)s − tks
ϕ(k−1)s +

tks−l − t(k−1)s

tks − t(k−1)s
ϕks

=
l
s

ϕ(k−1)s + (1 − l
s
)ϕks +

ϕ′′(θ2)

2
(t − t(k−1)s)(t − tks), θ2 ∈ (t(k−1)s, tks).

(20)

Subtracting Equation (4) from Equation (19), we obtain

vks−l − uks−l
C =

l
s
(v(k−1)s − u(k−1)s

C ) + (1 − l
s
)(vks − uks

C )

+
v′′(θ1)

2
(t − t(k−1)s)(t − tks).

Subtracting Equation (5) from Equation (20), we obtain

ϕks−l − ρks−l
C =

l
s
(ϕ(k−1)s − ρ

(k−1)s
C ) + (1 − l

s
)(ϕks − ρks

C )

+
ϕ′′(θ2)

2
(t − t(k−1)s)(t − tks).

From the triangle inequality and the results (17) and (18), we conclude

‖eks−l
C ‖ ≤ O(τ2

C + h4), ‖eks−l
C,x ‖ ≤ O(τ2

C + h4), ‖ηks−l
C ‖ ≤ O(τ2

C + h4), (21)

and
‖eks−l

C ‖∞ ≤ O(τ2
C + h4). (22)

We derive the result of Theorem 1 by combining the two above-mentioned cases.

Theorem 2. Suppose that u0
C ∈ H1

0 [xL, xR], ρ0
C ∈ L2[xL, xR], then the solutions of difference

scheme (2)–(5) are stable by the L∞ norm for un
C and by the L2 norm for ρn

C.

Proof of Theorem 2. The theorem can be proved in the same way as that used to prove
Theorem 1.
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Next, we analyze the convergence and stability of linear system (11) and (12) on
the fine time-mesh. For simplification, we further denote fxx,j = fxx(ξ j−1, ε j, δj+1), fyy,j =

fyy(ξ j−1, ε j, δj+1), fzz,j = fzz(ξ j−1, ε j, δj+1), f̃xx,j = fxx(ξ̃ j−2, ε̃ j, δ̃j+2),
f̃yy,j = fyy(ξ̃ j−2, ε̃ j, δ̃j+2), f̃zz,j = fzz(ξ̃ j−2, ε̃ j, δ̃j+2), fxy,j = fxy(ξ j−1, ε j, δj+1),
fxz,j = fxz(ξ j−1, ε j, δj+1), fyz,j = fyz(ξ j−1, ε j, δj+1), f̃xy,j = fxy(ξ̃ j−2, ε̃ j, δ̃j+2),
f̃xz,j = fxz(ξ̃ j−2, ε̃ j, δ̃j+2), f̃yz,j = fyz(ξ̃ j−2, ε̃ j, δ̃j+2), where fxx(x, y, z) = −2, fyy(x, y, z) = 0,
fzz(x, y, z) = 2, fxy(x, y, z) = −1, fxz(x, y, z) = 0, fyz(x, y, z) = 1 are the second-order
partial derivatives of f (x, y, z), ξ j−1 ∈ (vn

j−1, un
C,j−1), ε j ∈ (vn

j , un
C,j), δj+1 ∈ (vn

j+1, un
C,j+1),

ξ̃ j−2 ∈ (vn
j−2, un

C,j−2), ε̃ j ∈ (vn
j , un

C,j), δ̃j+2 ∈ (vn
j+2, un

C,j+2), then the truncation errors of the
scheme (11)–(12) are obtained as follows:

Ern
F,j = (vn

j )t − 4
3
(vn

j )xx̄t +
1
3
(vn

j )x̂x̂t +
4
3
(ϕ

n+ 1
2

j )x̂ − 1
3
(ϕ

n+ 1
2

j )ẍ

+
2

9h
{ f j + fx,j · (vn+ 1

2
j−1 − un+ 1

2
C,j−1) + fy,j · (vn+ 1

2
j − un+ 1

2
C,j ) + fz,j · (vn+ 1

2
j+1 − un+ 1

2
C,j+1)

+
1
2

fxx,j · (vn+ 1
2

j−1 − un+ 1
2

C,j−1)
2 +

1
2

fyy,j · (vn+ 1
2

j − un+ 1
2

C,j )2 +
1
2

fzz,j · (vn+ 1
2

j+1 − un+ 1
2

C,j+1)
2

+ fxy,j · (vn+ 1
2

j−1 − un+ 1
2

C,j−1)(v
n+ 1

2
j − un+ 1

2
C,j ) + fxz,j · (vn+ 1

2
j−1 − un+ 1

2
C,j−1)(v

n+ 1
2

j+1 − un+ 1
2

C,j+1)

+ fyz,j · (vn+ 1
2

j − un+ 1
2

C,j )(vn+ 1
2

j+1 − un+ 1
2

C,j+1)}

− 1
36h

{ f̃ j + f̃x,j · (vn+ 1
2

j−2 − un+ 1
2

C,j−2) + f̃y,j · (vn+ 1
2

j − un+ 1
2

C,j ) + f̃z,j · (vn+ 1
2

j+2 − un+ 1
2

C,j+2)

+
1
2

f̃xx,j · (vn+ 1
2

j−2 − un+ 1
2

C,j−2)
2 +

1
2

f̃yy,j · (vn+ 1
2

j − un+ 1
2

C,j )2 +
1
2

f̃zz,j · (vn+ 1
2

j+2 − un+ 1
2

C,j+2)
2

+ f̃xy,j · (vn+ 1
2

j−2 − un+ 1
2

C,j−2)(v
n+ 1

2
j − un+ 1

2
C,j ) + f̃xz,j · (vn+ 1

2
j−2 − un+ 1

2
C,j−2)(v

n+ 1
2

j+2 − un+ 1
2

C,j+2)

+ f̃yz,j · (vn+ 1
2

j − un+ 1
2

C,j )(vn+ 1
2

j+2 − un+ 1
2

C,j+2)},

(23)

Esn
F,j = (ϕn

j )t +
4
3
(vn+ 1

2
j )x̂ − 1

3
(vn+ 1

2
j )ẍ, (24)

vn
0 = vn

J = 0, ϕn
0 = ϕn

J = 0, 1 ≤ n ≤ N,

v0
j = v0(xL + jh), ϕ0

j = ϕ0(xL + jh), 1 ≤ j ≤ J − 1.

Theorem 3. Suppose that u0
F ∈ H1

0 [xL, xR], ρ0
F ∈ L2[xL, xR], then the solutions of difference

scheme (11)–(12) converge to the solutions of problem (1) with an order of (τ2
F + τ4

C + h4) by the
L∞ norm for un

F and by the L2 norm for ρn
F.

Proof of Theorem 3. Denote en
F,j = vn

j − un
F,j, ηn

F,j = ϕn
j − ρn

F,j, 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N,
Subtracting Equation (11) from Equation (23), we obtain

Ern
F,j = (en

F,j)t − 4
3
(en

F,j)xx̄t +
1
3
(en

F,j)x̂x̂t +
4
3
(η

n+ 1
2

F,j )x̂ − 1
3
(η

n+ 1
2

F,j )ẍ

+
2

9h
{ fx,j · en+ 1

2
F,j−1 + fy,j · en+ 1

2
F,j + fz,j · en+ 1

2
F,j+1 + Q1}

− 1
36h

{ f̃x,j · en+ 1
2

F,j−2 + f̃y,j · en+ 1
2

F,j + f̃z,j · en+ 1
2

F,j+2 + Q2},

(25)

where
Q1 = −(en+ 1

2
C,j−1)

2 + (en+ 1
2

C,j+1)
2 − (en+ 1

2
C,j−1)(e

n+ 1
2

C,j ) + (en+ 1
2

C,j )(en+ 1
2

C,j+1),

Q2 = −(en+ 1
2

C,j−2)
2 + (en+ 1

2
C,j+2)

2 − (en+ 1
2

C,j−2)(e
n+ 1

2
C,j ) + (en+ 1

2
C,j )(en+ 1

2
C,j+2).
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Subtracting Equation (12) from Equation (24), we have

Esn
F,j = (ηn

F,j)t +
4
3
(en+ 1

2
F,j )x̂ − 1

3
(en+ 1

2
F,j )ẍ. (26)

Taking the inner product (·, ·) on both sides of Equation (25) with 2en+ 1
2

F , we have

(Ern
F, 2en+ 1

2
F ) = (en

F,t, 2en+ 1
2

F )− 4
3
(en

F,xx̄t, 2en+ 1
2

F ) +
1
3
(en

F,x̂x̂t, 2en+ 1
2

F ) +
8
3
(η

n+ 1
2

F,x̂ , en+ 1
2

F )

− 2
3
(η

n+ 1
2

F,ẍ , en+ 1
2

F ) +
4
9

J−1

∑
j=1

( fx,j · en+ 1
2

F,j−1 + fy,j · en+ 1
2

F,j + fz,j · en+ 1
2

F,j+1 + Q1)e
n+ 1

2
F,j

− 1
18

J−1

∑
j=1

( f̃x,j · en+ 1
2

F,j−2 + f̃y,j · en+ 1
2

F,j + f̃z,j · en+ 1
2

F,j+2 + Q2)e
n+ 1

2
F,j .

(27)

Notice that
(en

F,t, 2en+ 1
2

F ) =
1
τF

(‖en+1
F ‖2 − ‖en

F‖2), (28)

(en
F,xx̄t, 2en+ 1

2
F ) = − 1

τF
(‖en+1

F,x ‖2 − ‖en
F,x‖2), (29)

(en
F,x̂xt, 2en+ 1

2
F ) = − 1

τF
(‖en+1

F,x̂ ‖2 − ‖en
F,x̂‖2), (30)

(η
n+ 1

2
F,x̂ , en+ 1

2
F ) = −(η

n+ 1
2

F , en+ 1
2

F,x̂ ), (31)

(η
n+ 1

2
F,ẍ , en+ 1

2
F ) = −(η

n+ 1
2

F , en+ 1
2

F,ẍ ), (32)

(Ern
F, 2en+ 1

2
F ) ≤ ‖Ern

F‖2 + ‖en+1
F ‖2 + ‖en

F‖2. (33)

Furthermore, from Lemmas 1 and 2, Lemma 4.2 in [16], and the Cauchy–Schwarz
inequality, we have

J−1

∑
j=1

( fx,j · en+ 1
2

F,j−1 + fy,j · en+ 1
2

F,j + fz,j · en+ 1
2

F,j+1)e
n+ 1

2
F,j

= h
J−1

∑
j=1

[− fx,j · (en+ 1
2

F,j )x̄ +
3
h

fy,j · en+ 1
2

F,j + fz,j · (en+ 1
2

F,j )x]e
n+ 1

2
F,j

= −( fx · en+ 1
2

F,x̄ , en+ 1
2

F ) +
3
h
( fy · en+ 1

2
F , en+ 1

2
F ) + ( fz · en+ 1

2
F,x , en+ 1

2
F )

≤ M(‖en+ 1
2

F,x ‖2 + ‖en+ 1
2

F ‖2),

(34)

J−1

∑
j=1

Q1en+ 1
2

F,j = 2h
J−1

∑
j=1

(en+ 1
2

C,j )2
x̂en+ 1

2
F,j + 2h

J−1

∑
j=1

(en+ 1
2

C,j )x̂en+ 1
2

C,j en+ 1
2

F,j

= 2((en+ 1
2

C )2
x̂, en+ 1

2
F ) + 2(en+ 1

2
C,x̂ en+ 1

2
C , en+ 1

2
F )

≤ M(‖en+ 1
2

C ‖2
∞‖en+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖en+ 1
2

C,x ‖2 + ‖en+ 1
2

F,x ‖2 + ‖en+ 1
2

F ‖2),

(35)
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J−1

∑
j=1

( f̃x,j · en+ 1
2

F,j−2 + f̃y,j · en+ 1
2

F,j + f̃z,j · en+ 1
2

F,j+2)e
n+ 1

2
F,j

= h
J−1

∑
j=1

[− f̃x,j · (en+ 1
2

F,j−1)x̄ + f̃z,j · (en+ 1
2

F,j+1)x]e
n+ 1

2
F,j

+
J−1

∑
j=1

( f̃x,j · en+ 1
2

F,j−1 + f̃y,j · en+ 1
2

F,j + f̃z,j · en+ 1
2

F,j+1)e
n+ 1

2
F,j

= h2
J+1

∑
j=1

f̃x,j · (en+ 1
2

F,j )x̄x̄en+ 1
2

F,j − h
J−1

∑
j=1

f̃x,j · (en+ 1
2

F,j )x̄en+ 1
2

F,j + h2
J−1

∑
j=1

f̃z,j · (en+ 1
2

F,j )xxen+ 1
2

F,j

+ h
J−1

∑
j=1

f̃z,j · (en+ 1
2

F,j )xen+ 1
2

F,j − ( f̃x · en+ 1
2

F,x̄ , en+ 1
2

F ) +
3
h
( f̃y · en+ 1

2
F , en+ 1

2
F ) + ( f̃z · en+ 1

2
F,x , en+ 1

2
F )

= h( f̃x · en+ 1
2

F, 1
2

en+ 1
2

F ) + h( f̃z · en+ 1
2

F,xx , en+ 1
2

F )− 2( f̃x · en+ 1
2

F,x̄ , en+ 1
2

F )

+
3
h
( f̃y · en+ 1

2
F , en+ 1

2
F ) + 2( f̃z · en+ 1

2
F,x , en+ 1

2
F )

≤ M(‖en+ 1
2

F,x ‖2 + ‖en+ 1
2

F ‖2),

(36)

J−1

∑
j=1

Q2en+ 1
2

F,j = 4h
J−1

∑
j=1

(en+ 1
2

C,j )2
ẍen+ 1

2
F,j + 4h

J−1

∑
j=1

(en+ 1
2

C,j )ẍen+ 1
2

C,j en+ 1
2

F,j

= 4((en+ 1
2

C )2
ẍ,, en+ 1

2
F ) + 4(en+ 1

2
C,ẍ en+ 1

2
C , en+ 1

2
F )

≤ M(‖en+ 1
2

C ‖2
∞‖en+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖en+ 1
2

C,x ‖2 + ‖en+ 1
2

F,x ‖2 + ‖en+ 1
2

F ‖2).

(37)

Substituting Equations (28)–(37) into Equation (27), then

‖en+1
F ‖2 +

4
3
‖en+1

F,x ‖2 − 1
3
‖en+1

F,x̂ ‖2 − 8τF
3

(η
n+ 1

2
F , en+ 1

2
F,x̂ ) +

2τF
3

(η
n+ 1

2
F , en+ 1

2
F,ẍ )

≤ ‖en
F‖2 +

4
3
‖en

F,x‖2 − 1
3
‖en

F,x̂‖2 + MτF(‖en+1
F ‖2 + ‖en

F‖2 + ‖en+1
F,x ‖2 + ‖en

F,x‖2)

+ MτF(‖en+ 1
2

C ‖2
∞‖en+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖en+ 1
2

C,x ‖2) + τF‖Ern
F‖2.

(38)

Taking the inner product (·, ·) on both sides of Equation (26) with 2η
n+ 1

2
F , we obtain

(Esn
F,j, 2η

n+ 1
2

F ) = (ηn
F,t, 2η

n+ 1
2

F ) +
8
3
(en+ 1

2
F,x̂ , η

n+ 1
2

F )− 2
3
(en+ 1

2
F,ẍ , η

n+ 1
2

F ). (39)

We also have
(ηn

F,t, 2η
n+ 1

2
F ) =

1
τF

(‖ηn+1
F ‖2 − ‖ηn

F‖2), (40)

(Esn
F,j, 2η

n+ 1
2

F ) ≤ ‖Esn
F‖2 + ‖ηn+1

F ‖2 + ‖ηn
F‖2. (41)

Substituting Equations (40) and (41) into Equation (39), then

‖ηn+1
F ‖2 +

8τF
3

(en+ 1
2

F,x̂ , η
n+ 1

2
F )− 2τF

3
(en+ 1

2
F,ẍ , η

n+ 1
2

F )

≤ ‖ηn
F‖2 + MτF(‖ηn+1

F ‖2 + ‖ηn
F‖2) + τF‖Esn

F‖2.
(42)
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Adding Equations (38) and (42), we have

‖en+1
F ‖2 +

4
3
‖en+1

F,x ‖2 − 1
3
‖en+1

F,x̂ ‖2 + ‖ηn+1
F ‖2

≤ ‖en
F‖2 +

4
3
‖en

F,x‖2 − 1
3
‖en

F,x̂‖2 + ‖ηn
F‖2

+ MτF(‖en+1
F ‖2 + ‖en

F‖2 + ‖en+1
F,x ‖2 + ‖en

F,x‖2 + ‖ηn+1
F ‖2 + ‖ηn

F‖2)

+ MτF(‖en+ 1
2

C ‖2
∞‖en+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖en+ 1
2

C,x ‖2) + τF‖Ern
F‖2 + τF‖Esn

F‖2.

(43)

Let Bn
F = ‖en

F‖2 + 4
3‖en

F,x‖2 − 1
3‖en

F,x̂‖2 + ‖ηn
F‖2, then

Bn+1
F − Bn

F ≤ MτF(Bn+1
F + Bn

F) + MτF(‖en+ 1
2

C ‖2
∞‖en+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖en+ 1
2

C,x ‖2)

+τF‖Ern
F‖2 + τF‖Esn

F‖2.

By using the result of the Theorem 1, we obtain

(1 − MτF)(Bn+1
F − Bn

F) ≤ 2MτFBn
F + MτF(τ

4
F + τ8

C + h8).

Choosing τF to be sufficiently small such that (1 − MτF) > λ > 0, then

Bn+1
F − Bn

F ≤ MτF(τ
4
F + τ8

C + h8) + MτFBn
F. (44)

Summing the inequalities in Equation (44) from 0 to N − 1 , we obtain

BN
F ≤ B0

F + M(τ4
F + τ8

C + h8) + MτF

N−1

∑
n=0

Bn
F.

From Lemma 3, we have

BN
F ≤ [B0

F + M(τ4
F + τ8

C + h8)]eMNτF . (45)

Using the initial and boundary conditions, we get following results from Equation (45)

‖en
F‖ ≤ O(τ2

F + τ4
C + h4), ‖en

F,x‖ ≤ O(τ2
F + τ4

C + h4), ‖ηn
F‖ < O(τ2

F + τ4
C + h4).

Using Lemma 4, this leads to

‖en
F‖∞ ≤ O(τ2

F + τ4
C + h4).

This completes the proof of the Theorem.

Theorem 4. Suppose that u0
F ∈ H1

0 [xL, xR], ρ0
F ∈ L2[xL, xR], then the solutions of difference

scheme (11)–(12) are stable by the L∞ norm for un
F and by the L2 norm for ρn

F.

Proof of Theorem 4. The way used to prove Theorem 3 can also be applied to demonstrate
the validity of this theorem.

5. Numerical Simulation Results

In this section, we conducted several numerical simulations of the proposed scheme
for solving the SRLW equation. On the one hand, we present the computational efficiency
and numerical accuracy of the proposed scheme and compare the obtained results with
the nonlinear scheme in [16] and the TT-M difference scheme in [27], respectively. On the
other hand, we focus on the conservation laws and the long-time behavior simulation of the
proposed scheme. All simulations are implemented on a personal computer running Windows
10 with an Intel(R) i7-10710U 1.61 GHz CPU and 16 GB of memory using Matlab R2019b.
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For all experiments, we selected the following domains and parameters: −50 ≤ x ≤ 50,
0 < t ≤ 10, and s = 4, m = 1.5. The SRLW equation possesses the following
solitary wave solution

u(x, t) =
3(m2 − 1)

m
sech2(

√
m2 − 1

4v2 (x − mt)),

ρ(x, t) =
3(m2 − 1)

m2 sech2(

√
m2 − 1

4m2 (x − mt)),

and

u0(x) =
5
2

sech2
√

5
6

x, ρ0(x) =
5
3

sech2
√

5
6

x.

The error and convergence rate of the numerical solutions with respect to the exact
velocity v and density ϕ are defined as follows:

e(h, τ) = ‖vn − un‖∞, η(h, τ) = ‖ϕn − ρn‖,

uRatex = log2

(
e(2h, 4τ)

e(h, τ)

)
, ρRatex = log2

(
η(2h, 4τ)

η(h, τ)

)
,

uRatet = log2

(
e(2h, 2τ)

e(h, τ)

)
, ρRatet = log2

(
η(2h, 2τ)

η(h, τ)

)
.

First, we verify that the proposed scheme can achieve second-order convergence in
time and fourth-order convergence in space. To do so, we obtain the errors between the
numerical and exact solution at t = 10 with various time and space steps. The convergence
rates and CPU times determined by both the nonlinear scheme in [16] and the proposed
scheme are summarized in Tables 1 and 2. From the results presented the tables, we can
see that: (i) the errors provided by the proposed scheme are nearly identical to those
obtained from the nonlinear scheme; (ii) Both schemes exhibit approximately second-order
convergence in time when h = τF and fourth-order convergence in space when τF = h2.
These results verify the analysis results stated in Theorem 3; however, (iii) The proposed
scheme is significantly more cost-effective than the nonlinear scheme. In other words,
the CPU time required by the proposed scheme is approximately half that needed by the
nonlinear scheme. The results in Tables 1 and 2 clearly demonstrate that a significant
improvement has been achieved by proposed scheme compared to the nonlinear scheme
in [16].

Table 1. The errors and convergence rates with τF = h2.

Nonlinear Scheme [16]

(h, τF) e(h, τF) uRatex η(h, τF) ρRatex CPU(s)(
1
2 , 1

4

)
6.0793 × 10−2 — 8.4371 × 10−2 — 1.83(

1
4 , 1

16

)
3.9382 × 10−3 3.9482 5.4315 × 10−3 3.9573 17.30(

1
8 , 1

64

)
2.4688 × 10−4 3.9956 3.4032 × 10−4 3.9963 283.50(

1
16 , 1

256

)
1.5452 × 10−5 3.9979 2.1277 × 10−5 3.9995 5664.93

Proposed Scheme

(h, τF) e(h, τF) uRatex η(h, τF) ρRatex CPU(s)(
1
2 , 1

4

)
7.5147 × 10−2 — 1.0501 × 10−1 — 1.00(

1
4 , 1

16

)
3.9370 × 10−3 4.2545 5.5879 × 10−3 4.2320 9.57(

1
8 , 1

64

)
2.4687 × 10−4 3.9952 3.4096 × 10−4 4.0346 142.86(

1
16 , 1

256

)
1.5452 × 10−5 3.9978 2.1279 × 10−5 4.0021 2956.44
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Table 2. The errors and convergence rates with h = τF.

Nonlinear Scheme [16]

(h, τF) e(h, τF) uRatet η(h, τF) ρRatet CPU(s)(
1
4 , 1

4

)
5.5120 × 10−2 — 7.6668 × 10−2 — 6.47(

1
8 , 1

8

)
1.3991 × 10−2 1.9780 1.9390 × 10−2 1.9833 62.37(

1
16 , 1

16

)
3.5125 × 10−3 1.9939 4.8616 × 10−3 1.9958 459.76(

1
32 , 1

32

)
8.7882 × 10−4 1.9988 1.2162 × 10−3 1.9990 5357.84

Proposed Scheme

(h, τF) e(h, τF) uRatet η(h, τF) ρRatet CPU(s)(
1
4 , 1

4

)
7.2702 × 10−2 — 9.8577 × 10−2 — 3.06(

1
8 , 1

8

)
1.4349 × 10−2 2.3410 2.1666 × 10−2 2.1858 23.59(

1
16 , 1

16

)
3.5100 × 10−3 2.0314 5.0243 × 10−3 2.1084 206.61(

1
32 , 1

32

)
8.7874 × 10−4 1.9979 1.2267 × 10−3 2.0341 2472.98

The three-dimensional plots of the numerical solutions of u(x, t) and ρ(x, t) for prob-
lem (1) using the proposed scheme by taking h = 1/8 and τF = 1/64 are presented in
Figure 1. These visualizations provide insights into the evolution of wave propagation
over the time interval [0, 10]. Additionally, Figure 2 shows the exact and numerical so-
lutions of u(x, t) and ρ(x, t) with h = 1/8 and τF = 1/64 at t = 10 obtained from the
proposed scheme. A comparison clearly illustrates a remarkable agreement between our
numerical solutions and the exact solution. Moreover, Figure 3 displays the computational
times (CPU times) required by the nonlinear scheme in [16] and the proposed scheme for
different choices of τF = h2 and h = τF. Notably, our proposed scheme demonstrates a
large reduction in computation time. In conclusion, in contrast to the nonlinear method
presented in [16], the proposed scheme not only preserves nearly the same accuracy and
convergence rate as the nonlinear scheme but also substantially decreases the CPU time
needed to obtain numerical solutions.

(a) (b)

Figure 1. Three−dimensional plots of u(x, t) (a) and ρ(x, t) (b) with h = 1/8, τF = 1/64.
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Figure 2. Exact and numerical solution of u(x, t) (a) and ρ(x, t) (b) at t = 10 with h = 1/8, τF = 1/64.
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Figure 3. Comparison of CPU times with τF = h2 (a) and h = τF (b).

Next, we compare the accuracy of two schemes for the SRLW equation: the previous
TT-M scheme in [27] and the proposed scheme. The former scheme exhibits first-order
convergence in time and second-order convergence in space. Under the same temporal
and spatial domain conditions as in this article, we use the previous TT-M scheme to
calculate the errors of u(x, t) and ρ(x, t) as well as the CPU time for different time and space
steps. The resulting data are presented in Table 3. By comparing the errors and CPU times
presented in Tables 1–3, it is evident that the proposed scheme exhibits significantly lower
CPU time requirements compared to that of the previous TT-M scheme under similar error
value. This indicates that the computational efficiency of the proposed scheme is higher
than that of the previous TT-M scheme. Figures 4 and 5 illustrate the error comparison
between the two methods with h = 1/8, τF = 1/64 and h = 1/16, τF = 1/16, respectively.
The results show that the errors in numerical solutions of u(x, t) and ρ(x, t) obtained from
the proposed scheme are considerably smaller than the errors provided by the previous
TT-M scheme, which implies that our proposed method has superior accuracy than the
previous TT-M scheme for solving the SRLW equation.

Furthermore, based on Tables 1–3, we present the errors of u(x, t) and ρ(x, t) versus
the CPU time using the three numerical schemes (i.e., nonlinear scheme, previous TT-M
scheme and proposed scheme) in Figure 6. Figure 6 plots the errors versus the CPU time
under τF = h2 and h = τF, respectively. From the figure, one can see that the cost of
the previous TT-M scheme is the most expensive; the cost of the proposed scheme is the
cheapest; and the cost of the nonlinear scheme is more expensive than that provided by the
proposed scheme.
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Table 3. The errors and CPU times of the previous TT-M scheme with various time and space steps.

Previous TT-M Scheme [27]

(h, τF) e(h, τF) η(h, τF) CPU(s)(
1
2 , 1

4

)
7.7523 × 10−1 7.6225 × 10−1 0.18(

1
4 , 1

16

)
1.7627 × 10−1 1.7062 × 10−1 1.90(

1
8 , 1

64

)
4.2888 × 10−2 4.1560 × 10−2 26.32(

1
16 , 1

256

)
1.0658 × 10−2 1.0324 × 10−2 366.92(

1
4 , 1

4

)
8.9609 × 10−1 8.2590 × 10−1 1.01(

1
8 , 1

8

)
4.1952 × 10−1 3.9001 × 10−1 5.40(

1
16 , 1

16

)
2.0123 × 10−1 1.8915 × 10−1 31.49(

1
32 , 1

32

)
9.8428 × 10−2 9.3111 × 10−2 240.06
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Figure 4. Comparison of e(h, τF) (a) and η(h, τF) (b) with h = 1/8, τF = 1/64.
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Figure 5. Comparison of e(h, τF) (a) and η(h, τF) (b) with h = 1/16, τF = 1/16.

53



Axioms 2023, 12, 1057

��
��

��
�

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
�

�
��
�
��

��������

��	�
 ���
�����������������

��	�
 ���
���������������������

����� �������	
	���

�	�	

� ��� �����������	���

�	�	

� ��� �������	����
������

�	�	

� ��� �������	
	���

�	�	

(a)

��
��

��
�

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
�

�
��
�
��

��������

��	�
 ���
�����������������

��	�
 ���
���������������������

��	�
 ���
���������������

� 	�
 ���
�����������������

� 	�
 ���
���������������������

� 	�
 ���
���������������

(b)

Figure 6. The numerical error versus the CPU time using the three different numerical schemes with
τF = h2 (a) and h = τF (b).

Next, we consider the three conservation laws of the SRLW Equation (1), namely:

Q1(t) =
∫ ∞

−∞
u(x, t)dx, Q2(t) =

∫ ∞

−∞
ρ(x, t)dx, E(t) = ‖u‖2 + ‖ux‖2 + ‖ρ‖2.

Subsequently, by utilizing discretized formulations, we are able to evaluate three
approximate conservative quantities as follows:

Q1 = h
J−1

∑
j=1

un
j , Q2 = h

J−1

∑
j=1

ρn
j , E = h

J−1

∑
j=1

(un
j )

2 +
1
h

J−1

∑
j=1

(un
j+1 − un

j )
2 + h

J−1

∑
j=1

(ρn
j )

2,

where n = 0, 1, 2, . . . , N.
The values of these three quantities under different time and spatial steps are recorded

in Tables 4–6. Tables 4 and 5 demonstrate that the discrete masses Q1 and Q2 remain
well-preserved at various times, regardless of the time and space steps. From the results
presented in Table 6, for the case where the grid spacing is h = 1/2 and the time step is
τF = 1/4, it can be observed that the discrete energy E undergoes a slight change over time.
However, as the spatial and temporal step sizes become smaller, the tables show that our
proposed scheme preserves the two discrete masses well and almost maintains discrete
energy when the time and space steps are made smaller.

Table 4. Discrete mass Q1 under different mesh steps h and τF at various times.

Present Scheme (
1
2 , 1

4

) (
1
4 , 1

16

) (
1
8 , 1

64

) (
1

16 , 1
256

)
t = 0 13.4164078649 13.4164078649 13.4164078649 13.4164078649
t = 2 13.4164078649 13.4164078649 13.4164078649 13.4164078649
t = 4 13.4164078649 13.4164078649 13.4164078649 13.4164078649
t = 6 13.4164078649 13.4164078649 13.4164078649 13.4164078649
t = 8 13.4164078649 13.4164078649 13.4164078649 13.4164078649
t = 10 13.4164078648 13.4164078648 13.4164078648 13.4164078648
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Table 5. Discrete mass Q2 under different mesh steps h and τF at various times.

Present Scheme (
1
2 , 1

4

) (
1
4 , 1

16

) (
1
8 , 1

64

) (
1

16 , 1
256

)
t = 0 8.9442719099 8.9442719099 8.9442719099 8.9442719099
t = 2 8.9442719099 8.9442719099 8.9442719099 8.9442719099
t = 4 8.9442719099 8.9442719099 8.9442719099 8.9442719099
t = 6 8.9442719099 8.9442719099 8.9442719099 8.9442719099
t = 8 8.9442719099 8.9442719099 8.9442719099 8.9442719099
t = 10 8.9442719099 8.9442719099 8.9442719099 8.9442719099

Table 6. Discrete energy E under different mesh steps h and τF at various times.

Present Scheme (
1
2 , 1

4

) (
1
4 , 1

16

) (
1
8 , 1

64

) (
1

16 , 1
256

)
t = 0 34.7628720201 34.7781529556 34.7819964190 34.7829587447
t = 2 34.7647712611 34.7781634038 34.7819965109 34.7829587460
t = 4 34.7537001446 34.7780876049 34.7819962655 34.7829587461
t = 6 34.7185711285 34.7778355542 34.7819952701 34.7829587428
t = 8 34.6591320134 34.7773916731 34.7819934746 34.7829587360
t = 10 34.5775373861 34.7767645581 34.7819909256 34.7829587262

Finally, we present the long-time behavior of the u(x, t) and ρ(x, t) using the proposed
scheme with the parameter xL = −40, xR = 160, T = 80, h = 1/8, τF = 1/64. The
waveforms of u(x, t) and ρ(x, t) at t = 0, 40, and 80 obtained from the present scheme are
illustrated in Figure 7. From the figure, it is evident that the waveforms at three different
time instances are nearly identical. This observation strongly indicates the high accuracy
of our proposed scheme. The long-time errors in u(x, t) and ρ(x, t) over the time interval
[0, 80] are presented in Figure 8. Although the errors of the proposed scheme increase over
time, the rate of growth is relatively slow, which also indicates the high effectiveness of the
proposed scheme.
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Figure 7. Long−time behavior of u(x, t) (a) and ρ(x, t) (b) under mesh steps with h = 1/8, τF = 1/64.
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Figure 8. Errors in long-time behavior of u(x, t) and ρ(x, t) with h = 1/8, τF = 1/64.

6. Conclusions

In this paper, based on a two-level time-mesh technique, a novel finite difference
scheme with a second-order convergence rate in time and a fourth-order convergence
rate in space is developed for effectively solving the SRLW Equation (Equation (1)). The
proposed scheme is nonlinear on the coarse time-mesh and linear on the fine time-mesh to
make it easier to implement. The proposed scheme offers several advantages over existing
methods, including improved efficiency and accuracy. We performed a convergence and
stability analysis of the proposed scheme; compared to the nonlinear scheme in [16], the
proposed scheme not only maintains the same errors and convergence rates as the nonlinear
scheme but can also save in computational time, which makes the proposed scheme a
valuable tool for practical applications. Moreover, a comparison of the errors obtained
using the previous TT-M difference scheme in [27] and the proposed scheme is presented.
The results indicate that our proposed scheme exhibits significantly smaller errors than
the previous TT-M scheme. The higher accuracy of our scheme ensures stable and reliable
solutions throughout the simulation. We also plotted the errors against the CPU time for
three methods and found that our proposed scheme is the cheapest of the three schemes
in the comparison in terms of CPU time. Finally, the discrete conservation laws were
investigated and the long-time simulations that demonstrate the waveform’s preservation
were conducted to illustrate the effectiveness of the proposed scheme. Overall, the proposed
numerical scheme for the SRLW equation is more accurate and efficient than other earlier
schemes in the literature. The new difference scheme presents an important advancement
in numerical methods for solving the SRLW equation. However, as shown in Figure 8,
one of the shortcomings of our scheme is that the error will become large over a very
long simulation time. This will be addressed and enhanced through the use of alternative
methods in our future work.
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Abstract: This study investigates the oscillatory properties of a fourth-order delay functional differen-
tial equation. This study’s methodology is built around two key tenets. First, we propose optimized
relationships between the solution and its derivatives by making use of some improved monotonic
features. By using a comparison technique to connect the oscillation of the studied equation with some
second-order equations, the second aspect takes advantage of the significant progress made in the
study of the oscillation of second-order equations. Numerous applications of functional differential
equations of the neutral type served as the inspiration for the study of a subclass of these equations.

Keywords: delay differential equations; oscillatory behavior; Kneser-type criteria; comparison
theorems

MSC: 34C10; 34K11

1. Introduction

In this study, we consider the functional differential equation with p-Laplacian-like
operators

d
dt

[
a0(t)φ

(
d3

dt3 x(t)
)]

+ a1(t)φ
(

d3

dt3 x(t)
)
+ a2(t)φ(x(g(t))) = 0, (1)

where t ∈ I := [t0, ∞), φ(u) = |u|p−2u, and the following assumptions are satisfied:

(A1) p > 1 is a constant;
(A2) a0 ∈ C1(I,R+), ai ∈ C(I, [0, ∞)) for i = 1, 2, a′0(t) ≥ 0, and a2(t) > 0;
(A3) g ∈ C(I,R), g(t) ≤ t, g′(t) ≥ 0, and limt→∞ g(t) = ∞;
(A4) limt→∞ A0(t) = ∞, where

A0(t) :=
∫ t

t1

(
â(z)
a0(z)

) 1
p−1

dz,

and

â(t) := exp
[
−

∫ t

t1

a1(z)

a0(z)
dz
]

.

Functional differential equations (FDEs) are used in the natural sciences, engineering
technology, and automatic control, as stated by Hale [1–5]. According to [6], the p-Laplace
FDE has a wide variety of applications in continuum mechanics.

The great development witnessed by various sciences has been accompanied by many
nonlinear mathematical models. However, it is difficult to find solutions to these models
using traditional methods. Therefore, researchers resort to obtaining approximate solutions
through numerical methods, or studying the properties of the solutions of these equations.
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Many biological, chemical, and physical phenomena have mathematical models that
use differential equations of the fourth-order delay. Examples of these applications include
soil settlement and elastic issues. The oscillatory traction of a muscle, which takes place
when the muscle is subjected to an inertial force, is one model that can be modeled using a
fourth-order oscillatory equation with delay.

The qualitative study of differential equations contributes significantly to understand-
ing and analyzing phenomena and problems without obtaining solutions. Qualitative
studies have been developed in many theoretical and numerical ways. The qualitative stud-
ies include the study of stability, control, oscillation, bifurcation, periodicity, boundedness,
and others.

One type of differential equation in which oscillatory behavior is frequent is the class
of FDEs. It is known that deviating arguments that express the phenomenon’s prior and
present times are present in equations of this type when they deal with the aftereffects of
life phenomena, which increase the likelihood that oscillatory solutions will exist (see [7]).
One of the fundamental subclasses of FDEs is the delayed functional differential equation,
also known as the delay differential equation. This type is based on the past and present
values of the temporal derivatives, which results in forecasts for the future that are more
precise and successful.

Oscillation theory, as one of the branches of qualitative theory, is interested in in-
vestigating the asymptotic and oscillatory properties of the solutions of FDEs. Studies
in oscillation theory began by relating the oscillatory behavior of the linear differential
equation to complex solutions of the characteristic equation, see [8,9]. Then, many methods
and techniques have been developed that investigate the oscillatory behavior of different
FDEs, which include delay, advanced, neutral, and mixed, as well as in canonical and
noncanonical cases, see [10,11].

Here, we mention the basic definitions and some elementary previous results that we
use to prove our results.

Definition 1. A function x ∈ C(n−1)([t∗, ∞),R), t∗ ∈ I, is said to be a solution of (1) if
a0 · φ

(
x(n−1)

)
∈ C1([t∗, ∞),R), x satisfies (1), and sup{|x(t)| : t ≥ t1} > 0 for t1 ≥ t∗.

Definition 2. Such a solution x is called nonoscillatory if x is positive or negative, eventually;
otherwise, x is called oscillatory.

Definition 3. FDE (1) is called oscillatory if every solution to it is oscillatory.

Next, we review some of the previous results that contributed to the development of
the oscillation theory for equations of the middle term and for equations of the fourth order.

In 1979, Onose [12] studied the oscillation of the FDEs

d2

dt2

[
a0(t)

d2

dt2 x(t)
]
+ w(t, x(g(t))) = 0

and
d2

dt2

[
a0(t)

d2

dt2 x(t)
]
+ w(t, x(g(t))) = r(t),

under the condition ∫ ∞

t0

a−1
0 (z)dz = ∞.

In [13], Grace et al. presented some oscillation conditions for the FDE

d3

dt3

[
a0(t)

d
dt

x(t)
]
+ a2(t)w(x(g(t))) = 0.
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Wu [14] and Kamo and Usami [15] addressed the oscillatory properties of the equation

d2

dt2

[
a0(t)

∣∣∣∣ d2

dt2 x(t)
∣∣∣∣α−1 d2

dt2 x(t)

]
+ a2(t)|x(t)|β−1x(t) = 0,

where α, β ∈ R+.
For even-order equations, Zhang et al. [16,17] and Baculikova et al. [18] studied

the FDE
d
dt

[
a0(t)

(
dn−1

dtn−1 x(t)
)α

]
+ q(t) f (x(g(t))) = 0, (2)

where α > 0 is a quotient of odd integers. In [16,17], under the condition∫ ∞

t0

a−1/α
0 (z)dz < ∞, (3)

Zhang et al. used the Riccati approach, and provided some oscillation criteria for
Equation (2) when f (x) = xβ, β ≤ α, whereas Baculikova et al. [18] used the comparison
technique to test the oscillation of FDE (1), and considered the two cases (3) and∫ ∞

t0

a−1/α
0 (z)dz = ∞.

For equations with a middle term, Grace [19] inspected the oscillatory behavior of
the FDE

d
dt

[
a0(t)

d
dt

x(t)
]
+ a1(t)x(h(t)) + a2(t)w(x(g(t))) = 0. (4)

In [20], Saker et al. obtained Kamenev-type criteria for FDE (4), and improved results
in [19]. Tunc and Kaymaz [21] studied the neutral FDE

d2

dt2 z(t) + a1(t)
d
dt

z(t) + a2(t)x(g(t)) = 0,

under the condition ∫ ∞

t0

exp
(
−

∫ t

t0

a1(z)dz
)

dt = ∞,

where z(t) = x(t) + a3(t)x(h(t)), and h(t) ≤ t. Graef et al. [22] studied the oscillation of
the mixed neutral FDE

d
dt

[
a0(t)

d
dt

z(t)
]
+ a1(t)

d
dt

z(t) + a2(t)x(g(t)) = 0, (5)

under the condition ∫ ∞

t0

a−1
0 (z) exp

(
−

∫ z

t0

a1(s)
a0(t)

ds
)

dz = ∞, (6)

where
z(t) = x(t) + c0(t)x(h0(t)) + c1(t)x(h1(t)), h0(t) < t, and h1(t) > t.

Jadlovská and Džurina [23] derived Kneser-type criteria to test the oscillation of
the FDE

d
dt

[
a0(t)φ

(
d
dt

x(t)
)]

+ a2(t)φ(x(g(t))) = 0. (7)

Theorem 1 ([23], Theorem 2). Assume that p ≥ 2 and

α := lim inf
t→∞

η(t)
η(g(t))

< ∞.
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FDE (7) is oscillatory if

lim inf
t→∞

[
a1/(p−1)

0 (t)ηp−1(g(t))η(t)a2(t)
]
> δ,

where

δ = (p − 1)max

{
�(1 − �)p−1

α(p−1)�
: � ∈ (0, 1)

}
and

η(t) :=
∫ t

t0

a−1/(p−1)
0 (z)dz.

Using the comparison method with second-order equations, Elabbasy et al. [24]
studied the oscillation of FDE (1) when φ(u) = u.

Theorem 2 ([24], Theorem 2). If the differential equations

d
dt

(
a0(t)

d
dt

w(t)
)
+

κ

2
a2(t)g2(t)w(t) = 0

and
d2

dt2 w(t) + w(t)
∫ ∞

t

[
1

a0(s)

∫ ∞

s
a2(u)

g2(u)
u2 du

]
ds = 0

are oscillatory, where κ ∈ (0, 1), then FDE (1) is oscillatory.

2. Main Results

Assume first that x is an eventually positive solution of FDE (1), i.e., x(t) > 0 for
t ≥ t1 ∈ I. According to Lemma 4 in [25], we have, eventually,

x′(t) > 0, x′′′(t) > 0, and x(4)(t) ≤ 0,

under the condition (A4). Therefore, we can classify the solutions of FDE (1) into the
following two cases:

[C1] x(i)(t) ≥ 0 for i = 0, 1, 2, 3, and x(4) ≤ 0;
[C2] x(i)(t) ≥ 0 for i = 0, 1, 3, x′′(t) < 0, and x(4) ≤ 0.

For convenience, we define

Ai(t) :=
∫ t

t1

Ai−1(z)dz, for i = 1, 2.

2.1. Monotonic Properties of Solutions in [C1]

In the following, we deduce some monotonic properties of the solutions in [C1] and
their derivative.

Lemma 1. Assume that x satisfies [C1], eventually. Then,

d
dt

[
x(i)(t)
A2−i(t)

]
≤ 0, (8)

for i = 0, 1, 2.

Proof. Assume that x satisfies [C1] for t ≥ t1 ∈ I. From FDE (1), we have

d
dt

[
a0(t)
â(t)

φ
(

x′′′(t)
)] ≤ 0.
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Thus,

x′′(t) ≥
∫ t

t1

(
â(z)
a0(z)

) 1
p−1

[
a0(z)

â(z)
φ
(

x′′′(z)
)] 1

p−1
dz

≥
[

a0(t)
â(t)

φ
(

x′′′(t)
)] 1

p−1 A0(t)

=

(
a0(t)
â(t)

) 1
p−1 A0(t)x′′′(t).

This leads to

d
dt

[
x′′(t)
A0(t)

]
=

1
A2

0(t)

[
A0(t)x′′′(t)−

(
â(t)
a0(t)

) 1
p−1

x′′(t)

]
≤ 0.

Next, using this fact, we obtain

x′(t) ≥
∫ t

t1

x′′(z)
A0(z)

A0(z)dz ≥ x′′(t)
A0(t)

A1(t),

which in turn gives
d
dt

[
x′(t)
A1(t)

]
≤ 0.

Similarly, we obtain
d
dt

[
x(t)
A2(t)

]
≤ 0.

The proof is complete.

Lemma 2. Assume that x satisfies [C1], eventually. Then,

A0(t)x(t) ≥ A2(t)x′′(t)

and

x(t) ≥ A2(t)
(

a0(t)
â(t)

) 1
p−1

x′′′(t).

Proof. Assume that x satisfies [C1] for t ≥ t1 ∈ I. From Lemma 1, we have that (8) holds.
Thus,

x(t) ≥ A2(t)
A1(t)

x′(t) ≥ A2(t)
A1(t)

A1(t)
A0(t)

x′′(t)

=
A2(t)
A0(t)

x′′(t)

≥ A2(t)
A0(t)

(
a0(t)
â(t)

) 1
p−1 A0(t)x′′′(t)

= A2(t)
(

a0(t)
â(t)

) 1
p−1

x′′′(t).

The proof is complete.

2.2. Comparison Theorem

The comparison technique is usually used to benefit from the development of oscilla-
tion criteria for solutions to first- and second-order equations. This is acheived by linking
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the oscillation of higher-order equations to one or more equations of the first or second
order. This technique relies primarily on the relationships between the solution and the
derivatives of the second and third orders, so improving these relationships is reflected
in turn in improving the results derived from the use of the comparison technique. In the
following theorem, we use a comparison approach to relate the oscillation of FDE (1) with
a pair of equations of the second order.

Theorem 3. Assume that p ≥ 2. FDE (1) is oscillatory if the second-order FDEs

d
dt

[(
a0(t)
â(t)

) 1
p−1

w′(t)

]
+

1
p − 1

a2(t)
â(t)

Ap−1
2 (g(t))
A0(g(t))

w(g(t)) = 0 (9)

and

x′′(t) + x(g(t))
∫ ∞

t

[
â(r)
a0(r)

∫ ∞

r

a2(z)

â(z)
dz
] 1

p−1
dr = 0 (10)

are oscillatory.

Proof. Based on the converse hypothesis, we assume that FDE (1) has a nonoscillatory
solution, which in turn inevitably leads to the existence of an eventually positive solution
to this equation. Therefore, there is a t1 ∈ I such that x satisfies [C1] or [C2] for t ≥ t1.

Suppose first that x satisfies [C1]. Then, we have

d
dt

[(
a0(t)
â(t)

) 1
p−1

x′′′(t)

]

=
d
dt

[(
a0(t)
â(t)

φ
(

x′′′(t)
)) 1

p−1
]

=
1

p − 1

((
a0(t)
â(t)

) 1
p−1

x′′′(t)

)2−p
d
dt

[
a0(t)
â(t)

φ
(

x′′′(t)
)]

= − 1
p − 1

((
a0(t)
â(t)

) 1
p−1

x′′′(t)

)2−p
a2(t)
â(t)

φ(x(g(t))). (11)

From Lemma 2, we have

x(t) ≥ A2(t)
(

a0(t)
â(t)

) 1
p−1

x′′′(t), (12)

Since x/A2 is nonincreasing, we have that

x(g(t))
A2(g(t))

≥ x(t)
A2(t)

,

which, with (12), gives

(
x(g(t))
A2(g(t))

)2−p
≤

((
a0(t)
â(t)

) 1
p−1

x′′′(t)

)2−p

.
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Thus, (11) becomes

d
dt

[(
a0(t)
â(t)

) 1
p−1

x′′′(t)

]
≤ − 1

p − 1

(
x(g(t))
A2(g(t))

)2−p a2(t)
â(t)

φ(x(g(t)))

= − 1
p − 1

Ap−2
2 (g(t))

a2(t)
â(t)

x(g(t)). (13)

From Lemma 2, we obtain

x(g(t)) ≥ A2(g(t))
A0(g(t))

x′′(g(t)). (14)

Combining (13) and (14), we arrive at

d
dt

[(
a0(t)
â(t)

) 1
p−1

x′′′(t)

]
+

1
p − 1

a2(t)
â(t)

Ap−1
2 (g(t))
A0(g(t))

x′′(g(t)) ≤ 0.

Now, if we set w := x′′ > 0, then w is a positive solution of the inequality

d
dt

[(
a0(t)
â(t)

) 1
p−1

w′(t)

]
+

1
p − 1

a2(t)
â(t)

Ap−1
2 (g(t))
A0(g(t))

w(g(t)) ≤ 0.

Using Corollary 1 in [26], the corresponding FDE (9) also has a positive solution; this is
a contradiction.

Next, suppose first that x satisfies [C2]. Multiplying FDE (1) by 1/â(t), we find

d
dt

[
a0(t)
â(t)

φ
(

x′′′(t)
)]

+
a2(t)
â(t)

φ(x(g(t))) = 0. (15)

Integrating (15) from t to ∞, we obtain

a0(t)
â(t)

φ
(

x′′′(t)
) ≥

∫ ∞

t

a2(z)

â(z)
φ(x(g(z)))dz

≥ φ(x(g(t)))
∫ ∞

t

a2(z)

â(z)
dz,

and then

x′′′(t) ≥ x(g(t))
[

â(t)
a0(t)

∫ ∞

t

a2(z)

â(z)
dz
] 1

p−1
.

By integrating from t to ∞, we obtain

−x′′(t) ≥
∫ ∞

t
x(g(r))

[
â(r)
a0(r)

∫ ∞

r

a2(z)

â(z)
dz
] 1

p−1
dr

≥ x(g(t))
∫ ∞

t

[
â(r)
a0(r)

∫ ∞

r

a2(z)

â(z)
dz
] 1

p−1
dr,

or

x′′(t) + x(g(t))
∫ ∞

t

[
â(r)
a0(r)

∫ ∞

r

a2(z)

â(z)
dz
] 1

p−1
dr ≤ 0.

Then, x is a positive solution of this inequality. Using Corollary 1 in [26], the corresponding
FDE (10) also has a positive solution; this is a contradiction.

The proof is complete.
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Corollary 1. Suppose that p ≥ 2,

α0 := lim inf
t→∞

A0(t)
A0(g(t))

< ∞,

and
α1 := lim inf

t→∞

t
g(t)

< ∞.

FDE (1) is oscillatory if

lim inf
t→∞

[
a2(t)
â(t)

(
a0(t)
â(t)

) 1
p−1 A0(t)Ap−1

2 (g(t))

]
> (p − 1)δ0 (16)

and

lim inf
t→∞

[
tg(t)

∫ ∞

t

[
â(r)
a0(r)

∫ ∞

r

a2(z)

â(z)
dz
] 1

p−1
dr

]
> δ1, (17)

where

δi = max

{
�(1 − �)

α�i
: � ∈ (0, 1)

}
, for i = 0, 1.

Proof. Based on the converse hypothesis, we assume that FDE (1) has a nonoscillatory
solution, which in turn inevitably leads to the existence of an eventually positive solution
to this equation. Therefore, there is a t1 ∈ I such that x satisfies [C1] or [C2] for t ≥ t1.
As in the proof of Theorem 3, the second-order FDEs (9) and (10) have positive solutions.
However, according to Theorem 1, conditions (16) and (17) confirm the oscillation of
FDEs (9) and (10), respectively, which is a contradiction.

The proof is complete.

The following corollary is obtained directly by setting p = 2 and a0(t) = 1. This
corollary studies the oscillation of the linear state of FDE (1).

Corollary 2. Suppose that

α := lim inf
t→∞

t
g(t)

< ∞.

The FDE
d4

dt4 x(t) + a1(t)
d3

dt3 x(t) + a2(t)x(g(t)) = 0

is oscillatory if

lim inf
t→∞

[
a2(t)
â2(t)

A0(t)A2(g(t))
]
> δ

and

lim inf
t→∞

[
tg(t)

∫ ∞

t
â(r)

∫ ∞

r

a2(z)

â(z)
dzdr

]
> δ,

where

δ = max
{
�(1 − �)

α�
: � ∈ (0, 1)

}
.

Example 1. Consider the FDE

d
dt

[
1
t

d3

dt3 x(t)
]
+

1
t2

d3

dt3 x(t) +
c0

t5 x(λt) = 0, (18)
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where t > 0, c0 > 0 and λ ∈ (0, 1). We note that p = 2, φ(t) = u, a0(t) = 1/t, a1(t) = 1/t2,
a2(t) = c0/t5, and g(t) = λt. Thus, we have

â(t) =
1
t

, A0(t) = t, A1(t) =
1
2

t2,

and
A2(t) =

1
6

t3.

Moreover, from the definition of α1 and α2, we find that α1 = α2 = 1/λ.
Now, conditions (16) and (17) reduce to

λ3

6
c0 > δ0

and
λ

c0

6
> δ1,

where
δi = max

{
�(1 − �)λ� : � ∈ (0, 1)

}
, for i = 0, 1.

Thus, using Corollary 1, FDE (18) is oscillatory if

λ3c0 > 6δ0. (19)

Remark 1. Using Theorem 2, FDE (18) is oscillatory if the second-order FDEs

d
dt

(
1
t

d
dt

w(t)
)
+

κc0λ2

2
1
t3 w(t) = 0 (20)

and
d2

dt2 w(t) +
c0λ2

8
1
t2 w(t) = 0 (21)

are oscillatory.
Now, From Theorem 1, FDEs (20) and (21) are oscillatory if

1
8

λ4c0 > δ2

and
1
8

λ3c0 > δ0

respectively, where
δ2 = max

{
�(1 − �)λ2� : � ∈ (0, 1)

}
.

Therefore, FDE (18) is oscillatory if

c0 > max
{

8δ2

λ4 ,
8δ0

λ3

}
. (22)

To compare the two criteria (19) and (22), we consider different values of parameter λ and determine
the most efficient criterion through the following table.

We notice from Table 1 that Criterion (19) provides wider intervals for the parameter c0, and
this means that it is more efficient in testing the oscillation.
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Table 1. The lower bounds of the parameter c0 at which conditions (19) and (22) are satisfied.

λ 0.1 0.5 0.7 0.9

Criterion (19) 635.114 8.74015 3.68796 1.95338

Criterion (22) 5159.99 17.9293 6.01641 2.75110

3. Conclusions

Based on the comparison principle with equations of the second order, we established
a new criterion of the Kneser type that confirms the oscillation of all solutions of fourth-
order half-linear differential equations. After classifying the positive solutions according to
their derivatives, we excluded the existence of positive solutions in each case separately.
Then, we obtained a criterion that ensures the oscillation of the solutions to DE (1). By
applying the new results to some examples and special cases, we clarified the importance
of the new results. Extending our results to the neutral case is a suggested research
point. Also, improving the monotonic properties of the studied equation can improve the
oscillation criteria.
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Abstract: In this paper, we first established a high-accuracy difference scheme for the time-fractional
Schrödinger equation (TFSE), where the factional term is described in the Caputo derivative. We
used the L1-2-3 formula to approximate the Caputo derivative, and the fourth-order compact finite
difference scheme is utilized for discretizing the spatial term. The unconditional stability and
convergence of the scheme in the maximum norm are proved. Finally, we verified the theoretical
result with a numerical test.

Keywords: time-fractional Schrödinger equation; L1-2-3 formula; compact finite difference method;
stability; Caputo derivative

MSC: 65M15; 65Y20

1. Introduction

In 1926, the Schrödinger equation was proposed by Schrödinger, who is a physicist
from Austria [1], which combines the concept of matter wave with the wave equation to es-
tablish a second-order partial differential equation that describes the motion of microscopic
particles, and its general form is as follows:

ih̄
∂u
∂t

= − h̄2

2m
Δu + Vu.

where u is the wave function, h̄ is Planck constant, V is the potential function, m denotes
the mass of the particle, and Δ represents the Laplace operator. In recent years, there
have been many studies on the Schrödinger equation [2–10]. Researchers have found that
fractional differential operators are non-local compared to integer differential operators
and are very suitable for describing real-world processes of change with memory as well as
hereditary properties. It has become one of the most important tools for describing all kinds
of complex mechanical and physical behaviors. In 2004, Naber substituted the time term of
the classical Schrödinger equation with the Caputo time-fractional derivative to propose
the time-fractional Schrödinger equation (TFSE) [11], which describes the dependence of
particle motion.

The TFSE is an integral-differential equation, and since it’s very difficult to find the
analytical solution, it has been a widely discussed hot topic to get a numerical solution
of the TFSE with a smaller error and higher order. For example, Wei et al. proposed an
LDG finite element method to solve the TFSE, which is implicit and fully discrete [12].
Garrappa R. et al. solved the TFSE based on the Krylov projection methods [13]. Liu et al.
obtained the approximation solution of the TFSE based on the reproducing kernel theory
and collocation method [14]. Zheng et al. presented a spectral collocation method for
solving the TFSE [15].

Some L-type formulas have been exploited to replace the Caputo time-fractional term
for discretizing the time derivative term and to reap the approximation solution of the

Axioms 2023, 12, 816. https://doi.org/10.3390/axioms12090816 https://www.mdpi.com/journal/axioms
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TFSE. For example, Eskar, R. et al. used the L1 and L1-2 formulas to discretize the Caputo
derivatives, and the compact difference scheme is exploited for the spatial terms to obtain
the finite difference scheme [16]. Fei et al. constructed an implicit scheme by adopting
the L2-1σ formula to approximate the Caputo term; the weighted and shifted Grünwald
formula is used for the spatial term [17]. Cen et al. also adopted the L2-1σ formula on
graded meshes for solving the TFKBE with an initial singularity [18]. Ding et al. solved a
nonlinear TFSE by using the quintic non-polynomial spline in the spatial term and the L1
formula in the time term [19]. Mokhtari, R. et al. constructed three finite difference schemes
by adopting different L-type formulas to approximate the Caputo derivatives in the time
direction and the central difference format in the space direction, respectively. The accuracy
of the three schemes are O(τ2−α + h2), O(τ3−α + h2), and O(τ3 + h2) [20], where 0 � α � 1,
and τ (h) is time (spatial) step size. Hadhoud et al. received the approximation solution of
the TFSE by using the L1 formula and proved the conditional stability of the technique [21].

In this paper, we use the L1-2-3 formula to approximate the Caputo derivative, and the
fourth-order compact difference scheme is exploited to discretize the spatial derivative term
for establishing a high-accuracy difference scheme, where the order in the time direction is
3 and the spatial direction is 4. Furthermore, we will prove the scheme is unconditionally
stable and convergent in the maximum norm. At the end of the paper, a numerical test is
given to prove the theoretical result.

2. Preliminaries

The following TFSE is considered:

i
∂αu(x, t)

∂tα
=

∂2u(x, t)
∂x2 + f (x, t), x ∈ Ω = (0, L), t ∈ (0, T], (1)

u(x, 0) = ϕ(x), x ∈ Ω = [0, L], (2)

u(0, t) = u(L, t) = φ(t), t ∈ [0, T]. (3)

where i =
√−1, α ∈ (0, 1), T and L are positive real numbers, u0(x) and f (x, t) are

given functions, ∂αu(x,t)
∂tα is the Caputo derivative of order α ∈ (0, 1), which is defined as

follows [20]:
∂αu(·, t)

∂tα
=

1
Γ(1 − α)

∫ t

0

us(·, s)
(t − s)α

ds.

In order to discretize the continuous problem, we first give a dissected grid of the
solution region. Let h = L/M and τ = T/N be the step sizes in the time and space
directions, where M and N are two integers. Then xj = jh(j = 0, 1, 2, · · · , M), tn = nτ(n =
0, 1, 2, · · · , N). Furthermore, we define a mesh that cover the domain [0, L]× [0, T]. Let
Û = un

j is a grid function on the mesh. For any u, v ∈ Û, we introduce the following
notations:

δxun
j+1/2 =

un
j+1 − un

j

h
, δxun

j−1/2 =
un

j − un
j−1

h
, δ2

xun
j =

δxun
j+1/2 − δxun

j−1/2

h
,

(u, v) = h
M−1

∑
j=1

ujv̄j, ||u||2 = (u, u), ||u||∞ = max
1�j�M−1

|uj|,

(u, v)1 = h
M−1

∑
j=0

(δxuj+1/2)(δxv̄j+1/2), ||u||21 = (u, u)1,

where the v̄j and v̄j+1/2 denote the complex-conjugate of vj and vj+1/2.
From the Taylor expansion, we have:

70



Axioms 2023, 12, 816

δ2
xun

j =
1
h2 (u

n
j−1 − 2un

j + un
j+1)

=
2
h2 (

h2u′′(xj, tn)

2!
+

h4u(4)(xj, tn)

4!
) + O(h4)

= (1 +
h2

12
δ2

x)u
′′(xj, tn) + O(h4),

then, we get:

u′′(xj, tn) =
δ2

x

(1 + h2

12 δ2
x)

un
j + O(h4),

and we define the compact fourth-order difference formula as follow:

Hun
j = (I +

h2

12
δ2

x)u
n
j .

Definition 1 ([22]). (The L1-2-3 formula). Assuming that α ∈ (0, 1) and u(x, t) ∈ C6,5

(Ω × [0, T]). We have

C
0 Dα

t u(·, tn) =
1

ταΓ(2 − α)

[
d0un −

n−1

∑
l=1

(dn−l−1 − dn−l)ul − dn−1u0

]
, (4)

where un and u0 are approximations of u(·, tn) and u(·, t0). And for n = 1,

d0 = 1,

for n = 2,

dl =

{
al + bl , l = 0
al − bl−1, l = 1

for n = 3,

dl =

⎧⎪⎨⎪⎩
al + bl + gl , l = 0
al + bl − bl−1 − 2gl−1, l = 1
al − bl−1 + gl−2, l = 2

and for n � 4,

dl =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

al + bl + gl , l = 0
al + bl − bl−1 + gl − 2gl−1, l = 1
al + bl − bl−1 + gl − 2gl−1 + gl−2, 2 � l � n − 3
al + bl − bl−1 − 2gl−1 + gl−2, l = n − 2
al − bl−1 + gl−2, l = n − 1

with

al =(l + 1)1−α − l1−α,

bl =
(l + 1)2−α − l2−α

2 − α
− (l + 1)1−α − l1−α

2
,

gl =
(l + 1)3−α − l3−α

(2 − α)(3 − α)
− (l + 1)1−α + 2l1−α

6
− l2−α

2 − α
.
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Lemma 1 ([20]). If n � 4, then we have:

d0 > |d1|,

d0 > d2 � d3 � · · · � dn−1 > 0.

Lemma 2 ([20]). For dj(j = 0, 1, 2), we have:

d0 > 1,

3d0 + 2d1 − 2d2 > 2,

d0 + d1 − d2 > 1/3.

Theorem 1 ([22]). Let

ε3(u(·, tn)) =
∂αu(·, tn)

∂tα
− C

0 Dα
t u(·, tn)

if u(x, t) ∈ C6,5(Ω × [0, T]), then

|ε3(u(·, t1))| � α

2Γ(3 − α)
mttτ

2−α,

|ε3(u(·, t2))| � α

3(1 − α)(2 − α)Γ(1 − α)

(
1
2
+

1
3 − α

)
Mtttτ

3−α

+
α

12Γ(1 − α)
(t2 − t1)−α−1Mttτ

3,

|ε3(u(·, tn))| � 12α

Γ(1 − α)
(tn − t1)−α−1Mttτ

3 +
α

8Γ(1 − α)
(tn − t2)−α−1Mtttτ

4

+
α

Γ(1 − α)

(
1
2
+

1
12

27 − 10α + α2

∏4
i=1(α − i)

)
Mttttτ

4−α, n � 3

where

mtt = max
0�t�t1

utt(·, t), Mtt = max
0�t�t1

|utt(·, t)|, Mttt = max
0�t�t2

|uttt(·, t)|, Mtttt = max
0�t�tn

|utttt(·, t)|.

Lemma 3 ([23]). For any u, v ∈ Û, we have (δ2
xu, v) = −(u, v)1.

Lemma 4 ([23]). For any u ∈ Û, we have ||u||∞ � h−1/2||u||.

Lemma 5 ([24]). For any u ∈ Û, we have ||u||21 � 4
h2 ||u||2.

Lemma 6. For any u ∈ Û, we have 2
3 ||u||2 � (Hu, u)..

Proof. Using Lemma 3 and Lemma 5,we have:

(Hu, u) = ((I +
h2

12
δ2

x)u, u) = (u, u) + (
h2

12
δ2

xu, u)

= ||u||2 − h2

12
(u, u)1 = ||u||2 − h2

12
||u||21

� ||u||2 − 1
3
||u||2 =

2
3
||u||2.
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Lemma 7 ([25]). Let {un} and {vn} be nonnegative sequences, and c is a nonnegative constant,
for all n � 1, if

un � c +
n−1

∑
l=0

ulvl ,

then,

un � c
n−1

∏
l=0

(1 + vn) � cexp(
n−1

∑
l=0

vl).

Lemma 8 ([26]). For any u ∈ Û, we have ||u|| � L√
6
||u||1.

Lemma 9 ([27]). For any u ∈ Û, we have (Hu, v) = (u, Hv).

Lemma 10. For any u ∈ Û, we have ||Hu|| � 4
3 ||u||.

Proof. Applying the inverse estimate ||δ2
xu|| � 4

h2 ||u||, we have:

||Hu|| = ||u +
h2

12
δ2

xu|| � ||u||+ h2

12
||δ2

xu|| � ||u||+ 1
3
||u|| = 4

3
||u||.

3. Analysis of the Method

3.1. Construction of the Difference Scheme

To solve Equation (1), we discretize the time term by using the L1-2-3 formula, and
the compact difference scheme is exploited for the spatial term, then we obtain the finite
difference scheme as follows:

iC
0 Dα

t un
j = H−1δ2

xun
j + f n

j , 1 � j � M − 1, 1 � n � N (5)

u0
j = ϕj, 0 � j � M (6)

un
0 = un

M = φn, 0 � n � N (7)

where un
j is an approximation to u(xj, tn), and ϕj = ϕ(xj), φn = φ(tn), f n

j = f (xj, tn). Since
f n
j has no effect on the discussion of the study that follows, for convenience, we assume

f n
j = 0.

3.2. Analysis of Stability

In this section, we will analyze the unconditional stability of the scheme (5) that was
established in the previous subsection.

Theorem 2. Difference scheme (5) is unconditionally stable.

Proof. For n = 1, the inner product of Equation (5) and Hu1 gives:

(iC
0 Dα

t u1, Hu1) = (H−1δ2
xu1, Hu1) = (δ2

xu1, u1).

From the Lemma 3, we have:

id0(Hu1, u1)− id0(Hu1, u0) = −μ(u1, u1)1 = −μ||u1||21,

where μ = ταΓ(2 − α).
According to the Lemma 6 and Cauchy-Schwarz inequality, we can obtain:

2
3
||u1||2 � 1

4
||Hu1||2 + ||u0||2.
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From Lemma 10, here is:

2
3
||u1||2 � 1

3
||u1||2 + ||u0||2.

Eventually, we can get ||u1|| � √
3||u0||.

For n = 2, we can obtain the following equation by inner product of Equation (5) and
Hu2:

(iC
0 Dα

t u2, Hu2) = (H−1δ2
xu2, Hu2) = (δ2

xu2, u2).

From Lemma 3, we have:

id0(Hu2, u2)− i(d0 − d1)(Hu2, u1)− id1(Hu2, u0) = −μ||u2||21.

Further, we have:

d0(Hu2, u2) � (d0 − d1)(Hu2, u1) + d1(Hu2, u0).

Using the Lemma 6 and Cauchy-Schwarz inequality, we can obtain:

2
3

d0||u2||2 � (d0 − d1)(
1
4
||Hu2||2 + ||u1||2) + d1(

1
4
||Hu2||2 + ||u0||2).

From Lemma 10, we can eventually obtain:

||u2||2 � 3(d0 − d1)

d0
||u1||2 + 3d1

d0
||u0||2.

Then, for η � 0, we now have:

||u2||2 � η||u0||2 +
1

∑
l=0

vl ||ul ||2,

in which v0 = 3d1
d0

, and v1 = 3(d0−d1)
d0

.

According to Lemma 1, vl > 0, then using Lemma 7 ,we can obtain:

||u2||2 � ηexp(
1

∑
l=0

vl)||u0||2 = ηexp(3)||u0||2,

choosing η � 3/exp(3) gives ||u2|| � √
3||u0||.

For n � 3, we can obtain the following equation by inner product of Equation (5)
and Hun:

(iC
0 Dα

t un, Hun) = (H−1δ2
xun, Hun) = (δ2

xun, un).

From Lemma 3, we get:

id0(Hun, un)− i
n−1

∑
l=1

(dn−l−1 − dn−l)(Hun, ul)− idn−1(Hun, u0) = −μ||un||21.

Furthermore, we can obtain:

d0(Hun, un) �
n−1

∑
l=1

(dn−l−1 − dn−l)(Hun, ul) + dn−1(Hun, u0).

Since only d1 − d2 is unknown positive or negative in dn−l−1 − dn−l , for l = 1, 2, · · · ,
n − 1, so we discuss it in two cases.
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Case1. If d2 < d1, from Lemma 6 and Cauchy-Schwarz inequality:

2
3

d0||un||2 �
n−1

∑
l=1

(dn−l−1 − dn−l)(
1
4
||Hun||2 + ||ul ||2) + dn−1(

1
4
||Hun||2 + ||u0||2).

From Lemma 10, we can obtain:

||un||2 �
3 ∑n−1

l=1 (dn−l−1 − dn−l)

d0
||ul ||2 + 3dn−1

d0
||u0||2.

Then, for η � 0, we now have:

||un||2 � η||u0||2 +
n−1

∑
l=0

vl ||ul ||2,

in which v0 = 3dn−1
d0

, and vl =
3(dn−l−1−dn−l)

d0
for l = 1, 2, · · · , n − 1. According to Lemma 1,

vl > 0, then using Lemma 7:

||un||2 � ηexp(
n−1

∑
l=0

vl)||u0||2 = ηexp(3)||u0||2,

choosing η � 3/exp(3) gives ||un|| � √
3||u0||.

Eventually, for n � 1, using Lemma 4, we have:

||un||∞ �
√

h||un|| �
√

3h||u0||.

Case2. If d2 > d1, then we have:

2
3

d0||un||2 �
n−1

∑
l=1,l 
=n−2

(dn−l−1 − dn−l)(Hun, ul) + (d2 − d1)(Hun, un−2) + dn−1(Hun, u0).

From Lemma 6 and Cauchy-Schwarz inequality we can obtain:

2
3

d0||un||2 �
n−1

∑
l=1,l 
=n−2

(dn−l−1 − dn−l)(
1
8
||Hun||2 + 2||ul ||2) + (d2 − d1)(

1
8
||Hun||2 + 2||un−2||2)

+ dn−1(
1
8
||Hun||2 + 2||u0||2).

Furthermore, using Lemma 10 and Lemma 2, we have:

||un||2 � 12
3d0 − 2d2 + 2d1

× (
n−1

∑
l=1,l 
=n−2

(dn−l−1 − dn−l)||ul ||2 + (d2 − d1)||un−2||2 + dn−1||u0||2)

�6
n−1

∑
l=1,l 
=n−2

(dn−l−1 − dn−l)||ul ||2 + 6(d2 − d1)||un−2||2 + 6dn−1||u0||2.

Then, for η � 0, we now have:

||un||2 � η||u0||2 +
n−1

∑
l=0

vl ||ul ||2,

in which v0 = 6dn−1, vn−2 = 6(d2 − d1), and vl = 6(dn−l−1 − dn−l) for l = 1, 2, · · · ,
n − 3, n − 1.
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According to Lemma 1, vl > 0, then using Lemma 7, we can obtain:

||un||2 � ηexp(
n−1

∑
l=0

vl)||u0||2 = ηexp(C)||u0||2,

where C = 6(d0 − 2d1 + 2d2), based on Lemma 1, C > 0. Choosing η � 3/exp(C) gives
||un|| � √

3||u0||.
Eventually, for n � 1, using Lemma 4, we have:

||un||∞ �
√

h||un|| �
√

3h||u0||.

In conclusion, scheme (5) is unconditionally stable.

3.3. Analysis of Convergence

In the following, we consider the convergence of the difference scheme (5). The error
equation holds:

en
j = u(xj, tn)− un

j , (8)

where u(xj, tn) denotes the exact solution of Equation (1), while un
j denotes the numeri-

cal solution.

Theorem 3. Finite difference scheme (5) is always consistent with 3 order accuracy for n > 2,
where u ∈ C6,5(Ω × [0, T]).

Proof. The local truncation error of the scheme (5) is:

T(xj, tn) = iC
0 Dα

t u(xj, tn)− H−1δ2
xu(xj, tn)− f (xj, tn), (9)

using Taylor expansion and Theorem 1, we have:

T(xj, tn) = i
∂αu(xj, tn)

∂tα
− ∂2u(xj, tn)

∂x2 − iε3(u(xj, tn)) + O
(

h4
)

= −iε3(u(xj, tn)) + O
(

h4
)

.

Let Tm = max(x,t)∈Ω×I |T(x, t)|, then:

Tm �

⎧⎪⎨⎪⎩
Mtt

2 τ2−α + O
(
h4), t ∈ [

0, t1],
Mtt
40 τ2−α + Mtt

3 τ3−α + O
(
h4), t ∈ (

t1, t2],
7Mtt

2 τ3 + Mtt
25 τ4 + Mttt

4 τ4−α + O
(
h4), t ∈ (

t2, tn].
Obviously, for n > 2, Tm = O(τ3 + h4). Eventually, we have the following result:

‖Tn
j ‖ � C1(τ

3 + h4),

where C1 is a positive integer.

Theorem 4. Finite difference scheme (5) is convergent if u ∈ C4,4(Ω × I).

Proof. Subtracting Equation (5) from Equation (9) leads to :

Tn
j = iC

0 Dα
t en

j − H−1δ2
xen

j . (10)

Multiplying H on both sides of Equation (10), we have:
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HTn
j = iC

0 Dα
t Hen

j − δ2
xen

j .

Taking the inner product with respect to en
j and fetching the real part, then the follow-

ing equation holds:

−(δ2
xen, en) = Re(HTn, en).

By Lemma 3 and Lemma 8, we get :

6‖en‖2 � L2‖en‖2
1 = L2 Re(HTn, en) � L2|(HTn, en)|.

Using Lemma 9, Cauchy-Schwarz inequality and Lemma 10, we can obtain:

6‖en‖2 � L2| 3
4L2 ‖Tn‖2 +

L2

3
‖Hen‖2| � L4

3
‖Tn‖2 + ‖en‖2.

Further, we can get :

‖en‖ � L2
√

15
‖Tn‖ � L2

√
15

C1(τ
3 + h4),

where Theorem 3 used. Eventually, we have :

‖en‖ � C
(

τ3 + h4
)

,

where C is a positive integer. Therefore, for n � 1, finite difference scheme (5) is convergent
when u ∈ C6,5(Ω × [0, T]).

4. Numerical Experiment

Furthermore, two numerical examples are given to demonstrate the theoretical analy-
ses of the scheme (5). The following notations will be used when presenting the result,

L∞ − error = max
0�j�M,0�n�N

|en
j |.

Order = log2

[
L∞ − error(2h, τ)

L∞ − error(h, τ)

]
.

Example 1. The one-dimensional TFSE is considered as follows:

i
∂αu(x, t)

∂tα
=

∂2u(x, t)
∂x2 + f (x, t), x ∈ Ω = (0, 2), t ∈ (0, 1],

u(x, 0) = 0, x ∈ [0, 2],

u(0, t) = u(2, t) = 0, t ∈ [0, 1]

where f (x, t) = 2t2−α

Γ(3−α)
(i − 1)sinπx + (1 + i)t2π2sinπx, and the exact solution is given by

u(x, t) = (1 + i)t2sinπx.

Tables 1 and 2 indicate the maximum norm errors and the convergence orders in
spatial direction. When taking different values of α(0.1, 0.5, 0.9) for N = 2000; we can know
that the order of convergence in spatial direction is 4.

In Figure 1, we show the errors in the maximum norm for time direction attaining the
third order of accuracy for M = 2000 for α = 0.1 and α = 0.5.
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Table 1. Numerical error and convergence order in spatial direction for Example 1.

α h L∞-Error Order

1/2 0.0395 -
1/4 2.2777 × 10−3 4.1107

0.1 1/8 1.4014 × 10−4 4.0268
1/16 8.7188 × 10−6 4.0066
1/32 5.4430 × 10−7 4.0017

1/2 0.0393 -
1/4 2.2777 × 10−3 4.1104

0.5 1/8 1.3974 × 10−4 4.0258
1/16 8.6938 × 10−6 4.0066
1/32 5.4273 × 10−7 4.0017

1/2 0.0396 -
1/4 2.2935 × 10−3 4.1108

0.9 1/8 1.4073 × 10−4 4.0265
1/16 8.7792 × 10−6 4.0027
1/32 5.7222 × 10−7 3.9395

Table 2. Numerical error and convergence order in spatial direction for Example 2.

α h L∞-Error Order

π/2 0.0240 -
π/4 1.4026 × 10−3 4.0953

0.1 π/8 8.6104 × 10−5 4.0260
π/16 5.3570 × 10−6 4.0066
π/32 3.3509 × 10−7 3.9990

π/2 0.0181 -
π/4 1.0620 × 10−3 4.0891

0.5 π/8 6.6241 × 10−5 4.0028
π/16 4.1390 × 10−6 4.0004
π/32 2.5174 × 10−7 4.0393

π/2 0.0117 -
π/4 6.9124 × 10−4 4.0856

0.9 π/8 4.4740 × 10−5 3.9500
π/16 2.7902 × 10−6 4.0031
π/32 1.7359 × 10−7 4.0066
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Figure 1. Convergence rates of numerical solutions at M = 2000 with different α for Example 1.

Figure 2 (Figure 3) represents the real (imaginary) part of the numerical solution and
the exact solution for α = 0.7, h = 1/100 and τ = 1/200; it can be seen that our resulting
numerical solution is very close to the exact solution.

78



Axioms 2023, 12, 816

Figure 4 gives the absolute modulus error between the numerical and exact solution
when M = 20 and N = 400 for different α(0.2, 0.8), and we can observe that the error is
very small.

Figure 2. Real part of numerical solution and exact solution of Example 1.

Figure 3. Imaginary part of numerical solution and exact solution of Example 1.

Figure 4. Absolute modulus error of Example1 for different α.
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Example 2. The one-dimensional TFSE is considered as follows:

i
∂αu(x, t)

∂tα
=

∂2u(x, t)
∂x2 + f (x, t), x ∈ Ω = (0, 2π), t ∈ (0, 1],

u(x, 0) = 0, x ∈ [0, 2π],

u(0, t) = u(2, t) = t2, t ∈ [0, 1]

where f (x, t) = − 2t2−α

Γ(3−α)
sin x + t2 cos x + i( 2t2−α

Γ(3−α)
cos x + t2 sin x), and the exact solution is

given by
u(x, t) = t2(cos x + i sin x).

In Figure 5, we show the errors in the maximum norm for time direction attaining the
third order of accuracy for M = 2000 for α = 0.1 and α = 0.5.

In Figure 6 (Figure 7), we plot the real (imaginary) part of the numerical solution and
the exact solution for α = 0.3, h = π/100 and τ = 1/200, it can be seen that our resulting
numerical solution gives a great approximation of the exact solution.

Figure 8 gives the absolute modulus error between the numerical and exact solution
when M = 20 and N = 400 for different α(0.2, 0.8), and we can observe that the error is
very small.
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Figure 5. Convergence rates of numerical solutions at M = 2000 with different α for Example 2.

Figure 6. Real part of numerical solution and exact solution of Example 2.
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Figure 7. Imaginary part of numerical solution and exact solution of Example 2.

Figure 8. Absolute modulus error of Example 2 for different α.

Ref. [16] has used two L-type formulas to approximate the time fractional derivatives
to establish two finite difference schemes, and the convergence orders are fourth order
accuracy in the spatial direction and 2 − α and 3 − α in the temporal direction, respectively.
The convergence order in the time direction for two schemes is shown in the Table 3:

Table 3. The convergence order in time direction [16].

α τ
Example 1 Example 2

Order(L1) Order(L1-2) Order(L1) Order(L1-2)

1/10 - - - -

0.1 1/20 1.768 3.042 1.764 3.010
1/40 1.787 3.021 1.784 2.981
1/80 1.802 3.010 1.800 2.965

1/10 - - - -

0.5 1/20 1.472 2.872 1.448 2.553
1/40 1.480 2.699 1.468 2.524
1/80 1.486 2.547 1.478 2.511

1/10 - - - -

0.9 1/20 1.089 1.397 1.051 2.086
1/40 1.136 1.995 1.074 2.124
1/80 1.157 2.162 1.087 2.100
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By following Figures 1 and 5, we can know that with our method, we can achieve
third order accuracy in the time direction, which is higher than [16].

5. Conclusions

In this paper, we first proposed a time-fractional Schrödinger equation with the Caputo
time-fractional derivative of order α ∈ (0, 1) for constructing the finite difference scheme to
obtain the approximation solution of the equation; we approximated the Caputo derivative
using the L1-2-3 formula to discretize the time term, and the spatial term is discretized by
the fourth-order compact difference scheme; we then analyzed the unconditional stability
of the scheme and also proved that the scheme is convergent in the maximum norm with
an accuracy of O(τ3 + h4). At the end of this article, we give a numerical example to verify
the theoretical result.
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Abstract: In this work, we consider the monotone inclusion problem in real Hilbert spaces and
propose a simple inertial method that does not include any evaluations of the associated resolvent
and projection. Under suitable assumptions, we establish the strong convergence of the method
to a minimal norm solution. Saddle points of minimax problems and critical points problems
are considered as the applications. Numerical examples in finite- and infinite-dimensional spaces
illustrate the performances of our scheme.
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1. Introduction

Since Minty [1], and the many others to follow, such as [2–4], introduced the theory
of the monotone operator, a large number of theoretical and practical developments have
been presented. Pascali and Sburian [5] pointed out that the class of monotone operators
is important, and due to the simple structure of the monotonicity condition, it can be
handled easily. The monotone inclusion problem is one of the highlights due to its important
significance in convex analysis and convex optimization problems, which includes convex
minimization, monotone variational inequality, convex and concave minimax problems,
linear programming problems and many others. For further information and applications,
see, e.g., Bot and Csetnek [6], Korpelevich [7], Khanc et al. [8], Sicre et al. [9], Xu [10],
Yin et al. [11] and the many references therein [12–15].

Let H be a real Hilbert space and A : H → H be a given operator with domain
Dom(A) = {x ∈ H : Ax 
= ∅}. The monotone inclusion problem is formulated as finding a
point x∗ such that

0 ∈ Ax∗. (1)

The monotonicity term of (1) refers to the monotonicity of A which means that for all
x, y ∈ H,

〈u − v, x − y〉 ≥ 0, u ∈ Ax, v ∈ Ay.

We denote the solution set of (1) by Ω = A−1(0).
One of the simplest classical algorithms for solving the monotone inclusion problem (1)

is the proximal point method of Martinet [16]. Given a maximal monotone mapping A : H →
H and its associated resolvent JA

r = (I + rA)−1, the proximal point algorithm generates a
sequence according to the update rule:

xn+1 = JA
r xn. (2)

Axioms 2023, 12, 557. https://doi.org/10.3390/axioms12060557 https://www.mdpi.com/journal/axioms
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The proximal point algorithm, also known as the regularization algorithm, is a first-
order optimization method that requires the function and gradient (subgradient) evalua-
tions, and thus attracts much interest. For more relevant improvements and achievements
on the regularization methods in Hilbert spaces, one can refer to [17–23].

One important application of monotone inclusions is the convex minimization problem.
Given C ⊆ Rn is a nonempty, closed and convex set and a continuously differentiable
function f , the constrained minimization aims to find a point x∗ ∈ C such that

f (x∗) = min
x∈C

f (x). (3)

Using some operator theory properties, it is known that x∗ solves (3) if and only if
x∗ = PC(I − λ∇ f )x∗ for some λ > 0. This relationship translates to the projected gradient
method:

xn+1 = PC(xn − λ∇ f (xn)),

where PC is the metric projection onto C and ∇ f is the gradient of f .
The projected gradient method calls for the evaluation of the projection onto the

feasible set C as well as the gradient evaluation of f . This guarantees a reduction in the
objective function while keeping the iterates feasible. With the set C as above and an
operator A : H → H, an important problem worth mentioning is the monotonic variational
inequality problem, consisting of finding a point x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0 for all x ∈ C. (4)

Using the relationship between the projection PC, the resolvent and the normal cone
NC of the set C, that is,

y = JNC
λ (x) ⇔ x ∈ y + λNC(y) ⇔ x − y ∈ λNC(y)

⇔ 〈x − y, d − y〉 ≤ 0 ⇔ y = PCx, ∀d ∈ C,

we obtain the iterative step rule for solving (4)

xn+1 = PC(xn − λAxn). (5)

Indeed, the mentioned optimization methods above now “dominate” in modern
optimization algorithms based on first-order information (such as function values and
radial/subgradient), and it can be predicted that they will become increasingly important
as the scale of practical application problems increases. For excellent works, one can
refer to Teboulle [24], Drusvyatskiy and Lewis [25], etc. However, it is undeniable that
they are highly dependent on the structure of the given problem, and computationally,
these methods rely on the ability to compute resolvents/projections per iteration; taking
algorithm (5), for instance, the complexity of each step depends on the computation of the
projection to the convex set C.

Hence, in this work, we wish to combine the popular inertial technology (see, e.g.,
Nesterov [26], Alvarez [27] and Alvarez–Attouch [28]) and establish a strong convergence
iterative method that does not use resolvents or projections, and has good convergence
properties due to the inertial technique.

The outline of this paper is as follows. In Section 2, we collect the definitions and
results needed for our analysis. In Section 3, the resolvent/projection-free algorithm and
its convergence analysis are presented. Later, in Section 4, we present two applications of
the monotone inclusion problem, saddle points of the minimax problem and the critical
points problem. Finally, in Section 5, numerical experiments illustrate the performances of
our scheme in finite- and infinite-dimensional spaces.
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2. Preliminaries

Let C be a nonempty, closed and convex subset of a real Hilbert space H equipped
with the inner product 〈·, ·〉. Denote the strong convergence to x of {xn} by xn → x, the
ω-weak limit set of {xn} by

wω(xn) = {x ∈ H : xnj ⇀ x for some subsequence {xnj} of {xn}}.

We recall two useful properties of the norm:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉; (6)

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x − y‖2

−βγ‖y − z‖2 − αγ‖x − z‖2, (7)

for all x, y, z ∈ H and α, β, γ ∈ R such that α + β + γ = 1.

Definition 1. Let H be a real Hilbert space. An operator A : H → H is called μ−inverse strongly
monotone (μ-ism) (or μ-cocoercive) if there exists a number μ > 0 such that

〈x − y, Ax − Ay〉 ≥ μ‖Ax − Ay‖2.

Definition 2. Let C be a nonempty, closed convex subset of H. The operator PC is called the metric
projection of H onto C: for every element x ∈ H, there is a unique nearest point PCx in C, such that

‖x − PCx‖ = min{‖x − y‖ : y ∈ C}.

The characterization of the metric projection is

〈x − PCx, y − PCx〉 ≤ 0, ∀x ∈ H, ∀y ∈ C. (8)

Lemma 1 (Xu [29], Maingé [30]). Assume that {an} and {cn} are nonnegative real sequences
such that

an+1 ≤ (1 − γn)an + bn + cn, ∀n ≥ 0,

where {γn} is a sequence in (0, 1) and {bn} is a real sequence. Provided that
(a) limn→∞ γn = 0, Σ∞

n=1γn = ∞; Σ∞
n=1cn < ∞;

(b) lim supn→∞
bn
γn

≤ 0.
Then, the limit of the sequence {an} exists and limn→∞ an = 0.

Lemma 2 (see, e.g., Opial [31]). Let H be a real Hilbert space and {xn}∞
n=0 ⊂ H such that there

exists a nonempty, closed and convex set S ⊂ H satisfying the following:
(1) For every z ∈ S, limn→∞ ‖xn − z‖ exists;
(2) Any weak cluster point of {xn}∞

n=0 belongs to S.
Then, there exists x̄ ∈ S such that {xn}∞

n=0 converges weakly to x̄.

Lemma 3 (see, e.g., Maingé [30]). Let {Γn} be a sequence of real numbers that does not decrease
at infinity, in the sense that there exists a subsequence {Γnj} of {Γn} such that Γnj < Γnj+1 for all
j ≥ 0. Also consider the sequence of integers {σ(n)}n≥n0 defined by

σ(n) = max{k ≤ n : Γk ≤ Γk+1}.

Then, {σ(n)}n≥n0 is a nondecreasing sequence verifying limn→∞ σ(n) = ∞ and, for all
n ≥ n0,

max{Γσ(n), Γn} ≤ Γσ(n)+1.
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3. Main Result

We are concerned with the following monotone inclusion problem: finding x∗ ∈ H
such that

0 ∈ Ax∗, (9)

where A is a monotone-type operator on H.

Remark 1. Clearly, if yn = zn = xn for some n ≥ 1, then xn is a solution of (9) and the iteration
process is terminated in finite iterations. In general, the algorithm does not stop in finite iterations,
and thus we assume that the algorithm generates an infinite sequence.

Convergence Analysis

For the convergence analysis of our algorithm, we assume the following assumptions:
(A1) A is a continuous maximal monotone operator with cocoercive coefficient μ from

H to H;
(A2) The solution set Ω of (9) is nonempty.

Theorem 1. Suppose that the assumptions (A1)–(A2) hold. If the sequences {αn}, {γn} are in
(0, 1) and satisfy the following conditions:

(B1) limn→∞ γn = 0, lim inf(1 − αn − γn)αn > 0 and Σ∞
n=1γn = ∞;

(B2) εn = o(γn).
Then, the recursion {xn} generated by Algorithm 1 converges strongly to an element p which

is closest to 0 in Ω, that is, p = PΩ(0).

Algorithm 1 Convergence Analysis

Initialization: Choose λn ∈ (0, 2μ), θ ∈ (0, 1) and εn ∈ (0, ∞) such that ∑∞
n=1 εn < ∞,

select arbitrary starting points x0, x1 ∈ C, and set n = 1.
Iterative Step: Given the iterates xn and xn−1 for each n ≥ 1, choose θn such that 0 < θn <
θ̄n, compute ⎧⎪⎨⎪⎩

yn = xn + θn(xn − xn−1),
zn = yn − λn Ayn,
xn+1 = (1 − αn − γn)yn + αnzn,

(10)

where

θ̄n =

{
min{θ, εn[max(‖xn − xn−1‖2, ‖xn − xn−1‖)]−1}, xn 
= xn−1;
θ. else

Stopping Criterion: If yn = zn, then stop. Otherwise, set n := n + 1 and return to Iterative
Step.

Proof. First, we prove that {xn} is bounded. Without the loss of the generality, let p be
the closest element to 0 in Ω because Ω 
= ∅. It follows from the cocoercivity of A with
coefficient μ that

〈Axn, xn − p〉 = 〈Axn − Ap, xn − p〉 ≥ μ‖Axn‖2.

Taking into account the definition of yn in the recursion (10), we have

‖yn − p‖ = ‖xn + θn(xn − xn−1)pz‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖,

and
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‖zn − p‖2 = ‖yn − λn Ayn − p‖2

= ‖yn − p‖2 + λ2
n‖Ayn‖2 − 2λn〈Ayn, yn − p〉

≤ ‖yn − p‖2 + λ2
n‖Ayn‖2 − 2μλn‖Ayn‖2 (11)

≤ ‖yn − p‖2 + (λn − 2μ)λn‖Ayn‖2,

which implies that ‖zn − p‖ ≤ ‖yn − p‖. Furthermore, we have

‖xn+1 − p‖ = ‖(1 − αn − γn)yn + αnzn − p‖
≤ (1 − αn − γn)‖yn − p‖+ λ2

n‖zn − p‖+ γn‖p‖
≤ (1 − γn)‖yn − p‖+ γn‖p‖
≤ (1 − γn)[‖xn − p‖+ θn‖xn − xn−1‖] + γn‖p‖
≤ (1 − γn)‖xn − p‖+ γn[‖p‖+ θn

γn
‖xn − xn−1‖].

In view of the assumption on θn, we obtain θn‖xn − xn−1‖ ≤ εn = o(γn), which entails
that there exists some positive constant σ such that σ = sup θn

γn
‖xn − xn−1‖; therefore,

‖xn+1 − p‖ ≤ (1 − γn)‖xn − p‖+ γn(‖p‖+ σ)

≤ max{‖x0 − p‖, ‖p‖+ σ},

namely, the sequence {xn} is bounded, and so are {yn} and {zn}.
It follows from (10) and (11) that

‖xn+1 − p‖2 = ‖(1 − αn − γn)yn + αnzn − p‖2

= ‖(1 − αn − γn)(yn − p) + αn(zn − p)− γn p‖2

≤ (1 − αn − γn)‖yn − p‖2 + αn‖zn − p‖2 + γn‖p‖2

−(1 − αn − γn)αn‖yn − zn‖2

≤ (1 − αn − γn)‖yn − p‖2 + αn[‖yn − p‖2 + (λn − 2μ)λn‖Ayn‖2]

+γn‖p‖2 − (1 − αn − γn)αn‖yn − zn‖2

= (1 − γn)‖yn − p‖2 + αn(λn − 2μ)λn‖Ayn‖2

+γn‖p‖2 − (1 − αn − γn)αn‖yn − zn‖2. (12)

By using again the formation of yn, we obtain

‖yn − p‖2 = ‖xn + θn(xn − xn−1)− p‖2

= ‖(1 + θn)(xn − p)− θn(xn−1 − p)‖2

≤ (1 + θn)‖xn − p‖2 − θn‖xn−1 − p‖2 + θn(1 + θn)‖xn − xn−1‖2 (13)

≤ (1 + θn)‖xn − p‖2 − θn‖xn−1 − p‖2 + 2θn‖xn − xn−1‖2.

Substituting (13) into (12), we have

‖xn+1 − p‖2 ≤ (1 − γn)[(1 + θn)‖xn − p‖2 − θn‖xn−1 − p‖2 + 2θn‖xn − xn−1‖2]

+αn(λn − 2μ)λn‖Ayn‖2 + γn‖p‖2 − (1 − αn − γn)αn‖yn − zn‖2

= (1 − γn)[‖xn − p‖2 + θn(‖xn − p‖2 − ‖xn−1 − p)‖2)

+2θn‖xn − xn−1‖2] + αn(λn − 2μ)λn‖Ayn‖2 + γn‖p‖2

−(1 − αn − γn)αn‖yn − zn‖2

= ‖xn − p‖2 + γn(‖p‖2 − ‖xn − p‖2) + 2(1 − γn)θn‖xn − xn−1‖2

+(1 − γn)θn(‖xn − p‖2 − ‖xn−1 − p)‖2) + αn(λn − 2μ)λn‖Ayn‖2

−(1 − αn − γn)αn‖yn − zn‖2,
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and transposing, we have

(1 − αn − γn)αn‖yn − zn‖2 + αn(2μ − λn)λn‖Ayn‖2

≤ (‖xn − p‖2 − ‖xn+1 − p‖2) + (1 − γn)θn(‖xn − p‖2 − ‖xn−1 − p)‖2) (14)

+γn(‖p‖2 − ‖xn − p‖2) + 2(1 − γn)θn‖xn − xn−1‖2,

Here, two cases should be considered.
Case I. Assume that the sequence ‖xn − p‖ is decreasing, namely, there exists N0 > 0

such that ‖xn+1 − p‖ ≤ ‖xn − p‖ for each n > N0, and then there is the limit of ‖xn − p‖
and limn→∞(‖xn+1 − p‖− ‖xn − p‖) = 0. It turns out from (14) and the condition (B1) that

(1 − αn − γn)αn‖yn − zn‖2 → 0; αn(2μ − λn)λn‖Ayn‖2 → 0,

which implies that ‖yn − zn‖2 → 0 and ‖Ayn‖2 → 0.
Furthermore, by the setting of un, we have ‖un − yn‖ = αn‖zn − yn‖ → 0 and

‖xn+1 − un‖ = γn‖yn‖ → 0, which together with ‖xn − yn‖ = θn‖xn − xn−1‖ → 0
yields that

‖xn+1 − xn‖ ≤ ‖xn+1 − un‖+ ‖un − yn‖+ ‖yn − xn‖ → 0.

Because {xn} is bounded, it follows from Eberlein–Shmulyan’s theorem, for arbitrary
point q ∈ wω(xn), that there exits a subsequence {xnj} of {xn} such that xnj converges
weakly to q. By ‖xn − yn‖ → 0, ‖Ayn‖2 → 0 and A is continuous, we have

0 = lim
n→∞

‖Ayn‖ = lim
j→∞

‖Aynj‖ = Aq,

which entails that q ∈ A−1(0). In view of the fact that the choice of q in wω(xn) was
arbitrary, we conclude that wω(xn) ⊂ Ω, which makes Lemma 2 workable, that is, {xn}∞

n=0
converges weakly to some point in Ω.

Now, we claim that xn → p, where p = PΩ(0).
For this purpose, let un = (1 − αn)yn + αnzn, and then we have

xn+1 = (1 − αn − γn)yn + αnzn = (1 − γn)un + γn(un − yn)

= (1 − γn)un + γnαn(zn − yn),

which yields that

‖xn+1 − p‖2 = ‖(1 − γn)un + γnαn(zn − yn)− p‖2

= ‖(1 − γn)(un − p) + γnαn(zn − yn)− γn p‖2

≤ (1 − γn)
2‖un − p‖2 − 2〈γn p − γnαn(zn − yn), xn+1 − z〉

= (1 − γn)
2‖un − p‖2 − 2γnαn〈yn − zn, xn+1 − p〉 (15)

+2γn〈−p, xn+1 − p〉.

In addition, by using again the formation of {yn}, we obtain

‖yn − p‖2 = ‖xn + θn(xn − xn−1)− p‖2

= ‖(1 + θn)(xn − p)− θn(xn−1 − p)‖2

≤ (1 + θn)‖xn − p‖2 − θn‖xn−1 − p‖2 + θn(1 + θn)‖xn − xn−1‖2

≤ (1 + θn)‖xn − p‖2 − θn‖xn−1 − p‖2 + 2θn‖xn − xn−1‖2,

89



Axioms 2023, 12, 557

and substituting the above inequality in (15), we have

‖xn+1 − p‖2 ≤ (1 − γn)
2‖yn − p‖2 − 2γnαn〈yn − zn, xn+1 − p〉+ 2γn〈−p, xn+1 − p〉

≤ (1 − γn)
2[(1 + θn)‖xn − p‖2 − θn‖xn−1 − p‖2 + 2θn‖xn − xn−1‖2]

−2γnαn〈yn − zn, xn+1 − p〉+ 2γn〈−p, xn+1 − p〉
≤ (1 − γn)[‖xn − p‖2 + θn(‖xn − p‖2 − ‖xn−1 − p‖2) + 2θn‖xn − xn−1‖2]

−2γnαn〈yn − zn, xn+1 − p〉+ 2γn〈−p, xn+1 − p〉
≤ (1 − γn)[‖xn − p‖2 + θn‖xn − xn−1‖ · (‖xn − p‖+ ‖xn−1 − p‖)

+2θn‖xn − xn−1‖2]− 2γnαn〈yn − zn, xn+1 − p〉+ 2γn〈−p, xn+1 − p〉
≤ (1 − γn)‖xn − p‖2 + θn(1 − γn)M‖xn − xn−1‖

+2γn〈−p, xn+1 − p〉 − 2γnαn〈yn − zn, xn+1 − p〉, (16)

where M = sup(‖xn − p‖+ ‖xn−1 − p‖+ 2θn‖xn − xn−1‖).
Owing to p = PΩ(0), we can infer that 〈0 − PΩ(0), y − PΩ(0)〉 ≤ 0 for each y ∈ Ω, so

we have
lim sup〈−p, xn+1 − p〉 = max

q∈wω(xn)
〈−p, q − p〉 ≤ 0.

In addition, from the assumption on {θn}, we have

∞

∑
n=1

θn(1 − γn)M‖xn − xn−1‖ < ∞,

and from yn − zn → 0, we have

lim
n→∞

sup{−2γnαn〈yn − zn, xn+1 − p〉+ 2γn〈−p, xn+1 − p〉}/γn ≤ 0,

and therefore (16) enables Lemma 1 to be applicable to, namely, ‖xn − p‖ → 0.
Case II. If the sequence ‖xn − p‖ is not decreasing at infinity, in the sense that there

exists a subsequence {‖xnj − p‖} of {‖xn − p‖} such that ‖xnj − p‖ ≤ ‖xnj+1 − p‖. Owing
to Lemma 3, we can induce that ‖xσ(n)− p‖ ≤ ‖xσ(n)+1 − p‖ and ‖xn − p‖ ≤ ‖xσ(n)+1 − p‖,
where σ(n) is an indicator defined by σ(n) = max{k ≤ n : ‖xk − p‖ ≤ ‖xk+1 − p‖} and
σ(n) → ∞ as n → ∞.

Taking into account the fact that the formula (14) still holds for each σ(n), that is,

(1 − ασ(n) − γσ(n))ασ(n)‖yσ(n)− zσ(n)‖2 + ασ(n)(2μ − λσ(n))λσ(n)‖Ayσ(n)‖2

≤ (‖xσ(n) − p‖2 − ‖xσ(n)+1 − p‖2) + γσ(n)(‖p‖2 − ‖xσ(n)− p‖2)

+(1 − γσ(n))θσ(n)(‖xσ(n) − p‖2 − ‖xσ(n)−1 − p)‖2)

+2(1 − γσ(n))θσ(n)‖xσ(n) − xσ(n)−1‖2

≤ γσ(n)(‖p‖2 − ‖xσ(n) − p‖2) + (1 − γσ(n))θσ(n)(‖xσ(n) − p‖2 − ‖xσ(n)−1 − p)‖2)

+2(1 − γσ(n))θσ(n)‖xσ(n) − xσ(n)−1‖2.

In addition, from the theorem’s assumptions (B1) and (B2) that

‖yσ(n) − zσ(n)‖2 → 0; ‖Ayσ(n)‖2 → 0, (17)

Similarly to the proofs of (16) in Case I, we have wω(xn) ⊂ Ω and

lim sup〈−p, xσ(n)+1 − p〉 ≤ 0, (18)

and
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‖xσ(n)+1 − p‖2 ≤ (1 − γσ(n))‖xσ(n) − p‖2 + θσ(n)(1 − γσ(n))M‖xσ(n) − xσ(n)−1‖
−2γσ(n)ασ(n)〈yσ(n) − zσ(n), xσ(n)+1 − p〉 (19)

+2γσ(n)〈−p, xσ(n)+1 − p〉.

Transposing again, we have

γσ(n)‖xσ(n) − p‖2 ≤ (‖xσ(n) − p‖2 − ‖xσ(n)+1 − p‖2) + θσ(n)(1 − γσ(n))M

×‖xσ(n) − xσ(n)−1‖+ 2γσ(n)〈−p, xσ(n)+1 − p〉
−2γσ(n)ασ(n)〈yσ(n) − zσ(n), xσ(n)+1 − p〉

≤ θσ(n)(1 − γσ(n))M‖xσ(n) − xσ(n)−1‖+ 2γσ(n)〈−p, xσ(n)+1 − p〉
−2γσ(n)ασ(n)〈yσ(n) − zσ(n), xσ(n)+1 − p〉,

which amounts to

‖xσ(n) − p‖2 ≤ θσ(n)

γσ(n)
(1 − γσ(n))M‖xσ(n) − xσ(n)−1‖+ 2〈−p, xσ(n)+1 − p〉 (20)

−2ασ(n)〈yσ(n) − zσ(n), xσ(n)+1 − p〉.

Noting the grant of εσ(n) = o(γσ(n)), we have
θσ(n)
γσ(n)

(1− γσ(n))M‖xσ(n) − xσ(n)−1‖ → 0.

Putting (18) and (17) into (20), it yields that ‖xσ(n) − p‖ → 0.
It follows from (19) that

lim
n→∞

‖xσ(n)+1 − p‖ = lim
n→∞

‖xσ(n) − p‖2 = 0,

which makes Lemma 3 practicable, and hence

0 ≤ ‖xn − p‖ ≤ max{‖xn − p‖, ‖xσ(n) − p‖} ≤ ‖xσ(n)+1 − p‖ → 0.

Consequently, the sequence {xn} converges strongly to p, which is the closest point to
0 in Ω. This completes the proof.

Remark 2. If the operator A is accretive with μ− cocoercivity or maximal monotone, then all the
above results hold.

4. Applications

4.1. Minimax Problem

Suppose H1 and H2 are two real Hilbert spaces, the general convex–concave minimax
problem in a Hilbert space setting is illustrated as follows:

min
x∈Q

max
λ∈S

L(x, λ), (21)

where Q and S are nonempty, closed and convex subsets of Hilbert spaces H1 and H2,
respectively, and L(x, λ) is convex in x (for each fixed λ ∈ S) and concave in λ (for each
fixed x ∈ Q).

A solution (x∗, λ∗) ∈ Q × S of the minimax problem (21) is interpreted as a saddle
point, satisfying the following inequality

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), x ∈ Q, λ ∈ S,

which amounts to the fact that x∗ ∈ Q is a minimizer in Q of the function L(·, λ∗), and
λ∗ ∈ S is a maximizer in S of the function L(x∗, ·).
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Minimax problems are an important modeling tool due to their ability to handle
many important applications in machine learning, in particular, in generative adversarial
nets (GANs), statistical learning, certification of robustness in deep learning and dis-
tributed computing. Some recent works can be seen in, e.g., Ataş [32], Ji-Zhao [33] and
Hassanpour et al. [34].

For example, if we consider the standard convex programming problem,

min f (x),

s.t. hi(x) ≤ 0, i = 1, 2, . . . , l, (22)

where f and hi, (i = 1, 2, . . . , l) are convex functions. Using the Lagrange function L, the
problem (22) can be reformulated as the following minimax problem (see, e.g., Qi and
Sun [35]):

L(x, λ) = f (x) + ∑
i

λihi(x). (23)

It can be seen that L(x, λ) in (23) is a convex–concave function on Q × S, where

Q = {x : hi(x) ≤ 0, i = 1, 2, . . . , l}, S = {λ : λi ≥ 0, i = 1, 2, . . . , l},

and the Kuhn–Tucker vector (x∗, λ∗) of (22) is exactly the saddle point of Lagrangian
function L(x, λ) in (23).

Another nice example is the Tchebychev approximating problem that consists of
finding (x, λ) such that

min
λ∈Q

max
x∈S

(g(x)− λ(x))2,

that is, for given g : S ⊂ Rn → R, finding λ(x) ∈ Q approaching g(x), where λ : Rn → R

and Q is the space composed of the functions λ.
It is known that L has a saddle point if and only if

min
x∈Q

max
λ∈S

L(x, λ) = max
λ∈S

min
x∈Q

L(x, λ).

If L is convex–concave and differentiable, let ∇xL(x, λ) and −∇λL(x, λ) present the
derivatives of L on x and λ, respectively, and then we have ∂L(z) = [∇xL(x, λ),−∇λL(x, λ)]T,
where z = (x, λ).

Note that ∂L is maximal monotone for the unconstrained case (i.e., Q = H1, S = H2),
and finding a saddle point z∗ = (x∗, λ∗) ∈ Q × S of L equals to solving the equation
∂L(z∗) = 0. For more details on the minimax problem and its solutions, one can refer to the
von Neumann works from the 1920s and 1930s [36,37] and Ky Fan’s minimax theorem [38].

Now, we consider minimax problems (21) under the unconstrained case, and let the
solution set Ω of the minimax problem be nonempty. So, by taking A = ∂L, we can obtain
the saddle point of the minimax problem in H1 × H2 from the following results.

Theorem 2. Let H1 and H2 be two real Hilbert spaces. Suppose that the function L is convex–
concave and differentiable such that Ω 
= ∅. Under the setting of the parameters in Algorithm 1, if
the sequences {αn}, {γn}, {εn} are in (0, 1) and satisfying the conditions as in Theorem 1, then
the sequence {zn} generated by the following scheme⎧⎪⎨⎪⎩

yn = zn + θn(zn − zn−1),
z̄n = yn − λn∂L(yn),
zn+1 = (1 − αn − γn)yn + αnz̄n,

(24)

converges strongly to the least norm element z∗ ∈ Ω, where z0 ∈ H1 × H2 and z1 ∈ H1 × H2 are
two arbitrary initial points.
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Proof. Noting that ∂L is maximal monotone, so letting A be ∂L in Algorithm 1, and
following Theorem 1, we have the result.

Indeed, if we denote zn = (xn, λn) ∈ H1 × H2, then the recursions (24) specifically can
be rewritten as follows for arbitrary initial points x0, x1, λ0, λ1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′n = xn + θn(xn − xn−1),
λ′

n = λn + θn(λn − λn−1),
x̄n = x′n −∇xL(x′n, λ′

n),
λ̄n = λ′

n +∇λL(x′n, λ′
n),

xn+1 = (1 − αn − γn)x′n + αnx̄n,
λn+1 = (1 − αn − γn)λ′

n + αnλ̄n,

(25)

and the sequence pair (xn, λn) converges strongly to an element (x∗, λ∗) ∈ Ω which is
closest to (0, 0).

4.2. Critical Points Problem

In this part, we focus on finding the critical points of the functional F : H → R∪ {+∞}
defined by

F := Ψ + Φ, (26)

where H is a real Hilbert space, the function Ψ : H → R∪ {+∞} is a proper, convex and
lower semi-continuous function and Φ : H → R is a convex locally Lipschitz mapping.

A point x∗ is said to be a critical point of F = Ψ + Φ if x∗ ∈ dom(Ψ) and if it satisfies

Ψ(x∗)− Ψ(v) ≤ Φ◦(x∗, v − x∗),

where Φ◦ is the generalized directional derivative of Φ at x∗ ∈ C in the direction v ∈ H
which is defined by

Φ◦(x∗, v) = lim
t↓0

sup
w→x∗

Φ(w + tv)− Φ(w)

t
.

Critical point theory is a powerful theoretical tool, which has been greatly developed
in recent years and has been widely used in many fields, such as differential equations,
operations research optimization and so on. For some recent works on the applications of
critical point theory, we can refer to Trushnikov et al. [39], Turgut et al. [40] and therein.

A typical instance is finding the solution of the impulsive differential equation model
existing in the fields of medicine, biology, rocket and aerospace motion and optimization
theory which can be transformed into finding the critical point of some functional.

Specifically, we consider the following impulsive differential equation:{
−q̈(t) = λq(t) + f (t, q(t)), t ∈ (sk−1, sk),
�q̇(sk) = gk(q(s−k )), k = 1, 2, · · · ,

(27)

where k ∈ Z, λ ≥ 0, q(t) ∈ Rn, �q̇(sk) = q̇(s+k )− q̇(s−k ), q̇(s±k ) = limt→s±k
q̇(t), f (t, q) =

gradq I(t, q), I(t, q) ∈ C1(R × Rn,R), gk(q) = gradqGk(q), Gk ∈ C1(Rn,R). In addition,
there exist m ∈ N and T ∈ R+ such that 0 = s0 < s1 < s2 < . . . ... < sm = T, sk+m =
sk + T, gk+m = gk holds for all k ∈ Z.

Let H = {q ∈ R → Rn|q be absolute continuous, q̇ ∈ L2((0, T),Rn), q(t) = q(t +
T), t ∈ R} and the norm ‖ · ‖ is induced by the inner product 〈q, p〉 =

∫ T
0 q̇(t) ṗ(t) +

q(t)p(t)dt, ∀p, q ∈ H.
Denote K = {1, 2, · · · , m}, and the functional on H is defined as

F(q) =
∫ T

0

1
2
|q̇|2 − 1

2
λq2 − I(t, q)dt + ∑

k∈K
Gk(q(sk)),
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and then the periodic solution of the system (27) corresponds to the critical point of the
functional F one to one.

If the functional F in (26) satisfies the Palais–Smale compact conditions and F is
bounded from below, then there exists a critical point x∗ such that F(x∗) = infu∈H F(u)
(see, e.g., Motreanu and Panagiotopoulos [41]). From Fermat’s theorem, one can refer that
the critical point x∗ is a solution of the inclusion (see, e.g., Moameni [42]),

0 ∈ ∂Ψ(x∗) + ∂cΦ(x∗),

where ∂cΦ(·) is the generalized derivative of Φ defined as

∂cΦ(u) = {u∗ ∈ H∗; Φ◦(u, v) ≥ 〈u∗, v〉, ∀v ∈ H}.

From Clarke [43], ∂cΦ carries bounded sets of H into bounded sets of H∗ and is
hemicontinuous. Moreover, we can infer that ∂cΦ is a monotone mapping because Φ is
convex, which makes Browder ([17], Theorem 2) applicable, namely, ∂Ψ + ∂cΦ is a maximal
monotone mapping. Denoted by Ω is the critical points set of the problem (26). By taking
A = ∂Ψ + ∂cΦ, we have the following result.

Theorem 3. Let H be a real Hilbert space. Suppose that F : H → (−∞, ∞] is of the form
(26), bounded from below and satisfying the Palais–Smale compact conditions such that Ω 
= ∅.
Under the setting of the parameters in Algorithm 1, if {αn}, {γn}, {εn} are the sequences in
(0, 1) satisfying the conditions as in Theorem 1, then the sequence {zn} generated by the following
schemes ⎧⎪⎨⎪⎩

yn = zn + θn(zn − zn−1),
z̄n = yn − λn(∂Ψ + ∂cΦ)(yn),
zn+1 = (1 − αn − γn)yn + αnz̄n,

(28)

converges strongly to an element x̄ ∈ Ω which is closest to 0.

5. Numerical Examples

In this section, we present numerical examples in finite- and infinite-dimensional
spaces to illustrate the applicability, efficiency and stability of Algorithm 1. All the
codes for the results are written in Matlab R2016b and are performed on an LG dual-
core personal computer.

Example 1. Here, we test the effectiveness of our algorithm in finite-dimensional space which does
not need super high dimensions. For the purpose, let H = R6, and define the monotone operators A
as follows:

A =

⎛⎜⎜⎜⎜⎜⎜⎝

6 0 0 0 0 0
0 7 0 0 0 0
0 0 8 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (29)

it is easy to verify that the cocoercivity coefficient μ = 1
8 , so we set λn = 1

8 − 1
10n .

Next, let us compare our Algorithm 1 with the regularization method. Specifically, the
regularization algorithm (RM) is considered as⎧⎪⎨⎪⎩

yn = xn + θn(xn − xn−1),
zn = JA

r yn,
xn+1 = (1 − αn − γn)yn + αnzn.
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As for the components, both our Algorithm 1 and the regularization method (RM), initial
points x0, x1 are generated randomly by Matlab , inertial coefficient θn is chosen to satisfy that
if θ > εn × (max(‖xn−1 − xn‖, ‖xn−1 − xn‖2)), then θn = 1/((n + 2)2 × (max(‖xn−1 −
xn‖, ‖xn−1 − xn‖2))); otherwise, θn = θ

2 , where θ = 0.6, εn = 1/(n + 1)2, γn = 1/(10n).
The experimental results are listed in Figure 1. Moreover, the iterations and convergence rate of
Algorithm 1 for different values of {αn} are presented in Table 1.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6
||x

n+
1-x

n||

Algo.3.1
Regularization Method

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

||x
n+

1-x
n||

Algo.3.1
Regularization Method

Figure 1. Algorithm 1 and the Regularization Method.

Table 1. Example 1 Numerical Results for Algorithm 1 and Regularization Method.

Algorithm 1 Regularization Method

{αn} CPU Time Iter. ‖xn+1−x∗‖
‖xn+1−x0‖ r CPU Time Iter. ‖xn+1−x∗‖

‖xn+1−x0‖
1 − 1

100n 0.0201 42 6.1691 × 10−04 0.1 0.0324 63 5.3741 × 10−04

1
2 − 1

100n 0.0594 88 9.159 × 10−04 0.05 0.0530 115 0.0013
1
8 − 1

100n 0.0422 276 0.0039 0.01 0.2205 367 0.0078

Example 2. Now, we measure our Algorithm 1 in H = L2[0, 1] with ‖ · ‖ = (
∫ 1

0 x2(t)dt)
1
2 .

Define the mappings A by A(x)(t) := 2x(t)/3 for all x(t) ∈ L2[0, 1], and then it can be shown
that A is 3

2 -cocoercive monotone mapping. All the parameters θn, θ, λn, εn and γn are chosen as in
Example 1. The stop criterion is ‖xn+1 − xn‖ ≤ 10−6. We test Algorithm 1 for the following three
different initial points:

Case I: x0 = 2t3e5t, x1 = sin(3t)et/100;
Case II: x0 = sin(−3t) + cos(−5t)/2, x1 = 2tsin(3t)e−5t/200;
Case III: x0 = 2tsin(3t)e−5t/200, x1 = et − e−2t.
In addition, we also test the regularization method as illustrated in Example 1, and the tendency

of the sequence is proposed in Figures 2 and 3 and Table 2.
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Figure 2. Algorithm 1 for Case I, Case II, Case III in Example 2.
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Figure 3. Regularization Method for Case I, Case II, Case III in Example 2.

Table 2. Example 2 Numerical Results for Algorithm 1 and Regularization Method.

Case I Case II Case III

Algorithm 1 RM Algorithm 1 RM Algorithm 1 RM

CPU time 2.64 5.28 4.29 8.6 3.62 7.59

Iteration
Number 9 17 9 23 13 27

6. Conclusions

The proximal point method (regularization method) and projection-based method
are two classical and significant methods for solving monotone inclusions, variational
inequalities and related problems.

However, the evaluations of resolvents/projections in these methods heavily rely
on the structure of the given problem, and in the general case, this might seriously af-
fect the computational effort of the given method. Thus, motivated by the ideas of
Chidume et al. [44], Alvarez [28], Alvarez–Attouch [27] and Zegeye [45], we present a
simple strong convergence method that avoids the need to compute resolvents/projections.

We present several theoretical applications such as minimax problems and critical
point problems, as well as some numerical experiments illustrating the performances of
our scheme.
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Abstract: In this survey, we review some old and new results initiated with the study of expansive
mappings. From a variational perspective, we study the convergence analysis of expansive and
almost-expansive curves and sequences governed by an evolution equation of the monotone or
non-monotone type. Finally, we propose two well-defined algorithms to remedy the shortcomings
concerning the ill-posedness of expansive-type evolution systems.
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1. Introduction

Let H be a real Hilbert space, with an inner product 〈·, ·〉, induced norm ‖ · ‖, and iden-
tity operator I. The study of the existence and approximation of solutions to nonlinear
equations is an important topic and an active field of research in nonlinear analysis. How-
ever, nonlinear equations, even with strong restrictive conditions imposed, may not have a
solution. An important case is the question raised by L. Nirenberg.

Let D ⊂ H. A self-mapping T : D → D is said to be expansive (expanding) if

‖x − y‖ ≤ ‖Tx − Ty‖, ∀x, y ∈ D.

Nirenberg’s question states: “Is any continuous expansive mapping T : H → H such
that T(H) has nonempty interior, surjective?” [1]. This question can be formulated as
whether for every continuous expansive mapping T and every u ∈ H, does the equation
T(x) = u have a solution? In spite of the strong conditions in Nirenberg’s question, one
may think that the answer is positive; however, recently, Ives and Preiss [2] answered
this question negatively. Indeed, they provided a counterexample in L2(0,+∞), which
gives a negative answer to Nirenberg’s problem even in general separable Hilbert spaces.
This question had been already asked for more general spaces, such as Banach spaces,
where Morel and Steinlein [3] constructed a counterexample in l1. In any case, before this
negative answer, many attempts to solve this question ended up giving affirmative answers
to Nirenberg’s question under additional conditions. Among them, we point out [4], where
the interior of the range of the expansive mapping is assumed to be unbounded. For more
results, see [5–8].

From a variational point of view, one can find a correspondence between expansive
mappings and nonexpansive operators. We will get back to this correspondence, but before
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going further. Let us review briefly some classical results on nonexpansive mappings and
their variational analysis. A mapping T : D ⊂ H → H is nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖ ∀x, y ∈ D,

where D is a nonempty subset of H. Nonexpansive mappings are generalizations of
contractions (with a Lipschitz constant k < 1); however, their behaviors can be extremely
different. One of the basic problems for nonlinear mappings concerns the following:

find x ∈ D such that T(x) = x.

Every solution to the above problem is called a fixed point of T, and the set of all
fixed points of T is denoted by Fix (T). If T is nonexpansive, then Fix (T) is closed and
convex. The most important properties of contractions are described by the celebrated
Banach contraction principle:

Theorem 1 ([9]). Let D ⊂ H, and let T : D → D be a contraction. Then, (i) T has a unique fixed
point, say p, and (ii) for each x ∈ D, limn→+∞ Tn(x) = p.

This theorem does not hold for nonexpansive mappings without any additional
conditions. The following theorem, which extends the first part of Banach’s contraction
principle, was independently proved in 1965 by Browder [10], Kirk [11] and Göhde [12].
We state the theorem here in Hilbert space to stay in the framework of our paper; however,
the theorem is proved in more general Banach spaces.

Theorem 2. Suppose that T : D → D is a nonexpansive mapping, where D is a nonempty, closed
and convex subset of H. Then, T has a fixed point, and the set of all fixed points of T, which may
not be a singleton, is closed and convex.

The second part of Banach’s contraction principle does not hold for nonexpansive
mappings either. Indeed, according to Banach’s contraction principle, all orbits of a con-
traction T converge to the unique fixed point of T, while orbits of a nonexpansive mapping
may not converge at all. Baillon, in 1975, proved that the Cesaro means of the Picard iterates
of any nonexpansive mapping T always converge weakly to a fixed point of T, provided
that Fix (T) 
= ∅.

Theorem 3. Let D be a nonempty, closed, and convex subset of H, and T be a nonexpansive
mapping from D into itself. If the set Fix (T) is nonempty, then for each x ∈ D, the Cesaro means

Sn(x) =
1
n

n−1

∑
k=1

Tkx,

converge weakly to some y ∈ Fix(T).

For more details, we refer the reader to [13] and the beautiful books by Goebel and
Kirk [14], and by Goebel and Reich [15].

If D is not convex, then Fix(T) may be empty, and then Baillon’s proof is not applicable
anymore. To avoid the convexity assumption on D, Djafari Rouhani [16,17] introduced the
notions of nonexpansive and almost-nonexpansive sequences and curves.

In this survey, after reviewing some backgrounds on nonexpnasive curves and related
notions, we take an expansive-type variational approach to problems of the form

find x ∈ D such that 0 ∈ A(x),

where A : D ⊂ H ⇒ H is a (possibly multivalued) nonlinear operator.
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Section 3, briefly, provides some intuition and backgrounds on the celebrated steepest-
descent method and its monotone generalizations. In Section 4, we review some definitions
and results on expansive curves. Applying the results in Section 4, Section 5 describes the
asymptotic behavior of an expansive-type quasi-autonomous system. In Section 6, we recall
discrete versions of the definitions and propositions in Section 4 and apply them to study
the asymptotic behavior of an almost-nonexpansive sequence. Section 7 studies the periodic
behavior of the expansive sequence described in Section 6. Section 8 is devoted to the study
of continuous- and discrete-time non-monotone expansive-type dynamics. As will be seen
later, the system considered in Section 5 is “strongly ill-posed”. In Section 9, we introduce
new well-posed expansive-type systems, which yield weak and strong convergence to
zeros of any maximal monotone operator.

Notation 1. Let u be a curve in H, and C ⊂ H.

(i) Convergence in weak and strong topologies are, respectively, denoted by → and ⇀.
(ii) conv(C) denotes the closed convex hull of C.
(iii) ωw(u) denotes the set of all sequential weak limit points of u.
(iv) L(u) = {q ∈ H : limt→+∞ ‖u(t)− q‖ exists}.
(v) The weighted average of u is σT := 1

T
∫ T

0 u(t)dt.

2. Nonexpansive and Almost-Nonexpansive Curves

We recall the following definition from [17]:

Definition 1. (i) The curve u(t) in H is nonexpansive if for all r, s, h ≥ 0, we have ‖u(r + h)−
u(s + h)‖ ≤ ‖u(r)− u(s)‖.

(ii) u(t) is an almost-nonexpansive curve if for all r, s, h ≥ 0, we have ‖u(r + h)− u(s +
h)‖2 ≤ ‖u(r)− u(s)‖2 + ε(r, s), where limr,s→+∞ ε(r, s) = 0.

The following concept introduced in [18] will play an important role:

Definition 2. Given a bounded curve u(t) in H, the asymptotic center c of u(t) is defined as
follows: for every q ∈ H, let φ(q) = lim supt→+∞ ‖u(t)− q‖2. Then, φ is a continuous and
strictly convex function on H, satisfying φ(q) → +∞ as ‖q‖ → +∞. Therefore, φ achieves its
minimum on H at a unique point c called the asymptotic center of the curve u(t).

To the best of our knowledge, Edelstein [18] was the first one who applied the tech-
nique of an asymptotic center to fixed-point theory. Combining the notion of nonexpansive
curves and the concept of an asymptotic center, Djafari Rouhani proved theorems regard-
ing the asymptotic behavior of nonexpansive and almost-nonexpansive curves without
assuming the existence of a fixed point.

Theorem 4 ([17]). Let u(t) be an almost-nonexpansive curve in H. Then, the following are equivalent:

(i) L(u) 
= ∅.
(ii) lim infT→+∞ ‖σT‖ < +∞.
(iii) σT converges weakly to p ∈ H.

Moreover, under these conditions, we have:

• conv(ωw(u)) ∩ L(u) = {p}.
• p is the asymptotic center of the curve u(t).

Browder and Petryshyn [19] introduced the notion of asymptotically regular mappings.
A mapping T : D → D is (weakly) asymptotically regular on D if

(Tn+1x − Tnx ⇀ 0) Tn+1x − Tnx → 0, ∀x ∈ D.
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They also showed that if T : D → D is nonexpansive, then for every 0 < λ < 1,
Tλ = λI + (1 − λ)T is asymptotically regular, and Fix (Tλ) = Fix (T). Djafari Rouhani
extended the notion of asymptotically regular mappings to curves in H:

Definition 3. (i) The curve u(t) in H is asymptotically regular if for all h > 0, u(t + h)− u(t) → 0
as t → +∞.

(ii) u(t) is a weakly asymptotically regular curve in H if u(t + h)− u(t) ⇀ 0 as t → +∞.

The following theorem provides sufficient conditions for the weak convergence of
asymptotically regular almost-nonexpansive curves:

Theorem 5 ([17]). Let u(t) be a weakly asymptotically regular almost-nonexpansive curve in H.
Then, the following are equivalent:

(i) L(u(t)) 
= ∅.
(ii) lim inft→+∞ ‖u(t)‖ < +∞.
(iii) u(t) converges weakly to p ∈ H.

3. A Steepest-Descent-like Method

For a smooth function φ : H → R, the gradient operator ∇φ shows the direction of
steepest ascent of a particle traveling along the graph of φ, hence −∇φ shows the direction
of steepest descent. If we consider the curve u(t) as the position of a particle in time t, then
the above discussion shows that if the velocity vector u̇(t) equals the value of −∇φ at u(t),
then u(t) travels along the steepest-descent direction on the graph of φ. In this case, if φ
has a minimum point, then it may happen that u(t) goes to a minimum point of φ. This
leads to one of the most celebrated methods in optimization:

Let φ be convex with a nonempty set of minimizers. Then, every solution trajectory to
the following system

u̇(t) = −∇φ(u(t)), (1)

converges weakly to a minimizer of φ. This method is called the steepest-descent method.
A counterexample due to Baillon [20,21] shows that, in general, solutions to the above
system may not be strongly convergent in H; see also [22] (Proposition 3.3). Generalizations
of this method to nonsmooth and monotone cases were studied by several authors in the
1970s. If A−1(0) is nonempty, Baillon and Brézis [23,24] proved the weak convergence of
the mean of solutions to the following system:

−u̇(t) ∈ Au(t), (2)

where A is a maximal monotone operator in H and u(0) = u0 ∈ D(A) is arbitrary.
Bruck [25] established the weak convergence of solutions to (2) with an additional condition
on A, which is called demipositivity. Motivated by the approach of nonexpansive curves,
Djafari Rouhani studied the convergence analysis of a quasi-autonomous version of (2)
without assuming A−1(0) to be nonempty.

Theorem 6 ([17]). If u is a weak solution (for the notion of weak and strong solutions, see [26]) of
the system {

−u̇(t) ∈ Au(t) + f (t),
u(0) = u0 ∈ D(A),

(3)

on every interval [0, T], and satisfies supt>0 ‖u(t)‖ < +∞, and if f − f∞ ∈ L1((0,+∞); H)

for some f∞ ∈ H, then σT = (1/T)
∫ T

0 u(t)dt converges weakly to the asymptotic center of the
curve u(t).

The following theorems, respectively, study the weak and strong convergence of
trajectories of (3).
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Theorem 7 ([17]). If u is a weak solution of the system (3) on every interval [0, T], and satisfies
supt>0 ‖u(t)‖ < +∞ and for all h ≥ 0, u(t + h)− u(t) ⇀ 0 as t → +∞, and if f − f∞ ∈
L1((0,+∞); H) for some f∞ ∈ H, then u(t) converges weakly as t → +∞ to the asymptotic
center of the curve u(t).

Theorem 8 ([17]). If u is a weak solution of the system (3) on every interval [0, T], and satis-
fies limt→+∞〈u(t), u(t + h)〉 = α(h) exists uniformly in h ≥ 0, then σT = (l/T)

∫ T
0 u(t)dt

converges strongly as T → +∞ to the asymptotic center of the curve u(t).

4. Expansive Curves and Autonomous Systems

Now, we are in a position to go back to expansive mappings. In general, contrary to
nonexpansive mappings, an expansive mapping may not be continuous. As we have seen,
the set of fixed points of a nonexpansive mapping may be empty, but it always remains
closed and convex. Djafari Rouhani [27] provided examples to show that there are expan-
sive self-mappings of the closed unit ball of H, namely empty, nonconvex, or nonclosed
sets of fixed points. The first mean ergodic theorem for expansive mappings was proved by
Djafari Rouhani [27]. A continuous time approach to the orbits of an expansive mapping
was considered by Djafari Rouhani, and introduced as the notion of expansive curves.

Definition 4. An expansive curve u in H is a curve satisfying ‖u(t + h)− u(s + h)‖ ≥ ‖u(t)−
u(s)‖ for all s, t, h ≥ 0.

Expansive curves inherit many properties of orbits of expansive mappings, includ-
ing the lack of convexity and lack of closedness of the set of their fixed points. In any
case, the following two sets, which can be defined for any curve, are closed and convex
(or empty) sets.

F1(u) = {q ∈ H : ‖u(t)− q‖ is nonincreasing; }
E1(u) = {q ∈ H : ‖u(t)− q‖ is nondecreasing.}

The following theorem describes the ergodic, weak, and strong convergence of expan-
sive curves in H:

Theorem 9 ([27]). Let u be an expansive curve in H and σT = 1
T
∫ T

0 u(t)dt for T > 0.

(i) If lim infT→+∞ ‖σT‖ < +∞ and ‖u(t)‖ = o(
√

t), then the weak limit q of any weakly
convergent subsequence of σT belongs to E1.

(ii) If in addition to (i), lim inft→+∞ ‖u(t)‖ < +∞, then u is a bounded curve and σT converges
weakly to the asymptotic center p of u(t). Moreover we have p = limt→+∞ PE1 u(t).

(iii) If in addition to (ii), u is weakly asymptotically regular, then u(t) converges weakly to p as
t → +∞.

(iv) If limt→+∞ ‖u(t)‖ exists, then σT converges strongly to the asymptotic center p of u(t), and
moreover in addition to p = limt→+∞ PE1u(t), we have p = PK0, where Kt = conv{u(s); s ≥ t}
and K = ∩t≥0Kt.

Now, let A be a monotone operator in H. If u is weak solution of{
u̇(t) ∈ Au(t),
u(0) = u0,

(4)

on [0, T] for every T > 0, then u is an expansive curve in H [27] (Lemma 5.3); hence,
Theorem 9 describes the asymptotic behavior of any weak solution to (4). Unfortunately,
the system (4) is “strongly ill-posed”. For example, consider the simple linear case of
A = −Δ with Dirishlet boundary conditions, which yields the heat equation with final
Cauchy data and is not solvable in general. In Section 9, we try to fix this problem.
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5. Almost-Expansive Curves and Quasi-Autonomous Evolution Systems

By introducing an expansive counterpart to the notion of almost-nonexpansive curves,
we will be able to study the asymptotic behavior of solutions to (4) for the quasi-autonomous
case. Before going further, let us first recall the definition of an almost-expansive curve and
a description of its asymptotic behavior from [28].

Definition 5. The curve u in H is called almost expansive if

lim sup
s,t→+∞

[
sup
h≥0

(‖u(s)− u(t)‖2 − ‖u(s + h)− u(t + h)‖2)
]
≤ 0,

where for every ε > 0, there exists t0 ≥ 0, such that for all s, t ≥ t0, and for all h ≥ 0, we have

‖u(s)− u(t)‖2 ≤ ‖u(s + h)− u(t + h)‖2 + ε.

We note that if u is bounded, then this definition is equivalent to

lim sup
s,t→+∞

sup
h≥0

(‖u(s)− u(t)‖ − ‖u(s + h)− u(t + h)‖) ≤ 0.

The following theorem describes the ergodic, weak, and strong convergence of almost-
expansive curves in H.

Theorem 10 ([27]). Let u be an almost expansive curve in H.

(i) If lim infT→+∞ ‖σT‖ < +∞ and ‖u(t)‖ = o(
√

t), then either the weak limit q of any weakly
convergent subsequence σTn of σT belongs to L(u) or ‖u(t)‖ → +∞ as t → +∞.

(ii) If in addition to (i), lim inft→+∞ ‖u(t)‖ < +∞, then u is bounded and σT converges weakly
as T → +∞ to the asymptotic center p of u.

(iii) Assuming the conditions in (ii), u(t) converges weakly as t → +∞ to the asymptotic center p
of u if, and only if, u is weakly asymptotically regular.

(iv) If 0 ∈ L(u), then σT converges strongly as T → +∞ to the asymptotic center p of u. Moreover,
we have p = PK0, where Kt = conv{u(s); s ≥ t} and K = ∩t≥0Kt.

(v) If u is asymptotically regular, then limt→+∞ u(t) = p = PK0, where p is the asymptotic
center of u and Kt = conv{u(s); s ≥ t} and K = ∩t≥0Kt.

The following proposition relates the asymptotic behavior of expansive-type evolution
equations to that of almost-expansive curves.

Proposition 1 ([28]). If u is a weak solution of{
u̇(t) + f (t) ∈ Au(t),
u(0) = u0,

(5)

on [0, T] for every T > 0, and if supt≥0 ‖u(t)‖ < +∞ and

lim
s,r→+∞

∫ +∞

s
‖ f (θ + (r − s))− f (θ)‖dθ = 0,

then the curve u is almost expansive in H.

Therefore, similar to the expansive case, one can apply the results on the asymptotic
behavior of almost-expansive curves to describe the asymptotic behavior of solutions to (5).

Theorem 11 ([28]). Assume u is a weak solution of (5) on every interval [0, T] and supt≥0 ‖u(t)‖
< +∞. Assume f − f∞ ∈ L1((0,+∞); H) for some f∞ ∈ H. Then, the following hold:

(i) σT ⇀ p as T → +∞, where p is the asymptotic center of u.
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(ii) u(t) ⇀ p as t → +∞, if and only if u is weakly asymptotically regular.
(iii) If limt→+∞ ‖u(t)‖ exists, then limT→+∞ σT = p = PK0, where K is as defined above.
(iv) limt→+∞ u(t) = p = PK0 if and only if u is asymptotically regular.

6. Expansive-Type Difference Equations

As we have already explained, the dissipative systems of the form (3) have a unique
weak solution, whereas for solutions to (4), neither existence nor uniqueness is guaranteed.
A similar situation occurs for the backward discretization of (4):

un+1 − un ∈ λn Aun+1.

Hence, we consider the following forward discretization:

un+1 − un ∈ λn Aun, (6)

which is always well defined.
Similar to the continuous case, by introducing the notion of almost-expansive se-

quences and studying their asymptotic behavior under some suitable conditions, we de-
scribe the asymptotic behavior of the solution to (6).

Definition 6. A sequence un in H is said to be almost-expansive if for all i, j, k ≥ 0, we have

lim sup
i,j→∞

[
sup
k≥0

(‖ui − uj‖2 − ‖ui+k − uj+k‖2)
]
≤ 0.

i.e., ∀ε > 0, ∃N0 such that ∀i, j ≥ N0, ∀k ≥ 0, ‖ui − uj‖2 ≤ ‖ui+k − uj+k‖2 + ε.

We note that if un is bounded, then this definition is equivalent to

lim sup
i,j→∞

[
sup
k≥0

(‖ui − uj‖ − ‖ui+k − uj+k‖)
]
≤ 0.

The sequence of averages of un is denoted by sn and defined by sn = 1
n ∑n−1

k=0 uk.
The following theorem provides a discrete version of Theorem 10.

Theorem 12 ([27]). Let un be an almost expansive sequence in H.

(i) If lim infn→+∞ ‖sn‖ < +∞ and ‖un‖ = o(
√

t), then either the weak limit q of any weakly
convergent subsequence snk of sn belongs to L(un) or ‖un‖ → +∞ as n → +∞.

(ii) If in addition to (i), lim infn→+∞ ‖un‖ < +∞, then un is bounded and sn converges weakly
as n → +∞, to the asymptotic center p of un.

(iii) Assuming the conditions in (ii), un converges weakly as n → +∞ to the asymptotic center p
of un, if and only if un is weakly asymptotically regular.

(iv) If 0 ∈ L(un), then sn converges strongly as n → +∞ to the asymptotic center p of un.
Moreover, we have p = PK0, where Kn = conv{uk; k ≥ n} and K = ∩n≥0Kn.

(v) If un is asymptotically regular, then limn→+∞ un = p = PK0, where p is the asymptotic
center of un, and K is defined above.

We still need an additional condition for the sequence un governed by (6) to be
almost expansive.

Proposition 2 ([29]). Let λn be a nondecreasing sequence of positive numbers, such that

lim sup
j ≥ i

i, j → +∞

+∞

∑
l=i

(λ(j−i)+l

λl
− 1

)
= 0. (7)
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If un is a bounded solution to (6), then un is almost expansive.

Note that the condition (7) in the above proposition is in particular satisfied if
supn≥1 λn ≤ λ for some λ > 0, and λ

an+1 ≤ λn for some an ∈ l1. For example, the

sequence λn = n2

1+n2 satisfies the conditions of the above proposition. Now, we are in a
position to apply our results on almost-expansive sequences to describe the asymptotic
behavior of the sequence un governed by (6).

Theorem 13 ([29]). Assume that λn is a nondecreasing sequence satisfying the condition (7),
and un is a bounded solution to (6). Then, the following hold:

(i) sn ⇀ p, as n → +∞, where p is the asymptotic center of un.
(ii) un ⇀ p, as n → +∞ if and only if u is weakly asymptotically regular.
(iii) If limn→+∞ ‖un‖ exists, then limn→+∞ sn = p = PK0, where K is as defined above.
(iv) limn→+∞ un = p = PK0 if and only if un is asymptotically regular.

In the following theorem, by assuming the zero set of A to be nonempty, we can obtain
stronger results:

Theorem 14 ([29]). Let un be the sequence generated by (6), where A−1(0) 
= ∅ and
lim infn→+∞ λn ≥ λ for some λ > 0. If un is bounded, then there exists some p ∈ A−1(0),
such that un ⇀ p as n → +∞. Otherwise, ‖un‖ → +∞ as n → +∞.

Note that if the step size λn goes to infinity as n → +∞, then the existence of a
bounded solution to (6) implies that A−1(0) 
= ∅. In fact, let un be a bounded solution
to (6) and bn = un+1−un

λn
. Clearly, bn ∈ Aun and bn → 0. Since un is bounded, there exist

some q ∈ H and a subsequence unk , such that unk ⇀ q as k → +∞. Now, the maximality of
A implies that q ∈ A−1(0).

7. Periodic Solutions in Discrete Time

In this section, we will need the following extended version of expansive mappings

Definition 7. The mapping T : D(T) ⊂ H → H is said to be α-expansive if

α‖x − y‖ ≤ ‖Tx − Ty‖, ∀x, y ∈ D(T).

If α = 1, we say that T is expansive.

Clearly, letting α = 1, the above definition coincides with the definition of an ex-
pansive mapping, and if T : H → H is α-expansive, then T−1 exists and it is 1

α -Lipschitz
continuous. The following theorem provides sufficient conditions for the system (6) to have
a periodic solution.

Theorem 15 ([29]). Suppose that A is a single-valued and maximal strongly monotone operator in
H. If λn is a periodic sequence with period N, then there exists an N-periodic solution to (6).

The above theorem does not hold for a general maximal monotone operator A;
not even for subdifferentials of proper, convex and lower semicontinuous functions, nor for
inverse strongly monotone operators. To see this, let A : R → R be the constant function
A ≡ 1, and λn ≡ 1. Then, (6) reduces to un+1 = un + 1, which shows that the sequence un
tends to +∞, as n → +∞, for all u0 ∈ R. Therefore, it does not have a periodic solution.
However, assuming (6) has a periodic solution, is it possible that (6) has another solution
(by starting from a different initial point) that behaves differently? The following theorem
answers this question.
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Theorem 16 ([29]). Assume that A is a single-valued and maximal monotone operator in H,
and the sequence λn is periodic with period N. If (6) has an N-periodic solution wn, then every
bounded solution to (6) is also periodic with period N and differs from wn by an additive constant.

In general, the existence of periodic solutions does not imply the boundedness of all
solutions to (6). For this, let D = [0, 1], A = (I − PD), and λn ≡ 1. Then, (6) reduces to
un+1 = 2un − PDun. If we choose u0 = 0, then un ≡ 0, which is a periodic solution with
period N for all N ∈ N. However, if we choose u0 = 2, then un+1 = 2un − 1, which clearly
goes to +∞, as n → +∞.

8. A Gradient System of Expansive Type

In this section, we consider a particular case of non-monotone operators. This case is
motivated by the prominent example of a maximal monotone operator that is the subdiffer-
ential of a proper, convex, and lower semicontinuous function. A quasiconvex function is
an extension of a convex function, which has found many applications in economics [30].
Unlike the convex case, quasiconvex functions do not have a convex epigraph, but have
convex sublevel sets. This is stated formally in the following definition:

Definition 8. (i) A function φ : H → (−∞,+∞] is quasiconvex if

φ(λx + (1 − λ)y) ≤ max{φ(x), φ(y)}, ∀x, y ∈ H and ∀λ ∈ [0, 1].

(ii) A function φ : H → (−∞,+∞] is strongly quasiconvex if there is α > 0 such that

φ(λx + (1 − λ)y) ≤ max{φ(x), φ(y)} − αλ(1 − λ)‖x − y‖2, ∀x, y ∈ H and ∀λ ∈ [0, 1].

The notion of a subdifferential has been generalized for nonconvex functions by many
authors. Nevertheless, in any circumstance, the subdifferential operator of a quasiconvex
function is not monotone. However, in the case where the quasiconvex function φ : H → R

is Gâteaux differentiable, then the following characterization holds:

φ is quasiconvex on H ⇔ (∀x, y ∈ H, φ(y) ≤ φ(x) ⇒ 〈∇φ(x), x − y〉 ≥ 0).

This characterization will be useful in the rest of this section to make up for the lack
of monotonicity.

We consider the expansive system governed by the non-monotone operator ∇φ, where
φ : H → R is a differentiable quasiconvex function. Indeed, as in [31], we consider the
following differential equation

u̇(t) = ∇φ(u(t)) + f (t), t ∈ [0,+∞), (8)

where φ : H → R is a differentiable quasiconvex function, such that ∇φ is Lipschitz
continuous and f ∈ W1,1((0,+∞); H). The Cauchy–Lipschitz theorem implies the existence
of a unique solution of the system (8) with an initial condition, where ∇φ is Lipschitz
continuous. In order to study the asymptotic behavior of solutions to systems of the
form (8), the authors in [31] introduced the following set for a function φ along a curve u:

Lφ(u) = {y ∈ H : ∃T > 0 s.t. φ(y) ≤ φ(u(t)) ∀t ≥ T}.

Denoting the set of all global minimizers of φ by Argmin φ, then Argmin φ ⊂ Lφ(u).
The following proposition shows that if u is a solution to (8), then Lφ(u) ⊂ L(u).
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Proposition 3 ([31]). Let u(t) be a solution to (8). For an arbitrary interval [a, b], where b ≥ a ≥ 0,
and each y ∈ Lφ(u), we have

‖u(a)− y‖ ≤ ‖u(b)− y‖+
∫ b

a
‖ f (t)‖dt,

and therefore limt→+∞ ‖u(t)− y‖ exists (it may be infinite).

Proposition 4 ([31]). Let u(t) be a solution to (8). If lim inft→+∞ ‖u(t)‖ < +∞, then

(i) limt→+∞ ∇φ(u(t)) = 0.
(ii) limt→+∞ φ(u(t)) exists and is finite.
(iii) Lφ(u) 
= ∅.
(iv) u is bounded.

The following theorem describes the asymptotic behavior of solutions to (8).

Theorem 17 ([31]). Let u(t) be a solution to (8). If lim inft→+∞ ‖u(t)‖ < +∞, then there exists
some p ∈ (∇φ)−1(0), such that u(t) ⇀ p as t → +∞, and if p /∈ Argmin φ, the convergence is
strong. If u(t) is unbounded, then ‖u(t)‖ → +∞ as t → +∞.

Note that the above theorem shows that if (∇φ)−1(0) = ∅, then for any solution to (8),
we have limt→+∞ ‖u(t)‖ = +∞.

The following two theorems provide sufficient conditions for the strong convergence
of solutions to (8).

Theorem 18 ([31]). With either one of the following assumptions, bounded solutions to (8) converge
strongly to some point in (∇φ)−1(0):

(i) Sublevel sets of φ are compact.
(ii) int Lφ(u) 
= ∅.

Theorem 19 ([31]). Assume that φ : H → R is a strongly quasiconvex function and u(t) is a
bounded solution to (8). Then, Argmin φ is a singleton and u(t) converges strongly to the unique
minimizer of φ.

For a differentiable quasiconvex function φ : H → R whose gradient ∇φ is Lipschitz
continuous with Lipschitz constant K, as in Section 6, we consider the forward finite-
difference discrete version of (8), which yields a well-defined sequence:

un+1 − un = λn∇φ(un) + fn, (9)

where the sequence fn belongs to l1 and λn ≥ ε for some ε > 0.
In order to study the asymptotic behavior of un, we define the following discrete

version of Lφ(u):

Lφ(un) = {y ∈ H : ∃N > 0 s.t. φ(y) ≤ φ(un) ∀n ≥ N}.

The following proposition is a discrete version of Proposition 3.

Proposition 5 ([31]). Let un be the sequence generated by (9). For each y ∈ Lφ(un), and k < m,
we have

‖uk − y‖ ≤ ‖um − y‖+
m−1

∑
n=k

‖ fn‖, (10)

and consequently limn→+∞ ‖un − y‖ exists (it may be infinite).
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Proposition 6 ([31]). Let un be a solution to (9), such that lim infn→+∞ ‖un‖ < +∞. Then,
Lφ(un) is nonempty if and only if limn→+∞ φ(un) exists, and in this case un is bounded.

If φ is convex, we can omit the Lipschtz continuity condition on ∇φ in Proposition 6.

Proposition 7 ([31]). Assume that un is a solution to (9), such that lim infn→+∞ ‖un‖ < +∞. If
either one of the following conditions is satisfied, then Lφ(un) is nonempty.

(i) φ is convex and the sequence of step sizes λn is bounded above.
(ii) lim supn→+∞ λn < 2

K .

In the continuous case, we showed that if lim inft→+∞ ‖u(t)‖ < +∞, then Lφ(u) 
= ∅.
However, in the discrete case, it remains an open problem whether without any additional
assumption that lim infn→+∞ ‖un‖ < +∞ implies that Lφ(un) is nonempty.

The following theorems describe the weak and strong convergence of solutions to (9).

Theorem 20 ([31]). Assume that un is the sequence given by (9), and Lφ(un) 
= ∅. If
lim infn→+∞ ‖un‖ < +∞, then there is some p ∈ (∇φ)−1(0), such that un ⇀ p as n → +∞,
and if p /∈ Argmin φ, the convergence is strong. If un is not bounded, then ‖un‖ → +∞, as
n → +∞.

Theorem 21 ([31]). Let un be a bounded sequence, which satisfies (9), and let L(un) 
= ∅. If either
one of the following assumptions holds, then un converges strongly to some point in (∇φ)−1(0):

(i) Sublevel sets of φ are compact.
(ii) int Lφ(un) 
= ∅.

Example 1. Assume that φ : R → R is defined by φ(x) = arctan(x3) and consider (9) with
λn = 2

3 n and fn ≡ 0. Then, it is easy to see that all the assumptions of Theorem 21 are satisfied.
In Table 1, we compare 1000 iterations un generated by (9) starting from two different initial
points, namely u0 = −0.5 and u0 = 1. The numerical results show that for u0 = −0.5,
un → 0 ∈ (∇φ)−1(0), and for u0 = 1, un slowly goes to infinity.

Table 1. Comparing 1000 iterations un with different initial points.

n un un

0 −0.5 1
1 −0.00769231 2
10 −0.00404869 3.63765
20 −0.00171074 4.68854
30 −0.0008858 5.46951
40 −0.000533135 6.11128
50 −0.000354164 6.66517
60 −0.000251763 7.15741
70 −0.000187942 7.60348
80 −0.000145564 8.01339
90 −0.000116023 8.39404

100 −0.0000946225 8.7504
1000 −9.94968 ×10−7 21.8786

9. Some New Results

As we have seen in Section 4, given a maximal monotone operator, expansive systems
of the form (4) may be “strongly ill-posed” in general. In this section, we consider a special
class of maximal monotone operators that induces well-posed expansive evolution systems.
Motivated by this, we propose an expansive-type approach for the approximation of zeros
of any maximal monotone operator.
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9.1. Weak Convergence

We start with the following definition:

Definition 9. Let λ > 0. The operator A : H → H is said to be λ-inverse strongly monotone if

λ‖A(x)− A(y)‖2 ≤ 〈A(x)− A(y), x − y〉, ∀x, y ∈ H.

Clearly, a λ-inverse strongly monotone operator is 1
λ -Lipschitz.

Let A : H → H be a λ-inverse strongly monotone operator, such that A−1(0) 
= ∅.
Consider the following differential equation:{

u̇(t) = Au(t),
u(0) = x ∈ H.

(11)

Since A is Lipschitz, then the Cauchy–Lipschitz theorem guarantees that there exists a
unique solution to (11). The following Lemma is due to Z. Opial [32], and is an effective
tool in the convergence analysis of curves in the weak topology.

Lemma 1. Let u : [0,+∞) → H, and let S ⊂ H be nonempty. Assume that

(i) For every y ∈ S, limt→+∞ ‖u(t)− y‖ exists;
(ii) Every sequential weak limit point of u belongs to S.

Then, there exists p ∈ S, such that u(t) ⇀ p as t → +∞.

Theorem 22. Assume that u is a strong solution to (11). If u is unbounded, then ‖u(t)‖ → +∞,
as t → +∞. If u is bounded, then there exists some p ∈ A−1(0), such that u(t) ⇀ p as t → +∞.

Proof. Let y ∈ A−1(0) and hy(t) = 1
2‖u(t)− y‖2. By the monotonicity of A we have:

ḣy(t) = 〈u̇(t), u(t)− y〉 = 〈Au(t), u(t)− y〉 ≥ 0.

Hence, hy(t) is nondecreasing. If u(t) is unbounded then hy(t) → +∞ is as t → +∞,
which implies that ‖u(t)‖ → +∞ is as t → +∞. If u(t) is bounded, then limt→+∞ hy(t)
exists. Multiplying both sides of (11) by u(t)− y and then using the fact that A is λ-inverse
strongly monotone, we obtain:

ḣy(t) = 〈u̇(t), u(t)− y〉 = 〈Au(t), u(t)− y〉 ≥ λ‖Au(t)‖2. (12)

Replacing Au(t) with u̇(t) in (12) and then integrating both sides of (12) on [0, t],
we obtain:

λ
∫ t

0
‖u̇(τ)‖2dτ ≤ hy(t)− hy(0).

Since limt→+∞ hy(t) exists, the above inequality implies that u̇ ∈ L2([0,+∞), H). On
the other hand, since u is bounded and A is Lipschitz, (11) yields u̇ and is bounded,
and hence u is Lipschitz. Now, since u̇ is the composition of two Lipschitz mappings,
u̇ is Lipschitz too. This implies that u̇ is uniformly continuous. This together with u̇ ∈
L2([0,+∞), H) yields limt→+∞ u̇(t) = 0 and hence by (11), limt→+∞ Au(t) = 0. Now, let q
be a weak cluster point of u(t). There exists a sequence tn ⊂ [0,+∞), such that tn → +∞
as n → +∞, and u(tn) ⇀ q as n → +∞. From the maximality of A, we have q ∈ A−1(0).
Now an easy application of Opial’s Lemma concludes the proof.

Let A be an arbitrary maximal monotone operator, and λ > 0. The resolvent of
A of index λ is the single-valued operator JA

λ = (I + λA)−1, which is nonexpansive
and everywhere defined. The Yosida approximation of A of index λ is Aλ = 1

λ (I − JA
λ ).

A straightforward calculation shows that the Yosida approximation of index λ is λ-inverse
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and strongly monotone, and A−1
λ (0) = A−1(0). Therefore, the Cauchy–Lipschitz theorem

implies that the differential equation

u̇(t) = Aλ(u(t)), (13)

with an initial condition u(0) = u0 ∈ H is well defined. Therefore, by Theorem 22, if uλ(t)
is a solution to (13) that remains bounded, then uλ(t) converges weakly to a zero of A,
otherwise uλ(t) goes to infinity in the norm as t → +∞.

9.2. Strong Convergence via Tikhonov Regularization

In this subsection, we propose well-posed dynamics that approximate zeros of an
arbitrary maximal monotone operator A in strong topology. For this purpose, let us assume
that α : [0,+∞) → (0,+∞) is absolutely continuous on every finite interval, and define
At = A + α(t)I. Hence, At is onto, and due to the strong monotonicity of At, the zero set
of At is a singleton. Let ξ(t) denote the unique zero of At. We call ξ(t) the central path of
A corresponding to α(t).

Lemma 2 ([33]). Let A be a maximal monotone operator, let α(t) be a positive function, and let ξ(t)
be the central path corresponding to A and α(t). If A−1(0) 
= ∅, then ξ(t) is bounded. Moreover,
if limt→+∞ α(t) = 0, then ξ(t) converges strongly to the least norm element in A−1(0).

Since ξ(t) = JA
1

α(t)
(0), by the resolvent identity, we have

‖ξ(t + δ)− ξ(t)‖ =

∥∥∥∥JA
1

α(t)

((
1 − α(t)

α(t + δ)

)
ξ(t)

)
− JA

1
α(t)

(0)
∥∥∥∥ ≤

∥∥∥∥(1 − α(t)
α(t + δ)

)
ξ(t)

∥∥∥∥.

If A−1(0) 
= ∅, then Lemma 2 implies that ξ(t) is bounded. The boundedness of
ξ(t) and the absolute continuity of α(t) on every finite interval together with the above
inequality implies that ξ(t) is absolutely continuous on every finite interval, since α(t) does
not take the value zero, therefore it is bounded away from zero. Hence, ξ(t) is almost
everywhere differentiable. Dividing both sides of the above inequality by δ and then letting
δ → 0, we obtain

‖ξ̇(t)‖ ≤ |α̇(t)|
α(t)

‖ξ(t)‖, a.e. t ≥ 0. (14)

Theorem 23. Let α : [0,+∞) → (0,+∞) be absolutely continuous on every finite interval,
such that

(i) limt→+∞ α(t) = 0;

(ii) limt→+∞
α̇(t)
α(t)2 = 0;

(iii)
∫ +∞

0 α(t)dt = +∞.

Let A : H ⇒ H be maximal monotone with a nonempty zero set. Then, every bounded (possible)
solution to the following differential equation{

u̇(t) = A(u(t)) + α(t)u(t),
u(0) = u0 ∈ H,

(15)

converges strongly to the zero of A with minimal norm.

Proof. Let h(t) = 1
2‖u(t)− ξ(t)‖2. We have

ḣ(t) = 〈u̇(t)− ξ̇(t), u(t)− ξ(t)〉,
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hence

ḣ(t) + 〈ξ̇(t), u(t)− ξ(t)〉 = 〈A(u(t))− A(ξ(t)), u(t)− ξ(t)〉+ α(t)‖u(t)− ξ(t)‖2,

By applying the Cauchy–Schuartz inequality and the monotonicity of A, we obtain

2α(t)h(t) ≤ ḣ(t) + M‖ξ̇(t)‖, (16)

where M = supt>0 ‖u(t) − ξ(t)‖. Multiplying both sides of (16) by e−E(t), where
E(t) =

∫ t
0 α(τ)dτ, we get:

−M
‖ξ̇(t)‖

α(t)
α(t)e−E(t) ≤ e−E(t) ḣ(t)− α(t)e−E(t)h(t),

Then,

M
‖ξ̇(t)‖

α(t)
d
dt

(
e−E(t)

)
≤ d

dt

(
e−E(t)h(t)

)
.

Integrating the above inequality on [s, t], we get

m(s)
(

e−E(t) − e−E(s)
)
≤ e−E(t)h(t)− e−E(s)h(s),

where m(s) = M inft≥s
‖ξ̇(t)‖

α(t) . Letting t → +∞ in the above inequality, since h(t) is
bounded and limt→+∞ E(t) = +∞, we obtain

e−E(s)h(s) ≤ e−E(s)m(s) ≤ e−E(s)M
‖ξ̇(s)‖

α(s)
.

Multiplying the above inequality by eE(s), and applying (14), we obtain

h(s) ≤ M
|α̇(s)|
α(s)2 ‖ξ(s)‖.

Now, letting s → +∞, we conclude the result by applying (ii) and Lemma 2.

Remark 1. By applying a nonautonomous version of the Cauchy–Lipschitz theorem, the following
Tikhonov regularization system has a unique solution.{

u̇ = Aλ(u(t)) + α(t)u(t),
u(0) = u0 ∈ H.

(17)

Therefore, by Theorem 23, the system (17) provides a continuous time-expansive method to approxi-
mate the zero with the least norm of any maximal monotone operator A.
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Abstract: We establish a compartmental model for Zika virus disease transmission, with particular
attention paid to microcephaly, the main threat of the disease. To this end, we consider separate
microcephaly-related compartments for affected infants, as well as the role of asymptomatic carriers,
the influence of seasonality and transmission through sexual contact. We determine the basic
reproduction number of the corresponding time-dependent model and time-constant model and
study the dependence of this value on the mosquito-related parameters. In addition, we demonstrate
the global stability of the disease-free periodic solution if R0 < 1, whereas the disease persists when
R0 > 1. We fit our model to data from Colombia between 2015 and 2017 as a case study. The fitting
is used to figure out how sexual transmission affects the number of cases among women as well as
the number of microcephaly cases. Our sensitivity analyses conclude that the most effective ways
to prevent Zika-related microcephaly cases are preventing mosquito bites and controlling mosquito
populations, as well as providing protection during sexual contact.

Keywords: non-autonomous epidemic model; Zika fever; microcephaly; basic reproduction number

MSC: 34C23; 34C25; 34C60; 37N25; 92D25; 92D30

1. Introduction

Zika fever or Zika virus disease (ZIKV) is an arthropod-borne disease caused by a
Flavivirus, mainly spread by infected female mosquito bites. The species responsible for
transmission are primarily Aedes aegypti and Aedes albopictus [1]. Unlike other arboviruses,
Zika can also be transmitted via sexual contact, primarily from males to females [2]. Ev-
idence shows that ZIKV remains in semen up to six months, which is longer than it can
remain in other bodily fluids. This means that the disease can still be transmitted several
months after recovery [3]. The most common way for Zika to be transmitted is from a
pregnant woman to her child. This has been shown to cause microcephaly and other
serious fetal brain deficiencies although, historically, Zika fever was thought to have mild
symptoms in humans, such as moderate fever, conjunctivitis, rash and joint discomfort.
The Zika virus was first isolated in 1947 in a rhesus monkey in the Zika forest (Uganda).
It was shown that the virus is transmitted between primates and mosquitoes, especially
the mosquito species Aedes africanus [4]. At the end of 2015, the European Centre for
Disease Prevention and Control published a study on the possible connection between Zika
fever, congenital microcephaly and Guillain–Barré syndrome [5,6]. For example, in Brazil,
2782 microcephaly cases were reported in the year following the emergence of Zika fever,
while there were only 147 and 167 cases in the two preceding years [7]. ZIKV was found to
have been transmitted intrauterine for the first time in Brazil, in the uteri of two pregnant
women whose fetuses were born with microcephaly. In Colombia, a total of 19,993 female
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pregnant women with presumed Zika virus disease were recorded from the start of the
epidemic up to week 33 of 2017, of whom 6365 were laboratory-confirmed with Zika virus
infection [8,9]. In total, 1415 occurrences of microcephaly and other congenital disorders of
the central nervous system were recorded in Colombia between the first week of 2016 and
week 33 of 2017. Among these, 196 were laboratory-confirmed as being associated with
Zika virus infection. The number of cases having microcephaly reveals an increasing trend
in 2016, reaching its high in week 28. Whereas the number of cases has been decreasing
since, in comparison to the same period 2014 and 2015, the trend has nevertheless shown
a greater number of cases. In [10], the authors confirmed the link between microcephaly
and congenital Zika infection based on a case–control investigation in 2016. The study [11],
using data from national reporting databases in Brazil, also confirmed that congenital Zika
infection, in particular in the first six months of pregnancy, can be linked with microcephaly
and with other birth defects. Ref. [12] found that the number of Guillain–Barré syndrome
patients increased parallelly with the number of Zika cases, while microcephaly cases ap-
peared five months after the beginning of the outbreak, showing a functional relationship
between the transmission of Zika fever and the increase of microcephaly and Guillain–Barré
syndrome cases. Microcephaly was linked to other problems, such as miscarriage, stillbirth
and other birth defects [13].

Several researchers have studied the dynamics of the Zika virus spread using mathe-
matical models. Ref. [14] established a compartmental model that includes mosquito-borne
spread and sexual transmission as well. In this paper, males and females were not differen-
tiated. Ref. [15] formulated and analysed five compartmental models of Zika transmission,
modelling heterogeneity in sexual transmission in several different ways. Saad-Roy, Ma
and van den Driessche [16] introduced a model differentiating humans w.r.t. their sex and
sexual activity. Some studies also consider the changes in the weather and climate in the
models, see, e.g., [17–21]. A model for the transmission of the ZIKV presented in [22] also
includes the effect of the periodicity of weather. This model included time-dependent
mosquito parameters. The global dynamics are determined by the basic reproduction num-
ber R0: the disease-free equilibrium is shown to be globally asymptotically stable if R0 < 1,
whereas when R0 > 1 the disease persists in the population. The model studied in [23]
incorporated vertical transmission of the Zika virus among humans, the birth of newborns
having microcephaly and asymptomatic carriers of the virus. In [24], a non-autonomous
model was developed that took into account the majority of the important aspects of
Zika spread: vector-borne and sexual transmission, the prolonged time of infectiousness
following recovery, the role of asymptomatically infected persons, and the significance of
weather seasonality. As the main concern regarding Zika infections is the possibility of
malformations in newborns, a particular emphasis was put on the assessment of the effect
of the epidemic on women.

In the current study, we extend the compartmental model described in [24] by taking
into account the vertical transmission of Zika to the fetus in the early stages of pregnancy
in order to better estimate the risk of microcephaly due to Zika. We determine the basic
reproduction number of the corresponding time-dependent model using different methods.
In addition, we demonstrate the global stability of the disease-free periodic solution in
the case R0 < 1, whereas the disease persists when R0 > 1. To support the theoretical
conclusions, numerical simulations are provided. In addition, we fit our model to data
from Colombia between 2015 and 2017 as a case study.

2. Methods

2.1. Seasonal Compartmental Model

To account for sexual, vector-borne and vertical transmission, we divided the whole
human population Nh into three categories: adult females, denoted by Nf , adult males, de-
noted by Nm , and children, denoted by Nc and consisting of newly born babies and children
under puberty. In order to simplify our model, we do not introduce separate compartments
for pregnant women, but we assume that a constant percentage of women (in any of the

115



Axioms 2023, 12, 263

adult female compartments) is pregnant at any time t. Susceptible humans (Sf , Sm and Sc )
are those who can be infected by the Zika virus. Once having contracted the disease, indi-
viduals progress to the exposed compartment (Ef , Em and Ec ), and these persons do not have
any symptoms yet. If a person has been exposed to the Zika virus but has not yet developed
symptoms or been confirmed as infected, they can still potentially spread the virus to others.
This is because the virus can be present in the blood (viraemia) and semen (virusemenia)
of an infected person for a period of time before symptoms appear [14,25]. Following the
incubation time, exposed humans transfer to one of the symptomatically infected classes
(Is

f
, Is

m , Is
c ) and the asymptomatically infected compartments (Ia

f
, Ia

m , Ia
c ), based on whether

that person shows symptoms or not. Both asymptomatically and symptomatically infected
adult males progress to the convalescent class (Ir

m ) which includes individuals who have
recovered from the disease but are still able to spread it through sexual contact. For adult
females, we introduce the compartment Ir

f
. A percentage of those in Ir

f
are those recovered

mothers who had Zika during their pregnancy. Children of women who were previously
infected by Zika might develop microcephaly and be born into the Mc class, or they might
be born healthy and thus arrive at the recovered compartment Rc . To incorporate the time
from infection of the mother to birth, we introduce a time delay (τ), which in our model is
given as a constant delay based on the average time between infection and delivery of moth-
ers who have given birth to babies with microcephaly. Adults enter the recovered classes
(Rf , Rm ) after the convalescent phase. Infected mothers’ children who are born healthy will
move to the recovered compartment Rc , while those who develop microcephaly will move
to compartment Mc . The Zika virus only causes microcephaly during pregnancy and not
after birth in non-infected children. It only affects the developing fetal brain leading to
abnormal brain development and microcephaly in some newborns. Children who were
not infected during pregnancy are not at risk of developing microcephaly [26]. Once the
infected children have recovered, they will be transferred to the recovered compartment.
We point out that the infectious classes (E, Is, Ia, Ir) also differ in terms of recovery and
transmission rates. We introduce three mosquito compartments: susceptible (Sv ), exposed
(Ev ) and infected (Iv). Figure 1 depicts the model’s transmission diagram.
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Figure 1. The dynamics of the spread of the Zika virus, taking into account three human groups,
and sexual, vertical and vectorial transmission. Adult males, adult females, children and mosquitoes
are denoted by the lower indices m, f , c and v, respectively. Yellow nodes denote non-infectious
and red nodes denote infectious compartments. The disease progression is depicted by black, solid
arrows. The direction of sexual transmission from adult males to adult females is shown by blue
dashed arrows, while blue dash–dotted arrows illustrate the direction of vertical infection from adult
females to their children. Green dashed arrows show the direction of the maturation from child to
adult. Red dashed lines show the direction of mosquito-to-human transmission.

The total human population is Nh(t) = Nf (t) + Nm(t) + Nc(t) and the total population
for each group is given as:

Nf (t) = Sf (t) + Ef (t) + Ia
f
(t) + Is

f
(t) + Ir

f
(t) + Rf (t),

Nm(t) = Sm(t) + Em(t) + Ia
m (t) + Is

m(t) + Ir
m(t) + Rm(t),

Nc(t) = Sc(t) + Ec(t) + Ia
c (t) + Is

c (t) + Mc(t) + Rc(t),

while the total mosquito population is given by Nv(t) = Sv(t) + Ev(t) + Iv(t).
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In accordance with the transmission diagram in Figure 1 and the parameter description
given in Table 1, the mathematical model takes the form

A
du

lt
fe

m
al

es

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
f
(t) = α

2 Sc(t)− β
Th (t)
Nf (t)

Sf (t)− α̃h(t)
Iv (t)
Nh (t)

Sf (t)− dSf (t),

E′
f
(t) = β

Th (t)
Nf (t)

Sf (t) + α̃h(t)
Iv (t)
Nh (t)

Sf (t)− (νh + d)Ef (t),

Ia
f
′(t) = θνh Ef (t)− γa Ia

f
(t)− dIa

f
(t),

Is
f
′(t) = (1 − θ)νh Ef (t)− γs Is

f
(t)− dIs

f
(t),

Ir
f
′(t) = γa Ia

f
(t) + γs Is

f
(t)− γr Ir

f
(t)− dIr

f
(t),

R′
f
(t) = α

2 Rc(t) + γr Ir
f
(t)− dRf (t),

A
du

lt
m

al
es

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
m(t) =

α
2 Sc(t)− α̃h(t)

Iv (t)
Nh (t)

Sm(t)− dSm(t),

E′
m(t) = α̃h(t)

Iv (t)
Nh (t)

Sm(t)− (νh + d)Em(t),

Ia
m
′(t) = θνh Em(t)− γa Ia

m (t)− dIa
m (t),

Is
m
′(t) = (1 − θ)νh Em(t)− γs Is

m(t)− dIs
m(t),

Ir
m
′(t) = γa Ia

m (t) + γs Is
m(t)− γr Ir

m(t)− dIr
m(t),

R′
m(t) =

α
2 Rc(t) + γr Ir

m(t)− dRm(t),

C
hi

ld
re

n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
c (t) = Bc

Sf (t−τ)+Rf (t−τ)

Nf (t−τ)
e−ξτ − α̃h(t)

Iv (t)
Nh (t)

Sc(t)− αSc(t)− ξSc(t),

E′
c (t) = α̃h(t)

Iv (t)
Nh (t)

Sc(t)− νh Ec(t)− ξEc(t),

Ia
c
′(t) = θνh Ec(t)− γa Ia

c (t)− ξ Ia
c (t),

Is
c
′(t) = (1 − θ)νh Ec(t)− γs Is

c (t)− ξ Is
c (t),

M′
c (t) = (1 − p)Bc

Ef (t−τ)+Ia
f
(t−τ)+Is

f
(t−τ)

Nf (t−τ)
e−ξτ − ξMc(t),

R′
c (t) = pBc

Ef (t−τ)+Ia
f
(t−τ)+Is

f
(t−τ)

Nf (t−τ)
e−ξτ + γa Ia

c (t) + γs Is
c (t)− αRc(t)− ξRc(t),

M
os

qu
it

oe
s ⎧⎪⎪⎨⎪⎪⎩

S′
v (t) = B̃v(t)− α̃v(t)

Tv (t)
Nh (t)

Sv(t)− μSv(t),

E′
v (t) = α̃v(t)

Tv (t)
Nh (t)

Sv(t)− (νv + μ)Ev(t),

I′v (t) = νv Ev(t)− μIv(t),

(1)

where

Th(t) = κeEm(t) + κa Ia
m (t) + Is

m(t) + κr Ir
m(t),

Tv(t) = ηe
(
Ef (t) + Em(t) + Ec(t)

)
+ ηa

(
Ia
f
(t) + Ia

m (t) + Ia
c (t)

)
+ Is

f
(t) + Is

m(t) + Is
c (t),

and all other parameter descriptions are summarized in Table 1. In particular, Bc and ξ
are children’s birth and death rates, d is the adult death rate and β is the rate at which
symptomatic males spread the disease to susceptible females; β multiplied by κe, κa and κr
yields the rates at which exposed, asymptotically infected and convalescent men spread
the disease to women, respectively. The fraction of asymptomatically infected individuals
is represented by θ.
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Table 1. Description of the model (1) parameters.

Parameter Description

Bc Natural birth rate of children
ξ Natural death rate of children
α Maturation rate
d Natural death rate of adults
β Transmission rate from human to human
αh Baseline value of mosquito-to-human transfer rate
αv Baseline value of humans-to-mosquito transfer rate
θ Ratio of asymptomatic infections

κe, κa, κr Relative transmissibility of exposed humans to infectious humans
ηe, ηa Relative transmissibility of infectious human to mosquitoes

γa Progression rate from Ia to Ir

γs Progression rate from Is to Ir

γr Recovery rate of convalescent humans
νh Human incubation rate
νv Incubation rate in mosquitoes
Bv Baseline value of mosquito birth rate
μ Mosquito death rate
p Fraction of children who have recovered

1 − p Fraction of children who have microcephaly
a, b Seasonality parameters
τ Constant delay

Humans have a latent period of 1/ν length and the infection periods are as follows:
1/γa, 1/γs and 1/γs. The period 1/γr represents the length of time that recovered men
are still infectious through sexual contact and recovered women are still infectious during
pregnancy. The functions α̃h(t), α̃v(t) and B̃v(t) represent, respectively, the transmission
rate from an infected mosquito to a susceptible person, the transmission rate from an
infected human to a susceptible mosquito and the birth rate of mosquitoes. These functions
are considered to be time-periodic, with one year serving as the period and following
for instance [22,24,27] they are expected to be of the form αh ·

(
sin

( 2π
P t + b

)
+ a

)
, αv ·(

sin
( 2π

P t + b
)
+ a

)
and Bv ·

(
sin

( 2π
P t + b

)
+ a

)
where P represents the length of the period,

a and b are free adjustment parameters, and αh , αv , Bv denote the (constant) baseline values
of the time-dependent parameters, respectively. Just like in the case of human-to-human
transmission, we also introduce the modification parameters ηe, ηa for the infectiousness of
exposed and asymptomatically infected people, respectively. We have 1/νv for the length of
the latent period for mosquitoes, while the average life span of mosquitoes is given by 1/μ.

2.2. Zika Fever and Microcephaly Cases Data

The public and freely available weekly ZIKV confirmed cases were collected from the
National Health Institute of Colombia [28–30] and Pan American Health Organization [31,32].
We focus our analysis on 2015–2017 confirmed ZIKV cases since the start of the epidemic on
week 33 of 2015 up to week 33 of 2017, while for microcephaly we use the data starting from
week 33 of 2015 up to week 3 of 2017. There was a delay between the mother’s infection
and the delivery which caused the lag time between the peaks observed in the number
of symptomatically infected cases and microcephaly cases. Figure 2a shows the weekly
confirmed cases of the 2015–2017 ZIKV outbreak in Colombia. Figure 2b shows the weekly
confirmed microcephaly cases of 2015–2017 in Colombia.
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Figure 2. Colombia, weekly distribution of ZIKV and microcephaly cases, 2015–2017. (a) Weekly Zika
cases. (b) Weekly microcephaly cases.

2.3. Parameter Estimation, Sensitivity and Reproduction Numbers

To calculate the parameters of model (1) providing the most satisfactory fit to data, we
use Latin hypercube sampling. This sampling method is used to simultaneously measure
the variance in various parameter values (see, e.g., [33] for details). The main idea of the
method is to generate a representative sample set from the ranges for all fitted parameters.
To obtain a representative sample set of size m, the parameter ranges are divided into m
equal subintervals and one point is selected from each subinterval. After obtaining the
m lists of samples, they are combined randomly into m-tuples. For each element of this
sample set, the solutions of the model (1) are numerically calculated. Finally, we apply
the least squares method to find the parameters providing the best fit. In order to classify
the parameters w.r.t. their influence on the number of microcephaly cases, we employ
partial rank correlation coefficients estimation (PRCC, see, e.g., [34]), to perform sensitivity
analysis. When we change the parameters within the predetermined ranges, the PRCC-
based sensitivity analysis assesses the impact of the parameters on the response function
(in our case, the number of microcephaly cases). Higher positive (or negative) PRCC values
indicate that a parameter has a positive (or negative) correlation with the outcome function.

The basic reproduction number (R0) of a periodic mathematical model can be de-
termined as the spectral radius of a linear integral operator on a set of time-dependent
functions (see [35], for details). Although the value of R0 cannot be computed analytically,
there are methods to do it numerically (see, e.g., [36] for details). There are also interesting
results from calculating the basic reproduction number as a time average for the corre-
sponding periodic model. Setting the time-dependent parameters (mosquito birth rate and
bite rates) to constant yields the formula for the time-average basic reproduction number,
which can be found in (12). In addition to the basic reproduction number (R0), the instan-
taneous reproduction rate, Rinst, which measures the average number of secondary cases
per infectious case in a population, can be computed by multiplying R0 by the size of the
susceptible percentage of the host population.

3. Results

3.1. Threshold Dynamics

We present some notations for studying the existence of solutions to the system (1)
as well as the uniqueness of those solutions. For a certain continuous ω-periodic function
h(t), we introduce ĥ = supt∈[0,ω) h(t).

Let

C := C
(
[−τ, 0],R6)×R

15,

C+ := C
(
[−τ, 0],R6

+

)×R
15
+ .
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Thus (C, C+) defines an ordered Banach space together with the maximum norm.
If x = (x1, x2, . . . , X21) : [−τ, σ] → R21

+ is continuous function with σ > 0, then, for any
t ∈ [0, σ), we define xt ∈ C to be xt(θ) =

(
x1(t + θ), x2(t + θ), x3(t + θ), x4(t + θ), x5(t +

θ), x6(t + θ), x7(t), x8(t), . . . , x21(t)
)
, ∀ θ ∈ [−τ, 0].

Define

Ω :=

{
φ ∈ C+ :

φi(θ) � 0, i = {1, 2, . . . , 6}, ∀ θ ∈ [−τ, 0],

φj � 0, j = {7, 8, . . . , 21}.

}
.

Lemma 1. Equation (1) has a unique non-negative bounded solution u(t, φ) on [0, ∞) with u0 = φ,
for any φ ∈ Ω, such that ut(φ) ∈ Ω for all t � 0.

Proof. We introduce the following matrix function f̃ (t, φ), for any φ = (φ1, φ2, . . . , φ21) ∈
Ω, as follows:

f̃ (t, φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
2 φ13(0)− β

Th (0)
Nf

φ1(0)− α̃h (t)φ21(0)
Nh

φ1(0)− dφ1(0)

β
Th (0)

Nf
φ1(0) +

α̃h (t)φ21(0)
Nh

φ1(0)− (νh + d)φ2(0)

θνh φ2(0)− γaφ3(0)− dφ3(0)
(1 − θ)νh φ2(0)− γsφ4(0)− dφ4(0)

γaφ3(0) + γsφ4(0)− γrφ5(0)− dφ5(0)
α
2 φ18(0) + γrφ5(0)− dφ6(0)

α
2 φ13(0)− α̃h (t)φ21(0)

Nh
φ7(0)− dφ7(0)

α̃h (t)φ21(0)
Nh

φ7(0)− (νh + d)φ8(0)

θνh φ8(0)− γaφ9(0)− dφ9(0)
(1 − θ)νh φ8(0)− γsφ10(0)− dφ10(0)

γaφ9(0) + γsφ10(0)− γrφ11(0)− dφ11(0)
α
2 φ18(0) + γrφ11(0)− dφ12(0)

Bc
φ1(−τ)+φ6(−τ)

Nf
e−ξτ − α̃h (t)φ21(0)

Nh
φ13(0)− αφ13(0)− ξφ13(0)

α̃h (t)φ21(0)
Nh

φ13(0)− νh φ14(0)− ξφ14(0)

θνh φ14(0)− γaφ15(0)− ξφ15(0)
(1 − θ)νh φ14(0)− γsφ16(0)− ξφ16(0)

(1 − p)Bc
φ2(−τ)+φ3(−τ)+φ4(−τ)

Nf
e−ξτ − ξφ17(0)

pBc
φ2(−τ)+φ3(−τ)+φ4(−τ)

Nf
e−ξτ + γaφ15(0) + γsφ16(0)− αφ18(0)− ξφ18(0)

B̃v(t)− α̃v(t)
Tv (0)

Nh
φ19(0)− μφ19(0)

α̃v(t)
Tv (0)

Nh
φ19(0)− (νv + μ)φ20(0)

νv φ20(0)− μφ21(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Th(0) = κeφ8(0) + κaφ9(0) + φ10(0) + κrφ11(0),

Tv(0) = ηe
(
φ2(0) + φ8(0) + φ14(0)

)
+ ηa

(
φ3(0) + φ9(0) + φ15(0)

)
+ φ4(0) + φ10(0) + φ16(0).

Notice that f̃ (t, φ) is continuous in (t, φ) ∈ R+ × Ω and f̃ (t, φ) is Lipschitz in φ on
each compact subset of Ω. Therefore, by [37] (Theorems 2.2.1 and 2.2.3) (1) has a unique
solution u(t, φ) on its maximal interval [0, σφ) of existence with u0 = φ.
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Let φ = (φ1, φ2, . . . , φ21) ∈ Ω. If φ13 = 0, then f̃13(t, φ) � 0. If φ17 = 0, then
f̃17(t, φ) � 0. If φ18 = 0, then f̃18(t, φ) � 0. If φi = 0 for some i = {1, 2, . . . , 21}, then
f̃i(t, φ) � 0. Obviously, the total number of humans, represented by Nh(t), abides by:

N′
h
(t) = Bc e−ξτ − ξNc(t)− dNf (t)− dNm(t) ≥ Bc e−ξτ − (ξ + 2d)Nh(t).

It is important to note that the linear equation dy
dt = Bc e−ξτ − (ξ + 2d)y(t) has a globally

stable equilibrium Bc e−ξτ

ξ+2d and for any 0 < δ < Bc e−ξτ

ξ+2d , dy
dt |y=δ = Bc e−ξτ − (ξ + 2d)δ > 0. As a

result, if y(0) ≥ δ, then y(t) ≥ δ holds true for all t ≥ 0. Based on the comparison principle,
if Nh(0) = ∑18

i=1 φi(0) ≥ δ, then Nh(t) ≥ δ. Then by [38] (Theorem 5.2.1 and Remark 5.2.1),
the unique solution u(t, φ) of (1) with u0 = φ satisfies ut(φ) ∈ Ω for all t ∈ [0, σφ).

From (1), we obtain

N′
h
(t) = Bc e−ξτ − ξNc(t)− dNf (t)− dNm(t) ≤ Bc e−ξτ − ξNh(t), (2)

where ξ ≤ d. Clearly, Nv(t) satisfies

N′
v (t) = B̃v(t)− μNv(t) � ˆ̃Bv − μNv(t), ∀ t ∈ [0, σφ).

Hence, Nh(t) and Nv(t) are ultimately bounded on [0, σφ). By [37] (Theorem 2.3.1),

it follows that σφ = ∞. When Nh(t) > max{ Bc e−ξτ

ξ+2d ,
ˆ̃Bv
μ } and Nv(t) > max{ Bc e−ξτ

ξ+2d ,
ˆ̃Bv
μ }, we

have
dNh(t)

dt
< 0 and

dNv(t)
dt

< 0.

This implies that all solutions are uniformly bounded.

Next, we investigate the existence and uniqueness of the disease-free periodic solution
of system (1). Define

ψ =
(
Sf (0), Ef (0),I

a
f
(0), Is

f
(0), Ir

f
(0), Rf (0), Sm(0), Em(0), Ia

m (0), Is
m(0), Ir

m(0), Rm(0), Sc(0), Ec(0),

Ia
c (0), Is

c (0), Mc(0), Rc(0), Sv(0), Ev(0), Iv(0)
) ∈ R

21
+ .

When there is no disease present, with a positive initial condition ψ ∈ R21
+ , we have

the following system

S′
f
(t) =

α

2
Sc(t)− dSf (t),

S′
m(t) =

α

2
Sc(t)− dSm(t),

S′
c (t) =Bc e−ξτ − ξSc(t)

(3)

from the last equation of system (3) we can derive

Sc(t) = Sc(0)e
−ξt +

Bc e−ξτ

ξ
(1 − e−ξt). (4)

with an arbitrary initial value Sc(0). Equation (4) has a unique equilibrium S∗
c = Bc e−ξτ

ξ in
R+. Consequently, |Sc(t)− S∗

c | → 0 as t → ∞ and S∗
c is globally attractive on R+. Therefore,

system (3) has a unique equilibrium (S∗
f

, S∗
m , S∗

c ) = ( αBc e−ξτ

2dξ , αBc e−ξτ

2dξ , Bc e−ξτ

ξ ).
To get the disease-free periodic equilibrium of (1), consider the following equation:

dSv(t)
dt

= B̃v(t)− μSv(t). (5)
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It is clear that (5) admits a single positive ω-periodic solution S∗
v (t) given by

S∗
v (t) =

[∫ t

0
B̃v(r)eμrdr +

∫ ω
0 B̃v(r)eμrdr

eμt − 1

]
e−μ,

that is globally attractive in R and, hence, (1) has a single disease-free periodic solution

E0 =
(
S∗

f
, 0, 0, 0, 0, 0, S∗

m , 0, 0, 0, 0, 0, S∗
c , 0, 0, 0, 0, 0, S∗

v (t), 0, 0
)
. (6)

3.1.1. Basic Reproduction Numbers

By linearizing system (1) at the disease-free periodic solution E0, we get the periodic
linear system for the infective variables as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E′
f
(t) = βTh(t) +

α̃h (t)Iv (t)
N∗

h
S∗

f
− (νh + d)Ef (t),

Ia
f
′(t) = θνh Ef (t)− γa Ia

f
(t)− dIa

f
(t),

Is
f
′(t) = (1 − θ)νh Ef (t)− γs Is

f
(t)− dIs

f
(t),

Ir
f
′(t) = γa Ia

f
(t) + γs Is

f
(t)− γr Ir

f
(t)− dIr

f
(t),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E′
m(t) =

α̃h (t)Iv (t)
N∗

h
S∗

m − (νh + d)Em(t),

Ia
m
′(t) = θνh Em(t)− γa Ia

m (t)− dIa
m (t),

Is
m
′(t) = (1 − θ)νh Em(t)− γs Is

m(t)− dIs
m(t),

Ir
m
′(t) = γa Ia

m (t) + γs Is
m(t)− γr Ir

m(t)− dIr
m(t),⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E′
c (t) =

α̃h (t)Iv (t)
N∗

h
S∗

c − νh Ec(t)− ξEc(t),

Ia
c
′(t) = θνh Ec(t)− γa Ia

c (t)− ξ Ia
c (t),

Is
c
′(t) = (1 − θ)νh Ec(t)− γs Is

c (t)− ξ Is
c (t),

M′
c (t) = (1 − p)Bc

Ef (t−τ)+Ia
f
(t−τ)+Is

f
(t−τ)

N∗
f

e−ξτ − ξMc(t),⎧⎨⎩E′
v (t) = α̃v(t)

Tv (t)
N∗

h
S∗

v (t)− (νv + μ)Ev(t),

I′v (t) = νv Ev(t)− μIv(t),

(7)

Let C := C
(
[−τ, 0],R4)×R10. Assume that v = (v1, v2, . . . , v14) : [−τ, σ] → R14 is a

continuous function with σ > 0, we define vt ∈ C by

vt(θ) = (v1(t + θ), v2(t + θ), v3(t + θ), v4(t + θ), v5(t), v6(t), . . . , v14(t)), ∀θ ∈ [−τ, 0],

for any t ∈ [0, σ). Define a map F : R → L(C,R14) and a matrix function V(t) as follows:

F(t)φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β
(

κeφ8(0)+κaφ9(0)+φ10(0)+κrφ11(0)
)
+α̃h (t)

φ14(0)
N∗

h
S∗

0
0
0

α̃h (t)φ14(0)
N∗

h
S∗

m

0
0
0

α̃h (t)φ14(0)
N∗

h
S∗

c

0
0
0

α̃v (t)
ηe(φ2(0)+φ8(0)+φ14(0))+ηa(φ3(0)+φ9(0)+φ15(0))+φ4(0)+φ10(0)+φ16(0)

N∗
h

S∗
v (t)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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V(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

νh+d 0 0 0 0 0 0 0 0 0 0 0 0 0
−θνh γa+d 0 0 0 0 0 0 0 0 0 0 0 0

−(1−θ)νh −γa γs+d 0 0 0 0 0 0 0 0 0 0 0
0 −γs −γs γr 0 0 0 0 0 0 0 0 0 0
0 0 0 0 νh+d 0 0 0 0 0 0 0 0 0
0 0 0 0 −θνh γa+d 0 0 0 0 0 0 0 0
0 0 0 0 −(1−θ)νh −γa γs+d 0 0 0 0 0 0 0
0 0 0 0 0 −γa −γs γr 0 0 0 0 0 0
0 0 0 0 0 0 0 0 νh+ξ 0 0 0 0 0
0 0 0 0 0 0 0 0 −θνh γa+ξ 0 0 0 0
0 0 0 0 0 0 0 0 −(1−θ)νh −γa γs+ξ 0 0 0

− (1−p)Bc
N∗

f
− (1−p)Bc

N∗
f

− (1−p)Bc
N∗

f
0 0 0 0 0 0 0 0 ξ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 νh+μ 0
0 0 0 0 0 0 0 0 0 0 0 0 −νh μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

System (7) can be written as:

dv(t)
dt

= F(t)vt − V(t)v(t), ∀ � 0. (8)

Assume Z(t, s), t � s to be the evolution operator of the linear ω-periodic system

dz
dt

= −V(t)z. (9)

That is, for each s ∈ R, the 14 × 14 matrix Z(t, s) satisfies

d
dt

Z(t, s) = −V(t)Z(t, s), ∀t � s, Z(s, s) = I,

where I is the 14 × 14 identity matrix.
Following Zhao [39] (Section 2), we suppose that the initial distribution of infectious

individuals is v(t), ω-periodic in s. F(t − s)vt−s is the distribution of newly infected
individuals at time t − s, which is formed by the infectious individuals who were presented
throughout the time period [t − s − τ, t − s] for any s � 0. Then Z(t, t − s)F(t − s)vt−s
provides the distribution of those infected individuals who were newly infected at time
t − s and remain infected at time t. It concludes that∫ ∞

0
Z(t, t − s)F(t − s)vt−sds =

∫ ∞

0
Z(t, t − s)F(t − s)v(t − s + .)ds,

represents the distribution of accumulative new infections at time t caused by all those
infected people raised at a time previous to t.

Let Cω stands for the ordered Banach space of all ω-periodic functions from R to R14,
that has the maximum norm ‖.‖∞ and the positive cone

C+
ω := {v ∈ Cω : v(t) � 0, ∀t ∈ R}.

Then, a linear operator L : Cω → Cω can be defined as

[Lv](t) =
∫ ∞

0
Z(t, t − s)F(t − s)v(t − s + .)ds, ∀t ∈ R, v ∈ Cω. (10)

As stated in [39], the basic reproduction number is defined as R0 := ρ(L). Let P̄(t)
be the solution map of (7) for any t � 0 and, hence, P̄(t)φ = ut(φ), where u(t, φ) is the
unique solution of (7) with u0 = φ ∈ C. Thus, P̄ := P̄(ω) is the Poincaré map associated
with (7). Assume ρ(P̄) is the spectral radius of P̄. By [39] (Theorem 2.1), we have the
following lemma.

Lemma 2. R0 − 1 has the same sign as ρ(P̄)− 1.
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These results suggest that R0 is a critical value for the disease local spread, as well as
that the stability of the zero solution of system (7) depends on the sign of R0 − 1.

3.1.2. Derivation of the Time-Average Reproduction Number

In model (1) the delay τ was introduced to take account of the delay between the
infection of the mother and the delivery which caused the lag time between the peaks
observed on symptomatically infected cases and microcephaly cases. By setting τ = 0, we
can use the general approach established in [40] to calculate a formula for the time-average
reproduction number [R0] of (1).

We calculate a formula for the basic reproduction number RA
0 of the autonomous

model obtained from (1) by setting the time-dependent parameters (mosquito birth B̃v(t) ≡
Bv ) and biting rates (α̃h(t) ≡ αh and α̃v(t) ≡ αv ) to constant. Given the infectious states Ef , Ia

f
,

Is
f
, Ir

f
, Em , Ia

m , Is
m , Ir

m , Ec , Ia
c , Is

c , Ev and Iv in (1) and substituting the values in

E0 =
(

S∗
f

, 0, 0, 0, 0, 0, S∗
m , 0, 0, 0, 0, 0, S∗

c , 0, 0, 0, 0, 0, S∗
v , 0, 0

)
=

(
αBc

2d(ξ+α)
, 0, 0, 0, 0, 0, αBc

2d(ξ+α)
, 0, 0, 0, 0, 0, Bc

ξ+α , 0, 0, 0, 0, 0, Bv
μ , 0, 0

)
,

we compute the matrices F and V for the new infection terms and the remaining transfer
terms. These two matrices are, respectively, given by

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 βκe βκa β βκr 0 0 0 0 0
αh S∗

f
N∗

h
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
αh S∗m

N∗
h

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
αh S∗c
N∗

h
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

αv ηeS∗v
N∗

h

αv ηaS∗v
N∗

h

αv S∗v
N∗

h
0

αv ηeS∗v
N∗

h

αv ηaS∗v
N∗

h

αv S∗v
N∗

h
0

αv ηeS∗v
N∗

h

αv ηaS∗v
N∗

h

αv S∗v
N∗

h
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d+νh 0 0 0 0 0 0 0 0 0 0 0 0 0
−θνh γa+d 0 0 0 0 0 0 0 0 0 0 0 0

−(1−θ)νh 0 γs+d 0 0 0 0 0 0 0 0 0 0 0
0 −γa −γs γr+d 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d+νh 0 0 0 0 0 0 0 0 0
0 0 0 0 −θνh γa+d 0 0 0 0 0 0 0 0
0 0 0 0 −(1−θ)νh 0 γs+d 0 0 0 0 0 0 0
0 0 0 0 0 −γa −γs γr+d 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ξ+νh 0 0 0 0 0
0 0 0 0 0 0 0 0 −θνh γa+ξ 0 0 0 0
0 0 0 0 0 0 0 0 −(1−θ)νh 0 γs+ξ 0 0 0

(p−1)Bc
N∗

f

(p−1)Bc
N∗

f

(p−1)Bc
N∗

f
0 0 0 0 0 0 0 0 ξ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 μ+νv 0
0 0 0 0 0 0 0 0 0 0 0 0 −νv μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

hence the next generation matrix FV−1 has the following characteristic polynomial:

λ11
(

λ3 − (R f vRv f + RvmRmv + RvcRcv)λ − Rm f R f vRvm

)
= 0
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where

Rm f =
βκe

d+νh
+

θβκaνh
(d+γa)(d+νh )

+
(1−θ)βνh

(d+γs)(d+νh )
+

βκrνh (γaγs+θγad+(1−θ)γsd)
(d+γa)(d+γs)(d+γr)(d+νh )

R f v = Rmv =
αv ηeS∗

v
(d+νh )N∗

h
+

θαv ηaνh S∗
v

(d+γa)(d+νh )N∗
h
+

(1−θ)αv νh S∗
v

(d+γa)(d+νh )N∗
h

,

Rcv =
αv ηeS∗

v
(ξ+νh )N∗

h
+

θαv ηaνh S∗
v

(ξ+γa)(ξ+νh )N∗
h
+

(1−θ)αv νh S∗
v

(ξ+γs)(ξ+νh )N∗
h

,

Rv f = Rvm = α
2d Rvc =

α
2d

αh νv Bc
μ(ξ+α)(μ+νv )N∗

h
,

The characteristic polynomial, therefore, takes the form

2dλ3 − 2Rvc(dRcv + αR f v)λ − αRm f R f vRvc = 0.

Following [40], RA
0 is the spectral radius of FV−1. Accordingly, RA

0 corresponds to the
dominant eigenvalue given by the root of the cubic equation

RA
0 =

2Rvc(dRcv+αR f v)

3 3√6
(√

(9d2αR f vRm f Rcv)2−48R3
vc(dRcv+αR f v)3−9d2αR f vRm f Rcv

)1/3

+

(√
(9d2αR f vRm f Rcv)2−48R3

vc(dRcv+αR f v)3−9d2αR f vRm f Rcv

)1/3

3 3√36d
,

(11)

where Rm f is the basic reproduction number corresponding to sexual transmission and
R f v, Rcv, Rvc are the reproductive numbers relevant to vector-borne transmission.

We derive the formula for [R0] (the time-average reproduction number) of the corre-
sponding non-autonomous model (1) by using the following remark presented in [36].

Remark 1. Given a continuous ω-periodic function q(t), its average is defined as

[q] :=
1
ω

∫ ω

0
q(t) dt.

Then, [R0] is given by

[R0] =
2[Rvc ](d[Rcv ]+α[R f v ])

3 3√6
(√

(9d2α[R f v ]Rm f [Rcv ])2−48[Rvc ]3(d[Rcv ]+α[R f v ])3−9d2α[R f v ]Rm f [Rcv ]
) 1

3

+

(√
(9d2α[R f v ]Rm f [Rcv ])2−48[Rvc ]3(d[Rcv ]+α[R f v ])3−9d2α[R f v ]Rm f [Rcv ]

) 1
3

3 3√36d
,

(12)

where

[R f v] =
ηe [α̃v ][B̃v ]

μ(d+νh )N∗
h
+

θηaνh [α̃v ][B̃v ]

μ(d+γa)(d+νh )N∗
h
+

(1−θ)νh [α̃v ][B̃v ]

μ(d+γa)(d+νh )N∗
h

,

[Rcv] =
ηe [α̃v ][B̃v ]

μ(ξ+νh )N∗
h
+

θηaνh [α̃v ][B̃v ]

μ(ξ+γa)(ξ+νh )N∗
h
+

(1−θ)νh [α̃v ][B̃v ]

μ(ξ+γa)(ξ+νh )N∗
h

,

[Rvc] =
Bc νv [α̃h ]

μ(ξ+α)(μ+νv )N∗
h

.

3.1.3. Global Dynamics

In terms of R0, we investigate the global dynamics of (1). We employ the theory of
monotone semiflows developed in [41] (Section 2.3). Then, we continue with a new phase
space on which (7) eventually forms a strongly monotone periodic semiflow. We prove
that, if R0 < 1, then the unique disease-free equilibrium is globally asymptotically stable
and the disease dies out, while, if R0 > 1, the infection persists and there exists at least an
ω-periodic solution of (1).
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Define

Y := C
(
[−τ, 0],R4)×R

10 and Y+ := C
(
[−τ, 0],R4

+

)×R
10
+ .

The following lemma can be obtained by using the method of steps.

Lemma 3. For any φ ∈ Y+ and for all t � 0, system (7) has a unique non-negative solution v(t, φ)
with v0 = φ.

Assume that P(t) is the solution map of system (1) on Y for any given t � 0. Therefore,
P := P(ω) is the Poincaré map corresponding to the linear Equation (7) and ρ(P̄) = ρ(P)
by using Lou and Zhao [42] (Lemma 3.8).

Define

X := C([−τ, 0],R6
+)×R

15
+ ,

X0 :={φ = (φ1, φ2, . . . , φ21) ∈ X : φi(0) > 0, i = 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 20, 21},

∂X0 :=X \ X0 = {φ ∈ X : φi(0) = 0, i = 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 20, 21}.

Theorem 1. The subsequent statements are valid:

(i) If ρ(P) < 1, the disease-free periodic solution E0 defined by (6) is globally attractive for system
(1) in X.

(ii) If ρ(P) > 1, then system (1) admits a positive ω-periodic solution and there exists a positive
constant κ > 0 such that any solution u(t, φ) of system (1) for all initial values φ ∈ X0
satisfies

lim inf
t→∞

(
Ef (t, φ), Ia

f
(t, φ), Is

f
(t, φ), Ir

f
(t, φ), Em(t, φ), Ia

m (t, φ), Is
m(t, φ), Ir

m(t, φ), Ec(t, φ),

Ia
c (t, φ), Is

c (t, φ), Ev(t, φ), Iv(t, φ)
)T

� (κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ)T .

Proof. If ρ(P) < 1, let v(t, φ) and w(t, ψ) be the unique solutions of (7) with v0 = φ and
w0 = ψ, respectively, for any ψ and φ in Y+ with φ � ψ. Smith [38] (Theorem 5.1.1)
implies that v(t, φ) � v(t, ψ) for all t � 0 and. hence, P : Y+ → Y+ is monotone for all
t � 0. Consider φ, ψ ∈ Y satisfy φ > ψ and represent v(t, φ) = (x̄1(t), x̄2(t), . . . , x̄14(t))
and w(t, ψ) = (x1(t), x2(t), . . . , x14(t)). By applying a simple comparison argument on
each interval [nτ, (n + 1)τ], n ∈ N, it is possible to demonstrate that x̄i(t) > xi(t) for all
t > t0, i = {1, 2, 3, 4}. The next step is to demonstrate that P(t) becomes eventually strongly
monotone. We assume, without losing generality, that φ14 > ψ14.

Claim 1. There exists t0 ∈ [0, τ] s.t. x̄1(t) > x1(t), ∀ t � t0.
First, for some t0 ∈ [0, τ], we show that x̄1(t0) > x1(t0). If not, then for each t0 ∈ [0, τ],
x̄1(t) = x1(t) and, consequently, dx̄1(t)

dt = dx1(t)
dt for all t0 ∈ (0, τ). Then, we get

α̃h(t)
S∗

f

N∗
h

(x̄14(t)− x14(t))− (νh + d)(x̄1(t)− x1(t)) = 0.

It is observed that x̄1(t) = x1(t) and x̄14(t) = x14(t) for all t0 ∈ [0, τ], then φ14(θ) = ψ14(θ)
for all t0 ∈ [0, τ], which contradicts the hypothesis that φ14 > ψ14.
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Let g1(t, x) := α̃h(t)
S∗

f
N∗

h
x14(t)− (νh + d)x(t). Then, we have

dx̄1(t)
dt

= α̃h(t)
S∗

f

N∗
h

x̄14(t)− (νh + d)x̄1(t)

� α̃h(t)
S∗

f

N∗
h

x14(t)− (νh + d)x̄1(t)

= g1(t, x̄1(t)),

we obtain dx̄1(t)
dt − g1(t, x̄1(t)) � 0 = dx1(t)

dt − g1(t, x1(t)) ∀t � t0. Since x̄1(t0) > x1(t0),
the comparison theorem [43] (Theorem 4) indicates that x̄1(t) > x1(t), ∀ t � t0.

Claim 2. x̄2(t) > x2(t), ∀ t � t0 + τ.
Let g2(t, x) := θνh x1(t)− (γa + d)x(t). Then we have

dx̄2(t)
dt

= θνh x̄1(t)− (γa + d)x̄2(t)

� θνh x1(t)− (γa + d)x̄2(t)

= g2(t, x̄2(t)),

and, hence, dx̄2(t)
dt − g2(t, x̄2(t)) � 0 = dx2(t)

dt − g2(t, x2(t)) ∀t > t0. It follows from [43]
(Theorem 4) that x̄2(t) > x2(t) for all t > t0 + τ.

Claim 3. x̄3(t) > x3(t) for all t � t0.
Let g3(t, x) := (1 − θ)νh x1(t)− (γs + d)x(t), Then we have

dx̄3

dt
= (1 − θ)νh x̄1(t)− (γs + d)x̄3(t)

� (1 − θ)νh x1(t)− (γs + d)x̄3(t)

= g3(t, x̄3(t)),

and hence, dx̄3(t)
dt − g3(t, x̄3(t)) � 0 = dx3(t)

dt − g3(t, x3(t)) ∀t > t0. It follows from [43]
(Theorem 4) that x̄3(t) > x3(t) for all t > t0.

Claim 4. x̄4(t) > x4(t) for all t � t0.
Let g4(t, x) := γax2(t) + γsx3(t)− (γr + d)x(t). Then we have

dx̄4

dt
= γa x̄2(t) + γs x̄3(t)− (γr + d)x̄4(t)

� γax2(t) + γsx3(t)− (γr + d)x̄4(t)

= g4(t, x̄4(t)),

and therefore, dx̄3(t)
dt − g3(t, x̄3(t)) � 0 = dx3(t)

dt − g3(t, x3(t)) ∀t > t0. It follows from [43]
(Theorem 4) that x̄3(t) > x3(t) for all t > t0.

Claim i (i = 5, 6, . . . , 14). x̄i(t) > xi(t), i = 5, 6, . . . , 14 for all t � t0.
In a similar way to the previous four claims, we can show that x̄i(t) > xi(t), i = 5, 6, . . . , 14
for all t � t0.

Given two positive real numbers a and b, we write a � b if and only if a is much
greater than b. If we take into consideration the claims made above, we arrive at(

x̄1(t), x̄2(t), . . . , x̄14(t)
) � (

x1(t), x2(t), . . . , x14(t)
)
, ∀t > t0 + τ.

Because t0 ∈ [0, τ], it can be shown that(
x̄1t, x̄2t, . . . , x̄14t

) � (
x1t, x2t, . . . , x14t

)
, ∀t > 2τ,
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that is vt(φ) � wt(ψ) for all t > 2τ. Hence, it follows that P(t) is strongly monotone for
any t > 2τ.

According to [37] (Theorem 3.6.1), the linear operator P̄(t) is compact on Y+ for any
t � 2τ. Hence, P(t) is compact and strongly monotone on Y for t � 2τ. Select a positive
integer n0 > 0 such that n0ω > 2τ. Given that Pn0ω = P(n0ω), it follows from [44]
(Lemma 3.1) that ρ(P) is a simple eigenvalue of P with a strongly positive eigenvector
and the modulus of any additional eigenvalue is smaller than ρ(P). By [45] (Lemma 1),
there is a positive ω-periodic function v̄(t) = (v̄1(t), v̄2(t), . . . , v̄14(t))T s.t. v∗(t) = eλtv̄(t)
is a positive solution of (7) where λ = ln ρ(P)

ω .
Assume the linear periodic system with parameter ε:

E′
f
(t) = βTh(t) + α̃h(t)Iv(t)

S∗
f

N∗
h
− ε

− (νh + d)Ef (t),

Ia
f
′(t) = θνh Ef (t)− γa Ia

f
(t)− dIa

f
(t),

Is
f
′(t) = (1 − θ)νh Ef (t)− γs Is

f
(t)− dIs

f
(t),

Ir
f
′(t) = γa Ia

f
(t) + γs Is

f
(t)− γr Ir

f
(t)− dIr

f
(t),

E′
m(t) = α̃h(t)Iv(t)

S∗
m

N∗
h
− ε

− (νh + d)Em(t),

Ia
m
′(t) = θνh Em(t)− γa Ia

m (t)− dIa
m (t),

Is
m
′(t) = (1 − θ)νh Em(t)− γs Is

m(t)− dIs
m(t), (13)

Ir
m
′(t) = γa Ia

m (t) + γs Is
m(t)− γr Ir

m(t)− dIr
m(t),

E′
c (t) = α̃h(t)Iv(t)

S∗
c

N∗
h
− ε

− νh Ec(t)− ξEc(t),

Ia
c
′(t) = θνh Ec(t)− γa Ia

c (t)− ξ Ia
c (t),

Is
c
′(t) = (1 − θ)νh Ec(t)− γs Is

c (t)− ξ Is
c (t),

M′
c (t) = (1 − p)Bc

Ef (t − τ) + Ia
f
(t − τ) + Is

f
(t − τ)

N∗
f
− ε

e−ξτ − ξMc(t),

E′
v (t) = α̃v(t)Tv(t)

S∗
v (t) + ε

N∗
h
− ε

− (νv + μ)Ev(t),

I′v (t) = νv Ev(t)− μIv(t).

Assume that Pε(t) is the solution map of system (13) on Y+ and Pε := Pε(ω). Since
limε→0 ρ(Pε) = ρ(P) < 1, we can choose a small enough ε > 0 s.t. ρ(Pε) < 1. It is straight-
forward to demonstrate that Pε(t) is also compact and eventually strongly monotone on
Y. Then, there exists a positive ω-periodic function vε(t) = (vε1(t), vε2(t), . . . , vε14(t)) such

that uε(t) = e
ln ρ(Pε)

ω tvε(t) is a positive solution of (13). As a result,

lim
t→∞

uε(t) = 0.

Clearly, Sv(t) satisfies S′
v (t) = B̃v(t)− μSv(t); it has a globally attractive ω-periodic

solution S∗
v (t). Then there is a large enough integer T1 > 0 s.t. T1ω > τ and S∗

v (t)− ε �
Sv(t) � S∗

v (t) + ε for all t � T1ω. Then we have

E′
f
(t) ≤ βTh(t) + α̃h(t)Iv(t)

S∗
f

N∗
h
− ε

− (νh + d)Ef (t),

Ia
f
′(t) ≤ θνh Ef (t)− γa Ia

f
(t)− dIa

f
(t),

Is
f
′(t) ≤ (1 − θ)νh Ef (t)− γs Is

f
(t)− dIs

f
(t),
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Ir
f
′(t) ≤ γa Ia

f
(t) + γs Is

f
(t)− γr Ir

f
(t)− dIr

f
(t),

E′
m(t) ≤ α̃h(t)Iv(t)

S∗
m

N∗
h
− ε

− (νh + d)Em(t),

Ia
m
′(t) ≤ θνh Em(t)− γa Ia

m (t)− dIa
m (t),

Is
m
′(t) ≤ (1 − θ)νh Em(t)− γs Is

m(t)− dIs
m(t),

Ir
m
′(t) ≤ γa Ia

m (t) + γs Is
m(t)− γr Ir

m(t)− dIr
m(t),

E′
c (t) ≤ α̃h(t)Iv(t)

S∗
c

N∗
h
− ε

− νh Ec(t)− ξEc(t),

Ia
c
′(t) ≤ θνh Ec(t)− γa Ia

c (t)− ξ Ia
c (t),

Is
c
′(t) ≤ (1 − θ)νh Ec(t)− γs Is

c (t)− ξ Is
c (t),

M′
c (t) ≤ (1 − p)Bc

Ef (t − τ) + Ia
f
(t − τ) + Is

f
(t − τ)

N∗
f
− ε

e−ξτ − ξMc(t),

E′
v (t) ≤ α̃v(t)Tv(t)

S∗
v (t) + ε

N∗
h
− ε

− (νv + μ)Ev(t),

I′v (t) ≤ νv Ev(t)− μIv(t),

for all t � T1ω. Choose a sufficiently large number K > 0 such that(
Ef (t, φ),Ia

f
(t, φ), Is

f
(t, φ), Ir

f
(t, φ), Em(t, φ), Ia

m (t, φ), Is
m(t, φ), Ir

m(t, φ), Ec(t, φ), Ia
c (t, φ), Is

c (t, φ),

Ev(t, φ), Iv(t, φ)
)
� Kuε(t),

for all t ∈ [T1ω, T1ω + τ]. By using [38] (Theorem 5.1.1), ∀ t � T1ω + τ, we obtain

lim
t→∞

(
Ef (t, φ),Ia

f
(t, φ), Is

f
(t, φ), Ir

f
(t, φ), Em(t, φ), Ia

m (t, φ), Is
m(t, φ), Ir

m(t, φ), Ec(t, φ), Ia
c (t, φ),

Is
c (t, φ), Ev(t, φ), Iv(t, φ)

)T
= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .

Furthermore, it follows from the chain transitive sets arguments (see, [46] (Theorem 3.6)
and [47] (Theorem 2.5)) that limt→∞(Sf (t)− S∗

f
) = 0, limt→∞ Rf (t) = 0, limt→∞(Sm(t)−

S∗
m ) = 0, limt→∞ Rm(t) = 0, limt→∞(Sc(t)− S∗

c ) = 0, limt→∞ Rc(t) = 0 and limt→∞(Sv(t)−
S∗

v (t)) = 0. This completes the proof of the first statement.
For the sake of simplicity, we only show the main steps of the proof of the second state-

ment when ρ(P) > 1. In this case, we employ the persistence theory for periodic semiflows.
Let Q(t) : X → X be the solution maps of (1) on X, that is, Q(t)ψ = ut(φ), t � 0,

where u(t, φ) is the unique solution of (1) satisfying u0 = φ ∈ X. Therefore, Q := Q(ω) is
the Poincaré map associated with (1). From (1), it follows that Q(t)X0 ⊆ X0 for all t � 0.
It is important to note that a map Q is point dissipative if there exists a bounded set B
such that, for each x ∈ Rn, there is an integer n0 = n0(x) such that Qnx ∈ B for n ≥ n0.
Therefore, the discrete-time system {Qn : X → X}n�0 is point dissipative by Lemma 1 and
from [37] (Theorem 3.6.1), Q(t) is compact for each t � τ, and, then, Qn is compact for
enough large n. According to [39] (Theorem 1.1.3), Q has a global attractor.

Next, we demonstrate that Q is uniformly persistent w.r.t. (X0, ∂X0). Let M =(
S∗

f
, 0, 0, 0, 0, 0, S∗

m , 0, 0, 0, 0, 0, S∗
c , 0, 0, 0, 0, 0, S∗

v , 0, 0
)
, where S∗

v = S∗
v (ξ) for all ξ ∈ [−τ, 0].

Define

M∂ := {φ ∈ ∂X0 : Qn(φ) ∈ ∂X0, ∀n � 0}
= {φ ∈ ∂X0 : φi(0) = 0, i = 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 20, 21}.

For any given φ ∈ M∂, we see that Qn(φ) → M as n → ∞ by using the theory of
internally chain transitive sets (see [39] (Theorems 1.2.1 and 1.2.2) and [42]). From the above
discussion, it is clear that M is an isolated invariant set for Q in X, and Ws(M)

⋂
X0 = ∅,
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where Ws(M) is the stable set of M for Q. By the acyclicity theory on uniform persistence
for maps (see [39] (Theorem 1.3.1 and Remark 1.3.1)), it follows that Q : X → X is uniformly
persistent w.r.t. (X0, ∂X0) where there exists κ0 > 0 s.t.

lim inf
n→∞

d(Qn(φ), ∂X0) � κ0, ∀φ ∈ X0.

As a result, Q : X0 → X0 has a compact global attractor A0 by [39] (Theorem 4.5). For any
φ ∈ A0, we have φi(0) > 0 for all i = {2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 20, 21}. Let B0 :=⋃

t∈[0,ω] Q(t)A0. Then φi(0) > 0, i = {2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 20, 21}, for all φ ∈ B0.
Furthermore, B0 ⊆ X0 and limt→∞ d(Q(t)φ, B0) = 0 for all φ ∈ X0. The attractiveness of
B0 completes the proof.

Following the statements in [48] (Lemma 3.8), we get ρ(P) = ρ(P̄). Using Lemma 2
and Theorem 1, we have the subsequent result.

Theorem 2. The following statements are valid:

1. If R0 < 1, then the disease-free periodic solution E0 defined by (6) is globally attractive for
system (1) in X.

2. If R0 > 1, then system (1) admits a positive ω-periodic solution and there exists a positive
constant κ > 0 such that any solution u(t, φ) of system (1) for all initial values φ ∈ X0
satisfies

lim inf
t→∞

(
Ef (t, φ), Ia

f
(t, φ), Is

f
(t, φ), Ir

f
(t, φ), Em(t, φ), Ia

m (t, φ), Is
m(t, φ), Ir

m(t, φ), Ec(t, φ),

Ia
c (t, φ), Is

c (t, φ), Ev(t, φ), Iv(t, φ)
)T � (κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ)T .

3.2. Numerical Results

Figure 3a is in accordance with the analytical results noting that the disease-free
equilibrium E0 is globally asymptotically stable if R0 < 1. According to Theorem 1,
Equation (1) is persistent w.r.t. the infective compartments if R0 > 1. Figure 3b indicates
the disease persistence if R0 > 1.

3.2.1. Parameter Estimation for Colombia

By employing the method explained in Section 2.3, we fitted our system to symptomat-
ically infected and microcephaly data in Colombia, 2015–17. Figure 2 shows the weekly
confirmed ZIKV cases of the 2015–2017 outbreak and the weekly microcephaly cases of
2015–2017 from Colombia with parameter values are given in Table 2. Figure 4a depicts
model (1) fitted to symptomatically infected data and Figure 4b illustrates model (1) fitted
to microcephaly data from Colombia, showing a reasonably good fit.
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(b) R0 = 1.2 > 1

Figure 3. Weekly number of Zika new infections in (a) when R0 = 0.585 < 1, αh = 0.112, αv = 1.2
and Bv = 41, 400, and in (b) when R0 = 1.2 > 1, αh = 0.185, αv = 0.139 and Bv = 95, 000. The rest of
the parameter values are given in Table 2.
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Table 2. Parameters, ranges and fitted values of model (1) in the case of Colombia.

Parameter Range
Value Value

SourceSymptomatically
Infected

Microcephaly

Bc – 1826.81 1826.81 [49]
ξ 1

22×365 – 1
14×365

1
16.98×365

1
18.68×365 [23]

d – 0.0000368 0.0000368 [49]
α 1

18×365 – 1
12×365

1
16.52×365

1
17.56×365 [23]

β 0.01–0.1 0.029 0.029 [14,24]
αh 0.03–0.75 0.382 0.283 [50,51]
αv 0.09–0.75 0.227 0.227 [50,51]
θ 0.75–0.9 0.822 0.853 [14,24,52]
κe 0.2–0.9 0.654 0.845 [14,24]
κa 0.2–0.8 0.505 0.509 [14,24]
κr 0.2–0.8 0.493 0.309 [14,24]
ηe 0.2–0.7 0.653 0.518 [14,24]
ηa 0.2–0.7 0.471 0.672 [14,24]
γa 0.05–0.4 0.2907 0.2907 [14,24]
γs 0.2–0.5 0.421 0.2268 [53]
γr 0.03–0.09 0.0652 0.0719 [54,55]
νh 0.1–0.5 0.35 0.209 [53]
νv 0.08–0.125 0.0911 0.115 [51,56]
Bv 500–100, 000 18, 000 51, 047 Fitted

1/μ 7–35 10.169 10.169 [51]
p 0.9–1 0.95 0.95 Fitted
a 1–10 1.8674 4.0325 Fitted
b 1–365 269.4 348.3 Fitted
τ 1–270 160 200 [31,32]
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Figure 4. The model (1) fits Colombian data between 2015 and 2017, with parameter values shown in
Table 2. (a) Number of symptomatically infected. (b) Number of microcephaly cases.

3.2.2. The Impact of Sexual Transmission

Our model (1) allows us to estimate the effect of sexual transmission on infectious
cases. Figure 5 depicts the number of symptomatically infected individuals in Colombia
and the number of symptomatically infected estimated by our model ignoring sexual trans-
mission. The results suggest that sexual transmission, a phenomenon previously unknown
in mosquito-borne diseases, increased the total number of cases by several hundred.

Utilizing our model (1), we compare the symptomatic cases in adult females and
the microcephaly cases with the corresponding numbers without sexual transmission
(see Figure 6). Moreover, we observe a noticeable increase in the number of symptomatic
cases in adult females and microcephaly cases with sexual transmission compared to those
without it. This indicates that sexual transmission is playing a crucial role in spreading the
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disease to this specific group of individuals. The results of our simulations suggest that
sexual transmission is a significant contributor to the spread of the disease, and it should be
taken into account in the development of effective control and prevention strategies. Using
our model, we estimate that 9–18% of the total number of microcephaly cases in Colombia
could be linked to Zika infection caused by sexual transmission.
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Figure 5. Number of the symptomatically infected and estimated number of symptomatically infected
humans in the absence of sexual transmission.
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Figure 6. Number of symptomatically infected adult females and estimated number of symptomati-
cally infected adult females without sexual transmission in (a), and in (b) the number of microcephaly
cases and estimated number of microcephaly cases without sexual transmission.

3.2.3. Sensitivity Analysis and Reproduction Numbers

To evaluate the dependency of the microcephaly number of cases on the controllable
parameters of the model, we perform sensitivity analysis utilizing PRCC analysis. In
Figure 7, we demonstrate the comparison of the PRCC values obtained for the parameters
αh , αv , β, Bv and μ. The result of the sensitivity analysis suggests that the most crucial factors
in the transmission of the disease, and consequently in the elevation of the number of
microcephaly cases, are birth and death rates of mosquitoes. In comparison with these,
the transmission rates, including sexual transmission, seem to have a somewhat smaller
effect; however, they are still important factors in the transmission of Zika fever, as can also
be seen from the simulations of the previous subsection. Based on the sensitivity analysis,
we can assess that the most efficient ways to prevent Zika-related microcephaly cases are
mosquito control and defence against mosquito bites.
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Human-to-human transmission rate ( )
Mosquito-to-human transmission rate ( h)
Human-to-mosquito transmission rate ( v)
Mosquito birth rate (Bv)
Mosquito death rate ( )

Figure 7. Partial rank correlation coefficients of the five parameters which can be subject to control
measures. Parameters with positive (or negative) PRCC are positively (or negatively) correlated with
the total number of cases.

Using the method established in [36], we obtained numerically R0 ≈ 0.974 in the case
of Colombia, as per the fact that the disease disappeared. We deduce a Formula (12) for
the basic reproduction number, which provides the time-average reproduction number of
the associated time-varying model (1) in any time point by substituting the values of the
parameters into it, where the value of the time-dependent parameters is always taken at that
given time point t. Moreover, Formula (11) provides us with the basic reproduction number
of the associated time-constant model. To evaluate the dependence of the time-average
basic reproduction number on the three controllable model parameters ([B̃v ], [α̃h ], [α̃v ]),
the contour plots of the time-average reproduction number, [R0], in terms of mosquito
birth rate and mosquito-to-human transmission rate (left panel) and human-to-mosquito
transmission rate (right panel), are shown in Figure 8, respectively. Similarly, the contour
plots of the basic reproduction number, RA

0 , of the autonomous model are given in Figure 9.
The rest of the parameters are set as obtained in the fitting of symptomatically infected
cases in Table 2. Figures 8 and 9 illustrate that the most significant measures to control the
transmission of Zika involve decreasing mosquito birth rate, decreasing mosquito bites,
personal bite surveillance and sexual contact protection.

Figure 10 shows the instantaneous reproduction number along with the number of
symptomatically infected in Colombia, 2015–2017, showing that the number of infected
individuals begins to decline when the instantaneous reproduction number goes below
1. The highest value of the instantaneous reproduction number is calculated to be about
Rinst ≈ 1.25; this value can be contrasted with previous estimates. The authors in [16]
estimated Rinst ≈ 1.4 for Brazil. Furthermore, the authors in [24] estimated Rinst ≈ 1.47 in
Costa Rica, while in Suriname Rinst ≈ 1.45. These values are close to our results.

Figure 8. The contour plot of [R0] as a function of [B̃v ] and one of the three controllable parameters:
mosquito-to-human transmission rate ([α̃h ]) and human-to-mosquito transmission rate ([α̃v ]).
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Figure 9. The contour plot of RA
0 as a function of Bv and one of the three controllable parameters:

mosquito-to-human transmission rate (αh ) and human-to-mosquito transmission rate (αv ).
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Figure 10. The instantaneous reproduction number and the number of symptomatically infected in
Colombia, 2015–2017.

4. Discussion

We have developed a mathematical model for Zika virus disease transmission, with the
particular aim of providing a better understanding of the effect on the most important
health risk created by this disease, i.e., microcephaly. In our model, we tried to include most
of the relevant characteristics of the Zika virus disease, namely, by improving our model
given in [24], we consider both transmission ways (vectorial and sexual transmission),
the role of asymptomatic carriers and time-dependent mosquito-related parameters due to
the seasonality of weather. Our model also has its limitations: we have assumed an equal
percentage of pregnant women in all female compartments, which might be different from
reality. Furthermore, we have made the technical simplification of taking the time delay, τ,
as a constant. Although periodic functions are a rather efficient tool to model the roughly
periodic change of weather, they are, of course, unable to exactly describe the variance of
weather. It is essential to acknowledge that the existence of a large number of parameters
and broad intervals for their possible values makes it unlikely to identify a single set of
parameters that precisely fits the data of the epidemic. The objective instead is to provide
a credible estimate of the actual scenario and establish ranges for each parameter such
that the true values have a high probability of falling within these intervals. This way,
we can have a better understanding of the dynamics of the epidemic and make informed
decisions accordingly.

We have established that the global dynamics of the system are described by the
reproduction number: if R0 < 1, namely, we have shown global asymptotic stability of the
disease-free periodic solution E0, in this case, the disease goes extinct. If R0 > 1, the disease
becomes endemic in the population. We also provided numerical simulations in accordance
with these theoretical results (see Figure 3).
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As an example of the application of the model, we fitted it to the number of Zika cases
and the number of microcephaly cases in Colombia. Using the results of the fitting and
partial rank correlation coefficients analysis, we tried to assess which phenomena are the
main drivers of the increase in microcephaly cases. We have estimated the contribution of
sexual transmission to the increase in the number of cases to find that about 9–18% of the
microcephaly cases might be attributed to this sexual transmission, a novel phenomenon
for mosquito-borne diseases. Our results indicate that the sexual transmission rate increases
the number of infected adult females and consequently increases the risk of microcephaly
due to vertical transmission.

The basic reproduction number of the time-periodic model, the instantaneous repro-
duction number and the time-dependent reproduction number were calculated. The results
are consistent with the extinction of the ZIKV epidemic in Colombia. By calculating both
the time-average reproduction number for the time-period model and the reproduction
number of the time-constant model, we determine the dependency of the basic reproduc-
tion number on the model’s controllable parameters. We obtain that mosquito birth and
biting rates are the most significant factors in the transmission of Zika and the increase
of microcephaly cases after the end of the outbreak in Colombia; however, the sexual
transmission rate also has an important impact on the spread of the disease.

Based on our results, we may conclude that mosquito control, protection against
mosquito bites and sexual contact protection during the pregnancy period are the most
successful ways to prevent Zika-related microcephaly cases.
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Abstract: In this work, we are concerned with the iterative approximation of solutions to equilibrium
problems in the framework of Hadamard manifolds. We introduce a subgradient extragradient type
method with a self-adaptive step size. The use of a step size which is allowed to increase per iteration
is to avoid the dependence of our method on the Lipschitz constant of the underlying operator as has
been the case in recent articles in this direction. In general, operators satisfying weak monotonicity
conditions seem to be more applicable in practice. By using inertial and viscosity techniques, we
establish a convergence result for solving a pseudomonotone equilibrium problem under some
appropriate conditions. As applications, we use our method to solve some theoretical optimization
problems. Finally, we present some numerical illustrations in order to demonstrate the quantitative
efficacy and superiority of our proposed method over a previous method present in the literature.

Keywords: equilibrium problem; extragradient method; Hadamard manifold; pseudomonotone
operator; Riemannian manifold

MSC: 47H09; 49J25; 65K10; 90C25

1. Introduction

The minimax inequality introduced in 1972 by Ky Fan [1], later renamed as Equilibrium
Problem (EP), plays a major role in many fields and provides a unified framework for
the study of variational inequalities, game theory, mathematical economics, fixed point
theory and optimization theory. The use of the term equilibrium problem is credited to the
1994 paper by Blum and Oetlli [2], which followed an earlier article by Muu and Oetlli [3].
In the latter paper, three standard examples of the EP were given, viz: fixed point, convex
minimization and variational inequality problems. The EP also includes as examples,
convex differentiable optimization, complementarity, saddle point and Nash equilibrium
problem [2,3]. Let g : K × K → R be a bifunction such that g(x, x) = 0 for all x ∈ K, where
K is a nonempty subset of a topological space X. Then, the EP calls for finding a point
x ∈ K such that

g(x, y) ≥ 0 ∀ y ∈ K.

The study of variational inequality, equilibrium and other related optimization prob-
lems has recently received considerable attention from researchers in the framework of
Riemannian manifolds. Thus, methods and ideas have been extended from linear set-
tings to this more general setting. These generalizations become necessary because of the
advantages they bring forth. For example, nonconvex optimization problems can easily
be transformed into problems of convex type by choosing a suitable Riemannian met-
ric [4–6]. Another advantage of this extension is that constrained optimization problems
can be viewed as unconstrained ones [4,6–8]. As a result, classical methods for solving
optimization problems have been extended from linear frameworks to Riemannian mani-
folds. In 2012, Colao et al. [9] studied equilibrium problems on Hadamard manifolds in
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the following setting: Let K be a nonempty, closed and convex subset of an Hadamard
manifold M and let g : K × K → R be a bifunction satisfying g(x, x) = 0 for all x ∈ M. An
equilibrium problem (EP, for short) on a manifold consists of finding

x ∈ K such that g(x, y) ≥ 0 ∀ y ∈ K. (1)

We denote by Sol(g, K) the solution set of the EP (1). By developing and proving
Fan’s KKM Lemma, Colao et al. [9] studied the existence of solutions to the EP in the
framework of Hadamard spaces. For many other studies and results in this direction, see,
for example, [10–12].

The development of an effective iterative algorithm for approximating solutions to
optimization problems is another interesting area of research in nonlinear analysis and opti-
mization theory. Iterative approximation of solutions to equilibrium problems in any setting,
whether linear or nonlinear, includes, for example, the use of the Extragradient Method
(EGM) proposed by Korpelevich [13]. The EGM was initially used for solving saddle point
problems. It was later adapted for solving variational inequality and then equilibrium prob-
lems. Inspired by the EGM and the perceived drawbacks of the method, Censor et al. [14]
introduced the Subgradient Extragradient Method (SEGM), which has since been used
for solving both variational and equilibrium problems. For solving EPs, Tran et al. [15]
introduced an extragradient-like method for approximating solutions to pseudomonotone
equilibrium problems. Using an alternative approach, Nguyen et al. [16] introduced a
method for finding common solutions to fixed point and equilibrium problems, which is
based on the extragradient method proposed in [15]. More recently, Rehman et al. [17] in-
troduced an inertial subgradient extragradient algorithm for solving equilibrium problems.
Using a viscosity approach, they proved a strong convergence theorem for an algorithm
approximating solutions to EPs with pseudomonotone bifunctions. For more contributions
regarding methods for solving EPs in linear settings, see, for example, [12,18–21].

We note that several of the methods discussed above have been extended to EPs
on Hadamard manifolds. The first work of Colao et al. [9] was followed by those of
Salahuddin [10] and Li et al. [21]. Neto et al. [22] extended the result of Nguyen et al. [16]
to this setting by considering the following algorithm: Given λn > 0, compute⎧⎨⎩yn = arg min

z∈M
{g(xn, z) + 1

2λn
d2(xn, z),

xn+1 = arg min
z∈M

{g(yn, z) + 1
2λn

d2(xn, z),

where 0 ≤ λn < μ < min{ 1
c1

, 1
c2
}, and c1 > 0 and c2 > 0 are the Lipschitz constants of

the bifunction g. Fan et al. [23] proposed an explicit extragradient method for solving
pseudomonotone equilibrium problems on Hadamard manifolds. Their method uses a
variable step size which is monotonically decreasing. These authors proved a convergence
theorem for their method and also established an R-linear convergence result for the pro-
posed method. Very recently, Ali-Akbari [24] has introduced a subgradient extragradient
algorithm for approximating solutions to EPs on Hadamard manifolds and has proved a
convergence theorem for approximating solutions to pseudomonotone equilibrium prob-
lems. This theorem depends on the Lipschitz constants of the corresponding bifunctions.

The inertial technique finds crucial application in the construction of effective and
accelerated algorithms in fixed point and optimization theory (see, for instance, [25,26]).
In this method, the next iterate is determined by two preceding iterates (xn−1 and xn)
and an inertial parameter θn which controls the momentum xn − xn−1. For more recent
developments regarding inertial algorithms, we refer the readers to [25,27,28] and to
references therein. At this point, we recall that the viscosity method due to Moudafi [29] for
a nonexpansive mapping S and a given strict contraction f over K is given by x0 ∈ K and
xn+1 = βn f (xn) + (1− βn)Sxn, n ≥ 0, where the sequence {βn} ⊂ (0, 1) converges to zero.
The viscosity method has also been adapted to the framework of Hadamard manifolds
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(see [30,31]). In this setting, the sequence {xn} starting with an arbitrary point x0 ∈ K is
given by

xn+1 = exp f (xn)
(1 − βn) exp−1

f (xn)
Sxn ∀ n ≥ 0.

Motivated by the subgradient method of [14], the viscosity approach [30–32], and by
Rehman et al. [17,27] and Ali-Akbari [24], we introduce an inertial subgradient extra-
gradient algorithm for approximating solutions to equilibrium problems on Hadamard
manifolds. Employing the viscosity technique, we propose an algorithm for approximating
solutions to pseudomonotone equilibrium problems and establish a convergence theorem
for it. The proposed algorithm uses a self-adaptive step length which is allowed to increase
during the execution of the method. In this way, dependence of the method on the Lipschitz
constants is dispensed with. In order to be more precise, we now highlight the following
advantages of our result over previous results announced in this direction in the literature:

(i) The method in the present paper uses an adaptive step size which is allowed to
increase from iteration to iteration unlike the method in [23,33], where the step sizes
decrease monotonically, and the method of [17,24,27], which relies on the Lipschitz
condition imposed on the bifunction. Since the relevant Lipschitz constants can be
difficult to estimate, this affects the efficiency of the method;

(ii) We note that the sequence of control parameters of the viscosity step of our method is
only required to be non-summable. This differs from [30,32], where an extra condition
(that the difference between successive parameters be summable) is imposed;

(iii) The use of the inertial technique makes the convergence of our algorithm faster than
that of the method used in [23,24];

(iv) Our result is obtained in the framework of an Hadamard manifold unlike the results
of [15–17], which were obtained in real Hilbert spaces.

The rest of our paper is organized as follows: First, we recall some useful definitions
and preliminary results in Section 2. In Section 3, we introduce our proposed method, state
our main result and present its convergence analysis. Two applications are presented in
Section 4. In Section 5, we present the results of a numerical experiment which shows the
efficiency of our method. We provide some concluding remarks in Section 6.

2. Preliminaries

Let M be an m-dimensional manifold, let x ∈ M and let Tx M be the tangent space
of M at x ∈ M. We denote by TM =

⋃
x∈M Tx M the tangent bundle of M. An inner

product R〈·, ·〉 is called a Riemannian metric on M if 〈·, ·〉x : Tx M × Tx M → R is an
inner product for all x ∈ M. The corresponding norm induced by the inner product
Rx〈·, ·〉 on Tx M is denoted by ‖ · ‖x. We will drop the subscript x and adopt ‖ · ‖ for the
corresponding norm induced by the inner product. A differentiable manifold M endowed
with a Riemannian metric R〈·, ·〉 is called a Riemannian manifold. In what follows, we
denote the Riemannian metric R〈·, ·〉 by 〈·, ·〉 when no confusion arises. Given a piecewise
smooth curve γ : [a1, a2] → M joining x to y (that is, γ(a1) = x and γ(a2) = y), we
define the length l(γ) of γ by l(γ) :=

∫ a2
a1

‖γ′(t)‖dt. The Riemannian distance d(x, y) is the
minimal length over the set of all such curves joining x to y. The metric topology induced
by d coincides with the original topology on M. We denote by ∇ the Levi–Civita connection
associated with the Riemannian metric [34].

Let γ be a smooth curve in M. A vector field X along γ is said to be parallel if
∇γ′X = 0, where 0 is the zero tangent vector. If γ′ itself is parallel along γ, then we say
that γ is a geodesic and ‖γ′‖ is a constant. If ‖γ′‖ = 1, then the geodesic γ is said to be
normalized. A geodesic joining x to y in M is called a minimizing geodesic if its length
equals d(x, y). A Riemannian manifold M equipped with a Riemannian distance d is a
metric space (M, d). A Riemannian manifold M is said to be complete if for all x ∈ M,
all geodesics emanating from x are defined for all t ∈ R. The Hopf–Rinow theorem [34]
posits that if M is complete, then any pair of points in M can be joined by a minimizing
geodesic. Moreover, if (M, d) is a complete metric space, then every bounded and closed
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subset of M is compact. If M is a complete Riemannian manifold, then the exponential map
expx : Tx M → M at x ∈ M is defined by

expx v := γv(1, x) ∀ v ∈ Tx M,

where γv(·, x) is the geodesic starting from x with velocity v (that is, γv(0, x) = x and
γ′

v(0, x) = v). Then, for any t, we have expx tv = γv(t, x) and expx 0 = γv(0, x) = x. Note
that the mapping expx is differentiable on Tx M for every x ∈ M. The exponential map
expx has an inverse exp−1

x : M → Tx M. For any x, y ∈ M, we have d(x, y) = ‖ exp−1
y x‖ =

‖ exp−1
x y‖ (see [34] for more details). The parallel transport Pγ,γ(a2),γ(a1)

: Tγ(a1)
M →

Tγ(a2)
M on the tangent bundle TM along γ : [a1, a2] → R with respect to ∇ is defined by

Pγ,γ(a2),γ(a1)
v = F(γ(a2)), ∀ a1, a2 ∈ R and v ∈ Tγ(a1)

M,

where F is the unique vector field such that ∇γ′(t)F = 0 for all t ∈ [a1, a2] and F(γ(a1)) = v.
If γ is a minimizing geodesic joining x to y, then we write Py,x instead of Pγ,y,x. Note that
for every a1, a2, r, s ∈ R, we have

Pγ(s),γ(r) ◦ Pγ(r),γ(a1)
= Pγ(s),γ(a1)

and P−1
γ(a2),γ(a1)

= Pγ(a1),γ(a2)
.

Additionally, Pγ(a2),γ(a1)
is an isometry from Tγ(a1)

M to Tγ(a2)
M, that is, the parallel

transport preserves the inner product

〈Pγ(a2),γ(a1)
(u), Pγ(a2),γ(a1)

(v)〉γ(a2)
= 〈u, v〉γ(a1)

, ∀ u, v ∈ Tγ(a1)
M. (2)

We now give some examples of Hadamard manifolds.
Space 1: Let R++ = {x ∈ R : x > 0} and M = (R++, 〈·, ·〉) be the Riemannian manifold
equipped with the inner product 〈x, y〉 = xy ∀ x, y ∈ R. Since the sectional curvature of M
is zero [35], M is an Hadamard manifold. Let x, y ∈ M and v ∈ Tx M with ‖v‖2 = 1. Then,
d(x, y) = | ln x − ln y|, expx tv = xe

vx
t , t ∈ (0,+∞), and exp−1

x y = x ln y − x ln x.
Space 2: Let Rm

++ be the product space Rm
++ := {(x1, x2, · · · , xm) : xi ∈ R++, i =

1, 2, · · · , m}. Let M = ((R)++, 〈·, ·〉) be the m-dimensional Hadamard manifold with

the Riemannian metric 〈p, q〉 = pTq and the distance d(x, y) = | ln x
y | = | ln

m
∑

i=1

xi
yi
|, where

x, y ∈ M with x = {xi}m
i=1 and y = {yi}m

i=1.
Space 3: See [36]. Let M = Hn be the n dimensional hyperbolic space of constant sectional
curvature k = −1. The metric of Hn is induced from the Lorentz metric {·, ·} and will be
denoted by the same symbol. Consider the following model for Hn :

H
n = {ξ = ξ1, ξ2, · · · , ξn+1 ∈ R

n+1 : ξn+1 > 0 and {ξ, ξ} = −1}.

Let x, y ∈ Hn and v ∈ TxH
n. Then, a normalized geodesic γx starting from γx(0) = x

is defined by
γx(t) = (cosh t)x + (sinh t)v.

We have {u, x} = 0 for all u ∈ TxH
n. Also,

exp−1
x y = cosh−1({x, y}) y + {x, y}x√{x, y}2 − 1

.

A subset K ⊂ M is said to be convex if for any two points x, y ∈ K, the geodesic γ
joining x to y is contained in K. That is, if γ : [a1, a2] → M is a geodesic such that x = γ(a1)
and y = γ(a2), then γ((1 − t)a1 + ta2) ∈ K for all t ∈ [0, 1]. A complete simply connected
Riemannian manifold of non-positive sectional curvature is called an Hadamard manifold.
We denote by M a finite dimensional Hadamard manifold. Henceforth, unless otherwise
stated, we represent by K a nonempty, closed and convex subset of M.
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We now collect some results and definitions which we shall use in the next section.

Proposition 1 ([34]). Let x ∈ M. The exponential mapping expx : Tx M → M is a diffeomor-
phism. For any two points x, y ∈ M, there exists a unique normalized geodesic joining x to y, which
is given by

γ(t) = expx t exp−1
x y ∀ t ∈ [0, 1].

A geodesic triangle Δ(p, q, r) of a Riemannian manifold M is a set containing three
points p, q, r and three minimizing geodesics joining these points.

Proposition 2 ([34]). Let Δ(p, q, r) be a geodesic triangle in M. Then,

d2(p, q) + d2(q, r)− 2〈exp−1
q p, exp−1

q r〉 ≤ d2(r, q) (3)

and

d2(p, q) ≤ 〈exp−1
p r, exp−1

p q〉+ 〈exp−1
q r, exp−1

q p〉. (4)

Moreover, if θ is the angle at p, then we have

〈exp−1
p q, exp−1

p r〉 = d(q, p)d(p, r) cos θ.

Also,
‖ exp−1

p q‖2 = 〈exp−1
p q, exp−1

p q〉 = d2(p, q).

For any x ∈ M and K ⊂ M, there exists a unique point y ∈ K such that d(x, y) ≤ d(x, z)
for all z ∈ K. This unique point y is called the nearest point projection of x onto the closed
and convex set K and is denoted PK(x).

Lemma 1 ([37]). For any x ∈ M, there exists a unique nearest point projection y = PK(x).
Furthermore, the following inequality holds:

〈exp−1
y x, exp−1

y z〉 ≤ 0 ∀ z ∈ K.

We call a mapping f : M → M a ψ-contraction if

d( f (x), f (y)) ≤ ψ(d(x, y)) ∀ x, y ∈ M,

where ψ : [0,+∞) → [0,+∞) is a function satisfying the following two conditions:

(i) ψ(s) < s for all s > 0;
(ii) ψ is continuous.

Remark 1. (a) ψ(s) = s
s+1 for all s ≥ 0 satisfies conditions (i) and (ii) above.

(b) If ψ(s) = ks for all s ≥ 0 and k ∈ (0, 1), then f is a ψ-contraction mapping with a Lipschitz
constant k.

(c) Any ψ-contraction mapping is nonexpansive.

Any ψ-contraction belongs to the class of mappings introduced by Boyd and Wong [38]
who established the existence and uniqueness of a fixed point for mappings in this class in
the framework of complete metric spaces.

The next lemma presents the relationship between triangles in R2 and geodesic trian-
gles in Riemannian manifolds (see [39]).

Lemma 2 ([39]). Let Δ(u1, u2, u3) be a geodesic triangle in M. Then, there exists a triangle
Δ(ū1, ū2, ū3) corresponding to Δ(u1, u2, u3), such that d(ui, ui+1) = ‖ūi − ūi+1‖ with the indices
taking modulo 3. This triangle is unique up to isometries of R2.
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The triangle Δ(ū1, ū2, ū3) in Lemma 2 is called the comparison triangle for Δ(u1, u2, u3)
⊂ M. The points ū1, ū2 and ū3 are called comparison points to the points u1, u2 and u3
in M.

A function h : M → R is said to be geodesic if for any geodesic γ ∈ M, the composition
h ◦ γ : [u, v] → R is convex, that is,

h ◦ γ(λu + (1 − λ)v) ≤ λh ◦ γ(u) + (1 − λ)h ◦ γ(v), u, v ∈ R, λ ∈ [0, 1].

The subdifferential of a function h : M → R at a point x ∈ M is given by

∂h(x) := {z ∈ Tx M : h(y) ≥ h(x) + 〈z, exp−1
x y〉 ∀ y ∈ M}.

The convex function h is called subdifferentiable at a point x ∈ M if the set ∂h(x) is
nonempty. The elements of ∂h(x) are called the subgradients of h at x. The set ∂h(x) is
closed and convex, and it is known to be nonempty if h is convex on M. We denote by
∂2h the partial derivative of h at the second argument, that is, ∂2h(x, ·) for all x ∈ M. The
normal cone, denoted NK, is defined at a point x ∈ M by

NK(x) := {z ∈ Tx M : 〈z, exp−1
x y〉 ≤ 0 ∀ y ∈ K}.

Lemma 3 ([20]). Let x0 ∈ M and {xn} ⊂ M be such that xn → x0. Then, for any y ∈ M, we
have exp−1

xn
y → exp−1

x0
y and exp−1

y xn → exp−1
y x0;

The following definitions can be found in [40]. Let K be a nonempty, closed and convex
subset of M. A bifunction g : M × M → R is said to be

(i) Monotone on K if
g(x, y) + g(y, x) ≤ 0 ∀ x, y ∈ K;

(ii) Pseudomontone on K if

g(x, y) ≥ 0 ⇒ g(y, x) ≤ 0 ∀ x, y ∈ K;

(iii) Lipschitz-type continuous if there exist constants c1 > 0 and c2 > 0, such that

g(x, y) + g(y, z) ≥ g(x, z)− c1d2(x, y)− c2d2(y, z) ∀ x, y, z ∈ K.

For solving EP (1), we make the following assumptions concerning g on K :

(A1) g is pseudomonotone on K and g(x, x) = 0 for all x ∈ M;
(A2) g(·, y) is upper semicontinuous for all y ∈ M;
(A3) g(x, ·) is convex and subdifferentiable for all fixed x ∈ M;
(A4) g satisfies a Lipschitz-type condition on M.

The following propositions (see [41]) are very useful in our convergence analysis:

Proposition 3. Let M be an Hadamard manifold and d : M × M :→ R be the distance function.
Then, the function d is convex with respect to the product Riemannian metric. In other words, given
any pair of geodesics γ1 : [0, 1] → M and γ2 : [0, 1] → M, then for all t ∈ [0, 1], we have

d(γ1(t), γ2(t)) ≤ (1 − t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)).

In particular, for each y ∈ M, the function d(·, y) : M → R is a convex function.

Proposition 4. Let M be an Hadamard manifold and x ∈ M. Let ρx(y) = 1
2 d2(x, y). Then, ρx(y)

is strictly convex and its gradient at y is given by

∂ρx(y) = − exp−1
y x.
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Proposition 5. Let K be a nonempty convex subset of an Hadamard manifold M and let h : K → R

be a proper, convex and lower semicontinuous function on K. Then, a point x solves the convex
minimization problem

min
x∈K

h(x)

if and only if 0 ∈ ∂h(x) + NK(x).

Lemma 4 ([42]). Let u, v ∈ Rn and λ ∈ [0, 1]. Then, the following relations hold:

(i) ‖λu + (1 − λ)v‖2 = λ‖u‖2 + (1 − λ)‖v‖2 − λ(1 − λ)‖u − v‖2;
(ii) ‖u ± v‖2 = ‖u‖2 ± 2〈u, v〉+ ‖v‖2;
(iii) ‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉.

Lemma 5 ([43]). Let {un} be a sequence of non-negative real numbers, {αn} be a sequence of real

numbers in (0, 1) such that
∞
∑

n=1
αn = ∞ and {vn} be a sequence of real numbers. Assume that

un+1 ≤ (1 − αn)un + αnvn ∀ n ≥ 1.

If lim sup
k→∞

vnk ≤ 0 for every subsequence {unk} of {un} satisfying the condition

lim inf
k→∞

(unk+1 − unk ) ≥ 0,

then lim
n→∞

un = 0.

3. Main Result

In this section, we first propose a convergent algorithm for approximating a solution
to the EP (1) and then present its convergence analysis. Let f : M → M be a ψ-contraction
where ψ : [0,+∞) → [0,+∞) is a continuous and increasing function satisfying ψ(0) = 0
and ψ(s) < s for all s > 0. The solution set Sol(g, K) is closed and convex [9,10]. We assume
that Sol(g, K) is nonempty.

Assume {εn} is a positive sequence such that εn = ◦(βn), that is, lim
n→∞

εn
βn

= 0, where

βn is a sequence in (0,1) satisfying

(C1) lim
n→∞

βn = 0 and
∞
∑

n=1
βn = ∞.

Remark 2. We observe that Algorithm 1 provides us with a self-adaptive method where the step
length can increase from iteration to iteration unlike the monotone decreasing sequence of step
lengths in [17]. By this construction, the dependence of the bifunction g on the Lipschitz constants
is dispensed with.
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Algorithm 1: Inertial subgradient extragradient method for solving EP (ISEMEP)
Initialization: Choose x0, x1 ∈ K, λ1 > 0, μ ∈ (0, 1), a non-negative sequence of real numbers {δn} such that

∞
∑

n=1
δn < +∞ and θ > 0.

Step 1: Given xn, xn−1 and λn, choose θn such that θn ∈ [0, θ̄n], where

θ̄n =

{
min

{
θ, εn

d(xn ,xn−1)

}
, if xn 
= xn−1,

θ, otherwise.

Compute ⎧⎨⎩wn = expxn
(θn exp−1

xn
xn−1),

yn = arg min
y∈M

{
g(wn, y) + 1

2λn
d2(wn, y)

}
, (5)

If yn = wn, then stop. Otherwise, go to the next step.
Step 2: Define the half-space Tn by

Tn := {y ∈ M : 〈exp−1
yn

wn − λnvn, exp−1
yn

y〉 ≤ 0}

with vn ∈ ∂2g(wn, yn) and compute

zn = arg min
y∈Tn

{
g(yn, y) +

1
2λn

d2(wn, y)
}

. (6)

Step 3: Compute

xn+1 = γn(1 − βn) ∀ n ≥ 0, (7)

where γn : [0, 1] → M is the geodesic joining f (xn) to zn, that is, γn(0) = f (xn) and γn(1) = zn for all n ≥ 0.

λn+1 =

⎧⎨⎩min
{

λn + δn, μ[d2(yn ,wn)+d2(zn ,yn)]
2[g(wn ,zn)−g(wn ,yn)−g(yn ,zn)]

}
, g(wn, zn)− g(wn, yn)− g(yn, zn) > 0,

λn + δn, otherwise.
(8)

Set n := n + 1 and return to Step 1.

Lemma 6. Let {λn} be the sequence given by (8). Then, lim
n→∞

λn = λ with

min
{

μ

2 max{c1, c2} , λ1

}
≤ λ ≤ λ1 + δ,

where δ =
∞
∑

n=0
δn.

Proof. Assume (A4) holds, then there exist c1 and c2 such that

g(wn, zn)− g(wn, yn)− g(yn, zn) ≤ c1d2(yn, wn) + c2d2(zn, yn)

≤ max{c1, c2}(d2(yn, wn) + d2(zn, yn)).

Thus,

μ(d2(yn, wn) + d2(zn, yn))

2(g(wn, zn)− g(wn, yn)− g(yn, zn))
≥ μ

2 max{c1, c2} .
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Using induction, we obtain

min
{

μ

2 max{c1, c2} , λ1

}
≤ λn ≤ λ1 + δ.

It is not difficult to show that lim
n→∞

λn = λ. Therefore, the convergence of {λn} implies

that

min
{

μ

2 max{c1, c2} , λ1

}
≤ λ ≤ λ1 + δ.

Lemma 7. The sequence {xn} defined recursively by Algorithm 1 satisfies the inequality

d2(zn, p) ≤ d2(wn, p)−
(

1 − μλn

λn+1

)
[d2(wn, yn) + d2(yn, zn)].

Proof. Let p ∈ Sol(g, K). Using the definition of zn and Proposition 5, we find that

0 ∈ ∂2

{
g(yn, y) +

1
2λn

d2(wn, y)
}
(zn) + NTn(zn).

There exist an ∈ ∂2g(yn, zn) and bn ∈ NTn(zn) such that

λnan − exp−1
zn

wn + bn = 0.

Hence, for all y ∈ Tn, we obtain

λn〈an, exp−1
yn

y〉 = 〈exp−1
zn

wn, exp−1
zn

y〉 − 〈bn, exp−1
zn

y〉.

Since bn ∈ NTn(zn), we have 〈bn, exp−1
zn

y〉 ≤ 0 for all y ∈ Tn. Therefore,

〈exp−1
zn

wn, exp−1
zn

y〉 ≤ λn〈an, exp−1
zn

y〉 ∀ y ∈ Tn. (9)

From the definition of the subdifferential and the fact that an ∈ ∂2g(yn, zn), it fol-
lows that

〈an, exp−1
yn

y〉 ≤ g(yn, y)− g(yn, zn) ∀ y ∈ M. (10)

We obtain from (9) and (10) that

〈exp−1
zn

wn, exp−1
zn

y〉 ≤ λn(g(yn, y)− g(yn, zn)) ∀ y ∈ Tn. (11)

Let y = p in (11). We have

〈exp−1
zn

wn, exp−1
zn

p〉 ≤ λn(g(yn, p)− g(yn, zn)).

Since p ∈ Sol(g, K), we have g(p, yn) ≥ 0. If follows from the pseudomonotonicity of
g that g(yn, p) ≤ 0. Thus, we obtain

〈exp−1
zn

wn, exp−1
zn

p〉 ≤ −λng(yn, zn). (12)

It is easy to from (8), that

−g(yn, zn) ≤ μ

2λn+1
d2(yn, wn) +

μ

2λn+1
d2(yn, zn)− g(wn, zn) + g(wn, yn),
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which implies, since λn > 0, that

−λng(yn, zn) ≤ μλnd2(yn, wn)

2λn+1
+

μλnd2(yn, zn)

2λn+1
− λn[g(wn, zn)− g(wn, yn)]. (13)

It follows from zn ∈ Tn that 〈exp−1
yn

wn − λnvn, exp−1
yn

zn〉 ≤ 0, which implies that

〈exp−1
yn

wn, exp−1
yn

zn〉 ≤ λn〈vn, exp−1
yn

zn〉. (14)

Since vn ∈ ∂2g(wn, yn), it follows from the definition of the subdifferential that

〈vn, exp−1
yn

y〉 ≤ g(wn, y)− g(wn, yn).

Setting y = zn in the above inequality, we have

〈vn, exp−1
yn

zn〉 ≤ g(wn, zn)− g(wn, yn).

Thus, it follows from above inequality and (14) that

〈exp−1
yn

wn, exp−1
yn

zn〉 ≤ λn[g(wn, zn)− g(wn, yn)]. (15)

Combining (12), (13) and (15), we obtain

〈exp−1
zn

wn, exp−1
yn

p〉 ≤ μλnd2(yn, wn)

2λn+1
+

μλnd2(zn, yn)

2λn+1
− 〈exp−1

yn
wn, exp−1

yn
zn〉. (16)

Using Equation (3) and Proposition 2, we obtain

d2(wn, zn) + d2(zn, p)− d2(wn, p) ≤ 2〈exp−1
zn

wn, exp−1
zn

p〉

and
−2〈exp−1

yn
wn, exp−1

yn
zn〉 ≤ d2(wn, zn)− d2(wn, yn)− d2(zn, yn).

Using this in (16), we obtain

d2(wn, zn) + d2(zn, p)− d2(wn, p) ≤ μλnd2(wn, yn)

λn+1
+

μλnd2(zn, yn)

λn+1
+ d2(wn, zn)− d2(wn, yn)− d2(zn, yn).

Therefore, we have

d2(zn, p) ≤ d2(wn, p)−
(

1 − μλn

λn+1

)
[d2(wn, yn) + d2(zn, yn)]. (17)

Lemma 8. Let f : K → K be a ψ-contraction and assume that

0 < κ := sup{ψ(d(xn, q))
d(xn, q)

: xn 
= q, n ≥ 0, q ∈ Sol(g, K)} < 1.

Then, the sequence {xn} generated by Algorithm 1 is bounded.

Proof. Fix n ≥ 1 and p ∈ Sol(g, K), and consider the geodesic triangles Δ(wn, xn, p)
and Δ(xn, xn−1, p) with the comparison triangles Δ(w′

n, x′n, p′) and Δ(x′n, x′n−1, p′). Then,
by Lemma 2, we have d(wn, p) = ‖w′

n − p‖, d(xn, p) = ‖x′n − p′‖ and d(xn, xn−1) =
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‖x′n − x′n−1‖. Recall from Algorithm 1 that wn = expxn
θn exp−1

xn
xn−1. The comparison

point of wn is w′
n = x′n + θn(x′n−1 − x′n). Thus, we obtain

d(wn, p) = ‖w′
n − p′‖

= ‖x′n + θn(x′n−1 − x′n)− p′‖
≤ ‖x′n − p′‖+ θn‖x′n − x′n−1‖
= ‖x′n − p′‖+ βn · θn

βn
‖x′n − x′n−1‖. (18)

Since θn
βn
‖x′n − x′n−1‖ = θn

βn
d(xn, xn−1) → 0 as n → ∞, there exists a constant M1 > 0

such that θn
βn

d(xn, xn−1) =
θn
βn
‖x′n − x′n−1‖ ≤ M1 ∀ n ≥ 1. Hence, we obtain

d(wn, p) ≤ d(xn, p) + βn M1. (19)

It is not difficult to see that

d2(wn, p) ≤ d2(xn, p) + 2θnd(xn, p)d(xn, xn−1) + θ2
nd2(xn, xn−1). (20)

Next, using the definition of xn+1, the convexity of the Riemannian distance and (17),
we see that

d(xn+1, p) = d(γn(1 − βn), p)

≤ βnd(γn(0), p) + (1 − βn)d(γn(1), p)

= βnd( f (xn), p) + (1 − βn)d(zn, p)

≤ βn(d( f (xn), f (p) + d( f (p), p)) + (1 − βn)d(wn, p)

≤ βnψ(d(xn, p)) + βnd( f (p), p) + (1 − βn)d(wn, p).

Since 0 < κ = sup{ψ(d(xn ,q))
d(xn ,q) : xn 
= q, n ≥ 0, q ∈ Sol(g, K)} < 1, we find that

d(xn+1, p) ≤ βnκd(xn, p) + (1 − βn)d(wn, p) + βnd( f (p), p) (21)

≤ βnκd(xn, p) + (1 − βn)[d(xn, p) + βn M1] + βnd( f (p), p)

= (1 − βn(1 − κ))d(xn, p) + βn(1 − βn)M1 + βnd( f (p), p)

≤ max
{

d(xn, p),
M1 + d( f (p), p)

1 − κ

}
...

≤ max
{

d(x0, p),
M1 + d( f (p), p)

1 − κ

}
. (22)

Hence, the sequence {xn} is bounded. Consequently, the sequences {wn}, {yn} and
{zn} are bounded too.

Theorem 1. Let f : K → K be a ψ-contraction and assume conditions (A1)–(A4) hold. If
0 < κ = sup{ψ(d(xn ,q))

d(xn ,q) : xn 
= q, n ≥ 0, q ∈ Sol(g, K)} < 1, then the sequence {xn}
generated by Algorithm 1 converges to a point p ∈ Sol(g, K), where p = PSol(g,K) f (p) and
PSol(g,K) is the nearest point projection of K onto Sol(g, K).

Proof. Let p ∈ Sol(g, K) satisfy p = PSol(g,K) f (p). Note that this fixed point equation has a
unique solution by the Boyd–Wong fixed point theorem [38]. Fix n ≥ 1 and let w = f (xn),
z = zn and y = f (p). Consider the following geodesic triangles with their respective
comparison triangles in R2: Δ(w, z, p) and Δ(w′, z′, p′), Δ(y, z, w) and Δ(y′, z′, w′), Δ(y, z, p)
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and Δ(y′, z′, p′). By Lemma 2, we have d(w, z) = ‖w′ − z′‖, d(w, y) = ‖w′ − y′‖, d(w, p) =
‖w′ − p′‖, d(z, y) = ‖z′ − y′‖ and d(y, p) = ‖y′ − p′‖. From the definition of xn+1, we have

xn+1 = expw(1 − βn) exp−1
w z.

The comparison point of xn+1 in R2 is x′n+1 = βnw′ + (1 − βn)z′. Let α and α′ denote
the angles at p and p′ in the triangles Δ(y, xn+1, p) and Δ(y′, x′n+1, p′), respectively. Then,
we have α ≤ α′ and cos α′ ≤ cos α. Using Lemma 4 and the property of f , we obtain

d2(xn+1, p) ≤ ‖x′n+1 − p′‖2

= ‖βn(w′ − p′) + (1 − βn)(y′ − p′)‖2

≤ ‖βn(w′ − y′) + (1 − βn)(z′ − p′)‖2 + 2βn〈x′n+1 − p′, y′ − p′〉
≤ (1 − βn)‖z′ − p′‖2 + βn‖w′ − y′‖2 + 2βn‖x′n+1 − p′‖‖y′ − p′‖ cos α′

≤ (1 − βn)d2(z, p) + βnd2(w, y) + 2βnd(xn+1, p)d(y, p) cos α

= (1 − βn)d2(zn, p) + βnd2( f (xn), f (p)) + 2βnd(xn+1, p)d( f (p), p) cos α.

Since d(xn+1, p)d( f (p), p) cos α = 〈exp−1
p f (p), exp−1

p xn+1〉 and 0 < κ = sup{ψ(d(xn ,q))
d(xn ,q) :

xn 
= q, n ≥ 0, q ∈ Sol(g, K)} < 1, using (20), we obtain

d2(xn+1, p) ≤ (1 − βn)d2(zn, p) + βnψ(d2(xn, p)) + 2βn〈exp−1
p f (p), exp−1

p xn+1〉

≤ (1 − βn)d2(wn, p)− (1 − βn)

(
1 − μλn

λn+1

)
[d2(yn, wn) + d2(zn, yn)] + βnψ(d2(xn, p))

+ 2βn〈exp−1
p f (p), exp−1

p xn+1〉

= [1 − βn(1 − κ)]d2(xn, p) + βn(1 − κ)bn − (1 − βn)

(
1 − μλn

λn+1

)
[d2(yn, wn) + d2(zn, yn)], (23)

where

bn =
1

1 − κ

(
2〈exp−1

p f (p), exp−1
p xn+1〉+ 2θn

βn
d(xn, p)d(xn, xn−1) +

θ2
n

βn
d2(xn, xn−1)

)
.

It follows from (23) that

(1 − βn)

(
1 − μλn

λn+1

)
[d2(yn, wn) + d2(zn, yn)] ≤ d2(xn, p)− d2(xn+1, p) + βn(1 − κ)M′, (24)

where M′ = sup
n∈N

bn. We claim that d(xn, p) → 0 as n → ∞. To prove this, set an = d(xn, p)

and dn = βn(1 − κ). It is easy to see from (23) that the sequence {an} satisfies

an+1 ≤ (1 − dn)an + dnbn. (25)

Next, we claim that lim sup
k→∞

bnk ≤ 0 whenever there exists a subsequence {ank} of {an}
satisfying

lim inf
k→∞

(ank+1 − ank ) ≥ 0.

To prove this, assume the existence of such a subsequence {ank}. Then, by using (24),
we have

lim sup
k→∞

(1 − βnk )

(
1 − μλnk

λnk+1

)
[d2(ynk , wnk ) + d2(znk , ynk )] ≤ lim sup

k→∞
(ank − ank+1) + (1 − κ)M′ lim

k→∞
βnk

= − lim inf
k→∞

(ank+1 − ank )

≤ 0.
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Note that λn → λ as n → ∞ and that μ ∈ (0, 1). Hence, there exists N ≥ 0 such that for
all n ≥ N, 0 < μλn

λn+1
< 1. That is, lim

n→∞

(
1− μλn

λn+1

)
= 1− μ > 0.

This, in its turn, implies that

lim
k→∞

d(ynk , wnk ) = 0 = lim
k→∞

d(znk , ynk ). (26)

By replacing p with xnk in (18), it is not difficult to see that

lim
k→∞

d(wnk , xnk ) ≤ lim
k→∞

βnk ·
θnk

βnk

‖x′nk
− x′nk−1‖

= lim
k→∞

βnk ·
θnk

βnk

d(xnk , xnk−1)

= 0. (27)

Using the triangle inequality, we obtain

d(ynk , xnk ) ≤ d(ynk , wnk ) + d(wnk , xnk ),

d(znk , xnk ) ≤ d(znk , ynk ) + d(ynk , xnk ).

Using (26) and (27), we obtain

d(ynk , xnk ), d(znk , xnk ) → 0 as k → ∞. (28)

By employing the convexity of the Riemannian distance, we have

d(xn+1, zn) = d(γn(1 − βn), zn)

≤ βnd(γn(0), zn) + (1 − βn)d(γn(1), zn)

≤ βnd( f (xn), zn) + (1 − βn)d(zn, zn)

≤ βnd( f (xn), zn). (29)

Thus, it follows from (C1) that

lim
k→∞

d(xnk+1, znk ) = 0.

When combined with (28), we obtain

lim
k→∞

d(xnk+1, xnk ) = 0. (30)

Now, we claim that lim sup
k→∞

bnk ≤ 0. To see this, we only need to show that

lim sup
k→∞

〈exp−1
p f (p), exp−1

p xnk+1〉 ≤ 0.

Since {xnk} is bounded, there exists a subsequence {xnkj
} of {xnk} which converges to

q ∈ M such that

lim
j→∞

〈exp−1
p f (p), exp−1

p xnkj
〉 = lim sup

k→∞
〈exp−1

p f (p), exp−1
p xnk 〉

= 〈exp−1
p f (p), exp−1

p q〉. (31)

Since xnkj
→ q, it follows from (28) that ynkj

, znkj
→ q. Using (11), we see that

λng(yn, y)− λng(yn, zn) ≥ 〈exp−1
zn

wn, exp−1
zn

y〉 ∀ y ∈ Tn,

which implies, in view of (13), that
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λng(yn, y) ≥ λng(yn, zn) + 〈exp−1
zn

wn, exp−1
zn

y〉
≥ − μλn

2λn+1

(
d2(yn, wn) + d2(zn, yn)

)
+ λn(g(wn, zn)− g(wn, yn)) + 〈exp−1

zn
wn, exp−1

zn
y〉.

Using (15), we obtain

λnk g(ynk , y) ≥ − μλnk

2λnk+1

(
d2(ynk , wnk ) + d2(znk , ynk )

)
+ 〈exp−1

znk
wnk , exp−1

znk
y〉+ 〈exp−1

ynk
wnk , exp−1

ynk
znk 〉. (32)

Passing to the limit in (32) with nk replaced by nkj
, and using λn → λ > 0, condition

(A2), Lemma 3 and ynkj
→ q, we find that

g(q, y) ≥ lim sup
j→∞

g(ynkj
, y) ≥ 0 ∀ y ∈ Tn.

Since K ⊂ Tn, we see that g(q, y) ≥ 0 ∀ y ∈ K, which implies that q ∈ Sol(g, K).
Finally, from p = PSol(g,K) f (p), (30), (31) and Lemma 1, it follows that

lim
j→∞

〈exp−1
p f (p), exp−1

p xnkj
+1〉 = lim sup

k→∞
〈exp−1

p f (p), exp−1
p xnk+1〉

= 〈exp−1
p f (p), exp−1

p q〉
≤ 0.

Hence, we conclude by applying Lemma 5 to (25) that the sequence {xn} converges to
p ∈ Sol(g, K), as asserted.

4. Applications

In this section, we apply our main result to some theoretical optimization problems.

4.1. An Application to Solving Variational Inequality Problems

Suppose

g(x, y) =

{
〈Gx, exp−1

x y〉, if x, y ∈ K,
+∞, otherwise,

where G : K → M is a mapping. Then, the equilibrium problem (1) concurs with the
following variational inequality (VIP) (see [44]):

Find x ∈ K such that 〈Gx, exp−1
x y〉 ≥ 0 ∀ y ∈ K. (33)

We denote the set of solutions of VIP (33) as VIP(G, K). The mapping G : K → M is
said to be pseudomonotone if

〈Gx, exp−1
x y〉 ≥ 0 ⇒ 〈Gy, exp−1

x y〉 ≥ 0, x, y ∈ K.

Assume that the function G satisfies the following conditions:

(V1) The function G is pseudomonotone on K with VIP(G, K) 
= ∅;
(V2) G is L-Lipschitz continous, that is,

‖Py,xGx − Gy‖ ≤ ‖x − y‖, x, y ∈ K,

where Py,x is a parallel transport (see [7,45]);
(V3) lim sup

n→∞
〈Gxn, exp−1

xn
y〉 ≤ 〈Gp, exp−1

p y〉 for every y ∈ K and {xn} ⊂ K such that

xn → p.
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By replacing the proximal term arg min
y∈M

{
g(x, y) + 1

2λn
d2(x, y)

}
with PK(expx(−λnG(x))),

where PK is the metric projection of M onto K in Algorithm 1, we have the following
method for approximating a point in VIP(G, K) :

In this setting, we have the following convergence theorem for approximating a
solution to the VIP (33).

Theorem 2. Let f : K → K be a ψ-contraction and G : K → M be a pseudomonotone operator
satisfying conditions V1–V3. If 0 < κ = sup{ψ(d(xn ,q))

d(xn ,q) : xn 
= q, n ≥ 0, q ∈ VIP(G, K)} < 1,
then the sequence {xn} generated by Algorithm 2 converges to an element p ∈ VIP(G, K) which
satisfies p = PVIP(G,K) f (p).

Algorithm 2: Inertial subgradient extragradient method for solving VIP(ISEMVIP)
Initialization: Choose x0, x1 ∈ K, λ1 > 0, μ ∈ (0, 1), a non-negative sequence of real numbers {δn} such that

∞
∑

n=0
δn < +∞ and θ > 0.

Step 1: Given xn, xn−1 and λn, choose θn such that θn ∈ [0, θ̄n], where

θ̄n =

{
min

{
θ, εn

d(xn ,xn−1)

}
, if xn 
= xn−1,

θ, otherwise.

Compute {
wn = expxn

(θn exp−1
xn

xn−1),
yn = PK(expwn

(−λnG(wn))).
(34)

If yn = wn, then stop. Otherwise, go to the next step.
Step 2: Compute vn = Gwn and define the half-space Tn by

Tn := {y ∈ M : 〈exp−1
yn

wn − λnvn, exp−1
yn

y〉 ≤ 0}

with vn ∈ ∂2g(wn, yn) and compute

zn = PTn(expwn
(−λnG(wn))). (35)

Step 3: Compute

xn+1 = γn(1 − βn) ∀ n ≥ 0, (36)

where γn : [0, 1] → M is the geodesic joining f (xn) to zn, that is, γn(0) = f (xn) and γn(1) = zn for all n ≥ 0.

λn+1 =

⎧⎨⎩min
{

λn + δn, μ[d2(yn ,wn)+d2(zn ,yn)]
2[〈Pyn ,wn G(wn)−G(yn),zn−yn〉]

}
, 〈Pyn ,wn G(wn)− G(yn), zn − yn〉 > 0,

λn + δn, otherwise.
(37)

Set n := n + 1 and return to Step 1.

Remark 3. Note that Algorithm 2 is a direct application of Algorithm 1 to a variational inequality
problem and that the projection onto the half-space Tn in Algorithm 2 can be calculated in closed
form without the need to use a minimization algorithm for computing zn in Algorithm 1 for solving
equilibrium problems. For a closed-form formula for computing the metric projection onto Tn, (see
for example, [46]).
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4.2. An Application to Solving Convex Optimization Problems

Consider the convex optimization problem (COP){
min
x∈K

h(x), (38)

where h is a proper lower semicontinuous convex function of M into (−∞,+∞] such that
K is contained in the effective domain of h, that is, K ⊂ domh := {x ∈ M : h(x) < +∞}.
The set of solutions to COP (38) is denoted by COP(h, K). Let the bifunction g : K × K → R

be defined by g(x, y) := h(y) − h(x). Then, g(x, y) satisfies conditions (A1)–(A4) and
COP(h, K) = Sol(g, K). Let Proxλh be the proximal operator of the function h of parameter
λ > 0 let ∇h denote the gradient of h. Using the term Proxλh(expx(−λ∇h(x))) in place

of arg min
y∈M

{
g(x, y) + 1

2λn
d2(x, y)

}
in Algorithm 1, we obtain a method for minimizing the

function h.

5. Numerical Example

In this section, we present some numerical illustrations of our main result. All codes
were written in Matlab 2017b computed on a Personal Computer (PC) Core i5 at 2.0 GHz
and 8.00 GB RAM.

Example 1. We consider an extension of the Nash equilibrium model introduced in [7,47]. In this
problem, the bifunction g : K × K → R is given by

g(x, y) = 〈Px + Qy + p, y − x〉.

Let M be Space 2 above and let K ⊂ M be given by

K = {x = (x1, x2, · · · , xm) : 1 ≤ xi ≤ 100, i = 1, 2, · · · , m}.

Let x, y ∈ K, and let p = (p1, p2, · · · , pm)T ∈ Rm be chosen randomly with elements in
[1, m]. The matrices P and Q are two square matrices of order m such that Q is symmetric positive
semidefinite and Q − P is negative semidefinite. It is known (see [7]) that g is pseudomonotone and
satisfies (A2) with Lipschitz constants c1 = c2 = 1

2‖Q − P‖ (see [15], Lemma 6.2). Assumptions
(A3) and (A4) are also satisfied (see [48]). Thus, our main theorem is fully compatible with this
example. Setting δn = 1

2n+7 , βn = 1
n+1 , εn = 1

n1.1 , μ = 0.5 and λ1 = 10−3, we compare our
method with (Algorithm 1) of Fan et al. [23]. The comparisons are made for some values of m
using ‖xn+1 − xn‖2 = 10−4 as the stopping criterion. The results for this example are presented in
Table 1 and Figure 1.

Table 1. Computation results for Example 1.

Algorithm 1 Fan et al. Alg.

m = 20 No of Iter. 23 39
CPU time (s) 0.0013 2.9229

m = 30 No of Iter. 23 43
CPU time (s) 0.0130 3.6771

m = 50 No of Iter. 41 53
CPU time (s) 0.0050 5.8712

m = 60 No of Iter. 35 40
CPU time (s) 0.0050 5.8712

155



Axioms 2023, 12, 256

Figure 1. Example 1, Top left: m = 20; Top right: m = 30; Bottom left: m = 50; Bottom right:
m = 60.

Example 2. Let M be Space 2 above. We consider an example of a variational inequality and
present a numerical comparison of Algorithm 1 through its adaptation to VI with (Algorithm 1) of
Fan et al. [23]. The following example has been considered by authors in many recent articles (see,
for example, [49]). Let the mapping F : E → M be defined by

F(x) =
(

0.5x1x2 − 2x2 − 107

−4x1 + 0.1x2
2 − 107

)
where x = (x1, x2) and K := {x ∈ R2 : (x1 − 2)2 + (x2 − 2)2 ≤ 1}. It is known that the
mapping F is pseudomonotone on K and L-Lipschitz continuous with L = 5. For this example, we
let βn = 1

n+1 , δn = 1
2n+1 , θn = 1

3 , εn = 1
n1.2 and λ1 = 10−8. Using ‖xn+1 − xn‖2 = 10−4 as

the stopping criterion, we compare Algorithm 1 and Fan et al. alg. for different initial values of x0
and x1. The results for this example are presented in Figure 2 and Table 2.

(Case 1) x0 = [0.5, 1] and x1 = [1, 2]′;
(Case 2) x0 = [2,−1] and x1 = [1,−2]′;
(Case 3) x0 = [1.2, 1.5] and x1 = [0, 0.5]′;
(Case 4) x0 = [0.3, 0.5] and x1 = [−0.9,−0.7]′.
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Table 2. Computation result for Example 2.

Algorithm 1 Fan et al. Alg.

Case 1 No of Iter. 15 29
CPU time (s) 0.0013 2.9229

Case 2 No of Iter. 17 29
CPU time (s) 0.0130 3.6771

Case 3 No of Iter. 15 22
CPU time (s) 0.0050 5.8712

Case 4 No of Iter. 15 17
CPU time (s) 0.0050 5.8712

Figure 2. Example 2, Top left: Case 1; Top right: Case 2; Bottom left: Case 3; Bottom right: Case 4.

6. Conclusions

In this paper, we introduced an inertial subgradient extragradient method for approxi-
mating solutions to equilibrium problems in the framework of Hadamard manifolds. Since
we use self-adaptive step sizes which are allowed to increase from iteration to iteration,
our method does not require knowledge of the Lipschitz constant of the cost operator.
A convergence result was proved by using a viscosity technique with mild conditions on
the control parameters involved for generating the sequence of the approximants. We also
provided two theoretical applications of our result. Furthermore, we presented some nu-
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merical experiments which illustrate the performance of the method we proposed. By way
of comparison to another method presented for the same subject in Fan et al. [23], we
displayed the competitiveness of our Algorithm. The authors intend to consider more
examples in Hadamard manifolds in future works.
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Abstract: Honeybee losses are an extensive global problem. In this study, a new compartment
model of honeybee population that mainly concerns honey production is developed. The model
describes the interaction of the food stock with the brood (immature bees), adult bees and produced
honey. In the present paper, the issue of an adequate model recovery is addressed and the parameter
identification inverse problem is solved. An adjoint equation procedure to obtain the unknown
parameter values by minimizing the functional error during a period of time is proposed. Numerical
simulations with realistic data are discussed.

Keywords: honeybee population dynamics; existence of non-negative solutions; parameter identification
analysis

MSC: 34A12; 34A55; 65L09; 92D25

1. Introduction

Honeybee colonies are important for agriculture and the environment. They help plant
reproduction by pollination, while beekeeping redounds to the development of rural areas.
Unfortunately, in recent decades, a ubiquitous decline in both managed and unmanaged
colonies has been observed. This is a global problem, since the bees contribute to the
ecological equilibrium. If the bee population shrinks or disappears, plants would not get
pollinated and would die off. Then, herbivorous animals would not have food and would
go extinct, and they would be followed by carnivorous animals, including humans. Thus,
preventing bee colonies from losses is of a paramount importance for preserving live on
Earth in general.

Of the many species of bees, only a small number of them are eusocial; Apis mellifera
is an example of eusocial behavior [1]. This species form colonies thus the survival,
reproduction and honey production are directly dependent on the size and the structure of
the colonies [2].

Honey, produced by honeybees, is a sweet natural substance, derived greatly from
the nectar of flowers and transformed by a group of enzymes, which are present in the
saliva of the worker bees. The honey is also airy and evaporates by its filtering, and is
eventually stored inside the hives. Honey from Apis mellifera is one of the most essential
zoo-agricultural goods for commercial trade in the world [3]. Regarding the honey trade,
the USA is the global leader in imports. Concerning production, China is the global leader,
following by Turkey, Iran, Ukraine and the Russian Federation. Finally, with respect to
quality, Bulgarian honey is the most pure and sweet [4].

Axioms 2023, 12, 214. https://doi.org/10.3390/axioms12020214 https://www.mdpi.com/journal/axioms
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Beekeepers produce a variety of agriculture products, in addition to honey, including
royal jelly, propolis and beeswax. This paper aims to develop mathematical modeling of
the honeybee population dynamics and, therefore, honey production.

The most fundamental honeybee population model is suggested by [5], where only
two compartments are explored—the young hive bees and the matured forager bees. This
model is extended in [6,7], where the brood, the age of the foragers and the food are also
included in the studies, accounting for the delay of maturing. Such investigation is done
in [8], where a different form of the recruitment rate is used. In the study [9], exogenous
stress is assumed to impact the recruitment process, social inhibition and the queen laying
rate, causing a potential colony decline.

There are models developed as an effort to understand the decrease in colony numbers
in recent decades. A survey in the USA suggests that treating against disease and mite
infestation in the right way lowers the chance of colony loss [10]. Extensive study of the
transition from hive to forager bees is performed in [11]. A comparison between the losses
in different parts of the world is performed in [12].

The mysterious disease, whose causal factors are not entirely agreed on, is called
Colony Collapse Disorder (CCD). It is characterized by rapid loss of forager bees but
absence of dead bodies near the hive, lack of pest and mite invasion of the hive, and bees’
reluctance to consume food provided by the beekeeper. The first recorded massive colony
loss is described as the ‘Isle of Wight Disease’ [13]. The effect of protein sources has been
proposed as a potential cause for collapse [14]. A special CCD model is designed in [15],
where the contagious adult bees are isolated from the others. A review of the suspected
causal factors for the colony declines is summarized in [16].

Other models focus on particular parts of the surrounding environment such as food
availability [17], age structure [18], seasonal effects [19], Varroa mites [20] and others [21,22],
including the model memory property [23].

In [24], populations of adult and immature (brood) honeybees as well as their honeybee
production are examined via mathematical and statistical modeling approaches. It is shown
that, if a bee population is exposed to a stress factor (i.e., habitat destruction, Varroamites,
climate variability, heavy metals, etc.), the number of individuals declines over time as well
as the produced honey. The complex issue of the sustainability of honeybee colonies is
important not only for the survival of the species but also for food security and the overall
health of the environment. To ensure the sustainability of honeybee colonies, it is important
to take measures such as providing adequate habitats, reducing pesticide exposure and
promoting disease management practices. Aiming at the latter, the sophisticated processes
of population dynamics have to be investigated via mathematical modeling.

In the present work we study the relationship between the population size of honey-
bees (Apis mellifera) and honey production if the bee colony is exposed to a number of stress
factors that exogenously cause the death of individuals and therefore a possible reduction
in honey production. Here lies the main originality of the study—suggesting a novel model
for encountering the interaction between the bee castes and the amount of honey, stored in
the hive.

Furthermore, in the investigation the inverse problem of identifying the food and
honey consumption rates by the immature and adult bees is solved as well as the brood
maturation rate. These quantities are of extreme importance for understanding the complex
dynamics of the hive. It is done via the adjoint equations optimization approach. Such
a study is performed in [25], where the contaminated bees are modeled as a separate
compartment. Similar investigation is done in [26] but, for the coefficient identification, a
trust-region reflexive algorithm is used.

This paper is organized as follows. In the next section, we extend the mathematical
model, studied in [24], taking into account the food stock. What is more, we study the
existence and non-negativity of the solutions. Section 3 is devoted to the parameter
estimation analysis of the model. Section 4 is dedicated to numerical experiments regarding
the direct and inverse problems. The paper is concluded in Section 5.
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2. Mathematical Model

In this section, we introduce a mathematical model that explains the interaction
between the food stock and the brood (immature bees), adult bees and the amount of
produced honey.

Following the results in [24,27] we establish a mathematical model that presents
the interactions among brood B(t) at time t, adult bees A(t) and the amount of honey
production M(t), taking into account the weight of food stock F(t) .

We assume that the brood grows at a rate β, proportionally to the number of adult bees.
This is given by term A/(A + ν), where ν is the mean saturation rate (number of adult bees
required for immature bees to achieve half of their maximal number). The number of bees
surviving to the adult stage influences the number of immature bees.

The latter is modeled by the term ωB, where ω denotes the maturation rate to adult
stage, and 1/ω indicates the time spent before achieving the adult stage. The number of
immature bees is decreased by natural death and it is modeled by the term μBB, where μB
denotes the natural mortality rate of the immature stage. Following this discussion and
those in [24,27] we consider the following system of ODEs:

dF
dt

= cA − γB, (1)

dB
dt

= β
A

A + ν
− ωB − μBB, (2)

dA
dt

= ωB − μA A − σA. (3)

dM
dt

= ρ
A

A + u
− αM − δAM. (4)

The model (1)–(4) is illustrated in the diagram of Figure 1.
It is assumed in the derivation of Equation (3) that the number of adult bees diminish

naturally and it is demonstrated by the term μA A, where μA is the natural mortality rate of
the adult stage. However, the bees can also die because of a stress factor. This is represented
by the term σA, where σ is the death rate due to a stressor (climate change, loss of habitat,
heavy metals or pesticides, poor beekeeper’s management, etc.) acting on bees at the
adult stage.

Equation (4) shows that the production of honey in hives increase at a rate ρ, which is
influenced by the number of adult bees, given by the term A/(A + u), where u is the mean
saturation rate.

One important cause for decreasing of the honey is the feeding of immature bees,
which is demonstrated by the term αM, where α is the honey loss rate.

The term δAM represents the loss of honey production because of the consumption of
adult bees, where δ is the adult bees’ honey consumption rate.

For more details on the specifications of the parameters in the model we refer to Table 2
in [24].

We solve the system of ordinary differential Equations (1)–(4) with initial conditions

F(0) = F0 ≥ 0, B(0) = B0 ≥ 0, A(0) = A0 ≥ 0, M(0) = M0 ≥ 0. (5)

Using Theorem 7.1 in [28] one could easily prove that the subsystem (2)–(4) is positive
(short for “non-negativity preserving”) in the sense that, if

B(0) ≥ 0, A(0) ≥ 0, M(0) ≥ 0,

then
B(t) ≥ 0, A(t) ≥ 0, M(t) ≥ 0, ∀ t ≥ 0.

This property is biologically relevant to the model.
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Figure 1. Schematic representation of model (1)–(4).

3. Parameter Identification

In this section, the parameter inverse problem is defined. Such problems appear very
often in practice. The problem (1)–(5), where the values of the parameters are known, is
well-posed and it is called a direct problem. However, in the real world, the values of some
of the coefficients are not directly measurable but they are very important for professional
honeybee management. Their reconstruction, provided that additional information is given,
is referred to an inverse problem. Inverse problems are ill-posed and harder to solve. We
employ the adjoint equation optimization approach [29,30].

The parameters to be reconstructed are ppp = (p1, p2, p3, p4, p5), p1 = α, p2 = γ, p3 = δ,
p4 = σ, p5 = ω, and

ppp ∈ Sadm =
{

ppp ∈ R5 : 0 < pi < Pi, i = 1, . . . , 5
}

. (6)

The admissible set Sadm is defined by the biology of the honeybee [31]. To find the
parameters ppp, though, some new information must be brought. In many cases it is possible
to measure the model functions at some discrete times. In reality, counting the brood B is a
difficult task, so we adopt measurements of the functions

Fobs(tk) = Xk,
Aobs(tk) = Yk,
Mobs(tk) = Zk

(7)

for k = 1, . . . , K. We assume all functions are measured at some predefined time instances.
The observation times for every function may be different.
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In practice, the observations are obtained from electronic devices equipping the hive.
In a quasi-real setting, first the direct problem is solved and then the observations are
extracted from the solution to the direct problem.

To solve the inverse problem, the least-square function

Φ(ppp) = Φ(α, γ, δ, σ, ω) = ΦF(α, γ, δ, σ, ω) + ΦA(α, γ, δ, σ, ω) + ΦM(α, γ, δ, σ, ω) =

K

∑
k=1

(F(tk; ppp)− Xk)
2 +

K

∑
k=1

(A(tk; ppp)− Yk)
2 +

K

∑
k=1

(M(tk; ppp)− Zk)
2 (8)

is minimized, e.g., by a gradient method [32], where Ψ(tk; ppp), Ψ ∈ {F, A, M} are the
theoretical quantities from the model and Ξk, Ξ ∈ {X, Y, Z} are the observed values
in practice.

Now we state an expression for the gradient of the function Φppp := Φ(ppp).

Theorem 1. The gradient Φ′
ppp ≡ (Φ′

α, Φ′
γ, Φ′

δ, Φ′
σ, Φ′

ω) is given by

Φ′
α =

∫ T

0
ϕM(t)M(t)dt, (9)

Φ′
γ =

∫ T

0
ϕF(t)B(t)dt, (10)

Φ′
δ =

∫ T

0
ϕM(t)A(t)M(t)dt, (11)

Φ′
σ =

∫ T

0
ϕA(t)A(t)dt, (12)

Φ′
ω = −

∫ T

0
ϕA(t)B(t)dt, (13)

where the triple {ϕM, ϕF, ϕA} is the unique solution of the adjoint system

dϕF
dt

= 2
K

∑
k=1

(F − X)δ(t − tk), (14)

dϕA
dt

= −cϕF + (μA + σ)ϕA +

(
δ · M − ρ

u
(A + u)2

)
ϕM + 2

K

∑
k=1

(A − Y)δ(t − tk), (15)

dϕM
dt

= (α + δ · A)ϕM + 2
K

∑
k=1

(M − Z)δ(t − tk), (16)

ϕF(T) = ϕA(T) = ϕM(T) = 0. (17)

Proof. We denote δppp = (δα, δγ, δδ, δσ, δω) and δα = εh1, δγ = εh2, δδ = εh3, δσ = εh4,
δω = εh5.

If δF(t; ppp) = F(t; ppp + δppp)− F(t; ppp), δA(t; ppp) = A(t; ppp + δppp)− A(t; ppp) and δM(t; ppp) =
M(t; ppp+ δppp)− M(t; ppp), write the ODE system for F(t; ppp+ δppp), A(t; ppp+ δppp) and M(t; ppp+ δppp)
as (1), (3) and (4) with initial conditions F0, A0 and M0 (5).

Then, calculate the differences of the corresponding equations to obtain an ODE system
for δF, δA and δM with zero initial conditions.

d
dt

δF = cδA − δγB, (18)

d
dt

δA = −(μA + σ)δA − δσA + δwB, (19)
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d
dt

δM = ρ
uδA

(A + u)2 − δ · MδA − (α + δ · A)δM − δαM − δδAM. (20)

We find the increment of the functional Φ(ppp) :

Φ(ppp + δppp)− Φ(ppp) = 2
K

∑
k=1

δF(tk; ppp)
(

F(tk; ppp)− Xk
)

+ 2
K

∑
k=1

δA(tk; ppp)
(

A(tk; ppp)− Yk
)
+ 2

K

∑
k=1

δM(tk; ppp)
(

M(tk; ppp)− Zk
)

= 2
K

∑
k=1

∫ T

0
δF(tk; ppp)

(
F(tk; ppp)− Xk

)
δ(t − tk)dt

+ 2
K

∑
k=1

∫ T

0
δA(tk; ppp)

(
A(tk; ppp)− Yk

)
δ(t − tk)dt

+ 2
K

∑
k=1

∫ T

0
δM(tk; ppp)

(
M(tk; ppp)− Zk

)
δ(t − tk)dt.

Let us multiply Equations (18)–(20) by smooth functions ϕF(t), ϕA(t) and ϕM(t) s.t.
ϕF(T) = ϕA(T) = ϕM(T) = 0 and integrate both sides of the results from 0 to T:∫ T

0

(
ϕF

d
dt

δF + ϕA
d
dt

δA + ϕM
d
dt

δM
)

dt =

c
∫ T

0
ϕFδAdt − δγ

∫ T

0
ϕFBdt − (μA + σ)

∫ T

0
ϕAδAdt

−δσ
∫ T

0
ϕA Adt + δw

∫ T

0
ϕABdt + ρu

∫ T

0
ϕM

δA
(A + u)2 dt

−δ
∫ T

0
ϕM MδAdt − (α + δ · A)

∫ T

0
ϕMδMdt

−δα
∫ T

0
ϕM Mdt − δδ

∫ T

0
ϕM AMdt.

(21)

On the other hand, integrating by parts and using the facts that ϕF(T) = ϕA(T) =
ϕM(T) = 0 and δF(0) = δA(0) = δM(0) = 0, we obtain∫ T

0
ϕF

d
dt

δFdt +
∫ T

0
ϕA

d
dt

δAdt +
∫ T

0
ϕM

d
dt

δMdt =

−
∫ T

0
δF

dϕF
dt

dt −
∫ T

0
δA

dϕA
dt

dt −
∫ T

0
δM

dϕM
dt

dt.
(22)

Let us place the expressions for dϕF
dt , dϕA

dt and dϕM
dt from (14)–(16) in (22):

∫ T

0

(
ϕF

d
dt

δF + ϕA
d
dt

δA + ϕM
d
dt

δM
)

dt =

c
∫ T

0
ϕFδAdt − (μA + σ)

∫ T

0
ϕAδAdt − δ

∫ T

0
ϕM MδAdt

+ ρu
∫ T

0
ϕM

1
(A + u)2 δAdt − (α + δ · A)

∫ T

0
ϕMδMdt

− 2
∫ T

0
δF

K

∑
k=1

(F − X)δ(t − tk)dt − 2
∫ T

0
δA

K

∑
k=1

(A − Y)δ(t − tk)dt

− 2
∫ T

0
δM

K

∑
k=1

(M − Z)δ(t − tk)dt. (23)
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Equating (21) and (23) yields

2
∫ T

0
δF

K

∑
k=1

(F − X)δ(t − tk)dt + 2
∫ T

0
δA

K

∑
k=1

(A − Y)δ(t − tk)dt

+ 2
∫ T

0
δM

K

∑
k=1

(M − Z)δ(t − tk)dt = δα
∫ T

0
ϕM Mdt

+ δγ
∫ T

0
ϕFBdt + δδ

∫ T

0
ϕM AMdt

+ δσ
∫ T

0
ϕA Adt − δω

∫ T

0
ϕABdt.

Rewriting the last expression give

Φ(α + εh1, γ + εh2, δ + εh3, σ + εh4, w + εh5)− Φ(α, γ, δ, σ, ω) =(
h1

∫ τ

0
ϕM Mdt + h2

∫ τ

0
ϕFBdt + h3

∫ τ

0
ϕM AMdt + h4

∫ τ

0
ϕA Adt − h5

∫ τ

0
ϕABdt

)
ε.

Now, taking h2 = h3 = h4 = h5 = 0, dividing both sides by εh1 and taking the limit
ε → 0 we find the formula for Φ′

α in the theorem.
Analogously, we obtain the formulae for Φ′

γ, Φ′
δ, Φ′

σ and Φ′
ω (10)–(13).

Employing the fundamental property of the Dirac-delta function
∫ T

0
f(t)δ(t − tk)dt = f(tk),

tk ∈ (0, T), where f(t) is a continuous function, (14)–(17) could be rewritten in its equiva-
lent form:

dϕF
dt

= 0, t 
= tk, k = 1, . . . , K,
dϕA
dt

= −cϕF + (μA + σ)ϕA +

(
δ · M − ρ

u
(A + u)2

)
ϕM, t 
= tk, k = 1, . . . , K,

dϕM
dt

= (α + δ · A)ϕM, t 
= tk, k = 1, . . . , K,

[ϕF]t=tk
= 2(F(tk; ppp)− Xk), k = 1, . . . , K,

[ϕA]t=tk
= 2(A(tk; ppp)− Yk), k = 1, . . . , K,

[ϕM]t=tk
= 2(M(tk; ppp)− Zk), k = 1, . . . , K,

ϕF(T) = ϕA(T) = ϕM(T) = 0.

Having obtained the gradient, we employ an iterative procedure as follows, where the
new approximation ppps+1 is defined by

ppps+1 = ppps − rrrΦ′(ppps), (24)

where rrr ∈ R+
5 are gradient multipliers. The iterations start at chosen ppp0 and end if

‖�ppps‖ := ‖ppps+1 − ppps‖ < εppp, where εppp is a tolerance quantity, else increase s := s + 1
and start a new iteration. The final approximation is denoted with p̌pp and it is called a
nonlinear estimator.

4. Numerical Experiments

This section is devoted to presenting numerical tests which demonstrate the algorithm
application. Firstly, the numerical algorithm is summarized. Then, the direct problem is
solved and its solution is used to obtain measurements for the inverse problem.

4.1. Numerical Procedure

All the programming code is implemented in the MATLAB� environment. For solving
the ODE systems (1)–(5) and (14)–(17), a Runge–Kutta-type method is used. The algorithm
for solving the inverse problem could be described as follows:
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1. Choose initial approximation ppp0.
2. Set s := 0.
3. Until ‖�ppps‖ < εppp do

3.1. Solve system (1)–(5) with ppps to obtain F, B, A and M.
3.2. Solve system (14)–(17) to obtain ϕF, ϕA and ϕM.
3.3. Compute the gradient Φ′

ppp (9)–(13).
3.4. Calculate ppps+1 by (24) and set s := s + 1.

4. The estimator is set to p̌pp := ppps.

4.2. Direct Problem

Let us first solve the direct problem (1)–(5) with realistic data given in [24,27]. The
adult food collection rate is assumed to be c = 0.04 g/bee/day. The larval consumption
rate is γ = 0.12 g/bee/day. The brood reproduction rate is β = 0.92 bee/day. The adult
maturation rate is ω = 0.95 day−1. The brood natural mortality rate is μB = 0.11 day−1.
The adult bee natural mortality rate is μA = 0.29 day−1. The adult bee stressor mortality
rate is σ = 0.1 day−1. The honey production rate is ρ = 0.23 bees/day. The rate of natural
honey loss is α = 0.018 g/day. The honey consumption rate is δ = 0.571 g/bee/day. The
half saturation rates are ν = u = 1 thousand bees.

We simulate the hive development for a typical foraging season, lasting T = 100 days.
At the beginning of the season, there are F0 = 10 kilograms of food stores, B0 = 2000 larvae,
A0 = 10,000 adult bees and M0 = 1 kilogram honey. The outcome is plotted in Figure 2.
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Figure 2. Solution to the direct problem (1)–(5).

It could be observed that the hive approaches its equilibrium state relatively fast. It is
characterized by a small amount of honey as well as a small number of larvae and adult
bees. This is approved by the phase space diagram for a fixed F0 (Figure 3), which shows
no dependence on the initial conditions. Only in case of B0 = A0 = 0, then the extinction
equilibrium is approached.
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Figure 3. Phase space diagram: non-trivial equilibrium.

Of course, it is not always true. If there is a hazard present in the environment, i.e.,
the stress death rate is as high as σ = 0.5, then the extinction equilibrium is the only
attractor, see Figure 4. This unarguably means that the hive would eventually collapse
unless something is drastically changed.

Figure 4. Phase space diagram: extinction equilibrium.

4.3. Inverse Problem

Let us solve the inverse problem of identifying the parameters (6) ppp = (α, γ, δ, σ, ω) =
(0.018, 0.12, 0.571, 0.1, 0.95). The values of the other parameters and initial conditions
remain the same as in the direct problem setting.
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We define K = 19 equidistantly distributed observations of type (7), i.e., one obser-
vation in every 5 days. The admissible set is set to Sadm ≡ (0, 1)5. The values rrr are tuned
empirically and they are given in Table 1.

Table 1. Simulation with εppp = 8 × 10−4.

Parameter pi pi
0 p̌i

∣∣pi − p̌i
∣∣ ∣∣pi − p̌i

∣∣
pi

ri

α 0.018 0.02 0.0274 0.0094 0.5234 4 × 10−23

γ 0.12 0.10 0.0991 0.0209 0.1746 7 × 10−5

δ 0.571 0.50 0.3633 0.2077 0.3638 5 × 10−23

σ 0.1 0.20 0.1886 0.0886 0.8862 1 × 10−25

ω 0.95 1.00 0.8992 0.0508 0.0535 1 × 10−23

The respective values (8) are ΦF(p̌pp) = 0.1815, ΦA(p̌pp) = 3.7902 and ΦM(p̌pp) = 0.3807.
The parameters are recovered with moderate precision, but the honeybee dynamics are
reconstructed in an accurate manner. The root mean squared errors are small as RMSEF =
0.0977, RMSEA = 0.4466 and RMSEM = 0.1416.

Finally, we perform a test with perturbed measurements to explore the impact of
the observation error on the parameter identification. Every electronic device has its
instrumental error, so testing with noisy observation is meaningful. We add Gaussian noise
to the observations (7), in particular the error in a single observation is not greater than 1%
with 95% confidence. The results, following the same steps, are given in Table 2.

Table 2. Simulation with perturbed observations and εppp = 8 × 10−4.

Parameter pi pi
0 p̌i

∣∣pi − p̌i
∣∣ ∣∣pi − p̌i

∣∣
pi

ri

α 0.018 0.02 0.0269 0.0089 0.4942 4 × 10−23

γ 0.12 0.10 0.0989 0.0211 0.1758 7 × 10−5

δ 0.571 0.50 0.3731 0.1979 0.3465 5 × 10−23

σ 0.1 0.20 0.1869 0.0869 0.8689 1 × 10−25

ω 0.95 1.00 0.8927 0.0573 0.0603 1 × 10−23

The outcomes are similar as the functional values are ΦF(p̌pp) = 0.2005, ΦA(p̌pp) = 3.6929
and ΦM(p̌pp) = 0.3403. The root mean squared errors are again small as RMSEF = 0.1027,
RMSEA = 0.4409 and RMSEM = 0.1338. All these demonstrate the robustness and the
applicability of the suggested approach with realistic data.

5. Conclusions

Honeybees are one of the most important species on Earth. Their steady colony
number decline is a major global problem. To fight this issue, professional honeybee
management must take well-designed precautionary measures. The obtained results in
this study help beekeepers to foresee the forward colony dynamics. It is crucial to have
the ability to simulate the future development and it is here where mathematical modeling
comes to the rescue. Then, adequate measures could be undertaken in order to prevent or
to revert a colony collapse.

The novelty of the paper is twofold. To begin with, we proposed a new mathematical
approach for modeling of honeybee colonies. We analyzed populations of immature
and adult bees as well as their honey production. In the context of honeybee colony
dynamics, we model the interaction between the different compartments, focusing on
parameter recovery. Secondly, the defined ill-posed problem is solved by means of the
adjoint equation optimization method. The reconstructed parameters are unobservable in
reality but vital for the colony population dynamics. The computational examples with
realistic data demonstrate how to apply the approach in practice.
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There are many ways to further develop this research. The considered model could be
extended to account for mites, viruses and other hazards. Temperature and seasonal effects
also worth considering. What is more, activating the hereditary property via fractional-
order derivatives almost always results in a better fit. A broader qualitative analysis to
better understand the complex phenomena, processing in the hive, is on the agenda as well.
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1. Introduction

The fixed-point theory of non-linear operators has been a rapidly growing area of
research [1–19]. The starting point of this theory is Banach’s classical result [20] on the
existence of a unique fixed point for a strict contraction. Since that seminal paper, many
developments have taken place in this field [18,19,21–30].

In our joint paper with D. Butnariu and S. Reich [3], it was established that if every
sequence of iterates of a non-expansive operator converges, then this convergence property
also takes place for every sequence of inexact iterates under the presence of summable
errors. In our subsequent joint paper with D. Butnariu and S. Reich [31], this result was
extended for inexact infinite products of non-expansive self-mappings of a complete metric
space. Here, we analyze the convergence of inexact infinite products of non-expansive
operators which take a non-empty, closed subset K of a complete metric space into the
space, taking into account summable computational errors and obtaining a generalization
of the result of [31] mentioned above. Namely, we show that for each pair of sequence of
points {xi}∞

i=0 and {yi}∞
i=0 generated by our inexact infinite products which belong to the

subset K, the distance between xi and yi tends to zero as i → ∞.

2. Preliminaries

Suppose that (X, ρ) is a complete metric space equipped with a metric ρ. For an
arbitrary element η ∈ X and an arbitrary set C ⊂ X, put

ρ(η, C) = inf{ρ(η, ξ) : ξ ∈ C}.

For any η ∈ X and any γ ∈ (0, ∞) put

B(η, γ) = {ξ ∈ X : ρ(η, ξ) ≤ γ}.

For any operator S : X → X, let S0y = y for every point y ∈ X.
In our joint paper with D. Butnariu and S. Reich [3], we investigated the influence of

computational errors on the asymptotic behavior of iterates of non-expansive operators
in complete metric spaces and established the following theorem (see also Theorem 2.72
of [16]).
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Theorem 1. Assume that A : X → X satisfies

ρ(Aξ, Aη) ≤ ρ(ξ, η) every pair of points ξ, η ∈ X,

F(A) is the collection of all fixed points of the operator A and for every point ξ ∈ X, the
sequence of iterates {Anξ}∞

n=1 converges (X, ρ).
Assume that {rn}∞

n=0 ⊂ (0, ∞) satisfies

∞

∑
n=0

rn < ∞

and that a sequence of inexact iterates {xn}∞
n=0 ⊂ X for every non-negative integer n satisfies

ρ(xn+1, Axn) ≤ rn.

Then, the sequence {xn}∞
n=1 converges to a point of F(A).

Theorem 1 has important applications and is an essential ingredient in the supe-
riorization and perturbation resilience of algorithms [21–23,25,26]. The superiorization
methodology works by analyzing the perturbation resilience of an iterative algorithm, and
then applying proactively such perturbations in order to make the perturbed algorithm
perform something useful in an addition to its original task. This methodology is illustrated
by the next discussion.

Assume that (X, ‖ · ‖) is a Banach space equipped with the norm ‖ · ‖, ρ(ξ, η) = ‖ξ − η‖
for all ξ, η ∈ X, an operator A : X → X satisfies

‖A(ξ)− A(η)‖ ≤ ‖ξ − η‖, ξ, η ∈ X

and that for any point η ∈ X, the sequence {Anη}∞
n=1 converges in the norm topology,

ξ0 ∈ X, {αt}∞
t=0 ⊂ (0, ∞) satisfies

∞

∑
t=0

αt < ∞,

{ut}∞
t=0 ⊂ X satisfies

sup{‖ut‖ : t = 0, 1, . . . } < ∞

and that for every non-negative integer t ≥ 0,

ξt+1 = A(ξt + αtut).

Theorem 1 implies that {ξk}∞
k=0 converges and its limit ξ satisfies A(ξ) = ξ. In this

case, the mapping A is called bounded perturbations resilient [22].
Now, assume that ξ0 ∈ X and the summable sequence of positive numbers {αt}∞

t=0
are given. We construct a sequence of iterates {ξt}∞

t=1 determined by the equation above.
Under an appropriate choice of {ut}∞

t=0, the sequence of inexact iterates {ξt}∞
t=1 has some

useful properties. Namely, the sequence { f (ξt)}∞
t=1 can be decreasing, where f is a given

objective function.
In our joint paper with D. Butnariu and S. Reich [31], we extended Theorem 1 for

inexact infinite products of non-expansive self-mappings of a complete metric space. In the
present paper, we investigate the convergence of inexact infinite products of non-expansive
mappings which take a non-empty, closed subset K of a complete metric space into the
space and obtain a generalization of the result of the work [31]. Namely, we show that
for each pair of sequence of points {xi}∞

i=0 and {yi}∞
i=0 generated by our inexact infinite

products which belong to the subset K, the distance between xi and yi tends to zero as
i → ∞.

The most important and well-known application of the results obtained in [3,31] and
here is the convex feasibility problem: to find a common point of a family of convex,
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closed subsets Ci, i = 1, . . . , m of a Hilbert space. The convex feasibility problems arises
in radiation planning and computer tomography. In order to solve this problem, one
usually uses infinite products of projections on the sets Ci, i = 1, . . . , m or more advanced
dynamic string-averaging projection methods [18,19,25]. Our results, as well as the results
of [3,31], explain stability effects arising in numerical experiments under the presence of
small computational errors [21].

3. A Convergence Result in a Metric Space

Assume that K is a non-empty, closed set in a complete metric space (X, ρ) equipped
with the metric ρ. Denote by A the collection of all operators S : K → X for which

ρ(S(η), S(ξ)) ≤ ρ(η, ξ), η, ξ ∈ K. (1)

Assume that R is a collection of maps T : {1, 2, . . . , } → A which have the following
two properties:

(a) For every map T ∈ R and every natural number s the map T̃(t) = T(t + s),
t ∈ {1, 2, . . . } belongs to R;

(b) For any map T ∈ R and every pair {ξt}∞
t=0, {ηt}∞

t=0 ⊂ K for which

ξt+1 = T(t + 1)(ξt), ηt+1 = T(t + 1)(ηt), t = 0, 1, . . .

the equation
lim
t→∞

ρ(ξt, ηt) = 0

is true.
We will prove the following result.

Theorem 2. Assume that T ∈ R, Δ > 0, {Δi}∞
i=1 ⊂ (0, ∞) satisfies

∞

∑
i=1

Δi < ∞ (2)

and that {xt}∞
t=0, {yt}∞

t=0 ⊂ K satisfy for every non-negative integer t,

ρ(xt+1, T(t + 1)(xt)) ≤ Δt+1, ρ(yt+1, T(t + 1)(yt)) ≤ Δt+1, (3)

and
B(xt, Δ), B(yt, Δ) ⊂ K. (4)

Then,
lim
t→∞

ρ(xt, yt) = 0.

4. Proof of Theorem 2

We may assume without loss of generality that

Δ < 1.

Let
ε ∈ (0, Δ). (5)

In view of Equation (2), there is an integer n0 ≥ 1 for which

∞

∑
j=n0

Δj < ε/9. (6)

Set
x̃n0 = xn0 (7)
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and
x̃n0+1 = T(n0 + 1)(x̃n0). (8)

By (3), (7) and (8),

ρ(x̃n0+1, xn0+1) = ρ(xn0+1, T(n0 + 1)(xn0)) ≤ Δn0+1. (9)

Equations (4), (6) and (9) imply that

x̃n0+1 ∈ K.

Therefore, we can define

x̃n0+2 = T(n0 + 2)(x̃n0+1).

By induction, we define iterates x̃j for all natural numbers j > n0. If j > n0 is an
integer and x̃j ∈ K was defined, then we set

x̃j+1 = T(j + 1)(x̃j). (10)

Assume that m > n0 is an integer and that x̃i ∈ K, i = n0, . . . , m are defined and that
for each i ∈ {n0 + 1, . . . , m},

ρ(x̃i, xi) ≤
i

∑
j=n0+1

Δj. (11)

(Clearly, by Equation (9), our assumption is true for m = n0 + 1.) Equations (5), (6)
and (11) imply that

ρ(xm, x̃m) ≤
∞

∑
j=n0+1

Δj < ε/8 < Δ/4. (12)

By Equations (4) and (12), we have

x̃m ∈ K

and then
x̃m+1 = T(m + 1)x̃m

is defined.
Equations (1), (3) and (11) imply that

ρ(x̃m+1, xm+1) ≤ ρ(T(m + 1)(x̃m), T(m + 1)(xm)) + ρ(T(m + 1)(xm), xm+1)
≤ ρ(x̃m, xm) + Δm+1

≤ ∑m
j=n0+1 Δj + Δm+1 = ∑m+1

j=n0+1 Δj.
(13)

In view of (13), Equation (11) is true for i = m + 1. By (4)–(6) and (13),

ρ(x̃m+1, xm+1) < ε/8 < Δ/8.

and
x̃m+1 ∈ K.

Thus, the assumption which was made for m is true for m + 1 as well. By induction,
we showed that x̃i ∈ K is defined for all integers i ≥ n0 and (11) is true for all integers
i ≥ n0 + 1. Set

ỹn0 = yn0

and if an integer i ≥ n0 and ỹi ∈ K is defined, then set

ỹi+1 = T(i + 1)(ỹi).
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Arguing as before, we can show that for any natural number i ≥ n0, ỹi ∈ K is defined
and that

ρ(ỹi, yi) ≤
i

∑
j=n0+1

Δj. (14)

Properties (a) and (b) imply that

lim
i→∞

ρ(x̃i, ỹi) = 0 (15)

By Equation (15), there is a natural number n1 ≥ n0 such that for any natural number
i ≥ n1, we have

ρ(x̃i, ỹi) ≤ ε/4. (16)

Equations (8), (11), (14) and (16) imply that for any natural number i ≥ n1,

ρ(xi, yi) ≤ ρ(xi, x̃i) + ρ(x̃i, ỹi) + ρ(ỹi, yi)

≤ 2
i

∑
j=n0+1

Δj + ε/4 ≤ ε/8 + ε/8 + ε/4.

Theorem 2 is proved.

5. A Weak Convergence Result

Assume that K is a non-empty, closed set in a Banach space (E, ‖ · ‖) equipped with the
norm ‖ · ‖ with a dual space (E∗, ‖ · ‖∗). For each ξ, η ∈ E, put ρ(ξ, η) = ‖ξ − η‖. Denote
by A the collection of all maps S : K → E, for which

‖S(η)− A(ξ)‖ ≤ ‖η − ξ‖, η, ξ ∈ K. (17)

Assume that R is a collection of maps T : {1, 2, . . . , ∞} → A which have the following
two properties:

(a) For every map T ∈ R and every natural number s, the map T̃(t) = T(t + s),
t ∈ {1, 2, . . . } belongs to R;

(b) For any map T ∈ R and each {xt}∞
t=0, {yt}∞

t=0 ⊂ K which satisfies

xt+1 = T(t + 1)(xt), yt+1 = T(t + 1)(yt), t = 0, 1, . . . ,

the sequence {xt − yt}∞
t=0 converges weakly in X to the zero.

We will prove the following result.

Theorem 3. Assume that T ∈ R, Δ > 0, {Δj}∞
j=1 ⊂ (0, ∞) satisfies

∞

∑
j=1

Δj < ∞ (18)

and that {xt}∞
t=0, {yt}∞

t=0 ⊂ K satisfy for every non-negative integer t,

‖xt+1 − T(t + 1)(xt)‖ ≤ Δt+1, ‖yt+1 − T(t + 1)(yt)‖ ≤ Δt+1, (19)

and
B(xt, Δ), B(yt, Δ) ⊂ K. (20)

Then the sequence {xt − yt}∞
t=0 converges weakly in X to the zero.
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6. Proof of Theorem 3

We may assume without loss of generality that

Δ < 1.

Let f ∈ E∗ satisfy
‖ f ‖∗ ≤ 1, ε ∈ (0, Δ). (21)

In order to prove the theorem, it is sufficient to show that

lim
i→∞

f (yi − xi) = 0.

By (18), there is n0 ∈ {1, 2, . . . }, for which

∞

∑
i=n0

Δi < ε/8. (22)

Set
x̃n0 = xn0 (23)

and
x̃n0+1 = T(n0 + 1)(x̃n0). (24)

By (19)–(24),
‖x̃n0+1 − xn0+1‖ ≤ Δn0+1, x̃n0+1 ∈ K. (25)

By induction, we define x̃t ∈ K for every natural number t > n0. If i > n0 is an integer
and x̃i ∈ K was defined, then we set

x̃i+1 = T(i + 1)(x̃i). (26)

Assume that m > n0 is an integer and that x̃i ∈ K; i = n0, . . . , m are defined using (26)
and for each i ∈ {n0 + 1, . . . , m},

‖x̃i − xi‖ ≤
i

∑
j=n0+1

Δj. (27)

(It should be mentioned that by (25) our assumption is valid for m = n0 + 1.) By (27),
we have

‖xm − x̃m‖ ≤
m

∑
j=n0+1

Δj. (28)

Set
x̃m+1 = T(m + 1)(x̃m).

Equations (17), (19), (28) and (29) imply that

‖x̃m+1 − xm+1‖ ≤ ‖T(m + 1)(x̃m)− T(m + 1)(xm)‖+ ‖T(m + 1)(xm)− xm+1‖
≤ ‖x̃m − xm‖+ Δm+1

≤ ∑m
j=n0+1 Δj + Δm+1 = ∑m+1

j=n0+1 Δj.
(29)

In view of (29), Equation (27) is true for i = m + 1. By (20)–(22) and (29),

‖x̃m+1 − xm+1‖ < ε/8 < Δ/8.

and
x̃m+1 ∈ K.
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Thus, the assumption which was made for m is true for m + 1 as well. By induction,
we showed that x̃i ∈ K is defined for all integers i ≥ n0 by (26) and (27) holds for all
integers i ≥ n0 + 1. Set

ỹn0 = yn0 (30)

and if an integer i ≥ n0 and ỹi ∈ K is defined, then set

ỹi+1 = T(i + 1)(ỹi). (31)

Arguing as before, we can show that for every integer i ≥ n0 + 1, ỹi ∈ K is defined
and that

‖ỹi − yi‖ ≤
i

∑
j=n0+1

Δj. (32)

Properties (a) and (b) and Equations (23), (26), (30) and (31) imply that

x̃i − ỹi → 0 weakly in E as i → ∞. (33)

In order to complete the proof of our result, it is sufficient to show that the inequality

| f (xi − yi)| < ε

is true for all sufficiently large natural numbers i ≥ 0. By (33),

lim
i→∞

f (ỹi − x̃i) = 0.

Thus, there is a natural number n1 > n0 such that for every natural number i ≥ n1,

| f (x̃i − ỹi)| ≤ ε/8. (34)

Following Equations (22), (27), (32) and (34), for every natural number i ≥ n1,

| f (xi − yi)| ≤ | f (xi − x̃i)|+ | f (x̃i − ỹi)|+ | f (ỹi − yi)|

≤ ‖ f ‖∗‖xi − x̃i‖+ ε/8 + ‖ f ‖∗‖yi − ỹi‖

≤ 2
∞

∑
j=n0+1

Δj + ε/8 < ε.

Theorem 3 is proved.

7. Conclusions

We analyze the asymptotic behavior of infinite products of non-linear operators which
take a non-empty, closed subset K of a complete metric space into the space, taking into
account summable computational errors and obtaining a generalization of the result of [31].
More precisely, we show that for each pair of sequence of points {xi}∞

i=0 and {yi}∞
i=0

generated by our inexact infinite products which belong to the subset K, the distance
between xi and yi tends to zero as i → ∞. The most important and well-known application
of the results obtained in [3,31] and here is the convex feasibility problem: to find a common
point of a family of convex, closed subsets Ci, i = 1, . . . , m of a Hilbert space. The convex
feasibility problems arises in radiation planning and computer tomography. In order
to solve this problem, one usually uses infinite products of projections on the sets Ci,
i = 1, . . . , m or more advanced dynamic string-averaging projection methods [18,19,25].
Our results as well as the results of [3,31] explain stability effects arising in numerical
experiments under the presence of small computational errors [21].
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1. Introduction

In 2009, Suzuki [1] generalized the Banach contraction principle to compact metric
space by introducing the notion of a contractive map T : U → U, where (U, �) is compact
metric space, such that

∀u, v ∈ U(u 
= v),
1
2

�(u, Tu) < �(u, v) implies �(Tu, Tv) < �(u, v).

Berinde [2] introduced the notion of almost contractions:
A map T : U → U, where (U, �) is a metric space, is called almost contraction provided

that it satisfies
�(Tu, Tv) ≤ q�(u, v) + K�(v, Tu),

where q ∈ (0, 1) and K ≥ 0.
Berinde [2] generalized the Banach contraction principle by proving the existence of

fixed points for almost contractions defined on complete metric spaces.
On the other hand, Branciari [3] gave a generalization of the notion of metric spaces,

which is called Branciari distance spaces, by replacing triangle inequality with trapezoidal
inequality, and he gave an extension of Banach contraction principle to Branciari distance
spaces. He used the following to obtain the main results:

(1) each open ball is open set;
(2) each Branciari distance is continuous in each the coordinates;
(3) each topology induced by Branciari distance spaces is a Hausdorff topological space.

Sarma et al. showed that (1), (2), and (3) are false (see example 1.1 in [4]), and
they extended the Banach contraction principle to a Branciari distance space under the
assumption of Hausdorffness of the space (more specifically, the uniqueness of the limits
of the converging sequences). Since then, some authors (for example, [5–7]) obtained
fixed-point results in Branciari distance spaces under the assumption that the spaces are
Hausdorff and/or the Branciari distances are continuous.

In particular, Kadelburg and Radenivić [8] investigated the existence of fixed points in
Branciari distance spaces without the two conditions:

· Hausdorffness of Branciari distance spaces;
· Continuity of the Branciari distances.
After that, many authors ([4–6,9–26] and references therein) extended fixed-point

results from metric spaces to Branciari distance spaces.
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Given function ϑ from (0,∞) into (1, ∞), we consider the following conditions:

(ϑ1) ϑ is non-decreasing;
(ϑ2) for any sequence {sn} ⊂ (0, ∞),

lim
n→∞

ϑ(sn) = 1 ⇔ lim
n→∞

sn = 0;

(ϑ3) there are q ∈ (0, 1) and k ∈ (0, ∞), such that

lim
s→0+

ϑ(s)− 1
sq = k

(ϑ4) ϑ is continuous on (0, ∞).

Jleli and Samet [22] obtained a generalization of the Banach contraction principle in
Branciari distance spaces by introducing the concept of ϑ contractions, where ϑ : (0, ∞) →
(1, ∞) satisfies conditions (ϑ1), (ϑ2) and (ϑ3). Ahmad et al. [27] generalized the result of
Jleli and Samet [22] to metric spaces by applying conditions (ϑ1), (ϑ2), and (ϑ4), and they
introduced the notion of Suzuki–Berinde-type ϑ contractions and investigated the existence
of fixed points for such contractions.

Very recently, Cho [24] introduced the concept of L contractions, which is a more
generalized concept than some existing notions of contractions. He proved that every L
contraction mapping defined on complete Branciari distance spaces possesses only one
fixed point.

Afterward, the authors [23,28–33] gave generalizations of the result of [24].
In the paper, we introduce the new two concepts of Suzuki-type Lγ contractions

and Suzuki–Berinde-type Lγ contractions, which are a generalization of the concept of L
contractions, and we establish two new fixed point theorems for these two contractions in
the setting of Branciari distance spaces. We give examples to support main theorem.

Let ξ : [1, ∞)× [1, ∞) → (−∞, ∞) be a function.
Consider the following conditions:

(ξ1) ξ(1, 1) = 1;
(ξ2) ξ(t, s) < s

t ∀s, t > 1;

(ξ3) ξ(t, s) < γ(s)
γ(t) ∀s, t > 1, where γ is a non-decreasing self-mapping on [1, ∞), satisfying

γ−1({1}) = 1;
(ξ4) for any sequence {tm}, {sm} ⊂ (1, ∞) with tm ≤ sm, m = 1, 2, 3, · · · ,

lim
m→∞

tm = lim
m→∞

sm > 1 ⇒ lim
m→∞

sup ξ(tm, sm) < 1.

A function ξ : [1, ∞)× [1, ∞) → (−∞, ∞) is said to be L-simulation [24] whenever the
conditions (ξ1), (ξ2), and (ξ4) are satisfied.

Note that ξ(t, t) < 1 ∀t > 1.

We say that ξ : [1, ∞) × [1, ∞) → (−∞, ∞) is an Lγ-simulation provided that the
condition (ξ1), (ξ3) and (ξ4) hold.

Remark 1. If γ(t) = t ∀t ≥ 1, then Lγ-simulation is L-simulation.

Denote L by the class of all L-simulation functions ξ : [1, ∞)× [1, ∞) → (−∞, ∞), and
Lγ by the collection of all Lγ-simulation functions ξ : [1, ∞)× [1, ∞) → (−∞, ∞).

Example 1. Let ξb, ξw, ξc : [1, ∞)× [1, ∞) → (−∞, ∞) be functions defined as follows, respectively:

(i) ξb(t, s) = [γ(s)]r

γ(t) for all t, s ≥ 1, where r ∈ (0, 1);
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(ii) ξw(t, s) = γ(s)
γ(t)φ(γ(s)) ∀t, s ≥ 1, where φ is a non-decreasing and lower semi-continuous

self-mapping on [1, ∞), satisfying φ−1({1}) = 1;

(iii) ξc(t, s) =

⎧⎪⎪⎨⎪⎪⎩
1 if (s, t) = (1, 1),
γ(s)
2γ(t) if s < t,
[γ(s)]λ

γ(t) otherwise,
∀s, t ≥ 1, where λ ∈ (0, 1).
Then, ξb, ξw, ξc ∈ Lγ.
Note that if γ(t) = t ∀t ≥ 1, then ξb, ξw, ξc ∈ L(see [24]).

Example 2. Let ξ1, ξ2, ξ3 : [1, ∞)× [1, ∞) → (−∞, ∞) be functions defined as follows:

(i) ξ1(t, s) = γ(ψ(s))
γ(ϕ(t)) , ∀t, s ≥ 1, where ψ and ϕ are continuous self-mappings on [1, ∞),

satisfying ψ(t) = ϕ(t) = 1 ⇔ t = 1, ψ(t) < t ≤ ϕ(t), ∀t > 1 and ϕ is an increasing
mapping;

(ii) ξ2(t, s) = γ(η(s))
γ(t) , ∀s, t ≥ 1, where η is a upper semi-continuous self-mapping on [1, ∞),

satisfying η(t) < t, ∀t > 1 and η(t) = 1 ⇔ t = 1;
(iii) ξ3(t, s) = γ(s)

γ(
∫ t

0 φ(u)du)
, ∀s, t ≥ 1, where φ is a self-mapping on [0, ∞), satisfying ∀t ≥ 1,∫ t

0 φ(s)ds exists and
∫ t

0 φ(s)ds > t, and
∫ 1

0 φ(s)ds = 1.
Then, ξ1, ξ2, ξ3 ∈ Lγ.
Note that if γ(t) = t ∀t ≥ 1, then ξ1, ξ2, ξ3 ∈ L (see [30]).

The following definitions are in [3].

A map � : U × U → [0, ∞), where U is a non-empty set, is said to be Branciari distance
on U if the following conditions are satisfied:

for all u, v ∈ U and for z, w ∈ U − {u, v}
(�1) �(u, v) = 0 ⇔ u = v;
(�2) �(u, v) = �(v, u);
(�3) �(u, v) ≤ �(u, z) + �(z, w) + �(w, v) (trapezoidal inequality).

The pairs (U, �) is said to be a Branciari distance space.
Note that Branciari distance space (U, �) can not reduce the standard metric space and

it does not have a topology which is compatible with � (e.g., [34] and Remark 4 (3)). For
such reasons, we call (U, �) a Branciari distance space, not a rectangular metric space or a
generalized metric space.

Remark 2. If the triangle inequality is satisfied, the trapezoidal inequality is satisfied. However,
the converse is not true. Thus, the class of Branciari distance spaces includes metric spaces.

The notion of convergence in Branciari distance spaces is similar to that of metric
spaces (e.g., [3]).

Let (U, �) be a Branciari distance space and {un} ⊂ U be a sequence and u ∈ U. Then,
we say that

(·) {un} converges to u, whenever limn→∞ �(un, u) = 0;
(·) {un} is a Cauchy sequence, when limn,m→∞ �(un, um) = 0;
(·) (U, �) is complete if every Cauchy sequence in U converges to some point in U.

Let (U, �) be a Branciari distance space, and let τ� be the topology on U, such that

U − C ∈ τ� ⇐⇒ ∀{un} ⊂ C, lim
n→∞

�(un, u) = 0 implies u ∈ C. (1)

The topology τ� induced by (1) is called a sequential topology.
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A map T : U → U is said to be continuous at u ∈ U if, and only if, ∀V ∈ τ� contains
Tu, and there exists W ∈ τ� containing u, such that TW ⊂ V (see [24]).

We say that T is continuous, whenever it is continuous at each point u ∈ U.

Remark 3. A map T : U → U, where (U, �) is a Branciari distance space, is continuous if, and
only if, the following condition holds:

lim
n→∞

�(Tun, Tu) = 0, whenever lim
n→∞

�(un, u) = 0 for any sequence {un} ⊂ U.

Let us recall the following example in [4] where we can understand the characteristics
of the branchiari distance spaces.

Example 3. Let U = {0, 2} ∪ { 1
n : n ∈ N}, and define a map � : U × U → [0, ∞) by

�(u, v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, (u = v),
1, (u, v ∈ {0, 2}),
1, (u, v ∈ { 1

n : n ∈ N}),
1
n , (u ∈ {0, 2} and v ∈ { 1

n : n ∈ N}).

Then, (U, �) is a Branciari distance space.

We have the following.

(i) Limit is not unique.
We infer that

lim
n→∞

�(
1
n

, 0) = lim
n→∞

1
n
= 0 and lim

n→∞
�(

1
n

, 2) = lim
n→∞

1
n
= 0. (2)

Hence, the sequence { 1
n} is convergent to 0 and 2, and the limit is not unique.

(ii) The convergent sequence { 1
n} is not a Cauchy sequence.

lim
n,m→∞

�(
1
n

,
1
m
) 
= 0, because �(

1
n

,
1
m
) = 1.

Hence, { 1
n} is not a Cauchy sequence.

(iii) limn→∞ �( 1
n , 1

2 ) 
= �(0, 1
2 ).

(iv) The open ball with center 1
3 and radius 2

3 is the set B( 1
3 , 2

3 ) = { 1
3 , 0, 2}. There is no r > 0,

such that
B(0, r) ⊂ B(

1
3

,
2
3
). (3)

Remark 4. (i) It folows from (2) that the sequential topology on U is not a Hausdorff space.
(ii) The Branciari distance � is not continuous with respect to the sequential topology on U. In

fact, let y ∈ U be a fixed point, such that y 
= 0 and y 
= 2.
We show that

lim
n→∞

�(
1
n

, 2) = 0.

However,

lim
n→∞

�(
1
n

, y) 
= �(2, y).

Hence, �(·, y) is not continuous with respect to the sequential topology on U.
(iii) From (3) the family {B(u, r) : u, r > 0}, where B(u, r) = {v : �(u, v) < r}, is not a basis

for any topology on (U, �), and so there is no topology which is compatible with the Branciari
distance �.

(iv) It is known that the sequential topology is not compatible with the Branciari distance �.
(v) There is no Cauchy sequence, so it is a complete Branciari distance space.
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Note that Example 3 shows that the Branciari distance space is much weaker in
mathematical structure than the metric space. As we have seen in the example above and
Remark 4, there are some mathematical drawbacks to the Branciari distance. Nevertheless,
it is attractive for researchers to study the existence of fixed points in this space without
additional conditions such as the uniqueness of the limit of the converging sequence in
Branciari distance spaces or/and continuity of a Branciari distance with respect to the
sequential topology on a Branciari distance space.

Lemma 1 ([35]). Let (U, �) be a Branciari distance space, {un} ⊂ U be a Cauchy sequence and
u, v ∈ U. If there is a positive integer n0, such that

(i) un 
= um ∀n, m > n0;
(ii) un 
= u ∀n > n0;
(iii) un 
= v ∀n > n0;
(iv) limn→∞ �(un, u) = limn→∞ �(un, v),

then, u = v.

From now on, let ϕ be a function from [0, ∞)× [0, ∞) into (−∞, ∞), such that

ϕ(s, t) ≤ 1
2

s − t, ∀s, t ∈ [0, ∞).

Note that if 1
2 s < t ∀s, t ∈ [0, ∞), then the following conditions are satisfied.

(i) ϕ(s, t) < 0;
(ii) ϕ(min{s, u}, t) < 0.

2. Fixed-Point Results

2.1. Fixed Points for Suzuki-Type Lγ Contractions

Let (U, �) be a Branciari distance space.
A map T from U into itself is Suzuk-type Lγ contraction with respect to ξ ∈ Lγ provided

that it satisfies the condition:
∀u, v ∈ U with �(Tu, Tv) > 0

ϕ(min{�(u, Tu), �(v, Tu)}, �(u, v)) < 0

⇒ ξ(ϑ((Tu, Tv)), ϑ(�(u, v))) ≥ 1 (4)

where ϑ : (0, ∞) → (1, ∞) is a function.

Lemma 2. Let l > 0, and let {tn} ⊂ (l, ∞) be a sequence, such that

tn ≤ tn−1 ∀n = 1, 2, 3, · · · , and lim
n→∞

tn = l.

If ϑ : (0, ∞) → (1, ∞) is non-decreasing, then we show that

lim
n→∞

ϑ(tn) = lim
n→∞

ϑ(tn−1) = lim
t→l+

ϑ(t) > 1.

Proof. Since ϑ is non-decreasing and {tn} is non-increasing,

lim
t→l+

ϑ(t) = lim
n→∞

ϑ(tn) ≤ lim
n→∞

ϑ(tn−1) ≤ lim
t→l+

ϑ(t).

Thus, we established that limn→∞ ϑ(tn) = limn→∞ ϑ(tn−1) = limt→l+ ϑ(t) > ϑ(l) >
1.

We now establish main theorem.
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Theorem 1. Let (U, �) be a complete Branciari distance space. Suppose that mapping T from U
into itself is a Suzuki-type Lγ contraction with respect to ξ ∈ Lγ. If ϑ is non-decreasing, then T
possesses only one fixed point, and for every initial point u0 ∈ U, the Picard sequence {Tnu0} is
convergent to the fixed point.

Proof. Firstly, when a fixed point exists, let us show that it is unique.
Assume that w = Tw and u = Tu, such that u 
= w.
Then, �(w, u) > 0 and ϕ(min{�(w, Tw), �(u, Tw)}, �(w, u))
= ϕ(min{0, �(u, w)}, �(u, w)) ≤ 1

2 min{0, �(u, w)} − �(w, u) < 0.
From (4), we have

1 ≤ξ(ϑ(�(Tw, Tu)), ϑ(�(w, u)))

=ξ(ϑ(�(w, u)), ϑ(�(w, u))) < 1

which is a contradiction.
Hence, w = u, and the fixed point of T is unique.
Secondly, let us show the existence of fixed points.
Let u0 ∈ U, and let {un} ⊂ U be a sequence defined by un = Tun−1 = Tnu0, ∀n ∈ N.
If un0 = un0+1 for some n0 ∈ N, then un0 = Tun0 , and the proof is completed.
Assume that

un−1 
= un ∀n ∈ N. (5)

We infer that

ϕ(min{�(un−1, Tun−1), �(un, Tun−1)}, �(un−1, un))

=ϕ(min{�(un−1, un), �(un, un)}, �(un−1, un))

=
1
2

min{�(un−1, un), 0} − �(un−1, un) < 0. (6)

It follows from (4), (5), and (6) that for all n ∈ N

1 ≤ξ(ϑ(�(Tun−1, Tun)), ϑ(�(un−1, un)))

=ξ(ϑ(�(un, un+1)), ϑ(�(un−1, un)))

<
γ(ϑ(�(un−1, un)))

γ(ϑ(�(un, un+1)))
. (7)

Consequently, we show that

γ(ϑ(�(un, un+1))) < γ(ϑ(�(un−1, un))) ∀n ∈ N

which yields
ϑ(�(un, un+1)) < ϑ(�(un−1, un)) ∀n ∈ N.

Thus,
�(un, un+1) < �(un−1, un) ∀n ∈ N. (8)

So, the sequence {�(un−1, un)} is decreasing, and hence there is an l ≥ 0, such that

lim
n→∞

�(un−1, un) = l.

We prove that l = 0.
Assume that l > 0.
Let tn−1 = ϑ(�(un−1, un)) and tn = ϑ(�(un, un+1)) ∀n ∈ N.
Then, tn < tn−1 ∀n ∈ N.
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By applying Lemma 2,

lim
n→∞

tn−1 = lim
n→∞

tn = lim
t→l+

θ(t) > 1.

By applying (ξ3), we have

1 ≤ lim
n→∞

sup ξ(tn, tn−1) < 1.

This is a contradiction.
Thus,

lim
n→∞

�(un−1, un) = 0. (9)

Now, we show that {un} is a Cauchy sequence.
On the contrary, assume that {un} is not a Cauchy sequence.
Then, there is an ε > 0 for which we can find subsequences {um(j)} and {un(j)} of

{un}, such that m(j) is the smallest index for which

m(j) > n(j) > j, �(um(j), un(j)) ≥ ε and �(um(j)−1, un(j)) < ε. (10)

From (10), we infer that

ε

≤�(um(j), un(j))

≤�(un(j), um(j)−2) + �(um(j)−2, um(j)−1) + �(um(j)−1, um(j))

<ε + �(um(j)−2, um(j)−1) + �(um(j)−1, xm(j)). (11)

By letting j → ∞ in (11), we have

lim
n→∞

�(um(j), un(j)) = ε.

On the other hand, we obtain

�(um(j), un(j)) ≤ �(un(j), un(j)+1) + �(un(j)+1, um(j)+1) + �(um(j)+1, um(j))

and
�(un(j)+1, um(j)+1) ≤ �(un(j)+1, un(j)) + �(un(j), um(j)) + �(um(j), um(j)+1).

Thus,
lim
j→∞

�(un(j)+1, um(j)+1) = ε.

It follows from (9) that there exists N1 ∈ N, such that

�(un(j), un(j)+1) < ε, ∀j > N1.

Hence, we infer that ∀k > N1

1
2

min{�(un(j), Tun(j)), �(um(j), Tun(j))}

=
1
2

min{�(un(j), un(j)+1), �(um(j), un(j)+1)

<ε

≤d(un(j), um(j))

which implies

ϕ(min{�(un(j), Tun(j)), �(um(j), Tun(j)+1)}, �(un(j), um(j))) < 0, ∀j > N1.
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It follows from (4) that ∀j > N1

1 ≤ξ(ϑ(�(Tun(j), Tum(j))), ϑ(�(un(j), um(j))))

=ξ(ϑ(�(un(j)+1, um(j)+1)), ϑ(�(un(j), um(j)))

<
γ(ϑ(�(un(j), um(j))))

γ(ϑ(�(un(j)+1, um(j)+1)))

which implies
γ(ϑ(�(un(j)+1, um(j)+1))) < γ(ϑ(�(un(j), um(j))))

and so
ϑ(�(un(j)+1, um(j)+1)) < ϑ(�(un(j), um(j))) ∀j > N1.

Put
tj = ϑ(�(un(j)+1, um(j)+1)) and tj−1 = ϑ(�(un(j), um(j)))

Then, we have
tj < tj−1 ∀j > N1

and
lim
j→∞

�(un(j)+1, um(j)+1) = lim
j→∞

�(un(j), um(j)) = ε.

By Lemma 2,
lim
j→∞

tj = lim
j→∞

tj−1 = lim
t→ε+

ϑ(t) > 1.

From (ξ3), we have
1 ≤ lim

j→∞
sup ξ(tj, tj−1) < 1

which leads to a contradiction.
Thus, {un} is a Cauchy sequence.
It follows from completeness of U that there is u ∈ U, such that

lim
n→∞

�(un, u) = 0. (12)

We may assume that there is m0 ∈ N, such that

�(un+1, u) < �(un, u) , ∀n > m0.

We infer that ∀n > m0

ϕ(min{�(un, Tun), �(u, Tun)}, �(un, u))

=ϕ(min{�(un, un+1), �(u, un+1)}, �(un, u))

≤1
2

min{�(un, un+1), �(u, un+1)} − �(un, u)

<0.

Applying (4), we establish that

1 ≤ ξ(ϑ(�(Tun, Tu)), ϑ(�(un, u))) <
γ(ϑ(�(un, u)))

γ(ϑ(�(Tun, Tu)))
, ∀n ≥ m0.

which implies
γ(θ(�(Tun, Tu))) < γ(θ(�(un, u))), ∀n ≥ m0.

Hence,
�(Tun, Tu) < �(un, u), ∀n ≥ m0
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and hence,
lim

n→∞
�(un+1, Tu) = 0. (13)

Applying Lemma 1 with (12) and (13), we have u = Tu.

The following example interprets Theorem 1.

Example 4. Let U = {1, 2, 3, 4}, and let us define � : U × U → [0, ∞) as follows:

�(1, 2) = �(2, 1) = 3,

�(2, 3) = �(3, 2) = �(1, 3) = �(3, 1) = 1,

�(1, 4) = �(4, 1) = �(2, 4) = �(4, 2) = �(3, 4) = �(4, 3) = 4,

�(u, u) = 0 ∀u ∈ U.

Then, (U, �) is a complete Branciari distance space, but not a metric space (see [6]).
Define a map T : U → U by

Tu =

⎧⎪⎨⎪⎩
2 (u = 1, 2),
4 (u = 3),
3 (u = 4).

Let ϑ : (0, ∞) → (1, ∞) be a function defined by

ϑ(t) =

{
e
√

t (0 < t ≤ 1),
3 (t > 1).

Then, ϑ is non-decreasing.
We prove that T is a Lγ contraction with respect to ξ2, where ξ2(t, s) = γ(η(s))

γ(t) ,

η(s) = 3
2 s − 1

2 ∀s ≥ 1, γ(t) = 1
2 t + 1

2 ∀t ≥ 1.
We have

�(Tu, Tv) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(2, 2) = 0 (u = 1, v = 2),
�(2, 4) = 4 (u = 1, v = 3),
�(2, 3) = 1 (u = 1, v = 4),
�(2, 4) = 4 (u = 2, v = 3),
�(2, 3) = 1 (u = 2, v = 4),
�(3, 4) = 4 (u = 3, v = 4)

so

�(Tu, Tv) > 0 ⇔ (u = 1, v = 3), (u = 1, v = 4), (u = 2, v = 3), (u = 2, v = 4), (u = 3, v = 4).

We establish that

�(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 (u = 1, v = 3),
4 (u = 1, v = 4),
1 (u = 2, v = 3),
4 (u = 2, v = 4),
4 (u = 3, v = 4)
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and

m(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 (u = 1, v = 3),
3 (u = 1, v = 4),
0 (u = 2, v = 3),
0 (u = 2, v = 4),
1 (u = 3, v = 4).

We infer that for all u, v ∈ U with �(Tu, Tv) > 0,

ϕ(m(u, v), �(u, v)) ≤ 1
2

m(u, v)− �(u, v) < 0.

Thus, we have

ξ2(ϑ(d(Tu, Tv)), ϑ(�(u, v))

=
γ(η(ϑ(�(u, v)))
γ(ϑ(�(Tu, Tv)))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ(η(ϑ(1)))
γ(ϑ(4)) (u = 1, v = 3),

γ(η(ϑ(4)))
γ(ϑ(1)) (u = 1, v = 4),

γ(η(ϑ(1)))
γ(ϑ(4)) (u = 2, v = 3),

γ(η(ϑ(4)))
γ(ϑ(1)) (u = 2, v = 4),

γ(η(ϑ(4)))
γ(ϑ(4)) (u = 3, v = 4)

which yields

ξ2(ϑ(�(Tu, Tv)), ϑ(�(u, v))

≥γ(η(ϑ(1)))
γ(ϑ(4))

=
1
2 (

3
2 e − 1

2 ) +
1
2

1
2 3 + 1

2
> 1, because

3
2

e − 1
2
− 3 =

3
2
(e − 7

3
) > 0.

Hence, T is a Lγ contraction with respect to ξ2. Thus, all hypotheses of Theorem 1 are satisfied, and
T possesses a unique fixed point u = 2.

Note that T is not L contraction [24] with respect to ξ2(t, s) = η(s)
t . In fact, for u = 3, v = 4,

we establish that

ξ2(ϑ(�(Tu, Tv)), ϑ(�(u, v)) =
η(ϑ(4))

ϑ(4)
<

ϑ(4)
ϑ(4)

= 1.

Note that Banach condition principle is not satisfied. In fact, if u = 3, v = 1, then

�(T3, T2) ≤ k�(3, 2), k ∈ (0, 1)

which implies
k ≥ 4.

Furthermore, the ϑ contraction condition [22] is not satisfied.
Note that ϑ satisfies conditions (ϑ1), (ϑ2) and (ϑ3).
If for u = 3, v = 2

ϑ(�(T3, T2)) ≤ [ϑ(�(3, 2))]k, k ∈ (0, 1)

then
ϑ(4) ≤ [ϑ(1)]k < ϑ(1)
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which is a contradiction.
Hence, T is not a ϑ contraction.

The following example shows that in Theorem 1, the condition that the function ϑ is
non-decreasing cannot be dropped.

Example 5. Let U = {0, 2} ∪ { 1
n : n = 3, 4, 5, · · · }, and let � : U × U → [0, ∞) be a map

defined by

�(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 (u = v),
0 (u, v ∈ {0, 2}),
0 (u, v ∈ { 1

n : n = 3, 4, 5, · · · }),
1
n (u ∈ {0, 2} and v ∈ { 1

n : n = 3, 4, 5, · · · })
1
n (u ∈ { 1

n : n = 3, 4, 5, · · · } and v ∈ {0, 2}).
Then, (U, �) is a complete Branciari distance space.
Define a mapping T : U → U by

Tu =

⎧⎪⎨⎪⎩
2 (u = 0),
0 (u = 2),

1
n+1 (u = 1

n , n = 3, 4, 5, · · · ).

Let ϑ : (0, ∞) → (1, ∞) be a function defined by

ϑ(t) =
1
t
+ 1

and let
η(s) =

3
2

s − 1
2
∀s ≥ 1, γ(t) =

1
2

t +
1
2
∀t ≥ 1.

We infer that

ϕ(min{�(u, Tu), �(v, Tu)}, �(u, v)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 (u = 0, v = 2),
1
2

1
n+1 − 1

n (u = 0, v = 1
n , n = 3, 4, 5, · · · ),

1
2

1
n+1 − 1

n (u = 2, v = 1
n , n = 3, 4, 5, · · · ),

0 (u = 1
n , v = 1

m , m > n, n = 3, 4, 5, · · · ),

and we show that

�(Tu, Tv) =

{
1
n (u = 0, v = 1

n , n = 3, 4, 5, · · · ),
1
n (u = 2, v = 1

n , n = 3, 4, 5, · · · ).
Thus, the following is satisfied:

�(Tu, Tv) > 0 and ϕ(min{�(u, Tu), �(v, Tu)}, �(u, v)) < 0 ⇔ (u = 0, v =
1
n
) and (u = 2, v =

1
n
)

where n = 3, 4, 5, · · · .
Thus, we obtain that for (u = 0, v = 1

n ), (u = 2, v = 1
n )

ξ2(ϑ(�(Tu, Tv)), ϑ(�(u, v))

=
γ(η(ϑ(�(u, v)))
γ(ϑ(�(Tu, Tv)))

=
γ(η(ϑ( 1

n )))

γ(ϑ( 1
n+1 ))

=
3n + 4
2n + 6

> 1, where n = 3, 4, 5, · · · .
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Thus, T is a Lγ contraction with respect to ξ2. However, T has no fixed point. Note that
ϑ(t) = 1

t + 1, ∀t > 0 is not a non-decreasing function.

The following Corollary 1 is obtained from Theorem 1.

Corollary 1. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there is ξ ∈ Lγ, such that for all u, v ∈ U with �(Tu, Tv) > 0

ξ(ϑ(�(Tu, Tv)), ϑ(�(u, v))) ≥ 1.

If ϑ is non-decreasing, then T possesses only one fixed point.

Corollary 2. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there is ξ ∈ L, such that for all u, v ∈ U with �(Tu, Tv) > 0

ϕ(�(u, Tu), �(v, Tu)) < 0 ⇒ ξ(ϑ(�(Tu, Tv)), ϑ(�(u, v))) ≥ 1.

If ϑ is non-decreasing, then T possesses only one fixed point.

Corollary 3. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there is ξ ∈ L, such that for all u, v ∈ U with �(Tu, Tv) > 0

ξ(ϑ(�(Tu, Tv)), ϑ(�(u, v))) ≥ 1.

If ϑ is non-decreasing, then T possesses only one fixed point.

Remark 5. (1) It does not take continuity of ϑ to obtain Corollary 3, and continuity of ϑ is not
required to prove Theorem 2.1 of [24].

(2) Corollary 2 is a generalization of Theorem 2.1 of [24].

2.2. Fixed Points for Suzuki–Berinde-Type Lγ Contractions

Let (U, �) be a Branciari distance space.
A map T : U → U is a Suzuk–Berinde-type Lγ contraction with respect to ξ ∈ Lγ,

provided that the condition is satisfied:
∀u, v ∈ U with �(Tu, Tv) > 0

ϕ(m(u, v), �(u, v)) < 0

⇒ ξ(ϑ(�(Tu, Tv)), ϑ(�(u, v) + Km(u, v))) ≥ 1 (14)

where θ : (0, ∞) → (1, ∞), K ∈ (0, ∞), and m(u, v) = min{�(u, Tu), �(v, Tu)}.

Theorem 2. Let (U, �) be a complete Branciari distance space and T : U → U be a Suzuki–
Berinde-type Lγ contraction with respect to ξ ∈ Lγ. If ϑ is non-decreasing and continuous, then T
possesses only one fixed point, and for every initial point u0 ∈ U, the Picard sequence {Tnu0} is
convergent to the fixed point.

Proof. Let u0 ∈ U and let {un = Tnu0} ⊂ U be a sequence, such that

un−1 
= un ∀n = 1, 2, 3 · · · . (15)

We infer that

m(un−1, un) = min{�(un−1, un), �(un, un)} = 0 (16)

and
ϕ(m(un−1, un), �(un−1, un)) ≤ −�(un−1, un) < 0. (17)
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It follows from (14), (15), (16) and (17) that ∀n ∈ N

1 ≤ξ(ϑ(�(Tun−1, Tun)), ϑ(�(un−1, un) + Km(un−1, un)))

=ξ(ϑ(�(un, un+1)), ϑ(�(un−1, un)))

<
γ(ϑ(�(un−1, un)))

γ(ϑ(�(un, un+1)))
, (18)

which shows that {�(un−1, un)} is decreasing, because ϑ and γ are non-decreasing.
Hence,

lim
n→∞

�(un−1, un) = l

where l ≥ 0.
We prove that l = 0.
Assume that l > 0.
Then, since ϑ is continuous, we have

lim
n→∞

ϑ(�(un−1, un)) = ϑ(l) > 1.

Let tn−1 = ϑ(�(un−1, un)) and tn = ϑ(�(un, un+1)) ∀n ∈ N.
Then,

tn < tn−1 ∀n ∈ N and lim
n→∞

tn−1 = lim
n→∞

tn = θ(l) > 1.

By applying (ξ3), we show that

1 ≤ lim
n→∞

sup ξ(tn, tn−1) < 1,

which leads to a contradiction.
Thus,

lim
n→∞

�(un−1, un) = 0. (19)

We shall show that {un} is Cauchy.
On the contrary, assume that {un} is not a Cauchy sequence.
Then, there is an ε > 0 for which we can find subsequences {um(j)} and {un(j)} of

{un}, such that m(j) is the smallest index for which

m(j) > n(j) > j, �(um(j), un(j)) ≥ ε and �(um(j)−1, un(j)) < ε. (20)

As demonstrated in the proof of Theorem 1, we show that

lim
j→∞

�(um(j), un(j)) = ε and lim
j→∞

�(un(j)+1, um(j)+1) = ε. (21)

From (19), there is an N ∈ N, such that

�(un(j), un(j)+1) < ε, ∀j > N.

Thus, we infer that ∀j > N

�(un(j), Tun(j)) = �(un(j), un(j)+1) < ε ≤ �(un(j), um(j)) (22)

and
m(un(j), um(j)) = min{�(un(j), un(j)+1), �(um(j), un(j)+1)}. (23)

From (22) and (23), we obtain that

ϕ(m(un(j), um(j)), �(un(j), um(j))) ≤
1
2

m(un(j), um(j))− �(un(j), um(j)) < 0.
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By applying (14), we have

1 ≤ξ(ϑ(�(Tun(j), Tum(j))), ϑ(�(un(j), um(j)) + Km(un(j), um(j))))

=ξ(ϑ(�(un(j)+1, um(j)+1)), ϑ(�(un(j), um(j)) + Km(un(j), um(j))))

<
γ(ϑ(�(un(j), um(j)) + Km(un(j), um(j))))

γ(ϑ(�(un(j)+1, um(j)+1)))

which implies

γ(ϑ(�(un(j)+1, um(j)+1))) < γ(ϑ(�(un(j), um(j)) + Km(un(j), um(j))))

and so
ϑ(�(un(j)+1, um(j)+1)) < ϑ(�(un(j), um(j)) + Km(un(j), um(j))).

Let

tj = ϑ(�(un(j)+1, um(j)+1)) and sj = ϑ(�(un(j), um(j)) + Km(un(j), um(j)))

Then,
tj < sj ∀j ∈ N.

Applying (21) and (22), we obtain that

lim
j→∞

�(un(j)+1, um(j)+1) = ε

and
lim
j→∞

[�(un(j), um(j)) + Km(un(j), um(j))] = ε.

By continuity of ϑ, we have

lim
j→∞

tj = lim
j→∞

sj = ϑ(ε) > 1.

From (ξ3), we have
1 ≤ lim

k→∞
sup ξ(tk, sk) < 1

which leads to a contradiction.
Thus, {un} is a Cauchy sequence.
It follows from the completeness of U that

lim
n→∞

�(un, u) = 0 for some u ∈ U. (24)

We may assume that

�(un+1, u) < �(un, u) ∀n ∈ N. (25)

We infer that

m(un, u) = min{�(un, un+1), �(u, un+1)} ∀n ∈ N. (26)

From (25) and (26), we show that ∀n ∈ N

ϕ(m(un, u), �(un, u)) ≤ 1
2

m(un, u)− �(un, u) < 0.
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It follows from (14) that ∀n ∈ N,

1 ≤ ξ(ϑ(�(Tun, Tu)), ϑ(�(un, u) + Km(un, u))) <
γ(ϑ((un, u) + Km(un, u)))

γ(ϑ(�(Tun, Tu)))

which implies

γ(ϑ(�(Tun, Tu))) < γ(ϑ(�(un, u) + Km(un, u))), ∀n ∈ N.

Hence,
�(Tun, Tu))) < �(un, u) + Km(un, u) ∀n ∈ N,

and hence
lim

n→∞
�(un+1, Tu) = 0. (27)

By applying Lemma 1 with (24) and (27), we have z = Tz.
Now, we prove the uniqueness of the fixed points.
Let u and v be fixed points of T, such that

u 
= v.

Then, �(u, v) > 0 and m(w, u) = 0. Hence, we have

ϕ(m(u, v), �(u, v)) ≤ −d(u, v) < 0.

Thus, from (14), we infer that

1 ≤ξ(ϑ(�(Tu, Tv)), ϑ(�(u, v) + Km(u, v)))

=ξ(ϑ(�(u, v)), ϑ(�(u, v))) < 1.

This is a contradiction. Thus, T possesses only one fixed point.

The following example illustrates Theorem 2.

Example 6. Let U = {0, 2} ∪ { 1
n : n ∈ N} and let � : U × U → [0, ∞) be a map defined

as follows:

�(u, v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 (u = v),
1 (u, v ∈ {0, 2}) or (u, v ∈ { 1

n : n ∈ N}),
v (u ∈ {0, 2} and v ∈ { 1

n : n ∈ N}),
u (u ∈ { 1

n : n = 1, 2, 3, · · · } and v ∈ {0, 2}).
Then, (U, �) is a complete Branciari distance space (see [4]).
Let T : U → U be a map defined by

Tu =

{
0 (u = 0 or 2),

1
n+1 (u = 1

n , n ∈ N).

Let ϑ(t) = et ∀t ∈ (0, ∞) and K = 3.

We show that (14) is satisfied with the Lγ simulation ξb, where ξb(t, s) = [γ(s)]k

γ(t) ∀t, s ∈
(1, ∞), k = 1

2 and γ(t) = 1 + ln t, ∀t ∈ (1, ∞).
We infer that

�(Tu, Tv) > 0 ⇔ (u =
1
n

, v = 0), (u =
1
n

, v = 2), or (u =
1
n

, v =
1
m

, n 
= m).

We consider the following two cases.
Case 1: Let u = 1

n and v = 0 ( or u = 1
n and v = 2).
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Then, we show that

m(u, v) =
1

n + 1
and d(u, v) =

1
n

,

and
ϕ(m(u, v), �(u, v)) = ϕ(

1
n + 1

,
1
n
) < 0.

It follows from (14) that

ξ(ϑ(�(Tu, Tv)), ϑ(�(u, v) + Km(u, v)))

=ξ(ϑ(
1

n + 1
), ϑ(

1
n
+

3
n + 1

))

=
[γ(ϑ( 1

n + 3
n+1 ))]

1
2

γ(ϑ( 1
n+1 ))

≥
√

1 + 4
1+n

1 + 1
1+n

> 1

because that (√
1 +

4
1 + n

)2

−
(

1 +
1

1 + n

)2

=
2n + 1
(1 + n)2 > 0.

Case 2: Let u = 1
n and v = 1

m , n 
= m.
Then, we infer that

m(u, v) = 1 and �(u, v) = 1,

and so
ϕ(m(u, v), �(u, v)) < 0.

Thus, we have

ξ(ϑ(�(Tu, Tv)), ϑ(�(u, v) + Lm(u, v)))

=
[γ(ϑ(�(u, v) + Km(u, v)))]

1
2

ϑ(�(Tu, Tv))

=
[1 + ln e4]

1
2

1 + ln e

=

√
5

2
> 1.

Hence, all assumptions of Theorem 2 hold, and T possesses only one fixed point u = 0.
Notice that the almost contraction condition is not satisfied. In fact, let u = 1

n , v = 1
n+1 .

Then,

�(T
1
n

, T
1

n + 1
) ≤ k�(

1
n

,
1

n + 1
) + K�(

1
n + 1

, T
1
n
), k ∈ (0, 1), L ≥ 0

so
�(

1
n + 1

,
1

n + 2
) ≤ k�(

1
n

,
1

n + 1
) + K�(

1
n + 1

,
1

n + 1
)

which yields
k ≥ 1.

Furthermore, note that the Suzuki–Berinde-type ϑ contraction condition [27] is not satisfied.
Let ϑ(t) satisfy conditions (ϑ1),(ϑ2), and (ϑ4).
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For u = 1
n , v = 1

n+1 , we infer that

1
2

�(
1
n

, T
1
n
) =

1
2
< �(

1
n

,
1

n + 1
)

and
n(

1
n

,
1

n + 1
) = min{�(

1
n

, T
1
n
), �(

1
n

, T
1

n + 1
), �(

1
n + 1

, T
1
n
)} = 0.

If

ϑ(�(T
1
n

, T
1

n + 1
)) ≤ [ϑ(�(

1
n

,
1

n + 1
))]k + Kn(

1
n

,
1

n + 1
), where k ∈ (0, 1), K ≥ 0

then
ϑ(1) ≤ [ϑ(1)]k < ϑ(1)

which leads to a contradiction. Hence, T is not a Suzuki–Berinde-type ϑ contraction map.

The following Corollary 4 is obtained from the Theorem 2.

Corollary 4. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there are ξ ∈ Lγ and K ≥ 0, such that for all u, v ∈ U with �(Tu, Tv) > 0

ξ(ϑ(�(Tu, Tv)), ϑ(�(u, v) + Km(u, v))) ≥ 1

If ϑ is non-decreasing and continuous, then T possesses only one fixed point.

By taking γ(t) = t, ∀t ≥ 1 in Theorem 2 (resp. Corollary 4), we have the following
Corollary 5 (resp. Corollary 6).

Corollary 5. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there are ξ ∈ L and K ≥ 0, such that for all u, v ∈ U with �(Tu, Tv) > 0

ϕ(m(u, v), �(u, v)) < 0 ⇒ ξ(ϑ(�(Tu, Tv)), ϑ(�(u, v) + Km(u, v))) ≥ 1

If ϑ is non-decreasing and continuous, then T possesses only one fixed point.

Corollary 6. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there are ξ ∈ L and K ≥ 0, such that for all u, v ∈ U with �(Tu, Tv) > 0

ξ(ϑ(�(Tu, Tv)), ϑ(�(u, v) + Km(u, v))) ≥ 1

If ϑ is non-decreasing and continuous, then T possesses only one fixed point.

3. Consequence

By pplying simulation functions given in Examples 1 and 2, we have some fixed
point results.

The following Corollary 7 is obtained by letting ξ = ξb in Theorem 1.

Corollary 7. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there is k ∈ (0, 1), such that for all u, v ∈ U with �(Tu, Tv) > 0

ϕ(m(u, v), �(u, v)) < 0 ⇒ γ(ϑ(�(Tu, Tv)) ≤ [γ(ϑ(�(u, v)))]k.

If ϑ is non-decreasing and continuous, then T possesses only one fixed point.
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Corollary 8. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there is k ∈ (0, 1), such that for all u, v ∈ U with �(Tu, Tv) > 0

γ(ϑ(�(Tu, Tv)) ≤ [γ(ϑ(�(u, v)))]k.

If ϑ is non-decreasing and continuous, then T possesses only one fixed point.

The following Corollary 9 is obtained by taking ξ = ξb in Theorem 2.

Corollary 9. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there are k ∈ (0, 1) and K ≥ 0, such that for all u, v ∈ U with �(Tu, Tv) > 0

ϕ(m(u, v), �(u, v)) < 0 ⇒ γ(ϑ(�(Tu, Tv)) ≤ [γ(ϑ(�(u, v) + Km(u, v)))]k.

If ϑ is non-decreasing and continuous, then T possesses only one fixed point.

Corollary 10. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there are k ∈ (0, 1) and K ≥ 0, such that for all u, v ∈ U with �(Tu, Tv) > 0

γ(ϑ(�(Tu, Tv))) ≤ [γ(ϑ(�(u, v) + Km(u, v)))]k.

If ϑ is non-decreasing and continuous, then T possesses only one fixed point.

Remark 6. (1) Corollary 8 is a generalization of Theorem 2.1 of [22] and Theorem 2.1 of [27],
respectively. By taking γ(t) = t, ∀t ≥ 1 in Corollary 8, Corollary 8 reduces Theorem 2.1 of [22]
without condition (θ2) and (θ3) and reduces Theorem 2.1 of [27] without condition (θ2) and (θ4),
respectively.
(2) Corollary 9 is a generalization of Theorem 3.2 of [27] to Branciari distance space without
condition (θ2).

By taking ξ = ξw in Theorem 1, the following result is obtained.

Corollary 11. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that for all u, v ∈ U with �(Tu, Tv) > 0

ϕ(m(u, v), �(u, v)) < 0 ⇒ γ(ϑ(�(Tu, Tv))) ≤ γ(ϑ(�(u, v)))
φ(γ(ϑ(�(u, v))))

where φ is a non-decreasing and lower semi-continuous self-mapping on [1, ∞), satisfying φ−1({1}) =
1. If ϑ is non-decreasing, then T possesses only one fixed point.

Corollary 12. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that for all u, v ∈ U with �(Tu, Tv) > 0

γ(ϑ(�(Tu, Tv))) ≤ γ(ϑ(�(u, v)))
φ(γ(ϑ(�(u, v))))

where φ is a non-decreasing and lower semi-continuous self-mapping on [1, ∞), satisfying φ−1({1}) =
1. If ϑ is non-decreasing, then T possesses only one fixed point.

By taking ξ = ξw in Theorem 2, the following Corollary 13 is obtained.

Corollary 13. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there is K ≥ 0, such that for all u, v ∈ U with �(Tu, Tv) > 0

ϕ(m(u, v), �(u, v)) < 0 ⇒ γ(ϑ(�(Tu, Tv))) ≤ γ(ϑ(�((u, v) + Lm(u, v)))
φ(γ(ϑ(�((u, v) + Km(u, v))))
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where φ is a non-decreasing and lower semi-continuous self-mapping on [1, ∞), satisfying φ−1({1}) =
1. If ϑ is non-decreasing and continuous, then T possesses only one fixed point.

Corollary 14. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that there is K ≥ 0, such that for all u, v ∈ U with �(Tu, Tv) > 0

γ(ϑ(�(Tu, Tv))) ≤ γ(ϑ(�((u, v) + Lm(u, v)))
φ(γ(ϑ(�((u, v) + Km(u, v))))

where φ is a non-decreasing and lower semi-continuous self-mapping on [1, ∞), satisfying φ−1({1}) =
1. If ϑ is non-decreasing and continuous, then T possesses only one fixed point.

Remark 7. Corollary 12 is a generalization of Corollary 8 of [24]. In fact, if γ(t) = t, ∀t ≥ 1
Corollary 12 reduces Corollary 8 of [24].

Taking γ(t) = t ∀t ≥ 1 and θ(t) = 2 − 2
π arctan( 1

tα ) ∀t > 0 in Corollary 14, the
following result is obtained.

Corollary 15. Let (U, �) be a complete Branciari distance space and T : U → U be a map. Suppose
that the condition holds:

for all u, v ∈ U with �(Tu, Tv) > 0

ϕ(m(u, v), �(u, v)) < 0

⇒ 2 − 2
π

arctan(
1

�(Tu, Tv)r ) ≤
2 − 2

π arctan( 1
�(u,v)r )

φ(2 − 2
π arctan( 1

�(u,v)r ))

where r ∈ (0, 1) and φ denote a non-decreasing and lower semi-continuous self-mapping on [1, ∞),
satisfying φ−1({1}) = 1.

Then, T possesses only one fixed point.

4. Conclusions

One can use Lγ simulation functions to consolidate and merge some existing fixed-
point results in Branciari distance spaces. By applying Lγ simulation functions to the main
theorem, one can obtain some fixed-point results. Moreover, fixed-point theorems in the
paper can be derived in the setting metric spaces, and by using Lγ simulation functions,
the existing fixed-point theorem in the setting metric spaces can be interpreted.
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Abstract: In this paper, a deterministic prey–predator model is proposed and analyzed. The inter-
action between three predators and a single prey was investigated. The impact of harvesting on
the three predators was studied, and we concluded that the dynamics of the population can be
controlled by harvesting. Some sufficient conditions were obtained to ensure the local and global
stability of equilibrium points. The transcritical bifurcation was investigated using Sotomayor’s
theorem. We performed a stochastic extension of the deterministic model to study the fluctuation
environmental factors. The existence of a unique global positive solution for the stochastic model was
investigated. The exponential–mean–squared stability of the resulting stochastic differential equation
model was examined, and it was found to be dependent on the harvesting effort. Theoretical results
are illustrated using numerical simulations.

Keywords: three predators; bifurcation; stochastic; stability; numerical simulations; Sotomayor’s theorem

MSC: 37N25; 92D30; 93E03

1. Introduction

Lotka and Volterra independently created two types of prey–predatory models known
as the “Lotka–Volterra model” [1,2]. Since then, many scientists have modified and devel-
oped the Lotka–Volterra model to accurately describe the ecosystem. Numerous studies
have examined the case of the presence of more than one predator [2–11]. Mukhopadhyay
and Bhattacharyya [12] formulated a mathematical model of two predators living on a
single biotic prey. They assumed that the predation function for the first predator follows
the mass action kinetics, while the functional response for the second predator obeys the
Holling type–II functional response. They also assumed that one of the predators is eco-
nomically viable and undergoes harvesting at a rate proportional to its density. According
to [13], in the northern Alaskan forest community, moose are the only large herbivores,
constituting the primary prey for each of the three predators: black bears, gray wolves, and
brown bears. Black bears have been known to attack and consume wolves if the opportu-
nity presents itself. The main feature of this paper was to modify the interference of the
predators in the system investigated in [12] by adding an extra predator y(t) where the first
predator (black bear) preys on the second predator (gray wolves) in addition to the prey.
The focus was on the harvesting rates and carrying capacity parameters of the model. The
paper is organized as follows: The mathematical model is given in Section 2. The existence,
uniqueness, non–negativity, and boundedness of the system are all verified in Section 3.
Section 4 investigates the local and global stability of the system’s equilibrium points. The
stochastic extension of the deterministic model is conducted in Section 5. The numerical
simulations presented in Section 6 are used to verify the theoretical results. Finally, in
Section 7, the conclusions are presented.
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2. Mathematical Model

In this paper, we considered a four–species prey–predator model with one prey and
three predators as follows:

dx
dt

= rx(1 − x
k
)− β1xy − β2xz − β3xw

a + x
,

dy
dt

= m1xy + δyz − μ1y − q1Ey,

dz
dt

= m2xz − δyz − μ2z − q2Ez,

dw
dt

=
m3xw
a + x

− μ3w − q3Ew,

(1)

where x(t) is the population size of the single prey species. We assumed that x(t) grows
logistically in the absence of predators with intrinsic growth rate r and carrying capacity k.
The first predator y(t) has the ability to consume both the prey and second predator
z(t) with the Holling type I (linear) functional response. Let the interaction between the
third predator w(t) and prey follow the Holling type II functional response. Assume
βi (i = 1, 2, 3) denote the predation rates of the first, second, and third predators on the
prey, respectively, and a is the half–saturation constant. Furthermore, let mi (i = 1, 2, 3)
denote the efficiency of the first, second, and third predators in the presence of the prey.
Moreover, δ represents the predation rate of the first predator on the second predator.
We assumed that the ecological efficiency of the second predator’s biomass z in the first
predator’s biomass y is unity. We also assumed that the predators economically undergo
harvesting at a rate proportional to their density. The constants qi (i = 1, 2, 3) denote the
catchability constants, while E represents the harvesting effort. The density of the first,
second, and third predator populations decreases due to natural death at constant rates μ1,
μ2, and μ3, respectively.

3. Some Preliminary Results

3.1. Existence and Uniqueness

In this section, we investigate the existence and uniqueness of the solutions of the
prey–predator system (1) in the region Θ1 × (0, T] where:

Θ1 =
{
(x, y, z, w) ∈ R

4
+ : max(|x|, |y|, |z|, |w|) ≤ ϕ

}
,

for sufficiently large ϕ.

Theorem 1. For each X0 = (x0, y0, z0, w0) ∈ Θ1, there exists a unique solution X(t) ∈ Θ1 of the
prey–predator system (1), which is defined for all t ≥ 0.

Proof. Define a mapping F(X) = (F1(X), F2(X), F3(X), F4(X)), in which:

F1(X) = rx(1 − x
k
)− β1xy − β2xz − β3xw

a + x
,

F2(X) = m1xy + δyz − (μ1 + q1E)y,

F3(X) = m2xz − δyz − (μ2 + q2E)z,

F4(X) =
m3xw
a + x

− (μ3 + q3E)w.

(2)

For any X, X̄ ∈ Θ1, it follows from (1) that:

‖F(X)− F(X̄)‖ =|F1(X)− F1(X̄)|+ |F2(X)− F2(X̄)|+ |F3(X)− F3(X̄)|+ |F4(X)− F4(X̄)|
=

∣∣∣∣rx(1 − x
k
)− β1xy − β2xz − β3xw

a + x
− rx̄(1 − x̄

k
) + β1 x̄ȳ + β2 x̄z̄ +

β3 x̄w̄
a + x̄

∣∣∣∣
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+ |m1xy + δyz − (μ1 + q1E)y − m1 x̄ȳ − δȳz̄ + (μ1 + q1E)ȳ|
+ |m2xz − δyz − (μ2 + q2E)z − m2 x̄z̄ + δȳz̄ + (μ2 + q2E)z̄|
+

∣∣∣∣m3xw
a + x

− (μ3 + q3E)w − m3 x̄w̄
a + x̄

+ (μ3 + q3E)w̄
∣∣∣∣

≤
(

r +
2ϕr

k
+

2ϕ

a
+ ρ1 ϕ

)
|x − x̄|+ ((μ1 + q1E)(ϕ + 1) + (β1 + 2δ)ϕ)|y − ȳ|

+ (m2 ϕ + β2 ϕ + 2δϕ + μ2 + q2E)|z − z̄|+
(

2ϕ

a
+

2ϕ2

a2 + μ3 + q3E
)
|w − w̄|

≤H0‖X − X̄‖,

where:

H0 = max
{

r +
2ϕr

k
+

2ϕ

a
+ ρ1 ϕ, ρ2 ϕ + (μ1 + q1E), ρ3 ϕ + (μ2 + q2E),

2ϕ

a
+

2ϕ2

a2 + (μ3 + q3E)
}

,

where ρ1 = (β1 + β2 + m1 + m2), ρ2 = (m1 + q1E + β1 + 2δ), and ρ3 = (m2 + β2 + 2δ).
Hence, F(X) satisfies the Lipschitz condition with respect to X. According to [14], as F(X)
is locally Lipschitz, then there exists a unique local solution to the three–predator–one–prey
system (1).

3.2. Non-Negativity and Boundedness

Considering the biological significance of the problem, we were only interested in non–
negative and bounded solutions. The prey–predator system (1) can be written as follows:

x(t) = x(0)e
∫ t

0
F1(X(s))

x ds ≥ 0,

y(t) = y(0)e
∫ t

0
F2(X(s))

y ds ≥ 0,

z(t) = z(0)e
∫ t

0
F3(X(s))

z ds ≥ 0,

w(t) = w(0)e
∫ t

0
F4(X(s))

w ds ≥ 0,

(3)

with initial values x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0, w(0) = w0 ≥ 0.
Thus, the solution of the model (1), with non–negative initial conditions remains non–
negative. Furthermore, the solution satisfies the Lipschitz condition, as stated in Theorem 1.
By Theorems 5 and 6 in [14], the solution of the prey–predator model (1) satisfies the
non–negativity. The boundedness of the solutions of model (1) is given in the following
theorem.

Theorem 2. The solutions of the prey–predator model (1) starting in R4
+ are uniformly bounded.

Proof. Let (x(t), y(t), z(t), w(t)) be any solution of the system (1) with non–negative initial
conditions. Let H1(t) = x(t) + y(t) + z(t) + w(t), then:

dH1

dt
+ μH1 ≤ rx

(
1 − x

k

)
+ μx

≤ − r
k

(
x − k(r + μ)

2r

)2

+
k(r + μ)2

4r
,

where μ = min{μ1, μ2, μ3}, thus:

0 ≤ H1(t) ≤ k(r + μ)2

4μr
, as t → ∞.
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As a result, all the solutions of the prey–predator model (1) that start in R4
+ are

uniformly bounded in the region:

Θ2 =

{
(x, y, z, w) ∈ R

4
+ : H1(t) ≤ k(r + μ)2

4μr
+ ξ, for any ξ > 0

}
.

In the following, three critical parameters R1, R2, and R3, can be used to classify
the dynamics of the prey–predator model (1). The threshold parameter R1 is defined by
R1 = m1k

(μ1+q1E) , while the threshold parameter R2 is defined by R2 = m2k
(μ2+q2E) . The threshold

parameter R3 is defined by R3 = m3k
(μ3+q3E)(a+k) . Using the next–generation method, one can

obtain the basic reproduction number:

R0 = max
{

m1k
(μ1 + q1E)

,
m2k

(μ2 + q2E)
,

m3k
(μ3 + q3E)(a + k)

}
.

One can note that the threshold parameter R1 appears as a result of additional predator
y(t) in the system considered in [12].

4. Equilibria and Stability

The prey–predator model (1) has the following seven equilibrium points:

1. The trivial equilibrium point E0 = (0, 0, 0, 0), which always exists;
2. The predator free equilibrium point E1 = (k, 0, 0, 0), which always exists;

3. The equilibrium point E2 = ( (μ1+q1E)
m1

, r(μ1+q1E)(R1−1)
m1β1k , 0, 0); E2 exists if R1 > 1;

4. The equilibrium point E3 = ( (μ2+q2E)
m2

, 0, r(μ2+q2E)(R2−1)
m2β2k , 0); E3 exists if R2 > 1;

5. The equilibrium point E4 = ( a(μ3+q3E)
m3−(μ3+q3E) , 0, 0, arm3(μ3+q3E)(a+k)(R3−1)

kβ3(m3−(μ3+q3E))2 ); E4 exists if
R3 > 1;

6. The equilibrium point E5 = (x5, y5, z5, 0), where:

x5 =
k(δr + β1(μ2 + q2E)− β2(μ1 + q1E))

φ
, y5 =

m2x5 − (μ2 + q2E)
δ

, z5 =
(μ1 + q1E)− m1x5

δ
,

where φ = δr + β1m2k − β2m1k. E5 exists if (μ2+q2E)
m2

< x5 < (μ1+q1E)
m1

;
7. The coexistence equilibrium point E6 = (x6, y6, z6, w6), where:

x6 =
a(μ3 + q3E)

m3 − (μ3 + q3E)
, y6 =

m2x6 − (μ2 + q2E)
δ

, z6 =
(μ1 + q1E)− m1x6

δ
,

w6 =
(a + x6)

kβ3
[r(k − x6)− kβ1y6 − kβ2z6].

E6 exists if m3 > μ3 + q3E, rx6 + kβ1y6 + kβ2z6 < rk and (μ2+q2E)
m2

< x6 < (μ1+q1E)
m1

.

One can note that the additional predator y(t) causes two new equilibrium points
E2 and E5 to be obtained, which were not present in [12]. Now, the local stability of the
system (1) is investigated. The Jacobian matrix is given as follows:

J =

⎛⎜⎜⎜⎝
r
(
1 − 2x

k
)− β1y − β2z − aβ3w

(a+x)2 −β1x −β2x − β3x
a+x

m1y m1x + δz − (μ1 + q1E) δy 0
m2z −δz m2x − δy − (μ2 + q2E) 0
am3w
(a+x)2 0 0 m3x

a+x − (μ3 + q3E)

⎞⎟⎟⎟⎠.

204



Axioms 2022, 11, 156

The eigenvalues of J around the trivial point E0 are r,−(μ1 + q1E),−(μ2 + q2E) and
−(μ3 + q3E); therefore, for all parameters, E0 is a saddle with three–dimensional stable
manifolds and a one–dimensional unstable manifold. The stability of the free predators’
equilibrium point E1 = (k, 0, 0, 0) is studied as follows:

Theorem 3. If R0 < 1, then E1 is locally asymptotically stable.

Proof. The Jacobian matrix of the model (1) around E1(J(E1)) is as follows:

J(E1) =

⎛⎜⎜⎜⎝
−r −β1k −β2k − β3k

a+k
0 m1k − (μ1 + q1E) 0 0
0 0 m2k − (μ2 + q2E) 0
0 0 0 m3k

a+k − (μ3 + q3E)

⎞⎟⎟⎟⎠. (4)

The eigenvalues of J(E1) are −r, m1k − (μ1 + q1E), m2k − (μ2 + q2E) and m3k
a+k − (μ3 +

q3E). Thus, E1 is locally asymptotically stable if R0 < 1.

Theorem 4. If β1k
(μ1+q1E) < 1, β2k

(μ2+q2E) < 1, and m3k
(μ3+q3E)(a+k) < 1, then E1 is globally stable.

Proof. One can consider the positive–definite Lyapunov function as follows.

V1 =
(

x − k − k ln
x
k

)
+ y + z + w.

By calculating the time derivative of V1, one obtains:

dV1

dt
≤(x − k)

(
r(1 − x

k
)− β1y − β2z − β3w

a + x

)
+ m1xy + δyz − (μ1 + q1E)y

+m2xz − δyz − (μ2 + q2E)z +
m3xw
a + x

− (μ3 + q3E)w

≤− r
k
(x − k)2 + (β1k − (μ1 + q1E))y + (β2k − (μ2 + q2E))z + (

m3k
a + k

− (μ3 + q3E))w.

In accordance with Lyapunov–Sasalle’s invariance principle, E1 is globally stable when
β1k

(μ1+q1E) < 1, β2k
(μ2+q2E) < 1, and m3k

(μ3+q3E)(a+k) < 1.

One can note that the global stability of E1 depends on the parameters β1, μ1 and q1
of additional predator y(t), which were not present in [12]. The local bifurcation near the
equilibrium point E1 of the system (1) is now investigated using Sotomayor’s theorem [15].

Theorem 5. The prey–predator model (1) goes through a transcritical bifurcation regarding the
bifurcation parameter q1 around E1 = (k, 0, 0, 0) if R1 = 1.

Proof. The Jacobian matrix of the prey–predator model (1) at E1 with q1 = q∗1 = μ1k−μ1
E has

a zero eigenvalue. The eigenvector corresponding to J(E1)Q1 = 0 is Q1 = (ν1,−−rν1
β1k , 0, 0)T ,

where ν1 is any non-zero real number. Similarly, the eigenvector corresponding to J(E1)
TQ2 = 0

is given by Q2 = (0, τ2, 0, 0)T , where τ2 is any non–zero number. Thus:

1. QT
2 Fm1(E1, m∗

1) = 0;
2. QT

2 DFm1(E1, m∗
1)Q1 = −rEν1τ2

β1k 
= 0;

3. QT
2 D2F(E1, m∗

1)(Q1, Q1) = 2(m1ν1 + δν3)τ2ν2 
= 0.

In accordance with Sotomayor’s theorem, the prey–predator model (1) has a transcriti-
cal bifurcation at q∗1, which is equivalent to R1 = 1. Therefore, the proof is complete.

The stability around E2 = (x2, y2, 0, 0) is studied as follows:
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Theorem 6. If m3x2
(μ3+q3E)(a+x2)

< 1 and m2x2
(μ2+q2E)+δy2

< 1, then E2 is locally stable.

Proof. The eigenvalues of J(E2) are:

λ1 =
m3x2

a + x2
− (μ3 + q3E),

λ2 = m2x2 − (μ2 + q2E)− δy2,

λ3 =
−rx2 −

√
r2x2

2 − 4km1β1x2y2

2k
,

λ4 =
−rx2 +

√
r2x2

2 − 4km1β1x2y2

2k
.

The eigenvalues λ3 and λ4 have negative real parts. Thus, if m3x2
(μ3+q3E)(a+x2)

< 1 and
m2x2

(μ2+q2E)+δy2
< 1, then E2 is locally stable.

Theorem 7. If m3x2
a(μ3+q3E) < 1 and m2x2

(μ2+q2E)+δy2
< 1, then E2 is globally stable.

Proof. One can consider the positive–definite Lyapunov function as follows:

V2 =

(
x − x2 − x2 ln

x
x2

)
+

β2

m2

(
y − y2 − y2 ln

y
y2

)
+

β2

m2
z +

β3

m3
w.

By taking the time derivative of V2, one obtains,

dV2

dt
≤(x − x2)

(
r(1 − x

k
)− β1y − β2z − β3w

a + x

)
+

β2

m2
(y − y2)(m1x + δz − (μ1 + q1E))

+
β2

m2
(m2xz − δyz − (μ2 + q2E)z) +

β3

m3

(
m3x
a + x

− (μ3 + q3E)
)

w

≤− r
k
(x − x2)

2 + β2

(
x2 − δy2

m2
− (μ2 + q2E)

m2

)
z + β3

(
x2

a + x
− (μ3 + q3E)

m3

)
w.

Thus, E2 is globally stable if m3x2
a(μ3+q3E) < 1 and m2x2

(μ2+q2E)+δy2
< 1.

The stability of the equilibrium point E3 = (x3, 0, z3, 0) is investigated as follows:

Theorem 8. If m3x3
(a+x3)(μ3+q3E) < 1 and m1x3+δz3

(μ1+q1E) < 1, then E3 is locally stable.

Proof. The eigenvalues of J(E3) are:

λ1 =
m3x3

a + x3
− (μ3 + q3E),

λ2 = m1x3 − (μ1 + q1E) + δz3,

λ3 =
−rx3 −

√
r2x2

3 − 4km3β2x3z3

2k
,

λ4 =
−rx3 +

√
r2x2

3 − 4km3β2x3z3

2k
.

The eigenvalues λ3 and λ4 have negative real parts. Thus, if m3x3
(a+x3)(μ3+q3E) < 1 and

m1x3+δz3
(μ1+q1E) < 1, then the equilibrium point E3 is locally stable.

Theorem 9. If m3x3
a(μ3+q3E) < 1 and m1x3+δz3

(μ1+q1E) < 1, then E3 is globally stable.
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Proof. One can consider the positive–definite Lyapunov function as follows:

V3 =

(
x − x3 − x3 ln

x
x3

)
+

β1

m1
y +

β1

m1

(
z − z3 − z3 ln

z
z3

)
+

β3

m3
w.

By taking the time derivative of V3, one obtains,

dV3

dt
≤(x − x3)

(
r(1 − x

k
)− β1y − β2z − β3w

a + x

)
+

β1

m1
(m1xy + δyz − (μ1 + q1E)y)

+
β1

m1
(z − z3)(m2x − δy − (μ2 + q2E)) +

β3w
m3

(
m3x
a + x

− (μ3 + q3E)
)

≤− r
k
(x − x3)

2 +
β1

m1
(m1x3 + δz3 − (μ1 + q1E))y + β3

(
x3

a + x
− (μ3 + q3E)

m3

)
w.

Thus, E3 is globally stable if m3x3
a(μ3+q3E) < 1 and m1x3+δz3

(μ1+q1E) < 1.

The stability of the equilibrium point E4 = (x4, 0, 0, w4) is studied as follows:

Theorem 10. If m1x4 < μ1 + q1E, m2x4 < μ2 + q2E and 1 < R3 < 1 + am3
(μ3+q3E)(a+k) , then E4

is locally stable.

Proof. The eigenvalues of J(E4) are:

λ1 = m1x4 − (μ1 + q1E),

λ2 = m2x4 − (μ2 + q2E),

The other eigenvalues are determined by:

λ2 + x4

(
r
k
− β3w4

(a + x4)2

)
λ +

am3β3x4w4

(a + x4)3 = 0.

One can note that r
k − β3w4

(a+x4)2 > 0 is equivalent to R3 < 1 + am3
(μ3+q3E)(a+k) . Thus, if

m1x4 < μ1 + q1E, m2x4 < μ2 + q2E, and 1 < R3 < 1+ am3
(μ3+q3E)(a+k) , then E4 is locally stable.

The stability around E5 = (x5, y5, z5, 0) is studied as follows:

Theorem 11. If m3x5
(μ3+q3E)(a+x5)

< 1, then E5 is locally stable.

Proof. J(E5) is:

J(E5) =

⎛⎜⎜⎜⎝
− rx5

k −β1x5 −β2x5 − β3x5
a+x5

m1y5 0 δy5 0
m2z5 −δz5 0 0

0 0 0 m3x5
a+x5

− (μ3 + q3E)

⎞⎟⎟⎟⎠.

The first eigenvalue of J(E5) is λ1 = m3x5
a+x5

− (μ3 + q3E). The other roots are deter-
mined by

λ3 + c1λ3 + c2λ + c3 = 0,
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where:

c1 =
rx5

k
,

c2 = m1β1x5y5 + m2β2x5z5 + δ2y5z5,

c3 =
δx5y5z5φ

k
;

when rδ > φ, then c1c2 > c3. Hence, due to the Routh–Hurwitz criterion, all the eigen-
values of the Jacobian matrix J(E5) around E5 have a negative real part. Thus, the proof
is complete.

The stability of the equilibrium point E6 = (x6, y6, z6, w6) is studied as follows:

Theorem 12. If β3w6
(a+x6)2 < r

k and β2m1 < β1m2, then E6 is locally stable.

Proof. The Jacobian matrix of the model (1) at E6 is:

J(E6) =

⎛⎜⎜⎜⎝
− rx6

k + β3x6w6
(a+x6)2 −β1x6 −β2x6 − β3x6

a+x6

m1y6 0 δy6 0
m2z6 −δz6 0 0
am3x6
(a+x6)2 0 0 0

⎞⎟⎟⎟⎠.

The characteristic equation of the Jacobian matrix around E6 is as follows:

λ4 + B1 λ3 + B2λ2 + B3λ + B4 = 0, (5)

where:

B1 = x6

(
r
k
− β3w6

(a + x6)2

)
,

B2 = x6

(
aβ3m3w6

(a + x6)3 + β2m2z6

)
+ y6

(
β1m1x6 + δ2z6

)
,

B3 = δy6z6(B1δ + x6(β1m2 − β2m1)),

B4 =
aβ3δ2m3w6x6y6z6

(a + x6)3 .

The eigenvalues of the Jacobian matrix J(E6) have a negative real part if all coefficients
of (5) are positive and B1B2B3 > B2

3 + B2
1B4.

Theorem 13. If β3w6
a(a+x6)

< r
k and β1m2 = β2m1, then E6 is globally stable.

Proof. One can consider the positive–definite Lyapunov function as follows.

V6 =
∫ x

x6

x − x6

x
dx +

β1

m1

∫ y

y6

y − y6

y
dy +

β2

m2

∫ z

z6

z − z6

z
dz +

β3(a + x6)

a m3

∫ w

w6

w − w6

w
dw.

By taking the time derivative of V6, one obtains,

dV6

dt
≤(x − x6)

(
r(1 − x

k
)− β1y − β2z − β3w

a + x

)
+

β1

m1
(y − y6)(m1x + δz − (μ1 + q1E))

+
β2

m2
(z − z6)(m2x − δy − (μ2 + q2E)) +

β3(a + x6)

a m3
(w − w6)

(
m3x
a + x

− (μ3 + q3E)
)

≤
(

β3w6

a(a + x6)
− r

k

)
(x − x6)

2.
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In accordance with Lyapunov–Sasalle’s invariance principle, E6 is globally stable if
β3w6

a(a+x6)
< r

k and β1m2 = β2m1.

In this section, we show that at the positive equilibrium point E6, a Hopf bifurcation
arises, by taking the catchability constant q3, as a bifurcation parameter. The following
lemma is presented first.

Lemma 1. The characteristic Equation (5) has a pair of purely imaginary roots, and the remaining
roots have negative real parts if and only if β3w6

a(a+x6)
< r

k and B1B2B3 = B2
3 + B2

1B4.

Suppose (5) has two eigenvalues, which have negative real parts, and two complex
conjugates eigenvalues (call them λ = m(q3)± i n(q3) such that m(q∗3) = 0, n(q∗3) > 0,
dm
dq3

|q3=q∗3 
= 0. Substituting λ = m(q3) ± i n(q3) into (5) and separating the real and
imaginary parts, one obtains:

m4 + B1m3 + B2m3 + B3m + B4 − (6m2 + 3B1m + B2)n2 + n4 = 0, (6)

4m3 + 3B1m2 + 2B2m + B3 − (4m + B1)n2 = 0. (7)

Following [16,17], substituting (6) into (7), differentiating with respect to q3, and
utilizing m(q∗3) = 0 and n(q∗3) 
= 0, one obtains:

dm
dq3

=

⎡⎣ dΦ1(q3)
dq3

2B1Φ2(q3)

⎤⎦
q3=q∗3


= 0,

where Φ1(q3) = B1(q3)B2(q3)B3(q3) − B2
3(q3) − B2

1(q3)B4(q3) and Φ2(q3) = 4B4(q3) −
B1(q3)B3(q3)− B2(q3)

2.

Theorem 14. The system around the coexistence E6 enters into Hopf bifurcation when q3 passes
q∗3 if the coefficients Bj(q3)(j = 1, 2, 3, 4) at q3 = q∗3 satisfy the following conditions:

1. Φ1(q∗3) = 0;
2. Φ2(q∗3) 
= 0;

3. dΦ1(q3)
dq3

|q3=q∗3 
= 0.

According to Theorem 14, there exists a Hopf bifurcation in the model (1), where the
Hopf bifurcation is controlled by q3.

5. Stochastic Models

In this section, we perform a stochastic extension of the deterministic model (1) in two
ways. Firstly, a randomly fluctuating driving force can be directly added to the deterministic
model. Secondly, the catchability constants are replace by random parameters.

5.1. Stochastic Perturbations

Considering the effect of environmental noise, one can introduce a stochastic pertur-
bation into the system (1); the stochastic prey–predator model takes the form:

dx = rx(1 − x
k
)− β1xy − β2xz − β3xw

a + x
+ σ1x dW1,

dy = m1xy + δyz − μ1y − q1Ey + σ2 y dW2,

dz = m2xz − δyz − μ2z − q2Ez + σ3 z dW3,

dw =
m3xw
a + x

− μ3w − q3Ew + σ4 w dW4,

(8)
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where Wi(i = 1, 2, 3, 4) are independent standard Brownian motions with Wi(0) = 0 and
σi > 0 denote the intensities of the white noise. In many applications, the solution of the
Itô stochastic differential equation must preserve the positivity of the solutions [18–20].
According to Theorem 2.2 and Corollary 1 in [18], the solutions of (8) emanating from
non–negative initial data (almost surely) remain non–negative if they exist. In the next
theorem, another approach according to [17] to prove the existence and uniqueness of a
positive global solution of model (8) is given.

Theorem 15. For any given initial value x0, y0, z0, w0 ∈ R4
+, there exists a unique solution

x(t), y(t), z(t), w(t) of the system (8) on t ≥ 0, and the global positive solution will remain in R4
+

with probability one.

Proof. In accordance with Theorem 1, the coefficients of the system (8) satisfy the local
Lipschitz conditions, then for (x0, y0, z0, w0) ∈ R4

+, there exists a unique local solution
(x(t), y(t), z(t), w(t)) on [0, τe), where τe is the explosion time [21]. To ensure that this
solution is global, one needs to prove that τe = ∞ a.s. Let s0 > 0 be sufficiently large for
every coordinate x0, y0, z0, w0 in the interval [ 1

s0
, s0]. For each integer s > s0, we define the

stopping time:

τs = inf
{

t ∈ [0, τe) : min{x(t), y(t), z(t), w(t)} 
∈ (
1
s

, s) or max{x(t), y(t), z(t), w(t)} 
∈ (
1
s

, s)
}

. (9)

From (9), one can note that τs is increasing as s → ∞. Assume τ∞ = lims→∞ τs, then
τ∞ ≤ τe almost surely. Next, one needs to verify that τ∞ = ∞. If this is not true, then there
exists a constant T > 0 and ε ∈ (0, 1) such that P(τ∞ ≤ T) ≥ ε. As a result, there exists an
integer s1 ≥ s0 such that P(τs ≤ T) ≥ ε, s ≥ s1. Define the following C2 positive–definite
function V7(x, y, z, w) as:

V7(x, y, z, w) = (x + 1 − lnx) + (y + 1 − lny) + (z + 1 − lnz) + (w + 1 − lnw).

Using Itô’s formula, one obtains:

dV7 =

[
(x − 1)

(
r(1 − x

k
)− β1y − β2z − β3w

a + x

)
+ (y − 1)(m1x + δz − (μ1 + q1E))

+(z − 1)(m2x − δy − (μ2 + q2E)) + (w − 1)(
m3x
a + x

− (μ3 + q3E)) +
1
2

4

∑
i=1

σ2
i

]
dt

+σ1(x − 1)dW1 + σ2(y − 1)dW2 + σ3(z − 1)dW3 + σ4(w − 1)dW4

≤
[

μ1 + μ2 + μ3 +
1
2

4

∑
i=1

σ2
i +

r(k + 1)
k

x + (β1 + δ)y + β2z +
β3

a
w

]
dt

+σ1(x − 1)dW1 + σ2(y − 1)dW2 + σ3(z − 1)dW3 + σ4(w − 1)dW4

≤
[

D1 +
2r(k + 1)

k
(x + 1 − lnx) + 2(β1 + δ)(y + 1 − lny) + 2β2(z + 1 − lnz)

+
2β3

a
(w + 1 − lnw)

]
dt + σ1(x − 1)dW1 + σ2(y − 1)dW2 + σ3(z − 1)dW3 + σ4(w − 1)dW4.

Using the following inequality Ω ≤ 2(Ω + 1 − lnΩ), where Ω > 0, one obtains:

dV7 ≤D1 + D2[(x + 1 − lnx) + (y + 1 − lny) + (z + 1 − lnz) + (w + 1 − lnw)] + σ1(x − 1)dW1

+σ1(x − 1)dW1 + σ2(y − 1)dW2 + σ3(z − 1)dW3 + σ4(w − 1)dW4

≤D3(1 + V7)dt + σ1(x − 1)dW1 + σ2(y − 1)dW2 + σ3(z − 1)dW3 + σ4(w − 1)dW4,
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where D1 = μ1 + μ2 + μ3 + 1
2 ∑4

i=1 σ2
i , D2 = max

{
2r(k+1)

k , 2(β1 + δ), 2β2, 2β3
a

}
, and

D3 = max{D1, D2}. Following [21–25], integrating from 0 to τs ∧ T and taking the ex-
pectation by applying Gronwall’s inequality, one obtains,

EV7(x(τs ∧ T), y(τs ∧ T), z(τs ∧ T), w(τs ∧ T)) =V7(x0.y0, z0, w0) + E
∫ τs∧T

0
D3(1 + V7)ds

≤V7(x0.y0, z0, w0) + D3T + D3

∫ τs∧T

0
EV7ds

≤{V7(x0.y0, z0, w0) + D3T}eD3T

=D4,

Therefore, one obtains V7(x(τs ∧ T), y(τs ∧ T), z(τs ∧ T), w(τs ∧ T)) ≥ (x + 1 − lnx)
Following [21–25], one can complete the remainder of the proof.

Here, we allowed stochastic perturbations of x, y, z, w around the free predators’ equi-
librium point E1. The linearized stochastic system can be written as:

dU(t) = f (U(t)dt + g(U(t))dW(t), (10)

where:

f (U) =

⎛⎜⎜⎜⎝
−ru1 − β1ku2 − β2ku3 − β3ku4

a+k
(m1k − μ1 − q1E)u2
(m2k − μ2 − q2E)u3(

m3k
(a+k) − μ3 − q3E

)
u4

⎞⎟⎟⎟⎠; g(U) =

⎛⎜⎜⎝
σ1u1 0 0 0

0 σ2u2 0 0
0 0 σ3u3 0
0 0 0 σ4u4

⎞⎟⎟⎠,

U(t) = (u1(t), u2(t), u3(t), u4(t))T . One can note that the free predators’ equilibrium E1 of
the system (1) corresponds to the trivial solution of the system (10).

Following [17,20], let B be the set defined as B = [(t ≥ t0) × Rn, t0 ∈ R+] and
V ∈ C0

2(B) be a twice–differential function with respect to U and a continuous function
with respect to t. Now, we require the following theorem to prove the asymptotically
mean–squared stability of the trivial solution of (10).

Theorem 16. Suppose that V ∈ C0
2(B) satisfies the following:

K1‖U‖p ≤ V(t, U) ≤ K2‖U‖p (11)

LV(t, U) ≤ −K3‖U‖p, (12)

where p > 0 and Ki(i = 1, 2, 3) are positive constants. Then, the trivial solution of (10) is
exponentially p–stable for t ≥ 0.

Following [21,26,27], the Lyapunov operator LV(t, U) associated with (12) is defined as:

LV(t, U) =
∂V(t, U)

∂t
+ f T(U)

∂V(t, U)

∂U
+

1
2

Tr
[

gT(t, U)
∂2V(t, U)

∂U2 g(t, U)

]
Theorem 17. The trivial solution of (10) is asymptotically mean–squared stable if:

σ2
1 < 2r, σ2

2 < 2μ1(1 − R1), σ2
3 < 2μ2(1 − R2), σ2

4 < 2μ3(1 − R3).

Proof. Consider the following Lyapunov function:

V7(t, U) =
1
2

(
u2

1 + u2
2 + u2

3 + u2
4

)
. (13)
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The first condition of Theorem 16 holds for the Lyapunov function defined in (13) with
p = 2. Now, Lyapunov operator LV7(t, U) becomes:

LV7(t, U) =− (r − 1
2

σ2
1 )u

2
1 − (μ1 + q1E − m1k − 1

2
σ2

2 )u
2
2 − (μ2 + q2E − m2k − 1

2
σ2

3 )u
2
3

− (μ3 + q3E − m3k
a + k

− 1
2

σ2
4 )u

2
4 − β1ku1u2 − β2ku1u3 − β3k

a + k
u1u4

≤− (r − 1
2

σ2
1 )u

2
1 −

μ1 + q1E
2

(2(1 − R1)− σ2
2 )u

2
2 −

μ2 + q2E
2

(2(1 − R2)− σ2
3 )u

2
3

− μ3 + q3E
2

(2(1 − R3)− σ2
4 )u

2
4,

and this leads to LV7(t, U) ≤ −K3‖U‖2, where:

K3 = min
{
(r − 1

2
σ2

1 ),
μ1 + q1E

2
(2(1 − R1)− σ2

2 ),
μ2 + q2E

2
(2(1 − R2)− σ2

3 ),
μ3 + q3E

2
(2(1 − R3)− σ2

4 )

}
.

One can note that the conditions of Theorem 17 indicate that the exponential-mean-
squared stability of the system (10) depends on the harvesting effort.

5.2. Random Harvesting

Here, we studied the effect of random harvesting on the three predators. The stochastic
extension of (1) is as follows:

dx
dt

= rx(1 − x
k
)− β1xy − β2xz − β3xw

a + x
,

dy
dt

= m1xy + δyz − μ1y − (q1 + ζ1)Ey,

dz
dt

= m2xz − δyz − μ2z − (q2 + ζ2)Ez,

dw
dt

=
m3xw
a + x

− μ3w − (q3 + ζ3)Ew.

(14)

The catchability parameters q1, q2, and q3 were perturbed by independent Gaussian
white noise terms ζ1, ζ2, and ζ3 in the system (14) because, usually in the prey–predator
system, harvesting is performed randomly, where ζi, i = 1, 2, 3 are independent Gaussian
white noises satisfying:

〈ζi(t)〉 = 0, and 〈ζi(t1)ζi(t2)〉 = δijδ(t1 − t2).

δ(t1 − t2) is the Dirac delta function; δij is the Kronecker delta; 〈.〉 is the expectation.
Following [28], substituting x(t) = eZ1(t), y(t) = eZ2(t), z(t) = eZ3(t), w(t) = eZ4(t),

into (14), one obtains:

dZ1

dt
= r(1 − eZ1(t)

k
)− β1eZ2(t) − β2eZ3(t) − β3eZ4(t)

a + eZ1(t)
,

dZ2

dt
= m1eZ1(t) + δeZ3(t) − μ1 − (q1 + ζ1)E,

dZ3

dt
= m2eZ1(t) − δeZ2(t) − μ2 − (q2 + ζ2)E,

dZ4

dt
=

m3eZ1(t)

a + eZ1(t)
− μ3 − (q3 + ζ3)E.

(15)
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Using Z1 = x6 + ξ1, Z2 = y6 + ξ2, Z3 = z6 + ξ3 Z4 = w6 + ξ4, one obtains the
following linearized system:

dξ1

dt
= x6

(
r
k
− β3w6

(a + x6)2

)
ξ1 − β1y6ξ2 − β2z6ξ3 − β3w6

a + x6
ξ4,

dξ2

dt
= m1x6ξ1 + δz6ξ3 − μ1 − (q1 + ζ1)E,

dξ3

dt
= m2x6 − δy6ξ2 − (q2 + ζ2)E,

dξ4

dt
=

am3x6

(a + x6)2 ξ1 − (q3 + ζ3)E,

(16)

where �ξ = (ξ1, ξ2, ξ3, ξ4) are the stochastic perturbations around (x6, y6, z6, w6). The lin-
earized system (16) can be written as:

d�ξ(t) = M�ξ(t)dt + G(�ξ(t), t)dW(t), (17)

where:

M =

⎛⎜⎜⎜⎝
x6

(
− rx6

k + β3x6w6
(a+x6)2

)
−β1y6 −β2z6 − β3x6

a+x6

m1x6 0 δz6 0
m2x6 −δy6 0 0
am3x6
(a+x6)2 0 0 0

⎞⎟⎟⎟⎠; G =

⎛⎜⎜⎝
0 0 0 0
0 −E 0 0
0 0 −E 0
0 0 0 −E

⎞⎟⎟⎠.

The solution of (17) can be written in the form:

�ξ(t) = eM t�ξ0(t) +
∫ t

0
eM(t-s)G(s)dW(s), (18)

Following [12,29,30], one can assume that there exists a pair of positive constants θ1

and γ1 such that
∥∥eM

∥∥2 ≤ θ1e−γ1t. Furthermore, one can find another pair of positive
constants θ2 and γ2 such that |G|2 ≤ θ2e−γ2t. Thus:

E(|�ξ(t)|2) ≤ 2|eM�ξ0|2 + 2
∫ t

0
|eM(t-s)G(s)|2d(s)

≤ 2θ1e−γ1t|�ξ0|2 + 2θ1θ2e−min{γ1,γ2}t,

and as a result, the prey–predator system (14) will be exponentially mean–squared stable.

6. Numerical Simulations

In this part, the numerical simulations are compared with the previous theoreti-
cal analysis. The numerical simulation was conducted using the following parameters
r = 2, k = 0.1, β1 = 0.1, β2 = 0.5, β3 = 0.1, m1 = 0.1, m2 = 0.2, m3 = 0.1, δ = 0.08,
μ1 = 0.04, μ2 = 0.2, μ3 = 0.2, a = 0.6, q1 = 0.1, q2 = 0.1, q3 = 0.1, E = 0.1.

The effect of catchability constants can be shown by drawing the bifurcation diagram
regarding q1 as a bifurcation parameter. The transcritical bifurcation value is centered at
q∗1 = 0.2 as indicated in Figure 1. Note that the bifurcations that are presented in Theorem 5
are illustrated because q∗1 = 0.2 is equivalent to R1 = m1k

μ1+q1E = 1.
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Figure 1. Bifurcation diagram of the model (1) with respect to q1.

One can draw the bifurcation diagram regarding q3 to indicate the effect of the harvesting.
The supercritical Hopf bifurcation value is centered at q∗3 = 0.254669 as indicated in Figure 2.
It can also be noted that for q3 > 0.254669, the prey–predator model (1) is locally stable as
indicated in Figure 3, while for q3 < 0.254669, the system goes through the limit cycle behavior.
One can find that all the conditions of Theorem 14 hold as Φ1(0.254669) = 0, Φ2(0.254669) 
= 0
and dΦ1(q3)

dq3
|q3=0.254669 
= 0. This confirms the existence of a Hopf bifurcation at q∗3 = 0.254669.

As a result, the harvesting parameter q3 can break the oscillating behavior of the deterministic
system (1) and drive it to the required state. In the same way, the bifurcation of the system can
be studied using the parameter q2, as shown in Figure 4.

Figure 2. Bifurcation diagram of the model (1) with respect to q3.
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Figure 3. Time series of the model (1) with q3 = 0.1 and q3 = 0.4.

Figure 4. Bifurcation diagram of the model (1) with respect to q2.

To better understand the effect of the caring capacity k, one can draw the bifurcation
diagram with respect to k. It can be seen that the supercritical Hopf bifurcation value
is localized at k = 0.45 as shown in Figure 5. The supercritical Hopf bifurcation value
is centered at k = 0.45, as indicated in Figure 5. When k > 0.45, the prey–predator
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model (1) goes through limit cycle oscillation, as indicated in Figures 5 and 6. For k < 0.45,
E4 = (0.075, 0, 0, 0.15 − 0.01125/k) is locally stable, as indicated in Figure 6. It can also
be noted that the conditions of local stability that were established in Theorem 10 were
verified because when k = 0.4, one has R3 = 2.8571 < 1 + (am3)

((μ3+q3E)(a+k)) = 3.1429.
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Figure 5. Bifurcation diagram of the model (1) with respect to k.
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Figure 6. Time series of the model (1) with k = 0.05, k = 0.3, and k = 0.7.
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To give some numerical findings for the prey predator system (8), one can use the Mil-
stein method mentioned in [31,32]. The prey–predator system (8) reduces to the following
discrete system.

xj+1 = xj + hxj

(
r(1 − xj

k
)− β1yj − β2zj −

β3wj

a + xj

)
+ σ1xj

√
hε1j +

σ2
1

2
xj

[
ε2

1j − 1
]

h,

yj+1 = yj + h yj
(
m1xj + δzj − μ1 − q1E

)
+ σ2yj

√
hε2j +

σ2
2

2
yj

[
ε2

2j − 1
]

h,

zj+1 = zj + hzj
(
m2xj − δyj − μ2 − q2E

)
+ σ3zj

√
hε3j +

σ2
3

2
zj

[
ε2

zj − 1
]

h,

wj+1 = wj + hwj

(
m3xj

a + xj
− μ3 − q3E

)
+ σ4wj

√
hε4j +

σ2
4

2
wj

[
ε2

4j − 1
]

h,

(19)

where h is a positive time increment and εij, (i = 1, 2, 3, 4) are independent random Gaus-
sian variables N(0, 1). Figure 7 represents the dynamical behavior of the model (8) when
the noise strength is the law (σi = 0.05). One can note that for the given parameters,
the strength of environmental noise is very close to zero, and the system behaves as a
deterministic model. Following [33], one can note that in the deterministic case, if R0 < 1,
then the prey–predator system (1) has a predators’ free equilibrium point E1 = (k, 0, 0, 0).
In the stochastic model (14), if one gradually increases the intensities of fluctuation and
keeps the remaining parameters unchanged, the fluctuations around E1 become larger,
as seen for the values of σi = 0.2 and 0.9 shown in Figure 7. The black line in Figure 7
represents the prey when (σi = 0). From Figure 8, it is seen that increasing the catchability
constants has a stabilizing effect on the stochastic model (14).
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Figure 7. Fluctuation in the prey population with σi = 0.05, σi = 0.2, and σi = 0.9. The black line
represents the prey when (σi = 0).
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Figure 8. Numerical simulation of the system (14) with (q1 = q2 = q3 = 0.1) and (q1 = q2 = q3 = 0.5).

7. Conclusions

In this paper, a mathematical prey–predator model was proposed and analyzed. The
interference of the predators in the system investigated in [12] was modified by adding an
extra predator y(t) where the first predator preys on the second predator in addition to
the prey. The interaction between the three predators and single prey was studied. The
impact of harvesting on the first and the second predator was investigated. Sufficient
conditions were obtained to ensure local stability. It was concluded that the dynamics of
the population can be controlled by harvesting. The harvesting rates of the three predator
species played an important role in controlling the local and global dynamics of the prey–
predator system. They can break the oscillating behavior of the deterministic system and
drive it to the required state. To investigate the effect of environmental noise, we performed
a stochastic extension of the deterministic model to study the fluctuation of the ecological
factors. The existence of a unique global positive solution for the stochastic model was
investigated. We used stochastic perturbation around the free predators’ equilibrium
point. Constructing an appropriate Lyapunov function and applying Itô’s formula, we
note that the deterministic model was robust with respect to stochastic perturbation. The
criterion of stochastic stability depends on the intensities of noise σi, i = 1, 2, 3, 4. The
exponential–mean–squared stability of the resulting stochastic differential equation model
was examined, and it was found to be dependent on the harvesting effort.
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